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ABSTRACT. For any undirected graph G, let p(G) be the graph parameter in­
troduced by Colin de Verdiere. In this paper we show that p(G) ::; 4 if and 
only if G is linklessly embeddable (in R 3 ). This forms a spectral character­
ization of linklessly embeddable graphs, and was conjectured by Robertson, 
Seymour, and Thomas. 

A key ingredient is a Borsuk-type theorem on the existence of a pair of 
antipodal linked (k - i)-spheres in certain mappings</>: S2k __, R2k-1. This 
result might be of interest in its own right. 

We also derive that .\(G) ::; 4 for each linklessly embeddable graph G = 
(V, E), where .\(G) is the graph parameter introduced by van der Holst, Lau­
rent, and Schrijver. (It is the largest dimension of any subspace L of RV such 
that for each nonzero x E L, the positive support of x induces a nonempty 
connected subgraph of G.) 

1. INTRODUCTION 

Motivated by estimating the maximum multiplicity of the second eigenvalue of 
Schrodinger operators, Colin de Verdiere [4] ( cf. [5]) introduced an interesting new 
invariant µ( G) for graphs G, based on spectral properties of matrices associated 
with G. He showed that the invariant is monotone under taking minors (that is, if 
H is a minor of G then µ( H) :::;; µ( G)), that µ( G) :::;; 1 if and only if G is a disjoint 
union of paths, that µ( G) :::;; 2 if and only if G is outerplanar, and that µ( G) :::;; 3 if 
and only if G is planar. 

In this paper we show that µ( G) :::;; 4 if and only if G is linklessly embeddable 
in R-3. An embedding of a graph G in R 3 is called linkless if each pair of disjoint 
circuits in G are unlinked closed curves in R:3 (for our ourposes, the following 
definition of linking suffices: two disjoint curves are unlinked if there is a mapping 
of the unit disc into R 3 such that its boundary is mapped onto the first curve and 
the image of the disc is disjoint from the second). G is linklessly embeddable if G 
has a linkless embedding in n:i. ('Embedding' presumes that vertices and edges 
have disjoint images.) 
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Our result was conjectured by Robertson, Sey:.nour, and Thomas [9], and has 
the following context. Robertson, Seymour, and Thomas [10] showed that a graph 
G is linklessly embeddable if and only if G does not have any of the seven graphs 
in the Petersen family as a minor - the Petersen family consists of all graphs 
obtainable from K 6 by so-called AY- and YA-operations (it includes the Petersen 
graph). (YA means deleting a vertex of degree 3, and making its three neighbours 
mutually adjacent. A Y is the reverse operation (applied to a triangle).) 

Since any of the graphs G in the Petersen family has µ( G) ;:::: 5 (Bacher and Colin 
de Verdiere [l]), it follows that if µ(G) $ 4 then G is linklessly embeddable. So 
we prove the reverse implication. Thus, next to the combinatorial characterization 
(in terms of minors) of the (topologically defined) class of linklessly embeddable 
graphs, there is a spectral characterization. 

Our proof method also applies to a related parameter called >.( G), introduced by 
van der Holst, Laurent, and Schrijver [7]. It is defined as follows. Let G = (V, E) 
be a graph. Call a linear subspace L of n v a representation of G if for each x E L, 
supp+ ( x) is nonempty and GI supp+ ( x) is a connected graph. Here we use the 
following notation. If U ~ V then GIU is the subgraph of G induced by U (and 
G - U = Gj(V \ U)). For any vector x E nv, supp(x) is the support of x, that is, 
supp(x) := {v E Vlx(v) # O}. The positive support is supp+(x) := {v E Vlx(v) > 
O} and the negative support is supp_(x) := {v E Vjx(v) < O}. 

