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PREFACE. 

In the course of the study that led to this book I have had the help of many 

people, of which I can name only a few. 

In 1979 it all started at the Department of Mathematics of the Econo

metric Institute, Erasmus University Rotterdam, where I worked with Michie! 

Hazewinkel. We started a seminar on Time Series, which resulted, among other 

things, in discussions and research concerning the so-called 'finite identi

fiability problem'. The results can be found in Chapter 3. 

In 1980 Michiel Hazewinkel and Jan Willems organized a conference/summer 

school at Les Arcs in the French Alps, about stochastic systems, in particular 

the mathematical aspects of filtering and identification. There I met many 

important researchers in the field of systems theory. Among them Steve Marcus, 

In 1982 my wife and I spent almost a year in Austin, where I worked 

together with Steve Marcus at the University of Texas. I investigated a 

Riemannian metric for the space of stable linear systems, This is described in 

Chapter 5. During the latter part of our stay in Austin, the question was 

raised whether the Riemannian metric could also be used in an algorithm for 

recursive identification and if so, what the properties of such an algorithm 

would be. At first this did not seem to give many difficulties and some months 

after our return from Texas, I sent a sketch of the construction of the algo

rithm, the asymptotic properties and their proof to Steve Marcus. But working 

this out turned out to be a constantly expanding task. This can be retraced in 

the length of Chapter 6 in which the algorithm and the results about the 

asymptotic properties are described. 

In 1984 I moved to the Department of Mathematics and Informatics of the 

Technical University of Delft, to work with Geert-Jan Olsder. There I was 

enthusiastically supported to finish this study. 

I want to thank all the people who have helped me, those mentioned and 

all the others. Special thanks go to Mrs. J.G,E,G. Oosthout and Mrs. C.E. 

Hamerslag of the Econometric Institute of the Erasmus University for all the 

work that they have done, and the 'Vakgroep Wiskunde' for their support. 

Special thanks also go to Mr. P.J. van der Meer for making the figures. 

Finally I want to thank my wife and my family for their constant moral and 

concrete support. 
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CHAPTER I 

INTRODUCTION 

In many sciences, like econometrics, engineering science and many others, model 

identification is an important problem. It can be sketched as follows. Using a 

priori knowledge, theoretical considerations and often some amount of 

speculation, the investigator proposes a 'model' for the phenomenon under 

consideration. In most cases this '.model' is a rough structure containing a 

number of unknown quantities. This means that one has in fact not~ model, but 

a whole set of models; with each choice for the unknown quantities corresponds a 

fully specified model. This set of models will simply be called the model set. 

The problem of model identification is to identify the correct model from the 

model set, using observations concerning the phenomenon. The question arises 

whether the model can be identified from the observations. If so we will say 

that we have model identifiability (cf. chapter 3). If not, then there are 

several possible reasons. 

The first one is that the correct model is not in the model set, i.e. the 

phenomenon under consideration is not well-described by any of the models in the 

model set. One should always be aware of this possibility of falsification of 

the model set. A good model identification method should include some kind of 

falsification test. The second possible reason is that the available 

observations do not suffice; one needs more observations of some quantities 

and/or observations of other quantities. The third possible reason is that 

several models are observationally equivalent. This means that although the 

models are apparently different, they describe exactly the same relations 

between all observable variables of the phenomenon. The approach taken here will 

be to consider the relationships between the observable variables as essential 

and observationally equivalent models will be considered as different 

representations of the~ model. In other words, a model will be considered to 

be an abstract object that describes the relations between (in principle) 
* observable variables, and that can be represented in many different ways.) 

This is in fact one of the basic themes in this tract. This can be seen by 

considering the main points of this work. 

(I) In chapter 2 (among other things) various different representations of 

linear dynamical systems, deterministic and stochastic, are presented and 

* ) A fourth possible reason is that several models are 'partially observa-

tionally equivalent'. By redefining the model set this possibility can be ruled 

out (cf. p.1O3 esp. (3.2. 1.1-14)). 
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their interrelations are described. 

(2) In chapter 3 a problem that is originally stated in terms of an a.r.m.a. 

representation of a linear dynamical system namely the socalled 'finite 

identifiability problem' (also called 'the informative sample size problem'), 

is treated by using i.a. a state-space representation, a Hankel matrix 

representation and a transfer matrix representation of the system. In this 

way, results are found that appear difficult to obtain directly from the 

a.r.m.a. representation. 

(3) Because models are considered as abstract objects, if one needs structure 

on the model set, like a topological structure and a metric structure, one has 

to impose this. This means that one has to decide when models are close and 

when far apart, in a qualitative sense (a topology) and in a quantitative 

sense (a metric). For the classes of linear dynamical systems that are 

:onsidered (cf. chapter 2) these subjects are treated in chapter 4, where an 

overview of some of the existing results of the topology of spaces of linear 

systems is given and in chapter 5 where for several spaces of linear systems a 

Riemannian metric is presented and analyzed. 

(4) To describe the model set, parameters will be used. In our set-up they just 

play the role of coordinates. They should not be confused with what could be 

called the 'reaction coefficients' of a model. To give an example of this, 

consider the following situation. Suppose that in some model there are 

variables x and y and if x changes, then according to the model, y changes 

with some factor times the change of x. This factor ia a 'reaction coefficient'. 

Such coefficients may of course be important in the analysis of the behaviour 

of the phenomenon. Therefore, often they are used as parameters. However, one 

has to be careful in doing this. For example, (a) perhaps in some situations 

x cannot be changed, while y can; then mathematically speaking the reaction 

coefficient may be _:i:. oo; (b) there may be an infinite number of relevant 

reaction coefficients in the model; (c) often there are restricting relations 

between the various reaction coefficients, which makes that they cannot be 

identified (or estimated) independently; (d) there may be problems with the 

causality, for example the model y = 2x may have a perfect fit in some 

situation, but if xis controlled to increase by one, y may increase not by 

two, but by one, the reason being that there is a third variable, z, and the 

true model is 

y x+z 

x z+u 
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where u is the control (which is supposed to be zero if xis not controlled). 

This all shows that one has to be v~ry careful with using the reaction 

coefficients as parameters. To describe the model set with the aid of 

parameters, two approaches can be distinguished. The first one is to use 

some canonical form for the model. This means that the model is written down 

in such a (canonical) way that any two models which are (observationally) 

equivalent have the same canonical form (and of course models which are 

not equivalent have different canonical forms). One typically has a number 

of discrete variables (often their only possible values are one and zero) 

and a number of continuous variables (e.g. taking their values in some open 

subset of a Euclidean space) that describe the canonical form. The advantage 

of a canonical form is that each model is described in a unique way. The 

disadvantage in many cases (including the case of multivariable linear 

dynamical systems) is that it is discontinuous, i.e. a small change in the 

model may lead to a completely different canonical form. This difficulty is 

avoided in the second approach, which consists of using a number of over-

lapping parametrizations. In this case the model space is covered by a number 

of overlapping open sets, called charts and each of them is provided with 

(continuous) coordinates (the 'local parameters'). (As a simple example of a 

covering with charts - from which in fact the terminology stems - one can think 

of a complete atlas of the earth, inclusing a chart which contains the north 

pole and one that contains the south pole). To cover a space in such a way is a 

standard method in differential geometry, leading to the theory of differentiable 

manifolds. This way of parametrizing the model set will be used in chapter 6. 

There a generalization of the well-known prediction error algorithm for 

recursive identification of stochastic linear systems, to the case in which the 

model set is a differentiable manifold (with certain properties) is constructed 

and its asymptotic behaviour is analyzed. 

Now let us go through the contents in some more detail. In chapter 2 an intro

duction is given to deterministic and stochastic linear (dynamical) systems. 

The chapter starts with a general definition of a deterministic dynamical 

system with initial conditions. It is shown that under certain conditions, up 

to scaling, there are only five possibilities for the 'time axis', namely 

~,Z,[0, 00), N (= N u{O}) and {O}. Special care has been taken to give a good 
0 

~reatment of 'initial conditions at-='. Stochastic systems will be represented 

as d~terministic systems with stochastic inputs (and possibly stochastic initial 
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conditions; in case of 'initial conditions at --<X>' this would lead to non

ergodicity, which will be ruled out). Starting with the general definition of 

a dynamical system, and adding assumptions, the concept of a deterministic, 

finite dimensional linear system is obtained. The various representations of 

such a system are treated, and their interrelations investigated. An important 

role in the theory of multivariable linear dynamical systems is played by the 

Kronecker indices. An important partial order on these indices is the 

specialization order. It is defined and it is shown to have the property, that 

in limit points of the model space the Kronecker indices of the system can 

only 'drop' (i.e. become 'more special') or remain the same. The results given 

here are somewhat more general than in the literature. 

For stochastic linear systems various representations are treated also. Special 

care has been taken to show that they are well-defined with probability one. 

The spectral factorization theorem is presented; it plays a role in chapter 3. 

The same holds for the Hankel matrices of covariances. 

In chapter 3 arma(p,q) models are investigated. To obtain results about the 

unique partial realization problem for such models, a characterization of 

such models in terms of the rank structure of the corresponding Hankel matrix 

is given. The results and proofs in the deterministic case are for a great deal 

parallel to those in the stochastic case. The results that are obtained for 

the unique partial realization problem in the stochastic case are applied to 

the finite identifiability problem, which stems from econometrics. However, to 

be able to get a good interpretation of the results, a concise treatment is 

given of the methodology of the identifiability problem. Among other things two 

concepts, called system identifiability and parameter identifiability are 

introduced which hopefully will contribute to a somewhat better understanding 

of identifiability problems. The results that are obtained about the finite 

identifiability problem are for a large part stronger than those in the 

literature. 

Chapters 4, 5 and 6 have a different flavour - compared to chapters 2 and 3 -

due to the fact that they make use of concepts and results of topology-and 

differential geometry. In chapter 4 an overview is given of some of the known 

results about the differential geometric and topological structure of certain 

families of linear systems. A central role is played by the socalled state 

(fibre) bundle. This is a fibre bundle, of which each fibre - as a whole -

corresponds to a linear dynamical system, and each point of the fibre in turn 
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corresponds to some state of that linear dynamical system. Some of the connected

ness properties that are presented are shown here for the first time. 

In chapter 5 a new element is added to the structure of the model space, namely 

a metric. Or, in fact, two metrics. One that will be called the outer metric, 

and a corresponding one, the inner metric. If a space is embedded in a metric 

space, then it inherits its metric. This will be called the outer metric. 

(Think e.g. of a unit sphere in three dimensional Euclidean space. In the outer 

metric the distance between north pole and south pole is two). However, if one 

considers the 'travelling distances within the space' one obtains another 

metric, the socalled inner metric. (In our example of the unit sphere, in the 

inner metric the distance between north pole and south pole, i.e. the 

'travell~ng distance' between those points, is TI). In general to compute the 

inner metric globally is a difficult problem. Locally on a differentiable 

manifold, however, it can very often be computed. One then works with a so

called Riemannian metric, which is in fact an (inner product-) metric on each 

tangent space of the differentiable manifold. The advantage of the outer metric/ 

inner metric approach is that one can choose an intuitively natural embedding 

of the model set in a metric space (often a Euclidean space or, more generally, 

a Hilbert space) and compute the corresponding inner metric. In the case of 

deterministic asymptotically stable linear time-invariant systems one can embed 

the model set in the set of all asymptotically stable 'm.a.(oo)' systems, and 

use the square-root of the sum of squares of all m.a. (oo)-coefficients as norm 

of a system. This approach is worked out in chapter 5. The corresponding 

Riemannian metric is derived and for several cases it is explicitly computed. 

For the simplest case (s.i.s.o., order one) the inner metric is computed. This 

turns out to be (isometric to) a double infinite-sheeted Riemann surface. 

Special attention is being paid to the 'short time-interval' case. A represent

ation is found for discrete-time systems with time-interval length n such that 

for n + 0 the representation becomes the continuous time representation, while 

for n one has the usual discrete-time representation, The representation 

has elegant properties concerning its stability region in the complex plane. 

Surprisingly enough, as a by-product of this analysis, an interesting group of 

isometries of the model space is found. In the simplest case, alluded to above, 

it corresponds to the group of isometries of the Riemann surface! 

Especially for practical purposes it is important to know at which points the 

Riemannian metric tensor degenerates. This is not a property of the space but 
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of the chosen parametrization! It is shown that for a usual parametrization of 

linear systems, the Riemannian metric tensor degenerates at points where the 

McMillan degree drops. 

The Riemannian metric on a manifold of linear systems can be extended to a 

Riemannian metric on the state bundle in such a way that if one uses socalled 

parallel displacement of the state the resulting (inner) distance between two 

systems does not depend on the state, and is equal to the (inner) distance 

defined before. 

Turning to the stochastic case, it is first shown that the outer metric/ 

inner metric/Riemannian metric structure can also be found for the Fisher 

metric (which is a Riemannian metric). The corresponding outer metric is the 

socalled Hellinger distance, which is defined between any pair of measures on 

the same space. The Fisher metric on spaces of stationary stochastic systems 

is defined in a standard way, namely by dividing the Fisher information matrix 

for any time interval by the time interval length T and taking the limit for 

T + 00 • The relationship between Fisher metric and Hellinger distance is lost 

in the limit. 

The chapter is concluded with some remarks on the relationship between local 

identifiability and nondegeneracy of the Riemannian metric tensor. 

Due to the size of the work it comes in two parts, part I consisting of 

chapters 1-5 and part 2 consisting of the long chapter 6 (and the references, 

etc.). 

Chapter 6 is about Riemannian gradient algorithms for recursive identification. 

As mentioned before it contains a generalization of the prediction error 

algorithm for recursive identification of stochastic linear systems to the 

case in which the model set is a differentiable manifold. This differentiable 

manifold is required to be a compact submanifold of the manifold of stationary 

stochastic systems of order n, which have an innovations representation with 

asymptotically stable inverse. In a long analysis, which i.a. makes use of 

the compactness of certain sets of interpolation curves, it is shown that the 

parameter sequence that is generated by the algorithm converges to a critical 

point of the criterion function, or, at least, to a connected set of critical 

points (on which the criterion function is constant). A more detailed intro

duction to chapter 6 is given in section 6.1. at the beginning of part 2. 

Chapter 6 ends with a number of remarks and possible subjects for further 

research. 
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CHAPTER 2 

INTRODUCTION TO DETERMINISTIC AND STOCHASTIC LINEAR SYSTEMS 

2.1. Definitions in the deterministic case 

In this section we want to define the class of deterministic, discrete time, 

time invariant, finite dimensional, linear dynamical systems. To do that we 

start with a general definition o_f dynamical systems and then specialize to 

the desired case. The following definitions are inspired by those in [Wi 79). 

We will consider a system to be a set of input-output mappings parametrized by 

the possible "initial conditions". To clarify the role of continuous and 

discrete time we will show that discrete time and continuous time systems 

arise as the only possibilities from certain axioms with respect to the time 

axis of the system. 

0 0 

2.1-1. Definition. A dynamical system is defined by E {T,U,U,Y,Y,F}, where 

(i) Tc~ is the time axis 

(ii) U is an arbitrary set, the set of input values called the input 

alphabet, 
0 

(iii) U is a set of functions, the input functions, oo: T + U, with the 

following property: if oo1 ,oo2 € U, t' € T, and oo is the concatenation of 

00 1 and 002, defined by 

•-{ 001 ( t) if t ( t I , 

oo( t) .- oo2(t) if t > t', 

then oo € U; 

(iv) Y is an arbitrary set, the set of output values, called the output 

alphabet; 
0 

( v) Y is a _set of functions, the output functions, n: T + Y, 

(vi) Fis a set of nonanticipative input-output mappings. This means the 
0 

following: the set can be described as F = {Fblb € B}, Ban index set, 

called the set of initial conditions and 

Vb€ B: Fb: U + Y is a nonanticipative mapping, i.e. 

if (a) oo1,oo2 € U, t' € T and if 

(b) Vt< t', t € T: oo1(t) = oo2(t), 

then 
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Fb is called an input-output mapping ~orr;sponding to the initial 

condition b € B, The function F: Bx U + Y, (b,w)f---+ Fb(w) is called the 

system function, 

2.1-2. Remarks. 

(i) This definition resembles the definition of a dynamical system in input

output form as given by [Wi 79). 

(ii) Often a system can be represented in many different ways. This holds 

especially for the system function F. In many cases it is defined 

implicitly by some representation of the system, usually a recursive 

equation like a difference or differential equation. This fact will play 

a central role in this work. If two representations correspond to the 

same system E (in the sense that they generate the same set of input-
• 0 

output mappings F {Fblb € B}, while their sets T,U,U,Y,Y are also 

equal) they will be called equivalent. 

Often it is convenient to have an explicit representation of the initial 

conditions in the definition of a system: 

2.1-3. Definition. A dy~ami;al system with set of initial conditions (s.i.c.) 

is defined by E = {T,U,U,Y,Y,B,F}, B the set of initial conditions, F the 

system function. 

It should be clear from the foregoing that two systems with s.i.c. correspond 

to the sa~e srstem, if they generate the same set F = {Fblb € B}, while their 

sets T,U,U,Y,Y are equal. 

Let us now introduce linearity. 

2.1-4. Definition. Consider the system with s.i.c, E {T,U,U,Y,Y,B,F}. 

If U,U,Y,Y and Bare vector spaces over some field k (with pointwise addition 

and scalar multiplication in U and Y) and if Fis a linear mapping, then Eis 
0 0 

called a linear system with s.i.c. A system E = {T,U,U,Y,Y,F} is called a 

linear system if there exists a corresponding linear system with s.i.c. 

To define time-invariance of systems, we need a shift-invariance structure on 

the time axis: 
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2.1-5. Definition. Suppose o ER is such that T+o ~ T, i.e. Vt ET: t+o ET. 

Then the shift S0 is defined by (S 0w)(t) = w(t+o) for any function w 

with domain T. 

2.1-6. Definition. Let 6+ := {oio = t 1-t2 > O; t 1,t2 ET} be the set of 

positive time differences in T. Twill be called forward shift invariant if 

+ T + 6 c T. 

(Notation: A+B = {a+blaEA,bEB}). 
+ Also, if Vis any set of functions on T, and Vo E 6: S0V c V, then Vis 

called forward shift invariant. 

Let 

6 := {oio = t 1-t 2;t 1,t 2 ET} be the set of all time differences in 

T. Twill be called shift-invariant if T+6 c T. (- T+6=T). Also if Vis a set 

of functions on T and Vo E 6: S0V c V (- S0V 

invariant. 

V), then Vis called shift 

2.1-7. Remark. Shift invariance of the time axis implies that for a space W, 

the set of all functions wT is shift invariant. 

Now we can introduce the concepts of forward time invariance and time 

invariance: 

2.1-8. Definition. Let the system r (with s.i.c.), be as before. Suppose Tis 

forward shift invariant and U and Y are forward shift invariant. If there 

exists a one parameter semi-group of transformations 
+ {T~:B + Bio E 6} on B such that T~ o T = T and 

u u 1 o2 o1+o 2 

then r is called forward time invariant. (A system is called forward time 

invariant if there exists a corresponding system with s.i.c. that is forward 

time invariant). 
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A similar definition can be given for a time invariant system: 

2.1-9. Definition. Let Ebe as before. Suppose Tis shift invariant, and 

U and Y are shift invariant. If there exists a one parameter group of 

transformations {T6 : B + Bl6 € ti.} on B such that (T6 o T6 = T6 +6 and) 
1 2 1 2 

then Eis called time invariant. (A system is called time invariant if there 

exists a corresponding system with s.i.c. that is time invariant), 

2.1-10. Remark. Usually the distinction between forward time invariance and 

time invariance is not made explicitly, and only the term time invariance is 

1sed. If there is no chance of confusion we will follow that practice. 

Next we want to make the distinction between continuous time and discrete time 

systems and address the problem of the representation of T, assuming Tis 

forward shift invariant and closed. 

2.1-11. Definition. Let Ebe as before and let TI 0 be forward shift 

invariant and closed in R. The system Eis called 
+ (a) a static system if ti. = 0, i.e. ITI = 1, 

+ (b) a continuous time system if inf ti. = O, and 
+ (c) a discrete time system if inf ti. > O. 

We will now show that by a translation and a positive scaling factor, T can be 

brought into one of five standard forms. 

2.1-12. Theorem. Let Ebe as before and TI 0 forward shift invariant and 

closed. Then there is a real number t 0 and a positive real number A such that 

A.(T-t) is one of the following five sets 
0 

(a) {O} 

(b.1) R 

(b.2) [O,oo) 

(c.l) z 
( C, 2) N (:=NU {O}); 

0 
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(a) corresponds to the static case, 

(b) to the continuous time case and (c) to the discrete time case. 

Proof. Without loss of generality we can assume T: A, if not then take 

t € T and translate the time axis to T-t c A. In the static case, this 
0 0 -

already leads to the standard form: T = {O}. From now on assume A+*~- First 

let us show that A+ A= A: 

(1) 0 € A, so A+ A~ A 

(2) T+A+ c T, so if 61 ,6 2 € A and t 1 ,t2 
can of course always be found), then 

€ T such that 61 = t 1-t2 (such t 1,t2 
6 +6 = t -t +6 ; there are now three 

1 2 1 2 2 
possibilities: 

( 1) 62 = 0 

(11) 62 € A+ 

(111) -6 € A+. 
2 ' 

in case (1), it follows that 61+62 = t 1-t2 € A; in case (11), 

61+62 = (t 1+6 2)-t 2, and t 1+6 2 € T, so (t1+62)-t2 € A, and in case (111), 

61+6 2 = t 1-(t2-6 2), and t 2-62 € T+A+ ~ T, so t 1-(t2-6 2) € A. In all three 

cases it follows that 61+62 € A. So A+ Ac A. (1) and (2) imply 

A+ A = A. 

If t € T then Vt' > t with t' € A, t'-t € A+. It follows that t' € T. So 

if t € T, then A n [t,ao) : T. Consider inf T. If inf T = -ao, then it follows 

that T A. If inf T = t 0 ) -ao, then T * A. Note that if 6 € A\ T, 

then Tc An (6,ao). Because Tis closed, t € T. By the translation 
0 

t + t-t 0 , Tis mapped to T-t0 =An [O,ao) {0} u A+. So by applying a 

translation t + t-t one can map T to A or {0} u A+. Because Tis closed, so 
+ 0 + + + 

is {O} u A and so is A(= -A u {O} u A). If inf A = 0 then it follows 

that A is dense in Rand so A= R. This gives rise to two possibilities 

(b.2) + + -1 
T-t0 R· T-t0 = [0, 00). If inf A > 0, let A := (inf A ) ) O, , 
and multiply the elements of (T-t0 ) with A• If T-t0 = A it follows 

that A(T-t0 ) = Z (c.1) and if T-t0 = {O} u A+ then it follows 

that A(T-t) = IN =Nu {O}. 
0 0 

2.1-13. Convention. From now on we will exclude the static case; 

i.e. ITI > 1 is assumed, unless the opposite is stated explicitly. 

(b.1) 

Q.E.D. 

One of the fundamental notions in system theory is the concept of the state of 
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a system, and of a state space representation of a system. This will be 

defined next. It will also lead us to the definition of a finite dimensional 

(finite order) system. The main difference with a similar definition in 

[Wi 79) is that more emphasis is put on the role of the initial conditions. 

To be able to cope with all forms of T, especial!! T =Rand T = Z, the 

following constructions have to be made: w1,w2 € U are called 'equal in the 

past' if 3t € T such that w I = w I . Clearly 'equality in the past' is an 
1 (t 2 (t 

equivalence relation. If inf T = t > -m, then the equivalence relation is 
0 . • 

trivial in the sense that all inputs w € u are equivalent; if inf T = -m then 

the equivalence classes are germs of functions w € U 'in -m•. . . 
Let Uinf T := the set of equivalence classes in U under this equivalence 

relation. 

Let X be a set and let X:= the set of time functions t: T + X; t 1, t 2 € X are 

called 'initially equal' if 3t € T such that t 1 1~ t t 2 1~ t Clearly 'initial 

equality' is an 

equivalence relation. Let Xinf T 

this equivalence relation. 

the set of equivalence classes in X under 

So if inf T = t 0 ~ -m, then Xinf T = {t(t0 ) € X} = X, the st:te space; and if 

inf T = -m, then Xinf Tis the set of germs of functions in X •at -m•. 
Notation: If A denotes a set of sets: A= {ala€ A}, then x €€ A 

denotes x € u a; i.e. xis an element of an element of A. In the case 
a€A 

that A is a set of equivalence classes, x €€ A means that xis a 

representative of an equivalence class [x] € A. 

2.1-14. Definition. A state space representation of a system with s.i.c. 

E = {T,U,U,Y,Y,B,F} is given by {E,x,,,r,S}, where 

(i) Xis _a set called the state space, 

(ii) , is called the state evolution function; it is a function 
2 • 

,: {(t1,t0 ) € T lt1 ~ t 0 } x Xx U + X, and satisfies the following 

conditions: 

(ii.1) ,<t,t,x,w) = x (consistency), 

(ii.2) ,Ct2,t 1,,(t 1,t0 ,x0 ,w),w) ,Ct 2,t0 ,x0 ,w) (semigroup property), 

(ii.3) .!!_ wl'w2 € U and for some t 0 ,t 1 with t 0 < t 1: 

Yt€[t,t)nT:w(t) w(t),then 
o 1 l 2 --

V x € X: ,<t 1,t ,x ,w1) = ,<t 1,t ,x ,w2) (determinism), 
0 0 0 0 0 
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( iv) 

(iv.I) 
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r is called the read-out map, it is a map r: Xx U x T + Y 

8 is called the initial condition mapping. 

The initial condition mapping is a . . 
mapping a: Bx Uinf T + Xinf T with the following property: 

if w €€ Uinf T'; € S(b,[w])(E Xinf T}, then 3t ET such that 

(compare (ii.3). 

(v) the system mapping 

F: U x B + Y, (w,b) 1----+ n F(w,b), is determined by the following 

condition 

(v.l) 3; € X such that 

(I) Vt1,t2 with t 2 > t 1 and t 2 ,t 1 € T: ~(t2,t1,;(t1),w) 

(II) Vt€ T: n(t) = r(;(t),w(t),t) and 

(III);€ S(b,[w]). 

(End of definition) 

2.1-15. Proof of well-definedness of (2.1-14). 

It has to be shown that Fis well-defined by (2.1-14) (v). Let b € B, w € U 

be arbitrary. Choose any;' € S(b,[w])(E Xinf T). Then 3t' € T such 

that Vt 2,t1 
with t 2 < t 1 and t 2,t1 € T and t 2 ~ t': ~(t2 ,t1,;•(t1),w) 

Define ;(t) as follows: 

;(t) { ;'(t) if t < t'' 
= ~( t, t' , ; ' ( t ~), w) if t > t' • 

This shows the existence of;, and therefore of n (see (v.l)II). 

Now let us prove uniqueness. Let;",;"' both satisfy (v.1). Then 3t" 

such that Vt< t", t € T: 

;'"(t). 
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Furthermore lit > t": 

i;"(t) = <j>(t,t",i;"(t"),w) = <j>(t,t",1;11 '(t"),w) = i;'"(t) because of (v.l)I. 

Therefore !;" = i;'" • So I; and therefore n, is uniquely determined . 
by b EB, w EU and (v). So Fis well-defined. Q.E.D. 

2: 1-16 Remark. If T = [O,"") or N0 , then Uinf T {U}, a one-element set, and 

Xinf Tis in one-to-one correspondence with the set {i;(O) EX}= X, the state 

space. Therefore in that case 8: Bx Uinf T + Xinf T can be represented by a 

mapping from B to X. In other words: 8 indicates the state x EX that 

corresponds to a choice b EB of initial conditions. 

2.1-17. Definition. The set of initial conditions Bin the system with initial 

~onditions E = {T,U,U,Y,Y,B,F} is called minimal (for the corresponding system 
0 • • 

{T,U,U,Y,Y,F}) if the following implication holds: 

2.1-18. Remarks. (i) It is very well possible that the minimal set Bis a one

element set. 

(ii) Different state space representations of the same dynamical system E will 

be called equivalent (compare remark 1.1.2. (ii)). 

(iii) It is easy to see how one can obtain a minimal set of initial conditions 

abstractly. Define an equivalence relation~ on B by the following rule: 

Fb. The set of equivalence classes {[b] lbEB} forms a 
2 

minimal set of initial conditions. 

The question arises whether a state space representation always exists. We 

will show that this is indeed so, by constructing one, abstractly. The 

construction consists of three steps. In the first one a state is defined as a 

nonanticipative mapping of present and future inputs to present and future 

outputs. This first step provides us with a 'state space' Xt at each time t. 

In the second step the state spaces at different times are linked together by 

telling which states at one time should be identified with which states at 

another time. In the third step the corresponding state evolution function, 

the initial conditions mapping and the read out map are constructed. The 
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following notation will be used: if f and g are mappings and Dom f, Dom g 

their domains, and fl DomfnDomg 

X-,. 
{f(x) if x € Dom f 
g(x) if x € Dom g 

gl then f u g denotes the mapping 
DomfnDomg' 

1. First note that if a state space representation exists, then each state x0 

at some arbitrary time t 0 € T induces a mapping x of present and future 

inputs to present and future outputs: 

x: u1[t oo)nT ... Yi[to,00)nT' w' l[t ,oo)nTf---+ f, 
o' o 

where f € YI [ ) is given by t 0 ,oo nT 

Vt € [t , 00 ) n T: f(t) = r o ~(t ,t ,x ,w'). The function f does not 
1 0 1 1 0 0 

depend on w' I ( ) , but only on w' I [ ) T because of property -oo,t 0 nT t 0 ,oo n 

(ii.3) (determinism) of the definition (2.1.14) of a state space 

representation. Now we will turn this around and define a state at time t 0 

as such a mapping x, as follows. If the initial condition band the 

inputs w' 1(-oo t )nT up till time t 0 , excluding t 0 itself, are fixed, then 
' 0 

the system function F determines a nonanticipative mapping 

by 

The set of all possible mappings x that can be obtained in this way will be 

denoted by Xt , and called 'the state space at time t 0 '. Note that the 
0 state at time t 0 is completely determined by the past inputs and the 

initial conditions! 

2. Abstractly one can take the disjoint union u X as the state space, but 
t€T t 

usually this is very redundant. From now on we will concentrate on the case 

in which Tis forward shift invariant. We will assume Tis in one of the 

five standard forms of theorem (2.1-12). If x € Xt, we can shift it to the 
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origin of the time axis, by considering Sta x o S_t , where 

0 0 O O 

s_t: u1[0,m)nT + u1[t,m)nT and s+t: Yl[t,m)nT + Yl[o,m)nT are the shift 
operators on the corresponding spaces of functions (compare definition 

(2.1-5); if Tis only forward shift invariant, then S_t is formally not yet 

defined, but its definition is obvious). We can now define the state space 

as 

X u S Xt S 
tET t -t 

X has the property that X c S XS for all t ET. 
t - -t t 

3. Now the state evolution function, the initial condition mapping, and the 

read out map can be constructed, as follows: 

~(t 1,t 0 ,xt ,w) = xt, where xt is defined as follows: 
0 1 1 

0 O 

xtl Ui[t 1 ,m)nT + Yj[t 1 ,m)nT' 

The initial condition mapping is obtained as follows: For each initial 

condition b EB one has a nonanticipative input-output mapping 
0 

Fb: U + Y. Each wl(-m,t)'w E U,
0
determines a state xt at time t, as before, 

in 1. It follows that each w EU determines a sequence(or time function) 

{x} T' and each germ [w], under the equivalence of 'equality in the 
t tE 

past' determines a germ;= [{x }]. In this way one obtains a 
t 

mapping B: (b,[w])i-----+; = [{x }]. It is straightforward to show that Bis an 
t 

initial conditions mapping for the system. 

Finally we construct the read out map r(xt ,ut ,t 0 ), as follows: xt is a 

nonanticipative mapping 0 0 0 

0 O 

u1[to,m)nT + Yl[to,m)nT' so y(to) := depends only on 

w(t0 ). Now take w(t0 ) = ut, then r(xt ,ut ,t0 ) 

0 0 0 

It is straightforward to show that {E,X,~,r,B} satisfies all the conditions 

to be a state space representation of the system E. 
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In many cases the spaces U,Y,B,X,U and Y are topological spaces. If ~,r,S 

and Fare continuous mappings we will call the state space representation 

continuous and if a continuous state space representation exists, we will call 

the dynamical system continuous. 

2,1-19. Definition. A continuous dynamical system r. is called finite 

dimensional (or, of finite order) if there exists a continuous state space 

representation (r.,x,~,r) with dim.X < oo, and dim U, dim Y < oo, 

In that case dim X €Nu {-1,0}, and therefore there exists a minimal state 

space dimension for the given r.. This number is called the order of the 

system. 

2,1-20. Remarks. 

(1) For the formal definition of the dimension of a topological space, see 

e.g.[Hu-WJ. This definition coincides with the well-known definition in 

special cases like, e.g. Xis a vector space or Xis a differentiable 

manifold etc. 

(ii) Similar to the minimal dimension of the state space one can define the 

minimal dimension of the initial conditions space B. Let us call this 

the 'initial conditions order'. In a continuous dynamical system we 

expect the initial conditions order to be smaller or equal to the (state 

space) order of the system. However, we won't investigate this further, 

as it is not used in this generality in this work. 

2.2. Definitions in the stochastic case 

If the inputs and/or the initial conditions of a dynamical system are of a 

stochastic nature, one obtains a socalled stochastic system. If the initial 

conditions are deterministic and the inputs are stochastic but observed, then 

there will be no change in the definition of the dynamical system, compared to 

the deterministic definition, However, if (part of) the inputs are stochastic 

and unobserved, and/or the initial conditions are stochastic, then one has to 

use a different definition of a dynamical system. To prepare for the 

definition of a stochastic dynamical system, consider a a-algebra G of subsets 

of;= yT, and let Yt € T: G be the sub-a-algebra of all subsets 
t (t oo)nr ( tJnr of Yin G that are of the form Gt' x Y ' , with G' c Y -oo, • It is clear 

t -
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that if t 1 < t 2 , t 1,t2 € T then Gt c Gt , and so {Gt}t€T forms a socalled 

filtration of a-algebras. 1 2 

2.2-1. Definition. Let T,U,U,Y,Y,B be as before and G 

. . 
. 

u Gt as above. A 
t€T 

stochastic dynamical system with s.i.c. is {T,U,U,Y,Y,G,B,P}, where 

. 
P is a mapping P: B x U + Prob(Y,G), .(b,w)t-----+Pbw' and where Prob(Y,G) 

denotes the set of all probability measures on (Y,G), P such that for 

each b € B, if w1 l<t w2 l<t then 

(nonanticipation). 

. . . 
A stochastic dynamical system is {T,U,U,Y,Y,G,P}, where P . . . 
set of all mappings Pb: U + Prob(Y,G), wt--+Pbw" 

2.2-2. Remarks. In this definition the inputs w € U should be interpreted as 

being observed and/or as being not (explicitly) stochastic. The same holds for 

the initial condition. 

If all inputs are stochastic and unobserved and the same holds for the initial 

conditions then a stochastic dynamical system is just a stochastic process .. 
(i.e. a probability measure Pon (Y,G)). 

Just as we had a state space representation (also called a (state space) 

realization) for a deterministic dynamical system, one can define (several) 

representations (also called realizations) for stochastic dynamical systems. 

The idea is that in many cases it may be possible to find a deterministic 

dynamical system together with (partly) stochastic inputs of a certain 

(simple) character and (partly) stochastic initial conditions, such that the 

outputs are random variables, which have a probability distribution that is 

exactly the one from the definition of the stochastic system considered. 

(Alternatively one might consider a deterministic dynamical system that has 

the probability distribution as its output, as e.g. in quantum mechanical 

models (cf. [Mal).) 

In this work we will be concerned with stochastic processes. Therefore in the 

remaining definitions we will consider only that case. 
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2.2-3. Definition. Consider the stochastic process {T,Y,Y,G,P}. A stochastic 

realization is a deterministic dynamical system with initial conditions 
0 0 0 0 

r {T,U,U,Y,Y,B,F} together with the o-algebra G on Yanda a-algebra Hon 
00 00 00 

Bx U, and a probability measure Q on (BxU,H), such that F: (BxU,H) + (Y,G) 

is measurable, and the induced probability measure on (Y,G) is P. 

A stochastic state space realization is a stochastic realization in which the 

deterministic system is given by a state space representation. 

2.2-4. Remarks. (i) Stochastic realization as defined here is also called weak 

stochastic realization, because it is only required that the probability 

measure on (Y,G) is the same as in the stochastic system that is to be 

represented. It is not required here that the output of the deterministic 

system with stochastic inputs and initial conditions gives exactly the output 

of the stochastic dynamical system, which is the requirement for socalled 

strong stochastic realization. 

(ii) The definition of a stochastic realization is very weak, e.g. it allows 

for a trivial solution y = u, with the stochastic inputs u having exactly the 

properties that are required for y. However, in practice one looks for 

stochastic realizations with certain properties; for example one requires the 

inputs to be an independent sequence (if T = Z) or a Brownian motion process 

(if T = IR) etc. 

(iii) Any two realizations of the same stochastic process will be called 

observationally equivalent. Observational equivalence is an equivalence 

relation clearly. (Switching from one realization to another will be one of 

the main tools in this work). 

2.2-5. Definition. Suppose Tis shift invariant. A stochastic process 

{n(t)ltET} is stationary if for any finite subset {t1 , ••• ,tn} ~ T, (n 

arbitrary) the.joint probability distribution of 

... , 

is independent oft. 

n(t +t) 
n 

This definition is taken from [Gu-S], p. 68, I-5. For a stationary stochastic 

process one has the ergodic theorem of Birkhoff-Khintchine (see e.g. [Gu-S]). 

To state it we first need some definitions. 
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2.2.6. Definition. Consider a stationary stochastic process with 

corresponding probability measure Pon (Y,G). A set G £ G is called 

6-shift -invariant if 6 E t, \{O} and P(S/G) ~ G) 
0
= O, where t, stands for the 

symmetric difference between two sets. A set G € G is called shift-invariant 

if it is 6-shift-invariant '</6 E t, \ {O}. For each 6 £ t, \ {O} all 6-shift-

invariant sets together form a sub-a-algebra of G, den~ted by I 0 !nd a~l 

shift-invariant sets together form the sub-a-algebra I= n I 0 = G. 
oEll.\{O} 

2.2-7. Definition. Let G € G be arbitrary, and let Xe be its indicator 

function (i.e. x (n) = 1 if n E G, xG(n) = 0 if n ¢ G) then the conditional 
G • 

expectation w(G) := E(xGII) is called the empirical probability. 

Let lv°(G) 
n n 

ln-1 1 o 
:= n E xG(n(ko)) for some 6 € t, \ {O} i.e. nun is the relative 

k=o 

frequency of the realization of the event G, if !ol is used as the length of 

the time interval, and sgn(o) as the direction of time. 

2.2.8. Theorem. (Special case of the ergodic theorem). 

6 + _ un(G) • 
'</6 € t, u t,: lim-n- = E(w(G)IIo) 

n+co 

Proof. See [Gu-SJ, p.154. 

It follows from this that it is natural to 'split' the ~robability measure of 

the stochastic process, by conditioning on the empirical probability measure. 
0 

The empirical probability measure w itself is a random variable, I-measurable. 

It is natural to regard the random choice of the empirical probability measure 

as a random initial condition in a stochastic realization of the process. For 

each choice of the initial condition one then obtains an ergodic process. The 

definition of an ergodic process is as follows: 

• 0 

2.2-9. Definition. A stationary stochastic process (Y,G,P) is called ergodic 

if its empirical probability measure is equal to the probability measure P, P-

a.s. 

Using the above reasoning one can restrict oneself in stochastic realization 
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problems to stochastic realization problems of ergodic processes, because the 

non-ergodicity can be treated by using a random initial condition. In this way 

we arrive at the following. 

2.2-10. Convention. In the following we will consider ergodic stationary 

stochastic processes. 

2,2-11. Definition. An ergodic stationary stochastic process will be called 

linear, resp. finite dimensional if there exists a stochastic realization with 

a linear resp. finite dimensional, time-invariant deterministic dynamical 

system, together with independent inputs and initial conditions. 

2.2-12. Remark. It will turn out that the initial conditions can be taken 

fixed in this case, because of the ergodicity. 

2.~13. Definition. A stochastic process is called gaussian if its probability 

measure Pis gaussian. 

2.2-14. Convention. We will restrict ourselves to the gaussian case. 

Let {n(t)ltET} denote an ergodic gaussian stationary process. Then En(t) is 

l~l 
independent oft, and it can be estimated by n E n(t) because of the 

t=O 

ergodicity. As a slight simplification we will therefore assume En(t) to be 

known. If it is known one can substract it from the observed data to obtain 

zero-mean data. In this way we come to the following. 

2.2-15. Assumption. We will assume En(t) O. 
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2.3. Various representations of deterministic, finite dimensional linear 

systems 

2.3,1, Introduction 

In this section we want to present various representations of deterministic 

finite dimensional linear systems. The motivation is that this should work as 

an introduction for the stochastic case in the next section (2.4) and for the 

next chapter on minimal partial realization of arma(p,q) models and finite 

identifiability. Also it should show that indeed several different 

representations of the same objects exist. This in itself is a major 

motivation for this work. Especially as different representations are often 

used in different scientific fields, it is important to show the relations 

between the different models, like arma-models, state space models, transfer 

•unction (frequency domain) models, Hankelmatrix models, etc. We cannot treat 

this subject in full detail, Instead we will give an introduction which leads 

us to the results that are needed in later chapters. One of the motivations 

for the first chapters of this work is to show that even to obtain results for 

arma(p,q)-models, one can profitably use other representations, like state 

space models and Hankel matrices! 

2.3-2. State space models 

Recall from section 2,1 the definition of a deterministic, time invariant, 

finite dimensional, linear, dynamical, discrete time system. To avoid rather 

complicated topological dimension-problems, we will redefine finite 

dimensionality to be that the abstract realization of section 2.1 produces a 

finite dimensional state space. 

Let us consider what this abstract realization gives us now. A state in the 

abstract realization is a mapping 

w"I i-------+F[w'I uw"j b]I [t ,co)nT (-co,t )nT [t ,co)nT' [t ,co)nT 
0 0 0 0 

in the notation of section 2.1. Now Fis linear, so we can write 



28 

Sox is completely determined, given F of course, by 

F[w' lc-oo t )nT u 0 1ct ,oo)nT' b]lct , 00)nT 
' 0 0 0 

So the effect of the initial condition b can be separated from the effect of 

Bis a vector space and Fis linear, the set 

€ B} is itself a vector space. Because of the time 

the inputs, Because 

{F[O,b]lcto, .. )nT;b 
invariance property of the system, the dimension of this space is independent 

of the choice oft 
0 

dimension has to be 

€ T, For the state space to be finite dimensional this 

finite. The problem that remains is: when is the image of 

the linear mapping F[w' le- ) u 01[ ) ,o]lc ) T finite dimensional? oo,t 0 nT t 0 ,oo nT t 0 ,oo n 

Because the system is time invariant and discrete time, the corresponding 

standard form of Tis T = z. Therefore the mapping is a linear mapping of . . 
sequences. (To simplify the notation let us denote Ul(-oo t )nz by Ul<t etc.) 

0 
' 0 0 We have not specified U, therefore we have to be somewhat careful as to which 

sequences we consider as input sequences. For all possible choices of U that . 
satisfy the conditions, Ul<t will at least contain the subset of all 

0 

that have only a finite number of nonzero components, Let that . . sequences 

subset be denoted by U0 l<t 
0 

• The mapping restricted to U0 l<t can be described 
0 

completely by a (doubly semi-infinite) blockmatrix 

. [Hll H = H 
21 

831 . . . 1 
such that if {yt +jlt _ 1}j)O := F[w' l<t u Ol>t ,O] l>t denotes the 

0 0 - 0 -o -o . 
sequence of outputs that results from a sequence of inputs w' = {u} 00 € U t t=-oo 0 

that is concatenated with the zero sequence at t 0 , then 
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Now because of the time invariance, one can show quite easily that H12 = H21 ; 

H13 = H22 = H31 , and in general that Hi,j = Hl,i+j-l" To simplify notation, 

one uses Hk := Hl,k" The matrix is a socalled block-Hankelmatrix, and it is of 

the form: 

( 2. 3, 2-1) H 

The abstract state space can now be identified with the image of this matrix. 

The state space must be finite dimensional, so the image of the matrix H must 

be a finite dimensional linear space! Let n denote this dimension. Choose n 

independent columns of H, (or more generally: n independent vectors in the 

image of H, but these can always be written as linear combinations of n 

independent columns). These form a basis of the state space, The state at time 

t 0 + 1 is 

+ H3 • • •1 [ut 0 -1 

H4 '.' ut -2 
• 0 . . . . 

l
o I O •• •1 '\ 
0 0 I ••• H2 . . . . . . 

