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CHAPTER ONE 

PARALLEL COMPUTERS AND DATAFLOW COMPUTING 

1.1. INTRODUCTION 

In the world of computers and computation there are two phenomena that 

should be in balance but that are not: the supply of versus the demand for 

computing power. An impressive choice of computing machines is now available. 

Their possibilities lead people to tackle problems larger and more complex 

than they ever dreamed of solving before. But when working on these problems, 

people find out that they need more computing power than there is available. 

Examples of such problems o~cur in the fields of meteorology, image processing, 

global models, windtunnel simulation and the simulation of computer systems 

([43],[64]). 

It is a recurring concern of computer manufacturers and researchers 

to find ways of designing faster machines. The speed-up that we have seen 

during the first generations of computers has been almost invariably brought 

about by improvements in the technology used for the traditional hardware 

components. In the traditional von Neumann architecture [15] there is typi

cally one central processing unit connected to one memory, with code and 

data traveling between them over one channel. Later computers implement the 

same basic architecture using faster components. 

The time has come that the physical limits of this kind of computers 

are reached. As a compelling example, Hossfeld [43] shows that in a typical 

family of machines (IBM/Amdahl) the central processing unit has become ten 

times faster in the nineteen sixties but only twice as fast in the nineteen 

seventies (see figure 1.1.1.). 
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Figure 1.1.1._ CPU speed of a typical family of machines 

Hockney and Jesshope [40] show that in the period of 1950 to 1975 

computer components became a 1000 times faster as measured by gate delay time, 
5 whereas whole central processors became a factor of 10 faster as measured 

by multiplication time. The additional speed up was made possible principally 

by the introduction of parallelism in these basically sequential computers. 

Further improvements in computer speed are conceivable only through 

a radically different approach to computer architecture. This change will 

lead from basically sequential computer architectures to either parallel 

(tightly coupled) architectures or distributed (loosely coupled) architec

tures. We shall focus our attention on the former. 

1.2. PARALLELISM 

Instead of executing computing tasks one by one: the sequential way, 

they may often be executed simultaneously: the parallel way. Even when there 

are more actions involved because of communication and synchronization the 
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overall compution is likely to go faster, provided that the problem to be 

solved allows a "parallel" solution at all and that sufficiently many pro

cessors are available. Many problems are indeed parallel by nature and compu

ter architects and programmers should be able to make use of this inherent 

parallelism. 

It is not surprising, however, that the sequential way has been pre

ferred for many years: it is easier to understand and (hence) to program, 

and it has been enforced by the existing hardware. Parallelism, on the other 

hand, is much harder to understand and may be difficult to capture. The 

parallelism in a problem may depend on the run-time values of the data, and 

an additional difficulty is that the amount of communication needed in a 

parallel algorithm may exceed. the amount of calculation in a sequential algo

rithm. Fortunately the required parallel mathematics [87] is now steadily de

veloping and for many problems in e.g. the area of scientific computing the 

achievable speed-ups through parallel methods are beginning to be understood. 

With the advent of highly parallel computer architectures at affordable 

costs and the maturing insight in the art (and even science) of computer pro

gramming, it has become feasible to think parallel in programming. 

1.3. PARALLEL COMPUTER ARCHITECTURES 

As there is abundant information about parallel computer architectures 

in the literature ([28],[78],[56],[84]), this overview will be kept short. 

Underlying each computer architecture there is a model of computation, i.e., 

a more or less formalized idea of how a computation is to proceed (figure 

1.3.1.). For the von Neumann architecture this model consists of iteratively 

fetching and instruction from memory, decoding it, fetching scalar operands, 

executing the instruction, and storing a scalar result back to memory. An im

provement of this approach is to separate some of these functions and to repli

cate them in hardware so that they can operate in parallel by looking ahead 

and executing several instructions simultaneously. The classical example is 

the design of the CDC6600 [80]. If, like in the 6600, the number of functional 

units is not too large, the problem of synchronization and interconnection 
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MODEL OF COMPUTATION 

A. Sequential control 

on scalar data 

B. Sequential control 

on vector data 

C. Independent, connnu

nicating processes 

D. Applicative or func

tional computation 

CORRESPONDING ARCHITECTURE 

A 1 . Von Neumann 

A2. Multifunction CPU 

A3. Pipelining 

B1. SIMD vector processors 

B2. SIMD processor arrays 

C1. MIMD shared memory 

multiprocessors 

C2. MIMD ultracomputers (net

works of small machines) 

D1. Reduction machines 

D2. Dataflow machines 

Figure 1.3.1. Computer architectures and their underlying 

computation model. 

of these units remains manageable. Also by looking ahead a limited number of 

instructions, say 3, the possible number of computation orders remains small 

enough to handle. 

A second improved implementation of the sequential control, scalar 

data model of computation is pipelining. Instead of using the same hardware 

to execute the basic CPU cycle (or any other decomposable task) the cycle is 

unwound: for every step the appropriate hardware is provided separately ([40], 

[82]). The gain of this approach depends on the number of steps into which 

a task can be decomposed. 

SIMD (single instruction, multiple data) architectures [81] are based 

on a computation model where the unit of data is a vector or a matrix. SIMD 

vector processors, such as the CRAYs and the CYBER205, are fast scalar ma

chines extended with special instructions for handling vectors. In SIMD pro

cessor arrays, such as the ICL-DAP, there is one control unit but the arith-
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metic-logic unit (ALU) is replicated many times. The ALU-s are interconnected 

in a regular pattern, each has its own local memory and performs the same 

instruction at the same moment. Such an action may be manipulating local 

data or communicating with direct neighbours by sending or receiving data. 

In a third model of computation there are many independent processes, 

all operating on their own data. The processes communicate either directly 

or via shared memory. If the programs in these processors are fixed and 

simple they can be implemented in VLSI. Systolic arrays [57] are an example 

of this kind of organisation. In a general purpose machine, complete, inde

pendent processors are put together. They communicate with each other by means 

of a processor-processor or a processor-memory interconnection network. This 

MIMD (multiple instruction, multiple data) approach is by far the most flexi

ble, optimistic but difficult one, 

A refinement of the third model is the applicative or functional model 

of computation [8]. It compromises demand driven and data driven computation 

[84]. In a demand driven computation there is a set of functions which are 

applied when their results are needed, and a computation starts by demanding 

the final results. Machines whose architecture is based on this model of com

putation are called reduction machines. A program in such a computer is an 

expression or function-call demanding the final result. Execution involves 

evaluating and rewriting this expression. The lazy evaluation concept as 

known from programming language theory [30] is especially relevant here. 

In a data driven computation functions are activated by the availabi

lity of their arguments. Since data driven computations are our main interest 

here, we will elaborate in some detail their underlying data driven model of 

computation: dataflow nets. 

1.4. DATAFLOW NETS 

Dataflow nets are two-dimensional programs expressing the data dependency 

between operations. In its most primitive form, a dataflow net is a directed 

graph in which the nodes represent processing elements and the edges represent 
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data paths, Some data paths will not start at a node (these are the input

lines of the net) or end at a node (the output-lines of the net). Data is 

presented in tokens. Tokens are indivisible, but can be distinguished through 

an interpretation. They can be transmitted over existing data paths, and 

processing elements digest them from their incoming edges and send new tokens 

over their outgoing edges. One cycle of a processing element normally consists 

of the consumption of one token from each incoming edge, followed by the 

production of one token on each outgoing edge, The execution of a cycle is 

very similar to a firing in the terminology of Petri-nets [69]. The main 

difference is that processing elements are operators, i.e., token-mappings 

of some variety. 

No assumptions are made about the absolute or relative speeds of the 

processing elements or about when processing elements take in a new batch 

of tokens, except that cycles and token transports take finite time. Dataflow 

computation is completely asynchronous, it implies that tokens may have to 

queue along a data path, if the node at the other end is not processing fast 

enough or if other inputs of the node are not yet available. However, in 

some models no queueing is actually permitted and so processing elements will 

not fire unless all outgoing edges are free. 

The many options in specifying a dataflow net have lead to a number 

of different models. In all models, except in Kahn's [46] and Wadge's ([86], 

(26]), the processing elements are token-level functional. Token-level func

tionality means that given the same tokens on its incoming edges, an operator 

will always produce the same tokens on its outgoing edges, independent of the 

relative times of arrival of incoming tokens and of the state of the computa

tion. Since dataflow computations are asynchronous, no functionality is guar

anteed at the global (input/output) level unless proven (see chapter two). 

Figure 1.4.1. shows a dataflow net that calculates x2-4x using primitive 

boxes DUP (which duplicates any incoming token to both outputs), t2 (which 

produces the square of an incoming value), *4 (which multiplies an input by 4), 

and - (which subtracts the right input from the left input). 
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Figure 1.4.1. A dataflow net calculating x - 4x. 

7 

An execution of the net is pictured in figure 1.4.2., where dots (e) represent 

the tokens as they are generated and move through the net. 

Figure 1.4.2. An execution of a dataflow net. 
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Karp and Miller [47] have shown that (dataflow) nets with nodes obey

ing certain rules are deterministic, i.e., the result of executing such a 

net is independent of the order of the firing of the nodes. The nodes must 

obey the following rules: 

(1) They must consume a fixed number of tokens from their input edges. 

(2) They must produce a fixed number of tokens on their output edges. 

(3) They must be token-level functional. 

These rules are rather severe, though. It is, for example, impossible 

to have conditional flow of data or loops in these nets. Therefore, all 

versions of the basic <lataflow model that have been developed relax one or 

more of these rules. If, depending on the value of the input tokens, a subset 

of the output edges can be selected for firing, it becomes possible to have 

conditional flow of data. This type of node is called a SPLIT node. In its 

basic form it has two input edges and two output edges, as in figure 1.4.3. 

Figure 1.4.3. A SPLIT node. 

A token entering via the c-edge has a boolean control value. If the 

c-token is TRUE, the v-token is copied to the 1-edge, otherwise the v-token 

is copied to the r-edge. With a SPLIT node either one of two subnets can be 

activated, as in figure 1.4.4. 

V 

Figure 1.4.4. Conditional activation of subnet Lor R. 
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In order to make the result of the Lor R subnet available to a subnet 

F, a node is needed that selects a subset of its inputs, i.e., that joins 

the output edges of the Land R subnets. Such a node is called a MERGE (or 

JOIN) of which there are two types: 

(1) A MERGE node with two data input edges 1 and r, and one control input 

edge c. The control value determines whether a token must be consumed 

from the 1-edge or from the r-edge. The 1 or r token is copied to the 

output edge (see figure 1.4.5.). 

Figure 1.4.5. A deterministic MERGE node. 

(2) The second type of MERGE node does not have a control input edge (see 

figure 1.4.6.), 

1 r 

Figure 1.4.6. A non-deterministic MERGE node. 

and which input edge the token is to be taken from is decided in some 

other way. This type of MERGE node is called non-deterministic or 

time dependent. 

For the moment we will only consider the deterministic MERGE. With SPLIT and 

MERGE we can now program a conditional assignment such as 

z ·- if c then f(x) else g(x) fi 

as shown in figure 1.4.7. 
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X C 

DUP 

z 

Figure 1.4.7. A conditional assignment. 

A loop such as 

repeat x .:= f(x) until g(x) 

can be translated intrr dataflow as shown in figure 1.4.8. 

init X 

result x intermediate x 

Figure 1.4.8. A loop. 
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In the net of figure 1.4.8. it appears that we need an initial control 

value (a "marking") for the MERGE node. We cannot let the first control value 

come from outside the loop, because then we have to merge the control value 

from the "outside" and the one from the "inside", which leaves us with the 

same problem. This phenomenon does not occur when non-deterministic MERGE 

nodes are used. 

Obviously a more complicated computation is translated into dataflow 

by recursively applying the same techniques. For interest's sake, consider 

the following program. 

} 

input(m,n); u:=1; 

while m>O do if odd(m) 

fi 

od; 

output(u) 

then u:= u*n m:= m-1 

else n:= n*n; m:= m/2 

The dataflow net for the above program is shown in figure 1.4.9., where a 

SINK node just swallows its input and the POS? and ODD? nodes yield control 

values. Subnet A controls the loop, subnet B controls the if-statement with 

subnets C and D implementing the then- and else-part, respectively. 

The dataflow net in figure 1.4.9. exemplifies another drawback of the 

controlled MERGE: even though there will never be more than one token on 

the two inputs of the MERGE nodes (so non-deterministic MERGE nodes would 

suffice and would be used in a deterministic way) we have to draw all the 

control lines and so complicate the net. 

In chapter two we will study dataflow nets with non-deterministic MERGE 

nodes and no control lines. Both their deterministic use (only nets where the 

two inputs of a MERGE can never contain a token simultaneously) and truly 

non-deterministic fair merges will be treated. 
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1. 4.1. Re-entrant use of dataflow subnets. 

A subnet inside a loop in a dataflow net may be activated more than 

once. A subnet can be used to implement a function that will be called at 

several places in the dataflow net. In both cases, tokens belonging to dif

ferent computations will flow through the subnet and must not interfere. In 

chapter two we present a construction that can be used to close a subnet for 

a new computation as long as the old one is still active. A similar method 

is used in the dataflow net of figure 1.4.9. Using that construction we can 

show the computational power of dataflow nets, although a lot of potential 

parallelism is lost. 

If this parallelism is to be saved, simultaneous activations of a 

dataflow subnet must be allowed while preventing tokens belonging to differ

ent calculations from interfering. There are a number of ways to accomplish 

this. The first requires the edges to behave like queues as we have assumed 

up to now. This induces an ordering on the tokens, allowing different itera

tions to be distinguished. This does not guarantee yet that tokens belonging 

to different iterations do not interfere. The net must be clean in that it 

uses up all tokens it receives. In a second approach the edges are one-token 

buffers. If, again, the net uses up all its token, a new iteration will 

push the previous one out of the net. The above methods allow loops to be 

reactivated in strict sequence. Dataflow models allowing only this sequential 

cyclic re-entrancy are known as static dataflow models. 

A more general approach allows both looping and general recursive 

application of subnets. Again there are two methods. One method permits con

current re-entrancy via a call node which creates a new copy of the subnet 

every time it is activated. The other method allows the tokens to share the 

same subnet by ensuring that tokens are passed to the right version of the 

subnet by some addressing scheme: tokens belonging to different computations 

are labeled or coloured differently so that they can be distinguished. Only 

tokens with the same colour enable a node to fire. In this scheme the edges 

are just bags of tokens. This method is called token colouring or unraveling 
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interpretation of dataflow nets [5]. Dataflow models allowing the general 

recursive application of subnets are called dynamic dataflow models. 

Processing elements have memory? 

One token buffer 
edges [22] 

only when input on all edges and 
at all edges? 

Queued inter
preted [5] 

How handle re-entrancy? 

Unraveling 
interpreted 
(Colouring) 
[5],[35] 

Code Copying 
[76] 

Figure 1.4.10, The various dataflow models. 

1.5. DATAFLOW ARCHITECTURES 

Having dataflow nets as the underlying model of computation, an un

conventional form of computer is required to realize the intrinsic parallel

ism expressed by it. In [84J an overview is given of the many different 

dataflow architectures that1 have been proposed. Experimental programmable 

dataflow computers are currently under construction at a number of institu

tions including MIT ([23],[6]), the university of UTAH [19], the university 
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of Manchester [36] and CER Toulouse [70]. 

However, there is nothing against implementing a dataflow program by 

letting nodes be actual processors and edges be wires. A dataflow net thus 

becomes the specification of an asynchronous special purpose design that 

may well be suited for implementation on a chip by means of current VLSI 

technology [58]. 

1.5.1. An Example: The Manchester Dataflow Machine. 

As an example of a typical dataflow architecture, we will discuss the 

Manchester Dataflow Machine [36] because its design is simple and extensible 

and clearly shows which problems dataflow does not solve yet, and because 

some of our results in chapter two relate to it. 

The Manchester Dataflow Machine consists of a ring of elements each 

performing a special task, ,as shown in figure 1.5.1.1. 

In 

Out 

NS TQ 

ru 
MU 

[LI 

Figure 1.5.1.1. The Manchester Dataflow Machine. 
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In a general purpose dataflow machine the net representing a particular 

program cannot be hardwired, and so it must be represented using a data struc

ture of some sort. On the Manchester Machine this data structure consists of 

labelled nodes containing the function to be performed and the destination 

node(s) of the result. These nodes are kept- in the node store NS. In order 

to execute a node, the node store receives a group package GP consisting of 

a node label and the required operands. The node store then generates an exe

cutable package EP consisting of operands, the function to be performed and 

the destination(s) of the result. Executable packages are sent via a distri

bution network D to one of the processing elements PE. Processing produces 

one or more result tokens T consisting of datatype, the result value and a 

destination node label. The tokens are sent via an arbitration network A to 

the switch SW. 

The switch connnunicates with the outside world. Result tokens meant for 

output l~ave the ring here, input tokens enter the ring and tokens meant for 

further processing are s~nt through. The switch sends tokens to the token 

queue TQ, which compensates temporary differences in speed between the match

ing unit MU and the processing elements. 

The matching unit is basically an associative memory. Tokens wait here 

for their partner to arrive, at which time they are put together to form a 

group package and are sent off to the node store. For efficiency reasons the 

machine only allows packages containing one or two tokens. 

The Manchester Machine actually employs token colouring but for the sake 

of simplicity we have left the details of this out. 

The Manchester Machine makes use of both pipelining (the continuing 

flow of packages from NS to PE and so on) and low scale MIMD-type parallelism 

(PE's process different EP's simultaneously). The machine is a truly systolic 

system: the heart (MU+NS) "pumps" packages to the various "organs" (PE 's). 

The organs use the packages and send the results back to the heart again. 
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1.5.2. Extensions to the Manchester Dataflow Machine. 

1.5.2.1. Global memory. 

The virtue of dataflow is at the same-time its source of difficulty: 

there is no global memory. In actual programming, global memory is used in 

two ways: 

(i) It serves as a short term store for intermediate results between in

structions or, in dataflow terms, between processing elements, 

(ii) It serves as long time storage for information used many times in many 

places in a program (such as a symbol table). 

In case (i) variables can be transformed into data paths. In order to 

make this transformation straightforward, single assignment languages were 

developed (see section 1.6.1.). However, it has been shown that by building 

and analyzing their dependence graphs, programs written in a conventional 

language can be transformed into dataflow nets just as easily ([31],[85], 

[3],[88]). 

Case (ii) is harder because it uses memory in an inherently non

functional manner. In order to mimic global memory, the matching unit of the 

Manchester Machine is extended so that semi-permanent data can be stored and 

manipulated there. This is in fact a step back to a von Netnnann style memory. 

The extensions to the matching unit will now be described in some detail. 

1.5.2.2. Matching functions. 

There are a number of matching functions that can be used to implement 

time dependent, non-functional, and non-deterministic concepts ([16],[12]). 

A matching function describes how the matching unit behaves (i) when the part

ner of a token has already arrived so the match succeeds (the s-action) or (ii) 

when the partner has not yet arrived so the match fails (the f-action). There 

are fours-actions and four f-actions. 

The operation of the matching unit as sketched in section 1.5.1. was 

the standard matching function for tokens with a two-input destination. This 
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matching function is called extract wait EW. When the first token for a double 

input edge node reaches the matching unit it must wait for its partner to 

arrive, at which point both tokens can be extracted from the memory, combined 

into a group package, and sent off to the node store. The standard matching 

function for tokens with a one input destination is by-passing the token store 

(BY). The full list of s-actions and f-actions now follows. 

S-ACTIONS 

E for EXTRACT 

Both tokens are removed from the token store, packed in a group package 

and sent off to the node store. This is the standards-action. 

P for PRESERVE. 

The token and its partner are packed together and sent off, but the 

partner remains in the token store. This provides a way to use the matching 

unit as a memory. 

I for INCREMENT snd D for DECREMENT. 

Theses-actions are the same as preserve, except that the remaining 

token is either incremented or decremented. 

F-ACTIONS 

W for WAIT. 

The token is placed in the token store. This is the standard f-action. 

D for DEFER. 

The token is not stored. It is sent around the ring "to try again later". 

This f-action can be used to implement exclusion. 

A for ABORT. 

The token is not stored. A special token (EMPTY) is sent to the destina

tion to indicate that no partner was found. 
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G for GENERATE. 

Again an EMPTY token is sent to the destination, but the incoming token 

is stored in the token store on the other input port, so that the next token 

coming in on the same (original) input port will match it. This £-action can 

be used to sense the first traversal of an edge. 

Apart from BY, the following seven of the sixteen possible combinations 

of s-actions and £-actions are allowed as matching functions: EW, ED, ID, 

DD, EA, PG, A token carries a tag indicating which of the matching functions 

applies. 

In section two we will show that there is one basic concept underlying 

these matching functions: the possibility of checking whether a token has 

already arrived. 

1.5.2.3. A higher level Manchester Dataflow Machine. 

The amount of parallelism in the Manchester Machine depends on the number 

of processing elements. This number cannot be arbitrarily enlarged as the rest 

of the ring (in particular the matching unit) has a maximum capacity. An exten

sion under consideration [36] is to connect several rings through the switch, 

which then becomes a full-blown interconnection network (see figure 1.5.2.3.1.). 

This will make the machine an MIMD machine with dataflow nets as its machine 

language. Tokens always travel the same distance in this machine, whether 

they stay in their "own" ring or are transfered to another one. This makes 

the problem of where to allocate a piece of the dataflow graph much easier. 

This design introduces a third level of parallelism, which can be used 

to implement higher level parallel computation models where the nodes have 

the computational power of procedures, as in CSP [39], MODULA [89], or Kahn's 

language [46]. 
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Figure 1.5.2.3.1. A higher level Manchester Machine. 

1.6. PROGRAMMING LANGUAGES FOR DATAFLOW MACHINES 

1. 6. 1. Single Assignment Languages. 

The languages that emerged together with dataflow machines are based on 

a single assignment principle. There are two versions of the single assignn1ent 

principle: 

(1) An object gets a value assigned to it only in one place in the program. 

(2) An object gets a value assigned to it only once during execution of 

the program [17]. 

Almost every dataflow research group has its own single assignment language 

[65]. We will briefly summarize some of the languages. Nearly all of the 

languages obey the first of the single assignment rules. 
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LAU [70]. 

The LAU language (Langage d'Assignation Unique) was designed before the LAU 

machine was built. LAU incorporates five types of statements: CASE, LOOP, 

EXPAND (a loop where the programmer can set the maximlllll nlllllber of parallel 

activations), CALL, and RETURN. 

ID [71]. 

ID is an expression oriented language, supporting abstract data types, streams, 

and resource managers (a sort of monitors where control resides inside the 

manager). An ID program creates a large nlllllber of parallel tasks called acti

vities. 

CAJOLE [37]. 

A CAJOLE program is a set of definitions. The language supports guarded com

mands. The programmer can extend the language by defining new syntactic con

structs. CAJOLE programs obey the type (2) single assignment rule. 

VAL [ 1]. 

VAL is an expression oriented language based on CLU [60]. Iteration is viewed 

as a simple kind of recursion. There are two FORALL constructs. The first 

generates an array of results, one element per iteration. The second combines 

the results. There are modules that manipulate streams of data. 

LAPSE [34]. 

LAPSE looks very much like PASCAL, although its semantics is that of a func

tional language. The language allows array and record structured values and 

functional subroutines. 

LUCID [7]. 

The motivation for single assignment in LUCID is the ease of program correct

ness proving. LUCID operators operate on sequences of values. 

Single assignment enhances the translation from program text to dataflow 

net but, as already mentioned in section 1.5.2.1., ordinary "multiple assign

ment" languages can be translated to dataflow nets as well. The real problem 

of compiling for parallel machines, which is the allocation of (large) data

structures in parallel memories, has not been solved by the introduction of 

single assignment languages. 
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1 ,6.2. Other languages. 

Several research groups are studying the implementation of other lan

guages on dataflow machines such as PASCAL [88], Fortran [45), and functional 

languages [48]. 

In chapter three we will study a language for parallel programming. 

What interests us there is the possibility to express parallelism explicitly 

at the procedure level and to adapt the parallelism, i.e., the topology of 

the dataflow net, to the amount and the values of the problem data. The lan

guage is called DNP, short for Dynamic Networks of Processes. 

1.7. SEMANTICS OF DATAFLOW LANGUAGES 

The semantics of parallel deterministic languages is based upon the 

Kahn principle [46]. The meaning of a deterministic net with n edges is 

described by a set of equations in terms of functions fi, which specify how 

the sequence of output tokens on an output edge ui of some node depends on 

the sequences of input tokens to that node. The behaviour of the net can be 

obtained as the minimal fixpoint of these equations. This principle can be 

extended to non-deterministic models of computation ([67],[26],[11]), 

The semantics of token level functional dataflow nets is defined by 

Arvind and Gostelow [5], They apply the theory of fixpoint semantics to ex

press the relationship between two different interpretations of Dennis's 

dataflow nets [22], the queued interpretation and the unraveling interpreta

tion. They show that the unraveling interpretation allows more parallelism 

than the queued interpretation. 

Brock [13] defines the semantics of a dataflow language ADFL, a sim

plification of VAL. Firstly, a translation from ADFL programs to dataflow 

nets is defined. Secondly, the semantics of these nets is derived by use of 

the Kahn principle. 
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Kahn's semantics and Arvind and Gostelow's semantics differ in the mo

delling of the traffic of tokens over an edge. The former assumes the edges 

to behave as queues, while the latter takes token colouring into account. 

This causes differences in domains and orderings and (hence) a difference 

in c.p.o. structure. 

In both ADFL and Dennis's nets the step from dataflow net to functions 

is simple because the nodes are token level functional, i.e., they have no 

inner state. There is a fixed number of node types so their semantic functions 

can be given beforehand. A similar approach is taken in LUCID ([7],[86]). 

Here the nodes may have an inner state but as there is a fixed set of node 

types their semantic functions can still be derived beforehand. This approach 

cannot be used in a language where the nodes are programmer defined as in the 

language of chapter three. What is needed then is the definition of an op

erator from node declaration to semantic function [14]. 

1.8. DATAFLOW ALGORITHMS 

1.8.1. Sequential algorithms. 

Computer algorithms can be characterized by the type of program- and 

data structures they use. When we look at sequential algorithms, the basic 

program structures are sequence, assignment, condition, loop and procedure 

call. The basic data structures are scalar, record, array ~nd recursive data 

structures such as trees and graphs. By analyzing the program- and data struc

tures some of the parallelism from the original algorithm can be reconstructed. 

As has already been argued, single assignment languages only simplify part of 

this analysis. Ideally, there is a computer architecture on which the program 

parallelism, typical for a certain combination of program- and data structures, 

can be exploited. 

Dataflow machines are already suitable for loopfree blocks of condition

al assignments, which are hard to run art pipeline or vector machines. The same 

applies for loops with conditions. 
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In the present state of dataflow computers it is not yet precisely clear 

how to implement data structures, such as arrays, while exploiting inherent 

program parallelism. The combination of matching functions (or their equivalent 

in other dataflow machines) and higher level architectures seems suitable for 

tackling this problem. Clearly more research is to be done in this field. 

1. 8. 2. Explicitly parallel algorithms. 

No research has been done yet on implementation of programs with explicit 

parallelism at the procedure level on dataflow architectures. With the advent 

of higher level dataflow machines this seems to be an interesting research 

topic. These programs are also interesting for direct implementation in VLSI 

[58]. 

In chapter four we will write some explicitly parallel algorithms in 

DNP, the language introduced in chapter three, and we will also analyse their 

complexity. The complexity measures will be: 

- the number of processes (nodes) in the computation graph, 

- the amount of memory in a node, 

- the number of edges and the number of tokens on an edge at a certain moment, 

the time needed for the computation. 

1.9. SUMMARY OF THE THESIS 

In chapter two we explore the theoretical foundation of computation 

by dataflow. To prove essential properties of dataflow computing we will in

troduce an elementary model. We prove that for certain, so called well-formed 

nets, asynchronous, parallel execution does not lead to non-functional behav

iour, i.e., that all computation orders are equivalent. We prove that our model 

has universal computing power. The remainder of chapter two is devoted to the 

simulation of other models of parallel computation. 

In chapter three we introduce a high level dataflow language, called 

DNP, based on Kahn's simple language for parallel progrannning. Parallelism is 
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explicitly expressible in this language by means of the operation of expansion, 

where a process is replaced by a network of parallel processes. 

Chapter four deals with the complexity of some DNP programs and with 

the expressive power of DNP. We design and analyse algorithms for sorting, 

matrix multiplication and we will look at the class of divide-and-conquer 

algorithms. We show that not all computation graphs can be created in DNP. 

Two ways to overcome this limitation are pointed out. The last part of chapter 

four is devoted to DNP programs for NP-complete problems. 

In chapter five we prove the correctness of some of the programs of 

chapter four. The proofs are based on the semantics as described by Kahn 

[46] and formalized by Bohm .and de Bruin [14]. 
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CHAPTER TWO 

FUNDAMENTAL CONCEPTS IN DATAFLOW COMPUTING 

2.1. INTRODUCTION 

Models of computation enable us to prove fundamental results about 

the power and limitations of real or proposed computer architectures. Much 

of the present theory of computation has resulted from detailed analysis 

and abstraction of von Neumann architectures. As modern technology is moving 

away from such architectures we accordingly need to revise our ideas about 

computation and the way it is performed. In this chapter we shall explore 

the theoretical foundation of computation by dataflow. 

To prove essential properties of dataflow computing, such as the impact 

of the high degree of parallelism in dataflow nets, we will introduce an 

elementary model of dataflow computing. 

Several dataflow models have been proposed in the past, all based 

on some notion of a dataflow net. Adams [2] and Rodriguez [73] proposed 

that four types of primitive nodes be incorporated in the model, namely 

arithmetical and logical functions, a split node, a controlled merge node 

and a duplicate node. This set of nodes was adopted by Dennis et.al. [22] 

and formed the basis of a proposal for a dataflow architecture [23]. Fosseen 

[29] reportedly proved that these primitives indeed provide universal compu

ting power. Recently Jaffe [44] extended the analysis of Dennis's framework, 

explored the connections with the theory of program schemata and proved the 

universality by simulating Turing machine computations in dataflow. 

