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PREFACE 

This monograph was originally written as a Ph.D. thesis, which was 

submitted to Tilburg University. As such it is the result of a large-scale 

research project carried out at the Netherlands Central Bureau of 

Statistics (CBS) with the aim of understanding and improving (in 

particular: computerizing as much as possible) the collection of survey 

data and the production of statistical information from these data. In 

view of the enormous amount of survey data processed at CBS each year this 

research is important from an economic perspective. The possibilities 

provided by current computer technology make automatic survey data 

processing an interesting and challenging research topic as well. 

The purpose of this monograph is to create a theoretical framework for 

the description of survey data production processes, and to give an onset 

to the development of the relevant theory. The emphasis is primarily on 

computational aspects, although some statistical aspects are considered as 

well. An important topic in the area of survey data processing is not 

treated here, namely automated coding. The reasons for this purposive 

omission are two-fold. In the first place it does not fit into the 

framework created in this book, and secondly, for adequate treatment it 

requires a monograph in its own right. 

The research project mentioned above was carried out by a team which, 

apart from myself, included: Wouter Keller, Jelke Bethlehem, Dee Denteneer, 

Anco Hundepool and Albert Verbeek. To all these people I am grateful for 

their insight, dedication and stimulation. The four first-mentioned people 

are responsible for the conception and/or implementation of the computer 

program BIAISE. This program is a tool for the design of questionnaires in 

a PASCAL-like language. In turn, such questionnaires are used by BIAISE to 

automatically generate several programs which can be used in survey data 

production processes (cf. chapter 0). 

Furthermore I want to thank Dirk Sikkel, a former colleague of mine at 

CBS, for his constructive criticism on several technical reports which I 

wrote on the subject of the present monograph. I also enjoyed the many 

helpful and inspiring discussions with him on the most diverse aspects of 

survey data collection and processing. 



My thesis advisors Arie Kapteyn, Jan Karel Lenstra and Theo Nijman had a 

major influence on the final form and contents of my Ph.D. thesis. I am 

grateful to them for their advice and guidance, and I appreciate the 

pleasant cooperation with them. 

Leon Willenborg 
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0. INTRODUCTION 

The purpose of this book is to describe certain aspects in the production 

of 'clean', i.e. checked and corrected, survey data. The red thread running 

through this process, as well as through this book, is the logical 

structure of questionnaires. This structure in fact defines which data are 

acceptable and which are not. This is of importance when the collected 

survey data are being checked and corrected at a statistical office. 

Furthermore it is of importance for the collection of the data themselves 

through a questionnaire. The logical structure prescribes precisely which 

questions should be posed to which persons in which order and (optionally) 

which answers are simultaneously acceptable and which are not. 

The logical structure of a questionnaire can be very complicated. A 

questionnaire designer should have some tools at his disposal which can 

help him in defining and checking the logical structure of a questionnaire. 

In the present book we shall formalize the logical structure and suggest 

tests for certain aspects. These should be useful when trying to build a 

computer aided questionnaire design system. 

Designing and testing a questionnaire is the only activity considered in 

this book which takes place prior to the field work of the survey. The 

remaining topics all deal with handling of the survey data, i.e. after they 

have been gathered. More particularly they deal with what we shall term 

the survey data production process. 

(or editing) and correcting of 

consider here is coding. 

This process aims at coding, checking 

survey data. The only aspect we do not 

In the discussion of the survey production processes we assume that they 

are largely computerized. That is, the editing and correction of data is 

done by computer and not, or only in exceptional(ly difficult) cases by 

manual intervention. Such a state of affairs is highly desirable when large 

amounts of survey data have to be processed in limited time. 

In the discussion of automatic data correction (imputation) we 
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especially keep in mind that it should be applied in a survey data 

production process. In particular this means that the statistical 

procedures which might be applied should not be too complex. Furthermore 

they should be computationally tractable. 

The purpose of the present chapter is twofold. Each purpose is 

explained in its own section. Section 0.1 presents in more detail the sort 

of problems this book is about and provides a perspective from which the 

present work should be seen. In section 0.2 an outline of the present work 

is given. 

0.1 Historical perspectives 

As a government agency responsible for the collection and dissemination of 

statistical data with respect to the Dutch society, the Netherlands Central 

Bureau of Statistics (CBS) carries out a great number of surveys every 

year. Giant amounts of data have to be collected and processed yearly. It 

is clear that these activities should flow as smoothly as possible, if one 

wants to minimize the time between collection and dissemination of high 

quality data. 

In order to be able to reach this goal it is necessary that first of all 

an insight into the important activities of these processes as well as 

their organization is obtained. After this insight has been gained one can 

then try to automate as many of these activities as possible and redesign 

the whole production process on the basis of these changes. 

With this idea in mind a study group was initiated at CBS in the fall of 

1984. The production processes of four surveys carried out at CBS were 

studied first. The impression obtained was that such a process was 

typically being carried out as shown schematically in exhibit 0.1.1. No 

doubt this applies to other statistical agencies as well. 
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Exhibit 0.1.1 Schematic representation of a typical traditional survey data 
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The following features of the typical production process as shown in 

exhibit 0.1.1 are noteworthy: 

1. The questionnaire is hand-made and to be used for paper and pencil 

interviewing. 

2. The filled-out questionnaires are manually checked and corrected if 

necessary prior to data entry. 

3. The coding of the data is also a manual activity. 

4. Data entry is carried out batchwise by data typists, i.e. non-subject 

matter experts. 

5. The data are automatically checked batchwise after data entry. 

6. The correction of errors in these data is performed manually by 

subject-matter experts, who indicate the corrections on computer 

listings. These corrections are entered into a computer system. And the 

checking and correction process is started again. On the average, it 

takes about 2 to 3 such cycles until no more errors are found (or the 

process is aborted by eliminating certain data). However the cycling 

process may very well take several more cycles until it is finished. 

7. Questionnaires on the one hand and programs for data entry and data 

checking on the other hand, are designed separately, and in general by 

different people. 

8. The meta-information, comprising the definition of the variables in 

the questionnaire and the description of the meaning of their answer 

categories, is kept separate from the questionnaire and is not explicitly 

added to the finished data set. 

9. Tabulation programs and questionnaires are designed separately. 
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10. Interesting information pertaining to the production process itself, 

such as the number of records checked, the number of errors observed in 

the records, etc. is not systematically retained; and if it is 

retained it is not always available in an accessible form. 

On the basis of these findings and with an eye toward new technological 

developments which allow the possibility of alternate forms of 

interviewing, viz. using computers and telephones, the following 

improvements were suggested: 

1. The information on the variables etc. in a questionnaire should be 

brought together into a sort of 'knowledge base'. This knowledge base 

should be used as a source from which various programs, that are required 

in the production process, are automatically generated. For instance, it 

should be possible to generate the following programs, setups and other 

output: various types of questionnaires, viz. for paper and pencil 

interviewing (PAPI), computer assisted telephone interviewing (CATI) and 

computer assisted personal interviewing (CAPI), data entry programs (in 

case of PAPI), decoders (in case of CATI and CAP!), data editing programs 

(in case of CATI and CAP!), imputation programs ( in case of CATI and 

CAP!), tabulation setups for various statistical packages (such as SPSS). 

2. The design process of questionnaires should be carried out with the 

aid of computers. This requires a suitable language for the 

specification of a questionnaire. The design environment should provide 

assistance in checking a newly designed questionnaire; it should carry 

out as many checks as are possible, in particular in relation to the 

logical structure of a questionnaire. It may also prove to be very 

helpful if e.g. the routing structure of a questionnaire could be drawn 

automatically by the design system. Visualization of this structure is a 

great aid in perceiving it globally. 

3. In the PAPI case interactive data entry, combined with automatic 

coding (this is optional; see also point 4.) and checking and correction 

of data should be employed instead of their batchwise processing. (This 

is also called computer assisted data input, abbreviated to CADI.) Using 
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CAD! in a PAPI survey avoids lengthy and time consuming cycles in the 

processing of the data. It entails a major change in the survey data 

production process. 

4. It should be investigated to what extent automatic data coding can be 

applied. Even if this process cannot be carried out completely 

automatically in all applications, i.e. without the intervention of human 

experts, it still might be possible to automate it to such a degree that 

a significant improvement of the speed of the coding process can be 

obtained. 

· In exhibit 0.1.2 it is shown how a production process would look like in 

view of the suggestions for improvements stated above. 

When these insights had been gained, the development of the various 

software tools required was initiated at CBS. An important step that was 

taken then was the definition of a language, christened BLAISE, for the 

specification of questionnaires. It is essentially based on the well-known 

programming language PASCAL. Soon after the inception of the idea to use a 

PASCAL-like language to specify questionnaires, the implementation of a 

package for computer aided design of questionnaires was started. This 

package is also called BLAISE. 

The development of an automatic coding system was started at CBS within 

the framework of a labour force survey 'new style' (LFS). This coding 

system can be used for the coding of professions and firms. This in turn 

was followed by the development of another coding system at CBS, viz. one 

that is used in the family expenditure survey. It is used to code the 

products people buy for consumption. 
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Exhibit 0.1.2 A schematic view of a survey data production process 'new 
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As another part of the activities of the LFS project an automatic 

imputation system was also developed, to eliminate the missing values in 

incomplete records by substituting suitable values. This system is based 

on a form of stochastic imputation. LFS is suited for automatic imputation 

because it is a CAPI survey. Along with the development of such an 

imputation system a tool was constructed to test it, by generating a data 

set consisting of test records which are incomplete. 

In the present book we deal with several topics in the field of survey 

data processing, notably with respect to questionnaire design and testing, 

data editing and imputation. Our main interest is in computational 

aspects, although organizational and statistical aspects are considered as 

well. The aim is in the foremost place to provide a conceptual framework 

to study the processing of survey data. In fact the so-called logical 

structure of questionnaires is the unifying theme of the various topics of 

this book. Within the conceptual framework developed, we derive a few 

technical results. In the next section we briefly consider the 

organization of the book and the contents of the respective chapters. 

0.2 Outline of the book 

In the present section we first give a short description of a survey data 

production process. We shall only consider those elements in the process 

that are of importance for our study and leave out the more practical 

details. The contents of each chapter is briefly described subsequently. 

We assume that a survey data production is started with the design of 

the questionnaire to be used. Designing and testing a questionnaire is a 

rather difficult job, in which computers can be of great assistance. After 

the questionnaire has finally been designed, it is possible to start the 

field work of the survey. The survey data can be collected in various 

forms, e.g. as written information or as machine readable code. But 

finally they are available in a form which is suitable for further 
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processing. We assume that the information provided by a single respondent 

is then present in a single record. We shall now consider the processing of 

such a record. 

We assume that this record is automatically checked with respect to its 

consistency, and corrected if necessary. The questionnaire which is used 

in a survey is assumed to define what is to be considered consistent 

information. 

following: 

The consistency checks that are carried out are the 

1. Range checks, which simply check whether the answers to individual 

questions are within the respective ranges. 

2. Routing check, to verify whether the record is in accordance with the 

routing structure of the corresponding questionnaire. This structure 

defines which questions will be asked to which respondents and in which 

order. The routing structure can be considered to define the syntax of 

the questionnaire. 

3. Edit checks. These checks are only carried out if the questionnaire 

contains certain constraints on the answers, called edits. Edits involve 

at least two variables in the questionnaire. Edits are constraints on 

the answers which are in general related to the semantics of the data. 

They are normally formulated by experts on (parts of) the subject of the 

survey. Edits are not strictly necessary to define a questionnaire, 

contrary to routing. 

It is assumed that the checks are carried out in the same order as they are 

presented above. If no error is found then there is no problem. If a 

record contains an error then it depends on the type of error which action 

is undertaken. If a range check is violated, the corresponding variable is 

assigned a particular missing value, viz. 'missing due to out of range'. 

If the routing is found to be incorrect, a procedure is started to identify 

the variables which are possibly incorrect. These variables will also 

receive certain missing values, 

of) transition sets. In fact 

some of which can be identified by (unions 

after the routing has been checked and 
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corrected, each missing value appearing in the record can be identified by 

an appropriate transition set. An error localization procedure is also 

applied when one or more edit errors have occurred. The variables which 

are supposed to be in error will also receive certain missing values, which 

indicate the reason for missingness. Such missing values can also be 

identified by appropriate transition sets. The process of eliminating 

errors in a record, by replacing non-missing values by missing ones is 

called partially correcting this record. 

After these checks have been carried out on a record which initially 

contained incorrect values, it is assumed that a so-called partially 

corrected record has been produced which can be 'repaired' so as to yield a 

complete and correct record (with respect to the logical structure). That 

is, it should be possible to substitute values for the missing values 

created in the process just described. If we do not substitute these 

values then we have a data file containing incomplete records. If this is 

not satisfactory, then it is possible to complete the data file by applying 

a so-called imputation procedure, in which suitable values are substituted 

for the missing ones. 'Suitable' means in particular that the values should 

satisfy the constraints imposed by the logical structure. Furthermore they 

should be acceptable from a statistical point of view. In exhibit 0.2.1 an 

overview is given of the edit and imputation process as it is assumed in 

this book. 

The reason to impute values is both pragmatically and statistically 

motivated. A complete file is much easier to handle than an incomplete 

one. Furthermore, the decision of a statistical bureau not to complete a 

file puts the responsibility (and the burden) to deal with the missing data 

in the hands of secondary data analysts. Of course, there is a danger 

associated in carrying out imputations, such as to overestimate the 

precision of the data. In order to avoid this, one could e.g. carry out 

multiple imputations (see e.g. Rubin, 1987). This amounts to the 

association of several imputed values with each missing one, instead of a 

single one. These multiple imputed values reflect better the true nature 

of a missing value, namely that it is a random variable. Although the idea 

of multiple imputation is theoretically attractive, it is less so from a 
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practical point of view. 

Exhibit 0.2.1 Schematic overview of a data editing and imputation process 
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After this general introduction, we are in a position to discuss the 

organization of the remainder of the book more closely. 

In chapter 1 the logical structure of a questionnaire is formally 

introduced. We start our discussion by considering questionnaires and 

their building blocks, the questions, more closely. Then we define the 

routing structure of a special type of questionnaire, which we shall call 

Markovian. Markovian questionnaires will be assumed throughout the book. 

The next structure to be introduced is the edit structure. The routing 

structure together with the edit structure comprises the logical structure 

of the questionnaire. 

In chapter 2 some tests are discussed to check the correctness of the 

logical structure of a Markovian questionnaire. In particular we 

investigate the worst-case complexity of some decision problems related to 

the logical structure of a questionnaire. 

In chapter 3 data editing is discussed. The approach given here is an 

extension of those that have hitherto appeared in the literature, in the 
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sense that the routing structure of a questionnaire is explicitly taken 

into account. The problem of localizing an error in a record is split into 

three steps, as was discussed above. Localizing and correcting routing 

errors can be solved in polynomial time (and space). Localizing and 

correcting edit errors, is NP-hard. So it is unlikely that there is an 

efficient algorithm for localizing edit errors. Nevertheless we discuss 

two procedures which have been proposed in the literature to solve this 

problem in case all domains of the variables in a questionnaire are finite. 

One method is due to Fellegi and Holt and the other one to Garfinkel. 

As an aid in the identification of variables in error in a record which 

violates at least one edit, error models can be used. In chapter 3 we 

briefly discuss this topic, concentrating in particular on an error model 

proposed by Naus, Johnson and Montalvo. It is also shown in chapter 3 that 

this model yields another edit error localization procedure. Finally, a 

probabilistic method is discussed in chapter 3, which can be viewed as an 

approximation method for edit error localization. 

Chapters 4 and 5 consider two aspects of incomplete data files in more 

detail. In these chapters the logical structure of a questionnaire does not 

explicitly play a role. In fact these chapters illustrate some of the 

problems created by an incomplete file. Furthermore chapter 5 forms a 

prelude to chapter 6, in particular to section 6.2. 

In chapter 4 we concentrate on two issues pertaining to databases (or 

simply files) containing missing data. In the first place we attempt to 

give a complete enumeration of all types of missing values that can be 

found in such databases, in the light of the theory developed in this book. 

In the second place we discuss four approaches to deal with missing data in 

databases, in view of manipulations performed with such databases (joining, 

selecting, projecting, etc.) and when querying such a database. 

In chapter 5 we consider an estimation prcblem in the presence of 

missing data in the data set, viz. the estimation of a probability density 

of a discrete variable y. Two approaches are discussed to attack this 

problem, which are called the quasi-randomization and the label independent 
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approach respectively. In order to apply either of these approaches it is 

necessary that the response propensities for each category of y are known, 

or can be estimated. 

In chapter 6 we pick up the main thread of our story, and consider some 

statistical and computational aspects with respect to imputation. In 

particular we focus on several issues which are considered to be of 

importance for an imputation system which is to be used in a survey data 

production process. 

In chapter 7 we formulate some conclusions that can be drawn from the 

results in the previous chapters, and discuss some directions for future 

research. 

The book is completed by three appendices and a list of references. 

Appendix A contains a few fundamental graph theoretical algorithms, which 

are used in procedures and algorithms in chapters 1, 2, 3 and 6. In 

appendix B two numerical characterizations of the routing structure of a 

Markovian questionnaire, viz. the balance and complexity, are discussed. 

In appendix C, finally, a discussion of some ideas from discriminant 

analysis is given, to provide the necessary background for a part of 

chapter 6. 
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1. THE LOGICAL STRUCTURE OF A QUESTIONNAIRE 

1.1 Questionnaires 

From an abstract point of view a questionnaire is a collection of questions 

with a structure imposed on it. This structure, which we shall call the 

logical structure, is defined to insure that one obtains relevant and 

consistent information from respondents, given a certain set of questions. 

(In fact, the logical structure itself defines what is considered relevant 

and consistent by the designers of the questionnaire.) 

A questionnaire as it is used in a survey is a lot more than a set of 

questions with a structure imposed on it. To design such a questionnaire 

means that there are more aspects to consider than those related to its 

logical structure. For instance the wording of its questions, the anwers 

to its questions and its physical layout (either on paper or on a screen) 

are all important aspects to be considered. Such matters contribute to the 

success of a questionnaire as well. But they seem to belong more to the 

realm of 'art' than to that of 'science'. In the present book we shall 

deal only with the logical structure of a questionnaire. In particular we 

shall study the problems which this structure entails when designing a 

questionnaire and when data, which constitute the answers provided by 

respondents, are being checked and corrected. 

The logical structure of a questionnaire consists, in its most general 

form, of two components, viz. 

1. The routing structure. 

2. The edit structure. 

The routing structure defines which questions will be asked in which order 

to which respondents. The next question to be posed in an interview is 

entirely determined by the answers which have, up to that moment, been 

provided by the respondent. The routing structure is an essential part of a 

questionnaire and cannot be left out. This is different for the edit 

structure, which is optionally included in a questionnaire. The edits 



- 15 -

constitute additional checks on the answers provided by respondents. They 

can be introduced to increase the consistency of the answers provided by 

respondents, beyond the constraints imposed by the routing structure. In 

this book we shall make an explicit distinction between two types of 

questionnaires, viz. questionnaires without edits and questionnaires with 

edits. The first type shall be referred to as q-type, and the second as 

q&e-type questionnaires. 

As a rule the questionnaires considered in this book are assumed to be 

Markovian. This means that they have the property that each transition to 

the next question depends solely on the answer to the question from which 

the transition is made. (Note the similarity with Markov chains, from which 

the name is borrowed.) This property is common to many traditional 

questionnaires, but not to all. In non-Markovian questionnaires, on the 

contrary, a transition to the next question is, for at least one question, 

dependent on at least two answers to previous questions. In order to avoid 

technical complications we shall not consider non-Markovian questionnaires 

here. So we adopt the following convention in this book: 

Convention 1.1.1 The only questionnaires considered in this book are 

Markovian questionnaires, unless explicitly stated otherwise. /// 

In the following sections of this chapter we shall define several concepts 

mentioned above, as well as several unmentioned ones, more precisely. Then 

we will be prepared to study various aspects of and related to the logical 

structure of questionnaires. 

1.2 Questions 

The building blocks for questionnaires are questions. Let the set of 

questions in a given questionnaire be denoted by (V1 • ••• ,vn). For each 

question V1 there is a set R1 of possible answers. Such a set will be 

called a domain. Depending on the nature of its domain, we assume that the 

corresponding question v1 can be classified as one of the following types: 
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a. vi is closed. In this case Ri consists of a finite and modest number 

of possibilities (answer categories), which can be explicitly enumerated. 

The answers to such questions shall be called precoded. 

b. vi is 

elements, 

open. In this 

which are not 

case Ri consists of a (very) large number of 

explicitly enumerated. The answers to such 

questions shall be called uncoded. 

c. vi is partly open. In this case some of the elements in Ri are 

explicitly enumerated (the precoded answers) and the rest is not (the 

uncoded answers). 

In the discussion below we shall identify 'questions' also with 

'variables', although formally these concepts differ in meaning. Partly 

open and open questions are the most difficult ones to handle, basically as 

a result of the following limitation. The non-precoded answers to such 

questions have to be coded by experts or by automatic coding systems. This 

process, however, cannot be carried out during an interview, at least not 

at the present state of affairs and neither, probably, for some time to 

come. Therefore we have to assume that the coding has to take place at a 

later phase, viz. when the survey data are being processed at the agency 

which conducts the survey. This limitation implies that it is impossible 

to base certain decisions with respect to the logical structure of the 

questionnaire on uncoded answers while an interview is being carried out. 

It is then for instance impossible to let the routing depend on their 

interpretation or to involve them in an edit, i.e. an on-line edit. Of 

course it is still possible then to use the information as to whether or 

not a question has been answered or as to whether a particular answer 

category was used. 

In the sequel we adopt the following convention in order to facilitate 

the discussion: 

Convention 1.2.1 The questionnaires considered consist of closed questions 

only, unless explicitly stated otherwise. /// 
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Adopting this convention avoids to repeatedly single out open or partly 

open questions from the closed ones because they may require a different 

treatment. This does not limit the scope of the treatment below, but only 

alleviates the exposition. In practice, however, careful attention should 

be devoted to the proper treatment of open and partly open questions. 

1.3 Routing 

We shall now define the routing structure of a questionnaire more formally. 

Let Q denote a questionnaire. We shall assume that the routing structure in 

Q is represented by a routing graph G which consists of a pair (V,E) with 

the following interpretations: 

1. The finite set V 

questions in Q. 

{v1 , ... ,vnl of vertices corresponds to the set of 

2. The finite set E of edges represents the possible transitions between 

questions in Q. Each edge e in E can be represented by an ordered pair 

of vertices (vi,vj), indicating that it is possible in Q to jump from 

question vi to question vj (but not necessarily reversely). 

To indicate under which conditions there will be a possible transition from 

vi to vj the transition set RijcRi is required. This set consists of all 

those answers to vi that imply that vj is the next question to be posed. 

The points 1 and 2 above express that G is a finite directed graph, for 

short a digraph. In addition, we require G to possess the following 

properties: 

1. G is an acyclic digraph, which prevents the possibility to pose a 

question twice. 

2. G has exactly one vertex with indegree zero, which will be called the 

source, and exactly one vertex, the sink, with outdegree zero. This 

means that every question, except the source, has a predecessor, and that 
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every question, except the sink, has a successor. The source corresponds 

to the first question in Q and the sink to the last one. 

Together both properties imply that G is connected, i.e. every vertex in V 

can be reached from the source, and the sink can be reached from every 

vertex in V. If a questionnaire Q* has a routing graph G*-(V* ,E*) which is 

connected but has at least two vertices with indegree or outdegree zero, G''' 

can be easily extended to one of the above type, by adding dummy vertices 

and edges, as follows. Assume that G* has e.g. two vertices v and w with 

outdegree zero and one source, then it can be extended to a routing graph 

G', simply by adding a dummy vertex u and connecting v and w to u, i.e. by 

adding the edges (v,u) and (w,u) to those already present in E*. The 

vertex u will be the sink in G'. 

A path n from vi 1 to vik is a sequence of pairs of vertices (vi 1 ,vi 2 ) 

(vi 2 ,vi 3 ) ... (vik_ 1 ,vik) or, alternatively, a sequence of pairs 

(Vi 1 'Ri 1 , i 2 ) (Vi 2 'Ri 2 , i 3 ) ... (Vik - 1 'Rik - 1 , i k ) (Vik 'Rik ) ' 

questions, the R1 1 transition sets and where Ri 
J , J + 1 

variable vik 

(vi1' ... ,vik). 

Instead of (vi 1 ,vi 2 ) ••• (vik_ 1 ,vik) 

It depends on the application at 

where the 

is the 
k 

we shall 

hand which 

vi j denote 

domain of 

also write 

of these 

definitions is most suitable. If vi 1 and vik are the source and sink of 

the routing graph then n is simply called a path. Any vertex which appears 

in this sequence is said to lie on n. Alternatively expressed, n is said 

to cut such a vertex. The length of a path n is the number of pairs 

(vi ,Ri,j) of which it consists. For a routing graph G we define the path 

set ITG, or just IT, which consists of all paths in G from source to sink. 

Remark 1.3.1 If the transition sets Rij corresponding to the transitions in 

a questionnaire are mutally disjoint then a path can be represented as a 

sequence of such transition sets. That is, the vi can be discarded. /// 

A routing graph G can be contracted if it contains vertices v and w and 

a path n from v tow with a length greater than 1, such that any vertex 

lying on n, except w, has exactly one ingoing and one outgoing edge in G. 

A path n from v to win G which obeys this condition will be called a 

linear part of G. A linear part n can be removed from G by replacing it by 
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the edge (v,w). 

A routing graph F, which has been obtained from a routing graph G by 

removing a number of linear parts from G, will be called a contraction of 

G. A routing graph which cannot be contracted is said to be maximally 

contracted. 

A cut-point in a routing graph G is a vertex v such that every path nEil 

cuts v. The source and the sink are trivial examples of cut-points. In 

appendix A an algorithm and a listing of a PASCAL program are given to 

determine all cut-points in a routing graph. 

The vertices in a routing graph can be linearly ordered by applying a 

topological sort (see appendix A). The reason for this is the acyclicity 

of a routing graph. In the sequel we shall often implicitly assume that a 

routing graph has been topologically sorted in one way or another. We 

shall sometimes denote the resulting linear order in the vertices bys, 

without referring explicitly to the particular topological sorting that has 

been used, because it is assumed to be fixed. 

In appendix B two characterizations of the structure of a routing graph 

are defined and some of their properties are given. 

In exhibit 1.3.1 the routing graph of questionnaire B of the Labour 

Force Survey 1983 is presented as an example of a routing graph in a real

life Markovian questionnaire. Note that it has 13 cut-points, viz. 1, 62, 

63, 65, 70, 72, 92, 103, 105, 106, 107, 108 and 109. 

Now let G1 and G2 be two routing graphs. The series composition of G1 

and G2 , denoted by G1 *G2 , is the routing graph obtained from G1 and G2 by 

identifying the sink of G1 and the source of G2 . We shall also refer to 

series composition as glueing. Glueing is obviously associative, i.e. 

(G 1 *G2 )*G3 = G1 *(G2 *G3 ) for all routing graphs G1 , G2 and G3 . But glueing 

is not commutative, i.e. there are routing graphs G1 and G2 such that G1 *G2 

~ G2 *G1 . Note that the vertex in G1 *G2 at which G1 and G2 are glued 

together, i.e. the sink of G1 and the source of G2 , is a cut-point. 



- 20 -

Instead of glueing different routing graphs together, we can also 

consider the opposite operation of splitting or decomposing a routing graph 

into components or routing sub-graphs. Such a decomposition of a routing 

graph can be important if the original one is too big to consider it as a 

whole. For it might be easier to deal with the routing sub-graphs than 

with the original routing graph (cf. section 1.6). 

A routing graph G is said to be decomposable if there exist graphs G1 

and G2 , neither of them being a point-graph (which consists of a single 

point), such that G=G 1 *G2 . G is called a prime if such a decomposition does 

not exist. A canonical decomposition of a routing graph G is a 

decomposition of G as G1 * ... *Gm (~2) for certain prime routing graphs 

G1 , ... ,Gm. It is not difficult to verify that for any routing graph G such 

a decomposition is unique if G is decomposable. 

A canonical decomposition of a routing graph can be found by calculating 

its cut-points. Suppose the cut-points of a routing graph G are 

c 1 , ... ,cm+l• such that c 1 <c2 < ... <cm+l· Then the i-th prime routing graph Gi 

in the canonical decomposition of G consists of the vertices v such that 

cisvsci+l• and those edges of G which connect vertices in Gi. 
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Exhibit 1.3.1 Example of a routing graph (from a questionnaire used in 

the Dutch Labour Force Survey 1983). 
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Let G be a routing graph and A its adjacency matrix. The inverted 

routing graph c- 1 of G is obtained from G by inverting its edges, i.e. by 

replacing each edge (v,w) in G by (w,v), where v and ware vertices in G. 

