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Preface

These notes cover the material I presented in a series of lectures at the
Indian Statistical Institute in Calcutta, India, in the winter of 1987-88. The
invitation to lecture there left me free to select more or less any topic I fan-
cied. It so happened that at the time I was interested in a particular problem
that involved the question whether /! could be embedded in a certain kind of
Banach space. When I looked through the literature to supplement my rather
superficial knowledge of /'-embeddability, I became very impressed with the
beauty and depth of the work in this area, and so I decided to present a survey
of this in my course. An extra reason why this choice of subject seemed
appropriate to me, was that I knew my audience to have a strong background
in measure theory. So they would especially appreciate the measure-theoretical
work of D.H. Fremlin and M. Talagrand that I intended to use as a basis for a
large part of my course.

Before describing the contents of these notes let me first try to put the sub-
ject in perspective, historically as well as mathematically. _

A desirable result in any structure theory is to show that the objects of study
can be decomposed into “clementary” components that are more easily investi-
gated. In the particular case of Banach spaces for instance, it would be nice to
know if every Banach space contains an isomorphic copy of one of the elementary
Banach spaces IP, 1<p<<oo, or ¢y. Let us call this conjecture 1. Actually this
problem was open until 1974, when B. Tsirelson constructed a counterexample
([95]). At around the same time another related conjecture was put to rest, this
time by R.C. James and, independently, by J. Lindenstrauss. To motivate this,
let us observe that /! is the only one among the above-mentioned “elementary”
spaces with a non-separable dual. So it is quite natural to conjecture that if a
separable space has a non-separable dual, then it must contain a copy of I' (con-
Jjecture II). In 1974 R.C. James constructed his famous counterexample to this
conjecture, now known as the James tree space JT ([46]). This space JT is an
ingenious variation of another famous space, also due to R.C. James but much
older, the classical James space J([45]). This J has the remarkable property of
being linearly isometric to its bidual, but not reflexive. In fact the canonical
image of J in its bidual has codimension one. Whereas J consists of sequences,
i.e. functions on N, essentially JT is obtained from J by substituting a tree for
the “base space” N. Independently J. Lindenstrauss constructed a function
space analogue of J, the James function space JF ([51]). This space also refuted
conjecture 1I: it is separable with non-separable dual, but /! ZJF. Somewhat
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later a third counterexample was built by J. Hagler, the space JH([34]).

Returning to conjecture I (which is false), observe that among the elemen-
tary spaces, the /7, 1<<p<oo, are the only reflexive ones. In fact they are even
uniformly convex, a much stronger property than reflexivity. Tsirelson’s exam-
ple was reflexive, but not uniformly convex. So this still left open the possibil-
ity that every uniformly convex space (hence every superreflexive space) would
contain an isomorphic copy of some /7, 1<p<<oo. However, this was also
disproved in the same year 1974, by T. Figiel and W.B. Johnson ([24]). Their
counterexample was a uniformly convex modification of Tsirelson’s space that
contained no /7.

Since Tsirelson’s space is reflexive, it leaves intact the following weakening
of conjecture I: every Banach space contains cq, I' or an infinite-dimensional
reflexive space (conjecture I"). In fact conjecture I” is still open (see e.g. [39]
for some recent work establishing the truth of conjecture I" for a certain class
of Banach spaces). In this connection we ought to mention also that conjecture
I" has long been known to be correct for Banach spaces with unconditional
bases, by another fundamental result due to R.C. James ([44]). This brings us
naturally to yet another famous and still open problem, namely, whether every
Banach space contains a subspace with an unconditional basis (we hesitate to call
this a conjecture). Clearly, if this were true, then conjecture I° would have a
positive answer, by the above-mentioned result of R.C. James. Finally, coming
back to the (false) conjecture II, observe that if conjecture I” is correct, then
so is the following conjecture 11" (which is open, as far as we know): if each of
the separable subspaces of a Banach space X has a non-separable dual, then X
contains a copy of I'.

What we hope to have made clear by the preceding remarks is that it is
important in the larger framework of the structure theory of Banach spaces, to
be able to decide whether a given Banach space does or does not contain an
isomorphic copy of /!. Let us now describe the progress that has been made
on this question since the negative results of 1974 (i.e. the subject of this
book).

The starting point of these developments was the famous Rosenthal /!-
theorem (also proved in 1974): every bounded sequence in every Banach space
either has a weak Cauchy subsequence or a subsequence equivalent to the unit
vector basis of /' ([72]). An immediate corollary of this (and of the Eberlein-
Smulian theorem) is that conjecture I” is correct for weakly sequentially com-
plete Banach spaces. In particular, when applied to the weakly sequentially
complete space L'[0,1] this corollary yields a new proof of a known result of
M.I. Kadec and A. Pelczynski ([48]) that a subspace of /'[0,1] is either reflexive
or contains a copy of /!. Rosenthal’s /!-theorem also led to a host of new char-
acterizations of Banach spaces (not) containing /' (see Ch. 4). Most of these
were proved by Rosenthal himself ([73]) and some in collaboration with E.
Odell ([62]). Roughly, these results express that if a separable space X is “not
too non-reflexive”, then X does not contain /! (and conversely). Being “not too



3

non-reflexive” can be interpreted in several ways. It may be read as “card X=
card X"”, but it can also take the form of various w -convergence and w"-
density properties of bounded sets in X** that cannot be satisfied if X™" is too
large in relation to X.

The original proof of Rosenthal’s theorem used combinatorial techniques
mostly, with Ramsey’s theorem figuring in the background (see [13]). Soon
afterwards another and eventually more fruitful approach emerged. The basic
idea was to look at elements of X and of X™* as functions on the dual ball
B(X"), equipped with its w”-topology. Clearly the elements of X are continu-
ous on (B(X'),w"). One of Rosenthal’s characterizations says that /' ¢ X iff
B(X) is w"-sequentially dense in B(X""). So in this case the elements of X"~
are first class Baire functions on (B(X"),w") (note that the topology of point-
wise convergence on B(X") corresponds to the w”-topology on X™"). The con-
verse is also true. This example suggests a more general type of question: given
a topological space T (e.g. T=(B(X ),w")) and a uniformly bounded set of
functions Z CC(T) (e.g. Z =B(X)), under what conditions does the pointwise
closure of Z in R” consist of first class Baire functions? Or of universally
measurable functions (i.e. functions measurable with respect to every Radon
measure on T)? When is Z sequentially dense in its closure, or sequentially
relatively compact? It turns out that these and other similar questions can be
nicely answered in this general context provided T is either compact, or a Pol-
ish space. In the special case when T=(B(X ),w’) and Z=B(X) one so
obtains measure-theoretical and topological characterizations of Banach spaces
(not) containing /.

Rosenthal himself initiated this approach to the /!-embedding problem
([73]). It was carried forward by J. Bourgain, D.H. Fremlin and M. Talagrand
in their fundamental paper [8], and then further perfected by M. Talagrand in
his memoir [92]. As we have just seen there are measure-theoretical and topo-
logical questions at stake here that transcend the Banach space context and
deserve to be studied in their own right. This we do in the first three chapters
of these notes. Banach spaces do not appear until Chapter 4. There we apply
the general theory to the specific case T =(B(X ),w"), Z=B(X), to obtain
the various characterizations indicated above.

In Chapter 5 and 6 we discuss a group of characterizations centered around
the Pettis integral and due chiefly to K. Musial and R. Haydon. The most
important ones are that X contains no copy of /! iff (i) X" has the Radon-
Nikodym property for the Pettis integral (this is called the weak Radon-
Nikodym property), and iff (i) X" has the Krein-Milman property for w’-
compact convex sets (ie. every w’-compact convex subset of X~ is the norm
closed convex hull of its extreme points). Both these characterizations should
be set off against the well-known fact that X is Asplund (i.e. every separable
subspace of X has a separable dual) iff (i) X~ has the RNP (for the Bochner
integral), and iff (ii) X~ has the KMP (i.e. each norm closed convex subset of
X" is the closed convex hull of its extreme points). Especially in the non-
separable case the proofs of these characterizations are not so easy. Here we
have chosen to include all technical details in the main text, rather that
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relegating them to the Appendices, as we have done with some other technical-
ities less central to our considerations

Roughly then, the difference between Asplund spaces and spaces not con-
taining /' is that between the Bochner and the Pettis integral, or between the
KMP and its restriction to w”-compact convex sets. That there really is a
difference, is shown by any one of the spaces JT, JF and JH. We have chosen
to present JT here (Chapter 8), because it seemed to fit in best with the results
already proved, and because a very satisfactory treatment was already avail-
able in [51].

Finally, Chapter 7 is devoted to two major results about strong regularity,
due to J. Bourgain and W. Schachermayer, respectively. The first one states
that X fails to contain /! iff X" is strongly regular (i.e. closed bounded convex
sets in X" admit small combinations of slices). Although the notion of strong
regularity was formally defined only recently, this result is already essentially
contained in the unpublished lecture notes [6] by J. Bourgain. The second
result by W. Schachermayer is quite recent and shows the relevance of strong
regularity to the still unsolved problem whether the KMP implies the RNP: if
X is strongly regular, then the KMP implies the RNP ([83]). When combined
with J. Bourgain’s result a new proof is obtained for the much older theorem
of R.E. Huff and P.D. Morris ([42]) that for dual Banach spaces the KMP and
RNP are equivalent.

After this brief outline it should be pointed out that there are many more
characterizations of spaces (not) containing /'. Some of them we have stated
with only little comment in the Notes at the end of each chapter. Including
and proving them all would have taken too much space and time. Finally, let
us mention that almost all of chapters 1 to 6 (and much more!) can be found
in M. Talagrand’s superb memoir [92]. In fact this is compulsory reading for
anyone who really wants to pursue this subject. But clearly, it can hardly be
recommended as a first introduction.

D. van Dulst
October 1988



Chapter 0

Preliminaries on Banach spaces

We have written these notes with a reader in mind who has taken the usual
basic courses in functional analysis, topology and measure theory, but who
possesses no special knowledge of any of these fields. Such a reader cannot be
expected to know everything that will be needed. In particular there are some
facts from measure theory and topology, not usually taught in standard
courses, that play a role in our development. For the convenience of the
reader we have collected these in several appendices, with full proofs. In the
present chapter we review what, ideally, the reader should know about Banach
spaces. In so doing we also establish our terminology and notation. For the
most part the material is standard and can be found in the general references
listed at the end of this chapter. Special results will be used only occasionally,
so there is no need to worry if one is not familiar with some of them. We shall
formulate them clearly, and indicate where proofs can be found.

Let X be a real Banach space. We use the notation B(X) for the unit ball
{x€X:lIxll<1} and S(X) for the unit sphere {x €X:||x||=1}. The dual or
conjugate space X~ is the vector space of all continuous linear forms on X. We
denote the value an element x* €X" takes at x EX by (x,x"). X" is a Banach
space when provided with the dual norm [Ix"|:= sup {(x,x"):x EB(X)}
(x" €X"). Similarly, one defines the second dual or bidual X™* as (X")". More
generally, the n dual X™ is the dual of the (n —1)* dual X~V (n=1,2,...).
Elements of X°, X", X", --- are written x",x"",x™™, ..., respectively.
Each x € X gives rise to an element myx €X"" defined as follows:

xCmxx)i=(x")  (x"€X).

It is easily verified that the map 7y : X—X" so defined is a linear isometry. If
it is surjective, then X is called reflexive. R.C. JAMES ([45]) has constructed a
Banach space, called the James space J, which is linearly isometric to its bidual
J™" without being reflexive. In fact the range of the canonical map «; has codi-
mension 1 in J** (see [E] for a detailed account).

An elementary fact that we shall need is that the adjoint 7y : X " —X" of
the canonical embedding 7y acts as the inverse of 7y on 7y X" . In formula:

mxomy = ly (:= identity on X").

The proof is a simple application of the definitions of 7y and 7y : for all
xEXand x" €X" we have



* * * * *
(X,mxomy' X ) =LTxX, Txy' X ) =(x ,7xX) =X, x ).

We shall often identify X with the subspace mx X of X" without even mention-
ing the map my.

Two topologies different from the norm topology are of fundamental impor-
tance. The weak topology on X, denoted o(X,X"), makes X into a locally con-
vex topological vector space. By definition a base of 0-nbhds consists of all sets
of the form

VO;x, . . ., Xn3€):= {x EX: [{x,x; )| <€, i=1,...,n},

where n €N, x1,...,x, EX and e>0 are arbitrary. For a dual space X~ we
have, in addition to the weak topology o(X",X™"), a second, generally weaker
topology o(X",X), called the weak" topology. A 0-nbhd base is given by the
sets

VO0;xy, ..., Xpi€):={x" €X : [{x;,x )| <e,i=1,...,n).

If X is reflexive then the weak and the weak™ topologies on X~ clearly coin-
cide. Convergence in the weak -, resp. weak™ topology is denoted by %5,
respectlvely W, Often when X is understood we denote o(X,X ) and
o(X",X) by w, resp. w". Observe that whenever dim X oo, each weak 0-nbhd

V(0;x7, - . . ,Xp;€) contains the nontrivial subspace ﬂ kerx; . In particular no

weak 0-nbhd is norm bounded, so o(X,X") dlﬁ‘ers from the norm topology.
Another consequence of this observation is that the weak closure of S(X),
denoted w-cl S(X), contains the origin. It is easily seen that every element of
X is w-contmuous on X. An important but slightly less trivial fact is that an
element x™ €X™ is w"-continuous on X" iff it belongs to X (=mxX).

By a subspace of X we shall always mean a closed linear subspace. If Y is
such a subspaoe then the weak topology o(X, X ) induces on Y the weak
toPology o(Y,Y"). This is so because every y° €Y" extends to an element of
X", by the Hahn-Banach theorem. Another consequence of the Hahn-Banach
theorem is Goldstine’s theorem ([C]):B(X) is w*-dense in B(X""). The latter set
is w'-compact. In fact Alaoglu’s theorem (which is essentially a coro]lary of
Tychonoﬁ"s theorem ) says that the unit ball B(X") of any dual space X is
w"-compact. In particular the sets {x* ||x lI<c}, ¢>0, are w”-closed, i.e. the
dual norm |I-ll on X" is w'-ls.c. (= w -lower-seml-contmuous) In fact this
property characterizes dual norms: a norm on X equivalent to the glven
(dual) norm on X', is the dual of a (necessarily equivalent) norm on X iff it is

w'-ls.c. An 1mportant corollary of Goldstine’s and Alaoglu’s theorems is that
X is reflexive 1ﬁ" its unit ball B(X) is w-compact (use the fact that the w’-
topology on X~ induces the w-topology on its subspace X). Equivalently, X is
reflexive iff every bounded set in X is relatively w-compact.
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A subset A CB(X") is called a norming set if llxl|= sup {|<x,x")|:x" €4}
for every x €X. If X is separable, then X has a norming sequence. Indeed, if
(x,) is dense in S(X), and if for each n €N an x,, €X" is selected so that
(Xn,Xn)= llxyll=1 (Hahn-Banach theorem), then {x,:n EN} is norming. Even
for some non-separable Banach spaces norming sequences (x,) exist. E. g if
X =I® (:= the bounded real functions on N, with the sup norm), take x,:=
evaluation in n (n =1,2,...). A set A CX (respectively, 4 CX") is called fotal
(resp. w"-total) if sp A(:= the linear span of 4) is dense in X (resp. w"-dense
in X°). Equlvalently, this means that A separates the points of X * (resp. X),
1e (x,x1) = <x x2) for every x €4 (resp. (x;,x Y= (x5,x") for every
x" EA) implies x| =x; (resp X1=x3). A norming set A CB(X) is clearly w'-
total. An important fact is that for separable X the topological space
(B(X"),w") is metrizable (besides being compact). Indeed, if (x,) is dense in
B(X), then

o B [Ty
d(x = 27" * *
) ngl 1+I(-xmx -y )l
is easily seen to be a metnc on X°. For nets (x,)CX" one verifies without
difficulty that x, W implies d (xa>x")—0, so that the d-topology is weaker
that the w’-topology. Since it is Hausdorff, and (B(X"),w") is compact, the
d-topology coincides with the w”-topology on B(X").

"y ex)

The next three results we mention are not so simple to prove. Nevertheless
they are standard fare. The Eberlein-Smulian theorem ([E]) says that a subset
A CX is relatively w-compact (in X) iff every sequence in 4 has a w-convergent
subsequence. Furthermore, by the Krein-Smulian theorem ([J]), a subspace Y of
a dual Banach space X is w -closed 1ﬂ' YNB(X") is w'-closed. As a corol-
lary, we have that an element x™ EX™" belongs to X (equivalently, x™ is w’-
continuous) iff its restriction to B(X") is w"-continuous (take Y = kerx ).
Finally, let KCX be closed bounded and convex. Then an element x'ex’
need not attain its sup on K, unless K is w-compact. But the x” €X" that do,
lie dense in X". This is the Bishop-Phelps theorem ([B]), (17]). In particular,
taking K =B(X), the set of elements of X" that “attain their norm”, is dense
in X"

A sequence (x,) in X is called a (Schauder) basis for X iff for every x€X
[o2]
there exists a unique sequence (a,) CR such that x= Z_Ila,,x,, (where this series

is supposed to converge in norm). Necessary and sufficient for a sequence
(x,)CX to be a basis for X (see [G]), is that x,7#0 (n =1,2,...), [x,]7=1 =X
(where [x,]3=; denotes the closed linear span of the sequence (x,)), and that
there exists a constant M <<oo so that

n ntm
I’:SapQHSZAl”:SlQXAlfOTauanEENland(ﬂlab ...,an+m€ER.
i=l1 i=1
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The minimal M with this property is called the basis constant. A basis is called
monotone if M =1, and normalized if ||x,ll=1 (n=12,..). Of course the
o0

coefficients a, in the expansions x = Ela,,x,, depend linearly on x. In fact
n=

Xx—>a,(x) is a bounded linear functional, usually denoted by x,. Hence for
every basis (x,) there is an associated sequence of coefficient functionals
(x,)CX", and we have

x= § (X,Xn) X, (XEX).

n=1
A basis (x,) for X is called boundedly complete if for every sequence a, CR,
o0 n
_§1a,-x,~ converges whenever (.glq,-xi),'f:I is bounded. In most sequence spaces,

such as /7, 1<p<oo, (to be discussed below) the unit vectors (e,) form a nor-
malized, monotone, boundedly complete basis. A typical basis that fails to be
boundedly complete, is the standard basis in co (:= the null sequences, with
the sup norm). A fact to be noted is that a Banach space X with a boundedly
complete monotone basis (x,) is isometrically isomorphic to a dual space ([G],
Prop. 1.b.4). In fact, if (x,)CX" is the associated sequence of coefficient func-
tionals, and if Z:=[x,], then it is not very hard to see that

Xox—>(mxx)|z€Z"

maps X isometrically onto Z”.

Let X,Y be Banach spaces and let T:X—Y be a bounded linear map. We
call T an isomorphism into (or an embedding) if T is a linear homeomorphism
onto TX, and an isometric isomorphism into (or an isometric embedding) if, in
addition, T preserves the norm. Y is called (isometrically) isomorphic to X if Y
is the range of such an (isometric) isomorphism from X. Notation: X~Y (resp.
X=Y). We call a linear map T:X—Y a quotient map if, in addition to being a
continuous surjection, it maps int B(X) (:={x:lIx||<1}) onto int B(Y). In this
case Y=X/kerT. Of course by the open mapping theorem, if T:X—Y is a
continuous surjection, then Y~X/kerT. The adjoint T":Y"—X" of a bounded
linear T:X—7Y is bounded, and also w"-w"-continuous (i.e. continuous for the
respective w”-topologies on X* and Y"). In particular, since B(Y") is w"-
compact by Alaoglu’s theorem, it follows that 7" B(Y") is w’-compact.
Observe that the second adjoint 7" : X~ —Y"" is also w*-w"-continuous, and,
moreover, satisfies 7" |x =T (as usual, we identify X and Y with 7xX and 7y Y
respectively). In fact, by Goldstine’s theorem 7" is uniquely determined by
these two properties. Let us also note the following duality: T is an (isometric)
embedding iff 7" is a continuous surjection (a quotient map); 7T is a continu-
ous surjection (quotient map) iff T* is an (isometric) embedding, If Y is a sub-
space of X and if one applies these observations to the identity embedding T’
from Y into X, and to the quotient map X—X/Y, one finds the canonical
isometries



Y'=x"/vL, (X/Y)=ytcx', Y=yt cx™

(Here the “annihilator” Y1 is the subspace {x"€X :(y,x*)=0 for every
y€Y}), and Y1+ =(¥Y1)L)) It should be remarked here also that the canoni-
cal isometric embeddings (X/Y)'=>X", ¥ =sX"" are homeomorphisms (into)
for the respective w'-topologies. A bounded linear map T:X—Y is called
(weakly) compact if TB(X) is relatively (weakly) compact in Y. It is well
known that T:X—Y is (w-)compact iff T":Y —X" is (w-)compact. For a
proof, see e.g. [92].

For any set I' and 1<<p<oo, /P(I) is the space of real functions x on I' such
that gr |x(v)P <oo, with norm [lx[l,:= ( grlx(y)F’)VP . 1®(") denotes the
Y Y

space of all bounded real functions x on I', with [lx||,:= sup |x(y)|, and co(T)
is the subspace of /*(T) consisting of all x such that {y ET:|x(y)|>¢} is finite
for every €>0. We write I,/ ¢, instead of /7(N), I°(N), co(N). Furthermore,
E, denotes P({1,..,n}). It is well known that co(T)" =!!(T), and P(T)"=/4(T)

for 1<p<oo and —1—+%= 1. For K compact Hausdorff, C(K) is the space of
all continuous r&fvalued functions f on K, with ||fll:= sup |f]: We usually

write C for C([0,1]). By the Riesz representation theorem C(K) =M (K), the
space all Radon (:= regular Borel-) measures p on K, with [|pll: =|u|(K), where
|u| denotes the variation of u. An element of M(K) is multiplicative on C(K)
iff it equals 8, (:= the Dirac measure at x) for some x EK. When (£,2,p) is a
measure space, LP(u)=L7(Q,2Z,p), 1<p<oo, is the space of p-measurable
functions f on € such that é[f}”dp.<oo, with ||fll,:= (é[ﬂpdp.)l/l’. L*®(p) is the

space of p-measurable, p-essentially bounded functions on {, with norm
Ill:= ess sup |f]- When (2,=,p) is the Lebesgue measure space [0,1] we

write LP and L® for LP(u) and L®(). LP(p)'=Li(p) for 1<p<co and
1,1

—+—=1.(L®(w)" consists of all finitely additive measures of bounded vari-
ation that vanish on the ideal of the p-null sets ([D]). A subset ® CL!(p) is
called uniformly integrable if “]gmo ?23 £[ﬂdp.=0, i.e. if for every €0 there is a

0>0 such that pE <& implies that élﬂdﬂ<€ for every f€®. The importance of

uniform integrability derives from the fact that a set ®CL!(u) is relatively
weakly compact iff it is bounded and uniformly integrable ([A], [D]). It is easily
seen that ® CL!(p) is bounded and uniformly integrable iff lim sup " L?\}

A-o0 fE
|fl[dp=0. (Some authors use the term “equi-integrable” for this lastfproperty.)
L*(p) is not only a Banach space, but also a (commutative) C"-algebra. Hence
by the Gelfand-Naimark theorem there exists a compact Hausdorff space A (the
maximal ideal space of L*®(u), or the Stone space of (£2,p)) such that L () is
isometrically algebra isomorphic to C(A) (see [I]). This representation of L *(u)
is sometimes convenient, especially when elements of L®(u)’ have to be con-
sidered. These are finitely additive measures on {2, but can also be regarded as
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Radon measures on A. In the case of /* =[*(N) it is simpler to identify /%
directly with C(B(N), where BN is the Cech-Stone compactification of N.

We now review some important properties of /! that will be taken for
granted elsewhere in these notes. First of all,

every separable Banach space X is (isometric to) a quotient of 1.

For the proof one simply takes a dense sequence (x,) in B(X) and defines
o0
T:I'sX by T((a,)): = E_IIa,,x,, ((az)EI"). Then clearly [IT||<1. Since TB(I")

contains all x,, we have TB(I')=B(X), so T is a quotient map. The same
proof shows that even if X is not separable, it is still a quotient of / I(T) for
suitably large T'. Another well-known property of /! is that

weakly convergent sequences are norm convergent (equivalently: weak Cauchy
sequences are norm Cauchy).

Indeed, if for contradiction we assume that some sequence (x™)C/! satisfies
Ix™||=1 (n =1,2,...) and x® -¥50, then one can show by passing to a subse-
quence and applying a standard perturbation argument (see [F] for details)
that without loss of generality we may in addition assume that these x™ have
pairwise disjoint supports S,:={k EN:x{"5£0}. Now if we define y =(y;) €I®

(]

by y:= sign x{" whenever k€ES,, and y,=0 if k¢ L_JIS,,, then

(x®,yy=|Ix®| =1 for all n EN, contradicting the assumption that x® —%>0.
This result immediately implies that the sequence (e,) of unit vectors in /!
has no w-Cauchy subsequence. On the other hand every bounded sequence
(x™) in ¢o(T) has a w-Cauchy subsequence. To see this, note that the union of
the supports of the x™ is countable, so that a diagonal procedure will produce
a subsequence that converges “pointwise”. Recalling now that ¢o(T')"=/!(T), it
is easily seen that such a subsequence actually is w-Cauchy. In fact on
bounded sets of ¢((I'), pointwise convergence is the same as weak convergence.
Similarly, on bounded subsets of /*(T), w”-convergence equals pointwise con-
vergence. In particular, we may conclude from these observations that

I' cannot be embedded in any c,(T).

We shall call a bounded sequence (x,)CX an I'-sequence if there exists a
constant ¢ >0 such that

n n
¢ D oi|<Il ¥ a;x;ll for all n EN and alley, . . . , e, ER.
i=1 i=1

Observe that in fact we then have, putting C:= sup ||x;l,
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n n n
¢ D)<l Fa;x;I<C 3oy for alln EN and allay, . . . ,a, ER.
i=1 i=1 i=l1

n
These inequalities say that the map T defined on sp(e,)CI' by T(g‘.la;ei):=

n
gla,-xi is an isomorphism. Therefore it extends uniquely to an embedding
T:I'-X. We have now proved the non-trivial half of the following statement:

I' embeds in X iff X contains an I'-sequence.
An immediate consequence is that
if X is isomorphic to a quotient of Y, and I' embeds in X, then I' embeds in Y.

Indeed, if T:Y—X is a continuous surjection, and if (x,) is an /!-sequence in
X, then any bounded “lifting” of (x,), i.e. every bounded sequence (y,)CY
such that Ty, =x, (n=1,2,...), will clearly be an /'-sequence in Y. The above
assertion obviously generalizes: /!(I') embeds in Y whenever /!(T) embeds in
X.

A large part of these notes will be directly or indirectly concerned with the
delicate question whether or not /! embeds in a given space X. There is also
the related question whether /! can be embedded in X as a complemented sub-
space (a subspace is called complemented if it is the range of a bounded linear
projection). The answer to this last question is much easier and has been
known for quite some time. It follows in a fairly straighforward way from the
basic sequences techniques developed by C. Bessaga and A. Pelczynski. We
refer the interested reader to (e.g.) the discussion in [C], in particular, to Th. 10
on p. 48.

We call a Banach space X injective (or a 9,-space) if the Hahn-Banach
extension theorem holds for bounded linear operators into X (rather than for
bounded linear maps into R), i.e. if for every Banach space Z and for every
bounded linear gperator T:Y—X defined .on a subspace Y of Z, there exists a
bounded linear T:Z—X so that T|y=T and [|T||=[TIl. The simplest examples
of injective Banach spaces are /* and L*(u) and, more generally, every C(K)
with K compact and extremally disconnected (this means that the closure of
every open subset of K is open). The proof that these C(K) are injective is
essentially the same as that of the classical Hahn-Banach theorem, if one uses
the fact that C(K), K compact, is order complete iff K is extremally discon-
nected (a Banach lattice is order complete if each order bounded subset has a
least upper bound). See [G] for details.

At one point we shall need to know also that C™*=C[0,1]"" is injective.
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Probably the easiest way to see this is to appeal to Kakutani’s theorems on
abstract L,- spaces and abstract M-spaces (see e.g. [G]). Since C is an abstract
M-space, C" is an abstract L'-space, hence isometric to some concrete L'(u).
But then C™*=L®(p), and therefore injective.

Recall that a point x of a convex set K is called extreme if K\ {x} is con-
vex. The Krein-Milman theorem says that if K is a compact convex subset of a
locally convex space (l.c.s.) then there is an abundance of extreme points. In
fact K can be recovered from its extreme points by taking their closed convex
hull: K =co ext K. If K is n-dimensional, then we even have K =co ext K and,
moreover, every point of K can be written as a convex combination of no more
than n +1 points (this is an old result of Caratheodory). There is a kind of
converse to the Krein-Milman theorem, known as Milman's theorem. It says
that extK is the smallest among the closed subsets F of K with the property
that coF =K. In other words, if coF =K (F CK closed), then ext K CF. The
Krein-Milman theorem can be sharpened considerably if K is metrizable. A
Radon probability measure p on K is said to represent a point x €K if
l/(fdp; f(x) for all fE€A(K), where A (K) denotes the set of all affine continu-

ous functions on K. In this case one also calls x the barycenter (or resultant) of
p. Bg if x=7x1+75x3 (x1,x2 EK), then x is represented by 58, +759,,.
Clearly a point may have many representing measures. It is now an easy exer-
cise to show that the following statement is equivalent to the Krein-Milman
theorem: every x €K (K compact convex in a lc.s.) is the barycenter of a
measure p supported by extK. Choquet's theorem strengthens this assertion
considerably when K is metrizable: every x €K is represented by a Radon pro-
bability supported by ext K (rather than extK). There is also a version of this
theorem for non-metrizable K, but we shall not need this (see [H]).

