

CWI Tracts

Managing Editors

J.W. de Bakker (CWI, Amsterdam)
M. Hazewinkel (CWI, Amsterdam)
J.K. Lenstra (CWI, Amsterdam)

Edltorlal Board

W. Albers (Enschede)
P.C. Baayen (Amsterdam)
R.J. Baute (Nijmegen)
E.M. de Jager (Amsterdam)
M.A. Kaashoek (Amsterdam)
M.S. Keane (Delft)
J.P.C. Kleijnen (Tilburg)
H. Kwakernaak (Enschede)
J. van Leeuwen (Utrecht)
P.W.H. Lemmens (Utrecht)
M. van der Put (Groningen)
M. Rem (Eindhoven)
A.H.G. Rinnooy Kan (Rotterdam)
M.N. Spijker (Leiden)

Centrum voor Wlskunde en Informatica
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

The CWI is a research institute of the Stichting Mathematisch Centrum, which was founded on
February 11, 1946, as a nonprofit institution aiming at the promotion of mathematics, computer
science, and their applications. It is sponsored by the Dutch Government through the Nether
lands Organization for the Advancement of Research (N.W.O).

CWI Tract

A specification system
for statistical software

V.J. de Jong

62

Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

1980 Mathematics Subject Classification: 62-04, 68N20, 68040.
ISBN 90 6196 370 2
NUGl-code: 811

Copyright© 1989, Stichting Mathematisch Centrum, Amsterdam
Printed in the Netherlands

Box[1969]:

"Unfortunately statistics has got divided up. There is a U-group caHed

Mathematical, Statisticians and a Non-U group called Applied Statis

ticians. The effect of al,7, the U-manship has, not surprisingly, been

to produce a U-shaped distribution of talents with these two groups of

people either ignoring each other or else eyeing each other distrust

fuUy and getting further and further apart. The resuit is that

instead of having a productive iteration between theory and practice,

which history and common sense both show is the key to progress, we

have theoreticians with Less and Less acquaintance with the real,

world, and we have work being done by (and advice being given by)

appiied people having Less and Less acquaintance with theoretical,

ideas. "

ACKNOWLEDGEMENTS

A large piece of software is something that one can not develop on his

own. A major influence in the choice of the design tools was exerted by

Paul Klint from The Center of Mathematics and Computer Sience in

Amsterdam. He 'forced' me to use the formal specification language ASF.

Though it seemed to lead me further away from my goal of implementing a

specification environment for statistical software, it saved me from

getting lost in the complexity of a large computer program.

Also I am indebted to Larry Menninga from Western Washington University,

who spent his sabbatical leave at the University of Groningen. He

introduced me in the world of computer science. Many of his solutions to

problems are used in the prototype of CONDUCTOR.

It is, of course, hardly possible to know all the details of existing

statistical packages. In this respect I greatly benefitted from

stimulating comments of Leo van der Weele.

The prototype of CONDUCTOR was constructed with assistance of Theo Stam

and Jan-Herman Veldkamp. They have implemented several modules and spent

many hours finding bugs in the system.

I also would like to thank the Computer Science Department of the

University of Groningen for letting me be their guest on their UNIX

system. Without this system a project of the size of CONDUCTOR is hardly

possible.

Finally I must thank Tom Wansbeek, Albert Verbeek and numerous other

colleagues for reading preliminary drafts of this book.

CONTENTS

PART I. BASIC CONCEPTS AND TOOLS

1.

2.

3.

INTRODUCTION

EXISTING SOFTWARE TOOLS IN STATISTICS

2.1. flexibility and ease of use of software tools

2.2. two inspiring examples

INFORMATION HIDING CONCEPTS

3.1. the multi-layered approach

3.2. modularization

3.3. applications of information hiding

3.4. information hiding in CONDUCTOR

1

11

11

15

17
17

19

22

23

4. THE IMPLEMENTATION OF A STATISTICAL TECHNIQUE 27
4.1. the bootstrap method 27

4.2. implementation of the bootstrap method 28

4.3. input restrictions 33

4.4. using the bootstrap technique 34

4.5. the data 35

4.6. the kernel 35

4.7. the contribution of computer scientists J6

5. THE FORMALISMS USED IN THE DESCRIPTION OF CONDUCTOR 37
5.1. syntax definitions JB

5.2. algebraic specification 41

5.J. the definition of the languages in CONDUCTOR 47

6. THE FORMAL SPECIFICATION OF CONDUCTOR 49
6.1. a top level view of CONDUCTOR 49

6.2. the contribution of the technical statistician 51

6.3. the contribution of the data expert SJ

6.4. the contribution of the computer scientist 54

6.5. using the implemented statistical software 55

PART II. FORMAL SPECIFICATION OF THE STATISTICAL LANGUAGE

7. THE SYNTAX OF THE STATISTICAL LANGUAGE 57
7.1. abstract sets of statistical techniques 58

7.2. the general structure of a statistical program 61

7.3. declaration of variables 62

7.4. the implementation section 64

7.5. the test and exception handler section 65

8. SYMBOLIC TYPE CHECKING OF STATISTICAL PROGRAMS 69
8.1. the index expressions 71

8.2. algebraic specification of index expressions 77

8.3. symbolic equivalence of dimension ranges and 78
data types

8.4. managing type information during type checking 81

8.5. type checking of assignment statements 82

8.6. type checking of Junction calls 83

8.7. a type correct statistical program 87

9. SYMBOLIC DIMENSION BOUND CHECKS AND THE GENERATION OF 89
INPUT RESTRICTIONS

9.1. an ordering on index expressions 91

9.2. calculation of a symbolic range for an index 93
expression

9.3 restrictions on index expressions 95

9.4. input restrictions 99

9.5. assignment of a symbolic range to an index variable 99

9.6. matrix element references 101

9.7. a type and dimension bound correct statistical 102
program

PART III FORMAL SPECIFICATION OF THE KERNEL

10. THE KERNEL 105

106

107

113

114

10.1. memory organization

10.2. the instruction set

10.3. exception handler tables

10.4. the data stack

10.5. the processor

10.6. kernel programs

11. TRANSLATION OF A STATISTICAL PROGRAM

11.1. general structure of the compiler

11.2. generation of instruction sequences

11.3. generation of a handler table

11.4. optimising kernel instructions

12. EXCEPTION HANDLING

12.1. raising of exceptions

12.2. handling a raised exception

PART IV FORMAL SPECIFICATION THE USER LANGUAGE AND THE

DATA INTERFACE

114

116

119

120

121

124

125

127

128

134

13. AN INTERFACE BETWEEN DATA AND STATISTICAL TECHNIQUES 139

13.1. the data producer's view on data 139

13.2. the user's view on data 140

13.3. the view of a technical statistician on data 141

13.4. the inter/ace between the data producer's view 142
and the user's view

13.5. the interface between the user's view and the 146
technical statistician's view on data

14. THE USER LANGUAGE 151

14.1. initializing variables 151

14.2. initializing series 152

14.3. executing a statistical technique 154

14.4. formal specification of the user language 154

PART V IMPLEMENTATION AND EVALUATION OF CONDUCTOR

15. IMPLEMENTATION PROBLEMS OF CONDUCTOR

15.1. implementation of formal modules

15.2. finding information through identifiers

15.3. storage problems

15.4. error recovery

157
157

159

160

164

16. THE USE OF FORMAL SPECIFICATIONS IN CONDUCTOR 167

16.1. using ASF in the design of CONDUCTOR 167

16.2. modularization 168

16.3. formal description 171

16.4. specifications of errors 175

16.5. keeping the prototype consistent with the 176
spec ifi cat ion

16.6. equality of constant functions 177

16.7. advice for users of ASF 178

17. CURRENT STATUS OF CONDUCTOR AND FUTURE DEVELOPMENTS 179

REFERENCES 183

INDEX 189

APPENDICES

A. the concrete syntax of CONDUCTOR 191

B. ASF 193

C. ASF specification of basic structures 195

D. ASF specification of data types 197

E. ASF specification of index expressions, symbolic ranges 201
and type descriptions

F. ASF specification of abstract syntax of the statistical 204
language

G. ASF specification of the symbol tables 207

H. ASF specification of the static symbolic type checker 209

I. ASF specification of the generation of input restrictions 215

J. ASF specification of the kernel 224

K. ASF specification of the generation of kernel instructions 234

L. ASF specification of the overall CONDUCTOR system 240

M. tree representation of CONDUCTOR 243

PART I

BASIC CONCEPTS AND TOOLS

1. INTRODUCTION

Statistical software developed in the last two decades can only be

maintained by professional programmers. It goes without saying that

experts in statistics lacking both the required programming skills and

the knowledge of the architecture of the software are unable to maintain

statistical software. Improvements in statistical techniques, therefore,

first have to be explained to programmers. This takes time, costs money

and causes errors. In software engineering the problem of maintainability

is considered to be enormous. Wiener and Sincovec [1984] estimated that

maintenance often accounts for more than 80% of the life cycle cost of a

software product. A survey by Lientz and Swantson [1980] revealed that

approximately 65% of maintenance was perfective (i.e., was the result of

changes demanded by the user after the first version of the software

product was finished).

An important development that may improve the maintainability of software

is the use of specification systems. In these systems a specification

language is available in which the design of the software can be

expressed. The specification language is not just some variant of a

conventional higher-level programming language. Rather it is a language

which is much closer to the problem domain, enabling domain experts to

add their knowledge to the system. A program written in a specification

language is automatically transformed into an efficient executable

program. An instruction in a specification language is equivalent to a

large number of instructions in a higher-level programming language.

Higher-level programming languages are often referred to as third

generation languages; the specification languages evolving from these

1

languages are also called fourth generation languages. An example of a

specification system is given in Cheng et al. [1984]. This system allows

managers to create software for financial accounting.

In this book we describe a specification system for statistical software.

Developing and maintaining statistical software is a combined effort of:

- Technical statisticians. This group of experts must implement and

maintain the statistical techniques in the statistical software,

- Data experts. This group of experts must implement and maintain the

database in the statistical software,

- Computer scientists. This group of experts must implement and

maintain the computer science aspects, such as the numerical

methods and the user interfaces, of the statistical software.

In a specification system for statistical software each of these groups

must be able to contribute their knowledge in a language close to their

problem domain. The main design goal of a specification system for

statistical software is to orchestrate the individual contributions of

each of these groups.

=►

,,

SPECIFICATION
SYSTEM

..
=►

Of course the subdivision of experts is arbitrary. Each group of experts

itself again is heterogeneous. For the construction of a specification

system for statistical software, however, it is only relevant that the

experts in each group are able to express their knowledge in the same

language.

A crucial step in the design of a specification system for statistical

software is the choice of an appropriate language for each of the groups.

2

For technical statisticians we created a new lru,,guage: the statistical

Language. For computer scientists and data experts we chose already

existing languages. For computer scientists this is a higher-level

programming language and for data experts a database design language.

Even though these languages have many drawbacks, in this book no effort

is undertaken to improve them. For a discussion on available higher-level

programming languages see for example Pratt [1984]; database systems and

database design languages are discussed in for example Ullman [1985] and

Date [1981].

The statistical language enables a technical statistician to add his

knowledge to statistical software in such a way that it can be used by

applied statisticians. In the statistical language he can specify for

each statistical technique:

- the required input data,

- the resulting statistics,

- the equations describing the calculation of the parameters,

- (pre)tests,

- advice for the user of the technique.

To give concrete form to our ideas in this book a prototype of a

specification system for statistical software is developed called

CONDUCTOR. To simplify the construction of CONDUCTOR, the current version

focusses on econometricians, a subclass of all technical s ta tis ticians

(CONDUCTOR can of course be tailored for technical statisticians). The

statements in the statistical language resemble the mathematical notation

used in econometric textbooks, such as Maddala [1977] and Judge et al.

[1980]. A technical statistician may use a subset, matrix notation, of

the mathematical notations used to describe estimation techniques as in

these books. In this notation the dimension bounds of matrices are index

expressions. This is one of the differences between the s ta tis ti cal

language and other matrix languages, like APL (see Pakin [1972]) and

SAS/IML [1985],

The main goal of a specification system for statistical software is to

produce efficient software. The matrix languages APL and SAS/IML can only

be used for what is called rapid prototyping. This is due to the fact

that programs written in these languages are interpreted and not

compiled. As a result many of the optimization techniques used in

compilers for higher-level programming languages can not be applied. If

3

the programs in matrix languages however could be compiled, the

performance of the resulting software would increase dramatically.

A part of the compilation of a program is called type checking. In type

checking the type restrictions on particular constructs of the language

are verified. A matrix operator, for example, can be restricted to

operate on two matrices with equal dimension bounds. The use of symbolic

dimension bounds in matrix types complicates the type checking of the

statistical language. An important part of this book tries to tackle this

problem. Solving this problem removes one of the bottle necks towards the

construction of a specification system for statistical software.

The user of a statistical technique initializes the index variables that

determine the dimension bounds of the matrices during the execution of

the statistical technique. The index variables must be initialized in

such a way that no type or dimension bound conflicts occur during the

execution of the statistical technique. In software generated by a

specification system for statistical software, the user is not aware of

the fact that matrices are used in the statistical language. All error

messages concerning matrices are therefore meaningless to a user, and

should be avoided as much as possible. Type and dimension bound

restrictions in the statistical language should therefore be checked

during the compilation of a statistical program (static type checking).

A matrix with symbolic dimension bounds, as defined in the statistical

language, is the equivalent of a dynamic array of reals in a higher-level

programming language. Static type and dimension bound checking of dynamic

arrays in a higher-level programming language, however, is impossible. A

program in these languages may have infinitely many execution trees. That

is, there are infinitely many paths leading through a program. To prove

that the type and dimension bounds restrictions are not violated in these

programs is tedious and in practice often impossible. In higher-level

programming languages, and in other matrix languages one, therefore,

relies on run-time checks on these restrictions.

The statistical language of our prototype CONDUCTOR has a less

complicated control structure than higher-level programming languages:

1. it does not have conditional statements,

2. the only loop control statement is the /or-statement,

3. a /or-loop is executed at least once,

4. loop control variables may not be reassigned inside a loop,

4

5. the input index variables may not te reassigned,

6. index expressions are monotone non-increasing or non-decreasing,

7. dimension ranges are strictly positive.

Due to these properties a statistical program in CONDUCTOR has a unique

symbolic execution tree: an unconditional symbolic expression, in terms

of the input variables, can be calculated for each index variable after

each statement in the program. The symbolic expression calculated for the

dimension bounds of matrix types are used by the symbolic type and

dimension bound checker in CONDUCTOR. If a type or dimension bound

restriction can not be verified symbolically, input restrictions are

generated on the input index variables in a statistical program. The

input variables of a statistical technique are the variables that the

user of the statistical technique must initialize in the generated

statistical software. This group of variables, and the restrictions on

these variables, are assumed to have meaning for an applied statistician

who uses the statistical technique. Symbolic evaluation was, for example,

also used by King [1976] to test higher-level programming language

programs with infinitely many execution trees.

The restrictions 1 and 6 on the statistical language are rather strong

and seem to demonstrate the impossibility of the creation of a useful

statistical language. How these restrictions can be relaxed is one of the

things we learned from construction of the prototype. Both restrictions

are only imposed in order to make symbolic evaluation of the statistical

language possible. We may relax restriction 1 allowing conditional

statements, if we impose the restriction that index variables may not be

reassigned inside a conditional statement. Under this restriction we

still can make an unconditional symbolic evaluation, even though a matrix

program as a whole may have infinitely many execution trees. In our

prototype CONDUCTOR, however, conditional statements in the statistical

language are not implemented. Restriction 6 can be relaxed by introducing

an additional data type integer. Of course integers do not have to obey

the restrictions on the data type index as long as they are not used in

the symbolic evaluation.

Besides the tackling of problems involved in the creation of a

statistical language, a major effort discussed in this book is the

definition of the interaction between parts of software generated by the

different groups of experts. To simplify this definition, in our

5

prototype CONDUCTOR, a kernel is introduced. The kernel has a processor

that can execute the semantic actions that take place during the

evaluation of a statistical program. For the kernel a statistical program

is a sequence of these actions, also called kernel instructions. Two

examples of kernel instruction are:

- an instruction that requests the user of the statistical technique to

initialize an input variable,

- an instruction that calls a numerical function.

These kernel instructions and the numerical counterparts of the functions

in the statistical language, must be implemented by computer scientists.

CONDUCTOR provides the generated statistical software with a database

interface. Data in the database is not stored as merely a collection of

numbers. Additional information, such as, sample design, instrument and

context, collected during the data production process (see David [1985])

can be added to the database. A data expert can write background queries,

that are used by the database interface to check the consistency of the

retrieved data. When a user of the generated statistical software

retrieves a particular series from the database the back-ground query is

automatically invoked to do the required consistency checks. Thus

detailed knowledge of the data production process is hidden from the user

of the data, yet inconsistent data is labeled by the database interface.

CONDUCTOR allows each group of experts to look at a statistical technique

from their own level of abstraction. An expert at each of these levels

might detect that the execution of a statistical technique must be

interrupted because necessary conditions for execution are not &atisfied.

In computer science such conditions are called exceptions, and causing an

interrupt is called raising an exception (see Goodenough [1975]) . In

systems, that must remain in continuous operation, it is important that

the execution of a program is not stopped when an exception occurs.

Several higher-level programming languages, like ADA, PL/I and PL/C,

therefore, provide facilities for exception handlers. When an exception

is raised, control of the program is passed to the exception handler.

After completion program control is returned to the point where the

exception occurred.

Statistical analysis is seen in CONDUCTOR as a continuous process. During

statistical analysis, it often happens that a statistical technique can

not calculate the required statistics, because necessary conditions are

6

not satisfied by the analyzed data. Such a situation is seen as the

occurrence of an exception. Yet the applied statistician wants to

continue the analysis and needs advice. Are alternative statistical

techniques available that can tackle the problem? Or do data

preprocessing techniques make analysis of his data set possible? The

answers, of course, should be given by the experts. The exception

handling mechanism in CONDUCTOR allows the experts to provide this

information. Exceptions in CONDUCTOR are raised when:

- test results indicate that the applied statistical technique is

inadequate for the analyzed data (detected by the software created by

the technical statistician),

- computational problems make the calculation of a numerical function

impossible (detected by the software created by the computer

scientist),

data is missing or inconsistent (detected by software created by the

data expert).

When an exception occurs, the kernel of CONDUCTOR looks for an exception

handler. Exception handlers describe how the statistical software must

react if an exception occurs. Exception handlers can be written by

either a technical statistician, a data expert or a computer scientist.

For the kernel, exception handlers are independent sequences of kernel

instructions. The exception handler mechanism opens the possibility for

experts to react on exceptions raised by one of the other groups of

experts. An exception handler implemented by a technical statistician,

for example, can handle an exception that is raised by a numerical

procedure implemented by a computer scientist.

To summarize, the main design goal of a specification system for

statistical software is to offer experts in computer science, data

collection and technical statistics the possibility to implement and

maintain their own restricted contribution to efficient statistical

application software. Technical statisticians are trained to think in

terms of matrix notation. The widespread use of matrix languages, like

APL, among these experts is not surprising. The use of these languages

is, however, only suited for rapid prototyping. One can not develop and

maintain efficient application software in these languages. In the

developed prototype CONDUCTOR, a technical statistician can add his

knowledge in a statistical language. CONDUCTOR transforms a program,

7

written in this language, into er'ficient statistical software. It

combines the software written by the technical statistician with software

written by computer scientists and data experts. And, it also generates

the appropriate input restrictions.

An applied statistician should not notice the difference between existing

statistical software and software produced in CONDUCTOR. He can apply

statistical techniques to explore data gathered by data experts. Software

constructed in a specification system, however, has two big advantages

compared with existing software. The first advantage lies in the

maintainability of the generated statistical software. New developments

in the scientific areas of the different expert groups can be implemented

without the need for deliberation with experts in one of the other

groups. This will make modern techniques in technical statistics, data

production and computer science more rapidly available for applied

statisticians. The second advantage is, that software generated in a

specification system for statistical software can produce more than just

statistics. When during the execution of a statistical technique an

exception is raised, the user can be given advice by the appropriate

expert. Technical statisticians, computer scientists and data experts can

implement their messages in exception handlers.

Constructing a specification system for statistical software is a large

software project. To make such a project successful it has to be

thoroughly specified. To specify the system yet an other language is

used: a formal specification language. Such a language enables computer

scientists (system developers) to give a formal definition of a software

project. Yes this is complicated, this book contains a formal

specification of a specification system for statistical software. The

formal specification language is used to make a blueprint of CONDUCTOR.

Both a UNIX and an MS-DOS version of this prototype exist.

For the specification of our prototype CONDUCTOR we use the formal

specification language ASF (Bergstra, Heering and Klint [1987]). ASF is

based on initial algebraic semantics for algebraic specifications with

conditional equations. Modularization mechanisms in ASF, such as

parameterization, imports and exports are similar or identical to the

ones discussed in Klaeren [1983], Loeckx [1984] and Bergstra et al.

[1985]. The formal specification of CONDUCTOR contains definitions of:

the data types in the statistical language and in the user language, the

8

abstract syntax of these languages, the kernel, the translation of a

statistical program into a kernel program, the symbolic type and

dimension bound checking, and a top level view of the CONDUCTOR

environment. A by-product of the CONDUCTOR project is the evaluation of

usefulness of ASF.

This book is organized as follows. In the remaining chapters of part I a

general introduction is given to the basic ideas behind CONDUCTOR and the

formalisms used in the definition of CONDUCTOR. Chapter 2 contains a

short review of existing software tools in statistics. Information

hiding, as applied in CONDUCTOR, is discussed in chapter 3. Chapter 4

shows an example of an implementation of a statistical technique in

CONDUCTOR. The formalisms used in the specification of CONDUCTOR,

grammars and algebraic specifications, are discussed in chapter 5. In

chapter 6 we discuss the general outline of the formal specification of

CONDUCTOR. In part II the definition of the statistical language is

given. The specification of the concrete and abstract syntax of this

language is discussed in chapter 7, the symbolic type checking in chapter

8, and symbolic dimension bound checking in chapter 9, In part III the

formal specification of the kernel is given. In chapter 10 the kernel and

the kernel instructions are specified. The translation of the statistical

programs into kernel instructions is discussed in chapter 11. The

exception handler mechanism of CONDUCTOR is described in chapter 12. In

part IV both the user language and the data interface are specified. The

user language in chapter 13, the data interface in chapter 14. In part V,

we conclude, in chapter 15, with a discussion of the prototype, and, in

chapter 16, of the use of specification language ASF. In chapter 17, we

discuss the current status of the CONDUCTOR project and suggest future

developments.

9

2. EXISTING SOFTWARE TOOLS IN STATISTICS

Most empirical work in statistics is done with the use of a few leading

statistical packages. These so-called general statistical packages

contain the commonly used statistical techniques. Well known examples of

general packages are SAS [1982], SPSS [1986] and BMDP [1985]. For

statisticians with a more specialized field of interest also specialized

software exists: the special -purposes packages. Good examples of special

purpose packages are LISREL, a package tailor-made for the estimation of

parameters in models with unobservable variables (see J6reskog and S6rbom

[1981]), and TSP [1980], a package for time series analysis. If a

statistician wants to use a statistical technique which is not contained

in any of the statistical packages, he has to use a higher-level

programming language. In the statistical community, frequently used

higher-level programming languages are FORTRAN, PASCAL, PL/I and C. Also

matrix oriented languages, like APL and SAS/IML, are popular among

statisticians. In this chapter we will briefly discuss the flexibility

and ease of use of both statistical packages and programming languages.

2.1. FLEXIBILITY AND EASE OF USE OF SOFI'WARE TOOLS

Statistical packages make statistical techniques available for large

groups of users. In order to reach this goal the statistical techniques

are implemented as a 'black box'. The user only has to give the input

data and the package returns an impressive amount of statistics.

11

INPUT DATA -••===► STATISTICS

Getting output from a statistical technique in statistical packages, as a

result, requires only minimal knowledge of the statistical technique. An

example is the use of the instrumental variables technique (INST) in TSP.

INST is a statistical technique that can be used if the explanatory

variables in a linear model are correlated with the disturbance term. In

such a situation ordinary least squares estimates are inconsistent. To

solve this problem a group of variables is sought that is both highly

correlated with the explanatory variables, and is uncorrelated with the

disturbance term. These variables are called instrument variables. INST

uses these variables to produce consistent estimates of the coefficients

in the linear model. In the TSP program fragment below, a consumption

equation is estimated using INST. The first statement in this example

gives the name of the program. The second statement in the program loads

the data. The third statement gives the equation that is to be estimated.

In this example the dependent variable is consumption and the explanatory

variables are income and consumptiorrprice. The variables irrrportprice,

export, irrrport and a constant are used as instrument variables, as

specified in the second part of the statement.

To get output from INST in TSP only modest knowledge of this statistical

technique is needed. The main effort lies in accessing and manipulating

the data. Other statistical techniques can be used in a similar way. Of

course, for the interpretation of the output, knowledge of INST is highly

recommended. Unfortunately this requirement is never enforced by

statistical packages. Table 2.1 gives an overview of available techniques

for the estimation of equations in standard packages as reported by

12

Francis [1981], Redler [1985] and Srba [1985], The even larger market of

statistical software for microcomputers is for example discussed in

Woodward, Elliot and Gray [1985] and Van Nes [1987].

The 'black box' approach also has its price from a software engineering

point of view. Modifications in the software can only be made by experts

with considerable programming skills, knowledge of the statistical

technique and knowledge of the architecture of the package in question.

And even if one has such rare skills, most commercial software producers

do not make available the source programs of their statistical packages.

Thus in practice the 'black box' packages are inflexible.

In recent years many features have been added to statistical packages in

order to improve the flexibility. Examples of such features are (1)

parameters allowing the user to choose from different options of a

statistical technique,(2} macro facilities and (3) interfaces with

subroutines written in higher-level programming languages. Mostly the

ease of use of a statistical package (sp} decreases when these facilities

are added, while of course the flexibility improves .

..

10w
,,

6:iPI'•!''',:~"'~~i,:~ln.~•:1,:i't~:fil~
~p1',!::!'il'i!$u~~i,i1:I11i•":''~'1;1,~ijcy••·•

..

" ~ue'•ij$:t?'u,si

If the statistical packages do not contain the desired estimation

techniques, a statistician has to use a higher-level programming

language. The disadvantage of using a higher-level programming language

is obvious: one has to start all over again. Not only the statistical

technique has to be implemented, but also user interfaces, report

facilities, documentation, etc. This is time consuming. In most cases,

after a promising start, the new software engineer ends up in a labyrinth

of problems. Only a few will find a reasonable way out. A result is that

statisticians write programs that are used by a few friends at most.

13

Table 2.1 Available estimation techniques in a few leading standard

packages for econometric applications.

statistical package IAS TSP SAS/ETS TROLL

estimation technique

1. ordinary least squares X X X X

with AR{l}-correction
CORC X X X

HILU X X X

ML-proc X

iter. X

2. generalized least squares X

3. non-linear least squares X X X X

4. two stage least squares X X X X

5. instrumental variables X X X X

6. k-class estimator X X X

7. limited information X X X

maximum likelihood

8. full information X X

maximum likelihood

9. limited information X

instrumental variables

10. full information X

instrumental variables

11. three stage least squares X X X X

12. non-linear 3-stage least squares X X

13. non-linear multivariate X

regression

source: Rodler[1985].

14

Making the technique available for a large commu,1i ty is simply too much

of an effort. One dreams of a kind statistical tool box in which previous

efforts can be reused to create software for new developed statistical

techniques. A specification system for statistical software is a meant to

make that dream come true.

2.2. TWO INSPIRING EXAMPLES

Two software tools developed by large organizations formed an inspiring

example for the construction of the statistical language in CONDUCTOR: S,

developed by AT&T Bell Laboratory, and IML, an interactive matrix

language developed by SAS.

S is a software tool for data analysis and graphics. It emphasizes

interactive analysis and graphics, ease of use, flexibility and extendi

bility. Sis developed at AT&T Bell Laboratories and is currently in use

under the UNIX operating system. An extensive treatment of Sis given in

Becker and Chambers [1984a], a short overview of Scan be found in Becker

and Chambers [1984b]. The design goal of S is stated by Becker and

Chambers as: "to enable and encourage good data analysis, that is to

provide users with specific /aci lities and a general, environment that

helps them quickly and conveniently to look at many displays, summaries

and models /or their data and to /o7,low a kind of iterative, exploratory

path that most often leads to thorough analysis". Particular interesting

features of Sare:

in S the language resembles common algebraic notation, using

operators and functions,

- S has an interface to user-written functions, which allows

functions to be written in a higher level programming language,

- S is centered around "an executive": an interactive parser that

parses and evaluates the expressions; "the executive" is an inter

preter,

- S focusses on a research environment where statisticians

continuously develop new techniques and thus is highly extensible,

- there is a special value NA {not available} which can be used to

signify missing data,

- Sallows the use of vectors and matrices with fixed dimensions,

15

changes in "the executive" of S s!lould not require changes in the

code of the user.

IML is a programming language developed by SAS. The basic data elements

of IML are matrices. IML can be seen as a successor to the programming

language APL in which the rather cryptic special symbols in APL are

replaced by a more familiar notation. IML tries to let the user think in

terms of matrix notation. One of the big advantages of IML is that it can

be used in combination with other software products of SAS such as

SAS/GRAPH, which makes IML a powerful tool for matrix oriented

scientists. Some interesting features of IML are:

- the matrices in IML are dynamic. The dimension and type of a variable

can be changed at any time in a program,

- IML contains a large set of matrix functions and operators,

- no declarations are required in IML, the attributes of a matrix are

determined when the matrix is given a value (late binding),

- IML allows data processing,

- IML provides graphic commands.

For a detailed description of SAS/IML see the SAS/IML User's Guide

[1985].
Both Sand IML are excellent tools for technical statisticians to tackle

their problems. Neither tool, however, is intended to be a specification

system for statistical software. Programs written in Sor IML are used by

their creators, and are not meant to be used by others. Both Sand IML

are suitable for what is called rapid prototyping, and do not produce

efficient application software. A program in the statistical language of

CONDUCTOR is compiled in order to make efficient execution possible,

whereas a program in Sor IML is interpreted. The difference between the

statistical language in CONDUCTOR and both S and IML is, among other

things, reflected in the fact that the matrices in CONDUCTOR's

statistical language may have symbolic dimension bounds. Whereas in Sand

IML the exact dimensions at any time during the interpretation of a

program are given.

16

3. INFORMATION HIDING CONCEPTS

In a specification system for statistical software, where different

experts cooperate, knowledge implemented by one expert must be completely

transparent for experts in other scientific disciplines. This concept,

called information hiding, is well-known in computer science. In this

chapter two basic concepts of information hiding are discussed: the

TllUUi-layered approach and modularization. Both in the multi-layered

approach and modularization, a problem is tackled at different levels of

abstraction. The difference between the two concepts of information

hiding is whether or not a separate language is defined at each level of

abstraction. In the multi-layered approach a separate language is created

for each level, whereas in modularization the solutions of problems at

different levels of abstraction are expressed in the same language.

3.1. THE MULTI-LAYERED APPROACH

Consider running a statistical program on a computer. A user of a

statistical program gives an instruction, using the command language of

the statistical program, to calculate certain statistics. This

instruction is equivalent to a large number of micro-code instructions,

that are executed by the hardware of the computer. In modern computers

many intermediate levels exist between the hardware level of the computer

and the statistical program level. The statistical program level is like

the top of an iceberg. Underneath the surface are a lot of other levels.

Instructions in the statistical language are interpreted by a program

17

written in a higher-level programming language. Statements in the higher

level programming languages are compiled into statements in lower-level

languages until finally the hardware level is reached where the

instructions are executed by the electric circuits of the computer. For a

discussion on the multilevel architecture of computers see Tanenbaum

[1976]. Another beautiful example of the multi-layered approach is in the

construction of distributed database systems (see Ceri and Pelagatti

[1985]).

The multi-layered approach makes it possible to make modifications at one

level without influencing the other levels. Changes can be made at, for

example, the assembly level without influencing the other levels. Of

course, certain changes require that the interfaces between the levels

also must be modified. The advantage of the multi-layered approach is

that problems can be solved at the appropriate level of abstraction, in a

language close to the domain language of the expert who must make the

changes.

18

3.2. MODULARIZATION

At one level of abstraction in the multi-layered approach, a problem can

be so complex that it has to be divided into subproblems that can be

tackled separately. This form of information hiding is called modulari

zation. In contrast to the multi-layered approach, all subproblems are

solved using the same language.

In the academic world it is considered to be 'self-evident' that large

and complex pieces of software are constructed using the principles of

modular design.

appears to be

Using these design principles in practice, however,

difficult. Parnas et al. [1985] have specified the

following goals of module decomposition:

- each module's structure should be simple enough to be understood

fully,

- it should be possible to change the implementation of one module

without the knowledge of the implementation of other modules and

without affecting the behaviour of other modules,

only very unlikely changes should require changes in the interface

of widely used modules,

- it should be possible to make a major software change as a set of

independent changes to individual modules,

- a software engineer should be able to understand the

responsibilities of a module without understanding the details of

the internal design,

- a reader with a well-defined concern should easily be able to

identify the relevant modules without studying irrelevant modules,

- the number of branches at each non-terminal module should be small

enough that the designer can give convincing arguments that the

submodules have no overlapping responsibilities.

For large projects the number of modules is enormous and the modular

design principles are difficult to check. Therefore much effort is

undertaken to improve modularization techniques and tools. Important in

this respect are the development of new programming languages and formal

specification languages.

Again a warning for the reader. Do not confuse formal specification

languages with the statistical language. A formal specification language

is meant for software engineers who develop any kind of software, not

19

just statistical software. Using this language a software engineer can

formalize the requirements and properties of his software. In this book

it is used to formalize the requirements of a specification system for

statistical software. The statistical language is part of this system

that has to be formalized.

3.2.1. Progranming languages.

New programming languages facilitate the construction of modular

software. Important languages in this respect are ADA and M0DULA-2. The

ADA programming language was developed at the initiative of tne U.S.

Department of Defense (USDoD} between 1979 and 1983. In April 1979 a

language design team, headed by Jean Ichbiah of CII Honeywell-Bull won a

four-way competition for the best language design.

thoroughly tested and revised between April 1979

This

and

design was

July 1982.

Nevertheless many computer scientists hold critical views with respect to

ADA. For a further introduction to ADA see Wiener [1983] and USDoD

[1983]. M0DULA-2 was introduced by Niklaus Wirth, the founder of PASCAL,

in 1980 (Wirth [1983]}. The M0DULA-2 programming language overcomes many

of the deficiencies of PASCAL. It combines PASCAL's simplicity with much

of ADA' s power. ADA and M0DULA-2 provide facilities for reducing two

major difficulties in large scale software design:

- poor interface between separate software components,

- interference between components because shared data (global data}

is incorrectly modified by some program unit.

As a result the inter/aces beti.,een separate modules in ADA and M0DULA-2

are precisely defined.

Though ADA and M0DULA-2 are excellent programming languages for large

scale software development, they are not the type of language in which

non-computer scientists, like statisticians, easily maintain and develop

software. The languages simply contain too many features irrelevant to

non-computer scientists, while other necessary features, like dynamic

arrays of reals, are missing. Another problem is that, even though ADA

and M0DULA-2 are superior to earlier programming languages, FORTRAN still

has the historic advantage that many procedures are already available in

procedure libraries like IMSL and NAG.

20

3.2.2. Formal specification.

The new programming languages offer the possibility to implement

modularized projects. An even bigger problem is how to modularize a large

project. Many modularization techniques exist these days that offer a

discipline to modularize problems. An example is the Jackson-design

method (see Jackson [1975,1983]). Not surprisingly, no algorithm has ever

been found to modularize large scale problems. The process of modulari

zation remains and probably will always remain dependent on the

creativity of the problem analyst. Therefore, it is still very important

that a system analyst thoroughly defines his problem before he actually

starts implementing it. This specification process, however, is also not

without problems. The pitfalls in specifying a software project were

listed by Meyer [1985] as "the seven sins":

- noise: elements in the specification do not add information,

silence: aspects of the problem are not treated in the

specification,

- overspecification: aspects of the specification do not deal with the

problem but with a possible solution of the problem,

- contradiction: elements of the specification contradict with other

elements in the specification,

ambiguity: elements of the specification can be interpreted in more

than one way,

forward reference: elements in the specification refer to problems

solved later in the specification,

wishful thinking: there are elements in the specification for which no

realistic solution exists.

Some of these sins can be averted if the analyst makes use of a formal

specification language. The mathematical notation in such a language is

better suited to give a precise description of a problem than natural

languages. The language used in this book, for example, helps to remove

noise, contradiction, ambiguity and forward reference in the

specification of CONDUCTOR. Silence, overspecification and wishful

thinking in this specification, however, remain the responsibility of the

author of this book.

An important aspect of a formal specification language is, that it has

facilities to describe the modularization of a problem. This offers a

system analyst the possibility to describe how his problem is divided in

21

subproblems, before he starts implementing such modules. The formal

specification langauge ASF has such facilities.

3.3. APPLICATIONS OF INFORMATION HIDING

Modularization and the multi-layered approach are applied almost every

where in computer science. In this section we discuss a few of the

applications that influenced the design of CONDUCTOR. These applications

are: procedure libraries, the UNIX environment, and very high-level

programming producing systems.

3.3.1. Procedure libraries.

A beautiful and simple application of modularization is the standard

function in higher level programming languages. These functions can be

linked into a program without having to be coded line by line by the

programmer who wants to use these functions. For some scientific areas

also special libraries are created containing non-standard functions and

procedures. Good examples of such libraries are the collection of over

500 mathematical and statistical routines in the IMSL library and the NAG

library. Another good example is given by the 400 functions associated

with the UNIX "programmers workbench"(see Ivie [1977]).

3,3.2. The UNIX environment.

The UNIX environment contains a variety of facilities that apply

information hiding. Besides function libraries, a good example is the

UNIX pipe. The UNIX pipe makes whole programs building blocks of larger

computational structures. This has led to the development of a

literature of specialized programs. These programs structured as simple

filters can be applied in many applications.

Other examples of information hiding in UNIX are the shell and the

generic facilities. The shell hides the implementation details of UNIX on

a particular computer from the UNIX user. Examples of generic facilities

are the screen management software (cursors and termcap) and program

generators (lex and yacc). The program generator yacc can be used to

create a parser for a programming language. The implementation details of

the parsing algorithm in yacc are hidden from the user of yacc. A

discussion of the information hiding principles applied in UNIX can be

22

found in Kernighan [1984]. A detailed discussion of UNIX is given in

Kernighan and Pike [1984].

3.3.3. Very high-level program-producing systems.

In computer science, a system that in interaction with an expert can

produce software for solving the expert' s problems, is called a very

high-level program-producing system (VHLPPS). Such a system does not

accept a variant of a conventional high-level programming language,

rather it accepts a language closer to the problem domain of the expert.

The system may have a great deal of information built into it, either

about the domain or about how to create programs for this domain.

Different types of VHLPPS are discussed in Horowitz and Muson [1984].

Examples of VHLPPS are DRACO a system developed by Neighbours and Freeman

[1980, 1984], and MODEL developed by Prywes et al. [1977, 1979]).

An approach taken by several researchers is to use a formal specification

language as the domain language, and try to transform a program in this

language into an efficient program. This approach has only been used for

small prototypes and the question is if this approach will work for

large-scale software projects. Examples of this approach are given in

Arsac [1979] and Balzer [1981].

3.4.INFORMATION HIDING IN CONDUCTOR

CONDUCTOR is a VHLPPS:

software. CONDUCTOR has

a system for the development of statistical

built-in knowledge to generate efficient

statistical software from the statistical programs written by the

statistical expert. Given a statistical program CONDUCTOR generates:

- a user interface,

- an interface with a database,

- input restrictions,

- links with numerical procedures.

Both modularization and the multi-layered approach are applied in the

design of CONDUCTOR. The emphasis on the multi-layered approach is

reflected by the fact that the two upper levels of abstraction in

conventional statistical software, the user command level and the

higher-level programming language level, are subdivided into five levels:

23

- a statistical Level: at this level statistical techniques are

implemented,

- a data expert Level: at this level data experts can specify how data

sets are collected,

- a user command Level: the command level of the resulting software. It

resembles the conventional user command level in statistical software

packages. Using a command language a user can apply statistical

techniques to data stored in a database,

- a kernel Level: statements at the statistical level are translated

into kernel instructions. The kernel level is a shell that allows

computer scientists, technical statisticians and data experts to make

changes on their own level without knowledge of the other levels,

The higher-Level programming Level: At this level, computer science

experts can add their knowledge to CONDUCTOR, and, of course,

CONDUCTOR itself is implemented.

Procedures and functions in libraries are the building blocks of

CONDUCTOR: the conductor kernel calls these procedures and functions.

Examples are procedures to calculate the inverse of a matrix, and

procedures to calculate the eigenvalues and eigenvectors of a matrix.

CONDUCTOR allows technical statisticians to combine these procedures in

infinitely many ways, freeing them of the burden of the tedious parameter

substitution problems involved in the use of these procedures in higher

level programming languages. From the UNIX operating system CONDUCTOR

'steals' the idea of the shell (the kernel of CONDUCTOR), which hides

tedious details involved in the implementation of UNIX on a particular

computer from the main design of UNIX.

CONDUCTOR consists of the kernel plus the four interfaces with the

surrounding levels, to wit a compiler for the statistical language, a

user language interpreter, a database interface, and facilities to

connect numerical procedures written in a higher-level programming

language. The statistical and data expert level are built on top of a

higher-level programming level. This is the general outline of a

specification system in which statistical and data experts can create,

debug and modify their (restricted) contribution to the software.

24

da~a·••••~.xp~r1:···••.
·ievel••

1.1sei coirinan~·tev~t of
a statisti,c'al; progralll

kernel level

lower levels

s1:~1:~lidi:tpat expert: ···.• .. ·····••.•···1evei··•

Creating a specification system for statistical software is a large

software project. A necessary condition for such a project to be

successful is that all requirements are described, and that the project

is modularized. Therefore a complete formal specification of CONDUCTOR is

given in the specification language ASF. ADA or MODULA-2 are very good

higher-level programming languages to implement CONDUCTOR. One could

benefit from the elegant way in which modularization is possible in these

languages. CONDUCTOR, however, is implemented in C and runs under both

the UNIX and the MS-DOS operating systems. The choice for C was mainly

based on practical reasons. ADA and MODULA-2 compilers were not available

at the computers used by the author. Yet, C in combination with the UNIX

operating system forms an excellent software development environment, and

was available on the VAX computer used by the author.

25

4. THE IMPLEMENTATION OF A STATISTICAL TECHNIQUE

In this chapter it is demonstrated how a statistical technique can be

implemented in our prototype specification system for statistical

software. As an example we use a statistical technique known as the

bootstrap method. After a brief introduction of this statistical

technique, it is shown how a technical statistician can implement this

technique,

resulting

and how it can be used by an applied statistician in the

software. Furthermore the role of the kernel and the

contributions of both the data expert and the computer scientist in this

example are discussed.

4.1. THE BOOTSTRAP METHOD

The bootstrap method is a statistical method that can be used to estimate

the statistical error of estimated parameters. In this example the method

is used to estimate the variance of regression coefficients in a linear

model. In the linear model it is assumed that the variation in the

dependent variable y can be explained by the variation in the independent

variables X1 , •• ,Xk.

Suppose (y,X) is a realization of the random matrix(~.~). whose rows are

identical independently distributed with unknown distribution F; Xis a

matrix of order n x k and contains the observations of the independent

variables, and y is an (n x 1)-vector of the observations on the

dependent variable. Define

27

so that~~ is the orthogonal projection of~ on the space spanned by~

(a general formulation of the well-known regression coefficient in the

linear model). The distribution of~ is unknown, but asymptotic theory

usually yields useful approximations. The bootstrap offers a valid

alternative replacing mathematical analysis in the field of asymptotic

theory by 'massive calculations'. Its basic idea is simple: estimate F by

the empirical distribution F of the observations (y,X) and perform a

Monte Carlo study drawing samples from F.

F = mass (1/n) on each observed data
point of y.

More precisely the bootstrap method proceeds as follows:

- draw with replacement a sample from then observations of(~.~)

- calculate estimator b for the sample,

- repeat the first two steps mentioned above and calculate the average

and variance of the sample estimates.

The calculated average and variance are respectively the bootstrap

estimates of the expected value of the regression coefficient and the

variance of this parameter. For a more detailed discussion of the

bootstrap method see for example Efron and Gong [1983].

4.2. IMPLEMENTATION OF THE BOOTSTRAP METHOD

A statistical technique is implemented in CONDUCTOR in the statistical

language. A program in this language defines:

- the name of the technique,

- the input variables, the variables that must be initialized by the

user, and the output variables, the variables that contain the results

of the statistical technique,

- the equations that specify how the required statistics are calculated,

- the tests of either the basic assumptions of the implemented

technique, or the significance of the estimated parameters; when the

test results are negative an exception is raised

28

the exception handlers for except~ons that may occur during the

execution of the statistical technique.

For the bootstrap technique we first have to decide which identifier must

be used in the resulting software to call the technique. An obvious

choice is the identifier 'bootstrap'. This identifier is given in the

name section of a statistical program.

Next it has to determined what are the input and output variables of the

bootstrap technique. Clearly the user has to give the observations for

the dependent and independent variables, Y and X. Furthermore he must

indicate the number of observations n and the number of independent

variables kin his application1 • In the example below, also the size of

each random samples and the number of times a sample is drawn d must be

determined by the user. The output variables are the estimated expected

value of the regression coefficients b and the corresponding variance

(var_b).

Messages, that are used to prompt for input, may accompany the

declaration of input variables. Similar, a message in an output

declaration may explain the calculated result. The input and output

variables are declared in the input/output section of a statistical

program.

Of course CONDUCTOR can be made smarter by adding a function that
can determine the dimensions of a matrix, thus removing the
burden from the user to enter this data. In the current version
of CONDUCTOR, however, this is not implemented.

29

The equations in the implementation section of a statistical program

specify how the resulting statistics b and var_b are calculated. The

implementation section consists of a part in which internal variables are

declared and a part in which the equations are given.

Here a remark on the choice of the functions in the specification of the

bootstrap technique is on its place. In statistical computing it is well

known {see Kennedy and Gentle [1980]) that using the inversion procedure

is not the most efficient and stable approach to estimate the regression

coefficients. Other procedures, like Cholesky and Householder

decomposition, in many cases have better numerical properties. For the

design of CONDUCTOR, however, this is irrelevant. The choice of a

particular set of functions only influences which experts are able to use

the statistical language. To improve the readability of the examples we

have chosen the notation used in econometric textbooks. Adding

Householder and Cholesky decompositions function to CONDUCTOR would

require technical statisticians with more knowledge of the numerical

problems in statistical computing. Surely this would improve the

efficiency of the generated software, but it would reduce the group of

potential users.

30

In test sections the technical statistician can specify tests that check

the significance of the resulting statistics. A test, for example, may

check if all estimated regression coefficient are significant. In the

test section below this test is 'the rule of thumb'. This rule states

that an estimated regression coefficient is significant if it is at least

twice the size of the estimated standard deviation of the coefficient.

31

Note that the functions abs and sqrt and the operator<= operate element

wise on the vectors. If all the inequalities hold the result of the<=

operator is the boolean value true. Though the matrix notation suggests

that this is a combined test of the significance of the estimated

coefficients, it consists in fact of independent tests of the individual

coefficients in the vector beta.

After the execution of the implementation section of the bootstrap

technique the conditional expression in the test is evaluated. If the

result is true, an exception is raised and the execution of the technique

is interrupted. During the execution of the bootstrap technique also

exceptions can be raised in software created by other experts. Exceptions

are regarded as signals that further execution of the technique is

impossible or meaningless.

In the statistical program the technical statistician can write exception

handlers. An exception handler determines how the software reacts in case

an exception occurs. An exception handler may consist of a warning for

the user of the statistical technique, as shown in the following

exception handler section of a statistical program.

If an exception near_singular is raised, during the execution of the

bootstrap technique, the message in the exception handler is displayed.

Because no explicit STOP statement is added to the exception handler,

the execution of the statistical technique continues after the exception

handler is executed. The example shows that the exception handling

mechanism makes it possible for a technical statistician to react on

exceptions raised by the software created by other experts. In the

example the check on near-singularity is assumed to be implemented by a

computer scientist in a higher-level programming language. When a near

singular matrix is inverted the numerical results may be inaccurate. The

inversion function in the bootstrap program inverts the matrix (X'•X).

32

The notion of near-singularity in t~is case is interpreted by the

technical statistician as multicollinearity: the independent variables

are strongly correlated. The exception handler of the technical

statistician communicates this meaning to the user of the statistical

technique.

In the example no STOP statement was added to the exception handler. By

adding such a statement, the technical statistician determines that the

execution of the statistical technique must be stopped when an exception

occurs, because the exception is considered to be fatal. This decision is

clearly an expert opinion; it may be different for different statistical

techniques.

4.3. INPUT RESTRICTIONS

The applied statistician who uses the generated statistical software must

not be confronted with cryptic errors concerning the matrix notation used

by the technical statistician. CONDUCTOR, therefore, performs extensive

type and dimension bound checks to reduce the number of cryptic error

messages that may occur during the execution of a statistical technique.

Not all the type and dimension bound restrictions can be checked during

the compilation of a statistical program. The input restrictions,

however, that remain to be checked during the execution of the

statistical technique are restrictions on the input index variables.

These variables, and restrictions on these variables, are assumed to have

meaning for the user of the statistical technique. In our example the

following restrictions on the index variables of the bootstrap technique

are generated2 :

2 In the current version of CONDUCTOR all input restrictions are
written as

or
or

expression>= 0,
expression > 0,
expression = 0

33

n - 1 >= 0
m - 1 >= 0
s - 1 >= 0
n - s >= 0
d - 1 >= 0

The input restrictions are checked after the user has initialized all

input index variables of the statistical technique.

4.4. USING THE BOOTSTRAP TECHNIQUE

The use of the bootstrap technique is demonstrated in the following user

session. In this example the user first retrieves data from a database.

He indicates which sample is to be retrieved from the database and which

variables he wants to retrieve. The symbol >u: is the prompt of the user

language interpreter in CONDUCTOR. After retrieving the data from the

database, the user calls the bootstrap technique, and the user is asked

to initialize the input variables.

After the results of the bootstrap method are calculated, the requested

output is displayed. If exceptions occur during the execution of the

s ta tis ti cal technique, warnings and suggestions from experts may

accompany this output. For example, it may have been detected that the

matrix inversion was near-singular. The interrupt, handled by the

34

exception handler defined by the technical statistician in the bootstrap

technique, displays the specified message in this handler.

4.5. THE DATA

In the user session, in the previous section, series were used for

consumption, income, indirect tax and credit. In statistical research

these series are often produced by data experts. In the Netherlands a

large part of the data in statistical research is produced by the Central

Bureau of Statistics. During the data production process additional

information on the series is gathered. In CONDUCTOR it is assumed that

this additional information is stored in a database. Unfortunately such a

database is still a dream. CONDUCTOR only contains the interface with

this dream, and hopefully is an extra motivation to make this dream come

true.

When the series is retrieved from the database, the additional

information is checked for consistency. The consistency checks must, of

course, be written by the data expert. In our example a consistency check

may reveal that the series consumption is based on different types of

measurement in the sample period. When an inconsistent series of

observations is used by a statistical technique an exception is raised. A

data expert can specify an exception handler to warn the user. Note that

this exception handler is not a part of a statistical program. Such an

exception handler is called an external handler in CONDUCTOR.

4.6. THE KERNEL

A statistical program is executed when it is called in a user session.

The executing technique may invoke exception handlers written by either

the data expert, the technical statistician or the computer scientist.

During the execution of a statistical technique a limited number of

semantic actions are executed. These actions form the instruction set of

a virtual machine called the kernel. The kernel has instructions to

- request the user to initialize the input variables,

- evaluate expressions on a stack,

35

- change the sequential pattern of execution,

- control the exception handling,

- display messages,

- check input restrictions,

- terminate execution.

A compiler in CONDUCTOR translates a statistical program into a sequence

of kernel instructions. The bootstrap technique specified in section

4.2, for example, is translated into the following instruction sequences.

Of course, only a summary of all generated instructions is shown.

kernel instruction sequence

The instruction sequence generated for the exception handlers in the

statistical technique, are stored separate from the main instruction

sequence of the statistical technique.

4.7,THE CONTRIBUTION OF COMPUTER SCIENTISTS

The numerical procedures in the bootstrap technique, such as matrix

inversion and the generation of a random number, must be implemented by

computer scientists in a higher-level programming language. Furthermore,

these experts, of course, have to create CONDUCTOR.

36

5, THE FORMALISMS USED IN THE DESCRIPTION OF
CONDUCTOR

In this chapter we introduce the formalisms used in the definition of

CONDUCTOR. The definitions of the statistical, the user and the kernel

language, together form the definition of CONDUCTOR. The definition of

programming languages has received a lot of attention in the last two

decades {see McGettrick (1980]). From the informal description of the

first programming language many, more formal, definitions have evolved. A

complete language definition nowadays consists of:

- a set of building blocks {words) , this set is called lexicon, or

sometimes alphabet,

- a possibly infinite set of sequences of words, called sentences,

a predicate on sentences indicating whether or not a sentence is an

element of the language,

- the specification of the semantics of the sentences.

The first three parts of this definition are referred to as the syntax of

the language. In section 1 of this chapter a short review of syntax

definitions is given. For a discussions on this topic see also Aho and

Ullman (1977] and Aho, Sethi and Ullman (1986].

To define the semantics of the languages in CONDUCTOR we use the formal

specification language ASF. ASF is discussed in section 2 of this

chapter.

37

5.1. SYNTAX DEFINITIONS

Among the many notations used in describing the syntax of a programming

language are context-free grammars and syntax trees.

5.1.1. Context-free granmars.

A context-free grammar G is a 4-tuple (N,T,S,P), where N is a finite set

of non-terminals, Tis a finite set of terminals, Sis a start symbol,

and an element of N, and P is a finite set of production rules. The

terminals are the symbols from which sentences are formed in the

language. The set of non-terminals N are the grammatical categories of

the language. The start symbol Sis a special non-terminal indicating a

correct sentence in the language. The production rules P specify the ways

in which sentences can be constructed from S. A string of terminals is a

correct sentence in the grammar G, if and only if it can be derived from

S using the production rules.

Example 5.1.: (from Aho and Ullman [1977]).

Consider the grammar G for simple arithmetic expressions. The non

terminals are expression and operator, with expression as the start

symbol.

N = { expression, operator}

S expression

The set of terminals is:

T = {id,+, *, I. (.) }

The set of productions P contains the productions:

expression
expression
expression
operator

--> expression operator expression
--> (expression)
--> id
--> + I - I* I / I A

38

Examples of correct sentences in this language are:

id* id - id
id
id* (id - (id+ id))

{end example 5.1.}

The process of checking whether a sentence can be generated by the

grammar is called the parse of a sentence. In order to be able to write

an efficient parser for a grammar, the grammar must satisfy certain

restrictions. For most programming languages either LL(l} or LALR(l}

grammars are used to describe their syntax. These grammars are subclasses

of the general class of context-free grammars, but they are powerful

enough to describe most syntactic constructs in these languages. Both

grammar classes guarantee that no back-tracking is required in the parse.

LL(l) parsers are top-down, deterministic parsers with one symbol

lookahead, and were first described by Foster [1968], and received a

theoretical treatment in Knuth [1971]. LL(l} parsers are for example used

in compilers for programming languages like PASCAL and MODULA-2. LALR(l}

parsers are bottom-up deterministic parsers with one symbol lookahead.

