
CWI Tracts

Managing Editors

J.W. de Bakker (CWI, Amsterdam)
M. Hazewinkel (CWI, Amsterdam)
J.K. Lenstra (CWI, Amsterdam)

Editorial Board

W. Albers (Maastricht)
P.C. Baayen (Amsterdam)
R.T. Baute (Nijmegen)
E.M. de Jager (Amsterdam)
M.A. Kaashoek (Amsterdam)
M.S. Keane (Delft)
J.P.C. Kleijnen (Tilburg)
H. Kwakernaak (Enschede)
J. van Leeuwen (Utrecht)
P.W.H. Lemmens (Utrecht)
M. van der Put (Groningen)
M. Rem (Eindhoven)
A.H.G. Rinnooy Kan (Rotterdam)
M.N. Spijker (Leiden)

Centrum voor Wlskunde en Informatica
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

The CWI is a research institute of the Stichting Mathematisch Centrum, which was founded
on February 11, 1946, as a nonprofit institution aiming at the promotion of mathematics,
computer science, and their applications. It is sponsored by the Dutch Government through
the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

CWI Tract 56

Translating programs into
. delay-insensitive circuits

J.C. Ebergen

Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

1980 Mathematics Subject Classification: 94(j:xx, 68B10, 68Oxx, 68Fxx.
1987 CR Categories: B.6.1, B.6.3, B.7.1, 0.1.3, 0.3.1, 0.3.4, F.1.1, F.1.2, F.3.1, F.3.2, F.4.2.
ISBN 90 6196 363 X
NUGl-code: 811

Copyright@ 1989, Stichting Mathematisch Centrum, Amsterdam
Printed in the Netherlands

ABSTRACT

PREFACE

Contents

0 INTRODUCTION 1
0.1 Notational Conventions 7

1 TRACE THEORY 9
1.0 Introduction 9
1.1 Trace structures and commands IO

1. 1.0 Trace structures 10
1.1.1 Operations on trace structures 10
1.1.2 Some properties 11
1.1.3 Commands and state graphs 13

1.2 Tail recursion 16
1.2.0 Introduction 16
1.2.1 An introductory example 16
1.2.2 Lattice theory 17
1.2.3 Tail functions 18
1.2.4 Least fix.points of tail functions 20
1.2.5 Commands extended 21

1.3 Examples 23

2 SPECIFYING COMPONENTS 25
2.0 Introduction 25
2.1 Directed trace structures and commands 25
2.2 Specifications 28

2.2.0 Introduction 28
2.2.1 WIRE components 29
2.2.2 CEL components 29
2.2.3 RCEL and NCEL components 30
2.2.4 FORK components 31
2.2.5 XOR components 31
2.2.6 TOGGLE component 32
2.2. 7 SEQ components 32
2.2.8 ARB components 33
2.2.9 SINK, SOURCE and EMPTY components 34

2.3 Examples 34
2.3.0 A conjuction component 34
2.3.1 A sequence detector 35
2.3.2 A token-ring interface (0) 36

i

ii

2.3.3 A token-ring interface (1) 36
2.3.4 The dining philosophers 39

3 DECOMPOSmON AND DELAY-INSENSmVITY 41
3.0 Introduction 41
3.1 Decomposition 42

3.1.0 The definition 42
3.1.1 Examples 44
3.1.2 The Substitution Theorem 48
3.1.3 The Separation Theorem 53

3.2 Delay-insensitivity 57
3.2.0 DI decomposition 57
3.2.1 DI components 58

4 DI GRAMMARS 63
4.0 Introduction 63
4.1 Udding's classification 64
4.2 Attribute grammars 66
4.3 The context-free grammar of G4 66
4.4 The attributes of G4 67
4.5 The conditions of G4 69
4.6 The evaluation rules of G4 72
4.7 Some DI grammars 74
4.8 DI Grammar GCL' 75
4.9 Examples 76

5 A DECOMPOSITION METHOD I
SYNTAX-DIRECTED 'TRANSLATION OF COMBINATIONAL COMMANDS 83
5.0 Introduction 83
5.1 Decomposition of ei into fti 87
5.2 Decomposition of e(GCL') 88
5.3 Decomposition of e(GCLO) 90

5.3.0 Decomposition of semi-sequential commands 90
5.3.1 The general decomposition 91

5.4 Decomposition of XOR, CEL, and FORK components 92
5.5 Decomposition of e(GCLl) 93
5.6 Decomposition of e(GCAL) 95

5.6.0 Introduction 95
5.6.1 Conversion to 4-cycle signalling 95
5.6.2 Decomposition of 4-cycle CAL components into B 1 96
5.6.3 Decomposition of 4-cycle CAL components into BO 97

5.7 Schematics of decompositions 99

iii

6 A DECOMPOSITION METHOD II
SYNTAX-DIRECTED TRANSLATION OF NON-COMBINATIONAL COMMANDS 101
6.0 Introduction 101
6.1 Decomposition of Bi into f.1 102

6.1.0 Introduction 102
6.1.1 An example 102
6.1.2 The general decomposition 104
6.1.3 Schematics of decompositions 106

6.2 Decomposition of fs into f.2 108
6.2.0 Introduction 108
6.2.1 DI grammar GSEL 110
6.2.2 An example 110
6.2.3 The general decomposition 112
6.2.4 Decomposition of f.(GSEL) 114
6.2.5 A linear decomposition of f.(GSEL) 118
6.2.6 Decomposition of SEQ components 123

6.3 Decomposition of~ into f.3 125

7 SPECIAL DECOMPOSITION TECHNIQUES 128
7.0 Introduction 128
7.1 Merging states and splitting off alternatives 128
7 .2 Realizing logic functions 134
7 .3 Efficient decompositions of f.(G 3') 137
7.4 Efficient decompositions using TOGGLE components 139
7.5 Basis tranformations 141
7.6 Decomposition of any regular DI component 143

8 CONCLUDING REMARKS 148

APPENDIX A 153

APPENDIX B 161
B.0 Introduction 161
B. l The Theorems 164
B.2 Proofs of Theorems B.0 through B.2 169
B.3 Proofs of Theorems B.3 through B.5 173
B.4 Proofs of Theorems B.6 through B.9 187
B.5 Proofs of Theorems B.10 through B.16 201

REFERENCES 211

INDEX 214

V

Abstract

The subject of this monograph is the design of circuits, in particular delay
insensitive circuits. Delay-insensitive circuits are attractive for a number of
reasons. The most important of these reasons is that by designing such cir
cuits many timing problems can be avoided. It is shown that the design of
delay-insensitive circuits can be reduced to the design of programs. This is
done by presenting a syntax-directed translation of programs into delay
insensitive connections of basic elements.

The program notation is a simple one and can be considered a generaliza
tion of regular expressions. The notation includes operations to express paral
lelism, tail recursion, and the introduction of internal symbols. Because of the
inclusion of these operations, many components can be expressed in a clear
and concise way.

The translation method presented yields delay-insensitive connections of cir
cuit elements chosen from a finite basis. The notion 'delay-insensitive' means
that the functional behavior of the connection, as specified in the program, is
insensitive to delays in wires or basic elements. This notion is rigorously for
malized in the monograph.

The translation is syntax-directed and, if the program satisfies a certain syn
tax, it can be carried out in such a way that the number of basic elements in
the connection is proportional to the length of the program.

Many examples are discussed to illustrate the topics of programming in this
notation and of translating these programs into delay-insensitive circuits. The
examples include counters, buffers, finite state machines, and token-ring inter
faces.

vii

It is quite difficult to think about the
code entirely in abstracto without any
kind of circuit.
Alan M. Turing [44].

ix

Preface

This monograph is a reprint of my Ph.D. Thesis (of the same title) with minor
corrections. It is the result of four years of research carried out at CWI in
Amsterdam, although the origins of this research go back further. Many peo
ple have contributed directly or indirectly to this monograph. In particular, I
wish to thank the following persons.

My most important source of inspiration was Martin Rem, my first supervi
sor. He has made all this possible and unfailingly supported me through all
these years. His supervision was always pleasant and helpful, even in his most
busy moments.

Martin started the Eindhoven VLSI Club at the University of Technology,
and I became a member when I was a student. In those days one of the main
topics of 'the Club' was Self-Timed Systems, a special type of VLSI circuits
introduced by Chuck Seitz. Martin arranged for me to spend a few months in
the beginning of 1982 at the California Institute of Technology in order to fol
low a course by Chuck Seitz on Self-Timed Systems. It was during these
months that I became more and more interested in the subject, thanks to
Chuck's tutorials and enthusiasm.

From the discussions on self-timed systems at the weekly sessions of the
VLSI Club a fruitful research began to emerge. Since then three Ph. D. theses
have been written by members of the Club on topics related to the design of
delay-insensitive circuits, as we began to call them. I am especially indebted
to the authors of these theses, Jan van de Snepscheut, Jan Tijmen Udding and
Anne Kaldeway, for their earlier research efforts from which I could benefit.

The work at the Washington University, led by Charles Molnar, my second
supervisor, has also had a large influence on this work. His great interest in
and his many valuable criticisms on what I was doing have been a tremendous
inspiration for me. I am very grateful to him, in particular for his fruitful

X

discussions on all aspects related to delay-insensitivity.
Furthermore, I thank Huub Schols for his scrutinizing reading of many

drafts; Caroli en Swagerman, for her expert typing; Jennifer Steiner, Steven
Pemberton, Lambert Meertens, Joke Sterringa and Tom Verhoeff, for pointing
out the obscurities, misspellings, and other abuses of language in earlier drafts;
Jan Tijmen Udding and F.E.J. Kruseman Aretz for their many suggestions for
improvement; CWI for providing the opportunity to work for four years on
this thesis; the Eindhoven VLSI Club, where the ideas presented took shape;
and, finally, many thanks go to my wife Marie Cecile Lavoir.

Jo. C. Ebergen
Amsterdam, May 88.

Chapter 0

Introduction

In 1938 Claude E. Shannon wrote his seminal article [41] entitled 'A Symbolic
Analysis of Relay and Switching Circuits'. He demonstrated that Boolean
algebra could be used elegantly in the design of switching circuits. The idea
was to specify a circuit by a set of Boolean equations, to manipulate these
equations by means of a calculus, and to realize this specification by a connec
tion of basic elements. The result was that only a few basic elements, or even
one element such as the 2-input NAND gate, suffice to synthesize any switch
ing function specified by a set of Boolean equations. Shannon's idea proved to
be very fertile and out of it grew a complete theory, called switching theory.

In this monograph we present a method for designing delay-insensitive cir
cuits. Delay-insensitive circuits can be characterized as circuits whose func
tional operation is insensitive to delays in consistituting elements and connec
tion wires. The principal idea of this method is similar to that of Shannon's
article: to design a circuit as a connection of basic elements and to construct
this connection with the aid of a formalism. We construct such a circuit by
translating programs satisfying a certain syntax. The result of such a transla
tion is a connection of elements chosen from a finite set of basic elements.
Moreover, this translation can be carried out in such a way that the number of
basic elements in the connection is proportional to the length of the program.
We formalize what it means that such a connection is a delay-insensitive con
nection.

Delay-insensitive circuits are a special type of circuits. We briefly describe
their origins and how they are related to other types of circuits and design
techniques. The most common distinction usually made between types of cir
cuits is the distinction between synchronous circuits and asynchronous circuits.
Synchronous circuits are circuits that perform their (sequential) computations
based on the successive pulses of the clock. For the design of these circuits

2 Introduction

many techniques have been developed and are described by means of switch
ing theory (29, 23]. The correctness of synchronous systems relies on the
bounds of delays in elements and wires. The satisfaction of these delay
requirements cannot be guaranteed under all circumstances, and for this rea
son problems can crop up in the design of synchronous systems. In order to
avoid these problems interest arose in the design of circuits without a clock.
Such circuits have generally been called asynchronous circuits.

The design of asynchronous circuits has always been and still is a difficult
subject. Several techniques for the design of such circuits have been developed
and are discussed in, for example, (29, 23, 47]. For special types of such cir
cuits formalizations and other design techniques have been proposed and dis
cussed. David E. Muller has given a formalization of a type of circuits which
he coined by the name of speed-independent circuits. An account of this for
malization is given in [30].

From a design discipline that was applied in the Macromodules project [4,
5] at Washington University in St. Louis the concept of a special type of cir
cuit evolved which was given the name delay-insensitive circuit. It was realized
that a proper formalization of this concept was needed in order to specify and
design such circuits in a well-defined manner. A formalization of one of the
concepts of a delay-insensitive circuit, i.e. of the FRW principle, was later given
by Jan Tijmen Udding in [45]. For the design and specification of delay
insensitive circuits several methods have been developed based on, for exam
ple, Petri Nets and techniques derived from switching theory (13, 33]. Here,
we present some new techniques for the design of delay-insensitive circuits.

Recently, Alain Martin has also proposed some interesting and promising
design techniques for circuits of which the functional operation is unaffected
by delays in elements and wires (25, 26]. The techniques are based on the
compilation of CSP-like programs into connections of basic elements. The
techniques presented in this monograph exhibit a similarity with the techniques
applied by Alain Martin.

Another name that is frequently used in the design of asynchronous circuits
is self-timed systems. This name has been introduced by Charles L. Seitz in
(40] in order to describe a method of system design without making any refer
ence to timing except in the design of the self-timed elements. Other tech
niques and formalisms applied in the design and verification of (special types
of) asynchronous circuits, but less related to the work presented in this mono
graph, are described in (10, 31, 22, 15].

The reasons to design delay-insensitive systems are manifold. Before we
explain each of these reasons, we briefly sketch some of the motives of the first
computer designers to incorporate a clock in their design. For them this was
not an obvious decision, since most mechanical calculating machinery before
the use of electronic devices was designed without a clock. The first widely
disseminated reports on computer design that advocated the use of a clock are
the reports on the EDVAC (34, 27, l]. These reports have had a large
influence on the design of computers. The basic logical organization of most

0. Introduction 3

computers nowadays has not changed much from the organization that was
advocated then by Von Neumann and his associates.

The motives for incorporating a clock in their design were twofold. The first
and most important reason was that all computations had to be done in purely
sequential fashion: parallelism was explicitly forbidden (both to avoid the high
cost of additional circuitry and to avoid complexity in the design). It turned
out that for the realization of such computations the use of a clock had consid
erable advantages: the clock could, for example, be used to dictate the succes
sive steps of the computations. The second reason was that various memory
devices used at that time were dynamic devices, i.e. memory elements whose
contents had to be refreshed regularly. Refreshing was usually done by means
of clock pulses. Since, for this reason, a clock was already present for those
devices, it could be used for other purposes as well.

In the report on the ACE [43], written shortly after the first report on the
EDV AC, Alan Turing is more explicit about the use of a clock in the design
and mentions it as one of twelve essential components. In [44] he motivates
this choice as follows.

We might say that the clock enables us to introduce a discreteness
into time, so that time for some purposes can be regarded as a suc
cession of instants instead of a continuous flow. A digital machine
must essentially deal with discrete objects, and in the case of the
ACE this is made possible by the use of a clock. All other digital
computing machines except for human and other brains that I
know of do the same. One can think up ways of avoiding it, but
they are very awkward.

REMARK. Here, we also remark that at the time of the reports on the EDY AC
and the ACE, i.e. in 1945-47, Boolean algebra was still considered of little use
in the design of computer circuits [12]. It took more than ten years after
Shannon's article before Boolean algebra was accepted and proved to be a use
ful formalism in the practical design of synchronous systems.
D

One reason why there has always been an interest in asynchronous systems is
that synchronous systems tend to reflect a worst-case behavior, while asynchro
nous systems tend to reflect an average-case behavior. A synchronous system
is divided into several parts, each of which performs a specific computation.
At a certain clock pulse, input data are sent to each of these parts and at the
next clock pulse the output data, i.e. the results of the computations, are sam
pled and sent to the next parts. The correct operation of such an organization
is established by making the clock period larger than the worst-case delay for
any subcomputation. Accordingly, this worst-case behavior may be disadvan
tageous in comparison with the average-case behavior of asynchronous sys
tems.

Another more important reason for designing delay-insensitive systems is the
so-called glitch phenomenon. A glitch is the occurrence of metastable behavior

4 Introduction

in circuits. Any computer circuit that has a number of stable states also has
metastable states. When such a circuit gets into a metastable state, it can
remain there for an indefinite period of time before it resolves into a stable
state. For example, it may stay in the metastable state for a period larger than
the clock period. Consequently, when a glitch occurs in a synchronous system,
erroneous data may be sampled at the time of the clock pulses. In a delay
insensitive system it does not matter whether a glitch occurs: the computation
is delayed until the metastable behavior has disappeared and the element has
resolved into a stable state. Among the frequent causes for glitches are, for
example, the asynchronous communications between independently clocked
parts of a system.

The first mention of the glitch problem appears to date back to 1952 (cf.
[2]). The first publication of experimental results of the glitch problem and a
broad recognition of the fundamental nature of the problem came only after
1973 (3, 19, 24] due to the pioneering work on this phenomenon at the Wash
ington University in St. Louis.

A third reason is due to the effects of scaling. This phenomenon became
prominent with the advent of integrated circuit technology. Because of the
improvements of this technology, circuits could be made smaller and smaller.
It turned out, however, that if all characteristic dimensions of a circuit are
scaled down by a certain factor, including the clock period, delays in long
wires do not scale down proportional to the clock period (28, 40]. As a conse
quence, some VLSI designs when scaled down may no longer work properly
anymore, because delays for some computations have become larger than the
clock period. Delay-insensitive systems do not have to suffer from this
phenomenon if the basic elements are chosen small enough so that the effects
of scaling are negligible with respect to the functional behavior of these ele
ments (42].

The fourth reason is the clear separation between functional and physical
correctness concerns that can be applied in the design of delay-insensitive sys
tems. The correctness of the behavior of basic elements is proved by means of
physical principles only. The correctness of the behavior of connections of
basic elements is proved by mathematical principles only. Thus, it is in the
design of the basic elements only that considerations with respect to delays in
wires play a role. In the design of a connection of basic elements no reference
to delays in wires or elements is made. This does not hold for synchronous
systems where the functional correctness of a circuit also depends on timing
considerations. For example, for a synchronous system one has to calculate
the worst-case delay for each part of the system and for any computation in
order to satisfy the requirement that this delay must be smaller than the clock
period.

As a last reason, we believe that the translation of parallel programs into
delay-insensitive circuits offers a number of advantages compared to the trans
lation of parallel programs into synchronous systems. In this monograph a
method is presented with which the synchronization and communication
between parallel parts of a system can be programmed and realized in a

0. Introduction 5

natural way.

The method presented in this monograph for designing delay-insensitive cir
cuits is briefly described as follows. We call an abstraction of a circuit a com
ponent; components are specified by programs written in a notation based on
trace theory. Trace theory was inspired by Hoare's CSP [17, 18) and developed
by a number of people at the University of Technology in Eindhoven. It has
proven to be a good tool in reasoning about parallel computations [36, 37, 42,
20) and, in particular, about delay-insensitive circuits [45, 46, 38, 39, 16, 21].

The programs are called commands and can be considered as an extension
of the notation for regular expressions. Any component represented by a com
mand can also be represented by a regular expression, i.e. it is also a regular
component. The notation for commands, however, allows for a more concise
representation of a component due to the additional programming primitives
in this notation. These extra programming primitives include operations to
express parallelism, tail recursion (for representing finite state machines), and
projection (for introducing internal symbols).

Based on trace theory we formalize the concepts of decomposition of a com
ponent and of delay-insensitivity. The decomposition of a component is
intended to represent the realization of that component by means of a connec
tion of circuits whose functional operation is insensitive to delays in consisti
tuting circuit elements. Delay-insensitivity is formalized in the definitions of
DI decomposition and of DI component. A DI decomposition represents a real
ization of a component by means of a connection of circuits whose functional
operation is insensitive to delays in constituting circuit elements and connec
tion wires. A DI component represents a specification of a circuit whose com
munication behavior with the environment is insensitive to (wire) delays in
those communications. (It turns out that the definition of DI component is
equivalent with Udding's formalization of the FRW principle.) One of the
fundamental theorems in this monograph is that DI decomposition and
decomposition are equivalent if all components involved are DI components.
We also present some theorems that are helpful in finding decompositions of a
component.

Based on the definition of DI component, we develop a number of. so-called
DI grammars, i.e. grammars for which any command generated by these gram
mars represents a (regular) DI component. With these grammars the language
~ of commands is defined. We show that any regular DI component
represented by a command in the language ~ can be decomposed in a syntax
directed way into a finite set IIB of basic DI components and so-called CAL
components. CAL components are also DI components. Consequently, the
decomposition into these components is, by the above mentioned theorem, also
a DI decomposition.

The set of all CAL components is, however, not finite. In order to show that
a decomposition into a finite basis of components exists, we discuss two
decompositions of CAL components: one decomposition into the finite basis
!IBO and one decomposition into the finite basis IIB 1. The decomposition of CAL

6 Introduction

components into the finite basis B 1 is in general not a DI decomposition, since
not every component in IEB 1 is a DI component. This decomposition can, how
ever, be realized in a simple way if so-called isochronic forks are used in the
realization. The decomposition of CAL components into the basis IBO is an
interesting but difficult subject. Since every component in IBO is a DI com
ponent, every decomposition into IBO is therefore also a DI decomposition.
We briefly describe a general procedure, which we conjecture to be correct, for
the decomposition of CAL components into the basis !BO.

The decomposition method can be described as a syntax-directed translation
of commands in ei into commands of the basic components in IBO or IEB 1.
Consequently, the decomposition method is a constructive method and can be
completely automated. Moreover, we show that the result of the complete
decomposition of any component expressed in ei can be linear in the length of
the command, i.e. the number of basic elements in the resulting connection is
proportional to the length of the command.

Although many regular DI components can be expressed in the language e.i,
which is the starting point of the translation method, probably not every regu
lar DI component can be expressed in this way. We indicate, however, that for
any regular DI component there exists a decomposition into components
expressed in ei, which can then each be translated by the method presented.

This monograph is organized as follows. In Chapter 1 the basic notions of
trace theory are briefly presented. In Chapter 2 we present the program nota
tion for commands and give a number of examples in which we illustrate the
specification of a component by means of a command. In Chapter 3 the fun
damental concepts of decomposition and delay-insensitivity are defined. The
recognition of DI components is the subject of Chapter 4 in which several
attribute grammars are presented, all of which generate commands represent
ing DI components. The proofs of this chapter are given in the appendices.
By means of these grammars, we subsequently describe a syntax-directed
decomposition method in Chapters 5 and 6. Chapter 7 contains a number of
examples and suggestions about optimizing the general decomposition method
of Chapters 5 and 6. In Chapter 7 we also discuss the issues involved in the
decomposition of any regular DI component into a finite basis of components.
We conclude with some remarks. Each chapter has many examples to illus
trate the subject matter in a simple way.

In this monograph we have tried to pursue the aim of delay-insensitive
design as far as possible, i.e. to postpone correctness arguments based on
delay-assumptions as long as possible, in order to see what sort of designs such
a pursuit would lead to. In this approach our first concern has been the
correctness of the designs and only in the second place have we addressed
their efficiency.

0. 1 Notational Conventions 7

0.1. NOTATIONAL CONVENTIONS

The following notational conventions are used in the monograph.
Universal quantification is denoted by

(Ax: D(x): P(x)).

It is read as 'for all x satisfying D(x), P(x) holds'. The expression D(x)
denotes the domain over which the quantified identifier x ranges. Instead of
one quantified identifier, we may also take two or more quantified identifiers.
The notation (Ax: :P(x)) is used when the domain of the quantified identifier is
clear from the context. Existential quantification is denoted by

(Ex: D(x): P(x)).

It is read as 'there exists an x satisfying D(x) for which P(x) holds'.
The notations R(i: O~i<n) and E(i,j: O~i,j<n) denote arrays of elements

R.i, O:s;:;i <n, and E.i.j, O~i <n I\ O~j <n, respectively. Sometimes these
arrays are referred to as vector R(i:O:s;:;i<n) and matrix E(i,j:O:s;:;i,j<n)
respectively.

In some cases functional application is denoted by the period, it is left
associative, and it has highest priority of all binary operations. For example,
the function f applied to the argument a is denoted by f. a. The array
E(i,j: O:s;:;i,J<n) can be considered as a function E defined on the domain
O:s;:;i <n I\ O:s;:;J <n. The function E applied to i, O~i <n, yields the array
E.i(j: O~j <n); subsequent application to j, O:s;:;J <n, yields the element E.i.j.
Since function application is left-associative, we have E.i.j =(E.i).j. The nota
tion for functional application is taken from [9].

Let op denote an associative binary operation with identity element id. Con
tinued application of the operation op over all elements a.i satisfying the
domain restrictions D (i) is denoted by

(op i: D (i): a.i).

For example, we have

(+i:O:s;:;i<4:a.i.) = a.O+a. 1+a.2+a.3.

If domain D (i) is empty, then

(op i: D(i): a.i) = id

For example, we have (+i: O:s;:;i <0: a.i)=O.
(Notice that universal and existential quantification can also be expressed as
(Ax:D(x):P(x)) and (vx:D(x):P(x)) respectively.) The notation
(Ni: D (i): P(i)) denotes the number of i's satisfying D (i) for which P (i) holds.

Most proofs in the monograph have a special notational layout. For exam
ple, if we prove PO => P 2 by first showing PO => P 1 and then P 1 = P 2, this is
denoted by

8

PO

=>{hint why PO=> P 1}

Pl

= {hint why P 1 = P 2}

P2.

This notation is taken from [7].

Introduction

1.0. INTRODUCTION

Chapter 1

Trace Theory

9

In this chapter we present a brief introduction to trace theory. It contains the
definitions and properties relevant to the rest of this monograph.

The first part summarizes previous results from trace theory. For a more
thorough exposition on this part the reader is referred to [42, 36, 20]. In Sec
tions I. 1.0 and I. 1.1 we define trace structures and the basic operations on
them. Section 1.1.2 contains a number of properties of these operations. In
Section I. 1.3 we define a program notation for expressing commands. Com
mands specify trace structures, and can be considered as generalizations of reg
ular expressions.

The second part contains new material. In Section 1.2 we give a detailed
presentation of tail recursion. Tail recursion can be used to express finite state
machines in a concise and simple way. Moreover, tail recursion can be used
conveniently to prove properties about programs. For these reasons the com
mand language is extended with tail recursion.

We conclude with Section 1.3 in which we show a number of programs writ
ten in the command language.

10

1. 1. TRACE STRUCTURES AND COMMANDS

1.1.0. Trace structures

Trace Theory

A trace structure is a pair <B,X >, where B is a finite set of symbols and
X <;;,B*. The set B* is the set of all finite-length sequences of symbols from B.
A finite sequence of symbols is called a trace. The empty trace is denoted by t:.
Notice that 0*={t:}. For a trace structure R=<B,X>, the set Bis called
the alphabet of R and denoted by aR; the set Xis called the trace set of R and
denoted by tR.

NOTATIONAL CONVENTION. In the following, trace structures are denoted by
the capitals R,S, and T; traces are denoted by the lower-case letters r, s, t, u,
and v; alphabets are denoted by the capitals A and B; symbols are usually
denoted by the lower-case letters with exception of r, s, t, u, and v.
D

1.1.1. Operations on trace structures

The definitions and notations for the operations concatenation, union, repetition,
(taking the) prefix-closure, projection, and weaving of trace structures are as fol
lows.

R;S = <aRUaS, tRtS>

RIS = <aR UaS' tR UtS>

[R] = <aR, (tR)* >
prefR = <aR, {sl(Et::stEtR)}>

RtA = <aRnA, {ttAltEtR}>

RIIS= <aRUaS, {tE(aRUaS)*lttaREtR /\ ttaSEtS}>,

where tt A denotes the trace t projected on A, i.e. the trace t from which all
symbols not in A have been deleted. Concatenation of sets is denoted by jux
taposition and (tR)* denotes the set of all finite-length concatenations of traces
in tR.

The operations concatenation, union, and repetition are familiar operations
from formal language theory. We have added three operations: (taking the)
prefix-closure, projection, and weaving.

The pref operator constructs prefix-closed trace structures. A trace structure
R is called prefix-closed if pref R = R holds. A trace structure is called non
empty if tR=I= 0. Later, we use prefix-closed and non-empty trace structures
for the specification of components. We call a trace structure R prefixfree if

(As,t:sEtR /\ stEtR : t=t:)

1. 1. Trace structures and commands 11

holds, i.e. no trace in tR is a proper prefix of another trace in tR.
The projection operator allows us to introduce internal symbols which are

abstracted away by means of projection. These internal symbols can be used
conveniently for a number of purposes, as we will see in the subsequent
chapters.

The weave operation constructs trace structures whose traces are weaves of
traces from the constituent trace structures. Notice that common symbols must
match, and, accordingly, weaving expresses instantaneous synchronization.
The set of symbols on which this synchronization takes place is the intersec
tion of the alphabets.

The successor set of t with respect to trace structure R, denoted by Sue (t,R),
is defined by

Suc(t,R) = {b I tbEtprefR}.

Finally we define a partial order ~ on trace structures by

R~S - aR=aS /\tR~tS.

1.1.2. Some properties

Below, a number of properties are given for the operations just defined. The
proofs can be found in [42, 20].

PROPERTY 1.1.2.0. For the operations on trace structures we have:
Concatenation is associative and has < 0, { £} > as identity.
Union is commutative, associative, and has < 0, 0 > as identity.
Weaving is commutative, associative, and has < 0, { £} > as identity.
If we consider prefix-closed non-empty trace structures only, union has < 0, { £} >
as identity.
D

PROPERTY 1.1.2.1. Union and weaving are idempotent, i.e. for any R we have
RIR=R and RIIR=R.
D

PROPERTY 1.1.2.2. (Distribution properties of; and 1-)
For any R,S and T we have

R;(SIT) = (R ;S)l(R ;T)

(SIT);R = (S ;R)l(T;R)

D

12

PROPERTY 1.1.2.3. (Distribution properties oft.)
For any R,S,B, and A we have

(R ;S) t B = (Rt B);(St B)

(RIS)t B = (Rt B)l(St B)

[R]t B = [Rt B]

(prefR)t B = pref(Rt B)

R tAt B = Rt(A nB)

(RIIS)t B = (Rt B)ll(St B) if aR nas kB,

D

PROPERTY 1.1.2.4. (Distribution properties of pref.)

pref(RIS) = (pref R)j(pref S)

D

pref (R ;S) = pref (R ;(pref S)).

pref(lk:k;;a.O: R.k) = (jk:k;;a.O: pref R.k).

Trace Theory

PROPERTY 1.1.2.5. The weave of two non-empty prefix-closed trace structures is
non-empty and prefix-closed.
D

PROPERTY 1.1.2.6. For any R, S, A, and B with aR naS kB and A kaR we
have

(RIIS)tA = (Rll(St B))tA.

PROOF. We observe

(RIIS)tA

= {Prop. 1.1.2.3, calc.}

(RIIS)t(A UB)tA

= {Prop. 1.1.2.3, aR nas kB}

((Rt(A UB)) II (St(A UB)))tA

= {def. of projection}

((Rt(A UB))ll(StaSt(A UB)))tA

= {aRnaSkB /\ A kaR, Prop. 1.1.2.3., calc.}

((Rt(A UB)) II (St Bt(A UB)))tA

1.1. Trace structures and commands

□

= {Prop. 1.1.2.3, aRnaS~B, calc.}

(Rll(St B))t(A UB)tA

= {Prop. 1.1.2.3, calc.}

(Rll(St B))tA.

13

PROPERTY 1.1.2.7. Let the trace structures Rk, O:s;;;.k<n, satisfy
a(Rk)na(R.l)~B for k=/=l I\ O:s;;;.k,l<n. We have

(llk:O:s;;;.k<n:Rk)tB = (llk:O:s;;;.k<n:(Rk)tB).

□

Property 1.1.2.7 is a generalization of the last law of property 1.1.2.3.

1.1.3. Commands and state graphs

A trace structure is called a regular trace structure if its trace set is a regular
set, i.e. a set generated by some regular expression. A command is a notation
similar to regular expressions for representing a regular trace structure.

Let U be a finite, but sufficiently large, set of symbols. The characters b,
with be U, t:, and 0 are called atomic commands. They represent the atomic
trace structures < { b }, { b} >, < 0, { t:} >, and < 0, 0 > respectively. Every
atomic command and every expression for a trace structure constructed from
the atomic commands and finitely many applications of the operations defined
in Section 1.1.1 is called a command In this expression parentheses are
allowed. For example, the expression (allb);c is a command and represents the
trace structure <{a,b,c},{abc,bac}>.

NOTATIONAL CONVENTION. In the following, commands are denoted by the
capital Es. The alphabet and the trace set of the trace structure represented
by command E are denoted by aE and tE respectively. In order to save on
parentheses, we stipulate the following priority rules for the operations just
defined. Unary operators have highest priority. Of the binary operators in
Section 1.1.1, weaving has highest priority, then concatenation, then union,
and finally projection.
□

PROPERTY 1.1.3.0. Every command represents a regular trace structure.
□

A command of the form pref(E), where Eis an atomic command different
from 0, or E is constructed from atomic commands different from 0 and the

14 Trace Theory

operations concatenation (;), union (I), or repetition ([]) is called a sequential
command.

PROPERTY 1.1.3. l. Every sequential command represents a prefix-closed non
empty regular trace structure.
□

Syntactically different commands can express the same trace structure. We
have, for example,

pref[a;c] II pref[b;c] = pref[allb;c]

pref[a;c] II pref[c;b] = pref(a;c;[allb;c]).

In this monograph, every directed graph of which the arcs are labelled with
non-empty trace structures or commands and that has one node denoting the
initial state is called a state graph. The nodes are called the states of the state
graph and are usually labelled with lower-case q's. The initial state is denoted
by an encircled node. An example of a state graph is given in Figure I. 1.0.

FIGURE I. 1.0. A state graph.

With each state graph we associate a trace structure in the following way.
Let the arc from state q; to state qj be labelled with non-empty trace structure
S.i.j, 0~i,j <n, where n is the number of states in the state graph. If there is
no arc between state q; and state qj then S.i.j = < 0, 0 >. State q O is the ini
tial state. The trace structure that corresponds to this state graph is given by
pref <B,X>, where

B = (Ui,j: 0~i,j<n: a(S.i.J)) and

X = {ti t is a finite concatenation of traces of successive trace

structures in the state graph starting in q0 }.

More precisely, let the trace structures R.k.i, 0~k I\ 0~i <n, be defined by

R. 0.i = <B, {£}>, and

R.(k+l).i = (1/:0~j<n:S.i.j;R.k.J).

1. 1. Trace structures and commands 15

The trace structure corresponding to the state graph is defined by

pref(lk: k~0: Rk. 0).

Notice that t(Rk.i) contains all traces of concatenations of k successive trace
structures in the state graph starting in state q;. The trace structure
corresponding to the state graph of Figure 1. 1.0, for example, can be
represented by pref[c ;d I a ;b ;c ;d].

Above we defined for each state graph the trace structure that corresponds
to this state graph. For a given structure we can also construct a specific state
graph in which the states of the state graph match the states of the trace struc
ture. For this purpose, we first define the states of a trace structure.

For a trace structure R we define the relation ~Ron traces of tpref R by

t~Rs = (Ar:: trEtR =srEtR).

The relation ~ R is an equivalence relation and the equivalence classes are
called the states of trace structure R. The state containing t is denoted by [t].
For example, for R=pref[allb;c] the states are given by [£], [a], [b], and
[ab]. In this monograph we keep to prefix-closed non-empty trace structures.
Every state of these trace structures is also a so-called final state.

The relation ~ R is also a right congruence, i.e. for all r, s, and t with
trEtpref Rand srEtpref R we have

Because ~ R is a congruence relation, we can represent a trace structure by a
state graph in which the nodes are labelled with the states of R and the arcs
are labelled with the atomic commands of the symbols of R. There is an arc
labelled x, with xEaR, from state [t] to state [r] of Riff [tx]=[r]. The state
graph obtained in this way for trace structure R =pref[a llb ;c] is given in Fig
ure 1.1.1.

FIGURE 1. 1.1. State graph for pref[a II b ;c].

16

1.2. TAIL RECURSION

1.2.0. Introduction

Trace Theory

From formal language theory we know that every finite state machine can be
represented by a regular expression, and thus also by a command. In the
language of commands that we have defined thus far, finite state machines can
not always be expressed as succinctly as we would like. This is one of the rea
sons to introduce tail recursion. We show that there is a simple correspon
dence between a finite state machine and a tail-recursive expression. More
over, tail recursion can be used conveniently to prove properties about pro
grams by means of fixpoint induction.

In the following sections, we first convey the idea of tail recursion by means
of an introductory example. Then we briefly summarize some results of lattice
theory. In the subsequent sections these results are used to define the semantics
of tail recursion. We conclude by extending our command language with tail
recursion.

1.2.1. An introductory example

Consider the finite state machine given by the state graph of Figure 1.2.0.

FIGURE 1.2.0. A state graph.

The states of this state graph are labeled with q 0, q 1, q 2, and q 3, where q 0 is
the initial state. The state transitions are labeled with the non-empty com
mands E 0, E l, E 2, E 3, and E 4. With this state graph the trace structure
pref <B,X> is associated, where

B = aE0UaE I UaE2UaE3UaE4 and

X = {ti t is a finite concatenation of traces of

successive commands in the state graph starting in q O}

Possible commands representing this trace structure are

pref(E0;E l;[(E2 I E3;E0);E l];E 4) and

1.2. Tail recursion 17

pref(EO;[E 1 ;(£21 E 3;E0)];E 1 ;E 4).

The trace structure pref <B,X > can also be expressed as a least fixpoint of
a so-called tail function. A tail function is a mapping of a special form from
vectors of prefix-closed non-empty trace structures with alphabet B to vectors
of prefix-closed non-empty trace structures with alphabet B. To the state
graph of Figure 1.2.0 we adjoin the tail function defined by

tailf.R. 0 = pref(EO;R. 1)

tailf.R. 1 = pref(£ l;R. 2)

tailf.R. 2 = pref(E2;R. 1 IE 3;R. 0 IE 4;R. 3)

tailf.R. 3 = pref (R. 3).

(Recall that functional application is denoted by a period. The period has
highest priority of all binary operations and is left-associative.) The least
fixpoint of this tail function exists and is denoted by µ.tailf. This fixpoint is a
vector of trace structures for which component O satisfies

µ.tailf.O = pref <B,X>.

We prove this in Section 1.2.4.
Since the tail function tailf is defined by commands, we call µ.tailf. 0 a com

mand as well. The conditions under which µ.tailf. 0 is called a command, for
an arbitrary tail function tailf, are given Section 1.2.5.

In the above we have given three commands for pref <B,X>, i.e. two
without tail recursion and one with tail recursion. Notice that in the two com
mands without tail recursion E O and E 1 occur twice, while in the tail function
tailf, with which the third command µ.tailf. 0 is given, each command of the
state graph occurs exactly once.

1.2.2. Lattice theory

The following definitions and theorems summarize some results from lattice
theory. No proofs are given. For a more thorough introduction to lattice
theory we refer to [O].

Let (L, ~) be a partially ordered set and V a subset of L. Element R of L is
called the greatest lower bound of V, denoted by (nS: SE V: S), if

(AS: SEV:R~S) /\ (AT: TEL A(AS: SEV: T~S): T~R).

Element R of L called the least upper bound of V, denoted by (LJS: SE V: S),
if

(AS: SEV: S~R) I\ (AT: TEL I\ (AS: SEV: S~T): R~T).

We call (L, ~) a complete lattice if each subset of L has a greatest lower bound
and a least upper bound. A complete lattice has a least element, denoted by

18 Trace Theory

l_, for which we have J_ = (UR: R E 0 : R).
A sequence R(k: k~O) of elements of L is called an ascending chain if

(Ak: k~O: R.k,s;;,R. (k + 1)).
Let /be a function from L to L. An element R of Lis called a.fixpoint off

if f.R = R . The function f is called upward continuous if for each ascending
chain R(k: k~O) in L we have

/.(Uk: k~O:R.k) = (Uk: k~O:f. (R.k)).

The function f, k ~O, from L to L is defined by

f°.R =Rand/ +1.R=f(f.R) for k~O and REL.

A predicate P defined on L is called inductive, if for each ascending chain
R(k: k ~O) in L we have

(Ak:k~O:P(R.k)) ~ P(Uk:k~O:R.k).

THEOREM 1.2.2.0. (Knaster-Tarski)
An upward continuous function f de.fined on a complete lattice (L, ,s;;,) with least
element l_ has a least .fixpoint, denoted by µ.J, and µ./=(Uk: k~O:f .1-).

□

THEOREM 1.2.2.1. (Fixpoint induction)
Let f be an upward continuous function on the complete lattice (L, ,s;;,) with least
element l_. If P is an inductive predicate de.fined on L for which P (l_) holds
and P(R)~P(f.R)for any REL, i.e. /maintains P, then P(µ.f) holds.
□

1.2.3. Tail functions

We call a function, tailf say, a tail function if it is defined by

tailf.R.i = pref(l/:O,s;;,J<n: S.i.j;R.j), n>O,

for vectors R(i:O,s;;,i<n) of trace structures, where S(i,j:O,s;;,i,j<n) is a matrix
of trace structures. Consequently, a tail function is uniquely determined by the
matrix S(i,j: O,s;;,i,j <n) of trace structures. Let this matrix S be fixed for the
next sections and let A = (U i,j: O,s;;,i,j <n: a(S.i.j)).

We define '!Y' (A) as the set of all vectors R (i : 0 ,s;;, i < n) of prefix-closed non
empty trace structures with alphabet A. For elements R and T of '!Y'(A) we
define the partial order ~ by

R,s;;,T = (Ai:O~i<n: t(R.i)~t(T.i)).

Furthermore we define the vector l_n(A) by

l_n(A).i = <A,{t:}>, for all i, O,s;;,i<n.

1.2. Tail recursion

THEOREM 1.2.3.0. ('5'1(A), ~) is a complete lattice with least element ..ln(A).

PROOF. For each non-empty subset V of '5'1(A) we have

(UR:REV:R).i = (IR:REV:R.i)

(nR:REV:R).i = (IIR:REV:R.i)

for O~i<n. For V= 0 we have

(UR:RE0:R).i = <A,{t:}> and

(nR:R E 0: R).i = <A,A *>, for all i, O~i<n.

□

19

By definition, the function tailf is defined on '5'1(A). In the following, the con
dition PO is used frequently for tail functions tailf. It is defined by

PO: (Ai:O~i<n:(Ej:O~j<n:t(S.i.j) ~0)).

We have

THEOREM 1.2.3.1. Let PO hold. The function tailf is a function from '511 (A) to
'511 (A) and is upward continuous.

PROOF. From the definition of tailf and PO follows that tailf.R E':i'1(A), for
any R E':i'1(A).

Let R(k: k~O) be an ascending chain of elements from '5'1(A). We observe
for all i, O~i <n,

tailf. (Uk: k ;;,,o: R.k).i

· = {def. tai/f}

pref(I/: O~j<n: S.i.j;(Uk: k;;,,O: R.k)J)

= {def. U}

pref(I/: O~j<n: S.i.J;(lk: k~O: R.k.J))

= { distribution Prop. 1.1.2.2}

pref(lk,j: O=:;;,j<n I\ k~O: S.i.j ;R.k.j)

= {distribution Prop. 1.1.2.4}

(lk: k~O: pref(I/: O=:;;,j<n: S.i.j;R.k.J))

= {def. tai/f}

(lk: k~O: tailf.(R.k).i)

= {def. U}

(Uk: k~O: tailf.(R.k)).i.

20 Trace Theory

Consequently, tailf.(LJk: k~O: R.k)=(Uk: k~O: tailf.(R.k)).

(Notice that in the above proof we did not use the property that the chain
R(k:k~O) was ascending.)
D

1.2.4. Least jixpoints of tail functions

From Theorems 1.2.2.0, 1.2.3.0, and 1.2.3.1 we derive

THEOREM 1.2.4.0. If PO holds, then tailf has a least jixpoint, denoted by µ.tailf,
and

µ.tailf = (Uk: k~O: tailf" . ..Ln(A)).

D

The least fix.point µ.tailf can be related to the trace structure corresponding
to a state graph as follows. Consider a state graph with n states q;, O=,;;;;i<n
and n >0. If t(S.i.J)=fa 0, then there is a state transition from state q; to state
qj labeled S.i.j. Let the trace structures R.k.i for O=,;;;;i<n I\ k~O be defined
by

R. O.i = <A,{(}>, and

R.(k+l).i = (lj:O=,;;;;j<n:S.i.j;R.k.J).

In other words, tpref (R.k.i) is the prefix-closure of all trace structures that can
be formed by concatenating k successive trace structures starting from state q;.
The trace structure corresponding to the state graph is defined by
pref(lk:k~O:R.k.O). We prove that µ.tailf.i=pref(lk:k~O:R.k.i), i.e.
µ.tailf.i is the prefix-closure of all finite concatenations of successive trace
structures starting in state q;.

THEOREM 1.2.4.1. Let PO hold. For all i, O=,;;;;i<n,

µ.tailf.i = pref(lk: k~O: R.k.i).

PROOF. By Theorem 1.2.4.0 we infer that µ.tailf exists and can be written as
(Uk: k~O: tailf" . ..Ln(A)).

We first prove that tailf" . ..Ln(A).i =pref (R.k.i), o=,;;;;; <n, by induction to k.

Base. Fork =Owe have by definition

tai!f° . ..Ln(A).i = <A,{(}>, O=,;;;;i<n.

1.2. Tail recursion

Step. We observe for O..;i<n,

tai/.f + 1 . ..ln(A).i

= {def. of tai/.f + 1 }

tailf. (tai/.f . ..ln(A)).i

= {def. of tailf}

pref(I/: O..;j <n: S.i.j ;tai/.f . ..ln(A).j)

= { induction hypothesis for k}

pref(I/: O..;j <n: S.i.j; pref(R.k.j))

= { distribution Prop. 1.1.2.4}

pref(I/: O..;j<n: S.i.j;R.k.j)

= {def. R.(k+l).i}

pref(R. (k + 1).i).

Subsequently, we derive for all i, o..;; <n,

µ.tailf.i

□

= {Theorem 1.2.4.0}

(LJ: k~O: tai/.f . ..ln(A)).i

= {def. U}

(lk: k~O: tai/.f . ..ln(A).i)

= { see above}

(lk: k~O: pref(R.k.i))

= { distribution Prop. 1.1.2.4}

pref(lk: k~O: R.k.i).

1.2.5. Commands extended

21

We extend the definition of commands with tail recursion. We stipulate that a
tail function can also be specified by a matrix E(i,j: O..;i,j <n) of commands.
When we write such a tail function, as we did in Section 1.2.1, we adopt the
convention to omit alternatives 0 ;R.j and to abbreviate alternatives f.;R.j to
R.j, for O..;j<n. The condition PO for a tail function defined by a matrix of
commands E(i,j:O..;i,j<n) is now formulated by

22 Trace Theory

Pl: (Ai:0~i<n:(Ej:0~j<n:t(E.i.J)=fo 0)).

Every atomic command and every expression for a trace structure constructed
with atomic commands and operations defined in Section 1. 1.1 or tail recur
sion, i.e. with µ.tailf. 0 where PI holds for tailf, is called an extended command.

If a tail function tailfis defined by a matrix E(i,j:0~i,j<n) of commands
for which P 1 holds, and the commands of this matrix E are constructed with
the operations concatenation (;), union (I), or repetition ([]) and the atomic
commands, then we call µ.tailf.i, 0~i <n, an extended sequential command
Every sequential command is also an extended sequential command. With these
definitions of extended commands Property 1.1.3.0 and 1.1.3.1 also hold, i.e.
we have

PROPERTY 1.2.5.0. Every extended command represents a regular trace structure.
□

PROPERTY 1.2.5.1. Every extended sequential command represents a prefix-closed
non-empty regular trace structure.
□

Whenever in the remainder of this monograph we ref er to commands or
sequential commands we mean from now on extended commands or extended
sequential commands respectively.

In the following, we also adopt the convention to define a tail function
corresponding to a state graph in such a way that µ.tailf. 0 represents the trace
structure associated with this state graph.

REMARK. For later purposes, we remark that every prefix-closed non-empty
regular trace structure R can also be represented by a sequential command,
even when the alphabet is larger than the set of symbols that occur in the trace
set. To construct this command we first take a finite state machine that
represents the regular trace set. Then we add state transitions and states that
are unreachable from the initial state. We label these state transitions with
symbols that occur in the alphabet but do not occur in the trace set. The tail
function corresponding to this finite state machine satisfies µ.tailf. 0=R. For
example, the trace structure < {a}, { £} > can be represented by µ. tailf. 0, where

□

tailf.R. 0 = pref(R. 0)

tailf.R. 1 = pref(a ;R. 0).

1.3 Examples 23

1.3. EXAMPLES

The following examples illustrate that a trace structure can be expressed by
many syntactically different commands. Sometimes a command can be rewrit
ten, using rules from a calculus, into a different command that represents the
same trace structure. Sometimes more complicated techniques are necessary to
show that two commands express the same trace structure. For both cases we
give examples. The freedom in manipulating the syntax of commands will
become important later for two reasons. First, we will then be interested in
trace structures that satisfy properties which can be verified syntactically and,
second, in Chapters 5 and 6 we present a translation method for commands
which is syntax-directed. Accordingly, by manipulating the syntax of a com
mand we can influence the result of the syntactical check and the translation
in a way that suits our purposes best.

EXAMPLE 1.3.0. Every sequential command can be rewritten into the form
µ.tailf.0, where the tail function tailf is defined with atomic commands only.
For example, the command pref (a ;[b ;(c I d;e)];/) can be rewritten into
µ.tailf. 0, where

□

tailf.R. 0 = pref(a ;R. 1)

tailf.R. 1 = pref (b ;R. 2 lf;R. 4)

tailf.R. 2 = pref (c ;R. 11 d;R. 3)

tailf.R. 3 = pref(e ;R. 1)

tailf.R. 4 = pref (R. 4).

EXAMPLE 1.3.1. The trace structure countn(a,b), n >0, is specified by

<{a,b}, {tE{a,b}*l(Ar,s: t=rs: 0:s;;;rNa-rNb:,;;;;;n)}>,

where sNx denotes the number of x's ins. Symbol a can be interpreted as an
increment and symbol b as a decrement for a counter. The value tNa - tNb
denotes the count of this counter after trace t. Any trace of a's and h's for
which the count stays within the bounds 0 and n is a trace of countn(a,b).

There exist many commands for countn(a,b). For n = 1, we have
countn(a,b)=pref[a;b]. For n;;;;i:l, we give three equations from which a
number of commands for countn(a,b) can be derived

(i) countn(a,b) = µ.tail.fn.0,

where tai/fn.R. 0 = pref (a ;R. 1)

tail.fn.R.i = pref(a ;R.(i + 1) I b;R. (i -1)), for 0<i <n,

tail.fn.R.n = pref(b ;R.(n -1)).

24 Trace Theory

(ii) countn+ 1(a,b) = pref[a;x] 11 countn(x,b) t{a,b}.

(iii) count2n+1(a,b) = pref[(aly;b);(x;a I b)] II countn(x,y) t{a,b}.

Techniques to prove these equations can be found in [36, 42, 20, 11]. As far as
we know there are no simple transformations from one equation to the other.

With the first equation we can express countn(a,b) by a sequential command
of length (9(n). With (ii) we can express countn(a,b) by a weave of n sequential
commands of constant length. With (iii) and (ii), however, we can express
countn(a,b) by a weave of (9(logn) sequential commands of constant length.
□

EXAMPLE 1.3.2. An n-place 1-bit buffer, denoted by bbufn(a,b) is specified by

< { aO,a l,bO,b l}

,{ti (Ar,s: rs =t: O,;;;;rN{aO,a 1 }-rN{bO,b l },;;;;n

I\ rt{bO,b l}~rt{aO,a l})}

>,
where s~t denotes in this example thats is a prefix oft apart from a renam
ing of b into a.
For bbu!J(a,b) we have

bbufJ(a,b) = (pref[a0;x0 I a l;x l]

II pref[x0;y0 Ix l;y l]

llpref[YO;bO lyl;bl]

)t{aO,a l,bO,b l}.

A proof for this equation can be found in [11].

□

REMARK. It has been argued in [14] that regular expressions would be incon
venient for expressing counter-like components such as counters and buffers.
As we have seen, the extension of regular expressions with a weave operator
and projection effectively eliminates any such inconveniences.
□

2.0. INTRODUCTION

Chapter 2

Specifying Components

25

This chapter adresses the specification of components, which may be viewed as
abstractions of circuits. Components are specified by prefix-closed, non-empty
directed trace structures. In this monograph we shall keep to regular com
ponents, i.e. to regular directed trace structures. In a directed trace structure
four types of symbols are distinghuished: inputs, outputs, internal symbols of the
component, and internal symbols of the environment. In Section 2.1 we define
directed trace structures and generalize the results of the previous chapter.
Directed trace structures can be represented by directed commands. In Section
2.2 we explain how a directed trace structure prescribes all possible communi
cation behaviors between a component and its environment at their mutual
boundary. A number of basic components are then specified by means of
directed commands. Section 2.3 contains a number of examples of
specifications that will be used in later chapters.

2.1. DIRECTED TRACE STRUCTURES AND COMMANDS

A directed trace structure is a quintuple <BO,B l,B2,B3,X>, where BO, BI,
B2, and B 3 are sets of symbols and X ~(BOUB I UB2UB 3)0

• For a directed
trace structure R=<BO,Bl,B2,B3,X> we give below the names and nota
tions for the various alphabets and the trace set of R.

