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Preface 

This monograph contains the main results of a research which resulted from my 

interest in graph theory (and its applications in social science research). In the course of 

this research the aspect of graph theory gradually disappeared. Having finished my 

mathematics studies I used the subject for my Ph. D. research. 

I owe many thanks to dr A.A. Balkema. His ability to simplify seemingly com

plicated matters has led me to unify what often appeared to me a collection of curious 

but interesting results. I treasure our stimulating discussions on mathematical subjects. 

Prof. dr J.Th. Runnenburg read the final draft with painstaking precision. Many 

errors and omissions were detected and avoided. For this, and his many helpful sug

gestions I am very grateful. Of course I bear responsibility for all deficiencies in this 

work. 

With drs Bert van Es I had some interesting discussions on the more practical sides 

of my research. 

The personal attention of Teyung Fu made it possible to produce this text on a 

modern text-processing device. The joint efforts of drs Edo Velema and drs Antje 

Melissen improved the readability of this monograph. 
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1 . Introduction and summary 

In this monograph we present some central limit theorems for homogeneous multi

linear forms and for generalizations of multilinear forms. We are concerned with one 

particular generalization of the homogeneous multilinear form: 'clean' random variables 

to be introduced in Sect. 2.2. The purpose of this introduction is to make the reader 

acquainted with the subject matter of this monograph rather than to present the results of 

the subsequent chapters in full generality. Some special cases may serve to illustrate 

some peculiarities of the subject matter and of the methods used in the proofs below. 

We start with a sketch of the general setting. Consider a probability space (Q,.'F,P) 

on which independent random variables X 1'' .. ,X n are defined. Define for a finite 

subset I c { 1, ... ,n) the a-algebra 1'i = cr{ Xi : i E I) and let W I be a .'F1-measurable 

random variable. We assume the random variables W I to be centered, square integrable 

and uncorrelated: 

EW1 =0, EW; =cr; <oo, EW1W1 =Oifl;eJ. 

Notice that the distribution of the underlying random variables Xi is immaterial. We 

can write 

W1 = w nl (Xi 1, ... ,X id) for I= {il' ... ,id), 

with w nl( ... ) a Borel measurable function ltd➔ R which may depend on n. (We shall 

suppress the subscript n where possible.) The random variables W I are dissociated, 

that is W 11 , ... ,W Iq are independent if the sets 11 , ... ,Iq are mutually disjoint. (See 

McGinley and Sibson (1975).) 

We shall mainly be concerned with conditions that ensure asymptotic normality for 

d-homogeneous sums, 

Z(n) = I, W 1, 
III= d 

where the summation extends over all(~) subsets I c { 1, ... ,n) of size I I I = d. It is 

convenient to assume the sum Z(n) to be normalized to have unit variance: 

2 I. cr1=l. 
IIl=d 

The following condition will play a crucial role in the theory below: 

E Z(n)4➔ 3 for n ➔oo, 

with 3 being just the fourth moment of the standard normal distribution. In the proofs 

below we need a technical condition 

E Wi s; D cri , with D not depending on n. 
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Under these assumptions we do not have a central limit theorem; Z(n) may converge 

(even in the simple cased= 1) to any centered random variable with unit variance and 

fourth moment equal 3. What is needed is a negligibility condition which forces the 

contribution of each individual random variable Xi to the total variance to be small with 

respect to the total variance: 

2 max I. CJ 1 ➔ 0 for n ➔ oo. 

i I 3 i 

Do these three conditions above ensure asymptotic normality for the homogeneous 

sum Z(n)? The answer in general is no; more structure is needed. However, in the 

important special case of homogeneous multilinear forms in independent centered 

random variables, 

Z(n)= I. a1 IT Xi, 
IIl=d ie I 

the above assumptions imply asymptotic normality for Z(n). (In fact, it will be shown 

that, given the negligibility condition and the uniform bound on the fourth moments of 

W 1 / CJ 1 , the convergence of the fourth moment to 3 is also a necessary condition for 

asymptotic normality.) This result on multilinear forms follows from the results in the 

next two chapters (especially Th. 2.1.1 for the if part and Th. 3.2.5 for the only if 

part). These results are valid for more general random variables W 1. 

Before introducing the more general case, we shall consider multilinear forms in 

some detail, especially the bilinear case. The above mentioned central limit theorem is 

not completely self evident. For the quadratic form in iid normal N(0,l) random 

variables 

there is a simple proof for the asymptotic normality of Z(n). However, this proof rests 

on a non-trivial result from linear algebra and on a special property of the normal 

distribution, as can be seen from the following sketch of the proof. 

Without loss of generality we may assume the matrix (aij) to be symmetric with zero 

diagonal, aii = 0. There is an orthogonal transformation that brings (ai} into diagonal 

form, and we can rewrite Z(n): 

2 
Z(n) = ~ µi Yi' 

l:!.~n 

with µi the eigenvalues of the matrix (aij) and the random variables Yi normal N(0,l), 

orthogonal and hence independent. Since the diagonal elements vanish, we have 

I. µ. = trace (a .. )= I. a .. = 0, 
l'.!.i:!.n 1 tJ !Si~n 11 



and Z(n) is a weighted sum of independent centered random variables 

Z(n) = I, µ. (Y~ - 1), with var Z(n) = 2 I, µ ~-
1:,;c,;n 1 1 1:,;i:,;n 1 
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Assume var Z(n) = 1. The above considerations imply that Z(n) has a normal limit 

disnibution iff 

maxµf ➔ 0 forn ➔ oo, 

i 
which is equivalent to 

I, µi ➔ O forn ➔ oo. 
1:,;c,;n 

Straightforward calculation shows that the latter condition is equivalent to 

E Z(n)4➔ 3 for n ➔ oo. 

The above proof combines two approaches, an algebraic one: the orthogonal decom

position of symmetric manices, and a probabilistic one: the special properties of the 

normal disnibution and a simple central limit theorem. The proof itself has a limited 

scope: If the random variables are not normally disnibuted, the orthogonal decom

position results in a weighted sum of squares of uncorrelated random variables. More

over, if d ;;::: 3, then there is no orthogonal decomposition in the above sense. 

Manices with 'many' zero entries seem easy to handle by a probabilistic approach. 

Especially block diagonal manices (i.e. matrices divided into blocks by partitioning the 

index set ( l, ... ,n), with only those blocks which meet the diagonal containing non

zero ennies) allow a simple analysis: The quadratic form can be written as a sum of 

independent random variables V r, with V r the rth block around the diagonal. 

Whittle (1964) gives an interesting example. The matrix (aij) is defined by ai = Pj-i if 

j > i and aij = 0 else, with p 1 + ... + Pn = 1. Then var Z(n) / n ➔ 1, since 

i (i / n) pi S: (✓n) / n +. 2, pi ➔ 0, n➔ oo. 
1:,;i:,;n 1>~n 

Taking blocks of size kn (with kn= [✓n], the largest integer not exceeding ✓n), we 

have 

Z(n) = V 1 + ... + V kn+ Rn, 

with V p···,V kn iid and var Rn/ n ➔ 0, since the random variables aijXiXj are 

orthogonal and since var V k /kn ➔ 1 for n ➔ 00 , by the same argument as for the 

total variance. 

The above approach can be easily generalized to multilinear forms or to uncorrelated 

random variables W 1. This raises the important preliminary question: Is it possible to 

rewrite homogeneous sums Z(n) in a trivial way as a sum of independent random 
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variables plus a vanishing remainder term, as in the example above? The answer to this 

question is provided !:>y the Gaussian example above. 

Consider the matrix (ai} with all off-diagonal entries equal (and positive) and aii = O; 

then Z(n) is asymptotically chi-squared distributed: 

2 2 
Z(n)=a12 -~ xix. =a12< ~xi) -a12 ~Xi, 

lS:1a'JS:n J lS:1S:n ls:Js:n 

with a 12 = (n(n - l)r112 (since var Z(n) = 1). The variance of the second term equals 

2n af 2 = 2 / (n - 1) and hence this term tends to 1 in L 2 . The first term equals 

(n / (n - 1))112 Y~ with Y standard normal. Thus Z(n) has a non-normal limit 

distribution. 

In Sect. 4.0 it is shown how to construct a matrix (ai} with all off-diagonal entries 

having equal absolute value (and diagonal elements equal 0), such that the eigenvalues 

vanish uniformly for n ➔ 00• In this case Z(n) is asymptotically normal, as is shown 

above. This shows that Z(n) may have a normal limit distribution, while block 

diagonalization fails. More generally, this example shows that any condition for 

asymptotic normality which is phrased in terms of the absolute values IW 1 I is not 

sharp. 

We have now touched upon the main themes of the next two chapters. We shall give 

a survey of these chapters. 

Sect. 2.1 begins with an important generalization of multilinear forms in independent 

random variables. Again we start with a probability space (Q,,1,P) on which 

independent random variables X 1, ... ,X n and the a-algebras .11 = a{X i: i e I} (with 

.10 the trivial a-algebra) are defined. Then a square integrable .1 {1, ... , nrmeasurable 

random variable Z(n) can be approximated by a sum of independent random variables: 

Z(n) = I; E (Z(n) - E Z(n) IX. ) + R(n), 
lS:is:n I 

with the remainder term Rn orthogonal to the independent random variables E (Z(n) -

E Z(n) I Xi). If the remainder term vanishes (e.g. in L2) for n ➔ oo, then Z(n) can be 

analysed as a sum of independent random variables. 

Our main concern is the situation where the remainder term does not vanish. In many 

interesting problems the latter is the case. To analyse this situation we pursue the 

projection in the following way. 

Any square integrable .r{l, ... , nrmeasurable random variable Z(n) can be 

decomposed: 

(1.1.1) Z(n) = I. Wr, 
I c { 1, ... ,n) 

where the random variables W 1 are uniquely determined by the following 

conditions: 



Thus 

and 

a) W I is Ji-measurable, 

b) E (WI I J_j) = 0 a.s. ifl\J * 0. 

W 0 = E W0 = E (Z(n) - I, w1 ) = E Z(n) 
J * 0 

W1 = E (Z(n) - I, W 1 I Jj ) = E (Z(n) - I, W1 I Jj ) a.s. 
J a" I J ~I 
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The decomposition is orthogonal. If I * J the symmetric difference I !!,. J = (I\ J) u 
(J\I) * 0. Suppose J \I* 0, then E WI W1 = E \Yi E (\\S- I Jj) = 0. 

The above decomposition was used in Hoeffding (1948) to obtain central limit 

theorems for Z(n), Z(n) being approximately a sum of independent random variables. 

We shall refer to (1.1.1) as the Hoejfding decomposition (see Van Zwet (1984)). 

For d-homogeneous sums in the Hoeffding decomposition satisfying the 

negligibility condition and with a uniform bound on the fourth moments E (W 1 / cr1 )
4 S 

D for all I, the fourth moment condition E Z(n)4 ➔ 3 implies asymptotic normality 

(Th. 2.1.1 ). In Sect. 2.1 it is shown that the assumption of homogeneity in I I I cannot 

be dropped. Th. 2.1.1 follows from a slightly more general theorem (Th. 2.2.3). 

In Sect. 2.2 we drop the assumption of underlying independent random variables. 

Then we only have a family of random variables indexed by finite subsets of the inte

gers, W= {W 1: I c { 1, ... ,n}} and the a-algebras generated by (subsets) of these ran

dom variables. Define f i) = a { W 1 E 'W: i e: I). Random variables W 1 are clean if 

E (W1 I fi)) = 0 a.s. for all i E I. 

Ford-homogeneous sums of clean random variables W(n) we have a central limit 

theorem under the conditions of Th. 2.1.1 if we add as extra condition that the sum of 

correlations between the squares vanishes: 

2 2 2 2 I, (EW1W1 -cr1 cr1 ) ➔ O, n ➔ oo. 
I, J 

The final two sections of Ch. 2 contain the proof of the Th. 2.2.3. We shall not go 

into the details of the proof. We make one remark on the sort of result that is obtained in 

these sections. We obtain for fixed n a bound on the distance 

sup I P{W(n) S x} - P{Y S x} I, 
X 

with Y a standard normal random variable. This bound can be expressed (but for one 

universal constant C 1) in the parameters in which the central limit theorem is for-

mulated: D, IE W(n)4 - 3 I, max I, cr I and I I, (E w;wf- a;af )I. Since this 
I 3 i I, J 

bound does not seem to have any practical value, we formulate the results in terms of 

convergence of distributions. 
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Ch. 3 starts with some preliminary results with a technical flavour (Sect. 3.1). From 

Sect. 3.2 on we restrict ourselves to homogeneous sums in the Hoeffding decom

position. The main aim of Sect. 3.2 can be formulated as follows. Recall the central 

limit theorem for quadratic forms in Gaussian random variables: A sharp criterion for 

asymptotic normality of the bilinear form is given in terms of the eigenvalues of the 

symmetric matrix. The bilinear form R0 x Rn➔ R is regarded as a mapping R.0 ➔ R 0 , 

the matrix (ai/ (Here a short detour is needed: The bilinear form 

Z(n) = I, I, a .. x. Y. , 
l~~n l~j~m JJ I J 

with Xl' ... ,X 0 , Y l' ... ,Y m independent, is included in the present setup: Consider the 

(n + m) x (n + m) matrix (b ij) with all entries zero except those in the upper rectangle 

1~ i ~ n, n <j ~ m + n, and bij = aij-n• Thus the bilinear form reduces to the cases 

treated above.) In the same way as the bilinear form, the d-linear form R. 0 x ... x R. n ➔ 

R. can be regarded as a mapping R0 c ➔ Rnd-e for e = 1, ... ,[d/2]. This gives [d/2] 

(rectangular) matrices. Instead of the eigenvalue decomposition we now use the 

singular value decomposition. (For real symmetric matrices the singular values equal 

the absolute values of the eigenvalues.) We arrive at results analogous to those in the 

case d = 2: The d-linear form satisfying the usual conditions of negligibility and with 

uniformly bounded fourth moments E (W 1 / cr1 )
4 has a normal limit distribution iff the 

maximal singular value vanishes. These results, involving singular values, cannot be 

extended in full generality to the general case of d-homogeneous sums in the Hoeffding 

decomposition. However, in De Jong (1987) some partial results (for the case d = 2) 

are obtained. These results are extended for general d in Sect. 3.2. 

In Sect. 3.3 inhomogeneous sums are treated. All results formulated until here 

concern homogeneous sums (except the counter-example which shows that homo

geneity is essential in Th. 2.1.1). However, inhomogeneous sums arise in many 

interesting situations (cf. Hall (1984)). Considerthe finite sum of homogeneous sums 

V(n) = w(l)(n)+ ... +w<d\n), with var w<c\n) ➔ cr1e) > 0, n ➔ oo, 

and var V(n) = 1. If w<e)(n) / var112 w<e)(n) satisfies the conditions of Th. 2.1.1, then 

V(n) has a normal limit distribution. Moreover, the joint distribution of (W(l)(n), 

... ,w<d)(n)) tends toad-variate normal distribution with vanishing covariances. 

The chapter ends with an elaborate example of a simple multilinear form in zero-one 

valued random variables, which is an inhomogeneous sum. This example is used to test 

the merits of some of the previously obtained results. 

In Ch. 4 we start from the following observation (prompted by a question of A.A. 

Balkema): Consider the matrix (Wi) of components in the Hoeffding decomposition 

(d = 2). Let A1 , ... ,Aq be a partition of the integers l, ... ,n (q not depending on n). This 
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partition induces a partition of (\\V with (q; 1) elements. This is illustrated in Figure 

1. (Without loss of generality we may assume the elements of the partition to be 

consecutive blocks.) 

Figure 1 

-, I 

I I 
I I 
I I 

--~--------!---
' I 

If the homogeneous sums W(n) satisfy the conditions of Th. 2.1.1, then the joint 

distribution of the (\+ 1) partial sums tends to a multivariate normal distribution with 

orthogonal components, provided the variance of each partial sum converges. This is 

the basic result of Ch. 4. By straightforward approximation it can be extended in the 

following way. Let xl'x 2, ... be points in Rand embed the random variables ~j as 

random point masses in R2 at (xi ,x j ), with xi < x j if i < j. Define the discrete 

measures µ 0 on R2 with mass crfj at point (xi,xj). Suppose that the probability 

measures µ 0 converge weakly to µ. Define the stochastic integral 

JfdW(n)= L f(x.,x.)W ... 
l~i<j~n I J IJ 

If the sums W(n) satisfy the conditions of Th. 2.1.1, then ff dW(n) has a normal 

limit distribution N(O, f f2dµ), if the function f is bounded and µ-a.e. continuous. It is 

remarkable that the same result is obtained as would have been obtained under the 

(stronger) assumption that the random variables \\;j are independent. However there is 

an important difference: if the random variables ""ij are all independent they can be 

embedded in R (instead of R.2) and the same result holds. In Ch. 4 it is shown that this 

is not the case for ~j components in the Hoeffding decomposition. For these random 

variables the special (coordinatewise) embedding is important. Sect. 4.3 is concerned 

with this aspect of the Hoeffding decomposition. Rather, a criterion is given such that 
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homogeneous sums in the Hoeffding decomposition satisfying this criterion can be 

embedded in R (instead of R2). 

This text is meant to be selfcontained as far as it is concerned with generalized multi

linear forms. Except for general results which can be found in textbooks like Chung 

(1974) and a central limit theorem for martingale differences, no results from prob

ability theory are needed to read the text. (E.g. properties of martingales which are used 

without reference can be found in Chung (1974).) 

We conclude this chapter with some references to related results. There are many 

papers on central limit theorems for generalized multilinear forms scattered throughout 

the literature. We shall not try to be exhaustive here. Instead, we shall give a rough 

classification according to methods of proof used to derive these results and provide a 

few references. We distinguish four approaches. 

The first one applies to proper multi linear forms in independent random variables. In 

Rotar' (1973) it is shown that the limit distribution of a quadratic form in iid random 

variables with zero mean and unit variance does not depend on the actual distribution of 

the random variables. More generally, in this approach invariance classes of 

distributions are identified. For each invariance class the limit distribution is the same 

for any distribution in this class. Then the limit distribution can be determined with the 

help of one member in the class for which the limit can be computed. The limit 

behaviour of the quadratic form in independent N(O, 1) random variables is treated 

exhaustively in Sevast'yanov (1961). In Rotar' (1979) invariance classes are given for 

multilinear forms. 

The second approach we distinguish is the method of projection, given above. In 

this situation a central limit theorem can be obtained by methods from martingale 

theory. In Beran (1972) a central limit theorem for quadratic forms is proved with the 

help of a martingale method, a result which is related to that in Whittle (1964). A special 

class of generalized multilinear fom1s are U-statistics (d = 2): 

Z(n)= I z(X.,X.), 
l~<j~n 1 J 

with Xi iid and zn a symmetric Borel function not depending on the indices i,j. Weber 

(1983) proves a central limit theorem using a technique based on backward martingales. 

IfZ(n) is a homogeneous sum in the Hoeffding decomposition, the CT-statistic is said to 

be degenerate. This case is treated in Hall (1984). The method used by Hall is a 

generalization of that in Beran ( 1972) and is essentially the same as the one used in De 

Jong (1987). In the author's Master's thesis (1982) this method was used to obtain 

central limit theorems for components in the Hoeffding decomposition. Backward 

martingales are also applied in case of weakly exchangeable arrays in Weber (1980). 
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The third method is based on a result in Stein (1970). It is used in Barbour and 

Eagleson (1985) to derive a central limit theorem for dissociated random variables. This 

concept was define<l in McGinley and Sibson (1975). (A definition is given in Sect. 

2.2; components in the Hoeffding decomposition are an example of dissociated random 

variables.) Earlier a central limit theorem for dissociated random variables was obtained 

in Noether (1970). Both Barbour and Eagleson (1985) and Noether (1970) treat cases 

of random variables with d ~ 3 indices. 

The latter paper used the method of moments; the fourth approach. The method of 

moments can be applied in a great variety of situations. Although usually strong 

assumptions are imposed on the moments of the random variables, it is often possible 

to obtain results in situations where at first sight there is a very intractable dependence 

between the random variables. As an example may serve the monograph Bloemena 

(1964), where by means of the method of moments a central limit theorem is proved for 

quadratic forms in dependent random variables. (These quadratic forms are not sums of 

dissociated random variables.) When kth moments are calculated of sums of random 

variables indexed by pairs of indices, graph theory can give a heuristically useful 

description of complicated products. In particular it can be used to describe the way 

different random variables have indices in common. The description of higher moments 

by means of graph theory was already employed in Moran (1948). Later on it was used 

by several authors, e.g. Bloemena (1964), Kester (1975), Brown and Kildea (1978), 

and Jammalamadaka and Janson (1986). It was also used in De Jong (1982), where the 

method of moments was used to obtain central limit theorems for dissociated random 

variables. Contact with this approach seems to have long after-effects: In the next 

chapter several ways are introduced to describe higher moments, which are adaptations 

of the graph theory techniques, adapted for random variables indexed by more than two 

indices. 