The LALR (1) parsers are a subclass of the more general LR parsers

introduced by Knuth [1965]. Examples of languages using LALR(l) grammars

are ADA and C.

For the LALR(l} grammars there exist algorithms which can automatically

construct a parser. LR(l) parser-construction algorithms are due to

DeRemer [1969, 1971]. An efficient parser-constructor algorithm is also

given in Park, Choe and Chang [1985]. An example of a parser generator is

yacc written by Johnson [1975]. In CONDUCTOR languages are defined using

grammars that satisfy the LALR(l) restrictions. The parser in the

prototype of CONDUCTOR is developed with the use of yacc.

5.1.2. Syntax trees.

A useful representation of the result of a parse are syntax trees. The

tree representation of the parse of a sentence in the grammar is called

the concrete syntax tree or parse tree. Each node in this syntax tree

represents a non-terminal of the grammar, the leafs represent terminals.

39

Example 5.2.:

The parse of the last sentence of example 5.1. can be represented by the

following concrete syntax tree (the non-terminals are abbreviated):

expr
I I \

expr op expr

I I I I \
id * (expr)

; I \
expr op expr

I I I I \
id (expr)

; I \
expr op expr

I I I
id + id

{ end example 5.2.}

A condensed version of the concrete syntax tree is called the abstract

syntax tree. In the abstract syntax tree superfluous information in the

concrete syntax tree is removed. Superficial distinctions in form,

unimportant for the translation, do not appear in the abstract syntax

tree. McKeeman [1974) showed that the transformation of a concrete syntax

tree into a abstract syntax tree can be described by the use of a

transduction grammar.

Example 5.3.:
Using the transduction grammar with the following "tree constructing

rules"

expr --> expr op expr ==> op
I \

expr expr

(expr ==> expr

id ==> id

op --> + ==> +

I - ==>

I * ==> *
40

the concrete syntax tree of example 5.z. reduces to the abstract syntax

tree

* I \
id

I \
id +

I \
id id

{end example 5.3}

5.2. ALGEBRAIC SPECIFICATION

For the description of CONDUCTOR we use the formal specification language

ASF, defined in Bergstra, Heering and Klint [1987]. This description

includes a description of the semantics of the various languages in

CONDUCTOR. ASF is based on algebraic specification techniques as

described in Klaeren [1983], Wirsing [1983], Gaudel [1984] and Loeckx

[1984]. ASF extends the algebraic specification formalism based on

signatures and sets of equations in several ways. It supports (1) prefix

and infi:,c; operators, (2) multiple output values of functions, and (3)

module expressions. In ASF it is possible to give an algebraic

specification, with conditional equations, of the languages in CONDUCTOR.

For a review on algebraic specifications see Meseguer and Goguen [1982]

and Klaeren [1984].

The basic concepts in algebraic specification are sorts, carrier sets and

signatures. One can think of a sort as an abstract data type. The

elements of a carrier set represent distinct instances of a sort.

Consider, for example, the sort Booleans. If we take the intuitive

meaning of this sort it could be represented by the carrier set (0,1) or

the carrier set (true, false). Of course infinitely many other carrier

set (representations) of Booleans can be chosen. A signature describes a

set of functions. For each function it is exactly specified which sorts

are expected as input and what sort is returned as output. A signature is

defined more thoroughly by Meseguer and Goguen [1982]. A signature can be

defined as

41

Let S be a set of sorts. If a and bare both sorts in S. Then a

family of functions is defined as

{ f: a-> b I a,b in S}

These are typically all the function with as input of sort a and output

of sort b. If we allow more than one sort as input we get what is called

an S-sorted signature E

E {f: w -> s I wins•, sins} w,s

A signature defines some structure of interest. For example the signature

Boolean specifies booleans using a set of sort (bool) and a set of

functions (true,false, and).

with

Boolean

true:
false:
and:

{ (bool), (true,false,and)}

-> bool
-> bool

bool # bool -> bool

By assigning a carrier set to each of the sorts we get a what is called a

Z-algebra. Many E-algebras may exist for the same signature, therefore an

initial Z-algebra is defined as:

A E-algebra A is initial in a class of E-algebras ~ that describe

the same structure if and only if there is only one E-homomorphism

for each E-algebra C in ~ from A to C (see Meseguer and Goguen

[1982]}.

In other words an initial E-algebra is the 'smallest' representation of a

structure. Note that there may be more than one initial E-algebra in the

same class. Two initial algebras in the same class~ are abstractly the

same but differ in the representation given to the elements.

From the functions in a signature E-terms can be formed, similar to

42

sentences in context-free grammars. This set of terms can be used as a

carrier set. All distinct terms are a possible representation of the

distinct data-items in a signature. For example, in our signature Boolean

we may form the terms

true, false, and(true,false), and(and(true,false),false), ...

It is clear that many of the above terms represent the same data item.

Equations are introduced to specify which terms are equal. To restrict

the r:-algebra Booleans to only two data items the functions in this

signature must satisfy the equations

and(true,false)
and(false, true)
and(false,false)
and(true,true)

false
false
false
true

To get meaningful restrictions the sets of equations should obey the

following restrictions:

- applying the equational logic to deduce new equations should always

yield equations that are satisfied by any algebra satisfying the

equations (soundness),

- every equation, satisfied by all algebras satisfying the given

equations, can be deduced using the equational logic (complete

ness).

Using one signature to describe a large software product would yield an

enormous amount of sorts, function and equations. In ASF, therefore, a

signature can be modularized. In a module expressions make one can import

sorts and functions specified in another module by importing that module.

Each module may contain an export clause indicating which sorts and

functions can be imported by other modules. Our Booleans can be expressed

in the following module

module Booleans
begin

export
begin

sorts BOOL
functions

true:
false:
and: BOOL # BOOL

end

-> BOOL
-> BOOL
-> BOOL

43

functions
not:

equations

BOOL

and(true,false)
and(false, true)
and(false,false)
and(true,true)

not(true)
not(false)

end Booleans

false
false
false
true

false
true

-> BOOL

The module Booleans is imported in the module Integers. This module can

use the functions true, false and and specified in module Booleans. For

example, the constant functions true and false are used in the specifica

tion of a function equal in module Integers.

module Integers
begin

export
begin

sort INT
functions

null:
increment:
equal:

end

irrrports Booleans

variables

i,il,i2

equations

-> INT
INT -> INT
INT # INT -> BOOL

:-> INT

equal(null, null)
equal(null,increment(i))
equal(increment(i),null)
equal(increment(il),increment(i2))

end Integers

true
false
false
equal(il,i2)

To make modules more generally applicable, parameterization is available

in ASF. Each formal parameter is a submodule and contains one or more

sorts or functions, which at a later stage have to be bound to the actual

parameter. Consider the formal specification of a sequence

44

module Sequences
begin

parameter Items
begin

sorts ITEM
end Items

exports
begin

sorts SEQ
/unctions

add-item: ITEM# SEQ-> SEQ
end

end Sequences

A sequence of integers can be specified by binding the parameter Items to

the module Integers.

module Integer-sequences
begin

imports Sequences
{ renamed by

{ SEQ ->INT-SEQ]
Items bound by

[ITEM ->INT]
to Integers}

end Integer-sequences

The module Integer-sequences defines the sort INT-SEQ. All functions

specified for the sort SEQ are also defined for the sort INT-SEQ. Note

that not all parameters have to be bound when a module with parameters is

imported. Such unbound parameters are called inherited parameters.

The overall structure of specifications is illustrated by structure

diagrams. Each module is represented by a rectangular box. For example

the module Booleans is represented by

I Boolemm I

Modules imported by a module M are represented by structure diagrams

inside the box representing M. For example the module Integers imports

the module Booleans.

45

Boo Leans

Integers

Parameters of the module are represented by ellipses carrying the name of

the parameter. The module Sequences with parameters Items, for example,

is represented by:

Sequences

The binding of formal parameters is represented by joining the formal

parameter and the module to which it is bound. This leads to the

following representation of the module Integer-sequences:

Booleans

Integers

Sequences

Integer-sequences

46

5,3 THE DEFINITION OF THE LANGUAGES IN CONDUCTOR

An important part of the definition of CONDUCTOR consists of the

definition of the statistical language, the kernel language and the user

language. The first part of the definition of the statistical language

defines the concrete syntax. The next part is the definition of the

abstract syntax. In the abstract syntax tree the 'syntactic sugar' of the

concrete syntax is removed. The third part defines the type restrictions

in the statistical language. A type correct statistical program is

represented as a type correct abstract syntax tree plus a symbol table

containing the type information of all variables in the abstract syntax

tree. The fourth part is the definition of the dimension bound

restrictions. A type and dimension bound correct abstract syntax tree

includes a set of input restrictions. In the final part of the definition

of the statistical language, the evaluation of the abstract syntax tree

is defined.

..

..

..

..
~V/¥Jµitttlgrl1

A type and dimension bound correct statistical program is represented in

the kernel as a kernel program. The semantic actions of the statistical

program in this representation are a sequence of kernel instructions. The

set of all possible kernel instructions is called the kernel language. Of

the kernel language only the abstract syntax and a description of the

47

evaluation are specified. The definition of the user language consists of

a concrete syntax, an abstract syntax, and the evaluation process of

abstract syntax trees. One of the semantic actions in the user language

is the evaluation of a statistical program.

The concrete syntax of the user and the statistical language is described

by a grammar. This grammar satisfies the LALR(l) restriction and can be

found in appendix A. The remaining parts of the language definitions are

described in the formal specification language ASF. The definition of the

statistical language is given in part II of this book. The kernel

language and the evaluation of statistical kernel programs can be found

in part III. The data interface and the user language are given in part

IV.

48

6. THE FORMAL SPECIFICATION OF CONDUCTOR

The definition of CONDUCTOR is a combined definition of the statistical,

the user and the kernel language. The definition consists of the grammar

describing the concrete syntax of these languages, as given in appendix

A, and the formal specification, as given in appendix C through L. In

this chapter we discuss the modules that describe CONDUCTOR at a high

level of abstraction. These modules can be found in appendix L.

6.1. A TOP LEVEL VIEW OF CONDUCTOR

CONDUCTOR maintains a global state. This state is determined by:

- the statistical techniques implemented by the technical statisticians,

- the external handlers implemented by either the computer scientists or

the data experts,

- the state of a user session.

All implemented statistical techniques are stored in the statistical

technique table. This table is represented in the formal specification by

the sort STAT-TECH-TABLE. All external handlers are stored in the

external handler table, represented by the sort EXT-HANDL-TABLE. The

state of a user session is specified by the sort USER-STATE. Every

combination of the sorts USER-STATE, STAT-TECH-TABLE and EXT-HANDL-TABLE

is a state of the CONDUCTOR. This state is represented by the sort CDT

STATE. The function state in module Conductor-states specifies the state

of CONDUCTOR

49

state: USER-STATE# STAT-TECH-TABLE# EXT-HANDL-TABLE -> CDT-STATE

The details of the sorts USER-STATE, STAT-TECH-TABLE and EXT-HANDL-TABLE

are defined in the imported modules of module Conductor-states.

The state of CONDUCTOR can be modified in session. Module Conductor

sessions specifies that a session is either:

a session of a technical statistician; in such a session a technical

statistician implements a statistical technique (represented by the

sort STAT-PRO},

stat-session: STAT-PRO -> SESSION

a session in which either a data expert or a computer scientist

implements an external handler (represented by the sort HANDLER},

hand-session: HANDLER -> SESSION

- a session in which the implemented statistical software is used (such

a session consists of a user program represented by the sort USER

PRO).

user-session: USER-PRO -> SESSION

A session may modify the state of CONDUCTOR, as specified in the module

Conductor in the function execute

execute: SESSION# CDT-STATE -> CDT-STATE

The module Conductor specifies the most abstract notion of CONDUCTOR.

Details are defined in the modules imported by the module Conductor. Of

course, one easily looses track in the modules. The complete

specification consists of 114 modules with a total length of 4500 lines.

It contains, for example, the formal specification of the abstract syntax

of the statistical language, the static symbolic type checking of this

language, and the kernel. To get better insight in the relation between

the modules, a tree representation is presented, that gives a top-down

overview of the import relations between the modules of CONDUCTOR. The

tree, given below, shows the import relations between the modules, that

50

specify an abstract notion of CONDUCTOR.

Tree 1. The import structure of CONDUCTOR modules.

Conductor
sessions

Resuiting
so/t'IA1a.re

Conductor

I
Co71rpiler Gen-e:i:t

handlers
Conductor

states

~
Statis.- User- Kernel
prorams programs

User-

Const-range- I71rplemented- User
sequences techniques states

Handler- symtabs
Section

Database
interface

The complete tree representation of the system can be found in appendix

M. In the trees the information on inherited parameters, and the import

of basic modules such as the modules Booleans and Sequences is omitted.

The graphical representation of the modules generated by the ASF

specification checker is used as illustration throughout this book. The

graphical representation of the module Conductor on page 52 illustrates

that CONDUCTOR has three parameters: Current-/unc-types, Current-/unc

code and Current-database. These parameters are discussed in sections 3
and 4 of this chapter.

6.2. THE CONTRIBUTION OF THE TECHNICAL STATISTICIAN

A technical statistician can implement statistical techniques in

CONDUCTOR. He does this by writing a program in the statistical language.

CONDUCTOR compiles this statistical program and stores it in the

51

Conductor
sessions

Gen-ext
handlers

Conductor
states

Conductor

Resulting
software

Compiler

statistical technique table. A successful session of a technical

statistician modifies the state of CONDUCTOR as defined by the following

equation for the function execute in module Conductor:

{416} execute(stat-session(sp),state(ust,stt,eht))
state(ust,

store-stat-tech(sp,stt),
eht)

This equation specifies that, given that CONDUCTOR is in a state

determined by user state ust, statistical technique table sst and

external handler table eht, the execution of a session of a technical

statistician results in a state where the statistical program is compiled

and stored in the statistical technique table. The tag {416} is the

number of the equation in appendices.

More details of the compilation and storage process are specified in the

imported module Compiler. In this module the function store-stat-tech is

52

specified

store-stat-tech: STAT-PRO# STAT-TECH-TABLE-> STAT-TECH-TABLE

with equation

{403] store-stat-tech(sp,stt) insert(name(sp),corrrpile(sp),stt)

implying that a statistical program, sp, is compiled and stored in the

statistical technique table stt. The module Corrrpi Zer also contains the

specification of the functions corrrpile and name. These functions are

discussed in chapter 11. Of course, all details involved in the

compilation and storage of a statistical program, including the function

insert, are specified in the imported modules of module Corrrpiler.

6.3. THE CONTRIBUTION OF THE DATA EXPERT

A data expert has to construct the database that is connected to

CONDUCTOR. This is represented, in the formal specification by the

parameter Current-database of the module Conductor. This parameter is

inherited from module Database-inter/ace. Recall that an inherited

parameter is a parameter of an imported module that is not bound in the

importing module. The parameter Current-database in module Database

interface reads:

parameters Current-database
begin

/unctions
current-db: -> DATA-BASE
data-query: DATA-BASE # ID #

CONST-RANGE-SEQ -> USER-DATA
retrv-data: DATA-BASE # ID #

CONST-RANGE-SEQ -> SCALAR-SEQ
bg-query: DATA-BASE # ID #

CONST-RANGE-SEQ -> ID-SEQ
end Current-database

This parameter contains the functions current-db, data-query, retrv-data

and bg-query. The parameters specify, respectively, the database, how

53

data is retrieved from the data base, and how a background query checks

the consistency of the data. The sort ID in these functions specifies the

name of the series that is to be retrieved, and the sort CONST-RANGE-SEQ

describes the sample. A background query may result in a sequence of

exception identifiers: the sort ID-SEQ. A specification of all sorts in

the definition of parameter Current-database can be found in the modules

imported by the module Database-inter/ace.

A background query may reveal that a retrieved series is inconsistent. If

such an inconsistency is detected an exception identifier is added to the

retrieved series. If this series is used in a statistical technique, the

accompanying exception is raised and the execution of the statistical

technique is interrupted.

The data expert can add external handlers to CONDUCTOR in an external

handler session. An external handler session of a data expert modifies

the state of CONDUCTOR as defined by the following equation for the

function execute in module Conductor

{417} execute(hand-session(hnd),state(ust,stt,eht))
state(ust,

stt,
store-ext-handler(hnd,eht))

Given that CONDUCTOR is in a state determined by user state ust,

statistical technique table sst and external handler table eht, the

execution of a handler session results in a state where the external

handler is compiled and stored in the external handler table. The defini

tions of the function store-ext-handler is given in the module Gen-ext

handlers, a module that is imported by the module Conductor

6.4. THE CONTRIBUTION OF THE COMPUTER SCIENTIST

The contribution of the computer scientist is, to specify CONDUCTOR, and

to make efficient implementations in a higher level programming language

of all modules in the specification. This book can be seen as the

description of the contribution of the computer scientists in CONDUCTOR

as far as the formal specification of the modules concerns. Which

functions are available in the statistical language is left unspecified.

The type restrictions checks on these functions, as well as the numerical

54

procedures for the actual calculations, have to be constructed by the

computer scientists. For example, functions in the statistical language,

such as, matrix inversion, matrix multiplication and Kronecker product

are not specified. The fact that functions in the statistical language

are left unspecified is represented in the formal specification by

unbound parameters Current-June-types and Current-June-code. These

parameters are discussed in respectively chapter 8 and chapter 10.

To handle such exceptions, the computer scientist may, like the data

expert, add external exception handlers to CONDUCTOR in an external

handler session.

6.5. USING THE IMPLEMENTED STATISTICAL SOFTWARE

A user can apply the statistical techniques implemented by the technical

statisticians to the data collected by the data experts in an environment

created by computer scientists. A user session modifies the state of

CONDUCTOR, as defined by the following equation for the function execute

in module Conductor.

{415} execute(user-session(up),state(ust,stt,eht))
state(exec-user-pro(ust,available(sst,eht),up),

stt,
eht)

This equation specifies that, given that CONDUCTOR is in a state

determined by user state ust, statistical technique table stt and

external handler table eht, a user session results in a state where the

user program is interpreted and the user state is modified. The

definitions of the function exec-user-pro is given in the module

Resulting-software, a module imported by the module Conductor.

55

PART II

FORMAL SPECIFICATION OF THE

STATISTICAL LANGUAGE

THE SYNTAX OF THE STATISTICAL LANGUAGE

In statistical analysis a theoretical model is postulated that must

explain the observed data. If the basic assumptions of this model are not

rejected by (pre) tests, the unknown parameters of the model can be

estimated. Particular test results and parameter estimations may lead to

modification of the postulated model, and thus to a better description of

the observed data.