Now by definition, >.(G) is the maximum dimension of any representation L of 
G. It is easy to see that >.(G) is monotone under taking minors. Moreover, if G is a 
clique sum of graphs G1 and G2 (that is, if G arises from G1 and G2 by identifying 
a clique in G 1 and G2), then >.(G) = max{A(G1 ), >.(G2 )}. In [7] it is shown that 
,\(G) $ 1 if and only if G is a forest, that >.(G) $ 2 if and only if G is series-parallel, 
and that >.(G) $ 3 if and only if G arises by taking clique sums and subgraphs from 
planar graphs. 

In this paper we show that ,\(G) $ 4 if G is linklessly embeddable - hence, 
more generally, if G arises by taking clique sums and subgraphs from linklessly 
embeddable graphs. We do not know if the reverse implication holds. 

A key ingredient in our proof is a Borsuk-type theorem on the existence of 
antipodal links, which we formulate and prove in Section 2. We derive it from an 
extension of a theorem of Bajm6czy and Barany [2] establishing a polyhedral form 
of Borsuk's antipodal theorem. 

In Section 3 we derive that ,\(G) $ 4 for linklessly embeddable graphs G. In 
Section 4 we give some preliminaries on the Colin de Verdiere parameter µ(G), and 
after that, in Section 5, we show that µ( G) $ 4 for linklessly embeddable graphs 
G. Finally, in Section 6 we consider a number of open questions related to µ(G) 
and >.(G). 

2. A BORSUK-TYPE THEOREM FOR ANTIPODAL LINKS 

Let P be a convex polytope in Rn. We say that two faces F and F' are antipodal if 
there exists a nonzero vector c in Rn such that the linear function er x is maximized 
by every point of F and minimized by every point of F' (Figure 1). So F and F' 
are antipodal if and only if F - F' is contained in a face of P - P. 

Call a continuous map cp of a cell complex into Rm generic if the images of a 
k-face and an l-face intersect only if k + l ~ m, and for k + l = m they have a finite 
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FIGURE 1. Parallel and non-parallel antipodal faces 

number of intersection points, and at these points they intersect transversally. (In 
this paper, faces are relatively open.) 

For any convex polytope P in R.n, let oP denote its boundary. 
The following theorem extends a result of Bajm6czy and Barany [2). (The dif­

ference is that their theorem concludes that </>( F) n </>( F') is nonempty. Their proof 
uses Borsuk's theorem. We give an independent proof.) 

Theorem 1. Let P be a full-dimensional convex polytope in R.n and let </> be a 
generic continuous map from 8P to nn- 1 • Then there exists a pair of antipodal 
faces F and F' with dim(F) + dim(F') = n - 1 such that l<P(F) n </>(F')I is odd. 

Proof. We prove a more general fact. Call two faces parallel if their projective hulls 
have a nonempty intersection that is contained in the hyperplane at infinity. So 
faces F and F' are parallel if and only if their affine hulls are disjoint while F - F 
and F' - F' have a nonzero vector in common. (Note that two antipodal faces are 
parallel if dim(F) + dim(F') ;?: n.) 

(1) 

Now it suffices to show 
Let P be a full-dimensional convex polytope in nn hav­
ing no parallel faces and let </> be a generic continuous 
map from 8P to R.n- 1. Then 

L l<P(F) n </>(F')I 

is odd, where the summation extends over all antipodal 
pairs { F, F'} of faces. 

(It would be enough to sum over all antipodal pairs {F, F'} with dim(F)+dim(F') = 
n -1.) 

To see that it suffices to prove (1), it is enough to apply a random projective 
transformation close to the identity. To be more precise, assume that we have a 
polytope P that has parallel faces. For every pair (E, E') of faces whose affine 
hulls intersect, choose a (finite) point PEE' in the intersection of the affine hulls. 
For every pair (E, E') of faces whose projective hulls intersect, choose an infinite 
point qEE' in the intersection of their projective hulls. Let H be a finite hyperplane 
having all the points PJ:JE' on one side, and avoiding all the points qFF'· Apply 
a projective transformation that maps H onto the hyperplane at infinity, to get a 
new polytope P'. It is clear that P' has no parallel faces, and it is easy to argue 
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that every pair of faces that are antipodal in P' ..;orrespond to antipodal faces in 