2 . A central limit theorem for clean random variables 

2. 0. Introduction 

In Ch. 1 the first two sections of this chapter have been introduced extensively. Here 

we shall make some general remarks on the proof of Th. 2.2.3 which is contained in 

the final two sections. The proof rests on a martingale central limit theorem (Heyde and 

Brown (1970)). By this theorem we have asymptotic normality for the sum of 

martingale differences I Uk' with I EU~= 1 and max EU~ ➔ 0, if 
1 :$;lcs;n 1 !>k!>n I ~n 

1) n ➔ oo, 

L2 
2) I u 2 ➔ 1, n ➔ oo. 

l!>k!>n k 

These requirements can be relaxed. The fourth moment in 1) can be replaced by the 

(2 + £)th moment; the L 2 convergence in 2) can be replaced by convergence in 

probability. However, the above formulation is very suitable in the present situation, 

since we are working with fourth moments. 

If we write W(n) as a sum of martingale differences, we break the symmetry on 

W(n): All conditions on W(n) are invariant under permutation of the indices, whereas 

for a martingale the order of the index set plays an essential role. In Sect. 2.3 and 2.4 

the fourth moment E W(n)4 is split into partial sums over the quadruples (I,J,K,L) of d

point subsets of { 1, ... ,n}. In Prop. 2.3.1 - 2.3.3 it is shown that the two requirements 

above are satisfied if certain partial sums vanish. Prop. 2.3.3. deals with the 

asymmetric character of the above requirements. In Prop. 2.3.4 these results are 

summarized in a technical central limit theorem, phrased in terms of these partial sums. 

In the remainder of this chapter it is shown that under the conditions of Th. 2.2.3 these 

partial sums vanish. 

2 .1. A central limit theorem for components in the Hoeffding 
decomposition 

In the previous chapter the Hoeffding decomposition was introduced. On the 

probability space (Q,.1,P) a sequence of independent random variables X l'X 2 ,... is 

given. Define for finite sets of the integers I the a-algebras .'{ = cr{Xi : i e I } and 1'0 

10 
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= o(0,Q}. Any square integrable .?ci, ... ,nrmeasurable random variable Z can be 

written Z = :r, Wj, where the components WI are uniquely determined by 
I c { l, ... ,n} 

(2.1.1) a) Wj is 1j-measurable, 

b) E (Wj I .1j) = 0 a.s. ifl\J ;1: 0. 

Ford-homogeneous sums in the Hoeffding decomposition W(n) = :r, WI - we shall 
III= d 

reserve the notation W(n) for homogeneous sums - we have the following central limit 

theorem which follows from Th. 2.2.3 of Sect. 2.2. 

Theorem 2.1.1. Let W(l),W(2), ... be d-homogeneous sums in the Hoeffding 

decomposition, W(n) = :r, WI, for fixed d with var W(n) = 1, for n = 1,2, .... 
III= d 

Suppose 

Then 

a) max :r, of ➔ 0 for n ➔ oo, 

i I :1 i 

b) max E Wi / <Ji ~ D, D not depending on n, 
I 

c) E W(n}4 ➔ 3 for n ➔ oo. 

d 
W(n) ➔ N(0,1) for n ➔ oo. 

This is Th.2.2 in De Jong (1987), for general d instead of d = 2. We give some 

comments on the conditions. 

Condition a) excludes degenerating forms with the masses ~ concentrating on one 

or a few 'hyperplanes' ( I : i e I}. These forms usually have a limit distribution 

depending on one or a few random variables Xi. By condition a) the following 

example is excluded. (If we consider random variables WI indexed by sets I containing 

one or two elements, we employ the usual notation: W i instead of W{i} and ~j instead 

of w{ijJ") 

Example 1. Let X. be iid, EX. = 0, EX~= 1 and 
1 -1/2 1 

W(n)=(n-1) (X 1X2.+ +X 1X 0 ) 

Then W(n) has a normal limit distribution iff Xi = ± 1 with probability equalingl/2. 

The if part follows from the central limit theorem for sums of iid random variables with 

diverging total variance. The only if part can be deduced from the characteristic function 

of W(n). We shall return to this example below. 
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Condition b) is imposed to exclude random variables with heavy tails. In Ch. 3 we 

shall return to this issue and show how condition b) can be relaxed in two respects. In 

the first place in Th. 3.1.2 it is shown that we can allow D to diverge in a controlled 

way. In Sect. 3.2 it is shown how condition b) can be relaxed by means of truncation. 

If d = 2, then condition b) can be dropped (De Jong (1987)). 

Condition b) can be replaced by the somewhat weaker condition 

b') I, (E Wi) 112 s; C, C not depending on n. 
III= d 

If condition b') holds we can apply Th. 2.1.1 to the partial sum 

with Jl= (I: E (WI/ oI )4s; D} for some D ~ 1. Then 

var (W(n) - W'(n)) = I, of s; C o-112, 
yf 

by Chebyshev's inequality. However, since condition b) is clearly the condition which 

is needed in the proof of Th. 2.1.1 (and Th. 2.2.3), we shall use the more restrictive 

condition. The reader is free to adept the theorems and their proofs to this refinement. 

Condition c) may be difficult to check; in Ch. 3 several conditions are given to 

replace condition c). These conditions are usually more restrictive than condition c), 

which is sharp in some sense: see Th. 2.2.4 and Th. 3.2.5. 

Condition c) may be replaced by the weaker condition 

c') limsup E W(n)4 s; 3. 
n ➔ oo 

In Sect. 2.3 it will be shown that under the conditions a) and b) of Th. 2.1.1 condition 

c') implies condition c). 

The example below shows that the assumption that the random variables W(n) are 

homogeneous sums cannot be dropped. In Sect. 3.3 we shall give a central limit 

theorem for inhomogeneous sums. 

Example 2. We start with the construction of a family of random variables with fourth 

moment equal to 3. Then we give a sequence of inhomogeneous sums in the Hoeffding 

decomposition with a non-normal limit distribution which satisfies the conditions a) and 

b) of Th. 2.1.1 and converges to a member in this family. 

Let Y,Z be random variables with E Y = E Z = 0, E Y2 = 1, E z2 = o 2, E Y Z = 0, 

E y3z ¢ 0 and E y4= 3. Set V = Z + a, Y, then 

EV2= a,2+ 02, 
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E v4-3 E2 V2 = 4 cx. 3 EY3Z +6 cx.2 EY2 Z2 + 4cx.E yz3 +E z4 -6 cx.2cr2 - 3 cr4. 

This is a polynomial in ex. of degree 3 (since E Y3 Z "'F- 0) which has at least one real 

zero, say cx. 0. For thi~ zero the normed fourth moment of V = Z + cx.0 Y equals 3. 

Now choose 

y =n·112 I, x. andZ =n·312 I, x.x.xk, 
n l:s;i:,;n 1 n l:s;i<j<k:s;n 1 J 

with Xi iid N(O,l) random variables. Then Yn and Zn are homogeneous sums in the 

Hoeffding decomposition (of degree 1 and 3 respectively) and satisfy the conditions a) 

and b) of Th. 2.1.1. Straightforward calculation yields 

Y3 = 6 Z + 3 Y (n·l I, X~) - 2 n·3/2 I, X?, 
n n n l:s;i:,;n 1 l$i$n 1 

with 

n·l I, X~ ➔ 1, n ➔ "", 
l:s;i$n I 

n-312 I, x? ➔ 0, n ➔ 00, 

l$i$n 1 

Since Y n is N(0,1) distributed, we have 

d 
Zn+ CX. Yn ➔ Y3/ 6 + Y(cx. - 1/2), n ➔ oo, 

with Y an N(0,1) distributed random variable. Thus we have constructed (with Vn = 
(Zn + % Yn) / var112 (Zn + % Yn) ) a sequence of random variables which satisfies the 

conditions a), b) and c) of Th. 2.1.1, but which has a non-normal limit distribution. 

(The tail of the limit distribution is determined by Y3 / 6, which is not normal.) 

2. 2. Formulation of the main result 

In this section the assumption is dropped that there is an underlying sequence of 

independent random variables. Then there is no Hoeffding decomposition, and for 

similar results conditions have to be imposed that are satisfied automatically in the 

Hoeffding decomposition. Two conditions are important here. 

In the Hoeffding decomposition two random variables are independent ifln J = 0. 
Indeed, components in the Hoeffding decomposition are dissociated (see McGinley and 

Sibson (1975)). That is, random variables, indexed by subsets of the integers W 11 , 

... , W Iq are independent if the sets I 1, ... ,I4 are mutually disjoint. Condition d) of Th. 

2.2.3 is weaker than the assumption that the random variables are dissociated. 
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More important, however, is the definition of the analogue of (1.1.1). Consider the 

family ofrandom variables indexed by finite subsets of the integers 'W = { W 1 : I c 

{ 1,2, ... } } and the er-algebras _?{i) = cr { W 1 e 'W: i e: I } . 

Definition 2.2.1. The random variable W 1 e 'W is clean if E( W 1 I J<i) ) = 0 a.s. 

for all i e I. 

Notice that this definition is not the same as the definition of 'clean' in De Jong 

(1987), where components in the Hoeffding decomposition are considered. The family 

'W is clean if all its members are clean; by abuse of language we say 'I, W 1 is clean' 

to indicate that the family 'W is clean. 'W 

Any subset of a clean family is clean. If 'W is clean and 'W0 c 'W, then 'W0 is 

clean, since with ~0(i) = cr { W1 e 'W0 : i e: I} we have for W1 e 'W0 

E( Wr I ~o(i)) = E( E( Wr I J(i)) I ~o(i)) = 0 a.s. 

Homogeneous sums in the Hoeffding decomposition (Sect. 2.1) are clean; since 

J(i) c cr {Xj : j * i }, we have for i e I 

E( Wr I J(i)) = E( E(Wr I xj, j * i) I J(i)) = 0 a.s. 

Therefore, we have the following examples ( cf. Ex. 2 of Sect. 2.1 ). 

Example 1. The degenerate homogeneous sum in the Hoeffding decomposition W(n) = 

W12 + ... + Win is clean. We can leave out the index 1. The set of random variables 
{Wj: Wj = W1j,j = 2, ... ,n} is clean, since 

E(Wi I wj, j * i) = E( E(Wi I xj, j * i) I wj, j * i) = 0 a.s. 

This can be extended easily. 

Example 2. Consider the components in the Hoeffding decomposition 
( W ij ) lSiSk, k<jSn . This is a rectangular part of the upper triangle of the matrix 

( Wij ). The set of random variables 

{Wj:= L, wij:j=k+l, ... ,n} 
lSiSk 

is clean: 
E(Wj I W g , k < g * j ) = E( E(Wj I Xg , k < g ¢ j ) I W g , k < g "# j ) 

= E ( I, E(Wij I xg , k < g * j ) I W g , k < g * j ) = 0 a.s. 
lSiSk 

Both examples above can be generalized for components in the Hoeffding decom

position with d indices. 
Notice that a random variable is clean with respect to a given set '111. A change in one 

variable may effect many other variables. 
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Example 3. Let U1,U2, ... be iid uniform (0,1) random variables and let f1,f2, ... be the 

Rademacher functions ( fk(x) = 1 - 2 ek(x), with ek(x) right continuous "zero-one" and 

L 2-k ek(x) = x, x e [0,1], where (ek(x) )k are the coefficients in the binary expansion 

~f x). Put gk = fk + 1; for i < j we define Wij = f/Ui)gi(Uj). Since cr{W gh: {g,h};tc 

{i,j} } c cr{ Ug, fh(Ui), fk(Uj) : g,h,k e {i,j} } and since for fixed i the random 

variables fk(Ui) are independent, the random variable Wij is independent of the random 

variables W gh , { g,h} * { i,j}. Thus E( Wij I Wik , k * j ) = E Wij = 0 a.s., whereas 

E( Wij I Ui) = f/Ui)Egi(Uj) * 0 a.s. Hence the set { Wij: 1 ::; i < j::; n }is clean, 

and the set { Wij: 1::; i <j::; n }u { U1 -1/2} is not clean. 

The above example shows that the union of two clean families ( or the sum of two clean 

sums) is not necessarily clean. 

Example 4. If {Wi : i = 1,2, ... } is clean, then the multilinear form 

I W1 , with W1 = a1 TI ~ ( (a1 )111 = d real constants) 
III = d i E l 

is clean, since with i e I we have 

E( W1 I _?{i)) = E( E( W1 I wj 'j * i) I _?{i)) 

= al E (( TI Wk) E( wi I wj 'i;tcj) I _?{i)) 
= 0 a.s. i e l, k,'i 

Clean random variables are uncorrelated: With i e J \ I we have E W1W J = 
E W 1 E (W J I J<.i) ) = 0. This idea can be extended; we shall use it often in the 

following form. 

Lemma 2.2.2. Let { W11 , ... ,W1q}be clean and suppose 11 n ( I2u ... u lq) * 11 

(11 is called a free index of the q- tuple ( 11, ... ,Iq )). Then E W11 ... W1q = 0 (provided 

the expectation exists). 

Proof Let i E 11 / ( I2u ... u lq ), then 

E Wr1 ... W1q = E Wr2 ... wlq E (W11 I _?{i)) = 0. 

In fact we have shown more: 

E (W1r·· W1qlWJ E 'l1/, J E JI.)= 0 a.s., if l1 n ( l2 u ... ulq u ( u;)) ;to l1. 

For the sequence of clean finite sums W(n), homogeneous in I I I, with var W(n) = 1 

- recall that we reserve the symbol W(n) for clean sums that are homogeneous in I I I -
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we have the following central limit theorem. Notice that each sum below is clean; 

nothing is assumed about W(k) + W(m), with k-:/:: m. 

Theorem 2.2.3. Let W(l), W(2), ... be a sequence of clean homogeneous sums of 

degreed, W(n) = I. WI with var W(n) = 1, for n =1,2, ... ( d fixed). Suppose 
III= d 

Then 

a) max I. crl ➔ 0 for n ➔ oo, 

I 3 i 

4 / 4 b) max EWI o-I :5: D, D not depending on n, 
I 

c) EW(n)4 ➔ 3 for n ➔ oo, 

d) I. 
In J = 0 

d 

(Ew2w 2 - o-2o-2 ) ➔ o for n ➔ 00• I J I J 

W(n) ➔ N(0,1) for n ➔ oo. 

Remark 1. If we compare Th. 2.1.1 with the above theorem we can see that 

homogeneous sums in the Hoeffding decomposition are replaced by homogeneous 

sums of clean random variables satisfying assumption d). If the random variables WI 

are dissociated, then we have E w~wf =of~, if In J = 0. Thus assumption d) is 

implied by dissociated. 

Remark 2. We shall see below (Ch. 3) that, under the assumptions a) and b), 

assumption d) is equivalent to 
2 L2 

d') I. WI ➔ 1 for n ➔ oo. 

III= d 

Remark 3. If d=l, the clean sum has the martingale property and the reversed 

martingale property simultaneously: 

E (Wi I Wj , j < i , j > i ) = 0 a.s. 

In Sect. 2.4 it will be shown (Prop. 2.4.3) that if var W(n) = 1 and E wf / crf :,; D 

for all terms in W(n), we have 

E W(n)6 :,; D Cd, 

with Cd a constant only depending on d (not on n). This implies the following converse 

result (using Feller II (1971: 251, part e) ): 
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Theorem 2.2.4. Let W(l), W(2), ... be a sequence of clean homogeneous sums of 

degreed, W(n) = I. w1 with var W(n) = 1, for n =1,2, ... ( d fixed). Suppose 
III= d 

max E W~ / cr~ ~ D, D not dependir;g on n. 
I 

Then 
d 

W(n) ➔N(O,l) for n ➔ oo, 

implies 
EW(n)4 ➔ 3 for n ➔ oo. 

If d = 1 then the conditions of Th 2.2.3 can be relaxed somewhat. 

Corollary 2.2.5. (Th. 2.2.3 in case d = 1.) Let W(l), W(2), ... be a sequence of 

clean homogeneous sums W(n) = I. Wi with var W(n) = 1, for n =1,2, .... 
J::,is;n 

Suppose 

a) max crf ➔ 0 for n ➔ oo. 

Then 
d 

W(n) ➔ N(O,l) for n ➔ oo, 

if two of the following three conditions hold: 

b) max Ev/;/ cr; ~ D, D not depending on n, 
i 

c)EW(n)4➔ 3 for n ➔ oo, 

d) I. (E w?w! -cr?-cr?-) ➔ 0 for n ➔ oo. 
j;cj IJ IJ 

(For the proof see Sect. 2.3.) 

As a consequence of corollary 2.2.5 we obtain the statement of Example 1 in 

Sect.2.1. The sum (n - lf 112(X 1X 2 + ... +X 1Xn), (Xi iid, EX 1 = 0, E Xi = 1) is 

homogeneous (d = 1) and clean and condition a) is satisfied. If the distribution of Xi 

= ± 1 with probability equaling 1/2, then the conditions b) and d) are satisfied. IfW(n) 

is N(0,1) distributed then the sixth moment Ext is bounded, thus condition b) is 

satisfied and, by Th. 2.2.4, we have condition c). The conditions b) and c) imply (see 

proof of corollary 2.2.5) condition d), which implies that the distribution of X1 is as 

required. 

Thus Th. 2.2.3 (combined with the trick of 'lowering the dimension d' as shown in 

the examples 1 and 2 above) can be applied in cases which are excluded by condition a) 

in Th. 2.1.1. 
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2.3. Proof of Theorem 2.2.3 

In this section we shall consider a fixed finite clean sum W(n) . We can write W(n) 

as a sum of martingale differences 

with respect to the cr- algebras~ = cr{Wi: : max IS k}, since 

E (llc I ~-l) = L E ('Vi: I ~-1) 
I, max I= k 

= L E (E (Wi: I _1k)) I ~.1) 
I, max I= k 

= 0 a.s. (as ~-l c _#C) ). 

Remark 1. There is some arbitrariness in the definition of the martingale differences: 

Another ordering of the integers i, ... ,n, generally gives another set of martingale 

differences. In the definition of clean no ordering is assumed. There is even more 

structure. A martingale difference is a sum of martingale differences: 

Uk = L V.k. ,with V.k. = L W.1 , 
lS:jS:k-1 J J I, max I\ {k} = j 

with respect to the a-algebras~-= cr{Wi: : max I= k, max I\ {k} Sj }. Notice that 

J"kj-l c jj>. This can be repeated d times: W(n) is a sum of sums ... of sums (d times) 

of martingale differences. This extra structure is not needed in what follows. 

Notice that for the sequence W(n) with var W(n) = 1, for n = 1,2, ... , lemma 2.2.2 

yields 

:E E U~ = :E :E a; = :E cri = 1 and max E U~ s max :E cri, 
k k max I = k III = d k k I :1 k 

which can be chosen arbitrarily small by assumption a). By Th. 1 in Heyde and Brown 

(1971) we have for the sum of martingale differences :E Uk (with :E E U~ = 1) 
k k 

sup IP{ L Uk S x } - <l>(x) IS c;_ ( LE ut + E ( L u~ -1>2) , 
x k k k 

with 
X 2 

<l>(x) = (1/21t)"112 J e -t / 2dt, 
-00 

and C 1 a constant not depending on n. We shall give estimates for :E E u! and 

var (:E Ui ), which vanish under the assumptions of Th. 2.2.3, thus proving the 

theorem. We start with proving Corollary 2.2.5. 
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Proof of Corollary 2.2.5. Ford= 1 with W(n) = I, Wk and var W(n) = 1 = I, cri 

we have the following two equalities k k 
4 (I) •• A 4 2 2 2 2 

E W(n) - 3 = I, (E wk- 3 O'k) + 6 I, (E wk WI - "k ~) 
k k<l 

(2) 2 •• A 
= 3 var (I, Wk ) - 2 I, E wk. 

k k 

Condition b) implies 
•• A 4 2 

I,E wk :s;D I,crk:s; Dmaxcrk, 
k k k 

which vanishes by assumption a). Thus equality (1) shows the equivalence of the 

conditions c) and d). And Corollary 2.2.5 follows by equality (2) (since Uk = Wk ) 

and the martingale central limit theorem. 

The conditions a), c) and d) together imply, by equality (1), I, E w! ➔ 0, and 

thus, by equality (2), var (I, Wi ) ➔ 0. This proves again Corollary 2.2.5 (without 

use of assumption b) ). However, the conditions a), c) and d) together do not imply 

condition b). This ends the proof of Corollary 2.2.5. 

