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CHAPTER 1. INTRODUCTION 

In this monograph expansions of solutions of linear delay equations in terms 
of generalized eigenfunctions are considered. First we recall these expan­
sions for linear ordinary differential equations. 

Consider the system described by the equation 

x(t) = ax(t) - dx(t) = (a - d)x(t), (1.1) 

where 
x := amount of some substance; 

a := creation rate; 

d := decay rate. 

The equation (1.1) is autonomous - i.e. translation invariant - so suppose 
that (1.1) governs the system fort ~ 0, then an initial condition xo E R 
uniquely determines, via x(O) = x0 , the future state x(t) at time t. 

Next, consider more generally the linear autonomous system of equa­
tions 

x = Ax, (1.2) 

where A is a n x n-matrix with constant coefficients. The general solution 
is given by 

(1.3) 

where xo E Rn and 

(1.4) 

The matrix eAt has the form 

n 

I: P;(t)e>.;t, (1.5) 
j=l 
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where the P; are n x n-matrix-valued polynomials and the >..; are eigenvalues 
of the matrix A; that is, the >..; are the roots of the characteristic equation 

det(zl - A) = 0. (1.6) 

The coefficients of the matrix valued functions P; are determined from 
the generalized eigenvectors v corresponding to the eigenvalue >..;, i.e. the 
solutions of the equation 

(1.7) 

for some m. As a consequence of the above representation of the solutions 
of equation (1.2), complete information is obtained from the eigenvalues of 
the matrix A. 

Next, consider the method of Laplace transformation. Laplace trans­
formation of the equation (1.2) yields 

(1.8) 

where 

L{x }(z) = 1= e-ztx(t)dt. (1.9) 

Choose 'Y such that all the zeros of 

det(zl - A)= 0 (1.10) 

lie to the left of the line lR( z) = 'Y. From the inversion formula for the 
Laplace transform we obtain the following representation: 

1 
x(t) = -2 . 

1ri J 
~(z )='i' 

for t > 0 (1.11) 

of the solution x of equation (1.2) with initial condition x(O) = x0 . Remark 
that the so-called characteristic matrix of equation (1.2) 

(zl - A)-1 = adj(zJ - A) 
det(zl - A) 

(1.12) 

is a rational matrix-valued function that is 0( fzT) on large circles in the 
complex plane. Hence, from Cauchy's residue theorem and the representa­
tion (1.11) we deduce 

n 

x(t) = E z~!s. ez'(zl - A)- 1x0 , 

j=l ' 

(1.13) 
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where Aj is a zero of det(zJ - A) = 0. A staightforward calculation of 
Laurent series shows that the residues are exactly of the form (1.5). Con­
sequently, the solution x(t) of (1.2) with initial condition x(O) = xo can be 
represented as a finite sum of residues 

n 

x(t) = E Pi (t)e.\;t, (1.14) 
j=l 

where Pj(t) = ~(t)xo is an n-vector-valued polynomial int. 
The solution x of equation (1.2) is a function oft and the initial condi­

tion xo. To study the flow defined by the solutions of equation (1.2), define 
the family of bounded linear operators 

(1.15) 

So T(to) maps the state at time t = 0 onto the state at time t = to. From 
this definition the following properties are clear: 

(i) T(O) = I; 
(ii) For all t1,t2 ER: T(t1 +t2) = T(t1)T(t2); 

(iii) T(t)x -+ T(to)x as t-+ to, 
(uniformly in x with llxll :5 1). 

After this introduction to linear systems of the form (1.2), we introduce 
more realism in the model (1.1) by taking some aspect of age into account. 
Suppose that (1.1) describes the evolution of some collection of individuals 
and assume that an individual that was born at time t = to can take part 
in the reproduction process fort 2::: t 0 + h, where h denotes the time lag, or 
delay in the system ( and where the decay in a time interval of length h is 
incorporated by an adaptation of the birth parameter a). 

Thus we obtain an autonomous linear differential difference equation 

i:(t) = ax(t - h)- dx(t). (1.16) 

The first question that comes to mind is the following: what is the initial 
value problem for equation (1.16)? More specifically, what is the minimum 
amount of initial data that must be specified in order for equation (1.16) 
to define a unique function for t 2::: 0. Clearly, 

i:(t) _ { given function - dx(t) 
- ax(t - h) - dx(t) 

will do. 

for O :5 t :5 h, 
for t 2::: h. 

(1.17) 
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Hence, the initial condition that must be specified is a function on the 
whole interval [-h, 0]. We shall formulate equation (1.16) as the following 
initial value problem 

x(t) = ax(t - h) - dx(t) for t 2'.: 0, 

x(t) = cp(t) for - h ~ t ~ 0, 
(1.18) 

where cp is a given continuous function. 
Note that from ( 1. 17) that we can explicitly calculate the solution x 

of (1.18) by the method of steps (i.e. we use cp such that the solution x on 
[0, h] satisfies the linear inhomogeneous ordinary differential equation 

x(t) = acp(t - h) - dx(t) with x(0) = cp(0), 

which can be solved by means of the variation-of-constants formula. And 
then we use the solution on [0, h] to calculate the solution on [h, 2h] in the 
same manner, et.c.) 

Define the state space to be C = C[-h, 0]. Provided with the supremum 
norm 

ll'Pllu = sup jcp(t)I, 
-h~t~O 

the state space C becomes a Banach space. 
The next goal is to understand the geometric behaviour of the solutions 

of equation (1.18) when they are interpreted as orbits in the state space C. 
Define the state of the solution x at time t1 by 

for - h ~ T ~ 0. (1.19) 

Then we can define a family of bounded linear operators T(t) : C ---. C by 

(1.20) 

Frequently we will not express the cp dependence in our notation and simply 
write T(t)cp := x,. 

From the uniqueness of solut.ions of equation (1.18), it is obvious that 
the family of operators T(t) has the group property 

However, the operator T( t) is only defined for t 2'.: 0 and there will be no ex­
tension of { T(t) }1>0 to a. group of operators defined on R. This can be seen 
from the property that the solut.ion becomes more smooth with increasing 
t, i.e. T(nh)cp is n-times differentiable. Therefore, a possible definition of 



1 Introduction 5 

T(t) for negative t would impose additional smoothness conditions on the 
elements of the state space. 

The family of operators { T(t) h~o is called a C0-semigroup of operators, 
smce 

(i) T(O) = I; 
(ii) For all t1, t2 ~ 0 : T(t1 + t2) = T(ti)T(t2); 

(iii) For every cp E C : 
lim IIT(t)cp - cpllu = 0 
t!O 

(translation along a continuous function is continuous). 

With every Co-semigroup { T(t)} on a Banach space X we can associate 
an infinitesimal generator A defined by 

Acp = lim ! [T(t)cp - cp] 
t!O t 

(1.21) 

for all <p E '.V(A), that is, for all <p E X for which the limit exists in the 
norm topology of X. In the example (1.15) the infinitesimal generator is 
just the n x n-matrix A and hence, a bounded operator from Rn into Rn. 
In case { T(t)} is defined by (1.20) the operator A is unbounded: 

Acp = <j; 

for all <p E '.V(A), where 

'.V(A) = {cp EC I <j; EC, <j;(O) = acp(-h)-dcp(O)}. 

(1.22) 

(1.23) 

Remark that all information about the particular equation appears in the 
domain of .. A! 

To obtain t.l1e chara.cteristic equation for (1.18) we must try to find 
nontrivial solutions of equation ( 1.18) of the form 

(1.24) 

If we substitute expressions of this type into the delay differential equation 
we arrive at 

Ae>-txo = ae>-te->-hxo - de>-txo, 

Hence, a:(t) = e>-txo is a solution of (1.18) if and only if 

(1.25) 

(1.26) 
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This is a transcendental equation and it has infinitely many solutions lo­
cated in some left half plane ~( z) :S 1 . The "infinity" reflects the fact 
that the state space is infinite dimensional Hence, it is not obvious that 
the solutions of equation (1.18) can be obtained as linear combinations of 
the generalized eigenfunctions. Even without discussing the question of 
representation of solutions in terms of series, it is not obvious that the 
asymptotic behaviour of the solutions of equation (1.18) is determined by 
the solutions of the characteristic equation (1.26). We shall attack these 
problems through the Laplace transform. 

The transformed equation (1.18) reads 

( 1.27) 

where 

L{x-h}(z) = 100 e-ztx(t - h)dt. (1.28) 

Choose ,o such that all the zeros of 

z - ae-zh + d = 0 

lie to the left of the line ~( z) = ,o. From the inversion formula for the 
Laplace transform we obtain the following representation: 

for t 2: 0 (1.29) 

of the solution of equation (1.18). 

From equation (1.27) it is not difficult to see that the residues of 

are just generalized eigenfunctions and to find expansions as linear combina­
tions of these generalized eigenfunctions we can shift the contour ~( z) = 1 
to the left. Using simple contour integration and the Riemann-Lebesgue 
lemma one can prove 

x(t) = I:: Pj(t)e>.;t + o(e7 t) 
3l:(>.;)>-r 

as t-+ oo, 

where for each j, the polynomial Pj is an n-vector polynomial. 

( 1.30) 
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Hence the asymptotic behaviour of the solutions of the equation (1.18) 
is indeed determined by the roots of the characteristic equation (1.26). From 
the results of Bellman and Cooke [4] about the growth properties of (1.26), 
one can actually prove that the series in (1.30) converges to the solution for 
t > h, i.e. 

for t > h. (1.31) 

See Banks and Manitius [2], Levinson and McCalla [27] for the details. 
So for scalar equations the state space approach provides, embodied in 

(1.30) and (1.31), the natural generalization of the finite dimensional theory 
for linear autonomous differential equations. We emphasize, however, that 
in case we are dealing with systems of delay equations peculiar phenom­
ena may occur. For example, consider the system of differential difference 
equations 

a:(t) = Ax(t - h) - Dx(t), (1.32) 

where now A, D denote n x n-matrices. The exponential estimate (1.30) 
still holds and if A is non-singular, Banks and Manitius [2] proved that 
{1.31) also holds. However, if A is singular, the system (1.32) has solutions 
that are identically zero after finite time. The existence of these solutions 
implies that (1.31) can not hold fort~ h. 

The asymptotic behaviour {1.30) will be the central theme of our work. 
Consider the following class of linear autonomous equations, so-called re­
tarded functional differential equations (RFDE), 

a:(t) = foh d((O)x(t - 0) for t ~ 0, 
(1.33) 

Xo = <p, 

where <p E C = C[-h, O] and ( is a n x n -matrix-valued function that 
belongs to NBV[O, h], i.e. each element (ij of ( _is of bounded variation, 
satisfies (i;(O) = 0 and is continuous from the left. 

For this class of equations, we shall carefully analyse both the behaviour 
of the sums 

I: P;(t)e>.;t 

~(>.; )>"l' 

and of the remainder term 
o( e"l't) as r - -oo 
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in (1.30). To study the remainder term in (1.30), we first consider the 
concept of small solutions: a solution x of (1.33) is called a small solution 
if for every k E R 

lim ektx(t) = 0. 
t-+OO 

Let { T(t)} denote the semigroup associated with (1.33). Let 

N(T(t)) = {<p EC I T(-t)cp = 0} 

denote the null space of { T(t) } and let 

R(T(t)) = {<p EC I 3x EC: T(t)x = cp} 

denote the range of { T(t) }. Define the ascent a of { T(t)} by 

a=inf {t I\:/( >0 :N(T(t)) =N(T(t+c))}. (1.34) 

Let 8 denote the ascent of the adjoint semigroup {T*(t)}. The following 
results are due to Henry [20]: 

(i) a, 8 :S nh; 

(ii) Small solutions are in the kernel of T(a); 

(iii) The closure of the generalized eigenspace Mc equals 

Mc = R( T(8)). 

Note that because of (iii), the condition c5 = 0 implies completeness 
of the system of generalized eigenfunctions - i.e. Mc = C. Also note that 
R ( T(t)) "decreases" with increasing time t because the solution becomes 

more smooth, but that the closure of the range R( T(t)) becomes stable 
after finite time. 

The following questions were the motivation for a further study of the 
linear autonomous RFDE (1.33). 

QUESTION I. Does a = 8 hold? 

QUESTION II. Is there an explicit characterization of the ascents a, 8 in 
terms of the kernel ( such that completeness can be verified easily? 

QUESTION III. Is there an explicit characterization of the closure of the 
generalized eigenspace Mc such that it can be verified when the semigroup 
{ T(t)} acts injectively on Mc? 
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QUESTION IV. Does the state space decomposition 

C =Mc$ N( T(a)) hold? 

9 

And in addition; Is Mc the proper state space restriction when complete­
ness fails? 

QUESTION V. Recall the asymptotic est,imate (1.30). What are the con­
ditions on the initial condition <p so that all information about the solution 
x( • ; <p) is contained in the series expansion 

I: pj(t)e»;t 
!R(>.; )>'Y 

as , --+ -oo? 

Since the initial condition <p is given, it is not necessary to expand <p itself 
in a series and one can ask for conditions on <p such that 

for t > h. (1.35) 

In this tract we shall discuss and answer the above questions. For 
Question V, only a partial answer is available. Further research is needed 
to study summation techniques to see, in case (1.35) does not hold, in which 
sense the series of residues corresponding to a solution still contains all the 
information about this solution. 

For our analysis we shall exploit the close connection between delay 
equations and Volterra convolution equations and develop an exponential 
type calculus that yields det,ailed information about the solution from the 
properties of the Laplace transform of the solution. 

The organization of this tract is as follows. Chapter 2 contains a short 
course on Riemann-Stieltjes integrals and Chapter 3 recalls some basic facts 
about Laplace transformation. In Chapter 4, we introduce an exponential 
type calculus for a class of entire functions which will turn out to be very 
useful when deriving, in Chapter 7, convergence criteria for the Fourier type 
expansion 

L Pi(t)e>.;t 
!R(>.; )>'Y 

of the solution of (1.33). 

as , --+ -oo 

In Chapter 5 we study the asymptotic behaviour of entire functions of 
the form 

(1.36) 
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where 1Ji E SBV[O, Ti] for 1 ~ i ~ n, i.e. 1Ji E NBV[O, Ti] with the additional 
property that there exists a constant bij such that 

i.e. the coefficients (ij of ( jump before they become constant. 

Since 11i E SBV[O, Ti] we can associate with F a Newton polygon and 
study the asymptotic behaviour of F using this Newton polygon. The 
results extend and generalize results obtained by Bellman and Cooke [4]. 

We also study the behaviour of F when we drop the jump condition 
and assume that 7Ji E NBV[O, Ti]. In this case the Newton polygon does not 
control the behaviour of F and we can not use the special structure of F 
anymore. However, we can apply classical complex analysis to derive esti­
mates for F which turn out to be sufficient for the applications in Chapter 
7. 

In Chapter 6, we study the Volterra convolution equation 

a: - (*a:=/, (1.37) 

where/ is a continuous function defined on [O, oo) that is constant on [h, oo) 
and the kernel ( is an x n-matrix-valued function that belongs to NBV[O, h]. 
First we obtain an analytic continuation for the Laplace transform of a: 

where A- 1 (z) denotes the inverse of the characteristic matrix 

From this analytic continuation we derive the asymptotic estimates 

a:(t) = L Pi(t)e>.;t + o(e-Y') 
~(>.; )>-r 

as t --+ oo, 

(1.38) 

(1.39) 

(1.40) 

where the summation extends over the zeros Aj of det A ( z) in the right half 
plane ~(z) > 1 and 

(1.41) 
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In Chapter 7 and Chapter 8 we study the behaviour of the remainder 
term in the asymptotic expansion (1.40). First we restrict ( to the class 
SBV[O, h] and study conditions on f under which 

for t > 0, (1.42) 

uniformly on compact sets. Next we show that for ( E SBV[O, h] the series 
expansion always converges after finite time. 

For arbitrary ( E NBV[O, h] we can not prove such results. The reason 
is that for ( E SBV[O, h] the exponential type calculus controls the exponen­
tial growth of ( 1.38) and the jump condition on ( controls the polynomial 
growth of (1.38). If we drop the jump condition on ( we can not control this 
polynomial growth anymore. Therefore, conditions on f such that (1.42) 
holds are difficult to formulate. This also implies that it is not clear whether 
the series (1.42) converges after finite time. \Ve can, however, state simple 
conditions on f such that the solution x can be given by a limit of con­
vergent series expansions. To formulate these conditions, let F denote the 
Banach space of all continuous functions defined on [O, oo) that are con­
stant on [h, oo) provided with supremum norm. We first characterize A:F, 
the closure of the set of all forcing functions f E F such that the solution 
x = x( •; f) of the Volterra convolution equation (1.37) has a backward 
continuation over (-oo, O], i.e. for all o- E [O, oo) there exists an g E F such 
that 

( 1.43) 

The characterization of A:F can be formulated as follows: f E A:F if and 
only if the analytic continuation of the Laplace transform of x has no expo­
nential growth in the left half plane, i.e. in formula (1.38) the exponential 
type of the numerator is less than or equal to the exponential type of the 
denominator. 

In Chapter 8 we study the remainder term in (1.40) and we give a 
characterization of the set of solutions x such that 

as t-+ oo (1.44) 

for all , E R. From (1.44) it follows that L{x} is entire. An application of 
the Paley-Wiener theorem now yields Henry's theorem on small solutions: 
there exists some finite C\' 2 0 such that 

x(t) = 0 for t > C\'. (1.45) 

The main result of this chapter will be an explicit expression for a: solely 
in terms of the kernel (. An application of the results of Chapter 7 and 8 
yields the following result: Backward continuation is unique williin A;F, 
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In Chapter 9 we apply the results of Chapter 7 to the fundamental 
solution and give a series expansion for x( ·; f) of (1.37) under weaker con­
ditions on the forcing function f then used in Chapter 7. 

In the Chapters 10 and 11 we give an introduction to the semigroup 
approach for RFDEs 

h 

x(t) = lo d((O)x(t - 0) for t 2: 0, 
(1.46) 

Xo = cp, 

where cp EC= C[-h, 0] and we consider the method of spectral projections 
developed by Hale [18] and others. 

Since for this class of problems the spectral projections have a finite 
dimensional range, the method yields the state of a RFDE to be decom­
posed into the sum of a projection onto a finite-dimensional generalized 
eigenmanifold in the state space and a residual term (recall the asymptotic 
estimate (1.30)). \Ve shall investigate whether or not the finite-dimensional 
projection of the state of a RFDE converges to its infinite-dimensional state 
as the generalized eigenmanifold is extended to include the infinite set of 
all generalized eigenfunctions. For ( E SBV[0, h], we prove that this is true 
at least for t 2: nh, i.e. for every cp E C 

'Y.!!l.:\)T(t )cp - I: P>.; 'Pllu = 0 
~(>.; )>-y 

(1.47) 

for t 2: nh, uniformly on compact sets, where P>.; : C ---+ M>.; denotes the 
spectral projection with respect to >.;. 

For general ( E NBV[0, h] this result is not clear. However, we can 
prove that the closure Mc of the generalized eigenmanifold is a { T(t) }­
invariant subspace on which the C0-semigroup { T(t)} defined by translation 
acts injectively. This answers a quest.ion raised by Hale in his book [18; 3.2]. 

Chapter 12 deals with perturbed dual semigroups and applies the re­
sults developed by Clement., Diekmann, Gyllenberg, Heijmans and Thieme 
[6]. These results present a new variation-of-constants formula and yield a 
new interpretation of the equivalence between delay equations and Volterra 
convolution equations which can be used instead of the results of Chap­
ter 10. !vloreover, we can associate with the dual semigroup { T*(t)} on 
C* £:! NBV[0, h] a Volterra convolution equation. This makes it possible 
to apply the theory developed in Chapter 6, 7 and 8 to the restriction 
of { T*(t)} to the norm-closed invariant subspace on which { T*(t)} is 
strongly-continuous. From this result we obtain 

Q' = 8, (1.48) 
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where a denotes the ascent of { T(t)} and 8 denotes the ascent of { T* (t) }. 
Finally a combination of all results derived so far yield the following "al­
most" decomposition 

C = Mc 67Jl(T(a) ). (1.49) 

In Chapter 13, we present some examples related to our results. From 
these examples it will become clear that the techniques presented in this 
tract to prove our results can be applied directly to the examples and that 
usually we obtain stronger results in this manner . We emphasize that from 
the practical point of view the characterization of A:F is very important 
since it yields, at least for differential-difference equations, relations for 
Mc or A:F. This means that one can analyse the convergence properties of 
the spectral projection series when the state <p is restricted to Mc and this 
results in much stronger convergence results. 

NOTATION AND TERMINOLOGY 

Let R+ denote the set of nonnegative real numbers and let M(R) denote 
the space of n x n-matrices with elements in R. Let I • I denote the Euclidean 
norm on Rn, en and M(R), where in the last case this norm is defined by 
the smn of the Euclidean norms of the matri..x: elements. 

Introduce weigthed function spaces of Lebesgue measurable functions 
defined on R+ : let p ~ 1 be a natural number, let , E R+ and let 
LP ( R+; 1 ) denote the space of functions defined on R+ with values in 
M(R) such that 

t 1-+ f(-t)e--rt 

is LP-integrable provided with the norm 

11/IIP,1' = II/(· )e-1' · 11P 
= (j lf(t)e--rtlPdt)¼. 