It is straightforward to see that c- 1 is also a routing graph. The 

adjacency matrix B of c- 1 is associated to A by the identity B=PAP, where P 

is the square matrix (of the same order as A), which has l's on the main 

anti-diagonal and O's elsewhere, i.e. 

p (1.3.1) 

Note that premultiplication of A by P amounts to inversion of the rows in 

A, and postmultiplication by P to inversion of the columns. Furthermore it 

holds that P2 =I, the identity matrix of the same order as P. 

Let G be a routing graph, and let V denote its set of vertices and E its 

set of edges. Let A be its adjacency matrix, and let a,fiEV with asfi. The 

slice ([a,fi]) in G is the sub-digraph of G with vertex set (vEV:asvsfi} and 

edge set {(v,w):asv,wsfi and (v,w)EE}. The adjacency matrix of ([a,fi]) is 

obtained from restricting A to the rows and columns in the vertex set of 

the slice. Note that a slice is not necessarily a routing graph, because 

there may be several sources or sinks. The segment [a,fi] in G is the 

maximal sub-digraph in G with the single source a and the single sink fi, 

i.e. the sub-digraph of G with vertex set V'=(vEV:A::V=l and ¾~=l} and 

edge set ( (v,w)EE:vEV' and wEV'), where A'' is the transitive closure of A. 

That is, A~, j =l if and only if there is a path from i to j, and 0 

otherwise. In appendix A an algorithm is presented to calculate the 

transitive closure of a digraph. A segment is a routing graph and its 

adjacency matrix is obtained from A by restrictin_g it to the rows and 

columns corresponding to the vertices in V'. Trivially, a segment [a,fi] is 

also a subdigraph of the corresponding slice ([a,fi]). In exhibit 1.3.2 an 

example of a slice and of a segment is shown. 
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Exhibit 1.3.2 Example of a slice (b) and a segment (c) in a routing 

graph (a) 

a b 

3 
2 3 

10 

11 

C 3 

9 

Remark 1.3.2 If the transition sets are mutually disjoint, then a record 

can be unambiguously represented as a sequence of answers. The vi are not 

required then to indicate to which question a certain answer corresponds. 

Ill 

We assume that the information provided by a respondent in an interview 
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which was based on a questionnaire Q, is ultimately represented as a record 

in a computer. (Of course, there may actually be several physical records 

containing the response of each respondent participating in the survey; yet 

we may assume that for each respondent the information is contained in a 

single, symbolical, record.) In that form the information is most 

conveniently subjected to further processing and analysis. In fact we 

shall talk about a record when the collection of answers provided by a 

respondent in an interview is meant. For convenience we shall assume that 

a record is represented by a sequence of pairs of questions and 

corresponding answers. An answer can be either of two types: 

1. An element of a transition set (or domain). 

2. A special type of missing value, which indicates that the question 

was originally answered by a respondent but this answer was incorrect. 

If a variable has a value of the second type, it will receive a regular 

value, i.e. a value of the first type, after an imputation procedure has 

been applied (see chapter 6). In section 4.2 a list of various types of 

missing values can be found. 

A complete record r is a sequence of pairs (vi 1 ,ai 1 )(vi 2 ,ai 2 ) ... 

(vik_ 1 ,aik_ 1 )(vik'aik), where the vij denote questions and the aij are 

answers to vij, i.e. elements in Rij (j=l, ... ,k-1), such that: 

1. vi 1 is the source of G. 

2. Vik is the sink of G. 

3. aijERij,ij+l for j=l, ... ,k-1, if k>l. 

4. aik ERik 

From this and the assumed acyclicity of G, it follows that a variable vi 

appears at most once in r. Note also that if we replace each aij by the 

transition set Ri j . i j + 1 
to which it belongs we obtain a path in G. In fact 

records which yield the same path in this way can be considered equivalent 

and are said to possess the same routing structure. For a routing graph G 

we define the set RECG, or REC, of records with a correct routing 

structure, which consists of sequences (vi 1 ,ai 1 ) ... (vik_ 1 ,aik_ 1 )(vik'aik), 
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where vi 1 is the source of G and vik its sink, 

transition set Ri i or an element in this 
j. j + 1 

and where ai. is either the 
J 

set. Hence IlcREC for a 

routing graph G. A record which does not obey conditions 1 through 4 above 

will be called an incomplete record. 

1.4 Edits 

An edit e is a constraint on the joint values of two or more variables, 

which is not derived from the routing structure, and which defines which 

combinations of values are not acceptable. Formally an edit e, defined on a 

set of variables vi 1 , ... ,vik' is a Boolean function 

e R. x .... xR. ➔ (TRUE, FALSE} , 
11 lk 

(1.4.1) 

where the Ri, denote the domains of the vi,. The set E=e- 1 (TRUE) is called 
J J 

the edit set of e and consists of values in Ri 1 x ... xRik which are 

considered unacceptable. The variables vi 1 , ••• ,vik are said to be involved 

in e. 

Edits constitute additional constraints on the answers provided by 

respondents, additional to the constraints imposed by the routing 

structure. They can be used in CAPI or CATI situations to check the 

consistency of combinations of answers provided by respondents. 

Inconsistencies found in certain answers of respondents can be rectified on 

the spot. But edits can also be used when checking the survey data at the 

data editing phase, e.g. in a CADI situation. If inconsistencies are found 

then they generally have to be corrected without consultation of the 

respondent who provided them, but by using statistical means. 

The routing structure is essential for questionnaires, but an edit 

structure is not. Edits can optionally be added to a questionnaire. Of 

course, if edits have been defined in a questionnaire they count as much as 

the routing does. 
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Technically, routing and edits differ in several ways. On the one hand 

the routing structure in a Markovian questionnaire defines a partial 

ordering on its questions, i.e. a binary relation. Edits, on the contrary, 

may involve any number of variables greater than one. Even within a single 

questionnaire the edits need not all involve the same number of variables. 

Furthermore edits only restrict the joint values of variables with regular 

values. The routing structure however does not only impose such a 

restriction, it also indicates which variables should be skipped, i.e. may 

not appear in a complete record. The exclusive or property, for short the 

xor-property, of the routing structure in a questionnaire excludes the 

possibility that in a complete record the variables vi, vj, and vk all 

three have regular values if (vi ,vj) and (vi ,vk) are edges in the 

corresponding routing graph. 

When applied to check the answers provided by a respondent, assumed to 

be available in a record, edits can be in several states, depending on the 

information present in the record. As was already said in the previous 

section the values of the variables in a record are essentially of two 

types: regular values and missing values which should be replaced by 

regular ones. An edit e is said to be activated by a record r if the 

variables involved in e are present in r. An edit e should be activated by 

a record r before r can be checked to satisfy or violate e. In order that 

this check be carried out, it is necessary that the variables involved in 

the edit have regular values. An activated edit which, for this reason, 

cannot be applied to check the consistency of certain values in a record, 

is said to be idle. If a record r (activates and) violates an edit e, it 

can make e idle, by replacing the regular value of at least one variable in 

r, which also appears in e, by a so-called regular missing value (see 

section 4.2; it is a missing value which should be replaced by a regular 

value). 

If in the record rat least one variable which is involved in e is not 

represented in r, then e is called invisible. An edit e is said to be 

activatable if the variables involved in it lie on a path in the routing 

graph of the corresponding questionnaire. This means that there exists a 

correctly completed questionnaire (with respect to the routing structure) 
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which can activate this edit. Any correctly specified edit is activatable. 

In exhibit 1.4.1 each of these states of an edit is illustrated. 

Let Q&E denote a questionnaire and let REC denote the set of records in 

this questionnaire with a correct routing structure. Let e be an edit. 

Instead of taking the domain of e as the cartesian product set in (1.4.1), 

we may assume that its domain is REC and its codomain the set {TRUE, FALSE, 

NEUTRAL), i.e. e: REC➔ {TRUE, FALSE, NEUTRAL). It is assumed that if r 

activates e then either e(r)=TRUE or e(r)=FALSE, otherwise e(r)=NEUTRAL. 

The subset e- 1 (FALSE) of REC consists of the records which satisfy e and 

are considered to be acceptable with respect to e. The set e- 1 (TRUE) 

consists of the records which violate e and are considered to be 

unacceptable with respect toe. 

Exhibit 1.4.1 Examples of activated, idle and invisible edits 

8 

9 

Remark: indicated is the path n=(l,2,5,11,15,17). It is assumed that there 
is an incomplete record r associated with n, for which the value of 
variable/question 5 is missing (hence the double edge in the figure). The 
edits activated by n are e 1 , e 3 , e 4 , e 6 ; the edits which are invisible for 
rare: e 2 , e 5 ; and the edits which are idle: e 3 , e 4 • 



- 28 -

The edits in a q&e-type questionnaire can be ordered via the 

lexicographical ordering of the sets of variables involved in the edits, 

which are numbered themselves through a topological sorting procedure. We 

shall refer to such an ordering of the edits as a nacural ordering. In 

general it is not unique. A natural ordering can be useful in a CAPI or 

CADI situation, when the edits are invoked on-line. 

For a set of edits in a q&e-type questionnaire we can define an edic 

graph as follows. The edits themselves are the vertices of the edit graph. 

Let W8 and Wf denote the set of variables involved in e and f respectively. 

Now {e,f) is an edge in the edit graph if W8 nWf;,<¢• In exhibit 1.4.2 an 

example of an edit graph is shown. Note that an edit graph is defined 

independently of the routing structure in the corresponding questionnaire. 

Exhibit 1.4.2 Example of a routing graph with edits and the corresponding 

edit graph 

3 

5 

6 

A picture of an edit graph visualizes how the edits are interrelated. The 

edit graph can also be used to calculate which variables are related to 

each other via the edit structure but independently of the routing 

structure: calculate the connected components of the edit graph by a depth

first search (see appendix A) and take the union of the sets of variables 

corresponding to the vertices in each component. The sets of variables 

calculated for each component are disjoint. As far as the edit structure 

is concerned variables in different component sets are independent of each 

other and should be treated as such. However, because the routing 
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structure is discarded in an edit graph, the edits which can be 

simultaneously activated cannot be determined from it. Exhibit 1.4.3 

illustrates this point. The xor property of a routing graph is reponsible 

for this phenomenon. 

Exhibit 1.4.3 Example of two edits which cannot be activated simultaneously 

2 3 

4 5 

6 

Two edits e 1 and e 2 can be simultaneously activated, or are simultaneously 

activatable, i~ there is a path~ in the routing graph such that the 

variables involved in both e 1 and e 2 lie on~. It is easy to see that this 

property is symmetric but not necessarily transitive. The following theorem 

holds. 

Theorem 1.4.1 Let e 1 , .. ,eP be activatable edits such that for every pair ei 

and ej a path ~i,jEII exists which simultaneously activates e 1 and ej. 

Then there is a path ~1 •... ,PETT which simultaneously activates e 1 , ... ,eP. 

Proof We prove the assertion by contradiction. So suppose that such a path 

~ 1 •... ,p does not exist for e 1 , ... ,ep. 

of variables involved in e 1 . Let 

Consider ui W1 , where W1 is the set 

the elements in this union be 

a1 <a2 < ... <at. Because we have assumed that there is no path ~1 •... ,P which 

cuts these vertices it follows that there is at least one j such that 

(aJ ,aj+l) is not an edge in the transitive closure G* of G, i.e. there is 

no path in G from aj to aj+l for some jE{l, ... ,t-1). Then aj and aJ+l can

not belong to the same set W1 , because edit e 1 is activatable. Therefore 
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we have that ajEWi and aj+ 1 EWk for some i~k. However there is a path 

~i,kEIT simultaneously activating e 1 and ek, which, alternatively expressed, 

means that WiUWkc~i,k• In particular this implies that there is a path in 

G from aj to aj+l· Contradiction. Hence such a path ~1 .... ,k does exist. 

Ill 

If e 1 and e 2 are edits which are always simultaneously activated we can 

replace them by a single edit e 1 ve2 , defined as 

(1.4.2) 

for rEREC which activates both e 1 and e 2 . The new edit e 1 ve2 does not 

distort the constraint structure as defined by the original logical 

structure of the questionnaire in which e 1 and e 2 appear. The set of 

variables involved in e 1 ve2 is the union of the sets of variables involved 

in e 1 and e 2 . Applying this disjunction operation repeatedly to edits in a 

questionnaire eventually yields a set with a minimal number of edits. 

Remark 1.4.1 Note that if we define the composite edit e 1 ve2 for edits e 1 

and e 2 which cannot always be activated simultaneously by 

e 2 (r) if rEREC activates e 1 and e 2 
simultaneously 

otherwise , 

(1.4.3) 

then e 1 Ye2 is not equivalent to the situation with two separate edits e 1 

and e 2 . The reason for this is that a record rEREC which activates e 1 but 

not e 2 would be checked against e 1 but not against e 1 ve2 , which is not 

activated. Ill 

Remark 1.4.2 On the one hand it is advantageous to form composite edits 

from edits which are always simultaneously activated, because this 

increases the transparancy of the logical structure in the questionnaire. 

On the other hand it is also helpful to split more complicated edits into 

smaller ones, especially when localizing errors in questionnaires. The 

reason for this is that an error localization procedure is based on the 
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sets of variables involved in edits. The smaller such sets the better it 

is to pin-point possibly faulty values in a record. For details refer to 

chapter 3. Ill 

The foregoing shows that it is of some interest to consider the problem 

which edits in a given q&e-type questionnaire are always activated 

simultaneously. In chapter 2 we shall study this problem. 

It is implicitly assumed that an edit e contains a minimal set of 

variables, i:e. such that no variable involved in e can be removed from e 

without creating an edit e' which is different from e, where e and e' are 

interpreted as functions REC➔ (TRUE, FALSE, NEUTRAL}. But this minimality 

condition is not a formal requirement for an edit. It is only advantageous 

for edits to have this property when localizing errors in a record (cf. 

chapter 3). 

Example 1.4.1 (Minimality of set of variables involved in edit) 

Consider a q&e-type questionnaire containing, among others, the following 

six variables and corresponding domains: v 1 e[0,100], v2 e(O,l,2}, v3e(l,2}, 

v4 e[0,100], v 5e(O,l,2,3} and v6 e(l,2,9}. Suppose that (v1 , ... ,v6 ) forms a 

linear part of the routing graph of the questionnaire. Suppose furthermore 

that the following two edits are defined in this questionnaire: 

Now edit e 1 does not obey this minimality condition, whereas e2 does. Note 

that e 1 can be replaced by the equivalent edit 

e' 1 

because v 3 is not constrained by e 1 . Ill 

If we want to understand the logical structure in a q&e-type questionnaire 
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we cannot restrict our attention to individual edits or to edits which are 

always activated simultaneously. We should also consider edits which can be 

activated simultaneously by some records. The reason is that if a record 

violates several edits, one or more of the variables involved in these 

edits should be assigned a different value, if we want to reach a situation 

in which no edit is violated. If one considers the edits one at a time, 

and one adjusts the values of some variables in the record so as to satisfy 

the edit in consideration, one might be going on for quite a while 

searching for an acceptable record, which closely resembles the original 

one. It is possible that a change of the value of some variable can cause 

an edit, which was previously satisfied, to be violated. This cannot 

happen if one considers certain edits jointly. In the following example 

this is illustrated. 

Example 1.4.2 (Simultaneous activation of edits) 

Consider the routing graph Gin exhibit 1.4.4. Let there be three edits 

defined in a questionnaire which has Gas its routing graph. Let W1 denote 

the set of variables involved in edit e1 (i=l,2,3). We have W1={1,2}, 

W2={3,4} and W3={5,7}. 

Obviously the path (1,2,3,5,7,8) cuts each of the W1 • Edit e1 defines a 

constraint on the joint values of variables v1 and v2 . In fact it limits 

the values of these variables within the set R1xR2 . Similarly e2 defines a 

constraint on the joint values of Vz and V3 within R12 xR3 , and e3 defines a 

constraint on the joint values of v5 Xv7 within R5 xR7 . Now e1 and ez involve 

a common variable, namely Vz, and neither el nor ez involve a variable 

which is also involved in e3 . If we consider el and ez jointly, we find 

that it restricts the values of v1 , v2 and v 3 within the set R1xR23 xR3 . 
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Exhibit 1.4.4 Edits which can be activated simultaneously 

2 

3 4 

5 6 

8 

Assume that a record rEREC has activated both e 1 and e2 • There are four 

possibilities now: 

1. Both e1 and e2 are satisfied. 

2. e1 is satisfied and e2 is violated. 

3. e1 is violated and e2 is satisfied. 

4. Both e 1 and e2 are violated. 

The first case need not worry us. The second case seems to indicate that 

the values for v1 and v2 in rare correct but that the value of v3 is not. 

Case 3 is similar, but the values of v2 and v3 seem to be correct, whereas 

the value of v1 seems to be incorrect. In the fourth case the value of v2 

is suspicious. To illustrate how such values can formally be found consider 

case 3. Because e 1 is violated both v1 and v2 ere suspicious, and because 

e2 is not violated both v2 and v3 are not suspicious, i.e. we can write 
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which is equivalent to 

It should be remarked that such a reasoning does not always lead to an 

unambiguous determination of suspicious variables (cf. section 3.4.4). 

Of course there is no guarantee that the variables found in this way are 

the only ones which are suspicious. Nevertheless they are the variables 

that at least should be assigned a different value in order to create an 

acceptable record. Of course, it should certainly be possible to obtain a 

correct record in cases 2, 3 and 4, if we can change all three variables 

v 1 , v 2 and v 3 . But this practice may spoil more information in the 

original record than necessary. In assigning missing values to variables 

we want to be as parsimonious as possible (cf. chapter 3). 

So it is of importance to consider the edits e 1 and e 2 jointly. However, 

it is of no special interest to consider any other combination of two or 

more edits simultaneously in this example. Ill 

Example 1.4.2 shows that in order to understand the edit structure in a 

questionnaire it is not sufficient to consider only the individual edits 

but also certain combinations of these edits. Such a combination S of 

edits is called an edit cluster, and has the following two properties: 

1. It consists of edits which can be simultaneously activated by records 

in a certain path~ in the routing graph. 

2. It is maximal, in the sense that there are no more edits outside S 

which can also be activated by records in~-

A maximal edit cluster is an edit cluster which is not properly contained 

in any other edit cluster. Example 1.4.3 illustrates the concepts of edit 

cluster and maximal edit cluster. 
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Example 1.4.3 (An edit cluster and a maximal edit cluster) 

In exhibit 1.4.5 a routing graph is shown, and the sets of variables of 

three edits defined in a corresponding questionnaire have been indicated. 

Exhibit 1.4.5 Routing graph with four edits 

2 

6 

5 

Note that the edits e1 , e2 and e3 in exhibit 1.4.5 are always 

simultaneously activated, either by records in the path ~1 =(1,3,4,7,8,9) or 

by records in the path ~2 =(1,3,4,6,8,9). Edit e 4 is only activated by 

records in ~2 . Both (e1 ,e2 ,e3 } and (e1 ,e2 ,e3 ,e4 } form edit clusters: the 

former set is maximal with respect to the records in ~1 and the latter set 

with respect to the records in " 2 . (e1 ,e2 ,e3 ,e4 } is also maximal, i.e. not 

properly contained in any other edit cluster. /// 

In order to be able to judge whether the routing and edit structure in a 

questionnaire are formally correct, we have to formulate a criterion. In 

fact we shall require that the routing and the edit structure in a 

questionnaire have the following property, which is of central importance 

to the theory in this bo.ok. 
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Property 1.4.1 Let Q&E be a q&e-type questionnaire, with a routing graph G. 

Any path in G contains at least one correct record. Formally: if 

(vi 1 ,Ri 1 ,i 2 )(vi 2 ,Ri 2 ,i 3 ) ... (vik•Rik) is a path in G, then there are values 

aijERij,ij+l for j=l, ... ,k-1 and aikERik such that the record 

(vi 1 ,ai 1 )(vi 2 ,ai 2 ) ... (vik'aik) satisfies the edits in Q&E. /// 

This property rules out the possibility that a path in a routing graph 

cannot actually occur because each record in such a path violates certain 

edits. We do not want that the edits interfere in this way with the 

routing structure. This convention provides a criterion for checking the 

formal correctness of the logical structure of a questionnaire. 

Furthermore it yields a more conspicuous data editing process, by allowing 

this to be neatly divided into two parts (if we forget the trivial range 

checking). The first part checks and fixes the routing structure in a 

record (if necessary). The second one deals with the edit structure in this 

record, without any need to adjust the routing structure of a record in 

this second phase. 

Although in many instances we are not especially interested in the form 

of the edits, it is sometimes important to restrict the attention to 

special types of edits. The following two types seem to be most common in 

the context of survey data processing. The edits of the first type shall be 

called GP-edits (GP= cartesian product). A GP-edit can be defined for those 

variables for which a total ordering has been defined on their 

corresponding domains. The edit set of a GP-edit is the finite union of 

cartesian product sets. A GP-edit is said to be normal, if its edit set is 

a cartesian product set. The second type will be called polyhedral. A 

polyhedral edit is defined by a finite set of linear inequalities (in 

disjunction). The corresponding edit set is the union of a number of half

spaces, each defining a set of unacceptable records. Its complement (in the 

appropriate set) is a polyhedron, which explains the name of this type of 

edit. Polyhedral edits can only be defined fer those variables such that 

on their corresponding domains the following structures have been defined: 
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1. A suitably rich algebraic structure, which includes operations of 

addition and multiplication (e.g. a field structure). 

2. A total ordering. 

For simplicity, and because other choices might be inapplicable for survey 

data processing, we shall assume that the variables involved in polyhedral 

edits take values in the real numbers or subsets thereof. 
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2. TESTING THE LOGICAL STRUCTURE OF A QUESTIONNAIRE 

2.1 Introduction 

After a questionnaire has been constructed on a computer it should be 

thoroughly tested before it is used in a survey. Of course the first thing 

to test is whether the questions are correctly specified, e.g. that for 

each possible answers category a follow-up question is defined, except for 

the last one, of course. Then the logical structure of the questionnaire 

should be tested. For q-type questionnaires it is only necessary to check 

whether the routing structure is described by a routing graph. Testing the 

correctness of the routing structure is a fairly simple matter. It is more 

difficult, however, to test a q&e-type questionnaire, as a result of the 

interplay between the routing and the edit structure. Testing such a q&e

type questionnaire with respect to its logical structure is the subject of 

the present chapter. We are especially interested in the worst-case 

computational complexity of several test procedures. As a general reference 

for matters related to computational complexity, Garey and Johnson (1979) 

is recommended. The reader is assumed to be, at least casually, acquainted 

with this theory. 

In section 2.2 we consider these test procedures. Testing the formal 

correctness of the routing structure is a rather simple matter. More 

difficult is the testing of the correctness of both the routing and edit 

structure, i.e. the logical structure. As a sample of tests for a q&e-type 

questionnaire considered in section 2.2 we mention the following: Can all 

edits be activated? Is the routing structure compatible with the edit 

structure, i.e. does for any path in the routing graph a record exist which 

does not violate the activated edits? Are there redundant edits? Is there a 

path in the routing graph which does not activate any edit? It 

that most of these problems are computationally intractable. 

be learned from this is that it is vain to believe that 

turns out 

A lesson to 

the logical 

structure of any (theoretically possible) questionnaire can be established 

with 100% certainty. 
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In section 2.3 we give some general comments on how to cope with the 

rather formidable computational problems associated with most of the tests 

presented in section 2.2. This section is certainly not conclusive. In 

fact, it could be a starting point for a quest for good approximative test 

procedures, and conditions on the logical structure of questionnaires under 

which tests become tractable. 

2.2 Test procedures 

The first check we consider is whether an edit e is activatable, i.e. 

whether there is a path~ in the routing graph which cuts the variables 

involved in e. Although edits which are not activatable can do no harm in 

a questionnaire during an interview or when performing data editing, it is 

nevertheless appropriate that they should be signalled, because they are 

likely to be a result of a misspecification by the questionnaire designer. 

In any case they should be either repaired or removed from the 

questionnaire. To check the activatability of an edit is a fairly simple 

matter, as the following algorithm shows. 

Algorithm 2.2.1 (Activatability check of an edit) 

Let G be the routing graph of a q&e-type questionnaire and let A denote its 

adjacency matrix. Let e be an edit in this questionnaire and let w1 < ... <wk 

denote the variables involved in e. 

Whether e is activated or not is checked as follows. 

1. Calculate the transitive closure A* of A (see appendix A). 

* l\,k-l•wk-1 then e is activatable; otherwise it is 

Ill 

Remark 2.2.1 Algorithm 2.2.1 uses the transitive closure of the adjacency 

matrix to determine the activatability of an edit. This is clearly not 

optimal. However, we may assume that the transitive closure A* is 
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available, because it is also used to determine other properties or 

entities pertaining to the logical structure of a questionnaire. Ill 

A questionnaire designer should want to know whether the combined routing 

and edit structure in a q&e-type questionnaire is compatible, i.e. whether 

it obeys the property 1.4.1. We shall call the corresponding testing 

problem the logical consistency problem. A special case of this problem is 

the edit cluster problem. In this problem it is assumed that the routing 

graph is of an especially simple type, namely a linear digraph. 

A questionnaire designer might also be interested to know whether there 

exist paths in the questionnaire which do not activate any edit. If this is 

the case he might consider introducing extra edits to 'safeguard' those 

paths as well. The corresponding problem will be referred to as the 

Ker(7)-problem (see below for the motivation of this name). 

Another problem which a questionnaire designer might raise, is whether 

there are redundant edits, i.e. edits which can be removed from the 

original set of edits because they do not introduce any extra constraints 

on the values of the variables in the questionnaire. We shall refer to 

this as the redundancy problem. 

In the remainder of the present section we consider these problems and 

state a conjecture with respect to one other problem, viz. the 

determination of the number of edit clusters. In order to facilitate the 

discussion below, we first introduce some notation. Let G be a routing 

graph .of a q&e-type questionnaire Q&E, IT the set of paths in G and F the 

collection of edits in Q&E. Let 2F denote the power set of F, i.e. the set 

of subsets of F. Let ~:IT➔2F be the activation map which assigns to each 

path n in IT the cluster of edits activated by n, i.e. 

(2.2.1) 

where w. is the set of variables involved in e. 

A natural question is: what is the number if edit clusters in a 
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questionnaire, i.e. l1(IT)i? The following example shows that this number 

can be large. 

Example 2.2.1 (Size of 1(IT)) 

Let G=(V,E) with IVl=n be a complete routing graph, i.e. with a maximum 

number of n(n-1)12 edges. Suppose that for every edge (v,w)EE an edit has 

been specified, involving the variables v and w. Then the possible number 

of edit combinations that can be simultaneously activated (i.e. l1(IT)i) 

equals the number of paths in G. It is easy to show that the number of 

paths in G equals 

(I - A)-l 
1,n 

n-2 
2 ' (2.2.2) 

where A is the adjacency matrix of G (see also appendix B). In this case 

the strict upper triangle of A consists of entries equal to 1 and all 

remaining entries are 0. So (2.2.2) can be astronomically large for even a 

moderately large number n of variables (or n(n-1)12 of edits). Ill 

So before an attempt is initiated to calculate 1(IT) explicitly, it is 

important to know its size. Unfortunately the computational complexity of 

the determination of l1(IT)i, in case of a polynomially bounded number of 

edits, is not known to the present author. We issue the following 

conjecture. 

Conjecture 2.2.1: The determination of l1(IT)i, with a polynomially bounded 

number of edits, is a #P-complete problem. Ill 

Remark 2.2.2 As Shmoys (1988) showed the conjecture can be proved to hold 

true if there is no restriction on the number of edits 

questionnaire. 

We now consider the above mentioned problems in separate sections. 

in the 

Ill 
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2.2.1 Logical consistency problem 

As example 2.2.1 shows it is an illusion to assume that ~(IT) can be 

calculated for an arbitrary q&e-type questionnaire. So we have to be 

prepared to settle for less, and consider only a (small) sample of edit 

clusters, each of which is to be checked to satisfy property 1.4.1. (Such a 

sample can easily be obtained by generating a random path in the routing 

graph and by considering the edits it activates. A random path can be 

obtained by defining a Markov chain on the routing graph which starts in 

the source and proceeds by consecutively selecting a transition at random 

until the sink is reached.) But even verifying that a single edit cluster, 

consisting of CP-edits, is satisfiable is NP-complete, as will presently be 

shown. In fact this means that verifying the logical consistency of the 

edit and routing structure for a questionnaire with a trivial, i.e. linear, 

routing graph is already intractable, if P¢NP. 