theot,~ff~al ◄---------------------,
model

~► pfrtes~
data ..

~~~~:ti ~esultJ 

- ► es Hmatioh -► 
I 

estlmifteii' 
~ijf~t~~ 

.. 

~------~------~--► ~~yf§.~:~ 
J;-esults· 

r .. 

Statistical software made it possible to calculate test results and 

parameter estimations very fast. Besides positive effects, this also 

introduced new perils. Trying many variants of the same theoretical model 

can easily lead to data peeping and chance capitalization (see Lovell 

[1983] and Meyer [1975]). The contribution of a technical statistician to 

statistical analysis, therefore, should not only be restricted the 

creation of tests and estimation techniques for specific theoretical 

57 



models. A technical statistician should also advice the users of his 

techniques how to modify a postulated model given the calculated results. 

The statistical language enables the technical statistician to add his 

knowledge to statistical software. In this chapter both the concrete and 

the abstract syntax of the statistical language are discussed. The 

complete set of production rules of the concrete syntax of the 

statistical language is given in appendix A. The formal specification of 

the abstract syntax in appendix F. 

7.1. ABSTRACT SETS OF STATISTICAL TECHNIQUES 

For the definition of the statistical language one only needs to know 

what operators, functions and data types are required to describe the 

statistical techniques a technical statistician want to implement. 

Knowledge of the statistical technique is not required. In this section 

we define statistical techniques in terms of these building blocks. This 

will lead to a few straightforward restrictions on the statistical 

language. 

Definitions: 

1. TARGET is the set of n statistical techniques that the statistician 
intends to express in the statistical language: 

TARGET 

2. FUNCTIONS is a set of m functions used in the equations of the 
statistical techniques in the set TARGET. 

FUNCTIONS 

3- OPERATORS is the set of p operators used in the equations of the 
statistical techniques in the set TARGET. 

OPERATORS 

4. TYPES is the set of k data types used in the equations of the 
statistical techniques in the set TARGET. 

58 



5. SST is the set of all statistical techniques that can be expressed 
in terms of the sets FUNCTIONS, OPERATOR and TYPES. 

SST= { TEC I g(TYPES,FUNCTIONS,OPERATORS) - ► TEC} 

Note that the difference between operators and functions is not 

fundamental. Operators can be regarded as functions with the appropriate 

number of parameters. Nevertheless operators are used frequently in 

statistical textbooks and can not be omitted if one wants to keep close 

resemblance to statistical notational conventions. 

Example 7.1: 

Assume we live in 'a simple statistical world' and have the following 

estimation techniques at our disposal: ordinary least squares (OLS) and 

two stage least squares (2-SLS). These techniques give an estimation of 

regression coefficients in a linear (simultaneous) model: 

Where y is a (n x 1)-vector of observations of the endogenous variable 

that must be explained in the equation, Y1 is a (n x m)-matrix of the 

observations of the other endogenous variables in the equation, X1 is a 

{n x p)-matrix of the observations of the p exogenous variables in the 

equation, u is a {n x 1)-matrix of random disturbances, ~ and T are, 

respectively {m x 1), {p x 1) vectors of model parameters. 

To estimate the model parameters the OLS-estimator can be used, however 

this estimator results in inconsistent estimates of ~ and T. The OLS

estimator combines the matrix Xl and Yl in the matrix X 

and estimates 6 = ( ~ l T )' as 

whereas the 2-SLS estimator estimates the coefficients in two rounds can 

be written as {see Maddala [1977]) 

59 



d = 2-sls i(Yl'Yl - Vl'Vl) L Xl'Yl 
Yl'X-;:i -l l{Y1-Vl) 1l 
Xl'X:J L Xl'y J 

where Vl is the (n x m}- matrix from the least-squares regression of Yl 

on X. The two estimation techniques are the target set of the statistical 

language. 

TARGET = {OLS,2-SLS} 

The equations that describe the two techniques in TARGET make use of the 

following functions, operators and data types: 

FUNCTIONS {matrix inversion} 

OPERATORS = {matrix subtraction(-}, 
matrix multiplication(•}, 
matrix transpose('), 
matrix assignment(=)} 

TYPES = {scalar,matrix,submatrix,partitioned matrix} 

Using the sets FUNCTIONS, OPERATORS and TYPES we can also describe a 

statistical technique called generalized least squares. This technique 

therefore belongs to the set SST. 

SST = {OLS, 2-SLS, GLS, .... } 

{end example 7.1.} 

Given the sets FUNCTIONS, OPERATORS and TYPES we can derive the following 

necessary conditions for the grammar of the statistical language. Recall 

that the grammar describes the syntax of the language, as discussed in 

chapter 5. A grammar G consisted of a set of non-terminals N, a set of 

terminal symbols T, a set of production rules P, and a starting symbol S. 

Sis one of the non-terminal symbols. 

Condition 1: The identifiers of elements of the sets FUNCTIONS, TYPES and 

OPERATOR are in T. 

This condition implies that all identifiers (function identifiers, 

operator symbols and data type identifiers) in the description of the 

60 



statistical technique must be terminals of the statistical language. 

Condition 2: The equations describing the statistical techniques 

in TARGET are correct sentences in the grammar. 

In other words the production rules in the grammar must enable the 

technical statistician to form the required expressions. 

7.2. THE GENERAL STRUCTURE OF A STATISTICAL PROGRAM 

In the statistical language the statistician determines: 

the user inter/ace of the statistical technique; the user interface 

consists of the input variables and the resulting statistics of the 

technique, 

the equations that describe the calculation of the statistic 

the (pre)tests that check the basic assumptions of the statistical 

technique and the significance of the calculated parameters, 

the exception handl-ers that describe how the software reacts if an 

exception occurs (assumptions are violated or problems occur on other 

levels of CONDUCTOR). 

- a unique name for the statistical technique. 

Each of these parts can be specified in separate sections of a 

statistical program. A statistical program consists of one or more 

sections as stated in the following production rules. 

statistical_program 

section 

--> statistical_program section 
section 

--> name_section I 
input_output_section I 
implementation_section I 
test_section I 
exception_handler_section 

The corresponding abstract syntax is specified in the module 

Statistical--programs. 

61 



module Statistical-programs 
begin 

exports 
begin 

sorts STAT-PRO, SECTION 
functions 

end 

abs-prog: STAT-PRO# SECTION 
abs-prog: SECTION 
abs-sect: ID 
abs-sect: IO-SEC 
abs-sect: IMPL-SEC 
abs-sect: TEST-SEC 
abs-sect: HANDL-SEC 

-> STAT-PRO 
-> STAT-PRO 
-> SECTION 
-> SECTION 
-> SECTION 
-> SECTION 
-> SECTION 

imports Decl-abstr-syntax, Impl-abstr-syntax 
Test-abstr-syntax, Handler-abstr-syntax, 
Identifiers 

end Statistical-programs 

Note that this module imports several other ones, which define the 

abstract syntax of separate language constructs. The reader is referred 

to appendix F for the definition of these modules; they will not further 

be discussed in this chapter. 

7.3. DECLARATION OF VARIABLES 

Variables in the statistical language are divided in three categories: 

input variables, output variables and the internal variables. The input 

variables are the variables that must be initialized by the user of the 

statistical technique; the output variables will contain the results of 

the statistical technique that are returned to the user. The input and 

output variables are declared in a input/output section of a statistical 

program. A message string may accompany the declaration of input/output 

variables. For input variables this message string is used to prompt the 

user of the statistical technique to enter his data. For output variables 

this message is clarifies the calculated results. Internal variables can 

be declared in an implementation, a test and an exception handler 

section. These variables remain invisible for the user of the statistical 

technique. 

Each declaration is a list of identifiers followed by the type of the 

declared variables and a message. 

62 



declaration --> var_type id_list message 

In the current version of CONDUCTOR the data types booleans, scalars, 

indices and matrices are available. Submatrices, matrix elements and 

partitioned matrices can also defined. These matrix references, however, 

are regarded as functions to access particular parts of matrices. 

var_type --> 'BOOL' I 'INDEX' I 'SCALAR' 
vec_type I mat_type 

The syntax of vector and matrix types includes the declaration of the 

dimension bounds. 

vec_type --> 'VECTOR' range 

mat_type --> 'MATRIX' ' [' ranges ']' 

ranges --> ranges ' ' range I 
range 

range --> index_expr 'TO' index_expr 

The upper and lower bound of a dimension range are expressed in terms of 

index expressions. These index expressions are somewhat restricted 

compared to integer expressions in higher-level programming languages in 

order to make symbolic type and dimension bound checking possible. 

Introducing a data type integers next to the data type indices relaxes 

these restriction considerable (See chapters 8 and 9.) The abstract 

syntax of declarations is specified in module Deci-abstr-syntax in 

appendix F. 

Example 7,2: Declarations in the statistical language. 

Examples of correct declarations in the statistical language are: 

63 



{ end example 7.2.} 

7.4. THE IMPLEMENTATION SECTION 

The implementation section of a statistical program contains the 

equations that describe how the parameters in the theoretical model are 

calculated. An implementation section consists of internal declarations 

of variables, and statements. 

implementation_section --> internal declarations 
'EQUATIONS' statements 

In CONDUCTOR five types of statements are distinguished. 

statement --> assignment I 
index assignment 
message I 
for_statement I 
compound_statement 

Conditional statements are not included in CONDUCTOR because they would 

make symbolic evaluation of a statistical program extremely difficult. 

The assignment statement, index assignment statement and compound 

statement are identical to similar statements defined in higher level 

programming languages. The message statement is a rudimentary print 

statement. 

The for-statement in the statistical language is adapted to statistical 

notational convention. In statistical textbooks the following notation is 

found frequently 

xi,j = 0 i = 1, .. ,m j = 1, .• ,n 

This is reflected in the following syntax rules 

for_statement --> compound_statement offsets 

64 



offsets 

offset 

--> offsets 
offset 

' ' . ,.>ffset I 

--> index var'=' 
index:expr ', .. ,' index_expr 

Besides the 'statistical' syntax, also the 'usual' syntax of for

statements in higher-level programming languages is available in the 

statistical language 

for_statement --> 'FOR'index_var ':=' index_expr 
'TO' index_expr compound_statement 

Note that, though two different forms of for-statements exist in the 

concrete syntax, there is only one representation of a for-statement in 

the abstract syntax. 

Example 7.3: an implementation section. 

In example 7.1. a matrix Xis declared. In the following implementation 

section all diagonal elements of matrix X are added. 

{ end example 7.3. } 

7.5. THE TEST AND EXCEPTION HANDLER SECTION 

Exceptions are a well known phenomenon in computer science, and can occur 

at every level of the hardware and/or software. Exceptions are unexpected 

situations which make further execution of a program undesirable or 

sometimes impossible. Typical examples of exceptions are underflow, 

overflow and division by zero. These situations are called exceptions 

65 



because they were not intended to appear during the normal course of 

execution of the program. 

In the test sections of a statistical program a technical statistician 

can specify when an exception must be raised. For instance, an exception 

can be raised if one of the assumptions underlying a statistical 

technique is rejected by a test: the software created by the technical 

statistician will signal that there is something wrong with the analyzed 

data set and interrupts the calculation of the statistical technique. 

The syntax of a test in the statistical language is: 

test_section --> 'TEST' internal_declarations 
'EQUATIONS' statements raises 

raises --> raises raise I 
raise 

raise --> 'RAISE' exception_flag 
'WHEN' condition 

exception_flag --> IDENTIFIER_NAME 

Exception handlers describe how the program must react if an exception is 

raised. The syntax of an exception handler in the statistical language 

is: 

handler 

stop_or_continue 

--> 'WHEN' exception_flag ':' 
internal declarations 
'EQUATIONS' statements 
stop_or_continue 

--> 'STOP' I 
I* default action continue *I 

Exception handlers in CONDUCTOR can be created by the technical 

statistician in a statistical program. The exception handler is only 

executed if an exception occurs during the execution of the statistical 

technique. In the exception handler the technical statistician can decide 

if the calculation of the statistical technique must be aborted or if it 

may continue, when an exception occurs. A further discussion of exception 

handling can be found in chapter 12. The abstract syntax of test and 

handler sections is specified in modules Test-abstr-syntax and Handler

abstr-syntax in appendix F. 

66 



Example 7.4. Tests IDd exception handlers. 

In chapter 4 we described the implementation of a bootstrap method to 

estimate the regression coefficients in a linear model. In this example 

we used the 'rule of thumb' to check the significance of the calculated 

parameters. 

test section statistical program 

In that chapter also an exception handler was given for near-singularity. 

This exception handler warns the user, and continues the calculation 

after the message is displayed, whereas the following handler 

displays the same message and then aborts the interrupted statistical 

technique if near-singularity occurs, because a stop instruction is added 

to the handler. 

{end example 7.4.} 

67 





8. SYMBOLIC TYPE CHECKING OF STATISTICAL 
PROGRAMS 

The syntax rules discussed in the previous chapter do not include any 

restrictions on the type of particular constructs in the language. A 

matrix function, for example, can be restricted to have only a square 

matrix as its argument. A type checker verifies that a construct in a 

language has the type expected by its context. In the early higher-level 

programming languages type checking was not considered to be a serious 

problem (see Sheridan [1959]). One of the first languages that allowed 

the type of language constructs to be evaluated systematically was 

Algol68. In type checking a distinction is made between static and 

dynamic type checking. If type checking can be done before the program is 

executed, it is called static, whereas it is called dynamic, if it is 

done during the execution of a program. Programming languages that 

involve matrices, like APL (see Iverson [1962]), rely on dynamic type 

checking. 

Type checking refers to a large class of problems. In the statistical 

language we particularly are interested in type checking of assignment 

statements that include matrix variables. Type checking of other 

constructs in the statistical language is done in exactly the same way as 

in higher-level programming languages. We concentrate on the restrictions 

on the dimension bounds of matrix types in assignment statements. The 

related problem of dimension bound checking in matrix element references 

is discussed in chapter 9. 

Allowing symbolic dimension bounds in the statistical language makes 

checking the dimension bound restrictions complicated. The dimension 

bounds of matrices in the statistical language are given in terms of 

69 



index expressions. A variable representing the number of observations, 

for example, will often specify the dimension bounds of matrices in a 

statistical technique. The actual dimension bounds of matrices are 

determined by the values of the input variables as given by the user of 

the statistical technique. This user, however, has no knowledge of the 

implementation details of the statistical technique, such as, constraints 

imposed by the dimensions of matrices used in the implementation of the 

statistical technique. He, therefore, should never be confronted with 

error messages concerning violations of such constraints. To ensure that 

no errors occur, type and dimension restrictions concerning (matrix} 

operators and (matrix} functions in the statistical language are checked 

extensively. Example 8.1 shows some type restrictions that are checked by 

the type checker. 

Example 8.1: Type checking of a statistical program. 

Consider the following statistical program. 

The type checker checks if in case of the transpose (')operator that: 

both argument and result are two-dimensional matrices 
the first dimension of the result is equal to the second 
dimension of the argument 
the second dimension of the result is equal to the first 
dimension of the argument 

And in case of plus(+) and the assign(:=) operator that: 

both arguments are of the same symbolic type 

{end example 8.1} 

70 



The type checking of the statistical language is based on symbolic 

evaluation. The symbolic evaluation of a matrix type requires the 

symbolic evaluation and comparison of the dimension ranges and involved 

index expressions. The symbolic comparison of index expressions is based 

on a simple mechanism, that multiplies out an index expression, and 

combines identical terms and factors. This mechanism is, for example, 

also applied in the symbolic manipulation languages REDUCE [1973] and 

MACSYMA [ 1977] . 

In this chapter, first the symbolic comparison of index expressions is 

discussed in section 8.1. In section 8.2 the algebraic specification of 

this comparison is given and in section 8.3 the symbolic comparison of 

dimension ranges and matrix types. A symbol table containing the type 

information of variables declared in a statistical program is specified 

in section 8.4, and in this section it is shown how declarations in the 

statistical language are stored in this table. The type information in 

the symbol table is used in the symbolic type checking of assignment 

statements in section 8.5. The specification of symbolic type checking of 

function calls is discussed in section 8.6. A statistical program that 

satisfies all symbolic type restrictions is called a type correct 

statisticai program. The specification of such a program is discussed in 

section 8.7. 

8.1. THE INDEX EXPRESSIONS 

The index expressions in the statistical language have a restricted 

syntax compared to integer expressi-0ns in higher-level programming 

language. The index variables, however, are only intended to be used in 

the declaration of dimension bounds of matrices, and in matrix element 

and submatrix references. An index expression may consist of a 

combination of index variables, index constants and the operators plus, 

minus and multiplication as stated in the following syntax rules. 

index_expr --> 
--> 
--> 
--> 
--> 
--> 

'(' index_expr 
index expr '+' 
index=expr '-' 
index_expr '•' 
INDEX VARIABLE 
INDEX_VALUE 

71 

I ) ' I 
index_expr 
index_expr 
index expr 
I -
I 



Note that the syntax rules are ambiguuus. This ambiguity is easily solved 

by giving precedence rules for the operators in the parser-generator yacc 

(see Johnson [1975]). The multiply operator(*) has the highest priority 

of the operators, and is right associative, the plus (+) and minus (-) 

operators are left associative. 

During a parse of an index expression its abstract syntax tree is 

constructed. The abstract syntax tree of the index expression n*t-1 is, 

for instance: 

I \ 
* 1 

I \ 
n t 

During type checking the need arises to determine whether two index 

expressions are equivalent1 , i.e. will have the same value when evaluated 

for any possible combination of values for the variables occurring in 

them. Unfortunately, equivalent index expressions may have different 

abstract syntax trees. For example, the equivalent expressions 

a + (b + c) 

correspond to 

+ 

I 
a 

I 
b 

\ 
+ 

\ 
C 

(a + b) + c 

I 
+ 

I 
a 

+ 

\ 
b 

\ 
C 

Another example is given by the expressions 

and 

which are clearly equivalent (due to distributivity) but have non-equi

valent abstract syntax trees 

We ignore the problems due to underflow and overflow of integers. 

72 



I 
a 

* 

I 
b 

\ 
+ 

\ 
C 

I 
a 

I 
* 

\ 
b 

+ 

\ 
* I \ 

a C 

To make symbolic comparison of the abstract syntax trees possible they 

are "normalized". That is, all symbolic equivalent index expressions are 

represented by the same abstract syntax tree. In CONDUCTOR index 

expression are normalized using the algorithm 8.1. In the description of 

this algorithm we use the following definitions: 

factor: an index expression consisting of either an index variable or an 

index constant. 

term: a factor or an index expression in which factors are multiplied. 

Algorithm 8.1: 

This algorithm multiplies out an index expression, and combines similar 

terms and factors. The algorithm proceed as follows: 

1. It distributes multiplication over additions and subtractions. 

(iel + ie2)• ie3 
(iel - ie2)• ie3 

=> iel * ie3 + ie2 * ie3 
=> iel * ie3 - ie2 * ie3 

where iel, ie2 and ie3 are index expressions. 

2. It eliminates the influence of parentheses within+ or - operators and 

within the * operator2 • 

associative). 

+, -: left associative, •: right 

2 

I 
iel 

Applying this rule ie2 and ie3 change position in order to keep 
the rules consistent with the implementation of the algorithm 
where the trees are rebuilt in the following way 

+ + 
\ => I \ 

ie2 
I \ I \ 

ie2 ie3 iel ie3 

73 



iel + (ie2 + ie3) => iel + ie3 + ie2 
iel - (ie2 - ie3) => iel + ie3 + ie2 
iel + (ie2 - ie3) => iel - ie3 + ie2 
iel - (ie2 + ie3) => iel - ie3 - ie2 

iel * ie2 * ie3 => iel * (ie2 * ie3) 

where iel, ie2 and ie3 are index expressions. 

3. It sorts factors and multiplies constant factors within terms, 

factor!* factor2 => factor2 * factor! 

when factor2 <r factorl, and where <r is a lexicographical order on 

the factors (constants <r variables) and 

cl* c2 * term => c3 * term (c3 =cl* c2) 

where cl, c2 and c3 are constant factors. 

4. It sorts terms and adds/subtracts identical terms. 

term!+ term2 => term2 + term! 

when term2 <t terml, where <t is a lexicographical order on the terms 

{constants <t variables) and 

cl* term+ c2 *term=> c3 * term {c3 =cl* c2) 

where cl, c2 and c3 are constant factors. 

5. It adjusts for negative signs in c0nstant factors in terms. 

-(-c) * term 
+(-c) * term 

=> c * term 
=> - c * term 

Example 8.2: Normalization of the abstract syntax tree of an 

index expression. 

Consider the following index expression 

74 



The abstract syntax tree of this index expression 

* 
I \ 

+ 
I \ I \ 

a 3 a 6 

Applying the algorithm gives 

Step 1: distribution of* over+/-

a 

(a+3)•(a-6) => (a•(a-6)) + (3•(a-6)) 

=> ((a-6)•a) + ((a-6)•3)) 

=> (a•a-6•a) + (a•3-6•3) 

resulting in the tree 

+ 
I \ 

I \ I \ 
* * * * 

I \ I \ I \ I \ 
a 6 a a 3 6 3 

Step 2: remove influence of parentheses: 

is 

(a•a-6•a) + (a•3-6•3) => ((a•a-6•a)-6•3)+a•3 
=> a•a - 6•a - 6•3 + a•3 

resulting in the tree 
+ 

I \ 
* 

I \ I \ 
* a 3 

I \ I \ 
* * 6 3 

I \ I \ 
a a 6 a 

75 



Step 3: sort factors and multiply condtant factors within terms: 

resulting in the tree 

+ 

I \ 
* 

I \ I \ 
18 3 a 

I \ 
* * I \ I \ 

a a 6 a 

Step 4: Sort terms and add/subtract identical terms: 

a•a - 6•a - 18 + 3•a => 
=> 

resulting in the tree 

I \ 
+ 18 

I \ 
* * I \ I \ 

a a -3 a 

a•a - 6•a + 3•a - 18 
a•a + (-3)•a - 18 

Step 5: Adjust for negative signs: 

resulting in the tree: 

I \ 
18 

I \ 
* * 

I \ I \ 
a a 3 a 

Equivalent index expressions are always represented in CONDUCTOR by the 

same abstract syntax tree. An example of an equivalent index expression 

is a•a- 3•(a-6). 

{end example 8.2.} 

76 



8. 2. ALGEBRAIC SPECIFICATION OF INDEX E:a>RESSIONS 

The abstract syntax trees of index expressions are specified in module 

Ind-expr-abstr-synta:,;. 

modute Ind-expr-abstr-synta:,; 
begin 

exports 
begin 

sorts IND-EXPR 
/unctions 

abs-ptus: 
abs-minus: 
abs-mui: 
abs-const: 
abs-ind: 
nun: 

IND-EXPR 
IND-EXPR 
IND-EXPR 
INDEX 
ID 

# IND-EXPR 
# IND-EXPR 
# IND-EXPR 

eq-resuit: IND-EXPR # IND-EXPR 
end 

imports Indices, Identifiers, Booieans 

end Ind-expr-abstr-syntax 

-> IND-EXPR 
-> IND-EXPR 
-> IND-EXPR 
-> IND-EXPR 
-> IND-EXPR 
-> IND-EXPR 

-> BOOL 

Equivalence classes of index expressions are defined by equations in 

module Ind-expr-abstr-syntax. Each step in the normalization algorithm 

requires that the functions in the module Ind-expr-abstr-syntax satisfy 

certain equations. 

Step 1. Distributivity of the multiply operator over the add and 

minus operator. 

[59] eq-resuit(abs-mul(e1,abs-plus(e2,e3)), 

and 

abs-plus(abs-mul(el,e2),abs-mul(e1,e3))) 
= true 

{60] eq-result(abs-mul(el,abs-minus(e2,eJ)), 
abs-minus(abs-mul(el,e2),abs-mul(el,e3))) 

= true 

Step 2. Associativity of the plus, minus and multiply operator. 

[61] eq-result(abs-plus(e1,abs-plus(e2,eJ)), 

and 

abs-plus(abs-plus(el,e2),e3)) 
= true 

77 



[62] eq-result(abs-mtnus(el,abs-minus(e2,eJ)), 

and 

abs-mtnus(abs-minus(el,e2),eJ)) 
= true 

[63] eq-result(abs-mul(el,abs-mul(e2,eJ)), 
abs-mul(abs-mul(el,e2),eJ)) 

true 

The other steps in the algorithm require that: 

- the multiplicatton of indices can be applied to the constant factors 

in one term, 

- the multiply operator is associative and commutative, 

- the plus and minus operator are assoctative and commutative, and the 

artthmetic rules of indices must be applicable to add/subtract terms, 

- subtracting a negative term is equal to adding the negation of that 

term. 

A complete specification of these requirements is given in module Ind

e:r:pr-abstr-syntax in appendix E. The equations in this module define the 

equivalence relation on index expressions. 

8.3. SYMBOLIC EQUIVAiENCE OF DIMENSION RANGES AND DATA TYPES 

A dimension range consists of a pair of index expressions. This pair 

describes the lower and upper bound of the range. The symbolic 

equivalence of dimension ranges is specified by straightforward 

application of the symbolic equivalence relation on index expressions 

range: INDEX-EXPR # INDEX-EXPR -> RANGE 
eq-range: RANGE# RANGE -> BOOL 

with equation 

[82] eq-range(range(el,e2),range(eJ,e4)) 
= eq-result(abs-mtnus(e2,el),abs-mtnus(e4,eJ)) 

In words, two ranges are symbolic equivalent if the difference between 

the upper bound and lower bound of the two ranges are symbolic 

equivalent. 

A matrix in the statistical language may have more than one dimension. A 

sequence of dimension ranges is specified in the module Range-sequences. 

78 



This module is imported in the module Tech-types, where the type 

descriptions of the variables in the statistical language are specified. 

module Technique-types 
begin 

exports 
begin 

sorts TECH-TYPE 
functions 

tech-type: 
matrix-type: 

SIMPLE-TYPE 
RANGE-SEQ 

-> TECH-TYPE 
-> TECH-TYPE 

eq-type: TECH-TYPE# TECH-TYPE -> BOOL 
end 

irrrports Range-sequences, Booleans 

end Technique-types 

The type of a variable in the statistical language, is either a simple 

type (boolean, index or scalar) or a matrix type. Symbolic equivalence of 

type descriptions is specified in the function eq-type. Two matrix type 

descriptions are symbolic equivalent when the dimension ranges (rs1 and 

rs2) are symbolic equivalent. 

[90} eq-type(matrix-type(rsl),matrix-type(rs2)) 
= eq-ranges(rsl,rs2) 

A complete specification of the function eq-type is found in appendix E. 

Example 8.4: Comparison of matrix-types. 

Let the INPUT section of a statistical program contain the following 

variable declarations: 

To simplify the example we assume that in the formal specification the 

index variables k, n, m and p are represented by the same identifier. 

Note that in general the identifiers in the specification are different 

from the identifiers in the program. 

79 



k,n,m,p :-> ID 

Using the functions in the formal specification the type description of 

the variable X reads 

tl = matrix-type( 
add-item(range(abs-plus(abs-ind(n),abs-ind(p)), 

abs-plus(abs-ind(n),abs-ind(k))), 
null-range)) 

and the type description of variable Y reads 

t2= matrix-type( 
add-item(range(abs-plus(abs-ind(m),abs-ind(p), 

abs-plus(abs-ind(m),abs-ind(k)), 
null-range)) 

The two type descriptions tl and t2 are equivalent as the following 

derivation shows: 

eq-type(tl,t2) 

eq-ranges(add-item(range(abs-plus(abs-ind(n),abs-ind(p), 
abs-plus(abs-ind(n),abs-ind(k)), 

and( 

null-range), 
add-item(range(abs-plus(abs-ind(m),abs-ind(p), 

abs-plus(abs-ind(m),abs-ind(k)), 
null-range)) 

eq-range(range(abs-plus(abs-ind(n),abs-ind(p), 
abs-plus(abs-ind(n),abs-ind(k)), 

range(abs-plus(abs-ind(m),abs-ind(p), 
abs-plus(abs-ind(m),abs-ind(k))), 

eq-ranges(null-range,null-range)) 

eq-range(range(abs-plus(abs-ind(n),abs-ind(p), 
abs-plus(abs-ind(n),abs-ind(k)), 

range(abs-plus(abs-ind(m),abs-ind(p), 
abs-plus(abs-ind(m),abs-ind(k))) 

eq-result(abs-minus(abs-plus(abs-ind(n),abs-ind(p)), 
abs-plus(abs-ind(n),abs-ind(k)))), 

abs-minus(abs-plus(abs-ind(m),abs-ind(p)), 
abs-plus(abs-ind(m),abs-ind(k)))) 

eq-result(abs-minus(abs-ind(p),abs-ind(k)), 
abs-minus(abs-ind(p),abs-ind(k))) 

true 

{ end example 8.4. } 

80 



8.4. MANAGING TYPE INFORMATION DURING 'rYPE CHECKING 

In order to manage the type information obtained during type checking we 

introduce a symbol table that relates variables in a statistical program 

with their type. Thi~ table is calle!'f the technique symbol table. For 

each variable the data type description (the sort TECH-TYPE), the 

visibility (the sort USER-VIEW), the value (the sort TECH-DATA} and a 

message for the user (the sort STRING} is stored. The information for 

each variable in the symbol table can be located by the variable 

identifier (the sort ID). 

Te.:hnique-data 

User

visibility 

Te,:hnique

types 

I Strings I 
Techn-symtab-info 

Tables 

Te,:hn-symtabs 

Identifiers 

The variables in the declaration sections of a statistical program are 

stored in the technique symbol table. The module Store-dec'Larations 

imports the abstract syntax of declarations in the statistical language 

from the module Decl-abstr-syntax, and imports the technique symbol 

tables from the module Tech-symtabs. The function store-id specifies that 

the information in a variable declaration, the identifier (id), the type 

description (tt), the user view (uv) and the message (mess), is inserted 

81 



in the technique symbol table (ts). A variable is not assigned a value 

when it is declared. This is specified by the constant function 

uninitia"lized. 

{118] store-id(ts,id,uv,mess) 
insert(id, 

ts-info(tt,uv,uninitialized,mess), 
ts) 

8.5. TYPE CHECKING OF ASSIGNMENT STATEMENTS 

Symbolic type checks are performed for all assignment statements in a 

statistical program. The other statements do not, or only indirectly, 

impose type restriction. The function type-check-stmnt, 

type-check-stmnt: TECH-SYMTAB #STATEMENT-> BOOL 

with equation 

[156] type-check-stmnt(abs-assgn(var,expr),tst) 
eq-type(expr-type(expr,tst),var-type(var,tst)) 

specifies the type restrictions on statements. The type of the variable 

(var) in the left-hand-side of the assignment statement is determined by 

the function var-type(var,tst). This function retrieves the type of the 

variable from the technique symbol table tst. The type of the expression 

on the right-hand-side of an assignment statement is specified in the 

function expr-type in module Stat-check-expressions 

expr-type: EXPR # TECHN-SYMTAB -> TECH-TYPE 

If, for example, an expression only consists of a scalar (sea) its 

resulting type is scalar type, as expressed in the equation 

{150] expr-type(abs-expr(t-data(sca)),tst) tech-type(scalar-type) 

where tst is a technique symbol table. The specification of the type of 

other expressions can be found in module Stat-check-expressions in 

appendix H. 

82 



8.6. TYPE CHECKING OF FUNCTION CALLS 

Type checking of functions calls in the statistical language is organized 

around the notion of a type list. The type list contains the types of the 

function arguments. The types in the type list are used to check the type 

restrictions in the function table. The latter captures the type 

information for each function in the statistical language. Type 

restrictions on functions describe the required types of the result and 

the argument(s) of a function. The symbolic type checker in CONDUCTOR 

checks two sorts of type restrictions: 

(1) skeleton restrictions 
(2) dimension restrictions 

To check the first class of restrictions the function eq-skelet is 

specified in the module Tech-types. 

eq-skelet: TECH-TYPE# TECH-TYPE -> BOOL 

In this function the equivalence of matrix-types is less restrictive than 

in the function eq-type. The function eq-skelet only checks if the number 

of dimensions of the matrix-types, with range-sequences rl and r2, are 

equal, 

{94} eq-skelet(matrix-type(rl),matrix-type(r2)) 
= eq(n-o/-dims(rl),n-o/-dims(r2)) 

whereas the function eq-type checks if the dimension ranges are 

equivalent. 

A skeleton restriction consists of two indices, indicating which 

arguments in the type list must satisfy the skeleton restrictions, or an 

index and a type description where the indicated element in the type list 

must be equal to the given type. 

restr: INDEX# INDEX 
restr: INDEX# TYPE 

-> SKELET-RESTR 
-> SKELET-RESTR 

A check of a skeleton restriction is specified in function check 

check: SKELET-RESTR #TYPE-LIST-> BOOL 

with equations 

83 



{124] check(restr(indl,ind2),tl) 
= eq-skelet(argument(tl,indl),argument(tl,ind2)) 

[125} check(restr(ind,t),tl) 
= eq-skelet(argwnent(tl,indl),t) 

A dimension restriction imposes an equality restriction or a constant 

restriction on particular dimension ranges of arguments. A dimension 

range of an argument is indicated in the type list by a constant range. 

The first element of the constant range specifies the argument number, 

the second index the dimension number. An equality restriction on two 

dimension ranges consists of two constant ranges; a constant restriction 

on a dimension range consist of a constant range and a dimension range. 

dim-restr: CONST-RANGE# CONST-RANGE 
dim-restr: CONST-RANGE# RANGE 

The check of dimension restrictions 

check: DIM-RESTR # TYPE-LIST 

-> DIM-RESTR 
-> DIM-RESTR 

-> BOOL 

checks if the restriction is satisfied for a particular type list. If the 

dimension restriction consists of two constant ranges crl and cr2, these 

constant ranges are used to retrieve the appropriate dimension ranges 

from the type list ti and these dimension ranges are compared. 

[132} check(dim-restr(crl,cr2),tl) 
= eq-range(arg-range(crl,tl),arg-range(cr2,tl)) 

The type of the result of a function is specified to be either a simple 

type or a matrix type. In the latter case the dimension ranges are 

retrieved from the type list. 

res-type: TYPE ->RESULT-TYPE 

res-type: CONST-RANGE-SEQ-> RESULT-TYPE 

How the result is defined in term of the argument types in the type list 

is specified in module Result-types in appendix H. Example 8.5 
demonstrates a set of symbolic type restrictions that can be checked by 

the type checker in CONDUCTOR. 

84 



Example 8.5: Type restrictions on functions. 

Assume we impose the following restrictions on a function: 

1. Skeleton restrictions on arguments: 

- the first argument must be a scalar. 

- the second argument must be a two dimensional matrix. 

2. Dimension restrictions on arguments: 

- the first dimension of the second argument must be equal to the 

second dimension of the second argument. 

3. The type of the result of the function: 

the result is a one dimensional matrix. 

- the dimension range of the result is equal to the first dimension 

range of the second argument. 

In terms of the functions in the formal specification the skeleton 

restrictions read3 

restr(l,tech-type(scalar-type)) 
restr(2,matrix(add-item(rl,add-item(r2,null-range))) 

where rl and r2 are ranges. The symbolic dimension restrictions read 

dim-restr(c-range(l,2),c-range(2,2)) 

The result is specified as 

res-type(add-item(cr-range(2,1),null-cr-range)) 

{end example 8.5.} 

The type restrictions on functions are sequences of skeleton restrictions 

and dimension restriction. A function check specifies the checking of all 

skeleton restrictions. 

check: SKELET-RESTR-SEQ #TYPE-LIST-> BOOL 

with equations 

3 Note that 2 does not exist in the formal specification and 
should be written as increm(l). 

85 



{126] check(add-item(sr,null-seq},tl} check(sr,tl) 

and 

{127] check(add-item(sr,srs),tl} 
= and(check(sr,tl),check(srs,tl) 

where sr is a skeleton restriction and srs is a sequence of skeleton 

restrictions. In a similar way, module Dim-restrictions specifies the 

check of dimension restrictions (the sort DIM-RESTR-SEQ) in appendix H. 

All type information concerning functions is combined in the sort 

FUNC-TYPE-INFO in module Function-types 

!-info: INDEX# SKELET-RESTR-SEQ # 
DIM-RESTR-SEQ # TECH-TYPE -> FUNC-TYPE-INFO 

The type information is stored in the function type table. The type of a 

function call in the statistical langauge, with function identifier f-id 

and argument list argl, can now be specified as: 

{153] e:r:pr-type(abs-f-call(f-id,argl},tst) 
= result-f(f-id,arg-types(argl,null,tst)) 

when check-f-restr(f-id,arg-types(argl,null,tst)) true 

The function check-f-restr defines the checking of both the skeleton and 

dimension restrictions; the function result-! returns the type of the 

result of the function call in the statistical language. The type of the 

arguments is evaluated by the function arg-types, using information in 

the symbol table ts. 

The above mechanism only describes equality and constant restrictions on 

dimension ranges of matrix types. More complicated restriction on these 

dimension ranges can be created using the range expressions specified in 

module Ranges. Range expressions will not always yield correct ranges. 

These problems, caused by the lack of order on the equivalence classes of 

index expressions, are discussed in chapter 9. 

86 



8.7. A TYPE CORRECT STATISTICAL PROGRAM 

In chapter 7 we specified a syntactically correct statistical program. 

Type checking of a statistical program, using the mechanisms discussed in 

this chapter, gives the next step in the definition of a correct 

statistical program: a type correct statistical program. The symbolic 

type checking of a statistical program is specified in module Static

type-checking. 

Stat-chaclc

JJnpl 

current-tune-: ypa - :est rs 

Cur rant- func-t ype -rest rs 

Stat-c~ticlc

handlars 

Sta:c 1c-t ypa-check ing 

currant- tune-<: ypa - rest rs 

The parameter Current-Junc-type-restrs is left unbound is this module. 

This specifies that the design of CONDUCTOR is independent of the 

functions defined in the statistical language. 

87 





9, SYMBOLIC DIMENSION BOUND CHECKS AND THE 
GENERATION OF INPUT RESTRICTIONS 

In a correct statistical program, matrix element and submatrix references 

may never refer to elements outside the declared dimensions of a matrix. 

Matrix element reference can be compared with references to elements of a 

dynamic array in a higher-level programming language program. In practice 

it is difficult to check that such references are correct for all 

possible values of the input variables of such a program. A higher-level 

programming language program may have infinitely many execution trees, 

i.e. there are infinitely many ways to evaluate a program written in 

these languages. In practice, therefore, one often has to rely on testing 

instead of proving the correctness of a program. A way to test a program 

with infinitely many execution trees is called symbolic evaluation (see 

King [1976]). For each variable, after each statement, a symbolic 

denotation of the value is given and for each path in the program a 

conditional expression is calculated, indicating under which condition 

the path is taken. King [1976] suggests giving a symbolic value to the 

input variables and shows that, for a simple programming language, 

EFFIGY, symbolic evaluation is possible. The mechanism suggested by King, 

is used in CONDUCTOR to generate input restrictions on the values of the 

input variables of a statistical program. 

The symbolic evaluation of a statistical program is facilitated by the 

fact that the structure of the statistical language in CONDUCTOR is less 

complicated than the structure of higher-level programming languages. 

Important differences in comparison with higher-level programming 

languages are: 

89 



- the language does not have conditional statements, 

- the only loop control statement is the for-statement, 

- a for-loop is at least executed once, 

- loop control variables may not be reassigned inside a loop, 

- the input index variables in the statistical program may not be 

reassigned inside a statistical program, 

index expressions are a subset of general integer expressions. 

Due to these restrictions a statistical program has a unique symbolic 

execution tree, i.e. a symbolic range can be calculated for each index 

variable after each statement in the program. This symbolic range 

describes the upper and lower bound of the index variable in terms of the 

input index variables of the statistical technique. 

The symbolic evaluation of a statistical program consists of the 

following steps: 

- symbolic ranges are assigned to input index variables, 

- symbolic ranges are assigned to index variables in for-statements and 

index assignment statements, 

for each index expression a symbolic range is calculated using the 

symbolic ranges of the index variables in the expression, 

the symbolic ranges of index expressions in a matrix element reference 

are compared with the symbolic dimension ranges of the referenced 

matrix; if these symbolic ranges are not equivalent, input 

restrictions on the values of the input index variables are generated. 

Consider the following statistical program 

In this example, first the symbolic ranges [n TO n], [m TO m] and [p TO 

p], are assigned to the input variables n, m and p. Then a symbolic range 

[n TO p] is assigned to the index variable i. And finally a symbolic 

90 



range [n+m TO p+m] is calculated for the expression i+m,, by adding the 

bounds of the symbolic ranges of i and m. This range is equivalent to the 

symbolic dimension range of the vector X, showing that the element 

reference X[i+m] is correct for all possible values of the input 

variables. 

The symbolic ranges for an index expression are calculated by applying 

the operator in the index expression to the bounds of the symbolic ranges 

of the operands. The example above, of course, obscures the problems that 

may occur in less trivial index expressions. Symbolic ranges can only be 

calculated with the range calculation mechanism for monotone increasing 

or decreasing index expressions. And as an additional restriction all 

symbolic ranges in the symbolic calculations must be strictly positive. 

9.1. AN ORDERING ON INDEX EXPRESSIONS 

In the symbolic dimension check mechanism, it has to be determined 

whether the symbolic range of an index expression is a subrange of the 

declared symbolic range. For example, the vector X, declared in the 

statistical program in the beginning of this chapter, has dimension 

bounds [n + m TO p + m]. For the index expression i+m, in the vector 

element reference X[i+m], we calculated the same range. And we had to 

determine whether the restriction 

n+m s n+m s n+p s n+p 

holds for all possible values of the variables in the expressions. 

Thereto, we have to define an ordering on the index expressions. This 

ordering is based on the ordering of integers. If two expressions always 

yield the same integer value after evaluation, for all possible values of 

the variables in these expressions, they are equivalent. If one index 

expression always yields a greater/smaller integer than another index 

expression, the order is greater/smaller. The order of two expressions is 

said to be undecided if the comparison is undecided. The order on index 

expressions is specified in module Ind-e:x:pr-order. 

91 



module Ind-expr-order 
begin 

exports 
begin 

/unctions 
order: IND-EXPR # IND-EXPR -> RELATION 

end 

irrcports Order, Ind-expr-abstr-syntax 

end Ind-expr-order 

The function order specifies the order relation of two index expressions, 

tel and ie2, based on the order relation on the integers. If the 

difference between two index expression is a constant c, it can be 

decided if the order relation between the two expressions is equal, 

greater or less, by comparing the constant c with 0. If c is equal to 0 

the boolean function eq(c,0) returns the value true, if c is greater than 

0, the boolean function ge(c,0) returns the value true. 

[190] order(iel,ie2) = if (eq(c,0), equal, 
if(ge(c,0), greater,less) 

~hen eq-result(abs-minus(ie2,iel),abs-const(c)) = true 

If the difference between two index expressions is not a constant, the 

expressions are not comparable, and the order is said to be undecided. 

[191] order(iel,ie2) = undecided 

~hen eq-result(abs-minus(ie2,iel),abs-const(c)) = false 

If the difference between two index expressions consist of the sum of 

quadratic terms, also the order relation can be determined. If all 

quadratic terms are positive, the order relation is greater and if all 

quadratic terms are negative, the order relation is smaller. If the 

resulting difference is a mixture of positive and negative quadratic 

terms, the order is again undecided. In the formal specification of the 

function order in appendix I, the order relation based on quadratic terms 

is not incorporated, it can however easily be added. 

92 



9.2. CALCULATION OF A SYMBOLIC RANGE FC'R AN INDEX EXPRESSION 

For each index expression in a statistical program a symbolic range is 

calculated during the symbolic evaluation. A symbolic range for an index 

expression is calculated by applying the operator in the index expression 

to the bounds of the symbolic ranges calculated for the operands. 

The range operator +r• -rand *rare defined as follows: 

[n tom] +r [p to q] 

[n tom] [p to q] 

[n tom] *r [p to q] 

= [(n + p) 

= [(n - q) 

= [(n * p) 

to (m + q)] 

to (m - p)] 

to (m * q)] 

An index expression that only consists of a variable (x) or constant (c) 

the function range results in a range with the variable or constant as 

lower and upper bound. The calculation of symbolic ranges is specified in 

the function caic-range in module Range-caicuiations. 

Ind-expr

abstr-syntax 

Sequences 

Ind-expr-

Ind-expr

abstr-syn tax 

Ranges 

Sequen•=e• 

Range

sequen,::es 

Id-sequences 

Monotone-restrictions 

Ranges Identifiers 

Entries 

Tables 

Range-tables 

Range-calculations 

93 



For instance, the equation {205] specifies the calculation of a range for 

the plus operator in an index expressions. 

{205} calc-range(abs-plus(iel,ie2),rt) 
range-plus(calc-range(iel,rt), 

calc-range(ie2,rt)) 

when is-monotone(abs-plus(iel,ie2)) true 

Where iel and ie2 are index expression and rt is a range table. This 

equation states that if we want to calculate the symbolic range of an 

expression that is the sum of two expressions, we first calculate the 

symbolic ranges for the two sub-expressions ( iel and ie2) and than add 

these two symbolic ranges. The restriction that the index expressions 

must be monotone increasing or decreasing is discussed in the next 

section of this chapter. The addition of two symbolic ranges is specified 

in module Ranges in equation {77]. The addition of two ranges, 

range(iel,ie2) and range(ieJ,ie4) results in a new range where the lower 

and upper bounds are added. 

{77} range-plus(range(iel,ie2),range(ieJ,ie4)) 
= range(abs-plus(iel,ieJ),abs-plus(ie2,ie4)) 

Similar equations are given for multiplication and subtraction. 

Ranges for index expressions can only be calculated if the intermediate 

ranges in the calculations are strictly positive. If this can not be 

verified, input restrictions are generated as specified in module Range

calc-restr. For example, the restriction that a range retrieved from the 

range table ( id.ts) must always be positive is specified in function 

restr-calc-range. 

restr-calc-range: IND-EXPR #RANGE-TABLE# 
TECH-SYMTAB # INP-RESTR-SEQ ->INP-RESTR-SEQ 

{218} restr-calc-range(abs-ind(id),rt,ts,irs) 
= conc(pos-range-restr(id·rt,ts),irs) 

The function cone concatenates the generated restrictions and the already 

existing input restrictions irs. 

94 



9.3. RESTRICTIONS ON INDEX EXPRESSIONS 

A symbolic range for an index expression is calculated by applying the 

operator in the index expression to the bounds of the symbolic ranges of 

the operands. This mechanism can only be applied to positive monotone 

increasing or decreasing index expressions. Furthermore all ranges in the 

calculations should be positive. 

Example 9.1: A not monotone increasing index expression. 

Consider the following simple index expression 

p(i) = i•i - 4•i + 4 

This is expression is neither monotone increasing nor monotone 

decreasing. 

c5 
c5i p(i) > 0 i > 2 , 

c5 
c5i p(i) < 0 i < 2 , 

Assume the variable i is assigned the symbolic range [n to p]. The 

symbolic range calculation mechanism will first assign a range to the 

variables and constants in the expression, then it will use these ranges 

to assign ranges to the terms i•i, 4•i and 4, etc. 

[n•n to p•p] [4•n to 4•p] [4 to 4] 
II II ,. ,. 

[n•n-4•1 to p•p-4•n] 

,. ,. 
[n•n-4•p+4 to p•p-4•n+4] 

The calculated range is obviously wrong. Substitution of n = 1 and p = 10 

leads to a calculated range of -35 to 100, while the actual range of this 

quadratic function is Oto 64. 

{end example 9.1.} 

For monotone increasing expression it can easily be shown that the range 

95 



calculation mechanism is correct. A normalized index expressions (see 

algorithm 8 .1 in chapter 8) is a polynomial in the integer variables 

x 1 , •• ,xm. Calculating the upper bound of a normalized index expression is 

equal to finding the maximum of the polynomial for the variables 

x 1 , •• ,xm. For the variable x 1 this reads 

max 
n 
E 

i = 1 

where ci is the constant factor in a term of the polynomial, and f i a 

function of the other variables in each term. The function f i is a 

product of powers of the variables x2 , •• , xm . All variables in f i are 

positive 

The variable x 1 is also restricted to a positive range, with maximum 

max{x1 ) and minimum min(x1 ) 

If also ci >= 0, the partial derivative of the polynomial with respect to 

x 1 is positive for all values of x1 , •• ,xm, and we may simply substitute 

the maximum of x 1 for every occurrence of x 1 to get the maximum of the 

polynomial with respect to x1 • 

n 
max E ci (max(x1 ) )i f i (x2 , ••• ,xm) 

x 2 , •• ,xm i = 1 

It can also be shown that, for strictly negative terms, where ci <= 0, 

one may substitute the minimum of x 1 to get the maximum of the 

polynomial. This shows that we can use the symbolic evaluation mechanism 

under the restriction that a given polynomial p can be written as the sum 

of two polynomials p1 and p2 

where the function p1 only contains the positive terms of polynomial p 

96 



and p2 the negative terms. The sets of variables x 1 , •• , xm and y 1 , •• , y t 

must be disjoint. The check whether an index expression is monotone 

increasing or decreasing, amounts to a check whether the set of variables 

in negative terms and the set of variables in positive terms of a 

normalized index expression is disjoint. The monotonicity restriction is 

specified by the function is-monotone in module Monotone-restrictions. 

module Monotone-restrictions 
begin 

e:x;ports 
begin 

/unctions 
is-monotone: IND-EXPR 
var-list: BOOL # BOOL # IND-EXPR # ID-SEQ 

end 

irrrports Ind-e:x;pr-abstr-syntax, Id-sequences, 

-> BOOL 
-> ID-SEQ 

Boolean { renamed by {true-> pos, false-> neg]} 

end Monotone-restrictions 

The function is-monotone makes two lists of identifiers. One list 

contains the variables in the positive terms, the other the variables in 

the negative terms. The first boolean flag in this function indicates if 

a variable must be added to the positive list or to the negative list. 

The second flag indicates the sign of the term that is examined. To 

increase the readability of the module the boolean functions true and 

false are renamed. If the two lists are disjoint the expression is 

monotone increasing or decreasing 1 • 

{204} is-monotone(ie) disjoint(var-list(pos,pos,ie,null), 
var-list(pos,neg,ie,null)) 

A complete specification of the function var-list in is found in module 

Monotone-restrictions. 

All symbolic ranges in the symbolic evaluation must be positive. In 

general this restriction is not satisfied. 

declarations 

Consider the input 

Here we pay the price for not having specified a normalized index 
expression. The is-monotone function is only correct if applied 
to a normalized index expression. For other representations it 
may lead to a wrong result. 

97 



The range [n top] is positive if n >= 1 and p >= n. CONDUCTOR generates 

during the compilation of a statistical program a sequence of these input 

restrictions. 

The positive restriction of symbolic ranges is specified in the module 

Range-restrictions in equation [193) for function pos-range-restr. 

{193} pos-range-restr(range(iel,ie2),ts) 
add-inp-restr(iel,abs-const(ind(l)),ts, 

add-inp-restr(ie2,iel,ts,no-restrictions)) 

The function add-inp-restr adds an input restriction { inp-restr 

(iel,ie2,ts)) to the input restriction sequence irs, when the order 

relation of the two index expressions in the range is undecided. 

{192} add-inp-restr(iel,ie2,ts,irs) 
i/(eq(order(iel,ie2),undecided)), 

add-item(inp-restr(abs-minus(iel,ie2),ts),irs), 

i/(eq(order(iel,ie2),less), 

error-inp-restr-seq, 
irs) 

98 



9.4. INPUT RESTRICTIONS 

All input restrictions in CONDUCTOR are given as a positive restriction 

on an index expression. 

index expression~ 0 

The variables in the index expression in a restriction may only be input 

variables. CONDUCTOR checks whether all variables are input variables by 

examining the technique symbol table. The specification of input 

restrictions reads 

inp-restr: IND-EXPR # TECH-SYMTAB -> INP-RESTR 

with equation 

{179} inp-restr(ie,ts) = pos-restr(ie) 

when are-input-vars(ie,ts) true 

The function are-input-vars specifies that all the variables in the 

expression (ie) must be declared in the input section of a statistical 

program. This function uses information stored in the technique symbol 

table (ts) and is specified in module Are-input-vars. The function pos

restr(ie) specifies that the restriction ie >= 0 must hold. 

9.5 ASSIGNMENT OF A SYMBOLIC RANGE TO AN INDEX VARIABLE 

During the symbolic evaluation of a matrix language program symbolic 

ranges are assigned to index variables in: 

- an INPUT declaration; an index variable n declared in an input 

section is assigned the range [n ton], 

- an index assignment statement; a non-input index variable p in the 

assignment p = ie is assigned the range calculated for the index 

expression ie, 

a for-statement; a loop control variable i in the for loop 

99 



for i := iel to ie2 do statements 

is assigned the range determined by the lower bound of the range 

calculated for index expression iel and the upper bound calculated for 

the index expression ie2. 