:: ::r :::lf i: ",, 

. [i 
I 

0 

0 

I 

With respect to the chosen basis of the image of H, we obtain an nxn matrix A 

representing the mapping 
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ytolto-1 lyto+1lto-1 

y t + 11 t -1 ~l y t + 1 I t - 1 , 
0 0 0 0 . . . . . . 

and a matrix B representing the matrix 

(note that both vectors 

are in the image of H); 

if X 
t 

0 

f ~: 1 
represents f Ytolto-l 1 with respect to the chosen basis, then we 

yt +lit -1 
0 0 

obtain the equation 

X 
t +l 

0 

y can be computed from x , say by the matrix C: y I 1 = Cx • 
t 0 lt 0-l t t t - t 

0 0 0 0 

(C consists of the first block row of a matrix, the columns of which are 

formed by the chosen n independent vectors of the image of H). To obtain 

yt we have to add the effect of ut 
0 0 

matrix D, 

So we obtain the equations 

Axt + But 

Cx + Du 
t t 

It follows easily that 

t € z. 

on yt • This can be described by a 
0 

( 2. 3. 2-3) 1,2,3, ••• 

(and H0 := D). 
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As usual one defines the socalled reachability matrix 

(2.3.2-4) R(A,B) := [B,AB, ••• ] 

and the observability matrix 

(2.3.2-5) 

Then H = QR, and because rkH 

follows that 

n, Q has n columns, and R has n rows, it 

('..'.3.2-6) rk(Q) rk(R) n. 

(This is the usual condition in linear systems theory for a minimal 

realization). 

To obtain the full description of the system two things remain to be done: 

(i) the initial conditions have to be treated 

(ii) the set of inputs of the system has to be extended from U0 to all of U. 

ad(i) {F(O,b)j>t ; b EB} is a finite dimensional vector space, with 
- 0 

dimension n say, of sequences 

(because of the assumption that the system is finite dimensional), which can 

again be considered as abstract states of the system. Because the system is 

time invariant n does not depend on t 0 ; in fact the set 

is a shifted version of X := {F(O,b) j>0 ;b EB} for each 

St {F(O,b)l>t ;b EB}= X for each t: E z. 
0 - 0 

{F(O,b)l>t ; b € B} 
- 0 t 0 E Z: 

Choose a basis for x. With respect to this basis the surjective 

mapping: X + X, 
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can be represented by an nxn non-singular(!) matrix A. Let {yt +·}·>o € X be 
0 J J 

represented by xt with respect to the chosen basis, for each t 0 € z. Then one 
0 

obtains the following set of equations 

Note that b does not appear in these equations. They form the 'initial 

conditions' of these equations; note that they have an n dimensional space of 

solutions; the choice of b amounts to the choice of one of these solutions. 

Because A is nonsingular such a solution is fully specified by the choice 

of it at some (arbitrary) t 0 € z. Once xt is determined the solution of 

these 0 equations is fully determined. 0 

The output of the system is the sum yt + yt of the outputs Yt obtained with 

zero initial conditions and yt. We will not go into further details. 

ad(ii). The extension of the set of inputs from u to u is rather subtle. 
0 

(a) One very natural possibility is to define the set of inputs Ua by 

00 

U := {w = {ut}lw € u2, E Hiut-i converges for all t € Z}, 
a i=o 

where we have assumed U to be a topological vector space. Then U clearly 

depends on the parameters of the system. E.g. if A is nilpotent, then An= O, 
n+j-1 ° T so H = CA B = 0 Vj > l; and then U = U. Let now our field be R or~-

n+j -
Let a(A) = {µE~ldet(µI-A) = 0} be the spectrum of the matrix A. Let 

(2.3.2-8) 

00 

If IAI < 1 and Eu is absolutely convergent (for some t € z and therefore 
i=o t-i 

for all t E Z), then it can easily be shown that 

E H u 
i t-i i=o 

is absolutely convergent, Vt E z. 
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More generally 

00 i 00 

2.3.2-9. Theorem. If 3t € Z: I: I >-I lut-i I < oo then I: H u is absolutely 
i=o i=o i t-i 

convergent, Vt€ Z, and so {ut} € Ua 

(b) A second possibility is to define the set of inputs as 

Uh:= {w={ut}lw € u2,; Hiut-i is Cesaro summable for all t € Z}. 
i=o 

(c) And a third possibility is: 

Uc :={w={ut}lw € u2, _; Hiut-i is Abel summable for all t € Z}. 
i=o 

It is wellknown that U c U c U. Usually one can work with Ua' but sometimes 
a- b- c • • 

it is of importance to be able to use Uh or Uc. 

From these examples it is clear that there are several possibilities for the 

choice of U and the definition of F, even if F restricted to U0 x B, is 

completely determined. 

2.3.3. Arma models 

Consider again the abstract state 

v t It -1 Hl H2 7 ·1 
I t -1 

0 0 

... j 
0 

Yt+1lt-1 H2 H3 u 
t -2 

0 0 0 

Because the rank of the block Hankel-matrix is n, there are dependency 

relations between its rows. Consider the left kernel of H: 

(2.3.3-1) R.kerH := { a I a a row vector with a finite number 
nonzero components, and aH = 0 

Let us partition a (a1 a2 a3 ••• ) in accordance with the blockstructure of 

00 

H. It follows that a€ R.kerH iff I: a H 
i=l i i+j 

0 Vj ~ O. Let the shift S be a 
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linear mapping given by Sa= (O a1 a2 ••• ). From the block Hankel structure 

of Hit follows that if a€ ikerH then Sa€ iker(H). We now want to find a 

minimal set of generating vectors {a(i)} such that the span 

[{sja(i)}j:o] = ikerH, (i.e. each element of ikerH can be written as a finite 

linear combination of shifted versions of a(i)). 

Such a set can be found as follows: 

First define: 

(2.3.3-2) dim Im 

H 
i+l 

t 
0 

0, 

and 

Hi 

\fi ~ 1: Si= t 1-t1_ 1 ; s 0 m:= the number of rows in each block. 

Then {s1} is monotonically nonincreasing (because of the Hankel structure of 

H) and Es = n. So sn+i = 0 for all \fi > 1, and 
i)l i 

hence tn+i n for all i ~ O!! The 1th block row (H1 Hi+l''') of H contains 

si rows that are independent of the rows above and m-s1 rows that are 

dependent of the rows above in H. To obtain the a(i) proceed as follows: 

Consider the rows of Hone by one starting at the top, and check with each one 

whether it is dependent on the rows above it. If it is, then there is a 

corresponding element a€ ikerH, namely the vector a which describes the 

linear relation; the coefficient in a of the row we consider is then unequal 

to zero. We can always express a row in terms of the rows above that are 

itself linear independent of their previous rows. Now consider the position k 

that the considered row takes in its block row (k€{l, ••• m}). If the 

corresponding relation is given by a then Sja € ikerH \fj > O. Therefore for 

each k we don't have to put in more than one element a(k) (say) in the 

generating set. We obtain a generating set {a(l>, ••• ,a(m)}, a(k) corresponding 

to a row in position kin its block row. We can write a(k) in its partitioned 

form: 

(k) 
a 

with pk such that a(1k) * O. In fact one has, 
+pk 

where ek is the kth standard unit vector, and 

by construction a~k) ek * O, 
(k) +pk 

(2.3.3-3a) al+ ~+. = 0 for 
Pk J 
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j > 1. We will assume, without loss of generality that a(k) is normalized 

such that 

1, k 1,2, ••• , m 

It is easy to show that pk~ n (this follows from the fact that sn+l = O). 

In fact there is a one-to-one relation between the bag {pklk=l, ••• ,m} and the 

sequence s 1, ••• ,sn• (A bag is, so to speak, 'a set in which an element can 

occur more than once'. A finite (or countable) bag can formally be constructed 

as the set of all permutations of a corresponding sequence. E.g. the 

bag {1,1,2} corresponds to the set of sequences {(1,l,2),(1,2,1),(2,1,1)}. A 

finite bag will be denoted by one of its representative sequences). 

rhe relationship is as follows: The number of k's for which l+pk = i > 1, is 

equal to s - s = (m-s) - (m-s ) i.e. the increase in the number of rows 
~l i i ~1 

that are dependent on the previous rows, if one goes from block row i-1 to 

block row i. 

2.3.3-4. Definition. The bag {pklk=l,2, ••• ,m} is called the bag of Kronecker 

indices or observability indices. 

m 
2.3.3-5. Theorem. E p = n. 

k=l k 
n 

Proof. Epk E i X I {klpk=i} I 
i=o 

n n n 
Eis - E is Eis -
0 i 0 i+l 1 i 

n 
E i( s -s i ) 

i=o i +l 
n n 
E (i-l)si E Si 
1 1 

Now consider the abstract state at time to+ 1: 

u 

['t0+1lt0 1" 
Hl H2 t 

0 

ut -1 
Yt +2lt H2 H3 0 

0 0 ut -2 
L : 0 

n. 

Q.E.D. 



It follows that 

(2.3.3-6) Yt+"lt =O, 
0 J 0 

Because Sia(k) E ikerH for each i 
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k 1,2, ••• ,m. 

0,1,2, ••• , it follows that 

(2.3.3-7) 
l+pk (k) 
. r a. Y t +j+i It 
J= 1 J O 0 

0, k 1,2, ••• m; i 0,1,2, ••. 

Equations (2.3.3-6) and (2.3.3-7) will be called the autoregressive equations 

for the abstract state. One has the following simple but important 

observation. 

2.3.3-8. Lemma. The abstract state (y .
1 

) . 00

1 (at time t 0+1) is completely 
--- to+J to J= 

determined by the autoregressive equations and the following n quantities: 

(2.3.3-9) 1, ..• ,m 

T T T 
Proof. Consider each scalar component of (yt +l It ,yt +Zit , ••• ) , one by one, 

starting at the top. For each component ther~ are 0 two0 possfbilities: Either it 

is one of the variables in (2.3.3-9), or it can be expressed as a linear 

combination of the previous scalar components using the autoregressive 

equations. Q.E.D. 

2.3.3-10. Remark. One can use the vector of n variables in (2.3.3-9) as a 

state vector and work out the state space model that results from it. 

We now pose the question whether (2.3.3-7) can be generalized to an equation 

which holds for all i E z. The answer is yes, and it can be done as follows. 

Note that (2.3.3-6) holds for each t 0 E z. So we have 

(2.3.3-11) 0, k 1,2, ... ,m, t € z. 

Now one can express y .
1 

in terms of Yt+j and u .,u j 1 , ••• ,u 1 as 
t+J t t+J t+ - t+ 

follows: 

(2.3.3-12) 1, 2, ••• 
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Substituting this in (2.3.3-11) gives the following set of equations: 

(2.3.3-13) 

Let 

(2.3.3-14) 

then (2.3.3-13) can be rewritten as 

(2.3.3-15) 
l+pk (k) 
• E sj u t+ . , t E Z, k = 1 , ••• , m. 
J=l J 

These are socalled arma-equations. Define 

(2.3.3-16) ·= {ut if t ~ t 0 

· 0 if t > t. 
0 

Then it follows that 

(2.3.3-17) 

which is the generalization of the equation (2.3.3-7) that was sought for, 

The following questions arise: 

(i) Does the arma model (as constructed here) determine the Hankel-matrix 

completely, i.e. have we lost no information in going from the Hankel

matrix to the arma model? 

(ii) Can we compute the abstract state at time t 0 using the arma model, and 

which yk's and uk's are needed to do that? 

To answer this we will use a different indexation of the coefficients a~k) and 

s\k) in the arma-equations (2.3.3-15). Let 
J 

(k) 
ol+pk-j 

(k) 
Sl+pk-j 

, j 
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Note that from (2.3.3-3) it follows that 

, k 1,2, ••• ,m, 

0, 1 i j i m-k, k 1,2, ••• ,m-l. 

Therefore the mxm matrix A0 with a~k) as its kth 

nonsingular. Let Aj, resp. Bj be the matrix with 

row. Then it is straightforward to show that the 

rewritten in the form 

A 0 0 

l ;: [i'. 
0 

(2.3.3-20) Al 
0 

A A" A p 1 0 

row, k = 1,2, ••• m, is 

a\k), resp. b\k) as its kth 
J J 

equations (2.3.3-14) can be 

where p := max pk. Because Ao is nonsingular the block-lower-triangular matrix 
l<k<m 

in (2.3.3-20) is nonsingular, and so H0 , ••• ,1¾, can be computed from A0 , ••• ,~, 

B0 , ••• ,BP, i.e. from the coefficients of the arma-equations. So the answer to 

question (i) is affirmative. 

Using the new coefficients the arma-equations become 

(2.3.3-21) 

or 

( 2. 3. 3-22) 

Pk (k) 
r a. Yt-j 

j=o J 

p p 
r AJ.Yt-j = r B.u ., t e: Z. 

j=o j=o J t-J 

l, ••• ,m,te:Z. 

Any set of equations of the form (2.3.3-22), with Ao nonsingular, will be 

called an arma model, whether or not it has the structure of (2.3.3-21). The 

following analysis will answer question (ii) and at the same time show that 

such an arma model defines a (Hankel matrix of a) linear system. 

Because Ao is nonsingular, we can write 

(2.3.3-23) yt 
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Just as in (2.3.3-17), it follows that 

(2.3.3-24) 

Therefore, if y , ••• ,y , ut _ 1, ••• , 
to-1 to-p o 

u are given then, using the fact 
to-p 

that u I 
t t -1 

0 

O if t) t, from (2.3.3-24) one can compute y JI 1 - 0 t+ t-
o 0 

recursively, for j = 0,1,2, ••• This answers question (ii). It shows that the 

arma-equations (2.3.3-23) can be considered as a state space model, namely by 

taking xt = (yt 1,yt 2 , ••• ,y ,u 1, ••• ,u ) as the state at time t 0 • 
o o- o- to-p to- to-p 

It contains enough information to be a state vector because the abstract state 

~an be computed from it, as we have just shown. The corresponding state 

equations can be found as follows: 

so to obtain x from x and u one only has to compute yt from x 
to+l to to o to 

and 

ut, which can be done using (2.3.3-23) with t t 0 , 

0 

The read-out map is in fact this same map from x and u toy • Because the 
to to to 

number of components in xt is in general more than n, it is clear that the 

arma-model is in general a nonminimal state space model for the linear system 

that it defines. 

2.3.4. The transfer matrix and polynomial mfd(= arma) models 

It will be useful for us to define both a backward and a forward transfer 

matrix, where the forward transfer matrix coincides with the usual transfer 

matrix. The definitions are as follows: 

2.3.4-1. Definition. H(z) := 
00 i 
E Hiz is called the backward transfer matrix of 

i=o 

the system. T(s) H(s- 1) is called the (forward) transfer matrix. 
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2.3.4-2. Remarks. (i) H(z) can be considered as a formal matrix power series 

or as a matrix of the complex variable z, with (open, nonempty) domain 

Dom(H) = {z € ~;lzllAI < l}, where IAI is the maximum modulus of the spectrum 

of the system, as in (2.3.2-8). T(s) can be considered as a formal Laurent 

series, or as a function of the complex variables, with (open, nonempty) 

domain Dom(T) = {s € ~; Isl > IAI}• 

(ii) It is clear that H(z) and T(s) are analytic within their domain of 

definition, and there is a one-to-one relation between the complex matrix 

function H(z) and the sequence of matrices {H0 ,H1,H2, ••• } and therefore with 

the formal power series. A similar result holds for T(s). 

(iii) That the domain of Hand therefore the domain of Tis as described 

follows easily from the following theorem. 

2.3.4-3. Theorem. If (A,B,C) 1) is a minimal realization then lim CAkB 0 
k+m 

iff a(A) c D(0,1) := {z € ~; lzl < l}. 

Proof. See appendix 2A. 

We leave it to the reader to conclude from this theorem that the domains of 

H(z) and T(s) are indeed as claimed (using formula (2.3.2-3)). 

Now let us see how the transfer matrix can be obtained from a state space 

realization and from an arma model. 

2.3.4-4. Theorem. Suppose a linear system is given by a state space model 

(2.3.2-2) (not necessarily a minimal realization). Then the backward and 

forward transfer matrices of the system are given by, respectively, 

(2.3.4-5) -1 -1 H(z) = D + zC(I-zA) B, z € Dom (H),z ~ a(A) 

and 

(2.3.4-6) T(s) -1 D + C(sI-A) B, s € Dom(T), s ¢ a(A). 

1) (A,B,C) means (A,B,C,O), i.e. D O. 



41 

Proof. If z E Dom(H) and z-l E cr(A) then both sides of (2.3,4-5) are well

defined and analytic. Therefore it is enough to show equality on an open 
-1 

nonempty subset of {zlz E Dom(H) and z f cr(A), z E ~}. This subset will 

be {z E ~;lzllAI < 1}, where IAI = maximum modulus of the spectrum cr(A) of A. 

(Note that (A,B,C,D) is not necessarily a minimal realization. Therefore this 

set does not necessarily coincide with Dom(H). Within this set one has 

-1 
( I-zA) = 

( 2. 3. 4-7) 

; zkAk (sum of a geometric series), so 
k=o 

D+zC(I-zA)-lB = D + ; CAk-lBzk = 
k=l 

H(z). 

The equality (2.3.4-6) follows simply by substitution of z s- 1 in (2.3.4-5). 

Q.E.D. 

Notice that from this theorem it -follows that the transfer matrix of a linear 

system is a matrix of rational functions. Furthermore 

(2.3.4-8) H(O) D lim T(s), so T(s) consists of proper rational functions 
s+co 

(i.e. if the rational function is written as the quotient of two polynomials, 

the degree of the numerator polynomial is smaller than or equal to the degree 

of the denominator polynomial). They are all strictly proper (i.e. degree of 

numerator polynomial is smaller than the degree of the denominator polynomial) 

iff D = O. The question arises whether each matrix of proper rational 

functions is the transfer matrix of a linear system. That this is indeed the 

case follows most easily by considering the transfer matrix of an arma model. 

2.3.4-9. Theorem. Suppose a linear system is given by an arma model 

p 
(2,3.4-10) E A.Yt_ 

j=o J J 

p 
E B .u , t E Z, 

j=o J t-j 

with A0 nonsingular. (Compare (2.3.3-22)). Then the transfer matrix of the 

corresponding linear system is given by: 

(2.3.4-11) 

p j -1 p j 
H(z) = ( E A.z) ( E B.z ), 

j=o J j=o J 

p . 
z E {z E ~1z € Dom(H) and det( E AjzJ) 1 0} 

j=o 
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and 

T(s) 

(2.3.4-12) 
p 

s E {sis E Dom(T)and det( r A.sp--j) * 0}, 
j=o J 

Proof. Let L = s- 1 denote the backward shift or lag operator. The input/output 

operator of the system acting on U0 , can then be described by 

k 
(2.3.4-13) Yr= r Hkut-k = E HkL ut = H(L)ut. 

k=o k=o 
p . 

Premultiplication with r A.LJ =: A(L) gives 
j=o J 

(2.3.4-14) A(L)yt = A(L)H(L)ut' 

From (2.3.4-10) one has, using the notation B(L) := 

(2,3.4-15) A(L)yt = B(L)Ut• 

In this way one obtains the equation 

Therefore 

(2.3.4-17) A(L)H(L) B(L). 

Substituting z for Lone gets for all z E Dom(H): 

(2.3.4-18) A(z)H(z) = B(z). 

p j 
E B.L, 

j=o J 

Now det A(0) F 0, so det A(z) 1 0, i.e. det A(z) is a polynomial, which is not 

the zero polynomial. Therefore there are only a finite number of values of z 

for which det A(z) = 0, For all z E {z E ~lz E Dom(H) and det A(z) * 0}, A(z) 

is invertible and it follows that 
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(2.3.4-19) H(z) 

The corresponding formula for T(s) follows by substitution of s 

(2.3.4-19) and multiplying A(s- 1) and B(s-1) by sP. Q.E.D. 

2.3.4-20. Remarks. (i) Suppose that H(z) = A(z)- 1B(z) for some pair of 

polynomial matrices (A{z), B(z)), with A(O) nonsingular, then A(z)H(z) = B(z) 

and so A(L)H(L) = B(L), i.e. A(L)Yt = B(L)ut; in other words: H(z) is a 

transfer matrix of a linear system, described by the arma model A(L)Yt = 
B(L)ut• 

(ii) We saw above that the transfer matrix T(s) of a linear system consists of 

proper rational functions as its components. This can now be turned around. If 

T(s) is a matrix of proper rational functions, then H(z) consists of rational 

functions and H(O) is well-defined. Let a(z) be the smallest common polynomial 

denominator of all components of H(z), then a(O) / 0 (because H(O) is well

defined). Let B(z) := a(z)H(z), then B(z) is a polynomial matrix and 

H(z) = a(z)- 1B(z). So H(z) is the backward transfer matrix of the arma model 

a(L)yt = B(L)ut• This proves that H(z) is the backward transfer matrix of a 

linear system. 

2.3.4-21. Definition. Let H(z) be the backward transfer matrix of a linear 

system, and T(s) be the corresponding (forward) transfer matrix. 

(i) A pair of polynomial matrices (A(z),B(z)) such that H(z) = A(z)- 1B(z) for 

all z E Dom(H), except perhaps for a finite number of points, is called a 

backward mfd (matrix fraction description) pair. 

(ii) A pair of polynomial matrices (¾(s),Bv(s)) such that T(s) = 
¾(s)- 1Bv(s), for alls E DomT, except perhaps for a finite number of points, 

is called a forward mfd pair. 

2.3.4-22. Remark. Note the close relationship between arma models and mfd 

pairs. If (A(z),B(z)) is a backward mfd pair, then 

forms a 'generalized' arma model. If A(O) is nonsingular, then it is an arma 

model. If A(O) is singular then still {yt} and {ut} satisfy this set of 
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equations, which we will call a generalized arma model. (We keep the word arma 

model for those cases in which A(O) is nonsingular, because in that case one 

can directly express Yt as a linear combination of its own past p-1 values and 

the last p input values. That justifies the terminology autoregressive moving 

average model). 

If (Av(s),J\,(s)) form a forward mfd pair, then {yt},{ut} satisfy the equations 

(2.3.4-23) A (S)y = B (S)u. 
V t V t 

These equations together will be called a generalized forward arma model. 

It is important to note that if (A(z),B(z)) is a backward mfd pair then 

premultiplying A(z) and B(z) with a nonsingular polynomial matrix C(z) (i.e. 

detC(z) = 0) gives us another mfd pair (C(z)A(z), C(z)B(z)) corresponding to 

the same linear system: The transfer matrix is equal to 

(2.3.4-24) H(z) = A(z)- 1B(z) = [C(z)A(z)J-lc(z)B(z). 

Even if C(z) is a nonsingular matrix of rational functions, such that C(z)A(z) 

and C(z)B(z) are polynomial the same conclusion holds. 

2.3.4-25. Notation. To simplify the notation we will often write an mfd pair 

(A(z),B(z)) as a partitioned matrix[A(z) B(z)]. Premultiplication of A(z) and 

B(z) with C(z) can then be written as C(z)[A(z) B(z)]. 

We can conclude that there is a collection of mfd pairs all describing the 

same linear system. If [A(z) B(z)] is one mfd pair describing the model, then 

(2.3.4-26) {c(z)[A(z) B(z)] I C(z) a matrix of rational functions, 
det C(z) F O; C(z)[A(z) B(z)] polynomial} 

is the set of all backward mfd pairs describing the same system. (Perhaps it 

is good to stress again at this point that we are only looking at one aspect 

of the linear system, namely the input/output behaviour on U under zero 
0 

initial conditions. If one considers nonzero initial conditions, then the 

models described by [A(z) B(z)] and C(z)[A(z) B(z)] are not the same if 

deg det C(z) ~ 1. The simplest example is C(z) = 1-z, A(z) = B(z) = 1 

(scalar). Then [A(z) B(z)] corresponds to the model Yt = ut, while C(z)[A(z) 

B(z)] corresponds to the model Yt - Yt-l = ut - ut-l• Solutions of this second 
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model are of the form Yt = ut + c, where c is an arbitrary constant. It is 

clearly determined by the initial conditions, And in case of zero initial 

conditions it is of course equal to zero: c = 0) 

Similar to (2,3.4-26) one obtains the set of all forward mfd pairs of a linear 

system, given by [Ay(s) 13v(s)], to be 

(2.3.4-27) {C(s)[A (s) B (s)] I 
V V 

C(s) a matrix of rational functions, 
det C(s) 1 0; C(s)[A (s) B (s)] polynomial}. 

. V V 

If one goes one step further and looks at the set of all rational mfd pairs 

instead of polynomial mfd pairs, then one gets the following sets. 

In the backward case 

LB:= {C(z)[A(z) B(z)] I 
(2.3.4-28) 

{C(z)[I H(z)] 

and in the forward case 

(2.3.4-29) LF := {C(s)[I T(s)] I 

C(z) matrix of rational functions, 
detC(z) 1 0} 

" " } 

C(s) a matrix of rational functions, 
det C(s) t O}. 

LB and LF are in-dimensional linear subspaces of the space km+m' over the field 

k, where k is the field of rational functions with real coefficients. It 

follows that an mfd pair [A(z) B(z)] is just a polynomial basis of the k

linear space LB. And a similar thing can be said for a forward mfd pair. Now a 

natural question to be posed is how one can obtain a concise description of 

the system in terms of an mfd pair. In the literature, work has been done on 

this problem. We will closely follow the work of Forney [Fo 75]. He defines 

the concept of a minimal base form: 

2.3.4-30. Definition. A backward mfd pair [A(z) B(z)] is said to be in minimal 

base form if the sum of the (polynomial) degrees of the rows of [A(z) B(z)] is 

minimal among all mfd pairs in (2,3,4-25). 

A similar definition holds for forward mfd pairs. 
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2.3.4-31. Remarks. (i) [Fo 75] gives an algorithm that brings any mfd pair in 

minimal base form. 

(ii) A minimal base form is not unique. For example, it is always possible to 

add rows of [A(z) B(z)] to rows which have a higher polynomial degree, without 

altering the sum of the row degrees. So if we started with a minimal base 

form, we will end up with another minimal base form. 

(iii) [Fo 75] has shown, however, that the sequence of row degrees 

{r 1,r2, ••• ,rm}' where ri := polynomial degree of the i th row of the mfd pair, 

is the same, up to a permutation, for all minimal base forms of a system. 

To treat the relations between minimal base forms in LB and Lp, the following 

notation is useful. 

2.3.4-32. Notation. (i) If [A(z) B(z)] is a backward mfd pair and {r1} are the 

row degrees, then 

(2.3.4-33) 
rl r2 rm -1 1 

[A (s) B (s)] := diag(s ,s , ••• ,s ).[A(s ) B(s- )] 
V V 

If [¾(s) Bv(s)] is a forward mfd pair, and {p1} are the row degrees, then 

(2.3.4-34) 

It is clear that if (A(z),B(z)) is a backward mfd pair with row degrees {r1 }, 

then (A (s),B (s)) is a forward mfd pair with row degrees {p1}, where 
V V 

pi~ r 1, i = l, ••• ,m. Similarly if (¾(s),Bv(s)) is a forward mfd pair with 

row degrees {p1}, then (A(z),~(z)) is a backward mfd pair with row degrees 

{r1}, where r 1 ~ p1 , i = l, ••• ,m. 

2.3.4-35, Theorem. (i) If (A(z),B(z)) is in minimal base form 

then (A (s),B (s)) is in minimal base form with the same row degrees. 
V V 

(ii) If (¾(s),Bv(s)) is in minimal base form then (A(z),B(z)) is in minimal 

base form, with the same row degrees. 

Proof. Let us prove (i); (ii) can be proved similarly. Consider (A(z),B(z)), 

with row degrees {r1}. Suppose (Av(s),iv(s)), with row degrees pi is not in 

minimal base form. Then there exists a forward mfd pair (Cv(s),Dv(s)) of the 
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m m 
same system, with row degrees {pi}' satisfying i:: p' < i:: p1 • Consider 

1 
i i (C(z),D(z)) with row degrees {ri}. Then 

m m m m 
( 2. 3. 4-36) i:: r' < i:: p' < i:: p < i:: r i' 

1 i - 1 i 1 i - 1 

so (A(z),B(z)) is not in minimal base form. ~ ~ 
If (A(z),B(z)) is in minimal base form then (A(z),B(z)) = (A(z),B(z)) which 

implies that (A(z),B(z)) has the same row degrees as (Av(s),Bv(s)). 

Q.E.D. 

2.3.4-37. Definition, The high order coefficient matrix (haem) of an mfd pair 

(Av(s),Bv(s)) is (A(O),B(O)). Similarly the haem of (A(z),B(z)) is 

(Av(O),'iVo)). 

2.3.4-38. Theorem. If (A(z),B(z)) is an mfd pair in minimal base form of a 

(nonanticipative!) linear system then A(O) is nonsingular. 

Proof, Suppose A(O) is singular. Then there exists a nonzero row vector x = 

(x1, ••• ,~) such that xA(O) = O. Let i be such that xi F O and for all j with 

xj F O, r 1 ~ rj ({ri} are the row degrees of [A(z) B(z)]). Replace the 1th row 

of [A(z) B(z)] by x[A(z) B(z)]. This gives us again an mfd pair, with row 

degrees equal to or less than the row degrees of (A(z),B(z)). 

Now notice that because of the nonanticipation property of linear systems, it 

follows that the 1th row of the new mfd pair can be divided by z. This gives 

us an mfd pair with a smaller sum of the row degrees. (Note that there can be 

no row identically zero, because det A(z) t O). Therefore (A(z),B(z)) is not 

in minimal base form. Q. E. D. 

2.3.4-39. Corollary. If (Av(s),Bv(s)) is in minimal base form, then the sum of 

the row degrees is equal to deg det Av(s). 

l:pi 
Proof. det Av(s) = s det A(O) + lower degree terms. Because A(O) is 

nonsingular the result follows. Q.E.D. 

Let (Av(s),Bv(s)) be in minimal base form, {yt},{ut} satisfy the equations 
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V t V t 
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and therefore (compare section 2.3.3) 

(2.3.4-41) 'v't > t • 
0 

It will turn out to be useful to apply a change of basis in the output 

alphabet Y, such that w.r.t the _new basis, the outputs are given by 

(2.3.4-42) w = A(O)y. 

The equations (2.3.4-41) now become 

{2.3.4-43) 0 

Notice that the row degrees of any mfd pair are unchanged by such a change of 
~ -1 coordinates. The hocm of Av{S)A{O) is the identity matrix. Let us now 

consider the set of equations 

It now follows easily that the dimension of the linear space of solutions of 

(2.3.4-44) is equal to the sum of the row degrees of Av{S). (Compare the 

discussion in section 2.3.3.) Equation {2.3.4-43) tells us that the abstract 

state space is a subspace of the space of solutions. Therefore the dimension 

of this space of solutions is larger than or equal ton, and equality holds 

iff the space of solutions of {2.3.4-44) is exactly the abstract state space. 

Now recall the definition (2.3.3-2) of the sequence {ti}i:o and the subsequent 

definition of .{si}. It is quite simple to see that a change of basis in the 

output alphabet Y, does not change the sequence {ti} and therefore {si} too 

remains unchanged, which implies that the observability indices remain the 

same. The row degrees of A {s)A(O) are exactly the observability indices of 
V 

the system with outputs w = A(O)y. From all this it follows that 
r t 

2.3.4-45. Theorem. If {¾(s),~(s)) is in minimal base form then the bag of 

row degrees is equal to the bag of observability indices and the sum of these 

row degrees is equal to the McMillan degree n. The same holds for a backward 
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minimal base pair (A(z),B(z)). Furthermore one has, if (1\,(s),J\,(s)) is in 

minimal base form: n = deg det 1\,(s). 

2.3.4-46. Remark. It is now clear that the arma model constructed in section 

2.3.3 corresponds to an mfd pair in minimal base form. This shows immediately 

the existence of a minimal base. 

2.3.5. Kronecker indices and the specialization order 

It is well-known that the observability indices of a finite dimensional linear 

system come about as the Kronecker indices of a related pencil of matrices. 

( see e.g. [Ka 80], p. 413). 

In the following we want to stress the importance of the Kronecker indices in 

the determination of the possible limit points of a sequence or family of mfd

pair models (or arma models). A major role is played by a partial order on the 

set of all Kronecker indices called the specialization order. It will be shown 

that a model that is the limit of a sequence of arma models with fixed 

Kronecker indices, will itself have Kronecker indices that are equally or more 

'special' in the given order. 
m 

Recall the definitions of the sequences {ti},{oi} and {pk}k=l' cf. (2.3.3-2), 

(2.3.3-4): 

to = 0 

(2.3.5-1) Hl 
t = rk H 

i 2 

H 
i 

Hz H3 

. : ] H3 H4 '\>'i > 1. 
' 

H H . . 
i+l i+2 

{ so 
m, 

(2.3.5-2) Si 
ti-ti-1 \>'i > 1. 

The definition of {pk}k:l is given by the rule 

(2.3.5-3) 

So {pk} is determined up to permutation (i.e. it is a bag). Without loss of 

generality, let us assume that 



so 

(2.3.5-4) 

It follows that 

(2.3.5-5) 1, 2, ••• 

It can be shown that 

(2.3.5-6) 1,2, ••• ,m. 

In fact this can be seen most easily by considering the socalled Young diagram 

I 

2.3.5-7. Definition. rk 

SJ 
The 

s 
2 the 
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k 
E p • 

j=l j 

I 

length 

length 

We now define a partial order as follows: 

of the ith row is si, 

of the jth column is Pj• 

2.3.5-8. Definition (a) Lets= {s} 00 s' = {s'} 00 be two nonincreasing 
i i=o' i i=o -

sequences taking their values in {0,1, ••• ,m}. Lett= {t} 00 be defined by 
i i=o 

t = 
i 

i 
E s. and t' 

j=o J 

i 
{t1}i:o by t 1 = Es~. Then we define the partial 

j=o J 

order< by the rule: s < s' iff t < t' i.e. iff ti~ t1 Vi. 

(b) Let p = {pk}k~-l' p' = {p'} m be two nondecreasing sequences, taking their 
k k=l 

values in the set of nonnegative integers {0,1,2, ••• }, and let 

m m 
r = {rk}l and r' {rk_}l be defined by rk 

the partial order~ by the rule 

k 
E p' .• Then we define 

j=l J 
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p ~ p' iff r ~ r', i.e. iff ri ~ r 1, i = 1,2, ••• ,m. 

We will now show that the partial orderings defined in (a) and (b) are 

'essentially the same', in the sense that ifs and pare related by (2.3.5-5) 

and (2.3.5-6) ands' and p' similarly, thens< s' iff p ~ p'. 

2.3.5-8. Theorem. Ifs, s', p, p' are as in the previous definition, ands and 

pare related as in (2.3.5.5) and (2.3.5.6), ands' and p' similarly, then 

(2.3.5-9) s < s' iff p ~ p'. 

Proof. First we will show thats~ s' implies p ~ p'. We will show this with 

induction with respect to k := l{ilsi ~ l}I, If k = 1, then 1 ~ s 1 ~ si and 

It follows that 

{ 

p = p' = 0 
i i ' 

0 = p < p = 1 
i i 

p = p' = 1 
i i 

if 1 .~ i ~ m-s 1, 
if m-s1 < i ~ m-si and 

if m-s < i < m. 
i -

So pi~ p1 holds for all i, This implies ri ~ r1 for all i, and therefore 

r < r'. This in turn implies, by definition, p ~ p'. Now suppose the 

implication (s ~ s' ~ p ~ p') holds fork= k0 (induction hypothesis), Let 

p(k), r(k) denote the sequences of indices that correspond to the finite 

and 

j 
rj(k) := 1: p (k). 

i=l i 

Lets< s'. Then s(k) ~s'(k) for all k, so certainly s(k) < s'(k) and 
~ 0 ~ 0 
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s(k +l) < s'(k +1). The induction hypothesis implies that p(k) < p'(k ). 
0 ~ 0 0 ~ 0 

Let us now distinguish two possibilities 

(l) sk +l < sk +l' 
0 0 

ad( 1). Now m-sk +l > m-s' + 1. One has 
+l - k+l 

0 0 

( i) 
{ pi(ko+l) P/k0 ) 

, if 1 < i < m-s' + 1, - k +l 
pi(ko+l) pi(ko) 

0 

( ii) 
{ p,(k0 +1) pi(ko) 

if m-s' +l < i < m-s + 1, and 
Pi (ko+l) pi(ko) + 1 k +l - k +l 

0 0 

( iii) , if m-s <i<m. 
k +1- -

0 

Using the induction hypothesis, it follows that 

( i) r1(k0 +1), if 1 5 i 5 m-sk +l + 1, 
0 

' ' . (ii) ri(k0 +1) = ri(k0 ) < r1(k0 ) 5 ri(k0 ) + {i-(m-sk +l+l)} = ri(k0+1), 

( iii) 

0 

if m-s' +l < i < m-sk + 1 and 
k +l - +l 

0 0 

r (k +1) 
f 0 

r (k) + {i-(m-s +l)} < r'(k) + {i-(m-s +1)} < 
i o k +l - i o k +l -

0 0 

~ r 1(k0 ) + {i-(m-sk +l+l)} ri'(k0+1), if m-s + 1 < i < m. 
k +l 

0 0 

It follows that 

ri(k +l) < ri'(k +l), i 
0 - 0 

1,2, ••• ,m, 
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i.e. r(k +1) < r'(k +l) and so, by definition p(k +1) < p'(k +l). 
0 - 0 0 ~ 0 

ad 2. This is the 'nontrivial' possibility. Now m-sk +l+l < m-sk +l + 1. 
0 0 

In the following it is used that pi(k0 +1) * pi(k0 ) iff pi(k0 +1) k0+1. 

This follows from the fact that {sk} is monotonically nonincreasing. 

(i) 
{ p1(k0+1) pi(ko) 

if 1 < i < m-s + 1, 
pi.(ko+l) pf(ko) 

k +l 
0 

( ii) 
r 1(k0 +1) 

pi(ko) + 1 k + 
0 

if m-s +l < i < m-s' 
pf (ko+l) pi.(ko) < k + 1 k +l k +l 

0 0 - 0 

(iii) r1(k0 +!) • pi(ko) + 1 k +l 
0 

if m-sk +l+l < i < m. 
pf(ko+l) = pf(ko) + 1 k +l 0 

0 

+ 1, 

Using the induction hypothesis, and the fact, that r (k +1) 
m o 

it follows that 

tk +l etc, 
0 

( i) 

1 < i < m-sk +l + 1, 
0 

( ii) and ( iii) 

ri(k +l) = r (k +l) - (m-i)(k +l) = tk l - (m-i)(k +l) < o m o o + o -
0 

< tk' +l - (m-i)(k +1) < r'(k +1)-(m-i)(k +l) < o - m o o 
0 

< r'(k +l), if m-s +l < i < m. 
i o k +l 

0 

This proves one side of the implication in the theorem. 

We now want to show that p ~ p' implies s < s'. This is done with induction 

with respect tom. 



j 
and tj(m) := r s (m), etc. 

i=l i 

We assume p ~ p'. 
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Induction hypothesis: s(m) < s'(m ). 
0 ~ 0 

We distinguish two possibilities: 

(1) Pm +l < P~ +l' 
0 0 

ad(l). In this case 

( i) s1 (m0 ) + 1 if 1 < i < pm +l' 
0 

(ii) s (m +1) s (m ) 0 and s' (m +l) s'(m)+lif pm +l < i < I 

i 0 i 0 i 0 i 0 Pm +l' 
0 0 

and 

(iii) si(m0 +1) si(mo) 0 and s1(m0 +1) si(mo) 0 if Pm +l < i. 
0 

One has 

( i) t1(m0 +1) if 1 < i < pm +l' 
0 

(ii) 

(iii) 

t (m +l) = t (m) + p < t'(m) + p < 
i o i o m +l i o m +l -

t' (m ) + i 
i 0 

<t'(m)+p' 
i o m +l 

0 

0 0 

t 1(m0+1) if p~ +l < i. 
0 

So it follows that t < t' iff s < s'. 

ad(2) In this case 
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( i) s/m0 +l) s/m0 ) + 1 and si(mo+l) si (mo) + 1 if 1 < i < p~ +1' 

(ii) s (m +1) 
i 0 

(iii) s (m +l) 
i 0 

One has 

( i) t/m0 +1) 

( ii) and ( iii) 

s (m ) 
i 0 

+ 1 and s'(m +1) 
i 0 

s/m0 ) 0 and s' (m +1) 
i 0 

ti(m0 ) + i ~ t1(m0 ) + i 

t' (m +1) 
p~ +1 0 

0 

0 

s' (m ) 
i 0 

0 if p~ +1 < i < 
0 

s' (m ) 
i 0 

0 if Pm +1 <L 
0 

q<m0 +1) if 1 < i < p~ +1' 
0 

ti(m0 +1) if p~ +l < i. 
0 

Q.E.D. 

2.3.5-10. Remarks. (i) Notice that m? s 1 ? s2 •• ,? 0 but 

pm +1' 
0 

0 S p1 S p2 ••• S Pm• This is, however, rather natural from our point of view, 

because if you go through the rows of the Hankel matrix you first find s 1, 

then s 2, etc.; but also if you go through the rows of the Hankel matrix to 

determine the observability indices pk, you first find the smallest, i.e. p1, 

then a second one, p2, greater than 

(ii) Within the set {sltm: E si: 
i)l the dominance order. 

or equal to Pl etc. 

n}, n fixed, the partial order~ is called 

(iii) Within the set {plr :n}, n fixed, the partial order< is called the 
m ~ 

specialization order, (It should be noted that it is apparently more usual to 

order the partition of n in a nonincreasing way, however, this is rather 

unnatural from our point of view and unessential. Compare [Haz-M)). In fact we 

will choose the word specialization order to denote both orders, which are 

after all essentially the same as was stated in the previous theorem. The 

reason for choosing this name is given by the following theorem: 

2.3.5-11. Theorem. Lett: {ti}m be fixed, and let M(t) be the set of all 
• 0 

block Hankel-matrices H: (Hi+j-l)i,j-block for which 
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t 
0 

0, 

Hl H2 ... j 
H H3 ... 

ti rk 2 i 1, 2, ••• 

H H 
i i+l 

Let the topology on M be the topology of pointwise convergence (componentwise 

convergence), Then for the closure M(TT of M(t) one has 

M{tJ C u M(t'). 
t'<t 

Proof, Consider a convergent sequence {~(i)}i:l of Hankelmatrices from M(t). 

It is wellknown that the limit of a sequence of matrices has rank smaller than 

or equal to the limsup of the ranks of the matrices. (This can be easily shown 

using the fact that a matrix has rank~ ti iff all (ti+l) x (ti+l) submatrices 

have determinant equal to zero. It is clear that the limit of a sequence of 

zero determinants is zero, etc). Therefore if t(oo) denotes the t-sequence of 

the limit H(oo), then t(oo) ~ t. 

Q.E.D. 

2.3.5-12, Remark. It is highly probable that not' for which t' ~ t, can be 

left out of the r.h.s, of the inclusion in the previous theorem. The related 

statement for the (special) case of a reachable pair has been proved in [Ha

M81]. It would lead us too far to go into that here. 

2.3.5-13. Corollary. Let, by some abuse of notation, M(p) denote the set of 

linear system with observability indices p = (p 1,p2, ••• ,pm)• Using the same 

topology as above, namely the topology of pointwise convergence in the 

corresponding Hankel-matrices, it follows for the closure M(p) of M(p) that 

filPJ C u M( p'). 

p':;_p 

This corollary shows the reason why we call~ the specialization order: 

p' ~ p holds for all p' which turn up as limiting cases of systems with 

observability indices p. 

2.3,5-14. Remark. One can give examples in which filPJ * M(p), so that there 

are p' f p, p' < p, which cannot be left out of the inclusion in the 
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corollary. We will not go into that here (see remark (2.3.5-12) which makes a 

much stronger statement). It follows that if one specifies the observability 

indices, (i.e. the maximum lags in the equations of an arma model in minimal 

base form), then it is recommendable to include in the model space all models 

which correspond to more special (in the sense of the partial order) 

observability indices! In fact with respect to this issue the state space 

model appears to be easier to work with than the arma model, because in the 

case of arma models, one has to consider the whole set {p' IP'~ p} of possible 

lag specifications, and it seems difficult to avoid, that for each lag 

specification a separate identification algorithm has to be done. In the state 

space model, the McMillan degree can only remain the same or decrease in a 

limit point (this also follows from (2.3.5-11)). Of course the McMillan 

degrees are natural numbers and therefore completely ordered. This makes it 

simpler than the partial order of the observability indices. Furthermore, 

degeneration to a smaller McMillan degree can be observed from the 

observability and reachability matrices of the systems. 

2.4. Stochastic linear systems; various representations 

2.4.1. Stochastic state space models 

From the definition in section 2.2 it follows that a stationary, ergodic, 

linear finite dimensional, Gaussian, zero mean, stochastic process can be 

represented by a deterministic, linear finite dimensional time invariant 

system with Gaussian white noise inputs. 

A state space representation of such a system is of the form 

{w} Gaussian. white noise, w ~ N(O,o), 1i a positive definite matrix (more 
t t 

generally, n is positive semi-definite; but if 1i is singular, there exists 

aw~ and a rectangular matrix U such that wt= Uw~, w~ ~ N(0,1i1) and 1i1 
positive definite, rk 1i1 = rk 1i. Substituting wt= Uw~ shows that by replacing 

Bwt by BUw~ and Dwt by DUw~, we can reduce to the case where n is positive 

definite). Without loss of generality we will assume that (A,B,C,D) forms a 

minimal realization, i.e. n = McMillan degree of the deterministic system 

given by (A,B,C,D). 