The proof of Th. 2.2.3 for d ~ 2 is more involved; one reason being that the 

different partial sums that make up the fourth moment E W(n)4 cannot be described 

explicitly (as in equality (1) above).The fourth moment 

4 
EW(n) = I, E W1W1WKWL 

(I,J,K,L) 
is split into three partial sums according to whether a quadruple (I,J,K,L) is in one 

of the three (disjoint) collections below: 

'f the collection of quadruples with a free index (see Lemma 2.2.2), 

'B the collection of quadruples (l,J,K,L) with each element in the union 

IuJuKuL in exactly two of the sets l,J,K,L. This is the collection of bifold 

quadruples: 

l I + l J + l K + l L = 2 l IuJuKuL ' 

'I the rest :F' \ B; a quadruple in T has no free index and at least one element 

in the union IuJuKuL is in three or more sets: 
> 

11 + 11 + lK + 1L ¥- 21 1uJuKuL' 
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In Lemma 2.2.2 it is shown that the set 1-' nor its subsets contribute to the fourth 

moment E W(n)4 • For any subset 1-' * c 1-' we have 

(2.3.1) I, EWrWJWKWL =0. 
(IJ,K,L) e ![* 

The quantities 't and -r*, defined below, will play an important role in the next chapters: 

-r*= I, IEWrW1WKWLI, 
(l,J ,K,L) e 'T 

't = L CJi crJO"KOj:_, 
(I,J ,K,L) e 'T 

The proof of Th. 2.2.3 is split into several propositions, some of which are quite 

easy to prove. In fact there are only three major problems to be overcome: in the first 

place the proof that 't and -r* vanish under the conditions a) and b) of Th. 2.2.3; this is 

postponed until Sect. 2.4. Further it has to be shown that the bifold quadruples vanish 

except those quadruples that consist of two pairs of identical indices ( I, wf w; ) . 
InJ = 0 

This is settled in Prop. 2.3.6 and Prop. 2.3.5. (If d = 1 this is evident; ford~ 2 much 

attention has to be paid to these 'extra' bifold quadruples.) Finally it has to be shown 

that the conditions of Th. 1 in Heyde and Brown (1971) are satisfied. This is 

formulated in Prop. 2.3.4. The hardest part of the proof of this proposition rests on a 

symmetry argument (Prop. 2.3.3). 

Proposition 2.3.1. For Uk, defined above, we have (with Wr clean) 

I, E ~ ~ -r*. 
k 

Proof 

L E WrWJWKWL 
(I,J ,K,L), maxI = maxJ = maxK = maxL = k 

L E WrWJWKWL. 
(l,J,K,L), maxi= maxJ = maxK = maxL 

On the right-hand side no bifold quadruples occur, since InJnKnL -:t:: 0 . The 

conclusion follows by (2.3.1) and the definition of-r*. 

In order to estimate var (I. u! ), the collection of bifold quadruples is split again: 
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'B(e,f) = { (I,J,K,L) e B: I InJ I= e, I InK I= f }. 

Given the numbers e = I InJ I and f = I InK I, the number of elements in each 

intersection of two ~ndices (other intersections are empty) is known. If (I,J,K,L) is 

bifold, then I InL I = d-e-f, since I is the aisjoint union (InJ) u (InK) u (InL); 

and I InJ I= I KnL I, since I!).. J = K !).. Land III= IJI = IKI = ILi = d, etc. Put 

S(e,f) = I, E ~WJWKWL. 
(I,J,K,L) E 2l(e,t) 

Since the value of E WI W1 WK WL is not changed by a permutation of 

(W1,WJ'WK,WL), we have 

Put 

S(e,f) = S(f,e) = S(e,d-e-f). 

S = I, I, S(e,f), 
lSe~-2 lSfSd-e-1 

s0 = I, S(e,O), 
lSeSd-1 

then we have 

I, E ~ W1 WK WL = S + 3 S0 + 3 S(O,O). 
(I,J ,K,L) E 23 

The following quantity will be used frequently in the sequel: 
2 2 2 2 y = I I, (E WI W1 - <JI cr1 ) I. 

We have InJ = 0 

(2.3.2) I S(O,O) - 1 I 

= 1 I. E wf wf -( I. cr2 )21 
InJ = 0 III = d I 

s; 'Y + I. crf crf 
InJ i'-0 

$ y+'C. 

We shall give an estimate for var ( I, u{) in terms of 't*, 'C, S, Sci and y; see 

(2.3.3). We start with an auxiliary random variable. 

Proposition 2.3.2. For clean random variables ~ we have 

var( I, WI ~ ) s; y + 'C + I S + 2 ~ I + 't*. 
InJ i'-0 

Proof. Since the random variables are clean, they are orthogonal 
2 

E( I, ~~)= I, cr1=l. 
InJ'#-0 IIl=d 

Since quadruples with a free index do not contribute by (2.3.1), 



22 

with 

= I, E W1W1WKWL +R 
21,InJ ,t, 0 

= I. I. S(e,f) + R 
1:;:;e:;:;d I:;:;f:;:;d-e 

= S(d,0) + S + 2 S0 + R, 

R = I, E W1 W1 WK WL and thus IRIS 't*, 
'I, InJ '# 0 '# KnL 

by using 

I, IE\ViWJWKWLISI, IE\ViWJWKWLl='t*if'T*c'T. 
T" 'T 

Now the proposition follows from (2.3.2) and the symmetry relation s(d,0) = S(O,O). 

By the symmetry of the bifold quadruples we obtain: 

Proposition 2.3.3. For Uk' defined above, we have (with Wr clean) 

var ( I. Wi w1 - I. Ui) s 't* + 12/3 s +~I. 
InJ * 0 k 

Proof With R a partial sum over quadruples in 'T(and thus I R I S 't*) we obtain 

2 
var( I, W1W1 - I, Uk) 

InJ ,t, 0 k 

=var( I, W1W1 - I, \ViWJ) 
InJ * 0 max IuJ e InJ 

=E( 

InJ * 0, max IuJ e; InJ 

=4 L E WiWJWKWL +R 
21,InJ * 0, max IuJ e I \J,max KuL e K \ L 

=4 
21,InJ * 0, max IuJ = max KuL e Knl 

=4 

21,InJ * 0, max IuJuKuL e Kn! 

=4 L, E WIWJWKWL 
21,InJ * 0, max IuJuKuL e Kn!, InL = 0 
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+4 L E WIWJWKWL +R 
'B,InJ * 0, max IuJuKuL E KnI, InL * 0 

= SO + 2/3 S + R, 

where the last equality sign is explained below. The set 
u 13(e,d-e) ={(I,J,K,L) e 'B: In J -1= 0 ,t; In K, In L = 0} 

l:<,;e:<,;d-1 

can be partitioned into 4 subsets according to whether max IuJuKuL is in one of the 

following intersections I n J, I n K, K n L, J n L. The sums over these subsets 

have equal contributions as can be seen from the equality 

f(I,J,K,L) 
In J,;, 0,;, In K, In L = 0, max IuJuKuL E In J 

f(I,K,J,L), 
I n J * 0 ,;, I n K, I n L = 0, max IuJuKuL E I n K 

with f(I,J,K,L) = E WI W1 WK WL and the commutativity of multiplication, 

f(I,J,K,L) = f(I,K,J,L).This shows that 

s0 =4 I, E Wr.W1wKwL. 
In J * 0 *In K, In L = 0 ,max IuJuKuL E In K 

By the same argument it is shown that 

S = 6 L E Wr.WJWKWL. 
In J,;, 0, In K,;, 0, In L * 0,max IuJuKuL E In K 

This proves the proposition. 

The three propositions above together imply the following technical central limit 

theorem. 

Proposition 2.3.4. Let W(l), W(2), ... be a sequence of clean homogeneous sums 

of degreed, W(n) = I, WI with var W(n) = 1. If all the following conditions hold 
III= d 

I a) 't ➔ 0 for n ➔ oo, 

b) t* ➔ 0 for n ➔ oo, 

II a) s0 ➔ 0 for n ➔ oo, 

b) S ➔ 0 for n ➔ oo, 

III y ➔ 0 for n ➔ oo, 

then 
d 

W(n) ➔ N(O,l) for n ➔ oo. 

Proof. Combining Prop. 2.3.2 and 2.3.3 we obtain, by var(A + B) !5; 2 var A+ 2 var B, 
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(2.3.3) var(I, u!)s2var( I, W1W1 )+2var( I. W1W1 - I. u!) 
k I nJ '# 0 I nJ '# 0 k 

S4't•+2't+2y+10/31SI +61S 0 1. 

The proposition follows by Th. 1 in Brown and Heyde (1971) and Prop. 2.3.1. 

To prove Th. 2.2.3 we shall check the conditions I, II and III. Assumption d) of Th. 

2.2.3 is equivalent to condition III. Under the assumption b) of Th. 2.2.3 we can 

reduce condition lb) to condition Ia). By the Holder inequality we have 

(2.3.4) E I\Yi W1 WK WL IS E114 ~ El/4 Wj E1/4 ~ El/4 W{, 

SD q cr1 O'K q__. 
This shows 't* S D 't. The proof of condition la) is postponed to Sect. 2.4. 

Condition II will follow from the two propositions below. 

Proposition 2.3.S. For clean homogeneous sums W(n) we have 

I S + 3 S0 IS 't* + 3 't + 3 y +IE W(n)4 - 3 I. 

Proof. The fourth moment E W(n)4can be written as: 

4 
EW(n) =I,E W1W1WKWL +I,E W1W1WKWL. 

Thus 

'T '11 

EW(n)4 - ,3 = I, E W1W1WKWL + S + 3 ~ + 3 S(0,0)- 3. 
'T 

The proposition follows by the triangle inequality and (2.3.2). 

The right-hand side in Prop. 2.3.5 vanishes under the conditions of Th. 2.2.3. 

However, we have to show that Sand S0 vanish separately. Here is a lower bound for 

S0 = S(l,0) + ... + S(d-1,0) and for S + 2 S0. 

Proposition 2.3.6. For clean homogeneous sums W(n) we have 

a) S(e,o) ~ - 't* for 1 Se S d - 1, 

b) S + 2 S0 ~ - 't*. 

Proof. We shall show that both left-hand sides are a sum of squares up to a remainder 
term, which is a sum over a subset of rz: Consider two disjoint sets of the integers both 

of sized - e: A, A' c { 1,2, ... } with An A'= 0, I A I = I A' I = d - e. Then 
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E( L WIWJ )2 
llnJI = e, I\ J = A, J \ I = A' 

= L EWi~~~ 
llnJI = e = IKnLI, I\ J =A= L \ K, J \I= A'= K \ L 

= L E WiWJWKWL 
'I, IInJI = e = IKnLI, I\ J =A= L \ K, J \I= A'= K \ L 

+ L E WiWJWKWL" 
'll(e,o), InL = A, JnK = A' 

Summation over the subsets A, A' yields 

A, A' c { l, ... ,n}, AnA' = 0, IAI = IA'I = d-e 

E( I, w1w1)2 
llnJI = e, I\ J = A, J \ I = A' 

(2.3.5) = I, E WiWJWKWL + S(e,0) 
'I, IInJI = e = IKnLI, I\ J = L \ K, J \I= K \ L 

= R 1 + S(e,O), 

with IR 1 I ~ 't*, since R 1 is a sum over a subset of 'I. This proves a). 

The second inequality follows from 

E( I, W1 ~) 
InJ-#0,I"#J 

2 

I, E WiWJWKWL 
'll,InJ-#0,I"#J 

+ L E WiWJWKWL 
'I, InJ "# 0 "# KnL, I"# I, K "# L 

with I R2 I ~ 't*. This proves the proposition. 

By the above proposition we have 

(2.3.6) -(d-l)'t* ~ So= S + 3 So- (S +2 So)~ IS+ 3 So I +'t*. 

Hence s0 and S vanish if S + 3 s0 and 't* vanish. This completes the proof of Th. 

2.2.3, except for estimates of the quantity 't. 
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Remark. In the next section it will be shown that "C and "C* vanish under the conditions 

a) and b). Thus y, "C, "C*, and (S(O,O) - 1) all vanish under the conditions a), b) and d) 

of Th. 2.2.3. Hence Prop. 2.3.6 implies that, under these conditions, 

lirninf E W(n)4 ~ 3. 

2.4. Estimating the quantities "C and "C* 

The main result of this section consists of estimates for sums over quadruples 

(l,J,K,L), containing no free indices. The conditions we impose here on the random 

variables are minimal: E \\'r = 0, E wf = crf and E W'i /ai ~ D for all I. Indeed we 

shall consider the general case of q-tuples E \\'r 1 ... Wi:q rather than quadruples, where 

the indices are finite subsets of the integers. Consider the family of q-tuples Q = 

{ (1 1 , ... ,Iq): lg c { 1, ... ,n}, llgl ~ d, g = l, ... ,q} for fixed d (and n large). Notice 

that the assumption of homogeneity in llgl is dropped. Here also q-tuples (I 1 , ... ,Iq ) 

with indices lg of different cardinality are taken into account. 
In Sect. 2.3 the set of homogeneous quadruples was split into the subsets 1l(e,f). 

We shall now split the set Qin a different way, in which the ordering of the underlying 

set { 1, ... ,n} plays an important role. 

Definition 2.4.1. The shadow of a q-tuple (11' ... ,lq) e Q with I 1u ... ulq = 

{il' ... ,if: i 1< ... <irl is the q-tuple (1'1, ... ,I'q) e Q defined by I~= {j : ij e lg}, 

g = 1, ... ,q. 

Since the shadow of a q-tuple (11' ... ,lq) is determined by q subsets (of at most d 

elements) of a set containing at most dq elements the number of distinct shadows with q 

elements with cardinality ~dis bounded by (C(j + ... + (~d))q ~ (2qd)ql. Although this 

bound may not be sharp, it does not depend on n. Since the number of distinct shadows 

(q,d fixed) does not depend on n it is for purpose of estimation, sufficient to evaluate 

the sum over all q- tuples with the same shadow (11, ... ,I'l This amounts to sums 

over all ordered f-tuples n 1< ... <nf (f = II 1u ... u Iql ). It is easier to work in a 

product space. Therefore we shall sum over all f-tuples (n 1, ... ,nf ), i.e. integrate over 

mf with respect to the counting measure. The basics from integration theory are 

sufficient for our goal. 

Let F be a finite set (e.g. a subset of the integers) and <pa non-negative measurable 

function on llF, <p : R.F ➔ [0,00). With '-F the Lebesgue measure on R.F we have by 

Fubini's theorem on the rearrangement of the integration order 
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for a partition (F1 , ... ,Fq) of Finto non-empty subsets and A.F the Lebesgue measure 

on JlFg_ The theorem also holds trivially for the counting meas~re µFon :n;iF. We shall 

use the shorthand notation: 
A 
I ~ dµA := J ~ dµA 

iif 
A 

for ~: l'IiF ➔ (0,00), Ac F. If A'# F then J ~ dµA is a non-negative function 

on l'RF\A which may be infinite at certain points. By definition we extend this notation: 
0 

I ~ dµ0 :=~-
Put 

p(~) = max 
j E F 

F\(j) 2 
sup J ~ dµF\ (j)' 

IV 

p(~) is the supremum of the integral of ~2 over any hyperplane parallel to some 

coordinate. Notice that p(~) S II ~ II~, since a sum of non-negative terms dominates all 

partial sums. 

The next lemma (essentially an application of the Cauchy-Schwarz inequality) 

contains the basic results of this section. 

Lemma 2.4.2. Let Fg be finite non-empty sets of the integers and ~g: mFs ➔ [0,oo), 

g = 1, ... ,q. Suppose Ac F = F1u ... uFq, and 

lF\A ( 1F1 + ... + lFq )~2 lF \ A 

(any element in F \ A is contained in at least two subsets Fg ), then 

A F\A 2 2 2 
a) J ( J ~1 ... ~q dµF \A) dµA S II~ 11 2 ... II ~q 11 2. 

Proof. The proof proceeds by induction on q. For q = 1 both assertions are trivial: since 

F 1 = F =Awe have JP ~2 dµF = 11 ~1 II~; hence a). If q = 1, then condition b) is 

empty. 

Assume a) holds forq - 1 functions ~2, ... ,~q· Put ~ = ~2 ... ~q· The set Fis divided 

into 6 disjoint subsets Ri, i = 1, ... , 6, according to the scheme below. 
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FIA A 

Rl R4 

} Fl 

1½ R5 

} F2 u ... u Fq 

R3 R6 

Notice that J\ = 0 and 2 1R3 ::;; 1R3 (1F2 + ... + lFq ). By rearrangement of the 

integration order, application of the Cauchy-Schwarz inequality and again by 

rearrangement of the integration order, we obtain 
A F \ A 2 
f ( f S1···SqdµF\A)dµA 

A R2 R3 
= f (f (S1) ( JI;, dµR3 ) dµR2 )2 dµA 

A R2 R2 R3 
::;; f (f I;,~ dµR2) (J ( f I;, dµR3 /dµR2) dµA 

with F' = F 2u ... uF q and A' = (AuF 1 ) n F' = R2uR5uR6. Since F' \ A' = R3, we 

have lF' \A' ( lF + ... + lF ) ~ 2 lF\A' and thus by the induction hypothesis 
A' F'\i' q 

2 2 2 f ( f S dµF' \ A' ) dµA'::;; II S2 112 ... II Sq 112· 

IfF 1 n An (F2u ... uF q) = R5 '# 0, then 
F1 \ Rs 

f I;,~ dµF1 \ R5 ::;; p(l;,l), 

where the last inequality rests on a simple property of the counting measure: ai ~ 0 

implies s~p ai ::;; ~ ai. This, together with the induction hypothesis, proves b). 
I I 

IfR5 = 0, then 
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Ft\ Rs 

f ~; dµF1 \ Rs = II ~111; . 

This proves the lemma. 

Let Bq be the set of bifold q-tuples in Q defined in the same way as for quadruples: 

'Bq= { (l1,•·•,lq): 11 + ... + 11 =211 L } 
1 q 1u ... u "I 

and 

'J'q. = { (1 1, ... ,I ) : 1 I + ... + 1 '- ? 2 1 I I }, 
q 1 "I 1u ... u q 

the set of q-tuples with each element in the union contained in at least two indices and at 

least one element in more than two indices. Let CB(d,q) be the number of different 

shadows in 'Bq and CT(d,q) be the number of different shadows in 'I'q. 

Proposition 2.4.3. Let the random variables W1 be indexed by subsets of the 

integers {1, ... ,n} of size~ d, {Wy : I c { l, ... ,n}, III ~ d}, with E Wy = 0, EWi= crf 

and I. crf = 1. Put 
III :5 d 

Then 

Dq = max E IWy lq/ cri , 
I 

2 p = max I. cr 1. 
I 3 i 

a) I, crl1 ... crlq ~ CB (d,q), 

(11'."' lq) E 1Jq 

b) I, crl1 ... crlq ~ CT (d,q) p 
(11 , ... , lq ) E 'Tq 

1/2 

Moreover, 

a') I, E IWyt" .. Wlql ~ Dq CB (d,q), 

(11, ... , lq ) E 1Jq 

b') I, E1Wy1 ... W1ql ~DqCT(d,q)p112. 

(11' ... , lq) E 'Tq 

Remark. The inequalities a') and b') follow from a) and b) respectively, by Holder's 

inequality and the definition of Dq. The ine~ualities a) and b) can be easily deduced 

from a') and b') respectively by defining W1 = ± cr1 with equal probability; they are 

included for later reference; 
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Proof Consider the fixed shadow (F1 , ... ,Fq) e Q with I Fg I= eg, g = 1, ... ,q and 

F = F1 u ... u Fq = { 1, ... ,f}. Define <Pg: l'Jfg ➔ [0,00) by 

and 

1tg: mF ➔ mFg the natural projection, 

~g = <Pg O 7tg, g = 1, ... ,q 

(~g is the function <Pg on mFg considered as function on JRF)_ Then II <Pg 11; = 
I, crf ~ 1 and we have 

Ill= eg 

L, crll ... <\ 
(11 , ... , Iq) with shadow (F1 , ... , F q ) 

= L, ~ 1 (il' ... ,if ) ... ~ q (il' ... ,if) 
1 ~ i1 < ... <if~ n 

~ L, 
1 ~ i 1 , ... , if ~ n 

1 

(2.4.1) ~ 
{ pl/2 if (Fl' ... ,Fq) e l 

The last inequality follows from lemma 2.4.2. If (ll' ... ,Iq) e 'Bq the conclusion 

follows from part a) of the lemma with A = 0. If the shadow is in 'fq we have 

F 1 11 F 2 11 F 3 :#: 0 ( or some other triple). By the Cauchy-Schwarz inequality we have 

F F1F\F1 
J J J 2 1/2 

<P1 ··· <Pq dµF ~ II <I\ 11 2 ( ( <P2 ··· <Pq dµF \ F1) dµF1 ) 

and we can apply part b) of the lemma to the functions cp 2, ... ,cp q taking into account 

that lF \ F1 ( 1F2 + ... + lFq) ~ 2 lF \ F1 and Fl 11F211 ( F3U ... uFq)::, Fl 11F211 

F3 :#: 0 and p(~1) ~ p. This proves (2.4.1) and thus the a) and b) part of the 

proposition by the trivial inequality: a 1 + ... + ak ~ k max ai, if ai ~ 0. By the Holder 

inequality and the assumptions on the qth moments of "Yi_ we have 

E l"Yi_i" .. wlq I~ E11ql"Yi_llq ___ E11q1Wlqlq ~Dqcrl1 ... ~q-

This proves the parts a') and b') of the proposition. 
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We conclude this section with some remarks. 

