

CWI Tracts

Managing Editors

J.W. de Bakker (CWI, Amsterdam)
M. Hazewinkel (CWI, Amsterdam)
J.K. Lenstra (CWI, Amsterdam)

Editorial Board

W. Albers (Enschede)

P.C. Baayen (Amsterdam)
R.J. Boute (Nijmegen)

E.M. de Jager (Amsterdam)
M.A. Kaashoek (Amsterdam)
M.S. Keane (Delft)

J.P.C. Kleijnen (Tilburg)

H. Kwakernaak (Enschede)
J. van Leeuwen (Utrecht)
P.W.H. Lemmens (Utrecht)
M. van der Put (Groningen)
M. Rem (Eindhoven)

A.H.G. Rinnooy Kan (Rotterdam)
M.N. Spijker (Leiden)

Centrum voor Wiskunde en informatica
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

The CWI is a research institute of the Stichting Mathematisch Centrum, which was founded
on February 11, 1946, as a nonprofit institution aiming at the promotion of mathematics,
computer science, and their applications. It is sponsored by the Dutch Government through
the Netherlands Organization for the Advancement of Pure Research (Z.W.0O.).

CWI Tract b

Dataflow computation

A.P.W. B6hm

4

Centrum voor Wiskunde en informatica
Centre for Mathematics and Computer Science

1980 Mathematics Subject Classification: 68A05, 68F10, 68F20.
1983 CR Categories: C.1.3, D.3.2, F.1.1, F.2.1, F.3.2.
ISBN 90 6196 272 2

Copyright © 1983, Mathematisch Centrum, Amsterdam
Printed in the Netherlands

CONTENTS

CHAPTER ONE PARALLEL COMPUTERS AND DATAFLOW COMPUTING
1.1. INTRODUCTION

1.2. PARALLELISM

1.3. PARALLEL COMPUTER ARCHITECTURES

1.4. DATAFLOW NETS

1.4.1. Re-entrant use of dataflow subnets

1.5. DATAFLOW ARCHITECTURES

1.5.1. An Example: The Manchester Dataflow Machine
1.5.2. Extensions to the Manchester Dataflow Machine
1.5.2.1. Global memory

1.5.2.2. Matching functions

1.5.2.3. A higher level Manchester Dataflow Machine
1.6. PROGRAMMING LANGUAGES FOR DATAFLOW MACHINES
1.6.1. Single Assignment Languages

1.6.2. Other Languageé

1.7. SEMANTICS OF DATAFLOW LANGUAGES

1.8. DATAFLOW ALGORITHMS

1.8.1. Sequential algorithms

1.8.2. Explicitly parallel algorithms

1.9. SUMMARY OF THE THESIS

CHAPTER TWO FUNDAMENTAL CONCEPTS IN DATAFLOW COMPUTING
2.1. INTRODUCTION

2.2, A BASIC MODEL FOR DATAFLOW COMPUTING

2.3. FUNCTIONALITY

2.4. PIPELINING

2.5. UNIVERSALITY

2.6. TURING MACHINE SIMULATION

2.7. MODELLING MEMORY

2.8. MODELLING THE MANCHESTER MATCHING FUNCTIONS
2.9. MODELLING PETRI-NETS

13
14
15
17
17
17
19
20
20
22
22
23
23
24
24

26
27
31
35
38
46
48
54
57

T

CHAPTER THREE

3.1.
3.2,
3.2.1.
3.2.2.
3.2.3.
3.3.
3.3.1.
3.3.2.
3.3.3.

LANGUAGE: DYNAMIC NETWORKS OF PROCESSES

INTRODUCTION

THE LANGUAGE DNP: DYNAMIC NETWORKS PROCESSES
Syntax format

DNP - static part

DNP - dynamic part

AN EXPERIMENTAL IMPLEMENTATION OF DNP
Introduction

The translation of DNP to C

Appendix: the compiler and the run-time system

CHAPTER FOUR THE COMPLEXITY OF DNP PROGRAMS

4o,
4.2,
4.2.1
4.2.1
4.2.2.
4.,2.2
4.2.3
4.3.
4.3.1.
4.3.2.
4.3.3.
4.4,

4.5.
4.6.

INTRODUCTION

SOME DNP PROGRAMS AND THEIR COMPLEXITY
A sorting proéram

Analysis of pipeline sort

Matrix multiplication

Analysis of Matmul

Divide-and-conquer algorithms
LIMITATIONS OF DNP

Changing the channel configuration

Contraction

It is impossible to create all computation graphs in DNP

SOME DEFINITIONS AND THEOREMS FROM THE THEORY OF
NP-COMPLETENESS

DNP PROGRAMS FOR NP-COMPLETE AND PSPACE-COMPLETE PROBLEMS

DNP PROGRAMS AND N-RAMS

THE DESIGN AND IMPLEMENTATION OF A HIGH LEVEL DATAFLOW

62
63
63
65
68
72
72
75
80

101
104
105
11
122
131
133
144
144
145
147
157

159
161

CHAPTER FIVE THE CORRECTNESS OF DNP PROGRAMS

5.1.
5.2.

5.3.
5.4,
5.5.

REFERENCES
INDEX

INTRODUCTION

CORRECTNESS OF PIPELINE SORT WITH SINGLE NUMBERS
INTERNALLY

CORRECTNESS OF MATMUL

CORRECTNESS OF DIVCONQ

REMARKS

165
169

171
181
191

192
202

<

.

CHAPTER ONE

PARALLEL COMPUTERS AND DATAFLOW COMPUTING

1.1, INTRODUCTION

In the world of computers and computation there are two phenomena that
should be in balance but that are not: the supply of versus the demand for
computing power. An impressive choice of computing machines is now available.
Their possibilities lead people to tackle problems larger and more complex
than they ever dreamed of solving before. But when working on these problems,
people find out that they need more computing power than there is available.
Examples of such problems occur in the fields of meteorology, image processing,
global models, windtunnel simulation and the simulation of computer systems

([43],0641).

It is a recurring concern of computer manufacturers and researchers
to find ways of designing faster machines. The speed-up that we have seen
during the first generations of computers has been almost invariably brought
about by improvements in the technology used for the traditional hardware
components. In the traditional von Neumann architecture [15] there is typi-
cally one central processing unit connected to one memory, with code and
data traveling between them over one channel. Later computers implement the

same basic architecture using faster components.

The time has come that the physical limits of this kind of computers
are reached. As a compelling example, Hossfeld [43] shows that in a typical
family of machines (IBM/Amdahl) the central processing unit has become ten
times faster in the nineteen sixties but only twice as fast in the nineteen

seventies (see figure 1.1.1.),

megacycles
per
second V7 V%
°
30 4 V5/6 °
© 370-195
© 360-195
20 4
0 360-191
10 4
o 360-75
0 360-50
1965 1970 1975 1980

Figure 1.1.1. CPU speed of a typical family of machines

Hockney and Jesshope [40] show that in the period of 1950 to 1975
computer components became a 1000 times faster as measured by gate delay time,
whereas whole central processors became a factor of 105 faster as measured
by multiplication time. The additional speed up was made possible principally

by the introduction of parallelism in these basically sequential computers.

Further improvements in computer speed are conceivable only through
a radically different approach to computer architecture. This change will
lead from basically sequential computer architectures to either parallel
(tightly coupled) architectures or distributed (loosely coupled) architec-

tures. We shall focus our attention on the former.
1.2, PARALLELISM
Instead of executing computing tasks one by one : the sequential way,

they may often be executed simultaneously : the parallel way. Even when there

are more actions involved because of communication and synchronization the

overall compution is likely to go faster, provided that the problem to be
solved allows a "parallel" solution at all and that sufficiently many pro-
cessors are available. Many problems are indeed parallel by nature and compu-
ter architects and programmers should be able to make use of this inherent

parallelism.

It is not surprising, however, that the sequential way has been pre-
ferred for many years: it is easier to understand and (hence) to program,
and it has been enforced by the existing hardware. Parallelism, on the other
hand, is much harder to understand and may be difficult to capture. The
parallelism in a problem may depend on the run-time values of the data, and
an additional difficulty is that the amount of communication needed in a
parallel algorithm may exceed the amount of calculation in a sequential algo-
rithm. Fortunately the required parallel mathematics [87] is now steadily de-
veloping and for many problems in e.g. the area of scientific computing the

achievable speed-ups through parallel methods are beginning to be understood.

With the advent of highly parallel computer architectures at affordable
costs and the maturing insight in the art (and even science) of computer pro-

gramming, it has become feasible to think parallel in programming.

1.3. PARALLEL COMPUTER ARCHITECTURES

As there is abundant information about parallel computer architectures
in the literature ([28],[78],[56],[84]), this overview will be kept short.
Underlying each computer architecture there is a model of computation, i.e.,

a more or less formalized idea of how a computation is to proceed (figure
1.3.1.). For the von Neumann architecture this model consists of iteratively
fetching and instruction from memory, decoding it, fetching scalar operands,
executing the instruction, and storing a scalar result back to memory. An im-
provement of this approach is to separate some of these functions and to repli-
cate them in hardware so that they can operate in parallel by looking ahead

and executing several instructions simultaneously. The classical example is

the design of the CDC6600 [80]. If, like in the 6600, the number of functional

units is not too large, the problem of synchronization and interconnection

MODEL OF COMPUTATION CORRESPONDING ARCHITECTURE

A. Sequential control Al. Von Neumann
on scalar data A2, Multifunction CPU

A3. Pipelining

B. Sequential control B1. SIMD vector processors
on vector data B2. SIMD processor arrays

C. Independent, commu— C1. MIMD shared memory
nicating processes multiprocessors

C2., MIMD ultracomputers (net-

works of small machines)

D. Applicative or func- D1. Reduction machines

tional computation D2. Dataflow machines

Figure 1.3.1. Computer architectures and their underlying

computation model.

of these units remains manageable. Also by looking ahead a limited number of
instructions, say 3, the possible number of computation orders remains small

enough to handle.

A second improved implementation of the sequential control, scalar
data model of computation is pipelining. Instead of using the same hardware
to execute the basic CPU cycle (or any other decomposable task) the cycle is
unwound: for every step the appropriate hardware is provided separately ([40],
[82]). The gain of this approach depends on the number of steps into which

a task can be decomposed.

SIMD (single instruction, multiple data) architectures [81] are based
on a computation model where the unit of data is a vector or a matrix. SIMD
vector processors, such as the CRAYs and the CYBER205, are fast scalar ma-
chines extended with special instructions for handling vectors. In SIMD pro-

cessor arrays, such as the ICL-DAP, there is one control unit but the arith-

metic-logic unit (ALU) is replicated many times. The ALU-s are interconnected
in a regular pattern, each has its own local memory and performs the same
instruction at the same moment. Such an action may be manipulating local

data or communicating with direct neighbours by sending or receiving data.

In a third model of computation there are many independent processes,
all operating on their own data. The processes communicate either directly
or via shared memory. If the programs in these processors are fixed and
simple they can be implemented in VLSI. Systolic arrays [57] are an example
of this kind of organisation. In a general purpose machine, complete, inde-
pendent processors are put together. They communicate with each other by means
of a processor-processor or a processor-memory interconnection network. This
MIMD (multiple instruction, multiple data) approach is by far the most flexi-

ble, optimistic but difficult one.

A refinement of the third model is the applicative or functional model
of computation [8]. It compromises demand driven and data driven computation
[84]. In a demand driven computation there is a set of functions which are
applied when their results are needed, and a computation starts by demanding
the final results. Machines whose architecture is based on this model of com-
putation are called reduction machines. A program in such a computer is an
expression or function-call demanding the final result. Execution involves
evaluating and rewriting this expression. The lazy evaluation concept as

known from programming language theory [30] is especially relevant here.

In a data driven computation functions are activated by the availabi-
lity of their arguments. Since data driven computations are our main interest
here, we will elaborate in some detail their underlying data driven model of

computation: dataflow nets.
1.4, DATAFLOW NETS
Dataflow nets are two-dimensional programs expressing the data dependency

between operations. In its most primitive form, a dataflow net is a directed

graph in which the nodes represent processing elements and the edges represent

data paths. Some data paths will not start at a node (these are the input-—
lines of the net) or end at a node (the output-lines of the net). Data is
presented in tokens. Tokens are indivisible, but can be distinguished through
an interpretation. They can be transmitted over existing data paths, and
processing elements digest them from their>incoming edges and send new tokens
over their outgoing edges. One cycle of a processing element normally consists
of the consumption of one token from each incoming edge, followed by the
production of one token on each outgoing edge. The execution of a cycle is
very similar to a firing in the terminology of Petri-nets [69]. The main
difference is that processing elements are operators, i.e., token-mappings

of some variety.

No assumptions are made about the absolute or relative speeds of the
processing elements or about when processing elements take in a new batch
of tokens, except that cycles and token transports take finite time. Dataflow
computation is completely asynchronous, it implies that tokens may have to
queue along a data path if the node at the other end is not processing fast
enough or if other inputs of the node are not yet available. However, in
some models no queueing is actually permitted and so processing elements will

not fire unless all outgoing edges are free.

The many options in specifying a dataflow net have lead to a number
of different models. In all models, except in Kahn's [46] and Wadge's ([86],
[26]), the processing elements are token-level functional. Token—level func-
tionality means that given the same tokens on its incoming edges, an operator
will always produce the same tokens on its outgoing edges, independent of the
relative times of arrival of incoming tokens and of the state of the computa-
tion. Since dataflow computations are asynchronous, no functionality is guar-

anteed at the global (input/output) level unless proven (see chapter two).

Figure 1.4.1. shows a dataflow net that calculates x2—4x using primitive
boxes DUP (which duplicates any incoming token to both outputs), 42 (which
produces the square of an incoming value), *4 (which multiplies an input by 4),

and - (which subtracts the right input from the left input).

DUP

42 *4

A A

Figure 1.4.1. A dataflow net calculating x2— 4x.

An execution of the net is pictured in figure 1.4.2., where dots (@) represent

the tokens as they are generated and move through the net.

AR\ LA / N\ / \
N 7 # 7

Figure 1.4.2. An execution of a dataflow net.

Karp and Miller [47] have shown that (dataflow) nets with nodes obey-
ing certain rules are deterministic, i.e., the result of executing such a
net is independent of the order of the firing of the nodes. The nodes must

obey the following rules:

(1) They must consume a fixed number of tokens from their input edges.
(2) They must produce a fixed number of tokens on their output edges.

(3) They must be token-level functional.

These rules are rather severe, though. It is, for example, impossible
to have conditional flow of data or loops in these nets. Therefore, all
versions of the basic dataflow model that have been developed relax one or
more of these rules. If, depending on the value of the input tokens, a subset
of the output edges can be selected for firing, it becomes possible to have
conditional flow of data. This type of node is called a SPLIT node. In its

basic form it has two input edges and two output edges, as in figure 1.4.3.

lv
C
SPLIT <
»A ‘\

Figure 1.4.3. A SPLIT node.

A token entering via the c-edge has a boolean control value. If the
c-token is TRUE, the v-token is copied to the l-edge, otherwise the v-token

is copied to the r-edge. With a SPLIT node either ome of two subnets can be

’

SPLIT (@—

activated, as in figure 1.4.4.

Figure 1.4.4. Conditional activation of subnet L or R.

In order to make the result of the L or R subnet available to a subnet
F, a node is needed that selects a subset of its inputs, i.e., that joins

the output edges of the L and R subnets. Such a node is called a MERGE (or
JOIN) of which there are two types:

(1) A MERGE node with two data input edges 1 and r, and one control input
edge c. The control value determines whether a token must be consumed

from the l-edge or from the r-edge. The 1 or r token is copied to the
output edge (see figure 1.4.5.).

1 ‘{r
MERGE [%

'

Figure 1.4.5. A deterministic MERGE node.

(2) The second type of MERGE node does not have a control input edge (see
figure 1.4.6.),

1 \ / r
NDMRG

'

Figure 1.4.6. A non-deterministic MERGE node.

and which input edge the token is to be taken from is decided in some

other way. This type of MERGE node is called non-deterministic or
time dependent.

