

CWI Tracts

Managing Editors

J.W. de Bakker (CWI, Amsterdam)
M. Hazewinkel (CWI, Amsterdam)
J.K. Lenstra (CWI, Amsterdam)

Editorial Board

W. Albers (Enschede)

P.C. Baayen (Amsterdam)
R.J. Boute (Nijmegen)

E.M. de Jager (Amsterdam)
M.A. Kaashoek (Amsterdam)
M.S. Keane (Delft)

J.P.C. Kleijnen (Tilburg)

H. Kwakernaak (Enschede)
J. van Leeuwen (Utrecht)
P.W.H. Lemmens (Utrecht)
M. van der Put (Groningen)
M. Rem (Eindhoven)

A.H.G. Rinnooy Kan (Rotterdam)
M.N. Spijker (Leiden)

Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

The CWI is a research institute of the Stichting Mathematisch Centrum, which was founded on
February 11, 1946, as a nonprofit institution aiming at the promotion of mathematics, computer
science, and their applications. It is sponsored by the Dutch Government through the Nether-
lands Organization for the Advancement of Research (N.W.0O).

CWI Tract 62

A specification system
for statistical software

V.J. de Jong

4

Centrumvoor Wiskunde en Informatica
Centre for Mathematics and Computer Science

1980 Mathematics Subject Classification: 62-04, 68N20, 68Q40.
ISBN 90 6196 370 2
NUGI-code: 811

Copyright © 1989, Stichting Mathematisch Centrum, Amsterdam
Printed in the Netherlands

Box[1969] :

" Unfortunately statistics has got divided up. There is a U-group called
Mathematical Statisticians and a Non-U group called Applied Statis-
ticians. The effect of all the U-manship has, not surprisingly, been
to produce a U-shaped distribution of talents with these two groups of
people either ignoring each other or else eyeing each other distrust-
fully and getting further and further apart. The result is that
instead of having a productive iteration between theory and practice,
which history and common sense both show is the key to progress, we
have theoreticians with less and less acquaintance with the real
world, and we have work being done by (and advice being given by)
applied people having less and less acquaintance with theoretical

”

ideas.

ACKNOWLEDGEMENTS

A large piece of software is something that one can not develop on his
own. A major influence in the choice of the design tools was exerted by
Paul Klint from The Center of Mathematics and Computer Sience in
Amsterdam. He 'forced' me to use the formal specification language ASF.
Though it seemed to lead me further away from my goal of implementing a
specification environment for statistical software, it saved me from
getting lost in the complexity of a large computer program.

Also I am indebted to Larry Menninga from Western Washington University,
who spent his sabbatical leave at the University of Groningen. He
introduced me in the world of computer science. Many of his solutions to
problems are used in the prototype of CONDUCTOR.

It is, of course, hardly possible to know all the details of existing
statistical packages. In this respect I greatly benefitted from
stimulating comments of Leo van der Weele.

The prototype of CONDUCTOR was constructed with assistance of Theo Stam
and Jan-Herman Veldkamp. They have implemented several modules and spent
many hours finding bugs in the system.

I also would like to thank the Computer Science Department of the
University of Groningen for letting me be their guest on their UNIX
system. Without this system a project of the size of CONDUCTOR is hardly
possible.

Finally I must thank Tom Wansbeek, Albert Verbeek and numerous other
colleagues for reading preliminary drafts of this book.

CONTENTS

PART I. BASIC CONCEPTS AND TOOLS

1. INTRODUCTION

2. EXISTING SOFTWARE TOOLS IN STATISTICS

2.1. flexibility and ease of use of software tools

2.2.

two inspiring examples

3. INFORMATION HIDING CONCEPTS

3.1.
3.2.
3.3.
3.4.

the multi-layered approach
modularization

applications of information hiding
information hiding in CONDUCTOR

4, THE IMPLEMENTATION OF A STATISTICAL TECHNIQUE

WO R R R R RN
N OO O AW N =

the bootstrap method
implementation of the bootstrap method
input restrictions

. using the bootstrap technique

the data
the kernel

the contribution of computer scientists

5. THE FORMALISMS USED IN THE DESCRIPTION OF CONDUCTOR

5.1.
5.2.
5.3.

syntax definitions
algebraic specification
the definition of the languages in CONDUCTOR

6. THE FORMAL SPECIFICATION OF CONDUCTOR

6.1.

o o o O
0 A LW

a top level view of CONDUCTOR

the contribution of the technical statistician
the contribution of the data expert

the contribution of the computer scientist
using the implemented statistical software

11
11
15

17
17
19
22
23

27
27
28
33
34
35
35
36

37
38
41
47

49
49
51
53
54
55

PART II. FORMAL SPECIFICATION OF THE STATISTICAL LANGUAGE

7. THE SYNTAX OF THE STATISTICAL LANGUAGE

7.1.
7.2,
7.3.
7.4.
7.5.

abstract sets of statistical techniques

the general structure of a statistical program
declaration of variables

the implementation section

the test and exception handler section

8. SYMBOLIC TYPE CHECKING OF STATISTICAL PROGRAMS

8.
8.

@ ©® & &

1.
2.
.3.

= T N

the index expressions
algebraic specification of index expressions

symbolic equivalence of dimension ranges and
data types

managing type information during type checking
type checking of assignment statements
type checking of function calls

a type correct statistical program

9. SYMBOLIC DIMENSION BOUND CHECKS AND THE GENERATION OF
INPUT RESTRICTIONS

9.
9.

PART III

N OO (AW

1.
2.

an ordering on index expressions

calculation of a symbolic range for an index
expression

restrictions on index expressions

input restrictions

assignment of a symbolic range to an index variable
matrix element references

a type and dimension bound correct statistical
program

FORMAL SPECIFICATION OF THE KERNEL

10. THE KERNEL

10.1. memory organization

10.2. the instruction set

10.3. exception handler tables
10.4. the data stack

57
58
61
62
64
65

69
71
77
78

81
82
83
87

89

91
93

95
99
99
101
102

105
106
107
113
114

10.5. the processor

10.6. kernel programs

11. TRANSLATION OF A STATISTICAL PROGRAM
11.1. general structure of the compiler
11.2. generation of instruction sequences
11.3. generation of a handler table

11.4. optimising kernel instructions

12. EXCEPTION HANDLING
12.1. raising of exceptions

12.2. handling a raised exception

PART IV FORMAL SPECIFICATION THE USER LANGUAGE AND THE
DATA INTERFACE

13. AN INTERFACE BETWEEN DATA AND STATISTICAL TECHNIQUES
13.1. the data producer's view on data
13.2. the user's view on data
13.3. the view of a technical statistician on data

13.4. the interface between the data producer’'s view
and the user'’s view

13.5. the interface between the user'’'s view and the
technical statistician’s view on data

14. THE USER LANGUAGE
14.1. initilalizing variables
14.2. initializing series
14.3. executing a statistical technique
14.4. formal specification of the user language

PART V IMPLEMENTATION AND EVALUATION OF CONDUCTOR

15. IMPLEMENTATION PROBLEMS OF CONDUCTOR
15.1. implementation of formal modules
15.2. finding information through identiftiers
15.3. storage problems

15.4. error recovery

114
116

119
120
121
124
125

127
128
134

139
139
140
141
142

146

151
151
152
154
154

157
157
159
160
164

16. THE USE OF FORMAL SPECIFICATIONS IN CONDUCTOR 167

16.1. using ASF in the design of CONDUCTOR 167
16.2. modularization 168
16.3. formal description 171
16.4. specifications of errors 175
16.5. keeping the prototype consistent with the 176
specification
16.6. equality of constant functions 177
16.7. advice for users of ASF 178
17. CURRENT STATUS OF CONDUCTOR AND FUTURE DEVELOPMENTS 179
REFERENCES 183
INDEX 189
APPENDICES
A. the concrete syntax of CONDUCTOR 191
B. ASF 193
C. ASF specification of basic structures 195
D. ASF specification of data types 197
E. ASF specification of index expressions, symbolic ranges 201
and type descriptions
F. ASF specification of abstract syntax of the statistical 204
language
G. ASF specification of the symbol tables 207
H. ASF specification of the static symbolic type checker 209
I. ASF specification of the generation of input restrictions 215
J. ASF specification of the kernel 224
K. ASF specification of the generation of kernel instructions 234
L. ASF specification of the overall CONDUCTOR system 240
M. tree representation of CONDUCTOR 243

PART I

BASIC CONCEPTS AND TOOLS

1. INTRODUCTION

Statistical software developed in the last two decades can only be
maintained by professional programmers. It goes without saying that
experts in statistics lacking both the required programming skills and
the knowledge of the architecture of the software are unable to maintain
statistical software. Improvements in statistical techniques, therefore,
first have to be explained to programmers. This takes time, costs money
and causes errors. In software engineering the problem of maintainability
is considered to be enormous. Wiener and Sincovec [1984] estimated that
maintenance often accounts for more than 80% of the life cycle cost of a
software product. A survey by Lientz and Swantson [1980] revealed that
approximately 65% of maintenance was perfective (i.e., was the result of
changes demanded by the user after the first version of the software
product was finished).

An important development that may improve the maintainability of software
is the use of specification systems. In these systems a specification
language 1is available in which the design of the software can be
expressed. The specification language is not just some variant of a
conventional higher-level programming language. Rather it is a language
which is much closer to the problem domain, enabling domain experts to
add their knowledge to the system. A program written in a specification
language 1is automatically transformed into an efficient executable
program. An instruction in a specification language is equivalent to a
large number of instructions in a higher-level programming language.
Higher-level programming languages are often referred to as third

generation languages; the specification languages evolving from these

1

languages are also called fourth generation languages. An example of a
specification system is given in Cheng et al. [1984]. This system allows
managers to create software for financial accounting.

In this book we describe a specification system for statistical software.
Developing and maintaining statistical software is a combined effort of:

- Technical statisticians. This group of experts must implement and
maintain the statistical techniques in the statistical software,

- Data experts. This group of experts must implement and maintain the
database in the statistical software,

- Computer scientists. This group of experts must implement and
maintain the computer science aspects, such as the numerical
methods and the user interfaces, of the statistical software.

In a specification system for statistical software each of these groups
must be able to contribute their knowledge in a language close to their
problem domain. The main design goal of a specification system for
statistical software is to orchestrate the individual contributions of

each of these groups.

computer

"fﬁ . SPECIFICATION .
-f SYSTEM

scientist

Of course the subdivision of experts is arbitrary. Each group of experts
itself again is heterogeneous. For the construction of a specification
system for statistical software, however, it is only relevant that the
experts in each group are able to express their knowledge in the same
language.

