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CHAPTER 1 

INTRODUCTION 

1.1. RANDOM CELL CYCLE MODELS FOR PLANT CELLS; A BRIEF REVIEW 

The use of mathematical models for the description of biological 

events has often turned out to be fruitful for both biology and 

mathematics. It has frequently led to a better understanding of the 

underlying biological mechanisms on the one hand and to the development of 

mathematical theories on the other. For a long time now, the growth of a 

population by division of its individuals has been considered as a 

biological random process and mathematical random processes involving 

random generation times are used to describe the phenomenon of division and 

growth. For instance KELLY & RAHN (1932) introduced the concept of chance 

in relation to the generation time of bacteria and KENDALL (1948; 1952) 

used the data of these authors to illustrate the mathematical properties of 

a stochastic birth process with variable generation times; POWELL (1955) 

continued this discussion from the biological point of view and HARRIS 

(1959) referred to both KELLY & RAHN (1932) and POWELL (1955) when he 

proposed his mathematical model for binary fission. 

After the concept of the cell cycle was introduced in HOWARD & PELC 

(1953), many papers on cycle times of animal, yeast and plant cells have 

appeared. In studies of animal and yeast cells the generation or cycle time 

is generally considered as a random variable having a probability density 

function which appears to be skewed to the right (see KILLANDER & 

ZETIERBERG (1965), SISKEN & MORASCA (1965), KUBITSCHEK (1971) among 

others). However, most studies of plant cell cycles merely determine sample 

means and sometimes also sample standard deviations of the duration of the 

cell cycle and its constituent phases in order to estimate the real 

durations (see for example WIMBER (1960), VAN'T HOF (1965), ERIKSSON 

(1967), FRIEDBERG & DAVIDSON (1970), EVANS & REES (1971)). It is not clear 

whether these durations were considered as (unknown) constants or as random 

variables assuming different values with certain probabilities. 

CLOWES (1961) and THOMPSON & CLOWES (1968) are sometimes mentioned as 

the first papers in which the variability of plant cell cycles is 

established. However, the variability these papers deal with is certainly 
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of a different kind than that considered in for instance KILLANDER & 

ZETTERBERG (1965) and here. Indeed, CLOWES (1961) and THOMPSON & CLOWES 

( 1968) show that cells in different regions of the root meristem have 

different mean cycle times, whereas the variability we are concerned with 

is that of cycle times of plant cells within one region or, more generally, 

of plant cells under one set of equal external conditions. 

Exceptions to this non-random approach in plant cell studies are 

BARLOW & MACDONALD (1973) and BAYLISS (1976). In the first paper curves of 

the fraction of labelled mitoses of pulse labelling experiments on the root 

meristem of ZeB msys are analysed using a theoretical analysis developed in 

MACDONALD (1970). This method also provides estimates for population means 

and standard deviations, but the estimation is based on the assumption that 

the cycle time is a random variable. BAYLISS (1976) showed by means of a 

probit transformation of frequencies of cells of the initially predominant 

ploidy level at different times during colchicine treatment, that a normal 

distribution could quite accurately describe the distribution of cycle 

times of Dsucus csrots cells in suspension cultures. However, since the 

observed cells were growing asynchronously at the time the colchicine was 

added, the frequencies used for the calculations reflect not only 

variability in cycle times, but also in 'starting points'. 

In 1973, when SMITH & MARTIN proposed their transition probability 

model (t.p.m.) for the cell cycle, attention was focussed on the 

variability concept again. The t.p.m. postulates that the cell cycle 

consists of two phases, A and B. Some time after mitosis a cell enters 

state A , which is thus positioned in the G1 -phase of the cell cycle. In 

the A-state a cell is not progressing towards division. The probability per 

unit time of leaving the A-state, the so-called transition probability P, 

is constant, which implies that a cell may remain in state A for any 

length of time. After leaving the A-state a cell goes into state B, where 

the normal proliferative events occur; a cell's sojourn in B-state is of 

(nearly) constant duration. This model originated from the fact that the 

duration of the G1-phase was always observed to be more variable than that 

of the other phases of the cell cycle ( S, G2 , M ). No biological 

interpretation of the random transition from A to B was given by SMITH 

& MARTIN (1973). Still the t.p.m. quickly became quite popular. It could be 

tested easily by means of the so-called a-curve, a plot of the logarithm of 

the proportion of not yet divided cells against time. Provided that all 

cells start at time t = 0 at the beginning of their cycle, the graph must 
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be constant on a time interval starting at time 

linearly afterwards with slope -A= log(l - P) 

t 0 , and decline 

Although many publications on the t.p.m. and analyses of a-curves have 

appeared for animal and yeast cells, (e.g. BROOKS (1976), ROBINSON et al. 

(1976), SHIELDS & SMITH (1977), JIMENEZ DE ASUA et al. (1977), SHIELDS et 

al. (1978)), only few botanists have related the transition probability 

concept to the plant cell cycle (GOULD, 1977; EVANS & VAN'T HOF, 1975; 

WEBSTER, 1979). The only analysis of a-curves for plant cells can be found 

in KING (1980). Here the data from BAYLISS (1976) are used and found not to 

contradict the t.p.m. 

In the meantime there has been much discussion on the validity and use 

of the t.p.m. The main objection seems to be the lack of a biological 

interpretation of the random transition; also the use of a-curves has been 

criticized (see NELSON & GREEN (1981)). Several alternative models have 

been proposed, for example a two-transition model (BROOKS et al., 1980), a 

G1-rate model (CASTOR, 1980) and a continuum model (COOPER, 1982). Detailed 

reviews of other approaches can be found in EISEN (1979), BERTUZZI et al. 

(1981), BROOKS (1981) and BERTUZZI & GANDOLFI (1983). Again botanical 

literature is strikingly absent. 

1.2. POPULATION SIZE MODELS 

The small number of investigations of the plant cell cycle from a 

stochastic point of view is probably due to the fact that there is no way 

to observe individual plant cells over sufficiently long periods. Therefore 

inferences must be based on samples from the population as a whole. 

Indeed, in many studies on the regulation of cell division, cell 

growth, etc. of plant cells, cell suspension cultures are used and 

measurements are taken from the total population. Growth curves of all 

kinds of population characteristics are the result of this. In the present 

study the characteristic of interest is the population size. The models 

most frequently used to describe the increase of cell number are 

deterministic population size models of the following form. 

JJN(t) 

where N(t) denotes the number of cells at time t and JJ is the growth 
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rate, which is generally thought to depend on some substrate concentration 

s : 

Here 

JJ µmax 

s 

S + k 
s 

is the maximum k 
s 

growth rate and 

concentration for which the growth is half of its 

equals the substrate 

maximum. This type of 

model is due to Monod and is related to the Michaelis-Menten kinetics (see 

e.g. ROELS (1983)). A survey of population size models (deterministic and 

stochastic) can be found in EISEN (1979). 

1.3. CHOICE OF MODEL TYPE 

Why then this insistence on random eel 1 cycle models, which are 

formulated on the level of the individual cell, when we can only expect 

observations on the population level? 

Since the intention of our study is not only to provide an adequate 

description of plant cell population growth, but also to understand the 

population growth in terms of the individual cell behaviour, the model we 

choose should arise naturally from hypotheses concerning the underlying 

biological mechanisms. In particular, every model which attempts to relate 

the population behaviour to underlying mechanisms should start with the 

description of the behaviour of the population members. This individual 

behaviour should be related as much as possible, given present knowledge, 

to processes which occur within the individual. Only then will the model 

enable us to make predictions concerning the properties of the biological 

processes of interest and to suggest where experiments can help to 

distinguish between different hypotheses. This is why we formulate a cell 

cycle model for the individual cell behaviour in which the duration of the 

cycle depends on internal events. 

Moreover, plant cells under equal external conditions do not all act 

in the same way. Especially the processes we consider, namely growth 

processes of plant cel1 populations in batch suspension, which are the 

result of the division of 

such circumstances stochast 

contrast to determinist c 

'ndividual cells, show great variability. In 

to describe the situation are, in 

be very effective. To quote JAGERS 



(1983): " ... only a probabilistic description can catch the regularities yet 

allow the actual variation". Thus, the choice of a random model instead of 

a deterministic one is obvious in our case. 

Having formulated the random cell cycle model, we can derive the 

growth of the population. Indeed, a model for the cell cycle informs us not 

only about the mechanisms which regulate the individual cell behaviour, but 

also about those which control the population behaviour. For, obviously, 

the population behaviour is the result of what its members do, and not the 

other way round. 

Often it turns out that, if either the number of individuals or time 

tends to infinity (practically speaking: is very large), the random 

population behaviour, as predicted by the stochastic cell cycle model, 

converges to a deterministic limit. Only when this is the case, will the 

use of a deterministic model to describe population growth be justified. 

Otherwise, the stochasticity in the population behaviour is essential and a 

random model to describe it should be used. However, even in the case where 

the limiting population behaviour is deterministic, we know much more when 

we start with the random individual cell cycle model and derive the correct 

limiting population size model from it, than when we start with this 

limiting model right away: we know why it is adequate. 

1.4. OUTLINE OF THIS STUDY 

The research which led to the writing of this study started because 

some specific problems, which seemed to be of general interest for the 

knowledge of the regulation of cell division, cell differentiation and cell 

growth, could not be solved by means of the available techniques. First, 

(see Section 2.1 for an explanation of the terminology) in studies of the 

growth of a batch culture of plant cells, a lag phase was observed of which 

the nature was obscure. Next, the character and explicit role of the rate 

limiting factors for this growth, for which the medium components sucrose 

and hormone were thought to be the main candidates, appeared to need 

clarification. 

These 

population 

two problems 

growth, but 

are certainly not restricted to plant cell 

also extend to the growth of cultures of 

microorganisms which are frequently used in biotechnology. Plant cells in 

culture, however, have the peculiar ability to differentiate, presumably 
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depending on the hormone level in the medium. It seemed desirable to go 

into the subject of the presence of two types of cells and their 

interrelationship. 

To gain some insight into these problems, we shall start with the 

formulation of a random cell cycle model, which combines the ideas of the 

transition probability model of Smith & Martin (see Section 1.1) and the 

Monod-population size model (see Section 1.2 ), and which is based on the 

biological facts already known for our specific experimental system (see 

Section 2.1 ). Next, we shall consider the consequences of this model for 

the behaviour of the total population. At the same time we shall derive 

some mathematical results which may be of independent interest. Finally, we 

shall discuss some further experiments, which were suggested by the 

comparison of the model population behaviour with already available 

experimental data. 

The order in which these topics are treated in this study is as 

follows. 

In Chapter 2 a detailed description of the model is given. 

Section 2.1 describes the biological situation, gives the main idea of the 

model and explains the biological grounds for choosing just this model. In 

Section 2.2 the model is formulated in mathematical terms. 

The consequences of the model for the total population behaviour is 

considered in Chapter 3. The first section of this chapter is devoted to 

the derivation of several probability inequalities, which enable us in 

Section 3. 2 to establish the convergence of the stochastic population 

behaviour to a deterministic limit behaviour when the initial cell number 

of the population tends to infinity. The rate of this convergence is also 

determined. In Section 3.3 a central limit theorem is derived: it is 

proved that the difference between the random population number and its 

deterministic limit, multiplied by a suitable power of the initial cell 

number, has, again for the initial eel 1 number tending to infinity, a 

limiting distribution which is the same as that of a certain Gaussian 

process. In Section 3.4 we determine the asymptotic behaviour of the time 

at which the population stops growing, in terms of the initial cell number. 

In the final section of the chapter the stochastic population behaviour and 

the deterministic limit behaviour are compared graphically. 

Some of the asymptotic results derived in Chapter 3 can also be 

obtained by the methods developed in KURTZ (1981; 1983) and ETHIER & KURTZ 

(1986) for general population processes. This we do in Chapter 4. 
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Ways to obtain processes with a known limiting distribution different 

from the one in Section 3.3 are described in Chapter 5 . In Section 5.1 

this is done under the assumption that for each division it is known to 

which of the two types of cells mentioned above, each of the two 

originating cells belongs. In the remainder of the chapter we drop this 

assumption and provide an approximation for the stochastic process which 

determines the rate of the stochastic growth of the process, the so-called 

intensity process. This yields yet another limiting distribution result. 

In Chapter 6 experiments which were performed in order to compare 

our model with actual data, are described. The results are discussed and 

statistically analysed. We conclude with some general considerations on the 

consequences of this study. 
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CHAPTER 2 

THE MODEL 

This chapter is divided into two parts. In the first part the model is 

explained from a biological point of view; in the second the model is 

formulated in mathematical terms. 

2.1. DESCRIPTION OF BIOLOGICAL SITUATION AND MODEL 

The phenomenon which is studied in this monograph is the growth of a 

batch culture of plant cells. In particular we are interested in the role 

substrate (sucrose) and hormone play during this growth. 

What is 'a batch culture of plant cells' ? By this we mean a culture 

of isolated plant cells or very small cell aggregates of for example 

Nicotiana (tobacco), Cinchona, Catharanthus, etc., which remain dispersed 

as they grow in a liquid medium. Usually the cells grow in an erlenmeyer 

flask which is continuously shaken, or in a fermenter in which the medium 

is continuously stirred. In contrast to a continuous culture, a batch 

culture neither has an inflow of fresh medium, nor an outflow of culture 

(STREET, 1973). 

At some time, which we shall call time t = 0, the cells, say n in 

number,' are transferred to a fresh medium of known composition. After a 

certain time period, the so-called lag phase, the first cell divisions are 

observed. The number of cells, in the sequel denoted by Nn, is seen to 

increase; slowly in the beginning, then more quickly, then slowly again, 

until the population seems to have stopped growing: the cell population is 

in its stationary phase. When the cells are transferred to a fresh medium 

again, this growth pattern or growth cycle as it is frequently called, 

repeats itself. In Fig. 2.1 a typical growth curve of a plant cell 

population is shown. Usually a free-hand curve is drawn through the, 

generally few, data points, ignoring the hump at the beginning which is 

mostly ascribed to measurement error (see Fig. 2.1 ). 

As explained in Chapter 1, we formulate a model for the behaviour of 

the individual cell and consider the consequences of this model for the 

population behaviour. The main features of the model are as follows. 
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The idea is that a plant cell population in suspension culture 

consists of two types of cells: actively cycling cells, called type-A 

cells, and 'resting' or differentiating cells, called type-B cells. At time 

t = 0, i.e. just after the transfer to a fresh medium, the population is 

assumed to consist of type-A cells only. A random time after its birth a 

type-A cell receives an endogenous stimulus. A fixed time c later it will 

divide. Thus, the A-cells can be divided into two classes, to wit A0-cells 

which are waiting for a stimulus, and A1-cells which have already received 

a stimulus but have not yet divided. 

E 
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Fig. 2. I. Growth curve of a batch culture of plant cells. 

9 411 Cl data; - - - s1100thed version. 

/ 

. ---•----•-,,-,, 

Since a waiting A0-cell receives a stimulus at a random time after its 

birth, the time between birth and division differs from cell to cell. The 

length of the time period between birth and receipt of stimulus is thought 

to depend on the substrate concentration in the medium: the higher the 

concentration, the shorter the mean length. It is assumed that a fixed 
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-1 amount ( ys ) of substrate is consumed when a cell receives a stimulus, 

and as a result this mean length becomes longer when time progresses. When 

all substrate is used up, no further stimuli will be received, so that 

there will be no more divisions. 

The amount of hormone is not thought to influence the length of the 

cell cycle, but it determines whether a cell, just being born, will be a 

cycling A-cell or not: depending on the hormone concentration at the time a 

cell divides, an originating cell will be a cycling cell or will 

differentiate. The higher the hormone concentration, the more A-cells will 

be born. Also the amount of hormone is supposed to decrease with fixed 

amounts ( y~1 ), but now at each division. Hence when time goes on, 

relatively fewer A-cells are produced. When the hormone has run out, only 

B-cells are born. 

When the increase of the total cell number N as predicted by this n 
model is simulated (see Section 3.5 Fig. 3.1 ) , the growth pattern 

looks like the experimentally observed one in Fig. 2.1 indeed. First, we 

have a lag phase, because cells, even if they receive a stimulus 

immediately at t = 0 , need at least the fixed time c before division. 

Next, we see a continuo_usly changing growth rate caused mainly by the 

increase in cell number in the beginning and by the decrease of substrate 

and hormone concentration later on. In the end the growth process of the 

model stops, either because the substrate has run out or because the 

A-cells have become extinct. The simulated curves only differ from the 

smooth one in Fig. 2.1 in that the former show a somewhat stepwise 

increase at the start, which fades away gradually when time goes on. This 

indicates that the hump in the first data after the lag-phase in Fig. 2.1 

is probably not due to measurement error, but represents a very real 

phenomenon. This will be discussed further in Chapter 6 . 

Is this model realistic? Observations of small samples from the 

cultures under a microscope do indeed indicate the presence of two types of 

cells: some cells are larger and more stretched out than others ( see 

Fig. 2.2 ), which points to differentiation; the number of these blown up 

cells is seen to increase with time. Unfortunately, we do not have an 

adequate differentiation marker yet, but secondary product formation, which 

also increases with time (KING & STREET, 1973), seems to be coupled to 

differentiation. On the other hand, it is experimentally established that 

cells which are kept in stationary phase for some time, have to be 

transferred to a fresh medium in order to induce dedifferentiation prior to 
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100.1,1m 

100,11m 

Fig.2.2. Different types of plant cells in batch culture (tobacco). 

Top: sample of cells drawn from a culture 68 h after inoculation 

showing active growth by cell division (A-cells). Bottom: sample 

drawn at 188 h after inoculation showing growth by cell en! arge

ment during stationary phase (B-cells). 
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cell division resumption (KING & STREET, 1973). Transfer to a fresh medium 

perhaps brings about the same alterations in differentiated cells as injury 

in intact plants (ALBERTS et al. , 1983). This is why we assume that at 

t = 0 all cells are of type-A. 

The choice for a random cycle duration is prompted by the observed 

fact that 'synchronized' cell populations always loose their synchrony 

within a few cycles (KING & STREET, 1973). The endogenous stimulus we think 

of in this context, might be the production of an unstable trigger protein 

with a high turnover rate (cf. ALBERTS et al., 1983). We assume that it is 

provided at a variable time after a cell's birth, and that a fixed time 

( c ) later the cell divides. This is in accordance with the observation 

that the variability of the last part of the cell cycle ( S, G2 , M) is 

less than that of the first part ( G1 ) (see e.g. GOULD et al. (1974) and 

BAYLISS (1975)). Another reason is that many cell cycle studies (also for 

animal cells) mention a major 'point of no return' or 'control point' in 

the cell cycle somewhere in G1 (PARDEE, 1974; WADA et al., 1984; BAYLISS, 

1985; VAN'T HOF, 1985). 

Nutrient depletion is a well known phenomenon too (STREET, 1973). For 

convenience we take the simplest way of nutrient consumption, namely, for 

both substrate and hormone we telescope the process of nutrient intake into 

one crucial event and we suppose that a fixed quantity is used up at a 

certain point in the division cycle. If, instead, it would be assumed that 

the consumption is spread out over the cycle, then the level of nutrient 

concentration would be somewhat different throughout the process. Though 

this would affect the population growth somewhat, the picture would 

qualitatively still be the same. Moreover, the price to be paid for such an 

improvement of the model seems excessive in terms of mathematical 

complexity. 

There are strong indications that both sucrose and hormone belong to 

the main factors which regulate the plant cell cycle. Although the picture 

is not altogether clear yet, it is usually argued that the sucrose 

concentration influences the cell cycle duration by means of regulation of 

the rate of some biochemical processes taking place in G1 , whereas 

hormones would act as permissive factors, altering the physiological state 

of the cells (bringing about dedifferentiation), so that cell division can 

occur (FOSKET, 1977; ALBERTS et al., 1983; BAYLISS, 1985; TREWAVAS, 1985). 

The way we let the two substances act, is derived from the well known 

Michaelis-Menten/Monod kinetics (see e.g. ROELS (1983)). 
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Of course the model yields a process which is much simpler than the 

actual situation it attempts to describe. For instance, we have assumed 

that the type-B cells do not consume substrate. This is probably not 

realistic, since differentiating cells grow and accumulate starch and/or 

sucrose. However, since the number of B-cells is only very large at the end 

of the growth process, correction on this point most likely will result in 

reaching the stationary phase earlier, but will not change the growth 

pattern drastically. Another aspect we have neglected, is the substrate 

consumption for maintenance energy requirement. We supposed that the 

quantity of substrate used for maintenance energy requirement is negligible 

with respect to that needed for the creation of new cells. However, if we 

do want to build this phenomenon into the model, the effect is not 

immediately clear, because in this case all cells are involved. 

Nevertheless, for the moment the model supplies our needs reasonably well 

(see Chapter 6 ). 

2.2. MATHEMATICAL FORMULATION OF THE MODEL 

For n = 1,2, ... we consider a model starting with 

N (O) = NA (O) = n cells in the A-state. The total number of cells at n ,n 
time t and the number of type-A cells at time t are denoted by Nn(t) 

and NA,n(t) , respectively. In practice the cell numbers are usually very 

5 6 -1 
large (10 - 10 ml ). Moreover, as we already mentioned in Section 1.2, 

deterministic models are often used to describe plant cell population 

growth. So one of our aims is to investigate whether the population 

behaviour, as predicted by our stochastic model, converges to a 

deterministic limit behaviour as the number of individuals tends to 

infinity. The obvious quantity to which the number of individuals is 

related is the initial cell number n, which is also usually very large in 

practice. Hence we shall commit ourselves to asymptotics in n . This is 

why all random variables in the model are given the index n. Note that in 

this context a quantity being fixed or constant means that it does not 

depend on n; it may of course depend on the type of plant cells used for 

the experiments and/or be unknown in practice. 
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2.2.1. THE CELL CYCLE MODEL 

The growth of the whole cell population in the model is determined by 

the behaviour of the individual cells, which is assumed to be ruled by the 

following regime. 

Fix c, independent of n, and define the time of the i-th division 

by 

(2.2.1) ,: = inf[ t 
i,n 

i = 1, 2, .... 

A cell dividing at time i:i,n has started its mitotic cycle at time 

(,: - c) , because it received a stimulus at this time. A type-A cell 
i,n 

receives this stimulus at the time of the first event in a counting process 

starting at the birth of the cell and having a variable, random rate 

Qn(t) . For different cells the processes are only coupled through this 

rate, but otherwise independent. 

In providing a stimulus a fixed quantity of substrate is used 

up. The amount of substrate Sn(t) at time t is given by 

(2.2.2) 

where b is fixed and n = [nbs) . 
s s,n 

part of a. It is assumed that the rate 

following way. 