Let = be a o-algebra of subsets of set . A map F:2—X, X a Banach space,
(2] [e]

is called a (vector) measure if F( UIE,,)= EIFE,, whenever E, €2 (n =1,2,...)
n= n=

o0
and E,NE, =@ if ns=m. (The series ElFE,, is meant to converge in norm.)
n=
If this equality is required only for finite disjoint unions, F is called a finitely
additive (f.a.) vector measure. Suppose we are also given a nonnegative measure
p on Z. Then F is called p-continuous, or absolutely continuous with respect to
p (notation: F<<p) if ]imo FE =0. If Fis a vector measure (i.e. countably

additive), then F is p-continuous iff FE =0 whenever uE =0 (EE€Z). A f.a
vector measure F is countably additive iff lim FE,=0 for every sequence

n—>o0
0
(E,)CZ such that E,|D (this means E, CE,, n=1,2,..., and ﬂIE,,zg).
n=
An immediate consequence of this is that a f.a. F is ca. (= countably
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additive) if F is p-continuous. .
The variation |F| of a f.a. F is defined by |F|(E):= sup .§I|IFE,-||, where the

sup is taken over all finite partitions {E|,...,E,} of E into sets of 2. If
|F|()<co, then F is called a measure of bounded variation. |F| is always f.a.,
and is c.a. iff Fis.

A function f:Q—X is said to be weakly p-measurable (or scalarly p-
measurable) if (f(-),x") is p-measurable for every x" €X". A more restrictive
notion is that of strong- or Bochner p-measurability. By definition f is strongly
p-measurable if there exists a sequence (f,) of X-valued simple functions so
that lim f,=f p a.e. One can show that f:Q—X is strongly p-measurable iff f

n-—-»o0

is p-essentially separably valued (i.e. f(8\ N) is separable for some p-null set
N) and Borel measurable (i.e. f~!B is p-measurable for every Borel set B CX).
The famous Pettis measurability theorem says that for p-essentially separably
valued f, strong and weak measurability are the same.

For simple functions f =_§1xix}gi (x; €EX, E;€2) the Bochner integral

(B) éfd“ is defined to be ..%.lx,-y.E,-. Clearly the triangle inequality implies that
for each such f,

IB) [fdpll < [lfldp=": I,
Q Q

so the map f—(B) éfdp. €X is a contraction. If one now completes the space

of simple functions equipped with the norm [|-|l;, one arrives at the space
Lk(p) of X-valued Bochner integrable functions. The Bochner integral (B) éfdp,

of fE€Lk(p) is defined by extending the above contraction to the completion
L(p). More concretely, for f€Lx(u) one chooses a sequence (f;) of simple
functions so that s4II f— falldp—0 and defines (B)sgfdu:= lim (B) éf,,du (this

limit exists and is independent of the choice of (f,)). The inequality
I(B) [fdpll < [lIflldp = lIfll; persists for f& L(u).
2 2

A strongly measurable f belongs to L(u) iff é A lldp<oo.
If f€ L(y) then the formula

FE := (B) [ fdp:= (B) [xz-fdp
E Q

is easily seen to define a p-continuous vector measure of bounded variation (in
fact |F|(E)= ‘éllﬂldu, E€Z). X is said to have the RNP (= Radon Nikodym

property) with respect to (Q,2,p) if, conversely, every p-continuous X-valued
measure F of bounded variation is of this form. The integrand f is then called
the RN derivative of F. X has the RNP if it has the RNP with respect to every
finite measure space. It is known that X has the RNP iff X has the RNP with
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respect to the Lebesgue measure space [0,1]. For details on vector measures
and much more information the reader should look at [D]. Much is known
about spaces with the RNP. They have been characterized in terms of mar-
tingales and their geometry is known in great detail (see [B], [D], [17]). Let us
mention, by way of example, that X has the RNP iff every uniformly bounded
X-valued martingale defined on the Lebesgue measure space [0,1], converges
a.e. Since R has the RNP by the classical Radon Nikodym theorem, in partic-
ular every uniformly bounded real-valued martingale on [0,1] converges a.e.
This is the well-known martingale convergence theorem.

Vector measures are an important tool in the study of operators on function
spaces. E.g. if T:L*(u)—X is a bounded linear operator, then FE:= Txz €X
(E €2) defines a f.a. vector measure. Since T is determined by its values on
the characteristic functions xg, the f.a measure F in fact represents T. Various
properties of F are reflected in those of T and vice versa (see [D], Ch. VI). We
~ mention here one result of this type of analysis because we shall need it in
Chapter 4. Let T be as above. Then either T is weakly compact, or T acts as
an isomorphism on some subspace of L*®(u) isometric to /*. Since /* is non-
separable, the last possibility is excluded if X is separable. Hence: every
bounded T:L*(w)—X is weakly compact if X is separable. In particular, since
I® is itself an L*® (u)-space, every separable quotient of I is reflexive ([D]).
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Chapter |

Fremlin’s subsequences theorem

This chapter is devoted to a remarkable result of Fremlin’s that expresses a
certain dichotomy for sequences of measurable functions: a sequence of real-
valued measurable functions on a perfect measure space (£, Z, p) either has a
“good” subsequence or a “bad” one (or both). Here “good” means “u a.e. con-
vergent” and “bad” stands for “all pointwise cluster points are non-
measurable”. At the heart of the proof of this theorem are certain facts on
measures of free filters on N (considered as subsets of {0, 1}N) which we shall
develop first. For elementary background information on filters and on perfect
measure spaces the reader should consult Appendices 4 and F.

Although more generality is possible we shall consider filters on N only.
Every subset A C N may be identified with the point x4 € {0, 1}N. Hence a
filter ¥ on N identifies with the subset {x4:4 € %} of {0, 1}N. We shall make
these identifications without notational distinction, so 4 and ¥ will be con-
sidered as points, respectively subsets of {0, 1}N whenever this is convenient.
Points of {0, 1}V will generally be denoted as (e,), where ¢, =0 or 1. On
{0,1}N we put the (completed) product measure p:= (76 + 5 8N (B is
the Dirac measure at x). We are interested in the p-measure of certain filters 4.
Before we state a result on this, let us make some preliminary remarks. Con-
sider the map ¢:{0, 1}N — {0, 1}V defined by

o (e, €,...): = (1—¢, 1—e,...).
The following facts will be needed.

REMARK 1.1

(i) ¢ and ¢! are measurable and preserve y-measure.

(i) ¢ maps a subset 4 CN to its complement N\ 4. Hence ¢(%) N F= &
whenever Fis a filter on N. § is an ultrafilter iff ¢(%) U $= {0, 1)N. These
facts are direct consequences of the elementary properties of filters dis-
cussed in Appendix F.

(iii) If ¥ is free, then N\ {n} € F for every n e N, so N\ F € ¥ for every finite
F CN. Hence if ¢ = (¢/,) differs from € = (¢,) in only finitely many coor-
dinates, then € € 5 iff ¢ € 4. Formulated in probabilistic terms this means
that & ( and also its complement) is a tail event, i.e. for each k € N F has

0

the form = {0, 1}* X Gy, where G, C I {01 O

PROPOSITION 1.2. Let % be a free filter on N. Then



@» uF=0,
(i) p Fe{0,1),
(iii) p* F= 1 whenever F is an ultrafilter.

PROOF Let us first recall that a measurable tail event has p-measure 0 or 1.
The same is true for the inner and outer measures of the (generally non-
measurable) tail events ¥ and its complement, since it is easily verified that

pe = sup {uB:B C % a measurable tail event}
and , by complementation (or directly)
%= inf{uB : B D ¥ a measurable tail event}.

So i’ &, p« Fe {0, 1} and in particular (i) is proved.
To prove (i), note that by Remark 1.1 (ii) we have ¢(%) N F= . Since ¢ is
measure-preserving,

1= pO, 3N = pe (%) + pe F=2p &
So ps ¥< =, hence pu« F= 0 since we have just proved that u« 5€{0, 1}.
2 Just p

Finally, in the case of an ultrafilter we have ¢(%) U = {0, 1}N by Remark
1.1 (ii) and this implies

1=p0, IIN<p HPH+p" F=20"%F
Therefore p* = -;— and so p" = 1, by (ii). m|

COROLLARY 1.3 4 free filter is measurable iff p" =0 and non-measurable iff
p" §= 1. Free ultrafilters are always non-measurable.

PROOF: obvious. O

REMARK 1.4 It is well known that the map [0, 1]— {0, 1}N that sends ¢ €[0, 1]
to the sequence of its dyadic coefficients establishes an isomorphism between
the measure spaces [0, 1] (with the Lebesgue measure) and {0, 1}V (with the
complete measure p). Each free ultrafilter $C {0, 1}V then corresponds to a
non-Lebesgue measurable subset of [0,1]. There are 2° such sets because the
cardinality of BN\N is 2° and the free ultrafilters ¥ on N are in 1-1
correspondenceﬁN with the points ¢teBN\N, via the map
Fot:=N{4" :4 €9} (see eg. [30]. O

For the proof of Fremlin’s theorem we need a refinement of Prop. 1.2 (iii).
Let 0 <a<1 and let p, be the completed product measure (a §; + (1—a) 80)"'
on {0, 1}V, By the same argument sketched above for the special case a = 2

one shows that p, %, p,+ F€{0, 1} for any 0<a <1 when ¥ is free. It can also
be proved that Par, 65 = 0 but we shall not need this here. Part (iii) of Prop. 1.2
also generalizes: p, =1 when Fis a free ultrafilter. We do need this last fact,
but only for a = 27¥, k €N, which simplifies the proof somewhat.
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PROPOSITION 1.5 Let F be a free ultrafilter on N and let a =2"% for some
keN. Then p, 5= 1.

PROOF. Let us put K := {0, 1} and let us denote the points of K* by (€)=,
where € = (¢},). Consider the map ¢ : K¥ — K defined by

) ko
WE):= (I ¢)
, or alternatively,
k
WAy, ..., A= ,r_wl A;  (4; CN, i=1,.,k).

It is easy to verify that (iX) = p,. Let us also observe that (%) C . Hence
pa F= (W) F= @) UF) = @) &
(for the last inequality see the trivial half of the proof of Prop. A.7). Since

p F=1 by Prop. 1.2 (iii), it is now an easy exercise (cf. Cor. C. 3) to show
that (4*)° % = 1 also. This completes the proof. [

One final point needs to be explained before we can state Fremlin’s theorem.
Let @ be a set of functions defined on a set { and taking their values in a
topological space T. Then @ can be identified with a subset of T%. The topol-
ogy 7, of pointwise convergence (or the pointwise t;_)gology, for short) on ® is by
definition the topology that ® inherits from when the latter space is
;%uipped with the product topology. A ,-cluster point f of ® is an element of

satisfying f € @\ {f} (closure in T%). A cluster point of a sequence (f;) is a
cluster point of the set {f, :n € N}.

THEOREM 1.6 Let (R,Z,p) be a perfect probability space and let (f,) be a

sequence of R-valued measurable functions on @ (R:=R U {c0,—o0}). Then

either

(D (fs) has a p a.e. convergent subsequence or

(1) (fx) has a subsequence all of whose T,-cluster points are non-measurable
(hence in particular this subsequence is T,-discrete).

We shall first look at the special case of the Rademacher sequence (r,) on [0,
1], with the Lebesgue measure A. Here the situation is simpler and in fact
motivates the proof of Th. 1.6. Basically the general case is handled by reduc-
ing it to a situation that displays the essential features of the Rademacher sys-
tem.

Let us recall that r,(t) := sgnsin2"w ¢t (0<t<1;n € N). Clearly (7,) has no A
a.e. convergent subsequence, by Lebesgue’s theorem and the fact that
llIr, — rully =1 whenever n#%~m. Therefore, if the theorem is to be true, (r,)
should have no measurable 7,-cluster points. This we now show.

Suppose r is a cluster point of (r,). Then clearly r* := max(r, 0)
(resp.r~ := max(—r, 0)) is a cluster point of (r;") (resp. (r, )). We shall show
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that
N{irt=1=XN{r"=1)=1,
which proves that r is non-measurable. For reasons of symmetry it suffices to
show that A*{r* = 1} = 1. For this we consider the (measurable) map
[0,1]12 ¢t — (t):= (¥ (¥)) € {0, 1}N.
The independence of the r; easily implies that yA = p:= (%80 + %81)"'. By

Remark F.8 (iii) the 7,-cluster point r*

can be represented as r* = 7-lim r,
where F is a free ultrafilter on N. Now r* =limr, implies r* €1,-
el

c{ri :neAd)}foreach 4 €9, and therefore

r(t)e {rf (t):n e A} for every A € % and every ¢ [0, 1].
| Consequently
rt(t)=1 whenever {neN:rf()=1} €%

Regarding & as a subset of {0, 1}V again, this can be restated as follows in
terms of Y:

r*(t) =1 whenever Y(t) € &
or
(rtr=1}2¢'q

Let us observe now that A* (™! 9) = p” F by Prop. A. 7, since YA = p and A is
perfect. We now conclude that

Nirt=1)=2Ng '9=pF=1,
where the last equality follows from Prop. 1.2 (iii)

We are now fully prepared for the

ProOOF OF THEOREM 1.6 First of all we may assume that p has no atoms.
Indeed, every f, is constant on every atom and there are at most countably
many atoms, so if we can show that the f, restricted to the (perfect!) atomless
part of 2 have the required subsequence then at most a diagonal procedure (in
case (1)) is needed to produce the right subsequence on the full space 2.
Secondly, we may assume the f, are valued in [0,1], since R is
homeomorphic to [0,1]. Furthermore, by passing to a subsequence if necessary,

we may suppose that f, — f in L?(p). Replacing (f;,) by (f, —f), we then have
Jn—0. (Note that the “new” f, are now valued in [-1,1]). Passing to a further
subsequence let us also suppose that f; — g in L%(i). Then necessarily £, —g.

There are now two cases to be considered. If g =0 (u a.e.), then |f,|—0.
This easily implies ||f,|l; -0, and so by standard reasoning (f,) has a p ae.
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convergent subsequence in this case. If on the other hand g0 (note that g=0
p a.e.) then, as we shall show below, (f,) has a subsequence without any
measurable cluster points.

Let k eN (k will be fixed in a moment). By passing to yet another subse-
quence we may suppose that

(XU;>2“}) and (X{j;<—2"})
both converge weakly in L2(p), say to g, and g’;, respectively. Since

M <xysry+27% and fy <x(<-2) +27F
for all n € N, it follows by passing to the weak limit as n—co that

g<g +27% and g<ghk+t 27k pae. 1)
Now let us fix k so large that 4 :={g>2"**1} has positive p-measure. Then
(1) implies

g 8% >27% on 4, w4)>0.

We now restrict all functions to 4 (and normalize the restriction py of p to 4
for convenience) and show that the restricted functions f, have a subsequence
with no p,-measurable cluster point on A (then neither do the original func-
tions have a p-measurable cluster point).

To simplify the notation, let us put

P4

Q:=A4, p:= ,a:=2"%andg:=gu .2 =g Lo =ful..
BE and g:= gy,.8":= gk, Jal,

Then

w w

Xip>a) =& X(fo<—a) =& in L?(n), g, g'>a on Q.

We have now reached a situation roughly resembling that in the special case
discussed earlier (the functions x(;>,) and Xx(;<-, should be compared to
ri and r, , respectively). We could try to proceed as in the special case and
use the functions x(;>,) to produce a map ¢ from £ to {0, 1}". The problem

is that the sets X,,:= {f,=a} are not independent and therefore Yy will fail to

be a product measure. However, the fact that x(;>,) —g and g>a on Q
enables us to remedy this situation by passing to a subsequence of subsets
U, CX, = {fu=a} which is independent. Specifically, we construct induc-
tively a subsequence () of N and sets Uy € 2 so that

DU CX, (k=12,..),

(ii)P(Uk|U1,...,Uk_1)=a (k:1,2,)
(Here P denotes conditional probability. Explicitly (ii) means that for each 4
in the oc-algebra 3,_; generated by U,,...,Ur-; we have

WU, NA)=apA)
For the choice of n; and U,, observe that x>, —g implies
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pX, —;égdp.>a. Now choose n; so that pX, >a and then select U, C X, ,

U, €2 with pU; =a (remember that p has no atoms). Suppose now that
n; <..<m_; and Uy, ..., Uy_; have been properly constructed. Let A be
w

any atom of the (finite) Z-algebra %, _;. Then x(; >,y —g implies
WXy N A) = [X(7>a)- Xadp > [g Xadp = [gdp> apA.
Therefore we may choose n; > ny _; so that
KX, N A)>apA for every atom 4 of Z; ;.

Finally, for each such 4 let Uy C X,, N A, U, € 2 be such that wW(Uy) = apA.
Then the union of the Uy’s is clearly a correct choice for Uy. This completes
the induction.

We now pass to the subsequence (f,, ). For simplicity of notation we relabel
the £, and X, as f, and X,. Then we have U, C X, (n =1, 2,...). We are now
ready to finish the proof by showing that a 7,-limit f of (f,) along any free
ultrafilter ¥ satisfies p"{f=a}=1. Since the same argument can be used after
one more passage to a subsequence (use the sets {f,< —a}) to show that both
p'{f=a}=1 and p’ {f<—a}=1, the conclusion is that fis non-measurable.

We use the sets U, to define

231 - Wt):= (xy () € {0, 1}V,

The important thing to notice is that the independence condition
PWU|Uy, ..., Ug—1)=a means precisely that Y=,
(:=(ad; + (1—a)8p)N). Let t € Q be such that {(neN:z € U,}e % Then the
larger set {neN:t e X,} ={n eN:f,(t)=a} also belongs to &, so f(t)=a.
Considering ¥ as a subset of {0, 1}N again, this means that

f(t)=a whenever () € &,
or
{(f=a}Dy'G

The same argument we used in the special case (this time relying on Prop. 1.5)
now yields

F{fEa) =T 9 =p =1 O

NOTES Theorem 1.6 was first proved in [26]. The proof presented here follows
M. TALAGRAND’S memoir [92]. The preliminary material on measurability of
filters was developed by M. TALAGRAND in [91] (in greater generality). In that
paper he also proves that the condition in Fremlin’s theorem that the measure
space be perfect, is essential (cf. the notes to Ch. 5).



21

Chapter |I

Stable sets of measurable functions

Let (2, 2, u) be a complete finite measure space and let M(u) denote the set
of all u-measurable real-valued function on . In this chapter we shall intro-
duce and study p-stable subsets of M(n). These are sets that satisfy an explicit
criterion that implies their relative 7,-compactness in M(p). The converse
implication is not true (cf. Th. 2.7), although in some sense p-stability is close
to relative 7,-compactness in M(u), as is illustrated by Propositions 2.4 and
2.5. Let us emphasize that we regard M(p) as a subset of R%, so no
identification of p a.e. equal functions is made. Also all subsets Z of M(p) to
be considered in this chapter will be assumed to be 7,-bounded, i.e. relatively
compact in R®. When we say that Z is relatively 7,-compact in M(u), we mean
that 7,-cl Z C M(p).

Before we can give the definition of p-stability we must take a closer look at
what it means for a subset Z C M(p) not to be relatively 7,-compact (in M(y))
ie. to have a non-measurable 7,-cluster point. Let us observe first that if
A & Z, then there exists a B € 2 such that p B >0 and

pP(ANB)=pB and p« (4 N B)=0. Q)

Indeed, choose E, F€X so that ECACF and pE = A <p A = uF.
Then (1) is satisfied with B:= F\ E.

Next we prove a simple characterization of non-measurable functions that is
the key to the definition of p-stability.

LEMMA 2.1 Let f:Q—R be non-measurable. Then there exist numbers a <p
and a B € 2 with p B > 0 such that

L (BN {f<a}) =y (BN{f>B})=uB. o))

ProoF Choose y € R so that {f <<y} & 2. Then select E € = so that

E D {f<y} and pE = p’{f<y} (>0).
Then

W EN > =4 END (>r+5)) >0

and therefore there exists an n €N so that with B:= y+—’11- we have
p (E N {f>B}) >0. Now choose F € = so that
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FDOEN{f>B) and pF =p" (E N {f>B)).
Then B:= E N F satisfies p B>0 since B D E N {f>p}. It is now easily seen
from the definitions of E and F that for any a such that y<a<f8 we have (2).
Indeed, w(BN{f=Za})< pBN{>YH< wEN{{f>y})=0 and
e (BN (f<BY< - F\(E N {f>B))=0. O

Suppose now that a subset Z C M(p) has a non-measurable 7,-cluster point
h. By the lemma we may choose numbers a<<f and an 4 € 2, p4>0 so that
the sets

U={h<a}NA and V:={h>B} N A4

satisfy p* U = p” V'=pA. It is now a consequence of k being in the 7,-closure of
Z that

Vk,leN UKXV' C (U {f<a}X {f>B}. 3)
feZ
Let us note now that by Corollary C. 3 we have p; 1, (UK X V') = (ud )}k * (for
convenience we now write . instead of p* for the product measure). So (3)
implies

VK IEN g Uf<al X {f>BY) N 4K+ = Q. @)
feZ

DEFINITION 2.2 Let Z C M(p) be 7,-bounded. A set A4 € 2 with p4 >0 for
which there are numbers a<<f such that (4) holds is called a critical set (for Z).
Z is called p-stable (or stable when p is understood) if there exists no critical
set for Z. More explicitly, Z is p-stable if for all 4 € 2, ud >0 and for all
a<p there exist k, / € N such that

vt U ({f <a}X{f>B)) nA* Ty <uay . O
fez

The above argument shows that the existence of a non-measurable 7,-cluster
point of Z implies the existence of a critical set. Thus stable sets Z C M(u) are
relatively 7,-compact in M(p). Note also that subsets of stable sets and 7,-
closures of stable sets Z C M(u) are stable again (the union appearing in (4) is
the same whether taken over Z or over the 7,-closure of Z.)

It is not in general true that relatively 7,-compact subsets Z C M(p) are
stable. We shall show in Prop. 2.4 however that stable = relatively 7,-compact
for countable Z if the measure space is reasonable, i.e. perfect. The further res-
triction that p is a Radon measure on a compact Hansdorff space T and that
Z C C(T) allows an even sharper conclusion (Prop. 2.5). The final result of
this section (Theorem 2.7) shows that in a sense stable sets are “small”, namely
totally bounded for the (pseudo-metric) topology of convergence in measure.
This suggests that generally relatively 7,-compact sets are too “big” to be
stable. An example will be discussed in the Notes of a later chapter.
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We begin our discussion with a lemma that will be instrumental in produc-
ing non-measurable cluster points.

LEMMA 2.3 Let (2, 2, p) be a perfect atomless probability space and let (f,) be a
sequence of p-measurable functions. Let us also suppose that for each k € N we
are given a py-measurable subset G, C Q% with w, G, = 1. Then there exists a
collection {U,:v€l} of disjoint subsets of Q and a partition 1 =1, U I,,
I, NI, = @ of I so that

(i) VkeNWV.y,...,yeldistinct [t;eU,(i=1,...,k)=>t=(1,...,4)€G]
@) p(YU)=pU)=1,

(iii) Viel VneN f, is constant on U,.

PROOF

a) We first assume that 2=[0,1] and p is an atomless Borel measure on [0,1].
In this special case we show that we may take each U, to be a singleton (so
that (iii) becomes redundant). Denoting }J U, and }J U, by U; and U, respec-

tively, we then have two disjoint subsets U;,U, C[0,1] with g’ U, =p" U, =1
such that t=(t),...,%)eG, for any choice of finitely many distinct
ty,...,.€U:=U,UU,.

Let {B,:a<w;} be an enumeration of the Borel subsets of [0,1] with posi-
tive measure such that B,=B,,; whenever a is even. (w; denotes the first
uncountable ordinal; note that we are using the continuum hypothesis here,
since the cardinality of the enumerated set is c.) We may assume that each G
is invariant for all permutations of the coordinates. (If necessary replace G by
Gp= D {(toqrys - - - » to)) : (15 - - -, )EGL ), where the intersection is over

all permutations o of {1, .. .,k}. Note that G’y C G and that G’ =1 also.)
For t=(ty,..., 1) €[0,1P and u= (uy, . .., w) €[0,1F, p,keN, we use the
following notation:

tou:={(ty,..., tp,ul, N ,uk)e[O,l]P+k.
Now for all k,peN and every t€[0,1F we set
Gh:= {uc(0,1F :tou € G, 14}

Next we define inductively points ¢, €[0,1] for all a<w; so that the follow-
ing conditions are satisfied:
(iv) 1, € B,,
W) taFty if aFd,
(vi) for every peN and for every ¢€[0,1P whose coordinates are distinct and
belong to {t,:a<w;} we have
(VI)I te Gp’
(vi), for all keN G is measurable and p (G})=1.
The argument needed to properly define tge By N G; so that (vi), is
satisfied is a special case of that used in the induction step, so we omit it. Sup-
pose now that for some ap<w; the #,, a<<ay, have been defined so that (iv)
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and (v) are satisfied and (vi), and (vi); hold for all peN and all ¢€[0,1F
whose (distinct) coordinates belong to {¢,:a<ap}. Now fix such peN and
t€[0,1P and define

A= {x€[0,1]: tox €G, +1 and Vk eN G}* is measurable and p, Gi* =1}.

We claim that 4, is measurable and pd,=1. For this it suffices to prove that
for each fixed keN

A, :={x€[0,1]:t.x€G, + and G¢* is measurable with p; Gi* =1
3 /2

is measurable and pd,,=1. But for all choices of xe€[0,1] and of
u=(uy, ..., u)el0,1 we have that

ue G iff xoue Gy 41
and
tox € G 4 iff xeGY.

Since by the induction hypothesis Gi and G},; are measurable with

MGY) = e +1 Gk +1 =1, it now follows from Fugini’s theorem that A4, is

measurable with pd,, = 1. Therefore also 4, = krle,,k is measurable with

pA, = 1. So far we have considered a fixed ¢€[0,1P with distinct coordinates
in {t,:a<ap}. Since there are only countably many such ¢'s, also N 4, has

t
measure 1. We now pick ¢, €(NA4,)NB, and distinct from the countably
t

many ¢,,a<aq already selected, which is possible because p is atomless. The
ty, a<ay clearly satisfy (iv) and (v). The fact that (vi); and (vi), are satisfied
for every peN and for every t€[0,1F with distinct coordinates in {z, : a<<ap}
is clear from the construction and from the assumption that the Gy are permu-
tation invariant. This completes the construction of the ¢,, a<w;.

We now put

Uy:={tq:a0dd}, Uy:={t,:aeven} and U:=U, U U,.

Since ¢, € B, and B,=B,4; for a even, both U; and U, meet every B,, so
p Uy = p Uy=1. It is clear that for every keN and distinct ¢}, . .., € U we
have (¢4, . .. ,%)eGy.

b) Let us now consider the general case of a perfect atomless probability
space (2, 2,u). By shrinking G a bit if necessary we may suppose that each G
belongs to the o-algebra X, generated by the product sets
A X -+ XA, CQ, with 4;€2(i=1,...,k). Fix keN. If D denotes any
countable collection of such product sets, and (D) is the o-algebra generated
by D, then %JE(D) (union over all D) is a o-algebra. It therefore coincides with

2. Hence G, €2(D) for some D. Repeating this argument for each k€N, the
conclusion follows that there is a countable set {4,:neN}CZX so that each Gy
belongs to 2§, where 3 is the o-algebra generated by the 4,, n=1,2,.... By
suitably enlarging the set {4,:neN}, but keeping it countable, we may in
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addition assume

(a) that 3, has no atoms and

(b) that the A, separate points that are separated by the f, (ie. if
Ja(t1)FSn(t2) for some neN, then there is an A4, with ¢, €4,,, t, €A4,,).

Now define ¢:2—[0,1] by ¢:= §]3“"x4" and for each keN let

¢ : Q¥ -[0,1} be the product map. Obviously each ¢* is measurable with
respect to Z¥(k = 1,2,...). In fact more is true. The special nature of ¢ easily
implies that ¢ !®([0,1)=2y and similarly (¢)"' B(0,1F) = =§.
(k =1,2,...) (B([0,1F) denotes the o-algebra of the Borel subsets of [0,1}.) Let
us denote the ¢-image of p by ». Then ¢*u* = »*. It follows from the preceding
observation and from (a) that », hence also *, has no atoms. Furthermore
there exists for each k a Borel set G, C[0,1}F with (¢*)"! G/, = Gy, so
VkG'k = }Lka =1L

By what we have proved under a) for the space ([0,1],») there are two dis-
joint sets U’;,U’, C[0,1] with »" U’y =»" U3 =1 so that t'= ('1,...,t%)
€@’y for every choice of finitely many distinct ¢';, . . ., ¢, € U':= U’y U U',.
If {u',:1el,} and {u’,:1€l,} are enumerations of U’; and U’;, respectively,
with I} NI, = @, let us define

U:=¢ W foreel:=1,UI,.

Clearly these sets satisfy the requirements of the lemma, where (ii) follows
from Prop. A.7 and (iii) from (b) above (note that ¢ separates points that are
separated by the f,). O

We now apply Lemma 2.3 to show that for sequences on perfect measure
spaces stability is the same as relative 7,-compactness.

PROPOSITION 2.4 Let (R,2,1) be a perfect probability space and suppose (f,) is a
relatively T,-compact sequence in M(p). Then (f,) is p-stable.

PROOF. Suppose not. Then there exist an 4 € 2 with p4 >0 and numbers
a < B so that

Vk,1eN iy (Hey N AT = a)*,

where
Ho= U (<ol X{,>B) (kI=12,.).
n=1

(Observe that the Hy; are measurable since (f,) is countable; in the uncount-
able case they may not be and Lemma 2.3 is useless.) It is important to notice
at this point that the critical set 4 is necessarily atomless, since for any atom
B C A the sets Hy; are clearly disjoint from B**! while p; 4, B**/>0.