For the moment we will only consider the deterministic MERGE. With SPLIT and
MERGE we can now program a conditional assignment such as

2z := if ¢ then f(x) else g(x) fi

as shown in figure 1.4.7.

| |
SPLIT [« DUP
g

MERGE [@——

\

Figure 1.4.7. A conditional assignment.

A loop such as
repeat x := f(x) until g(x)

can be translated into dataflow as shown in figure 1.4.8.

init x
\ / TRUE

MERCE ¢ @———

DUP

SPLIT [®| DUP —

Yy \

result x intermediate x

Figure 1.4.8. A loop.

In the net of figure 1.4.8. it appears that we need an initial control
value (a "marking") for the MERGE node. We cannot let the first control value
come from outside the loop, because then we have to merge the control value
from the "outside" and the one from the "inside", which leaves us with the
same problem. This phenomenon does not occur when non-deterministic MERGE

nodes are used.

Obviously a more complicated computation is translated into dataflow
by recursively applying the same techniques. For interest's sake, consider

the following program.

{
input(myn); wu:=1;
while m>0 do if odd(m)
then u:= uxn m:= m-1
else n:= n¥n; m:= m/2
fi
od;
output(u)
}

The dataflow net for the above program is shown in figure 1.4.9., where a
SINK node just swallows its input and the POS? and ODD? nodes yield control
values. Subnet A controls the loop, subnet B controls the if-statement with

subnets C and D implementing the then- and else-part, respectively.

The dataflow net in figure 1.4.9. exemplifies another drawback of the
controlled MERGE: even though there will never be more than one token on
the two inputs of the MERGE nodes (so non-deterministic MERGE nodes would
suffice and would be used in a deterministic way) we have to draw all the

control lines and so complicate the net.

In chapter two we will study dataflow nets with non-deterministic MERGE
nodes and no control lines. Both their deterministic use (only nets where the
two inputs of a MERGE can never contain a token simultaneously) and truly

non-deterministic fair merges will be treated.

Figure 1.4.9. A complete dataflow net.

m n
> 1
---—-——_-————-—-—-—--— | -~ - — N\
:j’] \
< FALSE FALSE F)
7 | MERGE DUP MERGE MERGE | |
7/]
/
Tk] ,
4 /
/ DUP DUP > /
|
| m m k //
il POS? A /
/
|y]! ,
“ SPLIT l—| bpuUP DUP »| SPLIT e
7
m
\ I g u=n
\ _- >
SINK -
\\ > - - — _ i—_- n
A== -~ ——~_
(4= NN ~ o
: DUP [—¥ ODD? » DUP # DUP DUP \\ 4
| 1 ' \
[\
A A | o v \
| > 1 .
| SPLIT [« SPLIT SPLIT ,'
| T |/
| /”'l——_:{ --------- [E— | —| — —|~
-~ | Y
| B |, (-]|l __|.
[(] -1 C *) DUP " /2 D 12 [l
\ /
| \ N e e == - - — o — I A R (A P, __/l
| \
| SO e e = = - —
Sl L == = =~
1 | <y
~
| 2 l ‘ <+ \
\
{ DUP MERGE I————q MERGE MERGE | |
N l I %
AN DUP -
~ P
m T — — — — I __________ ——
D n
" =

1.4.1. Re—entrant use of dataflow subnets.

A subnet inside a loop in a dataflow net may be activated more than
once. A subnet can be used to implement a function that will be called at
several places in the dataflow net. In both.cases, tokens belonging to dif-
ferent computations will flow through the subnet and must not interfere. In
chapter two we present a construction that can be used to close a subnet for
a new computation as long as the old one is still active. A similar method
is used in the dataflow net of figure 1.4.9. Using that construction we can
show the computational power of dataflow nets, although a lot of potential

parallelism is lost.

If this parallelism is to be saved, simultaneous activations of a
dataflow subnet must be allowed while preventing tokens belonging to differ-
ent calculations from interfering. There are a number of ways to accomplish
this. The first requires the edges to behave like queues as we have assumed
up to now. This induces an ordering on the tokens, allowing different itera-
tions to be distinguished. This does not guarantee yet that tokens belonging
to different iterations do not interfere. The net must be clean in that it
uses up all tokens it receives. In a second approach the edges are one-token
buffers. If, again, the net uses up all its token, a new iteration will
push the previous one out of the net. The above methods allow loops to be
reactivated in strict sequence. Dataflow models allowing only this sequential

cyclic re-entrancy are known as static dataflow models.

A more general approach allows both looping and general recursive
application of subnets. Again there are two methods. One method permits con-
current re-entrancy via a call node which creates a new copy of the subnet
every time it is activated. The other method allows the tokens to share the
same subnet by ensuring that tokens are passed to the right version of the
subnet by some addressing scheme: tokens belonging to different computations
are labeled or coloured differently so that they can be distinguished. Only
tokens with the same colour enable a node to fire. In this scheme the edges

are just bags of tokens. This method is called token colouring or unraveling

14

interpretation of dataflow nets [5]. Dataflow models allowing the general

recursive application of subnets are called dynamic dataflow models.

Processing elements have memory?

YES
History level
dataflow [46]

Fire only when input on all edges and
fire at all edges?

"Pre~dataflow"
[47]

How handle re-entrancy?

DYNAMIC

STATIC

One token buffer Queued inter- Unraveling Code Copying
edges [22] preted [5] interpreted [76]
(Colouring)
[51,[35]

Figure 1.4.10, The various dataflow models.

1.5. DATAFLOW ARCHITECTURES

Having dataflow nets as the underlying model of computation, an un-
conventional form of computer is required to realize the intrinsic parallel-
ism expressed by it. In [84] an overview is given of the many different
dataflow architectures that have been proposed. Experimental programmable
dataflow computers are currently under construction at a number of institu-

tions including MIT ([23],[6]), the university of UTAH [19], the university

of Manchester [36] and CER Toulouse [70].

However, there is nothing against implementing a dataflow program by
letting nodes be actual processors and edges be wires. A dataflow net thus
becomes the specification of an asynchrondus special purpose design that
may well be suited for implementation on a chip by means of current VLSI

technology [58].

1.5.1. . An Example: The Manchester Dataflow Machine.

As an example of a typical dataflow architecture, we will discuss the
Manchester Dataflow Machine [36] because its design is simple and extensible
and clearly shows which problems dataflow does not solve yet, and because

some of our results in chapter two relate to it.

The Manchester Dataflow Machine consists of a ring of elements each

performing a special task, .as shown in figure 1.5.1.1.

NS Q

MU

Figure 1.5.1.1. The Manchester Dataflow Machine.

In a general purpose dataflow machine the net representing a particular
program cannot be hardwired, and so it must be represented using a data struc-
ture of some sort. On the Manchester Machine this data structure consists of
labelled nodes containing the function to be performed and the destination
node(s) of the result. These nodes are kept in the node store NS. In order
to execute a node, the node store receives a group package GP consisting of
a node label and the required operands. The node store then generates an exe-
cutable package EP consisting of operands, the function to be performed and
the destination(s) of the result. Executable packages are sent via a distri-
bution network D to one of the processing elements PE. Processing produces
one or more result tokens T consisting of datatype, the result value and a
destination node label. The tokens are sent via an arbitration network A to

the switch SW.

The switch communicates with the outside world. Result tokens meant for
output leave the ring here, input tokens enter the ring and tokens meant for
further processing are sent through. The switch sends tokens to the token
queue TQ, which compensates temporary differences in speed between the match-

ing unit MU and the processing elements.

The matching unit is basically an associative memory. Tokens wait here
for their partner to arrive, at which time they are put together to form a
group package and are sent off to the node store. For efficiency reasons the

machine only allows packages containing one or two tokens.

The Manchester Machine actually employs token colouring but for the sake

of simplicity we have left the details of this out.

The Manchester Machine makes use of both pipelining (the continuing
flow of packages from NS to PE and so on) and low scale MIMD-type parallelism
(PE's process different EP's simultaneously). The machine is a truly systolic
system: the heart (MU+NS) '"pumps' packages to the various '"organs" (PE's).

The organs use the packages and send the results back to the heart again.

1.5.2. Extensions to the Manchester Dataflow Machine.

1.5.2.1. Global memory.

The virtue of dataflow is at the same-time its source of difficulty:
there is no global memory. In actual programming, global memory is used in

two ways:

(i) It serves as a short term store for intermediate results between in-
structions or, in dataflow terms, between processing elements.
(ii) It serves as long time storage for information used many times in many

places in a program (such as a symbol table).

In case (i) variables can be transformed into data paths. In order to
make this transformation straightforward, single assignment languages were
developed (see section 1.6.1.). However, it has been shown that by building
and analyzing their dependence graphs, programs written in a conventional
language can be transformed into dataflow nets just as easily ([311,[85],

£31,088D.

Case (ii) is harder because it uses memory in an inherently non-—
functional manner. In order to mimic global memory, the matching unit of the
Manchester Machine is extended so that semi-permanent data can be stored and
manipulated there. This is in fact a step back to a von Neumann style memory.

The extensions to the matching unit will now be described in some detail.

1.5.2.2, Matching functions.

There are a number of matching functions that can be used to implement
time dependent, non-functional, and non-deterministic concepts ([16],[121]).
A matching function describes how the matching unit behaves (i) when the part-
ner of a token has already arrived so the match succeeds (the s-action) or (ii)
when the partner has not yet arrived so the match fails (the f-action). There

are four s-actions and four f-actioms.

The operation of the matching unit as sketched in section 1.5.1. was

the standard matching function for tokens with a two-input destination. This

18

matching function is called extract wait EW. When the first token for a double
input edge node reaches the matching unit it must wait for its partner to
arrive, at which point both tokens can be extracted from the memory, combined
into a group package, and sent off to the node store. The standard matching
function for tokens with a one inmput destination is by-passing the token store

(BY). The full list of s—actions and f-actions now follows.
S—-ACTIONS

E for EXTRACT
Both tokens are removed from the token store, packed in a group package

and sent off to the node store. This is the standard s—action.

P for PRESERVE.
The token and its partner are packed together and sent off, but the
partner remains in the token store. This provides a way to use the matching

unit as a memory.

I for INCREMENT and D for DECREMENT.
These s—actions are the same as preserve, except that the remaining

token is either incremented or decremented.
F-ACTIONS

W for WAIT.

The token is placed in the token store. This is the standard f-action.

D for DEFER.

The token is not stored. It is sent around the ring "to try again later'.

This f-action can be used to implement exclusion.

A for ABORT.
The token is not stored. A special token (EMPTY) is sent to the destina-

tion to indicate that no partner was found.

19

G for GENERATE.

Again an EMPTY token is sent to the destination, but the incoming token
is stored in the token store on the other input port, so that the next token
coming in on the same (original) input port will match it. This f-action can

be used to sense the first traversal of an edge.

Apart from BY, the following seven of the sixteen possible combinations
of s—actions and f-actions are allowed as matching functions: EW, ED, ID,
DD, EA, PG. A token carries a tag indicating which of the matching functions

applies.

In section two we will show that there is one basic concept underlying
these matching functions: the possibility of checking whether a token has

already arrived.

1.5.2.3. A higher level Manchester Dataflow Machine.

The amount of paralleliém in the Manchester Machine depends on the number
of processing elements. This number cannot be arbitrarily enlarged as the rest
of the ring (in particular the matching unit) has a maximum capacity. An exten-—
sion under consideration [36] is to connect several rings through the switch,
which then becomes a full-blown interconnection network (see figure 1.5.2.3.1.).
This will make the machine an MIMD machine with dataflow nets as its machine
language. Tokens always travel the same distance in this machine, whether
they stay in their "own" ring or are transfered to another one. This makes

the problem of where to allocate a piece of the dataflow graph much easier.

This design introduces a third level of parallelism, which can be used
to implement higher level parallel computation models where the nodes have
the computational power of procedures, as in CSP [39] , MODULA [89], or Kahn's
language [46].

20

Figure 1.5.2.3.1. A higher level Manchester Machine.

1.6. PROGRAMMING LANGUAGES FOR DATAFLOW MACHINES

1.6.1. Single Assignment Languages.

The languages that emerged together with dataflow machines are based on
a single assignment principle. There are two versions of the single assignment
principle:

(1) An object gets a value assigned to it only in one place in the program.

(2) An object gets a value assigned to it only once during execution of
the program [17].
Almost every dataflow research group has its own single assignment language
[65]. We will briefly summarize some of the languages. Nearly all of the

languages obey the first of the single assignment rules.

21

LAU [70].

The LAU language (Langage d'Assignation Unique) was designed before the LAU
machine was built. LAU incorporates five types of statements: CASE, LOOP,
EXPAND (a loop where the programmer can set the maximum number of parallel
activations), CALL, and RETURN. '

m [71].

ID is an expression oriented language, supporting abstract data types, streams,
and resource managers (a sort of monitors where control resides inside the
manager). An ID program creates a large number of parallel tasks called acti-

vities.

CAJOLE [37].
A CAJOLE program is a set of definitions. The language supports guarded com-
mands. The programmer can extend the language by defining new syntactic con-

structs. CAJOLE programs obey the type (2) single assignment rule.

VAL [1].

VAL is an expression oriented language based on CLU [60]. Iteration is viewed
as a simple kind of recursion. There are two FORALL constructs. The first
generates an array of results, one element per iteration. The second combines

the results. There are modules that manipulate streams of data.

LAPSE [34].
LAPSE looks very much like PASCAL, although its semantics is that of a func-
tional language. The language allows array and record structured values and

functional subroutines.

LucIp [7].
The motivation for single assignment in LUCID is the ease of program correct-—

ness proving. LUCID operators operate on sequences of values.

Single assignment enhances the translation from program text to dataflow
net but, as already mentioned in section 1.5.2.1., ordinary "multiple assign-
ment" languages can be translated to dataflow nets as well. The real problem
of compiling for parallel machines, which is the allocation of (large) data-
structures in parallel memories, has not been solved by the introduction of

single assignment languages.

22

1.6.2. Other languages.

Several research groups are studying the implementation of other lan-
guages on dataflow machines such as PASCAL [88], Fortran [45], and functional

languages [48].

In chapter three we will study a language for parallel programming.
What interests us there is the possibility to express parallelism explicitly
at the procedure level and to adapt the parallelism, i.e., the topology of
the dataflow net, to the amount and the values of the problem data. The lan-—

guage is called DNP, short for Dynamic Networks of Processes.
1.7. SEMANTICS OF DA'.I_?AFLOW LANGUAGES

The semantics of parallel deterministic languages is based upon the
Kahn principle [46]. The meaning of a deterministic net with n edges is
described by a set of equations in terms of functions fi’ which specify how
the sequence of output tokens on an output edge ug of some node depends on
the sequences of input tokens to that node. The behaviour of the net can be
obtained as the minimal fixpoint of these equations. This principle can be

extended to non-deterministic models of computation ([67],[26],[11]).

The semantics of token level functional dataflow nets is defined by
Arvind and Gostelow [5]. They apply the theory of fixpoint semantics to ex-—
press the relationship between two different interpretations of Dennis's
dataflow nets [22], the queued interpretation and the unraveling interpreta-
tion. They show that the unraveling interpretation allows more parallelism

than the queued interpretation.

Brock [13] defines the semantics of a dataflow language ADFL, a sim-
plification of VAL. Firstly, a translation from ADFL programs to dataflow
nets is defined. Secondly, the semantics of these nets is derived by use of

the Kahn principle.

23

Kahn's semantics and Arvind and Gostelow's semantics differ in the mo-
delling of the traffic of tokens over an edge. The former assumes the edges
to behave as queues, while the latter takes token colouring into account.
This causes differences in domains and orderings and (hence) a difference

in c.p.o. structure.

In both ADFL and Dennis's nets the step from dataflow net to functions
is simple because the nodes are token level functional, i.e., they have no
inner state. There is a fixed number of node types so their semantic functions
can be given beforehand. A similar approach is taken in LUCID ([7],[86]).