Remark 1. Prop. 2.4.3 implies almost immediately Th. 2.2.4. We have only to show 

that the sixth moment remains bounded under the assumptions of the theorem. Since 

W(n) is clean and E wf / af s; D, we have by Prop. 2.4.3 

E W(n)6 s; D <c;.(d,6) + ~(d,6)), since p S: I, O"i = l. 
I 

Remark 2. In many cases the fourth moment condition E Wi IO'{ s; D, D not depending 

on n is not satisfied. If D diverges to infinity for n ➔ oo, then it can be seen from Prop. 

2.4.3 b) that it is sufficient for,:* ➔ 0 to impose the combination of the conditions a) 

and b) of Th. 2.2.3: 

D4 p112 ➔ 0 forn ➔ oo. 

We shall return briefly to this issue in Ch. 3 (Th. 3.1.2). 

Remark 3. In Ch. 3 we shall show that for homogeneous random variables in the 

Hoeffding decomposition Wi we do not need Holder's inequality to estimate 

E I W1 i" .. W1q I for (I 1'" .. , I q ) e 'l In this case we have the sharper inequality 

E 1Wi1 ... Wlq IS: q_1 ... a1q if (11' ... ,lq) e '.Bq. 



3 . Extensions and variations 

3.0. Introduction 

In this chapter two main items are considered. The first two sections are concerned 

with variations and extensions of the results of the previous chapter; in Sect. 3.3 we 

give some results on inhomogeneous sums. 

One important aspect of the first two sections concerns the condition E W(n)4 ➔ 3. It 

will be shown that, in some respects, this condition is also a negligibility condition. In 

Th. 3.1.5 it is shown that the usual negligibility condition and the fourth moment 

condition in Th. 2.2.3 can be replaced by a stronger negligibility condition 

max I, cr 1 ➔ 0, n ➔ oo. 

i I 3 i 

From Sect. 3.2 on, we restrict ourselves to the Hoeffding decomposition. Firstly, it 

is shown how with the family coefficients (ai') 111 = d several ([ d/2]) rectangular matrices 

can be associated. Then it is shown that the maximal singular values of the matrices all 

vanish iff E W(n)4 ➔ 3 for the multilinear form W(n) with coefficients (a1) in 

independent centered random variables Xi with E xf = 1, E Xi S: D. If the maximal 

singular value of a rectangular matrix JR.m ➔ R. nis small, then the image of every point 

in the unit ball of JR.mis small. In this respect the fourth moment condition is a strong 

negligibility condition. Section 3.2 contains some related results on singular values. 

Another aim of this section is to formulate central limit theorems without any 

reference to fourth moments. Above, it is indicated how the fourth moment condition 

can be repaced. By means of truncation the uniform bound on the fourth moments of 

W 1 / cr I can be replaced by a uniform bound on the tails of the distribution of these 

random variables. These results together lead to Th. 3.2.7 and Th. 3.2.8, which 

generalize results (ford= 2) in De Jong (1987). 

In Sect. 3.3 we consider a finite sum of homogeneous sums 

V(n) = I, W (e)(n), with w<e)(n) = I, W 1. 
lSe~d III= e 

Suppose that the variance of each e-homogeneous sum w<e)(n) has a finite non-zero 

limit 

If W (e)(n) / var 112 W (e)(n) satisfies the conditions of Th. 2.1.1, for 1 S: e S: d, then 

V(n) has a normal limit distribution. However, these conditions may be difficult to 

check, since it may be hard to obtain the desired information on the separate 

32 
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homogeneous sums in situations where information on the total sum only is available . 

The chapter is concluded with an example of an inhomogeneous sum: a multilinear form 

in iid random variables. These random variables have a particular simple Hoeffding 

decomposition, as is shown in Prop. 3.3.5. 

3.1. Miscellaneous results 

In this section we shall freely use the quantities 'C, -c*, s0, etc., as defined in Ch. 2. 

We start with the proof of Remark 2 in Sect. 2.2 concerning y. 

Proposition 3.1.1. For (not necessarily clean) random variables 'Yi indexed by 

subsets of the integers of sized with I, Oi = 1 and 'C and -c* both vanishing, we have 
III= d 

L2 
y ➔ o for n ➔ oo iff I. w2 ➔ 1 for n ➔ oo. 

IIl=d I 

Proof Recall that y = I I, (E w;w; -a;a; )I. The proposition follows, since 
In J = 0 

since I, E w;w;:::; -c* and I, aia;:::; -c. 
InJ;t0 InJ;t0 

The next theorem is a simple extension of Th. 2.2.3 with the help of Prop. 2.4.3. 

Theorem 3.1.2. (Corollary to Th. 2.2.3.) Let W(l), W(2), ... be a sequence of clean 

homogeneous sums W(n) = I, W1 with var W(n) = 1, for n = 1,2, .... Define 
III= d 

D(n) = max E Wi I ai, 
I 

p(n) = max I, Oi, 
i I 3 i 

Suppose 

Then 

a) p(n) l/2 D(n) ➔ 0 for n ➔ 00, 

b) E W(n)4➔ 3 for n ➔ oo, 

c)y➔ O for n ➔ oo. 
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W(n) ➔ N(0,1) for n ➔ oo. 

Proof We shall check the conditions of the technical central limit theorem Prop. 2.3.4. 

Since D(n) ~ 1, assumption a) ensures that p(n) vanishes. Thus, by Prop. 2.4.3 b) and 

b') we have that 't and 't* both vanish. If 't, 't* and y all vanish, then assumption b) 

implies S + 3S0 ➔ 0 (Prop. 2.3.5). By the propositions 2.3.5 and 2.3.6 and (2.3.6) 

both S and SO vanish. This proves the theorem. 

The next proposition will be used often in the sequel. Recall that the sum over all 

bifold quadruples was split into partial sums: 

In the proof of Prop. 2.3.6.a) it was shown that each of the quantities S(e,O) (= S(O,e) 

= S(e,d-e) ), e = 1, ... ,d-1 can be expressed as a sum of squares up to a remainder term 

which can be estimated by 't*. For fixed ewe shall write S(e,O) symbolically (with a,~ 
and y subsets of the pairs (I,J) ): 

2 S(e,0) = I, I, E (I, W1W1 ) + R 1, 
a. ~ y 

where R 1 is a sum over a subset of 'I, hence I R 1 I :;;; 't*. We shall show that, with the 

same subsets a,~ and y as in the expression for S(e,0) above, we also have 

2 I, S(e,f) = I, E (I, I, W1W1 ) + R2. 
~f~d-e a. ~ y 

Again I R 2 I:;;; 't*. Then we have by the Cauchy-Schwarz inequality 

(I, L W1W1 /:;;; (I, 12 ) (I, (I, W1W1 )2 ). 
~ y ~ ~ y 

This leads to the final inequality in the proof of Prop. 3.1.3. Schematically 

I, S(e,f):;;; I ~ I ( S(e,0) + I R1 I)+ I R2 I. 
~f~d-e 

Proposition 3.1.3. Fore = l, ... ,d-1 

L S(e,f) :;;; ( 2d-2e) S(e,O) + 't* (( 2d-2e) + l). 
~f~d-e d-e d-e 

Proof. For a fixed set Cc { l, ... ,n}, IC I= 2d - 2e we have 

2 
E( I, W1 ~) 

I~ J = C 
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=E( L L wrw1>2 
A, A' c C, An A'= 0, IAI = IA'I = d-e I\ J = A, J \I= A' 

~<t~) L E( L WIWJ)2, 
A, A' c C, An A'= 0, IAI = IA'I = d-e I\ J = A, J \I= A' 

by the Cauchy-Schwarz inequality: (};: bi )2 ~ (~ 11 (~ b7). Working out the left-
1 I I 

hand side and summing over all subsets C we obtain 

E( L 
C c { 1, ... ,n). ICI = 2d - 2e I 6. J = C 

= L ( L E Wj_WJWKWL 
C c {1, ... ,n). ICI = 2d- 2e 'll, I 6. J = C 

+ L E Wj_WJWKWL) 
'T,Iti..J=C=Kti..L 

= L E Wj_WJWKWL +R 
'll, II n JI = e 

= 2, S(e,f) + R, 
(}.;;fSd-e 

with I R I ~ 't*. The proposition follows by summation over all subsets C at the right

hand side in the inequality above and (2.3.5). 

The above inequality is useful, since it reduces the amount of work if we check 

condition II of Prop. 2.3.4. This is made explicit in the corollary below. 

Corollary 3.1.4. Suppose that 't* ➔ 0 for n ➔ oo. Then 

S ➔ 0 for n ➔ oo if s0 ➔ 0 for n ➔ co. 

Proof. By Prop. 2.3.6 we have (since 't* ➔ 0) that S0 vanishes iff S(e,O) vanishes for 

1 ~ e <d. Thus S0 ➔ 0 implies that I. I, S(e,f) = S + 2S 0 vanishes (by 
P 3 1 3) h S O e lSeSd-1 (}.;;fSd-e 

rop. . . ; ence ➔ 1or n ➔ oo. 

Corollary 3.1.4 is applied in the following theorem. It is shown that the fourth moment 

condition, E W(n)4 ➔ 3, in Th. 2.2.3 can be dropped if the condition on the 

negligibility of the hyperplanes (condition a)) is strengthened considerably. An example 

of this strong negligibility is 

(3.1.1) max I, cr1 ➔ 0 for n ➔ oo. 

I 3 i 
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Condition a) in Th. 3. 1.5 below is a weaker version of (3.1.1 ). 

Theorem 3.1.5. LP-t W(l), W(2), ... be a sequence of clean d-homogeneous sums 

W(n) = I, W1 with var W(n) = 1, for n = 1,2, .... Suppose 
III= d 

Then 

a) max I ( cr1 I cr1) ➔ 0 for n ➔ 00, 

Ac { 1, ... ,n}. l:S;IAl:S;d-1 I:::; A J :::; I \ A 

b) max E w1 I O"i :5: D , D not depending on n, 
I 

c) ~ (E w2w2 - cr2 cr2 ) ➔ 0 for n ➔ 00• ...., I J I J 
In J = 0 

d 
W(n) ➔ N(O,l) for n ➔ oo. 

Remark. Notice that J ::::> I\ A iff J u A ::::> I. Hence condition a) is equivalent to 

a') max I ( cr1 
Ac { l, ... ,n}. l:S;IAl:S;d-1 IJI = d 

I cr 1) ➔ 0 for n ➔ 00, 

AcicJuA 

where for each subset A the summation of J extends over all indices J. 

Notice that 

I cr1 :;;; max I cr 1 for all subsets Ai: 0. 
l:::;A i l3i 

Thus (3.1.1) implies I cr1 ➔ 0 and hence condition a) of Th. 3.1.5. 
J:::; I\ A 

Proof We shall check the conditions of Prop. 2.3.4. Assumption c) is identical with 

condition III. Assumption a) with the maximum restricted to I A I =1 and the summation 

over J for given I restricted to J = I reads: 

2 max I cr 1 ➔ 0, n ➔ oo. 

i I 3 i 

Combined with assumption b) and Prop. 2.4.3 b) and b') this implies that 't and 't* 

vanish respectively (condition I). By Prop. 3.1.4, condition II is satisfied if s0 
vanishes. 

Consider a bifold shadow (l',J',K',L') E 13(e,O) and the triples (l',K',L') and 

(J',K',L'). Since l'uJ'uK'uL' = I'uK'uL' = J'uK'uL'(= ( l, ... ,2d}), both triples 

are shadows. Thus for each quadruple (l,J,K,L) with shadow (l',J',K',L') there is 

exactly one triple (I,K,L) with shadow (l',K',L') and IuKuL = IuJuKuL. The same 

holds for (J,K,L). By Holder's inequality, assumption b) and the inequality 2qcr1 :;;; 

di + cr} we have 
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21EWiWJWKWLI $ D(cricrK°L +crJcrK0r,). 

This gives 

2 L IE WiWJWKWLI 
(I,J,K,L) with shadow (I',J',K',L') 

$ L D( ~crK°L + cr;crK0i,) 
(l,J,K,L) with shadow (I',J',K',L') 

=D( L 
(I,K,L) with shadow (1',K',L') 

$2D 2: crf 
III= d 

max 2: crL 
I Lnl I= d-e 

max $ 2D 2: crf 
III= d A c I, IAI = d-e 

$2D max 
Ac {1, ... ,n}, IAI = d-e 

L \I c K 

2: Or, 
Ac L c KuA 

2: °L· 
Ac L c KuA 

Hence we have, with Ce the number of distinct shadows in 1¾(e,0): 

I S(e,O) I $ Ce D max 2: crK 2: Or,· 
Ac (1, ... ,n}, lSIAISd-1 IKI = d Ac L c Ku A 

Since neither D nor Ce depend on n, the theorem follows by assumption a'). 

3.2. Results involving singular values and truncation 
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We recall some well-known facts from linear algebra. The matrix A e Rm x n can 

be brought into diagonal form by two orthogonal transforms, U e am x m and Ve 

an x n: UT AV= diag(µ1, ... ,µr), r = min(m,n) with µ1 ~---~ µr ~ 0, uniquely. This 

is the singular value decomposition of A (see Golub and Van Loan (1983: 16 ff.)). If 

m = n the singular values µ1, ... ,µn are the absolute values of the eigenvalues of the 

matrix. Like the eigenvalues, singular values of a matrix A are related to matrix norms 

for A: 

(3.2.2) IIAll 2 := max II Ax 11 2 = ~• 
x e Rn, II x 112 = 1 

with II x 111 = ~ x ~ the squared Euclidean vector norm on It.~ Notice that II Ax 11 2 is 
lS1Sn 

the Euclidean vector norm on lt.m. The matrix norm II A IIHS is the Hilbert -Schmidt (or 
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Frobenius) norm and II A 11 2 the operator norm. These facts will be used in the proof of 

Prop. 3.2.1. 

Consider the family of real valued constants (a1 )1 c ( l, ••• ,n), 111 = d' First we shall 

extend the family indexed by subsets I c {l, ... ,n} to a symmetric 'd-dimensional 

matrix' A= (a. . ) l<' . <"' indexed by d-tuples: 11 .. ,Id -11, .. ,,ld=• 

a1 if {il' ... ,id} = I 

0 else. 
d . ne x d-e 

From A e Rn we can form rectangular matnces A(e) e 1l n , 1 ~ e ~ d - 1, 

A(e)=(a(e) .. )._1 e ._1 d-e· •J 1- , ••• ,n , J- , ... ,n 

The indices i and j are obtained by splitting ad-tuple is split into two parts: (i 1 , ... ,id) = 

(. · · · ) Th h . . e-1 . 0 . . d..e,.l . 0 d 11, ... ,1e,Ji, ... ,Jd-e' enwe ave 1=1en + ... +1 1n,J=Jd-en + ... +J 1n an 

a(e) .. = a. . . . . 
IJ 11 ... leJl, .. Jd-e 

Conversely, any number i can be written uniquely in a n-ary expansion, etc. Any other 

choice of (i 1' ... ,ie) among (i 1' ... ,id) results in the same matrix A(e) by the symmetry 

in A. 
The singular values of A(e) are denoted by µ(e) 1 ;;:.,,;;:µ(e\ with r = min (ne, nd-e), 

and by (3.2.1) we have 

µ(e)f + ... + µ(e); = d! L ai, 
IIl=d 

Since the matrices A(e) are uniquely determined by the family (a1 )111 = d we shall say 

(a1 )111 = d has singular values µ(e\ ;;:.,,;;:µ(e\, 1 ~ e ~ d-1 and maximal singular value 

µ* =max µ(e\, 
lSe<d 

The singular value decomposition of the square matrix A(e) T A(e) e Rnd-e x nd-e gives 

(with the orthogonal transforms U,V defined above): 

VT A(el A(e) V = VT A(elu UT A(e) V = diag(µ(e)f , ... ,µ(e); ), 

with r = min (ne, nd-e). And by (3.2.1) we have 

T 2 4 4 
II A(e) A(e) HHS = µ(e) 1 + ... + µ(e)r. 

The following proposition links the facts from linear algebra to the quantities defined 

in Ch.2. Define for the family (a1 )111 = d 

S(e,0) = L a1a1aKaL, 
'li._e,O) 



S0 = L S(e,O). 
lS:esl-1 
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Prop. 3.2.1 below is equivalent with Lemma 5.1 in De Jong (1987) in the cased= 2. 

(If d = 2 then µ * is the maximal absolute value of the eigenvalues.) 

Proposition 3.2.1. Let ~' 't, A, µ(e\, ... , µ(e)r, µ* be defined as above for the 

families (a1 )1 { 1 } III = d with L af = 1 for n = 1, 2, .... Then 
c , ... ,n ' III = d 

S0 ➔ 0, n ➔ 00 and max 2 L a1 ➔ 0, n ➔ 00, 

I 3 i 

iff 

µ* ➔ 0, n ➔ 00, 

Proof Let ei be the ith unit vector in R~ then 

(3.2.3) max L af ~ max II A(d-1) ei II~ ~ 2 
µ(d-1)1' 

i I 3 i i 

where the final inequality follows from (3.2.2). We have 

4 4 4 T 2 2 µ(e) 1 ~ µ(e) 1 + ... + µ(e\ = II A(e) A(e) IIHS ~ d! µ(e)l' 

by µ(e)i + ... +µ(e); = d! . This implies 

µ(e\ ➔ 0 iff II A(el A(e) HHS ➔ 0, n ➔ 00. 

We need, under the assumption that max L af vanishes, 
T i I 3 i 

II A(e) A(e) HHS ➔ 0 iff S(e,O) ➔ 0, 1 ~ e ~ d-1. 

Consider one element in the square matrix A(el A(e) = (b .. )1< .. < de: 
IJ _IJ-Il -

bi" = L a(e)ika(e) •k· 
J l s:Ics:ne J 

Writing ij and k as n-ary numbers and expressing a(e)ik and a(e).k in a. . we obtain: 
J 11 ... ld 

b .. = b. · · · = L a. · k k a · k k 
IJ 11 ... ld-eJl .. ,Jd-e lS:kl,,,.,ke~n 11, .. ld-e 100 • e Jl ... Jd-e 1 ... e' 

Notice that {il' ... ,id-e} n {kl' ... ,ke} -:f:. 0 implies a(e\k = 0 and {j 1, ... ,jd-e} n 
{k 1 , ... ,ke} -:f:. 0 implies a(e)jk = 0. With the convention a1 = 0 if I II< d and using the 

abbreviations B = {i 1 , ... ,id-el and B' = {j 1, ... ,jd-e}, we have 



40 

bij = e! I, a1a1 . 
Ac (I, ... ,n}, IAI = e, l=AuB, J=AuB' 

Hence 

2 2 ~ bij = (e!) £.J a1a1aKaL 
A,A'c( l, ... ,n}, IAI = IA'I = e, l=AuB, J=AuB', K=A'uB', L=A'uB 

= (e!)2 L alaJaKaL + Rij' 
1l(e,0), InL = B, JnK = B' 

* 2 ~ Rij = (e!) £.J la1a1aKaLI. 
'T, InL = B, JnK = B', llnJI = e, IKnLI = e 

Notice that there are no quadruples with a free index; moreover, if {i 1 , ... ,id-el n 
(j 1, .•. ,jd-e} '# 0, there are no bifold quadruples. Thus we have 

(3.2.4) I II A(el A(e) ll~s - ((d-e)! e!)2 S(e,0) I :S: I, R;j 
. l;S;i, j;S;nd-e 

and 

(3.2.5) * 2 I. Rij :S: t((d-e)! e!) . 
l;S;i, js;nd-e 

By Prop. 2.4.3 b) and (3.2.3) we have 

't S Cid,4) µ(d-1\. 

