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PREFACE 

The atmospheric circulation, which possesses a finite range of predictability, 
seems to show vacillation behaviour: it irregularly fluctuates between three 
different weather regimes. In this tract a contribution is made to a better 
understanding of the vacillation and predictability properties of the atmo
sphere. This is done by considering three spectral models of the barotropic 
potential vorticity equation, which consists of three, six and ten components, 
respectively. These models are analysed by mathematical methods originating 
from the theory of dynamical systems. Furthermore, attention is given to the 
problem of how to model the effect of small-scale turbulent motions on the 
dynamics of the long atmospheric waves. 
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I. Introduction and summary 

LL VARIABILITY OF THE PLANETARY WAVES 

The weather has a significant influence on daily life. Consequently, there is 
great public interest in understanding the atmospheric circulation and in 
weather forecasts. Although the qualitative dynamics of the circulation are 
nowadays rather well understood, forecasting has remained a difficult task. So 
far only short-range forecasts (up to a few days) are successful in the sense 
that they are distributed for public purposes. Nevertheless, it is well-known 
that occasionally substantial differences between predicted and actual flow 
states occur. These differences become worse when forecasts are extended to 
the medium and long range (weeks to months). This problem has been studied 
systematically by comparing output of numerical models with observed circula
tion patterns (HOLLINGSWORTH et al., 1980). It appears that each scale of 
motion has its own time scale of error growth. For example, the characteristic 
error-doubling time for large-scale phenomena (0(106m)) is of the order of a 
few days. Principal causes for this error growth were previously sought in an 
inaccurate specification of the initial state and in limitations of the model to 
incorporate correctly certain physical processes and boundary conditions. 
However, nowadays it is known that there is a limit to the predictability of the 
atmospheric circulation which cannot be enlarged by more and better observa
tions. In order to obtain a more clear comprehension of this fundamental pro
perty we briefly describe the dynamics of the circulation. 

Basically, the driving mechanism is the inhomogeneous radiation input from 
the sun, which causes a heat surplus in the tropical areas and a heat deficit 
near the poles. As can be seen from figure 1.1 these differences create a meri
dional temperature gradient in the midlatitudes. It is remarkable that this gra
dient is not present in the tropics, indicating that we have to distinguish 
between the dynamics in both areas. This supposition is also supported by the 
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FIGURE 1.1 
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Mean temperature distribution, averaged around latitude cir
cles, for January. Heavier lines show approximate mean tropo-
pauses. From PALMEN and NEWTON (1969). 

different heights of the tropopause separating the troposphere (where vertical 
temperature gradients are negative) from the stratosphere (where vertical tem
perature gradients are positive). The difference in dynamics is to a consider
able extent due to the fact that the Coriolis force (induced by the rotation of 
the earth) acting on a moving fluid is of minor importance in the tropics 
because of the earth's curvature. In low latitudes a direct convective circula
tion occurs: warm air is ascending near the equator, it cools and spreads out. 
After descending near the 30° latitudes it flows back to the equator. In midla
titudes the meridional temperature gradient gives rise to slopes of the pressure 
levels which would force the air to move polewards. However, globally a bal
ance is established between the pressure gradient force and the Coriolis force, 
resulting in quasi-horizontally westerly winds. This so-called geostrophic bal
ance applies to the flow outside the frictional boundary layer which is situated 
near the earth's surface. 

From a daily weather-map it can immediately be seen that this flow is not 
zonally symmetric. It has a wave-like structure in which several length scales 
are present. In the first place we have the planetary waves with a typical length 
scale of 10000 km. These semi-permanent structures are forced by the thermal 
differences between land and ocean and the large-scale topographic variations, 
called the orography. In particular the Himalaya and the Rocky Mountains are 
important for the excitation of ultra-long waves. It appears that this 
planetary-scale flow is unstable: initially small perturbations may increase their 
amplitudes, thereby withdrawing energy from the basic flow. These distur
bances, called transient eddies, appear on the weather-map as high- and low
pressure cells and are responsible for what we experience as 'weather'. They 
have a typical length scale of 1000 km and their life (a few days) is much 
shorter than that of the planetary waves ( order of weeks). Place and time of 
the occurrence of new eddies are in general unpredictable. 

Model studies have demonstrated that the geographical distribution of the 
planetary waves largely determines the development of and the tracks followed 
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by the transient eddies (FREDERIKSEN, 1983). There is also an opposite effect, 
as argued by OPSTEEGH and VERNEKAR (1982) and HOSKINS et al. (1983), i.e., 
transient eddies are capable of forcing and altering the planetary waves. The 
consequences for the predictability of the atmospheric circulation were sys
tematically studied by LORENZ (1969a,b). In these studies equations are 
derived describing the evolution of the distribution of errors over different 
scales of atmospheric motion. These error equations are integrated using the 
observed spectral distribution of kinetic energy. It appears that, due to non
linear interactions, arbitrarily introduced errors are transferred to all scales of 
motion. Furthermore, error doubling times decrease linearly when scales of 
motion with decreasing length scales are considered. This leads to the conclu
sion that the atmosphere possesses an intrinsic finite range of predictability of 
about two weeks. 

Obviously, it is not possible to predict the actual flow state of the atmo
sphere over a large time interval with a sufficiently large probability. Therefore, 
it becomes worthwile to distinguish between weather regimes, which are clus
ters of states representing nearly the same flow pattern. This was for instance 
done by BAUR et al. (1944). They published a catalogue of large-scale atmos
pheric circulation patterns over Central Europe, which they called Grosswetter
lagen. Later on HEss and BREZOWSKY (1969) classified these weather types 
into three categories: a zonal (high-index) regime with strong westerlies and 
small wave amplitudes, a meridional (low-index) regime with large waves 
embedded in a weak zonal flow and an intermediate regime of transitional 
type. Typical flow configurations for these regimes are shown in figure 1.2. 
The situation in figure 1.2c is that of a persistent anticyclone over Middle 
Europe, which blocks the standard passage of depressions. The dynamics of 
these blockings have been the subject of many recent studies, see the review in 
BENZI et al. (1986a). The concept of Grosswetterlagen has only regional 
significance. Examples of high- and low-index situations for the global atmos
pheric flow are discussed in PALMEN and NEWTON (1969), DoLE (1986) and 
REINHOLD (1987). Although the terminology weather regimes is clear from an 
intuitive point of view, their existence has never been convincingly demon
strated by a systematic data analysis; only recently some indications have been 
found (BENZI et al. 1986b ). 

Once we have accepted the presence of weather regimes, the atmospheric cir
culation can be considered as a system which shows vacillation behaviour: it 
irregularly fluctuates between different preferent states. This index cycle, 
known to meteorologists for a long time (NAMIAs, 1950), is caused by the 
interactions between the quasi-stationary planetary waves and the transient 
synoptic-scale eddies. Within the framework of long-term weather forecasting 
it is important to obtain a better understanding of the dynamics responsible 
for this vacillatory behaviour. In this tract a contribution is made in under
standing the dynamics of weather regimes by analysing the dynamical proper
ties of highly simplified atmospheric models. 
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FIGURE 1.2. 
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Geographical distribution of the height (in geopotential de
cameters) of the 500 mb level for the Wz (a), HM (b) and 
HFa (c) winter Grosswetterlagen, which are of zonal, mixed 
and meridional type, respectively. The isohypses are approxi
mate streamlines of the flow; arrows indicate the flow direc
tion. From VAN DUK et al. (1974). 

1.2. THE USE OF SPECTRAL MODELS 

In order to study the variability of the atmosphere, one has in principle to 
consider the full equations of motion. This problem is too complicated to deal 
with analytically. However, WALLACE and BLACKMAN (1983) showed that the 
variability is mainly concentrated in the low-frequency part of the atmospheric 
waves (time scales of at least a few days, horizontal length scales of the order 
1000 km and more). It is demonstrated in section II.I that for these scales the 
equations of motion reduce to one nonlinear partial differential equation. It 
describes the evolution of a fundamental quantity called the quasi-geostrophic 
potential vorticity. Furthermore, all state variables governing the motion (velo
cities, temperature, pressure, density, potential vorticity) can be expressed in 
terms of a streamfunction. We have taken the simplest, barotropic version 
where we assume that the fluid has no vertical structure: it actually behaves as 
one layer. Some motivation for doing this follows from the observations that 
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the quasi-stationary atmospheric waves have a pronounced equivalent barotro
pic structure (BLACKMAN et al., 1979; DOLE and GoRDON, 1983; BRANSTATOR, 
1987). 

The resulting barotropic potential vorticity equation is still difficult to han
dle, mainly because of its nonlinear structure. It can be studied in two 
different ways. A conventional method is finite difference approach. In this 
case the equation is considered on a grid, derivatives are replaced by finite 
differences and the resulting system is solved numerically. Another method is 
the spectral approach where explicit use is made of the boundary conditions to 
the potential vorticity equation. Here the streamfunction, as well as other vari
ables depending on the spatial coordinates (topography, external forcing), are 
expanded in eigenfunctions of the Laplace operator. Each eigenfunction 
satisfies the boundary conditions and is orthonormalized with respect to the 
domain average. Substitution of these expansions in the potential vorticity 
equation yields an infinite number of coupled nonlinear ordinary differential 
equations, called a spectral model. It describes the time evolution of the 
modal amplitudes. Since in practice it is not possible to consider the dynamics 
in an infinite dimensional phase space, the expansions are truncated at a finite 
number (say N) of terms. Projecting the partial differential equation onto the 
resolved modes, which is called a Galerkin projection, we obtain a finite
dimensional dynamical system of the type 

x = fµ(x)+ F(t) in RN. (1.1) 

Here a dot denotes differentiation with respect to time, x=(x 1,x2, ... ,xN) 
represents the resolved modal amplitudes and J,.(x) is an N-dimensional 
vectorfield depending on x and on parameters µ=(p.1,/J-2, ... ,/L,n). Furthermore 
the N components of vector F(t) are forcing terms which describe the effect of 
the neglected modes on the dynamics of the resolved modes and RN is the N
dimensional phase space. We also note that the original barotropic potential 
vorticity equation with boundary conditions is an approximation to the 
dynamics of the circulation. Thus, the forcing terms also account for the effect 
of physical processes not incorporated in the model. In that case the F(t) are 
defined by the condition that the projection of the actual atmospheric circula
tion onto the N resolved modes is described by the solutions of (1.1). From a 
mathematical point of view spectral models can in principle be analysed with 
techniques originating from the theory of dynamical systems, which are dis
cussed in GUCKENHEIMER and HOLMES (1983) and THOMPSON and STEWART 
(1986). As we wish to study the dynamics of the quasi-geostrophic atmospheric 
circulation in a systematic way, we adapt the spectral approach in this tract. 
Its application to the barotropic potential vorticity equation is discussed in sec
tion 11.2. 

In practice Eqs. (1.1) are often considered with the F(t) a priori put equal to 
zero. Then, truncation has a similar effect as the introduction of finite 
differences in the sense that the small scales are removed. This is done because 
it this follows from observations that generally most energy is contained in 
only a few modes ( the long waves). We argue that this may be due to an 
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intrinsic property of quasi-geostrophic turbulent flow: there is an energy cas
cade from the small scales to the larger scales (TENNEKES, 1985; PEDLOSKY, 

1987). In a paper by CoNSTANTIN et al. (1985) the truncation problem for the 
Navier Stokes equations is studied from a formal point of view. They found 
that for large times a finite mode expansion could be selected such that quali
tative agreement is obtained with the exact solution in the sense that they have 
equivalent stability and attractor properties. Furthermore they showed that 

NS i=;:; (klD)-d (1.2) 

is a sufficient condition for the truncation number in order to obtain such 
qualitative agreement. Here k- 1 is a typical length scale of the flow, LD is a 
dissipation length scale and d the dimension of the flow. Generally Ns will be a 
large number, (e(lO'i) for quasi-geostrophic motion) but we remark that (1.2) is 
not a necessary condition. The numerical results of FRANCESCHINI et al. (1984) 
for a truncated spectral model of the Navier-Stokes equations in two dimen
sions indicate a stabilization of qualitative behaviour at N ~ 100. Although it is 
not yet clear whether these results are applicable to the quasi-geostrophic 
potential vorticity equation, they at least demonstrate that truncated spectral 
models can be useful. In principle we would like to investigate the dynamical 
properties of such models. We are particularly interested in the asymptotic 
solutions of (1.1) (in the limit t➔oo) with F(t)=O, in dependence of parameter 
values and initial conditions which are realistic for the atmosphere. However, 
we remark that it is not possible to carry out such an analysis systematically 
since the systems have a complicated dynamics due to the large number of 
nonlinear terms in the equations. 

Therefore, as a first step, it becomes worthwhile to consider low-order spec
tral models, in which only a few modes are retained, and study in what sense 
they reflect features like transitions between weather regimes and a finitely 
predictable motion. An important advantage is that their properties can be 
analysed completely, whereas from the results indications may be found how 
to consider more complicated models as well as real data. It follows from (1.2) 
that the truncation resulting in deterministic low-order spectral models cannot 
be physically motivated. Nevertheless, we emphasize once more that their 
analysis may increase our understanding of the atmospheric dynamics. 

The structure of the vectorfields studied in this tract is such that small 
volume elements always shrink and that solutions are bounded. Consequently, 
for t➔oo trajectories tend to sets of limit points with zero volume in phase 
space. These may include regular sets, such as stationary points ( corresponding 
to equilibrium patterns), limit cycles (oscillating flow), invariant tori (quasi
periodically oscillating flow), as well as irregular sets which are strange attrac
tors (chaotic flow). As discussed in section 11.2 these sets of limit points are 
determined from a (numerical) bifurcation analysis of the spectral models. 
Since there are many free parameters in the problem it is necessary to use phy
sical arguments in order to uncover their essential features. The spectral model 
mimics a typical characteristic of the atmospheric circulation if trajectories 
irregularly vacillate between different preferent regions in phase space. 
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Therefore, we are particularly interested in the occurrence of multiple unstable 
regular solutions and strange attractors. We expect trajectories to follow a 
strange attractor and to visit alternately regions in phase space close to the 
regular solutions. H on the other hand the system tends to a regular set of 
limit points, the truncation is apparently too severe. Thus more modes should 
be included in the spectral expansions in order to obtain a better representa
tion of the atmospheric dynamics. Another possibility is to take account for 
the effect of small-scale eddies on the long waves. This can be done by adding 
specific forcing terms to the equations which provide for the occurrence of 
vacillation. 

1.3 REVIEW OF SUBSEQUENT CHAPTERS 
We now discuss some previously obtained results. The fact that Galerkin pro
jection techniques resulting in the system (1.1) can be applied to partial 
differential equations, collect a spectral model. It describes the dynamics of 
large-scale atmospheric fl.ow was first realized by SILBERMAN (1954). Later on a 
number of other spectral models have been developed, see the review in DE 
SWART (1988). It appears that already extremely low-order deterministic spec
tral models show qualitative features of the atmospheric circulation. In section 
11.3 a three-component model, first derived by CHARNEY and DEVORE (1979), 
is discussed. This has either one or three equilibria, depending on the choice 
of parameter values. The streamfunction distributions associated with the three 
equilibria resemble the circulation patterns shown in figure 1.2. Based on this 
agreement CHARNEY and DEVORE (1979) suggest that equilibria of spectral 
models may indicate large-scale preferent states of the atmospheric circulation. 
The presence of multiple equilibria is due to a physical mechanism called topo
graphic instability. However, no finitely predictable flow and no vacillation 
behaviour is obtained: the asymptotic states are always stationary. A higher
order model, consisting of six components, is studied in CHARNEY and 
DEVORE (1979) and YODEN (1985). The asymptotic behaviour is more compli
cated: apart from stationary points, periodic and chaotic orbits are found. 
However, no index cycles occur: solutions remain in a specific regime forever. 
So far the 25-component model of LEGRAS and GHIL (1985) is the only low
order quasi-geostrophic barotropic spectral model which allows for internally 
generated transitions between different preferent regimes. 

A different way to simulate an index cycle was proposed by EGGER (1981). 
He added stochastic perturbations of the white-noise type to the spectral equa
tions of the three component model They are intended to represent the 
influence of the neglected modes on those retained in the model. The noise 
forces this system to visit alternately the attraction domains of the two stable 
equilibria. However, no justification is given for the choice of white noise forc
ing. LINDENBERG and WEST (1984) and recently KOTTALAM et al. (1987) have 
derived explicit expressions for the forcing terms in spectral models of the 
barotropic potential vorticity equation. They show that Eqs. (1.1) are formally 
a system of stochastic differential equations but the characteristics of the F(t) 
are difficult to model. Generally, the random terms appear to be 
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nonstationary, nonMarkovian and nonGaussian and their intensities depend in 
a complicated way on the state of the system. Moreover, the F(t) also contain 
dissipative terms which balance the rapid fluctuations. With these results in 
mind we formulate the following quest{ons with respect to low-order spectral 
models of the barotropic potential vorticity equation: 

Which physical mechanisms are responsible for the occurrence of chaos 
and vacillation? 
How many modes are at least required in the spectral expansions to result 
in a 'minimum-order' model allowing for chaos and vacillation? 
Given this minimum-order model, what can we learn from it about quali
tative· and quantitative aspects of the predictability of the circulation? 
Which parametrization scheme should be chosen for the forcing terms 
F(t) in Eqs. (l.l) in order to let this model represent a dynamics compar
able to that of the circulation (a closure problem)? 

In chapter III we consider the six-component model originally derived by 
CHARNEY and DEVORE (1979). Although it has been the subject of several stu
dies (cf. YODEN, 1985) many of its properties are unknown. Apart from topo
graphic instability it allows for another physical mechanism which is barotro
pic instability. The latter is related to the triad interaction between a zonal 
flow mode and two wave modes. A systematic analysis is presented of the 
asymptotic solutions of the model for two free parameters which control the 
topographic and barotropic instability mechanism, respectively. It appears that, 
depending on parameter values and initial conditions, the long-term behaviour 
can be either stationary, periodic, quasi-periodic or chaotic. A scenario is 
found which leads to the generation of strange attractors. It involves for 
specific parameter values the occurrence of homoclinic orbits which connect an 
unstable stationary point with itself. For nearby parameter values chaotic 
orbits exist which move in small tubes around the homoclinic orbits, in agree
ment with the theory of SILNIKOV (1965). The chaotic motion, characterized by 
a positive Lyapunov exponent, describes irregular flow predictable on a time 
scale given by the reciprocal of this exponent. However, despite its interesting 
properties, the model cannot represent transitions between different weather 
regimes. This is due to the absence of barotropic wave triads which describe 
interactions between three different wave modes. 

Before considering a spectral model which includes a wave triad we study in 
chapter IV the effect of random perturbations on the three- and six-component 
models. In spite of the results of KoTIALAM et al. (1987) discussed previously 
we have taken white and coloured noise as a parametrization of the forcing 
terms. This choice is motivated by the results of EGGER and SCHILLING (1983, 
1984) and KRUSE and HASSELMAN (1986) who showed, using atmospheric data, 
that the F(t) in (1.1) have a coloured-noise character. A method is discussed 
by which analytical expressions for the expected residence times in the attrac
tion domains of the deterministic stable equilibria are derived. It differs with 
respect to the one used by DE SWART and GRASMAN (1987) such that it can be 
applied to six-dimensional spectral models. During a transition, the system 
will remain for some time in a neighbourhood of an unstable equilibrium. This 
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indicates that unstable equilibria may have some relevance for the atmospheric 
dynamics. Furthermore the alternation of preferent states is studied with a 
discrete-state Markov model. Transition probabilities are derived from the 
characteristic residence times of the stochastically forced dynamical system. 
The eigenvalues of the master equations of the Markov model yield informa
tion about the time scale over which the effect of the initial state is present in 
the system. 

The ten-component model discussed in chapter V can be considered as a 
minimum-order deterministic spectral model of the atmospheric circulation. 
For specific parameter values it represents a finitely predictable flow vacillating 
between three preferent weather regimes, which are of high-index, low-index 
and transitional type. This behaviour is possible on account of the presence of 
a wave triad which provides for a direct interaction between two distinct scales 
of motion: a planetary scale and a synoptic scale. In phase space the trajec
tories follow a strange attractor and the preferent regions are close to unstable 
periodic orbits of the model. The fractal dimensions of the strange attractor 
estimate the actual number of degrees of freedom of the chaotic flow. The 
reciprocal of the sum of all positive Lyapunov exponents defines a time scale 
on which the motion is predictable on the average. Local predictability proper
ties are investigated by solving the linearized error equations along a principle 
orbit of the model. It is argued that the eigenvalues of this system determine 
the average error growth on a specific time interval while the corresponding 
eigenvectors determine the geographical distribution of the errors. Finally forc
ing terms, added to a six-component subsystem of the IO-component model, 
are calculated such that the solutions of both models are equivalent. It is 
found that, although these forcing terms have a stochastic nature, they cannot 
be parametrized by the simple processes used in chapter IV. This result is in 
agreement with that of KOTIALAM et al. (1987). We remark that it does not 
contradict the results of EGGER and SCHILLING (1983, 1984) since the latter 
authors also take into account the effect of physical processes not incorporated 
in the model. 

parametrization scheme of the forcin~ terms 
number of none white coloured deterministic 

components noise noise noise 
l 

3 s. 11.3 Ch. IV Ch. IV -

6 Ch. III Ch. IV - s. V.6 

10 Ch. V - - -

TABLE 1.1. Distribution of cases studied in this tract (s.: section, Ch.: 
chapter.) 
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Summarizing, we note in this tract three different spectral models are con
sidered consisting of three, six and ten components, respectively. Apart from 
analysing their internal dynamics we have investigated the effect of different 
forcing terms which were added to the spectral equations in order to account 
for the influence of the neglected modes and physical processes. They are a 
white-noise forcing, a coloured-noise forcing and a forcing computed from 
time series of a higher-order spectral model, respectively. In table 1.1 a survey 
is presented of the cases studied in this tract. 

A discussion about the validity of spectral models as a description of the 
large-scale atmospheric circulation is presented in chapter VI. It is argued that 
for future investigations the analysis of multi-level spectral models of the 
quasi-geostrophic potential vorticity equation will be useful. These models 
allow for the occurrence of baroclinic instability which is an important physi
cal mechanism in the atmosphere. 



11: Quasi-geostrophic motion: 

method of analysis 

Il. l. DERIVATION OF THE POTENTIAL VORTICITY EQUATIONS 

11 

In this section a simple model of the large-scale atmospheric flow will be for
mulated including most relevant physical processes. The derivation we shall 
present is based on a multiple-scale analysis and was first discussed by PEDLO

SKY (1984). The modification introduced here is that we shall consider 
motions in the atmosphere instead of in the ocean, consequently the thermo
dynamics will be different and compressibility effects cannot be neglected a 
priori. 

In general, the state of the atmosphere is determined by the three
dimensional velocity vector ti, pressure p, density p, temperature T and by the 
specific humidity, which is the mass of water vapour per unit mass of moist 
air. We shall start from the equations of motion neglecting humidity effects. 
The geometry of the earth suggests to develop the equations in spherical coor
dinates A,q> and r, which are longitude, latitude and distance to the centre of 
the earth, respectively, see figure 2.1. Neglecting frictional terms for the 
moment, we obtain the closed system 

du + uw - uv tanq,- 2nsin4> v + 2Dco5q,w = - l_ _l_ .EJ!.., (2.1 a) 
dt r r p rcoSq> oA 
dv vw u2 . 1 on 
-+-+-tanq,+2nsmq, u= -- .::x.., 
~ r r ~ ~ 

(2.lb) 

dw u2 +v2 1 on 2Dco5q, u= ---=--g 
dt r p or ' 

(2.lc) 

!Jp_+ {-l-[~+..l..(vco5q,)]+ ow+ 2w} =O, 
dt P rco5q, oA off> or r 

(2.ld) 
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FIGURE 2.1. Spherical coordinates A,cp,r for the earth. 

d8 =-8-H* 
dt cpT ' 

Here 

p = pRT, 

O = T(Pr /le,. 
p 

d_ a u a v a a -- - + --- + -- + w
dt - at rcostp a>-. r a,p ar 

(2. le) 

(2. lf) 

(2.lg) 

(2.2) 

and u, v and w measure velocities in the longitudinal (zonal), latitudinal (meri
dional) and radial (vertical) direction, respectively. Furthermore g is the 
acceleration of gravity, Q the angular speed of rotation of the earth, 8 the 
potential temperature, H* a heating function, p, a prescribed reference pres
sure, R the gasconstant of dry air and cP its heat capacity at constant pressure. 
Eqs. (2.1) are three momentum equations, a continuity equation, a thermo
dynamic equation, an equation of state (the ideal gas law) and the definition of 
potential temperature. A systematic derivation of these equations can be 
found in GILL (1982). 

In order to analyse this system we need a priori knowledge about the partic
ular motion to be considered. Here we shall study an atmospheric flow at 
midlatitudes having a vertical length scale which is much smaller than its hor
izontal length scale. Moreover, we assume the time scale of this flow to be 
large compared to the rotation period of the earth. Motivated by the qualita
tive description of the circulation given in chapter I, we distinguish between 
two different scales of motion. These are a planetary scale, with a horizontal 
length scale r0 (the radius of the earth) and time scale a;- 1, and a synoptic 
scale with a horizontal length scale k- 1 and time scale a- 1• Both types of 
motion are assumed to have the same velocity scales [ u ], [ v ], and [ w] for u, v 
and w, respectively. They are defined as 
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CJ 
[u] = k = a.ro, [v]=[u], [w] = aH, (2.3) 

where H is the depth of the fluid. Our flow is now characterized by the condi
tions 

_ _ .J!... _ [u]k 8 - kH << I, £ - 20 - 20 << 1, (2.4) 

which imply a small aspect ratio and a small Rossby number, respectively. 
Next we introduce the following nondimensional variables: 

~=kr0A , 11=kr0q,, t =at, 

i. =a.t , z =H- 1 z =H- 1(r-r0), 
(2.5) 

where we assume that 

a = (kr0)- 1 <<1. (2.6) 

Then the global variation are described by functions of A,q> and t. while the 
variations on the synoptic scale are described by ~,T/ and t. We define the non
dimensional velocities u, v and w as follows: 

u = [u] u(A,q,,t.,z; ~.11,t), 

v = [v] v(A,q,,t.,z; ~.11,t), 

w = [w] w(A,q,,t.,z; t11,t), 

(2.7) 

Since we are dealing with small velocities, in the sense that the Rossby number 
£ defined in (2.4) is small, pressure and density will differ only slightly from 
their values obtained in the absence of motion. In this rest state we have the 
hydrostatic balance 

dps 
dz = - Ps(z )g. (2.8) 

In principle any density profile can be chosen as long as 

ddz(Js ;;a. 0, Os(z) = ( PrR )(Ps )1-Rlc,_ (2.9) 
Ps Pr 

This means that the potential temperature, which is a function of Ps and Ps by 
(2. lf,g), decreases nowhere with height. Consequently the fluid is stably 
stratified. The pressure and density are written as 

p = Ps(z)+ p'(A,q,,t.,z; ~,T/,t), 

P = Ps(z)+ p'(A,q,,t.,z; t11,t). (2.10) 

The scaling for p' follows from the assumption that the Rossby number is 
small. It implies that the flow is quasi-geostrophic on both the planetary and 
synoptic scale, i.e., the horizontal momentum balance is dominated by the 
Coriolis and pressure gradient terms. In fact there are two different orders of 
pressure and density fluctuations. Here we scale p' by 20p8 ak-2, which are 
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synoptic variables, and remark that pressure fluctuations on the planetary scale 
are a factor a- 1 larger. The scale for the density perturbations in (2.10) is 
found from the hydrostatic balance which also applies to the disturbances. 
Thus p'g must be of the same order asap' 1az, hence it follows 

P = Psll +d'xii], P = Ps[l +d'p], (2.11) 

with 

F = (20)2k-2' x(z) = gHps (~l). (2.12) 
gH Ps 

The parameter F measures the squared ratio of the synoptic length scale of the 
fl.ow to the external Rossby radius of deformation. The function x.(z) is a 
static density stratification parameter. To obtain the scaling for the potential 
temperature we eliminate T from (2. lf,g) and substitute (2.11 ). The result is 

(J = 98 [1 +d'fJ], (2.13) 

where 98 is defined in (2.9). Finally the heating function is written as .. 
H* = d'(20)c1 TH . (2.14) 

We next apply the transformations (2.3)-(2.14) to (2.1) and consider A,cp,t.,E,TJ 
and t as independent variables. Thus, derivatives in the original system are 
rewritten as 

(2.15) 

Dropping the tildes, we obtain 

du du To . 
£{-d +a[-dt +-(8uw-uvtancp)]}-smct,v+8coscpw 

t • T 

= -1 To 22_ 22_ 
(1 +d'p) TC08cp ( a~ +a ax), (2.16a) 

£{ dvd +a[ddv +~(8vw+u2tanct,)]}+sincp u 
t t. T 

-1 To 22_ lE_ 
1 +d'p T ( a11 +a act,), (2.16b) 

&{8dw +a[8 dw -~(u2 +v2)]}-8coscp u 
dt dt. T 

(2.16c) 



t:[ dd(J +a ddfJ ]+ (1 +t:FfJ)S(z)w = t:{1 +t:FfJ)H*, 
t t. 