Here the nodes may have an inner state but as there-is a fixed set of node
types their semantic functions can still be derived beforehand. This approach
cannot be used in a language where the nodes are programmer defined as in the
language of chapter three. What is needed then is the definition of an op-

erator from node declaration to semantic function [14].

1.8. DATAFLOW ALGORITHMS

1.8.1. Sequential algorithms.

Computer algorithms can be characterized by the type of program— and
data structures they use. When we look at sequential algorithms, the basic
program structures are sequence, assignment, condition, loop and procedure
call. The basic data structures are scalar, record, array and recursive data
structures such as trees and graphs. By analyzing the program—- and data struc-
tures some of the parallelism from the original algorithm can be reconstructed.
As has already been argued, single assignment languages only simplify part of
this analysis. Ideally, there is a computer architecture on which the program
parallelism, typical for a certain combination of program— and data structures,

can be exploited.

Dataflow machines are already suitable for loopfree blocks of condition-
al assignments, which are hard to run on pipeline or vector machines. The same

applies for loops with conditions.

24

In the present state of dataflow computers it is not yet precisely clear
how to implement data structures, such as arrays, while exploiting inherent
program parallelism. The combination of matching functions (or their equivalent
in other dataflow machines) and higher level architectures seems suitable for

tackling this problem. Clearly more research is to be done in this field.

1.8.2. Explicitly parallel algorithms.

No research has been done yet on implementation of programs with explicit
parallelism at the procedure level on dataflow architectures. With the advent
of higher level dataflow machines this seems to be an interesting research
topic. These programs are also interesting for direct implementation in VLSI

[58].

In chapter four we will write some explicitly parallel algorithms in
DNP, the language introduced in chapter three, and we will also analyse their

complexity. The complexity measures will be:

- the number of processes (nodes) in the computation graph,
- the amount of memory in a node,
- the number of edges and the number of tokens on an edge at a certain moment,

- the time needed for the computation.

1.9. SUMMARY OF THE THESIS

In chapter two we explore the theoretical foundation of computation
by dataflow. To prove essential properties of dataflow computing we will in-—
troduce an elementary model. We prove that for certain, so called well-formed
nets, asynchronous, parallel execution does not lead to non-functional behav-
iour, i.e., that all computation orders are equivalent. We prove that our model
has universal computing power. The remainder of chapter two is devoted to the

simulation of other models of parallel computation.

In chapter three we introduce a high level dataflow language, called

DNP, based on Kahn's simple language for parallel programming. Parallelism is

25

explicitly expressible in this language by means of the operation of expansion,

where a process is replaced by a network of parallel processes.

Chapter four deals with the complexity of some DNP programs and with
the expressive power of DNP. We design and.analyse algorithms for sorting,
matrix multiplication and we will look at the class of divide-and-conquer
algorithms. We show that not all computation graphs can be created in DNP.
Two ways to overcome this limitation are pointed out. The last part of chapter

four is devoted to DNP programs for NP-complete problems.

In chapter five we prove the correctness of some of the programs of
chapter four. The proofs are based on the semantics as described by Kahn

[46] and formalized by Béhm and de Bruin [14].

26

CHAPTER TWO

FUNDAMENTAL CONCEPTS IN DATAFLOW COMPUTING

2.1. INTRODUCTION

Models of computation enable us to prove fundamental results about
the power and limitations of real or proposed computer architectures. Much
of the present theory of computation has resulted from detailed analysis
and abstraction of von Neumann architectures. As modern technology is moving
away from such architectures we accordingly need to revise our ideas about
computation and the way it is performed. In this chapter we shall explore

the theoretical foundation of computation by dataflow.

To prove essential properties of dataflow computing, such as the impact
of the high degree of parallelism in dataflow nets, we will introduce an

elementary model of dataflow computing.

Several dataflow models have been proposed in the past, all based
on some notion of a dataflow net. Adams [2] and Rodriguez [73] proposed
that four types of primitive nodes be incorporated in the model, namely
arithmetical and logical functions, a split node, a controlled merge node
and a duplicate node. This set of nodes was adopted by Dennis et.al. [22]
and formed the basis of a proposal for a dataflow architecture [23]. Fosseen
[29] reportedly proved that these primitives indeed provide universal compu-
ting power. Recently Jaffe [44] extended the analysis of Dennis's framework,
explored the comnections with the theory of program schemata and proved the

universality by simulating Turing machine computations in dataflow.

The basic differences between our model and Dennis's model are that
our merge primitive has no control input and that we can model time dependent

non-functional behaviour by means of a special primitive that reacts to

27

the (non)availability of a token on one of its input lines. Our primitives
are also more elementary. Furthermore, our primitives can be used to model

an existing dataflow machine, the Manchester Machine, very naturally.

In section 2.2. we shall define our model. In section 2.3. we shall
show that for well-formed nets asynchronous parallel execution always leads
to functional behaviour, i.e., all computation orderings are equivalent. In
section 2.4. we shall define the notion of pipelining and in section 2.5.
we shall prove that our simplified model has universal computing power in
the sense of computability theory. The proof is very different from Jaffe's
and shows direct constructions of dataflow nets for the primitive functions
and standard operations from recursive function theory [74]. The main result
of section 2.5. will be that for each partial recursive function f there is
a dataflow net to compute f that can be used for pipelining, i.e.; for pro-
ducing a continuous stream of result values corresponding to a continuous
stream of argument values without the need ever to reinitialize the net. Se-

veral applications of this result will be given.

The remainder of this chapter is devoted to the simulation of other
models of (parallel) computation with our model of dataflow. In section 2.6.
we give a simple simulation of counter machines, which are known to have the
same computational power as Turing machines. In section 2.7. we model memory
cells. In section 2.8. we model the matching functions of the Manchester

Machine. In section 2.9. we model Petri-nets.

2.2. A BASIC MODEL FOR DATAFLOW COMPUTING

A dataflow net is a directed graph in which the nodes represent proces-—
sing elements and the edges represent data paths. Some data paths will not
explicitly start at a node (the input-lines of the net) and some will not
explicitly end at a node (the output—lines of the net). Data is presented
in tokens, which are indivisible, but can be distinguished through some inter-

pretation.

28

Convention: We shall assume that tokens are natural numbers.

Tokens can be transmitted over data paths only: processing elements consume
tokens from their incoming edges and produce new tokens over their outgoing
edges. The combined action of consuming input tokens and producing output
tokens is called firing or executing a cycle. Processing elements are al-
lowed to fire only when all incoming edges have at least one token, with
two well-defined exceptions: the JOIN-operator and the THERE-operator (see
below). Tokens may queue. If they do, when a processing element starts up

a new cycle, it will always pick the front element from each queue on an
incoming edge. In systems which do not implement edges as queues, token

colouring will be assumed to achieve the same effect.

Definition 2.2.1. A dataflow net is said to compute a (partial) function
f.:]Nk -»IN when for all Kisee .,xk€ IN the following is satisfied: upon receiving

tokens representing Xysee.sX OVEr distinguished input-lines, the net will

eventually produce one tokenkv if and only if f(x1,...,xk) is defined, and
f(x1,...,xk) =v.
o

Notice that the net will produce no output if f(x1,...,xk) is not de-
fined. The kinds of computation that can be modelled will depend on the primi-
tive operators chosen to build dataflow nets from. We shall use the following

primitive processing elements (boxes, operators) as ingredients for dataflow

nets:
? ZERO: the ZERO-box emits a value (token) 0 once
and is then silent forever.

DUP: the DUP-box duplicates any incoming token
and emits a copy over both of its outgoing
edges.

l. SINK: The SINK-box swallows and destroys any in-

coming token.

x
INCR: The INCR-box increments any incoming token
x+1 by 1, and emits the new value over its output-—

line.

DECR:

~ X
%X:ﬂ
y SPLIT:
X

y if x=0 y if x#0

(- % x() JOIN:
. |

l(X)— THERE:
c

0 if x not there

x if x is there

29

The DECR-box decrements any incoming token
x by 1, provided x>0, and emits the resulting
value over its output-line. If x is zero, it

is passed on unchanged.

upon receiving the input x and y, the SPLIT-
box routes y left or right (i.e., on distin-
guished outgoing edges) depen’ing on whether

x is zero or not (the zero output is encircled).

the JOIN-box lets any incoming token pass,
provided it never finds tokens present on both
incoming edges. Otherwise the result is unde-
fined, but we shall always ensure that this

does not arise.

upon receipt of an input ¢, if an input x
is present, it is passed down, otherwise zero

is passed to the right.

Clearly the last two boxes may cause problems concerning functionality.

The constraint on the use of the JOIN-box removes this problem, because if

we allowed two tokens to arrive simultaneously, some decision would have to

be taken about which token should pass first. The THERE-box is non-functional

by nature and is introduced for that very reason. We will only make use of

the THERE-box in non-functional computation models such as memory-cells and

the matching functions of the Manchester Machine.

For ease of use we shall

introduce one more box, although it is not

independent of the primitives above:

y GATE:

upon receiving tokens x and y, the GATE-box

will pass y down.

30

It is easily verified that the net of figure 2.2.1. implements the GATE-box.

B

Figure 2.2.1. The GATE.

The rules for building dataflow nets are straightforward. Input lines
of the net are connected to input ports of some nodes. Output lines of the
net come from output ports of some nodes. With the exception of input and
output lines of the net, all input ports are connected to output ports (by
"internal" lines). Our notion of (asynchronous) computation by dataflow is
identical to that of Adams and Dennis. To exemplify that our nets are prim-
itive but nonetheless powerful, figure 2.2.2. shows a net that implements
Adam's controlled merge-from section 1.4. Notice that the feedback of the
output token ensures the correct use of the lower JOIN-box by preventing

a new cycle from starting until the old one has ended.

1 r
‘ ¢ 1 r
MERGE |€—— |

(a) (b)

Figure 2.2.2. The controlled merge (a) and its implementation (b).

Definition 2.2.2. A dataflow net is said to be weéll-formed iff:

(i) no JOIN-boxes will ever receive tokens on both their incoming edges
simultaneously in any computation by the net, and

(ii) it contains no THERE-boxes.

31

2.3. FUNCTIONALITY

In this section we will consider only well-formed nets. We will need
definitions of the following terms: type, in-set, out-set, history, enable,
snapshot and execution. Every node in a well-formed net has a type € {ZERO,
DUP,SINK,INCR,DECR,SPLIT,JOIN}. The type of a node determines the number of
incoming and outgoing edges of the node, and the function it performs. The
incoming edges of any node n that is not a JOIN node are called the in-set
of n. Nodes of type JOIN have two in-sets, the two singletons containing one
edge each. The latter convention ensures that the in-sets model the sets of
edges that simultaneously enable a node for firing. The outgoing edges of
any node that is not a SPLIT node are called the out—set of n. For a similar
reason to the above, nodes of type SPLIT have two out-sets, since only one

of the two outgoing edges will receive a token after firing.

During the activity of a dataflow net, tokens are produced at one end
of an edge and consumed at the other. Informally, a AZstory is the complete

sequence of tokens that have appeared on an edge since a computation started.

Definition 2.3.1. A history h is the concatenation of a pair of sequences of
values : h = (p gghh)”(pc of h). Part p models the sequence of values that
have been produced but are not yet consumed, while part pc models the sequence
of values that have been both produced and consumed. Parts p and pc are oper-
ated upon in queue fashion: producing a ' new value x causes x to be inserted
in p. Consuming a value v causes v to be deleted from p and inserted in pc.
a]

The p-part of a history comsists of the tokens that are still waiting
in the queue associated with the edge. A smapshot S (of a dataflow net in

action) associates a history S(e) with every edge e.

Definition 2.3.2. An in-set I of node n is said to enable n in snapshot S
iff for all edges e € I : p of S(e) is not the empty sequence. A snapshot
S enables a node n (S en n) iff there is an in-set I of n that enables n
in S.

[m]

32

A node of type ZERO is not enabled by any snapshot. We can talk about
"the" unique in-set enabling a node n, because we consider only well-formed

nets.

Definition 2.3.3. A node n is said to map a snapshot S
iff

into a snapshot S

1 2

(i) n is of type ZERO and 82 is obtained from S1 by producing a zero on

n's output history, or

(ii) n is not of type ZERO and S1 en n and 82 is obtained from S, by modifying

1

the histories associated to the in-set I of n that enables n and an
out-set O of n so that from all input histories of the in-set I of n
a value is consumed and on all output histories of the out-set O of

n a value is produced according to the function of n.

The resulting snapshot will be written as S2 = S1n.
o
Definition 2.3.4. A sequence of snapshots SO’S1"'° is said to be an execution

iff
(i) S0 is a start shot, i.e., a snapshot where all histories except those
associated with input edges are empty sequences, and where the pc-parts
of the histories associated with input edges are empty sequences, and

(ii) for all i=0,1,... there is a node o, such that Si+ = S.n.

1 1 ii+t1”

o

An execution S ,Son1,SOn1n2,... will be denoted as SO:n1,n2... for

0
brevity. For an arbitrary snapshot S and a sequence of nodes ¢ we say that
S:p exists if the sequence of nodes can be applied to S in the above sense,
without violating the semantic constraints on the JOIN-boxes (i.e., the well-

formedness of the net). Note that by e.g. S:n1,n we denote an execution,

2213

while by Sn1n we denote a snapshot.

23
A moment's reflection at this point shows that dataflow nets in general
permit many executions, due to the fact that in a single snapshot many nodes
may simultaneously be enabled. Firing nodes in spontaneous order and thus
modelling the completely asynchronous behaviour of the net, leads to the ques-
tion of whether in the end different outputs can result from different (but
otherwise permissible) computation orders. In this section we shall prove

that this cannot be the case (the "functionality theorem'") and that, for all
y

33

so called proper executions, well-formed nets display an equivalent behaviour.

We need several more concepts before we can give a proof of this.

Definition 2.3.5. An execution E is called proper, iff

(1) for every S. € E and node n enabled by S. there is a j2i such that
S n = +1 (1n other words, enabled nodes eventually fire), and
(11) for every node n of type ZERO there is one and only one S such that
Si+1 = Sin.
o

Notice that after a finite, proper execution the computation in the net is

necessarily terminated, i.e., no further node is enabled.

Definition 2.3.6. Given executions E and E', we write E < E' iff for all edges
e and all Si € E there 1is an*Sj € E' such that Si(e) = Sj(e). (In other words,
all histories that occur during E also occur during E'.) E and E' are said
to be equivalent, iff E < E' and E' < E.
o

In the following we shall give an argument that all proper executions
of a well-formed dataflow net are equivalent. In fact, we shall prove that
they can be transformed into onme another by "interchanging" actions.

Lemma 2.3.1. Given a smapshot S and two different nodes n, and n,, then:

S gg.n1 & S EB-“Z = Sn1n2 = Sn2n1.

Proof. If n, and n, are not connected by an edge, the lemma follows immediately,
because the sets of incoming edges of one node and outgoing edges of the other

are disjoint.

If n, and n, are neighbours, the firing of one node may concatenate
a token to the history associated to an input edge of the other one. Now this
firing cannot produce values that are immediately consumed by the other node,
because it was already enabled by S, i.e., it had a full set of inputs in an
in-set. This is true in particular if the receiving node is of type JOIN:
otherwise the well-formedness property of the net would be violated. The tokens
that are consumed are therefore the ones that were already there in snapshot
S. Consequently Sn1n2 = Sn2n1.
o

34

Lemma 2.3.2. Given a snapshot S, a node n and a sequence of nodes @ not con-

taining n, then:

S en n & S:p exists = Sng = SYn (in particular, both exist)

Proof. By induction on l®l.
Base: |lpl=1, the result follows from lemma 2.3.1.

Step: l0|>1, write ¢ = wn1 (some n1¢n)

Because S¢ exists, clearly Sy exists. And because n does not occur in Y, the
firings of the nodes of Y can only have caused the p parts of the histories
of the input edges of n to have grown without violating the semantic comstraint

on JOIN nodes. Now observe that Sy enables both n and n, (in case of n by the

1
same in-set as in S). And thus

Snp = Smpn1 = Sq)nn1

Syn,n (by lemma 2.3.1.) = S¢n.