The rest of the proof is obvious. If µ(e) 1 ➔ 0 for 1 Se S d-1, which is equivalent to 

µ* ➔ 0, then 't ➔ 0 and II A(el A(e) ll~s ➔ 0 for 1 s es d-1; thus (3.2.4) and (3.2.5) 

imply S(e,0) ➔ 0, for 1 :S: e S d-1. This proves, by (3.2.3), the if part of the 

proposition. 

On the other hand, if 

2 
max I. a1 ➔ 0, 

i I 3 i 

then 't ➔ 0 by Prop. 2.4.3 b). In order to apply Prop. 2.3.6, which holds for clean 

random variables Wj, we notice that with 

W1 = a1 II Xi (Xi = ± 1 with probability equaling 1/2 and independent) 
i e I 

we have Wj W1 WK WL =a1a1aKaL and since E W,: /cr: S 1 we have t* S 't. Thus, by 

Prop. 2.3.6 we have s0 ➔ 0 implies S(e,0) ➔ 0, (since 't ➔ 0) hence II A(el A(e) IIHS 

➔ 0 by (3.2.4) and (3.2.5); and consequently µ(e\ ➔ 0 for 1 S e S d-1. This 

completes the proof of the proposition. 
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Now we return to the Hoeffding decomposition. Recall that on the probability space 

(0,J;P) a sequence of independent random variables X 1, X2, ... is given. Define for 

finite subsets of the integers I c { 1, ... ,n} the cr-algebras 1f = cr{ Xi: i E I }, :[0 = 
{0,0}. Then any square integrable !J-ii .... ,nrmeasurable random variable Z can be 

written 

Z= L \Yr, 
I c (1, ... , n) 

where the components in the Hoeffding decomposition \Yr are uniquely determined by 

a) \Yr is Ji measurable, 

b) E (\Yr I .1j) = 0 a.s. ifl\J ~ 0. 

The next proposition shows that for V, a component in the Hoeffding decom

position, there is a bounded component V' close (in L~sense) to V. 

Proposition 3.2.2. Let V be any square integrable random variable, satisfying the 

conditions a) and b) above. For each C 2! 0 there is a random variable V' satisfying a) 

and b) with 

E (V - V'/ ~ E V21 ( IVI > C) 

and 

IV'l~2111 C. 

Proof. Truncate Vat C: V* = Vl(IVI::: CJ" Then V* can be written in the Hoeffding 

decomposition as 

Call \Yr the clean version of V* and put V' = \Yr. Then V - V' is the clean version of V 

- V*, since we have in the Hoeffding decomposition: 

V - V* = L - "W.i + (V - V'). 
J ~ I 

By the orthogonality of the Hoeffding decomposition 

E (V _ V')2 ~ E (V _ V*)2= E V2 l(IVI > CJ" 

From Prop. 3.2.3 below we see that V' can be written as a sum of 2111 terms each 

bounded in absolute value by C: I V' I ~ 2111 C. This proves the proposition. 

We give an expression for components in the Hoeffding decomposition in terms of 

conditional expectations (cf. Prop. 2.2 in Karlin and Rinott (1982)). 
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Proposition 3.2.3. Let Z be .1j-measurable, and Z = L W1 (Hoeffding decom-

position). Then J c I 

WI= L E (Z I 9)) (-1)111 • IJI_ 
J C I 

Proof. The proof is by induction. For I = 0 the assertion is trivial. For I '#: 0 we have 

WI =Z- L W1 
J~I 

= z - L L E (Z I .1"K) (-1) IJI . IKI 
J~I KcJ 

=Z- L E(ZI .1"K) 
K~I 

(-l) IJI · IKI 

Kc J ~ I 

(;) Z - L E (Z I .1"K) 
K~I 

( (1-l) III - IKI _ (•l) III - IKI) 

= L E(Zl9))(-1)111 .IJI. 
Jc I 

Equality (1) follows by (for K ~ I, I fixed) 

L (-1) IJI - IKI = L (-1) IJ'I = L (-1) IJ'I _ (-1) II\KI_ 

K c J ~ I J' ~ I \ K J' c I \ K 

This proves the proposition. 

In estimating the expectation E 'Vi W1 WK WL Holder's inequality was used involving 

fourth moments E Wi· If the quadruple (l,J,K,L) is bifold and the random variables 

WI are components in the Hoeffding decomposition, a sharper inequality, involving 

only second moments, is available. Consider the case (I,J,K,L) e 13(e,0), then by the 

Cauchy-Schwarz inequality we have 

1/2 2 1/2 2 
El"Wi:WJWKWLISE (Wi:WK) E (WiWL) =O'IO'JO'K~• 

where the last inequality follows by the independence of 'Vi and WK (I n K = 0 ), and 

that of~ and WLrespectively. In fact, the above inequality holds for dissociated 

random variables. The obvious idea of invoking Prop. 3.1.3 to obtain an inequality for 

all bifold quadruples fails, since the remainder term in Prop. 3.1.3 involves 't*, a sum 

of higher moments. The idea of the proof of Prop. 3.2.4 below is a refinement of the 

above inequality. It resembles the proof of Lemma 2.4.2. 

Proposition 3.2.4. Let Wi:1 , ••• ,Wiq be components in the Hoeffding decomposition 

and let (1 1, ... ,Iq) be a bifold q-tuple. Then 

E l"Wi: 1 ••• Wlql S q1 ••• O'Iq· 
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Proof We start with an assertion which resembles that of Lemma 2.4.2. If F = 11 u ... 
u lq and Ac Fis covered only once and F\A exactly twice by the sets 11 , ... ,lq, i.e. 

111 + ... + \ = lA + 2 ~\A' 

then 

(3.2.6) E E2 ( IW,I ... WI I I ~A) ~ crf ... crf . 
1 q 1 q 

The proof is by induction. If q = 1 the assertion is trivial: F = I = A and E wf = <Ji, 
Suppose (3.2.6) holds for (q-1)-tuples (q ~ 2). Then, with G = 12 u ... u lq, 

EE2 ( l°Wi 1 ... W1ql I ~) 

=E E2 ( l°Wi1I E (l°Wi2·" Wlql I ~ u 11) I :FA) 

\PEE(Wii I~) E(E2 ( IWI2"'wlql I ~ul1) I :FA) 

~)EE(Wii I ~nl1) E(E2(1°Wi2"'Wlql l9[Aul1)nG) i:fAnG) 

(3) 2 2 
= 0 11 EE ( IW12· .. W1,i' I 9<Aul1)nG ), 

where inequality (1) is the conditional version of the Cauchy-Schwarz inequality and 

equality (2) follows since E( ~ I 1) ) = E( W I I ½ n 1 ) a. s. by the independence of 

the underlying random variables (see Chung (1972, Th. 9.2.1)). Equality (3) follows 

by the independence, since (A n I 1) and (A n G ) are disjoint by the definition of A in 

which every element is contained in only one set. This proves (2.3.6) as 

112 + ... + llq = \Au 11) n G + 2 ti\ (Au 11)' 

The proposition follows from (3.2.6) with A= 0. 

Remark 1. Notice that Prop. 3.2.4 remains valid for ,?f-measurable, zero-mean square 

integrable random variables~. However, the independence of the underlying random 

variables Xi is used in an essential way: The equalities (2) and (3) rest on it. 

Remark 2. The inequality of Prop. 3.2.4 is sharp: If W1 = a1 fI Xi, with Xi 
i E I 

independent, E Xi = 0, E xf = 1 a1 e It and (I 1'' .. ,lq) is a bifold q-tuple, then 

2 
E °Wi1, .. Wlq =a1i' .. alq . fI E Xi = ± °t('"crlq' 

IE l1 u ... u lq 

according to the sign of a11 ... a1q. 
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We shall use Prop. 3.2.2 and Prop. 3.2.4 to sharpen Th. 2.2.4 in case W(n) is ad

homogeneous sum in the Hoeffding decomposition. The sufficiency of the fourth 

moment condition E W(n)4 ➔ 3 is proved "'ithout any assumption on sixth moments 

(as in Th. 2.2.4). 

Theorem 3.2.S. Let W(l), W(2), ... be a sequence of d-homogeneous sums in the 

Hoeffding decomposition, W(n) = I, W 1, with var W(n) = 1 for n = 1,2,H .. Suppose 
2 III = d 

a) max I, a 1 ➔ 0, n ➔ =, 
I 3 i 

b) max E W,: /CT{~ D, D not depending on n. 
I 

Then the following two statements are equivalent 

1) E W(n)4➔ 3, n ➔ oo, 

d 
2) W(n) ➔N(0,1), n ➔ oo, 

Proof Th. 2.1.1 states that 1) implies 2). Assume 2). Put 

rv _ ( ~ ,.,2 )-1/12 
u.- max ~ v 1 . 

I I 3 i 

Let Wj be the clean version (See proof of Prop. 3.2i,1) of 'Vi 1( 1 Wi 1 :o; a O"J l. 

Then, with W'(n) = I, W 'i, we have W'(n) - W(n) ➔ 0, since 
III= d 

0) 2 
var (W(n) - W'(n)) = I, E ('Vi: - W1) 

III= d 

(2) 
< I, E W2 1 
- III = d I ( IW1I > a O"J ) 

~a-2 I, cr-2 E~ 
IIl=d I I 

~DI a2, 

which vanishes, since a ➔ 00• Equality (1) follows since (Wi - W1) are components 

in the Hoeffding decom;osition of W(n) - W'(n) and inequality (2) by Prop. 3.2.2. 

Thus 2) implies W'(n) ➔ N(0,l), n ➔ oo. If E W'(n)6 remains bounded then 2) 

implies (by Th. 2.4.4) E W'(n)4 ➔ 3. The former will be shown. Recall that I W'1 I ~ 
2da cr1 by Prop. 3.2.2. For n sufficiently large we have q / a '1 ~ 2. Then 

E (Wj / crj )6 ~ 26 E (Wj / <'\ )6 ~ 26(d+l) a6. 

By Prop. 2.4.3 b') we have 



I, IE W11 ... w•16 I 
(I 1 , ••• ,16) E '1"6 

~ CT(d,6) 26(d+l) cx6(max I, crf )112 
i I 3 i 

= CT(d,6) 26(d+l). 

By Prop. 3.2.4 and Prop. 2.4.3 a) we have 

I, IEW11 ... W'16 1~ I, Ecri1 ... cr'16 
(l1, ... ,l6) E 'll6 (l1, ... ,16) E 'll6 

~ CB(d,6), 

where the second inequality follows from 

(3.2.6) cr'i = E w·f ~ E w! 1t iw1I ~ a cr1 l ~ cri-
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Hence E W'(n)4 ➔ 3. Combining the assumptions a) and b) with Prop. 2.4.3 b') we 

have 't* ➔ 0 and also 't'* ➔ 0 (that is 't* for W'(n) ). Thus S' + 3S0 ➔ 0 by Prop. 

2.3.5. Since E W(n)4 = 3 S(0,0) + 3S0 + I, E W1 W1 WK WL' with I S(0,0) - 11 ~ 't (cf. 

proof of Prop. 2.3.5) it remains to show S;. 3 S O ➔ 0. This follows by 

IE Wr_W1WKWL - E W1W'1W'KWLI 

=IE 'Wr_WJWKWL - E W1W1WKWL 

+ E W1W1WKWL - E W1W'1WKWL 

+ E W1W'JWKWL - E W1W'1W'KWL 

+ E W1W'1W'KWL - E W1W'1W'KW'LI 

where the last inequality follows by the triangle inequality and Prop. 3.2.4, with cr"f = 

E (W 1 - W1 / Hence we have by Prop. 2.4.3 a) 

I,I E 'Wr_WJWKWL -E W1W'1W'KW'LI 
'1l 

which vanishes as is shown above. This proves the theorem. 
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This theorem yields in combination with Prop. 3.2.1 the following corollary for 

multilinear forms. 

Corollary 3.2.6. Let W(l), W(2), ... be homogeneous d-linear forms 

W(n) = I, a1 TI X., with X. independent, EX. = 0 and Ex!= 1, 
III = d i E I I I I I 

and (a1 ) a family real constants with I. af = 1, for n = 1,2, ... and maximal singular 
III= d 

valueµ*. Suppose 

2 a) max I, a 1 ➔ 0, n ➔ oo, 

i I 3 i 

b) E Xi~ D < 00, for all i, D not depending on n. 

Then the following two statements are equivalent 

l)µ* ➔ O for n ➔ oo, 

d 
2) W(n) ➔ N(O,l) for n ➔ oo. 

Proof. Since E w; = a; we have by a) 

2 max I, cr 1 ➔ 0, n ➔ oo, 

i I 3 i 

and by b) we have 

maxEW: /cri ~ D~ 
I 

Thus we have by Prop. 2.4.3 that both 't and 't* vanish. This implies that the following 

five statements are equivalent. 

l)µ* ➔ O, 

2) I, I, a1a1aKaL ➔ 0, 
l<;;e<;;d-1 1<e,0) 

3) S0 ➔ 0, 

4) E W(n)4 ➔ 3, 

d 
5) W(n) ➔N(O,l). 

We have 

1) ~ 2) follows by Prop. 3.2.1. 

2) ~ 3) follows by E ~ W1 WK WL = a1a1aKaL for bifold quadruples since Ex;= 1. 

3) => 4) follows from the expression for the fourth moment E W(n)4 and by Corollary 

3.1.4, since 't and 't* vanish. 

3) <= 4) follows from Sect.2.3, since 't and 't* vanish. 
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4) <=> 5) follows by Th. 3.2.5. 

This finishes the proof of the corollary. 

In Th. 3.2.7 below a uniform bound is imposed on the tails of the distributions of 

WI /<JI: 
P { I 'Vi I > x cr I } :S R(x) for all I, with R(x) monotone and not depending on 

n, such that J x R(x) dx < co. 

By partial in~i•~ation we obtain for the random variable U = \1-1i I q 
2 2 

E U 1( IUI > C ) = J x dP { I U I :S x } 
(C,oo) 

J x2 d(l - P { I U I :S x }) 
(C,00) 

(1) 2 
=CP{IUl>C}+2 J xP{IUl>x}dx 

(C,00) 

:S C2 R(C)+ 2 J x R(x) dx 
(C,00) 

<'fl 3 J x R(x) dx, 
(l/2C,oo) 

where inequality (2) follows by the monotony of R(x) which implies 

J x R(x) dx ~ R(C) J x dx = 3/8 C2 R(C). 
(l/2C,C) (l/2C,C) 

Since the integral converges, the left-hand side vanishes if C tends to infinity . This 

proves equality (1). Now we can prove the following theorem. 

Theorem 3.2.7. Let W(l), W(2), ... be d-homogeneous sums in the Hoeffding 

decomposition, W(n) = I, WI, with var W(n) = 1. Let (<JI) have maximal singular 
III= d 

value µ *. Suppose 

Then 

a) P { I \¾ I > x cr I } :S R(x) for all I, with R(x) monotone and 

not depending on n, such that J x R(x) dx < co, 

b) µ* ➔ 0, n ➔ co. (O,oo) 

d 
W(n) ➔N(0,1), n ➔ co. 

Proof. By Prop. 3.2.1 assumption b) implies 

2 max I, cr I ➔ 0 for n ➔ co. 
i I 3 i 
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Let en be a sequence such that 

4 2 en ➔ 00 and en max I cr I ➔ 0 for n ➔ oo. 

i I 3 i 

* * Define WI = WI 11 1 WI 1 ~ Cn err l and let Wi be the clean version of WI. (See 

proof of Prop. 3.2.2.) As in Th. 3.2.5 we shall show that 
L2 

W'(n) - W(n) ➔ 0, with W'(n) = I W'I . 
III= d 

Then we shall check for W'(n) the conditions of Th. 3.1.2. 
(1) 2 

var (W(n) - W'(n)) = I E (Wi: - Wi) 
III= d 

(2) 2 2 2 
$ L a I E (WI / cr;I ) l[ I W I C } 

III = d r > n err 

(3) 
$ 3 f x R(x) dx, 

(1/2 Cn,oo) 

where the last term vanishes. Equality (1) follows, since (V'i: - Wi) are components in 

the Hoeffding decomposition; inequality (2) follows by Prop. 3.2.2 and inequality (3) 

by assumption a). For W'(n) we shall check the conditions a) and c) of Th. 3.1.2 and 

condition b) reformulated as E W'(n)4 - 3 var2 W'(n) ➔ 0. Then the result follows, 

since var W'(n) ➔ 1. 

Since Wi andW'1 are independentifl11J =0, we have y' =0. Thus by Prop. 2.3.5 

IE W'(n)4 - 3 var2W'(n) I$ 3 't' + 't'* + I 3 Sa+ S' I. 

First we check condition a) of Th. 3.1.2. Since E (Wi: -W'I )2 $ 3 cri f x R(x) dx, 
. 2 2 (l/2Cn co) 

we have for n sufficiently large: 2 cr'I ~ crI for all I. Then ' 

E (W'4 / cr'4 ) < max W'2 / cr'2 
I I - I I 

< 22ct+1 c2 
- n' 

where inequality (1) follows by Prop. 3.2.2. Condition a) follows from 

c! max I cr·~ $ c! max I cr7 
il3i iI3i 

(by (3.2.6)) and from the choice of c!. Thus 't' and 't'* vanish for n ➔ oo by Prop. 

2.4.3 b) and b'). In order to show that 3 Sa+ S' vanishes it is sufficient (by Corollary 

3.1.4) to show that Sa vanishes. By Prop. 3.2.1 and assumption b) we have 

I cricrJcrKq_, ➔ 0 for e = l, ... ,d-1, 
,:a::O,e) 
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and for a bifold quadruple (I,J,K,L) we have (Prop. 3.2.4) 

E IWi W'1 W'K W'L I ~ cr1cr'1cr'KcrL ~ qcr1crK°i.,• 

by (3.2.6). Thus S0 vanishes. This proves th<c: theorem. 

Th. 3.2.7 above may not be the best possible if there is more information about the 

form of the components Wi. For example, if we apply Th. 3.2.7 to a multilinear form 

in independent centered random variables with unit variance and coefficients (a1) we 

use the maximal singular value of ( cr 1) = (lal 1 )and hence neglect the signs of (a1 ). The 

maximal singular value of (la1 1) may be very different from that of (a1 ). Th. 3.2.8 

below generalizes Th. 5.3 in De Jong (1987). The proof combines ideas that underlie 

the theorems 3.2.5 and 3.2.7. 

Theorem 3.2.8. Let the family (a1 ), with I, ai = 1, have maximal singular value 
* d III= d µ an 

a) max I, ai ➔ 0 for n ➔ oo. 

i I :1 i 

Let X 1, X2, ... be iid random variables and w ( ... )asymmetric Borel function R.d ➔ R. 
. 2 n 

with E w0 (Xl'x2, ... ,xd) = 0 and E w0 (X1 , ... ,Xd) = 1 and P { I w0 (X1 , ... ,Xd) I> x ) 

~ R(x) with R(x) monotone and not depending on n such that 

b) J x R(x) dx < oo. 
{0,oo) 

Put 'Vr = wo<X- , ... ,X.) for I= { il' ... ,id) and W(n) = I, a1 Wi· Then 
d i, Id III = d 

W(n) ➔N(0,1), n ➔ oo 

if either one of the following conditions is satisfied: 

c1) µ* ➔ 0, n ➔ oo. 

c2) E Wi W1 WK WL ➔ 0, n ➔ oo for all bifold quadruples (I,J,K,L) with 

I In JI = e, In K = 0, for 1 ~ e ~ [d/2]. 

Remark 1. Since the random variables Xi are iid and wo<---) is symmetric in its 

arguments, we can restrict condition c2) to the following [d/2] cases: 

l={l, ... ,d} 

K = {d+l, ... , 2d} 

L = {e+l, ... , e+d} 

J = {1, ... , e, e+d+l, ... , 2d}, for 1 ~ e ~ [d/2]. 
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Proof. By condition a) the sum W(n) defined above satisfies condition a) of Th. 2.2.3. 

We proceed as in the proof of Th. 3.2.7, except for some minor changes. Let Cn be a 

sequence such that 

en ➔ 00 and c! max L crI ➔ 0 for n ➔ oo. 

i I 3 i 

Then with W1 the clean version of\Yr 

have as in the proof of Th. 3.2. 7 both 
L2 

1{ 1 w 1 < c } and W'(n) = L a1 Wj, we 
I - n III = d 

W'(n) -W(n) ➔ 0, n ➔ oo 

and 

E W'i I cr'i !;'; 22d+l C~, for n sufficiently large. 

d 
We shall show that W'(n) ➔ N(0,1) for n ➔ 00• Condition a) of Th. 3.1.2 is satisfied 

by the choice of the constants Cn and the above inequality for the fourth moments. By 

the independence of the random variables Xi we have y '= 0. We check condition b). 