_ (1 +£FxP>1-Rlc1 

1 +t:F(J - 1 +t:Fp ' 

where 

d a ro a ro a a -=-+-- u-+-v-+w- , 
dt - at rcoscp a~ r a11 az 
d a ro a ro a -=-+ -- u-+-v-, 

dt. - at. rcoscp aA r acp 

and the Burgers number 

p-1 dfJs 
S(z)= -

()3 dz 
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(2.16d) 

(2.16e) 

(2.16f) 

(2.17) 

(2.18) 

is a stratification parameter, which is positive because of the condition (2.9). It 
measures the squared ratio of the internal Rossby radius of deformation and 
the external length scale of the flow. 

In order to estimate the parameter values in (2.16) we must specify the vari
ous scales of the flow. The quasi-geostrophic atmospheric circulation at midla
titudes is characterized by H~Hfm, k- 1~106m and a- 1~I05s. Further
more, g~lOms-2, r 0 ~6.4.106m, Sl~7.3.10-5s-1 and 8; 1d88 /dz~O.I. Con
sequently, t:~O.l,8~O.O1, a~O.1,F~O.l and S(z)~l. These values suggest to 
analyse system (2.16) for 

t:<<1, 8= e(t:2), a= e{t:), F= e{t:), S(z)= 0(1). (2.19) 

Next we expand all state variables in perturbation series of a small parameter 
for which we choose the Rossby number t:. We remark that we scaled the ther
modynamic variables according to the synoptic-scale variations and that 
fluctuations on the planetary scale are a factor a- 1 larger. Because of (2.19) 
the expansions become 

(X) 

(U,V,W) = ~ £"(un,Vn,Wn), 
n=O 

(X) 

(p,p,8) = £- 1(p.,p.,fJ.)+ ~ £"(pn,Pn,8n). 
n=O 

(2.20) 

Here un,Vn,Wn,PmPn and (Jn are functions of both the planetary- and synoptic
scale coordinates. However, p.,p. and 8. are functions of the planetary-scale 
coordinates (A,cp,z and t.) only, otherwise they would cause a violation of the 
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a priori assumed quasi-geostrophic balance. Substituting (2.19)-(2.20) in (2.16) 
and collecting terms with equal powers of £, we obtain in lowest order 

. 1 apo a ap. 
smcf> v0 = cosct> [af + 7 aA ], (2.21a) 

. apo a ap. 
Slllq> Uo = - [ 3'q + 7 a4> ], 

l a 
--3 (PsP•)+p. = 0, 
Ps z 

1 auo avo 1 a 
---31:. + -3- + --3 (PsWo) = 0, 
COSq> ~ 1/ Ps z 

Wo = 0, 

R o. = (1--)xp.-p •. 
Cp 

Using (2.9) and (2.21c) the expression for O. can be rewritten as 

0 - ap. P• d~ - ap. 
* - Tz - Ds dz - Tz ' 

since 0; 1d0sldz =e(£). 

(2.21b) 

(2.21c) 

(2.21d) 

(2.21e) 

(2.21f) 

(2.22) 

Eqs. (2.21a,b) state that in lowest order the Coriolis force is balanced by two 
horizontal pressure gradiens, which constitute the geostrophic balance at the 
synoptic and planetary scale, respectively. However, only three out of the four 
equations (2.2la,b,d,e) are independent which is a manifestation of the geos
trophic degeneracy problem. In order to obtain a closed system of equations 
we have to consider the first-order momentum, continuity and thermodynamic 
equations as well. After substitution of (2.21d,e) they read 

d+uo . -1 {ap1 a 3po 
---smcf> v1 =-- --+--

dt cosct> a~ f aA 

F 3po a ap. } --;- p.[ar+-;-ar-1 , (2.23a) 

d+Vo . ap1 a apo F apo a ap. 
~ + Slllq> u 1 = - 3-q - 7 a4> + 7P• [ 3-q + 7 a</> ], (2.23b) 

l a 
--3 (PsPo)+Po= 0, 
Ps z 

(2.23c) 

(2.23d) 

(2.23e) 
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(2.23f) 

where 

d+ a Uo a a -=-+----+vo- ' 
dt - at coS</> a~ a11 

d+ a Uo a a 
dt. = at. + COS</> a>:+vo acp ' 

(2.24) 

represent the total time derivatives with respect to the total zeroth-order velo
city field on the synoptic and planetary scale, respectively. An equation 
describing the time evolution of the zeroth-order field is obtained from 
differentiating (2.23b ), multiplied by (COS</>)- 1, with respect to t differentiating 
(2.23a) with resect to 1J, subtracting the results and substituting (2.23d). This 
yields 

(2.25) 

with 

1 avo auo 20 . 20co",I,. fo = ----, f = -sm(a11), /3 = --"'t'~. (2.26) 
COS</> a~ a11 a akro 

Here fo is the zeroth-order synoptic-scale relative vorticity, which is still a 
function of both the synoptic and planetary-scale coordinates, f is the Coriolis 
parameter ( or planetary vorticity) and /3 is the gradient off measuring the cur
vature of the earth. The vertical velocities in (2.25) follow from (2.23e) which 
can be written as 

d+ apo a d+ ap. • 
dt3z+7 dt. Tz + S(z) w1 = H , (2.27) 

where we have used (2.9), (2.23c,f) and the fact that p.,p. and B. are not func
tions of t11 and t. We have neglected the contribution (aB.laz)w 1, since 
ao.1az = (9(£), as is shown in appendix A. Eqs. (2.25) and (2.27), with 
appropriate boundary conditions, describe the quasi-geostrophic dynamics for 
atmospheric motions. If (2.27) is solved for w 1 in terms of p 0 and p., by 
using (2.2la,b) and (2.24), the result is 

(2.28) 

Here w 1s(w 1p) is the vertical velocity due to the synoptic (planetary)-scale 
geostrophic motion whereas w 1c is the contribution induced by the coupling 
between both scales. 

In this tract we shall study a simplified type of quasi-geostrophic motion 
which is obtained in the limit S (z )➔O. This means that the internal Rossby 
radius of deformation becomes small with respect to the horizontal scales of 
the flow. It then follows from (2.8),(2.9), (2.18), (2.21c) and (2.23c) that, at 
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least to e(i), density is a function of pressure only, hence the flow is barotro
pic. Then for H* =O (no heating) it follows from (2.27) that if p0 and p. are 
independent of z initially, they will be for all times independent of z. Further
more we assume that the vertical velocities, which now come in due to the 

, boundary conditions, are still of the type (2.27). Next integrating (2.25) over 
the depth of the fluid, substituting (2.26)-(2.27) and using (2.2la,b) as well as 
(2.24), we finally obtain 

where 

d I~ . 
. d~ ('121/1+ .f)-, s: (PsW1s)dz 

+ .!!.{( -ap* ...!.+_1_ ap* J....)'721/1 
t: a4> ax cosct, ax ay 

I • a - f smp _(PsW1c}dz} = 
o Ps az 

a \2 • /1 I ap. I a = -(-, Slllcp {-.-2-~--~(p3 W1p)}dz, (2.29) 
f O Slll cf, UI\ Ps uz 

a a 1 a a 
'1 = ( ax ' ay ) = ( coscp al ' a;,) ' 
~=1--~.1....+~J.... , Po 
dt at ay ax ax ay 1/1= sinct, . 

(2.30) 

Note that d0!dt is the total time derivative with respect to the zeroth-order 
synoptic-scale velocity field, which is determined by the streamfunction V'· Eq. 
(2.29) is written in such a way that its right-hand side contains contributions 
which depend on the planetary-scale coordinates A,cp,z and t. only. If this 
term were nonzero it would act as a constant forcing term on the synoptic
scale vorticity balance on the left-hand side of (2.29), 1/1 would grow linearly 
with time and consequently the geostrophic regime would break down. In 
order to avoid secular behaviour the r.h.s. of (2.29) must be zero and the result 
is two separate equations: 

d i . a i . a 
2_('721/1+ j)-f Slllq> -(psW1s)dz _ .!!_ f Slllq> -(psW1c)dz 
dt O Ps az t: 0 Ps az 

------------(2) 

_l_ ap* _ 1 sinp !_ (!} • ~, J ~ (PsW1p)dz - 0. (2.31b) Slllcp UI\ 0 Ps oz 
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They describe the quasi-geostrophic vorticity balances for barotropic motions 
on the synoptic and planetary scale, respectively. Obviously they are derived 
simultaneously by a multiple-scale analysis. If terms (1) and (2) are neglected 
in (2.31a) this equation shows that the total time derivative of the absolute 
vorticity (v'21"+ /) is affected by small vertical velocities. This equation fol
lows directly from Eqs. (2.1) by a priori using a time scale a- 1, a horizontal 
length scale k- 1 and taking the limit S(z)➔O. For (a/£)=(9(1) additional con
tributions are present which couple the two scales of motion. The terms (1) 
describe the advection of synoptic-scale relative vorticity by the planetary-scale 
geostrophic velocities. The terms (2) represent the effect of synoptic~scale vor
ticity stretching by divergence of the planetary-scale velocity field. Eq. (2.31b) 
describes a balance between the advection of planetary vorticity and the 
stretching of planetary vorticity by divergence of the planetary-scale velocity 
field. This equation could be obtained from system (2.1) by introducing the 
time scale o-; 1 and horizontal length scale r0 • Note that the planetary-scale 
dynamics is not affected by synoptic-scale motions. 

From now on we will a priori neglect all motions on the planetary scale and 
consider the synoptic-scale motions only. The boundary conditions for this 
type of flow are derived in PEDLOSKY ( 1987) and read for the barotropic case 

I sinp a - doh * f -a (PsW1s)dz - -y-dt -Cv'21"+Cv'21" , (2.32) 
o Ps z 

(1) (2) (3) 

with 

Y = fho C = flE . 
H ' 2H 

(2.33) 

They describe the modification of the flow at the lower boundary due to the 
presence of topography (1 ), frictional effects (2) and due to some external forc
ing streamfunction 1"* (3) which for example models the equator-pole tempera
ture gradient. Here z = h is the position of the lower boundary with charac
teristic amplitude h0( <<H) and l3E is the thickness of the frictional (Ekman) 
boundary layer situated near the earth's surface. Substituting (2.32) in (2.31a), 
in which we neglect the terms (1) and (2), we arrive at 

; 1 v'21" + 1(1", v'21"+ /)+yJ(1",h)+Cv'2(1"-1"*) = 0, (2.34) 

where 

(2.35) 

is the Jacobian of A and B with ez a unity vector in the radial direction. Eq. 
(2.34) is the quasi-geostrophic barotropic potential vorticity equation for 
synoptic-scale motions. In many studies, including the present tract, it is used 
as a model for the dynamics of the atmospheric circulation. 
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II.2. SPECTRAL ANALYSIS FOR BAROTROPIC FLOW ON A BETA PLANE 

It is discussed by DUTTON (1974) that the quasi-geostrophic potential vorticity 
equation can be investigated by means of spectral analysis. Here we apply this 
technique to its barotropic version: corsider Eq. (2.34) on a domain D with 
appropriate boundary conditions. We look for solutions by expanding the 
streamfunctions I[; and I[;* , as well as the topography h, in a series of eigenfunc
tions { 'Pj }j of the Laplace operator: 

(l[;,I[;* ,h) = ~('Pj,'Pj ,hj)cpj, (2.36) 
j 

where 

(2.37) 

The eigenfunctions have positive eigenvalues "A.j, satisfy the boundary condi
tions and are orthonormalized with respect to the domain average. It can be 
verified that 

I[; = 'Pje-fo,t (2.38) 

is a solution of (2.34) when y=C =I[;* =O (no topography, dissipation and 
external forcing), provided 

-fJJ1 "' = --, (2.39) 
"A.j 

where /J is defined in (2.26). Eq. (2.39) is the dispersion relation of a free 
westward propagating Rossby wave (PEDLOSKY, 1987). Note that a single 
wave satisfies the full nonlinear equation. Thus, application of the spectral 
technique to the barotropic potential vorticity equation yields a streamfunction 
expanded in the free Rossby modes of the equation. 

Projecting (2.34) on these eigenfunctions, called a Galerkin projection, we 
obtain the spectral equations 

. I 
Ajo/j =2 ~~Cj1m("A.1-"A.m)1P1o/m +y ~~Cjlm'Plhm 

I m I m 

+ ~bjio/1-C"A.j(l[;j-l[;j). (2.40) 
I 

This system describes the time evolution of the expansion coefficients { 'Pj }j. 
Here 

(2.41) 

with 

<A,B > = f A Bee dr! j dr (2.42) 
D D 

defining an inproduct on D and cc denoting a complex conjugate. The interac
tion coefficients in (2.41) obey the relations 

Cjlm = Clmj , Cjlm = - Cjml , bjl = -blj , (2.43) 



21 

where the second one has already been used in the derivation of (2.40). 
Details of the spectral method are discussed in GoTILmB and ORSZAG (1977) 
and VOIGT et al. 0984). Using the completeness property of the eigenfunc
tions they show the existence and unicity of the spectral solution on a bounded 
domain. 

In order to analyse Eqs. (2.40) we should consider the dynamics in an 
infinite-dimensional phase space. This cannot be realized for practical applica
tions. A convenient way to deal with this problem in fluid dynamics is to 
approximate the streamfunction in (2.36) by an expansion in which j may run 
only through a finite number (say N) of values: 

~ = °Itf!/l>j , j, ~ j ~ ju . (2.44) 
j 

This convention implies that we consider a rectangular truncation in the 
(j 1 ,h) space. Projecting the partial differential equation on these eigenfunc
tions we_ o~tain a finite-dimensional dynamical system of the type (1.1) where 
x-{·'· }1=1. - 'l'jj=j,• 

We finally consider the energetics of the spectral model. Defining 
l l l 

K = 2<'vt/J, 'vt/1> = -2<1/J, 'v2t/l> = T°IAjt/1] (2.45) 
j 

as the mean barotropic kinetic energy, we derive an equation for K by multi
plying (2.34) with 1/J and next averaging over the domain D. The result is 

k = -2CK + C<'vt/1, 'vt/1* >. (2.46) 

Note that in the absence of forcing and dissipation (t/J*=C=O) the kinetic 
energy is a constant of motion. Eq. (2.46) also holds for truncated spectral 
models of the barotropic potential vorticity equation where j in (2.45) runs 
through only a finite number of values. 

The fact that Galerkin projection techniques can be applied to partial 
differential equations describing the dynamics of large-scale atmospheric flow 
was first realized by SILBERMAN (1954). In this paper Eq. (2.34) is considered 
without the effects of topography, dissipation and external forcing 
( y = C =t/J* = 0). The streamfunction is expanded in orthonormal eigenfunc
tions of the Laplace operator on the sphere, which are spherical harmonics in 
this case. 

However, we remark that the quasi-geostrophic potential vorticity equation 
is not valid over the whole sphere because horizontal length scales should be 
small compared to the radius of the earth. As an alternative SALTZMAN (1959) 
introduced a channel approximation in which Eq. (2.34) is considered in a cir
cular strip at midlatitudes, see figure 2.2. This approach has the problem that 
artificial boundary conditions are required at the two walls. The spectral 
method has been applied to both barotropic and baroclinic quasi-geostrophic 
motion as well as to nongeostrophic models, see the review in DE Sw ART 

(1988). Both types of geometry discussed above are frequently used. 



22 

FIGURE 2.2. The midlatitude channel. The x-coordinate is along lines of 
constant latitude, the y-coordinate along lines of constant 
longitude. 

Here we consider a barotropic flow in a rectangular channel on the beta 
plane, i.e., fJ in (2.26) is considered to be a constant. The channel has length 
2'TT in the ronal x-direction and width '1Tb in the meridional y-direction, hence 

k = 2'TT b = 2B (2.47) 
L ' L ' 

with Band L the dimensional width and length of the channel. We investigate 
the existence of travelling wave solutions in the x-direction. At the boundaries 
y =O and y ='TTb the meridional velocity component is assumed to be zero. 
Furthermore the circulation around the boundaries should be a constant. The 
resulting boundary conditions for the streamfunction are derived by PHILLIPS 

(1954). They lead to the following eigenvalue problem: 

V 2<f,j+A/Pj = 0 on {(x,y)IO:s;;;;x:s;;;;2'TT, O~:s;;;'TTb} , 

q,j(x +2'TT,y) = q,j(x,y), 

oq,· 2'1T oq,· 
.:::!:L = 0 and f .:::!:Ldx = 0 at y =O and y ='TTb , ax O ay 

l '1Tb2'1T 

<q,j,'Pl>-~ ff 'Pj'Pfcdxdy = 8Jl. 
2,,,.-b o o 

(2.48) 

Here cc denotes a complex conjugate and 8Jl a Kronecker delta function. 
Solutions of (2.48) are obtained by the method of separation of variables. The 
resulting eigenfunctions, with corresponding eigenvalues, are 

·2 

'Pj(y) = V2 cos(h f) , Aj = ~~ , (2.49a) 

,i.. ( ) - - r,:;:2 ij,x . (j L) 'l'j x,y - v L. e sm 2 b , 

li 1 l,h = 1,2, ... 

·2 
A - ·2 + 12 

'j - ]I b2. (2.49b) 
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Toe eigenfunctions in (2.49a) are (0,}2) modes which describe zonal flow 
profiles. Toe solutions (2.49b) are (1/il,h) Rossby waves. Toe interaction 
coefficients, defined in (2.41), for these modes are presented in appendix B. It 
appears that there are two types of nonlinear interactions. The first type 
involves a zonal flow mode and two Rossby waves, while the second type 
involves three wave modes. Toe latter are called barotropic wave triads. 
Furthermore, it appears that many nonlinear interactions do not lead to 
resonant coupling. The underlying physical mechanism is discussed in PEDLO

SKY (1987). 
Toe motivation to study low-order spectral models has already been dis

cussed in chapter I and will not be repeated here. We derive a particular low
order model by including only the (0,1) (0,2), (1,1), (1,2), (2,1) and (2,2) modes. 
These are two zonal flow profiles and four Rossby waves, respectively. We 
assume that external forcing, due to the equator-pole temperature gradient, 
only acts upon the zonal flow modes. Furthermore 

h = cos(x) sin(}), (2.50) 

i.e., the topography is given as a (1,1) mode, being the longest wave present in 
the model. Defining the real variables 

'POI 
X1 =-

b 

'P02 
X4 =-

b 
1 

X5 = . ~(tf;12+t/;-12) 
b v2 

• 'POI 
X1 =-

b 

1 i 
X7 = b V2 (t/;21 +t/;-21) , Xg = b V2 (t/;21 -tf;-21) , 

1 i 
X9 = b V2 (t/;22 +t/;-22) , X10 = b V2 (t/;22 -tf;-22) , 

(2.51) 

we arrive at the IO-coefficient model given in appendix C. It contains a six
dimensional subsystem, denoted by the dashed lines. For x4 =0 (no forcing in 
the (0,2) mode) it is further reduced to the three-component model between the 
dotted lines. These three models will be studied for their physical and 
mathematical properties. More specifically, we will investigate whether these 
models reflect characteristics of the atmospheric circulation such as a finite 
predictability and vacillation behaviour. This occurs if the asymptotic solu
tions of the spectral model (i.e., the solutions in the limit t➔oo) irregularly 
visit different preferent regions in phase space. Toe techniques we shall apply 
to analyse the models originate from the theory of dynamical systems. A brief 
overview of the mathematical details is presented in appendix D. 
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II.3. THREE COMPONENTS: A REVIEW 

So far only the three-component model, given in appendix C between the dot
ted lines, has been analysed completely. It is the simplest nontrivial spectral 
model of the atmospheric circulation, describing the interaction of a (0, 1) zonal 
flow mode and a ( 1, 1) Rossby wave. In order to study the properties of the 
nonlinearities explicitly we first neglect the effect of forcing and dissipation 
(xi =C=O). The stationary points .x=(.x 1,.x2 ,.x 3) of this model, obtained by 
setting all time derivatives equal to zero (see appendix D), satisfy 

A 

A 'Y11X1 
x2= A 

a11X1 -/311 
(2.52) 

for arbitrary .x 1 • Since .x 3 =O the wave is in phase with the topography. The 
stability of the equilibria is investigated by considering the dynamics of small 
perturbations on these states. They evolve as exp(At), where A are the eigen
values of the matrix derivative of the vector field, linearized at x. In this case 
the characteristic equation reads 

'\ [,2 +( A _ /J )2 'Y11'Yi1/311 ] -o 
A A a11 x 1 ,-,11 - A - • 

aux1 -/311 
(2.53) 

A stationary point is unstable if there is at least one eigenvalue with a positive 
real part. In (2.53) this is the case if 

(2.54) 

Note that instabilities can only occur for y nonzero. For this reason the 
mechanism is called topographic instability (CHARNEY and DEVORE, 1979). In 
the limit (a11 .x 1 -Pu)➔O the wave amplitude grows resonantly. This is due to 
a continuous vorticity transfer from the zonal flow to the wave mode where 
topography acts as a catalyst. This transfer is not compensated for by advec
tion of total vorticity because the zonal flow velocity balances the phase speed 
of the Rossby wave. 

Next we introduce zonal forcing and dissipation. Then stationary points are 
found from a cubic equation: 

A.3 A2 A 

x1 +a2x1 +a1x 1 +a0 =O, 

A 'Y11X1(au.X1 -/311) 
X2 = A 2 2 ' 

(a11X11 -/311) +C 
(2.55) 

where 

- ,a2 +C2) -2 • ao- -\1-111 au X1. (2.56) 

From the kinetic energy equation (2.46) it follows that always O .;;;;.x 1 ...;;xj. 
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Thus .x3 <0, which implies that the phase difference between the stationary 
wave and the topography is always negative. As can be seen from (2.55), due 
to dissipation the topographic resonance has shifted to small but nonzero 
values of (a11 .x 1 -P11 ). Furthermore, there may be either one or three real sta
tionary points. The bifurcation set, which is the set of parameter values at 
which a transition from one to three equilibria occurs, is given by 

q3 +r2 =0, q= !a 1-!at r= !(a1a 2 -3ao)- ; 7 at (2.57) 

The stationary points at the bifurcation set are turning points of the bifurca
tion diagram.· For these parameter values the wave becomes topographically 
unstable. In the region where (q3 +r2) is negative, called the catastrophe set, 
three real stationary points occur. 

The stability of the stationary points is determined from the eigenvalues of 
the matrix derivative of the vector field linearized at x. The characteristic 
equation reads 

(X+c)3+b1(X+C)+bo=0 

,. ~ * [P11(a11i1 -Pu)-C2 l b1 =(a11x1 -Pu, -'Y11'Y11 ,. 0 ~ 2 , 
(a11X1 -,-,11) +C 

(2.58) 

ho = -C'Y11'Yi1a11i1(a11i1 -Pu). 

(a11i1 -P1iY +c2 

From (2.55) and (2.58) it follows that if the system has only one real stationary 
point it is stable. If there are three real stationary points two of them are 
stable and one is unstable. Furthermore it can be shown that complex eigen
values do not have vanishing real parts, hence there are no Hopf bifurcation 
points in the model The only possibility for a real eigenvalue to pass through 
zero is at the bifurcation set. 

As a specific example we consider a channel of length 4900 km and variable 
width around the central latitude q,=45°. The vertical length scale is taken to 
be H=l0'1m and the time scale a-1=1<>5s, such thatf=IO. It then follows 
for the model parameters P= 1.25, the value of b depends on the channel 
width (see (2.47)), y measures the topography amplitude in km, c-1 a dissipa
tion time scale in days and xi = U I U O• Here U is a velocity scale for the 
external forcing and U0 =alk=1.8ms- 1• We take y=l,C=0.1 and vary xi. 
In the literature the model has also been studied for different parameter values, 
see the review in DE SWART (1988). The results of these investigations do not 
differ significantly from those which will presented here. In figure 2.3a the 
bifurcation set of the model in the b,xi -parameter space, enclosing the catas
trophe set, is shown. It is known as a cusp catastrophe. In figure 2.3b the 
equilibrium solution component x 1, which represents the nondimensional 
intensity of the zonal flow, is presented as a function of the external forcing xj 
in case b = 1.6 ( channel-width 3920 km). The x 1-component is proportional to 
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the zonal index since it measures the eastward transport between the two meri
dional channel walls. 
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FIGURE 2.3a. Bifurcation set in the b,xi-parameter space of the three
component model for fixed /J, y and C. 

b. The x 1-component of the stationary points as a function of xi 
for b = 1.6 and fixed /J, y and C. A solid line denotes that the 
solution is stable, a dashed line denotes an unstable solution. 

For large xi(;;;a,28.107) there is one stable stationary point E 1• For smaller 
forcing values (2. 741 oe;;;xi oe;;;28. l 07) two more stationary points appear. The 
intermediate one (E2) is unstable, since it has one positive real eigenvalue, 
while the lower one (E3) is stable. For small xi (,e;;;2.741) one stable station
ary. point (E3) is left. To show the characteristic circulation patterns of the 
equilibria we have taken xi =4 (zonal-forcing velocity amplitude of 31.7ms- 1). 

Then three equilibria exist with the numerical values 

E1 = (3.829, 0.428, -0.018), E2 = (1.477, 0.989, -0.263), 

E3 = (0.776, -0.768, -0.336). (2.59) 

Their nondimensional streamfunction patterns are shown in figure 2.4. The 
stationary point E 1 represents a high-index state with a strong westerly flow 
and a small wave amplitude. Furthemore, E 3 is a low-index state representing 
a large wave embedded in a weak zonal flow. Finally, E 2 is an intermediate 
state showing characteristics of the two equilibria discussed previously. 