To ensure that the for-statement is at_ least executed once, it must be 

checked if the upper bound of the range calculated for index expression 

iel is smaller or equal to the lower bound of the range calculated for 

index expression ie2. If this restrictions is undecided input 

restrictions are generated for the input index variables of the matrix 

language program in which the for-statement occurs. 

These symbolic ranges assigned to index variables are stored in the 

symbolic range table, specified by the sort RANGE-TABLE in the module 

Range-tables; the assignment is specified in module Range-assignments. 

The abstract syntax of a for-statement is given in the module 

Statements-abstr-syntax in the function abs-for 

abs-for: INDEX-VAR# INDEX-EXPR 
# INDEX-EXPR # STATEMENTS -> STATEMENT 

The symbolic range calculated for the range consisting of the two index 

expressions ( iel and ie2) , is stored in the range table (rt) for the 

control index variable (id) in the for-loop. 

{229] assgn-range(abs-for(i,iel,ie2,stmts),rt) 
assgn-ranges( 

stmts, 
insert(id, 

range-calc-range(range(iel,ie2), 
rt))) 

Similar equations are specified for the range assignments in index 

assignment statements and INPUT index declarations in 

Range-assignments. 

100 

module 



'✓ariable

abstr-syntax 

Expr-abstr

syntax 

Ind-expr

abstr-syntax 

Statements-abstr-syntax 

Ind-expr

sequences 

Monotone

restrictions 

Range

sequences 

Range-calculations 

Range-tables 

Range-assi9nments 

9.6. MATRIX ELEMENT REFERENCES 

Tables 

Range-tables 

I dent if ie rs 

Sequences 

Id-sequen,::es 

The restriction that a symbolic range (range(iel,ie2)) is a subrange of 

another symbolic range (range(ie3, ie4)) is specified in module Range

restrictions in function 

range-within-range: RANGE# RANGE# TECH-SYMTAB 
-> INP-RESTR-SEQ 

with equation 

101 



{104} range-within-range(range(iel,ie2),range(ie3,ie4),ts) 
add-inp-restr(iel,ie3,ts, 

add-inp-restr(ie2,iel,ts, 
add-irrp-restr(ie4,ie2,ts,no-restrictions))) 

Equation {104} specifies that, if the subrange restriction can not be 

verified, a sequence of input restrictions, ie3 <= iel <= ie2 <= ie4, is 

generated. 

The generation of input restrictions for variables is specified in module 

Gen-restr-variables in function gen-restr-var. 

gen-restr-var: INP-RESTR-SEQ #RANGE-TABLE# 
TECH-SYMTAB # VARIABLE 
-> INP-RESTR-SEQ 

A matrix element reference abs-var(id,inds) consists of an identifier id 

and an index expression sequence inds. For each of these index 

expressions a symbolic range is evaluated, and the static type checker 

checks if these symbolic ranges are subranges of the declared dimension 

ranges of the matrix. If the static type checker can not determine if 

this restriction holds, input restriction are generated. Note that the 

generated input restrictions consist of: 

input restrictions that guarantee that all symbolic ranges in the 

symbolic evaluation of an index expression ie are positive; this was 

specified in the function restr-calc-ranges, 

- input restrictions that guarantee that the calculated range lies 

within the referenced range; this was specified in function range

wi thin-range. 

{234} gen-restr-var(irs,rt,ts,abs-var(id,tnds)) 
conc(restr-calc-ranges(inds,rt,ts,trs), 

range-within-range(calc-ranges(inds,rt),rngs,ts)) 

when eq-type(type(td"ts),matrtx-type(rngs)) = true 

9.7. A TYPE AND DIMENSION BOUND CORRECT STATISTICAL PROGRAM 

In module Input-restr-generator it is specified how all input 

restrictions are generated during the symbolic evaluation of a 

statistical program. 

102 



gen-restr-pro: STAT-PRO# TECH-SYMTAB -> INP-RESTR-SEQ 

The module Input-restr-generator imports modules that specify how input 

restrictions are generated for sections of the statistical program. These 

modules in turn import modules that specify how restrictions are generat

ed for for-statements and declarations, etc. A complete specification of 

the input generation mechanism can be found in appendix I. A type correct 

statistical program in combination with the generated input restrictions 

is called a type and dimension bound correct statistical program. 

103 





PART III 

FORMAL SPECIFICATION 

OF THE KERNEL 





10. THE KERNEL 

The kernel is a simple virtual machine, with a processor that can execute 

kernel instructions. The instruction set of the kernel (the kernel 

language) shows close resemblance with a simple language, called postfix 

notation, used for intermediate code generation in compilers for higher

level programming languages. A kernel (language) program is a postfix 

representation of a statistical program. Postfix notation is, for 

example, used as intermediate code in most SNOBOL compilers (see Griswold 

[1972]). 
The kernel instructions can be regarded as the semantical actions of the 

s ta tis ti cal language. There is, for example, an ins true tion that can 

access and execute numerical functions written by computer scientists, 

and an instruction that can prompt the user of a statistical technique 

for input. A statistical techniques, implemented by the technical 

statistician, is compiled into a kernel program and stored in the 

statistical technique table. This table contains the collection of 

available statistical techniques in the generated software. If in a user 

session a statistical technique is executed, the user language 

interpreter instructs the kernel to retrieve the technique from the 

statistical technique table, and to execute the kernel instruction 

sequence of the technique. 

Besides the processor, important parts of the kernel are the data memory, 

the data stack and the external handler tables. The data memory of the 

kernel contains the values of the variables in the user session, and the 

value of the variables of an executing statistical technique. Expressions 

in the kernel language are evaluated on the data stack. Stacks are, for 

105 



example, also used in the design of the VAX-11 assembly language (see 

Peeters [1985]). The external handlers, written by either a computer 

scientist or a data expert, are stored in the external handler table. 

In this chapter we will give an informal description of the various parts 

of the kernel and the kernel language. A complete formal specification of 

the kernel can be found in appendix K. 

user sessitin 
I .. 
y 

.. 
y 

.. .. 

10.1. MEMORY ORGANIZATION 

The data memory of the kernel consists of, on the one hand, the symbol 

table of the user session and, on the other hand, the technique symbol 

table of an executing statistical program. In these tables the values of 

the variables in, respectively, a user session, and an executing 

statistical technique are stored. Note that these tables also contain 

type information for the static type checking. The use of the technique 

symbol table in type checking has already been discussed in section 8.4. 
In the memory of the kernel, data transfer is possible between the user 

symbol table and the technique symbol table. This makes it possible for a 

user to initialize variables in a statistical technique. In the formal 

specification of the memory, in module Memory, this is represented by the 

functions user-store and user-load. Data transfer is also possible 

between the technique symbol table and the data stack. Recall that the 

106 



expressions in the kernel language are evaluated on the data stack. In 

the formal specification, transfer between the data stack and the 

technique symbol table is represented by the functions get-data and 

store-data. 

user-store 

get-data 

6$~:if 13yinbQI ··•··•,:,:~ab1e:::r, 

.. 
.. 

.. 
.. 

10.2. THE INSTRUCTION SET 

user-load 

store-data 

In the following subsections we give a short description of each of the 

kernel instructions. A formal specification of the effect of the 

instructions on the state of the kernel is discussed in section 10.5. 

10.2.1. User interface instructions. 

The USER-LOAD and USER-STORE instructions form the user interface of an 

implemented statistical technique. The USER-LOAD instruction prompts the 

user to initialize an input variable. If no message is specified in the 

declaration of that variable in the statistical program, its identifier 

is displayed followed by a question mark and an assignment symbol: 

variable_id ?= 

A user can either enter a constant value or a variable declared earlier 

in his session. The user answer, of course, must be of the correct type. 

The value assigned to an input variable of a statistical program is 

107 



stored in the technique symbol table. The address of the variable in this 

table is a parameter of the USER-LOAD command. Matrices can also be 

initialized using series of observation. The observations of the series 

will form the columns of the matrix (see chapter 13). 

Example 10.3: loading a matrix on the data stack. 

Two index variables n and m and a matrix X are declared in the 

INPUT/OUTPUT section of a statistical program. 

INPUT 
INDEX 

MATRIX 
"Enter a matr:t~ idenH.Her:" 

At the kernel level this is represented as three USER-LOAD instructions. 

kernel instructions 

:us;J£6A1f · · 
. USER-'LOAD 
usm.:.toAD 

These three instructions are the first to be executed when the 

statistical technique is called by a user. Because no messages are 

specified in the declaration of the variables n and m, the identifiers 

are used in the prompt in combination with the prompt of the user command 

language (the string '>u:'). After the user has entered the values for n 

and m, the run-time type of the matrix Xis calculated, and the user is 

prompted with the specified message to enter a matrix identifier. In this 

example a matrix with dimension ranges [1 TO 2, 1 TO 3] is expected. 

108 



>u: 2 

>u: 3 
m 

Entei: a m~trb: 
>u: usermat 

user sess1on 

The matrix usermat should be declared and initialized in a user session 

before the statistical technique is called (see chapter 14). A copy of 

the matrix usermat is stored in the technique symbol table entry of X. 

{ end example 10.3} 

The USER-OUTPUT instruction transfers the calculated output variable back 

to the user. The output variable is copied from the technique symbol 

table to the user symbol table, and the output variable is displayed. If 

a message is specified in the declaration of the output variable, this 

message will accompany the output. 

10.2.2. Data transfer between the s11111bol tables and the data 

stack. 

A LOAD instruction pushes a copy of the value of a variable from the 

technique symbol table on the data stack. A STORE instruction pops the 

top element of the data stack, and stores it in the technique symbol 

table. In both instructions the address of the variable in the technique 

symbol table is a parameter. Separate load and store instructions are 

defined for submatrices and matrix elements. These instructions have as 

an additional parameter the number of dimensions of the matrix. This 

parameter tells the processor how many element or subrange references are 

on the data stack. 

10.2.3. Function calls. 

Functions operate on the data stack of the kernel. When a function is 

called, the results of evaluating its arguments, have already been pushed 

on the data stack. The FUNCION-CALL instruction calls the numerical 

109 



function, and replaces the argument values on the stack by the result. 

The address of the numerical function in the function code table is a 

parameter of this instruction. 

Example 10.4. Execution of a FUNCTION-CALL instruction. 

Assume that in the statistical language there exists a predefined 

function f4 with 3 arguments of type index and a result also of type 

index. 

f4(argl,arg2,arg3) = min{argl + arg2, arg3) 

When the function f4 is called, during the execution of a program, the 

data stack contains the values of the arguments. After execution of the 

function the arguments are popped from, and the result is pushed on the 

stack. 

arg3 --> 9 <-- TOP 

arg2 --> 7 

argl --> .1: result--> ~ <-- TOP 

{ end example 10.4} 

10.2.4. The JUMP instruction. 

To alter the sequential execution of instruction sequences both 

conditional and unconditional jump instructions exist. The conditional 

jump instructions, JUMP_TRUE and JUMP_FALSE, inspect the top of the data 

stack. If the top of the data stack contains a boolean with value true, 

respectively false, the address of the next instruction to be executed is 

obtained by adding the relative address specified in the jump instruction 

to the absolute address of the current instruction. Otherwise, the next 

instruction in the instruction sequence is executed. The unconditional 

JUMP instruction always jumps to the calculated address. 

110 



10.2.5. Instructions for exception handling. 

Exception handlers in CONDUCTOR are represented at the kernel level as 

sequences of kernel instructions. The RAISE instruction transfers control 

from the instruction sequence of the statistical program to the 

instruction sequence of an exception handler. The address of the 

instruction after the raise instruction is saved. The exception handler 

is identified by its name, which is an argument of the RAISE instruction. 

This identifier is the address of an exception handler instruction 

sequence in an exception handler table. An UNRAISE instruction transfers 

control back to the interrupted instruction sequence of the statistical 

program. No nested exception handling is allowed in CONDUCTOR: if an 

exception handler invokes yet another exception the execution of the 

statistical technique is stopped. 

10.2.6. The DISPLAY instruction. 

The DISPLAY instruction prints a message. The only argument in this 

instruction is a message string. 

10.2.7. The input restriction check. 

The index input variables of a statistical technique must obey the 

generated input restrictions. This check is represented at the kernel 

level by the CHECK-RESTR instruction. This instruction evaluates the 

index expression in the input restrictions, and checks if they obey the 

restriction. If the input restrictions are not satisfied the user can 

restart or abort the technique. The input restrictions are not a 

parameter of the CHECK-RESTR instruction, but are part of the state 

definition of the kernel. 

10.2.8. Evaluating index expressions. 

The evaluation of index expression is represented at the kernel level by 

the EVAL-EXPR instruction. This instruction evaluates the index 

expression that is a parameter of this instruction, using the values of 

the variables in the technique symbol table. 

111 



10.2.9. A halt instruction. 

The halt instruction terminates the execution of the kernel instruction 

sequence. 

10.2.10. Algebraic specification of instructions. 

The complete instruction set of the kernel is specified in module 

Instructions. 

module Instructions 
begin 

exports 
begin 

sorts INSTR 
functions: 

-- user interface 
user- Load: ID 
user-store: ID 

-- Load instruction 
Load: TECH-DATA 
Load: ID 
Load-elem: ID# INDEX 
Zoad-subm: ID# INDEX 

-- store instruction --
store: ID 
store-elem: ID# INDEX 
store-subm: ID# INDEX 

-- index expression instructions 
check-restr: INP-RESTR-SEQ 
evaZ-expr: INDEX-EXPR 

-- other instruction 
jwrrp: INDEX 
jwrrp-true: INDEX 
jwrrp-faZse: INDEX 
increm: ID 
f-caH: ID # INDEX 
display: STRING 
raise: ID 
unraise: 
halt: 

-> INSTR 
-> INSTR 

-> INSTR 
-> INSTR 
-> INSTR 
-> INSTR 

-> INSTR 
-> INSTR 
-> INSTR 

-> INSTR 
-> INSTR 

-> INSTR 
-> INSTR 
-> INSTR 
-> INSTR 
-> INSTR 
-> INSTR 
-> INSTR 
-> INSTR 
-> INSTR 

imports Technique-data, Identifiers, 
Ind-expr-abstr-syntax, Strings 

end Instructions 

112 



A sequence of instructions is specified by binding the sort ITEM in the 

parameter Items of the module Sequences to the sort INSTR in the module 

Instructions. The sort INSTR-SEQ is the formal abstraction of an 

instruction sequence at the kernel level. An instruction address in the 

kernel is specified as an instruction sequence combined with an integer 

indicating the position in the sequence. Given the address a function 

fetch can retrieve an instruction from a sequence of instructions. 

{293} fetch(addr(ts,t)) ttem-no(t,ts) 

Where is is an instruction sequence and i an index. 

10.3. EXCEPTION HANDLER TABLES 

The kernel has tables to store exception handlers. The exception handler 

tables for exception handlers specified by a technical statistician are 

specified in module Tech-handler-tables. Exception handlers created by a 

technical statistician are stored as sequences of kernel instructions, 

and each exception handler is uniquely determined by its name. 

Two exception handler tables are defined in the kernel: a table with 

handlers specified by the technical statistician, and a table with 

external handlers specified by either the data expert or the computer 

scientist. The RAISE-instruction searches the tables to find a handler 

with a given name. If a handler with that name is found in the handler 

table of the technical statistician this handler is returned, otherwise 

the external handler table is searched. If no handler is found in either 

of these tables, a sequence containing only a halt instruction is 

returned, causing the statistical program that is calling the exception 

handler to terminate (a detailed discussion can be found in chapter 12). 

113 



Instruction

sequences 

Identifiers 

10.4. THE DATA STACK 

Entries 

Tables 

Tech-handler-tables 

External

handlers 

Entries 

Identifiers 

Tables 

Ext-handler-tables 

Handler-tables 

Expressions in the statistical language are evaluated on the data stack. 

A stack is a sequence of data. Items can be popped from the stack or 

pushed on the stack. This is specified in the module Data-stacks. 

10,5. THE PROCESSOR 

The state of the kernel is determined by 

data stack, (3) the current instruction, 

(1) 

(4) 

the data memory, (2) the 

the address of the next 

instruction, (5) the information needed to restart an interrupted 

instruction sequence, (6) the exception handler tables, (7) the input 

restrictions and (8) the user display, as specified in the function state 

in module Kernel-states. 

114 



state: MEMORY # 
DATA-STACK # 

INSTR # 
INSTR-ADDR # 

RESET-INFO# 
HANDLER-TABLES # 

INP-RESTR-SEQ # 

current instruction -
address next instruction 

STRING -- display 

-> STATE 

The execution of a kernel instruction modifies the state of the kernel. 

execute: STATE -> STATE 

The working of the individual instructions is specified in the equations 

for the function execute in module Processor. Consider, for instance, the 

JUMP-TRUE instruction. This instruction checks the top element of the 

data stack. If the flag (b) on top of the data stack (ds) is true, the 

relative address (intl) is added to the current address (addr(is,int2)), 

and the instruction at this address is executed next. The flag is popped 

from the data stack. The other information remains unchanged. 

[324} execute(state(m, 
push(t-data(b),ds), 
jwrrp-true( intl), 
addr(is,int2), 
ri,ht,irs,dis) 

=state(m, 
ds, 
i/(b, 

fetch(addr(is,add(intl,int2)), 
fetch(addr(is,int2))), 

if(b, 
next(addr(is,add(intl,int2)), 
next(addr(is,int2))), 

ri,ht,irs,dis) 

The specification of other kernel instructions is given in module 

Processor in Appendix K. 

115 



10.6. KERNEL PROGRAMS 

A statistical technique is reduced at the kernel level to the following 

abstract notions: 

the name of the technique, 

a sequence of instructions, 

a sequence of input restrictions, 

an exception handler table, 

a technique symbol table. 

Such a representation of a statistical technique at the kernel level is 

called a kernel program. A kernel program is formalized in the module 

Kernel-programs. 

module Kernel-programs 
begin 

export 
begin 

sorts KERNEL-PRO 
functions 

kern-pro: INSTR-SEQ# 
INP-RESTR-SEQ # 
TECH-SYl'/TAB # 
TECH-HANDLER-TABLE -> KERNEL-PRO 

end 

imports Techn-symtabs,Instruction-sequences, 
Tech-handler-tables, Input-restr-sequences 

end 

The collection of all kernel programs is stored in the statistical 

technique table. The kernel can execute the kernel programs in this 

table, as specified in the functions run-technique in module Kernel. 

run-technique: USER-SYl'ITAB #KERNEL-PRO# 
EXT-HANDLER-TABLE -> USER-SYl'ITAB 

The kernel retrieves the statistical technique from the table. The symbol 

table (ts) and exception handler table (eht) of the technique are entered 

in the kernel, and the processor starts executing the first instruction 

in the instruction sequence (is) of the statistical technique. 

116 



[JJl} run-tech(us,kern-pro(is,irs,ts,tht),eht) 
result( 

e:z:ecute( 
state(memory(ts,us),e,rrpty-stack, 

/irst(is), addr(is,1), 
no-reset-info, handlers(tht,eht), 
trs,strtng(blank)))) 

The result statistics, as calculated by a statistical technique, are 

stored in the user symbol table (us). Execution of a statistical 

technique, therefore, can be regarded as the modification of a user 

symbol table. 

The code of actual functions in the statistical language is left 

unspecified. The function code table in the kernel is not instantiated. 

The parameter Current-/unc-code emphasizes that the design of CONDUCTOR 

is independent of these functions. 

Stat.

technique

table., 

Exception
handling 

Kernel 

117 

Evaluate

restriction.1 

User-lo 

Procassor 

Evaluate-ind
axpr 





11. TRANSLATION OF A STATISTICAL PROGRAM 

A statistical program in CONDUCTOR is translated into a kernel program. 

This translation process is divided in five steps: lexical analysis, 

parsing, type checking, the generation of input restrictions, and code 

generation. 

c~ij~1~~j!:i)~fil~ 
.. 

::""m'''~~ Pi .. 
1
+'as 

.. 
;JMliil,J,~ni 

.. 
ii'.~1.-11::,:~-~i~r pij;,1'i;:fa,,~i~: 

.. 
~~!'"'i~ijffi~Qp'. 

The formal specification of the translation process starts with the 

abstract syntax of the statistical language. The lexical analysis and 

parsing is left unspecified. A complete formal specification of these 

processes, for a simple programming language, can be found in Bergstra et 

al. [1986]. Type checking and the generation of input restrictions were 

already discussed in the chapters 8 and 9. The formal specification of 

the code generation is discussed in this chapter. 

A sequence of kernel instructions is a postfix representation of a 

statistical program. The generation of kernel instructions, in CONDUCTOR, 

can be compared with syntax directed intermediate code generation for 

119 



higher-level programming languages. ':he intermediate code in compilers 

for these languages hide the details of a particular target machine (see 

Davidson and Fraser [1984] and Tanenbaum et al. [1983]). The only 

difference is, that most of these compilers use three-address statements 

as intermediate language, and CONDUCTOR .uses postfix notation. The code 

generation for PASCAL, for example, is discussed in Wirth [1971] and 

Ammann [1977], 

11.1. GENERAL STRUCTURE OF THE COMPILER 

A compiler is characterized by three languages: the source language, the 

target language and the implementation language (see McKeeman [1974]). 

The source language of the specified compiler is the abstract syntax of 

the statistical language, and the target language the kernel language. 

By specifying of the compiler in 

implementation language undetermined. 

ASF, we, by definition, leave the 

The kernel language has been formalized in the previous chapter (see 

section 10. 6). The compiler constructs each of the parts of a kernel 

program for a particular statistical program sp, as specified in the 

function COTTrfJile in module CoTTrfJilers. 

{402} COTTrfJile(sp) kern-pro( gen-instr-seq(sp), 
gen-restr-pro(sp,type-check-pro(sp)), 
type-check-pro(sp), 
gen-handlers(sp)) 

All the functions on the right hand side of this equation are specified 

in the imported modules of module CoTTrfJilers. The function gen-restr-pro 

was discussed in section 9.8 and the function type-check-pro in section 

8.7. In this chapter we describe the functions gen-instr-seq, that 

specifies the generation of kernel instructions, and gen-handlers that 

specifies the generation of an exception handler table. 

120 



statistical.-

program:, 

Gen

in9truction!J 

Kernel

prograro.s 

Gen-handl.ers 

Current-tune-types 

Input-re!Jtr

generator 

Sta.t

tachniqua

tablas 

Corupiler 

11.2. GENERATION OF INSTRUCTION SEQUENCES 

Current-func-typas 

Static-type

checking 

An instruction sequence in a kernel program consists of five parts: a 

sequence of input instructions, an instruction that checks the input 

restrictions, a sequence of calculation instructions, a sequence of 

output instructions and a halt instruction. 

input seq halt 

--► 

sequential execution 

The generation of the instruction sequence is specified in the module 

Gen-instructions. The function gen-inp-instr, in this module, specifies 

how input instructions are generated. The function check-restr specifies 

that an instruction to check the input restrictions is added to this 

sequence. The calculation instructions are added as specified by the 

function gen-calc-instr, and the output instructions by the function gen

out-instr. At the end of each instruction sequence a halt instruction is 

place. Note that in the formal specification the inner-most function call 

is evaluated first. 

121 



[401} gen-instr-seq(sp) add-item(hait, 
gen-out-instr( 
gen-calc-instr( 
gen-check-restr( 
gen-inp-instr(nuLL-instr-seq, 

sp),sp),sp),sp) 

11.2.1. Generation of input and output instructions. 

For each variable in the input/output section of a statistical program a 

user-Load/user-store instruction is generated. The function gen-code-id, 

in module Gen-code-declarations, specifies that a user- Load instruction 

is added to the sequence (is) for each input variable (id) 

[362} gen-code-id(is,id,Load) 
= add-item(user-Load(id),is) 

and a user-store instruction is added for each output variable 

[363] gen-code-id(is,id,store) 
= add-item(user-store(id),is) 

The complete specification of the generation of user-Load/user-store 

instructions is given in module Gen-code-declarations. 

Note that the functions user-Load and user-store are only instructions to 

load and store user variables. The actual loading and storing is done 

when the kernel executes these instructions. 

11.2.2. Generation of instructions for the calculation of the statistics. 

The function gen-code-stm in module Gen-code-statements specifies how 

kernel instructions are generated for each type of statement in the 

statistical language. The generation of instructions for a for-statement 

with control variable id, index expressions iel and ie2 and loop 

statements stmts, is specified as follows 

[351} gen-code-stm(abs-for(id,iel,ie2,stmts) 
increm-code(id,stmts, 

gen-code-stmts( 
check-up-Limit(id,ie2,stmts, 

ini-controL-var(id,iel,is)),stmts)) 

122 



This is represented by the well-known flow chart of a for-statement. 

inf1:.1,\;.~e 
c;:e>nt:ry\ 

variable 

f~§~~~9t;/ 
◄-----------t ·:!i::i::•~.~.~~i:····•··•··· variable . 

.. 

I true .. 

.. 

The instruction sequence for the initialization of a control variable is 

specified in function ini-controi-var. This sequence contains an 

instruction to evaluate the index expression (iel} and an instruction to 

store the result in the control variable id. 

[352] ini-controi-var(id,iel,is) 
add-item(store(id), 

add-item(evai-expr(iel),is)) 

After these instructions, the instructions must be generated that check 

if the control variable is larger than the upper limit of the for loop. A 

conditional jump will force the kernel to jump to the statement following 

the for-statement instructions, in case the control variable is larger 

than the upper limit. Also the size of the jump and the incrementing of 

the control variable is specified These equations can be found in 

module Gen-code-statement, where also the specifications are given for 

the generation of instructions for the other types of statements in the 

statistical language. 

123 



11.2.3. Generation of exception raise instructions. 

A test consists of internal declarations, statements and exception 

raises. The function gen-instr-test-sec in module Gen-code-tests-section 

specifies that first instructions are generated for the statements 

(stmts) and than for the for exception raises (rs). 

{365] gen-code-test-sec(abs-test-sec(decl,stmts,rs),is) 
gen-code-raises(rs, 

gen-code-stmnts(stmts,is)) 

Recall that the instruction sequence of a statistical technique is 

interrupted if the test indicates that the data violates the assumptions 

of the statistical technique. 

An exception raise statement consists of a boolean expression and an 

identifier. First the instructions for the evaluation of expression expr 

are generated, then a jwrrp-false and a raise instruction are added to the 

instruction sequence. 

[368] gen-code-raise(is,abs-raise(expr,id) 
add-item(raise(id), 

add-item(jwrrp-false(increm(l)), 
gen-code-expr(is,expr))) 

If the boolean expression in the raise statement is true the exception 

will be raised. Otherwise the kernel will continue with the instruction 

following the raise instruction. The jwrrp-false instruction will force 

the kernel to skip the raise instruction. 

11.3. GENERATION OF A HANDLER TABLE 

Instruction sequences generated for an exception handler section are not 

added to the instruction sequence of the statistical program, but are 

stored in an exception handler table. The statements (stmnts) in the 

handler are translated and the resulting instruction sequence is inserted 

in the handler table (ht), at the given address (id). 

[371] gen-code-handl(ht,abs-handl(id,decl,stmts)) 
insert(id, 

gen-code-stmnts(null-instr-seq,stmts), 
ht) 

124 



This function is specified in module Gen-co~e-handler-section. 

11.4. OPTIMISING KERNEL INSTRUCTIONS 

The problem of optimising instruction sequences was not discussed in this 

chapter. For an efficient implementation of CONDUCTOR, however, the 

instruction sequences must be optimised. In the current prototype, the 

only optimization technique that is applied is common subexpressions 

elimination. this improves the execution time of the statistical 

techniques considerably. Recall that kernel instructions are instructions 

for a virtual machine. These instructions may involve time consuming 

functions, such as, matrix inversion. The common subexpression 

elimination is specified completely independent of the specification in 

this book, because it is considered to be an implementation problem, 

instead of a fundamental part of the specification of CONDUCTOR. Also 

other optimization techniques, such as, constant folding or removal of 

loop invariant computations, will probably increase the performance of 

the implemented statistical techniques. 

125 





12, EXCEPTION HANDLING 

Technical statisticians, data experts and computer scientists each look 

at a statistical technique from their own level of abstraction. Software 

implemented by one of these experts might detect that the execution of a 

statistical technique must be interrupted, because necessary conditions 

for execution are not satisfied. In computer science such conditions are 

called exceptions and the interrupt is called the raising of an 

exception. Especially in systems, that must remain in continuous 

operation, it is important that the execution of a program is not stopped 

when an exception occurs. Before a program can continue with the 'normal' 

operations, it must deal with the unexpected situation, without 

completely terminating execution. 

The response to an exception condition is called the handling of an 

exception (see Goodenough [1975] and Wiener[l983]). Two basic approaches 

in exception handling can be distinguished: 

when an exception occurs, normal program flow is interrupted and 

control is passed to the exception handler; after completion of the 

exception handling, control is returned to the point at which the 

exception occurred, 

- when an exception occurs, this makes normal flow of the program 

impossible, and the program is terminated. 

In the first approach it is possible to make a repair action and there

after continue operation. Examples of programming languages with 

exception handlers that allow repair actions are ADA, PL/1 and PL/C. 

The process of statistical analysis in CONDUCTOR is seen as a continuous 

process. In statistical analysis, an applied statistician uses 

127 



statistical techniques to analyze his data set. These statistical 

techniques can only be applied under certain conditions. Therefore, 

during statistical analysis, it often happens that a statistical 

technique can not calculate the required statistics. Such situations can 

be seen as the occurrence of an exception. Yet, the applied statistician 

wants to continue the analysis and needs advice. Are there any 

alternative statistical techniques that can tackle the problem? Or are 

there data preprocessing techniques that do make analysis of his data set 

possible? The answers, of course, can only be given by the experts. The 

exception handling mechanism allows the experts to provide this informa

tion. The problem of given proper advice when an exception occurs, can be 

compared with the problem of giving understandable error messages, when 

an error occurs in procedures, that are hidden for the user of the 

software, in higher-level programming languages. For a discussion on this 

topic see Efe [1987]. 

In CONDUCTOR an exception is raised when 

- test results at the statistical level indicate that a basic assumption 

of a statistical technique is violated, 

inconsistencies are detected in the series used in a statistical 

technique, 

numerical problems occur in function calls. 

In this chapter we will discuss exceptions in tests and in numerical 

functions. Exceptions raised due to inconsistencies in the data are 

discussed in chapter 13. 

12.1. RAISING OF EXCEPTIONS 

To explain the exception handling mechanism in CONDUCTOR we start at the 

kernel level. The kernel instruction raise(h-id) forces an interrupt of 

the instruction sequence of the statistical technique. Where h-id is the 

exception identifier. If an exception handler, with the given identifier, 

is found in the exception handler tables, the next instruction executed 

by the kernel is the first instruction in this exception handler. 

Two groups of exception handlers are distinguished in CONDUCTOR: 

- the technique handlers: the exception handlers specified by the 

technical statisticians inside a statistical technique, 

128 



EXECUTION OF A RAISE INSTRUCTION 

A. State before execution. 

:i.n.st:ruct'iotjtti'se<itieric:~istifffsHcnr'teclmlque 

. . . . . . . . . . I raise xl I ... 

current instruction 

~O, instr. seq. handler 1 

,a ins tr. seq. handler 2 

~ instr. seq. handler 1 

yf instr. seq. handler 2 

B. State after execution. 

iii:ln~'~t'U~·~i~n,11,:'ijlf~~~11:1!11~st1t1tta;i·:1!1:f1m~r.tul'1:,:1: 

. . . . . . . . . . I raise xl I .................. . 
• 

t'etuen address 

cun'cnt instr-uction 

"' 

~· instr. seq. handler 1 W instr. seq. handler 1 

Jl instr. seq. handler 2 ;i~! instr. seq. handler 2 

• 

129 



- the external handlers: exception handlers specified outside a 

statistical technique by either a technical statistician, a data 

expert or a computer scientist. 

The technique handlers have the highest priority. If an exception is 

raised the technique handler table is searched first. If no handler is 

found in this table the external handler table is searched. If no handler 

is found in either of these tables the execution of the statistical 

technique is aborted. 

After the exception handler is executed the kernel returns to the inter

rupted instruction sequence of the statistical technique. To make this 

return possible the address of the next instruction to be executed in the 

statistical technique is saved, when the technique is interrupted. If an 

external exception handler is taking over control, also the symbol table 

of interrupted statistical technique is saved. 

The exception handling mechanism is specified in the function handle in 

module Exception-handling. For example, it is specified that if the 

processor is in a state 1. 

state description of the kernel 1 

memory(ts,us) 

ds 

raise(id) 

ia 

no-reset-info 

handlers(tht,eht) 

trs 

dis 

and if the handler is found in the exception handler table of the 

technical statistician tht, execution of the raise instruction will 

force the kernel to execute the first instruction of the exception 

handler first(h-td"tht), set the address of the next instruction to the 

address of the second instruction in the exception handler addr(h

id"tht,1) and save the next instruction of the interrupted instruction 

130 



sequence reset-info(ia). The resulting state of the kernel is state 2. 

state description of the kernel 2 

memory memory(ts,us) 

ds 

first(h-td·tht) 

addr(h-id.tht,1) 

reset-info(ia) 

handters(tht,eht) 

irs 

display dis 

On the other hand, if the handler is found in the external handler table 

eht, the kernel starts executing the first instruction in the external 

handler table first(han-instr-s(h-id.eht)), sets the address of the next 

instruction to the second instruction in this instruction sequence 

addr(han-instr-s(h-td·eht),1) and saves both the return address and the 

symbol table of the interrupted statistical technique reset-info(ia,ts). 

The symbol table of the external handler replaces the symbol table of the 

statistical technique in the memory of the kernel memory(han-symtab(h

td·eht), us). This results in state 3. 

state description of the kernel 3 

memory(han-symtab(h-td·eht),us) 

ds 

first(han-instr-s(h-id-eht)) 

addr(han-instr-s(h-td·eht),1) 

reset-info(ia,ts) 

handters(tht,eht) 

irs 

dis 

If the exception handler identifier is found in neither of the tables the 

131 



execution is stopped. The formal specification of the exception handling 

in the module Exception-handling reads 

[305} handle(state(memory(ts,us),ds,raise(h-id),ia, 
no-reset-info,handlers(tht,eht),irs,dis) 

if(found(h-id,tht), 

-- handler found in the technique symbol table --

state(memory(ts,us),ds, 
first(h-id'tht),addr(h-id"tht,1), 
reset-info(ia),handlers(tht,eht), 
irs,dis), 

if(found(h-id,eht), 

handler found in the technique symbol table --

state(memory(han-symtab(h-id'eht),us),ds, 
first(han-instr-s(h-id'eht), 
addr(han-instr-seq(h-id'eht),1), 
reset-info(ia),handlers(tht,eht), 
irs,dis), 

handler found in the technique symbol table -

stop)) 

For a complete specification of the function handle see appendix J, where 

also the unraise instruction that returns control to the interrupted 

instruction sequence is specified. 

12.1.1. Raising exceptions in the statistical language. 

At the statistical level a technical statistician may specify tests. The 

syntax of these tests was already discussed in chapter 7. For example, a 

statistician may test the significance of an estimated parameter, using 

"the rule of thumb", as discussed in chapter 4. 

A test at the statistical level is translated into a raise instruction at 

132 



the kernel level. Fo1· the statistical language this translation process 

is specified in module Gen-code-test in the function gen-code-raise. 

[368] gen-code-raise(is,abs-raise(id,e:z:pr)) 
add-item(raise(id), 

add-item(jwrrp-/alse(l), 
gen-code(is,e:z:pr))) 

Equation [368] specifies that first the code for the boolean expression 

{e:z:pr) is generated, then a jwrrp-/alse instruction is added, and finally 

a raise instruction. The raise instruction will only be executed if the 

given condition is true. 

12.1.2. Raising exceptions in function calls. 

The kernel calls functions implemented on the higher level programming. 

Function calls are specified in the kernel instruction /-call. If an 

exception occurs during the execution of a function an exception is 

raised. The function excep-raised in the formal specification signals if 

an exception is detected in a function call. 

excep-raised: ID# DATA-STACK-> BOOL 

The function exception-/ returns the exception identifier 

exception-/: ID# DATA-STACK-> ID 

The possible states of the processor after the execution of a function 

call is executed are given in equation [325]. 

[325] execute(state(m,ds,/-call(/-id,i),ia,ri,ht,irs,dis) 

execute( 
i/(excep-raised(/-id,ds), 

-- raise the exception --

state(m, 
'{JUSh(execute(/-id,ds),pop(ds,i)), 
raise(exception(/-id,ds),ia, 
ri,ht,irs,dis), 

133 



execute function and continue with 
the next inst'l'Uction 

state(m, 
push(execute(f-id,ds),pop(ds,i)), 
fetch(ia),next(ia), 
ri,ht, irs,dis))) 

After a successful completion of the /-caZZ instruction the data stack is 

modified. The arguments are popped from the stack and the result is 

pushed on the stack. If an error is detected an exception is raised using 

the identifier returned by f-excep. 

12.2 HANDLING A RAISED EXCEPTION 

If an exception is raised, the kernel will look for an exception handler. 

This can be an exception handler created by either the technical 

statistician or one of the other experts. In this section we will discuss 

how technique handlers and external handlers are created. 

12.2.1. Exception handlers in the statistical language. 

The technical statistician can create exception handlers in a statistical 

program. The syntax of exception handlers was already discussed in 

chapter 7. An exception handler consists of an exception identifier and 

the statements that must be executed if the exception occurs. The 

statements in an exception handler may only consist of a message 

statement, that explains to the user of the statistical technique what 

caused the exception. A call of a matrix inversion, for example, raises 

an exception if the matrix is near singular. This exception can be 

handled by an exception handler written by a statistical expert. The 

statistical expert is often able to give a higher level interpretation of 

an exception. If, for instance, the inversion routine is called in the 

ordinary least squares estimation of regression coefficients, the higher 

level interpretation of near-singularity is multicollinearity. The 

technical statistician can communicate this interpretation in his 

exception handler. 

134 



exception handler section statistical program 

nE!~~:...if,:i.~:J.Eir: 

. MkssAaiII.: . 
tTH~I~E:PENj:,MT\VAnIABl'..Es·1N>soME;BOOTs'l"RAJ>.SAMPLES~ 
stRo~~tr r WIIBEXA'l]P I. ••MOfTico1trNEAR1tYJ:, oUE ro mis rim · 
~ICALtRESU~'.l's··op .. THEn:cHNIQtJE.'lilAYBE\INACCURATE," 

The statistician may also specify that the execution of the statistical 

technique is stopped after the exception handler is executed by adding a 

stop instruction at the end of his exception handler. 

The fact that an exception can be handled that is raised at an other 

level of abstraction introduces complications. Sometimes, a technical 

statistician will use the same function several times in a statistical 

technique. Consider the following simple statistical program 

If an exception is raised by the function inverse it can not be 

determined if it was caused by the first or the second call of the 

function. In an exception handler, therefore, a technical statistician 

can specify different handlers for different calls. 

135 



CALL(inv;2): 
{ 

} 
MESSA,GE:" The Y matrb; is near singular";.• 

In the formal specification of CONDUCTOR, only exception handlers without 

the call mechanism are specified. An exception handler consists of an 

identifier, local declarations and statements as given in function abs

handier in module Handier-abstr-syntax in appendix F. 

abs-handier: ID# LOC-DECLS #STATEMENTS-> HANDLER 

At the kernel level an exception handler is an kernel instruction 

sequence. The statements in an exception handler are translated and 

stored in the technique handler table as specified in function gen-code

hndi in module Gen-code-handier-section. 

gen-code-hndi: TECH-HANDLER-TABLE# HANDLER-> 
TECH-HANDLER-TABLE 

with equation {371}. 

[371] gen-code-hndl(ht,abs-handier(id,Ld,stmts) 
insert(id, 

gen-code-stmts(null-instr-seq,stmts), 
ht) 

12.2.2. External handlers. 

Data experts and computer scientists can also write exception handlers in 

CONDUCTOR. The only differences with the exception handlers written by 

the technical statistician are: 

- it is not possible for these experts to distinguish between different 

function calls, 

- variables inside a statistical technique are not allowed. 

The external handlers are stored in the external handler table. External 

handlers are created in external sessions. At the kernel level external 

handlers consists of an instruction sequence and a symbol table. 

136 



ext-handl: INSTR-SEQ# TECH-SYMTAB -> EXT-HANDL 

In module Gen-ext-handlers in appendix L it is shown how an exception 

handler section in an external session is translated into an external 

handler. 

gen-ext-handler: HANDLER 

with equation 

-> EXTERNAL-HANDLER 

{404) gen-ext-handler(abs-handler(id,ld,stmts)) 
ext-handl(gen-code-stmts(null-instr-seq,stmts), 

typcheck(abs-handler(id, ld,stmts),e17Tpty-mem)) 

when eq-inp-restr-seq( 
gen-restr-handler(handler(id,ld,stmts), 

no-restrictions), 
no-restrictions)= true 

The when clause specifies that the external handler may not generate 

input restrictions for the statistical technique. 

12.2.3. All handlers. 

The technique handler table and the external handler table are combined 

in the sort HANDLER-TABLES in module Handler-tables in appendix J. 

Together they form the collection of all exception handlers available 

during the execution of a statistical technique. 

137 





PART IV 

FORMAL SPECIFICATION 

OF THE 

USER LANGUAGE AND DATA INTERFACE 





13, AN INTERFACE BETWEEN DATA AND STATISTICAL 
TECHNIQUES 

An applied statistician often relies on data collected by specialized 

agencies. David [1985] has pointed out that additional information is 

available at these agencies that could lead to more intelligent use of 

the data. One could think of information such as the sample design, the 

context in which the observations are made, and the type of measurement 

instruments used to collect the data. An applied statistician only sees 

data as published in official publications of the specialized agencies. 

To make things even more complicated, he analyses his data set using 

statistical techniques developed by a technical statistician, who looks 

at the data from yet another perspective. For a technical statistician a 

data set is a rectangular matrix and a set of assumptions on the type and 

distribution of the data. 

In this chapter the interface between the different views on data is 

discussed. The main design goals of this data interface are: 

to transfer knowledge available in the data production process in an 

understandable way to users of data, 

- to offer technical statisticians and data experts the possibility to 

suggest appropriate statistical techniques if inconsistencies are 

detected in data. 

13.1. THE DATA PRODUCER'S VIEW ON DATA 

Producing statistical data is a complicated and time consuming job. Often 

it is impossible to make exact measurements. Therefore, sample techniques 

139 



are used to make estimates of the required information. The resulting 

figures are of course conditional on the sample design chosen. Besides 

the sample design, also the measurement instrument used to collect the 

data and the context play an important role. David [1985] sees a set of 

observations X as conditional on the design D, the instrument Sand the 

context C. 

{X D,S,C} 

Comparing two observations measured at different moments in time T and 

T' , one compares 

and 

Of course, one hopes for the best that D, Sand C do not change over the 

sample period, but using estimation periods of several years this seems 

hardly realistic. 

To get an indication of the quality of the data, a user must have access 

to all information gathered in the data production process. Also 

evaluation functions combining X and external information, calculated to 

give an indication of the quality of the data, such as bias, mean square 

error and reliability, etc., should be part of the documentation for any 

data set. 

13.2. THE USER'S VIEW ON DATA 

An applied statistician, with a little common sense, will not try to 

collect large data sets on his own. By the time he is finished with the 

data production, the question he initially wanted to answer will surely 

be out of date or even no longer existent. An applied statistician can 

spend only limited time worrying about all the details involved in the 

gathering of data. The view of the user of data, therefore, is restricted 

140 



to the resulting data of a data production process. 

13.3. THE TECHNICAL STATISTICIAN'S VIEW ON DATA 

Statistical techniques are developed to make estimates of parameters in 

theoretical models which must explain the observed data. Griliches 

[1984], for example, classifies the data along several different 

dimensions: 

- objective versus subjective: for example, prices versus expecta

tions about them, 

- type and periodicity: for example, time series versus cross-section; 

monthly, quarterly or annual data; nominal, ordinal, interval or 

cardinal data, 

- level of aggregation: for example, data on individuals, firms, 

districts or states, 

- quality: for example, the reliability or validity of data, 

- level of fabrication: for example, primary or secondary data. 

For each of the different categories of data, special statistical 

techniques are developed. An excellent overview of the econometric 

techniques that are developed for different dimensions and types of 

economic data is given in Judge et al. [1980]. 

If a statistical technique is used, it is assumed that data set has 

certain properties. For example, the technique might expect outliers, 

missing data, ordinal data or cardinal data. If the data set has other 

properties the statistical inference with the use of that particular 

technique may be incorrect. The technical statistician assumes that the 

user of his statistical technique is aware of this fact. And in 

traditional statistical software indeed this responsibility lies 

completely in the hands of the user. For the technical statistician the 

properties of the data are not a problem but a premiss. 

141 



13.4. THE INTERFACE BETWEEN THE DATA PRODUCER'S VIEW AND THE USER'S VIEW 

Information and documentation collected during the data production 

process can be stored in a relational database system. Though other 

database models exist, the relational database model has the advantage of 

clarity and ease of use (see Ullman [1980] and Kroenke [1983]). The 

software produced in CONDUCTOR, can, on request of the user, retrieve 

data from this database. When data is retrieved, the additional 

information on the retrieved data is checked by a background implemented 

by the data expert. If an inconsistency is detected by the background 

query, this inconsistency is signalled by adding an exception flag to the 

retrieved series. 

/d~t~ 
:.b~ei 

Example 13.1: 

A large organization produces data on consumption, production and export 

in the Netherlands. Besides the figures published by the organization, 

Table 1. published data 

consumption 
production 
consumption 
export 
production 
consumption 
consumption 
production 

1982 
1980 
1980 
1979 
1981 
1981 
1983 
1982 

142 

1312.4 
400.7 

2000.4 
487.9 
500.5 
900.8 

1200.4 
700.3 



also additional information is available about the sample design used to 

estimate the figures. This information is stored in three tables (called 

relational schemes in relational database theory). The first table 

contains the estimated figures. 

Table 2. Design. 

consumption 
production 
consumption 
export 
consumption 
consumption 
production 
production 

1982 
1982 
1980 
1979 
1981 
1983 
1981 
1982 

Table 3, Design description. 

D52 
D52 
DSl 
DSl 
DSl 
D52 
D52 
D52 

In the following queries two basic operations are applied: ~election and 

projection. The first operation simply means that all rows of the table 

are selected that satisfy a given condition. Projection stands for 

extracting given columns from a table. In the queries projection is 

indicated by the operator 11, and selection by the operator a. The 

published data on consumption in the period 1980 and 1982 is retrieved by 

the query 

11 (a 8 (Observations)) Rawdata name=consumption,1980<=Sample<=19 2 

resulting in the table 

143 



2000.4 
900.8 

1312.4 

The background query that checks if the same design is used over the 

sample period 

nDesign_name( 0 Xname=xl,1980<=Sample<=1982(Documentation)) 

returns table 

DSl 
DS2 

The resulting relation contains more than one row and an exception flag 

"design-unequal" is added to the series, indicating that the retrieved 

sample is based on different designs DSl and DS2. 

The user of software produced by CONDUCTOR will not see much of these 

queries. In the resulting software he simply sets the sample and requests 

retrieval of the series consumption 

The database design and the background queries are completely hidden f0r 

the user. 

{ end example 13.1. } 

In the formal specification of CONDUCTOR the user data is represented by 

the sort SERIES, specified in module Series. The observations are 

represented by the sort SCALAR-SEQ, the sample description is represented 

by the sort CONST-RANGE-SEQ, and the exception identifiers by the sort 

ID-SEQ. 

ser: SCALAR-SEQ# CONST-RANGE-SEQ# ID-SEQ-> SERIES 

144 



A well-formed series ss satisfies the restriction that the number of 

samples described in the constant range sequence crs is equal to the 

number of observations in the scalar sequence scs. 

[19] ser(sas,scs,ids) = wf-ser(scs,crs,ids) 

when eq(n-of-ttems(scs),length(crs)) true 

and 

[20] ser(sas,scs,tds) = error-ser 

when eq(n-of-ttems(scs),length(crs)) = false 

The retrieval process of CONDUCTOR is specified in module Database

interface in the function query. 

data-query: DATA-BASE# ID# CONST-RANGE-SEQ 
-> USER-DATA 

which invokes the functions 

bg-query: DATA-BASE# ID# CONST-RANGE-SEQ 
-> ID-SEQ 

retrv-data: DATA-BASE# ID# CONST-RANGE-SEQ 
-> SCALAR-SEQ 

A query of a database db for a series with identifier td over the sample 

given by constant range sequence crs will invoke a background query to 

check the consistency of the data. 

[416] data-query(db,td,crs) u-data( 
sertes(retrteve-data(db,td,crs), 

crs, 
bg-query(db,td,crs))) 

The data retrieval process is not further specified in CONDUCTOR. It is 

assumed that a database, with the appropriate queries, can be 

constructed. 

145 



13.5. THE INTERFACE BETWEEN THE US&.l' S VIEW AND THE TECHNICAL 

STATISTICIAN'S VIEW ON DATA 

The series retrieved from the database can be used in statistical 

techniques, that is implemented by a technical statistician. The observa

tions in the series will form the columns of the matrix. 

Example 13.2: 

Assume that the user has retrieved the consumption and production series 

from the database in example 1, and he wants to use these series in a 

statistical technique. The user interface of the statistical technique is 

specified by the technical statistician in the INPUT section of a 

statistical program specifying the technique 

When the user calls the statistical technique n,m and X must be initia

lized. The user is prompted to enter values for these variables. 

At the kernel level the prompting of user information and the loading of 

146 



the matrix X is seen as the executimt of a USER_LOAD instruction. The 

input of the variables n, m and X at the kernel level is represented by 

the instruction sequence 

USER~toADri 

-----► 

sequential execution 

To calculate the required output of a statistical technique other 

instructions will follow the USER LOAD instructions. The result of the 

USER LOAD instructions in the above example is a (3 x 2) matrix with the 

observations on consumption and production in the columns. 

[
2000.4 

X = 900.8 
1312.4 