26

set
BO
BI
B2
B3
BOUBI
B2UB3
BOUB1UB2UB3
X

Specifying Components

name notation
input alphabet of R iR
output alphabet of R oR
environment's internal alphabet of R enR
component's internal alphabet of R coR
external alphabet of R extR
internal alphabet of R intR
alphabet of R aR
trace set of R tR

The operations defined on (undirected) trace structures are extended to
directed trace structures as follows. For the input alphabet we have

i(R ;S) = iR UiS

i(RIS) = iR UiS

i[R] = iR

ipref R = iR

i(RtA) = iR nA

i(RIIS) = iR UiS.

The other alphabets are defined similarly. The definitions for the trace sets
remain the same as in Section I. I. 1. For example, for directed trace structures
R and S we have

RIIS= <iRUiS, oRUoS, enRUenS, coRUcoS

,{tE(aR UaS)*! ttaREtR /\ ttaSEtS}>.

All properties of Section 1.1.2 are also valid for directed trace structures, where
< 0, 0 > and < 0, { t:} > are replaced by < 0, 0, 0, 0, 0 > and
< 0, 0, 0, 0, { t:} > respectively.

For a tail function tailfdefined by matrix S(i,j:O:;;;;i,J<n) of directed trace
structures we define A 0, A I, A 2 and A 3 by

AO = (U i,j: O:;;;;i,j <n: i(S.i.J))

A 1 = (Ui,j: O:;;;;i,J:;;;;n: o(S.i.J))

A 2 = (Ui,j: O:;;;;i,J<n: en(S.i.J))

A 3 = (Ui,j: O:;;;;i,J<n: co(S.i.J)).

Let ~(A O,A I,A 2,A 3) be the set of all prefix-closed non-empty directed trace
structures R, with iR =A 0, oR =A 1, enR =A 2, and coR =A 3. By definition,
the function tailf is defined on ~(A O,A I,A 2,A 3). All results of Sections 1.2.3
and 1.2.4, with the appropriate replacements, hold for directed trace structures
as well.

2. 1. Directed trace structures and commands 27

Directed commands are defined similar to (undirected) commands, with one
exception for projection. There are six types of directed atomic commands;
they are listed below together with the directed trace structure they represent.

directed atomic command
b?
b!
?b!
!b?

t:

0

directed trace structure
<{b},0,0,0,{b}>
<0,{b},0,0,{b}>
<0,0,{b},0,{b}>
<0,0,0,{b},{b}>
<0,0,0,0,{t:}>
<0,0,0,0,0>,

Here b E U, and U is a sufficiently large set of symbols. Every directed atomic
command and every expression for a directed trace structure constructed from
directed atomic commands and the operations concatenation (;), union (I),
repetition ([]), prefix-closure (pref), weaving (II), or tail recursion (µ.tailf. 0,
where P I holds for tai/f) is called a directed command. In a directed command
parentheses are allowed. Any directed command of the form pref(E) where E
is a directed atomic command different from 0, or E is constructed with the
operations concatenation (;), union (I), or repetition ([]) and directed atomic
commands different from 0 is called a directed sequential command. If a tail
function tailf is defined by matrix E(i,j: O~i,J<n) of directed commands, for
which P I holds, and if every directed command in this matrix E is a directed
atomic command or is constructed with the operations concatenation(;), union
(I), or repetition ([]) and directed atomic commands, then µ.tailf.i, O~i <n, is
also called a directed sequential command.

Projection is used as follows in directed commands. If E is a directed com
mand representing the directed trace structure R, then Et is a directed com
mand representing the directed trace structure Rt extR. For example, we have

(pref[a?;!x?;b !]

II pref[c?;!x?;d!]

)t

= pref (a ?lie ?;[(b ! ;a?)ll(d !;c?)]),

where = denotes equality of directed trace structures.

28

2.2. SPECIFICATIONS

2.2.0. Introduction

Specifying Components

A component is specified by a prefix-closed, non-empty, directed trace struc
ture R with intR = 0 and iR noR = 0. The external alphabet of R contains
all terminals of the component by which it can communicate with the environ
ment. A communication action at a terminal is represented by the name of
that terminal. The trace set R contains all communication behaviors that may
take place between the component and its environment.

A communication behavior evolves by the production of communication
actions. A communication action may be produced either by the component or
by the environment. The sets iR, oR, and tR specify when which communica
tion action may be produced and by whom. Let the current communication
behavior be given by the trace t EtR, and let tb EtR, i.e. b E Sue (t,R). If
b EiR, then the environment may produce a next communication action b; if
b EoR, then the component may produce a next communication action b.
These are also the only rules for the production of inputs and outputs for
environment and component respectively.

Because the directed trace structure R specifies the behavior of both com
ponent and its environment, we speak of component R and environment R.
The role of component and environment can be interchanged by reflecting R:

DEFINITION 2.2.0.1. The reflection of R, denoted by R, is defined by

R = <oR, iR, coR, enR, tR>.

D

Operationally speaking, each external symbol b of R corresponds to a termi
nal of a circuit, and each occurrence of b in a trace of R corresponds to a vol
tage transition at that terminal. By convention we shall assume in this mono
graph that initially the voltage levels at the terminals are low, unless stated
otherwise. The set of terminals constitutes the boundary between circuit and
environment, which, for most components, is considered to be fixed. In the
next chapter we discuss a special class of components, the so-called DI com
ponents, whose boundaries may be considered to be flexible.

In the following subsections, a number of components are specified by
directed commands. For each of these components we also give a pictorial
representation, called a schematic.

2.2 Specifications 29

2.2.1. WIRE components

There are two WIRE components. The specifications and schematics of these
components are given in Figure 2.0.

pref[a ?;b !]

pref[b ! ;a?]

a?•--------1--~ b !

a? •-----tD~ ~ b !

FIGURE 2.2.0. Two WIRE components.

A WIRE component describes the transmission of a signal from terminal to
terminal, i.e. from boundary to boundary. We consider the boundaries of
WIRE components to be flexible. All other components are considered to have
a fixed boundary (for the time being).

Notice that both WIRE components have the same behavior except for a
difference in initial states. For the WIRE component pref[a ?;b !] the environ
ment initially produces a transition. For the WIRE component pref[b !;a?] ini
tially the component produces a transition. This difference in initial states (or
the production of initial transitions) is depicted by an open arrow head in a
schematic. We shall use this convention also in some of the following
schematics. The components are, apart from a renaming, each other's
reflection.

Operationally speaking, a WIRE component corresponds to a physical wire.
Notice that there is always at most one transition propagating along this wire
according to our interpretation of a specification.

2.2.2. CEL components

A k-CEL component, k >0, is specified by

(lli:0~i<k:E.i), where

either E.i = pref[a.i ?;b !] or E.i = pref[b ! ;a.i?], 0~i <n.

Notice that fork= 1 a k-CEL component boils down to a WIRE component.
A specification and schematic of a 4-CEL component are given in Figure 2.2.1.

30

pref[b!;a. O?]

II pref[a. 1 ?;b !]
a.o?---c>--"""

a. I? ------..1
II pref[b !;a. 2?] a. 2? .,_--r:>--~
II pref [a. 3?;b !] a. 3? ____ __,

FIGURE 2.2.1. A CEL component.

Specifying Components

Notice that here we have drawn open arrow heads on the inputs a. 0 and a. 2
of the CEL component denoting that initially a transition has already occurred
on these inputs.

Schematics for other k-CEL components, k > 1, are given similarly. A CEL
component performs the primitive operation of synchronization. It can be
represented by several directed commands: recall that

pref[a ?;c !] II pref[b ?;c !] = pref[a ?llb?;c!]

pref[a?;c!] II pref[c!;b?] = pref(a?;c!;[a?llb?;c!]).

REMARK. The CEL components are generalizations of the Muller C-element
named after D.E. Muller [32].
D

2.2.3. RCEL and NCEL components

The specification and schematic of the RCEL component with 2 replicated
inputs are given in Figure 2.2.2.

pref[(a?;d!)2

I (b?;e!)2

l(a?;d!llc!)2 ll(b?;e!llc!)2

]

FIGURE 2.2.2. An RCEL component.

Here, £ 2 denotes E ;E. The specification of the RCEL component with one
replicated input is given by pref[(a?;d!)2 I (a?;d!llc!)2II(b?;c!)2] and depicted
similarly.

The specification and schematic of the NCEL component is given in Figure
2.2.3.

2.2 Specifications 31

pref [(a?)2 I (b?)2 I (a?llb?;c!)2]

b? --
FIGURE 2.2.3. An NCEL component.

A component specified by pref[(b?)2 I (a?llb?;c!)2] is also called an NCEL
component and depicted analogously. (The letter N originates from the pro
perty that an NCEL component is not a DI component, as we will see later.)

2.2.4. FORK components

The k-FORK components, k >0, are specified by the reflections of the k-CEL
components. A specification and schematic of a 4-FORK component are given
in Figure 2.2.4.

pref[a?;b. 0!]

II pref[b. l!;a?]

11 pref[a ?;b. 2!]

II pref[b. 3!;a?]

-----1 .. b. 0!

~--c>-..., b. l !
a?------1tc::...__

---------b.2!

~-{::>--11 .. b.3!

FIGURE 2.2.4. A FORK component.

Schematics for other k-FORK components, k > 1, are given similarly. A
FORK component performs the primitive operation of duplication.

2.2.5. XOR components

A k-XOR component, k >0, is specified by

(i) pref[£] or (ii) pref(b !;[£]),

where£= (li:0:o;;;;;i<k:a.i?;b!).

Notice that 1-XOR components are WIRE components. In Figure 2.2.5 the
two schematics for the two 4-XOR components are given.

32 Specifying Components

a.O??
a.I: ~ -b!
a.2. ~

a.l? ~b!
a.O?~

a.2? ~
a.3? a. 3?

FIGURE 2.2.5. Two 4-XOR components.

Schematics for other k-XOR components, k > l, are depicted similarly.

2.2.6. TOGGLE component

The specification and schematic of the TOGGLE component are depicted in
Figure 2.2.6.

pref[a ?;b !;a?;c !]

FIGURE 2.2.6. The TOGGLE component.

The TOGGLE component determines the parity of the input occurrences.

2.2. 7. SEQ components

A k-SEQ component, k >0, is specified by

(Iii: O~i <k: pref[a.i?;p.i !])

11 pref[n? ;(Ii: O~i <k: p.i !)].

The specification and schematic of a 2-SEQ component are shown in Figure
2.2.7.

2.2 Specifications

pref[a ?;p !]

11 pref[b?;q !]

11 pref[n ?;(p !jq!)]

a?~p!

b?~q!

n?
FIGURE 2.2.7. The 2-SEQ component.

33

Schematics for k-SEQ components, with k >2, are depicted similarly. Notice
that a I-SEQ component is a 2-CEL component.

For a k-SEQ component, k >0, we use the following terminology. Output
p.i, 0o;;;;,i <k, is called the grant of request a.i. We say that a request a.i,
0~i <k, is pending after trace t if tNa.i - tNp.i. = 1. (Recall that tNx denotes
the number of x's in trace t.) A SEQ component grants one request for each
occurrence of input n. We also say that the SEQ component sequences the
grants. In sequencing the grants it may have to arbitrate among several pend
ing requests.

2.2.8. ARB components

The specification and schematic of a 2-ARB component is given in Figure
2.2.8.

pref[a 1 ?;p 1 ! ;a 0?;p 0!]

II pref[b l?;q 1 !;b0?;q0!]

II preffp 1 !;a0? I q 1 !;b0?]

a0?

a 1?

b 1?

b0?

t---..p0!
i--.....,pl!

---.ql!
i--_..,q0! ..._ _ _,

FIGURE 2.2.8. The 2-ARB component.

The 2-ARB component performs an operation similar to the 2-SEQ com
ponent, though it has a slightly more complicated communication protocol.
The following names can be associated with the symbols

a 1? request p 1! grant

a 0? release p 0! confirm of release,

and similarly for the b and q symbols.
Generalizing the 2-ARB component to k-ARB components, k >0, is done

similarly to the k-SEQ components.

34 Specifying Components

2.2.9. SINK, SOURCE, and EMPTY components

Specifications for the SINK and SOURCE components are given in Figure
2.2.9.

pref(a?)

<0,{a},0,0,{t:}>

pref(a !)

Oi..411----4• a?

0------.... .,~ a!

Q-c>---- a !

FIGURE 2.2.9. A SINK and two SOURCE components.

A SINK component has only one input terminal and can accept at most one
transition at this terminal. A SOURCE component has only one output termi
nal and either does not produce any output transition at this terminal or it
produces only one output transition. In the latter case, it is called an active
SOURCE component. In the former case, it is called a passive SOURCE com
ponent. (Later, dangling inputs or outputs are connected to SOURCE or
SINK components, respectively.)

The component represented by the command t: is called the EMPTY com
ponent.

2.3. EXAMPLES

2.3.0. A conjunction component

Consider the component specified by the command

pref[aO?llbO?;cO! I aO?llbl?;cO! I al?llbO?;cO! I al?llbl?;cl!].

We call this component a conjunction component for two binary variables,
here a and b, encoded by a two-rail scheme in a 2-cycle signaling version [40]. A
two-rail scheme signifies that each binary variable is encoded by two symbols,
one for each value. For the binary variable a we have the symbols a O and a 1,
which correspond to two input terminals. A 2-cycle signaling protocol signifies
that each communication cycle consists of the communication of an input
value and an output value. A value is communicated by one transition at the
terminal corresponding to that value. In 4-cycle signaling, each 2-cycle signal
ing is immediately followed by another 2-cycle signaling of the same values.
Instead of the alternative aO?llbO?;cO!, we have aO?llbO?;cO!; aO?llbO?;cO!,
and similarly for the other alternatives. Since after each two voltage transitions
the voltage has returned to its initial value, which is zero here, one also calls
4-cycle signaling return-to-zero signaling and 2-cycle signaling nonreturn-to-

2.3 Examples 35

zero signaling [40].
Components specifying the disjunction, equivalence, negation, or combina

tions of these logical operators are similarly expressed by commands. Other
ways of encoding data in delay-insensitive communications are given in [48].

2.3.1. A sequence detector

The specification of the following component demonstrates how a finite state
machine with inputs and outputs can be specified by a directed command. The
example is taken from [23].

A sequence detector has input alphabet { a 0,a 1} and output alphabet
{y,n }. The communication behavior of this component is described as follows.
Inputs and outputs alternate, and if the last four inputs form the sequence
a0a 1 a 1 a0, output y is produced; otherwise, output n is produced. Initially,
the sequence detector receives an input.

The sequence detector can be specified by the state graph of Figure 2.3.0.

FIGURE 2.3.0. State graph for the sequence detector.

Consequently, the directed command for this component can be given by
µ. tailf. 0, where tailf is defined by

tailf.R. 0 = pref(a0?;n !;R. 11 a l?;n !;R. 0)

tailf.R. 1 = pref(a0?;n !;R. 1 I a l?;n !;R. 2)

tailf.R. 2 = pref (a 0?;n ! ;R. 1 I a 1 ?;n ! ;R. 3)

tailf.R. 3 = pref(a0?;y !;R. 1 I a l?;n !;R. 0).

36 Specifying Components

2.3.2. A token-ring interface (0)

Consider a number of machines. For each machine we introduce a component,
and all components are connected in a ring. Through this ring a so-called
token is propagated from component to component. The ring-wise connection
is called a token ring, and the components are called token-ring interfaces.
Each machine communicates with the token ring through its token-ring inter
face.

Token rings can be used for many purposes. They are used, for example, to
achieve mutual exclusion among machines entering a critical section [25) or to
detect the termination of a distributed computation [8]. For each purpose a
particular communication protocol is specified for the token-ring interfaces. In
this and in the next section, we discuss two of these communication protocols,
and we show how they can be specified by directed commands.

In order to achieve mutual exclusion among machines entering a critical sec
tion, the following protocol is described for a token-ring interface. The
schematic of the token-ring interface is given in Figure 2.3.1.

a 1? aO? pl! pO!

I l t 1
I b? • - q!

FIGURE 2.3.1. A token-ring interface.

The communication actions between token-ring interface and machine are
interpreted as follows.

a I? request for the token

p 1 ! grant of the token

a O? release of the token

p O! confirm of release.

With respect to these actions the protocol satisfies the specification
pref[a l?;p l!;aO?;pO!].

The communication actions between token-ring interface and the rest of the
token ring are interpreted as follows.

b? receipt of the token

q ! sending of the token.

With respect to these actions the protocol satisfies the specification pref[b ?;q !].
The synchronization between the two protocols must satisfy the following

requirements. After each receipt of the token, the token can either be sent on

2.3 Examples 37

to the next token-ring interface or, if there is also a request from the machine,
the token can be granted to the machine. If the machine releases the token, it
is sent on to the next token-ring interface. From the definition of weaving and
the above we inf er that the complete communication protocol can be specified
by the directed command

pref[a l?;p l!;a0?;p0!]

II pref[b ?;(q ! Ip 1 ! ;a O?;q !)].

2.3.3. A token-ring interface (1)

The following specification for a communication protocol is inspired by [8].
We characterize the state of a machine by either black or white. A machine

can change its color from black to white and vice versa. The token can also be
black or white. The color of the token can be changed by the token-ring inter
face from white to black only. We are asked to design a communication pro
tocol for the token-ring interface that satisfies the following requirements.
(i) Tokens are transmitted only if the machine is white.
(ii) A token is transmitted black if after the previous transmission of a token,

or after the initialization, the machine has become black at least once.
Otherwise, the token is transmitted unchanged.

For the derivation of a communication protocol we introduce the symbols
b, w, tb, and tu with the following interpretations.

b machine changes to black

w machine changes to white

tb transmit black token

tu transmit token unchanged.

(Notice that we have not assigned a type to these symbols yet.) Designing a
protocol with these symbols only, yields the command

pref[[tu];b ;w ;[b ;w];tb],

where we assume that the machine is white initially. Condition (i) is obviously
satisfied: between equally numbered occurrences of b and w, i.e. when the
machine is black, symbols tu and tb do not occur. Further, the command
b ;w ;[b ;w] contains all traces in which the machine has become black (and
changed to white) at least once. From this observation follows that (ii) is also
satisfied.

We use the symbols b, w, tu, and tb to introduce the communication sym
bols. We introduce one set of symbols for the communication between
machine and token-ring interface and one set of symbols for the communica
tion between the rest of the token ring and the token-ring interface. We

38 Specifying Components

consider the symbols b, w, tu, and tb as internal symbols of the component.
Consequently, the token-ring interface is considered an extension of the
machine: the change of color of the machine takes place internally in the
token-ring interface.

For the communication between the token-ring interface and (the rest of)
the machine we introduce the symbols

rb? request to become black

gb ! machine has become black

rw? request to become white

gw ! machine has become white.

The protocol with respect to these symbols only and the internal symbols b
and w is described by

pref [rb ?; !b ?;gb ! ;rw ?; !w ?;gw !].

For the communication between token-ring interface and the rest of the
token ring we introduce the symbols

btr? receipt of black token

wtr? receipt of white token

bts ! sending of black token

wts ! sending of white token.

The protocol with respect to these symbols only and the internal symbols tu an
tb is specified by

pref[wtr?;(!tu?;wts! I !tb?;bts!)

lbtr ?;(!tu ?l!tb ?);bts !

].

The proper synchronization of these protocols is described by their weave.
Projecting this weave on the external symbols gives the desired protocol, i.e.

(pref[rb ?; !b ?;gb ! ;rw ?; !w ?;gw !]

II pref[wtr?;(!tu ?;wts ! I !tb ?;bts !)

lbtr ?;(!tu ?I !tb ?);bts !

II pref [[!tu?]; !b ?; !w ?;[!b ?; !w ?]; !tb ?]

) t.

Finally, we remark that the last sequential command of the above weave can

2.3 Examples

also be written as µ.tailf. 0, where tailf is defined by

tailf.R O = pref(!tu?;R O j!b?;!w?;R 1)

tailf.R. 1 = pref(!tb?;R 0j !b?;!w?;R 1).

39

It will turn out that this last sequential command is better suited for the syn
tactical check to be developed in Chapter 4 and the syntax-directed translation
of Chapters 5 and 6.

2. 3.4. The dining philosophers

A canonical example of a mutual exclusion problem is the paradigm of the
dining philosophers [6]. In the following we derive a communication protocol
for the dining philosophers expressed in a command.

Consider N dining philosophers, N >0, whose lives consist of alternations of
thinking and eating. The N philosophers are seated at a round table with N
plates, one for each philosopher. Between any two successive plates lies one
fork. A philosopher can start eating if he has got hold of both forks lying next
to his plate. When a philosopher finishes eating, he releases both forks. A
fork can be occupied by at most one philosopher. We are asked to design a
communication protocol for the N dining philosophers such that no philoso
pher is kept from eating unnecessarily, i.e. no deadlock occurs (Notice that if
all N philosophers pick up their right forks simultaneously, nobody can pick
up his left fork as well, and thus they may keep each other from eating for
ever.)

Let the component with which the N philosophers communicate be called
TABLE. We design a communication protocol for the component TABLE.
The communication actions between philosopher i, 0~i<N, and TABLE are
given by

p.i ! start thinking

a.i? request to eat, i.e. finish thinking

q.i ! start eating

b.i? request to think, i.e. finish eating

With respect to philosopher i, 0~i <N, the protocol satisfies

PHIL . - frn .,. "?• "l•b "?] .1 - pre If'•'. ,a.1 . ,q.1 ., .1 ..

The synchronization among all N protocols PHIL.i, 0~i <N, must be such
that each fork is occupied by at most one philosopher, i.e. no two neighbors
are eating simultaneously. These restrictions are expressed by the commands

FORKi = pref[q.i !;b.i? I q. (i + l)!;b.(i + l)?], for 0~i <N,

where addition is modulo N.

40 Specifying Components

The protocols P HIL.i and FORK.i, 0~i <N, are the only restrictions that
the communications must satisfy. Consequently, TABLE can be specified by

TABLE = (Iii: 0~i <N: PHIL.i)

II (Iii: 0~i<N: FORKi).

Notice that when philosopher i, 0~i <N, starts eating, he picks up both forks
'at the same time', since q.i ! occurs in the commands FORK.(i -1), FORKi,
and PHIL.i. From this observation it follows that no philosopher is kept from
eating unnecessarily, i.e. there is no deadlock. (Absence of individual starva
tion, however, is not guaranteed.)

Chapter 3

Decomposition and Delay-Insensitivity

3.0. INTRODUCTION

41

The idea of this monograph is to realize a component by means of a delay
insensitive connection of basic components. In this chapter we formalize this
idea by means of three definitions and derive some theorems based on these
definitions.

First, we define what we mean by 'a component can be realized by a con
nection of (other) components'. This is formulated in the definition of decom
position. Decomposition is defined as a relation holding between the com
ponent to be decomposed and the components in which it is decomposed. We
stipulate that a component S. 0 can be decomposed into the components S.i,
1 ~i <n, if the connection of components S.i, 1 ~i <n, realizes the prescribed

· behavior of component S. 0, where it is assumed that the environment of this
connection behaves as specified for environment S. 0. (Recall from Section
2.2.0 that a directed trace structure prescribes both the behavior of a com
ponent and its environment.)

From the definition of decomposition we derive two theorems: the Substitu
tion Theorem, which enables us to decompose a component in a hierarchical
way, and the Separation Theorem, which enables us to decompose parts of a
specification separately.

The realization of a component by means of a delay-insensitive connection
of components is formalized by the definition of DI decomposition. We then
consider connections of components in which corresponding input and output
terminals are connected by WIRE components. WIRE components introduce,
operationally speaking, a delay in the communications between the terminals.
In the definition of DI decomposition it is required that these delays do not

42 Decomposition and Delay-Insensitivity

influence the functional behavior of the connection.
In order to link decomposition and DI decomposition we introduce DI com

ponents. A DI component may be interpreted as a component whose
specification is valid at a flexible boundary, or, operationally speaking, a DI
component communicates in a delay-insensitive way with its environment. By
means of DI components we can formulate the fundamental theorem of this
chapter: DI decomposition is equivalent to decomposition if all components
involved are DI components. Because of the theorems that apply for decom
position, it is easier to work with decompositions than with DI decomposi
tions. For this reason, we mostly discuss decompositions and DI components
in the following chapters.

3.1. DECOMPOSITION

3.1.0. The definition

Below, we first present the definition of decomposition and then give a brief
motivation for it.

DEFINITION 3.1.0.0. We say that component S. 0 can be decomposed into com
ponents S.i, I ~i <n for a fixed n > I, denoted by

S.O ➔ (i: I~i<n:S.i),

if the following conditions are satisfied
Let R.O=S.O, R.i=S.ifor l~i<n, and W=(lli:O~i<n:R.i).

(i) (Closed connection)
(Ui: O~i<n: o(_R.i)) = (Ui: O~i<n: i(R.i)).

(ii) (No output interference)
o(_R.i)no(_R.j)= 0 for O~i,j<n I\ i=/=j.

(iii) (Connection behaves as specified at boundary a(S. 0))
t Wt a(R. 0) = t(R. 0).

(iv) (Connection is free of computation interference)

□

For all traces t, symbols x, and indexes i, O~i <n, we have
tEtW I\ xEo(_R.i) I\ txta(R.i)Et(R.i) => txEtW

NOTATIONAL REMARK. The notation (i: l ~i <n : S.i) can be interpreted as an
enumeration of the components S.i, I~i<n. Notice, however, that the order
of this enumeration is not important, as can be deduced from the definition.

3. 1. Decomposition 43

Instead of, for example, S. O ➔ (i: l~i<4: S.i) we sometimes write
S. O➔ S. 1, S. 2, S. 3 or S. O ➔ (i: 1 ~i <3: S.i), S. 3. Here, the comma separates
the components or lists of components.
D

The set of internal symbols of the decomposition of S. 0 is given by
(U i: 1 ,;;;;,; <n :a(S.i)) \ a(S. 0).

In Section 2.2.0, we stipulated that a directed trace structure S. 0 prescribes the
behavior of component and environment: it specifies when the component may
produce outputs and when the environment may produce inputs. In a decom
position of component S. 0 we require that the productions of outputs of com
ponent S. 0 are realized by a connection of components. We assume that the
environment of this connection produces the inputs as specified~r environ
ment S. 0. This environment can also be seen as component S. 0. Accord
ingly, in order to comprise all components that produce outputs relevant to the
decomposition, we consider the connection of components S. 0 and S.i,
l~i<n.

Condition (i) says that there are no dangling inputs and outputs in the con
nection: every output is connected to an input, and every input is connected to
an output. We call such a connection a closed connection.

Condition (ii) requires that outputs of distinct components are not con
nected with each other. If (i1) holds we say that the connection is free of out
put interference.

Condition (iii) requires that the behavior of the connection at the boundary
a(S. 0) behaves as specified by t(S. 0). The behavior of the connection is given
by tW=t(lli:0~i<n:R.i). Restriction to the boundary a(S.O) (=a(R.O)) is
expressed by twta(R. 0).

Condition (iv) requires that the connection is free of computation interfer
ence. We say that the connection has danger of computation interference, if
there exists a trace t, symbol x, and index i, 0~i <n, such that

tEtW A xEo(R.i) A txta(R.i)Et(R.i) A tx~tW.

In words, if after a mutually agreed behavior a component can produce an
output that is not in accordance with the prescribed behavior of other com
ponents, then we say that the connection has danger of computation interfer
ence.

Since a specification may be interpreted as a boundary prescription for the
behavior of component and environment, computation interference may also
be interpreted as a boundary violation. For example, if WIRE component
pref[a ?;b !] receives two inputs a without producing an output b, we have a
boundary violation for the WIRE component. Operationally speaking, in the
case of this boundary violation more than one transition is propagating along
a wire, which can cause hazardous behavior and must, therefore, be avoided. A
boundary violation for a WIRE component is also called transmission interfer
ence [42]. (Consequently, transmission interference is a special case of

44 Decomposition and Delay-Insensitivity

computation interference.) In the following, a connection that satisfies condi
tions (i), (ii), and (iv) is briefly called a closed connection, free of interference.

REMARK. Some misbehaviors of circuits that are characterized in classical
switching theory by hazards or critical races [23,29] can be seen as special
cases of computation interference. Absence of interference in a decomposition
guarantees that the thus synthesized circuit is free of hazards and critical races,
if the components satisfy their specifications.
D

Notice that we have described decomposition as a goal-directed activity: we
start with a component S. 0 and try to find components S.i, I :os;;;j <n, such that
the relation S.0 ➔ (i: I:os;;i<n:S.i) holds. Thus, we explicitly use the assump
tion that the environment of the connection of components behaves as
specified for environment S. 0. We did not start with components S. i, I :os;;i <n,
to find out what could be made of them without requiring anything from the
environment.

3.1.1. Examples

ExAMPLE 3.1.1.0. We demonstrate that WIRE component pref[a?;d!] can be
decomposed into FORK component preffa?;b!llc!] and CEL component
pref[b?llc? ;d!]. A schematic of this decomposition is given in Figure 3.1.0.

Let

b

FIGURE 3.1.0. A decomposition of a WIRE component.

R. 0 = pref[a !;d?],

R. 1 = pref[a ?; b ! lie!], and

R. 2 = pref[b?llc? ;d!].

By inspection, we infer that the connection of components R. 0, R. 1, and R. 2
is closed and free of output interference. The behavior of this connection is
represented by

tW = t(R. O 11 R. l II R. 2)

3. 1. Decomposition 45

= tpref[a; bile ;d].

From this we derive tWta(R. 0)=tpref[a ;d]. Accordingly, we conclude that
the connection behaves as specified at the boundary a(R. 0).

For absence of computation interference we have to prove for all
t, x, i, 0=e;;;i<3, that

tetW I\ xeo(R.i) I\ txta(R.i)et(R.i) ~ txetW

Instead of proving this for all triples (t,x,i), we take for all states of tW a
representative t and consider all x and i, o=e;;;; <3, such that

tetW I\ xeo(R.i) I\ txta(R.i)et(R.i).

It suffices to prove for these triples (t, x, i) that tx etW. By inspection, we find
that for the triples

(E, a, 0), (a, b, 1), (a, c, 1), (ab, c, 1), (ac, b, 1), and (abc, d, 2)

indeed txetW. Consequently, we conclude that R. 0 can be decomposed into
R. land R. 2.
□

ExAMPLE 3.1.1.1. We examine whether WIRE component pref[a?;d!] can be
decomposed into FORK component pref[a ?;b !] II pref[a ?;c !] and CEL com
ponent pref[b?;d!] II pref[d!;c?]. Notice that this CEL component starts in a
different initial state than the CEL component of the previous example. The
tentative decomposition is given in Figure 3.1.1.

Let

b

C

FIGURE 3.1.1. A tentative decomposition of a WIRE component.

R. 0 = pref[a !;d?],

R. 1 = pref[a ?;b !] II pref[a ?;c !] ,and

R. 2 = pref[b?;d!] II pref[d!;c?].

Analogously to the previous example, we infer that the components R. O, R. 1
and R. 3 form a closed connection free of output interference. The behavior of
this connection is given by

tW = t(R.0IIR. l llR.2)

46 Decomposition and Delay-Insensitivity

= tpref[a ·b ·d ·c] ' , , '
from which we readily derive twta(R. 0)=t(R. 0). We conclude that this con
nection behaves as specified at the boundary a(R. 0).

There is, however, danger of computation interference in this connection: for
t,x,i: =a,c, 1 we have

adW I\ cEo(_R. 1) /\ acta(R. l)Et(R. 1) /\ ac~tW

After the environment has produced an a, the FORK component can produce
a c, which is not in accordance with the boundary prescription for the CEL
component. Consequently, the tentative decomposition is not a decomposi
tion.

□

ExAMPLE 3.1.1.2. We demonstrate that a 3-XOR component can be decom
posed into two 2-XOR components, according to the schematic given in Figure
3.1.2.

Let

a?-----\~
b?---/ L,./ c? ~D---- e !

FIGURE 3.1.2. A decomposition for a 3-XOR component.

R. 0 = pref[a !;e? I b !;e? I c!;e?],

R.1 = pref[a?;d! lb?;d!] ,and

R. 2 = pref[d?;e !I c?;e !].

By inspection, we find that the components R. 0, R. 1, and R. 3 form a closed
connection free of output interference. For the behavior of this connection we
obtain

tW = t(R.0IIR. I IIR.2)

= tpref[a;d;e lb;d;e lc;e].

Accordingly, we derive tWta(R. 0)=t(R. 0), i.e. the connection behaves as
specified at the boundary a(R. 0). Applying the same approach as in Example
3.1.1.0, we find for each of the triples (t,x,i) from

(£, a, 0), (£, b, 0), (£, c, 0), (a, d, I), and (c, e, 2), that

tEtW I\ xEo(_R.i) I\ txta(R.i) I\ txEtW

Consequently, the connection is also free of computation interference, and we
conclude that R. 0 can be decomposed into R. 1 and R. 2.

3. 1. Decomposition 47

□

Ex.AMPLE 3.1.1.3. Similarly to the above example, we can prove that 3-CEL
component pref[a?llb?llc? ; e!] can be decomposed into 2-CEL components
pref[a?llb?; d!] and pref[d?llc? ;e!]. This decomposition is depicted in Figure
3.1.3.

a? -.
d

b?..,._., 1--..,.e!

c?

FIGURE 3.1.3. A decomposition of a 3-CEL component.
□

Ex.AMPLE 3.1.1.4. Also in the same fashion as the previous examples we can
prove that the 2-CEL component pref[c!;a?]llpref[b?;c!] can be decomposed
into the 2-CEL component pref[d?;c!] II pref[b?;c !] and the WIRE com
ponent pref[d!;a?]. This decomposition is depicted in Figure 3.1.4.

d
a?.,.-c>--e---...

,__...,c!

b?

FIGURE 3.1.4. Decoupling an initial transition.

In general, any CEL component with initial transitions on some of its inputs
can be decomposed into a CEL component without initial transitions on its
inputs and WIRE components with initial transitions. A similar reasoning
holds for XOR components.
□

Ex.AMPLE 3.1.1.5. We examine some decompositions of the form S. 0 ➔ S. 1,
i.e. decompositions into one component only. First, we have S ➔ S for any
component S.

Second, for components S. 0 and S. 1 defined by

S. 0 = pref[a?;b !;c?;d!] and

S. 1 = pref[a?;b ! I c?;d!],

48 Decomposition and Delay-Insensitivity

for example, we have S. 0 ➔ S. 1.
Component S. 1 can be decomposed further: let

S. 2 = pref[a ?;b !] II pref[c ?;d!],

then we infer S. 1 ➔ S. 2.
Given the decompositions S. 0 ➔ S. 1 and S. 1 ➔ S. 2, we may wonder

whether S. 0 ➔ S. 2 holds as well. This is indeed so; in the next section we
derive this decomposition by application of the Substitution Theorem.

We can still go one step further in the decomposition of S. 1, since we have

S.2 ➔ pref[a?;b!], pref[c?;d!].

This last decomposition is a special case of the Separation Theorem, which is
also discussed in the next section.

□

3.1.2. The Substitution Theorem

A theorem that may be helpful in finding decompositions of a component is
the Substitution Theorem. This theorem applies to problems of the following
kind. Suppose that component S. 0 can be decomposed into a number of com
ponents of which Tis one such component. Suppose, moreover, that T can be
decomposed further into a number of components. Under what conditions can
the decomposition of T be substituted in the decomposition of S. O?

We have

THEOREM 3.1.2.0. (Substitution Theorem)
Let components S.i, O~i <m, and T satisfy for 1 ~n <m

(Ui: O~i<n: a(S.i)) n (Ui: n~i<m: a(S.i)) = aT. (3.1)

We have

□

S.O ➔ (i: l~i<n:S.i), T

I\ T ➔ (i:n~i<m:S.i)

=> S. 0 ➔ (i: l~i<m: S.i).

Condition (3.1) of the above theorem is essentially a void condition, since, by
an appropriate renaming of the internal symbols in the decomposition of T,
this condition can always be satisfied. (Recall that the internal symbols of the
decomposition of Tare given by (U: n~i<m: a(S.i)) \ aT .) ·

3. 1. Decomposition

PROOF (of Theorem 3.1.2.0). Let

R. 0 = S. 0, R.i = S.i for Jos;;;i<m,

WO= (lli:Oos;;;i<m:R.i),

Wl = (lli:Oos;;;i<n:R.i)IIT, and

W2 = (lli:nos;;;i<m:R.i)IIT.

(i) We observe

S. 0 ➔ (i: Jos;;;i<n: S.i), T

I\ T ➔ (i: nos;;;i<m: S.i)

~{ condition (i) of decomposition}

(Ui: Oos;;;i<n: o(R.i)) U oT = (Ui: Oos;;;i<n: i(R.i)) U iT

I\ (Ui:nos;;;i<m:o(R.i)) U iT = (Ui:nos;;;i<m:i(R.i)) U oT

~{ calc. ,oTniT = 0}

(Ui: Oos;;;i<m: o(R.i)) = (Ui: Oos;;;i<m: i(R.i)).

(ii) Since

S. 0 ➔ (i: Jos;;;i<n: S.i), T and

T ➔ (i: nos;;;i<m: S.i),

we have, by condition (ii) of decomposition, for i-=/=j

o(R.i)no(R.j) = 0 , for Oos;;;i,j<n v n..;;i,j<m, and

o(R.i)noT = 0 /\ o(R.j)niT = 0 for Oos;;;i<n I\ n:;;;;j<m.

From condition (3.1) in the theorem follows

o(R.i)no(R.j) ~ aT for Qos;;;i<n I\ n:;;;;j<m.

49

For component T, we have iTnoT= 0. This combined with the above
yields

o(R.i) n o(R.j) = 0 for Oos;;;i,j <m I\ i=/=j.

(iv) (We first prove (iv) and then (iii) of the definition of decomposition.)
We show that for all t, b, i, o..;;; <m,

t Et(Wl II W2) /\ b Eo(R.i) I\ tbta(R.i)Et(R.i)

~ tbEt(WlllW2). (3.2)

and that t(WIIIW2)=t(WO). From these two properties condition (iv) of
decomposition can then be concluded.

50 Decomposition and Delay-Insensitivity

Let O~i<n. We observe

tEt(WlllW2) I\ bEo(_R.i) I\ tbta(R.i)Et(R.i)

~ {def. of weaving}

ttaWlEtWl /\ bEo(_R.i) I\ tbta(R.i)Et(R.i)

~ {S. O ➔ (i: l~i<n: S.i), T ,condition (iv) of decomposition, calc.}

tbtaWl Et WI. (3.3)

To prove also that tbtaW2EtW2 for O~i<n, we consider two cases:
bf£aW2 and bEaW2. For bflaW2 we have, by the definition of weaving,

tEt(WIIIW2)/\bf£aW2 ~ tbtaW2EtW2.

For bEaW2, we derive

tEt(WlllW2) I\ bEo(_R.i) I\ tbta(R.i)Et(R.i) I\ bEaW2

~ {(3.3), O~i<n}

tEt(WlllW2) I\ bEo(_R.i) I\ bE(aW2naWl) /\ tbtaWlEtWl

~ { condition (3.1), def. of weaving}

tEt(WlllW2) I\ bEo(_R.i) I\ bEaT I\ tbtaTEtT

~ {S. O➔ (i: l~i<n: S.i),T ,condition (ii) of decomposition}

tEt(WlllW2) I\ bEiT I\ tbtaTEtT

~ {def. of reflection, def. of weaving}

ttaW2EtW2 I\ bEoT I\ tbtaTEtT

~ {T ➔ (i: n~i<m: S.i), condition (iv) of decomposition, calc.}

tbtaW2EtW2.

Since tbE(aWl UaW2)*, we derive with (3.3) and the definition of weav
ing that tbEt(WlllW2).

For n ~i <m, we derive similarly that (3.2) holds.

Subsequently, we show that t(WIIIW2)=tWO. We observe
a(WlllW2)=aW0 and t(WIIIW2)=t(W0IIT). By definition of weaving,
we derive t(WlllW2)C:tW0. We prove tEtWO ~ tEt(WlllW2) by
induction to the length oft.

Base: WO and WIIIW2 are prefix-closed and non-empty, hence
£EtW0 I\ £Et(WIIIW2).

3. 1. Decomposition

Step: We observe

tbEtWO

~ { WO is prefix-closed}

tEtWO A tbEtWO

~ { induction hypothesis for t}

tEt(WIIIW2) A tbEtWO

~ {by (i) in this proof and def. of weaving}

(Ei :O~i<m: tEt(WlllW2) A bEo(_R.i) A tbta(R.i)Et(R.i))

~ {(3.2)}

tbEt(Wl II W2).

51

(iii) To prove tWOta(R. O)=t(R. 0), we use a result of (iv), i.e.
tWO=t(Wl II W2). We observe

□

tWOta(R. 0)

= {see (iv)}

t(Wl II W2)ta(R. 0)

= {a(R. O)c;aWl, by (3.1): aWl naW2 =aT, Prop. 1.1.2.6}

t(Wl II (W2taT))ta(R. 0)

= { T ➔ (i: n ~i <m: S.i), condition (iii) of decomposition, calc.}

t(Wl II T)ta(R. 0)

= {calc.}

tWl ta(R. 0)

= {S. O ➔ (i: l~i<n: S.i), T, condition (iii) of decomposition}

t(R. 0).

In (i), (ii), and (iv) of the above proof we did not use condition (iii) of decom
position. Consequently, we conclude

52 Decomposition and Delay-Insensitivity

THEOREM 3.1.2.1.

(3.4) /\ (3.5) /\ (3.1)

=> (3.6) /\ (Iii: O~i<m: Ri) = (Iii: O~i<m: Ri) II T,

where

D

(3.4) = the components Ri, O~i <n, and T form

a closed connection, free of interference.

(3.5) = the components Ri, n ~i <m, and T form

a closed connection, free of interference.

(3.6) = the components Ri, O~i<m, form

a closed connection, free of interference.

ExAMPLE 3.1.2.2. Consider the components S. 0, S. 1, and S. 2 of Example
3.1.1.5 again. We have

S.O ➔ S. l I\ S. l ➔ S.2 /\

(a(S. O)Ua(S. 1)) n (a(S. l)Ua(S. 2)) = a(S. 1).

By the Substitution Theorem we conclude S. 0 ➔ S. 2. Moreover, we also have

S. 2 ➔ pref[a?;b !] , pref[c?;d!].

Here as well the condition for the Substitution Theorem is satisfied, and we
conclude

S.O ➔ pref[a?;b!], pref[c?;d!].

Consequently, S. 0 can be decomposed into two WIRE components.
D

NOTATIONAL REMARK. In the derivation for a decomposition of a component
we sometimes use a notation similar to the proofs in this monograph. For
example, for the derivation of a decomposition S. 0 ➔ S. I, S. 2, S. 3 we may
write

s.o
➔{hint why S.O➔ S. l, S.2}

S. I, S. 2

➔{hint why S. I ➔ S. 3, S. 4}

s. 3, s. 4, s. 2.

Such a derivation is then based on the Substitution Theorem, and it 1s

3. 1. Decomposition

assumed that the condition for its application holds.
□

3.1.3. The Separation Theorem

53

Another theorem that may be convenient in finding decompositions of a com
ponent is the Separation Theorem. It pertains to problems of the following
kind. Suppose that for the components SO, S 1, S2, TO, TI, and T2 we have
SO➔ S 1, S2 and TO➔ TI, T2. Can we derive from these decompositions a
decomposition for component S0IIT0? For example, does
SOIITO ➔ S Ill Tl, S2IIT2 hold?

We have

THEOREM 3.1.3.0. (Separation Theorem) Let components S.k.i,
0<.k<n I\ 0<.i<m, satisfy S.k. O ➔ (i: 1 ~i<m: S.k.i). We have

(Ilk: 0<.k<n: S.k. 0) ➔ (i: I<.i<m: (Ilk: 0<.k <n: S.k.i))

if the following conditions are satisfied

A.k nA./ ~ a(S.k. 0) for 0~k,l <n I\ k-=fl, (3.7)

Out.in Out.j = 0 for 0<.i,j <m I\ i-=fj, (3.8)

where

□

A.k = (U i: 0<.i <m: a(S.k.i)) for 0<.k <n,
Out.i = (Uk: 0<.k <n: o(S.k.i)) for I<.i<m, and
Out. 0 = (Uk: 0<.k <n: o(S.k. 0)).

Condition (3.7) can be interpreted as 'the internal symbols of the decomposi
tions are row-wise disjoint', where the internal symbols of the decomposition
of S.k. 0, 0~k <n, (i.e. row k) are given by A.k \ a(S.k. 0). Condition (3.8)
can be interpreted as 'the outputs are column-wise disjoint', where the outputs
of column i, 0<.i <m, are given by Out.i . (Notice that Out. 0 represents the
outputs of the components S.k. 0, 0<.k <n.)

PROOF (of Theorem 3.1.3.0).
Let Rk. 0=S.k. 0 and Rk.i =S.k.i for l<.i<m and 0<.k<n.
(i) We observe

(Ui: 0<.i<m: o(llk: 0<.k<n: R.k.i))

={calc.}

(Uk: 0<.k<n: (Ui: 0<.i <m: o(R.k.i))

= {S.k. O ➔ (i: l<.i<m: S.k.i), calc.}

54 Decomposition and Delay-Insensitivity

(Uk: 0=s;;;;k<n: (Ui:0=s;;;;i<m: i(R.k.i))

= {calc.}

(Ui: 0=s;;;;i<m: i(llk: 0=s;;;;k<n: R.k.i)).

(ii) The property o(llk: 0=s;;;;k<n: R.k.i) n o(llk: 0=s;;;;k <n: R.k.j) = 0, for
0=s;;;;i,j <m I\ i=/=j, follows directly from condition (3.8) in the theorem.

(iii) Let B = a(llk: 0=s;;;;k <n: R.k. 0). We observe

(iv) Let

t(lli: 0=s;;;;i <m: (Ilk: 0=s;;;;k <n: R.k.i)) t B

= {calc.}

t(llk: 0=s;;;;k<n: (Iii: 0=s;;;;i<m: R.k.i))t B

= {condition (3.7), Prop. 1.1.2.7, calc.}

t(llk: 0=s;;;;k<n: (Iii: 0=s;;;;i<m: R.k.i)t B)

= {calc., condition (3.7)}

t(llk: 0=s;;;;k<n: (Iii: 0=s;;;;i <m: R.k.i)ta(R.k. 0))

= { S.k. 0 ➔ (i: I =s;;;;i <m: S.k.i), calc.}

t(llk: 0=s;;;;k <n: R.k. 0).

WC.i = (Ilk: 0=s;;;;k<n: R.k.i),

WR.k = (lli:0=s;;;;i<m:R.k.i), and

W = (lli:0=s;;;;i<m: WC.i).

Notice that we also have W=(llk:0=s;;;;k<n: WR.k). We first prove that
under condition (3.8) we have

beo(WC.i)

=> (Ak:0=s;;;;k<n:b~a(WR.k) v beo(R.k.i)). (3.9)

Let beo(WC.i), i.e. beOut.i. Let k satisfy 0=s;;;;k<n. If bea(WR.k), then
b eo(R.k.j) for some j, 0=s;;;;j <m, since the components (i: _0=s;;;;i <m: R.k.i)
form a closed connection. By condition (3.8) then follows i = j.
Second, we derive for arbitrary k, 0=s;;;;k<n,

tetW I\ beo(WC.i) I\ tbta(WC.i)et(WC.i)

=> { definition of weaving, (3.9)}

tta(WR.k)et(WR.k) I\ (b~a(WR.k) v beo(R.k.i))

I\ tbt a(R.k.i)et(R.k.i)

=> {S.k. O ➔ (i: I=s;;;;i<m: S.k.i), calc.}

3. 1. Decomposition 55

tbta(WR.k)Et(WR.k).

By the definition of weaving, we consequently deduce tb EtW.
□

In the proof of the Separation Theorem condition (3.7) is only used in (iii).
For this reason, we conclude

THEOREM 3.1.3.1. For the components S.k.i, O~k <n I\ O~i <m, we have

S.k. 0 ➔ (i: 1 ~i <m : S.k.i) for all k, O~k <n,

□

/\ (3.8)

~ (Ilk: O~k <n: S.k. 0), (i: 1 ~i <m: (Ilk :O~k <n: S.k.i))

forms a closed connection, free of interference.

From the Separation Theorem two corollaries can be derived.

COROLLARY 3.1.3.2. If for components SO,Sl, and SOIIT we have SO➔ Sl,
then SOIIT➔ SIIIT.

PROOF. Take

S.0.0 =SO, S.0.1 = SI,

S. 1.0 = T , S. 1.1 = T,

and let SO➔ Sl. Then we have S. O.O ➔ S. 0.1 and S. l.O ➔ S. 1.1. Since there
are no internal symbols for these decompositions, condition (3.7) of the
Separation Theorem is satisfied. For component SOIITwe have

iSOnoT= 0 /\ oSOniT= 0.

By SO➔ S 1, we also have iS O = iS 1 /\ oS O = oS 1. Since S 0, S 1 and T are
components, we infer from the above

(iSOUiT) n (oS 1 UoT)= 0.

Consequently, Out. 0 n Out. 1 = 0 and condition (3.8) holds. Application of
the Separation Theorem yields the desired result.

□

CoROLLARY 3.1.3.3. If for component (llk:O~k<n: T.k) we have
o(T.k)no(T.l) = 0 for O~k, I <n I\ k=/=l, then

(llk:O~k<n: T.k) ➔ (k:O~k<n: T.k).

PRooF. Take S.k.O=T.k for O~k<n, S.k.(k+l)=T.k, and S.k.i=f. for

56 Decomposition and Delay-Insensitivity

1:s;;;;i<(n + 1) /\ (k + I)=~i. We have S.k. O ➔ (i: J::;;;;;i<(n + I): S.k.i). Here as
well there are no internal symbols for the decompositions, and condition (3.7)
of the Separation Theorem is satisfied. Since (llk:O:s;;;;k<n: T.k) is a com
ponent, we have

i(T.k)no(T./)= 0 for O:s;;;;k,l<n I\ k=/=I,

i.e. Out. 0 and Out.i are disjoint for O<i <(n + I). If

o(T.k)no(T./)= 0 for O:s;;;;k,l<n I\ k=/=I,

then Out.in Out.)= 0 for all O<i,j <(n + 1) /\ i=/=J. Accordingly, the outputs
are column-wise disjoint, and condition (3.8) of the Separation Theorem can
be concluded. Application of this theorem gives the desired result.

□

ExAMPLE 3.1.3.4. We demonstrate how a decomposition for component
SO=pref[a?;b !;c?d!] II pref[b !;e?] can be derived with the above theorems.
We observe

pref[a?;b !;c?;d!] II pref[b !;e?]

➔ {Ex. 3.1.1.5, Cor. 3.1.3.2}

pref[a?;b !] II pref[c?;d!] II pref[b !;e?]

➔ {Cor. 3.1.3.3, calc.}

pref [a?;b !] II pref [b !;e?]

, pref [c?;d!].

From these last lines (and the Substitution Theorem) we infer that component
SO can be decomposed into a 2-CEL component and a WIRE component.
The decomposition is depicted in Figure 3.1.5.

c?• _______ ..,.., d!

FIGURE 3.1.5. A decomposition of S 0.

□

More applications of the above theorems and corollaries, and some suggestions
for other theorems on decomposition, are given in Chapters 5, 6 and 7.

3.2 Delay-Insensitivity

3.2. DELAY-INSENSITIVITY

3.2.0. DI decomposition

57

In Chapter 2 we stipulated that the behavior of a non-WIRE component (and
its environment) is specified at a fixed boundary. For a connection of such
components it seems highly unlikely that their fixed boundaries would fit
exactly at the connection points. Therefore, in order to connect corresponding
input and output terminals in this connection, we introduce WIRE com
ponents. The terminals are connected via an intermediate boundary as
exemplified in Figure 3.2.0. Since WIRE components have flexible boundaries,
this intermediate boundary can be placed anywhere between the fixed boun
daries of the components.

enc(R. 0)

enc(R. 1)

I __ ----- l
I -J-
I--..
1--

_ intermedi~e boundary

FIGURE 3.2.0. DI decomposition.

Operationally speaking, the WIRE components introduce delays in the com
munications between components and the intermediate boundary. Thus, they
may affect the functional behavior of the connection of components at the
intermediate boundaries. If this closed connection operates as specified,
irrespective of delays, and the connection is free of interference, then we call
such a connection a delay-insensitive connection.

The formalization of a delay-insensitive connection of components~ done
as follows. For the components S.k, O<.k<n, we define R. O=S. 0 and
R.k=S.k, I<.k<n. Let a(_R.k), O<.k<n, stand for an intermediate boundary
and define the enclosure enc(R.k) of this boundary by

enc(R.k) is the trace structure obtained by replacing

each output a in R.k by oak and

each input a in R.k by iak.

(We assume that the characters i and o do not occur in R.k). For each k,
O<.k<n and aEa(R.k) we introduce the WIRE component Wire(k,a) between
the boundary of the enclosure and the intermediate boundary by

Wire(k,a) = pref[oak ?;a!] if a Eo(R.k)

= pref[a ?;iak !] if a Ei(R.k).

58 Decomposition and Delay-Insensitivity

The collection of WIRE components for R.k, 0~k<n, and its weave are
defined by

Wires(R.k) = (a: a ea(_R.k): Wire(k,a))

WWires(R.k) = (Ila: a ea(_R.k): Wire(k,a)).

With these definitions we can formulate

DEFINITION 3.2.0.0. We say that the components S.k, l~k<n form a DI
decomposition of component S. 0, denoted by

DI
S. 0 ➔ (k: l~k<n: S.k),

if all components enc(R.k) and Wires(R.k1 0~k<n, form a closed connection,
free of interference, and

t(llk: 0~k<n: enc(R.k) 11 WWires(R.k))ta(_R. 0) = t(R. 0).