The basic differences between our model and Dennis's model are that 

our merge primitive has no control input and that we can model time dependent 

non-functional behaviour by means of a special primitive that reacts to 
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the (non)availability of a token on one of its input lines. Our primitives 

are also more elementary. Furthermore, our primitives can be used to model 

an existing dataflow machine, the Manchester Machine, very naturally. 

In section 2.2. we shall define our model. In section 2.3. we shall 

show that for well-formed nets asynchronous parallel execution always leads 

to functional behaviour, i.e., all computation orderings are equivalent. In 

section 2.4. we shall define the notion of pipelining and in section 2.5. 

we shall prove that our simplified model has universal computing power in 

the sense of computability theory. The proof is very different from Jaffe's 

and shows direct constructions of dataflow nets for the primitive functions 

and standard operations from recursive function theory [74]. The main result 

of section 2.5. will be that for each partial recursive function f there is 

a dataflow net to compute f that can be used for pipelining, i.e., for pro

ducing a continuous stream of result values corresponding to a continuous 

stream of argument values without the need ever to reinitialize the net. Se

veral applications of this result will be given. 

The remainder of this chapter is devoted to the simulation of other 

models of (parallel) computation with our model of dataflow. In section 2.6. 

we give a simple simulation of counter machines, which are known to have the 

same computational power as Turing machines. In section 2.7. we model memory 

cells. In section 2.8. we model the matching functions of the Manchester 

Machine. In section 2.9. we model Petri-nets. 

2.2. A BASIC MODEL FOR DATAFLOW COMPUTING 

A dataflow net is a directed graph in which the nodes represent proces

sing elements and the edges represent data paths. Some data paths will not 

explicitly start at a node (the input-lines of the net) and some will not 

explicitly end at a node (the output-lines of the net). Data is presented 

in tokens, which are indivisible, but can be distinguished through some inter

pretation. 
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Convention: We shall assume that tokens are natural numbers. 

Tokens can be transmitted over data paths only: processing elements consume 

tokens from their incoming edges and produce new tokens over their outgoing 

edges. The combined action of consuming input tokens and producing output 

tokens is called firing or executing a cycle. Processing elements are al

lowed to fire only when all incoming edges have at least one token, with 

two well-defined exceptions: the JOIN-operator and the THERE-operator (see 

below). Tokens may queue. If they do, when a processing element starts up 

a new cycle, it will always pick the front element from each queue on an 

incoming edge. In systems which do not implement edges as queues, token 

colouring will be assumed to achieve the same effect. 

Definition 2.2.1. A dataflow net is said to compute a (partial) function 
k f: 1N ➔1N when for all x1, ..• •~ E 1N the following is satisfied: upon receiving 

tokens representing x1 , ••• ,~ over distinguished input-lines, the net will 

eventually produce one token v if and only if f(x 1, ••• ,~) is defined, and 

f(x1, ••• ,xk) = v. 

□ 

Notice that the net will produce no output if f(x1 , ••• ,~) is not de

fined. The kinds of computation that can be modelled will depend on the primi

tive operators chosen to build dataflow nets from. We shall use the following 

primitive processing elements (boxes, operators) as ingredients for dataflow 

nets: 

ZERO: the ZERO-box emits a value (token) 0 once 

and is then silent forever. 

DUP: the DUP-box duplicates any incoming token 

and emits a copy over both of its outgoing 

edges. 

SINK: The SINK-box swallows and destroys any in

coming token. 

INCR: The INCR-box increments any incoming token 

by 1, and emits the new value over its output

line. 
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DECR: The DECR-box decrements any incoming token 

x by 1, provided x>O, and emits the resulting 

value over its output-line. If xis zero, it 

is passed on unchanged. 

SPLIT: upon receiving the input x and y, the SPLIT

box routes y left or right (i.e., on distin

guished outgoing edges) depenJing on whether 

xis zero or not (the zero output is encircled). 

JOIN: the JOIN-box lets any incoming token pass, 

provided it never finds tokens present on both 

incoming edges. Otherwise the result is unde

fined, but we shall always ensure that this 

does not arise. 

l<x)- THERE: [ F x :ot there 

upon receipt of an input c, if an input x 

x if x is there 

is present, it is passed down, otherwise zero 

is passed to the right. 

Clearly the last two boxes may cause problems concerning functionality. 

The constraint on the use of the JOIN-box removes this problem, because if 

we allowed two tokens to arrive simultaneously, some decision would have to 

be taken about which token should pass first. The THERE-box is non-functional 

by nature and is introduced for that very reason. We will only make use of 

the THERE-box in non-functional computation models such as memory-cells and 

the matching functions of the Manchester Machine. 

For ease of use we shall introduce one more box, although it is not 

independent of the primitives above: 

GATE: upon receiving tokens x and y, the GATE-box 

will pass y down. 
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It is easily verified that the net of figure 2.2.1. implements the GATE-box. 

Figure 2.2.1. The GATE. 

The rules for building dataflow nets are straightforward. Input lines 

of the net are connected to input ports of some nodes. Output lines of the 

net come from output ports of some nodes. With the exception of input and 

output lines of the net, all input ports are connected to output ports (by 

"internal" lines). Our notion of (asynchronous) computation by dataflow is 

identical to that of Adams and Dennis. To exemplify that our nets are prim

itive but nonetheless powerful, figure 2.2.2. shows a net that implements 

Adam's controlled merge,from section 1.4. Notice that the feedback of the 

output token ensures the correct use of the lower JOIN-box by preventing 

a new cycle from starting until the old one has ended. 
C 

1 r 

(a) (b) 

Figure 2.2.2. The controlled merge (a) and its implementation (b). 

Definition 2.2.2. A dataflow net is said to be well-formed iff: 

□ 

(i) no JOIN-boxes will ever receive tokens on both their incoming edges 

simultaneously in any computation by the net, and 

(ii) it contains no THERE-boxes. 
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2.3. FUNCTIONALITY 

In this section,we will consider only well-formed nets. We will need 

definitions of the following terms: type, in-set, out-set, history, enable, 

snapshot and execution. Every node in a well-formed net has a type E {ZERO, 

DUP,SINK,INCR,DECR,SPLIT,JOIN}. The type of a node determines the number of 

incoming and outgoing edges of the node, and the f'llllction it performs. The 

incoming edges of any node n that is not a JOIN node are called the in-set 

of n. Nodes of type JOIN have two in-sets, the two singletons containing one 

edge each. The latter convention ensures that the in-sets model the sets of 

edges that simultaneously enable a node for firing. The outgoing edges of 

any node that is not a SPLIT node are called the out-set of n. For a similar 

reason to the above, nodes of type SPLIT have two out-sets, since only one 

of the two outgoing edges will receive a token after firing. 

During the activity of a dataflow net, tokens are produced at one end 

of an edge and consumed at the other. Informally, a history is the complete 

sequence of tokens that have appeared on an edge since a computation started. 

Definition 2.3.1. A history his the concatenation of a pair of sequences of 

values : h = (p of h)A(pc of h). Part p models the sequence of values that 

have been produced but are not yet consumed, while part pc models the sequence 

of values that have been both produced and consumed. Parts p and pc are oper-_ 

ated upon in queue fashion: producing a:new value x causes x to be inserted 

in p. Consuming a value v causes v to be deleted from p and inserted in pc. 

C 

The p-part of a history consists of the tokens that are still waiting 

in the queue associated with the edge. A snapshot S (of a dataflow net in 

action) associates a history S(e) with every edge e. 

Definition 2.3.2. An in-set I of node n is said to enable n in snapshot S 

iff for all edges e EI : p of S(e) is not the empty sequence. A snapshot 

S enables a node n (S ~ n) iff there is an in-set I of n that enables n 

ins. 

C 
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A node of type ZERO is not enabled by any snapshot, We can talk about 

"the" unique in-set enabling a node n, because we consider only well-formed 

nets. 

Definition 2.3.3. A node n is said to map a snapshot s1 into a snapshot s2 
iff 

(i) n is of type ZERO and s2 is obtained from s1 by producing a zero on 

n's output history, or 

(ii) n is not of type ZERO and s1 en n and s2 is obtained from s1 by modifying 

the histories associated to the in-set I of n that enables n and an 

out-set O of n so that from all input histories of the in-set I of n 

a value is constlllled and on all output histories of the out-set O of 

n a value is produced according to the function of n. 

Th~ resulting snapshot will be written as s2 = s 1n. 

□ 

Definition 2.3.4. A sequence of snapshots sO,s 1, ..• is said to be an execution 

iff 

□ 

(i) sO is a start shot, i.e., a snapshot where all histories except those 

associated with input edges are empty sequences, and where the pc-parts 

of the histories associated with input edges are empty sequences, and 

(ii) for all i=O,1, ... there is a node ni+l such that Si+l = Sini+l' 

An execution sO,sOn1,sOn 1n2 , ..• will be denoted as sO:n1,n2 .•• for 

brevity. For an arbitrary snapshot Sand a sequence of nodes~ we say that 

S:~ exists if the sequence of nodes can be applied to Sin the above sense, 

without violating the semantic constraints on the JOIN-boxes (i.e., the well

formedness of the net). Note that by e.g. S:n1,n2 ,n3 we denote an execution, 

while by Sn1n2n3 we denote a snapshot. 

A moment's reflection at this point shows that dataflow nets in general 

permit many executions, due to the fact that in a single snapshot many nodes 

may simultaneously be enabled. Firing nodes in spontaneous order and thus 

modelling the completely asynchronous behaviour of the net, leads to the ques

tion of whether in the end different outputs can result from different (but 

otherwise permissible) computation orders. In this section we shall prove 

that this cannot be the case (the "functionality theorem") and that, for all 
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so called proper executions, well-formed nets display an equivalent behaviour. 

We need several more concepts before we can give a proof of this. 

Definition 2.3.5. An execution Eis called proper, iff 

□ 

(i) for 

S.n 
J 

(ii) for 

every Si E 

= S j+l (in 

every node 

E and node n enabled by S. there is a jS::i such that 
l. 

other words, enabled nodes eventually fire), and 

n of type ZERO there is one and only one Si such that 

Notice that after a finite, proper execution the computation in the net is 

necessarily terminated, i.e., no further node is enabled. 

Definition 2.3.6. Given executions E and E', we write E:: E' iff for all edges 

e and all S. EE there is an S. EE' such that S.(e) = S.(e). (In other words, 
l. J l. J 

all histories that occur during E also occur during E'.) E and E' are said 

to be equivalent, iff E c E' and E' c E. 

□ 

In the following we shall give an argument that all proper executions 

of a well-formed dataflow net are equivalent. In fact, we shall prove that 

they can be transformed into one another by "interchanging" actions. 

Lemma 2.3.1. Given a snapshot Sand two different nodes n 1 and n2, then: 

S en n1 & s ~ n2 => sn1 n2 = sn2n 1• 

Proof. If n1 and n2 are not connected by an edge, the lemma follows immediately, 

because the sets of incoming edges of one node and outgoing edges of the other 

are disjoint. 

If n1 and n2 are neighbours, the firing of one node may concatenate 

a token to the history associated to an input edge of the other one. Now this 

firing cannot produce values that are immediately consumed by the other node, 

because it was already enabled by S, i.e., it had a full set of inputs in an 

in-set. This is true in particular if the receiving node is of type JOIN: 

otherwise the well-formedness property of the net would be violated. The tokens 

that are consumed are therefore the ones that were already there in snapshot 

S. Consequently Sn1n2 = Sn2n1• 

□ 
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Lemma 2.3.2. Given a snapshot S, a node n and a sequence of nodes~ not con

taining n, then: 

Senn & S:~ exists~ Sn~ ~ (in particular, both exist) 

Proof. By induction on l~I. 

Base: 1~1=1, the result follows from lemma 2.3.1. 

Step: 1~1>1, write~= ~n1 (some n17-n) 

Because S~ exists, clearly S~ exists. And because n does not occur in~. the 

firings of the nodes of~ can only have caused the p parts of the histories 

of the input edges of n to have grown without violating the semantic constraint 

on JOIN nodes. Now observe that S~ enables both n and n 1 (in case of n by the 

same in-set as in S). And thus 

□ 

Sn~= Sn~n1 = S~nn1 (by induction) 

S~n1n (by lemma 2.3.1.) = S~. 

Theorem 2.3.3(The functionality theorem). All proper executions of a weZZ

forrned dataflow net that start with the same start shot s0 , are equivalent. 

Proof. Let E = s0 :n1 ,n2 ,n3 , ..• and E' = s0 :m1,m2 ,m3 , ... be two arbitrary, but 

proper executions of a given dataflow net. Let i~1 be the smallest inteeer 

such that n.7-m .• Let S. = s0n1 ••. n. 1 and S! = s0m1 ••• m. 1 . S! enables both 
l. l. l. 1.- l. 1.- l. 

ni and mi and thus, because E' is proper, there is a smallest k such that 

m1.+k = n1 .• By lemma 2.3.2. it follows that S!m ..•. m. k = S!m. km ..•. m. k 1 l. l. 1.+ l. 1.+ l. 1.+ -
= Sinimi'''mi+k-1, and thus that E' is equivalent to the execution 

Ell s . h . 'd . h . = 0 :m1, ... ,mi_1 ,ni,mi'' .. ,mi+k- 1,mi+k+ 1, •.. whic co1.nc1. es wit E 1.n 

one more position. Proceeding ad infinitum proves that E and E' must be equi

valent. 

□ 

Corollary 2.3.4. Proper finite executions of a well-formed dataflow net that 

start with the same start shot have the same length. 

□ 

In our model, functionality of nets can be interpreted as determinism, 

when considering the input-history output-history relation of a net. The func

tionality theorem implies that in well-formed nets we can freely use any proper 

computation order that is convenient. An execution can be timed in different 
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ways by inserting a tick after certain firings. A combination of a certain 

computation order and a certain timing mirrors the actual running of a data

flow net on some machine. Some interesting computation orders and timings are: 

(i) The sequential timing. After each fir_ing a tick occurs. 

(ii) The round robin timing. The nodes are checked in a fixed order. If a 

node is enabled, it fires and a tick is inserted. 

(iii) The parallel, timing. The execution is rearranged so that if a snapshot 

S enables nodes n 1 ••. n1 , these nodes will fire first. Now a tick is 

inserted only after these 1 firings. 

(iv) The k-bounded para7,7,e7, timing. The parallel timing is changed so that 

if a snapshot S enables more thank nodes, extra ticks are inserted 

after each k-tuple of firings. 

2.4. PIPELINING 

Consider a dataflow net as a black box that produces a value f(x1 , .•• ,xk) 

a finite time after it has been given its argtn11ents. We want to be able to 

re-use the net simply by sending it a new set of arguments. We do not necessa

rily want to wait until a certain computation has finished before sending 

the new argtn11ents. However, when we look inside the black box, the situation 

after a computation is likely to be different from the initial situation. 

This might spoil a later usage of the net. The simplest reason is that a ZERO

box has produced its single token while the next computation also needs one. 

A second reason is that tokens left behind from a preceeding computation may 

provide an improper start shot for the next computation. A third reason is 

that the next set of inputs may interfere with the ongoing computation. In 

this section we will study the construction of nets that do not have these 

unwanted properties. 

Definition 2.4.1. Consider a dataflow net N computing a (partial) function 

f. A snapshot S (of N) is said to be clean iff any proper execution, starting 

with S, and extended with a k-tuple x1 , ••• ,xk of arguments for which f is 

defined, (on the proper input lines) yields f(x1, ••• ,~). (Observe that the 

completely empty start shot is clean.) The net N is called re-usable if any 

proper execution starting with a clean snapshot extended with a k-tuple 

x1 , ••. ,xk of argtn11ents for which f is defined (i) is finite, and (ii) ends 
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with a clean snapshot. The net N is said to be pipelined if any proper execu

tion starting with a starting shot sO consisting of any number of k-tuples 

of arguments ~•,;1511 , ••• for which f is defined, yields a stream of outputs 

f(~'),f(]S''), ... (in that order). 

□ 

As an example figure 2.4.1. shows four dataflow nets computing f(x)=O. 

The net in figure 2.4.1.a is neither re-usable nor pipelined because it will 

only yield one ZERO. The net in figure 2.4.1.b is not re-usable because any 

proper execution of the net is infinitely long, but the net is pipelined. 

The net in figure 2.4.1.c is re-usable but not pipelined because the semantic 

constraint on the JOIN-box is violated if a next argument comes in too early. 

The net in figure 2.4.1.d is both re-usable and pipelined. 

non re-usable 
non pipelined 

(a) 

non re-usable 
pipelined 

(b) 

re-usable 
non pipelined 

(c) 

Figure 2.4.1. Computing f(x)=O. 

re-usable 
pipelined 

(d) 

Consider a dataflow net N computing a function f (figure 2.4.2.): 

N 

Figure 2.4.2. A net N. 

and assume that N is re-usable. Our aim is to make N into a pipelined net, 

by surrounding N by a "sluice", that will only let a next set of inputs through 

after the output of the previous computation has been emitted. A sluice network 
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consists of k upper sluice gates for sluicing in a new k-tuple of inputs and 

a lower sluice gate for sluicing out a result. Given a re-usable net N the 

augmentation with a sluice will be denoted as in figure 2.4.3. 

Figure 2.4.3. The sluice construction. 

A possible implementation of the sluice is now given. For every input 

line, the upper sluice gate is as in figure 2.4.4. 
x. 

i 

Figure 2.4.4. An upper sluice gate. 

in1 ~ 

~ i~2 

+~ ink : ' out 

Figure 2.4.5. The lower sluice gate. 
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The in.-signal will be sent to the lower sluice gate to report the arri-
1. 

val of a new input token. The output-signal will be sent by the lower sluice 

gate to report the emission of a result. The lower sluice gate only lets a 

result f(x1, ••• ,~) through if all xi-shave been sluiced in. It consists 

of a series of gates as in figure 2.4.5. The out-signal is duplicated and 

sent to all upper sluice gates. The idea of letting only entire input-tuples 

into a (sub)-net was used before by Rumbaugh for the implementation of loops 

[76], to ensure that one iteration is over before the next one comes in. 

Theorem 2.4.1. Let N be a re-usable datafZow network for some function f. The 

augmentation of N by the sluice construction yields a pipelined net for f. 

Proof. The construction guarantees that a next set of inputs is not sluiced 

in until the output from a previous computation is sluiced out. Since N is 

re-usable this forces a correct use of N, tuple after tuple. The sluice con

struction also guarantees that, in order for the result to be sluiced out, 

all the input tokens from the current set of inputs must have been sluiced 

in. Therefore, no input -token can stay behind and interfere with new arguments 

that it did not belong to. 

□ 

2.5. UNIVERSALITY 

We assume that the reader is familiar with Kleene's characterization 

of the class of partial recursive functions ([50],[20],[62],[74]). An inductive 

proof that every partial recursive function can be computed by dataflow 

requires that we prove the stronger result that every such function can be 

computed by a pipelined dataflow net. For when F, for example, is defined 

by primitive recursion from g and h: 

F(O,x1 , ••. ,~) = g(x1 , ••• ,xk) 

F(y+1,x1, ••• ,~) = h(y,x1, •.• ,~,F(y,x1, ..• ,~)) 

then a dataflow computation for F would naturally involve the pipelined use 

of a dataflow net for h. 

Theorem 2.5.l(The universality theorem). For every partial recursive function 

f there is a re-usable dataflow net N that computes£. Moreover N keeps its 

queue sizes automatically bounded to 1. 



Proof. By induction on Kleene 's formation rules for the partial recursive 

functions. 

(i) the constant-0 function Z(x) = 0. 

A re-usable net to compute Z was given in figure 2.4.1.d. 

(ii) the successor function S(x) = x+1. 

This function is trivially realized by the INCR-box. 

(iii) the projections rri(x1, ... ,xk) = xi (1~i~k). 

For any i (1~i~k) rr. is realized by a re-usable dataflow net as in 
l. 

figure 2.5.1. 

J 

Figure 2.5.1. A net for projection rri. 
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The net routes all unused arguments to SINK-boxes to prevent them from 

interfering with any later computation. 

(iv) composition. 

Let g be a partial recursive function of m variables and let h 1, .•• ,hm 

be partial recursive functions of k variables. Let F be defined by composition 

from g and h 1, ••• ,hm: 

F (x1, ••• ,xk) = g(h1 (x1, ••• ,~), ..• ,hm (x1, ••• ,~)) 

Suppose that g and h 1, ••• ,hm are computed by dataflow nets G and H1, .•• ,Hm 

respectively, which satisfy the requirements of theorem 2.5.1. It will be 

obvious that the net N shown in figure 2.5.2. satisfies the requirements as 

well and computes F, where the inputs x1, .•• ,~ are duplicated and sent to 

all nets H1, ..• ,Hm. 
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Figure 2.5.2. Composition. 

(v) primitive recursion. 

Let g be a partial recursive function of k variables and let h be a 

partial recursive function of k+2 variables. Let F be defined by primitive 

recursion from g and h: 

F(O,x1 , ••• ,~) g(x1 , •.• ,xk) 

F(y+1,x1, •. ~,~) = h(y,x1, ... ,xk,F(y,x1, ... ,~)) 

Suppose that g and hare computed by dataflow nets G and H, respectively, 

which satisfy the requi1ements of theorem 2.5,1. We shall approach the con

struction of a dataflow net N for Fin three stages. 

§.t~lli£_1: route the input-tokens to G or H, depending on the vaJ:ue of y. 

The part of the construction that takes care of this is shown in figure 

2.5.3. for the case k=2. (For k=1 or k:>2 the construction is adjusted in an 

obvious manner.) The net for R will be specified later; it is the part of 

the net where the recursion for y>O will take place. For y=O all input-tokens 

will be gated to G, for y>O they will all be gated to R. It follows that for 

y=O the net N functions as desired, while for y>O there is no way that the 

arguments can end up in this same part of the net. Note that the JOIN-box 

is used properly, since tokens can never come in from both G and R simulta

neously, as long as there is no queuing of the inputs. This demonstrates that 

the sluice construction of section 2.4. to preserve the well-formedness of 

this dataflow net is needed. 



Figure 2.5.3. First design step for N (R remains 

to be specified). 

~~~g~-~: implement the recursion in subnet R. 
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R will receive data only when y>0. Its_ task is to compute and emit the 

value F(y,x1, ••• ,~). The obvious idea is to compute it by generating the 

values F(j ,x1, ••• ,~) for j from 0 to y, through the pipelined use _of H. The 

main part of the construction is shown in figure 2.5.4. Since His re-usable 

but used in a fully pipelined manner, it is surrounded by a sluice. This will 

guarantee that it sluices in a full set of arguments for every next j. Some 

care must be exercised so that the various "cycles" (the unspecified subnets 

in figure 2.5.4.) do not run wild in generating next tuples of arguments for 

the recursion. In figure 2.5.4. this is arranged by letting H generate a signal 

whenever another F(j+1,x1, ••• ,~) is produced. The signal is 1 or 0, depending 

on whether the final j-value (j=y) has been reached or not. The signal is 

gated to the various cycles. As long as the signal is 0, a next tuple of argu

ments is generated and gated towards H; this will involve incrementing j by 

1 and reproducing every xi. Whenever the signal becomes 1, the current j-value 

and the x. 's are gated towards a sink. The signalling guarantees that the 
L 

recursion is carried out a proper number of times. More importantly, it guar-

antees that no unneccessary tokens are generated (like j-values larger than 

y), the queue sizes remain bounded by 1 and that all tokens are removed from 

the active parts of the net (gated towards a sink) when the recursion is at 
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F (j ,~) 

emit x1; and 

again when 

signal= 0 
A 

output 

Figure 2.5.4. The R-net. 

(Z is the zero function 
1 is the one-function) 

signal 

emit j=O; 

emit j=j+1 when

ever signal= 0 

signal 

emit y=y-1; 

emit next 

y=y-1 whenever 

B 

si al = 0 C 

y(>O) 

an end. Provided the remaining parts of the net are correctly specified, R 

satisfies all requirements for being re-usable! Note that Ruses all its argu

ments since the G and (pipelined) H net do. 

~~~g~_~: fill in the remaining details. 

Note in figure 2.5.4. that the JOIN-boxes are correctly used. In par

ticular, there can be no delayed queueing on the incoming edges of the lower 

JOIN-box, because the signal will be sluiced out by all places that need it 
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(which, in turn, are sluiced by the H-net which needs a complete set of ar

guments) every time through the recursion. All we need to do is supply the 

correct dataflow logic for the unspecified subnets A, Band C in figure 2.5.4. 

The constructions are all rather straightforward and are shown in figure 

2.5.5. Note that nowhere can queue sizes greater than one occur, except at 

SINK-boxes. 
signal(s) X signal(s) y signal(s) 

A B 

emit x1 and again emit j=x,emit j=j+1 emit y=y-1,emit next 

when signal=0 whenever signal=0 y=y-1 whenever signal=0 

Figure 2.5.5. Subnets A, Band C of the R-net. 

(vi) minimization. 

Let g be a function of k+1 variables, and let F be defined by minimiza

tion from g: 

0 

Suppose that g is computed by a dataflow net G that satisfies the requirements 

of theorem 2.5.1. We shall construct a re-usable dataflow net for F. 

To compute F, we shall implement the straightforward idea of computing 

the values g(j,x1, ..• ,xk) for j from 0, until a value 0 is encountered. The 

construction of a dataflow net for it is shown in figure 2.5.6. Since G is 

obviously used in a pipelined fashion, it is surrounded by a sluice construe-

tion. As long as the g-value remains non-zero, a next j-value will be generated 

and gated to G, together with a next set of copies of x1 to ~· To keep the 

cycles in the net from running wild, we again use a signal that is tested 

after each g-value is generated. The signal wi 11 be set to 1 or 0, depending 

on whether the g-value is 0 or not. When the signal is 0, it will trigger 

the generation of a next set of arguments for G, When the signal is 1, it 

will direct the current j-value and the cycling x.-values to sinks and, thus, 
l. 
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reset the A and B boxes. At the same time, the current j-value is sent down 

the output line of the net as the result of the computation. Notice again 

that the queue sizes remain 1. The A and B subnets are already specified in 

figure 2.5.5. 

□ 

signal 

signal 

Figure 2.5.6. Dataflow net for minimization. 

Together with theorem 2.4.1., theorem 2.5.1. immediately implies the 

following theorem. 

Theorem 2.5.2(The pipeline theorem). For every partial recursive function f 

there is a pipelined dataflow net N computing£ that uses no queues of size 

greater than one. 

□ 

It follows that dataflow nets, as defined here, provide yet another 

basis for computability theory. We note on the other hand that every well

formed dataflow net can be simulated by a deterministic Turing machine. No 

non-determinism is needed to guess which box will fire at any particular 

moment, because by theorem 2.3.3. we can choose a fixed computation rule. 

From the pipeline theorem one can immediately derive a number of un

decidability results for dataflow computing. We shall mention only one. 

Theorem 2.5.3. Well-formedness of dataflow nets is undecidable. 
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Proof. Suppose well-formedness were decidable. Consider a dataflow net as 

shown in figure 2.5.7., where we allow f to be any partial recursive function. 

A net of this sort is well-formed iff f is everywhere undefined. But the latter 

is known to be undecidable. 

D 

Figure 2.5.7. Well-formedness is undecidable. 

A conclusion is that well-formedness, like correctness, can only be 

ensured through a precise and disciplined construction procedure for dataflow 

nets. There is a second conclusion to be drawn from 2.5.1. Well-formedness and 

functionality of a dataflow net are, in a certain sense, equivalent concepts 

(see section 2.2.). Hence the functionality of a dataflow net is undecidable 

just as the functionality of a nondeterministic Turing machine is undecidable. 

Finally, we shall give an application of the pipeline theorem related 

to the generation of sets. Hitherto only a few examples were given of dataflow 

nets which emit sequences of numbers of a specified kind in a specified order 

[86]. Very generally we can now state the following. 

Theorem 2.5.4. For any recursively enumerable set S there is a dataflow net 

that generates the members of Sin enumeration order. Moreover, the net does 

not need any queue sizes to be larger than 1. 

Proof. It is well-known [74] that any non-empty r.e. set Sis the range of 

a total recursive function F. Thus to enumerate S by dataflow, all we need 

to do is feed the arguments 0,1,2, ••• into a re-usable dataflow net for F. 

The construction is shown in figure 2.5.8. The sluice construction is modified 

here in that it also generates the input values for the net for F. 

D 

Figure 2.5.8. Generating a non-empty r.e. set S. 
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2.6. TURING MACHINE SIMULATION 

Jaffe [44] has given a direct simulation of a Turing Machine by means 

of dataflow. We will present here a (more straightforward) simulation of arbi

trary counter machines which in their turn can simulate an arbitrary Turing 

Machine [42]. 

A counter machine consists of an input tape, a finite control, and a 

number of counters. A cell on the input tape contains a O or a 1. The whole 

tape contents is enclosed by a begin-of-tape-mark and an end-of-tape-mark. 

(These marks are represented by numbers unequal to O or 1.) A counter can 

hold a nonnegative number in unary representation: 0,01 ,011, ... A transition 

of the machine consists of performing either a read or a counter-manipulation. 

If a read is performed, the next state in the finite control depends on the 

current state and the symbol read. A counter can be incremented, decremented 

or tested for zero. The next state after a test for zero depends on the current 

state and the result of the test. In any case there are at most two possible 

next states of a certain state. 

Theorem 2.6.1. For every counter machine there is a well-formed dataflow net 

simulating it. 

Proof. We will construct a dataflow net for a given counter machine. The net 

will be built from certain types of subnets. To avoid uninteresting details, 

we will only give the functional specification of these subnets. 

The input tape is available on the only input line of the net. The whole 

input is read and converted to an integer. This conversion is performed by 

a special subnet CTI shown in figure 2.6.1. The subnet CTI sends one token 

tc, representing the tape contents, to a subnet PCM that will simulate the 

particular counter machine. 