P. Hence (1) implies the theorem. 
We now prove (1). Let P be a convex polytope in nn having no parallel faces. 

For any two faces F, F', write F ::; F' if F i;; F'. Then: 

(i) if A and B are antipodal faces, then A - B 
is a face of P - P, with dim( A - B) = 
dim(A) + dim(B); 

(ii) if F is a face of P - P, then there exists a 
(2) unique pair A, B of antipodal faces with A-B = F; 

(iii) for any two pairs A, B and A', B' of antipodal 
faces one has A - B ::; A' - B' if and only if 
A :SA' and B::; B'. 

This gives the following observation: 

(3) 

For every pair of faces A and B with dim(A)+dim(B) = 
n-2, the number of antipodal pairs {F, F'} of faces with 
A ::; F and B ::; F' and dim(F) + dim(F') = n - 1 is 0 
or 2. 

To see (3), it is clear that if A and B are not antipodal, then this number is 0. 

Suppose that they are antipodal. Then the number is 2, since by (2), it is equal to 
the number of facets of P - P incident with the (n - 2)-face A - B. 

To prove (1), we use a "deformation" argument. The statement is true for the 
following mapping efi: pick a point q very near the center of gravity of some facet 
F (outside P), and project EJP from q onto the hyperplane Hof F. Then the only 
nontrivial intersection is that the image of the (unique) vertex of P farthest from 
H is contained in F. 

Now we deform this map to efi. We may assume that the images of two faces E 
and E' with dim(E) + dim(E') ::; n - 3 never meet; but we have to watch when 
<;!>(A) passes through rjJ(B), where A and Bare faces with dim( A) +dim(B) = n-2. 
But then lr/J(F) n rjJ(F')I changes exactly when A i;; F and B i;; F'. By (3), this 
does not change the parity. This proves (1), and hence the theorem. • 

For any polytope P, let (P)k denote its k-skeleton. Two disjoint images A and 
B of (d - I)-spheres in 'R.2d-l are said to have an odd linking number if the image 

of A can be extended to the image of a d-ball with an odd number of transveral 
intersections with the image of B (and no other intersections). So having an odd 
linking number implies being linked. 

Corollary 1.1. Let P be a full-dimensional convex polytope in R.2k+l and let<;/> be 
an embedding of (Ph-1 into 'R.2k-l. Then there exists a pair of antipodal k-faces 
F and F' such that rjJ(EJF) and rjJ(aF') have an odd linking number. 

Proof. First we extend rjJ with a last coordinate equal to 0, to obtain an embedding 
'ljJ of (Ph-1 into 'R.2k. Next we extend 'ljJ to a generic mapping EJP--+ R 2k, in such 
a way that 7./J(x) has last coordinate positive if x E EJP \ (P)k-l· 

By Theorem 1, P has two antipodal faces F and F' such that dim(F) +dim(F') = 
2k and 17./J(F) n 7./J(F')\ is odd. If dim(F) ::; k - 1, then the last coordinate of each 
point in ·lf;(F) is 0, while the last coordinate of each point in '1.jJ(F') is positive (as 
dim(F') 2 k). So dim(F) 2 k, and similarly dim(F') 2 k. Therefore, dim(F) = 
dim(F') = k. 

Then the boundaries of F and F' are (k-1)-spheres 8 1 and S2 mapped disjointly 
into n 2k-l, and the mappings extend to mappings of the k-balls into the "upper" 
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halfspace of R 2k' so that the images of the balls intersect at an odd number of 
points. But this implies that the images of the spheres are linked. In fact, if they 
are not linked, then there exists an extension of the map of BF to a continuous 
mapping 1/J' of F into R 2k such that the image of every point in the interior of F 
has last coordinate equal to 0, and 1/J'(F) intersects 1/;(8F') transversally in an even 
number of points. We can extend the map of BF' to a continuous mapping 1/;1 of 
F' into R 2k such that the image of every point in the interior of F has a negative 
last coordinate 0. Then we get two maps of the k-sphere into R 2k with an odd 
number of transversal intersection points, which is impossible. This contradiction 
completes the proof. • 