In figure 2.5 a projection of trajectories onto the x 1 -x2 plane is shown for 
the case of three real stationary points. Initial conditions are taken in a plane 
x 3 = constant. It appears that most trajectories tend to one of the stable 
equilibria. Exceptions are those which lie on the separatrix between the attrac
tion domains of E 1 and E 3, which tend to E 2• The separatrix has a compli
cated structure and its geometry can only be approximated by a large number 
of time integrations of the system. As concluded by CH.ARNEY and DEVORE 
(1979), the presence of topography is a necessary condition for the existence of 
multiple equilibria: the unstable equilibrium E 2 is due to topographic instabil
ity. Furthermore, these authors argue that the flow patterns of the stable 
equilibria E 1 and E 3 resemble large-scale preference states of the atmospheric 
circulation. This is motivated by the qualitative resemblance between the 
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circulation patterns of the Grosswetterlagen, shown in figure 1.2, and those of 
the equilibria of the spectral model, presented in figure 2.4. KALLEN (1981, 
1982) has drawn similar conclusions for a three-component model of the baro
tropic potential vorticity equation on a sphere. 

FIGURE 2.4. 

FIGURE 2.5. 

Nondimensional streamfunction contours (solid lines) for the 
equilibria E 1(a),E 2(b) and E 3(c) defined in (2.59). A 
difference ili[I= 1 corresponds to a zonal transport of about 
1.1.1 ()6 m 2 s - 1 • Arrows indicate the flow direction. The 
dashed lines represent contours of topography (km). 

Sketch of the phase flow of the three component-model, pro
jected onto the x 1 - x 2 plane in case there are three equilibria. 
Initial conditions are chosen in a plane x 3 = constant. 

The model is unrealistic in the sense it always ends up in a stationary point. 
Thus, we conclude that, although there is some qualitative agreement, the 
three-component model does not give a realistic picture of the time evolution 
of large-scale atmospheric flow. It therefore becomes useful to include more 
modes and study its consequences for the solutions as t ➔ oo. This brings us to 
a six-component model, which will be the subject of the next chapter. 
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111. Analysis of a six-component model 

of 

the atmospheric circulation 

Ill. l PRELIMINARY REMARKS 

It is clearly indicated by synoptic observations that the atmospheric circulation 
has an irregular temporal and spatial structure. This suggests that complicated 
models are needed to describe adequately the evolution of the flow. The struc
ture of general circulation models and weather forecast models confirms this 
idea (JARRAUD and BAEDE, 1985). Although these models are successful in 
simulating the flow, they do not provide much insight into the underlying 
dynamics. It is therefore significant to investigate whether it is possible to 
construct more simple nonlinear models which reflect specific features of the 
atmospheric circulation. By the latter we mean a flow vacillating between 
different weather regimes and of which the evolution can only be predicted for 
a finite amount of time. As discussed more extensively in chapter I we study 
in this tract truncated spectral models of the barotropic potential vorticity 
equation in a beta plane channel. They are of the type ( 1.1) and can be 
analysed with techniques originating from dynamical systems theory. We are 
particularly interested whether such a system, without the effect of the forcing 
terms F(t) in (1.1), contains a strange attractor with a multimodal probability 
distribution on it. Since the associated chaotic motion is characterized by sen
sitive dependence on the initial conditions it models a finitely predictable flow. 
The multimodal probability distribution implies that trajectories alternately 
visit different preferent regions in phase space, as required to obtain an index 
cycle. 

In section II.3 it has been found that the three-component model of appen
dix C between the dotted lines possesses multiple equilibria for a wide range of 
parameter values. The corresponding circulation patterns resemble the weather 
regimes of high-index, low-index and transitional type discussed in chapter I. 
However, no vacillation behaviour is obtained: all nontransient solutions 
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appear to be stationary. This result suggests to study the effect of including 
more modes in the spectral expansions. This naturally leads to the six
component model given in appendix C between the dashed lines. It describes 
the interaction between two zonal flow modes and two Rossby waves. It was 
originally derived by CHARNEY and DEVORE (1979) and is also considered in 
MATSUDA (1983), YODEN and HIROTA (1984) and YODEN (1985). A spherical 
analogon is discussed in 10.LLEN (1981, 1982). Although these studies 
answered many questions, our knowledge of the model is still incomplete. For 
example, the existence of vacillation behaviour has not been investigated yet. 
Therefore, in . the present chapter a detailed analysis is given of the physical 
and mathematical properties of the six-component model. 

First we note that the spectral equations are invariant under the transforma
tion 

This implies that, in case x4 =0 (no forcing in the second zonal harmonic), if 
initial conditions are chosen such that x4(0)= x 5(0) =x6(0) =0, the evolution 
will be governed by the three-component model discussed in section 11.4. 
Furthermore, the increased number of degrees of freedom allows for a new 
physical mechanism, called barotropic instability mechanism. It may occur in 
the triad interaction between the (0,2), (1,1) and (1,2) mode. F10RTOFT (1953) 
showed that such a triad conserves kinetic energy as well as enstrophy 
(squared relative vorticity). Next he derived a necessary condition for a parti
cipating mode to become unstable: its wave-length must be smaller than that 
of the second participating mode and larger than that of the third one. Apply
ing this theorem to the triad of the six-component model we find 

if b2 <3 : (0,2) mode can become unstable, 

if b2>3: (1, 1) mode can become unstable. 
(3.2) 

Thus the width-length ratio of the channel controls the barotropic instability 
mechanism. 

The stationary solutions and their stability properties are studied in section 
111.2 as a function of two parameters. Apart from b the external forcing, con
trolling the topographic instability mechansim, is varied. The existence of 
strange attractors is investigated in the sections 111.3 and 111.4 by continuing in 
parameter space branches of periodic orbits which bifurcate from branches of 
stationary points. In some cases the periodic orbits become homoclinic, such 
that they connect a stationary point with itself. For nearby parameter values 
strange attractors occur, in agreement with the theory developed by SILNIKOV 
(1965). However, although the six-component model has interesting proper
ties, it is of limited validity for the atmospheric circulation. It appears that the 
strange attractors only have a small attraction domain in phase space, such 
that chaotic trajectories remain in a specific regime forever. Physically, this is 
due to the presence of only one resonant barotropic triad so that the number 
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of possible nonlinear interactions is limited. It is argued in section IIl.5 that 
more degrees of freedom are needed in order to obtain vacillation behaviour. 

IIl.2 STATIONARY SOLUTIONS AND THEIR BIFURCATIONS 

We now study the steady states of the six-component model. For the moment 
we take x4 = 0. Then, because of ( 4.1 ), equilibria of the three-component 
model are also equilibria of the six-component model with .x4 =x5 =x6 =0; 
they are called single-mode equilibria. However, their stability may change 
due to presence of more modes. It can be shown that the characteristic equa
tion, which is of sixth degree, factorizes into two cubic equations describing 
the stability with respect to the first-mode and second-mode perturbations, 
respectively. According to the Fj0rtoft theorem, equilibrium E I cannot 
become barotropically unstable because it is characterized by a large (0, 1) 
component having the smallest wave-number of the spectrum. The possible 
instability of E 2 and E 3 with respect to second-mode perturbations leads to 
additional mixed-mode equilibria, for which .x4 , x5 , x6 =f=0, as well as periodic 
solutions. CHARNEY and DEVORE (1979) showed that the mixed-mode equili
bria are governed by 

A A4 A A2 A 
d2(x1)X4 +d1(x1)x4 +do(x1)=0, 

(3.3) 

where d2,d1,d0,e2,e1 and e0 are known functions of .x 1• Furthermore, for 
each .x 1 and .x4 we obtain a unique .x2, .x 3, x5 and .x6• Since (3.3) is two qua
dratic equations for .x; we conclude that mixed-mode equilibria always occur 
in pairs having the same x 1 , .x 2 and x 3 component, but opposite x 4 , x 5 and 
x6 components. 

The equilibria and their stability properties were calculated for the parame
ter values P=l.25, C=0.l, y=l, x4 =0 and variable band xj. The physical 
conditons are identical to those discussed in section H.4 for the three
component model. In figure 3.1 curves in the (b, xj) parameter space are 
shown. The solid lines, labelled L 1, L 2 and L 3, are curves of turning points 
(saddle-node bifurcations). The dashed lines are curves of pitchfork bifurca
tion points and the dotted lines, labelled HI, H2 and H3, are curves of Hopf 
bifurcation points. Definitions of equilibria, bifurcations etc. are given in 
appendix D. 

At the turning points and bifurcation points two different branches of equili
bria come together. Consequently, the associated curves in figure 3.1 divide 
the parameter space into regions, each with its own characteristic number of 
equilibria. This is denoted by the symbols as, am, where as gives the number 
of single-mode equilibria and am the number of mixed-mode equilibria. 
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FIGURE 3.1. a. Curves of singular points in the b, xj parameter space. Solid 
lines are curves of turning points (L 1, L2, L3), dashed lines 
are curves of pitchfork bifurcations (B 1) and dotted lines are 
curves of Hopf bifurcation points (HI, H2, H3). The sym
bols as, am denote the number of single-mode equilibria and 
mixed-mode equilibria, respectively. The points A, B, C and 
D are associated with a direct transition from regular to 
chaotic behaviour. 

b. Blow-up of a.: 10 <xi< 28, 1.4 <b < 1.7. 
c. Blow-up of a.: 2 <xj < 4.5, 1.6 <b< 3.5. 
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Stability properties of at least one of the equilibria change each time that a 
curve in the diagram is crossed. They are not indicated since the diagram is 
already densely filled with information. In figure 3.1 b,c blow-ups of two 
regions are presented where the behavio..rr is rather complicated. Thick points 
in the diagram are special singular points of the model, because they are asso
ciated with bifurcations of codimension larger than one. It means that more 
than one free parameter is needed to describe the bifurcation adequately. For 
example, the unfolding near the point (xi, b)=(5.042, 0.267) is the well-known 
cusp catastrophe described in appendix D. The phase flow structure near such 
points can be rather complicated. Of particular interest are the points labelled 
A,B,C and D. There we have the coaslescence of a Hopf bifurcation and a 
saddle-node bifurcation. As will be dicussed later on, at these points a direct 
transition occurs from regular to chaotic solutions. 

The curve L I is the bifurcation set of the three-component subsystem, where 
the number of single-mode equilibria changes from one to three. From figure 
3.1 we conclude that for b < 1.279 the six-component model has a similar qual
itative behaviour with only single-mode equilibria. However, if b becomes 
larger additional mixed-mode equilibria occur, making the bifurcation diagram 
more complicated. In figure 3.2 cross-sections of some bifurcation diagrams 
are presented. Shown are the x1- and x4 -components of the equilibria as a 
function of xj for b = 1.4, b = 1.5, b = l.6 and b = 2. Note that the high-index 
equilibria (E i) are always stable. When b > 1.279 mixed-mode equilibria are 
generated at the branch of low-index (E3) equilibria. This occurs by means of 
pitchfork bifurcations which cause E 3 to become unstable. The bifurcations 
are due to topographic instability of the (1,2) Rossby mode: at this point the 
wave is in phase with the topography. Beyond the bifurcation perturbations 
on the unstable state E 3 have a growing standing-wave structure. 

As long as b < 1.517 mixed-mode equilibria are absorbed by the E 3-branch 
(figure 3.2 a,b). However, if b exceeds this bound they vanish at the branch of 
E requilibria (figure 3.2 c,d). Another, more important, aspect for b > 1.517 is 
that equilibria can become unstable due to the presence of Hopf bifurcations, 
causing the generation of periodic solutions. Hopf bifurcations are a manifes
tation of the barotropic instability mechanism and the periodic solutions can 
be interpreted as topographically modified propagating barotropic Rossby 
waves. 

Explicit calculations of stationary points have been carried out for the 
parameter values b = 1.6 and xj =4, a case that was also considered in section 
II.4. The results for the single-mode equilibria are already presented in (2.59), 
except that they now have the additional components x4 = x5 = x6 = 0. 
Furthermore, two mixed-mode equilibria occur: 

E 4a I E4b = (0.599, -0.394, -0.354, + 0.195, +0.090, + 0.357). (3.4) 

The streamfunction patterns of E 1, E 2 and E 3 are shown in figure 2.4, those 
of E4a and E4b are presented in figure 3.3. As can be seen there is qualita
tively little difference between E 3, E 4a and E 4b: they are all of low-index type. 
The situation in the six-dimensional phase space is sketched in figure 3.4 as a 
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From left to right: x 1 - and x 4-components of the equilibria as 
a function of xi for b = 1.4 (a), b = 1.5 (b), b = 1.6 (c) and 
b = 2.0 ( d). A solid line denotes that the solution is stable, 
while a dashed line indicates an unstable solution. The trian
gle symbol represents a Hopf bifurcation point. 
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projection of the phase flow onto the x 1 -x4 plane. Both E 2 and £3 are now 
of the saddle-point type and lie on separatrices between the attraction domains 
of the stable equilibria E 1, E4a and E4b. 

In figure 3.1 there is one dashed region where no stable equilibria exists. 
Numerical integrations show that for these parameter values trajectories start
ing from arbitrary initial conditions tend to a globally attracting limit cycle. 
Thus we conclude that the set of limit points of the six-component model at 
least contains a point attractor or periodic attractor. 
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As figure 2.4, but for the equilibria E4a (a) and E4b (b) 
defined in (3.4). 

Sketch of the phase flow projected onto the x 1 - x 4 plane of 
the six-component mode in the case b = 1.6, xj =4. Initial 
conditions are chosen for fixed x2, x3 , x 5 and x 6• 



III.3 PERIODIC AND APERIODIC SOLUTIONS 

III.3.1. Zonal flow instabilities 
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In figure 3.1 indications are present that the behaviour of the six-component 
model can be chaotic. To investigate the existence of strange attractors we 
have studied the position and stability of periodic orbits branching off from 
stationary points as a function of xi for b = 1.6 and b = 2.0. As discussed in 
the previous section in these cases periodic solutions can be generated 
representing barotropic propagating waves. Clearly, these values are charac
teristic for the behaviour of the model since for b = 1.6 the (0,2) zonal flow 
mode can become unstable whereas for b =2 this may occur for the (1,1) wave 
mode, see (3.2). Note that once the periodic orbits branch off from stationary 
points of the mixed-mode type, th~y occur in pairs. If their orbits in phase 
space are given as P ix;t) =0 and P ,.(x ;t) =0, they are related by 

(3.5) 

This is a consequence of the natural symmetry of the system. 
For b = 1.6 there is one pair of Hopf bifurcation points occurring at the 

mixed-mode equilibrium branches for xi = 12.954, see figure 3.2c. Here the 
imaginary parts A; of the two complex conjugated eigenvalues with real part 
zero are A;= +0.227. Consequently, periodic orbits with initial period 
T=2'1T/IX;I =27.653 and amplitude zero branch off. In figure 3.5 the period of 
these orbits is shown as a function of the external forcing. 
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FIGURE 3.5 Period T of the periodic orbits as a functions of xj for b = 1.6. 
Stability properties are denoted by a solid curve (stable) or a 
dashed curve (unstable). A Hopf bifurcation is indicated by a 
triangle, a period-doubling bifurcation by PD. 
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Clearly, the Hopf bifurcation is subcritical, i.e. a branch of stable equilibria 
absorbs a branch of unstable periodic orbits, see the description in appendix 
D. However, already for a slightly smaller external forcing (xj = 12.951) the 
periodic orbit merges into a saddle-no·Je bifurcation together with a stable 
periodic orbit. Next, stable periodic solutions can be found in the range 
12.951 <xj < 12.9585. An example of such a solution is shown in figure 3.6a 
for xi = 12.958. They ultimately loose stability in a period-doubling bifurca
tion at xj = 12.9585. In figure 3.6b a stable doubly-periodic solution is shown 
which exists for xj = 12.9596. It is found that a sequence of period-doubling 
bifurcations takes place, leading to the generation of a strange attractor for xj 
slightly larger than 12.96. A chaotic solution, occurring for xj = 12.961, is 
shown in figure 3.6c. 

We have demonstrated that this signal is chaotic by computing its Lyapunov 
exponents, following the method of WOLF et al. (1985). These numbers meas
ure the average exponential growth of the principal axes of an infinitesimal 
small 'error' sphere along the orbit. Positive Lyapunov exponents indicate that 
initially nearby orbits in phase space diverge. The reciprocal of the largest 
positive exponent defines a time scale on which the system is predictable on 
the average. In this case it was found numerically that there is one positive 
Lyapunov exponent 111 =0.016. We have not analysed the strange attractors in 
detail, since they do not have a global structure. In this case they remain per
manently in the low-index regime. 

The region of xj-values for which strange attractors occur appears to be 
very narrow. Numerical integrations show that for xj ;:;;, 12.962 trajectories 
starting from arbitrary initial conditions converge to the stable stationary point 
E 1• Obviously the strange attractors have changed into nonattracting strange 
invariant sets, the chaotic solutions have become unstable and therefore they 
can no longer be obtained from numerical integrations. In order to interprete 
figure 3.5 we use some arguments discussed in THOMPSON and STEW ART 

(1986). We hypothesise that the qualitative changes at xj = 12.962 are associ
ated with global bifurcations involving heteroclinic connections between the 
unstable periodic orbits and the saddle-points E sa IE Sb defined in figure 3.2c. 
Next the strange invariant sets disappear in a global bifurcation at xj ~13.26. 
For that parameter value the unstable principal periodic orbits have become 
homoclinic orbits which connect the saddle-points E sa and E Sb with them
selves. This bifurcation is called a blue-sky catastrophe because for larger xj 
values the orbits do no longer exist: "they have vanished into the blue sky". A 
numerical approximation of one of the homoclinic orbits, considered as a 
periodic orbit with period T ➔OO, is shown in figure 3.6d. The route, which 
leads to the disappearance of a strange attractor for an increasing forcing 
parameter, is described in SPARROW (1982) as a type-B homoclinic explosion. 
The reverse route (a type-A homoclinic explosion) generates a strange attractor 
for an increasing forcing parameter. This type of behaviour is for instance 
found in the LoRENZ (1963) convection model. 
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FIGURE 3.6. a. From left to right: x 1-component of stable periodic solution, 
existing for b = 1.6 and xi = 12.958, as a function of t IT 
(where Tis the period), x 4-component as a function of t!T 
and projection of the orbit onto the x 1 - x 4 plane. 

b. As a., but for xi = 12.9596. 
c. Chaotic time series for b = 1.6, xi = 12.961, generated by start

ing on the unstable principal periodic orbit. From left to 
right: x 1-component as a function of t'=(t-1000)/500, x 4 -

component as a function of t' and projection of the trajectory 
onto the x 1 -x4 plane. 

d. Numerical approximation of one of the two homoclinic orbits 
occurring at b = 1.6, xj = 13.26 as a periodic solution with 
period T ➔oo. From left to right: x 1-component as a function 
of t/T, x 4 component as a function of t/T and projection of 
the orbit onto the x 1 - x 4 plane. The other homoclinic orbit 
is obtained by reversing the signs of x 4 , x 5 and x 6 • 
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111.3.2 Rossby wave instabilities 
We will now consider the continuation of periodic orbits generated by Hopf 
bifurcations occurring for b = 2. Then the parameter values are similar to 
those used by CHARNEY and DEVORE (1979). From figure 3.2d it appears that 
there is one Hopf bifurcation at a branch of single-mode equilibria 
(xi = 1.864). Furthermore, four pairs of Hopf bifurcation points are found at 
mixed-mode equilibrium branches for xi =3.456, xi =3.229, xi =3.503 and 
xi = 3.623. The study of periodic solutions involved in these bifurcations will 
be referred to as case I, II, III, IV and V, respectively. 
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30.._ ____________ _ 

2 4 

FIGURE 3.7. Period of the periodic orbits as a function of xi for b =2, case 
I. For explanation see the text. Stability properties are indi
cated by a solid curve (stable) and dashed curve (unstable). 
The symbols < and > indicate a supercritical and subcritical 
sequence of period-doubling bifurcations in a very small range 
of xi-values. 

In figure 3.7 the period of the orbits is shown as a function of xj for case I. 
Part of this bifurcation diagram (O<xj <3.5) has been described by YODEN 

and HIROTA (1984) and YODEN (1985). Some time series of the x 1- and x4-

components, as well as projections of the periodic orbits onto the x 1 - x 4 

plane, are shown in figure 3.8 for various forcing values. It appears that the 
stable periodic solutions bifurcate on the side of the unstable equilibrium E 3, 

hence it is a supercritical Hopf bifurcation (see appendix D). With increasing 
xi the amplitude of the periodic orbits increases while the period decreases a 
little. The behaviour of the solution becomes more complicated because of the 
higher harmonics of the fundamental frequency (figure 3.8a,b). 
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FIGURE 3.8. Visualization of some periodic orbits occurring for b = 2, case 
I. Shown are x 1(t!T),x 4(t!T) and a projection of the orbits 
onto the x 1 - x 4 plane. Here t is time and T the period. 

Note that the orbits are symmetric with respect to x 4 =0, x 5 =0, x6 =0. At 
xj =3.122 the symmetry is broken by a pitchfork bifurcation. The symmetric 
periodic orbit becomes unstable while two non-symmetric stable periodic orbits 
branch off. One of them is shown in figure 3.8c, the other one is obtained by 
reflection in x 4 =0. Each of the non-symmetric orbits becomes unstable at 
x 1 = 3.276 due to a period-doubling bifurcation. An example of a doubly
periodic solution is shown in figure 3.8d. Further period-doubling bifurcation 
do not take place. On the contrary, we have a period-halving bifurcation at 
xj = 3.368 and a pitchfork bifurcation at xj = 3.432. 

For xi =3.5 YODEN (1985) found chaotic solutions, but no explanation is 
given of the bifurcation route resulting in the occurrence of a strange attractor. 
However, using figure 3.7 we are able to describe the scenario leading to chaos. 
If we continue the branch of periodic solutions starting from the pitchfork 
bifurcation at xj = 3.432 for increasing xj we arrive, for a slightly increased 
forcing (xi = 3.497), at a saddle-node bifurcation. Here the branch of stable 
periodic orbits coalesce with a second branch consisting of unstable periodic 
orbits which have larger periods. Following the latter branch for decreasing 
forcing values we encounter a next saddle-node bifurcation at xj =3.357, 
where a coalescence occurs with a branch of stable periodic orbits. If we con
tinue these stable solutions it appears that they are almost immediately turned 
unstable by a period-doubling bifurcation. The branch remains unstable until 
xj is close to a new saddle-node bifurcation existing at xj =3.615: for a 
slightly smaller forcing the branch has become stable due to a period-halving 
bifurcation. From that moment on the branches of periodic orbits show a 
similar behaviour as just described, except that the differences between succes
sive saddle-node bifurcation values decrease and that the values of the periods 
increase. The tendency of the period to become infinitely large is associated 
with the approach to a homoclinic orbit existing for xj =3.581. A numerical 
approximation of this orbit is shown in figure 3.9a. It connects the stationary 
point E 3 =(0.768, -0.614, -0.234, 0., 0., 0.) with itself. This type of bifurca
tion has been analysed by SILNIKOV (1965) and more recently by GLENDIN
NING and SPARROW (1984) and GASPARD et al. (1984). From their results it 
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follows that in the neighbourhood of the parameter value for which homoclini
city occurs a countable infinity of unstable periodic orbits and an uncountable 
infinity of aperiodic, chaotic orbits exist. The aperiodic orbits are generated 
and disappear due to an infinite cascade of period-doubling and period-halving 
bifurcations, respectively, which take place near each winding of the T(xi) 
curve in figure 3.7. Consequently, for parameter values close to the critical 
value at which homoclinicity occurs chaotic solutions will be found. An exam
ple of a chaotic time series, for xi = 3.5, is shown in figure 3.9b. It has one 
positive Lyapunov exponent v1 = 0.040. Note that the trajectories move in a 
small tube which closely follows the homoclinic orbit. The importance of this 
type of bifurcation for spectral models of the atmospheric circulation has been 
proposed by DE SWART and GRASMAN (1984). The existence of homoclinic 
orbits and related chaos is already suggested in figure 3.1. In this diagram 
codimension-2 bifurcation points occur (A,B, C,D) where a limit point and a 
Hopf bifurcation point coaslescence. According to LANGFORD (1981) such 
bifurcations involve homoclinic orbits with an associated transition to chaos, 
see also GUCKENHEIMER and HOLMES (1983) and a remark in LEGRAS and 
GHIL (1985) . 
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FIGURE 3.9. a. As figure 3.6d, but approximation of the homoclinic orbit 
at b =2, xi =3.581. 

b. As figure 3.6c, but for b =2 and xi =3.5. 

Before discussing the approach to the homoclinic orbit in more detail, we 
consider the continuation of periodic orbits emanating from the pair of Hopf 
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bifurcation points at xi =3.456 (case II). In figure 3.10 the period of the 
orbits is shown as a function of the external forcing. Starting from the subcrit
ical Hopf bifurcation points, with initial period T = 19.368, a series of wiggles 
are found in the interval 3.45 =e;;; xi =e;;;3.65. For xi = 3.584 we have the 
approach to two homoclinic orbits. A numerical approximation of one of 
them is presented in figure 3.11, the other one is obtained by reversing the 
signs of x 4 , x 5 and x 6 , because of (3.1). Again they connect the saddle point 
£ 3 with itself. In the bifurcation diagram their positions are close to the 
homoclinic orbit discussed previously. Each of the two new-found orbits 
seems to be just half a part of the orbit of figure 3.9a. 
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FIGURE 3.10. As figure 3.7, but for case II. 
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FIGURE 3.11. As figure 3.6d, but approximation of one of the homoclinic 
orbits at b = 2, xi = 3.584. 
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III.3.3 Homoclinic orbits and chaos 
The behaviour of the periodic solutions discussed in the previous subsection 
can be understood as follows, see GLENDINNING and SPARROW (1984) and 
GASPARD et al. (1984). Suppose that for a parameter value Poi we have a 
homoclinic orbit connecting a saddle-point with itself, as sketched in figure 
3.12a. The behaviour of the vectorfield close to Poi is characterized by three 
eigenvalues of the matrix derivative of the vectorfield linearized at the saddle
point. They are a real positive eigenvalue ;\1 and two complex conjugated 
eigenvalues -;\2 +iw with ;\2 >0. If ;\2/;\1 <l the bifurcation diagram of the 
periodic orbits existing nearby the homoclinic orbit has a similar structure as 
shown in the figures 3.7 and 3.10. However, for nearby parameter values there 
exist a number of other, so-called subsidiairy homoclinic orbits. They make 
one or more encounters with the saddle point before returning to it. An exam
ple of a double-pulse subsidiairy homoclinic orbit is presented in figure 3.12b. 
Assume that the saddle-node bifurcations, associated with the approach to an 
M-pulse homoclinic orbit occurring for the parameter value µ0M, exist for 
parameter values {µ;} ?= 1 with { T;} r= 1 the corresponding periods of the orbits. 
Then 

lim(T;+ 1 -T;) = Mw, 
i➔OO (AJ 

(3.6a) 

. [/ti+I -~Ml [-wA2 l _lim ---- = -exp -- , 
l➔oo µ;-µoM W 

(3.6b) 

for a derivation see GLENDINNING and SPARROW (1984). In our model the 
numerical values of the three eigenvalues important in this case are 

;\1 = 0.325 , ;\2 = 0.067 , w = 1.034. (3.7) 

a b 

FIGURE 3.12. Sketches of a principal homoclinic orbit (a) and a double
pulse subsidiairy homoclinic orbit (b) in a three-dimensional 
phase space. 

We have ;\2 /;\1 =0.206, which is smaller than 1, as required. Substituting (3.7) 
in the right-hand sides of (3.6a,b) we obtain the numerical values 3.039 Mand 
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-0.816, respectively. From the figures 3.7 and 3.10 we computed numerical 
values for the left-hand sides of Eqs. (3.6a,b ). The results are presented in 
table 3.1. 

fl re 3.7 fl e 3.10 

T;+1 -T; 6.2 3.1 
/J,;+J -JLoM 

-0.89 -0.81 
M 

TABLE 3.1: Approximations of the left-hand sides of (3.6a) and (3.6b) 
from the bifurcation diagrams of figures 3.7 and 3.10. 