A crucial step in the design of a specification system for statistical

software is the choice of an appropriate language for each of the groups.

2

For technical statisticians we created a new language: the statistical
language. For computer scientists and data experts we chose already
existing languages. For computer scientists this is a higher-level
programming language and for data experts a database design language.
Even though these languages have many drawbacks, in this book no effort
is undertaken to improve them. For a discussion on available higher-level
programming languages see for example Pratt [1984]; database systems and
database design languages are discussed in for example Ullman [1985] and
Date [1981].
The statistical language enables a technical statistician to add his
knowledge to statistical software in such a way that it can be used by
applied statisticians. In the statistical language he can specify for
each statistical technique:

- the required input data,

- the resulting statistics,

- the equations describing the calculation of the parameters,

- (pre)tests,

- advice for the user of the technique.
To give concrete form to our ideas in this book a prototype of a
specification system for statistical software is developed called
CONDUCTOR. To simplify the construction of CONDUCTOR, the current version
focusses on econometricians, a subclass of all technical statisticians
(CONDUCTOR can of course be tailored for technical statisticians). The
statements in the statistical language resemble the mathematical notation
used in econometric textbooks, such as Maddala [1977] and Judge et al.
[1980]. A technical statistician may use a subset, matrix notation, of
the mathematical notations used to describe estimation techniques as in
these books. In this notation the dimension bounds of matrices are index
expressions. This is one of the differences between the statistical
language and other matrix languages, like APL (see Pakin [1972]) and
SAS/IML [1985].
The main goal of a specification system for statistical software is to
produce efficient software. The matrix languages APL and SAS/IML can only
be used for what is called rapid prototyping. This is due to the fact
that programs written in these languages are interpreted and not
compiled. As a result many of the optimization techniques used in

compilers for higher-level programming languages can not be applied. If

3

the programs in matrix languages however could be compiled, the
performance of the resulting software would increase dramatically.
A part of the compilation of a program is called type checking. In type
checking the type restrictions on particular constructs of the language
are verified. A matrix operator, for example, can be restricted to
operate on two matrices with equal dimension bounds. The use of symbolic
dimension bounds in matrix types complicates the type checking of the
statistical language. An important part of this book tries to tackle this
problem. Solving this problem removes one of the bottle necks towards the
construction of a specification system for statistical software.
The user of a statistical technique initializes the index variables that
determine the dimension bounds of the matrices during the execution of
the statistical technique. The index variables must be initialized in
such a way that no type or dimension bound conflicts occur during the
execution of the statistical technique. In software generated by a
specification system for statistical software, the user is not aware of
the fact that matrices are used in the statistical language. All error
messages concerning matrices are therefore meaningless to a user, and
should be avoided as much as possible. Type and dimension bound
restrictions in the statistical 1language should therefore be checked
during the compilation of a statistical program (static type checking).
A matrix with symbolic dimension bounds, as defined in the statistical
language, is the equivalent of a dynamic array of reals in a higher-level
programming language. Static type and dimension bound checking of dynamic
arrays in a higher-level programming language, however, is impossible. A
program in these languages may have infinitely many execution trees. That
is, there are infinitely many paths leading through a program. To prove
that the type and dimension bounds restrictions are not violated in these
programs is tedious and in practice often impossible. In higher-level
programming languages, and in other matrix languages one, therefore,
relies on run-time checks on these restrictions.
The statistical language of our prototype CONDUCTOR has a less
complicated control structure than higher-level programming languages:

1. it does not have conditional statements,

2. the only loop control statement is the for-statement,

3. a for-loop is executed at least once,

4, loop control variables may not be reassigned inside a loop,

n

the input index variables may not Le reassigned,

index expressions are monotone non-increasing or non-decreasing,

~N o U

dimension ranges are strictly positive.

Due to these properties a statistical program in CONDUCTOR has a unique
symbolic execution tree: an unconditional symbolic expression, in terms
of the input variables, can be calculated for each index variable after
each statement in the program. The symbolic expression calculated for the
dimension bounds of matrix types are used by the symbolic type and
dimension bound checker in CONDUCTOR. If a type or dimension bound
restriction can not be verified symbolically, input restrictions are
generated on the input index variables in a statistical program. The
input variables of a statistical technique are the variables that the
user of the statistical technique must initialize in the generated
statistical software. This group of variables, and the restrictions on
these variables, are assumed to have meaning for an applied statistician
who uses the statistical technique. Symbolic evaluation was, for example,
also used by King [1976] to test higher-level programming language
programs with infinitely many execution trees.

The restrictions 1 and 6 on the statistical language are rather strong
and seem to demonstrate the impossibility of the creation of a useful
statistical language. How these restrictions can be relaxed is one of the
things we learned from construction of the prototype. Both restrictions
are only imposed in order to make symbolic evaluation of the statistical
language possible. We may relax restriction 1 allowing conditional
statements, if we impose the restriction that index variables may not be
reassigned inside a conditional statement. Under this restriction we
still can make an unconditional symbolic evaluation, evén though a matrix
program as a whole may have infinitely many execution trees. In our
prototype CONDUCTOR, however, conditional statements in the statistical
language are not implemented. Restriction 6 can be relaxed by introducing
an additional data type integer. Of course integers do not have to obey
the restrictions on the data type index as long as they are not used in
the symbolic evaluation.

Besides the tackling of problems involved in the creation of a
statistical language, a major effort discussed in this book is the
definition of the interaction between parts of software generated by the

different groups of experts. To simplify this definition, in our

5

prototype CONDUCTOR, a kernel is introduced. The kernel has a processor
that can execute the semantic actions that take place during the
evaluation of a statistical program. For the kernel a statistical program
is a sequence of these actions, also called kernel instructions. Two
examples of kernel instruction are:

- an instruction that requests the user of the statistical technique to

initialize an input variable,

- an instruction that calls a numerical function.
These kernel instructions and the numerical counterparts of the functions
in the statistical language, must be implemented by computer scientists.
CONDUCTOR provides the generated statistical software with a database
interface. Data in the database is not stored as merely a collection of
numbers. Additional information, such as, sample design, instrument and
context, collected during the data production process (see David [1985])
can be added to the database. A data expert can write background queries,
that are used by the database interface to check the consistency of the
retrieved data. When a user of the generated statistical software
retrieves a particular series from the database the back-ground query is
automatically invoked to do the required consistency checks. Thus
detailed knowledge of the data production process is hidden from the user
of the data, yet inconsistent data is labeled by the database interface.
CONDUCTOR allows each group of experts to look at a statistical technique
from their own level of abstraction. An expert at each of these levels
might detect that the execution of a statistical technique must be
interrupted because necessary conditions for execution are not satisfied.
In computer science such conditions are called exceptions, and causing an
interrupt is cailed raising an exception (see Goodenough [1975]). 1In
systems, that must remain in continuous operation, it is important that
the execution of a program is not stopped when an exception occurs.
Several higher-level programming languages, like ADA, PL/I and PL/C,
therefore, provide facilities for exception handlers. When an exception
is raised, control of the program is passed to the exception handler.
After completion program control is returned to the point where the
exception occurred.
Statistical analysis is seen in CONDUCTOR as a continuous process. During
statistical analysis, it often happens that a statistical technique can

not calculate the required statistics, because necessary conditions are

6

not satisfied by the analyzed data. Such a situation is seen as the
occurrence of an exception. Yet the applied statistician wants to
continue the analysis and needs advice. Are alternative statistical
techniques available that can tackle the problem? Or do data
preprocessing techniques make analysis of his data set possible? The
answers, of course, should be given by the experts. The exception
handling mechanism in CONDUCTOR allows the experts to provide this
information. Exceptions in CONDUCTOR are raised when:

- test results indicate that the applied statistical technique is
inadequate for the analyzed data (detected by the software created by
the technical statistician),

- computational problems make the calculation of a numerical function
impossible (detected by the software created by the computer
scientist),

- data is missing or inconsistent (detected by software created by the

data expert).

When an exception occurs, the kernel of CONDUCTOR looks for an exception
handler. Exception handlers describe how the statistical software must
react if an exception occurs. Exception handlers can be written by
either a technical statistician, a data expert or a computer scientist.
For the kernel, exception handlers are independent sequences of kernel
instructions. The exception handler mechanism opens the possibility for
experts to react on exceptions raised by one of the other groups of
experts. An exception handler implemented by a technical statistician,
for example, can handle an exception that is raised by a numerical
procedure implemented by a computer scientist.

To summarize, the main design goal of a specification system for
statistical software is to offer experts in computer science, data
collection and technical statistics the possibility to implement and
maintain their own restricted contribution to efficient statistical
application software. Technical statisticians are trained to think in
terms of matrix notation. The widespread use of matrix languages, like
APL, among these experts is not surprising. The use of these languages
is, however, only suited for rapid prototyping. One can not develop and
maintain efficient application software in these languages. In the
developed prototype CONDUCTOR, a technical statistician can add his
knowledge in a statistical language. CONDUCTOR transforms a program,

7

written in this language, into erficient statistical software. It
combines the software written by the technical statistician with software
written by computer scientists and data experts. And, it also generates
the appropriate input restrictions.

An applied statistician should not notice the difference between existing
statistical software and software produced in CONDUCTOR. He can apply
statistical techniques to explore data gathered by data experts. Software
constructed in a specification system, however, has two big advantages
compared with existing software. The first advantage lies in the
maintainability of the generated statistical software. New developments
in the scientific areas of the different expert groups can be implemented
without the need for deliberation with experts in one of the other
groups. This will make modern techniques in technical statistics, data
production and computer science more rapidly available for applied
statisticians. The second advantage is, that software generated in a
specification system for statistical software can produce more than just
statistics. When during the execution of a statistical technique an
exception is raised, the user can be given advice by the appropriate
expert. Technical statisticians, computer scientists and data experts can
implement their messages in exception handlers.

Constructing a specification system for statistical software is a large
software project. To make such a project successful it has to be
thoroughly specified. To specify the system yet an other language is
used: a formal specification language. Such a language enables computer
scientists (system developers) to give a formal definition of a software
project. Yes this is complicated, this book contains a formal
specification of a specification system for statistical software. The
formal specification language is used to make a blueprint of CONDUCTOR.
Both a UNIX and an MS-DOS version of this prototype exist.