14 

Here 

Q (t) 
n 

O~t<,: -c 
1,n 

i = 1,2, ... ,n -1 
s,n 

t 2: ,: - C n ,n 
s,n 

[a) denotes the integral 

depends on Sn(t) in the 



Sn(t) 

Qn(t) 1 -1 (Sn(t)) 
d(Sn(t) + nks) [y s ,~) 

nb s 
Qo n Qo - -

' 
0 :5 t < T l,n - C 

d(nbs + nasbs) 

(2.2.3) 

nb - i s 
Qin -

' d(nbs + nab - i) s s 
i = 1,2, ... ,n - 1 s,n 

0 - t ~ T - C 
n ,n s,n 

i 

where d and a = k b-l are fixed, k is a constant, and l'l..t s sys s s 
denotes the indicator function of the set 'l..t This means that the total 

number of stimuli is never larger than n 
' 

since Qn(t) = 0 for 
s,n 

t2:t -c. 
n ,n s,n 
In the model the amount of hormone is given by 

i 1 

(2.2.4) H (ti ) = n ,n 

i 2, 3, ... ,nh,n 

i 

where yh and bh are independent of n and nh,n = [nbh] . The two 

cells originating at time ti,n independently become type-A cells with 

probability P. and type-B cells with probability ( 1 - P. ) , where 
1,n 1,n 

P depends on the amount of hormone present: 
i,n 

15 



H ( t. ) 
n 1,n 

P. 
1,n 1(1,nh l(i) 

H (ti ) + nk__ ,n n ,n -11 

(2.2.5) 

0 

i 1,2, ... ,nh ,n 

i = nh + 1,nh + 2, ... ,n ,n 

where and are fixed. Note that the processes may 

continue after divisions, even though 

k = 1,2, .... Then only type-B cells are produced. 

2.2.2. IMPLICATIONS FOR THE TOTAL POPULATION 

p 
nh +k,n ,n 

0 , 

Now that the model is formulated on the individual level, we next 

consider what this means for the total population behaviour. 

Let t ~ c. Before or at time (t - c) , (Nn(t-c) - n) type-A cells 

have divided. Therefore the number of type-A cells at time (t - c) is 

given by 

(2.2.6) NA (t-c) = ,n 

Nn(t-c)-n 

E z. 
j=l J,n 

where Z. 
J ,n 

is the number of newly born A-cells at the j-th division. 

has a Thus z1 , z2 , ,n ,n 
are independent random variables and z 

j ,n 
binomial distribution with parameters 

P = 0 for j > nh , j,n ,n z. 
J ,n 

= 0 

convenient to write 

Z = (Z 1 , z2 , ... ) 
n ,n ,n 

Nn (t)-n 

E z 
j=l j,n 

2 

a.s. 

and 

for 

j=l,2, ... p. , 
J ,n 

Since 

j > nh . We shall find it ,n 

Let the number of type-A cells waiting for a stimulus at time t , 

i.e. the type-A cells which have not received a stimulus before t , be 

16 



denoted 0 
by NA (t) . Then, since at time ,n 

(t - c) there are 

Nn(t-c)) A-cells which have received a stimulus and have not yet 

(2.2.7) 

Since at time (t - c) all of these NAO (t-c) cells are waiting for ,n 
stimuli arriving independently with rate Qn(t-c) , and a cell divides time 

c after receiving a stimulus, the process Nn(t) grows at a variable 

random rate NAO (t-c)Q (t-c) . The two factors entering into this rate are ,n n 
given by (2.2.3) and (2.2. 7) . Note that the observed process Nn(t) 

together with the unobserved random vector 

quantities discussed so far. 

Z determine all other random 
n 

The process Nn(t) stops at the first time when either NA (t) = O ,n 
or N (t) = n + n . Note that NO (t-c) = 0 

n s,n A,n is not sufficient for N 
n 

to stop growing at time t , since new A-cells may be born between time 

(t - c) and t. Thus from (2.2.6) we see that the process stops at the 

random time Tn defined by 

(2.2.8) Tn = inf{ t 

Nn(t)-n 

E (Zj - 1) = 
j=l ,n 

-n J II inf{ t n + n J, s,n 

where (a II b) means the smaller of a and b. The random level which 

Nn(t) has reached by then is 

m 
E (Zj - 1) = -n I II n 

j=l ,n s,n 

and we see that given 

Let us translate 

Z , this final level is a non-random quantity. 
n 
this informal description into a more formal 

mathematical model. For n = 1,2, ... , let Qn be the outcome space of the 

process {Nn(t)Jt~O and the sequence Zn= (Zl,n, z2 ,n, ... ) , i.e. 

consists of non-decreasing right-continuous step functions with 

Q 
n 

step 

heights 1 coupled with sequences with elements 0 ' 1 or 2 . For 

t ~ 0, let Gt,n be the a-algebra generated by {Nn(s)JsSt and Z , and 
n 

G the smallest· a-algebra containing U Gt . Define 
n t~O ,n 

a probability 

measure P on (Q ,G) such that z1 , z2 , n n n ,n ,n are independent and 

Z has a binomial distribution with parameters 2 j,n and Pj given by ,n 

17 



(2.2.5); conditionally on Z 
n 

is distributed under P 
n 

as a stopped counting process with intensity process A (t) given by the z,n 
left-continuous version of 

A (t) = lim h-l P (Nn(t+h) - Nn(t) ~ 1 I Gt,n) 
z,n h+O n 

(2.2.10) = N~ (t-c)QN (t)- . l[ )(t) ,n n n,n c," 

= (2n - Nn(t) + Z (t-c)) QN (t)- l[ )(t) n n n,n c," 

The process stops at time 

equivalently by 

T n 
given by (2.2.8) 

m 

and (2.2.9) 

I: ( Z. - 1) = -n } " n 
j=l J,n s,n 

which is clearly a stopping time with respect to {Gt,n}t~O. 

or 

To avoid measurability problems we replace (Sl ,G ,P ) 
n n n 

completion and extend all a-algebras Gt , t ~ 0 , 

by its 

all to contain 

P -null sets, n 
Finally, 

,n 
while retaining the original notation. 

let let (Sl,G) be the product measurable space of (Sl , G ) , 
n n 

n = 1,2, ... , and P any probability measure on (Sl,G) with marginals P n 
on (Sln,Gn) , n = 1,2, .... Thus we have defined {Nn(t)}t~O and Zn for 

n = 1,2, ... on a single probability space (Sl,G,P) . Again we replace 

(Sl,G,P) by its completion. 

In the sequel we shall occasionally also need the similarly completed 

versions of the a-algebras Ft,n generated by {Nn(s)Jsst and the 

smallest a-algebra Fn containing U Ft . 
t~O ,n 

given 

Let A (t) be the integrated intensity process of z,n 
Z , i.e. 

n 

t 

(2.2.11) A (t) z,n =J A (s)ds z,n 
0 

Define the inverse process A-l by 
z,n 

18 



(2.2.12) A-l (u) 
z,n 

{ inf{ t ~ C A (t) ~ u l 
z,n 

• 
and the process Nn by 

where II 
n 

{

N(A- 1 (u)) 
n z,n 

II (u - A (T )) + N (T) - n 
n z,n n n n 

- n 

is a Poisson process with intensity 1 
> • 

0 Su S Az,n(Tn) 

u > A (T ) 
z,n n 

u > A (T ) 
z,n n 

defined on 

independent of N 
n 

and A Then given Zn, Nn is a Poisson process 
z,n 

with intensity 1 on (O,~) , and hence independent of 
• 

Z . It follows 
n 

that unconditionally N 
n 

is also a unit Poisson process. Note that the 

stopping time Tn , however, is a function of Zn For a detailed 

discussion on counting processes and other concepts mentioned above see for 

instance JACOBSEN (1982) or AALEN & HOEM (1978). 

2.2.3. RESULTS FOR n ➔ ~ 

We now give a summary of the results for the asymptotic situation 

where the initial cell number n tends to infinity. In the following 

chapters this is considered in detail. 

First of all, the population behaviour does converge to a 

deterministic limit behaviour. In fact it is proved in Section 3.1 (cf. 

THEOREM 3. 1. 2 ) that there exists a non-random differentiable and 

non-decreasing function X such that for n = 1,2, ... and x ~ 0, 

P (sup ln- 1(N (t) - n) - X(t)I ~ x) S Aexp{-ax2n) 
t~O n 

for positive numbers A and a. But this means (cf. THEOREM 3.2.1) that 

we have the following rates of convergence of n- 1(N - n) to X: 
n 

sup ln- 1 (N (t) - n) - X(t)I 
t,!:Q n 
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These results suggest that there exists a process 

depend on n, such that 

V , which does not 

We prove this in Section 3. 3 ; the convergence is in the sense of the 

Skorohod metric, and 

TIIEOREM 3.3.l ). 

V is a Gaussian process with mean zero (see 

In Section 3. 4 we study the order of magnitude of the time T 
n 

of 

the final division or the duration of the process Nn . This is closely 

related to the rate at which Nn or, equivalently, X reaches its final 

level. When either the number of A-cells becomes extinct or the substrate 

is used up, but not both, we find (cf. LEMMA 3.4.2 and TIIEOREM 3.4.1 

that there exist positive constants c0 , 

such that 

a and A 

-1 -1 
0 <a~ liminf Tn(logn) ~ limsup Tn(logn) ~A<~ a.s. 

When both the number of A-cells becomes extinct and the substrate is used 

up, it takes longer for the process to stop and more variation in the 

duration is possible. In fact we can prove in this case (see LEMMA 3.4.4 

and TIIEOREM 3.4.1 ) that there exist positive constants c0 , c1 , £ 0 , 

b and B such that 

t ~ 0 

a.s. 

-1 
limsup Tn(nlogn) ~ B < ~ a.s. 

Finally, note that in (2.2.10) 

A which is conditional on Z 
z,n n 

intensity process An is defined by 

(2.2.14) lim 
MO 

20 

we defined the intensity process 

Analogously, the unconditional 



In Chapter 5 we find a process 

that for each M ~ 0, 

sup IA (t) - A (t)I 
O~t~M n n 

A , which does not depend on Z , such 
n n 

This result yields that for c ~ t ~ M, 

t 

n-l/ 2(Nn(t) - n - J An(s)ds) ~ w0(X(t)) , (n-+ .. ) 

C 

where w0 is a standard Wiener process, X is the limit function as 

earlier, and the convergence is in the sense of the Skorohod metric (cf. 

( 5. 3. 21) , ( 5 . 4. 8) and THEOREM 5. 4. 1 ) . 
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CHAPTER 3 

THE BEHAVIOUR OF N FOR n ➔ .. 
n 

This chapter deals with the asymptotic behaviour of 

Convergence of n- 1(N - n) to some non-random function 
n 

N for n ➔ 00 • 

n 
X is proved and 

time an .exponential bound is provided for at the same 

P (sup fn- 1(N (t) 
t2:c n 

- n) - X(t)f 2: x). This allows us to compute rates of 

convergence for almost sure convergence as well as for convergence in 

probability. The limit distribution of n112(n-\N - n) - X) is 
n 

studied and the order of the duration Tn of Nn is determined. Finally, 

simulations of Nn are graphically compared with n(X + 1) . 

3.1. PRELIMINARIES 

In this section we prove several 

exponential 

probability inequalities which 

bound for the probability that enable us to derive an 

sup ln- 1(N (t) - n) - X(t)I exceeds some value X • Here X is a 
t2:0 n 
non-random differentiable function of t , which is to be defined later 

(LEMMA 3.1.4). From now on we shall write 

n- 1(N (t) - n) 
n 

LEMMA 3.1.1 For n = 1,2, ... and OS x S 2b 
s 

we have 

(3.1.1) 

PROOF. We have Xn(t) s -1 -1 s b and hence n n n [nbs] s,n s 

IXn(t) 
-1 

z n(t) I s -1 • 
sup - n A • sup n INn(u) 
t2:c ' {u:Nn(u)Snbs} 

• 

- ul 

where Nn is the unit Poisson process defined in (2.2.13) . The lemma now 

follows from LEMMA Al.1 in Appendix Al. 

D 
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Define 

nXn(t-c) 

(3.1.2) A (t) = p,n 2 E P. )Q X (t) 1[ ~)(t) j=lJ,n nn ,n c, 

and note that A is obtained from 
p,n 

A in 
z,n 

(2.2.10) by replacing the 

Z. by their expected values 2P. 
J,n J,n 

. We have 

LEMMA 3.1.2 For n = 1,2, ... and x ~ 0, 

-1 m 
2 (3.1. 3) p (max n I E (Z. - 2P. ) I ~ x) $ 4exp{-x n/(18bh)J 

m j=l J ,n J ,n 

p (sup n- 1 1A (t) - A p,nCt) I ~ x) 
t~c z,n 

(3.1.4) 

$ 4exp{-d2(1 + as) 2x2n/(18bh)J 

PROOF. z 1,n ' z 2,n ' 
... are independent and z j,n 

has a binomial 

distribution with parameters 2 and P. ' 
j =1,2, ... for j > nh,n ' J ,n 

P, = 0 and z. = 0 a.s. Because n = [nbh] $ nbh ' 
we may invoke 

J ,n J ,n h,n 
LEMMA Al. 2 (see Appendix Al to obtain (3.1. 3) 

Furthermore, we see from definitions 

(2.2.3) that for t ~ c, 

(2.2.10) , (3. 1. 2) and 

nXn(t-c) 

IA (t)-A (t)l=I E(Z. 
z,n p,n j=l J ,n 2PJ. n)QnX (t) n I 

' n ' 

$ (d(l + a ))-l max 
s l$m$nh 

,n 

m 
I E ( Z . - 2P . ) I 
j=l J,n J,n 

Hence (3.1.4) follows from (3.1.3) 

D 
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Define F [ 0, .. ) x D[ 0, .. ) ➔ [R by 

(3. 1.5) 

F(t,x) = {l - x(t) + 2(x(t-c) A bh) 

x(t-c) 

= {l - x(t) + 2 J P(u)du}Q(x(t))l[c,oo)(t) 

0 

= {l - x(t) + 2P(x(t-c))JQ(x(t))l[c,oo)(t) 

where D[0, 00 ) is the space of right-continuous, [R-valued functions on 

[0, 00 ) with left-hand limits everywhere, and Q, P and P: [O,oo) ➔ [O,oo) 

are defined by 

Q(u) = ----------

(3.1.6) P(u) 

Note that 

(3.1.7) 

(3.1.8) 

u 

P(u) = J P(s)ds 

0 

QN (t)-n,n = QnX (t),n 
n n 

p = p 
Nn(t)-n,n nXn(t),n 

Q(Xn(t))l _1 (Xn(t)) 
[O,n n ) s,n 

= P(X (t)) + oc1) n n 

so that F(t,Xn) may be expected to approximate n- 1A (t) . In fact, we 
p,n 
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have 

LEMMA 3.1.3 For n = 1,2, ... , 

(3.1.9) sup ln- 1A (t) - F(t,Xn)I $ 2(1 + b )(dab n)-l 
t~c p,n s s s 

PROOF. By (3.1.6) 

m 
I: P - nP(m/n) 

j=l j,n 

m 
I: (P. -

j=l J,n 

j/n 

n f P(u)du) 

(j-1)/n 

Because p is a non-negative and non-increasing function with 

P((j-1)/n) = P. for j $ nh , it follows that for m $ nh,n , 
J ,n ,n 

m m 
(3.1.10) 0 $ I: P. - nP(m/n) $ I: (P((j-1)/n) - P(j/n)) $ P(O) 

j=l J ,n j=l 

Since P. = 0 for j > n and P(u) 
J,n h,n 

0 for u ~ bh , we see that 

for m > n. , 
n,n 

(3.1.11) 

Obviously, 

m 
I: P. 

j=l J,n 
nP(m/n) 

O $ n(P(bh) - P(n /n)) $ (nbh - nh )P(nh /n) :5 P(O) h,n ,n ,n 

and (3.1.10) - (3.1.11) imply that 

(3.1.12) 
m 

max I I: P. - nP(m/n)I $ P(O) 
m j=l J,n 

Next, we recall that (cf. (2.2.3) ) 

sup Q(X (t)) $ (d(l + a ))-l 
t~c n s 

and in view of (3.1.2), (3.1.5) and (3.1.12) we conclude that for 

t ~ c and X (t) < n /n, 
n n,s 
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Finally, 

ln-1A (t) - F(t,Xn)I p,n 

nX (t-c) 
-1 n 

=Zin J:P. -P(X(t-c))IQ(X(t)) 
j=l J ,n n n 

S 2(d(l + a. )(1 + a )n)-l S 2(1 + b )(dab n)-l 
n s s s s 

if then A (t) 
p,n 0 by (2.2.3) 

Consider the system 

(3.1.13) l x(t) • [tF(s,x)ds , 

x(t) = 0 

t ~ C 

t < C 

and 

□ 

with x E D[0, 00 ) and F as defined in (3. 1.5) . Then the following 

holds. 

LEMMA 3. 1. 4 There exists a unique solution X of ( 3. 1. 13) in D[ 0, .. ) . 

The function X is continuous, non-negative, non-decreasing and bounded on 

(O,oo) , and differentiable on (c,oo) with a continuous, positive and 

bounded derivative. Hence X is strictly increasing on (c,oo) and 

(3.1.14) lim X(t) = inf { z e CR 
t➔oo 

2P(z) - z S -1} Ab 
s 

There exist positive constants c0 and EO such that for O < t < .. , 

(3.1.15) lim X(t) - X(t) ~ Coexp{-Eotl 
'[-ho 

PROOF. For t ~ 0 and continuous functions x and y on [ 0, 00 ) , 

(3.1.5) implies that 

sup IF(s,x)I s lei+ sup lx(s)I) 
sSt sSt 
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and since the partial derivatives of F with respect to x(t) and x(t-c) 

are bounded 

IF(t,x) - F(t,y) I s Clx(t) - y(t) I + c' lx(t-c) - y(t-c) I 

(3.1.16) 
* SC sup lx(s) - y(s) I 

sSt 

* for positive constants C, c' and C . It follows from LEMMA A2.2 in 

Appendix A2 that a unique solution Xe D[O,oo) exists, and that X is 

continuous on (O,oo) . Since X' (t) = F(t,X) on (c,oo) and F(t,X) = 0 

if X(t)?: bs, we see that X is bounded on (0, 00 ) and differentiable on 

(c, 00 ) with a continuous and bounded derivative. 

The remaining assertions of the lemma will follow if we show that 

X' (t) > 0 for c < t < 00 and establish (3. 1. 14) 

begin by defining 

and (3.1.15) . We 

1 - X(t) + 2P(X(t-c)) 

and noting that ¢ is continuous with ¢(c) 

(i) ¢(t) > 0 for c St S 2c 

(ii) ¢(t)?: 0 for t > 2c; 

for t?: c 

1 , and 

(iii) If ¢(t0) = 0 for some 

To see that ( i) 

F(t,X) = (1 - X(t))Q(X(t)) 

t 0 > 2c, then P(X(t0-c))Q(X(t0-c)) = 0 . 

holds, notice that ¢(t) = 1 - X(t) and 

for c St S 2c, so that X'(t)(l - X(t))-l 

is bounded on [c,2c) whenever X(t) f 1 . But this means that X(t) f 1 

on [c,2c) since otherwise the integral of the bounded function 

X'(t)(l - X(t))-l over an interval of length Sc would diverge. As ¢ 

is continuous with ¢(c) = 1 this implies ( i) 

To prove ( ii) , suppose to the contrary that ¢(t) ?: 0 for 

C $ t s to ' ¢( to) = 0 and ¢(t) < 0 for to < t < t 0 + E for some 

to > 2c and 0 < E < C Then for to< t < t 0 + E ' 
we have ¢(t) < 0 

' 
¢(t-c)?: 0 and 

¢'(t) = -X'(t) + 2P(X(t-c))X'(t-c) 

-¢(t)Q(X(t)) + 2P(X(t-c))¢(t-c)Q(X(t-c))?: 0, 
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which is an obvious contradiction. Similarly, (iii) is proved by assuming 

that ¢(t) > 0 for c s t < t 0 and ¢(t0) = O for some t 0 > 2c , and 

noting the contradiction that unless 

P(X(t0-c))Q(X(t0-c)) = 0 . Since P and Q are non-increasing, this also 

holds for every subsequent zero of ¢ 

Next we consider the function g on (0, 00 ) defined by 

g(z) = (1 - z + ZP(z))Q(z) 

and note that g(X(t)) 2: X' (t) = ¢(t)Q(X(t)) 2: 0 for t > c because of 

( 3. 1. 5) . As g has a bounded derivative, 

there exists a> 0 such that 

(3. 1. 5) also ensures that 

l(g(X(t)))- 1X'(t)g'(X(t)) I Sa 

whenever g(X( t)) 'F O . Integrating over 

I log[g(X(t))/g(O)J I S a(t - c) and as g(O) > 0 

that 

g(X(t)) 2: Aexp{-atj 

for t > c 

(c,t) we 

there exists 

see 

A > O 
that 

such 

for t > c 

It follows that Q(X(t)) > 0 and 1 - X(t) + ZP(X(t)) > 0 for 

t > c Suppose that ¢(t0) = O for some t 0 > 2c . As Q(X(t0-c)) > 0 , 

(iii) implies that P(X(t0-c)) = o , so that P(X(t0)) = P(X(t0-c)) and 

¢(t0) = 1 - X(t0) + 2P(X(t0)) > O. This contradiction shows that ¢(t) > O 

for t 2: c, and hence that X'(t) = ~(t)Q(X(t)) > 0 for t > c 

As X is increasing and bounded and X' '(t) = ~tF(t,X) is easily 

seen to be bounded too for t > 2c, it follows that X'(t) tends to zero 

as t ➔ ... Writing X(oo) for lim X(t) , we find that 
t➔oo 

lim X'(t) = (1 - X(oo) + 2P(X(oo)))Q(X( 00 )) = 0 
t➔ .. 

and since for t > c, 

(1 - X(t) + 2P(X(t)))Q(X(t));,: X'(t) > o 

we have proved (3.1.14) . 

Finally, we note that for t > c, 
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(X(") - X(t)) sup lg'(z)I ~ g(X(t)) - g(X(")) 
z 

= g(X(t)) ~ Aexp{-at} 

and as g' is bounded, this establishes (3.1.15) . 

D 

Having made these preparations, we can now quickly prove one of the 

main results of this section. 

THEOREM 3.1.1 Let X be the unique solution of (3.1.13) and let M ~ 0. 

Then there exist positive numbers A and a depending on M such that 

for n = 1,2, ... and x ~ 0, 

(3.1.17) 2 P (sup IXn(t) - X(t)I ~ x) S Aexp(-ax n) 
tSM 

* * PROOF. Fix M ~ C 
' 

let C be as in (3.1.16) 
' 

C = 6bsexp(C (M - c)J 
* -1 and 6(1 + bs)(M - c)exp{C (M - c) I (dasbsn) s x SC Note that 

C ~ 6b Also, for every n = 1,2, ... ' 
it follows from LEMMAS 3.1.1 , 

s 
3.1. 2 , 3.1. 3 and inequality (3.1.16) that, except on a set of 

probability not larger than 

11 2 * 
3 exp(-x n/[288bsexp{2C (M - c)J] I 

2 22 2 * ] + 4exp(-d (1 + as) x n/[162bh(M - c) exp{2C (M - c)J I 

the following holds for all c St SM: 

t 

s IXn(t) - n- 1A (t)I + n-ls IA (s) - A (s)lds z,n z,n p,n 

t 

+f 
C 

C 

-1 In A (s) - F(s,Xn)lds p,n 
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t 
• c*J s 3 ~ exp{ -C (M - c)J + sup IX/1) -X(r)lds 

3 1:Ss 
C 

• • s x exp{-C (M - c) J exp{C (t - c) I $ X 

where the third inequality follows from LEMMA A2. 1 in Appendix A2 . 

Obviously, A can be chosen sufficiently large for (3.1. 17) to hold 
• -1 

for O S x < 6(1 + b )(M - c)exp{C (M - c) l (da b n) and since 
s s s 

Xn(t) S bs and X(t) S bs for all t <! c , (J.1.17) is trivially 

satisfied for x > C <! bs . By definition Xn(t) X(t) = 0 for OS t < c 

and all n, and the theorem follows. 

