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Abstract

The subject of this monograph is the design of circuits, in particular delay-
insensitive circuits. Delay-insensitive circuits are attractive for a number of
reasons. The most important of these reasons is that by designing such cir-
cuits many timing problems can be avoided. It is shown that the design of
delay-insensitive circuits can be reduced to the design of programs. This is
done by presenting a syntax-directed translation of programs into delay-
insensitive connections of basic elements.

The program notation is a simple one and can be considered a generaliza-
tion of regular expressions. The notation includes operations to express paral-
lelism, tail recursion, and the introduction of internal symbols. Because of the
inclusion of these operations, many components can be expressed in a clear
and concise way.

The translation method presented yields delay-insensitive connections of cir-
cuit elements chosen from a finite basis. The notion ‘delay-insensitive’ means
that the functional behavior of the connection, as specified in the program, is
insensitive to delays in wires or basic elements. This notion is rigorously for-
malized in the monograph.

The translation is syntax-directed and, if the program satisfies a certain syn-
tax, it can be carried out in such a way that the number of basic elements in
the connection is proportional to the length of the program.

Many examples are discussed to illustrate the topics of programming in this
notation and of translating these programs into delay-insensitive circuits. The
examples include counters, buffers, finite state machines, and token-ring inter-
faces.
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It is quite difficult to think about the
code entirely in abstracto without any
kind of circuit.

Alan M. Turing [44].
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Preface

This monograph is a reprint of my Ph. D. Thesis (of the same title) with minor
corrections. It is the result of four years of research carried out at CWI in
Amsterdam, although the origins of this research go back further. Many peo-
ple have contributed directly or indirectly to this monograph. In particular, I
wish to thank the following persons.

My most important source of inspiration was Martin Rem, my first supervi-
sor. He has made all this possible and unfailingly supported me through all
these years. His supervision was always pleasant and helpful, even in his most
busy moments.

Martin started the Eindhoven VLSI Club at the University of Technology,
and I became a member when I was a student. In those days one of the main
topics of ‘the Club’ was Self-Timed Systems, a special type of VLSI circuits
introduced by Chuck Seitz. Martin arranged for me to spend a few months in
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low a course by Chuck Seitz on Self-Timed Systems. It was during these
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Chuck’s tutorials and enthusiasm. _

From the discussions on self-timed systems at the weekly sessions of the
VLSI Club a fruitful research began to emerge. Since then three Ph. D. theses
have been written by members of the Club on topics related to the design of
delay-insensitive circuits, as we began to call them. I am especially indebted
to the authors of these theses, Jan van de Snepscheut, Jan Tijmen Udding and
Anne Kaldeway, for their earlier research efforts from which I could benefit.

The work at the Washington University, led by Charles Molnar, my second
supervisor, has also had a large influence on this work. His great interest in
and his many valuable criticisms on what I was doing have been a tremendous
inspiration for me. I am very grateful to him, in particular for his fruitful
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this thesis; the Eindhoven VLSI Club, where the ideas presented took shape;
and, finally, many thanks go to my wife Marie Cecile Lavoir.

Jo. C. Ebergen
Amsterdam, May 88.



Chapter O

Introduction

In 1938 Claude E. Shannon wrote his seminal article [41] entitled ‘A Symbolic
Analysis of Relay and Switching Circuits’. He demonstrated that Boolean
algebra could be used elegantly in the design of switching circuits. The idea
was to specify a circuit by a set of Boolean equations, to manipulate these
equations by means of a calculus, and to realize this specification by a connec-
tion of basic elements. The result was that only a few basic elements, or even
one element such as the 2-input NAND gate, suffice to synthesize any switch-
ing function specified by a set of Boolean equations. Shannon’s idea proved to
be very fertile and out of it grew a complete theory, called switching theory.

In this monograph we present a method for designing delay-insensitive cir-
cuits. Delay-insensitive circuits can be characterized as circuits whose func-
tional operation is insensitive to delays in consistituting elements and connec-
tion wires. The principal idea of this method is similar to that of Shannon’s
article: to design a circuit as a connection of basic elements and to construct
this connection with the aid of a formalism. We construct such a circuit by
translating programs satisfying a certain syntax. The result of such a transla-
tion is a connection of elements chosen from a finite set of basic elements.
Moreover, this translation can be carried out in such a way that the number of
basic elements in the connection is proportional to the length of the program.
We formalize what it means that such a connection is a delay-insensitive con-
nection.

Delay-insensitive circuits are a special type of circuits. We briefly describe
their origins and how they are related to other types of circuits and design
techniques. The most common distinction usually made between types of cir-
cuits is the distinction between synchronous circuits and asynchronous circuits.
Synchronous circuits are circuits that perform their (sequential) computations
based on the successive pulses of the clock. For the design of these circuits
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many techniques have been developed and are described by means of switch-
ing theory [29, 23]. The correctness of synchronous systems relies on the
bounds of delays in elements and wires. The satisfaction of these delay
requirements cannot be guaranteed under all circumstances, and for this rea-
son problems can crop up in the design of synchronous systems. In order to
avoid these problems interest arose in the design of circuits without a clock.
Such circuits have generally been called asynchronous circuits.

The design of asynchronous circuits has always been and still is a difficult
subject. Several techniques for the design of such circuits have been developed
and are discussed in, for example, [29, 23, 47]. For special types of such cir-
cuits formalizations and other design techniques have been proposed and dis-
cussed. David E. Muller has given a formalization of a type of circuits which
he coined by the name of speed-independent circuits. An account of this for-
malization is given in [30].

From a design discipline that was applied in the Macromodules project [4,
5] at Washington University in St. Louis the concept of a special type of cir-
cuit evolved which was given the name delay-insensitive circuit. It was realized
that a proper formalization of this concept was needed in order to specify and
design such circuits in a well-defined manner. A formalization of one of the
concepts of a delay-insensitive circuit, i.e. of the FRW principle, was later given
by Jan Tijmen Udding in [45]. For the design and specification of delay-
insensitive circuits several methods have been developed based on, for exam-
ple, Petri Nets and techniques derived from switching theory [13, 33]. Here,
we present some new techniques for the design of delay-insensitive circuits.

Recently, Alain Martin has also proposed some interesting and promising
design techniques for circuits of which the functional operation is unaffected
by delays in elements and wires [25, 26]. The techniques are based on the
compilation of CSP-like programs into connections of basic elements. The
techniques presented in this monograph exhibit a similarity with the techniques
applied by Alain Martin.

Another name that is frequently used in the design of asynchronous circuits
is self-timed systems. This name has been introduced by Charles L. Seitz in
[40] in order to describe a method of system design without making any refer-
ence to timing except in the design of the self-timed elements. Other tech-
niques and formalisms applied in the design and verification of (special types
of) asynchronous circuits, but less related to the work presented in this mono-
graph, are described in [10, 31, 22, 15].

The reasons to design delay-insensitive systems are manifold. Before we
explain each of these reasons, we briefly sketch some of the motives of the first
computer designers to incorporate a clock in their design. For them this was
not an obvious decision, since most mechanical calculating machinery before
the use of electronic devices was designed without a clock. The first widely
disseminated reports on computer design that advocated the use of a clock are
the reports on the EDVAC [34, 27, 1]. These reports have had a large
influence on the design of computers. The basic logical organization of most



0. Introduction 3

computers nowadays has not changed much from the organization that was
advocated then by Von Neumann and his associates.

The motives for incorporating a clock in their design were twofold. The first
and most important reason was that all computations had to be done in purely
sequential fashion: parallelism was explicitly forbidden (both to avoid the high
cost of additional circuitry and to avoid complexity in the design). It turned
out that for the realization of such computations the use of a clock had consid-
erable advantages: the clock could, for example, be used to dictate the succes-
sive steps of the computations. The second reason was that various memory
devices used at that time were dynamic devices, i.e. memory elements whose
contents had to be refreshed regularly. Refreshing was usually done by means
of clock pulses. Since, for this reason, a clock was already present for those
devices, it could be used for other purposes as well.

In the report on the ACE [43], written shortly after the first report on the
EDVAC, Alan Turing is more explicit about the use of a clock in the design
and mentions it as one of twelve essential components. In [44] he motivates
this choice as follows.

We might say that the clock enables us to introduce a discreteness
into time, so that time for some purposes can be regarded as a suc-
cession of instants instead of a continuous flow. A digital machine
must essentially deal with discrete objects, and in the case of the
ACE this is made possible by the use of a clock. All other digital
computing machines except for human and other brains that I
know of do the same. One can think up ways of avoiding it, but
they are very awkward.

REMARK. Here, we also remark that at the time of the reports on the EDVAC
and the ACE, i.e. in 1945-47, Boolean algebra was still considered of little use
in the design of computer circuits [12]. It took more than ten years after
Shannon’s article before Boolean algebra was accepted and proved to be a use-

ful formalism in the practical design of synchronous systems.
a

One reason why there has always been an interest in asynchronous systems is
that synchronous systems tend to reflect a worst-case behavior, while asynchro-
nous systems tend to reflect an average-case behavior. A synchronous system
is divided into several parts, each of which performs a specific computation.
At a certain clock pulse, input data are sent to each of these parts and at the
next clock pulse the output data, i.e. the results of the computations, are sam-
pled and sent to the next parts. The correct operation of such an organization
is established by making the clock period larger than the worst-case delay for
any subcomputation. Accordingly, this worst-case behavior may be disadvan-
tageous in comparison with the average-case behavior of asynchronous sys-
tems.

Another more important reason for designing delay-insensitive systems is the
so-called glitch phenomenon. A glitch is the occurrence of metastable behavior
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in circuits. Any computer circuit that has a number of stable states also has
metastable states. When such a circuit gets into a metastable state, it can
remain there for an indefinite period of time before it resolves into a stable
state. For example, it may stay in the metastable state for a period larger than
the clock period. Consequently, when a glitch occurs in a synchronous system,
erroneous data may be sampled at the time of the clock pulses. In a delay-
insensitive system it does not matter whether a glitch occurs: the computation
is delayed until the metastable behavior has disappeared and the element has
resolved into a stable state. Among the frequent causes for glitches are, for
example, the asynchronous communications between independently clocked
parts of a system.

The first mention of the glitch problem appears to date back to 1952 (cf.
[2]). The first publication of experimental results of the glitch problem and a
broad recognition of the fundamental nature of the problem came only after
1973 [3, 19, 24] due to the pioneering work on this phenomenon at the Wash-
ington University in St. Louis.

A third reason is due to the effects of scaling. This phenomenon became
prominent with the advent of integrated circuit technology. Because of the
improvements of this technology, circuits could be made smaller and smaller.
It turned out, however, that if all characteristic dimensions of a circuit are
scaled down by a certain factor, including the clock period, delays in long
wires do not scale down proportional to the clock period [28, 40]. As a conse-
quence, some VLSI designs when scaled down may no longer work properly
anymore, because delays for some computations have become larger than the
clock period. Delay-insensitive systems do not have to suffer from this
phenomenon if the basic elements are chosen small enough so that the effects
of scaling are negligible with respect to the functional behavior of these ele-
ments [42].

The fourth reason is the clear separation between functional and physical
correctness concerns that can be applied in the design of delay-insensitive sys-
tems. The correctness of the behavior of basic elements is proved by means of
physical principles only. The correctness of the behavior of connections of
basic elements is proved by mathematical principles only. Thus, it is in the
design of the basic elements only that considerations with respect to delays in
wires play a role. In the design of a connection of basic elements no reference
to delays in wires or elements is made. This does not hold for synchronous
systems where the functional correctness of a circuit also depends on timing
considerations. For example, for a synchronous system one has to calculate
the worst-case delay for each part of the system and for any computation in
order to satisfy the requirement that this delay must be smaller than the clock
period.

As a last reason, we believe that the translation of parallel programs into
delay-insensitive circuits offers a number of advantages compared to the trans-
lation of parallel programs into synchronous systems. In this monograph a
method is presented with which the synchronization and communication
between parallel parts of a system can be programmed and realized in a
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natural way.

The method presented in this monograph for designing delay-insensitive cir-
cuits is briefly described as follows. We call an abstraction of a circuit a com-
ponent; components are specified by programs written in a notation based on
trace theory. Trace theory was inspired by Hoare’s CSP [17, 18] and developed
by a number of people at the University of Technology in Eindhoven. It has
proven to be a good tool in reasoning about parallel computations [36, 37, 42,
20] and, in particular, about delay-insensitive circuits [45, 46, 38, 39, 16, 21].

The programs are called commands and can be considered as an extension
of the notation for regular expressions. Any component represented by a com-
mand can also be represented by a regular expression, i.e. it is also a regular
component. The notation for commands, however, allows for a more concise
representation of a component due to the additional programming primitives
in this notation. These extra programming primitives include operations to
express parallelism, tail recursion (for representing finite state machines), and
projection (for introducing internal symbols).

Based on trace theory we formalize the concepts of decomposition of a com-
ponent and of delay-insensitivity. The decomposition of a component is
intended to represent the realization of that component by means of a connec-
tion of circuits whose functional operation is insensitive to delays in consisti-
tuting circuit elements. Delay-insensitivity is formalized in the definitions of
DI decomposition and of DI component. A DI decomposition represents a real-
ization of a component by means of a connection of circuits whose functional
operation is insensitive to delays in constituting circuit elements and connec-
tion wires. A DI component represents a specification of a circuit whose com-
munication behavior with the environment is insensitive to (wire) delays in
those communications. (It turns out that the definition of DI component is
equivalent with Udding’s formalization of the FRW principle.) One of the
fundamental theorems in this monograph is that DI decomposition and
decomposition are equivalent if all components involved are DI components.
We also present some theorems that are helpful in finding decompositions of a
component.

Based on the definition of DI component, we develop a number of so-called
DI grammars, i.e. grammars for which any command generated by these gram-
mars represents a (regular) DI component. With these grammars the language
s of commands is defined. We show that any regular DI component
represented by a command in the language £, can be decomposed in a syntax-
directed way into a finite set B of basic DI components and so-called CAL
components. CAL components are also DI components. Consequently, the
decomposition into these components is, by the above mentioned theorem, also
a DI decomposition.

The set of all CAL components is, however, not finite. In order to show that
a decomposition into a finite basis of components exists, we discuss two
decompositions of CAL components: one decomposition into the finite basis
BO and one decomposition into the finite basis B1. The decomposition of CAL
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components into the finite basis B1 is in general not a DI decomposition, since
not every component in B1 is a DI component. This decomposition can, how-
ever, be realized in a simple way if so-called isochronic forks are used in the
realization. The decomposition of CAL components into the basis BO is an
interesting but difficult subject. Since every component in BO is a DI com-
ponent, every decomposition into BO is therefore also a DI decomposition.
We briefly describe a general procedure, which we conjecture to be correct, for
the decomposition of CAL components into the basis BO.

The decomposition method can be described as a syntax-directed translation
of commands in £, into commands of the basic components in BO or BI.
Consequently, the decomposition method is a constructive method and can be
completely automated. Moreover, we show that the result of the complete
decomposition of any component expressed in £ can be linear in the length of
the command, i.e. the number of basic elements in the resulting connection is
proportional to the length of the command.

Although many regular DI components can be expressed in the language £,
which is the starting point of the translation method, probably not every regu-
lar DI component can be expressed in this way. We indicate, however, that for
any regular DI component there exists a decomposition into components
expressed in £, which can then each be translated by the method presented.

This monograph is organized as follows. In Chapter 1 the basic notions of
trace theory are briefly presented. In Chapter 2 we present the program nota-
tion for commands and give a number of examples in which we illustrate the
specification of a component by means of a command. In Chapter 3 the fun-
damental concepts of decomposition and delay-insensitivity are defined. The
recognition of DI components is the subject of Chapter 4 in which several
attribute grammars are presented, all of which generate commands represent-
ing DI components. The proofs of this chapter are given in the appendices.
By means of these grammars, we subsequently describe a syntax-directed
decomposition method in Chapters 5 and 6. Chapter 7 contains a number of
examples and suggestions about optimizing the general decomposition method
of Chapters 5 and 6. In Chapter 7 we also discuss the issues involved in the
decomposition of any regular DI component into a finite basis of components.
We conclude with some remarks. Each chapter has many examples to illus-
trate the subject matter in a simple way. 7

In this monograph we have tried to pursue the aim of delay-insensitive
design as far as possible, i.e. to postpone correctness arguments based on
delay-assumptions as long as possible, in order to see what sort of designs such
a pursuit would lead to. In this approach our first concern has been the
correctness of the designs and only in the second place have we addressed
their efficiency.
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0.1. NOTATIONAL CONVENTIONS

The following notational conventions are used in the monograph.
Universal quantification is denoted by

(Ax: D(x): P(x)).

It is read as ‘for all x satisfying D(x), P(x) holds’. The expression D(x)
denotes the domain over which the quantified identifier x ranges. Instead of
one quantified identifier, we may also take two or more quantified identifiers.
The notation (Ax::P(x)) is used when the domain of the quantified identifier is
clear from the context. Existential quantification is denoted by

(Ex: D(x): P(x)).

It is read as ‘there exists an x satisfying D (x) for which P (x) holds’.

The notations R(i: 0<<i<n) and E(j,j: 0<<i,j<n) denote arrays of elements
Ri, 0<i<n, and E.ij, 0<i<n AO0<j<n, respectively. Sometimes these
arrays are referred to as vector R(i:0<<i<n) and matrix E(i,j:0<i,j<n)
respectively.

In some cases functional application is denoted by the period, it is left-
associative, and it has highest priority of all binary operations. For example,
the function f applied to the argument a is denoted by f.a. The array
E(i,j:0<<i,j<n) can be considered as a function E defined on the domain
0<i<n AO0<j<n. The function E applied to i, 0<i<n, yields the array
E.i(j:0<<j<n); subsequent application to j, 0<j<n, yields the element E.ij.
Since function application is left-associative, we have E.i.j=(E.i).j. The nota-
tion for functional application is taken from [9].

Let op denote an associative binary operation with identity element id. Con-
tinued application of the operation op over all elements a.i satisfying the
domain restrictions D (i) is denoted by

(opi:D(i):a.i).
For example, we have

(+i:0<i<4:ai)=a0+al+a2+a3.
If domain D (i) is empty, then

(opi:D(i):ai) = id.
For example, we have (+i:0<i<0:4.i))=0.
(Notice that universal and existential quantification can also be expressed as
(Ax:D(x):P(x)) and (Vx:D(x):P(x)) respectively.) The notation
(Ni: D(i): P(i)) denotes the number of i’s satisfying D (i) for which P (i) holds.

Most proofs in the monograph have a special notational layout. For exam-

ple, if we prove PO = P2 by first showing PO= P 1 and then P1=P2, this is
denoted by
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PO

={hint why PO= P 1}
Pl

={hint why P1=P2}
P2

This notation is taken from [7].



Chapter 1

Trace Theory

1.0. INTRODUCTION

In this chapter we present a brief introduction to trace theory. It contains the
definitions and properties relevant to the rest of this monograph.

The first part summarizes previous results from trace theory. For a more
thorough exposition on this part the reader is referred to [42,36,20]. In Sec-
tions 1.1.0 and 1.1.1 we define trace structures and the basic operations on
them. Section 1.1.2 contains a number of properties of these operations. In
Section 1.1.3 we define a program notation for expressing commands. Com-
mands specify trace structures, and can be considered as generalizations of reg-
ular expressions.

The second part contains new material. In Section 1.2 we give a detailed
presentation of tail recursion. Tail recursion can be used to express finite state
machines in a concise and simple way. Moreover, tail recursion can be used
conveniently to prove properties about programs. For these reasons the com-
mand language is extended with tail recursion.

We conclude with Section 1.3 in which we show a number of programs writ-
ten in the command language.
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1.1. TRACE STRUCTURES AND COMMANDS
1.1.0. Trace structures

A trace structure is a pair <B,X >, where B is a finite set of symbols and
XCB". The set B” is the set of all ﬁmte-length sequences of symbols from B.
A finite sequence of symbols is called a trace. The empty trace is denoted by e.
Notice that @"={e}. For a trace structure R=<B,X >, the set B is called
the alphabet of R and denoted by aR; the set X is called the trace set of R and
denoted by tR

NOTATIONAL CONVENTION. In the following, trace structures are denoted by
the capitals R,S, and T; traces are denoted by the lower-case letters 7, s, ¢, u,
and v; alphabets are denoted by the capitals 4 and B; symbols are usually
denoted by the lower-case letters with exception of r, s, ¢, u, and v.

O

1.1.1. Operations on trace structures

The definitions and notations for the operations concatenation, union, repetition,
(taking the) prefix-closure, projection, and weaving of trace structures are as fol-
lows.

R;S = <aRUa$S , tRtS>
R|S = <aRUaS , tRUtS>
[R] = <aR, (tR)">
prefR = <aR , {s|(Et::stetR)}>
R4 = <aRNA , {tA|tetR}>
RIS = <aRUaS, {re(aRUaS)’|1aRetR A HaSetS}>,

where 14 denotes the trace ¢ projected on A4, i.e. the trace ¢ from which all
symbols not in 4 have been deleted. Concatenation of sets is denoted by jux-
taposmon and (tR)" denotes the set of all finite-length concatenations of traces
in tR.

The operations concatenation, union, and repetition are familiar operations
from formal language theory. We have added three operations: (taking the)
prefix-closure, projection, and weaving.

The pref operator constructs prefix-closed trace structures. A trace structure
R is called prefix-closed if prefR=R holds. A trace structure is called non-
empty if tR%J. Later, we use prefix-closed and non-empty trace structures
for the specification of components. We call a trace structure R prefix-free if

(As,t:setR A stetR : t=¢)
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holds, i.e. no trace in tR is a proper prefix of another trace in tR.

The projection operator allows us to introduce internal symbols which are
abstracted away by means of projection. These internal symbols can be used
conveniently for a number of purposes, as we will see in the subsequent
chapters.

The weave operation constructs trace structures whose traces are weaves of
traces from the constituent trace structures. Notice that common symbols must
match, and, accordingly, weaving expresses instantaneous synchronization.
The set of symbols on which this synchronization takes place is the intersec-
tion of the alphabets.

The successor set of t with respect to trace structure R, denoted by Suc (,R),
is defined by

Suc (t,R) = {b | tbetprefR}.
Finally we define a partial order < on trace structures by
R<S = aR=aS A tRCtS.

1.1.2. Some properties

Below, a number of properties are given for the operations just defined. The
proofs can be found in [42,20].

PROPERTY 1.1.2.0. For the operations on trace structures we have:

Concatenation is associative and has <@ ,{€}> as identity.

Union is commutative, associative, and has <@ ,@ > as identity.

Weaving is commutative, associative, and has < & ,{€}> as identity.

If we consider prefix-closed non-empty trace structures only, union has <& ,{e}>
as identity.

O

PROPERTY 1.1.2.1. Union and weaving are idempotent, i.e. for any R we have
R|R=R and RIR=R.
O

PROPERTY 1.1.2.2. (Distribution properties of ; and |.)
For any R,S and T we have

Ry(S|T) = R;S)|(R;T)
(S|T);R = (S;R)|(T;R)
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PROPERTY 1.1.2.3. (Distribution properties of I'.)
For any R,S,B, and A we have
(R;S)!B = (RI'B);(StB)
(R|S)tB = (RI'B)|(StB)
[R]'B = [RI'B]
(prefR)! B = pref(R!'B)
RIA'B = RN(ANB)
(RISIB = (R'B)II(StB) if aRNaSCB.
O

PROPERTY 1.1.2.4. (Distribution properties of pref.)
pref(R|S) = (prefR)|(prefS)
pref(R;S) = pref(R ;(prefS)).
pref(|k:k=0: R.k) = (|k:k=0: prefR k).
O

PROPERTY 1.1.2.5. The weave of two non-empty prefix-closed trace structures is
non-empty and prefix-closed.

PrOPERTY 1.1.2.6. For any R, S, A, and B with aRNaS CB and A CaR we
have

(RIS)IA = (RI(SI B)I 4.

PrOOF. We observe

(RIISA

= {Prop. 1.1.2.3, calc.}
(RIS (A UB)IIA

= {Prop. 1.1.2.3, aRNaS CB}
(RMAUB))lI(SHAUB)))HA

= {def. of projection}
((RI(AUB)) I (StaSt (4 UB))I1 4

= {aRNaSCB N ACaR , Prop. 1.1.2.3,, calc.}
((RMAUB))I(STBH(AUB)TA
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= {Prop. 1.1.2.3, aRNaS CB, calc.}
(RI(S'B)I(AUB)IA
= {Prop. 1.1.2.3, calc.}
(RISt B) I A.
0O

PrOPERTY 1.1.2.7. Let the trace structures Rk, 0<k<n, satisfy
a(R.k)Na(R.I)CB for k=1 N 0<k,I<n. We have

(lk:0<k<n:Rk)'B = (llk:0<k<n:(Rk)!B).
O

Property 1.1.2.7 is a generalization of the last law of property 1.1.2.3.

1.1.3. Commands and state graphs

A trace structure is called a regular trace structure if its trace set is a regular
set, i.e. a set generated by some regular expression. A command is a notation
similar to regular expressions for representing a regular trace structure.

Let U be a finite, but sufficiently large, set of symbols. The characters b,
with beU, ¢, and & are called atomic commands. They represent the atomic
trace structures <{b},{b}>, <J,{e}>, and <&, > respectively. Every
atomic command and every expression for a trace structure constructed from
the atomic commands and finitely many applications of the operations defined
in Section 1.1.1 is called a command. In this expression parentheses are
allowed. For example, the expression (allb);c is a command and represents the
trace structure <{a,b,c},{abc,bac}>.

NOTATIONAL CONVENTION. In the following, commands are denoted by the
capital E’s. The alphabet and the trace set of the trace structure represented
by command E are denoted by aE and tE respectively. In order to save on
parentheses, we stipulate the following priority rules for the operations just
defined. Unary operators have highest priority. Of the binary operators in
Section 1.1.1, weaving has highest priority, then concatenation, then union,
and finally projection.

O

PROPERTY 1.1.3.0. Every command represents a regular trace structure.
O

A command of the form pref(E), where E is an atomic command different
from @, or E is constructed from atomic commands different from @ and the
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operations concatenation (;), union (|), or repetition ([ ]) is called a sequential
command.

PROPERTY 1.1.3.1. Every sequential command represents a prefix-closed non-
empty regular trace structure.

Syntactically different commands can express the same trace structure. We
have, for example,

prefia;c] || pref[b;c] = preflallb;c]
prefla;c] || pref[c;b] = pref(a;c;[allb;c]).

In this monograph, every directed graph of which the arcs are labelled with
non-empty trace structures or commands and that has one node denoting the
initial state is called a state graph. The nodes are called the states of the state
graph and are usually labelled with lower-case ¢’s. The initial state is denoted
by an encircled node. An example of a state graph is given in Figure 1.1.0.

~
i C%N_/. !

ab
FIGURE 1.1.0. A state graph.

With each state graph we associate a trace structure in the following way.
Let the arc from state g; to state ¢; be labelled with non-empty trace structure
S.i.j, 0<<i,j <n, where n is the number of states in the state graph. If there is
no arc between state ¢; and state g; then S.i,j=<@,d>. State q, is the ini-
tial state. The trace structure that corresponds to this state graph is given by
pref <B,X >, where

B = (Vi,j:0<i,j<n:a(S.ij)) and
X = {t|¢ is a finite concatenation of traces of successive trace
structures in the state graph starting in ¢ }.
More precisely, let the trace structures R.k.i, 0k A 0<<i<n, be defined by
R.0.i = <B,{€}>, and
R (k+1)i = (j:0<j<n:S.ij;Rkj).
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The trace structure corresponding to the state graph is defined by
pref(|k: k=0: R.k.0). '

Notice that t(R.k.i) contains all traces of concatenations of k successive trace
structures in the state graph starting in state ¢;. The trace structure
corresponding to the state graph of Figure 1.1.0, for example, can be
represented by pref(c;d | a;b;c;d].

Above we defined for each state graph the trace structure that corresponds
to this state graph. For a given structure we can also construct a specific state
graph in which the states of the state graph match the states of the trace struc-
ture. For this purpose, we first define the states of a trace structure.

For a trace structure R we define the relation ~x on traces of tprefR by

t~ps = (Ar::tretR =sretR).

The relation ~p is an equivalence relation and the equivalence classes are
called the states of trace structure R. The state containing 7 is denoted by [].
For example, for R=pref[allb;c] the states are given by [el, [a], [b], and
[ab]. In this monograph we keep to prefix-closed non-empty trace structures.
Every state of these trace structures is also a so-called final state.

The relation ~ is also a right congruence, i.e. for all », s, and ¢ with
tretpref R and sretpref R we have

S~Rl = Sr~ptr.

Because ~y is a congruence relation, we can represent a trace structure by a
state graph in which the nodes are labelled with the states of R and the arcs
are labelled with the atomic commands of the symbols of R. There is an arc
labelled x, with x €aR, from state [¢] to state [r] of R iff [#xx]=[r]. The state
graph obtained in this way for trace structure R =pref[allb;c] is given in Fig-
ure 1.1.1.

(]
]
a b
[ @= - ofab]
b a
[»]

FIGURE 1.1.1. State graph for prefia || b;c].
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1.2. TAIL RECURSION
1.2.0. Introduction

From formal language theory we know that every finite state machine can be
represented by a regular expression, and thus also by a command. In the
language of commands that we have defined thus far, finite state machines can-
not always be expressed as succinctly as we would like. This is one of the rea-
sons to introduce tail recursion. We show that there is a simple correspon-
dence between a finite state machine and a tail-recursive expression. More-
over, tail recursion can be used conveniently to prove properties about pro-
grams by means of fixpoint induction.