R+ 

Let Co ( R+;,) denote the space of continuous functions f defined on R+ 
with values in M(R) such that 

as t-+ oo 

provided with the norm 

11/11«,l = sup 1/(t)e--r'I• 
!ER+ 
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CHAPTER 2. FUNCTIONS OF BOUNDED VARIATION 

In line with general usage in the study of delay equations we shall work with 
kernels of bounded variation. A partition P( x) of [O, x] is a finite ordered 
set P = {uo,0-1, ... ,uN} such that O = <ro < 0-1 < ··· < O'N = x. The 
width of the partition is 

Let f be a given function, the total variation function V(f) is defined by 

N 

V(f)(x) = sup L 1/(u;) - /(u;-1)1, 
P(x) j=l 

(2.1) 

where the supremum is taken over all partitions P(x). In general, for O $ 
X $ y < oo, 

0 $ V(f)(x) $ V(f)(y) $ oo. (2.2) 

If V(f) is a bounded function, then (2.2) implies that 

T(f) = lim V(f)(x) 
X-+00 

(2.3) 

exists and is finite. In that case we say that / is of bounded variation, 
in short f E BV and we call T(f) the total variation of /. A complex 
function / is called of bounded variation if and only if ~(/) E BV and 
':s(/) E BV. A vector-valued function / is called of bounded variation if 
and only if all components of/ are of bounded variation. If both g and h are 
non-decreasing bounded functions then f = g - h is of bounded variation. 
Actually the following result, see Titchmarsh [37], shows that this property 
can be used to give an equivalent definition. 
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THEOREM 2.1. If f : R+ -+ Rn is of bounded variation, then f can be 
expressed in the form 

f = g - h, (2.4) 

where botl1 g and h are non-decreasing bounded functions. 

This characterization has some immediate consequences. 

COROLLARY 2.2. The sum, difference and product of two functions of 
bounded variation are of bounded variation. 

COROLLARY 2.3. If f : R+ -+ nn is of bounded variation, then 

f(r+) = limf(o-) exists for r E [O,oo) (2.5) 
<1jT 

and 
f(r-) = limf(o-) exists for r E (O,oo). 

<1fr 
(2.6) 

Moreover, the set of discontinuities off is at most countable. 

We call a function f E DV normalized if f (0) = 0 and f is continuous 
from the left at every point of R+. The class of these functions will be 
denoted by NBV[R+J-

A complex function f on R+ is said to be absolutely continuous if to 
every c > 0 there corresponds a 8 > 0 such that 

N N 

"I:,(f3j-<Xj)<8 implies "I:,IJ(f3j)-f(o:j)l<c, (2.7) 
j=l j=l 

whenever (o:1,f31), .. · ,(o:N,f3N) are disjoint intervals. Note that every ab­
solutely continuous function is uniformly continuous and that an absolutely 
continuous function is locally of bounded variation, i.e. of bounded varia­
tion on bounded intervals. The connection between functions of bounded 
variation and absolutely continuous functions is expressed by the following 
theorem due to Lebesgue, see for example [33; 8.17, 8.18] 

THEOREM 2.4. If f and g are in L 1 (R+) such that 

f(x) = fox g(t)dt. 

Then f E NDV[R+] and f is absolutely continuous with 

J'(x) = g(x) a.e. 

(2.8) 

On the other hand if f E NBV[R+J, tl1en f is almost everywhere differen­
tiable witl1 f' E L 1(R+) and 

f = fa +fa+ fs, (2.9) 

where the absolutely continuous part off is denoted by fa, the discrete 
singular part is denoted by f d and tl1e continuous singular part is denoted 
by ls• 
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The next theorem explains the importance of the class NBV[R+J and 
makes it possible to apply abstract integration theory. To formulate the 
result, recall the definition of a Borel measure. A Borel measure is a measure 
µ defined on the <r-ring generated by the compact subsets of R and such 
that /t( C) < oo for every compact subset C of R. The proof of the theorem 
can be found in [33; 8.14]. 

THEOREM 2.5. There exists a one-to-one correspondence between elements 
of NBV[R+J and Borel measures on R+ expressed by 

f(x) = 1t1([0, x]), (2.10) 

where f E NBV[R+J and µJ is a Borel measure. The above correspondence 
is one-to-one because of the normalization of f, i.e. f(O) = 0 and f is 
continuous from tlie left. 

Let f and g be integrable. For those t E R+ such that 

lat lf(t - s)g(s)Jcls < oo, 

define the convolution off and g by 

f * g(t) = lat f(t - s)g(s)cls. (2.11) 

The following theorem [33; 7.14] shows the existence off* g in L1 (R+). 

THEOREM 2.6. Suppose f,g E L1(R+)· Then f * g E L1(R+) and 

(2.12) 

Because of Theorem 2.5 we can extend the convolution to functions of 
bounded variation. Let a, (3 E NBV[R+J and define the Riemann-Stieltjes 
convolution by 

a* /3 = lat a(t - s)cl/3(s). (2.13) 

To give a meaning to this formula, let µex and µ.13 denote the corresponding 
Borel measures. From [33; Exercise 7.5] it follows that the convolution of 
the Borel measures µ°' and µ13 

Jtcx * µ13 ([O, t]) = J µa([O, t - s])clp13 ([O, s]) (2.14) 

R+ 
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defines a Borel measure on R+. Therefore, the convolution a * (3 defines an 
element of NBV[R+]. Furthermore, the Riemann-Stieltjes convolution is 
commutative and extends the ordinary convolution (2.11) in the following 
sense: Let a, (3 be absolutely continuous functions. Then we can write the 
corresponding Borel measures as follows 

dµa = fdm 

and 

dµ 13 = gdm, 

where m denotes the Lebesgue measure and /, g E L1 (R+). Hence, the 
convolution a * (3 is absolutely continuous and 

(2.15) 

In the sequel we shall use the convention that * denotes the Riemann­
Stieltjes convolut.ion if and only if it arises in the context of Riemann­
Stieltjes integrals, which we are going to define next. Let tp and / be 
two complex-valued functions on [a, b] C [O, oo ). For any partition P we 
introduce the sum 

N 

S(tp,P,f) = I:tp(Tj) (f(o'j)-/(<Tj-i}), (2.16) 
j=l 

where <Tj-l ::; Tj ::;; <Tj, Suppose a complex constant A E C exists such that 
for any t > 0 there exists an 8 = 8 ( t) > 0 such that 

IA - S(tp, P, !)I < t (2.17) 

for all partitions P with width µ(P) < 8 and any choice of the "interme­
diate" points Tj. Then we will call 'P Riemann-Stieltjes integrable with 
respect to f ( or in short tp E S(f)) over [a, b] and we shall write 

b 

A= 1 tpdf. (2.18) 

Let tp be continuous and/ E NBV[a, b]. By using upper- and lower sums for 
(2.16) we clearly see that the Riemann-Stieltjes integral exists. In general we 
can use Theorem 2.5 to give a unique meaning to (2.18). Let f E NBV[a, b] 
and let µ f denote the Borel measure corresponding to f. An application 
of the Raclon-Nikoclym theorem [33; 6.12) asserts that there exists a Borel 
function h with lhl = 1 such that 

(2.19) 
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where lµI, the total variation measure ofµ, is a positive Borel measure. As 
a consequence, we can define integration with respect to a Borel measure 
µ J by the formula 

J <pdµJ = J <phdlµJ I, (2.20) 

n.+ R+ 

where <pis any Borel measurable function on R+· 

The extension of the definition of the Riemann-Stieltjes integral by 
means of a Lebesgue integra.l makes it possible to apply results from abstract 
integration theory such as: Lebesgue's dominated convergence theorem and 
the Fubini theorem. The following theorem recalls the main results. Define 
L1(µ) to be the collection of all complex measurable functions <p on R+ for 
which J 11.Pldµ < 00. (2.21) 

R+ 

The members of L1 (µ) are called Lebesgue integrable functions ( with re­
spect to the Borel measure µ). 

THEOREM 2.7. If f and g belo11g to NBV[R+J aud if µf denotes the Borel 
measure co1'l'espo11diug to f. Then 

(i) Suppose { <pj} is a sequence of complex measurable functio11s on R+ 
such that 

(2.22) 

exists for every x ER+. If there exists a function x E L 1 (µ1) such 
that for every j 

l'Pj(x)I :S x(x) a.e. 

with respect to PJ, then <p E L 1(µ1) aud 

_lim j l'P - <pj ldf = 0. 
J-oo 

R+ 

(2.23) 

(2.24) 

(ii) Let <p be a Borel mcasural>le function 011 R+ x R+· Suppose tlrnt 

J ldf(x)I J l<p(a:, y)ldy(y) < oo, 

R+ R+ 

j df(x) j <p(x, y)cly(y) = j clg(x) j <p(x, y)df(y). (2.25) 

n,4 n.+ R+ R+ 
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(iii) If c.p is a continuous bounded function on R+. Then for all finite inter­
vals {a, bj 

1b c.pdf = c.p(b)f(b) - c.p(a)f(a) -1b f dc.p. (2.26) 

1\ioreover, 

b 

f c.pdf ~ sup {lc.p(x)l}(V(f)(b) - V(f)(a)). 
J a i•E [a,b] 

(2.27) 

Define the subclass NBV[a, b] of NBV[R+J by 

NBV[a, b] = {f E NBV[R+J : f(t) = 0 fort ~ a, f(t) = f(b) fort :::: b} 

and use for f E NBV[a, b] the following convention 

lb c.pdf = J c.pdµJ, 

R+ 

Because of Theorem 2.7 (iii), for every f E NBV[a, b] the mapping 

(2.28) 

defines a continuous linear functional on C([a, b]). The Riesz representation 
theorem [33; 6.19] shows that every continuous linear functional can be thus 
represented. 

THEOREM 2.8. Let A be a continuous linear functional on C[a, b]. There 
exists a unique f E NBV[R+J sucl1 tlrnt for all <.p E C[a, b] 

A(c.p) = (c.p,A) = .lb c.pdf (2.29) 

and IIAII = T(f) • 

In order to facilitate the application to delay equations we shall adopt 
two peculiar conventions. We shall write J df c.p instead of J c.pdf. If now c.p 
is a en-valued function we shall think of the values of c.p as column-vectors 
and the values of f as row vectors and still write J df <.p to denote 

(2.30) 
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Analogously every continuous linear mapping from C ([a, b]; en) into en 
can be uniquely represented by 

b 

cp I-+ 1 d(cp, (2.31) 

where ( is an x n-matrix whose elements belong to NBV[a, b]. For reasons 
which will become clear later, when we discuss the duality between delay­
and renewal equations, we shall take as domain of definition for the kernel 
( not the interval (-h, O] but the mirror image under time reversal [O, h]. 

In most of the examples we shall encounter the case that the matri.x­
valued function ( consists of finitely many jumps and an absolutely con­
tinuous part. According to the representation (2.9) the discrete singular 
part of ( then corresponds exactly of all the jumps of ( and the continuous 
singular part of ( is zero. 
Next consider a linear system of autonomous retarded functional differential 
equations (RFDE). 

EXAMPLE 2.9. Consider 

h 

x(t) = 1 · d((O)x(t - 0) for t ~ 0, (2.32) 

satisfying the initial condition 

x(t) = cp(t) for - h :S t :S O, (2.33) 

where the matri.x:-valued function ( belongs to NDV(O, h] and the initial 
condition cp is a given continuous function, iu short cp E C = C[-h, 0]. In 
the study of the behaviour of the solution of the above system of RFDE's 
it turns out to be useful to rewrite the problem as a Volterra convolution 
integral equation (or, as it is frequently called, a renewel equation). 

We split up the integral to separate the part involving the known cp 
from the part involving the unknown x: 

x(t) = lat d((0)x(t - 0) + lh d((0)cp(t - 0) 

= - t d0((t - 0)x(0) - Jo d0((t - O)cp(O) 
lo -h 

(recall that ( is defined to be constant on (h,oo)). 
Next we integrate from O to t and obtain 

x(t) - cp(O) = - t {'7 cl0((cr - O)x(0)clcr - t Jo cl0((cr - 0)cp(O)clcr. 
lo lo lo -h 
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So, because of Theorem 2.7 (ii) 

21 

x(t) - <p(O) = - {' de {' ((u - 0)dux(0) - 1° de {' ((u - 0)du<p(0) 
lo le 1-h lo 

= - f' ((t - 0)x( 0)d0 + 1° ( ((t - 0) - ((-0) )<p( 0)d0. lo J_h 

We summarize the end result of our manipulations as follows. The solution 
x of (2.32) satisfies the renewal equation 

X -( * X = f, (2.34) 

where by definition 

.f(t) = <p(O) + /_0
h (((t - 0) - ((-0))<p(0)d0. (2.35) 

REMARKS 2.10. 

(i) The so-called forcing function / defined by (2.35) is constant fort ~ h. 

(ii) The forcing function / defined by (2.35) is absolutely continuous. In 
fact for <p E C 

(2.36) 

is well-defined and even of bounded variation. 

(iii) The formula (2.35) makes perfect sense if <p(O) is given as an element 
of Rn while <p(0) for -h ~ 0 ~ 0 is given as an integrable function. 
Moreover, Delfour and Manitius [8] proved that the mapping defined 
by (2.36) has a continuous extension to a mapping from £ 1 [-h, O] --,. 
L 1 [-h, O]. So f is ~till absolutely continuous, although there is no 
explicit formula for f anymore. 

(iv) Partial integration shows that the derivative of the solution of the linear 
autonomous RFDE (2.32) also satisfies a renewal equation of the form 

x -( * x = h, 

where his defined on [O,oo) and is constant on the interval [h,oo). 
See Chapter 12 for detailed results about the close connection between 
delay- and renewal equations. 
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CHAPTER 3. THE LAPLACE TRANSFORM 

The Laplace transform of a function g defined on R+ is given by the infinite 
integral 

L{g}(z) = lim IT e-ztg(t)dt, 
T-oo lo (3.1) 

where the parameter z takes complex values. For each value of z for which 
the limit exists, a value L{g}(z) is defined. If g is a era-exponentially 
bounded function, i.e. 

lg(t)I ~ Ceuot a.e. 

Then for z in the half plane ~(z) > cro 

IL{g}(z)I ~ lim IT e-lR(z)tlg(t)ldt 
T-oo lo 

C 
~ ~(z) - cro' 

(3.2) 

or in words: the infinite integral (3.1) converges absolutely for z in the right 
half plane ~(z) > cr0 • Moreover, in this half plane, the complex function 
L{g} is bounded and depends analytically on the parameter z. 

In this chapter we state some properties of the Laplace transform and 
its complex inversion formula. A thorough introduction to the fundamental 
properties of the Laplace transform and its applications can be found in 
Doetsch [13] and Widder [41]. The following proposition indicates why the 
Laplace transform is so useful. 

PROPOSITION 3.1. If f and g are cro-exponentially bounded functions on 
R+. Then 

(i) If L{f}(z) = L{g}(z) for ~(z) > cro, then 

J(t) = g(t) a.e.; 
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(ii) For to~ 0 define ft 0 (t) = J(t +to), then 

(iii) For a ~ 0, 

L{eatf}(z) = L{f}(z - a) for ~f(z) > ero + a; 

(iv) 
L{f * g}(z) = L{f}L{g} for ?R(z) > ero; 

(v) Suppose 

h(t) = h(O) + lot f(s)ds, 

then L{h} converges absolutely in the half plane ?R(z) > max(er0 ,0) 
and 

1 
L{h}(z) = - (h(O) + L{f}(z)). . z (3.3) 

Because of the properties listed above we can apply Laplace transfor­
mation to linear functional differential equations in x, involving derivatives 
and differences, to arrive at linear algebraic equations involving only L{ x}. 
We shall next present an inversion formula for the Laplace transform, i.e. 
a formula which gives the function x in terms of the Laplace transform 
L{x}. Depending on the application we will use one of the following com­
plex inversion formulas which are special cases of general complex inversion 
formulas that can be found in Widder [41; 7.3-5] and Doetsch [13; 24.4]. 

THEOREM 3.2. Let g be a era-exponentially bounded function that is locally 
of bounded variation. Then for r > era and t > 0 we have the inversion 
formula 

g(t+) + g(t-) = 1· _1 1,+iw ztL{ }( )d 
2 lffi 2 . e g Z Z. 

W---+00 11"1 -y-iw 
(3.4) 

Fort= 0 we have 

g(O+) . 1 1,+iw 
- 2- = lnn -2 . L{g}(z)dz. 

W---+00 11"1 -y-iw 
(3.5) 

REMARK 3.3. The convergence of the complex line integral (3.4) does not 
necessarely imply the existence of the infinite integral 

1,+ioo 
. eztL{g}(z)dz. 

,-,oo 
(3.6) 
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The limit in (3.4) is called the principal value and will be denoted by 

2l. / ezt L{g}(z)dz = lim 2
1 .1-r+iw ezt L{g}(z)dz. 

11"i w-oo 11"i -y-iw 
L(-y) 

(3.7) 

where L(,) denotes the complex line ~(z) = 1 . 

We will mainly use the following application of Theorem 3.2. 

COROLLARY 3.4. If g is a uo-exponentially bounded function that is abso­
lutely continuous fort 2: to. Then for 1 > uo and t > to 

g(t) = 2~i J ez1L{g}(z)dz. (3.8) 

L(-y) 

From the formula (3.8) it follows that the value of the complex line 
integral is independent of the choice of 1 > uo. This can also be shown 
directly using complex integration. We shall demonstrate this in detail since 
the techniques that are used here will be used repeatly in the sequel. Define 
r Nb,,') to be the closed contour in the complex plane, which is composed 
of four straight lines and connects the points 1 -iN, ,' -iN, ,' +iN, ,+iN. 
Since L{g} is analytic in the half plane ~(z) > u0 , we can apply the Cauchy 
theorem to obtain for ,' > 1 

1 J 211"i 
L(PN("Y."Y')) 

ezt L{g }(z)dz = 0. 

Hence, by taking the limit N -+ oo 

2~i J ez1L{g}(z)dz = 2~i J eztL{g}(z)dz, 
L(-y) L(-y') 

if 

1
-r'+iN 

lim I ez 1L{g}(z)dzl = 0. 
N-±oo -r+iN 

(3.9) 

(3.10) 

(3.11) 

But this is a direct consequence of the next lemma, the so-called Riemann­
Lebesgue lemma, applied to L{y}. 

LEMMA 3.5. If f belongs to L1(R+), tl1en 

lirn I j eiNt J(t)dtl = 0. 
N-+±oo 

(3.12) 

R+ 
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The proof can be found in Hewitt and Stromberg [21; 21.39]. 

If L{g} possesses an analytic continuation to the left of ~(z) = 1 
we may be able to obtain information about the asymptotic behaviour of 
g(t) for t -+ oo, by shifting the contour of integration L('Y) to the left and 
taking account of the singularities we encounter. To follow this approach we 
first have to analyse the class of analytic functions involved in the analytic 
continuation of L{g}. This we shall do in the next chapter. 
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CHAPTER 4. THE EXPONENTIAL TYPE CALCULUS 

In this chapter we study the zero distribution and growth properties of a 
class of entire vector valued functions, which is large enough to include all 
the entire functions appearing in the sequel. 

DEFINITION 4.1. An entire function F: C-+ C is of order 1 if and only 
if 

l. loglogM(r) 1 nnsup 1 = , 
r--+oo og 7' 

(4.1) 

where 
( 4.2) 

An entire function of order 1 is of exponential type if and only if 

l. log M(r) E(F) 
ln1Sllj) = , 
r ..... oo 7' 

( 4.3) 

where O ::; E(P) < oo. In that case E(F) is called the exponential type of 
F. A vector-valued function P = (F1 , ... , F~i) : C -+ en will be called an 
entire function of exponential type if and only if the components Fj of F 
are entire functions of order 1 that are of exponential type. Furthermore, 
the exponential type will be defined by 

E(F) = max E(F-). 
1::;j::;n J 

( 4.4) 

Next, we define two classes of entire functions that will be studied in 
this chapter. 

DEFINITION 4.2. Let P denote the class of entire functions which can 
be represented by a polynomial of finite degree with coefficients that are 
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a finite Laplace transform of a function of NBV[R+J· Let P1 denote the 
subset of P such that FE P1 can be represented by 

where for j = 1, ... , l, we have 1/j E NBV[O, Tj] and 1/j </:. NBV[O, Tj], 

Define the following subclass of NBV[a, b] 

SBV[a,b] = {f E NBV[a,b] I 3t: t:::; band f(t-) ::/- f(t) = f(b)}, 

(4.5) 

and define the subclass J of P by the class of entire functions which can 
be represented by a polynomial of finite degree with coefficients that are a 
finite Laplace transform of a function of SBV[a, b]. Let J1 denote the subset 
of :; such that F E JI can be represented by 

(4.6) 

where for j = 0, ... , l we have 1Jj E SBV(O, Tj], 

REMARK 4.3. Partial integration of the coefficients shows that in general 
the representation for an element F of P is not unique. The restricted 
classes P1, J and J1 are such that the representation (4.5) or (4.6) is in­
deed unique. For these classes we can define the degree of F, denoted by 
deg(F) = I, as the highest power of z in the representation (4.5) or (4.6). 
The introduction of the restricted class J is needed to derive lower bounds 
for IFI, see Theorem 4.6 and Chapter 5. In general lower bounds are very 
difficult to obtain. For example, let 1/ be N-times differentiable and such 
that 

Then 

for 

for 

1 
t:::; 4' 

~ :::; t :::; 1. 

We start with a special case of the Paley-Wiener theorem (5; 6.9.1]. 