(by induction) =

[m]

Theorem 2.3.3(The functionality theorem). ALl proper executions of a well-

formed dataflow net that start with the same start shot SO, are equivalent.

Proof. Let E = SO:n1,n2,n3,... and E' = Sozm1,m2,m3,... be two arbitrary, but
proper executions of a given dataflow net. Let i21 be the smallest integer

such that n.#m,. Let S. = S.n,...n. and S! = Sm,...m. ,. S! enables both
i i 01 i-1 i 01 i-1 i

n. and m, and thus, because E' is proper, there is a smallest k such that

= :] = aqt -
itk - Dy By lemma 2.3.2. it follows that Simi"'mi+k Simi+kmi"'mi+k~1
= Sinimi"'mi+k—1’ and thus that E' is equivalent to the execution
E" = SC:m1""’mi—1’ni’mi""’mi+k—1’mi+k+1"" which coincides with E in

one more position. Proceeding ad infinitum proves that E and E' must be equi-
valent.

]

Corollary 2.3.4. Proper finite executions of a well-formed dataflow net that
start with the same start shot have the same length.
o

In our model, functionality of nets can be interpreted as determinism,
when considering the input-history output-history relation of a net. The func-
tionality theorem implies that in well-formed nets we can freely use any proper

computation order that is convenient. An execution can be timed in different

35

ways by inserting a tick after certain firings. A combination of a certain
computation order and a certain timing mirrors the actual running of a data-

flow net on some machine. Some interesting computation orders and timings are:

(1) The sequential timing. After each firing a tick occurs.
(ii) The round robin timing. The nodes are checked in a fixed order. If a
node is enabled, it fires and a tick is inserted.

(iii) The parallel timing. The execution is rearranged so that if a snapshot
S enables nodes n ..., these nodes will fire first. Now a tick is
inserted only after these 1 firings.

(iv) The k-bounded parallel timing. The parallel timing is changed so that
if a snapshot S enables more than k nodes, extra ticks are inserted

after each k-tuple of firings.
2.4, PIPELINING

)

Consider a dataflow net as a black box that produces a value f(x1,...,xk
a finite time after it has been given its arguments. We want to be able to
re-use the net simply by sending it a new set of arguments. We do not necessa—
rily want to wait until a certain computation has finished before sending

the new arguments. However, when we look inside the black box, the situation
after a computation is likely to be different from the initial situation.

This might spoil a later usage of the net. The simplest reason is that a ZERO-
box has produced its single token while the next computation also needs ome.

A second reason is that tokens left behind from a preceeding computation may
provide an improper start shot for the next computation. A third reason is
that the next set of inputs may interfere with the ongoing computation. In
this section we will study the construction of nets that do not have these

unwanted properties.

Definition 2.4.1. Consider a dataflow net N computing a (partial) function
f. A snapshot S (of N) is said to be clean iff any proper execution, starting

with S, and extended with a k-tuple KyseeesX of arguments for which f is

k
defined, (on the proper input lines) yields f(x1,...,xk). (Observe that the
completely empty start shot is clean.) The net N is called re-usable if any
proper execution starting with a clean snapshot extended with a k-tuple

Kyseee Xy of arguments for which f is defined (i) is finite, and (ii) ends

36

with a clean snapshot. The net N is said to be pipelined if any proper execu—

tion starting with a starting shot S_ consisting of any number of k-tuples

of arguments 5',5",... for which f ig defined, yields a stream of outputs
£(x"),£(x"),... (in that order).
o

As an example figure 2.4.1. shows four dataflow nets computing f(x)=0.
The net in figure 2.4.1.a is neither re—usable nor pipelined because it will
only yield one ZERO. The net in figure 2.4.1.b is not re-usable because any
proper execution of the net is infinitely long, but the net is pipelined.
The net in figure 2.4.1.c is re-usable but not pipelined because the semantic

constraint on the JOIN-box is violated if a next argument comes in too early.

The net in figure 2.4.1.d is both re-usable and pipelined.

+ 3 g

non re-usable non re—usable re—usable re-usable
non pipelined pipelined non pipelined pipelined
(a) (b) (c) @)

Figure 2.4.1. Computing £(x)=0.

Consider a dataflow net N computing a function £ (figure 2.4.2.):

xw r‘k

N

v

Figure 2.4.2. A net N.

and assume that N is re-usable. Our aim is to make N into a pipelined net,
by surrounding N by a "sluice", that will only let a next set of inputs through

after the output of the previous computation has been emitted. A sluice network

37

consists of k upper sluice gates for sluicing in a new k-tuple of inputs and
a lower sluice gate for sluicing out a result. Given a re-usable net N the

augmentation with a sluice will be denoted as in figure 2.4.3.
1 *
NN

\\\\\i\\\\‘

Figure 2.4.3. The sluice construction.

A possible implementation of the sluice is now given. For every input

line, the upper sluice gate is as in figure 2.4.4.
X,

1,
.

Figure 2.4.4. An upper sluice gate.

Figure 2.4.5. The lower sluice gate.

38

The ini—signal will be sent to the lower sluice gate to report the arri-
val of a new input token. The output-signal will be sent by the lower sluice
gate to report the emission of a result. The lower sluice gate only lets a
result f(x1""’xk) through if all X;-s have been sluiced in. It consists
of a series of gates as in figure 2.4.5. The out-signal is duplicated and
sent to all upper sluice gates. The idea of letting only entire input-tuples
into a (sub)-net was used before by Rumbaugh for the implementation of loops

[76], to ensure that one iteration is over before the next one comes in.

Theorem 2.4.1. Let N be a re-usable dataflow network for some function f. The

augmentation of N by the sluice construction yields a pipelined net for f£.

Proof. The construction guarantees that a next set of inputs is not sluiced
in until the output from a previous computation is sluiced out. Since N is
re-usable this forces a correct use of N, tuple after tuple. The sluice con-
struction also guarantees that, in order for the result to be sluiced out,

all the input tokens from the current set of inputs must have been sluiced

in. Therefore, no input -token can stay behind and interfere with new arguments

that it did not belong to.
2.5. UNIVERSALITY

We assume that the reader is familiar with Kleene's characterization
of the class of partial recursive functions ([501,[20],[62],[74]1). An inductive
proof that every partial recursive function can be computed by dataflow
requires that we prove the stronger result that every such function can be
computed by a pipelined dataflow net. For when F, for example, is defined

by primitive recursion from g and h:
F(O,x1,...,xk) = g(x1,...,xk)
F(y+1,x1,...,xk) = h(y,x1,...,xk,F(y,x1,...,xk))

then a dataflow computation for F would naturally involve the pipelined use

of a dataflow net for h.

Theorem 2.5.1(The universality theorem). For every partial recursive function
f there is a re-usable dataflow net N that computes f. Moreover N keeps ite

queue sizes automatically bounded to 1.

39

Proof. By induction on Kleene's formation rules for the partial recursive

functions.

(i) the constant-0 function Z(x) = O.
A re-usable net to compute Z was givgn in figure 2.4.1.d.
(ii) the successor function S(x) = x+1.
This function is trivially realized by the INCR-box.
(iii) the projections "i(x1""’xk) =x; (15i5k).
For any i (1S5isk) . is realized by a re-usable dataflow net as in

figure 2.5.1.
% *i i

" Figure 2.5.1. A net for projection .

The net routes all unused arguments to SINK-boxes to prevent them from

interfering with any later computation.

(iv) composition.
Let g be a partial recursive function of m variables and let h1,...,hm
be partial recursive functions of k variables. Let F be defined by composition

from g and h1,...,hm:

F(x1,...,xk) = g(h1(x1,...,xk),...,hm(x1,...,xk))
Suppose that g and h1""’hm are computed by dataflow nets G and H1,...,Hm
respectively, which satisfy the requirements of theorem 2.5.1. It will be

obvious that the net N shown in figure 2.5.2. satisfies the requirements as

well and computes F, where the inputs X1""’Xk are duplicated and sent to

all nets H1,...,Hm.

40

Figure 2.5.2. Composition.

(v) primitive recursion.
Let g be a partial recursive function of k variables and let h be a
partial recursive function of k+2 variables. Let F be defined by primitive

recursion from g and h:

F(O,x1,...,xk) = g(x1,...,xk)
F(y+1,x1,..l,xk) = h(y,x1,...,xk,F(y,x1,...,xk))

Suppose that g and h are computed by dataflow nets G and H, respectively,
which satisfy the requirements of theorem 2.5.1. We shall approach the con-

struction of a dataflow net N for F in three stages.

The part of the construction that takes care of this is shown in figure
2.5.3. for the case k=2. (For k=1 or k>2 the construction is adjusted in an
obvious manner.) The net for R will be specified later; it is the part of
the net where the recursion for y>0 will take place. For y=0 all input-tokens
will be gated to G, for y>0 they will all be gated to R. It follows that for
y=0 the net N functions as desired, while for y>0 there is no way that the
arguments can end up in this same part of the net. Note that the JOIN-box
is used properly, since tokens can never come in from both G and R simulta-
neously, as long as there is no queuing of the inputs. This demonstrates that
the sluice construction of section 2.4. to preserve the well-formedness of

this dataflow net is needed.

41

X1 [*2 RN)

Figure 2.5.3. First design step for N (R remains

to be specified).

R will receive data only when y>0. Its task is to compute and emit the
value F(y,x1,...,xk). The obvious idea is to compute it by generating the
values F(j,x1,...,xk) for j from O to y, through the pipelined use of H. The
main part of the construction is shown in figure 2.5.4. Since H is re-usable
but used in a fully pipelined manner, it is surrounded by a sluice. This will
guarantee that it sluices in a full set of arguments for every next j. Some
care must be exercised so that the various "cycles" (the unspecified subnets
in figure 2.5.4.) do not run wild in generating next tuples of arguments for
the recursion. In figure 2.5.4. this is arranged by letting H generate a signal
whenever another F(j+1,x1,...,xk) is produced. The signal is 1 or 0, depending
on whether the final j-value (j=y) has been reached or not. The signal is
gated to the various cycles. As long as the signal is 0, a next tuple of argu-
ments is generated and gated towards H; this will involve incrementing j by
1 and reproducing every X, . Whenever the signal becomes 1, the current j-value
and the xi's are gated towards a sink. The signalling guarantees that the
recursion is carried out a proper number of times. More importantly, it guar-
antees that no unneccessary tokens are generated (like j-values larger than
y), the queue sizes remain bounded by 1 and that all tokens are removed from

the active parts of the net (gated towards a sink) when the recursion is at

42

*1
signal y(>0)
emit x,; and signal
G again when oee
) it =0
signal = 0 emit J=Us
A emit j=j+1 when-
F(i,~) x, ever signal = 0
B
| |
signal
A emit y=y-1;
emit next

y=y-1 whenever

signal = 0 C

output

Figure 2.5.4. The R-net.

(Z is the zero function
1 is the one-function)

an end. Provided the remaining parts of the net are correctly specified, R
satisfies all requirements for being re-usable! Note that R uses all its argu-

ments since the G and (pipelined) H net do.

Stage 3: fill in the remaining details.
Note in figure 2.5.4. that the JOIN-boxes are correctly used. In par-
ticular, there can be no delayed queueing on the incoming edges of the lower

JOIN-box, because the signal will be sluiced out by all places that need it

43

(which, in turn, are sluiced by the H-net which needs a complete set of ar-
guments) every time through the recursion. All we need to do is supply the
correct dataflow logic for the unspecified subnets A, B and C in figure 2.5.4.
The constructions are all rather straightforward and are shown in figure
2.5.5. Note that nowhere can queue sizes greater than ome occur, except at

SINK-boxes.
x signal(s) x signal(s) y signal(s)

C

A

emit x, and again emit j=x,emit j=j+1 emit y=y-1,emit next

1
when signal=0 whenever signal=0 y=y-1 whenever signal=0

Figure 2.5.5. Subnets A, B and C of the R-net.

(vi) minimization.
Let g be a function of k+1 variables, and let F be defined by minimiza-

tion from g:
F(x1,...,xk) = uy g(y,x1,...,xk) =0

Suppose that g is computed by a dataflow net G that satisfies the requirements

of theorem 2.5.1. We shall construct a re-usable dataflow net for F.

To compute F, we shall implement the straightforward idea of computing
the values g(j,x1,...,xk) for j from 0, until a value 0 is encountered. The
construction of a dataflow net for it is shown in figure 2.5.6. Since G is
obviously used in a pipelined fashion, it is surrounded by a sluice comstruc-—
tion. As long as the g-value remains non-zero, a next j-value will be generated
and gated to G, together with a next set of copies of Xy to x. To keep the
cycles in the net from running wild, we again use a signal that is tested
after each g-value is generated. The signal will be set to 1 or 0, depending
on whether the g-value is 0 or not. When the signal is 0, it will trigger
the generation of a next set of arguments for G. When the signal is 1, it

will direct the current j-value and the cycling xi—values to sinks and, thus,

44

reset the A and B boxes. At the same time, the current j-value is sent down
the output line of the net as the result of the computation. Notice again
that the queue sizes remain 1. The A and B subnets are already specified in

figure 2.5.5.

o X

r_____J 1 Isignal

ANN

signal —

output

signal

Figure 2.5.6. Dataflow net for minimization.

Together with theorem 2.4.1., theorem 2.5.1. immediately implies the

following theorem.

Theorem 2.5.2(The pipeline theorem). For every partial recursive function f
there is a pipelined dataflow net N computing £ that uses no queues of size
greater than one.
o

It follows that dataflow nets, as defined here, provide yet another
basis for computability theory. We note on the other hand that every well-
formed dataflow net can be simulated by a deterministic Turing machine. No
non-determinism is needed to guess which box will fire at any particular

moment, because by theorem 2.3.3. we can choose a fixed computation rule.

From the pipeline theorem one can immediately derive a number of un-

decidability results for dataflow computing. We shall mention only one.

Theorem 2.5.3. Well-formedness of dataflow nets is undecidable.

45

Proof. Suppose well-formedness were decidable. Consider a dataflow net as
shown in figure 2.5.7., where we allow f to be any partial recursive function.
A net of this sort is well-formed iff f is everywhere undefined. But the latter

is known to be undecidable.

o

[e]

net for f

Figure 2.5.7. Well-formedness is undecidable.

A conclusion is that well-formedness, like correctness, can only be
ensured through a precise and disciplined construction procedure for dataflow
nets. There is a second conclusion to be drawn from 2.5.1. Well-formedness and
functionality of a dataflow net are, in a certain sense, equivalent concepts
(see section 2.2.). Hence the functionality of a dataflow net is undecidable

just as the functionality of a nondeterministic Turing machine is undecidable.

Finally, we shall give an application of the pipeline theorem related
to the generation of sets. Hitherto only a few examples were given of dataflow
nets which emit sequences of numbers of a specified kind in a specified order

[86]. Very generally we can now state the following.

Theorem 2.5.4. For any recursively enumerable set S there is a dataflow net
that generates the members of S in enumeration order. Moreover, the net does

not need any queue sizes to be larger than 1.

Proof. It is well-known [74] that any non-empty r.e. set S is the range of
a total recursive function F. Thus to enumerate S by dataflow, all we need
to do is feed the arguments 0,1,2,... into a re-usable dataflow net for F.
The construction is shown in figure 2.5.8. The sluice construction is modified

here in that it also generates the input values for the net for F.

Figure 2.5.8. Generating a non-empty r.e. set S.

46

2.6. TURING MACHINE SIMULATION

Jaffe [44] has given a direct simulation of a Turing Machine by means
of dataflow. We will present here a (more straightforward) simulation of arbi-
trary counter machines which in their turn can simulate an arbitrary Turing
Machine [42].

A counter machine consists of an input tape, a finite control, and a
number of counters. A cell on the input tape contains a 0 or a 1. The whole
tape contents is enclosed by a begin-of-tape-mark and an end-of-tape-mark.
(These marks are represented by numbers unequal to O or 1.) A counter can
hold a nonnegative number in unary representation: 0,01,011,... A transition
of the machine consists of performing either a read or a counter-manipulation.
If a read is performed, the next state in the finite control depends on the
current state and the symbol read. A counter can be incremented, decremented
or tested for zero. The next state after a test for zero depends on the current
state and the result of the test. In any case there are at most two possible

next states of a certain state.