For the specification of our prototype CONDUCTOR we use the formal
specification language ASF (Bergstra, Heering and Klint [1987]). ASF is
based on initial algebraic semantics for algebraic specifications with
conditional equations. Modularization mechanisms in ASF, such as
parameterization, imports and exports are similar or identical to the
ones discussed in Klaeren [1983], Loeckx [1984] and Bergstra et al.
[1985]. The formal specification of CONDUCTOR contains definitions of:
the data types in the statistical language and in the user language, the

8

abstract syntax of these languages, the kernel, the translation of a
statistical program into a kernel program, the symbolic type and
dimension bound checking, and a top 1level view of the CONDUCTOR
environment. A by-product of the CONDUCTOR project is the evaluation of
usefulness of ASF.

This book is organized as follows. In the remaining chapters of part I a
general introduction is given to the basic ideas behind CONDUCTOR and the
formalisms used in the definition of CONDUCTOR. Chapter 2 contains a
short review of existing software tools in statistics. Information
hiding, as applied in CONDUCTOR, is discussed in chapter 3. Chapter 4
shows an example of an implementation of a statistical technique in
CONDUCTOR. The formalisms used in the specification of CONDUCTOR,
grammars and algebraic specifications, are discussed in chapter 5. In
chapter 6 we discuss the general outline of the formal specification of
CONDUCTOR. In part II the definition of the statistical language is
given. The specification of the concrete and abstract syntax of this
language is discussed in chapter 7, the symbolic type checking in chapter
8, and symbolic dimension bound checking in chapter 9. In part III the
formal specification of the kernel is given. In chapter 10 the kernel and
the kernel instructions are specified. The translation of the statistical
programs into kernel instructions is discussed in chapter 11. The
exception handler mechanism of CONDUCTOR is described in chapter 12. In
part IV both the user language and the data interface are specified. The
user language in chapter 13, the data interface in chapter 14. In part V,
we conclude, in chapter 15, with a discussion of the prototype, and, in
chapter 16, of the use of specification language ASF. In chapter 17, we
discuss the current status of the CONDUCTOR project and suggest future

developments. =

2, EXISTING SOFTWARE TOOLS IN STATISTICS

Most empirical work in statistics is done with the use of a few leading
statistical packages. These so-called general statistical packages
contain the commonly used statistical techniques. Well known examples of
general packages are SAS [1982], SPSS [1986] and BMDP [1985]. For
statisticians with a more specialized field of interest also specialized
software exists: the special purposes packages. Good examples of special
purpose packages are LISREL, a package tailor-made for the estimation of
parameters in models with unobservable variables (see Jéreskog and Sdrbom
[1981]), and TSP [1980], a package for time series analysis. If a
statistician wants to use a statistical technique which is not contained
in any of the statistical packages, he has to use a higher-level
programming language. In the statistical community, frequently used
higher-level programming languages are FORTRAN, PASCAL, PL/I and C. Also
matrix oriented languages, like APL and SAS/IML, are popular among
statisticians. In this chapter we will briefly discuss the flexibility

and ease of use of both statistical packages and programming languages.

2.1. FLEXIBILITY AND EASE OF USE OF SOFTWARE TOOLS

Statistical packages make statistical techniques available for large
groups of users. In order to reach this goal the statistical techniques
are implemented as a ’‘black box’'. The user only has to give the input

data and the package returns an impressive amount of statistics.

11

INPUT DATA ———

v

'black box' =———» STATISTICS

Getting output from a statistical technique in statistical packages, as a
result, requires only minimal knowledge of the statistical technique. An
example is the use of the instrumental variables technique (INST) in TSP.
INST is a statistical technique that can be used if the explanatory
variables in a linear model are correlated with the disturbance term. In
such a situation ordinary least squares estimates are inconsistent. To
solve this problem a group of variables is sought that is both highly
correlated with the explanatory variables, and is uncorrelated with the
disturbance term. These variables are called instrument variables. INST
uses these variables to produce consistent estimates of the coefficients
in the linear model. In the TSP program fragment below, a consumption
equation is estimated using INST. The first statement in this example
gives the name of the program. The second statement in the program loads
the data. The third statement gives the equation that is to be estimated.
In this example the dependent variable is consumption and the explanatory
variables are income and consumptionprice. The variables importprice,
export, import and a constant are used as instrument variables, as

specified in the second part of the statement.

NST program fragment

To get output from INST in TSP only modest knowledge of this statistical
technique is needed. The main effort lies in accessing and manipulating
the data. Other statistical techniques can be used in a similar way. Of
course, for the interpretation of the output, knowledge of INST is highly
recommended. Unfortunately this requirement is never enforced by
statistical packages. Table 2.1 gives an overview of available techniques

for the estimation of equations in standard packages as reported by

12

Francis [1981], Rodler [1985] and Srba [1985]. The even larger market of
statistical software for microcomputers is for example discussed in
Woodward, Elliot and Gray [1985] and Van Nes [1987].

The 'black box' approach also has its price from a software engineering
point of view. Modifications in the software can only be made by experts
with considerable programming skills, knowledge of the statistical
technique and knowledge of the architecture of the package in question.
And even if one has such rare skills, most commercial software producers
do not make available the source programs of their statistical packages.
Thus in practice the 'black box' packages ‘are inflexible.

In recent years many features have been added to statistical packages in
order to improve the flexibility. Examples of such features are (1)
parameters allowing the user to choose from different options of a
statistical technique,(2) macro facilities and (3) interfaces with
subroutines written in higher-level programming languages. Mostly the
ease of use of a statistical package (sp) decreases when these facilities

are added, while of course the flexibility improves.

If the statistical packages do not contain the desired estimation
techniques, a statistician has to use a higher-level programming
language. The disadvantage of using a higher-level programming language
is obvious: one has to start all over again. Not only the statistical
technique has to be implemented, but also user interfaces, report
facilities, documentation, etc. This is time consuming. In most cases,
after a promising start, the new software engineer ends up in a labyrinth
of problems. Only a few will find a reasonable way out. A result is that
statisticians write programs that are used by a few friends at most.

13

Table 2.1 Available estimation techniques in a few leading standard

packages for econometric applications.

statistical package IAS TSP . SAS/ETS TROLL
estimation technique
1. ordinary least squares X X X X
with AR(1)-correction
CORC X X - X
HILU X X - b3
ML-proc - X - -
iter. - - X -
2. generalized least squares - - X -
3. non-linear least squares X X X X
4. two stage least squares X X X X
5. instrumental variables X X b4 X
6. k-class estimator X - X X
7. limited information X - X X
maximum likelihood
8. full information - x - X
maximum likelihood
9. limited information b4 - - -
instrumental variables
10. full information X - - -
instrumental variables
11. three stage least squares X X b3 X
12. non-linear 3-stage least squares - X X -
13. non-linear multivariate - - X -
regression

source: Rodler[1985].

14

Making the technique available for a large commuaity is simply too much
of an effort. One dreams of a kind statistical tool box in which previous
efforts can be reused to create software for new developed statistical
techniques. A specification system for statistical software is a meant to

make that dream come true.

2.2. TWO INSPIRING EXAMPLES

Two software tools developed by large organizations formed an inspiring
example for the construction of the statistical language in CONDUCTOR: S,
developed by AT&T Bell Laboratory, and IML, an interactive matrix
language developed by SAS.

S is a software tool for data analysis and graphics. It emphasizes
interactive analysis and graphics, ease of use, flexibility and extendi-
bility. S is developed at AT&T Bell Laboratories and is currently in use
under the UNIX operating system. An extensive treatment of S is given in
Becker and Chambers [1984a], a short overview of S can be found in Becker
and Chambers [1984b]. The design goal of S is stated by Becker and
Chambers as: "to enable and encourage good data analysis, that is to
provide users with specific facilities and a general enviromment that
helps them quickly and conveniently to look at many displays, summaries
and models for their data and to follow a kind of iterative, exploratory
path that most often leads to thorough analysis”. Particular interesting
features of S are:

- in S the 1language resembles common algebraic notation, using
operators and functions,

- S has an interface to user-written functions, which allows
functions to be written in a higher level programming language,

- S is centered around "an executive": an interactive parser that
parses and evaluates the expressions; "the executive" is an inter-
preter,

- S focusses on a research environment where statisticians
continuously develop new techniques and thus is highly extensible,

- there is a special value NA (not available) which can be used to
signify missing data,

- S allows the use of vectors and matrices with fixed dimensions,

15

- changes in "the executive" of S should not require changes in the
code of the user.
IML is a programming language developed by SAS. The basic data elements
of IML are matrices. IML can be seen as a successor to the programming
language APL in which the rather cryptic special symbols in APL are
replaced by a more familiar notation. IML tries to let the user think in
terms of matrix notation. One of the big advantages of IML is that it can
be used in combination with other software products of SAS such as
SAS/GRAPH, which makes IML a powerful tool for matrix oriented
scientists. Some interesting features of IML are:
- the matrices in IML are dynamic. The dimension and type of a variable
can be éhanged at any time in a program,
- IML contains a large set of matrix functions and operators,
- no declarations are required in IML, the attributes of a matrix are
determined when the matrix is given a value (late binding),
- IML allows data processing,
- IML provides graphic commands.
For a detailed description of SAS/IML see the SAS/IML User's Guide
[1985].
Both S and IML are excellent tools for technical statisticians to tackle
their problems. Neither tool, however, is intended to be a specification
system for sfatistical software. Programs written in S or IML are used by
their creators, and are not meant to be used by others. Both S and IML
are suitable for what is called rapid prototyping, and do not produce
efficient application software. A program in the statistical language of
CONDUCTOR is compiled in order to make efficient execution possible,
whereas a program in S or IML is interpreted. The difference between the
statistical language in CONDUCTOR and both S and IML is, among other
things, reflected in the fact that the matrices in CONDUCTOR's
statistical language may have symbolic dimension bounds. Whereas in S and
IML the exact dimensions at any time during the interpretation of a

program are given.

16

3. INFORMATION HIDING CONCEPTS

In a specification system for statistical software, where different
experts cooperate, knowledge implemented by one expert must be completely
transparent for experts in other scientific disciplines. This concept,
called information hiding, is well-known in computer science. In this
chapter two basic concepts of information hiding are discussed: the
multi-layered approach and modularization. Both in the multi-layered
approach and modularization, a problem is tackled at different levels of
abstraction. The difference between the two concepts of information
hiding is whether or not a separate language is defined at each level of
abstraction. In the multi-layered approach a separate language is created
for each level, whereas in modularization the solutions of problems at

different levels of abstraction are expressed in the same language.