(4.7) 
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THEOREM 4.4. If F is an entire function which is uniformly bounded in 
the closed right half plane )R(z) ~ 0. Tl1en Fis of exponential type T and 
L 2-integrable along tl1e imaginary axis if and only if 

( 4.8) 

where 'PE L2 [0, r] and 'P does not vanish a.e. in any neighbourhood of T. 

Next we collect some consequences of the Paley-Wiener Theorem 4.4 
in a lemma. 

LEl\lMA 4.5. If F and Gare elements of P. Then 

(i) F is an entire function of order 1 with finite exponential type and 

E(F) = m?x Tj; 
J 

(ii) The product F · G belongs to P; 

(iii) The subclass J of P is closed under multiplication. 

PROOF. from the Paley-Wiener Theorem ,1,4 we derive 

( 4.9) 

So, the first prop-erty is a direct consequence of the definitions. Property 
(ii) follows directly from the Laplace transform property 

lar1 e-ztd1J1(t) lar2 e-ztd172(t) = lar1+r2 c-ztd'1]1 * 1J2(t), 

where '1]1 E NBV[O, r1], 112 E NBV[O, r2] and '1]1 * '1]2 denotes the Riemann­
Stieltjes convolution (2.13). An application of (2.14) states that the convo­
lution of two functions of bounded variation is again of bounded variation. 
Furthermore, if 7/1 and 1]2 belong to SBV[O, r2], then 171 *'1]2 E SBV[O, T1 +r2], 
smce 

for t ~ T1 + r2 

and 

This shows that J is closed under multiplication and the proof of the lemma 
is complete. I 
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To study the zero distribution of elements of P we will first study the 
zero distribution of elements of Jo, For the following result, the restriction 
to J O is necessary. See Young (43] for additional information. 

THEOREM 4.6. If F is an element of J of degree zero, i.e. 

( 4.10) 

Then tl1ere exist co11stants 'Y < 0, m, and J..1 sucl1 that all zeros of P are in 
the rigl1t half plane ~(z) > 'Y and such tlrnt in the left half plane ~(z) :S 'Y 

(4.11) 

Besides, for an appropriate choice of m, tl1e estimate (4.11) also holds in 
eacl1 finite strip 'Y < ~(z) < 7' as long as one stays bounded away from the 
zeros of F. 

PROOF. From Theorem 2.6 (iii) it follows that in the left half plane ~(z) :S 
'Y 

\ 1r e-ztd17(t)\ :S \e-zr\V(17)(r). (4.12) 

This proves the upper bound in (4.11). To prove the lower bound choose 
8 > 0 such that the variation of 1J over the interval (r - 8, r) is smaller then 
c Rewrite 

and apply the estimate ( 4.12) to the integrals at the right hand side. Then 
we obtain for 'Y sufficiently small in the left half plane ~( z) < 'Y 

\F(z)\ ~ \e-rz\ (\17(r)-17(r-)\- V(17)(r - 8)\ez 6\- c) 
2: m\e-rz \. 

(4.14) 

Next we want to prove that for each c > 0 there exists a number m > 0 
such that in the strip 'Y < ~(z) < 7 1 

outside the circles of radius c centered at the zeros of F. Denote the zeros 
of F by >. 1 , >. 2 , ... and suppose that such a constant m does not exist. Then 
there exist a positive constant c and a sequence z1 , z2 , z3 , ... of points that 
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lie inside the vertical strip 1 < ~(z) < ,', but outside the disks lz - Aj I ::; l 

such that 
_lim F(zj) = 0. 

J-+00 
(4.15) 

Write Zj = Xj + iyj, Since supj lxi I < ma..x(l"YI, l,'I), we may suppose 
without loss of generality that 

_lim Xj = X. 
J-+00 

Now define a sequence { Fj} of entire functions by 

Since F is bounded in an neighbourhood U of the closed strip 1 ::; ~( z) ::; ,', 
the sequence { Fj} is uniformly bounded on U. So from Montel's theorem 
[7; VIl.2.9], the sequence {Fj} forms a normal family. Accordingly, there 
exists a subsequence { Fjk} that converges uniformly on compact subsets of 
the strip 1 < ~(z) < "Y' to a limit function F. Since 

as j-+ oo, 

it follows that 
F(x) = 0. 

Since F does not vanish identically, Hurwitz's theorem [7; VIl.2.5] implies 
that all but a finite number of the Fj must have a zero inside the disk 
{ z : lz - x I < ½}. But this contradicts the fact that lzi - Ak I > l for all j 
and k and the theorem is proved. 111 

LEMMA 4.7. If Fis an element of Po, i.e. 

Then in any right lrnlfplane ~(z) > 1 

IF(z)I = 0(1) as lzl-+ oo. 

( 4.16) 

PROOF. From Theorem 2.6 (iii) it follows that in the right half plane 
~(z) > "Y 

( 4.17) 

Ill 

The following lemma is a direct consequence of the above lemma. 
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LEMMA 4.8. Suppose FE Zn+ Pn-1, i.e. 

(4.18) 

Then F has at most finitely many zeros in any given right half plane ~(z) > 
1 . In particular, there exists a 10 such that F has no zeros in the right half 
plane ~(z) > 'YO· 

PROOF. For a zero Zj of F we have 

( 4.19) 

Fix I E R and suppose that there exists an infinite sequence of zeros Zj 

of F with ~( Zj) > 1 and lzi I --+ oo, then because of Lemma 4. 7, equation 
(4.19) yields 

which gives a contradiction. The proof of the lemma is completed by noting 
that the zeros of F cannot have a finite density point since F is entire. 11 

For elements of class zn + P n-l we next describe the connection be­
tween the asymptotic properties of the distribution of the zeros and of the 
growth properties of the function itself. 

THEOREM 4.9. If F be an element of zn + Pn-1 and if .Xi, .X2, ... denote 
the zeros of Fin the left half plane ~(z) < 0. Then 

00 1 L ~( :f.") converges. 
j=l J 

( 4.20) 

PROOF. Since Fis an entire function of finite exponential type, the Lindelof 
theorem [5; 2.10.1) states that the sums 

1 
S(r) = """' - are bounded, L- z· 

\z;\:;r J 

(4.21) 

where (zj k::.1 denote the zeros of F different from zero. From Lemma 4.8 
it follows that F has at most a finite number of zeros in the right half plane 
~(z) > O. Since 'I] is real, the sum 

00 1 
I::-:-
j=l "'J 
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actually converges. Therefore, the sum 

f ~( ;. ) converges. 
j=l J 

I 

The next theorem describes the behaviour of elements of P in the left 
half plane 3~(z) < 0. 

THEOREM 4.10. If Fis an element of P. Then for almost all 0 E (½, 3;) 

1. log IF(reie)I - E(F) 0 
1111 ----- - - cos . 

r--+oo r 
( 4.22) 

For every fixed 00 E (O, ½), there exists a sequence rj, such that 1'j--+ oo 

and ·e 
1. log IF{rjei )I _ E(F) 0 . ll11 - - COS , 

J->00 1'j 

uniformly in ½ + Oo :S 0 :S 3; - 0o. 

PROOF. Since F has at most. polynomial growth on the imaginary a.xis we 
know that Joo log IF(±iy)ld . 

---,2,--- y exists 
l y 

and we can apply the Ahlfors-Heins theorem [5; 7.26]. I 

As a corollary we have a very easy calculus for exponential types of 
elements of P. 

COROLLARY 4.11. If F 1 and F2 are elements of P. Tl1en 

( 4.23) 

The following theorem characterizes the zero distribution of an element 
of Zn+ Pn-l· 

THEOREM 4.12. If Fis an element ofz"+Pn-l· Tlien tl1ezero distribution 
of F lrns the following properties. 

(i) The zeros Aj of F are located in a left lialf plane ~(z) < 10 and have 
a density fo ordinary sense: 

lim n(r) _ E(F) 
1·-00 r 1r 

(4.24) 
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where n(r) denotes the number of zeros satisfying I,\; I < r; 

(ii) Tlie zeros ,\ with 

where O < l < ½, have a density equal to zero, i.e. 

n*(1·) 
lim -- =0, 

r-OQ r 

where n*(1·) denotes the number of zeros satisfying l,\I <rand 

11' 31r 2 + l < arg(,\) < 2 - L 
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( 4.25) 

PROOF. The first statement of (i) was proved in Lemma 4.8. Because of 
Theorem 4.10 and the Lebesgue dominated convergence theorem we have 
for r tending to infinity 

From Jensen's formula [7; XI.1.2] 

l r n(s) 1 12,r . F(m) 
-ds = -2 log IF( 1·e'9) ld0 - log 1--1 I + m log r, 

o s 11' o m. 
( 4.26) 

where F has a zero at z = 0 of multiplicity m, it follows that 

-l 1r n(s) E(F') 
1· --ds- --

o s 11' 
as 1· __. oo. ( 4.27) 

For every k > 1 we have 

J.•kr ( ) 
n(1·) log k ~ ~ds 

r S 

lk1· n(s) 1r n(s) = --ds - --ds . 
• 0 s O s 

(4.28) 

A combination of ( 4.27) and ( 4.28) implies that for every l > 0 we can 
choose r so large that 

k -1 (E(F) ) n(1·) < -- -- + l 1·. 
log k 1r 

(4.29) 
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Taking the limit k ! 1 we obtain 

The proof that 

follows similar lines. 

In order to prove (ii) we recall that 

E I~(;. ) I converges. 
j=l J 

So, it follows that the sum 

* 1 1 * 1 I: 1-1 ~ -I: l~(-)1 converges, 
Aj cos C Aj 

where I:;* denotes summation over the zeros Aj with 

Hence 

7r 31r 
- + c < arg(>-.) < - - c 2 2 . 

1. n*(r) 0 un--=. 
r->OO r 

( 4.30) 

I 
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CHAPTER 5. THE ASYMPTOTIC BEHAVIOUR 

In this chapt.er we discuss the asymptotic behaviour of elements of zn+Pn-1 
and zn + Jn-l in more detail. The applications we have in mind concern 
the behaviour of quotients 

F 
G' 

(5.1) 

where FE Pn-l and GE zn+Pn-l in the left half plane ~(z) < 0. We shall 
describe two possible approaches, the first one uses the Newton polygon -
or distribution diagram - and exploits the specific form of elements of Jn-1 • 
The second approach uses complex analysis to show that the behaviour of 
(5.1) on large semi-circles in the left half plane is completely controlled by 
the behaviour of the Blaschke product 

oo 1-L IT >-· 
1 + : ' 

j=l >.; 
(5.2) 

where the product is taken over all zeros of Gin the left half plane ~(z) < 0. 
Our results give the asymptotic behaviour for a larger class of entire 

functions than considered by Bellman and Cooke [4]; however, the price we 
have to pay is that for this larger class of entire functions the asymptotic 
chains of zeros can not be given explicitly anymore and, in general, Theorem 
4.12 is all we can say about the asymptotic location of the zeros. 

Consider 
(5.3) 

where lo = 0 and for j = 1, ... , n the exponents lj are nonnegative real 
numbers. Assign to every term of (5.3) a point Aj with coordinates (lj, n -
j). 

DEFINITION 5 .1. The Newton polygon associated with H and denoted by 
N(H), is defined by the polygon determined by the upper convex envelope of 
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2 3 

FIGURE 5.1. The Newton polygon of z4 + wz3 + w2 z 2 + w½z + w2 . 

the set of points {Aj : j = 0, 1, ... , n}. The upper convex property implies 
that the slopes of the line segments of the Newton polygon are negative and 
decrease. 

The Newton polygon consists of a finite number of segments Lk with 
endpoints (Aik-i, Ajk) and slopes O:k, where k = 1, 2, ... , m. We are going 
to prove that corresponding to each endpoint Ajk there is a domain Wk C 
C x C so that 

m 

U wk= c x c 
k=l 

and 

(5.4) 

for (z, w) E Wk with lzl and lwzak I sufficiently large. 

EXAMPLE 5.2. Consider 

H(z,w) = z4 + wz3 + w 2/l + w!z + w2 . 

From Figure 5.1 we see that the Newton polygon of H has two line segments, 
L1 and L2 with respectively, o: 1 = -1 and a 2 = -2. 
Define the following domains 

W1 = { (z,w) EC x C: lzl4 > C1lwl 2 lzl 2 } 

and in the complement of this set 
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and :finally, 

We can choose C1 sufficiently large so that for (z,w) E W1, 

IH(z,w)l 2: I 1zl4 - c;½1zl4 -C1 1 1zl4 - c;11z1; - C1 1 lzl 2 I 
2: Clzl4, 

For ( z, w) E W 2 , we :first consider the terms on the line segment L 1 
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(5.5) 

Since (z, w) E TVf, we can choose lw- 1 zl-1 = lwza1 I sufficiently large so 
that 

lz4 + wz3 + w2z2l 2'.: i1w2z2I, 

Consequently for ( z, w) E W2 with lwza1 I and C2 sufficiently large, 

IH(z, w)l 2: I lz4 + wz3 + w2 z21- lw!zl - lwl2 I 
2: 1i1w2z21-c;1 1w2z21- c; 1 1w~zll (5.6) 

2: Clw2 z2 1, 

Finally for (z, w) E W3, 

Again we first consider the terms on the line segment L 2 to derive for 
lw-½ zl-2 = lwza2 I sufficiently large, 

lw2 z2 + wft.::I 2: lw½zl I 1- lw-½zl I 

2: i1w½zl, 

Therefore for (z, w) E W3 with lzl and lwza 2 I sufficiently large, 

IH(z,w)l 2: I lw2z2 + w½zl- lzl4 - lwllzl3 - lwl2 I 

2: lw½zl Ii- C1lzllwl-½ - C2lzllwl-1 - lzl-1lwl-½ I (5.7) 

2: Clw½zl. 
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With this example in mind we state and prove the general result. Let 
m denote the number of vertices on the Newton polygon and define the 
following domains 

Wo = { (z, w) EC X C : lzln > Colzln-h lwl1ii } 

and fork= 1,2, ... ,m-1 

wk= { (z, w) E {uj=C,1Wj V: lzin-jk lwl 1h > Cklzln-ik+l lwl1jk+l } 

and 

Wm={.u Wif• 
J=l 

We then have the following theorem 

THEOREM 5.3. Suppose tliat (lik, n-jk) is any vertex of tl1e Newton poly­
gon of H ( z, w). Then there are constants Ck, C > 0 sucl1 that 

IH(z, w)I ~ Clzin-ik lwl1h 

for (z, w) E Wk with lzl and lwz"'k I sufficiently large, bounded away from 
the zeros of H(z, w). 

PROOF. Although technical, the proof of this theorem is straightforward. 
We first give a lower bound for the sum of terms of H(z, w) corresponding to 
vertices on a segment Lk provided that lwz"'k I is large, bounded away from 
the zeros of H(z,w). Then we show for (z,w) E Wk with lzl sufficiently 
large, that this lower bound is in fact a lower bound for IH(z,w)I itself. 
For the terms of H ( z, w) corresponding to the vertices on a segment L k the 
powers of w and the powers of z are proportional, i.e. 

Therefore, we obtain 

I I: z11 -iwli I ~ lzln-jk lwl1h (1 - O(lql) ), (5.8) 
(i,li )ELk 

where q is defined by 
(5.9) 

For (z, w) E Wf_ 1 , 

1 C I a,. ,I -1· 
~ k-1 WZ •· 'k 1k-1. 

Since by construction ljk - lik-I > 0, we derive that lql can be made arbi­
t,rarily small for lwz"'k I sufficiently large. So 

I I: zn-iwli I~ ilzln-jk lwll;k 
(i,li)ELk 
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for (z, w) E W.1; with lwzai. I sufficiently large, bounded away from the zeros 
of H(z, w). 
To derive a lower bound for IH(z,w)I for (z,w) E W.1; and lzl sufficiently 
large we rewrite 

IH(z, w)I ~ 11 I: zn-iwl; I - I: zn-iwl; I 

where 

(i,l;)ELi. (i,l;)i'Li, 

~ lzln-ji, lwll;,. Ii - I: zh,-iwl;-1;,. I 
(i,l;)i'Li, 

~ lzln-ji. lwl1;" Ii- I: (lwllzl/3;) 1;-l;,. I, 
(i,l; )i'Li. 

j,1; -i 
/3i = ~-­

Ii - I;,. 

To complete the estimate we have to consider three cases: 

I i < j,1;; 

II i > j,1; and k < m; 

III i>im• 

CASE I. For i < ik we have by construction 

Ii < lik 
and 

/Ji > CXk, 

Hence for lwzai. I sufficiently large, the terms 

( lwllzl/3; )1;-I;,. , 

where {i, Ii) ¢ Lk and i < ik can be made arbitrarily small. 

CASE II. For i > ik we have by construction 

lik+i - Ii,. > 0 
and 

Since for (z, w) E wk 
1 > ck lwzO'k+l ll;k+l -1;,. ' 

we derive for Ck sufficiently large, that the terms 

( lwllzl/Ji )1;-1;,. ' 

where ( i, Ii) ¢ L k and i > j k can be made arbitrarily small. 

(5.10) 

(5.11) 
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CASE III. For i > im we have by construction 

and 

fk> O. 

Hence we conclude that for lzl sufficiently large the terms 

where ( i, I;) ¢ Lm and i > im can be made arbitrarily small. This completes 
the proof of the theorem. I 

As an application we consider the case w = e-z. So 

(5.12) 

In this case the domains Wk can be easily depicted in the complex plane. 
The left boundary of the lVi, can be represented by 

where by construction of the Newton polygon ai;- 1 increases as k increases. 
And since this boundary asymptotically behaves like the exponential func­
tion 

the boundaries do not intersect each other for lz I sufficiently large. 
And we can formulate the following corollary to Theorem 5.3. 

COROLLARY 5.4. Suppose tlrnt (lik, n - jk) is any vertex of the Newton 
polygon of H(z,e-z). Tl1en there is a constant Ck> 0 such that 

(5.13) 

for z E lVi, with lzl su!Hciently large, bounded away from the zeros of 
H(z, e-z). 

Recall the above derived estimates and make the following observation: 
for k = 1, 2, ... , n 

as z--+ oo, (5.14) 

bounded away from the zeros of H(z, e-z). 
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Imaginary axis 

real axis 

FIGURE 5.2. The domains Wk in the complex plane for lzl large. 

For a general element F E zn + Jn-l the situation is only a little 
bit different, since we can use the estimates proved in Theorem 4.6. To 
formulate the result we represent FE zn + Jn-l by 

F(z) =Zn+ 171 e-ztdr71(t)zn-l + · · · + 1Tn e-ztd1Jn(t) (5.15) 

and associate with F the exponential polynomial 

(5.16) 

Recall from Theorem 4.6 that because of the jump condition on 1Jk, we can 
find appropriate constants mk, Mk, and "fk < 0 so that 

rk 
mk je- rk z I ::; I} o e-zt d17k(t) I ::; .ivh je-rkz I (5.17) 
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for ~(z) < 'Yk• 

From observation (5.14) and estimate (5.17) we obtainthe following corol­
lary. 

COROLLARY 5.5. If FE zn + Jn-l is defined by (5.15) and if H(z, e-z) is 
defined by (5.16). Then tl1ere exist appropriate constants m, M, and 1 < 0 
such tliat 

m<I F(z) l<M 
- H(z,e-z) -

in tl1e left half plane ~(z) < 1 with lzl sufficiently large, bounded away 
from the zeros of H(z, e-z ). 

From the proof of theorem ,i,12 it follows that the zeros of F have a 
density. Therefore we can construct a sequence of contours C1 contained in 
the left half plane ~(z) < 0 so that 

(i) If z E C1, then lzl - oo as I - oo; 

(ii) The zeros of Fare bounded away from the contours C,. 

We shall study the behaviour of the following class of meromorphic 
functions on the contours C1 

G 
F' 

where GE Pn-1 and FE Zn+ Jn-l• 

First we associate a Newton polygon with F. 

DEFINITION 5.6. Let FE Pn and represent F by 

(5.18) 

(5.19) 

The Newton polygon of F will be defined to be the Newton polygon of H, 
the exponential polynomial 

(5.20) 

associated with F. 

Let N(G) denote the Newton polygon associated with G and let N(F) 
denote the Newton polygon associated with F. We write N(G) ~ N(F) 
to denote that the set enclosed by N( G) and the vertical lines x = O and 
x = E(G), is contained in the set enclosed by N(F) and the vertical lines 
x = 0 and x = E( F). Using this notation we can formulate the following 
corollary. 
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COROLLARY 5.7. IfG E Pn and FE zn +Jn-l are sucl1 that 

for z E C1 as l-+ oo. 

N(G) :S N(F). 

I G(z) I= 0(1) 
F(::) 
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(5.21) 

PROOF. Let H(z, e-z) denote the exponential polynomial (5.20) associated 
with F and represent GE Pn-1 by 

Since G E Pn-l, Theorem 4.6 now only yields an upper estimate for the 
coefficients of G: 

1fo"k e-ztdvk(t)I '.S .i\hle-cr1;zl 

for z E C1 and for some constant Nh. Since 

N(G) :S N(F), 

we derive from observation (5.14) and the estimate (5.22) that 

From Corollary 5.5 we have for z E C1 

I F(z) I . >m 
ll(z, e-z) -

(5.22) 

(5.23) 

(5.24) 

and hence a combination of (5.23) and (5.24) gives the desired result. 1 

If we replace the Newton polygon inequality by the exponential type 
inequality E( G) :S E( F) the above result is no longer true. 