From the stationarity of the process, it follows that the variance Pt of the 
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state vector xt must be independent of time: 

(2.4.1-2) 
T 

3 P positive semi-definite, such that Vt: Extxt P. 

From (2.4.1-1) it follows that P satisfies the Lyapunov equation: 

(2.4.1-3) p 

Here it is used that xt is measurable with respect to the 

o-algebra cr(w ,w 2, ••• ) of past input values (nonanticipation property of 
t-1 t- * 

linear systems). Now suppose cr(A) contains an element A with IAI ~ l; let x 

be a corresponding nonzero left eigenvector of A. Then 

(2.4.1-4) * x Px * * * * * 2 * * * * * * x AP(x A) + x BB x = IAI x Px + x BB x > x Px + x BB x. 

It follows that x*B = O, and therefore x*R(A,B) = 0 (for the definition of the 

reachability matrix R(A,B), see (2.3.2-4)). But this is in contradiction with 

the fact that (A,B,C,D) is a minimal realization (see (2.3.2-6)). 

So we have: 

2.4.1-5, Lemma. cr(A) c D(0,1) {zE:<C;lzl<l}. 

2.4.1-6. Remark. Recall that we work with zero initial conditions. The 

motivation is the following. Because of our assumption of ergodicity, nonzero 

initial conditions have to be deterministic. The effects of these can be 

treated apart from the stochastic part of the model, using superposition. We 

will not go into that further here. 

We now want to show that the necessary condition in the lemma is also 

sufficient to obtain a well-defined stochastic linear system. Notice that for 

a stochastic system of the form (2.4.1-1) it is not sufficient to use a -- . 
deterministic linear system (A,B,C,D) working on the input space U0 , because 

with probability one, the se~uence {wklk ~ t} has an infinite number of 

nonzero values, i.e. {wk} i u0 • Therefore we have to 

specify further the input-output mapping, as before denoted by F (see the 

discussion in ad(ii) at the end of section 2.3.2), and the set of inputs 

U that is involved. 
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2.4.1-7. Definition. (a) The input-output mapping of the system that realizes 

the stochastic process is given by the formula 

where Hi are the impulse response matrices, or Markov matrices, as before. 

(b) The set of inputs U is chosen to be all {wt}, for which r Hiwt-i 
i=o 

converges for all t E z. 

It will now be shown that if {wt} is a Gaussian white noise process and 

if cr(A) = D(0,1), then almost surely {wt} Eu. 
First we have the following 

2.4,1-8. Lemma. Let {w} ~ be Gaussian white noise (or more generally: {wt} 
t tEL. 

0 and E llwt 11 2 = cr2 > O). Then the power series 

t -t 
0 

has radius of convergence R = 1, for all t 0 E Z, almost surely. (If ft (z) 

has R = 1 for one value of t 0 , then this holds for all t 0 E Z). 0 

Proof. The proof of this lemma will be given in a sequence of steps. 

(i) First we will prove the following: If A E (0,1) then 

0 a.s. 

t -t 
0 

This can be shown as follows: Let V(t,e:,A) := {w;llwtllA ~ e:}, Then 

t -t 

V(e:,A) := {wj limsupllwtllA o ) e:} = 
t+ -a, 

t s 
limsupV(t,e:,A)(:= n° u V(t,e:,A)). 

t+-m s=-a> t=-m 

Then V(A) := u V(e:,A) is the set of all w En which correspond to a sequence 
e:)O 
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t -t 
{ 0 } llwtll;I. t<t that fort+ -oo diverges, or converges to a nonzero value. 

- 0 

So V(;l.)c := Q\V(;I.) is the set of all w En which correspond to a sequence 

t -t 
0 

{wt;\. }t<t that converges to zero fort+ -oo. And finally 
- 0 

V := u V(;I.) is the set of all w for which a ;i._ E (0,1) exists 
AE(0,l) 

t -t 
such that {wt;\. 0 }t<t does not converge to zero. And vc is the set of all w 

- 0 

t -t 
0 for which {wt;\. } + 0 for all ;I. E (0,l). 

We will show that P(V) = 0. Because 

and 

one has 

V(;I.) u V(e:,;1.) 
e:>0 
e:EQ 

and V u V( ;1.). 
AE(0,l)nQ 

Therefore Vis a countable union of sets V(e:,;1.). This implies that it is 

sufficient to show 

Ve:> o,v;i._ E (0,1): P(V(e:,;1.)) o. 

This can be shown using the Chebyshev inequality together with the lemma of 

Borel-Cantelli: 

( 2.4.1-9) P(V(t,e:,;1.)) (Chebyshev). 

Therefore 
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(2.4.1-10) 

With the lemma of Borel-Cantell! (see e.g. [Bau], p.168) it follows that 

P(V(E,A)) = 0 indeed. 

1, and this shows (i). 

(ii) {wt}t<t does not converge to zero, almost surely. This follows from 
- 0 

the fact that 3E > 0 such that P(llwtll > E) = pE > O; because the wt are 

independent, the second part of the lemma of Borel-Cantell! gives the 

result. 

(iii) Define W Vc\{wjlim wt= 0}. Then (i) and (ii) imply P(W) = 1. We will 
t+-00 

now show that ~w E W, the corresponding power series 

radius of converge R = 1 (for each t 0 E Z). Let w € W. Then 

{w} does not converge to 0, fort+ -00 so the radius of 
t 

has 

convergence of the power series must be smaller than or equal to one. It 

remains to show that if jzj < 1, then 

l: wtz 
t<t 

- 0 

t -t 
0 converges. 

Let A E (jzj,l), andµ:= jzj/A < 1. Because w E W c Ve it follows that 

follows that 

so 

t -t 
0 

0, so { nwt IIA }t<t is bounded, say by M > O. It 
- 0 

t -t 
l: Mµ o 

t<t 
- 0 

is convergent. It follows that R 1. 

Q.E.D. 
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2.4.1-11. Notation. Let u1 denote the set of all sequences {ut}tEZ such that 

the power series 
t -t 

0 has radius of convergence equal to one (if this 

holds for one t € Z, then it holds for all t € Z). 
0 0 0 

From the previous lemma (2.4.1-8), it follows that P(U1) 1. We now arrive at 

the desired result. 

2.4.1-12. Theorem, Consider the linea~ system (2.4.1-1), (2.4.1-7)(a), where 

cr(A) c D(0,1) (see (2.4.1-5). Then E Hiwt-i converges for all t € Z, 
i=o 

with probability one. (To be more specific EH w converges for all 
• i=o i t-i 

{wt} € Ul) • 

Proof, Let A€ (0,1) be such that cr(A) c D(O,A), Then lim A-iH 
i+oo 

i 
lim 
i+oo 

-1 O, because cr(AA ) c D(0,1). Therefore 3M> Osuch that 

V{wt} € u1 (this follows from lemma (2.4-18) and the extension to the 

multivariable case of the well-known fact that a power series converges 

absolutely within D(O,R), R being the radius of convergence). 

Q.E.D. 

2.4.1-13. Corollary. The equation (2.4.1-1) and the definition (2.4.1-7) 

together define a stochastic stationary ergodic system (with zero initial 

conditions) iff cr(A) c D(0,1). 

2.4.1-14. Definition. Let T(s) be a proper transfer function. If T(s) is 

square, and its inverse T(s)-l exists and is proper, then the system with this 

transfer function is called the inverse system. 

2,4.1-15, Remarks. (i) In this definition T(s) is associated with a 

deterministic system, and the existence of the inverse of this deterministic 

system is considered, 

(ii) If the system is given by a backward mfd pair (A(z),B(z)) in minimal base 
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form then the inverse exists if B(z) is square, and B(O) is nonsingular. The 

inverse is given by the backward mfd pair (B(z),A(z)). 

(iii) If the system is given by 

Ax + Bu 
t t 

Cxt + Dut, 

m .Jll n Yt € R, ut € K, xt € R, and if Dis nonsingular, then the inverse system 

exists and is given by 

{ 
xt+l = (A-BD- 1C)xt + BD-lyt 

(2.4.1-16) 
-1 -1 

ut = -D Cxt + D Yt• 
(Here it is not necessary that A-Bn-lc is asymptotically stable, because the 

inverse system is considered as a deterministic system). 

For systems with square transfer matrix, one can define the socalled minimum 

phase property. Usually it is only done in the context of stochastic systems. 

2.4.1-17. Definition. If a system with as many input channels as output 

channels has an inverse (in the sense of (2.4.1-14)) of which the spectrum 

lies in the closed unit disk, then it is called minimum phase. 

2.4.1-18. Remarks. (1) For systems with nonsquare transfer matrix one can also 

define the minimum phase property, but we shall not go into that here. 

(ii) In the next subsection it will be shown that a stochastic system of the 

type treated here can always be represented by a minimum phase (and 

asymptotically stable, see (2.4.1-13)) deterministic system with white noise 

inputs, i.e. (2.4.1-1) can be taken to be minimum phase without loss of 

generality. 

2.4.2. The spectral density matrix and spectral factorization 

Consider a stochastic system of the type treated in the previous subsection 

2.4.1. It is a gaussian zero-mean process. Therefore it is completely 

determined by the covariance matrices 

(2.4.2-1) 
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Because of the stationarity of the process, rk does not depend on t. 

Furthermore it is clear that 

(2.4.2-2) 

computed: 

if k = O, 

if k > 1, 

where Pis as in (2.4.1-2) and (2.4.1-3). Because A is asymptotically stable 

(see previous subsection 2.4.1) it follows that 

(2.4.2-4) 3A > 1 such that lim Akrk = 0. 
k+m 

oo k 
Therefore, ifs€~. Isl< A, E rks converges, and 

k=o 

oo k 
E rks converges, and 

k=l 

- I 00 k 00 k 0) -k * 
so if A < Isl< A, then E rs = ( E rks) + ( E rks ) is well-defined. 

k=-oo k k=o k=l 

-k -1 2.4.2-5. Definition. r(s) 

density matrix. 

E rks , Isl€ (A ,A) *~is called the spectral 
kEZ 

2.4.2-6. Remark. r(s) is defined on the whole unit circle 

{s;lsl = 1} =: C(0,l). Because r(s) is analytic, r(s) is completely 

determined by the restriction of r to the unit circle. Therefore, often r is 

only considered on the unit circle. One then considers the mapping 
mxm iA 

[0,211) + ~ , A.,.._. r(:! ) • 

2.4.2-7. Theorem. Let T(s) denote the (forward) transfer matrix of (2,4.1-1), 

then 

* (2.4.2-8) r(s) = T(s)OT(s) , Vs€ C(0,l) 

Proof. Let, as before, T(s) = 
00 -i 
E His (compare (2.3.4-1)), with H0 = D; 

i=o 

1,2, ••• By convention, let Hi= 0,Vi < 0. Then 
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Q.E.D. 

2.4.2-9. Remark. We can also define a backward spectral density matrix, by 

From the theorem it follows that 

( 2. 4. 2-11) 

where H(z) 
co i 
r Hiz , the backward transfer function (see (2.3.4-1)). 

i=o 

2.4.2-12. Corollary. A spectral density matrix r(s) is positive semi-definite 

Hermitean for each s € C(O,l). 

- * -Proof. Vs€ C(0,1),r(s) = T(s) nT(s) , and n is positive definite symmetric. 

Q.E.D. 

2.4.2-13. Corollary. A spectral density matrix r{s) is rational. 

Proof. This follows from the fact that T(s) is rational (see theorem 

(2.3.4-4)). 

2. 4. 2-14. Corollary. r( s) is analytic on C( O, 1). 

Proof. This follows from the fact that the system described by T(s) is 

Q.E.D. 



66 

asymptotically stable. Q.E.D. 

If f 0 is singular and has rank m", one can find m" independent components of 

Yt, such that the other (m-m") components are linearly dependent on them. If 

we denote the vector of these m" components as yt' the model (2.4,1-1) can be 

rewritten as 

for some mxm" matrix E with m>m",rk(E) =m". We will restrict ourselves to 

studying the first two equations of (2.4.2-15). In other words we will assume 

(2.4.2-16) r 0 is positive definite. 

CD T 
Because r = E HkHk' it is equivalent to say that rk[H0 H1 ••• J = m. (One 

o k=o 
could also express this by saying, that the observability indices Pk are all 

greater than or equal to 1). It is also equivalent to say that T(s) has full 

rank 'almost everywhere', it has full rank at all but finitely many points s. 

Now the following standard result on spectral factorization can be applied 

( see e.g. [An-M), pp. 240-241 or [Roz), Ch. 2, 10). 

2.4.2-17. Theorem. If r(s) is a matrix valued function on s E C(0,1), 

with the properties: 

(i) f(s) is analytic on C(0,1) and rational and has full rank almost 

everywhere, 

( ii) -k r(s) is square, and real (i.e. r(s) = E rks with each rk a real 
kEZ matrix) 

(iii) r(s) is nonnegative definite Hermitean on C(0,1) (in fact positive 

definite Hermitean almost everywhere), 

then there is a factorization of r(s) as 

(2.4.2-18) r(s) - - - * H(s) E H(s) 

where H(s) is a square, real (i.e. H(s) - -k -E~s with each~ a real matrix), 
k 
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proper rational transfer matrix, all poles lie ins€ D(0,1), H = I, H(s)-l 
0 

is analytic in D(O,l)c {s; Isl> 1, s €~}(or equivalently H(s) has constant 

full rank on D(O,l)c), and Eis positive definite symmetric. Moreover the 

factorization is unique. 

2.4.2-19. Remarks. (i) One can also say that H(s) is the transfer function of 

an asymptotically stable, minimum phase system of the form (2.4,1-1) with 

D = I. (This defines an innovation representation; see section 2.4.4). 

(ii) Note that r(s) is a complete description of the stochastic process {yt}. 

The theorem (2.4.3-17) implies that without loss of generality we can assume 

that the system of the form (2.4.1-1) with which we represent the process, is 

minimum phase. I.e. it is invertible (so a fortiori m=m') and its inverse has 

~nectrum a(A-BC) = D(0,1). From now on we will make this assumption. For later 

reference let us mention the following corollary. 

2.4.2-20. Corollary. Suppose T(s) is an mxm rational transfer matrix, 

T(s) - ~ 
E Hks , with H0 positive definite symmetric. Then there exists an 

~o 

E > 0 such that 

is a spectral density matrix. 

Proof. For all E € (0,1], r (s) is analytic on s E C(0,1) and rational and 
E 

hermitean. Now lim r (s) = H, Vs E C(0,1). Because HO is positive definite, 
E ♦O E 0 

r (s) is continuous in E ands, and C(O,l) is compact, it follows that there 
E 

exists a positive E with r (s) positive definite Hermitean, for 
E 

alls E C(0,1). Now apply theorem (2.4.2-17). 

Q.E.D. 
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2.4.3. Hankel matrices of covariances 

In the previous subsection we already noted that the sequence of covariances 

r := {rklkEZ} completely determines the stochastic process that we are 
* studying. Because r_k = rk' Y k € Z, the sequence {rklk=0,1,2, ••• ) determines 

the stochastic process completely. We will now consider block Hankel matrices 

of covariances. First we introduce some notation. 

2.4.3-1. Notation. Let H = {¾lk.EZ} be any sequence of equally sized matrices 

Hk. Then H(H,k0 ) will denote the Hankel matrix with (i,j)-block equal to 

Hk +i+j-2" I.e. 
0 

r ~;+! 
¾ +l ¾ +2 

1 · 
0 0 

(2.4.3-2) H(H,k0 ) 

Hk +2 Hk +3 
0 0 

J 
Similarly, let T(H,k0 ) denote the block-Toeplitz matrix with (i,j)-block equal 

to H • 
ko+i-j 

I.e. 

Hk ¾+1 ¾ +2 
0 0 0 

T(H,k0 ) ¾ -1 ¾ ¾ +l 
(2.4.3-3) 0 0 0 

Hk -2 Hk -1 Hk 
0 0 0 

If H = {Hk}kEK' where Kc Z, but K * Z, then, as a convention, we will use the 

sequence H 

instead of H, in these definitions. 

Consider the Hankel matrix H(f,O). It is clear that this Hankel matrix 

determines the stochastic process completely, because it is in bijective 

correspondence with r. We will investigate its structure. To this end we will 

start with the fairly general situation of two stochastic systems (2.4.1-1), 

asymptotically stable and minimum phase with r = I (without loss of 

generality), which have the same white noise sequence as input: 
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system i:: 1: 
Ill 

r 
xl, t+l Alxl t + Blwt, xl,t € IR , 

(2.4.3-4) l ' 
yt cl x 1, t + Dlwt, yt € nf1' wt € IRm 

and 

system i:: 2 : 
n2 

{ x2,,+l: A2x 2 ,, 
+ Bzwt, x2,t € IR ' 

(2.4.3-5) 
z - c 2x2 + D2wt, zt € nf1. 

t 't 

The corresponding sequences of Markov matrices will be denoted by 

H1 := {H1,k}k:o (system i::1) and H2 := {H2,k}k:o (system i:: 2). Note that the 

dimensions n1 and n2 of the state spaces of i::1 and i:: 2 are allowed to be 

different. Now consider the covariances 

(2.4.3-6) 

and 

(2.4.3-7) 

Form the corresponding Hankel matrix ~(rY 2 ,l). The following result is useful: 

2.4.3-8. Theorem. Rank ~(rY2 ,l) = n1• This is still true if i:: 1 is not minimum 

phase. 

Proof. It is straightforward to show that 

(2.4.3-9) 

(Because of the asymptotic stability of systems i:: 1 and i:: 2, all the series 

appearing in the computation of the infinite matrix product on the right hand 

side converge absolutely). Recall our definition (2.3.3-1) of the left kernel 
0 

iker Hof a Hankel matrix H. From (2.4.3-9) it follows that 

This implies that 
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We now set out to show that equality holds in (2.4.3-11), or, equivalently, in 

(2.4.3-10). Suppose in order to create a contradiction that equality does not 

hold in (2.4.3-10). I.e. 

Recall (see (2.3.2-4) and (2.3.2-5) etc.) that 

Define 

(2.4.3-14) 

Then 

(2.4.3-15) 

and 

(2.4.3-16) 

Because for all j = 0,1,2, ••• : AiR(A1 ,B1) is a submatrix of R(A1,B1), it 

follows a fortiori that 

(2.4.3-17) 

Consider V T T T 2 :=span[~.~ A1,~ A1, ••• J * 0. The equation (2.4.3-17) implies 

(2.4.3-18) 

Furthermore Vis A1-invariant: 

(2.4.3-19) VA1 ~ V, 
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and therefore the complexification V(~) of V contains a nonzero eigenvector 

* n with left eigenvalue A(say) in the spectrum of Ai, so 

( 2. 4. 3-20) * An,A€D(O,l). 

Because R(A1,B1) has full row rank (this follows from the assumed minimality 

of (A1,B 1,c1)), one obtains: 

(2.4.3-21) 

and therefore 

{2.4.3-22) 

At the other hand, from (2.4.3-18), it follows that 

(2.4.3-23) * * [µ Aµ 0 

or, equivalently 

( 2.4.3-24) 

oo k 
Let H2(z) = E H2 kz denote the backward transfer matrix of Ez, then 

k=o ' 

(2.4.3-24) implies that H2(A) is singular. However, because A€ D(O,l), 

this is in contradiction with the fact that E2 is minimum phase. 

Q.E.D. 

Now let us return to the situation of one stochastic process {yt}' with 

sequence of covariances r = {rk} and with an asymptotically stable and minimum 

phase representation of the form (2.4.1-1), with sequence of Markov matrices 

{Hk}. (By convention Hk = 0 for all negative k € Z). 

Then one can deduce 

2.4.3-25. Corollary. Rk H(r,k) rk H(H,k), 'v'k € Z, 
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Proof. Comparable to (2.4.3-9), it is straightforward to derive 

(2.4.3-26) H(f,k) 
o o T 
H(H,k)T(H,0) • 

Now apply the previous theorem with the system (A,B,C,D) as r2 and the system 

with sequence of Markov matrices {H.}. 00 as E. So e.g. if k > I, then r1 J J=k I -
is the system represented by 

Then the corollary follows. 

2.4.3-28. Corollary. iker H(f,k) iker H(H,k). 

Proof. From (2.4.3-26) it follows that 

(2.4.3-29) iker H(f,k) ~ iker H(H,k); the previous corollary shows that 

equality must hold (compare (2.4.3-10) and (2.4.3-11)). 

Q.E.D. 

Q.E.D. 

2.4.3-30. Remarks. (i) This corollary shows that the autoregressive part of 

the system can be determined directly from the Hankel matrix of covariances 

(compare section 2.3.3), and so that the observability Kronecker indices, and 

the McMillan degree can be determined directly from the Hankel matrix of 

covariances. 

(ii) The corollary is one of the most important tools in transferring partial 

realization results for mfd-models ('deterministic arma models') to stochastic 

arma models, in the next chapter. 

(iii) The case k = I of corollary (2.4,3-25) implies that the minimal McMillan 

degree of a spectral factor can be found to be the rank of the Hankel matrix 

of covariances H(f,l). In fact, this is a well-known result, cf. e.g. [An 73], 

or [FCG], Prop, 8.8, p. 188. 
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2.4.4. The innovations representation 

Given a stochastic system of the form (2,4.1-1), one can compute the one-step 

ahead conditional expection of Yt, namely 

t t 
where cr(y) denotes the a-algebra generated by y = {yt,Yt-l'yt_2 , ••• }. 

t-1 2.4.4-1. Definition. v = y - E(y lcr(y )) is called the innovation at time 
t t t 

t of the process {y }. 
t 

The computation of E(ytlcr(yt-l)) is done by the steady state Kalman filter. 

This is standard filtering theory, see e.g. [An-M). 

It is possible to find a representation of the stochastic process by a system 
t 

with the innovations as inputs and in which xt+l = E(xt+llcr(y )): 

or equivalently 

{ V

xt+l 
(2.4.4-3) 

t 

One can show (see [An-M)) that spec(A-BC) = D(O,l). ('spec(A-BC)' denotes the 

spectrum of A-BC). 

2.4.4-4. Remark. If (A-BC) is not asymptotically stable, i.e. if (A-BC) has 

eigenvalues on the unit circle, then the input-output operator corresponding 

to (2.4.4-3) should be defined as a Cesaro sum (compare section 2.3.2, (ii) 

(b) after theorem (2,3.2-9)). We will not go into further detail here. 

2,4.5. Arma-models 

The last representation that we want to mention is the (stochastic) arma-
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model. 

(2.4.5-1) 

A(z),B(z) polynomials, {w} gaussian white noise, as before. It is possible to 
t 

choose for {w} the innovations {v }. It then follows that 
t t 

(2.4.5-2) B0 = I. 

t (This follows from the fact that vt is a(y )-measurable). 

2.4.5-3. Remark. Note that if {w} is a gaussian white noise, then the same 
t 

holds for {wt-k}, for each k € z. Therefore (2.4.5-1) is equivalent to 

(2.4,5-4) k 
B(L)L wt, 

for each k € z. Of course, if k ~ 0, then B(L)Lk is still a polynomial. If 

B(O) = I, as in the innovation representation, then B(L)Lk is not a polynomial 

if k < O. This remark is made for later reference. 
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Appendix 2A. Proof of theorem (2.3.4-3) 

Proof. '<=' If a(A) c D(0,l), then lim Ak = 0 (this is wellknown) and 
k - k+oo 

therefore lim CAB= 0. 
k+oo 

•⇒• If there is an element A€ a(A) with IAI > l then {CAkB}k:o does not 

converge to zero. This can be shown as follows: Let x € ~n be a nonzero 

eigenvector corresponding to A, and let ~0 .~ 1 , ••• ,~n-l €~be such that 

n-1 
E AkB~k = x. (Because (A,B,C) is minimal, (A,B) is reachable and so 

k=o 

[BAB ••• An-lB] has full column rank. Therefore such a sequence 

~ 0 .~ 1, ••• ,~n-l exists). Now consider the sequence of sums 

n-1 
{ E CAkHB~ } 00 

k=o k R.=o 

R. 00 

{A Cx} R.=o 

There remain two possibilities, one of which can be ruled out: 

( i) ex 0: this is not possible, because it would imply CA~= 0 for 

k € IN0 , and because (C,A) is observable, this would imply x = 0, 

is not the case. 

( ii) ex 'F R. 00 

0.Then {A Cx}R.=o does not converge to zero, because IAI ~ 1. 

all 

which 

n-1 
Therefore { E CAk+R.B~} 00 does not converge to zero. This implies that 

k=o k R.=o 

CAkB does not converge to zero fork+ oo. 

Q,E.D. 
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CHAPTER 3 

PARTIAL REALIZATION OF ARMA (p,q) MODELS AND THE 

FINITE IDENTIFIABILITY PROBLEM 

3.1. Partial realization of arma(p,q) mod.els 

3.1.1. Introduction 

First let us describe the socalled partial realization problem. Suppose one 
I 

has given a finite sequence of mxm' matrices {Hi}i=o• If one interprets these 

as the first I+l Markov-matrices of a deterministic linear system, one can 

raise the question how this sequence can be extended to give the sequence of 

all Markov matrices {Hi}i=o• Clearly, without further restrictions each 

extension would do. Let it be required that the resulting sequence has finite 

McMillan degree, i.e. 

(3.1.1-1) rkH(H,l) < "", 

then it is possible to find a realization, i.e. a finite dimensional state 

space description (or, equivalently, an mfd), according to standard 

realization theory (see e.g. [KFA], Ch.IO). Therefore, extension 
I "" of {Hi}i=o to {Hi}i=o which obeys (3.1.1-1) is equivalent to finding a state 

space model which has {H} I as its first I+l Markov matrices (also called 
i i=o 

impulse-response matrices). The problem to find a state space model of the 

form (2.3.2-2) with this property, is often called the partial realization 

problem. However, also the (equivalent) problem of finding an extension with 

property (3.1.1-1) will be called the partial realization problem, for obvious 

reasons. Each partial realization has a finite McMillan degree. An obvious 

partial realiz.ation is found by taking HI+j = O, for all j = 1,2, •••• It 

follows that there exists a minimal McMillan degree, among all the McMillan 
I degrees of partial realizations of {Hi}i=o• Any partial realization which has 

this minimal McMillan degree will be called a minimal partial realization. An 

important question is under which circumstances there exists a unique minimal 

partial realization. 

Now consider a system with McMillan degree n, and sequence of Markov matrices 

{Hi}i=o• Now suppose an upperbound of the McMillan degree is given, then one 

can raise the question for what values of I does there exist a unique minimal 
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partial realization 

realization must be 

I 
of {Hi}i=o• Of course, in that case the partial 

equal to the true sequence of Markov matrices {H} 00
• 

i i=o 
Instead of an upper bound on the McMillan degree, one can also have other 

structural information about the system, like e.g. upper bounds on the 

Kronecker indices, etc. In our case the structural information will be 

(upperbounds of) the degrees p, resp. q of the autoregressive, resp. the 

moving average part of an arma(p,q) representation of the system. Our main 

interest here is with the stochastic. case, because that gives us a solution to 

the finite identifiability problem which is treated in section 3.2. However, 

we will start with the deterministic case, because the techniques are similar 

and it will clarify the exposition. 

3.1.2. The deterministic case 

3.1.2.1. The partial realization lemma 

In this subsection we will treat the main technical lemma for partial 

realization. We will start with a simple result, that forms the key of the 

proof of the partial realization lemma. 

3.1.2.1-1. Lemma. Let A be an rxs matrix, ban rxl column vector, can lxs 

row vector. 
A (i) If rk A= a= rk[A b] = rk[- ], then there is exactly one scalar d, such 
C 

that rk[A 
C 

(ii) If rk A= rk[A b] 

rk[! :] = a. 

a then for all scalars d, 

The proof of this lemma is a simple exercise in linear algebra and is left to 

the reader. The lemma is called 'Main lemma' in [Kal 79] and 'Extension lemma' 

in [Mue] which also gives a short proof. In fact the result occurs implicity 

or explicitly in many papers on realization theory. The idea in the lemma can 

be applied to block-Hankel-matrices. One has 

3.1.2.1-2. Partial realization lemma. [Kalman] 

Let {Hi}~!! be a finite sequence of mxm' matrices. 
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(a) If 

HI Hz Hj HI Hj Hj+l 

(3. 1.2. 1-3) rk 
Hz H3 Hj+l 

= rk 
Hz . . . 

~ H 
k+l Hk+j-1 Hk Hk+j-1 ~+j 

HI 
Hz 

Hz 
H3 

Hj 
Hj+l 

rk . . = n(say), then there 
Hk Hk ••• +1 

H 
k+j-1 

~+1 ~+2· •• ~+j 

is a unique sequence H = {Hi}i=~o' extending the finite sequence {H }k+j • i i=o' 
such that the rank of the block Hankel-matrix H(H;l) is n. 

(bl) If 

[ "1 
H l [ "1 ~j rj+I l, J -rk : 

~k+j-1 -

rk : 

Hk Hk H 
k+j-1 k+j 

HI Hj . 
rk ~ ~+j-1 n, then the choice of ~+j+l' 

~+1 ••• ~+j 

such that [ •1 
Hz Hj+l 

rk ~ = n 

H H 
k+l k+2 k+j+l 

is not unique. In fact there is at least one component of Hk+j+l which can be 

chosen arbitrarily in~ (or~ if one works over~). 

(b2) The same conclusion as in (bl) holds, if l •1 ••• Hj 
= rk 

H1••• 
~j [ "1 ... ~j C: ]- n. 

rk • . < rk • 

~- .. Hk+j-1 Hk""" Hk+j-1 Hk ••• Hk+j-1 

Hk+1••• ~+j 
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Proof. The proof of various parts and special cases of this lemma can be found 

at various places. The scalar case (m=m'=l) is treated in [KFA], Ch.10, App.B, 

Thm(Bl). For a proof of part (a) in the multivariable case, one can consult 

[Raz 80), esp. lemma 4.9, pp. 377-378. Cf. also [Kal 79), [Mue], [Bo-W]. 

For the sake of completeness, we will give a proof of part (bl) here. 

According to the following rules, choose a value for each of the components of 

Hk+j+l• labeled by h(i,g) (= the component in the 1th row and gth column of 

Hk+j+l). Use the lexicographical order: 

h( 1, 1), h( 1,2), h(l,3), ••• ,h( 1,m') ,h(2, 1) ••• ,h(m,m'). 

Having arrived at component h(i,g) there are two possible situations, namely 
A b 

possibilities (i) and (ii) from lemma (3.1.2.1-1), if we let [c d] consist 

of the first jm'+g columns and the first km+-i rows of 

H. Hj+l 

1 • So, 

J 

• Hk+j-1 Hk+j 
d corresponds to h(i,g). In case (i) 

Hk+j Hk+j+l J 
choose d h(i,g) as in the lemma, i.e. in the unique rank preserving manner. 

In case (ii) choose d = h(i,g) arbitrarily. In both cases rk(~) = rk(A bd). 
C C 

From this, it follows by induction that the rank of the submatrix consisting 

of the first 

[
Hl 

km+-i rows of ~ 

k+l 

equal to the rank of the submatrix of the 

first km+-i rows Hj+l l : , for i 

¾+j+l 

1, ••• ,m. In the case i m, 

this means that 

H l j -

~k+j -

[ 

H 
rk •1 

~k+1••• 



80 

as is required in the lemma, If for each h(i,g), i = 1, ••• ,m, g = 1, ••• ,m', 

case (i) would occur, then the rank would never increase, which contradicts 

the situation given in (bl). Therefore case (ii) must occur at least once. So 

there is at least one component h(i,g) of Hk+j+l that can be chosen 

arbitrarily in R (or~ if one works over the field~). 

Q.E.D. 

(3.1.2.1-4) Remark. This lemma can be refined, and one can give a count of the 

number of free parameters. However, we will not need that here. We refer to 

[Mue], Main Theorem (2.5) esp. part (c). 

3.1.2,2, Unique partial realization of state space models 

As stated in the introduction we will be concerned with the question what the 

minimal length of the finite sequence of Markov matrices is, that is 

sufficient for unique partial realization, given structural information about 

the system. In this subsection we consider the case in which the available 

structural information is an upper-bound of the McMillan degree of the system, 

3.1.2.2-1. Theorem. (a) Let Ebe a linear, time-invariant deterministic system 

with McMillan degree< n, for some given n € N. The sequence of Markov 

matrices {Hi}i:o of r: with I= 2n, uniquely determines E. I.e. there is a 

unique minimal partial realization of {Hi}i:o' and this partial realization is 

(the sequence {H} 00 of Markov matrices of) E. 
i i=o 

(b) I= 2n is the minimal value of I for which this holds. 

Proof. If n = 0 the theorem is trivial, So let n > 1. 

(a) Compare Corollary 4.3 of [Haz 80c], If (A,B,C,D) is a minimal realization 

of E, and the McMillan degree is n1 ~ n then rk R(A,B) = rk Q(A,B) = n1• It 

follows that 

(3.1.2.2-2) rk[B AB 
n -1 

A l B] 

and 

I· 
C 
CA 

(3.1.2.2-3) rk : n1-l nl. 

CA 

Therefore 



8 1 

Hl 

~n j- ,k [ t H tl (3. 1. 2.2-4) rk n 

H H2n-l n 2n-l n 

I 81 H 
n 

rk 
H 

n 
H 

2n-l nl • 

From the partial realization lemma in the previous subsection, it follows that 

there is a unique minimal partial realization with McMillan degree n1• It is 

clear that this must be E. This proves (a). 

(b) First consider the s.i.s.o. case. Suppose n1 = n and take I= 2n-l. We 

will show that minimal partial realization is now nonunique. Because m = m' 

1, and McMillan degree is n, one has 

(3.1.2.2-5) rk[B AB n-1 rk [ ~A ] • 

CAn-2 

Therefore 

[ •1 t,] [ ., H Hn+l ]' (3.1.2.2-6) n-1 rk • rk n 

~n-1 • • • ~n-1 H2n-2 H2n-l 

["I 
H 

n 
k • n. 

r Hn-1 • • • H2n-2 

H • • • H2n-l n 

We can apply part (bl) of the partial realization lemma of the previous 

subsection; it follows that (the scalar) H2n can be chosen arbitrarily, and 
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Hl 

~:._, J . H 
rk n 

Hn+l H2n 

i.e. these matrices have maximal rank. Again, from the partial realization 

lemma, it now follows that - for each choice of H2n - there exists a partial 

realization with McMillan degree n. So I= 2n-l is not sufficient for a unique 

minimal partial realization in the s.i.s.o. case. 

The same results holds trivially for the multivariable case: This can be seen 

as follows. In the case just described nothing is said about D. So the choice 

of Dis still open. D can even be chosen to be an m x m' matrix, in which case 

one really has an m x m' multivariable system. This shows that also in the 

multivariable case I= 2n is the minimal value of I, for which one has a 

guaranteed unique minimal partial realization producing the true system E. 

Q.E.D. 

3.1.2.3. The rank structure of the Hankel matrix of arma(p,q) models 

Suppose the system E can be described by an arma model (described in section 

2.3.3), with backward mfd pair (A(z),B(z)) (compare section 2.3.4), with 

degrees 

(3.1.2.3-1) deg A(z) p, deg B( z) q, 

or more generally 

(3.1.2.3-2) deg A(z) ~ p, deg B(z) < q. 

In the next section we will answer the question how long a sequence of Markov 

matrices of Eis needed, given p and q, to determine E completely. To be able 

to do that, we have to know more about what it means that E can be written as 

an arma(p,q) model. This will be treated in this subsection. 

3.1.2.3-3. Warning. If E can be written as an arma(p,q) model, it is not 

necessary that there is an arma(p,q) model of E that is in minimal basis form! 



83 

(recall section 2,3,4), E.g. consider the following simple example. 

[''+t 0 n, B( s) (3.1.2.3-4) A(z) z+l 13. 
2 z +cxz 

The system r which has (A(z),B(z)) as (backward) mfd pair can apparently be 

written as an arma(2,0) model. To put the mfd pair in minimal basis form, one 

premultiples A(z) and B(z) with 

One obtains 

(3.1.2,3-6) C(z)A(z) 

0 

z+l 

(cx-l)z 
; l • C(s)B(s) C( z). 

The row degrees, i.e. the observability indices, of [C(z)A(z) C(z)B(z)] are 

2,1,1 and so the McMillan degree is 4. Note that deg C(z)A(z) 2 and 

deg C(z)B(z) = deg C(z) = 1. So one now has an arma(2,1) model! Instead, to 

keep an arma(2,0) model, Chas to be a constant nonsingular matrix. The rank 

of the coefficient matrix of z 2 will then remain equal to two, so at least two 

of the rows will have degree two, Therefore one does not obtain a minimal base 

form in this way! 

3,1.2,3-7. Notation, The symbol arma(p,q) will stand for the set of all 

systems that can be written in the form of an anna(p,q) model: 

( 3. 1. 2. 3-8) 

arma(p,q) := {rl3A(z),B(z), polynomial matrices, deg A(z) = p, 
deg B(z) = q, and A(O) is nonsingular, 

-1 and A(z) B(z) = H(z), the backward 
transfer matrix of r} 

The symbol arma(p,q) will stand for the set of all systems that can be written 

in the form of an arma(p',q') model with p' < p,q' < q: 



(3,1.2,3-9) arma(p,q) 
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u arma(p',q'). 
O<p'(p 
O~q•~q 

Here p can be considered to be the set p {0,1,2, ••• ,p}, and q to be the set 

q = {0,1,2, ••• ,q}, For later reference it is useful to note that 

(3.1,2.3-10) arma(p,q) ~ arma(p,q)\{arma(p-1,q) u arma(p,q-1)}, 

where we use the convention that arma(p,q) 

(3. 1.2.3-9)). 

0 if p < 0 or q < 0 (cf, 

3.1.2.3-11. Definition. Let Ebe a linear, time-invariant system with backward 

transfer matrix H(z). The mapping T which maps E to TE, where TE has backward 

transfer matrix zH(z), is called the backward shift. The mapping a which maps 

E to crE, where crE has backward transfer matrix z- 1(H(z) - H(O)) is called the 

forward shift. 

3.1.2,3-12. Remarks. (i) cr is the same as the shift in [KFA] section 10.11, 

(11.4), p. 289. 

(ii) Note that a o T = identity, but To cr *id.In fact To cr(E) has 

backward transfer matrix H( z)-H(O) {, H( z) in general. 
k O k (iii) The Hankel-matrix of a Eis H(H,l+k), and of TE it is H(H,1-k), where, 

as before, we use the convention that Hi= 0 if i < O. 

3,1,2.3-13. Definition. Let (A(z),B(z)) be a backward mfd pair. The mapping 

;: (A(z),B(z))f--+(A(z),zB(z)) is called the backward shift. The mapping 

cr: (A(z),B(z))f--+(A(z),z-l(B(z) - A(z)A(O)-lB(O))) is called the forward 

shift. 

3,1,2.3-14. Lemma. If E can be represented by the mfd pair (A(z),B(z)), then 

;(A(z),B(z)) represents TE and a(A(z),B(z)) represents crE. 

Proof. First notice that a(A(z),B(z)) is indeed an mfd pair of polynomial 

matrices. The backward transfer matrix of ;(A(z),B(z)) is zA(z)- 1B(z) = zH(z). 

The backward transfer matrix of a(A(z),B(z)) is 

Q,E.D. 
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It is not difficult to derive the following result: 

3.1.2.3-16. Theorem. If L € arma(p,q), then 

(a) TL€ arma(p,q+l) 

(b) OL € arma(p,max(p,q)-1) 

Before proving this, let us state the immediate corollary 

3.1.2.3-17. Corollary. If L € arma(p,q), then 

(a) TkL € arma(p,q+k) 
k -- k -(b) a LE arma (p,q-k) if q-k ~ p-1 and a LE arma(p,p-1) if q-k < p-1 

Proof of theorem (3.1.2.3-16). 

This follows simply from the previous lemma and the definition of T and o: if 

(A(z),B(z)) is an mfd pair representing L, and deg A(z) =p' ~ p, 

deg B(z) = q': q, then deg zB(z) = q'+l ~ q+l, so TL€ arma(p,q+l). If one 

applies cr to (A(z),B(z)), one obtains (A(z),z- 1(B(z) - A(z)A(0)- 1B(O))). Now 

deg z- 1(B(z)-A(z)A(O)-lB(O)) ~ max(deg B(z), deg A(z)) - 1 = 

max(p',q') - 1 < max(p,q) - 1. So aL € arma(p, max(p,q)-1). 

Q,E,D. 

To be able to derive the main result of this subsection we need the following. 

3.1.2.3-18. Lemma. Suppose L can be represented by the backward mfd pair 

(A(z),B(z)), with row degrees of [A(z) B(z)] equal to Pi~ p2 ~ ... ~ p~ 

(without loss of generality, by permutation of the rows of [A(z) B(z)], one 

can assume this ordering to hold). Let Kl~ K2 < 
observability indices of L. Then 

1,2, ••• ,m. 

< K denote the ordered 
m 

Proof. From section 2.3.4 it is known, that A(O) is nonsingular. If one 

considers z(t) := A(O)y(t) as the output of the linear dynamical system, the 

observability indices remain the same (compare 2.3.4-42)). The corresponding 

backward mfd pair is (A(z)A(0)- 1,B(z)). Therefore, without loss of generality 
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in this proof, one can assume A(O) = I. 

Consider the corresponding forward mfd pair (A (s),B (s)). From section 2.3.4 
V V 

we know that the row degrees of [A (s) B (s)] are the same as those of 
V V 

[A(z) B(z)], i.e. they are p' < p' < < p'. Furthermore we know that 
1 - 2 - - m 

A (s) has the same row degrees. For the following, compare equations (2.3.4-
v --

40,41 etc.). We know that 

and therefore 

0 \>'t > t • 
- 0 

Consider the 1th equation of this system of equations. It is of the form 

T (i) (i) 
eiyt+p' It -1 + 0 p• Yt+p'-llt -1+ ••• + 0 1 Ytlt -1 O, 

i O i i O 0 

where the a\i) are m-dimensional row vectors of coefficients, It follows that 
J 

(3.1.2.3-22) 
(i) 

a 

is an element of the left kernel of the Hankel matrix of the system (see 

(2.3.3-1)). Therefore the 1th row of the (l+p1)-th block row of the Hankel 

matrix is linearly dependent on the previous rows. In section 2.3.3 an arma 

model was constructed for Eby taking the first n linearly independent rows of 

the Hankel matrix. It is now clear that the 1th row of the p1-th block row of 

the Hankel matrix does not belong to those n rows. From this it follows that 

where Pi as in section 2.3.3. This holds for each i = 1,2, ••• ,m. 

Now {p1,p2 , ••• ,pm} is an unordered sequence consisting of a permutation of the 

m ordered observability indices {K , ••• ,K} of E. It follows easily that, 
1 m 

because p' < p' < 
1 2 

< p' m' 

i 1,2, ••• , m 

Q.E.D. 
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3.1.2.3-25. Corollary. Suppose L € arma(p,q). Then (i) the observability 

indices Kl ~ ~ Km are smaller than or equal to the maximum of p and q: 

(3.1.2.3-26) Ki< max(p,q), i 1, ••• , m 

and (ii) for the McMillan degree n of Lone has 

(3.1.2.3-27) n 
m 
L K. < m.max(p,q). 

i=l 1 

It will be useful to extend the notation with respect to Hankel matrices as 

follows: 

3.1.2.3-28. Notation. Let H be a sequence of matrices {~}k€Z" Then by 

H(H,k,t,m) the following block-Hankel matrix will be denoted: 

[(+! 
~+l 

H 
m 

H(H;k,t,m) := Hk+2 Hm+l 

H H 
t+l m+t-k 

We now arrive at the main results of this subsection. 

3.1.2.3-29. Theorem. Let L be a linear, time-invariant system with sequence of 

mxm' Markov matrices H. Then the following statements are equivalent for each 

p,q € IN0 • We use the notation avb := max(a,b), a" b := min(a,b). 

( i) L € arma(p,q) 

0 

( ii) \ik € Z: rk H(H;k+l,k+(pv(q-k)),k+m(pv(q-k))) 

= rk H(H;k+l) < m(pv(q-k)) 
0 - 0 

(iii) rk H(H;q-p+l,q,q+(m-l)p) = rk H(H;q-p+l) < mp. 

Proof. (i) ~ (ii). This follows from the previous corollary, combined with 

corollary (3.1.2.3-17) and remark (3.l.2.3-12)(iii). 

(ii)~ (iii). This follows trivially by substitution of k = q - p. 

(iii)~ (i). Let r := q-p, and suppose (iii) holds. From the partial 

realization lemma it follows that one can realize the backward transfer matrix 
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(3.1.2,3-30) H (z) := . r 

by an arma(p,p) model with backward mfd-pair (Ar(z),Br(z)),1\,(0) nonsingular; 

deg Ar(z) 5 p, deg Br(z) 5 p. 