Edit cluster problem for CP-edits 

Instance: Let a questionnaire Q&E be given, consisting of n questions, and 

containing a collection E of CP-edits. Let, as in section 1.4, the 

collection of records generated by Q&E with a correct routing structure be 

denoted by REC. Furthermore, let e be an edit cluster in E, consisting of 

the edits e 1 , ... ,ek. 

Question: Is there a record rEREC which satisfies the edits in e, i.e. such 

that 7e1 (r) A ... A 7ek(r) holds? 

Then the following theorem can be formulated. 

Theorem 2.2.1 The edit cluster problem for CP-edits is NP-complete. 

Proof It is possible to verify in time polynomial in the number n of 

questions in Q&E that a record rEREC satisfies the edits in E. Hence the 

problem is in NP. We show that it is at least as difficult as the 

satisfiability problem (SAT), which is known to be NP-complete (see Garey 

and Johnson, 1979, pp. 39 ff.). 
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Let the following Boolean expression C in conjunctive normal form be 

given 

where the clauses Ci are of the form 

for i-1, ... ,k, and where the 

v 1 , .•• ,vn>· Suppose that with 

associated. We assume that 

true, and that the literal vi 

cij 

each 

the 

is 

(2.2.3) 

(2.2.4) 

are elements from the set {V1 • •.• ,vn' 

pair {vi ,vi l a Boolean variable ui is 

literal vi is true if and only if Ui is 

true if and only if ui is false 

(i-1, ... ,n). The Boolean expression (2.2.3) is satisfied if and only if 

there is a truth assignment for each ui, i.e. an assignment of a truth

value (true or false) for each ui, such that (2.2.3) evaluates to true. 

We translate this instance of SAT into an edit cluster problem as 

follows. Let wi be a question with domain Ri-(0,1) for i-1, .. ,n. Suppose 

that the questions are from a questionnaire in which there are only 

transitions from wi to wi+l• for i-1, ... ,n-l. Hence the corresponding 

routing graph is linear, with source w1 and sink w0 • For each clause Ci 

define an edit ei as follows. With each literal cije{vp,vpl in Ci 

associate the condition 6(cij) defined as 

(2.2.5) 

Now associate the following edit ei with Ci: 

6(c. 1 ) A ••• A 6(c.k ) , 
1. 1. i 

(2.2.6) 

for i-1, ... ,k. Hence, for any clause Ci there is an edit, viz. ei, which 

prohibits Ci. It can be easily verified that the edits indeed form an 

edit cluster. Furthermore there exists a record (w1 ,a1 ) ... (wn,¾) with 
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aiERi that satisfies these edits if and only if G in (2.2.3) is 

satisfiable. Ill 

Example 2.2.2 To illustrate the proof of theorem 2.2.1 consider the 

following Boolean sentence: 

(vl V v 2 ) A (vl V v 2 V v 3 ) A (vl V v2 V v 4 ) A <v2 V v 3 V v4). (2.2.7) 

Associate a q&e-type questionnaire Q&E with this sentence (2.2.7) as 

follows. The questions in Q&E are denoted by w1 , w2 , w3 and w4 . Assume that 

they all have the domain [0,1). Suppose furthermore that the only 

transitions in Q&E are from wi to Wi+l for i=l,2,3. The edits in Q&E are 

defined as follows: 

el W1=l A w2 =0, 

ez W1=l A w2 =0 A w3=0, 

e3 W1=0 A w2 =1 A w4=0, (2.2.8) 

e4 w2 =1 A W3=l A W4=l. 

Every record generated by Q&E activates the edits in (2.2.8). These edits 

are satisfied by a record if and only if (2.2.7) is satisfiable. It is 

easy to verify that the records and 

The edit cluster problem for polyhedral edits is defined similarly to this 

problem for GP-edits. In fact the former problem is a generalization of 

the latter one. It is easy to see that the edit cluster problem for 

polyhedral edits is in NP: the verification that a record satisfies these 

edits can be carried out in time polynomial in the number of variables in 

the record. From the fact that the edit cluster problem for GP-edits is 

NP-complete, it follows that the edit cluster problem for polyhedral edits 

is also NP-complete. So the following theorem can be formulated. 

Theorem 2.2.2 The edit cluster problem for polyhedral edits is NP-complete. 

Ill 
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Because it is not known that the logical consistency problem is in NP, for 

either GP-edits or polyhedral edits, it follows from theorems 2.2.1 and 

2.2.2, and the observation that the edit cluster problem is a special case, 

that the logical consistency problem is NP-hard for both GP-edits and 

polyhedral edits. So the following theorem can be formulated. 

Theorem 2.2.3 The logical consistency problem for GP-edits and polyhedral 

edits is NP-hard. Ill 

2.2.2 Ker(r)-problem 

We shall now consider the problem how to decide whether there is at least 

one path which does not activate any edit in a questionnaire. In terms of 

the activation map, defined in (2.2.1), we can also formulate this as the 

problem to test whether the kernel of r is non-empty, i.e. whether 

Ker(r)=r- 1 (0)¢0. This explains the name of the problem ('the Ker(r)

problem') introduced above. In fact the Ker(r)-problem is a decision 

problem of the following type. 

Ker(r)-Problem 

Instance: G=(V,E) is a routing graph and W=(W1 , ... ,WP) is a collection of 

subsets of V, such that each W1 lies on at least one path in G. 

Question: Is there a path in G which does not cut any W1 ? 

Then the following theorem holds. 

Theorem 2.2.4 The Ker(r)-problem is NP-complete. 

Proof For a given instance of the Ker(r)-problem it is possible to verify 

in time polynomial in the number lvl of questions that a path in Gisin 

Ker(r). Hence the problem is in NP. In the remainder of the proof we show 

that there is a transformation from the satisfiability problem SAT to the 

Ker(r)-problem. 

Let a Boolean expression Gin conjunctive normal form be given as in the 
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proof of theorem 2.2.1, from which we also borrow the notation and 

interpretation of the symbols. We construct a routing graph G which 

corresponds to the Boolean expression C, as follows. With each clause Ci we 

associate a layer of vertices Li in G, i-1, ... ,k. With each literal cij 

appearing in Ci we associate a vertex vij. Furthermore we add a source 

which is connected to every vertex in layer L1 (and to no other vertices), 

and also a sink to which every vertex of layer 4 is connected (and to no 

other vertices). The vertices in each layer are connected by edges to each 

vertex in the layer with the next-higher index (if any). These are the only 

edges in G. 

Let a hypothetical questionnaire with Gas its routing graph be given. 

Assume that the edits in this questionnaire have the following property. 

For every pair of vertices in G which 

1. belong to different layers, and 

2. are labeled by literals corresponding to the same Boolean variable ui, 

but with opposite truth values, i.e. v 1 and vi, 

an edit is defined, and there are no other edits. Then it is easy to 

verify that there is a path~ in G which does not activate any edit, i.e. 

~EKer(7), if and only if C is satisfiable. Ill 

Example 2.2.3 To illustrate the proof of theorem 2.2.4 consider the Boolean 

sentence (2.2.7), and associate the routing graph in exhibit 2.2.1 with 

this sentence. 
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Exhibit 2.2.1 A routing graph with a path in Ker(~) 

source 

layer 1 

v. layer 2 

layer 3 

layer 4 

Assume that this routing graph is from a q&e-type questionnaire in which 

edits are defined for each pair (vi,vi) of questions from different 

layers. Then a solution to (2.2.7) corresponds to a path in this routing 

graph which does not activate any edit, and vice versa. The encircled 

vertices in the routing graph in exhibit 2.2.2 define such a path. /// 

2.2.3 Redundancy problem 

The final problem we consider in section 2.2 is the redundancy problem, 

which we shall first describe more formally for CP-edits. Let Q&E be a 

q&e-type questionnaire with a set E=(e1 , ••• ,ep) of edits. An edit eEE is 

redundant if there exist edits e j 1 , ••. , e j k EE\ ( e) , such that e, ej1' ... ,ejk 

are always simultaneously activated and furthermore such that holds 
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e(r) => e. (r) v ... v e. (r) , 
J1 Jk 

(2.2.9) 

for all records rEREG which activate e, ej 1 , ... ,ejk simultaneously. We can 

now formally define the redundancy problem for GP-edits. 

Redundancy problem for GP-edits 

Instance: Let Q&E be a q&e-type questionnaire in which a set E-(e1 , ... ,ep) 

of GP-edits is defined. 

Question: Does E contain a redundant edit? 

Remark 2.2.3 A redundant edit can, as its name already suggests, be removed 

from a set of edits defined in a questionnaire, without affecting the 

logical structure. Of course it can also be absorbed into the composite 

edit to the right of the implication arrow in (2.2.9). /// 

The redundancy problem can be split into two subproblems. The first one is 

to find, in a given set of edits, those edits, which are always 

simultaneously activated. The second one is to check whether there is a 

subset of these edits, for which the edits contained in it obey a Boolean 

expression such as (2.2.9). We shall study these subproblems more closely 

now, starting with the subproblem on simultaneous activatability. 

On the set of edits of a q&e-type questionnaire we can define a digraph 

structure which indicates which edits always activate each other. This 

digraph structure will be called a dominator graph. It is defined as 

follows. Let W1 and W2 be sets of variables involved in edits e 1 and e 2 

respectively. We shall say that e 1 dominates e 2 , in notation e 1 ➔e2 , if any 

path~ cutting W1 also cuts W2 , i.e. 

(2.2.10) 

Alternatively expressed, e 1 ➔e2 means that if e 1 is activated by a record 
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rEREC then so is e 2 . If e 1 dominates e 2 then (e1 ,e2 ) is an edge in the 

dominator graph, and there are no other edges in it. Note that the 

domination relation is reflexive and transitive but not (necessarily) 

symmetric. The following algorithm can be used to calculate a dominator 

graph. 

Algorithm 2.2.2 (Calculation of a dominator graph) 

Let G be the routing graph of a q&e-type questionnaire Q&E, with adjacency 

matrix A. Let A* denote the transitive closure of A. Let E={e1 , ... ,epl be 

the set of edits in Q&E and let Wi={vi , ... ,vi } with vi< ... <vi denote 
1 ki 1 ki 

the set of variables involved in ei (i=l, ... ,p). 

The edges of the dominator graph for E are calculated by carrying out 

the following steps for each pair Wi, Wj: 

1. Consider the set of slices 

([vi ,vi ]),([vi ,n))l generated by Wi, and determine the subset Sij 
ki-1 ki ki 

of slices which contain at least one element of Wj. 

2. Compute the segments of the slices in Sij from A* as indicated in 

section 1.3. 

3, Check for each slice aESij whether all elements of Wj contained in it 

are cut-points of the segment corresponding to a (see appendix A for an 

algorithm to calculate cut-points in a routing graph). If this holds 

then ei ➔ej; otherwise this relation does not hold. 

4. To show whether ej ➔ei or not, repeat all steps above, after having 

reversed the roles of Wi and Wj. /// 

To illustrate the concept of a dominator graph we provide some examples in 

exhibit 2.2.2. 
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Exhibit 2.2.2 Examples of routing graphs plus edits and their dominator 

graphs 

b. 

2 

e, 

4 ./~., 
6 

7 

C. e, 
1 

~ 
2 

e, r,, 
3 

4 « 04 

A dominator graph D can be used to find all sets of edLts in a given q&e

type questionnaire which are always simultaneously activated. This can be 

done by calculating its so-called strong components. A strong component S 

in Dis a maximal set of vertices in D such that for any two vertices v,wES 

there is a path in S from v tow. The strong components in D can be 

determined by applying depth-first searches to D (see appendix A for 
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details). Note that the strong components in a dominator graph consist 

precisely of the edits which are always simultaneously activated. 

The sets of edits in a questionnaire that are always simultaneously 

activated, can be calculated in time polynomial in the problem size, i.e. 

the number of edits in the questionnaire. 

We now come to the second subproblem, viz. the problem to check whether 

there are edits which are always simultaneously activated and which satisfy 

an expression such as (2.2.9). It is clear that we can restrict our 

attention to the edits in a strong component of the dominator graph 

corresponding to the questionnaire. Instead of considering the redundancy 

problem, we consider the opposite problem, viz. the irredundancy problem 

for these edits. The reason is that this problem is evidently a member of 

NP, because a possible solution can be verified to be a veritable solution 

in time polynomial in the problem size. More specifically, we consider the 

following problem. 

Restricted irredundancy problem for GP-edits 

Instance: Let Q&E be a q&e-type questionnaire, and let a set E-(e1 , ... ,epl 

of GP-edits form a strong component in the corresponding dominator graph. 

Question: Is e 1 irredundant with respect to (e2 , ... ,epl, i.e. is there at 

least one rEREG which activates the edits in E and is such that 

does not hold? /// 

The following theorem can be proved. 

Theorem 2.2.5 The restricted irredundancy problem for GP-edits is NP

complete. 

Proof Note that the negation of (2.2.11) is equivalent to 
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(2.2.12) 

By a polynomial transformation from SAT, similar to that employed in the 

proof of theorem 2.2.1, the NP-completeness of the restricted irredundancy 

problem is established. The only difference is that e 1 is defined as 7e1 in 

theorem 2.2.1. (Note that this is also a GP-edit, although not a normal CP

edit.) Ill 

It is clear that the decision problem as to whether any edit in a set E of 

GP-edits, forming a strong component in a dominator graph, is irredundant 

(in the sense of the restricted irredundancy problem) is also NP-complete. 

It is only necessary to check for each edit in E whether it is irredundant 

with respect to the remaining edits in E. 

Remark 2.2.4 Let Ebe a set of GP-edits which all involve the same two 

variables. Clearly the edits in E are always simultaneously activated. It 

follows from Lodi et al. (1979, Algorithm Al in section 5) that for Ethe 

restricted irredundancy problem can be solved in time polynomial in the 

number of edits in E. In addition, this algorithm Al yields a set of edits 

equivalent to E, but without any redundant edits. Ill 

In view of the preceding discussion the following theorem can be 

formulated. 

Theorem 2.2.6 The redundancy problem for GP-edits is co-NP-complete. Ill 

The restricted irredundancy problem for polyhedral edits is similarly 

formulated as that for GP-edits. It is straightforward to see that the 

former problem is in NP. Furthermore since the restricted irredundancy 

problem for GP-edits is NP-complete, it follows that the corresponding 

problem for polyhedral edits is also NP-complete. The search for strong 

components is independent of the form of the edits. Hence we can formulate 

the following theorem, which also concludes this section. 
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Theorem 2.2.7 The redundancy problem for polyhedral edits is co-NP 

complete. Ill 

2.3 Testing in practice 

In view of the results obtained in the preceding section, we consider in 

this section some of their implications with respect to the testing of 

questionnaires in practice. It should be stressed in the first place that 

the computational complexity of the decision problems considered there are 

worst-case results. It is very well possible that there exist algorithms 

to solve them, which perform rather well in practice, although they are 

known to be inefficient in some instances. The simplex algorithm used in 

linear programming provides an outstanding example of this situation. The 

moral is that, in order to judge the efficiency of an algorithm, it is not 

realistic to consider worst-case results only. The performance of an 

algorithm on an 'average' problem instance of a certain problem type is of 

importance as well. However, a worst-case result is a guarantee for the 

performance of an algorithm, whereas an 'average case' result is not. 

Many results obtained in the previous section teach us that we should 

not expect to be able to test the logical structure of a questionnaire for 

100%. Maybe we should view this testing problem more as a problem in 

statistical quality control applied to a complex apparatus. Instead of 

demanding a 100% guarantee as to its flawless behaviour, we should be more 

modest and settle for probabilistic reassurance rather than absolute 

certainty. 

For instance, if it is necessary to test whether a property holds for 

all paths in a routing graph, it may be practically impossible to carry out 

this test for every path, because their number is exceedingly large. 

Instead one could generate a finite sample of such paths first, and then 

carry out the test for each path in the sample. (Assuming that this is 

itself not an intractable problem. If it is, then one might resort to a 

probabilistic testing procedure in this case as well.) 
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The results in the preceding section hold for general questionnaires, 

because there are no restrictions on the logical structure other than the 

Markovity of the routing structure and the compatibility of the routing and 

edit structure. It is interesting to study the logical structure of 

actually used questionnaires in search of such characteristics. It is then 

perhaps possible to prove that (some of) the test procedures discussed in 

the preceding section, when limited to such questionnaires, are tractable. 
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3. DATA EDITING 

3.1 Introduction 

In the present chapter we consider the problem of checking records and 

identifying possible errors. An error is understood here as 'not in 

agreement with the logical structure of the corresponding questionnaire'. 

The intention is to replace the incorrect values by others which yield a 

correct record, i.e. one that is in agreement with the logical structure of 

the questionnaire. The objective in this data editing process is to retain 

as much information in the original record as possible, and to change the 

values of those variables which are most suspicious of being in error. 

We assume that the error localization process is carried out in three 

steps, as was already briefly explained in section 0.2: range checks, a 

routing check and finally edit checks. It should be stressed that this is 

an approximation method and not an exact one. The method can be described 

as follows. Let the admissible range of a variable consist of its domain 

plus a special missing value, called the 'routing skip' (cf. section 4.2). 

(A variable which has been assigned a routing skip is not on the path 

through the questionnaire that has been taken in the interview.) If a 

variable in a record is found to have a value outside the admissible range 

a special missing value is substituted ('missing due to out of range'; cf. 

section 4.2). If a record is found to violate either the routing or the 

edit structure, an attempt is made to localize possible errors. After the 

routing errors have been localized, the record is partially corrected. 

This means that for each suspect value (including a 'missing due to out of 

range') an appropriate transition set is substituted, which is chosen in 

such a way that a record with a correct routing structure is generated. 

Because the range checking is a fairly simple matter, we shall not dwell 

on it any longer. We start our discussion on data editing in section 3.2 

with a consideration of the problem of localizing and correcting routing 

errors. It is noted that the paths in a routing graph of a questionnaire 

can be viewed as strings recognized by a finite state automaton. This 

allows us to employ an algorithm due to Wagner (1974) to localize and 

correct routing errors in records. 



-56-

In section 3.3 we switch to a topic which is preparatory to the 

localization of edit errors, viz. error models. Such models provide the 

tools to calculate probabilities that certain variables in a record have 

incorrect values, given that this record violates certain edits. These 

error probabilities can then in turn be used to identify a set of variables 

with the highest (or more modestly: a high) probability of being in error. 

Some authors (e.g. Liepins et al., 1982) have formulated the objective of 

error localization problem somewhat differently. For this formulation a set 

of nonnegative weights, so-called error weights, on the set variables 

involved in a collection of edits is required. They call the resulting 

optimization problem the Minimum Weighted Fields to Impute (MWFI) problem. 

The MWFI problem is formulated in section 3.4. In section 3.3 some 

plausible error weights are given. Furthermore it is shown that under 

certain conditions the formulation of edit error localization using error 

probabilities is equivalent to error localization using error weights. 

In section 3.4 we discuss the problem of localizing edit errors. First 

we consider the formulation of edit error localization as an optimization 

problem. In fact we shall consider several formulations of this problem. 

Although it is clear from this discussion that edit error localization is 

NP-hard, we nevertheless consider two approaches to solve this problem for 

questionnaires with GP-edits and such that all answer categories of 

questions are finite. These approaches stem from Fellegi and Holt (1976), 

and Garfinkel (1979), and they are slightly adapted to fit into the 

framework developed in the present book. We conclude section 3.4 with some 

general observations on the edit error localization problem. 

3.2 Localizing and correcting routing errors 

Let a questionnaire Q be given containing n questions v 1 , ... ,vn. Let the 

routing graph of Q be denoted by G=(V,E). IT and REC are the collection of 

paths in G and the collection of records with a correct routing structure. 
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Assume 

subjected to a routing test, where ai is either a regular value in the 
j 

domain of vij or a missing value (e.g. a 'missing due to out of range'), 

which we assume to be represented by the domain Rij. If r fails the 

routing test, it is understood that the possible errors are to be localized 

and corrected, such that an incomplete record r' results which has a 

correct routing structure, i.e. r'EREC. Then r is said to be partially 

corrected, and the resulting record r' is a partially corrected record. 

The question is: How could we proceed to calculate such a record r'? 

First of all it should be recalled from section 1.3 when a record r has 

a correct routing structure. Recalling the conditions given in section 

1.3, we can say that r has a correct routing structure if the first pair in 

r corresponds to the source in G, the last pair to the sink in G and every 

value (or transition set) associated with a variable implies the correct 

transition. In other words, r-(vi 1 ,ai 1 ) ... (v1 k,a1 k) is a record with a 

correct routing structure, if the following conditions hold: 

1. vi 1 is the first question in the questionnaire. 

2. vik is the last question in the questionnaire. 

3. Either a 1 =R1 1 or a 1 ER1 i , for i=l, ... ,k-1 if k>O. j j•j+l j j•j+l (3.2.1) 

4. Either a 1 k ER1 k or aik =R1 k 

If in addition every value in r is regular then r is a complete record. 

Next we observe that for the routing structure the exact value of a 

regular value a 1 appearing in a pair (vi,a1 ) is unimportant. What is 

important is the transition set Rij to which ai belongs. Therefore we map r 

into the uniquely defined object rr, which we shall call a string, and 

which is obtained from the incomplete record r by replacing each regular 

value appearing in r by its corresponding transition set. Values which are 

domains remain unchanged. 

Next, we can make the observation that the path set IT in G can be viewed 

as a so-called regular language (cf. Hopcroft and Ullman, 1969, section 3 

for a discussion of regular languages). Characteristic for a regular 
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language is that its elements, consisting of certain strings of symbols 

from a finite alphabet, can be recognized by a finite state automaton 

(FSA). Starting in its initial state FSA reads the symbols in a string 

one-by-one, from left to right, and determines a state where to jump to, 

immediately after a symbol has been read. FSA may either remain in the 

same state or jump to another one. Whether a jump to another state occurs 

depends on the symbol last read and the state in which FSA is at that 

moment. (The jump behaviour of FSA can be concisely described by a so

called state diagram.) If by the time FSA has read the whole string it is 

in a special state, called a final state, then the string is accepted as a 

member of the regular language which FSA is supposed to recognize. 

Otherwise, FSA is not in a final state and therefore the string is not 

accepted as an element of this language. 

The observation that IT can be viewed as a regular language is in itself 

not remarkable: any finite set can be viewed as a regular language (cf. 

Hopcroft and Ullman, 1969, p. 36 theorem 3.7). In our case, however, there 

is a very natural interpretation of the routing graph G as the state 

diagram of an FSA recognizing the elements of IT. The interpretation is as 

follows. The variables v 1 , ..• ,vn in Q (i.e. the vertices in G) are the 

states in FSA, the source v 1 of G is the initial state of FSA, the sink vn 

of G is the unique final state-of FSA, the edges in G indicate the possible 

transitions between states in FSA, and the pairs (vi ,Rij) of variables and 

transition sets and the pairs (vi,R1 ) of variables and domains form the 

symbols in the input alphabet I of FSA. Note that III-IVl+IEI. The jump 

behaviour of FSA is described as follows. Suppose FSA is in state vi, and 

it reads a symbol (v1 ,Rij) for some j. In that case it jumps to state vj. 

For all other cases, FSA remains in state vi. Initially, FSA is in state 

v 1 . If FSA has read an input string and it is in the final state vn, then 

(and only then) the string is an element of IT, as one easily verifies. 

With this observation in mind, we can apply an algorithm due to Wagner 

(1974), which changes an incorrect string into a string of the regular 

language, i.e. a path in G, with as few changes as possible. These changes 

can be classified into the following three types, which are called 

elementary repairs. 
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(v1 ,a1 ), with a 1 -R1 J for some j or a 1 =R1 , 

is replaced by (v1 ,R1k) for some k; 

if a 1 -R1 J then k.<j. 

2. inserting: (v1 ,R1 J) is added for some j. 

3. deleting: (v1 ,a1 ), with a 1 -R1 J for some j or a 1 =R1 , 

is deleted. 

(3.2.2) 

Wagner's (1974) algorithm calculates the least number of elementary 

repairs necessary to transform a record r with an incorrect routing 

structure into a record r'EREC. It is based on dynamic programming. Below 

we give a brief description of this algorithm, somewhat adapted to our 

purposes. For details and proofs the reader is referred to Wagner (1974). 

In the discussion to follow we shall use a mixture of formal language 

'jargon' and of terminology pertaining to questionnaires. 

Let F(j,s) denote the minimum number of elementary repairs which have to 

be applied to the first j symbols in rr, in order to obtain a string rr' 

which forces FSA into states. (Note that it is only necessary to know the 

first j symbols of rr'; the remaining symbols are immaterial.) Furthermore 

let T(t,s,c) be the smallest number of elementary repairs necessary to 

change the symbol c into a sequence of symbols which forces FSA from state 

t into states. Then the following recursion holds for F: 

F(j,s) - min (F(j-1,t) + T(t,s,rr<j>)), 
t 

for j~l, where rr<j> denotes the j-th symbol in rr, and 

{ 
0 if s=v1 , the source of FSA 

F(O,s) -
"' otherwise. 

(3.2.3) 

(3.2.4) 

Let lrrl denote the length of the string rr, i.e. the number of symbols in 

r r. The idea of Wagner's algorithm is to calculate F( Irr I, vn) and then, by 

tracing back, to find the state t which was used to calculate F(lrrl,vn) 

from F(lrrl-1,t) in (3.2.3), and then the state u which was used to 

calculate F(lrrl-1,t) from F(lrrl-2,u) in (3.2.3); etc., until the source 
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of FSA is reached. In this way a string/path Tr in the routing graph 

is constructed backwards. 

We obtain a partially corrected record r' from Tr and r by applying the 

following replacement policy to the pairs in if (vi,Ri,j)ETr and 

and 

replacements are allowed. 

then replace (vi ,Ri,j) by (vi,ai) in Tr. 

Let r' be the result of applying 

No other 

all these 

replacements to Tr. It is clear that r'EREC. By comparing r' tor it is 

easy to find the elementary repairs that have been applied tor in order to 

obtain r'. 

In order to calculate F, consider T first. Let P(t,s) denote the length 

of the shortest sequence of symbols that forces FSA from state t to state 

s. Define L(t,s,c) for states t ands of FSA and a symbol c as follows: 

{ 
1 if c appears in at least one of the shortest sequences 

L(t,s,c) = of symbols that force FSA from state t to states, 

0 otherwise. (3.2.5) 

Then we can express T(t,s,c) as follows 

{ 
1 if P(t,s)=O 

T(t,s,c) = 
P(t,s) - L(t,s,c) otherwise. 

(3.2.6) 

In (3.2.5) and (3.2.6) we need only consider states t, s such that there is 

at least one path from t to s. 

Now P(t,s) and L(t,s,c) can for instance be determined by a slightly 

adapted algorithm of Floyd, which calculates the shortest distances between 

all pairs of vertices in G (cf. appendix A). Another algorithm due to 

Wagner (1976) can also be useful in case G has relatively few edges. 

It should be noted that the information on the function T needs to be 

calculated and stored in the memory of a computer only once. In fact we 

should calculate and store the following information with respect to T. 

For every pair of variables/states t ands, such that there is a path from 

t to s, and for every transition set Rt,ucRt as well as for each domain Rt, 
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we should calculate and retain in random-access memory the T-table 

consisting of quadruples (t,s,c' ,T(t,s,(t,c')), for (t,s)eE* and c'=8t.,u or 

c'=8t_. This amounts to at most 4*IE*l*III numbers, where IE*I is the 

number of edges in the transitive closure of G. Because IE*l~n(n-1)12 and 

IIl=IVl+IEl=n+IEI, we find that this number does not exceed 2*n(n-l)* 

(n+IEI). Hence in the worst case, when IEl=n(n-1)12, we find that there 

are at most of the order n4 numbers required. Likewise, one can find that 

the time required for building the T-table is at most of the order n4 time 

units. Application of Wagner's algorithm to a string rr requires 

1. The calculation of F(lrrl ,vn). This can be done by consulting the T

table (which is assumed to reside in random-access memory) at most IE*I 

times for any symbol in rr. Hence the total amount of time for the 

calculation of F(lrrl,vn) is at most of the order lrrl*IE*I time units, 

which, in turn, is at most of the order n3 time units. 

2. The repairing of the string, using the above-mentioned backtracing 

procedure. This does not exceed of the order lrrl*IVI time units, which 

is at most of the order n2 time units. 