COROLLARY 5.8. Suppose GE P 11 and FE :: 71 + J 11 _1 are sucl1 tliat 

E(G) :S E(F). 

Then 

(5.25) 

for z E C1 as l-+ oo. 



44 5 The asymptotic behaviour 

PROOF. If E( G) :5 E( F) then 

N(G) :5 N(F), 

. where F(z) = zn F(z). Hence we can apply Corollary 5.7 to G and F. I 

The remaining part of this chapter will be devoted to the study of the 
behaviour of 

G 
F' 

(5.26) 

where GE Pn-1 and FE zn + Pn-1• 

In this case the jump condition does not hold anymore for the coefficients 
of F. From Remark 4.3, we derive that we can not control the lower bounds 
for the coefficients of F anymore. Hence apart from the behaviour of F on 
the real- and imaginary axis, the specific form ( 4.5) of F yields no additional 
information. To derive some results in this general case we shall use complex 
analysis, since we only use the behaviour of (5.26) on the real- and imaginary 
axis, the results are less sharp then Corollary 5.8. The result we are going 
to prove states: If E(G) < E(F), then (5.26) has only polynomial growth 
on the contours C1, but now the degree of the polynomial growth on the 
contours C1 depends on I and can be arbitrarily large. 

We need some lemmata before we can prove the theorem. 

LEMMA 5.9. If (>.j) ">l are the zeros of F(z) in the left half plane ~(z) < 0 ,_ 
and the infinite Blaschke product B(z) is defined by 

00 1- ...!... II >.-
B(z) = -1 z'. 

+­j=l >.; 
(5.27) 

Then B(z) converges uniformly on compact sets bounded away from the 
points { -5.j}. 

PROOF. Let Bm(z) denote the finite Blaschke product 

~nd let d(z) denote the minimal distance between z- 1 and the points -5.;1, 
i.e. 
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Recall from Theorem 4.9 that 

00 1 I: I~( :f:") I converges, 
j=l J 

Since we can estimate 

we can find for every c > 0 an N E N such that for N < k ~ I 

and so, the lemma is proved. 
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(5.28) 

I 

LEMMA ,5.10. IfG E Pn-1 and PE zn + Pn-1 and if Pis defined by 

P( ,·) = G(z)B(z) 
~ P(z) . (5.29) 

Then P is an analytic functio11 of exponential t;ype in tl1e left half plane 
~((z) < O. 

PROOF. The function Pis clearly analytic in the left half plane ~~(z) < 0. 
Moreover, by applying the argument presented in the proof of Theorem 
6.4.5 of Boas [5], the function P is of exponential type in ~(z) < 0. This 
can be seen by writing the Hadamard factorisation for P 

00 

P(z) = Aiz Il(l- ~)e,:;-, 
w· 

j=l J 

where ( Wj )j~l denot.e the zeros of P. Because of Theorem 4.9 we can rewrite 
B as follows 

B ( ") - rroo ( 1 - f;-) Cr, rroo 2~( "t": )z 
~ - z e ' . 

j=l (1 + :, )e -r, j=l 

Hence 

p ( z) - A CZ IIOO ( 1 z ) T --- C --e1 
B(z) j=l Zj 
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for some c and where Zj denotes the sequence of finitely many zeros of F 
in the right half plane 3t(z) > 0, followed by the points {-~j}. Therefore 
in the left half plane 3t( z) < 0 

F(z) 
B(z) 

is an analytic function of order at most one [5; 2.6.5] and because of the 
Lindelof theorem [5; 2.10.1] of exponential type. Since the quotient of two 
functions of exponential type is of exponential type provided it is analytic, 
the proof of the lemma is complete. I 

LEMMA 5.11. If P is defl11ed by (5.29) arid if E( G) < E(F). Then 

1 
IP(z)I = O(~) 

as lz I _. oo in tlie left lrnlf pfa11e 3c( z) < 0. 

PROOF. Recall that GE Pn-1 and FE zn + Pn-1· Since IB(iy)I = 1 we 
obtain, because of the Riemann-Lebesgue Lemma 3.5 

IP(iy)I = 0( l~I ). (5.30) 

Next, we estimate IP(z)I on the negative real axis. Since IB(-x)I :S 1, the 
condition E(G) < E(F) and Theorem 4.10 imply that 

. IP(-x)I 
hm log · :S 0. 

X->00 X 
(5 .31) 

An application of Boas [5; 6.2.4] now yields 

as lzl ----> oo 

in the whole left. half plane 3c(z) < 0. I 

Finally we shall estimate IB(z)- 1 1 in the left half plane 3c(z) < 0. 

LEMMA 5 .12. Por every <T > 0 and each l sufficiently large, tliere are con­
stants C a11d m = m(l) so that on the contour C1 .we lrnve 

(5.32) 

PROOF. To provide the estimate we follow the method used by Ahlfors­
Heins [l]. Consider the Green's function relative to 3c(z) < 0 with pole at 
Aj 

(5.33) 
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It then follows that 
00 

loglB{z)I = Z:u(z,,\;), 
j=l 

Since z E C'1 is bounded away from the zeros {,\; );>1 we can define 

Fix l, let z E C'1 and write 

where 

and 

1 
B(z) 
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(5.34) 

First consider the set N1, The condition lz - ,\;12 $ ¼l,\;1 2 holds if and 
only if 

I z 12 1 :r,--1 $4. 
J 

Since this condition is definitely not satisfied for 

we see that the set N1 = N1(l) is finite and that for j E N1 

Next, rewrite (5.33) 

(5.35) 

Hence for j E N2, equation (5.35) implies 

(5.36) 
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Now choose No such that 

00 1 1 I: ~i(-) > --u, 
'-N Aj 2 J- 0 

because of (5.36) 

(5.37) 

where 
N3 = {j E N2 : j '.S No}. 

Hence for / sufficiently large, the finite sets N1 and N3 are both contained 
in the finite set 

Therefore we can estimate 

where the finite product over N 4 can be estimated by 

1 + ..L >.; + &. 
I II 1 _ >.; I :S II lzll z t >.; I 
jEN4 >.; jEN4 

:S lzlk(~)k 
{ 

(5.38) 

::; Clz Im' 

for some constants C and m and where k denotes the cardinality of N 4 . 

This proves the lemma.. I 

So we ha.ve proved the following theorem. 

THEORE!\f 5.13. If GE P 11 _1 and FE z 11 + Pn-1 are such that 

E(G) < E(F). 

Then for each sufficiently large l, tl1ere arc constants C and 1n = m(l) so 
that on the contour C1 

I G(z) I < c1~1m 
F(z) - ., ~ . (5.39) 
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Since m growths with l, this result gives no uniform bound for m like 
in the case FE zn + J n-l where we could estimate m ~ n. 

It is an interesting question to study the minimal conditions on 

such that m in the above theorem can be uniformly bounded. Is it for 
example sufficient for the continuous singular parts of all 7Jj to be zero? 

In the sequel we shall encounter two types of situations, one where we 
need the uniform bound on m and in that case we have to restrict ourselves 
to the z11 + Jn-l class and one where we do not need this uniform bound 
and where we can use the zn + P n-1 class. 
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CHAPTER 6. VOLTERRA CONVOLUTION EQUATIONS 

In this chapter we shall use Laplace transform methods to investigate the 
asymptotic behaviour of the solution of a Volterra convolution (or, renewal) 
equation 

X -( * X = f, (6.1) 

where ( is a matrix-valued function on R+ which belongs to NBV[O, h]. 

We start with the following "existence of a unique solution" result for 
equation (G.l). 

THEOREM 6.1. If, is sufflciently large and if f E L1(R+; 1 ). TJ1en the 
Volterra convolution equation (6.1) lrns a unique solution x E L 1 ( R+; 1 ) 
and 

X = f-R* f, (6.2) 

wl1ere the so-called resolvent R belongs to L 1 ( R+; 1 ) and is dellned as the 
unique (matrix-valued) solution of bot.Ji 

(6.3) 

PROOF. If y(t) = x(t)e-·yt. Then 

where 

and 
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Choose I so large that 

and define a mapping 

by 

Qy = (, * y + J. 

From Theorem 2.6 it follows that the convolution of two elements of L1(R+) 
belongs to L1 (R+) and the L 1-norm is less than or equal to the product of 
the L1-norms. Hence 

(6.4) 

and consequently Q is a contraction. It follows that Q has a unique fixed 
point, which can be obtained by successive approximations. The same proof 
applies to equation ( 6 .3). The expansion 

where R(t) = R(t)e-,t converges in L 1 (R+) and shows that 

and 

Hence 

R* ( = ( * R. 

Finally, if x satisfies (6.1) then 

R*x=R*(*x+R*f 

= R * X + ( * X + R * f. 

So 

Substituting this ident.ity into (6.1) we obtain (6.2). I 
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Our interest in renewal equat.ions comes from the close connection be­
tween renewal and delay equations presented in Example 2.9. Given this 
connection, the classes of forcing functions we have to consider are rather 
special, namely constant fort ~ h, see Remark 2.10. Recall (2.14) to de­
rive that the convolution of an element of L1 ( R+;,) and an element of 
NBV[R+J is absolutely continuous. Hence from equation (6.3), we conclude 
that the resolvent is locally of bounded variation. Now we can reformulate 
Theorem 6.1 in the form which we will use in the sequel. 

COROLLARY 6.2. If f E L1 ( R+; 1 ) such tliat f is constant fort 2: h. Then 
U1e Voltel'l'a convolution equation has a unique solution in L 1 ( R+; 1 ) that 
is absolutely continuous fort ~ h. 

Let F denote the Banach space of continuous functions on R+ that 
are constant on the interval [O, oo) provided with the supremum norm. Vve 
shall associate with (6.1) a family of operators { S(t)} acting on F such 
that 

3.'.t = ( * Xt + S(t)f, 

where xi(·)= x('t + • ). Since 

f+s 
;r(t + s) = Jo ((O)x 1(s - O)c!O + f(t + s), 

we obtain 

(6.5) 

(S(t)f)(s) = f(t + s) + 1t ((t + s - 0)x(O)d0. (6.6) 

Using representation ( 6 .2) and definition ( 6.6) for S(t) the following the­
orem can be proved [10], consult Definition 10.2 for the definition of a 
Co-semigroup. 

THEOREM 6.3. Tlw family of operators { S(t)} is a C0 -semigroup and the 
infinitesimal generator B of { S(t)} is defined by 

Bf= l + ((. )f(O) 

V(B) = {f E F: j + (( · )f(O) E F}. 

In Chapter 12 we shall return to the semigroup approach for renewal 
equations. For now we shall only use the semigroup property 

(6.7) 
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From representation (6.2) and equation (6.6) it follows that 

R( S'(h)) C V(B). 

Moreover, BS ( h) f is locally of bounded variation for every f E F. 

Since, in this chapter, we are interested in the large time behaviour 
of solutions of equation (6.1) the semigroup property (6.7) implies that -
without loss of generality- the forcing function f can be restricted to 'V(B), 
the domain of the generator. Hence from Theorem 6.3, the solution x( ·; f) 
of (6.1) is absolutely continuous fort 2: 0. 

Because of the above remarks and the properties of the Laplace trans­
form, listed in Proposition 3.1, we can Laplace transform the renewal equa­
tion (6.1) to obtain in some right half plane ~(z) > -y: 

L{x} = L{(}L{x} + L{f}. (6.8) 

Since ( and f belong to NBV(O, h], we can rewrite equation (6.8) such that 
it makes sense in the whole complex plane 

(6.9) 

Equation (6.9) yields the analytic continuation to the whole complex plane 
for L{ x}. The possible singularities of L{ x} are the singular points of the 
so-called characteristic matrix of the renewal equation (6.1) defined by 

(6.10) 

In order to be able to apply the Laplace inversion formula we first have to 
analyse the inverse A -l ( z) of the characterist.ic matrix. 

LEMMA 6.4. Tl1e determinant; of tl1e characteristic matrix A(z), can be 
written as follows 

(6.11) 

So det. A( z) is an entire fonct.io11 and Jrns exponential type 

E(detA(z)) ~ nh. (6.12) 

PROOF. The results follow directly from the exponential type calculus 
presented in Chapter 4. I 
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real axis 

FIGURE 6.1. In the hatched domain lzl > C 1 e-h3l:(z). 

Because of the above lemma we can apply Theorem 4.12 to obtain 
information about the location of the zeros of <let 6.(z). The following 
lemma describes the set VV0 , introduced in Chapter 5, for <let 6.(z). 

LEMMA 6.5. Tl1ere exist constants Ci, C2 > 0 so that 

fol' lzl 2: C1 le-hz I. 
PROOF. From the representation (6.11) we obtain the estimate 

(6.13) 

For 

Hence, the result follows. Ill 

The above lemma has an easy corollary. 
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COROLLARY 6.6. 111e entire function <let A(z) lrns no zeros in tl1e domain 

{z: lzl > C1e-hiR(z)} 

for C1 sufflciently large. Consequently, tliere are only finitely many zeros 
in eacl1 strip 

-oo < ,1 < ~(z) < ,2 < oo 

and det A(z) has a zero free right lrnlf plane ~(z) > ,. 

Now we turn to a representation for A -l ( z). Rewrite 

A-l(z) = adj.6.(z)' 
det A( z) 

(6.14) 

where adjA(z) denotes the matrix of cofactors of .6.(z), i.e. the coefficients 
of adjA(z) are the (n - 1) x (n - 1) subdeterminants of A(z). Because of 
the exponential type calculus presented in Chapter 4 we have the following 
representat.ion for the cofactors: 

where 

Also 

n-l kh 

( l. A( )) , n-1 ~ / -ztd (t) n-l-k acJu z ij = UijZ + L- ln e T/ijk z , 
k=l O 

6·· - { 1 IJ - 0 
for -i = j, 
for -i-/= j. 

E((adj.6.(z))iJ ~ (n - l)h. 

Rewrite equation (6.9) as follows 

adj..6.(~) 1h L{;c}(z) = .~ (/(0) + e-ztdf(t)). 
det ~(z) o 

(6.15) 

(6.16) 

On account of Corollary 6 .6 we can choose 1' such that <let A( z) has no 
zeros in the right half plane 3c(z) > ,. Hence, the Laplace transform L{x} 
is analytic in this half plane. So, from Corollary 3.4 and the remarks made 
about shifting the contour, we obtain the following representation for the 
solution x = x( ·; f) of the renewal equation (G.1) 

·( ) - 1 f zt adjA(z) ( ( ) {h -zt ( ) ) 
x t - 21ri e <let A(z) f O + lo e df t dz for t > 0. (6.17) 

L(-y) 

Next we derive the asymptotic behaviour of x(t) as t--+ oo, by shifting the 
contour of integration to the left. First we analyse the singularities of 

II(::, t) = czt adj.6.(z) (f(O) + ( 1 c-ztdf(t)). (6.18) 
det A(z) · · lo · 

Clearly the only singulariti,~s arc poles of finite order, given by the zeros of 
det .6.(z). 
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LEMMA 6. 7. If Aj is a zero of <let~( z) of order 1n>.;, then the residue of 
H ( z , t) for z = >. j equals 

(6.19) 

where Pi is a polynomial i11 t of degree less than or equal to (m>., - 1). 

PROOF. We calculate the coefilcient. of (z - >.j )-1 in the Laurent expansion 
of H(z,t) in a neighbourhood of z = Aj, 

1 adj~(z) )-m>, 
~- (z)= det~(z) =.Lm>.,(z->.j ; +···+Mo+··· 

h oo 

J(O) + 1 e-ztdf(t) = L ak(z - >.jl, 
O k=O 

oo . k 

ezt = e>.;z c(z->.; )i = c>., t L ~! (z - Aj )k. 

k=O 

Since th{~ residue in z = Aj equals the coefiJ.cient of the (z - >.1 )- 1-term of 
the Laurent. series of II (;:, l) iu a neighbourhood of z = >. j, a multiplication 
of the abov,· 8Cries expansions yields the desired result. I 

Denote t.hc zeros of det. ~( z) by >. 1, >.2,.. .. On account of Corollary 
6 .6 we can define a sequence { 11} such that the number of zeros of clct ~( z) 
with real part strictly between 11 and I equals/. Define 1'(/, 11) to be the 
closed coutour in the complex plane, which is composed of four straight 
lines and connects the points 11 - iN, 1 - i N, "f + iN, and 1'1 + iN, where 
N is larger t.han max1<j<I P(>-.j )I. 

From the above lemma and the Cauchy theorem of residues we obtain 

(6.20) 

In order to be able to shift. the cont.our L(,) to L('Y1) we have to derive 
estimates for 

lll(o- + iw;t)I for large values of lwJ. 

LEM!\IA G.8. If -,x, < ,1 < 1 < oc,. Tlie11 

uniformly in "fl :S: 3~( z) :S: "f. 

lim IH(z, t)I = 0 
1-:1- 00 
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PROOF. Fix ,1 and,. From Lemma 6.5, we obtain for lwl sufficiently large 

where ;1 :S ~(z) :S, and IS:S(z)I 2: lwl, From Theorem 4.7 and the repre­
sentation for adj~( z ), we derive that on the horizontal lines: 

l~(z)I = C 2: lwl for 'YI :,S 0~( Z) :,S 'Y, 

we have 

Hence, because of equation (G.18), we obtain 

(6.21) 

I 

From equation (6.20) and the above lemma we obtain by taking the 
limit N-+ ,x, in (6.20) that 

I 1 J x(t) = ~Pj(l)e>.;t + 27f'i II(z,t)dz. 
J=l L(,1) 

(6.22) 

So it remains to prove estimates for the remainder integral. 

THEOREM 6.9. For iJie remainder integral in the expansion (6.22) tlie fol­
lowing asymptotic estimate 

12~i J ll(z,t)I = o(e'tt) as t-+ oo (6.23) 

LC,1) 

holds. 

PROOF. Introduce the following notation 

(6.24) 

Then 
1 J 1 Joo . _ 

27f'i ll(z, t)dz = 211' -oo e1tw II(,1 + iw)dw. 
L(,1) 
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So it suffices to prove that 1-: eitw II(,1 + iw )dw -:-" 0 as t -+ ex:;, • (6.25) 

From the Riemann-Lebesgue Lemma 3.5, we derive that for every fixed N, 
the integral 

!N eitw Il(·n + iw)dw-+ 0 
-N 

as t-+ oo. 

Hence to prove ( 6.25) it suffices to show that the integral 

1-: eitw JI (-;·1 + iw )dw 

converges uniformly in t with t larger than some fixed value To. 

(6.26) 

To show the uniform convergence of (6.24) for t > To, we use the 
representations for adjA(z) and det A(z) to derive that on the line L(,1) 

adjA(z) = zn-l I +O(zn-2 ) 

and 
detA(z) = zn +O(zn-l) 

as l~(z)I - oo. Hence on the line L(,1) 

JI(z) = ~(/(0) + fh e-ztdf(t) w) + O(z-2). 
"' lo 

Since the contribution of the last term to the integral converges absolutely 
it suffices to prove the uniform convergence for t > T0 of 

and 

100 eitw 
--.-dw 

N 11+iw 

1001h ei(t-s)we--r1s 
---. -df(s)dw. 

N o "YI+ iw 

But this follows easily using partial integration. For example 

1001" ei(t-s)we--r1a . lh ei(t-s)we--r11 1 100 I . df(s)dwl ~ I .( ) df(s) . I 
N o "YI + lW o Z t - S ~fl + ZW N 

{oo fh ei(t-s )w e--r,s dw 

+ l1N lo i(t - s) df(s) (,1 + iw) 2 I 
< C(,1) ( 1 + f'XJ 1_ dw). 
- To - h N - ,1 lN l,1 + zwl 2 

Consequently, the integral ( 6.26) converges uniformly in t on [To, oo) for 
To > 0 and this completes the proof of the theorem. I 
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REMARK 6.10. Note that the difficulties in the above proof arise because 
the integrals involved do not converge absolutely. 

COROLLARY 6.11. Fix some 1 ER such tliat det ~(z) i= 0 on L(,). Then 
we liave tlie following asymptotic expansion for t.l1e solution x of the renewal 
equation (6.1) 

.r(t) = L Pj(t)e>.;t + o(c-Yt) 
ffi:(>.; )>-r 

as ·t-+ oo. (6.27) 

The question whether the remainder integral (6.23) converges to zero 
for all t > 0 as 1 ---;. -oo - i.e. the solution x has a convergent series 
expansion - is for from trivial and will be studied in the next chapter. 

REMARK 6 .12. If we define the kernel ( to be zero for negative t, then we 
can consider the equation (6.1) as a Wiener-Hopf equation with symbol 

which is analytic for ~(z) > 0. Now we can use the scaling arguments from 
the proof of Theorem 6.1 and apply the asymptotic expansions obtained 
by Fel'dman, see Corollary 2.1 of the Appendix in [15] to prove Corollary 
6 .11. Here we shall exploit the special form of ( and define the characteristic 
matrix associated with (6.1) by ~(z) = zA((). This defines an entire matri..x 
valued function and makes it possible to analyse the remainder term in the 
asymptotic expansion (6.27) in more detail which we shall do in the next 
chapters. 
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CHAPTER 7. FOURIER TYPE SERIES EXPANSIONS OF SOLUTIONS 

In chapter 6 we studied the large time behaviour of solutions of a Volterra 
convolution equation by deriving an asymptotic estimate for the remainder 
integral in equation (6.22). In the first part of this chapter we shall con­
sider the behaviour of the remainder integral as function of t and ,1 and 
derive sufficient conditions such that the sum of the residues in equation 
(6.22) converges to the solution when the summation is extended over all 
singularities. In order to be able to apply the results of Chapter 5 we have 
to restrict the kernel ( to SUV[O, h]. In the second part of this chapter 
there will be no restriction on the kernel ( and we shall give a complete 
characterization of the closure of the set of all forcing functions f such that 
the solution :t( ·; !) of the Volterra convolution equation is defined on the 
whole R. The characterizati_on of this set, which is closely related to the 
structure of the set of solutions of the Volterra convolution equation, has 
important applications (see Chapter 11). 