{ end example 13.2} 

400.7] 
500.5 
700.3 

A matrix in CONDUCTOR is specified in module Matrices in the function 
mat. 

mat: SCALAR-SEQ# CONST-RANGE-SEQ -> MATRIX 

A matrix consists of a scalar sequence containing the values of the 

matrix elements and a constant range sequence, describing the dimensions. 

A matrix is well-formed if the product of the length of the dimension 

ranges crs is equal to the number of items in the scalar sequence scs. 

[16) mat(scs,crs) = w/-mat(scs,crs) 

when eq(n-o/-items(scs),product(crs)) = true 

A complete specification of all function and sorts involved can be found 

in appendix D. The USER_LOAD command has a special facility to transfer 

sequences of series into a matrix as specified in module Series-matrix

inter/aces in function data-matrix. 

data-matrix: ID-SEQ# USER-SYMTAB -> MATRIX 

The details of this operation are left unspecified. When a series, with 

147 



an exception flag attached to it, is loaded in a matrix an exception is 

raised. The software will look for an exception handler for this 

particular exception. This behaviour is specified in equations for the 

user-load command in module Processor in appendix J. 

{312] execute(state(m,ds,user-load(td),ia,ri,ht,trs,dts) 

execute( 

Example 13.3: 

tJ(user-load-excep(id,m), 

-- raise the exception -
state(user-insert(id,m),ds, 

raise(load-excep-id(td,m),ia, 
ri,ht,trs,dts), 

else load the variable and continue 
hlith the next instruction 

state(user-insert(id,m),ds, 
Jetch(ia),next(ta), 
ri,ht,irs,dis))) 

In example 13. 2 we loaded two series in a matrix X. The consumption 

series, however, was produced using different sample designs. This 

inconsistency was detected by the background query and a exception flag 

"design_unequal" was added to the retrieved series. When the series is 

loaded in the matrix, the exception flag "design_unequal" is raised. The 

data expert may have written an external exception handler for this 

exception 

After this warning the execution of the interrupted statistical technique 

continues. For a particular statistical technique a statistician may 

overrule an external exception handler by writing a exception handler in 

the specification of the statistical technique. 

148 



When the exception "design_unequal" occurs the statistical technique is 

stopped and the user is advised to use the more appropriate technique 

XXX. 

{ end example 13.3.} 

149 





14, THE USER LANGUAGE 

In CONDUCTOR, data experts, technical statisticians 

scientist each can add their knowledge to the software 

and computer 

in a language 

close to there problem domain. To demonstrate the use of software created 

in such an environment, a user command language is developed. To keep the 

prototype of CONDUCTOR simple, it has not been attempted to create a 

revolutionary new user interface. The user command language is needed 

only to demonstrate the fact that the software implemented by the 

different experts can be used by an applied statistician. In the 

prototype of CONDUCTOR the user language consists of commands to 

- declare and initialize input variables, 

- retrieve series from a database, 

- call a statistical technique. 

Of course, many facilities should be added in order to compete with the 

interfaces of modern statistical packages. One could think of help 

facilities, multiple screens, graphical facilities 

etc. Adding these facilities however is merely a matter of hard work and 

is not considered to be within the scope of this book. 

After giving an informal description of the user language in the first 

three section of this chapter, we will discuss its formal specification. 

14.1 INITIALIZING VARIABLES 

The input variables of a statistical technique must be initialized by the 

user of the statistical technique. In the user language, therefore, an 

applied statistician must be able to declare and initialize variables of 

151 



the types scalar, index, boolean, vector, matrix or matrix. In the user 

session given below, a scalar x and a matrix mare declared. In contrast 

to the statistical language the dimension bounds of matrices in a user 

session are fixed. The variables are initialized in a user session using 

the set command. The values of x and m can be displayed using the display 

command. 

In the prototype of CONDUCTOR the user may also change the format of the 

reals using the format command. The format instruction in the example 

above changes the output format of a real to a total of 10 positions and 

2 position after the decimal point. 

14.2 INITIALIZING SERIES 

In statistical software, series of observations play an important role. 

At the user level a series can be initialized in two ways. It can 

initialized in a way similar to other variables, or it can be retrieved 

from a database. To initialize a series the user must set the current 

sample in his session. After this must declare the identifiers of the 

series. In the example session below a series consumption is declared 

152 



over the sample 1952 to 1958 and 1962 to 1964. 

The values of this series are initialized using the set command. The 

resulting series consumption is displayed using the display command.The 

display command always prints the series for the current sample. If the 

current sample contains missing values the symbol NA is printed. The 

other way to initialize a series is by retrieving it from a database, as 

discussed in chapter 13. 

153 



14.3 EXECUTING A STATISTICAL TECHNIQU~ 

After having initialized variables a user can call a statistical 

technique specified by a technical statistician. The user only has to 

enter the name of a statistical technique. For example if a technique 

called bootstrap_olsq is specified by the technical statistician the user 

can apply this technique to his data set. The statistical technique will 

prompt the user to initialize the input variables. Then it will calculate 

the specified statistics and return the results. 

14.4. FORMAL SPECIFICATION OF THE USER LANGAUGE 

In the formal specification of CONDUCTOR the display and format 

commands are omitted. The abstract syntax of the other user language 

154 



commands can be found in module Use~•-programs in appendix L in the 

functions. 

user-decl: USER-TYPE ID -> USER-COMMAND 
set: ID # USER-DATA -> USER-COMMAND 
set-sample: CONST-RANGE-SEQ -> USER-COMMAND 
retrieve: ID -> USER-COMMAND 
call-tech: ID -> USER-COMMAND 

The semantics of these instructions is defined in module Resuiting

software. In this module it is specified how a user command modifies the 

state of a user program given the set of implemented statistical 

techniques and external handlers. 

The state of a program is defined by the user symbol table, represented 

by the sort USER-SYMTAB, and the current sample, represented by the sort 

CONST-RANGE-SEQ. Recall that the user symbol table contains both the type 

description and the value of each variable declared in a user session. 

user-state: USER-SYMTAB #CONST-RANGE-SEQ-> USER-STATE 

The semantics of the set sample instruction is defined in function exec

user-com in module Resulting-software. If the user state is determined by 

the user symbol table us and the sample crsl, the execution of a set

sample instruction results in a user state where the sample description 

crsl is replaced by crs2. 

{410} exec-user-com(user-state(us,crsl),it,set-sample(crs2)) 
= user-state(us,crs2) 

The specification of the semantics of the other user commands can be 

found in appendix L. 

155 





PART V 

IMPLEMENTATION AND EVALUATION 

OF CONDUCTOR 





15, IMPLEMENTATION OF CONDUCTOR 

CONDUCTOR is implemented in C and runs under both the UNIX and the MS-DOS 

operating systems. Given the formal specification of CONDUCTOR, still 

many practical problems had to be solved to get a program performing the 

specified tasks. In this chapter we will discuss some of these problems 

to wit the implementation of the formal modules, the hashing mechanism 

for associating information with identifiers, storage problems, and error 

recovery. 

15.1. IMPLEMENTATION OF FORMAL MODULES 

An implementation of a formal module consists of 

- the internal, definition file; this file contains the definitions of 

the hidden data types; such data types are hidden from the other 

modules in the system, 

- the external, definition file; this file contains the definitions of 

the data types that are visible for the other modules, 

- the C-code fi1,e; this file contains the C-implementation of the 

functions. 

The data types specified in the internal definition files and the 

implementation of the functions in the C-code files can be changed 

without influencing other modules. The implementation of the module 

Tables, for example, consists of the files tables.def containing the 

internal definitions, tables.h containing the external definitions, and 

tables.c containing the C code. 

157 



The modules that describe the separate passes of the compilation and/or 

interpretation of the languages are not implemented using the method 

described above. The parser for the languages in CONDUCTOR is implemented 

using the parser generator yacc (see Johnson [1975] ). Using yacc, all 

the separate passes in the formal specification of the statistical 

language ( type checking, input restriction generation and code genera

tion) are implemented in one pass. The formal specification in these 

modules describes at which point actions must be added to the syntax 

rules in yacc. 

Example 15.1: Implementation of the assignment statement in the 

statistical language. 

The concrete syntax of an assignment statement in the statistical 

language reads 

assignment ->variable':=' expression 

the abstract syntax is specified in the function abs-assgn. 

abs-assgn: VARIABLE # EXPR -> STATEMENT 

The type checking of an assignment statement is specified in module Stat

check-statements in equation 

[156} type-check-stmnt(abs-assgn(var,e:xpr),tst) 
eq-type(var-type(var,e:xpr), 

e:xpr-type(e:xpr,tst)) 

where tst is the technique symbol table. The equation specifies that for 

each assignment statement it must be checked that the type of the left

hand side variable is equal to the type of the expression. 

The generation of input restrictions for a assignment statement is 

specified in module Gen-restr-statements in appendix I and the code 

generation in module Gen-code-statements in appendix K. 

The formal specifications in these modules are reflected in the following 

rules for yacc 

158 



assignment: variable BECOMES expression 
{ 

} 

code to check the type restrictions & 
add store instruction for left-hand 
side variable 

No actions are added for the generation of input restrictions, because 

the only input restrictions for assignment statements are the input 

restrictions generated by the variable and the expression in the assign

ment statement. The actions which generate input restrictions for 

variables and expressions, of course, accompany the syntax rules for 

variables and expressions. 

{ end example 15.1.} 

15.2. FINDING INFORMATION THROUGH IDENTIFIERS 

In most tables in the formal specification we used identifiers to locate 

an entry in a table. Information on, for example, exception handlers, 

variables and functions is located through an identifier. A simple 

hashing scheme, called 'open hashing' as defined in Aho, Sethi and Ullman 

[1986], is used to search identifiers. Such a scheme consists of: 

- a hash table: a fixed array of m records (hash entries) pointers. 

- hash entries organized into m separate linked lists called buckets 

(some buckets may be empty). 

A hashing function can calculate in which bucket the hash entry of an 

identifier can be found. For each identifier the character string and the 

type of the identifier is stored in a hash entry. An identifier can be 

the name of a statistical technique, a keyword, a function name, the name 

of a variable or the name of an exception. Additional information for 

each of these types of identifiers is stored in separate tables. The hash 

entries contain pointers to the table entries for each of these 

identifier types and vice versa. 

159 



functioii 
table 

I 

\ 

15.3. STORAGE PROBLEMS 

hashing table 

E;XqEipt:ion/hand}er 
'table . 

I 

\ 

Making abundant copies of large matrices during the execution of a 

statistical technique will rapidly create storage problems. Sharing 

storage instead of making complete duplicates of matrices, reduces the 

storage problem considerably. A matrix is implemented as a record 

containing a pointer to the data, and a pointer to the dimension 

descriptions. The data and the dimension descriptions can be shared by 

more than one matrix. The pointers in the record of several matrices may 

point to the same address. Each matrix record, therefore, contains a flag 

indicating if it is the original record or a copy. To avoid dangling 

pointers one of course must be sure that the original matrix is not 

removed as long as copies exist. In C the definition reads 

typedef struct matrix 
{ 

} 

bool: original; 
float: •data; 
pointer: dims; 

When an input matrix at the statistical level is initialized by a user, 

or a matrix is pushed on the data stack, a copy is made of the matrix 

involved. In the first case the original matrix is stored in the user 

symbol table and a copy is placed in the technique symbol table. In the 

second case the original matrix is stored in the technique symbol table 

and a copy is pushed on the data stack. In both case the copy is removed 

160 



before the original matrix can be removed. A complete copy of the matrix, 

including a full copy of the data and dimension descriptions, is made 

when a matrix at the data stack is stored in the technique symbol table, 

or when a matrix operator or function creates a new matrix. 

Example 15.1: storage of matrices. 

A statistical program 

is represented at the kernel level as 

In a user session a user can declare and initialize a matrix MAT and call 

the technique example. 

161 



The matrix MAT is stored in a record of type matrix. This record 

contains a boolean flag, indicating that it is an original matrix, and 

pointers to the data and the dimension description. The values of the 

pointers, such as AEAO and AEFO are addresses on an imaginary computer. 

:;:::::~:::: r► AFAO: 

iiil;lffi!ii:11! _s-► AEFO: 

When the user runs the statistical technique 'example' he must initialize 

the input variables. The initialization is represented in the kernel by 

the USERLOAD-instruction. The USERLOAD-instruction stores a copy of the 

original matrix MAT in the entry of the matrix X in the technique symbol 

table. The pointers in the record of X point to the same data and 

dimension description as the pointer in the record of matrix MAT. A flag 

indicates that the matrix is a copy. 

162 



After the input restrictions of the statistical technique are checked, 

two LOAD_ID instructions push copies of the matrix X on the data stack. 

Now three copies of the matrix MAT exist, the data and the dimension 

description however are stored only ones. The OPCALL instruction uses the 

two copies to create the sum of the matrix. This instruction creates a 

new matrix containing the resulting sum of X + X. 

AEBO : Ii ~~~'Q:I • I ;':ift;Q''!llii I :l'::~'';'Q:'!'iiil H~;''Q1'i 

AFOO: I i''~,1,1,:~'l',ll?iliii l111il11~1':,'ffl,1i!''g'!; 

The storage used for the records of the two copies of the X matrix on the 

data stack is freed. The STORE_ID instruction stores the resulting matrix 

in the entry of Yin the technique symbol table. 

{ end example 15,l,} 

Besides avoiding copying the data of matrices, the storage problems can 

further be reduced by making use of the structure of the matrices. One 

can distinguish: 

- A normal matrix. Every element of the matrix may be different and 

must be stored separately, 

- A sparse matrix. The matrix contains many zero elements and only 

the position of an element in combination with the value are 

stored, 

- An identity matrix. All elements on the main diagonal are one. 

Elements not on the main diagonal are zero, 

- A symmetric matrix. Element[i,j] is equal to element[j,i], 

163 



A trianguLar matrix. All elements below or above the main diagonal 

are zero, 

- A constant matrix. All elements of the matrix are equal, 

A large matrix. The matrix is so large that it is not stored in 

central memory, 

- A binary matrix. The elements of the matrix are either O or 1. 

On the one hand, special storage types will complicate the implementation 

of the matrix functions. For every type of matrix, separate functions 

must be written. On the other hand, it will increase the speed of the 

matrix functions dramatically. In CONDUCTOR, special storage types for 

matrices are not implemented. 

15.4. ERROR RECOVERY 

CONDUCTOR is an interactive system. It is inevitable that users make 

mistakes during interactive sessions. Therefore the system should offer 

the user the possibility to undo the effect of erroneous commands. 

Important in this respect is that the system should give proper error 

messages, making it possible for a user to find errors during a session. 

Once the error is located the user must be able to undo the effects of 

the command and restart the system as efficient as possible. 

A model for error recovery is given in Archer et al. [1984]. An inter

active session Sis viewed as a sequence of commands 

s 

Assume that after j commands an error is detected. This leads to the 

situation that j commands are already executed. This set of executed 

commands is called E. The remaining commands are in P the set of pending 

commands 

E p 

Modification of Swill lead to S', a modified session. This session can 

be separated into a set U, a prefix of S, which remained unchanged and a 

164 



set M containing the modified commands. 

u 

c' i 

M 

c' n 

In error recovery clearly the most complicated situation is the restart 

of the system with command c' 1 if i < j. The problem is in this case how 

to return to the state prior to c 1 • The simplest solution is a complete 

restart. In Archer et al. [1984] it is suggested that the introduction of 

checkpoints ('saved intermediate states') is profitable. If in our model 

we had saved the state after command c 1 _ 1 was executed we could restart 

the system with command c' 1 • Saving all states after each command however 

is space and time consuming, therefore, only a few checkpoints should be 

used in a system. 

In CONDUCTOR error recovery is possible. When an error occurs, CONDUCTOR 

displays the last commands entered by the user and indicates the position 

where the error occurred. Also the possible options to modify the 

commands are given. In an external handler session and a statistical 

session four options are available 

1. Stop executing CONDUCTOR and return to the operating system. 

2. Edit the commands with the use of an editor. 

3. Replace the text that caused the errors. 

4. Insert text before the text that caused the errors. 

In a user session also the last command can be aborted. Editing commands 

in a user session, however is not possible. Options 3 and 4 are only 

available if the error is still in the input buffer of the system. After 

the correction is made the system will start from the latest saved 

checkpoint. 

The error recovery is build into the parser generated by the yacc parser 

generator. A check point in yacc amounts to an error flag on the parse 

stack. Checkpoint are placed at the beginning of sessions, the beginning 

of expressions in the statistical language, and at the beginning of user 

commands. These checkpoints allow the user to recover faster from minor 

errors. 

165 



Example 15.3: 

If a technical statistician makes an error in a expression CONDUCTOR will 

give the following error message: 

If the user chooses option 2 or 3 and repairs the error, for example by 

replacing Y by the transpose Y', only the expression is recompiled. If 

however the error was due to improper declaration of Y the program is 

recompiled. 

{ end example 15.3.} 

166 



16, THE USE OF FORMAL SPECIFICATIONS IN CONDUCTOR 

In this book a formal specification of a large software project is 

discussed. Of course, the specification presented is a product that has 

gone through many stages. In this chapter we will discuss our experience 

in using the specification formalism ASF, and demonstrate how it helped 

to modularize and define CONDUCTOR. We also will discuss a major 

deficiency of ASF: the impossibility to hide error cases in 

specifications. And finally we will discuss the problem of keeping the 

formal specification consistent with the prototype. 

16.1. USING ASF IN THE DESIGN OF CONDUCTOR 

In a large software project one can not just start writing procedures in 

a higher-level programming language, and hope that, at the end, the 

software performs the ideas one had in mind. The problem is that half way 

through the project it might be discovered that previously written 

procedures should be modified, and that the efforts in writing the 

procedures were a waste of time. As in all large projects, one has to 

carefully plan before one starts working. In the CONDUCTOR project this 

plan is described in ASF. This formalism provides the means to give a 

rigourous specification of CONDUCTOR, and one can abstract from many of 

the problems one has to tackle in a higher-level programming language. A 

few of these problems were discussed in the previous chapter. The modules 

in the formal specification can be seen as an abstract descriptions of 

the higher-level programming language implementation of the modules 

167 



(hlpl-modules). Of course, this abstraction is only useful if the formal 

specification of a module is considerable smaller than the hlpl-module. 

The hlpl-modules in the CONDUCTOR project were, on average, a factor 10 

larger than their abstract counterparts. 

During the design of CONDUCTOR ASF was used as a bookkeeping mechanism. 

Modules were specified at a certain stage in the design and later on, 

functions and sorts were added, or the specifications of existing 

functions and sorts were modified. Thus we knew all functions and sorts 

of a module before we implemented it. For instance, the module Ranges, 

given in appendix E, is described in 30 lines in the formal specifica

tion. The implementation of this module in the programming language C 

(Range.c) consists of 340 lines of code, including comments. In the 

module Range.c functions had to be added for storage management and I/0 

of ranges. In the first version of module Ranges the functions range

plus, range-min and range-mui did not exist. Later on, when we designed 

the static type checking and the generation of input restriction, these 

functions turned out to be needed. Thus, the formal module Ranges 

provided an excellent abstract model that could be used during the 

implementation of the hlpl-module Range.c. 

16.2. MODULARIZATION 

In chapter 3 of this book we listed the goals of modularization as given 

by Parnas [1985]. We will discuss how ASF contributed to each of these 

goals. 

16.2.1. Small modules. 

The first goal of modularization, as given by Parnas [1985], is that each 

module should be small so that it can be understood fully. The formal 

specification language ASF does not really force such modularization. One 

could think of the horrible solution to specify the CONDUCTOR in just one 

module with hundreds of sorts and functions. By restricting the number of 

newly exported sorts and functions in a module - the average number of 

newly defined sorts in the specification of CONDUCTOR is near 1 and the 

168 



newly defined functions near 5 - one obtains ASF specifications 

consisting of simple modules. 

16.2.2. Implementation changes. 

One must be able to change the implementation of a module without 

affecting other modules. Again ASF is, albeit indirectly, of help in this 

respect. The formal specification contains a complete specification of 

the interfaces of all modules involved. If the modules are indeed 

implemented using only the knowledge of the interfaces of imported 

modules, the implementation of modules can be changed without influencing 

other modules. 

In our implementation (see 15.1), the data types defined in internal 

definition files and the implementation of the functions in the C-code 

files can be changed without influencing other modules. Changes in the 

parameter lists or the result of functions in the C-code files and 

changes in the external definition files do influence other modules 

because they are part of the interface of a module. 

16.2.3. Unlikely changes. 

Only unlikely changes should require changes in the interface of the 

modules. The benefit of ASF in this respect is that the use of formal 

specification languages forces the system analyst to define the system 

thoroughly before he implements it. Evidently this does not guarantee 

that later on in the development process some aspects of the problem 

change or new wishes occur. If, however, simple modules are specified as 

discussed in 16.1.1, a change in the interface of a module will only add 

new functions to the interface. In using ASF to specify CONDUCTOR, we 

found that the specification of basic sorts such as the data types 

(appendix D), the type descriptions (appendix E), the abstract syntax of 

the statistical language (appendix F) hardly changed during the 

specification process. More delicate parts like the symbolic evaluation 

of index variables (appendix I) and the exception handling mechanism 

( appendix J) were changed several times before they got their final 

shape. This indicates, that if we had started the implementation of these 

modules too early, we would have been forced to make changes in these 

169 



modules. By using ASF as a design language, the need for such changes is 

reduced considerably. 

16.2.4. Major changes. 

Major changes in the software should only result in independent changes 

in the individual modules. A major change in the software leads to a 

major change in the specification of the software. In the formal 

specification the following changes can be distinguished: 

- adding new modules, 

- changing the equations that specify sorts and functions in the module, 

- modifying the exported sorts and functions of the module. 

If a major change only consists of the addition of modules or the changes 

of equations, this change can be regarded as a complete independent 

modification of modules. Of course the use of ASF does not guarantee that 

no modifications of module interfaces are necessary. In the development 

process of CONDUCTOR these changes turned out to be inevitable. Most 

modifications, however, were either changes in the parameter lists of 

functions or the addition of new functions. 

16.2.5. The responsibility of a module. 

A software engineer should be able to understand the responsibility of a 

module without understanding the details of its internal design. If a 

software engineer is capable of reading the formal specification language 

ASF, the formal specification of a module gives him an exact description 

of its responsibility. For example, the responsibility of hlpl-modules, 

such as, Range.c, Type.c, Table.c ar.d Seq.c can be understood be studying 

the formal specification as given in the formal modules Ranges, Types, 

TabLes and Sequences. 

16.2.6. Relevant modules. 

A reader with a well-defined question is able to find the relevant 

modules in the formal specification. The formal specification introduces 

a strict hierarchy in the modules. A module can be understood by studying 

its formal specification and the specification of its imported modules. 

170 



For example, the module Co1T1pilers can be understood by studying besides 

this module, module Statistical-programs (the source language), module 

Kernel-programs (the target language), module Input-restr-generator (the 

input restriction generator), module Static-type-checking ( the static 

type checking), module Gen-instructions (the generation of kernel 

instructions) and module Gen-handlers (the generation of exception 

handlers). 

figure 16.1. The Compiler 

Co1T1pilers 

Statis.- Kernel- Input
Programs programs restr

generator 

I 

16.2.7. The number of branches. 

Static
type 

checking 

Gen-in- Gen
struct- handlers 
tions 

The submodules imported by a module should not have overlapping 

responsibilities. In order to avoid this, the number of submodules should 

be small. In ASF this goal is reached by keeping the number of imported 

modules small. The average number of imported modules in the specifica

tion of CONDUCTOR is between 2 and 3, ASF does not force the number of 

branches to be small; this remains the responsibility of the system 

analyst. 

16.3 FORMAL DESCRIPTION 

We also used the formal specification technique to avoid "the seven sins" 

as discussed in Meyer [1985] and to get an unambiguous definition of 

CONDUCTOR. 

16.3.1. Noise. 

Noise is the problem that the specification contains elements that do not 

add information. Deliberately some noise is left in the specification of 

171 



module Scalars. This module contains the exported functions add, sub, mul 

and div. These functions do not add any information, because they are not 

imported by any other module in the specification, nor are they used in 

the equations of the module Scalars. So neither in the definition of 

scalars nor in the use of scalars these functions are needed. We suggest 

to add a simple bookkeeping mechanism to the implementation of ASF to 

list all unused exported functions. 

16.3.2. Silence. 

It is even more difficult to detect whether some aspects of the problem 

are not specified. Examples of silence in the specification are the 

database, and the inconsistencies and redundancy in the input 

restrictions. The database is, in the specification, represented by the 

sort DATABASE and a function current-db. How a database is constructed 

and how additional data is stored and interrogated is left unspecified. 

The problem with input restrictions is, that CONDUCTOR may generate 

restrictions that are contradicting, such as, 

n - 1 >= 0 and - n - 1 >= 0 

or redundant, such as, 

n - 7 >= 0 and n - 3 >= 0 

In the first case, the contradicting restrictions, there is no feasible 

set of input variables, and in the second case the second restriction 

need not be tested. 

The level of abstraction chosen to describe CONDUCTOR, makes these 

problems implementation problems. Nonetheless, a complete specification 

of these problems would help to get a good implementation. The same is 

true for other implementation problems like the optimization of the 

instruction sequences in the kernel, or the error recovery used in the 

prototype. 

172 



16.3.3. Overspecification. 

Where does the specification of a problem end and where does the 

implementation begin? This is probably one of the most difficult problems 

for a system analyst. Defining the problem is a matter of finding a good 

level of abstraction to describe the problem. For example, at the highest 

level of abstraction CONDUCTOR is defined by the module Conductor and its 

imported modules. 

figure 16.2: The overall CONDUCTOR system. 

Conductor
sessions 

Resulting
so/ware 

Conductor 

I 
Co71rPilers Gen-e~t-

handlers 
Conductor

states 

Limiting the specification to 6 modules, it would only slightly 

contribute to the definition of CONDUCTOR. One must admit that also the 

level of abstraction chosen in the formal specification, presented in the 

appendices of this book, is arbitrary. In this specification the problems 

involved in optimising the kernel instructions, the hashing mechanism, 

the construction of the database, etc., are omitted. On the one hand, by 

defining these problems to be implementation problems this can be 

defended, on the other hand if one needs to implement code optimization 

or hashing mechanisms one could surely benefit from a thorough 

specification of these problems. A natural solution is to make an 

independent specification of these subproblems, emphasizing that these 

are implementation problems for the "main" specification. 

16.3.4. Contradiction. 

ASF does not offer the possibility to check the consistency of the 

specification. The equations may contain contradictions in terms of the 

logic of the specified sort, for example, 

eq-result(abs-minus(el,e2),abs-minus(e2,el)) true 

173 



is obviously wrong. It specifies that the minus operator in index 

expressions is symmetric. Using the equations in module Ind-expr-abstr

syntax it can be derived from this equation that an index value is equal 

to its opposite 

eq-result(abs-const(c),abs-const(neg(c))) true 

which is of course not what we had in mind. Even worse, if we added two 

equations to module Ind-expr-abstr-syntax 

eq-result(abs-minus(e1,e2),abs-minus(e2,e1)) 
eq-result(abs-minus(e1,e2),abs-minus(e2,e1)) 

true 
false 

the contradiction in these equations is not detected by ASF. We actually 

specified that the constant functions true and false are identical. The 

problem is that, by giving meaningful names to functions, the system 

analyst assumes that the specified mathematical constructs have the 

suggested semantics. The examples above make it clear that ASF does not 

guarantee that the suggested semantics of a specification is without 

contradictions. 

The examples also make it clear that modifications of the semantics of 

sorts, outside the module where they are declared should be avoided. 

These modifications make it, in a large specification, almost impossible 

to verify if the suggested and mathematical semantics coincide. A book

keeping mechanism that warns the user of ASF if the semantics of a sorts 

is redefined outside the module where it is declared should be of great 

help to a system analyst. 

16.3.5. Ambiguity. 

From the mathematical point or' view, a specification always has a 

meaning. This meaning is certainly not the intended one if the 

specification contains contradictions. The discussion in 16.3.4. showed 

that in practice contradictions still exist in the suggested semantics, 

and thus we still have to face an ambiguous specification. This implies 

that we have to face ambiguities due to this difference between mathe

matical and intended meaning. 

174 



16.3.6. Forward reference. 

In the formal specification language ASF forward reference is impossible. 

A module can only import functions and sorts of previously defined 

modules. 

16.3.7. Wishful thinking 

Is wishful thinking impossible if one uses ASF? Of course not. By 

remaining silent over the exact specification of a particular subproblem 

a delicate problem may remain unspecified and the system analyst may hope 

that someone might solve the problem. In CONDUCTOR an example of wishful 

thinking is the database. The database is left comp~etely unspecified 

and the author of this book simply hopes and believes that a database in 

combination with background queries can be implemented. 

16.4. SPECIFICATION OF ERRORS 

At many points in the formal specification we had to use conditional 

equations. That is, we had to impose conditional restrictions on the 

sorts used as arguments in formal functions. An example is the specifica

tion of a constant range in module Constant-ranges. A constant range 

consists of two indices under the restriction that the first argument is 

equal to or less than the second argument. Legal examples of constant 

ranges are 

[ 1 to 5] or [ 27 to 217] 

In the formal specification a range is represented by the sort CONST

RANGE through the function c-range. 

c-range: INDEX# INDEX-> CONST-RANGE 

To specify a well-formed constant range the functions wf-c-range and 

error-c-range are introduced 

wf-c-range: INDEX# INDEX-> CONST-RANGE 
error-c-range: -> CONST-RANGE 

175 



These functions make it possible to specify a well-formed constant range 

consisting of two indices indl and ind2 as given in equation [1]. 

[1} c-range(indl,ind2) = wf-c-range(indl,ind2) 

when ge(ind2,indl) = true 

A constant range is specified to be illegal when the greater equal 

condition ge(ind2,indl) does not hold. 

[2] c-range(indl,ind2) = error-c-range 

when ge(ind2,indl) = faLse 

In this specification we reduced all combinations of indices to a set of 

correct constant ranges and one error case. The other functions in module 

Constant-ranges, such as Length and eq-range, were all specified in terms 

of well-formed constant ranges {the function wf-c-range). For example the 

equation [3] specifies the length of a constant range. 

[3] Length(wf-c-range(indl,ind2)) add(l,sub(ind2,indl)) 

The error case is left unspecified. Taking into account all error cases 

would considerably increase the length of the specification. For example, 

all functions specified for the sort INDEX would need extra equations for 

the constant function error-index. Probably the best solution is to 

incorporate the error propagation in ASF in such a way that the error 

cases due to conditional equations can only be seen in the module where 

such errors occur. At all points, in the specification of CONDUCTOR, 

where we used conditional equations, we made a comment that the error 

case is left unspecified. If a conditionally specified sort is imported 

by an other module one may assume that the well-formed sort is imported. 

Thus we avoided specifying lengthy error cases. 

16.5. KEEPING THE PROTOTYPE CONSISTENT WITH THE SPECIFICATION 

It is important to develop a prototype to check the suggested ·semantics 

of the specification. Of course this introduces the problem of keeping 

176 



the specification and the prototype ce,nsistent. One of the problems in 

this respect is that the exported sorts and functions should indeed form 

the interface of the implemented modules of the prototype. 

The implemented prototype is by-hand kept consistent with the specifica

tion. This approach naturally introduces errors. For example, function 

names in the formal specification may differ from the names of their 

counterparts in the implementation. The only way to avoid this would be, 

that a specification is automatically translated into an implementation. 

This approach is taken by Arsac [1979] and Balzer [1981]. An other way to 

check the consistency of specification is the use of term-rewriting 

systems, as implemented by Hendriks [1988]. In such a system the 

equations in an ASF specification are used as rewriting rules. Given a 

term, the generated prototype for a specification tries to find the 

smallest possible representation, using the rewriting rules. This 

approach up till now only works for small examples. 

To automatically produce an implementation from a specification of the 

size of the specification of CONDUCTOR still seems to be a dream. A small 

step in making this dream come true is the following. In many 

specifications one will need modules for structures such as booleans, 

sequences, and tables. There seems to be no need to specify these modules 

over and over again, and an efficient implementation of these modules can 

be made and stored in a module library. These modules can be used as 

building blocks for other specifications, that are also using these 

structures. And the efficient implementations of these modules should be 

linked automatically in the implementation of these specifications. 

16.6. EQUALITY OF CONSTANT FUNCTIONS 

At many places in the specifications we defined a function eq for 

equality of specified sorts. If constant functions were defined for these 

sorts, we had to specify that all these functions were unequal. This was 

boring work, and the result can almost be called noise. If we wanted 

constant functions to be equal we would have specified only one constant 

function. Therefore it seems worthwhile to incorporate an equal function 

in ASF, in order to avoid lengthy specifications of the inequality of 

constant functions. For instance, the specification of equality of three 

177 



terms tl, t2 and tJ in the current version of ASF reads 

eq: SORT# SORT-> BOOLEAN 

with equation 

eq(tl, t2} 
eq(tl, tJ) 
eq(t2,t3) 

true 
false 
false 

In a new version this should be replace by one equation, 

tl t2 

in combination with a built in function eq, that is specified to return 

the value true if two terms are equivalent in terms of the equational 

logic in a module, and otherwise returns the value false. 

16.7. ADVICE FOR USERS OF ASF 

The use of ASF by now means solves all problems of system analysts. If, 

however, the system analyst obeys a few simple rules, ASF opens the 

possibility to thoroughly define and modularize his problem before he 

starts implementing it. These rules are: 

- keep the number of sorts specified in each module small, 

- keep the number of imported modules small. 

Furthermore, it is important to develop a prototype to check the 

suggested semantics of a specification. Of course, this introduces the 

problem of keeping the specification and the prototype consistent. 

Also, realize that a specification should be an abstraction of a problem. 

There is no such thing as the one and only correct abstraction. Important 

is to keep the specification readable by abstracting from subproblems 

(implementation problems}. A useful approach is to 

- make the specification of subproblems completely indel)endent of the 

specification of the 'main' problem. 

Finally, finding better ways to deal with error cases in the specifica

tions, and incorporating a function for equality of terms, will surely 

improve the specification formalism ASF used in this book. 

178 



17, CURRENT STATUS OF CONDUCTOR AND FUTURE 
DEVELOPMENTS 

CONDUCTOR is not a commercial product. The current prototype, that runs 

under both the operating systems UNIX and MS-DOS, can compile and run the 

statistical techniques discussed in this book. It still has to be tested 

on a larger set of examples. These tests probably will reveal that the 

efficiency of some of the implemented modules can be improved. 

Furthermore, a collection of statistical functions, comparable to the 

functions in languages like Sand IML, should be added in order to make 

it possible to implement large sets of statistical techniques. Also the 

user language has to be improved if one wants to make CONDUCTOR 

competitive with modern statistical software packages. Important in this 

respect are virtual screens and pull-down menus. The virtual screens and 

the pull-down menus were first introduced in SMALLTALK (see Goldberg 

[1983-1984]), and have strongly influenced the user interface of modern 

operating systems and software packages. Though adding such features is 

merely a matter of time, it is necessary if one wants to compete with 

existing statistical software packages. 

Besides these improvements, other more fundamental concepts can be added 

to CONDUCTOR. One can think of: 

- Making it possible to create statistical expert systems in CONDUCTOR. 

An exception, in software generated by CONDUCTOR, signals when the 

execution of a statistical technique must be interrupted. In the 

current version of CONDUCTOR, the generated software reacts on a 

single exception. For example, the software generated in CONDUCTOR may 

179 



detect that the data used in a statistical technique is constructed 

using different measurement instruments. The execution of the 

statistical technique is interrupted, and the software looks for an 

appropriate exception handler. 

If the exception handling mechanism is given a 'memory', a combination 

of exceptions can be examined, using inference rules given by the 

technical statistician. Thus, different combinations of exceptions may 

invoke different exception handlers. The created statistical expert 

system, would be able to give a user advice in more complicated cases 

in statistical analyses. For a discussion on the slow emergence of 

expert systems in statistics see Gale et al. [1986]. 

- Adding a syntax directed editor. A statistical technique written in 

the statistical language shows close resemblance with the notation 

used in statistical textbooks. However, partitioned matrices can not 

be entered the way they are written in these books. The reason is that 

the input of a statistical technique is line oriented rather than 

screen oriented. With the use of syntax directed editors that know the 

lay out of a partitioned matrix, partitioned matrices can be entered 

the way they are writ ten in textbooks. A second advantage of syn tax 

directed editors is that the abundant typing of keywords can be 

avoided. Syntax directed editors are for example used in the 

programming language B1 (see Geurts et al. [1985] and Meertens 

[1981]}. 

- Generating code for a para7,7,e7, processor. In a statistical language 

the techniques are described in a matrix langauge. Some of the matrix 

functions can be executed much faster by parallel than by sequential 

processors. Parallel algorithms for matrix functions are discussed in 

O'Leary and Stewart [1985]. Instead of generating instructions for the 

kernel, as in the prototype of CONDUCTOR, code could be generated for 

a parallel processor. This would, of course, dramatically improve the 

performance of the resulting software. 

Besides these 'dreams', also other problems remain open. The most 

The current version of this language is called ABC. 

180 



important 'open ends' in the CONDUCTOR project are: 

- Contradicting input restrictions. For each statistical technique, a 

sequence of input restrictions on the value of the input index 

variables is generated. These input restrictions may be contradicting. 

For example, the input restrictions 

n - 1 >= 0 and - n - 1 >= 0 

both must hold. In this case no feasible input exists. This simple 

case is detected by the prototype, however more complex cases should 

be considered. 

- CONDUCTOR will detect many exceptions during statistical analysis. 

Probably there will occur combinations of exceptions /or ~hich 

statistics does not offer any solution. Statistical theory focusses on 

single exceptions to a general model. In applied statistics many 

exceptions occur simultaneously. For some of the combinations the 

statistical theory has no answers. We hope that the statistical 

software generated by CONDUCTOR will stimulate statisticians to find 

answers for such questions. 

The current version of CONDUCTOR is already a useful piece of software. 

It can generate efficient software for small statistical applications. By 

adding new features to it we also hope to improve it in the near future. 

181 





References. 

AHO, V.A., SETHI, R. & ULLMAN, J.D. (1986), Compilers Principles 
Techniques and Tools, Reading, MA: Addison-Wesley. 

AHO, V.A. & ULLMAN, J.D. (1977), Principles of Compiler Design, Reading, 
MA: Addison-Wesley. 

AMMANN, U. (1977), On Code Generation in a Pascal Compiler, Software, 
Practice and Experience, 391-423. 

ARCHER, J.E. (1984), User Recovery and Reversal in Interactive Systems, 
ACM Transactions on Programming Languages and Systems, 1-19. 

ARSAC, J.J. (1979), Syntactic source-to-source Program Manipulation, 
Communications of the ACM, 43-54. 

BALZER, R.M. (1981), Transformational Implementation, USC/ISI, report RR-
79-79. 

BECKER, R.A. & CHAMBERS, J.M. (1984a), S: An Interactive Environment for 
Data Analysis and Graphics, Belmont, CA: Wadsworth. 

BECKER, R.A. & CHAMBERS, J.M. (1984b), Design of the S system for Data 
Analysis, Communications of the ACM, 486-495. 

BERGSTRA, J.A., HEERING, J. & KLINT, P. (1985), Algebraic Definition of a 
Simple Programming Language, Amsterdam: Centre for Mathematics 
and Computer Science, Report CS-R85O4. 

BERGSTRA, J.A., HEERING, J. & KLINT, P.(1987), ASF: An Algebraic Speci
fication Formalism, Amsterdam: Centre for Mathematics and 
Computer Science, Report CS-R87O5. 

BERGSTRA, J.A. & TUCKER, J.V. (1982), Algebraic Specification of 
Computable and Semi-computable Data Structures, Theoretical 
Computer Science, 137-181. 

BMDP (1985), Statistical Software Manual, Berkeley, CA: University of 
California Press. 

BOX, G.E.P. (1969), The Challenge of Statistical Computation, in MILTON, 
R.C. & NELDER, J.A. (editors), Statistical Computation, New York: 
Academic Press. 

CHENG, T.T., LOCK, E.D. & PRYWES, N.S (1984), Use of Very High Level 
Languages and Program Generation by Management Professionals, 
IEEE Transactions on Software Engineering, 552-563. 

CERI, S. & PELAGATTI, G. (1985), Distributed Databases Principles & Sys
tems, New York: Mcgraw-Hill. 

DATE, C. J. (1977), An Introduction to Database Systems, Reading, MA: 
Addison & Wesley. 

183 



DAVID, M.H. (1985), The Language of t>anel Data and Lacunae in Communi
cation About Panel Data, Madison, WI: Draft for Discussion, 
Institute for Research on Poverty. 

DAVIDSON, J.W. & FRASER, C.W. (1984), Code Selection through Object Code 
Optimization, Transaction on Programming Languages and Systems, 
505-526. 

DEREMER, F. (1969), Practical Translators for LR(k) Languages, 
Cambridge, MA.: Ph.D. Thesis, M.I.T. 

DEREMER, F. (1971), Simple LR(k) grammars, Communications of the ACM, 
453-460. 

DRUD, A. (1983), A Survey of Model Representation and Simulation 
Algorithms in Some Existing Modelling Systems, Journal of Econo
mic Dynamics and Control, 5-35. 

EFE, K. (1987), A Proposed Solution to the Problem of Levels in Error
message Generation, Communications of the ACM, 948-955, 

EFRON, B. & GONG, G. (1983), A Leisurely look at the Bootstrap, the Jack
knife and Cross-validation, The American Statistician, 36-48. 

FOSTER, J.M.(1968), A Syntax Improving Device, Computer Journal, 31-34. 

FRANCIS, I. (1981), A Comparative Review of Statistical Software, New 
York: North Holland. 

GALE, W.A.(editor) (1986), Artificial Intelligence & Statistics, Reading, 
MA: Addison-Wesley. 

GAUDEL, M.C. (1984), A first introduction to PLUSS, Universite de Paris
Sud, Orsay. 

GEURTS, L., MEERTENS L. & PEMBERTON S. (1985), The B Programmers's Hand
book, Amsterdam: Centre for Mathematics and Computer Science. 

GOLDBERG, A. & ROBSON, D. (1983-1984), SMALLTALK-80, 4 vols, 
Reading, MA: Addison-Wesley. 

GOLDBERGER, A.S. (1964), Econometric Theory, New York: Wiley. 

GOMAA, H. & SCOTT, D.B.H. (1981), Prototyping as a Tool in the Specifi
cation of User Requirements, Proc. 5th Conf. on Software 
Engineering, IEEE, 333-342. 

GOODENOUGH, J.B. (1975), Exception Handling, Issues and Proposed Nota
tion, Communications of the ACM, 683-696. 

GRILICHES, Z. (1984), Data Problems in Econometrics, Cambridge, MA: 
Discussion Paper Series, Harvard Institute of Economic Research. 

184 



GRISWOLD, R. (1981~; A History of the SNOBOL Programming Languages, in 
WEXELBLAT, R. (editor), History of Programming Languages, New 
York: Academic Press. 

HENDRIKS, P. (1988), ASF System User's Guide, Amsterdam: Centre for 
_Mathematics and Computer Science, Report forthcoming. 

HOROWITZ, E. & MUSON J.B.(1984), An Expansive View of Reusable Software, 
IEEE Transactions on Software Engineering, 477-487. 

IVERSON, K. (1962), A Programming Language, New York: Wiley. 

IVIE, E.L. (1977), The Programmer's Workbench, Communications of the ACM, 
746-753. 

JACKSON, M.A. (1975), Principles of Programming Design, New York: 
Academic Press. 

JACKSON, M.A. (1983), System Development, Englewood Cliffs, NJ: Prentice
Hall. 

JOHNSON, S.C. (1975), YACC-Yet Another Compiler Compiler, Murray Hill: 
Bell Laboratories, CSTR 32. 

J0RESKOG, K.G. & S0RBOM, D. (1981), LISREL V, Analysis of Linear 
Relationships by Maximum Likelihood and Least Squares Methods, 
Uppsala: Department of Statistics, University of Uppsala. 

JUDGE, G.G., GRIFFITHS, W.E., CARTER HILL, R., LEET. (1980), The Theory 
and Practice of Econometrics, New York: Wiley. 

IVIE, E.L. (1977), The Programmer Workbench, Communications ACM, 746-753. 

KENNEDY W.J. & GENTLE J.E. (1980), Statistical Computing, New York: 
Marcel Dekker. 

KERNIGHAN, B.W. (1984), The UNIX System and Software Reusability, IEEE 
Transactions on Software Engineering, 513-518. 

KERNIGHAN, B. W. & PIKE R. (1984), The UNIX Programming Environment, 
Englewood Cliffs: Prentice-Hall. 

KING, (1976), Symbolic Evaluation, Communications of the ACM, 385-394. 

KLAEREN, H.A. (1983), Algebraische Spezifikationen: Eine Einfuhrung, 
Berlin: Springer Verlag. 

KNUTH, D.E. (1965), On the Translation of Languages from Left to Right, 
Information and Control, 607-639. 

KNUTH, D.E. (1971), Top-Down Syntax Analysis, Acta Informatica, 79-110. 

KOSTER, C.H.A. (1976), Two Level Grammar, in BAUER, F .L. & EIKEL, J. 
(editors), Compiler Construction an Advanced Course, New York: 
Springer Verlag, 2nd edition. 

185 



KROENKE, D. (1983), Database Processing: Fundamentals, Design, Implemen
tation, Chicago: SRA, 2nd edition. 

McKEEMAN, W.M. (1974), Compiler Construction, in BAUER, F.L & EICKEL, J., 
Compiler Construction: an Advanced Course, Berlin: Springer. 

LEWIS, P.M., ROSENKRANTZ, D.J, & STEARNS R.E. (1974), Attributed Transla
tions, Journal of Computers and System Science, 297-307. 

LITTLE, R.J.A. (1982), Models for Non-Response in Sample Surveys, Journal 
of American Statistical Association, 237-250, 

LIENTZ, B.P., & SWANSON, E.B. (1980}, Software Maintenance Management, 
Reading, MA: Addison-Wesley. 

LOECKX, J. (1984), Algorithmic Specifications: a Constructive Method for 
Abstract Data Types, University of Saarland, Report A84/03. 

LOVELL, M. (1983), Data Mining, Review of Economics and Statistics, 1-11. 

MACSYMA (1977), Refprence Manual, Cambridge, MA: Laboratory of Computer 
Science, MIT. 

MADDALA, G.S. (1977), Econometrics, New York: McGraw-Hill. 

MALINVAUD, E. (1980), Statistical Methods of Econometrics, New York: 
North-Holland. 

MAYER, T. (1975), Selecting Economic Hypothesis by Goodness of Fit, The 
Economic Journal, 877-883. 

McGETTRICK, A.D. (1980), The Definition of Programming Language, London: 
Cambridge University Press. 

MEERTENS, L. (1981), Draft Proposal for the B programming language, 
Amsterdam: Mathematical Centre. 

MESEGUER, J. & GOGUEN, J.A. (1982), An Initiality Primer, in NIVAT, M. & 
REYNOLDS, J. (editors), Formalizing Programming Concepts, Amster
dam: North-Holland. 

MEYER, B. (1985), On the Use of Formalism in Specifications, IEEE, 6-26. 

NEIGHBOURS, J.M. (1980), Software Construction Using Components, Irvine: 
Ph.D. dissertation, Dep. Inform. Comput. Science, University of 
California, Tech. Rep. 160. 

NEIGHBOURS, J.M. (1984), The DRACO Approach to Constructing Software from 
Reusable Components, IEEE Transactions on Software Engineering, 
564-574. 

PAKIN, S. (1972), APL-360 Reference Manual, Chicago, SRA. 

186 



PARK, J .C.H., CHOE, K.M. & CHANG, C.H. (1985), A New Analysis of LALR 
formalism, ACM Transactions on Programming Languages and Systems, 
159-175. 

PARNAS, D.L., CLEMENTS, P.C., & WEISS, D.M. (1985), The Modular Structure 
of Complex Systems , IEEE Transactions on Software Engineering, 
259-266. 

PEETERS, J.F. (1985), Assembly Language Programming VAX-11, Reston, VA: 
Reston Publishing Company. 

PINDYCK, R.S., & RUBINFELD, D.L. (1981), Econometric Models and Economic 
Forecasts, New York: McGraw-Hill. 

PRATT, W. {1984), Programming Languages, Design and Implementation, 
Englewood Cliffs: Prentice Hall, 2nd edition. 

PRYWES, N.S. (1979), Automatic Generation of Computer Programs, in RUBI
NOFF, M. & YOVITS, Advances in Computers, vol. 16 New York: 
Academic. 

PRYWES, N.S., PNEULI A. & SHASTRY, S. (1979), Use of a Nonprocedural 
Specification Language and Associated Program Generator in Soft
ware Development, ACM Transactions on Programming Languages and 
Systems, 196-217. 

REDUCE-2 (1973), User's Manual, Salt Lake City: University of Utah, 
Report UCP-19. 

RODLER, K. (1985), Evaluierung Okonometrische Programsysteme, Vienna: 
Institut Fur Okonometrie und Operations Research, Technical 
Report 26. 

RUBIN, D.B. (1976), Inference and Missing Data, Biometrika, 581-592. 

SAS (1982), User's Guide: Basics, Cary: SAS Institute Inc. 

SAS (1982), User's Guide: Statistics, Cary: SAS Institute Inc. 