□

Notice that the last condition requires that the connection behaves as specified
at the intermediate boundary a(R. 0). Thus, we incorporate the delays in the
communications not only with the components S.k, 1 ~k <n, but also with
environment S. 0.

ExAMPLE 3.2.0.1. We have the relations
DI

pref[a ?; b !lie!] ➔ pref[a ?; b ! lie!], and
DI

pref[a?; b !lie!] ➔ pref[a?;b !;c !].

Notice that the ordering between outputs b and c · for component
pref[a ?;b !;c !] is lost at the intermediate boundary due to the 'delays' intro
duced by the WIRE components. Consequently, there does not exist a DI
decomposition of this component that can realize this ordering between out
puts b and c, i.e. we do not have,

DI
pref[a ?;b ! ;c !] ➔ pref[a ?;b ! ;c !].

□

3.2.1. DI components

In this monograph we are interested in DI decompositions of a component. In
general, DI decompositions are more difficult to verify or derive than decom
positions. The two decompositions are equivalent, however, if all components
involved are so-called DI components. DI components are defined by

3.2 Delay-Insensitivity

DEFINITION 3.2.1.0. Component S is called a DI component, if

S ➔ Wires(S), enc(S).

□

59

Since WIRE components have flexible boundaries, it follows from Definition
3.2.1.0 that a DI component can be characterized as a component whose
specification is valid at a flexible boundary.

We have

THEOREM 3.2.1.1. If all components S.i, 0~i<n, are DI components, then
DI

S.O➔ (i: l~i<n:S.i) = S.O➔ (i: l~i<n:S.i).

PROOF. Let R.0=S.0 and Ri=S.i, 1,s;;;i<n. First, we make two observa
tions. We infer

components Ri, 0~i <n, form a

closed connection, free of interference

~ {Th. 3.1.2.1, Ri ➔ Wires(R.i), enc(R.i) for 0~i <n} (3.10)

components enc(Ri) and Wires(R.i), 0,s;;;i <n, form a

closed connection, free of interference

/\ (3.11),

where (3.11) stands for the equality

(Iii: 0,s;;;i <n: enc(Ri) II WWires(Ri))

= (Iii: 0~i <n: enc(Ri) II WWires(Ri) II Ri).

Second, we derive

(Iii: 0,s;;;i<n: enc(R.i) II WWires(R.i))ta(R. 0)

= {(3.11)}

(Iii: 0~i <n: enc(Ri) II WWires(Ri) II Ri)ta(R. 0)

(3.11)

= {Prop. l.l.2.7withA,B := a(R.O),a(Ri)forO~i<n} (3.12)

(Iii: 0~i <n: (enc(Ri) II WWires(Ri) 11 Ri) ta(R.i))ta(R 0)

= { Ri ➔ Wires(Ri), enc(R.i) ,calc.}

(Iii: 0~i<n: Ri)ta(R. 0).

With these observations the proof goes as follows.

Let S.0 ➔ (i: l~i<n:S.i) hold. By (3.10) we infer that the components
enc(R.i) and Wires(R.i), 0~i<n, form a closed connection, free of interference

60

and (3.11) holds. With (3.12) we infer

S. 0 ➔ (i: l,s;;,i<n: S.i)

~ {def. of decomposition}

t(lli: 0~i <n: Ri) t a(R 0) = t(R. 0)

~ {(3.12), (3.11)}

Decomposition and Delay-Insensitivity

t(lli: 0~i<n: enc(Ri) II WWires(Ri))ta(R. 0) = t(R. 0).
DI

Consequently, S.0 ➔ (i: l~i<n:S.i).
DI

Let S. 0 ➔ (i: 1 ~i <n: S.i) hold. By definition of enc(R.i) and WWires(Ri)
we derive

components enc(Ri) and Wires(R.i), 0,s;;,i <n,

form a closed connection, free of output interference

~ {calc.}

components Ri, o,s;;,; <n,

form a closed connection, free of output interference

Consider the special behavior in the closed connection of components enc(R.i)
and Wires(Ri), 0~i <n, where each output oa;, o,s;;,; <n I\ a Eo(_Ri), is
immediately followed by a and all iai, 0~j<n I\ aEi(Rj). Operationally
speaking, we assume that the commumcations by the WIRE components are
instantaneous communications. Since in this special behavior computation
interference does not occur, there is no computation interference in the con
nection of components R.i, 0~i <n, either. Accordingly, we have that the com
ponents Ri, 0~i <n, form a closed connection, free of interference. By (3.10)
and (3.12) we then infer

DI
S. 0 ➔ (i: l~i<n: S.i)

~ { def. of DI decomposition}

t(lli: 0~i <n: enc(Ri) II WWires(R.i)) t a(R. 0) = t(R 0)

~ { (3.10), (3.12)}

t(lli: 0~i <n: Ri) t a(R 0) = t(R 0).

Consequently, S. o➔ (i: l~i<n: S.i).
□

From now on, we mostly restrict ourselves to DI components and decomposi
tions. By Theorem 3.2.1.1, it then follows that such decompositions are DI
decompositions.

We say that a component S. 0 is DI decomposable if there exists a collection

3.2 Delay-Insensitivity 61

of components S.i, O:o;;;;;i <n, that form a DI decomposition of S. 0.

REMARK. It can happen that for a given component decompositions exist in
which not every component is a DI component. If this component is realized
by a circuit according to such a decomposition but with the use of connection
wires, then this circuit may malfunction: some delays can cause incorrect
behavior. In order for this circuit to operate correctly, delay requirements must
be met. We try to avoid such requirements as long as possible.

□

The following two theorems can be used to infer whether a component is
DI. From the definition of DI decomposition and DI component we derive

THEOREM 3.2.1.2. If a component is DI decomposable, then it is a DI com
ponent.

DI _

PROOF. Let S. 0 ➔ (i: O:o;;;;;i <n: S.i). Take RO= S. 0, R.i = S.i, l :o;;;;;i <n, and
define T by iT = i(S. 0), oT = o(S. 0),

tT = t(i: O:o;;;;;i <n: enc(R.i) II WWires(Ri)) t a(R. 0).

Since the components enc(R.i) and Wires(R.i), O:o;;;;;i <n, form a closed connec
tion, free of interference, we infer that the connection enc(R. 0), Wires(R. 0),
and Tis closed and free of interference as well. By definition of DI decompo
sition we have T = S. 0. Accordingly, also S. 0, Wires(S. 0), enc(S. 0) is a
closed connection, free of interference. Moreover, for any S. 0 we have

(enc(S. 0) 11 WWires(S. 0) 11 S. 0)ta(S. 0) = t(S. 0).

Accordingly, we conclude S. 0 ➔ enc(S. 0), Wires(S. 0).

□

Consequently, if a component is not a DI component, then it is not DI decom
posable.

THEOREM 3.2.1.3. For a component S we have
DI

Sis DI= S ➔ S.

PROOF. From Theorem 3.2.1.1 and the property S➔S, we infer
DI Dr

S is DI => S ➔ S. From Theorem 3.2.1.2, we derive S➔S => S is DI.

□

The characterization of a DI component S by the property
S ➔ Wires(S), enc(S) can be considered as a formalization of the so-called
Foam Rubber Wrapper (FRW) principle. Formally speaking, the FRW princi
ple states that the specification of a component is invariant under the

62 Decomposition and Delay-Insensitivity

extension of WIRE components. Operationally speaking, the FRW metaphor
expresses that the circuit specified by S is embedded in a 'Foam Rubber
Wrapper' formed by the connection wires. The boundaries of the FRW are
constituted by aenc(S) and aS, as depicted in Figure 3.2.1.

FIGURE 3.2.1. The Foam Rubber Wrapper principle S ➔ Wires(S), enc(S).

The idea of formalizing delay-insensitivity by means of the FRW principle
originates from Charles E. Molnar [33]. Jan Tijmen Udding was the first to
give a rigorous formulation of this principle in terms of trace structures. In
[45] he postulates a number of rules which a component must satisfy in order
to meet the FRW principle. It turns out that Udding's definition of a DI com
ponent is equivalent to Definition 3.2.1.0 (cf. Theorem 4.1.0). T.P. Fang had
earlier expressed the FRW principle - though less completely- by means of
Petri Net rules. In [38] another formalization of the FRW principle is given by
Huub Schols. For a proof of the equivalence of Udding's and Schols's formali
zation we refer to [38, 39].

4.0. INTRODUCTION

Chapter 4

DI Grammars

63

In order to apply Theorem 3.2.1.1 we have to know whether a component is a
DI component or not. The recognition of DI components is the subject of this
chapter. We present two methods for recognizing a DI component: DI gram
mars, which make up most of this chapter, and Udding's classification.

In [45) Jan Tijmen Udding postulates a number of rules with which the
classes C 1, C 2, C 3, and C 4 of trace structures are defined. A class consists of
all trace structures that satisfy a specific set of rules. It turns out that the larg
est class, i.e. class C 4, is the class of all DI components. Udding's
classification is briefly presented in Section 4.1.

The remaining sections of this chapter concern the definitions of so-called
DI grammars. A grammar is called a DI grammar if it generates commands
that represent DI components. Commands that represent DI components are
called DI commands. DI grammars are attractive for two reasons. First, they
enable a syntactical verification of the DI property, and, second, they can be
used as a starting point for a syntax-directed decomposition method. At the
end of this chapter, we show in a number of examples how a DI grammar can
be used to verify whether a command is a DI command and to derive a DI
command from a non-DI command. In the next chapters, a hierarchy of DI
grammars is used to develop a syntax-directed decomposition method.

With the DI grammars of this chapter a large class of DI commands can be
derived, although we conjecture that not every DI command can be derived
with these grammars. Accordingly, the DI grammars may be used to prove
that a command is a DI command, but in order to prove that a command is
not DI we have to resort to other means such as Definition 3.2.1.0 or Udding's

64 DI Grammars

classification. The recognition of a DI command by means of a DI grammar is
simple and straightforward, whereas the recognition of a DI component by
means of Definition 3.2.1.0 or Udding's classification can be tedious.

The grammars defined in this chapter are attribute grammars. Attribute
grammars are briefly explained in Section 4.2. The largest DI grammar, i.e.
grammar G4, is then defined in Sections 4.3 to 4.7. In Sections 4.7 and 4.8 the
grammars G 4', G 3', G 2', G 1 ', and GCL' are defined, which are all derived
from grammar G4.

4.1 UDDING'S CLASSIFICATION

We briefly summarize Udding's classification. For a more extensive discussion
of this classification the reader is referred to [45].

In the following rules, the letter R denotes a directed trace structure with
intR = 0, s and t denote arbitrary traces, and a,b, and c denote arbitrary sym
bols from aR.

rule 1:

rule 2:

rule 3:

rule 4':

(R is a component)
R is prefix-closed, non-empty, and iR n oR = 0 .

(Absence of transmission interference)
saafltR.

(Symbols of the same type commute)
If a and b are symbols of the same type, then sabt EtR = shat EtR.

(Symbols of distinct type commute (0))
If a and b are symbols of distinct type, then
sabtEtR /\sbEtR ~ sbatEtR.

rule 4": (Symbols of distinct type commute (1))
If a and b are symbols of distinct type and symbol c is of the same
type as a, then sabtc EtR /\ shat EtR ~ sbatc EtR.

rule 5': (No disabling)
If a and b are distinct symbols, then sa EtR /\ sh EtR ~ sab EtR.

rule 5 ": (Possible disabling of inputs)
If a and b are distinct symbols, not both inputs of R, then
sa EtR /\ sh EtR ~ sab EtR.

rule 5"': (Possible disabling of inputs or outputs)
If a and b are distinct symbols of different type, then
sa EtR /\ sh EtR ~ sab EtR.

4. 1. Udding's Classification 65

A class is defined by the collection of all trace structures R that satisfy a cer
tain subset of the above rules. All trace structures R that satisfy

rule 1, 2, 3, 4', and 5' form class C 1,

rule 1, 2, 3, 4', and 5" form class C2,

rule 1, 2, 3, 4', and 5"' form class C3,

rule 1, 2, 3, 4", and 5"' form class C4.

There exists a subset relation between these classes, viz. C 1 c C 2 c C 3 c C 4.
We have

'THEOREM 4.1.0. R is DJ= REC4.

PROOF. See Appendix A.
□

ExAMPLE 4.1.1. Consider the following components.

R. 0 = pref (a ?;b ?;e !) ,

R. l = pref [a?llb?;e!],

R. 2 = pref [a?;c! I b? ;c!],

R. 3 = pref [n ?;(a !jb !)] ,

R. 4 = pref (a !lib? I b?;a !lie!),

R. 5 = pref ((a ?;d !)2 I (b ?;e !)2 I (a ?;d ! lie !)2 11 (b ?;e ! lie !)2) , and

R.6 = pref[(a?)2j(b?)2 l(a?llb?;e!)2].

By inspection, we infer that R. 01tC4, since rule 3 is not satisfied. Similarly,
R. 61tC4, since rule 2 is not satisfied. For the other trace structures we have

R.1EC1,R.2EC2,R.3EC3,R.4EC4, andR.5EC2.

Notice that in R. 1 there is no disabling of symbols; in R. 2 there is a disabling
between inputs; and in R. 3 there is a disabling between outputs. For R. 4 we
observe that rule 4' is not satisfied, though rule 4" is satisfied, as well as rules
1, 2, 3, and 5'.

□

As the reader may have noticed in Example 4.1.1, verifying whether a com
ponent is DI by means of the rules for C4, C3, C2 or C 1 can be tedious.
For many components, represented by a command, a simple syntactical
verification can also be applied, as is shown in the next sections.

66 DJ Grammars

4.2. AITRIBUTE GRAMMARS

The DI grammars defined in this chapter are attribute grammars. We briefly
explain those properties of an attribute grammar that are needed to under
stand the next sections.

An attribute grammar consists of
a context-free grammar
a set of attributes for each grammar symbol
a condition for each production rule, and
a set of evaluation rules for each production rule.

In the attribute grammars of the next sections, the attributes, the conditions,
and the evaluation rules are used to restrict the derivations of the context-free
grammar. We explain how these restrictions are formulated.

Each derivation in the context-free grammar has a parse tree, and each node
in that parse tree corresponds to a grammar symbol. The attributes of this
grammar symbol are also associated with this node. For each attribute in the
parse tree, its value is calculated according to the conditions and the evalua
tion rules of the grammar as follows.

The values of the attributes of each internal node are calculated from the
values of its children. These calculations are specified in the evaluation rules
which are associated with the production rule that is applied in that node.
Attributes thus calculated are called synthesized attributes (as opposed to inher
ited attributes). The values of the attributes of the leaves are assumed to be
given.

The values of the attributes in a node are calculated only if the condition for
the production rule holds. The condition is formulated in terms of the attri
butes of the children of that node. If in all nodes the condition for the produc
tion rule holds, then the derivation is called a derivation of the attribute gram
mar. Thus, derivations of the context-free grammar are restricted to deriva
tions of the attribute grammar.

In the following sections, the context-free grammar, the attributes, the condi
tions, and the evaluation rules for grammar G4 are defined. We then show that
any derivable command of this grammar is a DI command.

4.3. 'nm CONTEXT-FREE GRAMMAR OF G4

Below, the context-free grammar of the attribute grammar G4 is defined. In
Table 4.3.0 the production rules are listed. The symbol O is a meta symbol of
the grammar; it separates the alternative productions. The prefixes pc and pf
stand for prefix-closed and prefix-free respectively.

4.4. The attributes of G4

<dicom> ::= <pccom>
a (<pccom >) t

<pccom> ::= (

a p. <tailf > .0
a <pccom > II <pccom >
a pref (<pfcom >)
a pref [<pf com>]

<pfcom> ::= <marked syms >
a <pf com> ; <pfcom >
a <pfcom > I <pfcom >
a (<pfcom>)

<marked syms > : : = <sym>? D <sym>?II <sym>?
a <sym>! D <sym>! II <sym>!

~ !<sym>?
?<sym>!

TABLE 4.3.0. The production rules of grammar G4.

(a0)
(a 1)

(b0)
(b 1)
(b2)
(b3)

(c0)
(cl)
(c2)
(c3)

67

The symbols <sym >, <tailf>, and all characters in the above table not
enclosed by the < > brackets are terminal symbols of the grammar. All
other symbols in Table 4.3.0 are non-terminals. The start symbol is <dicom >.
The terminal <sym > represents a symbol from a sufficiently large alphabet.
The terminal < tailf> represents a tail function defined by an array of com
mands E(i,j: 0:,;;;;;,i,j <n), i.e. if p.tailf. 0 is an instance of <pccom >, then the
tail function tailf is defined by

tailf.R.i = pref(lj:0:,;;;;;,j<n:E.i.j;R.J), 0~i<n.

Later, when we define the conditions for production rule (b0), these conditions
are formulated for array E. For example, we require E.i.JE <pfcom> for all
i,j with 0~i,j <n I\ E.i.f=I= 0 /\ E.i.f=/=£. Thus, implicitly, commands of type
<pfcom > are used in the application of rule (b0).

With the above context-free grammar, commands of the form E or Et can
be derived, where Eis expressed as a weave of (special) sequential commands.

4.4. THE ATTRIBUTES OF G4

At most eight attributes are associated with each grammar symbol. The attri
butes are represented by the names

0, I, EN, CO, HD, TL, FIRST, and FJRSTEXT.

All eight attributes are associated with the grammar symbols <marked syms >

68 DI Grammars

and <pfcom >. With the grammar symbol <pccom > only the attributes 0, I,
EN, and CO are associated. The grammar symbol <dicom > has no attributes.

The evaluation rules and conditions are defined in such a way that the fol
lowing semantics can be attached to the attributes. (This is proven in Appen
dix B.) For a command E derivable in (attribute) grammar G4 we have

I(E) = iE,
O(E) = oE,
EN(E) = enE,
CO(E) = coE.

The attributes HD and TL indicate with what kind of marks a command E
starts and ends respectively. For a command E derivable in grammar G4 we
have

HD(E) = empty
HD(E) = in
HD(E) = out
HD(E) = mixed

TL(E) = empty
TL(E) = in
TL(E) = out
TL(E) = mixed

if E=t:,
if E=f:t:/\hdE~iEUenE,
if E=f=t: J\ hd.E ~oE UcoE,
otherwise,

if E=t:,
if E=f=t: J\ tlE ~iE UcoE,
if E =f=t: /\ tlE ~ oE U enE,
otherwise,

where hdE={blEt::btetE)}, and tlE={blEt::tbetE)} . For example, for the
command E =a?llb?;c ! I ?d!;e?, we have HD(E)=in and TL(E)=mixed.

The attributes FIRST and FIRSTEXT represent a kind of I-lookahead sets
for a command. The type of these attributes is a set of sets of symbols (instead
of a set of symbols for usual I-lookahead sets). In the case of FIRSTEXT
these sets of symbols consist of external symbols only. For a derivable com
mand E in grammar G4 we have

FIRST(t:) = { 0} /\ FIRSTEXT(t:) = { 0 }.

If HD(E) = out, then

FIRST(E)

= {set(t) I te(oE)* /\ t et pref E J\ t=f=t: J\ (Suc(t,E) \ oE=f= 0 V Suc(t,E)= 0)}

U{{b}lbecoE /\betprefE},

and

FIRSTEXT(E)

= {set(ttextE) I te(oE UcoE)* /\ tetpref E

A(Suc(t,E)\(oEUcoE)=f:0 V Suc(t,E)= 0)}.

4.5. The conditions for G4 69

Here, set(t) denotes the set of symbols occurring in t. If HD(E)=in, then
FIRST(E) and FIRSTEXT(E) are defined similarly, except that oE and coE
are replaced by iE and enE respectively. Notice that for intE = 0 we have
FIRST(E)=FIRSTEXT(E). The elements of FIRST(E) are sets of (con
current) external symbols or singletons of internal symbols. The set
FIRSTEXT(E) contains sets of (concurrent) external symbols only. For exam
ple, for the command E = a?llb?;c! I ?d!;e?, we obtain
FIRST(E)={{a,b},{d}} and FIRSTEXT(E)={{a,b},{e}}.

4.5 THE CONDITIONS FOR G4

The conditions for the production rules are formulated with five predicates.
These predicates are ALFCOND, PROCOND, SEQCOND, ALTCOND, and
TAILCOND. They correspond to a condition for the alphabets, a condition
expressing whether projection has to be applied, a condition for the sequential
construct, a condition for the alternative construct, and a condition for the
tail-recursive construct respectively.

ALFCOND(E0,El) , PROCOND(E) , SEQCOND(E0,EI), and
ALTCOND(E0,EI) are defined on commands derivable in G4 by

ALFCOND(E0,El) = (AAITO,ATTI
:ATTO,AITI e {I,O,EN,CO} I\ ATTO=,=ATTI
:AITO(EO)nAITI(EI)= 0
),

PROCOND(E) = EN(E)= 0 /\ CO(E)= 0,
SEQCOND(E0,E I) = (TL(E0)=in I\ HD(E I)=out)

v (TL(E0)=out I\ HD(E I)=in)
v (TL(E0)=empty I\ HD(E I)=l=mixed)
v (TL(E0)=l=mixed I\ HD(E I)=empty),

ALTCOND(E0,E I) = HD(E0)=l=mixed I\ HD(E0)=HD(E I)
I\ LLCOND(E0,E I)
I\ LLCONDEXT(E0,E I), where

LLCOND(E0,EI) = (FIRST(EO)={0} A FIRST(EI)={0})
v (AA,B:AeFIRST(E0) I\ BeFIRST(EI)

: ,(A c;;;,B) I\ -,(B c;;;,A))

and LLCONDEXT(E0,E I) is defined analogously with FIRST replaced by
FIRSTEXT.

The condition ALTCOND(E0,E I) requires that E0 and EI start with
marks of the same type and that the LL-I conditions, both with respect to all
types of symbols and with respect to external symbols only, are satisfied.
These LL-I conditions are a kind of generalized LL-I conditions for LL-I
grammars. Notice that when the FIRST sets are non-empty and consist of sin
gletons only we have

LLCOND(E0,EI) = FIRST(E0) n FIRST(EI)= 0.

70 DI Grammars

The condition TAILCOND(tailf) consists of seven conditions defined on
array E(i,j: O~i,j <n) that determines the tail function tailf. Some of the con
ditions defined above appear in a more general form in these seven conditions.
In the conditions defined below, the domain restrictions D (i,j) stand for
O~i,j<n /\E.i.j=/=0 /\E.i.J=j=f.; by EE<pjcom> we denote that Eis a pro
duction of <pfcom > in the attribute grammar. We have

TAILCOND(tailf) = (0) /\ (1) /\ (2) /\ (3) /\ (4) /\ (5) /\ (6), where

(0) = (Ai:0~i<n: (Ej:O~J<n:E.i.j=/=0))

(1) = (Ai,}: O:r;;;;,i,j<n I\ i=/=j: E.i.j=/=£)
/\(Ai: O~i<n: E.i.i=£ ~ (Aj: O~J<n I\ i=/=j: E.i.j= 0))

(2) = ALFCOND(i,j:D(i,j):E.i.j)

(3) = (Ai,}: D(i,j): E.i.j E <pfcom >)

(4) = (Ai,j,k :O~i,j,k<n /\E.i.j=/=0 /\E.j.k=/=0: SEQCOND(E.i.j, E.J.k))

(5) = (Ai:0~i<n: ALTCOND(j:D(i,j):E.i.J))

(6) = (Ai,}: D(i,J): FIRSTEXT(E.i.J)=/= { 0})
v (Ai,} : D(i,j): FIRSTEXT(E.i.J) = { 0 }),

where

ALFCOND (i,j: D(i,J): E.i.j)

= (Ai,j,k,l: D(i,j) I\ D(k,l): ALFCOND(E.i.j, E.k.l))

and, for O~i<n, if (NJ::D(i,J))~l, then ALTCOND(j: D(i,j): E.i.J)=true;
otherwise,

ALTCOND(j: D(i,J): E.i.J)

= ((Aj: D(i,J): HD(E.i.j)=in) v (Aj: D(i,j): HD(E.i.J)=out))

/\ LLCOND(j: D (i,J): E.i.j) I\ LLCONDEXT(j: D(i,j): E.i.J)

LLCOND(j: D (i,j): E.i.j)

= (Aj: D(i,j): FIRST(E.i.j)= { 0})

v (Aj,k,A,B: D(i,j) /\ D (i,k) /\ j=/=k /\

A EFIRST(E.i.J) /\ B EFJRST(E.i.k)

:,(A <;;,B))

and analogously for LLCONDEXT (j: D(i,j): E.i.j) with FIRST replaced by

4.5. The conditions for G4 71

FIRSTEXT.
Condition 3 requires that every command E.i.j, with i,j satisfying D.i.j, is of

type <pfcom >. Condition 2, 4, and 5 are generalizations of the alphabet con
dition, the condition for the sequential construct, and the condition for the
alternative construct respectively. The conditions 1 and 6 only are new condi
tions.

In Table 4.5.0 the conditions for the production rules of attribute grammar
G4 are listed. Those production rules that are not listed do not have a condi
tion.

Production rule Production Condition
(a0) E PROCOND(E)
(b0) µ..tailf. 0 TAILCOND(tailf)
(b 1) E0IIE1 ALFOND(E0,E 1)
(b3) pref [E] SEQCOND(E,E)
(cl) E0;El SEQCOND(E0,E 1) /\

ALFCOND(E0,E 1)
(c2) E0IE1 ALTCOND(E0,E 1) /\

ALFCOND(E0,E 1)

TABLE 4.5.0. The conditions for grammar G4.

Combined, the conditions may be summarized as follows.
(1) (The alphabet condition) ·

For any symbol used, all atomic commands in which it occurs are of the
same type.

(ii) (The semicolon condition)
Input and output marks alternate. (This also holds for the repetitive con
struct and between state transitions in a tail function.)

(iii) (The bar condition)
In every alternative construct (also in a tail function) the alternatives start
with marks of the same type and both LL-I conditions are satisfied.

(iv) (The tail-function condition)
The array of each tail function satisfies three additional conditions:
- Each row contains a non-empty command
- Only a command at the diagonal can be i, and if a diagonal element is

i, then all other commands in that row are 0.
- Either all commands different from i and 0 contain external symbols,

or all of them do not.
(v) (The non-projection condition)

If a command does not contain projection, then it does not contain inter
nal symbols.

72 DI Grammars

4.6. THE EVALUATION RULES FOR G4

If the condition for a production rule in a node of the parse tree holds, then
the values of the attributes in that node can be calculated. The values of the
attributes in the leaves, i.e. for commands of type <marked syms > and t:, are
given in Table 4.6.0. These values are used to start the evaluation process.

CommandE Values for attributes of E

a? J(E)={a}, O(E)= 0 , EN(E)= 0, CO(E)= 0,
HD(E)=in , TL(E)=in,
FIRST(E)= { {a}} , FIRSTEXT(E)= { {a}}.

a! J(E)= 0, O(E)={a} , EN(E)= 0, CO(E)= 0,
HD(E)=out , TL(E) = out,
FIRST(E)= { {a}} , FIRSTEXT(E) = { {a}}.

?a! J(E)= 0, O(E)= 0 , EN(E)=(a}, CO(E)= 0,
HD(E)=in , TL(E)=out,
FIRST(E)= { {a}} , FIRSTEXT(E)= { 0 }.

!a? J(E)= 0, O(E)= 0 , EN(E)= 0, CO(E)={a},
HD(E)=out , TL(E)=in,
FJRST(E)= { {a}} , FIRSTEXT(E)= { 0 }.

a?llb? I(E)=(a,b}, O(E)= 0 , EN(E)= 0 , CO(E)= 0,
HD(E)=in , TL(E)=in,
FIRST(E) = { { a,b}} , FIRSTEXT(E)=((a,b} }.

a!llb! J(E)= 0, O(E)=(a,b} , EN (E) = 0 , CO(E) = 0,
HD(E)=out, ,TL(E)=out,
FIRST(E)= { { a,b}} , FIRSTEXT(E)= { { a,b} }.

J(E)= 0, O(E)= 0 , EN(E)= 0, CO(E)= 0,
HD(E)=empty , TL(E)=empty,
FIRST(E)= (0} , FIRSTEXT(E)= { 0 }.

TABLE 4.6.0. Values of attributes for EE <marked syms >.

(Recall that EIIE=E for a?lla?, etc.)
The evaluation rules corresponding to production rules (bO), (b 1), (c 1), and

(c2) are given in Table 4.6.1. The evaluation rules for (b2) and (b3) consist of
copying the values of /, 0, EN, and CO; the evaluation rules for (c 3) (and
(c0)) consist of copying the values of all eight attributes. The domain restric
tions D(i,j) for the array of commands E(i,j:O,s;;;,i,j<n) stand for
D(i,j) = O,s;;;,i,j<n /\E.i.J=fa0 /\E.i.J=fat:.

4.6. The evaluation rules for G4

Rule Production Evaluation of attributes

(b0) µ.tailf. 0 I(µ.tailf. 0) = (Ui,j:D(i,j): I(E.i.J)),
O(µ.tailf. 0) = (Ui,j:D(i,j): O(E.i.J)),
EN(p,tailf. 0) = (Ui,j:D(i,j): EN(E.i.J)),
CO(µ.tai/f.0) = (Ui,j:D(i,j): CO(E.i.J)).

(b 1) E0IIE 1 J(E0IIE 1) = J(E0)UJ(E 1),
O(E0IIEl) = O(E0)UO{El),
EN(E0IIE 1) = EN(E0)UEN(E 1),
CO(E0IIEl) = CO(E0)UCO(El).

(c 1) E0;E 1 I(E0;E 1) = J(E0)UJ(E 1),
O(E0;E 1) = O(E0)U O(E 1),
EN(E0;El) = EN(E0)UEN(El),
CO(E0;El) = CO(E0)UCO(El),
HD(E0;El) = HD(E0), TL(E0;El) = TL(El),
FIRST(E0;E 1) = FIRST(E0),
if FIRSTEXT(E0)=f={ 0 },
FIRSTEXT(E0;E 1) = FIRSTEXT(E0)
otherwise
FIRSTEXT(E0;E 1) = FIRSTEXT(E 1).

(c2) E0IE 1 I(E0IE 1) = I(E0)Ul(E 1),
O(E0IE 1) = O(E0)UO(El),
EN(E0IE 1) = EN(E0)UEN(E 1),
CO(E0IEl) = CO(E0)UCO(El),
HD(E0IE 1) = HD(E0),
TL(E0IE 1) = TL(E0) if TL(E0)= TL(E 1)

= mixed otherwise,
FIRST(E0IE 1) = FIRST(E0)UFIRST(E 1),
FIRSTEXT(E0IE 1) = FIRSTEXT(E0)

U FIRSTEXT(E 1).

TABLE 4.6.1. The evaluation rules of grammar G4.

73

REMARK. From the evaluation rules and the conditions for G4 it follows that
the value mixed for the attribute HD does not occur in the derivation of a
command.

□

74 DI Grammars

4.7. SOME DI GRAMMARS

Let the set of all commands derivable with attribute grammar G4 be denoted
by e(G4). Grammar G4 is a DI grammar, i.e.

THEOREM 4.7.0. E ee(G4) ~ E is DI.

PROOF. See Appendix B. □

We conjecture that there exist regular DI components that cannot be
expressed as a command Eee(G4). For example, we did not succeed in
expressing the RCEL component as a command from e(G 4). (This com
ponent is a DI component as is shown in Example 4.9.1.)

REMARK. Grammar G4 may be extended in such a way that more concurrent
inputs, outputs, and internal symbols are allowed. The production rules for
<marked syms > then become

<marked syms> ::= <sym>!{II <sym>!}

D <sym >?{II <sym>?}

D ?<sym >!{II ?<sym >!}

D !<sym >?{II !<sym >?},

where { } are meta symbols denoting a finite replication of the enclosed. Since
in the remainder of this monograph no use is made of this extension, we have
not included it in the grammar G4.
□

The attribute grammars G4', G3', G2', and G l' are defined similarly to
grammar G4. Each grammar has its specific restrictions with respect to G4.

The restriction for grammar G 4' is the reduction of the production rules for
<marked syms > to

<marked sym> ::= <sym>? D <sym>! D !<sym>?,

i.e. no parallel inputs or outputs are allowed, and there are no internal sym
bols of the environment.

Grammar G3' is obtained from grammar G4' by removing the alternative
! <sym >? from the production rules for <marked syms > as well, i.e. G 3'
has no internal symbols.

Grammar G 2' is obtained from grammar G 3' by strengthening the condition
ALTCOND(E0,E 1) to ALTCOND2(E0,E 1), where

ALTCOND2(E0,E 1)

= ALTCOND(E0,E 1) /\ HD(E0)=in I\ HD(E l)=in.

A similar strengthening is applied in the conditions of TAILCOND.

4.8. DI Grammar GCL' 75

Grammar G 1' is obtained from grammar G 4' by removal of the production
rules for tail recursion (bO) and for the alternative construct (c2).

Obviously, we have f.(Gi')!:f.(G4) for l~i<5. Accordingly, any command
derivable with one of the grammars G4', G3' G2', or GI' represents a DI
component.

It is furthermore conjectured that f.(Gi')!:;;Ci, for l~i <4.

4.8. DI GRAMMAR GCL'

The grammar GCL' produces so-called combinational commands. Combina
tional commands represent components for which the outputs uniquely depend
on the current inputs.

REMARK. Components represented by combinational commands bear a resem
blance to combinational circuits, as used in switching theory. There, these cir
cuits are also called combinational logic and denoted by the acronym CL.
□

The production rules for the attribute grammar GCL' are given in Table 4.8.0.

<dicom> ::= <pccom> (a2)

<pccom> ::= (

□ pref(<sym >?) (b4)

□ pref (<sym > !) (b5)

□ pref [<pf com >] (b6)

□ pref (<parout >; [<pf com>]) (b7)

□ <pccom > II <pccom > (b8)

<pfcom> ::= <parin >; <parout > (c4)

□ <pfcom >l<pfcom > (c5)

<parin> ::= <sym >? □ <sym >? II <sym>?
< arout>::= < m>!

TABLE 4.8.0. The production rules for grammar GCL'.

The conditions for these production rules are listed in Table 4.8.1.

76

Production rule

(b7)
(b8)
(c4)
(c5)

Production

pref(E0;[E l])
E0IIEl
E0;El
E0IEl

DI Grammars

Condition

ALFCOND(E0,E 1)
ALFCOND(E0,E 1)
ALFCOND(E0,E 1)
ALTCOND(E0,E 1) /\
ALFCOND(E0,E 1)

TABLE 4.8.1. The conditions for grammar GCL'.

The evaluation rules for (b4), (b5), (b6), (b8), (c4), and (c5) are analogous to
those of (b2), (b2), (b3), (b I), (c I) and (c2) respectively. The evaluation rules
for production rule (b7) are analogous to the evaluation rules for (b 1) where
E0IIE I is replaced by pref(E0;[E l]).

Any combinational command of type t:, pref (<.rym > ?), pref (<sym > !),
pref[<pfcom >], or pref (<parout > ;[<pfcom >]) is called a semi-sequential
command. From the above, we infer that any combinational command is
expressed as a weave of semi-sequential commands.

We have

THEOREM 4.8.0. E Ef(GCL') ~ E is DI.

PROOF (Sketch). We indicate that any command E0Ef(GCL') can be rewritten
into a semantically equivalent command E 1 Ef(G4').

We observe that each production rule in GCL' also occurs in G4' except for
production rule (b 7). With this production rule semi-sequential commands of
the form pref(E0;[E l]) are produced. These commands can be rewritten into
commands µ. tailf. 0, where

tailf.R. 0 = pref(E0;R 1)

tailf.R. I = pref(El;R. I).

Let each command of the form pref(E0;[E l]) occurring in E Ef(GCL') be
rewritten as above. The result of this rewriting is derivable with the attribute
grammar G4' (even G2'). Notice that the SEQCOND conditions are always
satisfied for commands in f(GCL ').
D

4.9. ExAMPLES

ExAMPLE 4.9.0. We give a few examples of combinational commands. The
only conditions that have to be checked for combinational commands are the
alphabet condition and the bar condition, which are easily verified. For the fol
lowing commands of a 2-XOR, WIRE, and 2-CEL component we have

4.9. Examples

pref[a?;c ! I b?;c!]Ef(GCL'),

pref(b!;[a?;b!])Ef(GCL'), and

pref[a?;c !] II pref(c !;[b?;c !]) Ee(GCL')

respectively. For the conjunction component of Section 2.3.0 we have

pref[a0?llb0?;c0! I a0?llb l?;c0! I a l?llb0?;c0! I a l?llb l?;c I!] Ef(GCL').

77

The bar condition for this command amounts to ,(A c;,B), for
A,BE{{a0,b0},{a0,b l},{a l,b0},{a l,b l}} and A=/=B.
□

ExAMPLE 4.9.1. For the commands of the basic components given in Section
2.2 we observe

pref[a?;c !] II pref[b?;c !] E f(G l'),

pref[a ?;b !] II pref[a ?;c !] E e(G l '),

pref[a ?;b ! ;a ?;c !] E e(G l'),

pref[(a?lb?);c!] E e(G2'),

pref [a ?;p !] II pref[b ?;q !] II pref[n ?;(p liq!)] E f(G 3'),

and

pref[a l?;p l!;a0?;p0!]

II pref[b l?;q I !;b0?;q0!]

II pref(p l!;a0? I q 1 !;b0?] E e(G3').

From this we conclude that the 2-CEL, 2-FORK, TOGGLE, 2-XOR, 2-SEQ,
and 2-ARB component(s) are DI components.

For the RCEL component pref[E], where

E =(a?;d!)2 l(b?;e!)2 I (a?;d!llc!)2ll(b?;e!llc!)2,

we observe

pref EEC 2 /\ hdE c;;;, iE I\ tlE c;, oE I\ E is prefix-free.

As a special case of Theorem B.4 on tail recursion in Appendix B, we infer
pref[E]EC4, i.e. also the RCEL component is a DI component.

Obviously, the WIRE, SINK, SOURCE, and EMPTY components are also
DI components.

□

78 DI Grammars

Ex.AMPLE 4.9.2. In Section 2.3.1 the sequence detector is specified by µ.tailf. 0,
where

tailf.R. 0 = pref (a0?;n !;R. I I a l?;n !;R. 0)

tailf.R. 1 = pref (a0?;n !;R. 1 I a l?;n !;R. 2)

tailf.R. 2 = pref (a0?;n !;R. I I a l?;n !;R. 3)

tailf.R. 3 = pref (a 0?;y ! ;R. 1 I a 1 ?;n ! ;R. 0).

Command µ.tailf.0 can be derived with the context-free grammar of G2'.
We verify for this command the conditions of grammar G2'. For the alphabet
condition we observe that for any symbol used all atomic commands in which
this symbol occurs are of the same type. For the semicolon condition we
observe that input marks and output marks alternate. For the bar condition
we observe that each alternative of an alternative construct starts with input
marks, and that the LL-I conditions are satisfied, since { { a 0}} n { { a 1}} = 0 .
For the tail-function condition we observe for the array of commands of tailf,
- each row contains a non-empty command,
- no command is equal to £, and
- all non-empty commands consist of external symbols only.
Consequently, the tail-function condition is satisfied. The non-projection con
dition is also satisfied, since µ.. tailf. 0 contains no internal symbols. Accord
ingly, we conclude µ.tailf.0 E f.(G2').
□

Ex.AMPLE 4.9.3. In Section 2.3.2 the token-ring interface is specified by

E = pref [a l?;p l!;a0?;p0!]

II pref [b ?;(q ! IP I! ;a 0?;q !)].

This command can be derived with the context-free grammar of G3'. For
the conditions of G 3' we observe that the alphabet condition is satisfied.
Furthermore, input and output marks alternate; the semicolon is satisfied as
well. For the only alternative construct in E, i.e. q ! IP l!;a0?;q !, we observe
that the alternatives start with output marks and that { { q}} n { {p 1}} = 0 .
Consequently, the bar condition is satisfied. The non-projection condition is
also satisfied, and we conclude that Eef.(G3').
□

4.9. Examples

ExAMPLE 4.9.4. In Section 2.3.3 another token-ring interface is specified by

E = (pref[rb?;!b?;gb !;rw?;!w?;gw !]

II pref[wtr?;(!tu?;wts ! I !tb?;bts !)

lbtr ?;(!tu ?I !tb ?);bts !

]

II µ.tai/f.O

)t,

where tailf.R. 0 = pref (!tu ?;R. 0 j!b ?; !w ?;R. I)

tailf.R. 1 = pref(!tb?;R. 0 j!b?;!w?;R. I).

79

This command can be derived with the context-free grammar of G4'. We
observe that the alphabet condition is satisfied and that input marks and out
put marks alternate. There are four alternative constructs to be considered for
the bar condition, viz.,

!tu?;wts ! I !tb?;bts!,

!tu? I !tb?,

!tu? I !b?;!w?, and

!tb? I !b?;!w?.

Each of the above alternatives starts with output marks. For the first two con
structs we observe

{{tu}}n{{tb}}=.0 A {{wts}}n{{bts}}=.0

and

{{tu}} n {{tb}} = .0 A

FIRSTEXT(!tu?)= .0 A FIRSTEXT(!tb?)= .0

respectively, i.e. both LL-I conditions are satisfied. Consequently, the bar con
dition is satisfied for the first two constructs. A similar reasoning applies to the
other two alternative constructs. For the tail-function condition we observe
that all commands in the matrix of tailf differ from .0 and t and consist of
internal symbols only. Accordingly, the tail-function condition is satisfied.
Since all conditions are satisfied, we conclude Ee e(G 4').
D

ExAMPLE 4.9.5. We derive for component count3(a,b) of Example 1.3.1 a com
mand satisfying grammar G4'. The component count3(a,b) can be specified by
the command

(pref[a ;x] II pref[x ;y] II pref[y ;b]) t { a,b }.

80 DI Grammars

We assign to the external symbol a, i.e. the increment, and to the external
symbol b, i.e. the decrement, the direction of input. Symbols x and y are given
the type of internal symbols of the component. We then obtain

EO = (pref[a?;!x?] II pref[!x?;!y?] II pref[!y?;b?])t.

This command cannot be derived with grammar G 4': input and output marks
do not alternate in the first and last sequential command. But these conditions
are easily met, if we introduce two fresh symbols p ! and q ! and write

E 1 = (pref[a?;!x?;p !] II pref[!x?;!y?] II pref[!y?;q !;b?])t.

This command can be derived with grammar G4' (even with grammar G l').
Moreover, we have tElt{a,b}=tE0.

We remark that the position at which to insert p ! is not unique. We could
also have changed the first sequential command into pref[p ! ;a?; !x ?].

By the introduction of symbols p ! and q ! we have introduced a communica
tion protocol between component and environment in order to ensure proper
delay-insensitive operation. Communication protocols like the one introduced
here, i.e. with a? and p ! alternating and q ! and b? alternating, can be called
handshake protocols. Various handshake protocols exist; in the next examples
more of them are given. By using a DI grammar one can quickly and con
veniently discover such handshake protocols.

The introduction of a handshake protocol imposes behavioral restrictions on
the environment and on the component. For protocol EI, for example, the
environment has to take care of the alternations of a's and p's and of b's and
q's only. The component, however, has to ensure proper internal synchroniza
tion as well. Therefore, designing a communication protocol always requires a
balancing of restrictions put on the component and restrictions put on the
environment.

In Example 1.3.1 several commands, which all have the same structure, were
given for component countn(a,b). With some calculus these commands can be
rewritten into

(pref[a ;x] II E II pref[Y ;b])t { a,b },

where command Eis expressed as a weave of sequential commands. We can
apply to this command the same procedure as above to obtain a DI command.
Thus, we may get many commands from e(G4') that have all the same trace
structure.
D

EXAMPLE 4.9.6. The 3-place binary buffer of Example 1.3.2 is specified by

(pref[a0;x0 I a l;x l]

11 pref[x0;y0 Ix l;y 1]

II pref[Y0;b0 I y I;b 1]

)t{a0,a l,bO,b 1 }.

4.9. Examples 81

We derive a DI command for this component in the same fashion as we did in
the previous example. This time, we assign to the external symbols a O and a 1
the direction of inputs and to the external symbols b O and b 1 the direction of
outputs (as opposed to the previous example where b was assigned the direc
tion of input). Symbols xO, x 1, yO and y 1 are internal symbols of the com
ponent. We obtain

(pref[a0?;!x0? I a l?;!x 1?]

II pref[!xO?;!yO? I !x l?;!y 1?]

II pref[!yO?;bO! I !y l?;b 1!]

)t.

Again, the semicolon condition is not satisfied. To repair this, we introduce
symbols p ! and q? and write

(pref [aO?;!xO?;p ! I a l?;!x l?;p !]

II pref[!x0?;!y0? I !x l?;!y 1?]

II pref[q?;(!yO?;bO! I !y l?;b 1!)]

) t.

This command can be derived with grammar G4'.

□

Ex.AMPLE 4.9.7. In this example we demonstrate how a DI command may be
obtained from an undirected command by the so-called four-phase handshake
expansion. This expansion was introduced by Alain Martin [25, 26]. The for
malization given below was inspired by a note of Rob Hoogerwoord [16].

The construction of the expansion is described as follows. Let E be an
undirected command. Rewrite E, if possible, into a form E O t, where E O is
expressed as a weave of sequential commands. Each symbol b E ext E O can be
either passive or active. For each passive symbol bE extEO we introduce the
four-phase handshake protocol

pref[bO?;b l!;b 2?;b 3!],

which indicates that the environment initiates this protocol. For each active
symbol bE extEO we introduce the four-phase handshake protocol

pref[b l!;b2?;b3!;b0?],

which indicates that the component initiates the protocol for this symbol. The
command E is expanded as follows. Replace each atomic command b in E 0,
with bEextEO, by b l!;b2? and replace each atomic command b in EO, with
bEintEO, by !b?. The projection (on extE0) of the weave of the four-phase
handshake protocols and the expansion of E O forms the four-phase handshake
expansion of E.

For example, for the command

82

(pref[a ;x] II pref[x ;y] 11 pref[y ;b]) t { a,b }.

of count3(a,b) we obtain for passive a and b

(pref [a O?;a 1 ! ;a 2?;a 3 !]

II pref[bO?;b l!;b2?;b3!]

11 pref[a l!;a2?;!x?]

11 pref[!x?;!y?]

II pref[ry?;b l!;b2?]

)t.

DI Grammars

Notice that for an expansion thus obtained, the projection on all symbols
b 1, or all symbols b2, with bE extEO yields, after an appropriate renaming,
the original command.

The four-phase handshake expansion gives rise to a command that satisfies
the alphabet condition, the semicolon condition and the non-projection condi
tion. The other conditions are not necessarily satisfied, however. We observe
that the expansion for count3(a,b) is derivable with grammar G l'.

An advantage of this handshake expansion is that the only restrictions put
on the environments are the four-phase handshake protocols for the external
symbols. These protocols are independent of each other. A disadvantage is
that this expansion can introduce many synchronizations between outputs
which may yield more complex decompositions, as we shall see in the next
chapters.
D

Chapter 5

A Decomposition Method I
Syntax-Directed Translation of Combinational Commands

5.0. INTRODUCTION

83

In this and the next chapter we present a method to decompose components
expressed in e(G4')Ue(GCL') into a finite set of basic components. The
decomposition method can be described as a syntax-directed translation of
commands from e(G 4') U e(GCL') into commands of basic components. More
over, we show that the decomposition can be carried out such that the result is
linear in the length of the command, i.e. the total number of basic components
in the decomposition of command Eis proportional to the length of E.

In order to make the presentation of the decomposition method more digest
ible, we have split it into two chapters. In this chapter we discuss the decom
position of components expressed in e(GCL') into basic components, i.e. the
decomposition of components represented by combinational commands into
basic components. In the next chapter we discuss the decomposition of com
ponents expressed in e(G4') \ e(GCL') into components expressed in e(GCL'),
i.e. the decomposition of components represented by non-combinational com
mands in e(G4') into components represented by combinational commands.
(This division in the decomposition method exhibits a similarity with the divi
sion in the synthesis method of synchronous circuits usually applied in switch
ing theory, i.e. a division into the synthesis of combinational circuits and
sequential circuits.) The techniques applied in Chapter 5 illustrate in a simple
way the techniques that are also applied in Chapter 6. The remainder of this
section is devoted to a general introduction to the complete decomposition
method.

The method consists of a hierarchy of decomposition steps, each of which is
described by means of DI grammars. In order to describe the decomposition

84 A Decomposition Method I

steps on the highest level in the hierarchical decomposition we use grammars
G4', G3', G2', and GCL' of the previous chapter. By means of these grammars
we define the hierarchy of languages

f:o kfi k~ ke3 k~, where

~ = e(G4')ue3,

eg = e(G3')ue2,

~ = e(G2')ue1,

el = e(GCL')Uf:o, and

f:o = { all commands of basic components}.

The method can be divided into four steps. In step k, O:r;;;;.k <4, for each com
mand E. 0E~-k a collection of commands E.i, 1:r;;;;.i<n, is constructed in such
a way that the following properties hold.

- E. 0 ➔ (i: l:r;;;;.i<n: E.i).

- E.iE~-k-l , for all i, l:r;;;;.i<n, and

- The decomposition can be described

as a syntax-directed translation.

(5.0)

(5.1)

(5.2)

From the properties (5.0), (5.1), and (5.2) and the Substitution Theorem, we
conclude that any component represented by a command in ~ can be decom
posed in a syntax-directed way into basic components expressed in f:o. Similar
to the division of the decomposition of ~ into f:o into four steps, each of these
decomposition steps is, in its turn, divided into a number of substeps. Thus,
by stepwise refinement, we obtain a hierarchical decomposition method based
on the Substitution Theorem.

The language f:o is defined as the set of all commands of the basic com
ponents. In this monograph, we show that for the finite set of basic com
ponents we may take the set 180 = 11B U {RCEL} or the set B 1 = 8 U {NCEL },
where

B = {2-FORK, 2-CEL, 2-XOR, TOGGLE, 2-SEQ,

WIRE, SINK, SOURCE, EMPTY}.

Each basis has its particular advantages and disadvantages. For example, for
the basis BO we observe that every component in 1130 is a DI component (cf.
Example 4.9.1). Accordingly, by Theorem 3.2.1.1, any decomposition of a DI
component into the basis BO is a DI decomposition. The basis 181, however,
contains one component that is not a DI component, viz. the NCEL com
ponent. For this reason, the decomposition of a DI component into the basis
11B 1 does not have to be a DI decomposition. Although the decomposition into
the basis 1131 is not DI, it is simpler than the decomposition into 180 and has
some practical advantages. Realizations of this decomposition with connection

5.0. Introduction 85

wires still operate properly if certain (physical) forks behave as so-called iso
chronic forks. In this monograph an isochronic fork is a fork for which the
differences between the delays in the branches are less than the delay in a
basic NCEL component.

The choice of basis BO or B 1 has to be taken in one of the last decomposi
tion steps only, viz. in the decomposition of so-called CAL components. CAL
components are DI components. The decomposition of CAL components into
the basis Ill I is presented in Section 5.6.2. The decomposition of CAL com
ponents into the basis BO, which is more complicated, is only briefly discussed
in Section 5.6.3. This section may be skipped at first reading.

The decomposition of a component EE f.i according to the method
described in this and the next chapter can be carried out such that the result is
linear in the length of E. We prove this by showing that each decomposition

E 1.0 ➔ (i: I =:;;;i <n : E 1.i)

in the hierarchy of decomposition steps satisfies the property

(+i: l~i<n: jEl.i I)= e(jEI.01). (5.3)

Here, !El denotes the length of command E and is defined as the number of
atomic commands occurring in E. (For a command µ.tailf. 0 it is defined as
the number of atomic commands in the tail function tailf different from 0 .)
In this monograph, the expression lf.EI = (9(1EI) for a function f defined on
commands from a particular language e signifies

(EK:K>O: (AE:EEe: lf.El<KIEI)).

The linear complexity of the complete decomposition method can be derived
from property (5.3) as follows. Let

E. O ➔ (i: l~i<m: E.i)

denote the complete decomposition of DI component E. 0Ef:.i into fo. Because
the number of decomposition steps is bounded and each step satisfies pro
perty (5.3), we infer

(+i: l~i<m: jE.i I) = e(jE. 01).

Since there exists an upper bound for the lengths of the commands from fo,
we deduce that m is proportional to IE. O!.

The above properties of the decomposition method emphasize the impor
tance of the task of the programmer. First, the programmer must express a
component in the language f.i. Second, if there are several programs possible
for a component, he has to choose that program that suits his purposes best
with respect to the decomposition of that program. For example, he may
choose a short program to obtain a decomposition with a few basic elements,
or he may choose a program whose decomposition according to the syntax of
the program exhibits more parallelism, but which may be a larger program.

A more detailed overview of the hierarchy of all decomposition steps and

86 A Decomposition Method I

languages can be described as follows. The decomposition steps from e3 to e2

and from ft to fo are divided into several substeps. Most of these substeps are
also described by means of DI grammars which will be defined as the need
arises. For example, we will define the grammars GSEL, GCI1), GCLl, and
GCAL Grammars GCL O and GCL l will be derived from grammar GCL',
grammar GCAL will be derived from grammar GCL l, and grammar GSEL
will be derived from grammar G 3'. The hierarchy among all languages is
displayed in Figure 5.0.0.

FIGURE 5.0.0. The hierarchy among the languages.

From Figure 5.0.0 we read, for example, that e(GCL 1) k e(GCL') and
e(GCL') k e(G4).