From that we conclude that the two homoclinic orbits occurring at xi =3.584 
are principal orbits, while the homoclinic orbit at xj = 3.581 is a double-pulse 
subsidiairy orbit. We remark that (/J,; + 1 - µ0M )I (/J,; - P.oM) is difficult to com
pute accurately because results strongly depend on the parameter value P.oM for 
which the homoclinic orbits are found. 

III.3.4 Bifurcation structure of remaining periodic orbits 
The next case we study is the continuation of periodic orbits starting from the 
supercritical Hopf bifurcations at xi =3.229 (case III). In figure 3.13 the 
period of these orbits is shown as a function of xi. The initially stable 
branches of periodic orbits become unstable at xi = 3.308 due to a period
doubling bifurcation. Numerically it is found that this bifurcation is the 
beginning of an infinite cascade of period-doublings in the region 
3.308,s;;;;xj :s;;;3.3254, resulting in the generation of a strange attractor. An 
example of a chaotic time series occurring for xj = 3.3255 is shown in figure 
3.14. It has one positive Lyapunov exponent P1 =0.012. The strange attrac
tors are found in only a narrow range of forcing values. Integrations for xj 
slightly larger than 3.326 show that trajectories starting close to the unstable 
principal periodic orbits tend to stable limit cycles with periods close to 86. 
These limit cycles have already been obtained previously, see figure 3.7. Obvi
ously, at xj = 3.326 the strange attractors tum into nonattracting strange 
invariant sets. Chaotic solutions still exist, but they are unstable and hence are 
not obtained by means of numerical integrations. In the literature scenarios 
are known which describe the destabilization of a strange invariant set. They 
involve heteroclinic connections between unstable stationary points and 
unstable periodic orbits, see SPARROW (1982) and THOMPSON and STEWART 

(1986). However, they are not studied in detail here. 
The nonattracting strange invariant sets exist for 3.326,s;;;; xj ,i;;;;; 4.315, until 

they disappear in a cascade of period-halving bifurcations, the last one occur
ring at xj =4.223. After that only the principal periodic orbits are left having 
two Floquet multipliers with absolute values larger than I, see figure 3.13b. 
These numbers indicate the degree of instability of a periodic solution, as dis
cussed in appendix D. Next the branches merge into saddle-node bifurcations 
together with branches of periodic orbits which originates from the pair of 
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Hopf bifurcation points at xi = 3.503. Obviously, the cases III and IV are 
connected and have been studied together. 
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FIGURE 3.13. a. As figure 3.7, but for the cases III and IV. 
b. Bifurcation scheme in the region between the period-doubling 

bifurcations of figure 3.13a. The straight line denotes the 
principal periodic orbit. The number of Floquet multipliers 
with absolute values larger than 1 (which measures the degree 
of instability of the periodic orbits) is also indicated. 
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FIGURE 3.14. As figure 3.6c, but for b =2 and xi =3.33255. 

We finally investigate the periodic orbits, generated by the subcritical Hopf 
bifurcations at xi =3.623 (case V). In figure 3.15 the period of the orbits is 
presented as a function of the external forcing. Again a series of wiggles is 
found, but only in a small region of xj values. This behaviour suggests the 
approach to homoclinic orbits for xj = 3.625. A numerical approximation of 
one of them is shown in figure 3.16. It seems that these orbits connect the 
equilibria E6a/ E6b =(1.445,0.466, -0.182, +0.657, +0.147, +0.024), defined in 
figure 3:2d, with themselves. 

At first sight the bifurcation structure in figure 3.15 is similar to those of 
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figures 3.7 and 3.10. It suggests that the theory discussed in section III.3.3 can 
be applied. However, the normal form of this scenario requires a homoclinic 
orbit connecting a saddle point in three dimensions. Furthermore, the matrix 
derivative of the vectorfield, linearized at the saddle point, should have one 
positive real eigenvalue and two complex conjugated eigenvalues with negative 
real parts. But in this case the saddle points have two real positive eigenvalues 
as well as two pairs of complex conjugated eigenvalues with negative real 
parts. Obviously, in order to describe the approach to a homoclinic orbit in 
figure 3.15 in a persistent way, the Silnikov theory should probably be general
ized to systems of dimensions larger than 3. Another problem comes from the 
numerically observed fact that in most cases trajectories starting close to the 
unstable principal periodic orbits are not chaotic. Instead they tend to one of 
the stable equilibria E4a or E4b. Thus the scenario leading to the bifurcation 
structure shown in figure 3.15 remains to be investigated. 
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FIGURE 3.15. As figure 3.7, but for case V. 
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111.4. THE POSSIBILITY OF INDEX CYCLES 
In order for the six-component system to model the large-scale atmospheric 
circulation it should have at least qualitative agreement with synoptic observa
tions. Therefore, we expect the system to fluctuate irregularly between 
different preferent domains in phase space. So far we have found irregular 
chaotic solutions for certain parameter values and initial conditions, but they 
remain in the low-index flow regime forever. Moreover, the corresponding 
strange attractors in phase space have small attraction domains: there is only a 
small set of initial conditions for which trajectories are attracted to a strange 
invariant set. For the concept of deterministic chaos to be physically meaning
ful the strange attractor should have a global structure in phase space. In 
other words, chaotic trajectories should be capable of visiting both the low
index and high-regimes. Such a system would show the characteristics of an 
index cycle. A recent discussion about this phenomenon is given in WAI.LACE 
and BLACKMAN (1983). In our model an index cycle is not found because the 
high-index equilibrium E 1 is stable for all parameter values. This is due to the 
fact that the equilibrium is dominated by a (0, 1) zonal flow component. It 
cannot be destabilized by topographic instability since this mechanism only 
acts on wave modes. Furthermore, barotropic instability of the (0, 1) mode is 
not possible due to the Fj0rtoft theorem (F10RTOFT, 1953) because it has the 
smallest wave number of the spectrum. 

However, with a slight extension of the model we can allow for unstable 
high-index equilibria. This is done by introducing a nonzero amplitude x4 of 
the external forcin~ in the (0,2) zonal flow mode. For sufficiently large lx4 I 
values and b< '\/3 the (0,2) mode can become barotropically unstable, see 
(3.2) and appendix E. As an example we take the numerical values b = 1.6, 
C=0.l, P= 1.25, y= 1, xj =4 and let x4 be a free parameter. In appendix Ea 
lower bound is computed of the critical amplitude lx4,c I for which barotropic 
instability of the high-index equilibrium occurs. It is found that lx4,c I should 
be somewhat larger that 0.35. In figure 3.17 results of a numerical bifurcation 
analysis are presented. They show the x4-component of the equilibria as a 
function of X4, where for x4 =0 is started in the equilibria E 1,E2 and E3 

( defined in (2.59) ), respectively. Considering E 1 , it becomes barotropically 
unstable at lx4,cl =0.402 by means of a Hopf bifurcation. We have investi
gat¢ the continuation of periodic orbits emanating from these bifurcation 
points. With increasing lx4 I stable periodic orbits are found which tum 
unstable at lx4 I = 8.459 due to a period-doubling bifurcation. However, at 
lx4 I= 11.771 they become stable again by absorbing a branch of unstable 
doubly-periodic orbits. The principal periodic orbits ultimately loose stability 
at lx4 I= 19.705 by means of a torus bifurcation. 

We have investigated the existence of strange attractors in the range 
0<lx41<15. It was found that trajectories either tend to a limit cycle of the 
high-index type or to a stationary point of the low-index type, but no chaotic 
solutions were obtained. The existence of point attractors can be understood 
from figure 3.17b,c. It appears that the equilibrium E 2 remains unstable if x4 
is varied, but in all cases a stable equilibrium of the low-index type is found. 
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When lx4 I is large most energy of these equilibria is contained in the (1, 1) 
wave mode. This mode cannot become unstable because the model contains 
only one wave triad, for which (3.2) holds, and here b < \/3. Thus, the con
clusion is that the six-component bar()tropic spectral model cannot generate 
index cycles. 

-2 

-2 -2 -2 

a b C 

FIGURE 3.17. .x4-component of the equilibria for b=l.6 and xi =4 as a 
function of x4. For x4 =O a restart is made in E1(a),E2(b) 
and E 3(c). Stability properties are indicated by a solid line 
(stable) or dashed line (unstable). The triangle symbol 
denotes a Hopf bifurcation point. 

III.5 CONCLUDING REMARKS 

We have studied a six-component spectral model of the barotropic potential 
vorticity equation in a beta-plane channel, originally derived by CHARNEY and 
DEVORE (1979). In order to investigate in what sense the model reflects 
features of the atmospheric circulation a systematic bifurcation analysis has 
been carried out for two free parameters. They are the external forcing and 
the width-length ratio of the channel, which control the topographic and baro
tropic instability mechanisms, respectively. It is concluded that the physical 
and mathematical properties of the model are richer than those of the three
component subsystem. In both models multiple equilibria can occur for fixed 
parameter values. The associated streamfunction patterns resemble large-scale 
preference states of the atmospheric circulation. However, the asymptotic 
states of the subsystem are always stationary, while for the full model also 
periodic, quasi-periodic and chaotic solutions are found. In particular the 
occurrence of strange attractors is of interest since the associated solutions 
model an irregular time-dependent flow. Furthermore, chaos is characterized 
by sensitive dependence on the initial conditions: nearby orbits in phase space 
exponentially diverge during the evolution of the system. Since in practical 
situations initial conditions are never known with infinite precision, the system 
evolution can only be predicted for a finite amount of time. A finite predicta
bility is typically one of the properties of the atmospheric circulation. This 
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follows from numerical experiments as well as from theoretical studies (HoL
LOWA Y and WEST, 1984). 

Various scenarios are found which describe the generation or disappearance 
of a strange attractor. Apart from the period-doubling route we obtained 
homoclinic orbits connecting stationary points with themselves. For nearby 
parameter values chaotic trajectories occur moving in small tubes around the 
homoclinic orbits. This is in agreement with the theory of SILINIKOV ( 1965), 
see also GLENNDINNING and SPARROW (1984) and GASPARD et al. (1984). 

Despite its complexity and interesting properties the validity of the model is 
limited. It appears that the strange attractors do not have a global structure in 
the sense that chaotic trajectories are capable of visiting alternately different 
preferent regions in phase space. Thus it is concluded that the six-component 
model cannot show vacillatory behaviour. The reason is clearly due to a lack 
of barotropic wave triads or, equivalently, due to the severe truncation. Inter
nal vacillation can only be obtained by allowing quasi-statically changes of the 
parameters. This can be considered as modelling slowly varying boundary 
conditions in the atmosphere, as described in LEGRAS and GHIL (1985). 

For fixed parameter values vacillation can be generated in three ways. The 
first is to add stochastic perturbations to the spectral equations, which will be 
done in the next chapter. The second way consists of constructing a spectral 
model with more degrees of freedom by allowing more eigenfunctions in the 
spectral expansions. We shall discuss this method in chapter V. The third 
possibility is to study spectral models of baroclinic flows to which we shall 
return in chapter VI. 
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IV. Effect of stochastic perturbations on low-order 

atmospheric spectral models 

IV. l. INTRODUCTION 
It was discussed in chapter I that, in order to obtain a better understanding of 
the atmospheric circulation, detailed information is required about the ultra
long quasi-stationary waves and transient synoptic-scale eddies. This problem 
is often studied with a planetary-scale model, in which the effect of the tran
sient eddies is parametrized. There are several propositions to solve this clo
sure problem. One possibility is to use techniques, originating from turbulence 
theory, to express the eddy characteristics in terms of the resolved part of the 
flow. For grid-point models this has been done by WHITE and GREEN (1982) 
and SHUTTS (1983). An alternative method is to represent the eddy forcing by 
stochastic terms. BALGOVIND et al. (1983) applied it to a grid-point model. 

In this tract we study spectral models of the large-scale atmospheric flow. 
Such a model can be formulated as a dynamical system of the type (1.1). In 
the derivation of the spectral model we have the freedom to choose the flow 
characteristics (e.g. barotropic or baroclinic), the geometry of the domain (e.g. 
a beta plane or the sphere) and the truncation number N. The forcing terms 
F(t) in (1.1) represent the effect of the neglected short-scale modes and addi
tional physical processes not incorporated in the model. 

By application of coarse-grain methods from nonequilibrium statistical 
mechanics, LINDENBERG and WEST (1984) have shown that (1.1) is formally a 
system of stochastic differential equations with its stochastic character fully 
due to the uncertainty in the initial values of the unresolved modes. Their 
results indicate that the forcing terms are complicated and do not fit the 
description given by CHARNEY and DEVORE (1979) and EGGER (1981): they 

* co-author J. Grasman. 
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are only stationary and Markovian under rather restrictive conditions. How
ever, in practice these restrictions can be weakened. EGGER and SCHILLING 
(1983, 1984) and BARNETT and ROADS (1986) have determined the statistical 
characteristics of the forcing terms from data and found that they could be 
fitted with coloured-noise processes, which are stationary and Markovian. 
Furthermore these authors analysed the response of a linearized spectral model 
of the barotropic vorticity equation to this forcing. Taking into account the 
ultralong waves only they showed that in this way it is possible to explain a 
substantial part of the observed long-term variability of the atmosphere. 

In section II.3 and chapter HI it has been demonstrated that trajectories of a 
three- and six-component barotropic spectral model in phase space tend to 
different sets of limit points. Each of these sets, with its corresponding attrac
tion domain in phase space, represents a specific flow regime. However, the 
models do not describe transitions between the different weather regimes, as 
observed for the atmospheric circulation (NAMIAS, 1950). In order to obtain 
this vacillatory behaviour stochastic perturbations will be added to the spectral 
equations. They are considered as a parametrization of the forcing terms F(t) 
defined in (1.1). The noise forces the system to alternately visit the different 
preferent regimes. The expected residence time of the system in a regime is 
then a measure for the persistence of a large-scale preferent state. EGGER 
(1981) studied the effect of random forcing of the Gaussian white-noise type 
on the three-component model of section II.3. BENZI et al. (1984) and MORITZ 
(1984) computed expected residence times of this system in the attraction 
domains of the stable equilibria of the unperturbed system as a function of the 
zonal forcing. Here we will also compute the responses as a function of the 
intensity and correlation time of the noise. 

Mathematical aspects of stochastic processes are considered in more detail in 
section IV.2. Next, in section IV.3 a method is discussed to compute expected 
residence times in an attraction domain of a stable equilibrium of the unper
turbed system. It differs in some respect from the method considered in DE 
SWART and GRASMAN (1987): it can now be applied to six-dimensional spec
tral models. The results are presented in section IV.4. Following the ideas of 
Ghil (pers.comm.) to model geophysical systems by discrete models, we con
sider in section IV.5 a discrete-state Markov model of the atmospheric circula
tion. A similar study has been performed by SPEKAT et al. (1983) using atmos
pheric data. Our model consists of three states, viz. a high-index, a low-index 
and a transitional state. Transition probabilities per unit of time are specified 
using the results of section IV.4. We then calculate the time evolution of the 
probability distribution from the master equations. The eigenvalues of these 
equations determine the time scale over which the effect of the initial state is 
present in this distribution. Finally some concluding remarks are given in sec
tion IV.6. 
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IV.2. DYNAMICAL SYSTEMS FORCED BY RANDOM NOISE 

Consider the system (1.1) where the F(t) are assumed to be random terms. In 
this section a few remarks will be given on the formulation of stochastic 
dynamical systems. In order to describ~ the transition from a deterministic to 
a stochastic evolution in a mathematical precise way is complicated and 
requires a thorough knowledge of the theory of stochastic processes. Here we 
only present results which are needed during the course of this chapter. More 
detailed discussions about stochastic processes can be found in GARDINER 

(1983) and VAN KAMPEN (1983). 
A stochastic dynamical system can be written as 

dx = f,,.(x)dt + E~(x).dif>(t), 
t (4.1) 

if>(t) = jr1(s)ds. 
0 

Here £ is the noise intensity, a an (N X N) diffusion matrix and the N com
ponents of ri(t) represent the random forcing. The latter are assumed to be 
stationary, which implies that their statistical moments do not depend explicity 
on time. Important characteristics of the noise terms are the mean values 
<ri> and the correlation matrix 

(4.2) 

where < > denotes an ensemble average. The energy of the noise in the fre
quency domain is given by the spectral density matrix 

T 

S(w) = lima(w,T)a*(w,T), a(w,T) = f ri(t)ei"''dt, (4.3) 
- T➔OCJ -T 

with the asterix denoting a complex conjugation. According to the 
Wiener-Khinchine theorem, for stationary processes the spectral density matrix 
is the Fourier transform of the correlation matrix ( PRIESTLY, 1981), thus 

OC) 

~,i(w) = f ~.,,(-r)ei"''dt. (4.4) 
-OC) 

In this way a multivariate stochastic process XtCri,t) is generated, which 
takes on the realisations x. In general the evolution at any time will depend 
on the history of the process, which is a fundamental difficulty in the analysis 
of the dynamics. This problem can be met by choosing the ri(t) to be 
white-noise processes «t) with the properties 

<«t)> = 0; CE(T)= <«t)«t+r)> = ~8(T). (4.5) 

Here I is the (NXN) unity matrix and 8(T) the Dirac delta function with argu
ment T. Thus, white-noise processes have zero means and are fully uncorre
lated. 

With this choice if>(t) in (4.1) becomes a multivariate Wiener process W(t) 
and the stochastic dynamical system reads 



dx = f"(x)dt + E~x)·dW(t). 
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(4.6) 

Now XtC~,t) is a Markov process, i.e. its realisation at any time in the future 
only depends on its present state. Such a process is fully described by the con
ditional probability density p(x,tlx',t'), which denotes the probability density 
for the X((~,t) to have the realisation x at time t, given it had realisation x' at 
time t'~t. It can be shown that p(x,tlx',t') is the solution of the Fokker
Planck equation 

a 
a,p(x,tlx',t') = - 'v·[fµ(x)p(x,tlx',t')] 

+ ! t''v'v:[~(x)·~t(x)p(x,tlx',t')], (4.7) 

where aT is the adjungated of a (GARDINER, 1983). The solution of (4.7) gives 
a complete description of the stochastic dynamical system ( 4.6). Another 
method of obtaining information about the system is the statistical analysis of 
a large number of simulations of ( 4.6) by using a related system of stochastic 
difference equations, see appendix F. 

Representing certain physical processes by white noise can be misleading, 
because white noise is uncorrelated and its energy is equally distributed of over 
all frequencies in the spectral time domain, as can be seen from (4.4) and (4.5). 
Consequently, the noise energy is infinite and hence the process has no physi
cal relevance. Alternatively, we may assume the 71(t) in (4.1) to be coloured
noise processes f(t) which are described by the stochastic differential equations 

df = -afdt+a'dW, (4.8) 

with o: and o:' nonnegative constants. In order for white noise and coloured 
noise to result in equal variances of the increments dx(t), we must take o:'=a. 
We then obtain 

<!(t)> = 0, Cr('r) = <!(t)f(t +-r)> = ! o:e-« 1,.1!: (4.9) 

It follows that 0:- 1 is a measure for the correlation time and the white noise 
limit is obtained by taking o:➔oo. Some spectral energy distributions of 
coloured noise for different values of o: are shown in figure 4.1. They are 
obtained from (4.4) and (4.9). 

Applying the coloured-noise forcing to (4.1) and transforming Ef(t)=y(t), we 
obtain 

f X] [fµ(x)+a(x)yl [9 0] 
d ~ = -ay dt+E f) a!_ ·dW in R2N, (4.10) 

where 0 denotes an (NXN) matrix with zero elements. This system is of the 
same type as (4.6). Consequently, its solution is again a Markov process and a 
Fokker-Planck equation for the conditional probability density can be derived 
from (4.10) in an analogous manner as (4.7) follows from (4.6). 
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FIGURE 4.1. Distribution of energy in the spectral time domain of a 
coloured-noise process for different values of a. The dashed 
line represents the white-noise limit a-Hio. 

IV.3. ANALYSIS OF THE STOCHASTICALLY PERTURBED SYSTEM 
We consider the stochastically forced system (4.6) and assume that the unper
turbed system (E=0) has a stable stationary point E. Define in phase space a 
domain DC 00 containing E, where 00 is the attraction domain of E. At the 
boundary ao the deterministic vectorfield satisfies /µ(x)·v(x)~0, where v(x) is 
the outward normal to the boundary. Starting in x ED at time t =O, the per
turbed system will remain in D for a finite time, as shown by MATKOWSKY and 
SCHUSS (1977). In this section we shall derive an expression for the expected 
residence time T(x) in 0. 

We first analyse the function '1'{x) satisfying the stationary form of the 
Fokker-Planck equation (4.7): 

I 
L;'1'=2 t''v'v:[~{x)'¥{x)]-'v·[/µ(x)'¥(x)] = 0, (4.11) 

where 

a(x) = a(x )·aT (x ). (4.12) - - -
Furthermore the normalisation condition '1'(E)= 1 is proposed. As will 
become clear in the course of our derivation, the expected residence time is 
directly related to this function. 

For low-intensity noise (0<£<<1) an approximate solution is assumed to be 
of the Gaussian form 

'Y(x)~w(x)e-Q(x)I.', (4.13) 

with w(E)= 1 and Q(E)=0. We require 'Y(x) to be positive in D with a max
imum value in x =E. This WK.BJ-approximation originates from geometrical 
optics, see GOLDSTEIN (1980). It is only valid within the attraction domain of 
E. If D coincides with 00 , additional boundary-layer corrections for w(x) are 
needed (MATKOWSKY et al., 1983). 

Substituting (4.13) in (4.11) and collecting terms with equal power in £, we 
obtain in lowest order the so-called eikonal equation 

I [2 ~(x)-'vQ(x)+ fµ(x)]·'vQ(x)=0; Q(E) = 0. (4.14) 
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In next order an equation for w is obtained, however in our analysis it is 
sufficient to consider the solution of (4.14) only. In case a potential function 
Vµ(x) exists, such that 

J,.(x) = 1,f>(x)+ J;>(x), 

1,f>(x) = -'!_(x)·VV,.(x), (4.15) 

VV,.(x)-/;\x) = 0, 

its solution is 

Q(x) = 2{V,.(x)-V,.(E)}, (4.16) 

as may verified by a direct substitution of (4.15) in (4.14). At this point we 
note the BENZI et al. (1984) reduced their spectral model to a potential system. 
When the deterministic system is not of gradient type, such as the spectral 
models ofsection II.3 and chapter III, Eq. (4.14) is analysed by rewriting it as 

l 
H(x,p)=[2 '!_(x)p+J,.(x)]p=O; p=VQ. (4.17) 

By taking the differential of the Hamilton function H along a bicharacteristic 
in the (x,p) space we obtain the Hamilton equations 

dx -;_j;" = 'vpH = '!_(x)p+f,.(x), 

¾ = -VH = -{; 'v'!_(x)p+Vf,.(x)}p. 
(4.18) 

Here s is a parameter varying along a bicharacteristic and VP denotes the 
nabla operator with respect to the p-variables. Additionally we have 

An dx l 
~ = p·-;i;" = 2 '!_(x):pp, (4.19) 

where (4.17) and (4.18) have been applied. Since a(x) is a positive-definite 
matrix we see that Q increases with increasing s. 

We wish to obtain values for Q at each point x EU, given Q(E)=O. This 
distribution is of physical interest since surfaces Q = constant enclose the smal
lest region in the x-space where the system is found with a given probability. 
Secondly, the Q-function is related to the expected residence time T(x) of the 
system in 0. As shown by GARDINER (1983) the latter satisfies Dynkin's equa
tion 

L,T(x) = -1 in O; T(x) = 0 at an, (4.20) 

where 

(4.21) 

is the backward Kolmogorov operator, being the formal adjungated of L; in 
( 4.11 ). An approximate solution of ( 4.20) is found for low-intensity noise 
(O<e<<l) by means of singular perturbation techniques. Using theorem 
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6.2.1.1 from EcKHAus (1979) we obtain an asymptotic solution of the form 

T~C0eKtl outside a neighbourhood of an, 

where 

T~CoeKI< {1-e-pl<} near an with/µ(x)·v(x)<O, (4.22) 

2 v¾s(x) _..!...;2 
T~CoeKlf - f e 2 tJs near an with/,.(x)·v(x)=O, 

'IT 0 

(4.23) 

Furthermore pis the distance to the nearest point at the boundary and (a/av) 
is the derivative along the normal v. Details can be found in MATKOWSKY et 
al. (1983). Note that T(x) has a singular behaviour for £➔0, because of the 
inhomogenous term in ( 4.20). This is consistent with the fact that the 
residence times tend to infinity if the noise intensity tends to zero. Further
more, it appears that in this limit the expected residence time is independent 
of the initial value x, as long as the latter is chosen outside the boundary layer 
near an. 

The constants CO and K are determined by using a method discussed in 
MATKOWSKY and SCHUSS (1977). By means of partial integration and applica
tion of the divergence theorem it follows that 

j{'l'L(T-TL;'lt}dV = f {~~['It ar -Ta'I'] 
12 an an an 

- ~ ~'11T(v7·~)·v +'l'Tf,.·v }dS. 
(4.24) 

Here a1an =a(x):v'\l is the co-normal derivative. Using (4.11), (4.13) and 
( 4.20) we obtain 

- f we-Qli dV = ~ ~ f we-Qtl ar dS. (4.25) 
12 00 ~ 

Both integrals are of Laplace type. Substituting (4.22) in (4.25) we see that the 
surface integral contains exp[-[Q(x)-K]/~}. Its main contribution comes 
from the point xmin ean where [Q(x)-K] attains a minimum. Since the 
volume integral is of algebraic order in £, the exponentially large contribution 
from the surface integral only cancels if 

K = Q(xmm) = °lbnQ(x). (4.26) 

Thus if we solve for Q(x) from (4.18)-(4.19) we can compute the coefficient K, 
which is an estimate of the exponential increase of the expected residence time 
for a vanishing noise intensity. An integral expression for C0 may also be 
found from ( 4.25). Its analysis requires knowledge of the function w (x ), which 
will not be considered here. In a similar way asymptotic approximations for 
the distribution of exit points on the boundary an can be derived. As found 
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by MATKOWSKY et al. (1983) an £-neighbourhood of Xmin is the most probable 
exit region. 

We now discuss the computation of Q(x) from (4.18)-(4.19). Numerical 
integrations starting at x = E will fail since it follows from ( 4.17) that p = 0 for 
x = E, which makes it a stationary point of the Hamilton system ( 4.18). We 
may proceed in two different ways, for details see RooZEN (1986). The first 
method is the initial-value approach where near x = E the functions 
Q(x),p(x),f,,.(x) and a(x) are approximated by Taylor series: 

Q(x) = (P/2):(x-E)(x-E) + e(lx-El)3, 

p(x) = P{x - E) + e(lx - El2), 

f,,.(x) = -t(x-E) + ec1x-El2 ), 

~(x):;::: A+ e(lx-EI). 