$0100 ... 1011¢ 

Figure 2.6.1. First design of the counter machine simulation. 
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The subnet PCM faithfully mimics the finite control and counters of 

the particular counter machine. For every state in the counter machine there 

is a subnet which is activated by sending it the (rest of the) tape contents. 

If a state performs a read it will decode the input token into a symbol (O 

or 1) and a next tape contents. (See figure 2.6.2.) Reading from an empty tape 

will cause no token tc to be produced. 

next state if symbol=O 

old tc 
decode 

next state if symbol=1 

Figure 2.6.2. A read state. 

A subnet for a counter-manipulation state sends an opcode (say O for 

decrement, 1 for increment, 2 for test for zero) and its state-nwnber to the 

subnet representing the counter. The counter subnet executes the opcode and 

distributes the result (say O for acknowledgement of decrement and increment, 

and for a zero result of a test for zero, 1 for a non-zero result) back to 

the counter-manipulation state. 

Just as in "real" counter machines the counter value is maintained in 

a unary representation, i.e., as a sequence of 1-s and one O. This sequence 

resides on an edge that is both input and output to the counter subnet. In

crementing is done by producing a 1 ; decrementing by reading a token. If the 

token was O, it is put out again and a next token is read. If that is a 0 

again, the counter value was zero. The O is put out again so decrementing 

zero yields zero. Testing for zero is done similarly. 

After a counter manipulation, all tokens are sluiced out in order to 

prevent the counter value from spreading around the various parts of the 

counter subnet. 

□ 
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2.7. MODELLING MEMORY 

In this section we will show that dataflow allows the design of general 

memory cells. It does not follow directly from the universality of dataflow 

nets that memory cells can be built, because they are inherently non-functional 

at token-level. We will study the design of two types of memory cells: 

(i) the first type of memory cell, called Memol, has two inputs and one 

output (see figure 2.7.1.). The c-input line carries control values 

which determine whether a retrieve or a store is to be performed. If 

a store is to be performed, the cell will consume a token from the 

d-input line. If a retrieve must be performed the cell produces the 

token it has last read in, on its w-output line. 

C 

Figure 2.7.1. A history-level functional memory cell. 

Clearly, this cell is history-level functional, i.e., upon receiving the 

same sequences of c- and d-values it produces the same sequence of w-values. 

We can achieve this by designing a well-formed dataflow net for Memo1. 

(ii) the second type of memory cell connected to the outside world by m store 

input lines, n retrieve input lines, and n write output lines (see figure 

2.7.2.). We call this a Memo2 cell. If the cell receives a token over 

its i-th retrieve input line it will produce its memory contents on the 

i-th output line. If the cell receives any store input token it will 

store the token as its new memory contents. If inputs arrive simultane

ously, they will be merged fairly but non-deterministically. 

When we connect the i-th store line to a writer subnet, and the j-th 

retrieve and write lines to a reader subnet, the similarity with the well

known readers-and-writers problem from operating systems theory [38] becomes 

obvious. 



retrieve1 retrieve n 

Memo2 

write 
n 

Figure 2.7.2. A nondeterministic memory cell. 
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The design of the Memo1·cell is straightforward. Its dataflow net is 

shown in figure 2.7.3., where the CM-subnet is the controlled merge net of 

figure 2.2.2. 

O:store 
c 1 :retrieve 

Figure 2.7.3. The Memo1 cell. 

The contents of the memory cell is waiting for a c-signal to release it. If 

a store is to be performed (c-input 0), the old contents is sent to a SINK

box and a new d-token is let in. If a retrieve must be performed (c-iriput = 1) 

the memory value is put on thew-output line and cycled back into the net. 

Notice that the net is well-formed. If a retrieve is performed before any 

store, the net will output a zero. 



50 

Now if we want to design a dataflow net for a Memo2 cell which allows 

simultaneous stores and retrieves we can no longer avoid time dependence or 

history-level non-functionality: because all well-formed dataflow nets are 

functional (according to the functionality theorem) there cannot be a well

formed net implementing Memo2. 

The building block needed for implementing a Memo2 cell is a non

deteI'l7linistic fair merge FM. This is a subnet with two inputs and two out

puts (see figure 2.7.4.). 

1 r 

Figure 2.7.4. A non-deterministic fair-merge. 

The FM-subnet must operate according to the following specifications: 

(i) If a token arrives at either the 1-input or the r-input, the token 

is passed onto them-output and a token representing its input direction 

is emitted on the dir-output (r=O, 1=1). 

(ii) If there are tokens on both 1-input and r-input one of them is chosen 

non-deterministically to be passed onto them-output and its input 

direction is again reported on the dir-output. The other input token 

is preserved. 

(iii) If a token arrives, it will be consumed within a finite number of time

steps, where time-steps are measured in terms of firings of basic pro

cessing elements. 

Part (iii) of the above specification is important and we will name it the 

fairness-property. 

Using FM-subnets and a Memo1 cell we can implement a Memo2 cell. Figure 

2.7.5. shows a Memo2 cell with one retrieve and one store. 



store 

store=1 
retrieve=O 

Figure 2.7.5. Memo2 cell with one store and one retrieve. 
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Memo2 cells with more stores and retrieves are designed similarly, but now 

there are fan-in and fan-out trees to direct the inputs to the Memo1 cell and 

the outputs to the right output lines. Fan-in trees consist of FM-subnets. 

Fan-out trees consist of SPLIT-boxes. The various dir-outputs of the FM-subnets 

fanning in the retrieves are used to control the SPLIT-boxes in the fan-out 

tree. As an example figure 2.7.6. shows a Memo2 cell with four retrieves and 

two stores. 

Clearly, for every FM-subnet in the tree that fans in the retrieves, 

there is a SPLIT-node in the tree that fans out the various writes. The 

dir-line of the i-th FM-subnet of the j-th level of the fan-in tree is con

nected to the control input of the i-th SPLIT-box of the j-th level of the 

fan-out tree. A moment's reflection may be needed to see that a result token 

will, on its way out of the net, meet the dir-tokens that were fired when 

the retrieve token that caused the result token to be written passed a FM

s~~-

The rest of this section will be devoted to the implementation and fair

ness proof of the FM-subnet. The difference between a FM-subnet and a JOIN-box 

is that the FM-subnet must sense the arrival 0£ an input token in order to 

mutually exclude simultaneous arrivals, and it must implement a fair scheduling 
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stores 
2 

writes 

retrieves 

( 1 ,2) 
V 

(3,4) 

3v4 

Figure 2.7.6. A Memo2 cell with more stores and retrieves. 

algorithm to prevent a token that has arrived from waiting indefinitely long. 

Sensing the arrival of a token and acting upon arrival and non-arrival can 

be done using the THERE-box. The FM-subnet is shown in figure 2.7.7. 

The thick lines in figure 2.7.7. carry the data from left or right in

put tom-output. The thin lines carry control-data needed to exclude left 

and right, implement fairness and generate the dir-output. Notice that at 

any moment at most one control token exists. The control token, initially 

generated by the ZERO-box, cycles around between the two THERE-boxes until 

an input token arrives at the left or right input. The input token is emitted 

on them-line and its incoming direction is reported on the dir-line. After 
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dir 

Figure 2.7.7. The FM-subnet. 

the dir-token and m-token are dispatched a new control token is generated. 

If a left input was selected, the right THERE-box will receive the control 

token first and vice versa., 

Theorem 2. 7. 1 . A token arriving at an input of the FM-net wi U pass thI'ough 

the subnet within a finite number of time-steps (in other words, the FM-net 

is fair). 

Proof. First notice that the JOIN-boxes will never receive tokens at both 

inputs simultaneously, because at most one control token will exist at a given 

moment. Let ?L (?R) denote the arrival of a control token at the left (right) 

THERE-box. Between a ?L (?R) event and a ?R (?L) event there are only a finite 

number of time-steps, because either there was no input at the left (right) 

THERE-box and a control token was sent (via an upper JOIN-box) to the right 

(left) THERE-box, or there was an input and within a finite number of time 

steps the input token has gone through the net and has generated a control 

token that was sent to the right (left) THERE-box. A token that arrives at 

an input will therefore pass through the THERE-box and consequently through 

the whole FM-subnet within a finite number of time-steps. 
D 

Corollary 2.7.2. Using the components defined in section 2.2. one can build 

memory cells with any number of store and retrieve lines. 

D 
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2.8. MODELLING THE MANCHESTER MATCHING FUNCTIONS 

In this section we will show that the matching functions of the Manchester 

Dataflow Machine defined in section 1.5.2.2. can be implemented in dataflow 

directly, although in the actual machine there is a special piece of hardware, 

the matching unit, that performs these functions. In our model the matching 

function is performed by a dataflow subnet that is placed in front of the 

target node, except (of course) the standard matching functions EW and BY 

(see figure 2.8.1.). 

non standard 
matching function 

Figure 2.8.1. Implementing a special matching function. 

We will only implement the more interesting matching functions ED, PD, 

EA and PG. The left input carries the special matching function. An EMPTY

token is represented by a O over a special output line. 

ED: EXTRACT DEFER (success: put out both tokens, 

failure: recycle the left input token) 

The dataflow net for the ED-matching function is shown in figure 2.8.2. 

When a left input token arrives there is either a right input token available 

or not. If the right input is available both tokens are passed (s-action ex

tract), otherwise the left input token is sent back and is merged fairly with 

other incoming left input tokens (£-action defer). Recall that the THERE-box 

emits a zero on the no-line if there is no input. The 1-subnet emits a one 

every time it receives a token. 



d 
e 
f 
e 
r 

1 

e x t r a c t 

Figure 2.8.2. The ED-matching function. 

PD: PRESERVE DEFER (success: put out the left input and the memory token, 

failure: recycle the left input token) 
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The dataflow net for the PD-matching function is shown in figure 2.8.3. 

When a first left input token arrives there is either a right input token 

or not. If there is no right input token, the left input token is sent back 

d 
e 
f 
e 
r 

preserve 

p a s s 

Figure 2.8.3. The PD-matching function. 
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to the input of the net and fairly merged with other left inputs. Subsequent 

left input tokens are dealt with similarly until a right input token is avail

able. If a right input token is available it is (i) extracted, i.e. passed 

together with the left input token, and (ii) kept in a memory. Subsequent 

left input tokens are matched with the memory contents. Subsequent right 

input tokens are ignored. 

EA-EXTRACT ABORT (success: put out both tokens 

failure: put out a special EMPTY signal) 

The dataflow net for the EA-matching function is shown in figure 2.8.4. 

When a left input arrives and a right input token is available, both inputs 

are extracted. If no right input is available, the left input is gated to 

a SINK-box and an EMPTY signal is emitted over the abort-output line. 

1 

extract 
left 

abort xtract 
right 

Figure 2.8.4. The EA-matching function. 

PG: PRESERVE GENERATE (success: put out the left input and the memory token, 

failure: put the left input token in the memory and 

put out a special EMPTY token) 

The dataflow net for the PG-matching function is shown in figure 2.8.5. 

When the first left input token arrives and there is a right input token avail

able the right token is preserved, and both input tokens are extracted. If 

no right input is available, the left input is preserved and an EMPTY token 

is emitted over the abort line. Subsequent left input tokens are matched with 

the preserved value. 
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abort 

Figure 2.8.5. The PG-matching function. 

In practice primitive building blocks such as memory cells and matching 

functions are realized as a piece of special hardware and not by a dataflow 

program. However, these results show the adequacy of our model, i.e., we can 

describe the meaning of the matching functions within the model of dataflow 

nets. 

2.9. MODELLING PETRI-NETS 

In this section we will show that Petri-nets can be modelled by our 

dataflow nets very naturally. Petri-nets are non-deterministic, and so to 

model this non-determinism we will build a random generator based on FM

subnets. Our definition of Petri-nets conforms to Peterson [69]. 

Definition 2.9.1. A Petri-net is a four-tuple (P,T,I,O) where 

p is a set of Places, 

T is a set of Transitions, 

I is an input function I : T ➔ Power(P), 

0 is an output function 0 : T ➔ Power(P), 

and where Power(P) is the set of all subsets of P. 

The places can be marked with a number of tokens. Tokens do not have distinct 

values. A transition can fire if all its input places are marked. Firing means 
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removing one token from all input places and adding one token to all output 

places. An execution is a sequence of markings µ0 ,µ 1, ••. The first marking 

µ0 is called the initial marking. Every other marking µi+l is derived from 

its predecessor µi by the firing of one transition. 

□ 

A Petri-net can be drawn as a bipartite directed graph with two types 

of nodes (drawn as Qfor places and for transitions). If place pis in I(t) 

then there is an edge from p tot. If place pis in O(t) then there is an 

edge from t top. As an example, figure 2.9.1. shows the graph representation 

of the Petri-net N defined as follows: 

N = ({P1,P2,P3,P4,P5},{t1,t2,t3,t4},{t1 ➔ {P1},t2 ➔ {P2,P3,P5},t3 ➔ {p3}, 

t4 ➔ {P4}},{t1 ➔ {P2,P3,P5},t2 ➔ {P5},t3 ➔ {P4},t4 ➔ {P2,P3}}) 

Figure 2.9.1. A Petri-net. 

Dots in a place(@) represent the marking of that place. The non

deterministic behaviour of Petri-nets is exemplified by two phenomena: con

flict and sharing. Conflicting transitions have a common input place (figure 

2.9.2.(a)). Either one of the transitions can fire if the place is marked. 

Two (or more) transitions can share a common output place (figure 2.9.2.(b)). 

The place is marked after firing of either one of the transitions. 
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(a) 

Figure 2.9.2. Non-determinism in Petri-nets. 

Theorem 2.9.1. For every Petri-net N with initial marking µ0 there is a data

flow net simulating it, i.e., for every execution of the Petri-net there is 

an equivalent execution of the dataflow net. 

Proof. We simulate a Petri-net N by mapping every transition with m inputs 

and n outputs to a dataflow subnet T(m,n) and by mapping every place with 

m inputs, n outputs and k initial tokens to a dataflow subnet P(m,n,k). The 

T and P subnets are then put,together just as their counterparts in the graph 

representation of the Petri-net are. 

(i) Construction of T(m,n). 

T(m,n) must take in m inputs, one from each of its input lines and pro

duce n outputs, one on each of its output lines. The construction of T(m,n) 

is therefore straightforward. It consists of an A(m,n) subnet defined below 

surrounded by a sluice construction, The sluice is needed here to prevent 

incomplete input tuples from passing and marking places that might not be 

marked in the corresponding Petri-net. If m=n, A(m,n) consists of m edges 

(figure 2.9.3.(a)). If m>n, m-n input lines are shut off by a SINK-box (figure 

2.9.3. (b)). If m<n, n--m DUP-boxes are added (figure 2.9.3. (c)). 

lll 111 lh 
(a) m=n (b) m>n (c) m<n 

Figure 2.9.3. A(m,n) subnets. 
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(ii) Construction of P(m,n,k). 

First we shall construct P(m,n,o) that simulates an initially empty 

place. A P(m,n,o) subnet must take in a token from any of its m inputs and 

send it to one of its output-lines chosen at random. This is accomplished 

by a fan-in fan-out construction as in figure 2.9.4. 

Figure 2.9.4. A P(m,n,o) subnet. 

A fan-in subnet with m inputs and one output is just a tree of m-1 FM-subnets, 

with one exception when m=O (see figure 2.9.5.). 

(a) m=4 (b) m=1 (c) m=O 

Figure 2.9.5. Fan-in subnets. 

A fan-out subnet with one input and n outputs is the same as a T(1,n)-subnet, 

but with ANY-subnets instead of DUP-boxes. An ANY-subnet (see figure 2.9.6.) 

copies its input to either of its two outputs. 

Figure 2.9.6. The ANY-subnet. 
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A P(m,n,k) net is just a P(m+k,n,o) net with k of its inputs connected 

to ZERO-boxes. 

Now clearly, for every execution of N there is an execution of the data

flow net simulating it. 

□ 

The contrary, though, happens not to be true: there are executions in 

the dataflow net for which there are no equivalent executions in N. This oc

curs, for example, when N contains a subnet as shown in figure 2.9.7. 

Figure 2.9.7. Petri subnet. 

In a certain execution of the simulating dataflow net P1 can send a token to 

the right while P2 sends a token to the left. 
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CHAPTER THREE 

THE DESIGN AND IMPLEMENTATION OF A HIGH LEVEL DATAFLOW LANGUAGE: 

DYNAMIC NETWORKS OF PROCESSES 

3.1. INTRODUCTION 

To express and analyse parallel algorithms we need a programming lan

guage based on a parallel model of computation. In our study this will be the 

model of data driven computation, where computing stations communicate with 

each other via channels, i.e., buffers of values operated in queue fashion. 

A program in our language will specify the topology of such a computation 

graph and the behaviour of the computing stations. We want this language to 

be powerful enough to serve as a problem solving tool yet simple enough to be 

elegantly defined and implemented. The following considerations were used as 

guidelines in the design of the language. 

- Parallelism must be explicitly expressible. 

There must be a simple mapping from processes in our language to com

puting stations in the computation graph. 

- The processes in our language must have the expressive power of proce

dures or modules (the dataflow processing elements from chapter two do 

not suffice). 

- The computation graph must be adaptable to the problem size and data, 

i.e., we need a mechanism for dynamic process creation. 

- There must be no need for global information about the computation 

graph when part of the graph is changing (because of dynamic process 

creation). The only communication must be via the edges of the graph. 

We call this the locality principle. 

- The number of connections to "the outside world" on program level as 

well as on process level must be limited (not variable with the problem 

size) corresponding to physical reality. 

- In the design we will concentrate on novel aspects, the choice of the 

rest of the language will be made such that it is easily implemented. 
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Parallelism inside processes will not be considered. A reasonable compiler 

can identify it and translate it for a given target machine. Also, if the 

target machine is a dataflow machine, processes will be translated into data

flow nets using dataflow analysis techniques as studied in ([85],[88],[3], 

[66]). 

The programming language CSP [39] matches our requirements closely, 

except that CSP programs are static, i.e., they have a fixed computation 

graph. Moreover, CSP processes communicate with each other by name thus pre

venting most useful forms of dynamic process creation (knowing each others 

name is in fact a violation of the locality principle). The family of lan

guages based on monitors and remote procedure calling (SIMULA, concurrent 

PASCAL, MODULA-2, DP) is even further away from our goals: the underlying 

computation graphs are again static, processes share data, and remote pro

cedure calling violates the locality principle. 

The simple language f~r parallel programming presented by Kahn [46] 

provides a good starting point for our language, and can be easily extended 

with dynamic process creation. 

This chapter will introduce the language DNP (Dynamic Networks of Pro

cesses) based on Kahn's language. In section 3.2. we shall describe the lan

guage, and in section 3.3. we shall deal with an experimental implementation 

of it. 

3.2. THE LANGUAGE DNP: DYNAMIC NETWORKS OF PROCESSES 

DNP was implemented using a parser generator called PGEN [27]. There

fore, the syntax of DNP will be presented here in the format used by PGEN. 

In section 3.2.2. we will describe the static part of DNP, and in section 

3.2.3. the dynamic part. 

3 .2. 1. Syntax format. 

The format is an extension of the familiar BNF-notation and figure 

3.2.1 .1. shows a self-definition of this format, taken from [27]. 
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A non-terminal is enclosed by the brackets< and>. A terminal is either a key

word or a string. A keyword is a sequence of upper-case letters denoting the 

same sequence in lower case. A string is a non-empty sequence of characters 

surrounded by a single quotes. So the keyword BEGIN denotes the terminal symbol 

begin, and so does 'begin'. <id> stands for identifier. 

<syntax> ::= <rule>*-

<rule> ::=<rule-name>'::=' <rule-body>'.'. 

<rule-body> ::= { <alternative> 'I'}*. 

<alternative> ::= <primary>+. 

<primary> ::= (<terminal-symbol>l<rule-name>l<compound>)['+'I '*'] 

I <list> 

!<option>. 

<option> ::= '['<rule-body>']'. 

<list> ::= '{'<primary> <terminal-symbol>'}' ('+'I'*'). 

<compound> ::= '('<rule-body>')'. 

<terminal-symbol>::= <keyword>l<string>. 

<rule-name> : := '<' <id> '>'. 

Figure 3.2.1.1. The syntax format. 

Using the terminology from figure 3.2.1.1., a syntax consists of a 

sequence of rules, where each rule is a non-terminal followed by::= followed 

by a series of alternatives separated by vertical bars I. An <option> indi

cates that one of the enclosed alternatives may not occur. An asterisk* in

dicates zero or more repetitions of some notion; a plus-sign+ indicates one 

or more repetitions. A <compound> groups a structure into a notion. A <list> 

is a sequence of notions separated but not terminated by a terminal symbol. So 

stands for zero or more identifiers followed by a comma, such as 

a,b,c, 

while 

{ <id> I' 'h 
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stands for zero or more identifiers separated by commas, such as 

a, b,c 

We will comment on the use of PGEN in section 3.3.1. 

3.2.2. DNP - static part. 

A DNP program consists of a number of process declarations and a main 

body. 

syntax: 

<dnp-program> ··= <process-decl>* <main>. 

In the main body processes are activated. They are connected together 

and to the outside world by channels, which are queues of tokens or values. 

For every channel there is one producing process and one consuming process. 

A process declaration consists of a heading and a body. In the heading formal 

channels are declared, specifying whether the channel is an input channel 

or an output channel. A process heading must contain at least one formal chan

nel. Apart from formal channels, formal value parameters can also occur in 

the heading. 

syntax: 

<process-decl> •• - <process-heading> 1 : 1 <process-body>. 

<process-heading> • • = PROCESS <id> 1 ( 1 <channels> [<values>] ') 1 • 

<channels> . ·= ( <inchannels>l<outchannels> ) +. 

<inchannels> . ·= IN {<id> I, I}+. 

<outchannels> . ·= OUT {<id> I> I}+• 

<values> : := (<type> {id I, I}+) +. 

where <type> is a type declaration such as int or char. 

The body of a process declaration consists of three types of components: 

(i) internal statements and declarations 

(ii) communication statements 

(iii) expansion statements. 
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Internal statements and declarations are ordinary statements (condition, 

loop, internal data declaration) that only change the internal state of the 

process. They could have been borrowed from any programming language, and in 

our case were borrowed from C [49], the UNIX system implementation language. 

Communication statements allow a process to read (consume a value from 

an input channel) and write (produce a value on an output channel). If a chan

nel is empty when the consumer process performs a read on it, the consumer 

process is blocked until the producer process has written a value on the chan

nel. The communication statements are in fact implemented as ordinary C-func

tions, supplied in the run-time environment. There is therefore no syntactic 

difference between internal statements, declarations and communication state

ments: they all look like C. 

syntax: 

<process-body> ::= BEGIN ( <expansion>l<c> )* END. 

where <c> stands for a piece of C program text inside a C function declaration. 

A main body declaration has the same structure as a process declaration. 

The input and output channels in its heading are the input and output files 

connecting the program to the outside world, and in the body the initial com

putation graph is set up by naming the internal channels and processes in an 

expand statement causing the main body to create processes and connecting them 

by channels. (A dynamic version of expansion where the network can be changed 

while executing will be introduced in section 3.2.3.) 

syntax: 

<main> : := MAIN <id> I ( I <channels> I) II: I 

BEGIN [<c>] 

EXPAND [CHAN {<id> I> I}+] 

<creation>+ 

ENDEXP 

[<c>] 

END. 

<creation> : := CREATE <id> I ( I <channels> [<values>] I) I • 
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The CHAN part declares the internal channels. The create statements initiate 

processes with either internal channels or the channels of the main body as 

actual channel parameters. Every input channel of the main body will occur 

once as an actual input channel in a creation, just as every output channel 

of the main body will occur once as an actual output channel. The internal 

channels will occur twice, once as an actual input channel and once as an 

actual output channel of distinct processes. This gives us a well-formed 

graph (every internal channel being an edge), connected to the environment 

by the input and output channels of the main body. 

We have now defined the static part of DNP and will illustrate it by 

an example: this program will produce the integers 2i3j in ascending order 

on an output channel (see figure 3.2.2.1.). 

process times(in i out o int f) : 
begin int v; 

while (read_int(i,&v)) write_int(o,f*v); 
end 
process order(in i2,i3 out m) : 
begin int v2,v3; 

end 

read_int(i2,&v2); read_int(i3,&v3); 
do { if(v2<v3) {write_int(m,v2); read_int(i2,&v2);} 

else if (v3<v2) 

else 

while (1); 

{write_int(m,v3); read_int(i3,&v3);} 

{write int(m,v2); 
read_int(i2,&v2); 
read_int(i3,&v3); 

} 

process triplicate(in m out o1,o2,o3 int init) : 
begin int v = init; 

while(write int(o1,v),write int(o2,v),write int(o3,v)) 
read_int(m,&v); - -

end 
main Hamming(out f23) : 
begin int one= 1, two= 2, three= 3; 

expand chan m,i2,i3,o2,o3 

endexp 
end 

create triplicate(in m out f23,i2,i3 int one) 
create times(in i2 out o2 int two) 
create times(in i3 out o3 int three) 
create order(in o2,o3 out m) 

Figure 3.2.2.1. A static DNP program. 
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This program is connected to the outside world by the output channel f23. 

Figure 3.2.2.2. shows the computation graph of program Hamming. 

i2 

o2 times 2 

tripli- m 
f23 order 

cate 

times 3 

i3 

Figure 3.2.2.2, Computation graph of program Hamming. 

3.2.3. DNP - dynamic part. 

A process can replace itself by a subgraph (subnetwork) of processes by 

performing an expansion. The newly created subgraph is connected to the rest 

of the graph by the same channels as the old process was. An expand statement 

consists of a declaration of the new internal channels and a number of process 

activations. A process activation is either a process creation, i.e., a new 

process that starts in its initial state, or a survival. In a survival, the 

old process that caused the expansion is resumed possibly with different 

actual channels. Survival provides a way of inheriting the process state 

(data and control environment). At most one survival is allowed in an expan

sion. 



syntax: 

<expansion> 

<survival> 

::= EXPAND [CHAN {<id> ','}+] 

(<creation>+ [<survival>] 

!<survival>) 

ENDEXP. 

KEEP <id>'(' <channels>')'. 
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Notice the similarity between an expansion and the declaration of the initial 

graph in the main body. The newly created internal channels will occur twice, 

once as an input channel and once as an output channel. The old formal chan

nels will occur once and their type (input or output) will not change. When 

an expansion is performed, the following takes place: 

- the old process is disconnected from the network; its channels are 

temporarily closed, 

- for every <creation> a new process is created, 

- the newly created processes, and the old process if a survival occurred, 

are connected into a subnetwork by means of the internal channels, 

- the subnetwork is connected to the rest of the graph by the temporarily 

closed channels, 

- the new processes start computing in their initial state and, if it 

is still part of the subnetwork, the old process proceeds after the 

expand statement. 

The rest of the network can carry on computing while the expansion takes 

place. Consider the following process declaration: 

process compile (in source out object): 

begin. 

expand chan e1,e2,e3,e4,e5 

endexp 

end 

create lex (in source out e1,e2) 

create scanl (in el out e3,e4) 

create scan2 (in e2,e4 out e5) 

create codegen (in e3,e5 out object) 
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The expansion in this process declaration can be pictured as in figure 3.2.3.1. 

Figure 3.2.3.1. Expansion into a subnetwork. 

An example of a dynamic DNP program is given in figure 3.2.3.2. It is a 

parallel version of the prime sieve of Eratosthenes. This example was inspired 

by an example given by Mcilroy [61] for demonstrating the use of coroutines. 



process filter(in ints out primes int factor): 
begin inti; 

end 

process 
begin 

end 

read int(ints,&i); 
while(i>O) 

{if((i % factor) != 0) write_int(primes,i); 
read int(ints,&i); 

} ; -
write_int(primes,-1); 

primesv(in factors out primes): 
inti; 
read int(factors,&i); 
while(i>O) 

{expand chan inter 
.create filter(in factors out inter inti) 
keep primesv(in inter out primes) 

endexp 
write int(primes,i); 
read int(factors,&i); 

} ; -

process ints(out o): 
begin inti; 

end 

main 
begin 

end 

for (i:2; i<80; i++) write_int(o,i); 
write_int(o,-1); 

Eratosthenes(out primes): 
expand chan inter1 

create ints(out inter1) 
create primesv(in inter1 

endexp 
out primes) 

Figure 3.2.3.2. A dynamic DNP program. 

71 
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3.3. AN EXPERIMENTAL IMPLEMENTATION OF DNP 

3.3.1. Introduction. 

To implement a parallel language one needs a parallel machine, real or 

virtual. The UNIX operating system [72] is a parallel machine, with so called 

pipes for interprocess communication, forking for dynamic process creation, 

and with C as its machine language. The reason that C was chosen for the 

internal DNP statements, was that the task of implementing DNP was made 

easier, since only a preprocessor for C is needed. Figure 3.3.1.1. shows 

DNP features and their UNIX/C counterparts. 

DNP UNIX/C 

channel pipe/file 

process declaration C function declaration 

process process 

creation forking 

internal statements in C same C statements 

Figure 3.3.1.1. DNP features and their UNIX counterparts. 

In a DNP program there is no limit to the total number of processes and 

channels, to the number of channels connected to one process, nor to the size 

of a channel, where the size of a channel is the number of values written 

but not yet read. In UNIX, unfortunately, there is a limit to all these values. 

We call our implementation experimental because we have chosen to live with 

these system limits, even though some of them, e.g. the maximum number of pro

cesses, are rather severe. Care has been taken to implement DNP so that a 

maximal number of DNP processes can be created by not wasting UNIX processes. 

We will come back to this when we discuss the translation of the expand state

ment. 