In the following sections, we first convey the idea of tail recursion by means
of an introductory example. Then we briefly summarize some results of lattice
theory. In the subsequent sections these results are used to define the semantics
of tail recursion. We conclude by extending our command language with tail
recursion.

1.2.1. An introductory example

Consider the finite state machine given by the state graph of Figure 1.2.0.

E3
E
EO 2 E4
qO@ l\/o;———.o q3
q E1l q

FIGURE 1.2.0. A state graph.

The states of this state graph are labeled with 40, g1, ¢2, and ¢3, where g0 is
the initial state. The state transitions are labeled with the non-empty com-
mands EQ, E1, E2, E3, and E4. With this state graph the trace structure
pref <B, X > is associated, where

B = aEQUaE1UaE2UaE3UaE4 and
X = {t|¢ is a finite concatenation of traces of
successive commands in the state graph starting in g0}
Possible commands representing this trace structure are
pref(EO;E 1;[(E2| E3;EQ);E 1};E4) and
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pref(EQ;[E1;(E2| E3;EQ)];E 1;E4).

The trace structure pref <B,X > can also be expressed as a least fixpoint of
a so-called tail function. A tail function is a mapping of a special form from
vectors of prefix-closed non-empty trace structures with alphabet B to vectors
of prefix-closed non-empty trace structures with alphabet B. To the state
graph of Figure 1.2.0 we adjoin the tail function defined by

tailf.R.0 = pref(EO;R. 1)

tailf. R.1 = pref(E1;R. 2)

tailf.R.2 = pref(E2;R. 1| E3;R. 0| E4;R. 3)
tailf.R. 3 = pref(R. 3).

(Recall that functional application is denoted by a period. The period has
highest priority of all binary operations and is left-associative.) The least
fixpoint of this tail function exists and is denoted by p.tailf. This fixpoint is a
vector of trace structures for which component 0 satisfies

ptailf.0 = pref <B,X >.

We prove this in Section 1.2.4.

Since the tail function tailf is defined by commands, we call p.tailf. 0 a com-
mand as well. The conditions under which p.tailf. 0 is called a command, for
an arbitrary tail function tailf, are given Section 1.2.5.

In the above we have given three commands for pref <B,X >, i.e. two
without tail recursion and one with tail recursion. Notice that in the two com-
mands without tail recursion £0 and E 1 occur twice, while in the tail function
tailf, with which the third command p.tailf. 0 is given, each command of the
state graph occurs exactly once.

1.2.2. Lattice theory

The following definitions and theorems summarize some results from lattice
theory. No proofs are given. For a more thorough introduction to lattice
theory we refer to [0].

Let (L,<) be a partially ordered set and V a subset of L. Element R of L is
called the greatest lower bound of V, denoted by (MS: SeV:S), if

(AS:SeV:R<S) AN (AT:TeLN(AS:SeV:T<S): T<R).
Element R of L called the least upper bound of V, denoted by (LIS: SeV:S),
if

(AS:SeV:S<R)AN(AT:TeL N(AS:SeV:S<T): R<T).

We call (L,<) a complete lattice if each subset of L has a greatest lower bound
and a least upper bound. A complete lattice has a least element, denoted by
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1, for which we have L =(LUR: Re @:R).

A sequence R(k:k=0) of elements of L is called an ascending chain if
(Ak:k=0: Rk<R (k +1)).

Let f be a function from L to L. An element R of L is called a fixpoint of f
if f.R=R . The function f is called upward continuous if for each ascending
chain R (k: k=0) in L we have

f-(Uk:k=0:Rk) = (Uk:k=0: f. (Rk)).
The function f*, k=0, from L to L is defined by
/%R = R and f**' R=f(f*.R) for k>0and ReL.

A predicate P defined on L is called inductive, if for each ascending chain
R(k:k=0) in L we have

(Ak: k=0: P(Rk)) = P(Uk: k=0: Rk).

THEOREM 1.2.2.0. (Knaster-Tarski)

An upward continuous function f defined on a complete lattice (L, <) with least
element L has a least fixpoint, denoted by .f, and p.f=(Uk: k=0: f*. L).

O

THEOREM 1.2.2.1. (Fixpoint induction)

Let f be an upward continuous function on the complete lattice (L,<) with least
element L. If P is an inductive predicate defined on L for which P(L) holds
and P(R)= P(f.R) for any R€L, i.e. f maintains P, then P(p.f) holds.

O

1.2.3. Tail functions

We call a function, tailf say, a tail function if it is defined by
tailf. R.i = pref(]j:0<j<n: S.ij;Rj), n>0,

for vectors R(i: 0<<i<<n) of trace structures, where S(i,j: 0<\i,j<n) is a matrix
of trace structures. Consequently, a tail function is uniquely determined by the
matrix S(i,j: 0<<i,j <n) of trace structures. Let this matrix S be fixed for the
next sections and let 4 =(Ui,j: 0<i,j<n: a(S.i.j)).

We define 9"(4) as the set of all vectors R(i: 0<<i<n) of prefix-closed non-
empty trace structures with alphabet A. For elements R and T of ¥'(4) we
define the partial order < by

R<T = (Ai: 0<i<n: (R.i)CHT.i)).
Furthermore we define the vector L ,(4) by
1a(4)i = <A,{e}>, forall i, 0<i<n.
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THEOREM 1.2.3.0. (9"(4),<) is a complete lattice with least element 1 ,(A).

PrOOF. For each non-empty subset ¥ of "(4) we have
(LUR:ReV:R).i = (|R:ReV:R.i)
(MR:ReV:R).i = (IR:ReV:Ri)
for 0<<i<n. For V=@ we have
(LR:Re@:R).i = <A,{e}> and
(MR:ReB:R)i = <A,A" >, for all i, 0<i<n.
O
By definition, the function tailf is defined on 9"(4). In the following, the con-
dition PO is used frequently for tail functions tailf. It is defined by
PO: (Ai:0<i<n:(Ej:0<j<n:4(S.ij) #2)).
We have

THEOREM 1.2.3.1. Let PO hold. The function tailf is a function from J'(A) to
9'(A) and is upward continuous.

PROOF. From the definition of tailf and PO follows that tailf.ReT'(A), for
any Re%'(4).

Let R(k:k=0) be an ascending chain of elements from 9"(4). We observe
for all i, (<i<n,

tailf (Uk: k=0: R.k).i
= {def. tailf}
pref(|j: 0<j<n:S.ij;(Uk:k=0:Rk).j)
= {def. U}
pref(|j: 0<<j<n:S.ij;(|k: k=0: Rk.j))
= {distribution Prop. 1.1.2.2}
pref(|k,j: 0<j<n Ak=0:S.i.j;Rk.j)
= {distribution Prop. 1.1.2.4}
(Jk: k=0:pref(]j: 0<j<n:S.ij;Rk.j))
= {def. tailf}
(|k: k=0: tailf. (R k).i)
= {def. LI}
(Uk:k=0:tailf.(RK)).i .
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Consequently, tailf.(Lik: k=0: R.k)=(Uk: k=0: tailf. (R k)).

(Notice that in the above proof we did not use the property that the chain
R(k: k=0) was ascending.)
O

1.2.4. Least fixpoints of tail functions
From Theorems 1.2.2.0, 1.2.3.0, and 1.2.3.1 we derive

THEOREM 1.2.4.0. If PO holds, then tailf has a least fixpoint, denoted by p.tailf,
and

ptailf = (Uk: k=0: tailf*. L, (A)).
a

The least fixpoint p.tailf can be related to the trace structure corresponding
to a state graph as follows. Consider a state graph with n states ¢;,, 0<<i<n
and n>0. If ¢(S.i.j) @, then there is a state transition from state ¢; to state
g; labeled S.ij. Let the trace structures Rk.i for 0<i<n A k=0 be defined
by

R 0.i = <4,{e}>, and
R (k+1).i = (j:0<j<n:S.ij;Rkj).
In other words, tpref(R.k.i) is the prefix-closure of all trace structures that can
be formed by concatenating k successive trace structures starting from state g;.
The trace structure corresponding to the state graph is defined by
pref(jk:k=0:Rk.0). We prove that ptailf.i=pref(lk:k=0:Rk.i), ie.
ptailf.i is the prefix-closure of all finite concatenations of successive trace
structures starting in state g;.

THEOREM 1.2.4.1. Let PO hold. For all i, 0<i<n,
wtailf.i = pref(|k: k=0: R.k.i).

ProOOF. By Theorem 1.2.4.0 we infer that w.tailf exists and can be written as
(Uk: k=0: tailf*. 1 ,(4)) .

We first prove that tailf*. 1 ,(4).i=pref(R.k.i), 0<<i<n, by induction to k.
Base. For k =0 we have by definition

tailf®. L (A)i = <4,{e}>, 0<i<n.
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Step. We observe for 0<<i<n,
tailf* 1. 1, (4).i
= {def. of tailf**1}
tailf. (tailf*. L ,(A)).i
= {def. of tailf}
pref (|j: 0<<j<n: S.ij;tailf*. L,(4).j)
= {induction hypothesis for k}
pref(|j:0<<j<n: S.ij; pref(R k.j))
= {distribution Prop. 1.1.2.4}
pref(|j: 0<j<n: S.ij;Rk.j)
= {def. R.(k +1).i}
pref(R. (k +1).i).
Subsequently, we derive for all i, 0<i<n,
ptailf i
= {Theorem 1.2.4.0}
(L k=0: tailf*. 1 ,(A4)).i
= {def. LI}
(|k: k=0: tailf*. L, (A).i)
= {see above}
(|k: k=0: pref (R k.i))
= {distribution Prop. 1.1.2.4}
pref(|k: k=0: R k.i).

1.2.5. Commands extended

We extend the definition of commands with tail recursion. We stipulate that a
tail function can also be specified by a matrix E(i,j: 0<i,j <n) of commands.
When we write such a tail function, as we did in Section 1.2.1, we adopt the
convention to omit alternatives @;R.j and to abbreviate alternatives €;R.j to
R.j, for 0<j<n. The condition PO for a tail function defined by a matrix of
commands E(i,j:0<<i,j<n) is now formulated by
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P1: (Ai:0<i<n:(Ej:0<j<n:t(E.ij) # @)).

Every atomic command and every expression for a trace structure constructed
with atomic commands and operations defined in Section 1.1.1 or tail recur-
sion, i.e. with p.zailf.0 where P 1 holds for tailf, is called an extended command.

If a tail function tailf is defined by a matrix E(j,j: 0<i,j<n) of commands
for which P1 holds, and the commands of this matrix E are constructed with
the operations concatenation (;), union (|), or repetition ([ ]) and the atomic
commands, then we call ptailf.i, 0<i<n, an extended sequential command.
Every sequential command is also an extended sequential command. With these
definitions of extended commands Property 1.1.3.0 and 1.1.3.1 also hold, i.e.
we have

PROPERTY 1.2.5.0. Every extended command represents a regular trace structure.
O

PROPERTY 1.2.5.1. Every extended sequential command represents a prefix-closed
non-empty regular trace structure.

Whenever in the remainder of this monograph we refer to commands or
sequential commands we mean from now on extended commands or extended
sequential commands respectively.

In the following, we also adopt the convention to define a tail function
corresponding to a state graph in such a way that w.tailf.0 represents the trace
structure associated with this state graph.

REMARK. For later purposes, we remark that every prefix-closed non-empty
regular trace structure R can also be represented by a sequential command,
even when the alphabet is larger than the set of symbols that occur in the trace
set. To construct this command we first take a finite state machine that
represents the regular trace set. Then we add state transitions and states that
are unreachable from the initial state. We label these state transitions with
symbols that occur in the alphabet but do not occur in the trace set. The tail
function corresponding to this finite state machine satisfies p.tailf.0=R. For
example, the trace structure <{a},{€}> can be represented by p.tailf.0, where

tailf.R.0 = pref(R.0)
tailf R. 1 = pref(a;R.0).
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1.3. EXAMPLES

The following examples illustrate that a trace structure can be expressed by
many syntactically different commands. Sometimes a command can be rewrit-
ten, using rules from a calculus, into a different command that represents the
same trace structure. Sometimes more complicated techniques are necessary to
show that two commands express the same trace structure. For both cases we
give examples. The freedom in manipulating the syntax of commands will
become important later for two reasons. First, we will then be interested in
trace structures that satisfy properties which can be verified syntactically and,
second, in Chapters 5 and 6 we present a translation method for commands
which is syntax-directed. Accordingly, by manipulating the syntax of a com-
mand we can influence the result of the syntactical check and the translation
in a way that suits our purposes best.

ExaMPLE 1.3.0. Every sequential command can be rewritten into the form
ptailf.0, where the tail function tailf is defined with atomic commands only.
For example, the command pref(a;[b;(c|d;e)};f) can be rewritten into
ptailf .0, where

tailf.R.0 = pref(a;R. 1)
tailf.R.1 = pref(b;R.2|f,R. 4)
tailf.R.2 = pref(c;R. 1|d;R. 3)
tailf R.3 = pref(e;R. 1)
tailf.R. 4 = pref(R. 4).

O

ExampLE 1.3.1. The trace structure count,(a,b), n >0, is specified by
<{a,b}, (te{a,b}’|(Ar,s :1=rs: 0<rNa—rNb<n)}>,

where sNx denotes the number of x’s in 5. Symbol a can be interpreted as an
increment and symbol b as a decrement for a counter. The value tNa —tNb
denotes the count of this counter after trace r. Any trace of a’s and b’s for
which the count stays within the bounds 0 and n is a trace of count,(a,b).

There exist many commands for count,(a,b). For n=1, we have
count,(a,b)=prefla;b]. For n=1, we give three equations from which a
number of commands for count,(a,b) can be derived

()) count,(a,b) = p.tailf,.0,
where tailf,.R.0 = pref(a;R. 1)
tailf,.R.i = pref(a;R.(i +1)|b;R. (i —1)), for 0<i<n,
tailf,.R.n = pref(b;R.(n —1)).
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(@#5) count, 1(a,b) = prefla;x] |l count,(x,b) ! {a,b}.
(iii) countyy, +1(a,b) = pref(a|y;b);(x;a | b)] || count,(x,y) t{a,b}.

Techniques to prove these equations can be found in [36,42,20, 11]. As far as

we know there are no simple transformations from one equation to the other.
With the first equation we can express count,(a,b) by a sequential command

of length &(n). With (if) we can express count,(a,b) by a weave of n sequential

commands of constant length. With (iii) and (ii), however, we can express

count,(a,b) by a weave of O(logn) sequential commands of constant length.

O

EXAMPLE 1.3.2. An n-place 1-bit buffer, denoted by bbuf,(a,b) is specified by
<{a0,a1,b0,b1}
{t|(Ar,s:rs=t: 0<rN{a0,al}—rN{b0,b1}<n
A rt{b0,b1}<rt{a0,al})}
>,

where s =<t denotes in this example that s is a prefix of ¢ apart from a renam-
ing of b into a.
For bbufs(a,b) we have

bbufs(a,b) = (pref[a0;x0 | al;x1]
| pref[x0;p0 | x 1;p 1]
| pref[y0;60 | y1;b1]
M{a0,a1,b0,b1}.
é] proof for this equation can be found in [11].

REMARK. It has been argued in [14] that regular expressions would be incon-
venient for expressing counter-like components such as counters and buffers.
As we have seen, the extension of regular expressions with a weave operator
and projection effectively eliminates any such inconveniences.
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Chapter 2

Specifying Components

2.0. INTRODUCTION

This chapter adresses the specification of components, which may be viewed as
abstractions of circuits. Components are specified by prefix-closed, non-empty
directed trace structures. In this monograph we shall keep to regular com-
ponents, i.e. to regular directed trace structures. In a directed trace structure
four types of symbols are distinghuished: inputs, outputs, internal symbols of the
component, and internal symbols of the environment. In Section 2.1 we define
directed trace structures and generalize the results of the previous chapter.
Directed trace structures can be represented by directed commands. In Section
2.2 we explain how a directed trace structure prescribes all possible communi-
cation behaviors between a component and its environment at their mutual
boundary. A number of basic components are then specified by means of
directed commands. Section 2.3 contains a number of examples of
specifications that will be used in later chapters.

2.1. DIRECTED TRACE STRUCTURES AND COMMANDS

A directed trace structure is a quintuple <B0,B1,B2,B3,X >, where B0, B1,
B2, and B3 are sets of symbols and X C(BOUB1UB2UB3)". For a directed
trace structure R=<BO0,B1,B2,B3,X> we give below the names and nota-
tions for the various alphabets and the trace set of R.
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set name notation
BO input alphabet of R iR

B1 output alphabet of R oR

B2 environment’s internal alphabet of R enR

B3 component’s internal alphabet of R coR
BOUBI external alphabet of R extR
B2UB3 internal alphabet of R intR
BOUB1UB2UB3  alphabet of R aR

X trace set of R tR

The operations defined on (undirected) trace structures are extended to
directed trace structures as follows. For the input alphabet we have

i(R;S) = iRUIS
i(R|S) = iRUIS

i[R] = iR
iprefR = iR
i(Rt4) = iRNA

i(RIIS) = iR UiS.

The other alphabets are defined similarly. The definitions for the trace sets
remain the same as in Section 1.1.1. For example, for directed trace structures
R and S we have

RIS = <iRUiS, oRUoS, enR UenS, coR UcoS
,{te(aRUaS)’|1aRetR A ffaSetS}>.

All properties of Section 1.1.2 are also valid for directed trace structures, where
<@,2> and <d,{e}> are replaced by <@,4,0,8,8> and
<9,0,d,3,{e}> respectively.

For a tail function tailf defined by matrix S(i,j: 0<<i,j<n) of directed trace
structures we define 40,4 1,42 and 43 by

A0 = (Ui,j: 0<i,j<n: i(S.i.j))
Al = (Vi,j:0<i,j<n: ofS.i.)))
A2 = (Ui,j: 0<<i,j<n: en(S.ij))
A3 = (Ui,j:0<i,j<n: co(S.i))).

Let 3"(40,41,42,A4 3) be the set of all prefix-closed non-empty directed trace
structures R, with iR=40, o0R=A41, enR=A42, and coR=A4 3. By definition,
the function tailf is defined on 9"(40,4 1,42,4 3). All results of Sections 1.2.3
and 1.2.4, with the appropriate replacements, hold for directed trace structures
as well.
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Directed commands are defined similar to (undirected) commands, with one

exception for projection. There are six types of directed atomic commands,
they are listed below together with the directed trace structure they represent.

directed atomic command  directed trace structure

b? <{b},9,2,9,{b}>
b! <42,{b},2,9,{b}>
! <@,2,(b},3,{b}>
b7 <9,92,0,b},{b}>
€ <2,%,9,2,{(>
(%) <2,,9,8,8>,

Here beU, and U is a sufficiently large set of symbols. Every directed atomic
command and every expression for a directed trace structure constructed from
directed atomic commands and the operations concatenation (;), union (|),
repetition ([ ]), prefix-closure (pref), weaving (ll), or tail recursion (p.tailf.0,
where P 1 holds for tailf) is called a directed command. In a directed command
parentheses are allowed. Any directed command of the form pref(E) where E
is a directed atomic command different from &, or E is constructed with the
operations concatenation (;), union (|), or repetition ([ ]) and directed atomic
commands different from @ is called a directed sequential command. 1f a tail
function tailf is defined by matrix E(j,j: 0<<i,j<n) of directed commands, for
which P1 holds, and if every directed command in this matrix E is a directed
atomic command or is constructed with the operations concatenation (;), union
(), or repetition ([ ]) and directed atomic commands, then p.tailf.i, 0<i<n, is
also called a directed sequential command.

Projection is used as follows in directed commands. If E is a directed com-
mand representing the directed trace structure R, then El is a directed com-
mand representing the directed trace structure Rl ext R. For example, we have

(pref[a?;!x?;b!]
|| prefc?;'x 7;d!]
)"
= pref(a?llc2;[(b';aNl(d";cN)),

where = denotes equality of directed trace structures.
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2.2. SPECIFICATIONS
2.2.0. Introduction

A component is specified by a prefix-closed, non-empty, directed trace struc-
ture R with intR=¢@ and iRNoR=&. The external alphabet of R contains
all terminals of the component by which it can communicate with the environ-
ment. A communication action at a terminal is represented by the name of
that terminal. The trace set R contains all communication behaviors that may
take place between the component and its environment.

A communication behavior evolves by the production of communication
actions. A communication action may be produced either by the component or
by the environment. The sets iR,o0R, and tR specify when which communica-
tion action may be produced and by whom. Let the current communication
behavior be given by the trace t€tR, and let thetR, ie. be Suc(t,R). If
beiR, then the environment may produce a next communication action b; if
beoR, then the component may produce a next communication action b.
These are also the only rules for the production of inputs and outputs for
environment and component respectively.

Because the directed trace structure R specifies the behavior of both com-
ponent and its environment, we speak of component R and environment R.
The role of component and environment can be interchanged by reflecting R:

DEFINITION 2.2.0.1. The reflection of R, denoted by I.Q, is defined by

R = <R, iR, coR, enR, tR>.
O

Operationally speaking, each external symbol b of R corresponds to a termi-
nal of a circuit, and each occurrence of b in a trace of R corresponds to a vol-
tage transition at that terminal. By convention we shall assume in this mono-
graph that initially the voltage levels at the terminals are low, unless stated
otherwise. The set of terminals constitutes the boundary between circuit and
environment, which, for most components, is considered to be fixed. In the
next chapter we discuss a special class of components, the so-called DI com-
ponents, whose boundaries may be considered to be flexible.

In the following subsections, a number of components are specified by
directed commands. For each of these components we also give a pictorial
representation, called a schematic.
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2.2.1. WIRE components

There are two WIRE components. The specifications and schematics of these
components are given in Figure 2.0.

pref[a?;b!] a? e»——————s b!
pref[b!;a?] a? p———{>—a= b!

FIGURE 2.2.0. Two WIRE components.

A WIRE component describes the transmission of a signal from terminal to
terminal, ie. from boundary to boundary. We consider the boundaries of
WIRE components to be flexible. All other components are considered to have
a fixed boundary (for the time being).

Notice that both WIRE components have the same behavior except for a
difference in initial states. For the WIRE component pref[a?;b!] the environ-
ment initially produces a transition. For the WIRE component pref[b!;a?] ini-
tially the component produces a transition. This difference in initial states (or
the production of initial transitions) is depicted by an open arrow head in a
schematic. We shall use this convention also in some of the following
schematics. The components are, apart from a renaming, each other’s
reflection.

Operationally speaking, a WIRE component corresponds to a physical wire.
Notice that there is always at most one transition propagating along this wire
according to our interpretation of a specification.

2.2.2. CEL components

A k-CEL component, k >0, is specified by
(lli:0<<i<k: E.i), where
either E.i = pref[a.i?;b!] or E.i = pref[b';a.i?], 0<i<n.

Notice that for k =1 a k-CEL component boils down to a WIRE component.
A specification and schematic of a 4-CEL component are given in Figure 2.2.1.
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pref[b!;a. 07] a.0?
Il pref[a. 17;5!] al?
|| pref[b!;a. 27] a? b!
|| pref[a. 37;b!] a.3?

FIGURE 2.2.1. A CEL component.

Notice that here we have drawn open arrow heads on the inputs 4.0 and a.2
of the CEL component denoting that initially a transition has already occurred
on these inputs.

Schematics for other k-CEL components, kK >1, are given similarly. A CEL
component performs the primitive operation of synchronization. It can be
represented by several directed commands: recall that

pref[a?;c!] || pref[b?;c!] = pref[a?llb?;c!)

pref[a?;c!] || pref[c!;b?] = pref(a?;c!;[a?llb?;c!]).

REMARK. The CEL components are generalizations of the Muller C-element
named after D.E. Muller [32].
O

2.2.3. RCEL and NCEL components

The specification and schematic of the RCEL component with 2 replicated
inputs are given in Figure 2.2.2.

pref[(a?;d ") a? d!
| (b %e!)? c!
l@hdllc! (B %ellic!y? b2 e!

]
FIGURE 2.2.2. An RCEL component.

Here, E? denotes E;E. The specification of the RCEL component with one
replicated input is given by pref[(a?;d!) | (a%;d!llc!)?lI(b?;c!)*] and depicted
similarly.

The specification and schematic of the NCEL component is given in Figure
223
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a?
pref [(@?)? | (b7 | (@b !)?] c!
: b?
FIGURE 2.2.3. An NCEL component.

A component specified by pref[(b?)? | (a?llb?;c!)’] is also called an NCEL
component and depicted analogously. (The letter N originates from the pro-
perty that an NCEL component is not a DI component, as we will see later.)

2.2.4. FORK components

The k-FORK components, k >0, are specified by the reflections of the k-CEL
components. A specification and schematic of a 4-FORK component are given
in Figure 2.2.4.

pref[a?;b. 0!] b.0!
(| pref[b. 1';a?] b1
Il prefa?;b.2!] a? b.2!
|| pref[b. 3!;a?] b.3!

FIGURE 2.2.4. A FORK component.

Schematics for other k-FORK components, k>1, are given similarly. A
FORK component performs the primitive operation of duplication.

2.2.5. XOR components

A k-XOR component, k >0, is specified by
(i) pref[E] or (ii) pref(b!;[E]),
where E = (|i: 0<i<k:a.i?;b!).

Notice that 1-XOR components are WIRE components. In Figure 2.2.5 the
two schematics for the two 4-XOR components are given.
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a.0? a.0?
a l1? al?
E —sb! ’ > b!
a 2? b a 2?
a3? a. 3N

FIGURE 2.2.5. Two 4-XOR components.

Schematics for other k-XOR components, k >1, are depicted similarly.

2.2.6. TOGGLE component

The specification and schematic of the TOGGLE component are depicted in
Figure 2.2.6.

——b !
prefla?;b';a?;c!] a?>—<
L !

FIGURE 2.2.6. The TOGGLE component.

The TOGGLE component determines the parity of the input occurrences.

2.2.7. SEQ components

A k-SEQ component, k>0, is specified by
(lli:0<i<k:pref[a.i?;p.i!])
| pref[n?;(Ji: 0<i<k: p.i!)).

The specification and schematic of a 2-SEQ component are shown in Figure
2.2.7.
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pref[a?;p!] a? —p!
|| pref[b ;4] b?7wo |—=g!
Il pref[n 2;(p )] )

n?

FIGURE 2.2.7. The 2-SEQ component.

Schematics for k-SEQ components, with k >2, are depicted similarly. Notice
that a 1-SEQ component is a 2-CEL component.

For a k-SEQ component, k >0, we use the following terminology. Output
p-i, 0<i<k, is called the grant of request a.i. We say that a request a.i,
0<<i<k, is pending after trace ¢ if tNa.i —tNp.i. =1. (Recall that tNx denotes
the number of x’s in trace z.) A SEQ component grants one request for each
occurrence of input n. We also say that the SEQ component sequences the
grants. In sequencing the grants it may have to arbitrate among several pend-
ing requests.

2.2.8. ARB components

The specification and schematic of a 2-ARB component is given in Figure
228.

NI a0?7e—— —=p 0!
pref(a1?;p 1!;a07;p 0'] a19— —ep 1!
Il pref[b 17,4 1!;607;40!] 51?29, E—— D}
| pref[p 1';a0?| ¢ 1';607) 507 o] —e¢0!

FIGURE 2.2.8. The 2-ARB component.

The 2-ARB component performs an operation similar to the 2-SEQ com-
ponent, though it has a slightly more complicated communication protocol.
The following names can be associated with the symbols

al? request pl! grant

a0? release  p0! confirm of release,
and similarly for the b and ¢ symbols.

Generalizing the 2-ARB component to k-ARB components, k >0, is done
similarly to the k-SEQ components.
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2.2.9. SINK, SOURCE, and EMPTY components

Specifications for the SINK and SOURCE components are given in Figure
2209.

pref(a?) Oe——=2
<@.,{a},d,2,{> D——-—a!
pref(a!) [

FIGURE 2.2.9. A SINK and two SOURCE components.

A SINK component has only one input terminal and can accept at most one
transition at this terminal. A SOURCE component has only one output termi-
nal and either does not produce any output transition at this terminal or it
produces only one output transition. In the latter case, it is called an active
SOURCE component. In the former case, it is called a passive SOURCE com-
ponent. (Later, dangling inputs or outputs are connected to SOURCE or
SINK components, respectively.)

The component represented by the command ¢ is called the EMPTY com-
ponent.

2.3. EXAMPLES
2.3.0. A conjunction component

Consider the component specified by the command
pref[a0?1607;c0! | a0?|617;¢0! | a 1?11602;¢0! | @121l 1?;c1!].

We call this component a conjunction component for two binary variables,
here a and b, encoded by a two-rail scheme in a 2-cycle signaling version [40]. A
two-rail scheme signifies that each binary variable is encoded by two symbols,
one for each value. For the binary variable a we have the symbols a0 and a1,
which correspond to two input terminals. A 2-cycle signaling protocol signifies
that each communication cycle consists of the communication of an input
value and an output value. A value is communicated by one transition at the
terminal corresponding to that value. In 4-cycle signaling, each 2-cycle signal-
ing is immediately followed by another 2-cycle signaling of the same values.
Instead of the alternative a0?||60?;c0!, we have a0?||60?;c0!;a0?]|60?;c0!,
and similarly for the other alternatives. Since after each two voltage transitions
the voltage has returned to its initial value, which is zero here, one also calls
4-cycle signaling return-to-zero signaling and 2-cycle signaling nonreturn-to-
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zero signaling [40].

Components specifying the disjunction, equivalence, negation, or combina-
tions of these logical operators are similarly expressed by commands. Other
ways of encoding data in delay-insensitive communications are given in [48].

2.3.1. A sequence detector

The specification of the following component demonstrates how a finite state
machine with inputs and outputs can be specified by a directed command. The
example is taken from [23].