(4.27) 

Here only the constant elements of matrix P are unknown. Substituting these 
expansions in (4.17) and collecting terms of equal power in (x -E), we obtain 
in lowest order the matrix Ricatti equation 

P·A ·P + P·F + pT.p = 0, (4.28) 

which can be solved by standard methods (LUDWIG, (1975). Thus we have 
initial values (x, 0 ,p0 ,Q0> for (4.18) and (4.19) on a small sphere around E. 
Integration of the Hamilton equations yields a path in x-space, called a ray. 
In this way the solution Q (x) in O is constructed. Although this method 
yields high-accuracy solutions, a disadvantage is the lack of control over the 
way rays develop. This makes it less suited for the construction of confidence 
contours as well as for the computation of K defined in ( 4.26). The 
boundary-value approach is more useful for these cases. Then Eqs. (4.18)
( 4.19) are considered with the boundary conditions 

s➔ -oo : Q = 0, x = E, 
s=O :x=e, (4.29) 

where e is an endpoint which can be chosen freely. In the numerical computa
tions the limit s➔ -oo is replaced by s= -s* with s* a sufficiently large 
number. 

From now on we assume that O coincide with the attraction domain of E 
and an contains a stationary point E of the vectorfield /,,.(x). This situation is 
obtained with the three -and six-component models of section 11.4 and chapter 
III for a ra.:,nge of parameter values. Since it {ollows from the eikonal equatio_n 
that 'vQ(E)=O, while /,,.·'vQ<O near x=E at an, we have that xmin =E. 
Obviously, unstable equilibria of J,,.(x) are the most probable exit points, hence 
they_ are of dynamical significance in the stochastically perturbed model. As 
X➔E the deterministic change tends to zero. Consequently, t}le stochastic sys
tem slows down and remains a characteristic residence time T near that point. 
Locally, the dynamics is governed by the linearized system 

z = D·z, (4.30) 
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where matrix D has at least one eigenvalue with positive real part. Starting 
from an initial point z0 =(9(£), the eigenvalue with largest positive real part \, 
determines the characteristic time: 

r = ,d In(.1)+(9(1); f-o. 
l\p f 

(4.31) 

We now discuss in more detail the computation of K=Q(E). In the initial
value_ approach we introduce in x-space spheres with radius R at the points E 
and E. Next mesh points x 0 are chosen on the sphere at E. The correspond
ing values of p0 and Q0 follow from (4.27). Then Eqs. (4.18)-(4.19) are 
integrat~ starting from_ the different mesh points. If a ray enters_ the sphere 
around E, the value Q(E) is obtained from a Taylor expansion at E similar to 
(4.27). Next an iteration is carried out: the radius of the spheres is decreased 
and at each step a shooting method is applied with the result at the previous 
step as starting approximation for the mesh points on the sphere around E. 
The fundamel!tal difficulty in this method is the strong divergence of the rays 
approaching E. It was found by DE SWART and GRASMAN (1987) that this 
method is only successful for deterministic vectorfields with dimension N = 3. 
They applied it to the white noise-forced three-component spectral model. 

The boundary-value approach is more powerful, as it can also handle the 
coloured noise-forced three-component model as well as the white noise-for~ 
six-component model. Here we note that the computation of K = Q(E) 
requires the copstru.9tion of a heteroclinic orbit connecting the saddle points 
S=(E, 0) and S=(E,0) of the Hamilton system (4.18). Consequently, in this 
case the correct boundary conditions are 

s--oo : Mus(x,p) = 0, 

s-oo : M8-;{x,p) = 0, (4.32) 

where Mus(x,p)=0 is the_local unstable manifold of S and M 8-;{x,p)=0 the 
local stable manifold of S. As discussed in appendix D, a stable (unstable) 
manifold of a stationary point is locally spanned by the eigenvectors 
corresponding to the eigenvalues with negative (positive) real parts. Thus the 
conditions ( 4.32) follgw from a standard eigenvalue-eigenvector analysis at the 
saddle points Sand S of (4.18). 

lV.4. RESULTS FOR LOW-ORDER SPECTRAL MODELS 

The theory of sections IV.2 and IV.3 will be applied to the three- and six
component models of appendix C between the dotted and dashed lines, respec
tively. We assume the reader to be familiar with their properties discussed in 
section II.3 and chapter III. Here we take a channel of length L =3.106m and 
variable width, centered at latitude (/>=45°. Furthermore we take a topo
graphic amplitude ho =500m, a scale height H = 1.104m a time scale 
a- =2.Hfs and f=Hlh 0 • such that y=l and /1=2.55(4J:i/37T). Finally, 
C =0.2(4 V2 /37T) which corresponds to a dissipation time scale of about 
fifteen days. The zonal forcing intensity xj and the width-length ratio b of the 
channel are varied. 
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The three-component model is equivalent to that studied by DE Sw ART and 
GRASMAN (1987) except that they introduced a new time t'=(4V213'1T)t. For 
the stochastic dynamical system ( 4.1) this implies that if we define their 
vectorfield f ,,.(x), noise intensity £', random contributions diP'(t'), residence 
times T' and solution Q'(x) of the eikonal equation we have the relations 

f,,.'(x) 

d<P'(t') 

Q'(x) 

3'7T 3'7T 1/2 --J; (x) f.' = {--} f., 
4V2· ,,. 4V2 

{~}112d<P(t) T' = 4 V2 T 
4V2 3'7T ' 

3'7T 
4V2Q(x) K'=~K 

4V2 

In all experiments we have taken a unity diffusion matrix. 

(4.33) 

For b = 1 and 3.111 <xi< 17.326 the unperturbed three-component system 
has two stable equilibria E 1 and E 3 of high-index and low-index type and an 
unstable equilibrium E 2 of transitional type. The corresponding streamfunc
tion patterns are similar to those presented in figure 2.4. We take b = I 
(channel-width of 1.5.l<fim) and xi =4.19 (zonal forcing intensity of lOms- 1) 
as a specific example. Considering characteristic residence times near 
E 2 =(1.881, 1.399, -0.462) we find from a linear stability analysis that 
A'p =0.715 is the only eigenvalue with positive real part. To verify expression 
(4.31) a large number (200) of simulations of the system starting in E 2 , forced 
by coloured-noise processes with diff ereJ!.t values of a, have been carried out. 
Results are shown in figure 4.2a, where T' is plotted against ln(l/t:') for white 
noise and a coloured-noise process with a=3.5. The latter value corresponds 
to a dimensional correlation time of about 1 day, which is representative for 
atmospheric flow (EGGER and SCHILLING, 1983). In agreement with (4.31) we 
find for small t:' a slope of 1.42= 1/A'r 

Next we study the residence times in the attraction domains 0 1 and 523 • We 
distinguish between the white-noise and coloured-noise case. By using the 
initial-value approach to integrate along rays we obtain, with the first type of 
stochastic forcing, for K' in (4.33) the values 

K'(l) = K'(S'21) = 0.230, 
(4.34) 

Again the results were verified by means of numerical simulations. Figure 4.2b 
shows ln(T') as a function of 1/(t:')2 for the domains 521 and 03 • The data are 
fitted with 

- 1 -
lnT' = K--2 + Co. 

(E') 

The results for· K and CO are 
-

K(l) = 0.24, Co(l) = 8.5, 

K(3) = 0.53, Co(3) = 7.0, 

(4.35) 

(4.36) 
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FIGURE 4.2a. Characteristic residence time T' near E 2 as a function of 
ln(l 1£'). The solid- and dashed line show the behaviour of T' 
for £'➔0 for white noise and coloured noise (a=3.5), respec
tively. The data points for white-noise forcing are denoted•, 
and those for the coloured noise by +. 

b. Dependence of lnT' (T' expected residence time) in 01 (data 
points X) and 03 (data points 0) on l/(i')2. The solid line 
and dashed line represent the asymptotic behaviour in the 
limit i'➔O for 01 and 03 , respectively. 

FIGURE 4.3. 
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Dependence of K'(l) and K'(3) on the zonal forcing xi. For 
further explanation see text. 
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- - -
with an accuracy in Kand C0 of 10% and 25%, respectively. The K-values 
agree well with the values in ( 4.34). Furthermore it appears that the numerical 
constant C0 in (4.22) has a significant influence on the expected residence 
times. The K'-values of (4.34) are also found with the boundary-value 
approach discussed in section IV.3. Since this method is more efficient we are 
able to present the dependence of K'(l) and K'(3) on the zonal forcing inten
sity xj. The results are presented in figure 4.3. The coefficient K'(l) becomes 
zero at xj =3.311, where E 1 vanishes, and K'(3)=0 for xj =17.326 where E 3 

vanishes. Furthermore, it is noticed that K'(l) is a strongly increasing function 
of xj. As long as xi ;:54.5, the stochastically perturbed system spends most of 
its time in the low-index state, for xi ~4.5 residence times in two attraction 
domains are of the same order while for xi ~4.5 the probability of finding the 
system in domain 03 is almost zero. 

Next the effect of coloured-noise forcing on the three-component model is 
considered for b = 1 and xi =4.19. We investigate the dependence of the 
K'(l)- and K'(3)-values on the correlation time of the noise. In this case the 
initial value approach used by DE SWART and GRASMAN (1987) failed because 
the rays already have a strongly diverging character at some distance from E 2 • 

However, it appears that the boundary-value approach can be used quite 
succesful. !_lesults _for K'(l) and K'(3) are presented in table 4.1, together with 
values for Kand C0 obtained from numerical simulations. There is a reason
able good agreement between the analytical and simulation results. 

- - - -
a K'(l) K(l) Co(l) K'(3) K(3) Co(3) 

(+ 10%) (+ 25%) (+ 10%) (+ 25%) 
I 0.259 0.28 11.0 0.760 0.68 11.3 
1.75 0.241 0.26 10.6 0.627 0.61 9.8 
2.5 0.236 0.24 10.8 0.575 0.55 9.3 
3.5 0.234 0.24 10.2 0.530 0.53 8.4 

00 0.230 0.23 8.5 0.518 0.52 7.2 

- - - -
TABLE 4.1. The coefficients K'(l), K(l), C0(1), K'(3), K(3) and C0(3) for 

different values of a. For further explanation see text. 

For 0<t:<< 1 the expected residence times of the system in the two attrac
tion domains increase with increasing noise memory. This can be explained as 
follows: the time evolution of a system, perturbed by coloured noise, will have 
some memory of its own. Consequently, larger correlation times cause the sys
tem to be persistently driven further away from equilibrium in an arbitrary 
direction. In the limit t:-0 it is known that exit through the boundary of an 
attraction domain will only occur near the unstable equilibrium E 2• Since 
there is no preference for the perturbation to drive the system right away to 
this point, it will take a longer time on the average to reach the boundary. 

The results shown are based on the assumption that the noise has a low 
intensity (0<t:<<l). We obtained a reasonable agreement between the 
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asymptotic values for the expected residence times and the outcome from 
simulations for i2 smaller than 0.3. Estimates of £ for atmospheric models are 
given by EGGER (1981) and EGGER and SCHILLING (1983). They found 
i2 ~0.2 for the three-component model considered here. In case of white-noise 
forcing it then follows expected residence times of about 90 days for the high
index state, 10 days for the intermediate state and about 310 days for the low
index state. These values seem to be rather large compared with observational 
data. They even increase by some 10% if coloured-noise forcing is applied 
with a correlation time of one day (a=3.5). We return to this point in section 
IV.6. 

Considering the stochastically perturbed six-component model we remark 
that in case of coloured-noise forcing the Hamilton system (4.18) is 24-
dimensional. It then appears that the computation of Q-values requires too 
much direct memory storage on the CDC Cyber 170-750 system. We therefore 
restrict our analysis to white-noise forcing. We remark that we have found the 
differences between white-noise and coloured-noise forcing with realistic corre
lation times to be small. Furthermore, in order to apply the theory of section 
IV.3 to this system, we note that it is valid for equilibria only. Since we know 
that the six-component model can have more complicated attractors than 
equilibria we have to select specific parameter values for our analysis. 

We have investigated the sets of limit points for the values defined in the 
beginning of this section. The curves of singular points in the b,xj parameter 
space are similar to those presented in figure 3.1. As long as b :e;;;; 1.54 the 
model contains equilibria only. For b = 1 all of then are of single-mode type, 
i.e. they are also equilibria of the three-component subsystem. For small noise 
intensities characteristic residence times near the unstable equilibrium E 2 are 
given by ( 4.31) where the maximum positive eigenvalue has the same value as 
in the three-component model. Moreover, expected residence times in the 
attraction domains 0 1 and 0 3 of the stable equilibria E 1 and E 3 are given by 
(4.22) with K(01) and K(03) identical to the K-values obtained from the white 
noise-forced three-component model. This is because solutions of the six
dimensional Hamilton system associated with the three-component model are 
also solutions of the 12-dimensional Hamilton system associated with the white 
noise-forced six-component model. This argument has been verified by appli
cation of the boundary-value approach to both Hamilton systems. We could 
not estimate the values of the constants C0 in (4.22) and din (4.31) because 
numerical simulations require too much computer time. 

Finally we consider the white noise-forced six-component model for b = 1.5 
and xi =4.19. In this case there are two unstable equilibria E 2 and E 3 and 
three stable equilibria E1,E4a and E4b. A sketch of the phase flow of the 
unperturbed system is presented in figure 3.4. The constant K'(01) has been 
computed by application of the boundary-value approach to the 12-
dimensional Hamilton system. We obtained K'(O1)=0.29, which is the same 
result as for the 6-dimensional Hamilton system associated with the three
component model with b = 1.5 and xj =4.19, forced by white noise. Obvi
ously, the stochastically perturbed systems have a qualitatively similar 
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dynamics in this attraction domain. Considering expected residence times in 
the attraction domains Q4a,b of the equilibria E 4a,b we note that the statistics in 
both domains are equivalent because of the symmetry of the system. We have 
constructed the heteroclinic orbit between the saddle points x =E4a,p =0 and 
x =E3,p =0. Given Q'(E4a)=O we then find from (4.18) that 
K(Q4a) = Q'(E3)=0.0l. This value gives an estimate of the expected 
residence times in Q4a whenever exit occurs near E 3• Once the system is near 
E 3 it can leave the 'low-index attraction domain' along the unstable equili
brium E 2 and go over to the 'high index attraction domain' Q1• Therefore, the 
persistence of the low-index regime is actually measured by K'(Q3)=0.38. This 
result is obtained by solving Eq. (4.19) along the heteroclinic orbit which con
nects the saddle points x=E3,p=O and x=E2,p=O of the Hamilton system 
(4.18). As discussed previously the value K'(Qi)=0.29 is an estimate of the 
persistence of the high-index regime. 

IV.5. A DISCRETE-STATE MARKOV MODEL OF THE ATMOSPHERIC CIRCULATION 

As soon as a stochastically forced dynamical system of the type ( 4.6) is in sta
tistical equilibrium, the expected residence times of the preference states yield 
information about the expected durances of such states. However, in this way 
no information is obtained about the time scale over which the transient effect 
of initial conditions are important. To find this time scale in general requires 
the solution of the full Fokker-Planck equation, but for small noise intensities 
it appears that most of the time the system is close to a stationary point of the 
unperturbed spectnl model. This suggests the introduction of a discrete-state 
Markov process model, with which we can study the evolution of the probabil
ity distribution in time for any initial conditions. For the randomly forced 
three-component spectral model, studied in the previous section, we can 
develop such a model with three states, viz. a zonal state (1), a transitional 
state (2) and a blocking state (3). 

Let Qu(t) denote the transition probability per unit time to go from state i 
to state J(i,j= 1,2,3) at time t, let p;(t) denote the probability to be in state i at 
time t and let T; be the expected residence time of this state. The latter is a 
measure of predictability when i is the initial state. The set of discrete-time 
master equations are 

3 

p;(t +llt) = LiPJ(t)Qji(t)tlt ; i = 1,2,3, (4.37) 
j=I 

with D.t a small but finite time step. Since the sum of the probabilities is equal 
to one, the model can be reduced to two dynamical equations for e.g. p 1 (t) 
and p3(t) and one passive equation for p 2(t). To arrive at the time-continuous 
model we use the identities 

3 

LiQijtlt = 1 for i=l,2,3, 
j=I 

and take the limit flt ➔O. The result is 

(4.38) 
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PJ = -{Q12+Q13+Q21)p1 + (Q31-Q21)p3 + Q21, 

p3 = (Q13-Q23)p1 -(Q31 +Q32 +Q23)p3 + Q23, (4.39) 

P2 = I-pi -p3. 

To specify the transition probabilities we use the results of section IV.4. There 
it was found that for small noise intensities the transition from the zonal state 
to the blocking state, and vice versa, occurs by way of the transitional state. 
Furthermore, given the system is in the transitional state, it has equal probabil
ity to go to the zonal state or the blocking state. Hence 

Q13 = Q31 = 0' Q23 = Q21 (4.40) 

must hold. The remaining unknown coefficients Q 12 ,Q 21 and Q32 in the equa
tions ( 4.39) can be related to the expected residence times in the following 
way. Define x.;(t) as the conditional probability for the system to be in state i 
at time t, given it was in i at t = 0. Since x.;(t)-x.;(t + At), is the probability 
for exit of state i in the time interval [t, t + At], it follows -dx.; I dt as a proba
bility density distribution over the time domain. Consequently the expected 
residence time is 

oo dx.; oo 
T.- = - ft- = f x.;dt 

I dt ' 
0 0 

(4.41) 

where in the last step partial integration has been applied. In this case we 
have 

x1(t)-x1(t+At) = x1(t)Qu(t).!lt, 

X2(t)-X2(t + At) = 2X2(t)Q21 (t)At, 

XJ(t)-XJ(t +At) = XJ(t)Q32(t)At. 

(4.42) 

We now assume that Q 12 ,Q21 and Q32 are constants. Then solving for At➔O 
gives 

-Q t -2Q t -Q I x1(t) = e ", X2(t) = e ", XJ(t) = e ". (4.43) 

In figure 4.4a a numerically computed probability density -dX2ldt is shown 
for the stochastically forced three-component model. As can be seen from 
figure 4.4b, a constant exponential decay rate is only found in the tail of the 
distribution. Nevertheless, if we accept (4.43) as a first approximation we find 
from (4.41) that 

I I I 
Q12 = Ti , Q21 = 2T2 , Q32 = r;· (4.44) 

Our model now consists of ( 4.39), ( 4.40) and ( 4.44). The general solution of 
this inhomogeneous linear system reads 

fp1] [Pis] 
l173 l173s 

+ [U11] A1t + [U21] A2t a1 u e a2 u e , 13 23 
(4.45) 
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FIGURE 4.4. a. Probability density distribution -dX:i. I dt of the charac-

where 

teristic residence times near the equilibrium E 2 of the 
white noise-forced three-component model. The data 
points, denoted by e, are based on 2000 simulations for 
b = l,xi =4.19 and t:'=0.3. 

b. ln( -dX:i. I dt) as a function of time for the data points 
shown in figure 4.5a with t > 1.4. Fitting a straight line to 
the data yields the linear slope -0.69+0.02. 

(4.46) 

is the equilibrium point of the model, which corresponds to the stationary pro
bability distribution. Furthermore l\1 and l\2 are eigenvalues of the homogene
ous system, with (u 11 ,u 13 ) and (u 21 ,u23 ) the corresponding eigenvectors, while 
a1 and a2 are integration constants determined by the initial conditions. It 
appears that l\1 and l\2 are real negative constants, so the stationary point is 
always stable. 

As a specific example we have analysed the model for T 1 =9, T2 = l and 
T 3 =31, which are scaled values of the explicity calculated residence times of 
the stochastically forced three-component model of section IV.4. The eigen
values in this case are 

l\1 = -0.070, l\2 = -1.073. (4.47) 

As can be seen from ( 4.45) they represent a slow and fast exponential decay 
towards the stationary probability distribution. In figure 4.Sa trajectories of 
the system in the p 1 ,p 3-phase plane are shown with initial values (1 ,0), (0,0) 
and (1,0), denoting that at t =0 the system is in state 1, 2 or 3 with probability 
1. From the numerical experiments it follows that if the system is in state 1 or 
3, the transient evolution of the probability distribution is mainly determined 
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by A1• If state 2 is the initial state the decay in p 2 is in a first instance con
trolled by A2 =(9(1/T2) and hereafter by A1. Thus the predictability is then 
lower, as the model will almost certain have undergone a transition either to 
state 1 or state 3. Whenever this happens the dynamics is from then on con
trolled by A1, as we have seen. This is illustrated in the figures 4.5b,c,d, which 
show the time evolution of the probability distribution starting in the initial 
states 1, 2 and 3, respectively. The dotted lines show the stationary probabil
ity distribution. 

FIGURE 4.5. 
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Evolution in time of the probability distribution of the Mar
kov process model for T 1 =9, T2 = 1 and T3 =31, starting in 
the states 1, 2 and 3. In (a) the trajectories in thep 1,p 3-plane 
are shown. In (b), (c) and (d) the explicit time dependence is 
shown; the dotted lines represent the stationary probability 
distribution. 

IV.6. CONCLUDING REMARKS 

In this chapter we have .studied the effect of stochastic perturbations on a 
three- and six-component spectral model of the barotropic potential vorticity 
equation in a beta-plane channel. The unperturbed systems have been 
analysed in section II.3 and chapter III, respectively. It appeared that for 
parameter values representative for the atmosphere multiple equilibria exist; 
some of them are stable, others unstable. 

In section IV.2 we have parametrized the effect of the neglected modes, 
including additional processes not incorporated in the model, by stationary 
stochastic terms, being of the white-noise and coloured-noise type. We have 
taken the diffusion matrix to be the unity matrix. One may include the state 
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dependent sensitivity of the large-scale circulation model for transient pertur
bations by letting the components of the diffusion matrix be functions of the 
state variables x, but is not clear how these functions should be specified. 

The perturbed system shows frequent transitions between the attraction 
domains of the stable equilibria of the unperturbed model. As noticed in sec
tion IV.3 for small noise intensities (O<t<<l), the system will also remain for 
some time in a neighbourhood of the unstable equilibria, hence the latter are 
significant for the dynamics of the perturbed system. As a consequence, 
unstable equilibria may be important for the dynamics of the large-scale 
atmospheric circulation. Similar results have been found by REINHOLD and 
PIBRREHUMBERT (1982) and LEGRAS and GHIL (1985). They used higher-order 
deterministic spectral models of the potential vorticity equation. In their case 
the presence of saddle points is responsible for chaotic dynamics and regime 
behaviour. 

A method is described to calculate the asymptotic behaviour of the expected 
residence times in the neighbourhood of the equilibria for E-0. BENZI et al. 
(1984) have carried out such an asymptotic analysis. The method we 
presented extends to unstable equilibria of the unperturbed system and to sys
tems that are not necessarily of gradient type. In section IV.4 results have 
been presented for the three-component spectral model of atmospheric flow 
perturbed by noise with different correlation times. It has been found that the 
initial-value approach for solving the Hamilton equations is only applicable in 
the white-noise case. The boundary-value approach is more successful: it can 
handle both the coloured noise-forced three-component model and the white 
noise-forced six-component model. Its only limitation for practical use is the 
computer storage needed. Hence this method may be a useful tool in the 
analysis of more complicated spectral models. 

Since the solution of the stochastically perturbed model remains most of the 
time near the three equilibria of the unperturbed system, we have formulated 
in section IV.5 a stochastic dynamical system which may take only three 
discrete states. With this time-continuous Markov model we have studied the 
effect of initial conditions on the evolution of the probability distribution over 
the three states. From the results it can be concluded that the predictability of 
the states is closely connected with the eigenvalues of the Markov model. In 
the first instance the residence times 7j yield information on the expected 
durance of the preference state i. In addition to this, the value l/A1 in (4.47) 
gives an indication of the time scale over which transient effects are present in 
the system. In this time span the initial state can be utilized in the process of 
computing the probability distribution over the three preference states. 

We will now discuss the validity of the stochastically forced spectral equa
tions as a model of the atmospheric circulation. In order to do so we have 
cast the results in the form of a three-state Markov model, see also SPEKAT et 
al. (1983). The lattei authors developed a similar model, but used meteorologi
cal data as input to calculate transition probabilities, expected residence times, 
etc.. It then follows that the persistence of the zonal state E I and the blocking 
state E 3 of our model are too large (by a factor of 10) compared to the 
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characteristic lif es of large-scale circulation types over Central Europe. Obvi
ously, the spectral models considered here are not a correct representation of 
the atmospheric circulation. We expect a better agreement if the resolution of 
the quasi-geostrophic spectral models is increased. Therefore, in the next 
chapter we will study the effect of including more modes in the spectral expan
sions on the dynamics of the barotropic model. 



V: Predictability properties of a minimum

order atmospheric spectral model with 

vacillation behaviour 

V. l. INTRODUCTION 
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It has been discussed in chapter I that the large-scale atmospheric circulation 
may irregularly vacillate between preferent weather regimes. Furthermore this 
flow has an unpredictable nature, implying that weather forecasts only have 
validity for a finite period of time. In this tract we investigate whether low
order spectral models represent these features. These models are of the type 
(1.1) and can be analysed with techniques originating from the theory of 
dynamical systems. 

In chapter III we have found that three- and six-component models of the 
barotropic potential vorticity equation can have multiple preferent states. 
However, they do not describe transitions between the different states. This is 
due to the fact that the systems lack for relevant nonlinear interactions. Two 
processes were suggested which would help to overcome this shortcoming. The 
first one, adding stochastic perturbations to the spectral equations, has been 
investigated in chapter IV. Here we shall deal with the second suggestion: 
extending the deterministic model by including more modes in the spectral 
expansions. LEGRAS and GHIL (1985) have studied a 25-component barotropic 
model in spherical geometry and found that solutions could visit different pre
ferent regions in phase space. However, they did not determine the minimum 
number of modes required for the occurrence of vacillation. Here we shall 
derive this necessary number by analysing the physical properties of barotropic 
spectral models. The aim of the present study is to derive a minimum-order 
model, based on a rectangular truncation of the spectral expansions in wave
number space, which has for fixed parameter values multiple unstable regular 
solutions and a strange attractor. We expect trajectories, starting from arbi
trary initial conditions, to converge to this attractor. Subsequently, they must 
vacillate between different pref erent regions in phase space which are close to 
the (weakly) unstable regular solutions. 
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We claim that the IO-component barotropic model presented in appendix C 
is in fact this minimum-order model. It describes the evolution of two zonal 
flow profiles (a (0,1) and (0,2) mode) and four Rossby waves (the (1,1), (1,2), 
(2,1) and (2,2) modes). Compared to the six-component model of chapter III 
it contains a new type of nonlinear interaction involving three Rossby waves: 
the (1,1), (1,2) and (2,1) modes. In section V.2 it is shown that, due to the 
presence of this barotropic wave triad, all regular solutions become unstable 
for a range of parameter values. Attractor properties of the system are investi
gated in section V.3. The nontransient time series represent a flow vacillating 
between three weather regimes. By computing the Lyapunov exponents we 
shall show the existence of a global strange attractor. As discussed in WOLF et 
al. (1985) chaos is characterized by one or more positive Lyapunov exponents. 
Furthermore, essential features of the preferent regimes are given such as the 
corresponding flow patterns and their average duration times. A discrete-state 
Markov model is used to compute a time scale over which the effect of initial 
conditions is important. The static structure of the strange attractor, charac
terized by its fractal dimensions, is investigated in section V.4. The integer 
obtained from rounding off the Hausdorff dimension upwards estimates the 
actual number of degrees of freedom of the chaotic flow. The distinction 
between the preferent regimes is measured by the difference between Hausdorff 
dimension and correlation dimension. 

In practice we do not know initial conditions with infinite precision. Conse
quently, small errors are introduced in the system which will grow during its 
evolution because of the chaotic dynamics. Consequently, the predictability of 
the flow is limited: a time scale on which it is predictable on the average is 
given by the reciprocal of the sum of all positive Lyapunov exponents. How
ever, of more interest to meteorologists is the dependence of predictability on 
the state of the system, see TENNEKES et al. (1986). We argue in section V.5 
that the local eigenvalues of the matrix derivative of the vectorfield, linearized 
at each point of a reference orbit, measure the local growth rates of small 
errors introduced on this orbit. However, this is on the condition that the time 
scale of error growth is small compared to the time scale on which the flow 
itself evolves. In that case the corresponding eigenvectors will yield informa
tion about the geographical distribution of the errors. 