We now apply Lemma 2.3 to the measure space (4,24,p4) (note that py is
perfect by Prop. A. 2), with
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Go:=Hypy NAXK, Gy yy =A*H! (k=1,2,..).

Let the U,, tel =1, U I, be as in Lemma 2.3. The conclusion is that when-
ever F1,F, C A are sets of k points each (keN arbitrary), the points of F;
being chosen from distinct U, with «€1; (i =1,2), then there is a function fr,
in the sequence (f,) such that

fr,r, <aon F, and fr, r, > B on F,.

By Lemma 2.3 (iii) these inequalities hold not just on F; (i =1,2), but on the
unions of the U, from which the points of F; were chosen. If we partially order
the set of pau's (F1,F3) by (F\,F,) <(F'y,Fy) iff F{ CF’| and F, CF’;, then
(fr, r,) is a net. It is now clear from the above that the net (f, r,), hence the
sequence (f,), has a 7,-cluster point f satisfying

f<aon |y U, and f=Bon YU.
I, I,

f is non-measurable by (ii) of Lemma 2.3, contradicting the relative 7,-
compactness of (f,) in M(w). 0O

We now specialize further and consider a compact Radon measure space
(T,Z,p). If ZCM(u) consists of continuous functions, then the sets
fUZ{f<a}" X {f>PB} are open, hence measurable for the Radon extension

e +1r Of g4 discussed in Appendix C. This fact can be used to prove the
following result.

PROPOSITION 2.5 Let T be compact Hausdorff, p a Radon measure on T, and let
Z CC(T) be T,-bounded. Then the following are equivalent.

() Z is relatively T,-compact in M(p),

(ii) every countable subset of Z is p-stable,

(iii) every countable subset of Z is relatively T,-compact in M(p).

ProoF.
() = (iii) is trivial and (iii) = (ii) is a consequence of Prop. 2.4 (recall that p
is perfect by Prop. A.4 ). We now prove (ii) = (i).

Suppose for contradiction that the ,-closure of Z contains a non-
measurable . Then by Lemma 2.1 there exist an 4€X with u4>0 and
numbers a<<f such that the sets

U:={h<a} NA and V:={h>B}N A

satisfy p'U =p'V =pA. This implies by Cor. C.3 that Vk,/eN p;yr
(U"XV’) (nA)Y< . Note also that

UkX V! C U (f<a} X {f>B) *kI=1,2,.),

by the definition of U and V and the fact that her,-cl Z. The sets
U {f<a}" X {f>B) being open, hence p 1, z-measurable, we therefore have
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Bk +1,R ((fUZ{f<a}kX{f>B}’) NAK) = @AYt (kI=1,2---).

By regularity, for each pair k,/ € N there exists a s-compact set Cy; contained
in fUZ({f<a}" X{f>BY)NA**! satisfying py ;g Cis = (ud)*'. Since the
f€Z are continuous there is a countable subset Z; ; CZ such that
Cii C U ({(f<a}X{f>B) n4**Yy (k1=1.2,..).
fezy,

The set on the right is clearly in the product o-algebra 2, Putting

Z'.:= |J Z, and observing that Z’ is countable, we conclude that
k,leN

VkJeN (U {(f<a)*X{f>B)) N4kt = (ua)+.

fezZ'

This means that the countable subset Z’'CZ is not stable, contradicting the
assumption. O

We now come to the main result of this section: stable sets are relatively
compact in M(u) for the (pseudo-metric) topology 7,, of convergence in meas-
ure. This remarkable result is true without any assumption on the measure
space. The proof uses a tool that is explained in the next lemma.

LEMMA 2.6. Let (2,2,1) be a probability space and let T' be any subset of Z. If f
is a weak L2(w)-cluster point of {x4 : A€T'} and if B:={f>0), then

VkeN p; |J (4 N BY =@B).
Ael

PrOOF. Fix keN. Observe that the function f*) on Q* defined by

k
f(k)(tla < th):::il;llf(ti) (tl’ D) tkEQ)

is a weak cluster point in L2() of the set {x,,;c :Ael'}. (This is because the
functions g of the form g(t),..., %)= .I_I]g,-(ri) (t, ..., ) with

gis - - - » gr€L?(p) are total in L2(;).) Since obviously {f*)>0} = B* we see
now that it suffices to prove the lemma for k =1.

For this let CeX with CCB and pC>0 be arbitrary. Then
[fdu = sgfxcdp,>0. Also {fdu is in the closure of {éxA ‘Xcdp:A€T}, so

wA N C)>0 for some Ael'. Thus AUI‘(A NB) intersects every C CB with
€
pC>0. This proves the assertion. O

THEOREM 2.7 Let (2,2,1) be a probability space and let Z CM(p) be p-stable.
Then the identity map (Z,7,) —>(Z,,) is continuous. In particular Z is totally
bounded for t,, (and Z" = Z™ t,,-compact).
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PrROOF Suppose not. Then there is a net (f,),c; in Z that converges to some
g€ Z pointwise, but not for 7,,. Passing to a subnet if necessary, we may then
assume that for some A>0

élfa—g| Aldp= X for all a€l.

One more passage to a subnet now yields either
[(fa—g)* Adp >%Aor$(fa ~g)~ Aldp=7\ for all acl.
Let us suppose we are in the first case and let us pass to a further subnet in

order to achieve that ((f,—g)" Al),; converges weakly in L2(p), say to
heL?*(w). Then of course

[ hdp= %A >0.
Now let us fix @ >0 so that p{h>3a}>0. Next let us choose a set 4A€X

with p4 >0 and a ceR so that

AC{h>3a} and A C{c—a<g<c}. ®)
We claim that A4 is a critical set, contradicting the stability of Z. We prove
this in two steps.
StEP 1. First we show that
every w-cluster point of X1~ +4) is =aon 4. ©6)

For the proof of this, let BCA, BeZ with pB>0 be arbitrary. Since w-
lim (f,—g)* Al=h and ghdp > 3apB it follows that there is an ap €/ so that

é(fa —g)" Aldp> 3apB for all a=a. ©)
Let us observe next that we have

W{fe=g+2a} NB)=auB for a=ay. ®)
Indeed, this follows from (7):

ot - ot
dapB<[(fu=g)" Ndp= [ (fu=g)" Aldu+

— o)t
+ {f,<31[2a}ﬂB(fa g)" Ny
Sw{fa=g+2a}NB)+ 2apB (a=ap).

Since c —a<g on B by (5), (8) implies that for a=>a,
£X{f,>c+a}dﬂ. =pu{fa=cta}NB)=u{fy=g +2a}NB)=apB = £ady~

The conclusion (6) is now immediate, since B CA4 was arbitrary.
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StEP 2. We now fix k,/eN and prove that
B+ U (F<cX(f=e+a)) N 44 = (ua )+, o)
fez

This shows that 4 is critical for Z, contradicting the stability assumption. Fix
§=(s1, ..., 5) €A and put

Z':=(feZ:f(s))<cfori=1,...,k}. (10)

Since by (5) we have g(s;))<cfori=1, ..., k, the set Z’ is a 7,-neighborhood
of g relative to Z and therefore f, € Z’ for sufficiently large acl. It follows
now from the preceding lemma and from (6) that ,
p;‘fU ({f=c+a) n4')=(4). Qan
eZ'
What we have proved now is the following: let W denote the union appearing
in (9). Then for each s =(s|, . . . , s, )€A* the section

We={(tr,...,t)€A :(s1, ..., Skst1s ..., 1)EW)
satisfies p; W, = (ud) (this is (11). Clearly this implies (9). O

NOTES The notion of p-stability has its origins in work of D.H. FREMLIN and
M. TALAGRAND ([28], [91]). As far as we know it was first systematically stu-
died by M. TALAGRAND in [92], although it seems that in the background D.H.
Fremlin has contributed much in the form of unpublished notes (see the refer-
ences in [92]). Much effort is spent in [92] to prove results under assumptions
weaker that the continuum hypothesis. We have taken as much from [92] as we
need for a thorough discussion of the /' embedding theorems (this is our main
concern), with total disregard for such subtleties as weakening the continuum
hypothesis.
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Chapter llI

Topologically stable sets of continuous functions

Everywhere in this chapter (unless mention is made of the contrary) T is
either a compact or a Polish space and Z CC(T) a (uniformly) bounded set of
continuous functions. We know what it means for Z to be p-stable, for a
Radon measure u on 7. We may also consider sets that are p-stable for every
Radon measure p. It turns out that for sets Z of continuous functions this
notion of “joint” stability has a topological formulation: topological stability.
The main theorems of this section express a certain dichotomy: if Z is topolog-
ically stable then Z is “nice”, i.e. relatively compact in many different senses;
if not, then Z contains an /!-sequence, which implies various forms of non-
compactness.

DeFINITION 3.1. A closed set LCT, L#@ is called topologically critical (-
critical) for Z if there exist numbers a<<f such that
Vk,leN (| {(f<a}*X{f>BY)N L¥*!is dense in L**". 6))
fez

Z is called topologically stable (t-stable) if no t-critical sets exist. ~_[1

Observe that subsets of z-stable sets are t-stable again and that Z:= 7,-cl Z
(taken in C(T)) is ¢-stable if Z is.

It is easy to see that ¢-stability implies joint stability for all Radon measures.
The converse will be proved later (cf. Cor. 3.6).

LEMMA 3.2. If Z is t-stable then it is p-stable for every Radon measure p. on T.

PrROOF. Suppose for contradiction that 4 €2, p4 >0, is a critical set for some
Radon measure p, so that some numbers a<<p:

VhIEN pivr U ((F<af X{(f>BHN 4k = iy, @)
fez

Since p4 = sup {uK:K CA compact}, we may suppose that 4 is compact. Let
us further assume, as we clearly may, that 4 is self supported. Observe that
then also A%t/ is self supported, relative to w4, for all k,/eN. But now (2)
implies that
VkJleN J(({f<a}X{f>B) N A**")is dense in 4**.
fez

So A is r-critical for Z, contradicting the hypothesis. ~ [J
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The plan for the rest of this chapter is now as follows. We first study sets Z
that are not t-stable. The main result here will be that such Z contain /!-
sequences, and are not relatively Tp-compac't in M (p), hence not p-stable, and
not even totally bounded in L'(u), for certain Radon measures on T (cf. Th.
2.7). We then prove the main result for -stable sets Z: each sequence in Z has
a 7,-convergent subsequence. From this other nice properties will follow. The
last part of this chapter is devoted to another compactness result: for Polish T
the space 9, (T) of bounded first class Baire functions on T is “angelic” for the
pointwise topology (see Def. 3.12).

§ 1. THE NON ¢-STABLE CASE.

An essential tool in the study of non ¢-stable sets is the following notion of
independence.

DEFINITION 3.3.

(i) A (finite or infinite) sequence of pairs (A,,B,) of subsets of a set £ (no
topology) is called independent if for each pair of finite disjoint subsets
P,Q CN we have

(N4]n[N&)~e.
neP neQ

(i) A (finite or infinite) sequence of functions (f,) on § is called independent on
A (where A4 is a subset of Q) if there exist numbers a<<f such that the
sequence of pairs ({f,<a}N A4, {f,>>B} N A) is independent. In case we
want to specify a and B we say that (f,) is (a, 8)-independent on A. If A is
not mentioned, independence means independence on . Clearly indepen-
dence on 4 implies independence. a

ExAMPLE. Let (r,) be the sequence of the Rademacher functions on [0,1]= T.
Put 4,:={r,=1}, B,,:={lr,,= - }}. Then (4,,B,) is independent in the sense
of (i). Taking e.g. a=—7, B=7 we see that (r,) is an independent sequence
in the sense of (ii). g

PROPOSITION 3.4 If Z is not t-stable, then Z contains an independent sequence.
ProOF. Let LCT be a t-critical set and let a<<f be such that (1) is satisfied.

The key to the inductive proof below is the following reformulation of (1):

For every neN and for every n-tuple U,, . . ., U, of non-empty open
subsets of L there exists an feZ that on each U; (i =1, . . ., n) attains 3
values <a and values >p.

To see that (3) follows from (1) it suffices to observe that (given neN and
Ui, ..., U,) we clearly have
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Ui X -+ XU XU X -+ XU, 0| U {f<a)*X{f>B}"

feZ

+* .

Obviously also (3) implies (1). The easy proof is left to the reader.

The construction of the independent sequence is now easy. For n =1 take
U,=L. Then by (3) there is an f;€Z such that U, N{f1<a}# & and
U,N{f1>B}+#* 3. Suppose f}, ..., f, have been selected so that (f;)!-; is
(o, B)-independent on L. To choose f, +; we apply (3) to the 2"-tuple of non-
empty open subsets Up N L, where

Up:= [ﬂ{ﬁc<a}] N [kQP{ﬁ>B}] forevery PC{1,...,n}.

keP
(Observe that Up N L#@ by the induction hypothesis.) Let f,+;€Z be as in
(3) for these Up N L. Then both {f, +)<a} and {f, +,>B} meet each UpNL,
ie (f)r! is (a,B)-independent on L. This completes the induction and the
proof. [

PROPOSITION 3.5.

(D if (fa) is a (uniformly) bounded independent sequence of function on any set
Q (no topology), then (f,) is an I' -sequence for the sup norm.

(i) if T is Polish or compact and Z CC(T) is not t-stable, then there exists a
Radon measure p on T such that L'() is isometric to L':= L'[0,1] (nota-
tion: L'(u)= L") and so that Z is not totally bounded in L'(p).

Proor. (i): Let a<B be such that (f,) is (a,B)-independent. Since the
sequence (f,) is bounded, it will be an /'-sequence if we can show that for

every finite sequence ay, . . . , a; we have
k k
1
12 aifill =5 (B—a) 2 ail @
i=1 i=1

We distinguish two cases.

CasE 1: (a+ﬂ)_§ka,- =0.

Putting P:={i<k:q;=0} and Q:={i<k:;<0} we then have by the
(a, B)-independence of (f,) that

(NUi<a)n [N 5> #2.
ieQ ieP
For any ¢ in this intersection,

ﬁ o fi(O)=BD oy +a D o= %ﬁ ia,- + _@;_a ﬁ“ o] =
i=1 i=1

i=1 ieP ieQ
1 k .
=5 (B—a) zl |e;|, proving (4).

CASE 2: (a+f) Ek a; <0.
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If we replace the o; by -a; we are in case 1 and it follows that for some
seT,

X 1 k . .
= 2 6ifi(6)>7 (B~ ) 3 |ail, again proving (4)

(ii): Let us first assume that T is compact. By Prop. 3.4 Z contains a sequence
(f») which is (a,B)-independent for some a<<B. Let us observe that the sets
{fa<a}U{f,=B} (n=1,2,...) satisfy the finite intersection property. Hence

K:= 6} (fi<a}U{f,>B))% @ (and compact).

h
We now define a map K— {0,1}N with components 4, by

0 if f,(t)<a,
ho(t):= {1 it £y=p0=12-)

Since each A, is continuous and (by the independence of (f,)) AK is dense in
{0,1}N, h is a surjection. Letting » denote the product measure (58 +58 ¥
on {0,1}N, we know from Prop. B. 1 that there is a Radon probability p on K
(which may be regarded as a Radon measure on 7) such that & p=» and with
the additional property that L'(u)=L'(v)= L' (L' denotes (L'[0,1],A); the
isometry L'(p)=L' is standard). Since for m=%n the set
K N {fy<a} N {f,,=P)} is the preimage under h of {(¢)€{0,1}¥:,=0 and
en=1}, we have p(f,<a} N {f,=p}=7. It immediately follows that

e — frnll1 2%(,3—01), so that (f,) is not totally bounded in L'(u). Neither is Z.

In the case that T is Polish only minor modifications are needed. We again
choose an independent sequence in Z as in Prop. 3.4, but with a little more
care. At each step in the induction process we determine a closed set 4, CT so
that (for some complete metric) A, intersects each of the Up with
PC{l1,...,n}in a non-empty set of diameter < % (simply intersect each Up

with a suitable ball). We then proceed with the sets Up N A4, (rather than Up)
to define the next f; ;. Returning to the present proof, we now define

K:= 61({f,,<a}u{ﬁ,>ﬁ}ﬂA,,).

Then K is closed and non-empty and for each neN can be covered by finitely
many -:T-balls. Hence K is compact and the preceding proof can be repeated

to produce a measure p. on K with the required properties. This pu can then be
regarded as a Radon measureon 7. O

COROLLARY 3.6. If Z CC(T) fails to be t-stable, then there exists a Radon pro-
bability p on T with L'(uy=L', and sequence (f,)CZ such that (f,) is not
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relatively 7,-compact in M(w). (In particular Z is not jointly stable for all Radon
measures.)

ProoF. By the proof of Prop. 3.5 (ii) there exists a Radon measure g on T so
that L'(u)= L', and a sequence (f,) in Z so that (f;) is not totally bounded in
L'(). Theorem 2.7 now implies that (f,) is not p-stable. Hence by Prop. 2.4
(f2) is not relatively 7,-compact in M (p) since p is perfect by Prop. A.4. Alter-
natively, one might use Fremlin’s theorem 1.6 for the last conclusion: since (f,)
is not L!(p)-totally bounded, some subsequence has no p a.e. convergent
subsequence (by Lebesgue’s theorem) and therefore all the 7,-cluster points of
some further subsequence lie outside M(p). O

§ 2. THE 1-STABLE CASE.

Before we can treat this case some preliminaries must be dealt with. For any
topological space T we denote by B;(T) the set of first class Baire functions
(see Appendix E) and by %,(T) the set of all functions f on T having the pro-
perty that for each closed L CT the restriction f; of f to L has a point of con-
tinuity. A classical result of Baire (see Th. E.1) states that ®; (T) C B,(T)
whenever T has the property that every one of its closed subsets is of the 2™
category in itself (example: compact, or complete metric 7). If T Polish, so in
particular if T is compact metric, then ®,(T) = B,(T).

From now on we restore the convention that T always denotes a Polish or a
compact space.

Here is a characterization of %,(T) with some “stability flavor”.

LeMMA 3.7. The following are equivalent for a function fon T.

@) feBT),
(i) for every non-empty closed LCT and for all numbers a<<f the sets
LN{f<a} and LN{f>pB} are not both dense in L.

PRrOOF.

@ = @): if LN{f<a}=LN{f>B} =L then f; has no continuity point.

(if) = (1): let L CT be an arbitrary closed set and let ((a,,8,)) be an enumera-
tion of all pairs of rationals (a,8) with a<<f. For each neN consider the sets

A,:=LN{f<a,} and B,:= LN{f>B,).

Observe that each L, -—A N B N B, is nowhere dense in L. (If UCL,, U rela-
tively open in L, then U=4,NU = B,NU, so f7 has no continuity point,
contrary to the assumptlon) Now it follows from Baire’s category theorem

that n (L\Ly)= L\ UL =:G is a dense G5 in L. It is clear that f is

contmuous in every pomt of G (every discontinuity point of f; must be in
some L,). O
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The next lemma makes clear how (ii) above relates to stability.

LemMMA 3.8. If ZCC(T) is t-stable, then Z is relatively 7,-compact in B,(T)
(=%(T) if T Polish).

PrOOF. Suppose for contradiction that A is in the 7,-closure of Z, but
h &%,(T). Then by Lemma 3.7 there are a closed subset L CT and numbers
a<pf such that

LA{h<a)=LN{h>B} =L
But this clearly implies that
Vk,IeN | ({f<a) X {f>B}) NL¥*")is dense in L**/,
feZz

- contradicting the z-stability of Z. O

We now prove a rather general result that will be helpful again when we dis-
cuss the fact that ®,(T) is 7,-angelic for Polish T. The result says that for T
Polish, and (f,) a sequence that is relatively 7,-compact in ®(T) (= the Borel
functions on T), every pointwise cluster point of (f,) in H(T) is the 7,-limit of
a subsequence. Observe that for r-stable Z C C(T), pointwise cluster points are
automatically in %(T) by the above lemma, so that for z-stable sequences in
C(T) (T Polish), the 7,-closure coincides with the 7,-sequential closure.

PROPOSITION 3.9. Let T be Polish and let D CHB(T) be countable and relatively
p-compact in B(T). Then every 7,-cluster point of D in H(T) is the limit of a
subsequence of D.

ProoF. Let feB(T) be a 7,-cluster point of D =(f,). We may assume f=0,
and f, =0, considering (|f, — f]) instead of (f,).

Step 1. We show in this step that it is enough to prove the assertion under the
following extra assumption:

D is a t-stable sequence in C(T). )
Let us consider the map
T3t —> F@):=(f,(t))eRN.

Put S:=FT. Since F is Borel by Lemma D. 11 (i), S is analytic (Prop. D. 12).
Let e,(n=1,2,...) be the n™* coordinate function on S CRN. Then e,oF = fa
(n=1,2,..). Let us now note the trivial fact that the map g—goF is a
homeomorphic embedding of RS into R” (for the product topologies). The
following consequences are immediate:

() the 7,-cluster points of (f,) are precisely the functions of the form goF,

where g eR® is a 7,-cluster point of (e,);
(i) the 7,-convergence of a subsequence (f,) is equivalent to the 7,-
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~ convergence of the corresponding subsequence (e, ) on S.
Let us also recall (Cor. D. 13) that
(iii) a function g on S belongs to B(S) iff goFeB(T).

The fact that S is analytic means there is a Polish space R and a continuous
surjection G : R — S. Notice that the functions e,oG are continuous on R and
that the above statements (i), (ii) and (iii) also hold with 7, F and (f,) replaced
by R, G and (e,0G), respectively. Finally let us observe that (e,0G) CC(R) is
t-stable by Cor. 3.6, since all its 7,-cluster points are Borel by (i), (iii) and the
assumption. We have now proved that assumption (5) is justified.

STEP 2. Let ¥ be the Fréchet filter on D, i.e. the filter generated by the count-
able basis consisting of the sets F,: ={fi:k=n}, or any other filter on D with
a countable basis and 0 among its 7,-cluster points. we now prove the follow-
ing claim: for every closed subset L CT and for every €0 there is a filter ' D%
with a countable basis and also having 0 as a T,-cluster point, and a non-empty
open U CL such that every 7,-cluster point g of %' satisfies g<e on U.

To prove this let (#,) be a dense sequence in T. Fix L CT closed, and ¢>0.
Since (f,) is t-stable, L is not r-critical for (f,), so there exists a k-tuple of

non-empty open subsets Uj,..., Uy of L such that no f, takes values
€

< > and >eon each U; (i =1, ..., k). In formula:
o0
Uy X oo XUXUp X -+ X Ukn(U{ﬁ,<§}k><{f,,>e}k): @
n=1
(see the proof of Prop. 3.4). Now choose p so large that {¢1,...,%}
NU;#@ fori=1,..., k. It follows that for each f, we have the following
implication:

Vi<j<p f,,(z,.)<§] = [FI<i<k f,<eon U} (6)
Observe now that
V:={g: g(tj)<% for j=1,...,p}

is a 7,-nbhd of 0. (6) says that 'ND is covered by the finitely many sets
VinD, i=1,..., k, where V;:={g:g<<e on U,}. Since 0 is a 7,-cluster point
of 3, we have 0e FNV for each Fe¥ (the bar denotes 7,-closure of course).
The filter property (F2) now implies that for some iy <k we have 0e FNV; for
every Fe9. In particular FNV; # @ for all Fe% Now let 4’ be the filter
generated by the sets FNV; with Fe%. Clearly 4’ has a countable basis again,
%’D9%, and, by construction, has 0 among its 7,-cluster points. Finally, every
7,-cluster point g of ¥’ satisfies g<<e on U, , since geV; = V.
StEP 3. The rest of the proof consists in a clever exploitation of what we have
proved in step 2. By transfinite induction we shall construct for some count-
able ordinal & a strictly decreasing transfinite sequence (L,)qa<q ©Of closed
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subsets L, CT with L, = & and an increasing sequence of filters (%, )o<q ON
D, each with a countable basis, each having 0 among its cluster points, and so
that all cluster points of %, are <e on T\ L,(¢>0 given ). The result of this
exhaustion argument is a filter %, D % with a countable basis and cluster point 0,
and having the property that all of its cluster points are <e on T (since L, = &).

For the proof let us start with %:=% and Lo:=T7. Assume now that
(La)a<pg and (%, )a<pg have been properly defined for some countable B. If
B=a+1 we apply the argument of step 2 with §=9, and L = L, and find a
non-empty open UCL, and a filter %,,; D%, with cluster point 0 and all its
cluster points <¢ on U (hence on UU(T \ L,), since cluster points of %, are
cluster points of %,). Now put L,;:= L, \ U. If B is a limit ordinal, choose
an increasing sequence of ordinals a, so that 8= sup a,. For fach neN let

(FB)¥=1 be a decreasing countable basis for 9, and put F; := Q] F. Clearly

the filter % generated by (F,);=; contains each %, a<<f, has a countable

basis, has 0 among its cluster points, and each cluster point of Jg, being a clus-

ter point of each %,, a<f, is <e on T\ QBL“' It remains to put
a

Lﬁ = QBL,,.

To conclude the proof let us observe that the Polish space T has a countable
basis and therefore no uncountable transfinite sequence of strictly decreasing
closed sets exists. Thus L, = @ for some countable a. Let ay be the first such
ordinal.

STEP 4. We now repeatedly apply the result of step 3 for each € of the form
£=-'1:, finding an increasing sequence (%,) of filters with countable bases, such
that each %, has 0 among its cluster points and so that all cluster points of %,
are <% on T (n=1,2,..). Again denoting by (F%)?=, a decreasing countable
basis ,?f % (n=12,..), let us choose a subsequence f,) of (f,) such

Jn € QIF,‘c (k=1,2,...) Then each cluster point of (f, ) is a cluster point of

every %, and therefore <711- on T for every n. Hence 0 is the only cluster point
of (f,) and therefore (f, ) converges to 0 pointwise on 7. So the proof is
finished. O

We are now able to complete our analysis of ¢-stable sets Z C C(T):

PROPOSITION 3.10 As always let T be either compact or Polish and let Z CC(T)
be t-stable. Then every sequence (f,) in Z has a T,-convergent subsequence. In
Jact every T,-cluster point of (f,) is the 7,-limit of a subsequence.

PROOF. By the observation preceding Prop. 3.9 all we have to do is reduce the
compact case to the Polish one. Let (f,) be a sequence in Z and let us assume
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that T is compact. Consider the map F: T—RN defined by F(t):= (f,(£))e=
(teT) and put S:= FT. Then S is compact metric, hence Polish. The argu-
ment in step 1 of the previous proof shows that it suffices to show that every
T,-cluster point of the sequence (e,) of coordinate functions on § is the 7,-limit
of a subsequence, since f, =e,oF. Again by the observation preceding Prop. 3.9
all we have to do is show that (e,) is t-stable. For contradiction suppose that
L CS is t-critical (hence compact) for (e,) and let a<B be as in (1). By an easy
application of Zorn’s lemma there a minimal compact M CT with FM =L, i.e.
such that M’ gM, M’ compact implies FM’;CEL. We claim that M is t-critical

for (f,), contradicting the fact that (f,) is ¢-stable. Indeed, for any k-tuple of
non-empty open sets Uy, ..., U, CM we have by the minimality of M that
each FU; contains a non-empty open subset V;CL (i=1,..., k). Since we
are assuming that L is t-critical for (e,). some e, takes values <a and > on
each ¥V; (see (3)). This implies that the corresponding f, = e,oF takes values
<a and >B on each U,. Because U,, ..., U, were arbitrary we have now
proved that M is t-critical for (f,), a contradiction. [
It is now time to summarize our results.

THEOREM 3.11. Let ZCC(T) be bounded (T compact or Polish). Consider the

Jollowing properties:

(i) Z does not contain an I'-sequence,

(ii) Z does not contain an independent sequence,

(iil) each sequence in Z has a pointwise convergent subsequence,

(v) Z is relatively T,-compact in B,(T) (=B(T) if T Polish ),

(v) for each Radon measure p on T, Z is relatively 7,-compact in M(p) (i.e. all
T,-cluster points of Z in RT are universally measurable),

(vi) for each Radon measure p. on T, Z is p-stable,

(vii) for each Radon measure p. on T such that L'(p)=L', Z is totally bounded
in L' (),

(viil)Z is t-stable.
The properties (ii) - (viii) are equivalent. If T is compact, then also (i) is
equivalent to (ii)-(viii). In the Polish case this is not generally true, but (i)
implies the other properties.

ProOOF.
(viii) = (iii): Prop. 3.10.

(iif) = (i) (for compact T): bounded sequences in C(T) are 7,-Cauchy iff they
are weakly Cauchy, by Lebesgue’s theorem. Since the unit vectors in /! obvi-
ously have no weakly Cauchy subsequence, Z cannot contain an /'-sequence.
To see that this implication fails in general for Polish T, take T=N and let Z
be any independent {—1,41}-valued sequence on N. Then (f,) is an I'-
sequence by Prop. 3.5 (i) and clearly has a 7,-convergent subsequence (use a
diagonal procedure).
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@) = (ii): Prop. 3.5 ().
(ii) = (viii): Prop. 3.4.
(viii) = (iv): Lemma 3.8.

(iv) = (v): it clearly suffices to show that %,(7) CM(p) for every Radon meas-
ure p. Suppose f&M(u) for some p. Then there exist an 4 €2, p4 >0, and
numbers a<<f3 such that

p({f <a}NA)=p’({f>B}NA) = pd, by Lemma 2.1.
By shrinking 4 a bit if necessary (use the regularity of ) we may suppose that

A is compact and self-supported. But then {f<a}NA and {f>B}NA are both
dense in A4, so Lemma 3.7 shows that f&%,(T).

(v) = (viii): Cor. 3.6.
(viii) = (vi): Lemma 3.2.
(vi) = (vii): Th. 2.7.