In order to give a concise overview of the hierarchy among all the decompo
sition steps we have displayed these steps symbolically in Table 5.0.0 together
with the section in which these steps are presented.

Section Decomposition step

6.3 e(G4') ➔ e(G3'), fo
6.2.3 e(G3') ➔ e(GSEL), e(GCL'), fo
6.2.(4+5) e(GSEL) ➔ SEQ, e(G 2'), e(GCL')
6.2.6 SEQ ➔ fo
6.1 e(G2') ➔ e(GCL'), fo
5.2 e(GCL') ➔ e(GCL 0), e(GCL 1)
5.3 e(GCL0) ➔ XOR, CEL, FORK
5.4 XOR ➔ fo
5.4 CEL ➔ fo
5.4 FORK ➔ fo
5.5 e(GCLl) ➔ e(GCAL), fo
5.6 e(GCAL) ➔ fo

TABLE 5,0.0. The hierarchy of decomposition steps.

From this table we read, for example, that in Section 6.2 the decomposition

5. 1. Decomposition of i; into ~ 87

step from e3 to e2 , which is divided into three substeps, is discussed. First,
components expressed in e(G 3') are decomposed into components expressed
in e(GSEL), e(GCL'), and fo. Second, each component expressed in
e(GSEL) is decomposed into SEQ components and components expressed in
e(G2') and e(GCL'). Finally, each SEQ component is decomposed into basic
components.

Many of the above displayed decomposition steps follow a similar pattern.
For example, if we have to decompose components E, where Eis expressed as
a weave of (semi-) sequential commands, then we first consider the decomposi
tion of such components expressed by (semi-) sequential commands. Subse
quently, we construct a decomposition for the weave of these commands by
applying the Separation Theorem.

Since each decomposition step is precisely defined by means of the gram
mars, we can study the properties of each step in isolation. For each decom
position step of Table 5.0.0 we verify whether the decomposition can be car
ried out in a syntax-directed way and whether the decomposition is linear in
the length of the command. For almost every step these properties are readily
verified.

Most decomposition steps are introduced by means of an example from
which the general decomposition procedure for that step easily follows. The
discussions on the correctness of each decomposition are less formal than in
Chapter 3. The simple decompositions are given by a schematic only. For the
decomposition of CAL components into the basis 80 we give a decomposition
procedure which we conjecture to be correct.

Finally, we remark that the decomposition method presented in these two
chapters is not the most efficient method. In these chapters, we are interested
mainly in the existence of a syntax-directed (linear) decomposition method.
Potential optimizations and decomposition techniques that can be applied to
special commands are discussed in Chapter 7.

5.1. DECOMPOSITION OF el INTO fo.

In the decomposition step from e1 to fo each component E Ee(GCL') is
decomposed into components expressed in fo. This decomposition step is
divided into five substeps, and, in order to describe these steps, we first intro-
duce the grammars GCL0, GCL I, and GCAL. .

Grammar GCL0 is defined as grammar GCL' (see Section 4.8) except for
one restriction: the production rule for <parin > is reduced to
<parin >:: = <sym >?, i.e. parallel inputs are not allowed. Grammar GCL I
is also defined as grammar GCL' except for two restrictions: the production
rule for <parout > is reduced to <parout >:: = <sym > !, i.e. parallel outputs
are not allowed, and the other restriction is that all outputs differ. For exam-

88 A Decomposition Method I

ple, we have

and

pref(e!llg!;[a?;e!llfi I b?;e!llg! I c?;J!])

II pref[c?;g! I d?;g!] E e(GCL0)

pref[a0?lla l?;b0! I a0?lla2?;b l! I a3?;b2! I a4?;b3!] E e(GCL 1).

The grammar GCAL is defined analogously to grammar GCL 1 except for two
restrictions. The production rules for <pccom > and <parin > reduce to

<pccom > : : = pref[<pfcom >] and

<parin > :: = <.rym >?11<.rym >?,

where for the last production rule both inputs must differ. In words, any com
mand for a CAL component is of the form pref[E], where each alternative in
E is of the form <.rym >? II <.rym >? ; <.rym > !. The command E satisfies the
LL-1 conditions and all outputs in E differ. For example, we have

pref[a0?llb?;c0! I a l?llb?;c 1!] E e(GCAL) and

pref[a0?lla l?;b0! I a0?lla2?;b 1! I a l?lla2?;b2!] E e(GCAL).

A component expressed by a command in e(GCAL) is called a CAL com
ponent, which can be viewed as a 2-CEL component with alternatives.

The decomposition step is subdivided into five parts. First, we show how
any component E Ee(GCL') is decomposed into a component E0Ee(GCL0)
and a component E 1 Ee(GCL I). Second, we show how components
EEe(GCL0) can be decomposed into XOR, CEL, and FORK components.
Third, we discuss the decomposition of XOR, CEL, and FORK components
into the basis IB. Fourth, we present a method to decompose components
EE f,(GCL I) into CAL components and components expressed in eo. Finally,
we discuss the decomposition of CAL components into eo.

5.2. DECOMPOSITION OF f,(GCL')

In this section, we show that for any command E0Ee(GCL') there exist com
mands ElEe(GCLl) and E2Ef,(GCL0) such that E0 ➔ El,E2. The com
mands E 1 and E2 are constructed from the syntax of E0. Moreover, we have
IE 1 I + IE 21 = (9(1E 0I)- Before we explain the decomposition we briefly recall
that any command E0Ee(GCL') is expressed as a weave of semi-sequential
commands of the form t:, pref(a?), pref(a!), pref[E], or pref(<parout>;[E]).
Command E is an alternative construct, where each alternative is of the form
<parin >; <parout > (see Section 4.8).

First, we consider an example. Let E. 0.0 and E. 1.0 be defined by

E. 0.0 = pref[a0?lla l?;b0!llb l! I a0?lla2?;b0!llb2! I a3?;b 1!]

5.2. Decomposition of e(GCL') 89

E. 1.0 = pref(b3!; [a4?;b0!llb3! I a0?;b4!]).

We observe that E. 0.0IIE. l.0Ef(GCL'). Let E. 0.1, E. 0.2, E. 1.1, and E. 1.2 be
defined by

E. 0.1 = pref[a0?lla I?;q. 0.0! I a0?lla2?;q. 0.1! I a3?;q. 0.2!],

E. 0.2 = pref[q. 0.0?;b0!llb 1! I q. 0.l?;b0!llb2! I q. 0.2?;b 1!],

E. 1.1 = pref[a4?;q. 1.0! I a0?;q. 1.1!], and

E. 1.2 = pref(b3!; [q. l.0?;b0!llb3! I q. l.l?;b4!]).

By definition of decomposition, we derive

E. 0.0 ➔ E. 0.1, E. 0.2 and

E. 1.0 ➔ E. 1.1 , E. 1.2 .

In order to apply the Separation Theorem we check conditions (3.7) and (3.8)
for the above decompositions. We inf er that the internal symbols of the
decompositions are row-wise disjoint and that the outputs are column-wise dis
joint. Consequently, application of the Separation Theorem yields

E. 0.0IIE. 1.0 ➔ E. 0.1 IIE. 1.1 , E. 0.2IIE. 1.2 .

Moreover, we observe that in E. 0.1 II E. 1.1 parallel outputs do not occur and
all outputs differ, i.e. E. 0.1 IIE. 1.1 Ef(GCL 1). In E. 0.211 E. 1.2 parallel inputs
do not occur, and consequently E. 0.2IIE. l.2Ef(GCL0).

The above decomposition procedure can be applied to any combinational
command E0Ef(GCL'). By definition of grammar GCL', command E0 is
expressed as a weave (Iii: 0,s;;;;i <n: E.i. 0) of semi-sequential commands
E.i. 0Ef(GCL'). Let command E.i. 0 have m(i) alternatives, m(i);;;,,0. We
introduce the internal symbol q.i.j for the semicolon in alternative j,
0,s;;;;J<m(i), of semi-sequential command E.i. 0, 0,s;;;;i<n. Subsequently, we split
command E.i.0 into E.i. I and E.i.2 such that E.i.0➔ E.i. I,E.i.2 holds, simi
larly to the example above. For the semi-sequential commands t: and pref(a !)
and pref(a?) we take t: ➔ t:, t: and pref(a !) ➔ t:, pref(a !) and
pref(a?) ➔ pref(a?), t: respectively. For the decompositions
E.i. 0 ➔ E.i. 1, E.i. 2, 0,s;;;;i <n, it follows that the internal symbols are row-wise
disjoint and that the outputs are column-wise disjoint. Consequently, by the
Separation Theorem, we derive E 0 ➔ E 1, E 2, where

E0 = (lli:0,s;;;;i<n:E.i.0),

EI = (lli:0,s;;;;i<n:E.i.1), and

E2 = (lli:0,s;;;;i<n:E.i.2).

Moreover, from the construction of EI and E2 follows E 1 Ef(GCL 1),
E2Ef(GCL0), and IE 11 + IE21 =e(IE0I)-

90 A Decomposition Method I

5.3. DECOMPOSITION OF f(GCL0)

5.3.0. Decomposition of semi-sequential commands

Consider the component E, with

E = pref(e!llg!;[a?;e!II/! I b?;e!llg! I c?;/!]).

We observe that E is a semi-sequential command and E Ef(GCL0). By
definition of decomposition, component E can be decomposed into the XOR
components

XOR0 = pref(e!;[a?;e! I b?;e!]),

XOR 1 = pref[a?;/ ! I c?;/ !], and

XOR2 = pref(g!;[b?;g!]).

Notice that XOR0=E t aXOR0, and that similar properties hold for XORl
and XOR2. The decomposition is depicted in Figure 5.3.0.

a1~[)-=-e!

b? D--J!
c? --~e>--- g !

FIGURE 5.3.0. Decomposition of semi-sequential command EE f(GCL0).

In general, any semi-sequential command EE f(GCL 0) can be decomposed
in the same way. The procedure for this decomposition is described as fol
lows. Each semi-sequential command EEf(GCL0) is of the form£, pref(a?),
pref(a !), pref[E l], or pref(E0;[E 11). Component€ is the EMP1Y component,
and the components specified by pref(a?) or pref(a !) are a SINK or an active
SOURCE component respectively. A component specified by pref(E0;[E 11) or
pref[E l] can be decomposed into XOR and active SOURCE components as
follows. We take for each output in E 1 a k-XOR component, where k equals
the number of alternatives in which this output occurs. The input that occurs
in each such alternative is connected to this XOR component (By definition
of GCL0 there is exactly one input in each alternative.) If an input is con
nected to more than one XOR component, then a FORK component is used
to duplicate this input. If the output occurs in E0 as well, then the XOR com
ponent initially starts with producing an output. For each output that occurs
in E0 but not in EI we take an active SOURCE component.

The above described procedure yields a syntax-directed decomposition of
semi-sequential commands EE e (GCL 0) that is linear in the length of the com
mand£.

5.3. Decomposition of e(GCLO)

5.3.1. The general decomposition

91

The general decomposition of a component E Ee(GCLO), where E is a weave
of semi-sequential commands, is obtained by application of the Separation
Theorem. We consider an example first.

Let E. 0.0 and E. 1.0 be defined by

E.0.0 = pref(e!llg!;[a?;e!II/! I b?;e!llg! I c?;/!]), and

E. 1.0 = pref[c?;g! I d?;g!].

We observe that E. 0.0 and E. 1.0 are semi-sequential commands from
e(GCL0) and E.0.0IIE. 1.0 E e(GCL0). Let E.i.j, with 0~i<2 and l~j<5,
be defined by

E. 0.1 = pref(e0!llg0!; [a?;e0!ll/0! I b?;e0!llg0! I c?;/0!]),

E. 1.1 = pref[c?;g 1! I d?;g l!],

E. 0.2 = pref[e0?;e !],

E. 1.2 = £,

E. 0.3 = pref[{ 0?;f !],

E. 1.3 = t,
E. 0.4 = pref[g0?;g!], and

E.1.4 = pref[gl?;g!].

Components E. 0.1 and E. 1.1 are similar to E. 0.0 and E. 1.0. Components
E. 0.2, E. 0.3, E. 0.4, and E. 1.4 are WIRE components. Since E. 0.0 and E. 1.0
are DI commands, we have (see also Definition 3.2.1.0)

E. 0.0 ➔ E. 0.1, E. 0.2, E. 0.3, E. 0.4

E. 1.0 ➔ E. 1.1, E. 1.2, E. 1.3, E. 1.4.

In order to apply the Separation Theorem, we check conditions (3.7) and (3.8)
for the above decompositions. We observe that the internal symbols of these
decompositions are row-wise disjoint and that the outputs are column-wise dis
joint. Consequently,.

E.0.0IIE. 1.0 ➔ E.0.lllE. 1.1, E.0.2IIE. l.2, E.0.3IIE.1.3, E.0.4IIE.1.4.

Since we also have o(E. 0.l)no(E. 1.1)= 0, we can apply Corollary 3.1.3.3
yielding E. 0.1 IIE. 1.1 ➔ E. 0.1, E. 1. 1. From the preceding subsection, we know
how to decompose the semi-sequential commands E. 0.1 and E. 1.1. Com
ponents E. 0.211£. 1.2, E. 0.3IIE. 1.3, and E. 0.4IIE. 1.4 are CEL components of
which E. 0.3IIE. 1.3 and E. 0.2IIE. 1.2 reduce to WIRE components. The com
plete decomposition of E. 0.0IIE. 1.0 is depicted in Figure 5.3.1.

The above procedure can be applied to any component EOE e(GCL 0). By
definition of grammar GCL 0, the command E 0 is expressed as a weave

92

b?

c?

A Decomposition Method I

eO ____ e!

__ f~--►o _____ f !

g!

FIGURE 5.3.1. Decomposition of E. 0.0IIE. 1.0.

(lli:0~i<n:E.i.0) of semi-sequential commands E.i.0Ee(GCL0), 0o;;;;;i<n.
Similarly to the example above, component E 0 can be decomposed into a col
lection (i: 0~i <n: E.i. 1) of components expressed as semi-sequential com
mands E.i.1Ee(GCL0) and a collection (i:0~i<m:CEL.i) of CEL com
ponents, where m equals the number of outputs in E0. For the commands
E.i. 1, 0~i<n, and CEL.i, 0~i<m, we derive

(+i: 0~i<n: IE.i. 11 = e(IE0I)

A(+i:0~i<m: ICEL.il) = e(IE0I)

=;> {calc.}

(+i:0~i<n: IE.i. 11) + (+i:0o;;;;;i<m: ICEL.il) = e(IE0l)

Observe that this decomposition can also be described as a syntax-directed
translation.

From Sections 5.3.0 and 5.3.1 we conclude that components EE e(GCL0)
can be decomposed into XOR, CEL, FORK, SINK, SOURCE and EMPTY
components. The SINK, SOURCE, and EMPTY components are basic com
ponents. The decomposition of XOR, CEL, and FORK components into
basic components is discussed in the next section.

5.4. DECOMPOSITION OF XOR, CEL, AND FORK COMPONENTS

There are several ways to decompose a k-XOR component, k > 1, into 2-XOR
components. In Example 3.1.1.2 we decomposed a 3-XOR component into
two 2-XOR components. The 4-XOR component E, with

E = pref[a0?;b ! I a l?;b ! I a2?;b ! I a 3?;b !],

can be decomposed in two ways into 2-XOR components as depicted in Figure
5.4.0.

5.5. Decomposition of e(GCL I) 93

aO?

a I?---' D-b 1 • ~ 2?-JL-/_ 'l.,-JD-b ! aO?---;~ a I?:=:)~~
an . an
a3?:J

FIGURE 5.4.0. Two decompositions of 4-XOR component E.

In general, any k-XOR component, k > 1, can. be decomposed into (k - 1)
2-XOR components. These decompositions can be described as syntax-directed
translations.

A k-CEL component, k > 1, can be decomposed into 2-CEL components in
several ways as well. In Example 3.1.1.3 a 3-CEL component is decomposed
into two 2-CEL components. In Figure 5.4.1 two ways are shown to decom
pose the 4-CEL component E, with

E = pref[b!;aO?] II pref[al?;b!] II pref[b!;a2?] II pref[a3?;b!].

aO? aO?

a I? al?
a2? b!

b!

a3?

FIGURE 5.4.1. Two decompositions of 4-CEL component E.

In general, any k-CEL component, k > 1, can be decomposed into (k -1) 2-
CEL components. These decompositions can be described as syntax-directed
translations as well.

For the k-FORK. components, k > 1, a similar reasoning holds as for the k
XOR and k-CEL components.

5.5. DECOMPOSITION OF f..(GCL 1)

Any component expressed in f.(GCL 1) can be decomposed into CAL, WIRE,
SINK, SOURCE and EMPTY components. Before we explain this decomposi
tion, we briefly recall the definition of grammar GCL 1. Any command
EOef..(GCL 1) is expressed as a weave of semi-sequential commands of the
form t:, pref(a?), pref(a !), pref[E], or pref(a !;[E]). The command E is an
alternative construct, where the alternatives are of the form
<.rym >? II <.rym >? ; <.rym > ! or <.rym > ?; <.rym > !. All outputs in E 0
differ.

94 A Decomposition Method I

First we consider the decomposition of components E, where E is a semi
sequential command from f.(GCL 1). Component £ is the EMPTY component,
and components pref(a?) and pref(a !) are a SINK and an active SOURCE
component respectively. For a component specified by pref(a !;[ED we have,
by definition of grammar GCL 1, that all outputs differ and that E begins with
inputs. Consequently, pref(a !;[ED ➔ pref(a !), pref[E]. Finally, we show that
any component pref[E]ef.(GCL 1) can be decomposed into a CAL component
and a collection of WIRE components.

An example of a command pref[E]ef.(CLCl) is given by

EO = pref[aO?lla l?;bO! I aO?lla2?;b l! I a3?;b2! I a4?;b3!].

We observe

EO

~{ def. of decomposition}

pref[aO?lla l?;bO! I aO?lla2?;b l!], pref[a3?;b2!], pref[a4?;b3!].

Consequently, component EO can be decomposed into a CAL component and
two WIRE components.

In general, any component pref[E]ef.(GCL 1) can be decomposed similarly.
The command pref[E] can be rewritten as pref[E 1 I E2], where E 1 contains
all alternatives with two parallel inputs and E 2 contains all alternatives with
one input only. Since pref[El I E2]ef.(GCL 1), we infer from the LL-I condi
tions that iE 1 niE2= 0 and that all inputs in E2 differ. Moreover, by
definition of grammar GCL 1, all outputs in E llE2 differ. From these observa
tions it follows that pref[E 1 I E2] can be decomposed into pref[E 1), which is
a CAL component, and a collection of WIRE components, one for each alter
native in E2. If E does not contain alternatives with one input only, then
pref[E] is already a CAL component, and if E does not contain alternatives
with parallel inputs, then pref[E] can be decomposed into WIRE components.

The decomposition of any component EOef.(GCLl) is obtained by applica
tion of Corollary 3.1.3.3. Any command EOef.(GCL 1) is expressed as a weave
(lli:O:oi.;;i<:E.i) of semi-sequential commands E.ief.(GCLl). By definition of
GCL 1, we have o(E.i)no(E.j)= 0 for i=/=j. Accordingly, we observe

(Iii: O:oi.;;i.<n: E.i)

➔ {Cor. 3.1.3.3, o(E.i)no(E.j)= 0 for i=/=j}

(i: O:oi.;;i<n: E.i}

From the above, we know how to decompose the semi-sequential commands
E.i ef.(GCL 1). Consequently, by the Substitution Theorem, we infer that any
component EOef.(GCL 1) can be decomposed into a collection
(i: O:oi.;;; <m: E 1.i) of CAL, WIRE, SOURCE, SINK, and EMPTY com
ponents. Notice that (+i:O:oi.;;i<m: IE1.il)=8(JEOI) and that the decomposi
tion into these components can be described as a syntax-directed translation.
The WIRE, SOURCE, SINK, and EMPTY component are basic components.

5. 6. Decomposition of e(GCAL) 95

The decomposition of CAL components into basic components is discussed in
the next section.

5.6. DECOMPOSITION OF e(GCAL)

5.6.0. Introduction

The decomposition of components expressed in e(GCAL), i.e. the so-called
CAL components, into fo is divided into two steps. First, we present a
method for decomposing CAL components into their so-called 4-cycle version
and their 2-to-4 cycle converter. A 2-to-4 cycle converter is a connection of
components from the basis B. Subsequently, we show how the 4-cycle version
of a CAL component can be decomposed into the basis B 1. Finally, we
briefly discuss the existence of a method that decomposes the 4-cycle version
of a CAL component into the basis BO.

5.6.1 Conversion to 4-cycle signaling

The decomposition of CAL component E, where

E = pref[a0?llb?;c0! I a l?llb?;c 1!],

into its 4-cycle version E 4, where

E 4 = pref[a0'?llb'? ;c0'!; aO'?llb'? ;c0'!

ja l'?llb'? ;c 1'!; a l'?llb'? ;c 1'!

],

and its 2-to-4 cycle converter is depicted in Figure 5.6.0.

al? b? aO?

FIGURE 5.6.0. The 2-to-4 cycle conversion for E.

(Notice that E 4 is also a DI command.) The connection of XOR and

96 A Decomposition Method I

TOGGLE components constitutes the 2-to-4 cycle converter for E.
In general any CAL component is converted into its 4-cycle version simi

larly. The 4-cycle CAL component is also a DI component. In each 4-cycle
communication the 2-to-4 cycle converter feeds back the first output of the 4-
cycle component to reset the inputs of the corresponding alternative to zero.
In other words, the feedback initiates the return-to-zero phase. The second
output of the 4-cycle component produces the output of the 2-cycle com
ponent.

A 2-to-4 cycle converter for a CAL component consists of k TOGGLE, k
2-FORK, and 2k 2-XOR components, where k is the number of alternatives in
the command for the CAL component. The conversion to 4-cycle signaling can
be described as a syntax-directed translation.

5. 6.2. Decomposition of 4-cycle CAL components into 1B 1

We proceed with the decomposition of the 4-cycle CAL component E 4 as
specified in the previous subsection. Let the NCEL components E 1 and £2
be defined by

E 1 = pref[a0'?llb'?; c0'!; a0'?llb'?; c0'! I b'?; b'?]

E 2 = pref[a l'?llb'?; cl'!; a l'?llb'?; cl'! I b'?; b'?].

Notice that E 4 t aE 1 = E 1 and E 4 t aE 2 = E 2. By definition of decomposition,
we derive that E4➔ El,E2. The decomposition is shown in Figure 5.6.1
(, where an isochronic fork is used for reasons explained below).

aO'?--.....

FIGURE 5.6.1. Decomposition of E 4 into 1B 1.

Components E 1 and £2 are not DI components, however. For this reason,
the decomposition is not a DI decomposition. In order to ensure proper
operation in a realization with connection wires, delay assumptions must be
met. The delay assumptions that we make for this decomposition are the fol
lowing: the differences between the delays in the branches of a (physical) fork
are less than the delay in an NCEL component. In this monograph, we call a
fork that meets this assumption an isochronic fork. A FORK component that
must be realized by an isochronic fork is denoted in a schematic by an equal
ity sign next to the fat dot denoting the FORK component. Notice that iso
chronic forks guarantee that all inputs of an NCEL component have returned

5.6. Decomposition ote(GCAL) 97

to zero before a next 4-cycle communication begins.
In general, any 4-cycle CAL component pref[E] can be decomposed into k

NCEL components, where k is the number of alternatives in E. The realization
of this decomposition with connection wires operates properly if isochronic
forks are used to connect common inputs of NCEL components. Such a reali
zation contains at most k isochronic forks. Notice that this general decomposi
tion of 4-cycle CAL components into B 1 can be described as a syntax-directed
translation.

5.6.3. Decomposition of 4-cycle CAL components into BO

(This section may be skipped at first reading.) The decomposition of 4-cycle
CAL components into a finite basis of DI components is one of the most
difficult parts of the complete decomposition method. In this section we
describe a method to decompose 4-cycle CAL components into the basis 180.
We conjecture that this decomposition is correct. The method is described
merely to indicate the existence of a linear DI decomposition of CAL com
ponents. We first give a few examples of decompositions and then describe the
general procedure.

Decompositions of components EO and E 1, where

EO = pref[(aO?llb?;c0!)2 I (a l?llb?;c 1!)2],

E 1 = pref[(a O?lla 1 ?;b 0!)2 I (a O?lla 2?;b 1 !)2 I (a 1 ?Ila 2?;b 2!)2],

are given in Figure 5.6.2 and 5.6.3 respectively.

aO? a 1?

b?

cO! cl!

FIGURE 5.6.2. Decomposition of EO into BO.

The general decomposition procedure for a 4-cycle CAL component E is as
follows. For each alternative in E we take a column of at most three (R)CEL
components according to the following rules:

if both inputs of the alternative do not occur in other alternatives, then we
take one 2-CEL component;

98 A Decomposition Method I

a2? al? aO?

bO! bl! b2!

FIGURE 5.6.3. Decomposition of EI into IEBO.

if one input only occurs in another alternative, then we take two RCEL
components;
if both inputs occur in other alternatives, then we take three RCEL com
ponents.

Per column, the output of the RCEL component in the i-th row is connected
to an input of the RCEL component in the i + 1st row, I ~i <3, if present.
The output of the last (R)CEL component in the column is the output
corresponding to the output in the alternative. Each input of E is connected to
the decomposition according to the following rules.

if the input occurs in one alternative only it is connected to an input of
the (R)CEL component in the first row and the column corresponding to
that alternative.
if the input occurs in more than one alternative it is connected to a so
called interferencefree loop, as depicted in Figure 5.6.4.

FIGURE 5.6.4. An interference-free loop.

This loop is first fed through the RCEL components in the first row and
the columns that correspond to the alternatives in which this input occurs.
Subsequently, the loop is fed back through a remaining RCEL component
in each of the same columns.

This decomposition procedure yields the decompositions as given in Figures
5.6.2 and 5.6.3.

5. 7. Schematics of decompositions 99

We make two remarks with respect to the behavior of the decompositions.
First, in any interference-free loop transmission interference does not occur,
i.e. for any behavior of the decomposition at most one transition is propagat
ing along the loop. Second, when in any 4-cycle communication the second
output is produced, all inputs of the RCEL components in the first row are
still zero or have returned to zero. Consequently, neither of the RCEL com
ponents in the first row will produce a next output until both its inputs have
changed again. ·

The above described procedure yields for any 4-cycle CAL component E a
decomposition with (9(1£1) components from BO. Also this procedure can be
described as a syntax-directed translation.

5.7. SCHEMATICS OF DECOMPOSITIONS

Decompositions obtained by the methods described in previous sections can be
depicted in schematics that exhibit a regular structure. As an example we con
sider the decomposition of component E specified by

E = pref[a0?llal?;b0!llbl! I a0?lla2?;b0!llb2! I a3?;bl!]

II pref(b3!; [a4?;bO!llb3! I a0?;b4!]).

From the preceding sections, it follows that the complete decomposition of this
component into the basis B 1 can be depicted as in Figure 5.7.0.

q.0.2
a3?------------------- ,-------b2!

----• bl!

al? b0!
a2?
aO? b4!

a4? b3!
q. 1.0

FIGURE 5.7.0. Decomposition of E.

The layout of this schematic can be rearranged in such a way that it exhibits a

100 A Decomposition Method I

more regular pattern. This is done in Figure 5.7.1. The XOR components are
shifted into one plane, the so-called XOR-plane; the NCEL (or CEL) and
TOGGLE components are shifted into one plane, the so-called CT plane; and
the remaining CEL components are shifted into one plane, the so-called CEL
plane. FORK components are depicted in the CT plane and the XOR plane,
where the FORK components in the CT plane must be realized by isochronic
forks.

The decomposition of any component E Ee(GCL') can be depicted similarly
to Figure 5.7.1.

a0? a 1? a2? a3? a4?

r- - - - - 7 1-
CT plane ~---- ~o-1--'---...-+----'-...-...---------.

I I
,-.....,.--~--1--t---,

I
I
I I
L _____ ~

b4! b3! b2! b 1! b0!

' XOR plane
I

FIGURE 5.7.1. A regular schematic of decomposition of E.

Chapter 6

A Decomposition Method 11
Syntax-Directed Translation of Non-Combinational Commands

6.0. INTRODUCTION

101

In this chapter we present the decomposition from £(G4') \ £(GCL') into
£(GCL'), i.e. the decomposition of components represented by non
combinational commands in £(G4') into components represented by combina
tional commands. This decomposition is divided into three steps, viz. the
decomposition from f.t into £3, the decomposition from £3 into £2 , and the
decomposition from ~ into £1• For the definition of the languages f.t, eg, £2,

and £i and a general introduction to the decomposition presented in this
chapter we refer to Section 5.0.

Each decomposition step is discussed similarly to the decompositions
presented in the previous chapter. We describe each step by means of some
grammars and study the properties of this step with respect to the syntax
directedness and linearity of the decomposition in the length of the command.
Mostly these properties are readily verified. There is one step, however, that
renders some difficulties in maintaining the linearity of the decomposition.
This is the decomposition of components expressed in £(GSEL). In Section
6.2.4 a non-linear decomposition is discussed, and in Section 6.2.5 we show
that a linear decomposition is also possible - though more difficult than the
non-linear decomposition. The latter section may be skipped at first reading.

One could say that the decomposition steps presented in this chapter di.ff er
from the one presented in the previous chapter in the sense that here an
encoding of state information is involved in the decomposition of a com
ponent. For the decomposition steps from~ to £1 and from £3 to e2 we apply
a so-called state assignment to each sequential command which is part of the
complete command representing the component. For reasons of simplicity we

102 A Decomposition Method II

use the one-hot assignment only, i.e. we introduce one symbol per state. For
the decomposition step from l?.i to ~ we change internal symbols into external
symbols by applying a technique called expansion of internal symbols. For
each internal symbol x of the component we introduce symbols ox and ix and
expand each atomic command !x? into ox !;ix?. The terminals ox and ix are
then connected by a WIRE component.

6.1. DECOMPOSITION OF fz INTO ei

6.1.0. Introduction

In the decomposition step from fz to f.1 each component
EOE f.(G 2') \ f.(GCL') is decomposed into components E I, E 2, and E 3 such
that E I E f.(GCL'), E 2 E f.(GCL'), and the command E 3 is a weave of
SOURCE and SINK components with disjoint alphabets. Consequently, by
Corollary 3.1.3.3, component E 3 can be decomposed further into a collection
of SOURCE and SINK components. The commands El, E2, and E3 are con
structed form the syntax of E 0, and we have IE 11 + IE 21 + IE 31 = (9(jE 01). The
general connection pattern between the components E 1, E 2, and E 3 is given
in Figure 6.1.0.

iEO EI E3 E2 oEO

FIGURE 6.1.0. General connection pattern of decomposition of EE fz.
Notice that for any command E it can be determined in a constructive way
whether EE f.(G 2') \ f.(GCL') by means of the grammars G 2' and GCL'.
Before we describe the general decomposition procedure for this step, we give
an example.

6.1.1. An example

Let the commands E. 0.0 and E. 1.0 be defined by

E. 0.0 = pref[(a?jb?);d0!;(a?;e ! I b?;d0!)]

E. 1.0 = µ.tailf1.0,

where tailf I is specified by

6. 1. Decomposition of ~ into Et

tailf1.R. 0 = pref(e !;R. 1)

tailf1.R. 1 = pref(c?;R. 0 I b?;R. 2)

tailf1.R. 2 = pref(R. 2)

tailf1.R. 3 = pref(dl!;R. 1).

The state graph corresponding to µ.tailf1.0 is given in Figure 6.1.1.

.q3

,, ldl! b1 q00 · _______ __,..,. q2

'-.___-/ql
c?

FIGURE 6.1.1. State graph corresponding to tailf1 .

We observe that E. 0.0IIE. 1.0 E f.(G2') \ f.(GCL').

103

The decomposition of E. 0.0IIE. 1.0 consists of two steps. In the first step we
rewrite E. 0.0 and E. 1.0 into commands of the form µ.tailf.0Ef.(G2'), where
tailf is defined by an array of atomic commands only. The sequential com
mand E. 1.0 is already written in this way. For E. 0.0 we obtain the command
µ.tailfo.0, where tailfo is specified by

tailfo.R. 0 = pref(a?;R. 1 I b?;R. 1)

tailf0 .R. 1 = pref(d0!;R. 2)

tailf0.R. 2 = pref(a?;R. 3 I b?;R. 4)

tailf0.R. 3 = pref(e!;R. 0)

tailf0.R. 4 = pref(d0!;R. 0).

Rewriting a sequential command in such a form can be done in a syntax
directed way.

In the second step we apply a state assignment to each sequential command
E.k. 0, 0:e;;;k <2. For reasons of simplicity, we take the so-called one-hot
assignment, i.e. we· introduce one internal symbol per state. For state i of
sequential command E.k. 0 we introduce the internal symbol q.k.i. Next, we
split each sequential command into an input part and an output part. The
input parts E. 0.1 and E. 1.1 and output parts E. 0.2 and E. 1.2 are defined by

E. 0.1 = pref[a?llq. 0.0?;q. 0.1! I b?llq. 0.0?;q. 0.1!

la?llq. 0.2?;q. 0.3! I b?llq. 0.2?;q. 0.4!]

E. 0.2 = pref(q. 0.0!; [q. 0.l?;d0!llq. 0.2! I q. 0.3?;e!llq. 0.0!

lq. 0.4?;d0!llq. 0.0!])

104 A Decomposition Method II

E. 1.1 = pref(q. 1.0!; [q. l.l?llc?;q. 1.0! I q. l.l?llb?;q. 1.2!])

E. 1.2 = pref[q. 1.0?;e!llq. 1.1! I q. 1.3?;dl!llq. 1.1!].

Operationally speaking, an input part receives the current local state and an
input and then produces the next local state. The output part receives the
current local state upon which it produces the output and the next local state.
Depending on whether an input or an output is produced initially, the input
part or the output part starts with producing the initial state.

Not every internal symbol occurs both as an input and as an output in the
above commands: there is a dangling input q. 1.3 and a dangling output q. 1.2.
To connect this dangling input and output to an output and an input respec
tively, we introduce the passive SOURCE(q. 1.3) component and the
SINK(q. 1.2) component. Let E. 0.3 and E. 1.3 be defined by

E.0.3 = £ and

E.1.3 = SOURCE(q.1.3) II SINK(q. 1.2).

By definition of decomposition, we derive

E. 0.0 ➔ E. 0.1, E. 0.2, E. 0.3 and

E. 1.0 ➔ E. 1.1, E.1.2, E. 1.3.

We check condition (3.7) and (3.8) for the application of the Separation
Theorem and infer that the internal symbols of the decompositions are row
wise disjoint and that the outputs are column-wise disjoint. Consequently, by
the Separation Theorem, we deduce

E0 ➔ El, E2, E3, where

E0=E. 0.0 II E. 1.0,

El=E.0.1 IIE. 1.1,

E2=E. 0.2 IIE. 1.2 ,and

E3=E. 0.311 E. 1.3.

Furthermore, we observe E. 1 ee(GCL'), E. 2ee(GCL'), and

IEil+IE2l+IE3I = e(IE0j).

6.1.2. The general decomposition

The general decomposition method for any component E0ee(G2') \ e(GCL')
is carried out similarly to the previous example. By definition of grammar G2',
command E0ee(G2') is expressed as a weave (Ilk: 0~k<N: E.k. 0) of sequen
tial commands E.k. 0ee(G2'). First, each sequential command E.k. 0,
0~k<N, is rewritten into a command µ..taiifk.0ee(G2'), where taiifk is a tail

6. 1. Decomposition of~ into Ei 105

function defined by an array of atomic commands only . Let
e.k(i,j:O<.i,j<n(k)) denote an array of atomic commands for tai/fk, O<.k<N.
Rewriting sequential command E.k. 0 into µ.tai/fk.O can be done in a syntax
directed way such that

(Nk,i,j: O<.k<N I\ 0<.i,j<n(k): e.k.i.j=/=-0) = e(IE0I). (6.0)

In the second step we introduce the internal symbols q.k.i and split each
sequential command in an input part and an output part. First, we define for
each k, O<.k<N, the commands PI.k and PO.k as follows. If e.k contains .
inputs,

PI.k = (I i,j: e.k.i.j is an input: e.k.i.jllq.k.i? ;q.k.j !),

otherwise PI.k =i. If e.k contains outputs,

PO.k = (I i,j: e.k.i.j is an output: q.k.i?; q.k.j !lle.k.i.j),

otherwise PO.k=i. Since µ.tai/fk.Oef.(G2'), O<.k<N, it follows that PI.k and
PO.k satisfy the LL-I conditions. (Notice that for each i, O<.i<n(k), there
exists at most one j, O<.j<n(k), such that e.k.i.j is an output.) Subsequently,
input part E.k. 1 and output part E.k. 2, O<.k<N, are defined by

E.k. 1 = pref(q. 0.O!;[PI.k]) if PI.k=/=,i I\ Q.k
= pref(q. 0.0!) if PI.k=i I\ Q.k
= pref[PI.k] if PI.k=/=,£ I\ -,(Q.k)
= i if PI.k=il\-,(Q.k)

E.k. 2 = pref(q. O.0!;[PO.k]) if PO.k=/=,£ 1\-,(Q.k)
= pref(q. 0.0!) if PO.k =i I\ -,(Q.k)
= pref[PO.k] if PO.k=/=,£ I\ Q.k
= i if PO.k =i I\ Q.k,

where Q.k = 'E.k. 0 starts with an output', for all O<.k <N.
SOURCE and SINK components are introduced for dangling inputs or out

puts as follows. For each k, O<.k<N, Out.k and ln.k are defined by

Out.k = o(E.k. l)Uo(E.k. 2)U {q. 0.0} and

ln.k = i(E.k. l)Ui(E.k. 2).

For each q.k.i e Out.k \ ln.k we introduce a SINK(q.k.i) component, and for
each q.k.i e ln.k \ Out.k we introduce a passive SOURCE(q.k.i) component,
where O<.i<n(k) I\ O<.k<N. Command E.k. 3 is defined as the weave of
these SINK and SOURCE components.

With the above definitions we derive for all k, O<.k<N,

E.k. 0 ~ E.k. 1 , E.k. 2, E.k. 3.

Since for these decompositions the internal symbols are row-wise disjoint and

106 A Decomposition Method II

the outputs are column-wise disjoint, we deduce, by the Separation Theorem,

E0 ➔ El,E2,E3, where

E0 = (llk:0,o;;;;;;k<N:E.k.0),

EI = (Ilk: 0os;;k<N: E.k. 1),

E2 = (Ilk: 0,o;;;;;;k<N: E.k. 2), and

E 3 = (Ilk: 0,o;;;;;;k <N: E.k. 3).

Because PI.k and PO.k, 0,o;;;;;;k<N, satisfy the LL-I conditions, we infer that
EIEe(GCL'), E2Ee(GCL'), and E3 is a weave of SOURCE and SINK com
ponents with disjoint alphabets. Finally, we observe that E 1, E2, and E3 are
constructed from the syntax of E0 and that, by (6.0),

IEil+IE2l+IE31 = e(IE0I).

6.1.3. Schematics of decompositions

Recall the specification of component E0IIE 1 of Section 6.1.1, where

E0 = pref[(a?lb?);dO!;(a?;e! I b?;dO!)],

E 1 = µ.tailf1.0,

and tailf 1 is specified by

tailf1.R.0 = pref(e!;R. l)

tailf1.R. I = pref(c?;R. 0 I b?;R. 2)

tailf1 .R. 2 = pref(R. 2)

tailf1.R. 3 = pref(dl!;R. 1).

A schematic of the complete decomposition of component E0IIE 1 according
to the methods described in the previous sections is given in Figure 6.1.2. The
schematic of this decomposition can also be rearranged into a connection of a
CT, XOR, and a CEL plane.

The decomposition of the sequence detector of Section 2.3.1 according to the
methods of the preceding sections yields the schematic of Figure 6.1.3.

6. 1. Decomposition of e,z into Ei 107

q. 0.4

q.U.3

q. 0.1

dO!
a? ,~o
b? .. 2
c?---,r1--;::::ji;:::==::;i°"----;;7,17 q. 1.1

e!

q. 1.0

q. 1.3..._. ____ ___.

FIGURE 6.1.2. Decomposition of EOIIE1.

aO? a 1?

~ , .,
.... I ~

!lNK·, r r r
,_

= (N}-<·j

-~1

= ~1
= _J.!!)-<..1

= -
J.!:!)-<.1
J&<.1
J!!)-<-J

0 y ?
y! n!

FIGURE 6.1.3. Decomposition of sequence detector.

108

6.2. DECOMPOSITION OF es INTO ~

6.2.0. Introduction

A Decomposition Method II

In the decomposition step from es to ~ each component E. oees \ ~
(=e(G3')\e(G2')) is decomposed in a syntax-directed way into a collection
of components E.iee,,,, l=e;;;;i<n. (Notice that for each command E it can also
be determined in a constructive way whether E e e(G 3') \ e(G 2') by means of
the grammars G3' and G2'.) The decomposition can be carried out in such a
way that the result is linear in the length of the commands, i.e.
(+i: I=e;;;;i<n: IE.il)=e(]E.01). The step is divided into three substeps each of
which is discussed briefly below before they are presented in the following sec
tions.

In the first step each component EOE es \ e2 is decomposed into four com
ponents El, E2, E3, and E4. Apart from component E4, this step is similar
to the decomposition step from e,,, to fi. The connection pattern between
components El, E2, E3, and E4 is given in Figure 6.2.0.

~ E4

iEO El E2 , oEO

E3

FIGURE 6.2.0. Decomposition of EOees \e,,,.
Components El and E2 are called the input part and output part respectively.
We have Elee(GCL'), E2ee(GCL'), and component E3 is a weave of SINK
and (passive) SOURCE components with disjoint alphabets. Consequently, by
Corollary 3.1.3.3, E3 can be decomposed further into SINK and SOURCE
components. Component E 4 is called the selection part, and command E 4
satisfies a special syntax: we have E4ee(GSEL). Grammar GSEL is presented
in the next section. The commands El, E2, E3, and E4 are constructed from
the syntax of EO in such a way that IEil+IE2l+IE3l+IE41=e(IE0l)-

In the second step each selection part E O e e(GSEL) is decomposed into
components El, E2, and E3. The general connection pattern of this decom
position is depicted in Figure 6.2.1.

6.2. Decomposition offs into ei 109

iEO E2

FIGURE 6.2.1. Decomposition of E0ef,(GSEL)

Component EI is a SEQ component, E2ee(G2'), and E3ef,(GCL'). With
respect to the length of these commands we have IE 1 I= fl(:IE 01) and
IE3l=e(IEOI), but in general, however, we do not have IE2l=e(IEOI). Conse
quently, if E2 is decomposed according to methods discussed in previous sec
tions, the decomposition of components E0ee(GSEL) is in general not linear
in the length of E0. Nevertheless, we show that it is possible -though more
difficult - to obtain a linear decomposition of E0. For this purpose we decom
pose E2 further into a component MASTER ee(G2') and components
SLAVE.i ee(G2'), 0E;;i<m. The commands MASTER and SLAVE.i,
0E;;i<m, are constructed from the syntax of E0 and satisfy

IMASTERI +(+i:0E;;i<m:ISLAVE.il) = e(IEOI).

Because the complete linear decomposition of a component E0ee(GSEL) can
become rather complicated, the non-linear decomposition is to be preferred in
many cases to the linear decomposition. The decomposition into MASTER
and SLAVE components is discussed in Section 6.2.5 and may be skipped at
first reading.

In the third and final step each SEQ component is decomposed in a syntax
directed way into the basis B. We demonstrate that a k-SEQ component,
k >0, can be decomposed into e(k) basic components from B.

If the three steps are combined, we conclude, from the Substitution Theorem
and from the properties that each step satisfies, that each component
E. Oefg \ ~ can be decomposed in a syntax-directed way into a collection of
components E.i E~, 1 E;;i <n. Moreover, if in the second step the linear decom
position is applied, we have (+i: lE;;i <n: IE.il)=e(IE. 01).

In each of the following sections a decomposition step is explained. We start
with the definition of grammar GSEL, and subsequently, in Section 6.2.2, we
discuss an example of the first decomposition step.

110 A Decomposition Method II

6.2.1. DI grammar GSEL

The grammar GSEL is an attribute grammar similar to GCL'. The production
rules for its context-free grammar are defined as follows.

<dicom>::= <pccom>
<pccom>::= £

0 pref[<pfcom >]
0 <com>ll<com> (b9)

<pfcom >::= <sym >?;(<a/tout>) (c6)
0 <pfcom > I <pfcom > (c 7)

<a/tout>::= <sym>I
O <altout>l~a/tout > (dO)

The conditions for the production rules (b9), (c6), (c7), and (dO) are as fol
lows. For each of the rules we have the condition

ALFCOND(E0,El) I\ (iE0niE1)=0,

where E0IIE 1, E0;E 1, E0IE 1, and E0IE I are productions of the production
rules (b9), (c6), (c7), and (dO) respectively. Consequently, all inputs in a com
mand Eef(GSEL) differ. For the production rules (c7) and (dO) we have the
additional condition ALTCOND(E0,E 1). For example, we have

pref[a?;(b lie!)] e f(GSEL), and

pref[d?;a! I e?;(a!lb!)] 11 pref[f?;(allc!) I g?;al] e f(GSEL).

Notice that f(GSEL)~f(G4). Consequently, the attribute grammar GSEL is
also a DI grammar.

6.2.2. An example

Let the commands E. 0.0 and E. 1.0 be specified by

E. 0.0 = pref[a?;cl;a?;(c!ld!)] and

E. 1.0 =_pref[b?;(c! I el;b?;cl)].

We observe that E. O.OIIE. 1.0 e f(G3') \ f(G2'). In the following, we construct
a decomposition for component E.0.0IIE. 1.0 from the syntax of E. 0.0 and
E. 1.0.

First, the commands E. 0.0 and E. 1.0 are rewritten in a syntax-directed way
into the commands µ.tailf0.0ef(G3') and µ.tai[fi.0ef(G3') respectively, where
tailfo and tailf1 are defined by arrays of atomic commands only. We obtain for
tailfo and tai/f 1 ,

tailfo.R. 0 = pref(a?;R. I)

tailfo.R. I = pref(c!;R. 2)

6.2. Decomposition of~ into ei

and

tailf0.R. 2 = pref(a?;R. 3)

tailfo.R.3 = pref(c!;R.0 I d!;R.0)

tailf1.R. 0 = pref(b?;R. 1)

tailf1.R. 1 = pref(c!;R. 0 I e!;R. 2)

tailf1.R. 2 = pref(b?;R. 3)

tailfi.R.3 = pref(c!;R.0).

111

Second, we apply a one-hot assignment to each sequential command. For
state i of sequential command k we introduce the internal symbol q.k.i. Furth
ermore, for each sequential command E.k. 0, 0-e;;;k<2, we introduce the inter
nal symbols x' for each x eo(E.k. 0). The commands E.k.i, 0-e;;;k <2 /\ 1,e;;;; <5,
are defined as follows.

E. 0.1 = pref[q. 0.0?lla?;q.0.1! I q. 0.2?lla?;q. 0.3!],

E. 0.2 = pref[q. 0.l?llc'?;q. 0.2!llc!

lq. 0.3?llc'?;q. 0.0!llc! I q. 0.3?lld'?;q. 0.0!lld!

],

E.0.3 = £,

E. 0.4 = pref[q. 0.l?;c'! I q. 0.3?;(c'!ld'!)],

E. 1.1 = pref[q. l.0?llb?;q. 1.1! I q. l.2?llb?;q. 1.3!],

E. 1.2 = pref[q. l.l?llc'?;q. l.0!llc! I q. l.l?lle'?;q. l.2!lle!

lq. 1.37ll c'?;q. 1.0! lie!

] '
E.1.3=£,and

E. 1.4 = pref[q. l.l?;(c'!le'!) I q. 1.3?;c'!].

Components E. 0.1 and E. 1.1 are the input parts of components E. 0.0 and
E. 1.0 respectively. Components E. 0.2 and E. 1.2 are the output parts of com
ponents E. 0.0 and E. 1.0 respectively. E. 0.3 and E. 1.3 represent the weaves of
the SOURCE and SINK components (of which there are none here). Com
ponents E. 0.4 and E. 1.4 are the selection parts of E. 0.0 and E. 1.0 respec
tively. The input parts determine from a current local state and an input the
next local state. The output parts determine from the current local state and
an internal symbol x' the next local state and the next output. (Notice that the
output parts here differ from the output parts introduced in the decomposition
from ~ to e,_ .) The selection part selects for a local state a next internal sym
bol x'.

By definition of decomposition, we have

112

E. 0.0 ➔ E. 0.1, E. 0.2, E. 0.3, E. 0.4 and

E. 1.0 ➔ E. 1.1, E. 1.2, E. 1.3, E. 1.4.

A Decomposition Method II

In order to apply the Separation Theorem tv the command E. 0.0IIE. 1.0 , we
verify conditions (3.7) and (3.8). We observe that the outputs of the decompo
sitions are column-wise disjoint, but the internal symbols of the decomposi
tions, however, are not row-wise disjoint because of the symbols x'. Conse
quently, we can only conclude, by Theorem 3.1.3.1, that the connection of
components E0, El, E2, E3 and E4, where

E0 = E. O.0IIE. 1.0 ,

E I = E. 0. I IIE. 1.1 ,

E 2 = E. 0.2IIE. 1.2 ,

E3 = E. 0.3IIE. 1.3 ,and

E 4 = E. 0.4IIE. 1.4,

is closed and free of interference. We still have to show that tWtaE0=tE0,
where W=E0IIE IIIE2IIE3IIE4. By definition of weaving, we derive
tWtaE0(;;tE0. Furthermore, for the above kind of decomposition we can
also show that any trace tetE0 can be expanded with internal symbols into a
trace in t W. For example, the trace a b c b a d can be expanded into

q. 0.0 a q. 0.1 q. 1.0 b q. 1.1 c' q. 0.2 q. 1.0 c b q. 1.1 a q. 0.3 d' q. 0.0 d E t W.

In general, the expansion consists of inserting the symbols for the local states
and the internal symbols x' at the appropriate places. Consequently, we derive

E0 ➔ EI, E2, E3, E4.

Subsequently, from the definition of these commands, we observe
Eiee(GCL'), E2ee(GCL'), and E4ee(GSEL). (Notice that in E4 all inputs
differ.) The commands are constructed from the syntax of E. 0.0 and E. 1.0,
and

jEil+IE2l+IE3l+IE41 = (9(IE0I)-

6.2.3. The general decomposition

The general decomposition of a component E 0 E fg \ e2 into components
El E e(GCL'), E2 E e(GCL'), a weave E3 of SINK and SOURCE com
ponents, and E 4 E e(GSEL) is performed in two steps as follows.

Let the command EOE e(G 3') \ e(G 2') be expressed as a weave of sequen
tial commands E.k. Oee(G3'), 0,;;;;,.k<N. First, we rewrite each sequential
command E.k. 0 into a command µ,.tai[{k.0ee(G3'), 0~k<N, where tai/fk is
defined by an array of atomic commands only. Let for each k, 0,;;;;,.k<N, array

6.2. Decomposition of e,, into ei 113

e.k(i,j: O,;;;;;,.i,j <n(k)) denote the array of atomic commands for tailfi. Each
sequential command E.k. 0 can be rewritten in a syntax-directed way into a
command µ..tai/fi.0ee(G3') such that

(Nk,i,j:O,;;;;;,.k<N I\ O,;;;;;,.i,j<n(k): e.k.i.j=/=-0) = e(IE0I). (6.1)

Second, we define the input part E.k. 1, the output part E.k. 2, the weave
E.k. 3 of SOURCE and SINK components, and the selection part E.k. 4 by
means of array e.k(i,j: O,;;;;;,.i,j<n(k)) for each k, O,;;;;;,.k<N. The commands
E.k. 1, O,;;;;;,.k<N, are defined analogously to Section 6.1.2. The commands
E.k. 2, O,;;;;;,.k<N, are also defined analogously to .Section 6.1.2, apart from the
definition of PO.k, which is defined as follows. Let array e'.k(i,j: O,;;;;;,.i,j<n)
denote array e.k(i,j: O,;;;;;,.i,j <n) in which each atomic command x I and x? is
replaced by x', for O,;;;;;,.k<N. If array e.k contains outputs for O,;;;;;,.k<N, then

Pok - (I.·. 1c.·.. · k.·?11 1 k.· ·? · k ·111 1c.· ·) . - 1,J. e. l.J 1s an output. q. 1 . e . '·] . , q. .J . e. '·1 ,

otherwise PO.k=f.. Notice that, since µ.tai/fi.0ee(G3'), PO.k satisfies the
LL-I conditions.

The selection part E.k. 4 is defined as follows for O,;;;;;,.k<N. If array e.k con
tains outputs,

E.k. 4 = pref[(li: e.k.i contains an output

k . ? (li k . . . t t I k . . ') : q . . , .; : e. ·'·1 is an ou pu: e . . ,.;.

)],

otherwise E.k. 4=£. Since µ.tailfi.Oee(G3'), it follows that each E.k. 4,
O,;;;;;,.k <N, satisfies the LL-I conditions.

Finally, we determine, with these definitions of E.k. 1, E.k. 2, and E.k. 4,
which internal symbols are a dangling input or output. For each such symbol
we introduce a passive SOURCE or a SINK component respectively, and the
weave of these components for each k, O,;;;;;,.k<N, is denoted by E.k. 3.

Subsequently, by these definitions and the definition of decomposition, we
conclude for all k, O,;;;;;,.k<N,

E.k. 0 ~ E.k. 1, E.k. 2, E.k. 3, E.k. 4 .