In section V.6 we shall study the impact of neglected short-scale waves on a 
planetary-scale forecast model. We shall consider our chaotic IO-component 
model to represent the real atmosphere and the six-component subsystem, 
shown in appendix C between the dashed lines, as a forecast model. For 
obtaining equivalence between solutions of the two systems, forcing terms must 
be added to the equations of the forecast model. It will appear that these forc
ing terms have an unpredictable nature and that they cannot be parametrized 
by simple stochastic processes. This conclusion is in agreement with the 
findings of LINDENBERG and WEST (1984) and KOTIALAM et al. (1987). We 
shall end with a few general remarks in the final section. 
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V.2. BIFURCATION ANALYSIS 

Consider the IO-component barotropic spectral model of appendix C. We 
wish to investigate the existence of stable chaotic solutions and co-existing 
unstable regular solutions. Thus, trajectories should alternately visit different 
preferent regions in phase space close to the regular solutions. Then the model 
represents a flow having a finite predictability and vacillating between different 
weather regimes. In appendix D it is shown how these properties are investi
gated by using a bifurcation analysis of the stationary points and periodic 
solutions of the model. In this way quasi-periodic and chaotic solutions can 
be found. 

A complete exploration of the spectral model is difficult to carry out because 
it contains so may nonlinear interactions. However, for our purposes a limited 
bifurcation analysis is sufficient. Since the model is an extension of the model 
studied in chapter III we expect regular solutions to be either of high-index, 
low-index or transitional type. Necessary conditions for the occurrence of 
multiple regimes are the presence of topography ( y nonzero) and a forcing in 
the (0,1) zonal flow component (xi nonzero). It was found in section III.4 
that in order to obtain unstable high-index regimes the (0,2) zonal flow mode 
must also be forced (x4 nonzero). For the instability of the low-index regimes 
at least one of the four wave modes must be unstable. In order to derive 
necessary conditions for the occurrence of these instabilities, we have sketched 
in figure 5.1 the three barotropic triads of the model. Two of them involve the 
(0,2) zonal flow mode while there is one wave triad. 
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FIGURE 5.1. Schematic representation of the barotropic triads of the 10-
component model. Nonlinear interactions involve two modes 
at a time, denoted by the solid lines. As a result of each 
interaction a third mode is affected, as denoted by the dashed 
lines. 

We note that FJ0RTOFT (1953) has derived a theorem stating that a partici
pating mode in such a triad can become unstable if its wave-length is smaller 
than that of the second participating mode but larger than that of the third 
mode. The wave-lengths of the different modes are just the eigenvalues "A1 
defined in (2.49 a,b). Applying the Fj0rtoft theorem to the triads of figure 5.1 
we obtain that for ( ,13 /2)<b < V3 at least one wave mode can be unstable. 
Thus if we take b = 1.6,/3= 1.25,C =0.1 and y= 1 we expect to find vacillatory 
behaviour for xj and x4 sufficiently large. The physical situation correspond
ing to these parameter values has already been described in section II.3. 
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We first consider the case that x4 = 0. Although no vacillating solutions will 
be found, the subsequent analysis will give an idea of the types of solutions 
that arise and will show the importance of the wave triad. In figure 5.2 the 
.x 1 - and x 4-component of the stationai y points of the IO-component model are 
shown as a function of xj. It is obtained numerically by application of the 
continuation routines included in the software package AUTO, see DOEDEL 

(1986). Similar diagrams have been shown for the three- and six-component 
model, see the figures 2.3b and 3.2. Solutions of the three-component model 
are also solutions of the full model, although stability properties may differ. 
This does not apply to solutions of the six-component model: for nonzero 
amplitudes of the (1,1) and (1,2) modes the wave triad provides for a direct 
forcing of the (2,1) mode. In figure 5.2 three branches of single-mode equili
bria occur, for which {.x;=0}n4 ; they are denoted by E 1,E2 and £3. Their 
existence is a consequence of the presence of topography, which also causes 
changes in the stability properties of the single-mode equilibria at ordinary 
bifurcation points. Here mixed-mode equilibria branch off which have 
nonzero {x;}n4 . Furthermore isolated branches of mixed-mode equilibria 
occur which have not been found previously. They are generated due to the 
presence of the wave triad and have been calculated by means of routines to 
locate zeroes of nonlinear algebraic systems, in combination with the continua
tion routines of AUTO. The Hopf bifurcation points in figure 5.2 are a man
ifestation of the barotropic instability mechanism. At these points branches of 
periodic orbits are generated. 

4 
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FIGURE 5.2. Stationary solutions of the IO-component model. Shown are 
the x1- and .x4-component as a function of xj for 
b=I.6,,B=I.25, C=0.l,y=l and x4=0. A solid line denotes 
that the solution is stable whereas a dashed line refers to an 
unstable solution. Hopf bifurcation points are indicated by a 
triangle. 

We consider the stationary points of the model for xj =4 in more detail. 
Apart from the single-mode equilibria E 1 ,E 2 and E 3 given in (2.59) we have 
the (isolated) mixed-mode equilibria 
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E4a1b = (0.732,-0.605,-0.340, +0.384, +0.018,+0.069, 

+0.046, +0.020, -0.042, -0.012), (5.1) 

ESatb = (0.581, -0.300, -0.356, +0.344, +0.035,+0.308, 

+0.054, +0.030, -0.066, -0.023). 

They clearly differ from the mixed-mode equilibria of the six-component sub
system given in (3.4). The streamfunction patterns of E 1,E2 and E 3 were 
shown in figure 2.4. They represent a flow of high-index, transitional and 
low-index type, respectively. The streamfunction co~gurations of E4atb and 
Esatb defined in (5.1) are presented in figure 5.3. From this and figure 3.3 we 
see that all mixed-mode equilibria represent steady states of low-index type. 

FIGURE 5.3. Nondimensional streamfunction contours (solid lines) for the 
equilibria E4a(a),E4b(b),E5a(c) and Esb(d) defined in (5.1). A 
difference 6-t[J= 1 corresponds to a zonal transport of about 
l.l.1<>6m2s-1• The dashed lines represent contours of topog
raphy (loJm). 

We now fix xi =4 and consider the position and stability of the stationary 
points as a function of the (0,2) zonal-forcing amplitude x4. Results are 
shown in figure 5.4 where for x4 =0 has been started from the equilibria 
E 1, E 2 and E 3, respectively. Identical experiments have been discussed in sec
tion III.4 for the six-component subsystem. There it was found that for each 
value of x4 at least one stable stationary point or stable periodic orbit exists. 
However from figure 5.4 and table 5.1 it appears that the dynamics of the IO
component model is considerably different. We find that for lx41>5.752 all 
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equilibria of the spectral model are unstable. Moreover, we expect that for 
Jx4 I somewhat larger than 5.752 the periodic solutions have also become 
unstable. The reason is that the large number of nonlinear interactions allow 
for many ways to transfer energy and enstrophy between the different modes. 
We will test this hypothesis in the next section. 

-2 -8 -4 i O 4 x 4• 8 

b 

FIGURE 5.4. The x4-component of the equilibria of the IO-component 
model for xj =4 as a function of x4. For x4 =0 a restart is 
made in E 1(a),E2(b) and E 3(c). Stability properties are indi
cated by a solid line (stable) or dashed line (unstable). The 
symbol l:J. denotes a Hopf bifurcation point. 

Jx4J Jx4J X4 

0. E1 -- (0) 0. E2 -+ (1) 0. E3 -+ (2) 
0.348 HB-+ (2) 3.270 HB -+ (3) + 0.578 TP -+ (3) 
3.346 TP -+ (1) 6.054 HB -+ (1) + 0.252 TP -+ (2) 
3.119 TP -+ (2) 7.021 TP -+ (2) + 0.009 HB-+ (4) 

t 1.480 TP -+ (3) + 0.141 HB-+ (2) 
00 

t + 2.205 HB-- (0) 
00 

+ 5.752 HB-+ (2) 
) 
-00 

TABLE 5.1. Bifurcation and stability properties of the branches of station
ary points shown in figure 5.4. Each x4 *0 is a bifurcation 
value with the type of bifurcation indicated (HB: Hopf bifur
cation, TP turning point). The sign behind the arrow denotes 
stabilitity properties of the equilibria between successive bifur
cation values(-: stable, +: unstable). The number in brack
ets denotes the number of eigenvalues with positive real part. 
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V.3. DYNAMICAL BEHAVIOUR 

V.3.1. Global analysis and scale selection 
Considering the previous results we take xi = 4 and x4 = - 8 as values of the 
forcing for which we expect vacillating solutions. The resulting zonal velocity
forcing profile is shown in figure 5.5. It represents intense westerlies in the 
northern part of the channel and weaker easterlies in the southern part. Com
paring it with the forcing of atmospheric flow in midlatitudes we find that our 
velocities and meridional gradients are unrealistically large: over l 50ms - 1 and 
3. 10-4 s - 1, respectively. For these parameter values three unstable equilibria 
exist: 

EQ 1 =(4.300, -0.845,0.031, -7.856, -0.326,0.000, 

-0.001,0.000, -0.003,0.000), 
EQ2 =(0.723,2.752, -0.341, - 1.085, -0.722,0.243, 

0.104, -0.031,0.250, -0.109), 
EQ3 =(0.614, -3.107, -0.353,-1.323,0.580, -0.092, 

0.038,0.005,0.151, -0.003). 

-30 -15 0 15 U* 30 

(5.2) 

FIGURE 5.5. The function u*(y)= \/2xj sin(ylb)+2\/2x4sin(2ylb) for 
xj = 4 and x4 = - 8, which is the zonal velocity forcing used 
in our experiments. 

The corresponding streamfunction patterns are sho\\/Il in figure 5.6. They 
represent a flow of high-index, transitional and low-index type, respectively. 
The existence of a global strange attractor was investigated by numerical 
integration of the spectral equations starting from different initial conditions. 
It was found that after a period of 500 nondimensional time units transient 
effects could no longer be observed and all time series had identical qualitative 
and quantitative properties. Obviously, the model has a global attractor and 
for its analysis we will use one asymptotic trajectory which is also considered 
in the remaining part of this chapter. In figure 5. 7 a a time series of the x 1 -

component is shown. It represents the climatology of the zonal index of the 
flow, as x I is proportional to the zonal transport between the two walls of the 
channel. From this figure we conclude that the model has vacillation proper
ties: it alternately visits a high-index and low-index regime. 
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FIGURE 5.6. As figure 5.3, but for the equilibria EQ1,EQ2 and EQ3 
defined in (5.2). 
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FIGURE 5.7a. Time series of the x 1-component of the IO-component model 
generated by a Runge-Kutta-Merson numerical integration 
scheme. Here t'=(t -1000)/500. The dimensional period 
shown is approximately six years. 

b. Projection of the chaotic trajectory, considered at discrete 
times, onto the x 2 -x3 plane for the period lOO0<t <3000. 
The plot contains 8000 data points. 

A quantitative characterization of the system behaviour is given by the 
Lyapunov exponents. As discussed in SCHUSTER (1987) and in section V.5 of 
this chapter, they measure the average exponential growth of the semi-axes of 
an infinitesimal error sphere along a principal orbit. Thus one or more posi
tive Lyapunov exponents imply that nearby orbits in phase space diverge. In 
table V.2 the numerical results are presented for the IO-component model 
where we have used the method of WOLF et al. (1985). 
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Pg PJO 

0.34 0.18 0.04 0. -0.06 -0.12 -0.17 -0.23 -0.38 -0.60 

TABLE 5.2. Lyapunov exponents P;(i = 1.2, ... , 10) of the IO-component 
model for b = 1.6, xj =4,x4, = -8. 

Since chaos is related to the existence of at least one positive Lyapunov 
exponent we conclude that the model has a global strange attractor. The 
reciprocal of the least negative exponent defines a time scale T1 on which tran
sient effects are important. Here we have T,~ 17, which gives an a posteriori 
justification for the assumption that for t > 500 time series are not affected by 
the choice of the initial condition. 

A different representation of the model behaviour is obtained by considera
tion of the state variables at discrete times. In figure 5.7b results are shown 
for the x 2- and x 3-components of the asymptotic trajectory for IOOO<t <3000 
with a time increment !::.t =0.25 between the successive data points. The figure 
shows the climatology of the (1,1) mode which is the longest wave present in 
the model. From this it seems that the static structure of the attractor in 
phase space resembles a distorted torus. This suggests that the strange attrac
tor is generated due to the Ruelle-Tak.ens-Newhouse scenario. For a detailed 
discussion of this route to chaos we refer to SCHUSTER (1987) and THOMPSON 
and STEWART (1986). Briefly it is described as follows, see figure 5.8. Con
sider attractor properties of the dynamical system with increasing values of a 
forcing parameter. At first we have a branch of stable stationary points. It 
becomes unstable at a Hopf bifurcation point, causing the generation of a 
branch of stable periodic orbits. At its tum this branch becomes unstable due 
to a torus bifurcation. We then observe stable quasi-periodic motion having 
two fundamental frequencies / 1 and Ji with / 1 / Ji irrational, see appendix D. 
The next bifurcation generates a third frequency, but the corresponding quasi
periodic motion is generally unstable and chaos will be observed instead. 

stable 
stationary 

point 

0 
stable 

periodic 
orbit 

stable T2-torus 

parameter -----+ 

FIGURE 5.8. The Ruelle-Tak.ens-Newhouse route to chaos. 

strange 
attractor 

The bifurcation route leading to chaos in our model has been investigated 
by calculation of the Lyapunov exponents with decreasing negative values of 
the forcing parameter x4. It follows that for x4 = -7 there are two positive 
exponents which disappear at x4 = -6.5. Here we obtain two zero exponents 
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indicating that the motion is quasi-periodic (WOLF et al. 1985). From these 
results we conclude that the strange attractor is indeed generated by the 
Ruelle-Tak:ens-Newhouse scenario. 

The squared amplitudes of the (0,1),(l,l), (0,2), (1,2), (2,1) and (2,2) modes 
included in the IO-component model are given by xt ,(x~ + xi ),xa, 
(x3 + xh (Xo/ +xi) and (x§ + xto ), respectively. From the analysis of their 
nontransient time series we find that the mean intensities of the (0,1), (1,1) and 
(0,2) modes (having wave-lengths 8000 km, 4240 km and 4000 km) are much 
larger than the mean intensities of the (1,2), (2,1) and (2,2) modes (having 
wave-lengths 3123 km, 2386 km and 2120 km). Obviously most energy is con
tained in the long waves. This scale selection may be a consequence of the 
energy cascade from the small scales to the large scales which occurs in quasi
geostrophic turbulent flow (TENNEKES, 1985; PEDLOSKY, 1987). Here we define 
the (0,1), (1,1), and (0,2) modes as the planetary-scale modes and the other 
modes as the synoptic-scale modes. 

Apart from the distinction between spatial scales it appears that the system 
contains two different time scales. In figure 5.9a a smoothed sample spectrum 
is presented of the time series x 1(t') of figure 5.7a. 
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FIGURE 5.9a. Distribution of the variance in the time series x 1 (t') of figure 
5.7a over the spectral frequencies w=2'TT!T where T is the 
period. Here wN='TTltJ.t is the Nyquist frequency with 
ll.t = 0.25 the time increment between successive data points. 
It is the highest frequency which can be identified by the Fast 
Fourier Transform (PRIESTLY, 1981). The arrows indicate pre
ferent oscillation frequencies which correspond to the three 
weather regimes, see section V.3.2. 

b. Low-frequency part x 1 (t') of the time series x 1 (t') of figure 
5.7a, obtained from adapting data points to an ideal low-pass 
filter which removes all frequencies w/wN>0.04 (dimensional 
periods smaller than two weeks). 
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It shows the distribution of the variance in the zonal index over the spectral 
time frequencies. It appears that most variance is contained in the low
frequency domain 0<wlwN<0.04 (dimensional periods larger than two 
weeks). If we adapt the time series of figure 5.7a to an ideal low-pass filter, 
which removes all frequencies w/ "'N >0.04, the result is the time series shown 
in figure 5.9b. On this long time scale the vacillation behaviour is still present 
but the rapid oscillations (with time scales of a few days) have disappeared. 
The latter phenomena will be discussed in the next subsection. 

We have carried out test runs of the model for the same parameter values 
but without the wave-triad interactions. In these cases no vacillating solutions 
are obtained. This suggests that the presence of wave friads, which provide for 
interactions between different scales of motion, is a necessary condition for the 
occurrence of vacillation in spectral models of the atmospheric circulation. 

V. 3. 2. Classification and characterization of weather regimes 
The dynamics of the IO-component model differs considerably from that of the 
spectral models discussed in REINHOLD and PmRREHUMBERT (1982) and 
LEGRAS and GHIL (1985). In these papers the preferent flow regimes are 
characterized by a quasi-stationary planetary-scale flow. For our model we 
have considered the evolution speed of the flow, defined as the norm of the 
vectorfield. Furthermore the distance of each point at the nontransient trajec
tory to the equilibria EQ 1,EQ2 and EQ 3 defined in (5.2) has been calculated. 
It appears that these quantities are never small, hence we conclude that the 
unstable equilibria are not of dynamical significance. 

It seems that the individual regimes in our model are characterized by oscil
latory behaviour with typical periods of a few days. In phase space the trajec
tories are attracted by unstable high-frequency periodic orbits of the system. 
The solutions remain for some time near these orbits until they are repelled 
and move away along the low-dimensional unstable manifold towards another 
unstable periodic orbit. 

We distinguish between three different preferent regimes. The first is of 
high-index type: the x 1-component has positive maxima and minima. The 
second regime is of low-index type, during which the x 1-component oscillates 
between positive maxima and negative minima. Finally a third regime can be 
identified which is necessarily visited if a transition occurs from the high-index 
to the low-index regime or vice versa. Once the system is in the transitional 
regime it may also return to the original regime. In figure 5. lOa,b time series 
are shown of the zonal index for a typical high-index and low-index situation. 
We do not show results for the transitional regime because it is visited by the 
system for periods which are very short compared to the time intervals shown. 
In figure 5.10c a sketch of the unstable periodic orbits, representing preferent 
regions in phase space, is shown as a projection onto the x 2 -x3 plane. The 
high-index regime is characterized by strong westerlies, a zonal index which is 
positive and by planetary waves propagating through the channel. During a 
low-index situation zonal flows are weaker and the zonal index alternates 
between positive values (eastward transport) and negative values (westward 
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transport). Furthermore, it follows from figure 5.10c that the planetary wave 
is more or less trapped. Since its phase with respect to the topographic max
imum varies between 45° and 300°, the wave does not propagate throughout 
the entire channel. Each regime has it'> own period of transient oscillations: 
they are 2.6, 3.9 and 5.4 for the high-index, transitional and low-index regime, 
respectively. The corresponding values for wlwN (0.17, 0.13 and 0.09) occur as 
peaks in the sample spectrum, see the arrows in figure 5.9a. 

Of---------
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FIGURE 5.10a. Blow-up of figure 5.7a for l.3<t'<l.4 where the flow is of 
high-index type. 

b. Blow-up of figure 5.7a for l.5<t'<l.6 where the flow is of 
low-index type. 

c. Projection onto the x 2 - x 3 plane of unstable periodic orbits 
to which solutions of the model are attracted (1: high-index 
orbit, 2: orbit of transitional type, 3: low-index orbit). 

The mean residence times of the system in the different preferent regions in 
phase space give the mean life times of the weather regimes. They have been 
calculated by analysis of an asymptotic trajectory of the model, using the 
classification scheme discussed in section V.3.2. The results are 

(5.3) 

for the mean residence times T; in the high-index state (i = 1), transitional 
state (i =2) and low-index state (i =3), respectively. They yield information 
about the probability of finding the system in a specific regime. In practice we 
are given an initial condition on the attractor, hence we know in which regime 
the system is at t =0. The evolution of the probability distribution over the 
regimes can be studied once we consider the vacillation behaviour of the spec
tral model as a stochastic process. In that case we may adapt the discrete-state 
Markov process model developed in section IV.5. Its dynamics is such that 
during a transition from state 1 to 3 or vice versa the system must visit state 2 
and once it is in this state it has equal probability to go to state 1 or state 3. 
We recall the equations 

ft1 = -(Q12 + Q21)p1 - -Q21p3 +Q21, 

P3 = - Q21p1- (Q32+Q21)p3+Q21, (5.4) 
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where p; is the probability for the system to be in state i and QiJ the transition 
probability per unit time for the system to go from state i to state j. Assuming 
that the Q;/s are constants (see the discussion in section IV.5) we have 

1 1 1 
Q12 = T1 ' Q21 = 2T2 ' Q32 = r'; (5.5) 

The solution of the linear inhomogeneous system (5.4) is given in (4.47). It 
represents an exponentially decay towards the stationary probability distribu
tion where the decay rates are measured by the two real eigenvalues A1 and A2 

of the homogeneous system. They follow from (5.3)-(5.5) and read 

A1 = -0.023 , A2 = -0.369. (5.6) 

We conclude that A11 (which is about fifty days in dimensional units) is a 
time scale on which the Markov model (5.4) yields more information about the 
system than the stationary probability distribution. 

V.4. STATIC STRUCTURE OF THE STRANGE ATTRACTOR AND DEGREES OF 
FREEDOM OF THE FLOW. 

Once the spectral system has settled down on its strange attractor only specific 
flow configurations are observed, because the attractor is confined to a sub
domain of the phase space. Generally, the structure of the attractor is found 
from partitioning the N-dimensional phase space in cells with volume IN and 
next generating a long time series of the chaotic system. From this we com
pute the probability p; of finding a point of the attractor in cell-number i 
(= 1,2, ... ,M(/)). It is defined as 

t· "!.(!) 
p; = Iim ....!.. , 2'Pi = l, 

l➔OO [ i =1 
(5.7) 

where t is the length of the time series and t; the time spend by the trajectory 
in cell i. We obtain a continuous distribution in the limit /__.,,o_ However, in 
practice this method meets serious difficulties because the boundary of a 
strange attractor is fractal and self-similar: its structure is frayed and is 
repeated on any ( even microscopic) scale. 

A global characterization of the static structure of strange attractors is given 
by its dimension of the (sub)space containing the whole attractor (FARMER et 
al., 1983). Dimensions of strange attractors are in general nonintegers because 
of their complicated structure. As shown by HENTCHEL and PROCACCIA 
(1983) there exists an infinite number of fractal dimensions D(k) which are 
related to the k-th powers of p; via 

1 1ntf/)pf] 
(k) i=I D = Iim ----, k=0,1,2, .... 

l➔O k-1 ln/ 
(5.8) 

We shall consider D<0> ,D(I) and D<2>, which have a clear interpretation and 
can be computed relatively easy, in more detail. First we study the Hausdorff 
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dimension 

D(O) = -lim ln[M(/)] 
l➔O ln/ . 

(5.9) 

It measures the exponential increase of the number of cells M (I) with volume 
·IN, needed to cover the attractor, with decreasing /. The integer obtained from 
rounding off the value of D(O) upwards is defined as the embedding dimension. 
This is the lowest integer dimension of a subdomain containing the whole 
attractor. Physically, it gives the actual number of degrees of freedom of the 
flow represented by the spectral model. In other words the embedding dimen
sion gives the number of determining modes needed to describe a turbulent 
flow, as is discussed in CONSTANTIN et al. (1985). 

The Hausdorff dimension does not depend on the probability distribution, 
hence it does not yield information about the inhomogeneous structure of the 
strange attractor. Therefore it is useful to consider other dimensions. The 
next one in the hierarchy (5.8) is 

M(I) 

- ~(-p;lnp;) 
D(l)=lim i=l =lim-J(/) 

l➔O ln/ - l➔O ln/ . 
(5.10) 

This expression is obtained from (5.8) by expanding its right-hand side in 
powers of (k -1) and making use of (5.7). Here the contribution of each cell 
is weighted by the factor ( -p;lnp;). It can easily be shown that D(I) :,;;;;,D(O), the 
equal sign holding if the attractor is homogeneous (p; = [M(l)r 1 ). Thus the 
difference between D(I) and D(O) measures the inhomogenity of the attractor. 
Since I (I) in (5.10) is the information needed to locate the trajectory in a 
specific cell (ScmJSTER, 1987), D(I) is called the information dimension. It 
measures the exponential growth of information gain needed if l➔O. In 
GRASSBERGER (1986) it is shown that an upper bound for D(I) is given by 

(5.11) 

where {v;}/"= 1 are the Lyapunov exponents in decreasing order. It was conjec
tured by KAPLAN and YORKE (1977) that 

(5.12) 

which gives a way to compute the Hausdorff dimension numerically. The 
correctness of (5.12) has been verified for simple dynamical systems for which 
an alternative computation of D(O) can be carried out using a box-counting 
algorithm. 

The information dimension is difficult to calculate, but it can be done rela-



tively easy for the correlation dimension 
M(/) 

1n[ ~pr] 
D(2) = lim i=I 

l➔O ln/ 

since 

M(/) 2 - • 1 N, N, -
~p; - lim - 2 ~ ~H[l-lx;-xilJ=C(l). 
i=I N,➔oo N1 i=1j=1 
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(5.13) 

(5.14) 

Here x;(i = 1,2, ... ,N 1) are points on the attractor and His the Heavyside func
tion. The correlation integral C(/) is equivalent to the probability that two 
randomly chosen points on the attractor are within distance I and can be com
puted from a long time series. It appears that n<2) :s;;;D<I), hence the correla
tion dimension is a lower bound for the information dimension. 

We have computed both n<0) and n<2) for our IO-component model. From 
table 5.1, (5.11) and (5.12) we obtain for the Hausdorff dimension n<0> =7.91. 
Consequently the embedding dimension of the strange attractor is 8. From 
this result we conclude that a model with eight degrees of freedom will 
represent the global strange attractor. In this specific case the model can be 
derived from the model of appendix C by neglecting the x 9- and x 10 -

components. The reduction does not affect the presence of topographic insta
bility, barotropic instability and of the wave triad in the spectral model. 
Indeed, time series of this 8-component model are chaotic and show vacillatory 
behaviour. The reason we propose the IO-component model as minimum
order model containing a global strange attractor is that we a priori assume a 
rectangular truncation in wave-number space. 
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0 

FIGURE 5.11. Correlation integral of the IO-component model. Here 
10 =0.1, the symbols • denote data points and the straight line 
is the result of a least-square fitting. 
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In figure 5.11 the logarithm of the correlation integral C(/) is shown as a 
function of the logarithm of the cell-size 1. The linear slope for small l yields 
D<2) =5.8+0.8. The rather large error estimate is an indication that points do 
not lie on a well-defined straight line. This is probably due to the finite length 
of the time series (Takens, pers. comm.). The correlation dimension is consid
erably smaller than the Hausdorff dimension. This implies that the attractor is 
strongly inhomogenous, which is consistent with the observations that trajec
tories spend most of their time in different preferent regions in phase space. 

V.5. THE PREDICTABILITY PROBLEM 

V.5.1. Mathematical formulation 
As already discussed in chapter Ill, a property of deterministic chaotic systems 
is their sensitive dependence on initial conditions. It appears that initially 
nearby orbits in phase space exponentially diverge during the evolution of the 
system. Since initial conditions are never known with infinite precision this 
implies that the future evolution of a flow represented by a chaotic spectral 
model can only be predicted for a finite period of time. In this section we will 
consider the effect of errors introduced in the initial conditions upon the pred
ictability properties of the 10-component model. It is a dynamical system of 
the type 

x = f,,.(x) = A +~·x+C: xx in RN. (5.15) 

In this case (see appendix C) N = IO, the vector A represents the external 
forcing, the linear terms include the beta effect, topography and dissipation 
while the nonlinear contributions describe the advection of vorticity by the 
fl.ow. 