Wagner's algorithm applied to a string rr requires the F-values to be 

stored, i.e. an amount of numbers at most in the order of lrrl*IVI; this is 

at most in the order of n2 numbers. Hence we can conclude that Wagner's 

algorithm has a polynomial space and time complexity. 

Remark 3.2.1 The routing graph G may have non-trivial cut-points, i.e. cut

points which are neither equal to its source nor its sink. In that case it 

is possible to decompose the routing graph into several routing sub-graphs. 

Accordingly, a record r can be split into several substrings, each of which 

can then be independently processed, using the procedure described above. 

If the necessary equipment were available, this processing might even be 

carried out in parallel. Ill 
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3.3 Edit error models 

In this section we consider error models. Such models can be used to derive 

the probabilities that variables, each of which is involved in at least one 

edit from a collection of violated edits, are in error. These error 

probabilities can be used to find the most probable set of variables with 

incorrect values, for a given faulty record. Instead of working with error 

probabilities, it is also possible to use error weights. In a sense these 

weights are inversely proportional to error probabilities: the larger the 

weight associated with a variable, the smaller the probability that it is 

in error. The reason for the introduction of error weights is that they are 

sometimes more convenient in formulating the error localization problem for 

edits. 

Fellegi and Holt (1976) assume that all variables have the same error 

weights although they hint at the possibility of using unequal error 

weights (Fellegi and Holt, 1976, section 7). We remark at the outset that 

these error models are not limited to the Fellegi-Holt approach, but are 

useful in any approach to data editing. 

Initial work on error models for data editing (not to be confused with 

outlier detection) stems from Naus et al. (1972). Further developments can 

be found in e.g. Liepins and Pack (1980, 1981), Liepins (1980), Liepins et 

al. (1982). In the latter two works it is shown that the assumption of 

independency of variabes being in error, leads to the MWFI formulation of 

error localization, which uses error weights. 

3.3.1 Error probabilities 

We start our discussion with an example of Naus et al. (1972), after having 

introduced some necessary notation. Let r=(v1 ,a1 ) .•• (v0 ,a,,) be a record 

with values in the code space R1 x ... ><R,,. In the example and subsequent 

discussion we shall assume that r is a realization of a multidimensional 

random record ! = (v1 ,~1 ) ... (v0 ,~). We define the random variable ~j 

as follows 
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£. = { 
1 if variable vJ 

0 otherwise. 

is in error 

·J 

Then define the following events 

A - [c - 1) j -j 
and B = [c. = OJ 

j -J 

(3.3.1) 

(3.3.2) 

Assume that we have records with only two variables, i.e. n=2, and that R1 

[0,1). A record r - (v1 ,~1 )(v2 ,~) can be viewed as a random 

variable with values in R1 xR2 . Let e denote an edit and EcR1 xR2 the 

corresponding edit set. Suppose that A1 and A2 are independent events, 

with P[A1 ]-p1 and P[B1 )-l-p1 -q1 , for i=l,2. It trivially holds that 

(3.3.3) 

One might perhaps be tempted to think that the conditional probabilities 

P[A1 IA1 uA2 ) and P[A1 l!E E] are equal. But this is in general not the case 

as the following reasoning shows. It is easy to verify that holds 

P[A1IA1U A2l = 
P1 

P1 + qlp2 
(3.3.4) 

Now suppose that the following conditional probabilities hold 

P[: E EIB1 n B2l 0 ' 

P[: E E!A1 n B2J = 1/3 

P[: E E!B1 n A2 ] = 1/3 (3.3.5) 

P[: E EIA1 n A2] 1/2 

From (3.3.5) we can calculate with the help of Bayes' theorem, using the 

independence of A1 and A2 , that 
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(3.3.6) 

Ill 

Although we may assume that (3.3.4) and (3.3.6) are different in general, 

Naus et al. (1972) use conditional distributions like (3.3.4) to 

approximate (3.3.6). They motivate this choice in the appendix of their 

article. 

The idea behind the approach of Naus et al. (1972) is to express certain 

conditional distributions in terms of so-called error rates, i.e. joint 

distributions of certain events Ai. In practice it may be impossible to 

estimate all required error rates because they are too numerous, in view of 

the sample from which they have to be estimated. 

Assume that we have a record r which violates two edits e and f. Let V 

and W denote the respective sets of variables involved in e and f. Assume 

that variable u is in VuW. We shall give an expression for the probability 

that u is in error, given the circumstance that at least one variable in V 

is in error and at least one variable in Wis in error, i.e for 

It is easy to verify that (3.3.7) can be expressed as 

P[Au] + P[S] + P[T] - P[SUT] - P[AuUS] - P[AuUT] + P[AuUSUT] 

P[S] + P[T] P[SUT] 

(3.3.7) 

(3.3.8) 

where S=UieV Ai and T=Uiew Ai. Each of the terms occurring in (3.3.8) can 

be expressed as sums of error rates by using the method of inclusion and 

exclusion. In this case, however, it would be more convenient to work with 

'correctness rates' instead of with error rates, where we define 

correctness rates as simultaneous densities of the events Bi, which are 

given in (3.3.2). In case uEVnW, (3.3.8) reduces to 
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P[S] + P[T] - P[SUT] ' 

because f\,US=S and f\,UT=T. In case uEV\W, we can express (3.3.8) as 

PAu+ PT - P[AuuT] 

PS+ PT - P[SUT] 

because 1\, US=S. 

(3.3.9) 

(3.3.10) 

In Naus et al.(1972) the situation where two edits are violated is 

called the two-test case. It can be generalized to the k-test case, where 

k edits are assumed to be violated. The equivalent expressions of (3.3.8) 

look cumbersome for the k-test case. Matters simplify considerably, 

however, if the events Ai are assumed to be mutually independent. It is, 

however, doubtful whether this is a realistic assumption. The error models 

under the independence assumption are called independence models by Naus et 

al. (1972). 

3.3.2 Error weights 

Instead of error probabilities it is also possible to introduce error 

weights to indicate the error proneness of values in a record being in 

error. In fact these weight can be introduced independently of any error 

model. However, as Liepins and Pack (1980, 1981), Liepins (1980) and 

Liepins et al. (1982) have shown, under some conditions independence models 

are equivalent to a model based on an MWFI formulation of error 

localization. In fact this result is easy to derive. Let V denote the set 

of variables in a record with regular (i.e. nonmissing) values and let W be 

an arbitrary subset thereof. Assuming an independence model, the 

probability Pw that precisely the variables in Ware incorrect, is given by 



-66-

(3.3.11) 

This shows that trying to find a set W which maximizes Pw is equivalent to 

searching for a set W which minimizes 

(3.3.12) 

because the expression in (3.3.12) is the negative logarithm (with respect 

to some base) of the second expression on the right-hand side of (3.3.11), 

without the first product, which is independent of W. In order to obtain an 

MWFI formulation, each term in (3.3.12) should be nonnegative, which is 

equivalent to the requirement that pi<l/2 for iEV. 

In Liepins and Pack (1980) three alternative series of error weights ci 

(iEV) are suggested. Their performances in imputation processes were 

investigated in a simulation study carried out by the authors. The 

alternatives considered are 

1 . 

1/(1 +#times variable i is involved in violated edits) . 

3) (1 +#times variable i is involved in satisfied edits) 

(1 +#times variable i is involved in violated edits) 

(3.3.13) 

As a general conclusion from their simulation study it is reported that 

method 3 was an improvement over both methods 1 and 2, both of which 

performed similarly. The authors hasten to add, nevertheless, that these 

results can hardly be interpreted as conclusive. 

In Liepins and Pack (1981) it is remarked that simulations have shown 

that if the error rate is low, an MWFI approach can be expected to perform 
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successfully. In Liepins and Pack (1980, 1981) there are some results 

presented, derived from simulations, showing the inverse dependency of the 

average error probability and the average number of 'correct' imputations 

('correct' in the sense that the original record and the imputed record are 

identical). 

3.4 Localizing edit errors 

In section 3.4.1 we discuss several formulations of the edit error 

localization problem, and consider their respective computational 

complexities. In fact it is shown that edit error localization is probably 

intractable, i.e. NP-complete or NP-hard, under any of the formulations 

presented there. 

In sections 3.4.2 and 3.4.3 we present two algorithms for GP-edit error 

localization, in case all domains of the variables are finite. These 

algorithms have been proposed by Fellegi and Holt (1976) and Garfinkel 

(1979), but are adapted so as to fit into the framework of the present 

book. In view of the results in section 3.4.1 these algorithms cannot be 

efficient but they are interesting enough to be considered. 

In section 3.4.4 we discuss a probabilistic method to verify whether an 

incomplete record is repairable, i.e. can be replaced by a complete record 

by substituting regular values for the missing ones. Furthermore we 

introduce a 'logical' method to localize edit errors in a faulty record. 

This latter approach can be viewed as the 'logical' counterpart of the 

method of Naus et al. (1972) to construct error models. 

3.4.1 Formulations of the problem 

The localization of edit errors in records can be defined as an 

optimization problem in several ways. We shall present two basic 

formulations, one based on error weights and the other on error 

probabilities. From these basic formulations it is possible to derive some 

other ones, which yield only approximative solutions when viewed as 
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solutions of a problem in one of the basic formulations. 

The intuition behind both basic formulations is the same. They only 

differ in the use of either error weights or error probabilities. This 

basic intuition is the following. Let a (possibly partially corrected) 

record r be given that activates a subset Er of the set E of edits. 

Remember that r can only activate an edit e in E if the variables involved 

in e are present in r. Suppose furthermore that r violates a subset Erv of 

Er. We should like to replacer by a partially corrected record r' such 

that 

1. r' idles all edits in Erv· 
2. r' is repairable. 

3. r' has the same routing structure as r. 

4. r' differs from r in as few variables as possible. 

5. The variables for which rand r' have different values, are suspicious 

to have incorrect values. 

We briefly comment on these points. The first requirement is very natural 

because otherwise there would still be an inacceptable combination of 

values in r'. In view of point 3 it is sufficient to replace the (regular) 

values of suspicious variables in r by the transition set to which they 

belong. Such a transition set can be interpreted as a missing value 

('missing due to edit violation'). Points 2 and 3 are conditions appealing 

to the logical structure of the corresponding questionnaire. Recall that 

property 1.4.1 guarantees the existence of such an r': replacing all 

regular values of variables appearing in the record by missing ones, i.e. 

by the transition sets to which the corresponding regular values belong 

yields a path, and there is at least one record in this path which 

satisfies all edits in Er. (In view of the results in chapter 2 the 

required property 1.4.1 may be impossible to verify for a particular 

questionnaire, because the number of edit clusters can be exceedingly 

large.) To find such an r' is another matter (cf. theorem 3.4.1 and theorem 

3.4.2 below). Point 4 expresses the intention to retain as much information 

in r as possible. This seems a natural requirement. Point 5 assumes that 

error probabilities or error weights have been calculated. If this is not 
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the case, however, then it is sometimes implicitly assumed that all 

variables in r which are also involved in the edits in Er, have an equal 

probability of being in error. For some formulations of edit error 

localization it is necessary to combine conditions 4 and 5 into one 

requirement. 

Before we proceed, we give an example which shows that condition 2 

above, i.e. with respect to the repairability of r', is a condition which 

cannot be discarded. 

Example 3.4.1 (Non-repairable record) 

Let a record contain 6 variables, denoted by v 1 , ... ,vs. We assume that the 

corresponding questions occur in this order in a questionnaire. Let R1 be 

the domain of v 1 , l~i~6. Suppose we have R1=R3={0,l}, R2=Rs={0,l,2}, 

R4=Rs={0,l,2,3}. Suppose furthermore that five edits e 1 have been defined, 

to which the following edit sets E1 correspond: 

E1 =R1 X {0,1) X {0} X R4 X {0,1) X Rs 

E2={1} X R2 X {l) X {0,1) X Rs X {2,3) 

E3 ={ 0} X {1,2) X R3 X { 1, 2, 3 l X Rs X Rs (3 .4.1) 

E4 =R1 X {0, 2 l X R3 X R4 X Rs X {0, 1) 

Es={l} X R2 X R3 X {0} X {1,2) X Rs 

Suppose that we have the record r=(v1 ,l)(v2 ,0)(v3 ,0)(v4 ,0)(vs,l)(vs,0). 

This record activates all five edits in (3.4.1). An inspection shows that 

it violates edits e 1 , e 4 and es, or, alternatively expressed, rEE1nE4nEs. 

Evidently there is no single variable which idles all violated edits. It 

is easy to verify that the variables v 2 or Vs are involved in the violated 

edits. However, it is impossible to impute values from R2 and Rs for v2 

and Vs respectively in order to obtain a correct record. Ill 

In order to give the first basic formulation of edit error localization, we 

first introduce some notation. Let r be a record which has activated a set 

Er of edits and which violates the edits in a subset Erv thereof. Let 

er,i denote an edit in Er, for i=l, ... ,k, and erv,i an edit in Erv• for 
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i=l, ... ,m. Furthermore assume that Wr,i and Wrv,i are the sets of 

variables involved in edits er,i and erv,i respectively. Let Wr=Ui~lWr i 

and Wrv=u1 : 1 Wrv,i denote the sets of variables involved in the edits in 

Er and Erv respectively. Let Frv denote the edit set corresponding to the 

edits in Erv· Using the notation established in section 3.3, we can 

formulate edit error localization as the problem to find a subset KcWrv 

such that KnWrv,i~¢, for i=l, ... ,m, and such that 

(3.4.2) 

has a maximum value (interpreting r as a randomly drawn record), and such 

that r', which is the partially corrected record, obtained from r by 

replacing the values of the variables in K by missing values (i.e. 

appropriate transition sets) is repairable. In order to facilitate 

computations, however, we apply the same approximation to (3.4.2) as was 

given by Naus et al. (1972), and which was also used in section 3.3. We 

then find that, instead of (3.4.2), we should identify a subset K as above, 

such that the conditional probability 

P[nJ.EK AJ. n n. w \KB. lu. w A.] , 
JE r J JE rv J 

(3.4.3) 

is maximized, subject to the additional constraint with respect to the 

repairability of r'. 

Note that checking whether a partially corrected record is repairable 

for GP-edits is similar to asking whether a Boolean expression is 

satisfiable. Hence checking the repairability of a partially corrected 

record is NP-complete (cf. also theorem 2.2.1). It is also true that the 

decision versions of the optimization problems formulated above for GP

edits are NP-complete. The corresponding optimization problems themselves, 

however, are NP-hard. It also holds that the decision versions of the 

optimization problems for polyhedral edits are NP-complete, whereas these 

optimization problems themselves are NP-hard. 

Theorem 3.4.1 Edit error localization formulated in either of two ways 

above is NP-hard for GP-edits as well as for polyhedral edits. Ill 



- 71-

Another basic formulation of the edit error localization problem is the 

Minimum Weighted Fields to Impute (MJvFI) formulation, which runs as 

follows. Assume that with each variable vi in ran error weight ciER.+ is 

associated. Let C denote the column vector of these values. Let z be the 

0-1 column vector with as many components as there are variables in wrv, 

i.e. lwrv I, such that Zi=l if the values of vi in r and r' differ, and 

Zi=O otherwise. In case Zi=l the value of vi in r is regular and it is a 

transition set in r'. Then MWFI requires to find a vector z (and hence a 

record r') such that c'z is minimal and such that the record r' 

corresponding to z obeys conditions 1 and 2 above (condition 3 is 

automatically satisfied). 

We can express this also as follows. Let them edits in Erv• i.e. the 

edits which are violated by r, be ordered according to the (induced) 

natural order on Erv (cf. section 1.4). Let M be the 0-1 matrix of the 

order mxlwrvl, the violated edit matrix, such that Mij=l if variable j is 

involved in edit i, and Mij=O otherwise. The MWFI problem can then be 

formulated as follows. Find a vector z such that 

c'z is minimal 

subject to: 1. Mz~l (3.4.4) 

2. r' is repairable 

Without this second condition MWFI would be a set covering problem (see 

e.g. Garfinkel and Nemhauser, 1972, chapter 8). In view of example 3.4.1 

this condition cannot be dropped, however. Nevertheless we shall borrow 

some terminology from this integer programming problem. A feasible 

solution to (3.4.4) will also be called a cover. A prime cover is a cover 

with a minimal number of components equal to 1 (i.e. a local minimum). The 

set of variables corresponding to the components in a cover equal to 1, are 

said to cover off the violated edits. 

The following theorem can be formulated. It can be proved by noting 

that the MINIMUM COVER problem (cf. Garey and Johnson, 1979, p. 222) is NP

complete. 
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Theorem 3.4.2 In the MWFI formulation, edit error localization is NP-hard, 

for both GP-edits and polyhedral edits. /// 

It is clear that in the edit error localization problem the repairability 

of r' (i.e. condition 2 above) is a bottleneck which cannot be 

circumvented. So any formulation of edit error localization as an 

optimization problem is NP-hard. 

A variant of either formulation of error localization as given above is 

the following. Assume that the variables in an incorrect record r have 

been ordered in descending order of their error proneness, i.e. either in 

descending order of the corresponding error probabilities or in ascending 

order of the corresponding error weights. Assume that variables in rare 

successively assigned missing values, starting with the first variable in 

the sequence, until for the first time we obtain a repairable incomplete 

record. Of course such a process will terminate, if the logical structure 

obeys property 1.4.1, which we assume. It is however not necessary that 

conditions 4 and 5 will be met. Obviously error localization as formulated 

here is NP-complete. 

In sections 3.4.2 and 3.4.3 we present two other formulations of edit 

error localization, which (at best) yield solutions which are not 

necessarily optimal in the sense of either of the basic formulations of the 

edit error localization problem as given above. 

3.4.2 The Fellegi-Holt approach 

Suppose that a q&e-type questionnaire Q&E is given which only contains 

questions/variables with finite domains. Furthermore to localize edit 

errors in a faulty record it is only necessary to consider the variables 

involved in the activated edits. One of the aims is to idle the violated 

edits by assigning missing values to one or more variables involved in 

these edits. As example 3.4.1 shows, pursuing this aim only may not 
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succeed in producing a repairable partially corrected record. As Fellegi 

and Holt (1976) have shown, such a record will be produced, however, if the 

set of edits is a so-called complete set (see below). The basic idea of 

the Fellegi-Holt approach is therefore to generate a complete set of edits 

for a set of edits which are activated by any record in a particular path 

in the routing graph of Q&E. The problem of edit error localization in a 

faulty record is then reduced by Fellegi and Holt to a set covering 

problem, i.e. to solving an MWFI problem (cf. 3.4.4) without bothering 

about the repairability requirement. 

For the Fellegi-Holt approach it is important that each CF-edit is 

written as a disjunction of normal CF-edits, i.e. for which the 

corresponding edit set is a cartesian product set. In this section we 

shall therefore assume that all CF-edits are normal, unless explicitly 

stated otherwise. Furthermore our attention is restricted to the edits in 

the set Er which have been activated by r. Let Erv denote the subset of Er 

which consists of the edits violated by r. 

We now consider collections of edits which guarantee that a cover of the 

entire collection yields a repairable record. In order to do this we first 

introduce the concept of a logically implied edit. An edit e is said to be 

(logically) implied by the edits e 1 and e 2 , if the corresponding edit set 

E9 of e is derived as follows from the edit sets E1 and E2 of e 1 and e 2 

respectively. Let Ei=A11 xAi 2 x ... xAin (i=l,2) for non-empty subsets A1 jcRj 

(i=l,2). Now choose an index j and define an edit e with edit set 

E8 (A11 nA21 ) X (A12 nA22 ) X ... x (A1 , j _ 1nA2 , j-l) X (A1 juA2 j) X 

(A1 , j + 1 nA2 , j + 1 ) X ... X (A1 n nA2 n) , ( 3. 4. 5) 

where A1 knAzk"'l25 by assumption, for k=l, ... ,n and k~j. It is easy to verify 

that if a record violates e then it also violates e 1 or e 2 . The variable j 

is called the generating variable fore. We shall write 

(3 .4. 6) 

to indicate that e is logically implied by e 1 and e 2 , using variable j as a 
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generating variable. It is easy to see that e *j e = e (i.e. idempotency), 

e 1 *j e 2 =e2 *j e 1 (i.e commutativity) for all j, and that, in general, 

e 1 *j (e2 *k e 3 ) .,. (e1 *j e 2 ) *k e 3 (i.e. non-transitivity) for j.,.k, But 

e 1 *j (e2 *j e 3 ) (e1 *j e 2 ) ,~j e 3 (i.e. restricted transitivity) for all 

j. 

An implied GP-edit e is called essentially new if the range set A1 jUA2 j 

of the generating variable j equals the domain Rj, and both A1 j and A2 j are 

proper subsets of Rj. This means that the j-th variable is not involved in 

e. In case an implied edit e = e 1 *j e 2 is not essentially new, we may 

discard it for localization purposes. The reason is that the set of 

variables involved in e is the union of the sets of variables in e 1 and e 2 , 

and furthermore it holds that a record violates e if and only if it 

violates e 1 and e 2 . However an implied edit which is not essentially new 

may be of importance to generate an essentially new implied edit. Therefore 

we cannot discard it when generating a so-called complete set of edits. 

This is a set of GP-edits such that no essentially new implied edits can be 

derived from it. Generating a complete set of edits may require a time 

exponential in !El*n, where !El is the size of the original set of edits 

and n the number of variables involved in the edits in E. 

In example 3.4.2 the concepts of logically implied edits and of 

essentially new implied edits is illustrated. 

Example 3.4.2 (Graphical illustration of implied edits) 

Consider the following pairs of edit sets in R1 xR2 =[0,l0]x[0,10], which are 

plotted in exhibit 3.4.1: 

[3,9] X [2,6]; 

[1,4] X [4,9]; 

[3,10] X [0,4]; 

[1,4] X [2,10]; 

[ 3, 10] x [ 0, 5] ; 

[0,5] X [4,10]. 

Let ei be the edit corresponding to Ei, for i=l, ... ,6. In exhibit 3.4.2 

some edits which are logically implied by the given ones are presented. 

In exhibit 3.4.1 the edit sets corresponding to these edits are drawn. 
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Note that only the last three implied edits are essentially new. Ill 

Exhibit 3.4.1 Plots of the edit sets E1 , ... ,E6 

a. b. 