We distinguish three cases: (a) r = O, (b) r < 0 and (c) r > 0. 

ad(a). If r = 0, then H(z) = Hr(z), p = q and E can be realized as an 

arma(p,q) = arma(p,p) model, i.e. there remains nothing to show. 

ad(b). If r < O, then Hr(z) = ; Hi+rzi can be divided by zlrJ, because 
i=o 

Hj = 0 if j < 0. The same must hold for Br(z) 

and 

(3.1.2.3-32) A(z) 

Then deg B(z) ~ p - JrJ = p+r = q and deg A(z) ~ p. Clearly (A(z),B(z)) forms 

the mfd-pair of the system with backward transfer matrix 

-1 r 
(3.1.2.3-33) A(z) B(z) = z Hr(z) 

Conclusion: E can be written in the form of an arma(p,q) model, i.e. 

E € arma(p,q). 

ad(c). If r > 0 then from (3.1.2.3-30) it follows that 

Let A(z) = Ar(z) and Bj_ 1(z) := Bj(z)z + A(z)Hj-l• j = r,r-1, ••• ,1 then it 

follows that 

Furthermore it follows easily, that 
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deg B.(z) < p + (r-j), deg A(z) < p. 
J 

Therefore deg B (z) < q and so E can be represented by the arma(p,q) model 
0 -

with mfd pair (A(z),B0 (z)), i.e. E € arma(p,q), 

Q,E,D, 

3.1.2.3-35. Remark. This theorem characterizes the set of all 

arma(p,q) models precisely in terms of the rank structure of an associated 

Hankelmatrix, namely H(H;q-p+l), In fact (iii) states nothing more or less 

than that the observability indices of H(H;q-p+l) are smaller than or equal to 

p. From section 2.3,5, on Kronecker indices and the specialization order, it 

follows that the closure of the set of all systems with observability indices 

smaller than or equal top is included in the set of all systems of McMillan 

degree< mp (and very probably these sets are equal - see the discussion in 

section 2.3.5). Here we find that the closure arma(p,q) of arma(p,q) is 

included in (and probably equal to) the set of all systems with sequences of 

Markov parameters H, where His such that 

(3.1.2.3-36)(1) H1 = 0 for all i < 0 

(ii) rkH(H,q-p+l) ~ mp 

[In a system identification procedure one has to beware of the possibility 

that one comes close to the topological boundary of arma(p,q), To be able to 

handle such situation, one has to include the boundaries. In general this may . 
be difficult. But if one restricts oneself to the case rkH(H;q-p+l) = n for 

some n ~ mp, then this appears to be possible. However, this requires further 

research. (In fact the topology forces us, even if one starts with mimo . 
arma(p,q), to use a state space model, namely tc realize H(H;q-p+l). The only 

exceptions appear to be m = 1 (siso model), q = 0 (ar-model) or p = 0 (ma

model).)] 

3,1,2,3-37. Corollary. Let Ebe as in the theorem, and suppose E € arma(p,q). 

Then Eis uniquely determined by its Markov matrices H0 ,H1, ••• ,HI, where 

(3.1.2.3-38) I= mp+ q 
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Proof. As before, we use the notation av b = max(a,b). The previous theorem, 

together with the partial realization lemma, implies that the matrices 

H(H;k+l,k+(pv(q-k)) + 1, k + m(pv(q-k))) and 

H(H;k+l,k+(pv(q-k)), k + m(pv(q-k)) + 1) 

. 
determine the Hankel matrix H(H;k+l) uniquely. To form these two Hankel-

matrices, one needs ~+l'Hk+2 , ••• ,HI(k)' with I(k) = k + (m+l) (pv(q-k)). This 

takes its minimum value at k = q-p. In that case one has I(q-p) = (q-p) + 

(m+l)p =mp+ q. It follows that I= mp+q suffices to determine all of 

H. Q.E.D. 

3.1.2.3-39. Remark. Note that the number m' of input components does not 

affect I= mp+ q. 

There is a case in which one can improve on I= mp+ q. This will be 

especially important for section 3.1.3. The case we have in mind is the one in 

which the system is invertible, while p > q, If an arma(p,q) model with 

backward mfd-pair (A(z),B(z)) is invertible, then m = m' and B(O) is 

nonsingular, and the inverse system is given by the backward mfd-pair 

(B(z),A(z)), and so it is arma(q,p). Sop and q change roles. Now consider the 

following: 

3.1.2.3-40. Lemma. Suppose the linear time-invariant system Eis invertible, 

then for each k € N the first k Markov matrices of E are uniquely determined 

by the first k Markov matrices of the inverse system and vice versa. 

Proof. Let H( z) 
co i 
E Hiz be the backward transfer matrix of E. Because Eis 

i=o 

invertible, m = m' and H0 is nonsingular. The inverse system has H(z)-l as its 

backward transfer matrix. Write 

-1 co i 
(3,1.2.3-41) H(z) = E H1z. 

i=o 

Then 
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(3.1.2.3-42) I 
m 

It follows that 

(3. 1,2.3-43) H0 

and 

j-1 
\fj) 1: H - ( EHR'. )(H')-l 

j i=o i J-i o 

from which it follows easily that the first k(=j+l) Markov matrices of E are 

uniquely determined by the first k Markov matrices of the inverse system, for 

each k E IN. 

Q.E.D. 

Our first main result on partial realization of deterministic arma(p,q) models 

is the following: 

3.1.2.3-44. Theorem. Let Ebe a linear, time-invariant system, and suppose E 

is invertible; then if EE arma(p,q), Eis uniquely determined by its first 

J =I+ 1 Markov matrices H0 ,H 1, ••• ,HI, where 

(3.1.2.3-45) I= m,min(p,q) + max(p,q), so J m.min(p,q) + max(p,q) + 1 

3.1.2.3-46. Remark. Equivalent formulas for (3.1.2,3-45) are: 

(3.1.2.3-47) J p + q + (m-l)min(p,q) + 1, 

(3.1,2.3-48) J min(mp+q,mq+p) + 1, 

Proof, If p ~ q, then corollary (3.1.2.3-31) can be applied, If p > q, then 

corollary (3.1.2.3-31) can be applied to the inverse system: the first mq+p+l 

Markov matrices suffice to determine all the Markov matrices, Lemma 

(3,1,2.3-34) then shows that the first mq+p+l Markov matrices of the system E 

must determine all the Markov matrices of i:. 

Q.E.D. 
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There is an alternative proof for this theorem, for the case p > q, which 

doesn't make use of the inverse system, It is this proof that can be adapted 

to the stochastic case. Therefore we will present it here: 

Second proof of theorem (3.1.2.3-44). 

Because I: is invertible H0 is non.singular. Therefore 

H(H;q-p+l,O,O) 

0 

I) 

Ii 

0 

0 

is clearly nonsingular (it has determinant equal to+ (det H )p-q * O). This 
0 - 0 

implies that the reachability indices of H(H;q-p+l) are all larger than or 

equal to p-q. The sum of the reachability indices is smaller than or equal to 

mp. Therefore their maximum is smaller than or equal to mp-(m-l)(p-q). It 

follows that in this case, theorem (3.1.2.3-29) (iii) can be replaced by 

(iii)' rk H(H;q-p+l,q,mq) rk H(H;q-p+l) < mp. 

Following similar arguments as in the proof of corollary (3.1.2.3-37), it 

follows that 

H(H;q-p+l,q+l,mq) and H(H;q-p+l,q,mq+l) 

together determine the Hankelmatrix H(H;q-p+l). To form these two Hankel 

matrices one needs H0 ,H 1, ••• ,HI, with 

I ( q+ 1) + mq - ( q-p+ 1) = mq + p. 

Q,E.D. 

In the remaining part of this subsection we want to show that the number J of 

Markov matrices of the (invertible) system from which all of them can be 

determined, found in theorem (3.1.2.3-44) is minimal. Because of lemma 

(3.1.2.3-40) it suffices to show minimality in the case p ~ q. In the pure 

m.a. case, i.e. p = o, it is clear that J = q+l is minimal, because all the 
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nonzero Markov matrices, H0 ,H1, ••• ,Hq can be chosen arbitrarily. For the 

remaining cases we make use of the following existence result. 

3,1,2.3-50. Lemma. Let p ~ 1, m ~ 1. There exists an asymptotically stable 

linear time-invariant system t which has m observability indices p,p, ••• ,p and 

m reachability indices mp,O, ••• ,O. 

Proof, Consider E with backward tran_sfer matrix 

( z-a 1) 
-p 

0 0 

Ii< z) 
( z-a )-p 

2 1 0 0 

0 1 

0 
(z-a )-p 0 0 m 

where a 1, ••• ,~ are different real numbers, and !ail) 1 for all i 

Then 

(3.1.2.3-51) H(z) 

with 

1 0 0 

B1(z) 
p 

(z-a 2). 

0 0 

1 0 0 · ( z-a )P 
m 

m 

diag[ II (z-a.)P, 1, 1, ••• ,1), and 
i=l 1. 

m m m 

j~/z-aj)p II ( z-a. )p . . . . II (z-a .)P 
j=l J j=l J 

j1'1 j1'2 j1'ID 

B2( z) 0 1. 0 . . . . 0 
o. 

0 . 
0 0 ·o . 1 

1, ••• ,m. 
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Now (A1(z),B 1(z)) is clearly an mfd-pair in minimal base form with row degrees 

all equal top. So the observability indices of E are all equal top. At the 

other hand (A2(z),B2(z)) is an mfd-pair in minimal base form with row degrees 

mp,O,O, ••• ,O. Therefore E has reachability indices mp,0, ••• ,0. (The 
~T -1 Hankelmatrix of H (z) = A2(z) B2(z) is the transpose of the Hankelmatrix of 

H(z). Transposition of the Hankelmatrix makes observability indices into 

reachability indices, and vice versa). 

For such a system r, with backward transfer function H(z) 

following rank inequality holds: 

(i) if p = m = 1, rk(H1) 

(ii) if pm~ 2 then 

1-11 H 
rk 

pm 

pm-1 

~ ~ 
1--J H 

p p(m+l)-2 

1 > o. 

< rk 

It follows from the partial realization 

1-11 H pm 

~ 
H Hp(m+l)-1 p 

lemma that r is not 

Q,E,D. 

the 

pm. 

completely 

determined by H0 , ••• ,Hp(m+l)-l' and that there is at least one component of 

H ( ) that can be chosen freely: for each such choice there exists a 
P m+l 

partial realization with McMillan degree mp, and with observability indices 

p,p, ••• ,p, and reachability indices mp,0, ••• ,0. This in fact shows the 

minimality of Jin theorem (3.1.2,3-44) in the case p q ~ 1. 

Now let us treat the case q > p > 1. Define H . := H for j = 1,2,3, ••• , 
- q-p+J j 

and choose H , ••• ,H arbitrarily. Then the resulting backward transfer 

matrix H(z) 

0 q-p 

00 

E Hizi represents an arma(p,q) model (according to theorem 
i=o 

(3.1.2.3-29)) which has the property that (compare (3,1,2.3-29) (iii)) 

(i) if p m = 1, rk H(H;q,q,q) 

(ii) if pm~ 2, 

rk H 
q rk i\ 1 > 0. 

rk H(H;q-p+l,q,q+(m-l)p-1) < rk H(H;q-p+l,q,q+(m-l)p) mp. 
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In the same way as above, one can apply the partial realization lemma to 

conclude that H , ••• ,H + 1 do not determiner completely, i.e. I= q+mp (and 
o q mp-

so J = q+mp+l) is minimal. 

We have shown 

3.1.2.3-53. Theorem. Under the condition of theorem (3.1.2.3-44), the first I 

Markov matrices H0 , ••• ,HI-l do not, in general, determiner uniquely. So the 

number J =I+ 1 found in theorem (3.1.2.3-44) is minimal. 

3.1.2.3-54. Remark. Of course in many cases less than J Markov matrices will 

determine the system uniquely. However, if J has to be sufficiently large for 

all possible cases it has to be taken as in theorem (3.1.2.3-44). 

3.1.3. The Stochastic case 

3.1.3.1. Partial realization of state space models from the covariances 

In section 2.4.3 it was shown that the block matrix of covariance matrices has 

properties similar to the block Hankel matrix of Markov matrices of the 

stochastic system. This will now be used to obtain results about partial 

realization of a stochastic system from the first J =I+ 1 of its covariance 

matrices r 0 ,r1, ••• ,rI. In section 3.2 these results will be applied to the 

socalled 'finite identifiability problem'. 

In many cases the results here will be translations of the results for the 

deterministic case, treated in section 3.1.2. Therefore, often we will refer 

for (part of the) proofs to the proofs given in section 3.1.2. 
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3.1,3,1-1. Theorem. (a) Let Ebe a linear, stationary Gaussian system of the 

form (2.4.1-1), with McMillan degree~ n, for some known n EN. The sequence 

of covariance matrices r 0 ,r1 , ••• ,r1 of E, with I= 2n, uniquely determines E. 

(b) I= 2n is the minimal value of I for which this holds. 

Proof: (a) Use corollaries (2.4.3-25) and (2.4.3-28), and apply the same proof 

as for theorem (3,1.2,2-l)(a). 

(b) Compare the proof of theorem (3,1,2.2-1) (b) The case n = 0 is here again 
2n-1 trivial, so let n > 1. Let {Hi}i=l denote the Markov matrices as constructed 

in the mentioned proof (with m = m') and let H0 = D = Im be the identity 

matrix. We know that there are several different partial realizations, say 

{Hi}i:o and {Hi}i:o with 

(3.1.3.1-2) Hi= H = H for i = 0,1,2, ••• , 2n-1, 
i i 

From corollary (2,4.2-20) it follows that there exists an e: > 0 such tha·t 

(3.1.3,1-3) r (s) 
e: 

~ m ~ k -k m ~T k k 
: = H + E ( ¾ e: ) s + E ( Hk e: ) s , s € C( 0, I ) 

o k=l k=l 

and 

r (s) := H + 
e: 0 

m - k -k m -T k k 
E (¾e: )s + E (~e: )s ,s € C(0,l) 

k=l k=l 

are both spectral density matrices. They are different, both have McMillan 

degree n, and ri = ri, i = 0,1,, •• ,2n-1. So I= 2n-1 is not sufficient for 

unique determination of the system from the first I+l covariance matrices. 

Q.E.D. 

3.1.3.2. Partial realization in the stochastic arma (p,q) case 

Combining corollaries (2.4.3-28) and (2.4.3-25) with theorem (3.1 ~2.3-29), one 

obtains a completely analogous theorem for the stochastic case: 

(3.1.3.2-1). Theorem, Let Ebe a linear, stationary Gaussian system of the 

form (2.4,1-1), with sequence of mxm covariance matrices r = {rk}kEZ" Then the 

following statements are equivalent for each p,q € N: 
0 



(i) 

(ii) 
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l: e: arma(p,q) 

v'k e: Z: rk H(,;k+l,k+(pv(q-k)),k+m(pv(q-k))) 

rk H(f;k+l) ~ m (pv(q-k)) 

(iii) rk H(f:q-p+l,q,q+(m-l)p) = rk H(f:q-p+l) ~ mp. 

3.1.3.2-2. Remark. By some abuse of notation, (because the notation is also 

used for the deterministic case) we will denote by arma(p,q) the set of all 

stochastic systems which can be represented by a ('deterministic') arma(p,q) 

model with stochastic white noise inputs. 

3.1.3.2-3. Corollary. Let i:: be as in the theorem, and suppose i:: e: arma(p,q). 

Then l: is uniquely determined by its covariance matrices r 0 ,r1 , ••• ,rI, 

where 

(3. 1.3. 2-4) I mp+ q. 

Proof. See corollary (3.1.2.3-37). O.E.D. 

Now recall that a stochastic linear system has an innovations representation 

(section 2.4.4). Such an innovations representation has an innovations-to

outputs (backward) transfer matrix H(z) (say), with the property that H(O) is 

nonsingular. I.e. the corresponding deterministic system with this transfer 

matrix is invertible. Therefore it is perhaps not too surprising that in the 

stochastic case we obtain a similar result as in the invertible deterministic 

case, namely: 

3.1.3.2-5. Theorem. Let l: be a linear stationary Gaussian system of the form 

(2.4.1-1) with sequence of covariance matrices r = {fk}ke:Z" Then if 

i:: e: arma(p,q), i:: is uniquely determined by its first J =I+ 1 covariance 

matrices r ,r , .•• ,r, where 
o 1 I 

(3.1.3.2-6) I= p+q+(m-l)(pAq) so J p+q+l+(m-l)(pAq). 

3.1.3.2-7. Remark. Compare theorem (3.1.2.3-44). 

Proof. If p < q, then corollary (3.1.3.2-3) applies. If p > q, the second 
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proof of theorem (3.1.2.3-44) can be applied with one exception: a seperate 
0 

proof has to be given of the fact that H(r;q-p+l,0,0) is nonsingular. Post 

multiply H(r,q-p+l,O,O) with the block matrix 

0 

0 I 
I 0 

0 I 
0 

0 

where I 

matrix 

1m is the mxm identity matrix. One obtains the symmetric Toeplitz 

r r r 
0 1 .lq+l-pj 

r_l r 
T(r;O,q+l-p) 

0 

rl 

; r r 
q+l-p -1 0 

Let H( z) 
i r Hiz be the innovations-to-outputs (backward) transfer matrix of 

i=o 

the system. Then (see e.g. theorem (2.4,2-7) and its proof) 

H HI q+l-p I H 
R.+jq+l-pl 

(3.1.3.2-8) T(r;O,q+l-p) r H 
~R.+jq+l-pl-1 

iEZ 
• Hiq+l-pl-1 

H l-l 
R, R, 

This is clearly a positive semi-definite Hermitean matrix. 

If x € R(jq+l-pj+l)m is in the kernel of this matrix then 

0 for all R, € Z. 

This can also be written as 

T o lH 

(3.!.3.2-10)" ; 

Hl H2 •• Hjq+l-pl 

Ho 
0 

o .. ·.o H 
0 

H 
lq+l-pj+l 

]' 

o. 
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Because H0 is nons~ngular it follows that x = 0. This proves the 

nonsingularity of T(r;0,q-p+l) and therefore the nonsingularity of 
0 

H(r;q-p+l,0,0). The rest of the proof is completely the same as the second 

proof of theorem (3.1.2.3-44). Q.E.D. 

What remains is the question of minimality. In contradiction to the 

deterministic case, this problem is not (yet) completely solved. In all cases 

in which q? p minimality can be shown, but in case q < p the question of 

minimality is still open. 

For minimality in the case p = 0, we refer to Theorems 2.2.4 and 3.3.3 in 

[Tig]. For the case q? p ~ 1, our proof of minimality in the deterministic 

case can be adapted. See lemma (3.1.2,3-50) and theorem (3.1.2.3-53); compare 

the proof of theorem (3.1.3.1-1). 

Theorem (3.1.2.3-53) implies that there are (at least) two different sequences 

of Markov matrices, {Hi}i:o and {Hi}i:o' say, corresponding to arma(p,q) 

models (with q? p ~ l fixed), such that 

0.1.3.2-11) iii 0,1,2, ••• ,1-1, 

and H0 H0 is positive definite symmetric, with I= q+mp. From the corollary 

(2.4.2-20) it follows that there exists an E > 0 such that 

(3.1.3.2-12) r (s) := ii + 
0 E 

and 

r (s) := H 
E 0 

: (ff_Ek)s-k + : (H~T k) k C(0 1) ~ -K ~ kE s, s E ' , 
k=l k=l 

are both spectral density matrices. 

They are different, both are the spectral density matrices of an arma(p,q) 

model (theorem 3.1.3.2-1), while (in an obvious notation) 

This shows that I 

We have shown 

0,1,2, ••• ,1-1. 

q+mp is minimal indeed if q > p > 1. 
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3.1.3.2-13. Theorem. Assume the same conditions as in theorem (3.1.3.2-5). If 

q ~ p, then the number I= q+mp (= p+q+(m-l)(pAq)) is the minimal number such 

that the sequence of covariance matrices r ,r , ... ,r, uniquely determines the 
o 1 · I 

system r. 

3.2. The finite identifiability problem 

Entweder ein Ding hat Eigenschaften, die kein anderes hat, dann kann man es 

ohne weiteres <lurch eine Beschreibung aus den anderen herausheben, und darauf 

hinweisen; oder aber, es gibt mehrere Dinge, die ihre samtlichen Eigenschaften 

gemeinsam haben, dann ist es uberhaupt unmoglich auf eines von ihnen zu 

zeigen. Denn ist das Ding <lurch nichts hervorgehoben, so kann ich es nicht 

hervorheben, denn sonst ist es eben hervorgehoben. 

(L. Wittgenstein, Tractatus Logico

Philosophicus, 2.02331). 

3.2.1. On the methodology of the identifiability problem 

To explain the precise meaning of finite identifiability it is necessary to be 

precise with the meaning of identifiability, the role of the observations and 

the role of parameters. At the same time we will use the opportunity to 

formulate some definitions that will be important in later chapters. This 

concerns especially the concept of overlapping parametrizations. 

3.2.1,1. A set-theoretic foundation of system identifiability 

We take it that system identification (and much more general scientific 

explanation in the empirical sciences) is basically concerned with the 

relationships between observable variables. Such a relationship is described 

by way of a model. Consider the set of all observable variables to which the 

model is supposed to apply. In many cases, this set will consist of an 

infinite number of observable variables. E.g. in the case of a stochastic 

process as described in chapter 2, the set of all variables to which the model 

is supposed to apply is {ytlt E Z}. Let the space of joint outcomes of all 

these observable variables be denoted by D. The subindex oo stresses the fact 
00 

that in most of the cases that we will encounter, D is an infinite Cartesian 
00 

product. E.g. in the case of a stochastic process {y} , where y E l<f1, 
t tEZ t 
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one has 

(3.2.1.1-1) D 
00 

If we want to stress the dependence of D on the model M, we will denote the 

set by D (M). 
00 

The procedure in system identification is that a set of possible models Mis 

proposed, on the basis of experience with the phenomenon, theoretical 
0 

considerations and/or perhaps some speculation. Such a set Mis called the 

model set. All the models in Mare supposed to apply to the same set of 

observable variables and so (without loss of generality) for 

all M,M' EM: D00 (M) = D00(M'). It is the task of system identification to 

identify a true model from the set M, if there is one, using measurements of 

some of the observable variables. It is clear that in the vast majority of the 

cases it is not possible to measure all the observable variables that are 

involved, and certainly not, of course, if there are infinitely may of them. 

It is of course true that in practice the true 'model' does not lie in M, and 

instead one tries to find a model from M that best approximates the truth in 

some sense. However, we will abstract from that here. 

A model M from Mis considered to be basically a description of a relationship 

between the observable variables involved. Therefore it is reasonable to 

require such a model to describe a relationship between the variables in such 

a way that one is able to tell whether an element d00 E D00 , i.e. an ideal 

observation record of all possible measurements on all observable variables 

involved, is in accordance with the model, or otherwise falsifies the model. 

Any model which has this property will be called a (D00-) testable model: 

3.2.1.1-2. Definition. A (D -) testable model Mis a model for which there 
00 

exists a mapping 

which tells whether an element of D00 is in accordance with the model (TM"'.true) 

or it is falsifying the model (TM=false). 

We will only consider (D -) testable models. (In the next subsection it will 
00 

be explained how stochastic models can be made to fit in!). 
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3.2.1.1-3. Remark. Note that any mapping T: D + {True, False} ~ a testable 

model by definition. 

Let us now introduce the following notation: Let M be a set of (D00-testable) 

models. For each M € M, we define 

(3.2.1.1-4) S(M) := {d € D JT (d) = true} c D. 
oo ooMoo -oo 

So S(M) is the set of all ideai observations d00 € D00 that are in accordance, 

i.e. do not falsify, M. 

3.2.1.1-5. Definition. A (D -testable) model is called D -falsifiable if 
00 00 

S(M) * D, i.e. S(M) is a strict subset of D. 
00 00 

3.2.1.1-6. Definition. A (D -testable) model will be called trivial if it is 
00 

not D -falsifiable, i.e. if S(M) = D 
-- 00 00 

3.2.1.1-7. Definition. A (D00-testable) model will be called empty if it is 

always falsified, i.e. if S(M) = ~. 

The following concept is very fundamental. If there is no conceivable ideal 

observation d00 € D00 which can distinguish between two models Mand M', in the 

sense that one model is falsified by d , while the other is not, then we will 
00 

call the models observationally equivalent: 

3.2.1.1-8. Definition. Two (D00-testable) models M1 and M2 are called 

observationally equivalent if 

It is not difficult to see that this induces an equivalence relation on M, 

which will ~e denoted by: M1 ~ M2• The set of equivalence classes in Mis 

denoted by M/~. Note that this is itself a set of D00- testable models. 

3.2.1.1-10. Remark. Of course, if M1 ~ M2, M1 may be far more complex than the 

other and M2 may therefore be easier to work with. This usually leads to 

choosing the simpler model. However, there is no purely logical reason to do 
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this. A solution to this is to choose M/~ as the model set. Then it is 

allowed, of course, to choose any model from an equivalence class as the 

representing element of that class. 

With (D00-) model (or system) identifiability we will mean that there is no 

ideal observation d € D that is compatible with more than one model from 

M. Formally 

3.2.1.1-11. Definition. A (D00-testable) model set Mis called (D00-) model (or 

system) identifiable if 

3.2.1.1-13. Remark. (a) If M contains observationally equivalent models, M 

is not model identifiable. 

(b) If a model set M/~ is not model identifiable one can consider the 'finer' 

model set 

( 3. 2. 1. 1-14) Mf := {(n S(M)) n (n S(M)c) ld00 € 

d00 E S(M) d00 € S(M)c 

M E M 

which is model identifiable • . 
M E M 

L...J. S(M)} 
M € M 

Therefore, by considering M/~ instead of M, and if necessary Mf, one can 

obtain formal model identifiability. 

From now on except if the opposite is explicitly stated, we will assume that 

Mis model identifiable and so, a fortiori, M/~ = M. For simplicity of 

notation we will then equate M with S = S(M) and write S,::. D00 , SE M. 

One can conclude that for testable models there is no essential 

identifiability problem w.r.t. the ideal observations d ED, because if 
00 00 

there is nonidentifiability, it can be solved by redefining the model space • . 
Especially, in most cases one can use M/~. Because the models are only meant --.-
to describe relationships in D00 , nothing essential is lost in going from M to 

M/~. Going from M/~ to Mf, if at all necessary, is a harmless refinement of 

the model space. Therefore, in this set-up, an essential model identifiability 

problem can only occur due to incompleteness of the observations. We will 

clarify that presently. 

Let~: D00 + D be a generally noninjective mapping from D00 into some set D. ~ 
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will be called the experiment mapping, It will represent all the observations 

that may become available in a given 'experiment', or their limiting 

behaviour. 

3.2.1.1-15. Examples. . 
(1) Suppose the observables modeled by M €Mare {ytlt € Z}, with yt € Rm. 

Then, as before, D = (if1) 2 • 
m 

Now suppose that the observations that will become available are only 

taken on even times: t € 2Z. 

Then V: D + D = (Rm) 22 
m 

Note that Vis a noninjective mapping, 

(11) Let {yt}t€Z and Dm be as in (1). 

Now suppose that the only 'observation' that will become 'available' is 

the infinite-sample mean if it exists: 

E yt 
lim t€T 
T+Z 7rr 

O(ITl(m 

Of course this observation will never become available in practice. 

However, it is a valid question to ask whether such a piece of 

information is enough to identify a model in a given model set • 

. 
Let the Om-model set M be given. V induces a D-model set~ as follows: 

. 
(3,2,1,1-16} ~ = {V(S}IS € M,S = Dm}. 

MV will be called the V-induced model set derived from M. 

3.2.1.1-17. Proposition. Each model in MV is D-testable. 

Now we arrive at a notion which is very important for this chapter, namely 

system identifiability with respect to an incomplete set of observations, 

represented by f, 
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3.2.1.1-18. Definition. (To avoid confusion we state again that Mis supposed 
0 

to be (D00-) model identifiable) Mis called f- model (or system)-identifiable, 

(or model- or system identifiable with respect to l) if 

0 -1 
Vd ED: 3 ! SE M such that f (d) c S. 

-1 
(Here f (d) = {x E D00 if(x)=d}, of course; '3!' means: 'there exists precisely 

one'). 

An equivalent definition is: 

(3.2.1.1-19) Mis called f- model (or system-) identifiable if the mapping 

-(3.2.1.1-20) l: M + Ml, 

Sr-+f(S) c D 

is injective (and so, by construction, bijective) aud MW is model 

identifiable. 

3.2.1.1-21. Remark. In the choice of examples, and in the comments we have up 

till now not considered the possibility of controls in the system. The 

formalism works the same for that case, d00 E D00 should then be interpreted as 

an ideal observation record of all possible measurements on all observable 

variables involved, under all possible experimental conditions, i.e. under all 

possible control inputs. In this case it is perhaps even more clear that it is 

impossible to obtain d00 E D00 completely. The usual condition of persistency of 

excitation in the case of control system identification is now 'hidden' in the 

condition of system identifiability with respect to f. 

3.2.1.1-22. Remark. The fact that f is called the experiment mapping does not 

mean there will always be an experiment which corresponds to this 

mapping f. But in an experiment one usually obtains only partial information, 

and the situation with partial information can be formalized by using a 

mapping f. 

3.2.1.1-23. Conclusion. System identifiability is always with respect to an 

'experiment' f. If f is id: D00 + D00 , then there is either system 

identifiability, or, if not, then by a reasonable change in the model space 
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one obtains system identifiability. This has not been sufficiently recognized 

in the literature, which has given rise to a lot of confusion about the nature 

of the identifiability problem. 

For a critique on the notion of identifiability as it is used in econometrics 

(where also the word 'identification' is used, as a synonym to 

'identifiability'), see [Kal 80]. 

Note. A set-theoretic definition of deterministic systems was promoted by 

[Wi 79a] (see also [Wi 83], [Wi 86] and [Sch]), Our approach is inspired by 

this, 

3.2.1.2. Testable stochastic models 

In this section we want to apply the general set-up of the previous subsection 

to the case of stochastic models, with emphasis on stationary stochastic 

models. 

The difficulty in applying the set-up of the previous subsection to stochastic 

models is that very often it is not clear how they can be falsified by an 

element d00 € D00 • The reason is that if d00 has probability zero - under the 

probability measure on D induced by the model - d does not necessarily 
"" "" 

falsify the model. In fact, often the probability of each d € D is zero. In 

such a case, if one would declare the model to be false as soon as d has 

probability zero, then the model would be~• The other extreme is to 

declare the model to be in accordance with each possible d00 E D00 , then the 

model would be trivial. Both cases are very unsatisfactory because then the 

truth or falsehood of the model is independent of the data. How are stochastic 

models refuted in practice? One computes a (finite) number of test statistics, 

and compares the outcomes with the theoretical values. If they differ too 

much, the model will be rejected. Of course there is an element of uncertainty 

in such a procedure. But in principle, if all data d00 € D00 would be available, 

one would refute the model if one or more of the asymptotic values of the test 

statistics would be unequal to the theoretical values. The event that such a 

rejection takes place has probability zero, under the probability measure 

induced by the stochastic specifications of the model. 

Therefore we suggest that, in principle at least, one should add to the 

stochastic set-up of a model, a (finite or at most) countable number of 

statistical tests {Ti}, Ti: D00 + {true,false}, which test whether the model 

should be refuted or not, The tests have to be such that the probability that 

'Ti(d00) = false', is zero under the probability law induced by the model. It 
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follows that N := {d € D l3i: Ti(d) = false} has probability zero. It will 
00 00 00 

be called the falsifying nullset of the model. So basically our suggestion is 

to introduce, besides the stochastic set-up of the model, a falsifying null

set. Models with different falsifying nullsets will be considered to be 

different. Another way to express our suggestion is that the set in which the 

random variable d00 takes its values, is explicitly defined as D00 \N, where 

P(D
00

\N) = 1 under the stochastic conditions defined by the model. If 

d e: D \N, then the model is falsif-ied. It is clear that this is formally a 
00 00 

different model, if N f ¢, than the model with the same stochastic 

specifications, but in which d can take its values in all of D. 
00 

We now come to a basic definition: 

3.2.1.2-1. Definition. A testable stochastic model is a model for which the 

set D00 \N, in which the random variable d00 can take its values, is explicitly 

defined , and which is such that P(D
00

\N) = 1. If d00 € N, we say d00 falsifies 

the model. 

Note that if Mis a testable stochastic model, then 

S(M) {d € D id is in accordance with the model} 
00 00 00 

D00 \N. 

The theory of the previous section can now be applied to the 

sets S(M) = D00\N. This gives us the definitions of identifiability etc. Now 

let us consider the case of a stationary ergodic stochastic process. As we 

already noted in section 2.2 it is almost surely possible to compute the 

empirical probability n(A) of a set A= D00 (see e.g. [Gu-SJ, Ch.III, 

section 3, Th~or~mes Ergodiques). In the usual case, in which the cr-algebra 

of the process is generated by a countable number of sets Ai~ D00 , testing all 

n(Ai) is equivalent to testing all n(A) for all A in the cr-algebra. In this 

case one can use {d00 ln(A) * P(A) for some A in the cr-algebra}, where P(A) is 

the theoretical value of the probability of A induced by the model - as 

falsifying nullset, or at least as a part of the falsifying nullset. Other 

things that can be included are tests on the sample moments, covariances, etc. 

(as long as the total number of (independent) tests is countable, they can all 

be included). 

In case the model space M consists of Gaussian stationary ergodic stochastic 
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processes {y} ~• with zero mean, it clearly suffices for obtaining system 
t t€a:. 

identifiability, to test whether the asymptotic sample covariance matrices are 

equal to their theoretical values. We get: 

Let us consider the question of '¥-system identifiability for various possible 

choices of 'I', 

3.2.1.2-2. Example. If we model the process {yt}tEZ as above, and 

'l'({y} ~} = (y ,y1, ••• ,y1 }, for some finite positive integer I, then the 
t t€L. 0 

model will not be 'I'- identifiable! The reason is that with any finite number 

of data it is impossible to test an asymptotic limit. In our case, it is 

impossible to test with complete certainty whether 

1 N-k T 
lim N-K+l E yt-yt-k = rk holds for all k. We can state the following 
N+co t=o 

conclusion, which is intuitively clear, but yet important for our analysis: 

Such a model is not identifiable from a finite data record. 

3.2.1,2-3. Example. Consider the same situation as the previous example, but 

now with 

for some monotonically increasing sequence {t.}j"". Then (at least) for 
J =o 

k = -I, -I+l, ••• 0, ••• I it can in principle be tested whether 

holds. The model is 'I'- identifiable if all covariance matrices can be derived 

from f 0 , ••• ,r1 , using the properties of the model space, This will ?nly be 

possible if the model space is restricted, i.e. a strict subset of M, 

introduced above. We will return to this in section 3.2.2. 

3.2.1.3. Parameter identifiability 
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To start with let us quote R.E. Kalman [Kal 80] 'Mathematical common sense 

requires us to view a system first of all as an abstract object. Parameters, 

or more accurately, problems of the parametrization of the system, enter the 

analysis at a later stage.(, •• ) If the abstract object is properly 

understood, parametrization becomes a well-defined mathematical problem. It is 

usually a difficult problem( ••• ). Since parametrizations are obtained by 

abstract mathematical procedures, the resulting 'parameters' seldom have 

direct, intuitive significance; they are determined by their mathematical 

properti.es'. 

A very general defi.nition of a parametrization is the following 

3.2.1.3-1. Definition. A parametrization of a set Mis a surjective mapping 

~: 0 + M, for some arbitrary set 0, the socalled parameter set. 

It follows that any mapping can be considered as a parametrization of its 

image with its domain as the parameter set. Usually 0 is taken to be some 

'numerical' set, e.g. a subset of some Rn, such that it is easy to work with 

to do computations etc. In many cases it is preferable to work with a covering 

of the set M with several parametrized sets. 

3.2.1,3-2. Definition. An indexed set {~iii€!} of parametrizations 

0 

is called a covering of M with parametrizations, if 

We speak of a covering with nonoverlapping parametrizations if 

Vi,j € I, i * j: ~i(0i) n ~j(0j) =~.Otherwise we speak of a covering with 

overlapping parametrizations. If the index set I is finite, we speak of a 

finite covering, otherwise of an infinite covering. 

3.2.1.3-3. Remark. A covering of M with parametrizations can formally be 

considered as one parametrization of M, as follows: 

Take 0 = u {(0,i)l0 € 0i}, and 
iEI 
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~(0,i) ~i(0) EM, then~: 0 +Mis a parametrization of M. 

From now on, let M denote a system identifiable model space. 

3.2.1.3-4. Definition. A parametrization~: 0 + M of Mis called parameter

identifiable if~ is injective (and therefore bijective). 

3.2.1,3-5. Remark. A covering of.M with parameter-identifiable 

parametrizations is an indexed set !~iliEI} of injective mappings 

~i: ei + M, such that u ~ (0.) = M. 
iEI i i 

A covering of M with nonoverlapping (parameter)-identifiable parametrizations 

forms a (parameter-) identifiable parametrization. 

For many purposes, like the interpretation of results from a system 

identification procedure, or understanding the structure of the model set, or 

doing computations it is desirable to have a (parameter-) identifiable 

parametrization or at least a (preferably finite) covering with (parameter-) 

identifiable parametrizations. 

The existence of an identifiable parametrization is trivial, because one can . 
take 0 :=Mand~ := identity on M. However, this is practically useless, 

because Mis an abstract object. Apparently, parameter identifiability is not 

the only requirement that one wants to make for a parametrization, In
0
many 

cases it is possible to define a natural topology on the model space M 

(although there are cases in which there are several competing 'natural 

topologies'). In such a case it is desirable to have a continuous 

parametrization, or at least a (preferably finite, or locally finite) covering 

with continuous parametrizations. If a parametrization is identifiable, then 

it has an inverse. It is desirable that this inverse is continuous. I.e. it is 

desirable to have a homeomorphic parametrization, or at least a (preferably 

finite, or locally finite) covering with homeomorphic parametrizations. And 

one can go on in making requirements like differentiability etc., depending on 

the structure of the model space M. We will return to this type of questions 

for the models under consideration in this work, in chapter 4 (and S). 

Lett denote a topology on 0. Then we can define the concept of local 

parameter-identifiability: 



111 

3.2.1.3-6. Definition. A parametrization$= 0 +Mis called locally 

(parameter-) identifiable at a E 0 (w.r.t. to the topology, on 0) if there 

exists an open neighbourhood U of a, such that $ju: U + $(U) c Mis 

identifiable. The parametrization$ is called locally (parameter-) 

identifiable if$ is locally (parameter-) identifiable at a for all a E 0. 

3.2.1.3-7. Remark. If$= 0 +Mis a locally identifiable parametrization then 

there exists a covering of overlapping identifiable parametrizations. If 0 is 

compact, this covering can be taken finite, and if 0 is locally compact, the 

covering can be taken locally finite. This can be shown as follows: Let for 

each a E 0, 

{u9 1 a € 0} 

The rest is 

u9 be a neighbourhood of a, as in definition (3.2.1,3-6). Then 

is a covering of 0 and $ju is an identifiable parametrization. 

standard topology, 9 

3.2.2. Application to the finite identifiability problem 

In this section we want to apply the results obtained in section 3.1 on 

partial realization of covariance sequences to the socalled 'finite 

identifiability problem'. This problem has been studied in [Tig]. However, 

there a different terminology is used which we find misleading. Consider a . . 
model space M with parametrization$: 0 + M, so 0 is the parameter space. M 

consists of stochastic models, and each model is identified, by [Tig] and 

others, with the probability measure it induces on the observables of the 

model. At least in the stationary ergodic case the same can be done in the 

set-up of section 3.2.1, using the empirical probability distribution as test 

statistic; provided the a-algebra is countably generated. (However, in 

general, there might be problems related with contiguity and non-contiguity of 

time varying stochastic processes. It is then not always sufficient for model 
-- I+l 

identifiability that the probability measures differ). Let P9 denote the 

probability measure of a sample (y0 , ••• ,yI) from a stochastic process 

{yt}tEZ. Then (y0 , ••• ,yI) is called informative by [Tig] (Def. 1.6.2, p.27, 

with$= id. and n = I+l) for all a E 0, if for all a0 ,a1 E 0, 90 * a1, one 

has 

( 3. 2. 2-1) 

We shall call this condition N(I+l). Why is the term 'informative' misleading? 

To answer this we will use a simple example. Consider a scalar random variable y 
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2 with probability law N(µ,cr ), and let (y1, ••• ,yn) be a sample of n independent 

drawings from this probability distribution. Let 
2 2 0 = {(µ,cr )lu ER, a ER+}• Then what is the smallest n for which 

(y1 , ••• ,yn) is informative? According to the definition above, it is n = 1, 
2 2 1 1 because if (µ 0 ,cr0 ) * (µ 1,a1), then P 2 * p 2 • This means that a 

(µo,cro) (µl'crl) 

2 
single drawing (y1) from the normal distribution N(µ,cr) is called informative 

2 for bothµ and a. However, it is intuitively clear that ifµ is unknown, one 
2 2 drawing of N(µ,cr) can not be informative for a in any reasonable sense of 

the word, because from one number (y1) one can not get any information about 

the dispersion of the random variable. It is clear that if pn = Pn, then in - e e 
the sample (y 1, •• •,Yn) there cannot be any information that cgn distinguish 

between 00 and e1• Therefore we agree with [Tig] that the sample in such a 

case is not informative. So his definition of 'informative' turns out to be 

(only) a kind of necessary condition. But as long as there is no good 

definition of 'informative sample', it is in general impossible to come up 

with necessary and sufficient conditions. (In fact, if the word 'informative' 

is interpreted as in ordinary language, then an observation is informative for 

a model, if our knowledge about the model increases as a result of this 

observation. In that sense in stochastic models, usually every observation is 

informative. In deterministic models, there may be a finite number of 

observations from which the model can be identified (within the model set); 

any other observations are then no longer informative, Such a finite sample 

could be called 'fully informative' for the model. However, for stochastic 

models, a finite sample can not be fully informative in this sense of the 

word). 

One way to save the situation in the models under study, is to define an 

intuitively appealing sufficient condition for the concept of an informative 

sample size. 

This sufficient condition is 

3.2.2-2. Condition. S(I+l): There are parameters {yj}, that determine the 

probability distribution, and there are unbiased estimators 

yj(y0 , ••• ,yI) for all j, i.e. 

(3.2.2-3) y. for all j. 
J 
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If condition S(I+l) holds then we will agree that I+l is an informative sample 

size (for the probability distribution). But we do not want to imply that S(I+l) 

is a necessary condition. This is an open question, especially because, as said 

above, a good definition of the word informative sample, is still lacking. 

It turns out, however, that in several cases N(I+l) is equivalent to S(I+l) for 

all I. Then N(I+l) (and so S(I+l)) is a necessary and sufficient condition for 

(y0 , ••• ,Yr) to be informative. 
2 Let us return to our simple example .of a sample from N(µ,a ). If the sample size 

is two, one can form unbiased estimators 

(3.2.2-4) { ~2 

(yo+yl)/ 2 , 

- 2 - 2 
(yo-µ) + (yl-µ) 

2 and µ,a determine the probability distribution. 

In this case N(l) holds, but S(l) does not. So 'N(I+l) iff S(I+l)' does not hold 

in this case. However, if we putµ= 0, then there exists an unbiased estimator 
2 of a using one observation, namely 

(3. 2. 2-5) 

So in that case VI: N(I+l) iff S(I+l). 

A similar situation applies in the case of a stochastic syst~m as treated in 

section 3.1.3, because there too one has zero mean. To obtain unbiased 

estimators for the covariance matrices r0 , ••• ,r1 , one can do with J =I+ 1 

observations; the unbiased estimators are 

(3.2.2-6) 

which is meaningful for all k € {0,1,.,.,I}. 
I+l Because r0 ,r1 , ••• ,r1 determine Pe , it follows that 

(3. 2. 2-7) N(I+l) iff S(I+l) for all I~ 0. 

Therefore in this case it suffices to consider N(I+l), I= 0,1,,,., i.e. in 

this case one can say that if N(I+l) holds then I+l is an informative sample 
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size (for the model). 

There is also another, less discutable interpretation of N(I+l), namely as a 

(necessary and sufficient) condition for system identifiability in a case of 

missing observations. If one has a data record ,{yk}, as described in example 

(3.2.1.2-3), then there is system identifiability w.r.t., if N(I+l) holds. (I 

is the same as in example (3.2,1.2-3)). 

For both interpretations of N(I+l) we can apply our results of section 

3.1.3.2, to obtain: 

3.2.2-8. Theorem. Consider the model space M = the set of all stochastic 

arma(p,q) systems (resp. arma(p,q) models), which satisfy the conditions 

(2.4.1-1). Let 0 be an identifiable parametrization of M. Then 

( i) if q ~ P, I = q+mp is the minimal number such that N(I+l) holds and 

N(I'+l) holds for all I'> I. 

(ii) if q < p, N(I'+l) holds for all I' > I p + mq. 

of 

Proof. This follows from theorems (3.1.3.2-5) and (3.1.3.2-13) and the remarks 

made in section 3.2.1.2, just before formula (3.2.1.2-2). Q.E.D. 

3.2.2-9. Remarks, (i) It follows that J = I+l = p+q+(m-l)min(p,q) + 1 is an 

informative sample size, which is proved to be minimal if q > p. 