3. >.( G) $ 4 FOR LINKLESSLY EMBEDDABLE GRAPHS G 

In this section we focus on the graph parameter>.( G) introduced in [7], and show 
that >.( G) :::; 4 for linklessly embeddable graphs. The proof method also serves 
as an introduction to the methods used in proving that µ( G) :::; 4 for linklessly 
embeddable graphs. We gave the definition of .A( G) in Section 1. 

Theorem 2. If G is linklessly embeddable, then >.( G) :::; 4. 

Proof. Let G be linklessly embedded in R 3 , and suppose that >.(G) ;::: 5. Then 
there is a 5-dimensional subspace L of nv such that GI supp+(x) is nonempty and 
connected for each nonzero x EL. 

Call two elements x and x' of L equivalent if supp+(x) = supp+(x') and supp_ (x) 
= supp_ (x'). The equivalence classes decompose L into a centrally symmetric 
complex P of pointed polyhedral cones. Choose a sufficiently dense set of vectors 
of unit length from every cone in P, in a centrally symmetric fashion, and let P 
be the convex hull of these vectors. Then P is a 5-dimensional centrally symmetric 
convex polytope such that every face of P is contained in a cone of P. 

We define an embedding rp of (P)i in R 3 . For each vertex v of P, we choose a 
node v' in supp+ ( v), end we let </>( x) be a point in R 3 very near v'. For each edge 
e = uv of P, we choose a path e' connecting u' and v' in GI supp+(x), where x is 
an interior point of e. (By our construction, supp+ ( x) is independent of the choice 
of x, and contains both supp+(u) and supp+(v).) Then we map e onto a Jordan 
curve connecting rp(u) and ef;(v) very near e'. Clearly we can choose the images of 
the vertices and edges so that this map rp is one-to-one (Figure 2). 

+ 

+ 

u 

FIGURE 2. Constructing an embedding of (P)i 
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Then by Corollary 1.1, P has two antipodal 2-faces F and F' such that the 
images of their boundaries are linked. Since P is centrally symmetric, there is a 
facet D of P such that F ~ D and F' ~ - D. Let y be a vector in the interior of 
D. Then the images of f)F and &F' are very near subgraphs spanned by supp+(Y) 
and supp_(y), respectively, and hence some cycle of G spanned by supp+(Y) must 
be linked with some cycle in supp _ (y), a contradiction. • 

Corollary 2.1. If G is obtained from linklessly embedded graphs by taking clique 
sums and subgraphs, then >.( G) :::;; 4. 

Proof. Directly from Theorem 2 and the fact that the class of graphs G with >.( G) :::;; 
4 is closed under taking clique sums and subgraphs ([7]). • 

4. THE COLIN DE VERDIERE PARAMETER µ( G) 

We now go over to the Colin de Verdiere parameter µ(G), for which we first give 
some background. 

Let G = (V, E) be an undirected graph, which we assume without loss of general­
ity to have vertex set {1, ... , n}. Then µ(G) is the largest corank of any synunetric 
real-valued n x n matrix M = (mi,j) satisfying: 

(4) 

(i) M has exactly one negative eigenvalue, of 
multiplicity 1, 

(ii) for all i, j with i =f. j, mi,j < 0 if 
i and j are adjacent, and mi,j = 0 if 
i and j are nonadjacent, 

(iii) there is no nonzero symmetric n x n matrix 
X = (xi,j) such that MX = 0 and such that 
Xi,j = 0 whenever i = j or mi,j =/= 0. 

There is no condition on the diagonal entries mi,i· (The corank corank(M) of a 
matrix Mis the dimension of its kernel.) Condition 4(iii) is called the strong Arnold 
property (or strong Arnold hypothesis). 