◄ 
B, 

► 

,,] ,,I 
t 

E, 11A, li i :t 

~j 
L · 11A, 

I 
~~► 

A, A, 

C. d. 
B, 

~~~-~-~ 
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Exhibit 3.4.2 Some logically implied edits 

implied edit edit set variables involved 

el *1 e2 [l, 9] X [2,4] V1, V2 

el *2 e2 [3 ,4] X [2, 9] Vl' V2 

e3 *1 e4 [1,10] X [2 ,4] Vl' V2 

e3 *2 e4 [3,4] X [0,10] V1 

e5 *1 es [0,10] X [4, SJ V2 

e5 *2 es [ 3, s l X [0,10] V1 

Let O be a complete set of GP-edits defined for Er. Furthermore let ~ 

(l::,k:5:n) be the maximal subset of 0, containing all edits in O in which only 

the variables v 1 , ... ,vk are involved. That is, the edit sets corresponding 

to the edits in~ are of the form: A1x ... xAkxRk+ 1x ... x~ where 0,.,AicRi 

(i=l, ... ,k) and Rj is the domain of the j-th variable (j=l, ... ,n). We have 

0 1c ... C00 =0. The following theorem holds (cf. Fellegi and Holt, 1976, 

theorem 1). 

Theorem 3.4.3 Let r=(v1 ,a1 ) ... (vk_ 1 ,ak_ 1 )(vk,*) ... (v0 ,*), where the *'s are 

arbitrary values in the appropriate finite domains Rj (j=k, ... ,n), be a 

record which does not violate the edits in ~-i· Then there is a value 

akERk such that r'(ak)=(v1 ,a1 ) ... (vk_ 1 ,ak_ 1 )(vk,ak)(vk+i,'") ... (v0 ,*) does 

not violate the edits in~-

Proof Suppose such a value ak ERk does not exist. Then for any value ak ERk 

there is at least one edit in~ which is violated by r'(ak). For any akERk 

pick an edit e(ak)EOk which is violated by r'(ak). A moment's reflection 

shows that the implied edit e(akl) "'k e(ak 2 ) *k· .. *k e(akt), where 

Rk={akl, ... ,aktl, is well-defined (i.e. the corresponding edit set is 

nonempty), is violated by r'(a') for any a'ERk, and is an element in~

But in fact this implied edit is essentially new, because it does not 

involve the variable vk, and therefore it is an element of ~-i· But this 
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implies that the record (v1 ,a1 ) ... (vk_ 1 ,ak_ 1 )(vk,*) ... (v0 ,*) violates at 

least one edit in flic-i· This is a contradiction. Therefore such a value 

Ill 

Remark 3.4.1 The proof of theorem 3.4.3 suggests a sequential approach to 

edit error localization. Compare this with the approach by Garfinkel as 

described in section 3.4.3. Ill 

The following result, an adaption of corollary 2 in Fellegi and Holt (1976, 

p.24), is basic for the Fellegi-Holt approach. 

Corollary to theorem 3.4.3 Let S be a subset of then variables in a record 

r. Suppose that the variables in S cover off all edits, in a complete set 

of edits, which are violated by a record r. Then S yields a repairable 

record from r, i.e. for each variable in Sa regular value can be assigned 

and substituted so that the resulting record obeys the logical structure of 

the corresponding questionnaire. Ill 

Remark 3.4.2 In the formulation of theorem 3.4.3 we assumed that the order 

in which the variables are considered is the standard order in which they 

appear in the record. It is, however, possible to assume a different order. 

For instance if r is an incorrect record violating several edits, an error 

model could be used to calculate the error probability (or weight) of each 

variable involved in these edits. By assuming that the variables not 

involved in any of these edits have error probability O (or error weight 

oo), we can order the variables in r in descending (ascending) order of 

their corresponding error probabilities (weights). Ill 

Remark 3.4.3 The clue of the Fellegi-Holt approach to data editing with GP

edits is to generate a complete set of GP-edits from a set of explicitly 

given ones. In particular the essentially new implied edits among these are 

of importance. This idea can also be applied to polyhedral edits. 

In Fellegi and Holt (1976, section 5.3) a methodology is given to 

generate a complete set of implied edits from a given set of polyhedral 

edits. In order to define the concept of a complete set of polyhedral 
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edits, we must first define what an essentially new implied polyhedral edit 

is. To this end, assume we have quantitative variables x 1 , ... ,xk and two 

polyhedral edits e 1 and e 2 given by 

(3.4.7) 

for ai, bi ER (i=l, ... ,k). We shall say that variable xi is involved in 

e.g. e 1 if ai ~ 0. From e 1 and e 2 we can derive a polyhedral edit e 3 , which 

we shall call an essentially new implied polyhedral edit, if there is a j E 

(1, ... ,kl such that aj < 0 and bj > 0. If we define ci = aibj - ajbi for i 

= l, ... ,k then we have that e 3 , defined by 

(3.4.8) 

is a polyhedral edit which does not involve variable xj. We shall say that 

variable xj is the generating variable for e 3 , and we shall write e 3 = 

e 1 *je2 . Note that the generation of an essentially new polyhedral edit is 

more restricted than its GP counterpart. 

By repeatedly applying this operation in (3.4.8) to a given set of 

polyhedral edits, a complete set of polyhedral edits is eventually 

generated, which is defined in essentially the same way as for GP-edits. 

Ill 

Remark 3.4.4 Note that if we really want to apply the Fellegi-Holt approach 

in practice, a complete set of edits should be generated for every path in 

the routing graph which activates at least one edit, i.e. which is not in 

Ker(~) (cf. section 2.2). This can clearly be infeasible. The sequential 

method given in section 3.4.3 seems to be more attractive for practical 

applications in this respect. This holds also for the procedure referred 

to in remark 3.4.1. Ill 
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3.4.3 Garfinkel's algorithm 

In the present section we assume to be in the same position as in section 

3.4.2, i.e. having a q&e-type questionnaire with all questions/variables 

having finite domains. Assume that the edits in this questionnaire are CP

edits. 

The Fellegi-Holt procedure is based on generating a complete set of 

edits from a given set of edits, prior to error localization. Garfinkel 

(1979) on the other hand presents a sequential algorithm for error 

localization. Instead of generating a complete set of edits prior to 

localizing errors, it sequentially generates implied edits, until a 

repairable partially corrected record is found. The algorithm, which is 

based on repeatedly solving a set covering problem, tries to find a 

solution to the MWFI problem as formulated in (3.4.4). In fact the 

algorithm yields an imputation for the repairable record as well, but this 

can be discarded. By renumbering the vertices in r we may assume that they 

are v 1 , •.. ,vn. The algorithm is as follows. 

Algorithm 3.4.1 (Sequential error localization) 

Let an incorrect record r be given, with violated edit matrix M. Let the i

th edit violated by r have edit set A11 x .... XA1 n, where Ajk is a nonempty 

subset of the transition set to which the value of variable vj belongs. Let 

c be the error weight vector. In order to find a solution to the MWFI 

problem (3.4.4) proceed as follows. 

1. Solve (3.4.4) without condition 2, and denote the solution by z*. 

2. Let J*-(jlz;=l}. For each variable vj with j¢J* retain its value. 

For each variable vj with jEJ* replace the original value aj by the 

transition set, Rjk say, to which aj belongs. In order to test that the 

partially corrected record thus obtained is repairable, check this by 

letting each vj, with jeJ*, assume the values in the corresponding 

transition set, and for each resulting completed record r 1 (1 denotes the 

trial number) check whether it satisfies the edits in Er. If so, then 
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stop: z* is a solution and r 1 is a completed record. Otherwise continue 

with step 3. 

3. Find a prime cover w (a 0-1 row vector) satisfying 

wQ ~ 1 , 

where Q is a 0-1 matrix such that 

if the 1-th record r 1 in step 2 violates edit i 

otherwise. 

Let w0 be a solution of (3.4.9) and put l 0 ={ilw{=l). 

{ niEl 0 Aij if w J* 
Aj 

Rj 1 if jE J*, with Rj 1 as 
indicated in step 2. 

Add the 0-1 row vector mat the bottom of Min (3.4.4), where 

5 . Go to step 1. 

if vj is involved in e •• (w 0 ) 

otherwise. 

Algorithm 3.4.1 terminates because of the following observations: 

(3.4.9) 

(3.4.10) 

(3.4.11) 

(3.4.12) 

Ill 

1. The edit generated in step 4 yields a set covering constraint, which 

is violated by the current z*. Hence a new prime cover for (3.4.4), 

without the repairability condition but with the added constraints, will 

be found at each iteration of step 1. 

2. The number of such prime covers is finite (at most 2lwr 1-1). 

In order to facilitate the understanding of algorithm 3.4.1, we briefly 
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comment on each step. For an example illustrating the algorithm the reader 

is referred to Garfinkel (1979). 

Discussion of algorithm 3.4.1 

Step 1 See Garfinkel and Nemhauser (1972, ch. 8) for a thorough discussion 

of set covering, which is known to be NP-hard. The corresponding decision 

problem (MINIMUM COVER) is NP-complete. 

Step 2 This step assumes that the number of records to be tested is not too 

large. Note that the number of records to be tested is of the order 

IIjEJ'•IRjk 1- After step 2 has been executed a new complete record is 

generated, which satisfies the edits in Er. So this algorithm solves the 

MWFI problem and provides an imputation as well (which may be discarded, of 

course). 

Step 3 Any set I 0 induced by a prime cover w0 of Q, produces a maximal 

implied edit (via (3.4.11)), which is an edit such that the corresponding 

edit set is not contained in the edit set of any other edit. w0 can be 

found in linear time. 

Step 4 This step uses several generating variables to calculate (a 

generalization of) an implied edit, and is therefore slightly more general 

than the operation in (3.4.5). A generalization of theorem 3.4.3 proves 

that ez*(w 0 ) is a valid edit, implying in particular that Aj;-<0 for all j. 

As a general remark we may add that the edits generated by different 

records might be different. Instead of calculating certain implied edits 

several times, it is plausible to keep the generated edits in a table. Note 

furthermore that all domains are necessarily finite because of the 

enumeration in step 2. 

It is not clear whether this algorithm performs satisfactorily in 

practice, with respect to both optimality guarantees and average time and 

space complexity. To the present author no empirical results about this 

algorithm are known. It is clear that its worst case behaviour can be bad, 

essentially due to step 2. Ill 
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3.4.4 Additional remarks 

Garfinkel's algorithm uses a 'brute force' method (in step 2) to verify 

that an incomplete record r' is repairable. Instead we could use a 

probabilistic method to verify this. We assume that a combination of values 

is drawn which is substituted for the missing ones appearing in the record 

r'. 

Suppose that, for each incomplete record r', we make at most N 

independent draws of such values, which are then substituted into r', and 

the completed record r'' is checked against the edits. As soon as we find a 

record r'' which satisfies the edits, we stop: r' is repairable. 

Assume that the combinations of values are drawn from a uniform 

distribution. Let p be the probability that a combination is drawn which 

yields an acceptable record r''. Note that pis the size of the collection 

of combinations yielding a repairable record relative to the collection of 

all possible combinations. Let T be the stopping time for the first 

success, i.e. a combination yielding an acceptable record r''. Then we 

have for l~k!.N: 

k-1 P[T = k] - q p , (3.4.13) 

where q=l-p. Hence T has a geometric distribution. As is well known ET=l/p 

and Var(T)=l/p2 . Suppose that at the k0 -th draw a success was scored. We 

can estimate p from (3.4.13) for k=k0 by applying the maximum likelihood 

(ML) estimation technique. Then we find that the ML-estimator of p equals 

l/k0 • 

Suppose that in N draws no success was obtained, i.e. T>N. We find 

N P[T > N] = q . (3.4.14) 
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Of course, the fact that no success was obtained does not justify the 

conclusion that r' is not repairable. Suppose, however, that we want to say 

something about p, in order to obtain an idea of the size of the set of 

solutions compared to the size of the set of all possible combinations. 
A 

Applying the ML-method to (3.4.14) yields the unsatisfactory result p=O. 

In Good (1965, section 3.1) this and similar problems are considered. It is 

suggested there that a Bayesian method should be applied to find a more 

sensible estimate. 

Let g:[O,l] ➔R be a prior density for p. Using (3.4.14) we find for the 

posterior density h of p: 

h(p) 
N 

(1-p) g(p) 
1 N 

fo (1-p) g(p)dp 
(3.4.15) 

As a point estimate for p we can for instance take the expected value of 

the posterior density. In case we do not have any prior knowledge about p 

we should use an ignorance prior for g. Some ignorance priors are of the 

beta form, that is proportional to pa(l-p)P, where a,P>-1. Well-known 

ignorance priors are obtained for the choices a=O, P=O and a=-1/2, P=-1/2. 

The mean of the posterior density (3.4.15) for g(p)=pa(l-p)P is given by 

a + 1 
a + p + N + 2 

(3.4.16) 

For the uniform prior (a=P=O) this yields Ppost,i= l/(N+2), and for the 

prior with a=P=-1/2 we find Ppost,z=l/(2N+2), which is almost twice as 

small as Ppost,l· So, although we are able to estimate pin this Bayesian 

approach, the problem is now to find a suitable ignorance prior. (This is 

of course a problem for Bayesian statistics in general.) We shall not dwell 

on this topic any further. 

We now come to the second point in this section. In order to find edit 

errors in a record, we might as well proceed as follows. We first try to 

find a set of variables which are likely to be in error. Then we check 

whether the resulting incomplete record is repairable. This second step can 

either be carried out by complete enumeration, if_ there is only a finite 

number of possibilities, by a probabilistic method as described above, or 
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by yet another method. (For CP-edits this is similar to solving a 

satisfiability problem.) We concentrate on the first step here. 

Let r be a record which has activated a set Er of edits, and violated 

the edits in ErvcEr. Assume that with each variable v 1 in r there is a 

Boolean variable u1 associated, which indicates whether (u1 =true) or not 

(u1 =false) v 1 is assumed to have an incorrect value. We shall associate a 

Boolean sentence with the triple r, Er and Erv· This sentence is built 

using the following principles. 

1. For each edit e 1 in Erv 

suspicious of being in error. 

the 

With 

variables 

such an 

involved in 

edit associate 

it are all 

a clause 

2. For each edit ei in Er\Erv we can associate either of the following 

clauses, depending on what seems to be more likely: 

a. No variable involved in ei is suspicious to have an incorrect value. 

Hence we associate the clause 7ui 1 A .... A7uiki with e 1 • 

b. Not all variables involved in e 1 are suspicious to have incorrect 

values. Hence we associate the clause 7(u11 A .... Au1 k 1 ) with e 1 • 

For each edit in Er a clause is generated, and a Boolean sentence, called a 

suspicion sentence, is formed by taking a conjunction of all these clauses. 

If there is a solution to this Boolean sentence, then we have a set of 

candidate variables which might yield a repairable incomplete record, 

namely the variables associated with the literals u 1 which have the value 

'true'. Let S denote such a solution set. Note that for any set Wi of 

variables involved in edit e 1 EErv SnWi"'!Zi, for any solution set S. So 

assigning a missing variable to the variables in S will always idle the 

edits in Erv• We illustrate the construction of suspicion sentences in the 

following example. 

Example 3.4.3 Consider the situation in example 3.4.1. The record r given 

there violates the edits e 1 , e 4 and e 5 . Hence the clauses associated with 
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these edits are respectively: u 2 vu3 vu5 , u 2 vu6 and u 1 vu4 vu5 . Suppose that we 

consider none of the variables in the remaining edits suspect. We then 

obtain the following clauses for e 2 and e 3 :7u1 A7u3 A7u4 A7u6 and 7u1 A7u2 A7u4 . 

Taking the conjunction of these clauses yields the suspicion sentence 

(3.4.17) 

It is not difficult to see that (3.4.17) is contradictory. Hence our 

assumption as to the correctness of the values of all variables in the 

edits satisfied by r was too optimistic. Going to the other extreme and 

assuming that not all variables in e 2 and e 3 are suspicious of having 

incorrect values yields the following suspicion sentence 

(3.4.18) 

The suspicion sentence (3.4.18) is neither a tautology nor a contradiction. 

(0,1,0,1,0,0), 

where 1 signifies 'true' and O 'false', as usual. As one easily verifies 

(3.4.18) does not have a unique solution. It should be attempted, however, 

to find solutions with as few l's as possible, implying as few variables as 

possible having to receive another value in r (provided r'' is repairable). 

Of course it is possible, and advisable, to find out whether an 

'intermediate' suspicion sentence has a solution, e.g. the sentence which 

is obtained when assuming that the variables involved in e 2 are not 

suspicious, whereas those involved in e 3 are not all suspicious. As a 

guideline in the choice of a suitable suspicion sentence, one could perhaps 

make use of an error model. Suppose that error weights have been 

calculated. Assume that an edit which has not been violated and for which 

the sum of the weights of the variables involved is below a certain level, 

is considered to be of the second type. This means that for such an edit 

the variables involved in it are assumed not all to be suspicious. 

Otherwise, the edit is assumed to be of the first type, i.e. none of the 

variables involved is assumed to be in error. Ill 
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4. MISSING VALUES 

4.1 Introduction 

Once we have obtained a partially corrected record we could abandon our 

correction process. If we know how to live with data files with incomplete 

records (with a correct routing structure,though) everything is fine. As we 

have argued in section 0.2, we do not consider it satisfactory to let users 

dabble with incomplete data files. Nevertheless it is interesting to 

consider a specific problem with such incomplete files, namely how they 

could be matched with other files (either complete or incomplete). 

In section 4.2 we shall attempt to present a complete taxonomy of 

missing values we could come across in such incomplete files, or which 

otherwise play a role in collecting or processing survey data. In section 

4.3 we consider the problem how to cope with incomplete records in data 

bases. 

4.2 Various types of missing values 

In the previous chapters we have assumed that a record is represented as a 

sequence consisting of pairs of variables and values. In practice however a 

record is very often represented by a fixed number of fields, each of which 

corresponds to a variable in the questionnaire. Such a record 

representation is of fixed length because it contains a fixed number of 

fields, each corresponding to a variable in the record (as a sequence of 

pairs of variables and values), and each field has a specific and fixed 

length. In such a fixed length record, not only the variables with regular 

values are represented, but also the variables with missing values, e.g. 

those which have been skipped as a result from the routing structure in the 

corresponding questionnaire. Files with fixed length records are called 

flat. They are to be contrasted with hierarchical files. The advantage of 

flat files to hierarchical ones is that they are easier to manipulate. An 

apparant drawback of such files is that they may require much more space 
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than equivalent hierarchical ones. 

In the present section we try.to find a taxonomy of missing value types 

which one might encounter in such fixed length records, which can either be 

complete or incomplete (but partially corrected). Each missing value type 

corresponds to a particular reason for missingness. The information which 

is contained in (certain) missing values is of importance for an insight in 

the mechanisms which generate them. It is also important to distinguish 

between missing values when applying a procedure to backtrack in a 

questionnaire which is implemented on a handheld computer, i.e. in a CAPI 

survey. Backtracking is applied when answers of a respondent turn out to 

be in conflict with one or more edits in the questionnaire. 

We consider two general classes of missing values: the first class 

consists of missing values which do not appear in the records as defined in 

section 1.3. A variable which has been assigned a missing value belonging 

this class cannot activate edits, but will make them invisible. The second 

class consists of missing values which should be regular values but have 

not been observed for various reasons. For obvious reasons we shall call 

the missings belonging to the first class invisible missings, and those 

belonging to the second class regular missings. These are our lists of 

missing values: 

Invisible missings. 

1. Initial missing. This missing signifies that a question has not been 

answered by a respondent nor could have possibly been answered because 

the interview did not proceed that far. Initially we may consider any 

field having been assigned this value for any respondent, when we assume 

that for any respondent which is drawn into the sample (save the unit 

nonrespondents) a record has been reserved prior to the survey. We can 

find such values in the records of the incomplete file corresponding to 

respondents which e.g. finished the interview prematurely. An initial 

missing value is the only missing value that cannot be assigned in the 

data editing phase. 
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2. Routing skip. This missing value indicates that a variable has been 

skipped due to the routing structure in the questionnaire. It has the 

property that it does not activate an edit in which a variable is 

involved to which it has been assigned. 

3. Imputed routing skip. A variable in a record which should have been 

skipped, but has erroneously been assigned a regular value, will receive 

a value signifying that it should have been skipped, i.e. an 'imputed 

routing skip'. 

4. Missing due to overcompleteness. When the routing is checked it is 

possible that there are questions which should have been skipped but 

which have actually been answered. These values are changed into a 

missing due to overcompleteness. This missing value is treated in 

exactly the same way as a routing skip but carries extra information in 

that it indicates that in the original record the variable to which it 

has been assigned had not been skipped. 

Regular missings. 

1. Missing due to out of range. This missing value is assigned to a 

variable when it fails a range check, as a result from the circumstance 

that a non-missing value was present but out-of-range. It can be 

identified with the domain of the variable to which it has been assigned. 

At a later stage in data editing it might be changed into another missing 

value, which also corresponds to a smaller set of possible values. 

2. Missing due to illegitimate skipping. When a record is checked and 

corrected with respect to its routing structure, it is possible that a 

variable has been assigned a routing skip (i.e. the corresponding 

question has been skipped), whereas it should have been assigned a 

regular value. In this case such a variable will receive a 'missing due 

to illegitimate skipping'. 

3. Missing due to edit violation. If a nonmissing field in a record 

violates one or more edits its current value is replaced by a missing due 
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to edit violations when it is decided that this field is responsible for 

the violation. Although it would in principle be possible to indicate 

with a special missing value which edits had been violated by the 

original value of a variable in a record, it seems that this sort of 

information is of little interest in general and is therefore discarded. 

4. Missing due to incorrect transition. 

the wrong transition set, and hence 

A variable may have a 

imply a transition 

value 

which 

in 

is 

incorrect. Such a variable should be assigned a 'missing due to 

incorrect transition'. Clearly with such a missing value a specific 

transition set is associated. 

Each of these missing value types can be considered as being generated by 

different nonresponse mechanisms. It seems to be advisable to make a 

distinction between the various types of missing values by using different 

codes. This information is of value for imputation purposes on the one 

hand and can be a source for improving the quality of data to be gathered 

in a future survey. 

4.3 Missing values and databases 

In the present section we consider some problems related to the processing 

of incomplete data in databases, in particular in relational databases. It 

is clear that standard theory for relational databases has to be extended 

in order to cope with incomplete data. 

There are several approaches to the problem of missing values in 

(relational) databases, four of which we shall discuss here: 

1. Codd's (1975) approach, which is based on three-valued logic. It is 

an extension of ordinary (two-valued) logic. 

2. Vassiliou's (1979) approach, which is based on denotational semantics 

and requires a four-valued logic. 
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3. An approach in which each missing value is identified with a specific 

(transition) set. 

4. An approach in which each missing value is identified with a random 

variable. 

From these approaches the third is tailored to the framework in the present 

book, whereas the other three approaches are of a more general character. 

The fourth approach has a statistical character, whereas the other 

approaches are purely 'logical'. 

Further material on missing values in databases, which is relevant to 

the problem considered in the present section, is supplied by e.g. Lacroix 

and Pirotte (1976), Zaniolo (1977), Vassiliou (1980), Lipski (1981) and 

Date (1983, section 5.5). 

Before we present the approaches, we introduce some notation. Apart from 

the standard Boolean truth-values t (true) and f (false) we shall need 

truth-values a (unknown) and w (inconsistent). This latter truth-value w is 

only needed in Vassiliou's (1979) approach. 

In order to avoid any confusion we shall call generalizations of Boolean 

expressions, 'truth-valued' expressions, where the set of truth values 

includes the common truth-values 'true' (or 't') and 'false' (or 'f'), but 

possibly other values as well. 

4.3.1 Codd's approach 

Queries and operations in a relational database are based on logic. In 

order to cope with missing values in such databases 

ordinary two-valued logic to many-valued logics, i.e. 

truth-values. Furthermore it should be defined 

one has to extend 

with at least three 

how truth-valued 

expressions ought to be evaluated. As an extension to the ordinary two-



-91-

valued truth-tables for AND, OR and NOT, Codd introduces the following 

ones: 

AND 

t 
f 
a 

t 

t 
f 
a 

f a 

f a 
f f 
f a 

OR 

t 
f 
a 

t f a 

t t t 
t f a 
t a a 

f a 
(4.3.1) NOT I : 

t a 

Existential and universal quantifiers behave like iterated OR and AND 

respectively. Note, by the way, that the AND and OR tables can both be 

interpreted as multiplication tables for abelian groups of order 3 on the 

set T - {t,f,a}, with identity t (for AND) and f (for OR). The quadruple 

(T,t,AND,OR) forms an algebra. 

In order to be able to evaluate a truth-valued expression, the following 

missing value principle could be applied. A truth-valued expression S 

takes the value a if and only if it has the following two properties: 

1. each occurrence of a in Scan be replaced by a regular value in the 

domain of the corresponding variable, so as to yield the value t for S, 

2. each occurrence of a in Scan be replaced by a regular value in the 

domain of the corresponding variable, so as to yield the value f for S. 

Note that in this approach there is just one type of missing value. 

Furthermore there is no difference between a missing value on the one hand 

and the truth-value a on the other. Codd's approach is what Vassiliou 

(1979) calls truth-functional: the evaluation V(S(c1 ,c2 , ... ,ck)) of a 

truth-valued expression S(c1 ,c2 , •.. ,ck), where the c1 are elementary truth

valued expressions, equals S(V(c1 ), ... ,V(ck)). Here V maps the expressions 

on the set T according to the above rules. For example, 

It should be noted that the concepts of tautology, i.e. an expression which 

always evaluates tot, for any combination of the values of the variables 
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in the expression, and.contradiction, i.e. an expression which always 

evaluates to f, for any combination of the values of the variables in the 

expression, have to be reinterpreted. For example, in two-valued logic p 

OR (NOT p) is a tautology, but not in three-valued logic. But any 

tautology (contradiction) in three-valued logic is a tautology 

(contradiction) in two-valued logic. 

A further restriction introduced by Codd extends the non-duplicate 

principle: in a relation (a flat file) there can be no two identical tuples 

(records, in our case). So if there are two tuples containing missing 

values, but which agree on the remaining variables, one of these has to be 

removed from the relation to which they belong. This principle should be 

viewed in the light of the unidentifiability of missing values. 

On the basis of these conventions it is possible to investigate the 

behaviour of relational algebra in this extended setting. We shall only 

consider the equi-join as an example. The equi'- join is the operation of 

joining records from two relations on the basis of equality of two 

variables (cf. Ullman, 1982, p. 155), as an example. In Codd (1975) 

examples can be found of other operations. 

Let v1 , v2 and v3 with domains (3,5), (1,2) and (1,2) respectively. Let 

Rand S be relations, defined as follows: 

R s 
Vl V2 V3 

(4.3.2) 
3 a a 
a 2 2 
5 1 

Now the equi-join R[v2 =v3 ]S and the maybe equi-join R[v2 =av3 ]S are defined 

as 
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R[v2 =v3 ]S R[v2 ="v3 JS 
Vi Vz V3 Vi Vz V3 

(4.3.3) 

°' 2 2 3 °' °' 
3 °' 2 

°' 2 °' 
5 1 °' 

We can view the equi-join R[v2 =v3 ]S as a 'lower bound' for any completion 

of these incomplete relations, and the maybe equi-join R[v2 ="v3 ]S as an 

'upper bound' . 

A defect in this approach to data bases with incomplete data is the very 

fact that it is truth-functional, which may give rather undesirable 

effects. Consider for instance the expression C=(vi=l) OR NOT (vi=l), 

where Vi is a variable taking values in the domain {1,2,3). If in a record 

the value of vi is unknown, then in the approach of the present section C 

evaluates to a. However, Vi has in fact exactly one of the values 1, 2 or 

3, and for any of these values for vi, C evaluates tot. 

The phenomenon described in the preceding paragraph is undesirable 

because we want to use the information as available in the data base, no 

more but no less either. In the truth-functional approach as described in 

the present section this latter requirement is not always met. See also 

Vassiliou (1979, section 2) for a further discussion of this phenomenon. As 

a matter of fact, precisely this defect in Codd's approach motivated 

Vassiliou to develop an alternative approach. 

4.3.2 Vassiliou's approach 