The DNP compiler was implemented using the parser generator PGEN [27], 

constructed at the Mathematical Centre, Amsterdam. As PGEN accepts only 11(1) 

grammars it was necessary to express DNP in that form, but this caused no 



73 

particular problems. The virtue of PGEN is that it automatically generates 

error messages in terms of the syntactic notions. The semantic actions must 

be written in SUMMER [51], a language well suited for that purpose. The facil

ities for communication between parser and semantic actions and between vari

ous semantic actions are unfortunately rather poor in PGEN. This kind of com

munication should proceed via derived and inherited attributes ([53],[54]). 

Only a very simple kind of derived attributes is implemented in PGEN: a notion 

or action is allowed to return one value. For the rest the compiler writer 

is forced to resign to the use of global variables. A revised implementation 

of PGEN with better communication facilities seems worth while because apart 

from this shortcoming PGEN is pleasant to work with. 

The compiler is, according to the rules of PGEN, structured as a lexical 

scanner (dnp.ns), a parser extended with semantic actions (dnp.syn), and a file 

containing global variables and procedures (dnp.ud). Figure 3.3.1 .2. shows the 

various parts of the DNP-system in terms of T-diagrams [25], where V stands 

for a computer or its machin-e language, rts for a runtime system, and f for a 

user program. Running a compiled DNP-program (the result of 3.3.1.2.(c)) in

volves linking it with the run-time system (the result of 3.3.1.2.(b)). 
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DNP dnp.ns C DNP C DNP C 

dnp.syn dnp.sm dnp 

dnp.ud SUM SUM PGEN MER SUMMER MER V 
V 

PGEN 

V V 

(a) DNP-compiler generation 

C V 
cc 

(b) Run-time system generation 

Q DNP 
dnp 

C 0 C V 
cc 0 

V V 

(c) DNP-compilation. 

Figure 3.3.1.2. The DNP-system. 
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3.3.2. The translation of DNP to C. 

The DNP compiler is a preprocessor that translates DNP into C. Every 

DNP-process is translated to a C-function and a DNP-main body is translated to 

a C-main procedure. Channels connecting the network to the outside world are 

implemented by files. Channels connecting processes to each other are imple

mented by pipes. A pipe is a communication buffer between UNIX-processes re

presented by a read-file-descriptor and a write-file-descriptor. The compiler 

will ensure that only one process, viz. the consumer process, will control 

the read-file descriptor and only one process, viz. the producer process, 

will control the write-file-descriptor. 

A process-heading is translated into a C-function heading, and the re

levant information about formal input and output channels is kept in some glo

bal variables. 

A process-body is a sequence of <c>-s and <expansion>-s. The lexical 

scanner collects all C-text between a BEGIN and an <expansion>, or an <expan

sion> and an <expansion>, or an <expansion> and an END, and yields it as one 

lexical symbol to the parser. The parser just outputs this piece of C-text. 

Errors in the C-text will be detected by the C-compiler. An <expansion> will 

be translated into a C compound statement. 

When an <expansion> is encountered the compiler checks whether the for-

mal and internal channels are used properly. If so, it generates code 

(1) to allocate pipes for the internal channels, 

(2) to allocate processes for all activations except the last one, 

(3) to make the appropriate process-channel connections, 

(4) to start the processes with the right formal/actual channel-identifi

cations. 

For the last activation, whether a creation or survival, no process 

needs to be allocated, because the process that performs the expansion can 

be used for it. This trick saves one UNIX-process per expansion, but makes 

the code-generation process more complex. The last activation must be handled 
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differently but, because the parser is based on the 11(1) recursive descent 

technique, it only knows that a particular activation is the last one after it 

has been parsed completely. We therefore generate code for an activation when 

we encounter its successor, or we encounter the ENDEXP symbol. 

Pipe and process allocation are implemented by standard UNIX system calls 

(pipe and fork). A new process is an exact copy of the process that produced 

it, except for an integer returned by the fork operation. Because a new process 

is an excact copy of the old one, all pipes and files available to the old pro

cess are available to the new one via their descriptor. It is therefore neces

sary for a process to close the files and pipes it does not need. 

Starting a creation is implemented by a function call. Starting a sur

vival is implemented by a number of channel assignments. As a survival is the 

last activation of an expansion, control will pass automatically to the correct 

instruction. 

In order to make the above description more concrete we will consider the 

translation of the process of figure 3.3.2.1. 

process T (in i out o): 

begin 

if (test) 

expand chan ll,l2,Z3,l4 

end 

create T (in ll out l2) 

create T (in L3 out l4) 

create N (in i, l2,l4, out o,ll,l3) 

endexp 

Figure 3.3.2.1. Example process. 

The heading of DNP-process Tis translated such that there is a UNIX-process 

where i is identified with a read-file-descriptor and o is identified with a 

write-file-descriptor. This UNIX process will execute the C-function T(i,o) 

as pictured in figure 3.3.2.2. 
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Figure 3.3.2.2. T(i,o). 

Upon encountering expand chan Zl,Z2,Z3,Z4 code could be generated to 

allocate four pipes. This is not done because: 

(i) UNIX allows a rather small number of open files (a pipe counts for 

two files) per process, and 

(ii) as a process is only allowed to control a subset of all the pipes, 

most of these will have to be closed afterwards. 

Therefore code is generated to allocate a pipe only when it is really needed. 

create T (in Zl out Z2) will be checked for correct use of channels, 

and will be translated to: 

(1) allocate two pipes 11 and 12, 

(2) create a new process (by means of a fork statement). Now there are 

two processes, a parent and a child. Both processes control pipes 11 

and 12, and files i and o, 

(3) the child will perform T(in Zl out Z2) and will therefore close the 

write-file-descriptor of 11, the read-file-descriptor of 12 and the 

files i and o, 

the parent closes the read-file-descriptor of 11 and the write-file

descriptor of 12, 

(4) the child calls T(Zl,Z2), 

the parent goes on with the expansion. 

These steps are picture in figure 3.3.2.3., where a pipe is an arrow D--1> 
with the front part I> its read-file and the back D its write-file. 



78 

11 11 11 

( 1) (2) (3) (4) 

Figure 3.3.2.3. Steps in a process activation. 

create T(in l3 out l4) will be translated similarly. For the last process 

activation create N(in i,l3,l4 out o,ll,l2) no new process is needed. It is 

translated to a function N(i,l3,l4,o,ll,l2). The end of a process declaration 

is translated to 

(1) write end of information on all output files, 

(2) read all input files until end of information, 

(3) exit. 

Figure 3.3.2.4. shows the C translation of the example program 

Erathostenes from figure 3.2.3.2. 



#include "rts.h" 
filter(ints,primes,factor) 
inchan ints; 
outchan primes; 
int factor; 
{ 

inti; 
read int(ints,&i); 
while(i>O) 
{ 

if((i % factor) != 0) write_int(primes,i); 
read_int(ints,&i); 

} ; 
write_int(primes,-1); 

putc(primes,E0F); 
while(getc(ints)!:E0F); 
exit(0); 

primesv(factors,primes) 
inchan factors; 
outchan primes; 
{ 

int i; , 
read int(factors,&i); 
while(i>O) 
{ 

struct channel inter; 
connection(&inter); 
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if(( f:fork())==-1) error("Cannot create process"); 
if( f==O){ /* son */ 

} ; 

- close(primes); 
close(inter.i); 
filter(factors,inter.o,i); 

close(factors); 
close(inter.o); 
init queue(& m); 
ins q(& m,inter.i); 
ins-q(&-m,primes); 
factors-= del q(& m); 
primes= del_q(&_m); 

write int(primes,i); 
read_int(factors,&i); 

putc(primes,E0F); 
while(getc(factors)!:E0F); 
exit( 0); 
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ints(o) 
outchan o; 
{ 

} 
main() 
{ 

inti; 
for (i=2; i<80; i++) write_int(o,i); 
write_int(o,-1); 

putc(o,EOF); 
exit(O); 

int primes; 
primes=creat( 11 primes 11 ,0666); 
{ 

} 
exit(O); 

struct channel inter1; 
·connection(&inter1); 
if(( f=fork()) ==-1) error( "Cannot create process"); 
if( f==O){ /* son */ 

} 

- close(primes); 
close(inter1.i); 
ints (inter1 .o); 

close(inter1 .o); 
primesv(inter1.i,primes); 

Figure 3.3.2.4. C translation of Eratosthenes. 

3.3.3. Appendix: the compiler and the run-time system. 

DNP was implemented on a VAX 11/780 running Berkeley UNIX 4.1, using PGEN 

[27] and Summer [51). It consists of dnp.ud (user definitions), dnp.ns (a lex

ical scanner) and dnp.syn (the compiler). The run-time system is written in C. 
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#dnp.ns# 

#-------------------------------------------------------------------------------
Communication between the parser, generated from dnp.syn 
and this lexical analyser proceeds via global variables: 

sy 
t-sy 
lnr 
keytab 
predef 
kartab. 

The procedure nextsym yields the input lexical symbols as 
declared in dnp.syn. It also keeps track of linenumbers 
in lnr and signals end of file EOF. A next lexical symbol 
is put in sy and its type is put in t-sy. For further 
details see the PGEN defining MC-report: 

G. Florijn & G. Rolf 
PGEN - A general purpose Parser Generator 
MC IW157/81 januari 1981 

-------------------------------------------------------------------------------# 

const STATE C := O, 
STATE=DNP := 1; 

var letter:= upper I I lower, 
alpha:= letter I I digit, 
true := 1, 
layout•- 1 \t', 
empty := ''; 

var state:= STATE DNP, 
infile := stand_in; 

proc ermsg(msg, lino) #print errormessage on standard error output# 
(stand er.put(•error near line', lino, •: ', msg, 1 \n') 
); -
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#-------------------------------------------------------------------------------
proc nextsym is either in STATE Corin STATE DNP 
when in STATE Cit yields: -

- EOF-if there is no more input 
- all C-text until the next DNP keyword (and goes in STATE_DNP) 

if there is C-text on input 
- the next DNP symbol if there is no C-text (and it goes into STATE_DNP) 

when in STATE_DNP it yields: 
- EOF if there is no more input 
- the next DNP symbol 

if the symbol is begin or endexp it goes into STATE C 
------------------------------------------------------------ -----------------# 
proc nextsym ( ) 
( case state of 

STATE C: 
var pre, kw; 
SY : : f I j 

while true 
do scan line 

for 
if pre:= break(letter) 
then 

sy • - sy 11 pre; 
kw·- span(alpha); 
if kw= •end' I kw= •expand' 
then 

state:: STATE DNP; 
if scan sy for-(span(• \t\n') I lit(••)) & rpos(O) rof 
then 

sy := kw; 
t sy := keytab[sy]; 
return; 

else 
move(-kw.size); 
t sy := predef['c text•]; 
return -

fi 
else 

sy ·- sy I I kw 
fi 

else 

fi 

sy := sy 11 line.rtab(O) 11 '\n'; 
if line:= scan string(infile.get()) fails 
then 

sy := 'EOF'; t_sy := predef['EOF']; return 
else 

lnr := lnr + 
fi 

rof 
od, 



STATE DNP: 
while true 
do line.span(layout) I empty; 

if sy ·- line,any(letter) 
then 

od; 
esac 

) ; 

sy ·- sy 11 (line.span(alpha) I empty); 
if keytab[sy] -= undefined 
then 

t_sy ·- keytab[sy] 
else 

t_sy ·- predef['id'] 
fi; 
if sy = 'begin' I sy = •endexp• 
then 

state•- STATE C 
fi; 
return 

elif sy := line.move(1) 
then 

else 

fi 

t_sy := kartab[sy]; 
return 

if line·- scan_string(infile.get()) fails 
then 

sy : = 'EOF'; 
t sy := predef['EOF']; 
return; 

else 
lnr := lnr + 1 

fi; 
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# dnp.ud # 

var 
in_fo~mals, 

out_formals, 

# formal input channels of a process declaration 
built up while parsing <process-heading> or <main> 
read by <expansion>, <survival>, <process-body> 

# same for formal output channels# 

free_in_formals, I/unused formal input channels in an expansion 
initially equal to in formals 

# 

emptied successively by /checkin/ actions 
checked by <expansion>.EXIT 

free out_formals,#same for formal output channels in an expansion# 

intermediates, 

free_in_parts, 

# the new intermediate channels in an expansion 
for a~ intermediate we must generate code to create 
a pipe, which is done the first time the intermediate 
is used as an actual input or output channel 

# unused input parts of intermediates during parsing 
of an expansion 
checked and emptied by chechin actions 

free_out_parts, # same for unused output parts of intermediates # 

to_close, 

procname, 

curproc, 

# open files: formal channels, input parts of intermediates, 
output parts of intermediates. 

some files are already created, because for complete channels 
a pipe is created, but are not needed in a certain process. 
these files must be closed 
when a pipe is created for an intermediate x, x.i and x.o 
are added to to close in checkin or checkout actions. 
when x.i is used in a process, it is removed from to close 

# process name in a creation or survival# 

# current process declaration# 



proctab ·- table(20,''), 
# key: process name 

it 

entry: io-channel-pattern 
used for checking consistency of def and uses of 
a process by checkchan ud 

firsttab ·- table(20,0), 

gen_call, 

# key: process name 
entry: line number first occurence 
used for error msg by checkchan ud 

it 

# this one is needed because we cannot see when parsing 
a creation or survival that it is the last one. So 
code generation for creations will happen when the 
next creation or survival or expend is encountered. 

we have two cases: 
(1) a creation x which is not the last process 

determ~ned when encountering successor of x, only 
if x exists (gen_call = TRUE). 
this happens in init ud 

(2) xis the last process 
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(2.1) creation (gen call= TRUE): generate function call 
this happens in <expansion>,EXIT 

actualparts, 

actualvals, 

pre, 
post, 
rest; 

it 

(2.2) survival: generate channel part assignments 
this happens in <survival>.EXIT 

if actual channel parts of of creation or survival it 

# same for actual value parameters# 

# used for pattern matching# 

proc match(str,pat) #pattern matching# 
( 
return( 

scan str for pre:= find(pat) & lit(pat) & post•- rtab(O) 
rof & 

rest:= pre II post 
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# init ud generates code for previously parsed creation, if any (gen_call) 
initializes global variables for the new creation or survival 

proc init_ud() 
(var actuals; 

if gen call= 'TRUE' 
then put('if(( f=fork())==-1) 

put('if(_f==O){ /* son 
error("Cannot create process");\n'); 
*/\n'); 

fi; 

scan to close 
for move( 1); 

rof; 

while pre:= find(',') 
do move( 1); 

put('close(' ,pre, •);\n'); 
od 

actuals·- actualparts I I actualvals; 
put(procname,•(•,actuals.substr(O,actuals.size-1),');\n'); 
put ( ' } \n' ) ; 
scan actualparts 
for while pre:= find(',') 

do move(1); 

rof 

put('close(' ,pre, •);\n'); 
od 

actualparts := ''; actualvals ·
gen_call •- 'TRUE'; 

' ' . ' 

#checkchan ud checks consistency of def and use of channels in process 
declaration, creation and survival 

fl 
proc checkchan ud(pnm,iopat) 
( if proctab[pnm] = '' 

then proctab[pnm] := iopat; firsttab[pnm] := lnr 
else if proctab[pnm] -= iopat 

fi 

then ermsg('channels inconsistent with line' I I 
string(firsttab[pnm]),lnr 

) 
fi 



#checkin ud generates pipe creation code (connection) if needed 
checks correct use of input channel 

fl 
proc checkin ud(nm) 
( scan Intermediates flif channel used first generate "connection"fl 

for if pre : = find ( ' , ' I I nm I I ' , ' ) 
then lit(','llnm); intermediates:= pre II rtab(O); 

put(' connection(& 1 ,nm, 1 ); \n 1 ); 

to close,- to close II nm II 1 .i,' II nm II 1 .0, 1 ; 

fi 
rof; 

if scan free in parts 
for pre : ; find ( ' , ' I I nm I I ' , ' ) 

& 
(lit(',' II nm); free in parts:= pre II rtab(O); 

scan to close - -
for if-pre:= find( 1 , 1 llnmll 1 .i, 1 ) 

then lit(',' 1 lnml I 1 .i' ); 
~o_close := pre II rtab(O); 

fi 

rof; 
actualparts •- actualparts II nm II 1 .i,' 

) 
rof fails 

then 
if scan free in formals 

for pre : = - find ( I ' I I I nm I I I ' I ) 

& 
(lit(',' II nm); free in formals·- pre II rtab(O); 
scan to close - -
for if pre : = find ( ' , ' I I nm I I ' , ' ) 

then lit(',' I 1nm); 
to_close := pre II rtab(O); 

fi 
rof; 

actualparts ,- actualparts II nm I I ',' 
) 

rof fails 
then ermsg('wrong input channel 'II nm, lnr) 
fi 

fi; 
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proc checkout_ud(nm) # see comment checkin ud # 
( scan intermediates 

for if pre : = find ( ' , ' I I nm I I ' , ' ) 
then lit(','I 1nm); intermediates:= pre I lrtab(O); 

put(•connection(&• ,nm, 1 );\n'); 
to close ·- to close 11 nm 11 '.i,' 11 nm 11 '.o,' 

fi 
rof; 
if scan free out parts 

for pre : -; find ( I ' I I I nm I I I ' I ) 

& 
(lit(',' II nm); free_out_parts •- pre II rtab(O); 

scan to close 
for if-pre := find(',' I lnml I' .o,') 

then lit (' , 1 I I nm I I ' • o 1 ) ; 

to close:= pre II rtab(O); 
fi 

rof; 

actualparts •- actualparts I I nm I I •.o,' 
) 

rof fails 
then 
if scan free out formals 

for pre : = - find ( ' , ' I I nm I I ' , ' ) 
& 
(lit(',' II nm); free out formals,_ pre II rtab(O); 

scan to close 
for if-pre : = find ( ' , ' I I nm I I ' , ' ) 

then lit (' , ' I I nm); 
to close:= pre II rtab(O); 

fi 
rof; 

actualparts ,- actualparts I I nm I I 
) 

rof fails 

I I 

' 

then ermsg(•wrong output channel 'I I nm, lnr) 
fi 

fi; 



ii dnp. syn // 

LEXICAL id, c-text. 

<dnp-program> ::= <process-decl>* <main> • 

!NIT: put ('//include "rts .h 11 \n • ) ; 

<process-decl> <process-heading> t ; I <process-body>. 

<process-body>::= BEGIN 

END. 
(<e~pansion> I <c>)* 

!NIT: put( 1 {\n 1 ); 

EXIT: 
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while match(out formals, ',') 
do put(•putc(• ,pre, ',EOF);\n' ); out formals,_ post od; 

while match(in formals, ',') 
do -

put('while(getc(' ,pre, ')l=EOF);\n'); 
in_formals := post; 

od; 
put(•exit(O);\n}\n'); 

<c> ::= t: <c-text>. 

EXIT: put ( t , ' \n' ) ; 
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<process-heading>::= PROCESS pid: <id> /procname/ 
t(t ( ( IN { run: <id> /inname/ t,t }+) 

INIT: 

I ( OUT { run: <id> /outname/ t,t }+) 
)+ 

(t: <type> {run: <id> /valname/ t,t}+ )* 
t ) t • 

var val formals:= tt, c pack:= tt 
in_formals := tt; out_formals •- t t • , 

, iopat : = ''; 

/procname/: curproc •- pid; 

/inname/: 
in formals:= in formals II run II 
c pack:= c pack-II run II t,t; 
iopat := iopat 11 ti 1 ; 

t to , , 

/outname/: 
out formals : = out formals 11 run 11 
C pack== C pack IT run II t,t; 

iopat := iopat 11 1 ot; 

I t, , , 

/valname/: 

EXIT: 

val formals:= val formals I I t II t I I I run II t;\nt; 
c_pack ·- c_pack IT run I I t,t; 

checkchan ud(pid,iopat); 
put(pid, 1 ( 1 ); 

if c pack-= it then put(c_pack,substr(O,c_pack.size-1)) fi; 
put(•)\nt ); 
if in formals-= it 

then put(tinchan t); 
put(in formals,substr(O,in formals.size-1)); 
put(t;\n 1 ) -

fi; 
if out formals-= tt then put(toutchan 1 ); 

put(out formals.substr(O,out formals,size-1)); 
put( J ;\n') -

fi; 
if val formals-= 1 • then put(val_formals) fi; 



<type>::: INT /i/ I CHAR /c/. 

!NIT: var kw; 

/i/: kw . - 1 int I; 

/c/: kw . - 'char•; 

EXIT: return(kw); 

<expansion>::= 

!NIT: 

EXPAND 
[ CHAN {run: <id> /chname/ ','}+ 
/chdecl/ 
<creation>* [<survival>] 

ENDEXP, 

var m,actuals; 
free in formals : = ' , ' I I in formals; 
free_out_formals := ',' I I out_formals; 
intermediates:= ','; 
gen call :: 'FALSE'; 
to close== ',' I I in formals I I out_formals; 
put ( ' { \n' ) ; 

/chname/: intermediates,- intermediates I I run I I t I • 

' ' 

/chdecl/: if intermediates-= ',' 
then put(•struct channel ', 

intermediates.substr(1,intermediates.size-2), 
'; \n' 

) 

fi; 
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free_in_parts := intermediates; free_out_parts •- intermediates; 

EXIT: m := free in formals I I free out formals I I 
free=in=parts I I free_out_parts; 

if m -= ',,,,' 
then while match(m,',') do m : = pre 11 ' ' 11 post od; 

ermsg(•unused channel(s) 'I Im, lnr) 
fi; 

if gen_call = 'TRUE' 
then actuals:= actualparts I I actualvals; 

put(procname,•(•,actuals.substr(O,actuals.size-1),');\n') 
fi; 
actualparts := ••; actualvals := 
put ( ' } \n' ) ; 

' ' . ' 
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<creation>::= 

!NIT: 

CREATE pid: <id> /processname/ 
• ( 1 ( ( IN {nm: <id> /checkin/ ',' }+ ) 

I ( OUT {nm: <id> /checkout/ ','}+) 
)+ 

( <type> {nm: <id> /addval/ ','}+ )* 
I ) I 

var iopat •
init_ud(); 

I I • 

' 

/processname/: procname := pid; 

/checkin/: checkin ud(nm); 
iopat :; iopat I I 'i'; 

/checkout/: checkout ud(nm); 
iopat :=-iopat 11 1 0 1 ; 

/addval/ actualvals ·- actualvals I I nm I I 

EXIT: checkchan_ud(pid,iopat); 

I I • 

' ' 



<survival>::: 

INIT: 

KEEP pid: <id> /procname/ 
'(' ( ( IN {nm: <id> /checkin/ ','}+) 

I ( OUT {nm: <id> /checkout/ ','}+ 
)+ 

')' . 
var formals, iopat := ''; 
init_ud(); 

/procname/: if pid -= curproc 
then ermsg('incorrect process in survival', lnr) 
fi; 

/checkin/: checkin ud(nm); 
iopat :-;' iopat I I '1'; 

/checkout/: checkout ·ud(nm); 
iopat ==-iopat II 'o'; 

EXIT: checkchan ud(pid,iopat); 
formals:-;' in formalsllout formals; 

put('init queue(& m);\n'); 
while match(actualparts,',') 

do actualparts :: post; 
put('ins_q(&_m,',pre,');\n') 

od; 
while match(formals,',') 

do formals:: post; 
put(pre,' = del_q(&_m);\n') 

od; 
gen_call :: 'FALSE'; 
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<main>••-

!NIT: 

MAIN <id> 
' (' ( ( IN { nm: <id> /inname/ ' , ' }+ ) 

I ( OUT { nm: <id> /outname/ ',' }+ 
)+ 

' ) ' ' : ' /head/ 
BEGIN /open/ 

[<c>] 
<expansion> 
[<c>J 
/close/ 

END 

var files; 
in formals:= ''; out_formals ,- I I, 

' 
/inname/: in formals:= in formals II nm I I I I• 

' ' - -
/outname/: out formals:= out formals I I nm I I I I• 

' ' 
/head/: put( 1main()\n{ 1 ); 

files=~ in formals I I out formals; 
put('int ,,-files.substr(O~files.size-1), ';\n'); 
files:= in formals; 
while match(files, 1 , 1 ) 

do put(pre, '=open("', pre, 111 ,0);\n'); 
files:= post; 

od; 
files:= out formals; 
while match(files,',') 

do put(pre, '=creat("', pre, 111 ,0666);\n'); 
files := post; 

od; 

/open/: put('{\n'); 

/close/: put('}\n'); 

EXIT: put(•exit(O);\n}\n'); 



/*rts.c *I 

//include "rts.h" 

/* ERROR MESSAGE*/ 
I*------------- *I 

error(msg) char *msg; 
{ printf("ERROR: %s\n", msg); exit(O);} 

/* CHANNEL CREATION*/ 
I*---------------- *I 

connection(ch) struct channel *ch; 
{ int fildes[2]; 

if(pipe(fildes) != 0) 
error("Cannot create pipe"); 

ch->i = (inchan) fildes[O]; 
ch->o = (outchan) fildes[1]; 

/* INPUT OUTPUT*/ 
I*------------ *I 

putc(f,c) 
int f; 
char c; 
{ write(f,&c,1); 

char getc(f) 
int f; 
{ char c; 

if (read(f,&c,1) I= 1) 
return ( EOF) ; 

else return(c); 
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int read_int(from,val) 
inchan from; 
int *val; 
{ int fdfrom = (int) from, res= o, sign= 1,h = *val; 

char c; 
*val= O; 
do { c = getc(fdfrom); 

} while (!isdigit(c) && (c I= '-') && (c !: EDF)); 
if(c -- '-') 

{ sign = -1; 
c = getc(fdfrom); 

} 
while (isdigit(c)) 

{res= 1; 
*val= *val* 10 + c - 1 0 1 ; 

c = getc(fdfrom); 

*val= sign* *val; 
if (Ires) *val= h; 

return(res); 

write_int(to,val) 
outchan to; 
int val; 
{ int fdto = (int) to; 

if(val < 0) 
{ putc(fdto, 1 - 1 ); val= -val; } 

wint(fdto, val); 
putc(fdto, ' •); 

wint(fdto, val) 
int fdto, val; 
{ if (val<= 9) { putc(fdto, 1 01 + val); 

else { wint(fdto, val/ 10); 
putc(fdto, 1 01 +val% 10); 



read_item(from) /* an int, SEP or EOM *I 
inchan from; 
{ int fdfrom = (int) from, res= O; 

char c; 
while ((c:getc(from))I='*' && cl='$' && isdigit(c)::O); 
while (isdigit(c)) 

{res= res* 10 + c - •o•; 
c = getc(fdfrom); 

if (c == '*') res= EOM; 
else if (c == '$')res= SEP; 
return(res); 

write_item(to,val) /* an int, SEP or EOM *I 
outchan to; int val; 
{ int fdto = (int) to; 

char c; 
if (val -- EOM) 

{ putc(fdto, '*'); putc(fdto, '\n'); return; 
else if (val== SEP) 

{ putc(fdto,'$'); putc(fdto,'\n'); return; } 
wint(fdto, val); 
putc(fdto, ' •); 

isdigit(c) 
char c; 
{ 

return('O' <= c && c <= '9'); 
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/* Some functions for the example programs 
from chapter four 

*I 

/* functions handling DEQUES */ 
I*------------------------- *I 

init deque(d) struct deque *d; 
{ d->left=DQL/2 + 1; d->right:DQL/2;} 

empty deque(d) struct deque *ct; 
{ return(d->left > d->right); } 

ins r(d, el) struct deque *d; int el; 
{ d->cont[++d->right]:el; } 

ins l(d, el) struct deque *ct; int el; 
{ d->cont[--d->left]=el; } 

del r(d) struct deque *d; 
{ return( d->cont[d->right--] ); } 

left(d) struct deque *ct; 
{ return( d->cont[d->left] ); } 

right(d) struct deque *d; 
{ return( d->cont[d->right] ); } 

del l(d) struct deque *d; 
{ return( d-)cont[d-)left++] ); } 



I* functions handling QUEUES*/ 
I*------------------------- *I 

init queue(d) struct queue *d; 
{ d->left:1; d->right:O;} 

empty queue(d) struct queue *d; 
{ return(d->left > d->right); } 

ins q(d, el) struct queue *d; int el; 
{ d->cont[++d->right]=el; } 

left q(d) struct queue *d; 
{ return( d->cont[d->left] ); } 

right q(d) struct queue *ct; 
{ return( d->cont[d->right] ); } 

del q(d) struct queue *d; 
{ return( d->cont[d->left++J ); } 

I* DIVIDE&CONQUER PRIMITIVES *I 
I*------------------------- *I 

twolog(n) int 
{ int 1 = O; 

while(n>1) 
{ n /: 2; l++; } 

return(!); 

size(p) int p; 
{ return(p); } 

solve seq(p) int p; 
{ return(p); } 

combine(p1,p2) int p1,p2; 
{ return(p1+p2); } 

split(p,p1,p2) int p,*p1,*p2; 
{ *p1:p/2; *p2 = p - *p1; } 
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/* rts.h 

some definitions to be included in rts.c and the c version of 
a DNP program 

*I 

#define E0F 1 \01' 
//define E0M -1 
//define SEP -2 
//define DQL 100 
//define QUL 100 

int _f; /* used for forking*/ 

typedef int inchan; 
typedef int outchan; 
struct channel { 

inchan i; 
outchan o; 

} ; 

struct deque 

struct queue 

int left; int right; int cont[DQL];} 

int left; int right; int cont[QUL];} 

struct queue _m; /* used for multiple channel assignment in survivals*/ 
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CHAPTER FOUR 

THE COMPLEXITY OF DNP PROGRAMS 

4.1. INTRODUCTION 

This chapter presents a number of algorithms all programmed in the lan

guage DNP defined in the previous chapter, The algorithms (e.g. for matrix mul

tiplication) are believed to be prototypical for dataflow computing and illus

trate the criteria used for an evaluation of their efficiency. Section 4.2. is 

devoted to algorithms that have an essentially linear computation graph: sorting 

and matrix multiplication, and to an algorithm that uses a binary tree of pro

cesses to implement a general divide-and-conquer routine efficiently. The rest 

of the chapter is devoted to an appraisal of the expressive power of DNP. In 

section 4.3. we consider the limitations of the language. The main theorem is 

that not all (important) classes of computation graphs can be generated by DNP 

programs. In sections 4.4. to 4.6. a comparison is made with the standard com

plexity classes. 