So first consider the following class of Volterra convolution equations 

;i; - ( * X = f, (7.1) 

where f E F, the supremum 11orn1ed Danach space of continuous functions 
on R+ that arc constant on [h, ,x,) aud ( is a matrix-valued element of 
SBV[O, h]. Finally, choose the "delay" has sharp as possible, i.e. such that 
at least one of the (ij 's has a jump at h. 

From Theorem 6.1, we derive that, equation (7.1) has a unique solution 
x( · ; !) as an element of Co ( R+; 1 ), where I is chosen sufficiently large. 
Since the solution ;i;( ·; .f') of equation (7.1) is an element of L1 ( R+; 1 ), we 
can Laplace transform the equation to obtain for ~(z) > 1 

l h 

L{x}(z) = ~- 1(z)(J(h)+z c-zt(f(t)-f(h))clt), 
• 0 

(7 .2) 
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where A(z) denotes, as before, the characteristic matrix 

(7.3) 

The expression at the right hand side of (i .2) yields an analytic continuation 
of L{x} to the whole complex plane. We denote this analytic continuation 
by H1(::). 

For genera.! f E F, the solution x( ·; f) is only for t > h locally of 
bounded variation, so from the Laplace inversion Theorem 3.2 we only have 
an integral representation for the solution fort > h 

(7.4) 

Thus to obtain an integral representation for the solution x(t;f) fort> 0, 
we have to restrict the class of forcing functions to f E F such that f is 
locally of bounded variation. Frorn the semigroup property (6.7) 

x(h + ·; f) = x( ·; S(h)f). 

Since S(h)f is locally of bounded variation, the restricted class of forcing 
functions is large enough to cover the solutions x(h + · ; f) with f E F. 
So in the sequel we assume that f E F such that f is locally of bounded 
variation. Then JI,(::) can be represented as follows 

where 

Pr(::) 
H,r(z) = det 6-(z)' (7 .5) 

(7.6) 

Therefore, P1(z) is a vcct.or-valued element of P 11 _ 1 and <letA(z) 1s an 
element of::"+ Jn-1· 

A series expansion of a:( ·; .f) will now be established directly from 
the integral representation ( 7 .'1). To calculate the complex line integral 
over L(1 ), we construct tl1e following sequence of closed contours r w1 ( 1 , 11) 
composed of four straight lines, which connect.s the points 1 - iw1, 1 + 
iw1,"Y1 + iw, and 1 1 - iw1, where w1 is chosen such that the zeros of detA(z) 
are bounded away from the cont.ours an<l such that 

(7.7) 
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Imaginary axis 

real axis 

FIG URE 7 .1. The contour r w, (-y, 1I). 

where C1 is "defined" by Lemma G.5 and ,1 is chosen such that <let ~(z) -::fa 0 
on L(,z). 
Hence from Cauchy's residue theorem applied to the contour fw,h,,1), we 
deduce 

ez111 (~)d~-, .f "' ,,<, - (7.8) 

where the summation at the right hand side of (7 .8) is finite. 

The series obtained by ta.kiug the limit '"YI - -ex:, at the right hand side 
of (7 .8) is called the Fourier type series - or exponential series - expansion 
of the solution ;t( ·; !). 

In genera.I one cannot expect tha.t the Fourier type series expansion 
converges tot.he solutiou. For example, small solutions - i.e. solutions tha.t 
tend to zero faster than any exponential - have an entire La.place transform. 
Therefore from equation (7.8) small solutions have a series expansion in 
which all terms are zero. In the next chapter we shall characterize the set 
of all small solutions of tl1e Volt.err a convolution equation ( 6 .1) and present 
necessary and sufficient conditions for the existence of small solutions. 
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To prove the convergence of the Fourier type series expansion to the 
solution in Co ( R+; 1 ), it. suilices to prove that the absolute value of the 
line integrals 

1,1+,iw1 
and 

,1-iw1 
(7.9) 

of eztH1(z), tend to zero as ,1----+ -oo, uniform fort 2: c. The following 
lemma shows that along the vertical lines of the contour this is always the 
case. 

LEMMA 7.1. If f E :Fis sucl1 tliat f is locally of bounded variation. Tl1en 
for z E C1 we have 

as l----+ oo (7.10) 

and 

as l----+ oo, (7.11) 

uniform for t > c. 

PROOF. Recall the represent.at.ion for 111 derived in (7.5). Since PJ E Pn-1 

and <let .::l (;;) E z11 + J n _ 1 and since the contour lies in the domain 

An applicat.ion of Lemma 6.5 yields 

for z E C1 (7.12) 

as l - oo and where C denotes some constant. So we can estimate the 
integral (7.10) 

(7.13) 

where t = t' + c and 

(7.14) 

where ,1 ~ ;r ~ ,. 
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From the Riemann-Lebesgue Lemma 3.5 

x1(x)-+ 0 as I-+ oo 

point wise in x. Since 
e-xt < (x2 +w2)½ 

- I ' 

we can estimat,e 
lx1(x)I SM etx 

for some constant M and 'YI S x S 'Y. Therefore we can apply the Lebesgue 
dominated convergence theorem to conclude that 

as I-+ oo. (7.15) 

So from (7.13) and (7.15), we find fort 2:'.: c 

as I-+ oo. 

The proof t.hat 

as /-.. oo, (7.16) 

follows similar lines and t.hc kmma is proved. I 

COROLLARY 7.2. If f E :Fis sucl1 tliat .f is locally of bounded variation. 
Then tlie Fourier lypc series expansion converges t:o tlie solution if and only 
if 1,,+iu.•1 

Jim I eztli1(z)dzl = 0. (7.17) 
1-+oo ,1 -iw1 

As an application of Corollary 5.7 we shall first state sufficient condi­
tions on the forcing function f so that the Fourier type series expansion 
converges to the solution x( •; f). 

THEOREM 7 .3. Suppose f E :F sucl1 tlrnt f is locally of bounded variation 
and sucl1 that the Newton pol_ygon inequality 

r" N(za.djil(:)(/(0) + Jo e-ztdf(t))) S N(<let~(z)) (7.18) 

holds component wise. Tl1e11 for all 1: > 0 tlie solution a:( 1; + •; f) of equation 
(7.1) is represe11te<.l by a C0 ( R+; 'Y )-convergent Fourier type series. 
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PROOF. On account of Corollory 7.2 it remains to analyse 

1-Y1+iw1 

I . ezt H1(z)dzl, -y,-,w, (7.19) 

An application of Corollary 5. 7 yields 

(7.20) 

for z E L(,1) and I sufficiently large. Therefore, 

(7.21) 

and since w, satisfies equation (7.7) the right hand side tends to zero as I 
tends to infinity, uniform for t 2: £. I 

In contrast with the additional z in the Newton polygon condition 
(7.18) we can also shift in time to prove (7.17). 

THEOREM 7.4. Suppose f E F such that f is locally of bounded variation 
and such that the Newton polygon inequality 

(7.22) 

holds componentwise. Then for all € > 0 the solution x(h + £ + ·; !) 
of equation (7.1) is represented by a Co( R+; 1 )-convergent Fourier type 
series. 

PROOF. In this case, an application of Corollary 5.7 yields 

(7.23) 

for z E L(,1) and I sufficiently large. Therefore, 

(7.24) 

and since w, satisfies equation (7.7) the right hand side tends to zero as I 
tends to infinity, uniform for t 2: h + €. I 

We shall see shortly that from the theoretical point of view the impor­
tance of the following theorem lies in the fact that the Fourier type series 
does converge to the solution after finite and in fact uniformly bounded 
time. 
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THEOREM 7.5. If f be an element of :F. Then for all f > 0 the solution 
x(nh + f + •; /) is represented by a Co( R+; 1 )-convergent Fourier type 
series. 

PROOF. Recall from (6.15) 

n-1 kh 
(adj.Ll(z))ij = DijZn-l + I: 1 e-ztd1Jijk(t)zn-k-l _ 

k=l O 

Since for z E L("Y1) and / sufficiently large we always have that 

(7.25) 

where C1 is "defined" by Lemma 6.5, we derive the following estimate for 
IH1(z)enh-y1 I 

as lwl-+ oo. (7.26) 

Therefore, 

and since w1 satisfies equation (7.7) the right hand side tends to zero as l 
tends to infinity, uniform for t 2: nh + f. I 

The conditions in the above theorems are sufficient conditions for con­
vergence. In concrete applications one might want to use variants of these 
conditions. For example, remark that if 

N(zadj.Ll(z)) :S N(det.Ll(z)), (7.27) 

then 

I adj.Ll(z) I= O(lzi-1) 
det Ll(z) 

for z E L ( 11) and / sufficiently large. Therefore, for every f E :F such that f 
is locally of bounded variation the solution x(h+E+ •;!)is represented by a 
Co ( R+; 1 )-convergent Fourier type series for every f > 0 . Furthermore, to 
prove sharp results in concrete examples we have to apply the techniques 
rather than the theorems developed in this section. See the examples in 
Chapter 13. 

In the results so far we controlled the behaviour of H1(z) by imposing 
conditions on the Newton polygon or by shifting along the solution. Next, 
we will study what occurs with the Fourier type series expansion if we 
impose additional smoothness conditions on the forcing function /. We 
start with a definition. 
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DEFINITION 7.6. Let & denote the subspace of all / E F such that the 
following exponential type condition holds 

& = {J E :F: E(adjA(z)(f(h)+z 1h e-zt(f(t)-f(h))dt) :S E(det A(z)) }. 

Let B denote the infinitesimal generator of the Co-semigroup { S(t)} 
associated with the Volterra convolution equation (7.1). Recall from The­
orem 6.3 

Bf= j + (( · )/(0) 

for f E 'V(B), where 

-V(B) = {f E F : j + (( · )/(0) E :F}. 

Note that for the solution x( •;!)of (7.1) we have 

xECo(R+;,) ifandonlyif /E'V(B). 

The next lemma will be the key in the following results. 

(7.28) 

LEMMA 7. 7. The linear subspace & is invariant under the resolvent operator 

(7.29) 

with A E p(B). 

PROOF. Choose f E :F and suppose that g = R(A, B)f. Then 

f = Ag - Bg. 

Since 
Bg = g + (( · )g(0), 

we obtain 

adjA(z)z 1°" e-zt(Bg)(t)dt = adjA(z)z 1h e-ztg(t)dt 

Hence 

+ adjA(z)zg(0) - det A(z)g(0) 

= adjA(z)z(e-zhg(h) + z 1h e-ztg(t)dt) 

- det A(z)g(0). 
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Thus 

(.X - z)adjA(z)z 100 e-ztg(t)dt = adjA(z)z 100 e-zt f(t)dt 

- det A(z)g(O). 

Consequently, 

E(adjA(z)z 100 e-ztg(t)dt) :S E(adjA(z)z 100 e-zt f(t)dt) 

+ E(detA(z)). 

Thus we have proved 

/ E £ if and only if g = R(.X, B)f E £. 

I 

We then have the following theorem. 

THEOREM 7.8. Suppose f E 'D(Bn)n£ such that Bn f is locally of bounded 
variation. Then for every € > 0 the solution x of (7.1) has a Fourier type 
expansion 

in Co ( R+; 1 ). 

00 

x( € + . ; f) = LPi (t)e>.;t 
j=l 

(7.30) 

PROOF. From Lemma 7.7 and repeated integration by parts we obtain 

100 1 1h adjA(z)z e-zt f(t)dt = --;;-[adjA(z)(Bn /(0) + e-ztdBn f(t)) 
0 Z 0 

+ det A(z)p(z)], 

where p is a polynomial of degree n - l. So define 

and 

F(z) = zn det A(z). 

Since 
N(zG(z)) :S N(F(z)), (7 .31) 

we can apply the proof of Theorem 7.3 to arrive at the desired result. I 
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Define 

a= max { E(adj~(z)z / 00 e-ztf(t)dt) - E(det~(z)) }. 
Je:F lo 

(7.32) 

In the next chapter we shall prove that S( a)/ = 0 if and only if z( ·; /) is 
a small solution. 

The next corollary shows that if / is sufficiently smooth then the series 
expansion converges to the solution as soon as all small solutions have 
disappeared. Compare this result with Theorem 7.5 where we had to shift 
over nh to compensate the lack of smoothness. 

COROLLARY 7.9. Suppose f E 'D(Bn) such that Bn f is locally of bounded 
variation. Then 

in Co(R+; 1 ). 

00 

x(a + € + ·;I)= I:P;(t)e>.;t 
j=l 

PROOF. As in the proof as Theorem 7 .8 define 

and 

F(z) = zn det ~(z). 

(7.33) 

So we have N(zG(z)) :S N(F(z)) and we can apply the proof of Theorem 
7.3. I 

When E( det ~( z)) is maximal - i.e. E( det ~( z)) = nh - we can combine 
the above theorems to obtain the following result. Bank and Manitius [2] 
have studied this case when the kernel ( is given by a finite sum of jumps. 

COROLLARY 7.10. If E(det ~(z)) = nh and if f E 'D(B) such that Bf is 
locally of bounded variation. Then 

00 

z(f + ·; /) = I:P;(t)e>.;t (7.34) 
j=l 

in Co ( R+; , ) . 

PROOF. Since E(det~(z)) = nh, the points (O,n) and (nh,O) lie on the 
Newton polygon of det ~(z). Hence 

N(e-zhadj~(z)) :S N(det ~(z)). 
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From Theorem 6.3 it follows that for f E 1>(B) 

zadj~(z)z 100 e-zt J(t)dt = adj~(z)z 100 e-zt(Bf)(t)dt + det ~(z)f(O). 

Since Bf is locally of bounded variation and 

the condition (7.18) is satisfied. I 

In the remaining part of this chapter, we turn to the complete char­
acterization of the closure of the set of all forcin_g functions such that the 
solution x( • ; I) is defined on the whole real line. There will be no restric­
tions on the kernel anymore. We assume that ( is a matrix-valued element 
of NBV[O, h] and consider the Volterra convolution equation 

X -( * X = f, (7.35) 

where f E :F. 

DEFINTION 7 .11. Let AF denote the subspace of all forcing functions 
/ E :F such that the solution x( •; I) is defined on the whole real line, i.e. 
for every <J' > 0 there exists a forcing function g E :F such that S( <J' )g = f. 

The jump condition on the kernel ( when ( E SBV[O, h] implies that 

(7 .36) 

Thus, we see that Theorem 7.6 covers the worst case that actually can 
happen when ( E SBV[O, h]. For general ( E NBV[O, h] it is not clear 
whether there will be a finite power N such that 

(7.37) 

Therefore it is not clear whether the Fourier type series expansion con­
verges to the solution after finite time. The only result we have in this 
direction is Theorem 5.12 and this result turns out to be sufficient for the 
characterization of AF. 

We will prove the following characterization of the closure of AF in :F. 

THEOREM 7.12. The closure of AF in :F equals 

We divide the proof of Theorem 7.12 into two theorems. First we prove 
the following inclusion. 
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THEOREM 7.13. & CA.,,-. 
PROOF. Let f be an element of&. Recall from Lemma 7.7 that & is 
invariant under the resolvent R(:>t, B). Since 'D(B00 ) is dense in :F, we can 
choose a sequence /; such that 

and 

!; -+ f as j-+ oo. 

So Theorem 6.1 implies that 

x( • ; f;) -+ x( •; f) as j-+oo 

in Co{ R+;; ). 

From Lemma 7.7 and repeated integration by parts we see that for 
every k we can represent HJ; as 

PB•,. (z) Pk(z) 
H1.(z) = k ' ( + -,_-, ' z det A z) z,. 

(7.38) 

where Pk is a polynomial of degree k - 1. Furthermore, since /; E &, 

Therefore, on account of Theorem 5.13 we can, for every I, find a constant 
m = m(l, det A(z)) such that for every k 

efz P • (z) I B J; I< Clzlm 
det A(z) -

for z EL(;,). (7.39) 

For every I we can choose k = m + 1 such that 

(7.40) 

for z EL(;,). On account of Corollory 7.2 it suffices to analyse 

(7.41) 

Because of (7.40) we can estimate 
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Since w1 satisfies equation (7.7) the right hand side tends to zero as l tends 
to infinity, uniform for t > €. Therefore, for every fJ and f > 0 we have the 
following Fourier type series expansion 

00 

x(f + . ;/1) = I>V)e>.kt 
k=l 

in Co ( R+; 1 ). Let !J,f denote the forcing function corresponding to the 
solution x(f + •; !J), i.e. 

!1,f = S(f)/J. 

Recall Theorem 6.3 for the definition of the C0-semigroup { S(t)} and con­
clude from the Co-semigroup property that 

11S( f )/1 - /J llu ---+ 0 as f L 0. (7.42) 

Therefore we can construct a subsequence 

{ /;} of { S ( f) !J}, 

such that x( •; /;) has a Co ( R+; 1 )-convergent Fourier type series and /; 
converges to f in :F as j ---+ oo. Since finite Fourier type series expansions 
are well defined on the whole real axis, we clearly have that !; E AF and 
so f E AF, I 

THEOREM 7.14. & is a closed subspace of :F. 

PROOF. Let {fk} C & be a sequence of uniformly bounded forcing functions 
such that fk ---+ f in :F. We are going to prove that f belongs to & as well. 
Since f and all fk are constant on the interval [h, oo), the convergence of 
fk to f in :F implies that uniformly on compact sets 

as k ---+ oo. (7.43) 

Let T denote E( det ~( z)). Assume that f does not belong to & . Then 

(7.44) 

Since the forcing functions fk are uniformly bounded and belong to & , 
an application of the exponential type calculus yields the existence of a 
constant M such that for all k 

(7.45) 
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in the left half plane ~(z) < 0. And from (7.43) and (7.45) we obtain for 
every R > 0 and for all r ~ R the following estimate on the negative real 
axis 

(7.46) 

On the other hand it follows from the Ahlfors-Heins Theorem 4.10 and 
equation (7.44) that for every f > 0 there exists a sequence rk such that 
rk -+ oo and on the negative real axis 

(7.47) 

where z = -rk. Now choose f = f. A combination the equations (7.46) 
and (7.47) yields 

which yields a contradiction for rk sufficiently large. Hence u = 0, and f 
belongs to & . I 

PROOF OF THEOREM 7.12. Only the inclusion A.,,. C &, remains to be 
proved. From the semigroup property 

x( ·; S(o:)f) = x(o: + •; /) for every f E F. 

Hence, 

(7.48) 

where HJ is defined by (7.5). From the definition of a:, see equation (7.32), 
it follows that for every f E F 

So, because of (7.48), 

E(Ps(a)J(z)) ~ E(det ~(z)). 

Therefore, we arrive at the following inclusion 

1?.(S(o:)) C £. (7.49) 

By definition of A.,,. 

A.,,. c n(S(t)) for every t ?::: 0. (7.50) 

Consequently, we have the following sequence of inclusions 

A.,,. C n(S(o:)) Ce. 

But & is closed and therefore we have proved the inclusion A.,,. C & . I 
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To conclude this chapter we present a very important corollary of the 
characterization obtained above. We say that / E :F has a backward con­
tinuation over u if there exists a g E :F such that 

x(u+ •;g)=x(·;f). (7 .51) 

A backward continuation does not always exist. Moreover, is not unique 
(recall the existence of small solutions). But based on the characterization 
of the small solutions, see Chapter 8, we can prove the following result: 
If / E A.r such that / has a (finite) backward continuation. Then this 
backward continuation is unique. This result is a direct consequence of 
Theorem 8.2 and the following corollary. 

COROLLARY 7.15. If f is a non-zero element of A.r- Then the solution 
x( •; I) of equation (7.35) cannot tend to zero faster than every exponential 
- i.e. cannot be a small solution. 

PROOF. Assume that the solution x( •; I) tends to zero faster than ev­
ery exponential. Then L{ x} is an entire function. Because of equation 
(7.2) and Theorem 7.12, we have that L{x} is an entire function of zero 
exponential type. It also follows from equation (7.2) and the Paley-Wiener 
Theorem 4.4 that L{ x} is L2-integrable along the imaginary axis. Hence, 
another application of the Paley-Wiener Theorem 4.4 shows that x( •; I) is 
identically zero, which is a contradiction to the fact that / is a non-zero 
element of A.r. II 

EXAMPLE 7 .16. Consider the Volterra convolution equation with charac­
teristic matrix 

Then the inverse of the characteristic matrix becomes 

-z 
z2 

0 

(7.52) 

(7.53) 

Now we can use Theorem 7.12 to describe the set A.r• From Definition 7.6 
it follows that we have to solve the system of equations 

E(z2(zL{fi}(z)) - z(zL{f2 }(z)) + ze-z(zL{f3 }(z))) :S 1 

E(ze-z(zL{/1}(z)) + z2(zL{'2}(z)) + e- 2z(zL{f3 }(z))) :S 1 

E((z2 + e-z)(zL{fa}(z))) :S 1, 

(7.54) 
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where E( det ~(z)) = 1 and for 1 ~ j ~ 3 

The first and third equation of (7.54) show that '3 is constant. The second 
equation of (7.54) yields 

AF= {f E F: fi(t) = c1t+c2 and fa(t) = c1, where c1,c2 ER}. 
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CHAPTER 8. SMALL SOLUTIONS 

In this chapter we shall give a characterization of the smallest possible time 
to such that all small solutions vanish for t 2'.: to. This characterization of 
to is needed in order to establish the results concerning completeness of the 
system of generalized eigenfunctions which we will present in Chapter 10. 