(vii) = (viii): Prop. 3.5 (if). O
§ 3.9;(T) 1s ANGELIC FOR PoLisH T.

For the remainder of this chapter T will be Polish. We shall prove that
B1(T) is angelic for the pointwise topology. Prop. 3.9 is only a partial result in
this direction.

DEerINITION 3.12. A topological space (T, 7) is called angelic if every relatively
countably compact subset 4 CT is

(i) relatively compact in T and

(i)) every t€A is the limit of a sequencein 4. O

The most familiar example of an angelic space is a metric space. But the
metric spaces do not exhaust the class of angelic spaces. A generally non-
metrizable example is that of a normed space with its weak topology (no
proof). Without proof we mention the following facts (which we shall not
need):

I.  Subspaces of angelic spaces are angelic.
II. If (T,7) is angelic and 7’ is finer that 7 and regular, then (7, 7’) is angelic.
III. If (T, 7) is angelic then for subsets A CT,

(rel.) countably compact=(rel.) sequentially compact =(rel.) compact.

We now prove the main result in this §.
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THEOREM 3.13. Let T be Polish. Then %,(T) is angelic for the topology 7.

PROOF.

1) Let ZC%,(T) be relatively countably 7,-compact (we drop the convention
that Z is uniformly bounded). Suppose for contradiction that Z is not rela-
tively compact. Then the pointwise closure Z (taken in RT) contains some
f&B1(T) (it should be observed that Z is pointwise bounded, so that it is rela-
tively compact in R7). Recall that %;(T) = ®,(T). By Lemma 3.7 there is a
closed LCT and there are numbers a<f such that
LNn{f<a}=LN{f>B} = L. Let (U,) be an open basis for L and for each
neN choose points #,, t,’€ U, such that f(¢,)<a and f(z,")>B. Since er a
diagonal procedure will produce a sequence (f;) CZ such that

Jim £ (t,) = f(t,) and lim fi(t,)= f t,) for allneN.

Now by the relative countable compactness of Z the sequence (f;) has a 7,-
cluster point ge®,(T). Obviously g must coincide with f in all points
th, t,' (n=1,2,...). Therefore g(t,) = f(t,)<a and g(t,") = f(t,)>B for all
neN. This implies that g; has no continuity point, contradicting the fact that
g€ ®(1) = 8,(T).

2) We now prove the second deﬁning property of angelic spaces: if ZC%,(T)
is relatlvely (countably) compact in Z and feZ, then f is the 7,-limit of a
sequence in Z. Since %,(T)CH(T) it suffices by Prop. 3.9 to show that f eD
for some countable subset D CZ. We may assume without loss of generality
that f =0. Let us fix meN and let us consider the map

Fpp : B1(T) > B1(T™)

defined by F,(g)(t1, - - -, tm) = |g(t1)| +-.. +|g(tn)| (g€B1(T)) Note that T is
Polish again. Clearly F,, is continuous for the respective pointwise topologies,
so since F,,0=0, 0 is a 7,-cluster point of F,,Z. Let E denote the set of all
functions in %,(T™) that are cluster points of countable subsets of F,,Z. We
now fix >0 and construct inductively a countable ordinal oy and a strictly
decreasing transfinite sequence (Ly )y<q, Of subsets of T™ with Ly = & and for
each a<oy an F,, f,€E such that F,,f,<eon L, \ L,y .

Let us start with L :=T™. If D’ is a countable dense subset of 7™ then
surely, since 0 is a cluster point of F,Z, there is an F,fy€E such that
F,.fo =0 on D’. Since F,fo€®B(T™)= B,(T™) it has a continuity point. It
follows that F,,f;<¢ on some non-empty open UCT™. Put L,:=T\ U.

Suppose now that L,,, and F,f, have been properly constructed for all
a<pf, where B is some countable ordinal. If 8=a+1 let D’ be dense in L,
and as before choose F,,f,+; €E so that F,f,+; =0 on D’. Since F,fq+1
€B(T™) = B,(T™) its restriction (F, fo+1)|,,, has a continuity point. Again
this implies that F,f,+1<¢ on some non-empty open UCLy4q. Put
Lyy7:=Ly \U. If B is a limit ordinal we put L,g:=aQBL,, and argue the
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same way with a countable dense set D’ CLg to define F,,fg and Lg,,. Now
since T™ is Polish we must have L, = & for some countable a. Letting ay be
the first such ordinal, the construction is finished.

Considering the union of the countably many countable subsets of F,,Z of
which the respective F, f,, a<ay, are cluster points, we find a countable set
D, CZ with the property that for each m-tuple t =(ty, ..., t,,)€T™ there
. (m9) ) . .
is an feD(m,¢) with (F, f) (t)<e, implying that

If @)<e fori=1,...,m
Observe now that meN and ¢>0 were arbitrary. Let us form D(m,7lc-) for all

m,keN. Then D:= m’I;:lD(m,%)CZ is countable and has the property that
for all k,meN and every (t, ..., t,)eT™ there exists an feD such that
L)< % for i=1,..., m. This means that 0 is in the 7,-closure of D and
the proof in finished. O

NOTES Many of the ideas underlying the results in this chapter can be traced
back to H.P. ROSENTHAL ([72], [73]). Subsequent perfection of them by (among
others) J. BOURGAIN, D.H. FREMLIN and M. TALAGRAND ([8]) culminated in
the main Theorem 3.11. The fact that %®,(7) is angelic for Polish T was also
proved in [8]. Although some theorems remain difficult, many of the original
proofs were considerably simplified by M. TALAGRAND in his memoir [92].
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Chapter IV

Some characterizations of B-spaces not containing /1

We shall now characterize in many ways those Banach spaces in which /!
cannot be embedded. It turns out that once the right framework is chosen
these characterizations are relatively sunple corollaries of the theory developed
in the preceding chapters.

We first consider separable spaces.

THEOREM 4.1. For a separable Banach space X the following are equivalent.
1M x contains no subspace 1somorphtc toll,

2) Xisw -sequentzally dense in X,

3) card X = card X,

(4) every bounded sequence in X has a weak Cauchy subsequence,

(5) every bounded sequence in X** has a weak * convergent subsequence,

(6) every bounded subset of X is weakly sequentially dense in its weak closure,
) every bounded subset of X"* is weak * se?uentzally dense in its w" closure,
() X" contains no subspace isomorphic to L':=L'[0,1],

(9) X" contains no subspace isomorphic to I'(T') for any uncountable T,

(10) C:=CIJ0,1] is not isomorphic to a quotient of X,

(11) X* contains no subspace isomorphic to C".

PrOOF All these equivalences are fairly simple consequences of the deep results
proved in chapter 3 once the nght framework is chosen. Let T be the unit ball
of X°, equipped with its w -topology Then T is compact by Alaoglu’s
theorem, and also Polish since X is assumed to be separable. We now regard
the elements of X as (bounded) functions on T. i.e. we identify X~ with a
subspace of R”. Notice that under this identification the w*-topology of X
corresponds to the topology 7, of pointwise convergence on 7. Furthermore
the elements of X are in C(T), so in particular norm bounded sets in X
correspond to uniformly bounded subsets Z CC(T). In the proof that follows
we shall repeatedly switch from one point of view to the other without saying
so or indicating it by cumbersome notation.

(1) & (4): this is the equivalence (i) < (iii) of Theorem 3.11, applied to every
bounded set in X.

(1) = (7): by Goldstine’s theorem the w’-closure of the unit ball B(X) is
B(X™). Regarding the elements of X~ as functions on T, this implies that
every x” €X' is in the 7,-closure of a bounded set, say Z, in C(T). Now by
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the assumpuon (1) and the equivalence (i) < (iv) of Th. 3.11, Z is relatlvely

T,-compact in B,(T). Also B,(T) = B,(T) since T is Polish. Thus X" CR(T).
Now Th. 3. 13 comes in: ($,(T), 7,) is angelic, so every relatively 7,-compact
subset of B,(T) is sequentla]ly dense in its closure. This applies in parucular to
bounded subsets of X", since these are relatlvely w’"-compact in X (Alao-
glu), hence a fortiori relatlvely T,-compact in B, (7).

(7) = (6): trivial, since the w"-topology on X"~ induces the weak topology on
X (regarded as canonically embedded in X™).

(7) = (5): a bounded sequence (x»)CX™ either has a constant subsequence

(in which case the assertion is trivial), or a weak *-cluster point (by Alaoglu’s

theorem). In the second case (7) yields a subsequence w’-convergent to this
cluster point.

(5) = (4): trivial (cf. the proof of (7) = (6)).
o0
(7) = (2): follows from Golstine’s theorem since X** = glnB(X ).

(2) = (3): first observe that any separable X has cardmahty ¢ (unless X = {O}
of course) Now let (x,)be dense in X. Since X is w -sequentlally dense in
X sois (xn). Thus there are no more elements in X~° than there are subse-
quences of (x,. Therefore card X" =c.

(7) = (9): suppose for contradiction that IY(T) is isomorphic to a subspace of
X", for some uncountable I. Then the adjoint T of the isomorphic embeddmg
l 1(I‘)——>X is a w'-w'-continuous bounded surjection from X onto
[®°(T)=I'(I)". Hence T™Y(BI*()) is w -closcd By the open mappmg
theorem, for suitably large « the w-compact set
BI>@NNaBX **) satisfies TK =B (I*(I')). Now the unit ball B(co(I)) is

w’-dense (Goldstine) but not w -sequentla.lly dense in B(/*(T)), since clearly
every w’-cluster point of a sequence in ¢o(T') must have countable support m
I. It follows now that (T|x)" (B (co(T)) is bounded in X" but not w'-
sequentlally dense in its w -closure, since this closure in w”-compact and
therefore is mapped onto B(I*(T)).

(9) = (11): it suffices to observe that the set {§,:x€[0,1]} of Dirac measure
spans a subspace of C” isomorphic to /! ([0, 1]).

(11) = (10): clear.

(1) = (8): Suppose for contradiction that L1 CX Then L* is isomorphic to
a quotient of X™*. Let T:X*—L® be a w"-w"-continuous surjection. Using
Goldstine’s theorem again, as well as the open mapping theorem, we see that
there exists an M>0 so that the w'-closure of the set W:=MT(zB(X))
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contains B(L®), where m:X—X " denotes the canonical embedding. It now
suffices to prove that W contains an /!-sequence (f,), since any preimage under
Tom of such a sequence in MB(X) will then be an /!-sequence in X, contradict-
ing the assumption (1). We shall in fact construct an independent sequence in
W (this is enough by Prop. 3.5 (i)). All that matters for this construction is the
fact thalt w® cl WDOB(L®). lWe start the induction with any f; € W such that
A{f1>7)>0 and A{f; <—7}>0. Clearly such f, is available in W by w’-
density (e.g. approximate Xjlj — XL closely with respect to the L,-
functions xo, 1) and x;L1j). Suppose now that fi, . .., f, €W have been con-
structed so that for each PC{1, ..., n},

A( Q Ar) N ( (; B;))>0, where
Ae:={fi>3) Be={fi<—7}, 0:=(L, ..., n}\P.
Put Tp: =(r; Ak)ﬂ(rQ\ By). Since ATp >0 we may choose
Up, Wp CTp, Up N Wp = 50 that A Up =A Wp=~ATp
for every PC{1, ..., n}. Now consider the function ¢cL® defined as
+1 if te &}J Up,
o)=1-1if te Y Whp,

0 elsewhere.

A sufficiently close w’-approximation f,+; € W to ¢ with respect to the
finitely many functions xy,, xw, €L' will then satisfy

1 1
A({ﬁ,+]>'i'}nTp)>0, A({‘/;,+1<—7}HTP)>O VPC{I, ooy n}.

It is now clear that for each subset P'C{1,...,n+1} we have
AN 4)D(N By)>0, where Q'={(1,...,n+1}\ P
P 0

This completes the inductive definition of the independent sequence.

What we have shown so far is:

4 « 5
1 )
8 « 1 - 7 > 6
A
10<—11<—9\2——>3

It remains to show that (3), (6), (8) and (10) fail to hold whenever (1) fails, i.e.
for every separable X containing a copy of /'.
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—(1) = —(3): let YCX, Y~I'. Since Y"'z(l‘)" canonically embeds in X", it
suffices to show card (/') >c. This is easy. Recall first that every separable
Banach space, so in particular C, is a quotlent of /'. Thus C* embeds in (I')".
Now C* contains a subspace isometric to /! ([0, 1]) (namely the closed span of
the Dirac measures). Thus 1'([0,1]) embeds in (I')", so (/')” maps onto
1°([0,1]) = !'([0,1])". Since card /*([0,1])=2¢, it follows that card (/') =>2°.
(It is easily seen that card (/') =2¢.)

—(1) = —(6): assume Y CLX, Y~l !, Since the weak topology o(X,X") induces
o(Y,Y"), it suffices to produce a bounded set BC/! that is not weakly sequen-
tially dense in its w-closure. Recall that in /! weakly convergent sequences are
norm convergent. Now take B={xel':||lx||=1}. Then Oew-cl B (this holds in
any infinite-dimensional Banach space, since every weak 0-nbhd contains a
non-trivial subspace), but 0 is not the weak limit of a sequence of unit vectors.

—(1) = —(10): this proof is based on a result of Pelczynski ([65]) that says that
whenever a separable space W contains a copy U of C then U contains a sub-
space V (depending on W) that is isomorphic to C and complemented in W.
We shall not prove this result here, as the tools needed to do this are wholly
unrelated to the subject matter of these notes. If we assume it we can finish the
proof quickly. Again let YCX, Y~I'. Since every separable space is a quo-
tient of /!, there is a surjection T:Y—C. Let us embed C isometrically in /*
(or in any other injective space). Then the surjection T:Y—C can be extended

to a map T:X—/®. X being separable, W:=TX is separable and of course
contains C. So by Pelczynski’s result quoted above, there is a subspace V' CC
isomorphic to C and complemented in W. If P denotes any bounded projec-
tion from W onto V, then PoT is the desired surjection of X onto V' (==C).

—(1) = —(8): if I' embeds in X, then by the preding proof there is a surjection
of X onto C. But then C* embeds in X", so it remains to observe that L' can
be identified (isometrically) with the subspace of C* consisting of the A-
continuous Radon measures. O

Some of the above equivalences are true also for non-separable X. Most of
them fail in the general case, however. In the next result we compare (1) to the
other properties in the non-separable case.

PROPOSITION 4.2. Let X be a (not necessarily separable) Banach space. Then

D ()e(@)e8e(1)

(i) (1) is implied by each of (2), (5), (6), (7) and (9), but the converse implica-
tions are false in general, except possibly (1) = (6).

(i) (1) = (3), (3) = (1) and (10) = (1) are generally false, but (1) = (10) is
true.

PrROOF. (i) If X is non-separable then T:=B(X") with the w”-topology is not
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Polish, but it is still compact. So the equivalence (i) < (iii) in Th. 3.11 and
therefore (1) < (4) remains true.

We shall now show (1) = (8) = (11) = (1). The proof we gave of (1) = (8)
did not use separability, so remains valid in the non-separable case. (8) = (11)
is clear, since C* contains L' isometrically. We now show that (11) = (1).

Suppose for contradiction that Y CX, Y~I/!. Since C is separable, there is a
surjection T:Y—C. Let m be the canonical embedding of C in C**. Since C™
is injective there is a bounded linear map 7:X—C" which extends T, more
precisely T|Y, = @oT. Let m; : C"—C™"" be the canonical embedding. We now
claim that T om; embeds C* in X".

~

. ! .

X" < r c c
/

X 7 C

v T

Y - C a Cu-

The proof depends on the following two facts.
(a) TB(X) contains a multiple rwB(C), r >0. This is clear since T is a surjec-
tion, hence open.
(b) 7 om =1.. This is generally true when C is replaced by any Banach
space.
Now observe that for peC* we have_
IT mpll= sup 16T mp)|= sup KTx,mp)]

(a) L)
= = =
r ggpc)lmy, )| r sup. [y )| = rlipl

(ii) Suppose that we have (5), (6) or (7) for some non-separable X and that (1)
fails, so that there exists Y CX, Y~/!. The fact to be noticed is that ¥** can
be identified with the w”-closed subspace Y-+ CX™ and that the w"-topology
on X induces on Y11 the topology that corresponds (under the map that
identifies Y+ with Y™") with the w"-topology of Y™*. Since each of (5), (6)
and (7) fails for Y (by Th. 4.1, since Y is separable), it therefore also fails for
X. Contradiction.

(2) = (1): this implication requires a little argument. Let Y CX be any sub-
space. We shall prove that (2) holds for Y also. Taking Y separable, we then
infer from Th. 4.1 that Y contains no copy of /'. So neither does X, since Y is
arbitrary.

To prove the claim, let us identify Y with the subspace Y1+ CX™ and let
y" €Y1+, By our assumption (2), y*"=w"-lim x, with (x,)CX. Then actu-
ally y™" =w’-lim y, with (y,)CY, as we now show. Let us suppose for simpli-
city that |ly™ [|=1. It suffices to prove that

d(B(Y), co {Xy,X +1,...}) = 0 for every neN. *)
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Indeed, once (*) is proved we can choose elements y,eB(Y) and
by €CO{Xp,Xp 415} (n=1,2,...) s0 that ||y, —b,|l—0. Observe that y** =w’-lim
x, implies y™* =w"-lim b,. Since ||y, —b,/l-0 we then conclude y** =w"-lim
Yn-

Let us suppose now that (*) fails, so that for some NeN

d(B(Y), K)>0, where K=co{xy,xn +15-.. }.
The Hahn-Banach theorem then supplies an x” € X" such that
zszl(IP) x' < ill}fx' = nig{/ (X, X ).
Since Ily**IlI=1 Goldstine’s theorem implies that (x",y™" )< gl(lgx'. Hence

Ty < igv (Xn,x"). But this last inequality contradicts the fact that
y " =w’-lim x,.

(9) = (1): this is due to the possibility of “lifting” /'(T'). If Y CX, Y=~I', then
there is a surjection T:X" —(/')". By Th. 4.1 (/)" contains a copy of /'(T), T
uncountable. If (e,),r denotes the transfinite “sequence” in (/')" correspond-
ing to the unit vectors in /!(T), then clearly any bounded set of elements
xy €X" with Tx} =e, (yeT) spans a copy of /!(T) in X".

Finally, the falsity of each of (1) = (2), (5), (7), (9) can be shown with a sin-
gle example, namely X=c((T)), I'=[0,1]. Since every separable subspace of
co(T) is contained in a copy of ¢o, and ¢y has no subspaces isomorphic to /',
(1) holds for cy(T). To see that (2) fails, note that w"-limits of sequences in
co(T) all vanish off a countable subset of I'. These elements therefore fail to fill
up ¢o(I)"=I®(T). The same argument shows that B(co(T)) is not w'-
sequentially dense in its w”-closure B(/*(T)), i.e. (7) fails. To see the failure of
(5), observe that on bounded sets in /®(I')=cy(I)", w"-convergence means
pointwise convergence on I'.Then the Rademacher functions (r,) constitute an
example of a sequence in /®(T") without pointwise (=w"-) convergent subse-
quence. Finally, since co(T')" = /'(T), (9) fails.

(iii) To see that (3) = (1) fails, consider an X of the form X=Z@®/', where Z
is a reflexive space of large cardinality (e.g. Z =/*(T) for large T). On the other
hand simple calculations show that card /*(I)=2%> card I'= card c((T)
whenever card I'=c¢. So (1) = (3) also fails.

It is clear from what we have proved earlier that (1) = (10) ((1) = (8) and
(8) = (11) = (10)). On the other hand it is known that every separable quo-
tient of /* must be reflexive (cf. Ch. 0). Hence C is not isomorphic to a quo-
tient of /* =(/')’, although /! is a subspace of /* (any independent bounded
sequence of functions on N spans a copy of /! in /). So (10) = (1) fails.
O



49

REMARK 4.3. It is interesting to note that c((I'), whatever I, is not a coun-
terexample for (1) = (6). The proof of this assertion is an elementary exercise
we leave to the reader. O

NOTES Many people have had a hand in the results of this chapter. The earli-
est contributions were made by A. PELCzyNsKl. In [64] he proved the
equivalence of (1) with (8), (9), (10) and (11) in the separable case, albeit under
a special assumption (we do not spell it out here, as it turned out to be
irrelevant). A few years later J. HAGLER ([33]) was able to remove this special
condition, and also to extend (8) and (11) to the non-separable case.
Although, as we have seen, (1) = (9) is false in the absence of separability, J.
Hagler did prove the following non-separable version of (1) = (9): if X* con-
tains a copy of /!(T) and if the cardinality of T is larger than the dimension of
X [:= the least cardinal number of a set whose closed linear span is X], then
X contains a copy of /!. This should be compared to the example X =co(I') we
gave to disprove (1) = (9) in general: dim co(I')= card T, so Hagler’s condi-
tion fails here.

A big jump ahead was made when H.P. ROSENTHAL proved his famous /!-
theorem ([72]) (extended by L. DoR to the complex case a little later in [15]):
every bounded sequence in an arbitrary Banach space either has a w-Cauchy
subsequence or an /!-subsequence. This implies (1) <> (4). Observe that, con-
versely, Rosenthal’s theorem follows when in Theorem 3.11 we apply the
equivalence (i) < (iii) to a countable set ZCC(T). The approach of H.P.
ROSENTHAL in [72] was rather combinatorial in nature, involving essentially
Ramsey’s theorem. A detailed account of the “Ramsey” approach to the /!
problem can be found in [13]. Shortly after [72] the measure-topological
approach via first class Baire functions (initiated by H.P. Rosenthal himself)
began to emerge in [73], [62] and [74]. In [62] the characterizations (2), (3) and
(5) were derived for separable X, and in [74] also (6) and (7) made their
appearance. In fact (6) and (7) are partly due to J. BOURGAIN, D.H. FREMLIN
and M. TALAGRAND ([8]). Motivated by some open questions in [73], they ini-
tiated a deep study of the various function spaces involved in the /! problem,
especially with regard to compactness properties. We have already mentioned
their result that %, (7)) is angelic for Polish T (Theorem 3. 13).

The characterization (7) prompted H.P. ROSENTHAL ([73]) to ask the follow-
ing question. Suppose B(X") is not w"-sequentially compact, does this imply
that X constans a copy of /'(T) for uncountable I'? By (7) « (8) this is true if
X~Y" for separable Y. The answer is negative in general. J. Hagler and E.
ODELL ([36]) have constructed an X with non-w"-sequentially compact dual
ball in which even /' does not embed. For more on this, see [36], [35] and
Chapter 13 in [13].

The list of equivalences in Theorem 4.1 is far from complete. We mention
here a few possible additions.

(12) For every x"eX™™ and for every w’-compact subset 4 CX" the
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restriction x ™ |4 has a point of w”-continuity.

The equivalence (1) & (12) was first explicitly stated by E. and P. SAAB in
[80]. In our setup it is an immediate consequence of (iv) < (i) in Th. 3. 11. No
separability is required. In the same paper [80] several other equivalences were
deduced. We state two of them without further comment. Explaining them
would take us too far afield and, in any case, would be rather pointless without
recourse to the parallel results on Asplund spaces (cf. e.g. [60], [18]) to com-
pare them with.

(13) All bounded sets in X" are w”-dentable in (X", w) (i.e. all bounded sets in
X" admit w"-slices that are abitrarity “small” in the sense of the weak topol-

ogy).

(14) All bounded sets in X" are w"-scalarly dentable (i.e. for every bounded
set ACX" and for every x"" €X' there is a w’-slice of A on which x™* has
arbitrarily small oscillation).

The next equivalent property comes directly from (v) in Theorem 3. 11. We
shall come back to it in Chapter 6, where a different proof will be given.

(15) The identity map (B(X"),w")—>X" is universally scalarly measurable (i.e.
for every Radon measure on (B(X),w") every x”~ €X"" is p-measurable).

There are also several characterizations related to the Dunford-Pettis pro-
perty that we have neglected to mention in the main text. The first is due to E.
Odell (see [73))

(16) Every Dunford-Pettis operator from X into any other Banach space Y is
compact.

[A Dunford-Pettis operator is an operator that sends w-Cauchy sequences to
norm Cauchy sequences] Note that (16) follows immediately from (4). In [22]
G. EMMANUELE manipulates this result of E. Odell to show that (1) is also
equivalent to each of the following two properties.

(17) For every Banach space Y with the Dunford-Pettis property every opera-
tor T:Y—X" is Dunford-Pettis.

[Y has the Dunford-Pettis property iff for every space Z every w-compact
T:Y—Z is a Dunford-Pettis operator]. Observe that (17) = (8), since L' has
the Dunford-Pettis property (see [14]), and an isomorphic embedding of L!
into any space is clearly not a Dunford-Pettis operator. A weaker version of
(17) had earlier been proved by H. FAKHOURY to be equivalent to (1) (see

[74)).
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(18) Every subset KCX" such that lim sup [<x,x" | = 0 for every w-null
n—o x €

sequence (x,) C X, is necessarily relatively compact.

We end the list with three characterizations whose special nature sets them
apart from the others (this also shows up in the proofs, which we omit). Espe-
cially the first one, due to B. MAUREY ([53], see also [75]) is a beauty. It is true
only for separable X.

(19) I' embeds in a separable space X iff X™* contains an element x""0 so
that [lx™ +x|| = |Ix™ —x|| for all xeX.

Whereas (18) characterizes the compact subsets of X" in terms of whether /!
embeds in X or not, the next result, due to R.G. BiLYEU and P.W. Lewis ([4)),
is -about compact subsets of X. We say that uniform Gateaux differentiability

characterizes compactness in Y provided a set KCY is relatively compact iff

there exists an x €Y so that IiI% lhx + :l — llxl exists uniformly for y eX.
-

Now the result is as follows:

(20) /' embeds in X iff there exists an infinite-dimensional subspace ¥ CX
and an equivalent norm |-/l on Y so that uniform Gateaux differentiability
characterizes compactness in (Y, (Il-[ll).

For the final characterization we need some notation. For Banach spaces X
and Y we denote by C,;(X,Y) the space of all (not necessarily linear) func-
tions f from X to Y such that for each bounded subset B of X the restriction
flp is continuous from (B,w) to (Y, |Ill). Also let C,,.(X,Y) denote the set of
function f:X—Y that are sequentially continuous from (X,w) to (Y, IIll).
Clearly C,;(X,Y)CC,s(X,Y). RM. ARroON, J. DIESTEL and A.K. Rajappa
([2]) proved:

(21) I' embeds in X iff C,(X,Y)5~C,s(X, Y) for every Banach space Y.
[There is a strong dichotomy here: J. FERRERA, J. GOMEZ GIL and J.G. Lia-

VONA showed earlier in [23] that if /' ZX then C,,(X,Y) = Cys(X,Y) for
all Y
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Chapter V
The Pettis integral and the weak Radon-Nikodym property

This chapter should be viewed as a short intermezzo in preparation for
Chapter 6. There we shall prove several more characterizations of spaces not
containing I'. All of these involve the Pettis integral, and in this chapter we
develop the necessary background needed to understand them.

§ 1. ELEMENTARY FACTS ABOUT THE PETTIS INTEGRAL.

Let (2,2,n) be a probability space, X a Banach space and let a map ¢:Q—X
be given.

DEFINITION 5.1. We say that

() ¢ is scalarly measurable if (¢,x") is measurable for every x” €EX .

(i) ¢ is scalarly L' if (¢,x"yEL" () for every x" € X".

(iii) ¢ is scalarly bounded if (¢,x" Y €L (u) for every x €X". In the case of a
function ¢:Q—X" into a dual space we say that ¢ is (i) w’-
scalarly measurable, (ii) w"-scalarly L', (iii) w"-scalarly bounded if {x,¢)
(rather than (¢,x"")) satisfies the respective conditions above for every
xEX(==X). 0O

Given a ¢:Q— X which is scalarly L', let us consider the map
X" 3x" 5¢¢,x"yER? or L'(p).
It is elementary to check that S, regarded as a map into L'(u) has a closed
graph, so that it is bounded by the closed graph theorem. Let us observe also
that S, when considered as a map into R, is continuous for the w’-topology

on X and the topology of pointwise convergence on . Using the w'-
compactness of B(X"), we see therefore that the set

Zy:=(@x"):Ix°I<1),

being the S-image of B(X"), is
(1) a 7,-compact set of measurable functions (CR%) and
(i) a bounded set in L'(u).
We shall usually not specify whether Z, is considered as a subset of R? or
of L'(u). It should be clear from the context.
The adjoint S* =:7 maps L*(p) into X~ and is defined by the formula
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I = [exDdp (FEL*(, x"EX") M
T is called the Dunford operator associated with ¢, and we occasionally denote

it by T,.

*

L*w>f =S | 7/ex”
L) 2(¢,x") < o) x'ex’
Q ¢ ~ X

DEFINITION 5.2. A scalarly L' function ¢:2—X is called-Pettis integrable if its
associated Dunford operator T maps L*®(p) into X (rather than X ). In that
case T(xg), where E €3, is called the Pettis integral of ¢ over E. Notation:

T(xg) = (P)[¢dp. O

REMARK 5.3. Clearly T(L*(p))CX is equivalent to Txz €EX for every EEZ
(since T is bounded). The (P)-integral (P) £¢dp., if it exists, is the “weak”
integral of ¢ over E. It is the unique element of X that satisfies

((P){(ﬁdp.,x')=£(¢,x')dp. vx‘e X'

(take f=xz in (1)). O

We shall see many (P)-integrable functions in the course of this chapter.
Here is a simple example of a scalarly L' function that is not (P)-integrable.

EXAMPLE 5.4. Let ¢:[0,1] —» ¢ be defined by
HO):= (xe Li@)w=1 (¢ €[0,1].