(ii) In the case of missing observations, such that one has a data record as 

in example (3.2,1.2-3) then there is system identifiability if I'~ I= 

p+q+(m-l)min(p,q), where I'+l denotes the number of consecutive measurements 

(denoted by I in the example). Whether I is minimal or not depends on the 

sequence {tk}. If it is such that no other covariances can be estimated than 

r , ... ,r, and q > p then I is minimal indeed. 
o I 

0' 
(iii) If M c Mis a model space contained in M, and H' an identifiable 

0' 
parametrization of M, then N(I'+l) holds w.r.t. H' for all 

I' >I= (p+q) + (m-l)min(p,q). So I+l is still an informative sample size 

etc. (But the minimality of I will of course no longer be assured in general). 

A few remarks should be made w.r.t. the problem of the parametrization of M. 

Of course our approach has been to separate the system identifiability problem 

and the problem of parametrization of the model space, and we have obtained 

results about system identifiability. This is different in the usual approach 
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to identifiability, where the two aspects are not separated. (see [Tig]). 

However, if one wants to apply the results in a practical problem, one has to 

face the parametrization problem. I.e. how can one construct a parametrization 

of M = arma(p,q)? 

In fact this is not an easy question. The reason is that reduction to a 

canonical form usually does not leave arma(p,q) invariant, i.e. there are 

arma(p,q) models that become e.g. arma(p,q+l) - models in the canonical form. 

Compare the warning (3.1.2.3-3). For standard parametrizations of the arma

model, see e.g. [Han 71], [Gui 75], [Gui 81], [Dei 85], [Fo 75]. None of them 

seems to be invariant for arma(p,q) if p * q. The canonical forms based on the 

(Kronecker) observability indices, i.e. those of [Gui 75], [Fo 75] and others 

leave anua(p,p) models invariant. (The set arma(p,p) is of course exactly 

equal to the set of linear stochastic systems with McMillan 

degree Sn= pm and observability indices all Sp so one could even 

parametrize the set arma(p,p) by parametrizing the set of stochastic state 

space models of McMillan degree~ n = pm and observability indices all< p. 

How this can be done is described (implicity) in chapter 4.) 

One way to obtain an identifiable parametrization is by using theorem 

(3,1.2.3-29) (and its proof). We distinguish three cases: 

(a) If p = q, then M 

referred to. 

arma(p,p) and one can use a parametrization as just 

(b) If p > q, then define 

Then (A(z),Br(z)) is an mfd-pair in arma(p,p). So one can use a canonical 

form for arma(p,p), as was just referred to, with deg(A(z) Br(z)) s p and 

with A0 nonsingular and such that the coefficient matrices in Br(z) of all 

powers of z which are less than p-q, are identically zero. (This forms a 

system of (linear) restrictions on the parameters), Now 

(A(z),z-(p-q)Br(z)) can be used as a parametrization of arma(p,q) 

(c) If q > p, M arma(p,q); arma(p,p) x (Rmxm')(q-p). (see the proof of 

theorem (3.1.2,3-29)). Here (A(z),B (z)) € arma(p,p) and 
...mxm' (q-p) r (H ,H1, ••• ,H 1) € (~ ) , the first q-p Markov matrices of the 

0 q-p-
system. Now take a parametrization for arma(p,p), giving (A(z),Br(z)), 
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with deg[A(z) Br(z)J ~ p, as was referred to above. Also use H0 , ••• ,Hq-p-l as 

free parameters. Then (A(z),B(z)) is found as described just after 

(3.1.2.3-34). 

This parametrization is surjective, i.e. it parametrizes all elements in 

arma(p,q) (this is in sharp distinction with e.g. [Han 71), theorem 2 

(iii)2), We want to finish this section by a comparison of our results with 

those of [Tig]. 

Our general formula concerning informative samples sizes of an arma(p,q) model 

(or an arma(p,q) model) is that the sample size J is informative if 

J ~ I+l = p + q + (m-l)min(p,q) + 1. This number is minimal if q > p. If 

q < p minimality has not been proved. 

Tigelaars findings coincide with this in the s.i.s.o. case. In the m.i.m.o. 

case his findings coincide if p = 0 or q = O, i.e. in the multivariable ma(q) 

case and the multivariable ar(p) case. In those cases I+ 1 = q + 1, resp. 

p+l. In the mixed multivariable arma(p,q) case, his general formula 

is \Im> 1, Vp ~ 1 Vq ~ 1: J ~ q + (m+l)p. ([Tig], theorems 3.5.3 and 3.5.4). 

This is equal to our formula iff p = 1. In the case m = 2, p = 1, q = 1 

Tigelaar shows the minimality of his result. In all other cases our minimality 

results are new, And if m ~ 2, p > 1, our formula is an improvement over 

Tigelaars formula. 
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CHAPTER 4 

ON THE DIFFERENTIAL GEOMETRICAL AND TOPOLOGICAL STRUCTURE 

OF FAMILIES OF LINEAR SYSTEMS, AND CANONICAL FORMS 

4.1. Short introduction 

In the coming chapters we will consider the problem of identification of a 

stochastic linear system. Research in the past two decades has shown that the 

space of linear systems of a fixed order is essentially 'nonlinear', i.e. it 

cannot be parametrized by a Euclidean space ~n(m+p)_ This has important 

consequences for identification. Identification of linear systems is connected 

in a natural way to topology and geometry, because one needs (and there are) 

natural notions of proximity of models. The problem is, however, that it is 

not obvious - and in fact not true - that the natural notion of proximity 

derived from a seemingly obvious parametrization is in fact equivalent to the 

natural notion of proximity of systems in input-output form, So one has to be 

careful because depending on the representation of the system and depending on 

its~• one can come up with different topologies and geometries. Some of 

these issues will be studied here. 

In this chapter, we want to give a concise survey of some of the constructions 

and results that are known about the topological and geometrical structure of 

the spaces of linear systems of fixed order. First we start with an 

introduction in some of the concepts from differential geometry that will be 

used. (In the next chapter we will treat some concepts from Riemannian 

geometry). 

4.2. On the definitions of a differentiable manifold and a fibre bundle 

Of course we cannot do much more here then to give definitions, make some 

remarks and give some references. The definition of a differentiable manifold 

is taken from [Boo]. Other references include [Ko-NJ, [Spi], [Au-M] and 

[Bi-CJ. 

4.2-1. Definition. A topological space Mis called locally Euclidean of 

dimension n, if each point p € M has a neighbourhood U which is homeomorphic 

to an open subset U' of ~n, n fixed. 

4.2-2. Definition. A (topological) manifold M of dimension n is a topological 
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space with the following properties: 

(i) Mis Hausdorff, 

(ii) Mis locally Euclidean of dimension n, and 

(iii) M has a countable basis of open sets. 

4.2-3. Definition. Let M be a topological manifold of dimension n. Each pair 

(U,$), where U is an open set of Mand$ is a homeomorphism of U to an open 

subset of Rn, is called a coordinate neighbourhood. 

4.2-4. Definition. Let R c Rn, S = uf1 be open subsets. A function f: R + R 

is called (a) C00 if f is n times differentiable for each n EN, (b) Cw or real 

analytic, if each r ER has a neighbourhood in which f can be written as a 

convergent power series. 

A mapping f: R + Rm is called C00 resp. Cw if each of its components is C00 

resp. Cw. 

A mapping f: R +Sis called a (C00
-) diffeomorphism, resp. real analytic 

diffeomorphism if f has an inverse f- 1 : S +Rand f and f-l are both 

C00-(resp. cw-) mappings. 

4.2-5. Definition. Two coordinate neighbourhoods (U,$) and (V,~) are called 

C00-compatible (resp. Cw-compatible) if Un V f ~ implies that 

$ 0 ~-l: ~(Un V) +$(Un V) is a (C~)diffeomorphism (resp. a real analytic 

diffeomorphism). 

4.2-6. Definition. A C00-structure (resp. Cw structure) on a topological 

manifold Mis a family U = {(U ,$)}of coordinate neighbourhoods such that 
a a 

(i) 

(ii) 

u u 
a a 

M, i.e. {U} is an open covering of M, 
a 

for any a,S the neighbourhoods (U ,$) and (U ,$) are C00-compatible 
a a a a 

(resp. Cw-compatible), and 

(iii) any coordinate neighbourhood (V,~) compatible with every (U ,$) EU, 
o a a 

is itself in u. 

4.2-7. Definition. A c00-differentiable manifold (resp. real analytic manifold) 
00 w 

is a topological manifold together with a C -(resp. C -) structure. 
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The following theorem (see [Boo], p. 54, (1.3)) shows that (i) and (ii) of 

definition (4.2-6) are sufficient to define a unique C00
- structure (resp. Cw

st rue ture). 

4.2-8. Theorem. Let M be a Hausdorff space with a countable basis of open 

sets. If V = {V8,f 8} is a covering of M by C00-compatible (resp. 

Cw-compatible) coordinate neighbourhoods, then there is a 

unique C00-structure (resp. Cw-structure) on M containing these coordinate 

neighbourhoods. In other words (M,V) defines uniquely a C00-differentiable 

manifold (resp. a real analytic manifold). 

Proof: cf [Boo]. 

Next we want to give the definition of a fibre bundle (what we define here is 

sometimes called a locally trivial fibre bundle). References are [Ste], 

[Ko-NJ. The following definitions are taken from [Ste]. 

Definition. A topological group G is a set which has group structure and a 

topology such that 

(a) g~ 1 is continuous for gin G, and 

(b) g 1g 2 is continuous simultaneously in g1 and g2, i.e. the map 

G x G + G given by (g1,g2)1--+g1g2 is continuous when G x G has the usual 

topology of a product space. 

Definition. If G is a topological group, and Ya topological space, we say 

that G is a topological transformation group of Y relative to a map 

n: G x Y + Y if 

( i) 

( ii) 

(iii) 

n is continuous 

n(e,y) = y, where e is the identity in G, and 

Notation: n(g,y) will be abbreviated by g • y. 

Definition. G is called effective if ((Vy€ Y: g.y y) => g e). 

First the rlefinition of a socalled coordinate bundle will be given, and then 

the definition of a fibre bundle, which can be considered as a coordinate 



120 

bundle with an extra property that is comparable to 4.2-6 (iii) for the case 

of differentiable manifolds. 

4.2-9. Definition. A coordinate bundle Bis a collection 

(B,X,p,Y,{(V.,~.)}. J,G) as follows: 
J J JE 

( 1) a spac.e B called the bundle space, 

(2) a space X called the base space 

(3) a map p: B + X of B onto X called the projection, 

(4) a space Y called the fibre, 

(5) an effective topological transformation group G of Y called the group of 

the bundle, 

( 6) 

(7) 

( 8) 

a family {(V.,~.)}. J of pairs (VJ.'~J.) called coordinate neighbourhoods, 
J J JE 

where each Vj is an open subset of X, Jan index set, u V. = X, and each 
J J 

$. is a homeomorphism 
J 

-1 
$.: V. X y + p (V . ) 

J J J 

called the coordinate function. The coordinate functions are required to 

satisfy the following conditions: 

p O ~.(x,y) = X 
J 

Vx E V.,Vy E Y, 
J 

(9) if the map$. : Y + p- 1(x) is defined by$. : y + $.(x,y), then for each 
JX J,X J 

pair i,j with i,j E J and Vx EV n v., the homeomorphism 
i J 

coincides with the operation of an element of G (it is unique since G is 

effective), and 

( lO)Vi, j E J the map g · V n V + G, xi--+r,$. )-1($i ) (considered as an ji. i j JX X 

element of G) is continuous. 

4.2-10. Definition. (a) Yx := p- 1(x) is called the fibre over x. 

(b) The functions gji defined in (10) above are called the 

coordinate transformations of the bundle. 
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4.2-11. Definition. Two coordinate bundles Band B' are said to be equivalent 

in the strict sense if they have the same bundle space B, the same base space 

X, the same projection p, the same fibre Y and the same group G, and their 

families of coordinate neighbourhoods {(V.,~.)}. J and {(V.,,~.,)}j, J' are 
J J J€ J J € 

such that their union {(V., ~.)}. , is also a set of coordinate 
J J J€JUJ 

neighbourhoods of a coordinate bundle.It can be shown easily that this is a 

proper equivalence relation (see [Ste], p.9.). 

4.2-12. Definition. A fibre bundle is an equivalence class of coordinate 

bundles. 

Remarks. (i) Equivalently one could define a fibre bundle as the coordinate 

bundle having all possible coordinate functions of an equivalence class. (To 

do this logically sound we have to restrict the index class J to e.g. being a 

subset of 2XxYxX. Note that each pair (V.,~.) € 2XxYxX if you identify 
J J 

(V.,~.) with the set 
J J 

(ii) A fibre bundle as defined here is also called a locally trivial fibre 

bundle in the literature (see e.g. [Hus], section 2.6). In this thesis only 

locally trivial fibre bundles occur, more general fibre bundles do not occur. 

Every fibre bundle will be understood to be locally trivial. 

4.2-13 Definition. A fibre bundle which has as fibre Ya vector space, and as 

group Ga group of linear transformations of Y is called a vector bundle 

([Ste], section 6.6, calls this a bundle of linear spaces). 

4.2-14. Definition. A bundle B = {B,X,p,Y, {(V.,~.)},G} is called a principal 
J J 

bundle if Y = G (and G operates on Y = G by left translations) ([Ste], p.35). 

4.2-15. Definition. Let B {B,X,p,Y,{(Vj,~j)},G} be an arbitrary bundle. The 

associated principal bundle B of Bis the bundle with base space X, fibre G, 
- -1-

group G and the coordinate transformations gij: x + (tix) tjx € G, 
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For the existence and the uniqueness under an appropriate notion of 

equivalence (broader than the notion of strict equivalence introduced above) 

we refer to [Ste], sections 3.2 and 8.1. 

Remark. If G c Gi (~) then to a principal fibre bundle there corresponds an 
--- - n 
essentially unique (under an appropriate notion of equivalence) vector bundle; 

i.e. the relation between a vector bundle and its associated principal bundle 

is essentially one-to-one. See e.g. [Ko-NJ, vol.I, p.113. 

4.2-16. Definition. A coordinate bundle is called a product bundle (or a 

trivial bundle) if there is just one coordinate neighbourhood V = X, and the 

group G consists of the identity element e alone. 

4.2-17. Definition. A cross-section of a bundle is a continuous map f: X + B 

such that po f(x) = x,Vx EX. 

An important theorem is the one that gives the relation between the (non-) 

existence of a cross-section and the (non-) triviality of the bundle. For the 

meaning of the notion 'equivalent in G' we refer to [Ste], around sections 8.4 

and 4.3. 

4.2-18. Theorem. A bundle with group G is equivalent in G to a product bundle 

if and only if the associated principal bundle admits a cross-section. 

4.2-19. Remark. If Mis a submanifold of the base space X of a fibre bundle 

p: B + X, then the restriction of p to p- 1(M) represents a fibre bundle with 

base space M. The fibre is the same as in the original bundle. For more 

details we refer to 

4.3. Some general remarks on the fibre structure of families of systems-with-

states. 

(This section may be skipped by the reader). Before giving the results on the 

topological fibre structure in the case of linear systems, we want to make 

some general remarks about why and how such a fibre structure comes up in 

system theory. We will only consider time-invariant systems, starting at some 

time t 0 E ~. Our basic notion in this section will be a 'system-plus-state'. 

The notation is as in chapter 2. The definitions given here are only valid 
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within this subsection. 

4.3-1. Definition. A 'system-with-state' is an input-output mapping 

F: U + Y, U ~ {u:[O,oo) + U}, U closed under concatenation, and 

y {y:[O,oo)+Y}. 

In a finite time interval [O,T] a control ul[O,T] maps a 'system-with-state' F 

to a 'system-with-state' G, which is defined as follows 

G: U + Y, y G(u') iff y(t) 

4.3-2. Assumption. ~f Fis mapped to G by some control function 

u: [O,T] + U, u € Ul[O,T] for some T, then there is a T' and 

. 
a u':[O,T'] + U,u' € Ul[O,T'] such that u' maps G to F. 

Remark: In the case of linear systems this assumption is satisfied. 

4.3-3. Definition. We will call F and G equivalent, notation . 
F ~ G, if 3T, 3u € Ul[O,T] such that Fis mapped to G by u. 

This is indeed an equivalence relation: 

( i) F F; take T = O, 

( ii) F ~ G ⇒ G F; this is assumed (assumption 4.3-2), 

( iii) F G and G ~ H ⇒ F ~ H; just apply the concatenation (u",T") of the 

controls (u,T) and (u',T'), needed for F to be mapped to G resp. G to be . 
mapped to H. 

4.3-4. Definition. A system is an equivalence class of 'systems-with-states'. 

Let TI denote the projection of a system-with-state into its equivalence class, 

i.e. the system. 

-1 4.3-5. Definition. The states of a system [F] are the elements of TI [Fl, i.e. 

the elements of the equivalence class. 

One can call TI-l[F] the fibre over F of the projection TI• 
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It seems plausible that this set-up can be generalized and especially that the 

assumption 4.3-2 can be dropped, but we don't want to go into that any further 

here. Our only motivation is to show that the fibre structure of the set of 

systems with states that will be presented in the next paragraph is not 

something specific for the linear systems case, but is something rather 

fundamental for system theory. 

It also shows clearly that a state is only well-defined with respect to a 

given system, (i.e. states in different systems cannot be compared directly, 

one cannot say that two systems are in the same state, without explicitly 

defining what is meant by that, i.e. what equivalence relation on the states 

one uses, if any. In many cases no reasonable global equivalence relation 

exists; this is in fact one of the implications of the result on~ 

triviality of the 'state bundle' that is treated in the next paragraphs!) 

4.4. Nice selections and canonical forms 

We now return to deterministic linear systems, of the form (compare 

(2.3.2-2)): 

As the role of Din the matters to be treated is trivial, we take D = O, or 

D = I, if this is mentioned explicitly, to simplify the formulas. (The 

continuous time case is completely analogous. However, in this chapter we will 

concentrate on the discrete time case). Suppose (A,B,C) is a minimal 

representation (for more general cases we refer to the literature), i.e. 

(A,B,C) is observable and reachable. In other words: 

(i) the reachability matrix R(A,B) := [B,AB,A2B ••• ] has full rank (rank=n) 

and 

(ii) the observability matrix Q(A,C) := [gA2j, has full rank (rank=n). 
CA 

Notation: Let 
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j-1 
:= [B,AB, ..• ,A B], and 

From the Cayley-Hamilton theorem it follows easily that 

rk R(A,B) = rk R.(A,B) and rk Q(A,C) = rk Q.(A,C), 
J J 

'v'j > n-1. 

Now consider the ·set of all matrix triples (A,B,C) which form a minimal 

representation and have the sizes nxn, nxm', mxn. This set is denoted by 

Lm (= Lc?,cr 0 in the notation of [Haz 77]), the upper index m stands for 
m' ,n,m m ,n,m 

minimal. It is well-known that two matrix triples (A,B,C), 

(A,B,C) € Lm, represent the same system (with respect to input-output 
m ,n,m 

behaviour) iff there exists a real nonsingular nxn matrix T, 

i.e. T € Gtn(R), such that (A,B,C)T := (TAT-1,TB,CT-l) = (A,B,C). This means 

that a change of basis of the state space is allowed without changing the 

system, and that this is the only kind of change in the entries of (A,B,C) 

that does not affect the system. We will call two matrix triples 

(A,B,C), (A,B,C) € Lm, (input-output-) equivalent if they represent the m ,n,m 
same system. The equivalence classes in Lm, correspond to the different 

m m ,n,m 
systems represented by elements of L • An equivalence class is of the 

T m,n,p 
form {(A,B,C) !TEGin(R)}. It is also called an 'orbit under the action 

of Gt (R)'. 
n 

We define Mm, (= Mc?,cr in the notation of [Haz 77]) as the quotient 
m ,n,m m ,n,m 

space of Lm, under this equivalence. I.e. the points of Mm, are the 
m ,n,m m ,n,m 

orbits in Lm and its topology is the finest topology for which the 
m' ,n,m 

natural projection~: Lm, + ~. is continuous. (The topology 
m ,n,m m ,n,m 

on Lm, is the standard topology of Lm considered as a subset 
m ,n,m m' ,n,m 

2 
of ofm'+n +mn). Let [(A,R,C)l denote the equivalence 

T 
class {(A,B,C) !TEG£n(R)} of (A,B,C). 

In a similar way one can introduce the corresponding set of systems with 

states: 

Let 

m 
Ll,m' ,n,m 

n m 
:= {(A,B,C,x)jx € R ,(A,B,C) € Lm' nm}. , , 
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Let (A,B,C,x)T := (TAT- 1,TB,CT- 1,Tx) and let [(A,B,C,x)] denote the 

equivalence class {(A,B,C,x)TIT € Gt (IR)}. Finally, let 
n 

if.11 , = {[(A,B,C,x)] l(A,B,C) E Lm, ,x E ufl} be the quotient space 
,m ,n,m m ,n,m 

m 1 1 , /Gt (IR) with the corresponding quotient topology. 
,m ,n,m n 

Remark. if.I will turn out to be a vector bundle called the state bundle; 
--- l,m' ,n,m 
see theorem 4.6-1 and remark 4.6-3. It was introduced in [Raz 77], where it is 

denoted by E or Eu in a somewhat more general setting. 

Remark: Note that the action of T € Gt (IR) on (A,B,C,x) can again be 
n 

interpreted as a change of basis of the state space. From (4.4-1) it follows 

that 

(4.4-2) {T~+l = 
y = k 

(TAT-l)(T~) + (TB)uk, 

-1 
(CT )(Txk). 

So indeed (A,B,C,x) is equivalent to (A,B,C,x)T. 

Now we turn to the nice selections. We number the columns of the reachability 

matrix R(A,B) by pairs of indices (i,j), i E {0,1,2, ••• }, j € {1,2, ••• ,m'}; 

the index (i,j) denotes the (im'+j)-th column. The set of all such indices is 

denoted by J. 

4.4-3. Definitions [Raz 77]. 

(i) A nice selection a is a subset of J of size n such that 

(i' < i and (i,j) Ea) ⇒ (i',j) € a. 

(ii) If a is a nice selection we define the j th successor index of a, s(a,j), 

j = 1,2, ••• ,m', as the element (k,j) E J such that (k',j) € a for all 

0 < k' < k and (k,j) i a. 

4.4-4. Notation. If a c J we denote with R(A,B) the matrix obtained from 
- a 

R(A,B) by removing all columns whose index is not in a. 

We now state some relatively simple but important facts. 

4.4-5. Lemma. If (A,B,C) E Lm, then there is a nice selection a such that 
m ,n,m 

R(A,B) is a nonsingular (square) matrix. 
a 
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Proof. Cf. [Haz-K 75], lemma (2.4.1). 

n 4.4-6. Lemma. For each m'-sequence of n-vectors z 1,z2, ••• ,zm' € R there is 

precisely one pair of matrices (A,B) of sizes nxn and nxm' respectively, such 
that 

(4.4-7) 1,2, ... ,m'. 

Proof: Cf. [Haz-K 75], lemma (2.3.3). 

4.4-8. Notation. Let a be a nice selection. We define 

(4.4-9) {(A,B,C) € Lmm' 
,n,m 

R(A,B) nonsingular}, 
a 

(4.4-10) r,/11- = {(A,B,C) € Lm, I R(A,B) In}. 
a m ,n,m a 

Clearly r,/11- cum. 
a - a 

Consider the following continuous mapping 

(4.4-11) 

It can now easily be shown that 

4.4-12. Lemma. (A,B,C), (A,B,C) € Lm are (i/o-)equivalent iff 
m',n,m 

3a, nice selection, such that 

(a) (A,B,C), (A,B,C) € um, 
a 

This means that c 
a 

is a continuous canonical form on Um. Because of lemma 

(4.4-5), each system lies in some Um 
a' 

a 
so {c la nice} forms a set of local 

a 
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continuous canonical forms. 

The mapping c can also be used to obtain local coordinates for Mm, • Lemma 
a m ,n,m 

(4.4-6) shows that then-vectors zj' j = 1, ••• ,m'+p, defined by 

(4.4-13) 
·={R(A,B)s(a,j) for j = 1, ••• ,m', 

zJ. • T h T 
Ci= C ei, the it column of C, for j m'+i, i 1, ... ,m, 

can together serve as a coordinate vector in af(m'+m). The choice of 
m'+m n m'+m 

z = {zj}j=l € (R) is not completely free, because we require (A,B,C) to 

be observable, i.e. 

of (Rn)m'+m this is 

rk Q(A,C) = n has to hold. However, for an open subset 
m n m'+m indeed the case. Let V c (R) denote the set of all 
(l -

admissible choices, and let (A (z),B (z),C (z)) denote for all z € vm the 
a am a a 

corresponding triple of matrices in W. 

Let v'm c Mm denote the correspo~ding n(m'+m)-dimensional open subset of 
a - m' ,n,m 

M111, • This notation will be used in the following subsections. 
m ,n,m 

4.5. The differentiable manifold structure of Mm Mm,a and Mm,a,f 
m' ,n,m ' m' ,n,m m' ,n,m 

The following theorem is due to [Cla]. 

4.5-1. Theorem. Mm, is a real analytic manifold of dimension n(m'+m). 
m ,n,m 

This is a well-known result. For a proof one can consult e.g. [Haz 77], 

theorem 2.5.17, where a direct proof is given, without using an embedding into 

a space of Hankel matrices. In fact, M111, is even known to be an algebraic m ,n,m 
manifold, however, we will not go into that here. 

Notation. Let }f,a denote the subset of Mm of asymptotically stable 
m' ,n,m m' ,n,m 

systems; i.e. 

-1 where o(A) denotes the spectrum of A. Note that o(A) = o(TAT ), \fT € Gtn, 

therefore it is well-defined on Mm, • 
m ,n,m 

4.5-2. Theorem. M111:a is a real analytic manifold of dimension n(m'+m). 
m ,n,m 
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Proof. }f'l;a is a subset of Mm • If we can show that for each nice 
m ,n,m , m' ,n,m 

selection a, }f'l;a n V mis a nonempty open subset of Mm, n 
m ,n,m a , m ,~,m 

the result follows. An element of V m with coordinates x Ev can 
a a 

'm V , then 
a 

be 

represented by the triple of matrices (A (x),B (x),C (x)) E Wm, and this 
a a a a 

matrix triple depends polynomially on x. The condition of asymptotic stability 

can be written in the form of polynomial inequalities in the entri.es 

of A (x), and therefore as polynomial inequalities in terms of the components 
a 

of x. (To be more specific, the inequalities can be derived from the 

following: 

(a) det(A+I) * 0 

(b) det[(z-l)A+(z+l)I] must be a Hurwitz polynomial in z, i.e. it must have 

all its roots in the open left half plane. This implies that certain 

polynomial inequalities in terms of the coefficients of the polynomial must 

hold (cf. e.g. [Gan], vol II, Ch.XV; section 6, esp. (36') on .P• 195). Here it 

is used that z (w-1)/(w+l) maps the open unit disk t9 the open left half 

plane in~ and w = -(z+l)/(z-1) is the inverse mapping). 

This implies that the set of points x for which these inequalities hold, is 

open. Therefore each intersection Mm;a n v'm is open. That each such set is 
m ,n,m a 

nonempty can be shown easily as follows. If A is multiplied by a nonzero 
'm 

scalar A then, if (A,B,C) EV , the same holds for (AA,B,C). By 
a 

choosing O < A,A small enough an asymptotically stable system is obtained. 

Such a system is in }f'l;a n v'm. Because v'm is nonempty for each nice 
m ,n,m a a 

selection a, the result follows. 

Q.E.D. 

Next let us consider the subspace of asymptotically stable, asymptotically 

stably invertible system: 

4.5-3. Definition. A square discrete time linear system [(A,B,C)] E Mm m,n,m 
with D = 1m is called asymptotically stably invertible if it has all its 

zeroes in the open unit disk, i.e. 

(4.5-4) 0} ~ {z E ~:jzj < l} 

4.5-5. Notation: Mm,a,f is the subset of asymptotically stably invertible 
m,n,m 

systems in Mm,a • 
m,n,m 
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4.5-6. Theorem. Mm,a,f is a real analytic manifold of dimension 2mn. 
m,n,m 

Proof. The proof is similar to that of 4.5-2. The main difference is that the 

inequalities are now different. In fact, assuming (A,B,C) is minimal and 

asymptotically stable, for the system to be asymptotically stably invertible, 
m -1 

the polynomial p(w) = {det(wI-A)} det[C(wI-A) B + I] must have all its zeroes 

within the open unit di~k. Applying the transformation w = -(z+l)/(z-1) and 

multiplying with (z-l)m -m, we obtain the polynomial 

m -1 
{det((z+l)I+(z-l)A)} det(C((z+l)I+(z-l)A) B+I). 

This must be Hurwitz. As before this implies that certain polynomial 

inequalities in the local coordinates of Mm,a n v'm must hold. This shows 
f m,n,m a , f 

that Mm,a, is an open subset of Mm,a • For each a, V m n Mm,a, is nonempty 
m,n,m m,n,m a m,n,m 

as can easily be seen by considering (AA,B,AC). The corresponding polynomial 

is 

m -1 
{det(wI-AA)} det(AC(wI-AA) B+I) = 
m2 -1 m -1 -1 

A {det((wA )I-A)} det(C(wA I-A) B+I) 
2 

m -1 A p(WA ) • 

It is clear that for A-l> O large enough p(WA-l) has its zeroes for values of 
-1 

w within the open unit disk. The same holds for det((wA )I-A), i.e. for the 

poles. So in each v'm there are points of Mm,a,f, 
a m,n,m 

Q.E.D. 

4.6. The state vector bundle and the associated principal fibre bundle 

In section 3 we have tried to make clear that one should expect a fibred 

structure in a family of systems with states, with the state space as the 

fibre. For linear systems this will presently be treated. To be a fibre bundle 

(in the sense of [Ste]) the fibres should be homeomorphic. Therefore they must 

have the same dimension. This explains why we have to fix the McMillan degree 

(which is the minimal state space dimension of a system) if we want to obtain 

a fibre bundle structure. This restriction is also sufficient. Recall our 

notation from section 4: Mml , is the set of 'systems with states', with 
,rn ,n,m 
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m' inputs, m outputs and minimal state space dimension n • 

• .m m n 'm -4.6-1. Theorem. {M.1 , , M , , 11, \R , {(V , 4> )}, Gi (IR)} ,m ,n,m m ,n,m a a n 
is a coordinate bundle and its equivalence class (in the 

sense of section 4.2) is a fibre bundle, in fact a vector bundle. Here 11 is 

the projection 

11: }f.11 , + M111, which simply 'forgets' the state. The multi-indices 
,m ,n,m m ,n,m 

a are the nice selections. The i are mappings 
a 

- 'm n -1 'm 
4> v x IR + n (v ) 

a a a 

given by~ ([(A (z),B (z),C (z))],y) = [(A (z),B (z),C (z),y)] 
a a a a a a a 

Proof. Simply check the definition. This is left to the reader. 

4.6-2. Remark: In fact the state bundle is a real analytic fibre bundle, i.e. 
m m M1 , and M , a re real analytic manifolds, 11 is a real analytic 

,m ,n,m m ,n,m 
mapping, the~- are real analytic, the(~. )-l~i : \Rn+ \Rn are linear, hence 

J 'm JZ 'm z - -1-
real analytic, and the mappings g : V n V + Gi (IR), zi-+(~.) ~- are 

aB a B n JZ 1.z 
real analytic. (Notice that in comparison with section 2, here we use z 

instead of x). 

4.6-3. Remark. The vector bundle of theorem 4.6-1 will be called the state 

bundle over M11', • (This terminology is taken from [Del 82], cf. also [Raz 
m ,n,m 

77]). 

4.6-4. Notation. To shorten notation we will denote the state bundle over 

Mm, by 11: Mm , + Mm, and sometimes simply by Mm , , if it is 
m ,n,m l,m ,n,m m ,n,m l,m ,n,m 

clear from the context what is meant exactly. 

4.6-5. Theorem. 

Then B: Lm, 
m ,n,m 

state bundle 11: 

Let B: Lm, + M111, be 
m ,n,m m ,n,m 

+ M11', is the associated 
m ,n,m 

Mm +Mm, • 
l,m' ,n,m m ,n,m 

given by B(A,B,C) = [(A,B,C)]. 

principal fibre bundle of the 

Proof. [Raz 77], theorem 2.6.6 and remark 4.6; cf.also [Del 82], pp. 18-19. 
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From the definition of coordinate bundle it is clear that if one restricts the 

base space to a nonempty open subset, then one obtains another coordinate 

bundle. Its associated principal bundle is found by restricting the base space 

of the principal bundle of the original coordinate bundle to the same open 

subset. Therefore 

ma 4.6-6. Corollary. L ~ is the associated principal fibre bundle of the 
m ,n,m 

state bundle~: ~,a + Mm;a • 
l ,m' ,n,m m ,n,m 

4.6-7. Remark. A similar result holds for any other nonempty open subset of 

M°1, • In fact it also holds for any submanifold of M°1 , (cf. remark 
m ,n,m m ,n,m 

4.2-19) 

4.7. On the topological structure of some spaces of linear systems 

The first important fact about the topological structure of Mm, is that it m ,n,m 
is not simply connected (and so it is not homeomorphic to a Euclidean space). 

Since this became clear by work of Brockett, Glover, Kalman, Hazewinkel and 

others, the topological structure of these and related spaces has been 

investigated further (and this research is still going on). To mention a few 

papers and authors [Haz 77], {Kr-B 80], fDel 821, fBro 76], [By-DJ, [By-HJ, 

[Glo 73], [Glo 75], [Kri 77], [He], [SegJ. 

We mention some of the results. 

4.7-1. Theorem. [Brockett] M:'1 1 has n+l connected components. ,n, 

Proof. cf. [Bro 76 J. 

4. 7-2. Remarks .• (i) In each of these components the Cauchy index of the 
m transfer functions of the systems in M1 1 has a different constant value. ,n, 

Alternatively one can say that the signature of the corresponding Hankel 

matrices has a different constant value in each component. Because the Hankel 

matrix has rank n, there are n+l possibilities for the signature (cf. 

[Bro 76]). 

(ii) Some of these components will be globally diffeomorphic to some Euclidean 
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m 
space, others, however, are not. [Kri 77] mentions for example that M1 2 1 has 

, ' 
two simply connected components and one component that is homeomorphic to 

s1 x R3 (S 1 = circle). 

(iii) In this and related results it is essential that one works over~ and 

not over (C. 

4.7-3. Theorem. [Glover]. M111, is connected if m' > 1 or m > 1. 
m ,n,m 

Proof. cf. [Glo 73], or [By-DJ, p. 67. 

4.7-4. Theorerr. M111;a is connected when max(m',m) > 1. It has n+l components 
rn ,n,m 

when m' = m = 1 • 

Proof. We will use the property of arcwise connectedness, which is equivalent 

to connectedness for (topological) manifolds (see e.g. [Hu], chapter III, 

section 5, especially (5.1), (5.9), (5.18) and the remark following (5.20)). 
ma If two systems E ,E 1 € M; are in the same connected component 

o m ,n,m 
of M111, , there exists a continuous curve E(t), t € [O,l) with E(O) E 

m ,n,m o 
and E(l) = E1 and Vt€ [O,l): E(t) € Mm:a • Consider 

m ,n,m 

(4.7-5) sup { Ix I : x € cr( E ( t)), t € [ 0, 1) } , 

where cr(E) denotes the set of poles of the system E. Because 

tf---->max{jxj:x € cr(E(t))} is a continuous function oft€ [O,l], it follows 

that the supremum of (4.75) is attained at some t 0 € [0,1). Choose A0 > 0 such 

that A-l is larger than this maximum. Consider the curve E'(t) defined as 
0 

follows: 

\;It€ 
1 2 

< 3'3 l: E' ( t) := (A0 A(3t-1),B(3t-l),C(3t-l)), with (A(t),B(t),C(t)) 

a representation of E(t), 

Vt € 2 
( 3' 11: E'(t) = (A(l-t)A1,B1,c1). 
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Then Vt€ [0,1]: r'(t) € Mm:a and E'(t) is a continuous arc. It follows 
m ,n,m 

that E ,r 1 € 'lf1:a are in the same connected component in Mm:a • It 
o m ,n,m m ,n,m 

follows that (i) the number of connected components of Mm,a is smaller than 
m' ,n,m 

·m 
or equal to the number of connected components of M, • Also, each m ,n,m 

connected component of Mm contains an element of Mm;a • This can be 
m' ,n,m m ,n,m 

seen by considering 

II 

(4. 7-7) Vt € [O, 1] : E0 (t) (I(t)A ,B ,c ), I(t) 
0 0 0 

A > 0 small enough such that A A is asymptotically stable. It is clear that 
0 0 0 

if (A0 ,B0 ,C0 ) is a minimal realization, then the same holds for 

(I(t)A ,B ,C ), Vt€ [0,1), because J(t) * 0 on [0,1]. It follows that 
0 0 0 

(A A ,B ,C ) 
0 0 0 0 

is in the same connected component as (A0 ,B0 ,C0 ). Because 

(Ao,Bo,Co) € Lm is chosen arbitrarily, it follows that each connected 
m,n,p 

component of 'lf1, contains an element of Mm;a • This implies that (ii) 
m ,n,m ma m ,n,m 

the number of connected components of M; is larger than or equal to the 
m ,n,m 

corresponding number of Mm, • (i) and (ii) together imply that the number 
m ,n,_m 

of connected components of M'11;a is the same as the number of connected 
m ,n,m 

components of Mm, • 
m ,n,m 

Q.E.D. 

4.7-8.Theorem. If m'=m=l or if m')l and m)l, Mm is not homeomorphic to a 
m',n,m 

Euclidean space)*. 

Proof. For the s.i.s.o. case this follows directly from theorem 4.7.1. For the 

m.i.m.o case this follows from the fact that the first homotopy group 

of 'lf1, is nonzero. (see e.g. [Raz 77), section 3.5.7 and further). 
m ,n,m 

Q.E.D. 

4.7-9. Theorem. 'lf1, is noncompact. 
m ,n,m 

* ) For the m,i.s.o. and s.i.m.o. case, cf. [Hnz 88a]. 
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Proof. A simple (but somewhat deceiving) proof is the following: Let Ebe a 

system with a minimal representation (A,B,C). Then 

A:= {AE := E(A,AB,C)!A > 0} c Mm, , and A is clearly homeomorphic to the 
- m ,n,m 

real line. Furthermore A= A clearly, and therefore from the noncompactness of 

R, the noncompactness of Mm, follows. 
m ,n,m 

Q.E.D. 

4.7-10. Remark. This proof is somewhat deceiving, because even if one 

restricts the matrices Band C to li_e in some compact set, noncompactness can 

still hold. 

Although much more is known about the topology of these spaces, we will not go 

into further details. The properties mentioned here are the ones that are the 

most important for our purposes. 

4.8. Families of stochastic linear systems 

In this section we will consider finite dimensional linear systems with 

Gaussian white noise inputs, i.e. systems of the following form 

t E Z, xt E Rn, 

m 
yt € R , 

m' T 
where vt € R is Gaussian white noise, Evt = 0, Evtvt, Q ott', Q positive 

definite. We assume the system is ergodic and stationary. Therefore, as was 

shown in chapter 2, assuming (A,B) is reachable and (C,A) observable, A must 

be asymptotically stable. (The following definition is the same as in chapter 

2). 

4.8-2. Definition. Two stochastic systems with (unobservable) random inputs 

are called equivalent, if they generate the same probability measure on the 

outputs. 

4.8-3. Definition. The innovations process of a stochastic system (4.8.1) is 

defined by 

where ytlt-l := E{yt!a({yt-k'k=l,2, ••• })}, and a({yt-k' k 

sigma algebra generated by yt-l'Yt_2 ,yt_3 , •••• 

1,2, ••• }) the 
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Remark: ytlt-l is well-defined (see e.g. [Bau], 56.5 and 56.7) 

4.8-4. Definition. A model of the form 

where {wt} are the innovations, ~wtw! = n, is called an innovations 

representation. 

Notation: (A,B,C,n). 

4.8-6. Theorem. (i) An innovations representation exists for each system of 

the form (4.8-1). 

(ii) The transfer function of the innovation representation is uniquely 

determined. 

Proof. (i) See [An-M], chapter 9, especially section 9.4 
-1 (ii) The transfer function is I+C(zl-A) B. The corresponding Hankel matrix is 

completely determined by the Markov matrices 
T T -1 

Eytwt-s(Ewt_swt-s) , s = 0,1,2, ••• 
Q.E.D. 

From now on we will assume an innovations representation to be minimal (i.e. 

reachable and observable) except if stated explicitly otherwise. 

4.8-7. Theorem. A model of the form (4.8-5), (without the explicit requirement 

that {wt} are the innovations) is an innovations representation iff 

o(A-BC): nro.TY: ~. nro.TY = the closed unit disk in~). 

Proof: cf. [An-M], theorem 4.4. 

4.8-8. Theorem. The set of all stochastic systems (4.8-5) with fixed McMillan 

degree n and fixed number m of output components, which have asymptotically 

stably invertible innovations representation forms a differentiable manifold 
ma f diffeomorphic to M' ' x Pos(m), where Pos(m) denotes the manifold of all m,n,m 

mxm positive definite matrices. 
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Proof. The diffeomorphism is given by [(A,B,C,Q))1--+([(A,B,C)],Q), 

[(A,B,C)) E M1ll,a,f; Q E Pos(m). The square brackets stand for 'equivalence 
fm,n,m 

class'. i-fl,a, is a differentiable manifold (proved above), and Pos(p) is a 
m,n,rn 

differentiable manifold (standard), therefore the Cartesian product 

tfl,a,f x Pos(p) is a differentiable manifold. 
m,n,m 

Q,E,D. 

4.8-9. Remark. It follows that the set of stochastic systems of the form 

(4.8-5) with fixed n,p under the equivalence (4.8-2) forms the Cartesian 

product of the closure of the submanifold Mm,a,f of Mm,a with Pos(m). 
f m,n,m m,n,m 

atfl,a, x Pos(m) is given by all systems which have 
m,n,m 

o(A-BC) n {z E ~: !zl = l} * 0, in other words all systems of which the 

innovations representation is not asymptotically stably invertible. This is 

the same as saying that the system's steady state Kalman filter is not 

asymptotically stable. (see [An-M), section 9.4). 

It follows that both to be able to work with manifolds and to avoid non 

asymptotically stable Kalman filters, one has to exclude innovations models 

which are not asymptotically stably invertible. 

4.8-10. Remark. One can give a vector bundle structure to the set of 

asymptotically stably invertible stochastic systems, with state, with fixed n 

and p, in an obvious manner (compare section 4.6, esp. (4.6-7)). 
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CHAPTER 5 

RIEMANNIAN GEOMETRY AND FAMILIES OF LINEAR SYSTEMS 

5.1. Introduction 

For many purposes it is desirable to have a 'natural' metric defined on the 

model space, which tells us quantitatively how close or far apart, two models 

are. Especially, in recursive identification if one wants to adapt the model 

according to the latest data, it is important to have a measure of how large 

the change is that is going to be made. In particular this plays a role in 

gradient type algorithm, for which we refer to the next chapter. Another 

advantage of having a metric, is that one can investigate the geometry of the 

model space using this metric, and gain insight in the structure of the 

problem, 

If the model space is embedded in a Euclidean space in a natural way, then the 

metric of the containing Euclidean space induces a metric on the model space, 

simply by restriction. More generally, the same holds if the model space is 

embedded in a Hilbert space in a natural way. Under certain conditions there 

also exists in these cases an induced 'infimum path length metric', i.e. the 

metric which declares the distance between two points x and y to be the 

infimum of the lengths of all paths lying completely within the model space, 

which connect the two points. So intuitively, this is the 'travelling 

distance' between x and y, if one travels within the model set. A necessary 

condition for the existence of such a metric (if we do not allow infinite 

distances) is that the model set is connected (in the induced topology). This 

metric is called the inner metric ('innere Metrik', cf. [Rin]). 

The metrics that will be presented will be constructed in this manner. It has 

the advantage that one can start with a 'natural' Hilbert space in which the 

model space is embedded, which makes the interpretation both of the induced 

metric and the corresponding inner metric, much easier. Furthermore, the 

metric obtained in this way is completely independent of the parametrization. 

Therefore it also very well suited for overlapping parametrizations methods. 

In most cases it is not possible to obtain the inner metric in closed form. 

Instead it will be given by a Riemannian metric i.e. a metric on each tangent 

space to the model set. This Riemannian metric will be expressed in terms of 

local coordinates or, in other words, in the parameters of a local 

parametrization. It is not difficult to show that if the Riemannian metric 
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tensor in terms of the parameters is positive definite, i.e. nonsingular, then 

the parametrization is locally identifiable. (Cf. section 5.11). 