Theorem 2.6.1. For every counter machine there is a well-formed dataflow net

simulating it.

Proof. We will construct a dataflow net for a given counter machine. The net
will be built from certain types of subnets. To avoid uninteresting details,

we will only give the functional specification of these subnets.

The input tape is available on the only input line of the net. The whole
input is read and converted to an integer. This conversion is performed by
a special subnet CTI shown in figure 2.6.1. The subnet CTI sends one token
tc, representing the tape contents, to a subnet PCM that will simulate the

particular counter machine.

$0100... 1011¢ tc

CTI

Figure 2.6.1. First design of the counter machine simulation.

47

The subnet PCM faithfully mimics the finite control and counters of
the particular counter machine. For every state in the counter machine there
is a subnet which is activated by sending it the (rest of the) tape contents.
If a state performs a read it will decode the input token into a symbol (0
or 1) and a next tape contents. (See figure 2.6.2.) Reading from an empty tape

will cause no token tc to be produced.

symbol next state if symbol=0

old tc

decode
new

tc

next state if symbol=1
Figure.2.6.2. A read state.

A subnet for a counter-manipulation state sends an opcode (say O for
decrement, 1 for increment, 2 for test for zero) and its state-number to the
subnet representing the counter. The counter subnet executes the opcode and
distributes the result (say O for acknowledgement of decrement and increment,
and for a zero result of a test for zero, 1 for a non-zero result) back to

the counter-manipulation state.

Just as in "real" counter machines the counter value is maintained in
a unary representation, i.e., as a sequence of 1-s and one O, This sequence
resides on an edge that is both input and output to the counter subnet. In-—
crementing is done by producing a i; decrementing by reading a token. If the
token was 0, it is put out again and a next token is read. If that is a 0
again, the counter value was zero. The O is put out again so decrementing

zero yields zero. Testing for zero is done similarly.

After a counter manipulation, all tokens are sluiced out in order to
prevent the counter value from spreading around the various parts of the

counter subnet.

o

48

2.7. MODELLING MEMORY

In this section we will show that dataflow allows the design of general
memory cells. It does not follow directly from the universality of dataflow
nets that memory cells can be built, because they are inherently non—functional

at token-level. We will study the design of two types of memory cells:

(i) the first type of memory cell, called Memol, has two inputs and one
output (see figure 2.7.1.). The c-input line carries control values
which determine whether a retrieve or a store is to be performed. If
a store is to be performed, the cell will consume a token from the
d-input line. If a retrieve must be performed the cell produces the

token it has last read in, on its w-output line.

d

Figure 2.7.1. A history-level functional memory cell.

Clearly, this cell is history-level functional, i.e., upon receiving the
same sequences of c- and d-values it produces the same sequence of w-values.

We can achieve this by designing a well-formed dataflow net for Memol.

(ii) the second type of memory cell connected to the outside world by m store
input lines, n retrieve input lines, and n write output lines (see figure
2.7.2.). We call this a Memo2 cell. If the cell receives a token over
its i-th retrieve input line it will produce its memory contents on the
i-th output line. If the cell receives any store input token it will
store the token as its new memory contents. If inputs arrive simultane-

ously, they will be merged fairly but non-deterministically.

When we connect the i-th store line to a writer submet, and the j-th
retrieve and write lines to a reader subnet, the similarity with the well-
known readers—and-writers problem from operating systems theory [38] becomes

obvious.

49

retrieve1 retrieven
storel ¢ l
—
Memo2
store
m

write writen

Figure 2.7.2. A nondeterministic memory cell.

The design of the Memol cell is straightforward. Its dataflow net is
shown in figure 2.7.3., where the CM~subnet is the controlled merge net of
figure 2.2.2.

d
| ' O:store

1 0 ¢ 1l:retrieve
CM |

AA;W
Figure 2.7.3. The Memo1l cell.

The contents of the memory cell is waiting for a c-signal to release it. If

a store is to be performed (c-input = 0), the old contents is sent to a SINK-
box and a new d-token is let in. If a retrieve must be performed (c-input = 1)
the memory value is put on the w-output line and cycled back into the net.
Notice that the net is well-formed. If a retrieve is performed before any

store, the net will output a zero.

50

Now if we want to design a dataflow net for a Memo2 cell which allows
simultaneous stores and retrieves we can no longer avoid time dependence or
history-level non-functionality: because all well-formed dataflow nets are
functional (according to the functionality theorem) there cannot be a well-

formed net implementing Memo2.

The building block needed for implementing a Memo2 cell is a non-
deterministic fair merge FM. This is a subnet with two inputs and two out-

puts (see figure 2.7.4.).

Figure 2.7.4. A non-deterministic fair-merge.

The FM-subnet must operate according to the following specifications:

(i) If a token arrives at either the l-input or the r-input, the token
is passed onto the m-output and a token representing its input direction
is emitted on the dir-output (r=0, 1=1).

(ii) If there are tokens on both l-input and r-input one of them is chosen
non-deterministically to be passed onto the m—output and its input
direction is again reported on the dir-output. The other input token
is preserved.

(iii) If a token arrives, it will be consumed within a finite number of time-
steps, where time-steps are measured in terms of firings of basic pro-

cessing elements.

Part (iii) of the above specification is important and we will name it the

fairness—property.

Using FM-subnets and a Memol cell we can implement a Memo2 cell. Figure

2.7.5. shows a Memo2 cell with one retrieve and one store.

51

store retrieve

store=1
retrieve=0

Figure 2.7.5. Memo2 cell with one store and one retrieve.

Memo2 cells with more stores and retrieves are designed similarly, but now
there are fan—in and fan-out trees to direct the inputs to the Memol cell and
the outputs to the right output lines. Fan—in trees consist of FM-subnets.
Fan-out trees consist of SPLIT-boxes. The various dir-outputs of the FM-submnets
fanning in the retrieves are used to control the SPLIT-boxes in the fan-out
tree. As an example figure 2.7.6. shows a Memo2 cell with four retrieves and

two stores.

Clearly, for every FM-subnet in the tree that fans in the retrieves,
there is a SPLIT-node in the tree that fans out the various writes. The
dir-line of the i-th FM-subnet of the j-th level of the fan—in tree is con-
nected to the control input of the i-th SPLIT-box of the j—th level of the
fan-out tree. A moment's reflection may be needed to see that a result token
will, on its way out of the net, meet the dir-tokens that were fired when
the retrieve token that caused the result token to be written passed a FM-

subnet.

The rest of this section will be devoted to the implementation and fair-
ness proof of the FM-subnet. The difference between a FM-subnet and a JOIN-box
is that the FM-subnet must sense the arrival of an input token in order to

mutually exclude simultaneous arrivals, and it must implement a fair scheduling

52

retrieves

1 2 3 4

4

stores

Y

3va

writes

Figure 2.7.6. A Memo2 cell with more stores and retrieves.

algorithm to prevent a token that has arrived from waiting indefinitely long.
Sensing the arrival of a token and acting upon arrival and non—arrival can

be done using the THERE-box. The FM-subnet is shown in figure 2.7.7.

The thick lines in figure 2.7.7. carry the data from left or right in-
put to m-output. The thin lines carry control-data needed to exclude left
and right, implement fairness and generate the dir—output. Notice that at
any moment at most one control token exists. The control token, initially
generated by the ZERO-box, cycles around between the two THERE-boxes until
an input token arrives at the left or right input. The input token is emitted

on the m-line and its incoming direction is reported on the dir-line. After

53

m

v

Figure 2.7.7. The FM-subnet.

the dir-token and m-token are dispatched a new control token is generated.
If a left input was selected, the right THERE-box will receive the control

token first and vice versa.-

Theorem 2.7.1. 4 token arriving at an input of the FM-net will pass through
the subnet within a finite number of time-steps (in other words, the FM-net

s fair).

Proof. First notice that the JOIN-boxes will never receive tokens at both
inputs simultaneously, because at most one control token will exist at a given
moment. Let ?L (?R) denote the arrival of a control token at the left (right)
THERE-box. Between a ?L (?R) event and a ?R (?L) event there are only a finite
number of time-steps, because either there was no input at the left (right)
THERE-box and a control token was sent (via an upper JOIN-box) to the right
(left) THERE-box, or there was an input and within a finite number of time
steps the input token has gone through the net and has generated a control
token that was sent to the right (left) THERE-box. A token that arrives at

an input will therefore pass through the THERE-box and consequently through

the whole FM-subnet within a finite number of time-steps.
o

Corollary 2.7.2. Using the components defined in section 2.2. one can build
memory cells with any number of store and retrieve lines.

o

54

2.8. MODELLING THE MANCHESTER MATCHING FUNCTIONS

In this section we will show that the matching functions of the Manchester

Dataflow Machine defined in section 1.5.2.2. can be implemented in dataflow
directly, although in the actual machine there is a special piece of hardware,
the matching unit, that performs these functions. In our model the matching
function is performed by a dataflow subnet that is placed in front of the

target node, except (of course) the standard matching functions EW and BY

v 4

non standard
matching function

(see figure 2.8.1.).

target
node

Figure 2.8.1. Implementing a special matching function.

We will only implement the more interesting matching functions ED, PD,
EA and PG. The left input carries the special matching function. An EMPTY-

token is represented by a 0 over a special output line.

ED: EXTRACT DEFER (success: put out both tokens,

failure: recycle the left input token)

The dataflow net for the ED-matching function is shown in figure 2.8.2.
When a left input token arrives there is either a right input token available
or not. If the right input is available both tokens are passed (s—action ex—
tract), otherwise the left input token is sent back and is merged fairly with
other incoming left input tokens (f-action defer). Recall that the THERE-box
emits a zero on the no-line if there is no input. The 1-subnet emits a one

every time it receives a token.

55

1 T
d M
e
f ¢ »-
e no _J
r
b
L -
e Xx t r a c t /

Figure 2.8.2. The ED-matching function.

PD: PRESERVE DEFER (success: put out the left input and the memory token,

failure: recycle the left input token)

The dataflow net for the PD-matching function is shown in figure 2.8.3.
When a first left input token arrives there is either a right input token

or not. If there is no right input token, the left input token is sent back.

H ® o o

Figure 2.8.3. The PD-matching function.

56

to the input of the net and fairly merged with other left inputs. Subsequent
left input tokens are dealt with similarly until a right input token is avail-
able. If a right input token is available it is (i) extracted, i.e. passed
together with the left input token, and (ii) kept in a memory. Subsequent

left input tokens are matched with the memory contents. Subsequent right

input tokens are ignored.

EA-EXTRACT ABORT (success: put out both tokens
failure: put out a special EMPTY signal)

The dataflow net for the EA-matching function is shown in figure 2.8.4.
When a left input arrives and a right input token is available, both inputs
are extracted. If no right input is available, the left input is gated to

a SINK-box and an EMPTY signal is emitted over the abort-output line.

extract xtract
left ¢right

Figure 2.8.4. The EA-matching function.

PG: PRESERVE GENERATE (success: put out the left input and the memory token,
failure: put the left input token in the memory and

put out a special EMPTY token)

The dataflow net for the PG-matching function is shown in figure 2.8.5.
When the first left input token arrives and there is a right input token avail-
able the right token is preserved, and both input tokens are extracted. If
no right input is available, the left input is preserved and an EMPTY token
is emitted over the abort line. Subsequent left input tokens are matched with

the preserved value.

57

v : \/

abort

Figure 2.8.5. The PG-matching function.

In practice primitive building blocks such as memory cells and matching
functions are realized as a piece of special hardware and not by a dataflow

program. However, these results show the adequacy of our model, i.e., we can

describe the meaning of the matching functions within the model of dataflow

nets.
2.9. MODELLING PETRI-NETS

In this section we will show that Petri-nets can be modelled by our
dataflow nets very naturally. Petri-nets are non-deterministic, and so to
model this non-determinism we will build a random generator based on FM-

subnets. Our definition of Petri-nets conforms to Peterson [69].

Definition 2.9.1. A Petri-net is a four-tuple (P,T,1,0) where
P is a set of Places,
T is a set of Transitions,
I is an input function I : T - Power(P),
0 is an output function O : T - Power(P),
and where Power (P) is the set of all subsets of P.
The places can be marked with a number of tokens. Tokens do not have distinct

values. A transition can fire if all its input places are marked. Firing means

58

removing one token from all input places and adding one token to all output
places. An execution is a sequence of markings HooHyseee The first marking
uo is called the Znitial marking. Every other marking ui+1 is derived from
its predecessor My by the firing of one transitionm.

a

A Petri-net can be drawn as a bipartite directed graph with two types
of nodes (drawn as O for places and | for transitions). If place p is in I(t)
then there is an edge from p to t. If place p is in O(t) then there is an
edge from t to p. As an example, figure 2.9.1. shows the graph representation

of the Petri-net N defined as follows:

N = ({p,,P.,P.,P,,P.},{t 1,

1972273054055 5180 Ty 0 g
t, > (B, 1 {t, » {P,,Py,P e, » {Ps},eg = (B, Dt - {p,,p 11

ta},{t1 - {P1},t2 - {PZ,P3,P5},t3 - {P3

Figure 2.9.1. A Petri-net.

Dots in a place «:)) represent the marking of that place. The non-
deterministic behaviour of Petri-nets is exemplified by two phenomena: con-—
flict and sharing. Conflicting transitions have a common input place (figure
2.9.2.(a)). Either one of the transitions can fire if the place is marked.
Two (or more) transitions can share a common output place (figure 2.9.2.(b)).

The place is marked after firing of either one of the transitioms.

59

(a) (b)

Figure 2.9.2. Non-determinism in Petri-nets.

Theorem 2.9.1. For every Petri-net N with initial marking Ho there is a data-
flow net simulating it, i.e., for every execution of the Petri-net there is

an equivalent execution of the dataflow net.

Proof. We simulate a Petri-net N by mapping every transition with m inputs
and n outputs to a dataflow submet T(m,n) and by mapping every place with

m inputs, n outputs and k initial tokens to a dataflow subnet P(m,n,k). The

T and P subnets are then put.together just as their counterparts in the graph

representation of the Petri-net are.

(i) Construction of T(m,n).

T(m,n) must take in m inputs, one from each of its input lines and pro-
duce n outputs, one on each of its output lines. The construction of T(m,n)
is therefore straightforward. It consists of an A(m,n) subnet defined below
surrounded by a sluice construction. The sluice is needed here to prevent
incomplete input tuples from passing and marking places that might not be
marked in the corresponding Petri-net. If m=n, A(m,n) consists of m edges
(figure 2.9.3.(a)). If m>n, m-n input lines are shut off by a SINK-box (figure
2.9.3.(b)). If m<n, n-m DUP-boxes are added (figure 2.9.3.(c)).

(a) m=n (b) m>n (c¢) m<n

Figure 2.9.3. A(m,n) subnets.

60

(ii) Construction of P(m,n,k).
First we shall construct P(m,n,0) that simulates an initially empty
place. A P(m,n,0) subnet must take in a token from any of its m inputs and
send it to one of its output-lines chosen at random. This is accomplished

by a fan—in fan-out construction as in figure 2.9.4.

Figure 2.9.4. A P(m,n,0) subnet.

A fan-in subnet with m inputs and one output is just a tree of m-1 FM-subnets,

with one exception when m=0 (see figure 2.9.5.).

m

4

(a) m=4 (b) m=t (c) m=0
Figure 2.9.5. Fan-in subnets.
A fan-out subnet with one input and n outputs is the same as a T(1,n)-subnet,

but with ANY-subnets instead of DUP-boxes. An ANY-subnet (see figure 2.9.6.)

copies its input to either of its two outputs.

Figure 2.9.6. The ANY-subnet.

61

A P(m,n,k) net is just a P(m+k,n,0) net with k of its inputs connected

to ZERO-boxes.

Now clearly, for every execution of N there is an execution of the data-

flow net simulating it.
o

The contrary, though, happens not to be true: there are executions in
the dataflow net for which there are no equivalent executions in N. This oc-

curs, for example, when N contains a subnet as shown in figure 2.9.7.