A sequence detector has input alphabet {a0,al} and output alphabet
{y,n}. The communication behavior of this component is described as follows.
Inputs and outputs alternate, and if the last four inputs form the sequence
a0alala0, output y is produced; otherwise, output n is produced. Initially,
the sequence detector receives an input.

The sequence detector can be specified by the state graph of Figure 2.3.0.

FIGURE 2.3.0. State graph for the sequence detector.

Consequently, the directed command for this component can be given by
wtailf. 0, where tailf is defined by

tailf. R.0 = pref(a0%n';R. 1|al1?n};R.0)
tailf.R. 1 = pref(a0?n!;R. 1|a1?;n";R.2)
tailf. R.2 = pref(a0?%n!;R. 1|a1?;n!;R. 3)
tailf. R.3 = pref(a0?y ;R 1|al1?;n;R.0).
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2.3.2. A token-ring interface (0)

Consider a number of machines. For each machine we introduce a component,
and all components are connected in a ring. Through this ring a so-called
token is propagated from component to component. The ring-wise connection
is called a token ring, and the components are called token-ring interfaces.
Each machine communicates with the token ring through its token-ring inter-
face.

Token rings can be used for many purposes. They are used, for example, to
achieve mutual exclusion among machines entering a critical section [25] or to
detect the termination of a distributed computation [8]. For each purpose a
particular communication protocol is specified for the token-ring interfaces. In
this and in the next section, we discuss two of these communication protocols,
and we show how they can be specified by directed commands.

In order to achieve mutual exclusion among machines entering a critical sec-
tion, the following protocol is described for a token-ring interface. The
schematic of the token-ring interface is given in Figure 2.3.1.

al?a0? pl! p0!

11t

b? e—o ———a=g!

FIGURE 2.3.1. A token-ring interface.
The communication actions between token-ring interface and machine are
interpreted as follows.
al? request for the token
p1! grant of the token
a0? release of the token
p0! confirm of release.

With respect to these actions the protocol satisfies the specification
pref[a1?;p1';a07;p0'].

The communication actions between token-ring interface and the rest of the
token ring are interpreted as follows.

b? receipt of the token
g! sending of the token.

With respect to these actions the protocol satisfies the specification pref[b?;¢4!].
The synchronization between the two protocols must satisfy the following
requirements. After each receipt of the token, the token can either be sent on
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to the next token-ring interface or, if there is also a request from the machine,
the token can be granted to the machine. If the machine releases the token, it
is sent on to the next token-ring interface. From the definition of weaving and
the above we infer that the complete communication protocol can be specified
by the directed command

prefla1?;p1';a0?;p0!]
| pref[b2;(q! | p1%;a0%;¢")].

2.3.3. A token-ring interface (1)

The following specification for a communication protocol is inspired by [8].

We characterize the state of a machine by either black or white. A machine
can change its color from black to white and vice versa. The token can also be
black or white. The color of the token can be changed by the token-ring inter-
face from white to black only. We are asked to design a communication pro-
tocol for the token-ring interface that satisfies the following requirements.

(i) Tokens are transmitted only if the machine is white.

(if) A token is transmitted black if after the previous transmission of a token,
or after the initialization, the machine has become black at least once.
Otherwise, the token is transmitted unchanged.

For the derivation of a communication protocol we introduce the symbols

b, w, tb, and tu with the following interpretations.

b machine changes to black
w machine changes to white
th transmit black token

tu transmit token unchanged.

(Notice that we have not assigned a type to these symbols yet.) Designing a
protocol with these symbols only, yields the command

pref[tu];b;w;[b;w];eb],

where we assume that the machine is white initially. Condition (i) is obviously
satisfied: between equally numbered occurrences of b and w, i.e. when the
machine is black, symbols t« and b do not occur. Further, the command
b;w;[b;w] contains all traces in which the machine has become black (and
changed to white) at least once. From this observation follows that (ii) is also
satisfied.

We use the symbols b, w, tu, and b to introduce the communication sym-
bols. We introduce one set of symbols for the communication between
machine and token-ring interface and one set of symbols for the communica-
tion between the rest of the token ring and the token-ring interface. We
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consider the symbols b, w, tu, and tb as internal symbols of the component.
Consequently, the token-ring interface is considered an extension of the
machine: the change of color of the machine takes place internally in the
token-ring interface.

For the communication between the token-ring interface and (the rest of)
the machine we introduce the symbols

rb? request to become black
gb! machine has become black
rw? request to become white
gw! machine has become white.

The protocol with respect to these symbols only and the internal symbols b
and w is described by

pref(rb 10 2;gb \;rw 2w 2, gw ]

For the communication between token-ring interface and the rest of the
token ring we introduce the symbols

btr? receipt of black token
wir?  receipt of white token
bts! sending of black token
wis! sending of white token.

The protocol with respect to these symbols only and the internal symbols t an
th is specified by

pref[wer 7;("tul;wis! | 1th ?7;bts!)
|btr 7;(1tu ?|'tb 7);bts !
]

The proper synchronization of these protocols is described by their weave.
Projecting this weave on the external symbols gives the desired protocol, 1.e.

(pref[rb ;b 2,gb \;rw 3w 25w 1]
| pref[wer 2;('tu;wis ! | 1eb 7;bts 1)
|btr 7;(1tu?|'th 7);bts !
]
| pref[[teu ;b 2w [0 751w ;146 7]
).

Finally, we remark that the last sequential command of the above weave can
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also be written as p.tailf.0, where tailf is defined by
tailf.R.0 = pref('tu”R.0|!6%!w R 1)
tailf. R. 1 = pref('tb;R.0|167;!w ;R 1).

It will turn out that this last sequential command is better suited for the syn-
tactical check to be developed in Chapter 4 and the syntax-directed translation
of Chapters 5 and 6.

2.3.4. The dining philosophers

A canonical example of a mutual exclusion problem is the paradigm of the
dining philosophers [6]. In the following we derive a communication protocol
for the dining philosophers expressed in a command.

Consider N dining philosophers, N >0, whose lives consist of alternations of
thinking and eating. The N philosophers are seated at a round table with N
plates, one for each philosopher. Between any two successive plates lies one
fork. A philosopher can start eating if he has got hold of both forks lying next
to his plate. When a philosopher finishes eating, he releases both forks. A
fork can be occupied by at most one philosopher. We are asked to design a
communication protocol for the N dining philosophers such that no philoso-
pher is kept from eating unnecessarily, i.e. no deadlock occurs (Notice that if
all N philosophers pick up their right forks simultaneously, nobody can pick
up his left fork as well, and thus they may keep each other from eating for-
ever.)

Let the component with which the N philosophers communicate be called
TABLE. We design a communication protocol for the component TABLE.
The communication actions between philosopher i, 0<<i<N, and TABLE are
given by

p.i! start thinking
a.i? request to eat, i.e. finish thinking
q.i! start eating
b.i? request to think, i.e. finish eating
With respect to philosopher i, 0<<i <N, the protocol satisfies
PHIL.i = pref[p.i';a.i?;q.i';b.i?)

The synchronization among all N protocols PHIL.i, 0<i<N, must be such
that each fork is occupied by at most one philosopher, i.e. no two neighbors
are eating simultaneously. These restrictions are expressed by the commands

FORK.i = pref[q.i!;b.i?| q. (i +1)1;0.( +1)?], for 0<i<N,

where addition is modulo N.
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The protocols PHIL.i and FORK.i, 0<i<N, are the only restrictions that
the communications must satisfy. Consequently, TABLE can be specified by

TABLE = (|li:0<i<N:PHIL.i)
Il (li: 0<i<N: FORK.i).

Notice that when philosopher i, 0<<i <N, starts eating, he picks up both forks
‘at the same time’, since ¢.i! occurs in the commands FORK.(i —1), FORK.i,
and PHIL.i. From this observation it follows that no philosopher is kept from
eating unnecessarily, i.e. there is no deadlock. (Absence of individual starva-
tion, however, is not guaranteed.)
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Chapter 3

Decomposition and Delay-Insensitivity

3.0. INTRODUCTION

The idea of this monograph is to realize a component by means of a delay-
insensitive connection of basic components. In this chapter we formalize this
idea by means of three definitions and derive some theorems based on these
definitions.

First, we define what we mean by ‘a component can be realized by a con-
nection of (other) components’. This is formulated in the definition of decom-
position. Decomposition is defined as a relation holding between the com-
ponent to be decomposed and the components in which it is decomposed. We
stipulate that a component S.0 can be decomposed into the components S.i,
1<i<n, if the connection of components S.i, 1<<i<n, realizes the prescribed

- behavior of component S.0, where it is assumed that the environment of this
connection behaves as specified for environment S.0. (Recall from Section
2.2.0 that a directed trace structure prescribes both the behavior of a com-
ponent and its environment.)

From the definition of decomposition we derive two theorems: the Substitu-
tion Theorem, which enables us to decompose a component in a hierarchical
way, and the Separation Theorem, which enables us to decompose parts of a
specification separately.

The realization of a component by means of a delay-insensitive connection
of components is formalized by the definition of DI decomposition. We then
consider connections of components in which corresponding input and output
terminals are connected by WIRE components. WIRE components introduce,
operationally speaking, a delay in the communications between the terminals.
In the definition of DI decomposition it is required that these delays do not



42 Decomposition and Delay-Insensitivity

influence the functional behavior of the connection.

In order to link decomposition and DI decomposition we introduce DI com-
ponents. A DI component may be interpreted as a component whose
specification is valid at a flexible boundary, or, operationally speaking, a DI
component communicates in a delay-insensitive way with its environment. By
means of DI components we can formulate the fundamental theorem of this
chapter: DI decomposition is equivalent to decomposition if all components
involved are DI components. Because of the theorems that apply for decom-
position, it is easier to work with decompositions than with DI decomposi-
tions. For this reason, we mostly discuss decompositions and DI components
in the following chapters.

3.1. DECOMPOSITION
3.1.0. The definition

Below, we first present the definition of decomposition and then give a brief
motivation for it.

DEFINITION 3.1.0.0. We say that component S.0 can be decomposed into com-
ponents S.i, 1<<i<n for a fixed n>1, denoted by
8.0 - (i:1<i<n:S.0),
if the following conditions are satisfied.
Let R.0=S.0, Ri=S.i for 1<i<n, and W=(lli: 0<i<n:R.i).

(i) (Closed connection)
(Vi:0<i<n:o(R.i)) = (Vi:0<i<n:i(R.i)).

(i) (No output interference)
o(RNNO(R)=B for 0<i,j<n A ij.

(iii) (Connection behaves as specified at boundary a(S. 0))
tiWta(R. 0) = t(R. 0).

(iv) (Connection is free of computation interference)
For all traces t, symbols x, and indexes i, 0<<i<n, we have
tetW A xeo(R.i) A txta(Ri)et(R.i) = txetW.

O
NoTATIONAL REMARK. The notation (i: 1<<i<<n:S.i) can be interpreted as an

enumeration of the components S.i, 1<<i<n. Notice, however, that the order
of this enumeration is not important, as can be deduced from the definition.
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Instead of, for example, S.0-(i:1<i<4:S.i) we sometimes write
$.0-58.1,8.2,830rS.0-(:1<i<3:5.i), S.3. Here, the comma separates
the components or lists of components.

O

The set of internal symbols of the decomposition of S.0 is given by
(Ui:1<i<n:a(S.i))\ a(S.0).

In Section 2.2.0, we stipulated that a directed trace structure S. 0 prescribes the
behavior of component and environment: it specifies when the component may
produce outputs and when the environment may produce inputs. In a decom-
position of component S.0 we require that the productions of outputs of com-
ponent S.0 are realized by a connection of components. We assume that the
environment of this connection produces the inputs as specified for environ-
ment S.0. This environment can also be seen as component S.0. Accord-
ingly, in order to comprise all components that produce outputs relevant to the
decomposition, we consider the connection of components S.0 and S.i
I<i<n.

Condition (7) says that there are no dangling inputs and outputs in the con-
nection: every output is connected to an input, and every input is connected to
an output. We call such a connection a closed connection.

Condition (ii) requires that outputs of distinct components are not con-
nected with each other. If (ii) holds we say that the connection is free of out-
put interference.

Condition (jii) requires that the behavior of the connection at the boundary
a(S. 0) behaves as specified by t(S.0). The behavior of the connection is given
by tW=t(|li:0<i<n:R.i). Restriction to the boundary a(S.0) (=a(R.0)) is
expressed by tWTa(R. 0).

Condition (iv) requires that the connection is free of computation interfer-
ence. We say that the connection has danger of computation interference, if
there exists a trace ¢, symbol x, and index i, 0<<i <n, such that

tetW A xeo(Ri) A txta(Ri)et(Ri) N tx etW.

In words, if after a mutually agreed behavior a component can produce an
output that is not in accordance with the prescribed behavior of other com-
ponents, then we say that the connection has danger of computation interfer-
ence.

Since a specification may be interpreted as a boundary prescription for the
behavior of component and environment, computation interference may also
be interpreted as a boundary violation. For example, if WIRE component
pref[a?;b!] receives two inputs a without producing an output b, we have a
boundary violation for the WIRE component. Operationally speaking, in the
case of this boundary violation more than one transition is propagating along
a wire, which can cause hazardous behavior and must, therefore, be avoided. A
boundary violation for a WIRE component is also called transmission interfer-
ence [42]. (Consequently, transmission interference is a special case of
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computation interference.) In the following, a connection that satisfies condi-
tions (7), (i), and (iv) is briefly called a closed connection, free of interference.

REMARK. Some misbehaviors of circuits that are characterized in classical
switching theory by hazards or critical races [23,29] can be seen as special
cases of computation interference. Absence of interference in a decomposition
guarantees that the thus synthesized circuit is free of hazards and critical races,
if the components satisfy their specifications.

O

Notice that we have described decomposition as a goal-directed activity: we
start with a component S. 0 and try to find components S.i, 1<<i<n, such that
the relation S.0— (i: 1<<i<n:S.i) holds. Thus, we explicitly use the assump-
tion that the environment of the connection of components behaves as
specified for environment S.0. We did not start with components S.i, 1<i<n,
to find out what could be made of them without requiring anything from the
environment.

3.1.1. Examples

ExaMPLE 3.1.1.0. We demonstrate that WIRE component pref[a?;d!] can be
decomposed into FORK component pref[a?;b!lic!] and CEL component
pref[b?llc?;d!]. A schematic of this decomposition is given in Figure 3.1.0.

b
-
a?v-—< p————‘d!
c
-

FIGURE 3.1.0. A decomposition of a WIRE component.

Let
R.0 = pref[a!;d?),
R.1 = pref[a?; b!l|c!], and
R.2 = pref[b?lc?;d!].

By inspection, we infer that the connection of components R.0,R. 1, and R.2
is closed and free of output interference. The behavior of this connection is
represented by

tW = (R.OIIR.1]IR.2)
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= tpref[a;blic ;d].

From this we derive tWta(R. 0)=tpref[a;d]. Accordingly, we conclude that
the connection behaves as specified at the boundary a(R. 0).

For absence of computation interference we have to prove for all
t, x, i, 0<i<3, that

tetW A xeo(R.i) A txta(Ri)et(Ri) = txetW.

Instead of proving this for all triples (z,x,i), we take for all states of tW a
representative ¢ and consider all x and i, 0<<i <3, such that

tetW A xeo(R.i) A txta(Ri)et(R.Q).

It suffices to prove for these triples (¢, x, i) that tx etW. By inspection, we find
that for the triples

(6,a,0), (a, b, 1), (a,c1), (ab, c, 1), (ac, b, 1), and (abc, d, 2)

indeed tx etW. Consequently, we conclude that R.0 can be decomposed into
R 1land R 2.
O

ExampLE 3.1.1.1. We examine whether WIRE component pref{a?;d!] can be
decomposed into FORK component pref[a?;b!] || pref[a?;c!] and CEL com-
ponent pref[b?;d!] || pref[d!;c?]. Notice that this CEL component starts in a
different initial state than the CEL component of the previous example. The
tentative decomposition is given in Figure 3.1.1.

b
-

FIGURE 3.1.1. A tentative decomposition of a WIRE component.

Let
R.0 = pref[a!;d7],
R.1 = pref[a?;b!] || prefla?;c!] ,and
R.2 = pref[b?;d"] || pref[d!;c?].

Analogously to the previous example, we infer that the components R.0, R. 1
and R.3 form a closed connection free of output interference. The behavior of
this connection is given by

tW = t(ROlIR1|IR2)
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= tprefa;b;d;c],

from which we readily derive tWta(R. 0)=t(R.0). We conclude that this con-
nection behaves as specified at the boundary a(R. 0).

There is, however, danger of computation interference in this connection: for
t,x,i:=a,c,1 we have

aetW A ceo(R. 1) A acta(R. 1)et(R. 1) A acetW.

After the environment has produced an a, the FORK component can produce
a ¢, which is not in accordance with the boundary prescription for the CEL
component. Consequently, the tentative decomposition is not a decomposi-
tion.

O

ExampLE 3.1.1.2. We demonstrate that a 3-XOR component can be decom-
posed into two 2-XOR components, according to the schematic given in Figure

312
? !
b1 j > o ’D—a e!
FIGURE 3.1.2. A decomposition for a 3-XOR component.
Let

RO = pref[a';e?|b!se?|c!se?,
R 1 = pref[a;d!|b"d!] ,and
R 2 = pref[d?e!|cTe!]).

By inspection, we find that the components R.0, R. 1, and R. 3 form a closed
connection free of output interference. For the behavior of this connection we
obtain

tW = t(RO|IR1]|R2)
= tprefla;d;e|b;d;e|c;el

Accordingly, we derive tWta(R. 0)=t(R.0), i.e. the connection behaves as
specified at the boundary a(R.0). Applying the same approach as in Example
3.1.1.0, we find for each of the triples (¢,x,i) from

(€,a,0), (b,0), (¢, 0), (a,d, 1), and (c, ¢, 2), that
tetW A xeo(R.i) A txta(Ri) A txetW.

Consequently, the connection is also free of computation interference, and we
conclude that R. 0 can be decomposed into R. 1 and R. 2.
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O

ExampLE 3.1.1.3. Similarly to the above example, we can prove that 3-CEL
component pref{a?l|b?llc? ;e!] can be decomposed into 2-CEL components
pref[a?l|b?;d'] and pref[d?lic?;e!]. This decomposition is depicted in Figure
3.13.

a?

b? e!
c?

FIGURE 3.1.3. A decomposition of a 3-CEL component.
O ;

ExampLE 3.1.1.4. Also in the same fashion as the previous examples we can
prove that the 2-CEL component pref[c!;a?] || pref[b?;c!] can be decomposed
into the 2-CEL component pref[d?;c!]| pref[b?;c!] and the WIRE com-
ponent pref[d!;a?]. This decomposition is depicted in Figure 3.1.4.

d

a?

b?
FIGURE 3.1.4. Decoupling an initial transition.

In general, any CEL component with initial transitions on some of its inputs
can be decomposed into a CEL component without initial transitions on its
inputs and WIRE components with initial transitions. A similar reasoning
holds for XOR components.

O

ExaMPLE 3.1.1.5. We examine some decompositions of the form S.0— S. 1,
i.e. decompositions into one component only. First, we have S — S for any
component S.

Second, for components S.0 and S. 1 defined by

S.0 = pref[a?;b!;c?;d!] and
S.1 = prefla?;b!|c?d!),
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for example, we have S.0— S. 1.
Component S. 1 can be decomposed further: let

8.2 = pref[a?;b!] || pref[c?;d"],

then we infer S.1- §. 2.

Given the decompositions S.0—S.1 and S.1-S.2, we may wonder
whether S.0— S.2 holds as well. This is indeed so; in the next section we
derive this decomposition by application of the Substitution Theorem.

We can still go one step further in the decomposition of S. 1, since we have

S.2 — pref[a?;b!], pref[c?;d!]

This last decomposition is a special case of the Separation Theorem, which is
also discussed in the next section.
a

3.1.2. The Substitution Theorem

A theorem that may be helpful in finding decompositions of a component is
the Substitution Theorem. This theorem applies to problems of the following
kind. Suppose that component S. 0 can be decomposed into a number of com-
ponents of which T is one such component. Suppose, moreover, that T can be
decomposed further into a number of components. Under what conditions can
the decomposition of T be substituted in the decomposition of S. 07

We have

THEOREM 3.1.2.0. (Substitution Theorem)
Let components S.i, 0<i <m, and T satisfy for 1<n<m

(Vi:0<i<n:a(S.i)) N (Vi:n<i<m:a(S.i)) = aT. 3.1
We have

8.0 (i:1<i<n:S.i), T

AT - (i:n<i<m:S.i)

= 5.0 (@ 1<i<m:S.i).

O
Condition (3.1) of the above theorem is essentially a void condition, since, by
an appropriate renaming of the internal symbols in the decomposition of T,

this condition can always be satisfied. (Recall that the internal symbols of the
decomposition of T are given by (U:n<i<m:a(S.i)) \ aT .)
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PrOOF (of Theorem 3.1.2.0). Let
RO = S0, Ri=Sifor1<i<m,
W0 = (lli: 0<i<m: R.i),
W1 = (lli:0<i<n:Ri)|IT, and
w2 = (li:n<i<m:Ri)|T

(i) We observe
S.0- (@(:1<i<n:8.i),T
AT - (i:n<i<m:S.i)

=>{condition (i) of decomposition}
(Vi:0<i<n:o(Ri)) U oT = (Ui:0<i<nm:i(Ri) UiT
A (Viin<i<m:o(Ri))UiT = (Vi:n<i<m:i(Ri))UoT
={calc. ,oTNiT = &}

(Vi:0<i<m:o(R.i)) = (Ui:0<i<m:i(R.iQ)).

(ii) Since
8.0 - (i:1<i<n:8.i), T and

T - (i:n<i<m:S.i),
we have, by condition (ii) of decomposition, for i7j
o(Ri)N(R.j)=2 , for 0<i,j<n V n<i,j<m, and
oRi)NoT =2 ANoR)HNIT=@ for 0<i<n A n<j<m.
From condition (3.1) in the theorem follows

o(Ri)No(Rj) CaT for0<i<n A n<j<m.

For component 7, we have iTNoT'=@. This combined with the above
yields

oRi)No(R))=2 for 0<i,j<m A ij.

(iv) (We first prove (iv) and then (iii) of the definition of decomposition.)
We show that for all ¢, b, i, 0<<i<m,

tet(W1|W2) Abeo(R.i) A thra(R.i)et(R.i)
= thet(W1|W2). (32)

and that (W 1||W2)=tW0). From these two properties condition (iv) of
decomposition can then be concluded.
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Let 0<<i<n. We observe
tet(W1lW2) A beo(R.i) N thta(R.i)et(R.i)
= {def. of weaving}
ttaWletW1 A beo(R.i) N thta(Ri)et(R.i)
= {8.0- (i: 1<i<n:S.i), T ,condition (iv) of decomposition, calc.}
thtaWletWl. (33)

To prove also that thraW2etW?2 for 0<i<n, we consider two cases:
beaW?2 and beaW?2. For be¢aW 2 we have, by the definition of weaving,

tet(WIW2) AbgaW?2 = thlaW2etW2.

For beaW?2, we derive
tet(W1IW2) A beo(R.i) N thta(R.i)et(R.i) A beaW?2
= {(3.3), 0<i<n)}
tet(W1||W2) A beo(Ri) A be(@aW2NaWl) A thtaW1etWl
= {condition (3.1), def. of weaving}
tet(W1liW2) A beo(Ri) A beaT A thtaT etT
= {S8.0- (i: 1<i<n:S.i),T ,condition (if) of decomposition}
tet(W1||W2) A beiTl A thtaTetT
= {def. of reflection, def. of weaving}
ttaW2etW?2 A beoT A thtaTetT .
= {T - (i:n<i<m: S8.i), condition (iv) of decomposition, calc.}
thtaW2etW?2.
Since the(aW 1UaW?2)’, we derive with (3.3) and the definition of weav-
ing that rthbet(W1||W2).
For n<i<m, we derive similarly that (3.2) holds.

Subsequently, we show that tW1|W2)=tW0. We observe
a(W1lw2)=aW0 and (W1||W2)=tWOI|IT). By definition of weaving,
we derive t(W1||W2)CtW0. We prove tetW0 = tet(W1|W2) by
induction to the length of ¢.

Base: W0 and WI1||[W2 are prefix-closed and non-empty, hence
€eetW0 A est(W1|W?2).
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Step: We observe
thetW0
= {WO is prefix-closed }
tetWo A thetW(
= {induction hypothesis for ¢}
tet(W1IW2) A thetW0
= {by (i) in this proof and def. of weaving}
Ei:0<i<m:tet(W1l|W2) A beo(R.i) A thta(R.i)eH(R.i))
= {(3.2)}
thet(W1|l W2).

(iii) To prove tWOta(R.0)=tR.0), we use a result of (i), ie.
tWOo=t(W1| W2). We observe

tWOta(R. 0)

= (see (i)
(W1l W2)ta(R.0)

= {a(R. 0)CaW1, by (3.1): aW1naW2 =aT, Prop. 1.1.2.6}
(W1l (W2taT))ta(R. 0)

= {T - (i: n<i<m: 8.i), condition (jii) of decomposition, calc.}
(W1l T)ta(R.0)

= {calc.}
tW1ta(R. 0)

= {8.0-(i:1<i<n:S§.i), T, condition (iii) of decomposition}
t(R. 0).

O

In (i), (i), and (iv) of the above proof we did not use condition (iii) of decom-
position. Consequently, we conclude
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THEOREM 3.1.2.1.
GAHABS)AG)
= B.6)A (li:0<i<m:Ri)=(li:0<i<m:Ri)| T,

where
(3.4) = the components R.i, 0<i<n, and T form
a closed connection, free of interference.
(3.5) = the components R.i, n<i<m, and T form
a closed connection, free of interference.
(3.6) = the components R.i, 0<i<m, form
a closed connection, free of interference.
O

ExaMpLE 3.1.2.2. Consider the components S.0, S.1, and S.2 of Example
3.1.1.5 again. We have

S0-S1AS1-82A
(a(S.0)Ua(S. 1)) N (a(S. HUa(S.2)) = a(S.1).

By the Substitution Theorem we conclude S.0— S.2. Moreover, we also have
S.2—pref[a?;b!], pref[c?;d!].

Here as well the condition for the Substitution Theorem is satisfied, and we
conclude

S.0—pref[a?;b!], pref[c?;d!].
Consequently, S. 0 can be decomposed into two WIRE components.
O

NOTATIONAL REMARK. In the derivation for a decomposition of a component
we sometimes use a notation similar to the proofs in this monograph. For
example, for the derivation of a decomposition S.0—S.1,S.2,S.3 we may
write

5.0

—{hint why S.0- 5.1, 5.2}
S.1,8.2

—{hint why S.1- 8.3, 5.4}
S.3,5.4,8.2.

Such a derivation is then based on the Substitution Theorem, and it is
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assumed that the condition for its application holds.
a

3.1.3. The Separation Theorem

Another theorem that may be convenient in finding decompositions of a com-
ponent is the Separation Theorem. It pertains to problems of the following
kind. Suppose that for the components S0, 51,52, 70, T1, and T2 we have
S0->S1,52 and T0—T1,T2. Can we derive from these decompositions a
decomposition ~ for  component  SO||T0? For example, does
SO0|IT0— S1IIT1, S2|IT2 hold?

We have

TaHEOREM  3.1.3.0. (Separation = Theorem) Let components  S.k.i,
0<k<n A 0<i<m, satisfy S.k.0— (i: 1<<i<m:S.k.i). We have

(lk:0<k<n:Sk.0) - (i: 1<i<m:(llk:0<k <n: S.k.i))

if the following conditions are satisfied.
AkNAICa(S.k.0) for 0<k,I<n A kI, 3.7
OutiNOutj=@  for 0<i,j<m A i##j, (3.3

where
Ak =i:0<i<m:a(S.k.i)) for 0<k<n,
Outi = (Uk:0<k <n:o(S.k.i)) for 1<i<m, and
Out.0 = (Uk:0<k<n:o(S.k.0)).

O

Condition (3.7) can be interpreted as ‘the internal symbols of the decomposi-
tions are row-wise disjoint’, where the internal symbols of the decomposition
of S.k.0, 0<k <n, (i.e. row k) are given by A.k\ a(S.k.0). Condition (3.8)
can be interpreted as ‘the outputs are column-wise disjoint’, where the outputs
of column i, 0<<i<m, are given by Out.i. (Notice that Out.0 represents the
outputs of the components S.k. 0, 0<k <n.)

PrOOF (of Theorem 3.1.3.0).
Let Rk.0=S.k.0 and R.k.i =S.k.i for 1<i<m and 0<k <n.
(i) We observe

(Vi:0<i<m:o(llk:0<k<n:R.k.i))
={calc.}
(Uk:0<k<n: (Ui:0<i<m:o(R.k.i))
= {S.k.0—(i: 1<i<m:S.k.i), calc.}
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(Uk:0<k<n:(Ui:0<i<m:i(Rk.i))
= {calc.}
(Vi:0<i<m:i(llk:0<k<n:Rk.i)).
(i) The property o(llk:0<k<n:Rk.i)No(llk:0<k<n:Rkj)= &, for
0<<i,j <m A i7%j, follows directly from condition (3.8) in the theorem.
(iii) Let B=a(llk:0<k<n: R.k.0). We observe
t(lli:0<i<m:(llk:0<k <n:Rk.i))} B
= {calc.}
t(llk: 0<k<n:(lli:0<i<m:Rk.i))!B
= {condition (3.7), Prop. 1.1.2.7, calc.}
t(llk: 0<k<n:(lli:0<i<m:R.k.i)! B)
= {calc., condition (3.7)}
t(llk: 0<k<n:(lli: 0<i<m: R.k.i)la(R.k. 0))
= {Sk.0—(i: 1<i<m:S.k.i), calc.}
t(llk: 0<k<n:R.k.0).
(iv) Let
WC.i = (lk:0<k<n:R.k.i),
WRk = (lli:0<i<m:Rk.i), and
W = (lli:0<i<m: WC.i).