D 

In order to obtain a probability inequality like (J.1.17) for the 

supremum over all t, we first investigate what happens when t ➔ •. We 

start by proving the following lemma. 

LEMMA 3.1.5 There exist positive constants 

n = 1,2, ... and x <! 0 , 

-1 m 
(i) p (n l(n + inf{ m : E (Z. 

j=l J ,n 

m 
- (n + inf{ m : E (2P. 

j=l J,n 

(3.1.18) s 2 
4exp{-ax nJ 

a and B such that for 

- 1) = -n I\ ns n) , 

- 1) s -n l I\ ns n)I <! x) 
' 

-1 m 
(ii) In (n + inf{ m : E (2P. - l) S -n l I\ n ) 

j=l J,n s,n 

- ( 1 + inf I z E [R 2P(z) - z S -1 I I\ b )I S Bn-l 
s 

PROOF. ( i) First note that I a I\ c - b I\ c I S I a - b I . Moreover, since 

(i) is trivially true for OS nx S 1 for an appropriate choice of a, we 

may assume without loss of generality that nx is a positive integer. 

Similarly, we allow ourselves in the proof of ( i) to bound the 

probability of strict inequality. Hence we have to prove that for some 
2 3 

a> 0 , n = 1,2, ... , x = ~, ~, 
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-1 m 
P(n !inf{ m E (Z. - 1) -n l 

j=l J,n 
(3.1.19) 

m 
2 - inf{ m : E (2P. - 1) ~ -n 11 > x) ~ 4exp{-ax n} 

j=l J,n 

m 
Let m0 = inf{ m : E (2P. - 1) ~ -n l Then 

j=l J,n 

mo 
(3.1.20) n-l E (2P. - 1) ~ -1 

j=l J,n 

m -1 
-1 0 

n E ( 2P. - 1) > -1 
j=l J,n 

Since Pj,n decreases in j and m0 ~ 2nh,n + n = O(n) , 

(3.1.21) 

and for 2 
X = -

n ' n 
l 

mo+nx 

(3.1.22) n-l E (2P. - 1) ~ -1 - lx 
j=l J,n 

Using this and (3.1.3) , we get 

(3.1.23) 

m -1 P (n inf{ m I:(Z. -1)= 
j=l J,n 

-1 
-n J > n m0 + x) 

k 
= P (n-l min E (Z - 1) > -1) 

~m0+nx j=l j,n 

mo+nx 

~ P (n-l E (Z. - 1) > -1) 
j=l J,n 

m0 +nx m0+nx 

=P(n-l E(Z, -2P. )>-l+n-l I:Cl-2Pj )) 
j=l J,n J,n j=l ,n 

mo+nx 

~ P (n-l E (Z - 2P ) ~ lx) 
j=l j,n j,n 

2 2 
~ 4exp{-l x n/(lBbh)} 
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m 
On the other hand, because I: (2Pj - 1) is a concave function of 

j=l ,n 

m which vanishes for m = 0 , 
-1 m 

m I: ( 2P. 1) is a decreasing one. 
j=l J,n 

Since 

mo-1 

-n < I: (2P. - 1) ~ -n + 1 ~ 0 
j=l J,n 

it follows 
2 3 

that for some positive 

x=- -
n ' n ' 

... ) 

-1 k 
n I:(2P, -l)~k(mo

j=l J,n 

Ii and 

(3.1. 24) 

mo-1 

~ ( m0 - 1 - nx )( m0 - 1) - ln - l I: ( 2P. - 1) 
j=l J,n 

provided m0 - 1 - nx ~ 0 . But this and (3.1.3) imply 

( 3. 1. 25) 

m 
P (n- 1inf{ m: I: (Z. - 1) 

j=l J ,n 

-1 
k 

= p (n min I: (Z 
~mo-nx-1 j=l j,n 

-1 
k 

~ p (n min I: (Z 
k~m0 -nx-1 j=l j ,n 

~ 
2 2 

4exp{-li x n/(18bh)J 

-1 
-n } < n m0 - x) 

- 1) ~ -1) 

- 2P. ) ~ -/ix) 
J ,n 

For m0 - 1 - nx ~ 0 the probability on the left equals zero and (3.1.25) 

is trivially correct. Hence (3.1. 23) and (3. 1. 25) together prove 

(3.1.19). 

(ii) Since 2P(z) - z is a concave function of z which vanishes in 

z = 0, and its derivative with respect to z is bounded, we may as well 
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consider -1 m E [N 2rc!!!) - !!! s -1 I instead of n inf{ : J n n -1 -1 inf{ Z E IR : 2P(z) - z S -1 I Also, because b - n n < n it s s,n 
suffices (cf. (i) ) to prove that for n = 1,2, ... and some B > 0 J 

-1 m 
n !inf{ m: E (2Pj - 1) S -n 

j=l ,n 
(3.1. 26) 

- inf{ m E [N : 2P(~) - ~ S -1 11 < Bn -l 

Let X = £ J 
n 'n 

Then in view of (3.1.12) and (3.1.22) 

- -1 -1 2P(n (m0 + nx)) - n (m0 + nx) 

m0 +nx m0 +nx 

2P(n- 1(m0 + nx)) - 2n-l E P. ) + n-l E (2Pj - 1) 
j=l J,n j=l ,n 

id d > 2( 1 + ) -1 v-ln-1 prov e x _ ah • 

Similarly, invoking 

kSm0 -1-nx 

(3.1.12) and ( 3. 1. 24) we find for 

D 

COROLLARY 3.1.1 There exist positive constants A and a such that for 

n = 1,2, ... and x ~ 0, 

-1 P (In (n + inf{ m 
m 

E (Zj - 1) = -n I~ ns,n) 
j=l ,n 

(3.1.27) - (1 + inf { z E IR 
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PROOF. For 

Clearly, for 

-1 x ~ 2Bn , 
2 A> exp{4aB J 

(3.1.27) follows from the 

the corollary also holds for 

foregoing lemma. 

0 $ x < 2Bn-l 

D 

LEMMA 3. 1. 6 If X is the solution of ( 3. 1. 13) on [ 0, .. ) , then there 

exist positive numbers A and a such that for n = 1,2, ... and x ~ 0, 

(3.1.28) P (llim Xn(t) - lim X(t)I ~ x) $ Aexp{-ax2n} 
t➔oo t➔oo 

PROOF. The lemma follows from 

3. 1.1 . 

(2.2.9) , LEMMA 3.1.4 and COROLLARY 

D 

For convenience we introduce a shorter notation for the quantities 

associated with the newly born A-cells . Let Yn and Y be defined by 

(3. 1. 29) 
X(t) t 

Y(t) = 2P(X(t)) 2J P(u)du = 2J P(X(s))X'(s)ds 

0 0 

Then, obviously 

(3.1.30) 

nX (t) 
-1 n 

IYn(t) - Y(t)I $ n I I: (Zj - 2Pj,n)I 
j=l ,n 

nX (t) 
-1 n 

+ 21n I: PJ - P(X (t))I + 
j=l ,n n 

Xn(t) 

2 I f P(u)du I 

X( t) 

t ~ 0 . 

Therefore, (3.1.3), (3.1.12), the boundedness of P, THEOREM 3.1.1 

and LEMMA 3.1.6 immediately yield 
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CORROLARY 3.1. 2 For each M ~ 0 there exist positive numbers Ao ' ao 

depending on M ' and Al ' al such that for n = 1, 2, ... and X ~ Q 

(3.1.31) (i) p (sup IYn(t) - Y(t)I 
2 

~ x) 5 A0exp[-a0x nj 
t5M 

(3.1.32) 

D 

Having proved the probability bounds ( 3. 1. 17) and ( 3. 1. 28) for 

bounded t and t ➔ oo, respectively, we can now derive a similar result 

which holds uniformly for all t ~ 0. We write 

a 
n 

0 
XA(t-c) = 1 - X(t) + Y(t-c) ~ 0 

x0 (t-c) = 1 - Xn(t) + Yn(t-c) ~ 0 A,n 

p = P(X(oo)) ~ 0 

Recall that for t > c, we have (cf. (3.1.S), 

(2.2.11) and (3.1.7) ) 

X'(t) = F(t,X) = X~(t-c)Q(X(t)) 

(3.1. 33) 

t ~ C 

t ~ C 

q' Q' (X(oo)) < 0 

(3.1.13) , (2.2. 10) , 

a I (t) 
n 

= n- 1A (t) = XOA (t-c)Q(X (t))l 1 (X (t)) 
z,n ,n n [O,n- n ) n 

where a 
n 

denotes the derivative of an except on 

jumps of Xn. Also, note that for 0 5 u 5 X(oo) , 

( 3. 1. 34) 

We shall need the following lemma. 
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LEMMA~ Suppose that £ > 0 and define 

Then there exist positive numbers and 

£ , such that for n = 1,2, ... and x ~ 0, 

( 3. 1. 36) p (sup IX(oo) - Xn(t-c) I ~ £ahbh) ~ Aoexp{-aonl 
t~t0 

depending on 

(3.1. 37) P (sup [fY (t-c) - Y(t-c) f - 2(p + E) IXn(t-c) - X(t-c) I] ~ x) 
t>t n 

- 0 

PROOF. Since Xn is monotone, we have for t ~ t 0 , 

and in view of LEMMA 3.1.6 and THEOREM 3.1.1 

for positive A0 , a0 depending on £ . This proves (3.1.36) . 
8 For O ~ x ~;, (3.1.37) trivially holds for an appropriate choice 

of A1 and a 1 . Since Yn(t) ~ 2Xn(t) ~ 2bs and Y(t) ~ 2X(t) ~ 2bs for 

all t (3.1.37) is also satisfied for x > 4bs . Assume therefore that 
_§_ 
n < x ~ 4bs. By LEMMA 3.1.2 

nX (t-c) 
-1 n 2 

P ( sup n I E ( z . - 2PJ ) I ~ ~2 - - ) 
t~c j=l J,n ,n n 

-1 m 2 
~P(maxn IE(Z. -2P. )l~~)~A2exp{-a2xnj 

m j==l J,n J,n 4 
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for positive constants A2 and a2 . From (3.1.12) we know that with 

probability 1 

nX (t-c) 
-1 n 2 

Zin EP, -P(X(t-c))l~-
j=l J,n n n 

for all t ~ c 

Finally, since P(X(~)) = p and IP'(u)I < (ahbh)-l for all u, we find 

that if t ~ t 0 and IX(~) - Xn(t-c)I < £ahbh 

Xn(t-c) 

l2P(Xn(t-c)) - Y(t-c)I= 21 J P(u)dul 

X(t-c) 

Hence, in view of (3.1.35) and (3.1.36) , and since 

P (sup [IY (t-c) - Y(t-c) I - 2(p + £) IXn(t-c) - X(t-c) I] > x) 
t~to n 

nX (t-c) 
-1 n 

( sup [ n I E ( Z. 
t~t0 j=l J,n 

- 2P. ) I 
J ,n 

nX (t-c) 
-1 n 

+Zin EP, -P(Xn(t-c))l]~~2) 
j=l J ,n 

+ P (sup [l2P(X (t-c)) - Y(t-c)I 
t>t n 

- 0 

4 - 2(p + £)IX (t-c) - X(t-c)I)] ~ -) n n 
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for appropriate positive A1 and depending on E . 

□ 

Now we are ready to prove the final result. 

TIIEOREM 3. 1. 2 Let X be the solution of (3.1.13) Then there exist 

positive numbers A and a such that for n = 1,2, ... and x ~ 0, 

(3.1. 38) 2 P (sup IXn(t) - X(t)I ~ x) S Aexp{-ax nJ 
t~O 

PROOF. Let T be the time 
n 1 

lim X (t) = Xn(Tn) - ~ and 
ttT n 

Xn stops as defined by (2. 2. 8) . Since 

Xn and X are monotone, we have 

n 

sup IXn(t) - X(t)I S 
t~O 

sup IXn(t) - X(t)I 
OSt<T 

n 

+ fXn(Tn) - lim X(t)I + i 
t➔oo 

Therefore, in view of LEMMA 3.1.6 it suffices to show that 

(3.1.39) P ( sup IXn(t) - X(t)f ~ x) S Aexp{-ax2nJ 
OSt<T 

n 

The proof consists of two parts. First suppose that the following 

assumption holds. 

38 



(A) There exist t 0 ~ c , positive constants 

non-negative functions M 
n 

such.that for n = 1,2, ... , and O ~ x ~ C 

(3. 1. 40) 

(3.1.41) 

. • • 2 
P (sup la (t) - X(t)I ~ x) ~ Aexp{-ax n} 

t~to n 

with R such that 
n 

for some 

A a and C , and 

Fix n and x E (O,C) . Suppose that there exists t 1 E (t0,Tn) such 

that lan(t) - X(t) I < x for t < t 1 and lan(t 1) - X(t 1)1 = x, and that 

IRn(t1 ) I < Un(t 1)x + Vn(t 1 ) lan(t 1-c) - X(t 1-c) I . Then 

Hence 

which contradicts the assumption that t 1 is the first time when 

an(t) - X(t) = ± x . It follows from (3.1.40) and (3.1.41) that for 

X E (O,C] ' 
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P ( sup lan(t) - X(t)I ~ x) ~ P (sup lan(t) - X(t)I ~ x) 
O~t<Tn t~t0 

• • 2 
~ 2Aexp{-ax nj 

Combining this with LEMMA 3.1.1 we obtain (3.1. 39) for x e (O,C) for 

some positive C . If A~ 1 , then (3.1.39) continues to hold for 

x = 0. Since IXn(t) - X(t)I ~ 2bs for all t, we see that for x > C, 
2 2 2 

the left-hand side of (3.1.39) is bounded by Aexp{-ax nC /(2bs) J . Thus 

the theorem is proved under assumption (A) . 

We now turn to the proof of Assumption (A) . We shall distinguish two 

cases. 
1 1 Case (i). p < 2 . Choose E = 10(1 - Zp) and let t 0 be as in (3.1. 35) . 

From LEMMA 3.1.1, THEOREM 3.1.1 and LEMMA 3.1. 7 it follows that there 

exist positive numbers A , a and C depending on E , such that for 

n = 1 , 2 , . . . and O ~ x ~ C , 

1 • • 2 P (sup la (t) - X(t)f ~ x) ~ 3Aexp{-ax nj 
t<t n 

- 0 

(3.1.42) 

P (sup [IY (t-c) - Y(t-c) f - Z(p + E) IXn(t-c) - X(t-c) I] ~ Ex) 
t~to n 

1· • 2 
~ 3Aexp{ -ax nj 

For c < t < T we have a '(t) = XAO (t-c)Q(X (t)) n n ,n n 
Hence, except on a set of probability not larger than 

(cf. (3.1. 33) ) . 
• • 2 
Aexp{-ax nj , we 

have for all t e (t0, Tn) , 
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a '(t) - X'(t) 
n 

= -Q(X(t))(Xn(t) - X(t)) + XAO (t-c)(Q(X (t)) - Q(X(t))) ,n n 

+ (Yn(t-c) - Y(t-c))Q(X(t)) 

X(t)) + R (t) 
n 

where Mn(t) > Q(X(t)) > 0 and 

This follows from (3.1.42) and because 

for some 8 E (O, 1) , and Q' (x) < 0 for all x < X(t) v Xn(t) and 

t < T But then 
n 

where, 

+ 2(p + E)lan(t-c) - X(t-c)l}Q(X(t)) 

for all 
• • 2 
Aexp{-ax n} . Note that 

except 

and 

on a set of probability at most 

are positive. Moreover, we have 

-(1 - E)Mn(t) + (4£ + 2p)Q(X(t)) 
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< (5£ + 2p - l)Q(X(t)) = (- 1 + p)Q(X(t)) < 0 
2 

Case (ii). p ~½.This implies that 

• so that we must have Q(X( .. )) = 0 and hence X( .. ) = bs Let t 0 > c be 
• 1 

so large that Q(X( t 0-c)) ~ Zc · Since for t - c ~ s ~ t 

X(t-c) 

X'(s) ~ (1 - X(t-c) + 2f P(u)du)Q(X(t-c)) 

0 

• we have for t ~ t 0 , 

X(t-c) 

X(t) - X(t-c) ~ ½c1 - X(t-c) + 2f P(u)du) 

0 

• Hence, for t ~ t 0 , 

(3.1. 43) 

as in 

X(t-c) 

(1 - X(t) + 2f P(u)du) 

0 

X(t-c) 

~ ½c1 - X(t-c) + 2f P(u)du)) ~ ½c1 + X(t-c)(2p - 1)) ~ ½ 

0 

. . 
( 3. 1. 35) and t 0 = t 0 v t 0 • It follows from LEMMA 3. 1. 1 , 

THEOREM 3 . 1 . 1 and LEMMA 3.1.7 that there exist positive numbers A, a 
and C depending on£ , such that for n = 1,2, ... and O ~ x ~ C, 
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1- • 2 (3.1.44) P (sup IX(~) - Xn(t-c)I ~ Eahbh) ~ 4Aexp(-ax nj 

t~i: 0 

3 P (sup [IYn(t-c) - Y(t-c) I - 2(p + £) IXn(t-c) - X(t-c) I] ~ 4x) 

t~i:0 

1- • 2 
~ 4Aexp(-ax nj 

Then, except on set G of probability not larger than 

have for t0 < t < Tn 

where 

a '(t) - X'(t) 
n 

-M (t)(X (t) - X(t)) + R (t) n n n 

- - 2 Aexp( -ax nj , we 

M (t) = Q(X (t)) - Q'(BX (t) + (1 - B)X(t))XAO(t-c) ~ -41 1q' I > 0 n n n 

This follows from ( 3. 1. 43) , ( 3. 1. 44) and because (cf. ( 3. 1. 34) and 

( 3. 1. 44) ) 

Q'(X (t)) = q' + Q' '(nX (t) + (1 - n)X(~))(Xn(t) - X(~)) n n 
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But then, except on G, we have for t 0 < t < Tn 

where 

1 1 with Un(t) = 3Mn(t) , Vn(t) = 3Mn(t) . Hence Un(t) + Vn(t) - Mn(t) < O 

This proves Assumption (A) and the proof of the theorem is complete. 

a REMARK 3.1.1 Note that, when p < l , then A and 
2 

depend on p; in case p ~ l, these numbers depend on q' 
2 

□ 

in THEOREM 3 . 1 . 2 

COROLLARY 3.1.3 There exist positive numbers A and a such that for 

n = 1,2, ... and x ~ O, 

(3. 1. 45) P (sup IY (t) - Y(t)I ~ x) S Aexp(-ax2n} 
t~O n 

PROOF. From (3.1. 30) it can be seen that combination of (3.1.3), 

(3.1.12), the boundedness of P and THEOREM 3.1.2 yields the desired 

result. 

□ 

In the end we can say something about the value of X(") . Recall that 

X(") = inf{ z: 2P(z) - z S -1 J Ab (see (3.1.14) ) and that 
s 

P(z) 

But 2P(z) - z 

z = 0 Hence, 

zo<bh, 

z 

= J P(s)ds 
0 

(z A 

is a concave 

if 1 + bh -

function of z , which equals zero for 

28hbhlog( 1 + -1 
< 0 ' then for ah ) some 
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If not then, 

inf{ z 2P(z) - z ~ -1 I 

Therefore we conclude 

LEMMA 3. 1.8 

( i) If 

p = P(X(oo)) > 0 

(ii) If 

X(oo) 

if 

X(oo) = 

3.2. CONVERGENCE OF X n 
n -+ .. 

, then 

, then 

D 

Having performed the preliminary work in the foregoing section, we can 

easily prove the uniform convergence of Xn(t) to the solution X(t) of 

(3.1.13) for all t ~ 0, and determine its rate. 
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TIIEOREM 3.2.1 

(3.2.1) sup IXn(t) - X(t)I = Op(n-l/ 2) 
t2:0 

0 -1 1/2 (3.2.2) sup IXn(t) - X(t)I = ((n logn) ) a.s. 
t2:0 

PROOF. The choice of x = Bn -l/ 2 in TIIEOREM 3. 1. 2 , where B is a 

sufficiently large positive constant, immediately proves (3.2.1) 

When, again in TIIEOREM 3.1.2, x = B(n- 1logn) 112 , B positive and 

large enough, is taken, then application of the Borel-Cantell! lemma 

yields (3.2.2) . 

□ 

In view of COROLLARY 3.1.3 we can prove similar results for Yn and Y 

COROLLARY 3.2.1 

(3.2.3) 

(3.2.4) sup IYn(t) - Y(t)I = O((n- 1logn) 1l 2) a.s. 
t.?:0 

Hence we have 

CORROLLARY 3.2.2 

(3.2.5) lim sup IXn(t) - X(t)I = 0 a.s. 
n➔• t.?:0 

(3.2.6) lim sup IYn(t) - Y(t)I = 0 a.s. 
n-+. t2:0 

□ 

□ 

Finally, we formulate the analogous results which follow from 

LEMMA 3. 1.2 . 

46 



CORROLLARY 3.2.3 

-1 m 
Op(n-1;2) (3. 2. 7) max n I I: (Z. - 2P. ) I 

m j=l J,n J ,n 

-1 
m -1 1/2 (3.2.8) max n I I: (Z. - 2P. ) I O((n logn) ) a.s. 

m j=l J,n J ,n 

(3.2.9) sup n-llA (t) - A p,nCt)I = Op(n-1;2) 
t::!:c z,n 

(3.2.10) n- 1 1A (t) - A p,n<t)I 
-1 1/2 sup = O((n logn) ) a.s. 

t::!:c z,n 

0 

3.3. A CENTRAL LIMIT THEOREM 

This section is devoted to the derivation of a central limit theorem for 

the deviation of X 
n 

section, we guess that 

from 
nl/2 

X . Because of the results in the foregoing 

should be the appropriate scaling factor. We 

introduce the following notation. For t ::!: 0, 

n 112(X (t) - X(t)) 
n 

where ~ = n- 1A as before. In this section convergence in distribution 
n z,n 

is in D[O,~) with respect to the Skorohod metric. 

LEMMA 3.3.1 

(3.3.1) 

where w0 is a standard Wiener process. 
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• PROOF. Since N 
n 

in (2.2.13) is a unit Poisson process, we have 

(3.3.2) 

where w0 is a standard Wiener process. Let A (t) = nu , then z,n n 

n-l/ 2(N (t) - n - A (t)) 
n z,n 

Moreover, since with probability 1 , 

-1 
u n A (t) = a (t) ➔ X(t) , as n ➔ -n z,n n 

the continuity of the paths of w0 guarantees (3.3.1) . 

LEMMA 3.3.2 

(3.3.3) 
X(t) 

~ (W0(X(t)),w1c2J P(s)(l - P(s))ds) , as n ➔ - , 

C 

where w0 and w1 are independent standard Wiener processes. 