Figure 2.9.7. Petri subnet.

In a certain execution of the simulating dataflow net P1 can send a token to

the right while P, sends a token to the left.

62

CHAPTER THREE

THE DESIGN.AND IMPLEMENTATION OF A HIGH LEVEL DATAFLOW LANGUAGE:
DYNAMIC NETWORKS OF PROCESSES

3.1. INTRODUCTION

To express and analyse parallel algorithms we need a programming lan-
guage based on a parallel model of computation. In our study this will be the
model of data driven computation, where computing stations communicate with
each other via channels, i.e., buffers of values operated in queue fashion.
A program in our language will specify the topology of such a computation
graph and the behaviour of the computing stations. We want this language to
be powerful enough to serve as a problem solving tool yet simple enough to be
elegantly defined and implemented. The following considerations were used as

guidelines in the design of the language.

- Parallelism must be explicitly expressible.

- There must be a simple mapping from processes in our language to com-
puting stations in the computation graph.

- The processes in our language must have the expressive power of proce-
dures or modules (the dataflow processing elements from chapter two do
not suffice).

- The computation graph must be adaptable to the problem size and data,
i.e., we need a mechanism for dynamic process creation.

- There must be no need for global information about the computation
graph when part of the graph is changing {(because of dynamic process
creation). The oﬁly communication must be via the edges of the graph.
We call this the Zlocality principle.

- The number of connections to "the outside world" on program level as
well as on process level must be limited (not variable with the problem
size) corresponding to physical reality.

- In the design we will concentrate on novel aspects, the choice of the

rest of the language will be made such that it is easily implemented.

63

Parallelism inside processes will not be considered. A reasonable compiler
can identify it and translate it for a given target machine. Also, if the
target machine is a dataflow machine, processes will be translated into data-
flow nets using dataflow analysis techniques as studied in ([85],[88],[3],

[661).

The programming language CSP [39] matches our requirements closely,
except that CSP programs are static, i.e., they have a fixed computation
graph. Moreover, CSP processes communicate with each other by name thus pre-
venting most useful forms of dynamic process creation (knowing each others
name is in fact a violation of the locality principle). The family of lan-
guages based on monitors and remote procedure calling (SIMULA, concurrent
PASCAL, MODULA-2, DP) is even further away from our goals: the underlying
computation graphs are again static, processes share data, and remote pro-

cedure calling violates the locality principle.

The simple language for parallel programming presented by Kahn [46]
provides a good starting point for our language, and can be easily extended

with dynamic process creation.

This chapter will introduce the language DNP (Dynamic Networks of Pro-
cesses) based on Kahn's language. In section 3.2. we shall describe the lan-
guage, and in section 3.3. we shall deal with an experimental implementation

of it.

3.2. THE LANGUAGE DNP: DYNAMIC NETWORKS OF PROCESSES

DNP was implemented using a parser generator called PGEN [27]. There-
fore, the syntax of DNP will be presented here in the format used by PGEN.
In section 3.2.2. we will describe the static part of DNP, and in section

3.2.3. the dynamic part.

3.2.1. Syntax format.

The format is an extension of the familiar BNF-notation and figure

3.2.1.1. shows a self-definition of this format, taken from [27].

64

A non-terminal is enclosed by the brackets < and >. A terminal is either a key-

word or a string. A keyword is a sequence of upper-case letters denoting the

same sequence in lower case. A string is a non-empty sequence of characters

surrounded by a single quotes. So the keyword BEGIN denotes the terminal symbol

begin, and so does 'begin'. <id> stands for identifier.

<syntax> 1= <rule>x.

<rule> ::= <rule-name> '::=' <rule-body>'.'.

<rule-body> 1:= { <alternative> '|'l}x.

<alternative> ::= <primary>+.

<primary> ::= (<terminal-symbol>|<rule-name>|<compound>)['+'|['*']
|<list>
| <option>.

<option> ::= "['<rule-body>']".

<list> ::= '"{'<primary> <terminal-symbol>'}"' ('+"|'sx").

<compound> ::= '('<rule-body>')'.

<terminal-symbol> 7 := <keyword>|<string>.

<rule-name> = <! o<id> '>'.
Figure 3.2.1.1. The syntax format.

Using the terminology from figure 3.2.1.1., a syntax consists of a

sequence of rules, where each rule is a non-terminal followed by ::= followed

by a series of alternatives separated by vertical bars |. An <option> indi-

cates that one of the enclosed alternatives may not occur. An asterisk * in-

dicates zero or more repetitions of some notion; a plus-sign + indicates ome

or more repetitions. A <compound> groups a structure into a notion. A <list>

is a sequence of notions separated but not terminated By a terminal symbol. So

(<id> ',")x

stands for zero or more identifiers followed by a comma, such as

a,b,c,

65

stands for zero or more identifiers separated by commas, such as

a,b,c

We will comment on the use of PGEN in section 3.3.1.

3.2.2. DNP - static part.

A DNP program consists of a number of process declarations and a main

body.

syntax:

<dnp-program> ::= <process—decl>* <main>.

In the main body processes are activated. They are connected together
and to the outside world by channels, which are queues of tokens or values.
For every channel there is one producing process and one consuming process.

A process declaration consists of a heading and a body. In the heading formal
channels are declared, specifying whether the channel is an input channel

or an output channel. A procéess heading must contain at least one formal chan-
nel. Apart from formal channels, formal value parameters can also occur in

the heading.
syntax:
<process-decl> ::= <process-heading> ':' <process-body>.

PROCESS <id> '(' <channels> [<values>]'")'.
(

<process-heading> ::

<channels> te= <inchannels>|<outchannels>)+.
<inchannels> t:= IN {<id> ",'}+.

<outchannels> t:= OUT {<id> ','}+.

<values> 1= (<type> {id ','}+) +.

where <type> is a type declaration such as int or char.

The body of a process declaration consists of three types of components:

(i) internal statements and declarations
(ii) communication statements

(iii) expansion statements.

66

Internal statements and declarations are ordinary statements (conditionm,
loop, internal data declaration) that only change the internal state of the
process. They could have been borrowed from any programming language, and in

our case were borrowed from C [49], the UNIX system implementation language.

Communication statements allow a process to read (consume a value from
an input channel) and write (produce a value on an output channel). If a chan-
nel is empty when the consumer process performs a read on it, the consumer
process is blocked until the producer process has written a value on the chan-
nel. The communication statements are in fact implemented as ordinary C-func-
tions, supplied in the run-time environment. There is therefore no syntactic
difference between internal statements, declarations and communication state-

ments: they all look like C.
syntax:

<process—body> :t= BEGIN (<expansion>|<c>)x END.

where <c> stands for a piece of C program text inside a C function declaration.

A main body declaration has the same structure as a process declaration.
The input and output channels in its heading are the input and output files
connecting the program to the outside world, and in the body the initial com-
putation graph is set up by naming the internal channels and processes in an
expand statement causing the main body to create processes and connecting them
by channels. (A dynamic version of expansion where the network can be changed

while executing will be introduced in section 3.2.3.)
syntax:

<main> ::= MAIN <id> '"(' <channels> ')'':'
BEGIN [<e>]
EXPAND [CHAN {<id> ','}+]
<creation>+
ENDEXP
[<c>]
END.

<creation> ::= CREATE <id> '(' <channels> [<values>] ")'.

67

The CHAN part declares the internal channels. The create statements initiate
processes with either internal channels or the channels of the main body as
actual channel parameters. Every input channel of the main body will occur
once as an actual input channel in a creation, just as every output channel
of the main body will occur once as an actual output channel. The internal
channels will occur twice, once as an actual input channel and once as an
actual output channel of distinct processes. This gives us a well-formed
graph (every internal channel being an edge), connected to the environment

by the input and output channels of the main body.

We have now defined the static part of DNP and will illustrate it by
an example: this program will produce the integers 2%33 in ascending order

on an output channel (see figure 3.2.2.1.).

process times(in i out o int f) :
begin int v;
while (read_int(i,&v)) write_int(o,f*v);
end
process order(in i2,i3 out m) :
begin int v2,v3;
read_int(i2,&v2); read_int(i3,&v3);
do { if(v2<v3) {write int(m,v2); read_int(i2,&v2);}
else if (v3<v2)
{write_int(m,v3); read_int(i3,&v3);}
else
{write_int(m,v2);
read_int(i2,&v2);
read_int(i3,&v3);
}
}
while (1);
end

process triplicate(in m out 01,02,03 int init)
begin int v = init;
while(write_int(o1,v),write_int(02,v),write_int(o3,v))
read_int(m,&v);
end
main Hamming(out f23) :
begin int one = 1, two = 2, three = 3;
expand chan m,i2,i3,02,03
create triplicate(in m out f£23,i2,i3 int one)
create times(in i2 out 02 int two)
create times(in i3 out o3 int three)
create order(in 02,03 out m)
endexp
end

Figure 3.2.2.1. A static DNP program.

68

This program is connected to the outside world by the output channel f23.

Figure 3.2.2.2. shows the computation graph of program Hamming.

i2
>
/Ay times 2
tripli- [™
23 4¢—— |—@—]order

cate

\% times 3

Y

i3

Figure 3.2.2.2. Computation graph of program Hamming.

3.2.3. DNP - dynamic part.

A process can replace itself by a subgraph (subnetwork) of processes by
performing an expansion. The newly created subgraph is connected to the rest
of the graph by the same channels as the old process was. An expand statement
consists of a declaration of the new internal channels and a number of process
activations. A process activation is either a process creation, i.e., a new
process that starts in its initial state, or a survival. In a survival, the
old process that caused the expansion is resumed possibly with different
actual channels. Survival provides a way of inheriting the process state
(data and control environment). At most one survival is allowed in an expan-—

sion.

69

syntax:
<expansion> ::= EXPAND [CHAN {<id> ','}+]
(<creation>+ [<survival>]
|<survival>)
ENDEXP.
<survival> ::= KEEP <id> '(' <channels> ")'.

Notice the similarity between an expansion and the declaration of the initial
graph in the main body. The newly created internal channels will occur twice,
once as an input channel and once as an output channel. The old formal chan-
nels will occur once and their type (input or output) will not change. When

an expansion is performed, the following takes place:

- the old process is disconnected from the network; its channels are
temporarily closed,

- for every <creation> a new process is created,

- the newly created processes, and the old process if a survival occurred,
are connected into a ‘subnetwork by means of the internal channels,

- the subnetwork is connected to the rest of the graph by the temporarily
closed channels,

- the new processes start computing in their initial state and, if it
is still part of the subnetwork, the old process proceeds after the

expand statement.

The rest of the network can carry on computing while the expansion takes

place. Consider the following process declaration:

process compile (in source out obgject):
begin .

exp&nd chan el,e2,e3,ed,eb
create lex (in source out el,e?2)
create scanl (in el out e3,ed)
create scan2 (in e2,ed out eb)
create codegen (in e3,e5 out object)

endexp

end

70

The expansion in this process declaration can be pictured as in figure 3.2.3.1,

source object

compile

Figure 3.2.3.1. Expansion into a subnetwork.

An example of a dynamic DNP program is given in figure 3.2.3.2. It is a
parallel version of the prime sieve of Eratosthenes. This example was inspired

by an example given by McIlroy [61] for demonstrating the use of coroutines.

process filter(in ints out primes int factor):
begin int ij
read_int(ints,&i);

while(i>0) v
{if((i % factor) != 0) write_int(primes,i);
read_int(ints,&i);
}s

write_int(primes,-1);
end

process primesv(in factors out primes):
begin int ij
read_int(factors,&i);
while(i>0)
{expand chan inter
_create filter(in factors out inter int i)
keep primesv(in inter out primes)
endexp
write_int(primes,i);
read_int(factors,&i);
}s
end

process ints(out o):

begin int ij
for (i=2; i<80; i++) write_int(o,i);
write_int(o,-1);

end

main Eratosthenes(out primes):
begin expand chan inter1
create ints(out inter?)
create primesv(in inter1 out primes)
endexp
end

Figure 3.2.3.2. A dynamic DNP program.

71

72

3.3. AN EXPERIMENTAL IMPLEMENTATION OF DNP

3.3.1. Introduction.

To implement a parallel language one needs a parallel machine, real or
virtual. The UNIX operating system [72] is a parallel machine, with so called
pipes for interprocess communication, forkimg for dynamic process creation,
and with C as its machine language. The reason that C was chosen for the
internal DNP statements, was that the task of implementing DNP was made
easier, since only a preprocessor for C is needed. Figure 3.3.1.1. shows

DNP features and their UNIX/C counterparts.

DNP UNIX/C

channel . pipe/file

process declaration C function declaration
process process

creation forking

internal statements in C same C statements

Figure 3.3.1.1. DNP features and their UNIX counterparts.

In a DNP program there is no limit to the total number of processes and
channels, to the number of channels connected to one process, nor to the size
of a channel,.where the size of a channel is the number of values written
but not yet read. In UNIX, unfortunately, there is a limit to all these values.
We call our implementation experimental because we have chosen to live with
these system limits, even though some of them, e.g. the maximum number of pro-
cesses, are rather severe. Care has been taken to implement DNP so that a
maximal number of DNP processes can be created by not wasting UNIX processes.
We will come back to this when we discuss the translation of the expand state-

ment.

The DNP compiler was implemented using the parser generator PGEN [27],
constructed at the Mathematical Centre, Amsterdam. As PGEN accepts only LL(1)

grammars it was necessary to express DNP in that form, but this caused no

73

particular problems. The virtue of PGEN is that it automatically generates
error messages in terms of the syntactic notions. The semantic actions must

be written in SUMMER [51], a language well suited for that purpose. The facil-
ities for communication between parser and semantic actions and between vari-
ous semantic actions are unfortunately rather poor in PGEN. This kind of com-—
munication should proceed via derived and inherited attributes ([53],[54]).
Only a very simple kind of derived attributes is implemented in PGEN: a notion
or action is allowed to return one value. For the rest the compiler writer

is forced to resign to the use of global variables. A revised implementation
of PGEN with better communication facilities seems worth while because apart

from this shortcoming PGEN is pleasant to work with.

The compiler is, according to the rules of PGEN, structured as a lexical
scanner (dnp.ns), a parser e#tended with semantic actions (dnp.syn), and a file
containing global variables and procedures (dnp.ud). Figure 3.3.1.2. shows the
various parts of the DNP-system in terms of T-diagrams [25], where V stands
for a computer or its machine language, rts for a runtime system, and f for a
user program. Running a compiled DNP-program (the result of 3.3.1.2.(c)) in-

volves linking it with the run-time system (the result of 3.3.1.2.(b)).

74

DNP

dnp.ns
dnp.syn
dnp.ud

PGEN

dnp

C DNP DNP
dnp.sm
SUMMER
(a) DNP-compiler generation
C
cc
v
(b) Run-time system generation
£ r 4

DNP C C

dnp

(c) DNP-compilation.

cc

Figure 3.3.1.2. The DNP-system.

75

3.3.2. The translation of DNP to C.

The DNP compiler is a preprocessor that translates DNP into C. Every
DNP-process is translated to a C-function and a DNP-main body is translated to
a C-main procedure. Channels connecting the network to the outside world are
implemented by files. Channels connecting processes to each other are imple-
mented by pipes. A pipe is a communication buffer between UNIX-processes re-
presented by a read-file-descriptor and a write-file-descriptor. The compiler
will ensure that only one process, viz. the consumer process, will control
the read-file descriptor and only one process, viz. the producer process,

will control the write-file-descriptor.

A process-heading is translated into a C-function heading, and the re-
levant information about formal input and output channels is kept in some glo-

bal variables.

A process-body is a sequence of <c>-s and <expansion>-s. The lexical
scanner collects all C-text between a BEGIN and an <expansion>, or an <expan-—
sion> and an <expansion>, or an <expansion> and an END, and yields it as one
lexical symbol to the parser. The parser just outputs this piece of C-text.
Errors in the C-text will be detected by the C-compiler. An <expansion> will

be translated into a C compound statement.