In practice we obtain initial conditions x 0 for the atmospheric circulation 
from the adaption of observational data. We then define x(t), with x(O)=x0 , 

as the principal orbit of (5.15). However, x 0 will generally differ from the true 
initial condition. Thus it becomes worthwhile to introduce a continuum of 
orbits x(t) starting from the initial conditions x(O)=x0 +8a where a is a vector 
with jaj=l and 8<<1. The set of x(O) defines an 'error' sphere with center 
x 0 and radius 8. We wish to study the evolution of this error sphere along the 
principal orbit for different values of x 0 and 8. This is done by deriving 
dynamical equations for the deviations 

t(t) = x(t) - x(t). (5.16) 

Since both x(t) and x(t) are solutions of (5.15), we have 

i = [B+2C·x(t)]·t+C : ££, t(0)=8a. - - (5.17) 

The contributions on the right-hand side of (5.17) are linear, quasi-nonlinear 
and nonlinear, respectively. In order to determine the error evolution, an 
infinite number of solutions of (5.17) starting from each point of the error 
sphere are required. This complication is met by taking either the limit of 
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infinitesimal small error spheres (8➔0) or by confining our analysis to a finite 
time interval [O,tc] on which the errors are small (O<li(t)l<<l). Under these 
conditions the system (5.17), can be linearized. By setting 

y = £18, D(t)=!!_+2~·x(t)=Vfµ(x(t)), (5.18) 

where fµ(x) is given in (5.15) and the tilde denotes a transposed matrix, we 
obtain 

j, = D(t)-y , y(0)=a. (5.19) 

This system describes the dynamics of first-order variations on the principal 
orbit. Note that matrix D is actually the matrix derivative of the vectorfield 
f/J(x). Since it is quasi-nonlinear, N independent initial conditions are 
sufficient to determine the error evolution. The solution of (5.19) is 

I 

y (t) = r exp{j D(t')dt'} 1 -y(O) = cll(t)-y(O), (5.20) 
0 

where r·l denotes a time-ordening product (VAN KAMPEN, 1985) and <l>(t) the 
fundamental matrix. From this we conclude that the eigenvalues 
X;(t)(i = 1,2, ... ,N) of the matrix 

E(t) = _l[<l>(t)- J] (5.21) 
- t-

are the mean error growth rates over the time interval [O,t]. Here I denotes 
the (N X N) unity matrix. In the subsequence the physical implications will be 
discussed. 

V.5.2. Characterization by Lyapunov exponents and spatial error growth. 
In WOLF et al. (1985) Eqs. (5.19) are considered in the limit 8➔0 and t➔ oo. 
In this case the system is characterized by its Lyapunov exponents {v;}f=I 
which measure the long-term average exponential growth rates of the semi-axes 
of the error sphere. The sum of all exponents is the time-averaged divergence 
of the vectorfield which is negative for dissipative dynamical systems. Chaos is 
indicated by one or more positive Lyapunov exponents. It is difficult to asso
ciate a direction in phase space with a given exponent since the orientation of 
the deforming error sphere varies in a complicated way through the attractor. 
We only know that one exponent is identically zero and measures the slow 
error growth along the principal orbit. 

The numerical results for the Lyapunov exponents of our chaotic spectral 
model were already presented in table 5.1 in section V.3. From this a mean 
time scale can be derived on which the system is predictable on the average. It 
reads 

T = i ln[li(O)l-l ], (5.22) 

where the Kolmogorov entropy K is the sum of all positive Lyapunov 
exponents and li(O)I the norm of the initial error (SCHUSTER, 1987). For the 
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natural choice I1::(0)I = 0.1 we obtain a time scale of five days in dimensional 
units. This seems a reasonable value for the time scale on which the large
scale atmospheric circulation is predictable on the average. 

The significance of Lyapunov exponents is limited, for their definition does 
not include the effect of initial conditions and the direction of the initial error 
in phase space. In practice meteorologists are also interested in local growth 
rates and the spatial distribution of error growth for different initial condi
tions. As noted in section V.5.1 this dependence is investigated from an 
eigenvalue-eigenvector analysis of the matrix E(t) defined in (5.21). In the 
limit t➔O this matrix is approximated by D(O). Obviously, the eigenvalues of 
the matrix derivative D(t) of the vectorfield along the principal orbit measure 
the local exponential growth rates. The largest real part Am of all eigenvalues 
estimates the maximum growth rate and thus measures the reciprocal of the 
skill of a specific forecast. In figure 5.12 Am is shown as a function of time for 
the asymptotic chaotic trajectory of the IO-component model. 

It appears that the growth rates vary strongly with time, implying that the 
local predictability properties strongly depend on the initial conditions. Dur
ing the periods that Am is negative deviations between the true and approxi
mate orbit become smaller. Relating this fact to weather predictions we state 
that during periods in which Am is negative it might be preferable to continue 
a previous forecast run instead of starting a new run. This is because small 
errors, introduced in the forecast model by an imperfect initial condition, have 
decreased during the integration. Thus, a re-initialisation would probably 
result in a larger difference between the true and the observed state. In princi
ple Am can be computed for any spectral forecast model although computa
tional difficulties will arise because of the large number of degrees of freedom. 

2.5 

FIGURE 5.12. The maximum real part Am of the eigenvalues of the 
vectorfield linearized at each point of the chaotic trajectory of 
the IO-component model. 
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We have that 
t 

Xm = fun_!_ f Am(t')dt' 
1-+00 t O 

(5.23) 

is an upper bound for the largest Lyapunov exponent. This is because the 
eigenvector corresponding to Am always gives the direction of maximum 
growth rate in phase space while the direction associated with A1 v~es in a 
different way through the attractor. For our spectral model we have Am =0.72 
while A1 =0.34, see table 5.1. We may distinguish between error growth in the 
different preferent regimes. This was done by computing Xm for the high-index 
(1), intermediate (2) and low-index regime (3). The results are 
Xm(l)=0.63, Xm(2)= 1.08 and Xm(3)=0.82. These values indicate that during a 
high-index flow the local error growth is small compared to the growth rates in 
the other regimes. 

LEGRAS and GHIL (1985) argue that A,; 1 is a local time scale of error 
growth. Generalizing this result, we state that the eigenvector(s) corresponding 
to the eigenvalue(s) with real part Am define the geographical distribution of 
the most probable error evolution over the physical domain. We have investi
gated the validity of these hypotheses for the IO-component model by integrat
ing Eqs. (5.19) for several starting points (x0) on the principal orbit. The 
N ( = 10) independent initial conditions were taken to be the normalized eigen
vectors corresponding to the eigenvalues of matrix D(O). Eqs. (5.19) were 
integrated until the prediction time t = I;, where the norm of the error is 
increased with a factor e. It appears that the dimensional prediction times 
vary between one and four days with an average of two days. No indication 
was found that TP is given by Am(0)- 1• Furthermore the fastest growing error 
could not be related to an initial perturbation along the eigenvector(s) associ
ated with Am(0). This absence of correlations in our spectral model is due to 
the fact that the time scale on which the flow evolves is short compared to the 
time scale on which errors grow. Thus the direction in phase space associated 
with maximum instability changes much faster than the errors growing in a 
fixed direction. We expect that if 

lf,.(xo)I 
7/- Am(0) << 1, (5.24) 

with lfii(xo)I the norm of the vectorfield, Am(0)- 1 estimates the local prediction 
time of the system. This condition is never satisfied in our model: we find 
7/ = e( 10). Instead we must apply an eigenvalue-eigenvector analysis to the 
matrix E(t) defined in (5.21), as remains to be investigated. We finally remark 
that we expect 7/ in (5.24) to be small in the models of REINHOLD and PIER
REHUMBERT (1982) and LEGRAS and GHIL (1985), which show long periods of 
quasi-stationary behaviour. 
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V.6. MODELLING THE FEEDBACK BETWEEN PLANETARY-SCALE FLOW AND 
SYNOPTIC-SCALE EDDIES 

V.6.1. Formulation of the closure problem 
From the results of the previous section it follows that the predictability of 
flows described by chaotic spectral models is limited. This is because small 
errors in the initial condition rapidly grow during the time evolution due to the 
chaotic dynamics. The same occurs to errors introduced by the finite 
difference scheme which is used to integrate the spectral equations numerically. 
On the other hand the predictability properties may also be affected by addi
tional forcing mechanisms represented by F(t) in Eqs. (1.1). They describe the 
effect of the modes and the physical processes not incorporated in the model. 
It is clear that an appropriate parametrization of the F(t) would increase the 
validity of spectral forecast models. 

In chapter IV of this tract we have adapted two types of ad hoc parametri
zation: the F(t) were assumed to be Gaussian white noise and coloured noise, 
respectively. These choices are justified by the studies of EGGER and SCHIL
LING (1983, 1984), KRUSE and HASSELMAN (1986), and BARNETT and ROADS 
(1986) where observational data are compared with the results of spectral fore
cast models. From a theoretical point of view, LINDENBERG and WEST (1984) 
and KOTTALAM et al. (1987) have studied the sole effect of neglected modes on 
truncated spectral models of the barotropic potential vorticity equation. They 
conclude that the resulting forcing terms have a stochastic nature. However, 
they cannot be parametrized by the simple processes considered in chapter IV. 

In this section we will study properties of forcing terms which account for 
the effects of the neglected modes. Consider a finite-dimensional spectral 
model of the type 

(5.25) 

where x=(x1,X2,---,XM) and j,,_(x) is an M-dimensional vectorfield depending 
on x and on parameters µ=(p.1,µ2 , ••• ,µ,,,). This system is assumed to give an 
exact representation of the atmospheric circulation. We now define 
x =(x1,x2,••·,xN) as the planetary-scale modes and y=(xN+J,XN+2,···,xM) as 
the synoptic-scale modes. We recast (5.25) as 

rz--=--~ t.::--=_!,,.(x2_J+ g,,_(x,y), 

y = h,,_(x,y). 

(5.26a) 

(5.26b) 

Here J,,_(x) and g,,_(x,y) are N-dimensional vectorfields and h,,_(x,y) is an 
(M - N)-dimensional vectorfield. We define the planetary-scale subsystem in 
(5.26) between the dashed lines as our forecast model. Note that g,,_(x,0)=0 
by definition, but h,,_(x, 0)¥,0, hence solutions of the subsystem are not solu
tions of the full model. In order to obtain equivalence between solutions of 
the forecast model and solutions of the full model projected onto the N 
retained modes, forcing terms F(t) must be added to the forecast model. In 
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this case Eqs. (5.26a) can be considered as a dynamical system of the type 
(1.1) where 

F(t) = g,.(x (t), y(t)). (5.27) 

They follow from an integration of the full model (5.26). 

V.6.2. Results for the JO-component model 
Here we define the IO-component barotropic spectral model of appendix C as 
the full model (5.26), hence M = 10. As shown in section V.3 its solutions 
represent a flow resembling the large-scale atmospheric circulation. We take 
the six-component model in appendix C between the dashed lines as our fore
cast model, thus N = 6. The three-component model is not appropriate 
because it cannot resolve the important forcing in the (0,2) zonal-flow mode. 
The stationary points of the six-component model for the parameter values 
b = 1.6, xj =4 and x4 = -8 are 

Eq1 = (4.301, -0.846, 0.031, -7.855, -0.327, 0.000), 

Eq2 = (0.902, 1.820, -0.323, -0.455, -0.701, 0.360), (5.28) 

Eq3 = (0.728, -2.498, -0.341, -0.758, 0.490, -0.150). 

Comparison with the results for the full model (see (5.2)) shows clear 
differences in the numerical values. Furthermore, Eq3 is stable in the six.
component model whereas EQ 3 is unstable in the IO-component model. Obvi
ously the dynamics of the two models are considerably different. 

From the equivalence between (5.26) and the model of appendix Cit is pos
sible to compute the six forcing terms defined in (5.27). They consist of a 
linear as well as a nonlinear part. The linear contributions, only present in the 
(1,2) modes, are due to the interactions between flow and topography not 
resolved by the subsystem. The nonlinear terms in the (1,1) and (1,2) modes 
are due to the wave triad, the nonlinearity in the (0,2) component comes in 
from the triad interaction between the (0,2), (2, 1) and (2,2) modes. It can 
directly be seen that the (0, 1) component is not forced, hence F 1 =o. The 
remaining five components have been computed along the asymptotic trajec
tory of the IO-component model considered throughout this chapter. Their 
time series are shown in figure 5.13. Clearly they have random character. 

We have analysed the statistical properties of the time series by computing 

- IT - IT 
F; = rfF;(t)dt' Fr = rfF;(t}2dt' 

0 0 

1 T -
/Lr,i = T j[F;(t)- F;f dt ' 

0 

(5.29) 

for i =2,3,4,5,6 and r =2,3,4. They are the means, intensities and order-r 
central moments, respectively. Here Tis the length of the time interval, which 
must be large with respect to the characteristic lifes of the preferent regimes. 



90 

-2!::-o ----,----=----=----c4 
t' 

- 2o~ -~--2--3--4 

t' b 
- 2 0=-------,------~---4 

t' 

3 ti : 

FIGURE 5.13. Time series of the forcing terms, added to the six-component 
model in order to obtain equivalence with the specified chaotic 
trajectory of the IO-component model. 

From (5.29) we calculated 

-~ s µ3,; 
<1; = Vl-"2,i , ;=-3 • 

<1; 
(5.30) 

which are the standard deviations, skewnesses and kurtoses respectively. Here 
a; estimates the spread of the probability density distribution p (F;) around its 
average F; and S; measures the asymmetry of the distribution with respect to 
F;. Finally, K; measures the long-tail deviation of p(F;) from a Gaussian dis
tribution 

(5.31) 

which is fully determined by a mean and standard deviation. For details we 
refer to PRIESTLY (1981). We found that the results, presented in table 5.3, did 
not depend on the particular time interval chosen hence the time series F;(t) 
are stationary. The processes F 5 and F 6 have been itemized in linear oro
graphic contributions (F50 ,F60) and nonlinear wave-wave contributions 
(F5w,F6w)- It appears that the intensities of the (1,2)-mode forcing terms are 
much larger than those which affect the (1,1) mode. In turn these intensities 
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are large compared to the one of the (0,2) mode. Furthermore, F 5 and F 6 are 
mainly determined by the contribution due to the wave triad: the contributions 
caused by fl.ow-topography interactions are negligible. Obviously the presence 
of topography in the model is only important in order to allow for multiple 
weather regimes. 

F2 F3 F4 F5 F6 F50 F5w F(IJ F6w 
mean 0.005 0.009 -0.009 0.020 -0.015 0.000 0.019 0.000 -0.015 
intensity 0.154 0.158 0.074 0.729 0.698 0.027 0.728 0.027 0.697 
st.dev. 0.154 0.157 0.073 0.729 0.698 0.027 0.728 0.027 0.697 
skewness 0,191 0.090 -0.471 -0.177 -0.041 -0.043 -0.189 0.085 0.017 
kurtosis 2.830 2.985 4.663 2.175 1.919 0.172 2.159 1.67 1.908 

TABLE 5.3. Statistical properties of the forcing terms. 

Since all forcing terms have nonzero skewnesses and kurtoses we conclude 
that their probability densities are non-Gaussian. This can also be seen from 
figure 5.14 where the numerically computed distributions are shown together 
with their Gaussian approximations obtained from (5.31) and table 5.3. Obvi
ously the forcing terms cannot be parametrized by Gaussian noise processes as 
was done in chapter IV. We have also calculated statistical properties of the 
forcing terms in the different weather regimes. It was found that in the high
index regime the intensities of all forcing components are 10 to 15% below 
their overall averages. This can be explained as follows. For the parameter 
values used the six-component model has two different attractors: a periodic 
orbit of high-index type and a stationary point of low-index type, see section 
IIl.5. Since the periodic orbit is close to an unstable regular solution of the 
IO-component model, the intensity of the forcing terms is low in the high
index regime. Conversely, in the low-index regime the difference in dynamics 
of the two models is large so the forcing intensity is large. The large forcings 
occurring in the transitional regime are an indication that the six-component 
model cannot predict transitions between the high- and low-index weather 
regimes. 

Information about the correlation times of the forcing terms is obtained 
from the autocorrelation functions 

[F,.(t)-F.-][F.-(t +T)-F,.] 
·( ) = I I I I f O =2 3 4 5 6 P,T 2 orz ,,,,, 

CJ; 
(5.32) 

see PRrnsTL Y ( 1981 ). They measure the statistical dependence between the 
processes F;(t) and F;(t +T). Since the time series F;(t) are stationary, the 
autocorrelation functions do not depend explicity on time. The results for 
p;(T) are presented in figure 5.15. The functions show oscillatory behaviour 
with an exponentially decreasing amplitude. Roughly, all curves can be fitted 
with 

(5.33) 

This behaviour is different from that of coloured-noise processes, see (4.9). 
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Thus, once more we conclude that in this case coloured noise is not an 
appropriate parametrization of the forcing terms. 

p 
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FIGURE 5.14. Numerical approximation of the probability distributions 
p(F;) (solid lines) of the forcing terms based on 8000 sampling 
points and 80 class intervals. The dashed lines represent the 
Gaussian distributions (5.31) where F; and CJ; are obtained 
from table 5.3. 

Finally, we have investigated the statistical dependence between the 
processes F;(t) and Fj(t +T) by calculating the normalized correlation matrix 
C(T) with components 

(5.34) 

Note that 

(5.35) 

where p;(T) is the autocorrelation function (PRIESTLY, 1981). The results are 
shown in figure 5.16. Correlations involving the process F4(t) are omitted 
since they are very small. 

Although statistical significant correlations are observed between F2(t) and 
F3(t +0.25), F2(t) and F6(t +0.10) and F3(t) and F 5(t +0.10), they are rather 
small and occur for only a small time interval. 
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FIGURE 5.15. Autocorrelation functions p;(-r) of the forcing terms 
F;(t)(i =2,3,4,5,6) acting on the six-component model. 

V.7. CONCLUDING REMARKS 

In this chapter we have studied a I 0-component spectral model of the barotro
pic potential vorticity equation in a beta plane channel. We have shown that, 
using a rectangular truncation of the spectral expansions in wave-number 
space, it is the simplest model which represents most qualitative features of 
the atmospheric circulation. By this we mean that for a range of parameter 
values solutions are obtained modelling a finitely predictable circulation which 
alternately visits different weather regimes. In this case three preferent regions 
in phase space are found characterized by unstable periodic orbits of the 
model. They correspond to a high-index, transitional and low-index flow 
regime. This behaviour is due to the presence of a barotropic wave triad. It 
provides for a direct interaction between two distinct scales of motion: a 
planetary scale and synoptic scale. An index cycle occurs on a time scale of 
the order of months whereas on a a shorter time scale (order of days) oscilla
tions are present which characterize the individual preferent regimes. 

We have analysed the static and dynamical structure of the strange attractor 
of the IO-component model. Its embedding dimension, which is 8 in this case, 
estimates the actual number of degrees of freedom of the flow. In this case we 
could indeed select an 8-component subsystem of the full model which still 
represents a chaotic flow with vacillatory behaviour. Therefore, if we do not 
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adapt the condition of a rectangular truncation in wavenumber space, this 8-
component system should be considered as a minimum-order spectral model of 
the atmospheric circulation . 
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FIGURE 5.16. Correlations Cij(-r) between the processes F;(T) and Fj(t +-r) as 
a function of the time shift -r. 

The reciprocal of the sum of all positive Lyapunov exponents, which meas
ure the exponential divergence between nearby orbits in phase space, defines 
an overall time scale (here of about four days) on which the flow is predict
able. In order to to investigate local predictability properties of the flow the 
linearized error equations along a principal orbit were solved. It was proposed 
that the local eigenvalues of the matrix derivative of the vectorfield along the 
orbit estimate the error growth while the corresponding eigenvectors determine 
the geographical distribution of the errors. This implies that during periods 
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where all eigenvalues have negative real parts predictability of the flow is large, 
since small errors converge to the principal orbit. However, this concept is not 
successful when the flow itself evolves on a time scale which is comparable to 
the time scale of error growth. Consequently, the method cannot be applied to 
the IO-component model studied here, but the models of REINHOLD and PIBR

REHUMBERT (1982) and LEGRAS and GHIL (1985) may be appropriate because 
they show long periods of quasi-stationary behaviour. In this way the skill of 
a forecast can be predicted which is an important physical quantity, see the 
discussion in TENNEKES et al. (1986). 

Finally we have investigated the closure problem for forcing terms which 
account for the effect of the neglected modes and physical processes not incor
porated in the model. This was done by by assuming that the IO-component 
model gives an exact representation of the atmospheric dynamics. A six
component subsystem resolving only the planetary-scale motion, was chosen to 
be a forecast model. To the latter forcing terms were added such that solu
tions of both models are equivalent. In this case it appeared that the forcing 
terms cannot be parametrized by Gaussian coloured-noise processes as was 
done in chapter IV. 



96 

VI. Conclusions 

In this final chapter we discuss the possible contribution of our investigations 
to a better understanding of the dynamics of the atmospheric circulation. To 
that end we return to chapter I where it was was noticed that the midlatitudi
nal circulation has two different scales of motion. We can distinguish between 
planetary-scale motion, characterized by a westerly background fl.ow and 
ultra-long quasi-stationary planetary waves, and synoptic-scale motion having 
shorter length and time scales. Furthermore, as discussed in REINHOLD and 
PIERREHUMBERT (1982) and REINHOLD (1987), the feed-back between these 
two scales of motion leads to the occurrence of quasi-stable preferent fl.ow 
configurations, called weather regimes. These results confirm the earlier, more 
intuitive, ideas of BAUR et al. (1944), HEss and BREZOWSKY (1969) and VAN

DIJK et al. (1974) who used atmospheric data to define large-scale preferent 
circulation patterns over Europe and the Atlantic. So far the existence of 
weather regimes has not been convincingly demonstrated by a systematic data 
analysis, although in some recent studies indications are found that the atmos
pheric circulation has a bimodal structure (DOLE, 1986; BENZI et al., 1986a,b). 

The preceding description indicates that the atmosphere may be seen as a 
chaotic system that irregularly vacillates between different weather regimes. 
Thus, for the development of long-range weather forecast models it is impor
tant to obtain a better understanding of the vacillation properties of the circu
lation. In this tract this problem has been studied by constructing simplified 
models which represent the chaotic properties and vacillatory behaviour of 
atmospheric fl.ow. Next we have investigated whether they provide clues to 
analyse more complicated models as well as atmospheric data. 

A method to derive such models has been discussed in chapter II. First, by 
application of scale analysis, the equations of motion describing atmospheric 
flow are reduced to the quasi-geostrophic barotropic potential vorticity 
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equation. This implies that effects of nongeostrophic phenomena (for example 
gravity waves) and baroclinicity (vertical structure of the fluid) are neglected. 
It is shown that this equation in fact only models synoptic-scale motion. In 
order to take planetary-scale motions into account as well, a planetary-scale 
vorticity balance should be included together will additional contributions in 
the synoptic-scale vorticity balance. However, we have not considered such an 
extension in this tract. 

The solution of the barotropic potential vorticity equation is represented as 
a series expansion in modes, where each mode is an eigenfunction of the 
Laplace operator satisfying the boundary conditions. Projecting the equation 
on a few modes yields a low-order spectral model which is a set of coupled 
nonlinear ordinary differential equations describing the time evolution of the 
modal amplitudes. There is no physical motivation to truncate the mode 
expansions at such low values. Nevertheless, models of extremely low-order 
already show features like multiple weather regimes and chaotic flow, see the 
review in DE SWART (1988). These models can be analysed with techniques 
originating from the theory of dynamical systems. 

In this tract we have studied three different spectral models of the barotro
pic potential vorticity equation for a beta-plane channel geometry. They con
sist of three, six and ten components, respectively. We have investigated their 
internal dynamics as well as their response to random forcing terms represent
ing the effect of the neglected modes and physical processes not incorporated 
in the model. Three different parametrization schemes have been considered: 
a white-noise forcing, a coloured-noise forcing and a forcing computed from 
time series of a higher-order spectral model. A sketch of the cases studied in 
this tract is presented in table 1.1 on page 9. 

The three-component model, considered in section 11.3, is the simplest non
trivial model of the atmospheric circulation. It describes the interaction of an 
externally forced wnal flow mode and a single Rossby wave. The properties 
of its asymptotic states are determined by a physical mechanism called topo
graphic instability. In the absence of mountains one globally attracting steady 
state of the high-index type is found. If topographic forcing is introduced 
waves are generated and three steady states may occur for a range of parame
ter values. Two of these steady states (of high-index and low-index type) are 
stable and one (of transitional type) is unstable. Since their streamfunction 
patterns resemble large-scale atmospheric preferent states, CHARNEY and 
DEVORE (1979) have suggested that the presence of weather regimes is related 
to stationary points of spectral models. 

However, the three-component model is unrealistic in the sense that its 
asymptotic states are always stationary. In order to obtain frequent transitions 
between the steady states, we have added in chapter IV stochastic perturba
tions of Gaussian white- and coloured-noise type to the spectral equations. 
These choices are motivated by data studies of EGGER and SCHILLING (1983, 
1984) where it is shown that this forcing has a coloured-noise character. In 
our model the noise forces the system to visit alternately the two attraction 
domains of the stable equilibria. During a transition the system remains for 
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some time in the neighbourhood of the unstable equilibrium. This suggests 
that the latter may be important for the atmospheric dynamics. The expected 
residence times in domains close to the equilibria measure the persistence of 
the preferent states. They have been calculated by a combination of analytical 
and numerical methods. It appears that the results strongly depend on the 
model parameters, on the noise intensity and, to a less extent, on the correla
tion time of the noise. 

The alternation of preferent states has been described as a discrete-state 
Markov process model. It consist of three states which are related to the 
equilibria of the unperturbed three-component model. Transition probabilities 
have been derived from the expected residence times of the stochastically 
forced dynamical system. The eigenvalues of the master equations of the Mar
kov model yield information about the time scale over which the effect of an 
initial state is present in the system. Furthermore, we have found that to a 
good approximation transition probabilities are independent of time. As a 
consequence it follows that there is no dynamically preferred persistence time 
of a weather regime. This conclusion is in agreement with the observational 
results of DOLE and GoRDON (1983) and DOLE (1986) and also with the model 
results of REINHOLD and PIERREHUMBERT (1982) and LEGRAS and GHIL 

(1985). We have compared our results with those of SPEKAT et al. (1983) who 
use a Markov model of the atmospheric circulation with transition probabili
ties derived from data. It follows that the expected residence times in our 
model are much larger (by a factor of 10) than those observed in the atmo
sphere. 