[oo]
For every x" = (§,)€ I'(=c;) we have that (¢,x )= Z_lln & X0, L EL'N)
(>\=Lebesgule measure). H(:owever, the element T4(xj0,1]) Eco = that maps
&)=x"to £<¢,x')d}\ = glé,, is not w”-continuous. In fact it is given by the

1
element (1, 1, 1,...)€ I® \ ¢y, S0 (P)é(bd}\ does not exist. [

Several facts about the (P)-integral are immediate consequences of the cri-
terion formulated in the next proposition.

PROPOSITION 5.5. Let ¢:Q— X scalarly L'. Then the following are equivalent:

(i) ¢ is (P)-integrable,

(i) the canonical map R% DZ4—>Z4CL (n) that sends each function in Z 4 to
its equivalence class in L' (p), is pointwise-to-weak continuous.
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Proor. For the purpose of this proof, let us regard Z, as a subset of R%, and
let us give the name i to the canonical map that sends each (¢,x" )E Z, toits
equivalence class in L'(u). Then S:X" — L'(p), restricted to B(X"), decom-
poses as follows:

S:BX )W —————— (Zyy1,) ——— (L)W
w w w
x" (¢, x") i({e,x"))

As we already observed x"—(¢,x") maps the w’-compact set B(X") con-
tinuously onto the 7,-compact set Z,, and therefore it is a quotient map (in
the topological sense). This implies that i is 7,-to-w-continuous iff S|px") is

w’ -to-w-continuous. This last condition unphes that for every fEL*®(p) the
null space kerTf intersects B(X ) in a w’-closed set. By the Krein-Smulian
theorem then ker7f is w’-closed, 1e IfeX. So TL®(w)CX. Conversely
TL*(u)C X is equivalent to S being w’-to-w-continuous, so it implies the w"-
to-w continuity of S|gxy. O

Before stating some consequences of Prop. 5.5 let us introduce, given a
¢:Q—X that is scalarly L', a new function @ that is related to the variation of
the (P)-mtegral Observe that all elements (¢,x YEZ, satlsfy K, x| <lloll
and that ||¢ll is a finite function. However, in general (4|l is not measurable.
This is not a serious problem. We claim that there exists a measurable function
®:Q—>R* satisfying the following three properties:

(i) @ < |l¢ll everywhere on £ (so @ is finite),

(i) [(,x")| <@ p ae. for every x” EB(X"),

(iii) if (i) holds for some other measurable function @’ instead of ®, then
<P pae.

To define ®, simply select a sequence (x,)CB(X’) such that
£|(¢,x;>|dp——>sup{£|<¢,x')|dp,:llx'H<1} (note that this sup is finite since Z,

is L'-bounded) and put ®:=sup|($,x,)|. Then [Pdp=> sup{é|<¢,x*>|

dp:llx”|I<1}. The proof that this ® satisfies the requirements is now straight-
forward. (Put in abstract terms, we have established the existence of a least
upper bound for Z,/. in the Riesz space M(u)/., where ~ denotes
identification of p a.e. equal functions.)

Here are some consequences of Prop. 5.5.

PROPOSITION 5.6. Let qS 2 — X be (P)-integrable. Then

i o¢is equt-scalarly L', ie Z, is bounded and uniformly integrable as a subset
of L' (u),

(i) S is weakly compact,

(iii) T is weakly compact,

(iv) the X-valued set function F on 2 defined by F(E):=Txg = (P) £¢dp is a

measure (i.e. countably additive). Furthermore, F is p-continuous and has o-
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finite variation |F|.

Proor. By Prop. 5.5 (i) and the 7,-compactness of Z4CR®, the set
Z,CL'(p) is weakly compact (hence bounded). It is well known that the rela-
tively weakly compact sets in L!(u) are precisely the bounded and uniformly
integrable ones. This proves (i) , and also (ii), since Z, CL'(p) is the S-image
of B(X"). (iii) follows from (ii) since adjoints of weakly compact maps are
weakly compact (and conversely).

For the proof of (iv), observe first that E — T'(xg) is certainly finitely addi-
tive. The countable additivity is then equivalent to the assertion that E, | &
implies FE, =Txg —O0(E,€Z; E,|2 means (E,) decreasing and

0

QIE,, = @&). But this is clear from the obvious p-continuity of F:
IFEI = ITxell = SR, (Txg,x )= Sup {((ﬁ,x Ydp—0

as pE—0, by the uniform integrability of Z,.
Recall that the variation |F| of the X-valued measure F:Z—X is the non-

negative set function defined by |F|(E): = sup ;1 lIFE;|l (E €Z), where the sup

is taken over all finite partitions {E, ..., E,} of E with E;€Z, i=1,...,n.
It is well known and easy to prove that the countable additivity of F implies
that of |F|. To show that |F| is o-finite, observe that for all EEX and
x" €EB(X") we have

[(FE, x*)|< l Ko,x"H|dp < {‘I’du, @

where @ is the (finite!) function defined prior to Prop. 5.6. Putting
Q,:={n—1<®<n},n=1.2, ..., it follows from (2) that |F|({,) <np,, so
that |F| is o-finite. O

It is not true in general that T=T, is compact for a (P)-integrable ¢
(equivalently, the range {(P) £¢du:E €2} of the Pettis integral need not be

relatively compact). A mild condition on the measure space, however, is
enough to guarantee this.

PROPOSITION 5.7. Let (Q,2,u) be perfect and $:Q—X Pettis-integrable. Then
T=T, is compact.

PrOOF. We show that § is compact, or equivalently that Z, is compact in
L'(p). We first need to reduce to the case where Z,, is L®-bounded. For this
recall that ® is finite, so that p{®=>n}—0 as n—o0. Z, being bounded and
uniformly integrable (Prop. 5.6) it follows that nlj_{g (qs,x*)x{q,;n} =0in L'-

sense, uniformly for x* €B(X"). Hence it suffices to prove that for each n €N
the set ZyX(o<n) 1= {{$,X DX(@<n) :X EB(X")} is compact in L'(s). But
now Theorem 1.6 can be used: the 7,-compactness of Z, implies that of
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Z 4'X(@<n)> S0 by Fremlin’s theorem each sequence in Z,x(¢<n) has a p ae.
convergent subsequence. But since Z,'x(e<n) i L*-bounded, every such
subsequence is also L!-convergent, by Lebesgue’s theorem. O

§ 2. THE WEAK RADON-NIKODYM PROPERTY.

We have seen that each Pettis integrable function ¢:Q—X gives rise to an
X-valued measure F: FE:=(P) £¢du (E€Z). We are now going to consider

the converse problem (for a fixed complete probability space (£2,2,u)): which
X-valued measures are Pettis integrals? Prop. 5.6 shows that the question is
meaningful only for u-continuous measures of o-finite variation.

DEFINITION 5.8. A Banach space X is said to have the weak Radon-Nikodym
property (WRNP) with respect to a given complete probability space (2,Z,p) if
every p-continuous measure F:2—X of o-finite variation has a (P)-integrable
“derivative” ¢, i.e. a (P)-integrable ¢:Q0— X satisfying

FE =(P)£¢dp (E €3).

We say that X has the WRNP if it has the WRNP with respect to every com-
plete probability space.

If X is a dual space Y", we shall use the term w" -derivative for every w’-
scalarly measurable function ¢:Q2—Y" that satisfies

(y,FE)=£<y,qb)dp, (VEY,EEZ). O

There is really no need to consider measures of o-finite variation. Measures
of bounded variation suffice.

LEMMA 5.9. Each of the following two properties is equivalent to the WRNP for

X

(i) every X-valued measure F on every complete probability space (R2,Z,u) for
which there exists a constant M <co so that ||FE||<MpE for all E €X (this
implies F<p) has a (P)-integrable derivative.

(i) for every complete probability space (,2,1) every bounded linear operator
T:L'(p)—X satisfies T| 1@ =T for a Pettis integrable ¢:{0—X.

PrOOF. Suppose that (i) holds and that F:2—X is a p-continuous measure of

o-finite variation. As we have remarked earlier |F| is then also a measure, i.c.
00

countably additive. Let us write Q as a disjoint union Ul 2, with |F|(2,)<co,
n=

n=12,.. On each Q, the restriction of |F| is then p-continuous, since pE =0
implies |F|E=0 for EC{,, E€X (this condition is equivalent to y-continuity
for finite non-negative measures). It now follows from the classical Radon-
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Nikodym theorem that there exists a measurable #:Q—R* satisfying
|F|(E) = £ hdp. (E€EX).

Now put &,:= {n —1<h<n} (n=1,2,..). Then the restriction F, of F to
', satisfies |F,Ell<npE (EEZ, EC{,), and therefore by our assumption
has a (P)-integrable derivative ¢,:Q’,—X. We claim that the function ¢:2—X
defined by ¢|g' : =4, is a (P)-integrable derivative of F.

Let us first show that ¢ is scalarly L!. Fix x’€X and put
Q*:={(¢$,x"y=0}, @7 := {{¢,x")<0}. Then

!{I<¢,x'>ldu= J (6,x"Ydp + ‘[ (¢, —x"Ydp.
Since |

r[ ($xYdp=3 [ (ox")dp= 3 (F(@,NQ"),x"y=(F* x") <00,
+ + n:l

n=12,NQ
and similarly

S[<¢,~x*)du= —(F(Q7),x"y<oo,

we conclude that £|(¢,x')|dp< co. The fact that ¢ is a (P)-integrable deriva-
tive of F now follows easily: for every E €X and every x” €X~ we have

(F(E),x")= 2 FENX)xY=S [ (o du= [¢@x"dp,
n= n=1EN,

where the last equality comes from Lebesgue’s theorem (recall that we already

know that <¢,x" > € L!(u)).

Finally, to see that (ii) is equivalent to (i), observe that there is a 1-1
correspondence between the bounded linear operators T:L!(u)—X and X-
valued measures F:2—X satisfying the condition |FE||<MpE (E€Z) for
some M <<co: simply put FE:=Txg when T is glven and when F is given,

observe that T defined on the simple functions by T( E & XEg): = 21 o; FE; is

bounded, so extends uniquely to a bounded operator on L'(g) (with norm
ITII<M). The existence of a (P)-integrable derivative ¢ for every F:2—X
with ||FE||<MpE (E €Z) for some M <co is then clearly equivalent to the
statement that for every bounded T':L'(u)—X the restriction 7| L= 15 a Dun-
ford operator T.

Let us note also that in this case (1) in § 1 extends to

(Tfx"y = é fexydp (FEL'(w), x" €X"). ?3)

(The condition ||[FE|l<MpE (E€ZX) is equivalent, via (3), with
Z 4, CMB(L* (), as one readily verifies) O
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ReMARK 5.10. If F=(P)[¢,dp then a function ¢,:Q2—X is Pettis integrable
with the same Pettis integral F iff ¢; and ¢, are scalarly equivalent, i.e.

(d1,x") =(¢p,x") pae. foreveryx €X".

This does not in general imply that ¢; =¢, p a.e., because the exceptional
null set is allowed to vary with x. However, if X" contains a total sequence
(x,), then we must have ¢; = ¢, p a.e.: if (¢1,x,)={(d,x,) off a null set N,

(e 2]

(n=12,.) and if N= UIN,,, then pN=0 and off N we have that
(p1,%n) ={¢p,x,) for all nEN, hence ¢, =¢,. Such a total sequence exists
whenever X is separable, but also for some non-separable spaces such as /%
(take x, =e,, the n unit vector of /'). [
ExampLE 5.11. Let {e:t€[0,1]} be the standard orthonormal basis for the
non-separable ~ Hilbert ~ space  /2([0,1]).  Consider  the  map
[0,1]91—-4’9@ €/2([0,1]). Then ¢ is everywhere non-zero, but scalarly

uivalent to the 0-function, since for every
x" €12([0,1])" = I([0,1]),{¢,x") = 0 off a countable set (we are using Lebes-
gue measure). In particular ¢ is scalarly measurable, and scalarly L. Its Pettis
integral exists and is identically 0. (¢ is not Bochner - or strongly measurable,
since its range is non-separable!)  [J

REMARK 5.12. Let X be separable and let F:Z—X be a measure satisfying
IFEII<MpE for all EEZ. If ¢:Q—X is a (P)-integrable derivative of F then
¢ is valued p a.e. in MB(X). To see this, let (x,) be a sequence of unit vectors
in X* that norms X, i.e. such that

llxIl = sup (x,x,) for every x EX.
n

Such a sequence clearly exists by the separability of X. Now the complement
of MB(X) is covered by the sets {x,>M}, so if ¢ is not p a.e. valued in
MB(X) then w({($,x, )>M})>0 for some noEN. Putting
E:={{¢,x,, Y>M}, we then have

IF(E)l = (FE,x, )= ){ (@, %, Ydu> MpE,

contradicting our assumption. Note also that Example 5.11 shows that this is
false in general for non-separable X.

By the Pettis measurability theorem ¢, being scalarly measurable and separ-
ably valued, is strongly- or Bochner-measurable. In particular |||l is measur-
able, and also £|I¢|Idp<Mp,Q<oo, so ¢ is Bochner integrable. But then

(B) £¢dy =(P) £¢dp. (E €2), so what we have shown is that if X is separable,

then the WRNP implies the (generally stronger) RNP: every p-continuous vec-
tor measure F:2—X satisfying ||FE||<MpE (E €Z) for some M<oo, has a
Bochner integrable derivative. It can be shown that also for WCG (=weakly
compactly generated) spaces the RNP and the WRNP coincide. O
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Further on it will become clear that there exist spaces with the WRNP that
fail the RNP. E.g. the dual of the James tree space JT is such a space. A typi-
cal example of a space that fails the WRNP is /®. In fact we shall prove later
that every dual space failing the WRNP must have /* as a quotient.

EXAMPLE 5.13. [® fails the WRNP. . .
Let p be the usual completed product measure (58 +758,)V on Q:={0,1}V,
and 2:=23,. Consider the /*-valued measure F defined by

FE:=([edw=1 (EEZ),
E

where ¢, denotes the n coordinate function on £. (Note that ||FE||<pE
(E€Z) and that obviously F is finitely additive. Hence F is countably addi-
tive.) We now show that F has no (P)-integrable derivative. Suppose for con-
tradiction that ¢ is such a (P)-integrable derivative. Letting ¢, be the n™ com-
ponent of ¢, and e, the n** unit vector in /! (better: #/'), the formula

(FE, e,) = [<,e;)dp (EEZ)
E

must hold. This gives
[endp= [¢ndn (EEZ, n€EN),
E E

hence €, = ¢, p a.e. for every n €N. It follows that ¢ is p a.e. equal to the
identity embedding of {0,1}N into /* We may as well assume from now on
that ¢ actually equals this identity embedding. We claim that ¢ is not scalarly
measurable (¢ is of course w’-scalarly measurable). To see this it is convenient
to regard /® as C(BN). Fix any p €BN\ N and consider the Dirac measure
s,ecC (BN)" = (I*)". We shall prove that (¢,8,) is not p-measurable.

Every t€Q is a sequence (e,(¢)) of zeros and ones. Put
E;:={nEN:e,(t)=1}. Now ¢(z) is this same sequence (¢,(t)). But considered
as an element of C(8N), it equals X, the (unique) continuous extension of xz
from N to BN. Now xg = xg,, where E, is the closure of E, in BN, so we have

((1),8,> = X&,(p) = XE, ().
This means that

1 if pEE,

- Q
0 if p&E, e

(@(1), 8,) =

Note now that .= {ECN:pE€E} is a free ultrafilter on N. (This is because
for every ECN, EUN\ E =8N and ENN\ E = @.) If we now identify the
points ¢t €Q with the corresponding subsets E, CN (as in Ch. I), then what we
have proved is that {($,8,) = 1} = 9. But we know from Prop. 1.2 that p.§=0
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and p 3=1. The conclusion is therefore that (¢,8,) is not p-measurable. [

NOTES The material on the Pettis integral in this chapter is well known and
can be found e.g. in [14] and [92]. The elegant and useful criterion of Prop. 5.5
appears in [92]. In connection with Prop. 5.7 (which is due to C. STEGALL, see
[28]), let us mention the following remarkable result proved in [28]: for every
infinite set I' there exists a probability space (2,2,p) and a uniformly bounded
Pettis integrable ¢:92—/®(T) such that the Dunford operator T is not com-
pact. Combining this with Prop. 5.7 one sees that this probability space
(2,2,p) cannot be perfect. But since perfectness in needed only once in the
proof of Prop. 5.7, namely for the application of Fremlin’s theorem, we may
then conclude indirectly that Fremlin’s theorem fails in general for non-perfect
spaces. This was first proved by M. TALAGRAND in [91], in response to a ques-
tion of D.H. FREMLIN ([26]). For a discussion of the question under what con-
ditions (other than perfectness of the measure space) the range of a Pettis
integral is compact, see [56].

The WRNP was first introduced and studied by K. MusIAL in [55]. The
assertions of Lemma 5.9 are due to him, as well as the observation that the
RNP coincides with the WRNP for weakly compactly generated spaces (hence
in particular for separable spaces). A martingale characterization of the WRNP
can be found in [56]. N. GHOUssSOUB and E. SAAB have shown in [29] that for
Banach lattices the WRNP and the RNP are identical, and also that the same
is true for dual spaces X~ that are embeddable as complemented subspaces of
Banach lattices. Let us observe that Remark 5.10 and the observations in
Remark 5.12 show that the WRNP implies the RNP, for a given X, iff every
Pettis integrable X-valued function is scalarly equivalent to a Bochner (=
strongly) measurable function. This assertion also goes back to K. MUSIAL
([55]). Later on in Chapters 7 and 8 we shall see that the dual JT" of the
James tree space JT has the WRNP but fails the RNP. Hence there must exist
a JT"-valued function that is Pettis integrable but not scalarly equivalent to a
strongly measurable function. An explicit example of such a function is given
in [51].

Another noteworthy fact is that X possesses the WRNP iff it has the WRNP
with respect to the Lebesgue measure space [0,1]. For a proof, see [92] or [57].
The analoguous assertion for the RNP is also true, and well known. The paper
[41] contains some alternative proofs of elementary facts about the Pettis
integral that may be enlightening.

Finally, Example 5.13 is due to C. RYLL-NARDZEWSKI (see [55]), although
the fact on which it is based, viz. that the identity embedding {0,1}N—/® is
not scalarly measurable, goes back to W. SIERPINKI ([89], see also [85]).
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Chapter VI

Characterizations of spaces not containing /! related to

the Pettis integral

Our aim in this chapter is to give some dual characterizations of spaces not
containing /!. One way or another Pettis integration is involved in all of them.
The principal ones are:

(D) I'ZXiff X" has the WRNP,
(I) I' Z X iff every w"-compact convex subset of X" is the norm-closed convex
hull of its extreme points.

Both (I) and (II) are fairly easy to prove for separable X, but the non-
separable case presents serious difficulties. We concentrate on (I) first, and
begin with a proof for separable X. From this it will become apparent what
extra difficulties there are in the non-separable case. A summary analysis of
them will then motivate our further strategy.

Now even for the separable case we need some tools. The first is the so-
called lifting theorem. It says that for every complete finite measure space
(2,Z,u) one can select from each equivalence class in L*(u) a bounded
measurable function in a consistent manner, i.e. so that the resulting map from
L*(u) to M(p) is a linear, multiplicative, positive isometry that preserves the
constants. In the formulation that follows not all properties are independent;
some of them we state for emphasis only. For a discussion and a proof, see
Appendix G.

PROPOSITION 6.1. (lifting theorem)

Let (,2,n) be a complete finite measure space. Then there exists a map
p:L*®(w)—M () (called a lifting on L*®(w)) satisfying the following properties for
every fEL®(p):

@ p(f)=f pae,

@) le(HIl =Illflle (Il denotes the sup norm),

(i) o1) =1,

(iv) f=0 pa.e = p(f)=0 everywhere,

(V) p is an algebra isomorphism into, i.e. p is linear and multiplicative. [

Condition (iv) and the linearity of p of course imply that whenever f<g p
a.e., then p(f)<p(g) everywhere, so p preserves order.

We now show that for X"-valued measures the existence of w’-scalarly
measurable derivatives is no problem even without separability.

PROPOSITION 6.2. Let (,2,p) be a complete probability space, X a Banach
space, and F:3—X' a measure satisfying \|FE||<MpE (E€EZ) for some
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M<oo. Then F has a w"-scalarly measurable and uniformly bounded derivative
¢:Q-X", ie
(x, FE) = [(x,¢)dp (EEZ, xEX). Y
E

ProoF. Let T:L!(p)—X" be the bounded operator associated to F (cf. the
proof of Lemma 5.9 (ii)). We shall construct ¢ with the required properties and
so that

x, TN = [f(x,¢)dp (FEL' (W), x EX)
Q

((1) is a particular case of this, taking f =xg). For each fixed x € X the map
L'@3f—>(x, I €ER

is a bounded linear functional on L!(p), so it defines an element ¢, € L (u):
n[ fodp= (6T (FEL'(W), x EX). @)

Let us observe that llp,ll, = "ﬂSIlll\l [<x, TH|<ITIllx|l. If p is a lifting on
L* (), then for each 1 €Q the map
X3x——p(¢) (HER
is linear and bounded (with norm < ||Tl), so it defines an element ¢(t) EX "
(X, ¢(1)) = p(¢x) 1) (LEQ xEX). A3)

This defines ¢. Note that ¢ is uniformly bounded by |||, and, obviously, w”-
scalarly measurable. Combining (2) and (3) yields

TN = [ foudp= [ folde)dp= [ fx.$)dp (FEL'(Wx EX),
2 o 0
so that ¢ has the required properties. [
We are now ready to prove (I) for separable X.

PrOPOSITION 6.3. For separable X the following are equivalent:
! gx
(i) X~ has the WRNP.

PROOF. (i) = (ii): Suppose /' X and let F:2—»X" be a measure satisfying
|IFE|l < MpE (E €Z) for some M <o, where (£,2,p) is any complete proba-
bility space. Then by Prop. 6.2 F has a uniformly bounded w"-scalarly measur-
able derivative ¢:

(x, FEY = [(x,¢)dp (EEZ, xEX). @
E
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All that needs to be done now is to show that ¢ is scalarly measurable and
that

(FEx™)= [(¢,x")dp (E€Z,x" €X™). )
E

Fix x” €X™. By Theorem 4.1, (1) & (2), there is a (bounded) sequence
(x,)C X so that w'-lim x, = x"". Now let n—c0 in the relation
n—oo

(Xn, FE) = [(xn, $}dp (nEN, EE3).
E
This gives (5), by Lebesgue’s theorem and the uniform boundedness of ¢.

(i) = (i): Suppose now that /' CX. We shall show there exists a measure
F:3-X" with no Pettis integrable derivative. For this it is enough to construct
(for some complete probability space (,2,p)) a bounded w"-scalarly measur-
able function ¢:2—X" that is not scalarly measurable. Indeed, every such ¢ is
the w”-derivative of a measure F:2—X". To see this, define S:X—L®(u) by
Sx:= (x,9) (x €EX). Since ¢ is bounded so is S, hence the adjoint S* res-
tricted to L'(u) defines a bounded linear map T:L'(u)—X . Putting
FE:=Txg (E €2), it is clear that F is a measure and satisfies

(x, FEY = [<(x,0)dp (x€X, EE3), (6)
E

ie. ¢ is a w'-derivative of F. Suppose now that F has a Pettis integrable
derivative v, i.e.

(FE,x"y= [(,x")dp (x" €X™,E€E). )
E

Comparison of (6) and (7) shows that
(x,0) = (x,§) pae. for every x EX.

Hence ¢=v p a.e. by the separability of X (cf. Remark 5.10). But then ¢ is
scalarly measurable, a contradiction.

Now for the existence of a w”-scalarly measurable bounded function that is
not scalarly measurable, let T:/'—>X be an embedding. Then the adjoint
T":X"—I® is a w"-w" continuous surjection. Observe that the compact space
K:={0,1}N can be identified, topologically, with a subset of (/°,w"). We may
assume without loss of generality that K CT"B(X") (simply multiply 7 with a
constant if necessary). Now if u is the usual product measure on K and
LCB(X") is a w"-compact set satisfying 7" L =K, then by Prop. B.1 there is a
w”-Radon propability » on L so that 7" »=p. We may of course regard » as a
w”-Radon probability on B(X"). Now recall that in Example 5.13 (see also the
Notes of Ch. 5) we have proved that the identity embedding ¢:K—/* is not
scalarly measurable. This means that for some y™ €(/®)" the function
¥y op =y |g is not p-measurable. But then T™"y"*|, =y opoT"|, fails to be
v-measurable, by Prop. A7, since (B(X"),v) is perfect (by Prop. A4). What we
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have proved now is that the (bounded) identity embedding (B(X )X
(which is obviously w"-scalarly measurable), is not scalarly measurable (since
(T™"y™)oi is not »-measurable).

[Note: we could have used the equivalence (i) < (v) of Th. 3.11 for the last
part of the proof, but the argument given here is more direct.] [

Implicit in the above proof is the following fact.

COROLLARY 6.4. Let X be separable. Then the following are equivalent:

(i) X" has the WRNP,

(i) for every complete probability space (,Z,n) every w'-scalarly measurable
¢:Q—X" is scalarly measurable.

[Note: in the proof above we showed the equivalence of (i) and (i) with ¢

bounded. The extension of (ii) to non-bounded ¢ is immediate if one writes

¢= lim ¢-x(|4i<n) and observes that ||¢l|= ng|<x,,,¢)|, with (x,) dense in
n—oo n

B(X), so that ||¢|| is measurable if ¢ in w"-scalarly measurable.]

Now let us consider where the proof of Prop. 6.3 may break down if X is not
necessarily separable. Suppose /' ZX and the measure F:S—X" satisfies
IFEII<MpE (E €Z) for some M <oo (where (2,2,p) is some complete proba-
bility space). Using Prop. 6.2 we may still find a w’-scalarly measurable uni-
formly bounded derivative ¢:Q—X":

(x, FEY = [(x,¢)dp (EEZ,xEX). ®)
E

For simplicity let us suppose that ¢ is B(X")-valued, so that ¢p is supported in
B(X"). But now the extended formula

(FEx"y = f (,x""ydp (EEZx™€X™) ©)
E

may not even make sense. Indeed, x™" is no longer the w*-limit of a sequence
(x,) CX, so that x"" o¢ may fail to be p-measurable.
Now let us assume for the moment that

¢ is w"-Borel measurable and the (w"-Borel) image measure v: =g¢p (10)

on B(X") is w*-Radon.

[It should be noted that (10) holds automatically if X is separable, in virtue of

the following well-known facts:

(i) »is aw -Baire measure. This is so because the o-algebra of the w”-Baire
sets is generated by X(= the collection of linear w"-continuous functions
on X'). We do not prove this here.

(i) the w’-Baire subsets of B(X") coincide with the w"-Borel subsets of
B(X"), since B(X") is w"-metrizable.

(iii) every w’-Borel measure on B(X") is w*-Radon, again by the metrizability
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of (B (X'), w')l]

Now, assuming (10), Theorem 3.11, (i) & (V) (apphed with T= (B XHwh)
and Z=B(X)) comes to the rescue. Indeed, every x™ € B(X"") is m the Ty
closure of B(X), by Golstmes theorem, so by (v) of Th. 3.11 x™ is »-
measurable, and therefore (x"*,¢) is u-measurable, since (2,2,p) is assumed to
be complete.

Having now given sense to the formula (9), under assumption (10), the next
problem is whether it is satisfied. One moment’s thought shows that this ques-
tion is equivalent to asking whether the (now scalarly measurable) ¢ is (P)-
integrable. Indeed, suppose it is. If G(E):=(P) £¢dp (E €Z), then (9), and

therefore also (8), hold with G replacing F. Since also (8) holds as written, it
follows that F =G, and therefore (9) holds as written.

Elementary arguments now show that the problem whether ¢ is (P)-
mtegrable is really the same as asking whether the identity map
(B(XY), VHX is (P)-integrable (details will follow later). But this question is
answered affirmatively by Th. 2.7 and the criterion of Prop. 5.5. Indeed, by Th.
3.11, (vi) & (i), Z=B(X) and therefore also its 7,-closure B(X **) is p-stable.
Therefore Th. 2.7 says that the identity on B(X ")=Z; is continuous from the
7,-topology to the L'(»)-topology (observe that 7, coincides with the L(»)-
topology on L*(v)-bounded sets such as B(X"")). So in particular it is con-
tinuous for the weak topology of L'(v). Hence the (P)-integrability of i follows
from Prop. 5.5.

Also the second part of the proof of Prop. 6.3 uses the separability of X
(namely, at the point where Remark 5.10 is applied). We shall see, however,
that it can be salvaged by again using Th. 3.11 (this time (i) «< (vii)). No new
tools are needed for this.

We shall now begin a series of developments de51gned to show, essentially,
that any X"-valued measure (X arbitrary) has a w’-derivative ¢ that satisfies
the assumption (10).

Let (2,2,p) be a probability space. Then L®(p) is a C -algebra, so by the
Gelfand-Naimark theorem there exists a compact space A (= the maximal
ideal space of L*®(p)) so that L*®(p) is isometrically algebra isomorphic to
C(4). As usual we denote the image (= Gelfand transform) of fE€L*(p) in
C(4) by f. Now the map f— éf dp is an element of C(A)", so by the Riesz

representation theorem there is 2 Radon measure f on A satisfying
[fdp= [fdi (fEL*(). (11)
o A

Since the Gelfand transform is positive and isometric, and p is a probability,
so is p. Let 4 €3. Then x4 is an idempotent in L*(u) and therefore x4 is an
idempotent in C(A), i.e. a continuous {0,1} valued function, Thus x4 = x4 for
some clopen 4 CA. We have pd = pd, so in particular 4 is non-empty iff
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pAd >0.

We now claim that {A :A €3} is a (clopen) basis for the topology of A, so
that in particular A is totally disconnected. Indeed, let O CA be open, and
p €0, both arbitrary. By Urysohn’s lemma there exists an f€ C(A) with

0<f<l, fip)=1, f=0o0nA\0.