The basic idea of Vassiliou's approach is to extend the domains and 

codomains of functions. Let Ri,· .. ,Rk+i be domains and let R~ Riu{a,w} 
]. 

(i=l, ... ,k+l) be their extensions. Let f:Rix ... xRk ➔Rk+i be a partial 

function, that is, a function that is not defined on the whole of 

be extended to a total function 
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w if a 1 =w for at least one i. 

4. If a 1 =a for an iE[l, ... ,kl and ajERj for j~i then 

if f(a1 , .. ,e, .. ,ak) is undefined for all 
e E R1 ; 

fO ( al ' ... 'ak ) = { 

WC 

c E Rk+l if f(a 1 , .. ,e, .. ak) is either undefined 
or equals cat least once, for all e E R1 ; 

a in any other case. (4.3.4) 

Vassiliou (1979, section 3) presents the truth tables of the and, or and 

not operators in this four-valued logic, which read 

ANDO t f a w ORO t f a w NOT0 t f a w 

t t f a w t t t t w f t a w 
f f f f w f t f a w 
a a f a w a t a a w 
w w w w w w w w w w (4.3.5) 

Note that restricting these tables to the values t, f and a yields Codd's 

truth tables. It should be stressed, however, that these tables cannot be 

used in evaluating expressions as in Codd's approach, because Vassiliou's 

approach is non-truth-functional. 

The example considered in Vassiliou (1979) to show this is based on the 

fact that c OR (NOT c) is not a tautology in Codd's approach. The truth

valued expression (c1 Ac2 )V(c3 A7c2 ) evaluates to a if c 1 =t, c 3 =t and c 2 =a in 

Codd's case, but evaluates tot in Vassiliou's case. (A, v and 7 to denote 

'and', 'or' and 'not' operators, in either interpretation.) 

When applying Vassiliou's method in practice, a 

interpretation of the symbols a and w should be given. 

semantical 

One such 
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interpretation, in the framework in the present book, is that a is 'a 

regular missing value', i.e. a missing value which stands for some regular 

but unknown value, whereas w is 'an invisible missing value', i.e. a 

missing value which does not represent a regular value. 

Of course, working directly from the definitions in (4.3.4) in a 

practical situation is rather laborious. Therefore Vassiliou (1979, 

section 4) gives some results which facilitate the use of the method. The 

interested reader is referred to his paper to learn about the details. 

4.3.3 Set approach 

As we have shown in chapter 3, regular missing values can be identified 

with certain sets, viz. transition sets. We have assumed in this book that 

records consist of pairs of variables and values. A value is either regular 

or a regular missing value, i.e. a transition set. 

This observation can be used as a basis for another approach to data 

bases with missing data. We illustrate this by considering an extension of 

the equi-join concept. 

Consider two files, fll and fl2, which are to be joined on the basis of 

equality of the variables, v 1 and v 2 , where v 1 is a variable in fll and v 2 

a variable in fl2, having a common domain R. Assume that both fll and fl2 

may contain records with missing values for the variables v 1 and v 2 . Let 

(fll,r1 ,v1 ,a1 ) and (fl2,r2 ,v2 ,a2 ) be data elements from fll and fl2 

respectively: fli is the file identification, ri the record identification, 

vi the variable identification and ai a value (i=l,2). This value is a 

subset of R. (Note that normally a regular value is not represented by a 

one-element set, but by a value. However the present convention is more 

convenient in the application we are considering.) Suppose that the 

result of a successful matching 

(fll>~fl2,r1 ,r2 ,a3 ,/3), where fll*fl2 

is represented by 

indicates the matched 

a quintuple 

file to be 

created, the ri are the record identifications (i=l,2) and f3 is a binary 

variable to be explained below. Consider the following matching rule. 
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Matching rule There is a matching if and only if a 1 na2 ;,<¢, and in that case 

a 3 =a1 na2 . In case la3 l=l and la1 1, lo2 I >l let fi=l, otherwise let fi=0. 

This rule is based on the idea that the ai represent possible values for 

the variable vi in record ri in file fli. So two records from different 

files can only match if they have some possible values in common. Now we 

know that a value a 1 with la1 l>l is a missing value. If we have that la3 l=l 

and la1 1, lo2 l>l we have to indicate that a 3 is not a regular value. This is 

different from the situation where a 1 =a2 and la1 l=l, i.e. an exact match. 

To indicate the difference, we assign the value 1 to fi; otherwise fi is 

assigned the value 0. 

It is clear that this defines a sensible extension of the ordinary equi

join operation. In fact the idea behind this matching rule can be extended 

to other operations, such as range queries ('find all records r 1 in fl such 

that the variable v 1 has a value in [3,10]'). The principle behind this is 

that there should be at least one element in the value-set associated with 

a missing value for v 1 that satisfies the condition in a query or whatever. 

Note that the elements in the value set corresponding to a missing value 

all have the same 'likelihood' of being the true value for this missing 

one. If we allow that the various values in such a set have different 

probabilities of being the 'true' value, then we obtain our last approach 

to our problem of missing data in databases. Note that in this approach a 

missing value is identified with a random variable. An approach based on 

this idea is discussed in the next section. 

4.3.4 Random variable approach 

The basic idea of the fourth approach to missing data in databases 

essentially extends the idea of a value of a variable in a record. Let r be 

a record in a database and v 1 =a0 the value of the field v 1 in r. Let R,, 1 

be the domain of the variable v 1 . Instead of viewing a 0 as the object 

associated with v 1 in r we can consider the probability density fa 0 defined 

as 
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={ 

0 if x,.<a0 

fa o (x) 
1 if x=a0 , 

(4.3.6) 

if R,, 1 is discrete, and 

(4.3.7) 

if R,, 1 is continuous (o is Dirac's function). 

Taking this point of view, missing data are easily fit into the 

framework: a missing value for a variable v in r is associated with a 

nondegenerated probability density function on R,, 1 . The density function 

may be estimated from a sample. We shall furthermore assume that the 

densities associated with missing values in different records (i.e. for 

different individuals) are independent. 

Now assume that we have two files f 1 and f 2 which may contain missing 

values. Suppose that v 1 and v 2 are variables in f 1 and f 2 respectively, 

which have the same finite domain R=(l, ... ,k}. Suppose we have a record r1 

in f 1 and a record rz in f2 with associated probability densities p 

(P1,···,Pk) and q ( ql • · · · , qk) for ao and bo respectively. We 

furthermore assume that a 0 and b 0 are independent. Suppose that in an 

equi-join operation of f 1 and f 2 , on the basis of equality of a 0 and b 0 , 

i.e. f 1 [v1 =v2 ]f2 , we would associate r 1 with r 2 . How large is the 

probability that matching r 1 and r 2 is correct, in the sense that v 1 and v 2 

have the same value for r 1 and r 2 respectively? This probability is easily 

calculated: 

P[r1 and r 2 match] 

(4.3.8) 

(p' q)' 

where (.,.) denotes the standard inner product in Rk. It is clear that 

matching f 1 and f 2 on the basis of equality of v 1 and v2 should be 

performed in such a way as to maximize the probability (4.3.8). As a 
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strategy for calculating the probabilistic equi-join operation, we could 

require that only those records r 1 in f 1 and r 2 in f 2 are matched, for 

which the corresponding probability (4.3.8) is larger than a certain bound 

~>0. Note that this requirement automatically yields the standard results 

in case f 1 and f 2 are complete, because in that case r 1 and r 2 are only 

matched if the (regular) values for v 1 and v 2 are exactly equal. 

Furthermore it is possible to associate the probability (4.3.8) to a 

matched pair r 1 and r 2 , in order to indicate the strength of the matching. 

The idea to view a missing value as a random variable is strongly 

encouraged by statistical theory. In chapter 6 we shall return to this 

point of view. 
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5. ESTIMATING A DENSITY IN THE PRESENCE OF NONRESPONSE 

5.1 Introduction 

In the present chapter we consider the problem of estimating the density of 

a discrete target or imputation variable y in the presence of item 

nonresponse. Estimating a density is of interest to the approach to 

imputation in a survey data production process as given in chapter 6. 

In this chapter we consider two approaches to the problem of estimating 

a discrete density using incomplete data. The first approach is called the 

quasi-randomization approach. Characteristic for this approach is that it 

is label dependent, i.e. it is based on the inclusion probabilities and 

response propensities of the respondents on the variable y. Whereas the 

inclusion probabilities are known, the response propensities are not and 

have to be estimated with the help of some statistical model. This 

approach is closest in spirit to the classical randomization approach in 

survey sampling. 

In case one feels that the labels associated with the individuals in the 

sampled population carry no or little information, and that some likelihood 

function should be used as a basis for statistical inferences, then one can 

apply a label independent approach. In the label independent approach 

adopted below a simple urn model is used to describe the response mechanism 

with respect to the variable y. Then one can then either use a Bayesian or 

a maximum likelihood (ML) technique to estimate the density of y, provided 

the response propensities for each category of y are known. A label 

independent approach to survey sampling can be found in e.g. Royall (1968) 

and Hartley and Rao (1968, 1969). 

The methods described in this chapter are deliberately kept simple. Our 

prime intention is to sketch two possible approaches to tackle the 

estimation of a discrete density, rather than to give a full statistical 

treatment of this problem. For an overview of a range of techniques 

dealing with missing data see Matlow, Olkin and Rubin (1983), Matlow and 

Olkin (1983) and Rubin (1987). 
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The present chapter is organized as follows. In section 5.2 some models 

for response propensities are discussed. These play an essential role in 

the approaches considered in sections 5.3 and 5.4. In section 5.3 a quasi

randomization approach is sketched and in section 5.4 a label independent 

one. 

Remark 5.1.1 In the remaining sections of this chapter we denote a random 

variable as a rule by an underscored letter. However, estimators are 

indicated by a hat(~). Furthermore in some other cases we deviate from 

the convention, e.g. a sample (a stochastic set) is not represented by an 

underscored letter. The reason is to avoid too many of these symbols in 

the text. We also deviate in this chapter from the previous ones by 

denoting imputation and auxiliary variables by y and x instead of by v and 

w (these symbols are used in this chapter for other purposes). This is 

closer to common practice in statistics. Ill 

5.2 Response propensities 

Before we can discuss our approaches we have to introduce some notation and 

discuss several assumptions made. Let Ube a finite population, from which 

a samples is drawn without replacement and of fixed size m. Let the set 

of unordered samples of size m from Ube denoted by Sm. A sampling design 

on Sm is a function p:Sm➔ [0,l] such that ~sesm p(s) = 1. Let y denote a 

qualitative variable with domain R=(y, 1 , ,.,.,Yep>). We shall furthermore 

assume that the sampling design used in the survey we are considering, is 

noninformative with respect toy, i.e. is independent of y. This is a very 

common requirement and hardly restrictive in view of practical 

applications. 

Let UJ be the subpopulation of U which consists of all individuals which 

have a y-value equal to Y(jl, i.e. UJ=(iEUjy1 =ycjl ). Then U=UjUj. In the 

present chapter we are interested in estimating the density (fj) of y, i.e. 
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f. 
J 

(5.2.1) 

for j=l, ... ,p, where J .J denotes the size of a set. 

Estimating the fj is equivalent to estimating the sizes Juj J. There are 

two possibilities to consider in principle: either JuJ is known or unknown. 

We shall, however, restrict our attention to the case that JuJ is known and 

equals N. 

Due to unit and item nonresponse, and as a result of the elimination of 

inconsistent answers in a data editing procedure, y is observed only for 

the subset res of respondents, i.e. r=(iEslyi is nonmissing). Let the 

first order inclusion probabilities be denoted by ni, i.e. ni=P[iEs]. 

It is implicitly assumed that ni>O for iEU. 

We shall furthermore assume that every individual i in the population 

has a fixed probability, i.e. the response propensity, qi to respond to 

variable y, which is independent of the samples into which i is drawn. In 

fact this is essentially the stochastic response model considered by 

Bethlehem and Kersten (1986, p. 88), but for unit instead of for item 

nonresponse. 

For each iEU we can introduce two binary random variables ~i and !i, 

indicators for membership of the sample and response toy respectively, and 

defined as 

{ 1 if iEs 

0 otherwise 

{ 1 if i responds toy 

0 otherwise. 
(5.2.2) 

Note that ~i!i indicates whether or not individual iEs responds toy, i.e 

whether iEr. In view of what was defined above we have E~i=ni, Efi=qi. 

Furthermore we shall assume that the !i are mutually independent random 

variables, hence Efifj=qiqj for i,jEU with i~j. Finally we shall assume 

that the ~i on the one hand, and che !i on the other, are mutually 

independent random variables. 
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We shall denote the number of individuals ins that responded Yci) to y 

by oj, i.e. oj=IUjnrl, and the (unknown) number of persons ins for whom 

y=y(i) but who did not respond to y by fij' i.e. fij=IUjns\rl. The size of r 

will be denoted by I rl a= Iiai and that of s\r by ls\rl =t=L fii. We 

shall henceforth refer to the persons in the sample who responded toy as 

the item respondents and to those who did not as the item nonrespondents, 

i.e. implicitly assuming that the item meant is y. 

From the assumptions with respect to the :i we deduce that the 

probability P[rlsJ to realizer withins is given by 

P[rlsJ (5.2.3) 

Note that the effect of a nonresponse mechanism is the same as of a two

stage sampling procedure. In the first stage a sample is drawn which is 

designed by an investigator. In the second stage a Poisson sampling 

procedure (in the terminology of Hajek, 1981, ch. 6) is applied, which, 

however, is not controlled by the investigator. In fact the inclusion 

probabilities qi in this second stage are unknown to the investigator and 

have to be estimated, possibly using prior information. These inclusion 

probabilities are the response propensities. 

Note that 5.2.3 defines a joint density from which them parameters qi 

cannot, of course, be identified if no further assumptions are made. If, 

however, there is an auxiliary variable, x say, available, this problem can 

be solved, at least to some extent. We shall consider three ways to use 

the availability of such an auxiliary variable: 

1. To stratify the sample into classes of assumed constant response 

propensities and apply a randomization approach. 

2. To stratify the sample into classes of assumed constant response 

propensities and apply a Bayesian approach. 
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3. In a more sophisticated parametric model. 

Assume that such an auxiliary variable exists. Employing the first 

approach, we find that (5.2.3) can be written as 

P[rjs] 

(5.2.4) 

where nk=lknrJ, the number of respondents in stratum k, mk=lkns\rl, the 

number of nonrespondents in stratum k, and wk the response propensity for 

stratum k, i.e. qi=wk for iEk. If we sum (5.2.4) over all samples res such 

that nk=Jknrl and mk=lkns\rl we find the following probability density 

(5.2.5) 

where (n1 } is used as a short-hand for n 1 , ... ,I\n; (mk} and (wk} are defined 

likewise. 

Estimating the stratum response propensities wk from (5.2.5) by maximum 

likelihood yields 

(5.2.6) 

which is a rather straightforward estimator. Hence qi= wk,ML if i is in 

stratum k. 

We can apply the second approach to estimating the response propensities 

if prior information is available about the response behaviour with respect 

to the variable y. In that case we may adopt a Bayesian attitude. Suppose 

that in an earlier, and similar, survey there were ak-1 item respondents 

and bk-1 item nonrespondents in stratum k. Then we might assume the 

following prior density for the wk: 
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a -1 b -1 n wkk (1-wk) k 
kEstrata 

where B(., .) is the beta-function, i.e. for a, bER we have 

r(a)r(b) 
r(a+b) 

(5.2.7) 

(5.2.8) 

with r(.) the gamma-function. The prior (5.2.7) is conjugate to the family 

of distributions of the form (5.2.5), a circumstance which facilitates 

computational work considerably. 

Multiplying (5.2.5) and (5.2.7) and normalizing this product (i.e. 

applying Bayes' theorem) yields the posterior density for {wk}: 

(5.2.9) 

which is also a product of beta densities, as was the corresponding prior 

density (5.2.7). If a point estimate for {wk} is desired there are several 

possibilities, e.g the mode, the median or the mean of (5.2.9), depending 

on what loss function one is using. Taking the mode for example yields the 

point estimate 

wk,post (5.2.10) 

If it is unrealistic to assume that response propensities are constant 

within strata, identified by an auxiliary variable x, another possibility 

is to assume a parametric model for the response propensities such as a 

logit model, i.e. 

qi 
log----

1 - qi 
(5.2.11) 
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where~ is a parameter vector. ~ can be estimated by substituting the 

expressions qi= 1/(1 + exp (-x{~)) into (5.2.3) it is straightforward to 

apply the ML-method to calculate~- For details and further information on 

the logit model see e.g. Amemiya (1981, 1985, section 9.2), Gourieroux and 

Monfort (1981), Cox (1969), McFadden (1984) and Anderson (1982). For the 

performance of a logit model in a simulation study, using a real data set, 

see e.g. Abrahamse and Geilenkirchen (1986). For existence theorems see 

e.g. Albert and Anderson (1984), Santner and Duffy (1986) and Gourieroux 

and Monfort (1981). For other binary models see e.g. Maddala (1983). 

The individual response propensities q1 can be used to define average 

response propensities vJ for each subpopulation UJ, i.e. consisting of 

individuals which have any-value equal to YcjJ: 

(5.2.12) 

for j-1, ... ,p. These probabilities vj will be used in section 5.4, where a 

label independent modelling approach is discussed. The vj can be estimated 

as follows, if we assume that for each iEs the individual response 

propensities qi have been estimated by qi, with some method suggested 

above (or any suitable other one): 

lu.nrl 
J 

(5.2.13) 

If lujnrl is not too small, vj,l is approximately normally distributed, 

according to the central limit theorem. 

5.3 Quasi-randomization approach 

In the present section we turn to the problem of estimating the density of 

y. In the discussion in the present section we shall consider modifications 

of the well-known Horvitz-Thompson estimator for the estimation of the 

density (fi) of a categorical variable y. By applying different models to 
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estimate the response propensities we obtain different modified Horvitz

Thompson estimators. In fact the following item nonresponse models, in 

ascending order of their 'computational complexity', will be considered 

below (cf. section 5.2): 

1. The response propensities are equal for all individuals in the 

population U. 

2. U can be stratified into strata of constant response propensities, on 

the basis of auxiliary information, assumed to be available for any 

element in the sample. 

3. A parametric model, such as a logit or probit model, can be used to 

estimate the response propensities of the elements in the sample. 

Let z be a real-valued variable, and zi the value of z for iEU. The 

population total Zt=~iEU zi can, in case of a sample with item nonresponse 

on z, be estimated by 

z.a.r. z. 

IiEU 
1-1-1 

IiEU 
-1 

~HTA = -A-- (5.3.1) 
q qi11'i qi11'i 

are estimators for the response 

propensities qi. Because the qi appear in the denominator of the terms of 

the sum in (5.3.1), ~HTq will in general be biased. It is clear that an 

estimator such as (5.3.1) can be used to estimate the fj. To this end 

consider 

(5.3.2) 
0 otherwise 

in which case the right-hand side of (5.3.1) reduces to 

a.r. 
1 

IiEU. 
-1-1 

liEU.nr 
-A-- -A--

J qi11'i J qi11'i 

(5.3.3) 

which is an estimator for juj j. Dividing (5.3.3) by the population size N 

of U yields an estimator for fj, i.e. 



f. 
J 

1 
N 
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1 
-A-- (5.3.4) 

The estimator (5.3.4) can be used to estimate the fj under several models 

for the response propensities. We consider a few of these models here. 

1. We assume that qi=w for all iEU. We can estimate w by e.g. the following 

estimators: 

A I lrl a 
w ---

Is I 
n 

(5.3.5) 

A I I liEr l/1ri 
w (5.3.6) 

liEs l/1ri 

Note that the estimator (5.3.6) estimates the fraction of (potential) item 

nonrespondents in the entire population of estimated size ~ies l/1r1 . 

When the constant response propensity model is assumed we have that the 

size of r conditional on the size of s has a binomial distribution, i.e. 

(5.3.7) 

Note that estimator (5.3.5) can be viewed as the ML-estimator obtained from 

(5.3.7). 

2. Assume that there is a stratification of U into strata such that qi=wk 

for iEknU, for stratum k in U. In this case we can proceed in every 

stratum as in 1. The distribution of the relative sizes of the response 

parts of the sample per stratum is given by (5.2.6). If prior information 

is available with respect to the response probabilities in every stratum 

then (5.2.10) can be applied. 

3. Assume that the response propensities can be linked to an auxiliary 

variable x via a parametric model such as a legit (cf. (5.2.11)) or a 
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probit model. Estimating the parameters in such models requires 

considerably more computational effort than in the models proposed in 1. 

and 2. For instance, estimating the variance of (5.3.4), using such a 

model for the response propensities is difficult due to the nonlinearity of 

(5.3.4) and may most conveniently be carried out by employing nonparametric 

estimation methods such as random grouping, bootstrapping, jackknifing and 

balanced half-sampling (see e.g. Wolter, 1985). Ill 

As was already remarked in section 5.1 the quasi-randomization approach is 

treated very briefly here, because it has been investigated elsewhere; c.f. 

Bethlehem and Kersten (1986) and Cassel et al. (1983). 

5.4 Label independent approach 

In the approach of the previous section it was tacitly assumed that the 

labels of the sample elements carried relevant information for the 

estimation problem considered. This approach results in estimators which 

explicitly involve the first order sample inclusion probabilities ~1 . If 

we may assume, however, that the labels carry no or little information it 

is possible to adopt a different approach to the estimation problem of this 

chapter. Such an approach is presented in this section. 

More specifically, we assume that the individuals in the sample have 

been independently drawn from a multinomial distribution. We assume that in 

this multinomial model there are 2p classes: for each value Ycjl there is a 

response and a nonresponse class. The probabilities to be drawn from each 

class are as follows: 

1. For the response class corresponding to Y(jl: P[iEUj A ier] 

P(ieUJ]P[ierjieUj] = fjvj. 

2. For the nonresponse class corresponding to Ycjl: P[iEUj A iEs\r] 

P[ieUj]P(ies\rjieUj] = fj(l-vj). 

Here the fj is the density of Y(jl as defined in (5.2.1) and vj is the 
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average response propensity for elements in Uj as defined in (5.2.12). 

Under the assumption of this multinomial sampling model, we find that 

the probability to draw aj item respondents and ~j item nonrespondents from 

Uj ins, for j=l, ... ,p, is given by 

The aj and ~j are the sufficient statistics in this model. Of course, the 

~j are unknown. The likelihood which describes the observed data can be 

obtained by summing (5.4.1) over all admissible combinations ~1 , ... ,~P 

which sum to~, i.e. the total number of nonrespondents in the sample. We 

then obtain 

(a + ~) ! a. ~ 

lTT/fjvj) J](l - Ij fjvj) . 

(5.4.2) 

It is obvious from (5.4.2) that the fj and vj are not simultaneously 

identifiable. However, if either set of parameters is known the other can 

be identified. We shall assume now that we are able to estimate the 

response propensities vj from a previous and similar survey. 

Once we have obtained (5.4.2) we can proceed either in a non-Bayesian or 

in a Bayesian fashion. The latter approach is taken in Chiu and Sedransk 

(1986). It requires specification of suitable priors for the fj and vj. 

They suggest the use of a Dirichlet distribution for the fj and beta 

distributions for the vj, as natural conjugate priors for the likelihood 

(5.4.2). (But other priors are possible as well, of course.) We refer the 

reader to the Chiu and Sedransk paper for further information about this 

Bayesian approach. 

We shall consider an alternative approach, which is based on ML. 

Estimating the fj with ML from (5.4.2) under the constraints Zj fj = 1 and 



-110-

fj~0, for j=l, ... ,p, can be viewed as an estimation problem for incomplete 

tables. Such problems are treated in Bishop et al. (1980, chapters 5 and 

6). In particular sufficient and necessary conditions are discussed which 

guarantee the existence and uniqueness of ML-estimators for incomplete 

tables for various sampling models, among which multinomial models (see 

Bishop et al., 1980, p. 186). In our case we only have to require that the 

values of the aj and pare all greater than 0, in order to assure the 

* * existence and uniqueness of the ML-estimator (f1 , ... ,fP) for (f1 , ... ,fp). 

for our multinomial model (5.4.2). 

* * In order to calculate (f1 , ... ,fp) we form a Lagrangean function of the 

logarithm of fobs and the constraint hj fj 1, and apply the Lagrange 

multiplier theorem. We find then that the (unique) stationary point 

satisfies 

* p f.v. 
a. -

J * 1 - h. f.v. 
J J J 

* - ,\f. 
J 

0 (5.4.3) 

for j=l, ... ,p and a multiplier ,\ER. Summing (5.4.3) over j and solving the 

* resulting equation for hj fjvj yields 

a - ,\ 
a+ p -,\ (5.4.4) 

and substituting this into (5.4.3) and then solving the resulting equation 

* for fj gives 

* 
a. 

f. 
v. (a + p -,\) + ,\ J 

J 

(5.4.5) 

Summing (5.4.5) over j and * using hj fj 1 yields the following polynomial 

equation for ,\ : 

a. 
p 1 hj=l v/a + p - ,\) + ,\ (5.4.6) 

We are interested in the unique solution ,\ER of (5.4.6) which yields, when 
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* substituted into (5.4.5), a value fjE[0,1] for j=l, ... ,p. Because of 

these constraints, we find the following necessary conditions for this root 

>.. of (5.4.6): 

and 

maxl<"< { -J-P 

a.-v.(a+ 

1 - v. 
J 

::5 >.. , 

minl<"< -J-P 
{ 

V, (a + {3) 

1 - vj 
} > ->.. . 

(5.4.7) 

(5 .4. 8) 

To illustrate the behaviour of the ML-solutions for (5.4.2), we consider 

the case that p=2 in the following example. 

Example 5.4.1 For p=2 equation (5.4.6) equals 

1 (5.4.9) 

which can also be expressed as 

(5.4.10) 

where It is easily verified that the 

discriminant D of (5.4.10) can be written as 

D (5.4.11) 

which is nonnegative for any valid combination of parameter values. 

Therefore (5.4.10) has only real roots. Denote these roots by>..- and>..+ 

respectively, where >..-::5>..+. It can be verified that only >..+ yields 

acceptable estimates for (f1 ,f2 ). In exhibit 5.4.1 it is shown how the 

* value of the ML-estimate f 1 depends on v 1 , for given values of a 1 , a 2 , (3 

and v 2 • 
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Exhibit 5.4.1 f~ as a function of v 1 for a 1 =30, a 2 =50, t=200 and v 2 =0.7 
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0.3 
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t 0.1 

r* 1 0.0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

v1 ~ 

Note that the function considered in exhibit 5.4.1 is of particular 

interest in order to gain an insight in the stability of the ML-estimate 

* f 1 as a function of v 1 and v 2 . These quantities are in general not exactly 

known, but have to be estimated (see below), contrary to the other 

parameters involved. Ill 

* We can also use the EM-algorithm to estimate the fj (see e.g. Dempster et 

al., 1977). This algorithm alternately determines the expectations of the 

sufficient statistics tj for assumed values of the fj , and calculates the 

ML values for the fj , for assumed values of the tj. In fact we have the 

following iteration steps: 

f~n) w. 

Ilt)wj 
(E-step) , (5.4.12) 
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(M-step) , (5.4.13) 

where the superscripts denote the iteration step numbers. The iteration is 

started by assuming suitable initial /3;0) values. The interpretation of 

the /3;n) is that of the number of item nonrespondents allocated to 

subpopulation Uj at then-th iteration step. Similarly f;n) is the density 

of y at step n. Because of the strict concavity of (5.4.2) this iteration 

* * * * converges to unique points (f1 , ... ,fp) and (/31 , ... ,/3p). Empirical 

evidence indicates a rather high rate of convergence. Therefore the EM

algorithm offers an attractive method to solve this ML-problem. Note also 

that the iteration defined by (5.4.12) and (5.4.13) and suitable initial 

values is very intuitive. 

The model (5.4.2) can be readily extended to the following parametric 

case. Suppose that xis a discrete auxiliary variable which has been 

observed for all elements in the sample s. We can use x as a 

stratification variable for the stratification of sin a finite number of 

strata. Let °'jk denote the number of elements ins for which they-value 

equals yj and the x-value equals x(kl, and /3.k the number of elements for 

which the y-value is missing and the x-value equals x(kl. Then, in the 

same fashion as above, we find that the likelihood describing the observed 

data is proportional to 

(5.4.14) 

where the fjk and vjk are similarly defined as the fj and vj, except that 

they are conditional on the x-value x(kl. The ML-estimators for the fjk, 

for given vjk• can be obtained using e.g. the EM-algorithm, resulting in a 

similar iteration as presented above. 



-114-

6. IMPUTATION IN SURVEY DATA PROCESSING 

6.1 Introduction 

In the present chapter we consider imputation in the context of survey data 

processing. The imputation system as we imagine it here receives input in 

the form of incomplete, but partially corrected, records. It outputs 

completed records, which also satisfy the constraints imposed by the 

logical structure of the corresponding questionnaire. 

The circumstance that the imputation is assumed to be carried out in a 

survey data production process implies that a number of practical 

limitations and requirements are to be considered. These limitations are 

more severe if the amount of data to be processed is large, or time 