3.1. THE MULTI-LAYERED APPROACH

Consider running a statistical program on a computer. A user of a
statistical program gives an instruction, using the command language of
the statistical program, to calculate certain statistics. This
instruction is equivalent to a large number of micro-code instructions,
that are executed by the hardware of the computer. In modern computers
many intermediate levels exist between the hardware level of the computer
and the statistical program level. The statistical program level is like
the top of an iceberg. Underneath the surface are a lot of other levels.

Instructions in the statistical language are interpreted by a program

17

written in a higher-level programming language. Statements in the higher-
level programming languages are compiled into statements in lower-level
languages until finally the hardware level 1is reached where the
instructions are executed by the electric circuits of the computer. For a
discussion on the multilevel architecture of computers see Tanenbaum
[1976]. Another beautiful example of the multi-layered approach is in the
construction of distributed database systems (see Ceri and Pelagatti
[1985]).

The multi-layered approach makes it possible to make modifications at one
level without influencing the other levels. Changes can be made at, for
example, the assembly level without influencing the other levels. Of
course, certain changes require that the interfaces between the levels
also must be modified. The advantage of the multi-layered approach is
that problems can be solved at the appropriate level of abstraction, in a
language close to the domain language of the expert who must make the

changes.

18

3.2. MODULARIZATION

At one level of abstraction in the multi-layered approach, a problem can
be so complex that it has to be divided into subproblems that can be
tackled separately. This form of information hiding is called modulari-
zation. In contrast to the multi-layered approach, all subproblems are
solved using the same language.

In the academic world it is considered to be 'self-evident' that large
and complex pieces of software are constructed using the principles of
modular design. Using these design principles in practice, however,
appears to be difficult. Parnas et al. [1985] have specified the
following goals of module decomposition:

- each module's structure should be simple enough to be understood
fully,

- it should be possible to change the implementation of one module
without the knowledge of the implementation of other modules and
without affecting the behaviour of other modules,

- only very unlikely changes should require changes in the interface
of widely used modules,

- it should be possible to make a major software change as a set of
independent changes to individual modules,

- a software engineer should be able to understand the
responsibilities of a module without understanding the details of
the internal design,

- a reader with a well-defined concern should easily be able to
identify the relevant modules without studying irrelevant modules,

- the number of branches at each non-terminal module should be small
enough that the designer can give convincing arguments that the
submodules have no overlapping responsibilities.

For large projects the number of modules is enormous and the modular
design principles are difficult to check. Therefore much effort is
undertaken to improve modularization techniques and tools. Important in
this respect are the development of new programming languages and formal
specification languages.

Again a warning for the reader. Do not confuse formal specification
languages with the statistical language. A formal specification language

is meant for software engineers who develop any kind of software, not

19

just statistical software. Using this language a software engineer can
formalize the requirements and properties of his software. In this book
it is used to formalize the requirements of a specification system for
statistical software. The statistical language is part of this system

that has to be formalized.

3.2.1. Programming languages.
New programming languages facilitate the construction of modular
software. Important languages in this respect are ADA and MODULA-2. The
ADA programming language was developed at the initiative of tne U.S.
Department of Defense (USDoD) between 1979 and 1983. In April 1979 a
language design team, headed by Jean Ichbiah of CII Honeywell-Bull won a
four-way competition for the best language design. This design was
thoroughly tested and revised between April 1979 and July 1982.
Nevertheless many computer scientists hold critical views with respect to
ADA. For a further introduction to ADA see Wiener [1983] and USDoD
[1983]. MODULA-2 was introduced by Niklaus Wirth, the founder of PASCAL,
in 1980 (Wirth [1983]). The MODULA-2 programming language overcomes many
of the deficiencies of PASCAL. It combines PASCAL's simplicity with much
of ADA's power. ADA and MODULA-2 provide facilities for reducing two
major difficulties in large scale software design:

- poor interface between separate software components,

- interference between components because shared data (global data)

is incorrectly modified by some program unit.

As a result the interfaces between separate modules in ADA and MGDULA-2
are precisely defined.
Though ADA and MODULA-2 are excellent programming languages for large
scale software development, they are not the type of language in which
non-computer scientists, like statisticians, easily maintain and develop
software. The languages simply contain too many features irrelevant to
non-computer scientists, while other necessary features, like dynamic
arrays of reals, are missing. Another problem is that, even though ADA
and MODULA-2 are superior to earlier programming languages, FORTRAN still
has the historic advantage that many procedures are already available in
procedure libraries like IMSL and NAG.

20

3.2.2. Formal specification.
The new programming languages offer the possibility to implement
modularized projects. An even bigger problem is how to modularize a large
project. Many modularization techniques exist these days that offer a
discipline to modularize problems. An example is the Jackson-design
method (see Jackson [1975,1983]). Not surprisingly, no algorithm has ever
been found to modularize large scale problems. The process of modulari-
zation remains and probably will always remain dependent on the
creativity of the problem analyst. Therefore, it is still very important
that a system analyst thoroughly defines his problem before he actually
starts implementing it. This specification process, however, is also not
without problems. The pitfalls in specifying a software project were
listed by Meyer [1985] as "the seven sins":
- noise: elements in the specification do not add information,
- silence: aspects of the problem are not treated in the
specification,
- overspecification: aspects of the specification do not deal with the
problem but with a possible solution of the problem,
- contradiction: elements of the specification contradict with other
elements in the specification,
- ambiguity: elements of the specification can be interpreted in more
than one way,
- forward reference: elements in the specification refer to problems
solved later in the specification,
- wishful thinking: there are elements in the specification for which no
realistic solution exists.
Some of these sins can be averted if the analyst makes use of a formal
specification language. The mathematical notation in such a language is
better suited to give a precise description of a problem than natural
languages. The language used in this book, for example, helps to remove
noise, contradiction, ambiguity and forward reference in the
specification of CONDUCTOR. Silence, overspecification and wishful
thinking in this specification, however, remain the responsibility of the
author of this book.
An important aspect of a formal specification language is, that it has
facilities to describe the modularization of a problem. This offers a

system analyst the possibility to describe how his problem is divided in

21

subproblems, before he starts implementing such modules. The formal

specification langauge ASF has such facilities.
3.3. APPLICATIONS OF INFORMATION HIDING

Modularization and the multi-layered approach are applied almost every-
where in computer science. In this section we discuss a few of the
applications that influenced the design of CONDUCTOR. These applications
are: procedure libraries, the UNIX environment, and very high-level

programming producing systems.

3.3.1. Procedure libraries.

A beautiful and simple application of modularization is the standard
function in higher level programming languages. These functions can be
linked into a program without having to be coded line by line by the
programmer who wants to use these functions. For some scientific areas
also special libraries are created containing non-standard functions and
procedures. Good examples of such libraries are the collection of over
500 mathematical and statistical routines in the IMSL library and the NAG
library. Another good example is given by the U400 functions associated

with the UNIX "programmers workbench"(see Ivie [1977]).

3.3.2. The UNIX environment.

The UNIX environment contains a variety of facilities that apply
information hiding. Besides function libraries, a good example is the
UNIX pipe. The UNIX pipe makes whole programs building blocks of larger
computational structures. This has led to the development of a
literature of specialized programs. These programs structured as simple
filters can be applied in many applications.

Other examples of information hiding in UNIX are the shell and the
generic facilities. The shell hides the implementation details of UNIX on
a particular computer from the UNIX user. Examples of generic facilities
are the screen management software (cursors and termcap) and program
generators (lex and yacc). The program generator yacc can be used to
create a parser for a programming language. The implementation details of
the parsing algorithm in yacc are hidden from the user of yacc. A

discussion of the information hiding principles applied in UNIX can be

22

found in Kernighan [1984]. A detailed discussicn of UNIX is given in
Kernighan and Pike [1984].

3.3.3. Very high-level program-producing systems.

In computer science, a system that in interaction with an expert can
produce software for solving the expert's problems, is called a very
high-level program-producing system (VHLPPS). Such a system does not
accept a variant of a conventional high-level programming language,
rather it accepts a language closer to the problem domain of the expert.
The system may have a great deal of information built into it, either
about the domain or about how to create programs for this domain.
Different types of VHLPPS are discussed in Horowitz and Muson [1984].
Examples of VHLPPS are DRACO a system developed by Neighbours and Freeman
[1980, 19847, and MODEL developed by Prywes et al. [1977, 1979]).

An approach taken by several researchers is to use a formal specification
language as the domain language, and try to transform a program in this
language into an efficient program. This approach has only been used for
small prototypes and the question is if this approach will work for
large-scale software projects. Examples of this approach are given in
Arsac [1979] and Balzer [1981].

3.4. INFORMATION HIDING IN CONDUCTOR

CONDUCTOR is a VHLPPS: a system for the development of statistical
software. CONDUCTOR has built-in knowledge to generate efficient
statistical software from the statistical programs written by the
statistical expert. Given a statistical program CONDUCTOR generates:

- a user interface,

- an interface with a database,

- input restrictions,

- links with numerical procedures.
Both modularization and the multi-layered approach are applied in the
design of CONDUCTOR. The emphasis on the multi-layered approach is
reflected by the fact that the two upper 1levels of abstraction in
conventional statistical software, the user command level and the

higher-level programming language level, are subdivided into five levels:

23

- a statistical level: at this .ievel statistical techniques are
implemented,

- a data expert level: at this level data experts can specify how data
sets are collected,

- a user command level: the command level of the resulting software. It
resembles the conventional user command level in statistical software
packages. Using a command language a user can apply statistical
techniques to data stored in a database,

- a kernel level: statements at the statistical level are translated
into kernel instructions. The kernel level is a shell that allows
computer scientists, technical statisticians and data experts to make
changes on their own level without knowledge of the other levels,

- The higher-level programming level: At this level, computer science
experts can add their knowledge to CONDUCTOR, and, of course,
CONDUCTOR itself is implemented.

Procedures and functions in libraries are the building blocks of

CONDUCTOR: the conductor kernel calls these procedures and functions.

Examples are procedures to calculate the inverse of a matrix, and

procedures to calculate the eigenvalues and eigenvectors of a matrix.