In order to obtain better qualitative agreement with the atmospheric dynam
ics we have studied in chapter III the effect of including more modes in the 
spectral expansions. The result is a six-component model, containing the pre
vious three-component model as a subsystem. It describes the evolution of 
two zonal flow modes and two Rossby waves. It appears that solutions of the 
subsystem are also solutions of the full model, but their stability properties 
may differ because perturbations have more degrees of freedom. The increased 
number of modes allows for a new type of nonlinear interaction involving one 
zonal flow mode and two different Rossby waves. This has the effect that 
either the zonal flow mode or one of the two waves may become barotropically 
unstable, depending on the width-length ratio of the beta-plane channel. As a 
consequence the asymptotic states of the six-component model can be more 
complicated than stationary points: we have also found periodic, quasi
periodic and chaotic solutions. These results were obtained from a numerical 
bifurcation analysis of the spectral equations, using the software package 
AUTO of DOEDEL (1986) in combination with time integration routines. Two 
routes leading to chaos were identified: a cascade of period-doubling bifurca
tions and the homoclinicity scenario. In the latter case periodic orbits become 
homoclinic for specific parameter values, i.e., they connect a stationary point 
with itself. For nearby parameter values chaotic orbits occur, in agreement 
with the theory of SILNIKOV (1965) and SPARROW (1982). The occurrence of 
chaotic solutions is of interest since they represent finitely predictable motion. 
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A quantitative characterization of chaos is provided by its Lyapunov 
exponents which measure the mean exponential divergence between nearby 
orbits in phase. They have been computed using a method developed by 
WOLF et al. (1985). The reciprocal of the sum of all positive Lyapunov 
exponents defines a time scale on which the flow is predictable on the average. 
However, we have not analysed the chaotic properties in detail since it appears 
that the strange attractors have a limited attraction domain in phase space. In 
this case chaotic orbits remain in the low-index regime forever, while for the 
same parameter value a stable stationary point or periodic orbit of high-index 
type exists. Consequently, although the six-component model has interesting 
properties it cannot show vacillatory behaviour. This is due to the presence of 
only one barotropic triad in the model which allows for either a single zonal 
flow mode or a single Rossby wave to become unstable. 

In chapter IV a few remarks have been made concerning the effect of sto
chastic perturbations on the six-component model. It is demonstrated that the 
method developed to compute expected residence times of the system near 
equilbria of the unperturbed model, see DE SWART and GRASMAN (1987), is 
also applicable to spectral models with dimensions larger than 3. However, 
the use of this method is limited because it can deal with equilibria only, 
whereas the six-component model has also more complicated attractors. When 
the model possesses equilibria only, we found that its statistical properties do 
not differ from those of the randomly perturbed three-component subsystem. 

In order to construct a spectral model with internal vacillation behaviour, 
we have extended in chapter V the six-component model by including two 
additional Rossby waves in the eigenfunction expansions. The resulting IO
component model contains three different barotropic triads of nonlinear 
interactions. This appears to be sufficient to turn all regular solutions 
unstable, provided that both zonal flow modes are externally forced. This 
implies that in this case the three-component model is not a subsystem of the 
full model. Furthermore, although the six-component model is a subsystem, 
its solutions are not solutions of the full model because of the presence of a 
new type of nonlinear interaction involving three different Rossby waves. This 
wave triad provides for a direct interaction between two different scales of 
motion: a planetary scale and a synoptic scale. For a sufficiently large exter
nal forcing, trajectories of the IO-component model move on a strange attrac
tor in phase space and show vacillatory behaviour. Again three preferent 
regimes (of high-index, low-index and transitional type) have been found, 
which are characterized by unstable periodic orbits of the model instead of by 
stationary points. Vacillation occurs on a time scale of the order of months 
whereas on a shorter time scale (order of days) oscillations are present which 
characterize the different weather regimes. We conclude that the IO
component model is a minimum-order quasi-geostrophic spectral model 
describing a flow w~..ich shows transitions between different weather regimes 
and which is predictable for a finite time only. However, this result is based 
on the assumption of a rectangular truncation of the eigenfunction expansions 
in the wavenumber domain. We have calculated the actual number of degrees 
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of freedom of the chaotic flow from the fractal dimensions of the strange 
attractor and found this number to be 8. Indeed, in this case an 8-component 
subsystem of the IO-component model could be selected which allows for a 
global strange attractor and vacillatory rehaviour. Thus, if we drop the condi
tion about the rectangular truncation (which we have not done), the 8-
component model should be considered as a minimum-order atmospheric 
model. 

The regime predictability of the IO-component model has been studied by 
computing the mean residence times of the system in the different flow 
regimes. Using these results the alternation between the regimes has been 
simulated with a 3-state Markov model, similar to the one discussed in chapter 
IV. From this it follows a time scale on which, starting from a given initial 
condition, the Markov process model contains more information about the sys
tem than the stationary probability distribution. A time scale on which the 
flow itself is predictable on the average has been calculated from the sum of all 
positive Lyapunov exponents. Its value of about 4 days agrees with what is 
observed for the atmospheric circulation. However, as discussed by TENNEKES 
et al. (1986), of more interest to meteorologists are the local predictability pro
perties of atmospheric flow. This problem has been investigated by solving the 
linearized error equations along a principal orbit of the IO-component model. 
It was concluded that the largest real part of all eigenvalues of the matrix 
derivative of the vectorfield along the orbit determines the error growth rate 
(which is a measure of predictability), provided that the time scale of error 
growth is small compared to the time scale on which the flow evolves. In our 
model this condition is not met, but it is suggested that the models of REIN
HOLD and PIERREHUMBERT (1982) and LEGRAS and GHIL (1985) may be 
appropriate. In that case the eigenvectors corresponding to the eigenvalues 
with largest real part determine the local geographical distribution of error 
growth. 

Finally, a method has been developed to study the closure problem for the 
forcing terms in a low-order spectral model which represent the effect of the 
neglected modes. We have defined the IO-component model as an exact 
representation of the atmospheric dynamics and considered its six-component 
subsystem as a forecast model. To the latter, forcing terms have been added 
such that its solutions are identical to solutions of the 'exact' model projected 
onto the six-dimensional subspace. It has been demonstrated that these forc
ing terms have a complicated nature and that they cannot be parametrized by 
the simple stochastic processes used in chapter IV. This result is in agreement 
with the findings of LINDENBERG and WEST (1984) and KOTTALAM et al. 
(1987). Furthermore, it is not in contradiction with the results of EGGER and 
SCHILLING (1983, 1984) since the latter authors also include the effect of 
neglected physical processes in their definition of effect of the neglected small
scale motions. 

Summarizing, we conclude that all barotropic models studied in this tract 
have three different weather regimes which are of high-index, low-index and 
transitional type, respectively. However, the regimes have different 
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characteristics in different models. In case an index cycle is simulated the 
mean life times of the regimes are a factor 10 larger than those observed in the 
atmosphere. Moreover, extremely large external forcing values (corresponding 
to an equator-pole temperature difference of more than 150 degrees) are 
needed in order to obtain internally generated vacillation behaviour. We 
expect these imperfections to become smaller if more realistic atmospheric 
models are used. As a first step we note that in barotropic models effects of 
topography are over-estimated because they act directly on the entire fluid 
column. Baroclinic, multi-level models of the quasi-geostrophic potential vorti
city equation give better results at this point. Again multiple equilibria are 
found in low-order systems, but, although the low-index equilibria cannot exist 
without topography, their energy is extracted from the potential energy of the 
mean flow and not from a kinetic energy transfer via the mountain torque 
(CHARNEY and STRAUS, 1980; KALLEN, 1983). The presence of the baroclinic 
instability mechanism causes equilibria to be less stable than in barotropic 
models. As argued in DE SwART (1988), the two-level 20-component spectral 
model of REINHOLD and PIERREHUMBERT (1982) is the simplest model contain
ing all basic physical mechanisms. It allows for the presence of topographic, 
barotropic and baroclinic instability as well as the occurrence of wave triad 
interactions. This system also alternately visits three pref erent weather regimes 
and shows a clear distinction between a quasi-stationary planetary scale and a 
transient synoptic scale. However, again we encounter the problem that an 
unrealistically large external, thermal forcing(> IOOK over 5000km) is required 
in order to obtain vacillatory behaviour. Moreover, the characteristic life times 
of the weather regimes are still too large compared to observational results. 
We argue once more that these imperfections are due to the severe truncation 
in both the horizontal and vertical direction. A better description of the circu
lation is expected from multi-level high-resolution models. However, they are 
difficult to analyse for their structure is extremely complicated. Alternatively, 
we may study lower-dimensional spectral models which include an appropriate 
parametrization of the effect of the neglected small-scale motions. 

In conclusion, we think it is useful to study both deterministic and stochasti
cally forced spectral models of the atmospheric circulation for various horizon
tal and vertical truncation numbers. The mathematical analysis of these sys
tems may give insight in the qualitative dynamics of the model, such as the 
existence of preferent regions in phase space and transitions of the system 
between these regions. By combining physical motivations and modem 
mathematical techniques it may be possible to enlarge our knowledge of the 
dynamics of the atmospheric circulation. 
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Appendix A 

Order estimation of ao. 1az in the atmosphere 

From (2.22) it follows that 
- 2- -oO. o p. _ d I dOs op. I dOs 
oz = oz2 P• di ( Os di ) oz Os di ' 

(Al) 

with the tildes referring to nondimensional variables. Now 

I dO H d I dO H 2 d dO ___ s = -N2, -(---s) = --(N2), N2 = _g__s' (A2) 
Os di g di Os di g dz Os dz 

where N is the Brunt-Vaisala frequency. In GILL (1982) it is remarked that N 2 

varies between 10-4s-2 in the troposphere up to 4.10-4s-2 at the lower 
bound of the stratosphere. Since H = I a4 m and g = IOms - 2, it follows 

1 dOs d 1 dOs 
--- = e{t:), -(---) = e(t:). (A3) 
Os di di Os di 

Furthermore, 

o2p. n2 o2p. 
oz2 - Fps az2 

and from table 2 of BRANSTATOR (1987) it follows o2p.loz2< 
/(10km)2 hence with F=0.1 and Ps = H>5 Nm- 2 the result is 

o2p. 
-2- = e(t:). 
oz 

Substituting (A3) and (AS) in (Al) we find 

oo. 
oz = e{t:). 

(A4) 

10 mbar 

(AS) 

(A6) 

Hence this contribution may be neglected in the derivation of (2.27) from 
(2.23e). 
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Interaction coefficients 

for the eigenfunctions (2.49a,b) 

Substitution of (2.49a,b) in (2.41) gives 
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Cjlm = 0, (Bl) 

except for 
A) j = (O,ji), I = (/1,/2), m = (-l1,m2); h +12 +m2 odd, then 

Cjlm = iY2l1 {(/2+m2) [. 1 - . l l (B2) 
'1Tb }2 +12 +m2 12-l2-m2 

-(/2-m2)[ 1 - 1 ]} ji+l2-m2 ji-l2+m2 ' 

B) j = (}1,h), I= (/1,/2), m = (m1,m2),j1 +11 +m1 =0,ji+/2+m2=0, 
then 

Cjlm = 

Furthermore 

bJI = 0 

except for 

then 

(B3a) 

(B3b) 

(B3c) 

(B4) 

(B5) 

Also coefficients which follow from (B2), (B3) and (BS) by permutations of 
indices j,l and are nonzero, see (2.43). 
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Appendix C 
I 

Equations of the 10-component model 

In chapter II the following ten-coefficient model of the quasi-geostrophic baro
tropic potential vorticity equation (2.34) is derived: 

:1:x;-=- - - - - - -.- - -r~x~ --c<x,-=-xrn, : 
1:~2= -(a11x,-,811)x3 -Cx2 ; -811X4X6 !-p11(xsxs-x6x1), 
:1xi= (aux, -.B11)x2 -rux, -Cxi __ 1 +811X4X5 : +p11(X5X1+x6xs), 
:_x4-;;---- 'Yi2X6 -C(x4-x4) +£1(X2X6-X3X5):+e2(X1Xrn-XgX9), 

! X5 = -(a,2x, -,812)x6 -Cxs -8,2X3X4 ! +p,i(x2xs-xix1) +r'12Xs, 
: .X6 = (a12X1 -,812)x5 --y,2X4 -Cx6 +812X2X4 : -p,i(X2X7 + X3Xg) --y'12X7 , 
x1= -(a2,x,-.Bi,)xs -Cx1 -Bi,x4X10 -Pi,(X2x6+xixs) +r'2,x6, 
.Xs= (a2,x,-,82,)X7 -Cxs +821X4X9, +P2,(X2X5-X3X6) -r'21X5, 
X9= -(a22x,-.Bn)x10 -Cx9 -8i2X4Xs, 

xw= (a22x, -.Bi2)x9 -Cxw +8nx4X7, 

advection topo- forcing/ advection 
graphy dissipation 

where 

8V2n m2 n2b2 +m2- l 
/Jnm anm = --.,,- 4m2 -1 n2b2+m2 

~nm 
64V2n n2b2-{m2- l} 

* 
15.,, n2b2+m2 Ynm 

16 V2n 
t: = n 5.,, Ynm = 

_ 9 {n -2}2b2 -{m -2}2 
, Y'nm Pnm - 2 n2b2 +m2 

wave triad 

fl.nb 2 

n2b2+m2 ' 

4m V2nby_ 
4m2-l 'IT 

4m 3 V2nby_ 

topo
graphy 

4m2 -1 '1T(n 2b2 +m2) ' 

3by_ 
4(n2b2 +m2). 

It contains a six-component subsystem, denoted between the dashed lines, and 
a three-component subsystem denoted between the dotted lines. The relation 
between state variables and modal amplitudes of the streamfunction is given in 
(2.51). The anm-terms describe interactions between the (0,1) and (n,m) 
modes, the ~nm- and t:n-terms represent interactions between the (0,2), (n, 1) 
and (n, 2) modes and the terms involving Pnm are interactions between the 
(1,1), (1,2) and (2,1) modes. Furthermore the /Jnm-contributions represent 
planetary vorticity advection and the y;m, Ynm and y' nm-terms the various cou
plings between fl.ow and topography. 
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Appendix D 

Bifurcation analysis of spectral models 

Consider a spectral model which is a dynamical system of the type (1.1). We 
shall briefly discuss that the existence of strange attractors can be investigated 
from a systematic bifurcation analysis of its stationary points and periodic 
orbits. For more details we refer to GucKENHEIMER and HOLMES (1983) and 
THOMPSON and STEWART (1986). The smooth vectorfield f,,.(x) generates a 
phase flow q/:R➔RN. Then x(t)=qlx0 defines an orbit or a trajectory of (1.1) 
in phase space having the initial condition x(O)=x0 • It is well-known that 
these solutions exist and are unique. The spectral models in this tract obey 

Vj,,.(x) = -a ; a>O, (DI) 

indicating that small volume elements in phase space always shrink. Moreover 
it can be shown that solutions are bounded. 

Stationary points x satisfy 

J,,.<x) = o (D2) 

and the system is said to be in equilibrium or in a steady state. The dynamics 
of small perturbations x' on this state is described by 

x' = D·x' + o(lx'I, (D)ij = aJ,,.,;l'oxj I A • (D3) 
x=x 

As long as the eigenvalues {A;}f=I of matrix D have no zero real parts they 
govern the stability of x. If all real parts are negative x is stable, whereas if at 
least one eigenvalue has a positive real part the stationary point is unstable. 
Since the system obeys (DI) the sum of all eigenvalues equals - a, which is 
negative. Consequently unstable equilibria are of the saddle-point type: they 
have a stable manifold W8(.x) as well as an unstable manifold W"(x), defined 
as 

W8(.x) = {xERNllf>1X➔X for !➔oo}, 

W"(x) = {xERNllf>1X➔X for t➔ -oo }. 
(D4) 

Near the stationary point W8 (.x)(W"(x)) is spanned by the eigenvectors 
corresponding to the eigenvalues of matrix D with negative (f;ositive) real part. 
It may occur that a stable manifold of a statjonary point x ,) is contained in 
an unstable manifold of a stationary point xU> or vice versa. If i = j(i=/=j) this 
gives rise to homoclinic (heteroclinic) connections, see figure DI. 
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a b 

FIGURE DI. Visualization of homoclinic (a) and heteroclinic connections (b). 

A procedure to compute branches of stationary points as a function of one 
control parameter µ.1 numerically is described in KELLER (1977). The method 
is implemented in the package AUTO of DoEDEL (1986) which is used in this 
tract. Generally, in this way we will encounter critical parameter values where 
one.or more real parts of the eigenvalues of matrix D become zero. Near these 
bifurcation points we can no longer neglect the o (lx'I) contributions in (D3). 
Important information about the behaviour of the dynamical system near such 
a point is provided by two theorems. The first states that the local behaviour 
is governed by the projection of the system onto the center manifold, which is 
locally spanned by the eigenvectors corresponding to the eigenvalues of D with 
zero real part. The second theorem states that the projected system can be 
transformed into a limited number of standard (normal) forms. In case of one 
control parameter µ.1 (codimension-1 bifurcations) there are four normal forms 
for the local bifurcations of stationary points. They read 

X1 = JI.I +a.xi 
X1 = JJ.1x+axi 
X1 = JJ.1X+ax1 

: saddle-node bifurcation, 
: transcritical bifurcation, 
: pitchfork bifurcation, 

(D5a) 
(D5b) 
(D5c) 

(D5d) 

Here a can have the values -1 or 1, which refer to a supercritical and subcrit
ical bifurcation, respectively. The behaviour of the solutions of (D5) for 
a= -1 is shown in figure D2. The first three types correspond to a real eigen
value passing through zero at µ1 = 0. In case of the saddle-node bifurcation 
(.x 1,µ.i)=(0,0) is not a singular point of the vectorfield since its derivative with 
respect to µ.1 is nonzero. Therefore it is called a turning point whereas in all 
other cases (x,µ1)=(0,0) is a bifurcation point. The pitchfork bifurcation 
requires invariance under the transformation x 1 ➔ - x 1. Finally the Hopf 
bifurcation generates a periodic orbit which at µ.1 = 0 has amplitude zero and 
period T=2w/'A_(i), where +"A_(i) are the imaginary parts of the eigenvalues of D 
with real parts zero. 
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a C d 

FIGURE D2. Bifurcation diagram of the supercritical saddle-node bifurca
tion (a), transcritical bifurcation (b), pitchfork bifurcation (c) 
and Hopf bifurcation ( d). A solid line denotes that the solu
tion is stable while a dashed line refers to an unstable solu
tion. 

However, more complicated situations may occur, where more than one con
trol parameter is needed to describe the bifurcation adequately. A frequently 
occurring example is the case of a saddle-node bifurcation where the quadratic 
terms become nonzero (a=O in (DSa)). Then the generalized normal form 

X1 = µ.1+JJ.ix1+axf (D6) 

should be considered. This unfolding of the saddle-node bifurcation describes 
a codimension-2 bifurcation since we now have two control parameters instead 
of one. The set of bifurcation values (µ.1,µ2) consists of two branches describ
ing saddle-node bifurcations which coalesce at the cusp point {µ.1,µ2)=(0,0). 
Other complicated situations occur when matrix D in (D3) is more degen
erated, for example that one real eigenvalue as well as the real parts of the 
complex conjugated eigenvalues become zero for a specific parameter value. 
As shown by LANGFORD (1981) the bifurcation structure may then involve 
homoclinic and heteroclinic connections, which are associated with a direct 
transition from regular to chaotic solutions. 

We next consider the stability of T-periodic orbits y(t) of (1.1), thus 
y(t + T)=y(t). The dynamics of small perturbations on this orbit is given by 

(D7) 

Since A (t) is a periodic matrix the linear part of (D7) is solved by defining 
«I>(t) as a fundamental matrix, having the elements 

[«I>(t)]ij = ax;1axAy(t)· (D8) 

The columns of this matrix contain N independent solutions of the linearized 
system in (D7). The eigenvalues {P;}f=I of «I>(T) are called Floquet multi
pliers. One of them (say p1) is always equal to one and is associated with per
turbations along the periodic orbit. As long as all other multipliers have abso
lute values not equal to one they govern the stability of y(t). If all absolute 
values are smaller than 1 the periodic orbit is stable, wheres if at least one of 
the multipliers has absolute value larger than one y(t) is unstable. A numeri
cal procedure to compute periodic orbits as a function of a control parameter 
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is discussed in SPARROW (1982). Besides we have used the continuation rou
tines of the package AUTO which are based on a different approach, see 
DOEDEL (1986) and DOEDEL and KERNEVEZ (1987). 

Bifurcations of periodic orbits can be analysed in a similar way as discussed 
for stationary points. In case of one control parameter there now appear to be 
five normal forms. Three of them correspond to a real Floquet multiplier 
passing through 1 and are again called a saddle-node, transcritical and pitch
fork bifurcation. Their bifurcation diagrams are similar to those of figure 
D2a,b,c, except that .x I should be replaced by the period T of the orbit. If a 
real Floquet multiplier passes through - 1 a period doubling bifurcation 
occurs. In the supercritical case, see figure D3a, we have for µ1 <0 a stable T
periodic orbit. It becomes unstable at µ1 =O, there by generating a stable 2T
periodic orbit. The final possibility is that the absolute values of two complex 
conjugated multipliers become 1 at µ1 =0, called a torus bifurcation. This 
situation corresponds to a transition from stable periodic to stable quasi
periodic motion, where the latter is characterized by two frequencies Ji and h 
with / 1 / h irrational. 

FIGURE D3. Phase flow behaviour for µ1 <0 (left) and µ1 >0 (right) in case 
of the supercritical period-doubling bifurcation (a) and torus 
bifurcation (b ). Here ~ is a plane chosen such that it is inter
sected by the orbits. 

There are several bifurcation scenarios which lead to the generation of 
strange attractors with associated chaotic motion. A frequently occurring 
example is the period-doubling route, where in a finite interval of the control 
parameter domain an infinitely long sequence of period-doubling bifurcations 
occurs, which beyond the accumulation point µ~ result in chaotic motion. 
Another way to obtain chaos is that a periodic orbit becomes homoclinic such 
that it connects a saddle point with it self. SILNIKOV (1965) first showed that 
for parameter values close to the homoclinic point chaotic orbits exist. This 
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scenario is discussed in more detail in chapter III of this tract. A third 
scenario is the Ruelle-Tak.ens-Newhouse route in which chaos is obtained after 
one Hopf bifurcation and two torus bifurcations. This scenario is described in 
chapter V. Thus it appears that consider.:ng bifurcation properties of station
ary points and periodic orbits is a way to investigate the generation of strange 
attractors. 
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Appendix E 

Stability of zonal flow profiles 

In lIAARsMA and OPSTEEGH (1987) a method is developed to study the stabil
ity of zonal flow profiles. In this appendix the theory is extended to forced 
and dissipative systems, as well as to more complicated flow profiles. It can 
then be applied to the barotropic spectral models of appendix C. 

Consider the bjlTotropic potential vorticity equation (2.34) for y=O and 
,fl =,f/(y). Then i{l=,fl is a stationary solution of the equation. Its stab,.ility is 
investigated by considering the dynamics of small perturbations i{I' on i{I. We 
obtain 

(El) 

In the ,8-plane channel with the boundary conditions (2.48) each solution of 
the barotropic potential vorticity equation can be expanded in eigenfunctions 
defined in (2.49). In this case, because of (El), we have 

• r,;- oo • }J!_ l"11 
u • = v L. ~ ui sm( b ) ; uj = -b , 

/=I 

(E2a) 

"1' = vie-iat{ f ['Vm' cos(.!!11:..) 
m=I b 

+ n~I ['Vnm'einx + ('Vnm're-inx]sin( ~y )]}, (E2b) 

where ui and i{I{ are real coefficients, while 'Vnm' are complex amplitudes. 
Furthermore, cc denotes a complex conjugation. We ask for conditions result
ing in growing perturbations, i.e. 

Im(o)>O. (E3) 

Substituting (E2a,b) in (El) and projecting on the spectral components, we 
obtain 

(E4a) 



with 
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m2 
{(o+iCXn2 +--;;-)n/J}i/lnm' 

00 00 q2-J2 
+ ~ ~nui(n2 -l b2 )cm1qi/lnq'=0; n,m=l,2, ... , (E4b) 

q=ll=l 

2qV2 
'IT 

CmJq = 
0 

{ (m-~-q2 - (m+~-q2 }, 

if m +I +q odd, 
if m +I +q even. 

(ES) 

We now apply this method to the six-component model discussed in chapter 
III. Here· m, I and q can take on the values 1 and 2, while n = 1. Eqs. (E4b) 
reduce to 

[(o+ iC),cy + /J-a1 ui Win' - ~ u21/J12' = 0, (E6a) 

- ~u2(1-1e~+1er)i/Ju'+[(o+iC)1e~+/J-a2uiW,12' = 0, (E6b) 

where 

2 1 1 2 1 4 "• = + - 1C2= +-, b2 ' b2 

32\/2 3 8\/2 .. V2 * (E?) 
a1 - 15,,, (1 + b2 ) , a2 - 3,,, , u2 - 64 15,,, u2 · 

For nontrivial solutions of (E6a,b) the determinant of the coefficient matrix 
must be zero. This results in the quadratic equation 

(ES) 

where 

µ. = o+iC , a1 = (/J-a1ui)1ey+(/J-a2ui)1et 
l 2 (E9) 

a2 = ICTIC~ ' ao = (fJ-a1uiX/J-a2ui)-4u2(1-,c~ +1er). 

From (E3) and the solutions of (E8) it then follows that the zonal flow profile 
is unstable if 

af-4aoa2:E;; -(2a2CY. (EIO) 

Solving for u2 gives 

.. 2 (2,cy,c~C)2 + {/J(,c~ -,cr)-(a21e~ -a1 ,cr)ui }2 
u2> (,c~-,cy-l),cy,c~ (ui,cf• (Ell) 

As a numerical example we have taken b = 1.6, C = 0.1,/J= 1.25, uj =Xj =4 
and we ask for the critical amplitude 
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(El2) 

see (E2a) and (E7). Substituting the values in (El 1) and developing (El2), we 
obtain 

(El3) 

This agrees with the results of a numerical bifurcation analysis of the spectral 
model for the same parameter values. 

For nonzero y we still expect the theory presented here to have some vali
dity for the high-index equilibrium. Although the flow is no longer purely 
zonal, the wave amplitudes are small compared to the zonal flow components. 
Because the waves have extracted energy from the zonal flow, the effective uj 
in (El 1) will be smaller. Since 

2_ 2- 8V2 (b2-2)(b2+6) (El4) 
a21C2 a1 "1 - 15'1T b4 

is positives for b = 1.6 we expect the effective (0,2) velocity component to be 
somewhat larger than in case y=0. This is confirmed by numerical experi
ments, which show for y = 1 a (0,2) critical amplitude Ix 4 I = 0.393 with a 
corresponding critical forcing lx4,c I = 0.402. 
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Appendix F 

Numerical integration of stochastic differential equations 

Consider the finite difference scheme of (4.6), which reads 

x(t +At) = x(t) + f/J(x(t))At + t:~x(t))·AW(t). 

For numerical simulations we make the substitution 

AW(t)=W(t+At)-W(t) = B(At)G. 

(Fl) 

(F2) 

Here the components of Gare mutually independent Gaussian random genera
tors with zero mean and unit standard deviation, a choice based on the proper
ties of the Wiener process. Furthermore B(At) is a function of the time step 
At which has to be chosen in such way that the parametrization (F2) does not 
affect the variances of the increments <ax(t)ax(t)> in (Fl) i.e. 

<AW(t)AW(t)> = B2(At)<GG> (F3) 

must hold. Using the property 

<W(t)W(t+-r)> = min(t,t+T)l, (F4) 

where / is a unity matrix, we find that the left-hand side of expression (F3) 
equals At/. For the chosen random generators < GG > = I, and thus from 
(F3) 

B(At) = vii. (F5) 

Hence the numerical scheme for equation (Fl) reads 

x(t + At) = x(t)+ //J(x(t))At +t:~(x(t))·G ...fit. (F6) 

Finally we remark that there are two conditions on the time step. First, 

At<< 1, (F7) 

in order to avoid instabilities due to the deterministic integration. Secondly, in 
the limit t:➔O we except the variance of the difference between the stochastic
and deterministic trajectories to be zero. Therefore we must also require 

At = o(t:); t:➔O. (F8) 
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