Notice that we also have W=(llk:0<k<n: WRk). We first prove that
under condition (3.8 ) we have

beo(WC.i)
= (Ak:0<k<n:bga(WRk) V beo(Rk.i)). (3.9)

Let beo(WC.i), i.e. beOut.i. Let k satisfy 0<<k <n. If bea(WR k), then
beo(R.k.j) for some j, 0<j<m, since the components (i: 0<i<m: R.k.i)
form a closed connection. By condition (3.8) then follows i =j.

Second, we derive for arbitrary k, 0<k <n,

tetW A beo(WC.i) A thta(WC.i)et(WC.i)

=> {definition of weaving, (3.9)}
ta(WR.k)et( WRk) A (bea(WRk)V beo(R k.i))
A thta(R.k.i)et(R k.i)

= {S.k. 0> (i: 1<i<m: S.k.i), calc.}
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thta(WR.k)et( WR.k).
By the definition of weaving, we consequently deduce tb etW.
a

In the proof of the Separation Theorem condition (3.7) is only used in (iii).
For this reason, we conclude
THEOREM 3.1.3.1. For the components S.k.i, 0<k <n A 0<<i <m, we have
S.k0—(i:1<i<m:S.k.i) for all k, 0<k <n,
A (3.8)
= (Ilk:0<k <n:Sk.0), (i:1<i<m:(llk:0<k <n:S.k.i))
forms a closed connection, free of interference.
O

From the Separation Theorem two corollaries can be derived.

CoroLLARY 3.1.3.2. If for components SO,S1, and SO|T we have S0— S1,
then SOIIT - S 1|IT.
ProOF. Take

5.00 = S0, S.01 =S1,

$10=T,811=T,

and let S0— S'1. Then we have S.0.0 > S.0.1 and S. 1.0 S. 1.1. Since there
are no internal symbols for these decompositions, condition (3.7) of the
Separation Theorem is satisfied. For component S0||T we have

iS0NoT=32 A oSONIT=2.

By S0—S1, we also have iS0=iS1 A 0S0=0S1. Since S0,S1 and T are
components, we infer from the above -

(iSOUIT) N (0S1UeT)=12.

Consequently, Out. 0NOut. 1= @ and condition (3.8) holds. Application of
the Separation Theorem yields the desired result.
a

CoroLLARY 3.133. If for component (l|k:0<k<n:Tk) we have
oT.k)NAT.Ily =@ for 0<k, I<n A kI, then

(lk:0<k<n:Tk) — (k:0<k<n:Tk).

Proor. Take S.k.0=Tk for 0<k<n, S.k.(k+1)=Tk, and S.ki=e¢ for
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I<i<(mn+1) A (k+1)5i. We have S.k.0—(i: 1<i<(n +1):S.k.i). Here as
well there are no internal symbols for the decompositions, and condition (3.7)
of the Separation Theorem is satisfied. Since (|lk:0<k<n:Tk) is a com-
ponent, we have

i(Tk)N(T.)=2 for 0<k,/<n A k5,
i.e. Out. 0 and Out.i are disjoint for 0<i <(n +1). If
o(Tk)No(T.H)=2 for 0<k,l<n A k=,

then Out.iNOut.j= @ for all 0<i,j <(n+1) A i%j. Accordingly, the outputs
are column-wise disjoint, and condition (3.8) of the Separation Theorem can
be concluded. Application of this theorem gives the desired result.

a

ExampPLE 3.1.34. We demonstrate how a decomposition for component
SO0=pref[a?;b!;c?d!] || pref[b';e?] can be derived with the above theorems.
We observe

pref[a?;b!;c?;d!] | pref[b!;e?)
- {Ex. 3.1.1.5, Cor. 3.1.3.2}
pref[a?;b!] || pref[c?;d!] || pref[b!;e?]
— {Cor. 3.1.3.3, calc.}
pref [a?;b!] || pref [b!;e 7]
, pref [c?;d!].

From these last lines (and the Substitution Theorem) we infer that component
S0 can be decomposed into a 2-CEL component and a WIRE component.
The decomposition is depicted in Figure 3.1.5.

c?7o * J!
a?

b!
e?

FIGURE 3.1.5. A decomposition of S0.
O

More applications of the above theorems and corollaries, and some suggestions
for other theorems on decomposition, are given in Chapters 5, 6 and 7.
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3.2. DELAY-INSENSITIVITY
3.2.0. DI decomposition

In Chapter 2 we stipulated that the behavior of a non-WIRE component (and
its environment) is specified at a fixed boundary. For a connection of such
components it seems highly unlikely that their fixed boundaries would fit
exactly at the connection points. Therefore, in order to connect corresponding
input and output terminals in this connection, we introduce WIRE com-
ponents. The terminals are connected via an intermediate boundary as
exemplified in Figure 3.2.0. Since WIRE components have flexible boundaries,
this intermediate boundary can be placed anywhere between the fixed boun-
daries of the components.

l
andlX®
- intermediate boundary

U ’f

FIGURE 3.2.0. DI decomposition.

Operationally speaking, the WIRE components introduce delays in the com-
munications between components and the intermediate boundary. Thus, they
may affect the functional behavior of the connection of components at the
intermediate boundaries. If this closed connection operates as specified,
irrespective of delays, and the connection is free of interference, then we call
such a connection a delay-insensitive connection.

The formalization of a delay-insensitive connection of components is done
as follows. For the components S.k, 0<k<n, we define R 0=S.0 and
Rk=S8.k, 1<k<n. Let a(Rk), 0<k<n, stand for an intermediate boundary
and define the enclosure enc(R.k) of this boundary by

enc(R.k) is the trace structure obtained by replacing
each output a in Rk by oa; and
each input a in R.k by ig.

(We assume that the characters i and o do not occur in R.k). For each k,
0<k<n and aca(R.k) we introduce the WIRE component Wire(k,a) between
the boundary of the enclosure and the intermediate boundary by

Wire(k,a) = prefoa;?;a!] if aco(Rk)
= prefla?;ia,!] if a€i(R.k).
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The collection of WIRE components for R.k, 0<k<n, and its weave are
defined by

Wires(R.k) = (a:aeca(Rk): Wire(k,a))

WWires(R.k) = (lla: aca(R.k): Wire(k,a)).
With these definitions we can formulate
DeFINITION 3.2.0.0. We say that the components S.k, 1<k<n form a DI
decomposition of component 8.0, denoted by
DI
8.0 (k: 1<k<n:S.k),

if all components enc(R.k) and Wires(R.k), 0<k<n, form a closed connection,
[ree of interference, and

t(llk: 0<k<n: enc(R.k) || WWires(R.k))!a(R. 0) = t(R.0).
O
Notice that the last condition requires that the connection behaves as specified
at the intermediate boundary a(R. 0). Thus, we incorporate the delays in the

communications not only with the components S.k, 1<k <n, but also with
environment S. 0.

ExampLE 3.2.0.1. We have the relations
DI
pref[a?;b'lic!] — pref[a?;b!llc!], and

DI
pref[a?; b!llc!] — pref[a?;b!;c!].

Notice that the ordering between outputs b and ¢ for component
pref[a?;b!;c!] is lost at the intermediate boundary due to the ‘delays’ intro-
duced by the WIRE components. Consequently, there does not exist a DI
decomposition of this component that can realize this ordering between out-
puts b and ¢, i.e. we do not have,

DI
pref[a?;b!;c!] — pref[a?;b!;c!].
O

3.2.1. DI components

In this monograph we are interested in DI decompositions of a component. In
general, DI decompositions are more difficult to verify or derive than decom-
positions. The two decompositions are equivalent, however, if all components
involved are so-called DI components. DI components are defined by
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DEerFINITION 3.2.1.0. Component S is called a DI component, if
S — Wires(S), enc(S).
0
Since WIRE components have flexible boundaries, it follows from Definition
3.2.1.0 that a DI component can be characterized as a component whose

specification is valid at a flexible boundary.
We have

THEOREM 3.2.1.1. If all components S.i, 0<i<n, are DI components, then

DI
S0 1<i<n:Si) = S.0-(: 1<i<n:S.i).

PrROOF. Let R.0=S.0 and Ri=S.i, 1<i<n. First, we make two observa-
tions. We infer

components R.i, 0<i<n, form a
closed connection, free of interference
= {Th. 3.1.2.1, R.i — Wires(R.i), enc(R.i) for 0<i<n} (3.10)
components enc(R.i) and Wires(R.i), 0<<i<n, form a
closed connection, free of interference
A (3.11),
where (3.11) stands for the equality
(lli: 0<<i <n:enc(R.i) || WWires(R.i)) _
= (lli:0<i<n:enc(R.i) || WWires(R.i) || R.i). @3.11)
Second, we derive
(lli:0<i<n:enc(R.i)|| WWires(R.i))! a(R. 0)
= (3.11)
(lli:0<i<n: enc(R.i) || WWires(R.i) || R.i)! a(R. 0)
= {Prop. 1.1.2.7 with 4,B : = a(R. 0), a(R.i) for 0<i<n} (3.12)
(lli: 0<i<n: (enc(R.i) || WWires(R.i) || R.i) ta(R.i))! a(R. 0)
= {R.i > Wires(R.i), enc(R.i) ,calc.}
(lli:0<i<n:R.i)ta(R.0).
With these observations the proof goes as follows.

Let $.0—-(i:1<i<n:S.i) hold. By (3.10) we infer that the components
enc(R.i) and Wires(R.i), 0<i<n, form a closed connection, free of interference
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and (3.11) holds. With (3.12) we infer
S.0-(@:1<i<n:S.i)
= {def. of decomposition}
t(lli: 0<i<n:R.i)la(R. 0) = (R. 0)
= {(3.12), 3.11)}
t(lli: 0<i<n:enc(R.i) || WWires(R.i))la(R.0) = t(R. 0).

DI
Consequently, S.0— (i: 1<i<n: S.i).

DI
Let S.0—(i: 1<<i<n:S.i) hold. By definition of enc(R.i) and WWires(R.i)
we derive

components enc(R.i) and Wires(R.i), 0<i<n,

form a closed connection, free of output interference
= {calc.}

components R.i, 0<i<n,

form a closed connection, free of output interference

Consider the special behavior in the closed connection of components enc(R.i)
and Wires(R.i), 0<i<n, where each output oag;, 0<i<n A aco(R.i), is
immediately followed by a and all ig;, 0<j<n A a€i(Rj). Operationally
speaking, we assume that the communications by the WIRE components are
instantaneous communications. Since in this special behavior computation
interference does not occur, there is no computation interference in the con-
nection of components R.i, 0<<i<n, either. Accordingly, we have that the com-
ponents R.i, 0<<i<n, form a closed connection, free of interference. By (3.10)
and (3.12) we then infer

DI
S.0-(@:1<i<n:S.i)

= {def. of DI decomposition}
t(lli : 0<<i<n:enc(R.i) || WWires(R.i))t a(R. 0) = t(R.0)
= {(3.10), (3.12)}
t(lli:0<<i<n:R.i)ta(R. 0) = t(R.0).
(éonsequently, S.0-(i: 1<i<n:S.i).

From now on, we mostly restrict ourselves to DI components and decomposi-
tions. By Theorem 3.2.1.1, it then follows that such decompositions are DI
decompositions.

We say that a component S. 0 is DI decomposable if there exists a collection
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of components S.i, 0<i <n, that form a DI decomposition of S. 0.

REMARK. It can happen that for a given component decompositions exist in
which not every component is a DI component. If this component is realized
by a circuit according to such a decomposition but with the use of connection
wires, then this circuit may malfunction: some delays can cause incorrect
behavior. In order for this circuit to operate correctly, delay requirements must
be met. We try to avoid such requirements as long as possible.

O

The following two theorems can be used to infer whether a component is
DI. From the definition of DI decomposition and DI component we derive

THEOREM 3.2.1.2. If a component is DI decomposable, then it is a DI com-
ponent.

DI —_
PrROOF. Let S.0—(i:0<i<n:S.i). Take R.0=S.0, Ri=S.i, 1<i<n, and
define T by iT = i(S. 0), oT = ofS. 0),

tT = t(i : 0<i<n:enc(R.i) || WWires(R.i))la(R. 0).
Since the components enc(R.i) and Wires(R.i), 0<<i<n, form a closed connec-
tion, free of interference, we infer that the connection enc(R.0), Wires(R.0),
and T is closed and free of interference as well. By definition of DI decompo-

sition we have T =S.0. Accordingly, also S.0, Wires(S.0), enc(S.0) is a
closed connection, free of interference. Moreover, for any S.0 we have

(enc(S. 0) || WWires(S.0) || 5.0)ta(S.0) = t(S.0).
Accordingly, we conclude S. 0 — enc(S. 0), Wires(S. 0).
O

Consequently, if a component is not a DI component, then it is not DI decom-
posable.

THEOREM 3.2.1.3. For a component S we have

DI
SisDI=S8-8.

PROOF. Frolr)x; Theorem 3.2.1.1 and the property S—S, we infer

S is DI = S — S. From Theorem 3.2.1.2, we derive S—S = S is DI
O

The characterization of a DI component S by the property
S — Wires(S), enc(S) can be considered as a formalization of the so-called
Foam Rubber Wrapper (FRW) principle. Formally speaking, the FRW princi-
ple states that the specification of a component is invariant under the
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extension of WIRE components. Operationally speaking, the FRW metaphor
expresses that the circuit specified by S is embedded in a ‘Foam Rubber
Wrapper’ formed by the connection wires. The boundaries of the FRW are
constituted by aenc(S) and aS, as depicted in Figure 3.2.1.

——

———

P _ aS’///// \\\
\ \\CD \\
\

\l
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\/)//. Wires(S)  FRW \\/’
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~
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FIGURE 3.2.1. The Foam Rubber Wrapper principle S — Wires(S), enc(S).

The idea of formalizing delay-insensitivity by means of the FRW principle
originates from Charles E. Molnar [33]. Jan Tijmen Udding was the first to
give a rigorous formulation of this principle in terms of trace structures. In
[45] he postulates a number of rules which a component must satisfy in order
to meet the FRW principle. It turns out that Udding’s definition of a DI com-
ponent is equivalent to Definition 3.2.1.0 (cf. Theorem 4.1.0). T.P. Fang had
earlier expressed the FRW principle —though less completely— by means of
Petri Net rules. In [38] another formalization of the FRW principle is given by
Huub Schols. For a proof of the equivalence of Udding’s and Schols’s formali-
zation we refer to [38, 39].
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Chapter 4

DI Grammars

4.0. INTRODUCTION

In order to apply Theorem 3.2.1.1 we have to know whether a component is a
DI component or not. The recognition of DI components is the subject of this
chapter. We present two methods for recognizing a DI component: DI gram-
mars, which make up most of this chapter, and Udding’s classification.

In [45] Jan Tijmen Udding postulates a number of rules with which the
classes C1, C2, C3, and C4 of trace structures are defined. A class consists of
all trace structures that satisfy a specific set of rules. It turns out that the larg-
est class, ie. class C4, is the class of all DI components. Udding’s
classification is briefly presented in Section 4.1.

The remaining sections of this chapter concern the definitions of so-called
DI grammars. A grammar is called a DI grammar if it generates commands
that represent DI components. Commands that represent DI components are
called DI commands. DI grammars are attractive for two reasons. First, they
enable a syntactical verification of the DI property, and, second, they can be
used as a starting point for a syntax-directed decomposition method. At the
end of this chapter, we show in a number of examples how a DI grammar can
be used to verify whether a command is a DI command and to derive a DI
command from a non-DI command. In the next chapters, a hierarchy of DI
grammars is used to develop a syntax-directed decomposition method.

With the DI grammars of this chapter a large class of DI commands can be
derived, although we conjecture that not every DI command can be derived
with these grammars. Accordingly, the DI grammars may be used to prove
that a command is a DI command, but in order to prove that a command is
not DI we have to resort to other means such as Definition 3.2.1.0 or Udding’s
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classification. The recognition of a DI command by means of a DI grammar is
simple and straightforward, whereas the recognition of a DI component by
means of Definition 3.2.1.0 or Udding’s classification can be tedious.

The grammars defined in this chapter are attribute grammars. Attribute
grammars are briefly explained in Section 4.2. The largest DI grammar, i.e.
grammar G4, is then defined in Sections 4.3 to 4.7. In Sections 4.7 and 4.8 the
grammars G4, G3, G2, G1', and GCL’ are defined, which are all derived
from grammar G4.

4.1 UDDING’S CLASSIFICATION

We briefly summarize Udding’s classification. For a more extensive discussion
of this classification the reader is referred to [45].

In the following rules, the letter R denotes a directed trace structure with
intR= ¢, s and ¢ denote arbitrary traces, and a,b, and ¢ denote arbitrary sym-
bols from aR.

rule 1: (R is a component)
R is prefix-closed, non-empty, and iR NoR= 2.

rule 2: (Absence of transmission interference)
saa ¢tR.
rule 3: (Symbols of the same type commute)

If a and b are symbols of the same type, then sabt etR = sbat €tR.

rule 4'; (Symbols of distinct type commute (0))
If a and b are symbols of distinct type, then
sabt etR N sbetR = shatetR.

rule 4’:  (Symbols of distinct type commute (1))
If a and b are symbols of distinct type and symbol c is of the same
type as a, then sabtc etR A sbat etR = sbatc €tR.

rule 5’:  (No disabling)
If a and b are distinct symbols, then sa etR A sbetR = sabetR.

rule 5"”:  (Possible disabling of inputs)
If a and b are distinct symbols, not both inputs of R then
sa€tR AsbetR = sabetR.

rule 5'’:  (Possible disabling of inputs or outputs)
If a and b are distinct symbols of different type, then
sactR AsbetR = sabetR.
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A class is defined by the collection of all trace structures R that satisfy a cer-
tain subset of the above rules. All trace structures R that satisfy

rule 1, 2, 3, 4, and 5’ form class C1,

rule 1, 2, 3, 4, and 5” form class C2,

rule 1, 2, 3, 4, and 5" form class C 3,

rule 1, 2, 3, 4”7, and 5"” form class C4.
There exists a subset relation between these classes, viz. C1CC2CC3CC4.
We have
THEOREM 4.1.0. R is DI = ReC4.

PrROOF. See Appendix A.
O

ExampLE 4.1.1. Consider the following components.
RO = pref (a?;b?;c!),
R 1 = pref[a?lb?;c!],
R2 = preflafc!|b?;c!],
R 3 = pref[n(a!|bY)],
R 4 = pref (a!llb? | b%alllc!),
R 5 = pref (a%d"? | (0%e") | (@hdlic)? | (B %elllc!)), and
R 6 = pref [@?)? |(d?| (@b %c!)] .

By inspection, we infer that R. 0¢C4, since rule 3 is not satisfied. Similarly,
R. 6¢C4, since rule 2 is not satisfied. For the other trace structures we have

R 1eC1,R 2eC2,R 3€C3,R 4e€C4, and R 5€C2.

Notice that in R. 1 there is no disabling of symbols; in R.2 there is a disabling
between inputs; and in R. 3 there is a disabling between outputs. For R. 4 we
observe that rule 4’ is not satisfied, though rule 4” is satisfied, as well as rules
1,2,3,and 5.

O

As the reader may have noticed in Example 4.1.1, verifying whether a com-
ponent is DI by means of the rules for C4, C3, C2 or C1 can be tedious.
For many components, represented by a command, a simple syntactical
verification can also be applied, as is shown in the next sections.
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4.2. ATTRIBUTE GRAMMARS

The DI grammars defined in this chapter are attribute grammars. We briefly
explain those properties of an attribute grammar that are needed to under-
stand the next sections.

An attribute grammar consists of

a context-free grammar

a set of attributes for each grammar symbol
- a condition for each production rule, and
- aset of evaluation rules for each production rule.

In the attribute grammars of the next sections, the attributes, the conditions,
and the evaluation rules are used to restrict the derivations of the context-free
grammar. We explain how these restrictions are formulated.

Each derivation in the context-free grammar has a parse tree, and each node
in that parse tree corresponds to a grammar symbol. The attributes of this
grammar symbol are also associated with this node. For each attribute in the
parse tree, its value is calculated according to the condmons and the evalua-
tion rules of the grammar as follows.

The values of the attributes of each internal node are calculated from the
values of its children. These calculations are specified in the evaluation rules
which are associated with the production rule that is applied in that node.
Attributes thus calculated are called synthesized attributes (as opposed to inher-
ited attributes). The values of the attributes of the leaves are assumed to be
given.

The values of the attributes in a node are calculated only if the condition for
the production rule holds. The condition is formulated in terms of the attri-
butes of the children of that node. If in all nodes the condition for the produc-
tion rule holds, then the derivation is called a derivation of the attribute gram-
mar. Thus, derivations of the context-free grammar are restricted to deriva-
tions of the attribute grammar.

In the following sections, the context-free grammar, the attributes, the condi-
tions, and the evaluation rules for grammar G4 are defined. We then show that
any derivable command of this grammar is a DI command.

4.3. THE CONTEXT-FREE GRAMMAR OF G4

Below, the context-free grammar of the attribute grammar G4 is defined. In
Table 4.3.0 the production rules are listed. The symbol || is a meta symbol of
the grammar; it separates the alternative productions. The prefixes pc and pf
stand for prefix-closed and prefix-free respectively.
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<dicom> ::= <pccom > (@0)
[ (<pccom>)t (al)
<pccom> .= €
| w<tailf >.0 (b0)
| <pccom>|<pccom > ®1
| pref(<pfcom>) ®2)
| pref[<pfcom>] b3)
<pfecom> ::= <marked syms > (c0)
| <pfecom> ; <pfcom > (c1)
| <pfeom> | <pfcom > (c2)
| (<pfeom>) (c3)
<marked syms> ::= <sym>7[| <sym>?|| <sym>?
[ <sym>!] <sym>!|| <sym>!
1<sym >?
1<sym >!

TABLE 4.3.0. The production rules of grammar G 4.

The symbols <sym >, <tailf>, and all characters in the above table not
enclosed by the < > brackets are terminal symbols of the grammar. All
other symbols in Table 4.3.0 are non-terminals. The start symbol is <dicom>.
The terminal <sym > represents a symbol from a sufficiently large alphabet.
The terminal <1ailf> represents a tail function defined by an array of com-
mands E(i,j: 0<i,j<n), i.e. if ptailf.0 is an instance of <pccom >, then the
tail function tailf is defined by

tailf R.i = pref (|j:0<j<n:E.ij;Rj), 0<i<n

Later, when we define the conditions for production rule (b0), these conditions
are formulated for array E. For example, we require E.i.je <pfcom> for all
i,j with 0<<i,j<n A E.i.j%@ A E.i.j7¢. Thus, implicitly, commands of type
<pfcom > are used in the application of rule (50).

With the above context-free grammar, commands of the form E or E! can
be derived, where E is expressed as a weave of (special) sequential commands.

4.4. THE ATTRIBUTES OF G4

At most eight attributes are associated with each grammar symbol. The attri-
butes are represented by the names
O, I, EN, CO, HD, TL, FIRST, and FIRSTEXT.

All eight attributes are associated with the grammar symbols <marked syms >
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and <pfcom >. With the grammar symbol <pccom > only the attributes O, I,
EN, and CO are associated. The grammar symbol <dicom> has no attributes.

The evaluation rules and conditions are defined in such a way that the fol-
lowing semantics can be attached to the attributes. (This is proven in Appen-
dix B.) For a command E derivable in (attribute) grammar G4 we have

I(E) = iE,
O(E) = oE,
EN(E) = enE,
CO(E) = coE.
The attributes HD and TL indicate with what kind of marks a command E

starts and ends respectively. For a command E derivable in grammar G4 we
have

HD(E) = empty  if E=¢,

HD(E) = in if Es~¢ AhdE CiE UenE,
HD(E) = out if Es~¢ AhdE CoE UcoE,
HD(E) = mixed otherwise,

TL(E) = empty  if E=¢,

TL(E) = in if Es%4¢ A tIE CiE UcoE,
TL(E) = out if Es%¢ A E CoE UenE,
TL(E) = mixed  otherwise ,

where hdE = {b|Et::bt tE)}, and tlE = {b|Et::tbetE)} . For example, for the
command E =a?llb?c! | 7d';e?, we have HD(E)=in and TL(E)=mixed.

The attributes FIRST and FIRSTEXT represent a kind of 1-lookahead sets
for a command. The type of these attributes is a set of sets of symbols (instead
of a set of symbols for usual 1-lookahead sets). In the case of FIRSTEXT
these sets of symbols consist of external symbols only. For a derivable com-
mand E in grammar G4 we have

FIRST(e) ={2} A FIRSTEXT(¢e) ={9D}.
If HD(E) = out, then
FIRST(E)
= {set(t)|t(oE)" NtetprefE A t5#e A (Suc(t,E)\ oE# @ V Suc(t,E)= @)}
U{{b}|becoE NbetprefE},
and
FIRSTEXT(E)
= {set(t1extE)|te(0E UcoE)’ A tetprefE
A (Suc(t,E)\ (0E UcoE)# D V Suc (t,E)= @)}.
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Here, set(t) denotes the set of symbols occurring in t. If HD(E)=in, then
FIRST(E) and FIRSTEXT(E) are defined similarly, except that oF and coE
are replaced by iE and enE respectively. Notice that for intE= & we have
FIRST(E)=FIRSTEXT(E). The elements of FIRST(E) are sets of (con-
current) external symbols or singletons of internal symbols. The set
FIRSTEXT(E) contains sets of (concurrent) external symbols only. For exam-
ple, for the command E=alb?%c! | e, we obtain
FIRST(E)={{a,b},{d}} and FIRSTEXT(E)={{a,b},{e}}.

4.5 THE CONDITIONS FOR G4

The conditions for the production rules are formulated with five predicates.
These predicates are ALFCOND, PROCOND, SEQCOND, ALTCOND, and
TAILCOND. They correspond to a condition for the alphabets, a condition
expressing whether projection has to be applied, a condition for the sequential
construct, a condition for the alternative construct, and a condition for the
tail-recursive construct respectively.

ALFCOND(EO0,E1) , PROCOND(E) , SEQCOND(EO,E1l), and
ALTCOND(EO,E 1) are defined on commands derivable in G4 by

ALFCOND(E0,E1) = (A ATTO0,ATT1
:ATTO0,ATT1 € {I,0,EN,CO} N ATTO0#ATT1
ATTOUEQ)NATTI(EN)=0
)
EN(E)y=92 N CO(E)=4,
(TL(EO)=in N HD(E 1)=out)
V (TL(EO)=out A HD(E1)=in)
V (TL(EQ)=empty N HD(E 1)#mixed)
V (TL(EO)#mixed N\ HD(E 1)=empty),
ALTCOND(EO,E1) = HD(EQ)s#mixed N HD(EQ)=HD(E1)
A LLCOND(EO,E1)
A LLCONDEXT(E(Q,E1), where
LLCOND(EO,E1) = (FIRST(E0)={@} A FIRST(E1)={2})
V (A A,B:A€FIRST(EQ) AN BEFIRST(E1)
:=(ACB) N ~(BCA4))

and LLCONDEXT(EQ,E1) is defined analogously with FIRST replaced by
FIRSTEXT.

The condition ALTCOND(EO,E1) requires that EQ and E1 start with
marks of the same type and that the LL-1 conditions, both with respect to all
types of symbols and with respect to external symbols only, are satisfied.
These LL-1 conditions are a kind of generalized LL-1 conditions for LL-1
grammars. Notice that when the FIRST sets are non-empty and consist of sin-
gletons only we have

LLCOND(EO,E1) = FIRST(E0) N FIRST (E1)=@.

PROCOND(E)
SEQCOND(EO,E1)

Il
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The condition TAILCOND(tailf) consists of seven conditions defined on
array E(i,j: 0<<i,j <n) that determines the tail function tailf. Some of the con-
ditions defined above appear in a more general form in these seven conditions.
In the conditions defined below, the domain restrictions D (i,j) stand for
0<<i,j<n AE.ij%# @ A E.i.j5¢; by Eec<pfcom> we denote that E is a pro-
duction of <pfcom > in the attribute grammar. We have

TAILCOND(tailf ) = Q) A (D) A (@) A (3) A (4) A (5) A (6), where
0) = Ai:0<i<n: (Ej:0<j<n:E.ij5# D))

M

(Ai,j: 0<i,j<n Ni#j: E.ij7e€)
AN(Ai:0<i<n: Eii=e= (Aj:0<j<n Aizj: Eij=2))

(2) = ALFCOND(,j: D(i,j): E.i.j)

3 = (Ai,j: D(i,j): E.i.j e <pfcom >)

4 = (Ai,j,k:0<i,j,k<n AE.ij#@ NE.jk#@: SEQCOND(E.ij, E.j.k))
(5) = (Ai:0<i<n: ALTCOND(j: D(i,j): E.i.j))

6) = (Ai,j:D(i,j): FIRSTEXT(E.ij)#{2})
V (Ai,j : D(i,j): FIRSTEXT(E.i.j)={2}),
where
ALFCOND (i,j: D(i,j): E.i.j)
= (Ai,j,k,l: D(i,j) A D(k,I): ALFCOND(E.i.j, E.k.l))

and, for 0<<i<n, if (Nj::D(i,j))<<1, then ALTCOND(j: D(i,j): E.i.j) = true;
otherwise,

ALTCOND(j: D (i,j): E.i.j)
= ((Aj: D(i,j): HD(E.ij)=in) V (Aj: D(,j): HD(E.i.j)=out))
A LLCOND(j: D(iyj): E.i.j) A LLCONDEXT(j: D(i,j): E.i.j)

LLCOND(j: D(i,j): E.i.j)
= (4j:D(,j): FIRST(E.ij)={2})
V (Aj,k,A,B: D(i,j) A D(i,k) A jFk A
A€FIRST(E.i.j) N BeFIRST(E.i.k)
‘~(4CB))
and analogously for LLCONDEXT (j: D(i,j): E.i.j) with FIRST replaced by
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FIRSTEXT.