D 

PROOF. Since V (t) - v•(t) = n 112 cx (t) - a (t)) , the weak convergence of n n n n 
the first component was established in LEMMA 3.3.1 

[nu] 
Consider S (u) = n-l/ 2 I: (Z - 2P. ) for u E [O,bh) and 

n j=l j,n J,n 

n = 1,2,... . Analogously to (3.1.12) we can prove 

max 
m 

m 
I E P. (1 - P. ) -
j=l J,n J,n 

m/n 

nf P(s)(l - P(s))dsl ~ A 

0 

for some positive constant A . Hence, it follows from the extension of 
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Donsker' s Theorem to sums of independent but not identically distributed 

random variables (cf. PROHOROV (1956)) that 

(3.3.4) 

u 

Sn(u) ~ w1c2J P(s)(l - P(s))ds) , as n ➔ ~ 
0 

where w1 is a standard Wiener process. In view of (3.1.12) this means 

that 

u 
-1/2 [nu] 

n ( I: (Zj 
j=l ,n 

- V f - 2nP(u)) ➔ W1(2 P(s)(l 

nX (t) 
-1 n 

Since Yn(t) = n I: Z. , 
j=l J ,n 

0 

X Sb 
n s 

- P(s))ds) 

for all n ' and 

sup IX (t) - X(t)I = 0(n- 1(logn) 1/ 2)) 
t~O n 

a.s. , the continuity of the sample 

paths of w1 ensures that 

X(t) 

n1/ 2(Yn(t) - 2P(Xn(t)) ~ W1(2J P(s)(l - P(s))ds) 

0 

Now U (t) = n112(Y (t) - Y(t)) , 
n n 

V (t) = n112(X (t) - X(t)) , 
n n 

Y(t) = 2P(X(t)) and P'(u) = P(u) In view of (3.1. 34) and 

THEOREM 3.1.2 this implies 

X(t) 

(3.3.5) Un(t) - 2P(X(t))Vn(t) ~ W1(2J P(s)(l - P(s))ds , as n ➔ ~ , 

C 

which proves the convergence of the second component in (3.3.3) . 
A 

As we pointed out below (2.2.13) , the processes Nn 

independent, so that we have joint convergence in (3.3.2) 

and S are 
n 

and (3.3.4) 

and hence in (3.3.3) if w0 and w1 are chosen to be independent. 

□ 
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LEMMA 3.3.3 

sup {V:'(t) - [Vn(t){-Q(X(t)) + x1(t-c)Q'(X(t))} 
t;?:c 

= 0(1) , a.s. as n ➔ oo 

PROOr. In view of (3.1.34) (3.2.2) and (3.2.4), we have with 

probability 1, uniformly in t;?: c, 

v•'(t) = n112(-(X (t) - X(t)) + Yn(t-c) - Y(t-c))Q(X(t)) 
n n 

(3.3.6) 

+ n1/ 2(1 - X (t) + Y (t-c))(Q(X (t)) - Q(X(t))) 
n n n 

+ (1 - X (t) + Y (t-c))Q'(X(t))V (t) + 0(1) 
n n n 

+ (1 - X(t) + Y(t-c))Q'(X(t))V (t) + o(l) 
n 

as n ➔ oo 

D 

LEMMA 3.3.4 The sequence 

C[O,oo) a.s. 

V 
n 

is tight and every weak limit point is in 

PROOF. In view of Lemma 3.3.1, we only have to show that 
• and that every weak limit point of Vn is in C[0, 00 ) a.s. 

and the boundedness of Q' it follows that 

sup 1v· 1 (t)I ~ A{sup IVn(t)I + sup IUn(t)I I 
t;?:c n t;?:c t;?:c 
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for some positive constant A. Therefore, we see from THEOREM 3.2.1 and 

COROLLARY 3.1.3 that positive A and a exist such that 

Hence, for £ > 0 

• • P (sup{ IVn(t) - Vn(s)I 

• 11 
:5 p (sup IV '(t)I 2: - :5 

t2:c n 6 

C :5 S < t 

Aii 2 

2 = £ 

ae11 

A 
2 aex 

, It - sl :5 6 l 2: 11) 

• In view of POLLARD (1984), p.131 , this ensures that Vn is tight in 

D[O,oo) with respect to the Skorohod metric. It also implies, however, that 
• Vn is tight in C[0, 00 ) with respect to the supremum norm on bounded 

intervals (cf. WHITT (1970)). The standard subsequence argument shows that 
• every weak limit point of V 
n 

is in C[ O,oo) a.s. 

D 

Suppose that V and V are weak limit points of Vn Assuming our 

probability space to be sufficiently rich, LEMMAS 3.3.2 , 3.3.3 and a 
• Skorohod construction allow us to redefine Vn Vn, Un V, V, W0 

and w1 such that for some subsequences [nk) and {nk) , and all t, 

(3.3. 7) 

V(t) V(t) 

• lim (Vn(t) - Vn(t)) = W0(X(t)) 
n-+oo 

X(t) 

lim (Un(t) - 2P(X(t))Vn(t)) = W1(2J P(s)(l - P(s))ds) 

0 
n-+oo 

t 

lim (v:(t) - J [Vn(s){-Q(X(s)) + X~(s-c)Q'(X(s))l 
n-+oo 

C 
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with probability one. Here we have used the continuity of the sample paths 

of W0 , W1 , 

convergence of 

V (cf. LEMMA 3.3.4) to conclude that almost sure 
• V and (Vn - Vn) in the Skorohod metric ensures 

nk 
almost sure convergence in the supremum metric on finite intervals, and 

hence for all t a.s. Hence 

• V(t) = w0(X(t)) + lim V (t) 
k➔oo nk 

t 

= w0(X(t)) + f V(s)[-Q(X(s)) + xl(s-c)Q'(X(s))J 

C 

t X(s-c) 

+ f [W1c2J P(u)(l - P(u))du) + 2P(X(s-c))V(s-c)]Q(X(s))ds 

C 0 

with probability one, and the same holds with nk replaced by nk and V 

replaced by V throughout. Here the integrals are defined to be zero for 

0 ~ t < C • 

* Consider F [O,oo) X D[O,oo) ➔ IR defined by 

X(t-c) 

F•(t,v) = w1czJ P(s)(l - P(s))ds)Q(X(t)) 

C 

(3.3.8) + v(t)[-Q(X(t) + X~(t-c)Q'(X(t))J 

+ 2v(t-c)P(X(t-c))Q(X(t)) 

and the system 

(3.3.9) v(t) 

t 

{ W0(X(t)) +: F'(,,v)d, t 2: C 

t < C 

Then V and V are solutions of (3.3.9) almost surely. Since for all 

t ' P-almost every realization of and 
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X(t) 

w1c2J P(s)(l - P(s))ds) are bounded. Therefore, because of the boundedness 

0 
of X, P, P, Q and Q' , and the continuity of the sample paths of 

w0 and w1 , the system (3.3.9) satisfies the conditions of LEMMA A2.2 

in Appendix A2 . Hence, with probability 1 , (3.3.9) has a unique 

solution on [O,oo) , so 
V that Vn ➔ V, where V 

w1 are independent. 

that V = V a.s. Since Vn is tight, it follows 

is the unique solution of ( 3. 3. 9) and w0 and 

We finally remark that V is a Gaussian process. According to 

the proof of LEMMA A2.2 in Appendix A2, we have 

where 

lim V 
n 

n➔oo 

V a.s. 

t 

vn+l(t) = w0(X(t)) + f F*cs,vn)ds a.s. 

C 

By induction vn is a Gaussian process for every n = 1,2, ... , and as a 

result this is also true for V. Obviously, EV= 0 but its covariance 

structure is not immediately clear. We thus have proved 

THEOREM 3. 3. 1 Let and w1 be independent standard Wiener processes, 

(3. 3. 8) , and let V be the unique solution of • let F 

(3.3.9) 

be defined by 

Then V is a Gaussian process with mean zero and 

V n 
as 

where the convergence is in the sense of the Skorohod metric. 
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3.4. THE DURATION OF N 
n 

Now we shall investigate what can be said about the duration 

the process 

(3.4.1) 

N . Let 
n 

(3.4.2) xc~) - XCtCt)) = £ 

Then the following holds. 

and t(E) be defined by 

tnX (T )-[tnl,n 
n n 

T 
n 

of 

LEMMA 3.4.1 There exist positive constants 

n = 1,2, ... and £ > 0, 

A and a such that for 

• • 2 
P (t (E) > t(t/2)) S Aexp{-a& n} 

n 

and hence tn(E) = 0(1) a.s. 

PROOF. We have 

s 2sup IXn(t) - X(t)I + IX(~) - X(t(t/2))1 
t~O 

and in view of THEOREM 3.1.2 , 

P (t (t) > t(t/2)) SP (X (T) - X (t(E/2)) > E) n n n n 

2 SP (sup IXn(t) - X(t)I > t/4) S Aexp{-aE n/16} 
t~O 

D 

However, the total duration of the process 

find bounds for Tn, we distinguish two cases. 

N 
n 

is not bounded. To 
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3.4.1. THE CASE X~(oo) F O OR q F 0 

Recall that X~(oo) = 1 - X(oo) + Y(oo) q = Q(X(oo)) . 

LEMMA 3.4.2 If X~( 00 ) F O or q F O, then there exist positive constants 

such that for all t > C 

(3.4.3) 

PROOF. First, note that the left-hand inequality in (3.4.3) is already 

proved in Section 3.1 (cf. (3.1.15) ) . Next, to prove the right-hand 

cases. inequality, we distinguish two 
0 (i) XA(oo) F O . In this case 

that X'(t) = X~(t-c)Q(X(t)) 

X( 00 ) = bs . It follows from LEMMA 3.1.4 

and both its factors are continuous and 

positive on (c, 00 ) • Thus there exists n > 0 such that for all t ~ c 

(3.4.4) 

and hence X'(t) ~ nQ(X(t)) . Since 

Q'(X(t)) S Q'(O) < 0 , 

we have for t ~ c, 

X'(t) ~ n(Q(X(t)) - Q(X(oo))) ~ -nQ'(O)(X(oo) - X(t)) 

so that 

, Jt X'(s) ds --nQ' (O)(t - c) .,, 
c X(oo) - X(s) 

X( .. ) 
log[----J 

X(oo) - X(t) 

or 

X(oo) - X(t) $ X( 00 )exp{nQ'(O)(t - c)J 

Since for t < c, 

(ii) q Io. This 

2P(X(oo)) = X(oo) - 1 

X(t) = X(c) = 0, this inequality holds for t ~ 0. 

implies that X( 00 ) < bs and by (3.1.14) , 

and for t ~ c 
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X( .. ) 

(3.4.5) X'(t) = (X(oo) - X(t) - 2J P(u)du]QCX(t)) 

X(t-c) 

Also X(oo) - 1 = 2P(X(oo)) > 2pX(oo) 

0 < 6 < l and t > 2c exist such that 2 0 -

(3.4.6) P(X(t)) < l - 6 
2 

Hence for s ~ t 0 + c 

ensures that P < l 
2 ' 

X'(s) > [X(oo) - X(s) - (1 - 26)(X(oo) - X(s-c))Jq 

and for t ~ t 0 , we may integrate over (t + c,t + 2c) to obtain 

so that 

X(t+2c) - X(t+c) > qc[X(oo) - X(t+2c) - (1 - 26)(X( 00 ) - X(t))] 

Replacing the left-hand side by X(t+2c) - X(t) , we find 

[1 + qc(l - 26)J(X(t+2c) - X(t)) > 26qc(X( 00 ) - X(t+2c)) 

or 

X(oo) - X(t) 26qc 

------ > 1 + ------

X(oo) - X(t+2c) 1 + qc(l - 26) 

Zee 
e 

for an appropriately chosen £ > 0. But this means for k = 1,2, ... , and 

t 0 + 2kc ~ t < t 0 + 2(k + l)c, 

X(oo) - X(t) 

which completes the proof. 

D 

Having proved LEMMA 3. 4. 2 , we can say more about the duration Tn 

of Nn. Indeed, since IX(oo) - X(Tn)I = O((n- 1logn)l/Z) a.s. , it follows 

that for P-almost all w, for some constant C > 0 and n > n0(w) , 
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and hence there exists a positive constant c0 such that 

(3.4. 7) 

To establish an upper bound . for 

cases. 

Tn, we again distinguish two 

First, if q = 0 and 0 
XA( 00 ) > 0 , then we already concluded (see 

(3.4.4) ) that for some n > O , 

0 
inf XA(t-c) <?: n 
t<?:c 

Hence in view of (3.2.2) and (3.2.4) , we have with probability 1 for 

sufficiently large n, 

inf XAO (t-c) > 1n 
t<?:c ,n 2 

Therefore X (oo) = n-ln 
n s,n 

(3.4.1) . Then (3.1.6) and 

as defined in 

(3.1.33) imply that for sufficiently large 

n ' Tn - ,:n(E) is stochastically smaller than the sum s 
independent exponential random variables with means 

j = 1,2, ... ,(En) . where A = db (1 + as)/o We have 
s 

EetS 
[rn] j/A I rnJ j 

n ~ 2 n --~ 2£n for t 
j=l j/A - t j=2 j - 1 

and hence for t = (2A)-l and x = 6Alogn 
' 

EetS 
-2 p (T - ,:n ( £) ,?: x) ~ p (S ,?: x) ~ ~ 2£n 

n tx e 

The Borel-Cantelli lemma and LEMMA 3.4.1 yield 

(3.4.8) if q 0 and x1( 00 ) > 0, then Tn = O(logn) a.s. 

~ 

of [e:n] 

A/ j ' 

(2A)-l 

Next, suppose q > 0 , Consider a process which starts 
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with a single A-cell. Cells divide independently after an exponential 
-1 waiting time with mean q plus a constant time c. With each division 

cells independently become A-cells 1 with probability p E [0,2) . Let 

T(c) denote the time until the final division. 

LEMMA 3.4.3 For every q > 0, c > 0 and O ~ p <½,there exists £ > 0 

such that 

(3.4.9) for all t > 2c 

PROOF. T(c) is stochastically smaller than T(O) + (N + l)c, where T(O) 

is the time until the final division for c = 0 , and N is the random 

number of generations the initial cell will ultimately produce, which is 

independent of c. Let Gj be the number of cells in the j-th generation, 

j = 0,1,2,... Then P (G0 = 1) = 1 and the Markov inequality yields 

Hence 

(3.4.10) P (N > k) = P (Gk~ 1) ~ (2p)k 

x>O, j=l,2, .... 

-1 
e-klog(2p) k = 1,2, .... 

Next, let M0(t) denote the number of A-cells at time t for c = 0 . 

Then, for h ~ 0, 

2 2 
{p - (1 - p) Jqk + o(l) 

= (2p - l)qk + o(l) . 

Hence, if m(t) 

m'(t) = (2p - l)qm(t) 

or 
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-(1 - 2p)qt 
m(t) = m(O)e 

Since m(O) = 1, the Markov inequality gives 

(3.4.11) P (T(O) > t) = P (M0(t) ~ 1) ~ exp{-(1 - 2p)qt} 

Now for t > 2c , (3.4.10) and (3.4.11) imply 

P (T(c) ~ t) ~ P (T(O) + (N + l)c ~ t) = P (T(O) +Ne~ t - c) 

~ 2exp[-£(t - 2c)J 

D 

0 Let us return to the original problem. Since XA(~) = 0, there exists 
1 

such that p0 = P(Xn(t0)) < 2 for n ~ n(w) . Then Tn - t 0 is 

stochastically smaller than the maximum of n(bs + 1) independent copies 

of T(c) with p = p0 . It follows from LEMMA 3.4.3 that there exists 

£ > 0 so that for t > 2c, 

so 

The Borel-Cantell! lemma yields 

(3.4.12) if q > 0 and X~(~) 0, then T = O(logn) a.s. 
n 
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0 3.4.2. THE CASE XA( 00 ) = 0 AND q = 0 

0 LEMMA 3.4.4 If XA(oo) = 0 and q = 0, then there exist positive constants 

c0 , c1 , &0 , &1 such that for all t , 

0 1 PROOF. We have XA(oo) = 1 - X(oo) + Y( 00 ) = 0 , and hence p = P(X(oo)) < 2 
1 and (3.4.5) holds. Choose O < 6 < 2 and t 0 ~ c so that for t ~ t 0 , 

P(X(t)) < ½ - 6 

X( 00 ) - X(t) < [c(l - 26) IQ' (O) 1]-l 

Since X~(t) > O and Q(X(t)) = Q(X(t)) - Q(X(oo)) ~ IQ' (0) f (X( 00 ) - X(t)) 

for all t > c, (3.4.5) ensures that for t ~ t 0 + c , 

X(oo) 

X' (t) ~ [X( 00 ) - X(t) - 2 f P(u)du] IQ' (O) I (X( 00 ) - X(t)) 

X(t-c) 

~ [X( 00 ) - X(t) - (1 - 26)(X( 00 ) - X(t-c))] IQ' (0) I (X( 00 ) - X(t)) 

It follows that for t ~ t 0 and t + c ~ s ~ t + 2c, 

X'(s) X(t+2c) - X(t) 
2 ~ IQ'(O)f[26 - (1- 2i'l) ] 

(X(oo) - X(s)) X(oo) - X(t+2c) 

and integrating over (t + c,t + 2c) , we obtain 

(X(oo) - X(t+2c))-l - (X(oo) - X(t))-l 

> (X( 00 ) - X(t+2c))-l - (X(oo) - X(t+c))-l 

X(t+2c) - X(t) 
~ cfQ'(O)f[26 - (1- 26) 

(X(oo) - X(t+2c))(X(oo) - X(t)) 

1 

c(l - 26)1Q'(O)f ] 
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or 

(X(~) - X(t+2c))-l - (X(~) - X(t))-l > 6clQ'(O)I 

for t ~ t 0 . If t 0 + 2kc ~ t ~ t 0 + 2(k + l)c for k 1, 2, ... , then 

which proves the right-hand inequality in (3.4.13) for t ~ 2t0 , and by 

an appropriate choice of Cl ' 
for all t 

To prove the left-hand inequality we merely remark that 

Q(X(t)) ~ (dab )- 1(X(~) - X(t)) and hence for all t 
' s s 

x' (t) 

It follows that for all t 
' 

-1 -1 (X(oo) - X(t)) - X(~) 

which implies the inequality we need. 

D 

From (3.2.2) and LEMMA 3.4.4 it now follows that, if X~( 00 ) 0 

and q = 0, then for some C > 0 and n > n(w) , 

This means: there exists C > 0 such that for n > n(w) , 

(3.4.14) a.s. 

To find an upper bound for T 
n 

let O < E < 1 . The last [rn] 

stimuli occur at for j=l,2, ... ,[En]. The corresponding 

Q's at these times are at least as large as 
-1 -1 

j(dn) (asbs + E) for 

j = 1,2, ... ,(En] . Since at least one A-cell is waiting for a stimulus just 

before a stimulus occurs, the corresponding rates exceed 
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(3.4.15) (An)-l, -1 
2(An) , 

-1 
[rn)(An) , 

respectively, where A = d(asbs + 1) . We remark that it may happen that 

after the previous stimulus there were no waiting A-cells present for some 

time. This time period is at most of length c Hence Tn - tn(E) is 

stochastically smaller than Enc plus the sum S of [ En] independent 

exponential random variables with means An/j j = 1,2, ... , [En) . We have 

Eets 
[rn] j/An [rn) j 

=n s 2 TT s 2En for t S (2An)-l 
j=l j/An - t j=2 j - 1 

Therefore, we get for t = (2An)-l 
' 

P (Tn - Tn(E) ~Enc+ 6Anlogn) SP (S ~ 6Anlogn) 

tS -2 S exp{-6tAnlognjEe S 2En 

Invoking the Borel-Cantelli lemma we get 

(3.4.16) T 
n 

O(nlogn) a.s. 

Note that the quantities in (3.4.15) possibly crudely underestimate the 

actual rates, since the number of waiting A-cells may vary from 1 to 

En + 0( (nlogn) 112 ) . The gap between this upper bound and the lower bound 

in (3.4.14) probably is the result of this underestimation. We conjecture 

that (3.4.16) can be sharpened. 
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3.4.3. SUMMARY 

Summarizing the results of this section, we have for the total 

duration Tn of the process 

THEOREM 3.4.1 

N 
n 

(i) If X~(~) # 0 or q # 0, then 

-1 -1 
0 <a~ liminf Tn(logn) ~ limsup Tn(logn) ~A<~ a.s. 

(ii) If and q = 0 , then 

a.s. 

-1 
limsup Tn(nlogn) ~ B < ~ a.s. 

Here a, A, b and B are constants. 

3.5. GRAPHICAL COMPARISON OF X and X 
n 

□ 

In Chapter 1 we remarked that plant cell population growth is 

usually described by a deterministic model given by a set of differential 

equations. Such a deterministic model obeying the same mechanics as our 

stochastic model, would be given by 

s' (t) 

(3.5.1) 
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where 

k and 
s 

(3.5.2) 

where b 
s 

S(t) H(t) 
q(t) p(t) 

d(S(t) + N(O)ks) H(t) + N(O)kh 

kh are constants, and the initial conditions are given by 

{ 
0 t e [-c,O) 

S(t) 

N(O)b y-l t 0 
s s 

0 t e f-c,O) 

ll(t) = { 
-1 

0 N(O)bhyh t 

N~(t) NA(t) N(t) N(O) t € [ -c, OJ 

bh, Ys , Yh are constants. Then obviously for t?: 0, 

S'(t-c) H' (t) 

Using these relations it is not hard to see that the relative growth 

X(t) = N(0)- 1(N(t) - N(O)) , t?: 0 satisfies (3.1.13) Hence, (3.5.1) 

together with (3.5.2) describe the deterministic model which corresponds 

to the limit as n ➔ ~ of the stochastic model introduced in Chapter 2: 

here S corresponds with Sn, etc. 

To get an idea what the predicted cell number looks like for the two 

models, we have simulated the stochastic growth curve and computed the 

solution of (3.1.13) numerically for several sets of parameter values. In 

Fig. 3.1 four computer simulations of the stochastic process Nn(t) of 

our model are shown. The parameter values were taken the same for all 

curves. In Fig. 3.2 three pairs of curves are shown. For the two curves 

of a pair the same parameter values were taken. The dotted curve of a pair 

was obtained by computer simulation of the stochastic growth process; the 

solid one is a numerically computed solution of (3.1.13). In all cases 

the initial cell number was 100 . A detailed description of the simulation 

and computing techniques can be found in VAL (1987). 
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Fig.3.1. Four simulations of the stochastic growth process \ Ct) 

with the same parameter values: nmlOO, c·S, d=l, as·0.01, 

bs:JQ, ah·0.125, bh·4. 
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a. n=]OO, c-2.4, d=0.6, 

as =0.0005, b5 =20, ah =O.J, 

bh =JO. Note that X(oo)= 
-1 

1+2bh-2ahbh!og(J+ah >. 

b. n=JOO, c=5, d=J. 

a5=0.0l, bs=lO, ah=2.0, 

bh =4. Note that P(O)<J/2 

and X(oo)<bh. 

C. n=JOO, c=2, 

as"0.05, bs=2, 

bh =4. Note that 

d=l, 

ah =0.025, 

X(oo)=b . 
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CHAPTER 4 

AN ALTERNATIVE APPROACH 

In this chapter we show that some of the results derived in Chapter 3 

can be arrived at by using known theory for population processes. The 

merits of both approaches are compared. The method applied in this chapter 

is due to Kurtz and can be found in KURTZ (1981; 1983) or ETHIER & KURTZ 

(1986). 

The basic idea of this method is to represent counting processes 

having complicated dependence properties in terms of counting processes 

having strong independence properties. This results in a law of large 

numbers (e.g. Theorem 2.1 in KURTZ (1983)) and a central limit theorem 

(e.g. Theorem 2.2 in KURTZ (1983)) for the processes with dependence 

structure. To prove the latter, Gaussian approximation results for the 

processes with the independence properties are used. 