pressure is high. In order to have a higher chance to complete a data set 

in time, relatively easy imputation models should be used, 

be implemented efficiently. It is furthermore wise to 

which can also 

develop an 

imputation system in such a way that external information (densities from 

which values will be sampled, for example) can be easily plugged in. It 

should also be arranged that certain information used by the system (such 

as the densities just mentioned) can be readily inspected by experts. 

For a statistical office it might be advantageous to contemplate the 

development (or purchase) of a software package to generate the 'shells' of 

imputation programs. (It is perhaps possible to develop a questionnaire 

design system with such a facility.) The specifications for an imputation 

program, required for the generation of such a shell, are provided by 

subject matter experts. After it has been specified, such a shell has to be 

filled with data (like an expert system) before it is operational. These 

data consist for instance of certain densities or parameters of 

distributions. Of course _such a system is only useful if it allows the 

implementation of imputation models which are interesting enough from a 

statistical point of view. 

In section 6.2 we shall consider some statistical aspects of imputation. 

The intention of that section is not to give any new imputation method: a 
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sizeable amount of literature discussing such models already exists, and it 

is unnecessary for our purposes to add yet another one. Our aim is to 

stress the significance of discriminant analysis as a convenient framework 

for considering imputation. Furthermore we want to stress, following Rubin 

(1987), the importance of the application of a sensitivity analysis, such 

as multiple imputation, within an imputation procedure applied in a survey 

data production process. This seems to be insufficiently appreciated in 

practice. Such a sensitivity analysis pertains to two aspects: 

1. The variability of imputed values under repeatedly applying one and 

the same imputation model. 

2. The influence of the application of different (plausible) imputation 

models on the resulting imputed values. 

In section 6.3 we discuss some computational aspects of imputation. These 

are related to the testing of the acyclicity of a set of imputations, to 

the order in which a set of imputations can be carried out, and to the 

generation of complete records which satisfy the constraints due to the 

logical structure of the questionnaire. 

6.2 Statistical aspects of imputation 

Let y be a categorical variable which is an imputation variable. Let x be 

an auxiliary variable, or a vector of auxiliary variables, toy. We adopt 

the notation from chapter 5 in this section. 

Let x1 denote the value of the auxiliary variable x for item 

nonrespondent i. A reasonable procedure to classify i into a suitable 

subpopulation is the following. Classify i into that Uj for which 

P[iEU.!x=x. A iEs\r] (6.2.1) 
J i 

is maximal. In order to be able to calculate (6.2.1) we have to introduce 
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some assumptions with respect to the response mechanism. Suppose that it 

seems reasonable to assume that for each subpopulation Uj it holds that the 

probability to respond depends only on y, and therefore, in particular, is 

independent of the covariate x. Hence it follows that for an iEUJ the 

events [x=x1 ] and [iEs\r] are independent, conditional on the event [iEUj], 

i.e. 

P[x=x.A iEs\rjiEUj] = P[x=x.liEU.] P[iEs\rjiEU.] . 
l. l. J J 

(6.2.2) 

Rewriting (6.2.1) with Bayes' rule and using (6.2.2), we find that 

(6.2.3) 

where wj=P[iEs\rjiEUj]=l-vj and fj=P[iEUj], as have been introduced in 

chapter 5, and where= denotes proportionality. The vj and the fj can be 

estimated with one of the methods discussed in chapter 5. Furthermore the 

density P[x=x1 liEUj] should be known or estimated from the observed data. 

One can also postulate a parametric model for this conditional probability, 

for each j, and estimate the parameters from the data. 

The classification criterion based on (6.2.1) as given above is 

deterministic. It can be replaced, however, by a randomized variant. In 

such a variant i is not allocated to a subpopulation Uj such that 

P[iEUkjx=x1 AiEs\r] is maximal. Instead, i is assigned to a subpopulation 

probability All these classification 

procedures can proved to be admissible, in the sense that there are no 

'better' classification rules (see appendix C for a precise definition of 

admissibility). 

Remark 6.2.1 If a randomized classification rule is used, measures for its 

quality are provided by the probabilities to correctly classify 

nonrespondents, or alternatively,, to misclassify them. They can be obtained 

as follows. Suppose that we have a nonrespondent i from Uj. Let bj(x1 ) 

P[x=x1 jiEUj]. The probability that i will be classified as a member of Uk 

is given by 
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(6.2.4) 

where µ denotes Lebesgue measure in case xis continuous, or a counting 

measure in case x is discrete; R,. is the domain of x. Denote the 

probabilities in (6.2.4) by ~Jk and the pxp matrix of these elements by~

A criterion for the quality of the stochastic imputation methodology is the 

degree in which it, on the average, classifies item nonrespondents 

correctly, i.e. tr(8~), where 8 is the pxp diagonal matrix with elements 

w1 f 1 on the diagonal (cf. appendix C for background information). /// 

In case y is a continuous variable the methodology suggested above can be 

applied, after y has been discretized. The imputation procedure should 

then be applied in two steps: in the first step a category selected to 

which an ies\r is likely to belong, using the methodology above. In the 

next step any-value y* in this category is randomly drawn. This value y* 

will be imputed for y1 . It is also possible, and more straightforward, to 

assume a parametric model for y and to estimate its parameters from the 

data. But this may require a lot of computational effort. 

For any imputation procedure.which is to be applied, it is assumed that 

it respects the constraints dictated by the logical structure of the 

corresponding questionnaire. This matter is considered in the next section. 

It should be stressed that applying an imputation method is not without 

any risk. Important dangers are the overestimation of the precision of 

estimators and the distortion of relationships between variables. In fact 

one should be strongly aware of the fact that a missing value is in fact a 

random variable with an unknown distribution. Therefore it is laudable to 

investigate the sensitivity of the results of an imputation procedure by 

applying multiple imputations (cf. Rubin, 1987). This amounts to applying 

at least two imputation models, and to impute at least two values to each 

missing value for each imputation model. Ideally, all these imputed values 

should be retained in the completed file. From a practical point of view 

this is less attractive because it increases the size of the completed data 

set. 



6.3 Computational aspects of imputation 

An imputation system in a survey data processing situation, viewed as a 

black box, can be imagined to operate as follows (cf. exhibit 6.3.1). As 

input for such a system we have a partially corrected record r plus a set 

of edits activated by r. The output of such a system is a completed record 

r*, and update information for a monitoring system. 

Exhibit 6.3.1 Schematic view of an imputation system 

partially L L 

corrected 
~ imputation 

r completed 

record r system record r· 

+ (if present) • '" ~· 
edits update 

activated information 
by r generated 

by r 

The completion of a partially corrected record is either uniquely 

determined by r or not. If it is uniquely determined by r, then a series of 

deterministic imputations or derivations has been applied. Formally a 

derivation of vk+l from v 1 , ..• ,vk, with v 1 < ... <vk ('<' is the strict order 

derived from a topological sort•~• of the associated routing graph), is a 

function 

* * g: Rl X • • • X ~ ➔ ~+ l , (6.3.1) 

where the Rf are certain subsets (to be explained below) of the domains Ri 

of v1 , i=l, ... ,k. 
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If there are several possible completions of r, such as is usually the 

case, one or more (stochastic) imputations should be applied. These 

stochastic imputations use a statistical model to assign values to missing 

ones. An example of such a technique is hot-deck imputation (cf. Ford, 

1983). Formally, a stochastic imputation of vk+l from v 1 , ... ,vk with 

v 1 < ... <vk is a function 

(6.3.2) 

where the Rf are similar as above, and (O,~,µ) is a probability space. So 

for each point (a1 , ... ,ak)ERtx ... xRt, g(a1 , ... ,ak,·) is a random variable. 

Without loss of generality, we have assumed that the codomains of a 

stochastic imputation are univariate. In practice this is what is probably 

simplest to apply, but for the theory itself as it will be presented here, 

this is of little importance. 

As to the Rf the following. Let G=(V,E) be the routing graph of the 

corresponding questionnaire and let W={v1 , ... ,vk)cV be given, where 

v 1 < ... <vk. Let A be the adjacency matrix of G. A set F of pairs 

{(v,R,,,u)EElvEW, uEV, R,,,u transition set) is called the vector field on W 

in G, if the following conditions are satisfied by the elements in F: 

l.a. If (vi ,R,,i,u)EF with i~k-1, then there is a path from vi to vi+l 

which cuts u. 

b. If~ is not the sink of G, then (vk,R,,k,u)EF for any u such that 

(vk,u) is an edge in G. 

c. If Vk is the sink of G, then the corresponding transition set is 

the domain R,,k of vk. 

2. Fis maximal, 

associated with 

i.e. 

G) 

if a pair (vi ,R,,i,u)EWX{transition sets 

satisfies one of the conditions in 1 

In exhibit 6.3.2 an example of a vector field is given. The arrows 

associated with the vertices in W represent the corresponding transition 
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sets. Intuitively, the vector field on WcV in a routing graph G contains, 

for each vEW, the largest set of values in the domain R,, which the variable 

v, lying on a path in IT which cuts W, can take. 

For a set of vertices Win a routing graph G consider the vector field F 

on W in G. For each v1 EW, R1= is the union of all transition sets R,, 1 ,u 

such that (v1 ,R,, 1 ,u)EF. We call R1x ... xR: the characteristic set of F. 

Exhibit 6.3.2 Illustration of a vector field in a routing graph 
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4 

7 

9 

13 

Remark: W={2,8,10} 

Algorithm 6.3.1 indicates how to construct the vector field on a set W of 

vertices in a routing graph G, as well as its characteristic set. 

Algorithm 6.3.1. (Calculation of a vector field and its characteristic set) 

Let G=(V,E) be a routing graph with n vertices, with adjacency matrix A. 

Let R1 j denote the transition set corresponding to the edge (i,j). Let 

W={v1 , ... ,vk)cV, with k>l and v 1 < ... <vk. Let vk+ 1 =n be the sink of G. 

The vector field on Win G and its characteristic set are calculated as 

follows: 



-121-

1. Calculate the transitive closure A* of A. 

2. For each pair (vi ,vi+i), l$i$k-l, determine the set of all outgoing 

edges (vi,u) from vi such that Vi+l can be reached from u, i.e. such that 

¾,vi+ 1 =1. For vk~n, the sink of G, determine all outgoing edges (vk,u) 

from vk. With each edge (vi ,u) found in this way associate the pair 

(vi ,Rvi,u). If vk=n then associate with with vk the pair (vk,Ryk). All 

these pairs of vertices and transition sets form the vector field Fon W 

in G. 

3. By taking the union of the transition sets associated with the 

outgoing edges of the elements vi in W one obtains the components Rf of 

the characteristic set of the vector field on W. Ill 

The deterministic and stochastic imputations introduced above can be 

related to database theory. In case of deterministic imputation we can say 

that there is a functional dependency between the imputation variable vk+l 

and the auxiliary variables v 1 , ... ,vk (cf. Ullman, 1982, pp. 213 ff.). It 

is assumed that Vk+l is not functionally dependent on any other auxiliary 

variable. A stochastic imputation can be considered to be an extension of 

a multivalued dependency (cf. Ullman, 1982, pp. 243 ff.), in which the 

auxiliary variables v 1 , ... ,vk determine a set of values which Vk+l can 

take. In our case this would be the carrier set of the image of the domain 

Rfx ... xRfxo under gin (6.3.2), i.e. the set of values in Rk+l which can 

be assumed by vk+l with probability greater than 0. In fact the only thing 

that is added is a probability to give the 'possible values' of vk+l 

different weights. The important thing is that in both the deterministic 

and the stochastic imputation case there is a dependency of the values an 

imputation variable can take. This value depends in one way or another on 

the values of the associated auxiliary variables (and on nothing else). 

In order to investigate whether a set of imputations is correctly 

defined, we introduce the following formalism. With each imputation which 

has been specified we associate an imputation triple (gi ,Wi ,Vi), in which 

gi denotes the i-th imputation, Wi is the set of auxiliary variables for 
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this imputation, and Vi is the set containing the imputation variable of 

this imputation. (For our purposes below it is not strictly necessary that 

such a set V1 contains exactly one element, but we shall assume it in view 

of the convention adopted above with respect to imputations.) 

An evident requirement for an imputation triple is that WinV1 =0. 

Furthermore, like edits, imputations should be activatable, which means 

that the variables in W1 uV1 should lie on a path in the routing graph. 

Another requirement, which does not have an equivalent with respect to the 

edits, is that if there are two imputation triples (f1 ,W1 ,V) and (fj ,Wj ,V) 

then they should not be simultaneously activatable in order to avoid 

ambiguities. That means that, in this case, there should be no path in the 

routing graph which cuts wiuwjuv. 

We can define a partial order on the set of imputation triples 

associated with a questionnaire; as follows: 

(6.3.3) 

if and only if 

The interpretation of (6.3.3) is that if (g1 ,W1 ,V1 )<(gj ,Wj ,Vj) then g1 

should be applied prior to gj. This order structure defines a directed 

graph Jon the set of imputation triples. Another requirement for a set of 

imputation triples is that J is acyclic, otherwise certain imputations can 

never be carried out because the necessary background information is 

(partly) lacking and will never be supplied by the application of some 

other imputations. That is, there could be a deadlock situation. Note 

that this acyclicity requirement for J implies that Winvj-0 for any pair of 

imputation triples satisfying (6.3.3). 
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Acyclicity of J can be easily checked by applying a topological sort to 

J (cf. appendix A). If this topological sort cannot be completed, J is 

cyclic; otherwise J is acyclic. 

Remark 6.3.1 This formalism for imputation triples could be adapted so as 

to obtain a formalism for the routing structure of non-Markovian 

questionnaires. Ill 

Now suppose that a partially corrected record with several missing values 

is entered into the imputation system. The first thing that has to be 

considered is whether an imputation process can be started, 

any of the imputations required can indeed be carried out. 

should be verified that the required imputations have indeed 

i.e. whether 

Therefore it 

been defined 

for the imputation variables. If not, the record cannot be totally 

completed by the system. It can still proceed completing as much of the 

record as possible and then transfer the record to a special file for 

inspection by some subject matter expert; or it may be dropped altogether, 

because too much information is lacking. 

The order in which the imputations should be applied to a partially 

corrected record r', is determined by the partial order structure embodied 

in J. To test whether r' can be totally completed, and if so, in which 

order which imputations should be applied, proceed as follows. First 

identify the variables with missing values in the record. Then check that 

for each of these variables an imputation triple (gi,Wi,Vi) is available. 

If not, the record cannot be completed. If so, it can. In this latter 

case an imputation triple (gi,Wi,Vi) has one of the following properties. 

1. All auxiliary variables in Wi have regular values in r', or 

2. There is at least one variable in Wi with a missing value in r'. 

If an imputation gi has the first property it can be applied; in the second 

case it cannot. Carry out all imputations which have the first property, 

and check that the resulting values satisfy the constraints imposed by the 

logical structure. Assuming that this can be carried out without any 

problems, we have created either a completed record -or a new partially 
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corrected record r''. Repeating the arguments above for r'' instead of for 

r', and so on, the process will finally yield a completed record. We leave 

the details to the reader. 
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7. CONCLUSIONS 

In this book a theory was developed for the processing of survey data. The 

motivation behind this theory is a different conception of a survey data 

production process. In this conception the questionnaire plays a very 

important role, viz. as an object containing the relevant defining 

information on questions, answers, routing, edits, etc. 

The outlook in this book is rather theoretical: the purpose in writing 

it was to develop a theoretical framework for the processing of survey 

data, rather than a set of ready-for-use recipes. Of course, the final aim 

is still to solve the practical problems with respect to the processing of 

survey data. Therefore the best thing to do now seems to be to put some of 

the ideas that have been suggested in this book to practice. Furthermore 

there are several points of theoretical interest left for further study. In 

this final chapter we make some suggestions for future research, both 

practically and theoretically oriented. 

Although we have only considered testing the formal structure of a 

questionnaire (and showed that this, in a sense, is difficult), it is 

certainly not the only thing that has to be tested in a questionnaire. 

Testing pragmatic aspects of a questionnaire, i.e. with respect to its use 

in a survey, is also important. The same holds for making the logical 

structure visible for a questionnaire designer. This means that, among 

other things, a questionnaire design system should contain a module which 

draws pictures of a routing graph, very much like exhibit 1.3.1 (which, 

however, is man-made !). 

It would be fruitful to try and find special cases for which the test 

problems considered in chapter 2, and the edit error localization problem 

permit tractable solutions. This can only result from a closer study of 

the logical structures of questionnaires which are used in practice. 

Furthermore it is of considerable significance to search for good 

approximation or randomization techniques, in order to be able to cope with 

these edit error localization problems in practice. 
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It would also be interesting to find out to what extent non-Markovian 

questionnaires are useful or necessary in practice. Such questionnaires 

are most likely to be found in CATI or CAPI surveys, but not in PAPI 

surveys. From a theoretical point of view it is undoubtedlyly interesting 

to generalize the theory in this book so as to encompass non-Markovian 

questionnaires. In chapter 6 the attention is drawn to a connection 

between imputations and non-Markovian questionnaires (cf. remark 6.3.1). 

Another point of research could be the investigation of the validity of 

the assumed property 1.4.1 with respect to the logical structure of 

questionnaires. This requirement seems very plausible and in the present 

theory it is convenient, because it allows that the data editing process 

can be neatly divided into three procedurally independent steps. In 

particular checking and correcting of the routing structure can be 

separated from edit error localization and correction. Although this is 

nice and convenient, it is insufficient to justify its introduction as a 

requirement for the logical structure of a questionnaire. 

Finally we 

missing values 

interpreted as 

remark that it is interesting to study data bases with 

more closely, especially when the missing values are 

either sets or random variables (cf. section 4.3). These 

interpretations of missing data provide intuitive models for many-valued 

and modal logic respectively. 
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APPENDIX A. SOME GRAPH ALGORITHMS 

In this appendix some fundamental graph algorithms are discussed, which can 

be considered as basic tools for others appearing in the main text. These 

basic algorithms are given here for convenience of the reader. Most of 

them can also be found in a textbook such as Aho et al. (1983). The 

algorithms are given either in a pseudo-PASCAL or by a rather informal 

description. The rigour thus sacrificed is compensated by a gain in 

brevity. For more extensive background information on the algorithms to be 

discussed, the reader is directed to the reference cited above. It should 

be remarked that all algorithms discussed in the appendix run in polynomial 

time. The following (di)graph algorithms are discussed below. 

1. Depth-first search (DFS) of a digraph. 

2. Topological sort of an acyclic digraph. 

3. Calculation of connected components in a graph. 

4. Calculation of strong components in a digraph. 

5. Transitive closure in a digraph. 

6. Calculation of all-pairs shortest paths in a digraph. 

7. Calculation of cut-points. 

Each of the above-mentioned algorithms will be treated in a separate 

section. In the algorithms below we shall assume that a (di)graph is 

represented either as an adjacency matrix or as an adjacency list (=edge 

list). In this latter representation singly linked lists are used to 

represent the vertices adjacent to each of the vertices in the (di)graph. 

For more information we refer the interested reader to a book on data 

structures, such as Aho et al. (1983, sections 6.2 and 7.1) 

We use G=(V,E) to denote a (di)graph, where V denotes the set of 

vertices in G, containing n elements, and Ethe set of edges, which are 

either directed or undirected. Let A denote the adjacency matrix of G of 

order n, the number of vertices in G. The matrix A can either be 

considered as a (numeric) 0-1 matrix or as a boolean matrix. An undirected 

graph can be viewed as a special case of a directed graph, namely as a 

graph with a symmetric adjacency matrix. Lis used to denote an adjacency 



-128-

list representation of G. For a vertex vEV, L[v] is the list containing 

all vertices win G such that (v,w) is an edge in G. 

A.1 Depth-first search 

Depth first search (DFS) is a method for systematically traversing 

(di)graphs. It proceeds searching in a (di)graph in a forward direction as 

long as possible. More precisely, assume that the vertices in Gare 

initially marked unvisited. DFS operates by selecting one vertex v of Gas 

a start vertex, which is marked visited. Then each unvisited vertex 

adjacent to vis searched in turn, using DFS recursively. Once all vertices 

that can be reached from v have been visited, the search of vis complete. 

If some vertices remain unvisited, we select an unvisited vertex as a new 

start vertex. This process is repeated until all vertices in G have been 

visited. 

We shall give the skeleton algorithm listed in Aho et al. (1983, pp. 215 

ff.). This skeleton algorithm is used in many graph algorithms in which 

systematic traversal is important. Examples are algorithms to calculate a 

topological sort of an acyclic digraph (cf. section A.2), the connected 

components of an (undirected) graph (cf. section A.3), and the strong 

components of a digraph (cf. section A.4). 

In the DFS algorithm below, let 'mark' be an array of length n, whose 

elements are chosen from the set [visited,unvisited). It can be used to 

determine whether a vertex has previously been visited. Initially the 

elements in mark are 'unvisited'. 



procedure DFS (v: vertex); 

var w: vertex; 

begin(* DFS *) 

mark[v]:= visited; 

for w E L[v] 

do 

if mark[w]= unvisited 

then DFS(w) 

end; (* DFS *) 

A.2 Topological sort 

Let G=(V,E) be an acyclic digraph, 

bijective map s:V➔ {l, ... ,n) such 
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(A.l) 

with IVl=n. A topological sort is a 

that s(i)<s(j) if (i,j)EE. The DFS 

algorithm in section A.l can be used to yields a topological sort. To this 

end introduce a 'writeln(v)' statement immediately after the for-loop in 

algorithm (A.l). Start the algorithm at a source of G, i.e. a vertex with 

indegree 0. As a result, the vertices in G are printed in a reverse 

topological order. So to obtain a topological sorts of G, associate n with 

the first printed vertex, n-1 with the second printed vertex, etc. 

A.3 Connected components 

Calculating the connected components in a graph G can be done with the help 

of DFS, as remarked in section A.l. Start a DFS at a vertex of G. If upon 

termination of the search of G every vertex of G has been visited, G 

consists of one connected component, i.e. G is connected. If not every 

vertex has been visited, G is disconnected and consists of at least two 

components. The DFS process can be started agatn at an unvisited vertex. 

When this process has been terminated another component has been found. 

Repeating this procedure iteratively until all vertices of G have been 

visited will yield all connected components of G. 
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A.4 Strong components 

Let G be a digraph. Let G- 1 be the inverted digraph of G. The strong 

components of G can be found as follows. 

1. Perform a DFS of G and number the vertices in order of completion of 

the recursive calls in algorithm (A.l). 

2. Calculate G- 1 from G. 

3. Perform a DFS on G- 1 , starting to search from the highest numbered 

vertex according to the numbering obtained in the first step. If this 

DFS does not reach all vertices, start the next DFS from the highest 

numbered remaining vertex. 

4. Each time a new DFS is to be started in step 3 because there are still 

some unreached vertices, a new strong component in G has been determined. 

A.5 Transitive closure 

Warshall's (1962) algorithm can be used to calculate the transitive closure 

of a digraph. The transitive closure indicates between which vertices i,j 

in G there exists a path of length one or more. We assume the adjacency 

matrix A to be boolean. The algorithm is as follows: 
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procedure warshall (var C: array[l .. n,l .. n] of boolean; 

A: array[l .. n,l .. n] of boolean); 

(* the transitive closure of A is stored in C *) 

var i,j,k: integer; 

begin(* warshall *) 

for i:= 1 ton do 

for j:= 1 ton do 

C[i,j] := A[i,j l; 
fork:= 1 ton do 

for i:- 1 ton do 

for j:= 1 ton do 

if not C[i,j] 

then C [ i , j ] : = C [ i , k] and C [ k, j ] 

end; (* warshall *) 

(A. 2) 

Note that G is acyclic if the main diagonal of C contains O's only after 

having applied algorithm (A.2). 

A.6 All-pairs shortest paths 

Floyd's (1962) algorithm, which is a generalization of Warshall's algorithm 

(cf. (A.2)), can be used to solve the problem of determining the lengths of 

the shortest paths between every pair of vertices in a digraph. The 

algorithm can be adapted so as to recover the shortest path between 

vertices i and j as well. The algorithm is as follows. 
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procedure floydsp (var C[l .. n,1 .. n] of real; 

A[l .. n,1 .. n] of real); 

var P[l .. n,l .. n] of integer); 

(* the lengths of the shortest paths between each pair of vertices 

is stored in C; P can be used to recover the shortest paths*) 

var i,j,k: integer; 

begin(* floydsp *) 

for i:= 1 ton do 

for j:= 1 ton do 

begin 

C[i,j]:= A[i,j]; 

P(i,j]:= 0 

end; 

for i:= 1 ton do 

C(i,i]:= O; 

fork:= 1 ton do 

for i:= 1 ton do 

for j:= 1 ton do 

if C[i,k] + C(k,j] < C[i,j] 

then 

begin 

C[i,j]:= C[i,k] + C[k,j]; 

P[i,j] := k 

end 

end; (* floydsp *) 

(A.3) 

After having calculated C and P we can apply the following short algorithm 

to actually calculate the shortest path from vertex i to vertex j in G. 



procedure path (i,j: integer); 

label 1; 

var k: integer; 

begin(* path*) 

k:- P[i,j]; 

1: 

if k- 0 

then goto 1; 

path(i,k); 

writeln(i,k); 

path(k,j); 

end; (* path *) 

A. 7 Cut-points 

-133-

(A.4) 

Let G=(V,E) be a routing graph, with JvJ=n. Let s:V➔ (l, ... ,n} denote a 

topological sort of G. Let furthermore WIDTHJ 5 :V➔N be the mapping defined 

as follows 

WIDTHJ.(v) = #((u,w)EE I s(u)<s(v)<s(w)}, 

for veV. It can be shown that WIDTHJ.(v)=O if and only if vis a cut-point, 

for any topological sort s of G. (There are routing graphs G such that 

WIDTHJ.(v) ~ WIDTH!t(v), for vertices v on G and topological sorts sand t 

of G. Of course, such vertices v cannot be cut-points.) 

So calculating the WIDTHJ. for a certain topological sorts of G and 

identifying the vertices for which it takes the value 0, yields the cut

points of G. This method is due to Tangelder (1987). 
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APPENDIX B. CHARACTERIZING THE ROUTING STRUCTURE 

In this appendix two characterizations of the routing structure of a 

questionnaire, i.e. the routing graph, are introduced. The first 

characterization, the 'balance', is related to the variation in lengths of 

the various paths through a questionnaire. The second one, called the 

'complexity', measures the branchedness of a routing graph. Both measures 

can be useful to classify questionnaires on the basis of their routing 

structure. Furthermore both might be useful in assessing aspects of the 

quality of questionnaires as far as their routing structure is concerned. 

Questionnaires with an ill-balanced routing structure might induce 

interviewers to suggest answers to questions which might result in shorter 

paths through a questionnaire. This practice is very harmful because it can 

generate records which are formally correct but do not apply to reality. 

Questionnaires with a highly complex routing structure are more 

difficult to check and also increase the efforts in checking and correcting 

the records containing the answers of respondents. For pencil and paper 

questionnaires they increase the probability that an interviewer jumps to a 

wrong question. 

Let G be a routing graph with adjacency matrix A. Let TI denote the 

collection of all paths in G. Let X be a random variable denoting the 

length of a randomly drawn path from TI. The balance of G is defined as the 

variation coefficient of X. It is denoted by fi(G), or fi, if the dependence 

on G is implicitly assumed. That is, 

fi fi(G) 
J Var(X) 

EX (B.l) 

where µ=EX and a 2 =Var(X). The expectationµ and the variance a 2 of X can 

be expressed in terms of the adjacency matrix A of Gas follows: 



and 

where 
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µ. = µ.(G) = 
71" 

(I-A)l-2 
,n 

- 1 

2 
a= 

2 (I-A) 1- 3 
,n 2 

- µ. - 3µ. - 2 , 
71" 

ir - ir(G) - (I - A)-l 
1,n 

(B.2) 

(B.3) 

(B.4) 

is the total number of paths in G, i.e. the cardinality of IT. (B.2) and 

(B.3) have been calculated using the generating function of X. 

It can be proved (see Willenborg, 1986) that if G=G1 *G2 , where* is the 