Consider the Volterra convolution equation of Chapter 6. 

X -( * X = f, (8.1) 

where ( is a matrix-valued element of NBV[0, h] and / is an element of F. 
Let A( z) denote the characteristic matrix function 

(8.2) 

The function det A(z) is an entire function of exponential type less than or 
equal to nh. Define f by 

E{detA(z)) = nh- c (8.3) 

Let adjA(z) denote the matrix of cofactors of A{z). Since the cofactors 
C;j(z) are (n - 1) x (n - 1)-subdeterminants of A(z), it follows that the 
exponential type of the cofactors is less than or equal to (n - l)h. Define u 
by 

(8.4) 

DEFINITION 8.1. A small solution x of (8.1) is a solution x such that 

lim ektx(t) = 0 (8.5) 
t--+OO 

for all k ER. 

We can now state and prove a sharp version of Henry's theorem on 
small solutions [20] for the Volterra convolution equation (8.1). 
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THEOREM 8.2. All small solutions of (8.1) vanish fort ~ € - <1 and€ - <1 

is the smallest possible time with this property. 

As an application of this result we prove 

THEOREM 8.3. There are no small solutions if and only if E(det.6.(z)) 
equals nh. 

PROOF OF THEOREM 8.2. Let x be a small solution, then L{x} 1s an 
entire function which satisfies the equation 

<let .6.(z)L{x }(z) = adj.6.(z)(/(h) + z 1h e-zt(f(t) - f(h))dt). (8.6) 

Since the quotient of two functions of exponential type is again of exponen­
tial type provided it is entire, the Laplace transform L{ x} is of exponential 
type. From the exponential type calculus derived in Chapter 4, in partic­
ular Corollary 4.11, the right hand side of (8.6) has exponential type less 
than or equal to nh - <1. So from Corollary 4.11, the Laplace transform 
L{ x} has finite exponential type 'f/ with 

'f/ ~ nh - <1 - (nh - €) = € - <1. (8.7) 

From equation (8.6) and the Paley-Wiener Theorem 4.4 it follows that L{ x} 
is L2-integrable along the imaginary axis. Hence, another application of the 
Paley-Wiener Theorem 4.4 yields 

(8.8) 

and x(t) = 0 for all t ~ € - <1. 

In the following we shall call vector-valued functions of the form 

(8.9) 

where w E R+ and x E L2 [0,w], Paley-Wiener functions. To prove the 
claim that €- <1 is the smallest possible time with the property that all small 
solutions vanish fort ~ € - <1 we are going to construct a small solution x 

such that x '¥=- 0 in any neighbourhood of€ - <1. Laplace transformation of 
the equation shows that it suffices to construct a Paley-Wiener function F 
of exponential type € - <1 such that 

.6.(z)F(z) = c + q(z), (8.10) 
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where c E Rn and q is a Paley-Wiener function of exponential type less 
than or equal to h. 

Choose a column of the matrix function adj-6.(z) such that one of the 
elements of this column is the cofactor of maximal exponential type given 
by ( n - l )h - u. Since the arguments given below can be repeated for all 
other columns we may assume that we can choose the first column 

(8.11) 

of adj-6.(z). Then 

(8.12) 

We have to consider two cases: 

If.~ (n - l)h; 

II (n - l)h < f. ~ nh. 

CASE I. Suppose f. ~ ( n - l )h. For 1 ~ j ~ n define the function Cj to 
be the Taylor expansion of Cji of order n - l in 0, then the function Fi 
defined by 

(8.13) 

is entire. Define 

Then for 1 ~ j ~ n the functions dj are polynomials of degree n with 
coefficients being constants plus Paley-Wiener functions of exponential type 
less than or equal to h. Furthermore, 

(8.14) 
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Since det A( z) is a polynomial of degree n with coefficients being constants 
plus Paley-Wiener functions we have by the Paley-Wiener Theorem 4.4 that 
the right hand side of (8.14) can be written as follows 

where c E Rn and h E L2 ([O, nh - £];Rn). Furthermore, the cofactors are 
polynomials of degree n - 1 with coefficients being constants plus Paley­
Wiener functions. Hence, the entire function F is a Paley-Wiener function 
and by the Paley-Wiener Theorem 4.4 we have 

r<n-l)h-u 
F(z) = lo e-ztx(t)dt, 

where x E L2 ([0,(n - l)h - u);Rn). Therefore, equation (8.14) can be 
rewritten as follows 

(8.15) 

So, the function x satisfies the equation 

where q = h and q is constant on [nh - € 1 oo). From the remarks made 
directly after Theorem 6.1 we obtain, 

x E L2[0,(n - l)h-o-). 

We rewrite equation (8.15) as follows 

r(n-l)h-u 
A(z) lo e-ztx(t)dt 

= e-((n-l)h-£)z A(z) fot-u e-ztx((n - l)h - € + t)dt 

rh-t f(n-l)h-t 
= C + lo e-zth(t)dt -A(z) lo e-ztx(t)dt. 

(8.16) 

Since the right hand side of (8.16) has exponential type less than or equal 
to nh - £ we have by Corollary 4.11 that 

(8.17) 



80 8 Small solutions 

has exponential type less than or equal to h. Furthermore, since 

partial integration shows that (8.17) can be rewritten as c + q(z), where 
c E Rn and q is a Paley-Wiener function of exponential type less than or 
equal to h. Hence, x((n - l)h - f + t) is a small solution so that 

x((n - l)h - f + t) =/=. 0 in any neighbourhood off - CT. 

CASE II. Suppose that (n - l)h < f :S nh. In this case 

r = E(detA(z)) < h. 

We multiply both sides of the equation (8.12) by 

to obtain 

where 

rh-r 
G(z) = Jo e-ztdt det A(z) 

and 

for 1 :S j :S n. 

(8.18) 

Hence E( G) = h and E( C) = f - CT. The same arguments as used in Case I 
but now applied to the modified function C yield 

(8.19) 

where c E Rn and ij_ is a Paley-Wiener function with E(ij_) :S h. Therefore 
x is a small solution so that 

x((n - l)h - ( +t) =/=. 0 in any neighbourhood of ( - CT. 

I 
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PROOF OF THEOREM 8.3. Because of Theorem 8.2 it suffices to prove 
that 

Vt> 0: u < t. (8.20) 

Suppose u = t. We shall calculate E(detadj.6.(z)) in two different ways. 
Since u = t we have 

E(det adj6.(z)) ::; n((n - l)h - t) 
=(n-l)(nh-t)-t. 

On the other hand by Corollary 4.11 we have 

Hence 

E(detadj.6.(z)) = E((det.6.(z))n-l) 

= (n - l)(nh - t). 

(n - l)(nh - t)::; (n - l)(nh - t) - t, 

(8.21) 

(8.22) 

(8.23) 

which is a contradiction if t > 0. This completes the proof of Theorem 
8.3. I 

EXAMPLE 8.4. Consider the following system of differential-difference 
equations 

x1(t) = -x2(t) + xs(t - 1) 

x2(t) = x1(t - 1) + xs(t -½) 
xs(t) = xs(t). 

Then the characteristic matrix becomes 

with determinant 

Therefore, 

Since the cofactor 

( 
z 1 

.6.(z) = -e-z z 
0 0 

l = 2. 

(8.24) 

(8.25) 

(8.26) 

(8.27) 
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has exponential type 2, we derive that u = 0. Therefore, from Theorem 
8.2, the ascent of the system (8.24) equals two. Thus there exists a (non 
trivial) small solution x = x( •; <p) such that 

supp(x) = [-1, 1). 

EXAMPLE 8.5. Consider the following system of differential-difference 
equations 

x1 (t) = -x2(t) + xa(t) 

x2(t) = x1(t - 1) + xa(t -½) 
xa(t) = xa(t). 

Then the characteristic matrix becomes 

with determinant 

Therefore, 
e = 2. 

(8.28) 

(8.29) 

(8.30) 

Furthermore, in this case we derive u = 1. Therefore, from Theorem 8.2, 
the ascent of the system (8.28) equals one. Thus all small solutions are 
trivial, in the sense that they are identical zero for t 2::: 0. 
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CHAPTER 9. THE RESOLVENT 

In this chapter we consider the resolvent equation (6.3) for the Volterra 
convolution equation (7.1). Since the resolvent equation is also a Volterra 
convolution equation, the methods developed in Chapter 7 to establish a 
Fourier type series expansion of the solution x( •; I) of (7.1) can be applied 
directly to the resolvent equation. We obtain a series expansion not for the 
resolvent itself, but for the so-called fundamental matrix solution U. 

Define the fundamental matrix solution U by the solution of 

U(t) = lot d((0)U(t - 0) for t > 0, 

U(0) = I, and U(t) = 0 for t < 0. 

We then have the following lemma. 

LEMMA 9.1. Fort~ 0 we have 

U(t) = I - lot R(r)dr, 

where R satisfies the resolvent equation 

(9.1) 

(9.2) 

(9.3) 

PROOF. It suffices to prove that U defined by (9.2) satisfies (9.1). From 
the resolvent equation (9.3) it follows that 

U(t) = -R(t) = -( * R(t) + ((t) = lot d((0)U(t - 0) 

with U(0) = I. A contraction argument, see Theorem 6.1, shows that (9.1) 
has a unique solution. Thus the lemma is proved. I 
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The fundamental matrix solution can be used to represent the solution 
x( •; f) of the Volterra convolution equation (7.1). 

COROLLARY 9.2. If x denotes the solution of (7.1). Then for every f E :F 

x(t) = - lat dUe(t - 0)/(0) = lat U(t - 0)df(0). (9.4) 

PROOF. Recall from Theorem 6.1 that RE L1 (R+;r ). Hence U is locally 
of bounded variation. By representation (6.2) 

x(t) = f(t) - lat R(t - 0)f(0)d0 = - lat dUe(t - 0)/(0), 

which is well defined since U is locally of bounded variation. An application 
of Theorem 2.7 (iii) now yields 

x(t) = - lat dUe(t - 0)/(0) = lt U(t - 0)df(0). 

I 

To derive a Fourier type series expansion for U we first analyse the 
Laplace transform of U. 

LEMMA 9.3. 
for ~(z) > r-

PROOF. Since RE L1 ( R+; r) we can apply Laplace transformation to the 
resolvent equation (9.3) to obtain 

Ll(z)L{R}(z) = - lh e-ztd((t). (9.5) 

Since 

we have the identity 

Ll(z)L{R}(z) = Ll(z) - zl. (9.6) 

From (9.2) and Theorem 3.1 (v) we derive 

L{U}(z) = !(I - L{R}(z)) 
z 

(9.7) 

and a combination of (9.6) and (9.7) yields the desired result 

L{U}(z) = Ll- 1(z). 

I 
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Note that Lemma 9.3, representation (7.2) and the properties of the 
Laplace transform listed in Theorem 3.1 also imply representation (9.4). 

Let 
N(zadj~(z)) :S N(det~(z)) 

denote the condition that the Newton polygon of each of the coefficients 
adj~(z)ij of adj~(z) satisfies 

N(zadj~(z);j) :S N(det~(z)). (9.8) 

REMARK 9.4. lfE(det ~(z)) = nh, then condition (9.8) clearly is satisfied. 
However, the condition (9.8) need not to be true in general (see the examples 
in Chapter 13). 

A reformulation of Theorem 7.2 now yields 

THEOREM 9.5. If( E SBV[O, h] is such that the Newton polygon condition 
(9.8) holds. Then for all€ > 0 the fundamental matrix solution U defined 
by (9.1) can be represented by 

00 

U(t) = I: Pj(t)e>.;t, (9.9) 
j=l 

in Co ([t:, oo); 1 ). Moreover, for f E F such that f is locally of bounded vari­
ation, the solution x( •; !) of (7.1) can be represented by a series expansion 

00 t 
x(t; f) = f(t) + I: Jo Pj(t - 0)e>.;(t-B)df(0), 

j=l 0 

(9.10) 

PROOF. Given the Newton polygon condition (9.8), the series representa­
tion (9.9) follows directly from the results of Chapter 7. Because of Corol­
lary 9.2 we can represent the solution x of (7.1) by 

x(t; !) = 1t U(t - 0)df(0). 

Hence, 

t t+< 
x(t+€;!)= Jo U(t+€-0)df(0)+ Jt U(t+€-0)df(0). (9.11) 
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Since the series representation for U(t) converges in Co([£, oo ); r) we can 
interchange summation and integration to obtain 

From 

and 

l t+f 

x(t + £j /) = t U(t + £ - O)df(O) 

+ f: 1t P;(t + £ - O)e>.;(t+e-9)df(O). 
j=l 0 

(9.12) 

the representation (9.10) follows from (9.12). Finally, the uniform conver­
gence fort>£ follows from the uniform convergence of U in Co([£,oo);r). 

I 



10 Linear autonomous delay equations 87 

CHAPTER 10. LINEAR AUTONOMOUS DELAY EQUATIONS 

In this chapter we use the semigroup approach to study a system of linear 
retarded functional differential equations (RFDE) 

x(t) = lah d((0)x(t - 0) for t 2: 0, (10.1) 

satisfying the initial condition 

x(t) = <p(t) for - h ::; t ::; 0, 

where the matrix-valued function ( belongs to NBV[0, h] and the initial 
condition <p is a given element of C = C[-h, 0], the space of continuous 
functions on [-h, 0]. The general theory was first given by by Hale [17] and 
Krasovskii [25], see Hale's book [18] and the references given there. 

First we reformulate the equivalence between the linear autonomous 
RFDE (10.1) and the Volterra convolution equation (6.1) described in Ex­
ample 2.9 a little more abstractly. Let :F denote the supremum normed 
Banach space of continuous functions on R+ that are constant on [h, oo) 
provided with the supremum norm. 

THEOREM 10.l. The linear autonomous RFDE (10.1) and the Volterra 
convolution equation (6.1) 

are equivalent. In the sense that there exists a bounded invertible map 
G : :F ---+- C given by 

for - h ::; t ::; 0, (10.2) 
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where R denotes the resolvent, such that the solution x( ·; i.p) of (10.1) on 
R+ satisfies the Volterra convoltion equation 

X - ( * X = Ft.p, 

where F : C -> :F is defined by 

and can be represented by 

(Fi.p)(t) = i.p(O) + lat J.h d((O)i.p(s - O)ds. (10.3) 

PROOF. Since RE L1 (R+; 1 ) and f E L00 (R+; 1 ) it follows from the 
convolution property [21; 21.33] that G is a bounded linear mapping. Since 

(Gf)(t) = x(h+t;f), 

where x satisfies the Volterra convolution equation 

X -( * X = f, 

it follows that the mapping c-1 : C-> :Fis given by 

for 0 :'.St :'.Sh. (10.4) 

The same argument as above can be used to prove that c- 1 is a continuous 
mapping from C onto :F. Since the forcing functions are constant on [h, oo) 
differentiation of y(t) = x( h + t; f) shows that 

y(t) = 1h d((O)y(t - 0) for t ~ 0 

with 

Yo= Gf. 

This proves the equivalence between the equations (6.1) and (10.1). The 
remaining part of the theorem is just a reformulation of Example 2.9. I 

We shall now associate with equation (10.1) a C0-semigroup { T(t) }. 
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DEFINITION 10.2. Let (X, II • II) be a Banach space and suppose that 
with every t ER+ is associated a bounded linear operator T(t) : X-+ X, 
in such a way that 

(i) T(0)=I; 

(ii) For all t1,t2 ER+: T(t1 +t2) = T(t1)T(t2); 

(iii) For every <p E X 
lim IIT(t)<p - 'PII = 0. 
t!O 

Then { T(t)} is called a strongly continuous semigroup or, in short, a Co­
semigroup. 

With every Co-semigroup { T(t)} we can associate an infinitesimal gen­
erator A defined by 

( 10.5) 

for every <p E 'V(A), that is, for every <p E X for which the limit exists in 
the norm topology of X. The following theorem can be found in Rudin [32]. 

THEOREM 10.3. If { T(t)} is a C0-semigroup. Then 

(i) For every x E X the mapping t i--. T(t)x is continuous from R+ into 
X; 

(ii) A is a closed densely defined operator on X; 

(iii) For every x E '.D(A), the orbit T(t)x satisfies the differential equation 

d 
dt T(t)x = AT(t)x = T(t)Ax. (10.6) 

Translation along the solution of (10.1) induces a Co-semigroup { T(t)} 
defined on C by 

T(t)<p = x(t + ·; cp) =: Xt 

with infinitesimal generator 

defined on 

'.D(A) = {cp EC: <p EC and <p(O) = 1h d((0)cp(-0) }. 

Next we describe the spectrum of A. Let 

(10. 7) 

( 10.8) 

(10.9) 
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denote the characteristic matrix associated with the RFDE (10.1) and let 

R(z, A) : C--+ 'D(A) 

denote the resolvent 

R(z, A)= (zl - A)- 1 (10.10) 

of A. The following theorem yields an explicit formula for the resolvent of 
A. 

THEOREM 10.4. If 'P E C and if>. E C is such that det ~(>.) -=fa 0. Then 
>. E p(A) and R(>., A)'P is given explicitly by 

where 

PROOF. Let x = R(>.,A)'(). From the definition of A it follows that 

(U - A)x = 'P 

if and only if x satisfies the conditions 

(i) >.x - x = 'Pi 

(ii) >.x(O) - 1: d((0)x(-0) = 'P(0); 

(iii) x E C. 

Define 

(10.11) 

(10.12) 

(10.13) 

where -h :S t :S 0. Then x satisfies the conditions (i) and (iii). Also, 
condition (ii) becomes 

(10.14) 

Since det ~(>.) -=fa 0, we can solve 

(10.15) 

I 



10 Linear autonomous delay equations 91 

COROLLARY 10.5. The spectrum of A is all point spectrum and is given 
by 

u(A) = Pu(A) = p EC: det.6.(.~) ,t= 0}. (10.16) 

PROOF. Because of the proof of Theorem 10.4 we have 

{,\EC: det A(,\) ,t= 0} C p(A). 

To prove the reverse inclusion choose ,\ E C such that det A(,\) = 0 and 
define 

for - h ~ t :S 0, 

where r.p0 ,t= 0 is an element of the nullspace of A(,\). Then 

Therefore, we conclude that ,\ E Pu(A). 

COROLLARY 10.6. 

I 

Let r.p E C be fixed and consider the function R( z, A )r.p as a function of 
z. By Theorem 10.4 we have that R(z,A)r.p is a meromorphic function with 
poles ,\ satisfying the equation 

detA(z) = 0. 

This property of R(z, A) makes it possible to apply [36; V.10.1]. 

THEOREM 10.7. If,\ is a pole of R(z,A) of order m. Then for some k with 
1 < k < m 

(i) N( (,\I -A)k) = N( (,\I -Al+1 ); 

(ii) n.( (,\I - Al) = n.( (,\I - A)k+1 ); 

(iii) 'R.( (,\I - A)k) is closed; 

(iv) C=N((,\l-Al)EB'R.((,\l-A)k); 

(v) The spectral projection P>,. corresponding to the decomposition in (iv) 
on N( (,\I - A)k) can be represented by the contour integral 

P>,.r.p = 2~i j R(z,A)r.pdz, 
I\ 

(10.17) 

where f >,. is a circle enclosing,\ but no other point of the discrete set u(A). 
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Let M>. denote the generalized eigenspace N( (>.I -Ar) correspond­
ing to an eigenvalue ).. of A. By Theorem 10.4 and the definition of A we 
have that elements of M >. involve combinations of 

(10.18) 

where l = 1, 2, ... , m and the constants d1 E Rn satisfy a system of linear 
equations. So M>. is finite dimensional and by using this system of linear 
equations one can construct an explicit base for M>. that shows that the 
dimension of M >. equals m>,, the multiplicity of ).. as zero of det a( z), see 
[18] and [26]. From Theorem 10.4 it follows that R(>., A) is a compact 
operator for ).. E p(A). Therefore, the spectral projections are compact and 
hence have finite dimensional ranges. So, this remark also shows that the 
spaces M>. are finite dimensional. 

Let Q >. denote n ( ( >.I - Al). Since the generator A and the Co­
semigroup { T(t)} commute, the linear subspaces M>. and Q>. are { T(t) }­
invariant. Before we continue with the characterization of these { T(t) }­
invariant subspaces, we first extend the equivalence between linear au­
tonomous RFDEs and Volterra convolution equations, given by Theorem 
10.1 (a similar result was proved by Banks and Manitius [2]). As a conse­
quence of this extension we can translate the convergence results derived in 
Chapter 7 to results on spectral projection series for an state of the RFDE 
(10.1). 

THEOREM 10.8. The Aj-th term of the Fourier type series expansion of 
x( ·; f) of the Volterra convolution equation (7.1) equals the >.rth spectral 
projection of the corresponding state of the RFDE (10.1), i.e. 