N 
n 

To apply this theory directly to our counting process as defined 

in Chapter 2 , we need an explicit expression in terms of {Nn(s)Js~t for 

its unconditional intensity process An(t) as defined in (2. 2.14) . 

However, such an expression is not available. To obtain it, one would have 

to compute the conditional expectation with 

conditional intensity process AZ,n(t) given 

respect to Z of the 
n 

{Nn(s)Js~t, but this would 

not yield a very manageable expression. In view of this, we could think of 

another approach by applying the theory to the bivariate process {Nn,Znl , 
Nn(t)-n 

where Zn(t) = I: Z. and use A (t) as the intensity of the first 
j=l J ,n z,n 

component. However, 

work. 

{Nn, Znl is not a counting process and this does not 

To overcome these problems, we construct a trivariate counting process 

N which is closely related to 
n 

simple expression in terms of 

Nn. For its intensity process we have a 

{Nn(s)Js~t. We apply Kurtz's theory to Nn 

and from the results obtained we derive analogous results for N 
n 
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4.1. CONVERGENCE 

Let NAA,n(t) , 

before or at time t 

NAB,n(t) and NBB,n(t) 

resulting in two A-cells, 

be the number of stimuli 

one A-cell and one B-cell 

and two B-cells, respectively. Let 

N (t) = NAA (t) + NAB (t) + NBB (t) n ,n ,n ,n 

denote the total number of stimuli at or before time t . Recall that the 

number of type-A cells waiting for a stimulus at time t is denoted by 
0 

NA (t) . Then, according to the definitions in Chapter 2 , for t ~ 0 , ,n 

Nn(t) = n + N (t-c)l[ )(t) n c,oo 
(4.1.1) 

NAO ( t) 
,n n - N (t) + (2NAA (t-c) + NAB (t-c))l[ )(t) n ,n ,n c, 00 

and for the number Zn(t) of newly born A-cells before or at time t , 

t ~ c, we have 

(4.1.2) 

Nn(t)-n 

I: z. 
j=l J ,n 

Let D 3[0, 00 ) denote the space of left-continuous functions with 
[R 

right-hand limits on 

scalar-valued functions 

>,. 1 (t,x) 
,n 

(4.1. 3) 

>,. 2 (t,x) ,n 

[O,oo) . Define for t ~ 0 

and A. (t,x) , 
1,n 

and x E D 3 [ 0, 00 ) , the 
[R 

i = 1,2,3 , by 

where 

and -

T y denotes the transpose of 
3 

yE[R' 
T a=(l,1,1) 

T 
b = (2,1,0) 

68 



P (x) = -------- 1 (x) 
n -1 -1 

bh + 1\bh - x + n (O,n nh,n) 

b - X 
s 

Qn(x) = ------ 1 _1 (x) 

d(bs + asbs - x) (O,n ns,n) 

Let F= be the a-algebra t,n generated by {N (s), s S tJ , where 
n 

N = {NAA , NAB , NBB J . Then n ,n ,n ,n N is a trivariate counting process 
n 

with respect to {F=t,n )t~O. It is not hard to see that for i = 1,2,3 , 

the intensity process of the i-th component process is given by the 

left-continuous version of nXi (t,X) , where ,n n 

x Ct) 
n 

- - - T = (X1 (t),X2 (t),X3 (t)) 
,n ,n ,n 

1 T 
= -(NAA (t),NAB (t),NBB (t)) n ,n ,n ,n 

Following KURTZ (1983), we can represent x Ct) 
n 

t t 

as the solution of 

x Ct) = lcrr cnf n n 1 x1 ,n(s,Xn)ds),ll2 (nf 

0 

A2 (s,X )ds), ,n n 
0 

(4.1.4) 

• T X3 (s,X )ds)) ,n n 

where rr 1 , ll2 and rr3 
Unfortunately, Theorem 2.1 

are independent standard Poisson processes. 

in KURTZ (1983) on the a.s. convergence of 

Xi , i = 1,2,3 , depends on n ,n 

x 
n 

cannot be immediately applied, since 

Define X1.(t,x) as X. (t,x) with 
1,n 

P n and Qn replaced by P and Q 

(cf. (3.1.6) ), and note that 

sup IP (x) - P(x)I = O(n- 1) 
x~O n 

- -1 sup IQn(x) - Q(x)I = O(n ) 
x~O 

It follows that there exists a constant 
T x = (x1,x2 ,x3 ) e D 3[o,~) and t > o, 

[R 
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C > 0 such that for 



(4. 1.5) 
3 -1 

sup I).. (s,x) - >.,(s,x) I S C(l + 3 I: sup lx 1.(s) I )n 
sSt i,n 1 i=l sSt 

and this will enable us to approximate 

Kurtz' s proof. 

). 
i,n by and carry through 

Define F 

(4. 1.6) F(t,x) 

10,~) X D 310,~) ➔ [R 3 by 
[R 

Obviously, there exist positive constants c1 , c2 and c3 such that for 

all x and y in D 310,~) and t > 0, 
[R 

(4.1.7) 

(4.1.8) 

sup IF(s,x)I s c1 + c2 sup lx(s)I 
sSt sSt 

IF(t,x) - F(t,y)I S c3 sup lx(s) - y(s)I 
sSt 

max !ail . Cqnsider the equation 
i 

(4.1. 9) 

t 

x(t) = f F(s,x)ds 

0 

The inequalities (4.1.7) and LEMMA 3. 1. 4 ensure the 

existence of a unique solution of (4.1. 9) . Now the 

analogue of Theorem 2.1 in KURTZ (1983) can be proved. 

THEOREM 4.1.1 Suppose X n = 1,2, ... , satisfies (4.1.4) and X is 
n 

the solution of (4.1.9) Then for all M ~ 0 , 

(4.1.10) lim sup IX (t) - X(t)I 
n➔~ tSM n 

PROOF. We have 

x Ct) - X(t) = 
n 

where 

O a. s. 

t 

+f (F (s,x) - F(s,X))ds 
n n 

0 
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t t t 

x Ct) n cf Al,n(s,Xn)ds,f A2 (s,X )ds,f ,n n 
0 0 0 

t 

= cf (A 1 (s,X ) -,n n 

t 

A1(s,Xn))ds,J 

0 0 

0 

Following the argument in KURTZ (1983), it only remains to prove 

lim sup I nn(t) I 
n-+oo t:SM 

0 a.s. 

But this follows immediately 

i = 1,2,3 A. (t,X) 

from 

0 

(4. 1.5) 

if 

and the fact that, for 
T· a Xn(t) > bs , so that 

3 
1,n n 

E sup Ix. Cs) I :S b 
i=l s:St 1,n s 

D 

From (4.1.1) and (4.1.2) we see that for t ~ c , 

X (t) 
n 

where Xn and Yn are as defined in Chapter 3 . Hence the following 

corollary is obvious. 

COROLLARY 4.1.2 For t ~ 0, let X and Y be defined by 

(4.1.11) X(t) T· 1 a X(t-c) [ ) c,oo 

Then for each M ~ 0, 

lim sup IXn(t) - X(t)l 
n-+oo t:SM 

lim sup IYn(t) - Y(t)l 
n-+oo t:SM 

Y(t) T· 1 b X(t-c) [ ) c,oo 

0 a.s. 

0 a.s. 
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Writing out the expressions for X(t) and Y(t) we get 

t-c 

X(t) I • O • T· = xA(s,X)Q(a X(s))ds 

0 

t-c 

= f {l 
T- T· T· - a X(s) + b X(s-c)}Q(a X(s))ds 

0 

t-c 

= f {l - X(s+c) + Y(s)}Q(X(s+c))ds 

0 

t 

= f {l - X(s) + Y(s-c)}Q(X(s))ds 

C 

and similarly, 

t 

Y(t) = 2J P(X(s))X'(s)ds 

C 

which are the same expressions for X(t) and Y(t) as we had in 

Chapter 3. Note that convergence is proved here only on bounded intervals 

as in THEOREM 3.1.l . 

4.2. THE CENTRAL LIMIT THEOREM 

Following KURTZ (1983) again, the central limit theorem for the 

deviation of Xn from X can be derived. Here too we have to modify the 

theory slightly to supply our needs. 
, 3 3 3 Define F : [ O, .. ) x IR x IR ➔ IR by 

(4.2.1) 
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By (4.1.3) and (4.1.6) we have 

(4.2.2) F(t,x) = F(t,x(t),x(t-c)) 

Let 

(4.2.3) 

where 

and be the 3 X 3 matrix valued functions with 
az 

and 
aF aFi 

( - ) - - . We find for j = 
az ij - az. 

j 

1,2,3 , 

T 2 T T T l -P(ay) Q(ay) + (1 - ay + bz [ )(t)} c,oo 

aF3 
- (t,y,z) = 
By. 

J 

T 2 T +(1-P(ay))Q'(ay)), 

-8hbh 
p' (x) = l[O,bh](x) 2 

(bh + 8hbh - x) 

-ab s s 
Q' (x) = 1(0,bs](x) 2 d(b5 +ab - x) s s 

73 



ar 
Also, -(t,y,z) equals 

ilz 

P(a1y}2 

(4.2.4) [ 

2P(a1y}2 

4P(a1y)(l - P(a1y)) 

2(1 - P(a1y)) 2 

2P(a1y)(l - P(a1y)) 

(1 - P(a1y)) 2 

Let K : [0,oo) x [0, 00 ) x DIR3[0, 00 ) ➔ M3x3 , where M3x3 is the space 

of real valued 3 x 3-matrices, be defined by 

ar ar 
(4.2.5) K(t,u,x) = ily(u,x(u),x(u-c)) + ilz(u+c,x(u+c),x(u))•l[O,t-c](u) 

Since we use the Skorohod topology on D 3[0,oo) , we have for 
IR 

Ac D 3[0,oo), A compact and t > 0 (cf. ETHIER & KURTZ (1986), p.122), 
IR 

(4.2.6) sup sup lv(s)I < oo 
VEA sSt 

Hence, the following holds. 

LEMMA 4.2.1 For t > 0, x ED 3[0,oo) and compact Ac D 3[0,oo) , 
IR IR 

(4.2.7) 

lim sup sup 
n➔oo veA sSt 

s 

s 

n (F(u,x+n v) J 1/2 • -1/2 

0 

-J K(s,u,x)v(u)dul = 0 

0 

- F(u,x))du 

PROOF. By (4.2.1) and (3.1.34) all second order partial derivatives of 

F are bounded, and hence by (4.2.2) there exists C > 0 such that for 

all t > 0 and x, v E D 3[0,oo) , 
IR 
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aF 
sup IF(u,x + n- 112v) - F(u,x) - n-l/ 2 -(u,x(u),x(u-c))v(u) 
~t ay 

-l/2aF -1 2 
- n -(u,x(u),x(u-c))v(u-c)I ~ Cn sup lv(u)I 

az ~t 

Integrating over u e ( 0, s) for O < s ~ t , changing variables in the 

aF 
third integral and recalling that -(u,y,z) = 0 for u < c by (4.2.4) , 

az 
we obtain 

sup 
s~t 

s 

J {F(u,x + n- 112v) - F(u,x)}du 

0 

s aF J -(u,x(u),x(u-c))v(u)du 
ay 

0 

s-c aF 
-(u+c,x(u+c),x(u))v(u)}dul 
az 

~ Cn- 1t sup lv(s)l 2 

s~t 

Because the second term on the right in 

u > t - c, we see that 

(4.2.5) 

sup sup 
veA s~t 

-J 
0 

s 

s 

J n1/ 2(F(u,x+n-l/ 2v) - F(u,x))du 

0 

K(s,u,x)v(u)dui ~ Cn- 1t sup sup lv(s)l 2 
veA s~t 

and application of (4.2.6) completes the proof. 
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Let for t;?: 0, 

v (t) = n112cx (t) - X(t)) 
n n 

(4.2.8) 

i = 1,2,3 , 

with Ili as in Section 4.1. Then we have 

LEMMA 4.2.2 For every t:.?: 0, 

s s 

sup IVn(s) - [(w1,n<f >. 1(u,Xn)du),w2,n<f >. 2(u,Xn)du), 
sSt O o 

(4.2.9) 

PROOF. Let IT be a unit Poisson process. Then it follows from the 

monotonicity of IT that for all positive constants A and a, 

P ( sup IIl(nu+h) - Il(nu)I :.?: 6logn) 
OSuSA 
OShSa 

s P ( max (IIl((k+l)a) - Il(ka)I :.?: 3logn) 

OSkS[a- 1An]+l 

[a-1An]+l 
S I: P (Il((k+l)a) - Il(ka):.?: 3logn) 

k=O 

= ([a1 An]+ l)P (Il(a):.?: 3logn) 

S (a- 1An + l)exp{2a - 3logn} S Bn- 2 

for some positive constant B . By definitions 

(4.1.9) and (4.2.8) , we have 
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3 

s s 

IVn(s) - [cw1,ncJ X1(u,Xn)du),W2,nCJ X2(u,Xn)du), 
0 0 

- F(u,X))du] I 

s s 

= ln-l/2 cn1cnJ x1 ,n(u,Xn)du),Il2(nJ X2 (u,X )du), ,n n 
0 0 

s 

n-l/2cn 1cnJ X1(u,Xn)du), 

0 

s s 

X2(u,Xn)du),Il3CnJ X3(u,Xn)du))TI 

0 

Because I: X Sb (cf. the proof of THEOREM 4.1.1 ), 
i=l i,n s 

s 

sup nJxi,n(u,Xn)du S Ain , 
sSt O 

and in view of (4.1.5) 

s 

s~i nJ1xi,n(u,Xn) - Xi(u,Xn)ldu s ai 
5_ 0 

for i = 1,2,3 and positive constants A1 and a1 . The lemma now follows 

from the Borel-Cantell! lemma. 

□ 

Having proved LEMMAS 4.2.1 and 4.2.2 , we have verified the 

conditions of Kurtz's central limit theorem (KURTZ, 1983), which in our 

case yields the following. 
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THEOREM 4.2.1 Let V be defined as in 
n 

(4.2.8) , then 

where V is the Gaussian process satisfying 

(4.2.10) 

t t 

V(t) cw1cf A1(s,X)ds),w2cf A2(s,X)ds), 

0 0 

t 

+ f K(t,s,X)V(s)ds 

0 

and W1 , W2 and W3 are independent standard Wiener processes. 

As in 

□ 

Section 4.1 we can use this to obtain similar results for V and 
T- T· n 

remembering that X (t) = a X (t-c) , X(t) = a X(t-c) , 
T· n n 

and Y(t) = b X(t-c) , we immediately have the following 

corollary. 

COROLLARY 4.2.1 For t ~ c, let 

(4. 2.11) T· V(t) = a V(t-c) U(t) T-b V(t-c) 

Then 

V (t) ~ V(t) n 
U (t) ~ U(t) 

n 

and V and U are Gaussian processes with mean zero. 

D 

To obtain THEOREM 3. 3. 1 by the methods employed in the present 

chapter, it remains to be shown that V satisfies (3.3.8) and (3.3.9) 

for independent standard Wiener processes w0 and W 1 . Straightforward 

calculation shows that (4.2.3) - (4.2.5) and THEOREM 4.2.1 imply that 

V satisfies 
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3 t-c t-c 

V(t) = I: Wi(J X/s,X)ds) + f [{-Q(aTX(s)) 
i=l O 0 

(4.2.12) 
• O • , T· T· T· T· ] + xA(s,X)Q (a X(s))Ja V(s) + Q(a X(s))b V(s-c) ds 

Define a Gaussian process w0 by 

(4.2.13) 

X(t) X(t) 

W0(X(t)) = w1cf P(s) 2ds) + w2cf 2P(s)(l - P(s))ds) 

0 0 

X(t) 

+ w3cf (1 - P(s)) 2ds) 

0 

Since W1 , W2 and w3 are independent standard Wiener processes, w0 

is also a standard Wiener process. Hence, after a change of integration 

variables and in view of (4.1.3) , (4.1.11) and (4.2.11) , (4.2.12) 

reduces to 

(4.2.14) 

Similarly, 

(4.2.15) 

t 

V(t) = W0(X(t)) + f V(s){-Q(X(s)) + X~(s-c)Q'(X(s))}ds 

C 

t 

+ f Q(X(s))U(s-c)ds 

C 

t-c t-c t~c 

U(t) = 2w1cf X1(s,X)ds) + w2cf X2(s,X)ds) + f [{-2P(aTX(s)) 

0 0 0 

T· -o • I T· T· T· • Q(a X(s)) + 2xA(s,X)(P a X(s))Q(a X(s)) + P(a X(s)) 

, T• T· T• T· T· ] • Q (a X(s)))}a V(s) + 2P(a X(s))Q(a X(s))b V(s-c) ds 

Changing the integration variables in (4.2.15) and using (4.2.12) and 

(4.2.13) , we obtain for t ~ c, 
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(4.2.16) 

X(t) X(t) 

U(t) = 2W1(f P(s) 2ds) 

0 

+ Wif 2P(s)( 1 

0 

- P(s))ds) 

t 

+ f (2P' (X(s))X' (s))V(s) + 2P(X(s)){-Q(X(s)) 

C 

+ x1<s-c)Q'(X(s))JV(s) + 2P(X(s))Q(X(s))U(s-c)]ds 

X(t) 

= 2W1 <f P(s>2ds) 

0 

X(t) 

+ w2cf 2P(s)(l 

0 

t t 

- P(s))ds) 

+ f [2P(X(s))] 'V(s)ds + f 2P(X(s)) (V(s) - w0(X(s))] 'ds 

C 

X(t) 

= 2W1(f P(s>2ds) 

0 

t 

C 

X(t) 

+ w2cf 2P(s)(l 

0 

- P(s))ds) 

+ f 2P(X(s))dW0(X(s)) + 2P(X(t))V(t) 

C 

X(t) 

= W1(2f P(s)(l - P(s))ds) + 2P(X(t)V(t) 

0 

where W1 is easily seen to be a standard Wiener process which is 

independent of w0 . By (4.2.14) and (4.2.16), V satisfies (3.3.8) 

and (3.3.9) and we have reproved THEOREM 3.3.l 

4. 3. CONCLUSION 

In Chapters 3 and 4 we have outlined two different methods to 

approach the asymptotic theory for the process Nn . The approach in the 

present chapter is to consider a trivariate counting process for which the 

intensity process is easily available. Apart from a constant time shift, 

the process Nn is the sum of the components of this trivariate process 

and Nn inherits some of the asymptotic properties of this process. The. 

80 



approach adopted in Chapter 3 is to consider the process N n 
conditionally on the sequence Z = (Z 1 , z2 , ... 

n ,n ,n 
. The conditional 

intensity process of Nn has a structure very similar to the unconditional 

intensity of the trivariate process. 

The uniform convergence of X n to X 0n bounded intervals is shown 

here in essentially the 

convergence V RV 
n 

representation of V 

same manner as in Chapter 3 . The proof of the 

is also essentially the same. However, the 

in terms of two independent Wiener processes in 

(3.3.8) and (3.3.9) is almost impossible to guess without going into the 

special structure of the underlying processes as is done in LEMMA 3.3.2 

To obtain further asymptotic properties of Xn , as we have done in 

Chapter 3, the special character of the process must play a crucial role. 

The uniform convergence of X 
n 

to X on appears to depend heavily 

on the boundedness of X 
n 

and our investigation on the duration T 
n 

is 

very specific for the process we consider. 
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CHAPTER 5 

OTHER DISTRIBUTION RESULTS; A SECOND ORDER APPROXIMATION FOR THE 

UNCONDITIONAL INTENSITY PROCESS 

Because the distribution of V , which is the limit distribution of 

n112cx - X) (see Section 3. 3 ) , is rather complicated, some statistics 
n 

with a more tractable (limit) distribution are constructed in this chapter. 

5.1. CONDITIONAL DISTRIBUTION RESULTS 

When for each division the number of newly born A-cells is known, 

that is, conditionally on 

represented as (cf. (4.1.4) ) 

(S.1.1) - n ~ Il(A (t)) z,n 

Z = (Z1 , Z , ... ) , n ,n 2,n N n 
can be 

t ~ 0 

where rr is a unit Poisson process and denotes equality in 

distribution, Moreover, we already saw in Section 2. 2 that the process 
t 

Nn as defined in (2.2.13) is a Poisson process. In other words, 

(S.1.2) N (A -l(u)) - n ~ Il0(u) 
n z,n 0 S u S A (T ) z,n n 

where rr0 is a unit Poisson process stopped at the random time A (T ) 
z,n n 

and as a result we proved in LEMMA 3.3.1 , 

(S.1.3) n-l/Z(N (t) - n - A (t)) ~ w0(X(t)) as n ➔ ~ 
n z,n t ~ 0 

where w0 is a standard Wiener process, X the solution of (3.1.13) and 

the convergence is in the sense of the Skorohod metric. 

Also it was noted (Section 2.2 ) that given Z , the process rr0 
stops at the non-random level Nn(Tn) - n. Denote this level by 

K = K (Z ) and A (T ) by Un . Then (see SHORACK & WELLNER (1986), n n n z,n n 
p.335) 
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XE (0,1) 

where Fk is the empirical distribution function of k independent random 

variables which are uniformly distributed on (0,1) . It follows that 

(K - 1) 112 {(K - 1)- 1rr0(xU) - xJ - En(x) n n n XE (0,1) 

where E denotes the uniform empirical process. Since K is of exact 
n n 

order n, we thus have (BILLINGSLEY, 1968) for x e (0,1) and n ➔ ~, 

where B0 is a Brownian bridge and the convergence is again in the sense 

of the Skorohod metric. Translating these results back to the original 

process Nn, we get 

THEOREM 5.1.1 Conditionally on 

N (A -l(xA (T ))) 
n z,n z,n n 

(5.1.4) 

(5.1.5) 

Z , for n 

- n 

XE (0,1) and n-+oo, 

Note that (5.1. 3) and the convergence result in (5.1.5) 

□ 

in 

principle enable us to test the model of Chapter 2 Unfortunately, in 

practice Z and A are usually unknown. However, there obviously also 
n z,n 

exists a unit Poisson process fi such that (5.1.1) holds unconditionally 

with fi and the unconditional integrated intensity process A 
n 

instead of 

IT and 

W0 and 

A , respectively. Moreover, because the distributions of 
z,n 
B0 donotdependon Zn,theresults (5.1.2), (5.1.3) 

(S.1.5) also hold unconditionally, and there too A 
z,n 

the convergence in 

can be replaced by 

results 

An. Hence, if A 
n 

can be computed from the data, the 
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t ~ 0 

and 

(5.1.7) [
N (A -l(xA (T ))) - n l 

1 2 n n n n V 
(N (T) - n) / --------- - x ➔ B0(x) 

n n N (T) - n 
, XE (0,1) 

n n 

allow us to test our model. This is why in the following sections of this 

chapter we derive an approximation with remainder O(n112 ) for the 

unconditional intensity process 

an approximation up to O(n1/ 2 ) 

For convenience the index 

An, which yields, on bounded intervals, 

for A n 
n is omitted in the remainder of this 

chapter when no confusion is possible. 