By the assumptions on \Yr we have 

S(e,0) = L a1a1aKaL E \YrWJWKWL 
'l(_e,O) 

with (I',J',K',L') as in Remark 1 above. Thus s0 ➔ 0 under either one of the 

conditions 'i_) and '2)- To show S0 ➔ 0 we need I S0 - S0 I ➔ 0. With cr"i = 
E (\Yr - W1 /we have by the triangle inequality and by Prop. 3.2.4 as in the proof of 

Th. 3.2.5 

EI Wi.WJWKWL - WiW'1W'KWLI 

By assumption b) the last term vanishes and by Prop. 2.4.3 a) we have 

the number of bifold shadows. Thus I s0 - s0 I ➔ 0 for n ➔ 00• This proves the 

theorem. 
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3.3. Inhomogeneous sums 

Suppose that V(n) has a finite Hoeffding decomposition, that is, for fixed d we have 

V(n) - E V(n) = L L WI. 
l:5eS:d III = e 

In order to obtain a central limit theorem for V (n) we cannot use Th. 2.1.1. In Example 

2 it is shown that the assumption that the sums are homogeneous cannot be removed 

from Th. 2.1.1. We shall impose stronger conditions on V(n). Write V(n) as a sum of 

homogeneous sums: 

V(n) - E V(n) = wO)(n) + ... + wCd)(n), with 

w(e)(n) = L WI' 
III = e 

Theorem 3.3.1. Let V(n) and wCe\n) be as above. Suppose that 

lim var wCe\n) = ci(e) exists and is finite for 1 $ e $ d. 
n ➔ oo 

If We\n) / var112 w(e)(n) satisfies the conditions of Th. 2.1.1 for each e, 1 $ e $ d, 

with ci(e) > 0, then 

V(n) - E V(n) _,! N(O,ci(l) + ... + cr1d) ), n ➔ oo. 

Remark 1. If V(n) satisfies the conditions of Th. 3.3.1, then also V'(n) = A 1 w(l)(n) + 

... + AdWd)(n), with Ae real constants. This shows that the joint distribution of 

w(l)(n), ... ,wCd\n) tends to a multivariate normal distribution with vanishing 

covariances. Thus the sums wCe)(n) are asymptotically independent (see Billingsley 

(1968: 49)). 

Remark 2. In De Jong (1985) a stronger version of Th. 3.3.1 is given ford= 2: 

Suppose V(n) = L Wi + L Wl' with cr11) = LE w; and cr12) = LE Wi 
. fi lS:iS:n III = 2 lS:iS:n III = 2 

sans 1es 

Ia) max E wf ➔ 0, n ➔ oo, 

i d 
b) L W. ➔ N(O,ci(l)), n ➔ oo, 

lS:iS:n 1 

Ila) max L cri ➔ 0, 
i I 3 i 

n ➔ oo, 

b) E ( L WI )4 - 3 cr4(2) ➔ 0, n ➔ oo. 
III= 2 
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Then 
d 

V(n) ➔ N(0, cr11) + cr~2)), n ➔ oo. 

Th. 3.3.1 follows immediately from Prop. 3.3.2 below. This proposition is the 

analogue of Prop. 2.3.4 for inhomogeneous sums in the Hoeffding decomposition. 

Proposition 3.3.2. Let v(n) and w<e)(n) be as above. Suppose 

Then 

Ia) 't ➔ 0, n ➔ oo, 

b) 't* ➔ 0, 

ID S 0 ➔ 0, 

n ➔ oo, 

n ➔ oo, 

for each w(e)(n) with limsup var w<e)(n) "# 0. 
n ➔ oo 

1(2 d 
(V(n) - E V(n)) / var V(n) ➔ N(0,l), n ➔ oo, 

Proof of Th. 3 .3 .1. Eliminating the vanishing homogeneous sums from V (n) we have, 

for V'(n) = I, w<e)(n), that V(n) - V'(n) ~ 0. For V'(n) we have E Wi ~ D(e) cri 
cr2(e) * 0 

for I I I= e and p(e) = max I, cri ➔ 0. By Prop. 2.4.3 we have, with p = 
III = e,i E I 

max p(e) and D = max D(e), that 't and 't* vanish for V'(n). Under the conditions of 
e e 

Th. 2.1.1 SO vanishes, as is shown in Sect. 2.3; thus Prop. 3.3.2 implies Th.3.3.1. 

Proof of Prop. 3 .3 .2. Without loss of generality we may assume limsup var w<e\n) "# 0, 
n ➔ oo 

e = 1, ... ,d and var V(n) = 1. Define for each e the martingale differences U~) = 

I, Wj with respect to the increasing a-algebras ~ = cr {Xi, ... ,Xie). Then 
III= e, max I= k 

Uk= U~l) + ... + U~) are also martingale differences with respect to.'.\· Then by Th.1 

in Heyde and Brown (1971) we have the required asymptotic normality for 

V(n) = I, Uk if I, E lJ!_ ➔ 0 and var ( I, u!) ➔ 0 for n ➔ 00 (cf. Sect. 2.3). 
lSic,;n lSic,;n lSkSn 

By Holder's inequality we have 

I, E U4 = I, E ( I, u<e) )4 
lSkSn k lSkSn l$e$d k 
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= d3 I, I, E (U(e) )4, 
l~$d l$k5n k 

where the final term vanishes by the assumptions on w<e)(n) and Prop. 2.3.1, since 

't* ➔ 0. By the Cauchy-Schwarz inequality we have 

var ( I, U2 ) = E ( I, I, (U(e) u<O - E u<e) u<O ))2 
l$k$n k l~,f$d l$k5n k k k k 

For the homogeneous case we have, combining Prop. 2.3.2 and Prop. 2.3.3, 

(3.3.1) var( I, (U~)h=var( L W1W1) 
l$k$n III = IJI = e,max IuJ e InJ 

~ 2 ('t + 't* + I S + 2~ I + I 2/3 S + ~ I ), 

where the right-hand side vanishes under the conditions of Prop 3.3.2. Notice that, by 

Corollary 3.1.4, S vanishes if 't* and SO vanish. 

For the inhomogeneous case (e < f) we have to show, since E 'Yr w1 = 0, 

E( L w1w1)2 ➔ o. 
III= e, IJI = f,max IuJ e InJ 

This will follow from Prop. 3.3.3 and Prop.3.3.4. With 

A= L WIWJ 
III = e, IJI = f,max IuJ e InJ 

and 

B= L WIWJ 
III = e, IJI = f,max IuJ ~ InJ 

we have E (A+ B) A- 1/2 EA 2 ➔ 0 (by Prop. 3.3.4), hence E (A+ B/- E B2 ➔ 0. 

By Prop. 3.3.3 we have E (A+ B/➔ 0 and hence E B2➔ 0 and E A2➔ 0. This 

proves the proposition. 

Proposition 3.3.3. Under the conditions of Prop.3.3.2, with I I I = e < f = I J I, we 

have 
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Proof. Throughout the proof we shall assume I I = I K I = e < f = I J I = I L I. The 

remainder terms Ri below are sums over subsets of 'I and vanish by I Ri I St*. 

2 
E( I, W1W1 ) = I, E Wj_WJWKWL + R 1 

InJ * 0 'll, InJ * 0 

I, EWj_WJWKWL - I, EWj_W1WKWL+R 1, 
~1*L ~1*L,~J=0 

where the first equality follows since in a bifold quadruple I i:\ J = K i:\ L and hence 

I I n J I = I K n L I and the last equality follows, since in a bifold quadruple I n J * 0 

implies J * L.We shall show that the last sum is, up to a vanishing remainder term, a 

sum of squares and hence (asymptotically) non-negative. Then, since the left-hand side 

is non-negative, it remains to show that the first sum in the final expression above 

vanishes. 

We start with the last sum. 

L E( I 
Ac (1, ... ,n), IAI ~ f-1 I,L, L \I= A 

= L, 
Ac {1, ... ,n), IAI ~ f-1 

I, E Wj_W1WKWL +R2 
'll, JnL = A, InJ = 0 

I, E Wj_WJWKWL +R2, 
'll,1*L, InJ = 0 

where the last inequality follows from I A I S f-1. 

To show that the first sum vanishes we write 

E( I, W1WK)( I, W1WL)= I, E Wj_WJWKWL + R3. 
I, K Jc#L, JnL * 0 'll, Jc#L 

The first factor on the left-hand side has a bounded second moment 

E ( I, W1 WK )2= E ( W(e)(n) )4S t* + 3 t +IS+~ I+ 3 var2W(e)(n), 
I, K 

by (2.3.2), with the right-hand side bounded (since under the assumptions on w<e)(n), 

all terms vanish except 3 var2 w<e)(n) S 3). For the second factor we have by the 

Cauchy-Schwarz inequality 

E ( I ~ WL )2 S 2 (var ( I 
Jc#L, JnL * 0 JnL * 0 

By Prop. 2.3.2. and Prop. 3.1.1 the right hand side vanishes. Now the proposition 

follows by Cauchy-Schwarz. 

Proposition 3.3.4. Under the conditions of Prop. 3.3.2 we have, with I Il=IKI= e < 

f=IJl=ILI 
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E( 

Proof The quantities Ri below are sums over subsets of 'T and can be estimated by 

IRi I ~'t*. 

E ( L 'Wr. WJ ) ( L w K WL ) 
InJ .._ 0 max KuL e KnL 

'lJ, max KuL e KnL 

I 
'lJ, KnL 3 max KuL > max IuJ 

+ l 
1l, KnL 3 max KuL < max IuJ e InJ 

Notice that max I u J > max K u L implies max I u J e I n J for bifold quadruples. 

Consider the second sum in the assertion of the proposition: 

2 E( I, W1W1) 
max IuJ E InJ 

=2 I 
1l, KnL :1 max KuL < max IuJ e InJ 

To prove the proposition we have to show that the following sum vanishes. 

I 
1l, KnL :1 max KuL > max IuJ 

=E( L WIWK)( L WJWL)-R3, 
maxluKe K\I maxJuLe L\J,JnL#0 

The second moment of the first factor in the cross product above 

E( I, W1WK) 
2 

max IuK E K \I 

= 1/4 E ( 

= 1/4 E ( (W(e)(n)/ - I, (U(e) )2 )2 
l~k!>n k 

remains bounded, since E (W(e)(n))4remains bounded and since 
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under the assumptions on w<e)(n) by (3.3.1). Further, the second moment of the 

second factor 

E( 

max JuL E L \J, JnL c1 0 max JuL 11c JnL 1' 0 

vanishes by the assumptions on w<f)(n) and Prop. 2.3.3. Now the proposition follows 

by Cauchy-Schwarz. 

The example below concerns d-linear forms in iid random variables 

Z(n) = L al rr xi, xi iid. 
III = d i E I 

These multilinear forms have a simple Hoeffding decomposition as can be seen from 

the following proposition. 

Proposition 3.3.5. Let Z bead-linear form 

z = L al rr Xi, 
III = d i E I 

with Xi independent random variables E Xi = E X 1, var Xi = var X 1. Then Z has the 

following Hoeffding decomposition: 

Z- EZ= I W1 + ... + I W1, 
IJI = I IJI = d 

with for I J I = e 

var ( 

I a1, and 
III= d, JC I 

2 I ( I a1 ) . 
IJI = e III = d, J c I 

Proof. Apply the Hoeffding decomposition to a1 IT Xi: 
i E I 

a1 I1Xi=a1 L (EX 1 )d-lJII1 (X.-EX 1). 
iEl Jc! jEJ J 

Example. Consider the d-linear (d ~ 2) form Z(n) in iid zero-one random variables Xi 

E {0,1}, E Xi = Pn ~ 1/2. Assume the family (a1) to be of a very simple form, with 

a1 E {0,1 }subject to the condition 
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max I. a1 = (Xn Pn), 
Jc {l, ... ,n}.IJl=d-1 l::::, J 

with p n the mean number of ones in (a1 ): 

(n) -1 
Pn=d I.ar. 

III= d 

We use f(n) = (Xg(n)) to denote I f(n) / g(n) I$ C for all n and some constant C. Thus 

for each one-dimensional row {I: I I I= d, I:::> J} for fixed J with I JI= d-1 the number 

of a1 equal one is bounded by C np n· Notice that the condition on the family (a 1) 

implies that a1 = 0 for all I if np n ➔ 0, since a1 e { 0, 1}. In fact we have more; since 

max '-' ;::: ( _n )-I '-' '-' 
l : Jal d 1 IJl:"d-I l::J al Jc(l, ... ,n},IJl=d-1 ~ ~ 

=(n-d+l)pn, 

we have 

max I. a1 oc n Pn, 
Jc ( 1, ... , n), IJl=d-1 l::::, J 

with f(n) oc g(n) if 1/C $ I f(n) / g(n) I $ C for all n and some constant C;::: 1. 

The behaviour of Z(n) can be described in terms of the two parameters p and p . 
L-i n n 

Notice that E Z(n) = ~) Pn (Pnl Hence p n (npnl ➔ 0 implies Z(n) ➔ 0. We shall 

assume Pn (npnl➔ 00• Indeed, we shall show in Prop. 3.3.6 that Pn (npn)d ➔ oo is 

sufficient for a normal limit distribution of Z(n). Notice that p n (np n)d ➔ oo implies 

npn ➔ oo, since O $ Pn $ 1. 

The simple structure of the family (a1) has an interesting consequence. For fixed J 

with I J I = e we have 

(3.3.2) I. a1 = { 
l ::::, J 

if 1 $ e < d, 

if e = d. 

This 'discontinuity' at d = e gives, since Pn $ 1/2, 

{ 
(np/.d-eP! 

var( I. WJ) oc 

IJI = e ( )d "f d npn p n 1 e = , 

ifl$e<d, 

where the first estimate follows from Prop. 3.3.5 and the bound on I. ~ for the 

upperbound, and from the inequality l ::::, J 
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"t' ( "t' r~-e) )2 _ "t' ( "t' )2 (n) (f~-e) )2 > 0 "" "" al - 'd-e P n - "" ~. al - e 'd-e P n -
IJI = e I :::i J IJI = e I :::i J 

for the lowerbound. Hence we have for 1 < e < d 

var ( :E W1) / var ( :E W1) oc (np/-e ➔ 0. 
IJI = e IJI = 1 

Thus Z(n) can be written as the orthogonal sum of only two (instead of d) 

homogeneous sums plus a remainder term: 

Z(n) - E Z(n) = :E W1 + L W1 + R(n), 
IJI = 1 IJI = d 

with var R(n) / var Z(n) ➔ 0 for n ➔ oo. 

Since 

the random variable Z(n) - E Z(n) is approximately: 1) a sum of independent random 

variables if (np 0t 1p0 ➔ oo, 2) ad-homogeneous sum if (np 0t 1p0 ➔ 0, and 3) a 

mixture of the two above cases else. 

Notice that (np 0t 1 p O ~ C implies J:\i ➔ 0, since we assume np O ➔ 00 and d >: 1. 

The speed at which p 0 vanishes depends on p 0 and the value of d. We have the 

following bound for the 'number of ones per one-dimensional row': np 0 ~ C n2-dp!-d• 

E.g. ford= 2 this yields npn ~ C p~1. 

Proposition 3.3.6. Let Z(n), p 0 and p 0 be as above. If (npn)dp n ➔ oo, then 

If}. d 
(Z(n) - E Z(n)) / var Z(n) ➔ N(O,l), n ➔ oo. 

Remark. The excluded cased= 1 falls under the above proposition, since a sum of 

independent bounded random variables with diverging total variance has a normal limit 

distribution. 

Proof As shown above we may assume without loss of generality: 

with 

WI = al II (Xi - Pn), 
i e I 
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and 

We shall apply Prop. 3.3.2. The main part of the proof consists in showing that,: 

and ,:* vanish. This will be done by direct computation using the special regularity of 

the family (a1) and the fact that the random variables are iid. The theory developed in 

Sect. 2.4 for estimating the quantities,: and,:* does not (or at most partially) apply. 

We start with some special partial sums of,: and ,:*. First we consider homogeneous 

quadruples in rz: Since 

(3.3.3) EI Xi - p 0 la oc p 0 for a.~ 1, 

we find by (3.3.2): 

I. bi E (~ - p/ / var2 Z(n) 
1s;is;n 

= 0 ( (np/d-3P! / (np/dp~ (1 + (np/-lpn/) 

= 0( (npnrl ( (np/-lPn / (1 + (np/-lPn) )2 ), 

which vanishes since np 0 ➔ 00• Thus the partial sum of ,:* of homogeneous 

quadruples with I I I = 1 vanishes, as does the corresponding partial sum of 't, since 

E2 ( Xi - p 0 ) 2 ~ E (Xi - p 0 ) 4 . Next we shall estimate partial sums of,: and,:* of 

homogeneous quadruples with I I I = d. 

By (3.3.3) we have 

c?y oc al (pn )d 

and for a quadruple with f = I IuJuKuL I we have 
f 

EI WjWJWKWLI oc a1a1aKaL (p 0), 

2d 
O'yO'JO'KC\, oc alaJaKaL (pn) . 

This yields for a quadruple without a free index (and consequently f ~ 2d) 

cr1cr1crKC\, = 0( EI WjW1WKWL I). 

Thus we only need to show that partial sums of,:* of homogeneous quadruples with I I I 

= d vanish. We start with a special sum. 

I. E W,: I var2 Z(n) 
IIl=d 

= O((np/p 0 / (np 0)2dp~ (1 +(np/-1p0/) 

= O(((np/pn (1 + (np/-lpn/rl), 
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which vanishes by the assumption (np 0lp n ➔ 0. 

Consider a shadow (I',J',K',L') with f = I I'uJ'uK'uL'I, d < f < 2d. Without 

restriction we assume I I'nJ' I = e < d. Thus we have I (K'uL') \ (I'uJ') I = f - 2d + e. 

Then 

~ L aiaJaKaL 
(I,J,K,L), IInJI = e, IIuJuKuLI = f 

0( f-2d+e = n I a1a1 ). 
IInJI = e 

Since by (3.3.2) 

we have by (3.3.3) 

L EI Wi:W1WKWLl/var2Z(n) 
(I,J,K,L) with shadow (I',J',K',L') 

= 0 (p;(np// (np/dp; (1 + (np/-1p0}2) 

= 0 ((np/-2d / (1 + (np/-1pi ), 

which vanishes since f < 2d. 

Thus the contribution of all homogeneous quadruples to 't and 't* vanishes. We shall 

estimate the contribution of the mixed quadruples with indices not all containing the 

same number of elements by the contribution of the homogeneous quadruples. Define 

W1 ifl I I =d 

and 

'1 ·{ 

al iflll=d 

bi ifl = {i}. 

and by (3.3.3) 

EI Yi VJ VK VL I oc clcJcKcL (pn)IIuJuKuLI . 
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By the definition of 'T we have 1/2 ( III + IJI + IKI + ILi ) > I IuJuKuL I and thus 

crlcrJcrKC\., = 0 (EI Yr VJ VK VL I). 

Consider a mixed quadruple ( 11 ,I2,I3,I4 ) in 'T. Then any index with only one element 

is contained in some index with d elements. For each such mixed quadruple we 

construct a homogeneous quadruple ( Jl'J2,J3,J4 ) also in 'Twith I 1uI2uI3uI4 = 

J luJ 2UJ 3UJ 4 by 

1, ~ { ,, 

Ih ifl lg I= 1, I Ih I= d, lg c Ih, h minimal. 

Then with b* = m~x bi and a the number of indices with one element in ( I 1 ,12,1 3,14 ) 

we have 1 

For a fixed shadow (l',J',K',L') we have 

L EIWiW1WKWLl/var2Z(n) 
(I,J,K,L) with shadow (I',J',K',L') 

= 0 (p!(np/(b*)a / (np/dP! (1 + (np/-1pn)2) 

= O((npnf2d ((np/-lPn)a / (1 + (np/-lp/ ). 

If a S: 2 then the above estimate vanishes since f < 2d. If a= 3 then f = d and we have 

the estimate 

(npnflPn ((np/-lPn / (1 + (np/-1Pn))2, 

which vanishes since npn ➔ 00• This shows that 't and 't* both vanish. 

Condition II of Prop. 3.3.2 remains to be checked. For a sum of independent 

random variables we have ~ = 0. For a bifold quadruple (l,J,K,L) we have 
2 2d 

E WI W1 WK WL = aiaJaKaL ( E (~ - Pn) ) = crI cr1crKC\.,· In the proof of Th. 

3.1.5 it is shown that condition a) of Th. 3.1.5 implies for clean sums with var W(n) = 

1 that I. cr I cr 1crKcrL vanishes. We shall check condition a) for I, WI / var112 
Z(n). 1(0,e) III = d 

By (3.3.2) we have 

max I. crI I. cr1 I var Z(n) 
A c { 1, ... , n}, 1 S IAI S d-1 I :::, A J :::, I \ A 

= 0 (p!(np// (np/p n (1 + (np/-1pn)) 

= 0( (np/-d ((np/-1Pn / (1 + (np/-1Pn))) 
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which vanishes for d ~ 2. This proves the proposition. 