P>.; ( G f) (t - h) = z~!~ { ezt a - 1(z)z fo 00 e-zt J(t)dt}. (10.19) 

PROOF. From Theorem 10.4 and the representation for the spectral pro­
jection P>.; given by (10.17) it follows that 

P>.; (GJ)(t - h) = z~!~ { ez(t-h) a- 1(z)z fo 00 e-zt FGJ(t)dt}. 

Since 
FGJ=S(h)f=x(h+ -;f)-(*x(h+ ·;!), 

we obtain 

A; (GJ)(t - h) = z~!~ {ezta- 1(z)(z fo 00 e-ztf(t)dt 

h 

- a(z) lo e-ztx(t)dt)} 

= z~!~ {ezta-l(z)z fooo e-ztf(t)dt}. 

I 
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As a result of the above theorem, residue calculus of the Volterra convo­
lution equation and analysis of the spectrum of the resolvent R(z, A), yield 
the same information. The only difference is that instead of the solution x 
we now analyse the state Xt = x(t + 0) as a function on the interval [-h, 0]. 
In Corollary 6.11 we derived an exponential estimate for the remainder term 
of x( • ; f) and of course at the same time this yields an estimate for the 
state 

T(t)Gf=xt( ·;Gf). 
Recall from Theorem 10.1 that the C0-semigroups are intertwined, i.e. 

T(t) = GS(t)G- 1 . (10.20) 

COROLLARY 10.9. Let A(r) be the finite set of eigenvalues defined by 

A= A(r) = {.x E o-(A): ~(.X) > r }. 

Then the state space C can be decomposed into two closed { T(t) }-invariant 
subspaces .A-1A and QA 

where 

and 

QA= $ Q>,.. 
>..EA 

The spectral projection PA on MA is given by 

PA= °2::::P>.., 

Besides, if 
<p = PA<p + (I - PA)<p, 

according to the above decomposition. Then 

JJT(t)(I - PA)<pJJ :S Ke-YtJJ(I - PA)<pJJ 
for some positive constant K and t 2: 0. 

(10.21) 

(10.22) 

Assume that all roots have negative real part, then we can choose 
1 < 0 in Corollary 10.9 and we derive exponential asymptotic stability: for 
all <p EC 

JJT(t)<pJJ :S Ke-Ytll<pJJ (10.23) 

for some positive constant K and negative r. 

Let Mc denote the linear subspace generated by M>.., i.e. 

Mc= EB M>..-
>..E u(A) 

(10.24) 

This linear subspace is called the generalized eigenspace of A. 
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DEFINITION 10 .10. The generalized eigenspace Mc is called complete if 
and only if Mc is dense in C i.e. Mc = C. 

Define the ascent a of the semigroup { T(t)} by the value 

a=inf {t l'v'c>O:.A/(T(t)) =N(T(t+c)) }. (10.25) 

Recall the definitions of c and u introduced in Chapter 8: 

nh - € = E(det.6.(z)) (10.26) 

and 

(10.27) 

An application of Theorem 8.2 and Theorem 10.1 yields the following result. 

THEOREM 10.11. The ascent a of the C0-semigroup { T(t)} associated with 
the RFDE (10.1) is finite and is given by 

a= €-<J'. (10.28) 

As a result of Theorem 8.3 we have the following corollary. 

COROLLARY 10.12. The C0-semigroup { T(t)} associated with the RFDE 
(10.1) is injective if and only if E( det .6.(z)) = nh. 

Moreover, we can characterize the subspace N ( T( a) ) . 

THEOREM 10.13. 

N(T(a)) = {<f1 EC: z 1-> R(z,A)<f) is entire}. 

PROOF. From Theorem 10.4 it follows that only the fact 

If) EN( T(a)) if and only if x( •; F<p) is a small solution 

remains to be proved. But this is clear from the definitions of F and a. I 

From the exponential estimates derived in Corollary 10.9 we can also 
characterize the closed subspace 

(10.29) 

COROLLARY 10.14. 
n Q >. = N ( T( a) ) . 

AEa(A) 
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PROOF. Let cp E N(T(a)). From Theorem 10.13 and the representation 
(10.17) we derive for all.,\ E o-(A) 

Hence 

P>.cp = O. 

cp E n Q>.. 
>.eo(A) 

On the other hand if cp E n>.eo(A) Q>., then we derive from Corollary 10.9 
the exponential estimate 

IIT(t)cpll :S Ke-rt for t 2: 0 (10.30) 

for every I E Rand some positive constant I{. Therefore, an application of 
Theorem 8.2 shows that x( •; Fcp) is a small solution. Thus cp EN( T(a) ). 

I 

From the results of this chapter we derive that, if the decomposition 
given in Corollary 10.9 holds with A= o-(A), then the following state space 
decomposition would be true 

C = Mc EB N ( T( a) ) . (10.31) 

This state space decomposition for C is important since it would show that 
completeness holds if and only if there are no small solutions. Furthermore, 
this decomposition would show the procedure to follow when there do exist 
nontrivial small solutions, namely state space restriction to Mc. Our main 
goal in the next chapter will be the study and characterization of Mc 
employing the convergence results for the Fourier type series derived in 
Chapter 7. 



96 11 Invariant subspaces 

CHAPTER 11. INVARIANT SUBSPACES 

In this chapter we shall study invariant subspaces for the Co-semigroup 
{T(t)} associated with the linear autonomous RFDE 

x(t) = 1h d((0)x(t - 0) for t 2: 0, 
(11.1) 

Xo = cp, 

where cp EC= C[-h, 0] and ( E NBV[0, h]. 
Recall from Chapter 10 that both N( T(a)) and Mc are { T(t) }­

invariant closed subspaces of C. In this chapter we shall use the results of 
the Chapters 7 and 8 to study the subspaces N( T(a)) and Mc in more 
detail. 

To begin with we discuss the solutions of the RFDE (11.1) which are 
defined on (-oo, O]. Define the following { T(t) }-invariant subspaces 

Ac = { cp E C I 3x : x is a solution on (-oo, O] with xo = cp} 
and 

~ = { cp E C I 3x : x is a bounded solution on (-oo, O] with xo = cp}. 

In Chapter 8, we showed that the C0-semigroup { T(t)} need not to be 
one-to-one. To re-emphasize this point, we state the result explicitly (recall 
Corollary 10.12). 

THEOREM 11.1. The C0-semigroup { T(t)} is one-to-one if and only if 
det ~(z) has maximal exponential type, i.e. E( det ~(z)) = nh. 

The fact that the Co-semigroup { T(t)} may not be one-to-one is at the 
same time an annoying and an interesting feature of the theory of RFDEs 
and a better understanding of one-to-oneness is needed. One way to begin to 
understand why the map is not one-to-one is to define and study equivalence 
classes of initial data. 
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DEFINITION 11.2. We call cp E C equivalent to x E C, notation cp ~ X, if 
there exists a r ~ 0 such that xr(-;cp) = xr(·;x). Ifin addition r ~ h, 
then we call cp immediately equivalent to x. 

In contrast with the general (non autonomous) case, the following result 
is true for linear autonomous systems of RFDEs. 

THEOREM 11.3. For linear autonomous systems of RFDEs the equivalence 
classes are determined in a fixed finite time (viz. a = f - u ). 

PROOF. If cp and x belong to the same equivalence class of a linear system, 
then the solution x corresponding to cp - x is a solution that must be zero 
after some finite time. It then follows from Theorem 8.2 that x( ·; cp - x) 
must be identically zero for t ~ a - h. Therefore, each equivalence class is 
determined in finite time. I 

As a result of Chapter 10, in particular Corollary 10.9, we derive the 
following theorem. 

THEOREM 11.4. 

~ C EI, M>. where A E u(A). 
lR(>-)2'.:0 

Hence A~ is finite dimensional and asymptotically stable, 1.e. for any 
bounded set BC C and f > 0, there is a to(B, f) such that 

where 
d(cp,A~) = inf llcp - xll-

xeAh (! 

(11.2) 

So, asymptotically, the system (11.1) is controlled by the finite dimen­
sional subspace A~ of C. If we replace A~ by Ac in the above theorem, then 
Theorem 11.5 shows that (11.2) holds after a fixed finite time for any subset 
of C. However, the price we have to pay for this stronger result is that the 
subspace Ac is infinite dimensional and therefore difficult to characterize. 
It is our aim to give a complete characterization of the closure Ac of Ac. 

THEOREM 11.5. 
Ac= Mc= E£l M>.. 

>-eu(A) 

Hence Ac is infinite dimensional. For any set W C C 

T(t)W C { cp EC: d(cp,Ac) = O} 

where a denotes the ascent of { T(t)}. 

for t ~ a, (11.3) 
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We divide the proof of Theorem 11.5 into two theorems. 

THEOREM 11.6. 
Ac= Mc. 

THEOREM 11.7. 
Ac =R-(T(a)). 

A result related to Theorem 11. 7 states 

Mc =R-(T(6)), 

where 6 is the ascent of the adjoint semigroup T*(t) and was first proved 
by Henry [20] using duality methods. 
Here we do not need duality methods and we shall prove Theorem 11.7 
by applying the results derived in Chapter 7. Theorems 11.6 and 11. 7 are 
corollaries of the characterization of Ac, which we shall prove first. 

Laplace transformation of the RFDE (11.1) yields 

where 

f00 e-ztx(t - h)dt = Q'P(z) 
lo det ~(z) 

for ~(z) > 1 , 

Q'P(z) = e-zh (adj~(z)z fo 00 e-zt F1.p(t)dt 

+ det ~(z) 1-oh e-zt<p(t)dt). 

(11.4) 

(11.5) 

An application of Theorem 10.1 and Theorem 7.20 yields the following 
characterization. 

THEOREM 11.8. 

PROOF. From Theorem 10.1 we have 

( 11.6) 

If/ E F, then we derive for the solution x( •; G f) of the RFDE (11.1) 

/ 00 -zt _ _ adj~(z)z ft e-zt f(t)dt 
lo e x(t h)dt - det ~(z) . ( 11. 7) 

Therefore, from (11.6), (11.7), Theorem 7.10, and the representation (11.4), 
the desired result follows. I 
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PROOF OF THEOREM 11.6. The inclusion Mc C Ac holds by definition. 
To prove the remaining inclusion Ac C Mc we are first going to prove that 

Ac CMc. 

From the proof of Theorem 7.11 and Theorem 10.1, it follows that 

(11.8) 

Therefore, from Theorem 11.8 

Ac CMc. (11.9) 

The elements of Mc are (infinite) series and limits of (infinite) series of the 
form 

(11.10) 

The elements of Ac do have a well-defined solution on the whole real line. 
From (11.9) it follows that this solution can be given as a series or a limit 
of series of the form (11.10) and since these series involved should be well 
defined for negative t they cannot be infinite. Therefore, we have proved 

Ace Mc 

and this completes the proof of Theorem 11.6. I 

PROOF OF THEOREM 11.7. Because of the definition of Ac we have 

Ac C 'R.( T(t)) for t ~ 0. 

Thus we obtain the inclusion 

Ac C 'R. ( T( a) ) . 

The remaining inclusion follows from Theorem 11.8. Since 

we derive from the definition of the ascent o that 

E( QT(a)cp(z)) ~ E( det ~(z)). 

Therefore, 
'R.( T(a)) C Ac 

and the theorem is proved. 

(11.11) 

(11.12) 

(11.13) 

(11.14) 

(11.15) 

I 
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Next we turn to some important applications of the characterization 
obtained above. We say that <p E C has a backward continuation over a if 
there exists an initial condition x E C such that 

T(a)x = <p. (11.16) 

A backward continuation does not always exist and, moreover, is not unique. 
From Theorem 8.2 it follows that if a backward continuation exists over a 
with a 2:: a it is unique over a - a. Clearly, for <p E Ac a backward 
continuation does exist and is unique. Our first result shows that this 
property is stable under taking the closure of Ac. 

THEOREM 11.9. Backward continuation is unique for Ac. 

This theorem is a direct consequence of Theorem 11.8 and the following 
result. 

THEOREM 11.10. 
Mc nN( T(a)) = {0}. 

PROOF. Assume that 
<p E Mc nN( T(a) ). 

Since <p E N(T(a)), the solution x_h = x(-h+ •; <p) has an entire Laplace 
transform 

(11.17) 

On the other hand, since <p E Mc, it follows from Theorem 11.6 and The­
orem 11.7 that 

E(L{x-h}) = 0. 

Hence, from the representation (11.17) we conclude that x_h should be 
zero. So in particular <p should be zero. I 

From Theorem 11.10 it follows that the direct sum 

Mc©N(T(a)) 

is well defined. By duality, see Chapter 12, in particular Theorem 12.5, the 
dual result of Theorem 11.10 reads 

n(T*(8)) nN(T*(8)) =0, 

where 8 denotes the ascent of {T*(8)}. Therefore, the direct sum Mc $ 

N( T(a)) is a dense subspace of C. So 

C = Mc ©N(T(a) ). (11.18) 
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For differential-difference equations the linear subspace Mc can be 
determined explicitly from the characterization obtained above. See the 
examples in Chapter 13. 

The linear subspace Mc represents, in a certain sense, the minimal 
amount of initial data needed to specify a solution of the RFDE (11.1). If 
more initial data are specified, then the extra part belongs to Mc fort ~ o:. 
Given this observation we can recall the following question posed by Hale 
[18]. Does there exist a { T(t) }-invariant closed complementary subspace 
U of N( T(o:)) such that 

C = U EB N ( T( o:) ) ? 

From the decomposition (11.18) we derive that 

U=Mc 

(11.19) 

(11.20) 

and to answer this question, we shall consider backward continuations for 
Mc. From Theorem 11.10 we derive, however, that backward continuation 
is unique for Mc. But the decomposition (11.18) tells us that the possible 
backward continuation of <p E Mc in C / N ( T( o:) ) does not necessarely 
belong to Mc! In fact, the decomposition 

C = Mc EBN(T(o:)) (11.21) 

holds if and only if, 
Mc ?:!: C/N( T(o:)). (11.22) 

Or, in other words, if and only if for every <p E Mc, the possible backward 
continuation of <p in C/N( T(o:)) actually belongs to Mc. Note that from 
(11.18) it follows that Mc is always dense in C/N( T(o:)) with respect to 
the quotient topology. The next example shows that the decomposition 
( 11.21) does not hold in general. 

EXAMPLE 11.11. Consider the scalar RFDE 

x(t) = x(t - 1) for t ~ 0, 
(11.23) 

XQ = <p, 

where <p E C[-2, O]. Note that, since the delay is chosen incorrectly the 
example is artificial, but indicates what happens in systems of RFD Es where 
more than one delay is involved. 

Let { T(t)} denote the C0-semigroup on C = C[-2, O] and let { T(t)} denote 
the Ca-semigroup defined on C[-1, O]. Then, clearly 

N( T(l)) = { <p EC: supp(<p) C [-2, -1]} (11.24) 

and 
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(11.25) 

Consider an equivalence class 'P E C / N ( T( 1) ) of initial conditions. We can 
choose a representant x E C for this equivalence class such that 

and 
Xl[-1,0] = 'P 

T(l)x(-1 + ·) i- xl[-1,oJ• 

Then clearly x </. Mc = 'R.( T(l)). Hence 

Cf. Mc EB N( T(l)). (11.26) 

To show the equivalent statement for the Volterra convolution equation 

X -( * X = j, (11.27) 

where 
((t) _ { 0 if t < 1; 

- 1 otherwise, 

we can use Theorem 7.12 to characterize A,,r = 'R.(S(t)). From this theo­
rem it follows that 

'R.( S(t)) = {J E :F : f(t) = /(1) fort 2: 1}. (11.28) 

Also, we clearly have 

N( S(t)) = {J E :F: f = x-( *X, x E C(R+), supp(x) C (0, 1]}. (11.29) 

Therefore, if f E 'R.( S(t)) EEl N( S(t)) then f is absolutely continuous on 
[1, 2]. Hence 

:Ff. 'R.( S(t)) EB N( S(t)). (11.30) 

Although the characterization of Mc (or Ac) given by Theorem 11.7 
is useful to determine Mc in concrete examples we shall also give a more 
abstract (equivalent) characterization. Let A denote the infinitesimal gen­
erator of { T(t) }. Recall from Theorem 10.13 the following characterization 
of N( T(a)) 

N( T(a)) = {'PE C: z 1-+ (zl -A)-1<p is entire}. 

In line with this result we have the following characterization of Mc. 
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THEOREM 11.12. 

Mc= {If' EC: z 1--+ (zl -A)- 1ip is O(zN) on the negative real axis}. 

PROOF. From the representation for the resolvent, see Theorem 10.4, it 
follows that this result is a direct consequence of Theorem 11.7. I 

The remaining part of this chapter will be devoted to a reformulation 
of the convergence results for the Fourier type series expansions into the 
RFDE framework. For the convergence results we have to restrict the class 
of kernels to SBV[0, h] introduced in Chapter 4. Because of Theorem 10.1 
and Theorem 10.8, the results will be a straightforward application of the 
results of Chapter 7. 

Consider the following system of RFDEs 

x(t) = 1h d((0)x(t - 0) for t ~ 0, 
(11.31) 

xo = If', 

where If' EC and ( E SBV[0, h], i.e. all (ij belong to SBV[0, h] and there is 
at least one of the (ij that jumps in h. 
We then have the following convergence results for the spectral projection 
series. 

THEOREM 11.13. If If' EC is such that 

Then for every f > 0 the state T( h + f )If' can be represented by a convergent 
spectral projection series 

(11.32) 

THEOREM 11.14. Ifip EC, then for every f > 0 the state T(nh + l)lf' can 
be represented by a convergent spectral projection series 

N 

lim IIT(nh + l)!f' - ~ P».T(nh + l)lf'II = 0. 
N-oo L.J 1 

j=l 

(11.33) 
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In general we do not know whether nh can be replaced by a in the 
above theorem, also we do not know whether Theorem 11.14 holds with no 
restriction on the kernel (. If 

N(zadj.6.(z)) ~ N(det .6.(z)), 

we can use the representation formula (10.3) for F to control the Newton 
polygon condition in Theorem 11.13 and we obtain the following corollary 
to Theorem 11.13. 

COROLLARY 11.15. If 

N(zadj.6.(z)) ~ N(det .6.(z)) 

and if I() E C such that I() is locally of bounded variation. Then for every 
1: > 0 the state T(h + 1:)1() can be represented by a convergent spectral 
projection series. 

REMARK 11.16. From the results of this chapter it follows that we can 
formulate the following necessary and sufficient condition for completeness 
of the system of generalized eigenfunctions: 

Mc = C if and only if a = 0, 

i.e. there are no small solutions. 

REMARK 11.1 7. Delfour and Manitius introduce in their papers [8], [9], 
and [28] the concept of F-completeness. The generalized eigenspace Mc is 
called F-complete if and only if 

where the linear operator F is defined by (10.3). From the results of this 
chapter it follows that we can formulate the following necessary and suffi­
cient condition for F-completeness: 

FMc ='R-(F) if and only if a~ h, 

i.e. all small solutions are in the kernel of F. 
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CHAPTER 12. PERTURBED DUAL SEMIGROUPS 

In this chapter we are going to study the Co-semigroup associated with 
RFDE (10.1) in more detail. Recall from Chapter 10 that the RFDE (10.1) 
consists of a rule to extend the initial function. Starting from a given 
function defined on [-h, O] one obtains an extended function defined on 
[-h, oo) by solving the equation. 

The dynamical systems point of view is to consider the given function 
on [-h, O] as the initial state and the part of the extended function between 
t - h and t shifted back to the interval [-h, O] as the state at time t. Thus, 
there are two ingredients for the construction of the state at time t: ex­
tending the function and shifting it back. The first ingredient is specific for 
a particular delay equation, but the second is general, i.e. the same for all 
delay equations. Our approach will be to study the second ingredient first 
for the special case in which the extension rule is as simple as possible: 

x(t) = 0 for t 2'.: 0, 

Xo = cp, 
(12.1) 

where cp E C. Then we consider other extension rules as perturbations 
of this special case. It will turn out, that the functional analytic frame­
work which we develop, extends and generalizes the results of Chapter 10. 
In particular, it associates a Volterra convolution equation with the dual 
semigroup { T*(t)} and it is possible to formulate all the results of Chapter 
11 in this framework. 

It also gives a rigorous basis for the variation-of-constants formula. 
Recall from Chapter 9 the so-called fundamental matrix solution U. The 
existence of this solution is clear from the construction, but from equa­
tion (9.1) it follows that this solution corresponds to a discontinuous initial 
condition. Therefore, this solution does not belong to the state space C. 
In Hale's book [17] we find that the variation-of-constants formula for the 
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inhomogeneous equation 

:i:(t) = lah d((O)x(t - 0) + f(t) for t 2:: 0, 
(12.2) 

xo = <.p, 

involves the fundamental matrix solution U and reads 

x( <.p,f)(t) = x( <.p,O)(t) + lat U(t - s)f(s)ds for t 2:: 0. (12.3) 

Since U does not belong to C, the formula becomes symbolic rather than 
functional analytic. In the functional analytic framework which we develop, 
however, the variation-of-constants formula has a rigorous basis in the weak 
* sense. In this chapter we will follow the lines of a paper by Diekmann 
[12]. 