5.2. NOTATION AND PRELIMINARY RESULTS 

Fix t 0 < ,. and choose t e [ c, t 0J 

X(oo) - X(t) ~ X(oo) - X(t0) > 0 . Suppose that 

N(t) - n = k , N(t-c) - n = l , 
(5.2.1) 

Define 

(5.2.2) m(s) 

N(t.-c) - n = l(j) 
J 

nXn(s-c) 

2n - N(s) + 2j;lpj 

so that N(t) > n 

j = 1,2, ... ,k 

(5.2.3) ai = a/t) = [ J m(s)- 1dN(s) - J Q(Xn(s))ds]l[ti+c,oo)(t) 
[ti+c,t] [ti+c,t] 

so that ai = 0 for i = l + 1,l + 2, .... We have the following result. 
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LEMMA 5.2.1 There exist positive numbers 6, B, ~ and x0 such that 

for n = 1, 2, . . . and O S x S x0 , 

(5.2.4) 

(5.2.5) 

P (inf Q(X (s)) S 
n sst0 

6) + P (inf m(s) S 6n) S ~exp{-~nl 
sst0 

PROOF. Since X(oo) - X(t0) > 0 , the first assertion follows from 

TIIEOREM 3.1.2, COROLLARY 3.1.3, (3.1.3) and LEMMA 3.1.4. 

For t e [c,t1 + c) , we have ai(t) = 0 Fix i and consider the 

processes m(s) and N(s) - n - Az(s) for ti + c S s S t S t 0 . Since 
-1 f(s) = m(s) and g(s) = N(s) - n - Az(s) are functions of bounded 

variation over finite intervals, right-continuous and with left-hand 

limits, we have 

and hence 

J f(s)dg(s) + 

[ti+c,t] 

J g(s_)df(s) 

[ti+c, t] 

I J f(s)dg(s) I s 
I ti+c, t] 

2 sup lf(s)g(s)I 
se[t1,t0] 

+ sup I g(s) I 
se[tl,tol 

J ldf(s)I 

[tl+c,tol 

Because of LEMMA 3.1.1 and (5.2.4) , 

for O S x S x1 . Here and in what follows 

positive numbers. Also because of (5.2.4) , 
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J ldf(s)I S 

[tl+c,tol 

(6n)- 2 J ldm(s)I 

[t 1+c,t0 ] 

with probability at least 

more, we find that 

2 1 - B2exp{-62x2 n} . Applying LEMMA 3.1.1 once 

for O S x S x3 

In view of (3.1.3) and (5.2.4) 

nXn(t-c) 

P (~~~ 1(2n - N(t) + j;lzj )-l - m(t)-ll ~ xn- 1) 

for OS x S x4 . Hence 

P (sup IQ(Xn(t)) - m(t)- 1Az(t)I ~ x(2t0)- 1) S B5exp{-65x2nJ 
t~O 

for OS x S x5 , and therefore (5.2.6) implies that with probability at 
2 

least 1 - Bexp{-6x nJ , for OS x S x0 , 

sup max la.(t)I S 
t 1+cStSt0 lSiSt 1 

J m(s)- 1Az(s)dsf + ½x 

[ti+c,t] 

sup max 
t 1+cStSt0 lSiSl 

J f(s)dg(s)I + ½x S x 

[ti+c,t] 
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Consider the system of linear equations in 61 , ... , 6t, 

t 
(5.2.7) 6i = ai(t) - 2j;l6jPj(l - Pj) J m(s)- 2dN(s)l[ti+c,•)(t) 

[(tivtj)+c,t] 

for i = 1,2, ... ,t. We shall show that this system has a unique solution 

6i = 6/t) , i = 1,2, ... ,t . For these 61 , ... , 6t , define 

(5.2.8) 

(5.2.9) 

(5.2.10) 

nXn(s-c) 

m(s) = 2n - N(s) + 2j;lPj(t) 

6i = 6i(t) = [ J m(s)- 1dN(s) - f Q(Xn(s))ds] 

[ti+c,t] [ti+c,t] 

i=l,2, ... ,t 

i = 1,2, . .. ,t 

LEMMA 5.2.2 The system of linear equations (5.2. 7) has a unique solution 

6i = 6/t) , i = 1,2, ... ,t . Moreover, there exist positive numbers B , 

6 and x0 such that for n = 1,2,... and O :S x :S x0 , 

2 (5.2.11) P ( sup max 16i(t)I ~ x) :S Bexp(-6x nj 
cStSto lSiSt 

(5.2.12) P ( sup max 
cStSt0 lSiSi,Pi>O 

(5.2.13) P ( sup max 
cStSt0 lSi:Si,Pi>O 

(5.2.14) P (inf m(s) S 6n) :S Bexp(-6n} 
sSt0 

(5.2.15) P ( sup max 16i(t)I ~ x) S Bexp{-6xn} 
c:St:St0 1:SiSi 
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PROOF. The system (5.2.7) may be written as 

(5.2.16) ( GIT + I) 13 = a 

where T 
13 

T a= (a1 , ... ,a.e.) ( 131, ... , 13.e.) 

cl CZ c3 C.e_ 111 0 0 

CZ C2 C3 ct 0 112 
(5.2.17) G = c3 c3 c3 ct JI 113 

C.e_ ct cl cl 0 0 

11J. = 2P.(l - P.) 
J J 

j 1, ... ,£., I denotes the ix i identity matrix, 

and 

(5.2.18) Ci m(s) dN(s) J -2 
i 1, ... ,.e. 

[ti+c,t] 

Note that form a non-increasing and non-negative 

sequence. 

A standard computation shows that 

.e. 
det(GJI + I) E E E 

r=O l~i 1<i2< ... <ir~t 

2'. 1 

c. 
1 

r 

r-1 r 
nee. -c. )n11. 

j=l ij ij+l j=l ij 

so that (CIT+ I) is non-singular. Hence (5.2.16) determines 13 13(t) 

uniquely. 

Next we note that C is non-negative definite since for A< 0, 

det(C - AI) 
i r-1 
""' (-, )l-r ""' ""' ( ) 1., A 1., 1., c 1. TT C. - C, 

r =O 1<· <" < <' <0 J0 =l 1 J' 1 J'+l _1 1 1 2 ... ir-~ r 
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It follows that if Il is non-singular, then 

is non-negative definite, because the diagonal elements of Il-l are all 
-1 

2: 2 and hence the smallest eigenvalue of (C + Il ) is 2: 2 . By 

continuity, we find that (CIT+ I)T(Cil + I) - 4Il2 is non-negative 

definite, even if Il is singular. Therefore 

l l 
E aj 2 = PT(Cil + I)T(Cil + I)P 2: 4PTil2P = 4 E (wjPj) 2 

j=l j=l 

By (5.2.4) we have max lcil S nb (6n)- 2 = b 6-2n-l on a set of 
i s s 

probability at least 1 - B1exp{-P 1n} and on this set (5.2. 7) ensures 

that 

max 
i 

S max 
i 

S max 
i 

Hence (5.2.11) follows from (5.2.5) . A little arithmetic shows that for 

IPil S log2, 

(5.2.19) 

f\ - P. 
___ 1._ - a I < 4P 2 
p (1 _ p) i - i 

i i 

and (5.2.11) produces (5.2.12) and (5.2.13) 

Finally, (5.2.7) may be written as 

(5.2.20) 

nX (s-c) 

J 2 n 
m(s)- E Pj(l 

j=l 
[ti+c,t] 
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for i = 1, ... ,l and together with (5.2.3) and (5.2.10) this yields 

for i = 1, ... ,l. Using (5.2.2) and (5.2.9) we find 

n.Xn (s-c) 

[-2m(s)-2 I: (Pj - P. - PJ.(1 - PJ.)Bj) 
j=l J 

n.Xn(s-c) 

+4m(s)-2m(s)-l ( I: (Pj -Pj)) 2]dN(s) 
j=l 

Now (5.2.4) and (5.2.13) imply that inf m(s) ~ 6n and inf m(s) ~ ½6n 
sSt0 sSt0 

with probability at least 

Application of (5.2.12) and 

1-B2exp{-B2nJ, which proves (5.2.14) 

(5.2.13) establishes (5.2.15) 

□ 

Let A z be the conditional intensity process process of the counting 

process N as defined by 

(2.2.10) and (3.1.7) , i.e. 

n.Xn(s-c) 

(2n - N(s) + I: zj )Q(Xn(s))l _1 (Xn(s)) 
j=l (O,n ns) 

For cs s st s t 0 , let 

n.Xn(s-c) 

(2n - N(s) + I: Pj(t))Q(Xn(s))l _1 (Xn(s)) 
j=l [O,n ns) 

in analogy to A as given in 
p 

( 3. 1. 2) . Note that in the notation we 

suppress the dependence of A· 
p 

(5.2.8) 

on t . 

that the 

It follows from 

and hence ( 5. 2. 3) , ( 5. 2. 7) and 

Ft - measurable, where Ft denotes the a-algebra generated by 

In the next section we shall show that A·(t) is an 
p 
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A·(t) are 
p 

{N(s)Jsst · 
asymptotic 



approximation with remainder 

A(t) = E(A2(t)1Ft) 

for the unconditional intensity 

At this point it suffices to note that for 
-1 

provided that Q(Xn(s)) > (dasbsn) , 

log{A•(s)-lA (s)} = log(l + M(z,s)) 
p z 

(5.2.23) 
1 2 1 3 

= M(z,s) - 2M(z,s) + 3M(z,s) + R(z,s) 

where M is given by 

(5.2.24) M(z,s) 

For fixed 

. -1 
m(s) 

t E 

nXn(s-c) 

E C z. - 2f>. Ct)) 
j=l J J 

[ c, t 0J ' 
let Z(t) = (Z1(t) 

(Zl ' z2 ' 
... be a sequence of random variables. 

z2Ct) 

Given 

zl ' z2 ' 
... are independent and zi has a binomial distribution 

parameters 2 and f>. = P.Ct) Note that P. = P. = 0 for n > ~ 
1 1 1 1 

For 0 5 t 5 t 0 ' 
let Ft E Ft denote the set 

inf Q(X (s)) ~ {i 
' 

inf m(s) ~ fin 
' 

and inf m(s) ~ lin By (5.2.4) 
s5t n s5t s5t 

(5.2.14) we have P (Ft)~ 1 - Bexp{-Bn} for t 5 to 

) 

Ft 
with 

where 

and 

LEMMA 5.2.3 There exist positive numbers B 
' B and XO such that for 

n = 1,2, ... and X ~ 0 
' 

(5.2.25) p ( IM(Z,s) I ~ xi Ft) 5 
2 sup sup sup Bexp{-Bx n} 

c5t5to 
Ft 

c5s5t 

whereas for 0 5 X 5 XO ' 

(5.2.26) p ( IR(Z,s)I ~ xi Ft) 5 1/2 sup sup sup Bexp[-Bx n} 
c5t5t0 Ft 

c5s5t 

PROOF. Since P. 
J 

(5.2.26) , prove 
• 4 

M(Z,s) < x, and apply 

0 for n > nh , LEMMA Al. 2 

note that IR(Z,s)l<x if 

(5.2.25) 

yields (5.2.25) . To 
. 1 

IM(Z,s)I 5 2 and 

D 
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5.3. AN APPROXIMATION OF A 

The conditional joint density of Tl, 

given Z = z, at t 1 , t 2 , ... , tk, 

f. (t1,t2 , ... ,tk,!+n,k+n) 
Z=z . 

k 
= exp{-A (t)} TT A (tj) 

z j=l z 

T2 , ..• , 

l + n , 

N(t-c) , 

is 

N(t) , 

for c S t 1 < t 2 < ... < t! St - c < t!+l < t!+z < ... < tk St. Recall 

that the Zi have binomial distributions with parameters 2 and Pi 

Hence the unconditional joint density of Tl, T2 , ... , Tk, N(t-c) , 

N(t) , z1 , z2 , ... , Z! at t 1 , t 2 , ... , tk , ! + n , k + n 

z 1 , z2 , ... , z! , is 

l 2 z 2-z k 
= TT ( ) P i(l - Pi) iexp{(-A (t)) TT A (t.) 
i=l zi i z j=l z J 

for c S t 1 < t 2 < ... < t! St - c < t!+l < t!+Z < ... < tk St, and 

zi = O, 1 or 2 , i = 1,2, ... ,! . Therefore the unconditional intensity 

A is given by 
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A(t) = lim h-l P (N(t+h) - N(t) ~ 1 I Ft)= E(Az(t)IFt) 
h+O 

2 2 .e 2 z 2-zi k _1 
= [ r: ... r: p i(l 

z1=o z.e=O 
n C z) 

i=l i i P.) exp{-A (t)} n A (t.)] 
l. z j=l z J 

k 
• exp{-A (t)JA (t) n A (tj) 

z z j=l z 

2 l z 2-z k 
I:: IT (;) P \1 - Pi) iexp{-A (t)} n A-(t.) 

zl=O i=l i i z j=l P J 

k k 1 2 1 3 
• IT A-(tj)exp{ I: (M(z,t.) - 2M(z,tj) + 3M(z,tJ.) 

j=l p j=l J 

1 2 1 3 + R(z,tj)) + M(z,t) - 2M(z,t) + 3M(z,t) + R(z,t)J , 

where we have used (5.2.23) . Note that the following factors occur in the 

numerator as well as in the denominator of the last expression: 
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k k t z. 2-z. 
TT A-(t.)exp{-A (t) + E M(z,t.)j TT P. 1 (1 - P.) 1 

j=l p J z j=l J i=l 1 1 

k t k nXn(tj-c) 

[ TT A-(t.)exp{- f (2n - N(s))Q(X (s))ds - 2 E E m(t.)- 1P.J] 
j=l p J n j=l i=l J 1 

C 

t nXn(s-c) k nX (t.-c) [ f n J 1 ] 
• exp{- E z.Q(X (s))ds + E E m(t.)- ziJ 

i=l 1 n j=l i=l J 
C 

The first factor in square brackets doesn't depend on z 1 , . . . , zt and 

may therefore be cancelled in numerator and denominator. In view of 

(S.2.10) 
t 

denominator by 

i>i = P/t) as 

t 

the second factor in 
t 

square brackets equals 

The factor exp{ .E a izi l 
1=1 

may be combined with 

t ai zi 
TT (Pie ) 

i=l 
Dividing the numerator as well as the 

t ai 
TT (P .e + 1 - Pi/ , this amounts to replacing 

i=l 1 

given in (5.2.8) throughout. Finally, we may 

t 

by 

replace 

exp{ E <'i.z.J by exp{ E 15. (z. - 2Pi)J again. As a result we find 
i=l i i i=l 1 1 

2 
A(t) = [ E 

z 1=o 

k 1 2 1 3 -1 
+ .E (-zM(z,tj) + 3M(z,t.) + R(z,tJ.))l] 

J=l J 

2 
• A-Ct) E 

p z =O 
1 

t . k 1 21 3 
• exp{ E <'i.(z. - 2P,) E (-zM(z,t.) + 3M(z,t.) + R(z,t.)) 

i=l i i i j=l J J J 

1 2 1 3 + M(z,t) - 2M(z,t) + 3M(z,t) + R(z,t)J 
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Now let us introduce the random variables z1 , z2 , ... , which were 

discussed in Section 5.2, once more. Recall that, conditionally on Ft, 

these variables are independent, Zj having a binomial distribution with 

parameters 2 and P . . Hence 
J 

A(t) [ ( £. k 1 - 2 
E exp{ E o.(Z. - 2Pi) + E (-2MCZ,t.) 

i=l 1 1 j=l J 

(5.3.1) 
£. 

A-(t)E(exp{ E oi(Z. - 2P.) 
P i=l i i 

kl- 2 1· 3 
+ E (-2M(Z,t.) + 3M(Z,tJ.) + R(Z,tJ.)) 

j=l J 

From here on, we shall have to approximate A(t) and we shall take 

care to ensure that the error is uniform on [O,t0 ] . Of course this can't 

be achieved on the entire probability space and for an arbitrarily small 

E > 0, we shall restrict attention to a set Ft€ Ft with 

(5.3.2) sup P (Ft)~ 1 - E 
c:5t:5t0 

First of all, we choose this set as in LEMMA 5.2.3 to ensure that on Ft 

we have 

(5.3.3) inf Q(Xn(s)) ~ o 
s:5t 

inf m(s) ~ on 
s:5t 

inf r'o(s) ~ 6n 
s:5t 

and (5.2.25) and (5.2.26) hold. In fact we have already made use of the 

first inequality to ensure that Q(Xn(s)) ~ (dasbsn)-l (cf. 
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(5.2.21) - (5.2.23) ). Furthermore we require that on Ft, 

(5.3.4) 

(5.3.5) 

(5.3.6) max 16i(t)1 S Dn-l 
lSiSt 

for some positive constant D and all n. This is allowed by (5.2.11) , 

(5.2.13) and (5.2.15) . 

Let us first consider the denominator in (5.3.1) . Define the sets of 

outcomes 

k 
Ct= {I j;1M(Z,tj) 3 1 s n- 112c2a- 11ogn) 3/ 2J 

k 
Ct= {I I: R(Z,tj)I s n- 1(2a- 11ogn) 2} 

j=l 

For c St S t 0 , (5.2.25) and (5.2.26) ensure that on Ft , 

P (C~IFt) s nP ( sup IM(Z,s)I ~ (2a-ln- 1logn) 1l 2 1Ft) s Bn-l 
cSsSt 

Furthermore from (5.2.23) and (5.3.6) we see that on Ft, we have for 

cSsSt, 

(5.3.7) 1- 21· 3 • • • -2M(Z,s) + 3M(Z,s) + R(Z,s) = log(l + M(Z,s)) - M(Z,s) S 0 

(5.3.8) 
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Hence, on Ft, 

1 • 3 • )1 ) + -3M(Z,t.) + R(Z,tj) l • !Ft 
J ccucc 

t t 

-1 
S 2Bexp{2Dbsjn , 

so that, uniformly for c St S t 0 , 

To deal with the numerator in a similar manner, we notice that on 

(5.3.9) • -1 -1 IM(Z,t)I S (6n) 2nbs = 2bs6 

and in view of (S.2.25) , the terms 

exponent can be relegated to the 

C S t S t 0 , 

1 • 2 1 · 3 • -2M(Z,t) + 3M(Z,t) + R(Z,t) in the 

remainder term. Thus, uniformly for 
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. [[ l k 1. 2 
A(t) = A•(t) E exp{ I: 11.(Zi - 2P 1.) + E (--2M(Z,t.) 

P i=l 1 j=l J 

1 3 ) -1 2 ]-l + 3M(Z,t.)) Jl !Ft + O(n (logn) ) 
J C 

t 

l 
• [E(exp{ E 11.(Z. - 2Pi) + M(Z,t) 

i=l 1 i 

l 
• [E((exp{M(Z,t)} - l)exp{ E 11.(Z. - 2P.) 

i=l 1 1 1 

k 
( 1 . 2 1 • 3) 1 ) 0 -1 2 ]} + E -2M(Z,t.) + 3M(Z,t.) } !Ft + (n (logn) ) 

j=l J J C 
t 

What we achieved in the last step is, heuristically speaking, that we 

replaced a ratio w- 1(V + W) where both W an (V + W) are 0(1) by 

1 + w- 1v , where V = O(n- 112 ) . As will be seen, this enables us to allow 

remainder terms of 

the definition of 

denominator will 

0(n-l/2(logn)3/2) 

larger order than we have so far. Using (5.3.8) and 

1 k • 3 
Ct , we find that deleting exp{3 I: M(Z, t.) } in the 

j=l J 
raise the remainder term in the denominator to 

Next, we may delete the factor in the 

denominator, since this gives rise to a remainder term of the lower order 
C -1 

P (Ct I Ft)= O(n ) 

In the numerator, deleting the factor 

remainder term 
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exp{3 I: M(Z,t.) } 

j=l J 
will add a 



and (5.3.9) and (5.2.25) ensure that this is 0(n- 1(logn) 312 ) . For the 

same reason, replacing exp[M(Z,t)J - 1 by M(Z,t) will only add a 

remainder term O(n- 1) and deleting le produces another O(n- 1) term 
t 

in the numerator. All of this holds on Ft uniformly for c ~ t ~ t 0 , and 

we find 

(5.3.10) A(t) 

where 

[ l lk • 2 ] 
V = E M(z,t)exp[ E 6i(z. - 2P.) - z.E M(Z,t.) J !Ft 

i=l 1 1 J=l J 

We begin the final part of our analysis by noting that 
-1 

implies that on Ft and for x = (~bs) log(2B) , 

(5.2.25) 

and together with (5.3.8) this implies that there exists E > 0 such 

that 

(5. 3.11) 

on Ft . 

Expanding 
l 

exp[ E 6. (Z. 
i=l i i 

and (5.3.6) , we find that on Ft, 

in V 

(5.3.12) 
k 

( - 1 • 2 r] V = E M(Z,t)exp{-2 .E M(Z,t.) JI t 
J=l J 

uniformly for c ~ t ~ t 0 . 
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At this point, the random variables Zi = Zi(t) have served their 

purpose and the fact that their distribution given Ft depends on t 

through the P.(t) , is going to be bothersome. We shall replace them by 
1 

random variables z1 , z2 , . . . which, given Ft , are conditionally 

independent, Zi having a binomial distribution with parameters 2 and 

Pi. To simplify our calculations we assume that 

as follows: 

z. 
1 

and Zi are coupled 

where, given Ft and Z (Zl z2, ... ) , wl, w2, ... are 

independent and Wi has a binomial distribution with parameters (2 - Zi) 

and (Pi - P1.)/(1 - P1.) if P.?: P,, and -W. has a binomial 
1 1 · 1 

distribution with parameters Zi and (Pi - Pi)/Pi if Pi< Pi . It is 

easy to see that this yields the correct marginal distribution for Zi , 

and that 

where 

pi - P. P. - r. 
1 1 1 

E(Wi IF t' Z) (2 - zi) i;i if i\ ;,; pi 
1 - P. 1 - P. 

1 1 

pi - pi pi - pi 

E(WilFt,Z) z. i;i if pi < P. 
1 

pi pi 
1 

It follows from (5.3.5) that for j = 1,2, ... ,nh, we have on the set Ft 

(5.3.14) 
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Define, for c ~ s ~ t 0 , 

nXn(s-c) 
• -1 

(5.3.15) L(z,s) = m(s) E (zi - 2P1) 
i=l 

By (5.2.24), (5.3.13) and (5.3.15) 

(5.3.16) 

nXn(s-c) 

M(Z,s) - L(Z,s) = m(s)-l E (Zi - 2Pi - zi + 2Pi) 
i=l 

nXn(s-c) 

= m(s)-l I: (W. - E(W. IFt,Z) + 1;/Zi - 2Pi)) , 
i=l i i 

and (5.3.3) and (5.3.14) ensure that on Ft , 

for j = 1,2, ... ,k. Also, on Ft, 

for j = 1,2, ... ,k. It follows that on Ft, 

k k IE(M(Z,t)exp{-½ E M(Z,t./J 1ft) - E(M(Z,t)exp{-½ I: L(Z,t.}2) !Ft) I 
j=l J j=l J 

k 
~ ½E(IM(Z,t)l lj;l1M(Z,tj/ - L(Z,tj/11 IFt) 

k 1/2 
~ ½[EcMcz,t/1Ft)E(cj;11Mcz,tj) 2 - 1cz,tjll) 2 1Ft)] 
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s Ii-lb b l/2n1/ 2 max [E((M(Z,tJ.) - L(Z,tJ.)) 4 1Ft) 
sh lSjSk 

and together with (5.3.12) this yields 

uniformly for c St S t 0 • From (S.3.16) we see that 

.e. 
E(Mcz,t) - 1cz,t)1Ft, z) = m<t)- 1 I: ~iczi - 2Pi) 

i=l 

(S.3.5) , we have 

on Ft , uniformly for c S t S t 0 . 