CONDUCTOR allows technical statisticians to combine these procedures in

infinitely many ways, freeing them of the burden of the tedious parameter

substitution problems involved in the use of these procedures in higher-
level programming languages. From the UNIX operating system CONDUCTOR

'steals' the idea of the shell (the kernel of CONDUCTOR), which hides

tedious details involved in the implementation of UNIX on a particular

computer from the main design of UNIX.

CONDUCTOR consists of the kernel plus the four interfaces with the

surrounding levels, to wit a compiler for the statistical language, a

user language interpreter, a database interface, and facilities to

connect numerical procedures written in a higher-level programming

language. The statistical and data expert level are built on top of a

higher-level programming level. This is the general outline of a

specification system in which statistical and data experts can create,

debug and modify their (restricted) contribution to the software.

24

‘user command level of
'a statistical program

‘statistical expert

 level

kernel level

sees e

lower levels

Creating a specification system for statistical software is a large
software project. A necessary condition for such a project to be
successful is that all requirements are described, and that the project
is modularized. Therefore a complete formal specification of CONDUCTOR is
given in the specification language ASF. ADA or MODULA-2 are very good
higher-level programming languages to implement CONDUCTOR. One could
benefit from the elegant way in which modularization is possible in these
languages. CONDUCTOR, however, is implemented in C and runs under both
the UNIX and the MS-DOS operating systems. The choice for C was mainly
based on practical reasons. ADA and MODULA-2 compilers were not available
at the computers used by the author. Yet, C in combination with the UNIX
operating system forms an excellent software development environment, and

was available on the VAX computer used by the author.

25

4, THE IMPLEMENTATION OF A STATISTICAL TECHNIQUE

In this chapter it is demonstrated how a statistical technique can be
implemented in our prototype specification system for statistical
software. As an example we use a statistical technique known as the
bootstrap method. After a brief introduction of this statistical
technique, it is shown how a technical statistician can implement this
technique, and how it can be used by an applied statistician in the
resulting software. Furthermore the role of the kernel and the
contributions of both the data expert and the computer scientist in this

example are discussed.

4.1. THE BOOTSTRAP METHOD

The bootstrap method is a statistical method that can be used to estimate
the statistical error of estimated parameters. In this example the method
is used to estimate the variance of regression coefficients in a linear
model. In the linear model it is assumed that the wvariation in the
dependent variable y can be explained by the variation in the independent
variables X,,..,X, .
Suppose (y,X) is a realization of the random matrix (y,X), whose rows are
identical independently distributed with unknown distribution F; X is a
matrix of order n x k and contains the observations of the independent
variables, and y is an (n x 1)-vector of the observations on the

dependent variable. Define

27

b= (X'X)"'X'y

so that X b is the orthogonal projection of y on the space spanned by X
(a general formulation of the well-known regression coefficient in the
linear model). The distribution of b is unknown, but asymptotic theory
usually yields wuseful approximations. The bootstrap offers a wvalid
alternative replacing mathematical analysis in the field of asymptotic
theory by 'massive calculations'. Its basic idea is simple: estimate F by
the empirical distribution F of the observations (y,X) and perform a

Monte Carlo study drawing samples from F.

F = mass (1/n) on each observed data
point of y.

More precisely the bootstrap method proceeds as follows:

- draw with replacement a sample from the n observations of (y,X)

- calculate estimator b for the sample,

- repeat the first two steps mentioned above and calculate the average

and variance of the sample estimates.

The calculated average and variance are respectively the bootstrap
estimates of the expected value of the regression coefficient and the
variance of this parameter. For a more detailed discussion of the

bootstrap method see for example Efron and Gong [1983].

4.2. IMPLEMENTATION OF THE BOOTSTRAP METHOD

A statistical technique is implemented in CONDUCTOR in the statistical
language. A program in this language defines:

- the name of the technique,

- the input variables, the variables that must be initialized by the
user, and the output variables, the variables that contain the results
of the statistical technique,

- the equations that specify how the required statistics are calculated,

- the tests of either the basic assumptions of the implemented
technique, or the significance of the estimated parameters; when the

test results are negative an exception is raised

28

- the exception handlers for exceptions that may occur during the
execution of the statistical technique.

For the bootstrap technique we first have to decide which identifier must

be used in the resulting software to call the technique. An obvious

choice is the identifier 'bootstrap'. This identifier is given in the

name section of a statistical program.

T name section statistical program

Next it has to determined what are the input and output variables of the
bootstrap technique. Clearly the user has to give the observations for
the dependent and independent variables, Y and X. Furthermore he must
indicate the number of observations n and the number of independent
variables k in his application!. In the example below, also the size of
each random sample s and the number of times a sample is drawn d must be
determined by the user. The output variables are the estimated expected
value of the regression coefficients b and the corresponding variance
(var_b).

Messages, that are wused to prompt for input, may accompany the
declaration of input variables. Similar, a message in an output
declaration may explain the calculated result. The input and output
variables are declared in the input/output section of a statistical

program.

input/output section statistical program

Of course CONDUCTOR can be made smarter by adding a function that
can determine the dimensions of a matrix, thus removing the
burden from the user to enter this data. In the current version
of CONDUCTOR, however, this is not implemented.

29

MATRIX [1 ton, 1tok] X

MESSAGE: "The independent vari

The equations in the implementation section of a statistical program
specify how the resulting statistics b and var_b are calculated. The
implementation section consists of a part in which internal variables are
declared and a part in which the equations are given.

Here a remark on the choice of the functions in the specification of the
bootstrap technique is on its place. In statistical computing it is well
known (see Kennedy and Gentle [1980]) that using the inversion procedure
is not the most efficient and stable approach to estimate the regression
coefficients. Other procedures, like Cholesky and Householder
decomposition, in many cases have better numerical properties. For the
design of CONDUCTOR, however, this is irrelevant. The choice of a
particular set of functions only influences which experts are able to use
the statistical language. To improve the readability of the examples we
have chosen the notation wused in econometric textbooks. Adding
Householder and Cholesky decompositions function to CONDUCTOR would
require technical statisticians with more knowledge of the numerical
problems in statistical computing. Surely this would improve the
efficiency of the generated software, but it would reduce the group of

potential users.

30

implementation section statistical program

In test sections the technical statistician can specify tests that check
the significance of the resulting statistics. A test, for example, may
check if all estimated regression coefficient are significant. In the
test section below this test is 'the rule of thumb'. This rule states
that an estimated rggression coefficient is significant if it is at least

twice the size of the estimated standard deviation of the coefficient.

test section statistical

31

Note that the functions abs and sqrt and the operator <= operate element-
wise on the vectors. If all the inequalities hold the result of the <=
operator is the boolean value true. Though the matrix notation suggests
that this is a combined test of the significance of the estimated
coefficients, it consists in fact of independent tests of the individual
coefficients in the vector beta.

After the execution of the implementation section of the bootstrap
technique the conditional expression in the test is evaluated. If the
result is true, an exception is raised and the execution of the technique
is interrupted. During the execution of the bootstrap technique also
exceptions can be raised in software created by other experts. Exceptions
are regarded as signals that further execution of the technique is
impossible or meaningless.

In the statistical program the technical statistician can write exception
handlers. An exception handler determines how the software reacts in case
an exception occurs. An exception handler may consist of a warning for
the user of the statistical technique, as shown in the following

exception handler section of a statistical program.

exception handler section statistical program 1

If an exception near_singular is raised, during the execution of the
bootstrap technique, the message in the exception handler is displayed.
Because no explicit STOP statement 1is added to the exception handler,
the execution of the statistical technique continues after the exception
handler is executed. The example shows that the exception handling
mechanism makes it possible for a technical statistician to react on
exceptions raised by the software created by other experts. In the
example the check on near-singularity is assumed to be implemented by a
computer scientist in a higher-level programming language. When a near-
singular matrix is inverted the numerical results may be inaccurate. The

inversion function in the bootstrap program inverts the matrix (X's#X).

32

The notion of near-singularity in this case is interpreted by the
technical statistician as multicollinearity: the independent variables
are strongly correlated. The exception handler of the technical
statistician communicates this meaning to the user of the statistical
technique.

In the example no STOP statement was added to the exception handler. By
adding such a statement, the technical statistician determines that the
execution of the statistical technique must be stopped when an exception
occurs, because the exception is considered to be fatal. This decision is
clearly an expert opinion; it may be different for different statistical

techniques.

4.3. INPUT RESTRICTIONS

The applied statistician who uses the generated statistical software must
not be confronted with cryptic errors concerning the matrix notation used
by the technical statistician. CONDUCTOR, therefore, performs extensive
type and dimension bound checks to reduce the number of cryptic error
messages that may occur during the execution of a statistical technique.
Not all the type and dimension bound restrictions can be checked during
the compilation of a statistical program. The input restrictions,
however, that remain to be checked during the execution of the
statistical technique are 1restrictions on the input index wvariables.
These variables, and restrictions on these variables, are assumed to have
meaning for the user of the statistical technique. In our example the
following restrictions on the index variables of the bootstrap technique

are generated?:

2 In the current version of CONDUCTOR all input restrictions are
written as

expression >= 0,
or expression > O,
or expression = 0

33

D nBE>S
]
TN
vV VVYvVv
nonononon
[X-X-X-X=)

The input restrictions are checked after the user has initialized all

input index variables of the statistical technique.

4.4, USING THE BOOTSTRAP TECHNIQUE

The use of the bootstrap technique is demonstrated in the following user
session. In this example the user first retrieves data from a database.
He indicates which sample is to be retrieved from the database and which
variables he wants to retrieve. The symbol >u: is the prompt of the user
language interpreter in CONDUCTOR. After retrieving the data from the
database, the user calls the bootstrap technique, and the user is asked

to initialize the input variables.

user session

After the results of the bootstrap method are calculated, the requested
output is displayed. If exceptions occur during the execution of the
statistical technique, warnings and suggestions from experts may
accompany this output. For example, it may have been detected that the

matrix inversion was near-singular. The interrupt, handled by the

34

exception handler defined by the technical statistician in the bootstrap

technique, displays the specified message in this handler.

4.5. THE DATA

In the user session, in the previous section, series were used for
consumption, income, indirect tax and credit. In statistical research
these series are often produced by data experts. In the Netherlands a
large part of the data in statistical research is produced by the Central
Bureau of Statistics. During the data production process additional
information on the series is gathered. In CONDUCTOR it is assumed that
this additional information is stored in a database. Unfortunately such a
database is still a dream. CONDUCTOR only contains the interface with
this dream, and hopefully is an extra motivation to make this dream come
true.