Let { T(t)} be a C0-semigroup of bounded linear operators on a Banach 
space X and let A denote its infinitesimal generator. The adjoint operators 
{ T*(t)} form a semigroup on the dual space X*. The semigroup { T*(t)} 
is weak* continuous. But if we equip X* with the usual norm topology, 
{ T*(t)} need not be strongly continuous (unless Xis reflexive). The oper­
ator A*, the adjoint of A, is the weak* generator of { T* (t)} but need not 
be densily defined. Let x0 denote the norm closure of'D(A*), i.e. 

(12.4) 

then x 0 is the maximal invariant subspace on which { T* (t)} is strongly 
continuous. Let { T0 (t) } denote the C0-semigroup on X0 which is obtained 
by restriction of { T*(t)} and let A0 denote its generator. Then A0 is the 
part of A* in x0 , i.e. the largest restriction of A* with both domain and 
range in X 8 (see Hille and Phillips [20]). Repeating the same procedure we 
obtain a weak* continuous semigroup { T0* (t)} on x0 •, the dual space of 
X 8 , with weah generator A 8 *. The Banach space X is called 0-reflexive 
with respect to A if and only if X can be identified with 

x00 = V(A0*) 

(in general X can be embedded as a subspace of X00). Let { T0 (t)} be 
a Co-semigroup on X generated by Ao and assume that X is 0-reflexive 
with respect to Ao. We want to perturb the generator Ao by a linear 
operator B, where B is bounded not as an operator from X into X, but 
as an operator from X into X 8 *. To this end we consider the variation-of­
constants equation for the perturbed semigroup 

T(t)x = To(t)x + lat Tf*(t - r)BT(r)xdr. (12.5) 
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Here the integral has to be understood in the weak* sense, i.e. 

for arbitrary x0 E x0 . So in principle the integral takes values in x0 • but 
one can show that in fact it takes values in the closed subspace x00 = X. 
Within this setting the contraction argument applies with the result that 
(12.5) has a well-defined solution { T(t) }. Since it can be shown [8] that the 
spaces of strong continuity do not depend on the perturbation B we obtain, 
by duality and restriction, semigroups {T*(t)}, {T0 (t)}, and {T0 *(t)} 
on, respectively X*, x0 , and x 0 •. Similarly the domains of the weah 
generators on the spaces X* and x0 • are independent of B. Therefore, we 
have the following theorem. 

THEOREM 12.1. The opera.tor Ax= AW*x + Bx with 

'D(A) = {XE 'D(AW*): AW*x + Bx Ex} 

is the genera.tor of a Co- semigroup { T(t)} on X and the variation-of­
constants formula (12.5) holds. 

Next, let { To(t)} be the Co-semigroup generated by the equation 

:i: = 0, 

XO = If), 
considered as a delay equation on C = C[-h, 0]. We shall first show that C 
is 0-reflexive with respect to Ao. 

The semigroup { To(t)} is given by 

on X = C and is generated by 

Aocp = 'fl 
with 

fort+ 0 ~ 0, 
for t + 0 2: 0, 

'D(Ao) = { cp E C : 'fl E C and tp(0) = 0}. 

Let X* be represented by NBV[0, h] with the pairing 

{/, cp} = foh df( r)cp(-r). 

(12.6) 

(12.7) 
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Then 
(T0(t)/)(c,) = f(t + c,) for c, 2: O. (12.8) 

So 

with 

1'(A~) = {f E NBV[O, h]: j E NBV[O, h] }. (12.9) 

Hence 

x0 = 1'(Aci) 
= Rn E&ACo 

= {f: f(t) = c + 1t g(r)dr, g E L1[R+l, supp(g) C [0, h] }. 

It is sometimes convenient to work with the couple (c,g) to represent f. 
This amounts to representing x 0 by Rn x L1[0, h], with norm 

ll(c,g)II =lei+ llglli-

In these coordinates we have 

Tf(t)(c,g) = (c+ 1t g(r)dr,g(t + • )). (12.10) 

So the infinitesimal generator is defined by 

A~(c,g) = (g(O),g) 
with 

(12.11) 

Next we take the representation X 8 * = M 00 = Rn x L 00 [-h,O] with norm 

and pairing 

((c,g),(a,<p))=ca+ 1h g(r)<p(-r)dr. 

It follows that Tf* (t) is the shift of the a-extended <p: 

Tf*(t)(a, <p) = (a, <pt), 
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where 
'Pt(B) = { <p(t + 0) fort+ 0 :S 0, 

a fort+ 0 > 0. 

So the infinitesimal generator is defined by 

with 

V(A?*) = { (a, <p) E an x L 00 (0, h]: <p E Lip(a)}, (12.12) 

where Lip( a) denotes the class of elements of L 00 that contain a Lipschitz 
continuous function which assumes the value a at 0 = 0. Finally, 

X 88 = V(A?*) 

= {(a,<p) E an x L00 (0,h]: <p E C(a) }, 

where C( a) denotes the class of elements of L 00 that contain a continuous 
function which assumes the value a at 0 = 0. We can embed X into X 8 * 
and clearly, we can identify this embedding of X with x 00 . Therefore, we 
conclude that C is 0-reflexive with respect to Ao ( a fact which also can be 
deduced from the compactness of (U - A0)- 1 with .X E p(Ao)). So far we 
have used the semigroup { T0 (t)} to construct a dual space X 8 * = M 00 in 
which X = C lies embedded. Next we are going to perturb the generator 
by changing the rule for the extension of the function. Define B : C -i- M00 

by 
B<p = (((,'P),0). (12.13) 

From Theorem 12.1 it follows that for a given kernel ( we have a C0-

semigroup { T(t)} on C generated by the operator A defined by 

A<p = cp 

with domain 

V(A) = { 'P E C : <p E C and 0(0) = ((, 'P) } . 

Recall from (10.8) that the same operator A generates the Co-semigroup 
associated with the RFDE (10.1) and consequently this semigroup can be 
given by the variation-of-constants formula (12.5). In fact all the results 
derived in Chapter 10 are straightforward applications of the functional 
analytic framework which we developed above. 

Next we shall further study the specific perturbation B given by (12.13) 
and derive that solving the abstract variation-of-constants formula (12.5) is 
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equivalent to solving a renewal equation. This result gives a beter under­
standing of the equivalence result presented in Theorem 10.1. 

Let rJ be the j-th row of ( and rJ* = ( ej, 0), where ej denotes the j-th 
unit column vector in Rn. It is convenient to combine these into matrices 

r* = (, 
r 8 * = (I, 0). 

Then 
n 

Bx= 'z:(rJ, x)rJ*. (12.14) 
j=l 

Let Q denote a n x n-matrix valued function with entries 

A simple estimate shows that Q is Lipschitz continuous. As a consequence 
we have a representation of the form 

From 

we derive that 

Hence, 

Therefore, 

Q(t) = lat K(r)dr. 

Tf*(t)r8* = (I, H(t + · )I), 

lat Tf * (t)r8 * dr = max( 0, t + ·)I. 

Q(t) = lat d(( r)(t - r). 

K = (. 
Now define then-vector y(t) = (y1(t), ... , Yn(t)) by 

Yj(t) = (rj, T(t)x) for 1 :S j :S n, 

(12.15) 

(12.16) 

(12.17) 

(12.18) 

(12.19) 

(12.20) 

where T(t)x is the solution of equation (12.5). Then equation (12.5), re­
lation (12.18) and a little technical calculation (to avoid undefined expres­
sions) imply that y satisfies the renewal equation 

y = h + ( * Y, (12.21) 
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where the vector-valued function h = (h1, ... , hn) is given by 

hj(t) = (rJ, To(t)x) for 1 ~ j ~ n. (12.22) 

Conversely, given any solution y of (12.21) with h of the form (12.22) we 
can recover T(t)x from 

T(t)x = To(t)x + t 1t T(P*(t - r)rf*yj(r)dr. 
j=l 0 

It appears that solving equation (12.5) is reduced to solving (12.21) 

Substituting (12.16) into (12.23) yields 

/max{O,t+IJ} 
(T(t)cp)(0) = (To(t)cp)(0) + lo y(r)dr. 

So if we define 

then 

x( t; cp) = (T(t)cp) (0), 

y(t) = x( t; c,o). 

Moreover, equation (12.24) then implies that fort+ 0 2: 0 

t+IJ 
(T(t)cp)(0) = cp(O) + lo y(r)dr 

= x(t + 0;cp). 

Finally, 

h(t) = lh d(( r)cp(t - r) + ((t)cp(O). 

Therefore ( 12 .21) reads 

x(t) = fo 1 ((r)x(t - r)dr + lh d((r)cp(t - r) + ((t)<p(O). 

Thus from Theorem 2.7 (iii) 

x(t) = 1h d((0)x(t - 0) for t 2: 0 

with initial condition 
Xo = <p. 

(12.23) 

(12.24) 

(12.25) 

(12.26) 

(12.27) 

(12.28) 

(12.29) 

(12.30) 
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And once more we arrive at the conclusion that the semigroup { T(t)} is 
the solution semigroup corresponding to (12.29)-(12.30). 

To conclude this chapter we will show how the present approach yields 
a suitable interpretation of the dual semigroup rather directly. And as an 
application of this interpretation we will prove the dual version of Theorem 
11.10. 

Let B* : X0 -+ X* denote the adjoint of B. The semigroup { T0(t)} 
satisfies the "adjoint" variation-of-constants formula 

So if 
n 

B*x8 = I:rj(x8 ,rJ*), 
j=l 

then the vector-valued function z = (z1, ... , Zn) defined by 

for 1 ~ j ~ n, 

satisfies the "adjoint" renewal equation 

where (T denotes the transposed kernel and the forcing function 

9 = (g1, · · · , 9n) 

is defined by 

for 1 ~ j ~ n. 

(12.31) 

(12.32) 

(12.33) 

(12.34) 

(12.35) 

The action of r 8 * corresponds to taking the limit from above in zero. So, 
from (12.8) 

g(t) = (Tf(t)f)(O+) = f(t+) = f(t). (12.36) 

Therefore, according to (12.31) and (12.33), we have 

(12.37) 

On the other hand, from the results of Chapter 6 we may start from the 
renewal equation 

(12.38) 
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where f is absolutely continuous and constant on (h, oo) and define a semi­
group { S(t; (T)} by 

(12.39) 

Thus a straightforward computation shows that T0(t) = S(t; (T). That is, 
we can associate with { r 0 (t)} the Volterra convolution equation (12.38). 
And therefore, we can apply the results derived for the Volterra convolution 
equation in Chapter 6,7, and 8 to the C0-semigroup { T0(t) }. 

Let 6 denote the ascent of { r 0 (t)}, i.e. 

From Theorem 8.2 it follows that 6 is finite and 

where 

and 

Since, 

and 

we obtain from Theorem 8.2 the following theorem. 

THEOREM 12.2. The ascents of { T(t)} and { T0(t)} are equal. 

(12.40) 

(12.41) 

Since all results of Chapter 7 apply to the Volterra convolution equation 
(12.38) we can state the dual version of Theorem 11.10. 

THEOREM 12.3. 

As a corollary we have the equivalent result for { T*(t)} with respect to the 
weak* topology. 

COROLLARY 12.4. 

----w• 
n( T*(6)) n N( T*(6)) = {O}. 
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---,,-----,-W* 
PROOF. Since 'R, ( T* ( 8)) and N ( T* ( 8)) are invariant under the resol-
vent operator (>,.J - A*) with .A E p(A*), the intersection 

n( T*(8)) * nN( T*(8)) (12.42) 

is invariant under the resolvent operator. Moreover, this invariance property 
implies that the ascent of { T* ( t) } equals 8 as well. So if the intersection 
(12.42) is not trivial we can assume that the intersection within 'D(A*) is 
not trivial. Since weak*-closed implies norm-closed, we obtain 

-----w* 
n( T0(8)) = x 0 n n( T*(8)) 

and also 

So, the corollary follows from Theorem 12.3. 

(12.43) 

( 12.44) 

I 

Finally, as an application of the above results we prove the following 
theorem. 

THEOREM 12.5. 
C = Mc ©N(T(a) ). 

PROOF. We shall prove that the set of all bounded functionals on C that 
vanish on Mc © N ( T( a) ) is trivial. Notation 

(Mc © N ( T( a) ) ) .L = { 0}. 

Since a= 8, we have by Theorem 11.6 

From the equalities 

and 

we derive 

Mc ='R-(T(8)). 

('R-(T(8))).L =N(T*(8)) 

(N(T(8))).L ='R-(T*(8)) *, 

(Mc ©N(T(a))).L = (n(T(8))).L n (N(T(8))).L 

= N( T*(8)) n n( T*(8)) * 

Therefore, the theorem follows from Corollary 12.4. 

(12.45) 

(12.46) 

(12.4 7) 

(12.48) 

(12.50) 

I 
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CHAPTER 13. EXAMPLES 

In this tract we have studied linear delay equations through the Laplace 
transform. We first considered the asymptotic estimates and then the 
Fourier type ( or spectral projection) series expansions for solutions ( or 
states). Finally, we characterized the closure of the generalized eigenspace. 
We emphasize that from the practical point of view this last characteri­
zation is very important since it yields, at least for differential-difference 
equations, relations for Mc or A:,:-. This means that one' can analyse the 
convergen·ce properties of the spectral projection series when the state <p is 
restricted to Mc and this results in much stronger convergence results. 

Given a linear autonomous delay equation with C0-semigroup { T(t)} 
the idea is to follow the procedure: First we use the exponential type cal­
culus of Chapter 4 to calculate the ascent a. When a = 0, completeness 
of the system of generalized eigenfunctions holds and C is the proper state 
space to study the equation. When a > 0 - i.e. there exist small solutions 
- restrict the state space C to Mc, or equivalently, the forcing space F to 
A:,:- and find the relations for A:,:-. 

Next we analyse the analytic continuation of the Laplace transform 
of the solution and use the relations for A:,:- to analyse the convergence 
properties of the Fourier type series expansion when the forcing function f 
is restricted to A:,:-. 

Consider the following example. 

EXAMPLE 13.l. (The delayed friction force model). 

x(t) + ax(t) + bx(t - h) + cx(t) = 0. (13.1) 

To reduce this system to a first order system introduce the variables 

( 13.2) 
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Then (13.1) becomes 

x1(t) = x2(t), 
x2(t) = -cx1(t) - ax2(t) - bx2(t - h). 

( 13.3) 

The characteristic matrix of (13.3) is given by 

( z -1 ) 
~(z)= c z+a+be-hz (13.4) 

and 
(13.5) 

The matrix of cofactors equals 

(13.6) 

Hence 
N(zadj~(z)) ~ N(det~(z)) (13.7) 

and we can apply Corollary 11.15 to conclude that for every f > 0 and 
tp E C such that tp is locally of bounded variation the state T(h + f)tp can 
be represented by a convergent spectral projection series 

N 

lim IIT(h + f)tp - ~ P>..T(h + f)'PII = 0, (13.8) 
N--+ oo ~ ' 

j=l 

where .\1 , ... denote the zeros of det ~(z). From (13.5) and (13.6) we deduce 
that the ascent o: of the C0-semigroup { T(t)} associated with (13.3) equals 

o: = h. (13.9) 

Indeed, 
N ( T( h) ) = { 'P E C : 'P 1 ( 0) = 0 and tp2 = 0} . (13.10) 

To characterize Mc we first characterize AF ( and then use that GAF = 
Mc, where G is defined by (10.2)). Because of Theorem 7.12 we have to 
solve 

E((z +a+ be-zh)zL{fi}(z) + zL{/2}(z)) ~ h, 

E(-czL{fi}(z) + z2 L{f2}(z)) ~ h, 

where for 1 ~ j ~ 2 

(13.11) 
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Hence 
AF= {f E :F: fi(t) = fi(h) fort~ O}. {13.12) 

To find N ( S ( h) ) we have to solve the following equation 

~(z)L{x}(z) = zL{f}(z), 

where x is a small solution of the system (13.3). Thus we have to solve the 
system 

z fo 00 e-ztx1(t)dt = z fo 00 e-ztfi(t)dt, 

c fo 00 e-ztx1(t)dt = z fo 00 e-ztfz(t)dt, 

where x1(t) = 0 fort~ h. Hence 

{13.13) 

N( S(h)) = {J E :F: fi{h) = 0 and /2(t} = c lat fi(s)ds fort~ h }. 

Therefore we have proved the following decomposition 

{13.14) 

given by 

[/1 (t)] 
'2(t) 

[Ji ( t) - Ji ( h )] [ /i ( h) ] 
cJ; fi(s)ds + fz(t)- cJ; fi(s)ds · 

{13.15) 

Or, equivalently, 
C = N(T(h)) $Mc. 

Thus we can restrict the state space C to Mc to obtain a minimal invariant 
subspace for {13.3). Next we will analyse what we can say about the conver­
gence of the Fourier type series when the forcing function f is restricted to 
AF. From Theorem 7.3 and the characterization {13.12) we conclude that 
for f E AF such that f is locally of bounded variation the Fourier type 
series always converges. Therefore we derive that for 'P E Mc and c > 0 
the state T(h + c)'P can be represented by a convergent spectral projection 
series, i.e. we do not need the locally of bounded variation condition on 'P· 
Furthermore, if we assume the locally of bounded variation condition on 'P, 
then the state T( € )'P can be represented by a convergent spectral projection 
series for every c > 0. 

Similarly one can discuss the following example. Here one needs the 
techniques rather than the theorems of Chapter 7. 
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EXAMPLE 13.2. (The delayed restoring force model). 

x(t) + ax(t) + bx(t) + cx(t - h) = O. (13.16) 

To reduce this system to a first order system introduce the variables 

Then (13.16) becomes 

x1(t) = x2(t), 
:i:2(t) = -bx1(t) - cx1(t - h) - ax2(t) 

(13.17) 

The characteristic matrix of (13.17) is given by 

Ll(z) = ( z b + ce-hz 
-1) 

z+a 
(13.18) 

and 
det Ll(z) = z2 + az + b + ce-hz. (13.19) 

The matrix of cofactors equals 

(13.20) 

Remark that in this example (7.22) or (7.27) do not hold and we can not 
apply the results of Chapter 7 directly. Therefore, we shall first characterize 
A.,:-. From (13.19) it follows that Lemma 6.5 holds for lzl > Ci!e-zh/ 2 j. 
Hence, we can choose the contours C1 such that (7.7) becomes 

(13.21) 

From Theorem 7.12 it follows that we can characterize A.,:-: 

A.,:-= {f E :F: /i(t) = /i(h) fort 2'.: O} (13.22) 

and as in the above example we can prove the following decomposition 

Thus we can restrict the forcing space :F to A.,:- to obtain a minimal invariant 
subspace. Next we will analyse what we can say about the convergence of 
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the Fourier type series when the forcing function f is restricted to AF. 
Then 

for z E C1 (13.23) 

as/ ...... CX). Hence from (13.21), the proof of Theorem 7.4 and the character­
ization for AF we conclude that the Fourier type series converges uniform 
fort 2'.: ½h + f, if f is locally of bounded variation and uniform fort 2'.: h + € 

for arbitrary / E AF. 
Therefore we derive that for <p E Mc and f > 0 the state T( h + € )1.p can 

be represented by a convergent spectral projection series. Furthermore, if 
we assume in addition the locally of bounded variation condition on <p, then 
the state T( ½ h + € )1.p can be represented by a convergent spectral projection 
series for every f > 0. 

Now consider an example which has non-trivial small solutions. 

EXAMPLE 13.3. Consider the following differential-difference equation 

:i:1(t) = x1(t - 1) - x2(t - {r+ x2(t - 1), 

:i:1(t) = -x1(t - 1) - x1(t - ! ) - x2(t - 1). 
4 

The characteristic matrix of (13.24) is given by 

and 
det -6.(z) = z2 - e-½z. 

The matrix of cofactors equals 

ad"-6.(z) = ( z; e-z -(e-¼z - e-z)) . 
J -(e-:rz + e-z) z - e-z 

(13.24) 

(13.25) 

(13.26) 

(13.27) 

From (13.26) and (13.27) we deduce that the ascent a of the Co-semigroup 
{ T(t)} associated with (13.24) equals 

(13.28) 

Thus the system (13.24) has non-trivial small solutions and the Newton 
polygon condition (7.29) does not hold. Therefore we shall first charcterize 
AF. From (13.19) it follows that Lemma 6.5 holds for lzl > C1le-zh/ 2 1. 
Hence, we can choose the contours C1 such that (7.7) becomes 

(13.29) 
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To characterize AF we have to solve the system 

(13.30) 

where for 1 :::; j :::; 2 

Hence 

(13.31) 

Next we will analyse what we can say about the convergence of the Fourier 
type series when the forcing function f is restricted to AF· Then 

for z E C1 (13.32) 

as 1- oo. Hence from (13.21), the proof of Theorem 7.4 and the character­
ization for AF we conclude that the Fourier type series converges uniform 
fort~ ¼h+t, if/ is locally of bounded variation and uniform fort~ ½h+t 
for arbitrary / E AF, 

Therefore we derive that for t.p E Mc and f > 0 the state T( ½h + t)t.p 
can be represented by a convergent spectral projection series. Furthermore, 
if we assume the locally of bounded variation condition on t.p, then the state 
T( ¼h + € )If' can be represented by a convergent spectral projection series 
for every f > O. 

Note that in the above examples for arbitrary <p E C, the spectral 
projection series for the state T(to)<p converges for t 0 > a in Example 13.1, 
for to > a+ ½h in Example 13.2 and for t 0 > a+ ¼h in Example 13.3. Of 
course we do not know how sharp our estimtes are in the above examples, 
but the results indicate that in general one can not replace nh by a in 
Theorem 7.5. 
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