There exist matrices M satisfying ( 4), for which ker( M) is a not a representation 
of G; that is, for which there exist x E ker(M) with GI supp+(x) disconnected. 
(Otherwise µ(G) :5 >.(G) would follow, which is not true.) The Petersen graph 
provides an example. Let A be the adjacency matrix of the Petersen graph and 
let M = I - A. Let e and e' be two edges at distance 2, and define a vector 
Qee' E RY as 1 on the endnodes of e, -1 on the endnodes of e', and 0 elsewhere. 
Then Qee' E ker(M), and it is easy to see that in fact ker(M) is generated by these 
vectors. Now if e, e' and e" are three edges that are mutually at distance 2, then 
Qee' + Qee" is a vector in ker(M) with supp_ (q) having two components (Figure 3). 
We shall see that this is as bad as it ever gets. 

The following lemma extends a lemma in [6]; the methods we use to prove it are 
close to those used in [8]. 

For any graph G = (V, E) and U ~ V, let N(U) be the set of vertices in V \ U 
that are adjacent to at least one vertex in U. For any V x V matrix and J, J ~ V, 
let M1xJ denote the submatrix induced by the rows in I and columns in J, and 
let M1 := M1xI· For any vector z E n1 and J ~ I, let ZJ be the subvector of z 

induced by the indices in J. 

Lemma 1. Let G be a connected graph, let M be a matrix satisfying (4), and let 
x be a vector in ker(M) with GI supp+ (x) disconnected. Then there are no edges 
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FIGURE 3. A vector on the Petersen graph with disconnected pos­
itive support 
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connecting supp+(x) and supp_ (x), and each component K of GI supp(x) satisfies 
N(K) = N(supp(:r:)). 

Proof. Let z be a positive eigenvector of M (by the Perron-Frobenius theorem, z 
is unique up to scaling, and belongs to the smallest eigenvalue of M). 

Let I and Jbetwo components ofGlsupp+(x). Let L := supp_(x). As Mx = 0, 
we have 

(5) 
lvf1xJXJ + lvf1xL·Y:L = 0, 

MJxJXJ + Af.1xLXL = 0. 

Let ,\ := zfxJ/ z}xJ. Define y E R.Y by: Yi := xi if i E I, Yi := -Ax; if i E J, 
and Yi := 0 if i i;t I U J. Then z'l'y = z{x1 - ,\z:)'x.; = 0. Moreover, one has (since 
l'vifxJ = 0) 

T '1' T 'l' . "2 "1' y My= y1 M1yr + Y.1 MJY.1 = x 1 M,x, + >.. xJ MJX.1 = 
']' . '2 ']' - X1 NI1xLXL - A X.1MJxLXL:::; 0 

(6) 

(using (5)), since lvf1xL and MJxL are nonpositive, and since x1 > 0, x.; > 0 and 
XL< 0. 

Now z'I'y = 0 and y'l'My :::; 0 imply that My = 0 (as M is symmetric and 
has exactly one negative eigenvalue, with eigenvector z). Therefore, y E ker(Jvf). 
By 4(i), for distinct ·u, v, entry Mu,v of M is negative if and only if ·n and v are 
adjacent. This implies that each vertex in V \ supp(y) adjacent to supp+ (y) = I is 
also adjacent to supp_(y) = J, and conversely; that is, N(I) = N(J). 

Also x - y belongs to ker(M). Hence, again, any vertex v E V \ supp(x - y) 
is adjacent to supp_(x - y) if and only if vis adjacent to supp+(x - y). As 
SUPP+ (x -y) = supp+ (;c) \I and as I is a component of GI supp_, (:r:), no vertex in 
I is adjacent to supp+(x - y). Hence no vertex in I is adjacent to supp_(x -y) = 
supp_ (:r). As I is an arbitrary component of Cl supp+(x), it follows that there is 
no edge connecting supp+(x) and supp __ (x). So each component of G\ supp(x) is a 
component of either GI supp+(x) or GI supp_(x). 