When the series is retrieved from the database, the additional
information is checked for consistency. The consistency checks must, of
course, be written by the data expert. In our example a consistency check
may reveal that the series consumption is based on different types of
measurement in the sample period. When an inconsistent series of
observations is used by a statistical technique an exception is raised. A
data expert can specify an exception handler to warn the user. Note that
this exception handler is not a part of a statistical program. Such an

exception handler is called an external handler in CONDUCTOR.

4.6. THE KERNEL

A statistical program is executed when it is called in a user session.
The executing technique may invoke exception handlers written by either.
the data expert, the technical statistician or the computer scientist.
During the execution of a statistical technique a limited number of
semantic actions are executed. These actions form the instruction set of
a virtual machine called the kernel. The kernel has instructions to

~ request the user to initialize the input variables,

- evaluate expressions on a stack,

35

- change the sequential pattern of execution,

- control the exception handling,

- display messages,

- check input restrictions,

- terminate execution.
A compiler in CONDUCTOR translates a statistical program into a sequence
of kernel instructions. The bootstrap technique specified in section
4.2, for example, is translated into the following instruction sequences.

Of course, only a summary of all generated instructions is shown.

kernel instruction sequence

 USER_LOAD

i

USER_LOAD

HECK-GE-REST

The instruction sequence generated for the exception handlers in the
statistical technique, are stored separate from the main instruction
sequence of the statistical technique.

4.7, THE CONTRIBUTION OF COMPUTER SCIENTISTS

The numerical procedures in the bootstrap technique, such as matrix
inversion and the generation of a random number, must be implemented by
computer scientists in a higher-level programming language. Furthermore,
these experts, of course, have to create CONDUCTOR.

36

5. THE FORMALISMS USED IN THE DESCRIPTION OF
CONDUCTOR

In this chapter we introduce the formalisms used in the definition of
CONDUCTOR. The definitions of the statistical, the user and the kernel
language, together form the definition of CONDUCTOR. The definition of
programming languages has received a lot of attention in the last two
decades (see McGettrick [1980]). From the informal description of the
first programming language many, more formal, definitions have evolved. A
complete language definition nowadays consists of:

- a set of building blocks (words), this set is called lexicon, or

sometimes alphabet,

a possibly infinite set of sequences of words, called sentences,

- a predicate on sentences indicating whether or not a sentence is an

element of the language,

- the specification of the semantics of the sentences.
The first three parts of this definition are referred to as the syntax of
the language. In section 1 of this chapter a short review of syntax
definitions is given. For a discussions on this topic see also Aho and
Ullman [1977] and Aho, Sethi and Ullman [1986].
To define the semantics of the languages in CONDUCTOR we use the formal
specification language ASF. ASF is discussed in section 2 of this

chapter.

37

5.1. SYNTAX DEFINITIONS

Among the many notations used in describing the syntax of a programming

language are context-jfree grammars and syntax trees.
5.1.1. Context-free grammars.

A context-free grammar G is a 4-tuple (N,T,S,P), where N is a finite set
of non-terminals, T is a finite set of terminals, S is a start symbol,
and an element of N, and P is a finite set of production rules. The
terminals are the symbols from which sentences are formed in the
language. The set of non-terminals N are the grammatical categories of
the language. The start symbol S is a special non-terminal indicating a
correct sentence in the language. The production rules P specify the ways
in which sentences can be constructed from S. A string of terminals is a
correct sentence in the grammar G, if and only if it can be derived from

S using the production rules.

Example 5.1.: (from Aho and Ullman [1977]).

Consider the grammar G for simple arithmetic expressions. The non-
terminals are expression and operator, with expression as the start

symbol.

{ expression, operator }

w0
]

expression
The set of terminals is:
T={idn +, “ *, /v ‘: (o)}

The set of productions P contains the productions:

expression =--)> expression operator expression
expression --> (expression)

expression --> id

operator -=>+ | - | s | /|~

38

Examples of correct sentences in this language are:

id # id - id
id
id # (id - (id + id))

{end example 5.1.}

The process of checking whether a sentence can be generated by the
grammar is called the parse of a sentence. In order to be able to write
an efficieht parser for a grammar, the grammar must satisfy certain
restrictions. For most programming languages either LL(1) or LALR(1)
grammars are used to describe their syntax. These grammars are subclasses
of the general class of context-free grammars, but they are powerful
enough to describe most syntactic constructs in these languages. Both
grammar classes guarantee that no back-tracking is required in the parse.
LL(1) parsers are top-down, deterministic parsers with one symbol
lookahead, and were first described by Foster [1968], and received a
theoretical treatment in Knuth [1971]. LL(1) parsers are for example used
in compilers for programming languages like PASCAL and MODULA-2. LALR(1)
parsers are bottom-up deterministic parsers with one symbol lookahead.
The LALR(1) parsers are a subclass of the more general LR parsers
introduced by Knuth [1965]. Examples of languages using LALR(1) grammars
are ADA and C.

For the LALR(1) grammars there exist algorithms which can automatically
construct a parser. LR(1) parser-construction algorithms are due to
DeRemer [1969, 1971]. An efficient parser-constructor algorithm is also
given in Park, Choe and Chang [1985]. An example of a parser generator is
yace written by Johnson [1975]. In CONDUCTOR languages are defined using
grammars that satisfy the LALR(1) restrictions. The parser in the
prototype of CONDUCTOR is developed with the use of yacc.

5.1.2. Syntax trees.
A useful representation of the result of a parse are syntax trees. The
tree representation of the parse of a sentence in the grammar is called

the concrete syntaxr tree or parse tree. Each node in this syntax tree

represents a non-terminal of the grammar, the leafs represent terminals.

39

Example 5.2.:

The parse of the last sentence of example 5.1. can be represented by the

following concrete syntax tree (the non-terminals are abbreviated):

expr
/ | \
expr o expr
| | I\
id » (expr)
/ 1\
expr oOp expr
[A
id - (expr)

/1N

expr op expr
id + id

{ end example 5.2.}

A condensed version of the concrete syntax tree is called the abstract
syntax tree. In the abstract syntax tree superfluous information in the
concrete syntax tree is removed. Superficial distinctions in fornm,
unimportant for the translation, do not appear in the abstract syntax
tree. McKeeman [1974] showed that the transformation of a concrete syntax
tree into a abstract syntax tree can be described by the use of a

transduction grammar.

Example 5.3.:
Using the transduction grammar with the following "tree constructing
rules"

expr --> expr op expr ==)> op
/\
expr expr
| (expr) ==)> expr
| id ==) id
op - o+ ==) +
l - ==) -

*
"

U

v

*

Lo

the concrete syntax tree of example 5.2. reduces to the abstract syntax
tree

{end example 5.3}

5.2. ALGEBRAIC SPECIFICATION

For the description of CONDUCTOR we use the formal specification language
ASF, defined in Bergstra, Heering and Klint [1987]. This description
includes a description of the semantics of the various languages in
CONDUCTOR. ASF is based on algebraic specification techniques as
described in Klaeren [1983], Wirsing [1983], Gaudel [1984] and Loeckx
[1984]. ASF extends the algebraic specification formalism based on
signatures and sets of equations in several ways. It supports (1) prefix
and infix operators, (2) multiple output values of functions, and (3)
module expressions. In ASF it is possible to give an algebraic
specification, with conditional equations, of the languages in CONDUCTOR.
For a review on algebraic specifications see Meseguer and Goguen [1982]
and Klaeren [1984].

The basic concepts in algebraic specification are sorts, carrier sets and
signatures. One can think of a sort as an abstract data type. The
elements of a carrier set represent distinct instances of a sort.
Consider, for example, the sort Booleans. If we take the intuitive
meaning of this sort it could be represented by the carrier set (0,1) or
the carrier set (true, false). Of course infinitely many other carrier
set (representations) of Booleans can be chosen. A signature describes a
set of functions. For each function it is exactly specified which sorts
are expected as input and what sort is returned as output. A signature is
defined more thoroughly by Meseguer and Goguen [1982]. A signature can be
defined as

41

Let S be a set of sorts. If a and b are both sorts in S. Then a

family of functions is defined as
{f:a->b | a,bin S }

These are typically all the function with as input of sort a and output
of sort b. If we allow more than one sort as input we get what is called

an S-sorted signature I

T ={f:w->s | win $*, s in S }
w,s

A signature defines some structure of interest. For example the signature
Boolean specifies booleans using a set of sort (bool) and a set of

functions (true,false, and).

Boolean = { (bool) , (true,false,and) }

with
true: -> bool
false: -> bool
and: bool # bool -> bool

By assigning a carrier set to each of the sorts we get a what is called a
Z-algebra. Many L-algebras may exist for the same signature, therefore an

initial Z-algebra is defined as:

A I-algebra A is initial in a class of I-algebras & that describe
the same structure if and only if there is only one I-homomorphism
for each XI-algebra C in & from A to C (see Meseguer and Goguen

[1982]1).

In other words an initial X-algebra is the 'smallest' representation of a
structure. Note that there may be more than one initial EI-algebra in the
same class. Two initial algebras in the same class & are abstractly the
same but differ in the representation given to the elements.

From the functions in a signature ZI-terms can be formed, similar to

L2

sentences in context-free grammars. This set of terms can be used as a
carrier set. All distinct terms are a possible representation of the
distinct data-items in a signature. For example, in our signature Boolean

we may form the terms

true, false, and(true,false), and(and(true,false),false),...

It is clear that many of the above terms represent the same data item.
Equations are introduced to specify which terms are equal. To restrict
the Z-algebra Booleans to only two data items the functions in this

signature must satisfy the equations

and(true, false) = false
and(false,true) = false
and(false, false) = false
and(true, true) = true

To get meaningful restrictions the sets of equations should obey the
following restrictions:

- applying the equational logic to deduce new equations should always
yield equations that are satisfied by any algebra satisfying the
equations (soundness),

- every equation, satisfied by all algebras satisfying the given
equations, can be deduced using the equational 1logic (complete-
ness).