The idea of using Riemannian geometry in system identification is not new. In 

the stochastic s.i.s,o, case, P,S, Krishnaprasad [Kri 77) has used the Fisher 

metric, cf, section 5.10; D.F. Delchamps [Del 82) used Riemannian geometry on 

the state bundle to obtain results about the geometry of the manifold of 

deterministic m,i,m.o.-systems, In statistics we would like to mention the 

work of Shun-ichi Amari, cf [Ama 82), [Ama 85), [Ama 86). For our own previous 

work, we refer to [Hnz-H), [Hnz-M). (An important part of the research for 

this chapter was conducted while the author was visiting the University of 

Texas at Austin). The contents of this chapter will be as follows. First we 

will treat the deterministic case in section 5.2, both for continuous and 

discrete time, In section 5.3, we treat a generalization which shows how the 

discrete time case and the continuous time case are related. Here we use a new 

family of difference/differential operators, which has a number of nice 

properties. The analysis of this family leads to some interesting isometries, 

which are treated in section 5.4. In section 5.5 we treat some simple cases, 

among which there is the siso-case with McMillan degree 1. The geodesics can 

be computed in this case and the inner metric is obtained explicitly. In 

section 5.6 some remarks are made about the behaviour of the Riemannian metric 

tensor at points in which the McMillan degree drops, in relation to the 

parametrization that is used. In section 5.7 we define a fibre metric on the 

state bundle and combine this with the Riemannian metric on the model space to 

obtain a Riemannian metric on the whole state bundle. (This section may be 

skipped by the reader). 

In subsection 5.8, the stochastic case is treated, for which there are several 

possibilities, To compare these with the well-known Fisher metric, we start in 

section 5.9 to derive the Fisher metric from the socalled Hellinger distance 

between any pair of probability measures on the same set, The relation between 

Hellinger distance and Fisher metric is very interesting. It makes it possible 

to use the same set-up as before, i.e. first embed the model space in a 

Hilbert space and then derive a Riemannian metric (and a corresponding inner 

metric), In section 5,10 the Fisher metric for linear stochastic systems is 

derived. In section 5.11 we treat the relationships between local 

identifiability and Riemannian metrics. This generalizes some well-known 

results on the relation between local identifiability and the Fisher 

information matrix. 
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5.2. A Riemannian metric for families of stable deterministic systems 

In this chapter we will not only consider discrete time models, but also 

continuous time models. The reason is that the results are tightly related and 

even if one is mainly interested in the discrete time case, it is still 

worthwhile to develop the continuous time case. (In section 5.3 it will he 

shown how the continuous time case can be considered as a limiting case of the 

discrete time case with small sam.pling interval). 

The models will be as follows: 
n m' m 

xt € ~, ut € R , yt € R 
nxn nxm' mxn mxm' 

A € ~ , B € R , C € R , D € R 

in the discrete time case, and 

{
x = Ax + 

(5.2-2) t t 
But, 

same specification as in (5.2-1), 
yt = Cxt + 

in the continuous time case. In this case one needs ut to be integrable with 

respect tot on each finite interval. We will consider the state variable xt 

as not (directly) observable. Only the outputs {y} and the inputs {u} are 
t t 

observable. Therefore, as in the set-up of chapter 2, we will consider two 

quadruples (A,B,C,D) and (A,B,C,D) to be equivalent if they induce the same 

input-output map . 
( 5.2-3) 

where U0 = {all input functions ut such that 3t0 with ut = O,Vt < t 0 }. 

In the discrete time case Fis given by the formula 

(5.2-4) 
00 

yt =. I: Hkut-k' 
k=o 

with Hk the kth Markov matrix (cf. section 2.3.2). 

If there is only a finite number q+l of Markov matrices Hk that do not vanish, 

i.e. the pure moving average ma(q) case, then it appears to be natural to take 

as the parameter space the (q+l) x m x m'-dimensional Euclidean space with 

elements (H0 , H1, ••• , Hq). The corresponding Euclidean norm of the system 

I: with Markov matrices (H0 ,H1, ••• ,Hq), is 
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(5.2-5) 

The question arises when this can be extended to the case 'q = 00 '. The answer 

is: if the model is asymptotically stable. Therefore we will restrict 

ourselves (mainly) to the asymptotically stable case. The same holds for the 

continuous time case. 

The set of asymptotically stable finite dimensional linear systems with fixed 

input and output dimensions forms a linear space with the usual addition and 

scalar multiplication of the input-output maps. In terms of Markov matrices, 

the sum of two systems, E resp E, corresponding to Markov matrix-sequences 

(H0 ,H1, ••• ) resp. (H0 ,H1, ••• ), is given by the Markov matrix sequence 

(H +H ,H +H ,H +H , ••• ). In terms of corresponding matrix quadruples 
0 0 1 1 2 2 

(A,B,C,D) resp. (A,B,C,D) the sum of the two systems is given by the matrix 

quadruple 

(5.2-6) ~1 [~] .<c,c),D+o]. 
A E 

From this formula it is clear that the McMillan degree of the sum system is 

finite and that the sum system is asymptotically stable, (This holds both for 

discrete and continuous time). 

The linear space of finite dimensional asymptotically stable linear discrete 

time systems can be regarded as a subspace of the Hilbert space of all square 

summable sequences of Markov matrices {¾lk:o with inner product 

(5.2-7) 

This is a generalization of the moving average case discussed above. In terms 

of (A,B,C,D), A asymptotically stable, the formula for the norm of this 

system E in the Hilbert space is 

(5.2-8) 

uru 2 =tr(; CAkBBT(AT)kCT + DDT) 
k=o 

where L(K) is the solution of the discrete time Lyapunov equation 
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(5,2-9) L - ALAT = K. 

In the continuous time case we associate with an asymptotically stable system 

E, with matrix quadruple (A,B,C,D), the matrix function G(a) := C exp(aA)B, 

a E [O,m), together with the matrix D. This pair (G(a),D) lies in the Hilbert 

space of pairs (G(a),D), with inner product 

(5.2-10) 
~ T T < (G,D), (G,D) >=tr J G(a)G(a) da + trDD. 

a=o 

In terms of its matrix quadruple (A,B,C,D) the norm of a system E in 

continuous time is equal to 

(5,2-11) 2 m T T T T T T T 
IIU = tr f C exp(aA)BB exp(aA )C da + tr DD = tr(CM(BB )C +DD), 

0 

where M(K) is the solution of the continuous time Lyapunov equation: 

(5,2-12) AM+ MAT= -K, 

Using the Parseval relation these norms can also be written in terms of the 

transfer matrix T(s) = D + C(sI-A)- 1B, as follows 

( ) n., 11 2 = 1 f *ds 5,2-13 ,., Tr -2 i T(s)T(s) -, 
n C(O,l) s 

in the discrete time case, and 

( 5.2-14) 
2 1 +im * * 

RED = Tr2ni f (T(s)-D)(T(s)-D) ds + TrDD, 
-im 

in the continuous time case, cf. [Bro 70), exercise 6, p.63; cf, also section 

5.3. Here C(O,l) denotes the unit circle in the complex plane, while (-im,im) 

denotes the imaginary axis. For simplicity, suppose D = O. Both formulas can 
1 * be written as a line integral of t;;tr T(s)T(s) over the boundary of the 

stability region, as follows. In the discrete time case parametrize the unit 
u. circle bys= e , 1 € [0,2n] being the arclength, Then (5,2-13) becomes 
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in a conventional notation for line integrals. 

Parametrizing the imaginary axis bys= ii, i E ~ being again the arclength, 

one obtains a similar formula: 

2 1 00 * 1 * (5.2-14a) III:11 = ts; f T(U)T(U) di= ts; f TT dt. 
-co Im.axis 

In section 5.3.4 we will find a generalization of these formulas to the case 

of a general time interval length h. E [ 0, 1]. 

5.2-15. Remark. Of course other inner products are conceivable. To mention a 

few possibilities (in the discrete time case) 

(i) 'The Frobenius norm of the Hankel matrix'. Suppose for simplicity that 

H H = O. Define 
0 0 

00 

( 5.2-16) ~T 
:= tr I: k~J\• 

k=l 

The corresponding norm is (if D 0) 

00 

(5.2-17) IIEIIFH = (tr I: kHkH~)½ 
k=l 

•• T .i. 
(trHH ) 2 , 

so this is the 'Frobenius' norm of the Hankel matrix Hof the system I:: 

(5.2-18) l 
Note that in this norm the past gets a higher weight then in the norm (5.2-8). 

This does not seem to be desirable from an applications point of view, because 

in applications, usually one wants to put more emphasis on the 'near' past 

than on the 'remote' past. Therefore we prefer (5.2-7)-(5.2-8). It should be 

noted, that one can find a closed formula for the norm (and the inner product) 

using the Lyapunov operator L. This can be done as follows: I: is represented 

by (A,B,C), (D = O). Then 

( 5. 2-19) 2 
IIEIIFH tr; kCAk-lBBT(AT)k-lcT 

k=l 
tr c{; kAk-lBBT(AT)k-l}cT. 

k=l 

The expression within parentheses can be written as 
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"' ; kAk-lBBT(AT)k-1 
k=l 

E A¾.(BBT)(AT)i L[L(BBT)] 

So 

(5.2-20) 2 
IIEIIFH 

i=o 

(ii) If one wants to discount the past in the inner product, one can take e.g. 

(again, take H H O). 
0 0 

(5.2-21) 

Using (A,B,C) one obtains for the norm of the system E: 

(5.2-22) HEIi~ = trC( ; --1-Ak-lBBT(AT/- 1)cT. 
k=l (k-1) ! 

The expression within parenthesis can be evaluated as follows: Let A 

denote the linear operator that maps BBT into ABBTAT. Then the expression 

within parenthesis is 

"' (5.2-23) E --1-Ak-l(BBT) 
k=l (k-1) ! 

So in this case the norm would be given by 

( 5.2-24) 2 A T T HEiie = tr C.e (BB ).C. 

The advantage of such a formula is that it strongly discounts the past, and 

even in such a way that the norm applies not only to asymptotically stable 

systems, but to all systems. The disadvantage is, however, that it seems 

computationally more difficult. 

(iii) A third possibility is the following. Use the inner product, in the 

complex case, 

( 5.2-25) 

where* denotes transposition plus complex conjugation. Note that in this 
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case, if {Hk} is bounded, the norm is finite. I.e. if the corresponding A 

matrix is stable (i.e. {Ak}k=l is bounded), (and not necessarily 

asymptotically stable), the norm is well-defined. Consider the special case 

(A,B,C) = (a,1,1), a E q:, !al~ 1. Then {Hk} = (ak)k:l. The norm of this 

system is 

(5.2-26) 

If jaj > 1 this is infinite, if iai < 1 it is finite. In fact, if !al 1, 

one has 

( s. 2-27) 

This norm has the same disadvantage as the previous one: it cannot be computed 

easily. It is mentioned here for two reasons. One is to show that one can 

obtain a metric on the set of stable system (as opposed to the (sub)set of 

asymptotically stable systems). The second reason is that the corresponding 

Riemannian metric has a very nice and well-known structure in the subset of 

asymptotically stable systems. We will return to this later on, in section 

S.S. 

The question arises how one can compute the Riemannian metrics that are 

induced on a manifold of systems with fixed McMillan degree by a given Hilbert 

space structure. The Riemannian metric can always be computed if the inner 

product in the Hilbert space can be computed. This will be treated next. 

First we have to introduce the concept of the derivative of a system with 

respect to 'a change in the system' • 
.°;n a .Jn a ..mxm' LetM: =M', x11< (in the real 

m ,n,m m ,n,m o 
case), K11:a is as in chapter 4. 

m ,n,m 
The difference between Mm:a and K11•~ is that the first space contains 

m ,n,m m ,n,m 
proper systems, while the second space contains strictly proper 

("D=O") or alternatively proper systems with D + 0 fixed, 
.°;n a 

Consider a curve in M; : 
m ,n,m 

[O,l] + ~,a 
m' ,n,m' 

(5.2-28) 
Sf---+l:( S) , 

systems 

where l:(s) is the system that can be represented by (A(s),B(s),C(s),D(s)) or, 
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alternatively by the sequence of Markov matrices {Hk(s)}k=o· Using the 

embedding, this can also be considered as a curve in Hilbert space. Suppose 

that (A(s),B(s),C(s),D(s)) is differentiable ins= s 0 • Then what is the 

derivative in Hilbert space? Of course, it is 

(5.2-29) lim 
s+s 

0 

1 
~l:(s)-l:(s )). 
s-s 0 

0 

. . . 
A(s ),B(s ),C(s ),D(s) is given by the following lemma. 

0 0 0 0 

5.2-30. Lemma. Lim ~l:(s)-l:(s )) is itself an asymptotically stable linear 
s-s 0 s+s o 

0 

system, of McMillan degree smaller than or equal to 2n. It is the system that 

is represented by 

This representation may be nonminimal. The system will be denoted hy 

E(s ). 
0 

1 Proof. First consider the system~E(s)-E(s )). 
s-s 0 

0 

It is represented by (see (5.2-6)) 

0 ] [B(s) ] [ C(s) 
A( s ) ' B( s ) ' s-s ' 

0 0 0 

-C(s0 )] 

s-s 
0 

Now consider a change of basis in the state space such that the state vector 

[ 
xt(s) ]is mapped into 
X ( S ) 

T(s) t( , " / (s)-x (s ) • This [X ( s) ] [X ( s ) l 
xt s 0 ; t t o 

t 0 s-s 
0 

(5.2-32) T(s) 
[ 

0 I l and 
I -I 

s-s s-s 
0 0 

-1 
T ( s) 

means that 
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Applying this to the representation (S.2-31) one obtains the representation 

(S.2-33) r 
A(s) 

A(s~-A(s 0 ) 

s-s 

B( s0 ) 

B(s)-B(s 0 ) 

s-s 

[
_c(_s_)-_c(_s0_) l D(s)-D(s0 ) l 

,C(s) ,----- • 
s-s s-s 

0 0 

0 

Taking the limit for s + s one obtains 
0 

[ A(s ) 0 l [B(s)l ( s. 2-34) [ • 0 

A( s ) ' B( s \ A(s) 
0 0 0 

Taking this limit is allowed)*. One way 

0 

. . 
, (c(s ),C(s )),D(s )] 

0 0 0 

to see this is to consider the 

corresponding Markov matrix sequences. For each k = 0,1,2, ••• , 

while H (s ) 
0 0 

D(s ) and 
0 

• [ A( s ) 
= [C(s ),C(s )] 0 

0 0 • 
A( s ) 

0 

o l k- l [ B( s ) l 
A( s ) B( s \ ' k 

0 0 

1, 2, ••• 

Note also that while this limit exists there is no such thing as a limit of 

(S.2-31). From the representation of r(s) it follows immediately that its 
0 

McMillan degree does not exceed Zn. Simple examples show that the derivative 

system of a curve of systems of degree n can indeed have McMillan degree Zn, 

illustrating again that the condition that the McMillan degree is n is far 

from linear. From the representation of r(s) it also follows that r(s) is 
0 0 

asymptotically stable, because the eigenvalues of r~(so) O ]are the same 

A(s0 ) A(s 0 ) 

as those of A(s 0 ) (only with double multiplicities). That the representation 

may be nonminimal can easily be seen as follows. Consider a constant 

curve Sf---4(A(s),B(s),C(s),D(s)) (A,B,C,D). Then clearly r = 0, the zero 

system, which has McMillan degree zero, and therefore if r(s) has McMillan 

degree larger than or equal to one, the representation (5.2-34) is nonminimal. 

Q.E.D. 

)* cf. remark (iii). 
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. 
5.2-35. Remarks. (i) The system E(s) has the following interpretation. 

0 

Consider the input-output mapping F(s): U + Y corresponding to E(s). (For the 

meaning of U,Y,F, see chapter 2.) Then the output at time t depends on s. 

Therefore we denote the output by Yt(s). This is differentiable w.r.t. sat 

s = s 0 , and the system with (the same inputs and) outputs yt(s 0 ) = ~t(s0 ) 

d • • 
is E(s0 ). The corresponding input~output mapping is dsF(s 0 ): U + Y. 

(ii) Note that here we have considered differentiation along a curve, or in 

other words, differentiation in one direction only. By taking n(m+m') + mm' 

independent directions and differentiatin~ in those directions one obtains the 
~a Jacobian of the embedding of the differentiable manifold M: in the 

o m ,n,m 
Hilbert space. (It is not difficult to show that dim Mm:a = n(m+m')+mm'). 

m ,n,m 
(iii) In [Hnz 88a] a complete proof of the fact that f is the derivative of 

E(s) in the Hilbert space, is given. 

Using this lemma it is not difficult to obtain the Riemannian metric that is 

induced by the Hilbert space 

the tangent space at ~m;a 

0 m a structure on the manifold M; • Let TE denote 

in E € ~m;a • A Riemannia: ~:f;ic is an inner 
m ,n,m m ,n,m 

product gr on every tangent space TE, which varies smoothly with 

E. (See any book on differential geometry like [Boo], [Ko-N], [Spi], [Au-M], 

[Bi-CJ, and also [Ab-M], [Arn]). The following notation will be used: 

(i) A tangent vector in T will he represented by (A,B,C,D), which is short 
• • • • I: 

for (A(s ),B(s ),C(s ),D(s )), and s 0 is such that Eis represented by 
0 0 0 0 

(A(s0 ),B(s0 ),C(s 0 ),D(s0 )), 

(ii) The inner product gr: TE x TE+ R will be denoted both by 

. . . . 
<(A,B,C,D), (A,B,C,D) > and by gE((A,B,C,D), (A,B,C,D)), The corresponding 

gr 

norm will be denoted by U(A,B,C,D)D 
gr 

5.2-36. Theorem. The Riemannian metric that is induced by the embedding in 

Hilbert space is given by 

(5.2-37) 
. . . . . . . . 

<(A,B,C,D),(A,B,C,D)> 
gr 

where the latter inner product is in Hilbert space. Eis given by (A,B,C,D), 



149 

Eby (5.2-30) and similarly for E, E. 

Proof. This follows from lemma (5.2-30). Q.E.D. 

So, using (5.2-37), the Riemannian metric can be computed, if the inner 

product in Hilbert space can be computed. Now consider the Hilbert space 

structure induced by the norm (5.2-8), in the discrete time case, and the norm 

(5.2-11) in the continuous time case. For those cases one can find more 

detailed formulas for the Riemannian metric. For simplicity of notation we 

will just present formulas for the norms. (It is wellknown that the inner 

product can be derived from the norm. In the real case: 
2 2 2 llx+yll -llxll -tlyll 
2 2 

\lx+yll - llxll 

= 2(x,y>; in the complex case 
2 

- tly\l = 2Re<x,y), Re(x,iy) = Im<x,y)) 

5.2-38. Theorem. 

(a) Discrete time case 

The norm (5.2-8) induces a Riemannian ti on T~ at Mm,a in E, where me r c g E I., m ' 'n 'm 
Eis represented by (A,B,C,D); g is given by 

E 

" " " " 2 " T "T " "T T O T 0 T T 
ll(A,B,C,D)II = tr{C.L(BB ).C + C.L(BB )C + C.L(A.L(BB ).A )c + 

gE 

(5.2-39) 

where L(K) is the unique solution of the Lyapunov equation L-ALAT 

before). 

(b) Continuous time case 

K, (as 

C The norm (5.2-11) induces a Riemannian metric gE on T~ at Mm,~ , in the 
" m, n,m 

point E (the index 't' in Mm;i stands for the 
m ,n,m 

open left half plane in~ and 

it denotes continuous time asymptotically stable systems). Let Ebe 

represented by (A,B,C,D) and a tangent vector in TE by (A,B,C,D), Then g~ is 
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(S.2-40) 2 
ll(A,B,C,D) II c 

gl: 
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where M(K) is the (unique) solution of the continuous time Lyapunov equation 

AM+ MAT= -K, as before. 

In the complex case the same formulas hold if the transposition signs are read 

as 'transposition+ conjugation'. 

• • • • 2 • 2 
Proof. By definition of gl: one has n(A,B,C,D)II = Ul:11 • For simplicity of 

gl: 

no~a~i~n! let s00 = 0 !nd ~ite ~A,B,C,D) for (A(O),B(O),C(O),D(O)), and 

(A,B,C,D) for (A(O),B(O),C(O),D(O)). Furthermore, let LA,A(s)(K) denote the 

solution of the Lyapunov equation 

(S.2-41)L - A.L.A(s)T = K, etc. 

Then one obtains 

11~11 2 = Ulim l:(s)-l:(O)n 2 
s s+o 

1 2 limzlll:(s) - l:(0)11 
s+o s 

lim1z tr[; {C(s)A(s)k-lB(s)-C(O)A(O)k-lB(O)} x 
s+o s k=l 

{C(s)A(s)k-lB(s) - C(O)A(O)k-lB(O)}T + 

+ {D(s)-D(O)}{D(s)-D(O)}T] = 
00 

tr [ l: dd { C( s) A( s ?- l B( s) } _!Ld { C( s) A( s) k- l B( s) } T + 
k=l s s=o s s=o 



I 5 I 

00 • 

[ { k-1 d k-1 
tr l: CA B + C-';-:_-{d A(s) B(s)) = } x 

k=l s s o 

d d T T •·r 
+ C -d -';---i,d A() A( )(B(s)B(r) ) .C +DD]. s r s , r s=o, r=o 

d T d T 
Now we have to compute WA A(r)(BB(r) )r=o'ds LA(s),A(B(s)B )s=o 

d d T 
and <ls dr LA(s),A(r)(B(s)B(r) )s=o,r=o• Consider the equation 

L(r) - AL(r)A(r)T = BB(r)T. 

Differentiation with respect tor in r = 0 gives 

(dL) _ A(dL)AT dAT B(dB)T 
dr dr - A.L.c:ir"° = dr ' 

or, equivalently, 

dL ·r T ·r dL 
so (-d) = L[BB +A.L(BB )A ], where (-d) _ stands for r r=o r r-o 
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Similarly 

d T 
~A(s),A[B(s)B] 

Now consider the equation 

L(s,r) - A(s)L(s,r)A(r)T B(s)B(r)T. 

Partial differentiation with respect to sand r gives 

or, equivalently, 

( ~2L) 2 
o - A(~)AT 
aras aras 

Therefore 

a2 T 
aras LA(s),A(r)[B(s)B(r) ]s=o,r=o 

Substituting this and using the linearity of the operator L, one obtains 

+ C.L{~~r+;L(BBr);r + ;.L(BiT+A.L(BBr);r).AT + 

+ A.L(~Br+;.L(BBT).Ar);r}cr+;;r] = 

= tr[~.L(BBT)~T+~L(B~T)CT+~.L{A.L(BBr);r}CT + 

+ C.L(iBT)~T+cT.L{;.L(BBT)AT}~T + 

+ C.L(~~T)CT+C.L{;.L(BBr);r}CT + 
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which is the formula (with the 12 terms in a different order) of the theorem. 

A similar computation can be made for the continuous time case: 
• 2 

IEl2 Uim E(s)-E(O) I = 
s s+o 

lim <E(s)-E(O) E(r)-E(O)~ = 
s ' r s+o 

r+o 

a a T T T 
tr ds ar{ C( s) ,MA( s) ,A( r) [B( s) B( r) J. C( r) +D( s)D( r) } s=o, r=o • 

a T a T 
We will need FA,A(r)[BB(r) Jr=o' i'sMA(s),A[B(s)B Js=o and 

a2 T asarMA(s),A(r)[B(s)B(r) ], Consider A(s)M(s,r)+M(s,r)A(r)T = -B(s)B(r)T, 
Take the partial derivative with respect tor, 

or, equivalently 

Similarly 

Now take the second order partial derivative with respect to sand r, This 

gives 

, 2 2 • ''T 
A aM +A~+ ~.AT+ aM AT .. -BB • 

ar aras aras as 

So 



154 

2 
( a M ) = M[iiT + ~ + aM~T] 
aras ar as 

Using these formulas, one obtains 

a a r r} tr:-a -a {C(s)MA( ) A( )[B(s)B(r) ].C(r) s r s , r s=o, r=o 

a aM T ( T) 0 T} ··r tr:-a {C(s).-a .C + C(s)M B(s)B C + trDD = s r s=o 

• 2 • • • • • 
tr[c.~T + ~T + C.M(BBT)CT + ~T+DDT] 

ar asar as 

tr[~.M(BiT+M(BBT).~T)CT + 

+ C.M{iiT+~.M[BiT+M(BBT).~T] + 

+ M[iBT+~.M(BBT)].~T}.CT + 

+ CM(BBT)CT+C.M{BBT+AM(BBT)}CT + DDT] 

= tr[~.M(BiT)CT + ~-M{M(BBT)~T}cT + 

+ C.M(iiT)CT + C.M{~.M(BiT)}CT + 

+ C.M{~.M(M(BBT).~T)}CT + 

+ C.M{M(iBT)~T}cT + C.M{M(~.M(BBT))~T}cT + 

+ ~.M(BBT)~T + C.M(iBT)~T + 

After some rearrangement of the terms, one finds the formula in the theorem. 

Q.E.D. 

5.2-41. Remarks. (i) It follows directly from the theorem that gr varies 

smoothly with E. 

(ii) A similar formula can be found if one uses the inner product on the 

Hilbert space that corresponds with the Frobenius norm of the Hankel matrix 

(see (5.2-16) - (5.2-20)). 

(iii) If one wants to compute the components of the Riemannian metric tensor 

with these formulas this can be done as follows. Consider a mapping vec: 
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(A,B,C,D)~vec(A,B,C,D) which maps (A,B,C,D) into a vector which contains all 

the components of the matrices A,B,C,D in some specific order. E.g. first the 

first column of A, then the second etc., then the first column of B, then the 

second etc., etc. Of course the mapping vec is invertible; vec(A,B,C,D) is an 

(n+m).(n+m')-dimensional vector. Now choose a local canonical form for 

(A,B,C,D), as described in section 4.4 (for example). In such a canonical form 

a number of components of vec(A,B,C,D) are fixed (usually they are prescribed 

to be zero, or one), while the other components can vary freely within (at 

least) an open neighbourhood. The number of free parameters will be n(m+m') + 
mm', if there are no restrictions. (E.g. if one requires D to be identically 

zero, then the number of free parameters will be n(m+m')). The tangent space 
.•.rn a 

in a point (A,B,C,D) at the manifold M : can now be described as follows: m ,n,m 
It is the vector space of all (n+m)(n+m')-dimensional vectors, denoted 

by vec(A,B,C,D), the components of which are identically zero iff the 

corresponding component of vec(A,B,C,D) is fixed in the local canonical form. 

All other n(m+m') + mm' components can vary freely. So the tangent space is 
d 

isomorphic to R, with d = n(m+m') + mm'. Choose a basis of the tangent space, . . . . 
denoted by e 1,e2, ••• ,ed; ei = vec(Ai,Bi,Ci,Di), i = l, ••• ,d, say. With the 

formulas of the theorem (5.2-38), one can compute 

From this g (ei,e.) can be computed by the standard formula 
i: J 

in the real case. (See the remarks just before theorem (5.2-38)). This can be 

used both for the numerical calculation of the Riemannian metric tensor, as 

for its algebraic (i.e. symbolic) calculation. 

For a number of cases the Riemannian metric tensor was computed symbolically 

by W. Mak. Some of the results will be presented in Appendix SA. The formulas 

become rather big for n = 3 already. In applications, the Riemannian metric 

tensor will have to be computed numerically in many cases. On the other hand 

in those cases in which symbolic computation is possible, it is also possible 

to obtain the answers in Fortran notation, and so one can use the results 
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directly in a Fortran program without having to type the formulas by hand! 

Especially if the calculation of the Riemannian metric tensor is needed at 

each step of an iterative process, the availability of explicit formulas can 

be a big advantage. Otherwise one has to solve a number of Lyapunov equations 

at each iteration step. (In the next chapter, an algorithm will be presented 

in which the Riemannian metric tensor needs to be calculated at each step). 

5.3. The short time-interval case-

5.3.1. Introduction 

If one has a discrete time system with a short time interval, the usual 

representation of the state equation 

might not be very well suited. The matrix A will be close to the identity 

matrix in many cases. Furthermore in the limiting case of a zero time interval 

the equation no longer makes sense. In that case one uses the continuous time 

state equation 

Of course the choice between discrete time and continuous time also affects 

the norm that was introduced in the previous subsection (formulas (5.2-8) and 

(5.2-11)). I.e. the norm of a system will be completely different if it is 

modeled as a discrete time system or (approximately) as a continuous time 

system. In this paragraph we want to introduce a new way of describing a 

linear system, using a new 6-operator, which encompasses both the continuous 

time case and the discrete time case in a mathematically elegant way. With 

this description we obtain a norm which depends on the length of the time 

interval. This new norm no longer has the disadvantages mentioned. I.e. it 

will be continuous in the length of the time interval, and so if the length of 

the time interval is close to zero, using the continuous time representation 

will~ change the norm very much. This also shows (once more) that the norms 

that we have defined for the continuous time case and the discrete time case 

are intimately related. 

A mathematically appealing aspect of the 6-operator that we propose is the 

position of the corresponding stability region. In the discrete time case this 

is of course the unit disk in while for the continuous time case it is the 
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left half plane. It is well-known that the unit disk can be mapped onto the 

left halfplane conformally by a M"obius transformation. This M"obius 

transformation is in fact just a rotation of 90 of the Riemann sphere. The 

new a-operator also corresponds to rotations of the Riemann sphere, but, more 

generally, to a rotation somewhere between 0 and 90 (and in fact we can . . 
formally allow also rotations between -90 and O ). This means that the 

stability region will be a hemisphere of the Riemann sphere, just as in the 

discrete time- and continuous time case, This will be worked out in the 

following subsections. 

5.3.2. A useful family of difference/differential operators 

It has been argued that linear systems in discrete time should be represented 

by a difference operator instead of a delay- or forward-shift-operator (cf. 

[Goo 85]), especially in the case of short time intervals. We propose an 

intermediate object, namely the operator oA, depending on A E [-1,1], defined 

by 

{ 
xtH-✓ (1-A2).xt 

A if O < 

xt if A= 0. 

(We assume xt to be differentiable). We will usually think of A as an element 

of [0,1], in which case it denotes the time interval length. But formally it 

can just as well be defined for A E [-1,0) (the 'backward case'). If A= 1, 

one has the usual forward shift operator o1xt = xt+l" 

At the other hand, for A+ 0, one has 

Therefore, for each t, one has 

So it is reasonable to take, as is done here, o to be the differential 
0 

operator o0 x = x. For A close to zero, the oA operator is close to the 

differential quotient (x -x )/ A, Now consider a linear system in discre·te 
t+A t 

time, with time interval length A> 0: 
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Suppose (A,B,C,D) forms a minimal representation. Then the system is 

asymptotically stable iff the spectrum of A is included in the open unit disk 

in the complex plane, i.e. 

(5.3.2-4) o(A) c D(O,l). 

Now suppose we describe the same linear system with the oh-operator 

(5.3.2-5){ohxt Ahxt + Bhut, 

yt Cxt + Dut, 

A-/(1-h2)I 
with Ah = h B = ~ 

h h 0 

Let us introduce the (bijective) mapping 

(5.3.2-6) 'l'(z) 

then 

2 
z-✓(1-h ) 

h 

(5.3.2-7) Ah= 'l'(A) 

and it is clear that the system (5.3.2-5) is asymptotically stable iff 

The set 'l'(D(0,1)) will be called the 'stability region of the oh-operator'. 

5.3.3. The stability region of the a-operator and rotations of the Riemann 

sphere 

In this section the 'stability region of the o-operator' will be found, for 

all h E [0,1]. I.e. the stability of the equation ohx =Axis discussed in 

terms of a region of the Riemann sphere such that stability means, that all 

eigenvalues of A are in this region. It is part of the statement of the result 

that stability of this equation can be described in this way. It will be shown 
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that this stability region is a hemisphere of the Riemann sphere, and it can 

be obtained from the unit disk (which is a hemisphere on the Ri-emann sphere) 

by rotation of the Riemann sphere around the axis through± i. We will analyze 

the mapping t, and give a complete geometric description of its action on the 

Riemann sphere. It will turn out that to test the asymptotic stability of such 

a system, especially if~> 0 is small, it is not preferable to transform back 

to the standard discrete time representation! Instead one can use a rotation 

of the Riemann sphere which maps the stability region into the open left half 

plane, and apply e.g. the Routh-Hurwitz stability criterion. For the 

theoretical background of this section we refer to [Ne-Pl. 

Let us now introduce the Riemann sphere. We will picture it sligthly different 

than in [Ne-P]. Let the complex plane be considered as the subspace 

{(x1,x2,0)Jx 1+ix2E~} of R3 • Consider the unit ball 

2 2 2 2 3 S = {(x1,x2,x3 )Jx1+x2+x3 = l} in R. Consider the point (0,0,-1), and 

project~ stereographically on s2 I.e. z E ~. z = x1 + ix2 is mapped to the 
2 point of intersection of S \{0,0,-1)} and the line through z and (0,0,-1). A 

little calculation shows that z = x1 + ix2 is mapped to the point 

[
2x1 2x2 .!.=.kt_] 2 

(5.3.3-1) ---2• ---2• 2 ES \{(0,0,-1)}. 
l+JzJ l+JzJ l+JzJ 

It is clear that the unit circle, J z J = 1, remains fixed under this 

projection! The mapping~+ s2\{(0,0,-1)} is one-to-one. Its inverse is given 
2 

by the mapping S \{(0,0,-1)} + ~. 

§:+in ( 5. 3. 3- la) l+~ • 

1, (~,n.~) * (0,0,-1) is mapped to 

The same mapping can also be expressed in polar coordinates for~ and 

spherical coordinates for s2• I.e. we denote z E ~ by z = rei~, 0 < ~ < 2n, 

and a point on the sphere s2 by (x,y,z) = (cosecos~,cosesin~,sine), 

- i ~ e ~ {, 0 ~ ~ < 2n. In these coordinates, under the mapping 

~ + s2 , ~ remains fixed, while r is mapped to 

2 
(5.3.3-2) e = arctg( 1;; ), - f < e ~ {· 



160 

This can be shown as follows. 

r 

Clearly, r = tga. From 2a + 8 TI and 8 + y = ½TI, it follows that 

y = 2a - ½TI. Now e = - y, so e ½TI - 2a, and 

tge = tg( ½,i--2a) 

The inverse is 

2 2 
__ 1_ = ~ = 1-r 
tg( 2a) 2tga zi:• 

( 5 3 3 3) cose _ ..'.!!. < TI 
•• - r !+sine' 2 °~2· 

The Riemann sphere is completed by adding the point P = (0,0,-1), which 

corresponds to the point m. So the Riemann sphere represents~ u {m}. 

Without proof we mention some properties of the Riemann sphere (cf. [Ne-P], 

chapter 3). 

(i) The mapping of the complex plane to the Riemann sphere is angle 

preserving. 

(ii) Circles in the complex plane are mapped to circles not passing through P 

on the Riemann sphere, and conversely. 

(iii) Straight lines in the complex plane are mapped to circles passing 

through Pon the Riemann sphere, and conversely. 

(iv) Opposite points on the Riemann sphere correspond to a pair 
- -1 (z,-(z) ) E ~ u {m} x ~ u {=}. 

Fractional linear transformations, or M'obius transformations, are functions of 

the form 

w = f( z) 
az+b 
cz+d' 
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where the determinant of the coefficients is assumed to be different from 

zero: ad - be f O. The linear transformations form a group under composition. 

A linear transformation furnishes a one-to-one mapping of~ u {oo} onto 

~ u {00 }, or, equivalently, a one-to-one mapping of the Riemann sphere onto 

the Riemann sphere, It maps a circle on the Riemann sphere onto a circle on 

the Riemann sphere (cf, [Ne-P], section 3.4). 

Two subgroups of linear transformations will be of special importance to us. 

(a) The group of linear transformati.ons of the form 

az+b 2 
(S.3.3-4) w = ~• (a, b) € ~ \{O}, 

-bz+a 

represents the group of rotations of the Riemann sphere ([Ne-P], section 3.14) 

(b) The group of linear transformations of the form 

(S.3.3-5) 
az+b w=--, 
bz+a 

constitutes the group of conformal mappings of the unit disk onto itself. 

We can now state the main theorem of this subsection 

5.3.3-6. Theorem. Let 6 € (0,1]. 

(a) The mapping l(z) 

(S.3.3-7) l =po~. 

2 
z- ✓(l- 6 ) can be decomposed as 

6 

where p(z) ✓(l+6)z- ✓(l- 6) a rotation of the Riemann sphere around the axis 
✓( l-6)z+✓( 1+6)' 

through +i and--i, and ~(z) ✓(l+6)z- ✓(l-6) f rm 1 i f th it 
o/ - ✓(l- 6)z+✓(l+6), a con o a mapp ng o e un 

disk into itself. Its fixed points are± 1. 

(b) The stability region of the &-operator is equal 

✓(1 62) 1 -✓(1-62 ) 
to p(D(0,1)) = D(- : ,i), (i.e. the disk in~ with centre 6 and 

radius 1/6) which is a hemisphere of the Riemann sphere. Even 

if 6 = 0, p(D(0,1)) is the stability region of the 6-operator. In that case it 

is equal to the open left half plane, which is also a Riemann-hemisphere, 

Proof. A simple calculation shows that indeed po~ l. Another simple 
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calculation shows that -ip(i) = 1, i.e. p(i) = i, and by conjugation 

p(-i) = -i. Because p if of the form (S.3.3-4), it is a rotation of the 

Riemann sphere, around the axis through ±i. $(z) is of the form (S.3.3-5), 

because l!. E (0,1], and so $ maps the unit disk conformally onto itself. It is 

clear that $(1) 1, and $(-1) -1. This proves (a). The stability region of 

the a-operator, l!. E (0,1], was found to be f(D(0,1)). Application of (a) gives 

(S.3.3-8) l(D(0,1)) po$ (D(O,l)) p(D(O, 1)). 

Because D(0,1) is a Riemann-hemisphere (it corresponds to the intersection of 

s2 with x3 > 0), and pis a rotation of the Riemann sphere, around the axis 

through ±i, p(D(0,1)) is again a Riemann hemisphere (and the boundary circle 

is a great circle of the Riemann sphere passing through ±i). 

/ 

- ..... I 

-'1 
,, 

+1 I (0,0,0) _... .,.... .., I 
I I 
I I 

I / 

l 
/ 

,,. .,,, 

-i 

If l!. = O, then p(z) = :~~- It is well-known (and in any case, easily seen if 

one uses the properties of linear transformation mentioned above) that in this 

case, p maps the open unit disk to the open left half plane (and the unit 

circle to the imaginary axis). Q.E.D. 

5.3.3-9. Remark. It follows that if z E stability region of the ol!.-operator, 
- -1 then (-z) f stability region. 

In the remainder of this subsection we want to analyse the mappings 

p and$ somewhat further. The mapping pis a rotation of the Riemann sphere 

around the axis through ±i, over an angle -a, say. 

If l!. E [0,1], then a E [0,11/2]. To be more precise 
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✓(1-6) 
a= 2 arctg( ✓(l+6)) = arccos(6). 

Of course, the set of all rotations of the Riemann sphere around the axis 

through ±i forms a group, with addition of the angles, modulo 2rr, as the group 

composition. 

5.3.3-10. Example. If 6 = ½ ✓2, then a= rr/4, i.e. the rotation is halfway 

between O and rr/2. It follows (and it is easy to check directly by 

computation), that 

if 

p O p 
z-1 
z+l 

p 
/(1+½✓2)z-/(1-½ ✓2) 
✓ (1-½✓ 2)z+✓ (l+-½ ✓2)" 

5.3.3-11. Remark. To find out whether the matrix A is stable, one can compute 
6 

its characteristic polynomial p (w), and check whether this polynomial has 
6 

-✓(1-62 ) 1 all its zeroes within o( 6 , 6). To do this one can apply a substitution 

w = p(z), and check whether the resulting rational function in z has its 

zeroes all within the open unit disk. Of course, one only has to check whether 

the numerator polynomial has all its zeroes within the open unit disk, for 

which there are standard procedures. Similarly, one could apply a substitution 

w = p'(s), where p' is the rotation of the Riemann sphere over the angle 

~ - a, around the axis through ±i. Here a is the angle found in (5.3.3-9). In 

this case the resulting numerator polynomial should have all its zeroes in the 

open left half plane. Of course in both cases numerator and denominator have 

to be relatively prime as polynomials. This is certainly the case if the 

denominator is chosen to be ( ✓(1-6)z+✓(1+6))n, n = deg p6 (w), in the first 

case, etc. 

5.3.3-12. Example. Let p6 =aw2 + bw + c, then its zeroes are in 

2 
o(- 1<1- 6 ) l) iff 

6 '6 

q(z) := a(/(1+6)z-✓(l-6)) 2 + b(/(1+6)z-✓ (1-6))( ✓ (1-6)z+/(1+6)) + 

c( ✓ (l-6)z+✓(1+6)) 2 
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2 2 2 2 
{(l+A)a+l(l-A )b+(l-A)c}z + {-2✓ (1-A )a+2Ab+2✓(1-A )c}z + 

{(1-A)a - ✓(l-A2)b + (l+A)c} 

has its zeroes in the open unit disk. We will not expand on this further• 

Let us turn to the mapping~- We.already know that~ maps the unit disk 

conformally onto itself. We want to show that this mapping in contradiction to 

p, 'degenerates' for A+ 0 in a certain sense. To begin with let us make some 

preliminary observations for the behaviour of~ as A+ 0, 

5 3 3 13 P iti lim ,.(z) ={-1 if z _* 1, • • - • ropos on. 'I' 
A+O 1 if z - 1. 

Proof. If z t- 1 11 ✓(l+A)z-l(l-A) 
'A+: -✓ (1-A)z+✓(l+A) 

If z ✓ (l+A)z-✓(1-A) 
l, ~~: -✓(1-A)z+l(l+A) 

z-1 =--= -z+l -1. 

lim ✓(l+A)-✓(1-A) 
A+o -✓(1-A)+l(l+A) 

1. 

Q.E.D. 
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5.3.3-14. Proposition, If w = ~(z), then 

with A 

Proof. 

w-1 
w+l = 

w-1 z-1 
w+l - Az+l' 

l+l(l-t:h 
I:, 

✓(l+t.)+✓(1-6) z- ✓(1-6)+/(l+t.) 
✓(l+t.)- ✓(1-6) z+ /(l+t.)- ✓(l-6) 

( ✓(l+t.)+✓(1-6)) z-1 
/(l+t.)-/(1-t,) "z+l' 

/(1 H)+/(1-t,) 
Therefore A= /(l+t.)-/(l-t.) 

(/(l+t.)+✓(1-t,) )2_ 
(l+t.)-(1-6) -

The result that will be shown about ~ is the following. 

Q.E.D. 

5.3.3-15. Theorem.~ considered as a mapping of the Riemann sphere onto itself 

is equal to the mapping that is obtained by the following two-step procedure 

( i) 
1 +✓(1-t, 2) 

Multiply the Riemann sphere with the factor A= 6 in the x2 and 

x3-directions. 

(ii) Project stereographically back on the Riemann sphere in the direction of 

the point (-1,0,0) (which corresponds to -1 €~of course). 

Proof. The mapping described in (i) is a1: s2 + R3, 

(x1,x2,x3)r--+(x 1,Ax2 ,Ax3), and the one described by (ii) is 

82: al(s2) + s2 , (x1·"x2,AX3)r--+µ(xl,AX2•"x3) + (l-µ)(-1,0,0), where 

µ € (0,1] is such that the right hand side lies on s2• If (x1,x2 ,x3) 

(-1,0,0), it follows that a2 o a1(x1,x2,x3) = (-1,0,0). If (x1,x2 ,x3) # 

(-1,0,0), µ can be computed to be 

(5.3.3-16) 
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using). 

It follows that s2 o s1 is equal to 

2 
x 1 - ✓(1-A) Ax2 Ax3 

(5.3.3-17) (x1,x2,x3)1---+( 2 , 2 , 2 ). 
1-x 1 ✓(1-A) 1-x 1 ✓(1-A) 1-x 1 ✓(1-A) 

Let z = y1 + iY2• Using (5.3.3-1), (5.3.3-17) and then (5.3.3-la) one obtains 

a mapping from~+~ u {~}. Direct computation shows that this is equal to, 

restricted to~-

Now consider the point at infinity, i.e. (0,0,-1). On the one hand 

(5.3.3-18) 

On the other hand, from (5.3.3-17) it follows that 

which corresponds, according to (5.3.3-la), to the point 

Q.E.D. 

Remarks 

(i) It follows from the theorem, that , moves points closer to -1, the larger 

). = l+✓(~-A2 ) is, i.e. the smaller A€ (0,1) is, except for the fixed point 

+1. It is intuitively clear that for small values of A> 0, the inverse 

of, will behave bad numerically. Therefore it appears to be preferable to use 

only the rotations mentioned before, to test stability. It is also 

understandable why in the standard discrete time representation of a stable 

system with small time interval length, the roots will tend to be close to 
-1 one, because then, is involved. (This can also be seen directly 

from ~-1(w) =Aw+ ✓(1-A2 )). (Compare [Goo 85]). 

(ii) Note that, just as the rotations p, the mappings, form part of an 

abelian group. The group multiplication corresponds to the multiplication of 

the corresponding factors)., or equivalently, to the addition of the 

corresponding terms S := R,n).. 
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Note that 

(S.3,3-19) 8 

With o and 8 as defined above, one can write 

p( z) p ( z) 
0 

z.cos(~)-sin(~) 

0 0 ' z.sin(2 )+cos(2) 
0 with 2 ( ✓(1-ll)) arctg ✓(l+ll) , 

and 

cj>( z) 
z.cosh(~) - sinh(~) 

-z.sinh(~)+cosh(~) ' 

8 with 2 ( ✓(1-ll)) arctgh ✓ (l+ll) , 

and one has p0 o p0 , po+o' and cp 6 o cp 8, = <l>s+B'' These properties still hold 

if we allow o E ~. 8 ER! In that case the sets {p 0 Jo ER} and {cp8 IB ER} 

form abelian groups. 