Condition 3 requires that every command E.i.j, with i,j satisfying D.i.j, is of
type <pfcom >. Condition 2, 4, and 5 are generalizations of the alphabet con-
dition, the condition for the sequential construct, and the condition for the
alternative construct respectively. The conditions 1 and 6 only are new condi-
tions.

In Table 4.5.0 the conditions for the production rules of attribute grammar
G4 are listed. Those production rules that are not listed do not have a condi-
tion.

Production rule  Production Condition

(a0) E PROCOND(E)

b0) ptailf. 0 TAILCOND(tailf)

®1 EOQlE1 ALFOND(EOQ,E1)

®3) pref [E] SEQCOND(E,E)

(cD) EOQ,E1 SEQCOND(EQ,E1) A
ALFCOND(EOQ,E)

(c2) EOQIE1 ALTCOND(EOQ,E1) A
ALFCOND(E(,E1)

TABLE 4.5.0. The conditions for grammar G4.

Combined, the conditions may be summarized as follows.

() (The alphabet condition)
For any symbol used, all atomic commands in which it occurs are of the
same type.

(ii) (The semicolon condition)
Input and output marks alternate. (This also holds for the repetitive con-
struct and between state transitions in a tail function.)

(#ii) (The bar condition)
In every alternative construct (also in a tail function) the alternatives start
with marks of the same type and both LL-1 conditions are satisfied.

(iv) (The tail-function condition)
The array of each tail function satisfies three additional conditions:
- Each row contains a non-empty command
- Only a command at the diagonal can be ¢, and if a diagonal element is

¢, then all other commands in that row are @.
- Either all commands different from € and @ contain external symbols,
or all of them do not.

() (The non-projection condition)
If a command does not contain projection, then it does not contain inter-
nal symbols.
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4.6. THE EVALUATION RULES FOR G4

If the condition for a production rule in a node of the parse tree holds, then
the values of the attributes in that node can be calculated. The values of the
attributes in the leaves, i.e. for commands of type <marked syms> and ¢, are
given in Table 4.6.0. These values are used to start the evaluation process.

Command E  Values for attributes of E

a? I(E)={a},0(E)=92 ,EN(E)Y=9,CO(E)=4,
HD(E)=in , TL(E)=in,
FIRST(E)={{a}} , FIRSTEXT(E)={{a}}.

al I(E)=9,0(E)={a} ,EN(E)=8 ,CO(E)=4,
HD(E)=out , TL(E)=out,
FIRST(E)={{a}} , FIRSTEXT(E)={{a}}.

Ta! I(E)=9,0(E)=92 ,EN(E)={a}, CO(E)=4,
HD(E)=in , TL(E)=out,
FIRST(E)={{a}} , FIRSTEXT(E)={92}.

la? I(E)=9,0(E)=9 ,EN(E)=@ ,CO(E)={a},
HD(E)=out , TL(E)=in,
FIRST(E)={{a}} , FIRSTEXT(E)={42}.

alllb? I(E)={a,b},0(E)=9@ ,EN(E)=0,CO(E)=2,
HD(E)=in , TL(E)=in,
FIRST(E)={{a,b}} , FIRSTEXT(E)={{a,b}}.

alllb! I(E)=2,0(E)={a,b} ,EN(E)=9,CO(E)=42,
HD(E)=out, ,TL(E)=out,
FIRST(E)={{a,b}} , FIRSTEXT(E)={{a,b}}.

€ I(E)y=9,0(E)=92 ,EN(E)=9 ,CO(E)=2,

HD(E)=empty , TL(E)=empty,
FIRST(E)={@} , FIRSTEXT(E)={@}.

TABLE 4.6.0. Values of attributes for E € <marked syms >.

(Recall that E||[E=E for a?lla?, etc.)

The evaluation rules corresponding to production rules (50), (b1), (c1), and
(c2) are given in Table 4.6.1. The evaluation rules for (b2) and (b 3) consist of
copying the values of I, O, EN, and CO; the evaluation rules for (c3) (and
(c0)) consist of copying the values of all eight attributes. The domain restric-
tions D(,j) for the array of commands E(i,j:0<i,j<n) stand for
D(i,j) = 0<i,j<n AE.i.j5%@ A E.i.j7e.
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Rule Production Evaluation of attributes

®0)  prailf.0  I(utailf.0) = (Ui,j:D(,)): I(E.ij)),
O (u.tailf. 0) = (Ui,j:D(i,j): O(E.i))),
EN(uailf. 0) = (Ui,j:D(,j): EN(E.i.j)),
CO(wtailf.0) = (Ui,j:D(,j): CO(E.i.j)).

(b1)  EOIE1  I(EOIE1) = I(EOQ)UI(E1),
O(EOIE1)= O(E0)UO(E),
EN(EOIE1) = EN(EO)UEN(E1),
CO(EO|E 1) = CO(E0)U CO(E 1).

(cl) EO0E1 I(EOEIL) = I(EOUIEL),
O(E0;E1) = O(E0)UO(ED),
EN(EO;E1) = EN(EO)UEN(E]),
CO(E0;E1) = CO(E0)UCO(E ),
HD(EO;E1) = HD(EO), TL(EO;E1)= TL(E 1),
FIRST(E0;E 1) = FIRST(EO),

if FIRSTEXT(E0)%{ 2},
FIRSTEXT(EO;E1) = FIRSTEXT(E0)
otherwise

FIRSTEXT(EOQ;E1) = FIRSTEXT(E1).

(c2) EQE1 I(EOIE1) = I(EO)UI(EY),
O(EO|E1)= O(E0)UO(EY),
EN(EO|E1) = EN(EO)UEN(E1),
CO(EO|E1)= CO(EOQ)UCO(E),
HD(EO|E1) = HD(EO),
TL(EO|E1) = TL(EO) if TL(EO)=TL(E1)

' = mixed otherwise,
FIRST(EO|E1) = FIRST(EQ)UFIRST(E1),
FIRSTEXT(EO|E1) = FIRSTEXT(EO0)
UFIRSTEXT(E).

TABLE 4.6.1. The evaluation rules of grammar G4.

REMARK. From the evaluation rules and the conditions for G4 it follows that
the value mixed for the attribute HD does not occur in the derivation of a

command.
O
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4.7. SoME DI GRAMMARS

Let the set of all commands derivable with attribute grammar G4 be denoted
by £(G4). Grammar G4 is a DI grammar, i.e.

THEOREM 4.7.0. E€f(G4) = E is DI.
PROOF. See Appendix B. [

We conjecture that there exist regular DI components that cannot be
expressed as a command Eef(G4). For example, we did not succeed in
expressing the RCEL component as a command from £(G4). (This com-
ponent is a DI component as is shown in Example 4.9.1.)

REMARK. Grammar G4 may be extended in such a way that more concurrent
inputs, outputs, and internal symbols are allowed. The production rules for
<marked syms> then become

<marked syms > ::= <sym >!|| <sym>!}
[ <syym >Nl <sym>?}
I 2<sym > 7<sym >}
[ '<sym >l '<sym >7},
where { } are meta symbols denoting a finite replication of the enclosed. Since
in the remainder of this monograph no use is made of this extension, we have

not included it in the grammar G4.
O

The attribute grammars G4, G3, G2, and G1’ are defined similarly to
grammar G4. Each grammar has its specific restrictions with respect to G4.

The restriction for grammar G4’ is the reduction of the production rules for
<marked syms > to

<marked sym> 1= <sym>?[| <sym >!| <sym>7,

i.e. no parallel inputs or outputs are allowed, and there are no internal sym-
bols of the environment. :

Grammar G3' is obtained from grammar G4’ by removing the alternative
!<sym>? from the production rules for <marked syms> as well, ie. G3
has no internal symbols.

Grammar G2’ is obtained from grammar G 3’ by strengthening the condition
ALTCOND(EO,E1) to ALTCOND2(EO,E 1), where

ALTCOND2EO,E1)
= ALTCOND(EO0,E1) A HD(EO)=in N HD(E1)=in.
A similar strengthening is applied in the conditions of TAILCOND.
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Grammar G’ is obtained from grammar G4’ by removal of the production
rules for tail recursion (b0) and for the alternative construct (c2).

Obviously, we have £(Gi’) C£(G4) for 1<i<S5. Accordingly, any command
derivable with one of the grammars G4, G3' G2, or G1’ represents a DI
component.

It is furthermore conjectured that £(Gi") C Ci, for 1<<i <4.

4.8. DI GRAMMAR GCL'

The grammar GCL’ produces so-called combinational commands. Combina-
tional commands represent components for which the outputs uniquely depend
on the current inputs.

ReMARK. Components represented by combinational commands bear a resem-
blance to combinational circuits, as used in switching theory. There, these cir-
cuits are also called combinational logic and denoted by the acronym CL.

O

The production rules for the attribute grammar GCL' are given in Table 4.8.0.

<dicom> ::= <pccom > (a2)
<pccom> .= €
| pref(<sym>?) (X))
| pref(<sym>!) ®5)
| pref[<pfcom>] (b6)
| pref(<parout >;[<pfcom>])  (b7)
I <pecom>|<pccom> (®8)
<pfecom> ::= <parin >; <parout > (cd
I <pfecom>|<pfcom> (c5)
<parin> ::= <syym>?[] <sym>?|| <sym>?
<parout >:.= <sym>![| <sym>!|| <sym>!

TABLE 4.8.0. The production rules for grammar GCL'.

The conditions for these production rules are listed in Table 4.8.1.
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Production rule Production Condition
®7 pref(EQ;[E1])) ALFCOND(EOQ,E1)
®8) EO|E1 ALFCOND(EO,E1)
(cd) EOE1 ALFCOND(E(Q,E1)
(c5) EQE1 ALTCOND(EOQ,E1) A
ALFCOND(EQ,E1)

TABLE 4.8.1. The conditions for grammar GCL'.

The evaluation rules for (b4), (b5), (b6), (b8), (c4), and (c5) are analogous to
those of (b2), (b2), (b3), (b1), (c1) and (c2) respectively. The evaluation rules
for production rule (b7) are analogous to the evaluation rules for (b 1) where
EOI|lE1 is replaced by pref(E 0;[E 1]).

Any combinational command of type ¢, pref(<sym>7?), pref(<sym>!),
pref[<pfcom>), or pref(<parout >;[<pfcom>]) is called a semi-sequential
command. From the above, we infer that any combinational command is
expressed as a weave of semi-sequential commands.

We have

THEOREM 4.8.0. E€f(GCL') = E is DI.

PROOF (Sketch). We indicate that any command E0e£(GCL’) can be rewritten
into a semantically equivalent command E 1€£(G4').

We observe that each production rule in GCL’ also occurs in G4’ except for
production rule (b7). With this production rule semi-sequential commands of
the form pref(E 0;[E 1]) are produced. These commands can be rewritten into
commands p.tailf.0, where

tailf. R.0 = pref(EQ;R1)
tailf. R.1 = pref(E1;R. 1).

Let each command of the form pref(EO;[E1]) occurring in E€f(GCL’) be
rewritten as above. The result of this rewriting is derivable with the attribute
grammar G4’ (even G2'). Notice that the SEQCOND conditions are always
satisfied for commands in £(GCL").

0 .

4.9. EXAMPLES

ExaMPLE 4.9.0. We give a few examples of combinational commands. The
only conditions that have to be checked for combinational commands are the
alphabet condition and the bar condition, which are easily verified. For the fol-
lowing commands of a 2-XOR, WIRE, and 2-CEL component we have
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prefla?;c!|bc!)eR(GCL),
pref(b!;[a?;b!)eL(GCL’), and
pref[a?;c!] |l pref(c!;[b?;c!]) eE(GCL’)
respectively. For the conjunction component of Section 2.3.0 we have
pref[a0?(1607;c0! | a0?|b12;¢0! | @ 1?11602;c0! | a 12116175 1!] €R(GCL’).

The bar condition for this command amounts to —(4CB), for
A,Be{{a0,b0},{a0,b1},{a1,b0},{al,b1}} and A5#B.
O

ExaMPLE 4.9.1. For the commands of the basic components given in Section
2.2 we observe

pref[a?;c!] || pref[b?;c!] € £(GY),
pref[a?;b!] || pref[a?;c!] € £(G 1),
pref[a?;b!;a?;c!] € B(GY),
pref[(@?|bM;c!] € £(G2)),
pref[a?;p ']l pref[b?;q '] || pref[n ?;(p!|q")] € £(G3’),
and
pref[a1?;p1!;a02;p0!]
| pref[b 12,4 1!;602;40']
| pref[p 1!;a0?| g 1;607] € £(G3').

From this we conclude that the 2-CEL, 2-FORK, TOGGLE, 2-XOR, 2-SEQ,
and 2-ARB component(s) are DI components.
For the RCEL component pref|[E ], where

E=(@a%d" |(b%e | (@ dllcl®?;ellc)?,
we observe
pref E€C2 AWdE CiE AlE CoE A E is prefix-free.

As a special case of Theorem B.4 on tail recursion in Appendix B, we infer
pref[E]eC4, ie. also the RCEL component is a DI component.

Obviously, the WIRE, SINK, SOURCE, and EMPTY components are also
DI components.
O
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EXAMPLE 4.9.2. In Section 2.3.1 the sequence detector is specified by p.tailf.0,
where

tailf.R.0 = pref (a0%n!;R. 1| al?n!;R.0)
tailf.R.1 = pref (a0%n!;R. 1| al?%n!;R.2)
tailf.R.2 = pref (a0%n';R. 1| al?n!;R. 3)
tailf .R.3 = pref (a0?y;R. 1| al?;n;R.0).

Command p.tailf.0 can be derived with the context-free grammar of G2'.
We verify for this command the conditions of grammar G2'. For the alphabet
condition we observe that for any symbol used all atomic commands in which
this symbol occurs are of the same type. For the semicolon condition we
observe that input marks and output marks alternate. For the bar condition
we observe that each alternative of an alternative construct starts with input
marks, and that the LL-1 conditions are satisfied, since {{a0}}N{{al}}=2.
For the tail-function condition we observe for the array of commands of tailf,

- each row contains a non-empty command,

- no command is equal to ¢, and

- all non-empty commands consist of external symbols only.

Consequently, the tail-function condition is satisfied. The non-projection con-
dition is also satisfied, since w.tailf.0 contains no internal symbols. Accord-
ingly, we conclude p.tailf0 € £(G2').

O

ExaMPLE 4.9.3. In Section 2.3.2 the token-ring interface is specified by
E = pref[a1?;p1!;a07;p0!]
| pref [62;(q!|p 1';a02;9 1))

This command can be derived with the context-free grammar of G3'. For
the conditions of G3' we observe that the alphabet condition is satisfied.
Furthermore, input and output marks alternate; the semicolon is satisfied as
well. For the only alternative construct in E, ie. q!|p1';a0%;q!, we observe
that the alternatives start with output marks and that {{g}}N{{p1}}=2.
Consequently, the bar condition is satisfied. The non-projection condition is
also satisfied, and we conclude that Eef(G 3').

O
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ExampLE 4.9.4. In Section 2.3.3 another token-ring interface is specified by
E = (pref[rd ;b Y;gb srw 2w s gw ]
|| pref [wer 2;('tu 2, wis ! | 1b 2;bts 1)
|btr 25 (1eu ?)|'tb ); bis !
]
| p2ailf.0
o,
where tailf R.0 = pref('tu?;R.0|!'b?;'w?;R. 1)
tailf.R.1 = pref(1tb;R. 0|6 7;'w ;R 1).

This command can be derived with the context-free grammar of G4'. We
observe that the alphabet condition is satisfied and that input marks and out-
put marks alternate. There are four alternative constructs to be considered for
the bar condition, viz.,

Ytu?wts! | 1th ?;bts!,
Ttu?|th?,
"tu?|'b?'w?, and
tb?|b%w?.

Each of the above alternatives starts with output marks. For the first two con-
structs we observe

() N{{B))=2 A ((ws)}N{(brs))=2

and

{{r}}N{{b}}=2 A
FIRSTEXT (tu?)=@ A FIRSTEXT(\th?)= @

respectively, i.e. both LL-1 conditions are satisfied. Consequently, the bar con-
dition is satisfied for the first two constructs. A similar reasoning applies to the
other two alternative constructs. For the tail-function condition we observe
that all commands in the matrix of tailf differ from @ and € and consist of
internal symbols only. Accordingly, the tail-function condition is satisfied.
Since all conditions are satisfied, we conclude E e£(G4').

O

EXAMPLE 4.9.5. We derive for component count;(a,b) of Example 1.3.1 a com-
mand satisfying grammar G4'. The component count3(a,b) can be specified by
the command

(prefla;x] Il pref[x ;] |l pref[y ;b]) t {,b).
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We assign to the external symbol g, i.e. the increment, and to the external
symbol b, i.e. the decrement, the direction of input. Symbols x and y are given
the type of internal symbols of the component. We then obtain

E0 = (pref[a?;!x 7] || pref[!x ?;!y 7 || pref[ly 2;6 1.

This command cannot be derived with grammar G4’: input and output marks
do not alternate in the first and last sequential command. But these conditions
are easily met, if we introduce two fresh symbols p! and ¢! and write

E1 = (pref[a?;!x?;p ] || pref[!x 2;!y 7] | pref[ly 7,9 ;6 M.

This command can be derived with grammar G4’ (even with grammar G1’).
Moreover, we have tE 11 {a,b} =tEQ.

We remark that the position at which to insert p! is not unique. We could
also have changed the first sequential command into pref[p!;a?;!x?].

By the introduction of symbols p! and ¢! we have introduced a communica-
tion protocol between component and environment in order to ensure proper
delay-insensitive operation. Communication protocols like the one introduced
here, i.e. with a? and p! alternating and ¢! and b? alternating, can be called
handshake protocols. Various handshake protocols exist; in the next examples
more of them are given. By using a DI grammar one can quickly and con-
veniently discover such handshake protocols.

The introduction of a handshake protocol imposes behavioral restrictions on
the environment and on the component. For protocol E1, for example, the
environment has to take care of the alternations of a’s and p’s and of b’s and
¢’s only. The component, however, has to ensure proper internal synchroniza-
tion as well. Therefore, designing a communication protocol always requires a
balancing of restrictions put on the component and restrictions put on the
environment.

In Example 1.3.1 several commands, which all have the same structure, were
given for component count,(a,b). With some calculus these commands can be
rewritten into

(prefla;x] || E || pref{y ;b Dt {a,b},
where command E is expressed as a weave of sequential commands. We can
apply to this command the same procedure as above to obtain a DI command.
Thus, we may get many commands from £(G4’) that have all the same trace
structure.
O
EXAMPLE 4.9.6. The 3-place binary buffer of Example 1.3.2 is specified by
(pref[a0;x0 | al;x1]
| pref[x 0;y0 | x 1;y 1]
| pref[y 0;60| y 155 1]
)1{a0,a1,60,b1}.
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We derive a DI command for this component in the same fashion as we did in
the previous example. This time, we assign to the external symbols a0 and a1
the direction of inputs and to the external symbols b0 and b1 the direction of
outputs (as opposed to the previous example where b was assigned the direc-
tion of input). Symbols x0, x1, y0 and y1 are internal symbols of the com-
ponent. We obtain

(pref[a07;!x0? | a1%;!x 17]
|| pref[!x 0?;!y0? | !x12;!y 17]
| pref[ly 02;60! | ly 17;b11]
).

Again, the semicolon condition is not satisfied. To repair this, we introduce
symbols p! and ¢? and write

(pref [a0%;!x02;p! | a12;!x 17;p!]
|| pref[!x 07;1y0? | !x17;1y 17]

|| pref[g ?;(1y 07;60! | 1y 17,5 1)]
)

This command can be derived with grammar G4'.
O

ExaMPLE 4.9.7. In this example we demonstrate how a DI command may be
obtained from an undirected command by the so-called four-phase handshake
expansion. This expansion was introduced by Alain Martin [25,26]. The for-
malization given below was inspired by a note of Rob Hoogerwoord [16].

The construction of the expansion is described as follows. Let E be an
undirected command. Rewrite E, if possible, into a form EO!, where EQ is
expressed as a weave of sequential commands. Each symbol b€ ext EQ can be
either passive or active. For each passive symbol be ext EQ we introduce the
four-phase handshake protocol

pref[b0?;b1!;622;b 3],

which indicates that the environment initiates this protocol. For each active
symbol b € ext EQ we introduce the four-phase handshake protocol

pref[b 1;622;53!;507],

which indicates that the component initiates the protocol for this symbol. The
command E is expanded as follows. Replace each atomic command b in EO,
with beextEQ, by b1!;62? and replace each atomic command b in E0, with
beintEQ, by !b?. The projection (on ext E0Q) of the weave of the four-phase
handshake protocols and the expansion of EQ forms the four-phase handshake
expansion of E.

For example, for the command
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(pref[a;x]| pref[x;y]| pref[y;b]) I {a,b}.
of counts(a,b) we obtain for passive a and b

(pref[a0%;,a1';a22;a3!)

| pref[607;51!;627;b3!]

|| pref[a 1!;a27;!x 7]

| pref[!x?;!y

| pref[ly 2;611;627]

).

Notice that for an expansion thus obtained, the projection on all symbols
b1, or all symbols b2, with be ext EO yields, after an appropriate renaming,
the original command.

The four-phase handshake expansion gives rise to a command that satisfies
the alphabet condition, the semicolon condition and the non-projection condi-
tion. The other conditions are not necessarily satisfied, however. We observe
that the expansion for count;(a,b) is derivable with grammar G 1".

An advantage of this handshake expansion is that the only restrictions put
on the environments are the four-phase handshake protocols for the external
symbols. These protocols are independent of each other. A disadvantage is
that this expansion can introduce many synchronizations between outputs
which may yield more complex decompositions, as we shall see in the next
chapters.

O
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Chapter 5

A Decomposition Method |
Syntax-Directed Translation of Combinational Commands

5.0. INTRODUCTION

In this and the next chapter we present a method to decompose components
expressed in £(G4)UL(GCL’) into a finite set of basic components. The
decomposition method can be described as a syntax-directed translation of
commands from £(G4")UL(GCL’) into commands of basic components. More-
over, we show that the decomposition can be carried out such that the result is
linear in the length of the command, i.e. the total number of basic components
in the decomposition of command E is proportional to the length of E.

In order to make the presentation of the decomposition method more digest-
ible, we have split it into two chapters. In this chapter we discuss the decom-
position of components expressed in (GCL’) into basic components, i.e. the
decomposition of components represented by combinational commands into
basic components. In the next chapter we discuss the decomposition of com-
ponents expressed in £(G4’) \ £(GCL’) into components expressed in £(GCL’),
i.e. the decomposition of components represented by non-combinational com-
mands in £(G4’) into components represented by combinational commands.
(This division in the decomposition method exhibits a similarity with the divi-
sion in the synthesis method of synchronous circuits usually applied in switch-
ing theory, ie. a division into the synthesis of combinational circuits and
sequential circuits.) The techniques applied in Chapter 5 illustrate in a simple
way the techniques that are also applied in Chapter 6. The remainder of this
section is devoted to a general introduction to the complete decomposition
method.

The method consists of a hierarchy of decomposition steps, each of which is
described by means of DI grammars. In order to describe the decomposition
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steps on the highest level in the hierarchical decomposition we use grammars
G4, G¥, G2, and GCL’ of the previous chapter. By means of these grammars
we define the hierarchy of languages

£o CE CR Cl CLy, where

£, = R(GA)UBs,
£ = B(GY)UL,
£ = £&(G2)UE,

£ = B(GCL)UK, and
o = {all commands of basic components}.

The method can be divided into four steps. In step k, 0<<k <4, for each com-
mand E. 0efy_; a collection of commands E.i, 1<<i<n, is constructed in such
a way that the following properties hold.

— E.0—>(i: 1<i<n:E.i). (5.0)
— Eiefy_y_, , foralli 1<i<n, and é.D)
— The decomposition can be described (5.2)

as a syntax-directed translation.

From the properties (5.0), (5.1), and (5.2) and the Substitution Theorem, we
conclude that any component represented by a command in £; can be decom-
posed in a syntax-directed way into basic components expressed in £). Similar
to the division of the decomposition of £ into £ into four steps, each of these
decomposition steps is, in its turn, divided into a number of substeps. Thus,
by stepwise refinement, we obtain a hierarchical decomposition method based
on the Substitution Theorem.

The language £ is defined as the set of all commands of the basic com-
ponents. In this monograph, we show that for the finite set of basic com-
ponents we may take the set BO = B U {RCEL} or the set B1 = BU{NCEL},
where

B = {2-FORK, 2-CEL, 2-XOR, TOGGLE, 2-SEQ,
WIRE, SINK, SOURCE, EMPTY}.

Each basis has its particular advantages and disadvantages. For example, for
the basis BO we observe that every component in BO is a DI component (cf.
Example 4.9.1). Accordingly, by Theorem 3.2.1.1, any decomposition of a DI
component into the basis BO is a DI decomposition. The basis B1, however,
contains one component that is not a DI component, viz. the NCEL com-
ponent. For this reason, the decomposition of a DI component into the basis
B1 does not have to be a DI decomposition. Although the decomposition into
the basis B1 is not DI, it is simpler than the decomposition into B0 and has
some practical advantages. Realizations of this decomposition with connection
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wires still operate properly if certain (physical) forks behave as so-called iso-
chronic forks. In this monograph an isochronic fork is a fork for which the
differences between the delays in the branches are less than the delay in a
basic NCEL component.

The choice of basis BO or B1 has to be taken in one of the last decomposi-
tion steps only, viz. in the decomposition of so-called CAL components. CAL
components are DI components. The decomposition of CAL components into
the basis B1 is presented in Section 5.6.2. The decomposition of CAL com-
ponents into the basis B0, which is more complicated, is only briefly discussed
in Section 5.6.3. This section may be skipped at first reading.

The decomposition of a component Ecfy according to the method
described in this and the next chapter can be carried out such that the result is
linear in the length of E. We prove this by showing that each decomposition

El0- (i:1<i<n: EL.)
in the hierarchy of decomposition steps satisfies the property
(+i:1<i<n: |El.i|) = &]E1.0)). (5.3

Here, |E| denotes the length of command E and is defined as the number of
atomic commands occurring in E. (For a command p.tailf.0 it is defined as
the number of atomic commands in the tail function tailf different from @.)
In this monograph, the expression |[fE| = §(|E|) for a function f defined on
commands from a particular language £ signifies

(EK: K>0: (AE: Ec£: |fE|<K|E))).

The linear complexity of the complete decomposition method can be derived
from property (5.3) as follows. Let

EO0-(i:1<i<m:E.i)

denote the complete decomposition of DI component E. 0efy into £). Because
the number of decomposition steps is bounded and each step satisfies pro-
perty (5.3), we infer

(+ir1<i<m:|E.i |) = &(E.O0)).

Since there exists an upper bound for the lengths of the commands from £,
we deduce that m is proportional to |E. 0|.

The above properties of the decomposition method emphasize the impor-
tance of the task of the programmer. First, the programmer must express a
component in the language £4. Second, if there are several programs possible
for a component, he has to choose that program that suits his purposes best
with respect to the decomposition of that program. For example, he may
choose a short program to obtain a decomposition with a few basic elements,
or he may choose a program whose decomposition according to the syntax of
the program exhibits more parallelism, but which may be a larger program.

A more detailed overview of the hierarchy of all decomposition steps and
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languages can be described as follows. The decomposition steps from £ to £
and from £ to £ are divided into several substeps. Most of these substeps are
also described by means of DI grammars which will be defined as the need
arises. For example, we will define the grammars GSEL, GCLO, GCL1, and
GCAL. Grammars GCLO and GCL1 will be derived from grammar GCL',
grammar GCAL will be derived from grammar GCL1, and grammar GSEL
will be derived from grammar G3'. The hierarchy among all languages is
displayed in Figure 5.0.0.

P .
EGd), . & “F ! <
- s
~ Pt - P
/E(G4’) / e P ‘E(GCL') e EO
- - - - S
tenl 7 g d
~ § -
o - P TE(GCLY)  e(GCLO): ~
z ~ -
BGSEL) o« 7 &GN 7 leear) -

FIGURE 5.0.0. The hierarchy among the languages.

From Figure 5.0.0 we read, for example, that £(GCL1)C £(GCL’) and
£(GCL) C R(G4).

In order to give a concise overview of the hierarchy among all the decompo-
sition steps we have displayed these steps symbolically in Table 5.0.0 together
with the section in which these steps are presented.

Section Decomposition step

6.3 £(G4) - £(G3), £

6.2.3 £(G3) — £(GSEL), &(GCL’), £
6.2.(4+5) £(GSEL) — SEQ, £(G2), &(GCL")
6.2.6 SEQ -

6.1 £(G2) — R(GCL), £

52 £(GCLY) - B(GCLO), £(GCL1)
53 £(GCL0) — XOR, CEL, FORK
54 XOR - &

5.4 CEL -

54 FORK )

55 £(GCL1) — E(GCAL), £

5.6 £(GCAL) - £

TABLE 5.0.0. The hierarchy of decomposition steps.

From this table we read, for example, that in Section 6.2 the decomposition
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step from £3 to £, which is divided into three substeps, is discussed. First,
components expressed in £(G3’) are decomposed into components expressed
in £(GSEL), £(GCL’), and £. Second, each component expressed in
£(GSEL) is decomposed into SEQ components and components expressed in
£(G?2’) and £(GCL’). Finally, each SEQ component is decomposed into basic
components.