Using one signature to describe a large software product would yield an
enormous amount of sorts, function and equations. In ASF, therefore, a
signature can be modularized. In a module expressions make one can import
sorts and functions specified in another module by importing that module.
Each module may contain an export clause indicating which sorts and
functions can be imported by other modules. Our Booleans can be expressed
in the following module

module Booleans

begin
export
begin
sorts BOOL
functions
true: -> BOOL
false: -> BOOL
and: BOOL # BOOL -> BOOL
end

43

functions

not: BOOL -> BOOL
equations
and(true, false) = false
and(false,true) = false
and(false, false) = false
and(true, true) = true
not(true) = false
not(false) = true

end Booleans

The module Booleans is imported in the module Integers. This module can
use the functions true, false and and specified in module Booleans. For
example, the constant functions true and false are used in the specifica-

tion of a function equal in module Integers.

module Integers
begin
export
begin
sort INT
functions
null: -> INT
increment: INT -> INT
equal: INT # INT -> BOOL
end

imports Booleans

variables
i,11,12 :=> INT

equations
equal(null,null) = true
equal(null, increment(1)) = false
equal(increment(i),null) = false

equal(increment(11), increment(12))

equal(il,i2)

end Integers

To make modules more generally applicable, parameterization is available
in ASF. Each formal parameter is a submodule and contains one or more
sorts or functions, which at a later stage have to be bound to the actual

parameter. Consider the formal specification of a sequence

Y

module Sequences
begin
parameter Items
begin
sorts ITEM
end Items

exports
begin
sorts SEQ
functions
add-item: ITEM # SEQ -> SEQ
end

end Sequences

A sequence of integers can be specified by binding the parameter Items to

the module Integers.

module Integer-sequences
begin
imports Sequences
{ renamed by
[SEQ -> INT-SEQ]
Items bound by
[ITEM -> INT]
to Integers }
end Integer-sequences

The module Integer-sequences defines the sort INT-SEQ. All functions
specified for the sort SEQ are also defined for the sort INT-SEQ. Note
that not all parameters have to be bound when a module with parameters is
imported. Such unbound parameters are called inherited parameters.

The overall structure of specifications is illustrated by structure
diagrams. Each module is represented by a rectangular box. For example

the module Booleans is represented by

Booleans

Modules imported by a module M are represented by structure diagrams
inside the box representing M. For example the module Integers imports

the module Booleans.

45

Booleans

Integers

Parameters of the module are represented by ellipses carrying the name of
the parameter. The module Sequences with parameters Items, for example,

is represented by:

Sequences

The binding of formal parameters is represented by joining the formal
parameter and the module to which it is bound. This 1leads to the

following representation of the module Integer-sequences:

Booleans

Integers

Sequences

Integer- sequences

k6

5.3 THE DEFINITION OF THE LANGUAGES IN CONDUCTOR

An important part of the definition of CONDUCTOR consists of the
definition of the statistical language, the kernel language and the user
language. The first part of the definition of the statistical language
defines the concrete syntax. The next part is the definition of the
abstract syntax. In the abstract syntax tree the “syntactic sugar® of the
concrete syntax is removed. The third part defines the type restrictions
in the statistical language. A type correct statistical program is
représented as a type correct absiract syntaxr tree plus a symbol table
containing the type information of all variables in the abstract syntax
tree. The fourth part is the definition of the dimension bound
restrictions. A type and dimension bound correct abstract syntax tree
includes a set of input restrictions. In the final part of the definition
of the statistical language, the evaluation of the abstract syntax tree

is defined.

A type and dimension bound correct statistical program is represented in
the kernel as a kernel program. The semantic actions of the statistical
program in this representation are a sequence of kernel instructions. The
set of all possible kernel instructions is called the kernel language. Of

the kernel language only the abstract syntax and a description of the

47

evaluation are specified. The definition of the user language consists of
a concrete syntax; an abstract syntax, and the evaluation process of
abstract syntax trees. One of the semantic actions in the user language
is the evaluation of a statistical program.

The concrete syntax of the user and the statistical language is described
by a grammar. This grammar satisfies the LALR(1) restriction and can be
found in appendix A. The remaining parts of the language definitions are
described in the formal specification language ASF. The definition of the
statistical language is given in part II of this book. The kernel
language and the evaluation of statistical kernel programs can be found
in part III. The data interface and the user language are given in part
Iv.

48

6. THE FORMAL SPECIFICATION OF CONDUCTOR

The definition of CONDUCTOR is a combined definition of the statistical,
the user and the kernel language. The definition consists of the grammar
describing the concrete syntax of these languages, as given in appendix
A, and the formal specification, as given in appendix C through L. In
this chapter we discuss the modules that describe CONDUCTOR at a high

level of abstraction. These modules can be found in appendix L.

6.1. A TOP LEVEL VIEW OF CONDUCTOR

CONDUCTOR maintains a global state. This state is determined by:

- the statistical techniques implemented by the technical statisticians,

- the external handlers implemented by either the computer scientists or

the data experts,

- the state of a user session.
All implemented statistical techniques are stored in the statistical
technique table. This table is represented in the formal specification by
the sort STAT-TECH-TABLE. All external handlers are stored in the
external handler table, represented by the sort EXT-HANDL-TABLE. The
state of a user session is specified by the sort USER-STATE. Every
combination of the sorts USER-STATE, STAT-TECH-TABLE and EXT-HANDL-TABLE
is a state of the CONDUCTOR. This state is represented by the sort CDT-
STATE. The function state in module Conductor-states specifies the state
of CONDUCTOR

49

state: USER-STATE # STAT-TECH-TABLE # EXT-HANDL-TABLE -> CDT-STATE

The details of the sorts USER-STATE, STAT-TECH-TABLE and EXT-HANDL-TABLE
are defined in the imported modules of module Conductor-states.
The state of CONDUCTOR can be modified in session. Module Conductor-
sessions specifies that a session-is either:
- a session of a technical statistician; in such a session a technical
statistician implements a statistical technique (represented by the
sort STAT-PRO),

stat-session: STAT-PRO -> SESSION

- a session in which either a data expert or a computer scientist

implements an external handler (represented by the sort HANDLER),

hand-session: HANDLER -> SESSION

- a session in which the implemented statistical software is used (such
a session consists of a user program represented by the sort USER-
PRO) .

user-session: USER-PRO -> SESSION

A session may modify the state of CONDUCTOR, as specified in the module

Conductor in the function execute

execute: SESSION # CDT-STATE -> CDT-STATE

The module Conductor specifies the most abstract notion of CONDUCTOR.
Details are defined in the modules imported by the module Conductor. Of
course, one easily looses track in the modules. The complete
specification consists of 114 modules with a total length of 4500 lines.
It contains, for example, the formal specification of the abstract syntax
of the statistical language, the static symbolic type checking of this
language, and the kernel. To get better insight in the relation between
the modules, a tree representation is presented, that gives a top-down
overview of the import relations between the modules of CONDUCTOR. The
tree, given below, shows the import relations between the modules, that

50

specify an abstract notion of CONDUCTOR.

Tree 1. The import structure of CONDUCTOR modules.

Conductor
Conductor- Resulting- Compiler Gen-ext- Conductor-
sessions - software handlers states
Statis.- User- Kernel Const-range- Implemented- User-
programs programs sequences techniques states
User- Database-
Handler- symtabs interface

Section

The complete tree representation of the system can be found in appendix
M. In the trees the information on inherited parameters, and the import
of basic modules such as the modules Booleans and Sequences is omitted.
The graphical representation of the modules generated by the ASF
specification checker is used as illustration throughout this book. The
graphical representation of the module Conductor on page 52 illustrates
that CONDUCTOR has three parameters: Current-func-types, Current-func-
code and Current-database. These parameters are discussed in sections 3

and U4 of this chapter.

6.2. THE CONTRIBUTION OF THE TECHNICAL STATISTICIAN
A technical statistician can implement statistical techniques in

CONDUCTOR. He does this by writing a program in the statistical language.
CONDUCTOR compiles this statistical program and stores it in the

51

Current-database Current-func-code Current-func-types

Current-database Current-func-code

Conductor-

Current-func-types

states Compiler

Current-func-code Current-database

Resulting-
software

Conductor
sessions

Current-func-types

Gen-ext-
handlers

Conductor

statistical technique table. A successful session of a technical
statistician modifies the state of CONDUCTOR as defined by the following

equation for the function execute in module Conductor:

[416] execute(stat-session(sp),state(ust,stt,eht))
= state(ust,
store-stat-tech(sp, stt),
eht)

This equation specifies that, given that CONDUCTOR is in a state
determined by wuser state ust, statistical technique table sst and
external handler table eht, the execution of a session of a technical
statistician results in a state where the statistical program is compiled
and stored in the statistical technique table. The tag [416] is the
number of the equation in appendices.

More details of the compilation and storage process are specified in the

imported module Compiler. In this module the function store-stat-tech is

52

specified
store-stat-tech: STAT-PRO # STAT-TECH-TABLE -> STAT-TECH-TABLE

with equation
[403] store-stat-tech(sp,stt) = insert(name(sp),compile(sp),stt)

implying that a statistical program, sp, is compiled and stored in the
statistical technique table stt. The module Compiler also contains the
specification of the functions compile and name. These functions are
discussed in chapter 11. Of course, all details involved in the
compilation and storage of a statistical program, including the function

insert, are specified in the imported modules of module Compiler.

6.3. THE CONTRIBUTION OF THE DATA EXPERT

A data expert has to construct the database that is connected to
CONDUCTOR. This is represented, in the formal specification by the
parameter Current-database of the module Conductor. This parameter is
inherited from module Database-interface. Recall that an inherited
parameter is a parameter of an imported module that is not bound in the
importing module. The parameter Current-database in module Database-

interface reads:

parameters Current-database

begin
functions
current-db: -> DATA-BASE
data-query: DATA-BASE # ID #
CONST-RANGE-SEQ -> USER-DATA
retrv-data: DATA-BASE # ID #
CONST-RANGE-SEQ -> SCALAR-SEQ
bg-query: DATA-BASE # ID #
CONST-RANGE-SEQ -> ID-SEQ

end Current-database

This parameter contains the functions current-db, data-query, retrv-data

and bg-query. The parameters specify, respectively, the database, how

53

data is retrieved from the data base, and how a background query checks
the consistency of the data. The sort ID in these functions specifies the
name of the series that is to be retrieved, and the sort CONST-RANGE-SEQ
describes the sample. A background query may result in a sequence of
exception identifiers: the sort ID-SEQ. A specification of all sorts in
the definition of parameter Current-database can be found in the modules
imported by the module Database-interface.

A background query may reveal that a retrieved series is inconsistent. If
such an inconsistency is detected an exception identifier is added to the
retrieved series. If this series is used in a statistical technique, the
accompanying exception is raised and the execution of the statistical
technique is interrupted.