Dataflow algorithms can be classified according to the topology of their 

computation graphs. The graphs that can be generated by a certain DNP program 

coincide with the graphs produced by a context free graph grammar in the sense 

of graph grammar theory (see [77]). Therefore, algorithms with context free 

computation graphs can be expressed in DNP in the following way, using the 

expand mechanism: 

"grow" the graph according to the input data, and 

- let the processes in the nodes of the graph perform their particular t2.sk. 

Take, for example, systolic algorithms [57], most of which can be ex

pressed in DNP even though their underlying computation model (systolic ar

rays) is synchronous instead of asynchronous. Systolic arrays are regularly 

structured networks of simple processing elements that rhythmically act on 
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streams of data passing through the network. To show that systolic algorithms 

can be expressed in DNP, consider the algorithm for a "systolic stack" as giv

en by Kramer and van Leeuwen [55), originally due to Leiserson [59). The design 

consists of a linear array of cells with an I/0 connection to the environ-

ment left of the first cell (see figure 4.1.1.) 

Figure 4.1.1. A systolic array. 

Every cell has two registers, A and B, each of which can contain a num

ber or a special empty token. The I/0 cell is a passive cell, the registers 

of which can be set and inspected by the outside world. A push is represented 

by setting both the A and B register to a number, while a pop is represented 

by setting both the A and B register to empty. The systolic array is synchro

nized so that odd and even cells "beat" alternately. When it acts, a cell will 

inspect the registers of its left neighbour, which is inactive at that moment. 

When the left neighbour has numbers in both of its registers, one is copied 

into the active cell. When the left neighbour has two empty registers the ac

tive cell copies one into the neighbour. In this way pushes and pops ripple 

through the array without causing race hazards. 

A dataflow program for a systolic stack neither has nor needs the global 

synchronization. Instead, the computation is controlled by the availability 

of tokens (the number itself for push, the empty token for pop) streaming 

through the array. A cell process has two inputs and two outputs (see figure 

4.1.2.), 

in-left 

□ A 
out-right 

out-left 

□ 
in-right 

B 

Figure 4.1.2. A cell-process. 
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and essentially performs the loop of figure 4.1.3. Note that a cell process 

only acts when it has a token (perhaps the empty token) on its in-left or in

right ports. 

repeat 

read (in-left, A); 

if A= empty 

fi 

forever 

I* pop *I 
then write (out-left, B); 

if B :J empty 

then write (out-right, empty); 

read (in-right, B) 

fi 

I* push */ 
else if B :Jempty 

then write (out-right, B) 

fi; 

B:=A 

Figure4.1.3. 

Kramer and van Leeuwen prove that the systolic array can process push/pop 

commands in 0(1) response times, as long as the number of elements in the 

stack remains less than the number of cells. This boundedness of the systolic 

algorithm can be overcome in DNP easily by having a "bumper" process at the 

right end of the array, which answers a pop command by sending an empty token 

to the left and a push command by expanding into a cell process that gets the 

pushed element and a bumper process (see figure 4.1.4.). Many other systolic 

algorithms can be translated to DNP in the same way, as long as their compu

tation graph can be generated. 
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C) □ A 

B □ 

burn 

Figure 4.1.4. Expansion of a bumper process. 

4.2. SOME DNP PROGRAMS AND THEIR COMPLEXITY 

When analyzing a DNP program the following complexity measures can be 

used: 

(i) The nwnber of processes. 

We can measure the total number of processes created during the whole 

computation, the maximal number of processes active at a certain moment, and 

the minimal number of processors needed to run a program. The last two meas

ures are of interest if a processor can be reallocated when a process is 

no longer running on it or, if the creation of a process can be suspended 

until a processor becomes available. 

(ii) The number of channeZs and their size. 

Clearly the number of channels depends on the number of processes. The 

size of a channel at a certain moment is defined as the number of items writ

ten on the channel and not yet read from it. Hence the size of a channel de

pends on the timing of the algorithm. 

(iii) The nwnber of time-steps necessary to execute the program. 

We will assume that all processes run in parallel and are equally fast, 

i.e., they perform the same DNP statement in the same number of time-steps. 

Such an execution could be characterized as "asynchronously synchronous". 
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4 .2. 1. A sorting program. 

Parallel programs in general can be divided into (i) those where the in

put data is already in the parallel processes or memories, (ii) those where 

the input resides on a number of files and where the number of files depends 

on the size of the particular problem, and (iii) those where the input resides 

on a fixed number of files. Examples of programs in the first class are bi

tonic sorting [9] and a derivative of it that runs on a mesh-connected paral

lel computer [79]. A program in the second class is Kung's matrix multipli

cation on a hexagonal array of processors [57]. DNP programs fall in the third 

class and will therefore have a time complexity of at least O(n). 

An interesting sorting algorithm in the third class is Todd's parallel 

merge sort [83] . This algorithm takes only log(n) processors to sort n num

bers in about 2n+log(n) time-steps. In Todd's sort the passes of merge sort 

execute overlapped. Each pass resides on a separate processor, so one proces

sor repeatedly combines single numbers into sorted runs of size two, the next 

processor repeatedly combines two runs of size two into one run of size four 

etc. (see figure 4.2.1.1.). 

8 7J3 1 5 3 2 1 

8 7 6 5 4 3 2 1 

6 4J5 2 8 7 6 4 

Figure 4.2.1.1. Todd's sort. 

When the last number enters the first processor it will take O(log n) 

steps to get the first sorted number out of the sorting net. 

The sorting algorithm we will present here is faster in the sense that 

immediately after the last number enters the net, the first number of the 

sorted sequence is output. This makes our sorting net easily adaptable to a 

priority queue that reacts on insert/delete commands in constant time. We will 

call it "pipeline sort". 
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The program starts as in figure 4.2.1.2., where bottom is a process do

ing nothing, i.e., sending an empty sequence over channel r to the process 

sort. The process sort will start reading elements of the unsorted sequence 

from channel u. The sorted sequence will eventually be written on channels. 

Figure 4.2.1.2. The initial sorting network. 

Channel e never receives a token and is there for reasons of symmetry which 

will become clear below. 

The sort process reads in and sorts elements in an internal datastruc

ture, as long as it can do this in a constant time per element. Otherwise, 

it expands (see chapter three) into a subnet consisting of a new sort process 

(by means of a oreation) and itself (by means of a suroivaZ). The newly 

created sort process takes over the reading and internal sorting of the un

sorted sequence. In order to do this it has to gain control of the input chan

nel u and the output channels. The old sort process will, after the expan

sion, merge its internal sorted sub-sequence with a sorted sub-sequence coming 

from channel r. (For the first sort process the sorted sub-sequence from r 

will be empty.) The resulting (bigger) sorted sub-sequence will be sent to 

the newly created sort process over an intermediate channel rr. The channels 

necessary for the computation are drawn in figure 4.2.1.3. 

r 

Figure 4.2.1.3. Necessary channels in sort expansion (but syntactically 

incorrect). 
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The expansion as pictured in figure 4.2.1.3. is however inexpressible in DNP, 

because processes must have the same channel configuration before and after 

expansion. For this reason the dummy channels e and ee are introduced (see 

figure 4.2.1.4.). We will come back to this phenomenon in section 4.3. where 

the limitations of DNP are discussed. 

~ 
~ 0 r 

Figure 4.2.1.4. The syntactically correct expansion of sort. 

Reading in elements and sorting them in constant time per element can 

be done in many ways. A possibility is to use a deque and to put elements 

that are greater or equal to the maximal element on one end and elements that 

are less or equal to the minimal element on the other end, and to stop when 

an element arrives that falls in between. This requires a flexible random ac

cess structure inside the sort process. We will see when analysing the program 

that this gives no great advantage as the average number of elements sorted 

internally in this way will be less than 5. A much simpler way is to allow a 

fixed number of elements to be internally sorted per process. An interesting 

number is one, because it will eliminate the need for internal sorting alto

gether. The pictures of figure 4.2.1.5. exemplify sorting the file 5,1,2,4 

when the internal sorting is done using a deque. 
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=oo==o=o 
=0=0=[] 

Figure 4.2.1.5. Pipeline sort in action. 

Figure 4.2.1.6. shows the corresponding program and figure 4.2.1 .7. 

shows the program where every process keeps only one internal number. 



process sort(in u,r out s,e int f): 
begin inti; 

end 

struct deque d; init_deque(&d); ins_l(&d,f); 

while(read int(u,&i)) 
{ if(i <= left(&d)) ins l(&d,i); 
else if (i >= right(&d)) ins r(&d,i); 

} 

else { -
expand chan ee,rr 

create sort(in u,rr out s,ee inti) 
keep sort(in ee,r out rr,e) 

endexp; 
break; 
} 

while(read int(r,&i)) 
{while(lempty deque(&d) && (i >= left(&d))) 

write_int(s,del_l(&d)); 

write int(s,i); 
} -

while(lempty_deque(&d)) write_int(s,del_l(&d)); 

process bottom(in e out r): 

main m(in unsorted out sorted): 
begin 

begin end 

end 

inti; 
if(read int(unsorted,&i)) 

-{ expand chan e,r 
create bottom(in e out r) 
create sort(in unsorted, rout sorted, e inti) 

endexp; 
} 

Figure 4.2.1.6. Pipeline sort using a deque. 

109 
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process 
begin 

end 

sort(in u,r out s,e): 
int i,j; 
if(read int(u,&i)) 

{expand chan ee,rr 
create sort(in u,rr out s,ee) 
keep sort(in ee,r out rr,e) 

endexp; 

while(read int(r,&j)) 
{if(j<i) write int(s,j); 
else {write_int(s,i); 

i=j; 
} 

write_int(s,i); 
} 

else while(read_int(r,&j)) write_int(s,j); 

process bottom(in e out r): begin end 

main m(in unsorted out sorted): 
begin 

end 

expand chan e,r 
create bottom(in e out r) 
create sort(in unsorted, rout sorted, e) 

endexp 

Figure 4.2.1.7. Pipeline sort with only one internal element. 
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4.2.1.1. Analysis of pipeline sort. 

The number of processes 

The number of processes generated by pipeline sort with single numbers 

internally (figure 4.2.1.7.) is simply n+2: one bottom process, one process 

that detects end-of-file and one process for every number to be sorted. In 

the deque version (figure 4.2.1.6.) the number of processes drpends on the 

order of the numbers on input. If the sequence is, e.g., already sorted, the 

number is two: one bottom process and one sort process. On the other hand, the 

number of processes is fn/21+1 when every (1+2i)-th number falls in between 

the preceeding two. In order to determine the average number of processes, we 

define a semirun as a sub-sequence of the unsorted sequence that can be sorted 

using one deque. Any sequence can be divided into a number of semiruns. Semi

runs have a size of at least two. 

Definition 4.2.1.1. Let I be a sequence of numbers v 1,v2 , .. (1~vi~N). I models 

the unsorted sequence of numbers, v1 is the first number to be read. A sub

sequence I[l .. u], (l<u), is defined as the sequence v , ... ,v. The longest 
1 u 

sub-sequence I[l .. u] such that for all k from 1+1 to u 

either vj~vk for all j from 1 to k-1 

or vj~vk for all j from 1 to k-1 

is called a semirun. A prefix is any initial sub-sequence of a semirun. 

□ 

Thus a semirun is the longest sub-sequence such that each subsequent number 

is either less than or greater than all the previous numbers in the semirun. 

We will determine the average length of the first semirun I[1 .. u] of a 

sequence I assuming that the numbers in the sequence are uniformly distributed 

over 1 to N, i.e., P(vi=n) = 1/N for all n from 1 to N. We write PN(k) for the 

probability that u=k by a given N, and Nk(i,j) for the number of prefixes 

v 1, ... ,vk such that min(v 1, ... ,vk) = i and max(v 1, ... ,vk) = j. 
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We then have 

# sequences v 1, ... ,vk+l such that 1[1 .. k] is a semirun 

total# sequences v 1 , ••. ,vk+l 

r r (Nk(i,j).U-i-1)) 
1 :;,i:;,j :;,N 

where# stands for "the number of". 

In order to determine Nk(i,j) we observe the following: 

Nk+1 (i,j) = # prefixes such that the last number (vk+1) is equal 

to the old minimum or maximum (i.e., the bounds don't 

change) 

+ # prefixes such that vk+1 is the new maximum 

+ # prefixes such that vk+1 is the new minimum. 

(P1) 

There are two cases: (1) i=j and (2) i<j. Using these cases and the above 

expression for Nk+l (i,j) we can write down a recurrence relation for Nk+l(i,j). 

(1) Nk+l (i,i) Nk(i,i) 

(2) Nk+1(i,j) 2Nk (i,j) (vk+1 min or vk+l = max) 

j-1 
+ I Nk(i,l) (vk+1 j) 

l=i 

j 
+ I Nk(l,j) 

l=i+1 
(vk+1=i) (N1) 

j 

I (Nk (i,l) + 1\(1,j)) 
l=i 

The basis of this recurrence relation is~ 

(1) N1 (i,i) 

(2) 0 

The above equations (N1) suggest that Nk+l (i,j) depends on the values 

i and j independently, although it is intuitively clear that Nk+l (i,j) depends 

on the number of values vk+l (not) hitting the interval i to j, i.e,t Nk+l(i,j) 

depends on j-i only. 
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Lemma 4.2.1.1.1. Nk(i,j) depends on j-i only. 

Proof. By induction on k. 

Base: N1 (i,j) depends on j-i only. 

Step: Suppose Nk(i,j) = Fk(j-i) for some function F. Now check cases: 

( 1 ) Nk+ 1 (i , j ) 

j-i 
2 I Fk(m) 

m=O 

So in both cases Nk+l(i,j) depends on (j-i) only. 

D 

If we define the function Fk by Fk(j-i) = Nk(i,j), the equation (N1) trans

forms into: 

if 1~n~N-1 

if n=O 

Note that Fk is independent qf N. 

Lemma 4.2.1.1.2. Fk+ 1(n), n~O, is a polynomial of degree (k-1). 

Proof. By induction on k. 

Base: F 1 (n) 0 

F2 (n) 2 

F 3 (n) 2n+2 

Step: Fk(n) is a polynomial of degree (k-2). Now observe that 

Fk+ 1(n+1) - Fk+ 1(n) = 2Fk(n+1). 

It is well-known that if P(x) is a polynomial then 

degree(P(x)) = d+1 N degree(P(x+1)-P(x)) = d. 

We therefore conclude that Fk+ 1(n) is a polynomial of degree k-1. 

D 

We write Fk(n) 

it into (F1): 

k-2 
l akl n1 for certain coefficients akl (k>1) and substitute 

l=O 

2(J Fk(j) + 1) 
J=1 

k-2 n 
2 I akl I jl + 2 

l=O j=1 

(F2) 
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From the theory of Bernoulli-polynomials and Bernoulli-numbers [52] we use 

the following facts: 

(1) Bn(x) = ~(~)Bk xn-k 

(2) Bn = Bn(O) = Bn(1), B0=1 

(3) 

(4) 

B (x+1) - B (x) = nxn-l 
n n 

n 1 !l:1(Bl+1(n+l) 
~1 p = p- n 

Bernoulli-polynomials 

Bernoulli-numbers 

if E:1 

if l=O 

Substituting property (4) into equation (F2) yields: 

k-2 akl k-2 l k-2 akl 
= 2 + 2ak0 n - 21~-1 1+1 Bl+1 + 2 l akl n + 2 l 1+1 Bl+1(n) 

1=1 1=1 

Further manipulation shows: 

Therefore: 

k-2 akl(l+l(l+1) 1+1-j) l 1 1 l . B. n 
1=1 + j=O J J 

- B np k-2 akl lt1( 1+1 \ 
- I 1+1 l 1+1-p/ 1+1-p 

1=1 p=O 

k-1 ( k-2 akl( l+l \ ) 
= l np l 1+1 1+1-p/Bl+1-p + 

p=2 l=p-1 

1 n + 

k-1 l( k-2 ak ( +l \ ) + 2 n p p B ~ _l p+1 p+1-1/ p+1-l 1-2 p-1-1 

(by (1)) 

(p 1+1-j) 



We conclude: 

2 

2(akO + kI2aklBl) + 2~1 
1=1 

2 2k~2 akp ( p+1 )B 2~l~k-2 
akl + L p+1 p+1-l p+1-l 

p=l-1 

a 
2 k,k-2 

k-1 

And therefore: 

Now we substitute Fk(n) into equation (P1): 

N-1 
PN(k) = ~+l I Fk(n)(N-n). (n-1) 

N n=1 

N-1 N-1 
N l Fk(n) 

n=1 
l Fk(n).n 

n=1 
Nk+1 

ANk 

Definition 4.2.1.1.2. P(k) 

Nk+1 

BNk. 

lim PN(k). 
N-k:O 

2 

□ 

Theorem 4.2.1 .1 .3. P(k) = -2k----'('-k-_l-'-) for k~2. 
(k+1) ! 

N-1 

+ 

(N+ 1 ) l F k (n) • n 
n=1 
Nk+1 

+ CNk 

Proof. By (P2) we have that PN(k) = - ~k - BNk + CNk" 
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(P2) 

~k = 0(1/N) because Fk(n) is a polynomial of degree k-2. 
n 

· · ( ) -- ~ .r 1 r+l + O(nr). Then We use the following notation: Z n,r j~lJ = r+T" n 

BNk = k+1 Nil (.I ak ·-2 nj) = k1+1 .I (ak ·-2 Z(N-l,j)) 
N n=1 J=2 ,J N J=2 ,J 

1 
= Nk+l ak,k-2 Z(N-1,k) + 0(1 /N). 



116 

Hence 

D 

P (k) 

1 = - a Z(N-1,k-1) + 0(1/N). 
Nk k,k-2 

ak k-Z(Z(N-1,k-1).N - Z(N-1,k)) 
' + 0(1/N) 

Nk+1 

1 1 ak k-2 
~,k-2(k - k+1) + 0( 1/N) = k(k.+1) + 0( 1/N) 

2k- 1 (k-1) 
(k+ 1) ! + 0 ( 1 /N) . 

2k- 1 (k-1) 
(k+1) ! 

If we had assumed all numbers in the sequence to be unequal, i.e., 

V.7v. (i7j), the argument would have been much simpler. If there are p permu
i J 

tations of n unequal numbers such that they can be sorted in one deque, there 

are 2p such permutations of n+1 unequal numbers. As there are 2 permutations 
k-1 of 2 unequal numbers, there are 2 such permutations of k unequal numbers 

and therefore 

or 

2k-1 
P(first semirun has le~gth ~k) = ---izr-

P(first semirun has length k) 

In order to determine the average length of the first semirun and its 

standard deviation we use a moment generating function [4]: 

M(t) 

.!_(e2et + 1) 
2 

00 2k- 1 (k-1) kt 
k~1 (k+1) ! e 
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The mean length is M'(O) = ½(e2-1) RJ 3.19 

The standard deviation is Ji11 (0) - (M' (0)) 2 RJ 1.17 

Determining the average length of the i-th semirun becomes horribly 

complicated because it depends on the previous semirun. The distribution 

of the first number of a semirun is not uniform and differs per semirun, 

though the distribution of the other numbers is again uniform. If we assume 

that the first number has no effect on the length of the semirun, because 

the second and third fall around it, the average length of the semirun will 

be 4.19, (1 for the first plus 3.19 for the uniformly distributed rest). 

So we conclude that the average length of any semirun will be less than 4.19. 

The above analysis shows that sorting with a flexible internal sorting struc

ture such as a deque is not worthwhile. 

The number of time-steps. 

We will now analyse the number of time-steps used. First we consider 

pipeline sort with single numbers internally. We can distinguish three types 

of processes (see Figure 4. 2. 1 . 1 . 1 . ) : 

(1) one bottom process 

(2) n internal sort processes 

(3) one last process detecting end-of-file. 

Figure 4. 2. 1 . 1 . 1. 

From the program text in figure 4.2.1.7. it is clear that a sort-process 

performs at most 2 ordinary statements between reading, writing and expanding. 

We will therefore only take communication and expand statements into account. 

We will assume that writing, expansion, reading an already available number, 

and reading from a permanently empty channel will each take one time-step, and 

reading from a temporarily empty channel will be finished one time-step after 
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a number has been written on the channel by the producing process. 

A · 1 t process goes through the following stages: n interna sor i 

(1) create 

(2) read i-th number from unsorted sequence 

(3) keep 

(4) merge i-th number into sorted sub-sequence si-l ,l .. i-l and write out 

sorted sub-sequence s. 1 • 
1, .. 1 

The last sort process goes through the following stages: 

(1) create 

(2) read from empty channel of unsorted sequence 

(3) copy sorted sequences to outside n, 1. .n 
(writing number j to outside world: 

We will use the following additional notation: 

reading number j f_rom sub-sequence si_ 1: 

writing number j on sub-sequence si: 

reading from empty channel si-l: 

world 

(c) 

(ru ) 
e 

ws.) 
J 

ws .. 
:LJ 

rsi-1 e 

A typical execution is shown in figure 4.2.1.1 .2. Note that the last sort 

process has to wait one time-step for the first number from the sorted sequence. 

Proposition 4.2.1.1.6. Pipeline sort with single nwnbers internally reads the 

unsorted sequence in 0(1) time-steps per number and writes out the sorted se

quence in 0(1) time-steps per nwnber immediately afterwards. 

Proof. Sorti is created at time-step 2i-2 and reads its number vi at time

step 2i-1, so reading proceeds at 0(1) time-steps per number. Writing the j-th 

number on the i-th sorted sub-sequence (ws .. ) is done at time-step 2(i+j) by 
:Lj 

sorti; the same number is read by sorti+l at time-step 2(i+j)+1 (i#n). The last 

sort process is created at time-step 2n; it reads from sn at time-step 2n+2 

and receives the first number (rsn1) at time-step 2n+3. The j-th number from sn 

is read at time-step 2(n+j)+1 and written at time-step 2(n+j)+2. 

□ 



time steps 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

p 
sort 1 c ru1 k rs0e ws 11 

r sort2 c ru2 k rs11 ws21 rs1e ws22 
0 

C sort3 C ru3 k rs21 ws31 rs22 ws32 rs2e ws33 e 
s sort 4 C ru4 k rs31 ws41 rs32 ws42 rs33 ws43 rs3e ws44 s 
e sorts C rus k rs41 ws51 rs42 ws52 rs43 ws53 rs44 ws54 rs4e ws55 s 

last C ru rs51 rs51 ws 1 rs52 ws 2 rs53 ws3 rs54 ws 4 rs55 ws5 e 

Figure 4.2.1.1.2. A time diagram for n=S. 

\0 
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We will now analyse the timing of pipeline sort with deques internally. 

Again we assume the same timing for reading, writing and expanding, and neg

lect the rest of the statements because there are only a (small) constant number 

of them between reading, writing and expanding. An internal sort process reads 

at least two numbers from the unsorted sequence so the total number of reads 

and writes on (internal) sorted sub-sequences will be less than in the previous 

case. The important property is that when an internal sort process reads from 

the channel r containing the sorted sub-sequence either a number is immediately 

available or the channel is permanently empty. The last sort process reads zero 

or more numbers from the unsorted sequence. Time diagram 4.2.1.1.3. shows a 

worst case where 5 numbers are sorted by three sort-processes with deque-lengths 

2,2 and 1 respectively. 

time-steps 

0 2 3 4 5 6 7 8 
p 
r main ru 1 
0 bottom C 
C 

e sort 1 cu1 ru2 ru3 k rsoe ws11 ws12 
s sort2 k 3*r, 4*W s cu3 ru4 ru5 
e last cu5 ru 5*r, 5*w e s 

Figure 4.2.1.1.3. A time diagram for sort using deques. 

Proposition 4.2.1.1.7. Pipeline sort with deques internally reads its input 

nwnbers in 0(1) time-steps per number and outputs the sorted sequence in 0(1) 

time-steps per number immediately afterwards. 

i-1 Proof. Process sort1.. is created at time-steps c. = .L1(dq.+1) where dq. is the 
l. J= J J 

length of the j-th deque. Sort. then reads dq. numbers and performs a keep at 
1. 1. i-1 i 

time-step kl..= cl..+ dql.. + 1, and then performs (.L1 dq. + 1) reads and .L1dq. 
J= J J= J 

writes mixed through each other such that there is at least one write after 
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each read so time-step (r. 1 .) ~ (k.+2j-1) and 
1.- J ]_ 

time-step (w .. ) ~ (k.+2j). 
l.J ]_ 

If sort. writes to another internal sort 
]_ 

process sorti+l' which is created 

at ci+l = ki, we have that dqi+l ~ 2 and therefore ki+l ~ (ki+3), which 

means that the numbers from the sorted sub-sequence are immediately avail

able when needed. Now if sorti writes to the last process, last sort per

forms at least one read from the unsorted sequence and then starts merging 

after time-steo (k.+2) so the last sort process may have to wait one time-. ]_ 

step for its first number after which the last sort process and sorti are 

synchronized. 

□ 

The channel-sizes. 

We shall analyze the size of the channels carrying the sorted sub

sequences in the case of pipeline sort with deques. The channel-size is defined 

as the number of items written but not yet read at a certain moment. These 

quantities are, in this case, stochastic. 

Proposition 4.2.1.1.8. In the worst aase the i-th ahannel carrying sorted sub-
i 

sequenaes si asswnes the size j~1dqj. 

~- For this to happen sorti+l must read and sort its internal numbers into 

dequei+l in at least as many time-steps as it takes sorti to put out its sorted 

sub-sequence. As sorti+l take~ one time-step for reading and sorting one num

ber, and sorti must perform jt1dqj writes, the worst case occurs when 

□ 

Again we must conclude that using a flexible structure for internal sorting 

and thereby introducing unpredictable behaviour of the program is not really 

worthwhile. 
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4.2.2. Matrix multiplication. 

In this section we will consider an algorithm for matrix multiplication, 

restricted to square matrices. The matrix multiplication algorithm designed 

by Kung [57] has the form of a hexagonal grid (see figure 4.2.2.1.). 

C=A,'<B 

Figure 4.2.2.1. Kung's systolic matrix multiplication. 

This algorithm needs O(n) connections to the outside world to multiply 

n by n matrices, which makes it unsuitable for VLSI implementation. The al

gorithm presented here needs only a constant number of connections to the out

side world: two input channels and one output channel. Both input channels 

contain an input matrix. One matrix is in row format and the other is in col

umn format. A matrix in row (column) format is a sequence of rows (columns) 

closed by an end of matrix mark (EOM or*). A row (column) is a sequence of 

numbers preceded by a begin of row (column) mark (SEP or$). The program will 

deliver the output in row format. 

If there are n rows and columns the dataflow net will expand into two 

linear branches connected by a "central process" (see figure 4.2.2.2.) 
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rows of A -9 

Figure 4.2.2.2. Basic form of a matrix multiplier. 

Every process will compute a diagonal of the product matrix by traditional 

means. The centre-process will compute the central diagonal. The i-th up

process will compute the i-th upper diagonal, the i-th low-process will compute 

the i-th lower diagonal. In order to compute these diagonals centre needs all 

rows of A and columns of B, upi needs the first to (n-i)-th row of A and the 

(i+1)-th ton-th column of B, lowi needs the (i+1)-th ton-th row of A and the 

first to (n-i)-th column of B. 

An important part of the program is concerned with getting the rows and 

columns where they are needed. Figure 4.2.2.3. shows how this is done for n=3. 

The general case is analoguous. The O processes are duplicators. A row dupli

cator (dr) sends the first row it receives to the right and the rest of the 

rows both to the right and down. A column duplicator (de) sends the first column 

it receives down and the rest of the columns both down and to the right. 
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* 
c3 
c2 
cl 

* 

lc3 
c2 

Figure 4.2.2.3. Distribution of rows and columns 

in the 3*3 matrix multiplication. 
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After the diagonals have been computed, they are sent back to centre 

such that this process can format the product matrix in row order. The process 

of sending back and reformatting diagonals into row format differs slightly 

for the up and low processes. An up process first sends its i-th diagonal 

element to the left and then copies the row part from the right to the left. 

A low process will also form row parts. Figure 4.2.2.4. shows how the reformat

ting takes place when n = 3 and product-matrix-element(i,j) = 10*i+j. 

Figure 4.2.2.4. Reformatting the product matrix. 

The above pictures are incomplete in that not all the required channels 

have been drawn. Figure 4.2.2.5. sketches an expansion into horizontal direc

tion with all channels involved, where the process upO expands into the 

encircled subgraph. 
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Figure 4.2.2.?. Complete expansion of an upO process. 

Figure 4.2.2.6. gives the complete program. The program starts as in 

the left-hand side of figure 4.2.2.5. The upO and lowO processes are intro

duced to perform the expansion and do not take part in the computation of 

the diagonals. 