Many of the above displayed decomposition steps follow a similar pattern.
For example, if we have to decompose components E, where E is expressed as
a weave of (semi-) sequential commands, then we first consider the decomposi-
tion of such components expressed by (semi-) sequential commands. Subse-
quently, we construct a decomposition for the weave of these commands by
applying the Separation Theorem.

Since each decomposition step is precisely defined by means of the gram-
mars, we can study the properties of each step in isolation. For each decom-
position step of Table 5.0.0 we verify whether the decomposition can be car-
ried out in a syntax-directed way and whether the decomposition is linear in
the length of the command. For almost every step these properties are readily
verified.

Most decomposition steps are introduced by means of an example from
which the general decomposition procedure for that step easily follows. The
discussions on the correctness of each decomposition are less formal than in
Chapter 3. The simple decompositions are given by a schematic only. For the
decomposition of CAL components into the basis BO we give a decomposition
procedure which we conjecture to be correct.

Finally, we remark that the decomposition method presented in these two
chapters is not the most efficient method. In these chapters, we are interested
mainly in the existence of a syntax-directed (linear) decomposition method.
Potential optimizations and decomposition techniques that can be applied to
special commands are discussed in Chapter 7.

5.1. DECOMPOSITION OF £ INTO £;.

In the decomposition step from £; to £ each component Eef(GCL’) is
decomposed into components expressed in £. This decomposition step is
divided into five substeps, and, in order to describe these steps, we first intro-
duce the grammars GCL0, GCL 1, and GCAL. '

Grammar GCLO is defined as grammar GCL’ (see Section 4.8) except for
one restriction: the production rule for <parin> is reduced to
<parin>::=<sym >7, ie. parallel inputs are not allowed. Grammar GCL1
is also defined as grammar GCL’ except for two restrictions: the production
rule for <parout > is reduced to <parout >::=<sym >, i.. parallel outputs
are not allowed, and the other restriction is that all outputs differ. For exam-
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ple, we have
pref(elligt;la%ellft | bNelllg! | cf 1)
I preflc?;g! | d7;g'] € £(GCL0)
and

pref[a0?la12;60! | a0?lla22;b 1! | a37;b2! | a42;b3!] € £(GCL1).

The grammar GCAL is defined analogously to grammar GCL 1 except for two
restrictions. The production rules for <pccom > and <parin > reduce to

<pccom > ::= pref[<pfcom>] and
<parin> 1= <sym > <sym >,

where for the last production rule both inputs must differ. In words, any com-
mand for a CAL component is of the form pref[E ], where each alternative in
E is of the form <sym >?||<sym>?;<sym>!. The command E satisfies the
LL-1 conditions and all outputs in E differ. For example, we have

pref[a0?167;c0! | a12llb%5c1!] € £(GCAL) and
pref[a0?lla1%;60! | a0?lla22;b 1! | a12lla22;62!] € R(GCAL).

A component expressed by a command in £(GCAL) is called a CAL com-
ponent, which can be viewed as a 2-CEL component with alternatives.

The decomposition step is subdivided into five parts. First, we show how
any component Ee€f(GCL’) is decomposed into a component E0e£(GCLO)
and a component E1e€f(GCLI). Second, we show how components
E eR(GCLO) can be decomposed into XOR, CEL, and FORK components.
Third, we discuss the decomposition of XOR, CEL, and FORK components
into the basis B. Fourth, we present a method to decompose components
Eef(GCL1) into CAL components and components expressed in £. Finally,
we discuss the decomposition of CAL components into £).

5.2. DECOMPOSITION OF £(GCL")

In this section, we show that for any command E0ef£(GCL’) there exist com-
mands E1€£(GCL1) and E2ef(GCLO) such that E0— E1,E2. The com-
mands E1 and E2 are constructed from the syntax of E0. Moreover, we have
|E1|+|E2| =&(|EOQ|). Before we explain the decomposition we briefly recall
that any command EO0ef(GCL’) is expressed as a weave of semi-sequential
commands of the form ¢, pref(a?), pref(a!), pref[E], or pref(<parout>;[E]).
Command F is an alternative construct, where each alternative is of the form
<parin >;<parout > (see Section 4.8).
First, we consider an example. Let E. 0.0 and E. 1.0 be defined by

E.0.0 = pref[a0?la12;60!|b1! | a0?la22;60!1b2! | a37;6 1]
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E. 1.0 = pref(b3!;[a42;b0!1Ib3! | a0%;41)).

We observe that E. 0.0]|E. 1.0e2(GCL’). Let E.0.1, E.0.2, E. 1.1, and E. 1.2 be
defined by

E.0.1 = pref[a0?lla1?;4.0.0! | a0?lla2?;4.0.1! | a37;4.0.2!],
E.0.2 = pref[q.0.0%;60!61! | .0.17;60!||62! | 4.0.22;51!] ,
E.1.1 = pref[a4?;q.1.0! | a0%;4.1.1!], and
E.12 = pref(b3!;[q. 1.0%;60!b 3! | q. 1.12;b4!]).

By definition of decomposition, we derive
E.00 - E.0.1,E. 02 and
E10-E11,E12.

In order to apply the Separation Theorem we check conditions (3.7) and (3.8)
for the above decompositions. We infer that the internal symbols of the
decompositions are row-wise disjoint and that the outputs are column-wise dis-
joint. Consequently, application of the Separation Theorem yields

E.00[lE.10 - E.O.1|E. 1.1, E.02||E. 1.2.

Moreover, we observe that in E. 0.1 E. 1.1 parallel outputs do not occur and
all outputs differ, i.e. E.0.1|E.1.1€2(GCL1). In E.0.2|| E. 1.2 parallel inputs
do not occur, and consequently E. 0.2||E. 1.2e£(GCLO).

The above decomposition procedure can be applied to any combinational
command EQef(GCL’). By definition of grammar GCL’, command EOQ is
expressed as a weave (|li:0<i<n:E.i.0) of semi-sequential commands
E.i.0ef(GCL’). Let command E.i.0 have m(i) alternatives, m(i)=0. We
introduce the internal symbol g¢.ij for the semicolon in alternative j,
0<j <m(i), of semi-sequential command E.i. 0, 0<i <n. Subsequently, we split
command E.i.0 into E.i. 1 and E.i.2 such that E.i. 0— E.i. 1,E.i. 2 holds, simi-
larly to the example above. For the semi-sequential commands € and pref(a!)
and pref(a?) we take e€—>e¢e and pref(a!) - ¢ pref(a!) and
pref(a?) — pref(a?), e respectively. For the decompositions
Ei.0 - E.i.1,E.i2, 0<i<n, it follows that the internal symbols are row-wise
disjoint and that the outputs are column-wise disjoint. Consequently, by the
Separation Theorem, we derive EQ — E 1, E2, where

EOQ = (lli:0<i<n:E.i. 0),
E1l = (lli:0<i<n:E..l), and
E2 = (lli:0<i<n:E.i.2).

Moreover, from the construction of E1 and E2 follows E1e€f(GCL1),
E2ef(GCLO), and |E 1|+ |E2|=&]E0)).
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5.3. DECOMPOSITION OF £(GCL0)
5.3.0. Decomposition of semi-sequential commands

Consider the component E, with
E = pref(e!llgh;[a%e!llf! | b%ellig! | ¢ %D

We observe that E is a semi-sequential command and Ee€f(GCL0). By
definition of decomposition, component E can be decomposed into the XOR
components

XORO0 = pref(e!;[a%e! | b2e!)),
XOR1 = prefla?;f! | c?;f ], and
XOR2 = pref(g!;[b?;g"]).

Notice that XORO=E' aXOR0, and that similar properties hold for XORI
and XOR2. The decomposition is depicted in Figure 5.3.0.

a? D—D—.e!
b? D_—_.f'
. '

c? g!

FIGURE 5.3.0. Decomposition of semi-sequential command E € £(GCLO0).

In general, any semi-sequential command E €£(GCLO0) can be decomposed
in the same way. The procedure for this decomposition is described as fol-
lows. Each semi-sequential command E ef(GCLO) is of the form ¢, pref(a?),
pref(a!), pref[E 1], or pref(E 0;[E 1]). Component € is the EMPTY component,
and the components specified by pref(a?) or pref(a!) are a SINK or an active
SOURCE component respectively. A component specified by pref(E 0;[E 1]) or
pref[E 1] can be decomposed into XOR and active SOURCE components as
follows. We take for each output in E1 a k-XOR component, where k equals
the number of alternatives in which this output occurs. The input that occurs
in each such alternative is connected to this XOR component. (By definition
of GCLO there is exactly one input in each alternative.) If an input is con-
nected to more than one XOR component, then a FORK component is used
to duplicate this input. If the output occurs in EQ as well, then the XOR com-
ponent initially starts with producing an output. For each output that occurs
in E0 but not in E'1 we take an active SOURCE component.

The above described procedure yields a syntax-directed decomposition of
semi-sequential commands E €£(GCLO0) that is linear in the length of the com-
mand E.
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3.3.1. The general decomposition

The general decomposition of a component E e£(GCLO), where E is a weave
of semi-sequential commands, is obtained by application of the Separation
Theorem. We consider an example first.

Let E. 0.0 and E. 1.0 be defined by

E. 0.0 = pref(e!ligh;[a%ellf! | belllg! | c?;f!]), and
E.1.0 = pref[c?;g! | d7;g']

We observe that E.0.0 and E. 1.0 are semi-sequential commands from
£(GCLO) and E.0.0|| E. 1.0 € £(GCLO). Let E.i.j, with 0<i<2 and 1< <5,
be defined by

E.0.1 = pref(e0!llg0!; [a?;e0!|f 0! | b?;e0!|g0! | c?;£0!)),
E.1.1 = pref[c?;g1! | d75g 1],
E.0.2 = pref[e02;e!],

E 12 =g,
E.0.3 = pref[f 02;f!],
E 13 =g

E.0.4 = pref[g0?;g!], and
E. 1.4 = pref[g12;g!].

Components E.0.1 and E. 1.1 are similar to E.0.0 and E.1.0. Components
E.0.2, E.0.3, E.04, and E. 1.4 are WIRE components. Since E. 0.0 and E. 1.0
are DI commands, we have (see also Definition 3.2.1.0)

E. 00— E.0.1, E.0.2, E.0.3, E.04
E10—-E11,E 12, E 13, E. 14.

In order to apply the Separation Theorem, we check conditions (3.7) and (3.8)
for the above decompositions. We observe that the internal symbols of these
decompositions are row-wise disjoint and that the outputs are column-wise dis-
joint. Consequently,

E.00llE.10 - E.Q.1||E. 1.1, E.0.2||E. 1.2, E.0.3||E. 1.3, E.04||E.14.

Since we also have o(E.0.1)No(E. 1.1)=&, we can apply Corollary 3.1.3.3
yielding E.0.1/|E. 1.1 - E.0.1, E. 1.1. From the preceding subsection, we know
how to decompose the semi-sequential commands E.0.1 and E.1.1. Com-
ponents E.0.2||E. 1.2, E.0.3||E. 1.3, and E.0.4||E. 1.4 are CEL components of
which E.0.3||E. 1.3 and E.0.2||E. 1.2 reduce to WIRE components. The com-
plete decomposition of E. 0.0||E. 1.0 is depicted in Figure 5.3.1.

The above procedure can be applied to any component E0eR(GCLO0). By
definition of grammar GCLO, the command EO is expressed as a weave
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FIGURE 5.3.1. Decomposition of E. 0.0||E. 1.0.

(li:0<i<n:E.i.0) of semi-sequential commands E.i.0€£(GCL0), 0<i<n.
Similarly to the example above, component E0 can be decomposed into a col-
lection (i:0<i<n:E.i.1) of components expressed as semi-sequential com-
mands E.i. 1€e2(GCLO0) and a collection (i:0<i<m:CEL.i) of CEL com-
ponents, where m equals the number of outputs in E0. For the commands
E.i. 1, 0<i<n, and CEL.i, 0<<i <m, we derive

(+i:0<i<n: |Eil| = &|EOQ])
A(+i:0<i<m: |CELi|) = O(EOQ|)
= {calc.}
(+i:0<i<n: |E.i. 1]) + (+i:0<i<m: |CEL.i|) = &|EOQ)).

Observe that this decomposition can also be described as a syntax-directed
translation.

From Sections 5.3.0 and 5.3.1 we conclude that components E e £(GCL0)
can be decomposed into XOR, CEL, FORK, SINK, SOURCE and EMPTY
components. The SINK, SOURCE, and EMPTY components are basic com-
ponents. The decomposition of XOR, CEL, and FORK components into
basic components is discussed in the next section.

5.4. DEcompOsITION OF XOR, CEL, AND FORK COMPONENTS

There are several ways to decompose a k-XOR component, k£ >1, into 2-XOR
components. In Example 3.1.1.2 we decomposed a 3-XOR component into
two 2-XOR components. The 4-XOR component E, with

E = pref[a0%;b! | al?;b! | a27;b! | a3%:b!],

can be decomposed in two ways into 2-XOR components as depicted in Figure
5.4.0.



5.5. Decomposition of £(GCL 1) 93

a0?
aQ? l?:jD—_:)
o gi)D* LoD
a3"

F1GURE 5.4.0. Two decompositions of 4-XOR component E.

In general, any k-XOR component, K >1, can be decomposed into (k —1)
2-XOR components. These decompositions can be described as syntax-directed
translations.

A k-CEL component, k >1, can be decomposed into 2-CEL components in
several ways as well. In Example 3.1.1.3 a 3-CEL component is decomposed
into two 2-CEL components. In Figure 5.4.1 two ways are shown to decom-
pose the 4-CEL component E, with

= pref[b!;a07] || pref[a1?;b!] || pref[b!;a2?] || pref[a3?2;b!].

a0?
al?
al?
al3? a3?

FIGURE 5.4.1. Two decompositions of 4-CEL component E.

In general, any k-CEL component, k >1, can be decomposed into (k —1) 2-
CEL components. These decompositions can be described as syntax-directed
translations as well.

For the k-FORK components, k >1, a similar reasoning holds as for the k-
XOR and k-CEL components.

5.5. DECOMPOSITION OF £(GCL1)

Any component expressed in £(GCL 1) can be decomposed into CAL, WIRE,
SINK, SOURCE and EMPTY components. Before we explain this decomposi-
tion, we briefly recall the definition of grammar GCL1. Any command
E0ef(GCL1) is expressed as a weave of semi-sequential commands of the
form e, pref(a?), pref(a!), pref[E], or pref(a!;[E]). The command E is an
alternative  construct, where the alternatives are of the form
<sym >?||<sym >?;<sym>! or <sym >7,<sym>!. All outputs in EO
differ.



94 A Decomposition Method |

First we consider the decomposition of components E, where E is a semi-
sequential command from £(GCL1). Component ¢ is the EMPTY component,
and components pref(a?) and pref(a!) are a SINK and an active SOURCE
component respectively. For a component specified by pref(a!;[E]) we have,
by definition of grammar GCL 1, that all outputs differ and that E begins with
inputs. Consequently, pref(a!;[E]) — pref(a!), pref[E]. Finally, we show that
any component pref[E]e£(GCL1) can be decomposed into a CAL component
and a collection of WIRE components.

An example of a command pref[E]e2(CLC1) is given by

EOQ = pref[a0?la12;b0! | a0?lla22;b1! | a32;b2! | a4?;b3!].
We observe
EO
=>{def. of decomposition}
pref[a0?]la12;60! | a0?lla2?;b1'], pref[a3?;b2!], pref[a4?;b3!].

Consequently, component E0 can be decomposed into a CAL component and
two WIRE components.

In general, any component pref[E]e2(GCL 1) can be decomposed similarly.
The command pref[E] can be rewritten as pref[E 1 | E2], where E 1 contains
all alternatives with two parallel inputs and E2 contains all alternatives with
one input only. Since pref[E1 | E2]ef(GCL1), we infer from the LL-1 condi-
tions that iE1NIiE2=¢ and that all inputs in E2 differ. Moreover, by
definition of grammar GCL 1, all outputs in E 1|E2 differ. From these observa-
tions it follows that pref[E 1 | E2] can be decomposed into pref[E 1], which is
a CAL component, and a collection of WIRE components, one for each alter-
native in E2. If E does not contain alternatives with one input only, then
pref[E] is already a CAL component, and if E does not contain alternatives
with parallel inputs, then pref[E ] can be decomposed into WIRE components.

The decomposition of any component E0ef(GCL1) is obtained by applica-
tion of Corollary 3.1.3.3. Any command EQef(GCL1) is expressed as a weave
(li:0<i<:E.i) of semi-sequential commands E.ie£(GCL1). By definition of
GCL1, we have o(E.i)No(E.j)= & for iz~j. Accordingly, we observe

(li:0<i <n: E.i)
—{Cor. 3.1.3.3, o(E.i)No(E.j)= & for i)}

(i:0<i<n:E.).
From the above, we know how to decompose the semi-sequential commands
E.iel(GCL1). Consequently, by the Substitution Theorem, we infer that any
component EQ0ef(GCL1) can be decomposed into a collection
(i:0<i<m:El.i) of CAL, WIRE, SOURCE, SINK, and EMPTY com-
ponents. Notice that (+i:0<i<m: |E1.i|)=0(|EQ]) and that the decomposi-

tion into these components can be described as a syntax-directed translation.
The WIRE, SOURCE, SINK, and EMPTY component are basic components.
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The decomposition of CAL components into basic components is discussed in
the next section.

5.6. DECOMPOSITION OF £(GCAL)
5.6.0. Introduction

The decomposition of components expressed in £(GCAL), i.e. the so-called
CAL components, into £ is divided into two steps. First, we present a
method for decomposing CAL components into their so-called 4-cycle version
and their 2-t0-4 cycle converter. A 2-to-4 cycle converter is a connection of
components from the basis B. Subsequently, we show how the 4-cycle version
of a CAL component can be decomposed into the basis B1. Finally, we
briefly discuss the existence of a method that decomposes the 4-cycle version
of a CAL component into the basis BO.

5.6.1 Conversion to 4-cycle signaling

The decomposition of CAL component E, where
E = pref[a0?llb?;c0! | a 1?16 ?;c 1!],
into its 4-cycle version E 4, where
E4 = pref[a0?b'? ;¢ 0!;a0?1b’? ;¢ 0!
la1’Mb"? ;¢ 17t a 121157 5¢ 17!
)
and its 2-to-4 cycle converter is depicted in Figure 5.6.0.

E4

0 1 e

"Nag

I
al? b? a0?

FIGURE 5.6.0. The 2-to-4 cycle conversion for E.
(Notice that E4 is also a DI command.) The connection of XOR and
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TOGGLE components constitutes the 2-to-4 cycle converter for E.

In general any CAL component is converted into its 4-cycle version simi-
larly. The 4-cycle CAL component is also a DI component. In each 4-cycle
communication the 2-to-4 cycle converter feeds back the first output of the 4-
cycle component to reset the inputs of the corresponding alternative to zero.
In other words, the feedback initiates the return-to-zero phase. The second
output of the 4-cycle component produces the output of the 2-cycle com-
ponent.

A 2-to-4 cycle converter for a CAL component consists of k TOGGLE, k
2-FORK, and 2k 2-XOR components, where k is the number of alternatives in
the command for the CAL component. The conversion to 4-cycle signaling can
be described as a syntax-directed translation.

5.6.2. Decomposition of 4-cycle CAL components into B1

We proceed with the decomposition of the 4-cycle CAL component E4 as
specified in the previous subsection. Let the NCEL components E1 and E2
be defined by

E1 = pref[a0?lb'?; c0; a0?1b'?;c0 | B'?;b7]
E2 = prefla"Nb?;¢c 1" ;a 120b"? 517! | B'7;0"7)
Notice that E4taE1=E1 and E4laE2=E2. By definition of decomposition,

we derive that E4— E 1,E2. The decomposition is shown in Figure 5.6.1
(, where an isochronic fork is used for reasons explained below).

aQ?
c0!
b"? =
cl!
al?

FIGURE 5.6.1. Decomposition of E 4 into B1.

Components E1 and E2 are not DI components, however. For this reason,
the decomposition is not a DI decomposition. In order to ensure proper
operation in a realization with connection wires, delay assumptions must be
met. The delay assumptions that we make for this decomposition are the fol-
lowing: the differences between the delays in the branches of a (physical) fork
are less than the delay in an NCEL component. In this monograph, we call a
fork that meets this assumption an isochronic fork. A FORK component that
must be realized by an isochronic fork is denoted in a schematic by an equal-
ity sign next to the fat dot denoting the FORK component. Notice that iso-
chronic forks guarantee that all inputs of an NCEL component have returned
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to zero before a next 4-cycle communication begins.

In general, any 4-cycle CAL component pref[E] can be decomposed into k
NCEL components, where k is the number of alternatives in E. The realization
of this decomposition with connection wires operates properly if isochronic
forks are used to connect common inputs of NCEL components. Such a reali-
zation contains at most k isochronic forks. Notice that this general decomposi-
tion of 4-cycle CAL components into B1 can be described as a syntax-directed
translation.

5.6.3. Decomposition of 4-cycle CAL components into BO

(This section may be skipped at first reading.) The decomposition of 4-cycle
CAL components into a finite basis of DI components is one of the most
difficult parts of the complete decomposition method. In this section we
describe a method to decompose 4-cycle CAL components into the basis BO.
We conjecture that this decomposition is correct. The method is described
merely to indicate the existence of a linear DI decomposition of CAL com-
ponents. We first give a few examples of decompositions and then describe the
general procedure.
Decompositions of components EQ and E 1, where

EO0 = pref[(a0?llb?;c01)? | (a1?llb 2% 112,
E1 = pref[(a0?lla12;50")? | (a0?lla22;b 11 | (a1?la27;b21)],
are given in Figure 5.6.2 and 5.6.3 respectively.

aQ? al?

Oy
Iy
79

c0! cl!

FIGURE 5.6.2. Decomposition of E0Q into BO.

The general decomposition procedure for a 4-cycle CAL component E is as
follows. For each alternative in £ we take a column of at most three (R)CEL
components according to the following rules:

- if both inputs of the alternative do not occur in other alternatives, then we
take one 2-CEL component;
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FIGURE 5.6.3. Decomposition of E 1 into BO.

if one input only occurs in another alternative, then we take two RCEL
components;

if both inputs occur in other alternatives, then we take three RCEL com-
ponents.

Per column, the output of the RCEL component in the i-th row is connected
to an input of the RCEL component in the i +1Ist row, 1<<i<3, if present.
The output of the last (R)CEL component in the column is the output
corresponding to the output in the alternative. Each input of E is connected to
the decomposition according to the following rules.

if the input occurs in one alternative only it is connected to an input of
the (R)CEL component in the first row and the column corresponding to
that alternative.

if the input occurs in more than one alternative it is connected to a so-
called interference-free loop, as depicted in Figure 5.6.4.

()

FIGURE 5.6.4. An interference-free loop.

This loop is first fed through the RCEL components in the first row and
the columns that correspond to the alternatives in which this input occurs.
Subsequently, the loop is fed back through a remaining RCEL component
in each of the same columns.

This decomposition procedure yields the decompositions as given in Figures
5.6.2 and 5.6.3.
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We make two remarks with respect to the behavior of the decompositions.
First, in any interference-free loop transmission interference does not occur,
i.e. for any behavior of the decomposition at most one transition is propagat-
ing along the loop. Second, when in any 4-cycle communication the second
output is produced, all inputs of the RCEL components in the first row are
still zero or have returned to zero. Consequently, neither of the RCEL com-
ponents in the first row will produce a next output until both its inputs have
changed again.

The above described procedure yields for any 4-cycle CAL component E a
decomposition with ©&(|E|) components from B0. Also this procedure can be
described as a syntax-directed translation.

5.7. SCHEMATICS OF DECOMPOSITIONS

Decompositions obtained by the methods described in previous sections can be
depicted in schematics that exhibit a regular structure. As an example we con-
sider the decomposition of component E specified by

E = pref[a0?lla17;60'61! | a0?lla27;60!162! | a3%;b1!]
|| pref (b 3!;[a42;60!|b 3! | a02;64!)).

From the preceding sections, it follows that the complete decomposition of this
component into the basis B1 can be depicted as in Figure 5.7.0.

D——bu!
“ qu%__)

J X q.0.0

al? T b0!
a2l e— '

g q. 1.1/ bal
a4? —o— b3!

q.10

FIGURE 5.7.0. Decomposition of E.

The layout of this schematic can be rearranged in such a way that it exhibits a
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more regular pattern. This is done in Figure 5.7.1. The XOR components are
shifted into one plane, the so-called XOR-plane; the NCEL (or CEL) and
TOGGLE components are shifted into one plane, the so-called CT plane; and
the remaining CEL components are shifted into one plane, the so-called CEL
plane. FORK components are depicted in the CT plane and the XOR plane,
where the FORK components in the CT plane must be realized by isochronic
forks.

The decomposition of any component E €£(GCL’) can be depicted similarly
to Figure 5.7.1. ‘

a0? al?  a2? a3 ad?
\ \

! |
R R = = e Kt gy
CT plane ' | XOR plane
I N I
o
|12 || :
l N 1 |
| ! |
l
| hY, |
| ||
- — 1T — -
! CEL plane
—— 4 - 4-- -

b4! b31  b2! 1! bO!

FIGURE 5.7.1. A regular schematic of decomposition of E.
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Chapter 6

A Decomposition Method |l
Syntax-Directed Translation of Non-Combinational Commands

6.0. INTRODUCTION

In this chapter we present the decomposition from £(G4')\ £(GCL’) into
£(GCL’), ie. the decomposition of components represented by non-
combinational commands in £(G4’) into components represented by combina-
tional commands. This decomposition is divided into three steps, viz. the
decomposition from £ into £, the decomposition from £; into £, and the
decomposition from £, into £;. For the definition of the languages £, £, &,
and £ and a general introduction to the decomposition presented in this
chapter we refer to Section 5.0.

Each decomposition step is discussed similarly to the decompositions
presented in the previous chapter. We describe each step by means of some
grammars and study the properties of this step with respect to the syntax-
directedness and linearity of the decomposition in the length of the command.
Mostly these properties are readily verified. There is one step, however, that
renders some difficulties in maintaining the linearity of the decomposition.
This is the decomposition of components expressed in £(GSEL). In Section
6.2.4 a non-linear decomposition is discussed, and in Section 6.2.5 we show
that a linear decomposition is also possible —though more difficult than the
non-linear decomposition. The latter section may be skipped at first reading.

One could say that the decomposition steps presented in this chapter differ
from the one presented in the previous chapter in the sense that here an
encoding of state information is involved in the decomposition of a com-
ponent. For the decomposition steps from £, to £; and from £; to £, we apply
a so-called state assignment to each sequential command which is part of the
complete command representing the component. For reasons of simplicity we
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use the one-hot assignment only, i.e. we introduce one symbol per state. For
the decomposition step from £4 to £3 we change internal symbols into external
symbols by applying a technique called expansion of internal symbols. For
each internal symbol x of the component we introduce symbols ox and ix and
expand each atomic command !x? into ox!;ix?. The terminals ox and ix are
then connected by a WIRE component.

6.1. DECOMPOSITION OF £, INTO £
6.1.0. Introduction

In the decomposition step from £ to £ each component
E0eR(G2)\ £(GCL’) is decomposed into components E1, E2, and E3 such
that E1€f£(GCL’), E2ef(GCL’), and the command E3 is a weave of
SOURCE and SINK components with disjoint alphabets. Consequently, by
Corollary 3.1.3.3, component E3 can be decomposed further into a collection
of SOURCE and SINK components. The commands E 1, E2, and E 3 are con-
structed form the syntax of E0, and we have |E 1|+ |E2|+|E 3| =0(/E0|). The
general connection pattern between the components E 1, E2, and E 3 is given
in Figure 6.1.0.

iE0—= EIl E3 E2 == oE{

-
 —

FIGURE 6.1.0. General connection pattern of decomposition of E €f;.

Notice that for any command E it can be determined in a constructive way
whether Ee€f(G2)\ £(GCL’) by means of the grammars G2’ and GCL’.
Before we describe the general decomposition procedure for this step, we give
an example.

6.1.1. An example

Let the commands E. 0.0 and E. 1.0 be defined by
E.0.0 = pref[(a?b?);d0';(a%e! | b7;d0))
E. 1.0 = ptailf,.0,

where tailf, is specified by
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tailf.R.0 = pref(e!;R. 1)
tailf;.R. 1 = pref(c;R.0 | bR 2)
tailf|.R.2 = pref(R 2)
tailf;.R.3 = pref(d1!;R. 1).
The state graph corresponding to wzailf,.0 is given in Figure 6.1.1.

. q3
dl!
! 9

FIGURE 6.1.1. State graph corresponding to tailf;.

We observe that E. 0.0||E. 1.0 € £(G2')\ £(GCL').

The decomposition of E. 0.0|E. 1.0 consists of two steps. In the first step we
rewrite E.0.0 and E. 1.0 into commands of the form p.ailf.0€£(G2’), where
tailf is defined by an array of atomic commands only. The sequential com-
mand E. 1.0 is already written in this way. For E.0.0 we obtain the command
ptailfy.0, where tailf, is specified by

tailfo.R.0 = pref(a?;R. 1| b%R. 1)
tailfo.R. 1 = pref(d0';R. 2)
tailfo.R.2 = pref(a”R.3 | bR 4)
tailfo.R. 3 = pref(e!;R. 0)
tailfy.R. 4 = pref(d0!;R. 0).

Rewriting a sequential command in such a form can be done in a syntax-
directed way.