Since IIfll = I|fll, =1 and 0<f<l p ae, the set A:={f>—;-} satisfies
pA>0. Also

f=Txa*Fxaxw =16 +Txe\ o
Since f(p)—l and lm,,} I = Ilfx{n\A} loo < ; , we must have p EA.
Finally, xA <f, so ;XA < f and therefore A C O, because f 0 outside 0. We
have now shown that p €4 CO, and our claim is proved.

We need two more facts that we formulate next.

LeEmMMA 6.5. .

(i) A p-measurable subset of A is closed and self supported iff it is of the form A
Jfor some A EZ.

(ii) The a-algebra 25 is the p-completion of the Baire o-algebra Ba(A).

PROOF. (i): It is straightforward that each A is closed and self supported: use
the fact that the sets 4 (4 €Z) form a clopen basis for the topology of A and
our earlier remark that pA4 >0 (iff p4 >0 ) iff A£ 2.

For the converse let ECA be clopen and self supported. By the regularity
of p and the fact that the sets A form a clopen basis for the topology of A
which is closed for finite unions (4—»4, A €Z, is a Boolean algebra isomor-
phism !), we have

MA\ E)= sup (id: A CA\ E}.

Choose an increasing sequence (4,) such that ﬁ.;i,,Tﬁ(A\E) as n—oo. We
claim that

A\E = 4 (hence E=T \ A), where A:= | J 4,.

n=1

Smoep.A pAd =limpd, = hmp.A,,,wehave
id =lim jd, = A\ E).

It follows from this that A NE = &. Indeed, if not, then since E is self sup-
ported, we would have p(A NE)>0, and this clearly contradicts

A,CA\E (n=1,2,..) and jid,—pA.

On the other hand A\(;i UE) has p measure 0, and therefore, being open, it
must be empty.
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(i): Let ECA be p measurable. By the regularity of p we may construct an
increasing sequence of compact self supported subsets K, CE such that
pK, 1 LE as n—c0. By (i) each K, is of the form 4, with 4, EX. Observe that

A [o <IN
A, EBa(A) since x4, is continuous. Now B = UIA,, is clearly a Baire set
n=

contained in E with pB; = pE. Similarly, by complementation , one finds a
Baire set B, DE with uB, =pE. 0O

Now let (Q 2,n) be a complete probability space, X a Banach space, and
¢:Q—X" w’-scalarly bounded, A as usual will denote the (compact) maximal
ideal space of L*(u) and f €C(A) the Gelfand transform of fEL*®(w).
Finally, let p be a lifting on L*(u). We are going to define maps ¢, p and p(¢),
so that for every x ExX CX"" the following diagram commutes:

A
N & (x,9)"
. T \ X,
()

p * * X

Q— > (X',w

p({x,9))

The 1mportant facts about these maps are:
(i) p is Borel measurable, i.e. p 'BES for every B €B(A).
(i) ¢ (= the Stonian transform of ¢) is continuous when X" has its w'-
topology. Hence
(ii)) p(¢) is w"-Borel measurable, ie. p(¢p)"' EES for every w’-Borel set
ECX". Also p(¢) is uniformly bounded.

p 2w

(A) DEFINITION OF &>

For every x€X we have, since ¢ is w*-scalarly bounded, that
(x,0) € L®(). So {x,¢) has a Gelfand transform (x,¢) € C(d). Fix s €A and
consider the map

X3 x—3(x,¢)(5)ER

Clearly this map is linear, and bounded, again by the w”-scalarly boundedness
of ¢. Therefore it defines an element of X* which we denote ¢(s):

%9(6)) 1= (x,9s) (SEA xEX) (12)
We claim that &)Ais continuous, for the w*-topology on X". For this it suffices
to show that (x,¢(-)) is continuous on A for every x € X. However, this is clear
from (12), since {x,¢) is continuous.
(B) DEFINITION OF p.

Let us fix t €A and consider the map
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f - f o= ) = o).
m m m m

C@) L*(w) M@ R

This is a multiplicative linear functional on C(A), and therefore equals evalua-
tion in a unique point of A that we give the name p(¢), i.e.

Fowy:=p(fX0) (€ fEL= (W) a3
This defines the map p. Taking in particular f={x, ¢}, (13) becomes
(XY (B() = p((x,$)) (1) (1EQ, x EX). (14)

For any fE€EL®(p), p(f) is measurable. Hence, by (13), fop is measurable.
Since every continuous function on A is of the form f with fEL*®(u), this
proves that p is Baire-measurable. i

Let p(p) be the p-image of p on the o-algebra 3:={BCA:p BEZX}. We
just observed that 3 contains the Baire sets. =’ is also p(p)-complete, since
is assumed to be p-complete. It follows from (13) that

[Fabw = [ = [fdu (FEL=G).
Since fdp = {}’dﬁ by the definition of Ji, this shows that
{]‘dﬁ(n) = [fdii (fEL™(w).

Therefore p(x) and p must coincide on the Baire sets of A. Hence the p-
completion (= p(p)-completion) of Ba(Ad) is contained in 3. However, by
Lemma 6.5 (ii) the p-completion of Ba(A) equal 2, so in particular it contains
@(A). Conclusion: B(A)C, i.e. p is Borel measurable.

(C) DEFINITION OF p().

Fix t €Q. The map
x - (%9 - pdxe) - p({x,¢)1)

m m m

m
X L*w M(y) R

is bounded (since ¢ w’-scalarly bounded) and linear, so defines an element
p(oX)E X :

(x, p@)1)):= p({x,$))1) (FER, xEX). 5)
Combining (14) and (15) yields
NP1 = (x,p(@)1)) (1ERQ, x EX), (16)

while (16) and (12) imply
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(X, 9B = (x, o)1) (€L, x EX), a7

proving that ¢op = p(¢). Since p is Borel measurable and ¢ is continuous for
the w”-topology on X, p(¢) is w’-Borel measurable. We have now proved all
we have claimed for ¢, p and p(¢), since it readily follows from the definition
of p(¢) that p(¢) is uniformly bounded. O '

Let us note an interesting consequence of these arguments. We have
assumed that ¢ was w"-scalarly bounded, i.e. for some M <oo,

Ixopll, <M for all x EB(X).

This does not means that ¢ is p a.e. bounded, for the same reason we have
mentioned before: the set where [|xo¢ll <M fails may depend on x. However,
since p(¢) is uniformly bounded we have proved:

COROLLARY 6.6. Every w'-scalarly bounded ¢:Q—X" is w’ -scalarly equivalent
to a bounded w” -Borel measurable function p(¢):Q—X".

({x,0($)) = p({x,9)) = (x,9) p a.e. for every x EX.)
We can now strengthen Prop. 6.2 considerably, as follows.

ProPOSITION 6.7. Let (,2,1) be a complete probability space, a Banach space
and F:2—-X' a measure satisfying |FE|| <MpE (E€E€ZX) for some M <co.
Then F has a w’-Borel measurable uniformly bounded w"-derivative with the
further property that the image measure ¢y is w” -Radon.

PrOOF. We define ¢ exactly as in the proof of Prop. 6.2, using an arbitrary
lifting p on L% (p):

X9(1)) = p(¢:)t) (1E€EQ, x EX). (18)
Now it follows from (18) that
p({x,9)) = (x,9) (xEX) (19)

(since “p? =p” ). Combining this with (15) gives
(x,0(9)) = (x,¢) (xEX),

so that ¢=p(¢). But then ¢ is w”-Borel measurable, since p(¢) is (see (iii)
above). We also have

b = p(e) = bop (see the diagram on p. 69).
For simplicity let us assume ¢ is valued in B(X"). Setting »:=¢p (the w'-
Borel image measure on B(X")), we have
v = $(p()) = $().
This implies that » is w"-Radon, since g is Radon and ¢ is continuous (for the
w’-topology on B(X")). O
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We now prove (I) in its full generality, and at the same time supplement it.

THEOREM 6.8. For any Banach space X the following are equivalent:

@ Igx

(i) X* has the WRNP, ,

(iii) the canonical injection (B(X"),w" )} >X" is universally Pettis integrable, i.e.
for every w”-Radon measure v on (B(X"),w") i is (P)-integrable (so in par-
ticular i is universally scalarly measurable).

PROOF.
(i) = (iii): Suppose /' Z X. To prove (iii) let Z denote B(X), considered as a '
(bounded) set of continuous functions on (B(X"),w"). Then by Th. 3.11 (v) Z
is relatively 7,-compact in M(») for every w'-Radon measure » on B(X"). Now
by Goldstine’s theorem the 7,-closure of Z can be identified with B(X™). So
B(X™)CM(») for every ». This proves the universal scalar measurability of i.
For the (P)-integrability of i, fix » and recall from Th. 3.11 (vi) that Z and
therefore also its 7,-closure B(X ") is »-stable. This implies by Th. 2.7 and the
uniform boundedness of B(X"") that the canonical map B(X™")—L'() is 7,-
to-norm, hence in particular 7,-to-weak continuous. Now the criterion of Prop.
5.5 implies that i is (P)-integrable. Thus (iii) is proved.

(iif) = (ii): To show that X* has the WRNP let (2,=,p) be a complete proba-
bility space and F:2—X" a measure satisfying ||[FE|| <MpE (E €X) for some
M<co. Let $:2—X" be a w’-scalarly measurable derivative of F. We may
assume by Prop. 6.7 that ¢ is w”-Borel measurable and that its image measure
»=¢p is w”-Radon and supported in B(X"). Then by assumption (iii) above

i:(B(X"),»)>X" is (P)-integrable.
Let us now factor ¢:Q—X" as follows:

¢:(@,u-25 B(X) -5 X°
(¢1 is ¢, but considered as a map into B(X') rather that X'). Define
Se L' n)—>L'(w) by S4(f):=fodi(fEL'(¥) and T, :=S, :L*@)—L*(®).
The Dunford operators T, and T; now satisfy T = T;oT,, and T, maps into
X" because T; does (since i is (P)-integrable). Thus we have proved that ¢ is
(P)-integrable. Also clearly its Dunford operator T, satisfies Tyxgz= FE
(E €2) (since (Tyxg,x) = {T;oT g, XE,X) ={XE,S¢,08iX)= é(x,qb)dp Vx €X).

(i) = (i): If I' CX then by Th. 3.11 (vii) there is a w"-Radon measure p on
(B(X"),w") such that L'(u)=L' and Z=B(X) is not totally bounded in
L'(w). Consider the canonical injection i:(B(X"),p)—X". i is w’-scalarly
measurable and as such a w”-derivative of some measure F:3,—X" (cf. the
second part of the proof of Prop. 6.3 ). Any possible (P)-integrable derivative
¢ of F would be w’-equivalent to i (same reference). Since p is w”-Radon it is
perfect (Prop. A. 4) and Prop. 5.7 now implies that S, (equivalently: T,) is
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compact. Clearly SyB(X™") must include Z=B(X), which is not totally
bounded in L'(y), so we have a contradiction. O

We now start working towards characterization (II) stated at the beginning
of this chapter. First let us reformulate (iii) above in the language of Choquet
theory. It is well known that every Radon probability u on a compact convex
subset K of a locally convex Hausdorff space has a unique barycenter (or resul-
tant) r, €K defined by the condition that

fr= f f(x)du(x) for all continuous affine functions. (20)
k

In particular, if K is a w*-compact convex subset of a dual Banach space X",
and p a w”-Radon measure on K, then

(x,ry) = f(x,x*)dp)(x*) for all x€X. 21)
K

It is a result of Choquet that the “barycenter formula” (20) extends to the
affine functions in %,(K):= {first class Baire functions f on K}. However,
there is a counterexample showing that it fails in general for affine Baire func-
tions of the second class (cf. [66]).

Turning to the particular case (21) again, if X is w"-sequentially dense in
X", then (21) is valid for every x™* €X"" (instead of x) since in that case
X" CB,(K). One would expect this to be false without the condition that
X" CD,(K). However, if /' Z X, then we shall see that the barycentric formula
holds for all x™ €X™", even though X need not be w”-sequentially dense in
X™". We express this by saying that every x™~ €X' “satisfies the barycentric
calculus”, i.e.

(reox™ )= f (x",x""ydp(x") for every w*-Radon measurepon B(X"). (22)
B(X)
(It is enough of course, to consider B(X") instead of general K.)

Another interesting fact to be proved below is that the universal scalar
measurability of i:(B(X'),w’)—X by itself already suffices to conclude that
I'7X. The (universal) (P)-integrability apparently is an automatic conse-
quence. Finally, the validity of the barycentric formula for all x™ implies pro-
perty (vi) below. Also this property turns out to be equivalent to /! Z X.

We summarize all this in

THEOREM 6.9. For any Banach space X the properties (i), (ii) and (iii) of Th. 6.8

are equivalent to each of the following:

(iv) the canonical injection (B(X"),w")-.>X" is universally scalarly measurable
and each x™" €X™" satisfies the barycentric calculus,

V) i:(B(X"),w")—>X" is universally scalarly measurable,

(Vi) for each w’-compact subset ACX', w'cl coA=coA (co denotes norm
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closed convex hull).
PROOF.

(iii) = (iv): Let u be a w"-Radon measure on B(X"). Since we are assuming
(iii), (P)B ([ . idp. exists, and by definition satisfies

(P) [ idpx™y= [ (x"x")dux") Vx"EX™. (23)
B(X)) B(X)
Combining (21) and (23) yields
(x,(P) f idpy ={x,r,) Vx€X,
B(X")

) (P)B & )idp.—r“. Substituting this in (23) gives (22), so each x" €X"
satisfies the barycentric calculus.

(iv) = (Vv): trivial.

(1v) = (v1) Let ACX" be w"-compact. We shall need the fact that every x” €
w" clcod is the barycenter of a w"-Radon probablhty concentrated on {1 To
see this, fix x" € w" clco A and choose a net (x;) in coA so that x,, ——ex .
Next let p, represent x, and be concentrated on 4 (f x,=

n

é]}\,-x,f,}\,->0,§1}\,:l, x; €A, simply put p:= %A,ﬁx;). By the w'-

compactness of the set P(4) of w*-Radon probabilit Y, measures on A, we may
suppose by passing to subnet if necessary that p, ——>pEP(4). Now taking
the limit over a in the relation

(Xxg) = [y )dp(y") (x€X),
A
we obtain

(xx"y = [(xyHdppy™) (x€X),
A

proving that x” is the barycenter of p.
Suppose now that w”clcod #cod. Fix x" €w’clco4 \ oA and use the
Hahn-Banach theorem to find an x™ € X" so that

sup x7T o< (xFxTY. (24)

By the preccdmg paragraph there is a w"-Radon probability on A representing
x . Since x™* by assumption satisfies the barycentric calculus, we have

[ %" duy") = (x",x™).
4
But this clearly contradicts (24).

(v) = (i): This has already been taken care of. In the second part of the proof
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of Prop. 6.3 we showed (without using the separability of X) that if /! embeds
in X, then there exists a w'-Radon measure » on B(X ) so that
(B(X"),»)-5> X" is not scalarly measurable. [Note: (v) < (i) is also a direct
consequence of the equivalence (v) < (i) in Th. 3.11]

(vi) = (i): Let us assume for contradiction that we have an embedding
T:I'>X. Also, let S:/'-C[0,1] be a quotient map.

M[O’I]: C[O,l]' i—é l°° :(11)' éT‘ Xt

coy & I, x

Then S is an isometric embedding and T° a quotient map. Let
8:[0,1]>CI[0,1]" = M[0,1] be the map that sends each z€[0,1] to the Dirac
measure §,. Then 8 is a homeomorphism into (C[0,1]",w") and 4 ,:=8(0,1]) is
the set of extreme points of the w -compact convex set P:={pEM][0,1]:p=0,
llsll=1}. Thus P=w"clco A, by the Krein-Milman theorem. But P co 4,
since clearly cod; consists only of the purely atomic measure in P. Because
S*:C[0,1]—»I*® =(I')" is homeomorphic for both the norm and the w'-
topologies, A,:=S"4; is a w’-compact subset of (/')° with
w'clcoAy5#co A,. Finally T":X —(I')" is a w’-w’-continuous surjection.
Using the open mapping theorem we see that there exists a w"-compact preim-
age ACX of A, under T'. By the w’-w’-continuity of T,
T'(w" clcoA)=w" clcoA,, and on the other hand, the norm continuity of T*
implies T (coA) CcoA,. Since w'clcoA;7#coA,, we conclude that
w’clco A5#co A, contradicting the assumption (vi). O

We still have not proved (II), although in one direction we are almost done.
To see this, assume that K=co ext K for every w’-compact convex K CX".
Then it follows that (vi) in Theorem 6.9 is satisfied (and therefore /!  X). This
is an easy consequence of the fact that by Milman’s theorem the extreme
points of w”cl co 4 are contained in 4 whenever 4 CX" is w"-compact:

w clcoAd =w"clco(extw clcoA) =co(extw clcoA)Cto A Cw"clco A.

(Here the first equality comes from the Krein-Milman theorem, the second one
from the assumption, while the inclusion immediately after that is a conse-
quence of Milman’s theorem, as explained above.)

To prove the other half of (II) new tools are needed that we now start to
develop. But first let us point out how simple the proof is for separable X.
Suppose /' Z X and let KCX" be w-compact and convex. Let us assume for
contradiction that co ext KCK. Then choose x* €K\ coextK and use the

=
Hahn-Banach theorem to find an x** €X*" so that
sup x < (x",x™). (25)

€xi
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Now since we are assuming that X is separable, (K,w") is metrizable, so by
Choquet’s theorem the point x” is represented by a probability measure p car-
ried by ext K, i.e.

[ xyyauy”) = (xx"y VxeX (26)
extK

But x™ is a first class w”-Baire function by Th. 4.1, (1) < (2), and therefore,
as we pointed out before, (26) holds with x™ replacing x. But this of course
contradicts (25).

We now prepare for the general case. First we need a definition. If 4 is a
bounded subset of a Hausdorff locally convex space X then a slice of 4 is any
set of the form

S=SUA,x",a):= {x EA:(x,x") >M(x*)—a},
where x €X',a>0 and M(x‘):=sgpx'. Observe that S=

{x€A4:(x,x"y=M(x")—a} if 4 is convex and that by definition slices are
always non-empty. If x €4 and S is a slice containing x, then S is a weak
nbhd of x in A. In fact the slices containing x form a subbasis for the weak
nbhds of x relative to A. It is an important fact that if 4 is convex and com-
pact and x € ext 4, then x has a (weak) nbhd basis (relative to 4) consisting
of slices.

LEMMA 6.10. Let K be a compact convex subset of a Hausdorff Lc.s. X and let
xo € ext K. Then the slices of K containing x, form a nbhd basis at x relative
to K (every extreme point is “strongly extreme” in Choquet’s terminology).

PrOOF. Observe first that on K the given topology of X coincides with the
weak topology. By definition any (weak) nbhd V of x, in K contains a finite
intersection of slices S;=S(K,x;,a;) (i=1, ..., n). Let H; be the closed half
space  {XEX:(x,x;) <M(x;)—e;} (=1,...,n). Then x¢&H,

(i=1,...,n), so since xq is extreme, xq & co (,-LJ]Hi NK). Notice that this
last set is compact as a finite convex hull of compact convex sets H; N K. Now
by the Hahn-Banach theorem we can separate x, from co(iL:J1 H;NK) by a
closed hyperplane H ={x:(x,x")=r}. Supposing that (x¢,x")>r, as we
clearly may, we then have xo ES(K,x",M(x")—r)C iélS,- cv. 0O

PROPOSITION 6.11. Let K be a compact convex subset of a Hausdorff Lc.s. X.
Then ext K is a Baire space for the relative (weak) topology.

PrROOF. Let (V,) be a sequence of open dense subsets of ext K. We must show
=]

that ﬂl V, is dense in ext K. So let V' be any non-empty open subset of ext K
n=
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co
and let us prove that VN( ﬂl V,)A2. We may assume V,|, since
n=

ViyN---NV,is dense and open for every n EN. Let us now choose subsets
U,(n=1,2,...) and U of K so that each U, is open and dense in K, U is open
in K, U, | and

V,=U,NextK (n=12,..), V=UN ext K
(If V), is open in K with V,N ext K=V, then put U,:=
(K\ extXK)uV’';N --- NV’,; Uis defined similarly.]

We are now going to construct inductively a sequence of slices
S, = S(K,xn,a,) of K so that the following holds:

S1CUand

Sp+1 C 8’ 0 Uy, where 8': =S (K,X}, 5 ).

To start the inductive process, choose x EV'=UN ext K. By Lemma 6.10
there is a slice S;=S(K,x],a;) so that x€S,CU. Now suppose
S$1,82,...,S, have been constructed as required (observe that
§$iD8;D---DS,). Note that §',NU,N ext K#£J, since §’',N ext K is
open in ext K, and %@ by the Krein-Milman theorem, and U, N ext K=V,
is dense in ext K. Now again choose any x €S’,NU,N ext K and apply
Lemma 6.10 to this x and its nbhd S’,NU,. This yields a slice
Sn+1= S(K,Xp +1,@, +1) containing x so that S, ,; CS’, NU,. This completes
the induction.

o0 o0 -— -—
It is clear that DIS,, = ﬂl S'w7#D, as S, and each S, is compact.
n= n=

Denote NS,=NS’, by S. Then S is convex and compact, and K \ S is also
convex, since S,|. Let x ble any extreme point of S. We claim that x € ext K.
Indeed, if not, then x =5y +752, y7#z, y,zEK. We must have either y €5,

zESor y€ES, z€&S, since both § and K\ S are convex and x € ext S. Sup-
pose the former, so y&S. But then y&S, for some n€N, so
(p,XnY<M(x,)—a,. On the other hand (z,x,)<M(x,) since z €K. It follows
that

N N o 1
(X, xp) = 5 Xn) + 342X SM(xp)— 5 @y

00
and therefore x €S’,, contradicting x €ES = ﬂlS’,,. So we have proved that
n=

<]
SN ext K(= ext S)d. It remains to note that S N ext KC VN ( ﬂ] V,), by
n=
construction. Hence VN(NV,)# @ and the proof is finished. O

We are now fully prepared for

THEOREM 6.12. For any Banach space X each of the properties (i) - (vi) of
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Theorem 6.8 and 6.9 is also equivalent to
(vii) for every w"-compact convex subset KC X",

K =co ext K.

PrOOF. We already showed that (vii) implies (vi). We now prove

(i) = (vii): Let us assume /' ¢ X and suppose for contradiction that K=%~co ext
K for some w"-compact convex KCX . By the Hahn-Banach theorem there
exists an x** €X"" so that
l=supx™ > sup x™.
Kp EextpK .

The Bishop-Phelps theorem even allows us to assume that x”" attains its sup
on K, ie. the face F:={x"€K:(x",x"")=1} is non-empty. Put C:=w" c/ F
and let E:= ext C. Observe that x™* is < 1 on E, since ENF = @ (any point
of ENF would be extreme in K, contrary to the choice of x**). Hence

o0
Eew'd (x" €E:(x" x"y<1-=),
n=1
Now E is a Baire space for the w" topology by Prop. 6.11. It follows that for
some n €N the set w'cl{x" EE:(x',x")<1—7l-} contains a w"-open subset

O of E. Recall now that by Th. 3.11, (i) < (iv) the assumption /' Z X implies
that x™* €8,(B(X"),w"). In particular x**|w" ¢/ O must have a point of w"-
continuity. This implies the existence of a w’-closed U of C with

(int; U)NO+#@ and such that the oscillation of x™ on U is < -51;1— (intz U
denotes the w”-interior of U relative to E). Now observe that

C=w"clcoE = co(w"clco U, w*cl co(E \ U)).
Since E\ U misses the w’ -open subset (intz U)NO of E, it follows from
Milman’s theorem that w”cl co(E \ U) 9C&C. Hence FZw"cl co(E \ U), so there

is an x"€F of the form x"=MAx]+(1-Ax3, xjEw'clcol,
x; Ew'clco(E\U) and A>0. Since 1=(x",x7)= Axp,x™")
+ (1=A)x5,x""y and (x],x""), (x3,x"*)<1, we shall have a contradiction
once it is proved that (xj,x"")<1. To see this, note that x; Ew"clco U is the
barycenter of a w*-Radon measure p concentrated on U (see the proof of (iv)
= (vi) in Theorem 6.9). Finally recall that by (iv) of Theorem 6.9,

x1,x7y = f(x',x“ Ydp(x").
U

We may conclude from this that (xI,x“)<1—l, since U intersects
Y n

{x EE:(x',x")<1—-’-11-} and since the oscillation of x** on U is <—217. This
finishes the proof. [
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NOTES Several mathematicians have contributed to the results of this
chapter. The fact that X" has the WRNP iff /! ¢ X was proved for separable
X by K. Musial ([55]). For non-separable X the implication X~ WRNP =
I'7X was deduced from the separable case by K. MusiaL and C. RyLL-
NARDZEWSKI ([59]), using a lifting theorem for vector measures. The reverse
implication was proved by L. JANICKA ([47]) and, independently, by J. BOUR-
GAIN (unpublished, but see [58]).

The important fact (Prop. 6.7) that p(¢) is w’-Borel measurable and that it
induces a w*-Radon measure on B(X") is due to D. SENTILLES ([87], see also
[20]). A deep study of Pettis integration via the Stonian transform was made
by D. SENTILLES and R.F. WHEELER in [88].

The characterizations (iii) - (vii)) are all due to R. Haypon ([38]). The
equivalence of (iii) and (v) has led L.H. RIDDLE and E. SaAB ([69]) to a more
general result where (B(X"),w") is replaced by any compact space K and i by
a bounded map from K to (X ,w") that is universally Lusin measurable. For
more on this, see [1]. In another noteworthy development, E. SAAB has shown
in [78] that for a dual space X" to have the WRNP it suffices that every
Dunford-Pettis operator T:L'—>X" (rather than any bounded operator) has a
Pettis integrable derivative. This result has been “localized” by L.H. RIDDLE
([68]). See also [77], where E. Saab proves an interesting analogue of condition
(V) characterizing w” -compact convex sets with the RNP.

In the separable case the equivalence of (i) and (vii) is due to E. ODELL and
H.P. ROSENTHAL ([62]). The preliminary results Lemma 6.10 and Prop. 6.11
were proved by G. CHOQUET, see [11]. There may be some novelty in our
proof of Prop. 6.11: we have eliminated the need for Lemma 27.8 in [11] by
interposing the slices S’, in the construction. In connection with the barycen-
tric calculus, let us mention the following result of E. ODELL and H.P.
ROSENTHAL ([62]): for any X, an element x €X" belongs to B;(B(X ),w")
iff x™ =w"-limx, for some sequence (x,) CX. This result is non-trivial: it says
that an affine function that is the limit of a sequence of w"-continuous func-
tions, is in fact a limit of a sequence of w"-continuous affine functions. Let us
write K:=(B(X"),w") and let us denote the space of affine continuous func-
tions on K by A (K). More generally we may put 4y(K):=A4(K) and define
inductively, for any ordinal &, 4,(K):= the set of pointwise limits of bounded
sequences in BgaA g(K). Then 4,(K) = ®,(K), as we have just seen. This result

leads to a simple example where B;(K)#%,(K). Let us take X:=co(T), so
X*=IYT), X**=I*(D), I uncountable. Since /' Z X, we know from Theorem
3.11 that each x™* €/®(T) belongs to %,(K). However, each x"" €%(K)=
A1(K) is a w™-limit of a sequence in co(T), and therefore must have countable
support. This shows that ®,(K)#%,(K). Returning to the general situation, let
us note that generally %,(K)+A4,(K). This follows from the example on p. 104
in [66] that we have mentioned before (%,(K) of course denotes the set of
Baire functions of the second class on K). To see this, note that functions in
A,(K) satisfy the barycentric calculus. Indeed, more generally, by the Lebesgue
theorem and induction over a, every f€ UA,(K) is Borel and satisfies the
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barycentric calculus. The question has been raised whether a Borel function on
K satisfying the barycentric calculus must at least belong to some 4 ,(X). Even
this is not true. M. TALAGRAND ([93]) has constructed a separable Banach
space X and an x" €X"" so that x"|x €EB(K) (K=BX )W), x g
satisfies the barycentric calculus, but does not belong to any 4 ,(X).

We now describe some interesting characterizations of spaces not containing
I' that were recently proved by G. GODEFROY ([32]). They are related to (and
in some sense generalize, at least in the separable case) (vi) and (vii). Let C be
a closed convex bounded subset of a dual space X" . A subset BCC is called a
boundary of C if for every x €X there exists an x" €B so that (x,x )=
yslépc (x,y"). Note that if C is w”-compact, then B = extC is a boundary of C.

In general, however, C has boundaries that do not contain extC and may even
miss extC altogether. Now each of the following two properties is, for separ-
able X, equivalent to /' Z X:

(22) for every equivalent norm |||l on X and for every boundary B of
C:={x"€X":llx" <1}, we have C=coB.

(23) every closed convex bounded set CC X" that has a boundary (i.e. is such
that each x € X attains its sup on C) is w*-compact.

Examples in [32] show that the separability of X is essential in both (22) and
(23).

Finally, coming back to the WRNP, let us mention that, just like the RNP,
the WRNP has been localized in recent years. One calls a set K CX a WRNP-
set if for every comI?lete probability space (2,2,u) every measure F:2—X with

“average range’ :E€Z, pE>0} contained in K, has a (P)-integrable K-

valued denvatlve. Various characterizations of WRNP sets are known ([70],
[79], [67D.
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Chapter VI
KMP, RNP and strong regularity

Introduction

We have already mentioned in passing that a Banach space X has the
Radon-Nikodym property (RNP) if for every complete finite measure space
(©,2,p) and for every X-valued measure F:2— X which is p-continuous and of
bounded variation, F has a Bochner integrable derivative ¢:

FE = (B) fcpdu (EED).
E

We shall not discuss this property here, but we need the equivalent formula-
tion of the RNP in terms of dentability (this may be taken as the definition).