For these decompositions we check conditions (3. 7) and (3.8) of the Separation
Theorem. We observe that the outputs of these components are column-wise
disjoint. In general, the internal symbols of these decompositions, however, do
not have to be row-wise disjoint. By Theorem 3.1.3.1 we can, therefore, only
conclude that the connection of components EO, E 1, E2, E3, and E4 is
closed and free of intederence, where

EO = (llk:0,;;;;;,.k<N:E.k.0),

El= (llk:O,;;;;;,.k<N:E.k. l),

E2 = (Ilk: O,;;;;;,.k<N: E.k. 2),

E3 = (llk:O,;;;;;,.k<N:E.k. 3), and

114 A Decomposition Method II

E4 = (llk:0~k<N:E.k.4).

We prove that tWtaE0=tE0 holds as well, where W=E0IIEIIIE2IIE3IIE4.
By definition of weaving, we have tWtaE0c;tE0. Furthermore, from the
definitions of E.k.i, 0~k <N I\ 1 ~i <5, we derive that any trace in tE 0 can
be expanded into a trace in t W by inserting the symbols for the local states
and internal symbols x' at the appropriate places. Consequently, we have
tWtaE0=tE0, and we infer by definition of decomposition

E0 ➔ EI, E2, E3, E4.

Moreover, we observe E I Ee(GCL'), E 2 Ee(GCL'), E 3 is a weave of
SOURCE and SINK components with disjoint alphabets, E4Ee(GSEL), and
by (6.1)

IEll+IE2l+IE3j+jE41 = e(jE0I).

6.2.4. Decomposition of e(GSEL)

Components expressed by commands in e(GSEL) have to perform some kind
of a selection. For example, the component E =pref[a ?;(b !le!)] has to select
after receipt of input a an output from the set { b,c }, i.e. from the outputs in
Suc(a,E). The component E, where

E = pref[d?;a ! I e?;(a !jb !)] II pref[f ?;(a !le!) I g?;a !],

has to select after receipt of input/ an output from the set { c }, i.e. from the
outputs in Suc(f,E). (Notice that a fl.Suc(f,E).) After receipt of inputs/ and
e, however, this component has to select an output from the set { a,b,c }, i.e.
from the outputs in Suc(fe,E).

In the decomposition of components expressed in e(GSEL) the selections of
outputs are realized by a connection of a SEQ component and components
expressed in~- Which output is selected is determined by the order in which
requests are sequenced by the SEQ component. It is because of this sequencing
of requests that the selection of a next output can be computed in a deter
ministic way, i.e. by ~mponents expressed in~-

Let E0Ee(GSEL). We show how to construct a decomposition for com
ponent E 0. The construction of this decomposition can briefly be described as
follows. First, we introduce so-called auxiliary symbols and construct the com
mand E' from E0. Subsequently, we construct the commands EI, E2, and
E3 from the command E'. Component EI is a SEQ component with
jE 1 I= e(jE 01), E 2 is a sequential command from e(G 2'), and E 3 Ee(GCL')
with IE31 = e(IE0I). In the following, we first give the definition of the com
mands E', EI, E2, and E3 and then present an example. The connection pat
tern between these components is given in Figure 6.2.1. Finally, we prove
E0➔E I,E2,E3 and devote a few remarks to this decomposition.

6.2. Decomposition of~ into ~ 115

The command E' is defined by

E' = EO II (llx:xeoEO:pref[hx?;x!]).

For example, for EO=pref[a?;(b!lc!)] we have

E' = EO II pref[hb?;b !] II pref[hc?;c!].

The symbols hx, for xeoEO, are called auxiliary symbols. (We assume that
hx ~aEO for x eoEO.) Notice that IE'I =8(]£O1)-

From command E' the commands E 1, £2, and £3 are constructed. E 1 is a
k-SEQ component, where k equals the number of inputs of E'. E 1 is defined
by

El = (llx:xeiE': pref[x?;x"!])

11 pref[n?; (Ix: x eiE': x"!)].

The command E 3 is defined by

£3 = (llx: xeoE': pref(hx !;[x"?; hx!llx!])

II pref(n!; [(Ix: x eoE': x"?;n!) I np?;n !]).

Command £2 is defined by E2=µ.tailf.O, where tailf is defined below. For
the definition of tailf we use the command E" which is the command E' in
which every symbol y is replaced by y". The sequential behavior of com
ponent £2 is an alternation of inputs of E" and outputs from {np}UoE",
starting with an input. The output is determined by the inputs as follows. Let
t be the current trace and let x" be the next input. If Sue (tx"t aE" ,E") con
tains an output, then the first one is produced. (For the time being we assume
that Sue(tx"taE",E") is represented as a list of symbols.) If Sue (tx"taE",E")
does not contain an output, then output np is produced. In order to formalize
this specification we introduce some notation. Let q.i, ooe;;;;; <n 1, denote the
states of E". By t.i we denote a trace from state q.i, Ooe;;;;; <n 1. Let

V = {i I Ooe;;;;i<nl /\ Sue(t.i,E")noE"=0},

i.e. the set Vis the set of all (indexes of the) states of E" in which no output
can be produced. The initial state is denoted by q. 0, and, since E" starts with
inputs, we have Oe V. For all i e V, tailf.R.i is defined by

where

tailf.R.i = pref((lx": DO(i,x''): x"? ;p (i,x'')!; R. 80(i,x''))

l(lx": D l(i,x"): x"?; np ! ; R.8l(i,x"))

)

= pref(R.i)

DO(i,x") = Sue (t.i x",E")noE"=t=0,

D l(i,x'') = t.i x" etE" /\ -J) O(i,x"),

if Sue (t.i, E") =t= 0

otherwise,

116

8I(i,x") = j, where t.i x" Eq.j,

80(i,x") = j, where t.i x"p(i,x")Eq.j, and

p(i,x") = first output in Sue (t.i x",E").

A Decomposition Method II

We assume that Sue (r,E") and Sue (s,E"), for r and s traces of the same state
of E", represent the same list of symbols. Furthermore, we stipulate that if one
of the domains DO or D I is empty, the corresponding quantified union is
omitted. (Notice that only one domain can be empty.) We observe that tailf is
well-defined, since for E" E f.(GSEL) we have

i EV I\ DO(i,x") ~ 80(i,x")E V and

i EV I\ D l(i,x") ~ 8I(i,x")E V.

ExAMPLE 6.2.4.0. Let EO be defined by EO = pref[a?;(b !je !)]. We construct
the commands E',E",El,E2, and E3 according to the definitions given above.
We obtain

E' = pref[a?: (b !le!)] II pref[hb?;b !] II pref[he?;e !]

E" = pref[a"?;(b"!le"!)] II pref[hb"?;b"!] II pref[he"?;e"!]

EI = pref[a?;a"!] II pref[hb?;hb"!] II pref[he?;he"!]

II pref[n ?;(a"!jhb"!jhe"!)],

E2 = µ.tailf.O, where

tailf.R. 0 = pref(a"?;np !;R. I I hb"?;np !;R. 21 he"?;np!;R. 3)

tailf.R. I = pref(hb"?;b"!;R. 0 I he"?;e"!;R. 0)

tailf.R. 2 = pref(a"?;b"!;R. 0 I he"?;np !;R. 4)

tailf.R. 3 = pref(a"?;e"!;R. 0 I hb"?;np !;R. 4)

tailf.R. 4 = pref(a"?;b"!;R. 3), and

E3 = pref(hb!; [b"?; b !llhb!]) II pref(he !; [e"?; e!llhc!])

11 pref(n !; [b"?;n ! I e"?;n ! I np ?;n !]).

The connection pattern between the components EI, E2, and E3 is given in
Figure 6.2.2.

6.2. Decomposition offs into Bi 117

D

a? a"

El hb"
he"

n

E2

he

hb

np
b"

e"

__ _,b!

--► c!

FIGURE 6.2.2. Decomposition of E 0 into E I, E 2, and E 3.

From the definition of E I, E 2, and E 3 we derive E 2 Ee(G2'), E 3 Ee(GCL'),
IE 1 I= e(jE 0I), and E 3 = e(IE 01). For E 2 we have E 2 = e(n 2), where n 2 equals
the product of the numbers of states of the sequential commands in E". Con
sequently, in general we do not have E2 = e(IE"l)-

We prove E0-E I,E2,E3. First, we demonstrate that
t(E0IIEIIIE2IIE3)taE0=tE0. We show that any trace tEtE0 can be expan
ded with internal symbols into a trace of t(E0IIE lllE2IIE3). Since, by
definition of weaving, we also have t(E0IIElllE2IIE3)taE0CtE0, we then
conclude t(E0IIE lllE2IIE3)taE0=tE0. Define the expansion f(t) for tEtE0
by

j(t) = £

f(tx) = j(t) x n x" np

f(tx) = f(t) hx n hx" x" x

if X EiE0

if XEOE0.

We observe thatf(t) is an expansion oft, for any tEtE0. By definition of El
and E3 we observef(t)taElEtEl and j(t)taE3EtE3 respectively. Further
more, we have /(t)taE"EtE", and for any prefix r of f(t) we infer by
definition of E" (and E'),

if rtaE" ends with hx", xEoE0, then Suc(rtaE",E")={x"}
if rtaE" does not end with hx", x EoE0, then Sue (rtaE",E")= 0.

From this we conclude, by definition of E2, that f(t)taE2EtE2. Accordingly,
by definition of weaving, f(t) Et(E 0IIE l llE 2IIE 3).

Second, we observe that the connection E 0, E 1, E 2, and E 3 is closed and
free of output interference. Since, by the introduction of the SEQ component,
the internal computation performed by E2 is purely sequential, it follows that
the connection is also free of computation interference, and we derive
E0-El,E2,E3.

We conclude with a few remarks on the decomposition described in this sec
tion. First, we observe that the selection of an output is based on the order in
which the inputs and auxiliary symbols are sequenced by the SEQ component.
Component E 2 computes in a deterministic way the next output from the

118 A Decomposition Method II

order in which it receives the inputs from the SEQ component. Second, we
remark that the internal computation is performed in a purely sequential
fashion. We have chosen this approach for reasons of simplicity. Under cer
tain conditions techniques may be applied that yield decompositions with a
higher degree of parallelism. For example, it may well be that E0 is expressed
as a weave E5IIE6, for which oE5noE6= 0. By Corollary 3.1.3.3, E5IIE6
can be decomposed into E 5 and E 6. Both components E 5 and E 6 can then
perform their computations in parallel. More optimization techniques are given
in Chapter 7.

6.2.5. A linear decomposition of e(GSEL)

(This section may be skipped at first reading.) In the previous section we gave
for any component E0Ee(GSEL) a decomposition E0-E 1,E2,E3. The
decomposition was not a linear decomposition, since in general E 2 = e(IE 01)
does not hold. In this section we define components MASTER and SLA VE.i,
0o;;;;;i <m, such that

E2- MASTER, (i:0o;;;;;i<m:SLAVE.i), where

MASTERE e(G2') /\ SLAVE.iE e(G2'), for 0o;;;;;i<m, and

!MASTER!+ (+i:0o;;;;;i<m: !SLAVE.ii)= e(IE0I).

By the Substitution Theorem and the above decompositions, we can then con
clude that there exists a linear decomposition of any component E0Ee(GSEL)
into components expressed in~ and SEQ components. The commands MAS
TER and SLA VE.i, 0o;;;;;i <m, are constructed from the command E", which in
its tum is constructed from E0 (see previous section).

Component E2 determines for a current trace tEtE2 and next input xEiE2
whether Sue (txtaE",E") contains an output or not. If it contains an output,
the first one is produced, otherwise np is produced. We construct a decomposi
tion of E 2 in which the successor set of outputs with respect to E" is recorded
by a number of SLAVE components. First, we explain the idea behind the
decomposition by means of an example. Consider the command

El" = pref[d"?;a"! I e"?;(a"!lb"!)]

II pref[f'?;(a"!jc"!) I g"?;a"!]

11 pref[ha"?;a"!]

II pref[hb"?;b"!]

II pref[hc"?;c"!].

From this command we construct Table 6.2.0.

6.2. Decomposition of f:..i into ~ 119

a" b" c"

0 00
1 0 0
2 0
3 0
4 0

TABLE 6.2.0.

In general, for a command E" the corresponding table is constructed as fol
lows. Let E" be expressed as a weave (Ilk: 0::s;;;;k<N: E.k) of sequential com
mands E.kEf(GSEL). For each yEoE" and k, 0::s;;;;k<N, we place a cell at
entry (k,y) of the table iffy Eo{E.k). Each cell can be in one of two states: it is
either black or white. Initially all cells are white. The state of the cells is in
accordance with the following rules. Let t EtE2 be the current trace. For each
yEo(E.k) and k, 0::s;;;;k<N, we have

P: y E Suc(tt a(E.k), E.k) = cell (k,y) is black

For example, if E" = E l" and t = hb" np ha" np f' np d", then the cells (0, a"),
(l,a''), (1,c"), (2,a"), and (3,b") are black. If P holds, then the successor set of
outputs of E" is determined by

yE Suc(ttaE",E") = all cells in columny are black,

for allyEoE". For example, if E"=El" and t=hb"npha"npf'npd", then
all cells in column a" are black. Consequently, a" E Sue (tt aE I", El").

The computation of component E 2 can be expressed as a sequential algo
rithm that performs operations on a table of cells as defined above. The algo
rithm has P as an invariant. First, we present the algorithm and then we
encode it in a communication protocol between a MASTER component and a
number of SLAVE components. The algorithm is given below. 'Set cell (k,y)'
means 'make cell (k,y) black'; resetting a cell means making the cell white.

120

where

r(x) = k
firstk(tx)
nextk(tx,y)

A Decomposition Method II

t:=f.; {P}
do true - x?; k: =r(x); y: = firstk(tx); sue:= false

;do -,sue v y=/=nil

od,

- set cell (k,y)
; test if column y is black
; ifcolumny is not black -y:=nextk(tx,y)

□ column y is black - reset cells in column
and adjacent cells

fi
od

;if sue -y!; t:=t xy
□ .sue - np!;t:=txnp
fi{P}

; sue: =true

if XEi(E.k), O~k<N.
is the first symbol in Sue(txta(E.k), E.k).
is the next symbol in Sue(txta(E.k), E.k) after y, if y is not the
last symbol. Otherwise, it is nil.

Because E" Ee(GSEL), all inputs are different in E". Consequently, for each
xEiE" there is exactly one k such that r(x)=k, and r(x) can be determined
directly from the syntax of E". Furthermore, we infer for O~k<N,

txEtE" I\ xEi(E.k)

~{E"Ef:.,(GSEL), calc.}

Sue(txta(E.k), E.k) = Suc(x,E.k).

The set Suc(x,E.k) can be determined directly from the syntax of E" as well.
For example, for E"=El" we have r(d")=O, r(e")=O, Sue(d",E.O)={a"},
and Suc(e",E. 0)= { a",b"}.

We make one remark with respect to the resetting of cells. If all cells in
column y, say, are black, then a number of cells must be reset such that P can
be concluded after output y is produced. The cells that must be reset are not
only the cells in column y but also those cells in each row that has a non
empty intersection with column y. For example, after trace
t = hb" np ha" np f' np d" all cells in column a" are black. Before output a" is
produced the cells in column a" are reset, but also cell (l,e") must be reset!

The algorithm is encoded in a communication protocol between a MASTER
component and a number of SLAVE components. For each cell (k,y),
O~k <N I\ y Eo(E.k), we have a component SLA VE.k.y, which records the
state of cell (k,y). The set, test, and reset procedures of the algorithm are
encoded in the protocols for communication between the SLAVE components.
For this purpose, the SLAVE components are connected both column-wise

6.2. Decomposition of ei into ~ 121

and row-wise in a ring. A test or reset procedure is initiated by one SLAVE
component which starts a signal either in the column-wise ring or in the row
wise ring. The other SLAVE components participate in the procedure by pro
pagating the signal according to a specific protocol. Each SLAVE component
is also connected to the MASTER component. The MASTER component
determines for every receipt of input x EiE 2 (=ill") which components
SLAVE.k.y, with k =r(x) andyEo(E.k), must be set and in what order. The
answer that component SLA VE.k.y returns to the MASTER , by means of
msuc.k.y or mfail.k.y, determines whether output y or output np, respectively, is
produced.

The component MASTER is defined by MASTER = µ.tailfM. 0, where

tailfM.R. 0 = pref(lx: x EiE": x?; Rfirst(x))

tailfM.R. 1 = pref(np !;R. 0)

and for all pairs (x,y) with x EiE" /\ y ESuc(x, E.r(x))

tailfM.R. (x,y) = pref(set.r(x).y !

;(msuc.r(x):Y ?;y!; R. 0

I mfai/.r(x):Y?; R.next(x,y)

)).

Here, for the definition of tailfM a collection of states have been labeled with
pairs of symbols (x,y), x EiE" /\ y E Suc(x, E.r(x)), and two states with 0 and
1. The functions first(x) and next(x,y) are defined by

- first(x) =(x,y) , if y is the first symbol in Suc(x, E.r(x))
- next(x,y) =(x,z) , if z is the next symbol in Suc(x, E.r(x)) after y

= 1, if y is the last symbol in Suc(x, E.r(x)).

Below, in Figure 6.2.3 a schematic of a SLAVE component is depicted with
the terminals with which it is connected to other SLAVE components only.
(The terminals msuc and mfai/ with which it is connected to the MASTER
component are missing.) The actual names of the terminals for component
SLAVE.k.y can be derived from the connection pattern. We will not do so
here.

122 A Decomposition Method II

suco! fai/0 ! rcolo!

SLAVE

suc1? fai/ 1? rcol1?

FIGURE 6.2.3. A SLAVE component with some of its terminals.

The SLAVE component is defined by SLAVE= p. tailfS. 0, where

tailfS.R. 0 = pref(set?;{PO}suc0 !;(fai/1 ?;{Pl }mfail!;R. I

lsuc1 ?;{P2}rrowo!;rrow1?

;rco10 !;rco11 ?;{P 3};msuc!;R. 0

)

lsuc1?;failo!;R. 0

lfail 1 ?;fai/0 !;R. 0

l"ow1 ?;"owo!;R. 0

)

tailfS.R. I = pref (suc 1 ?;suc0 !;R. I

lfail1?;failo!;R. I

lrcol 1 ?;rrowo!;"ow1 ?;rcolo !;R. 0

lrrow1 ?;"owo !;R. 0

).

The following interpretations can be attached to the symbols used above and
to PO, PI, P2, and P3.

PO initialize test procedure
P I test failed
P 2 test succeeded, initialize reset procedure
P 3 completion of reset procedure
set order of MASTER to set cell
mfail answer to MASTER that test for this colwnn failed
msuc answer to MASTER that test and reset procedure were successful
sue test procedure has been successful so far
fail test procedure failed

6.2. Decomposition of Es into ez 123

rrow reset all cells in this row
rco/ reset all rows that have a cell in this column.

Finally, we show

E2 ➔ MASTER, (k,y:O~k<N /\.yEo(E.k): SLAVE.k.y). (6.2)

First, we observe that the connection is closed and free of output interference.
Because the computation is performed sequentially, it follows that the connec
tion is free of computation interference as well. Moreover, since the connection
realizes the algorithm described above, we derive that the connection behaves
as specified by tE 2 at the boundary aE 2. Consequently, by definition of
decomposition, we conclude (6.2). Furthermore, from the definitions of these
components we observe that MASTEREe(G2'), SLAVE.k.yEe(G2') for
O~k<N /\.yEo(E.k), and

IMASTERI = e(JE"I) /\.

(Ak,y:O~k<N /\.yEo(E.k): ISLAVE.k.yJ=e(l))

~{ IE"I = e(JE 01), calc.}

IMASTERI + (+k,y:O~k<N /\.yEo(E.k): ISLAVE.k.yl) = e(JEOI).

Finally, we observe that the commands MASTER and SLA VE.k.y,
O~k<N /\.yEo(E.k), are constructed from the syntax of E", i.e. from EO.

6.2.6. Decomposition of SEQ components

Any k-SEQ component, k > I, can be decomposed into the basis B. The
decomposition is linear in k and can be described as a syntax-directed transla
tion. The following is a discussion of a decomposition of the k-SEQ com
ponent, k > I, specified by

(lli:O~i<k: pref[a.i?;b.i!])

II pref[n ?;(Ji: O~i <k: b.i!)].

As an example, we consider the decomposition of the 4-SEQ component
depicted in Figure 6.2.4. The 4-SEQ component selects one. out of at most
four pending requests for each occurrence of input n. It then produces a grant
for the selected request. In the decomposition, this function is realized in two
steps by means of 2-SEQ components. In the first step two independent selec
tions are made: one between the pending requests of inputs a.O and a. I, and
one between the pending requests of inputs a. 2 and a. 3. In the second step a
selection is made between the grants of the first step. The selection in the
second step determines the final grant and is made for each receipt of input n
only. The selections in the first steps are made initially and each time when
one of its pending requests has become the final grant.

124 A Decomposition Method II

a. O? a. l? a. 2? a. 3?

b. O! b. I! b. 2! b. 3!

FIGURE 6.2.4. Decomposition of 4-SEQ component.

REMARK. The lower two SEQ components in Figure 6.2.4 may be replaced by
CAL components of the form pref[a0?llb?;c0! I a l?llb?;c l!]. Notice that
there is always at most one pending request for the lower two SEQ com
ponents.
□

In general, the selection process performed by a k-SEQ component can be dis
tributed over a binary tree. Each node in this tree consists of 2-SEQ, 2-XOR,
and 2-FORK. components. Fork =1, the decomposition of the k-SEQ com
ponent is depicted in Figure 6.2.5. The corresponding binary tree is given in
Figure 6.2.6.

a.O?a.l? a. 2? a. 3? a. 4? a. 5? a. 6?

b.01 b. I! b. 2! b. 3! b. 41 b. 5! b. 61

FIGURE 6.2.5. Decomposition of 7-SEQ component.

A pending request becomes a final grant if it is selected once at each node on
the path from leaf to root. At the root a selection is made for each receipt of

6.3. Decomposition of E.i into E-_i 125

a.O a.I a.2 a.3 a.4 a.5 a.6

\/ '\/ '\/ ;·
-~./· -~

-----------------·
FIGURE 6.2.6. Binary tree corresponding to the distributed selection.

input n only. At any other node a selection is made initially and each time
when one of its pending request has become a final grant. The decomposition
of a k-SEQ component according to the above procedure consists of less than
2k 2-XOR, 2k 2-SEQ, and 4k 2-FORK components. Consequently, the
decomposition is linear ink. Finally, we remark that the decomposition can be
described as a syntax-directed translation.

6.3. DECOMPOSITION OF e.i INTO f_g

In the decomposition step from e.i to e3 each component EOE e(G4') \ e(G3')
is decomposed into a component E 1 E e(G 3') and a collection of WIRE com
ponents. This step is summarized in the following Expansion Theorem. Let
fo.E and Wires(E) for a command E be defined by

/ 0.E is the command E in which each atomic command !x?,
with x EcoE, is replaced by ox !;ix?.
(We assume that ix f/.aE and ox f/.aE.)

Wires(E) = (x: x EcoE: pref[ox ?;ix!]).

We say that command / 0.E is constructed from Eby expansion of each atomic
command !x? into ox!;ix?. We have

THEOREM 6.3.0. (Expansion Theorem)
lfEEe(G4'), thenE ➔ Jo.E, Wires(E)andfo.EEe(G3').

□

From the definition of / 0.E and Wires(E) it follows immediately that the
decomposition described by the Expansion Theorem is syntax-directed and
linear in the length of the command E. Notice also that, since / 0.E E e(G3'),
any projection operator in the command / 0.E may be removed.

ExAMPLE 6.3.1. Let E be defined by

E = (pref[a ?; !x ?;p !] II pref[!x ?; !y ?] II pref[!y ?;q ! ;b ?]) t.

126 A Decomposition Method II

From Example 4.9.5 we know EEf.(G4'). Consequently, by the Expansion
Theorem, we infer

E

➔{Expansion Theorem}

pref[a?;ox !;ix ?;p !] II pref[ox !;ix ?;oy !;ry ?] II pref[oy !;ry ?;q !;b ?]

, pref[ox?;ix !] , pref[oy?;ry !].

Moreover, we have/0.EEf.(G3').
□

PROOF OF 'THEOREM 6.3.0. Let WWires(E) be defined by

WWires(E) = (llx:xEcoE: pref[ox?;ix!]).

We prove E ➔ / 0.E, WWires(E). Since WWires(E) is a weave of WIRE com
ponents with disjoint alphabets, the theorem follows by application of Corol
lary 3.1.3.3 and the Substitution Theorem.

J:!fst, by definition of / 0.E and WWires(E) we observe that the connection
of E, / 0.E, and WWires(E) is closed and free of output interference. Second,
we derive that

tifo.E)taE=tE and tifo.E)taWWires(E)c;tWWires(E).

Consequently, by definition of weaving we deduce

t(.Ell/o.EII WWires(E)) = t(fo.E).

Accordingly, we have t(.Ellf0.EIIWWires(E))taE=tE, i.e. the connection
behaves as specified at the boundary aE.

Third, we prove that the connection of .E, / 0.E, and WWires(E) is free of
computation interference. Let W=Ell/0.EIIWWires(E). We have, by the
above, tW=t(/0.E). We observe
(i)

(ii)

tEtW I\ xEo(/0.E) /\ txta(/0.E)Et(/o.E)

~{tW = t(fo.E)}

txEtW. .

tEtW I\ xEoWWires(E) I\ txtaWWires(E)EtWWires(E)

~{tW = tifo.E)}

tEt(/0.E) /\ xEoWWires(E) I\ txtaWWires(E)EtWWires(E)

~{ def. of / 0.E}

6.3. Decomposition of ei into E.;

txet1J0 .E)

==?{tW = tifo.E)}

txetW.

127

Let f 0'.E be the command E in which each atomic command !x? is replaced
by !ox?;!ix?, and in which the projection operator has been deleted. We
derive from the definition of f 0'.E and the grammar G4'

tifo'E) = tifo.E) I\ i(/o'.E)=iE /\ extiJ0 '.E)=aE and

Eee(G4') ==? (/o'.E)t ee(G4').

With these properties for f 0'.E we deduce
(iii)

tetW I\ xeoE I\ txtaEetE

==?{tW = t(/0.E), calc.}

t EtfJo.E) /\ X EiE /\ txtaE EtE

==?{/0.EtaE = E, calc.}

(&::tet(/0.E) /\ xeiE I\ sxet(/0.E) I\ staE=ttaE)

==?{def.of / 0 '.E}

(&:: t et1J0 '.E) /\ x ei(/0'.E) /\ sx et(/0'.E) /\

stextifo'.E)=ttextifo'.E))

==?{E ee(G4') ==? (/0 '.E)t ee(G4'), i.e.

Disin(/0'.E) I\ en(/0'.E)= 0, See Appendix B}

txet1J0 '.E)

==?{tifo'.E) = tW}

txetW.

From (i), (ii), and (iii) follows that the connection is free of computation
interference.

Finally, we remark that the property Ee e(G 4') ==? / 0.E e e(G 3') can be
proved by means of recursion along the syntax of E using the definitions of
G4' and G3'.
□

128

Chapter 7

Special Decomposition Techniques

7 .0. INTRODUCTION

In the previous chapter we presented a decomposition method which is appli
cable to components represented in f.i. For special commands other decompo
sition techniques, which may yield decompositions with fewer basic com
ponents, may be applied as well. The purpose of this chapter is to discuss
some of these techniques and to demonstrate their application by means of
examples. The style of presentation of these techniques, except for the one
presented in the last section, is informal: no proofs are given, no theorems are
formulated, and many topics are intended as suggestions for further research.

In the last section of this chapter we show that there exists a decomposition
for any regular DI component into components expressed in es. This property
is based on a special decomposition technique for decomposing regular DI
components that are represented by deterministic commands, i.e. commands in
which projection does not occur and that satisfy the LL- I conditions irrespec
tive of the type of the symbols. We believe, however, that this result is more
of theoretical than of any practical interest.

7.1. MERGING STATES AND SPLITTING OFF ALTERNATIVES

The techniques discussed in this section are called 'merging states' and 'splitting
off alternatives'. We explain the idea behind these techniques by means of
some small examples. Both techniques yield decompositions of the form
EO ➔ EI. For this reason they can be used conveniently in combination with

7. 1. Merging states and splitting off alternatives 129

Corollary 3.1.3.2. We demonstrate this in three examples, where decomposi
tions for counter and buff er components are derived.

Consider the following decompositions.

pref{Q0}[a?;b!;{Ql}c?;d!] - pref[a?;b! I c?;d!],

pref[b!;{Ql};c?;d!;{Q2}a?]- pref(b!;[c?;d! I a?;b!]),

and

pref {QO}[aO?;bO!;{Q 1 }cO?;d! I a l?;b l!;{Q2}c l?;d!]

-pref[a0?;b0! I cO?;d! I a l?;b 1! I cl?;d!].

We say that the decompositions for these components are constructed by merg
ing the states QO and Q 1, Q 1 and Q2, and QO,Q 1, and Q2 respectively.
Notice that for each component the inputs that are received in the differently
labeled states differ. Therefore, the different states can be distinguished in the
decomposition by the difference in inputs.

By means of merging states, the number of states of a sequential command
decreases. Thus, also the number of basic components in the final decomposi
tion may decrease. The technique of merging states, however, can not be
applied in general. For example, the inputs that are received in the states to be
merged must differ. But also the resulting command must be a DI command
again. Further study is required to formulate general conditions under which
this technique may be applied.

The technique of splitting off alternatives is exemplified in the following
decompositions.

pref[a?;b ! I c?;d!] - pref[a?;b !] II pref[c?;d!],

pref(b!;[c?;d! I a?;b!] - pref(b!;[a?;b!]) II pref[c?;d!],

and

pref[a0?;b0! I cO?;d! I a l?;b 1! I cl?;d!].

- pref[a0?;b0!] II pref[a l?;b 1!] II pref[c0?;d! I cl?;d!].

These decompositions suggest a technique for decomposing special commands
with alternatives. We have called this technique splitting off alternatives. How
this technique can be formulated is also left as a suggestion for future research.

Both techniques can be useful in deriving decompositions for components.
This is illustrated in the following examples.

ExAMPLE 7.1.0. We give a derivation for a decomposition of the 3-counter
which is specified in Example 4.9.5. First, by means of merging states and

130 Special Decomposition Techniques

splitting off alternatives we derive (cf. above)

pref[a?;ox !;ix?;p !] ➔ pref[a?;ox !] II pref[ix?;p !], (0)

pref[ox!;ix?;oy!;ry?] ➔ pref(ox!;[ry?;ox!]) II pref[ix?;oy!] (1)

pref[oy!;ry?;q!;b?] ➔ pref(oy!;[b?;oy!]) II pref[ry?;q!]. (2)

With these decompositions we infer

(pref[a ?; !x ?;p !] II pref[!x ?; !,y ?] II pref[!y ?;q ! ;b ?]) t

➔ {Expansion Theorem}

pref[a?;ox !;ix?;p !] II pref[ox !;ix ?;oy !;ry?] 11 pref[oy !;ry?;q !;b?]

,pref[ox?;ix !], pref[oy?;ry!]

➔ {(O), (1), and (2), Cor. 3.1.3.2 (3X)}

pref[a?;ox !] II pref[ix?;p !]

II pref(ox !;[ry?;ox !]) II pref[ix?;oy!]

11 pref(oy !;[b?;oy !]) 11 pref[ry?;q !]

, pref[ox ?;ix !] , pref[oy ?;ry !]

➔ { rewriting}

pref[ix ?;p !]

11 pref[ox !;ry?] 11 pref[a?;ox !]

11 pref[oy !;b?] II pref[ix?;oy !]

II pref[ry?;q !]

, pref[ox ?;ix !] , pref[oy ?;ry !]

➔ {Cor. 3.1.3.3}

pref[ix?;p !]

,pref[ox !;ry?] II pref[a?;ox !]

,pref[oy !;b?] II pref[ix?;oy !]

,pref[ry !;q !]

,pref[ox ?;ix!], pref[oy ?;ry!]

Consequently, from this derivation we conclude that the 3-counter can be
decomposed into four WIRE components and two 2-CEL components. The
decomposition is depicted in Figure 7 .1.0.

7. 1. Merging states and splitting off alternatives 131

a? __ ___ q!

ox
oy

ix

p! __ .,

FIGURE 7.1.0. Decomposition of 3-counter.

Because some components have a common input, we may also say that the 3-
counter can be decomposed into two 2-FORK. and two 2-CEL components.
In general, any k-counter, k > 1, can be decomposed similarly into k -1 2-
FORK. and k -1 2-CEL components.

□

ExAMPLE 7.1.1. For the four-phase handshake expansion of countJ(a,b) given
in Example 4.9.7 we derive analogously to the previous example,

(pref[aO?;a l!;a2?;a3!] II pref[bO?;b l!;b2?;b3!]

II pref[a l!;a2?;!x?] II pref[!x?;!y?] II pref[!y?;b l!;b2?])t

➔ {Expansion Theorem}

pref[aO?;a 1 !;a2?;a 3!] II pref[bO?;b l!;b2?;b 3!]

llpref[al!;a2?;ox!;ix?] II pref[ox!;ix?;oy!;ry?]

II pref[oy !;ry?;b l!;b2?]

,pref[ox?;ix !] , pref[oy ?;ry !]

➔ {Merging states, splitting off alternatives, Cor. 3.1.3.2}

pref[a O?;a l!] II pref[a 2?;a 3!] II pref[bO?;b l!] II pref[b 2?;b 3!]

llpref[al!;ix?] II pref[a2?;ox!] II pref[ox!;ry?] II pref[ix?;oy!]

II pref[oy !;b2?] II pref[ry?;b l!]

,pref[ox ?;ix!], pref[oy ?;ry !]

➔ {Cor. 3.1.3.3}

132

pref[a0?;a l!] II pref[a l!;ix?]

,pref[b0?;b l!] II pref[zy?;b 1!]

,pref[a2?;ox!] II pref[ox!;zy?]

,pref[ix ?;oy !] II pref[oy !;b2?]

Special Decomposition Techniques

,pref[a2?;a3!], pref[b2?;b3!], pref[ox?;ix!], pref[oy?;zy!].

Consequently, this component can be decomposed into four 2-CEL com
ponents and four WIRE components. The decomposition is depicted in Figure
7.1.1.

□

aO? b2?
ix

a I! oy b3!

a3! ox b I!

a2? l}' bO?

FIGURE 7.1.1. Decomposition of four-phase handshake expansion
of count3(a,b).

ExAMPLE 7.1.2. Similar to the previous examples we can derive a decomposi
tion of the 3-place I-bit buffer which is specified in Example 4.9.6. After a
number of steps in which we apply the Expansion Theorem, merging states,
splitting off alternatives, Corollary 3.1.3.2, and Corollary 3.1.3.3 we obtain

(pref[a0?;!x0?;p! I al?;!xl?;p!]

II pref[!x0?;!y0? I !x l?;!y I?]

II pref[q?;(!y0?;b0! I !y I ?;b 1 !)]) t

➔ { applying above mentioned techniques}

pref[a O?;ox O!] II pref[a I ?;ox I!]

II pref((ox0!lox l!);[(zyO?lzy l?);(oxO!lox I!)])

,pref[ix0?;oy0!] II pref[ix l?;oy I!] II pref[q?;(oyO!loy I!)]

,pref[ix0?;p! I ix l?;p!]

,pref[zy0?;bO!], pref[zy 1 ?;b I!]

,pref[oxO?;ixO!], pref[ox l?;ix I!], pref[oyO?;zyO?], pref[oy l?;ry I!]

The component in the first two lines of this list of components can be

7. 1. Merging states and splitting off alternatives 133

decomposed into a SEQ component and a XOR component. The other com
ponents in this list are all familiar components. The complete decomposition
is depicted in Figure 7 .1.2.

a0?
ox0 ix0

b0'
oy0 ry0

a I? ox I ix I b I'
oyl iyl

p'--G q?

FIGURE 7.1.2. Decomposition of a 3-place 1-bit buffer.

In general, any n-place I-bit buffer, n > 1, can be decomposed similarly. Other
decompositions for the above buffer can be derived using properties from trace
theory. For example, the decomposition where instead of the 2-SEQ com
ponents CAL components of the form pref[a0?llb?;c0! I a l?llb?;c l!] are used
can be derived as well. Finally, we mention that a 3-place n-bit buffer, n >0,
specified by

(II . Q,S::. < f[. O? ' . O? ' I . }? ' . }? ']) l: , n: pre a.1. • ; .X.l. • ;p. a.1. . ; .X.l. . ;p.

11 (II i: O...;;i<n: pref[!x.i. 0?;!y.i. 0? I !x.i. l?;!),.i. l?])

II (II i: o...;;; <n: pref[q?;(!y.i. O?;b.i. 0! I !),.i. 1 ?;b.i. l!)]),

can be decomposed into 3-place I-bit buffers. The decomposition for n = 2 is
depicted in Figure 7.1.3, where Bf denotes the 3-place I-bit buffer.

a. 0.0? b.0.01

a. 0.1? "· 0.1 1

p' q?

a. 1.0? b. 1.0'

a. I.I? "· 1.1'

FIGURE 7.1.3. Decomposition of 3-place 2-bit buffer.

D

134 Special Decomposition Techniques

7.2. REALIZING LOGIC FUNCTIONS

In this section we show some techniques to realize logic functions of the form
c = J.a, where c and a are vectors of binary variables and f is a function
expressed with logic operations. The techniques are very similar to those
applied in switching theory. We will even show that the techniques developed
in switching theory can also be applied in the design of delay-insensitive sys
tems. The difference with switching theory lies in the encoding of the data and
in the signaling scheme that is applied. For the specification of logic functions
by DI commands we apply a two-rail two-cycle signaling scheme in this sec
tion (cf. Section 2.3.0).

In Section 2.3.0 the conjunction is specified by a DI command applying a
two-rail two-cycle signaling scheme. Negation and disjunction are specified
similarly by the DI commands

pref[a0?;c 1! I a l?;c0!] and

pref[a0?llb0?;c0! I a l?llb l?;c 1! I a0?llb l?;c 1! I a l?llb0?;c 1!].

respectively. Equivalence can also be specified in this way. In general, any
logic function can be specified by a combinational command of the above
form. (Here, we assume that more than two parallel inputs are allowed in a
combinational command.) For a function c = f.a, where a is a vector of
binary variables and c is one binary variable, we obtain a semi-sequential com
mand in which for each set of input values there is one alternative. If f is a
vector function /(i: 0o;;;;;i <n), we take as the specification for f the weave of the
semi-sequential commands for each f.i, 0o;;;;;; <n.

A component specified by a logic function can be decomposed in a natural
way into components for the basic logic operations. For example, if the func
tion f is specified by f. (a,b)=-,(-,a/\-,b), then the component specified by
this function can be decomposed into negation and conjunction components as
depicted in Figure 7.2.0.

FIGURE 7.2.0. Decomposition corresponding to -,(-,a/\-,b).

We may consider the components for conjunction, disjunction, equivalence,
and negation as basic components, but we may also decompose them by one
of the techniques discussed in the previous chapter. For example, the negation
component is easily decomposed into two WIRE components as shown in Fig
ure 7.2.1.

7.2. Realizing Logic Functions 135

aO? : : cO!

al? ·----..Jx~---- CI!

FIGURE 7.2.1. Decomposition of negation component.

Since the expression -,(-,a/\-,b) is equivalent to avb, it follows that the dis
junction component can be realized by the conjunction component when the
terminals in each input and output pair are interchanged.

As another example of a decomposition, we consider the comparator and
parity function defined by

comparator.(a,b) = (/\ i: O~i<n: a.i =b.i) and

parity.a = (= i: O~i <n: a.i),

where a(i:O~i<n) and b(i:O~i<n) are vectors of binary variables. Each of
these functions can be specified by a DI command as sketched above. Decom
positions of these components are shown in Figure 7.2.2 for n =4.

a.O b.O a. I b. I a.2 b.2a.3 b.3

a.Oa.l a.2a.3

comparator. (a, b) parity.a

FIGURE 7.2.2. Decompositions for comparator and parity.

In switching theory a circuit that realizes a logic function is called a combi
national circuit. Often such a circuit is also referred to as a combinational
logic block and abbreviated by CL. Analogously, we call a connection of DI
components that realizes the DI command corresponding to a logic function a
combinational logic block.

Logic functions which have a feedback of output values to input values for
the next application of f are used to describe a kind of finite state machine.
The values that are fed back can be seen as the state information of the finite
state machine. Logic functions with feedback of outputs values can be
specified by DI commands using tail recursion. For example, the parity func
tion c = f.a for serial inputs a this time can be specified by the command

136 Special Decomposition Techniques

µ..tailf. 0, where

tailf.R 0= pref(a0?;c0!;R. 0 I a I?;c I!;R. 1)

tailf.R l=pref(a0?;cl!;R.1 j al?;c0!;R.0).

The comparator function c = f. (a,b) with serial inputs a and b is specified by
µ.. tailf. 0, where tailf is now defined by

tailf.R 0= pref(a0?llb0?;c l!;R 0 I a I?llb l?;c l!;R. 0

I a I?llb0?;c0!;R. 1 I a0?llb l?;c0!;R. 1)

tailf.R I= pref(a0?llb0?;c0!;R. I I a I?llb l?;c0!;R. 1

I a I?llb0?;c0!;R. 1 I a0?llb l?;c0!;R. 1).

If f is a vector function f(i: 0os;;;i <n), we specify f by the weave of the DI
commands for eachf.i, 0..;;;;i<n.

Any logic function with a feedback of state information can be expressed by
a logic function without feedback of state information. For example, if f is
defined by c =f.a, then there exists a logic function g (without feedback) such
that (c,Xn+i)=g.(a,xn) where Xn, n;;;a.0, is a vector of binary variables contain
ing the state information after then-th application off The vector x 0 contains
the initial state. Based on this expression for f, the component corresponding
to f can be decomposed as depicted in Figure 7.2.3.

p

a
CL

FIGURE 7.2.3. Decomposition for f

The combinational logic block CL realizes the function g. Component Bf is a
3-place n-bit buffer as specified in Example 7.1.2, where n equals the number
of outputs of the function g. The purpose of the buffer is to avoid computation
interference in the feedback of state information to the combinational logic
block. When all input data is stored in the buffer, output p is produced. This
output is fed back to input q upon which the stored data is output. Input data
arriving after the occurrence of output p does not interfere with the retrieval of
the stored data.

In switching theory a logic function with feedback of state information is
realized by a so-called sequential circuit, i.e. a combinational circuit and a
clocked register. The configuration of Figure 7.2.3 is very similar to such a

7.3. Efficient decompositions of e(G 3') 137

circuit. Here, the function of the clocked register is performed by the buffer.
In the case of clocked systems the presence of new data, i.e. the beginning of a
new cycle, is signaled by clock pulses sent to the clocked registers. In the case
of delay-insensitive systems the beginning of each new cycle is encoded in the
data itself, e.g. by applying a two-rail two-cycle signaling scheme. From the
above observations we conclude that techniques used in switching theory for
the design of clocked systems can also be applied in the design of delay
insensitive systems.

7.3. EFFICIENT DECOMPOSITIONS OF e(G3')

The decomposition of a component EEe(G3') according to the general
methods described in the previous chapter can become rather complicated. In
many cases an ad hoc approach may yield a more efficient decomposition. We
illustrate this by means of a decomposition for the token-ring interface
specified in Section 2.3.2.

First we slightly simplify the command by applying techniques discussed in
previous sections. We derive

pref {Q0}[a l?;p l!;{Q 1 }a0?;p0!]

11 pref {Q2}[b?;(q ! Ip l!;{Q 3}aO?;q !)]

➔ {Merging states QO and Q 1, and Q2 and Q 3, Cor. 3.1.3.2}

pref[a l?;p 1! I a0?;p0!]

11 pref[b ?;(q !If' 1 !) I aO?;q !]

➔ {Splitting off alternatives, Cor. 3.1.3.2, Cor. 3.1.3.3}

pref[aO?;pO!]

,pref[al?;pl!] 11 pref[b?;(q!lf'l!) I a0?;q!].

The last component is specified by a command from e(GSEL). For the
decomposition of this component we consider the decomposition of
EO=pref[a l?;p 1!] II pref[b?;(q !If' l!)] in isolation first. Component EO is
decomposed in a similar fashion as discussed in Section 6.2.4. This time, how
ever, we do not introduce auxiliary symbols. The decomposition is given in
Figure 7.3.0.

138 Special Decomposition Techniques

a1?

b?

--•Pl!

---q!

FIGURE 7.3.0. Decomposition of EO.

Components EI, E2, and E3 are defined by

EI = pref[a I ?;a I"!] II pref[b ?;b"!] II pref[n ?;(a l "!Jb"!)]

E2 = pref[b"?;q"! I a l"?;np !;b"?;p I"!]

E 3 = pref[q"?;q !] II pref[p l"?;p I!]

11 pref(n !;[q"?;n ! Ip l"?;n ! I np?;n !]).

The selection between the outputs p I and q is determined by the order in
which the inputs a I and b are sequenced by the SEQ component E I. If com
ponent E2 first receives input b", output q is produced. If component E2 first
receives input a I", then, after input b" is received as well, output p I is pro
duced. We have EO ➔ E l,E2,E 3.

With the aid of the decomposition for E O we can construct a decomposition
for our original command pref[al?;pl!] II pref[b?;(q!Jpl!) I aO?;q!]. To that
end we have to take into account the alternative aO?;q! only for the produc
tion of output q. We observe

pref[a0?;p0!]

,pref[a I ?;p I!] II pref[b ?;(q !Jp I!) I aO?;q !]

➔ { decomposition above, calc., Cor. 3.1.3.3}

El, E2

,pref[q"?;q ! I aO?;q !]

,pref[p l"?;p I!]

,pref(n !;[q"?;n ! Ip l"?;n ! I np ?;n !])

,pref[a0?;p0!].

Each of these components is either a basic component or can be decomposed
by techniques explained in the previous chapters. A complete decomposition of
the token-ring interface is shown in Figure 7.3.1.

7.4. Efficient decompositions using TOGGLE components 139

b? al? aO?

np

q! pl! pO!

FIGURE 7.3.1. Decomposition of token-ring interface (0).

7.4. EFFICIENT DECOMPOSITIONS USING TOGGLE COMPONENTS

In the general decomposition method TOGGLE components were used in 2-
to-4 cycle converters only. For a number special DI commands, TOGGLE
components can also be used to obtain a more efficient decomposition. This
holds in particular for components expressed in f(G I'). We briefly illustrate
how TOGGLE components may optimize decompositions.

Consider the component specified by the sequential command E, where

E =pref[a?;c !;a?;d!;a ?;c !].

Suppose we had a so-called 3-TOGGLE component specified by
pref[a?;a l!;a?;a2!;a?;a3!]. Then we derive

E

➔ { def. of decomposition}

pref[a?;a l!;a ?;a 2!;a ?;a 3!]

,pref[a l?;c !;a2?;d!;a 3?;c !]

➔ { merging states}

140

pref[a?;a I!;a?;a2!;a?;a 3!]

,pref[a 1 ?;c ! I a 2?;d ! I a 3?;c !]

➔ { splitting off alternatives, Cor. 3.1.3.3}

pref[a?;a I!;a?;a2!;a?;a3!]

,pref[al?;c! I a3?;c!]

,pref[a 2?;d !].

Special Decomposition Techniques

The decomposition of component Eis depicted in Figure 7.4.0. A 3-TOGGLE
component can be decomposed into (2-)TOGGLE components and a 2-XOR
component. This decomposition is given in Figure 7.4.0 as well.

a I

a? ~D-- C !

~d!
a3

Decomposition of E.
FIGURE 7.4.0.

,__-t"-_a2!
....._.__aJ!

Decomposition of 3-TOGGLE.

In command E there are three states in which an input a is received. Input a
is also the only input that can be received in those states. By means of a 3-
TOGGLE component we are able to make a distinction between those three
states. In general, we can use n-TOGGLE components, n > I, to distinguish
states in which the same input is received. Then-TOGGLE components, n > I,
can be decomposed into 2-TOGGLE and XOR components similarly to the
decomposition of the 3-TOGGLE component.

TOGGLE components can also be used to decompose modulo-N counters,
N >0, in an efficient way. A modulo-N counter, N >0, is specified by

pref[(a ?;q 1f- 1 ;a ?;p !],

where £ 1 =E and en+I =En;E for n >0. For N=3 a decomposition is given
in Figure 7.4.1.

FIGURE 7.4.1. Decomposition of modulo 3-counter.

The modulo-3 counter will be drawn as a square box, as shown in Figure 7.4.2.

7.5. Basis transformations

a?-~ p!
~q!

FIGURE 7.4.2. A schematic for the modulo 3-counter.

141

A decomposition of the modulo-17 counter into 2-XOR, TOGGLE, and
modulo-3 counters is given in Figure 7.4.3.

FIGURE 7.4.3. Decomposition of modulo-17 counter.

The decomposition of the modulo-17 counter is based on the calculations
17=18-1 and 18=3X3X2. In general, any modulo-N counter, N>O, can be
decomposed into (l)(logN) 2-XOR and TOGGLE components. Notice that in
the above decompositions there is always at most one transition propagating
through the connection. The operation of these counters is very similar to the
operation of so-called ripple counters.

7.5. BASIS TRANSFORMATIONS

For the general decomposition method we chose as our basis the set IB0. We
may wonder whether there exist other bases as well. For example, could the
set 82 serve as a basis, where 82 is defined as BO in which the 2-SEQ com
ponent is replaced by the 2-ARB component? This could be an interesting
basis, since we may know how to realize a 2-ARB component but we do not
know yet how to realize a 2-SEQ component. We indicate that if one set can
be used as a basis, so can the other. This is demonstrated by showing that
(i) the 2-SEQ component can be decomposed into 82, and
(ii) the 2-ARB component can be decomposed into IEB0.
Consequently, by the Substitution Theorem, we conclude that we can
transform decompositions from one basis into the other and vice versa. Since
we have shown that BO can serve as a basis, it follows that IEB2 can serve as a
basis as well.

We present decompositions for (i) and (ii) by means of schematics. No
proofs are given. As specifications for the 2-SEQ and the 2-ARB component

142 Special Decomposition Techniques

we take

pref[a?;p!] II pref[b?;q!] II pref[n?;(p!jq!)]

and

pref[a l?;p l!;a0?;pO!]

II pref[b I?;q I !;bO?;q0!]

II pref(p I !;aO? I q 1 !;b0?],

respectively. A decomposition of the 2-SEQ component into the 2-ARB com
ponent and component Eis given in Figure 7.5.0.

: ::
FIGURE 7.5.0. Decomposition of 2-SEQ component into 82.

Component E in Figure 7.5.0 is a CAL component specified by
pref[p l?lln?;a0! I q l?lln?;b0!] and can be decomposed further into the basis
BO\ {2-SEQ} as shown in Section 5.6. A decomposition of the 2-ARB com
ponent into BO is given in Figure 7.5.1.

aO? pO!
a 1? pl!
b 11 q I!

bO? qO!

FIGURE 7.5.1. Decomposition of 2-ARB component into BO.

With the above transformations between the bases BO and 82 it is not
difficult to derive a decomposition of a k-ARB component, k > 1, into the
basis B2. First we decompose the k-ARB component into a k-SEQ com
ponent, a XOR component, and FORK components, similarly to the decom
position shown in Figure 7.5.1. Subsequently, the k-SEQ component is
decomposed into the basis BO as described in Section 6.2.6. Finally, each 2-
SEQ component in this decomposition is decomposed into 82 as depicted in
Figure 7.5.0. Thus, we obtain, by the Substitution Theorem, a decomposition
of the k-ARB component, k > l, into the basis 82.

7.6. Decomposition of any regular DI component 143

7.6. DECOMPOSITION OF ANY REGULAR DI COMPONENT

With the methods described in Chapters 5 and 6 any regular DI component
expressed in E.i can be decomposed into a finite basis of (DI) components.
Since there may be regular DI components that cannot be expressed in f.i, not
every regular DI component may be decomposable into a finite basis of com
ponents. In this section we indicate that for every regular DI component there
exists a decomposition into basic components. To this end, we present a
decomposition into components expressed in eg for any regular DI component
represented by a deterministic command. Here, a deterministic command is
defined as a command in which projection does not occur and that satisfies the
LL-1 conditions irrespective of the types of the symbols. Because there exists
for every regular component a representation in the form of a deterministic
command, it follows, with the method discussed in the previous chapters, that
for every regular DI component there exists a decomposition into eo.

We believe that the decomposition step discussed in this section is more of
theoretical interest than of any practical interest. It turns out that decomposi
tions started with this step can become rather complicated. Whenever a regu
lar DI component can be expressed in the language E.i, this is to be preferred
to expressing the DI component as a command not in f.i. Finding an
appropriate command in which a DI component can be expressed is a task of
the programmer.

We present for each regular DI component represented by a command EO a
decomposition into a component E 1 EC(G 3') and a collection of WIRE com
ponents. The theorem on which the decomposition is based is formulated as
follows. Let/1.E,fi.E, WW(E), and Wires(E) be defined by

fi.E is a command that has the same trace structure as E but is
expressed as a weave of deterministic sequential commands.

fi.E is the command E in which each atomic command x? and x !, for
x eaE, is replaced by ox !;ix?.

WW(E) = (llx: x EiE: pref[x?;ox !])

II (llx: x eoE: pref[ix ?;x !]).

Wires(E) = (x: x eaE: pref[ox ?;ix!]).