SAS (1985), User's Guide: IML, Cary: SAS Institute Inc. 

SHERIDAN, P.B. (1959), The Arithmetic Translator-Compiler of the IBM 
Fortran Automatic Coding System, Communications of the ACM, 9-21. 

SPSS (1986), User's Guide, New York: McGraw-Hill. 

SRBA, F. (1985), A Survey on Econometric Software, internal report, ESCR 
Centre in Economic Computing. 

TANENBAUM, A.S., VAN STAVEREN, H. & STEVENSON, J.W (1983), A Practical 
Tool Kit for Making Portable Compilers, Communications of the 
ACM, 654-660. 

TANENBAUM, A.S. (1976), Structured Computer Organization, Englewood 
Cliffs: Prentice Hall. 

187 



TSP, Time Series Processor User's Manual (1980), Ontario: Computing 
Centre, University of Western Ontario. 

ULLMAN, J.D. (1985), Principles of Database Systems, London: Pitman, 2nd 
edition. 

USDoD (1983), Reference Manual for the ADA Programming Language, Washing
ton D.C.: U.S. Department of Defense, ANSI/MIL - STD-1815A-1983. 

VAN NES, F. & TEN CATE A. (1987), Software voor econometrisch onderzoek 
met behulp van de personal computer, Section Statisticial 
Software of the WS, internal report. 

WIJNGAARDEN, A. van (1965), Orthogonal Design and Description of a Formal 
Language, Amsterdam: Centre for Mathematics and Computer Science, 
Report MR 76. 

WIJNGAARDEN, A. van (editor) (1973), Almost the Revised Report on the 
Algorithmic Language ALGOL 68, working paper W.G. 2.1. 

WIENER, R. & SINCOVEC, R. (1984), Software Engineering with MODULA-2 and 
ADA, New York: Wiley. 

WIENER, R. & SINCOVEC, R. (1983), Programming in ADA, New York: Wiley. 

WIRSING, M. (1983), A Specification Language, Munich: University of 
Munich, Dissertation. 

WIRTH, N. (1971), The Design of the PASCAL Compiler, Software Practice & 
Experience, 309-333, 

WIRTH, N. (1983), Programming in MODULA-2, New York: Springer Verlag, 2nd 
edition. 

WOODWARD, W.A., ELLIOT A.C. & GRAY, H.L. (1985), Directory of Statistical 
Microcomputer Software, New York: Marcel Dekker. 

188 



Index 

Abstract syntax tree . . 
Algebraic specification 
Ambiguity 
ASF •••••• 
Background query 
C-code file 
Calculation instructions 
Carrier set 
Code generation 
CompiZer .... 
Concrete syntax tree 
Context-free grammars 
Contradiction 
Data stack . .... . 
Database interface . . 
Dimension bound restrictions 
Error recovery . .... 
Exception handler table 
Exception handlers . .. 
Exception raising 
External definition file 
External handlers 
Formal specification Language 
Forward reference 
Hashing 
Higher-level programming language 
IML • • • • • • , , • • 
Input instructions . .. 
Input restriction check 
Input restrictions . .. 
Internal definition file 
Kernel ...... . 
Kernel instructions 
Kernel language 
Kernel program ... 
Maintainabi Lity 
Matrix element reference 
Modularization . ... 
Multi-Layered approach 
Noise 
Non-terminals .... 
Normalization 

of index expressions 
Ordering on index expressions 
Output instructions 
Overspecification 
Parameterization . . 
Procedure libraries 
Processor ..... 
Program-producing systems 
Rapid prototyping 

189 

. .. 40 
8, 41 

21, 174 
8, 41, 167 
6, 54, 142 

157 
109, 121, 122 

. 41 
119 
120 

. 39 

. 38 
21, 173 

110, 114 
6, 35, 53, 139 

4, 33, 70, 84, 86 
164 

... 113, 124 
6, 32, 67, 111, 135 

6, 32, 66, 128 
• . • . • . 157 
. . • • • . 131 

8, 19, 21, 41, 169 
21, 175 

159 
1, 4, 6, 11, 13, 25 

... 17 
107, 121, 122 

111 
5, 33, 89 

157 
6, 24, 35, 105 

107 
105 
116 

1, 8 
102 

8, 17, 19, 43, 168 
... 17 
21, 171 

38 

75 
91 

109, 121, 122 
21, 173 
•. 44 
20, 22 

115 
23 

3, 7, 17 



Restrictions 

s 

on statisticaZ Language 
on index expressions 

Semantic actions 
Signature 
SiZence 
SkeZeton restrictions 
Sort ........ . 
Specification Language 
Specification system 

for statisticaZ software 
State of CONDUCTOR. 
State of the kerneZ 
StatisticaZ Language 

exception handier section 
for-statement . . 
impZementation section 
index expressions . . 
input/output section 
test section 

Statisticai packages. 
Statisticai technique 

2-SLS •...•• 
abstract sets . . 
avaiZabie in statisticai software 

Statisticai technique tabZe 
Storage of matrices 

matrices 
Structure diagrams 
SymboZic dimension bounds 
Symbolic dimension restrictions 
Symbolic equivalence . .. 

of dimension ranges. 
of index expressions 
of type descriptions 

SymboZic evaZuation 
SymboZic execution tree 
SymboZic range assignment 
SymboZic range caZcuZation 
SymboZic type checking . . 
SymboZic type restrictions 
Technique handlers . . 
Technique symboZ tabZe 
Terminals . . . . . . 
Type checking 

assignment statements 
functions caZls . . 

Type correct statisticaZ program 
Type restrictions 
UNIX ...... . 
User Language 
User symbol tabZe 
WishfuZ thinking 
Yacc ...... . 

5, 

190 

90 
95 
16 

6, 35, 47, 107 
. 41 

21, 172 
84, 85 

41 
1 
1 

2, 4, 17, 27 
49 

114 
3, 28, 58 

32, 66 
65 

30, 64 
64, 71 
29, 63 
31, 66 

11 

59 
58 
15 

116 

160 
45 

4, 70, 89 
86 

71, 79, 89, 90 
79 
78 
79 

5, 71, 89, 90 
5 

99 
93, 95 

69 
85 

129 
81 
38 

4, 69 
83 
83 
87 

4, 70, 83 
22 

34, 151 
155 

21, 175 
22, 39, 158 



..... 
'° 

APPENDIX A: THE CONCRETE SYNTAX 

This appendix contains the concrete syntax of the statistical language, 
the user language, the language that can be used to create external 
exception handlers. In the syntax rules the following notational 
conventions are employed. (1) All words written in lower-case letters are 
non-terminals. (2) All words and symbols between single quotes (' and ') 
are terminals. {3) All words written in upper-case letters not between 
quotes are terminals. 

A . TIIE OVERALL CONDUCTOR SYSTEM 

session 

subsession 

--> session sub session 
sub_ session -

--> 'STATISTICIAN' statistical program 
1 USER' user sessio;;: : 
'EXTERNAL' ext_ handler _program 

B. TIIE STATISTICAL LANGUAGE 

1. General Structure. 

statistical __ program 

section 

2. Name section. 

name_section 

3. Import/export section. 

input_output_section 

input_declaration 

output_declaration 

--> statistical program section 
section -

--> name section : 
input output section : 
impleinentatiOn section 
test_section :
exception_ handler _section 

--> 'NAME' IDENTIFIER 

--> INTERFACE input declaration 
output_declaration 

--> 'INPUT' declarations 

--> 'OUTPUT' declarations 

4. Implementation section. 

imp le men ta tion _ section --> local declarations 
'EQUATIONS' statements 

statements 

statement 

assignment 

compound_ stat 

for_statement 

index_ assigrunent 

5.Test section. 

test_section 

raises 

raise 

exception_ decl 

6. Handler section. 

--> statements 
statement 

statement I 

--> assignment : 
index assignment 
messaie : 
compound stat ] 
for statement 1 
SPECIAL _pROCEDURE 

--> variable ' : =' expression 

--> 1 { 1 statements '}' 

--> 'FOR' index variable ' : =' index ~xpr 
'TO' index=expr 'DO' statement_ 

statement index variable • : = 1 

index_ expr - , . . • index_ expr 

--> INDEX_VARIABLE ':=' index_expr 

--> 'TEST' local declarations 
'EQUATIONS' Statements raises 

--> raises raise 
raise 

--> 'RAISE' exception_decl 'WHEN1 expression 

--> IDENTIFIER : 
EXCEPTION _FLAG 

exception_handler_section --> 'HANDLERS' handlers 

handlers 

handler 

stop_or_continue 

7. Messages. 

message 

--> handlers handler 
handler 

--> 'WHEN' ':' EXCEPTION FLAG 
local declarations -

'EQUATIONS' statements 
stop_or_continue 

--> STOP : 
I• default continue • / 

- - > ' MESSAGE' ' : ' STRING 
/• empty •/ 



-'° N 

8. Expression. 

expression 

term 

factor 

variable 

offset 

subranges 

subrange 

mat-indices 

mat-index 

9. Function calls. 

function_ call 

argument_list 

10. Declarations. 

local_declaration 

declarations 

declaration 

id_list 

var_type 

mat_type 

--> expression OP term 
term 

--> 1 ( ' expression 1 ) ' 

function call : 
factor [-
PREFIC _UNARY_ OP term : 

--> factor POSTFIX UNARY OP 
variable l - -
SCALAR VALUE : 
INDEX_VALUE 

--> VARI ABLE NAME : 
VARIABLE=NAME offset 

--> 1 [' subranges '] 1 I 
'[' mat_indices ']' 

--> subranges '. 1 subrange 
subrange 

--> index_expr 'TO' index_expr 

--> mat-indices 
mat-index 

--> index_ expr 

mat-index 

--> FUNCTION_NAME ' (' argument_list ')' 

--> argument list 
expressiOn 

expression 

--> 'VARIABLES' declarations 
/• empty */ 

--> declarations 
declaration 

declaration 

--> var_type id_list message 

--> id list ',' IDENTI?IER I 
IDENTIFIER 

--> 'INDEX' j 'SCALAR' l BOOL' 
mat_type : vec-type 

--> 'MATRIX' ' [' ranges ']' 

vec_type 
ranges 

range 

11. Index expressions. 

index_expr 

C. USER LANGUAGE 

user_ session 

user_ command 

user_ variables 

user_ variable 

user_ declaration 

user_type 

const_ranges 

const_range 

D. EXTERNAL HANDLERS 

ext_ handler _program 

--> 'VECTOR' range 
--> ranges ',' range 

range 

--> index_expr 'TO' index_expr 

--> ' (' index_expr ')' ] 
index expr ' +' index expr 
index - expr • - • index - expr 
index - expr '•' index - expr 
INDEX-VARIABLE : -
INDEX=VALUE 

--> user session user command 
user= command -

--> •RETRIEVE' user variables 
'DISPLAY' user - variables 
'DELETE' us~r -variables 
'INITIALIZE' user - variables : 
'FORMAT' INDEX VALUE INDEX VALUE 
'SET' uSer variable$ 
'SAMPLE' canst ranges 
TECHNIQUE ID -
user_ declS:ration 

--> user_variables 
user_variable 

--> MATRIX ID 
SCALAR-ID 
INDEX ID 
SERIES ID 
BOOL_ID 

--> user_type id_list 

' ' 

user_ variable 

--> 'BOOL' 
'INDEX' 
'SCALAR' 
'VECTOR' 
'MATRIX' 
'SERIES' 

'[' const_ranges ']': 
' [' const_ranges ']' i 
' {' const_ranges '} · 

--> const_ranges 
cons t _ range 

cons t _ range 

--> INDEX_VALUE 'TO' INDEX_VALUE 

--> exception_handler_section 



.... 
\0 
w 

APPENDIX B, ASF 

A (many-sorted) signature is a set of declarations of sorts and functions 
over these sorts. A signature defines a language of strongly typed terms 
(expressions) , A basic ASF module consists of a signature, a set of 
variable declarations, and a set of positive conditional equations in the 
language defined by the _signature and the variable declarations. ASF 
modules may be parameterized. Parameter binding, and importing modules in 
other ones, are the two ways in which modules can be combined in ASF. 
ASF specifiactions are sequences of modules. A module can be normalized 
in the context of a specification to which it belongs by eliminating all 
imports and binding as many parameters as possible. Normalization is a 
textual operation. The semantics of a module is the initial algebra of 
its normal form, provided the latter does noet have any remaining unbound 
parameters • 

1. SYNTAX OF ASF 

In this section we give a context-free grammar for ASF. The following 
notational abbreviations are used in this definition: 

[ <N> ] denotes an· optional occurrence of <N>. 
- <N>• and <N>+ denote. respectively, zero or more, and one or more 

occurences of <N>. 
{ <N> t )• and { <N> t )+ denote, respectively, zero or more, and one 
or more occurences of <N> separated by terminal symbol t. 

ASF has the following grammar: 

<specification> 
<module> 

<module-ident> 
<parameters> 
<parameter> 

<parameter-ident> 
<exports> 

<imports> 
<module-expression> 
<modifier> 
<renamed> 

: := <module>+. 
: : = "module" <module-ident> 

"begin" 
[ <parameters> 
[ <exports) ] 
[ <imports> ] 
[ <sorts> ] 
[ <functions> 
[ <variables> 
[ <equations> 

"end" <module-ident> 
: :• <ident> • 
: := "parameters" { <parameter> ". "}+ 
: : = (parameter-ident> 

"begin" 
[ <sorts> ] 
[ <functions> ] 

"end" <parameter-ident> 
:: = <ident> • 
: : = "exports" 

"begin" 
[ <sorts> ] 
[ <function=:1> 

"end" . 
: := "imports" { <module-expression> ", "}+ 
::= <module-ident> [ "{" <modifier> ")" ] 
: : = <renamed> [ <bound> ] I <bound> [ <renamed> ] 
: : = "renamed" "by" <renamings> 

< renamings> 
<renaming> 

::= "[" {<renaming>"." }+ "]" • 
::=<sort>"->" <sort>/ 

<fun-or-operator-ident> "->" 
<fun-or-operator-ident> 

< fun-or-operator-iden t> 

<bound> 

<sorts> 
<sort-list> 
<sort> 
<functions> 
<function> 

<fun-ident> 
<input-type> 
<output-type> 
<product> 
<variables) 
<variable-list> 
<var-ident-list> 
<var-ident> 
<equations> 
<cond-equation> 

<tag> 
<equation-list> 
<equation> 
<term> 

<primary> 

<term-list> 
<tuple> 

2 LEXICAL SYNTAX 

::= <fun-ident> I "_" <operator> 

: := 

: := 
: :• 
: := 
: :• 
: :• 

. 
: . 
: . 
: := 
: := 
: := 
: := 
: := 
: := 
: := 

: := 
: := 
: := 
: := 

: := 

: := 
: := 

<operator> " " . 
( <parameter=ident> "bound" "by" <renamings> 

"to" <module-ident> ) + • 
"sorts" <sort-list> 
{ <sort> 11 ," }+ • 

· <ident> . 
"functions" <function>+ 
<tun-ident> 11 : 11 <input-type> 11-" <output-type> 
<operator> "-" ":" <sort> "-" <output-ty:-,e> I 
" " <operator> " " ":" <sort> "II" <sort> "->" 
<output-type> -
<ident> • 
[ <product> ] 
<product> , 
{ <sort> "#" )+ 
"variables" <variable-list> 
( <var-ident-list> ":" "->" <sort> )+ 
{ <var-ident> •, • ) • . 
<ident> . 
"equations" <cond-equation>+ 
<tag> <equation-list> <implies> <equation> I 
<tag> <equation> ["when" <equation-list> ] . 
"[" <ident> "]" . 
( <equation> • , • ) + . 
<term> "=" <term> . 
[ <term> <operator> ] <primary> I 
<operator> <primary> . 
<fun-ident> ["(" <term-list> ")" 
<var-ident> I < tuple> I 
"(" <term> ")" . 
{<term>"," }+ • 
"<" <term> "," <term-list> ">" . 

Layout or comment may separate the following lexical notions of ASF: 
<ident> <operator> and <implies>. Layout has no significsnce other than 
separating consecutive lexical tokens that would otherwise not be 
distinguished. Layout may never occur embedded in a lexical token. In 
cases of ambiguity, the longest lexical token is preferred. The lexical 
conventions ot ASF are summarized below. 

- Layout characters are space, horizontal tabulation, carriage return, 
line feed snd form feed, 

- Comments follow a layout. character and begin with two hyphens and end 
with either and end of line (i.e., carriage return or line feed) or 
another pair of hyphens. 



...... 

"' -I>-

- Identifiers (i.e., <ident>) consist of a non-empty sequence of 
letters, digits or single quote characters, possibly with embedded 
hyphens. This is expressed by the following rules: 
<id-char> : : = <letter> I <digit> I '"" . 
<ident> : : = <id-char> [ { <id-char> I "-" )* <id-char> J . 

For example, x, maxl, 2-way, x' , double--hyphen. Very-Long-
Identifier and 6 are legal identifiers, but -a, - and a- are illegal. 

- The following identifiers are reserved as keywords and cannot be used 
as an identifier: 

begin 
bound 
by 

end 
equations 
exports 

functions 
imports 
module 

parameters 
renamed 
sorts 

to 
variables 
when 

For technical reasons we also forbid the names hidden and export as 
<parameter-ident> { see section 2. 6) • 

- Operators (i.e., <operator>) are denoted by either a sequence of one 
or more operator symbols or by an identifier surrounded by dots: 

<op-symbol> ::= "!" I "@" I "$" I "%" I ,,.,, I "&" I "+" I "-" I "•" 
ti; II I 1t71t : "•" : II ;11 : "I" : "\" . 

<operator> : : = <op-symbol)+ I "." <ident> ". 11 • 

The operators: +, -, &&, .push. and !@%%? are legal. 
- The token <implies> consists of two or more consecutive characters 

followed by either the character > or a new line: 

<implies> : : "==" "="* < ">" I "\n" > • 

3. SIGNATURES, VARIABLES AND EQUATIONS 

3 . 1. Signatures 

Signatures are sets of declarations of sorts and functions over these 
sorts. Functions without arguments will also be called constants. See, 
for instance Klaeren [1983] for a description of signatures. The algebra 
of signatures and normalization of signature expressions are discussed in 
Bergstra et al [1986]. The notion of signature used in ASF differs in 
three respects from the usual one: 
- Functions. as defined in an ASF signature, may have various 

syntactical forms. 
- Functions may have tuples as output type. 
- Functions may be overloaded. 

A signature combined with a set of variables and a set of (positive 
conditional) equations forms a basic ASF module. Variables are typed with 
a sort in the signature. 
In combination with a set. of typed variables, a signature allows the 
construction of well-typed terms, i.e.. terms obtained by type-wise 
correct composition of functions and variables. Due to the possibility of 
overloading, typing of terms is slightly more complicated than in the 
traditional case. 
Unconditional equations have the form: 

[tag] t 1 = t, 

where t 1 and tr are well-typed terms of the same type. Conditional 
equations can have two (equivalent) forms: 

[tag] trl = trl ••··• tln=trn ==> tl=tr 
or 

[tag] t 1 =tr when trl •... t 1 n=trn 

Variables in equations are implicitly universally quantified. Sound and 
complete rules of deduction for many-sorted conditional equations are 
given in Goguen and Meseguer [ 1982 J • 

3 .2. Functions and operators 

Depending on the way they are declared, functions are either 
- ordinary prefix functions; or 
- monadic prefix operators; or 
- dyadic ... nfix operators. 

Declarations of prefix functions have the form: 

(ident> 11 :" <input-type> 11 ->" <output-type> 

For instance. 

f Sl # S2 -> S3 

defines a prefix function f with argument sorts S1, S2 and output sort 
s3. 
Prefix and infix operators may be used instead of, respectively, monadic 
and dyadic functions. The corresponding operator declarations have the 
following form: 

<operator> 11 11 ":" <sort> "->" <output-type> 
<operator> "=" ":" <sort> 11 #11 <sort> "->" <output-type> 

The position of operands of operators is indicated by underline 
characters (_}. For instance, 

Sl # S2 -> S3 

defines the infix operator + with argument sorts S1, S2 and output sort 
S3, while 

S1 -> S1 

defines the monadic prefix operator - with both argument and output of 
sort Sl. Infix and prefix operators are only a notational device and can 
always be replaced by ordinary functions. Dyadic operators are left
associative and have a lower priority than monadic ones. 



I-" 

'° V, 

APPENDIX C. ASF SPECIFICATION OF BASIC STRUCTURES 

In this appendix the the simple data types, sequences and tables, are 
specified. It is assumed that each sort and function in the modules 
corresponds to its "natural" meaning. A full specification of the 
modules, including equations, can be found in Bergstra et al. (1986]. 

1. SIMPLE DATA TYPFS. 

The simple data types are booleans, indices and scalars. 

1. 1. BOOLEANS. 

1. 1. a. Global description. 

In the module Booleans the usual boolean operators are specified, such 
as, and, or, not, etc. Also the sort BOOL can be used in an 
"if-then-else" construct. 

1.1.b. Specification. 

module Boo leans 
begin 

exports 
begin 

sorts 
functions 

true 
false 
and 
or 
not 
eq 
if 

end 

end Boo leans 

1. 2 . SCALARS . 

BOOL 

BOOL # BOOL 
BOOL # BOOL 
BOOL 
BOOL # BOOL 
BOOL # • # * 

1.2.a. Global description 

-> BOOL 
-> BOOL 
-> BOOL 
-> BOOL 
-> BOOL 
-> BOOL 
-> * 

The module Scalars specifies reals. For scalars, the functions add (add), 
subtract (sub), multiply (mul), divide (div) and equal (eq) are 
specified. Even though all these functions are on the export list of the 
module Sea Lars, only the function eq is imported by other modules in the 
formal specification. 

1.2.b Specification. 

module Scalars 
begin 

exports 
begin 

sorts SCALAR 
/unctions 

add: 
sub: 
mul: 
div: 
eq: 

end 

imports Boo leans 

end Scalars 

1.3. INDICFS. 

SCALAR # SCALAR 
SCALAR # SCALAR 
SCALAR # SCALAR 
SCALAR # SCALAR 
SCALAR # SCALAR 

1.3.a. Global description. 

-> SCALAR 
-> SCALAR 
-> SCALAR 
-> SCALAR 
-> BOOL 

Indices are specified in module Integers. The constant functions O and J 
are specified to be indices, and also every index that can be constructed 
using the functions increment (increm), round (round), add (add). 
subtract(sub). multiply(mul) and negate(neg). Furthermore. the boolean 
relations less than or equal to (le) and equal to { eq) are specified for 
indices. 

1.3.b. Specification. 

module Indices 
begin 

e:r:ports 
begin 

sorts INDEX 
functions 

end 

0: 
1: 
increm: 
round: 
add: 
sub: 
mul: 
neg: 
ge: 
le: 
eq: 

INDEX 
SCALAR 
INDEX # INDEX 
INDEX # INDEX 
INDEX # INDEX 
INDEX 
INDEX # INDEX 
INDEX # INDEX 
INDEX # INDEX 

irrrports Booleans, Scalars 

end Indices 

-> INDEX 
-> INDEX 
-> INDEX 
-> INDEX 

INDEX 
-> INDEX 
-> INDEX 
-> INDEX 
-> BOOL 
-> BOOL 
-> BOOL 



...... 

"' °' 

2. SEQUENCES. 

2. a. Global description. 

Sequences are linear lists of items; they are parameterized with the type 
of the item. The following functions are specified for sequences: 

add an item to a sequence 
delete an item from a sequence 
concatenate two sequences 

add-item: 
det-item: 
cone: 
eq-seq: 
disjunct: 
n-of-items: 
first: 
Last: 
ttem_no: 

check the equality of two sequences 
test if two sequences are disjunct 
count the number of items in a sequence 
return the first item in a sequence 
return the last item(s) in a sequence 
return the specified item in a sequence 

2.b. Specification. 

module Sequences 
begin 

parameters Items 
begin 

sorts ITEM 
functions 

eq-item: ITEi! # ITEM -> B00L 
end Items 

exports 
begin 

sorts SEQ 

end 

/unctions 
nun 
add-item 
de!-item 
det-item 
cone 
eq-seq 
disjunct 
n-of-items: 
first 
last 
last 
item-no 

ITEM # SEQ 
SEQ 
SEQ # INDEX 
SEQ # SEQ 
SEQ # SEQ 
SEQ # SEQ 
SEQ 
SEQ 
SEQ 
SEQ # INDEX 
SEQ # INDEX 

imports Booleans, Indices 

end Sequences 

3. TABLES. 

3. a. General description. 

-> SEQ 
-> SEQ 
-> SEQ 
-> SEQ 
-> SEQ 
-> B00L 
-> B00L 
-> INDEX 
-> ITEM 
-> ITEM 
-> SEQ 
-> ITEM 

In several parts of the formal specification we need tables to store 
information. Therefore. a general module Tables is specified with para-

meters Entries and Addresses. In this module the following functions are 
specified: 

an empty table nuit-tabte: 
insert: 
!ookup: 

insert an entry at a specified address in 
lookup an entry at a specified address 
entry is found 

de!ete: 
eq-tab: 

delete an entry at the specified address 
equality of a table 
return an entry if found with lookup 

3,b. Specification. 

module Tables 
begin 

parameters 
Entries 

begin 
sorts 
functions 
eq-entzy: 

end Entries, 

Addresses 
begin 

ENTRY 

ENTRY # ENTRY -> B00L 

sorts ADDRESS 
functions 

eq-addr: ADDRESS # ADDRESS -> B00L 
end Addresses 

exports 
begin 

sorts 
functions 

nuit-tab!e: 
insert: 
delet:e: 
eq-tab: 
found: 

TABLE 

TABLE 
-> TABLE 

TABLE 
-> TABLE 
-> B00L 
-> B00L 
-> ENTRY 

the table 
and check if 

in the table 

tookup: 
end 

ADDRESS # ENTRY # 
ADDRESS # TABLE 
TABLE # TABLE 
ADDRESS # TABLE 
ADDRESS # TABLE 
ADDRESS # TABLE -> /ENTRY # B00L) 

imports Boo leans 

end Tables 

4 . IDENTIFIERS AND STRINGS. 

4.a Global description. 

Strings are used in CONDUCTOR to communicate messages. Strings are a 
sequence of characters. Identifiers are a restricted set of strings. 



..... 
'° --.J 

4. b. Specification. 

module Strings 
begin 

exports 
begin 

sorts CHAR, STRING 
Junctions 

end 

aZpha: 
num: 
bZank: 
other: 
string: CHAR 
string: CHAR # STRING 
eq-str: STRING # STRING 

i'TTC'ports Boo leans 

end Strings 

moduZe Identifiers 
begin 

exports 
begin 

sorts ID 
Junctions 

no-id: -> ID 
an-id: STRING -> ID 
greater-int: -> ID 

-> CHAR 
-> CHAR 
-> CHAR 
-> CHAR 
-> STRING 
-> STRING 
-> BOOL 

identifier used for greater/equa! Junction 
-- /or integer variables 

eq-id: ID # ID 
end 

imports Booleans, Strings 

end Identifiers 

modu Le Id-sequences 
begin 

imports Sequences 
{renamed by 

[SEQ -> ID-SEQ, 

-> BOOL 

nuLl. -> nu.'Ll.-id-seq, 
eq-seq -> eq-id-seq} 
Items bound by 

{ITE!f. -> ID, 
eq-ium -> eq-id] 

to Identifiers 
} 

end Id-sequences 

APPENDIX D. ASF SPECIFICATION OF THE STRUCTURED DATA TYPES 

In this appendix the formal specification is given of the structured data 
types. to wit matrices and series. Also the data types of variables in 
the user language, and the data types of variables in a statistical 
program are defined. 

1. STRUCTURED DATA TYPES. 

1.1. MATRICES. 

1. 1.a. Global description. 

A matrix in CONDUCTOR is a sequence of scalars, containing the values of 
the individual matrix elements. combined with a sequence of constant 
ranges describing the dimensions of the matrix. A matrix X: 

xll xl2 
x21 x22 

is thought of as a sequence of scalars x11, x12, x21, x22 and the 
dimension description {1 to 2, 1 to 2). In a well-formed matrix the 
product of the length the dimensions must be equal to the length of the 
sequence of reals. In the module Matrices t~e functions for matrix 
element and submatrix reference are not further specified. 

1.2.b. Specification. 

modul.e Scalar-sequences 
begin 

imports Sequences 
{ renamed by 

[ SEQ -> SCALAR-SEQ, 
nun -> nu.LL-sea-seq, 
eq-seq -> eq-sca-seq J 

It ems bound by 
[ ITE!f. -> SCALAR, 

eq-item -> eq I 
to Scalars 

} 
end Sea Lar-sequences 

module Index-sequences 
begin 

irrrports Sequences 
{ renamed by 

[ SEQ - > INDEX-SEQ, 
nun -> nu.LL-ind-seq, 
eq-seq -> eq-ind-seq J 

Items bound by 
[ ITEi! -> INDEX, 

eq-item -> eq I 
to Indices 

} 
end Index-sequences 



...... 

"' 00 

module Constant-ranges 
begin 

e:r:ports 
begin 

sorts CONST-RANGE 
functions 

INDEX # INDEX 
CONST-RANGE 

-> CONST-RANGE 
-> INDEX 

c-range: 
length: 
eq: 
eq-length: 

CONST-RANGE II CONST-RANGE 
CONST-RANGE # CONST-RANGE 

-> BOOL 
-> BOOL 

end 

Imports Booleans, Indices 

functions 

-- functions used in specification of blelt-formed --
-- constant ranges 
blf-c-range: INDEX II INDEX -> CONST-RANGE 
error-c-range: -> CONST-RANGE 

variables 
ind, indl, ind2, ind3, ind4 
cr,cr1,cr2 

equations 

:-> INDEX 
:-> CONST-RANGE 

[1] c-range(indl, ind2} • wf-c-range(indl, ind2) 
when ge(ind2, indl) = true 

{2} c-range(indl, lnd2) = error-c-range when 
ge(ind2, indl) = false 

[3] length(wf-c-range(indl, lnd2)) • add(l,sub(ind2, 
indl)) 

-- the error case is left unspecified --

{ 4] eq-length(crl,cr2) eq(length(crl), length(cr2)) 

[5] eq(wf-c-range(indl, ind2) ,wf-c-range{indJ, ind4)) 
• and( eq{lndl, ind3),eq(ind2, ind4)) 

-- the error case is left unspecified -

end Constant-ranges 

module Const-range-sequences 
begin 

e:r:ports 
begin 

functions 
product: 
length: 
congruent: 

end 

CONST-RANGE-SEQ 
CONST-RANGE-SEQ 
CONST-RANGE-SEQ II 
CONST-RANGE-SEQ 

-> INDEX 
-> INDEX 

-> BOOL 

imports Indices. 
Sequences 
{ renamed by 

{ SEQ - > CONST-RANGE-SEQ, 

variables 

null -> null-er-seq, 
eq-seq 

Items bound by 
-> eq-cr-seq ] 

{ ITEII -> CONST-RANGE, 
eq-item -> eq-length J 

to Consta11t-ranges 
} 

crs, crsl, crs2 
er,c'Z"1,cr2 

:-> CONST-RANGE-SEQ 
:-> CONST-RANGE 

equations 

[6} product(nult-cr-seq) 
{7} product(add-item(cr, null-er-seq)) 
[8] produet(add-item(cr,crs)) 

• mul(length(cr),product(crs)) 

[9] length(nult-cr-seq) 
[10] length(add-item(cr, null-er-seq)) 
[11} length(add-item(cr,crs)) 

• add( length( er), length( crs)) 

= 0 
• length( er) 

0 
= length( er) 

[12] congruent( crs, crs) = true 
{13] congruent(crsl,crs2) • congruent(crs2,~rsl) 
[14] congruent(null-cr-seq,add-item(cr,crs)) • false 

[15] congruent{ add-item( crl, crsl), add-item( cr2, crs2)) 
• and{eq-length(crl,cr2), 

congruent( crsl,crs2)) 

end Const-range-sequences 

module Matrices 
begin 

e:r:ports 
begin 

sorts /UTRIX 
/unctions 

mat: 
eq: 
el.ement: 
submat: 

end 

SCALAR-SEQ 4 CONST-RANGE-SEQ 
IIATRIX # IIATRIX 
INDEX-SEQ II IIATRIX 
CONST-RANGE-SEQ # IIATRIX 

-> ,'IATRIX 
-> BOOL 
-> SCALAR 
-> IIATRIX 

imports Sea l.ar-sequences, Const-range-sequences, Boo leans, 
Index-sequences, Indices 



,_. 
\0 
\0 

/unctions 

-- /unctions used to specify well-formed matrices 
r,J/-mat: SCALAR-SEQ II CONST-RANGE-SEQ -> IIATRIX 
error-mat: -> IIATRIX 

variabies 
i 
is 
ss,ss1,ss2 
er 
crs,crsl, crs2 
m 

equations 

-> INDEX 
-> INDEX-SEQ 
-> SCALAR-SEQ 
-> CONST-RANGE 
-> CONST-RANGE-SEQ 
-> IIATRIX 

[16) mat(ss,crs) • r,J/-mat(ss,crs) 

.,hen eq(n-o/-items( ss) ,product( crs)) • true 

[17) mat(ss,crs) • error-mat 

.,hen eq(n-o/-ttems(ss),product(crs)) • /aise 

{18) eq(r,Jf-mat( ssl, crsl) ,.,f-mat( ss2, crs2)) 
• and( eq-sca-seq( ssl, ss2), eq-cr-seq( crsl, crs2)) 

-- the error case ts iett unspecified --

end Matrices 

1.2 SERIES. 

1.2a. Global description. 

A (time) series of observations consists of a sequence of scalars {the 
observations in the series) and a sequence of sample indications. For 
example, a series of observation on consumption over the period 1945-1949 
and 1960-1962 is represented as a scalar sequence containing the 8 
observations in this period 

12.4 13.9 14.8 13. 7 15.9 20.9 22.6 21.8 

and a constant ranges sequences, containing the sample description 

(1945 to 1949. 196o to 1962) 

In a well-formed series the sum of the length the samples is equal to the 
number of observations ( the length of the sequence of reals) . 

1.2b. Specification. 

moduie Series 
begin 

e:,:ports 
begin 

sorts SERIES 
functions 

ser: SCALAR-SEQ II CONST-RANGE-SEQ II ID-SEQ -> SERIES 
eq-series: SERIES II SERIES -> BOOL 

end 

impor'ts Const-range-sequences, Scalar-sequences, 
Id-sequences, Booleans 

functions 

-- functions used to specify .,ell-formed series 

r,J/-ser: SCALAR-SEQ II CONST-RANGE-SEQ # ID-SEQ -> SERIES 
error-ser: -> SERIES 

vartabies 
s 
crs, crsl, crs2 
scs, scsl, scs2 
ids, idsl, ids2 

equations 

-> SERIES 
-> CONST-RANGE-SEQ 
-> SCAUR-SEQ 
-> ID-SEQ 

{19} ser(scs,crs, ids) • r,J/-ser(scs,crs, ids) 
r,Jhen eq(n-o/-items(scs), tength(crs)) • true 

{20] ser(scs,crs, ids) • error-ser 
.,hen eq(n-o/-items(scs), iength(crs)) • false 

[ 21] eq-series(.,f-ser( scsl, crsl, tdsl), r,Jf-ser( scs2, crs2, ids2)) 
• and( eq-sca-seq( scsl, scs2), 

and( eq-cr-seq( crsl, crs2), 
eq-id-seq(tdsl, ids2))) 

the error case is left unspecified 

end Sertes 

2. DATA TYPES. 

2.a. Global description. 

Variables in a statistical technique can be of t:,,>e boolean, index. 
scalar or matrix. Variables declared in a user session can, besides these 
data types, also be of the type series. The mo<iule Technique-data gives 
the specification of the data types in a statistical technique; the 
module User-data specifies data types in a user session. Besides the data 
types. also data type descriptions are specified. The simple data types 
boolean, index and scalar are descibed by a constant function as 
specified in module Simple-types. The type description of variables 



N 
0 
0 

declared in a user session are specified in module User-types. A user 
type description is either a simple type. a matrix type or a series type 
description. The last two type descriptions contain a constant range 
sequence. describing respectively the dimensions or the sample of the 
data type. Type descriptions for variables in the statistical language 
are discussed in appendix E. 

2.b. Specification. 

module Technique-data 
begin 

e:rports 
begin 

sorts TECH-DATA 
Junct:tons 
untnitialtzed: 
t-data: BOOL 
t-data: INDEX 
t-data: SCALAR 
t-data: l'!ATRIX 

-> TECH-DATA 
-> TECH-DATA 
-> TECH-DATA 
-> TECH-DATA 
-> TECH-DATA 

element: INDEX-SEQ # TECH-DATA 
su.bmat: CONST-RANGE-SEQ # TECH-DATA 

-> TECH-DATA 
-> TECH-DATA 

eq: TECH-DATA # TECH-DATA -> BOOL 

end 

imports Booleans, Scalars, Indices, Matrices 

variables 
b,bl, b2 
ind, indl, ind2 
sea, seal. sca2 
mat, matl, mat:2 
td, tdl, td2 
is 

:-> BOOL 
:-> INDEX 
:-> SCALAR 
:-> MATRIX 
:-> TECH-DATA 
:-> INDEX-SEQ 

crs :-> CONST-RANGE-SEQ 

equations 

{22] eZement(is, t-data(mat)) 
[2J] su.bmat( crs, t-data(mat)) 

• t-data(e!ement(is,mat)) 
• t-data(submat(ers,mat)) 

other cases of functions element and su.bmat 
result in an error; this is not specified. 

[24] eq(tdl, td2) 
[25] eq(uninitialized, td) 
{26] eq(t-data(bl), t-data(b2)) 
[27] eq( t-data(b), t-data( ind)) 
[28] eq(t-data(b), t-data( sea)) 
{29] eq(t-data(b), t-data(mat)) 
[JO] eq( t-data( indl), t-data( ind2)) 
[Jl] eq(t-data( ind), t-data( sea)) 
{J2] eq(t-data(ind), t-data(mat)) 

• eq(td2,tdl) 
• fatse 
• eq(bl,b2) 

false 
= false 
• false 
• eq(indl, ind2) 
• false 
"' false 

[JJ] eq(t-data(seal), t-data(sea2)) 
[J4] eq(t-data( sea), t-data(mat)) 
[JS] eq(t-data(matl), t-data(mat2)) 

eq ,:'seal, sca2) 
• fa !se 

eq,'matl,mat2) 

end Technique-data 

module User-data 
begin 

erports 
begin 

sorts USER-DATA 
Junctions 

u-data: TECH-DATA 
u-data: SERIES 

-> USER-DATA 
-> USER-DATA 

t-data: USER-DATA -> TECH-DATA 
eq: USER-DATA # USER-DATA -> BOOL 

end 

i11rports Technique-data, Series. Boo leans 

variables 
td, tdl, td2 
ss, ssl, ss2 
ud, udl,ud2 

:-> 
:-> 
:-> 

TECH-DATA 
SERIES 
USER-DATA 

equations 

[ J6] t-data(u-data( td)) td 
[J7 J t-data(u-data( ss)) • uninitialized 

[38] eq(ud,ud) 
[J9j eq(udl,ud2) 
[40] eq(u-data(tdl),u-data(td2)) 
[41/ eq(u-data(ssl),u-data(ss2)) 
[42] eq(u-data(td),u-data(ss)) 

end User-data 

module Simple-types 
begin 

exports 
begin 
sorts SIMPLE-TYPE 
functions 

bool-type: 
index-type: 
scalar-type: 

-> SIMPLE-TrPE 
-> SmPLE-TYPE 
-> SIMPLE-TYPE 

true 
• eq/ud2, udl) 

eq(td.1, td2) 
=- eq-series(ssl,ss2) 
• fa!se 

eq: Il'IPLE-TYPE # SWPLE-TYPE BUOL 
end 

imports Boo Leans 



N 
0 
>--' 

variables 
st,stl,st2 :-> SIMPLE-TYPE 

equations 

~ true [43] eq(st,st) 
{44] eq(stl,st2) • eq(st2,stl) 

{45] eq(bool-type, index-type) 
[46] eq(bool-type,scalar-type) 
{47] eq(index-type,scalar-type) 

• false 
• false 
• false 

end Simple-types 

module User-types 
begin 

exports 
begin 

sorts USER-TYPE 
functions 

user-type: 
series-type: 
mat;rix-type: 

-> USER-TYPE 
USER-TYPE 
USER-TYPE 

SIMPLE-TYPE 
CONST-RANGE-SEQ -> 
CONST-RANGE-SEQ -> 

eq: USER-TYPE # USER-TYPE - > BOOL 
end 

i11rport;s Simple-types, Const;-range-sequences. Booleans 

variables 
crs, crs1, c-rs2 
st;,st;1,st;2 
ut,ut1,ut;2 

equat;ions 

{48] eq(utl,ut2) 

:-> CONST-RANGE-SEQ 
:-> SIMPLE-TYPE 
:-> USER-TYPE 

{49 J eq(user-type( stl), user-type( st2)) 
{50 J eq(user-type( st) ,matrix-type{ crs)) 
[ 51] eq{user-type{ st), series-type{ crs)) 
{52] eq{matrix-type{ crsl), matrix-type( crs2)) 
[53] eq{ series-type{ crsl), matrix-type{ crs2)) 
[ 54] eq( series-type{ crsl), series-type( crs2)) 

end User-types 

= eq{ut2,utl) 

= eq{stl,st2) 
= false 
= false 
= eq-cr-seq( crsl, crs2) 
= false 
"' eq-cr-seq( crsl, crs2) 

APPENDIX E. ASF SPECIFICATION OF INDEX EXPRESSIONS, SYMBOLIC RANGES AND 
TYPE DESCRIPTIONS 

1. INDEX EXPRESSIONS 

1.1.a. Global description. 

In index expressions the operators plus (abs-plus), minus (abs-minus} and 
multiply (abs-mul) are specified. An index expression consists of 
identifiers (abs-ind) or index constants (abs-canst). A function 
eq-result specifies the equivalence of two symbolic index expression. An 
empty abstract syntax tree of an index expression is specified by the 
constant function nil. 

1. b. Specification. 

module Ind-erpr-abstr-syntax 
begin 

exports 
begin 

sorts IND-EXPR 
funct;ions 

abs-plus: 
abs-minus: 
abs-mul: 
abs-canst: 
abs-ind: 
nil: 

IND-EXPR 
IND-EXPR • 
lND-EXPR # 

INDEX 
ID 

IND-EXPR 
IND-EXPR 
IND-EXPR 

eq-result: 
end 

IND-EXPR # IND-EXPR 

i11rports Indices, Identifiers, Booleans 

variables 
e, el, e2, eJ, e4 
c,cl,c2 
idl, id2 

equations 

:-> IND-EXPR 
:-> INDEX 
:-> ID 

true 

··> IND-EXPR 
-> I,VD-EXPR 
-> IND-EXPR 

IND-EXPR 
IND-EXPR 

-> lND-EXPR 
-> BOOL 

[55] eq-result{e,e) 
[56] eq-resuit(el,e2) • eq-result{e2,el) 

-- symmetry operators 

{57] eq-result(abs-plus{el,e2), abs-plus{e2,el)) • true 
{58] eq-result{abs-mul{el,e2), abs-mu!{e2,el)) • true 

-- distributivity operators-

[59] eq-result{ abs-mul{ el, abs-plus{ e2, e3)), 
abs-plus{ abs-rm.,!( el, e2), abs-rm.,l{ el, e3))) 

"' true 



N 
0 
N 

{SO] eq-resuit( abs-mut( el, abs-minus( e2, e3)), 
abs-minus( abs-mu.i( el, e2), abs-mu.i( el, e3))) 

• true 

assoetattvtty operators --

{61] eq-resuit( abs-ptus( el, abs-ptus( e2, e3)), 
abs-ptus( abs-ptus( el, e2), e3)) 

- t-z,ue 

{62] eq-resuit( abs-minus( el,abs-mtnus( e2, e3)), 
abs-minus( abs-minus( el, e2), e3)) 

- t-z,ue 

[63] eq-resutt( abs-mut( el, abs-mui( e2, e3)), 
abs-mu.t(abs-muU el, e2), e3)) 

- t-z,ue 

artthmettc rides indices --

{64] eq-resuit( abs-ptus( abs-canst( cl), abs-canst( c2)), 
abs-const(add(cl, c2))) 

- true 

[65] eq-resuit( abs-minus( abs-canst( cl), abs-canst( c2)), 
abs-const(sub(cl, c2))) 

• true 

[66] eq-resuit( abs-mu.U abs-canst( cl), abs-canst( c2)), 
abs-const(muU cl, c2))) 

• t"Z'UR 

{67 J eq-resutt( abs-mt nus( el, abs-mu.t( abs-canst( c), e2)), 
abs-ptus( el, abs-mui( abs-const(neg( c)), e2))) 

- t"Z'UR 

-- nun eiement --

{68] eq-resuit( abs-mui( abs-const(O), e), abs-const(O)) 
- t"Z'UR 

{69] eq-resutt(abs-mtnus(e, e) ,abs-const(O)) 
- true 

-- unity 

{70] eq-resutt(abs-mui(abs-const(l},e),e) • true 

-- enrpty tree --

{71] eq-resuit( abs-const(O), nti) • true 

-- equivaience --

{72] eq-resuit( abs-ptus( el, e2), abs-ptus( e3, e4)) 
• and (eq-resuit(el,e3),eq-resuit(e2,e4)) 

{73] eq-resuit(abs-minus( el,e2) ,abs-minus(e3, e4}) 
• and (eq-resuit(el,e3),eq-resuit(e2,e4)) 

{74] eq-resuit(abs-mui(el, e2) ,abs-mut(e3, e4)) 
• and (eq-resutt(el,e3),eq-resuit(e2,e4)) 

{75] eq-resutt( abs- ind( idl}, abs-ind( id2)) 
• eq-id(idl, id2) 

[ 76 J eq-resu Lt ( abs-canst (cl), abs-canst ( c2)) 
• eq(cl,c2) 

end Ind-e:rpr-abstr-synta:z: 

modute Ind-e:rpr-sequences 
begin 

tnrports Sequences 
{renamed by 

-> IND-EXPR-SEQ, 
- > n-o/-dtms, 

{SEQ 
n-o/-items 
nun -> nuti-ind-e:z:pr-seq, 
item-no 
eq-seq 

Items bound by 

-> dtm-no, 
-> eq-dtms] 

{ITE!f -> IND-EXPR, 
eq-item -> eq-resuit] 

to Ind-e:r:pr-abstr-syntax 
} 

end Ind-ezpr-sequences 

2. SYMBOLIC RANGES. 

2.a. Global description. 

Two index expressions form a symbolic range as specified in module 
Ranges. Equality of symbolic ranges is specified using the equivalence of 
index expressions. The restrictions that specify well formed symbolic 
ranges are not given in this module but in the modules in appendix I. The 
functions range-plus, range-min and range-mul specify the range 
operators. 

2. b. Specification. 

module Ranges 
begin 

e:z:por-ts 
begin 

sorts RANGE 
func'tions 

range: 
range-ptus: 
range-min: 
range-mu·i: 

IND-EXPI/ # IND-EXPR 
RANGE # RANGE 
RANGE # RANGE 
RANGE # RANGE 

-> RANGE 
-> RANGE 
-> RANGE 
-> RANGE 



N 
0 
w 

end 

lower: 
upper: 

eq-range: 

RANGE 
RANGE 

RANGE # RANGE 

tr,rports Booleans, Ind-e:,:pr-abstr-syntaz 

vartables 
tel, te2, te3, te4 :-> IND-EX.PR 

equattons 

-> IND-EXPR 
-> IND-EXPR 

-> BOOL 

{77) range-plus(range(tel, ie2),range(te3, te4)) 
• range(abs-plus(tel, te3),abs-plus(te2, te4)) 

{78) range-mtn(range(tel, te2) ,range(te3, te4)) 
• range(abs-mtnus(tel, te3),abs-mtnus(te2, ie4)) 

{79) range-rm,l(range(tel, te2),range(te3, te4)) 
• range(abs-111Ul(tel, ie3),abs-rnul(te2, te4)) 

{80) lm.,er(range(tel, te2)) • tel 

{81) upper(range(tel, te2)) • te2 

{82) eq-range(range(tel, te2),range(te3, ie4)) 
• eq-result(abs-minus(te2, tel), 

abs-mtnus(te4, te3)) 

end Ranges 

module Range-sequences 
begtn 

i,.ports Sequences 
{renamed by 

} 

{SEQ 
null 
n-o/-items 
item-no 
eq-seq 

Items bound by 
{ITE/f 
eq-item 

to Ranges 

end Range-sequences 

-> RANGE-SEQ, 
-> null-range, 
- > n-of-rngs, 
-> dim-no, 
-> eq-ranges] 

-> RANGE, 
-> eq-range] 

3. TYPE DESCRIPTIONS IN THE STATISTICAL LANGUAGE. 

3 . a. Global description. 

Variables in the statistical language can be of type index, scalar, 
boolean or matrix. The technical statistician can also determine the 
visibility of a declared variable {input, output or internal). The type 
descriptions are specified in module Tech-types, the visibility in module 

User-visibi ltty. Two matrix type descriptions are equal if their symbolic 
dimension ranges are equal. as specified in the function eq- type. The 
function eq-skelet only checks if two matrix types have the same number 
of dimensions. 

3.b. Specification. 

module Technique-types 
begin 

e:z:ports 
begin 

sorts TECH-TYPE 
functions 
tech-type: SI/fPLE-TYPE -> TECH-TYPE 
matri:r:-type: RANGE-SEQ -> TECH-TYPE 

dim-no: INDEX # TECH-TYPE 
n-o/-dims: TECH-TYPE 
2-dim-matri:r:: TECH-TYPE 

-> RANGE 
-> INDEX 
-> BOOL 

eq-type: TECH-TYPE # TECH-TYPE -> BOOL 
eq-skelet: TECH-Tl"PE # TECH-TYPE -> BOOL 

end 

imports Booleans, Simple-types, Range-sequences 

variables 
tt, ttl, tt2 
rs, rsl,rs2 
st,stl,st2 
i 

-> TECH-TYPE 
-> RANGE-SEQ 
-> SI.'!Pl.E-TYPE 
-> INDEX 

equations 

{83) dim-no(i,matrt:r:-type(rs)) 
{84] n-of-dims(matrt:r:-type(rs)) 
[85] 2-dim-matrt:r:(matrtz-type(rs)) 

• dim-no(rs, i) 
• n-of-rngs(rs) 

• eq(n-o/-rngs(rs), increm(l)) 
the error cases of the above functions 

-- re/ering to st,.ple types are left unspecified 

• true [86] eq-type(tt, tt) 
{87 J eq-type(ttl, tt2} • eq-type( tt2, ttl) 

[88) eq-type{tech-type(stl), tech-type{st2)) • eq(stl,st2) 
{89} eq-type{tech-type(st),matriz-type(rs)) • false 
[90) eq-type{matriz-type(rsl) ,matrtz-type(rs2) • eq-ranges(rsl, rs2) 

-- skeleton restrictions 

[91) eq-skelet(tt, tt) 
{92} eq-skelet(ttl, tt2) 
[93] eq-skelet(tech-type(st),tt) 

"" true 
• eq-skelet(tt2, ttl) 
• eq-type{tech-type(st),tt) 

{94 J eq-sl<elet(matriz-type{rsl), matriz-type{rs2)) 
• eq( n-of-rngs( rsl), n-of-rngs( rs2)) 

end Technique-types 



N 
0 
.i,-

module User-visibility 
begin 

e:rports 
begin 
sorts USER-VIEW 
funetions 

input: -> USER-VIEW 
output: -> USER-VIEW 
internal: -> USER-VIEW 
eq: USER-VIEW # USER-VIEW -> BOOL 

end 

imports Boo leans 

variables 
u,u1,u2 :-> USER-VIEW 

equations 

{95) eq(u,u) 
[96) eq(ul, u2) 
{97) eq(input,output) 
{98] eq(tnput, internal) 
{99) eq(output, internal) 

end User-vistbi itty 

• true 
• eq(u2,ul) 
• false 
• false 
• false 

APPENDIX F. ASF SPECIFICATION OF TIIE ABSTRACT SYNTAX OF TIIE 
STATISTICAL LANGUAGE 

The abstract syntax of the statistical language is divided over several 
modules. 

- a group of modllles for the basic elements in the language: 
variables. expressions, and statements, 

- a group of modules for the abstraet syntax of the program 
sections, 

- a module for the abstract syntax for a complete program in 
the statistical language. 

1 . BASIC ELEMENTS. 

1.1. VARIABLES 

1.1.a. Global description. 

A variable in the statistical Ian.gauge is either of type boolean, scalar, 
index or a matrix. A matrix variable identifier can be followed by a 
range sequence or a index epression sequence, forming respectively a 
subma.trix or matrix element reference. 

1.1.b. Specification. 

module Variabl,e-abstr-syntax 
begin 

exports 
begin 

sorts VARIABLE 
functions 

abs-var: 
abs-var: 
abs-var: 

end 

ID 
ID # IND-EXPR-SEQ 
ID # RANGE-SEQ 

-> VARIABLE 
-> VARIABLE 
-> VARIABLE 

imports Ind-ezpr-sequences, Range-sequences, Identifiers, 
Indices 

end Variable-abstr-syntax 

1. 2. EXPRESSIONS. 

l .2.a. Global description. 

An expression in the abstract syntax is either a variable, a constant. an 
index expression or a function call. The arguments of a function call are 
a list of expressions. 

1.2.b. Specification 

module E;rpr-abstr-syntax 
begin 

exports 
begin 

sorts EXPR, ARG-LIST 



N 
0 
\J1 

functions 

end 

abs-e:rpr: VARIABLE 
abs-e:rpr: TECH-DATA 
abs-e:rpr: IND-EXPR 

abs-/-ca!l: ID # ARG-LIST 
abs-arg-L: ARG-LIST # EXPR 
abs-arg- i: EXPR 

-> EXPR 
-> EXPR 
-> EXPR 

-> EXPR 
-> ARG-LIST 
-> ARG-LIST 

i'TTtports Technique-data. Variable-abstr-syntax, 
Ind-e:r:pr-abstr-syntax. Identifiers 

end E:rpr-abstr-syntax 

1.3, STATEMENTS. 

1. 3. a. Global description. 

Statements are used in the implementation, test and exception handler 
section. A statement is either an assignment a message, a for, a compound 
or an index assignment statement. 

1. 3. b. Specification. 

module Statements-abstr-synta:c 
begin 

exports 
begin 

sorts STATEnENTS, STATEM.ENT 
functions 
abs-statmts STATEM.ENTS # STATEM.ENT -> STATEM.ENTS 
abs-statmts STATEnENT -> STATEM.ENTS 

abs-assgn. 
abs-messtmt 

abs-for 

abs-compound 
abs-ind-assgn: 

end 

VARIABLE # EXPR 
STRING 

ID # IND-EXPR # 
STATEnENTS 
STATEM.ENTS 
ID # IND-EXPR 

STATEM.ENT 
-> STATE.,ENT 

IND-EXPR # 
-> STATEM.ENT 
-> STATEM.ENT 
-> STATEM.ENT 

imports Variable-abstr-syntax, E:r:pr-abstr-synta:c, Strings, 
Ind-expr-abstr-syntax 

end Statements-abstr-syntax 

2. PROGRAM SECTIONS IN THE STATISTICAL LANGUAGE. 

2 .1. DECLARATIONS. 

2 .1. a. Global description. 

Variables in a statistical program must be declared in the input/output 
section of the program. or in the internal declarations in the other 
sections. An input/qutput section consists of two lists of declarations 
as specified in function abs-to-sect. The first list contains the input 
declarations, the second set the output declarations. A declaration 
consists of a sequence of identifiers ( the names of the declared 
variables) , the type description of the declared variables and a message 
string. 

module Dec L-abstr-syntax 
begin 

exports 
begin 

sorts IO-SEC, INTERN-DEC LS, DEC LS, 
functions 

abs-to-sect: DECLS # DECLS 
abs-intern-dee!: DECLS 
abs-e11rpty-dec ls: 
abs-deds: DECLS # DECL 
abs-dee is: DECL 

DECL 

-> IO-SEC 
-> INTERN-DECLS 
-> DECLS 
-> DECLS 
-> DECLS 

abs-ded: ID-SEQ # TECH-TYPE # STRING -> DECL 
end 

imports Strings, Id-sequences, 
User-visibiUty, Technique-types 

end Dec 'l-abstr-synta:c 

2. 2. THE IMPLE.'IENTATION SECTION. 

2.2.a. Global description. 

The implementation section of a statistical program contains the equa
tions that describe the calculation of the resulting statistics. An 
implementation section consists of internal declarations and statements 
( equations that describe the calculation process) . 

2.2.b. Specification. 

module I11rpl.-abstr-synta:c 
begin 

exports 
begin 

sorts IM.PL-SEC 
functions 

abs-impL-sec: INTERN-DECLS # STATEM.ENTS -> IM.PL-SEC 
end 

imports Decl-abstr-syntax, Statements-abstr-syntax 

end Impl-abstr-synta:c 



N 
0 
cr, 

2. 3. THE TEST SECTION. 

2.3.a. Global description. 

In a test section the technical statistician can describe a test and 
indicate under which conditions the test should interrupt the calculation 
process (raise an exception). A raise statement consists of an exception 
identifier and a boolean expression as specified in function abs-raise. 

2.3.b. Specfication. 

modu 'le Test-abstr-syntax 
begin 

exports 
begin 
sorts TEST-SEC, RAISES, RAISE 
functions 
abs-test-sec: INTERN-DECLS # STATEMENTS # RAISES -> TEST-SEC 

abs-raises 
abs-raises 
abs-ratse 

end 

RAISES # RAISE 
RAISE 
ID # EXPR 

-> RAISES 
-> RAISES 
-> RAISE 

imports Statements-abstr-syntax, Expr-abstr-syntax, 
Identifiers, Dec 'l-abstr-syntax 

end Test-abstr-syntax 

2. 4. THE EXCEPTION HANDLER SECTION. 

2. 4. a. Global description. 

An exception handler consists of: the exception identifier. the internal 
declarations, and the statements. The statements in an excpetion handler 
are only executed when the exception occurs. 

2. 4. b. Specification. 

module Handler-abstr-syntax 
begin 

exports 
begin 
sorts HANDL-SEC, HANDLER 
functions 
abs-handi-sec: HANDL-SEC # HANDLER -> H.4NDL-SEC 
abs-handi-sec: HANDLER -> HANDL-SEC 

abs-handier: ID # INTERN-DECLS # STATEnENTS -> HANDLER 
end 

imports Identifiers, Decl-abstr-syntaz, 
Statements-abstr-syntax 

end Handler-abstr-synta:c 

3. ABSTRACT SYNTAX OF A STATISTICAL PROGRAM. 

3. a. Global description. 

A statistical program is a list of sections. 

3,b. Specfication. 

module Statistical-programs 
begin 

erports 
begin 

sorts STAT-PRO, SECTION 
/unctions 

end 

abs-prog: STAT-PRO # SECTION 
abs-prog: SECTION 

abs-name: ID 
abs-sect: IO-SEC 
abs-sect: IM.PL-SEC 
abs-sect: TEST-SEC 
abs-sect: HANDL-SEC 

-> STAT-PRO 
-> STAT-PRO 

-> SECTION 
-> SECTION 
-> SECTION 
-> SECTION 
-> SECTION 

imports Decl-abstr-syntax, Impl-abstr-syntax, 
Test-abstr-syntax, Handler-abstr-syntax. 
Identifiers 

end Stat:istical-programs 



N 
0 
-.J 

APPENDIX G. ASF SPECIFICATION OF TIIE SYMBOL TABLES 

In this appendix the symbol tables are specified. First a symbol table is 
specified for each statistical technique (read statistical program). This 
table contains the type description, the value and scme additional 
information for each variable that is declared in a statistical 
technique. Also a symbol table is defined for the user of a statistical 
technique. This table contains the type description and the value of each 
variable declared in a user session. In this appendix it is also 
specified how declaration sections in a statistical program are stored in 
a technique symbol table. The storage of declarations in the user 
languages is specified in appendix N. 

1. TIIE SYMBOL TABLES. 

1.a. Global description. 

The value, the type, the message string and the visibility of the 
variables in a statistical program are stored in the technique symbol 
table. In the user symbol table the value and the type of variables de
clared in a user session are stored. 
All information for a variable is stored in one table. Instead, seperate 
tables could have been defined for each separate peace of information in 
these tables. In order to keep the number of tables low, we have chosen 
for the combined approach, in which both information needed for type 
checking and information needed for the evaluation of prog:-ams is stored 
in the same table. 

1. b. Specification. 

module Techn-symtab-info 
begin 

erports 
begin 

sorts TECH-INFO 
functions 

ts-info: TECH-TYPE # USER-VIEW # TECH-DATA # STRISG -> TECH-INFO 

end 

type: 
data: 
view: 
string: 
eq: 

TECH-INFO 
TECH-INFO 
TECH-INFO 
TECH-INFO 
TECH-INFO # TECH-INFO 

-> TECH-TYPE 
-> TECH-DATA 
-> USER-VIEW 
-> STRING 
-> BOOL 

imports Technique-data, Technique-types, Booleans, 
User-visibt lity, Strings 

variables 
t, tl, t2 
td, tdl, td2 
uv,uvl,uv2 
str, strl • str2 

:-> TECH-TYPE 
:-> TECH-DATA 
:-> USER-VIEW 
:-> STRING 

equations 

{100} data(ts-info(t,uv,td,str)) • td 
{101} type(ts-info(t,uv, td,str)) = t 
[102] vieo>(ts-info(t,uv, td,str)) uv 
{103} string(ts-info(t,uv, td,str))• str 

{104 J eq( ts-info(tl, uvl, tdl, strl}, ts-info(t2, uv2, td2, str2}} 
• and(eq-type(tl,t2), 

and(eq(uvl ,uv2), 

end Techn-symtab-info 

module Teclm-symtabs 
begin 

exports 
begin 

functions 

and(eq(tdl, td2), 
eq-str( strl, str2)))) 

-- this /unction stores values in the symbol table --
-- during the evaluation oJ a statistical program. --
insert-data: ID # TECH-DATA # TECH-SYnTAB -> TECH-SYnTAB 

end 
imports Tables 

{ renamed by 
[ TABLE -> TECH-SYnTAB, 

null-table -> empty-mem] 
Entries bound by 

[ ENTRY -> TECH-INFO, 
eq-entry -> eq} 

to Techn-symtab- info 
Addresses bound by 

{ ADDRESS - > ID, 
eq-addr -> eq-id J 

to Identifiers 

variables 
id 
ts 
tdl, td2 
tt 
UV 

str 

equations 

:-> ID 
:-> TECH-SYnTAB 
:-> TECH-DATA 
:-> TECH-TYPE 
:-> USER-VIEW 
:-> STRING 

{105} insert-data(id, tdl, 
insert( id, ts-info( tt, uv, td2 • str), ts)) 

• insert( id, ts-info(tt, uv, tdl, str), ts) 

end Techn-symtabs 



N 
0 
00 

modute User-symtab-111/o 
begin 

e:q,orts 
begin 

sorts USER-INFO 
/unctions 

us-171/0: 
data: 

USER-TYPE# USER-DATA 
USER-INFO 

end 

type: 
eq: 

USER-INFO 
USER-INFO# USER-INFO 

-> USER-INFO 
-> USER-DATA 
-> USER-TYPE 
-> BOOL 

impo-rts User-types, User-data, Boo Z.eans 

variabtes 
ut,utl,ut2 :-> USER-TYPE 
ud,udl,ud2 :-> USER-DATA 

equations 

[106] data(us-171/o(ut,ud)) • ud 
{107] type(us-171/o(ut,ud)) • ut 
[108] eq(us-inJo(utl,udl),us-in/o(ut2,ud2}} • and(eq(utl,ut2), 

eq(udl, ud2)) 
end User-symtab-in/o 

module User-symtabs 
begin 

exports 
begin 

/unctions 
-- this /unction stores types In the symbot tabte --
-- during the evatuation of a user program. 
insert-type: ID # USER-TYPE # USER-SYl!TAB -> USER-SYl!TAB 
-- this /unction stores vatues in the symbot tabte --
-- during the evatuatlon of a user program. 
insert-data: ID # USER-DATA # USER-SYl!TAB -> USER-SYIITAB 

end 

lmpoz,ts Tabtes 
{ renamed by 

} 

[ TABLE -> USER-SYl!TAB, 
nuH-tabte -> empty-u-symtab] 

Entries bound by 
{ ENTRY -> USER-INFO, 

eq-entry -> eq] 
to User-symtab-tnJo 

Addresses bound by 
{ ADDRESS - > ID, 

eq-addr -> eq-ld ] 
to Identifiers 

variabtes 
Id 
us 

:-> ID 
:-> USER-SYl!TAB 

ud,udl,ud2 
ut,utl,ut2 

:-> USER-DATA 
:-> USER-TYPE 

equations 

[109] tnsert-typet ld,ud, lnsert(ld,us-ln/o(ut2, ud},us)) 
• lnsert(ld;us-171/o(utl,ud),us) 

[llO] lnsert-data(ld,udl, lnsert(id,us-ln/o(ut,ud2) ,us)) 
• lnsert(ld,us-lnJo(ut,udl),us) 

end User-symtabs 

2 .1. STORINO DECLARATIONS IN TIIE TECHNIQUE SYMBOL TABLE. 

2.1.a. Global description. 

For each variable declared in a statistical program an entry is made in 
the technique symbol table. This entry contains the type information, the 
visibility and the message string in the declaration. The value of the 
variable is uninitialized. The constant function untnittaLized is 
specified in module Technique-data. 

2.2.b. Specification. 

mbduLe Store-declarations 
begin 

exports 
begin 

functions 
store-to-sect: 
store-lntern-dec ts: 

TECH-SYl!TAB # IO-SEC -> TECH-SYIITAB 
TECH-SYl!TAB # INTERN-DECLS -> TECH-SY/ITAB 

store-dects: TECH-SYIITAB # DECLS # USER-VIEW -> TECH-SYIIT.4B 

end 

stoz,e-dect: TECH-SYIITAB # DECL # USER-VIEW -> TECH-Sl'IITAB 

stoz,e-id: TECH-SYl!TAB # ID # TECH-TYPE # USER-VIEW # STRING 
-> TECH-SYl!TAB 

imports Techn-symtabs, Decl-abstr-syntax 

variables 
ts 
decls, inp-decls,out-decls 
dect 
Ids 
id 
tt 
UIJ 

mess 

:-> TECH-SY/ITAB 
:-> DECLS 
:-> DECL 
:-> ID-SEQ 
:-> ID 
:-> TECH-TYPE 
:-> USER-VIEW 
:-> STRING 



N 
0 
\0 

equations 

[111] store-to-sect( ts, abs-io-sect( inp-decls, out-dee Ls)) 
= store-dee ls( store-dee ls( ts, in.p-decls, input), 

out-decls, output) 

[112] store-intern-dee Ls( ts, abs-intern-deci( decls)) 
= store-decls(t:s,decls, internal) 

[113] store-decls( ts, abs-empty-decls, uv) 
• ts 

[114] store-decis(ts, abs-decls( decls, decl), uv) 
... store-decl( store-decls(ts,decl.s,uv), decl.,uv) 

[ 115 J store-decls (ts, abs-decls ( dee i), uv) 
,. store-decl(ts,decl.,uv) 

[116] store-decl(ts, abs-decl(add-item(id, ids), tt,mess), uv) 
.,, store-id( store-decl( ts, abs-decl( ids, tt, mess), u.v), 

id, tt,uv,mess) 

[117] store-decl(ts, abs-decl( add-item( id, nui L-id-seq), 
tt,mess),uv) 

"" store-id(ts, id, tt,uv,mess) 

[ 118] store-id(ts, id, tt, uv, mess) 
insert(id, 

ts-info( tt, u.v, uninitialized, mess), 
ts) 

end Store-dee larations 

APPENDIX H. ASF SPECIFICATION OF THE STATIC SYMBOLIC TYPE 
CHECKER 

This appendix contains the specification of the static symbolic type 
checking mechanism of CONDUCTOR. It contains modules to specify: 

- the dimension and skelet restrictinns on function arguments, 
- the type of the result of a function, 
- the type of variables and expressions, 
- symbolic type checking of a statistical program. 

1. SYMBOLIC TYPE CHECKING OF F1JNCTION CALLS. 

1 . a. Global description. 

The type restrictions of the function ar-guments ar-e expressed in terms of 
skeleton and dimension restrictions. Two skeletons of a type description 
are equal if the type descriptions have the same simple type or, .;.n case 
of a matrix type description, the number of dimensions is equal. 
Consider a function sum {A,B) that adds two matrices, A and B. A skeleton 
restriction on the function sum is the restriction, that both arguments 
must be matrices with an equal number of dimensions. The range restric
tions on the function sum are the restrictions that the ranges of the 
arguments must be equal. 
A type list is used to store the type decriptions of the arguments of a 
function call. A skeleton restriction consists of either two indices, 
indicating the position of two arguments in the type list that must have 
equal skeletons, or an index and a type indicating the skeleton of a 
referenced argument must be equal to the skeleton of a given type. F'or 
the function sum the skeleton restriction consists of the constant range 
{1,2), indicating that the skeletons of the first and seconrl element a.re 
equal. The range restrictions are specified in a similar- way, buc instead 
of an index a constant range is used. The first element of this constant 
range gives the argument number, the second element the dim""ns.ion number. 
For the function sum the range restrictions consists of , wo constant 
range sequences 

{(1.1).(2,1)) and {(1.2).(2.2)). 

The result of a function in the statistical language is either a simple 
type or a matrix type. The ranges describing the dimension of a matrix 
can be retrieved from the type list, using a constant range as with range 
restrictions. For the function sum. the type of the result is given by 
the constant range sequence { ( 1.1). ( 1,2)} stating that the resulting type 
is a matrix type and that the dimensions are the first and second 
dimension of the first argument. 