Let A CX be any bounded subset. Recall from Chapter 6 that a slice of 4 is
a set of the form

S=SUA,x"a:={xEA: (x,x"y >M(x")—a},
where x" €X”, lIx"||=1, >0 and M(x'):-‘sgpx’. If X is a dual space and if

the functional defining the slice is in the predual of X, then S is said to be a
w’-slice. A is dentable if A has small slices, i.e. if for every e>0 there exists a
slice § of A with diam S <e. A fundamental result that we shall not prove here
is that X has the RNP iff every closed bounded convex K C X is dentable. In this
case X is called dentable.

The definition of dentability suggests a close relationship between the RNP
and the existence of extreme points for closed bounded convex sets. We say
that X has the Krein-Milman property (KMP) if every closed bounded convex
K CX equals the closed convex hull of its extreme points: K=co ext K. It is
well known and not very difficult to prove that the RNP implies the KMP.
The converse is open in general but has been established in a variety of special
cases. E.g. R. Huff and P. Morris have shown that RNP= KMP for dual
spaces.

In this chapter we wish to prove two results that both involve the notion of
strong regularity. We first define strong regularity and discuss it at some
length. Thereafter the two main results will be established. The first is another
characterization of spaces not containing /', in term of their duals:

(D) X” is strongly regular iff /! does not embed in X.

The second result gives another reason why strong regularity is important:
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(IT) Strongly regular X with the KMP have the RNP
(so RNP= KMP for strongly regular X).

An easy corollary of these results will be the old Huff-Morris theorem men-
tioned above that KMP= RNP for dual spaces.

§ 1. STRONG REGULARITY

DEFINITION 7.1. A Banach space X is called strongly regular if for every closed
bounded convex KCX and for every ¢>0 there exist nEN and slices
Si, ..., S, of K such that

diam-:;(Sl +ot Sp)<e (1)

If X is a dual space andv there are w”-slices S, . . ., S, as above, then we shall
say that X is w -strongly regular. [

ReMARK 7.2. The above definition is not weakened if instead of (1) one
requires the existence of arbitrarily small convex combinations of slices '§1 AiS;

with Aj, ..., A,>0, ~§1>‘i = 1. This is because any such A;, ..., A, can be
- k k,
simultaneously approximated by rationals —nl—, T (n large), and because

—nL S = %(S,- +...+ 8;) (there is no rule against repeating slices). [

k

To get a feeling for what strong regularity means we now first prove some
easy lemmas about it that will be needed later anyway.

LemMMmA 7.3. Let X be a Hausdorff l.c.s. and let K CX be closed bounded and
convex. Then every relatively weakly open subset U CK contains a combination of

slices, i.e. there exist n €N and slices S, . . . , S, of K so that
n
L35 cu
ni=1
Proor. Let us choose xo€U, ¢>0 and xj,...,x;€X so that
V:={xEX:[(x,x;)|<e for j=1,...,k} satisfies (xo+2V) N KCU. Next

we define ®: X/ by &x:= ((x,x}))}‘zl (x €X). Then @K =:C is a compact
convex subset of /f°, so by a classical result of Caratheodory, C=co ext C. In
particular

m m
Oxo = D Ay; with y, € ext C, A, ... ,A\,>0and D\ =1

i=1 i=1
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By Lemma 6.10 applied to C with its norm topology, each y; is contained in a
slice T; of C with diam T;<e (i=1,...,m). Now put S;: —(<I> 'TH)NK

@i=1,...,m). Clearly the S; are slices of K and we claim that _§1>\S cV.

Indeed, let x; ES; be arbitrary (i =1, ..., m). Observe that [®x;—y;ll<e
(i=1,...,m),since ®x; ET;, so that

m m m
I ZA®x; — JApill = 1B Z Aix;) — Bxoll<e.

But this is equivalent to saying that

m
|(§17\ixi —xg, %) )| <efor j=1,...,k

ie. _Elk,- x; €Exp+V, hence _ElAiSi Cxo+V. Finally, approximating the A
= i=

with rationals and repeating some S;, as indicated is Remark 7.2, we find slices

Si,..., S, of K so that %gl S, C(xo+2V)NKCU. [

COROLLARY 7.4. A [dual] Banach space X is [w”-] strongly regular if (and only
if) for every closed bounded convex K C X and for every ¢>0 there exist n €N

n
and relatively w-[w"-] open subsets Uy, . . ., U, in K so that diam % le]i<e.
i=

PrOOF. Given such U,y . . ., U, use the preceding lemma to find m €N and
[w*-] slices S, ..., S® of K such that

m
LSsocy (=1,...,n
m =
(we clearly may assume, as we have done, that these combinations of slices
have a common “length” m, cf. Remark 7.2). Now

—2 ZS(')C'—ZU,,SOdlam—;E ES(')<€. O
] li= j=li=

In the next result Lemma 7.3 is used to prove a useful consequence of strong

regularity.

LEMMA 7.5. Let X be strongly regular and let a closed bounded convex K CX, a
slice S=S(K,x",a) of K, and an ¢>0 be given. Then there exist k €N and
slices Ty, ..., Ty of K such that

@) T;CS (i =1 ., k),

i) diam L 3 T, <e.
k2

ProOF. Consider the closed slice S(K,x",~<). By strong regularity there exist

2
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slices Sy, ...,S, of S(K,x", 2) so that diam % pX S<E Now note that

each set S;NS(K,x" ,—2-) is non-empty and relatively weakly open in K. Hence
by Lemma 7.3 there exist a k EN and slices TV (j=1,...,k; i=1,...,n)
of K so that
k
%2 TP CSNSKx' %) (=1,...,n)

Put m:=kn and enumerate the 7\ as T, . .., T,,. Then

1
mi
1

IIME

T; C lE S,~ sodiam-l— ) T,-<-€—and
ni=1 mi=1 2

3

2 TiC S(Kx,z) 2
We now claim that at least half of the T;’s are actually contained in
S=S(K,x",a). To see this, let us rearrange the T; so that, for some k <m,
T,CS fori=1,...,k, T;¢Sfori=k+1,...,m

Choose x; ETi(i =1, ...,m) so that (x;,x ) <M(x")—a for i=k+1,..,m.
Then, by (2),"

L %xES(Kx* 2, so <l ﬁx- xy>SMx)— £, 3)
m oy} 1 ] ’ 2 ’ m o] 19 2
On the other hand
LS =L Saan+L § o
mi= mi= M i=k+
1
<- (kM (") + (m —k)YM (x")—a)). @
From (3) and (4) one easily obtains k>—m. Hence
.1 k . 1 m € _
diam — 2 T; <2diam— 3 T;<2. —=¢
k i=1 mi=1 2
and we are done: the slices T, . . ., Ty satisfy (i) and (ii)). O

We prove one more preparatory lemma before passing to the main results.
It is elementary but important, and has nothing to do with strong regularity.

LEMMA 7.6. Suppose K CB(X) is closed bounded and convex. Let x",y" €X’
and numbers ¢, a and c be given such that

lx*ll = lly*"ll=1, 0<e<l, a>0and —1<c<l.

Then if sup {(x,y™): x ES(K,x", %-a)}>c, there is a slice T of K such that
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() TCS(K,x",a) and
(i) inf {{(x,y"Y:xET}>c—e

Proor. Consider the following relatively weakly open set U in K,
U:= {xEK: xES(K,x',-%a), (xy"y >c).

Note that by assumption U @. From lemma 7.3 we obtain n EN and slices
Ty, ..., T, of K such that

l n
”ingiCU

We claim that one at least of these 7; satisfies the requirements (i) and (ii).
This is proved by simply estimating the number of T;’s for which either (i) or
(i) fails. Suppose T, ..., Ty, fail (i). Choose x;ET; (i=1,...,n) so that
(x,x"y <M(")—a for i=1,...,k;. Note that (x;,x") <M(x") for

i=k,+1,...,n Then since % .Elx,EU,
'=

* n *® k * _k *
ME)— Sa< (& Sxx"y<s L ME")—a) + —L M),
. 3 n < n n
and it easily follows that k; <-§—n.
Next (reorder the T;’s again) suppose T4, . . ., Tk, fail (ij). Choose 0<p<1
and then x; ET; (i =1,..,n) so that (x;,y") <c—pe for i=1, ..., k,. Note

that (x;,y")<1 for i=k,+1,...,n (because KCB(X) and |y"l|=1). Then
since—rll- 2 x €U we find

1 = o ko n—kj
c<(n 'Elx,,y N " (c—pe) + ;.

Since 0<p<<1 was arbitrary one easily obtains k2<£11_;cc_&. Using the fact

that 1 —c¢<2, it follows now that

€ 2
3+2+£

k1+k2<-€—n+ 1—¢ n<n.

3 1—c+en\

The conclusion is now evident that one at least of the T;’s satisfies both (i)
and (ii)). O

We now embark on the project of showing that if /! does not embed in X,
then X~ is strongly regular (the converse is fairly easy). There are some techni-
cal details involved in the proof that we now take care of first.
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(A) A (bounded) tree in a Banach space X is a (bounded) collection

(B)

T={xp,:n=0,1,...; k=1,...,2"} CX satisfying

1

2 (Cnt1,2—1 T Xn+1,2%) = Xppe VY, VISk<2W &)
T is called a (bounded) e-tree (where ¢>0) if in addition

1% 41,26 =1 — Xn kel = %5 41,26 — X iell=€ Y, V1I<k<2". (6)

A tyPical example of a 1-tree contained entirely in the unit ball is found
in L'=L'0,1]:

S =2 k2L Ky (1 =0,1,..5 1<k <2")

We shall refer to this system as the standard tree in L. Trees may be
regarded as particularly simple instances of X-valued martingales on [0,1],
usually called “dyadic martingales”. Given a tree T={x,;:n=0,1,..;
1<k<2"}, let us define an X-valued martingale (f,,2,)7~o on [0,1] as fol-
lows:

k—1

2,:=the finite o-algebra generated by the intervals | >

K 1<k,
2”

»
c= k=1 k
fa: k‘glx,,,k XkSL k)

It is clear that each f, is 2,-measurable (n =0,1,...). The martingale equal-
ity
[fiv1dA= [f,d\ (EEZ,) (=0,1,..) N
E E

is an immediate consequence of (5). (In the general case of X-valued mar-
tingales the integrals in (7) are supposed to be Bochner integrals. It
suffices for our purposes to consider simple functions. Then the Bochner
integral is the obvious one.) Observe that (f,) is uniformly bounded iff T
is bounded. Also, if T is an e-tree, then, by (6), for all n =0,1,...

£ ()= fu +1(®)|=€ whenever t € D: = the set of dyadic numbers in [0,1],

since clearly f,()—f,+1(t) equals either x4 —X,+12%-1 Or
Xnk — Xn+1,2¢ for some k depending on (¢t €D). Hence the uniformly
bounded martingale (f,) is almost everywhere divergent. (f,) is also diver-
gent in L'-sense. [

Suppose now that (f,) is a uniformly bounded X" -valued martingale on
[0,1], where X~ is some dual space (we suppose the f,’s are everywhere
defined). For each ¢ €[0,1] the sequence (f;(?)) is bounded in X", so has a
w"-cluster point (Alaoglu). Define f(f) to be any such w”-cluster point.
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We claim that the function f:[0,1]>X" so defined is w"-scalarly measur-
able. To see this, consider for any x €X the real-valued uniformly
bounded martingale

Fn=1:= (X f()n=0.

By the martingale convergence theorem (f) converges pontwise to some
(measurable) function f* outside some A-null set N, depending on x. Take
any t&N,. Since f(f) is by definition a w'-cluster point of (f,()),
(x,f(t)) is a cluster point of ((x,f,(t)))=0. On the other hand ({x,f,(¢)))
converges to f*(t). Hence

@)= f(t)) (&Ny).
We have now proved the w”-scalar measurability of £ [

Our last preparatory remark concerns a method of generating certain X" -
valued bounded linear operators defined on a Banach space Y, given a
uniformly bounded system of X'-valued operators defined on finite-
dimensional subspaces of Y. This device is often referred to as a “Linden-
strauss compactness argument”. Let Y be a Banach space that is the closed
linear span of some sequence (y;). Suppose that for each n EN a bounded
linear operator T,:[y Ji=1—X is given with [IT,ll<1. We claim that
there exists a linear operator T:Y—X" with || T||<1 such that T is a
“cluster point” of the sequence (T,) in the following sense: for all finite
sets {z1,...,2,}CY:=sp(y) and {x;, ...,x,} CX and for every >0
there exists n €EN so that

I(xj, Tz — Tyzpd|<e (i=1,...,p;j=1,...,9).

This is simple. First extend each 7, in some (not necessarily linear)
manner to a map 7,,:Y,—X" so that T, B(Y,)CB(X"). E.g. define

- [Ty EyEdi=1,

Toy:= 0  otherwise.

Then identify each 7, in the obvious way with a point of B(X" Y’ and
equip this space with the product of the w’-topologies. Observe that
B(X")?™ is compact. Any cluster point T of T,CB(X")*™, when
regarded again as a map from B(Y)) to B(X"), obviously extends to a
bounded linear map T:Y—X" with the required properties. O

We put the last preparatory result in the form of a proposition.

PrOPOSITION 7.7. Let fi[0,11-X" be w"-scalarly measurable and uniformly
bounded and suppose that I' does not embed in X. Then

1
lim [fr,d\=0,
0

n—oo
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1
((ry) denotes the sequence of the Rademacher functions; g fr,d\ is the “w’-
integral” i.e. the unique element of X" satisfying

1 1
(X, ff.r,,d)\) = f(x,j)r,,dk for allx €X;
0 0
existence of this w” -integral is clear from the proof of Prop. 6.3, (ii) = (i).)

ProorF. If the conclusion is false there exists an €0 and a subsequence of (7,)
(which we continue to denote by (r,)), so that

1
IffradNli>e (n=1,2,.).
0

Choose elements x,, € B(X) so that

1
[ rdA>e (n=1,2,..). ®)
0

Now by the assumption that /! X and by Theorem 4.1, (4) < (1), we may
assume by passing to a further subsequence that (x,) is weakly Cauchy. This
implies that the uniformly bounded sequence (¢{x,,f)) is pointwise convergent
on [0,1], and therefore L'-convergent by Lebesgue’s theorem. Let ¢ be the L!-
limit. Choose ny €N so large that

llp— <xa Oy <-§- for n=n,.

Then for all n=n, we have

f<xmf>rnd)\< f¢rnd>\ + IIKxs, 0 —¢lly < qur,,dA + %

1

Finally observe that lim l{qbr,,d}\=0, since 7,230 in L? (or by direct argu-
n—oo

ment). Hence we have a contradiction with (8). O

THEOREM 7.8. Suppose that I' does not embed in X and let BCX' be an
bounded set. Then for every €0 there exist n EN and non-empty relatively w" -
open subsets U, . . . ,U, CB such that

diam% DU <e
i=1

ProoF. Fix €0 For simplicity let us assume that BCB(X"). Let us suppose
for contradiction that for any finite collection of non-empty relatively w”-open
subset Uy, . . ., U, CB we have
n
diam% DU >e

i=1
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We now define inductively elements x, € X and non-empty relatively w”-open
Uk m=0,1,...; k=1,...,2") in B so that for all n and £,

@ lxll=1,

(i) Unﬂfk 1Y Uy +1,2 CUpis

(i) — R l[.egjrnlfw(xnﬂ,x )= s1lllp+m(xn+1,x >e

xo and Uj; may be chosen a:bltranly For the inductive step, suppose
X0s..-s% and Upx (m=0,...,n; k=1,...,2") have been properly

chosen. Then since by assumption
dlam (U,,1+ +U,,2)>€
there exist x, yx € Ui (k=1,...,2") so that

”— 2 =yl >e

Now choose x, +; € X with |lx, +1]/|=1 so that for some §>0,
4

21 21,, [€Xn 41Xk = (Xn 41,4 ] > €+20.
If one defines, for k =1, ...,2",

Up+1,-1:={x € Up : (Xp41,X6—x")<8},
Up+1,6:={x" € Upp : (X 41,X —yi)<8},

then (ii) and (iii) are clearly satisfied.
Next we are going to define an operator T:L'-X" with ||T(<1 so that

Tfix €oUpr (n=0,1,.;k=1,...,2"), ©)

where (f, ;) is the standard tree in L' and co denotes w”-closed convex hull.
For this we use the device discussed in (C) above. Observe first that L! is the
closed linear span of its standard tree. It therefore suffices to define linear
operators Tp,:p{fux :m=0,...,n; k=1,...,2"}>X" with |T,lI<1 and

T, fnx € co Um,k m=0,...,n;k=1,...,2") (n=12,.).
To define T, we start by putting
T, fox:= any element of U, (k=1,...,2").

Since  f,1,...,fn,> are linearly independent and all f,,
(m=0,...,n;k=1,...,2™) are convex combinations of f, 1, ..., f, >, this
choice determines a linear T, on sp{fpx:m=1,...,n; k=1,...,2"}. Since

1 1 -
f;l—l,k__-?f;l,Zk—] +—2—,ﬂl,2k (k:15'-'32" 1)3
it follows from (ii) above that

Tifo-1 k€75 Un2k 1+ UoukCcoUp_1p (k=1,...,277h).
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Using “backward” induction from » to 0 yields
T fmk€EcoUpr (m=0,...,nk=1,...,2"). (10)

Finally, it is a trivial exercise to show that (|7,||<1 for each n =0,1,... (recall
that we have assumed BCB(X')). A Lindenstrauss compactness argument
now produces the required T ((10) evidently implies (9) for the “cluster point”

7).

The tree definition and the linearity of T show that {Tf,,:n=0,1,..;
k=1,...,2"} is a bounded tree in X *, which therefore corresponds to a uni-
formly bounded X" -valued dyadic martingale (g,) on [0,1], as explained in (4)
above. Specifically, we have

2
8= 2 Thaxksl k) (1=0,1..).
k=1

As we have seen in (B), defining g(#) to be any w’-cluster point of (g,(?)),

yields a uniformly bounded w’-scalarly measurable g:[0,1]->X". It is also

immediate from (9) that

k—1
271

This last fact will lead to a contradiction with Prop. 7.7. Indeed, for every

n =0,1,... we have by the definition of r,, and by (11) and (iii),

g(t)E co U, whenever ¢ €| ,zin] and t&D. (11)

1
f(xn+l, g)"n+1d>\>
0

1 Z .
T 20 nf  lxeng)—  sup (Xn+1,8 (D]
R L N SN BRI AN
1 z . * * €
= - A
S ;Ex [x.e;jlulfmq(xnﬂ,x ) S G N>

1
So Ilgg.r,,+,d}\|!>% (n=0,1,...), contradicting Prop. 7.7. O

COROLLARY 7.9. X" is strongly regular iff I' does not embed in X.

Proor. Corollary 7.4 and the preceding theorem immediately imply that X is
w’-strongly regular if /' does not embed in X. Suppose now that /' does
embed in X. Then by Prop. 4.2 ((1) < (8)), X™ contains a copy of L!. Since it
is clear that strong regularity is inherited by subspaces and is invariant for iso-
morphism, it now suffices to show that L! is not strongly regular. To prove
this let F be the positive face of B(L!), i..

F:={x€L!:x=>0and ||Ix|[=1}.

Clearly F is closed bounded and convex. We show that F has no small combi-
nations of slices. Suppose S; = S;(F,x;,&;) (i=1,...,n) are slices of F
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determined by unit vectors xj, . . . ,x, EL®. Observe that
M@x})= 5111:px,f =esssupx; (i=1,...,n)

Clearly, therefore, it is possible to find, for any a>0, so in particular for
a:= n}m «;, disjoint subsets E,, . . . , E, of [0,1] of positive measure so that

x,~ >M(x,~)—a on E,' (i=l,...,n).
For each i =1,...,n now choose 4;, B;CE;, A;,NB,=@ so that Ad;, AB;>0.
Then

L, L €S (=1...,n

Mi ;0 wi A i ' ’ 21 )

SO

However,

so we have proved that diam — E S;=2 (obviously 2 is an upper bound).

This holds for any choice of n EN and slices Sy, ...,S, of F, so the proof is
finished. 0O

§ 2. THE EQUIVALENCE OF KMP AND RNP FOR STRONGLY REGULAR SPACES.

We begin by establishing some notation. Let F again be the positive face of
B(L"):

F:={fe€L':f=0and ||fl=1).

The bidual (L')”=(L®)" consists of the finitely additive signed bounded
measures on the o-algebra of Lebesgue measurable subsets of [0,1] which van-
ish on the ideal of the A-null sets. Alternatively, if Q is the Stone space of
(10,1], A) (cf. Chapter 6), each pE(L*®)" may be regarded as a Radon measure
on . This is sometimes convenient, as measures are easier to handle than
finitely additive measures.

For every pEF( =w"clF in (L")™), every ¢=0 and every finite partition
P={A4,,...,A,} of [0,1] into sets A4; of positive A\-measure, we introduce the

Vi (W)= {fEF" ﬁlhmi ~ [fiN<e},
i= 4,

~ ~ n
VP,:(I"'):= {VEF: 2 I"‘Al - VA,'I <€}.
i=1
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n
Since the simple functions §l @; x4 are dense in L*, it is clear that the sets

VP «(w) for >0 form a w"-nbhd basis of p relative to F and that Vp () is the
w”-closure of Vp (1), as the notation already suggests.
Now let T:L'—X be a bounded linear operator. For any REF we define
the following two numbers:

pr(p):= inf{diam TVp (1) :€>0 and P €9},
where & denotes the set of all finite partitions of [0,1] specified above, and
dr(p):= d(T" p, X).

(Here T pE€X™; X is regarded as a subspace of X~ and d is the norm dis-
tance in X™°.) It is trivial but important to observe that always

dr(W<pr(p). (12)

Indeed, choose a net (f,) in F so that f,~*—>p and fix P €® and ¢>0. Then
there exists an ag so that

Sfo € Vp (i) for a=ay.
Hence, since T** is w*-w"-continuous and the norm of (L')™ is w*-Ls.c.,
drW<IT"p—Tf, I < _h% N Tfo — Tfo, | < diam TVp ().

This proves (12) since Vp () was arbitrary.

The first of the two basic propositions on which the main result rests, makes
use of the following technical lemma.

LeMMA 7.10. Let PEY, =0, py,pp EF and ALA, >0 with A +A; =1 be given.
Then

M Vpeu) + X Vi o) = V. (up +Agpa). (13)

ProOF. We first prove (13) for e=0. Observe that I}P,O(ﬂ) consists of all vEF
that coincide with p on the sets of the partition P ={4,, ... ,4,}. Hence the
inclusion

M Vo) + X2 Vi, o(12) C Vi o +Aoptz)
is trivial. The reverse inclusion is equally easy: if v€ f}p’o A +A2mp) and if
p:=Aip + Ay, then v4; =pA; for i=1, .. . ,n. Define v;(j =1,2) by

n A
vA:= 2 fﬁv(A N4;) (j=1,2;4 cC[o0,1].

Then clearly vj4;=p4; (j=1,2;i= .,n), SO V]EVpo(}Lj)(]—lz) It is
also evident that A, v A=
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The general case ¢>0 follows immediately once the following formula is
proved for all pEF:

Vo) = [Vao) + e B(L®))INE.

The inclusion Vp ((IJ.)D[VP oW +eB(L®) )]ﬂF is trivial if one recalls that

the norm of (L°°) is the variation norm. For the proof of the reverse inclusion

it is convenient to identify (L!)*=L* with C(®) and (L!)™ =(L*)" with

M(L). Then we are dealing with countably additive measures, so that the

Hahn-Jordan decomposition theorem may be used unrestrictedly. For the

proof of Vp (#)CVpo (w)+eB((L™)") it clearly suffices (by a translation) to
n

show that every measure » satisfying '21|v(Aj)|<e can be written as »=p+o
i=

with p(4,)=0 (j=1,...,n) and 6EeB((L®)"). This we now do. Let » be as
described and put »;:=»|y, (j=1,...,n). If v4;=v]" 4; — vj 4;>0, define y;

by

vi A;

Then p;4; 0(1—1 .,n) and

TA; v; A;
gty — | AN+ _.L__L =0,
—W =vj —v; v; trvj = {1 vj

v/ 4; v 4;

hence
v, —uill= v} A; —vi A; = vA;.

If »A;<0 we similarly define p; so that
pi4;=0(G=1,...,n) and |ly;—pll=—2»4,.

Putting p': = .2] p; we now have p' € i}p’o (0) and
]=

n n
lr—pll = X llvi—pll = D |pd;| <e,
j=1 j=1
$O
v =W+@—K)E Vpo(0)+eB(L™)),
as required. O
We are now ready for the first of the two basic propositions.

PROPOSITION 7.11. Let T:L'—X be a bounded linear operator and put C:=TF,
so C=(TF)y~ = T""F. Suppose also that XN ext C=@. Then for every x € ext
C (if any) there exists a pEF so that

T"p=x and pr(u)>0.
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PROOF. Let x € ext C be arbitrary. Since x & ext C, there are x|", x5 €C
with x]" 5%£x;" so that

l *k l ok

x=75x3 t3x.
Since CNX=C, the assumption that x € ext C entails x;" € X (i =1,2). Now
choose p; EF so that T p;=x;" (i =1,2) and put p:=~p +5p;. From (12)
we now obtain

pr(m)=dr(p;) >0 (i=12).
Finally, (13) implies that

2 Vo) + 3 V) C Vi W)
for all €0 and all P €9. From this it easily follows that
1 1
pr(w= max (5 pr(m), 3 pr(p2)),

and therefore pr(w)>0. 0O

What we are after is to construct a bounded linear operator T:L'—X
(under suitable assumptions on X) so that any pEF with pr()>0 must have
its T*"-image outside X. The conclusion that can then be drawn from Prop.
7.11 is that the closed bounded convex set C introduced above has no extreme
points, so that X fails the KMP. This T will be constructed inductively on
increasing finite-dimensional subspaces of L!. The next fundamental proposi-
tion enables us to arrange step by step for “pushing 7" p out of X”.

PROPOSITION 7.12. Let K CX be closed bounded and convex, let Sy, . .. ,S,, be
slices of K and let A=(A,, ... ,\,)ER™ be given with Ay, ... ,\,>0 and

m
'21}\1: 1. Also let E ={x1, ... ,x;} be any finite set in X. Define
j=
7(A): = inf diam % AT,
J=1

where the infimum is taken over all m-tuples (T, ... ,T,) of slices of K such
that T;,CS; (j=1,...,m). Then Jor every €0 a choice (Ty,...,T,) as
above is possible so that

(@) diam 2 A, T; <r(0)+e,
= 1
(i1) d(xi,jzl}\j T)>51N)—e (=1,...,k).

PrOOF. Fix € so that 0<e<<1. Let us assume without loss of generality that
KCB(X). Using the definition of 7(\) we may choose slices S’;CS;

(=1,...,m) satisfying diam j%lxjs',<¢(>\)+e. Thus (i) will hold for any
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choice of T;CS’; (j=1,...,m). The problem is to satisfy (ii). For this
Lemma 7.6 will be needed.

Supposing that §’; = S(K,x},a;), put

R=S(Kxj,ca) (=1,...,m).
Since diam 2 }\ R;=7()), there exists by the Hahn-Banach theorem a y ex’
with [|y* ||—1 so that

sup{{x —x'y"y:x,x'€ 2 AR} >1(A)—e
(We may clearly assume that 1-(}\)—e>0 since otherwme (ii) holds trivially.)
This inequality in particular implies, upon replacing y* by —y" if necessary,
that

m m —_
sup{x,y") :x € JNR;} = Ekjsgpy'>(x1,y*)+l(?‘)2—-—i—.
j=1 =1 &

Now choose any numbers ¢; such that ¢; <sup y  (j=1,...,m)and

Shg> iyt + TN (14)
j=1

Applying Lemma 7.6 for each j=1,...,m (with €/2 rather than ¢), we find
slices T} of K contained in S’; =S (K,x},a;) so that

i173fy' >c¢i—e/2 (=1,...,m). (15)
j

It now follows from (14) and (15) that for each’ choice of z;€T; (j=1,...,m)
we have

(SNzjy™y = SAziy") > S\i(cj—€/2)
J j=1 j=1

=1
=2 A\jicj—e/2> (xl,y')+i2)\l—e.

j=1

This shows that

d(xy, 2)\]7})>i2>\l—€
=1

Suppose now that for some n<k we have found slices 7;CS’;
(=1,...,m) so that

dx;, ﬁxjrj)>ﬂ;—‘l—e G=1,...,n).
j=1

Then we repeat the argument above with T; and x,+; replacing §’; and x,,
respectively, to find slices 7”; of K such that T';CT; j=1,...,m) and so
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that
d(x, +1, %1 NT)) > izl\l —€
Of course also j
d(x;, ﬁl)\jT’j) =d(x;, il}‘ij) > -‘%}‘l—e fori=1,...,n,
so the proof is cémpleted by induf:tion. O
We now come to the main result.

THEOREM 7.13 Let X be a separable Banach space that is strongly regular but
fails the RNP. Then there exists a bounded linear operator T:L'—>X and an
a>0 such that (with the notation established in Prop. 7.11)

@) d(",X)=a for every x™" € ext C,

@) dr()>7 pr(p) for every peF .

ProOF. Since X fails the RNP there exists a closed bounded convex non-
dentable subset K C X, which we may assume to be in B(X). Let a>0 be such
that every slice of K has diameter >2a. Furthermore let (x;) be a dense
sequence in X and let us put E,:= {x;,...,x,} (n=12,..).

Step 1 We shall construct a “bush” of slices of K in a rather complicated
manner. It seems advisable to first start the (inductive) construction before
describing the general procedure.

To begin let us choose slices S, . . . ,S,, of K such that

. | -
diam — S <27l
my j§1 J

(this is possible by strong regularity) and put
Q|I={1, ceay ml}, M1:=m1.