We have

THEOREM 7.6.0. If Eis a DI command, then

E ➔ WW(E) llfi.(fi.E), Wires(E)

and WW(E) llfi.(fi.E) E C(G3').
□

We shall not discuss the details of how to obtain command / 1.E. We know

144 Special Decomposition Techniques

that for every command E, i.e. E represents a regular component, there exists a
commandf1.E. For f 1.E we can take a command corresponding to, for exam
ple, the minimal deterministic finite state machine for E. We conjecture that
f 1 .E can be obtained in a constructive way from command E. Although the
construction may be laborious, the essence is that it can be done. Further
more, we remark that the linearity of the decomposition may be lost in con
structing the command f 1 .E. If f 1 .E and E are sequential commands, then
lfi.EI can be exponential in IEI in the worst case [49]. When weaving between
sequential commands is allowed there is as yet little known about the relation
between lfi.EI and IEI.

In general, we have E - WW(E)llf2.E, Wires(E) for any DI command E,
but we do not have fi.EEe(G3'). The reason for the construction of f 1.E is
to establish fi. (fi.E) Ee(G 3'). We demonstrate this in the following example.

ExAMPLE 7.6.1. Let command Ebe defined by

E = pref(a?llb! I a?;b!llc!).

In Example 4.1.1 we inferred that EEC4. Consequently, Eis a DI command.
Command E, however, is not a deterministic neither a sequential command.
In order to obtain a deterministic sequential command for E, we define

f 1.E = pref(b!;a? I a?;(b!;c! I c!;b!)).

Applying Theorem 7.6.0 with this definition for f 1.E we derive

E - WW(E)llfi.(fi.E), Wires(E), where

WW(E) = pref[a ?;oa !] II pref[ib?;b !] II pref[ic ?;c !],

Ji.(J1.E) = pref(ob!;ib?;oa!;ia?

loa !;ia?;(ob!;ib?;oc!;ic? I oc ! ;ic?;ob !;ib?)

), and

Wires(E) = pref[oa?;ia !], pref[ob?;ib !], pref[oc?;ic!].

Moreover, we have WW(E)llfi.(J1.E)Ee(G3'). Notice thatfi.E~e(G3').
As a comparison with the decomposition step from f.i to e3, we also decom

pose component E with the Expansion Theorem described in the previous
chapter. To this end we rewrite E into a command E 1 Ee(G4'). Let EI be
defined by

EI = (pref(a?; !x ?;c !) II pref((!y ?j!x?);b !)H.

We observe that E and E I have the same trace structure and E I Ee(G 4'). By
the Expansion Theorem we derive

EI

-{Expansion Theorem}

pref(a?;ox !;ix?;c!) II pref((oy !;ry? I ox!;ix?);b !)

7.6. Decomposition of any regular DI component 145

, pref[ox ?;ix!], pref[oy?;ry !].

□

PROOF OF THEOREM 7.6.0. Let Ebe a DI command. Let, furthermore, com
mand f 1 .E be denoted by E I and

WWires(EI) = (llx:xEaEl: pref[ox?;ix!]).

We prove El - WW(EI)llfi.EI, WWires(EI). Since EI=E,
WW(E 1)= WW(E), and WWires(E I)= WWires(E), we consequently con
clude E - WW(E)llfi.(fi.E), WWires(E). Because WWires(E) is a weave of
WIRE components with disjoint alphabets, the theorem follows by application
of Corollary 3.1.3.3 and the Substitution Theorem.

First, we observe that the connection EI, WW(E l)llfi.E 1, WWires(E 1) is
closed and free of output interference. Second, we prove

t(El II WW(El)llfi.El II WWires(EI))taEI = tEI. (0)

To this end, we define

/J.E 1 as the command EI in which, for x EaE 1, each atomic command
x? is replaced by x?;ox!;ix? and each atomic command x! is
replaced by ox!;ix?;x!, for xEaEl.

We derive

t((J.El)taEl = tEl

t((J.E l)ta((i.E 1) = t((i.E 1)

t(/3.E l)taWW(E I)CtWW(E 1)

t(/3.E I)taWWires(E I)CtWWires(E 1).

Consequently, we deduce

tEI

={(I)}

t(/3.E l)taE 1

C { def. of weaving, (1), (2), (3), (4), calc.}

t(E I II WW(E) llfi.E I II WWires(E l))taE 1

C { def. of weaving}

tEI.

From which we conclude that (0) holds.

(1)

(2)

(3)

(4)

Third, we prove that the connection EI, WW(E l)llfi.E 1, WWires(E) is
free of computation interference. For this purpose we define

146 Special Decomposition Techniques

/ 4.E I as the command EI in which, for every x eaE I, each atomic
command x? is replaced by ix? and each atomic command x ! is
replaced by ox !.

and

WO = EI II WW(E 1) llfi.E I II WWires(E I)

WI= EI II WW(EI)II WWires(EI)ll/4.EI

R.O = EI

R. I = WW(E I) llfi.E I

R. 2 = WWires(E 1).

In the proof we use the following properties.

The connection EI, WW(E I), WWires(E I),f4.E I

is free of computation interference.

t Et(/2.E I)/\ b eoWWires(E I)/\

tbtaWWires(E I)etWWires(E I)

~ tbet(/2.EI).

tetWO ~ tetWI.

(5)

(6)

(7)

(8)

Property (5) follows from the property that E is a DI command and from
Theorem 3.2.1.3 with an appropriate renaming. Properties (6) and (7) follow
from the definitions of fi.E I, / 4.E I, and WWires(E 1). Property (8) follows
from (6) and the definition of weaving. We infer

tetWO I\ beo(R. I)/\ tbta(_R. I)et(R. I)

~{(8), def. of WW(El), Ji.EI, and/4.EI}

tetWl I\ (beoWW(EI)vbeo({4.EI)) /\ tbta(R. I)Et(R. l)

~{ def. of R. I, weaving, and (6), calc.}

(tetWl I\ beoWW(E I)/\ tbt WW(E I)etWW(E I))

V(tetWI /\ bEo(/4.EI) /\ tbta({4.EI)et({4.EI))

~{(5)}

tbetWI.

7.6. Decomposition of any regular DI component

Similarly, we prove for i =0 and i =2 that

tetWO I\ beo(Ri) I\ tbta(Ri)et(_R.i) => tbetWl.

Furthermore, we infer for all i, o..;;;; <3,

t et WO I\ b eo(Ri) I\ tbt(Ri)et(_Ri)

=>{def.of weaving, for i =2 use (7),

for i =0 use b eo(R 0) => b (la(fi.E 1)}

tbta(/2.E l)et(fi.E 1).

With the last two derivations we deduce for all i, o..;;;; <3,

tEtWO I\ beo(R.i) I\ tbta(Ri)et(_Ri)

=>{last two derivations}

tb EtWl /\ tbta(fi.E l)et(f2.E 1)

=>{ def. of weaving}

tbetWO,

i.e. the connection R. 0, R. 1, R 2 is free of computation interference.

147

Notice that until now we have not used the property that E 1, i.e. f 1.E, is
written as a weave of deterministic sequential commands. Consequently, we
conclude that E - WW(E)llfi.E, WWires(E) holds for any DI command E.

Since E 1 is a weave of deterministic sequential commands, we infer, by
definition of grammar G3', that fi.Elee(G3'). Hence, we also have
WW(El)llfi.Ele e(G3').
D

148

Chapter 8

Concluding Remarks

In this monograph we have presented a method for designing delay-insensitive
circuits. We have described a method to decompose components that could be
expressed in the language ei into a finite basis of components. The language
ei is defined by means of DI grammars, and each command in the language ei
represents a DI component, i.e. it is intended to specify a circuit that commun
icates in a delay-insensitive way with its environment. The decomposition can
be described as a syntax-directed translation and is, therefore, a constructive
method. Thus, we have shown that designing a circuit can be reduced to
designing a program.

The program notation for commands has proved to be a convenient medium
for expressing parallel computations in a succinct way. In particular, the
operations weaving, projection, and tail recursion have been rewarding primi
tives. Weaving turned out to be a fruitful operation both for the design of
parallel programs and for the decomposition of components: in [36, 20] it has
been shown that the so-called conjunction-weave rule can be used conveniently
for the design of parallel programs; in this monograph we have demonstrated
that for the decomposition of components, specified by a weave of commands,
the Separation Theorem can be used profitably. By means of projection we
can introduce internal symbols, a programming primitive akin to declaring
local variables. Tail recursion has been used both for the concise expression of
finite state machines and for the description of the decomposition method.

The formalizations of decomposition and delay-insensitivity turned out to be
useful as well. The definition of decomposition gave rise to the formulation of
other definitions and theorems such as the definitions of DI decomposition and
DI component, the Substitution Theorem, the Separation Theorem, the Expan
sion Theorem, and Theorem 3.2.1.1 on the equivalence of decomposition and
DI decomposition. As outlined in Section 7.1, there are more theorems that

8. Concluding Remarks 149

may be formulated for decomposition, and in the examples of Chapter 7 we
indicated that these theorems - together with the material discussed in
Chapter 3, 5, and 6- might provide a calculus for finding decompositions.

The DI grammars of Chapter 4 have been valuable both for the recognition
of DI commands and for the description of the decomposition method: the
recognition of DI commands boils down to checking some simple syntactic
rules, and the hierarchy in the decomposition method is defined by means of
the hierarchy of the grammars. Moreover, the DI grammars can be used for
the derivation of DI commands from non-DI commands as well; in some of
the examples in Chapter 4 we derived a delay-insensitive communication pro
tocol from a communication protocol that was not delay-insensitive by means
of a DI grammar. Furthermore, since these grammars include the operations
weaving, projection, and tail recursion, they offer great freedom in program
ming.

The proofs for Chapter 4, however, are rather long and tedious. Apparently,
the difficulty of designing delay-insensitive circuits is concentrated in the recog
nition of DI components. Knowing whether a component is a DI component
is, however, an important property, since we can resort to decomposition
instead of DI decomposition if we know that all components involved are DI
components. Because of all the theorems that apply to decomposition, this
reduction is indeed a simplification.

The hierarchical decomposition method is straightforward, apart from the
decomposition of CAL components into the basis IEBO and the decomposition
of components expressed in e(GSEL) into SEQ components and components
expressible in ~- Moreover, the results of many decompositions can be de
picted in a regular schematic forming a connection of a CT, XOR, and CEL
plane. Consequently, since these schematics also represent delay-insensitive
connections of basic elements, it should not be too difficult to design layouts
for these circuits.

We gave two decompositions for CAL components: one decomposition into
the basis BO and one decomposition into the basis 11B 1. The decomposition we
described into the basis BO is conjectured to be correct. The decomposition of
CAL components into the basis B 1 does not have to be a DI decomposition.
In order to ensure proper operation in a realization of this decomposition
delay assumptions must be met. The delay assumptions are simple timing con
straints and are met by isochronic forks. Notice that this is the only place in
which we needed to introduce delay assumptions for proper operation. The
decomposition of CAL components is carried out in one of the last steps only
of the hierarchical decomposition method.

The complexity of the decomposition method has been kept under control as
well: although the simple one-hot assignment has been applied, the decomposi
tion can be linear in the length of a command, i.e. the total number of basic
elements in the resulting decomposition is proportional to the length of the
command. We believe that there exist many more techniques that may pro
vide even more efficient decompositions; in Chapter 7 a few of them have been
suggested. In particular, the decomposition of components expressed in

150 Concluding Remarks

e(GSEL), which may yield a rather large number of components, can be
optimized if special decomposition techniques are applied.

In Chapter 5 we have introduced, more or less arbitrarily, the basis B 1. We
did not motivate our choice there, but postponed the argument of that choice
until now. The choice for the basis 81 has been based on the following cri
teria: first, the basic elements must be realizable in an area small enough such
that the necessary internal timing constraints can easily be identified and met,
and, second, the specification of each basic element must be in good harmony
with the decomposition method. Most basic elements arose naturally from the
decomposition strategy applied, except for the 2-SEQ component. The SEQ
component is a kind of arbitration component, just as the ARB component is.
Initially, we chose the 2-ARB component as the primitive arbitration com
ponent, since various realizations for this component exist. We have found,
however, that the 2-SEQ component fitted better in the formal decomposition
method. For example, the decomposition of the k-ARB component into 2-
ARB components is more complicated than the decomposition of the k-SEQ
component into 2-SEQ components. This was one of the reasons we chose the
2-SEQ component as a basic component. Once one finite basis is found, we
can change from one basis to the other, by means of simple basis transforma
tions as shown in Section 7.5.

A topic we have not discussed yet is the possibility of deadlock and livelock
in decompositions. How deadlock and livelock can occur is illustrated by the
following example. Consider the components E O t and E l t , where

E0 = pref(a?;!x?;b!) II pref(!x?I ~?) and

El =pref(a?;!x?;b!) 11 pref[!x?I~?].

For E0t we observe that

Suc(ay, E0) = 0 /\ Suc(ay t extE0, E0t) = {b }.

In other words, after the receipt of input a, component E0t can produce out
put b. But, if in the decomposition of component E O t the internal action y is
selected, output b will never be produced. We say that there is danger of
deadlock. Component E 1 t has a similar behavior. For this component we
observe that for all n >0, ayn xb EtE I. Accordingly, an unbounded number
of internal y-actions can occur before an output b is produced. This
phenomenon is called livelock.

Because the decomposition is syntax-directed, deadlock and livelock can also
occur in the decompositions of E O t and E 1 t . Absence of deadlock and
livelock are required in a decomposition of a component. The translation
method of Chapters 5 and 6 is defined such that absence of deadlock and
livelock in a decomposition of component Et only depends on the trace struc
tures of E and Et (and not on the syntax of E). In [20] the phenomena of
deadlock and livelock are defined within the formalism of trace theory. There,
the notion of transparence is introduced by means of which conditions can be
formulated such that absence of deadlock and livelock is guaranteed. We

8. Concluding Remarks 151

believe that this property has also nice prospects for formulating conditions for
the absence of livelock and deadlock in decompositions of components.

The general decomposition method we have described is restricted to com
ponents expressible in e_.. This means that the programmer must try to
represent a component in the language e_.. In Sections 2.3 and 4.9 we have
illustrated this programming issue by means of a number of characteristic
examples. In Section 2.3.3 we showed how a command not in e_. may be
rewritten into a command that does satisfy the restrictions imposed by the
language e_.. Although for many components a program can be found in the
language e_., for some components this may well be impossible.

We discuss some of the restrictions of the language e_. and for what reasons
they have been introduced. Consider the following commands which are not
contained in e_.:

pref[aO?lla I? ;b !;aO?lla I? ;c !] and

pref(a?;[b !;c?;d!;a?; (b !;c?)ll(d!;c?)]).

The reasons for the absence of these commands in the language e_. is that in
grammar G 4' a command is not allowed to have two or more parallel inputs
or outputs, or that a command of type <pfcom > contains a weave. Although
it is not too difficult to find decompositions for the components expressed by
the above commands, we believe that in general it can become rather compli
cated to find decompositions for components expressed by commands that do
not exhibit the above mentioned restrictions.

The restrictions imposed by the language e_. evolved from the following two
requirements. First, we wanted to define a grammar for which any command
generated by this grammar was a DI command. In the development of this
grammar we have been led by the theorems that could be formulated on the
DI property (cf. Appendix B). Allowing weaving in commands of type
<pfcom > renders a condition, viz.

pref(EOIIE I) = prefEO II prefE I

for commands E O and E 1 of type <pfcom >, which was too difficult to check
mechanically. Second, every component represented by a command in e..
should be decomposable in a constructive and simple way. Allowing two or
more parallel inputs or outputs, or weaving in commands of type <pf com >,
yielded too big problems for the description of a simple decomposition method
that was generally applicable.

Because of the direct relation between the syntax of a command and its
decomposition, complexity measures with respect to time and area of decom
positions can be studied by examining just the syntactic structure of the com
mand. For the same reason, we may choose a specific decomposition of a
component by choosing a specific command for that component. Therefore,
and because of the requirement to express a component in e_., it is important
that programming techniques are developed with which commands can be
derived conveniently from a specification.

152 Concluding Remarks

In this monograph we first fopnalized, by means of a few basic definitions,
the fundamental issues relevant to the design of delay-insensitive circuits. Sub
sequently, we built from these definitions a formal framework which provided
the means to reason about such circuits, and even to derive such circuits, by
only considering the corresponding programs. Thus, the abstraction offered by
the formalism has enabled us to design circuits by thinking about the pro
grams entirely in abstracto.

153

Appendix A

For the proof of Theorem 4.1.0 we recapitulate some definitions and introduce
some new notations.

The rules for class C4 are defined as follows. In these rules, R denotes a
directed trace structure with intR = 0 ; s and t denote arbitrary traces; a, b,
and c denote arbitrary symbols; p.c.n.e. stands for prefix-closed and non
empty.

rule 1: R is p.c.n.e. and iR n oR = 0 .

rule 2: s a a ~tR.

rule 3: If a and bare of the same type, then s ab t EtR = s bat EtR.

rule 4": If a and bare of different type and a and care of the same type, then
sabtcEtR I\ sbatEtR ~ sbatcEtR.

rule 5 "': If a and b are of distinct type, then s a EtR /\ s b EtR =:> s a b EtR.

By definition, we have REC4 iff R satisfies rule 1, 2, 3, 4", and 5"'.
For the definition of DI component we introduce the following notations.

enc(R) is defined as the trace structure R in which each
occurrence of a symbol b EoR is replaced by ob and
each occurrence of a symbol b E iR is replaced by
ib. (We assume that the characters o and i do not
occur in aR.)

154 Appendix A

Wire(b) = pref[ob?;ib!] for each bEaR

Wires(R) = (b:bEaR: Wire(b))

WWires(R) = (llb: b EaR: Wire(b))

Con(R) = enc(R), Wires(R), enc(R)

W = enc(R.) II WWires(R) II enc(R).

(Con(R) stands for the connection of components enc(R), Wires(R), and
enc(R).) By definition, component R is DI iif Con(R) is closed, free of
interference, and tWtaenc(R)=tenc(R.).

We slightly simplify the definition of DI component first. Define the func
tion f(r) for traces r E tR by

j(£)=£ andf(rb)=f(r)obib for rbEtR.

For all_ rEtR _ we have f(r)EtW. Consequently, we infer
tWtaenc(R)=tenc(R). Moreover, if R is a component, i.e. iR noR = 0, then
Con(R) is closed and free of output interference. From these two observations
follows

component R is DI

= R is a component and Con(R) is free of computation

interference.

We prove in the following

R is a component and Con(R) is free of computation

interference.

~ R satisfies rule 1, 2, 3, 4", and 5"'.

and

R satisfies rule 1, 2, 3, 4", and 5"'

(1)

~ R is a component and Con(R) is free of computation (2)

interference.

From (1) and (2) we then conclude Theorem 4.1.0.

PROOF OF (1). Let R be a component and Con(R) be free of computation
interference. Since R is a component, rule 1 is obviously satisfied.

For rule 2 we observe

saaEtR v saaf1.tR

~{ def. off and W, R is p.c., calc.}

(f(s)EtW /\ saaEtR) v saaE1.tR

Appendix A

~{Con(R) is free of comp. interference, R is p.c., def. of enc(R)}

f(s)oaoa EtW V saa~tR

~{ def. of Wire(a), def. of weaving}

s a a~tR.

We prove that R satisfies rule 3 by induction to the length oft.
Base. For a and b of the same type we observe

s a bEtR

~{ def. off and W, R is p.c.}

f(s)EtW I\ sabEtR

~{ Con(R) is free comp. of interference,

R is p.c, a and b of the same type}

f(s)oa ob EtW

155

~{def. of Wire(a) and Wire(b), Con(R) is free of comp. interference}

f(s)oa ob ib ia EtW

~{ def. off and W, a and b of the same type}

sbaEtR.

Step. For { a,b} kiR and c EoR we observe

sa b tcEtR

~{induction hypothesis for t, R is p.c}

sabtcEtR /\sbatEtR

~{def. off and W, {a,b}kiR, cEoR}

f(s)ob oa ia ib f(t)oc EtW

~{def. of Wire(c), Con(R) is free of comp. interference}

f(s)ob oa ia ib f(t)oc ic EtW

~{def. off and W, {a,b}kiR, cEoR}

s bat cEtR.

By a similar reasoning, or using symmetry, we prove the induction step also
for {a,b}kiR /\ cEiR, {a,b}koR I\ cEoR, and {a,b}koR I\ cEiR.

R satisfies rule 4" can also be proved with a similar reasoning as for the
proof of the induction step above.

For rule 5"' we observe for symbols a and b of different type

s aEtR I\ s bEtR

156

□

~{ def. off and W, R is p.c}

/(s)EtW A saEtR A sbEtR

Appendix A

~{ Con(R) is free of comp. interference, a and b are of different type}

f(s)oa ob EtW

~{ def. of Wire(b), Con(R) is free of comp. interference}

f(s)oa ob ib EtW

~{def. off and W, a and b are of different type}

sabEtR.

For the proof of (2) we introduce a few notations. Let the relation ~ on
(aW)* X(aW)• be defined by

rxyt~ryxt

= (r xy tEtW ~ ry x tEtW)

A -,(xEienc(R) A yEoenc(R))

A -,(xEienc(R) A yEoenc(R))

A -,({x,y} ka Wire(b) for some bEaR).

Let ~ • denote the transitive closure of ~- In words, if s~ • t holds, then s can
be transformed into t by repeatedly interchanging two contiguous symbols in
such a way that

membership of t Wis maintained,
an output symbol is not shifted to the left over an input symbol of the
same component, and
symbols of a WIRE component are not interchanged.

The notations Out, sLa, and out(s), for s EtW and a EaR, are defined by

Out = {oa laEaR}

sLa = s ia taWire(a) Et Wire(a)

out(s) = {t I trace t corresponds to a permutation of { oa Is La}}

Notice that if R satisfies rule 1, then Wis prefix-closed. In the following
proofs the hint 'R satisfies rule l' often refers to Wis prefix-closed.

PROOF OF (2). Let R satisfy rule 1, 2, 3, 4", and 5"'. From rule 1 follows that
Risa component. We prove
(i) sEtW A sLa ~ sia EtW foraEaR, and
(ii) sEtW A oa Eoenc(R) A s oa taenc(R)Etenc(R) ~ s oa EtW.
~or reasons of symmetry, we conclude that (ii) also holds if R is replaced by
R. Consequently, Con(R) is free of computation interference, if (i) and (ii)

Appendix A

hold.
We observe for (i)

sEtW I\ sLa

~{Lemma A.O, R satisfies rule 1, 3, 4", and 5"'}

sEtW I\ sLa I\ (Er:rEtR:(At:tEout(s):s~f(r)t))

~{def. of out(s), calc.}

sEtW I\ (Er,t:rEtR I\ oatEout(s): s~*f(r)oat)

~{Lemma A.I, R satisfies rule 1 and 5"'}

sEtW I\

(Er,t:rEtR I\ oatEout(s): s~*f(r)oat I\ f(r)oatia EtW)

~{Lemma A.4, R satisfies rule 1 and 4", calc.}

sia EtW.

For (ii) we observe

157

s EtW I\ oa Eoenc(R) I\ s oa taenc(R)Etenc(R) I\ s oa ft:. tW

~{ def. of W, Wire(a), and weaving}

sEtW I\ oaEoenc(R) I\ soataenc(R)Etenc(R) I\ sLa

~ {Lemma A.O, R satisfies rule 1, 3, 4", and 5"', sLa ~ oa EOut}

sEtW I\ oaEoenc(R) I\ soataenc(R)Etenc(R)

I\ (Er,t:rEtR I\ toaEOut":s~*f(r)toa)

~{Lemma A.3, R satisfies rule 1 and 4"}

(Er,t::f(r) t oa oa taenc(R)Etenc(R)) I\ oa Eoenc(R)

~{ R satisfies rule 2}

false.

From this derivation we conclude that (ii) holds.

□

LEMMA A.O. Let R satisfy rule 1, 3, 4", and 5"'. We have

(As: s EtW: (Er: r EtR: (At: t E out(s): s~*f(r) t))).

PRooF. By induction to the length of s.

Base. Ifs =t:, then we have r=t: and t=t:.

Step. We observe for aEaR

158

and

D

Appendix A

soa EtW

~ { R satisfies rule 1, 3, 4", and 5"', induction hypothesis for s}

soa EtW A. (Er:rEtR:(At:tEout(s): si-+*f(r)t))

~ {Lemma A.2, R satsfies rule 1 and 4"}

s oa EtW A. (Er: rEtR: (At: tE out(s):s oa 1-+• f(r)t oa))

~{Lemma A.6, R satisfies rule 3, def. of out(s) and ➔•, calc.}

(Er: rEtR: (At: tE out(s oa):s oa i-+*f(r)t))

s ia EtW

~{induction hypothesis for s, R satisfies rule 1, 3, 4", and 5"'}

sia EtW A. (Er:rEtR:(At:tEout(s): s➔•f(r)t))

~{s ia EtW ~ sLa, def. of out(s)}

s ia EtW A. (Er: rEtR: (At: oa IE out(s): s 1-+* f(r)oa t))

~{Lemma A.I, R satisfies rule 1 and 5"'}

(Er: rEtR: (At: oat E out(s): s 1-+• j(r)oa t A. j(r) oa tia EtW

A. f(r)oa tia 1-+• j(r)oa ia t))

~{Lemma A.4, R satisfies rule 1 and 4"}

(Er: rEtR: (At: oa IE out(s): s ia i-+*f(r)oa t ia

A. f(r)oa t ia i-+*f(r)oa ia t))

~{ def. of 1-+• ,f, and out(s)}

(Er: rEtR: (At: tE out(s ia): s ia i-+*f(ra)t)).

LEMMA A.I. Let R satisfy rule 1 and 5"' and rEtR. We have

sEtW A si-+*f(r)oat A oatEout(s)

~ f(r)oa t ia EtW A. f(r)oa tia i-+*f(r) oa ia t.

PROOF. We observe

sEtW A si-+*f(r)oat A oatEout(s)

~ {def. of 1-+ • and out(s)}

j(r)oatEtW A tE(Out\{oa})*

~ { R satisfies rule 1, def. of W and f}

Appendix A

f(r)oatEtW I\ raEtR I\ tE(Out)\{oa})•

~ {Lemma A.5, R satisfies rule 1 and 5"'}

(Au,v: t=u v:f(r)oa u ia v EtW).

Since tE(Out \ {oa })* and by definition of 1-+•, we consequently derive

f(r)oa tia 1-+• f(r)oa ia t I\ f(r)oa t ia EtW.

□

LEMMA A.2. Let R satisfy rule 1 and 4". We have for a EaR

(si-+ • s') ~ (s oa 1-+ • s' oa).

PRooF. We observe

s 1-+s' I\ s oa EtW

~{ def. of weaving, W, 1-+, and rule 4"}

s' oa EtW.

159

Consequently, we infer (s 1-+s') ~ (s oa 1-+s' oa). Tal<lng the transitive closure
of 1-+ yields the lemma.

□

With a similar reasoning as in the last proof we obtain

LEMMA A.3. Let R satisfy rule 1 and 4" and a EaR. If si-+• s', then
s oa taenc(R)Etenc(R) ~ s' oa taenc(R)Etenc(R).
□

LEMMA A.4. Let R satisfy rule 1 and 4" and aEaR. If s1-+•s1 I\ s'ia EtW,
thens ia 1-+• s' ia I\ (s EtW ~ s ia EtW).

PROOF. We observe

si-+s' I\ sEtW I\ s'ia EtW

~{ def. of weaving, W, i-+, and rule 4"}

Sia EtW.

By definition of 1-+, we also have

s i-+s' I\ s' ia EtW ~ s ia 1-+s' ia.

Tal<lng the transitive closure of 1-+ and using that R is prefix-closed (by rule I),
we obtain the lemma.

□

160

LEMMA A.5. Let R satisfy rule 1 and 5"' and a EaR. We have

raEtR /\ f(r)oatEtW /\ tE(Out\{oa})*

=? (Au,v: t=u v:f(r)oa u ia v EtW).

PROOF. By induction to the length oft.

Appendix A

Base. If t = f, then u v = f. The lemma follows from the definition off and W.

Step. We observe for b E aR, b=/=-a,

□

raEtR /\ f(r)oasobEtW /\ sobE(Out\{oa})*

=? {induction hypothesis for s, R satisfies rule 1 and 5"'}

f(r)oasob EtW /\ (Au,v:s=uv:f(r)oauiavEtW)

=? { def. of W and weaving, R satisfies rule 5"'}

f(r)oa sob ia EtW /\ f(r)oa s ia ob EtW

/\ (Au,v: s=u v:f(r)oa u ia v EtW)

=? {calc.}

(Au,v:s ob =u v:f(r)oa u ia vEtW).

LEMMA A.6. Let R satisfy rule 3 and tEOut•. For all permutations t' oft we
have s t 1-+ s t'.

PROOF. Any permutation t' oft can be obtained by successively swapping two
contiguous symbols. Using rule 3 and the definition of weaving yields the
lemma.

□

161

Appendix B

B.0. INTRODUCTION

In this appendix. we present the proof of Theorem 4.7.0, i.e.

E ee(G4) ~ E is DI.

The proof is based on a long series of theorems, some of which have tedious
proofs.

Before we present these theorems and their proofs, we introduce some new
definitions. First, we generalize the classes C 3 and C 4, which are given in Sec
tion 4.1, to the classes GC3 and GC4 respectively. The classes GC3 and GC4
pertain to directed trace structures for which the set of internal symbols does
not have to be empty (as opposed to the classes C3 and C4). In the following
rules, R denotes a directed trace structure, s and t denote traces, and a, b, c, x
and y denote symbols. Furthermore, the alphabets inR and outR are defined
by

inR = iR U enR and outR = oR U coR.

(In words, the atomic commands of symbols from inR start with an input
mark and the atomic commands of symbols from outR start with an output
mark.). The abbreviation p.c.n.e. stands for prefix-closed and non-empty

rule g I: R is p.c.n.e. and the alphabets of R of distinct type are pairwise
disjoint.

rule g2: For any aEextR, saa~tR.

162 Appendix B

rule g3: For all symbols x and y with

(x e(iR UcoR) /\ y e(iR UenR))

v (xe(oRUenR) Aye(oRUcoR))

we have sxytetR ~ syxtetR.

rule g4': For symbols a and b of different type, {a,b} kextR,

sabt etR /\ sb etR ~ sbat etR.

rule g4": For symbols a and b of different type, { a,b} kextR and
{a,c}koutR V {a,c}kinR

sable etR /\ sbat etR ~ sbatc etR.

rule g 5"': For symbols a and b of different type, { a,b} k extR,

sa etR /\ sb etR ~ sba etR.

The classes GC3 and GC4 are defined analogously to the classes C3 and C4:
GC3 is the class of all trace structures satisfying rules g 1, g2, g3, g4', and

· g5"'; class GC4 is the class of all trace structures satisfying rules
g 1, g2, g3, g4", and g5"'.

Notice that from the definitions of these rules follows

ReGC4 I\ intR= 0 ~ ReC4,

and similarly for GC3 and C3. Consequently, GC4 and GC3 are indeed gen
eralizations of C 3 and C 4.

At this point we would like to emphasize that rule g 3 is used extensively in
the remainder of this appendix; in many theorems and lemmas it occurs as a
condition. This is not surprising if we realize that most theorems with respect
to delay-insensitivity boil down to the shifting of symbols in a trace, and rule
g 3 is a convenient rule for this purpose.

The sets firstOR and firstlR for a directed trace structure R are defined as
follows. Let hdRkoutR, where hdR={bl(Et::btetR)}. If_ tR={t:}, then
firstOR = { 0 } . Otherwise

firstOR = {set(t)I te(oR)* I\ tetprefR /\ t=/=t:

I\ (Suc(t,R) \ oR=,=0 V Suc(t,R)= 0)}

U{{b}lbecoR /\ betprefR}.

Here, set(t) denotes the set of symbols occurring in trace t. For hdR k~utR,

B.O. Introduction 163

the set firstlR is defined by

firstlR = {set(ttextR)l tE(outR)* /\ tEtprefR

I\ (Suc(t,R) \ outR::f=0 v Suc(t,R)= 0)}.

If hdR CinR, then firstOR and firstlR are defined analogously with oR, coR,
and outR replaced by iR, enR and inR respectively. Otherwise, firstOR and
firstlR are not defined. For example, we have for

E = a !llb !;c? I !d?;e!

hdE C outE

firstOE = { { a,b }, { d}}

firstlE = { { a,b }, { e}}.

Finally, we define the predicates Disin(R) and Disout(R) for a directed trace
structure R by

Disin(R)

=(Au,v,b: uEtprefR /\ vbEtprefR /\ bEinR

/\ ut(extR UenR) = vt(extR UenR)

: ubEtprefR

)

and Disout(R) is defined analogously with inR and enR replaced by outR and
coR respectively. The predicates Disin(R) and Disout(R) concern the possible
disabling of symbols of a certain type. For example, suppose that Disin(R)
holds and that two traces from R are equivalent with respect to the external
symbols and internal symbols of the environment. If one of these traces can be
extended with a symbol from inR, then the other can be extended as well with
this symbol, i.e. the symbol is not disabled for the other trace. The predicate
Disfree(R) is defined by

Disfree(R) = Disin(R) I\ Disout(R).

We prove the following theorems for commands E derivable in G4.

THEOREM B.0. EE<dicom> ~ EEC4.

□

THEOREM B.l. EE<pccom> ~ Pl(E) I\ P2(E).

□

THEOREM B.2. EE <pfcom > ~ P O(E) I\ P 2(E) /\ P 3(E) I\ P 4(E).

□

164 Appendix B

The predicates PO(E) through P4(E) are defined by

PO(E) = pref£ EGC3 /\ Disfree(E)

Pl(E)

P2(E)

P3(E)

P4(E)

I\ E and EtextE are prefix-free

/\ tE:;i:{t:} /\ (hdEkinE v hdEkoutE)

EEGC4 I\ Disfree(E)

l(E)=iE I\ O(E)=oE I\ EN(E)=enE I\ CO(E)=coE

FIRST(E)=firstOE I\ FIRSTEXT(E)=firstlE

HD(E)=in

= out iff tR :;i= { t:} /\ hdR k outR

= empty iff tR = { t:}

= mixed otherwise,

I\ TL(E)=in iff tR:;i:{t:} /\ tlR k(iR UcoR)

=out iff tR:;i:{t:} /\ tlR k(oR UenR)

=empty iff tR = { t:}
= mixed otherwise.

The predicates PO, P3, and P4 are defined on commands of type <pfcom>
in G 4, i.e. EE <pfcom >. The predicate P I is defined on commands of type
<pccom > and the predicate P 2 is defined on commands of type <pfcom >
and <pccom >.

The remainder of this appendix is organized as follows. First, in Section B. l
we list the theorems on which Theorems B.O, B.l, and B.2 are based. Subse
quently, we present the proofs of Theorems B.O, B.l, and B.2 in Section B.2. In
Section B.3 the proofs of Theorems B.3 through B.5 are presented, in Section
B.4 the proofs of Theorems B.6 through B.9 are presented, and in Section B.5
the proofs for Theorems B.10 through B.16 are given. Lemmas used in a proof
directly follow that proof.

B. l. TuE TuEOREMS

The Theorems B.O, B. l and B.3 are based on the theorems listed below. In
order to formulate the conditions for these theorems, we introduce some nota
tion first.

The predicate Alfcond(R, S) is defined by

Alfcond(R,S) = aphabets of distinct type of R and S

are pairwise disjoint.

B. 1. The Theorems

The generalization of this condition to trace structures R.j, Q-,;;;..j <n, is

Alfcond(j: O-,;;;..j <n: R.j) _ (Ai,j: Q-,;;;..i,j <n I\ i=/=j: Alfcond(R.i, R.j)).

The predicate Seqcond(R,S) is defined by

Seqcond(R, S) _ (tlR C iR U coR /\ hdS C oS U coS)

V (tlR CoR UenR /\ hdS CiS UenS).

165

In order to define AltcondO(R,S) and A/tcondl(R,S) we first define the
predicates fpropO(R) and /prop l(S). The predicate fpropO(R) is defined by

fpropO(R) - (At: t EtprefR /\ t=/=i: (Es: s EtprefR /\ set(s)EfirstOR

: t~s V s~t)).

The notation t~s denotes that t is a prefix of s. The property fpropO(R)
expresses that for any non-empty trace t in prefR there exists a trace s in prefR
with set(s)EfirstOR such that t~s or s~t. For example, we have

fpropO([a?;b?]) -false but fpropO([a?;b !]) _ true.

Notice that firstO[a ?;b ?] = 0 and firstO[a ?;b !] = { {a}}. For a non-empty trace
structure R, with fpropO(R), we have firstOR=/= 0. The predicate fprop l(R) is
defined analogously to /prop l(R) with prefR and firstOR replaced by
prefRtextR and firstlR respectively. In the remainder we are interested in
trace structures R for which /prop O(R) and /prop l(R) hold.

The predicate AltcondO(R,S) is, consequently, defined by

where

AltcondO(R,S)

= ((hdR CoutR /\ hdS CoutS) v (hdR CinS /\ hdS CinS))

I\ fpropO(R) I\ fpropO(S) I\ 1/condO(R,S),

1/condO(R,S)

(firstOR C { 0 } /\ firstOS C { 0 })

V (AA,B: A EfirstOR /\ B EfirstOS: -,(A CB) I\ -,(B CA)).

Altcond l(R,S) is defined analogously with /prop 0, 1/condO, and firstO replaced
by /prop 1, 1/condl, and firstl respectively.

The generalizations of the predicates AltcondO(R,S) and Altcond l(R,S) to a
collection of trace structures R.j, Q-,;;;..j <n, is done as follows. For n = 1 we
have AltcondO(j: Q-,;;;..j <n: R.j) = true. Otherwise,

where

AltcondO(j: Q-,;;;..j <n: R.j)

((Aj: Q-,;;;..j<n: hd(R.j)Cout(R.j)) v (Aj: Q-,;;;..j<n: hd(R.j)Cin(R.j)))

I\ (Aj: Q-,;;;..j <n: /prop O(R.j)) I\ 1/condO(j: Q-,;;;..j <n: R.j)

166 AppendixB

llcondO(j: Ott;;;,j <n: R. j)

= (Aj: Ott;;;,j <n: firstO(R. j) ~ { 0 })

V (Ai,j,A,B:Ott;;;,i,j<n I\ i=/=j I\AEfirstO(R.i) I\ BEfirstO(R.j)

: -,(A ~B)).

Altcond l(j: Ott;;;,j <n: R. j) is defined analogously to AltcondO(j: Ott;;;,j <n: R.j)
with firstO, jj,ropO, and /lcondO replaced by firstl, jj,rop 1, and llcondl respec
tively.

Finally, we define the predicate Tailcond(tailf) for a tail function tailf
defined by array S (i,j: Ott;;;,i,j <n) of trace structures. Let the tail function
tailf be defined by

tailf.R.i = pref(I/: Ott;;;,j <n: S.i.j;R.j), (BO)

for Ott;;;,i<n. (As usual, tailf is defined on '3"(AO,Al,A2,A3), where
A 0, A 1,A 2, and A 3 are defined in Section 2.1). The condition Tailcond (tailf)
for the function tailf is defined for the array S (i,j: Ott;;;,i,j <n) of trace struc
tures by

Tailcond(tailf) = (0) /\ (1) /\ (2) /\ (3) /\ (4) /\ (5) /\ (6), where

(0) = (Ai: Ott;;;,i<n: (Ej: Ott;;;,j<n: t(S.i.j)=/=0))

(1) = (Ai,j:Ott;;;,j<n /\ i=/=j: t(S.i.j)=/={t:})

A (Ai: Ott;;;,i<n: t(S.i.i) ={t:} ~ (Aj: Ott;;;,j<n I\ i=/=j: t(Si.j)= 0))

(2) = Alfcond(i,j: Ott;;;,i,j<n: S.i.j)

(3) = (Ai,j: Ott;;;,i,j <n I\ t(S.i.j}=I= 0

: pref(S.i.j)EGC3 /\ Disfree(S.i.j)

I\ S.i.j and S.i.jtext(S.i.j) are prefix-free

)

(4) = (Ai,j,k:Ott;;;,i,j,k<n I\ t(S.i.j)=/=0 A t(S.j.k)=/=0:Seqcond(S.i.j,S.j.k))

(5) = (Ai: Ott;;;,i<n: AltcondO(j: Ott;;;,j<n I\ t(S.i.j)=/=0: S.i.j)

I\ A/tcond l(j: Ott;;;,j <n I\ t(S.i.j)=/= 0: S.i.j)

)

(6) = (Ai,j: Ott;;;,i,j<n: ext(S.i.j)= 0) v

(Ai,j: Ott;;;,i,j<n I\ t(S.i.j)=/=0 A t(S.i.j)=/={t:}: t(S.i.j)text(S.i.j)=/={t:}).

With the above predicates, the theorems are formulated as follows.

B. 1. The Theorems

THEOREM B.3. REGC4 I\ Disfree(R) =? RtextREC4.

□

167

THEOREM B.4. Let tailf be defined by (BO). If Tailcond(tailj) holds, then
µ.tailf. 0 exists and for all i, O.;;;;i <n,

µ. tailf. i E GC 3 I\ Disfree(µ.tailf.i).

□

THEOREM B.5.

0. REGC4 I\ SEGC4 I\ Alfcond(R,S) =? RIISEGC4.

1. If R and S are prefix-closed, then

Disfree(R) I\ Disfree(S) I\ Alfcond(R,S) =? Disfree(R IIS).

□

THEOREM B.6. Let prefREGC3, prefSEGC3, and Alfcond(R,S) hold.

0. A/tcondO(R,S) =? pref(R!S)EGC3.

1. Seqcond(R,S) I\ R is prefix-free =? pref(R ;S)EGC3.

□

The generalization of Theorem B.6.0 is

THEOREM B.7. For n>O we have

□

(Aj: O.;;;;J <n: pref(R.J) E GC 3)

I\ Alfcond(j: O.;;;;J<n: R.J) I\ AltcondO(j: O.;;;;J<n: R.J)

=? pref(I/: O.;;;;J<n: RJ) E GC3.

THEOREM B.8. Let Rand S be non-empty trace structures for which Disfree(R),
Disfree(S), and Alfcond(R,S) hold.

0. Altcondl(R,S) I\ pref Rand prefS satisfy rule g3 =? Disfree(RIS).

1. Seqcond(R,S) I\ Rand RtextR are prefixfree =? Disfree(R ;S).

□

The generalization of Theorem B.8.0 is

168

THEOREM B.9. For n ;;;;.o we have

□

(Aj: 0,r;;(,j<n: Disfree(R.j) /\ pref(R.j) satisfies rule g3)

/\ Alfcond(j: 0,r;;(,j <n: R.j) /\ Altcond l(j: 0,r;;;,J <n: R. })

~ Disfree(lJ: 0,r;;;,J<n: R.j).

Appendix B

THEOREM B. 10. For non-empty prefixfree trace structures R and S we have

0. Altcond0(R,S) ~ RIS is prefix-free.

1. Altcond l(R,S) /\ Alfcond(R,S)

/\ Rt extR and St extS are prefix -free

/\ prefR and prefS satisfy rule g3 ~ (RIS)text(RIS) is prefix-free.

□

THEOREM B.11. For n.e. trace structures R and S we have

0. R and Sare prefix-free ~ R ;S is prefix-free

1. Rt extR and St extS are prefix -free

/\ Alfcond(R,S) ~ (R ;S)text(R ;S) is prefix-free.

□

THEOREM B.12. (Without proof.) For n.e. trace structures R and S we have

0. hd(RIS) = hdR UhdS

1. tl(R IS) = tlR u tlS
2. hd(R ;S) = hdR
3. tl(R ;S) = tlS

□

, if tR ¥= { t:} and R is prefix -free.

, if tS ¥= { t:} and S is prefix -free.

THEOREM B. 13. For n.e. trace structures R and S we have

Alfcond(R,S) /\ AltcondO(R,S) ~ firstO(RIS) = firstOR U firstOS

/\ firstl(RIS) = firstlR U firstlS.

D

THEOREM B.14. For n.e. trace structures R and S with
(hd(R;S)~in(R;S) v hd(R;S)~out(R;S)) /\ Alfcond(R,S) /\ Seqcond(R,S)
and R is prefixfree, we have

8.2. Proofs of Theorems 8.0 through 8.2

0. tR={t} ~ firstO(R ;S)=firstOS and
tR*{t} ~ firstO(R ;S)=firstOR.

1. If, moreover, Rt extR is prefix free and prefR satisfies rule g 3, then
tRtextR={t} ~ firstl(R;S)=firstlS and
tRtextR*{t} ~ firstl(R ;S)=firstlR.

□

169

THEOREM B.15. If R is a prefixfree, non-empty trace structure with
hdR c;:outR v hdR c;:inR, then fprop0(R) I\ fprop l(R) holds.

□

THEOREM B.16. For a non-empty prejixfree trace structure R we have

0. tR={t} = firstOR<:{0}.

1. If, moreover, R satisfies rule g 3, then
tRtextR = { £} _ firstlR <: { 0 }.

□

B.2. PROOFS OF THEOREMS B.0 THROUGH B.2

PROOF OF THEOREM B.0. Let EE<dicom >. By production rules (a0) and
(a 1) of Table 4.3.0, we observe EE <pccom > or E = E O t, where
EOE <pccom >, respectively. From the condition for production rule (a0) we
have EN(E)= 0 /\ CO(E)= 0, and we derive

EE<pccom > I\ EN(E)= 0 /\ CO(E)= 0

~ {Theorem B. l}

EEGC4 I\ intE= 0

~ {calc.}

EEC4.

For EOt we observe

E0E<pccom >

~ {Theorem B.l}

EOE GC 4 /\ Disfree(E 0)

~ {Theorem B.3}

EOt EC4.

~ {E =EOt}

170 Appendix B

EEC4.

□

PROOF OF THEOREM B.l. We prove that for any command EE<pccom>
obtained by applying production rule (b0), (b2),or (b3) of Table 4.3.0 satisfies
P I(E) I\ P2(E). Obviously, we have P l(t:) /\ P2(t:). Application of produc
tion rule (b 1) to commands EOE <pccom > and E 1 E <pccom > leaves P 1
and P 2 invariant, since we have

P 1(E0) I\ P2(E0) I\ P 1(E 1) A P2(E 1) A ALFCOND(E0,E 1)

~ {Th. B.5, eval. rules of Table 4.6.1, calc.}

P I(E0IIE I) A P2(E0IIE 1).

From these properties we then conclude the theorem.
For the command pref(E) obtained by application of rule (b 2) we have

EE <pfcom >. Hence, by Theorem B.2,

pref(E)E GC3 I\ Disfree(E) I\ P2(E).

Since Disfree(E)=Disfree(pref(E)), we derive P l(pref(E)) A P2(pref(E)).
The command obtained by applying rule (b 3) is a special case of tail recur

sion, since

pref[E] = µ.tailf0.0, where tailf0.R. 0 = pref(E ;R. 0).

Notice that

TAILCOND(tailf0) = EE<pfcom> I\ SEQCOND(E,E).

Consequently, if we prove that every command E obtained by application of
rule (b0) satisfies P 1(E) I\ P2(E), then also every command E obtained by
application of rule (b3) satisfies P I(E) I\ P2(E).

For commands µ.tailf. 0 obtained by application of rule (b0) we show for
the tail function tailf that

TAILCOND(tailf) ~ Tailcond(tailf). (0)

From Theorem B.4 we then conclude P I(µ.tailf. 0). (Notice that GC 3 <;: GC 4.)
Furthermore, by definition of the alphabets of µ. tailf. 0 and the evaluation
rules of Table 4.6.1, we infer P 2(µ.tailf. 0).

Let the tail function tailf be defined by array E(i,j: 0~i,j <n) and let
TAILCOND(tailf) hold. For each command E.i.j, 0~i,j<n, we have, by (3)
of TAILCOND(tailf),

E.i.j E <pfcom > V E.i.j = t: V E.i.j = 0.

Consequently, by Theorem B.2,

(t(E.i.J)={t:} - E.i.j=t:) A (t(E.i.j)= 0 = E.i.j= 0). (I)

From (1) we deduce

B.2. Proofs of Theorems B.O through B.2 171

(0), (1), and (3) of TAJLCOND(tailf)

~ (0) and (1) of Tailcond(tailf).

Subsequently, we derive

ALFCOND(i,j: O,s;;;,,i,j <n A t(E.i.j)-=/=f. A t(E.i.J}=I= 0: E.i.j)

~ {E.i.JE<pfcom> V E.i.j=E V E.i.j = 0, P2(E.i.j) by Th. B.2}

Alfcond(i,j: O,s;;;,,i,J<n: E.i.j).

Hence, (2) and (3) of TAILCOND(tailf) ~ (2) of Tailcond(tailf).
For condition (3), we observe

(Ai,j:O:;;;;.i,J<n I\ E.i.f=/=0 I\ E.i.f=/=£: E.i.JE<pfcom>)

~ {Th. B.2, calc.}

(Ai,j: O:;;;;.i,j <n I\ t(E.i.J)=I= 0

: pref (E.i.j)EGC3 A Disfree(E.i.J)

I\ E.i.j and E.i.jtext(E.i.j) are prefix-free

).

Consequently, (3) of TAJLCOND(tailf) ~ (3) of Tailcond(tailf).
Furthermore, we observe for commands E.i.J=I= 0 and E.J.k=I= 0,

O:;;;;.i,j,k<n,

SECOND(E.i.j, E.j.k)

~ {E.i.JE<pfcom> V E.j.k. =£., Th. B.2}

Seqcond(E.i.j, E.j.k).

Hence, (3) and (4) of TAILCOND(tailf) ~ (4) of Tailcond(tailf).
For condition (5), we first observe that for any command EE <pfcom > we

have firstOE=/= 0 A first1E=/= 0, because E is prefix-free and non-empty by
Theorem B.2. Subsequently, we also conclude, by Theorem B.15,
fpropO(E) I\ /prop l(E). Accordingly, for a command EE <pfcom > we derive

firstOE ~ { 0 } = firstOE = { 0 } A first1E ~ { 0 } - first1E = { 0 }

I\ fpropO(E) I\ .[prop l(E) (2)

We derive for all i, o:;;;;.; <n,

ALTCOND(j: O:;;;;.J <n I\ E.i.j=/= 0 A E.i.j=/=£: E.i.J)

= {E.i.JE<pfcom>, Th. B.2, Th. B.15, (2) above,

(1) of TAILCOND(tailf) in case E.i.i=E}

AltcondO(j: O,s;;;,,J <n A t(E.i.J)=I= 0: E.i.J)

I\ Altcond l(j: O:;;;;.J <n I\ t(E.i.J)=I= 0: E.i.j).

172 Appendix.B

Hence, (3) and (5) of TAILCOND(tailj) ~ (5) of Tailcond(tailj).
For condition (6) we first observe for any command EE <pfcom >, that,

by Theorem B.2, FIRSTEXT(E)=firstlE ;
by Theorem B.2, B.16 and (2) above, firstlE = { 0 } = tEt extE = { £} ;
and by the distribution Properties 1.1.2.3, tEt extE = { £} = extE = 0.
Consequently,

EE <pfcom > I\ FIRSTEXT(E) = { 0} ~ extE = 0.

We derive

(Ai,j: O<.i,j<n I\ E.i.j=fa0 I\ E.i.j=fat:: FIRSTEXT(E.i.j)=fa{ 0})

v (Ai,j: O<.i,j<n I\ E.i.j=fa0 I\ E.i.j=fat:: FIRSTEXT(E.i.j)={ 0})

~ {E.i.jE<pfcom> V E.i.j=t: V E.i.j= 0, Th. B.2, Th. B.16, calc.}

(Ai,j: O<.i,j <n I\ E.i.j=fa 0 /\ E.i.j=fat:: (E.i.j) t ext(E.i.j)=fa{ t:})

V (Ai,j: O<.i,j<n: ext(E.i.j)= 0 }.

Hence, (3) and (6) of TAILCOND(tailj) ~ (6) of Tailcond(tailj).
This concludes our proof of obligations for (0).
□

PROOF OF THEOREM B.2. First, we observe, by means of the definitions given
in this appendix and Table 4.6.0, that PF(E) holds for every command
EE<marked .ryms>, where

PF(E) = PO(E) I\ P2(E) I\ P3(E) I\ P4(E).

Second, we prove that PF remains invariant under the application of pro
duction rule (cl), (c2), and (c3) of Table 4.3.0. For rule (c3) this is obvious.
For rule (cl) we first observe for any EE <pfcom > that firstlE =fa 0 . By
Theorem B.16.1 and PO(E) we subsequently derive for any EE<pfcom >

We infer

EtextE={t:} = first1£={0}. (0)

PF(EO) I\ PF(E 1) /\ ALFCOND(EO,E 1) /\ SEQCOND(EO,E 1)

~ { def.of PF, calc.}

PO(EO) I\ P2(EO) I\ P3(EO) I\ P4(EO)

I\ PO(El) I\ P2(EI) I\ P3(El) I\ P4(El)

I\ Alfcond(EO,E 1) /\ Seqcond(EO,E 1)

~ {Th. B.6.1, Th. B.8.1, Th. B.11, calc., Th. B.12}

PO(EO) I\ P2(EO) I\ P3(EO) I\ P4(EO)

I\ PO(EI) I\ P2(El) I\ P3(El) I\ P4(El)

B.3. Proofs of Theorems B.3 through B.5

I\ Alfcond(E0,E 1) /\ Seqcond(E0,E 1) /\ PO(E0;E 1)

==> {Th. B.12, eval. rules of Table 4.6.1, calc.}

PO(E0) I\ P3(E0) I\ PO(El) I\ P3(E 1)

I\ PO(EO;E 1) /\ P2(E0;E 1) /\ P4(E0;E 1)

I\ Alfcond(E0,E 1) /\ Seqcond(E0,E 1)

==> {Th. B.14, eval. rules of Table 4.6.1, (0) above, calc.}

PO(E0;El) I\ P2(E0;El) I\ P3(E0;El) I\ P4(E0;El)

= {def. of PF}

PF(E0;El).