Consider the partial sum process 

for O S u S bh . The process 

respect to the supremum metric to 

[nu] 
W(n-l I: Pi(l - Pi)) 

i=l 

converges in distribution with 

on w is a standard Wiener process. A Skorohod 

construction allows us to define W in such a way that 
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Since the processes Sn are independent of Ft , we may also choose W 

independent of Ft 

By (5.3.17) 

· -1 -1 m(s) 5 (6n) , and hence 

k 
o l o 1 • -2 0 2 S (<-/n) [ ] (S (<-/n))exp{-2 E m(t.) nS (<-(j)/n) J 

n -a, a n j = 1 J n 

is a continuous and bounded function of Sn with respect to the supremum 

distance, and hence its conditional expectation tends to that of the same 

function of the corresponding Wiener process. Letting a tend to infinity 

we find that on Ft 

(5.3.18) 

Since there is only a single weakly convergent sequence of processes 

involved for all t e [c,t0] , the o(l) term is still uniform for 

C 5 t 5 t 0 . 

Finally we note that the conditional expectation in 

vanishes because 

(5.3.19) E(W(t)IW(s) 2 , O 5 s 5 t) O 

(5.3.18) 

Combination of (5.3.10), (5.3.11), (5.3.18) and (5.3.19) yields 

(5.3.20) A(t) 

on Ft, uniformly for c 5 t 5 t 0 . By choosing E > 0 arbitrarily small 

in (5.3.2) , we see that (5.3.20) implies that 
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(5.3.21) 

As in Section 5. 1 , let 

intensity process 

A 
n 

denote the unconditional integrated 

and, re-introducing the subscript n, let 

(5.2.3) , (5.2.7) and (5.2.8) . Define 

A· (t) p,n f 
C 

t 

A· (s)ds p,n 

We have proved 

THEOREM 5.3.1 For every t 0 > O , 

(5.3.22) sup n-l/ 2 1A (t) - A· (t)I 
<t<t n p,n 

C- - 0 

tends to zero in probability. 

A· p,n be given by (5.2.22) , 

0 

By Theorem VI.IO in POLLARD (1984) this implies that 

n-l/ 2 (A - A· ) RO in 
n p,n 

D[0, 00 ) and combining this with (5.1.6) we 

obtain 

THEOREM 5.3.2 

(5.3.23) - n - A· (t)) R w0(X(t)) 
p,n 

where w0 is a standard Wiener process and the convergence is in the sense 

of the Skorohod metric in D[0, 00 ) • 

D 

We end this section with two remarks. The first is that we have shown 

in this section that 

An, even though A p,n 

A· p,n 
is a sufficiently accurate approximation of 

is not. What this amounts to, in fact, is that 
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E(Zi IN (s) , s ~ t) = 2f>i Ct) + Op(n-1/2) 
,n n ,n 

whereas cf> i Ct) - p ) is typically of exact order n-1/2 
,n i,n 

The second remark is that, although THEOREM 5.3.2 is quite 

satisfactory from a mathematical point of view, it does not yet solve the 

practical problem of divising a test for our model. To apply THEOREM 5.2.3 

one needs to compute A· (t) p,n for at least one - but preferably many 

more - values of 

for all 
t ' and for this one needs to know A· (s) and hence p,n 

s e (c, t) . This can only approximately be the case in 

situations where the sampling frequency is high. Moreover, solving the t 
linear equations (5.2. 7) for I\ , ... , ~t is certainly a non-trivial 

problem, especially since 

we provide a solution to 

sequences of t numbers 

this problem is needed in 

means of the distribution 

t is of the same order as n . In Section 

this problem, but this solution still involves 

which are defined iteratively. Thus, more work 

order to be able to compare this kind of model 

results of this chapter or those of Section 

5.4 

two 

on 

by 

3.3 

N 
n 

with actual data. In those cases where the measurement error in 

exceeds the order n112 of the difference between N and n(X + 
n 1) ' 

however, we can resort to non-linear regression techniques. This will be 

dealt with in the next chapter. 

5.4. SOME LINEAR ALGEBRA 

To compute A· (t) , we notice that p,n 

(5.4.1) 

A· (t) p,n = A (t) p,n 

where, as in (3.1.2) , 

(5.4.2) 

In this 

A (t) - (2n - N(t) + p,n 

section we shall 

nXn(t-c) 

2 "'"pi )Q(X (t))l l (X (t)) 
" n n - n i=l ' [c,n ns n) 

' 

find an explicit expression 
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i 
I: (P. (t) - Pi ) . 

i=l 1,n ,n 

Let us adopt the notation introduced in (5.2.16) - (5.2.18) . By 

(5.2.8) , (5.2.12) and (5.2.16) - (5.2.18) , 

(5.4.3) 

i 
2 I: Pi(l - Pi)~i + Op(l) 
i=l 

where 
T 

1 = (1, ... ,l)lxi and r 
is symmetric. 

r 

Because of the special structure of ( CII + I) we may obtain an 

expression for r after a bit of matrix manipulation. By means of direct 

computation the reader can verify that r = (fii') is given by 

i'-1 i-1 
-1 -1 

-µ. X . , TT (1 - Xk) + A. X., E µ0 
1 1 k=i+l 1 1 a=l 

i-1 i'-1 
TT C 1 - X j ) TT ( 1 - Xk) 

j=a+l k=a+l 
i < i I 

(5.4.4) 'Kii' = 
-1 i-1 -1 i-1 

lli + x/ I: lla TT (1 
o=l j=o+l 

i = i I 

i-1 i'-1 
TT ( 1 - X j ) TT C 1 - Xk) 

j=a+l k=a+l 
i > i' 

where empty sums and products have to be interpreted as 0 and 1 

respectively, and and i = l, ... ,i, are defined by 
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R. 
)., = (c, - E d.)(c. + bi 

1 1 j>i J 1 

(5.4.5) 
R. 

d. = (c. - Ed,)>.. 
1 1 j>i J 1 

Here ci is given by (5.2.18) and 

Note that uniformly for c ~ t ~ t 0 , 

(5.4.6) 

Laborious calculation yields 

(5.4. 7) 

Hence 

i-1 
TT (1 - >.t) 

t=j+l 

R. 
E d.)-1 

j>i J 

(5.4.8) sup IA· (t) - An(t)I = Op(l) 
c<t<t p,n 

- - 0 

where 
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i=l, ... ,i-1 

i=l, ... ,i-1 

i.=1, ... ,R.-1 

i = 1, ... ,i 

i=l, ... ,R. 



A (t) = A (t) + 2Q(Xn(t))l _1 (Xn(t)) 
n p,n [c,n n ] 

s,n 

(5.4.9) 
.f. .f. i-1 
I:[µ. (t)-l I: (1 - ). (t)) - >.. (t) I:µ. (t)-l 

i = 1 1, n a= i + 1 a, n 1, n j = 1 J , n 

.f. i-1 
n (1 - ). (t)) n (1 - ). (t))]a. (t) 

a=j+l a,n t=j+l t,n 1,n 

Define 

t 

An(t) = f An(s)ds 

C 

THEOREM 5.3.2 and (5.4.8) yield 

THEOREM 5.4.1 

where w0 is a standard Wiener process. 
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CHAPTER 6 

COMPARISON OF THE MODEL WITH DATA 

In order to test the agreement between theory and actual data, 

experiments were performed in which a batch culture of tobacco cells was 

followed in time. Samples from the culture were taken from the time at 

which the culture was inoculated until growth by cell division had stopped. 

The cells in the samples were counted and from this the population growth 

was determined. Also the concentration of sugars in the medium was measured 

at various time points. The results are discussed and statistically 

analysed. 

6.1. INTRODUCTION 

In the previous chapters we have formulated a model for the behaviour 

of individual plant cells in terms of cell cycle events, and we have 

considered the consequences of this model for the growth of batch cultures 

of these cells. In order to compare the predictions of the model with 

experimental data on population growth of plant cells, we needed more 

detailed information than is present in available published and unpublished 

data. For this reason we designed a set of specific experiments with the 

primary aim of obtaining precise information about the growth in terms of 

cell number of batch cultures. In what follows by (population) growth we 

mean proliferation, that is growth by cell division, and by cell growth we 

mean growth by cell enlargement. 

Since in our laboratory cell lines of tobacco (designated LT lines) 

are grown which are being used for molecular studies on cell division and 

cell differentation (cf. VAN DER ZAAL et al., (1987); VAN DER ZAAL et al., 

1987), these cell lines were also chosen for our experiments. The LT lines 

are suitable for the experiments, because they have reasonable doubling 

times, to wit approximately 30 h under standard culture conditions, and 

because they only require the auxin analogue 2,4-dichlorophenoxyaceticacid 

(2,4-D) as a growth factor (see Section 6. 2 ) . Moreover, the 

characteristics of plant cell lines may change rather drastically in time 

from their initiation from callus. In many cases cell lines obtain stable 
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characteristics only after years in culture. The LT lines have been grown 

in our laboratory for about ten years and apparently have stable features. 

For instance, the LT lines have stabilized at one ploidy class and probably 

accumulate at G1 at the end of each 7-days growth cycle. 

To obtain as much information as possible, the experiments were 

designed to allow frequent sampling from the cell cultures during the 

entire growth cycle. The routine culture system for maintenance of the cell 

lines, consisting of a relatively large number of small culture vessels 

(250 ml erlenmeyer flasks each containing 50 ml of culture medium), did not 

seem to be suitable for reliable long-term sampling procedures. A much more 

appropriate device was a 3 1 turbine stirred round bottom fermentor 

equipped with an autosampling device which we could use at the Department 

of Biochemical Engineering of the University of Delft. Preliminary 

experiments showed that transfer of inocula of cells from the stock 

cultures to the fermentor probably has no significant influence on the 

basic growth characteristics of the LT lines. Thus, no adaptation cycles 

were required for obtaining undisturbed growth of the cells in the 

fermentor. The only precaution taken was inoculation of the fermentor with 
5 -1 a higher cell density (1.5 - 2.0 • 10 cells ml ) than the one generally 

used in the stock cultures (0.5 - 1.0 • 105 cells ml- 1). 

After the first trials two separate but essentially similar pilot 

experiments were performed to analyse the increase of cell density and 

substrate consumption in the fermentor. Due to practical limitations the 

sampling procedure consisted of drawing no more than three samples at every 

4 - 8 hover a culture period of approximately 10 days. Two of them were 

used for cell counting and one for analysis of substrate consumpt.ion. 

Another practical constraint was brought about by the very laborious 

and time consuming cell-counting method, which has to be employed for plant 

cells. Since plant cells grow as small cell aggregates of varying size, no 

sophisticated devices for particle counting can be used. The cells have to 

be counted by eye using a light microscope. 

Thus far, the data of one of the pilot experiments have been analysed 

in sufficient detail. The results will be described and discussed in the 

following sections. 
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6.2. MATERIALS AND METHODS 

Cell culture 

In the experiments 2,4-D-dependent cell cultures of Nicotiana tabacum L. 

c.v. White Burley (designated LT) were used. These tobacco cultures were 

obtained from leaf callus and were grown in suspension for about 10 years. 

The various cell lines differed in the concentration of 2,4-D in which they 

were maintained. 

For the experiments described in this chapter, the LT 0.05 line was 

chosen. This line was grown in LS-medium (LINSMAIER & SKOOG, 1965) 
-1 -7 0 

containing 0.05 mg 1 (2.26 • 10 M) 2,4-D at 25 Cina dark room on a 

gyrotary shaker (120 rpm, 5 cm displacement). For maintenance of the 

culture, once every week the cells were transferred to a fresh medium at an 
5 -1 

initial density of about 0.5 - 1.0 • 10 cells ml in 250 ml erlenmeyer 

flasks containing SO ml of the growth medium. 

When the cells were used for the experiments, a sample of ca. 200 ml 

of suspension which was at the end of its 7-days growth cycle (early 

stationary phase\ was transferred to a commercially available 3 1 turbine 

stirred round bottom fermenter (Applicon) containing 1800 ml of LS-medium 
-1 

supplemented with 0.05 mg 1 2,4-D and 0.25 ml of Silicone antifoam agent 

(BHD). The fermenter was autoclave sterilized at 120° C, the medium at 

110° C, both for 30 min. A schematic representation of the experimental 

system is given in Fig. 6.1 . The initial density in the fermenter was 

about 1.5 - 2.0 • 105 cells ml- 1 . 

To resuspend the cells, after inoculation the two six-blade turbine 

impellers were set at a rotation speed of 750 rpm for 2 min. Subsequently, 

the rotation speed was set at 128 rpm. The suspension was kept at a 

temperature of 24.5° C by pumping temperature controlled water through the 

water jacket of the vessel. The culture was aerated by means of a sintered 

steel sparger at the bottom of the vessel at a rate of 30 vvm. Predried 

influent air passed through a cotton wool filter and a 0. 2 µm hydrofobe 

membrane filter (Millipore, Milex FGSO). Effluent air left the fermenter 

through a glass condenser kept at 4° C by means of a cryostat (Lauda). The 

evaporation of water was measured by leading the effluent air through a 

pre-weighed silica column. From time to time, i.e. at day 1, 2 and 3, about 

10 ml of a diluted antifoam solution was added. The initial pH was 5.6 and 

as a check for undisturbed growth it was continuously measured by a 

sterilized pH-electrode (Ingold). 
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air outlet ------

air inlet 

anti foam 

glass wool filter 

0.2 µ filter 

water 
jacket 

inoculation flask 

3-1 itre fermentor vessel 

6-blade 
..,.,_....,....,.___---JLJ- turbine 

impeller 

sintered steel sparger sample test tube 

Fig.6.1. A sche1tatic representation of the experi1tental systen. 
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Ssmpling 

The sampling of cells from the fermentor was conducted by an autosampling 

system ruled by a programmable sequential timer (Omron). Every four hours 

three samples of about 7.5 ml were pumped into different test tubes, which 

were weighed before. The true sample volume per tube was calculated from 

the increase of the weight of each tube. Of each set of three tubes, the 

first two contained 1. 0 ml of a Cr03 solution ( 60 %) . These first two 

samples were used for cell counts. In the thi.rd sample the medium was 

separated from the cells by means of a cotton wool filter in the upper part 

of the tube. This medium was used for the analysis of several components of 

the medium. The three samples were drawn consecutively, the whole operation 

lasting about 10 min. 

Cell counting 

Dividing plant cells tend to stick together by means of their walls. Hence, 

plant cell cultures consist of cell aggregates of varying size. For cell 

counts it is necessary to separate the cells as much as possible. Since 

Cr03 destroys the middle lamella which holds cell walls together, it is an 

agent for maceration of cell aggregates. This is why the tubes for the cell 

counts contained a Cr03 solution. These tubes were incubated during 20 min 

at 70° C in order to optimize the cell separation. Next, the cells were 

pelleted by centrifugation at 3000 rpm for 2 - 5 min. The cellular pellet 

was resuspended in water, the final volume being 40 ml. Remaining cell 

aggregates were separated further by several passages through a hypodermal 

syringe. From each of the 40 ml solutions 5 samples of 1 ml were taken. 

Depending on the time at which the original sample was taken, a suitable 

dilution of the 1 ml samples was made such that 0.025 ml contained 100-200 

cells. From each of the diluted solutions a sample of 0.025 ml was taken. 

In these final samples the number of cells was determined by means of cell 

counting using a light microscope. Each 0.025 ml sample was counted 

independently by two persons. The cell density in the fermentor at each 

time point was estimated by the mean of the 20 counts of the 0.025 samples 

corresponding to this time point. 

Anslysis of substrste consumption 

Sucrose, fructose and glucose concentrations were determined by high 

performance liquid chromatography (Waters). An HPX 87P column (bio-rad) was 

used. Its temperature was 85° C. The eluent was doubly destilled deionized 
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-1 
water; its flow rate was 0.6 ml min . Detection of the sugars was 

-1 
performed by means of a refractometer. The detection bound was 0.5 g 1 . 

Computation of the least squares estimates of the. pBrameters 

The parameter values which were used in Fig. 6.2, 6.4 and 6.5 were 

iteratively obtained by means of a least squares method. For several fixed 

values of the starting cell density n and the parameter c, the quantity 

- n - nX(ti)) 
2 

s2 was minimized with respect to the parameters 

d ' a 
s 

b 
s 

bh . Here for i=l, ... ,27, denotes the 

mean of the 20 estimates of the cell density at the observation time 

originating from the 20 0.025 ml samples corresponding to 

X(ti) is the value of the limit function X, which is the solution of 

(3.1.13) at ti . 

For the values 
-1 

n = 162500 ml , c = 26 h and several sets of 

different starting values of the other parameters, 

which minimized s2 were found to be d = 4 h, a 
s 

the parameter values 

= 0.04 , b 
s 

29.9 , 

bh = 4.7 . Note that this means for the parameters y 5 , ks, 

yh' ¾ which were defined in 

k 
s 

-11 -1 
= 2.2 • 10 mol eel 

Chapter 2 

y = h 

9. 7 • 10- 17 mol eel -l . The minimal value of 

= 5.4 • 10 10 eel mol-l ys 

3.4 • 10 15 eel mol-l 

s2 was 0.25 . 

The algorithm which was used for the iterative solution of the 

non-linear least squares problem was a Gauss-Newton method (see e.g. STOER 

& BURLISCH, 1980). In each iteration step the values of the function X at 

the time points t 1 , ... , t 27 were computed numerically by means of a 

Runge-Kutta method, where Hermite interpolation of third order was used to 

approximate unknown function values. This method is described by 

IN'T HOUT (1988), who also proved the convergence of this procedure. A 

detailed description of all computational procedures is given in PIETERS 

(1988). 

114 



6.3. STATISTICAL ANALYSIS 

To analyse the results of the experiment described in the previous 

section we first have to formulate a statistical model for the sampling 

procedure as used in the experiments. Let 

observation times, and N1 , N2 , ... 

the fermentor at these times. Let 
'Nr 

nijkR. 

t 1 < t 2 < ... < tr denote the 

the number of cells present in 

denote the number of cells 

counted by investigator R. ( R. = 1,2 ) in 0.025 ml of the diluted k-th 

1 ml subsample ( k = 1,2, ... ,5 ) of the resuspended cells in the j-th 

7.5 ml sample ( j = 1,2) taken at time ti (i = 1,2, ... ,r ). On the basis 

of nijkR. an estimate NijkR. of Ni is computed by successive 

multiplication by the various measured dilution factors fijk and fij 

However, due to measurement errors these dilution factors differ from the 

true factors and ¢ij . In fact we have 

and since each of these errors is caused each time by an almost identical 

sequence of actions, it is reasonable to assume that the E ijk are 

identically distributed for each (i,j,k) , that the Eij are identically 

distributed for each (i,j) , and that all E1 s are independent. 

A second type of error is the error in the counted numbers of cells 

nijkR. . If the true number of cells is denoted by v ijkR. , we may again 

model this as a multiplicative error, i.e. nijkR. = vijkR.(1 + EijkR.) with 

independent and identically distributed (i.i.d.) EijkR., which are also 

independent of the E1 s previously defined. Here the justification for a 

multiplicative error model is simply that approximately the same number of 

cells is counted each time. 

A third source of errors are the repeated (sub-)sampling procedures. 

These sampling errors occur when taking the 2 original 7.5 ml samples, the 

2 x 5 1 ml samples from the resuspended cells, and the 2 x 5 0.025 ml 

samples used for counting. Under ideal mixing conditions the cells in a 

vessel are spatially distributed as points in a three dimensional Poisson 

process, and sampling a fixed volume will give rise to a sampling error of 
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order n 112 , which is presumably negligible compared to the errors defined 

so far, whose absolute magnitude is of order n . Of course, such ideal 

mixing conditions do not prevail, but clustering would have to be excessive 

to produce an error of order n. In that case, however, these errors could 

be subsumed under the multiplicative errors we have introduced already. 

Finally, there are errors caused by evaporation of water and addition 

of antifoam. A rough calculation shows that these errors may be neglected. 

These considerations lead us to adopt the multiplicative model 

Taking logarithms we obtain the additive model 

(6.3.1) 

i 1, 2, ... , r 

j 

k 

1,2 

1,2, ... ,5 

f. 1, 2 

where each of the groups of random variables e,. = log(l + Ei.) , 
.lJ J 

eijk = log(l + Eijk) and eijkf. = log(l + Eijkf.) are identically 

distributed and all e's are independent. In the absence of systematic 

errors it is reasonable to assume that the e's are all normally distributed 

with mean zero and variances 

(6.3.2) 2 
02 

Note that the classical dilemma whether to assume normality of the E1 s or 

the e's is of no great significance here since the IE I 's are very much 

smaller than 1 

According to THEOREM 3.2.1 we have 

h ~ ~ d d t h' h Op(n-l/ 2) . Hence were u1 , ... , ur are epen en errors w ic are 
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(6.3.3) 

To a first approximation our model reduces to 

(6.3.4) 

Consider the more general model 

(6.3.5) 

for arbitrary µ 1 ' ' µr Define the sums of squares 

r 2 5 2 
2 

Sl = E E E E (Yi "ki y ijk • ) 
i=l j=l k=l i=l J 

r 2 5 
2 (6.3.6) s2 2 E E E (Y. 'k - y ij •• ) 

i=l j=l k=l lJ • 

r 2 
y >2 s3 10 E _E (Y ij •• -

i=l J=l 
i ••• 

where a dot instead of an index indicates averaging over the possible 

values of that index. It is easy to see that under the general model 

(6.3.5) , 

(6.3. 7) 

where indicates equality in distribution and denotes a random 

variable having a chi-squared distribution with v degrees of freedom. 

Moreover, s1 , s2 , S3 and J ••• ' are independent 

under (6.3.5) . 

For the special model (6.3.4) we have 11 1 = logfn(l + X(ti))J and 

X depends on a vector of sev,c,n unknown parameters 
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presumably locally linear manner, the model behaves asymptotically as a 

seven parameter linear model. Hence, under the special model (6.3.4) , 

(6.3.8) s4 = 20 inf 
8 

is approximately distributed as 

depends on the Yijkl only through 

As 

and s4 are independent even under the general model (6.3.5) . The random 

vector 8 = (n,c,a,as,bs,ah,bh) minimizing the sum of squares in (6.3.8) 

is the vector of least squares estimators of 8 , thus 

(6.3.9) 20 

Let X and v,a F v1 ,v2 ;a denote the upper a-point of the chi-squared 

distribution with v degrees of freedom and the F-distribution with 

and degrees of freedom, respectively. We have the following 

(approximate) test and confidence intervals: 

(i) Test for the model (6.3.4) 

The model should be rejected if 

rS4 
= (6.3.10) F <!: F 

(r 7)S3 
r-7,r;a -

Note that if the model is 

N(t) = n(l + X(t)) + 0p(n1/ 2) , 

N(ti) - n(l + X(ti)) = n6i are 

rejected, it is 

but that 

not negligible 

still 

the 

compared 

possible that 

differences 

to the other 

errors. In a sense, this would also indicate a deviation from our theory. 

Another way of looking at this is the following. If 
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(r - 7) 

[' :·, :, l (6.3.11) D = 
20r 

Eti 2 

.! 
r i 

estimates E the average expected squared relative r i=l (1 + X(ti))2 , 

deviation of the N(ti) from n(l + X(ti)) . 