We shall use the above example to test some of the conditions of the different central 

limit theorems given above. We start with condition b) of Th. 2.1.1: E wt I a1 SD. It 

may seem reasonable to impose this condition. However, for the homogeneous com

ponents in the Hoeffding decomposition of the multilinear form above it is a severe 

restriction: 

Ewt/ai oc P!IP;:1 = p: (ifa1 ¢0), 

which is not bounded if p 0 ➔ 0. We have given two ways to circumvent (partially) 

condition b), 

In the first place we have truncation (cf. Prop. 3.2.2) However, truncation is not 

very useful in case of zero-one valued random variables: Consider a zero-one valued 

random variable X, with EX= p 0 (var X = p 0 (1 - p 0 )) The variance of the truncated 

version 

2 
var (X 1( x :s; c p ~/2} oc p0 for n ➔ oo, 

which vanishes with respect to var X. 

Th. 3.1.2 combines the conditions a) and b) of Th. 2.1.1 allowing D to diverge in a 

controlled way: 

(max E wt I <Ji) (max I, <Ji )112 ➔ 0 for n ➔ oo. 

I i i 3 I 

In the case of the homogeneous components in the Hoeffding decomposition of the 

multilinear form above we have with <Ji = E Wi / var ( I. Wi) 
2 ddl d IIl=d 

max I, <JI oc Pn n - Pn / (Ihn) Pn = 1/n. 
i i 3 I 

Thus condition a) of Th. 3.1.2 is satisfied if np!d ➔ oo. The latter condition implies in 

combination with (p 0nt1p0 S C (which ensures that the variance of the d-homo

geneous sum does not vanish) that the family (a1) contains elements a1 = 1, only if 

d = 2. If d = 2 we have 
<C -1. 

npn - Pn ' 
if d ~ 3 we have 

P < C d-1 n2-d = C ( p(d-1) / (d-2) )2-d 
n n - Pn n n . 

Thus np n vanishes, since n p ~d-l) 1 (d-2) ➔ oo for d ~ 3. 
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In the proof of Prop. 3.3.6 we did not check condition c) of Th.2.1.1 directly. In

stead we checked condition a) of Th. 3.1.4. In Sect. 3.1 we also mentioned a more 

restrictive form of condition a) 

(3.1.1) max I, cr1 ➔ 0 for n ➔ oo. 

i I 3 i 

If we apply (3.1.1) in the example above we find with crf = E wf / var ( I, W}): 
d 1 elf}. d 1/2 III = d 

max I. cr1 = O(n - Pn<Pn) /((npn) Pn)Pn ) 
i I 3 i 

= 0 (nd/2 - 1 p~/2), 

which vanishes if nd-2pn ➔ 0. Again ford 2:: 3 this implies npn ➔ 0. 



4. W(n) as a Gaussian process 

4. 0. Introduction 

In this chapter we shall we restrict ourselves to homogeneous sums in the Hoeffding 

decomposition, W(n), with respect to one given sequence X 1,X 2, ... of independent 

random variables. If we mention several d-homogeneous sums (for the same n), these 

sums are all defined with respect to this one sequence of independent random variables. 

The main aim of this chapter is to show how the random variables \Vi can be embedded 

as random point masses at points xI in a suitable product space E~ Given this 

embedding, a fairly broad class of functions f is identified such that the stochastic 

integral 

converges to a stochastic integral with respect to a Gaussian process with independent 

increments. We shall follow the usual approach for defining integrals; we define at first 

the integral for stepfunctions. Indeed, once the problems with the stochastic integral for 

stepfunctions have been solved, the extension is by standard approximation techniques. 

A stepfunction f = a 11A1 + ... + aql Aq (Ag disjoint) partitions the space into finitely 

many subsets. The distribution of the stochastic integral ff dW(n) is the distribution of 

the linear combination of the partial sums w(!)(n) = 2, WI for subsets of the indices 

"' = { I . X E A } I E >lg .,,_g . I g • 

Section 4.1 is concerned with questions regarding the distribution of partial sums of 

W(n), with W(n) homogeneous and satisfying the conditions ofTh.2.1.1. Clearly, any 

partial sum inherits the conditions a) and b) of Th. 2.1.1, since 

,..2 < 2 a) max 2, vI _ max 2, <JI , 
I 3 i, I e >t I 3 i 

b) max E Wi I oi s max E Wi I <Ji. 
I e >t I 

Condition c) (in the alternative formulation E W'(n)4- 3 var2W'(n) ➔ 0, n ➔ oo) need 

not to be satisfied, as is shown at the end of this section. Thus some caution is needed 

in constructing the subsets A in such a way that partial sums over A inherit condition c ). 

This construction is carried out in Sect. 4.1 in a rather unexpected way. Instead of 

using directly a geometrical approach, e.g. devide the index set {I: I c { l, ... ,n}} into 

appropriate 'blocks' and consider the Goint) distribution of these blocks, we define two 

algebraic operations on W(n). Addition is defined in the usual way: W(n) = W'(n) + 

64 
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W"(n), with W'(n) and W"(n) homogeneous sums in the Hoeffding decomposition. In 

Th. 4.1.1 it is shown that W(n) has a normal limit distribution if W'(n) and W"(n) both 

satisfy the conditio,1s of Th. 2.1.1. Further we define 'scalar' multiplication. We 

consider products of a homogeneous sum W(n) and a family (a1) of real constants 

defined by 

W'(n) = I, a1 W1. 
IIl=d 

If the family (a1) has a special structure, then W'(n) satisfies the conditions of Th. 

2.1.1, provided W(n) satisfies these conditions. Using these operations we define a 

class of subsets of the indices such that the partial sums over these subsets have normal 

limit distribution. 

In Sect. 4.2 these results are extended. With the help of the subsets, constructed in 

Sect. 4.1, stepfunctions are defined on the product space Ed, such that the stochastic 

integrals of the stepfunctions converge in distribution. By approximation the class of 

stepfunctions is extended. 

In Sect 4.3 a simple condition on W(n) is given, ensuring that any partial sum W'(n) 

has a normal limit distribution, provided the variance converges. Homogeneous sums 

satisfying this condition can also be embedded. However, the embedding has a 

different character. Whereas in the general case the product structure of Ed is used, this 

structure is not needed to embed homogeneous sums W(n) of the restricted class 

considered in Sect. 4.3. By the simple extra condition imposed on W(n) the 'dimension 

of W(n) is lost'. 

Example. We shall construct a sequence of matrices (a .. )1<. "< with eigenvalues A-
2 2 2 IJ -IJ-0 I 

such that max Ai / (A1 + ... +A0 ) ➔ 0, n ➔ 00• Then, as is shown in the introduction, 

the fourth moment of the quadratic form in independent normal N(0,1) random 

variables with respect to (aij) tends to three for n ➔ 00• We shall give a subset JI.of the 

indices (i,j) such that the maximal eigenvalue of the matrices (a''. .)1<. "< = 
IJ _l,J-0 

(a1.J.)l<" .< (" .) ,. does not vanish. Then the quadratic form W'(n) with respect to _IJ_n, IJ E ...-. 
(a"i} does not satisfy condition c) of Th. 2.1.1: 

lim (E W'(n)4 - 3 var2 W'(n)) * 0, 

and hence W'(n) does not have a normal limit distribution. 

We construct a symmetric 2m x 2m matrix with all entries ±1 and all rows mutually 

orthogonal vectors. We start with the construction of the 2m orthogonal vectors; then 

we give an enumeration of these vectors that makes the matrix symmetric. 

Let ei (x): [0,1) ➔ {0,1} be the ith digit in the binary expansion of x e [0,1). To make 

the representation unique take ei (x) to be right continuous. The functions ri = 2ei - 1 
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(-r. is the ith Rademacher function) are independent with respect to the Lebesgue 

I 2 
measure, and ri = 1. Notice that 

r. = (-1)(1-ei)_ 
I 

Define for the set Ac { l, ... ,m} 

fA = TI r = TI (r )lA(g) = TI (-dl-eg) lA(&). 
g e Ag lSgSm g lSgSm 

There are 2m different subsets Ak c { l, ... ,m}, k = l, ... ,2m. For two subsets A, A' 

we have by independence 

J fA (x) ~.(x) dx = TI J ri (x)dx = { 
1 

[0,1) i e A ~ A' [0,1) 0 

if A= A', 

else. 

Define for each set Ai the vector with jth entry 

- i:!. aij - ~;< 2m ). 

These vectors are mutually orthogonal: 

L aika.k = 2m J fA_(x) ~.(x) dx = 0 if i * j. 
1SkS2ffi J [0,1) I J 

With the following definition of the set Ai we obtain a symmetric matrix with ith row 

the vector defined by ('i.t· : 
1-

Ai = { g : r g< 2m ) = -1 } . 

Since 

we have 

TI (-l)( l-e8(½¼)) ( 1-eg< i~!) )_ 
lSgSm 

(Thus aij = -1 if the number of zeros in the same position in the binary expansion of 

(j-1) and (i-1) is odd; and aij = 1 else.) 

Thus the real matrix (aij) is symmetric and orthogonal and has real eigenvalues A.i 

with IA.i I = 2ml2, i = 1, ... ,2m and hence max A.f I (Ai + ... +A.!) ➔ 0 for n ➔ oo. We 

need for our example a matrix with zero diagonal. Define the real symmetric matrix 

(a\j), with aij = aij if i * j, aii = 0, and with eigenvalues A.i. Then we have 

L ,_•~= L a'~.= 22m-2mandmax IA.'.l:S:max IA..1+1 
1SiS2m 1 1SijS2m IJ i 1 i 1 

by the triangle inequality for matrix norms, since the matrix (aij - aij) is a diagonal 

matrix with diagonal entries ±1 and hence with maximal absolute eigenvalue 1. 
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The quadratic form 

W( 2m) = I, a' . .X. X., 
l~i.j'.Qffi IJ I J 

with Xi independent normal N(0, 1) distributed, satisfies the conditions of Th. 2.1.1, 

as is shown in the introduction. (This can also be seen directly from the theorems 3.2.5 

and 3.2.6.) However, since the matrix (a'1j) = max(0,a1j) has a non-vanishing 

maximal eigenvalue~ 2m-l _ 1 (use vector with all entries equal 1), the partial sum 

W'(2m)= I, a" .. x.x. 
l~ij~2m IJ I J 

does not inherit condition c) of Th. 2.1.1. This ends the example. 

4 .1. Simple operations on W(n) 

In this section we give central limit theorems for transforms obtained from 

homogeneous sums W(n) (several for the same n) by the two operations addition and 

multiplication. We start with addition. 

Theorem 4.1.1. Let W(n) = w(l\n) + ... + w<q)(n) be a sum of q (q not depending 

on n) ct-homogeneous sums in the Hoeffding decomposition. Suppose that w<g\n) 

satisfies the conditions a), b) and c) of Th. 2.1.1, with c) in the alternative formulation: 

Then 

E w(g)(n)4 - 3 var2w(g)(n) ➔ 0, for g = 1 ~··• q, and 

lim var W(n) = <J~ (0 <<J<oo). 

W(n) ~ N(O,cr2 ), n ➔ oo. 

Proof Without loss of generality we assume cr2 = 1. We shall check the conditions of 

Prop. 2.3.4. For WI = W~l) + ... + w<t we have by the Cauchy-Schwarz inequality 

~ ~ q(<J~1)2+ ... + (J~q)2) 

and hence 

max 2 (1)2 
I, <JI ~q(max I, <JI + ... + max 

I3i i I3i i 

where the right-hand side vanishes. Thus we have by Prop. 2.4.3 b') that 't vanishes. 

Notice that condition b) of Th. 2.1.1 is not closed under finite addition. However, by 
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we can use condition b) for W(g)(n), 1 ~ g ~ q. Thus 

't*= I IEWrWJWKWLI 
(I,J ,K,L~ e 'T 

~ D I I cr(i) aG) cr(k) cr(l) 
1 . "kl I J K L :SIJ, , :Sq (I,J,K,L) E 'T 

= D I ( (cr\1) + ... + a\q)) ... (a~)+ ... + a~)) 
(I,J ,K,L) E 'T 

end si nee 

max I (cr\1) + ... + a\q) )2~ q (max I (a\1))2 + ... + max I (cr\q))2 ), 
il3i il3i il3i 

which vanishes, we have by Prop. 2.4.3 b') that 't* vanishes. 

The random variables Wr are components in the Hoeffding decomposition, hence 

y = 0. We shall now check condition II of Prop. 2.3.4. By Corollary 3.1.4 it is suf

ficient to show that S0 = S(l,O) + ... +S (d-1,0) vanishes. As in the proof of Prop. 2.3.6 

we rewrite S(e,0) as a sum of squares plus a remainder term (see (2.3.5)). The remain

der terms Ri (i = 1, ... ,5) below are sums over subsets of 'I, so we have I Ri I ~ 't*. 

(4.1.1) S(e,O) = 
A,A' c (l, ... ,n}, IAI = IA'I = d-e, AnA' = 0 

E( L WiW1)2+R1, 
IInJI = e, I\ J = A, J \I= A' 

with Wi W1 = I w\g) w'f). By the Cauchy-Schwarz inequality we obtain 
l:Sg,h:Sq 

I S(e,0) I ~ q2 L 
l:Sg,h:Sq A,A' c (l, ... ,n), IAI = IA'I = d-e, AnA' = 0 

E ( L Wf) w'f) )2 + I R 1 I. 
IInJI = e, I\ J = A, J \I= A' 

If g = h, the sum of squares vanishes by the assumptions on w<g)(n). It remains to 

show, with Wi = W~), W'i = w<r), g ,;ch, that 

l 
A,A' c (I, ... ,n}, IAI = IA'I = d-e, AnA' = 0 

E( I. w~w~/ 
IInJI = e, I\ J = A, J \ I = A' 

= L E W' W" W" W' + R 
B(e,O) I J K L 2 
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vanishes. The right-hand side equals up to a vanishing remainder term the following 

sum of covariances 

I, E W' V✓" W" W' + R 
B(e,O) I J K L 3 

A,A' c ( 1, ... ,n}, IAI = IA'I = e, Ar.A'= 0 

E( L W'1W'L)( L W"1W"K) 
IInLI = d-e,N., = A, L\I = A' IJnKI = d-e, J\K = A, K\J = A' 

~ ( I, E W' W' W' W' + R )112 ( I, E W" W" W" W" + R )112, 
B(e,O) I J K L 4 B(e,O) I J K L 5 

where the last inequality follows by Cauchy-Schwarz and (2.3.1). This proves the 

theorem, since the right-hand side vanishes under the assumptions on w<g)(n) and 

w<11\n), as is shown in Sect. 2.3. 

Next we shall look at multiplication. Consider the homogeneous sum W(n) and its 

transform 

W'(n) = I, a1 W1, with I a1 I ~ 1. 
III= d 

Put W1 = a1 W1 and cr} = E W'i- Suppose that W(n) satisfies the conditions a), b) 

and c) of Th. 2.1.1. Clearly W'(n) inherits the properties a) and b) since 

max I, cr'i ~ max I. cri 
i I 3 i I 3 i 

and 

In general, condition c) is not inherited: Consider W(n) = I. a . .X. X. , with (a .. ) 
l$i<j$n IJ I J IJ 

and Xi as in the example of the previous section. Then 

W'(n) = I. a~.x.x. = 1/2 (( I. x. >2- I. x~) 
l$i<j:,;n IJ 1 J 1:,;i:,;n 1 l$i$n 1 

has a non-normal limit distribution. 

We introduce a special family (a1) with a very simple structure: The family (a1 )III = d 

is of rank 1 if a1 = . IT ai for all I I I = d, with a fixed sequence (ai \ = l , ... ,n. 
IE I 

Proposition 4.1.2. Let the homogeneous sums W(n) satisfy the conditions of 

Th. 2.1.1 and let (a1 )111 = d be of rank 1 with I ai I ~ 1. Then the transform 

W'(n) = I, a1 W1 
IIl=d 
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inherits the conditions a), b) and c) of Th. 2.1.1 (with the latter condition reformulated 

as E W'(n)4 - 3 var2W'(n) ➔ 0 for n ➔ 00). 

Proof. Only condition c) needs a proof. Since I E W'(n)4 - 3 var2 W'(n) I ~ I 3 S0 + 
S' I + 3 't' + 't'* (see proof of Prop. 2.3.5), and since by the conditions a) and b) and 

Prop. 2.4.3 both 't' and 't'* vanish, it suffices to show that S' and S0 vanish. By 

Corollary 3.1.4 it is sufficient to show S0 = S'(l,0) + ... + S'(d-1,0) ➔ 0. As in 

(4.1.1), S'(e,0) is written as a sum of squares plus a remainder term. These remainder 

terms Ri are sums over subsets of 'I'; hence I Ri I~ 't*. Using the fact that a1 is a 

product we obtain 

(4.1.2) S'(e,0) = L, 2 IT ai) 
A,A' c ( l, ... ,n], IAI = IA'I = d-e, AnA' = 0 i E Au A' 

E ( }: W1 W1 IT aI )2 - R 1. 
llnJI = e, I\ J = A, J \I= A' i E In J 

Since~ bi ci, (0 ~bi, ci ~ 1) vanishes, if~ bi ➔ 0, it is sufficient to show 
I I 2 
S"(e,0) = I, E W1 W1 WK WL IT ai ➔ 0. 

'K_e,0) i E (lnJ) u (knL) 

S"(e,0) is obtained from (4.1.2) by omitting the coefficients ( IT 2 
a i ), cal-

iE Au A' 

culating the squares and summing over the subsets A, A' and finally neglecting the 

contribution of non-bifolds. As in ( 4.1.2) we obtain 

S"(e,0) = 2 IT ai) 
A,A' c (l, ... ,n), IAI = IA'I = e, AnA' = 0 i E Au A' 

E( L, WIWL )2 - R2· 
llnJI = d-e, I\ L = A, L \ I = A' 

The right-hand side with the coefficients ( IT aI) (which are~ 1) replaced by 1 
i E Au A' 

equals, up to a vanishing remainder term, S(e,0) (see (4.1.1)). And S(e,0) vanishes by 

the assumptions on W(n) as is shown in Sect. 2.3. This completes the proof of Prop. 

4.1.2. 

With the help of Th. 4.1.1 we can extend the class of coefficients in Prop. 4.1.2. 

A family (ab)111 =dis said to be of finite rank if a1 = a~l) + ... + a~q) for all I, with q 

fixed and a~ of rank 1 for 1 ~ g ~ q. 
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Theorem 4.1.3. Let the family (a1 )III =d be of finite rank. Suppose W(n) is a 

homogeneous sum in the Hoeffding decomposition satisfying the conditions of 

Th. 2.1.1. Put W'(n) = I, a1 W1 and suppose var W'(n) ➔ cr2 for n ➔ 00, with 
III= d 0 < a < oo. Then 

d 2 
W(n) ➔ N(O,cr ) for n ➔ oo. 

Proof. Obvious from Th. 4.1.1. 

In the remainder of this section we shall prove a result mentioned in the introduction. 

For each n, let A 1 , ... ,Aq be a partition of the integers 1, ... ,n (q not depending on n). 

This partition induces a partition ~ 1 , ... ,~ 1 of the indices {I c { l, ... ,n}: III =d}. The 

elements ~h are defined in the following way. Consider the symmetrized product sets 
* ~ = u Agcr(i/--·x Agcr(d)' where cr = (cr(l), ... ,cr(d)) passes through all permutations 

of 1, .. ~d and where h = 1, ... ,( q~d-l) is some enumeration of the d-tuples { (gl' ... ,gd) 
* : 1 $ g1 $ ... $ &i $ q}. Then I= {il' ... ,id} e J\ if (il'"'' id) e ~-

We shall show that for fixed h the family (l~h (I) 111 = d is of finite rank. Hence 

Th. 4.1.3 can be used to show that the partial sum 

w<'1\n) = I, l5q, (l)W1 = I, W1 
III= d I e ~h 

has a normal limit distribution, provided 

lim I. crf is finite and positive. 
n ➔ oo IE ~h 

We shall use a well-known theorem in algebra that states that ad-linear symmetric 

function <p(x 1, ... , x d) can be written as a linear combination of diagonals: 

with Yi = ~ilxl+ ... + ~id"ci· 
Let 100 be the Banach space of bounded real sequences 

100 = { (ai \ = 1,2, ... : su_p I ai I $ C for some C < 00}, 

I 

equipped with scalar multiplication A.a= (A.ai)i = 1,2 , ... ' addition a + b = 

(ai +bi\= 1,2, ... and norm II a II = s~p I ai I. Let 1; be the Banach space of bounded 

real sequences on M1 1 

ld00 ={(a .. \ . 12 : sup la .. I $CforsomeC<oo}, 
11, .. 1d'i1, .. ,,ld= ' ,... . . 11 .. ,ld 

11, .. ,,ld 

with addition, scalar multiplication and norm as above. Define <p: (100 )d ➔ 1; by 
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where O' = (0'(1), ... , O'(d)) passes through all permutations of 1, ... , d. Then cl> is 
. dd 1· . (l) (d) symmetnc an - mear m a , ... , a . 