When an <expansion> is encountered the compiler checks whether the for-

mal and internal channels are used properly. If so, it generates code

(1) to allocate pipes for the internal channels,

(2) to allocate processes for all activations except the last one,

(3) to make the appropriate process—channel connections,

(4) to start the processes with the right formal/actual channel-identifi-

cations.

For the last activation, whether a creation or survival, no process
needs to be allocated, because the process that performs the expansion can
be used for it. This trick saves one UNIX-process per expansion, but makes

the code-generation process more complex. The last activation must be handled

76

differently but, because the parser is based on the LL(1) recursive descent
technique, it only knows that a particular activation is the last one after it
has been parsed completely. We therefore generate code for an activation when

we encounter its successor, or we encounter the ENDEXP symbol.

Pipe and process allocation are implemented by standard UNIX system calls
(pipe and fork). A new process is an exact copy of the process that produced
it, except for an integer returned by the fork operation. Because a new process
is an excact copy of the old one, all pipes and files available to the old pro-
cess are available to the new one via their descriptor. It is therefore neces-

sary for a process to close the files and pipes it does not need.

Starting a creation -is implemented by a function call. Starting a sur-
vival is implemented by a number of channel assignments. As a survival is the
last activation of an expansion, control will pass automatically to the correct

instruction.

In order to make the above description more concrete we will consider the

translation of the process of figure 3.3.2.1.

process T (in i out o0):
begin
if (test)

expand chan 11,12,13,14
create T (in 11 out 12)
create T (in L3 out 14)
create N (in <, 12,14, out 0,11,13)

endexp

end

Figure 3.3.2.1. Example process.

The heading of DNP-process T is translated such that there is a UNIX-process
where i is identified with a read-file-descriptor and o is identified with a
write-file-descriptor. This UNIX process will execute the C-function T(i,o0)

as pictured in figure 3.3.2.2.

77

Figure 3.3.2.2. T(i,o0).

Upon encountering expand chan 11,12,13,14 code could be generated to

allocate four pipes. This is not done because:

(i) UNIX allows a rather small number of open files (a pipe counts for
two files) per process, and
(ii) as a process is only allowed to control a subset of all the pipes,

most of these will have to be closed afterwards.

Therefore code is generated to allocate a pipe only when it is really needed.

create T (in 11 out 12) will be checked for correct use of channels,

and will be translated to:

(1) allocate two pipes 11 and 12,

(2) create a new process (by means of a fork statement). Now there are
two processes, a parent and a child. Both processes control pipes 11
and 12, and files i and o,

(3) the child will perform T(Zn 11 out 12) and will therefore close the
write-file-descriptor of 11, the read-file-descriptor of 12 and the
files i and o,
the parent closes the read-file-descriptor of 11 and the write-file-
descriptor of 12,

(4) the child calls T(11,12),

the parent goes on with the expansion.

These steps are picture in figure 3.3.2.3., where a pipe is an arrow []-—£>
with the front part E> its read-file and the back [] its write-file.

78

11

12

QD) (2) (3) (4)

Figure 3.3.2.3. Steps in a process activation.

create T(in 13 out 14) will be translated similarly. For the last process
activation create N(in ©,13,14 out 0,11,12) no new process is needed. It is
translated to a function N(Z,13,14,0,11,12). The end of a process declaration

is translated to

(1) write end of information on all output files,
(2) read all input files until end of information,
(3) exit.
Figure 3.3.2.4. shows the C translation of the example program
Erathostenes from figure 3.2.3.2.

79

#include "rts.h"
filter(ints,primes,factor)
inchan ints;
outchan primes;
int factor;
{
int ij
read_int(ints,&i);
while(i>0)
{
if((i % factor) != 0) write_int(primes,i);
read_int(ints,&i);
}s
write_int(primes,-1);

putc(primes,EOF);
while(getc(ints)!=EOF);
exit(0);

}

primesv(factors,primes)

inchan factors;

outchan primes;

{
int i .
read_int(factors,&i);
while(i>0)
{
{
struct channel inter;
connection(&inter);
if((_f=fork())==-1) error("Cannot create process");
if(_f==0){ /* son ¥/
close(primes);
close(inter.i);
filter(factors,inter.o,i);
}
close(factors);
close(inter.o);
init_queue(& m);
ins_q(& m,inter.i);
ins_q(& m,primes);
factors = del_q(& m);
primes = del_q(& m);
}
write_int(primes,i);
read_int(factors,&i);
}s
putc(primes,EOF);
while(getc(factors)!=EOF);
exit(0);

80

ints(o)

outchan o;

{
int i;
for (i=2; i<80; i++) write_int(o,i);
write_int(o,-1);

putc(o,EOF);
exit(0);
}
main()
{
int primes;
primes=creat("primes",0666);
{
{
struct channel interi;
‘connection(&inter1);
if((_f=fork())==-1) error("Cannot create process");
if(_f==0){ /* son ¥/
close(primes);
close(inter1.i);
. ints(inter1.0);
}
close(interi.0);
primesv(inter1.i,primes);
}
}
exit(0);
}

Figure 3.3.2.4. C translation of Eratosthenes.

3.3.3. Appendix: the compiler and the run-time system.

DNP was implemented on a VAX 11/780 running Berkeley UNIX 4.1, using PGEN
[27] and Summer [51]. It consists of dnp.ud (user definitions), dnp.ns (a lex-

ical scanner) and dnp.syn (the compiler). The run-time system is written in C.

#dnp .ns#

F/3
i

81

Communication between the parser, generated from dnp.syn
and this lexical analyser proceeds via global variables:

sy

t-sy

1nr

keytab

predef

kartab.
The procedure nextsym yields the input lexical symbols as
declared in dnp.syn. It also keeps track of linenumbers
in 1nr and signals end of file EOF. A next lexical symbol
is put in sy and its type is put in t-sy. For further
details see the PGEN defining MC-report:

G. Florijn & G. Rolf
PGEN - A general purpose Parser Generator
MC IW157/81 januari 1981

P/

const STATE C := O,
STATE_DNP := 1;
var letter := upper || lower,
alpha := letter || digit,
true := 1,
layout := ' \t',
empty := '';

var state := STATE_DNP,
infile := stand inj

proc ermsg(msg, lino) #print errormessage on standard error output #
(stand_er.put('error near line ', lino, ': ', msg, '\n')

)3

i

82

1k
proc nextsym is either in STATE C or in STATE_DNP
when in STATE_C it yields:

- EOF if there is no more input

- all C-text until the next DNP keyword (and goes in STATE_DNP)

if there is C-text on input

- the next DNP symbol if there is no C-text (and it goes into STATE_DNP)
when in STATE DNP it yields:

- EOF if there is no more input

- the next DNP symbol

if the symbol is begin or endexp it goes into STATE_C

F/3

i

proc nextsym()
(case state of
STATE_C:
var pre, kw;
Sy := '';
while true
do scan line
for
if pre := break(letter)
then
sy := sy || pre;
kw := span(alpha);
if kw = 'end' | kw = 'expand'
then
state := STATE DNP;
if scan sy for (span(' \t\n') | 1it('')) & rpos(0) rof
then
sy := kw;
t_sy := keytab[syl;
return;
else
move(-kw.size);
t_sy := predef['c_text'];
return
fi
else
sy := sy || kw
fi
else
sy := sy || line.rtab(0) || '\n';
if line := scan string(infile.get()) fails
then
sy := 'EOF'; t_sy := predef['EOF']; return
else
Inr := 1Inr + 1
fi
fi
rof
od,

83

STATE_DNP:
while true
do line.span(layout) | empty;
if sy := line.any(letter)
then

sy := sy || (line.span(alpha) | empty);
if keytab[sy] ~= undefined

then
t_sy := keytab[sy]
else
t_sy := predef['id']
fis
if sy = 'begin' | sy = 'endexp'
then
state := STATE C
fi; .
return
elif sy := line.move(1)
then
t_sy := kartab[syl;
return
else
if line := scan_string(infile.get()) fails
then
sy := 'EOF';
t_sy := predef['EOF'];
return;
else
Inr := 1lnr + 1
fis
fi
od;

84

dnp.ud

var
in formals,

out_formals,

#

#

#

formal input channels of a process declaration
built up while parsing <process-heading> or <main>
read by <expansion>, <survival>, <process-body>

same for formal output channels #

free_in formals, funused formal input channels in an expansion
initially equal to in formals
emptied successively by /checkin/ actions

#

checked by <expansion>.EXIT

free out_ formals,fsame for formal output channels in an expansion #

intermediates,

free_in parts,

free_out_parts,

to_close,

procname,

curproc,

#

#

#

#

#

#
#
#

the new intermediate channels in an expansion

for an intermediate we must generate code to create

a pipe, which is done the first time the intermediate
is used as an actual input or output channel

unused input parts of intermediates during parsing
of an expansion
checked and emptied by chechin actions

same for unused output parts of intermediates #

open files: formal channels, input parts of intermediates,
output parts of intermediates.

some files are already created, because for complete channels

a pipe is created, but are not needed in a certain process.

these files must be closed

when a pipe is created for an intermediate x, x.i and x.o

are added to to_close in checkin or checkout actions.

when x.i is used in a process, it is removed from to_close

process name in a creation or survival #

current process declaration #

85

proctab := table(20,''),
key: process name
entry: io-channel-pattern
used for checking consistency of def and uses of

a process by checkchan ud
i :

firsttab := table(20,0),
key: process name
entry: line number first occurence

used for error msg by checkchan ud
#

gen call, # this one is needed because we cannot see when parsing
a creation or survival that it is the last one. So
code generation for creations will happen when the
next creation or survival or expend is encountered.

we have two cases:
(1) a creation x which is not the last process
determined when encountering successor of x, only
if x exists (gen_call = TRUE).
this happens in init_ud
(2) x is the last process :
(2.1) creation (gen_call = TRUE): generate function call
this happens in <expansion>.EXIT
(2.2) survival: generate channel part assignments
this happens in <{survival>.EXIT
#

actualparts, # actual channel parts of of creation or survival #
actualvals, # same for actual value parameters #

pre,

post,

rest; # used for pattern matching #

proc match(str,pat) #pattern matching #
(

return(
scan str for pre := find(pat) & lit(pat) & post := rtab(0)
rof &
rest := pre || post

=

86

init_ud generates code for previously parsed creation, if any (gen_call)
initializes global variables for the new creation or survival
#
proc init_ud()
(var actuals;
if gen_call = 'TRUE'
then put('if((_f=fork())==-1) error("Cannot create process");\n');
put('if(_f==0){ /* son */\n');
scan to_close
for move(1);
while pre := find(',')
do move(1);
put('close(' ,pre, ');\n');
od
rofy
actuals := actualparts || actualvals;
put (procname,'(',actuals.substr(0,actuals.size-1),');\n');
put(*'I\n');
scan actualparts
for while pre := find(',')
do move(1);
put('close(' ,pre, ');\n');
od
rof
fi;
actualparts := ''; actualvals := ''j;
gen_call := 'TRUE';

-e

#checkchan ud checks consistency of def and use of channels in process
declaration, creation and survival
#
proc checkchan ud(pnm,iopat)
(if proctab[pnm] = ''
then proctab[pnm] := iopat; firsttab[pnm] := 1lnr
else if proctab[pnm] ~= iopat
then ermsg('channels inconsistent with line ' ||
string(firsttab[pnm]),lnr
)
fi
fi

#checkin ud generates pipe creation code (connection) if needed
checks correct use of input channel

i#
proc checkin ud(nm)

(scan intermediates #if channel used first generate "connection"#
for if pre := find(',' || nm || ',')
then 1it(','||nm); intermediates := pre || rtab(0);
put('connection(&' ,nm, ');\n');
to_close := to_close || nm || *.i,* || nm || '.0,';
fi
rof;

if scan free in parts

for pre := find(',' || mm || *,")
& :
(1it(',* || nm); free_in parts := pre || rtab(0);

scan to_close
for if pre := find(','||Inm||*.i,")
then 1it(','|Inm||'.i');

to_close := pre || rtab(0);
fi
rof';
actualparts s= actualparts || nm || '.i,!'
)
rof fails
then
if scan free_in formals
for pre := find(',' || nm || ',')
&
(1it(',* || nm); free in formals := pre || rtab(0);
scan to_close
for if pre := find(','|Inm|]',*)
then 1it(','|Inm);
to_close := pre || rtab(0);
fi
rof';
actualparts := actualparts || nm || ',’
)
rof fails
then ermsg('wrong input channel '|| nm, 1nr)
fi
fis

87

88

proc checkout ud(nm) # see comment checkin ud #

(scan intermediates
for if pre := find(',' || nm || ',")
then 1it(','|inm); intermediates := prellrtab(0);
put('connection(&' ,nm, ');\n');

to_close := to_close || nm || '.i,* || nm || '.o0,’
fi
rof';
if scan free_out_parts
for pre := find(',' || nm || ',')
&
(1it(',* || nm); free out_parts := pre || rtab(0);
scan to_close
for if pre := find(','||nm|]|'.0,')
then 1it(','||nm||'.0");
to_close := pre || rtab(0);
fi
rof;
actualparts := actualparts || nm || '.0,"
)
rof fails
then
if scan free_out_formals
for pre := find(',' || nm || ',")
&
(1it('," |l nm); free_out_formals := pre || rtab(0);
scan to_close
for if pre := find(','[Inm||',')
then 1it(','||nm);
to_close := pre || rtab(0);
fi
rof;
actualparts := actualparts || nm || ',°
)
rof fails
then ermsg('wrong output channel '|| nm, 1lnr)
fi

fis

.o

89

dnp.syn

LEXICAL id, c-text.

<{dnp-program> ::= <{process-decl>* <maind> .

INIT: put('#include "rts.h"\n');

{process-decl> ::= <{process-heading> ':' <process-body> .

<{process-body> ::= BEGIN
(<expansion> | <c)>)#
END.

INIT: put('{\n');

EXIT:
while match(out_formals, ',')
do put('pute(' ,pre, ',EOF);\n'); out_formals := post ; od;
while match(in_formals, ',')
do
put('while(getc(' ,pre, ')I1=EOF);\n');
in_formals := post;
od;
put('exit(0);\n}\n');

<e> 2= t : <c-textd> .

EXIT: put(t, '\n');

90

<process-heading> ::= PROCESS pid: <id> /procname/
'(* ((IN { nm: <id> /inname/ ',' }+)
| (OUT { nm: <id> /outname/ ',' }+)
)+
(t: <type> {nm: <id> /valname/ ','}+)*
v)v o
INIT:

var val formals := '', c_pack := '' , iopat := ''j;
in formals := ''; out_formals := '';

/procname/: curproc := pidj;

/inname/:
in_formals := in_formals || nm || ',';
c_pack := ¢_pack || nm || ',';
iopat := iopat || 'i';

/outname/:
out formals := out formals || nm || ',';
c_pack := c_pack |Tnm || ',';
iopat := iopat || 'o';

/valname/:
val_formals := val formals || ¢t || ' * || nm || ';\n";
c_pack := c¢_pack IT nm || *,*;

EXIT: checkchan ud(pid,iopat);
put(pid, '(');
if c¢_pack "= '' then put(c_pack.substr(0,c_pack.size-1)) fij;
put(")\n');
if in formals ~= ''
then put('inchan ');
put(in_formals.substr(0,in formals.size-1));
put(';\n')
fis
if out_formals

= '' then put('outchan ');

put (out_formals.substr(0,out_formals.size-1));
put(';\n')

fis

if val_formals

= '' then put(val_formals) fij;

91

<type> ::= INT /i/ | CHAR /c/ .
INIT: var kw;

/i/: kw := 'int';

/c/s kw := 'char';

EXIT: return(kw);

<expansion> ::=

EXPAND
[CHAN {nm: <id> /chname/ ','}+]
/chdecl/
<creation>* [<survival>]

ENDEXP .