Since N(I) = N(J) for any two components I,J of Glsupp+(x), and similarly, 
N(I) = N(J) for any two components I, J of GI supp_ (x), and since N(supp+(x)) 
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= N(supp_(x)), we have that 

N(I) = N(supp(x)) 

for any component I of Cl supp(x). • 

5. µ(C) $ 4 FOR LINKLESSLY EMBEDDABLE GRAPHS 

Theorem 3. A graph C is linklessly embeddable if and only ifµ( C) $ 4. 

Proof By the results of [10] and [l] it suffices to show thatµ( C) $ 4 if G is linklessly 
embeddable. 

Let C be linklessly embeddable and suppose that µ( G) 2: 5. By the results of 
[10] we may assume that C is 'flatly embedded' in R 3 ; that is, for each circuit C in 
C there exists an open disk ('panel') D in R 3 with the property that D is disjoint 
from C and has boundary C. (Any fiat embedding is also linkless, but the reverse is 
generally not true. But in [10] it has been shown that if G has a linkless embedding 
it also has a fiat embedding.) 

We take a counterexample C with a minimum number of vertices. Then G is 
4-connected. For suppose that G has a minimum-size vertex cut U with IUI $ 3. 
Consider any component K of G - U. Then the graph C' obtained from C - K 
by adding a clique on U is a linkless embeddable graph again, because, if IUI $ 2, 
G' is a minor of C, and if IUI = 3, G' can be obtained from a minor of G by a 
Y .6.-operation. As C' has fewer vertices than C, we have µ( C') $ 4. As this is 
true for each component K, G is a a subgraph of a clique sum of graphs G' with 
µ(G') $ 4, with cliques of size at most 3, and hence by the results of [8], µ(G) $ 4. 

Let M be a matrix satisfying (4) with corank(M) = 5. We proceed as in the 
proof of Theorem 2. Call two elements x and x' of ker(M) equivalent if supp+(x) = 
supp+(x') and supp_(x) = supp_(x'). The equivalence classes decompose ker(M) 
into a centrally symmetric complex P of pointed polyhedral cones. Call a cone f 
of P broken if Cl supp+(x) is disconnected for any x E f. 

To study broken cones, we first remark: 

(7) 

for each x E ker(M) with Cl supp+(x) disconnected, 
GI supp(x) has exactly three components, say K 1, K 2 , 

and K3, with K1 UK2 = supp+(x) and K3 = supp_(x), 
and with N(Ki) = V \ supp(x) for i = 1, 2, 3. 

This follows directly from Lemma 1, using the 4-connectivity of C and the fact that 
Chas no K4,4-minor (as K4,4 is not linklessly embeddable ( cf. [10])). 

Now (7) gives: 

(8) any broken cone f is 2-dimensional. 

Indeed, choose x E f, and let K1, K2, and K3 be as in (7). Consider any y E f. 
As supp(y) = supp(x), we have that MK;YKi = 0 for i = 1, 2, 3. As MK,XK; = 0 
and as XK, is fully positive or fully negative, we know by the Perron-Frobenius 
theorem that YK, = AiXK, for some Ai > 0 (i = 1, 2, 3). Moreover, for the positive 
eigenvector z of M we have that zT y = zT x = 0. Conversely, any vector y E R v 
with zTy = 0 and supp(y) = supp(x) and for which there exist >.1 , >.2 , >.3 > 0 with 
YK, = >.ixK, for i = 1,2,3, belongs to f, since it belongs to ker(M). This follows 
from the fact that zT y = 0 and yT My= 0. So f is 2-dimensional, proving (8). 

Now choose a sufficiently dense set of vectors of unit length from every cone in 
P, in a centrally symmetric fashion, and let P be the convex hull of these vectors. 
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Then P is a 5-dimensional centrally symmetric convex polytope such that every 
face of P is contained in a cone of P. We choose the vectors densely enough such 
that every face of P contains at most one edge that is part of a 2-dimensional cone 
in P. We call an edge of P broken if it is contained in a broken cone in P. 