The slices Sy, . . ., S, are not yet our definitive choice for the elements of the
first level of the bush. The final choice, to be called T, ..., T, , will be con-
structed from Sy, ...,S,, by another inductive procedure. Let us denote by
Fy, the positive face of B(lly,), i.e.

Fy:= (A=A)oeg, :A,=0and 3 A, =1},

wEY,

. 1
and let us determine a - -net

AN AP Y of By, A = (A)peg s i =1, .. ,p0)
Next let us put
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TAM):= inf diam ¥ AL R,,
wEY,

where the infimum is taken over all M,-tuples (R, . ..,Ry,) of slices R,, of

K such that R, CS, (wEQ). In virtue of Prop. 7.12 we may choose slices
SLcS, (wED) so that

diam( 3} AL SL)<+Al) +27!

WER,

and

d(x,Ey) >3\ — 271 forall x€ 3 AL 8L,

wED,
After this we repeat this procedure to define slices 82 cSL (weER)) so that
diam ('3 A2 $2) <t(A1?)+ 27!

wER,

and

d(x,E)) >3 1A2)—271 forallxe 3 A2 82,
wEY,
where now we have put
mAb2):= inf diam 3 A2R,,

wER,

the infimum being taken over all R, CS}, (wE€Q;). We continue this procedure
p1 times, arriving at slices S’ (w€Q;). These will be our final choice for the
elements of the first level of the bush we are constructing:

T,:=S" (WED).

We now describe the inductive procedure in general. We shall construct a

sequence (my,) of natural numbers, and (putting
Q:={1, ..., m}X{l,...,my} X -+ X {l,.,m,}, and M,:= card Q,=
my - - my,, Fy 1= positive face of B(I}u" ), for each n €N

a2 "-net (Nt .. NP Yof Fay, (N =(ALwegi=1,...,pa)

and for each w €%, slices

S,:=82>8.>-.. D8 =:T, of K such that

Swj CTe WER-1;j=1,...,m,), (16)
1 1 e -n ’
diam m 21 S(w',j) <2 ((AJ Eﬂn—l)’ (17)
n ]:'
diam 3 AL 8L <r(\*)+27" and (18)

wER,



98

i=1...,p0)
d(x, E;)> 5 \")—27" forall x€ 3 N, S, (19)
wER,

where
r\*):=infdiam >} ALR,,

wER,
the infimum being taken over all slices R,, CS,”! (w EQ,).

We have already seen how m,Q,M;, {AM,... A1) and
S,=8%28, > .- D8 =T, (WER) are defined. Suppose now that the
construction has been carried out for 1,2, ...,n —1. Then first, using Lemma
7.5, we determine m, €N and for each ' €Q,_; slices S, j) = S,)),
j=1,...,m, so that

SwjpCTe G=1,...,m,)
and

1
m

m” —
2 Swp<27"
n j:]

diam
(observe that m, is chosen independently of ’; this is clearly possible). Next
we put

Q,:=8Q, -, X{1,...,m,}and M,,: = card 2, =m,.....m,
and choose a 27"met {(A*!,... A"} for Fjy \*'=(@AL)eq, i=
1,...,p,). Putting

A" !):= inf{diam > ALR,:R,CS,}

wER,
we now select slices SL, CS, (wEQ,) so that
diam 3 ALSL <ty +277

wEQ,
and
d(x,E,)>5 1\ 1)—27" for allx€ 3 AL S,

wER,

(using Prop. 7.12). .
Suppose now that S% DSL D - - - DSL (wEQ,) have been selected as stated,
for some i, 1<i<p,. To define S,*! (wEQ,) put
A% *1): = inf {diam Y A,*'R,:R,CS.)

wEQR,
and use Prop. 7.12 again to select S5*! C S% (wERQ,) so that

diam 3 ALFISLHD <q(Amitly 427
wEQ,
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and
d(%,E)>5 1\ +1)=27" forall x€ 3 ALH1 ST
wERD,

This completes the definition of S), (wER,, i=1,...,p,). Finally we put
T,:=S% (wEQ,) and the construction is finished up to n.

STEP 2 We shall now define the operator T:L'—X. It will be convenient to
represent the measure space ([0,1L,A) in the following manner. Let
0

A:= IIl {1,..,m,}. On each set {l,..,m,} consider the measure that assigns
n=

. 1
weight -y
to say the completion of (A,m,) is measure algebra isomorphic to ([0,1],A). If
for each w=(k, . . . ,k,)EQ, we define

A= {(n))i=1 EA:nj:kj forj=1,...,n},

to every point and let m, on A be the product measure. Needless

then clearly the functions x; (wEQ:= @19,,) span a dense subspace of

L'(m,). So it suffices to define T on this subspace. This we do by selecting
arbitrary elements x, €T, (wEQ) and putting

T(M,xp,):= im My}, M, 3 x4, (nENER,), (20)
ke VER .,
where Q¢ denotes the set of all elements of 2, ., whose first n coordinates
equal those of w.
There are two points that need to be checked. The first is that for each w €Q
the limit of the sequence in (20) exists. To see this we fix n €N and w €, and

we compare two successive terms:
1 - 1 My 4i 41 1 My 4k +2
MM, 3 xy=M; UM, 3 |——— 3 |—/——— 2 *a.ip||;

VER s SER, Mp+k+1 i=1 My 4k +2 j=1
» . | 1 Myt
Mn+k+an 2 xp:Mn+an 2 2 X(,i)| -
PEQ.L. $€, (Mn+k+1 i=1

Now observe that (16) implies that T(w,j) CT, (WER,—1,j=1,...,my), so

1 My k41 1 mn+2k+2 l m.+Ek+| 1 mn+2k+]
Xgip——— 2 XenET—— 2 T,
Mptk+1 j=1 | Mn+k+2 j=1 PP my i S Mn+k+1 i=1
1 My k41

for every ¢ E€Q¢ ;. Since diam - S Tn<2~®*%*D by (17), and
n+k+1 i=1

card Q¢ = M} M,, it follows that

IMitea My D xy — Myl M, X x,ll<27@*k+D,
VER 42 PEQ, ka1
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and so the existence of the limit in (20) follows.
The second point that needs to be checked is that the definition (20) is “con-
sistent”, i.e. that for every w €%,

m, .

2 T(M"‘H XAW))'

my 4+ j=1

T(My xa,) =

Written out, this means

m, .

1
limM‘lk Xy = 1imM’+1k+1M+1 X
koo -Pe%:u Vo S ko ! ¢E%L. *
But this is clearly true, because we have just checked that the limits involved
exist, and because

my 4
L DMl My 4 Z x¢ =M M, > x,
Mat1 j=1 o€, yed .,

It is now evident that (20) can be extended to define a bounded linear
operator T:L'(ma)—X with norm ||T|I<1 (this is because KCB(X) by
assumption). _

Let us finally take note of the crucial fact that the formula T, ;) CT,
(WEQ,—;,j=1,...,m,), and definition (20) of T imply that

TF,CT,, hence T F,CT, (wvEQ), Q1)
where F“,:={f€F:ifdp= 1} and

I:"w =w"clF,={p€ f':p(A,‘,)= 1}.

STEP 3 We now show that T satisfies the requirements (i),(ii).

PROOF OF (ii): Let us fix p€}~7 and n€N and consider the partition
P,:={A,:w€Q,} of A. By the construction in Step 1 there exists a A € Fy,,
(for some i, 1<i<p,) so that

é) IAs) = Ao <27". 22
Note that (21) implies
TV, o(mC 29 MA) T, C 29 MA) S5 - 23)
wERN, wEll,

Recall now from Lemma 7.10 that

Ve, () = [Vp, o) +27" B(L®(m) )INF. 29
From (22), (23) and (24) we obtain

TVp, 2 (WC 3 WAL)S, +27" B(X)

w€EQ,
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C SIALSL +227" B(X). (25)
we,
Hence (18) implies
diam TVp ;)< 1\*) + 527",
and so a fortiori
pr(wW< T\™) + 527", (26)
On the other hand it follows from (19) and (25) that
d(x,E,)=~ 1\*) — 327" for all x € TV}, 3-+()
and therefore also, by the convexity of TVp ,-~(),
d(x™ Ep)= 5 1(\")—327" for all x"* €(TVp, 3 (W)™ @7)
Now since n EN was arbitrary and (x;) is dense in X, (26) and (27) yield,
[o]
since T p€E OI(TVP.,z‘" (W)™, that

dr(w) = 75 pr().

PROOF OF (i): Let x** € ext C= ext T*"F. Fix n €N. We claim that
x™ =T for some pE f’wo, where wy €Q, .

Indeed, observe that the sets F, (WER,) are w"-compact and convex and that
F=co{F,:w€EQ,}. Hence

C=T"F=cof{T"F,:0wER,).
x"" being extreme in C, we must then have x™*=T""p with € F,, for some
wy €Q,, proving our claim.

Next, using the construction in Step 1 again, we can select a A* with
1<i<p, such that

S A~ No|< 27",

wER,

It then follows that A, =1—27", since w(A, )=1. Every slice of K having
diameter exceeding 2a, the definition of 7(\») now leads to the conclusion that

A" > (1-27")2a.
Exactly as in the proof of (ii) above, we now obtain

d(x™ E,) >3 1(\*)—327" for all x* € (TVp, (W)~ .
Therefore, n EN being arbitrary, it follows that

d@x",X)=a
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and the proof is finished. [

CoRrOLLARY 7.14 If X is strongly regular, then X has the RNP iff it has the
KMP. Moreover, in this case the KMP is separably determined, i.e. X has the
KMP iff every separable subspace of X has the KMP. (This is unknown in gen-
eral.)

PrROOF. Since the RNP implies the KMP for every Banach space, it suffices to
prove that if X fails the RNP then there exists a separable subspace of X that
fails the KMP. Now the RNP is well known to be separably determined, so
there exists a separable ¥ CX without the RNP. Of course Y is still strongly
regular. It is now immediate from Prop. 7.11 and Theorem 7.13 (applied to Y)
that the set CCY (see Prop. 7.11) has no extreme points. Thus Y fails the
KMP. 0O

COROLLARY 7.15. Let X" be any dual space. Then X" has the RNP iff X" has
the KMP. Again, the KMP is separably determined.

Proor. We distinguish two cases.

Case I: I' does not embed in X. Then by Corollary 7.9 X" is strongly regular,
so the preceding Corollary applies.

Cask II: /! embeds in X. Then by Prop. 4.2 (1) & (8)) L' embeds in X". It is
well known and easy to prove that the positive face F of B(L!) has no extreme
points. So L' fails the KMP. But then L! also fails the RNP (we have even
proved in Cor. 7.9 that F has no small combinations of slices!). Since L! is
separable and both the KMP and the RNP are isomorphic invariants and are
inherited by subspaces, we have now proved the assertion in case II: X~ fails
both the RNP and the KMP, and the KMP fails even for a separable sub-
space. [

Let us recall that X is called an Asplund space if every separable subspace
Y CX has a separable dual. It is known that X is Asplund iff X" has the RNP.
The table below summarizes the situation for dual spaces. The class of spaces
which are not Asplund but in which /! does not embed, includes such cele-
brated examples as the James tree space JT, the James function space JF, and
the James-Hagler space JH. We already know a great deal about this class of
spaces, e.g. that its elements are characterized by weakened forms of the KMP
and the RNP. However, we have as yet discussed no concrete example. The
next chapter will fill this gap.
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X‘
N__
7 A\
KMP | RNP | KMP for | WRNP
w’ compact
convex sets
X Asplund + + + +
gx
and - - + +
X not Asplund :
Icx - - - -

NOTES The concept of strong regularity, although first defined explicitly by
W. SCHACHERMAYER in [83], was already implicit in the work of J. BOURGAIN
(6], [7]). In fact the main result in § 1, that X" is strongly regular iff /' Z X,
can already be found in [6]. All of § 2 is due to W. SCHACHERMAYER ([83]).
Corollary 7.15 is an old result of R. HUFF and P.D. Morris ([42]). Of course
their original proof is quite different. Recently H.P. ROSENTHAL ([76]) has
given an integrated presentation of the work of J. BOURGAIN in [7] and that of
W. SCHACHERMAYER in [83]. Some of the preliminary lemmas in § 1 were
taken from [76]. Finally let us observe that Cor. 7.14 reduces the famous (and
still open) problem whether the KMP implies the RNP to the question whether
the KMP implies strong regularity.
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Chapter VIl

The James tree space

In this final chapter we settle a point that was left open so far, namely we
show that for dual spaces the weakened forms of the RNP and the KMP we
have discussed previously (see the diagram on p. 103) are indeed different from
the original ones. We do this by giving a concrete examPle of a separable
Banach space whose dual is non-separable, but in which /' does not embed.
There are several such examples and none of them is simple. We choose here
the so-called James tree space JT, because the analysis of this space is easiest.

The James tree space is rooted in the classical James space J. Therefore we
first recall the definition of J and its properties as far as we need them. The
space J consists of all real sequences x =(x;) such that

n k=1 2%
sup [2 [ 2 xj] }
i=1 | j=k
is finite, where the sup is taken over all increasing finite sequences
ki<k,<---<k,y in N. The norm |x|| is defined to be this supremum.
The completeness of J is readily verified by standard arguments. Furthermore
the unit vectors (e,) form a monotone boundedly complete basis. If (e,)
denotes the corresponding sequence of coeﬂicient functionals, then

J" =[e,]P=1® Re", where e” is defined by (x,e"):= 2 xj (x €J). Note that
n+m

| = xj|—>0 as n—o0, by the finiteness of [lx|l, so that 2 Xj converges. Also
iz

|2 xj|<llx|l for all n€EN, and therefore lle*lI<l. In fact lle*llI=1 because
(je,,,e Yy=1=lle,ll (n EN). Since {e,,e")=1 for all nEN and lim (e,,e,,)=0
for all m €N, it follows that e

nl_i_)n; (eq,x ") exists for every x” €J" =[e,]7=1® Re’
and that

Jlim (en,x y=0 iff x"Ee )= (x"€J7). M

We now come to JT, the James tree space. Put
T:={(nk):n=0,1,.; k=1,...,2"}.
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If one thinks of the elements of T as arranged in the following pattern,

©.1)
(LY) \(1,2)
yd
@1 22 @3) 2.4)

it will be clear why we call T a tree. This arrangement also suggests a natural
partial order on T. A point (n,k)ET has two immediate successors, namely
(n+1,2k —1) and (n +1,2k). We now say that p<q (p,¢ €T) iff there are
points py, . .. ,pm € T so that py =p, p,,=q and p; +, is an immediate succes-
sor of p;(j =1, ...,m—1). Any such finite sequence {py, . .. ,pn} is called a
segment of T. So. p and q are comparable iff they lie in a common segment. A
branch will be a maximal totally ordered subset of T. Evidently a branch is of
the form

(0,1), (1,k1), 2.k2), ey (1K)}

where k, €{2k, ., —1,2k, -1} (n=1,2,..; ko:=1). Observe that the set of all
branches has cardjnahtz ¢. Sometimes we shall call the set
{(n, 1), ..., (n,2")} the n" level of the tree and shall refer to points (m,k)
with m <n, resp. m>n as lying above resp. below the n" level.

Now let JT be the set of all real functions x on T such that

. 24
llx|l:= sup {2 [ > x(n,k)] ] <00,
J

=1 |(nk)ES,

where the sup is taken over all /EN and all sets of pairwise disjoint segments
S1,...,S;. The proof that ||-|| is a norm and that JT equipped with this norm
is complete, is standard, so we omit it. Note that JT Cc(T).

Another easily verified fact is that the unit vectors e, €JT, defined by
en (n,k):=08,, Okpr ((nk),(n',k)ET), form a normalized monotone
boundedly complete basis of JT, when enumerated in lexicographic order. By a
well-known result JT is then isometrically isomorphic to the dual of the closed
linear span in JT" of the corresponding _sequence of coefficient functlonals
e,,kEJT Thus JT=Y", where Y:= [e,,k](,,k)eTCJT Hence JT =Y~
One should also note that under this last identification the 1dent1ty embeddmg
Y CJT" corresponds to my, the canonical embedding of Yin Y™

Using the basis (e,x)nker (lexicographically ordered) we shall often
represent elements x €JT as

o 2
x = 2 2 Lnk €nks with iy ER.
n=0k=1
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We now discuss several types of projections on subspaces of JT. All these
projections are built alike, so we first explain the general principle involved
here. Let 4 be any subset of T and let us define P, on the span of the e, ; by

2
2 2 tklnk|' =2 X Inkenk

n k=1 n (nk)EA

Py

Clearly P4 =P,, but generally P, is not bounded. E.g. suppose A intersects a
segment

S= {(n9kn)3 (n + lykn+l)’ ceey (n +2Pa kn +2p)}
in the “odd” points:

ANS ={(n+2i—1,k,42-1):i=1,...,p}
o 2
Deﬁne X = '2~1 k’g‘l tn',k' e,,:,kr by
—1if (k) €S\4,
oy =1 1if (k) ESNA,
0 if (n,k)eSs.

It is now a simple matter to verify that [|x||= (2p +1)*%, but |[P4x|l = p. Now
A may clearly be so chosen that the above situation occurs at different loca-
tions in T for arbitrarily large p. Then P, is unbounded.

However, if A4 is such that for every segment S the intersection A NS is
again a segment, then P, has norm 1. This is so because for every finite
number of pairwise disjoint segments S, . . ., S;, and for every x €JT,

| 2 2
> [ > (PAx)(n,k)] =3 [ S x(n,k)] <lixI2.
j=1 |mkEs, j=1 |(nk)EANS,

We list now several special cases where the condition that A intersects seg-
ments in segments is obviously satisfied. Therefore all projections below have
norm 1.

(i) for each fixed (n,k)ET the map

o 2
x = 2 2 In k' €' k' >tn,k €n,k

n'=0 k'=1
is a norm 1 projection. An immediate consequence is that |le, s l|=1 (since
learll=1. "~
o0
Writing x = ,20 kIEI Ly ko ey for the generic element of JT, the following
n'= =

formulas define norm 1 projections:
0
() P,x:= X D tywewrw m=0,1,.),

n'=n k'=1
©

(i) Poxx:= X X twxewr (BK)ET),

n’=1 (n’,k")=(nk)
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(lV) PBXZ = 2 t,,',kr en' k-
(n'k)EB
Here B is any branch of 7, and the summation is in the order B inherits from
T. It is important to note that also the projections / —P,, I —P, and I —Ppg
have norm 1 (on the basis of the same general principle). It is also an interest-
ing fact that for each (n,k)ET the range P,,JT is isometric to JT, while for
each branch B the range PgJT is isometric to the classical James space J. (The
maps that realize these isometries are the obvious ones.)
We now wish to show that for every x €EJT and every n €N,

2
1PuxI* = 3 1Py exl®. @
k=1
Again, the reason for this is best explained in more general terms.

LEMMA 8.1. Let finitely many finite subsets Ay, . . . ,A, of T be given subject to

the condition (which implies disjointness) that each segment S of T intersects at
P

most one A; (not necessarily in a segment). Put A:= _L_JIA,-. Then for every choice

of scalars t,; we have

1S el = SIS teenl? 3)

(nk)EA i=1 (nk)EA4,
Proor. Let Sy, ...,S, be any pairwise disjoint segments. Then by assump-
tion for every jE{l ..,q} there exists an i(j)E{l,...,p} so that

ANS; = A4;;yNS;, hence 4;NS;= @ for i=i(j). From this it follows that

2:iﬁ 2

<
=1 ((nk)EANS, j=1i=1 |(n,k)€EA,NS,

< ﬁ “ 2 tn,k en,k”27

i=1 (nk)€A,

bnk Ink

where as usual a sum over an empty set is to be interpreted as 0. This proves
< in (3).

To (sel the converse, for each i €{1,...,p} let S, ..., S} be pairwise dis-
joint segments that intersect 4; (and therefore are disjoint with A4 \A,-, ie.
ANSj= A4;NS%, j=1,...,q). Let us consider a pair of segments S}, S?
(1<j1<g;; 1<j,<g;,) with i;54i,. Now the intersection S: S’l ﬂS” may
be non-empty but 4 NS =4, since otherwise at least one of S" , 87 would
intersect more that one 4;. Now either S?\ S or S’2 \'S (or both) is a seg-
ment, as one easily sees. Suppose S \S is. Then we may replace S" by
S" \'S, to get disjointness with S}. Repeatmg this argument a ﬁmte number
of times, we arrive at pa1rw15e disjoint segments S i=1,...,p;
j=1,...,q;) which have the same intersection with 4 as the or1g1na1 St so
that in particular 4 ﬂS =4, ﬂS @i=1,...,p5j=1,...,¢). Now we get
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i

2
g
2[ 5 ] éz[ t,..k]=
=1 |(n,k)EANS; i=1j=1 |(nk)€A4, ns

2
[ 2 tn,k] <” E tn,ken,kllz-

(n,k)EA ns (nk)EA

1j

s

i=1j

This proves = in (3) and we are done. [

Evidently (2) is an immediate consequence of Lemma 8.1, since the sets
{(n"k"):(n’ k’)>(n k)}, k=1,...,2", satisfy the condition.

We are now going to define a map VonJ T* which is the key to the struc-
ture theorem we are about to prove. Let x" €JT" and let B be any branch of
T. Recall that PJT is isometric to the class1cal space J and that by our earlier
remarks on J, hm (en,y") exists for each y* €J" (where (e,) denotes the unit

vector basis of J), and vanishes iff y* € [e,]®=; (see (1)). It follows from these
facts that

(Vx")(B):= ( %’éa (enx,x") exists for everyx” €JT" and every branchB. (4)

Denoting by T the set of all branches B, (4) then defines a map V:JT —RT.
Clearly V is linear. But much more is true:

THEOREM 8.2. The operator V deﬁned by (4) is a quotient map from JT" onto
IX(T"). Furthermore, ker V=Y (: = [enx]). Hence L(T)= Y /myY.

PrROOF. We break up the proof in several assertions that we shall state as we
go along. The first one is easy.

() V maps JT" into I*(T) and its norm as an element of LJT",I*(")) is <I.

PROOF OF (i): Let By, . . ., B, be any finite number of distinct branches. Then
for some n €N these bra_nches do not intersect on or below level n, i.e. the sets
B,N{(n",k"): n’=n} (p=1,...,q) are pairwise disjoint. Now pick any ele-
ments (n,,k,) EB, with n,=n (p =1, . .. ,q). Then by Lemma 8.1 we have

13 e, s 2= 3 2foralls,... LeR

This means that [e, 4 ] is a g-dimensional Hilbert space with orthonormal
basis {e, , }§=1. Hence

i Cen k%" Y2 = lIx"|pe, kgl < IlxII* for every x™ €JT". ®)
p =
Now for each p let (n,,k,) tend to infinity along the branch B,. Then, taking
limits in (5) we get, by the definition of V,

SBR <R @ elr)

p=1
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Since this inequality is true for any choice of distinct branches By, . . ., B, we
have shown that Vx" €/2(T) and || Vx"lI<|x* I (x" €JT"). O

(ii) V is a quotient map onto I*(T).

PrOOF OF (ii) Since we already know that [|V]|<I, it suffices, by the open
mapping theorem, to show that each finitely supported element of /2(T') with
norm 1 is of the form Vx* with |lx*|<l (actually, then |lx"||=1). So let

{Bi,...,B,} be any finite subset of I and let 7y, . . . ,7, ER satisfy g‘.ltg"—“l.
P:

We are looking for an x* € JT", |Ix"|I<1, so that
1, if B =B, for somep€E{l,...q},

(Vx")B) = ][0 otherwise. ©)

Again let us choose n €N so that the sets B,N{(n’,k"):n'=n} (p=1,...,9)
are pairwise disjoint. We now define x” on the span of the e, ; by

m 2
(2 2t g X )= é | Xtk
n=0k'=1 p=1" |(,Kk)€EB,
n<n'<m
The verification of (6) is now straightforward, so all that needs to be checked
is that |lx*|I<<1. But this is immediate:
2\ 4%
So| 3 well<E* S| S nw
p=1" |(.k)eB, p=1 p=1 |(n,k)€EB,
n<n'<m — n<n'<m
=1

m 2
<Y 3 tww el

n'=0 k'=1
The last inequality here is evident from definition of the norm in J7, since the
sets {(n’,k")EB,:n<n'<m}, p=1,...,q are pairwise disjoint segments.
O
Now let N be the kernel of V i.e.
N:={x"€JT": lim (e,4,x ) =0 for all BET).
(nk)EB
n—oo

It is clear that Y CN, by (1). The proof of the reverse inclusion is less obvious.
First we need to prove the following fact.

(i) lim [lg}casxz"HP,,,kx n] =0 for every x" EN.

PROOF OF (iii) Suppose not. Then there exist x” €N, ¢>0 and a sequence of
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distinct elements (n;,k;) €T so that
”P;,,k,x* I>e (i=12,.). 0

We now first prove that the number of mutually incomparable elements among
the (n;,k;) is bounded. Indeed, let us suppose that (n;,k;), i=1,...,j are
mutually incomparable and let us use (7) to choose finitely supported elements

X € Py 1 JT with lix;|=1 and (x;,x") >e (i=1,...,})).

It is now easily seen that the condition of Lemma 8.1 is satisfied for 4;:=
supp x; (i=1,...,j). Consequently we may conclude from (3) that

1S xill = %, s0 je< ¢ S xx™y < llxI1j%
i=1 i=1

1”12 ||2
This proves that j<—-— 2
It is convenient now to introduce a notation for the set of all successors of
an element (n,k)ET. So let us put

T(n,k):= {(n',k)ET : (n,k)<(n’,k")}

Observe that mutual mcomparabﬂlty of (n1,k1), . ..,(ny,k,) means that the
sets T(m;,k;), i =1, ...,p are pairwise disjoint. ThlS is so because the prede-
cessors of any given element from a segment, i.e. a totally ordered set.

Now, returning to the sequence ((n;,k;)) defined as in (7), let
{(i, ki, s-......,(n; ,k; )} be a system of mutually incomparable elements of maxi-
mal cardinality p. Put ng:= maxn; . Then

{(nnk) n1>n0} - U T(n, ’kl,) (8)
j=1

Indeed, suppose (n;,k;)& U T (m,k;) and n;=ng. Then {(n;,k;), (ki . . .,
i=

(n; ,k;)} would consist of mutually incomparable elements (by the above cri-
terion), contradicting the maximality of p. Now clearly (8) implies that for
some jE(I,...,p}, T(n,~/,k,~j ) intersects the sequence ((n;,k;)) in an infinite
set, i.e. {(n;,k;):(n;,k;)=(n;,k;)} is infinite. We claim that it is also totally
ordered. For otherwise replacing (m;.k;) in {(m ki, ...,(n,k; )} by two
mutually incomparable successors, would yield an incomparable system of car-
dinality p +1, again contradicting the choice of p.

The upshot of all this is that by passing to a subsequence if necessary, we
may suppose that ((n;,k;)) is totally ordered. This means that there is a unique
branch B containing all (n;,k;). Let us reorder the (n;,k;) so that n;<nm; 4,
i=12,..)

We observe next that

fim ly™ — Py Il =lly"|l for every y* €JT". 9
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To see this, recall first that |I—P,,|l=1[I"—P, =1, so that
hmlly —P, 1.y I<lly”ll. Now fix §>0 and pick yEsp {e,x:(n,k)ET} s0

that llyll=1and (p,y"> >lly"ll—8. Then for sufficiently large i we have

Gy = Priy Y == Pugyy’) =y >ly7II8.
Since >0 was arbitrary it follows now that lim [ly"—P, . y"ll = Ily" ||, hence
(9) is proved. As a particular case of (9), we gé?;’z)r every i =1,2,... that

*

“P,,”kix,t ” = hm IIP;“k'_x' - P:‘/’k/ P:l,»,k,xt || = hm IIP;”kix* -—P,,j,ij‘ “
joo - joo
Using (7), we may therefore pass to a further subsequence and assume that
WPy xx” =Py k. x |>€ forallieN. (10)
Since lim <(e,,x ) =0 (recall that x* EN),
(nk)EB,

n—oo

it follows from the fact that Pg JT=J and from (1) that
P3,x" € [enilnpres,
This implies that for sufﬁciently large i we have
1Pk, = P, ) Py <e/2 (11

(approximate Pp x~ with a finite linear combination of the e ;). For simpli-
city let us assume that (11) is valid for all i EN. Now let us define

Ui =Pnk = Pryk) = Prg, = Pok, )P, (112,00

The notation U; is justified since the right member is clearly the adjoint of the
projection

nl+l

l]' = (P"nki - P”:+hk.-+|) - PBo (P”nki - Pni+l7ki+l)
from JT onto the subspace of all elements of JT supported by the set

A;:= T, k) \T(ni+1,ki+1)\Bo  (i=12,..).
It is easy to verify the condition of Lemma 8.1 that each segment S of T inter-
sects at most one of the above 4;. [Sketch of proof: the only way a segment S
can “enter” A; is by passing through (n;,k;). But (n;,k;)E By, so that S then
must have been in By all along.] By dualizing (3), we now get, for any j EN,
1S Uix'IP= S IV IR, (12)
i=1 i=1
Observe, however, that on the one hand, by (10) and (11),

||U7x‘n>-§- i=1,...,)) (13)

while on the other hand,
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1S U= 1Pk, = Pty )= Prok, = Py P, |
i=1

<P i, I+ 1Ps k. I+ 1P e, 1P i, DIPE, 1| =4,
so that

15 Ui IP< 161 1P, (14
Thus, putting (12), (13) and (14) together, we have

L <1611,

This is contradictory for large j, so the proof of (iii) is finished. I

We now come to the most delicate part of the proof, which is to show that
N CY. We assume that YgN and derive a contradiction. First we choose a

6>0 so small that

3.5 < 4(1-9)% (15)
Next we pick-x" €N so tha