The data expert can add external handlers to CONDUCTOR in an external
handler session. An external handler session of a data expert modifies
the state of CONDUCTOR as defined by the following equation for the

function execute in module Conductor

[417] execute(hand-session(hnd),state(ust,stt,eht))
= state(ust,
stt,
store-ext-handler(hnd, eht))

Given that CONDUCTOR is in a state determined by user state ust,
statistical technique table sst and external handler table eht, the
execution of a handler session results in a state where the external
handler is compiled and stored in the external handler table. The defini-
tions of the function store-ext-handler is given in the module Gen-ext-

handlers, a module that is imported by the module Conductor

6.4. THE CONTRIBUTION OF THE COMPUTER SCIENTIST

The contribution of the computer scientist is, to specify CONDUCTOR, and
to make efficient implementations in a higher level programming language
of all modules in the specification. This book can be seen as the
description of the contribution of the computer scientists in CONDUCTOR
as far as the formal specification of the modules concerns. Which
functions are available in the statistical language is left unspecified.

The type restrictions checks on these functions, as well as the numerical

54

procedures for the actual calculations, have to be constructed by the
computer scientists. For example, functions in the statistical language,
such as, matrix inversion, matrix multiplication and Kronecker product -
are not specified. The fact that functions in the statistical language
are left unspecified is represented in the formal specification by
unbound parameters Current-func-types and Current-func-code. These
parameters are discussed in respectively chapter 8 and chapter 10.

To handle such exceptions, the computer scientist may, like the data
expert, add external exception handlers to CONDUCTOR in an external

handler session.

6.5. USING THE IMPLEMENTED STATISTICAL SOFTWARE

A user can apply the statistical techniques implemented by the technical
statisticians to the data collected by the data experts in an environment
created by computer scientists. A user session modifies the state of
CONDUCTOR, as defined by the following equation for the function execute

in module Conductor.

[415] execute(user-session(up),state(ust,stt,eht))
= state(exec-user-pro(ust,available(sst,eht),up),
stt,
eht)

This equation specifies that, given that CONDUCTOR is in a state
determined by user state ust, statistical technique table stt and
external handler table eht, a user session results in a state where the
user program is interpreted and the user state is modified. The
definitions of the function exec-user-pro is given in the module

Resulting-software, a module imported by the module Conductor.

55

PART II

FORMAL SPECIFICATION OF THE
STATISTICAL LANGUAGE

7. THE SYNTAX OF THE STATISTICAL LANGUAGE

In statistical analysis a theoretical model is postulated that must
explain the observed data. If the basic assumptions of this model are not
rejected by (pre)tests, the unknown parameters of the model can be
estimated. Particular test results and parameter estimations may lead to
modification of the postulated model, and thus to a better description of

the observed data.

-» estimation -» tests

data v v v

Statistical software made it possible to calculate test results and
parameter estimations very fast. Besides positive effects, this also
introduced new perils. Trying many variants of the same theoretical model
can easily lead to data peeping and chance capitalization (see Lovell
[1983] and Meyer [1975]). The contribution of a technical statistician to
statistical analysis, therefore, should not only be restricted the

creation of tests and estimation techniques for specific theoretical

57

models. A technical statistician should also advice the users of his
techniques how to modify a postulated model given the calculated results.
The statistical language enables the technical statistician to add his
knowledge to statistical software. In this chapter both the concrete and
the abstract syntax of the statistical language are discussed. The
complete set of production rules of the concrete syntax of the
statistical language is given in appendix A. The formal specification of

the abstract syntax in appendix F.

7.1. ABSTRACT SETS OF STATISTICAL TECHNIQUES

For the definition of the statistical language one only needs to know
what operators, functions and data types are required to describe the
statistical techniques a technical statistician want to implement.
Knowledge of the statistical technique is not required. In this section
we define statistical techniques in terms of these building blocks. This
will lead to a few straightforward restrictions on the statistical
language.

Definitions:

1. TARGET is the set of n statistical techniques that the statistician
intends to express in the statistical language:

TARGET = {TECI,...,TECn}
2. FUNCTIONS is a set of m functions used in the equations of the
statistical techniques in the set TARGET.
FUNCTIONS = {F,,...,F,}
3. OPERATORS is the set of p operators used in the equations of the
statistical techniques in the set TARGET.
OPERATORS = {0P1.....0Pp}
4, TYPES is the set of k data types used in the equations of the
statistical techniques in the set TARGET.

TYPES = {T,,...,T,}

58

5. SST is the set of all statistical techniques that can be expressed
in terms of the sets FUNCTIONS, OPERATOR and TYPES.

SST = { TEC | g(TYPES, FUNCTIONS,OPERATORS) -»> TEC }

Note that the difference between operators and functions is not
fundamental. Operators can be regarded as functions with the appropriate
number of parameters. Nevertheless operators are used frequently in
statistical textbooks and can not be omitted if one wants to keep close

resemblance to statistical notational conventions.

Example 7.1:

Assume we live in 'a simple statistical world' and have the following
estimation techniques at our disposal: ordinary least squares (OLS) and
two stage least squares (2-SLS). These techniques give an estimation of

regression coefficients in a linear (simultaneous) model:
y=YB+XT+u

Where y is a (n x 1l)-vector of observations of the endogenous variable
that must be explained in the equation, Y, is a (n x m)-matrix of the
observations of the other endogenous variables in the equation, X, is a
(n x p)-matrix of the observations of the p exogenous variables in the
equation, u is a (n x 1)-matrix of random disturbances, B and t are,
respectively (m x 1), (p x 1) vectors of model parameters.

To estimate the model parameters the OLS-estimator can be used, however
this estimator results in inconsistent estimates of B and rv. The OLS-

estimator combines the matrix X1 and Y1 in the matrix X

and estimates 6§ = (B} v)' as

= ey =Ly
dolsq = (X'X) X'y

whereas the 2-SLS estimator estimates the coefficients in two rounds can
be written as (see Maddala [1977])

59

d2_SlS = [(Y1'Y1l - V1'Vl) Y1'X1 -1 (Y1-V1)'y
X1'vYl X1'X1 X1'y
where V1 is the (n x m)- matrix from the least-squares regression of Y1
on X. The two estimation techniques are the target set of the statistical

language.

TARGET = {OLS,2-SLS}
The equations that describe the two techniques in TARGET make use of the

following functions, operators and data types:

FUNCTIONS = {matrix inversion}
OPERATORS = {matrix subtraction (-),
matrix multiplication (),
matrix transpose ('),
matrix assignment (=) }
TYPES = {scalar,matrix,submatrix,partitioned matrix}

Using the sets FUNCTIONS, OPERATORS and TYPES we can also describe a
statistical technique called generalized least squares. This technique

therefore belongs to the set SST.

SST = {OoLS, 2-SLS, GLS,....}
{end example 7.1.}

Given the sets FUNCTIONS, OPERATORS and TYPES we can derive the following
necessary conditions for the grammar of the statistical language. Recall
that the grammar describes the syntax of the language, as discussed in
chapter 5. A grammar G consisted of a set of non-terminals N, a set of
terminal symbols T, a set of production rules P, and a starting symbol S.

S is one of the non-terminal symbols.

Condition 1: The identifiers of elements of the sets FUNCTIONS, TYPES and
OPERATOR are in T.

This condition implies that all identifiers (function identifiers,

operator symbols and data type identifiers) in the description of the

60

statistical technique must be terminals of the statistical language.

Condition 2: The equations describing the statistical techniques

in TARGET are correct sentences in the grammar.

In other words the production rules in the grammar must enable the

technical statistician to form the required expressions.

7.2. THE GENERAL STRUCTURE OF A STATISTICAL PROGRAM

In the statistical language the statistician determines:

- the user interface of the statistical technique; the user interface
consists of the input variables and the resulting statistics of the
technique,

- the equations that describe the calculation of the statistic

- the (pre)tests that check the basic assumptions of the statistical
technique and the significance of the calculated parameters,

- the exception handlers that describe how the software reacts if an
exception occurs (assumptions are violated or problems occur on other
levels of CONDUCTOR).

- a unique name for the statistical technique.

Each of these parts can be specified in separate sections of a

statistical program. A statistical program consists of one or more

sections as stated in the following production rules.

statistical_program --> statistical_program section |
section
section --> name_section |

input_output_section |
implementation_section |
test_section |
exception_handler_section

The corresponding abstract syntax is specified in the module

Statistical-programs.

61

module Statistical-programs

begin
exports
begin
sorts STAT-PRO, SECTION
functions
abs-prog: STAT-PRO # SECTION -> STAT-PRO
abs-prog: SECTION -> STAT-PRO
abs-sect: ID -> SECTION
abs-sect: I0-SEC -> SECTION
abs-sect: IMPL-SEC -> SECTION
abs-sect: TEST-SEC -> SECTION
abs-sect: HANDL-SEC -> SECTION
end

imports Decl-abstr-syntax, Impl-abstr-syntax
Test-abstr-syntax, Handler-abstr-syntax,
Identifiers

end Statistical-programs

Note that this module imports several other ones, which define the
abstract syntax of separate language constructs. The reader is referred
to appendix F for the definition of these modules; they will not further

be discussed in this chapter.

7.3. DECLARATION OF VARIABLES

Variables in the statistical language are divided in three categories:
input variables, output variables and the internal variables. The input
variables are the variables that must be initialized by the user of the
statistical technique; the output variables will contain the results of
the statistical technique that are returned to the user. The input and
output variables are declared in a input/output section of a statistical
program. A message string may accompany the declaration of input/output
variables. For input variables this message string is used to prompt the
user of the statistical technique to enter his data. For output variables
this message is clarifies the calculated results. Internal variables can
be declared in an implementation, a test and an exception handler
section. These variables remain invisible for the user of the statistical
technique.

Each declaration is a list of identifiers followed by the type of the
declared variables and a message.

62

declaration -=> var_type id_list message

In the current version of CONDUCTOR the data types booleans, scalars,
indices and matrices are available. Submatrices, matrix elements and
partitioned matrices can also defined. These matrix references, however,

are regarded as functions to access particular parts of matrices.

var_type --> 'BOOL' | 'INDEX' | 'SCALAR' |
vec_type] mat_type
The syntax of vector and matrix types includes the declaration of the

dimension bounds.

vec_type --> 'VECTOR' range
mat_type --> 'MATRIX' '[' ranges ']’
ranges --> ranges ',' range |
range
ra<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>