INIT: var m,actuals;
free_in formals := ',' || in_formals;
free_out_formals := ',' || out_formals;

intermediates := ',';

gen_call := 'FALSE';

to_close := ',' || in_formals || out_formals;
put(*{\n');

/chname/: intermediates := intermediates || nm || ',';

/chdecl/: if intermediates ~= ',!
then put('struct channel ',
intermediates.substr(1,intermediates.size-2),
';\n' .
)
fij
free_in parts := intermediates; free out_parts := intermediates;

EXIT: m := free in formals || free_ out_formals ||
free_in parts || free out_parts;
if m "= ',,,,"
then while match(m,',') dom := pre || ' ' || post od;
ermsg('unused channel(s) '|| m, 1lnr)
fi;

if gen_call = 'TRUE'
then actuals := actualparts || actualvals;
put (procname, ' (',actuals.substr(0,actuals.size-1),');\n')
fij
actualparts := ''; actualvals := ''j;
put('}\n');

92

{creation> ::=
CREATE pid: <id> /processname/
v(* ((IN {nm: <id> /checkin/ ','}+)
| (OUT {nm: <id> /checkout/ ','}+)
)+
(<type> {nm: <id> /addval/ ','}+)*
v)v .

INIT: var iopat := '';
init_ud();
/processname/: procname := pidj;

/checkin/: chedkin_ud(nm);
iopat := iopat || 'it;

/checkout/: checkout_ud(nm);
iopat := iopat || 'o';

/addval/ : actualvals := actualvals || nm || ',';

EXIT: checkchan ud(pid,iopat);

<{survival> s:=
KEEP pid: <id> /procname/
(' ((IN {nm: <id> /checkin/ ','}+)
| (OUT {nm: <id> /checkout/ ','}+)
)+
l)l .
INIT: var formals, iopat := ''j;
init_ud();

/procname/: if pid ~= curproc
then ermsg('incorrect process in survival', lnr)
fis

/checkin/: checkin ud(nm);

iopat := iopat || 'it;

/checkout/: checkout_ud(nm);
iopat := iopat || 'o';

EXIT: checkchan ud(pid,iopat);
formals := in_formals||out_formals;
put('init_queue(& m);\n');
while match(actualparts,',')
do actualparts := post;
put('ins_q(& m,',pre,');\n')

od;
while match(formals,',"')
do formals := post;
put(pre,' = del_q(& m);\n')
od;

gen_call := 'FALSE';

93

94

<main>

INIT:

MAIN <id>
'(* ((IN { nm: <id> /inname/ ',' }+)
| (OUT { nm: <id> /outname/ ',' }+)
)+
l)l 1ot /head/
BEGIN /open/
[<e>]
<expansion>
[<e>]
/close/
END .

var files;
in formals := ''; out_formals := ''j;

/inname/: in_formals := in formals || nm || ',';

/outname/: out_formals := out_formals || nm || ',';

/head/: put('main()\n{');

files := in formals || out_formals;
put('int ', files.substr(0,files.size-1), ';\n');
files := in_formals;
while match(files,',')
do put(pre, '=open("', pre, '",0);\n');
files := post;
ods
files := out_formals;
while match(files,',')
do put(pre, '=creat("', pre, '",0666);\n');
files := post;
od;

/open/: put('{\n');

/close/: put('}\n');

EXIT:

put('exit(0);\n}\n');

/¥rts.c */

#include "rts.h"

/* ERROR MESSAGE ¥/
/% zzzzz=z==z=z=z=z== %/

error(msg) char *msg;
{ printf("ERROR: %s\n", msg); exit(0); }

/% CHANNEL CREATION ¥/
/® z=z==zzzzz=z=z=z=z=zz=z==z= %/

connection(ch) struct channel #ch;
{ int fildes[2];
if(pipe(fildes) != 0)
error("Cannot create pipe");
ch->i = (inchan) fildes[0];
ch->0 = (outchan) fildes[1];
}

/% INPUT OUTPUT ¥/
/* =zzzz=zzzz=z=zzz %/

pute(f,c)

int f3

char c;

{ write(f,&c,1); 1}

char getc(f)
int f3
{ char c;
if (read(f,&c,1) != 1)
return(EOF);
else return(e);

}

96

int read_int(from,val)
inchan from;
int

{

}

*¥val;
int fdfrom = (int) from, res = 0, sign = 1,h = *val;
char cj;
*val = 0j
do { ¢ = getc(fdfrom);
} while (!isdigit(c) && (¢ != '-=') && (c != EOF));
if(e == '=')

{ sign = =13
¢ = gete(fdfrom);
}

while (isdigit(e))

*val

{ res = 1;
*¥val = *val * 10 + c - '0';
¢ = gete(fdfrom);

}

= sign ¥* ¥val;

if (!res) *val = h;

return(res);

write_int(to,val)
outchan tog;

int valj;

{ int fdto = (int) toj;
if(val < 0)

}

{ putc(fdto,'-'); val = -val; }

wint(fdto, val);
putc(fdto, ' ');

wint(fdto, val)

int fdto, val;

{ if (val <= 9) { pute(fdto, '0' + val); }
else { wint(fdto, val / 10);

putc(fdto, '0' + val % 10);
}

read_item(from) /* an int, SEP or EOM */
inchan from;
{ int fdfrom = (int) from, res = 0;
char cj
while ((c=getc(from))!="'#' && c!='$' && isdigit(c)==0);
while (isdigit(e))
{ res =res ¥ 10 + c - '0';
¢ = gete(fdfrom);
}
if (¢ == '¥') res = EOM;
else if (¢ == '$') res = SEP;
return(res);

}

write item(to,val) /* an int, SEP or EOM ¥/
outchan to; int valy
{ int fdto = (int) to;
char c;
if (val == EOM)
{ putc(fdto, '¥'); putc(fdto, '\n'); return; }
else if (val == SEP)
{ putc(fdto,'$'); putc(fdto,'\n'); return; }
wint(fdto, val);
pute(fdto, ' ');
}

isdigit(e)
char c;

{
}

return('0' <= c && c <= '9');

98

/% Some functions for the example programs

from chapter four
¥/

/¥ functions handling DEQUES ¥/
/* HEI it ittt */

init_deque(d) struct deque ¥d;
{ d->left=DQL/2 + 1; d->right=DQL/2;}

empty_deque(d) struct deque *d;
{ return(d->left > d->right); }
ins_r(d, el) struct deque *d; int el;

{ d->cont[++d->right]=zel; }

ins_1(d, el) struct deque *d; int el;
{ d->cont[--d->leftl=zel; }

del r(d) struct deque *d;
{ return(d->cont[d->right--]); }

left(d) struct deque *d;
{ return(d->cont[d->left]); 1}
right(d) struct deque *d;
{ return(d->cont[d->right]); }

del_1(d) struct deque ¥d;
{ return(d->cont[d->left++]); 1}

/¥ functions handling QUEUES ¥/
/* zzzzzzczzz==zz=z=z=z=zz=zzz=z==z %/

init_queue(d) struct queue *d;
{ d->left=1; d->right=0;}

empty_queue(d) struct queue *¥d;
{ return(d->left > d->right); }

ins_q(d, el) struct queue *d; int el;
{ d->cont[++d->rightl=el; }

left_q(d) struct queue *d;
{ return(d->cont[d->left]); }

right _q(d) struct queue *d;
{ return(d->cont[d->right]); }

del_q(d) struct queue *d;
{ return(d->cont[d->left++]); }

/% DIVIDE&CONQUER PRIMITIVES ¥*/
/* S SESSCSSCES============s=== */

twolog(n) int ;
{ int 1 = 0;
while(n>1)
{n/=2; 1+ }
return(l);

}
size(p) int p;

{ return(p); }

solve_seq(p) int p;
{ return(p); }

combine(p1,p2) int p1,p2;
{ return(p1+p2); }

split(p,p1,p2) int p,*p1,%*p2;
{ *pl1=p/2; *p2 = p - ¥pi1; }

99

100

/¥ rts.h

some definitions to be included in rts.c and the ¢ version of
a DNP program
®/

#define EOF '\01'
f#define EOM -1
#define SEP -2
f#tdefine DQL 100
#define QUL 100

int f; /% used for forking #*/
typedef int inchang
typedef int outchan;
struct channel {
inchan i
outchan oj
}s
struct deque { int left; int right; int cont[DQLI;} ;
struct queue { int left; int right; int cont[QULI;} 3

struct queue _m; /¥ used for multiple channel assignment in survivals */

101

CHAPTER FOUR

THE COMPLEXITY OF DNP PROGRAMS

4.1, INTRODUCTION

This chapter presents a number of algorithms all programmed in the lan-
guage DNP defined in the previous chapter. The algorithms (e.g. for matrix mul-
tiplication) are believed to be prototypical for dataflow computing and illus-
trate the criteria used for an evaluation of their efficiency. Section 4.2. is
devoted to algorithms that have an essentially linear computation graph: sorting
and matrix multiplication, and to an algorithm that uses a binary tree of pro-
cesses to implement a general divide—and-conquer routine efficiently. The rest
of the chapter is devoted to’an appraisal of the expressive power of DNP. In
section 4.3. we consider the limitations of the language. The main theorem is
that not all (important) classes of computation graphs can be generated by DNP
programs. In sections 4.4. to 4.6. a comparison is made with the standard com-

plexity classes.,

Dataflow algorithms can be classified according to the topology of their
computation graphs. The graphs that can be generated by a certain DNP program
coincide with the graphs produced by a context free graph grammar in the sense
of graph grammar theory (see [77]). Therefore, algorithms with context free
computation graphs can be expressed in DNP in the following way, using the

expand mechanism:

- "grow" the graph according to the input data, and

- let the processes in the nodes of the graph perform their particular tosk.

Take, for example, systolic algorithms [57], most of which can be ex-
pressed in DNP even though their underlying computation model (systolic ar-
rays) is synchronous instead of asynchronous. Systolic arrays are regularly

structured networks of simple processing elements that rhythmically act on

102

streams of data passing through the network. To show that systolic algorithms
can be expressed in DNP, consider the algorithm for a "systolic stack" as giv-
en by Kramer and van Leeuwen [55], originally due to Leiserson [59]. The design
consists of a linear array of cells with an I/0 connection to the environ-

ment left of the first cell (see figure 4.1.1.)

—_ OrO 00 oo 0
— oo oo oo

Figure 4.1.1. A systolic array.

Every cell has two registers, A and B, each of which can contain a num-
ber or a special empty token. The I/O cell is a passive cell, the registers
of which can be set and inspected by the outside world. A pusk is represented
by setting both the A and B register to a number, while a pop is represented
by setting both the A and B register to empty. The systolic array is synchro-
nized so that odd and even cells "beat" alternately. When it acts, a cell will
inspect the registers of its left neighbour, which is inactive at that moment.
When the left neighbour has numbers in both of its registers, one is copied
into the active cell. When the left neighbour has two empty registers the ac-
tive cell copies one into the neighbour. In this way pushes and pops ripple
through the array without causing race hazards.

A dataflow program for a systolic stack neither has nor needs the global
synchronization. Instead, the computation is controlled by the availability
of tokens (the number itself for push, the empty token for pop) streaming
through the array. A cell process has two inputs and two outputs (see figure
4.1.2.),

in-left out-right
—»[] 4

out-left in-right

<« B [|l

Figure 4.1.2. A cell-process.

103

and essentially performs the loop of figure 4.1.3. Note that a cell process

only acts when it has a token (perhaps the empty token) on its in-left or in-

right ports.

repeat
read (in-left, A);
if A = empty
/% pop */
then write (out-left, B);
if B # empty
then write (out-right, empty);
read (in-right, B)
fi
/% push %/
else if B # empty
then write (out-right, B)
fis
B:=A
fi
forever

Figure 4.1.3.

Kramer and van Leeuwen prove that the systolic array can process push/pop
commands in 0(1) response times, as long as the number of elements in the
stack remains less than the number of cells. This boundedness of the systolic
algorithm can be overcome in DNP easily by having a "bumper" process at the
right end of the array, which answers a pop command by sending an empty token
to the left and a push command by expanding into a cell process that gets the
pushed element and a bumper process (see figure 4.1.4.). Many other systolic
algorithms can be translated to DNP in the same way, as long as their compu-

tation graph can be generated.

104

:::::>> —__..I!I A bum
bum
] 5 [l

<«—| per

Figure 4.1.4. Expansion of a bumper process.
4.2, SOME DNP PROGRAMS AND THEIR COMPLEXITY

When analyzing a DNP program the following complexity measures can be

used:

(i) The number of proéesses.

We can measure the total number of processes created during the whole
computation, the maximal number of processes active at a certain moment, and
the minimal number of processors needed to run a program. The last two meas-
ures are of interest if a processor can be reallocated when a process is
no longer running on it or, if the creation of a process can be suspended

until a processor becomes available.

(ii) The number of channels and their size.
Clearly the number of channels depends on the number of processes. The
size of a channel at a certain moment is defined as the number of items writ-
ten on the channel and not yet read from it. Hence the size of a channel dej

pends on the timing of the algorithm.

(iii) The number of time-steps necessary to execute the program.
We will assume that all processes run in parallel and are equally fast,
i.e., they perform the same DNP statement in the same number of time-steps.

Such an execution could be characterized as "asynchronously synchronous".

105

4.2.1. A sorting program.

Parallel programs in general can be divided into (i) those where the in-
put data is already in the parallel processes or memories, (ii) those where
the input resides on a number of files and where the number of files depends
on the size of the particular problem, and (iii) those where the input resides
on a fixed number of files. Examples of programs in the first class are bi-
tonic sorting [9] and a derivative of it that runs on a mesh-connected paral-
lel computer [79]. A program in the second class is Kung's matrix multipli-
cation on a hexagonal array of processors [57]. DNP programs fall in the third

class and will therefore have a time complexity of at least 0(n).

An interesting sorting algorithm in the third class is Todd's parallel
merge sort [83] . This algorithm takes only log(n) processors to sort n num-
bers in about 2n+log(n) time-steps. In Todd's sort the passes of merge sort
execute overlapped. Each pass resides on a separate processor, SO one proces-
sor repeatedly combines single numbers into sorted runs of size two, the next
processor repeatedly combines two runs of size two into one run of size four

etc. (see figure 4.2.1.1.).

6|4|7(8]5(2]3]1 87654321

Figure 4.2.1.1. Todd's sort.

When the last number enters the first processor it will take O(log n)

steps to get the first sorted number out of the sorting net.

The sorting algorithm we will present here is faster in the sense that
immediately after the last number enters the net, the first number of the
sorted sequence is output. This makes our sorting net easily adaptable to a
priority queue that reacts on insert/delete commands in constant time. We will

call it "pipeline sort".

106

The program starts as in figure 4.2.1.2., where bottom is a process do-
ing nothing, i.e., sending an empty sequence over channel r to the process
sort. The process sort will start reading elements of the unsorted sequence

from channel u. The sorted sequence will eventually be written on channel s.

bot
‘ tom

Figure 4.2.1.2. The initial sorting network.

Channel e never receives a token and is there for reasons of symmetry which

will become clear below.

The sort process reads in and sorts elements in an internal datastruc-
ture, as long as it can do this in a constant time per element. Otherwise,
it expands (see chapter three) into a subnet consisting of a new sort process
(by means of a creation) and itself (by means of a survival). The newly
created sort process takes over the reading and internal sorting of the un-
sorted sequence. In order to do this it has to gain control of the input chan-
nel u and the output channel s. The old sort process will, after the expan-
sion, merge its internal sorted sub-sequence with a sorted sub-sequence coming
from channel r. (For the first sort process the sorted sub-sequence from r
will be empty.) The resulting (bigger) sorted sub-—sequence will be sent to
the newly created sort process over an intermediate channel rr. The channels

necessary for the computation are drawn in figure 4.2.1.3.

u u

Figure 4.2.1.3. Necessary channels in sort expansion (but syntactically

incorrect).

107

The expansion as pictured in figure 4.2.1.3. is however inexpressible in DNP,
because processes must have the same channel configuration before and after
expansion. For this reason the dummy channels e and ee are introduced (see
figure 4.2.1.4.). We will come back to this phenomenon in section 4.3. where

the limitations of DNP are discussed.

new old
sort sort

Figure 4.2.1.4. The syntactically correct expansion<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>