5.3.4. The norm of systems with time interval length ll 

In this section we want to define the norm of a ,linear system with time 

interval length ll E [O,l], which corresponds to the norms for the cases 

ll = 0 and ll = 1 already defined. Furthermore we will show how this norm can 

be computed by a generalized Lyapunov equation that interpolates between the 

continuous and the discrete time case. And we will give a representation of 

the norm squared as a line integral of the Frobenius norm squared of the 

transfer matrix over the boundary of the stability region. This is a 

generalization of the formulas given before for the continuous and discrete 

time case. 

To derive the norm, we start with a somewhat more general situation. Consider 

the following question: What happens to the norm of a functional on t 2 if 

there is a transformation of the argument t' = ll.t? (a 'time contraction'). To 

be more specific, let the functional be given by 

<f ,u> f f(t)u(t)dt, 
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w~th f fixed and f,u € 1 2(R). Now consider the mapping t: 12 + 1 2 given by 

v(t)1--+w(s) = v(t.-1.s). This is not an isometry, because 

2 2 2 -1 2 2 2 
H(v)I = own = J w(s) ds = J v(A s) ds = J v(t) Adt = t.nvn • 

Now consider the functional F. It is mapped to F o t-1 , and so the 

corresponding element f' € 1 2 is determined by 

-1 
<f,v> = <f,t (w)> = <f',w>, 

which implies 

-1 J f(t)v(t)dt = J f'(s) v(A s)ds = J f'(At) v(t) A dt. 

Therefore f'(At) = t.-1f(t), and so 

2 ' 2 -2 2 -1 2 
Hf'n =ff (s) ds = A f f(t) A dt = A f f(t) dt, 

so 

(5.3.4-1) 

A linear system with one output can be considered as a collection of 12-

functionals (one for each time instance) on the inputs, both in the continuous 

and in the discrete time case. In the continuous time case this is clear, in 

the discrete time case, one has to embed t 2 into 12 by using step functions: 

Map each element {f(n)} of t 2 to fin 1 2, defined by f(s) = f([s]), [s] 

denoting the entier of s. Using similar arguments as those that led to 

(5.3.4-1) one arrives at the following definition 

5.3.4-2. Definition. Let Ebe the system given by (5.3.2-3) and equivalently 

by (5.3.2-5). Suppose it is asymptotically stable (i.e. (5.3.2-4) holds). Then 

its norm IEU will be given by 

(5.3.4-3) 

where A€ (0,1) (and l,RF denotes the Frobenius norm of a matrix). 

Similarly, the inner product of systems t 1 and t 2, represented by 
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(5.3.4-3a) 

The corresponding distance is given by the formula 

Of course (5.3.4-3a) can be expressed as 

(5.3.4-3c) 

where Liz is the solution of the Lyapunov equation 

In terms of the matrices (A B ,C,D) of the 6,-representation of the system, 
6, A u 

cf. (5.3.2-5), the norm is given by 

(5.3.4-4) 

2 because A= 6A6 + l(l-6 )I, and B = 6B6• 

We now want to show how (5.3.4-4) can be computed directly in terms of the 

matrices (A6 ,B6 ,C,D) using a generalized Lyapunov equation. For simplicity 

take D = O. Then one has 

(5.3.4-5) 

LA is the solution L of the Lyapunov equation 

Substitution of A= AA6 + ✓(1-62 )! gives 

Dividing by 6, and grouping certain terms together, one obtains 
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which we will call the generalized (6-) Lyapunov equation. If 6 = 1, 

this is the discrete time Lyapunov equation, while if 6 = 0 it is the 

continuous time Lyapunov equation. 

5,3,4-9, Remark, Note that to obtain a formula for L of the form 

using A= cA + dI, it is essential to take a= c = 6, B = d = ✓(l-62 ), i.e. 

A= A6, so it is essential to use the 06-operator to obtain such an 

interpolating result! 

If we let x denote the matrix operator, defined by 

and similarly 

nxn nxn T 
y: 1R + IR , y(L) = LA6 , 

then the Lyapunov equation (5,3,4-8) can be written in the following concise 

form 

ia T (S.3.4-10) Ree (l+ix)(l+iy) (L) = B6B6, 

where a is as before (see (5.3.3-9)), a€ [O,w/2], the angle of rotation of 
ia 2 the Riemann sphere (i,e, e = 6 + i ✓(l-6 )). (This formula results from a 

simple calculation). It can be rewritten as 

i~ i~ 

(S.3.4-11) Re{e 2(l+ix)}{e 2(l+iy)}(L) = B6B! 

i~ 
(using Re(x) x, Re(y) y). Using ( ✓2)e 2 = ✓(1+6)+1✓(1-6), one obtains: 

(5,3.4-12) 
Re{✓(l+6)-x✓(l-6)+i( ✓(l-6)+x✓(l+6))} x 

{✓(1+6)-y✓(l-6)+i( ✓{l-6)+y✓(l+6))}(L) = 2B6B! 
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Calculating the real part, and putting the result back in matrix form, instead 

of using x and y, gives the following form for the Lyapunov equation: 

[/(l+A)I-/(1-A)AA]L[/(l+A)I-/(1-A)A~] + 

(5.3.4-13) 
- [/(1-A)I+/(l+A)A6JL[/(1-A)I+/(l+A)A~] 

Now let AA 

-1 We know that A6 is 06-asymptotically stable iff p (AA) has its spectrum in 

the open unit disk. Assuming AA to be oA-asymptotically stable it follows from 

(5.3.4-13) that 

(5.3.4-14) 

Remark. In the next subsection this Lyapunov equation will be used to derive 

results about isometries of the spaces we are studying. Formula (5.3.4-14) can 
2 

be compared with (5.3.4-6). If A> 0 is small A= AAA+/(1-A )I will in 

practice be close to the identity matrix. Therefore (5.3.4-6) may behave bad 

numerically, while (5.3.4-14) may not have this problem. In terms of A and B 

this equation can be written as 

We know that if A+ O, then t(A) + -I if o(A) ~ D(O,1). Therefore, if A> 0 is 

taken too small, one should also expect numerical difficulties in this 

Lyapunov equation. In practice, if there is a freedom in the choice of A> 0, 

it appears to be advisable to choose it such that the real parts of the 

spectrum of t(A) span an interval that lies symmetrically around the origin. 

In the next subsection this Lyapunov equation (5.3.4-15) will lead to an 

interesting group that will be used to derive auto-isometries of the metric 

spaces we are investigating. 

To conclude this subsection we will derive a representation of the norm 

squared as a line integral (for o > 0 a contour integral) over the boundary 
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curve of the domain of stability. As before we take D O for simplicity. Let 

(5.3.4-16) T(s) 

and 

-1 
C(sI-A) B 

where A,B,C and A6 ,B6 are as before (see (5.3.2-3) and (5.3.2-5)). 

5.3.4-18. Proposition. Let 6 E (0,1], and let z 

Proof. T(v) = C(vI-A)-lR = C('l'-l(z)I-A)-lR = 

C[(6z+✓(l-6 2 ))I - (M6+✓(1-6) 2 I)]-lB 
-1 

C(zI-A6) B6 = T6(z). 

'l'(v), then T(v) 

Q.E.D. 

Let K be the oriented boundary of the stability region. It is described in 
6 

detail as follows. It is equal to the counterclockwise oriented circle 

K6 C(-✓(6- 2-1),6-l) if 6 > 0, and equal to the oriented imaginary axis 

K0 (-ioo,+ioo) if 6 = O. (On the Riemann sphere K0 is also a circle). 

5.3.4-19, Theorem. The norm of the system E, given by (5.3.2-3), or 

equivalently by (5.3.2-5), satisfies the following formula 

2 l * dz 
HEIi = 2d tr f T6(z)T 6(z) 2 • 

K6 6z+✓(l-6 ) 

Proof. Let 6 E (0,1]. From definition (5.3.4-3) and formula (5.2-13) one has 

-1 
6 * dv = 21 tr f T(v)T(v) -. 

11 K v 
l 

-1 Now apply the substitution v = 'I' (z), making use of the previous proposition. 

This gives 
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For the case 6 

(with D = O). 

O, the formula to be proved is equal to formula (5.2-14) 

Q.E.D. 

Just as in the discrete- and continuous-time case, one can also write 

Ill: 11 2 as a line integral over K · 6. 

5.3.4-20. Theorem. The norm of i: (defined just as in the previous theorem) 

satisfies the following formula 

2 1 * 
lll:11 = z,;tr f T 6T 6dt, 

Kt, 

in the notation of line integrals (compare (5.2-13a) and (5.2-14a)). (Recall 

K6 is oriented). 

Proof. For 6 O, this is formula (5.2-14a). Now let 6 E (0,1]. Parametrize 

it,R, 2 
K6 by arclength R-, i.e. let z(R,) = e ~✓(l-t.) ,R- E [0,2rrt.- 1]. 

Substituting this in the formula obtained in the previous theorem (5.3.4-19), 

one obtains: 

2 1 2rr/t. * ieit,R,dR, 
lll:11 = 2rri tr 6 T/z(R,))Tt,(z(R,)) eiM 

2rr/6 * 
2rr tr f T6(z(R,))T 6(z(R,)) dL 

0 

Because R, is the arclength parameter this can be written in the shorter 

notation of line integrals as 

2 
lll:11 

Q.E.D. 

5.3.4-21. Remark. It is perhaps interesting to note that there is also a 

representation as a contour integral on the Riemann sphere, namely 

2 1 2 m1 = 4 f n( ✓O+t.)z(r)+✓(l-t.))T,(z(r))IIFdr, 
rr K " 

6 

dr being the line element on the Riemann sphere. This can be shown as follows. 
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On K6 one has 1 ✓ (1+6)z+✓(l-6)J 2 = l+lzl 2 • (This can be verified by 

straightforward calculation, using z = (v-✓(1-6 2 ))6- 1 ,Jvl = 1). 

2 
Furthennore (~)dr = ds, where dr is the line element on the Riemann 

sphere, and ds the line element in~- (Compare [Ne-P], p.58, ex.30). 

5.4. Some results on isometries 

Let M°1; 6 denote 
m ,n,m 

6 -asymptotically 
6 

Lm,6 
m' ,n,m 

the space of all systems in Mm, , which are 
m ,n,m 

stable, i.e. (5.3.2-8) holds. Let 

denote the corresponding principal bundle of the state bundle, as usual (cf. 

chapter 4). From the Lyapunov equation (5.3.4-14) it will be derived that the 
m 6 

metric spaces M: with m',n,m fixed, are isometric for all values of 
rn ,n,m 

6 E [0,1]. In particular the continuous time case (6=0) and the discrete time 

case (6=1) are isometric. This all holds both for the 'outer' metric and for 

the Riemannian metric. To be unambiguous let 11,11 6 denote the nonn defined in 

(5.3.4-4), and let g6 denote the corresponding Riemannian metric of M:;~n,m" 

Now consider the mapping 

( 5. 4-1) 

It has to be shown that this mapping is well-defined, i.e. that 

(i) if (A1,B1,c1) is minimal then the same holds for 
-1 

(p 6 (A 1 ), ✓2[ ✓(1+6)I+✓(l-6)A 1 J B1,c 1), and 

(ii) if (A1,B 1,c1) is o1-asymptotically stable, then P6(A 1 ,B1,c1) is 

6 -asymptotically stable. 
6 

ad(i) If (A1,B1,c1) is minimal, then it is reachable and observable. It will 

be shown that the same holds for P (A ,B ,C ). The mapping A1f--->p(A1) leaves 
6 1 1 1 

the set of eigenvectors fixed. The well-known PBH-test can now be applied to 

show reachability and observability: Suppose (A6 ,B6 ,c6) := P6(A1,B 1,c 1) would 

be non-reachable. Then, according to the PBH-test, there would be a nonzero 
T T T vector q such that q A6 Aq and q B6 = 0 for some A E ~- It would then 
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✓ 2 T 
✓ (l+A)+l(l-A)q Bl 
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T 
O, so q B1 0, 

i.e. (A1,R 1) would be non-reachable (PBH), which contradicts the assumption. 

So (AA,BA) is reachable. Similarly it can be shown that (AA,CA) is observable, 

and so (A ,B ,C) is minimal. 
A A A 

ad(ii) From the properties of p and p-l (rotations of the Riemann sphere), it 
A A 

follows that if A1 is o1-asymptotically stable then AA= pA(A1) is 

CA-asymptotically stable. Also it follows that [ ✓ (l+A)I+✓ (l-A)A 1 ] and 

[/(l+A)I-/(1-A)A] are invertible. 
A 

It is straightforward to show that P is compatible with base change of the 
A 

state space. I.e. if Tis nonsingular and (A ,B ,C) = P (A1,B 1,c 1), then 
A A A A 

Therefore PA induces a mapping PA on the orbit space: 

The inverse of PA is given by 

(5.4-2) 

Recall that p~ 1(z) = ( ✓(l+A)z+/(1-A))/(-/(1-A)z+/(l+A)). Of course P is also 
u -l A 

invertible and its inverse is given by [(AA,BA,CA)]1----4[PA (AA,BA,CA)]. Now we 

can formulate the following theorem. 
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5.4-3. Theorem [isometry theorem]: 
m !:, 

(a) Vt:, E [ O, 1] the spaces M : with metric induced by the norm II, II• a re 
m ,n,m u 

isometric. In particular this holds for the continuous and discrete time 

case:~;£ and ~;a , with the 'outer metric' are isometric. 
m ,n,m m ,n,m · 

(b) Vt:, E [O,l] the metric spaces with Riemannian metric, (Mm:t:, ,g ), are 
m ,n,m t:, 

isometric. Again, in particular this holds for the continuous- and discrete 

time case. 

(c) Vt:, E [O,l], Pt:, 

and (b). 

~• 1 + ~,t:, is an isometry, both in the sense of (a) 
m' ,n,rn m' ,n,m 

Proof. Similarly to the derivation of (5.3.4-14) one can derive that the inner 

product of two ot:,-systems, Et:,l and Et:,Z' represented by (At:,l'Bt:,l'ct:, 1), resp. 

(A ,B ,C ), is 
t:,2 t:,2 t:,2 

(5.4-4) 

where 1 12 is the solution of the Lyapunov equation: 

( 5.4-5) 

It follows from this equation (which is a generalization of (5.3.4-14)) that 
-1 

Pt:, leaves Liz invariant, and therefore it leaves the inner product 

invariant: 

( 5. 4-6) 

Consequently, it leaves the induced outer metric invariant: 

(5.4-7) 

This proves (c). 

But (c) implies (a): an isometry between ~,t:, 
m' ,n,m 

and ~,t:,' 
m' ,n,m 

is given by 
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Because the inner metric of a set depends solely on the outer metric, it is 

immediate that also the inner metric remains invariant under these mappings. 

Q.E.D. 

5.4-8. Remarks. (i) In the notation of Remark (5.3.3-18) (iii), one has that 

P6 is given by 

and p~l by 

Therefore, by abuse of notation we will also denote P by P, where/!. is then 
-1 /!. a 

given by/!. cos(a) (see (5.3.3-9)), and Pl!. by P_0 • 

(ii) Because of the isometry between the different spaces for different values 

of/!.€ [O,l], it is sufficient to investigate only on"::_ of them. In fact we 

will restrict ourselves to the continuous time case and/or the discrete-time 

case, and it is to be understood that for every result about the geometry of 

these cases, a similar result holds for all other cases. 

(iii) The fact that the controllability Grammian (i.e. the solution L of the 

Lyapunov equation (5.3.4-14) for/!.= 1) remains invariant under the mapping 

P6 with/!.= 0 was noted before by [Glo 84], section 2.2, especially (2.23) 

and ( 2. 24). 

To repeat, to study the geometry we can confine ourselves to one case, let us 

say the discrete time case (for the moment). In the previous theorem we found 

isometries between pairs of different spaces. We now want to look for 

isometric maps of the space Mm;a onto itself. Consider equation (5.3.4-15) 
m ,n,m 

and recall that the matrix Lin that equation is defined as the solution of 

(5.3.4-6), or equivalently of the equation 

(5.4-9) 

Let L1 := l!..L. Then L1 is the solution of 

( 5. 4-10) 
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By multiplying both sides of equation (5.3.4-15) with 6, one can see that L1 
is also the solution of 

T 
LI - ¢6(A)Ll¢6(A) 

( 5. 4-11) 
2[/(6-l+l)I - /(6- 1-l)A]-lBBT[/(6-l+l)I-/(6-l-l)ATJ-l, 

where we write ¢6 instead of¢ to stress the dependence of¢ on 6 € [O,l]. 

Similar to the mapping P6 in the previous theorem, we now define for each 

6 E (O,l] the mapping 

-1 -1 -1 
(A,B,C)t-----+(¢6 (A), ✓2[ ✓(6 +l)I-/(6 -l)A] B,C). 

Its inverse is given by 

-1 ~ ~ ~ -1 ~ -1 -1 ~ -1~ ~ 
F6 : (A,B,C)t-----+(¢6 (A),/2[/(6 +l)I+/(6 -l)A] B,C). 

There are corresponding mappings F F-l Mm,a Mm,a 
6' 6 : m' ,n,m + m' ,n,m· 

Now, in this case, the number 6 € (O,l] is no longer interpreted as a time 

interval length. Therefore, we will change the notation: instead of subindex 

6 we will use 8, where 

-1 
6 cosh(8) 

(compare (5.3.3-19) ff). Then 

As before, we have 

and we will allow negative values of 8. 

composition, with ¢8 o ¢8, = ¢8+8,, and 

We will now show a similar property for 

The 
-1 

¢8 
the 

¢8'sforman 

= ¢_8. 
F 's: 

8 

abelian group under· 
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5.4-12. Lemma. The set {F 18 ER} forms an abelian group, with 
8 

F8 o F8 , F8+8 ,, and F0 = id. 

Proof. F 0 id. is trivial. Consider 

It will be necessary to compute 

8 8 -I 8' 8' -1 
(cosh(z)I-sinh(z)<P8,(A)] (cosh(2)-sinh(2)A) 

8 8' 8 8' (cosh( 2)cosh(2 )I-cosh(2)sinh(2 )A + 

8 8' 8 8 -I 
+ slnh( 2)sinh(2 )I-sinh(2 )cosh( 2 )A) 

( 8+8' 8+8' -1 (cosh - 2-)I-sinh(-2-)A) • 

It f o 11 ows that 

Q.E.D. 

From the Lyapnnov equations (5.4-10) anci ('i.4-11) it follows that their 

solution L1 is invariant under application of F 8, for any 8 E I<!. This implies 

that the F's are isornetries. There are some other rather obvious isometries, 
8 

namely 

( 5. 4- I 3) (A,B,C)1---+(-A,B,C). 

and 

(5.4-14a) (A,B,C)1---+(A,BO,C), and 

(5.4-14b) (A,B,C)1---+(A,B,RC) 
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with Q and R square orthogonal matrices of the correct sizes, and 

(5.4-15) 

It is clear that (5.4-13) and (5.4-14a) are isometries, because they leave the 

controllability Grammian 1 1 and C invariant. That (5.4-15) is an isometry 

follows from the properties of the trace, and (5.2-8). And (5.4-14b) can be 

obtained by applying (5.4-15), (5.4-14a) and (5.4-15) again. 

Formula (5.4-13) corresponds to a conformal mapping of the unit disk onto 

itself, namely $-(z) = -z, just as the $8• Let 

(5.4-16) 

5.4-17. Proposition. (a) {$sis ER} u {$~Is ER} forms the group of all 

automorphisms of the unit disk, that leave the real interval [-1,1] invariant. 

(b) The group composition is given by 

(i) $8 0 $8, $8+8'' 

(ii) $8 0 $8' $s'-s' 

-(iii) $8 0 $8' $8 I -8 > 

- -(iv) $8 0 $8' = $8+8 I 0 

Proof. All automorphisms of the unit disk can be written in the form 

(5.4-18) az+b 
==--:-, 

bz+a 

(cf. [Ne-P], p. 48). 

2 2 
with la I - lbl 

If it is required that$ maps reals into reals, it can be shown easily that a 

and b must lie both on the real axis, or both on the imaginary axis. In the 

first case$ can be written as 

(5.4-19) 
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and in the second case t can be written as 

(5.4-20) 

Part (b) of the proposition follows by straightforward calculation, using the 

sum formulas for cosh and sinh. 

Q.E. D. 

5.4-21. Remark. From part (b) of the proposition it follows that the group 

{t8} u {t;} is not abelian. 

Now let F: denote the mapping given by (5.4-13) and let FB := F0 o F8, 

then the following holds: 

Let m',n,m be fixed. 5.4-22. Theorem. 

(a) The set {FB} 

isometries (with 

-- ma ma u {F8} of mappings M: + M: forms a group of 
m ,n,m m ,n,m 

respect to both the outer metric and the inner metric). 

(b) The mapping {FB} u {F;} + {t8} u {t;} given by F8~t 8 and F;~t;, 
for all BER, is a group isomorphism. 

Pr~of. Th:~ the F B and the F 13 a re isomet ries :as a 1 ready been noted. That 

{F} u {F} is group-isomorphic to {t } u {t} follows from a simple 
B B B B 

computation similar to the one given in the proof of lemma (5.4-12). 

Q.E.D. 

5.4-23. Remarks (i) The isometries of this theorem commute with those of 

(5.4-14) and (5.4-15) etc. Therefore we have in fact a group of isometries 

formed by the direct sum of the isometries of (5.4-21), those of (5.4-14) and 

those of (5.4-15), 
2 (ii) The isometries found extend to isometries on the t space of Markov-

matrix-sequences. This can be seen as follows: any such isometry is a linear 

operator on the Markov matrix sequences, and can therefore be represented by 

an infinite matrix. The matrix is the same for all McMillan degrees, and by 

completion it follows that the matrix also represents an isometry on the whole 
2 

i space of Markov-matrix sequences. (The isometry is in fact an orthogonal 

linear operator, because it is invertible, unlike for example the shift 

operator on t 2). The remarkable thing about these i 2 isometries is of course 

that they leave the McMillan degree invariant! 
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(iii) All isometries of a space with respect to the outer metric are also 

isometries of the space with respect to the Riemannian metric, but w.r.t. the 

Riemannian metric the space may have more isomet ries. As a simple example, 

consider a 2-sphere without its equator. The outer metric is the one induced 
3 

by R. W.r.t. this outer metric, the isometries are (a) rotations around the 

vertical axis; (b) reflection w.r.t. a plane through the vertical axis, and 

(c) reflection w.r.t. the equator plane. All of these are also isometries 

w.r.t. the Riemannian metric. But w.r.t. the Riemannian metric there are more 

isometries,e.g. a rotation of the upper hemisphere w.r.t. the vertical axis, 

while the lower hemisphere is not rotated but remains fixed etc. 

A similar situation occurs in the s.i.s.o. case (m=m'=l), because, as 

discussed in chapter 4, ~ 1,a 1 is not connected. ,n, 
(iv) A similar group of isometries exists for the Hankel-Frobenius norm and 

the Hankel (spectral-or operator-) norm. Instead of the group {F8} u {F;}, 

one has a group {G8} u {G;}, where GB is given by 

(5.4-24) 
GB:" (A,B,C) -

( 8) 8 -1 8 8 T -1 (~ 8(A), (cosh 2 I-sinh(2)A) B,C(cosh(2)I-sinh( 2)A) ), 

and G0 F0 ; GB G0 o G8• 

Let, for the moment, Lc denote the controllability Grammian, i.e. the solution 

of 

(5.4-25) L - AL AT C C 

and let L0 be the observability Grammian, i.e. the solution of 

(5.4-26) 

Then it follows from our previous analysis, that Lc and L0 remain invariant 

under the mapping G ! It is not difficult to show (and well-known) that the 
8 

Hankel-Frobenius norm is given by 

(5.4-27) 

and the Hankel (operator) norm is given by 
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(5.4-28) lll:11~ 

It follows that G leaves these norms invariant. As before it then follows 
8 

that the G are isometries. 
8 

To conclude this subsection, we want to treat a generalization to the complex 

case, i.e. we allow the entries of (A,B,C) to he complex numbers. As a rule 

the definitions for this case are obtained by reading transposition plus 

conjugation (denoted by upper index*) instead of transposition. We will not 

work this out in detail; in fact the only point we want to make is, that in 

the complex case the group of isometries {F 8} u {F;} can be extended to a 

group of isometries that is isomorphic to the group of all automorphism of the 

unit disk in~- (I.e. the requirement that the automorphism should take real 

numbers to real numbers disappears in this case). 

In the complex case, the norm of a system l: with representation (A,B,C) is 

given by 

(5.4-29) * tr C L C , 

where Lis the controllability Grammian, i.e. the solution of 

(5.4-30) * L - ALA * BB. 

Just as for the real case one can show that 

(5.4-31) 

where T(w) 

Let 

(5.4-32) 

2 f 2 dw lll:11 = IIT(w) IIF -, 
C(0,1) w 

C(wI-A)- 1B is the transfer matrix of the system. 

az+b 
= -=---:-, 

bz+a 

2 2 
a,b € ~. !al - lbl 1, 

denote an automorphism of the unit disk in~- All such automorphisms can be 

written in this way. Note that 

(5.4-33) 4>-l(z) = a:-b . 
-bz+a 
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Let 

( 5. 4-34) - - -1 
F$: (A,B,C)i--+($(A),(aI+bA) B,C). 

Then 

-1 -1 - -1 
(5.4-35) F $ F -l: (A,B,C)i--+( <j, (A) ,(aI-bA) B,C). 

<I> -1 
Ti:;(<!> (z)) 

5.4-36. Lemma. TF (l:)(z) = 
<j, -bz+a 

Here Tl: denotes the transfer matrix of the system i::, etc. 

Proof. 
-1 - - -1 - - -1 

TF (l:)(z) = C(zl-<j,(A)) (aI+bA) B = C(azI+bzA-bI-aA) B 
<I> 

c(a~-b I - Af 1 - B -1 -1 -= C( <j, ( z) I - A) B( - bz+a) = 
-bz+a (-bz+a) 

-1 -Ti:;(<!> (z))/(-bz+a). 

Q.E.D. 

f 2 dw 2 dz 
5.4-37 Theorem. IITl:(w) IIF - = f IITF (i::)(z) IIF z" 

C( 0, 1) w C( 0, 1) <j, 

Proof. Substitute w = w(z) 

obtains 

-1 $ (z) in the integral on the left-hand side, One 

2 dw -1 2 w' dz f IIT(w) UF - = f IIT(<j, (z) )11Fz - -. 
C(O,l) w C(O,l) w z 

- -1 On the unit circle, one has z = (z) , so 

zw' ( z) 1 -bz+a 

~ = (-bz+a) 2 (az-b)z - 2· 
l-bz+a I 

Now apply the previous lemma. Q.E.D. 

So F<I> is an isometry indeed. 
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5.5. Analysis of the Riemannian geometry (inner geometry) in some special, 

simple cases 

In this section the Riemannian geometry (the inner geometry) will be analyzed 

for some special cases. The most important one (from the point of view of 

gaining some initial insight) will be the case~•~ 1 , i.e. the class of .. 
asymptotically stable s.i.s.o. systems with McMillan degree 1. For that case 

we have a complete picture of the Riemannian geometry. Between each pair of 

points there is one geodesic (if we include the zero system) which can be 

explicitly computed. Also the length of this geodesic, which is the socalled 

inner distance of the two points, can be computed explicitly. In more complex 

cases it is much harder, if not impossible, to find closed form solutions for 

the geodesic(s) between a pair of points, and the corresponding inner 

distance. At the end of the section we will also treat two other special 

cases. 

5 5 1 Th Ri i ( . ) f m,a d m,i • • • e emann an geometry inner geometry o M 1 1 1 an M1 1 1 , , , , 
It follows from section 5.4 that the continuous time case and the discrete 

time cases can be treated side by side. In the continuous time case one has 

axt + but, a< 0, b * 0, c * 0, 
ex 

t 

with xt,Yt,ut, a,b,c all real scalars. We choose a canonical form, by taking 

(5.5.1-2) C = 1. 

So ~•1 1 is now parametrized by . , 
{(a,b)la < 0, b * 0} = {(a,b)la < 0, b < 0} u {(a,b)la < 0, b > 0}. (This 

parametrization is parameter identifiable). It consists clearly of two 

components, each of which is connected (cf. theorem (4.7-1)). Lett denote a 
• • T 

tangent vector, represented by (a,b) in this parametrization. The positive 

definite quadratic form (i.e. the Riemannian metric tensor) g at the point 

(a,b) is given by 
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-b2 

-;!, ll :i-[ir 
~ 

(5.5.1-3) g(t,t) 

b .::! j b 
4} 2a 

This can be calculated by substitution of (A,B,C) = (a,b,c) 

and (A,B,C) = (a,b,o) in the fomula (5.2-40) obtained in theorem (5.2-38). 

It turns out to be possible to solve the geodesic differential equations, and 

to find a closed form expression for the inner distance dM between any two 

points of the union of the manifold with the atom set containing the zero 

system. 

The expression is: 

¾((ao,bo),(al,bl)) = 

(5.5.1-4) { (r!-2,.,,,o•l•.-•1 l+r/ll if 100 -0 1 1 ~ 11 and sign r sign rl' 0 

lrol + lr1I if I 00 -0 1 1 > 11 or sign r * sign rl, 
0 

where 

, k 0,1, 

and 

, k = 0,1. 

Instead of showing here how the geodesic differential equations can be solved 

and how (5.5.1-4) is obtained from the solution, we will use hindsight, and 

use a transformation of variables, which solves the problem in only a few 

steps. It also shows the correctness of (5.5.1-4). 

Let r = b(21al)-½, e = tn(lal½), then 
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Using (r,9) as pair of parameters, Mm,i is now parametrized by 
1, 1, 1 

{(r,9)lr * 0, r,a e: IR} {(r,a) Ir< 0} u {(r,a) Ir> O }. 

Using this parametrization one has the following result: 

•• T 
5.5.1-5. Theorem. Lett denote a tangent vector, represented by (r,0) in the 

coordinates (r,9). Then the Riemannian metric is given with respect to the 

coordinates (r,9), by 

Proof. This is a straightforward computation. Let 

(5.5.1-6) 

denote the Jacobian of the transformation of 

one has 
variables. Then[~]= J[~} So 

-b2 

i'1l~ltl 
-b2 

~]fl-[~r 7 T ~ (5.5.1-7) ·~a JT 
b b 

;:z ~ 2a fJ 

J can be calculated to be 

(5.5.1-8) [ 
0 

J -
✓2.e 9 

-2e29 l 
✓2. r.e 9 

Furthermore, substitution of a= -e29 b = /2.re 9 gives the following 

expression for the matrix in the middle of (5.5.1-7): 

-b2 b r 2 -49 ✓2 -30 

4a 3 4a 2 re 4 re 

(5.5.1-9) 
-29 b -1 ✓2 -39 e 

4/ 
2a 7e -2-



So one obtains 

( 5.5.1-10) JT 

b 

4/ 
-1 
2a 
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Q.E.D. 

Now notice that the Riemannian metric tensor of (5.5.1-5) is precisely the one 

of polar coordinates in the Euclidean plane. However, there are two 

differences with polar coordinates: 

(i) (r,8) does not denote the same point as (r,8+2n), 

(ii) r can take both positive and negative values here. 

This means that the Riemannian geometry in this case is the geometry of two 

infinite sheeted Riemann surfaces: (r,8) is a pair of (generalized) polar 

coordinates, 8 E IR is the generalized angle, and I rl is t-he radius; the points 

with r > 0 form one Riemann surface and the points with r < 0 the other. The 

zero system (r=O) connects the two. 

A formal construction of the Riemann surface is as follows. 

Consider the set 

R := {(rcose,rsine,lr!e)lr * o,e E IR} 

= {(x,y,4>)1 Ir!= /(x2+/)t0,(x,y) = ±(lrl cos(-g),lrlsin(T?f))} ~ 1,? 

This is a two dimensional surface (a submanifold) in 1R3 • Let n denote the 

projection n(x,y,4>) = (x,y). Then locally n is invertible, i.e. for each 
2 2 (x,y,4>) with x +y * O, there exists an open neighbourhood U of (x,y,4>) such 

0 2 
that nl• RnU + IR is injective. Now let the metric on R be locally the same 

RnU 

as the Euclidean metric on 1R2 , via the projection n. I.e. if (x,y,4>) denotes a 
0 

tangent vector t, then the Riemannian metric on R is given by 
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~)(~) = x2 + 5'2. 
y 

Let R be endowed with the inner metric d, corresponding to this Riemannian 

metric. Then Risa model for the double, infinite sheeted Riemann surface. 

So we have 

5.5.1-12, Theorem. (R,d) is isometric to Mm,t (endowed with the inner metric 
1, 1, 1 

induced by the Riemannian metric). 

Proof. Consider the parametrization {(r,e)lr E ~\{0}, e E ~} of ~•1 1 as , , 
before, and with Riemannian metric tensor as in (5.5.1-5). Consider the 

mappingµ: ~•1 1 + R, (r,e)r---+{rcose,rsine,lrie). Then it can easily be shown 
, ' 

thatµ is bijective and a local isometry. Because both the metrics in 

Rand Mm,t are inner metrics (i.e. infimal pathlength metrics) the metric 
1, 1, 1 

spaces must be isometric. 

Q.E.D. 

Next we want to add the zero system to the metric space. First note 

5.5.1-13. Proposition. lrl = lbl(2iaj)-½ is the norm of the system (as defined 

in 5. 2-11). 

Proof. The general formula is given in (5.2-11): ni::11 2 

In this case D 0, C = 1, B 

III: II 

b, A= a, 
T and so M(BB ) 

b2 
- 2a' and so 

Q.E.D. 

The straight line in Hilbert space between a system I: and the zero system is 

given by [I:] := {HIA E Is!}. If I: E M7:1,l then [I:]= M7:1,l u {0}. It follows 

that [I:] is a geodesic, in the Hilbert space and therefore a fortiori in 

~•1 1 u {0}, and so one has d(J:,0) = UI:11 in M~•1 1 u {0}. In this way the 
, , m R, ' , 

inner metric is defined on the whole set M1•1 1 u {0}. At the other hand, one 

' ' 

can define the distanced of a point (x,y,~) ER to (0,0,0) ER to 

be ✓ (x2 +/), 



l 9 :I 

in accordance with the rule that locally the metric on R is equal to the 

Euclidean metric on n(R). From the previous theorem and the previous 

proposition it follows that: 

5.5.1-14. Th;orem. M7:i,l u {0}, endowed with the inner metric described 

above, and (Ru {0},d), are isometric. 

5.5.1-15. Remarks. (i) Because the geometry of Mm,£ is locally Euclidean, 
1, 1, 1 

the curvature is zero. 

(ii) Note that }f.i,i and }f.l,i u {0} are non-compact, and Mm,i u {0} is 
1,1,1 1,1,1 1,1,1 

not even locally compact in 0. In fact the 'sphere' 

S/0) = {l: € ~:i, 11 lll:11 = e:} consists topologically of two disjoint lines, 

for each e: > 0. 

(iii) The geodesic between any two points in M7'i 1 u {0} can be found easily 

as follows: Compute the 'polar' coordinates (r0 :e:) and (r1,e 1) of the points. 

If the difference !e0 -e 1 ! ~ n and sign(r0 ) = sign(r1), then the straight line 

continuous curve yon R, starting in (r0 cos e0 , r 0 sin e0 , !rle0 ), and ending 

in (r1 cos e1 , r 1 sin e1 , lr!e 1), and such that n(y) is equal to the line 

segment i. In other words y is the lifting of£. Then y is the geodesic 

between the two points, with length (r 2-2r r cos(e -a 1)+r2)½. 
0 0 0 

If 100 -0 1 1 >nor sign(r0 ) f sign(r1), then the geodesic consists of the union 

of the straight line segments from (r ,e) to the origin and from the origin 
0 0 

to (r1,e 1). The length of such a geodesic is lr0 I + !r1!, 

(iv) It is interesting to compare the distance of two points in ~•1 1 along 
' ' the manifold (i.e. the inner metric) with the Hilbert space metric ('the outer 

metric') induced by the norm: As before let i:: have 'polar coordinates' 
0 

(r0 ,8 0 ), and i:: 1 : (r1,a 1). Then it is not difficult to compute that 

(5.5.1-16) 
2 Zrorl 2 ½ 

lll:o-i::1 11 = {ro - cosh(a -a)+ rl} • 
0 1 

-1 -1 ° 4 
Note that 0 < (cosh(8 0 -a 1)) ~ 1, and that cos(x) - (cosh(x)) = O(x ), 

which shows that cos(x) and (cosh(x))-l have a comparable behaviour around 

zero. For larger values of 1a0 -e1 !, the two distance concepts, (the inner and 

the 'outer' distance)) differ considerably. With r 0 and r 1 fixed the limit for 
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!e0 -e 1! + 00 of (5.5.1-16) is ✓ (ri+r~), while the analogous limit of (5.5.1-4) 

is equal to !r1 i + jr2 j (and it is reached already for !e0 - e1 ! = n). Of 

2 2 
course jr1 i + ir2 j ~ ✓ (r 1+r2 ). 

Next let us consider the discrete time case: 

{ 
xt+ 1 = a xt + but , -1 < a < 1 , b ct O, c t O, 

(5.5,1-17) y = ex 
t t . 

with xt,Yt,ut,a,b,c all real scalars. We choose a canonical form, by taking 

(5.5.1-18) c = 1. 

So~•~ 1 is parametrized by 
' ' 

{(a,b)j-1 <a< 1, b ct O} 

{(a,b)j-1 <a< 1, b < 0} u {(a,b)l-1 <a< 1, b > O}. 

(This parametrization is parameter identifiable). Just as in the continuous 

time case, it consists of two components, each of which is connected. Lett 
m a • • T 

denote a tangent vector of M1• 1 1, represented by (a,b) in this 
' ' parametrization. The Riemannian metric tensor g is now given by 

(5.5.1-19) 

ab l 
o~')' [:l 
1-a j 

This can be calculated by substitution of (A,B,C) = (a,b,c) and 

(A,B,C) = (a,b,O) in formula (5.2-39), In this case consider the following 

transformation 

(5.5,1-20){: 

Remarks: 

arctgh (a) 

b cosh( e) 
, or, { 

a = tgh(e) 
equivalently b r 

= cosh(e) 



(i) Recall that tgh(x) 
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X -x 
= ~ E (-1,1). 

ex+e-x 

1 l+v (ii) Of course arctgh(y) = 2tn(~). 

(iii) A simple calculation shows that r b 
2 , and so r is equal to the 

✓( 1-a ) 

norm of the system, as defined in (5.2-8) (with D 0). Using (r,e) as 

new coordinates, M7'1 1 is parametrized by 
' ' 

{(r,a)lr*O, r,9 ER}= {(r,B)lr > O} u {(r,a)jr < O}. 

It turns out that (r,9) are 'generalized polar coordinates', just as in the 

continuous case: 

5.5.1-21. Theorem. The Riemannian metric tensor is given with respect to the 

new coordinates (r,9), in the discrete time case, by 

• • T 
where t denotes the tangent vector that is represented by (r,9) • 

Proof. Just as in the proof of (5.5.1-5) we have to compute the Jacobian 

a(~) 
J = a(r,9) 

of the transformation. It is equal to 

(5.5.1-22) J = [ O 
· (cosh(S))-l 

(cosh(S))-2 ] 
-1 • 

rtgh(9),(cosh(9)) 

Substitution of a= tgh(S), b = r(cosh(S))-l in the matrix of formula 

(5.5.1-19) leads to the matrix: 

[ 

4 2 2 
cosh(S) (l+tgh(S) )r 

(5.5.1-23) 3 
tgh(S) cosh(S) r 
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Premultiplication with JT and postmultiplication with J leads to the 

Riemannian metric tensor of the coordinates (r,8): 

0 j 2 • 
r 

Q.E.D. 

Now let us compare the continuous time case and the discrete time case. In the 

continuous time case a transformation to polar coordinates on the Riemann 

surface is given by 

-28 -e o, 
or, equivalently{ao = 

b = 
0 

✓2r e-80, 
0 

where the subindex O now stands for the continuous time case. In the discrete 

time case the transformation to polar coordinates on the Riemann surface is 

given by (see (5.5.1-20)): 

where the subindex 1 now stands for the discrete time case. 
m a .JD R, mapping Q: M1• 1 1 + M1 •1 1 which maps the point represented 

.. Jll a ' ' ' ' m R, M1• 1 1 to the point represented by (r,8) in M1• 1 1• Then Q 

terr:is•of (a0 ,b0 ) and (a 1,b1), q-l is given by ' ' 

(5.5.1-27) 

-1 
(al,bl) = Q (ao,bo) = 

(-tgh(R.nla0 l½)),b0 (2la0 l)-½{cosh(R.n(a0 )½)}-l) 

Consider the 

by ( r,8) in 

is an isometry. In 

5.5.1-28. Proposition. Q is equal to the mapping P0 , defined in (5.4-1), for 

the case m = n = m' = 1. 
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-1 Proof. Compute p0 in terms of a 0 and b0 for this case. This gives precisely 

the formula for Q-1(a0 ,b0 ) just found. Q.E.D. 

So the isometry Q is identical to the isometry P0 of section 5.4. 

Next, consider the group of isometries of the space~•~ 1 (mutatis mutandis 
R. + , , 

the same holds for M1'.1• ). Let Mm,a = M u M-, where J'i+ is the component of 
1,1,1 1,1,1 

~•~ 1 in which (bis positive, or equivalently) r is positive,and }r is the 
, ' + -other component. The group of isometries of M u M with respect to the 

Riemannian metric is generated by: 

(i) Rotations around the origin; in terms of the polar coordinates such a 

rotation is a mapping (r,8)1--+(r,S+y). Because M+ and M- are 

disconnected one can rotate M+ and M- differently. 

(ii) Reflection of the generalized angle with respect to the zero angle. In 

terms of polar coordinates (r,8)1--+(r,-S). This can be done in none, one 

or both components at the same time. 

(iii) Reflection with respect to the origin, in terms of the generalized polar 

coordinates (r,8)1--+(-r,e). In this case M+ is mapped onto M- and vice 

versa. 

Now let us restrict ourselves to the isometries of W (i.e. the infinite 

sheeted Riemann surface). They are given by the group {K} u {K-}, where 
y y 

K (r,8) = (r,S+y), in 
y -

polar coordinates, and K~(r,8) = (r,-(S+y)) = K: o Ky 

with K (r,8) = (r,-8). 
0 

This can be compared with the group of isometries 

{F} u {F-}, found in section 5.4, theorem (5.4-22) for the case m=n=m'=l, 
ll ll 

and restricted to the component~. 

5. 5.1-29. Theorem. Vy e: IR: K = F 2 I and K- = F-2 I • 
y - y M+ y - y M+ 

Proof. The mapping F in terms of the polar coordinates (r,S) can be 
ll 

calculated explicitly using a= tgh(S), b = r(cosh(S))-1, etc. The explicit 

calculation shows K = F_2 I+ and K- = F-1 +· 
Y YM o OM 

Q.E.D. 

5.5.1-30. Remark. It follows that the 'hyperbolic angle' which occurs in F and 

~ is transformed to an angle in the Riemann surface! 
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We want tc conclude this subsection with making some remarks on the relation 

of the infinite sheeted Riemann surface M+ and complex function theory, 

especially the theory of conformal mapping. As is well-known the infinite 

sheeted Riemann surface can be considered as the domain of a complex analytic 

continuation of the logarithm on the positive real line. This analytic 

function maps the Riemann surface conformally onto~- In terms of polar 

coordinates it is easy to see what this means: The analytic continuation of 

the logarithm maps the point on the Riemann surface with generalized polar 

coordinates (r,9) to the point Jl.nr+i9 € ~. If we put x = Jl.nr, y = 9, then the 

Riemannian metric tensor corresponding to these coordinates is r 2Iz, 

(with r = ex). So the Riemannian metric tensor is given by a (socalled) scalar 

matrix. This is typical for conformal mapping, because a map is conformal iff 

the Riemannian metric in an image point is a positive scalar factor, depending 

on the image point, times the Riemannian metric in the original point (see 

e.g. [Ko-N], vol. I, p. 309, Note 11). It may be interesting to note that to 

determine the Riemannian gradient direction of a function in a point, one 

needs to know the Riemannian metric tensor up to a positive scalar factor (see 

also chapter 6). So in this case, using 

( x, y) = ( Jl.nb 1-½ Jl.n(l-a 1 )-½ Jl.n(l +a 1), ½ Jl.n(l +a 1) - ½Jl.n(l-a 1)) as coordinates, 

calculation of the Riemannian gradient direction of the function Von~ could 

(-av _av)T be done by calculating 
ax' ay • 

In the continuous time case, one could take 

(x,y) (Jl.nb +Jl.n(Ja J-½),Jl.nJa J-½) = (z+y,y), with z = Jl.nb. The Riemannian 
0 0 0 0 

ld b given by (-av _aV)T __ (av av+ av)T where g radient direction wou e 
ax'ay az' az ay ' 

V V(x,y), V vcz,y) 

5.5.2. Some other special cases 

(i) The first one is 

(5.5.2-1) { 
a € IR, 

V( z+y, y). 



i.e. we have put b = 1, Each such system is completely characterized by the 

value of a. The problem is to find the inner distanced. Using again the 

transformation a= tgh(e), one finds 

(5.5.2-2) af2~(l+a)da 
2 1-a 

a 11-a 

e2 J ✓cosh(2e)de 
el 

e2 2 J ✓ (l+f'(e) )de where f(e) = ( ✓2)cosh(e). 
el 

This means that the distance between a 1 = tgh(e1) and a 2 = tgh(e2 ) is equal to 

the arclength of the graph of the function ( ✓2)cosh(e), between e1 and e2• 

\ 
\ 

' 

(ii) Now consider 

(5.5.2-3) 
r_ xt+ 1 = axt + ut, 

i y t = xt 

I 
I 

I 
I 

1\/2cosh(9) 

_ ~ A-•col,ogfh, d(o,,o 2 J 

I I 
I 

I 
I 

and use the P41orm given by (5.2-25), In section 5.2 we promised to return to 

this case. The sequence of Markov parameters is (1,a,a 2,a 3, ••• ), and a tangent 
' ' 2' 3" . 

vector2is of the form (O,a,2aa,3a a,4a a, ••• ), which has P-norm equal 
a to ---2• This is the Riemannian metric tensor of the well-known Poincare 

i-lal 
metric, (See e.g. [Ne-P], section 3.11). This implies that we are in fact 

dealing with the hyperbolic geometry in the open unit disk. The geodesics and 

the corresponding inner distance function of this geometry are well-known. The 

points~ the unit circle lie at 'infinite distance', in the Poincare metric, 

i.e. the Poincare metric is only well-defined on the open unit disk. This is 
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remarkable because the P-norm, given by (5,2-25), (and consequently the outer 

metric) is well-defined also for elements on the unit circle! 