\ 

I 
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process centre (in Mr,Mc,uptriangle,downtriangle 
out outrows,outcols,result): 

begin 

end 

int a,b,x; 
struct queue q; 
x = 0; init_queue(&q); 

write_item(outrows,SEP); write_item(outcols,SEP); 

/* create the middle diagonal of the product matrix*/ 

a= read item(Mr); b = read item(Mc); 
write item(outrows,a); write_item(outcols,b); 
while-(al:EOM) 

{ 
if (a::SEP) 

{ ins q(&q,x); x = 0; } 
else x += a*b; 
write item(outrows,a:read item(Mr)); 
write-item(outcols,b:read-item(Mc)); 
} ins=q(&q,x); -

/* collect upper .and lower triangles*/ 
a= read item(uptriangle); 
if (a==EOM) /* we had a 1*1 "matrix" */ 

else 

{ 
write item(result,SEP); 
write-item(result,del q(&q)); 
write-item(result,EOM); 
} -

/* form complete rows out of upper and lower triangles*/ 

do {write item(result,SEP); 
while-((b:read item(downtriangle))l:SEP && bl:E0M) 

write item(result,b); 
write item(result~del q(&q)); 
if (b-1: E0M) -

while ((a:read item(uptriangle))l:SEP && a I= E0M) 
- write_item(result,a); 

while (b I: E0M); 

write_item(result,E0M); 
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process up0(in incols,inrows out res): 
begin 

end 

int a,b; 
a= read item(incols); 
if (a::EOM) write_item(res,EOM); 

else { b = read item(inrows); 
if (a==SEP) 

expand chan Mc1,Mc2,outr,upt 
create dup(in incols out Mc1,Mc2) 
create up0(in Mc2,outr out upt) 
create up(in Mc1,inrows,upt out outr,res) 

endexp 

process up (in incol_s, inrows ,intriangle out outrows, out triangle): 
begin 

end 

int a,b,x; struct queue q; 
x:0; init_queue(&q); 

write_item(outrows,SEP); 

I* form an upper diagonal *I 
a= read item(incols); b = read item(inrows); 
while (al:EOM) -

{ 
write item(outrows,b); 
if (a;=SEP) { ins q(&q,x); x:0; } 
else x += a*b; -
a= read item(incols); b = read_item(inrows); 
} -

wri"te item(outrows,EOM); 
ins_q(&q,x); 

/* send up the upper triangle in row format*/ 

while ((a:read_item(intriangle)) I= EOM) 
{ 

} 

if (a::SEP) 
{ 
write item(outtriangle,SEP); 
write-item(outtriangle,del q(&q)); 
} - -

else write_item(outtriangle,a); 

write item(outtriangle,SEP); 
write-item(outtriangle,del q(&q)); 
write=item(outtriangle,EOM); 



process low0(in inrows,incols out res): 
begin 

end 

int a,b; 
a= read item(inrows); 
if (a==EOM) write item(res,EOM); 
else { b = read item(incols); 

if (a==SEP) 
expand chan Mr1,Mr2,outc,downt 

create dup(in inrows out Mr1,Mr2) 
create low0(in Mr2,outc out downt) 
create low(in Mrl,incols,downt out outc,res) 

endexp 

process low(in inrows,incols,intriangles out outcols,outtriangle): 
begin 

int a,b,x; struct queue q; 
init_queue(&q); x:0; 

/* create lower diagonal *I 
write item(outcols,SEP); 
a= read item(inrows); 
b = read-item(incols); 
while (a-1: EOM) 

{ 
write item(outcols,b); 
if (a-;=SEP) 

{ ins q(&q,x); x:0; } 
else x += a*b; 

a= read item(inrows); b = read_item(incols); 
} -

write item(outcols,EOM); 
ins_q(&q,x); 

I* send up the lower triangle in row format *I 
write_item(outtriangle,SEP); 

do { 
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a= read item(intriangle); 
if (a::SEP I I a==EOM) write item(outtriangle,del q(&q)); 
write item(outtriangle,a); -

while (a!:EOM); 
end 
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process dup(in a out b,c): 
begin 

end 

inti; 

/* copy first row or col to channel b */ 
while ((i = read item(a)) I= EOM && i I= SEP) 

write_item(b,i); 

/* copy the rest to channels band c *I 
if (i == EOM) 

{ write item(b,EOM); write_item(c,EOM); 
else { while (i-1: EOM) 

{ write item(b,i); write item(c,i); 
i = read_item{a); -

} 
write_item(b,EOM); write_item(c,EOM); 

main madm(in Mr, Mc out product): 
begin int a,b; 

end 

a= read item(Mr); b = read_item(Mc); 
if(a == EOM) 

write item(product,EOM); 
else -

expand chan Mr1,Mr2,Mc1,Mc2,upt,downt,outr,outc 
create dup(in Mr out Mr1,Mr2) 

endexp 

create dup(in Mc out Mc1,Mc2) 
create upO(in Mc2,outr out upt) 
create lowO(in Mr2,outc out downt) 
create centre(in Mr1,Mc1,upt,downt 

out outr,outc,product) 

Figure 4.2.2.6. Matmul. 
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4.2.2.1. Analysis of Matmul. 

The analysis of Matmul is straightforward as there is no randomness in

volved. If n=1 the net is as drawn in figure 4.2.2.1.1. 

Figure 4.2.2.1.1. The net for n=1. 

Proposition 4.2.2.1.1. The nwnber of proaesses ever areated by Matnrul is 6n-1. 

The maximum nwnber of aative proaesses at any moment is 4n+1. 

Proof. Figure 4.2.2.1.1. shows that initially there are 5 processes. If n>1, 

there will be (n-1) expansions of upO and lowO processes (see figure 

4.2.2.1.2.), 

Figure 4.2.2.1.2. The i-th upO process expanding. 
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causing 2*3*(n-1) process creations. The total number of processes ever created 

is therefore 6n-1. The maximal number of processes active at the same time is 

reached when all expansions have been performed. From that moment on the net 

consists of: 

□ 

centre process 

2n dup processes 

n-1 up processes 

n-1 low processes 

upO process 

lowO process 

which adds up to 4n+1 processes 

An up or low process needs at most n storage locations for keeping its dia

gonal. 

We will now analyse the number of time-steps needed to execute Matmul. 

Again we will only count_ reads, writes and expansions as the number of other 

statements between them is only a small constant. 

Proposition 4.2.2.1.2. Matnrul takes O(n2) time-steps to read, nrultiply and 

write. 

Proof, The program starts executing as in figure 4.2.2.1.3., where,rr, re, w, e, 

and c stand for reading a row element, reading a column element, writing, expan

sion, and creation respec~ively. The moment of expansion of an upO(lowO) process 

depe~ds only on the input it receives from a dup process dr(dc). 

0 2 3 4 5 ••• 

main rr re e 

centre C 

dr1 C rr w rr 

dc1 C re w re 

upO C 

lowO C 

Figure 4.2.2.1.3. First steps of Matmul. 
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The analysis of the timing of the expansion into the final net is therefore 

independent of the behav~our of centre, up and low_processes. The timing of 

lowO processes is the same as that of upO processes. 

The first column is only sent to centre by dc1. Process up01 will receive 

its first item($ or*) after O(n) time-steps. If n>1 up01 will expand and dc1 

will send the columns to dc2 at the speed of one item per three time-steps. 

Except for the first column, which is written at the speed of one item per two 

time-steps, all other items are written at the speed of one item per three time

steps. The net will therefore be expanded after O(n2) time-steps. 

The row items are sent to up1 through to up(n-1) by centre which will 

send a row element at the speed of one element per four time-steps after some 

initial waiting for input. Process up1 will get its row elements one per four 

time-steps and its column elements one per three time-steps so the pace of 

the whole net is determined by the slowest process: centre. Every process 

(centre, upi and lowi) performs an assignment 

which implies that the diagonals are calculated in Q(n2) time-steps. 

The speed of the collecting phase is again dictated by the centre process, 

which reads and writes an item every two time-steps. We can conclude that the 

whol& computation takes Q(n2) time-steps. 

□ 

The size of the channels carrying the rows from centre (upi) to up1 

(upi+1) is at least n because the corresponding column will arrive at up1 

(upi+1) only when centre (upi) has processed a complete row. All other channel 

sizes can be limited to one. 

4.2.3. Divide-and-conquer algorithms. 

In this section we will discuss an efficient implementation of divide

and-conquer algorithms on a tree of processors. The divide-and-conquer paradigm 

can be expressed as in figure 4.2.3.1. 
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proe div&co (problem p) answer r: 

begin if simple(p) 

fi 

then r = solve-simple(p) 

else problem pl, p2; 

split(p, pl, p2); 

r = aombine(div&eo(pl), div&co(p2)) 

Figure 4.2.3.1. The divide and conquer algorithm. 

An interesting subclass of divide-and-conquer algorithms is the class 

of recursive doubling algorithms [78) where the divide-phase is not needed be

cause the problem presents itself in an already divided form. The classical 

example is the calculation of a 1+ ••• +an. Figure 4.2.3.2. shows a computation 
j 

graph (for n=8) that computes all partial sums y. = .L1a. (j=l, .• ,8). 
J 1= 1 

as Ya 

a7 Y7 

a6 y6 

~- Y5 

a4 Y4 

a3 Y3 

a2 Y2 

a1 Y1 

Figure 4.2.3.2. Summation of eight numbers. 

Dark circles represent additions. 

Open circles represent copy operations. 
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Stone [78] shows that the inverse pe:r>feat shuffle (see figure 4.2.3.3.) exact

ly provides the connections needed to evaluate recurrence relations of the form 

Yo = 0 

y. 
J 

as long as~ is an associative operator. 

Figure 4.2.3.3. The inverse perfect shuffle of size 8. 

8 
If, in the example of addition, only the total sum itlai is needed, the 

calculation can be done using the much simpler interconnection structure of a 

tree of processes which we discuss here. Notice that in figure 4.2.3.2. this 

tree, indicated by thick lines, is a_ sub-structure of the complete computation 

graph. 
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Peters [68] discusses the implementation of divide-and-conquer on a 

binary tree machine. Communication between the processes is modelled as in 

CSP, which is equivalent to allowing channels of size zero in DNP. The calls 

div&co(p1) and div&co(p2) are executed in parallel on the two son processors 

of the processor running div&co(p). Let the size of problem p be characte

rized by an integer n. For the time being we will assume n to be a power of 

two. The size of subproblems p1 and p2 is assumed to be n/2. A function g(n) 

denotes the time to execute the split and combine steps plus the time for 

parameter passing. The time s(n) required to execute the sequential version 

of divide-and-conquer is defined by the recurrence relation 

s(1) = C 

s(n) 2s(n/2) + g(n) 

while the time t(n) required to execute the parallel version is defined as 

t(1) = C 

t(n) t(n/2) + g(n). 

Assuming g(n) is a simple polynomial in n of the form cmp, the recurrence 

relations have the solutions [68]: 

s(n) 
2p-1 

anP + c 1n 

l 2p-1 
- 1 

zP p 
for pf 0, pf 1 

t(n) ---cxn + c2 
zP - 1 

s(n) cxn log n + c 1n 1 
l 

t(n) 2exn + c 2 f for p 

s(n) -ex+ c 1n } for p 0 
t(n) ex log n + c2 

where c 1 and c 2 are constants. 

From these solutions it follows that it is only worthwhile, in terms 

of execution time, to apply tree machines when p~1. The most interesting case 

is the case p=O, where the run-time reduces from O(n) to O(log n). 
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The algorithm uses its processors rather inefficiently: only one level 

of the tree is active while the other processes wait for subproblems to be 

solved. We will discuss two improvements of the algorithm that do not change 

the order of t(n) but reduce the number of processes from 2n-1 to -1 n . 
og n 

The first improvement is to keep processes busy after they have submitted 

subproblems to their children. For that purpose a special root process is 

placed above the tree of divide-and-conquer processes (see figure 4.2.3.4.). 

The root process is special in that it does not submit both subproblems down 

the tree, but keeps one to itself to divide-and-conquer recursively. In the 

following step the subproblem it kept is split into two sub-subproblems, one 

of which it will send down and one of which it will keep again, etc. It should 

be observed that this technique is analoguous to tail-recursion removal. 

Figure 4.2.3.4. The divide-and-conquer net. 

Figure 4.2.3.5. shows how a problem of size 8 is step-wise divided over 

eight processes, where pi .. j denotes a problem of size j-i+1 and pi denotes a 

problem of size one. The tree grows with the size of the problem, Initially it 

will be as in figure 4.2.3.6. 
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time-step 1,9 2,8 3,7 4,5,6 

Figure 4.2.3.5. Divide-and-conquer in action. 

Figure 4.2.3.6. Initial state of the net. 

A leaf process will, upon receipt of a problem, check whether the prob-

lem is simple or not. If it is simple the leaf process will solve the problem 

and send the result upwards, otherwise it will expand as in figure 4.2.3.7. 
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Figure 4.2.3.7. Expansion of a leaf process. 

The divide-combine process in figure 4.2.3.7. will split the problem, 

send it down, wait for more,problems to be split and sent down, solve a simple 

problem, send up the simple result, and combine and send up the results it 

gets from below. Figure 4.2.3.5. also outlines the timing of the algorithm. 

At time-step 2 to 4 the problem is split into simple problems. At time-step 

5 all simple problems are being solved, At time-steps 6 to 8 the results are 

sent up and combined and at time step 9 the result is output. 

Proposition 4.2.3.1. The first improvement of the divide-and-conquer algorithm 

causes the algorithm to use only n processes while keeping the time complexity 

of the original algorithm. 

Proof. In the original version of the algorithm only leaf processes solve the 

simple problems. A perfect binary tree with n (=2k) leafs contains 2n-1 nodes. 

In the first improvement of the algorithm every process solves a simple prob

lem, so only n processes are needed. The time complexity of the algorithm does 

not change because the same actions are performed at the same time but by 

different processes, 

□ 
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Up till now we have assumed an ideal situation: the size of the original 

problem is a power of two. What happens if this is not so? A problem of size n 

is split in one of size P1 = Ln/2J and one of size P2 = rn121. Clearly IP1-P2l~1. 

Every division step will yield twice as many subproblems with at most two dif

ferent sizes s 1 and s2 such that 1s 1-s2 1 = 1. After llog nJ division steps all 

subproblem are of size one or two. Dividing the remaining problems of size two 

causes the tree of processes to be unbalanced and complicates the logic of the 

processes. The remaining problems of size two will therefore not be split any

more but solved sequentially. 

The idea of not splitting the subproblems until their size is one can be 

exploited further. Every next division step yields just as many new processes 

as already present. It is therefore not worthwhile to keep splitting until the 

problem size is one or two. Consider the case where splitting and combining 

takes a constant time. The time complexity of the overall algorithm is then 

O(log n). In order to preserve this time complexity, problems will be split 

until their size is abou~ log n and then solved sequentially. This can be im

plemented in combination with a method to keep the tree perfect: a process 

will be parameterized in a fashion that indicates how many problems it is going 

to have to split. This number is calculated by the root process and is spread 

and decreased through the tr~e. The root process will split llog n - loglog nJ 

problems and a divide-combine process on level i will split llog n - loglog nJ-i 

problems. This we call the second improvement to the divide-and-conquer algo

rithm. 

Proposition 4.2.3.2. The seaond improvement to the divide-and-aonquer algorithm 

aauses the algorithm to use 0(-1 n ) proaesses. If the split and aombine operog n 
ations take aonstant time, the time aomplexity of the overall algorithm is 

O(log n). 

Proof. If we split the subproblems until their size is one or two we create a 
f fd hll J .. 2LlognJ 1 tree o processes o ept og n containing processes. Every owest 

level of the tree of processes we save gains us half of the processes in use. 

Splitting the subproblems until their size is llog nJ will therefore take 

O(n - ~ - ••• - _n_) 0(-n-) processes (see figure 4.2.3.6.). 2 log n log n 



problem size 

problem size 0(1) processes .._ _____________ _,. 

log n - log n 
oglog n 

Figure 4.2.3,6. Saving more processes. 

The time complexity of the algorithm now changes. First there will be 
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O(log n - loglog n) timesteps to divide the problem into subproblems of size 

O(log n). Then these subproblems will be solved sequentially which takes s(log n) 

timesteps. As we have asstnned that splitting and combining takes constant time, 

i.e., g(n) = a, we conclude that s(log n) = O(log n). Then the results are sent 

up which takes again O(log n - loglog n) time-steps. The overall time complexity 

of the algorithm will therefore remain O(log n). 

□ 

As the sequential divide-and-conquer algorithm has time complexity O(n), 

the -1 n processes versus O(log n) timesteps is optimal, i.e., cannot be low
og n 

ered without incurring a greater compute time. 

Figure 4.2.3.7. shows a general divide-and-conquer program with both im

provements incorporated. In this program problems and results are represented 

by integers. The primitive functions size, split, solve-seq and combine are 

asstnned to be predefined. In our case they are part of the run-time system. 
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process root (in prb, subress out res, subprbs): 
begin int i,c,n; 

end 

int p,p1 ,p2; 
int s1,s2; 
read int(prb,&p); 
n = size(p); 
if (n == 1) write_int(res,solve_seq(p)); 
else 

{ n I= twolog(n); 
C : n; 
write int(subprbs,c/2); 
while((c I= 2) > O) 

{ split(p,&p1,&p2); 
write_int(subprbs,p2); 
p:p1; 

} 
s1:solve_seq(p); 
C: n; 
while( (c I= 2) > O) 

{ read int(subress,&s2); 
s1:combine(s1,s2); 

write_int(res,s1); 

process leaf (in prbs out ress): 
begin int p,c; 

end 

if(read int(prbs,&c)) 
{ if(c -;-= 1) 

{ read int(prbs,&p); 
write_int(ress,solve_seq(p)); 

else 
expand chan subprbsleft, subprbsright, 

subressleft, subressright 
create leaf(in subprbsleft out subressleft) 
create leaf(in subprbsright out subressright) 
create divco(in prbs, subressleft, subressright 

endexp 

out ress,subprbsleft, subprbsright 
int c) 



process divco (in prbs, subressleft, subressright 
out ress, subprbsleft, subprbsright 
int c): 

begin 

end 

int i,p; 
int p1,p2,s,s1,s2; 
i = c; 
write_int(subprbsleft,c/2); write_int(subprbsright,c/2); 

while( (c I= 2) > 0) 
{ 
read int(prbs,&p); 
split(p,&p1,&p2); 
write int(subprbsleft,p1); 
write-int(subprbsright,p2); 
} -

read int(prbs,&p); 
write_int(ress,solve_seq(p)); 
C: ij 
while( (c I= 2) > Q) 

{ 
read int(subressleft,&s1); 
read-int(subressright,&s2); 
s:combine(s1,s2); 
write int(ress,s); 
} -

main divconq (in prb out res): 
begin expand chan subprbs, subress 

end 

create root(in prb, subress 
out res, subprbs) 

create leaf(in subprbs out subress) 
endexp 

Figure 4.2.3.7. Divconq. 
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4. 3. LIMITATIONS OF DNP 

The following limitations of DNP are apparent: 

(1) a process cannot change its channel configuration, 

(2) there is no inverse of expansion: contraction, 

(3) it is impossible to create all computation graphs. 

We discuss various aspects of these limitations in the following subsections. 

4.3.1. Changing the channel configuration. 

The wish to change the channel configuration of a process presents it

self naturally when programming in DNP. An extension is to allow a surviving 

process to close one or more channels. Consider as an example the pipeline sort 

algorithm of section 4.2.1. The sort processes have two input channels u and 

rand two output channels sand e. Thee channel is connected to the u channel 

of the predecessor so th9t the rules for channel usage in an expansion are sat

isfied, What we like to express is that a sort process needs two input channels 

before expansion but needs only one input channel afterwards (see figure 

4. 3. 1. 1.). 

Figure 4.3.1.1. Changed channel configuration. 

This can be expressed using a new keyword close as in figure 4.3.1.2. 



process sort(in u, routs): 

begin 

end 

expand chan rr 

create sort(in u, rr outs) 

keep sort(in close, rout rr) 

endexp 

Figure 4.3.1.2. An expand statement that closes a channel. 
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The problem with changing the channel configuration of a process is that 

the static check for correct channel usage in a (next) expansion does not work 

anymore. In the simple case of a closed channel in a surviving process we can 

consider the closed channel as a channel connected to a dummy process. In more 

complex cases of adding channels or creating a process with closed channels, 

the simple and elegant properties of the expand statement are lost. For this 

reason we have decided not to-extend the language in this direction. 

4.3.2. Contraction. 

One can think of various types of contraction: 

(i) Any subgraph can contract into a node, i.e., all nodes and all channels 

connecting these nodes together are replaced by one node connected to 

the rest of the graph by the channels that connected the old subgraph 

to the rest of the graph. An example of the use of such a contraction is 

the following. Suppose we have a problem P that can be solved recursively: 

P(n,m) 

P(n, 1) 

P(1,m) 

H(P(n-1,m), P(n,m-1)) 

One could write down a divide-and-conquer style program for this problem 

as sketched in figure 4.3.2.1. 
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process solve-P(out r int n,m) 

begin. 

expand chan r1, r2 

endexp 

end 

create H(in r1, r2 out r) 

create solve-P(out r1 int n-1, m) 

create solve-P(out r2 int n, m-1) 

Figure 4.3.2.1. 

This is, however, rather inefficient because the subproblem P(n-1, m-1) 

is going to be solved twice (see figure 4.3.2.2.). 

Figure 4.3.2.2. Inefficient divide-and-conquer solution for P. 

Clearly one would like to "contract" the two P(n-1,m-1) processes. There 

are, however, serious problems with this type of contraction: (a) the 

locality principle is violated, (b) a process can wind up with an arbitra

ry number of channels, and (c) it is unclear how and where to define the 

process that will run in the newly created node. 
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(ii) One can allow a subgraph that was created in one expansion to contract 

back into the process from which it originated. This form of expansion 

is know as parallel procedure calling and is studied by Misra and Chandi 

[63]. In this model there is no place for surviving processes, because 

the state of a just contracted process is then ambiguous. So parallel 

procedure calling is an alternative to expansion rather then an exten

sion. 

(iii) A node can be killed if it does not execute further output instructions, 

or if all the processes it writes to are killed. This is in fact an im

plementation consideration and not a language feature. It can be com

pared to garbage collection in conventional languages. 

4.3.3. It is impossible to create all computation graphs in DNP. 

In this section we will reformulate the graph generating capabilities 

of DNP in graph grammar terminology and prove that there are important classes 

of graphs that cannot be generated. Similar work has been done for other types 

of grammars ([75],[33]). Our model of graph expansion turns out to be equiva

lent to Slisenko's version of context-free graph grammars [77]. 

Definition 4.3.3.1. A star graph is a pair <K,B> where 

K is a graph, and 

□ 

Ba finite set of edges different from the edges of K, and every 

edge in Bis connected to one node of K, though each node of K 

can be connected to zero or more edges of B. B can be empty. 

K is called the kernel and Bis called the boundary. 

Figure 4.3.3.1. A star graph. 
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Figure 4.3.3.1. shows a star graph, where K consists of ten nodes and ten edges 

connecting these nodes and B consists of five edges b0 to b4 connecting K to 

the outside world. A simple star is a star graph where K consists of one node 

without edges. 

Definition 4.3.3.2. A context-free graph grammar (GFGG) is a four-tuple 

G = <N,T,P,S> where 

N and Tare two disjoint finite alphabets for labelling 

non-terminal and terminal nodes respectively, 

Pis a finite set of production rules, 

Sis an element of N, the starting symbol. 

Production rules are pairs (SL'SR), with SL <~,BL> and SR= <~,BR> 

star graphs such that IBLI = IBRI and SL is a simple star. ~ is labelled 

with a non-terminal. All nodes in ~ are labelled too, with either terminal 

labels or non-terminal labels. Two production rules with the same~ must 

have the same BL. Productions are denoted as: 

□ 

Figure 4.3.3.2. is an example of a production rule. 

tiy 
Mr 

Figure 4.3.3.2. A production rule. 

A context-free graph grammar G will be used to generate a class of labelled 

graphs through the process of "derivation". A derivation step according to 

a production rule <X,BL> ➔ <K,Bi> consists of replacing a node labelled X in 

a graph W by a subgraph K such that the boundary edges reme,in unchanged with 

respect to the nodes connected to the node labelled X in W. Clearly the sub

graph K can be "glued" into W in many different ways. Figure 4.3.3.3. shows 

one possible derivation step. 
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C 

Figure 4.3.3.3. A derivation step using the production 

rule of figure 4.3.3.2. 
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Definition 4.3.3.3. The graph consisting of only one node labelled with the 

starting symbol Sis called the initial graph. A graph is called a teY'l'llinal 

graph if all its nodes are labelled with terminal symbols. The language L(G) 

determined by a CFGG G is the set of all terminal graphs that can be derived 

from the initial graph. 

□ 

Because Pis finite, there is a constant upper bound to the degree of 

the nodes of every g E L(G). This implies already that not all classes of 

graphs are context-free. The class of wheels, where then-th wheel consists of 

a circle of n nodes all connected to one centre node (see figure 4.3.3.4.), 

is an example of a non context-free class of graphs. 

Figure 4.3.3.4. A wheel. 
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The following lennnas are more specific about the classes of graphs that are 

or are not context-free. If P and Qare graphs, PQ denotes a graph consisting 

of P and Q and a number of edges connecting P and Q. 

Lennna 4.3.3.1(The pumping lemma). Let G be a CFGG. If L(G) contains arbitrarily 

large (in terms of number of nodes) graphs, then L(G) contains graphs TMiO 

for all i=0~1~··· where TMi is a star graph (see figW'e 4.3.3.5.). 

3 Figure 4.3.3.5. A graph TM O. 

Proof. Because L(G) contains graphs of arbitrary size, there must be a non-ter

minal N producing itself: 

* * 
s • w 

where P and Qare subgraphs containing non-terminals and/or terminals. From N, 

P and Q we can generate subgraphs T, O, and M respectively, containing only 

terminal nodes. The star graph <NQ,B> is derived from <N,A> where B contains 

the same number of edges as A. The derivation of <NQ,B> from <N,A> can be re-
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peated arbitrarily many times before the terminal subgraph T, 0 and Mare 

generated yielding a graph TMiO for any i. 

□ 

Corollary 4.3.3.2. If L(G) contains arbitrarily large graphs then there are 

constants c and k such that L(G) contains graphs of size c+i.k for all i=0,1, ... 

□ 

□ 

Figure 4.3.3.6. Some square grids. 

Figure 4.3.3.7. Some perfect shuffles. 
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It follows directly from this corollary that the class of square grids 

(see figure 4.3.3.6.) and the class of perfect shuffles are not context-free. 

A perfect shuffle is a bipartite graph LR, where both Land R contain N=2k 

nodes. The nodes from Land Rare connected through an interlaced intercon

nection pattern (see figure 4.3.3.7.). In these cases we simply count the 
2 n number of nodes in the members of the class (n and 2, respectively). In 

most cases, however, this counting argument is too weak and we have to take 

the interconnection structure of the graphs into account. 

Definition 4.3.3.4. A (k,d)-reduction of a graph is the substitution of a 

star subgraph (H,E) by a simple star (h,F) such that 

(1) IEI = !Fl and F connects h to the same nodes of the rest of the graph 

as E did with H, 

(2) H contains at most k nodes, 

(3) all nodes of H have a degree at most d. 

□ 

Clearly reduction is the inverse of derivation. Slisenko uses a similar no

tion, contraction, in order to prove that for every CFGG there is a polynomial

time algorithm for recognizing its language. The difference between reduction 

and contraction is that reduction is defined independently of a CFGG. 

Definition 4.3.3.5. A graph is (k,d)-reducibZe, iff it can be successively 

transformed into one node without edges by a sequence of (k,d)-reductions. 

A class of graphs is (k,d)-reducible iff all its members are. 

□ 

If a graph is (k,d)-reducible, all stars in its reduction have at most d 

boundary edges. For example, the class of binary trees is (3,3)-reducible. 

Sufficient reductions are given in figure 4.3.3.8. 

In the following we will ignore the labelling of graphs and consider 

their structure only. 

➔ 

➔ 0 

Figure 4.3.3.8. Reductions of a binary tree. 
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Lemma 4.3.3.3. Consider a class of graphs C. There is a CFGG G such that 

C = L(G) iff there are a k and d such that C is (k,d)-reducible. 

Proof. Assume C:: L(G), for some CFGG G. For all c EC there is a derivation 

in G. All right-hand-sides of the productions are finite, so there are a k and 

d such that the number of nodes in each right-hand-side is at most k and all 

nodes are of degree at most d. A (k,d)-reduction is just the inverse of a de

rivation. (This part of the proof corresponds to a similar atgurnent of Slisenko 

[77]). 

Let C be (k,d)-reducible. For a given k and d there is only a finite 

number of stars St with at most k nodes of degree at most d and at most d 

boundary edges. Each of these stars will be used to form a production rule. 

There will be d+1 non-terminals S0 , ••• ,sd and one terminal t. Si will be used 

only at nodes of degree i. For every star graph St with more than one node 

and i boundery edges we form the production rule: 

Every node in St is labelled S. iff it has the degree j. For every i we include 
J 

a production rule: 

Now let G = <{s0 , ... ,Sd},{t},P,S0> where Pis the set of production rules 

defined above. Clearly every c EC can be derived using G, and Cc L(G). 

□ 
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Theorem 4.3.3.4(The connectivity theorem). Let a set of graphs S contain 

arbitrarily large graphs. Let all subgraphs of n nodes of a graph in S of 

at least Zn nodes be connected to the rest of the graph by at least F(n) 

edges, where Fis an increasing integer function. Then Sis not (k,d)

reducible for any k and d (and therefore not a subset of a context-free 

graph language). 

Proof. Suppose on the contrary, that every s ES is (k,d)-reducible for some 

k and d. Choose ans ES with at least Zn nodes such that n>kz and F(~)>d. 

A reduction of sis a sequence of graphs s=s0 ,s 1, .•. ,sm where si is the re

sult of a (k,d)-reduction of si_ 1 and sm is a single node. Every node in 

every si has a degree less than d. With every node x in an si we associate 

a number determining from how many original nodes in s0 x has been reduced. 

Consider the sequence M0 ,M1, .•. ,Mm where Mi= max{associated number of an 

x ins.}. Clearly M0=1 and M ~Zn. The sequence is non-decreasing and 
i m 

M.~k.M. 1. So there is a p such that M 1~k and o=<Mkn ~n (because n>kz). 
i i- p- p 

Let M be the associated number of a node Yins. Y has a degreed equal 
p p y 

to the number of edges that connects the subgraph consisting of the M 
p 

original nodes of Yin s0 and all their internal edges to the rest of the 

graph, so <ly~F(Mp)~F(I). But we have chosen s such that F(f)>d which contra

dicts the supposition. 

□ 

In a square grid of at least Zn nodes all subgraphs of k<n nodes are 

connected to the rest of the graph by more than v'k edges so any set of graphs 

containing square grids (such as the class of all grids) is not context-free. 