For rule (c2) we observe

173

PF(E0) I\ PF(El) I\ ALFCOND(E0,El) I\ ALTCOND(E0,El)

□

==> {def. of PF, calc.}

PO(E0) I\ P2(E0) I\ P3(E0) I\ P4(E0)

I\ PO(El) I\ P2(El) /\ P3(El) I\ P4(El)

I\ Alfcond(E0,E 1) /\ ALTCOND(EO,E 1)

==> {def. Altcond0 and Altcondl, Th. B.15, (0) above, calc.}

PO(E0) I\ P2(E0) I\ P3(E0)./\ P4(E0)

I\ PO(El) I\ P2(El) I\ P3(El) I\ P4(El)

I\ Alfcond(E0,El) I\ AltcondO(E0,El) I\ Altcondl(E0,El)

==> {Th. B.6.0, Th. B.8.0, Th. B.10, Th. B.12, calc.} .

P2(E0) I\ P3(E0) I\ P4(E0) I\ P2(El) I\ P3(El) I\ P4(El)

I\ Alfcond(E0,E 1) /\ A/tcondO(E0,E 1) /\ P0(E0IE 1)

==> {Th. B.13, Th. B.12, eval:. rules of Table 4.6.1, cal~.}

PO(E0IEl) I\ P2(E0IEl) I\ P3(E0IE1) /\ P4(E0IEl)

= {def. of PF}

PF(E0IEl).

B.3. PROOFS OF THEOREMS B.3 THROUGH B.5

PROOF OF THEOREM B.3. Let ReGC4 I\ Disfree(R) hold. We prove
RtextReC4.

174 Appendix B

rule 1: Since R satisfies rule g I, it follows immediately that mextR is p.c.n.e.
and

i(RtextR)no(RtextR) = 0.

rule 2: We observe

saa EtRt extR

~{ calc., R is p.c.}

(&o,s1 ::soas1aEtR /\ sotextR =s I\ s 1 E(intR)*)

~{R satisfies rule g3, aEextR, Lemma B.17}

(&2,s3:: s2aas3 EtR)

~{ R satisfies rule g2, a EextR, R is p.c.}

false.

rule 3: For symbols a and b of the same type, { a,b} kextR, we observe

sabtEtRtextR

~{calc.}

(&o,s1,to::soas1btoEtR I\ sotextR=s

/\ s 1 E(intR)* /\ t0textR =t)

~{R satisfies rule g3, {a,b} kiR v {a,b} koR, Lemma B.17, calc.}

<&2,t1::s2abt1 EtR /\ s2textR=s /\ t1textR=t)

~{R satisfies ruleg3, {a,b}kiR v {a,b}koR}

(&2,t 1:: s2bat I EtR /\ s2t extR =s I\ t I t extR = t)

~{ calc.}

sbat E tRt extR.

rule 5'": For symbols a EoR /\ b EiR, we infer

saEtRtextR /\ sbEtRtextR

~{ calc., R is p.c.}

(&o,s1::soaEtR I\ s1bEtR I\ sotextR=s /\ s 1textR=s) (1)

~{Lemma B.18 (i), Disfree(R), R is p.c.,

B.3. Proofs of Theorems B.3 through B.5

I\ retR I\ rt(extR UcoR)=s0t(extR UcoR)

/\ rt(extR UenR)=s1t(extR UenR))

=>{Disout(R) I\ aeoR, Disin(R) I\ beiR, R is p.c.}

(Es-o,s1,r::soaEtR I\ s 1betR I\ sotextR=s I\ s1textR=s

I\ ra etR I\ rt(extR UcoR)=s0t(extR UcoR)

I\ rbetR I\ rt(extR UenR)=s1t(extR UenR))

=>{ R satisfies rule g 5"', a eoR I\ b eiR, calc.}

<F.s-o,s1 ,r:: rtextR =s

I\ rabetR I\ rt(extR UcoR)=s0t(extR UcoR)

175

I\ rbaetR I\ rt(extR UenR)=s1t(extR UenR)) (2)

=>{calc., {a,b}\;;;extR}

sabetRtextR.

For reasons of symmetry, we have for a eiR /\ b eoR an analogous proof.

rule 4": For symbols a, b, and c with {a,c} \;;;oR I\ beiR, we observe

sabtcetRtextR I\ sbatetRtextR

=>{Lemma B.19, R satisfies rule g3, R is p.c.}

(F.s-0 ,s1,t0 ,t 1,w0,w1::s0aw0bt0cetR I\ s 1bw 1at 1 etR

I\ s0textR=s I\ w0 e(enR)* /\ t0textR=t

I\ s1textR=s I\ w 1 e(coR)* /\ t 1textR =t)

=>{Cf. (1) => (2) in proof of rule g5"', Disfree(R), R is p.c.,

aeoR I\ beiR, take r:=v, R sat. rule 5"', calc.}

<F.s-o,s1,to,t1,wo,w1,v:: soawobt0cetR I\ s 1bw 1at1 etR

I\ s0textR=s I\ w0 e(enR)* /\ t0textR=t

I\ vtextR=s I\ w 1 e(coR)* /\ t 1textR=t

I\ vabetR I\ vt(extR UcoR)=s0t(extR UcoR)

I\ vbaetR I\ vt(extR UenR)=s1t(extR UenR))

=>{calc., {a,b}\;;;extR}

<F.s-o,s1,to,wo,w1,v :: soawobtocEtR I\ s1bw1at1 etR

I\ vtextR=s I\ woE(enR)* /\ t0textR=t /\ s0 textR=s

/\ t0 textR =t 1textR

176 Appendix B

I\ vabEtR I\ vabt(extR UcoR)=s 0aw0M(extR UcoR)

I\ vbaEtR I\ vbat(extR UenR)=s 1bw 1at(extR UenR))

=>{Lemma B.18(ii), Disfree(R), R is p.c., aEoR I\ bEiR, R satisfies

rule g4", take u0 ,u I ,v0 ,v 1,r0 ,r I : =s0aw0b, s 1bw 1a, vab, vba, to, t1}

(Eso,to, w0 , v,r:: soaw0 btoc EtR

I\ vtextR=s I\ w0E(enR)* I\ t 0textR=t I\ s0 textR=s

I\ vabrEtR I\ vabrt(extR UcoR)=s 0aw0bt0t(extR UcoR)

I\ vbarEtR)

=>{ c EoR, Disout(R), R is p.c., calc.}

(Ev,r:: vtextR=s I\ rtextR=t I\ vabrcEtR I\ vbarEtR)

=>{ { a,c} koR I\ b EiR, R satisfies rule g4"}

(Ev,r:: vtextR =s I\ rtextR =t I\ vbarcEtR)

=>{ calc., { a,b,c} kextR}

sbatcEtRtextR.

For reasons of symmetry, a similar reasoning applies if {a,c} kiR /\ bEoR.
D

LEMMA B.17. If R satisfies rule g3 and {a,b} koR V {a,b} kiR, then

rasbt EtR /\ s E(intR)*

=>(Er',t':: r'abt'EtR I\ r'textR =rtextR I\ t'textR =ttextR).

(Symbols a and b may be the same symbols.)

PROOF (Sketch). Assume a E oR and b E oR. Let rasbt E tR I\ s E (intR)*.
Since R satisfies rule g 3, symbols from coR in s can be shifted to the left (over
symbols in enR and a EoR) into r. Symbols from enR in s can be shifted to
the right (over symbols in coR and bEoR) into t. For aEiR and bEiR the
proof is similar(, only the shift-directions change).
D

LEMMA B.18. If Disfree(R) and R is prefix-closed, then

u0roEtR I\ v0EtR I\ u0t(extR UcoR)=v0t(extR UcoR)

I\ u1r1 EtR /\ v1 EtR /\ u1t(extR UenR)=v 1t(extR UenR)

I\ r0textR =r 1 textR

=> (Er:: v0rEtR I\ u0r0t(extR UcoR)=v 0rt(extR UcoR)

v 1r EtR /\ u 1r 1t(extR UenR)=v 1rt(extR UenR)),

8.3. Proofs of Theorems 8.3 through 8.5

for traces v O and v J such that

177

(z) vo=£/\VJ=£
or
(ii) vo=vab I\ VJ =vba I\ aEoR I\ bEiR I\ R satisfies rule g4".

PROOF. By induction to the length of r O and r 1 .
Base: For r0 =£ I\ r1 =£,taker=£.
Step: We consider two cases in order to comply with r0textR =r1textR and
the induction step with respect to the length of r0 and rJ.
(A) ro'=rodo I\ ri'=rJd1 with /(do)=l /\ d0 fliR I\ dJ =d0textR.
(B) ro'=rodo I\ rJ'=rJdJ with /(dJ)=l /\ dJ floR I\ do=dJtextR,
where /(r) denotes the length of tracer. We have

(/(ro')+/(rJ') = /(ro)+/(rJ)+l)

V (/(ro')+/(rJ') = /(ro)+/(rJ)+2 /\ do=dJ).

Notice that there is always one case that applies.
First, we consider case (A).

u0r0d0 EtR I\ v0 EtR I\ u0t(extRUcoR)=v 0t(extRUcoR)

I\ UJrtdJ EtR /\ VJ EtR /\ UJt(extR UenR)=vJt(extR UenR)

I\ rod0textR =rJdJtextR.

=>{ind. hyp. for r0 and r 1, R is p.c., calc.,

Disfree(R), case (A) or (B)}

(Er:: u0r 0d0 EtR /\ UJrJdJ EtR /\ d0textR =d1textR

I\ v0rEtR I\ u0r0t(extR UcoR)=v0rt(extR UcoR)

I\ VJrEtR I\ UJrJt(extRUenR)=vJrt(extRUenR))

==>{ calc., case (A)}

(Er,d':: u0 r0d0 EtR /\ d'=d0t(coR UoR)

I\ v0rEtR I\ u0r0d0t(extR UcoR)=v 0rd't(extR UcoR)

I\ VJrEtR I\ UJrJdJt(extR UenR)=v Jrd't(extR UenR))

==>{Disout(R), R is p.c., (A) ==> d'=£ V (d' EcoR UoR /\ d'=d0)}

(Er,d':: d'=d0 t(coR UoR)

I\ vord'EtR I\ u0r0d0t(extR UcoR)=v0rd't(extR UcoR)

I\ VJrEtR I\ UJrJdJt(extR UenR)=vJrd't(extR UenR))

We distinguish between (i) and (ii) from here. For (i) we observe

(0)

==> {vo=£ /\VJ=£, cf. (i)}

(0)

178 Appendix B

(Er,d':: rd'EtR I\ u0r0d0t(extR UcoR)=rd't(extR UcoR)

I\ rd'EtR I\ u1r 1d 1t(extR UenR)=rd't(extR UenR))

(Er':: v 0r' EtR I\ u0r0't (extR U coR) = v0r't (ext U coR)

I\ v 1r'EtR I\ u1r 1't(extR UenR)=v 1r't(extR UenR)).

For (ii) we infer

(0)

~{(ii),}

(Er,d':: d'=d0 t(coR UoR)

I\ vabrd'EtR I\ u0r0d0 t(extR UcoR) = vabrd't(extR UcoR)

l\vbarEtR I\ u1r 1d 1(extR UenR) = vbard't(extR UenR))

~ { R sat. rule g4", a EoR, case (A) i.e ..

d' = t: V d'E(coR UoR)}

(Er,d':: vabrd'EtR I\ u0r 0d0 t(extR UcoR)=vabrd't(extR UcoR)

I\ vbard'EtR I\ u1r 1d 1t(extRUenR)=vbard't(extRUenR))

~(r'=rd', ro'=r0do, r1'=r1d1, vo=vab, v1 =vba}

(Er:: v0r'EtR I\ u0r0 't(extR UcoR)=v 0r't(extR UcoR)

I\ v 1r' EtR A u 1r 1 't(extR UenR)=v 1r't(extR UenR)).

Case (B) is proved similarly, with use of d'=d1t(enR UiR) and Disin(R).

□

LEMMA B.19. If R is prefix-closed and R satisfies rule g3, then

sabtcEtRtextR I\ aEoR I\ bEiR

~(&o,wo,to:: soawobtocEtR

I\ sotextR =s I\ w 0 E(enR)* /\ t0textR =t)

and

sbatcEtRtextR I\ aEoR I\ bEiR

~(&1,w1,t1 :: s1bw1at 1cEtR

A s 1textR=s /\ w1 E(coR)* /\ t 1textR=t).

The above properties also hold when symbol c is removed.

PROOF (Sketch). Let R be prefix-closed, aEoR and bEiR, and s0aw0bt0c be
an expansion in R of sabtc EtRt extR, i.e.

8.3. Proofs of Theorems 8.3 through 8.5 179

soawobtocEtR I\ sotextR=s /\ woE(intR)* /\ totextR=t.

Since R satisfies rule g3, symbols from coR in w0 can be shifted to the right
(over symbols from enR and bEiR) into t0 • Because w0 E(intR)*, this shifting
yields a w0 'E(enR)*.

A similar reasoning applies to the seconq part of the theorem.
□

PROOF OF THEOREM B.4. Let Tailcond(tailf) hold, where tailf is defined by
(BO). By condition (0) of Tailcond(tailf) and Theorem 1.2.4.0 we derive that
µ..tailf exists. Let the predicate P on V=~(A 0, A I, A 2,A 3), where
A 0, A I, A 2, and A 3 are defined as in Section 2.1, be defined by

P(R) = (Ai:0~i<n: R.iEGC3 I\ Disfree(R.i) (Bl)

/\ hd(R.i) Chd([i: 0~j <n: S.i.j)

).

By means of fixpoint induction we prove that P(µ..tailj) holds. The theorem
then follows from the definition of P.

First we observe, by Lemma B.20, that P is an inductive predicate on V.
Second, we infer that P(1-n(A0,Al,A2,A3)) holds. Third, we prove that
tailf maintains P, i.e. P(R) ==> P(tailf.R) for any REV. By Theorem 1.2.2.1,
1.2.3.0, and 1.2.3.1 we then conclude P(µ..tailj).

We observe for all i,j, 0~i,J<n and t(S.i.J)=/=0.

REV I\ P(R)

==> { t(S.i.j)=t= 0, (2) and (3) of Tailcond(tailf)}

Alfcond(S.i.j,R.j) I\ hd(R.j)Chd(lk: 0~k<n:S.j.k)

/\ pref(S.i.j)EGC3 /\ R.jEGC3 I\ Disfree(S.i.j) I\ Disfree(R.j)

I\ S.i.j and S.i.jtext(S.i.j) are prefix-free

==> {Lemma B.21, (1) and (4) of Tailcond(tailf), t(S.i.j)=/=0}

Alfcond(S.i.j, R.j) I\ Seqcond(S.i.j, R.j)

/\ pref(S.i.j)EGC3 /\ R.jEGC3 I\ Disfree(S.i.j) I\ Disfree(R.J)

I\ S.i.j and S.i.jtext(S.i.j) are prefix-free

==> {Theorem B.6.1, Theorem B.8.1, pref(R.J)=R.j, calc.}

Alfcond(S.i.j, R.J) I\ Seqcond(S.i.j, R.j)

/\ pref(S.i.j;R.j)EGC3 /\ Disfree(S.i.j;R.j)

I\ S.i.j and S.i.jtext(S.i.j) are prefix-free.

Furthermore, we observe for all i, 0~i <n,

(6) of Tailcond(tailf)

180

= { def. of Tailcond}

(Aj: O,;;;;;,J<n: ext(S.i.j}=/=0)

v (Aj: O,;;;;;,j <n I\ t(S.i.J)=/= 0 /\ t(S.i.J)=/={ t}

: t(S.i.j)text(S.i.J)=I={ £ })

=> { R E V, def. of V, calc.}

(A}: O,;;;;;,j <n I\ t(S.i.J)=I= 0

: t(S.i.J)text(S.i.j)= { £} /\ t(R.J)text(R.j)= { £})

V (A}: O,;;;;;,J<n I\ t(S.i.J)=/=0 I\ t(S.i.J)=/={t}

: t(S.i.J) text(S. i.J)=I= { £ }).

With these observations we derive for all i, o,;;;;;,; <n,

REV I\ P(R)

=> { Tailcond(tailf), see derivations above}

(Aj: O,;;;;;,j<n I\ t(S.i.j)=/=0

)

: Alfcond(S.i.j, R.J) I\ Seqcond(S. i.j, R.j)

I\ pref(S.i.j;R.j)EGC3 I\ Disfree(S.i.j;R.j)

I\ S.i.j and S.i.Jtext(S.i.J) are prefix-free

I\ AltcondO(j:O,;;;;;,j<n I\ t(S.i.j)=/=0:S.i.j)

I\ Altcond l(j: O,;;;;;,j <n I\ t(S.i.J)=I= 0: S.i.j)

A ((Aj:O,s;;,.J<n A t(S.i.j)=/=0

: t(S.i.J) t ext(S.i.J) = { £} /\ t(R.J)t ext(R.j) = { £})

v (Aj:O,;;;;;,J<n I\ t(S.i.j)=/=0 I\ t(S.i.j)=/={t}

: t(S.i.j) text(S.i.J)=I= { £})

)

Appendix B

=> {Lemma B.22, pref(S.i.J) sat. rule g3, (1) of Tailcond(tailf)}

(Aj: O,;;;;;,j <n I\ t(S.i.J)=/=0

: pref(S.i.j;R.j)EGC3 I\ Disfree(S.i.j;R.J))

I\ AltcondO(j:O,;;;;;,j<n I\ t(S.i.J)=/=0:S.i.j;R.j)

I\ Altcondl(j:O,s;;,.J<n I\ t(S.i.J)=/=0:S.i.j;R.j)

=> {Th. B.7, Th. B.9, (0), (2) and (3) of Tailcond(tailf), i.e.

pref(S.i.J) satisfies rule g 3}

B.3. Proofs of Theorems B.3 through B.5

pref([j:O,s;;J<n A t(S.i.j}=f=0:S.i.j;R.j)EGC3

I\ Disfree([i: O,s;;J <n I\ t(S.i.j}=/=-0: S.i.j;R.J)

~ {(2) of Tailcond(tailf), n >0, calc.}

pref([j: O,s;;J <n: S.i.j;R.j)EGC 3

I\ Disfree([i: O,s;;j <n: S.i.j;R.j)

~ { def. of tailf.R.i, calc.}

tailf.R.iEGC3 I\ Disfree(tailf.R.i).

Finally, we infer for all i, O,s;;i <n,

hd(tailf.R.i)

= { def. of tailf.R.i}

hdpref([j: O,s;;J<n: S.i.j;R.J)

= {(3) of Tailcond(tailf), i.e. S.i.j is prefix-free, calc.}

hd (li: O,s;;J <n: S.i.j)

Uhd([j: O,s;;J<n I\ t(S.i.J)= { £ }: R.J)

C { (1) of Tailcond(tailf), calc.}

hd([j: O,s;;J <n: S.i.J) U hd(R.i)

= {P(R)}

hd([j: O,s;;J <n: S.i.J).

Consequently, we conclude P(R) ~ P(tailf.R).

□

LEMMA B.2O. The predicate P defined on V by (B 1) is inductive.

181

PROOF. Let R(k:k;;;,,O) be an ascending chain in V where P(R.k) holds for
each k, k ;;;;.o. We show that rule g4' of GC 3 holds for the greatest lower
bound (Uk:k;;a.O:R.k).i for all i, O,s;;i<n. The other rules for GC3,
Disfree(R.i), and hd(R.i) c;hd([j:O,s;;J <n: S.i.J) are proved to be inductive simi
larly.

Let a and b be external symbols of different type and s and t denote traces.
We observe

sa Et((Uk: k ;;a.O: R.k).i) A shat Et((Uk: k ;;a.O: R.k).i)

= { def. of U , calc.}

saEt(lk: k;;a.O: R.k.i) I\ sbatEt(lk: k;;a.O: R.k.i)

= {calc.}

182

□

(Ek,/: k,/;;;.O: sa Et(_R.k.i) I\ sbat Et(R.l.i))

~ (k:=max(k,/), R(k:k;;;.O) is an ascending chain}

(Ek: k;;;.O: saEt(R.k.i) I\ sbatEt(R.k.i))

~ {P(R.k), a and bare external symbols of different type}

(Ek: k ;;;.O: sabt Et(R.k.i))

= {calc.}

sabtEt(_lk: k;;;.O: R.k.i)

= {def. of Li}

sabtEt(_ Uk: k;;;.O: R.k).i.

Appendix B

LEMMA B.21. Let tailf be defined by (BO). Let REV, where
V='!Y'(A 0, A 1, A 2, A 3), and S.i.j, O,s;;;,.i,j <n, be non-empty. We have for each
j, O,s;;;,.J<n,

(1) and (4) of Tai/cond(tailf) I\ hd(R.J) <;;;hd(ik: O,s;;;,.k <n: S.j.k)

~ Seqcond(S.i.j, R.j).

PROOF. We observe for all i,j with O,s;;;,.i,j <n and t(S.i.j)=/=£ I\ t(S.i.j)=/=0

(4) of Tailcond(tailf)

~ { def. of Tai/cond}

(Ak: O,s;;;,.k <n I\ t(S.j.k)=/=0: Seqcond(S.i.j, S.j.k))

~ { t(S.i.J)=I={ f. }, calc.}

Seqcond(S.i.j, (ik: O,s;;;,.k <n I\ t(S.j.k)=/=0: S.j.k))

~ {calc.}

Seqcond(S.i.j, (lk: O,s;;;,.k<n: S.j.k))

~ {hd(R.j)<;;;hd(lk: O,s;;;,.k <n: S.J.k), calc.}

Seqcond(S.i.j, R.j).

In case t(S.i.j)={£}, we derive by (1) of Tailcond(tailf) that i=j and
t(ik: O,s;;;,.k<n: S.i.k)= {£}. Consequently, we observe

□

hd(R.i)<;;;hd(lk: O,s;;;,.k<n: S.i.k)

~ {calc., t(S.i.j)={£},(1) of Tailcond(tailf)}

Seqcond(S.i.j, R.j).

183

LEMMA B.22. Let for the arrays of non-empty trace structures R (j: O:,;;;j <n)

(Aj: O:,;;;j <n: Alfcond(S.j,R. J) I\ Seqcond(S.j, R.j)

I\ S.j and S.jtext(S.j) are prefix-free

/\ pref(S.j) satisfies rule g3

)

I\ AltcondO(j: O:,;;;j<n: S.j) I\ Altcondl(j: O:,;;;j<n: S.j)

/\ ((Aj: O:,;;;J<n I\ t(S.J)*{t:}: t(S.j)text(S.J)*{1:})

V (Aj: O~j <n : t(S.j)t ext(S.j) = { 1:} /\ t(R.j)t ext(R.j) = { 1:})

).

If n > 1 =? (Aj: O:,;;;j<n: t(S.J)*{1:}), then for all n;;;;.O we have

AltcondO(j :O~j <n: S.j) =? AltcondO(j:O:,;;;j <n: S.j;R.j)

and

Altcond l(j :O~j <n: S.j) =? Altcondl(j:O:,;;;j <n: S.j ;R.J).

PROOF. Let R(j:O:,;;;j <n) and S(j:O~j<n) be arrays of n.e. trace structures
for which the above holds. Let furthermore

n > 1 =? (Aj :O:,;;;j <n: t(S.J)*{ 1:})

hold. We derive for n > 1
(i) By Theorem B.12.2, hd(S.j)=hd(S.j;R.j).
(ii) By Lemma B.23

fprop O(S.j) =? fprop O(S.j ;R.j)

I\ fprop l(S.j) =? fprop l(S.j ;R.j).

(iii) If firstO(S.j) is defined for O~j <n, then it follows, with (i), that
hd(S.j ;R.j) c;, in(S.j ;R.j) v hd(S.j ;R.j) c;;;, out(S.j ;R.j). Hence, by Theorem
B.14.0, firstO(S.j) = firstO(S.j ;R.j).

(iv) Furthermore, if for all j, O~j<n, t(S.j)text(S.J)*{t:}, then we derive by
Theorem B.14.1,

firstl(S.j)=firstl(S.j ;R.j).

If for all j, O:,;;;j<n, t(S.j)text(S.j)={t:} /\ t(R.j)text(R.j)={t:}, then we
derive by Theorem B.16.1 and by Theorem B.14.1,

firstl(S.j) c;;;, { 0} /\ firstl(R.j) c;;;, { 0 } /\ firstl(S.j ;R. J) = firstl(R.j).

Hence, firstl(S.j) c;, { 0 } /\ firstl(S.j ;R. J) c; { 0 } .
Consequently, by definition of AltcondO and Altcond 1, we conclude for n > 1

by (i), (ii), (iii), and (iv)

184

AltcondO(j :O,r;;;;.J <n: S.J) =? AltcondO(j:O,r;;;;.J <n: S.j;R.j)

and

Altcond l(j :O,r;;;;.J <n: S.J) =? Altcondl(j:O,r;;;;.J <n: S.j ;R.J).

Appendix B

By definition of AltcondO and Altcond 1, these properties also hold for n ,r;;;;. I.

□

LEMMA B.23. Let R and S be non-empty trace structures for which
Alfcond(S, R) I\ Seqcond(S, R) holds and Sis prefixfree. We have

(i) ((tS={E} I\ tR={E}) V tS=;t={E})
I\ fpropO(S) =? fpropO(S ;R).

(ii) ((tStextS={E} /\ tRtextR={E}) v tStextS=;t={E})
A St extS is prefix-free
A prefS satisfies rule g 3
I\ fprop l(S) =? fprop l(S ;R).

PROOF. Let S and R be n.e. trace structures for which
Alfcond(S,R) I\ Seqcond(S,R) holds. We prove (ii). The proof fot (i) is simi
lar to the proof of (ii).

Let fprop l(S) hold, Sand StextS are prefix-free, and prefS satisfies rule g3.
We observe
(i)

tStextS={E} A tRtextR={E}

= {Alfcond(S,R), calc.}

t(S ;R)text(S ;R)= { E}.

Consequently, in case tStextS={E} A tRtextR={E} we conclude, by the
definition of fprop 1, that fprop l(S ;R) holds, because of the empty
domain in the quantification.

(ii) If tStextS=;t={E} we derive

tStextS=;t={ £}

= { St extS is prefix-free}

HitStextS.

Moreover, from fprop l(R) follows that firstlS is defined. Since
EE;ltStextS, we have EEltS, and by Theorem B.12.2 and S being prefix-free
we conclude hd(S ;R)\;;;in(S ;R) v hd(S ;R)\;;;out(S ;R). Furthermore, we
infer

t Etpref(S ;R)text(S ;R) I\ t=;t=E

=? {calc., E<;etStextS see above, Alfcond(S,R)}

B.3. Proofs of Theorems B.3. through B.5.

(Es,r::t=sr A sEtprefStextS A rEtprefRtextR

A (sEtStextS V r =€) A s-=j=.£.

)

~ {.fferop l(S)}

(Es,r,u: uEtprefStextS A set(u)EfirstlS

: (u~s V s~u) A (sEtStextS V r =£)

A t=sr A sEtprefStextS A rEtprefRtextR

)

~ {Alfcond(S,R), Seqcond(S,R), S and StextS are prefix-free,

prefS satifies rule g3, tStextS-=/=-{£}, Theorem B.14.1, calc.,

hd(S ;R) ~out(S ;R) V hd(S ;R) ~in(S ;R), see above}

(Es,r,u: uEtprefStextS A set(u)Efirstl(S;R)

:(u~s v s~u) A (sEtStextS v r=E)

At =sr A sEtprefStextS A rEtprefRtextR

)

~ {calc., StextS is prefix-free}

(Eu:uEtpref(S;R) A set(u)Efirstl(S;R)

:u~t v t~u

).

By definition of fprop 1, we conclude that fprop l(S ;R) holds.

□

185

PROOF OF THEOREM B.5.0. Let REGC4, SEGC4, and Alfcond(R,S). We
prove RIISEGC4.

rule gl: Since Rand Sare p.c.n.e. we have that RIIS is p.c.n.e. as well. Because
of Alfcond(R,S), it follows that any two alphabets of distinct type of RIIS are
disjoint.

rule g2: Let aEext(RIIS), we observe

saaEt(RIIS)

~{ def. of weaving}

saataREtR A saataSEtS

~{R and S satisfy rule g2, Alfcond(R,S), calc.}

186

false.

rule g3: Let the symbols x and y satisfy

(x E i(R IIS) U co(R IIS) /\ y E i(R IIS) U en(R IIS))

v (xEo(RIIS)Uen(RIIS) AyEo(RIIS)Uco(RIIS))

We observe

sxyt Et(R IIS)

~{ def. of weaving}

sxytt aR E tR I\ sxytt aS EtS

~{ calc., Alfcond(R,S), R and S satisfy rule g 3}

syxttaR EtR I\ .ryxttaS EtS

~{ def. of weaving, syxt E(aR U aS)*}

syxt Et(R IIS).

Appendix B

rule g4": Let the symbols a and b be of different type, {a,b}Cext(RIIS). We
observe

sabtcEt(RIIS) I\ sbatEt(RIIS)

~{ def. of weaving}

sabtctaR EtR I\ sbattaR EtR

I\ sabtct as E tS I\ sbatt aS E ts
~{ calc., Alfcond(R,S), R and S satisfy rule g4"}

sbatct aR EtR I\ sbatct aS EtS

~{ def. of weaving, sbatc E(aR U aS)*}

sbatc Et(R IIS).

rule g5"': Similar to rule g4".

□

PROOF OF THEOREM B.5.1. Let R and S be n.e.p.c. trace structures for which
Disfree(R), Disfree(S), and Alfcond(R,S) hold. We prove Disfree(R IIS).

We observe for arbitrary traces u, v, and symbol b,

uEtpref(RIIS) I\ vbEtpref(RIIS) I\ bEout(RIIS)

I\ ut(ext(RIIS)Uco(R IIS))=vt(ext(R IIS)Uco(R IIS))

~{ def. of weaving, Alfcond(R,S), calc.}

8.4. Proofs of Theorems 8.6 through 8.9

utaREtprefR /\ vbtaREtprefR /\ (btaREoutR V btaR=t:)

/\ ut(extR UcoR)=vt(extR UcoR)

~{If btaR:j=E we use Disout(R), calc.}

(utaR)(btaR)EtprefR

~{calc.}

ubtaR EtprefR.

187

Similarly, with Disout(S), we find ubtaSEtprefS. Since ubE(aRUaS)*, we
derive, by definition of weaving,

ub Et(prefR llprefS)

~{pref(RIIS)=prefR llprefS for prefix-closed Rand S}

ub Etpref(R 11S).

Consequently, Disout(R 11S) holds.
Similarly, we derive

Disin(R) I\ Disin(S) I\ Alfcond(R,S) ~ Disin(RIIS).

□

B.4. PROOFS OF THEOREMS B.6 THROUGH B.9

PROOF OF THEOREM B.6.0. Let pref RE GC 3, pref SE GC 3, Alfcond(R,S), and
AltcondO(R,S) hold. We prove pref(RIS)EGC3.

rule gl: Obviously, pref(RIS) is also prefix-closed and non-empty. Because of
Alfcond(R,S), it readily follows that any two alphabets of distinct type of RIS
are disjoint.

rule g2: Let a Eext(R jS). We observe

saa fl. tpref(RjS)

={calc.}

saa fl. t prefR /\ saa fl. t prefS

= {prefR and prefS satisfy rule g2}

true.

rule g3: Let

(x E i(RjS)Uco(RjS) /\ yE i(RjS)Uen(RIS))

v (xE o(RIS)Uen(RIS) /\ yE o(RIS)Uco(RIS)).

188

We observe

sxytEtpref(RIS)

={calc.}

sxytEtprefR v sxytEtprefS

~ {Alfcond(R,S), prefR and prefS satisfy rule g3}

syxtEtprefR v .ryxtEtprefS

={calc.}

.ryxt Etpref(RIS).

Appendix B

rule g4': Let a and b be of different type, {a,b} (:ext(RIS).

sabtEtpref(RIS) I\ sbEtpref(RIS)

={calc.}

(sabtEtprefR v sabtEtprefS) /\ (sbEtprefR v sbEtprefS)

={AltcondO(R,S), Alfcond(R,S), Lemma B. 24, calc.}

(sabtEtprefR I\ sbEtprefR) v (sabtEtprefS /\ sbEtprefS)

~{prefR and prefS satisfy rule g4', Alfcond(R,S}

sbatEtprefR v sbatEtprefS

={calc.}

sbat Etpref(RIS).

rule g5"': Let a and b be of different type { a,b} (:ext(R IS).

saEtpref(RIS) I\ sbEtpref(RIS)

□

~{Alfcond(R,S), AltcondO(R,S), Lemma B.24, calc.}

(saEtprefR I\ sbEtprefR) v (saEtprefS I\ sbEtprefS)

~{prefR and prefS satisfy rule gS"', Alfcond(R,S)}

sabEtprefR v sbaEtprefS

~{calc.}

sabEtpref(RIS).

LEMMA B.24. For a and b of different type, {a,b} (:ext(RIS), Alfcond(R,S), and
AltcondO(R,S) we have

-,(sa EtprefR /\ sb EtprefS).

B.4. Proofs of Theorems B.6 through B.9 189

PROOF. Let Alfcond(R,S) and AltcondO(R,S) hold. Assume
aeo(RIS) I\ bei(RIS) and hdRkinR /\ hdSkinS. We infer

sa etprefR /\ sb etprefS

~{hdR kinR, Alfcond(R,S)~aeoR, def. of firstOR, calc.}

(Er: retprefR I\ set(r)efirstOR

: r,<,s I\ sbetprefS I\ r=:/=f.}

~{AltcondO(R,S) ~fpropO(S), calc.}

(Er,t: r EtprefR /\ set(r)efirstOR /\ t etprefS /\ set(t)efirstOS

: (r,<,t v 1,<,r) I\ r=:/=f.)

~{AltcondO(R,S) ~ llcondO(R,S)}

false.

For reasons of symmetry, a similar reasoning applies when
hdR k outR I\ hdS k outS.

□

PROOF OF THEOREM B.6.1.
Let prefReGC3, prefSeGC3, Alfcond(R,S), and Seqcond(R,S) hold and R be
prefix-free. We prove pref(R ;S)eGC3.

rule gl: Since prefR and prefS are p.c.n.e. also pref(R ;S) is p.c.n.e .. Because
of Alfcond(R,S), it follows that any two alphabets of distinct type of pref(R ;S)
are disjoint.

For each of the following rules three cases are distinguished corresponding to
the ways in which a trace can be parsed as a member of pref(R ;S).

rule g2: Let a eext(R ;S) and saa etpref(R ;S). We distinguish three cases.
(i)

(ii)

saaetprefR

= {pref R satisfies rule g 2}

false.

saetR I\ aetprefS

= { def. of d and hd}

aetlR I\ aehdS

190

(iii)

= {Alfcond(R,S), Seqcond(R,S)}

false.

(Eu, v:: saa = uvaa I\ u E tR I\ vaa Et prefS)

= {prefS satisfies rule g 2}

false.

Hence, from (i), (ii) and (iii) we conclude saa i;etpref(R ;S).

rule g3: Let the symbols x and y satisfy

(x E i(R ;S) U co(R ;S) /\ y E i(R ;S) U en(R ;S))

V (xE o(R ;S)Uen(R ;S) /\ JE o(R ;S)Uco(R ;S))

and sxytEtpref(R ;S). We consider three cases.
(i)

(Eu,v::sxyt=sxyuv I\ sxyuEtR I\ vEtprefS)

=){Alfcond(R,S), prefR satisfies rule g3, calc.}

(Eu,v:: t=uv I\ syxuEtR I\ vEtprefS)

=){ calc.}

syxt Etpref(R ;S).

(ii)

(iii)

sx EtR /\ yt EtprefS

=){def.of hd and d}

XEdR /\yEhdS

=){Alfcond(R,S), Seqcond(R,S)}

false.

(Eu,v::sxyt=uvxyt I\ uEtR I\ vxytEtprefS)

=){Alfcond(R,S), prefS satisfies rule g3}

(Eu,v::s=uv I\ uEtR I\ vyxtEtprefS)

=){ calc.}

syxt Etpref(R ;S).

Consequently, (i) v (ii) v (iii)=) syxtEtpref(R;S).

Appendix B

8.4. Proofs of Theorems 8.6 through 8.9 191

rule g4': Let the symbols a and b be of different type and
{a,b}~extR I\ saEtpref(R;S) I\ sbatEtpref(R;S). We distinguish three
cases
(i)

(iz)

(iii)

(Eu,v::saEtpref(R;S) I\ sbat=sbauv I\ sbauEtR I\ vEtprefS)

~ { R is prefix-free, Lemma B.25.0, calc.}

(Eu,v::saEtprefR I\ t=uv I\ sbauEtR I\ vEtprefS)

~{prefR satisfies rule g4', Alfcond(R,S), Lemma B.26, R is prefix-free}

(Eu,v:: t=uv I\ sabuEtR I\ vEtprefS)

~{calc.}

sabt Etpref(R ;S).

sa Etpref(R ;S) /\ sb EtR /\ at EtprefS

~{R is prefix-free, Lemma B.25.0}

saEtprefR I\ sbEtR

~{Alfcond(R,S), prefR satisfies rule gS"'}

sbaEtprefR I\ sbEtR

={R is prefix-free}

false.

(Eu,v::saEtpref(R;S) I\ sbat=uvbat I\ uEtR I\ vbatEtprefS)

~{R is prefix-free, Lemma B.25.1}

(Eu,v::s=uv I\ uEtR I\ vaEtprefS /\ vbatEtprefS)

~{Alfcond(R,S), prefS satisfies rule g4'}

(Eu,v::s =uv I\ uEtR I\ vabtEtprefS)

~{calc.}

sabt Etpref(R ;S).

Accordingly, (i) V (ii) V (iii) ~ sabt Etpref(R ;S).

rule g 5"': Similar to proof of rule g 4'.
D

192 Appendix B

LEMMA B.25. (Without proof) For prefixfree R and non-empty S, we have for
traces r and s, and symbols a and b,

0. sbEtprefR I\ saEtpref(R;S) ~ saEtprefR.

1. rEtR I\ rsEtpref(R ;S) ~ sEtprefS.

□

LEMMA B.26. If prefR satisfies rule g4', R is prefixfree, and a and b are of
different type with { a, b} C extR, then

sa EtprefR /\ sbau EtR ~ sabu EtR.

PROOF. We observe

saEtprefR I\ sbauEtR

~{prefR satisfies rule g4', a and b of dif. type, { a,b} cextR}

sabu Et prefR.

Furthermore, for any symbol c we derive

sabuc Et prefR I\ sbau EtR

~{prefR satisfiesruleg4', a andb ofdif. type, {a,b}CextR,calc.}

sbauc Et prefR /\ sbau E tR

~{ R is prefix-free}

false.

From the above two observations we conclude the lemma.

□

PROOF OF THEOREM B.7. Generalization of proof of Theorem B.6.0 ton trace
structures, n >0.

□

PROOF OF THEOREM B.8.0. Let R and S be n.e. trace structures for which
Disfree(R) I\ Disfree(S) I\ Altcond l(R,S) I\ Alfcond(R,S) holds. Further
more, let prefR and prefS satisfy rule g3. We prove Disfree(RIS).

We observe

uEtpref(RIS) I\ vbEtpref(RIS) I\ bEout(RIS)

I\ ut(ext(RIS)Uco(RIS))=vt(ext(RIS)Uco(RIS))

~{Assume vbEtprefR, Alfcond(R,S)}

uEtpref(RIS) I\ vbEtprefR I\ bEoutR

I\ ut(ext(RIS) U co(R IS))= vt(ext(R IS) U co(R IS))

8.4. Proofs of Theorems 8.6 through 8.9

=9{Lemma B.27, Alfcond(R,S), Altcondl(R,S),

prefR and prefS satisfy rule g 3}

uetprefR A vbetprefR A beoutR

A ut(ext(RIS)Uco(RIS))=vt(ext(RIS)Uco(RIS))

=9{calc.}

uetprefR A vbetprefR A beoutR

A ut(extR UcoR)=vt(extR UcoR)

=9{ Disout(R)}

ubetprefR

=9{ calc.}

ub et pref(R IS).

193

For vbetprefS a similar reasoning applies. Consequently, Disout(RIS) holds.
Similarly, we derive

□

Disin(R) A Disin(S) A Alfcond(R,S) A Altcondl(R,S)

A prefR and prefS satisfy rule g 3

=9 Disin(R IS).

LEMMA B.27. For n.e. trace structures R and S with
Alfcond(R,S) I\ Altcondl(R,S) and prefR and prefS satisfy rule g3, we have

and

uetpref(RIS) A vbetprefR A beoutR

A ut(ext(RIS)Uco(RIS))=vt(ext(RIS)Uco(RIS))

=9 uetprefR

uetpref(RIS) A vbetprefR A beinR

A ut(ext(RIS) A en(RIS))=vt(ext(RIS)Uen(RIS)}

=9 u et prefR.

PROOF. Let R and S be n.e: trace structures with
Alfcond(R,S) I\ Altcondl(R,S) and prefR and prefS satisfy rule g3. We
observe

ut(ext(RIS)Uco(RIS))=vt(ext(RIS)Uco(RIS))

=9{calc.}

194 Appendix B

ut ext(R IS)= vt ext(R IS)

/\ utout(RIS)=vtout(RIS).

(0)

(1)

We first assume, because of Altcondl(R,S), hd(R)CoutR /\ hd(S)CoutS. We
infer

uEtpref(RIS) /\ vbEtprefR /\ bEoutR

={calc.}

(uEtpref(RIS) /\ vbEtprefR /\ uE(out(RIS))* /\ vbE(outR)*)

V (uEtpref(RIS) /\ vbEtprefR /\ (utin(RIS):,z!=t: V vbtinR:,z!=t:))

tj{Lemma B.28, Alfcond(R,S) I\ Altcondl(R,S), v, u: = vb, u,

prefR and prefS satisfy rule g3, hd(R)CoutR /\ hd(S)CoutS, (O)}

(uEtpref(RIS) /\ vbEtprefR /\ uE(out(RIS))* /\ vbE(outR)*)

V UEtprefR

tj{calc., (l)}

uEtprefR.

For hdR CinR /\ hdS CinS we derive

uEtpref(RIS) /\ vbEtprefR /\ bEoutR

={calc.}

uEtpref(RIS) /\ vbEtprefR /\ (utout(RIS):,z!=t: V vbtoutR:,z!=t:)

Similarly to the above derivation we then infer u EtprefR.
The second part of the theorem is proved similarly.

□

LEMMA B.28. For n.e. trace structures R and S, with Alfcond(R,S),
Altcondl(R,S), hd(R)CoutR I\ hd(S)CoutS, and prefR and prefS satisfy rule
g3, we have

vEtprefR /\ uEtpref(RIS)

/\ (vtinR :,z!=t: V utin(RIS):,z!=t:)

/\ utext(RIS)=vtext(RIS)

tj u Et prefR.

A similar lemma also holds with out and in replaced by in and out respectively.

PROOF. Let R and S be n.e. trace structures with
Alfcond(R,S) I\ Altcondl(R,S), hd(R)CoutR /\ hd(S)coutS, prefR and prefS
satisfy rule g3, and utext(RIS)=vtext(RIS). We prove

8.4. Proofs of Theorems 8.6 through 8.9

(i) vEtprefR /\ uEtprefS /\ vtinR =Ff ~ false.

For reasons of symmetry, we can then also conclude

(ii) vEtprefR /\ uEtprefS /\ utinS=Ff ~ false.

Derivation (i) and (ii) combined with

(iii) u EtprefS /\ Alfcond(R,S) ~ utin(RIS)=utinS.

yields

v Et prefR /\ u Et pref(R IS)

I\ (vtinR =Ff v utin(RIS)=Ff)

~{ (i), (ii), (iii), calc.}

uEtprefR.

We proceed with the proof of (i).

vEtprefR /\ vtinR=r6:f /\ hd(R)!;;;;outR /\ uEtprefS

~{Lemma B.29, prefR satisfies rule g3}

(Er: set(r)EfirstlR

: r~vtextR /\ rE(oR)* /\ r=F£ I\ vEtprefR /\ uEtprefS)

~{ utext(RIS)=vtext(RIS), Alfcond(R,S), calc.}

(Er: set(r)EfirstlR

195

: r~vtextR /\ rE(oR)* /\ r=Ff I\ vtextR =utextS /\ uEtprefS)

~{Alfcond(R,S), calc.}

□

(Er: set(r) EfirstlR

: rEtprefStextS /\ rE(oS)* /\ r=Ff)

~{Altcondl(R,S) ~ fprop l(S)}

(Er,s: set(r)EfirstlR I\ set(s)EfirstlS

: (r~s v s~r) I\ r=F£)

~{Altcondl(R,S) ~ llcond l(R,S), calc.}

false.

LEMMA B.29. If for a n.e. trace structure R. prefR satisfies rule g3, then

V EtprefR /\ vtinR=FE: /\ hd(R) coutR

~(Er:set(r)EfirstlR: r~vtextR I\ rE(oR)* I\ r=F£).

196 Appendix B

PROOF. Let R be a n.e. trace·structure and prefR satisfies rule g3. We observe

VEtprefR I\ vtinR=i:E I\ hd(R)coutR

~{calc.}

(Er::rE(outR)* I\ r~v I\ Suc(r,R)\outR=/=0 I\ vEtprefR)

~{prefR satisfies rule g3, hd(R)CoutR, see below}

(Er::rE(outR)* I\ r~v I\ Suc(r,R)\outR=/=0 I\ vEtprefR

I\ rtoR=/=f:)

~{hd(R)CoutR, def. of firstlR}

(Er: set(r)EfirstlR: r~vtextR I\ rE(oR)* I\ r=/=f:).

Let rbEtprefR I\ rE(outR)* I\ bt£outR. We have bt£outR ~ bEinR. If
rE(coR)*, then it follows, with rule g3 for prefR, that brEtprefR as well, con
tradicting hdR coutR. Consequently, rtoR=/=f:.

□

PROOF OF THEOREM B.8.1. Let R and S be n.e. trace structures such that
Disfree(R), Disfree(S), and Alfcond(R,S) hold. Let, furthermore,
Seqcond(R,S) hold and R and RtextR be prefix-free. We prove Disfree(R ;S)
by considering two cases corresponding to how a trace vb can be parsed as a
member of tpref(R ;S), viz.
(i) vb EtprefR or
(ii) vb fltprefR I\ vb Etpref(R ;S).
We observe
(i)

uEtpref(R ;S) I\ vbEtprefR I\ bEout(R ;S)

I\ ut(ext(R ;S)Uco(R ;S))=vt(ext(R ;S)Uco(R ;S))

~{calc.}

uEtpref(R;S) I\ vEtprefR I\ vbEtprefR I\ bEout(R;S)

I\ ut(ext(R ;S)Uco(R ;S))=vt(ext(R ;S)Uco(R ;S))

~{Lemma B.30 (i), Disout(R), R and RtextR are prefix-free,

Alfcond(R,S), take t 0,t 1: =u, v}

(Ero,s0 :: u=r0s0 I\ vbEtprefR I\ bEout(R ;S)

I\ roEtprefR I\ soEtprefS I\ (s0 =f: v r 0 EtR)

I\ r0t(extR UcoR)=vt(extR UcoR))

~{Disout(R), calc.}

B.4. Proofs of Theorems B.6 through B.9 197

(ii)

(Ero,s0 :: u=r0s0 I\ r0bEtprefR

I\ s 0 EtprefS /\ (so =t: v ro EtR))

~{R is prefix-free}

(Ero,s0 :: u=r0s0 I\ r0bEtprefR I\ soEtprefS I\ so=t:)

~{calc.}

ubEtprefR

~{calc.}

ub Etpref(R ;S).

uEtpref(R;S) I\ vb~tprefR I\ vbEtpref(R;S) I\ bEout(R;S)

I\ ut(ext(R ;S)Uco(R ;S))=vt(ext(R ;S)Uco(R ;S))

~{calc.}

u Etpref(R ;S) I\ v Et(R ;prefS) /\ vb Etpref(R ;S) I\ b Eout(R ;S)

I\ ut(ext(R ;S)Uco(R ;S))=vt(ext(R ;S)Uco(R ;S))

~{Lemma B.30 (ii), Disout(R), R and RtextR are prefix-free,

Alfcond(R,S), take to,t1:=u,v}

(Er0,s0 ,r1,s 1:: u=r0s0 I\ v=r 1s 1

I\ ro EtprefR /\ s0 EtprefS /\ (ro EtR v s0 =t:)

I\ r 1 EtR I\ s 1 EtprefS /\ vbEtpref(R ;S) I\ bEout(R ;S)

I\ r 0t(extR UcoR)=r1t(extR UcoR)

I\ s0t(extS UcoS)=s 1t(extS UcoS))

~{R is prefix-free, Lemma B.25.1, Alfcond(R,S)}

(Ero,s0 ,r1,s1:: u=r0s0 I\ v =r1s 1

I\ r0 EtprefR /\ s0 EtprefS /\ (r0 EtR v s0 =t:)

I\ r 1 EtR I\ s 1 EtprefS /\ s 1bEtprefS I\ bEoutS

I\ r 0 t(extR UcoR)=r1t(extR UcoR)

I\ s0t(extS UcoS)=s 1t(extS U coS))

~{Disout(S)}

(Ero,so,r1,s 1:: u=roso I\ r 1 EtR I\ bEoutS

I\ r0 EtprefR /\ s0b EtprefS /\ (r0 EtR v s0 =t:)

198 Appendix B

/\ r0t(extR UcoR)=r1t(extR UcoR))

~{calc.}

(Ero,so,r1,s1:: u=roso I\ r1 etR /\ beoutS

I\ r0 etprefR /\ sob etprefS /\ (ro etR V (ro titR I\ so =E))

/\ r 0t(extR UcoR)=r1t(extR UcoR))

~{Lemma B.31, R and RtextR are prefix-free, Disout(R)}

(Ero,s 0 ,r1 ,s1:: u=r0so I\ roetprefR /\ s0betprefS

/\ (r0 etR v (tlR nenR*0 /\ hdS noutS*0)))

~{Seqcond(R,S)}

(Ero,so:: u=roso I\ roetR I\ s0betprefS)

~{calc.}

ub etpref(R ;S).

For the proof of Disin(R ;S) a similar reasoning applies.

□

LEMMA B.30. If Rand RtextR are prefixfree and Disout(R) and Alfcond(R,S)
hold, then for arbitrary traces t O and t I we have

t0 etpref(R;S) /\ t 1Etpref(R;S)

/\ t0t(ext(R ;S)Uco(R ;S))=t1t(ext(R ;S)Uco(R ;S))

~(Ero,s0 ,r1_,s 1 :: to =r0so I\ t 1 =r1s 1

Moreover, if

I\ r0 etprefR /\ s0 etprefS /\ (s0 =E v r0 etR)

I\ r1 etprefR /\ s 1 etprefS /\ (s1 =E V r1 etR)

/\ r 0t(extR UcoR)=r1t(extR UcoR)

/\ s0t(extS UcoS)=s 1t(extS UcoS)).

(i) t1 etprefR, then s 1 =E

(ii) t 1 et(R;prefS), then r 1 etR.
A similar lemma holds with co replaced by en and using Disin(R) instead of
Disout(R) as a condition.

PRooF. Let R and RtextR be prefix-free and Disout(R) and Alfcond(R,S)
hold. Let furthermore

t0 etpref(R;S) /\ t 1 etpref(R;S)

/\ t0t(ext(R ;S)Uco(R ;S))=t1t(ext(R ;S)Uco(R ;S)).

B.4. Proofs of Theorems 8.6 through 8.9

By definition of concatenation we deduce

(Ero,so,r1,s1:: to=roso I\ t1=r1s1

199

I\ r0 etprefR /\ s0 etprefS /\ (s 0 =t v r0 etR) (0)

I\ r 1 etprefR /\ s 1 etprefS /\ (s 1 =t v r 1 etR)).

We prove for r 0 and r 1 in (0) that r0t(extR UcoR)=r1t(extR UcoR). Then
we have s0t(extS UcoS)=s 1t(extS UcoS) as well, since

r0t(extR UcoR)=r1t(extR UcoR)

={roetprefR, r1 etprefR, Alfcond(R,S), calc.}

r0t(ext(R ;S)Uco(R ;S))=r1t(ext(R ;S)Uco(R ;S))

= {r0s0t(ext(R ;·S)Uco(R ;S))=r1s 1t(ext(R ;S)Uco(R ;S)), calc.}

s0t(ext(R ;S)Uco(R ;S))=s 1t(ext(R ;S)Uco(R ;S))

={soetprefS, s 1 etprefS, Alfcond(R,S), calc.}

s0t(extS UcoS)=s 1t(extS UcoS).

First, we inf er

r0s0 t(ext(R ;S)Uco(R ;S))=r1s 1t(ext(R ;S)Uco(R ;S))

=>{calc.}

(rot extR)(sot extR) = (r I t extR)(s 1 t extR)

=>{ Rt extR is prefix-free, (0)}

rotextR =r1textR.