We define an embedding <P of the I-skeleton (P)i of Pin R 3 . We map each vertex 
x of P to a point </>(x) near supp+(x), and we map any unbroken edge e = xy of P 
to a curve connecting cp(x) and </>(y) near GI supp+(z), where z Ee. We do this in 
such a way that the mapping is one-to-one. 

Consider next a broken edge e of P. Choose x Ee, let K 1, K 2 ,and K 3 be as in 
(7), and let T := N(supp(x)). Then 

(9) 
there is a curve C in R 3 \ G connecting K 1 and K 2 
such that there is no pair of disjoint linked circuits A 
in GJ(K1 U K2 U T) UC and Bin GJ(K3 UT). 

To see this, let H be the flatly embedded graph obtained from G by contracting Ki 
to one vertex vi (i = 1, 2, 3). It suffices to show that there is a curve C connecting 
V1 and v2 such that the graph H U C is linklessly embedded. (Indeed, having C 
with H U C linklessly embedded, we can decontract each Ki slightly, and make C 
connect two points in Ki and K2· Consider a circuit A in Gl(K1 U K2 U T) UC 
and a circuit Bin Gl(K3 U T) disjoint from A. Contracting K 1, K 2 , and K3, we 
obtain disjoint cycles A' and B' in HU C. (A cycle is an edge-disjoint union of 
circuits.) As H U C is linklessly embedded, A' and B' are unlinked. Hence A and 
B are unlinked.) 

Now HIT is a Hamiltonian circuit on T, or part of it. Otherwise, HIT would 
contain, as a minor, a graph on four vertices that is either a K 1,3 or a triangle with 
an isolated vertex. In both cases, it implies that H has a minor in the Petersen 
family, which is not possible since H is linklessly embedded. 

So His isomorphic to the complete bipartite graph K 3,1r1, with some edges on T 
added forming part (or all) of a Hamiltonian circuit on T. As His flatly embedded, 
for each edge t1t2 of HIT there is an open disk ("panel") with boundary the triangle 
t1t2v3, in such a way that the panels are pairwise disjoint (by Bohme's lemma [3] 
(cf. [ll], [10])). Since the union of Hl(K3 UT) with the panels is contractible, there 
is a curve C from v1 to v2 not intersecting any panel. This curve has the required 
properties, showing (9). 

We now define</> on e close to a curve in GJ(K1 U Kz) UC, again so that it is 
one-to-one. We do this for each broken edge e, after which the construction of</> is 
finished. 

Then by Corollary 1.1, there are two antipodal 2-faces F and F' such that the 
images of their boundaries are linked. Since P is centrally symmetric, there is a 
facet D of P such that F i;;; D and F' i;;; - D. Let y be a vector in the interior of D. 
Then 8F and fJF' have image in supp+(Y) and supp_(y) respectively. If fJF and 
fJF' do not contain any broken edge, then it would follow that G has two disjoint 
linked circuits - a contradiction. 

So we can assume that fJF contains a broken edge e. Then it is the only broken 
edge in BF, since by our construction, fJD contains at most one edge of P that 
is part of a 2-dimensional cone f in P. So f is broken. Moreover, EJF' does not 
contain any broken edge. For suppose that 8F' contains broken edge e' of P. Then 
e' is part of a broken 2-dimensional cone f' in P, and hence f' = -f (since D is 
incident with at most one edge that is part of a 2-dimensional cone of P). However, 
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as f is broken, - f is not broken, since GI supp_ (x) is connected for any x E f (by 
7). 