If one wants to generate graphs with high connectivity such as grids or 

shuffles, a more powerful kind of expansion is needed. Two extensions of the 

expand statement are considered, The first is to allow the declaration of 

channel arrays combined with a loop construct in an expand statement such 

that any graph can be generated in one expansion. Generating a perfect shuffle 

can be written as in figure 4 •. 3.3.9. 



k 
n = 2; /* k~l */ 
expand chan cl [0 .. 2n-1], c2[0 .. n-1] 

for i in [O .. n-1] 

ende:rp 

do create L(in c2[i] out c1[2i], c1[2i + 1]) 

create r(in cl[i], cl[n + i] out c2[i]) 
od 

Figure 4.3.3.9. Generating a shuffle iteratively. 
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A second possible extension is to allow arrays of channels as formal 

parameters in process declarations and as actual parameters in creations. 

The recursive nature of the graphs one wants to generate can then be expressed 

elegantly. This kind of graph expansion is a generalization of separators 

as defined be Hoey and Leiserson [41]. A separator is defined as follows. A 

bisection Sofa graph G=(V,E) into graphs G'=(V',E') and G"=(V",E") is a 

disjoint partition of nodes V=V'U V" together with a disjoint partition of the 

edges E=E'U E"U E such that Iv' I and lv"'I differ at most one. IE I is called 
s' s 

the bisection width of S. A separator for a class of graphs is a set of bi-

sections, at least one for every graph in the class. The generation of a per

fect shuffle is now written as in figure 4.3.3.10. The two wings making up a 

shuffle are shown in figure 4.3.3.11. 
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begin 
k 

n = 2 ; I* k ~ 1 ;,/ 
"f >4th 2k-1 ~ - ok-2. ~ n = en m = ; & - o , 

expand ahan a[O .. n-1] 

endexp 

areate wing (in a[O .. l-1], a[m .. 3l-1] 

out a[O .. m-1]) 

areate wing ( in a [Z, • • m-1], a[3Z.. n-1] 

out a[m .. n-1] 

else expand ahan a[0 .. 1] 

areate wing (in a[O], a[l] out c[0 .. 1]) 

endexp 

fi 

end 

process wing ( in cl[O •. l], c2[0 .. m] out c3[0 .. n]): 

begin 

end 

if l>O ihen expand areate wing (in cl[O .. l/2], c2[0 •. m/2] 

out c3[0 .. n/2]) 

endexp 

create wing (in cl[l/2+1 .. l], c2[m/2+1 .. m] 

out c3[n/2+1 .. n]) 

else expand chan i[0 .. 3] 

endexp 

fi 

create left(in cl[O] out i[0 .. 1]) 

create right(in i[O], i[2] out c3[0]) 

create left(in c2[0] out i[2 .. 3]) 

create right(in i[l], i[3] out c3[1]) 

Figure 4.3.3.10. Generating a perfect shuffle recursively. 
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Figure 4.3.3.11. A perfect shuffle viewed as two wings. 

4. 4. SOME DEFINITIONS AND THEOREMS FROM THE THEORY OF NP-COMPLETENESS 

To characterize the computional power of DNP programs in general we will 

need the following definitions and theorems from the theory of NP-completeness 

[32]. 

A problem TT is a set of instances of a question. Take as an example the 

problem PRIMES, an element of which is : is 1234567 a prime number? We will 

consider problems that can be posed as decision problems, the instances having 

two possible answers: yes or no. 

Definition 4.4.1. An encoding scheme e for a problem TT provides a way to de

scribe each instance of TT by an appropriate string of symbols over some alpha-

bet L TT and e partition r:* into three classes of strings: 

( 1) those strings that do not encode an instance of TT' 
(2) those strings that encode a yes-instance of TT, 

(3) those strings that encode a no-instance of TT. 
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The language associated with TT and e, 1(TT,e), is the class of strings encoding 

yes-instances of TT. 

a 

Definition 4.4.2. Consider a deterministic Turing machine (DTM) or non

deterministic Turing machine (NDTM) M, reading strings over Land having two 

halt states qy and qn. The language 1M accepted by Mis the set of input 

strings x EL* for which (one of the computations of) M halts in q. y 
a 

Definition 4.4.3. A Turing machine M solves a decision problem TT under en

coding e iff ~=1(TT,e). 

a 

Definition 4.4.4. P = {1: there is a polynomial time bounded DTM M such that 

1 = ~}. In other words, TT belongs to P under encoding e if there is a poly

nomial time DTM solving TT under e. 

a 

Definition 4.4.5. NP 

that 1 = ~}. 

a 

{1: there is a polynomial time bounded NDTM M such 

It is open whether P and.NP are equal (the P = NP problem, see [18]). 

Definition 4.4.6. A polynomial transformation (or p-reduation) from a language 

1 1= L~ to a language 12= L; is a function f: L~➔L; such that 

(1) there is a polynomial time DTM computing f, and 

(2) for all x E L1: x E 1 1 iff f(x) E 1 2• 

If there is a p-reduction from 1 1 to 12 we write 1 1« 12 • 

a 

Definition 4.4.7. 1 E NPC iff 1 E NP and for all 1'E NP: 1'« 1. 

In other words, a decision problem is NP-complete if it is in NP and all NP 

problems can be polynomially transformed to it. 

a 

Assuming P ~ NP, the world of NP can be pictured as in figure 4.4.1. 

~ 
~ 

Figure 4.4.1. The world of NP. 
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The satisfiability problem (SAT) can be stated as follows. We have a set 

of boolean variables U, a subset B of the 16 possible binary boolean operators 

and a well-formed boolean expression E over U and B. The question is whether 

there is a truth assignment for U satisfying E. 

Theorem 4. 4. 1 • SAT is NP-oonrp le te. ( [ 18 ] ) 

□ 

Definition 4.4.8. PSPACE 

that L = ~}. 

□ 

{L: there is a polynomial space bounded DTM M such 

Definition 4.4.9. LE PSPACEC iff LE PSPACE and for all L' E PSPACE: L'~L. 

In other words, TT is PSPACE-complete if it belongs to PSPACE and all PSPACE 

problems are p-reducible to TT. 

□ 

Clearly Pc PSPACE and NP c PSPACE. 

The quantified boolean formulas problem (QBF) can be stated as follows. 

We have a well-formed quantified boolean formula F = (Q 1x 1)(Q2x2) .• (Qnxn)E, 

where Eis a boolean expression involving variables x 1, ... ,xn and each Qi is 

one of the quantifiers 3 and Y. The question is whether there is a truth 

assignment for x 1, ••• ,xn satisfying F. 

Theorem 4.4.2. QBF is PSPACE-oonrplete. 

□ 

Further details and proofs can be found in the book of Garey and Johnson 

[32]. 

4.5. DNP-PROGRAMS FOR NP-COMPLETE AND PSPACE-COMPLETE PROBLEMS 

Unless somebody proves that P=NP after all, there seems to be no better 

way to tackle NP-complete problems than by trial and error. A trial and error 

algorithm consists of two stages, the first being a guessing stage and the 

second being a checking stage. Both guessing and checking of one solution can 

be done in polynomial time for NP-complete problems, but the number of possi

ble guesses is exponential in the length of the instance of the problem. On a 

sequential machine this trial and error technique has therefore an exponent

ial worst case time complexity. 
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A useful property of the trial and error technique is that the various 

checks are independent of each other. This makes the technique suitable for a 

parallel implementation. Generally speaking, in a parallel implementation the 

guesses are issued in polynomial time, all guesses are checked by independent 

processes simultaneously, and the answers are combined again in polynomial 

time. Implementations of particular problems may be clever by pruning the 

tree of all guesses. The scheme is very similar to the divide-and-conquer algo

rithms of section 4.2.3. 

Proposition 4.5.1. A complete binary tree of 2n-1 processes can be generated 

in O(n) time-'steps using the tree expansion of figure 4.5.1. 

□ 

0 0 

Figure 4.5.1. Tree expansion. 

We say that a DNP program accepts an instance of a problem TT under encoding 

e, if upon receipt of the encoded instance the program outputs "YES". 

Definition 4.5.1. PDNP = {L: there is a polynomial time DNP program accepting 

L}. 

Theorem 4.5.2. NP=: PDNP" 

Proof. The root process goes through the input and transforms it to an in

stance of SAT, which takes polynomial time P. This yields a boolean expres

sion E. If E contains no variables, it will be evaluated and the result will 

be output. Otherwise, a variable v in Eis selected and two expressions ET 
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and EF are generated where ET is E with TRUE substituted for v and EF is E 

with FALSE substituted for v. The root now expands as suggested in proposition 

4.5.1. The left child will deal recursively with ET, the right child with EF. 

The root will combine the answers. Let the length of Eben and let E contain 

m variables. Both m and n are less than P. The resulting tree will be at most 

m layers deep. Evaluating E, selecting v and generating ET and EF takes 

O(length of E) steps. Therefore the whole algorithm takes O(m.n+P) steps. 

□ 

Theorem 4.5.3. PSPACE ~ PDNP. 

Proof. The root process goes through the input and transforms it to an instance 

of QBF, (see section 4.4.), which takes polynomial time. This yields a quan

tified boolean formula E. The root handles x 1. It generates two expressions 

ET and EF from E just as in theorem 4.5.2. It expands, the left child deals with 

(Q2x2) ••. (Qnxn)ET' the right child with (Q 2x2) ... (Qnxn)EF' and afterwards 

the root combines the answers according to the quantifier Q1• The same reasoning 

as in theorem 4.5.2. shows that the program takes polynomial time. 

□ 

4. 6. DNP PROGRAMS AND N-RAMS 

An N-RAM (Wyllie [90]) consists of an unbounded set of processors 

P0 ,P 1, ... , an unbounded set of communication links c0 ,c 1, •.. , a set of input 

registers and a finite program. Each processor has an accumulator, an un

bounded local memory, a program counter, and a flag indicating whether or 

not the processor is running. All memory locations are capable of holding 

non-negative integers. A program consists of a sequence of possibly labelled 

instructions chosen from the list in figure 4.6.1. 

Initially the input to the N-RAM is placed in the input registers, all 

memory is cleared, the length of the input is placed in the accumulator of P0 , 

and P0 is started at the first instruction of the program. 
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Instruction Meaning 

LOAD operand} {Transfer to/from accumulator from/to 

STORE operand local memory. 

ADD operand} {Add/substract the value of operand 

SUB operand to/from the accumulator. 

JUMP label} {Branch/branch on zero-accumulator 

JZERO label to label. 

READ operand {Place contents of specified input register 

in accumulator. 

FORK label see text. 

HALT see text. 

SEND operand see text. 

RECEIVE operand see text. 

Figure 4.6.1. The N-RA.~ instruction set. 

A program is non-deterministic if some label occurs more than once, deter

ministic otherwise. Each operand may be a literal, and address or an indirect 

address. Execution is synchronous. At each step each running processor executes 

the instruction given by its program counter. A FORK ZabeZ instruction executed 

by processor Pi selects an inactive processor Pj' clears Pj-s local memory, 

copies Pi-s accumulator into Pj-s accumulator and starts running at ZabeZ. A 

HALT instruction causes a processor to stop running. 

For a word to be sent from one processor to another, one processor must 

execute a SEND operand instruction while the other simultaneously executes a 

RECEIVE operand instruction. The parameters to SEND and RECEIVE specify one of 

the possible connnunication links. An unmatched SEND or RECEIVE behaves as a 

null instruction. The accumulator serves as source and target for the value to 

be transmitted. Execution of a FORK instruction causes the father and child 

process to be connected by a connnunication link, the number of which is 

available to both. This enables the father process to send necessary informa-
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tion for example about the connnunication links the child is allowed to use. 

Wyllie shows that new connnunication links can be allocated without giving rise 

to conflicts, i.e. a connnunication link will never be used by more than one 

sender and one receiver simultaneously. 

We want to show that N-RAMs can simulate DNP-programs within a polynomial 

time factor. Because N-RAMs cannot multiply in one unit of time and because we 

want the N-RAMs to model the parallelism in DNP-programs we restrict the opera

tors in the expressions in ordinary DNP-statements to additions and subtractions. 

We call such programs restricted DNP programs. (Note that the DNP-programs for 

NP- and PSPACE-problems constructed in section 4.5. are all restricted in this 

sense.) 

Definition 4.6.1. PRestricted-DNP 
DNP program accepting L}. 

{L: there is a polynomial time restricted 

Theorem 4 •6 · 1· PRestricted-DNP:: PN-RAM' 

Proof. Translating DNP-programs to N-RAMs is very similar to translating DNP 

to UNIX as presented in chapter three. A difference is that N-RAM processors 

connnunicate instantaneously. We therefore allocate for a DNP-channel an N-RAM 

processor, whose local memory will contain the queue of tokens. These channel 

processors are used just as the UNIX pipes. They are represented by two connnu

nication links, one for inserting and one for deleting tokens. Simulating ex

pansion by means of repeated forking is also done as in the UNIX implementation 

of DNP. The actual channel information needed by a newly created process will 

be passed over the connnunication links connecting the FORKer and the FORKed. 

The process to be run in the new processor is represented by the label in the 

FORK instruction. The DNP-program and its N-RAM simulation differ only by a 

polynomial factor in running time. 

□ 

Because PN-RAM PSPACE [90) we can conclude the following. 

Theorem 4.6.2. PRestricted-DNP:: PSPACE. 

□ 
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Theorem 4.6.3. PRestricted-DNP = PSPACE. 

Proof. In the proof of theorem 4.5.3. that PSPACE = PDNP' we did not rely on 

multiplication in one unit of time, so we can conclude: 

PSPACE = PRestricted-DNP" Together with theorem 4.6.2. this implies: 

PRestricted-DNP = PSPACE. 
D 
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CHAPTER FIVE 

THE CORRECTNESS OF DNP PROGRAMS 

5.1. INTRODUCTION 

In this chapter we develop correctness proofs for some of the programs 

from chapter four. The proofs are based on a ,semantics of DNP based on the 

work of Kahn [46]. For the sake of completeness we present an informal in

troduction to this semantics. 

A process takes its input values one by one from its input channels. 

Its actions are completely deterministic. If a process terminates it writes 

a special end-of-file mark (EOF) on all its output channels. The last value 

on an input channel of the net will also be EOF. 

A process specifies a function which takes input histories as argu

ments and yields output histories as values. A history models the sequence 

of values that travelled over a channel from the beginning of the computa

tion until a certain moment. Histories can be ordered according to the a

mount of information they contain. History Y contains more information than 

history X, written X = Y, if£ Xis a prefix of Y. 

The history functions defined by processes have a number of important 

properties. If input history Xis a prefix of input history Y, the process 

will act identically on the common prefix and will thus generate the same 

values on the output channel. The remaining input on Y can only have the 

effect of writing more values on the output channel. In formula: if X c Y 

then f(X) = f(Y) where f is the function describing the behaviour of the pro

cess. This property is called monotonicity. In Kahn's model all processes 

compute monotonic history functions. 
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A second important property of the history functions is continuity, 

which concerns the approximation of an infinite sequence by its finite pre

fixes. The prefixes of a history X form a chain, i.e., a sequence of histories 

x1,x2 , •• such that Xi:: Xi+l for every i~1. 

Lerrnna 5.1.1[46]. Every chain has a least upper bound UXi. 

Proof. Either the chain is stable, i.e., there is a k such that~= ~+l 

and UXi =~'or the chain is not stable. But then every element Xi has a 

successor of length greater than Xi and UXi will be the infinite history X 

with the property that all Xi are a prefix of X. 

□ 

A one-input-channel one-output-channel process P yields an output his

tory f(X) when given an input history X, where f is the function associated 

with P. Consider a chain x1,x2 , •. with UXi = X. Because f is monotonic the 

values f(X 1),f(X2), •. also form a chain. This means that an arbitrary finite 

approximation of f(X) is obtained by letting P work on a finite input history 

~:: X, i.e., for every element Y of f(X) only a finite number of elements 

of X have been read at the moment it is generated. Furthermore, the whole se

quence up to Y has then been generated. This is equivalent to saying that 

f(X) = f(UX.) = Uf(X.). This property is called continuity. In Kahn's words: 
i i 

continuity prevents the possibility of a process deciding to send some out-

put only after it has received an infinite amount of input. 

In [46] it is stated that the function describing the meaning of a 

process can be obtained "by the usual method of McCarthy for converting flow

chart programs to recursive definitions". It is not clear how to apply this 

method to processes containing expand statements even though the semantics of 

an expand statement is not much different from that of a series of procedure 

calls. What is needed is a formal semantics of the language. Such a formal 

semantics for a syntactically simplified version of DNP is given in [14], 

where an operator is defined that (i) takes a process-declaration and trans

lates it into a function from input-histories to output-histories and (ii) 

takes a DNP program (a sequence of process-declarations and a main body) and 

translates it into a set of equations. To each channel of the (initial) net 

of the program a variable is associated. For all variables X associated 
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with input channels to the net there is an equation X=I where I is an input 

history. For each process with n input channels x 1, •.. ,Xn and m output 

channels Y1, ... ,Ym there are m equations Y. = f.(x 1, ... ,X) where f. is the 
1 1 n 1 

function that describes the behaviour of the process as far as the i-th 

output channel is concerned. The meaning of a DNP program is defined as the 

minimal solution to the set of equations. 

Theorem 5.1.2(46]. The set of equations describing the meaning of a network 

admits a unique minimal solution. Executing the program results in a set of 

histories described by the minimal solution. 

D 

We will now discuss how a function is derived from a process declara

tion. A formal treatment can be found in [14]. The process heading of a pro

cess declaration determines the number of input and output parameters of 

the function to be derived. If, for example, a process heading has two in

put channels and three output channels the associated function will have 

the form f(X,Y) = (P,Q,R). The output that a process yields is generally 

not only dependent on the input histories but also on the value parameters 

and the values of the local variables. The associated function will there

fore often have extra parameters giving the relevant part of the internal 

state of the process. 

A process body is a sequence of statements s1;s2 ; .•• ;Sn. The associated 

function can be derived stepwise by concatenating the effect of s1 to a func

tion f' describing the effect of s2 , •.• ,Sn. In the above example: 

f(X,Y,Z) = (<p>,<q>,<r>)-f'(X' ,Y' ,Z') 

where <p>,<q>, and <r> stand for the sequences of values written by s1 on 

P, Q and R, ~ denotes simultaneous concatenation defined as 

(X1, .•. ,Xn)-(Y 1, ... ,Yn) = (x1-Y 1, ... ,xn-yn), X' and Y' stand for the input 

histories that may have changed because of s1, and Z' denotes the changed 

internal state Z. 

The above expression is rather general. We will be more concrete and 

take for s1 a read statement, a write statement, an assignment, a conditional 

statement, a loop, and an expand statement respectively. Where needed we will 

add internal state-parameters to f'. 
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If s1 is read(X,x), the associated function is f(X,Y) = f'(R(X),Y,F(X)). 

F(X) stands for the first element of X. F(X) has become part of the internal 

state. R(X) stands for the rest of X, f' denotes the effect of the rest of 

the process. 

If s1 is write(P,p), the associated function is f(X,Y) = (<p>,<>,<>)-f'(X,Y). 

If s1 is x = e, the associated function is f(X,Y) = f'(X,Y,e). 

If s1 is if(b) {S2} else {S3}, the associated function is 

f(X,Y) [b ➔ (<p>,<q>,<r>)-f'(X',Y') 

, (<p'>,<q'>,<r'>)-f''(X",Y") 

] . 

The construct [A ➔ B,C] denotes the conditional function. Depending on the 

truth value of A either B or C applies. 

If s1 is while(b) {s2}, the associated function is 

f(X,Y) = [b ➔ (<p>,<q>,<r>)-f(X',Y') 

' f I (X, Y)]. 

If s1 is an expand statement, the effect of s1 is defined as the effect of 

the network into which it expands, i.e., the solution of a set of equations 

derived from the network. The right hand sides of these equations have the 

form g(Z 1, ••• ,Zk) and the g-s are specified by either a creation or a sur

vival. The function corresponding to a creation is defined (recursively) by 

a process declaration. The function corresponding to a survival will be de

rived from the rest of the process declaration, i.e., from the statements 

s2 , .•• , Sn. So if s 1 is 

expand chan C 

create filter (in X out CJ 

keep me (in C,Y out P,Q,R) 

endexp 

the associated function is f(X,Y) f' (C,Y) where C 

In subsequent sections we will prove properties of programs by first 

translating a program into a set of equations and then solving these equa

tions. 
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5.2. CORRECTNESS OF PIPELINE SORT WITH SINGLE NUMBERS INTERNALLY 

Consider the sort program from figure 4.2.1.7. Figure 5.2.1. shows the 

initial network. 

bot
tom 

Figure 5.2.1. Initial sorting network. 

The two processes are described by the functions fsort and fbottom for which 

the following holds: 

fbottom(E) 

f t(X,Y) sor 

<EOF> 

[F (X) EOF ➔ (Y, <EOF>) 

, f t (R(X),Y,F(X))] sor -merge 

The function f t reflects the test whether there are (still) elements to sor 
be sorted and the actions taken upon that test; f describes the sort-merge 
action taken when there are elements to be sorted: the net expands as shown 

in figure 5.2.2. 

C) 
Figure 5.2.2. Expansion of sort. 

f (X Y v) sort-merge ' ' (f t(X,f (E',Y,v)+1)+1,f (E',Y,v)+2) sor merge merge 

where E' f t(X,f (E',Y,v)+1)+2 sor merge 

f (X,Y,v) = [F(Y) = EOF ➔ (<v,EOF>,<EOF>) merge 
, (min(F(Y),v),<>)~f (X,R(Y),max(F(Y),v))] merge 
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The functions min and max yield the minimum and maximum of their arguments, 

respectively. The +i-operator is defined as (X1, ... ,Xn)+i = Xi (1~i~n). 

Now we can write down the equations which denote the meaning of the 

program: 

(sorted,E) f (X Y) sort ' 

y fbottom(E) 

which are transformed straightforwardly into: 

(sorted,E) = f (X,<EOF>) sort 

In proving that f (X,<EOF>H1 is an ordering of X we use the following sort 
lemmas. 

Lemma 5.2.1(Behaviour off ). If Y is a finite and ordered sequence of merge 
nwnbers and vis an arbitrary number, then f (X,Y',v)+1 is an ordered merge 
pemutation of Y-<v>, followed by <EOF>, where Y' = y~<EOF>. 

Proof. By induction on the length of Y. 

□ 

Base: IYI 

Step: IYI 

0: f (X, Y' , v )+ 1 <v, EOF> merge 
k>O : f (X, Y ' , v) merge 

<min(F(Y'),v)>-f (X,R(Y'),max(F(Y'),v))+1 merge 
We have: 

(1) min(F(Y'),v) ~ max(F(Y'),v) 

(2) min(F(Y'),v) ~ x, for all x E R(Y') 

From (1), (2) and the induction hypothesis we conclude that 

f (X,Y 1 ,v)+1 is an ordered permutation of y~<v> followed merge 
by <EOF>. 

Lemma 5.2.Z(Behaviour off ). If X.is a finite sequence of nwnbers --- sort-merge ' 
Y is a finite and ordered sequence of numbers, and van arbitrary nwnber, 

then f t (X',Y',v)+l is an ordered pemutation of x~Y-<v> followed by sor -merge 
<EOF>, where X' = x-<EOF> and Y' = y~<EOF>. 
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Proof. By induction on the length of X. 

Base: IXI = 0: f (X' Y' v)+1 = f (X' f (E' Y' v)+1)+1 = sort-merge ' ' sort 'merge ' ' 

f (E',Y',v)+1 = z-<EOF> where Z is an ordered permu-merge 
tation of Y-<:v> (previous lemma) 

Step.: IXI = k>O.: f ' . (X' Y' v)+l = f (X' f (E' Y' v)+1)+1 sort-merge ' ' sort 'merge ' ' 

f t (R(X'),z-<EOF>,F(X'))tl sor -merge 
(1) Z is an ordered permutation of Y-<:v> (previous leDD11a) 

According to (1) and the induction hypothesis we can conclude that 

f (X' Y' v)+l is an ordered permutation of x-Y-<:v>, fol-sort-merge ' ' 
lowed by <EOF>. 

0 

Theorem 5.2.3(Behaviour of the sorting program). If Xis a finite sequenae of 

nwnbers, then f (X-<EOF>,<EOF>)+l is an ordered permutation of X, foUowed sort 
by <EOF>. 

Proof. By definition off t and le= 5.2.2. sor , 
0 

The correctness proof of pipeline sort with deques internally (figure 

4.2.1.6) is slightly more complicated [10]. The third parameter off merge 
becomes a finite sequence of numbers playing the role of the deque din pro-

cess sort. The proof extends in that we have to show that deque d stays or

dered and that given an ordered deque and an ordered input sequence f merge 
yields an ordered output sequence. 

5.3. CORRECTNESS OF MATMUL 

Consider the program Matmul (figure 4.2.2.6.) for multiplying two square 

matrices. The data travelling over the channels has a prescribed format: a se

quence of sequences of integers, separated and possibly preceeded by SEP-tokens 

($) and terminated by an EOM-token (*). The program does not check whether the 

input matrices have the correct format, nor whether the input matrices have 

the same size. The main process madm determines whether the input matrices are 

empty(<*>) and if not, expands into the initial network shown in figure 5.3.1. 
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Figure 5.3.1. Initial network of Matmul. 

The function describing madm is: 

f d (A,B) = [F(A) = * ➔ <*> 
ma m 

where C 

and D 

, f t (fd (R(A))tl,fd (R(B))t1,C,D)t3] cen re up up 

f 0 (fd (R(B))t2,f (fd (R(A))tl,fd (R(B))tl,C,D)tl) up up centre up up 

f 1 0 (fd (R(A))t2,f t (fd (R(A))+l,fd (R(B))t1,C,D)t2) ow up cen re up up 

fcentre' has four input history parameters and two value parameters. The first 

two histories model the input rows and columns, the third and fourth model 

the upper and lower triangles of the product matrix which are computed by upO 

and lowO respectively. The two value parameters model the relevant part of the 

internal state of centre: the first parameter plays the role of the variable 

x, the second parameter plays the role of the variable q. Consequently, the 

second parameter takes the form of a sequence. f 11 t describes the collect-co ec 
ing phase of centre. 

f t ,(A,B,C,D,x,q) = cen re 
[F(A) * ➔ (<*>,<*>,<>)-fcollect(R(A),R(B),C,D,q-<x>), 

[F(A) $ ➔ (<$>,<$>,<>)-f t ,(R(A),R(B),C,D,O,q-<x>), cen re 

(<F(A)>,<F(B)>,<>)-f t ,(R(A),R(B),C,D,x+F(A).F(B),q)]] cen re 



f ll t(A,B,C,D,q) co ec 
[F(C) = * ➔ (<>,<>,<$,F(q),*>) 

, (<>,<>,<$,F(q)>)-fcollectup(A,B,R(C),R(D),R(q))] 

f (ABC D q) =• collectup ' ' ' ' 
[F(C) * ➔ (<>,<>,<$>)-f ll tl (A,B,R(C),D,q), co ec ow 

[F(C) = $ ➔ (<>,<>,<$>)-f ll l (A,B,R(C),D,q), co ect ow 

(<>,<>,<F(C)>)-f ll (A,B,R(C),D,q)]] co ectup 

fcollectlow(A,B,C,D,q) = 

[F(D) * ➔ (<>,<>,<F(q),*>), 

[F(D) = $ ➔ (<>,<>,<F(q)>)-f ll t (A,B,C,R(D),R(q)), . co ec up 

(<>,<>,<F(D)>)Af 11 tl (A,B,C,R(D),q)]] co ec ow 
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An upO process determines by reading a column item whether it will have to 

compute a diagonal. If so it expands as shown in figure 5.3.2. We now get a 

similar argument for upO and lowO as for centre. 

f 0 (A,B) up [F(A) 

Figure 5.3.2. Expansion of upO. 

* ➔ <*> 

, f (fd (R(A))+1,R(B),C)+2] up up . 

where C = f pO(fd (R(A))+2,f (fd (R(A))+1,R(B),C)+1) u up up up 

f (A,B,C) = (<$>,<>)-f ,(A,B,C,O,<>) up up 
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f , (A,B,C,x,q) = up 
[F(A) 

[F(A) 

* ➔ 

$ ➔ 

(<*>,<>)~f . 1 (R(A),R(B),c,q~<x>), uptn.ang e 

(<$>,<>)~f , (R(A) ,R(B) ,c,o,q~<x>), 
up 

(f(B),<>)~f ,(R(A),R(B),C,x+F(A).F(B),q)]] 
. up 

fuptriangle(A,B,C,q) = 
[F(C) * ➔ (<>,<$,F(q),*>), 

[F(C) = $ ➔ (<>,<$,F(q)>)Af . l (A,B,R(C),R(q)), uptn.ang e 

(<>,<F(C)>)Af . l (A,B,R(C),q)]] uptn.ang e 

A lowO process determines whether it will have to compute a diagonal. If so, 

it expands as shown in figure 5.3.3. 

[F (A) 

Figure 5.3.3. Expansion of lowO. 

* ➔ <*> 

, fl (fd (R(A))+1,R(B),C)+2] ow up 

where C fl o(fd (R(A))+2,fl (fd (R(A))+1,R(B),c)+1) ow up ow up 

fl (A,B,C) = (<$>,<>)Afl ,(A,B,C,O,<>) ow ow 

flow'(A,B,C,x,q) = 
[F(A) 

[F(A) 

* ➔ (<*>,<$>)Afl . l (R(A),B,c,q~<x>), owtriang e 

$ ➔ (<$>,<>)Afl ,(R(A),R(B),c,o,q~<x>), ow 

(<F(B)>,<>)~f1 ,(R(A),R(B),C,x+F(A).F(B),q)]] ow 



f . (ABC q) = lowtriangle ' ' ' 
[F(C) * ➔ (<>,<F(q),*>), 

[F(C) = $ ➔ (<>,<F(q),$>)Afl t . l (A,B,R(C),R(q)), ow riang e 

(<>,<F(C)>)Afl . l (A,B,R(C),q)]] owtriang e 

The function describing dup is: 

fd (A) = [F(A) up 

fd , (A) up 

[F (A) 

[F(A) 

* ➔ ( <*> '<*>) ' 

$ ➔ (<$>,<$>)Afd ,(R(A)), up 

(<F(A)>,<>)Afd (R(A))]] up 

* ➔ (<*>,<*>) 

' (<F(A)>,<F(A)>)Afd ,(R(A))] up 

The equation denoting the meaning of the program is; 

product= f d (Mr,Mc) ma m 
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As before we state some lennnas that will be used to prove the main theorem. 