Definea(g) e 100 by a\g) = lAi) i = 1,2, ... for each element Ag in the partition 

Al' ... ,A4. Then we have 

"'(a(gi) a(gd)) = y 1 * 'I' , ••• , :!{h , 

* with -:;J. the symmetrized product set of A x ... x Ag and y the number of permu-
"11 gt d 

tations that leave Ag x ... x A invariant. Thus l~h• can be written as a sum of 
. 1 gd 

diagonals 

- (i) (i) y l;!IJ* - ~ ai e!>(b , ... ,b ), 
lS1~ 

with b(i) = ~ila<g1>+ ... + ~ida<w. Using the definition ofci,, we have 

1 G . ) ~ di b(i) b(i) 'Y t;IL * 1' ••• ,Jd = ~ a i . 1· ••• 1· 
,"I) lS1Sr 1 d 

and, for I= {j 1, ... ,jd}, this gives 

1 ~h (I) = l~h• 0i ,. ··•.\t) = (d! / y) I, a. II b~i). 
lSi~ I j E I 1 

Hence it is shown that (l~h (I) )111 =dis of finite rank. Thus we have by Th. 4.1.3 

w(h)(n) ~ N(O,~) forn ➔ oo, with O'~ = lim I, O"i-
n ➔ oo I e Jth 

In fact, we have shown more: The joint limit distribution of the partial sums w(h>(n) is 

f1t-~-variate normal with vanishing covariances, provided the variances converge: 

fun 2 2 h ,q+d-1) L O' I = O'h, = l, ...• ~ - d • 
n ➔ oo le Jth 

This follows directly from Th. 4.1.3 which implies that any linear combination of 

partial sums with coefficients a 1 , ... ,a1 (1 = (4+:-l )) has a normal N(O, I. a~~ ) 
lShSl 

limit distribution since I. 3tt 1 .sth (I) is of finite rank and var ( I. 3tt w<'1>(n) ) 
lShSl lShSl 

converges. Summarizing we have 

Corollary 4.1.4. Let W(n) be homogeneous sums in the Hoeffding decomposition 

satisfying the conditions of Th. 2.1.1. Let Al' ... ,A4 be partitions of the integers 

{ l, ... ,n} (q fixed) and .91i , ... ,.91i the corresponding partition of the indices {I c 

{ l, ... ,n}: III= d} with I= <41-1) elements as described above. Define the partial sums 
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w<'1\n) = L W1. 
IE 51:h 

Suppose that for coe1"ficients a 1 , ... ,a1 (not depending on n) the variance of the linear 

combination of partial sums converges, 

lim var ( L 3ii w<'1\n)) = c?, 
n ➔ oo lShSI 

then 

Moreover, if the variance of each partial sum converges, 

lim var (W(h\n)) = ~, h = l, ... ,(q+1-1 ), 

then any linear combination converges in distribution: 

-- .th) d 2 2 L ah w,-- (n) ➔ N(O, L ahcrh) for n ➔ oo. 
!ShSI lShSI 

Thus the simultaneous distribution of the I partial sums is I-variate normal with 

vanishing covariances. 

4. 2. Convergence to a Gaussian process 

It is well known that on a finite measure space (S,':B,µ) a Gaussian process ~ with 

independent increments can be defined in the following way. Take for~ a process on a 

probability space (!l,,1',P), indexed by elements B E '.B, with finite dimensional 

distributions ~(Bi), ... ,~(BJ that are q-variate normal with cov(~(Bg), ~(Bh)) = 

µ(Bg " Bh). The existence of such a process follows from the Kolmogorov extension 

theorem. (In fact, ( ~(B) : B E '.B} is a collection random variables with prescribed 

consistent finite dimensional distributions.) 

Define the stochastic integral with respect to ~ for stepfunctions t = b1 1B1 

+ ... + bqlBq' with B 1' ... ,Bq measurable and disjoint, by 

/td~=b1 ~(B 1) + ... + bq~(Bq). 

Then 

var ( J t d~) = bi µ(B 1) + ... + b! µ(Bq) = J t 2 dµ. 

Thus ~ maps the linear set of stepfunctions isometrically into L 2tP). Since the 

stepfunctions are dense in L 1µ), this isometry has a unique extension to an isometry 

from L 1:µ) into L 1P). 
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The random variables '¾ are embedded in S as real-valued random point masses at 

points sl' I c { l, ... ,n} I I I= d. Define the stochastic integral with respect to W(n) by 

JfdW(n)= I, f(s 1)W1. 
IIl=d 

Suppose W(n) satisfies the conditions of Th. 2.1.1. In order that the stochastic integrals 

converge in distribution at least the variances should converge: Suppose that the discrete 

probability measuresµ£ defined by µn({s 1 }) = crf, I c { 1, ... ,n} I I I= d, converge 

weakly to µ. Then J f dl\i ➔ J f2 dµ if f is µ-a.e. continuous Jsee lemma 4.2.5). 

However, these restrictions are not sufficient to ensure J f dW(n) ➔ J f d~, n ➔ 00 , 

for f µ-a.e. continuous. This is shown in the following example. 

Example. Consider the matrix (aij), constructed in the example in Sect. 4.0. Notice that 

n = 2m, m = 1,2, ... Put w;j = (~)"112aijxi Xj, with Xi iid, N(0,l) for 1 ~ i < j ~ n. 

Now embed <w;j) in the point set {sk = 2k / n(n-1) : k = 1, ... , n(n-1) / 2 } c [0,1]. 

Any enumeration k = 1, ... , n(n-1) / 2 of the set of indices { (i,j) : 1 ~ i < j ~ n} results 

in adiscretemeasureµn({sk}) = E W~ = (~)"1 and µn ➔ A weakly, with A Lebesgue 

measure on [0, l]. Choose for each n an enumeration, such that { i,j} with aij = 1 is 

mapped into (1/2,1], and {i,j} with aij = -1 into [0,1/2). Then the stochastic integral 

J (1(1/2,lJ - 10,1121) dW(n) = (~)"1/21<~-< Xi Xj 
_l<J-Il 

does not have a normal limit. 

Recall that in the previous section we defined a transform W'(n) of W(n) of the form 

W'(n) = I. a1 W1. The integral J fdW(n) = I, f(5r) W1 is such a transform. 
III= d III= d 

Given the embedding of the above example not all stepfunctions on [0,1] result in 

transforms W'(n) with the family (a1) of finite rank. (The stepfunction \l/2,lJ - 10,1121 
corresponds with the family a1 = aij .) 

We are looking for embeddings such that integrals of stepfunctions result in 

transforms of finite rank. To achieve this goal it is sufficient to embed'¾ in a d-fold 

product and to carry out the embedding 'coordinatewise': Let S be ad-fold product S = 

:tvf. with M a separable metric space and mp···,mn a sequence in M. Put s1 = 

(mi1, ... ,mid) for I= {il' ... ,id: i 1 < ... <id}. Measurability in Mor Mdis meant with 

respect to the Borel a-algebra 
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Remark. There is some arbitrariness in this embedding: A renumbering of the points 

mi results in a different embedding, since by another enumeration point masses ~ can 

be moved to another one of the d! points (mi , ... ,mi} with {il' ... ,id} = I. Therefore, 

we shall only consider integrands f on M~ that are symmetric in their arguments: 

f(mi 1 , ... ,mid)= f(mia(l)'-'' mia(d)) for any permutation cr = (cr(l), ... ,cr(d)) of (1 •.. ,cl). 

Then it does not matter in which of the d! points (m. , ... , m. ) the random mass W.I, 
11 Id 

I= {il' ... ,id} is placed. 

Proceeding from the given embedding, we identify in the two following theorems a 

broad class of integrands f, for which the integrals f f dW(n) converge in distribution 

to the stochastic integral f f d~, with ~ the Gaussian process given above. Loosely 

speaking, these functions should obey three requirements: 1) f is symmetric, 2) f can be 

approximated in L 7{µ) by stepfunctions, 3) f f dl-\i ➔ f f dµ if 1-\i ➔ µ weakly. The 

first requirement is obvious; the second one allows a very broad class: stepfunctions are 

dense in L 7{µ). The third requirement is a real restriction. 

Theorem 4.2.1. Let M be a separable metric space, S = Md and µ a probability 

measure on the Borel a-algebra of S. Let ~ be the Gaussian process with covariance 

measure µ given above. For each n, (mi\= 1,2, ... is a sequence in M and sI = 

(mi1 , ... ,mi.I) E S for I= {il' ... ,ict= i 1 < ... < id}. Let W(n) be as in Tt 2.1.1, with d as 

above. Suppose the probability measures µn defined by µn(sI ) = crI converge weakly 

to µ. Then for h, bounded and symmetric and µ-a.e. continuous, the stochastic 

integrals f h dW(n) = I, h(\) WI converge in distribution: 
d IIl=d 

f h dW(n) ➔ f h d ~ forn ➔ oo. 

Proof The theorem follows immediately from Th. 4.2.2 with hn = h for all n. 

Theorem 4.2.2. Let S, µ, ~. ~• {sI} and W(n) be as in Th. 4.2.1. Suppose that 

hn, hare symmetric, uniformly bounded, measurable functions and suppose that hn ➔ 

h in the following sense: 

µ{s E S: I h/sn) - h(s) I> o for some o > 0 and some sequence sn ➔ s } = 0. 

Then the stochastic integrals converge in distribution: 
d 

f hn dW(n) ➔ f h d ~ for n ➔ 00, 

Proof. Let T be the set of symmetric stepfunctions that are µ-a.e. continuous and that 

are defined on measurable rectangles, i.e. t E T can be written t = b 1 1B 1 + ... + bqlBq 

with I\ , ... ,Bq disjoint and Bg = B~l) x ... x B~), B~) c M measurable and µ(a(Bg)) = 
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0, g = 1, ... , q, with o(A) the boundary of the set A. The proof rests on three lemmas, 

which will be proved below. 

Lemma 4.2.3. For t e T we have 
d 

J t dW(n) ➔J t d!;, n ➔ oo. 

Let L;(µ) be the set of symmetric functions in 1'a). 

Lemma 4.2.4. Tis dense in L;(µ). 

Lemma 4.2.S. Let 1't• h be as in Th. 4.2.2 then 

/h; dlJit ➔/h2 dµ n ➔ oo. 

We apply these in the following way. By Lemma 4.2.4 we can find for given E > 0 

some t e T such that J (h - t) 2dµ < E. Since tis µ-a.e. continuous we have by Lemma 

4.2.5, J (hn - t)2 dJ.Jn ➔ J (h - t/ dµ. Choose 1b such that for n > 1b we have 

J ( hn - t/ dJ.Jn < 2E. Then 

J h di; = J t di; + J (h - t) di;, 

J hn dW(n) = J t dW(n) + J (h8 - t) dW(n). 

Since both var (J (h - t) di;) and var (J (hn - t) dW(n)) are small, the theorem follows 

by Lemma 4.2.3. 

Proof of Lemma 4.2.3. Consider t e T, 

t = b 11B1 + ... + bqlBq with B 1 , ... ,Bq disjoint and Bg = B~) x ... x B~), 

with B~) Borel sets in M. The sets B~>, 1 s; g s; q, 1 s; e s; d, induce a partition 

A 1 , ... ,Ar of M. Define the symmetric sets .9th = ~ Aia(l) x. .. x Aia(d) with CJ = 
(o(l), ... ,o(d)) running through all permutations of (l, ... ,d), and h = 1, ... ,1 = {+:-l) an 

enumeration of the d-tuples {(i 1 , ... ,id) : 1 s; i 1 S ... S ids; r }. Since tis symmetric in 

its arguments, it can be rewritten: 

t = I, ahl.sth· 
ls;hs;l 

Clearly, the partition .9l1 , ..• , .9l1 induces a partition on the grid {m1 , ... , m 8 }d and thus 

on { 1, ... , n}d and thus on the indices { I c { 1, ... , n} : III = d}: the partition of 

Corollary 4.1.4. Thus Corollary 4.1.4 (first part) can be applied to 

I t dW(n) = I. a w<11>cn), with wCh>(n) = L WI, 
ls;hs;l h I, s1 e Jilh 
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provided the variance of J t dW(n) converges. This convergence follows, since t is µ

a.e. continuous by definition. Hence, by Lemma 4.2.5, we have J t 2 dl-\i ➔ J t 2 dµ. 

This proves the lemn~a. 

Proof of Lemma 4.2.4. Symmetric stepfunctions are dense in L;(µ), since the set {a:,; f 

< b} is symmetric if f is symmetric; hence f can be approximated by linear combination 

of symmetric indicator functions. Let B be a symmetric Borel set in S = Md. Since S is 

a metric space, µ is regular; that, is for any E > 0 there is an open set O and a closed set 

F such that F c B c O and µ(0 \ F) < E. The topology on S is generated by open 

rectangles d 1) x ... x o(d), o<e) open in M fore= 1, ... ,d. Cover B by open to-rectangles 

0 (s) = 0 (m(l)) x .. xO (m(d)) around any s e B, withs= (m(l), ... ,m(d)) and O (m(e)) 
E E E E 

the c-ball around m(e)_ It is possible to choose for any given s an E such that for any 

permutation cr of 1, ... , d we have 

a) 0 (m(o(l)) ) x ... x O (m(o(d)) ) c 0, 
E E 

b) µ (d( 0 (m(o(l))) x ... x O (m(o(d)))) ) = 0, 
E E 

where a) is obvious. For b) notice that d(0 (s)) n d(0 ,(s) = 0 if E "# c' and that only 
E E 

countably many disjoint sets can carry mass > 0. Hence it is possible to choose E > 0 

for givens such that a) and b) are satisfied. The product space Sis separable, since M 

is separable. Thus the open cover u O (s) has a countable subcover and O can be 
s E B E 

approximated by finitely many symmetrized open rectangles such that 

µ(0\( u O (sk))) =µ(0\( u (0 (sk)Ud(O (sk))))) <E. 
k $ ko Ek k $ ko Ek Ek 

Hence B can be approximated by symmetrized open rectangles without mass on the 

boundary. This proves Lemma 4.2.4. 

Lemma 4.2.5 is Th. 5.5 in Billingsley (1968). 

4. 3. The dimension of a multilinear form 

Consider a triangular scheme of rowwise independent random variables (Y;n). A' 
I IE 

with A a countable set which may depend on n. For each n the random variables 

(Yn). A are independent. We assume E Y.m. = 0 and I, E Y~ = 1. 
I IE In 

ie A 
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d d 

If I Yin ➔ N(0,1) for n ➔ oo, then also I ain Yin ➔ N(0,1), with (ain\ E A 
iEA iEA 

a family ofreal coefficients with Iain I= 1. This can be seen from the condition below, 

which is equivalent to asymptotic normality of the rowsums in the triangular scheme 

I JI x I I P{"Xn ~ x } - P{Yin s; x } I dx ➔ 0, n ➔ oo, 
i E A lxl > £ 

with Yin normal N(0,E Yfn) distributed (see Shiryayev (1984: 326)). The above 

criterion is invariant under sign changes. If the assumption of independence is dropped, 

then, in general, a central limit theorem is not invariant under sign changes. E.g. take as 

(Yin) the d-homogeneous components in the Hoeffding decomposition ('Yi), with their 

sum W(n) satisfying the conditions of Th. 2.1.1. Then the transform 

W'(n) = I a 1W1 
IIl=d 

in general does not have a normal limit as can be seen from the example in the 

introduction of this chapter. However, we can take as a starting point the property that 

asymptotic normality is invariant under sign changes. It will be shown that 

homogeneous sums in the Hoeffding decomposition satisfying this property behave in 

some respects as sums of independent random variables. This leads to the following 

definition. 

Definition 4.3.1. Let (W1 )111 = d be c~mponents in the Hoeffding decomposition 

with sum W(n), var W(n)) = 1 and W(n) ➔ N(0,1), n ➔ 00• The family (~ )111 = d is 

pseudo independent if 
d 

W'(n) = I a1 W1 ➔ N(0,1), n ➔ oo 
Ill= d 

for any family of real coefficients (a1 )111 = d with I a1 I = 1. 

For pseudo-independent d-homogeneous components Th. 4.2.1 holds with S a 

separable metric space irrespective of the value of d. Since all arguments concerning the 

embedding itself are identical to those in the proof of Th. 4.2.1, we give a schematic 

proof of this embedding (Th. 4.3.3). We start with the analogue of Th. 4.1.3 for 

pseudo-independent components. 

Proposition 4.3.2. Let the pseudo-independeft components ~ )111 =d satisfy the 

conditions a) and b) of Th. 2.1.1. If W(n) ➔ N(0,1), n ➔ oo, then W'(n) = 

I a1 W1 satisfies the conditions of Th. 2.1.1 for any family (a1 )111 =d with I a1 I = 1. 
III = d 
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Proof This follows from the definition of pseudo independent and from Th. 3.2.5. 

This leads to the following corollary of Th. 4.2.1. 

Theorem 4.3.3. Let the pseudo independent components ('Vi )111 =d with their sum 

satisfying the conditions af Th. 2.1.1 be embedded in a separable metric space M at 

points m1 such that the probability measures µn defined by µn<{m 1 }) = eri converge 

weakly to a probability measure µ on M. Let ~ be a Gaussian process with covariance 

measure µ. Then, for any bounded and µ-a.e. continuous function h the stochastic 

integrals f h dW(n) = I. h(m1)W1 converge in distribution: 
d III= d 

f h dW(n) ➔ f h d~, n ➔ oo. 

Proof. The key observation is the following consequence of Prop. 4.3.2: For any 
d 2 

subset .91. c { I c { l, ... ,n} : I I I = d} we have I, W1 ➔ N(O,er ), n ➔ oo, provided 

the mass converges: IE fat 

2 2 2 I. er 1 ➔ er , n ➔ oo, O < er < oo. 

IE fat 

This follows since 

I, W 1 = 1/2( I, b1W1 + I, W1 ), 
I e fat III = d III = d 

with b1 = 2 lfat - 1 e { 0, 1}; the result follows by Th. 4.1.1. 

Notice that T defined in the proof of Th. 4.2.2 (the set of symmetric stepfunctions 

on measurable rectangles without mass on the boundary) in the present case (without 

explicit product structure ) is just the set of µ-a.e. continuous stepfunctions. And for 
ii 

any t e T we have ft dW(n) ➔ ft d~, n ➔ oo, by the above observation and by Th. 

4.1.1. This replaces Lemma 4.2.3. Now the theorem follows in exactly the same way 

as Th. 4.2.2. This completes the proof. 

In Ch. 3 several sufficient conditions are given that ensure asymptotic normality for 

clean random variables. Most of these conditions are more restrictive than the 

conditions of Th. 2.1.1. In fact, in Prop. 4.3.4 below it is shown that some of these 

conditions imply pseudo independence. 

Proposition 4.3.4. The components in the Hoeffding decomposition ('Vi )111 = d 

satisfying the conditions a) and b) of Th. 2.1.1 are pseudo independent if any one of 

the following conditions holds: 
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1) I, IEWiWJWKWLl ➔ O for n ➔ oo,l~e~d-1, 
'd_e,0) 

3) µ * ➔ 0 for n ➔ oo, with µ * the maximal singular value of the family 

(Oi)III = d' 

4) max I, o- 1 ➔ 0 for n ➔ oo, 
i I 3 i 

5) max I, o-1 I, o-1 ➔ 0 for n ➔ oo, 
Ac { 1, ... , n), 1:s;IAl<d I::::, A J ::::, I \ A 

Proof. All conditions are invariant under sign changes of ('Ni). Condition 1) implies 

SO ➔ 0 and thus S ➔ 0 (Corollary 3.1.4) and hence W(n) has a normal limit 

distribution by Prop. 2.3.4. Further we have 
(1) (2) (3) (4) 

4) => 5) => 2) => 1) and 3) => 2). 

(1) follows since I, o-1 ~ max I, O' 1 . 
J::::,I\A i I3i 

(2) is shown in the proof of Th. 3. 1.5. 

(3) follows by Prop. 3.2.4. 

(4) follows by Prop 3.2.1. 

This finishes the proof. 
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