Choose x E f, and consider the partition of V into K 1, K2, K3, and T as above, 
with supp+(x) = Ki U K2 and supp_(x) = K3. Then K1 U K2 ~ supp+(Y) and 
K 3 ~ supp_(y), and hence supp+(Y) ~ Ki U K2 U T and supp_(y) ~ K3 U T. So 
the image of 8F is close to Gl(K1 U K2 U T) UC, where C is the curve constructed 
for the broken edge e of P, and the image of 8F' is close to Gl(K3 U T). This 
contradicts (9). • 

Note that in this proof, the strong Arnold property is hardly used. Also the 
lemma remains true without the strong Arnold property. In fact, the above shows 
that for a 4-connected linklessly embeddable graph G, each matrix M satisfying 
( 4)(i) and (ii) has corank(M) S 4. 

6. SOME OPEN QUESTIONS 

A first question that comes up is whether one can prove that a graph G is 
linklessly embeddable if µ( G) :::; 4 directly, that is, without using the Robertson­
Seymour-Thomas theorem. In other words, does the nonexistence of a matrix M of 
corank 5 satisfying ( 4) imply, in a direct way, the existence of a linkless embedding? 

Secondly, the above does not complete the characterization of graphs G satisfying 
.>..( G) :::; 4. Each graph G obtainable from linklessly embeddable graphs by taking 
clique sums and subgraphs satisfies >..(G) S 4, but it is an open question if the 
reverse also holds. To answer this question, one might investigate the class of 
minor-minimal graphs that cannot be obtained from linklessly embeddable graphs 
by taking clique sums and subgraphs. It is not known what the full list of these 
graphs is. 

In [7] the following graphs are shown to be minor-minimal with respect to the 
property >..(G) 2 5. First G = K 6 (all other graphs Gin the Petersen family satisfy 
>..( G) S 4). Next, consider the graph V8 with vertices v1 , ... , v8 , with Vi and Vj 

adjacent if and only if Ii - JI E {l, 4, 7}. (It was shown by Wagner [12] that a graph 
G can be obtained from planar graphs by taking clique sums and subgraphs if and 
only if G has no Ks- or Vs-minor. So K5 and V8 are the only minor-minimal graphs 
G with >..(G) 2 4.) 

Let Vg' arise from Vs by adding an extra vertex vo, adjacent to v2, v4 , v5, v7, 
vs. Similarly, let Vg'' arise from Vs by adding an extra vertex v0 adjacent to v2, 
V3, V5, V7, Vg. It is shown in [7] that v9 and Vg'' are minor-minimal graphs G with 
.>..(G) 2 5. 

The graphs Vg' and V9' are also minor-minimal graphs not obtainable from link­
lessly embeddable graphs by taking clique sums and subgraphs. This can be seen 
as follows. Since >..(V9) = >..(Vg'') = 5, it follows from Corollary 2.1 that these two 
graphs indeed are not obtainable in such a way. Moreover, to see that they are 
minor-minimal, observe that deleting or contracting any edge of Vg' or Vg'' produces 
a graph that has a vertex whose deletion makes the graph a clique sum of planar 
graphs. 

Since the class of graphs G with >..( G) ::; 4 is closed under taking A Y operations 
(not under YA), we can obtain other graphs with >..(G) 2 5 by applying a YA 
operation to Vg' or V9'. Any of them contains a K6-minor, except if we apply YA 
to vertex V1 (Or equivalently, to V5) of Vg. 



LINKLESSLY EMBEDDABLE GRAPHS 1285 

So it could be true that >.(G) $ 4 if and only if G is obtainable from linklessly 
embeddable graphs by taking clique sums and subgraphs. 

Another open question is whether>.( G) $ µ( G) for each graph G. That is, for any 
representation L of G is there a matrix M satisfying 4 with dim(L) :::; corank(M)? 
This is true if µ( G) $ 4. 

In fact, a tempting, more general speculation is that for any natural number t: 

(???) a graph G satisfies >.(G) $ t if and only if G is 
(10) obtainable from graphs H satisfying µ(H) $ t by taking 

clique sums and subgraphs (???) 

This has been proved for t $ 3, and the 'if' part for t $ 4. 

ADDED IN PROOF 

R. Pendavingh constructed graphs with >.(G) > µ(G), disproving one of the 
conjectures above. 
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