5.6. Degeneration of the Riemannian metric tensor 

In this section we want to make some remarks about the behaviour of the 

Riemannian metric tensor at points of McMillan degree< n. Depending on the 

parametrization, it may or may not degenerate at such a point. For example in 

the Riemann surface case (i.e. M7•1 ·1) of section 5, 5, one could use 
' ' rectangular coordinates, instead of polar coordinates, for each 

'halfplane' {(r,a)J Ja-a 0 J ~ n/4}, r > 0 (and similarly for r < 0). One simply 

has to take x = rcos(a), y = rsin(8), In (x,y)-coordinates the Riemannian 

metric tensor is the identity matrix, and will therefore not degenerate for 

r = ✓ (x2+y 2 ) + 0, On the other hand in terms of the parameters (a,b), with 

C = 1, the Riemannian metric tensor has a degenerate limit for b + 0: 

rwh' ab 
2 3 2 2 

, [: l 
(1-a ) (1-a ) 0 

(5.6-1) lim 
b+o ab 1 --2 

( l-a 2/ 
--2 1-a 
1-a 

and clearly this matrix is positive semi-definite and not positive definite. 

Now let us define formally what we mean by a degenerate Riemannian metric. 

(not to be confused with a pseudo-Riemannian metric). 

5.6-2. Definition. (i) Let k = R or~- A degenerate inner product g on a k

vector space Vis a mapping g: VxV + k with the properties: 

(a) 

and 

(b) 

g(Av+w,u) = Ag(v,u) + g(w,u) 

g(v,Aw+u) = Ag(v,w)+g(v,u), 

for all A€ k; v,w,u € V. 

g(v,v) > 0. 

(ii) A degenerate Riemannian metric g is an assignment for each E € M, of a 

degenerate inner product gE to the tangent space TE at Min E, such that gE 

varies smoothly with E (to be determinate, let us require that gr is a Cm 

tensor). 

5.6-3. Remark. The difference of a degenerate inner product with a usual inner 

product is, that vectors are allowed which have zero inner product with~ 
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other vector. 

To such a degenerate Riemannian metric corresponds a degenerate inner metric, 

because different points may have zero distance. This problem can be overcome 

by considering equivalence classes as follows: Two points n1,n 2 will be called 

equivalent if they have zero distance according to the degenerate inner metric 

considered. Then the degenerate inner metric induces a non-degenerate metric 

on the set of equivalence classes .• 

Consider now the Riemannian metric g, defined before on M111;a , (as before 
m ,n,m 

completely analogous results hold for the continuous time case). On the other 

hand, consider the manifold Lm;a of all matrix triples (A,B,C), A: nxn, 
m ,n,m 

B: nxm', C: mxn, corresponding to minimal, asymptotically stable systems. Let 

n = vec(A,B,C) be the vector consisting of all the components of A, Band C. 

An element n of the tangent space TLm:a at n corresponds naturally to a 
m ,n,m 

tangent vector t of TM111;a at l:(A,B,C). Note that t = 0 does not imply 
m ,n,m 2 2 n = o. Let R = R(n) denote the (n +nm+nm') X (n +nm+nm') symmetric positive 

semi-definite matrix such that the Riemannian length of a tangent vector 

t E TM111;a , represented by a tangent vector n E TLm;a is given by 
m ,n,m m ,n,m 

(5.6-4) ( ) ½ - ("TR.)½ gl: t,t - n n • 

Clearly R(n) defines a (degenerate) Riemannian metric tensor on Lm;a 
m ,n,rn 

That it is really degenerate for each n > 1, follows from the following 

observation. 

5.6-5. Theorem. Vn E Lm,a rk(R(n)) 
m' ,n,m 

n(m+m') (and so its corank is n 2). 

Proof. According to corollary (4.6-6), a: Lm;a + M111:a is a (locally 
m ,n,m m ,n,m 

trivial) principal fibre bundle. It follows that locally Lm:a is 
m ,n,m 

diffeomorphic to M111;a 
m ,n,m 

x Gt. From this and the fact that the Riemannian 
n 

metric is non-degenerate on M111;a it follows directly that 
m ,n,m 

rk(R(n)) ~ n(m+m'), 

but also, because each tangent vector that corresponds with a tangent vector 

of Gt is in the kernel of R(n), rk(R(n)) < (nm+nm'+n 2) - (n 2) 
n 

nm +nm'. 
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This shows that 

(5.6-6) rk(R(n)) n(m+m'). 

Q.E.D. 

The point we want to make in this section is that the rank of R(n) will be 

smaller than n(m+m') at points n = vec(A,B,C) of McMillan degree smaller than 

n. (As noted before this is a property of the parametrization. If, instead of 

working with the parameters (A,B,C) one works with other parameters, the 

corresponding metric tensor may not degenerate at points of McMillan degree< 

n). We will not investigate the statement in general, but give a proof only 

for a special case, as an example. 

a 5.6-7. Theorem. Consider the set 1 1 1 of matrix triples (A,b,c), each 
'n, 

describing an asymptotically stable s.i.s.o. system. Suppose (A,b,c) is 

observable, but non-reachable, and has McMillan degree n-1. 

Let n = vec(A,b,c). Then 

(5.6-8) rank(R(n)) < n(m+m') Zn. 

Proof. Because the system described by (A,b,c) is observable, but has McMillan 

degree n-1, there exists a basis transformation of the state space, which 

transforms the matrix triple (A,b,c) into one of the following form (this is 

the well-known Kalman decomposition, see e.g. [Che], theorem 5.17): 

(5.6-9) 

where A1 is (n-1) x (n-1), Az is 1 x (n-1), A3 is lxl, b1 is (n-1) x 1, c1 is 

1 x (n-1) and cz is lxl; (A1,b1,c1) is a minimal realization of the system. 

Without loss of generality we may assume that (A,b,c) is of the form (5.6-9). 

A change in Az, A3 or cz does not affect the input-output map. Thus all 

tangent vectors of the form 



( 5.6-10) n 
0 

vec[( 
0 
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constitute an (n+l)-dimensional subspace of the kernel of the matrix R. 

On the other hand consider the set of all tangent vectors of the form 

( 5. 6-11) n vec(-TA+AT,-Tb,cT), TE Rnxn arbitrary. 

They constitute a subspace of the kernel of R. This can be seen as follows. 

Consider the curve G(t) E GR,n' It I :5. £ and G(O) = In, G(O) = T. 

Then the curve 

a in L1 1 corresponds for each t E f-e,e) to the same system (and the same ,n, 
Hankel matrix). Therefore its tangent vectors are in the kernel of R. At t = 0 

its tangent vector is of the form (5.6-11). As Twas chosen arbitrarily, each 

vector n of the form (5.6-11) is in the kernel of R indeed. 

Partition T as 

(5.6-12) 

T11 is (n-1) x (n-1), T12 is (n-1) x 1, T21 is 1 x (n-1) and Tzz is lxl. 

Clearly T can be written as 

(5.6-13) 

T 
d h {( 11 an t e space 

T21 

0 
)} has dimension n(n-1). Consider the corresponding 

0 

space of tangent vectors 

0 
(5.6-14) {n vec(-TA+AT,-Tb,cT)IT = ) } . 

0 

If this space too has dimension n(n-1), and at the same time has zero 

intersection with the (n+l)-dimensional subspace of tangent vectors of the 

form (5.6-10), then it follows that the dimension of the kernel is larger than 

or equal to n(n-1) + n + 1 = n 2 + 1 > n 2 , and the theorem then 
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follows. The space in (5.6-14) has dimension n(n-1), if the equation 

(5.6-15) (-TA+AT,-Tb,cT) 0 with T 

has T=O as its only solution, while the intersection of the space in (5.6-14) 

with the one defined by (5.6-10) is zero if the equation 

0 A 
(5.6-16) (-TA+AT,-Tb,cT) [ ( 2), o, (o 

A3 
0 

0 
with T (Tll 

T21 
) ' has zero as its only solution. 

0 

Now (5.6-16) contains (5.6-15), so we only have to solve equation (5.6-16). 

Part of it can be rewritten as 

(a) - TllAl + AlTll + A2T21 o, 
(b) - T A 

21 1 
+ A T 

3 21 
o, 

(5.6-17) 
(c) - T b 

11 1 
o, 

(d) - T b 
21 1 

0, 

(e) clTll + c2T21 o. 

k k Let us show by induction that T11 A1b1 = 0 and T21 A1b1 = 0, k = 0,1,2, ••• 

Fork= 0 this follows from (c) and (d). Suppose it holds fork. Postmultiply 

(a) and (b) by A~b 1• Then, using the induction hypothesis it follows that 
k+l k+l T11A1 h1 = 0 and T21 A1 b1 = O. Because (A1,b1,c1) is a minimal realization, 

it follows that T11 = O, T21 0. Q.E.D. 

Because of the continuity of Ras a function of the parameters (A,B,C), it 

follows that in a neighbourhood of a system of McMillan degree smaller than n, 

the matrix R has - apart from then zero eigenvalues corresponding to the 

tangent vectors of Gin,as described in the proof of theorem (5.6-5) - at least 

one eigenvalue close to zero. This means that the input-output map (or 

equivalently, the Markov parameters), will be very insensitive to a change of 

the parameters in the direction of a corresponding eigenvector. So in this 

respect the parametrization by (A,B,C) does not behave very well. This holds 

for all locally continuous canonical forms in which n2 components of (A,B,C) 

are fixed to be O or 1, and all other components are free to vary in an 

n(m+m')-dimensional open set. An interesting research problem is to find 
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(practical) parametrizations which do not have this kind of insensitivity 

property, i.e. for which the Riemannian metric tensor does not degenerate if a 

system of McMillan degree smaller than n is approached. In the Mm,a case the 
1, 1, 1 

(x,y) parametrization from the beginning of this section satisfies these 

requirements. 

5.7. A Rlemannian metric on the state bundle 

In this section we will define a Riemannian metric on the whole state bundle 

E = M'.'•a, (see section 4.6), which is an extension of the Riemannian l,m ,n,m 

metric on ~!a as defined before. 
m ,n,m 

We will use the notation E(A,B,C;x) to denote a system represented by A,B,C, 

with corresponding state, represented by x. One can identify E(A,B,C;x) with 

the orbit of (A,B,C;x) under the action of Gi (R) ('change of basis of the 
n 

state space'): 

(5.7-1) -1 -1 
E(A,B,C;x) := {(TAT ,TB,CT ;Tx)IT E Gin(R)}. 

Consider a system with state E(A,B,C;x). The corresponding system E(A,B,C) 
k m 

is determined completely by the sequence of Markov matrices {CA B}k=o' while 

the system-with-state E(A,B,C;x) is determined completely by the sequences 

{CAkB}km and {CAkx}km. As before, we define the norm of E(A,B,C) to be the 
2 =o k m =o 

£ -norm of {CA B} 0 : 

(5.7-2) 

2 Analogously, we define the norm of x, for given (A,B,C), by the£ -norm of the 
k m 

sequence {CA x} 0 , i.e.: 

(5.7-3) 2 
nxn(A,B,C) := xT; (AT)kCTCAkx. 

k=o 

(Both norms can be computed by solving a Lyapunov equation). Of course, one 

could formally define a norm on the set of systems-with-states by using the 

embedding M'.'1•a, + ~:+al , induced by (A,B,C,x)t---+(A,[B,x],C). This has, 
,m ,n,m m ,n,m · 

however, the disadvantage that the distance between systems would depend on 

the state. To avoid this, we will use another metric, which will presently be 

derived. 



203 

Consider a smooth curve in the state bundle E, given by 

(5.7-4) tt--->-E(A(t), B(t), C(t); x(t)), t E [-e,e], 

for some E > O. Because each system with state corresponds to a pair of 

sequences as just described, this curve corresponds to the mapping 

(5.7-5) 

Therefore, the tangent vector of the curve at t 0 corresponds to the pair of 

sequences. 

(5.7-6) 

The state space Rn corresponds at t 0 to the space of sequences 

(5. 7-7) 

where we write C for C(O), A for A(O) etc, for simplicity of notation. Note 

that XE is a coordinate free description of the state space at E(A,B,C). The 

a k l m sequence {at[C(t)A(t) x(t) t=o}k=o can be decomposed into a part that is 

orthogonal to the 'state space' X, in the t 2 sense, and a part that is in the 
E 

direction of XE. With the sequence {:t[C(t)A(t)kB(t)]t=o}k:o we want to 

measure the infinitesimal change in the system, and with the sequence 

{:t[C(t)A(t)kx(t)]t=o}k:o we want to measure the infinitesimal change in the 

state (only). Therefore we a re only interested in the part in the orthogonal 

decomposition of this last sequence, that is in the direction of the 

space XE. Let Px denote the orthogonal projection on XE. We define a 

Riemannian metric on the state bundle E as follows: 

5.7-8. Definition. Let the norm squared of the tangent vector E(A,B,C;x) of an 

arbitrary smooth curve through E(A,B,C;x) be given by 

(5.7-9) 

• 2 a k m 2 
IIE(A,B,C;x)II := ll{at[C(t)A(t) B(t)]t=o}k=oll 2 + 

R. 

a k m 2 
+ 11 Pi hr[C(t)A(t) x(t) lt=o}k=o) II 2· 

R. 
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Here II, II 2 stands for the .e.2-norm, i.e. the square root of the sum of squares 
R. 

of all entries in the sequence, as before. Because of the asymptotic stability 

these norms are indeed finite. 

If instead of the point t = 0 we consider an arbitrary point t of the curve, 

this formula becomes 

(5.7-10) 

n~(t)11 2 = n{:t[C(t)A(tlB(t)]}k:0 0\ + 
R. 

+ UPX(t)({:t[C(t)A(t)kx(t)]}k:o)n 22 
R. 

2 where Px(t) denotes the orthogonal projection in R. on the space of sequences 

(5.7-11) 

The curve E(A(t),B(t),C(t);x(t)) in Eis called a parallel displacement of the 

state, along the curve E(A(t),B(t),C(t)) in M11':a , if the last term in m ,n,m, 
(5,7-10) is zero for all t E [-E,£], If the state at t = 0 is determined to be 

x(0) (say) and the (smooth) curve E(A(t),B(t),C(t)) in M11':a is determined, 
m ,n,m 

then there is a unique parallel displacement 

E(A(t),B(t),C(t);x(t)), (This is a standard result from differential 

geometry, see e.g. [Ko-NJ); in this case, it can also be shown directly, using 

formula (5,7-10)). The Riemannian metric (5.7-9) is constructed such that if 

the curve E(A(t),B(t),C(t);x(t)) is a parallel displacement of the state, then 

the length of the curve is independent of the state, and equal to the 

Riemannian length of the curve E(A(t),B(t),C(t)) as defined before! (In this 

sense the Riemannian metric (5,7-9) is a generalization to E of the Riemannian 

metric on M111:a defined before). m ,n,m 
It can easily be shown that the parallel displacement of the state as just 

described corresponds to a metric connection, which means that the norm of the 

state, as defined by (5.7-3), remains constant along a parallel displacement. 

For an application of this Riemannian metric, we refer to [Hnz 85b]. 
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5. 8. Riemannian metrics for families of stochastic linear systems 

We will consider subsets of the family of all stationary, ergodic, linear, 

finite dimensional, zero mean Gaussian, full rank stochastic processes {yt}, 

(so Ey yT is positive definite). The subsets that we will consider are those 
t t 

for which the dimension of the outputs and the McMillan degree are fixed. (see 

section 2.4.3 for the definition of the McMillan degree of such a stochastic 

process). 

In chapter 2, especially section 2.4(cf. (2.4.1-1)), it has been shown that 

such a stochastic system r can be represented by 

{w} Gaussian white noise, w ~ N(O,Q), Q a positive definite matrix, 
t t 

T(s) = D + C(sI-A)- 1B has its poles all within the open unit disk D(0,1) (we 

do not require (A,B,C,D) to be observable and reachable here, until such is 

explicitly stated). It is important to note that the representation (5.8-1) 

embraces other representations as special cases: 

(i) If D = I and cr(A-BC): nn:r,TT and (A,B,C) a minimal realization, then 

(5.8-1) is an innovations representation (see [An-M], chapter 9, theorem 

4.4). This representation is unique ([An-M], ch.9, thm 4.1) among the 

various representations of the stochastic process. See also chapter 4. 

(ii) If DQBT = O one has the often encountered case of stochastic 

independence of process noise (Bw) and measurement noise (Dw). 

(iii) The stochastic arma model can be rewritten in the form of (5.8-1). See 

e.g. section 2.3.3, especially equation (2.3.3-23)ff or [An-M], chapter 

9, lemma·3.2. Note again that we do not require (A,B,C,D) to be a 

minimal representation, only that cr(A) c D(0,1). 

It follows that if we can give a formula for a Riemannian metric tensor in 

terms of the parameters (A,B,C,D,n) of (5.8-1), then the corresponding 

Riemannian metric tensor for any of these other representations can be 

directly derived from such a formula. Consider the sequence of covariance 

matrices {rk} of the process {yt}. We found before (in (2.4.2-2) and 
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(2.4.2-3)) expressions for rk in terms of A,B,C,D,O. 

Now let 

(5.8-2) G G(A BCD n) .·= BnnT + APCT, , , , ,.. ,.., 

where P L(BOBT) (i.e. Pis as in (2.4.1-2) and (2.4.1-3)), and let 

(5.8-3) 

Then (see (2.4.2-2) and (2.4.2-3)): 

(5.8-4) 

and 

r 
0 

J, positive definite, 

k-1 
rk = CA G, k 1,2,3, ••• 

(and the equality rk = r:k can be used to find the rk fork< O). 

It follows that the sequence {rk}k:o is the sequence of Markov matrices of the 

deterministic system (A,G,C,J). It is shown in (2.4.3-25) that the McMillan 

degree of this system is equal to the McMillan degree of the stochastic 

system. It follows that the set of stochastic systems, as described above, 

with fixed McMillan degree (and fixed output dimension) can be represented by 

a subset of t-fl,a x Pos(m), namely the image of the mapping m,n,m 

(5.8-5) (A,B,C,D,0)1-+([A,G,C)],J) € t-fl,a x Pos(m), 
m,n,m 

with G = G(A,B,C,D,O) and J = J(A,B,C,D,O) as above. (Note that under a state 

space base change that transforms the state x into Sx (S nonsingular) G 

transforms to SG and J to J.) If we restrict to stochastic systems which have 

no zero on the unit circle, i.e. 

(5.8-6) 

then the corresponding subset forms an open submanifold of t-fl,a x Pos(m). 
m,n,m 

(This follows from the analysis, below, of the special case of the innovations 

representation). Consider the Riemannian metric on 
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.•in a .JTI a mxm . 
M' (= M' x~ ) defined in section 5.2. This induces a Riemannian 
m,n,m m,n,m 

metric on any submanifold. Especially, this defines a Riemannian metric on our 

manifold of stochastic systems. In terms of the representation (A,R,C,D,Q) of 

the stochastic system r, the Rie~a~n~a~ ~etric tensor hr (say) can be obtained 

from the formula (5.2-39): Let (A,B,C,D,Q) denote a tangent vector at 

(A,R,C,D,Q). 

Then 

(5.8-7) 
• • • • .:. 2 

ll(A,B,C,D,rlllh 
r 

• • • • 2 
:= tt(A,G,C,J)H , 

gE 

(see (S.2.3-9)), where Eis the deterministic system represented by (A,G,C,J) 

(i.e. the covariance system), and where 

(S.8-8) 

where Pis the solution of 

(5.8-9) 

i.e. 

(S.8-10) p 

and 

(5.8-11) J 

5.8-12. Remarks: (i) In specific cases the formulas for G and J simplify 

considerably. 

(ii) For the case n = 1, m 

explicitly in appendix SA. 

1, m' 1 the Riemannian metric tensor is given 

(iii) Another possibility, a minor variation of equal mathematical elegance, 

is to use the mapping 

(5.8-13) (A,B,C,D,Q)i----([A,G,C)),½J) € M::~,m x Pos(m) 

instead of 
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(A,B,C,D,n)~([A,G,C)],J) € rf1,a x Pos(m). 
m,n,m 

Clearly, then we get a Riemannian metric tensor 

(5.8-14) 

where Eis now the deterministic system represented by (A,G,C,½J). Of course 

the McMillan degree is not affected by this. The reason that this possibility 

is also quite attractive is, that kr is, up to a positive factor, the 

Riemannian metric induced by the i 2-norrn on the covariance sequences 

{fk}k=-=• whereas hr is induced by the t 2-norrn on the covariance sequences 

{rk}k=o· 
Now let us consider the special case of the innovations representation 

(compare case (i) below (5.8-1)). We will take D = I, (A,B) reachable and 

(C,A) observable. Then the assumptions made before imply that o(A) = D(O,l) 

and o(A-BC) c D(0,1). Such an innovations representation always exists and is 

unique up to state space isomorphism (theorem (4.8-6)). (Note that we are now 

in the situation in which we can apply theorem (4.8-8)). 

In this case the mapping (5.8-5) can be replaced by 

(5.8-15) (A,B,C,n)i----([(A,G,C)],J) € Mm,a x Pos(m). 
rn,n,m 

Because the state space in the innovations representation is determined up to 

state space isomorphism, one has the following commutative diagram 

(5.8-16) 

- ~I ma 
(A,B,C,n) 1----+ ( [ (A,G,C)] ,J) € M ' X Pos(m) m,n,m 

~\ /~3 
([(A,B,C)J,Q) € rf1,a,f x Pos(m). 

rn,n,m 

This can be seen as follows. In this case the mappings G and J are given by 

(5.8-17) G G(A,B,C,Q) 
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where 

(5.8-18) p - T L(BQB ), as before, 

and 

( 5. 8-19) J J(A,B,C,n) 

As noted above, if the basis of the state space is changed i.e. 
-1 -1 

(A,B,C)1-->-(SAS ,SB,CS ), then 

Gf------+SG and Jf------+J, 

so the diagram (5.8-16) is commutative indeed. 

Theorem (4.8-8) tells us that ~2 is surjective onto Mm,a,f and from the 
m,n,m 

uniqueness of the innovations representation, up to state space isomorphism, 

we know that ~3 is injective. 

Note that the dimensions of the manifolds }f,a,f x Pos(m) and 
m,n,m 

}f,a 
m,n,m 

x Pos(m) are the same. 

5.8-20. Theorem. The Riemannian metric h defined above, induces a (nonr 
degenerate) Riemannian metric on Mm,a,f x Pos(m), via ~3• 

m,n,m 

Before we go to the proof, let us make some remarks. 

5.8-21. Remarks. 

(i) The theorem is equivalent to the assertion that the Jacobian of ~3 is 

nonsingular everywhere on Mm,a,f x Pos(m). 
m,n,m 

(ii) Together with theorem (4.8-9) this theorem tells us 
• .m a f that M' ' x Pos(m), together with the induced (non-degenerate) 

m,n,m 
Riemannian metric forms a differentiable manifold isometric to the 

Riemannian space of stochastic systems defined above. 

Proof. We will show that one has a non-degenerate Riemannian metric on 

}f,a,f x Pos(m), by showing that any tangent vector with zero Riemannian 
m,n,rn 

length is zero. In fact what we will show is that a tangent vector (A,B,C,Q) 

has zero Riemannian length iff Q = 0 and (A,B,C) is of the form 
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(A,B,C) (-TA+AT,-TB,CT) 

for some T € Rnxn (compare (5.6-11)). If (A,B,C,Q) has zero Riemannian length, 

then the corresponding (A,G,C,J) has zero Riemannian length in the sense of 

deterministic systems, cf. (5,8-15). 

Therefore an argument analogous to the one following (5.6-11), combined with 

theorem (5.6-5), shows that 

(A,G,C,) (-TA+AT,-TG,CT) 

for some T € Rnxn. Furthermore J = 0 will hold. 

Now it is clear that (-TA+AT,-TB,CT,O) at (A,B,C,Q) corresponds to a zero 
m a f tangent vector to the manifold M' ' x Pos(m). Therefore one can substract 

• . . . m,n,m 
from (A,B,C,n), without loss of generality this tangent vector. Therefore we . . . . . 
only have to prove for each tangent vector of the form (A,B,C,n) = (0,B,O,n), 

that if it has zero Riemannian length then it is itself zero. Now consider the 

change in the spectral matrix due to a change (O,B,O,n); because the 

Riemannian length of (0,B,O,n) is zero this must be zero. 

So we have 

(5.8-22) 

d -1 - -1 -1 T 
0 = Jt[I+C(sI-A) Bt]nt[I+C(s I-A) Bt] 

C(sI-A)-l~Q[I+C(s- 1I-A)-lBt]T + 

T(s)~T(s-l)T + T(s)n[c(s- 1I-A)-l~]T, 

where T(s) =I+ C(sI-A)-lB, One has T(s)-l = I - C(sI-A+BC)-lB, and A-BC is 

asymptotically stable. Pre- and postmultiplicaticn with T(s)- 1 and T(s- 1)-T 

gives 

( 5.8-23) 

So, clearly if B = 0, then t = 0 follows. Because T(s)-l and (sI-A)-l have no 
-1 -1 ·-

poles outside the open unit disk, the expression T(s) C(sI-A) BQ can be 

expanded in a power series in s-l around infinity, with a s-l convergence 

radius p > 1: 
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(5.8-24) -1 -1 ·-
T(s) C(sI-A) BQ 

"' -k -1 
l: ¾_s , Js J < P• 

k=l 

Substituting this in (5.8-23), one obtains: 

(5.8-25) 0 

It follows that n 0 and Rk = 0, k 1,2,3, •.• , and therefore 

(5.8-26) -1 -1 ·-
T(s) C(sI-A) BQ o. 

By premultiplication with T(s), and postmultiplication with n-l, one obtains 

(5.8-27) 
-1· 

C(sI-A) B = O. 

It follows from the observability of (A,C) that B 0. 

Q.E.D. 

5.8-28. Remark. The choice of an appropriate Riemannian metric may depend on 

the use of the model. E.g. if the model is used for prediction, then one could 

argue that the coefficients of the prediction formula should be the starting 

point for the definition of the Riemannian metric. To be more specific, 

consider the following innovations representation model 

(5.8-29) 

wt Gaussian white noise, wt~ N(O,n),n > 0, (A,B,C) minimal, cr(A) ~ D(0,1) 

and cr(A-BC) c D(0,l). The corresponding steady state prediction filter is 

(5.8-30) { 

So the filter is the deterministic system (A-BC,B,C), with {y} as inputs, and 
t ~ 

{y 1} as outputs. One could now propose to use the Riemannian metric for 
t+ 
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deterministic systems, but applied to (A-BC,B,C). This means that one can use 

formula (5.2-39) with A-BC instead of A, and A-BC-BC instead of A. 

Note that in this case systems with different~ matrix, but equal otherwise, 

are considered as equivalent because they lead to the same prediction filter 

(5.8-30). 

5.9. The Fisher metric and Hellinger distance 

A important Riemannian metric for stochastic models is the socalled Fisher 

metric. It is the metric which has the well-known Fisher information matrix as 

its metric tensor. See e.g. [Arna 82], [Arna 85]. In the next subsection the 

Fisher metric will be applied to stochastic linear systems. In this section we 

want to stress the relationship between the Fisher metric and the socalled 

Hellinger distance between probability measures. It will turn out that the 

inner metric corresponding to the Fisher metric is the same as the inner 

metric induced by the Hellinger distance. This will also lead to a natural 

generalization of the Fisher metric in cases where the Fisher information 

matrix is not well defined, or singular. We do not claim originality in the 

following derivation. In fact most of the steps have been taken before (see 

e.g.[Daw], [Arna 85], [Kaz] and [Kaz-Pa]). Still we include this, because it 

shows that the Fisher metric falls into the same over all pattern as the 

metrics derived before, and because we believe that the importance of this 

relationship has not been fully realized. 

Let us defin; the Hellinger distance. Consider a sample space n, together with 

a cr-:lgebra F. Suppose three probability measures µ1,µ 2 and A are defined on 

(n,F) and µ1 and µ2 are absolutely continuous with respect to A, so 

µland µ2 have densities p1 resp. p2, say. Let q1 = /p1 and q2 = lp 2 be the 

roots of pl and p 2• Then 

( 5. 9-1) 1, i 1, 2, 

and so 

i 1,2. 

One can define the following distance function 

(5.9-2) 
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2 i.e. d(µ 1 ,µ 2) is the distance in L (A) between q 1 and q2. Now it is a very 

useful and important observation that this distance function is independent of 

the choice of the measure A, as long as both µ1 and µ2 are absolutely 

continuous with respect to A. One can always find a probability measure A 

such that µ1 and µ2 are absolutely continuous with respect to A; e.g. take 

1 1 A= 2µ1 + 2µ2 • Therefore the d!stance function is well defined on the set of 

all probability measures on (n,F). (see [Kaku], who remarks that this idea was 

communicated to him by Von Neumann; this idea can also be found in the 

literature of quantum mechanics, see e.g. [Ma]). 

5.9-3. Definition. (a) Consider a sample space n together with a a-algebra F 

of subsets of n. The distanced between each pair of probability measures on 

(n,!) is called the Hellinger distance between probability measures on 

(n,F), 

(b) The corresponding inner product 

(5.9-4) 

is called the Hellinger affinity between µ1 and µ2• 

5.9-5. Remarks. (i) In fact one can extend the definition to all nonnegative 

measures on (n,F), without any problem. 

(ii) For probability measures the distance can be derived from the affinity 

and vice versa: 

(5.9-6) 

Note that <q 1 ,q2> 2 E [0,1]. 
L (A) 
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See also remark (iv). 
2 + 2 (iii) Let L (A) denote the subset of L (A) consisting of nonnegative 

2 + functions (the nonnegative 'orthant'). Let w: L (A) + {non-negative 
2 

measures <<A}, dw(q) := q dA. Then the set of all non-negative measures is 
2 + 

~ w(L (A)), where A runs through all non-negative measures. The Hellinger 

2 + distance is the distance concept inherited from the L (A) , via W• 
2 + 2 + (iv) Now let B(A) c L (A) be the.intersection of L (A) with the unit sphere 

around the origin :n L2(A). Then the set of probability measures 

is u w(B(A)). The Hellinger distance induces an inner metric dB on the set of 
A 

all probability measures (on a given (n,F) of course): it corresponds exactly 

to the inner metric induced by the L2(A) metric on the unit sphere B(A) in 

L2 (A). Therefore it can easily be computed. If q 1 and q2 are as before, then 

it is just the angle between ql and q2, if they are considered as vectors from 

the origin: 

( 5. 9-7) 

(cf. [Rin], p.4., formula (5)). 

Because arccos is monotonic it follows that the affinity itself is also a 

measure of closeness, for probability measures. The geodesic between µ1 and 

µ2, along the 'sphere' of probability measures is µ(t), t E [O,l], with 

µ(O) = µ, µ(l) = µ2, and 

(5.9-8) µ(t) 

where /(µ 1µ2) denotes the geometric mean of µ1 and µ2 , which has, by 

definition, density q 1q 2 with respect to A• Here too it can be shown easily 

that ✓ (µ 1 µ 2 ) is in fact independent of the choice of A, if only µ1 and µ2 are 

both absolutely continuous with respect to A• Note 

Let 
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Now let {µ(8)18 € 0} denote a parametrized set of probability measures, 0 a 

differentiable manifold. Suppose there exists a measure A such that µ(8) is 

absolutely continuous with respect to A for all 8 € 0. Also, suppose that 

µ(8) varies 'smoothly' with 8, such that the Hellinger metric don the 

probability measures, (or, what amounts to the same thing, the metric dB on 

the probability measures) induces a Riemannian metric on the tangent space at 

0 in 8, as follows. If 8 = 8(s), Isl < e:, is a smooth curve in 0, and 

8 = 8(0) is the tangent vector of this curve at s = 0, then the Riemannian 

metric is given, in local coordinates, which will also be denoted by 8 (by (a 

common) abuse of notation), by: 

( 5. 9-9) lim d(µ(8(s)),µ(8(0))) 2 

s+o s 2 

Therefore the Riemannian metric tensor is equal to 

(5.9-10) 

This is-apart from the factor¾ - the Fisher information matrix, and therefore 

the Riemannian metric that it describes is called the Fisher metric. 

5.9-11. Remark. The Fisher metric can also be viewed as a limiting case of the 

Kullback-Liebler distance. The difference with the Hellinger distance is that 

the Kullback-Liebler distance is not symmetric, and therefore it does not 

satisfy the requirements for a metric, in contradistinction to the Hellinger 

distance. 

5.10. The Fisher metric on spaces of stochastic systems 

The Hellinger metric restricted to the space of stochastic systems r, as 

described at the beginning of section 5.8, turns out to be a discrete metric. 

(This is not so surprising, if one realizes that these systems are 

identifiable from the sequence of all data {yt}t:_00). This implies that the 

corresponding Fisher metric, as defined in section 5.9 is degenerate. If one 
T restricts to T consecutive data {yt}t=l' then the corresponding Fisher 

information matrix g~ (= Fisher metric tensor) is nondegenerate. As it turns 

out, 
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exists and is nondegenerate. In the literature (5.10-1) is therefore taken as 

the definition of the Fisher metric for linear stochastic systems (see e.g. 

[Kri 77), [Arna 86]). 

5.10-2. Theorem. Let (A(t),B(t),C(t),n(t)), -g < T <£,denote a smooth curve 

of stochastic systems in innovations representation (5.8-29) and let 

(A,B,C,Q) denote the tangent vector at this curve at T = 0. Then 

( 5.10-3) 

where 

• • • .! 2 
ll(A,B,C,QII F 

g 

1 n ~T~(ei9) ~ i9 * z,;- f trT(eiB)-1 o cit clT(~T) {T(ei9)-l}*de + 
-n 

- ½ T(s)(Q) • 

Proof. cf. [Meh), p. 216-217. 

Various other expressions for the Fisher information matrix (and its inverse, 

which is the asymptotic normalized covariance matrix for maximum likelihood 

estimators) have been derived, cf. e.g. [Kri 77), [Go-P), section 5.5 etc. 

5.10-4. Remark. T(s) is the transfer matrix of the so-called standardized 

innovations representation. The standardized innovation is defined as 

(5.10-5) 

where w ~ N(O,Q) is the innovation at time t. Clearly vt ~ N(0,I). 
t ~ - -* Let U(s) = T(s) , i.e. U(s) is the transfer matrix of the system 

T T - - 1 
(A-BC) xt + C .(Q) 2ut, 

T - --l-
-R xt + (Q) ·ut. 
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Note that the zeroes of the original system are the poles of the new system 

and vice versa. 

5.10-7. Theorem. Let N be some open subset of a Euclidean space and consider a 

local parametrization (A($),B($),C($),Q($)),$EN, of stochastic systems in 

innovations representation (5.8-30). The Fisher information matrix of these 

stochastic systems with respect to this parametrization is the same as the 

Fisher information matrix of the following stochastic systems in innovations 

representation: 

Proof. Let (Q)½ := (Q)-½. Going from the original system to the new one, 

corresponds to going from T(s) to U(s), defined as above, and to going from 

(Q)½to(Q)½. 
• a 

Fix a value $0 €Nanda direc:ion $• Let 3T denote the directional derivative 

in$=$ in the direction of$• One has 

(5.10-8) 

and 

(5.10-9) 

0 

-ie -* U(e ) 

Substituting this in (5.10-3) gives 

IIA,B,C;QII 
. gF 

(5.10-10) 1 w . 8 * < -ie)* * f [u( -i) { _ U(e-ia)-* au e U( -ia)-} 2-rr tr e aT e x 
-w 
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The last formula is exactly the right-hand side of (5.10-3) with T replaced by 

U and (G)½ by (O)½. 
Q.E.D. 

5.10-11. Corollary. The mapping of stochastic systems given in terms of their 

innovations representations by 

(5.10-12) - T T T - -1 (A,B,C;U)i---+((A-BC) ,C ,-B ;(n) ) 

is an isometry for the Fisher metric. 

5.10-13. Comment. From this theorem it follows that if one approaches the 

boundary of the manifold of stochastic systems (which consists of systems with 

zeroes on the unit circle) then the Fisher metric, and the corresponding inner 

metric, will be the same as when one approaches the unstable systems, using 

the mapping (5.10-12). If an unstable system is infinitely far, (as is always 

the case in the metric of section 5.8) then the same holds for the system with 

zeroes on the unit circle, that corresponds to it via (5.10-12). It turns out, 

however, that this is not always the case. Whether it is sometimes the case or 

not is still an open question, which I am trying to figure out. If it turns 

out to be the case sometimes, i.e. if there are (asymptotically stable) 

stochastic systems with zeroes on the unit circle that are infinitely far from 

stochastic systems with no zeroes on the unit circle, then this would be a 

disadvantage for the Fisher metric on stochastic systems, as defined by 

(5.10-1). The metric defined in section 5.8 does not have this disadvantage. 

Why would one call such a property a disadvantage? Because stochastic systems_ 

with zeroes on the unit circle are intuitively~ exceptional from the point 

of view of identification of stochastic systems. (They~ exceptional from 

the point of view of prediction, because the corresponding predictor is not 

asymptotically stable). 
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The definition of (5.10-1) could also be based on asymptotic maximum 

likelihood estimator theory, because the inverse of gF is the asymptotic 

covariance matrix of the maximum likelihood estimator (see e.g. [Go-P], 

section 5.0, although they do not mention the word Fisher information matrix 

explicitly there). The results for the dynamic case are comparable to the case 

of i.i.d. random variables, as long as the prediction errors of a model (which 

needs not be the true one) at times far apart are almost uncorrelated. (See 

also the next chapter.) However, this may no longer hold for systems with 

zeroes on the unit circle. All this suggests that further research of the 

behaviour of the Fisher metric in the neighbourhood of the boundary of the 

manifold is interesting and important. 

5.11. Some remarks on identifiability and Riemannian geometry 

It is well-known that if the Fisher information matrix is nonsingular at a 

point in the parameter space, then the parametrization (of the model space) is 

locally identifiable at that parameter point. (cf. [Ro]). This can be easily 

understood if the Fisher information matrix is interpreted as metric tensor of 

the Fisher metric, and the result can be immediately generalized to other 

Riemannian metrics. Also this geometrical interpretation points the way how 

these results can be generalized. 

In section 3.2.1.3 local (parameter-) identifiability was defined. Here, 

again, we assume that the model space is system identifiable. The following 

theorem is standard differential geometry. 

5.11-1. Theorem. Consider a Riemannian manifold M,d = dim (M). Let 

$i: ei + M, i EI be an indexed family of mappings, 

0i 5 ~d, 0i open, Vi EI, such that 

u µ(0) = M. 
iEl i 

Let furthermore the Riemannian metric tensor with respect to the parameters in 

0i be well-defined and nonsingular, for all e E 0i, and for all i EI. Then 

the {(0i,$i)ji EI} form a (complete) set of coordinate charts for the 

manifold. It follows immediately that the corresponding parametrization$ 

(notation as in section 3.2.1.3) is locally identifiable. 

One can deduce from this that a parametrization$= 0 + M, with 
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0 
d 

u {(ei,i)li EI}, ei open, 0i ~ R, Vi EI, is locally identifiable at 

8 E Si, i EI, if the Riemannian metric tensor with respect to the parameters 

in 0 is well-defined and nonsingular at a. 
i 

Because the Fisher information matrix is a metric tensor it follows 

immediately that if for a given parametrization the Fisher information matrix 

is well-defined and nonsingular at a point, then the parametrization is 

locally identifiable there. But the same conclusion holds for any other 

Riemannian metric tensor! Because the Fisher information matrix is rather 

difficult to compute for stochastic linear dynamical systems, one can, for 

testing local identifiability, consider to compute the determinant of the 

Riemannian metric tensor for such systems that we proposed in section 5.8. If 

this determinant is nonzero then local identifiability follows!. 
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Appendix SA. Symbolic computation of the Riemannian metric tensors 

Making use of the formulas in theorem (5.2-38) in the deterministic case and 

of the formulas in section 5.8, especially (5.8-8) ff., for the stochastic 

case, W Mak has computed symbolically the Riemannian metric tensor (R.m,t.) 

for a number of cases, using the computer program 'Reduce'. The 

parametrization has been chosen as follows 

0 0 -a 

hi l 1 0 

( SA-1) A . l , B 

~: • C 

(O,O, ••• ,0, 1), 
0 

0 -a n-2 
0 •• 0 -a 

n-1 

with n = 1,2 or 3. Due to the large amount of computer memory space that is 

used by Reduce, only in these cases (apart from some minor variations) the 

R.m.t. has been computed, for the corresponding deterministic continuous -

time systems. For the deterministic discrete-time systems the R.m.t. is 

computed for n 

computed for n 

1,2 and for the stochastic discrete-time case the R.m.t. is 

1 only. (For the cases with more than one input, but with one 

output ('m.i.s.o') the R.m.t. can easily be derived from the s.i.s.o. case; by 

dualization one can then also obtain the R,m.t. for the 's.i.m.o.' case). Let 

a tangent vector be denoted by 

and let the Riemannian metric tensor R be such that the Riemannian length oft 

is given by (t_TRt)½. For the various cases R is as follows. (To avoid 

confusion, note the minus signs in the parameters of the matrix A in (SA-1). 

This differs from the parametrization used in section 5.5!). 

The deterministic continuous-time case 
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b2 -bl 
If n 1, R 1 

~ -2 
4a 

0 0 

-bl 1 

4/ 2a 
0 0 

If n 2, R 

2 2 2 2 2 
aob2+albl aob2+aobl+albl 

0 -( 2 2 ) 
4a 0 a 1 4a 0 a 1 

2 2 
-bl 

0 
aob2+bl 

3 --2 
4a 0 a 1 4a 0 a 1 

aob2+albl -bl 
-( 2 2 ) --2 2a 0 a 1 4a 0 a 1 4a 0 a 1 

0 

bl -b 
2 0 --2 -2 

4a 0 a 1 4a 1 

If n = 3 the expressions become rather big, and will therefore not be given 

here. We refer to [Mak]; a copy of that paper can be sent upon request. 

The deterministic discrete-time case. 

-b2(a2+1) aobl 
If n 1, R~ 1 0 

2 3 -2--2 
(a0 -1) (ao-1) 

aobl -1 
2 2 z-

(a 0-1) a -1 
0 

If n = 2, the expressions are again rather big and we refer again to [Mak]. It 

is remarkable that the parametrization for the corresponding continuous-time 

systems leads to a much more concise representation of the Riemannian metric! 
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The stochastic discrete-time case 

It should be noted that without loss of generality, one takes here n 

D = 0 (cf. section 5.8). If n = 1, 

2 4 
-(9a 0+l)b 1 

3 
6a 0 b1 

2 5 
(a 0 -1) 

2 4 
(a 0 -1) 

R 

3 
6a 0 b1 

2 
-4b 1 

2 4 
(a 0 -1) 

2 3 
(a 0-1) 

1 and 

Making use of these R.m.t's, the curvature of the Riemannian metrics has been 

computed with Reduce in the two-dimensional model space cases (in which the 

curvature is given by a scalar), i.e. in the cases with n = 1. For the spaces 

~•~ 1 and ~'i 1 of deterministic systems it did not come as a surprise that 
' ' ' , the curvature turned out to be zero, because this already followed from the 

fact that the space is isometric to a Riemann surface (cf. section 5.5.1). But 

it did come as a surprise that in the stochastic discrete-time case, the 

curvature is also zero. Further analysis must show whether in this case too, 

the space is isometric to a Riemann surface. 
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