The restrictions on the arguments and the type of the result of a 
function are stored in the function type table. The type restrictions of 
the functions actually defined in the statistical language are left 
unspecified. The par-a.meter Current-June-types in module Fune-type-table 
emphasises that the design of CONDUCTOR is independent of the functions 
actually defined in the statistical language. 



N 
)--' 

0 

1. b. Specification. 

module Type-lists 
begin 

exports 
begin 

/unctions 
arg-range: CONST-RANGE # TYPE-LIST 

end 
imports Cons"tant-ranges, Sequences 

{ renamed by 
{SEQ -> TYPE-LIST, 

item-no -> argument} 
Items bound by 

{ITEi! -> TECH-TYPE, 
eq-item -> eq-type} 

to Techntque-types 

variables 
indl, ind2 
ti 

equations 

:-> INDEX 
:-> TYPE-LIST 

{119} arg-range(c-range(ind1, ind2), t!) 

-> RANGE 

• dim-no(ind2,argument(t!, indl)) 

end Type- lists 

modu le Ske let-restrictions 
begin 

exports 
begin 

sorts SKELET-RESTR 
Junc"tions 

restr: INDEX # INDEX -> SKELET-RESTR 
restr: INDEX # TECH-TYPE -> SKELET-RESTR 

eq-restr: SKELET-RESTR # SKELET-RESTR -> BOOL 
check: SKELET-RESTR # TYPE-LIST -> BOOL 

end 

imports Indices, Technique-types, Type-lists, Booleans 

variables 
sr, srl, sr2 
ind, indl, ind.2, ind3, ind4 
t! 
t,tl,t2 

equations 

:-> SKELET-RESTR 
:->- INDEX 
:-> TYPE-LIST 
:-> TECH-TYPE 

{120] eq-restr(srl,sr2) • eq-restr(sr2,srl} 

{121] eq-restr(restr( indl, ind2), restr( ind3, ind4)) 
and( eq(indl, ind3),eq(ind2, ind4)) 

{122} eq-restr(restr( indl, tl), res tr( ind2, t2)) 
• and( eq(indl,ind2),eq-ske!et(tl,t2)) 

{123} eq-restr(restr( indl, ind2), res tr( ind3, t)) 
• false 

check(restr( indl, ind2), tl) {124} 

{125] 
eq-ske!et( argument( tl, indl), argument( t!, ind2)) 

check(restr( ind, t), tl) 
• eq-ske!et(argument(t!, ind), t) 

end Skelet;-res"trictions 

module Ske let-res-tr-sequences 
begin 

exports 
begin 

/uncttons 
check: SKELET-RESTR-SEQ # TYPE-LIST -> BOOL 

end 
irrrpor"ts Sequences 

{renamed by 
{SEQ -> SKELET-RESTR-SEQ, 
eq-seq 

Items bound by 
-> eq-skelet-restr] 

{ITEi! -> SKELET-RESTR, 
eq-item -> eq-restrj 

to Ske Let-restrictions 
} 

variables 
sr : - > SKELET-RESTR 
srs :-> SKELET-RESTR-SEQ 
t! :-> TYPE-LIST 

equations 

{126] check(add-item(sr,nuti), tl) , check(sr, t!) 

{127] check(add-item(sr,srs), tl) 
= and(check/sr,t!),check(srs,t!)) 

end Ske let-restr-sequences 

module Dim-restrictions 
begin 

exports 
begin 

sorts DIM-RESTR 
functions 

dim-restr: CONST-RANGE # CONST-RANGE -> DIM-RESTR 
dim-restr: CONST-RANGE # RANGE -> DIM-RESTR 

end 

eq-restr: DIM-RESTR # Dil!-RESTR 
check: Dil!-RESTR # TYPE-LIST 

BOOL 
-> BOOL 



N ...... 
t-' 

irrrports Constant-ranges, Ranges, Type-7,ists 

variabl,es 

dr,dr1,dr2 :-> Dil'I-RESTR 
:-> CONST-RANGE 
:-> TYPE-LIST 
:-> RANGE 

er, crl, cr2, cr.J', cr4 
ti 
r,rl,r2 

equations 

{128] 

{129] 

{lJO] 

{lJl] 

{132] 

[lJJ] 

eq-restr(drl,dr2) • eq-restr(dr2,drl) 

eq-restr( dim-restr( crl, cr2), dim-restr( crJ, cr4)) 
• and( eq(crl,crJ),eq(cr2,cr4)) 

eq-restr( dim-restr( er 1, rl), dim-restr( cr2, r2)) 
• and( eq(crl,cr2),eq-range(rl,r2)) 

eq-restr( dim-restr( crl, cr2), dim-restr( crJ, r)) 
• /a!se 

check( dim-res tr( crl, cr2), ti) 
= eq-range(arg-range( crl, t!), arg-range(cr2, t!)) 

check( dim-restr( crl, r), ti) 
• eq-range(arg-range(crl,t!),r) 

end Dim-rest-rictions 

module Dtm-restr-sequences 
begin 

exports 
begin 

/unctions 
check: Dil'I-RESTR-SEQ # TYPE-LIST -> BOOL 

end 
imports Sequences 

{renamed by 
{SEQ 
nu!! 
eq-seq 

Items bound by 

-> DI/1-RESTR-SEQ, 
-> no-dim-restr, 
-> eq-dres-seq} 

{ITEl'I -> DI/1-RESTR, 
eq-item -> eq-restr] 

to Dim-restrictions 
} 

variables 
dr : - > DI/1-RESTR 
drs :-> Din-RESTR-SEQ 
ti :-> TYPE-LIST 

equations 

{1:54] check(add-item(dr,no-dim-restr), t!) • check(dr, t!) 

[135] check(add-item(dr,drs), t!) 
• and(check(dr, t!),eheck(drs, ti)) 

end Dim-restr-sequences 

module Resul,t-types 
begin 

exports 
begin 
sorts RESULT-TYPE 
/unctions 

res-type: 
res-type: 
result: 

TECH-TYPE -> RESULT-TYPE 
-> RESULT-TYPE CONST-RANGE-SEQ 

RESULT-TYPE # TYPE-LIST -> TECH-TYPE 
end 

imports Technique-types, Const-range-sequences, 
Type-!ists 

/unctions 
res-ranges: CONST-RANGE-SEQ # TYPE-LIST -> RANGE-SEQ 

variables 
t 
t! 
crs 
er 

equations 

:-> TECH-TYPE 
:-> TYPE-LIST 
:-> CONST-RANGE-SEQ 
:-> CONST-RANGE 

• t {136] resu!t(res-type(t), t!) 
{137] resu!t(res-type(crs),t!) matrix-type( res-ranges( crs, t l)) 

[138] res-ranges( add-item( er, crs), t!) 
~ add-item( arg-range( er, tl), res-ranges{crs, t l)) 

[139 J res-ranges( add-item( er, nu! !-er-seq), t !) 
add-item( arg-range( er, t l), nu.l l-range) 

end Result-types 

module Function-types 
begin 

exports 
begin 

sorts FUNC-TYPE-INFO 
functions 
/-info: INDEX # SKELET-RESTR-SEQ # 

DI/1-RESTR-SEQ # RESULT-TYPE 

resu!t: FUNC-TYPE-I.VFO # TYPE-LIST 
FUNC-TYPE-INFO 
TECH-TYPE 



N ...... 
N 

n-arg: 
check: 
eq-/-type: 

end 

FUNC-TYPE-INFO 
FUNC-TYPE-INFO # TYPE-LIST 
FUNC-TYPE-INFO # FUNC-TYPE-INFO 

-> INDEX 
-> BOOL 
-> BOOL 

imports Indices, Technique-types, Dim-restr-sequences, 
. SkeLet-restr-sequences, Result-types 

variables 
ind 
srs 
drs 
rt 
t! 

equations 

:-> INDEX 
:-> SKELET-RESTR-SEQ 
:-> DI/1-RESTR-SEQ 
:-> RESULT-TYPE 
:-> TYPE-LIST 

[140} n-arg(l-in/o(ind,srs,drs,rt)) • ind 
[141) result(l-info(ind,srs,drs,rt),ti) • resuit(rt,ti) 

[142} check(/-info( ind, srs, drs, rt), ti) 
• and (check(srs,ti),check(drs,ti)) 

end Function-types 

module Fune-type-tables 
begin 

parameters Current-/unc-types 
begin 
functions 
ini-/type-tab: -> FUNC-TYPE-TABLE 

end Current-tune-types 

exports 
begin 

functions 
result-!: 
check-f-restr: 
get-n-arg: 

ID # TYPE-LIST - > TECH-TYPE 
ID # TYPE-LIST -> BOOL 
ID -> INDEX 

end 

imports Tables 
{ renamed by 

[ TABLE 
Entries bound by 

[ ENTRY 
eq-entry 

to Function-types 
Addresses bound by 

[ ADDRESS 
eq-addr 

to Identifiers 

-> FUNC-TYPE-TABLE ] 

-> FUNC-TYPE-INFO, 
-> eq-/-type J 

-> ID, 
-> eq-id ] 

variables 
id 
ti 

equations 

:-> 
:-> 

ID 
Tx'PE-LIST 

{143} check-/-restr(id,ti} • check(id.ini-/type-tab,ti) 
[144} result-/(id, tZ) resu!t(id 0 ini-/type-tab, tZ) 
{145} get-n-arg(id) • n-arg{td·ini-/type-tab) 

end Func-t1JPe-tab les 

2. THll DATA TYPE OF THE BASIC ELEMENTS OF TI-IE STATISTICAL LANGUAGE. 

2. a. Global description. 

In this section the type of variables, expressions and stateme:its is 
specified. The type description of a variable is found in the tec:-:nique 
symbol table. A matrix element refence is specified to be of type scalar; 
a submatrix of type matrix. The number of dimensions in :natrix 
refferences must be equal to the number of dimensions in the :natrix 
declaration. 

2.b. Specification. 

module Stat-check-variables 
begin 

exports 
begin 

functions 
var-type: VARIABLE # TECH-SYl!TAB -> TECH-TYPE 

end 

irrrports Variable-abstr-syntax., Techn-symtabs 

variables 
tst 
id 
inds 
rngs 

equations 

:-> TECH-SY/'ITAB 
:-> ID 
:-> IND-EXPR-SEQ 
:-> RANGE-SEQ 

[146} uar-type{abs-mr(id), tst) type( id· tst) 

[ 14? J var-type( abs-var( id, inds), tst) tech- type(sca lar- type) 

when eq{n-o/-dims(type(id·tst}},n-of-dims(inds)) = true 

{148] var-type{abs-var(id, rngs), tst) = matrix-type{rngs) 

when eq-ske !et(mat!'ix-type(rngs), type{ id-tst)) true 

the error cases in the above equations are not specified -

end Stat-check-variables 



N -'-" 

modute Stat-check-e:,;presstons 
begin , 

exports 
begin 

functions 
e:,;pr-type: EXPR # TECH-SYIITAB -> TECH-TYPE 
arg-types: ARG-LIST II TYPE-LIST II TECH-SYIITAB -> TYPE-LIST 

end 

tnrports E:,;pr-abstr-syntaz, TJ/PB- i tsts, 
Fune-type-tab ies, Stat-eheck-vartab tes 

vartabtes 
e:,;p 
ti 
tst 
var 
sea 
ind 
b 
/-td 
argt 

equations 

:-> EXPR 
:-> TYPE-LIST 
: C > TECH-SYIITAB 
:-> VARIABLE 
:-> SCALAR 
:-> INDEX 
:-> BOOL 
:-> ID 
:-> ARG-LIST 

-- stmpte e:,;presstons 

{149] e:,;pr-type(abs-e:,;pr(var), tst) • var-type(var, tst) 
[150 J e:,;pr-tJ/PB( abs-e:,;pr( t-data( sea)), tst) • tech-type( sea tar-type) 
{151] e:,;pr-type(abs-e:,;pr(t-data(tnd)),tst) • teeh-type(sca!ar-type) 
[152] e:,;pr-type( abs-e:,;pr(t-data(b)), tst) • tech-type(boot-type) 

-- function cans --

[153] e:,;pr-type(abs-/-eatz(!-td,arg!), tst) 
• resuit-/(/-td,arg-types(arr;i,nuiz, tst)) 

.,hen check-/-restr(/-td,arg-types(argt,nuit, tst)) • true 

the error case tn the above equation ts not spect/ted -

{154] arg-types(abs-arg-t(argl, e:,;p), ti, tst) 
• add-ttem(e:,;pr-type(e:,;p, tst) ,arg-types(argl, ti, tst)) 

{155] arg-types(abs-arg-t(e:,;p), ti, tst) 
• add-ttem(e:,;pr-type(e:,;p,tst),nuti) 

end Stat-check-e:,;presstons 

modute Stat-check-statements 
begin 

e:,;ports 
begin 
/unctions 

type-check-stmnts: STATEIIENTS # TECH-SYl'!TAB -> B00l 

type-check-stmnt: STATEl'!ENT # TECH-SYl'!TAB 
end 

-> B00l 

imports Statements-aJ;,str-synta.r, Stat-check-erpressior.s 

vartabtes 
var 
e:,;pr 
tst 
td 
tel, te2 ,. 
stmnts 
stmnt 

equations 

-> VARIABLE 
-> EXPH 
- > TECH-SY/IT AB 
-> ID 
-> IND-EXPR 
-> STRING 

: - > STATEIIENTS 
:-> STATEIIENT 

[156] type-check-stmnt(abs-assgn(var, e:,;pr), tst) 
• eq-type(uar-type(var, tst), e:,;pr-type(e:,;pr, tst)) 

[157] type-check-stmnt(abs-Jor(id, tel, ie2,stmnts), tst) 
• type-check-stmnts( stmnts, tst) 

[158] type-check-stmnt(abs-messtmt(m), tst) 
• true 

{159] type-check-stmnt(abs-compound(stmnts), tst) 
• type-check-st,mts( stmnts, tst) 

[160] type-check-stmnt(abs-ind-assgn( id, tel), tst) 
• true 

end Stat-check-statements 

3. STATIC TYPE CHECKING OF SECTIONS OF A STATISTICAL PROG."-.\M. 

3.1.a. Global description. 

The static type checking of the sections gives an cpdated technique 
symbol table. The internal declarations in each section ar-e stored in the 
technique symbol table. and the type restrictions in the statements are 
checked. 

3.1.b. Specification 

modute Stat-check-imp! 
begin 

erpor"ts 
begtn 

/unc"tions 
type-check-imp!-s: Il'!Pl-SEC II TECH-SYl'!TAB -> n:t.:lt-SYl'ITAB 

end 

imports Stat-check-statements, Store-dee larat tons, 
Imp t-abstr-synta,: 



N 
I-' 
.i::--

variables 
decl 
stmnts 
tst 

equations 

: - > INTERN-DEC LS 
:-> STATE/1ENTS 
:-> TECH-SY/1TAB 

{161} type-check-impt-s( abs-impt-sec( dee!, stmnts), tst) 
,,, store-intezrn-decls(tst,decl) 

when type-check-stmnts( stmnts, store-intern-dee ls( tst, dee l)) 
• true 

-- the error case in the above equation is not specified -

end Stat-check-impt 

module Stat-check-tests 
begin 

exports 
begin 

/unctions 
type-check-test-s: TEST-SEC # TECH-SY/1TAB -> TECH-SY/1TAB 

end 

imports Stat-check-statements, Store-declarations, 
Test-abs'tr-syntax 

variables 
deci 
stmnts 
rss 
tst 

equations 

-> INTERN-DECLS 
-> STATE/1ENTS 
-> RAISES 
-> TECH-SY/1TAB 

{162} type-check-test-s( abs-test-sec( dee!, stmnts, rss), tst) 
• store-intern-decls(tst, dee!) 

when type-check-stmnts( stmnts, store-intern-dee ls( tst, dee l)) 
- true 

-- the error case in the above equation is not specified --

end Stat-check-tests 

module Stat;-check-hand.Lers 
begin 

exports 
begin 
/unctions 

type-check-handt-s: HANDL-SEC # TECH-SY/1TAB -> TECH-SY/1TAB 
type-check-handler: HANDLER # TECH-SY/1TAB -> TECH-SY/1TAB 

end 

i,rrports Stat-check-statements. Store-dee larat:. .:ms. 
Handler-abstr-syntax 

variables 
h-sec : - > HANDL-SEC 
hndt :-> HANDLER 
decl :-> INTERN-DECLS 
stnmts :-> STATE/1ENTS 
tst :-> TECH-SY/1TAB 
id :-> ID 

equa'tions 

[163) type-check-handt-s( abs-handt-sec(h-sec, hndl), tst) 
• type-check-handt-s( abs-hand!-sec(hndi), 

type-check-hand!-s(h-sec, tst)) 

[164) type-check-handl-s(abs-handl-sec(hndl), tst) 
• type-check-hand!er(hnd!, tst) 

[165) type-check-handler( abs-handler( id, dee!, stmnts), tst) 
03 store-intern-dee ls ( tst, dee L) 

when type-check-stmnts( stmnts, store-ir.tern-dec ls( tst, dee l)) 
= true 

the error case in the above equatic-, is not sper!ified --

end Stat-check-handlers 

module Static-type-checking 
begin 

exports 
begin 

/unctions 
type-check-set: SECTION # TECII-SYl1T.4B -> TECII-Sl'lfTAB 
type-check-pro: STAT-PRO -> TECH-SYl'lTAB 

end 

imports Statistical-programs, Store-dee lara-:: ions, 
Stat-check-handlers, Stat-check-tes-::s, 
Stat-check-impt 

variables 
id :-> ID 
tst :-> TECII-SY/1TAB 
io-sec :-> IO-SEC 
inrpl-sec :-> I/1PL-SEC 
test-sec :-> TEST-SEC 
handl-sec :-> IIANDL-SEC 
sect :-> SECTION 
pro :-> STAT-PRO 



N ..... 
V, 

equations 

[ 166 J type-check-set ( abs-name( id), tst) 
• tst 

{167] 

{168] 

{169] 

{170] 

type-check-set( abs-sect( io-sec). tst) 
• store-io-sect(tst, to-sec) 

type-check-set( abs-sect( iT1rpl-sec), tst) 
• type-check- iTlrp l-s( iTlrf) l-sec, tst) 

type-check-set( abs-sect( test-sec), tst) 
• type-check-test-s( test-sec, tst) 

type-check-set( abs-sect(handl-sec), tst) 
• type-check-handl-s(handl-sec, tst) 

-- the statistical program --

{171] type-check-pro( abs-prog(pro, sect)) 
• type-check-set( sect, type-check-pro(pro)) 

{172] type-check-pro(abs-prog( sect)) 
• type-check-set( sect, eTlrf)ty-mem) 

end Static-type-checking 

APPENDIX I. ASF SPECIFICATION OF THE GENERATION OF THE INPUT 
RESTRICTIONS 

This appendix contains the formal specification of the input restriction 
generation mechanism in CONDUCTOR. Input restrictions are generated in 
order to guarantee that no type or dimension bound conflicts will occur 
during the execution of a statistical technique. Modules are given ta 
specify: (1} input restrictions, (2} the calculation of a symbolic range 
far an index expression. (3} the assignment of a symbolic I'ange to index 
variables. ( 4) the generation of input restrictions for variables. 
expressions and statements, {5) the generation of input restrictions for 
sections of a statisti'cal program. and (6) the generation of input 
restrictions for a statistical program. 

1. INPUT RESTRICTIONS. 

1. a. Global description. 

An input restriction is defined as a restriction that an index expression 
is greater or equal zero. The index expressions in the input restrictions 
may only consist of input variables and constants. This is specified in 
module Input-var-restrictions. 
In module Ind-expr-order the order relation on index expressions is 
specified. If an index expression always yields a greater (equal or 
smaller) value than an other index expression. for all possible values of 
the variables in the expressions, the order I'elation is greater (equal or 
smaller). For pairs of index expressions where this problem is undeci
dable, the relation is undecidable. 
In module Input-restr-sequence it is specified how an input restriction 
is added to a sequence of these restrictions, if the order relation of 
two index expressions is undecidable. 
In module Range-restrictions the following restrictions on ranges are 
defined: 

- positive restrictions. the upper bound of a dimension range must be 
larger than the lower bound, and 

- subrange restriction, the upper bound of the subrange must be smaller 
than the upper bound of the range, and the lower bound greater than 
the lower bound of the range. 

1. b. Specification. 

module Input-var-restrictions 
begin 

exports 
begin 

functions 
are-input-vars: IND-EXPR # TECH-SY/ITAB 

end 
-> Booi 

irrrports Ind-e:rpr-abstr-syntcu:, Techn-symtabs, User-visibility 

variables 
ie, iel, le2 
ts 
C 

id 

: - > IND-EXPR 
:-> TECH-SY/ITAB 
:-> INDEX 
:-> ID 



N .... 
°' 

equations 

[174} are-input-vars(abs-pius(iel, ie2), ts) 
• and(are-input-vars( tel, ts), are-input-vars(ie2, ts)) 

{175} are-input-vars(abs-minus(iel, ie2), ts) 
• and(are-tnput-vars(iel, ts) ,are-input-vars(ie2, ts)) 

[176] are-input-vars(abs-mui(iel, ie2), ts) 
• and(are-tnput-vars( tel, ts),are-tnput-vars(ie2, ts)) 

[177] are-tnput-vars(abs-ind(id), ts) 
• if( eq(view(td·ts), input), true,faise) 

{178] are-input-vars(abs-const( c), ts) 
• true 

end Input-var-restrictions 

module Input-restrictions 
begin 

exports 
begin 

sorts INP-RESTR 
functions 

pos-restr: 
inp-restr: 
eq-inp-restr: 

end 

IND-EXPR 
IND-EXPR # TECll-SY/ITAB 
INP-RESTR # INP-RESTR 

INP-RESTR 
-> INP-RESTR 
-> BOOL 

iurports Ind-expr-abstx--syntax, Input-var-restrictions 

functions 
error- inp-restr: -> INP-RESTR 

variables 
te, tel, ie2 
ts 

equations 

:-> IND-EXPR 
:-> TECll-SYIITAB 

{179] inp-restr(te, ts) • pos-restr(ie) 

when are-tnput-vax-s(ie, ts) = true 

{180] tnp-restr(ie, ts) • error-inp-restr 

when are-input-vars(ie, ts) • false 

{181] eq-inp-restr(pos-restr( iel), pos-restr( ie2)) 
• eq-resuit(iel, ie2) 

-- the error case is left wtspecified -

end Input-rest:rtctions 

modu Le Order 
begin 

exports 
begin 

sax-ts ORDER 
fwtctions 

greater: -> ORDER 
-> ORDER 
-> ORDER 
-> ORDER 

Less: 
equal: 
undecided: 
eq: ORDER # ORDER -> BOOL 

end 

irrrports Boo leans 

variables 
o,ol,o2 

equations 
[182] eq(o,o) 
[183] eq(ol,o2) 

:-> ORDER 

{184} eq( equal, less) 
[185] eq(equal,greater) 
[186] eq( equal, undecided) 
[187] eq(iess, greater) 
[188] eq(iess,undecided) 
[189} eq( great~r, undecided) 

end Order 

module Ind-expr-order 
begin 

exports 
begin 

functions 

- true 
• eq(o2,ol) 
• false 
= false 
• faise 
• false 
• false 
• false 

order: IND-EXPR # IND-EXPR -> ORDER 
end 

imports Order, Ind-expr-abstr-syntax. 

variables 
tel, ie2 
C 

equations 

:-> IND-EXPR 
:-> INDEX 

{190] order(iel,ie2) • if (eq(c,O), equal, 
if ( ge( c, 0), greater, less)) 

when eq-resuit(abs-minus(iel, ie2),abs-const(c)) • true 

{191} order(iel, ie2) • undecided 

when eq-result( abs-minus( tel, ie2), abs-const( c)) • false 

end Ind-expr-order 



N ...... 
-...J 

module Inpu.t-restr-sequences 
begin 

exports 
begin 

functions 
add-inp-restr: IND-EXPR # IND-EXPR # 

TECH-S'lllTAB # INP-RESTR-SEQ -> INP-RESTR-SEQ 
end 

iTTlpOrts Ind-e:rpr-order, Techn-symtabs. 
Sequences 

{renamed by 

Junctions 

[ SEQ -> INP-RESTR-SEQ, 
eq-seq -> eq-inp-restr-seq, 
null- -> no-restrictions ] 

Items bound by 
[ ITEi! -> INP-RESTR, 

eq-item -> eq-inp-restr 
to Input-restrictions } 

error- inp-restr-seq: -> INP-RESTR-SEQ 

variables 
ts 
tel, ie2 
irs 

equations 

:-> TECH-S'lllTAB 
:-> IND-EXPR 
:-> INP-RESTR-SEQ 

{192] add-inp-restr(iel, ie2,ts, irs} 
• if{eq(order(iel, ie2},undecided}, 

add-item(inp-restr(abs-minus(iel, ie2}, ts}, irs}, 
if(eq(order(iel, ie2}, Less}, 

error- inp-restr-seq, 
irs}} 

end Input-restr-sequences 

module Range-restrictions 
begin 

exports 
begin 

functions 
pos-range-restr: RANGE # TEC/1-SYl!TAB 
pos-range-restr: RANGE-SEQ # TECH-SYl!TAB 

INP-RESTR-SEQ 
-> INP-RESTR-SEQ 

range-within-range: RANGE # RANGE # TECH-SY!!TAB -> INP-RESTR-SEQ 
range-within-range: RANGE-SEQ # RANGE-SEQ 

# TECH-SYl!TAB -> INP-RESTR-SEQ 
end 

imports Inpu.t-restr-sequences, Ranges, 
Range-sequences, Techn-symtabs 

variables 
ts 
iel, ie2, ieJ, ie4 
rs, rsl, rs2 
r,rl,r2 

equations 

:-> TEC/1-SYl!TAB 
:-> IND-EXPR 
:-> RANGE-SEQ 
:-> RANGE 

[193] pos-range-restr(range{ iel, ie2}, ts} 
= add-inp-restr( iel, abs-const( 1), ts, 

add-inp-restr( ie2, iel, ts, no-restrictions)) 

[194] range-within-range(range( tel, ie2}, range{ ie3, ie4), ts) 
=- add-inp-restr(iel, ie3, ts, 

add-inp-restr(ie4, ie2, ts, 
add-inp-restr( ie2, iel, ts, no-restrictions))) 

-- a sequence of positive restrictions 

{195] pos-range-restr( add-item(r, rs), ts} 
= conc(pos-range-restr(r, ts), 

pos-range-restr( rs, ts)) 

[196] pos-range-restr( add-item(r, nu Li-range}, ts) 
= pos-range-restr(r, ts) 

-- a sequence of range within range restrictions 

[ I 97 J range-within-range( add-item( rl, rsl}, add-item(r2, rs2}, ts) 
= conc{range-within-range(rl I r2, ts), 

range-within-range( rsl, rs2, ts) j 

when eq{n-of-rngs{rsl}, n-of-rngs(rs2}} • true 

the error case is left unspecified --

{198 J range-1,1ithin-range( add-i tem(rl, nui i-range), 
add-item(r2, nu Li-range), ts} 

= range-within-range(rl, r2, ts) 

end Range-restrict ions 

2. RANGE CALCULATION FOR INDEX EXPRESSIONS. 

2. Global description. 

For each index variable a range is stored in the range table. 
These ranges can be used to calculate symbolic ranges for index 
expressions. Ranges can only be calculated for symbolic index expressions 
if the i.'1.dex expressions are monotone increasing or decreasing, as 
specified in module 11onoz:one-restrtctions. The specification of monotony 
amounts to the construction of two lists of variables. One list contains 
the variables in the negative terms of the expression, the other the 
vaI"iables in the positive terms. If these two list are disjoint the index 
expression is monotone. The calculation of ranges for index expressions 



N ..... 
ex, 

leads to input restrictions as specified in module Range-calc-restr. 
These input restrictions assure that all ranges involved in the calcula
tions are positive. 

2.b. Specification. 

module Monotone-restrictions 
begin 

e:r:ports 
begin 

functions 
is-monotone: IND-EXPR -> BOOL 
var-list: BOOL # BOOL # IND-EXPR # ID-SEQ -> ID-SEQ 

end 

iwrports Ind-e:rpr-abstr-syntaz, Id-sequences, 
Booleans 

{renamed by {true -> pos, false -> neg] } 

variables 
ie, iel, ie2 
idl 
id 
sgnl,sgn2 
C 

equations 

:-> IND-EXPR 
:-> ID-SEQ 
:-> ID 
:-> BOOL 
:-> INDEX 

{199} var-list(sgnl,sgn2,abs-plus(iel, ie2), idl) 
• var-!ist(sgnl,sgn2, iel, 

var-list(sgnl,sgn2, ie2, idl)) 

{200} var-list(sgnl,sgn2,abs-mul(iel, ie2), idl) 
• var-list(sgnl,sgn2, iel, 

var-list( sgnl, sgn2, ie2, idl)) 

{201] var-list(sgnl,sgn2,abs-minus(iel, ie2), idl) 
• var-list(sgnl,sgn2, iel, 

var-list(sgnl, not(sgn2), ie2, idl)) 

{202} var-list(sgnl,sgn2,abs-ind(id), idi) 
• if(eq(sgnl,sgn2),add-item(id, idl), idl) 

{203] var-list(sgnl,sgn2,abs-const(c), idl) 
• idl 

b1hen ge(c,O) • true 

the error case is left unspecified 

monotone restricition --

{204} is-monotone(ie) 
• disjoint(var-list(pos, pos, ie, null-id-seq), 

var-list(neg,pos, ie,null-id-seq)) 

end Monotone-restrictions 

module Range-tables 
begin 

imports Tables 
{ renamed by 

} 

{ TABLE 
Entries bound by 

{ ENTRY 
eq-entry 

to Ranges 
Addresses bound by 

{ ADDRESS 
eq-addr 

to Identifiers 

-> RANGE-TABLE } 

-> RANGE, 
-> eq-range 

-> ID, 
-> eq-id] 

end Range- tables 

module Range-calculations 
begin 

erports 
begin 

functions 
ca le-range: 
ca le-ranges: 

IND-EXPR # RANGE-TABLE -> RANGE 
IND-EXPR-SEQ # RANGE-TABLE -> RANGE-SEQ 

range-calc-range: RANGE # RANGE-TABLE -> R.4NGE 
range-calc-ranges:RANGE-SEQ # RANGE-TABLE -> RANGE-SEQ 

end 

imports Ind-ezpr-sequenc~s, Range-sequences, 
Range-tables, Monotone-restrict ions 

variables 
ie, iel, ie2 
ies 

:-> IND-EXPR 
:-> IND-EXPR-SEQ 
:-> ID id 

C 

rt 
r 
rs 

:-> INDEX 
:-> RANGE-TABLE 
:-> RANGE 
:-> RANGE-SEQ 

equations 

{205] calc-range(abs-plus(iel, ie2),rt) 
• range-plus(calc-range(iel,rt), 

calc-range( ie2, rt)) 

b1hen is-monotone(abs-plus(iel, ie2)) • true 

the error case ts left unspecified 

[206] calc-range(abs-minus(iel, ie2),rt) 
= range-min(calc-range(iel,rt), 

ca!c-range( ie2, rt)) 

b1hen ts-monotone(abs-minus(iel, ie2)) • true 

the error case is left unspecified --



N 
>-' 

"' 

{207] ca!c-range(abs-mu!(iel, ie2),rt) 
• range-111U!(ca!c-range(iel,rt), 

ca!c-range( ie2, rt)) 

when is-monotone( abs-mul( iel J ie2)) = true 
the error case is Left unspecified 

[208] ca!c-range(abs-ind(id),rt) • id"rt 

{209] caic-range(abs-const(c),rt) 
• range( abs-const( c), abs-const( c)) 

calculations of ranges /or a sequence of index 
expressions --

{210} ca!c-ranges(add-item(ie, ies),rt) 
• add-item(ca!c-range(ie,rt), 

ca!c-ranges( ies, rt)) 

{211] ca!c-ranges( add-item( ie, nu! i-tnd-erpr-seq), rt) 
• add-item(ca!c-range(te, rt), nu it-range) 

-- calcu.l.ation of a range of a range --

{212] range-ca!c-range(range( iel, ie2), rt) 
• range(!ohler( ca!c-range(iel, rt)), 

upper( ca!c-range( te2, rt))) 

bJhen is-monotone(abs-p!us(iel, ie2)) true 

-- the error case is left unspecified 

calculati.:ms of ranges /or a sequence of ranges 

{213] range-ca!c-ranges(add-item(r, rs), rt) 
"' add-item(range-catc-range(r, rt:), 

range-ca !c-ranges(rs, rt)) 

{214] range-caic-ranges(add-item(r, nu it-range), rt) 
= add-item(range-calc-range(r, rt), null-range) 

end Range-calculations 

moduLe Range-calc-restr 
begin 

exports 
begin 
functions 
res tr-ca le-range: 

rest:r-ca le-ranges: 

IND-EXPR # RANGE-TABLE # 
TECH-SYIITAB # INP-RESTR-SEQ -> INP-RESTR-SEQ 
IND-EXPR-SEQ # RANGE-TABLE # 
TECH-SYIITAB # INP-RESTR-SEQ -> INP-RESTR-SEQ 

restr-range-ca!c-range: RANGE # RANGE-TABLE # 
TECH-SYl!TAB # INP-RESTR-SEQ -> INP-RESTR-SEQ 

restr-range-ca!c-ranges: RANGE-SEQ # RANGE-TABLE # 
TECH-SYl!TAB # INP-RESTR-SEQ -> INP-RESTR-SEQ 

end 

i11rports Ind-expr-sequences, Input-restr-sequences, 
Range-tables, Range-calculations, Range-restrictions 

variables 
te, iel, ie2 
ies 

: - > IND-EXPR 
:-> IND-EXPR-SEQ 
:-> ID id 

C 

irs 
rt 
r 
rs 
ts 

equa'tions 

:-> INDEX 
:-> INP-RESTR-SEQ 
:-> RANGE-TABLE 
:-> RANGE 
: - > RANGE-SEQ 
:-> TECH-SYIITAB 

{215} res'tr-calc-range(abs-plus(iel, ie2), rt, ts, irs) 
,. restr-calc-range( ie2, rt, ts, 

restr-calc-range( iel, rt, ts, irs)) 

{216} restr-calc-range( abs-minus( tel, ie2), rt, ts, irs) 
cone( 

pos-range-restr( ca le-range( abs-minus( iel, ie2), rt), ts), 
res tr-ca le-range( ie2, rt, ts, 

restr-calc-range(iel,rt, ts, irs))) 

[217 J restr-ca!c-range( abs-mu!( iel, ie2), rt, ts, irs) 
"" res'tr-calc-range(ie2, rt, ts, 

res'tr-cal.c-range(iel,rt, ts, irs)) 

[ 218] restr-ca!c-range( abs-ind( id), rt, ts, irs) 
,,, conc(pos-range-restr(td·rt, ts), irs) 

[ 219 J restr-ca!c-range( abs-const( c), rt, ts, irs) 
= add-inp-restr( abs-const( c) 1 abs-const(O), ts, irs) 

-- cal.culations of restrictions for a sequence of index 
expressions --

(220} restr-calc-ranges(add-item(ie, ies),rt, ts, irs) 
= conc(restr-calc-range( le, rt, ts, irs), 

restr-calc-ranges( ies, rt, ts, irs)) 

{221 J res tr-ca !c-ranges( add- item( ie, nu!!-ind-erpr-seq), rt, ts, irs) 
=- restr-calc-range(ie,rt,ts, irs) 

-- calculation of a range of a range --

[ 222} restr-1~ange-calc-range(range( tel, ie2), rt, ts, irs) 
conc(restr-calc-range{ ie2, rt, ts, 

restr-calc-range( iel, rt, ts, irs)), 
pos-range-restr(range( iel, ie2), ts)) 



N 
N 
0 

-- calculations of restrictions for a sequence of ranges--

[22:S} restr-range-calc-ran.ges( add-item{r, rs), rt, ts, irs) 
,., conc(restr-range-calc-range(r, rt, ts, irs), 

restr-range-calc-ranges(rs, rt, ts, irs)) 

{224} restr-range-calc-ranges( add-item(r, nui l-range), rt, ts, irs) 
= restr-range-calc-range(r, rt, ts, irs) 

end Range-calc-restr 

3. RANGE ASSIGNMENTS FOR INDEX VARIABLES. 

3. a. Global description. 

Symbolic ranges are assigned to index variables in index assignment 
statements for statements and index input declarations. The specification 
is given in module Range-assignments. The range assignments are stored in 
the range table specified in module Range-tables. 

3.b. Specification. 

module Range-assignments 
begin 

e:cports 
begin 

functions 
assgn-rngs: 
assgn-rng: 
assgn-rng: 
assgn-rngs: 

end 

STATEMENTS # RANGE-TABLE 
STATEMENT # RANGE-TABLE 
ID # RANGE-TABLE 
ID-SEQ # RANGE-TABLE 

RANGE-TABLE 
RANGE-TABLE 

-> RANGE-TABLE 
-> RANGE-TABLE 

trrrports Statements-abstr-syntax, Range-tables, 
Range-calculations, Id-sequences 

variables 
stmts 
stmt 
var 
erpr 
str 
id 
ie, iel, ie2 
rt 

equations 

:-> STATEl1ENTS 
:-> STATEl1ENT 
:-> VARIABLE 
:-> EXPR 
:-> STRING 
:-> ID 
:-> IND-EXPR 
:-> RANGE-TABLE 

{225] assgn-rngs(abs-statmts( stmts, stmt), rt) 
= assgn.-rng( stmt, assgn-rngs( stmts, rt)) 

{226} assgn-rngs( abs-statmts( stmt), rt) 
- assgn-rng( stmt, rt) 

assigment /or individual statements 

{227} assgn-rng(abs-assgn(var,erpr),rt) • rt 

[228} assgn-rng{ abs-messtmt ( str), rt} rt 

{229} assgn-rng(abs-for(id, tel, ie2,stmts),rt) 
.r assgn-range(stmts, 

insert( id, 
range-calc-range(range( iel, ie2), 
rt))) 

{2:S0 J assgn-rng( abs-co11Cpound( stmts), rt) 
= assgn-rngs( stmts, rt) 

[2:Sl} assgn-rng{abs-ind-assgn(id, ie),rt) 
• insert( id, ca Le-range( ie, rt), rt) 

-- input declaration 

[2:S2} assgn-rng( id, rt} • insert( id, range( abs-ind( id), abs-ind( id)), rt) 

end Range-assignments 

4. GENERATION OF INPUT RESTRICTIONS FOR THE BASIC ELEMENTS OF 
THE STATISTICAL PROGRAM. 

4.a. Global description. 

In this section it is shown how input restrictions are generated for 
variables, expressions and statements in the statistical language. The 
input restrictions generated for matrix element references and consist of 
two groups of restrictions: 
- the restrictions generated during the calculation of symbolic ranges 

for index expressions used as matrix element or submatrix reference, 
- the dimension bound restrictions, checked with the use of the 

calculated symbolic ranges 

4.b. Specification. 

module Gen-restl'-variabtes 
begin 
exports 

begin 
functions 
gen-restr-var: INP-RESTR-SEQ # RANGE-TABLE # 

TECH-SYMTAB # VARIABLE -> INP-RESTR-SEQ 
end 

irrrports Vari ab te-abstr-syn.tax, Input-restr-sequences, 
Range-tab Les, Techn-symtabs, Range-restrictions, 
Range-ca lcu lat ions. Range-ca Lc-restr 

variables 
irs 
id 
inds 
rngs, rngsl, rngs2 
rt 
ts 

:-> INP-RESTR-SEQ 
:-> ID 
:-> IND-EXPR-SEQ 
:-> RANGE-SEQ 
:-> RANGE-TABLE 
:-> TECH-SY/fTAB 



N 
N 

equations 
-- simple variables --

[ 233 J gen-res tr-var( irs, rt:, ts, abs-var( id)) irs 

-- matrix element --

{234] gen-restr-var( irs, rt, ts, abs-var( id, inds)) 

[235] 

• conc(restr-calc-ranges(tnds, rt, ts, irs), 
range-bJithin-range( ca le-ranges( inds, rt), 

rngs, ts)) 

bJhen eq-type(type(id"ts) ,matrix-type(rngs)) • true 

-- submatrtx --

gen-restr-var( irs, rt, ts, abs-var( id, rngsl)) 
= conc(restr-range-calc-ranges(rngsl, rt, ts, irs), 

range-bJithin-range( 
range-calc-ranges(rngsl, rt), rngs2, ts)) 

when eq-type(type(id"ts),matrix-type(rngs2)) • true 

end Gen-restr-vartables 

module Gen-res tr-expressions 
begin 

exports 
begin 

functions 
gen-restr-e:rpr: INP-RESTR-SEQ # RANGE-TABLE # 

TECH-SYIITAB # EXPR -> INP-RESTR-SEQ 
gen-restr-argl: INP-RESTR-SEQ # RANGE-TABLE # 

TECH-SY/'1TAB # ARG-LIST -> INP-RESTR-SEQ 
end 

imports Expr-abstr-syntax, Gen-restr-variables 

var-tables 
irs 
ts 
exp, e:r:pl, e:r:p2 
var 
td 
/-id 
argl 
rt 

equations 

:-> INP-RESTR-SEQ 
:-> TECH-SYl'fTAB 
:-> EXPR 
:-> VARIABLE 
:-> TECH-DATA 
-> ID 
-> ARG-LIST 
-> RANGE-TABLE 

{236] gen-restr-e:rpr( irs, rt, ts, abs-erpr(var)) 
- gen-restr-var(irs,rt, ts,var) 

{23?] gen-restr-e:rpr( irs, rt, ts, abs-erpr( td)) 
... irs 

-- function calls --

{238} gen-restr-e:rpr( irs, rt, ts, abs-f-ca!!(/- id, argl)) 
""gen-restr-arg7,.(irs,rt,ts,argl) 

{239] gen-restr-argl( irs, rt, ts, abs-arg-l( argl, erp)) 
=- gen-restr-e:r:pr( 

gen-restr-argl( irs, rt, ts, argL), rt, ts, exp) 

{240 J gen-restr-argl( irs, rt, ts, abs-arg-!( e:rp)) 
"" gen-restr-expr( irs, rt, ts, exp) 

end Gen-restr-e:r:pressions 

module Input-restr- info 
begin 

exports 
begin 
sorts INP-RESTR-INFO 
functions 
inp-res-info: INP-RESTR-SEQ # RANGE-TABLE -> INP-RESTR-INPO 

end 

imports Range-tables, I nput-restr-sequences 

end Input-restr-info 

modu Le Gen-restr-statements 
begin 

exports 
begin 

functions 
gen-restr-stmts: INP-RESTR-INFO # TECH-SY/'1TAB # 

STATE/'1ENTS -> INP-RESTR-INFO 
gen-restr-stm: INP-RESTR-INFO # TECH-SYIITAB # 

STATEl'fENT -> INP-RESTR-INFO 
end 

i11rports Gen-restr-expressions, Gen-restr-variables, 
Statements-abstr-syntax, Input-restr- info, 
Range-assignments 

variables 
iri : - > INP-RESTR-INFO 
irs :-> INP-RESTR-SEQ 
stmts :-> STATEIIENTS 
stm :-> STATEIIENT 
var :-> VARIABLE 
e:rp :-> EXPR 
m :-> STRING 
rt :-> RANGE-TABLE 
tst :-> TECH-SY/fTAB 
id :-> ID 
ie, iel, ie2 :-> IND-EXPR 



N 
N 
N 

equations 

[241] gen-restr-stmts( iri, tst, abs-statmts( stmts, stm)) 
"' gen-restr-stm( 

gen-restr-stmts( iri, tst, stmts), tst, stm) 

[ 242] gen-restr-stmts( iri, tst, abs-statmts( stm)) 
"' gen-restr-stm( t'ri, tst, s"tm) 

-- assignment statement --

[243 J gen-restr-stm( inp-res-info( irs, rt), 
tst, abs-assgn(var, erp)) 

,. inp-res- irifo( gen-res'tr-var( gen-restr-erpr( irs, rt, tst, e:cp), 
rt, tst,var), 

rt) 

-- message statement --

[244] gen-restr-stm( iri, tst, abs-messtmt(m)) 
= iri 

-- compound statement --

[245] gen-restr-stm(iri, tst,abs-corrrpound( stmts)) 
~ gen-restr-stmts( iri, tst, stmts) 

/or statement --

[246] gen-restr-stm( inp-res-info( irs, rt), 
tst, abs-for( td, iel, ie2, stmts)) 

• gen-restr-stmts( 
inp-res-info( 

restr-range- ca le-range ( range ( i el , i e2) , 
rt, tst, irs), 

assgn-rng( abs-for( id, tel, ie2, stmts), rt)), 
tst,stmts) 

-- index assignment statement --

[247 J gen-restr-stm( inp-res-info( irs, rt), 
ts"t, abs-ind-assgn{ id, ie)) 

~ inp-res-info(res"tr-calc-range( ie, r"t, tst, irs), 
assgn-rng( abs-ind-assgn( id, ie), rt)) 

end Gen-restr-statements 

5. GENERATION OF INPUT RESTRICTIONS FOR SECTIONS OF A 
STATISTICAL PROGRAM. 

5. a. Global description. 

In this section it is shown how restrictions are generated for the 
sections in a statistical program. 

5.b. Specification. 

module Gen-restr-declarations 
begin 

exports 
begin 

functions 
gen-restr-io-sect: INP-RESTR-INFO # TECH-SYMTAB # 

IO-SEC -> INP-RESTR- INFO 

gen-restr-int-decls: INP-RESTR-INFO # TECH-SYMTAB # 
INTERN-DECLS -> INP-RESTR-INFO 

gen- res tr-decls : INP-RESTR-INFO # TECH-SYMTAB # 
DECLS # USER-VIEW -> INP-RESTR-INFO 

gen-restr-decl: 

end 

INP-RESTR-INFO # TECH-SYMTAB # 
DECL # USER-VIEW -> INP-RESTR-INFO 

imports Input-restr-info. Decl-abstr-syntax. 
Range-restrictions, Range-assignments 

variables 
ts : -> TECH-SYMTAB 
iri :-> INP-RESTR-INFO 
rt :-> RANGE-TABLE 
irs :-> INP-RESTR-SEQ 
decls, inp-decls ,out-decls :-> DECLS 
decl :-> DECL 
idl :-> ID-SEQ 
rngs :-> RANGE-SEQ 
mess :-> STRING 
st : -> SIMPLE-TYPE 
UV :-> USER-VIEW 

equations 

(248] gen-restr-io-sect(iri,ts, 
abs-io-sect { inp-decls, out-decls)) 

gen-restr-decls ( 
gen-restr-decls ( iri. ts, inp-decls, input) , 
ts ,out-decls, output) 

[249] gen-restr-int-decls ( iri, ts, abs-intern-decl ( decls)) 
= gen-restr-decls (iri, ts, decls, internal) 

(250] gen-restr-decls (iri, ts, abs-empty-decls, uv) 
= iri 

(251] gen-restr-decls(iri, ts,abs-decls(decls,decl) ,uv) 
gen-restr-decl ( 

gen-restr-decls ( iri, ts ,decls, uv). 
ts,decl,uv) 

[252] gen-restr-decls(iri, ts,abs-decls(decl) ,c;v) 
= gen-restr-decl(iri,ts,decl.uv) 



N 
N 
l,.J 

[253] gen-restr-decl(inp-res-info(irs,rt), ts, 
abs-decl(idl,matrix-type(rngs) ,mess) ,uv) 

= inp-res-info(conc(irs,pos-range-restr(rngs, ts)), 
rt) 

[254] gen-restr-decl(inp-res-info(irs,rt), ts, 
abs-decl(idl, tech-type(index-type) ,mess), 
input) 

= inp-res-info(irs,assgn-rngs(idl,rt)) 

end Oen-restr-declarations 

module Oen-restr-impl 
begin 

exports 
begin 

functions 
gen-restr-impl-s: IMPL-SEC II TECH-SYMTAB II 

INP-RESI'R-INFO -> INP-RESTR-INFO 
nd 

imports Gen-res tr-statements, Gen-res tr-declarations. 
Impl-abstr-syntax 

variables 
decl 
stmnts 
iri 
ts 

equations 

-> INTERN-DECLS 
-> STATEMENTS 
-> INP-RESI'R-INFO 
-> TECH-SYMTAB 

[255] gen-restr-impl-s(abs-impl-sec(decl,stmnts), ts,iri) 
= gen-restr-stmts ( 

gen-restr-int-decls(iri, ts ,decl), ts ,stmnts} 

end Gen-restr-impl 

module Gen-restr-tests 
begin 

exports 
begin 

functions 
gen-restr-test-s: TEST-SEC II TECH-SYMTAB # 

INP-RESTR-INFO -> INP-RESTR-INFO 
end 

imports Gen-restr-statements, Gen-restr-declarations. 
Test-abs tr-syntax 

variables 
decl 
stmnts 
rss 

-> INTERN-DECLS 
-> STATEMENTS 
-> RAISES 

iri 
ts 

equations 

:-> INP-RESTR-INFO 
:-> TECH-SYMTAB 

[256] gen-restr-test-s(abs-test-sec(decl,stmnts,rss), ts,iri) 
• gen-restr-stmts( 

gen-restr-int-decls(iri, ts,decl), ts,stmnts) 

end Gen-restr-tests 

module Gen-restr-handlers 
begin 

exports 
.begin 

functions 
gen-restr-handl-s: HANDL-SEC II TECH-SYMTAB # 

INP-RESTR-INFO -> INP-RESTR-INFO 

gen-restr-handler: HANDLER II TECH-SYMTAB # 
INP-RESTR-INFO -> INP-RESTR-INFO 

end 

imports Gen-res tr-statements, Gen-res tr-declarations. 
Handler-abs tr-syntax 

variables 
h-sec 
hndl 
decl 
stmnts 
iri 
id 
ts 

equations 

:-> HANDL-SEC 
:-> HANDLER 
:-> INTERN-DECLS 
: -> STATEMENTS 
:-> INP-RESTR-INFO 
:-> ID 
:-> TECH-SYMTAB 

[257] gen-restr-handl-s(abs-handl-sec(h-sec,hndl), ts,iri) 
• gen-restr-handl-s(abs-handl-sec(hndl), ts, 

gen-restr-handl-s(h-sec, ts,iri)) 

[258] gen-restr-handl-s(abs-handl-sec(hndl), ts,iri) 
• gen-restr-handler(hndl, ts,iri) 

[259] gen-restr-handler(abs-handler(id,decl,stmnts). ts,iri) 
= gen-restr-stmts( 

gen-restr-int-decls( iri, ts,decl), ts ,stmnts) 

end Gen-restr-handlers 



N 
N .,,.. 

6. THE GENERATION OF INPUT RF.STRICTIONS FOR A STATISTICAL PROGRAM. 

6. a. Global description. 

In this section it is specified how restrictions are generated for a 
statistical program. 

6.b. Specification. 

module Input-restr-generator 
begin 

e:r:port:s 
begin 

/unctions 
gen-restr-sct: SECTION # TECH-SYIITAB # 

INP-RESTR-INFO # INP-RESTR-SEQ -> INP-RESTR-INFO 
gen-restr-pro: STAT-PRO # TECH-SYIITAB -> INP-RESTR-INFO 

end 

imports Stat ist ica l.-programs, Gen-restr-dec Z.arat ions, 
Gen-restr-handlers, Gen-restr-tests, Gen-restr-imp l 

variables 
id 
iri 
io-sec 
impl-sec 
test-sec 
handl-sec 
sect 
pro 
ts 

equations 

:-> ID 
:-> INP-RESTR-INFO 
:-> IO-SEC 
: - > I/IPL-SEC 
:-> TEST-SEC 
: - > HANDL-SEC 
:-> SECTION 
:-> STAT-PRO 
:-> TECH-SYl!TAB 

{260} gen-restr-sct(abs-name(id), ts, iri) 
"' iri 

{261] gen-restr-sct( abs-sect( io-sec), ts, iri) 
= gen-restr-io-sect(iri, ts, io-sec) 

{262] gen-restr-sct(abs-sect(i11Tpl-sec), ts, iri} 
• gen-restr-i11Tpl-s( i11Tpl-sec, ts, iri) 

{263] gen-restr-sct(abs-sect(test-sec), ts, iri) 
= gen-restr-test-s(test-sec, ts, iri) 

{264] gen-restr-sct(abs-sect(handl-sec), ts, iri) 
"' gen-restr-handl-s(handt-sec, ts, iri) 

[ 265 J gen-res tr-pro( abs-prog(pro, sect), ts) 
= gen-res tr-set( sect, ts, gen-rest:r-pro(pro, ts)) 

[ 266] gen-restr-pro( abs-prog( sect), ts) 
• gen-restr-sct(sect, ts, 

tnp-res-info(no-restrictions, nu! !-table)) 

end Input-restr-generator 

APPENDIX J. ASF SPECIFICATION OF THE KERNEL 

The kernel is a virtual machine that can execute the semantic actions 
that take place during the execution of a statistical technique. A 
statistical technique is represented at the kernel level by a kernel 
program. The specification of the kernel consists of the specification of 
(1) the evaluation of index expressions. data types and input 
restrictions, (2) the data memory, (3) the instructions set, (4) the data 
stack, (5) exception haI)dler tables, (6) the function code table. (7) a 
kernel program, (8) the processor: execution of the instructions, (9) the 
kernel. 

1. EVALUATION OF INDEX EXPRF.SSIONS, TYPF.S AND RF.STRICTIONS. 

1. a. Global description. 

The values of the variables in an index expression are stored in the 
technique symbol table. The kernel uses these values to evaluate the 
index expression. The evaluation of a symbolic dimension range requires 
the evaluation of the two index expressions in this range. and results in 
a constant range. 
The evaluation of a matrix type description .i.n the statistical language 
requires the evaluation of the symbolic ranges describing the dimension 
ranges. The evaluation of a matrix type description results in a matrix 
description with fixed dimensions. as used at the user level. 
The evaluation of an input restrictions results in the value true or 
false. 

1. b. Specification 

module Evaluate-ind-expr 
begin 

exports 
begin 

functions 
evaluate: IND-EXPR # TECII-SYIITAB -> INDEX 

end 

imports Ind-e:r:pr-abstr-syntax, Techn-symtabs, Indices 

variables 
iexprl, iexpr2 
ts 
id 
i 
tt 
UV 

str 

equations 

:-> IND-EXPR 
:-> TECH-SYl!TAB 
:-> ID 
:-> INDEX 
:-> TECH-TYPE 
:-> USER-VIEW 
:-> STRING 

{267] evaluate(abs-mul(iexprl, iexpr2), ts) 
• mul(evaluate(!exprl, ts),evaluate(iexpr2, ts)) 

{268] evaiuate(abs-plus(iexprl, iexpr2),ts) _ 
• add( evaluate( texprl, ts), evaluate( iexpr2, ts)) 



N 
N 
U1 

[269] evaluate(abs-minus(te:z:prl, ie:z:pr2), ts) 
• sub(evaluate(ie:z:prl, ts), evaluate(ie:z:pr2, ts)) 

[270} e1Jaluate(abs-const(i),ts) • i 

{271} evaluate(abs-ind(id), insert(id, 
ts-in/o(tt,ulJ, t-data(i) ,str), ts)) • i 

the error case is not specified --

end Evaluate-ind-e:z:pr 

module Evaluate-ranges 
begin 

e:z:ports 
begin 
functions 

evaluate: RANGE # TECH-SYIITAB -> CONST-RANGE 
evaluate: RANGE-SEQ II TECH-SYIITAB -> CONST-RANGE-SEQ 

end 

imports Range-sequences, Const-range-sequences, 
Evaluate-ind-e:z:pr 

variables 
i e:z:pr 1 , i e:z:pr 2 
ts 
r 
rs 

equations 

-> IND-EXPR 
-> TECH-Sr.lTAB 
-> RANGE 

:-> RANGE-SEQ 

[272] evaluate(range(ie:z:prl, ie:z:pr2), ts) 
• c-range(evaluate(ie:z:prl, ts), evaluate(ie:z:pr2, ts)) 

[273} evaluate(add-item(r,rs), ts) 
• add-item(evaluate(r, ts), evaluate(rs, ts)) 

{274} evaluate(add-item(r, nu ii-range), ts) 
• add-item(evaluate(r, ts), nuit-cr-seq) 

end Evaluate-ranges 

module Evaluate-types 
begin 

ez:ports 
begin 

functions 
evaluate: TECH-TYPE # TECH-SYIITAB -> USER-TYPE 

end 
t11rp0rts User-types, Technique-types, 

Evaluate-ranges 

variables 
st :-> SIIIPLE-TYPE 

rngs 
ts 

equations 

: - > RANGE-SEQ 
:-> TECH-SYIITAB 

{275} evaluate(tech-type( st), ts) • user-type(st) 

{276} evatuate(matriz-type(rngs), ts) • matriz-type(evaluate(rngs, ts)) 

end Evaluate-types 

module Evaluate-restrictions 
begin 

e:rports 
begin 
functions 

check: INP-RESTR # TECH-SYIITAB -> BOOL 
check: INP-RESTR-SEQ # TECH-SYIITAB -> BOOL 

end 

imports Eval.uate-tnd-e:rpr, Input-restr-sequences 

variables 
ie 
ts 
ir 
irs 

equations 

:-> IND-EXPR 
:-> TECH-SYIITAB 
:-> INP-RESTR 
:-> INP-RESTR-SEQ 

{277 J check( irrp-restr( ie, ts), ts) • ge( e1Jaluate( ie, ts), OJ 
{278} check(no-restrictions, ts) • true 
[279} check(add-item(ir, irs), ts) • and(check(ir, ts) ,check(irs, ts)) 

end Evaluate-restrictions 

2. THE DATA MEMORY OF TIIE KERNEL. 

2.a. Global description. 

The memory of the kernel cons is ts of two symbol tables: a technique and 
and a user symbol table. Toe kernel can transfer data between the 
technique symbol table and a data stack. How data is retrieved from the 
technique symbol table is specified in the functions get-data, get-e !em 
(for matrix elements) and get-subm (for submatrices). How the calculated 
results on the data stack are stored in the technique symbol table in 
specified by the functions store-data. store-elem (for matrix elements) 
and store-subm ( for submatrices) . 
The input variables must be intialized by the user of the statistical 
technique. At the kernel level this is represented by a transfer from 
data in the user symbol table to the technique symbol table. A special 
case is the situation where series form the columns of a matrix, This is 
specified in module Sertes-matriz-tntezoface. No equations are given in 
this module. The resulting statistics calculated by a statistical 



N 
N 

°' 

technique are stored in the user symbol table. as specified in 
User-io. 

2.b. Specification. 

module Memory 
begin 

exports 
begin 
sorts IIEIIORY 
Junctions 
memory: TECH-SYIITAB # USER-SY/ITAB -> IIEIIORY 

ID # /IEIIORY -> TECH-DATA 
ID # INDEX-SEQ # IIEIIORY -> TECH-DATA 

get-data: 
get-elem: 
get-subm: ID # CONST-RANGE-SEQ # IIEIIORY -> TECH-DATA 

store-data: ID # TECH-DATA # IIEIIORY 
store-elem: ID # TECH-DATA # 

INDEX-SEQ # IIE/IORY 
store-subm: ID # TECH-DATA # 

CONST-RANGE-SEQ # /IEIIORY 
end 

irrrports Techn-symtabs, User-symtabs, 
Index-sequences, Const-range-sequences 

variables 
id :-> ID 
ts :-> TECH-SYIITAB 
us :-> USER-SYIITAB 
is :-> INDEX-SEQ 
td :-> TECH-DATA 
drs :-> CONST-RANGE-SEQ 

equations 

-- data retrieval 

-> IIEIIORY 

-> IIEIIORY 

-> IIEIIORY 

{280 J get-data( id, memory(ts, us)) • data( id.ts) 
{281] get-elem(id, is,memory(ts,us)) • element(is,data(id·ts)) 

[282] get-subm(id,drs,memory(ts,us)) • submat(drs,data(td·ts)) 

-- data storage --

{283] store-data(id, td,memory(ts, us)) 
2 memory( insert-data( id, td, ts), us) 

end Memory 

module module Series-matrix-interface 
begin 

export:s 
begin 

Junctions 
data-matrix: 
load-mat-excep: 
mat-excep-id: 

end 

ID-SEQ # USER-SYIITAB 
ID-SEQ # USER-SY/ITAB 
ID-SEQ # USER-SYIITAB 

-> /IATRIX 
-> BOOL 

ID 

imports Id-sequences, User-symtabs, Matrices 

end Series-matrix-interface 

module User-to 
begin 

exports 
begin 

Junctions 
user-insert: 
user- load-excep: 
toad-excep-id: 
store-result: 

end 

ID # /IEIIORY -> IIEIIORY 
ID # IIEIIORY -> BOOL 
ID # /IE/IORY -> ID 
ID # IIE/IORY -> IIE/IORY 

irrrports Identifiers, Id-sequences, Evaluate-types, 
Memory, Series-matrix-interface I User-data, 
User-types, Scalars, Indices, Booleans 

Junctions 
possible user initializations --
user-input-id: -> ID 
user-input-id-seq: -> ID-SEQ 
user-input-scalar: -> SCALAR 
user-input-index: -> INDEX 
user-input-bool: -> BOOL 

variables 
id 
us 
ts 
rngl,rng2 

equations 

:-> ID 
:-> USER-SYIITAB 
:-> TECH-SYIITAB 
:-> RANGE 

intializing input variables 

{284] user-insert( id, memory(ts, us)) 
,.. memoTy( insert-data( id, 

us) 

us-data(user-input-sca lar), 
ts), 

when eq-type(type(td·ts), tech-type(sca!ar-type)) true 



N 
N 
-.J 

{285] user-insert(id,memory(ts,us)) 
• memory( insert-data( id, 

us) 

t-data( user- input- index), 
ts), 

when eq-type(type(id-ts), tech-type(index-type)) true 

{286} user-insert( id,memory(ts, us)) 
s memory( insert-data( id, 

us) 

t-data( user-input-boo i), 
ts), 

1,Jhen eq-type(type(id-ts), tech-type(boo!-type)) • true 

{287} user-insert(id,memory(ts,us)) 
• memory( insert-data( id, 

us) 

t-data( data(user-input-id-us)), 
ts), 

when eq(eva!uate(type(id-ts), ts), 
type(user-input-id-us)) • true 

{288} user-insert(id,memory(ts,us)) 
• memory( insert-data( id, 

us) 

t-data( data-matrix(user-input-id-seq, us)), 
ts), 

when 2-dim-matrix(type(id-ts)) • true 

error cases of user insert: are left unspecified 

{289} user-!oad-excep( id, memory(ts, us)) 
• if (2-dim-matrix(type(id-ts)), 

load-mat-excep(user-input-id-seq, us). 
fa!se) 

{290} !oad-excep-id(id,memory(ts, us)) 
• if (2-dim-matrix(type(id-ts)), 

mat-excep- id(user-input- id-seq, us), 
no-id) 

-- store result calculations --

{291] store-resu!t( id, memory( ts, us)) 
# memory(ts, 

end User-to 

insert(id, 
us-info( eva!uate(type( id ·ts), ts), 

u-data( data( id-ts))), 
us)) 

3 • THE KERNEL INSTRUCTIONS . 

3. 1. Global description. 

The kernel has instructions to 

- transfer data between the user and statistical level, 
- pop data from and push data on the data stack, 
- evaluate index expressions and check index expression 

conditions , 
- call functions that operate on the data stack, 
- alter the sequential control of kernel, 
- control the exception handling, 
- display a message, 
- stop the execution of the kernel. 

The abstract syntax of these instructions is specified in module Instruc
tions. The semantics of the instructions can be found in module Processor 
in section 8 of this appendix. An address of an instruction is specified 
as an instruction with an index indicating the position in the sequence. 

3.2. Specification. 

module Instructions 
begin 

exports 
begin 

sorts INSTR 
Junctions 

-- interface with user level --

user-load: ID 
user-store: ID 

Load instructions 

load: TECH-DATA 
!oad: ID 

Load-elem: ID # INDEX 
l.oad-subm: ID # INDEX 

store instructions 

store: ID 
store-elem: ID # INDEX 
store-subm: ID # INDEX 

-> INSTR 
-> INSTR 

-> INSTR 
-> INSTR 

-> INSTR 
-> INSTR 

-> INSTR 
-> INSTR 
-> INSTR 

-- ind-expression instructions --

eval-expr: IND-EXPR -> INSTR 
cheek-ge-restr: -> INSTR 

other instructions 

jump: INDEX -> INSTR 
jump-true: INDEX -> INSTR 



N 
N 
00 

jw,rp-/a lse: INDEX 

increm: ID 
/call: ID # INDEX 
display: STRING 
raise: ID 
unraise: 
ha!t: 

eq: INSTR # INSTR 
end 

imports Technique-data. Identifiers, 
Ind-e:,:pr-abstr-synta:,;, Strings 

end Instruct tons 

module Instruction-sequences 
begin 

exports 
begin 

sorts INSTR-ADDR 
functions 

addr: INSTR-SEQ # INDEX 
next: INSTR-ADDR 
null-addr: 
/etch: INSTR-ADDR 
ha l t-sequ.ence: 
eq-addr: INSTR-ADDR # INSTR-ADDR 

end 

i11rports Sequences 
{ renamed by 

[ SEQ -> INSTR-SEQ, 

-> INSTR 

-> INSTR 
-> INSTR 
-> INSTR 
-> INSTR 
-> INSTR 
-> INSTR 

-> BOOL 

-> INSTR-.4DDR 
-> INSTR-ADDR 
-> INSTR-ADDR 
-> INSTR 
-> INSTR-SEQ 
-> BOOL 

nu!! -> null-instr-seq, 

variables 

eq-seq 
Items bound by 

[ ITEM 
eq-item 

to Instruct:ions 

is, isl, is2 :-> INSTR-SEQ 
t,il,t2 :-> INDEX 

equations 

eq-instr-seq J 

-> INSTR, 
-> eq J 

{292} ne:,;t(addr(is, t)) • addr(is, increm(i)) 
{293} fetch(addr(is, t)) • item-no(is, i) 
[294} add-item( ha!t, null- instr-seq) = ha it-sequence 

{295} eq-addr(addr(isl, il),addr(is2, i2)) 
• and (eq-instr-seq(isl,is2), eq(il,i2)) 

end Instruction-sequences 

4. TIIE DATA STACK 

4.1. Global description. 

The kernel evaluates an expression on a data stack. The functions index-s 
and range-s are special functions that can r-etrieve. respectivily, a 
sequence of indices (matrix element reference) or a sequence of constant 
ranges (submatrix reference) from the data stack. 

4. 2. Specification. 

module Data-stacks 
begin 

exports 
begin 

/unctions 
index-s: DATA-STACK -> INDEX-SEQ 
range-s: DATA-STACK -> CONST-RANGE-SEQ 

end 

imports Index-sequences, Const-range-sequences, 
Sequences 

variables 

{ renamed by 
[ SEQ 

add-item 
de!-item 
last 
null 

It ems bound by 
[ ITE/1 

eq-item 
to Technique-data 

i,i1,i2 :->INDEX 
is :-> INDEX-SEQ 
rs :-> CONST-RANGE-SEQ 
rst :-> DATA-STACK 

equations 

-> DATA-STACK, 
-> push, 
-> pop, 

top, 
-> empty-stack 

TECH-DATA, 
-> eq l 

[296} index-s(push(t-data(i),rst)) = add-item(i, inde:,;-sfrst)} 
{297} index-s(empty-stack) = nu!l-ind-seq 

{298} range-s(push( t-data( il), push( t-data( i2), rst))) 
= add-item( c-range( il, i2), range-s(rst)) 

{299} range-s( empty-stack) a null-er-seq 

end Data-stacks 



N 
N 

'° 

5. HANDLER TABLES. 

5.a. Global descpription. 

Instruction sequences of exception handlers declared in a statistical 
program are stored in a technique handler table. External exception 
handlers consists of a technique symbol table and instructions sequence. 
The external handlers are stored in the external handler table. Both the 
handll'!rs stored in both the technique and the external handler table are 
available during the execution of a statistical technique. 

5. b. Specification. 

module Tech-handler-tables 
begin 

imports 
Tables 

{ renamed by 
[ TABLE 

null-table 
Entries bound by 

-> TECH-HANDLER-TABLE, 
-> empty-tech-hand-tab J 

[ ENTRY -> INSTR-SEQ, 
eq-entry -> eq-instr-seq ] 

to Instruction-sequences 
Addresses bound by 

[ ADDRESS 
eq-addr 

to Identifiers 

end Tech-handler-tables 

module Externai-handlers 
begin 

erports 
begin 

sorts EXT-HANDL 

-> ID, 
-> eq-id j 

functions 
ext-handl: 
han-symtab: 
han-instr-s: 
eq-ext-handl: 

INSTR-SEQ # TECH-S'll!TAB 
EXT-HANDL 
EXT-HANDL 
EXT-HANDL # EXT-HANDL 

end 

-> EXT-HANDL 
-> TECH-SYMTAB 
- > INSTR-SEQ 
-> BOOL 

imports Techn-symtabs, Instruction-sequences 

end External-handlers 

module Ext-handler-tables 
begin 

imports Tables 
{ renamed by 

[ TABLE 
nu Li-table 

-> EXT-HANDLER-TABLE, 
-> empty-ext-hand-tab 

Entries bound by 
[ ENTRY 

eq-entry 
to External-handlers 
Addresses bound by 

[ ADDRESS 
eq-addr 

to Identifiers 
} 

end Ext-handler-tables 

module Handler-tables 
begin 

e:r:ports 
begin 

sorts HANDLER-TABLES 

EXT-HANDL, 
eq-ext-handl 

-> ID, 
-> eq J 

/unctions 
handlers: TECH-HANDLER-TABLE # EXT-HANDLER-TABLE 

-> HANDLER-TABLES 
end 

i1Trports Tech-handler-tables, Ext-handler-tables 

end Handler-tables 

6. FUNCTION CODE. 

6.a. Global description. 

The functions in the statistical language are left unspecified. :)nly an 
abstract notion of such a function is defined. Given the current values 
on the data stack a function returns a value. Also such a functi::n may 
return an exception identifier. The fact that the function table still 
has to be intialized is emphasized by a parameter Current-functi:::m-code 
in the module Fune-code-tab le. 

6. b. Specification. 

module Function-code 
begin 

exports 
begin 

sorts FUNC-CODE 
/unctions 

execute: 
excrrp-f: 
excep-raised: 
eq-J-code: 

end 

FUNC-CODE # DATA-STACK -> TECH-DATA 
FUNC-CODE # DATA-STACK -> ID 
FUNC-CODE # DATA-STACK -> BOOL 
FUNC-CODE # FUNC-CODE -> BOOL 

imports Data-stacks , Identifiers 

end Function-code 



N 
w 
0 

module Func-code-tabl,es 
begin 

parameters Current-June-code 
begin 
functions 

ini-fcode-tab: 
end Current-tune-code 

exports 
begin 
functions 

execute-/: 
exception-/: 
excep-raised: 

end 
imports Tab ies 

{ renamed by 

ID # DATA-STACK 
ID # DATA-STACK 
ID # DATA-STACK 

-> FUNC-CODE-TABLE 

-> TECH-DATA 
-> ID 
-> BOOL 

{ TABLE 
Entries bound by 

{ ENTRY 
eq-entry 

-> FUNC-CODE-TABLE ] 

to Function-code 
Addresses bound by 

{ ADDRESS 
eq-addr 

t;o Identifiers 

variables 
id :-> ID 
ds :-> DATA-STACK 

equations 

-> FUNC-CODE, 
-> eq-f-code J 

-> ID, 
-> eq-id 

[300] execut;e-f(id,ds) • execute(id"ini-fcode-t;ab,ds) 
{301] exception-f(id,ds) • e:r:cep-f(id"ini-fcode-t;ab,ds) 
[ 302 J excep-raised( id, ds) 

• e:r:cep-raised( id" ini-fcode-tab, ds) 

end Fune-code-tables 

7 • KERNEL PROGRAMS • 

7. a. Global description. 

A statistical program is represented at the kernel level by a kernel 
program. A kernel program consist of an instruction sequence an input 
restriction sequence, a technique symbol table and a technique handler 
table. The collection of all available statistical techniques at the 
kernel level is stored in the statistical tecl-.nique table. 

7. b. Specification. 

modu Le Kernel-programs 
begin 

exports 
begin 

sorts KERNEL-PRO 
/unctions 
kern-pro: INSTR-SEQ # 

INP-RESTR-SEQ # 
TECH-SYMTAB # 
TECH-HANDLER-TABLE -> KERNEL-PRO 

eq-pro: KERNEL-PRO # KERNEL-PRO -> BOOL 
end 

i'TTTports Techn-sym:tabs, Instruction-sequences, 
Tech-handler-tables, Input-restr-sequences 

end Kernel-programs 

module Stat-technique-tables 
begin 

i11Tports Tables 
{ renamed by 

} 

{ TABLE 
null-table 

Entries bound by 
[ ENTRY 

eq-entry 
to Kernel-programs 

Addresses bound by 
[ ADDRESS 

eq-addr 
to Identifiers 

end Stat-technique-tables 

8. EXECUTION. 

8.a. Global description. 

-> STAT-TECH-TABLE, 
empty-st;at-tech-tab 

-> KERNEL-PRO, 
-> eq-pro J 

-> ID, 
-> eq J 

The kernel executes sequences of instructions until a halt instruction is 
reached. Each instruction modifies the state of the kernel. The 
instructions for exception handling are treated in a separate module. The 
state of the kernel is determined by 

- the data memrory, 
- the data stack. 
- the current instruction, 
- the address of the next instruction. 
- the reset information for an unraisP. instrnc.tinn. 
- the exception handler tables, 
- the input restriction sequence, 
- a user display. 



N 
w 
t-' 

8. b. Specification 

modu.l,e Kernel-states 
begin 

exports 
begin 

sorts STATE, RESET-INFO 
functions 
reset-info: INSTR-ADDR # 
reset-info: INSTR-ADDR 
no-reset-info: 

state: /JEIIORY II 
DATA-STACK # 

TECH-SY/JTAB -> RESET-INFO 
-> RESET-INFO 
-> RESET-INFO 

INSTR # -- current instruction --
INSTR-ADDR # address nezt instruction 

RESET- INFO II 
HANDLER-TABLES # 

INP-RESTR-SEQ # 
STRING display --

-> STATE 

stop: -> STATE 
resuit: STATE -> USER-SYIJT.4B 

end 

iurports Fune-code-tables, Memory, Data-stacks, 
Handler-tables, Instructions, Instruction-sequences, 
Input-restr-sequ.ences, Strings 

variables 
m :-> IIEIIORY 
us :-> USER-SY/JTAB 
ts :-> TECH-SYIITAB 
ds :-> DATA-STACK 
ta :-> INSTR-ADDR 
rt :-> RESET-INFO 
hts :-> HANDLER-TABLES 
irs :-> INP-RESTR-SEQ 
dis :-> STRING 
i :-> INSTR 

equations 

[303] state(m,ds,hait, ia,ri,hts, trs,dis) = stop 
[J04} resuit(state(memory(ts,us),ds, i, ia,ri,hts, irs,dis)) • us 

end Kerne L-states 

module Exception-handling 
begin 

exports 
begin 

functions 
handle: STATE 
reset: STATE 

end 

-> STATE 
-> ST.4TE 

imports Kerne L-states 

variables 
m 
us 

:-> /JEIIORY 

ts1 tsl, ts2 
ds 

:-> USER-SYIITAB 
:-> TECH-SYlfTAB 
:-> DATA-STACK 
:-> INSTR-ADDR 
:-> RESET-INFO 
:-> ID 

la, ial, ia2 
rt 
h-td 
tht 
eht 
hts 
trs 
dis 

equations 

:-> TECH-HANDLER-TABLE 
:-> EXT-HANDLER-T.4BLE 
:-> HANDLER-TABLES 
:-> INP-RESTR-SEQ 
:-> STRING 

[JDS] handle(state(memory(ts,us),ds,raise h-id), ia, 
no-reset-info, handlers( t'lt, eht), irs, dis)) 

• if {found(h-id, tht), 
state(memory( ts, us), ds, 

first(h-id "tht), addr(h- :d· tht, l), 
reset-info{ ia), handlers< tht, eht), 
irs,dis), 

if{found(h-id, eht), 
state(memory(han-symtab(h- :d" eht), us), ds, 

first(han-instr-s(h- :d · eht)), 
addr(han-instr-s(h- i :i • eht), l), 
reset-info( ia, ts), hcruilers(tht, eht), 