In these lennnas we will use a special notation for the format of the input 

and output sequences. 

Notation. Suppose R1, ... ,Rn are finite sequences of integers. Then 

- [Ri, ... ,Ri-1] 

- [R1 ' ... ,Rn] 

Furthermore {R1, ... ,Rn] 

[] = <*> 

<$>AR1A[Rz,···,Rn] 

R1A[Rz,···,Rn] (n>O) 

Lennna 5.3.l(Behaviour of fd ). up 
Let n~1 and A 

Then fd (A) up 

{A1, ... ,Anrx. 

({Al' ... ,An]' [Az, ..• ,An]). 

Proof. I: fdup(A) = (A1,<>)Afdup([A2 , ••• ,An]) by induction on the length 

of A1 • 

II: fd , ({A. , ••• ,A ] ) up i n (A. ,A.) Afd , ([A.+ 1 , ... ,A ] ) i i up i n (~n) by induc-

tion on the length of A .. 
i 

III: The lennna now follows by induction on n. 

□ 
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Lemma 5.3.2(Behaviour off t . 1 ). --- up r1ang e 
Let k;;;;Q. 

Then f . l (A, B , [ C 1 , ... , Ck] , <x 1 , ... , x.+ 1 >) uptr1ang e I< 

(<>,[<x1>-c1•···•<~>-ck,<xk+1>]). 

Proof. I: If k;;:;1 fuptriangle(A,B,[C 1, ••• ,Ck],<x1, ••• ,~+l>) 

(<>,<$,x1>)-fuptriangle(A,B,{C1, .•• ,Ck],<x2, •.• ,~+1>) per defi
nition. 

□ 

Lemma 

II: fuptriangle(A,B,{C1,···•Ck],<x2,···•xk+1>) = 

( <> ,C 1) ~f up triangle (A,B, [c2 , •.. ,Ck], <x2 , ••• ,xk+ 1>) by induction 
of the length of c 1. 

III: The lemma now follows by induction on k. 

5.3.3(Behaviour off ). up 
Let 1::an::.m, A= {A1, ... ,An]' B = {B 1, •.. ,Bm]-B', and 

IA. I = IB. I, A.B. the inproduct of A. and B-. 1 1 ,11 1 1 

for all 1 ::ai::.n 

Then f (A, B , C) = ( [ B 1 , ••• , B ] , <>) -f . 1 ( <> , B" , C , <A 1 B 1 , •.. , A B >) up n uptr1ang e n n 
for some B". 

Proof. I: f (A,B,C) = (<$>,<>)-f 1 (A,B,C,O,<>) per definition. up up 

II: f ,({A1, ..• ,A ],{B1, ... ,B J-B',C,x,q) up n m 

(B 1,<>)-fup'([A2, ••• ,An],[B2, •.. ,Bm]-B',x+A1B1,q) by induction on 

the length of A1• 

III: The lemma now follows by induction on n. 

□ 

Lemma 5.3.4(Behaviour off 0). up 
Let O::an::.m, and for all 1::.i,j::an IA. I = IB. I. 

1 J 

Then fupO([A 1, ... ,An],[B 1, •.. ,Bm]-B') = [R1, •.. ,Rn] 

where R. = <A.B., ... ,A B.>. 1 11 n1 



Proof. By induction on n. 

Base: n=O 

Step: n.::1 

f 0 ([],B) =[]per definition. up 
f 0 ([A1, •.• ,A J,[B 1, ... ,B JAB') up n m 

f (fd ({A1,····A ])+1,{B1•····B ]AB',C)+2 up up n m 

f ({A1, .. ;,A ],{B1, •.• ,B ]AB',C)+2 (by Lemma 5.3.1.) up n m 

where C = f 0 (fd ({A1, •.. ,A ])+2, up up n 

177 

f (fd ({A1, .•. ,A J)+1,{B 1, ... ,B JAB',c)+1) up up n m 

□ 

f 0 ([A2, ..• ,A J,f ({A1, ••• ,A J,{B 1, .•• ,B JAB',c)+1) up n up n m 
(by Lennna 5.3.1.) 

f 0 ([A2, .•. ,A l,(([B1, .•• ,B J,<>)A up n n 

fuptriangle (<> ,B" ,C,<A1B1 '· · · ,AnBn>) )+l) 
(by Lemma 5.3.3.) 

f 0 ([A2, ... ,A ),[B1, ..• ,B ]) (by Lennna 5.3.2.) up n n 

[R2, ••. ,R] (induction hypothesis) , n 

So f o<[A1,····A ),[B1•····B ]AB') up n m 

fup({A1,···•An],{B1,···•Bm]AB',[R2,···•Rn])+2 

f . l (<>,B",[R2, ••• ,R ],<A1B1, •.. ,A B >)+2 uptriang e n n n 
(by Lemma 5.3.3.) 

[R1, ..• ,R~] (by Lennna 5.3.2.) 

where Ri = <AiBi>ARi+l = <AiBi, •.• ,AnBi> 
R' =<AB> n nn• 

Lemmas 5.3.5. to 5.3.7., which are the low-counterparts of lemmas 5.3.2. to 

5.3.4., are stated without proof. 

Lemma 5.3.5(Behaviour of f 1 t • 1 ). -- ow riang e 

□ 

Let k.::O. 

Then flowtriangle(A,B,[C2,···•Ck+1 1'<x1'""·•~+1> 

(<>,[<x1>,C2A<x2>, ... ,ck+1A<~+1>]). 
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Lemma 5.3.6(Behaviour of f 1 ). Same conditions as for lemma 5.3.3. ow 

a 
fl (A,B,C) = ([B,, ... ,B ],<>)Afl . l (<>,B",C,<A1B,, ... ,A B >). ow n owtriang e n n 

Lennna 5.3.7(Behaviour of f 10w0). Same conditions as for lemma 5.3.4. 

flowO([A 1, ... ,An],~B 1, ... ,BmrB') = [R1, ... ,Rn] 

a 
where R. = <A.B 1, ... ,A.B.>. i i i i 

Lemma 5.3.8(Behaviour off ll t). --- co ec 
Let k;;O. 

Then fcollect(A,B,[c,, ... ,ck]'[Dz,···,Dk+1]'<x,, ... ,~+1>) 

(<>,<>,[R,, ... ,¾+1]) 

where R1 <x 1> (if k=O) or <x 1>Ac 1 (otherwise) 

R. D.A<x.>AC. Z~i~k 
i i i i 

Proof. I: k=O fcollectSA,B,[],[],<x 1>) = (<>,<>,[x1]) 

II: k=1 fcollect(A,B,[C 1],[Dzl,<x1,xz> 

(<>,<>,<$,x,>)Afcollectup(A,B,{c,],{Dzl,<xz>) 

(<>,<>,<$,x1>AC1)Afcollectup(A,B,[],{Dz],<xz>) 

(by induction on the length of c 1) 

(<>,<>,<$,x1>AC1A<$>)Afcollectlow(A,B,<>,{Dzl,<xz>) 

(<>,<>,<$,x,>Ac,A<$>AD,)Af 11 1 (A,B.<>,[],<xz>) z co ect ow · 

(by induction on the length of Dz) 

(<>,<>,<$,x,>Ac,A<$>ADzA<xz,*>) 

(<>,<>, [R1 ,Rz]). 

III: k;;z fcollect(A,B,[C 1, ... ,Ck],[Dz,···,Dk+l],<x1, ... ,~+l>) 

( <> ,<> ,<$ ,x,> )Af collectup (A,B' {c 1 '.'.,ck]' {Dz' ... ,Dk+1]' 

<xz' · · · ,xk+1>) 

(<>,<>,<$,x1>AC1)Afcollectup(A,B,[CZ, ... ,ck],{Dz,···•Dk+1], 

<xz,···,xk+1>) 

(by induction on the length of c 1) 
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( <>' <> ,<$ ,x1>-c 1 -<$>) -f collect low (A,B, {C2' · · ·,Ck]' 

{Dz,···,Dk+1],<x2'"""•xk+1>) 

(<>,<>,<$,x1>-c1-<$>-D2-<x2>)-fcollectlow(A,B,{C2,···,Ck], 

[D3,···,IYk+1],<x3'"""'xk+1>) 

(by induction on the length of n2) 

(<>,<>,<$,x1>-c1-<$>-Dz)-fcollectup(A,B,[C2, ... ,Ck], 

[D3,···,Dk+1],<x2'"""'xk+1>). 

IV: The lellUlla follows by induction on k. (Base: k=1) 

□ 

LellUlla 5.3.9(Behaviour off ). Same conditions as for lemma 5.3.4. --- centre 

fcentre ({A1' ···,An] ,{B1' · · · ,Bn] ,C,D) = 

([A1,···,A ],[B1,···,B ],<>)Af 11 t(<>,<>,C,D,<A1B1,···,A B >). n n co ec n n 

Proof. Same as lemma 5.3.3. 

□ 

Theorem 5.3.10(Behaviour off d ). ma m 
Let n~O and for all 1~i,j~n IA.I 

]. 
IB. I. 

J 

Then fmadm([A1, ... ,An],[B 1, ... ,Bn]) = [R1, ... ,Rn] 

where R. = <A.B 1, ... ,A.B >. 
J. i J. n 

Proof. n=O f d ([],[])=[]per definition ma m · 

n~. 1 fmadm ( [A1 ' ... ,An] ' [ B 1 ' ... 'Bn]) 

f centre (f dup ( {A1 '••·;An])+ 1 'fdup ( {B 1 '· · · ,Bn ])+ 1 'C,D)+3 

fcentre({A1,···,An],{B1,···,Bn],C,D)+3 

where C = f 0 (fd ({B 1, ... ,B ])+2,f (fd ({A1, •.. ,A ])+1, up up n centre up n 

fdup({B 1, ... ,Bn]+1,C,D)+1) 

f o<[Bz,···,B ],[A1,····A ])AA' (for some A') up n n 

(by Lemmas 5.3.1., 5.3.9.) 

= [T 1, ... ,Tn_ 1] (by Lemma 5.3.4.) 
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IJ 

and D = [s2, ••. ,Sn] 

where S. = <A.B., •.. ,A.B. 1> (same reasoning as for C). 
1 1 1 1 i-

Combining this we get (by Lemma 5.3.9.) 

f centre ({Al''·· ,An]' {Bl•··· ,Bn] ,C ,D) +3 

fcentre ({Al'··· ,An],{B,, • • .,Bn] ,[Tl'··· ,Tn-1] '[Sz, · · ·• 8n]H3 

f 11 t(<>,<>,[T,, ..• ,T ,],[s2,···,s ],<A1B,, ... ,A B >)+3 co ec n- n n n 

We now apply lenuna 5.3.8.: 

I: n=l fcollect(<>,<>,[],[],<A1B1>)+3 = [A1B1] 

II: ni,;:2 f 11 t(<>,<>,[T,, ••• ,T ,L[s2, ... ,s ],<A1B,, •.. ,A B >) co ec n- n n n 

= [R1, ... ,Rn] 

where R1 = <A1B1>AT1 = <A1B1>A<A1B2, ••• ,A1Bn> 

Ri siA<AiBi>ATi = <AiB,, ••• ,AiBi-1>A<AiBi>A 

<AiBi+1•·•·,AiBn> 

Rn SnA<AnBn> = <AnB,, •.. ,AnBn-1>AAnBn. 
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5.4. CORRECTNESS OF DIVCONQ 

We prove the correctness of Divconq (figure 4.2.3.7.) independently 

of the precise specification of the primitive functions solve-seq, size, 

combine, and split. Thes~ primitives must, however, have certain properties 

which we discuss first. 

The sequential program solve-seq takes a problem p and yields a result 

r, where pis an element of the problem domain P and ran element of the re

sult domain R. 

f : P ➔ R solve-seq 

We will show that Divconq behaves just like solve-seq: 

Vp E P · f (p) = f (p) • divconq solve-seq 

The primitive function size measures the size of a problem. The size of a 

problem is a positive integer. 

f. :P ➔ lN size 

If the size of a problem is one, we call it a simple problem. The primitive 

function split takes a non-simple problem and yields two problems p1 and p2. 

We will use two functions to describe split. 

fsplit1 

fsplit2 

where PNS P\{plf . (p) = 1} size 

such that f (f (p)) size split1 lf . (p)/2J size 

rf . (p)121 size 

The primitive function combine takes two results and yields one result. 

fcombine: Rx R ➔ R 

such that Vp E PNS fcombine(fsolve-seq(fsplit1(p)), 

fsolve-seq(fsplit2(p))) 

fsolve-se/p) 
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In the sequel the/ operator will perform a truncation towards zero for posi

tive operands, just as in C. We have introduced one extra primitive function 

twolog. The only property we demand of twolog is: 

Vp E: P: 1:af . (p)/g(f . (p)) :a f . (p) SLZe size size 

where g(n) denotes the meaning of twolog. 

We will assume no other properties of the primitives than the ones stated 

above. We will now derive the functions describing Divconq. The initial net

work is shown in figure 5.4.1. 

fd. (prb) ivconq 

where Y 

f t(prb,Y)+1 roo 

fl f(f t(prb,Y)+2) ea roo 

prb 

Figure 5.4.1. Initial network of Divconq. 

The process root determines whether it must split the problem. If not, it just 

solves the problem sequentially. This is the only case where a leaf process 

is needlessly created, and could have been prevented by making the main pro

cess Divconq check for it. If the problem has to be split, root first sends 

down a measure of the row of problems which will follow, and then goes into 

a "splitloop" followed by a matching "combine loop". 

f (prb,subress) root 

[x=1 ➔ (<f l . (F(prb)) ,EOF>,<EOF>) 
so ve-seq 

, (<>,<x/2>)-f 1 . 1 (R(prb),subress,x,x,F(prb))] 
sp it oop 

where x = f . (F(prb))/g(f . (F(prb))) size size 
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fsplitloop(prb,subress,c,n,p) = 

[c/2>0 ➔ (<>,<fsplit2(p)>)Afsplitloop(prb,subress,c/2,n,fsplit1(p)) 

' fcombineloop(prb,subress,n,fsolve-seq(p))] 

' 
f b" 1 (prb,subress,c,r) com ine oop 

[c/2>0 ➔ f b" 1 (prb~R(subress),c/2,f b" (r,F(subress))) com ine oop com ine 

, (<r,EOF>,<EOF>)] 

A leaf process reads the measure of the row of problems it will receive. If 

it will receive one problem it will solve that problem sequentially, otherwise 

it will expand as shown in figure 5.4.2. 

where rl 

rr 

R(prbs) 

Figure 5.4.2. Expansion of leaf. 

[F(prbs) 

[F(prbs) 

EOF ➔ <EDF>, 

➔ <f l (F(R(prbs))),EOF> so ve-seq 

, fd. (R(prbs),rl,rr,F(prbs))+1]] ivco 

f 1 f(fd. (R(prbs),rl,rr,F(prbs))+2) ea ivco 

f 1 f(fd. (R(prbs),rl,rr,F(prbs))+3) ea ivco 

A divco process splits and divides all problems it receives except the last 

one. The last problem is solved sequentially and the result is sent up. Then, 

the results of the problems sent down are combined and sent up. 
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fd. (prbs,rl,rr,n) = (<>,<n/2>,<n/2>)Afd bl 1 .t(prbs,rl,rr,n,n) 
. l.VCO OU esp l. 

fdoublesplit(prbs,rl,rr,c,n) = 

[c/2>0 ➔ (<>,<fsplit 1(F(prbs))>,<fsplitZ(F(prbs))>)A 

fdo~blesplit(R(prbs),rl,rr,c/2,n) 

, (<f 1 (F(prbs))>,<>,<>)A so ve-seq 

fdoublecombine(R(prbs),rl,rr,n)] 

fdoublecombine(prbs,rl,rr,c) = 

[c/2>0 ➔ (<f b" (F(rl),F(rr))>,<>,<>)A com 1.ne 

fdoublecombine(prbs,R(rl),R(rr),c/2) 

, (<EOF>,<EOF>,<EOF>)] 

The rows of problems and results travelling over the channels have certain 

well-formedness properties which are defined as follows; 

Definition 5.4.1(Well-formed row of problems). 

□ 

Let c E :N and pk, ... ,p0 E P. 

Then (1) <0> is an (empty but) well-formed row of problems, written 

<O> WFP 

(2) <c,pk, •.• ,p0> is a well-formed row of problems, written 

<c,pk, ••• ,p0> WFP 
if f: ( i) 2k.:iic<2k+ 1 (~O) 

(ii) f . (p. )~2i 
size 1. 

Definition 5.4.Z{Well-formed row of results). 

Let c E JN, and rk, ..• ,r1 ER. 

Then <c,r1, ... ,rk> is a well-formed row of results, written 

<c,r1, ... ,rk> WFP, 

iff 2k::ac<2k+l. 
□ 



we also define the transitive closure of fcombine· 

Definition 5.4.3. f~ombine: Rx R* ➔ R 

f* b' (r,<>) =r com ine 

f* b' (r0 ,r 1-x) com ine f* mb'. (f b' (r0,r1),X) co ine com ine 

□ 

Clearly f* b. (r0 ,x-r) = f b. (f* b. (r0 ,X) ,r) · com ine com ine com ine 

Lemma 5.4.1(Behaviour off mb' 1 ). co ine oop 
Let <c,r 1, ... ,rk> WFR. 

Then f b' 1 (prb,<r 1, ... ,rk>-x,c,r) = com ine oop 

(<f* b. (r ,<r 1, ... ,rk>) ,EOF> ,<EOF>). com ine 

Proof. By induction on c. 

□ 

Base: c=1 

fcombineloop(prb,X,1,r) = (<r,EOF>,<EOF>) 

(<f* b' (r,<>),EOF>,<EOF>). com ine 
Step: c>1 

fcombineloop(prb,<r,, ... ,rk>-x,c,r) 

f b' l (prb,<r2, ... ,rk>-X,c/2,f b' (r,r 1)) com ine oop com ine 

c>1 and (c,r 1, ... ,rk) WFR ➔ (c/2,r2, ..• ,rk) WFR 

So.we may apply the induction hypothesis: 

fcombineloop(prb,<rz,···,rk>-x,c/Z,fcombine(r,r1)) 

(<f~ombine(fcombine(r,r,),<rz,•··,rk>),EOF>,<EOF>) 

(<f* b' (r,<r 1, ... ,rk>),EOF>,<EOF>). com ine 

Lemma 5.4.2(Behaviour off 1 . 1 ). sp it oop 

Let fsize(p)~c, c~1, n~c. 

Then fsplitloop(prb,subress,c,n,p) = 

(<>,<pk 1, ... ,p0>)-f b' 1 (prb,subress,n,f 1 (p0)) - com ine oop so ve-seq 

where (1) <c/2,pk_ 1, ... ,p0> WFP 

(2) f* . (f (p ) 
combine solve-seq O' 
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<fsolve-seq(po), ... ,fsolve-seq(pk-1)>) fsolve-seq(p). 
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Proof. By induction on c. 

Base: c=1 

f 1 . 1 (prb,subress,1,n,p) 
sp it oop 

f b" 1 (prb,subress,n,f 1 (p)) com ine oop, so ve-seq 

P0=p,<pk_ 1, ... ,p0> =<>and (1) and (2) are satisfied. 

Step: c~2 

f 1 . 1 (prb,subress,c,n,p) sp 1t oop 

(<>,<f 1 .t2 (p)>)~f l"tl (prb,subress,c/2,n,f 1 .t1(p)) sp i sp i oop sp i 

Now f . (p)~c ➔ f . (f 1 . 1 (p))~c/2. 
size size spit 

So we may apply the induction hypothesis: 

f l"tl (prb,subress,c,n,p) sp i oop 

(<>,<fsplit2(p)>)-(<>,<pk-2' 0 ··,Po>)~ 

fcombineloop(prb,subress,n,fsolve-seq(pO)) 

(<>,<fsplit2(p),pk-2' 0 ··,Po>)~ 

f b" 1 (prb,subress,n,f 1 (p0)) com ine oop so ve-seq 

(2) f* . (f (p ) 
combine solve-seq O' 

<f 1 (po), ... ,f 1 (pk 2)>) so ve-seq so ve-seq -

f 1 (f 1. 1 (p)) • so ve-seq spit 

Now we must check (1) and (2) for f 1 . 1 (prb,subress,c,n,p): sp it oop 

( 1) f . (p)~c ➔ f . (f 1 . 2 (p))~c/2 
size size spit 

and therefore <c/2,fsplit2 (p),pk_2 , ... ,p0> WFP, 

<2) f~ombine(fsolve-seq(pO),<fsolve-seq(po), ... ,fsolve-seq(pk-2), 

fsolve-seq(fsplit2(p))>) 

fcombine(f~ombine(fsolve-seq(po), 

<fsolve-seq(po), ... ,fsolve-seq(pk-2)>),fsolve-seq(fsplit2(p)) 

fcombine(fsolve-seq(fsplit1(p)),fsolve-seq(fsplit2(p)) 

f 1 (p). so ve-seq 



Lemma 5.4.3(Behaviour of fd .bl b' ). --- ou ecom ine 
Let <c r' r'> WFR <c r" r"> WFR ' 1' ••• ' k ' ' 1 ' ••. ' k . 

Th f (X < I '>AY < II ">AZ ) en doublecombine 'r,, ... ,rk • r,, •.• ,rk ,c 

(<r 1, ••• ,rk,EOF>,<EOF>,<EOF>) 
' 

where r. = f mb. · (r! ,r'.'). i co ine i i 

Proof. By induction on c. 

□ 

Base: c=l 

fdoublecombine(X,Y,Z,l) 

Step: c.:2 

(<EOF>,<EOF>,<EOF>) 

f (X I '>AY II II AZ ) doublecombine ,<r,, ••. ,rk ,<r,, ..• ,rk> ,c 

(<f b. (r 1• ,r111)>,<>,<>)A com ine 

fdoublecombine(X,<rz,····rk>AY,<rz,····rk>AZ,c/ 2) 

Now <c/2,rz,····rk> WFR and <c/2,rz,····rk> WFR 

So we may apply the induction hypothesis: 

f doublecombin; (X,<r 1 • · · · • ri_?AY • <r;• • · • • • rk>AZ, c) 

(<r 1>,<>,<>)A(<r2, ..• ,rk,EOF>,<EOF>,<EOF>). 

Lemma 5.4.4(behaviour of fd bl 1 .t). --- ou esp i 
Let <c,pk' ... ,p0> WFP, c.:1, n.:c. 

Then fdoublesplit(<pk,···•Po>AX,rl,rr,c,n) 

(<f 1 <Po)>,<pk' 1•··•,Po'>,<pk" 1•··•,Po">)A so ve-seq - -

fdoublecombine(X,rl,rr,n) 

where p! 
1 

p'.' 
1 

fsplit1(pi+1) and <c/ 2,Pk-l' 00 ••Po> WFP 

fsplit2(pi+1) and <c/ 2,Pk-1•···•Po> WFP. 

Proof. By induction on c. 

Base: c=l 

fdoublesplit(<po>AX,rl,rr,l,n) 

(<fsolve-seq(po)>,<>,<>)Afdoublecombine(X,rl,rr,n) 
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□ 

Step: c~2 

fd bl l' (<pk, ... ,p0>-X,rl,rr,c,n) ou esp it 

(<>,<f 1· 1(pk)>,<f 1· 2(pk)>)-sp it spit 

fd bl l' (<pk 1, ... ,p0>-X,rl,rr,c/2,n) ou esp it• -

Because <c/2,pk_ 1, ... ,p0> WFP, the induction hypothesis applies: 

fdoublesplit(<pk, ... ,po>-X,rl,rr,c,n) 

(<> < ' > < " >)-(<f ( )> < ' '> < " ">)-• pk-1 'pk-1 solve-seq Po 'pk-2'"",PQ 'pk-2'"""•Po 

fd bl b' (X,rl,rr,n) ou ecom ine 

(<f 1 (po)>,<pk' 1•···,Po'>,<pk" 1•···,Po">)-so ve-seq - -

fd bl b' (X,rl,rr,n) ou ecom ine 

where pi 

p'.' 
i 

fsplit1 (pi+1) 

f split2 (pi+ 1) 

and, because fsize(pk_ 1) 

fsize(pk-1) 

f. (f 1 . 1(pk))~c/2 size spit 

f . (f 1 . 2 (pk))Gc/2 size spit 

(and induction hypothesis) we have: 

<c/2,pk_ 1, ... ,p0> WFP 

<c/2,pk_ 1, ... ,p0> WFP. 

Lemma 5.4.S(Behaviour of fleaf). 

Let <c,pk, ... ,p0> WFP. 

Then fleaf(<c,pk, ... ,p0>-x) = <r0 , ... ,rk,EOF> 

where r. = f 1 (p.). i so ve-seq i 

Proof. By induction on c. 

Base: c=1 

<f l (p0),EOF>, so ve-seq 
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Step: c~2 

fleaf(<c,pk,··•,Po>AX) = fdivco(<pk,···,Po>AX,rl,rr,c)+1. 

where rl fl f(fd. (<pk,···,Po>AX,rl,rr,c)+2) ea l.VCO 

rr fl f(fd. (<pk,···,Po>AX,rl,rr,c)+3). ea l.VCO 

fd. (<pk,··•,Po>AX,rl,rr,c) 
l.VCO 

(<>,<c/2>,<c/2>)Afdoublesplit(<pk,···,Po>AX,rl,rr,c,c) 

(<f 1 (po)>,<c/2,pk' 1•···,Po'>,<c/2,pk" 1•···,Po">)A so ve-seq - -

fd bl b' (X,rl,rr,c) (by Lennna 5.4.4.) ou ecom 1.ne 

where pi 

p'.' 
l. 

fsplit1(pi+1) and <c/Z,pk-1···•,Po> WFP 

f ( ) d / 2 " "> WFP split2 Pi+1 an <c ,Pk-1•···,Po 
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rl fleaf(<c/2,pk-1'···,Po>AX') = <ro,···,rk-1'EOF> 

(because <c/2,pk-1•··•,Po> WFP so the induction hypo

thesis applies) 

where r! = f (p!) 1. solve-seq 1. 

rr <ro,···,rk-1'EOF> 

where r'.' = f (p'.') 
1. solve-seq 1. f 1 (f 1 . 2 (p. 1)). so ve-seq sp 1.t 1.+ 

fdivco(<pk, ... ,p0>AX,rl,rr,c)+1 

<f 1 (po)>Afd bl b' (X,<ro'•···,rk' ,,EOF>, so ve-seq ou ecom 1.ne -

<ro,····rk-l'EOF>,c)+1 

(<c,pk,···,Po> WFP implies <c,ro,···,rk-1> WFR ➔ Lennna 5.4.3.) 

= <f l (po)>A<ro,···,rk ,,EOF> so ve-seq -

where r. 
l. 

f b' (r!,r'.') com 1.ne 1. 1. 

fcombine (fsolve-seq (fsplit1 (pi+l))' 

fsolve-seq(fsplit2(pi+1))) 

<fsolve-seq(po), ... ,fsolve-seq(pk),EOF>. 
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Theorem 5.4.6. fd. (<p>AX) = <f 1 (p),EOF>. ivconq so ve-seq 

Proof. fd. (<p>AX) = f t(<p>AX,Y)+1 -- ivconq roo 

□ 

where Y = fleaf(froot(<p>AX,Y)+2). 

There are two cases: . 
X = f , (p)/g(f . (p)) 1: size size 

(<f l (p),EOF>,<EOF>). so ve-seq 

x>1: 

froot(<p>AX,Y) = (<>,<x/2>)Afsplitloop(X,Y,x,x,p) 

(Lemma 5,4.2. applies because f . (p)~x) size 
(<>,<x/2>)A(<>,<pk 1··•,Po>)Af b' 1 (X,Y,x,f 1 (po)) - com ine oop so ve-seq 

(<>,<x/2,pk 1•··•,Po>Af b' 1 (X,Y,x,f 1 (po)), - com ine oop so ve-seq 

where (1) <x/2,pk_ 1, •.• ,pO> WFP 

<2) f~ombine(fsolve-seq(po), 

<fsolve-seq(po), ... ,fsolve-seq(pk-1)>) 

= f (p) solve-seq • 

We therefore have that 

y fleaf(<x/ 2,Pk-1''"••Po>AX') 

<rO, ..• ,rk_1,EOF> (by Lemma 5.4.5.) 

where r. = f 1 (p.). i so ve-seq i 

fcombineloop(X,<ro,···,rk-1'EOF>,x,fsolve-seq(po))+l 

= <f* . (f Cp ) <f (p ) .•• f (p )>) EOF> combine solve-seq O' solve-seq O' 'solve-seq k-1 ' 

(by Lemma 5.4.1.) 

= <f l (p),EOF>, so ve-seq 
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5.5. REMARKS 

The above sections show that realistic DNP programs can be proved 

correct using Kahn's two step method of translating programs into sets of 

equations and solving these equations. The proofs are long (about the size 

of the programs) because we have to deal with many details. The proofs may 

be stated in a more direct way using a Hoare style system for the language. 

At this moment work is being done to construct such Hoare style proof rules 

and axioms (21]. 

Another drawback of the semantics used here is that we can only prove 

properties of the complete histories travelling over the channels (because 

these are the solutions of the equations). We cannot make statements about 

the relative ordering of say, reads and writes in various processes which 

might be the very purpose of a certain program (such as the implementation 

of a protocol). In a Hoare style system one may prove properties of this 

kind. 
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