(ii) Confidence intervals 

The following confidence statements have confidence coefficient (1 - a): 

s1 
2 

s1 
(6.3.12) s 03 s 

XlOr,a/2 XlOr,l-a/2 

s2 
2 2 

s2 
(6.3.13) s 03 + 202 s 

Xar,a/2 Xar,l-a/2 

s3 
2 2 2 

s3 
(6.3.14) ---s 03 + 202 + 10o1 s 

X r,a/2 X r,l-a/2 

To carry out this analysis of variance on the actual experimental data 

is a non-trivial undertaking. The only presently available computer program 

for computing the vector of least squares estimates G minimizes 

r 
(6.3.15) E 

i=l 

(N(ti) - n - nX8(ti)) 2 

N(t./ 
1 

where 

Since 

N( ti) = N is the average of the 20 i• •• 
(6.3.15) is a first order approximation of 

(6.3.16) 

estimates of 

the minimum of (6.3.16) should be close to that of (6.3.15) , which 

equals 0.25 for our data (cf. the end of Section 6.2 ). Hence s4 
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should be approximately equal to 20 • 0.25 = 5.0. By choosing values of 

8 close to the minimum of (6. 3.15) we have indeed found s 4 :::: 4. 94 ; 

strictly speaking, 4.94 is of course an upper bound for s 4 

The complete results of the analysis are 

r = 27 

s1 0.501 

s2 = 15.46 

s3 4.48 

s4 s 4.94 

The F-test (6.3.10) for the model yields 

F S 1. 49 

which is not significant at the 0.10 level for 20 and 27 degrees of 

freedom. In view of this there is no reason to reject the model. By 

(6. 3.11) 

D = 0.0030 

estimates 

E6. 2 
l 27 1. 

21 E 2 
i=l (1 + X(ti)) 

Choosing a= 0.10 , (6.3.12) - (6.3.14) produce the following 

(approximate) 0.90-confidence intervals: 

0.0016 s 2 s 0.0021 0 3 

0.062 s 2 
+ 202 

2 s 0.085 o 3 

0.11 s 2 + 202 
2 + 1001 

2 s 0.28 03 

The corresponding point estimates are 

0.0019 

0.0716 
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a 2 + 2a 2 + 10a 2 = o.1659 
3 2 1 

so that 

2 0.0019 C13 . -

2 
0.0349 C12 = 

2 = 0.0094 (11 

Since 

we see that with the present design of the experiment, the errors made in 
2 counting the cells (variance cr 3 ) play no role in the ultimate accuracy 

of the experiment. The second step sampling and dilution errors eijk 

(variance cr 22 ) are approximately as important for the final result as the 
2 first step errors eij (variance cr 1 ). 

6.4. RESULTS AND DISCUSSION 

The growth of the LT 0.05 line during a fermenter run is shown in 

Fig. 6.2 The curve through the data points was obtained by using 

numerical solutions of (3.1.13) and a fitting program as explained in 

Section 6.2. The results show that the data do not violate the assumptions 

on cell cycle events made in the model (see Chapter 2 ). Assuming that the 

curve in Fig. 6.2 does indeed represent a realistic description of the 

growth of the LT cells, we may infer that a population doubling time of 

30 h (sum of the parameters c = 26 h and d = 4 h) and a lag phase of 

26 h (parameter c = 26 h) are fair estimates of the real values. These 

estimates are in good agreement with experimentally obtained values from 

apparently exponentially growing stock cultures (data not shown). In terms 

of the model this would imply that transfer of early stationary phase cells 

to a fresh medium -even if this transfer is from stock culture vessels to a 

fermenter- quickly reactivates all of the cells to become A-cells waiting 

for a division stimulus, and that most of the so-called lag phase in fact 
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Fig. 6. 2. Experimental data of the growth of a batch culture of tobacco 

cells ( • • • ) . The curve through the data points ( ---

fitted using numerical solutions of (3.1.13). The parameter values 
-1 -I 

were c=26h, d=4h, a6·0.04ml , bt29. 9, ah =0.07ml , bh=4. 7. The 

was 

two other curves represent the number of A-cells per ml ( - - - - -) 

and the number of B-cells per ml ( • ····•· ··· ··), as predicted by the 

model with the same parameter values as used for the computallon 

of the total eel 1 number per ml. 
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represents part of the cell cycle, i.e. the fixed part c. The model also 

seems to give a fair description of the observed transient stepwise 

increase in cell number, which obviously follows after the massive 

reactivation of the transferred cells. This means that the often observed 

hump in the first data points (cf. Fig. 2.1) is not due to measurement 

error, but represents a real phenomenon. 

According to the estimated values of the paramaters as used in the 

numerical solution represented in Fig. 6.2 , the hormone (2,4-D) was the 

growth limiting factor in the described experiment. This is not unlikely, 

since the concentration of the hormone at which the cells were grown 

(2.26 • 10- 7 M), was relatively low. At present hormone metabolism by cells 

in the fermentor has not yet been analysed. Thus, verification of hormone 

consumption as predicted by the model (see 

investigation. 

Fig. 6.5 ) awaits further 

It is unlikely, however, that the major substrate, i.e. sugar, was the 

growth limiting factor. An overall picture of the sugar consumption by the 

cells is shown in Fig. 6. 3 . At about 120 h when population growth had 

almost stopped (see Fig. 6.2 ), only approximately 30 % of the initial 

total amount of sugar (0.09 M) had been consumed. The non-dividing cells, 

however, continued to consume sugar up till about 210 h. This sugar was 

probably mainly used for cell growth and storage in the form of starch 

and/or sucrose as will be discussed below. 

The transport and storage sugar sucrose is commonly used as major 

substrate in plant cell culture practice, but as can be inferred from 

Fig. 6. 3 , it is rapidly split by the cells into glucose and fructose, 

which can also serve as substrate. This has to be taken into account if one 

wants to analyse substrate consumption by plant cells. The determination of 

sucrose concentration alone would give a false picture of substrate 

consumption. 

Sugar consumption by the cells over the first 116 h is shown in 

somewhat more detail in Fig. 6.4 The lower curve in Fig. 6.4 

represents the prediction of spgar consumption by the theoretical growth 

curve of Fig. 6. 2 . The curve through the data points was obtained by 

translation of the lower curve over plus 6.5 • 10-3 M. The thus translated 

curve gives a reasonable description of the sugar consumption as observed 

between ca. 10 hand 96 h. Between Oh and 10 h, however, the curves of the 

observed sugar consumption and the predicted substrate consumption roughly 

look like mirror images, i.e. for the first 10 h the model predicts a 
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progressive decrease of substrate concentration, whereas in the experiment 

a progressive increase of sugar concentration was found. A possible 

explanation for this discrepancy between model and data is that the 

transferred early-stationary phase cells contained stored sugars (starch 

and/or sucrose), part of which, after being degraded to the monomers 

glucose and fructose, was preferentially used by the cells as substrate 

upon receiving a division stimulus; at the same time another part of these 

stored sugars might have been excreted in the form of monomers into the 

medium. This is an interesting point and deserves further attention in 

future experiments. At present we must be content with the fact that if the 

sugar concentration at time t = 10 h is considered as a new starting 

value, then the theoretical substrate consumption does give a fair 

description of the total sugar consumption as found in the experiments up 

till about 96 h. Hereafter the model predicts that substrate consumption 

stops at ca. 96 h, while in the experiments sugar consumption continued up 

till approximately 210 h Fig. 6.3 ). Since differentiation of cells from 

meristems of intact plants is usually accompanied by cell growth and sugar 

consumption, an obvious reason for this difference is that B-cells do 

consume a substantial amount of substrate, an aspect which we did not take 

into account in the model. Before discussing this, we shall first describe 

how B-cells appeared in the experiments. 

The model predicts that cells are progressively leaving the cell cycle 

to become B-cells which start to differentiate. Theoretical. curves of the 

progression of the densities of A- and B-cells as predicted by the model 

are also shown in Fig. 6.2 . At present we are not able to compare these 

curves with quantitative data on A- or B-cell densities. This is due to the 

fact that we have no early markers to unambiguously distinguish A-cells 

from B-cells. Nevertheless, a study of macerated cell samples by light 

microscopy revealed some features of the cell population which certainly do 

not contradict the A- versus B-cell concept. 

In order to give the reader an impression of the morphology of the 

cells in the fermentor, we have taken a series of pictures of macerated 

cell samples drawn at various times after inoculation of cells to the 

fermentor ( Fig. 6.6 ). Between Oh and 26 h the cell population consisted 

of parenchymatous cells of varying size ( Fig. 6.6.a,b,c ). As time 

progressed between Oh and 26 h, we observed morphological changes such as 

displacement of nuclei from a position near one of the cell walls to the 

centre of the eel ls, increase in volume of nuclei, a gradual increase in 
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size of the nucleolus etc. ( Fig. 6.6.c ), which are all features of cells 

preparing for cell division (cf. VENVERL00 & LIBBENGA, (1987)). Within the 

next time interval (26 h - 52 h) a drastic increase in cell aggregates 

consisting of two cells was observed, i.e. the cells were split into two 

daughter cells held together within the confinement of the original wall of 

the mother cell ( Fig. 6.6.d,e ). At the end of this time interval many 

cells appeared to prepare for new cell divisions. From 52 h to 78 h we 

observed a progressive increase in original cells split into 3 to 4 

daughter cells ( Fig. 6. 6. f ) . At this stage of the development of the 

culture, however, the relationship between daughter cells and the original 

mother cell became already less obvious due to separation of daughter cells 

by maceration. The interval between 78 h and 104 h was characterized by 

aggregates consisting of relatively many small cells ( Fig. 6.6.g,h ). 

After ca. 104 h the picture changed rapidly. By then we observed phenomena 

which were the reverse of those occurring during the first time interval: 

the average size of the cells increased, the nuclei became smaller and were 

displaced to positions near one of the cell walls, and the nucleoli became 

less conspicuous. At the end of the experiment the population was observed 

to consist only of parenchymatous cells of relatively large size 

Fig.6.6.i,j ). 

The above observations are consistent with the idea that the 

proliferation of the cell population quite suddenly stopped because cells 

progressively left the cell cycle and started to differentiate into 

parenchymatous cells. In terms of the model: the population growth stopped 

because the A-cells have become extinct. Because we could recognize B-cells 

only after a delay when morphological changes had occurred, it is not 

unlikely that a rapid increase of B-cell density started at about 84 h 

after inoculation of cells into the fermentor, as predicted by the model 

( Fig. 6.2 ). Since the real B-cells most probably did consume sugar, we 

may expect a substantial and rapidly increasing contribution of B-cells to 

the total sugar consumption after this time. This might explain the 

deviation of the observed total sugar consumption from the predicted one 

over this time period (cf. Fig. 6.3 and Fig. 6.4 ). 
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6.5. CONCLUSIONS 

The LT O. 05 cell line grown in a turbine stirred fermenter as 

described in this chapter provides an appropriate experimental system for 

further investigation of the mechanisms of the growth of plant cell 

cultures. 

The results of the experiment we have described show that the model 

introduced in Chapter 2 accounts for the observed population growth 

reasonably wel 1. In particular, the observations support the idea that 

transfer of early stationary phase cells to a fresh medium quickly 

reactivates all of the cells to become A-ceils waiting for a stimulus to 

divide. 

We have also seen that, as predicted by the model, the lag phase seems 

to constitute a fixed part of the cell cycle. Sugar consumption during the 

first step of population growth in the experiment was very low. In terms of 

the model this means that the value Q, which is the parameter of the 

exponential distribution of the waiting time for a stimulus of an 

individual cell, was nearly constant during this period. Note that this 

implies that the course of the population growth in the first step was 

approximately similar to the one predicted by the transition probability 

model ( see Chapter 1 ) , the mean cycle time being c + Q- l ( ~ 30 h in the 

present experiment). In order to verify this more rigorously, more precise 

data should be obtained by increasing the sampling frequency and the number 

of samples per observation epoch over this initial period. 

Cytological observations of macerated cell samples provide good 

evidence that in the experiment population growth qu.ite suddenly stopped 

because cells progressively left the eel 1 cycle and started to 

differentiate into parenchymatous cells. For a better understanding of 

the way in which the hormone controls this phenomenon, experiments should 

be performed with different starting concentrations of the hormone in which 

uptake and conversion of the hormone by the eel ls is analysed at the same 

time. The results should be compared with the predictions made by the 

model. 

Finally, although the model provides a fair description of the 

observed sugar consumption between about 10 h and 96 h, it has to be 

slightly adjusted in order to cover the entire range of sugar consumption. 

It should take into account the observed increase in sugar concentration 

over the first 10 h and the observed sugar consumption by non-dividing 
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cells. At present we see no need, however, to take account of substantial 

maintenance energy requirement. For further investigation of the 

relationship between the sugar consumption and the division rate, made 

explicit in the model by means of the dependence of Q on the substrate 

concentration, continuous cell culture systems as for instance described in 

VAN GULIK et al. (submitted) may be more suitable than batch cultures. A 

first attempt to adjust the model to continuous cultures looks promising 

and will be published elsewhere. 
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Fig.6.6. The next five pages show series of photographs of cell 
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Detail of picture b, showing cells preparing for cell division. 

Note the enlarged nuclei with clearly visible nucleoli <arrow). 

Recently divided cells. The picture was taken only 4 h after the 

pictures b and c were taken. 

Arrows indicate predominant clusters of two eel ls at 36 h (e) • 

and first clusters of 3 - 4 cells at 56 h (f). 

Cells in clusters of varying size at 92 h. At about this time 

B-cells could al ready be observed (arrows). The cluster of cells 

in picture h still shows the confinement of the original mother 

cell. This picture clearly demonstrates that during active 

population growth the cells progressive! y become smaller. 

Cells at 124 h and 188 h, respective! y. These photographs show 

growing B-cells. The cells in picture have the same outward 

appearance as the cells used for inoculation (cf. a). 
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CHAPTER 7 

FINAL REMARKS 

Although a large amount of work has been carried out within frameworks 

of plant cell biotechnology programs on biosynthesis of secondary 

metabolites in plant cell cultures, little information is available on 

growth, differentiation and product accumulation kinetics of different 

culture systems. However, in order to be able to manipulate the 

productivity of cell cultures in multi-litre vessels, detailed knowledge of 

the regulation of division, differentiation, growth and product formation 

of cells grown under different conditions is required (cf. for instance 

MORRIS, 1986). Our approach of this problem has been to start with a 

mathematical model based upon ideas about growth and cell differentiation 

kinetics in plant cell cultures as they have emerged in our laboratory over 

the past years, to consider the implications of the model, and to perform 

some specific experiments aimed at its testing. Although at present testing 

of the model is in its initial stage, the first results which were 

described in the previous chapter, show that this approach is very 

promising. 

An interesting feature of our model is that it links population growth 

to cell differentiation, with as major controlling factor the - in batch 

cultures declining - hormone concentration in the medium. Since it is 

generally believed that secondary product formation in batch culture 

systems is related to cell differentiation, the model might in principle be 

able to link population growth also to product accumulation. It has 

occasionally been observed that the biosynthesis of certain secondary 

products seemed to be confined to dividing eel ls, whereas in the same 

system other, related products seemed to be synthesized only by 

differentiating cells. In this respect it is interesting to note that 

production curves of ajmalicine and serpentine in batch-cultured 

Catharanthus roseus cells look like the theoretical growth curves of A- and 

B-cells as shown in Fig. 6.2 , respectively, (MORRIS, 1986; BLOM, personal 

communication). This makes the Catharanthus roseus system, which is also 

studied in our laboratory, an interesting one to use for extending our 

model to other systems. 

Thus far, we have ascribed to B-cells in our model no other features 
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than that they do not divide. The above discussion and the experimental 

results described in Chapter 6 make clear, however, that the model will 

gain in value if we would be able to account for growth, sugar consumption 

and secondary product formation of these cells as well. 

From a mathematical point of view this study is devoted to the 

analysis of a point process of a somewhat more complicated structure than 

is usually considered. In part the complications arise from the fact that 

the point process is non-Markovian. Another, perhaps more important 

difficulty is that one doesn't have an expression for the intensity process 

available. As a result, we can only appeal to standard theory for part of 

our investigation. 

Moreover, our results go somewhat further than the usual ones. In 

particular the study of the process on the entire real line as opposed to 

bounded intervals, introduces additional problems. The study of the 

duration of the process and the asymptotic behaviour of the intensity 

process are both very special for the particular model considered. It would 

be of interest to know whether results of this type can be obtained more 

generally for bounded point processes. 
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APPENDIX Al 

THREE MAXIMAL INEQUALITIES 

We prove probability inequalities for the maximum of two stochastic 

processes, which we use in Chapter 3; their applicability is not 

restricted to the subject of this study though. 

LEMMA Al.1 If X(t) , t ~ 0 is a unit Poisson process, then 

(Al. 1) p ( IX(t) - ti ~ x) 8 2 
0 s XS 4a sup s 3exp{-x /(16a)l 

O~t~a 

(Al. 2) p ( I X(t) - ti ~ 
11 2 

0 s XS 2a sup x) ~ 3 exp{-x /(32a)l 
{t:X(t)saJ 

PROOF. If X has a Poisson distribution with mean µ , then for 

ltl s µ112 , 

,., (tµ-1/2)k-2 
= 1t2 + t2 E ----- ~ t2 

2 k=3 k! 

For 0 s x ~ 2/12 with t = ~ and 
2 

t respectively, Chebyshev's 

inequality gives 

(Al. 3) 

Hence 

(Al.4) 

Combining this with Inequality5 in SHORACK&WELLNER (1986), p.844, we 

find that for x e [2(2a) 112 ,4a] , 
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P ( sup IX(t) - ti ~ x) S 1 P (IX(a) - al ~ x - (2a) 112) 
OStSa 

4 X 8 2 S 3 P (IX(a) - al ~ 2) S 3exp{-x /(16a)} 

Since is trivially true for OS x S 2(2a) 112 , this proves 

(Al. 1) 

Next we note that for x E (0,2a] , (Al.3) and (Al.1) imply 

P( sup IX(t)-tl~x) 
{t:X(t)Sa} 

SP (X(2a) Sa)+ P ( sup IX(t) - ti ~ x) 
OStS2a 

8 2 SP (X(2a) - 2a S -a)+ 3exp{-x /(32a)} 

8 2 S exp{-a/8] + 3exp{-x /(32a)} 

11 2 S 3 exp{-x /(32a)} 

and the proof is complete. 

□ 

LEMMA Al. 2 If x1 , x2 , are independent, bounded random variables, 

0 S X j S a , (j = 1, 2, ... ) , then for a 11 M E [N and every x ~ 0 , 

(Al.5) 
m 

P ( max I I: (Xj - EXj)I ~ x) S 4exp{-2x2/(9a2M)} 
lSmSM j=l 

PROOF. Clearly it suffices to prove the lemma for x ~ la(2M)l/Z . From 
2 

Theorem 2 in HOEFFDING ( 1963) it follows that for all m E [N and every 

X ~ 0 , 

(Al. 6) 
m 

P ( I: (Xj - EXj) ~ x) S exp{-2x2/(a2m)} 
j=l 

Combining this with Levy's inequality (SHORACK & WELLNER (1986), p.844), we 

get 
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M M 
~ 2P ( E (X. - EX.)~ x - (2 E a2(X.)) 1/ 2) 

j=l J J j=l J 

M 
~ 2P ( E (X. - EX.)~ x - a(2M) 1l 2) 

j=l J J 

M 2 2 
~ 2P ( E (X. - EXJ) ~ ~) ~ 2exp{-2x /(9a M)} 

j=l J 

provided x ~ ¾a(2M) 112 . 

bound holds for P ( min 
l~m~M 

Replacing X. by a - X. we see that the same 
m J J 

E (X. - EXj) ~ -x) , and the lemma is proved. 
j=l J 

D 
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APPENDIX A2 

SOME RESULTS CONCERNING INTEGRAL EQUATIONS IN D[O,~) 

LEMMA A2.1 (a version of Gronwall's lemma) 

Let u: [O,a] ➔ [R be non-negative 

left-hand limits. Suppose 

t e [O,a] , 

t 

A 2: 0 , 

u(t) :s; A+ K f sup u(r)ds 
0 r$s 

then for all t e [O,a] , 

u(t) :s; AeKt 

PROOF. Define 

t 

v(t) = f sup u(r)ds 
0 r$s 

Then for t e [O,a] , 

K 2: 0 

s 

and right-continuous with 

exist such that for all 

v'(t) $ sup u(s) $A+ K sup f sup u(o)dt 
s$t s$t O o$t 

t 

=A+ K f sup u(o)dt =A+ Kv(t) 
O O$t 

From this we get 

and integration yields 
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or 

t 

v(t)e-Kt ~ J Ae-Ksds 

0 

Thus we have for t e (O,a] , 

Let 

u(t) ~A+ Kv(t) ~ AeKt 

D[O,"') 

□ 

denote the space of right-continuous functions with 

left-hand limits on (O,"') ; C[O,"') denotes the space of continuous 

functions on [O,"') . Consider the integral equation 

(A2.1) 

where f 

x(t) 

t 

f(t) + J F(s,x)ds 

0 

[ 0 , ,. ) ➔ CR and F (0,,.) x D[O,"') ➔ CR . 

LEMMA A2.2 Assume that f is continuous and bounded on [O,"') , and that 

there exist constants c1 , c2 and c3 such that for all t e [O,"') and 

for every x, ye G[O,"') the following two conditions hold. 

(A2.2) 

(A2.3) 

sup IF(s,x)I ~ c1 + c2 sup lx(s)I 
s~t s~t 

IF(t,x) - F(t,y)I ~ c3 sup lx(s) - y(s)I 
s~t 

Then there exists a unique solution X of (A2.1) in D(O,"') and this 

solution is continuous. 

PROOF. (i) Existence. Fix t > 0 and define for s e [O,t] the sequence 

{xn}nelN by 
0 

f(s) 

s 

xn+l(s) = f(s) + J F(r,xn)dr 

0 
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Then xn is continuous and for n ~ 1, 

s 

s 

J (F(r,xn) - F(r,xn_ 1))drl 

0 

SJ IF(r,xn) - F(r,xn_ 1 ) ldr 

0 

s 

S c3 J sup lxn(u) - xn_ 1(u)ldr 
0 uSr 

Since f is bounded, say lfl S c4 on [O,~) 

sup lxl(s) - xo(s)I S (Cl+ C2C4)t - est 
sSt 

and by induction we get for n = 0,1,2, ... , 

From this we conclude that for all s St 

n 
X(s) = lim xn(s) = lim (f(s) + E (xk(s) - xk_ 1(s))) 

n➔~ n➔~ k=l 

exists and is continuous on [O,~) . Furthermore, from (A2.3) we obtain 

sup IF(s,xn) - F(s,X)I S c3 sup lxn(r) - X(r)I ➔ 0, (n ➔ ~) 

sSt rSt 

Hence 
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s 

X(s) lim xn+l(s) lim ( f( s) +f F(r,xn)dr) 
n➔oo n➔oo 

0 

s 

f(s) +f F(r,X)dr 

0 

Since the foregoing holds for all t E [0, 00 ) , X is a solution of (A2.1) 

on [O,oo) . 

(ii) Uniqueness. Let x1 and x2 be two solutions of (A2.1) on 

[0, 00 ) and define for O ~ s ~ t < oo 

Then using (A2.3) we have 

s 

u(s) f F(r,X1) - F(r,X2)drl 

0 

s 

~ c3 f sup IX1(o) - x2(o)ldr 
0 a~r 

s 

= c3 f sup u(o)dr 

0 a~r 

and invoking LEMMA A2.1 we get u(s) 0 for all s e [O,t] . Since t 

was arbitrary, we conclude that for all t ~ 0, 
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