irs,dis), 
stop)) 

[J06} handle( state(memory(ts, us) ,ds, raisz(h-id), ia, 
reset-info{ia),hand!ers tht,eht), 
irs, dis)) 

• stop 

{JO?} handle( state(memory(tsl, us), ds, rai.,e(h-id), ial, 
reset-info( ia2, ts2), handlers( tht, eht), 
irs, dis)) 

"' stop 

[JOB] handle(state(m,ds,raise(h-id), ial, 
reset-info(ia2),hts, irs, dis)) 

... s'top 



N 
w 
N 

[309} hand!e(state(m,ds,ratse(h-id), ial, 
reset-info( ia2, ts), hts, irs, dis)) 

,,. stop 

[310] reset( state(m, ds, u.nraise, ial, 
reset-info( ia2), hts, irs, dis)) 

• state(m, ds, /etch( ia2), next( ia2), 
no-reset-info, hts, irs, dis) 

[311] reset( state(memory( tsl, us), ds, raise(h-id), ial, 
reset-info( ia2, ts2), hts, irs, dis)) 

• state(memory(ts2, us), ds, /etch( ia2), next( ia2), 
no-reset-tnfo,hts, irs,dis) 

end Exception-handling 

modut.e Processor 
begin 

exports 
begin 

functions 
execu:te: STATE 

end 
-> STATE 

irrrports Kernel-states, Evaluate-restrictions, 
Evaluate-ind-e:z:pr, Exception-handling, User-to 

variables 
m :-> lfElfORY 
ts :-> TECH-SYlfTAB 
us :-> USER-SY/fTAB 
ds :-> DATA-STACK 
irs :-> INP-RESTR-SEQ 
rt : - > RESET-INFO 
id :-> ID 
ie :-> IND-EXPR 
i, intl, int2 :-> INDEX 
ia :-> INSTR-ADDR 
is :-> INSTR-SEQ 
h-id :-> ID 
ht :-> HANDLER-TABLES 
/-id :-> ID 
td :-> TECH-DATA 
b :-> BOOL 
dis,mes :-> STRING 

equations 
user interface instruct:ions --

[312] execute( state(m, ds, user-load( id), ta, rt, ht, trs, dis)) 
execute( i/(user-load-excep( id, m), 

state(user-insert( id, m), ds, 
raise(load-excep-id( id, m)), ia, ri, 
ht, irs,dis), 

state(user-insert( id, m), ds, 
/etch( ia), next( ta), 
rt,ht, irs,dis))) 

[313} 

[314] 

[315] 

execute( state(m, ds, user-store( id), ia, ri, ht, irs, dis)) 
execute( st:ate( store-resu.Lt( id, m), ds, 

/etch( ia), next( ia), 
ri,ht:, irs,dis)) 

-- load data stack instructions --

execute( state(m, ds, Load( id), la, ri, ht, irs, dis)) 
• execute( state(m,push( get-data(id, m), ds), 

/etch( ia), next( ia), 
ri,ht, irs,dis)) 

execute( state(m, d.;, load( td), ia, ri, ht, irs, dis)) 
• execute(state(m,push(td,ds), 

/etch( ia), next( ia), 
ri,ht, irs,dis)) 

[316] execute(state(m,ds, !oad-e!em(id, i), ta,ri,ht, irs,dis)) 
execute(st:ate(m, 

push{ get-elem( 
id, index-s( top( ds, i)), m), 

pop(ds, i)), 
/etch( ia), next( ia), 
ri,ht, irs,dis)) 

[317} execute(state(m,ds, Load-subm(id, i), ia,ri,ht, irs,dis)) 
execute( state(m, 

push( get-subm( 
id, range-s(top(ds, i)) ,m), 

pop(ds, i)), 
/etch( ia), next( ia), 
rt,ht, irs,dis)) 

-- store from data st:ack in memory instructions --

[318] execute( state(m, ds, store( id}. ia, ri, ht, irs, dis)) 
execute( state( store-data( id, top( ds), m), 

pop(ds), 
fetch/ ia), next( ia), 
ri,ht, irs,dis}} 

[319] execute(state(m,ds,store-e!em(id, i), ia,ri,ht, irs,dis)) 
execute( state( st:ore-e Lem( id, top( ds}, 

index-s(top(pop{ds}, i)),m), 
pop(pop(ds), i), 
/etch( ia), next( ia), 
ri,ht, irs,dis)) 

[ 320 J execute( state(m, ds, store-subm( id, i), ia, ri, ht, irs, dis)) 
execute( state( store-subm( id, top( ds), 

rcmge-s(top(pop{ds}, i)),m), 
pop(pop( ds), i), 
fetch(~:::), next( ia), 
ri,ht, irs,dis)) 

-- index expression instruct ions --



N 
w 
w 

{321] e;r;ecute(state(memory(ts,us) ,ds, eval-e:rpr(ie), ia, 
ri,ht, irs,dis)) 

: execute( state(m, 
push(t-data( eva1uate( ie, ts)) ,ds), 
fetch( ia), next( ta), 
ri,ht, trs,dis)) 

{322) execute( state(memory(ts,us) ,ds, check-ge-restr, ia, 
ri,ht, irs,dis)) 

• if{check(irs,ts), 
execute( state(memory(ts, us), ds, 

fetch( ta), next( ta), 
rt,ht, trs,dis)), 

stop) 

-- other instructions --

[323] execute( state(m,ds,jump(intl), addr(is, int2), ri,ht, 
irs,dis)) 

,,,, execute(state(m,ds, 
fetch(addr(is, add( intl, int2))), 
next{addr{is, add(intl, int2))), 
ri,ht, irs,dis)) 

[ 324] execute( state( m, push( t-data(b), ds), 
jump-true( intl}, addr( is, int2), 
ri,ht, irs,dis)) 

"" execute(state(m,ds, 
if(b, 

fetch(addr(ts,add(intl, int2))), 
fetch(addr(ts, int2))), 

if(b, 
next(addr(is,add(intl, int2))), 
next(addr(is, int2))), 

rt, ht, irs,dis)) 

-- the error case (no boolean on the stack) 
-- is left unspecified 

[325] execute( state(m,push{t-data{b) ,ds), 
jump-false( Intl), addr( is, int2}, 
rt,ht, irs,dis)) 

"' execute(state(m,ds, 
if(not(b), 

fetch( addr( is, add( int I, int2))), 
fetch( addr(is, int2))), 

if(not(b), 
next( addr(is,add(intl, int2))), 
next(addr(is, int2))), 

ri,ht, irs,dis)) 

the error case ( no boo Lean on the stack) 
is left unspecified 

[326] execute( state(m,ds,fcall(f-id, i}, ia, ri, ht, irs,dis}} 
execute( if( excep-raised( f-id, ds}, 

state(m, 
push( execute-f(f-id,ds}, 

pop(ds, i)}, 
raise(exception-f(/-id,ds)), ia, 
ri,ht, irs,dis), 

state(m, 
push( execute-f{f-id,ds}, 

pop(ds, i)), 
fetch( ia}, next( ia}, 
ri,ht, irs,dis))} 

{327 J execute( state(m,ds, raise(h-id}, ia, ri, ht, irs,dis)) 
• execute( 

handle( 
state(m, ds, raise(h-id), ia, rt, ht, irs, dis))) 

[328] execute(state(m,ds,unraise, ia,ri,ht, irs,dis)) 
.,. execu.te(reset(state(m,ds, 

unraise, ta, ri, ht, irs, dis))) 

{329] execute( state(m,ds,display(mes}, ia, ri, ht, irs, dis}} 
= execute( state(m, ds,Jetch( ta), next( ia), 

ri,ht, irs,mes)) 

{330] execute(stop} = stop 

end Processor 

9- KERNEL. 

9.a. Global description. 

The kernel can execute the statistical techniques stored in the 
statistical technique table. The execution of a statistical technique may 
invoke exception handlers. The first instruction to be executed is the 
first instruction in the instruction sequence of the statistical 
technique. 
The results of the calculations after the execution of the statistical 
technique are stored in the user symbol table. 

9.b. Specification. 

module Kernel 
begin 

e:r:ports 
begin 

functions 

end 

Z"' •. m-techn: USER-SY.J!TA.B # KERNEL-PRO # 
EXT-HANDLER-TABLE -> USER-SYl1TAB 

run-techn: ID # USER-SYM.TAB # STAT-TECH-TABLE # 
EXT-HANDLER-TABLE -> USER-SYM.TAB 



N 
l,.) 

.i:--

i,rrports Stat-technique-tables, 
Processor 

variables 
us 
ts 
is 
irs 
eht 
tht 
stt 
id 

equations 

:-> USER-SYIITAB 
:-> TECH-SYIITAB 
:-> INSTR-SEQ 
:-> INP-RESTR-SEQ 
:-> EXT-HANDLER-TABLE 
:-> TECH-HANDLER-TABLE 
:-> STAT-TECH-TABLE 
:-> ID 

[331} run-techn(us, kern-pro(ts, irs, ts, tht), eht) 
= result( 

ezecute( 
state(memory(ts, us) 1 empty-stack, 

first( is), addr( is, l), 
no-reset-info, handlers(tht, eht), 
irs, string(b lank)))) 

[332} run-techn(id,us, stt, eht) - run-techn(us, id"stt, eht) 

end Kernel, 

APPENDIX K. ASF SPECIFICATION OF THE GENERATION OF KERNEL INSTRUCTIONS 

A statistical program is represented at the kernel level as a kernel 
program. The generation of a kernel instruction sequence for a statis
tical program and a technique handler constructed is specified in this 
appendix. It contains : 

- modules that describe the generation of kernel instructions for 
variables. expressions and statements, 

- modules that describe the generation of kernel instructions for 
statistical program sections; the instruction sequence generated foI' 
an exception handler section is stored in the technique symbol 
table, 

- a module that describes the generation of a kernel instruction 
sequence and a technique handler table for an entire statistical 
program. 

1. GENERATION OF KERNEL INSTRUCTIONS FOR TilE BASIC ELEMENTS OF THE 
STATISTICAL LANGUAGE. 

1. a. Global description. 

In this section the gener-ation of kernel instructions for- var-iables, 
expressions and statements is specified. The assigment statements are 
written in postfix notation, making it possible for the kernel to 
evaluate the statements on the data stack. The message statement 
generates a display instruction. The instructions for a compound state
ment consists of the instructions generated for the individual statements 
in the compound statement. For a for-statement instruction ar'e generated 
that initialize the control variable, check the restriction that the 
control variable is smaller than the upper limit, execute the statements 
inside the loop and increment the control variable. Also the size of the 
involved jumps is specified. 

1.b. Specification. 

module Gen-code-variables 
begin 

export;s 
begin 

functions 
gen-code: B00L # INSTR-SEQ # VARIABLE 
gen-code: INSTR-SEQ # IND-EXPR-SEQ 
gen-code: INSTR-SEQ # RANGE-SEQ 

end 

-> INSTR-SEQ 
- > INSTR-SEQ 

INSTR-SEQ 

import:s Variabl,e-abstr-syntax, Instru.ction-sequencesJ 
Booleans { renamed by [true -> load, false -> store/ } 

variables 
,o :-> INSTR-SEQ 
id :-> ID 
inds :-> IND-EXPR-SEQ 
subrs :-> RANGE-SEQ 
ie, iel, ie2 :-> IND-EXPR 
/lag :-> B00L 



N 
w 
<..n 

equations 
-- simple variables --

[333] gen-code(/lag, is,abs-var(id)) 
• if (eq(/lag, load), add-item(load(id), is), 

add-item( store( id), is)) 

-- matrix elememt references --

[334] gen-code(flag, is,abs-var(id, inds)) 
• if ( eq(/lag, toad), 

add-item( load-elem( id, n-of-dims( inds)), 
gen-code(is, inds)), 

add-Item( ,;tore-elem( id, n-of-dims( inds)), 
gen-code(is, inds))) 

-- submatrices 

[335] gen-code(/lag, is,abs-var(id,subrs)) 
• if( eq(flag, Load), 

add-item(load-subm( id, n-of-rngs( subrs)), 
gen-code(is, subrs)), 

add-item( store-subm( id, n-of-rngs( subrs)), 
gen-code( is, subrs))) 

index expr sequences --

[336] gen-code(is,add-item(ie, inds)) 
• add-item(eval-expr(ie),gen-code(is, inds)) 

[33? J gen-code( is, ad:1-item( ie, nul L-ind-expr-seq)) 
• add-item(eval-expr(ie), is) 

note that eval-expr(ie) is only the instruction 
that ie must be evaluated~ the actual evaluation 
is defined in the kernel. 

range sequences --

[338] gen-code( is, add-item(range( tel, ie2), subrs)) 
• add-ttem(evaL-expr(tel), 

add-item( evaL-expr( te2), 
gen-code( is, inds))) 

{339] gen-code(is, add-item(range(iel, ie2), nulL-range)) 
• add-ttem(evaL-expr(iel), 

end Gen-code-variables 

module Gen-code-expressions 
begin 

exports 
begin 

/unctions 

add-item( eva L-expr( ie2), ts)) 

gen-code-expr: INSTR-SEQ # EXPR -> INSTR-SE:Q 

gen-code-argl: INSTR-SEQ # ARG-LIST -> INSTR-SEQ 
n-of-args: ARG-LIST -> INDEX 

end 

imports Erpr-abstr-synta:c, Instruction-sequences, 
Gen-code-variables 

variables 
is 
exp 
var 
td 
/-id 
argl 

equations 

:-> INSTR-SEQ 
:-> EXPR 
:-> VARIABLE 
:-> TECH-DATA 
:-> ID 
:-> ARG-LIST 

[340] gen-code-expr(is,abs-expr(var)) gen-code(toad, is,var) 
{341] gen-code-expr(is,abs-expr(td)) • add-item(load(td), is) 

-- Junction calls --

[342} gen-code-expr( ts, abs-f-caL L( /-id, argl)) 
• add-item(fcaLL(/-td, n-of-args( argl)), 

gen-code-argl( is, argL)) 

[343] g~n-code-argl( is, abs-arg-L( argL, exp)) 
•gen-code-expr( gen-code-argl( is, arg l), exp) 

[ 344} gen-code-argL( is, abs-arg-L( erp)) 
•gen-code-expr( is, exp) 

end Gen-code-expressions 

module Gen-code-statements 
begin 

exports 
begin 

functions 
gen-code-stmts: 
gen-code-stm: 

INSTR-SEQ # STATEIIENTS 
INSTR-SEQ # STATEl!ENT -> 

INSTR-SEQ 
INSTR-SEQ 

end 

-- function for the for-statement --

increm-code: 
check-up- l tmtt: 

int-control-var: 
size-of-jumpl: 
size-of-Jump2: 

ID # STATEMENTS N LVSTR-SEQ 
ID # IND-EXPR # STATEMENTS # 
INSTR-SEQ 
ID # IND-EXPR # INSTR-SEQ 
STATEMENTS 
STATEMENTS 

imports Gen-code-expressions, Gen-code-variables, 
Statements-abstr-syntax, Instruction-sequences 

-> INSTR-SEQ 

-> INSTR-SEQ 
-> INSTR-SEQ 
-> INDE:X 

INDE:X 



N 
u.l 

°' 

variables 
ts 
stmts 
stm 
var 
erp 
m 
id 

:-> INSTR-SEQ 
:-> STATEMENTS 
:-> STATEMENT 
:-> VARIABLE 
:-> EXPR 
:-> STRING 
:-> ID 

ie, iel, ie2 : - > IND-EXPR 

equations 

{345} gen-code-stmts( is, abs-statmts( stmts, stm)) 
• gen-code-.,tm( gen-code-stmts( is, stmts), stm) 

[346} gen-code-stmts(ts, abs-statmts( stm)) 
• gen-code-stm(ts,stm) 

assignment statement --

[ 34 7 J gen"code-stm( ts, abs-assgn( var, erp)) 
"" gen-code( load~ gen-code-erpr( is, exp), var) 

-- index assignment statements --

[348} gen-code-stm(is,abs-ind-assgn(id, ie)) 
• add-item(store(id),add-item(evaZ-erpr(ie), is)) 

message statement --

[ 349 J gen-code-stm( is, abs-messtmt ( m)) 
• add-item(dtsp!ay(m), ts) 

compound statement --

[350] gen-code-stm(is, abs-compound( stmts)) 
• gen-code-stmts( is, stmts) 

-- for statement --

{351] gen-code-stm(is,abs-for(td, iel, ie2,stmts)) 
.. increm-code(id,stmts, 

gen-code-stmts( 
check-up-l.imit(id, ie2,stmts, 

ini-controi-var( id, tel, is)), stmts)) 

[352] ini-controi-var(id, ie, ts) 
• add-item( store( id), 

add-item( evai-erpr( te), is)) 

[353] check-up-itmtt(td, te,stmts, ts) 
• add-item( jump-true( size-of-jumpl ( stmts)), 

add-item{fca!i(greater-tnt, increm(l)), 
add-item( foad( id), 

add-item( evaZ-erpr( ie), ts)))) 

{354] increm-code(id, stmts, ts) 
• add-item( jump{ size-of-jump2( stmts)), 

add-item( increm( id), is)) 

[355] size-of-jumpl ( stmts) 
add(n-of-items( gen-code-stmts(nui i- instr-seq, stmts)), 

tncrem(l)) 

number of instructions generated for sta'tements 
pl.us -increment instruction and jump instruction 

{356} stze-of-jump2(stmts) 
• add(n-of-ttems( gen-code-stmts(nui i- instr-seq, stmts)), 

tncrem( increm( tncrem( tncrem(l)))) ) 

number of instructions generated /or statements 
pl.us increment instruction and instruction in 
upper limit check 

end Gen-code-statements 

2. GENERATION OF KERNEL INSTRUCTIONS FOR SECTIONS OF A STATISTICAL 
PROGRAM 

2 .1. Global description. 

Each section of a statistical program generates specific instruction 
sequences. These instruction sequences are added to instructiu:is 
sequences generated in previous sections. An input/output section only 
generates user-load and user-store instructions. The exception handler 
section generates instruction sequences that are stored in a technique 
handler table. 

2.2. Specification. 

module Gen-code-dee larations 
begin 

exports 
begin 

functions 
gen-code-io-sect: 
gen-code-dee ls: 
gen-code-decl: 
gen-code-id: 

end 

INSTR-SEQ # IO-SEC # BOOL 
INSTR-SEQ # DECLS # BOOL 
INSTR-SEQ # DECL # BOOL 
INSTR-SEQ # ID # BOOL 

inrports Instruction-sequences, Decl-abstr-syntax 

variables 
is 
inp-dec ls, out-dee is 
decls 
ded 
idZ 
id 
tt 

:-> INSTR-SEQ 
:-> DECLS 
:-> DECLS 
:-> DECL 
:-> ID-SEQ 
:-> ID 
:-> TECH-TYPE 

INSTR-SEQ 
INSTR-SEQ 

-> INSTR-SEQ 
-> INSTR-SEQ 



N 
w ___, 

UV 
mess 
f!ag 

:-> USER-VIEW 
:-> STRING 
:-> B00L 

equations 

-- thP. variable flag tndtc"'tes whether input or output --
-- instructions must be generated 

[357 J gen-code-io-sect( ts, abs-to-sect( inp-decZs, out-dee ls), f!ag) 
• if (eq(!Zag, load), gen-code-decls(is, inp-decls,/Zag), 

gen-code-decZs( is, out-dee ls, f!ag)) 

[ 358 J gen-code-decls (is, abs-dee ls ( de els, dee i), I lag) 
• gen-code-decl( gen-code-dee Zs( is, dee Zs,flag), dee Z,/Zag) 

[ 359 J gen-code-dee Zs( is, abs-decZs( dee!), I Zag) 
• gen-code-decl(is,decZ,flag) 

{360] gen-code-decl(is, abs-decZ(add-item(id, idl), tt,mess) ,/Zag) 
• gen-code-id( 

gen-code-dee!( is, abs-decZ( idl, tt, mess) ,!Zag), 
id,!Zag) 

{361] gen-code-decL( is, abs-decZ(nul l-id-seq, tt, mess) ,flag) 
• is 

[ 362 J gen-code-id( is, id, load) 
{36J] gen-code-td(is, id,store) 

end Gen-code-declarations 

modu1.e Gen-code-implement-section 
begin 

exports 
begin 

functions 

• add-item(user-Zoad(id), is) 
add-item(user-store( id), is) 

gen-code-tmpZ-sec: INSTR-SEQ # IM.PL-SEC -> INSTR-SEQ 
end 

imports Gen-code-statement"s, Instruction-sequences, 
Impl-abstr-syntax 

variables 
ts :-> INSTR-SEQ 
decZ :-> INTERN-DECLS 
stmts :-> STATEIIENTS 

equations 

[ 364 J gen-code- imp l-sec( is, abs-imp Z-sec( dee!, stmts)) 
• gen-code-stmts( ts, stmts) 

end Gen-code-implement-section 

module Gen-code-test-section 
begin 

exports 
begin 

/unctions 
gen-code-test-sec: 
gen-code-raises: 
gen-code-raise: 

INSTR-SEQ # TEST-SEC -> 
INSTR-SEQ # RAISES 
INSTR-SEQ # RAISE 

INSTR-SEQ 
-> INSTR-SEQ 
- > INSTR-SEQ 

end 

imports Gen-code-statements, Instruction-sequenees, 
Test-abstr-syn:tax 

variables 
is 
rs 
r 
id 
erpr 
decl 
stmts 

equations 

:-> INSTR-SEQ 
:-> RAISES 
:-> RAISE 
:-> ID 
:-> EXPR 
:-> INTERN-DECLS 
:-> STATEIIENTS 

{365 J gen-code-test-sec( is, abs-test-sec( decl, stmts, rs)) 
-= gen-code-raises( gen-code-stmts( is, stmts), rs) 

{366] gen-code-raises( is, abs-ratses(rs, r)) 
n gen-code-raise( gen-code-raises( is, rs), r) 

[367 J gen-code-raises( is, abs-ratses(r)) 
= gen-code-raise( is, r J 

[368 J gen-code-raise(ls, abs-raise( td, erpr)) 
• add-item(raise( id), 

add-item( jump-false( increm( 1)), 
gen-code-erpr( is, erpr))) 

end Gen-code-test-section 

module Gen-code-handl-section 
begin 

exports 
begin 

Junctions 
gen-code-handl-sec: 

gen-code-hndl: 

end 

TECH-HANDLER-TABLE # HANDL-SEC -> 
TECH-HANDLER-TABLE 
TECH-HANDLER-TABLE # HANDLER -> 
TECH-HANDLER-TABLE 

imports Gen-code-statements, Tech-handter-tables, 
Handler-abstr-synta.% 

variables 
handl-s 
hndl 

:-> HANDL-SEC 
:-> HANDLER 



N 
w 
00 

is : - > INSTR-SEQ 
ht :-> TECH-HANDLER-TABLE 
id :-> ID 
deci :-> INTERN-DECLS 
stmts :-> STATEMENTS 

equations 

[369] gen-code-handl-sec(ht, abs-handl-sec(handl-s, hndl)) 
• gen-code-hndl( gen-code-handl-sec(ht, handl-s), hndl) 

[370 J gen-code-handl-sec(ht, abs-handl-sec(hndl)) 
• gen-code-hndl(ht, hndl) 

[371} gen-code-hndl(ht, abs-handler( id, decl, stmts)) 
• insert( id, 

gen-code-stmts( nut. L- instr-seq, stmts), 
ht) 

end Gen-code-handl-sectton 

3. THE GENERATION OF KERNEL INSTRUCTION FOR A STATISTICAL PROGRAM 

3,a. Global description. 

An instruction sequence in a kernel program consists of a sequence of 
input instrictions, an instruction to check the input restrictions, a 
sequence that describes the calculations of the statistics, a sequence of 
output instructions, and a halt instruction. How input and output 
instruction sequence are generated for a statistical program is specified 
in module Gen-to-instructions. The generation of calculation instructions 
is specified in module Gen-calc-instructions. The instruction sequence 
are linked in module Gen-instructions. The technique handler table of a 
statistical technique contains the instruction sequences of the exception 
handlers in the statistical technique, as specified in module Gen
handlers. 

3. b. Specification. 

module Gen-lo-instructions 
begin 

exports 
begin 

/unctions 
gen-inp-tnstr: INSTR-SEQ # STAT-PRO ->INSTR-SEQ 
gen-tnp-instr: INSTR-SEQ # SECTION ->INSTR-SEQ 
gen-out-instr: INSTR-SEQ # STAT-PRO ->INSTR-SEQ 
gen-out-instr: INSTR-SEQ # SECTION ->INSTR-SEQ 

end 

imports Gen-code-declarations, Statistical-programs 

variables 
sp 
is 
set 

:-> STAT-PRO 
:-> INSTR-SEQ 
:-> SECTION 

io-s :-> IO-SEC 
impl-s :-> Il'IPL-SEC 
test-s :-> TEST-SEC 
handl-s :-> HANDL-SEC 
id :-> ID 

equations 
-- input instructions --

{372} gen-inp-instr( is, abs-prog( sp, set)) 
• gen-inp-tnstr( gen-inp-instr( is, sp), set) 

[373} gen-inp-instr( is, abs-prog( set)) 
• gen-inp-instr(is, set) 

[374} gen-inp-instr( is, abs-sect( io-s)) 
a: gen-code-io-sect(is, io-s, load) 

[375} gen-inp-instr(is,abs-sect(impL-s)) • is 
[376} gen-inp- instr( is, abs-sect(handl-s)) is 
{377} gen-inp-instr(is,abs-sect(test-s)) • is 
[378} gen-inp-instr(is,abs-name(id)) • is 

-- output instructions --

[379 J gen-out-instr( is, abs-prog( sp, set)) 
~ gen-out-instr( gen-out-instr( is, sp), set) 

[380 J gen-out-instr( is, abs-prog( set)) 
2 gen-out-instr(is,sct) 

{381} gen-out-instr( is, abs-sect( io-s)) 
""gen-code-io-sect(is, io-s,store) 

[382} gen-out-instr(is,abs-sect(impL-s)) is 
{383] gen-out-instr(is,abs-sect(handl-s)) is 
{384} gen-out-instr(is,abs-sect(test-s)) is 
{385} gen-out-instr(is,abs-name(id)) is 

end Gen-lo-instructions 

module Gen-calc-instru.ctions 
begin 

exports 
begin 

/unctions 
gen-calc-instr: INSTR-SEQ # STAT-PRO ->INSTR-SEQ 
gen-calc-instr: INSTR-SEQ # SECTION ->INSTR-SEQ 

end 
irrrports Gen-code-implement-section, Gen-code-test-sect ion, 

Statistical-programs 

variables 
sp 
is· 
set 

:-> ST.4T-PRO 
:-> INSTR-SEQ 
:-> SECTION 



~., 
w 
'D 

io-s :-> IO-SEC 
impl-s :-> I/1PL-SEC 
test-s :-> TEST-SEC 
hamn-s :-> IIABDL-SEC 
id :-> ID 

equations 

[386 J gen-ca le-instr( is, abs-prog( sp, set)) 
• gen-calc-instr(gen-calc-instr(is,sp), set) 

[ 387 J gen-calc-instr( is, abs-prog( set)) 
• gen-calc-tnstr(ts, set) 

[388] gen-ca Le-instr( ls, abs-sect( lmpL-s)) 
• gen-code-tmpi-sec(is, tmpL-s) 

[389] gen-catc-lnst1'(is, abs-sect(test-s)) 
,., gen-code-test-sec(is, test-s) 

[390] gen-catc-tnstr(ts,abs-sect(handi-s)) • ts 
[391] gen-calc-instr(is,abs-sect(to-s)) • is 
{392] gen-calc-tnstr( ts, abs-name( id}) • is 

end Gen-catc-instructions 

module Gen-handlers 
begin 

exports 
begin 

functions 
gen-handters: STAT-PRO -> TECH-HANDLER-TABLE 
gen-handlers: TECH-HANDLER-TABLE # SECTION -> TECH-HANDLER-TABLE 

end 

imports Gen-code-handi-section, Stattsttcal-programs, 
Tech-handLe1'-tab les 

va-riables 
sp 
ht 
set 
io-s 
impl-s 
test-s 
handl-s 
id 

equations 

:-> STAT-PRO 
:-> TECH-1/ANDLER-TABLE 
:-> SECTION 
:-> IO-SEC 
:-> I/1PL-SEC 
:-> TEST-SEC 
:-> HANDL-SEC 
:-> ID 

[393] gen-handlers( abs-prog( sp, set}) 
• gen-handlers(gen-handlers( sp), set) 

{394} gen-handiers(abs-prog(sct)) 
• gen-handlers( empty-tech-hand-tab, set) 

[395] gen-handlers(ht, abs-sect(handl-s)) 
• gen-code-handl-sec(ht, handl-s) 

[396] gen-handlers(ht, abs-sect( impl-s)) 
{397] gen-handters(ht, abs-sect(test-s)) 
{398] gen-handlers(hr, abs-sect( io-s)) 
{399 J gen-handters(ht, abs-name( id)) 

end Gen-handters 

module Gen-instructions 
begin 

e:rports 
begin 

Junctions 

• ht 
• ht 
• ht 
• ht 

gen-check-tnstr: INSTR-SEQ # STAT-PRO -> INSTR-SEQ 
gen-instr-seq: STAT-PRO -> INSTR-SEQ 

end 

imports Instruction-sequences, Gen-ca Le- instruct ions, 
Gen-to-instructions 

variables 
sp 
is 

equations 

:-> STAT-PRO 
:-> INSTR-SEQ 

[400] gen-check-instr(is,sp) • add-ttem(check-ge-restr, is) 

{401} gen-lnstr-seq(sp) 
• add-ttem(halt, 

gen-out-instr( 
gen-ca Le-instr( 

gen-check-instr( 
gen-inp-instr(nult- instr-seq, sp), sp), sp), sp)) 

end Gen-instructions 



N 
~ 
0 

APPENDIX L. ASF SPECIFICATION OF TIIE OVERALL CONDUCTOR SYSTEM 

In this appendix the overall CONDUCTOR system is specified. 
In the CONDUCTOR SYSTEM: 

- a technical statistician can implement statistical techniques. these 
techniques are stored in the statistical technique table, 

- a data expert or computer scientist can implement external exception 
handlers, 

- an applied statistician can use the implemented statistical 
techniques , 

- a data expert can initialize the database system, 
- a computer scientist can implement the functions that are available 

in the statistical language. 
In this appendix we specify the compiler that generates kernel programs 
for statistical techniques (module Compiler), and the generation of 
external handlers {module Gen-ext-handlers}. The statistical technique 
table and the external handler table together form the collection of 
available techniques for the applied statistician (module Implemented
techniques). An applied statistician may call the implemented techniques 
in a simple user language. The definition of the user language. in 
section 2 of this appendix. includes the definition of a database inter
face. Finally, in section 3 the overall CONDUCTOR system is specified. 

1. COMPILERS. 

1. a. Global description. 

A statistical program is compiled into a kernel program as specified in 
module Compiler. External handlers are compiled as specified in module 
Gen-ext-handlers. 

1. b. Specification. 

module Compiler 
begin 

exports 
begin 

/unctions 
compile: STAT-PRO -> KERNEL-PRO 
store-stat-tech: STAT-PRO # STAT-TECH-TABLE -> STAT-TECH-TABLE 

end 

imports Statistical-programs, KerneZ-programs, 
Input-res tr-generator, Static- type-checking, 
Gen-instructions, Gen-handlers, 
Stat-technique-tables 

functions 
name: STAT-PRO -> ID 

variables 
sp :-> STAT-PRO 
sst :-> STAT-TECH-TABLE 

equations 

[ 402} comp ire( sp) kern-pro( gen-instr-seq( sp), 
gen-restr-pro( sp, type-check-pro( sp)), 
type-check-pro( sp), 
gen-handlers( sp)) 

{40J} store-stat-tech( sp. sst) • insert(name( sp), compi!e( sp), sst) 

end Campi ler 

module Gen-ext-handlers 
begin 

exports 
begin 

functions 
gen-ext-handler: 
store-ext-handler: 

H.4NDLER -> EXT-HANDL 
HANDLER # EXT-HANDLER-TABLE 

EXT-HANDLER-TABLE 
end 

imports Handler-abstr-syntax, External-handlers, 
Stat-check-handlers, Gen-code-statements, 
Gen-res tr-handlers, Ext-handler- tables 

variables 

equations 

id 
dec1 
stmt;s 
ts 
eht 
hnd 

:-> ID 
:-> INTERN-DECLS 
:-> STATEMENTS 
:-> TECH-SYMTAB 
:-> EXT-HANDLER-TABLE 
:-> HANDLER 

[ 404 J gen-ext-handler( abs-handler( id, decl, stmts)) 
= ext-handl( gen-code-st:mts(null- instr-seq, stmts), 

typcheck{abs-handler( id, ld, stmts), errrpty-mem)) 

when 
eq- inp-restr-seq( gen-restr-handler(hnd, ts, no-restrict ions), 

no-restrictions) 
~ true 

the error cases are left unspecified 

[ 405} store-ext-handler(hnd, eht) 
"" insert( id, 

gen-ext-handler(hnd), 
eht) 

end Gen-ext-handlers 



N ..,.. 
,-.. 

2. THE USER LANGUAGE. 

2.a. Global description. 

The user language allows the user to declare variables, ini tiliaze 
variables. retrieve series from a database, and call statistical tech
niques. The user can also determine the current data sample 

2.b. Specification. 

module User-programs 
begtn 

e:,;ports 
begtn 

sorts USER-PRO, USER-COlllfAND 
functtons 
user-pro: USER-PRO # USER-CO/f/fAND 
user-pro: USER-COl'll'IAND 

user-decl: 
set: 
set-sample: 
retrieve: 
call-tech: 

end 

USER-TYPE # ID 
ID # USER-DATA 
CONST-RANGE-SEQ 
ID 
ID 

imports Identt.fters 1 User-types, User-data, 
Const-range-sequences 

end User-programs 

3. THE RESULTING SOFTWARE. 

3. a. Global description. 

-> USER-PRO 
-> USER-PRO 

-> USER-COl'll'IAND 
-> USER-COlllfAND 
-> USER-COl'll'IAND 
-> USER-COlllfAND 
-> USER-COl'll'IAND 

The implemented statistical techniques and exception handlers together 
form the implemented techniques. The statistical techniques can be called 
by the user in the resulting software. The resulting software also has a 
database interface. The user may retrieve data from the database, when 
data is retrieved also a background-query is started to check the 
consistency of the retrieved data. 

3.b. Specification. 

module Implemented-teehntques 
begtn 

e:,;ports 
begtn 
sorts Il'IPL-TECH 
functtons 
avatlable: STAT-TECH-TABLE # EXT-HANDLER-TABLE -> Il'IPL-TECH 

end 

imports Stat-teehntque-tables, E:ct-handler-tables 

end Imp lemented-techntques 

module Database-tnterface 
begtn 

parameters Current-database 
begtn 

sorts DATA-BASE 
fu,ncttons 

current-db: -> DATA-BASE 
data-query: DATA-BASE # ID # CONST-RANGE-SEQ -> USER-DATA 
retl'V-data: DATA-BASE # ID # CONST-RANGE-SEQ -> SCALAR-SEQ 
bg-query: DATA-BASE # ID # CONST-RANGE-SEQ -> ID-SEQ 

end Current-database 
e:,;ports 

begtn 
sorts DATA-BASE 
fu,ncttons 

query: ID # CONST-RANGE-SEQ -> USER-INFO 
end 

tmports Identtfters, Const-range-sequences, 
User-symtab-tnfo, Sertes, Id-sequences 

vartables 
db -> DATA-BASE 

-> ID td 
crs -> CONST-RANGE-SEQ 

equattons 

{406] data-query(db, td,crs) • u-data(ser(retl'V-data(db, id,crs), 
crs, 

{407] query(id,crs) 

end Database-tnterfaee 

module Resulttng-soft>Xlre 
begtn 

exports 
begtn 
sorts USER-STATE 
fune1:tons 

bg-query(db, id,crs))) 

• us-info(sertes-type(crs), 
data-query( current-db, id, crs)) 

user-state: USER-SYl'ITAB # CONST-RANGE-SEQ -> USER-STATE 
e:cec-user-pro: USER-STATE # Il'IPL-TECH # USER-PRO -> USER-STATE 
e:cec-user-com: USER-STATE # Il'IPL-TECH # USER-COl'll'IAND -> USER-STATE 

end 

imports User-symtabs, Const-range-sequences, Kernel, 
Database-interface, User-programs, Implemented-techniques 

vartables 
us 
crs, crsl, crs2 
td 
ut 

:-> USER-SYl'ITAB 
:-> CONST-RANGE-SEQ 
:-> ID 
:-> USER-TYPE 



N 
-1"
N 

:-> USER-DATA ud 
stt 
eht 
it 

:-> STAT-TECH-TABLE 
:-> EXT-HANDLER-TABLE 
:-> IM.PL-TECH 

equations 

{408} exec-user-com(user-state(us, crs), it,user-deci(ut, id)) 
- user-state(insert-type(id,ut, us), crs) 

[ 409 J exec-user-com(user-state( us, crs), it, set( id, ud)) 
~ user-state( insert-data( id, ud, us), crs) 

[ 410 I exec-user-com(user-state( us, crsl), it, set-samp ie( crs2)) 
= user-state(u.s, crs2} 

{411) exec-user-com(user-state(us, crs), it, retrieve(td)) 
• user-state(tnsert(id,query(td, crs) ,us), crs) 

{412] e:r;ec-user-com(user-state(us, crs), 
avatiabZe( stt, eht), caH-tech(id)) 

• user-state(ru.n-techn( id, us, stt, eht), crs) 

end Resuiting-software 

4. TIIE ENTIRE CONDUCTOR SYSTEM 

4. a Global description. 

In the CONDUCTOR specification environment a technical statistician 
can implement statistical techniques, other experts can implement 
exception handlers and a user can apply the implemented statistical 
techniques and exception handlers. 

modute Conductor-sessions 
begin 

exports 
begin 

sorts SESSIONS, SESSION 
functions 

end 

abs-sessions: SESSIONS # SESSION 
abs-sessions: SESSION 
user-session: USER-PRO 
stat-session: STAT-PRO 
hand-session: HANDLER 

-> SESSIONS 
-> SESSIONS 
-> SESSION 
-> SESSION 
-> SESSION 

iTTTports User-programs, Statistica L-programs, Hand'Ler-abstr-syntax 

end Conductor-sessions 

modul,e Conductor-states 
begin 

exports 
begin 

sorts CDT-STATE 
Junctions 

end 

state: USER-STATE # STAT-TECH-TABLE # 
EXT-HANDLER-TABLE -> CDT-STATE 

imports Resulting~so/tLJare, Stat-technique-tables, 
Ext-handZer-tabies 

end Conductor-states 

module Conductor 
begin 

exports 
begin 

Junctions 
e:recute: SESSIONS # CDT-STATE -> CDT-STATE 
execute: SESSION # CDT-STATE -> CDT-STATE 

end 

imports Conductor-sessions, Conductor-states, 
CompilerJ Gen-ext-handlers, Resulting-software 

variables 
ss 
s 
cs 
ust 
stt: 
eht 
sp 
up 
hnd 

equations 

:-> SESSIONS 
:-> SESSION 
:-> CDT-STATE 
:-> USER-STATE 
:-> STAT-TECH-TABLE 
:-> EXT-HANDLER-TABLE 
:-> STAT-PRO 
:-> USER-PRO 
:-> HANDLER 

[ 413) execute( abs-sessions( ss, s), cs) 
= execute(s,e:r:ecute(ss,cs)) 

[ 414) execute( abs-sessions( s), cs) 
execute(s, 

state(user-st:ate( empty-u-symtab, nul l-cr-seq), 
empty-stat- tech-tab, 
empty-ext-hand-tab)) 

[ 415 J execute(user-session(up), state(ust, stt, eht)) 
,,,, state( e:r:ec-user-pro(ust, avai Lab le( stt, eht), up), stt, eht) 

[416) execute( stat-session( sp), state(ust, stt, eht)) 
~ state(ust, store-stat-tech( sp, stt), eht) 

[ 417 J execute(hand-session(hnd), state(ust, stt, eht)) 
"' state(ust, stt, store-ext-handl.er(hnd, eht)) 

end Conductor 



N 
+'
w 

APPENDIX M: TREE REPRESENTATION OF CONDUCTOR 

Trees a.EE_endix L. 

Tree Ll. The overall CONDUCTOR system. 

Conductor
sessions 

Resu!ting
software 

Conductor 

Compi!er Gen-ext
handters 

Conductor-
states 

~ 
Statis. - User- Kernel 
prorams programs 

User-

Const-range
sequences 

Imp temented- User
techniques states 

Handler- symtabs 
Section 

Tree L2. The Compiler. 

Database
interface 

Compiler 

Stat is. - Kerne!- Input- Static-
Programs progrmas res tr- type 

generator checking 

Tree L3. Generation of external handlers. 

Gen-ext-handlers 

Gen-in- Gen-
struct- handlers 

tions 

lland!er
ubst1.•

syntax 

External.
handlers 

Stat-check- Gen-code- Gen-restr-
handlers statements handlers 

Tree L4. The Database Interface 

Datatbase-interface 

Id
sequences 

User-info 

I [ 
I 

Identifiers User-data 

I 
Series 

I 
Const-range-sequences 

Tree LS. The user-program. 

User-prqgrams 

Identifiers User-types User-data 

l 
User-type 

Const-range
sequ.ences 



N 
~ 
~ 

Trees a.EE,endix K. 

Tree Kl. The generation of kernel instructions. 

Gen- instruct i ans 

Gen-io-
instructions 

r 
I 

Gen-code-
dee larat ions 

Decl
abstr
syntax 

Instruction
sequences 

l 
Statistical

programs 

Test
abstr
syntax 

Gen-ca le 
instructions 

Gen-code- Gen-code-
test-section implement-

section 

~ 
Gen-code- impl,-

statements abstr-
syntax 

Tree K2. The generation of an exception handler in statistical 
technique. 

Statistical 
programs 

Handler
abstr-syntax 

Gen-handlers 

Gen-code
excep-section 

' Gen-code-
statements 

Tech-handZer
tables 

Tree K3. The generation of kernel instructions for statements. 

Gen-code
st"atemenr;s 

Gen-code
expressions 

I 
Gen-code
variables 

"

I I 

I 

I 

Statements
abstr-syntax 

Expr
abstr-syntax 

Instr
sequences 

Variable
abstr-syntax 



N 
-1'
\.n 

Trees A.EE,endix J. 

Tree Jl. The kernel. 

Kernel-

Processor Stat-technique
tables 

I 
Kerne L-p7:ograms 

Input-restr
sequences 

Teclt-ltandler
tables 

~ 

Ext-handler-

tabrs 
External-handlers 

Techn
symtabs 

User-symtabs Instr-sequences 

Tree J2. The Processor. 

Exception
ltanditng 

Processor 

~-'""- I 
stat~ 

Restr
evaluator 

l 

I I I 
Input- Handler-
restr- tables 

sequences ~ 

Evaluate-

Tech-handl2r- Ext-handler-
tables tables 

User
Input 

I 
Fune-
code-

tables 

I 
Fune-
c,.,de 

I L_ 
External-
handlers 

I Da: 

n St":, 

l1emory 

r-17 
.___ Instruction- Techn-symtabs User-symtabs 

sequences 

I 
Instructions 

I 

I I 
Identifiers Ind-erpr- Tecr.r. 

abstr-syntax d:;: 

Strings 

a
" s 

que
a 



N .,_ 
a, 

Trees_ aE£_endix I. 

Tree Il. Input restriction generator. 

Input-rest~-generator 

Statistical- Gen-restr- Gen-restr- Gen-res tr-

programs 

fflfi~ 
Gen-restr- ImpL- Gen-restr Handlers- Test-

declarations abstr- statements abst;r- abstr-

DecL
abstr
syntax 

~ ·~·~ ·~·~ -~-
Range- Input-restr-

'"""'"= n Range
assignments 

Range- Input-restr-
tabLes sequences 

Tree 12. Gener-ation fo input restr-ictions for- statements, expressions 
and variables. 

Statements
abstr-syntax 

Gen- res tr-statements 

Gen-restr
erpressions 

I 

Range
assignments 

I 
Gen-restr
variabLes 

Expr
abstr-syntax 

Variable
abstr-syntax 

Techn
symtabs 

Range
Calculations 

Range- Range-
restrictions calc-restr 

:nput
restr- [nfo 

Range
tables 

l 
Input
restr

sequences 

Tree 13. Range assignments and calculations. 

Range-assfgnments 

Statement
abstr-syntax 

[ 
Monotone

restrictions 

l 

Id
sequences 

Range-
ca Leu Lat ions 

Range- ~a lc
resr:"!' 

l nl-h [ Input~restr 

1 
! sequences 

Range- Rang2- I . .,,....:1-erpr 

';:-]~ .. :·'''' ·~·i"''' 
I I 
Ind-erpr

abstr-syntax 

Tree I4. Range restrictions. 



N 
~ __, 

Tree 14. Range restrictions. 

Range-restrictions 

Range-

sequeres 

Input-restr
sequences 

.,~~ 

Ind-expr 
abstr-syntax 

Input
restrictions 

Input-var
restriction 

I 
Techn

symtabs 

I 
User

visibi!ity 

Trees a.EE_endix H. 

Tree Hl. Static type checking of a statistical program. 

Stat i c-type~checking 

I 
Statistical 

programs 

Stat-check- Stat-check- Stat-check-
handlers 

I 

Store-
dee 1,arat ions 

L 
Stat-check- :,rp !-
statements absrr-syntax 

Test
abstr-syntax 



N 
-l'-
00 

Tree H2. Static type checking of statements. 

I 

Stat-check
statements 

Stat-check
erpress tons 

Stat-check- E:rpr
abstr-syntax vartabtes 

l 
l 

Statements
abstr-syntax 

Fune-type 
tabie 

Techn
symtabs 

Variabie-
abs tr-syntax 

Type-iist 

Tree H3. Function- type restrictions. 

Fune- type-tab te 

I 
Function-types 

Dtm-restr- Ske!et-restr-

seiences sequrces 

Dim- Skeiet-
restrictions I restrictions 

7~ 
'-j"~ 
Technique

types 

Trees B£.Eendix G. 

Tree Gl . The technique symbol table. 

Techn-symtabs 

I 
Techn-symtab-info 

Technique-data Techniq,.;e-types User-visibtiity Strings 

Tree 02. The user symbol table. 

User-symtabs 

I 
User-sY"}tab-info 

User-data User-types 

Tree G3. Storing declarations in the technique symbol table. 

Store-dee larat ions 

Techn-symtabs Dec l-abstr-syntax 



N 
-1>
\D 

Tree G4. Evaluation of symbolic types. ranges and index expressions. 

Evaluate-type 

Technique- Evaluate- User-
types ranr types 

I I I I 
Range- Evaluate- Const-range-

sequenc1s 'T· sequences 

I I 
Ranges Const-ranges 

I I I I 
Ind-expr- Techn- Indices 

abs tr-syntax symtabs 

Trees aE.E_endix F. 

Tree Fl. Statistical program. 

Test
abstr-syntax 

Statistical-programs 

ImpL
abstr-syntax 

I 

liandLer
abstr-s_•_m.tax 

F 1 111-, 
Statements Dec l-

Abstr-syntax abstr-_-syntax 

Expr
Abstr-syntax 

Technique
types 

User
vtsibi !tty 

Strings 

n 
Id-

Sequen
ces 
I 

I dent if i ers 



N 
\J1 
0 

Tree F2. Statements. 

Technique
dat:a 

Strings 

Statements
abstr-syntax 

E:,:pr
abstI"-syntax 

Variabte
abstr-syntax 

""""~ [~{;. 
Ind-expr
sequences 

I 
Ind-expr

'---------------,,hstr-syntax 

Trees a.E.E_endices D and E. 

Tree DEl. Data types. 

User-data 

[ 
I 

Technique-data 

Matrices 

~ 
Const-range- ScaLar-, 3;::: .. .. T. 

Booleans Indices Scalars 

Tree DE2. Type descriptions 

Series 

I 

Id
sequences 

Identifiers 

T echn iqt.fe- types User-types 

Range- Simple- Const-range-
sequences types sequences 

I I ~f ;,_;_~_"_______ ,-]-" 
Identifiers Indices 







MATHEMATICAL CENTRE TRACTS 
I T. van der Walt. Fixed and almo.,t fixed points. 1963. 
2 A.R. Bloemena. Sampling from a graph. 1964. 
3 G. de Leve. Generalized Markovian decision processes, part 
I: made/ and method. 1964. 
4 G. de Leve. Generalized Markovian decision processes, part 
II: probabilistic backgrmmd 1964. 
5 G. de Leve, H.C. Tijms, P.J. Weeda. Generalized Markovian 
decision processes, applications. 1970. 
6 M.A. Maurice. Compact ordered spaces. 1964. 
7 W.R. van Zwet. Convex transformations of random variables. 
1964. 
8 J.A. Zonneveld. Automatic numerical integration. 1964. 
9 P.C. Baayen. Universal morphisms. 1964. 
10 E.M. de Jager. Applications of distributions in mathematical 
physics. 1964. 
11 A.B. Paalman-de Miranda. Topological semigroups. 1964. 
12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken, 
A. van Wijngaarden. Formal properties of newspaper Dutch. 
1965. 
13 H.A. Lauwerier. Asymptotic expansions. 1966, out of print; 
replaced by MCT 54. 
14 H.A. Lauwerier. ·calculus of variations in mathematical 
physics. 1966. 
15 R. Doornbos. Slippage tests. 1966. 
16 J.W. de Bakker. Farmal_definition '://rogrammi"f, 
~~ges with an application to the de mition of AL OL 60. 

17 R.P. van de Riel. Formula manipulation in ALGOL 60, 
part I. 1968. 
18 R.P. van de Riel. Formula manipulation in ALGOL 60, 
part z. 1968. 
19 J. van der Slot. Some properties related to compactness. 
1968. 
20 P.J. van der Houwen. Finite difference methods for solving 
partial differential equations. I 968. 
21 E. Wattel. The compactness operator in set theory and 
topology. 1968. 
22 T J. Dekker. ALGOL 60 procedures in numerical algebra, 
part I. 1968. 
23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in 
numerical algebra, part Z. 1968. 
24 J.W. de Bakker. Recursive procedures. 1971. 
25 E.R. Pafrl. Representations of the Lorentz group and projec
tive geometry. 1969. 
26 European Meeting 1968. Selected statistical papers, part I. 
1968. 
27 European Meeting 1968. Selected statistical papers, part II. 
1968. 
28 J. Oosterhof!. Combination of one-sided statistical tests. 
1969. 
29 J. Verhoeff. Error detecting decimal codes. 1969. 
30 H. Brandt Corstius. Exercises in computational linguistics. 
1970. 
31 W. Molenaar. Approximations to the Poisson, binomial and 
hypergeometric d;stribution functions. 1970. 
32 L. de Haan. On regular variation and its application to the 
weak convergence of sample extremes. 1970. 
33 F.W. Steutel. Preservation of infinite divisibility under mix
ing and related topics. 1970. 
34 I. Juhasz, A. Verbeck, N.S. Kroonenberg. Cardinal func
tions in topology. I 971. 
35 M.H. van Emden. An ana(Ysis of complexity. 1971. 
36 J. Grasman. On the birth of boundary layers. 1971. 
37 J.W. de Bakker, G.A. Blaauw, A.J.W. Ouijvestijn, E.W. 
Dijkstra, P.J. van der Houwen, G.A.M. Kamsteeg.:J<.emper, 
F.E.J. Kruseman Aretz, W.L. van der Poel, J.P. Schaap
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-15 Informatica 
Symposium. 1971. 
38 W.A. Verloren van Themaat. Automatic ana(Ysis of Dutch 
compmmd words. 1972. 
39 H. Bavinck. Jacobi series and approximation. 1972. 
40 H.C. Tijms. Ana(Ysis of /s,S) inventory models. 1972. 
41 A. Verbeck. Superextensions of topological spaces. 1972. 
42 W. Vervaat. Success epochs in Bernoulli trials (with appli,·a
tions in number theory). T972. 
43 F.H. Ruymgaart. Asymptotic theory of rank tests for 
independence. f973. 

44 H. Bart. Meromorphic operator valued functions. 1973. 
45 A.A. Balkema. Monotone transformations and limit /aw.s. 
1973. 
46 R.P. van de Riel. ABC ALGOL, a portable languaxe for 
farmula manipulation systems, part I: the language. 1973. 
47 R.P. van de Riel. ABC ALGOL, a portable language for 
formula manipulation .systems, part Z: the compiler. 1973. 
48 F.E.J. Kruseman Aretz, P.J.W. ten Hagen, H.L. 
Oudshoom. An ALGOL 60 compiler in ALGOL 60, text of the 
MC-compiler far the EL-XB. 1973. 
49 H. Kok. Connected orderable space.s. 1974. 
50 A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A. 
Koster, M. Smtzoff, C.H. Lindsey, L.G.L.T. Meertens, R.G. 
Fisker (eds.). Revised report on the algorithmic language 
ALGOL 68. 1976. 
51 A. Hordijk. Dynamic programming and Markov potential 
theory. 1974. 
52 P.C. Baayen (ed.). Topological structures. 1974. 
53 M.J. Faber. Metrizability in generalized ordered spaces. 
1974. 
54 H.A. Lauwerier. Asymptotic ana(Ysi.s, part I. 1974. 
55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part I: 
theory of designs, finite geometry and coding theory. 1974. 
56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2: 
graph theory, foundations, partitions and combinatorial 
geometry. 1914. 
57 M. Hall. Jr., J.H. van Lint (eds.). Combinatorics, part 3: 
combinatorial group theory. 1974. 
58 W. Albers. Asymptotic expansions and the deficiency con
cept in statistics. 1975. 
59 J.L. Mijnheer. Sample path properties of stable processes. 
1975. 
60 F. G<lbel. Queueing models involving buffers. 1975. 
63 J.W. de Bakker (ed.). Foundations of computer science. 
1975. 
64 W.J. de Schipper. Symmetric closed categories. 1975. 
65 J. de Vries. Topological transformation groups, I: a categor
ical approach. 1915. 
66 H.G.J. Pijls. Logical(Y convex algebras in spectral theory 
and eigenfunction expansions. 1976. 
68 P.P.N. de Groen. Singular(Y perturbed d;fferentia/ operators 
of second arder. 1976. 
69 J.K. Lenstra. Sequencing by enumerative methods. 1977. 
70 W.P. de Roever, Jr. Recursive program schemes: semantics 
and proof theory. 1976. 
71 J.A.E.E. van Nunen. Contracting Markov decision 
processes. 1976. 
72 J.K.M. Jansen. Simple periodic and non-periodic Lame 
functions and their applications in the theory of conical 
waveguides. 1977. 
73 O.M.R. Leivant. Absoluteness of intrutionistic logic. 1979. 
74 H.J.J. te Riele. A theoretical and computational stut(Y of 
generalized aliquot sequences. 1976. 
75 A.E. Brouwer. Treelike spaces and related connected topo
logical spaces. 1977. 
76 M. Rem. Associons and the closure statement. 1976. 
77 W .C.M. Kallenberg. Asymptotic optimality of likelihood 
ratio tests in exponential families. 1978. 
78 E. de Jonge, A.C.M. van Rooij. Introduction to Riesz 
spaces. 1977. 
79 M.C.A. van Zuijlen. Emperica/ distributions and rank 
statistics. 1977. 
80 P.W. Hemker. A numerical .stu4)· of stiff two-point boundary 
problems. 1977. 
81 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer 
science II, part I. I 976. 
82 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer 
science II, part Z. I 976. 
83 L.S. van Benthem Jutting. Checking Landau's 
"Grundlagen" in the AUTOMATH system. 1979. 
84 H.L.L. Busard. The translation of the elements of Euclid 
from the Arabic into Latin by Hermann of Carinthia (?), books 
vii-xii. 1977. 
85 J. van Mill. Supercompactness and Wallman spaces. 1977. 
86 S.G. van der Meulen, M. Veldhorst. Torrix I, a program
ming Sf Siem for operations on vectors and matrices over arbi
trary Jields and oJ variable size. 1978. 
88 A. Schrijver. Matroids and linking systems. 1977. 
89 J.W. de Roever. Complex Fourier transformation and 
analytic fum·tiona/s with unbounded c·arriers. 1978. 



90 L.P.J. Groenewegen. Characterization of optimal strategies 
in dynamic games. l98 L 

9 I J.M. Geysel. Transcendence in fields of positive characteris• 
lie. 1979. 
92 P.J. Weeda. Finite generalized Markov programming. 1979. 
93 H.C. Tijms, J. Wessels (eds.). Markov decision theory. 
1977. 
94 A. Bijlsma. Simultaneous approximations in 1ranscendenta/ 
number rheory. 1978. 
95 K.M. van Hee. Bayesian control of Markov chains. 1978. 
96 P.M.B. VitaJlyi. Lindenmayer systems: structure, languages, 
ond growrh funclions. I 980. 
97 A. Federgruen. Markovian control problems; functional 
equations and algorithms. 1984. 
98 R. Geel. Singular perrurbations of hyperbolic rype. 1978. 
99 J.K. Lenstra, A.H.G. Rinnooy Kan, P. van Emde Boa:; 
(eds.). Interfaces between computer science and operations 
research. 1 lJ78. 
100 P.C. Baayen, D. van Dulst, J. Oosterholf (eds.). Proceed
ings bicentennial congress of Jhe Wiskundig Genootschap, parr 
I. 1979. 
IOI P.C. Baayen, D. van Duis!, J. Oosterholf (eds.). Proceed
ings bicentennial congress of lhe Wiskundig Genootschap, par/ 
2. 1979. :i~8~- van Dulst. Reflexive and superreflexive Banach spaces. 

103 K. van Ham. Classifying infinitely divisible distributions 
by functional equations. fi)78-. 
104 J.M. van Wouwe. Go-spaces and generalizations of metri
zability. 1979. 
105 R. Helmers. Edgeworth expansions for linear combinations 
of order statistics. 1982. 

jg~t- Schrijver (ed.). Packing ond covering in combinatorics. 

107 C. den Heijer. The numerical solution of nonlinear opera
tor equarions by imbedding methods. 1979. 
JOB J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science I I I. part 1. 1979. 
109 J.W. de Bakker, J. van Leeuwen (eds.). Foundarions of 
computer science 1/1, part 2. 1979. 
I JO J.C. van Vliet. ALGOL 68 rransput, pan /: hisrorical 
review and discussion of the implementation model. 1979. 
111 J.C. van Vliet. ALGOL 68 transput, part II: an implemen
talion model. 1979. 
1 J 2 H.C.P. Berbee. Random walks with stationary increments 
and renewal theory. 1979. 
113 T.A.B. Snijders. Asymptotic oplimaliry rheory for resring 
problems with restricted alternatives. 1979. 

114 A.J.E.M. Janssen. Application of the Wigner distribution to 
harmonic analysis of generalized stochastic processes. 1979. 
115 P.C. Baayen, J. van Mill (eds.). Topological structures II, 

part I. 1979. 
116 P.C. Baayen, J. van Mill (eds.). Topological s1ruc1ures II, 
part 2. 1979. 
1 J7 P.J.M. Kallenberg. Branching processes with continuous 
state space. 1919. 

118 P. Groeneboom. Large deviations and asymptotic efficien
cies. 1980. 
119 F.J. Peters. Sparse matrices and substructures, with a novel 
implementation of.finite element algorithms. 1980. 
120 W.P.M. de Ruyter. On the asymptotic analysis of large
scale ocean circulation. 1980. 
121 W.H. Haemers. Eigenvalue techniques in design and graph 
rheory. 1980. 

122 J.C.P. Bus. Numerical solution of systems of nonlinear 
equations. 1980. 
123 I. Yuhasz. Cardinal functions in topology - ten years later. 
1980. 
124 R.D. Gill. Censoring and srochastic inregrals. 1980. 
125 R. Eising. 2-D systems, an algebraic approach. 1980. 
126 G. van der Hoek. Reduction methods in nonlinear pro
gramming. 1980. 
127 J.W. Klop. Combinarory reducrion systems. 1980. 
128 A.J.J. Talman. Variable dimension fixed point algorithms 
and triangulations. 1980. 

129 G. van der Laan. Simplicialfixedpoinr algorilhms. 1980. 
130 P.J.W. ten Hagen, T. Hagen, P. Klint, H. Noot, H.J. 
Sint, A.H. Veen. /LP: intermediate language for pictures. 
1980. 

131 R.J.R. Back. Correctness preserving program refinements: 
proof theory and applications. 1980. 
132 H.M. Mulder. The inrervalfunclion ofa graph. 1980. 
133 C.A.J. Klaassen. Statisrical performance of location esti
mators. 1981. 
134 J.C. van Vliet. H. WuP[er (eds.). Proceedings interna
tional conference on ALGO 68. 1981. 
135 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof 
(eds.). Formal merhods in rhe srudy of language, part I. 198 I. 
136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof 
(eds.). Formal methods in rhe study of language, pan II. 1981. 
137 J. Telgen. Redundancy and linear programs. 1981. 
138 H.A. Lauwerier. Mathematical models of epidemics. 1981. 
139 J. van der Wal. Stochaslic dynamic programming, succes
sive approximations and nearly optimal strategies for Markov 
decision processes and Markov games. 198 l. 
140 J.H. van Geldrop. A mathemalical rheory of pure 
exchange economies without the no-critical-point hypothesis. 
1981. 
141 G.E. Welters. Abel-Jacobi isogenies for cerlain types of 
Fano rhreefo/ds. 1981. 
142 H.R. Bennell, D.J. Lutzer (eds.). Topology and order 
structures, part/. 1981. 
143 J.M. Schumacher. Dynamic feedback in finite- and 
infinite-dimensional linear systems. 1981. 
144 P. Eijgenraam. The solution of initial value problems using 
~~g~al arithmetic; formulation and analysis of an algorithm. 

145 A.J. Brentjes. Multi-dimensional continued fraction algo
rilhms. 1981. 
146 C.V.M. van der Mee. Semigroup andfactorizalion 
methods in transport theory. 198-1. 
147 H.H. Tigelaar. Identification and informative sample size. 
1982. 
148 L.C.M. Kallenberg. Linear programming and finile Mar
kovian control problems. 1983. 
149 C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxemburg, 
W.K. Vielsch (eds.). From A 10 Z, proceedings of a symposium 
in honour of A. C. Zaanen. 1982. 
1 SO M. Veldhorst. An analysis of sparse matrix storage 
schemes. 19.82. 
151 R.J.M.M. Does. Higher order asymprorics for simple linear 
rank slatistics. 1982. 
152 G.F. van der Hoeven. Projections of lawless sequences. 
1982. 
153 J.P.C. Blanc. Apphcallon of rhe rheory of boundary value 
problems in rhe analysis of a queueing model wah paired ser
vices. 1982. 
154 H.W. Lenstra, Jr .. R. Tijdeman (eds.). Computariona/ 
methods in number theory, part I. 1982. 
155 H.W. Lenstra, Jr .. R. Tijdeman (eds.). Compu101ional 
methods in number theory, parl I I. 1982. 
156 P.M.G. Apers. Query processing and data allocation in 
distributed database systems. 1983. 
157 H.A. W .M. Kneppers. The covariant classification of two
dimensional smooth commutative formal groups over an alge
braically dosed field of positive characteristic. 1983. 
158 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science IV, distributed .rystems, part/. 1983. 
159 J.W. de Bakker, J. van Leeuwen (eds.). Foundarions of 
computer science IV, distributed systems, part 2. 1983. 
160 A. Rezus. Absrract AUTOMATH. 1983. 
161 G.F. Helminck. Eisenstein series on the metaplectic group, 
an algebraic approach. 1983. 
162 J.J. Dik. Tests for preference. 1983. 
163 H. Schippers. Multiple grid methods for equa11011s of rhe 
second kind with applications in fluid mechanics. 1983. 
164 F.A. van der Duyn Schouten. Markov decision processes 
with continuous time parameter. 1983. 
165 P.C.T. van der Hoeven. On poinl processes. 1983. 
166 H.B.M. Jonkers. Abstraction, specification and implemen
tation techniques, with an application 10 garbage collection. 
1983. 
167 W.H.M. Zijm. Nonnegative matrices in dynamic program
ming. 1983. 
168 J.H. Evertse. Upper bounds for the numbers of solutions of 
diophantine equations. 1983. 
169 H.R. Bennell, D.J. Luizer (eds.). Topology and order 
structures, part 2. 1983. 



CW/ TRACTS 
I D.HJ. Epcma. Surfaus with canonical hyperplane sections. 
1984. 
2 JJ. DiJbtra. Falce _topological Hi~'!~ and characteri• 
zatioru of dimm,1on ,n ttrms of n,gligibility. 1984. 
3 AJ. van dcr Schatt. Systt!m theorttic ducriptions of physical 
systems. 1984. 
4 J. Koone. Minimal cart flow in Focusing networks. a primal 
approach. 1984. 
5 B. Hoogenboom. lntertwiningfanctions on compact Lie 
gro,,p,.1984. 
6 A.P.W. IIOhm. Dataflow con,putation. 1984. 
7 A. Blokhuis. Few-distance .ms. 1984. 
8 M.H. van Hoom. Algorithms and approximation, for queue· 
Ing systems. 1984. 
9 C.PJ. K!)ylll8DS- Models of the lambda cakvlus. 1984. 
10 C.G. van dcr Laan, N.M. Temme. Cakulalion of ,rcial 
fanctiona: the gamma (wrctian, the exponential integrals and 
error-li/ce fanctiona. 11)84. 
11 N.M. van Diilt. Controlled Marko, proce.s,es,· time
discretization. lf84. 
12 W.H. Hundsdorfcr. The numerical solulion of nonlinear 
stiff initial value problems: an analysis of one step methods. 
1985. 
13 D. Grune. On the design of ALEPH. 1985. 
14 J.G.F. Thiemann. Anabitic spaces and dynamic program• 
ming: a measure theorttic.approach. 1985. 
I 5 F J. van dcr· Linden. E11elidean rings with two infinite 
primes. 1985. 
16 R.J.P. Groothuizen. Mixed elliptic-hyperbolic part_ial 
differential operator,: a case-stutij in Fourier intigral opera
tors. 1985. 
17 H.M.M. ten Eikeldcr. Symmetries for dynamical and Ham
iltonian systems. 1985. 
18 A.D.M. Kester. Some large deviation results in statistics. 
1985. 
19 T.M.V. Janssen. Foundalions and app/icationa of Montague 
~• part 1: Philosophy, framewonc, con,puter mence. 

20 B.F. Schriever. Order dependence. 1986. 
21 D.P. van dcr VechL Inequalities for stopped Brownian 
motion. 1986. 
22 J.C.S.P. van dcr Woude. Topological dynamix. 1986. 
23 A.F. Monna. Methods, concepts and ideas in mathematics: 
aspecu of an evolution. 1986. 
24 J.C.M. Baeten. Filters and ultrafilters Oller definable su/Mets 
of admissible ordinals. 1986. 
25 A. W J. Kolen. Tree network and planar rectilinear location 
theory. 1986. 
26 A.H. Veen. The misconstrved semicolon: R«onciling 
imperative languages and datqftow madrines. 1986. 
27 A.J.M. van Enulen. Homogeneous zero-dimensional abso
lute Borel seu. 191!°6. 
28 T.M.V. Janssen. Foundalions and app/ications of Montague 
grammar, part 2: Applications to natuni/ language. 1986. 
29 H.L Trentclman. Almost illllarianl subspaces and high gain 
feedback. 1986. 
30 A.G. de K.olr.. Produclion-1,,.,.,,,ory control models: approxi
mations and algorithms. I 987. 
31 E.E.M. van Bcrkum. Optimal paired comparison designs for 
faaorial experiments. 1981. 
32 J.HJ. Einmahl. Multivariate empirical procuses. 1981. 
33 OJ. Vrieze. Stochastic games with finite slate and aa/on 
spaces. 1981. 
34 P.H.M. Kersten. Infinitesimal symmetries: a con,putational 
approach. 1981. 
35 M.L Eaton. Lectures on topics in probability inequalities. 
1987. 
36 A.H.P. van dcr ~ R.M.M. MatthciJ (eds.). Proceed
ings of the first International conference on 1iu/us1rial and 
applied mathematics (ICIAM 81). 1981. 
37 L Stougie. Design and analysis of algorithms for stochastic 
integer programming. 1981. 
38 J.B.G. Frenk. On Banach algebras. renewal measures and 
regenerative processes. 1981. 

39 HJ.M. Peters, OJ. Vrieze (eds.). Sur,eys in game theory 
and related topics. 1981. 
40 J.L Geluk, L de Haan. Regular variation, extensions and 
Tauberian thtollrtU. 1987. 
41 Sapc J. Mullendcr (ed.). The Amoeba distributed operating 
system: Selected papers 1984-1987. 1987. 
42 P.R.J. Asvcld, A. Nijholt (eds.). Essays on concepts, for
malisms, and toal.s. 1981. 
43 H.L. Bodlaendcr. Distributed con,puting: structure and 
u,mplaity. 1981. 
44 A.W. van dcr Vaart. Statistical estimation in large parame
ter spaces. 1988. 
45 S.A. van de Geer. Regression analysis and empirical 
processes. 1988. 
46 S.P. Spckrcijse. Multigrid solution of the steady Euler equa-
tions. 191f8. . 
47 J.B. Dijkstra. Anab'sis of means in some non-standard 
situations. 1988. 
48 F.C. Drost. Asymptotics for generalized chi-square 
goodness-of-fit tests. 1988. 
49 F.W. Wubs. N"""'rical solulion of the shallow-water equa· 
lions. 1988. 
50 F. de Kcrf. Asymptotic analysis of a class of perturbed 
Korteweg-de Vries initial value probfems. 1988. 
51 P J.M. van Laarhoven. Theoretical and con,putational 
aspects of simulated annealing. 1988. 
52 P.M. van Loon. Contim,ous decoupling transformations for 
linear boundary value problems. 1988. 
53 K..C.P. Machielsen. Numerical solution of optimal control 
problems with state constrainu by sequential q,iodrat1c pro
gramming in fanclion space. 1911'8. 
54 L.C.R.J. Willenborg. Computational aspects of sur,ey data 
proce.s,ing. 1988. 
55 OJ. van dcr Steen. A program generator for recognition, 
parsing and transduction with syntactic patterns. 1988. 
56 J.C. Ebersen. Translating programs into delay-insensitive 
circuits. 198Cf. 
57 S.M. Vcrduyn Lune!. Exponential type cakvlus for linear 
delay equations. 1989. 
58 M.C.M. de GunsL A random model for plant cell popu/a· 
lion growth. 1989. 
59 D. van Dulst. Characterizations of Banach spaces not con
taining 11• 1989. 
60 H.E. de Swart. Vacillation and predictability properties of 
/ow-order atmospheric spectral models. 1989. 
61 P. de Jong. Central limit theorems for generalized multi
linear forms. 1989. 
62 VJ. de Jong. A specification system for statistical software. 
1989. 
63 B. Hanzon. ldentifiability, rea,n/ve identification and 
spaces of linear dynamical syst"""' part I. 1989. 
64 B. Hanzon. Identifiability, rea,nive identification and 
spaces of linear dynamical syst"""' part I/. 1989. 