In the second step we apply a state assignment to each sequential command
Ek.0, 0<k<2. For reasons of simplicity, we take the so-called one-hot
assignment, i.e. we' introduce one internal symbol per state. For state i of
sequential command E.k.0 we introduce the internal symbol ¢.k.i. Next, we
split each sequential command into an input part and an output part. The
input parts E. 0.1 and E. 1.1 and output parts E. 0.2 and E. 1.2 are defined by

E.0.1 = pref[a?llq.0.0%;4.0.1! | b?llq. 0.02;4.0.1!
|a?llg.0.27;¢.0.3! | b?lig. 0.27;4. 0.4!]
E.02 = pref(g.0.0%; [¢.0.1%;d0!l|g. 02! | ¢.0.3%;e!ll4. 0.0!
|¢. 0.42;d0!ll4.0.01])
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E. 1.1 = pref(q. 1.0%; [¢. 1.12llc %;¢.1.0! | g. 1.12llb %4. 1.21])
E.12 = pref[g. 1.0%e!llg. 1.1! | ¢. 1.3%d 1!llg. 1.11]

Operationally speaking, an input part receives the current local state and an
input and then produces the next local state. The output part receives the
current local state upon which it produces the output and the next local state.
Depending on whether an input or an output is produced initially, the input
part or the output part starts with producing the initial state.

Not every internal symbol occurs both as an input and as an output in the
above commands: there is a dangling input ¢. 1.3 and a dangling output ¢. 1.2.
To connect this dangling input and output to an output and an input respec-
tively, we introduce the passive SOURCE(q. 1.3) component and the
SINK(q. 1.2) component. Let E. 0.3 and E. 1.3 be defined by

E.0.3 = ¢ and

E. 13 = SOURCE(g. 1.3) [ SINK (¢. 1.2).
By definition of decomposition, we derive

E 00— E01,E02,E03 and

E 10> E11,E12,E13.

We check condition (3.7) and (3.8) for the application of the Separation
Theorem and infer that the internal symbols of the decompositions are row-
wise disjoint and that the outputs are column-wise disjoint. Consequently, by
the Separation Theorem, we deduce

EQ —> E1, E2, E3, where
EO=E.00|lE. 1.0,
E1=E.O1|lE. 1.1,
E2=E 0.2]|E. 1.2 ,and
E3=E.03||E.1.3.
Furthermore, we observe E. 1€£(GCL’), E.2e£(GCL’), and
|E1|+|E2|+|E3| = O(|EO)).

6.1.2. The general decomposition

The general decomposition method for any component E0e£(G2)\ £(GCL’)
is carried out similarly to the previous example. By definition of grammar G2/,
command E0ef(G2’) is expressed as a weave (llk: 0<<k <N: E.k.0) of sequen-
tial commands E.k.0€£(G2’). First, each sequential command E.k.0,
0<k <N, is rewritten into a command p.zailf,.0€2(G2’), where tailf, is a tail
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function defined by an array of atomic commands only . Let
e.k(i,j: 0<i,j<n(k)) denote an array of atomic commands for tailfy, 0<k<N.
Rewriting sequential command E.k.0 into p.failf;.0 can be done in a syntax-
directed way such that

(Nk,i,j: 0<k<N A 0<i,j<n(k): ek.ij£2) = O(E0).  (6.0)

In the second step we introduce the internal symbols g.k.i and split each
sequential command in an input part and an output part. First, we define for
each k, 0<<k<N, the commands PLk and PO.k as follows. If ek contains
inputs,

PLk = (| i,j:ek.ijis an input: e.k.ijllg.k.i?;q.k.j"),
otherwise PLk=e¢. If e.k contains outputs,
PO.k = (| i,j:ek.ijis an output: q.k.i?; q.k.j!lle.k.i.j),

otherwise PO.k =¢. Since p.tailf,.0€L(G2'), 0<<k <N, it follows that PLk and
PO.k satisfy the LL-1conditions. (Notice that for each i, 0<<i<n(k), there
exists at most one j, 0<<j<n(k), such that ek.i.j is an output.) Subsequently,
input part E.k. 1 and output part E.k. 2, 0<<k <N, are defined by

Ek1 = pref(¢.004[PLk])  if PLk#¢ A Qk

= pref(q. 0.0") if PLk=eN Q.k

= pref[PLk] if PLk~e A —(Q.k)

= if PLk=eN—(Q.k)
Ek.2 = pref(q 0.0\;[PO.k]) if PO.ks%e N\ ~(Q.k)

= pref(q. 0.0) if PO.k=eN—(Q.k)

= pref[PO.k] if PO.k~e A Q.k

=€ if PO.k=eN Q.k,

where Q.k = ‘E.k. 0 starts with an output’, for all 0<<k <N.
SOURCE and SINK components are introduced for dangling inputs or out-
puts as follows. For each k, 0<<k <N, Out.k and In.k are defined by

Outk = o(E.k. 1)Uo(E.k. 2)U{g.00} and
Ink = i(E.k. 1) Ui(E.k. 2).

For each g.k.ie Outk\ In.k we introduce a SINK(q.k.i) component, and for
each g.k.ie Ink\ Outk we introduce a passive SOURCE(q.k.i) component,
where 0<<i<n(k) A 0<k<N. Command E.k.3 is defined as the weave of
these SINK and SOURCE components.

With the above definitions we derive for all k, 0<<k <N,

Ek.O0— Ek1,Ek2,Ek.3.

Since for these decompositions the internal symbols are row-wise disjoint and
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the outputs are column-wise disjoint, we deduce, by the Separation Theorem,
EQO—> FE1,E2,E3, where
EOQ = (lk:0<k<N:E.k.0),
El = (llk:0<k<N:E.k.1),
E2 = (llk:0<k<N:E.k.2), and
E3 = (lk:0<k<N:Ek.3).

Because PLk and PO.k, 0<k<N, satisfy the LL-1 conditions, we infer that
E1ef(GCL"), E2ef(GCL’), and E 3 is a weave of SOURCE and SINK com-
ponents with disjoint alphabets. Finally, we observe that E1, E2, and E3 are
constructed from the syntax of £0 and that, by (6.0),

|E1|+|E2|+|E3| = &|EO)|).

6.1.3. Schematics of decompositions

Recall the specification of component EO||E 1 of Section 6.1.1, where
EO = pref[(a?b?);d0!;(a?e! | b7;d0N)],
E1 = p.tailf,.0,
and tailf, is specified by
tailf.R.0 = pref(e!;R. 1)
tailf.R.1 = pref(c;R.0 | bR 2)
tailf|.R.2 = pref(R.2)
tailf\.R.3 = pref(d1!;R. 1).

A schematic of the complete decomposition of component EO|E1 according
to the methods described in the previous sections is given in Figure 6.1.2. The
schematic of this decomposition can also be rearranged into a connection of a
CT, XOR, and a CEL plane.

The decomposition of the sequence detector of Section 2.3.1 according to the
methods of the preceding sections yields the schematic of Figure 6.1.3.
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6.2. DECOMPOSITION OF £3 INTO £
6.2.0. Introduction

In the decomposition step from £; to £, each component E.O€f3\ £
(=£(G3)\ £(G?2)) is decomposed in a syntax-directed way into a collection
of components E.i€f, 1<i<n. (Notice that for each command E it can also
be determined in a constructive way whether E € £(G3’) \ £(G2") by means of
the grammars G3’ and G2'.) The decomposition can be carried out in such a
way that the result is linear in the length of the commands, i.e.
(+i:1<i<n:|E.i|)=O(E.0]). The step is divided into three substeps each of
which is discussed briefly below before they are presented in the following sec-
tions.

In the first step each component EO€f; \ £, is decomposed into four com-
ponents E1, E2, E3, and E4. Apart from component E4, this step is similar
to the decomposition step from £, to £;. The connection pattern between
components E1, E2, E3, and E4 is given in Figure 6.2.0.

iEl——) EI E2 [ oE0

E3

FIGURE 6.2.0. Decomposition of EQef; \ £.

Components E1 and E2 are called the input part and output part respectively.
We have E1e€£(GCL"), E2€£(GCL’), and component E 3 is a weave of SINK
and (passive) SOURCE components with disjoint alphabets. Consequently, by
Corollary 3.1.3.3, E3 can be decomposed further into SINK and SOURCE
components. Component E4 is called the selection part, and command E4
satisfies a special syntax: we have E4€£(GSEL). Grammar GSEL is presented
in the next section. The commands E 1, E2, E3, and E4 are constructed from
the syntax of E0 in such a way that |E 1|+ |E2|+|E 3|+|E4|=&(EO)).

In the second step each selection part EQf(GSEL) is decomposed into
components E1, E2, and E3. The general connection pattern of this decom-
position is depicted in Figure 6.2.1.



6.2. Decomposition of £, into &, 109

J |

iE0 —) E1 ) E2 E3[——)oE0

C i

FIGURE 6.2.1. Decomposition of EOc£(GSEL)

Component E1 is a SEQ component, E2€£(G2'), and E3efl(GCL’). With
respect to the length of these commands we have |E1|=0(|EO]) and
|E 3|=&(|E0]), but in general, however, we do not have |[E2|=0(/E0|). Conse-
quently, if E2 is decomposed according to methods discussed in previous sec-
tions, the decomposition of components E0cf(GSEL) is in general not linear
in the length of EQ. Nevertheless, we show that it is possible —though more
difficult — to obtain a linear decomposition of EQ. For this purpose we decom-
pose E2 further into a component MASTER €£(G2’) and components
SLAVE.i e€(G2), 0<i<m. The commands MASTER and SLAVE.,
0<<i <m, are constructed from the syntax of E0Q and satisfy

|MASTER| + (+i:0<i <m: |SLAVE.i[) = &(E0)).

Because the complete linear decomposition of a component EO0ef£(GSEL) can
become rather complicated, the non-linear decomposition is to be preferred in
many cases to the linear decomposition. The decomposition into MASTER
and SLAVE components is discussed in Section 6.2.5 and may be skipped at
first reading.

In the third and final step each SEQ component is decomposed in a syntax-
directed way into the basis B. We demonstrate that a k-SEQ component,
k>0, can be decomposed into O(k) basic components from B.

If the three steps are combined, we conclude, from the Substitution Theorem
and from the properties that each step satisfies, that each component
E.0ef;\ £ can be decomposed in a syntax-directed way into a collection of
components E.i ey, 1<<i<n. Moreover, if in the second step the linear decom-
position is applied, we have (+i: 1<<i <n:|E.i|)=&(E. 0)).

In each of the following sections a decomposition step is explained. We start
with the definition of grammar GSEL, and subsequently, in Section 6.2.2, we
discuss an example of the first decomposition step.
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6.2.1. DI grammar GSEL

The grammar GSEL is an attribute grammar similar to GCL’. The production
rules for its context-free grammar are defined as follows.

<dicom>::= <pccom >
<pccom>:..= €
[ pref[<pfeom=>]
[ <com>l|l<com> b9
<pfcom >::= <sym >7?;(<altout >) (c6)
[ <pfecom>|<pfcom> (T
<altout>::= <sym>!
[ <altout>|<altout> d0)

The conditions for the production rules (b9), (c6), (c7), and (d0) are as fol-
lows. For each of the rules we have the condition

ALFCOND(E0,E1) A ((EONIE1)=@,

where EO|E1, EO;E1, EO|E1, and EOQ|E 1 are productions of the production
rules (b9), (c6), (c7), and (d0) respectively. Consequently, all inputs in a com-
mand E eR(GSEL) differ. For the production rules (¢ 7) and (d0) we have the
additional condition ALTCOND(EO0,E1). For example, we have

pref[a?;(b!|c!)] € £(GSEL), and
pref[d?;a! | e?;(a!|b!)] || pref[f ?;(a!|c!) | g2;a!] € (GSEL).

Notice that £(GSEL)C£(G4). Consequently, the attribute grammar GSEL is
also a DI grammar.

6.2.2. An example

Let the commands E. 0.0 and E. 1.0 be specified by
E.0.0 = pref[a?;,c!;a?;(c!|d))] and
E. 1.0 = pref[b?%;(c! | e!;6%5c )]
We observe that E. 0.0/|E. 1.0 € £(G3)\ £(G2’). In the following, we construct

a decomposition for component E.0.0|lE. 1.0 from the syntax of E.0.0 and
E. 1.0.

First, the commands E.0.0 and E.1.0 are rewritten in a syntax-directed way
into the commands p.tailf;.0€£(G3’) and p.tailf,.0€£(G 3’) respectively, where
tailfy and tailf, are defined by arrays of atomic commands only. We obtain for
tailfy and tailf,,

tailfo.R.0 = pref(a?;R. 1)
tailfo.R. 1 = pref(c!;R.2)
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tailfo.R.2 = pref(a?;R. 3)

tailfo.R. 3 = pref(c!;R.0| d!;R.0)
and

tailf|.R.0 = pref(b7;R. 1)

tailf\.R. 1 = pref(c';R.0 | e!;R.2)

tailf.R.2 = pref(b?;R. 3)

tailf|.R. 3 = pref(c!;R. 0).

Second, we apply a one-hot assignment to each sequential command. For
state i of sequential command k we introduce the internal symbol g.k.i. Furth-
ermore, for each sequential command E.k.0, 0<k <2, we introduce the inter-
nal symbols x’ for each x eo(E.k. 0). The commands E.k.i, 0<k <2 A 1<i <5,
are defined as follows.

E.0.1 = pref[q.0.0?lla?;4.0.1! | q.0.2?lla 7;4.0.3!] ,

E.0.2 = pref[q.0.1?llc'?;4. 0.2!||c!
lg- 0.32llc"2;4. 0.0!llc! | ¢.0.32lld"%;4. 0.0!l|d!
1,

E03=¢,

E. 0.4 = pref[q.0.1%;¢"! | q.0.3%;(c"|d'M)] ,

E. 1.1 = pref[q. 1.0%b7;q. 1.1! | ¢. 1.22167;¢. 1.3'],

E. 12 = pref[g. 1.17lc'%q. 1.0MIc! | ¢ 1.120le"2;9. 1.2!]le!
|g. 1.32lc"?;4. 1.0!lc!
1,

E. 13 =€, and

E. 1.4 = pref[q. 1.17;(c"!|e’") | ¢. 1.375¢"!].

Components E.0.1 and E. 1.1 are the input parts of components E.0.0 and
E. 1.0 respectively. Components E.0.2 and E. 1.2 are the output parts of com-
ponents E. 0.0 and E. 1.0 respectively. E. 0.3 and E. 1.3 represent the weaves of
the SOURCE and SINK components (of which there are none here). Com-
ponents E.0.4 and E. 1.4 are the selection parts of E.0.0 and E. 1.0 respec-
tively. The input parts determine from a current local state and an input the
next local state. The output parts determine from the current local state and
an internal symbol x’ the next local state and the next output. (Notice that the
output parts here differ from the output parts introduced in the decomposition
from £, to £;.) The selection part selects for a local state a next internal sym-
bol x’.
By definition of decomposition, we have
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E.00— E.0.1, E.02, E.03, EE04 and
E10—-E11,E 12, E 13, E14.

In order to apply the Separation Theorem to the command E. 0.0/E. 1.0 , we
verify conditions (3.7) and (3.8). We observe that the outputs of the decompo-
sitions are column-wise disjoint, but the internal symbols of the decomposi-
tions, however, are not row-wise disjoint because of the symbols x’. Conse-
quently, we can only conclude, by Theorem 3.1.3.1, that the connection of
components EO0, E1, E2, E3 and E 4, where

EO = E.00llE. 1.0,
E1=EQO.l|E 11,
E2 = E.02|E. 12,
E3 = E.03||E. 1.3 ,and
E4 = E.04||E. 14,

is closed and free of interference. We still have to show that tWtaE0=tEOQ,
where W=EOIE1|[E2|E3|IE4. By definition of weaving, we derive
tWtaEOCtEO. Furthermore, for the above kind of decomposition we can
also show that any trace tEQ can be expanded with internal symbols into a
trace in tW. For example, the trace a b ¢ b a d can be expanded into

300a4q014¢10bq11c" q024¢10cbhbglla q03d q00detW.

In general, the expansion consists of inserting the symbols for the local states
and the internal symbols x’ at the appropriate places. Consequently, we derive

E0—> E1, E2 E3, E4

Subsequently, from the definition of these commands, we observe
E1€B(GCL’), E2ef(GCL’), and E4ef(GSEL). (Notice that in E4 all inputs
differ.) The commands are constructed from the syntax of E.0.0 and E. 1.0,
and

|E1|+|E2|+|E3|+|E4] = &(EO)).

6.2.3. The general decomposition

The general decomposition of a component E0 € £\ £ into components
E1e€£(GCL"), E2e€£(GCL’), a weave E3 of SINK and SOURCE com-
ponents, and E4 € £(GSEL) is performed in two steps as follows.

Let the command E0e£(G3')\ £(G2') be expressed as a weave of sequen-
tial commands E.k.0€£(G3’), 0<k<N. First, we rewrite each sequential
command E.k.0 into a command p.tailf,.0€(G3’), 0<k <N, where tailf; is
defined by an array of atomic commands only. Let for each k, 0<<k <N, array
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e.k(i,j: 0<i,j <n(k)) denote the array of atomic commands for tailf,. Each
sequential command E.k.0 can be rewritten in a syntax-directed way into a
command ptailf,.0€£(G 3) such that

(Nk,i,j: 0<k <N A 0<<i,j<n(k): ekij=@) = O(EO).  (6.1)

Second, we define the input part E.k. 1, the output part E.k.2, the weave
E.k.3 of SOURCE and SINK components, and the selection part E.k.4 by
means of array ek(i,j:0<i,j<n(k)) for each k, 0<k<N. The commands
E.k.1, 0<k<N, are defined analogously to Section 6.1.2. The commands
E.k.2, 0<k<N, are also defined analogously to Section 6.1.2, apart from the
definition of PO.k, which is defined as follows. Let array e’.k(i,j: 0<i,j<<n)
denote array e.k(i,j: 0<<i,j<<n) in which each atomic command x! and x? is
replaced by x’, for 0<<k<N. If array e.k contains outputs for 0<<k <N, then

PO.k = (Ji,j:ek.ij is an output: q.k.i?lle’.k.ij? ; g.k.j!lle.k.ij),
otherwise PO.k=e¢. Notice that, since p.tailf,.02(G3’), PO.k satisfies the
LL-1 conditions.

The selection part E.k. 4 is defined as follows for 0<<k<N. If array e.k con-
tains outputs,

E.k.4 = pref[(Ji: e.k.i contains an output
: q.ki?(|j: e.k.ij is an output: e’.k.ij!)
)3

otherwise E.k.4=e. Since ptailf;.0e(G3), it follows that each E.k.4,
0<<k <N, satisfies the LL-1 conditions.

Finally, we determine, with these definitions of E.k.1, E.k.2, and E.k. 4,
which internal symbols are a dangling input or output. For each such symbol
we introduce a passive SOURCE or a SINK component respectively, and the
weave of these components for each k, 0<<k <N, is denoted by E.k. 3.

Subsequently, by these definitions and the definition of decomposition, we
conclude for all k, 0k <N,

Ek0— Ek 1, Ek.2 Ek.3, Ek 4.

For these decompositions we check conditions (3.7) and (3.8) of the Separation
Theorem. We observe that the outputs of these components are column-wise
disjoint. In general, the internal symbols of these decompositions, however, do
not have to be row-wise disjoint. By Theorem 3.1.3.1 we can, therefore, only
conclude that the connection of components E0, E1, E2, E3, and E4 is
closed and free of interference, where

EO0 = (lk:0<k<N:E.k.0),
El = (lk:0<k<N:Ek.),
E2 = (lk:0<k<N:Ek.2),
E3 = (lk:0<k<N:E.k.3), and
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E4 = (lk:0<k<N:Ek.4).

We prove that tWaEO0=tEQ holds as well, where W=EO|E1||E2||E3|E4.
By definition of weaving, we have tWtaEQOCtEQ. Furthermore, from the
definitions of E.k.i, 0k <N A 1<<i <5, we derive that any trace in tEQ can
be expanded into a trace in tW by inserting the symbols for the local states
and internal symbols x’ at the appropriate places. Consequently, we have
tWtaE0=tEO0, and we infer by definition of decomposition

E0—>E1, E2 E3, E4

Moreover, we observe E1e€£(GCL’), E2€f(GCL’), E3 is a weave of
SOURCE and SINK components with disjoint alphabets, E4£(GSEL), and
by (6.1)

|E1|+|E2|+|E3|+|E4| = &EQ|).

6.2.4. Decomposition of £(GSEL)

Components expressed by commands in £(GSEL) have to perform some kind
of a selection. For example, the component E =pref[a?;(b!|c!)] has to select
after receipt of input a an output from the set {b,c}, i.e. from the outputs in
Suc(a,E). The component E, where

E = pref[d?a! | e?(a!|bY)] || pref[f 2;(a!lc!) | g7all,

has to select after receipt of input f an output from the set {c}, i.e. from the
outputs in Suc(f,E). (Notice that a¢Suc(f,E).) After receipt of inputs f and
e, however, this component has to select an output from the set {a,b,c}, ie.
from the outputs in Suc(fe,E).

In the decomposition of components expressed in £(GSEL) the selections of
outputs are realized by a connection of a SEQ component and components
expressed in £,. Which output is selected is determined by the order in which
requests are sequenced by the SEQ component. It is because of this sequencing
of requests that the selection of a next output can be computed in a deter-
ministic way, i.e. by components expressed in £,.

Let EQcf(GSEL). We show how to construct a decomposition for com-
ponent E0. The construction of this decomposition can briefly be described as
follows. First, we introduce so-called auxiliary symbols and construct the com-
mand E’ from EO. Subsequently, we construct the commands E'1, E2, and
E3 from the command E’. Component E1 is a SEQ component with
|E1|=6&(EOQ|), E2 is a sequential command from £(G?2’), and E3ef(GCL’)
with |E3|=0(|EO]). In the following, we first give the definition of the com-
mands E’, E1, E2, and E3 and then present an example. The connection pat-
tern between these components is given in Figure 6.2.1. Finally, we prove
EO0—E1,E2,E3 and devote a few remarks to this decomposition.
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The command E’ is defined by
E’' = EO |l (llx: xeoEO: pref[hx ?;x!]).
For example, for EO=pref[a?;(b!|c!)] we have
E’ = EO || pref[hb?;b'] || pref[hc?;c!].

The symbols hx, for x€oEOQ, are called auxiliary symbols. (We assume that
hx ¢aE0 for x€oE0.) Notice that |E’|=0(|E0|).

From command E’ the commands E 1, E2, and E3 are constructed. E1is a
k-SEQ component, where k equals the number of inputs of E’. E1 is defined
by

El = (llx: xiE’; pref[x 7;x"1])
|| pref[n?; (|x: x €iE’": x""!)].
The command E 3 is defined by
E3 = (llx: x€oE’: pref (hx !;[x"?; hx!l|x!])
|| pref(n!; [(|x: x €0E’: x"";n') | np?;n!)).

Command E?2 is defined by E2=p.tailf.0, where tailf is defined below. For
the definition of tailf we use the command E” which is the command E’ in
which every symbol y is replaced by y”. The sequential behavior of com-
ponent E2 is an alternation of inputs of E” and outputs from {np}UoE",
starting with an input. The output is determined by the inputs as follows. Let
t be the current trace and let x” be the next input. If Suc (tx"taE”,E") con-
tains an output, then the first one is produced. (For the time being we assume
that Suc(zx’taE”,E”) is represented as a list of symbols.) If Suc (tx"TaE"”,E")
does not contain an output, then output np is produced. In order to formalize
this specification we introduce some notation. Let q.i, 0<i<n1l, denote the
states of E”. By t.i we denote a trace from state q.i, 0<<i <nl. Let

V ={i|0<i<nl A Suc(ti,E")NoE"=2},

i.e. the set V is the set of all (indexes of the) states of E” in which no output
can be produced. The initial state is denoted by ¢.0, and, since E” starts with
inputs, we have O V. For all i€V, tailf.R.i is defined by

tailf .R.i = pref((|x”: DO(i,x"): x"?;p(i,x")!; R.80(i,x"))
|(Jx": D1G,x"): x"?;np! ; R.81(i,x"))
) if Suc (i, E")5£ @
= pref(R.i) otherwise,
where
DO@i,x") = Suc (tix",E")NoE"#£ 3,
DI1(i,x") = ti x" etE” A =D 0(i,x"),
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81(i,x") = j, where t.ix" eq.j,
80(i,x") = j, where t.i x"p(i,x"")eq.j, and
p(i,x”) = first output in Suc (t.i x”,E").

We assume that Suc (r,E”) and Suc (s,E"’), for r and s traces of the same state
of E”, represent the same list of symbols. Furthermore, we stipulate that if one
of the domains DO or D1 is empty, the corresponding quantified union is
omitted. (Notice that only one domain can be empty.) We observe that zailf is
well-defined, since for E” €£(GSEL) we have

ieV A DO(i,x") = 680(i,x")eV and
ieV A D13,x") = 81@,x")eV.

EXAMPLE 6.2.4.0. Let EO be defined by EO = pref[a?;(b!|c!)]. We construct
the commands E’,E”,E1,E2, and E 3 according to the definitions given above.
We obtain

E’ = pref[a?:(b!|c!)] |l pref[hb?;b '] || pref[hc ?;c!]
E” = pref[a”?(b"!|c"")] || pref[hb”?;b"] || pref[hc”2;c"1]
E1 = pref[a?;a”!] || pref[hb?;hb"] || pref[hc ?;hc’!]
|| pref[n 2;(a”!|hb"|hc""Y)],

E2 = p.tailf.0, where
tailf. R.0 = pref(a”?;np;R. 1 | hb”%np \;R. 2 | h¢”"?;np!;R. 3)
tailf.R. 1 = pref(hb"?;,b”!;R. 0 | hc”"?;¢”'!;R. 0)
tailf.R.2 = pref(a”?;b”";R.0 | hc”?;np ;R. 4)
tailf.R.3 = pref(a”’?;c”!;R.0 | hb"?;np ;R. 4)
tailf.R. 4 = pref(a”?;b"";R. 3), and

E3 = pref(hb!; [b’}?; b!|lab')) |l pref(hc!;[c”?; c!llhc!])
| pref(n!; [b”%n! | ¢"%n! | np?inl)).

The connection pattern between the components E 1, E2, and E3 is given in
Figure 6.2.2.
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FIGURE 6.2.2. Decomposition of EQ into E1, E2, and E3.
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From the definition of E1, E2, and E3 we derive E2€£(G2'), E3€f£(GCL’),
|E1|=&(E0|), and E3=0(|EO|). For E2 we have E2=0(n2), where n2 equals
the product of the numbers of states of the sequential commands in E”. Con-
sequently, in general we do not have E2 = O&(E”|).

We prove EO0O—ELE2E3. First, we  demonstrate  that
t(EO||E1||E2IlE3)!aEO0=tE0. We show that any trace 1etEQ can be expan-
ded with internal symbols into a trace of #(EO|E1||E2||E3). Since, by
definition of weaving, we also have t(E0||E1||E2IIE3)raEOCtEO we then
conclude t(EO||E1||E2||E3)taE0=tEQ. Define the expansion f{t) for tctEQ
by

flo =e¢
f(tx) = f(t)y x n x" np if xeiEQ
fltx) = f(t) hx n hx" x" x if xeoEO.

We observe that f{(¢) is an expansion of ¢, for any zetE0. By definition of E'1
and E 3 we observe f(t)laE1etE1 and f(r)laE3etE 3 respectively. Further-
more, we have f(r)laE”etE”, and for any prefix r of f(t) we infer by
definition of E” ( and E’),

- if rtaE” ends with hx”, x €oEQ, then Suc (rtaE”,E")={x"}

- if rtaE” does not end with Ax"”, x €oEOQ, then Suc (rtaE”,E")=&.

From this we conclude, by definition of E2, that f(r)laE2etE2. Accordingly,
by definition of weaving, f(r)et(E EOIE1||E 2||E3).

Second, we observe that the connection EO, E1l, E2, and E3 is closed and
free of output interference. Since, by the introduction of the SEQ component,
the internal computation performed by E2 is purely sequential, it follows that
the connection is also free of computation interference, and we derive
E0O—-E1 E2E3.

We conclude with a few remarks on the decomposition described in this sec-
tion. First, we observe that the selection of an output is based on the order in
which the inputs and auxiliary symbols are sequenced by the SEQ component.
Component E2 computes in a deterministic way the next output from the
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order in which it receives the inputs from the SEQ component. Second, we
remark that the internal computation is performed in a purely sequential
fashion. We have chosen this approach for reasons of simplicity. Under cer-
tain conditions techniques may be applied that yield decompositions with a
higher degree of parallelism. For example, it may well be that E0 is expressed
as a weave ES||E6, for which oE5N0E6=@. By Corollary 3.1.3.3, ES||E6
can be decomposed into ES5 and E6. Both components E5 and E6 can then
perform their computations in parallel. More optimization techniques are given
in Chapter 7.

6.2.5. A linear decomposition of £(GSEL)

(This section may be skipped at first reading.) In the previous section we gave
for any component EQ0ef(GSEL) a decomposition EO—E1,E2,E3. The
decomposition was not a linear decomposition, since in general E2=&(E0|)
does not hold. In this section we define components MASTER and SLAVE.i,
0<<i<<m, such that

E2—> MASTER, (i:0<i<m:SLAVE.i), where

MASTER € £(G2") A SLAVE.i€ £(G?2'), for 0<i<m, and

|MASTER| + (+i:0<i<m:|SLAVE.i|) = O(EO|).
By the Substitution Theorem and the above decompositions, we can then con-
clude that there exists a linear decomposition of any component E0cf(GSEL)
into components expressed in £, and SEQ components. The commands MAS-
TER and SLAVE.i, 0<<i<m, are constructed from the command E”, which in
its turn is constructed from E 0 (see previous section).