We derive

rot(extR UcoR)-< r 1t(extR UcoR)

= {r0 etprefR, r1 etprefR, calc.}

(Eu,b:: r 0 etprefR /\ r 1 etprefR /\ ub~r1 I\ be(extR UcoR)

/\ r 0t(extR UcoR)=ut(extR UcoR))

= {r0textR =r1textR, cf. (1), calc.}

(Eu,b::r0 etprefR /\ r 1etprefR /\ ub~r, I\ becoR

/\ r0t(extR UcoR)=ut(extR UcoR))

=>{Disout(R)}

(Eb:: robetprefR)

=>{R is prefix-free, t0 =r0s0 I\ (s0 =t v r0 etR), cf. (0)}

to=ro

(1)

(2)

200 Appendix B

~{t0 t(ext(R ;S)Uco(R ;S))=t 1t(ext(R ;S)Uco(R ;S)), t 1 =r 1s 1 }

r 0 t(ext(R ;S)Uco(R ;S))=r 1s 1t(ext(R ;S)Uco(R ;S))

~{calc.}

r 0 t(extR UcoR)=r 1s 1t(extR UcoR)

~{calc.}

r0 t(extR UcoR)~r 1t(extR UcoR)

~{(2)}

false.

For reasons of symmetry, we conclude

r0 t(extR UcoR)=r 1t(extR UcoR).

Finally, we observe that the properties (i) and (ii) follow from the property
that R is prefix-free.
□

LEMMA B.31. If Rand RtextR are prefixfree and Disout(R) holds, then

r 1 EtR I\ r0 EtprefR A r0 etR

I\ r 0 t(extR UcoR)=r 1t(extR UcoR)

~ tlR nenR:¥=0.

Similarly, if Disin(R) holds, then

r 1 EtR I\ r0 EtprefR A r0 etR

I\ r0 t(extR UenR)=r 1t(extR UenR)

~ tlR ncoR:¥=0.

PROOF. Let Rand RtextR be prefix-free and Disout(R) holds. Let furthermore
r 1 EtR and r0 t(extR UcoR)=r 1t(extR UcoR). We observe

r0 EtprefR /\ r0 etR

~{calc.}

(Eu:: r0uEtR I\ u:¥=£)

~{r0t(extR UcoR)=r1t(extR UcoR), calc.}

(Eu:: r0uEtR I\ u:¥=£ I\ r0 textR =r 1textR)

~{r 1 EtR ~ r 1textREtRtextR, RtextR is prefix-free}

(Eu:: r0uEtR I\ u:¥=£ I\ utextR =£).

B.5. Proofs of Theorems B.10 through B.16

If utcoR:¥= t:, let b be the first symbol in utcoR, i.e. for some v we have

r0uEtR I\ r0vb~r0 u I\ vE(enR)* /\ bEcoR

~{r0t(extR UcoR)=r1t(extR UcoR), r 1 EtR, calc.}

rovb EtprefR /\ r 1 EtR /\ b EcoR

/\ r 0vt(extR UcoR)=r1t(extR UcoR)

~{Disout(R)}

r1bEtprefR /\ r1 EtR

~{ R is prefix-free}

false.

Consequently, utcoR =t:, and we find

(Eu::rouEtR I\ u=¥=t: I\ uE(enR)*)

~{calc., def. of tl}

t1R nenR:¥:0.

The proof for the second part is done similarly.

□

201

PROOF OF THEOREM B.9. Generalization of the proof of Theorem B.8.0 to n
trace structures, n ;;;.o.
□

B.5. PROOFS OF THEOREMS B.10 THROUGH B.16

PROOF OF THEOREM B.10. We prove Theorem B.10.1. The proof of Theorem
B.10.0 is similar. Let R and S be n.e. prefix-free trace structures, prefR and
prefS satisfy rule g3, RtextR and StextS are prefix-free, and
Altcondl(R,S) I\ Alfcond(R,S) hold. We prove that (RJS)text(RJS) is prefix
free, i.e.

rsEt(RJS)text(RIS) /\ rEt(RJS)text(RJS) ~ s=t:.

First we observe for t:~t(RtextR) /\ t:~t(StextS)

rsEt(RtextR) /\ rEt(StextS) /\ r=¥=t:

~ { R and S are prefix-free, calc.}

(Ero,so::roEtR I\ rs=rotextR I\ Suc(ro,R)=0 I\ r=¥=t:

I\ soEtS I\ r=s0textS /\ Suc(s0 ,S)= 0)

202

~ {Altcond l(R,S) ~ firstlR and firstlS are defined, calc.,

prefR and prefS satisfy rule g3, Lemma B.32}

(Eu,v:set(u)EfirstlR I\ set(v)EfirstlS

: u ~rs I\ u-=/=£ I\ v ~r I\ v-=/=£)

~ {calc.}

(Eu,v: set(u)EfirstlR I\ set(v)EfirstlS

:(u~v V v~u) I\ u-=/=£ I\ v-=/=£)

~{Altcondl(R,S) ~ llcondI(R,S), calc.}

false.

Appendix B

Similarly, rEt(RtextR) /\ rs Et(StextS) ~ false. Consequently, we infer

rsEt(RjS)text(RjS) /\ rEt(RjS)text(RjS) /\ r-=/=£

~ {Alfcond(R,S), calc.}

(rsEtRtextR V rsEtStextS) /\ (rEtRtextR V rEtStextS)/\ r-=/=£

~ { see above, calc.}

(rsEtRtextR /\ sEtRtextR) V (rsEtStextS /\ rEtStextS) /\ r-=/=£

~ {RtextR and StextS are prefix-free}

For f.EtStextS v £EtRtextR, we observe

f.EtStextS

= {StextS is prefix-free}

{ t:} =tStextS

= {prefS satisfies rule g3, Sis prefix-free and n.e., Th. B.16.1, calc.}

firstlS = { 0 }

= {Altcondl(R,S), Rand Sare n.e.}

firstlR = { 0 }

= {prefR satisfies rule g 3, R is prefix-free and n.e., Th. B.16.1, calc.}

{'-} =tRtextR

= {RtextR is prefix-free}

f.EtRtextR.

Accordingly, £EtStextS V f.EtRtextR ~ t(RjS)text(RIS)={'-}, and we con
clude that (R jS)t ext(R IS) is prefix-free.

B.5. Proofs of Theorems 8.10 through B.16 203

LEMMA B.32. If, for a n.e. trace structure R, firstlR is defined and prefR
satisfies rule g 3, then

rEtR /\ Suc(r,R)= 0 /\ rtextR¥:t:

~ (Eu: set(u)EfirstlR: u~rtextR /\ u¥:t:).

PROOF. Since firstlR is defined, we may assume hdR c;;;outR. We observe

rEtR /\ Suc(r,R)= 0 /\ rtextR¥:t:

~ { calc., hdR c;;; outR}

(Eu::rEtprefR /\ u~r /\ uE(outR)*

/\ (Suc(u,R)\outR¥=0 V Suc(u,R)= 0)

) /\ rtextR¥:t:

~ {hdR c;;;outR, prefR satisfies rule g3, see below}

(Eu:: uEtprefR /\ u~r /\ utextR¥:t: /\ uE(outR)*

/\ (Suc(u,R) \ outR¥: 0 V Suc(u,R) = 0)

)

~ { def. of firstlR, calc.}

(Eu: set(u)EfirstlR: u~rtextR /\ u¥:t:).

Step (0) in the above derivation follows from the derivation below.

u~r /\ uE(outR)* /\ utextR=t: /\ rtextR¥:t: /\ rEtprefR

~ {calc.}

u~r /\ uE(coR)* /\ utextR=t: /\ rtextR¥:t: /\ rEtprefR

~ {Suc(u,R)\outR¥:0 v Suc(u,R)=0, calc.}

Suc(u,R)\outR¥=0 /\ uE(coR)*

~ {calc.}

(Eb:bEinR: ubEtprefR /\ uE(coR)*)

~ {prefR satisfies rule g3}

(Eb:bEinR: buEtprefR)

~ {hdR C outR}

false.

Hence, implication (0) holds.
For hdR c;;;inR a similar proof applies.

D

(0)

204 Appendix B

PROOF OF THEOREM B.11.0. Let R and S be n.e. prefix-free trace structures.
We observe for arbitrary traces r and s

rs Et(R ;S) I\ r Et(R ;S)

~ { calc.}

(Ero,so:: r =roso I\ ro EtR I\ so EtS I\ r 0s0s Et(R ;S))

~ { R is prefix-free }

(Eso::soEtS I\ sosEtS)

~{Sis prefix-free}

Consequently, R ;Sis prefix-free.
□

PROOF OF THEOREM B.11.1. Let Rand S be n.e. trace structures, RtextR and
StextS are prefix-free, and Alfcond(R,S) holds. We observe

(R ;S)t ext(R ;S)

= {Alfcond(R,S), calc.}

(Rt extR);(St extS).

Subsequently, by Theorem B.11.0 we immediately derive that
(RtextR);(StextS) is prefix-free, and so (R ;S)text(R ;S) is prefix-free as well.
□

PROOF OF THEOREM B. 13. Let R and S be n.e. trace structures with
Alfcond(R,S) I\ AltcondO(R,S). Since AltcondO(R,S) holds, we may assume
hdR ~outR A hdS ~outS and firstO(RIS) is defined. For
hdR ~inR /\ hdS ~inS the proof is similar.
(i) We observe

tE(o(RIS))* I\ tEtpref(RIS) At-=/=£

I\ (Suc(t,RIS) \ o(R!S)-=/=0 V Suc(t,RIS)= 0)

= {calc., Alfcond(R,S)}

tE(oRUoS)* A tEtpref(RIS) At-=/=£

I\ (Suc(t,R)\oR-=/=0 V Suc(t,S)\oS-=/=0

V (Suc(t,R)= 0 A Suc(t,S)= 0))

= {calc.}

(t E(oR U oS)* A t Etpref(R IS) A Suc(t,R) \ oR-=/= 0 A t-=/=£)

V (tE(oRUoS)* /\ tEtpref(RIS) /\ Suc(t,S)\oS-=/=0 I\ t-=/=£)

B.5. Proofs of Theorems B.10 through B.16

v (tE(oRUoS)* /\ tEtpref(RIS)

I\ Suc(t,R)= 0 /\ Suc(t,S)= 0 /\ t=/=£)

= {calc., Alfcond(R,S), Altcond0(R,S), cf. equivalence (0) below}

(tE(oR)* I\ tEtprefR /\ Suc(t,R)\oR=/=0 I\ t=/=£)

v (tE(oS)* /\ tEtprefS /\ Suc(t,S)\oS=/=0 I\ t=/=£)

V (tE(oR)* /\ tEtprefR /\ Suc(t,R)=0 I\ I=/=£)

v (tE(oS)* /\ tEtprefS /\ Suc(t,S)= 0 /\ t=/=£)

= {calc.}

(tE(oR)* I\ tEtprefR /\ t=/=£

I\ (Suc(t,R) \ oR=/= 0 v Suc(t,R) = 0))

v (tE(oS)* /\ tEtprefS /\ t=/=£

I\ (Suc(t,S) \ oS=/= 0 V Suc(t, S) = 0))

The equivalence

tE(oR UoS)* /\ tEtpref(RIS)

I\ Suc(t,R)= 0 /\ Suc(t,S)= 0 /\ t=/=£

= {Alfcond(R,S), A/tcond0(R,S)}

(t E(oR)* /\ t Et pref R I\ Suc(t,R)= 0 /\ I=/=£)

V (tE(oS)* /\ tEtprefS /\ Suc(t,S)= 0 /\ I=/=£)

follows from

205

(0)

tE(outR)* I\ tEtprefR /\ Suc(t,R)= 0 /\ Suc(t,S)=/=0 I\ t=/=£

~ {hdR k outR, def. of firstOR, calc.}

(Er:set(r)EfirstOR:r~t) I\ tEtprefS /\ Suc(t,S)=/=0 I\ t=/=£

~ {hdS koutS, def. of firstOS, calc.}

(Er,s: set(r)EfirstOR I\ set(s)EfirstOS

: r~t I\ (t~s V s~t) I\ s=/=£)

~ {Altcond0(R,S) ~ //cond0(R,S)}

false,

and, similarly, with R and S interchanged. This gives the ~-part of (0).
The ~-part is obvious.

(ii) Furthermore, we derive

{{b}lbEco(RIS) /\ bEtpref(RIS)}

206

= { calc., Alfcond(R,S)}

{{b}lbEcoR /\ bEtprefR}

U{{b}lbEcoS /\ bEtprefS}.

(iii) Third, we have

t(RIS)={£} = tR={£} /\ tS={£}.

From (i), (ii), and (iii), and the definition of firstO we conclude

firstO(R IS)= firstOR U firstOS.

Similarly to (i) we prove for firstl(RIS)

tE(out(RIS))* I\ tEtpref(RIS)

I\ (Suc(t,RIS)\out(RIS)=:/=0 V Suc(t,RIS)= 0)

= {Alfcond(R,S), A/tcondO(R,S)}

Appendix B

(tE(outR)* I\ tEtprefR /\ (Suc(t,R)\outR=:/=0 v Suc(t,R)= 0))

V(tE(outS)* /\ tEtprefS /\ (Suc(t,S) \ outS=:/=0 V Suc(t,S)= 0)).

Consequently, we have by definition of firstl

firstl(RI S) = firstlR U firstlS.

□

PRooF OF THEOREM B.14.0. Let R and S be n.e. trace structures, with
hd(R ;S) c;in(R ;S) v hd(R ;S) c;out(R ;S). Hence, firstO(R ;S) is defined. Let
furthermore, R be prefix-free and Alfcond(R,S) I\ Seqcond(R,S) hold.

If tR = { £ }, then t(R ;S)=tS and firstO(R ;S)=firstOS, by Alfcond(R,S).
If tR=:/={£}, then it follows, since R is prefix-free, that £~tR. We observe for

hd(R ;S) c;out(R ;S)
(i)

tE(o(R;S))* I\ tEtpref(R;S) /\ t=:/=£

I\ (Suc(t,R;S)\o(R;S)=:/=0 v Suc(t,R;S)=0)

= {Seqcond(R,S), Alfcond(R,S), calc., £~tR, Rand Sare n.e.}

tE(oR)* I\ tEtprefR /\ t=:/=£

I\ (Suc(t,R ;S) \ o(R ;S)=:/=0 v Suc(t,R ;S)= 0)

= { R is prefix-free, Alfcond(R,S) calc.}

tE(oR)* I\ tEtprefR /\ t=:/=£

I\ (Suc(t,R) \ oR=:/= 0 v Suc(t,R) = 0).

B.5. Proofs of Theorems 8.10 through B.16

(ii) Moreover,

b eco(R ;S) /\ b etpref(R ;S)

= {Alfcond(R,S}, t~tR, calc., R and S are n.e.}

becoR I\ betprefR.

(iii) Third, wehavet(R;S)={t} = tR={t} /\ tS={t}.

From (i), (ii), and (iii) and the definition of firstO we conclude

tR=;={ t} ==> firstO(R ;S)=firstOR.

For reasons of symmetry the theorem also holds for hd(R;S)Cin(R;S).

□

207

PROOF OF THEOREM B.14.1. Let R and S be n.e. trace structures with
hd(R ;S)Cin(R ;S) v hd(R ;S)Cout(R ;S), prefR satisfies rule g3, R and
RtextR are prefix-free, and Aifcond(R,S) I\ Seqcond(R,S) hold.

First we consider t(RtextR)=;={t}. Because RtextR is prefix-free, it follows
t~tRtextR. We observe, assuming hd(R ;S)Cout(R ;S},

te(out(R;S))* /\ tetpref(R;S)

I\ (Suc(t,R ;S) \ out(R ;S) =;= 0 v Suc(t,R ;S) = 0)

= {Aifcond(R,S), Seqcond(R,S), t~tRtextR, prefR sat. rule g3,

Lemma B.33}

tE(outR)* /\ tEtprefR

I\ (Suc(t,R ;S) \ out(R ;S) =;= 0 V Suc(t,R ;S) = 0)

= { R is prefix-free, Aifcond(R,S)}

te(outR)* /\ tetprefR

I\ (Suc(t,R) \ outR:,=0 v Suc(t,R)= 0).

Since tetprefR /\ Aifcond(R,S), we have ttext(R;S)=ttextR. Consequently,
we conclude from the definition of firstl and Alfcond(R,S)

RtextR=;={t} ==> firstl(R ;S)=firstlR.

For t(RtextR)={t} we derive the following. Assume hd(R;S)Cout(R;S)
again. Consequently, by Aifcond(R,S}, hdR CoutR. We derive

t(RtextR)={t}

= {calc.}

tR C(intR)*

= {prefR satisfies rule 3, hdR C outR,

shift first beenR in any tetR, if present, to beginning oft}

208

tR C(coR)*

~ {Seqcond(R,S), hd(R ;S)Cout(R ;S), Alfcond(R,S), calc.}

hdS C outS /\ firstlS is defined.

Subsequently,

t E(out(R ;S))* I\ t Etpref(R ;S)

I\ (Suc(t,R ;S) \ out(R ;S)=/= 0 v Suc(t,R ;S) = 0)

= {tR C(coR)*, Alfcond(R,S), calc.}

Appendix B

(Er,s::t=rs I\ rEtR I\ sEtprefS /\ rE(coR)* I\ sE(outS)*

I\ (Suc(s,S)\outS=/=0 v Suc(s,S)=0)

I\ ttext(R ;S)=stextS).

Hence, from the definition of firstl(R ;S) and firstlS we infer

t(RtextR)= { £} ~ firstl(R ;S)=firstlS.

For hd(R ;S) C in(R ;S) a similar proof applies.
D

LEMMA B.33. For n.e. trace structures R and S with
Alfcond(R,S) I\ Seqcond(R,S) I\ £~tRtextR /\ prefR satisfies rule g3, we have

IE(out(R;S))* I\ tEtpref(R;S)

~ tE(outR)* I\ tEtprefR.

A similar lemma holds for out replaced by in

PROOF. Let tEtpref(R ;S) and tE(out(R ;S))*. We have either tEtprefR or
(Er,s:: t =rs I\ rEtR I\ sEtprefS /\ s=/=£). We observe

(Er,s:: t =rs I\ rEtR I\ sEtprefS /\ s=/=£)

~ {t E(out(R ;S))*, Alfcond(R,S), £~tRtextR, calc.}

(Er,s:: rEtR I\ rE(outR)* I\ rtoR=/=£

/\ sEtprefS /\ sE(outS)* /\ s=/=£

)

~ {pref R satisfies rule g 3, shift symbol from oR in r to the end of r}

tlR n oR =I= 0 /\ hdS n outS=/= 0

~ { Seqcond(R,S)}

false.

Consequently, we derive

B.5. Proofs of Theorems 8.10 through 8.16 209

D

tE(out(R;S))* I\ tEtpref(R;S)

~ {Alfcond(R,S), Seqcond(R,S), E:e,tRtextR,

pref R satisfies rule g 3, see above}

tE(outR)* I\ tEtprefR.

PROOF OF THEOREM B.15. Let R be a prefix-free, n.e. trace structure with
hd.R C outR v hd.R C inR. We derive

t Et pref R I\ t=/=£

~ {R is prefix-free}

(Er: rEtR: t~r I\ Suc(r,R)= 0 /\ t=/=£)

~ { Assume hd.R C outR, calc.}

(Er: rEtprefR

: (t~r v r~t)

I\ ((rE(oR)* I\ r=/=£ I\ (Suc(r,R)\ oR=/=0 V Suc(r,R)= 0))

v rEcoR

)

)

= {def. of firstOR, which is defined since hd.R C outR v hd.R C inR}

(Er: set(r)EfirstOR: r~t V t~r).

Consequently, jpropO(R) holds. For reasons of symmetry jj,ropO(R) also holds
for hd.R C inR.

The property jj,rop l(R) is proved similarly.
D

PROOF OF THEOREM B.16. Let R be a n.e. trace structure with
hd.R c;inR v hd.R c;outR, hence firstOR and firstlR are defined. For the proof
of B.16.1, we infer tRtextR={E:} ~ first1Rc;{0}, by definition of firstlR.
Furthermore, we derive

tRtextR=/={ £}

~ { R is prefix-free and n.e.}

(Er:: rEtR I\ rtextR=/=E: /\ Suc(r,R)= 0)

~ {Lemma B.32, firstlR is defined, prefR satisifies rule g3}

(Eu::set(u)EfirstlR I\ u=/=E)

210

~ { calc.}

,(firstlR <;;:; { 0}).

For B.16.0 a similar proof applies.
D

Appendix B

211

REFERENCES

[0] G. BIRKHOFF, Lattice Theory, American Mathematical Society, Provi
dence, 1967, (AMS Colloquium Publications: Vol. 25).

[l] A.W. BURKS et. al., PreUminary Discussion of the Logical Design of an
Electronic Computing Instrument, (1946), in: [35].

[2] T J. CHANEY, A Comprehensive Bibliography on Synchronizers and Arbiters,
Technical Memorandum No. 306C, Institute for Biomedical Computing,
Washington University, St. Louis.

[3] T J. CHANEY and C.E. MOLNAR, Anomalous Behavior of Synchronizer
and Arbiter Circuits, IEEE Transactions on Computers, Vol. C-22 (1973),
pp. 421-422.

[4] W .A. CLARK, Macromodular Computer Systems, Proceedings of the Spring
Joint Computer Conference, AFIPS, April 1967.

(5] W .A. CLARK and C.E. MOLNAR, Macromodular Computer Systems, Com
puters in Biomedical Research, Vol. IV, (R. STACY, and B. WAXMAN eds.),
Academic Press, New York, 1974.

(6] EDSGER W. DUKSTRA, Hierarchical Ordering of Sequential Processes, Acta
Informatica, 1 (1971), pp. 115-138.

[7] EDSGER W. DuKSTRA, Lecture Notes 'Predicate Transformers' (Draft).
Eindhoven University of Technology, 1982, (EWD835).

[8] EDSGER w. DIJKSTRA, W.HJ. FEIJEN and A.J.M. VAN GASTBREN, Deriva
tion of a Termination Detection Algorithm for Distributed Computations,
Information Processing Letters, 16 (1983), pp. 127-219.

[9] EDSGER W. DIJKSTRA and AJ.M. VAN GASTBREN, On Notation, Private
Communication (A vG65a/EWD950a).

(10] DAVID DILL and EDMUND CLARKE, Automatic Verification of Asynchro
nous Circuits using Temporal Logic, Proceedings 1985 Chapel Hill Confer
ence on VLSI, (H. FucHS ed.), Computer Science Press, 1985, pp. 127-
245.

[11] Jo C. EBERGEN, Trace Theory and the Design of Parallel Programs, Per
sonal Memorandum, January 1984.

[12] J. PRESPER EcKERT, JR., Types of Circuits - General, The Moore School
Lectures, (1947), in: Charles Babbage Institute Reprint Series for the His
tory of Computing, Vol. 9, (MARTIN CAMPBELL-KELLY and MICHAEL R.
WILLIAMS eds.), 1985, MIT Press, pp. 179-191.

[13] T.P. FANG and C.E. MOLNAR, Synthesis of Reliable Speed-Independent Cir
cuit Modules: II. Circuit and Delay Conditions to Ensure Operation Free of
Problems From Races and Hazards, Technical Memorandum 298, Com
puter Systems Laboratory, Washington University, St. Louis, 1983.

(14] ROBERT w. FLOYD and JEFFREY D. ULLMAN, The Compilation of Regular
Expressions into Integrated Circuits, Journal of the ACM, 29 (1982), pp.
603-622.

[15] L.A. HoLLAAR, Direct Implementation of Asynchronous Control Units,
IEEE Transactions on Computers, Vol. C-31 (1982), pp. 1133-1141.

212

(16) ROB HOOGERWOORD, Some Reflections on the Implementation of Trace
Structures, Computing Science Notes 86/03, Department of Mathematics
and Computing Science, Eindhoven University of Technology, 1986.

[17) C.A.R. HOARE, Communicating Sequential Processes, Communications of
the ACM, 21 (1978), pp. 666-677.

[18) C.A.R. HOARE, Communicating Sequential Processes, Prentice-Hall, 1985.
[19) M. HURTADO, Dynamic Structure and Performance of Asymptotically

Bistable Systems, D. Sc. Dissertation, Washington University, St. Louis,
1975.

(20] ANNE KALI>EWAU, A Formalism for Concwrent Processes, Ph.D. Thesis,
Eindhoven University of Technology, 1986.

(21) ANNE KALI>EWAU, The Translation of Processes into Circuits, in: Proceed
ings PARLE, Parallel Architectures and Languages Europe, Vol. 1, (J.W. DE
BAKKER, A.J. NUMAN and P.C. 'I'RELEAVEN eds.), Springer-Verlag, 1987,
pp. 195-213.

(22) R.M. KELLER, Towards a Theory of Universal Speed-Independent
Modules, IEEE on Transactions on Computers, Vol. C-23, 1 (1974), pp.
21-33.

(23] Zv1 KoHAVI, Switching and Finite Automata Theory, McGraw-Hill, 1970.
(24) L.R. MARINO, General Theory of Metastable Operation, IEEE Transac

tions on Computers, Vol. C-30, 2 (1981), pp. 107-115.
[25) ALAIN J. MARTIN, The Design of a Self-Timed Circuit for Distributed

Mutual Exclusion, Proceedings 1985 Chapel Hill Conference on VLSI, (H.
FucHS ed.), Computer Science Press, 1985, pp. 247-260.

(26) ALAIN J. MARTIN, Compiling Communicating Processes into Delay
Insensitive VLSI Circuits, Distributed Computing, 1 (1986), pp. 226-234.

(27) J.W. MAUCHLY, Preparation of Problems for EDVACtype Machines,
(1947), in: (35).

[28) CARVER MEAD and MARTIN REM, Minimum Propagation Delays in VLSI,
IEEE Journal of Solid-State Circuits, Vol. SC17 (1982), pp. 773-775.

[29) R.E. MILLER, Switching Theory, Wiley, 1965.
[30) R.E. MILLER, Chapter 10 in: [29).
(31) D.P. MISUNAS, Petri-Nets and Speed-Independent Design, Communica

tions of the ACM, 8 (1973), pp. 474-481.
(32) DAVIDE. MULLER, A Theory of Asynchronous Circuits, Proceedings of an

International Symposioum on the Theory of Switching, 1-5 April, 1957, Har
vard University Press, Cambridge, Mass., (1959), pp. 204-243.

(33) C.E. MOLNAR, T.P. FANG and F.U. ROSENBERGER, Synthesis of Delay
Insensitive Modules, Proceedings 1985 Chapel Hill Conference on VLSI,
(H. FucHS ed.), Computer Science Press, 1985, pp.67-86.

(34) J. VON NEUMANN, First Draft of a Report on the EDVAC, (1945), in:
(35).

(35) BRIAN RANDELL, ed., The Origins of Digital Computers - Selected Papers,
Springer-Verlag, 1973.

[36] MARTIN REM, Concurrent Computations and VLSI Circuits, in: Control
Flow and Data Flow: Concepts of Distributed Computing, (M. BROY ed.),

213

Springer-Verlag, 1985, pp. 399-437.
[37] MARTIN REM, Trace Theory and Systolic Computations, Proceedings

PARLE, Parallel Architectures and Languages Europe, Vol. 1, (J.W. DE
BAKKER, A.J. NUMAN and P.C. 'I'RELEAVEN eds.), Springer-Verlag, 1987,
pp. 14-34.

[38] HUUB MJ.L. ScHOLS, A Formalisation of the Foam Rubber Wrapper Prin
ciple, Master's Thesis, Department of Mathematics and Computing Sci
ence, Eindhoven University of Technology, 1985.

(39] HUUB MJ.L. SCHOLS and TOM VERHOEFF, Delay-Insensitive Directed
Trace Structures Satisfy the Foam Rubber Wrapper Postulate, Computing
Science Notes 85/04, Department of Mathematics and Computing Sci
ence, Eindhoven University of Technology, 1985.

[40] C.L. SEITZ, System Timing, in: CARVER MEAD AND LYNN CoNWAY, Intro
duction to VLSI Systems, Addison-Wesley, 1980, pp. 218-262.

[41] CLAUDE E. SHANNON, A Symbolic Analysis of Relay and Switching Cir
cuits, Trans. AIEE, 57, 1938, pp. 713-723.

[42] JAN L.A. VAN DE SNEPSCHEUT, Trace Theory and VLSI Design, LNCS
200, Springer-Verlag, 1985.

[43] ALAN M. TuRING, Proposal for Development in the Mathematics Division
of an Automatic Computing Engine (ACE), (1946), in: Charles Babbage
Institute Reprint Series for the History of Computing, Vol. 10, (B.E. CAR
PENTAR and R. w. DoRAN eds.), MIT Press, 1986.

[44] ALAN M. TuRING, Lecture to the London Mathematical Society on 20
February 1947, in: Charles Babbage Institute Reprint Series for the History
of Computing, Vol. 10, (B.E. CARPENTAR and R.W. DoRAN eds.), MIT
Press, 1986.

[45] JAN TuMEN UDDING, Classification and Composition of Delay-Insensitive
Circuits, Ph.D. Thesis, Eindhoven University of Technology, 1984.

[46] JAN TuMEN UDDING, A Formal Model for Defining and Classifying
Delay-Insensitive Circuits and Systems, Distributed Computing, 1 (1986),
pp. 197-204.

[47] S.H. UNGER, Asynchronous Sequential Switching Circuits, Wiley Intersci
ence, 1969.

[48] TOM VERHOEFF, Delay-Insensitive Codes - An Overview, Computing Sci
ence Notes 87 /04, Department of Mathematics and Computing Science,
Eindhoven University of Technology, 1987.

(49] TOM VERHOEFF, Three Families of Maximally Non-Deterministic Automata,
Computing Science Notes 87 / 10, Department of Mathematics and Com
puting Science, Eindhoven University of Technology, 1987.

214

a 10
active 81
active SOURCE component 34
Alfcond 164
ALFCOND 69
AltcondO 165
Altcondl 166
ALTCOND 69
alphabet IO
ARB component 33
asoending chain 18
asynchronous circuit I
atomic command 13
attribute grammar 66
attributes 66
auxiliarysymbols 114

B 84
BO 84
Bl 84
B2 141
basis transformation 141
boundary 28
buffer (3-place I-bit) 24, 80, 132
bbt(,. 24

Cl 65
C2 65

Index

C3 65
C4 65
CAL component 95
CEL component 29
CEL plane 100
closed connection 42
co 26
co 67
combinational circuit 135
combinational command 75
combinational logic block 135
command 13
comparator 135
complete lattice 17
component 28
computation interference 42
concatenation IO
conjunction component 34
context-free grammar 66
counter (3-) 23
countn 23
converter (2-to-4 cycle) 95
CT plane 100

deadlock 150
decomposition 42
delay-insensitive circuit
DI command 63

DI component 58
DI decomposition 57
DI grammar 63
dining philosophers 39
directed atomic command 27
directed command 27
directed sequential command 27
directed trace structure 25
Disfree 163
Disin 163
Disout 163

EMP1Y component 34
ea 26
EN 61
enclosure 57
envirooment 25
evaluation rules 66, 72
existential quantification 7
Expansion Theorem 125
ext 26
extended command 22
extended sequential command 22
external alphabet 26

FJRST 61
tlrstO 162
Intl 163
FJRSTEXT 61
fixpoint 18
fixpoint induction 18
flexible bounduy 59
Foam Rubber Wrapper 61
FORK component 31
four-cycle signaling 34
four-phase handshake expansion 81
fp"f'O 165
fpropl 165

GI' 1S
G2' 74
G3' 74
G4 66
G4' 74
GCAL 87, 95
GCL' 15
GCL0 87
GCLI 87, 93
glitch phenomenon 3
grant 33

greatest lower bound 17
GSEL 110

handshake protocol 79
bd 68
HD 61

i 26
1 65
inductive 18
input part 103, 108
int 26
interference 43
interference-free loop 98
intermediate boundary S7
internal alphabet 26
internal symbol of component 25
internal symbol of environment 25
isochronic fork 96

fo 84
fi 84
~ 84
~ 84
e.. 84
lattice theory 17
least element 17
least fixpoint 18
least upper bound 17
livelock 150
llcondO 166
llcondl 166
LLCOND 69
LLCONDEXT 69

merging states 128
modulo-N counter 140

NCEL component 31

o 26
0 67
one-hot assignment 102
output interference 42
output part 103, 108

partial order 11, 18
parity 135
passive 81
passive SOURCE component 34

215

216

p.c.n.e. 153
pending 33
prefix-closed 10
prefix-closure (taking the) 10
prefix-free 10
PROCOND 69
projection 10

RCEL component 30
reflection 28
regular set 13
regular trace structure 13
repetition 10
n,quest 33
ieturn-to-zero signaling 34
ripple counter 141

scaling 4
schematic 28
selection part 108
self-timed system 2
semi-sequential command 76
Separation Theorem 53
Seqcond 165
SEQCOND 69
SEQ component 32
sequence detector 35
sequential circuit 136
sequential command 14
set(r) 69
SINK component 34
SOURCE component 34
speed-independent 2
splitting otf alternatives 128
state assignment 103
state graph 14
state of state graph 14
state of trace structure IS
Substitution Theorem 48
successor set 11
synchronous circuit I
synthesized attributes 66

t 10
Tailcond 166
T.A.JLCOND 70
tail function 18
tail recursion 16
d 68
TL 61

TOGGLE component 32
token ring 36
token-ring interface 36, 37
trace 10
trace set 10
trace structure 10
transmission interference 43
transparence ISO
two-cycle signaling 34
two-rail scheme 34

Udding's classification 64
union 10
universal quantification 7
upward continuous 18

weaving 10
WIRE component 29

XOR component 31
XOR plane 100

CW/ TRACTS
I D.HJ. Epema. Surfaces with canonical hyperplane sections.
1984.
2 JJ. Dijkstra. Fala topological Hilbert spaces and clwracteri
za1ions of dimensiJJn in terms of negligibility. 1984.
3 AJ. van der Schall System theoretic descriptions of physical
systems. 1984.
4 I. Keene. Minimal cost flow in processing networks, a primal
approach. 1984.
5 B. Hoogenboom. Intertwining functions on compact Lie
groups. 1984.
6 A.P.W. ll&m. Dalajlow computation. 1984.
7 A Blokhuis. Few-distance sets. 1984.
8 M.H. van Hoom. Algorithms and approximaJions for queue
ing systems. 1984.
9 C.PJ. Koymans. Models of the lambda ca/cu/us. 1984.
JO C.G. van der Laan, N.M. Temme. Ca/cu/Qtion of special
functions: the gamma function, the exponential integrals and
error-like .ftmiiions. 1984.
11 N.M. van Dijk. Controlled Markov processes; time
discretizlllion. I !1'84.
12 W.H. Hundsdoder. The numerical solution of nonlinear
stiff initial value problems: an analysis of one step methods.
1!185.
13 D. Grune. On the design of ALEPH. 1985.
14 J.G.F. Thiemann. Analytic spaces and dynamic program
ming: a measure theoretic approach. 1985.
15 FJ. van der Linden. Euclidean ring, with two infinite
primes. 1985.
16 RJ.P. Groothuizen. Mixed elliptic-hyperbolic partial
differential operators: a case-study in Fourier integral opera
tors. 1985.
17 H.M.M. ten Ekelder. Symmetries for dynamical and Ham
iltonian systems. 1985.
18 A.D.M. Kester. Some large deviation results in statistics.
1985.
I 9 T.M. V. Janssen. Foundations and applications of Montague
grammar, part J: Philosophy, framework, computer saence.
1986.
20 B.F. Schriever. Order dependence. 1986.
21 D.P. van der VechL Inequalities for stopped Brownian
motion. 1986.
22 J.C.S.P. van der Woude. Topological dynamix. 1986.
23 AF. Monna. Methods, concepts and ideas in maJhemaJics:
aspects of an evolution. 1986.
24 I.C.M. Baeten. Filters and ultrajilters over definable subsets
of admissible ordinals. 1986.
25 A. W J. Kolen. Tree network and planar rectilinear location
theory. 1986.
26 A.H. Veen. The misconstrued semicolon: Reconciling
imperative languages and dalaj/qw machines. 1986.
27 AJ.M. van Engelen. Homogeneous zero-dimensional abso
lu/e Borel sets. 1986.
28 T.M.V. Janssen. Foundations and applications of Montague
grammar, part 2: Applications to nmural language. 1986.
29 H.L. Trentelman. A/mo.st invariant subspaces and high gain
feedback. 1986. .
30 AG. de Kok. Production-inventory control models: approxr
maJions and algorithms. 1987.
31 E.E.M. van Berlrum. Optimal paired comparison designs for
factorial experiments. 1981.
32 I.HJ. Einmabl. Multivariate empirical processes. 1987.
33 OJ. Vrieze. Stochastic games with finite state and action
spaces. 1987.
34 P.H.M. Ken;ten. Infinitesimal symmetries: a computational
approach. 1981.
35 M.L. Eaton. Lectwes on topics in probability inequalities.
1987.
36 A.H.P. van der Burl!11, R-M.M. Mattheij (eds.). Proceed
ings of the first international conference on ,-ndustrial and
applied mathematics (IC/AM 81). 1987.
37 L. Stougie. Design and analysis of algorithms for stochastic
integer programming. 1987.
38 J.B.G. Frenk_ On Banach algebras, renewal measures and
regenerative processes. 1987.

39 HJ.M. Peters, OJ. Vrieze (eds.). Surveys in game theory
and related topics. 1987.
40 J.L. Geluk, L. de Haan. Regular variation, extensions and
Tauberian theorems. 1981.
41 Sape I. Mullender (ed.). The Amoeba distributed operating
system: Selected papers 1984-1987. 1987.
42 P.RJ. Asveld, A. Nijholt (eds.). Essays on concepts.for
malisms, and tools. 1987.
43 H.L. Bodlaender. Distributed computing: structure and
complexity. 1987.
44 AW. van der Vaart Statistical estimation in large parame
ter ,pa,:a. 1988.
45 SA van de Geer. Regression analysis and empirical
processes. 1988.
46 S.P. Si,ekreijse_ Multigrid solution of the steady Euler equa
tions. I 9gg_
41 J.B. Dijkstra. Analysis of means in some non-standard
situalions. 1988.
48 F.C. DrOSL Asymptotics for generalized chi-square
goodnl!Ss-of-jit tests. 1988.
49 F.W. Wubs. NW111!rica/ solulion of the shallow-water equa
tions. 1988.
50 F. de Kerf. Asymptotic analysis of a class of perturbed
Korteweg-de Vries initial value problems. 1988.
51 P J.M. van Laarhoven. Theoretical and compulational
aspects of simulated annealing. 1988.
52 P.M. van Loon. Continuous decoypling transformations for
linear boundary value problems. 1988.
53 KC.P. Machielsen. NW111!rical solulion of optimal control
problems with stale constraints bv sequential quadratic pro
gramming in function space. 1988.
54 L.C.~. Willenborg. Computational aspects of survey dala
processing. 1988.
55 GJ. van der Steen. A program generator for recognition,
parsing and transduction with syntactic patterns. 1988.
56 J.C. Ebergen. Translating programs into delay-insensitive
circuits. I 989:

MATHEMATICAL CENTRE TRACTS
I T. van der Wa!L Fi:ud and almost fixed points. 1963.
2 A.R. Bloemena. Sampling from a graph 1964.
3 G. de Leve. Generalized Marku,ian decision procases, part
/: model and method 1964.
4 G. de Leve. Generalized Marku,ian decision processes, part
II: probabilistic background 1964.
5 G. de Leve, H.C. Tijms, P J. Weeda. Generalized Markovian
decision processes, applications. 1970.
6 M.A. Maurice. Compact ordered spaces. I 964.
7 W.R. van Zwet. Comex transformtJtions of random variables.
1964.
8 J.A. Zonneveld. Automatic numerical integration. 1964.
9 P.C. Baayen. Universal morphisms. 1964.
10 E.M. de Jager. Applications of distributions in mathematical
physics. 1964.
11 A.B. Paalman-de Miranda. Topological semigroups. 1964.
12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken,
A. van Wijngaarden. FormtJI properties of newspaper Dutch.
1965.
13 HA. Lauwerier. Asymptotic expansions. 1966, out of print;
replaced by MCT 54.
14 H.A. Lauwerier. Calculus of variations in mathematical
physics. 1966.
15 R. Doornbos. Slippage tests. 1966.
16 J.W. de Bakker. Formal definition 'j/rogramminl
~~ges with an application lo the de mition of AL OL 60.

17 R.P. van de Riel. Formula manipulation in ALGOL 60,
part 1. 1968.
18 R.P. van de Riel. Formula manipulation in ALGOL 60,
part 2. 1968.
19 J. van der Slot. Some properties related to compactness.
1968.
20 P.J. van der Houwen. Finite difference methods for solving
partial differential equations. 1968.
21 E. Wattel. The compactness operator in set theory and
topology. 1968.
22 T.J. Dekker. ALGOL 60 procedures in numerical algebra,
part 1. 1968.
23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in
numerical algebra, part 2. 1968.
24 J.W. de Bakker. Recursive procedures. 1971.
25 E.R. Paerl. Representations of the Lorentz group and projec
tive geometry. 1969.
26 European Meeting 1968. Selected statistical papers, part 1.
1968.
27 European Meeting 1968. Selected statistical papers, part 11.
1968.
28 J. Oosterhoff. Combination of one-sided statistical tests.
1969.
29 J. Verhoeff. Error detecting decimal codes. 1969.
30 H. Brandt Corstius. Exercises in computational linguistics.
1970.
31 W. Molenaar. Approximations to the Poisson. binomial and
hypergeometric distribution functions. 1970.
32 L. de Haan. On regular variation and its application to the
weak convergence of sample extremes. 1970.
33 F.W. Steutel. Preservation of infinite divisibility under mix•
ing and related topics. 1970.
34 I. Juhasz, A. Verbeck, N.S. Kroonenberg. Cardinal func
tions in topology. 1971.
35 M.H. van Emden. An analysis of complexity. 1971.
36 J. Grasman. On the birth of boundary layers. 1971.
37 J.W. de Bakker, G.A. Blaauw, A.J.W. Duijvestijn, E.W.
Dijkstra, P.J. van der Houwen, G.A.M. Kamsteeg-Kemper,
F.E.J. Kruseman Aretz, W.L. van der Poel, J.P. Schaap
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 Informatica
Symposium. 1971.
38 W.A. Verloren van Themaat. Automatic analysis of Dutch
compound words. 1972.
39 H. Bavinck. Jacobi series and approximation. 1972.
40 H.C. Tijms. Analysis of(s,S) inventory models. 1972.
41 A. Verbeck. Superextensions of topological spaces. 1972.
42 W. Vervaat. Success epochs in Bernoulli trials (with applica•
lions in number theory). f972.
43 F.H. Ruymgaart. Asymptotic theory of rank tests for
independence. I 973.

44 H. Bart. Meromorphic operator valued Jwzctions. 1973.
45 AA. Balkema. Monotone transfOrmtJtions and limit laws.
1973.
46 R.P. van de Riet. ABC AWOL, a portable langua_ge for
formula manipulation systems, part 1: ihe language. 1973.
47 R.P. van de Riet. ABC ALGOL, a portable language for
formula manipulation systems, part 2: the compiler. 1973.
48 F.E.J. Kruseman Aretz, P.J.W. ten Hagen, H.L.
Oudshoom. An ALGOL 60 compiler in ALGOL 60, text of tire
MC-compiler for tire EL-X8. 1973.
49 H. Kok. Connected orderable spaces. 1974.
50 A. van Wijngaarden, BJ. Mailloux, J.E.L. Peck, C.H.A.
Koster, M. Smtzoff, C.H. Lindsey, L.G.L.T. Meertens, R.G.
Fisker (eds.). Revised report on the algorithmic language
ALGOL 68. 1976.
51 A. Hordijk. Dynamic programming and Markov potential
theory. 1974.
52 P.C. Baayen (ed.). Topological structures. 1974.
53 M.J. Faber. Metrizability in generalized ordered spaces.
1974.
54 H.A. Lauwerier. Asymptotic analysis, part 1. 1974.
55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 1:
theory of designs, finite geometry and coding theory. 1974.
56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2:
graph theory. foundations, partitions and combinatorial
geometry. I 914.
57 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 3:
combinatorial group theory. 1974.
58 W. Albers. Asymptotic expansions and the deficiency con
cept in statistics. 1975.
59 J.L. Mijnheer. Sample path properties of stable processes.
1975.
60 F. Gobel. Queueing models involving buffers. 1975.
63 J.W. de Bakker (ed.). Foundations of computer science.
1975.
64 W.J. de Schipper. Symmetric closed categories. 1975.
65 J. de Vries. Topological transformation groups, I: a categor•
ical approach 1975.
66 H.G.J. Pijls. Logically convex algebras in spectral theory
and eigenfw,ction expansions. 1976.
68 P.P.N. de Groen. Singularly perturbed differential operators
of second order. 1976.
69 J.K. Lenstra. Sequencing by enumerative methods. 1977.
70 W.P. de Roever, Jr. Recursive program schemes: semantics
and proof theory. 1976.
71 J.A.E.E. van Nunen. Contracting Markov decision
processes. 1976.
72 J.K.M. Jansen. Simple periodic and non-periodic Lame
functions and their applications in the theory of conical
waveguides. 1977.
73 D.M.R. Leivant. Absoluteness of intuitionistic logic. 1979.
74 H.J.J. le Riele. A theoretical and computational stu,ry of
generalized aliquot sequences. 1976.
75 A.E. Brouwer. Treelike spaces and related connected topo•
logical spaces. 1977.
76 M. Rem. Associons and the closure statement. 1976.
77 W.C.M. Kallenberg. Asymptotic optimality of likelihood
ratio tests in exponential families. 1978.
78 E. de Jonge, A.C.M. van Rooij. Introduction to Riesz
spaces. 1977.
79 M.C.A. van Zuijlen. Emperical distributions and rank
statistics. 1977.
80 P.W. Hemker. A numerical stu,ry of stiff two-point boundary
problems. 1977.
81 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer
science II, part 1. 1976.
82 K.R. Apt, J.W. de Bakker (eds.). Foundations of mmputer
science II, part 2. 1976.
83 LS. van Benthem Jutting. Checking Landau's
"Grundlagen" in the AUTOMATH system 1979.
84 H.L.L. Busard. The translation of the elements of Euclid
from the Arabic into Latin by Hermann of Carinthia (?), books
vii·Xii. 1977.
85 J. van Mill. Supercompactness and Wallman spaces. 1977.
86 S.G. van der Meulen, M. Veldhorst. Torrix I, a program
ming system for oeerations on vectors and matrices over arbi•
trary Jields and oJ variable size. 1978.
88 A. Schrijver. Matroids and linking systems. 1977.
89 J.W. de Roever. Complex Fourier transformation and
analytic functionals with unbounded carriers. 1978.

90 L.P J. Groenewegen. Characterization of optimal strategies
in dyna,njc games. 1~8 I.
91 J.M. Geysel. Transcendence infields of positive characteris
tic. 1979.
92 PJ. Weeda. Finite generalized Markov programming. 1979.
i~7~.C. Tijms, J. Wessels (eds.). Markov decision theory.

94 A. Bijlsma Simultaneous approximations in transcendental
number theory. 1978.
95 K.M. van Hee. Bayesian control of Markov chains. 1978.
96 P.M.B. Vitimyi. Lindenmayer systems: structure, languages,
and growth Junctions. 1980.
97 A. Federgruen. Markovian control problems; functional
equations and algorithms. 1984.
98 R. Geel. Singular perturbations of hyperbolic type. 1978.
99 J.K. Lenstra, A.H.G. Rinnooy Kan, P. van Emde Boai;
(eds.). Interfaces between computer science and operations
research. I '178.
100 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part
/. 1979.
IOI P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part
2. 1979. :g~8?. van Duis!. Reflexive and superrejlexive Banach spaces.

I 03 K. van Harn. Classifying infinitely divisible distributions
by functional equations. 11mr.
104 J.M. van Wouwe. Go-spaces and generalizations of metri
zability. 1979.
l OS R. Helmers. Edgeworth expansions for linear combinations
of order statistics. 1982.
l~/· Schrijver (ed.). Packing and covering in combinatorics.

107 C. den Heijer. The numerical solution of nonlinear opera
tor equations by imbedding methods. 1979.
108 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science III, part I. I 979.
109 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science III, part 2. 1919.
110 J.C. van Vliet. ALGOL 68 transput, part I: historical
review and discussion of the implementation model. 1979.
111 J.C. van Vliet. ALGOL 68 transput, part II: an implemen
tation model. 1979.
112 H.C.P. Berbee. Random walks with stationary increments
and renewal theory. 1919.
113 T.A.B. Snijders. Asymptotic optimality theory for testing
problems with restricted altemaJives. 1979. •
114 A.J.E.M. Janssen. Application of the Wigner distribution to
harmonic analysis of generalized stochastic processes. 1979.
115 P.C. Baayen, J. van Mill (eds.). Topological structures II,
part I. 1979.
116 P.C. Baayen, J. van Mill (eds.). Topological structures II,
part 2. 1979.
117 P.J.M. Kallenberg. Branching processes with continuous
state space. 1919.
118 P. Groeneboom. l.Arge deviations and asymptotic efficien
cies. 1980.
119 F.J. Peters. SJ":rse matrices and substructures, with a novel
implementation oJfinite element algorithms. 1980.
120 W.P.M. de Ruyter. On the asymptotic analysis of large•
scale ocean circulation. 1980.
12 l W.H. Haemers. Eigenvalue techniques in design and graph
theory. 1980.
122 J.C.P. Bus. Numerical solution of systems of nonlinear
equations. 1980.
l ~~J.- Y uhilsz. Cardinal junctions in topology . ten years later.

124 R.D. Gill. Censoring and stochastic integrals. 1980.
125 R. Eising. 2-D systems, an algebraic approach. 1980.
126 G. van der Hoek. Reduction methods in nonlinear pro
gramming. 1980.
127 J.W. Klop. Combinatory reduction systems. 1980.
128 AJ.J. Talman. Variable dimension fixed point algorithms
and triangulations. l 980.
129 G. van der Laan. Simplicialfixed point algorithms. 1980.
130 P.J.W. ten Hagen, T. Hagen, P. Klint, H. Noot, H.J.
Sint, A.H. Veen. /LP: intermediate language for pictures.
1980.

131 R.J.R. Back. Correctness preserving program refinements:
proof theory and applications. 1980.
132 H.M. Mulder. The interval function ofa graph. 1980.
133 C.A.J. Klaassen. Statistical performance of location esti
mators. 1981.
134 J.C. van Vliet, H. Wupper (eds.). Proceedings interna
tional conference on ALGOL 68. 1981.
135 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof
(eds.). Formal methods in the study of language, part I. 1981.
136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof
(eds.). Formal methods in the study of language, part II. 1981.
137 J. Telgen. Redundancy and linear programs. 1981.
138 H.A. Lauwerier. Mathematical models of epidemics. 1981.
139 J. van der Wal. Stochastic dynamic program,,,;ng,_ succes
sive approximations and nearly optimal strategies for Markov
decision processes and Markov games. 1981.
140 J.H. van Geldrop. A mathematical theory of pure
exchange economies wi1hout the no-critical-point li.ypothesis.
1981.
141 G.E. Welters. Abel-Jacobi isogenies for certain types of
Fano threefolds. 1981.
142 H.R. Bennett, D.J. Lutzer (eds.). Topology and order
structures, part I. 1981.
143 J.M. Schumacher. Dynamic feedback in finite- and
infinite-dimensional linear systems. 1981.
144 P. Eij~enraam. The solution of initial value problems using
ii':Js1.a/ artthmetic; formulation and analysis of an algorithm

145 A.J. Brentjes. Multi-dimensional continued fraction a/go•
rithms. 1981.
146 C.V.M. van der Mee. Semigroup and factorization
methods in transport theory. 1981.
:~ir·H. Tigelaar. Identification and informative sample size.

148 L.C.M. Kallenberg. Linear programming and finite Mar
kovian control problems. 1983.
149 C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxemburg,
W.K. Vietsch (eds.). From A to Z, proceedings of a symposium
in honour of A. C. Zaanen. 1982.
150 M. Veldhorst. An analysis of sparse malrix slorage
schemes. 1982.
151 R.J.M.M. Does. Higher order asymptoticsfor simple linear
rank stalistics. 1982.
l~~i°·F· van der Hoeven. Projections of lawless sequences.

153 J.P.C. Blanc. Application of the theory of boundary value
problems in the anatysis of a queueing model with paired ser
vices. 1982.
154 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational
methods in number theory, part I. 1982.
155 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational
methods in number theory, part II. 1982.
156 P.M.G. Apers. Query processing and data allocation in
distributed databose systems. 1983.
157 H.A.W.M. Kneppers. The covariant classification of two
dimensional smooth commutative formal groups over an alge
braically closed field of positive characteristic. 1983.
158 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
compUler science IV, distributed systems. par/ I. 1983.
159 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science IV, distributed systems, part 2. 1983.
160 A. Rezus. Abstract AUTOMATH. 1983.
161 G.F. Helminck. Eisenstein series on the metaplectic group,
an algebraic approach. 1983.
162 J.J. Dik. Tests for preference. 1983.
163 H. Schippers. Multiple grid methods for equations of the
second kind with applications in fluid mechanics. 1983.
164 F.A. van der Duyn Schouten. Markov decision processes
wilh continuous time parameter. 1983.
165 P.C.T. van der Hoeven. On point processes. 1983.
166 H.B.M. Jonkers. Abstraction. specificalion and implemen
~':J~~~ lechniques, wilh an application 10 garbage collection.

167 W.H.M. Zijm. Nonnegative matrices in dynamic program
ming. 1983.
168 J.H. Evertse. Upper bounds for the numbers of solutions of
diophantine equations. 1983.
169 H.R. Bennett, D.J. Lutzer (eds.). Topology and order
structures, part 2. 1983.