Component E2 determines for a current trace ¢ €tE?2 and next input x €iE2
whether Suc (zxtaE”,E”) contains an output or not. If it contains an output,
the first one is produced, otherwise np is produced. We construct a decomposi-
tion of E2 in which the successor set of outputs with respect to E” is recorded

by a number of SLAVE components. First, we explain the idea behind the
decomposition by means of an example. Consider the command

E1” = pref[d’?;a”! | e”Y(a”!|b"")]
Il pref[f’?5(a”|c”Y) | g”'Nsa”""]
| pref[ha’’?;a’"!]
|| pref[ab"2;b"1]
|| pref[hc”’?;c"].

From this command we construct Table 6.2.0.
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a’ b "
o OO
1 O O
2 O
3 O
4 O

TABLE 6.2.0.

In general, for a command E” the corresponding table is constructed as fol-
lows. Let E” be expressed as a weave (llk:0<<k<N:E.k) of sequential com-
mands E.ke2(GSEL). For each yeoE” and k, 0<k<N, we place a cell at
entry (k,y) of the table iff y eo(E.k). Each cell can be in one of two states: it is
either black or white. Initially all cells are white. The state of the cells is in
accordance with the following rules. Let tE2 be the current trace. For each
yeo(E.k) and k, 0<k <N, we have

P: yeSuc(tta(E.k), Ek) = cell (k,y) is black.

For example, if E”=E1” and t=hb" np ha’ np " np d”, then the cells (0,a”),
(1,a"), (1,¢"”), (2,a”), and (3,b”) are black. If P holds, then the successor set of
outputs of E” is determined by

y € Suc(ttaE”,E") = all cells in column y are black,

for all yeoE"”. For example, if E”=E1"” and t=hb" np ha" np f’"np d”’, then
all cells in column a” are black. Consequently, a” € Suc (ttaE1”, E1”).

The computation of component E2 can be expressed as a sequential algo-
rithm that performs operations on a table of cells as defined above. The algo-
rithm has P as an invariant. First, we present the algorithm and then we
encode it in a communication protocol between a MASTER component and a
number of SLAVE components. The algorithm is given below. ‘Set cell (k,y)
means ‘make cell (k,y) black’; resetting a cell means making the cell white.



120 A Decomposition Method Il

t:=e¢; {P}
do true — x % k:=r(x); y:=firsty(tx); suc : = false
;do —suc V ys&nil
— set cell (k,y)
; test if column y is black
; if column y is not black — y :=next;(tx,y)
[| column y is black — reset cells in column
and adjacent cells
; suc :=true
fi
od
;if suc > ylit:=txy
[| —suc — np';t:=txnp
fi{P}
od,

where

r(x) =k if xei(E.k), 0<k<N.

firsty(tx)  is the first symbol in Suc(txta(E.k), E.k).

next,(tx,y) is the next symbol in Suc(zxta(E.k), E.k) after y, if y is not the
last symbol. Otherwise, it is nil.

Because E”€2(GSEL), all inputs are different in E”. Consequently, for each
x €iE” there is exactly one k such that r(x)=k, and r(x) can be determined
directly from the syntax of E”. Furthermore, we infer for 0<<k <N,

txetE” N xei(E.k)
={E"”ef(GSEL), calc.}
Suc(txta(E.k), E.k) = Suc(x,E.k).

The set Suc(x,E.k) can be determined directly from the syntax of E” as well.
For example, for E”=E1” we have r(d’)=0, r(e”)=0, Suc(d”,E.0)={a"},
and Suc(e”,E.0)={a",b"}.

We make one remark with respect to the resetting of cells. If all cells in
column y, say, are black, then a number of cells must be reset such that P can
be concluded after output y is produced. The cells that must be reset are not
only the cells in column y but also those cells in each row that has a non-
empty intersection with column y. For example, after trace
t=hb"np ha" np f"np d” all cells in column a” are black. Before output a” is
produced the cells in column a” are reset, but also cell (1,¢”) must be reset!

The algorithm is encoded in a communication protocol between a MASTER
component and a number of SLAVE components. For each cell (k,y),
0<k <N A yeo(E.k), we have a component SLAVE.k.y, which records the
state of cell (k,y). The set, test, and reset procedures of the algorithm are
encoded in the protocols for communication between the SLAVE components.
For this purpose, the SLAVE components are connected both column-wise
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and row-wise in a ring. A test or reset procedure is initiated by one SLAVE
component which starts a signal either in the column-wise ring or in the row-
wise ring. The other SLAVE components participate in the procedure by pro-
pagating the signal according to a specific protocol. Each SLAVE component
is also connected to the MASTER component. The MASTER component
determines for every receipt of input xeiE2(=iE”) which components
SLAVE.k.y, with k =r(x) and y eo(E.k), must be set and in what order. The
answer that component SLAVE.k.y returns to the MASTER , by means of
msuc.K.y or mfail.k.y, determines whether output y or output np, respectively, is
produced.
The component MASTER is defined by MASTER = p.tailfM. 0, where

tailfM.R.0 = pref(|x: x€iE”: x7; R. first(x))
tailfM.R. 1 = pref(np!;R.0)
and for all pairs (x,y) with xeiE” A y e Suc(x, E.r(x))
tailfM.R. (x,y) = pref(set.r(x).y!
s(msuc.r(x)y %y RO
| mfail.r (x).y?; R.next(x,y)

).

Here, for the definition of tailfM a collection of states have been labeled with
pairs of symbols (x,y), x€iE” A y € Suc(x, E.r(x)), and two states with 0 and
1. The functions first(x) and next(x,y) are defined by

- first(x) =(x,y) ,if y is the first symbol in Suc(x, E.r (x))
- next(x,y) =(x,z) ,if z is the next symbol in Suc(x, E.r(x)) after y
=1, if y is the last symbol in Suc(x, E.r(x)).

Below, in Figure 6.2.3 a schematic of a SLAVE component is depicted with
the terminals with which it is connected to other SLAVE components only.
(The terminals msuc and mfail with which it is connected to the MASTER
component are missing.) The actual names of the terminals for component
SLAVE.k.y can be derived from the connection pattern. We will not do so
here.
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suco! faily! reoly!

"'OW]?- SLAVE - "I'OW()!

I

sucy? fail,? rcol\?

FIGURE 6.2.3. A SLAVE component with some of its terminals.
The SLAVE component is defined by SLAVE = p.tailfS. 0, where
tailfS.R. 0 = pref(set?;{ P O}suco!;(fail,?;{ P1}mfail \;R. 1
|sucy 2{P2}rrowq!;rrow,?
sreolgtsreoly 5{ P 3} ;msuc!;R. 0
)
|suc,?; faily';R. 0
|fail,?; faily';R. O
|rrow?2;rrowo;R. 0
)
tailfS.R. 1 = pref(suc,?;suco!;R. 1
|fail,?; faily';R. 1
|reoly?;rrowq ! srrow ?5rcoly ! R. 0
|rrow?;rrowo!;R. 0
).

The following interpretations can be attached to the symbols used above and
to PO, P1, P2, and P3.

PO initialize test procedure

P1 test failed

P2 test succeeded, initialize reset procedure

P3 completion of reset procedure

set order of MASTER to set cell

mfail answer to MASTER that test for this column failed

msuc answer to MASTER that test and reset procedure were successful
suc test procedure has been successful so far

Sail test procedure failed



6.2. Decomposition of &, into £, 123

rrow reset all cells in this row
reol reset all rows that have a cell in this column.

Finally, we show
E2 — MASTER, (k,y:0<k<N Ayeo(E.k): SLAVE.ky). (6.2)

First, we observe that the connection is closed and free of output interference.
Because the computation is performed sequentially, it follows that the connec-
tion is free of computation interference as well. Moreover, since the connection
realizes the algorithm described above, we derive that the connection behaves
as specified by tE2 at the boundary aE2. Consequently, by definition of
decomposition, we conclude (6.2). Furthermore, from the definitions of these
components we observe that MASTERef(G2'), SLAVE.kyef(G2') for
0<k<N Ayeo(E.k), and

IMASTER| = O(E"|) A
(Ak,y:0<k<N Ayeo(E.k): |SLAVE.ky|=61))
={|E"| = &(EQ]), calc.}
IMASTER| + (+k,p:0<k<N A y co(E.k): |SLAVE.k.y|) = O(E0|).

Finally, we observe that the commands MASTER and SLAVE.ky,
0<k<N A yeo(E.k), are constructed from the syntax of E”, i.e. from EO.

6.2.6. Decomposition of SEQ components

Any k-SEQ component, k>1, can be decomposed into the basis B. The
decomposition is linear in k and can be described as a syntax-directed transla-
tion. The following is a discussion of a decomposition of the k-SEQ com-
ponent, k >1, specified by

(lli: 0<<i<k: pref[a.i?;b.i])
Il pref[n?;(|i: 0<i<k:b.i!)].

As an example, we consider the decomposition of the 4-SEQ component
depicted in Figure 6.2.4. The 4-SEQ component selects one.out of at most
four pending requests for each occurrence of input n. It then produces a grant
for the selected request. In the decomposition, this function is realized in two
steps by means of 2-SEQ components. In the first step two independent selec-
tions are made: one between the pending requests of inputs .0 and a.1, and
one between the pending requests of inputs a.2 and a.3. In the second step a
selection is made between the grants of the first step. The selection in the
second step determines the final grant and is made for each receipt of input n
only. The selections in the first steps are made initially and each time when
one of its pending requests has become the final grant.
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a0? al? a?? a3?
D> ' (—
‘ 1 ‘ é < n?
O r— L—{
[

b0 b 1! b2! b3

FIGURE 6.2.4. Decomposition of 4-SEQ component.

ReMARK. The lower two SEQ components in Figure 6.2.4 may be replaced by
CAL components of the form pref[a0?lb?;c0! | a1?llb?;c1!]. Notice that
there is always at most one pending request for the lower two SEQ com-
ponents.

O

In general, the selection process performed by a k-SEQ component can be dis-
tributed over a binary tree. Each node in this tree consists of 2-SEQ, 2-XOR,
and 2-FORK components. For k =7, the decomposition of the k-SEQ com-
ponent is depicted in Figure 6.2.5. The corresponding binary tree is given in
Figure 6.2.6.

a0?al? a2?a3’? a4 al? a6?

—
L
)
d
é n?
5.0! b 1! b2! b 3! b4 bS5 b. 6!

FIGURE 6.2.5. Decomposition of 7-SEQ component.

A pending request becomes a final grant if it is selected once at each node on
the path from leaf to root. At the root a selection is made for each receipt of
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a:0 al a:2 a3 a4 a5 ab
v N
N7 S
\‘/

FIGURE 6.2.6. Binary tree corresponding to the distributed selection.

input n only. At any other node a selection is made initially and each time
when one of its pending request has become a final grant. The decomposition
of a k-SEQ component according to the above procedure consists of less than
2k 2-XOR, 2k 2-SEQ, and 4k 2-FORK components. Consequently, the
decomposition is linear in k. Finally, we remark that the decomposition can be
described as a syntax-directed translation.

6.3. DECOMPOSITION OF £4 INTO £,

In the decomposition step from £4 to £3 each component E0 € A(G4')\ (G 3)
is decomposed into a component E 1 € (G 3’) and a collection of WIRE com-
ponents. This step is summarized in the following Expansion Theorem. Let
fo.E and Wires(E) for a command E be defined by

Jfo.E is the command E in which each atomic command !x ?,
with x ecoE, is replaced by ox!;ix?.
(We assume that ix ¢aF and ox ¢aF.)

Wires(E) = (x:xecoE: pref[ox ?;ix]).
We say that command f. E is constructed from E by expansion of each atomic

command !x? into ox!;ix?. We have

THEOREM 6.3.0. (Expansion Theorem)
If E€R(G4), then E — f\.E, Wires(E) and fy.E€£(G3’).
O

From the definition of f,.E and Wires(E) it follows immediately that the
decomposition described by the Expansion Theorem is syntax-directed and
linear in the length of the command E. Notice also that, since fy.E € £(G3'),
any projection operator in the command fj,. E may be removed.

ExaMPLE 6.3.1. Let E be defined by
E = (pref[a?;!x?;p!] || pref[!x ?;!y 7] || pref[!ly ;¢ ;6 1.
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From Example 4.9.5 we know E€f(G4’). Consequently, by the Expansion
Theorem, we infer

E
—{Expansion Theorem}
pref[a?;0x !;ix 7;p '] | prefox 1;ix 20 1;iy 7] || prefoy iy 2,9 157
, preffox 2;ix ] , pref[oy 7;iy!].

Moreover, we have f.E e£(G3).
O

PROOF OF THEOREM 6.3.0. Let WWires(E) be defined by
WWires(E) = (llx: x ecoE: pref[ox ?;ix!]).

We prove E — fy.E, WWires(E). Since WWires(E) is a weave of WIRE com-
ponents with disjoint alphabets, the theorem follows by application of Corol-
lary 3.1.3.3 and the Substitution Theorem.

First, by definition of fy.E and WWires(E) we observe that the connection
of E, fo.E, and WWires(E) is closed and free of output interference. Second,
we derive that

t(fo-E)taE=tE and t(fo.E)laWWires(E) CtWWires(E).
Consequently, by definition of weaving we deduce
E||fo.E||WWires(E)) = t(fo.E).

Accordingly, we have t(E|l fo-E||WWires(E))taE =tE, ie. the connection
behaves as specified at the boundary akE.

Third, we prove that the connection of E, fo.E, and WWires(E) is free of
computation interference. Let W =E||f,.E||[WWires(E). We have, by the
above, tW=t(f,.E). We observe

®
tetW A xeo(fy.E) A txta(fy.E)et(fy.E)
={tW = t(fo.E)}
ixetW. -
(@)

tetW N xeoWWires(E) N txtaWWires(E)etWWires(E)
={tW = (f,.E)}

tet(fo.E) N xeoWWires(E) N txtaWWires(E)etWWires(E)
={def. of fo.E}
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Ix Et(fo.E)
=>{tW = t(foE)}
tx etW.

Let fy'.E be the command E in which each atomic command !x? is replaced
by lox?lix?, and in which the projection operator has been deleted. We
derive from the definition of f’.E and the grammar G4’

t(fo’E) = fo.E) A i(fo".E)=iE A ext(fy’.E)=aE and
Ecl(G4) = (fo.E) eR(G4).
With these properties for f,".E we deduce
(i)
tetW A xcoE A ixtaE ctE
={tW = t(fy.E), calc.}
tet(fo.E) A x€iE AtxtaE etE
={fo.EtaE = E, calc.}
(Es::tet(fo.E) A x€iE A sxet(fy.E) A staE=tlaF)
={def. of fy".E}
(Es::tet(fy’.E) A xei(fy".E) A sxet(fy.E) A
stext(fy'.E)=tlext(fy’.E) )
={Eel(G¥4) = (fy".E)I eL(G¥), ie.
Disin(fy'.E) A en(fy.E)= @, See Appendix B}
txet(fy’.E)
>{t(fo’.E) = tW}
txetW.

From (i), (ii), and (iii) follows that the connection is free of computation
interference.

Finally, we remark that the property E€f(G4) = f,.E€£(G3’) can be
proved by means of recursion along the syntax of E using the definitions of
G4 and G3'.

O



128

Chapter 7

Special Decomposition Techniques

7.0. INTRODUCTION

In the previous chapter we presented a decomposition method which is appli-
cable to components represented in £4. For special commands other decompo-
sition techniques, which may yield decompositions with fewer basic com-
ponents, may be applied as well. The purpose of this chapter is to discuss
some of these techniques and to demonstrate their application by means of
examples. The style of presentation of these techniques, except for the one
presented in the last section, is informal: no proofs are given, no theorems are
formulated, and many topics are intended as suggestions for further research.

In the last section of this chapter we show that there exists a decomposition
for any regular DI component into components expressed in £;. This property
is based on a special decomposition technique for decomposing regular DI
components that are represented by deterministic commands, i.e. commands in
which projection does not occur and that satisfy the LL-1 conditions irrespec-
tive of the type of the symbols. We believe, however, that this result is more
of theoretical than of any practical interest.

7.1. MERGING STATES AND SPLITTING OFF ALTERNATIVES

The techniques discussed in this section are called ‘merging states’ and ‘splitting
off alternatives’. We explain the idea behind these techniques by means of
some small examples. Both techniques yield decompositions of the form
EQ — E1. For this reason they can be used conveniently in combination with
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Corollary 3.1.3.2. We demonstrate this in three examples, where decomposi-
tions for counter and buffer components are derived.
Consider the following decompositions.

pref {Q0}[a?;b!;{Q1}c?;d!] — pref[a?;b! | c?;d!],
pref[b!;{Q1};c7;d!;{02}a? — pref(b';[c%d! | a?;b!]),
and
pref {Q0}[a02;60';{Q1}c0%d! | a17,b1;{02}c1%;d!]
— pref[a02;b0! | c0%;d! | al1?;b1! | c1%;d!].

We say that the decompositions for these components are constructed by merg-
ing the states Q0 and Q1, Q1 and Q2, and Q0,01, and Q2 respectively.
Notice that for each component the inputs that are received in the differently
labeled states differ. Therefore, the different states can be distinguished in the
decomposition by the difference in inputs.

By means of merging states, the number of states of a sequential command
decreases. Thus, also the number of basic components in the final decomposi-
tion may decrease. The technique of merging states, however, can not be
applied in general. For example, the inputs that are received in the states to be
merged must differ. But also the resulting command must be a DI command
again. Further study is required to formulate general conditions under which
this technique may be applied.

The technique of splitting off alternatives is exemplified in the following
decompositions.

prefla?;b! | ¢?;d!] — pref[a?;b!] || pref[c?;d!],
pref(b!;[cd! | a?b!] — pref(b!;[a?;b!)) || pref[c?;d!],
and
pref[a02;60! | c0%;d! | a12;b1! | c12;d!).
— pref[a07;60!] || pref[a17;61!] || pref[c0%;d! | c1%;d!].

These decompositions suggest a technique for decomposing special commands
with alternatives. We have called this technique splitting off alternatives. How
this technique can be formulated is also left as a suggestion for future research.

Both techniques can be useful in deriving decompositions for components.
This is illustrated in the following examples.

ExaMPLE 7.1.0. We give a derivation for a decomposition of the 3-counter
which is specified in Example 4.9.5. First, by means of merging states and



130 Special Decomposition Techniques

splitting off alternatives we derive (cf. above) .
prefla?ox;ix?p!] — prefla?;ox!] || pref[ix?;p!], )
preflox !;ix 20y iy 7] — pref(ox!;[iy ;0x!]) || pref[ix2;0p!] (1)
prefloy iy 74167 — pref(op ;[b2%0p!')) |l prefliy 7;9!]. ¥))
With these decompositions we infer
(prefla?;!x?;p!] || pref[!x?;ly 7] || pref[ly 2;q ;b Mt
— {Expansion Theorem}
prefla?;0x ;ix 2,p!] || preflox !;ix 250y 1;iy 7] || prefloy iy ;4 ;6 7]
,prefox 7;ix ], prefoy %;iy!]
- {(0), (1), and (2), Cor. 3.1.3.2 3X)}
pref[a?;0x ] || pref[ix?;p!]
|| pref (ox !;[iy 7;0x 1]) || pref(ix ?;0p!]
Il pref oy 1516 %09 1D |l prefliy 7:q]
,prefox ?;ix ], prefoy 7;iy ']
— {rewriting}
preflix?;p!]
|| pref[ox !;iy 7] || pref[a?;0x!]
| prefoy ;b 7] || pref[ix ?;0p!]
| prefliy 2;q 1]
,preflox ?;ix 1], prefoy 7;iy ']
— {Cor. 3.1.3.3}
prefix?;p!]
,preflox iy 7] || pref[a?;0x!]
;pref[oy ;7] || pref[ix ?;0p!]
prefliy1;g']
,prefox %;ix ], prefoy 7;iy!]

Consequently, from this derivation we conclude that the 3-counter can be
decomposed into four WIRE components and two 2-CEL components. The
decomposition is depicted in Figure 7.1.0.
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a?

p!

FIGURE 7.1.0. Decomposition of 3-counter.

Because some components have a common input, we may also say that the 3-
counter can be decomposed into two 2-FORK and two 2-CEL components.
In general, any k-counter, kK >1, can be decomposed similarly into k —1 2-
FORK and k —1 2-CEL components.

O

ExampLE 7.1.1. For the four-phase handshake expansion of counts(a,b) given
in Example 4.9.7 we derive analogously to the previous example,
( pref[a0?;a1';a22;a3!] || pref[b0?;b1!;527;b3!]
| pref[a1!;a27;!x?] || pref['x ?;!y 7] || pref[ly ?;b11;62)t
— {Expansion Theorem}
pref[a07;a1';a2%;a3!] || pref[b02;51!;622;53!]
|| pref[a 1!;a27;0x !;ix 7] || prefox !;ix ?;0p Vi 7]
|| prefloy !;iy 2;b 11;527]
,prefox 7;ix ], prefloy ;iy ']
— {Merging states, splitting off alternatives, Cor. 3.1.3.2}
pref[a0?;a1!] || pref[a2?;a3!] || pref[b0?;b1!] || pref[b2?;b3!]
|| pref[a 1';ix?] || pref[a2?;0x!] || pref[ox ';iy 7] || pref[ix ?;0y!]
|| pref[oy ;627 || prefiy ?;61!]
,preflox ?;ix ], pref[oy %;iy ']
— {Cor. 3.1.3.3}
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pref[a02;a1!] || pref[a1!;ix 7]
,pref[b02;61'] || pref[iy 7;b1!]
,pref[a2?;0x!] || pref[ox !;iy 7]
,prefix 2;0p!] || prefloy !;627]
,pref[a2?;a3!], pref[b2?;b3!], pref[ox ?;ix!], pref[oy ?;iy!].

Consequently, this component can be decomposed into four 2-CEL com-
ponents and four WIRE components. The decomposition is depicted in Figure
7.1.1

a0? < b2?

L b3

al!

a3!<——.

all .

FIGURE 7.1.1.  Decomposition of four-phase handshake expansion
of count;(a,b).

O
EXAMPLE 7.1.2. Similar to the previous examples we can derive a decomposi-
tion of the 3-place 1-bit buffer which is specified in Example 4.9.6. After a

number of steps in which we apply the Expansion Theorem, merging states,
splitting off alternatives, Corollary 3.1.3.2, and Corollary 3.1.3.3 we obtain

(pref[a02;!x02;p! | a1%;!x12;p ]

| pref[!x 07;!y 0?7 | 1x 1251y 17]

|| pref[q ?;(y 02;60! | 1y 17;6 1)])T

— {applying above mentioned techniques}

pref[a0?;0x0!] || pref[a 1?;0x 1!]

| pref ((ox 0!|ox 11);[(iy 02]iy 17);(ox 0!]ox 1!)])

,pref[ix 07,0y 0!] || pref[ix 1?;0y 1'] || pref[g?;(oy 0!|oy 11)]
,pref[ix02;p! | ix 17;p!]

,pref[iy 07;60!], pref[iy 17;b1!]

,pref[ox 07;ix 0], pref[ox 17;ix 1!}, pref[oy 07;iy 07], pref[oy 17;iy 1!]

The component in the first two lines of this list of components can be
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decomposed into a SEQ component and a XOR component. The other com-

ponents in this list are all familiar components. The complete decomposition
is depicted in Figure 7.1.2.

,_L <]

a0 *Q 0 g
oy0 iy0

al? o ox1 ixl Bt
ol iyl

P!o—-G‘ q?

FIGURE 7.1.2. Decomposition of a 3-place 1-bit buffer.

In general, any n-place 1-bit buffer, n>1, can be decomposed similarly. Other
decompositions for the above buffer can be derived using properties from trace
theory. For example, the decomposition where instead of the 2-SEQ com-
ponents CAL components of the form pref[a0?l|5?;c0! | a1?llb?;c1!] are used
can be derived as well. Finally, we mention that a 3-place n-bit buffer, n>0,
specified by

(Mi:0<<i<n:pref[a.i 0%!x.i. 07;p! | @.i. 17;!x.i. 17;p 1))
Il i:0<<i<n:pref[!x.i. 07;1y.i. 07 | !x.i. 17;!y.i. 17])
(N i: 0<<i<n:pref[q?;(y.i. 0%;b.i. 0! | Yy.i. 17;b.i. 1Y)]),

can be decomposed into 3-place 1-bit buffers. The decomposition for n =2 is
depicted in Figure 7.1.3, where Bf denotes the 3-place 1-bit buffer.

2.0.07 o e o 500!
a.0.17 o= Bf] o b.0.1!
PO
a.1.07 Bf b 10
a 117 g b LI

FIGURE 7.1.3. Decomposition of 3-place 2-bit buffer.
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7.2. REALIZING LoGic FUNCTIONS

In this section we show some techniques to realize logic functions of the form
c¢=f.a, where ¢ and a are vectors of binary variables and f is a function
expressed with logic operations. The techniques are very similar to those
applied in switching theory. We will even show that the techniques developed
in switching theory can also be applied in the design of delay-insensitive sys-
tems. The difference with switching theory lies in the encoding of the data and
in the signaling scheme that is applied. For the specification of logic functions
by DI commands we apply a two-rail two-cycle signaling scheme in this sec-
tion (cf. Section 2.3.0).

In Section 2.3.0 the conjunction is specified by a DI command applying a
two-rail two-cycle signaling scheme. Negation and disjunction are specified
similarly by the DI commands

pref[a02;c1! | a12;c0!] and
pref[a0?11607;c0! | a1?llb1%;¢ 1! | a 0?16 175¢ 1! | @ 1216075 11].

respectively. Equivalence can also be specified in this way. In general, any
logic function can be specified by a combinational command of the above
form. (Here, we assume that more than two parallel inputs are allowed in a
combinational command.) For a function ¢ =f.a, where a is a vector of
binary variables and c is one binary variable, we obtain a semi-sequential com-
mand in which for each set of input values there is one alternative. If fis a
vector function f(i: 0<<i<n), we take as the specification for f the weave of the
semi-sequential commands for each f.i, 0<<i<n.

A component specified by a logic function can be decomposed in a natural
way into components for the basic logic operations. For example, if the func-
tion f is specified by f.(a,b)=-—(—aA-b), then the component specified by
this function can be decomposed into negation and conjunction components as
depicted in Figure 7.2.0.

e [ mem

::FJ:A

FIGURE 7.2.0. Decomposition corresponding to —(—aA—b).

We may consider the components for conjunction, disjunction, equivalence,
and negation as basic components, but we may also decompose them by one
of the techniques discussed in the previous chapter. For example, the negation
component is easily decomposed into two WIRE components as shown in Fig-
ure 7.2.1.
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a(? o e c0!
al? .__><__. cl!

FIGURE 7.2.1. Decomposition of negation component.

Since the expression —(—aA—b) is equivalent to aVb, it follows that the dis-
junction component can be realized by the conjunction component when the
terminals in each input and output pair are interchanged.

As another example of a decomposition, we consider the comparator and
parity function defined by

comparator.(a,b) = (Ni:0<i<n: ai=b.i) and
parity.a = (=i:0<i<n: a.i),

where a(i: 0<<i<<n) and b(i: 0<<i<n) are vectors of binary variables. Each of
these functions can be specified by a DI command as sketched above. Decom-
positions of these components are shown in Figure 7.2.2 for n =4.

a0b0albla2 b2a3b3

1 iy un

\A/ \A/; T
N N

T T

comparator.(a,b) parity.a

FIGURE 7.2.2. Decompositions for comparator and parity.

In switching theory a circuit that realizes a logic function is called a combi-
national circuit. Oftén such a circuit is also referred to as a combinational
logic block and abbreviated by CL. Analogously, we call a connection of DI
components that realizes the DI command corresponding to a logic function a
combinational logic block.

Logic functions which have a feedback of output values to input values for
the next application of f are used to describe a kind of finite state machine.
The values that are fed back can be seen as the state information of the finite
state machine. Logic functions with feedback of outputs values can be
specified by DI commands using tail recursion. For example, the parity func-
tion ¢ =f.a for serial inputs a this time can be specified by the command
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p.tailf. 0, where
tailf.R. 0= pref(a0?;c0;R.0 | a1?;c 1R 1)
tailf .R. 1= pref(a0?;,c1;R. 1 | a1?;¢0%;R. 0).

The comparator function ¢ =f. (a,b) with serial inputs a and b is specified by
ptailf.0, where tailf is now defined by

tailf R. 0= pref(a0?|160?;c 11;R.0 | a 1216 12;¢ 11;R. 0

| a1?15607;c0LR. 1| a0?llb17;¢04R. 1)
tailf.R. 1= pref(a0?b0?;c0R. 1 | a 1?16 17;c0%R. 1

| a1?1560%;c0LR. 1| a0?llb 1?50 R. 1).

If fis a vector function f(i:0<i<n), we specify f by the weave of the DI
commands for each f.i, 0<<i<n.

Any logic function with a feedback of state information can be expressed by
a logic function without feedback of state information. For example, if f is
defined by ¢ =f.a, then there exists a logic function g (without feedback) such
that (c,x, +1)=g (a,x,) where x,, n=0, is a vector of binary variables contain-
ing the state information after the n-th application of f. The vector x contains
the initial state. Based on this expression for f, the component corresponding
to f can be decomposed as depicted in Figure 7.2.3.

rl — {4

a —) - ¢
CL Bf

{C =]

FIGURE 7.2.3. Decomposition for f.

The combinational logic block CL realizes the function g. Component Bf is a
3-place n-bit buffer as specified in Example 7.1.2, where n equals the number
of outputs of the function g. The purpose of the buffer is to avoid computation
interference in the feedback of state information to the combinational logic
block. When all input data is stored in the buffer, o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>