glueing operation defined in section 1.3, it holds that 

From these results the following identity for the balance 

immediately: 

(B.5) 

(B.6) 

(B.7) 

follows 

(B.8) 

where µ1 =µ(G1 ) and P1 =a(G1 )/µ(G 1 ), for i=l,2. These results are of 

practical value for the calculation of the balance of a large routing 

graph. Such a routing graph can be decomposed into smaller ones for which 

calculations are perhaps feasible. Balances and average path lengths for 
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each of the components can then be combined by using (B.8) repeatedly, to 

yield the balance of the original routing graph. 

The complexity p of G is defined as the logarithm (at base 2) of the 

number of paths in G, i.e. 

p = log2 ~ (B.9) 

The complexity p has the following properties (see e.g. Willenborg, 1986): 

1. p(G1 *G2 )=p(G1 )+p(G2 ). 

2. p(G1 *G2 )=p(G2 *G1 ). 

3. p(G- 1 )=p(G), where c- 1 denotes the inverse routing graph of G. 

4. p(G1 )~p(G2 ) if G1 is a sub-routing graph of G2 . 

5. p(G0 )=0 if G0 is the point graph. 

6. pis invariant under contractions. 

The measure pis an absolute measure of complexity. It might be convenient 

to define a relative measure of complexity. This should express the 

complexity of a routing graph G relative to the routing graph with the 

highest complexity within a class of routing graphs which are naturally 

associated with G. One such class consists of all routing graphs with the 

same number of vertices as G possesses. (Another one is the class of 

routing graphs with the same number of vertices as the maximal contraction 

of G. But this one is computationally somewhat inconvenient.) We refer the 

interested reader to Willenborg (1986) for details and some numerical 

examples. 

Remark B.l Complexity measures have been introduced in various disciplines 

in which graph structures are used, such as chemistry (molecular 

structures), biology (neuronal networks) or software engineering (flow 

control graphs); see e.g. Karreman (1955), Rashevsky (1955), Trucco 

(1956), Sabidussi (1959), Moshowitz (1968a, 1968b), Marshall (1971, pp. 235 

ff.), McCabe (1976), Henry et al. (1981) and Harrison (1984) for examples. 

Ill 
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Apart from the balance and complexity there are other characteristics and 

objects of interest with respect to the routing structure in a 

questionnaire. We only mention the longest and the shortest path and their 

respective lengths as examples. Furthermore, a questionnaire designer 

might for example want to know whether there is a path from question v to 

question w, and, if there is at least one such path, how many there are in 

toto. Such information, which is·easy to calculate, should be provided by 

the designing system he is using, upon his request. 

APPENDIX C. DISCRIMINANT ANALYSIS 

In this appendix we shall discuss some aspects of discriminant analysis 

(DA). This appendix is meant as a quick reference for the reader. More 

extensive discussions can be found in e.g. Mardia et al. (1982, ch. 11), 

Hand (1982) and Titterington et al. (1985, section 5.7). References to 

more specialized papers on DA are given below. 

Let (R,~,µ) be a probability space. Let µ 1 , •.. ,µn be probability 

measures defined on the measurable space (R,~). such that the density of µi 

with respect toµ is given by h 1 : R➔ R, i=l, ... ,n, i.e. dµ 1 =h1 dµ. Suppose 

that each h 1 corresponds to a subpopulation U1 of a population U=u1 U1 • Now 

suppose that our task would be to classify an xER into one of these 

subpopulations U1 in an 'optimal way' (to be explained below). A natural 

way to proceed is to propose the following decision criterion to allocate 

an xER: 

if hj(x)=max1 hi(x) then allocate x to Uj, (C.1) 

where we shall assume, here as well as in the sequel without explicitly 

mentioning it, that we (randomly) choose an index if there are several 

candidates. We shall call this criterion (C.l) the maximum likelihood rule 

for allocation of xER. This criterion gives all densities equal weight. 

Suppose that, additionally, we would possess (estimates of) the mixture 

weights f 1 of the densities , which are such that ~if1 =1 and ~if1 h 1 (.)=h(.) 



-138-

for h: R➔ R the population density of U. (So his a finite mixture of 

densities h 1 with mixture weights fi.) Then we could formulate the 

following criterion, which also discounts the relative weights of the 

densities: 

Formulating this criterion in terms of probabilities we obtain: 

if 
fj hj (x) 

------=maxi 
li fi hi (x) 

then allocate x to Uj. 

(C.2) 

(C.3) 

We can interpret such a quotient as a posterior density, obtained by Bayes' 

theorem from the mixture weights (f1 , ... ,fn), interpreted as a prior 

density, and the likelihood h(xli)=h1 (x). For this reason we shall call the 

equivalent criteria (C.2) and (C.3) Bayes criteria. All three criteria 

(C.l) through (C.3) are deterministic, in the sense that if x 1 , x 2 ER and 

x 1 =x2 then x 1 and x 2 will be allocated to the same subpopulation almost 

surely, provided that (xERjthere are at least two indices i and j such that 

h 1 (x)=hj(x)} or (xERlthere are at least two indices i and j such that 

f 1 h 1 (x)=fihj(x)} (whatever applies) are neglegible with respect to the 

reference measureµ, which we shall assume. 

We can generalize our deterministic criteria to randomized discriminant 

rules as follows. Let ~ 1 , ..• ~n: R ➔ R be nonnegative functions which are 

measurable with respect toµ, and for which holds: ~i ~1 (x)=l for every 

xER. In other words (~1 , ...• ~nl forms a partition of unity. We can define 

the following classification rule: 

xis allocated to Uj with probability ~j (x). (C.4) 

Special cases of this rule are obtained when we take ~j=fjhj or ~j=hj. It 

is furthermore clear that the deterministic criteria above are special 

cases of (C.4) as well. To obtain e.g. (C.2) define 
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{ 
1 if fjhj(x) = maxi fih1 (x), 

'Pj (x) = 
0 otherwise. 

(C.5) 

Then each 'Pj is almost everywhere defined on R, in view of a condition 

mentioned earlier, and is (R,L)-measurable. 

We are now in a position to introduce a measure for the quality of a 

classification criterion. For criterion (C.4) we can calculate the 

probability rp1 j of classifying an element from Ui into subpopulation Uj as 

follows (note that the integrals exist): 

(C.6) 

An element of U1 is correctly classified with probability rp11 and 

incorrectly with the complementary probability l-rp11 . The performance of a 

classification procedure can be summarized in terms of the rp11 . In fact the 

set l'P11, · .. ,'Pnn), 

to partially order 

which exists for each classification rule, can be used 

these rules, as follows. Let r and r' be 

classifications with corresponding sets of correct classification 

probabilities {rp11 ) and {rp11 ) respectively. We shall say that r is at 

least as good as r' if rp11 ~rpii for i=l, ... ,n, and r is better than r' if 

at least one of these inequalities is strict. This leads to an optimality 

criterion called admissibility: a classification ruler is admissible if 

there is no ruler' better than r. It can be proved that rules such as 

(C.l) through (C.3) are admissible (see e.g. Mardia et al., 1982, th. 

11.2.2). If we have mixture weights fi available then we can formulate 

another optimality criterion by considering the average correct 

classification probability Li firpii. It can also be proved that rules such 

as (C.l) through (C.3) are still admissible when applying this criterion 

(see Mardia et al., 1982, th. 11.2.3). 

Denote the average correct classification probability Li firpii by I and 

let ry=l- 1 . If we have a random sample of n individuals (e.g. 

nonrespondents) from the population we may assume that the number of 

correctly classified among these is binomially distributed with parameters 

n and 1 , i.e. according to Bin(n, 1 ). So the expectation of the number of 
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correctly classified individuals is n 1 and the variance of this number is 

nr(l-0. 

The discussion above was based on exact probability densities hi and 

mixture weights fi, but in practice these are often not available and have 

to be estimated from a sample. Especially for continuous hi this may be a 

nontrivial matter (see e.g. Tapia and Thompson, 1978). The estimation of 

the fi is discussed in chapter 5 of the present book. See also Dempster et 

al. (1977, sec. 4.3) and Titterington et al. (1985, sec. 4.3.2) for an 

application of the EM algorithm to estimate the mixture weights fi. The 

estimation of the hi is possible either on the basis of the response in the 

sample or on the basis of this response plus (a part of) the allocated 

nonrespondents. Which method should be chosen should depend on the 

confidence one has in the correctness of the allocation of the 

nonrespondents. 

Another problem is the estimation of the (mis)classification 

probabilities from a sample. If they are estimated from exactly the same 

data that have been used to define the classification criteria then the 

misclassification probabilities are bound to be underestimated. A way out 

of this problem is by not deriving these estimates from precisely the same 

data, i.e. by applying a cross-validation or another nonparametric 

resampling procedure, such as jackknifing or bootstrapping. In Efron 

(1983) several such estimators are introduced and their performances are 

investigated in some simulations, the results of which are reported in the 

article. In this study the variable to be predicted is assumed to be 

dichotomic. One of the conclusions is that cross-validation gives nearly 

unbiased answers but often with very high variability, particularly if the 

training sample is small. The bootstrap estimators considered also have 

little bias in their answers and furthermore low variability. In this 

sense these estimators outperform cross-validation. Hand (1982, section 

5.2) also gives a presentatipn of the problem of correctly estimating 

(mis)classification probabilities. 
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An important parametric DA technique is based on logistic regression, 

see e.g. Cox (1969), Anderson (1982) and Schmitz (1986). Nonparametric 

techniques are discussed in Broffitt (1982). 



-142-

REFERENCES 

(The expressions within the square brackets refer to 

appendices) 

sections or 

Abrahamse, A.P.J. and J.T. Geilenkirchen, 1986, Finite-sample behaviour of 

logit probability estimators in a real data set (Report, Econometric 

institute, Erasmus University, Rotterdam). [5.2] 

Aho, A.V., J.E. Hopcroft and J.D. Ullman, 1983, Data structures and 

algorithms (Addison-Wesley, Reading, Mass.). [A] 

Albert, A. and J.A. Anderson, 1984, On the existence of maximum likelihood 

estimates in logistic regression models, Biometrika, vol. 71, 1-10. 

[5. 2] 

Amemiya, T., 1981, Qualitative response models: a survey, Journal of 

Economic Literature, vol. 19, 1483-1536. [5.2] 

Amemiya, T., 1985, Advanced econometrics (Basil Blackwell, Oxford). [5.2] 

Anderson, J.A., 1982, Logistic discrimination, 

L.N. Kanal (eds.), Handbook of Statistics, 

Amsterdam), 139-168. [5.2; C] 

in: P.R. Krishnaiah and 

vol. 2 (North-Holland, 

Bethlehem, J.G. and H.M.P. Kersten, 

Statistische onderzoekingen M 30 

Statistics, Voorburg). [5.2; 5.3] 

1986, Werken met 

(Netherlands Central 

non-response, 

Bureau of 

Bishop, Y.M.M, S.E. Fienberg and P.W. Holland, 1980, Discrete multivariate 

analysis: theory and practice (MIT Press, Cambridge, Mass.). [5.4] 

Broffitt, J.D., 1982, Nonparametric classification, in: P.R. Krishnaiah 

and L.N. Kanal (eds.), Handbook of Statistics, vol. 2 (North-Holland, 

Amsterdam) , 139-168. [ C] 



-143-

Cassel, C.-M., C.-E. SArndal and J.H. Wretman, 1983, Some uses of 

statistical models in connection with the response problem, in: Madow 

and 0lkin (1983, vol. 3, 143-160). [5.3] 

Chiu, H.Y. and J. Sedransk, 1986, A Bayesian procedure for imputing missing 

values in sample surveys, Journal of the American Statistical 

Association, vol. 81, 667-676. [5.4] 

Codd, E.F., 1975, Understanding relations (instalment #7), FDT (bulletin of 

ACM SIGM0D), vol. 7, 23-28. [4.3; 4.3.1] 

Cox, D.R., 1969, The analysis of binary data (Chapman and Hall, London). 

[C] 

Date, C.J., 1983, An introduction to database systems, volume 2 (Addison

Wesley, Reading, Mass.). [4.3] 

Dempster, A.P., N.M. Laird & D.B. Rubin, 1977, Maximum likelihood from 

incomplete data via the EM algorithm (with discussion), Journal of the 

Royal Statistical Society, vol. 39, Ser. B, 1-38. [5.4; CJ 

Efron, B., 1983, Estimating the error rate of a prediction rule: 

improvemenent on cross-validation, Journal of the American Statistical 

Association, vol. 78, 316-331. [C] 

Fellegi, I.P. & D. Holt, 1976, A systematic approach to automatic edit and 

imputation, Journal of the American Statistical Association, vol 71, 17-

35. [ 3. 1; 3. 3; 3. 4; 3. 4 .1; 3. 4. 2 J 

Floyd, R.W., 1962, Algorithm 97: shortest path, Communications of the ACM, 

vol. 6, 345. [A] 

Ford, B.L., 1983, An overview of hot-deck procedures, in: Madow, 0lkin and 

Rubin (1983), 185-207. [6.3] 



-144-

Garey, M.R. and D.S. Johnson, 1979, Computers and intractability: a guide 

to the theory of NP-completeness (W.H. Freeman & Co, San Francisco). 

[2.1; 2.2; 3.4.1] 

Garfinkel, R.S., 1979, An 

data (Working paper, 

[3.1; 3.4; 3.4.1; 3.4.2] 

algorithm for optimal imputation of erroneous 

University of Tennessee, Knoxville). 

Garfinkel, R.S. and G.L. Nemhauser, 1972, Integer programming (Wiley, New 

York). [3.4.1; 3.4.3J 

Gourieroux, C. and A. Monfort, 1981, Asymptotic properties of the maximum 

likelihood estimator in dichotomous logit models, Journal of 

econometrics, vol. 17, 83-97. [5.2] 

Good, I.J., 1965, The estimation of probabilities (MIT Press, Cambridge, 

Mass.). [3.4.3] 

Hajek, J., 1981, Sampling from a finite population (Marcel Dekker, New 

York) . [ 5. 2] 

Hand, D.J., 1982, Kernel discriminant analysis (Research Studies 

Press/Wiley, Chichester). [CJ 

Harrison, W.A., 1984, Applying McCabe's complexity measure to multiple-exit 

programs, Software-practice and experience, vol. 14, pp. 1004-1007. 

[BJ 

Hartley, H.O. and J.N.K. Rao, 1968, A new estimation theory for sample 

surveys, Biometrika, vol. 55, 547-557. [5.1] 

Hartley, H.0. and J.N.K. Rao, 1969, A new estimation theory for sample 

surveys, II, in: N.L. Johnson and H. Smith (eds.), New developments in 

survey sampling (Wiley-Interscience, New York), 147-169. [5.1] 



-145-

Henry, S., D. Kafura and K. Harris, 1981, On the relationship among three 

software metrics, Performance Evaluation Review, vol. 10, pp. 81-88. 

[BJ 

Hopcroft, J.E. and J.D. Ullman, 1969, Formal languages and their relation 

to automata (Addison-Wesley, Reading, Mass.). [3.2] 

Karreman, G., 1955, Topological information content and chemical reactions, 

Bulletin Mathematical Biophysics, vol. 17, pp. 279-285. [B] 

Lacroix, M. and A. Pirotte, 1976, Generalized joins, ACM SIGMOD record, 

vol. 8, no. 3, 14-15. (4.3] 

Liepins, G.E., 1980, Refinements to the Boolean approach to automatic data 

editing (Internal report, Oak Ridge National Laboratory, Oak Ridge, 

Tennessee). [3.3; 3.3.2] 

Liepins, G.E., R.S. Garfinkel & A.S. Kunnathur, 1982, Error localization 

for erroneous data: a survey In: S.H. Zanakis and J.S. Rustagi, 

Optimization in statistics (North-Holland, Amsterdam), 205-219. [3.1; 

3.3; 3.3.2] 

Liepins, G.E. & D.J. Pack, 1980, An integrated approach to data editing, 

Proc. of the American Statistical association, Survey Research Section, 

777-781. [3.3; 3.3.2] 

Liepins, G.E. & D.J. Pack, 1981, Prior probablities, maximal posterior, and 

minimal field error localization, Proc. of the 13th Symposium on the 

Interface (Springer, Berlin). [ 3. 3; 3. 3. 2] 

Lipski, W., 1981, On data bases with incomplete information, Journal of the 

Association of computing machinery, vol. 28, 41-70. [4.3] 

Lodi, E., F. Luccio, C. Mugnai and L. Pagli, 1979, On two-dimensional data 

organization I, Fundamenta Informatica, vol. 2, 245-260. [2.2.3] 



-146-

Maddala, G.S., 1983, Limited-dependent and qualitative variables in 

econometrics (Cambridge University Press, Cambridge). [5.2] 

Matlow, W.G and I. 0lkin (eds.), 1983, Incomplete data in sample surveys, 

vol. 3, Proceedings of the symposium (Academic Press, New York). [5.1] 

Matlow, W.G., I. 0lkin and D.B. Rubin (eds.), 1983, Incomplete data in 

sample surveys, vol. 2, Theory and bibliography (Academic Press, New 

York). [5. l] 

Mardia K.V., J.T. Kent and J.M. Bibby, 1982, Multivariate analysis 

(Academic Press, London). [C] 

Marshall, C.W., 1971, Applied graph theory (Wiley-Interscience, New York). 

[Bl 

McCabe, T.J., 1976, A complexity measure, IEEE Transactions on software 

engineering, vol. 2, 308-320. [BJ 

McFadden, D., 1984, Econometric analysis of qualitative response models, 

in: Z. Griliches and M.D. Intriligator (eds.), Handbook of econometrics, 

vol. 2, ch. 24 (Elsevier Science Publishers, Amsterdam). [5.2] 

Moshowitz, A., 1968a, Entropy and complexity of graphs I, Bulletin 

Mathematical Biophysics, vol. 30, 175-204. [Bl 

Moshowitz, A., 1968b, Entropy and complexity of graphs II, Bulletin 

Mathematical Biophysics, vol. 30, 225-240. [BJ 

Naus, J.I., T.G. Johnson and R. Montalvo, 1972, A probabilistic model for 

identifying errors in dat~ editing, Journal of the American Statistical 

Association, vol. 67, 943-950. [3.3; 3.3.1; 3.4; 3.4.1] 

Rashevsky, N., 1955, Life, information theory and topology, Bulletin 

Mathematical Biophysics, vol. 17, 229-235. [Bl 



-147-

Royall, R., 1968, An old approach to finite population sampling theory, 

Journal of the American Statistical Association, vol. 63, 1269-1279. 

[5.1] 

Rubin, D.B., 1987, Multiple imputation for nonresponse in surveys (Wiley, 

New York). [0.2; 6.1; 6.2] 

Sabidussi, G., 1959, The composition of graphs, Duke Mathematical Journal, 

vol. 26, 693-696. [Bl 

Santner, T.J. and D.E. Duffy, 1986, A note on A. Albert and J.A. Anderson's 

conditions for the existence of maximum likelihood estimates in logistic 

regression models, Biometrika, vol. 73, 755-758. [5.2] 

Schmitz, P.I.M., 1986, Logistic regression in medical decision making and 

epidemiology, Ph.D. thesis, Erasmus University, Rotterdam. [C] 

Shmoys, D.B., 1988, Private communication. [2.2] 

Tangelder, H., 1987, The computation of cut-points in a routing graph 

(Internal note, Netherlands Central Bureau of Statistics, Heerlen). [A] 

Tapia, R.A. and J.R. Thompson, 1978, Nonparametric probability density 

estimation (The Johns Hopkins University Press, Baltimore). [C] 

Titterington, D.M., A.F.M. Smith and U.E. Makov, 1985, Statistical analysis 

of finite mixture distributions (Wiley, Chichester). [C] 

Trucco, E., 1956, A note on the information content of graphs, Bulletin 

Mathematical Biophysics, vol. 18, 129-135. [B] 

Ullman, J.D., 1982, Principles of database systems (2nd ed.) (Computer 

Science Press, Rockville, Md). [4.3.1; 6.3] 



-148-

Vassiliou, Y., 1979, Null values in data base management: a denotational 

semantics approach, ACM SIGMOD International Symposium on Management of 

Data, 162-169. (4.3; 4.3.1; 4.3.2] 

Vassiliou, Y., 1980, Functional dependencies and incomplete information, 

International conference on very large data bases, Proceedings IEEE '80, 

260-269. (4.3] 

Wagner, R.A., 1974, Order-n correction for regular 

Communications of the ACM, vol. 17, 265-268. (3,1; 3.2] 

languages, 

Wagner, R.A., 1976, A shortest-path algorithm for edge-sparse graphs, 

Journal of the ACM, vol. 23, 50-57. (3.2] 

Warshall, S., 1962, A theorem on Boolean matrices, Journal of the ACM, vol. 

9, no. 1, pp. 11-12. [A] 

Willenborg, L.C.R.J., 1986, Two characterizations of the routing structure 

in a questionnaire: balance and complexity (Internal report, Netherlands 

Central Bureau of Statistics, Heerlen). [Bl 

Wolter, K.M., 1985, Introduction to variance estimation (Springer, New 

York). (5.3] 

Zaniolo, C., 1977, Relational views in a data base system support for 

queries, Computer Software and Applications Conference, Proceedings IEEE 

'77, 267-275. (4.3] 



-149-

INDEX 

(The entries refer to the sections or appendices where the corresponding 

concepts are defined or discussed) 

-A-

activatable edit, 1.4 

activatable imputation, 1.6.3 

activated edit, 1.4 

activation map, 2.2 

admissible classification rule, C 

admissible range, 3.1 

auxiliary variable, 5.2 

-B

balance, B 

Bayes' criterion, C 

-C-

CADI (= Computer Assisted Data Input), 0.1 

canonical decomposition of a routing graph, 1.3 

CATI(= Computer Assisted Telephone Interviewing), 0.1 

characteristic set, 6.3 

closed question, 1.2 

complete record, 1.3 

complete set of edits, 3.4.2 

complexity, B 

component of a routing graph, 1.3 

connected (property of routing graph), 1.3 

contracted routing graph, 1.3 

contraction of a routing graph, 1.3 

correct routing structure, 1.3 

cover, 3.4.1 

cover off, 3.4.1 

GP-edit, 1.4 

cut, 1.3 



cut-point, 1.3 

-D-

decomposable routing graph, 1.3 

decomposing a routing graph, 1.3 

derivation, 6.3 

-150-

deterministic classification criterion, C 

deterministic imputation, 6.3 

digraph, 1. 3 

domain, 1. 2 

dominate, 2.2.3 

dominator graph, 2.2.3 

-E-

edit, 1.4 

edit cluster, 1.4 

edit cluster problem, 2.2 

edit graph, 1.4 

edit set, 1.4 

elementary repairs, 3.2 

error rates, 3.3.1 

error weights, 3.3.2 

essentially new implied GP-edit, 3.4.2 

essentially new implied polyhedral edit, 3.4.2 

exclusive or property, 1.4 

extension of a domain, 4.3.2 

-F-

functional dependency, 6.3 

-G-

generating variable, 3.4.2 

glueing operation, 1.3 

-I-

idle edit, 1.4 



implied edit, 3.4.2 

imputation triple, 6.3 

imputation variable, 5.1 

incomplete record, 1.3 

independence model, 3.3.1 

inverted routing graph, 1.3 

invisible edit, 1.4 

invisible missing, 4.2 

-151-

involved, a variable 

item nonrespondents, 5.2 

item respondents, 5.2 

in an edit, 1.4 

-K-

Ker(~)-problem, 2.2 

kernel of activation map(~). 2.2.2 

-L-

length of a path, 1.3 

lie, a vertex ... son a path, 1.3 

logical consistency problem, 2.2 

logically implied edit, 3.4.2 

-M-

Markovian questionnaire, 1.1 

maximally contracted routing graph, 1.3 

maximal edit cluster, 1.4 

maximal implied edit, 3.4.2 

maximum likelihood rule, C 

maybe equi-join, 4.3.1 

missing value principle, 4.3.1 

multivalued dependency, 6.3 . 

MWFI (- Minimum Weighted Fields to Impute) problem, 3.4.1 

-N-

natural ordering of edits, 1.4 

non-Markovian questionnaire, 1.1 



-152-

normal edit, 1.4 

-0-

open question, 1.2 

-P-

PAPI (= Pencil And Paper Interviewing), 0.1 

parallel maximal chains, 3.3 

partial function, 4.3.2 

partially corrected record, 3.2 

partition of unity, C 

partly open question, 1.2 

path, 1.3 

path from to ... , 1. 3 

path set, 1. 3 

point graph, 1. 3 

polyhedral edit, 1.4 

precede, 3.3 

precoded answers, 1.2 

prime routing graph, 1.3 

prime cover, 3.4.1 

-Q-

q-type questionnaire, 1.1 

q&e-type questionnaire, 1.1 

-R-

randomized discriminant rule, C 

REC(= set of records with a correct routing structure), 1.3 

record, 1.3 

redundancy problem, 2.2 

redundant edits, 2.2.3 

regular value, 1.3 

regular missing, 4.2 

remove a linear part from a routing graph, 1.3 

repairable incomplete record, 3.4 



response propensity, 5.2 

routing graph, 1.3 

-153-

routing structure, set of records with a correct ... (REC), 1.4 

routing sub-graph, 1.3 

-S-

satisfy an edit, 1.4 

segment of a routing graph, 1.3 

sensitivity analysis, 6.1 

series composition, 1.3 

simultaneously activatable edits, 1.4 

simultaneously activated edits, 1.4 

sink, 1.3 

slice of a routing graph, 1.3 

source, 1.3 

stochastic imputation, 6.2 

string, 3.2 

strong component, 2.2.3 

sufficient set of edits, 2.3 

suspicion sentence, 3.4.4 

-T-

target variable, 5.1 

topological sort, 1.3 

total function, 4.3.2 

transition set, 1.3 

transitive closure, 1.3 

truth-functional, 4.3.1 

two-test case, 3.3.1 

-U-

uncoded answer, 1.2 

-V-

vector field, 6.3 

violate an edit, 1.4 



-154-

violated edit matrix, 3.4.1 

-X-

xor-property, 1.4 



MATHEMATICAL CENTRE TRACTS 
I T. van iter Walt. Fixed and almost fix,d points. 1963. 
2 A.R. Bloemena. Sampling from a g,oph. 1964. 
3 G. de Leve. Genera/iz,d MarkoYian d«isian procestt11, part 
I: ,n,xkl and method 1964. 
4 G. de Leve. Genera/iz,d Mar/cm,ian d«isian process,11, part 
II: probabilistic b«kground. 1964. 
5 G. de Leve. H.C. Tijms, P J. Weeda. Generaliz,d Markovian 
d«ision processes, applications. 1970. 
6 M.A. Maurice. Compact order,d spaces. 1964. 
7 W.R. van Zwet. Convex transformations of random wuiables. 
1964. 
8 J.A. Zonneveld. Automatic num1:rical integration. 1964. 
9 P.C. Baayen. Universal morphisms. 1964. 
IO E.M. de Jager. Applications of distributions in mathematical 
physics. 1964. 
11 A.B. Paalman-de Miranda Topological semigroups. 1964. 
12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mallen; 
A. van Wijngaarden. Formal properties of newspaper Dutch. 
1965. 
13 H.A. Lauwerier. Asymptotic expansions. 1966, out of print; 
replaced by MCT 54. 
14 H.A. Lauwerier. Ca/cu/us of variations in mathematical 
physics. 1966. 
15 R. Doornbos. Slippag• tests. 1966. 
16 J.W. de Baller. Formal definition of programminl 
~~ge., with an appliCaJian to the definition of AL OL 60. 

17 R.P. van de Riet. Formula manipulation in ALGOL 60, 
part I. 1968. 
18 R.P. van de Riet. Formula manipulation in ALGOL 60, 
part 2. 1968. 
19 J. van der Slot. Some properties relat,d to compactness. 
1968. 
20 P J. van der Houwen. Finite difference methods for solving 
partial differential equaJions. 1968. 
21 E. Watte!. The compactness operator in set theory and 
topology. 1968. 
22 T.J. Dekker. ALGOL 60 procedures in numerical algebra. 
part I. 1968. 
23 T.J. Dekker, W. Hollmann. ALGOL 60 procedllres in 
numerical algebra, part 2. 1968. 
24 J.W. de Bakker. Recursive proc,dures. 1971. 
25 E.R. Pal!rl. Representations of the Lorentz group and projec
tive geometry. 1969. 
26 European Meeting 1968. Select,d statistical papers, part I. 
1968. 
27 European Meeting 1968. Selected statistical papers, part II. 
1968. 
28 J. Oosterhof!. Combination of one-sided statistical tests. 
1969. 
29 J. Verhoell. Error detecting d«imal codes. 1969. 
30 H. Brandt Corstius. Exercises in computational linguistics. 
1970. 
31 W. Molenaar. Approximations to the Poisson, binomial and 
hyperg,ometric distribution functions. 1970. 
32 L. de Haan. On regular variation and its application to the 
weak convergence of sample extremes. 1970. 
33 F.W. Steutel. Preservation of infinite divisibility under mix• 
ing and related topics. 1970. 
34 I. Juhasz, A. Verbeck, N.S. Kroonenberg. Cardinal June• 
tions in topology. 1971. 
35 M.H. van Emden. An analysis of complexity. 1971. 
36 J. Grasman. On the birth of boundary layers. 1971. 
37 J.W. de Baller, G.A. Blaauw, A.J.W. Duijvestijn, E.W. 
Dijkstra, P J. van der Houwen, G.A.M. Kamsteeg-Kemper, 
F.E.J. Kruseman Aretz, W.L. van der Poel, J.P. Schaap
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 Informatica 
Symposium. 1971. 
38 W.A. Verloren van Themaat. Automatic analysis of Dutch 
compound words. 1972. 
39 H. Bavinck. Jacobi series and approximation. 1972. 
40 H.C. Tijms. Analysis of /s,S) inventory models. 1972. 
41 A. Verbeck. Superextensions of topological spaces. 1972. 
42 W. Vervaat. Success epochs in Bernoulli trials (with applica
tions in number theory). f972. 
43 F.H. Ruymgaart. Asymptotic theory of rank tests for 
independence. f973. 

44 H. Bart. Meromorphic operator valued functions. 1973. 
45 A.A. Balkema. Monotone transformations and limit laws. 
1973. 
46 R.P. van de Riet. ABC ALGOL, a portable langua_ge for 
formula manipulation system,, part I: ihe language. 1973. 
47 R.P. van de Riel. ABC ALGOL, a portable language for 
formula manipulation systefflll, part 2: t1u! compiler. 1973. 
48 F.E.J. Kruseman Aretz, PJ.W. ten Hagen, H.L. 
Oudshoom. An ALGOL 60 compiler in ALGOL 60, text of the 
MC-compiler for the EL-XB. 1973. 
49 H. Kok. Connect,d orderoble spaces. 1974. 
SO A. van wyn~en, BJ. Mailloux, J.E.L. Peck, C.H.A. 
Koster, M. Smtzoll, C.H. Lindsey, L.G.L.T. Meertens, R.G. 
Fisker (eds.). Revis,d report on the algorithmic language 
ALGOL 68. 1976. 
5 I A. Hordijk. Dynamic programming and Markov potential 
theory. 1974. 
52 P.C. Baayen (ed.). Topological structures. 1974. 
53 M.J. Faber. Metrizability in generaliz,d order,d spaces. 
1974. 
54 H.A. Lauwerier. Asymptotic analysis, part I. 1974. 
55 M. Hall, Jr., J.H. van Lint (eds.). Combinatoric11, part I: 
theory of designs, finite geometry and roding theory. 1-g74_ 
56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2: 
graph theory, foundationll, partitions and combinatorial 
geometry. 1914. 
57 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part J: 
combinatorial group theory. 1974. 
58 W. Albers. Asymptotic expansions and the deficiency con• 
cepl in statistics. 191S. 
59 J.L. Mijnheer. Sample path properties of stable processes. 
1975. 
60 F. Gobel. Queueing models involving buffers. 1915. 
63 J.W. de Bakker (ed.). Foundations of computer science. 
1975. 
64 W.J. de Schipper. Symmetric clos,d categories. 1975. 
65 J. de Vries. Topological transformation groups, I: a categor• 
ica/ approach. 1915. 
66 H.G.J. Pijls. Logically convex algebras in spectral theory 
and eigenfunction expansions. 1976. 
68 P.P.N. de Groen. Singularly perturbed differential operators 
of second order. 1976. 
69 J.K. Lenstra. Sequencing by enumerative methods. 1977. 
70 W.P. de Roever, Jr. Recursive program schemes: semantics 
and proof theory. 1976. 
71 J.A.E.E. van Nunen. Contracting Markov decision 
processes. 1976. 
72 J.K.M. Jansen. Simple periodic and non-periodic Lami 
functions and their applications in the theory of conical 
waveguides. 1977. 
73 D.M.R. Leivant. Absoluteness of intuitionistic logic. 1979. 
74 H.JJ. te Riele. A theoretical and computational stutly of 
generalized aliquot sequences. 1916. 
75 A.E. Brouwer. Treelike spaces and related connected topo· 
logical spaces. 1977. 
76 M. Rem. Associons and the closure statement. 1916. 
77 W.C.M. Kallenber~. Asymptotic optimality of likelihood 
ratio tests in exponenllal families. 1978. 
78 E. de Jonge, A.C.M. van Rooij. Introduction to Riesz 
spaces. 1977. 
79 M.C.A. van Zuijlen. Emperica/ distributions and rank 
statistics. 1977. 
80 P.W. Hemker. A numerical stutly of stiff two-point boundary 
problems. 1977. 
81 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer 
science II, part I. 1976. 
82 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer 
science II, part 2. 1976. 
83 L.S. van Benthem Jutting. Checking Landau's 
"Grundlagen" in the A UTOMATH system. 1979. 
84 H.L.L. Busard. The translation of the elements of Euclid 
from the Arabic into Latin by Hermann of Carinthia (?), books 
vii-xii. 1977. 
85 J. van Mill. Supercompoctness and Wallman spaces. 1977. 
86 S.G. van der Meulen, M. Veldhorst. Torrix /, a program
ming Sf Siem for operations on vectors and matrices over arbi
trory Jields and oJ variable size. 1978. 
88 A. Schrijver. Matroids and linking systems. 1977. 
89 J.W. de Roever. Complex Fourier transformation and 
analytic functionals with unbounded carriers. 1978. 



90 l:..P J. Grocnewegen. Chmacterization of optimal strategies 
in dynamic games. 1981. 
91 J.M. Geysel. Transcendence in fields of positive characteris
tic. 1979. 
92 P J. Weeda. Finite generalized Marko, programming. 1919. 
93 H.C. Tijms, J. Wessels (eds.). Mark011 decision theory. 
1977. 
94 A. Bijlsma Simuhaneous approximations in transcendental 
number theory. 1978. 
95 K.M. van Hee. Bayesian control of Marko, chains. 1978. 
96 P.M.B. Vililnyi. Lindenmayer systems: structure, languages, 
and growth fi,ncfions. 1980. 
97 A. Federgruen. Mark011ian control problems; functional 
equations aniJ algorithms. 1984. 
98 R. Geel. Singular perturbations of hyperbolic type. 1978. 
99 J.K. Lcnstra, A.H.G. Rinnooy Kan. P. van Emde Boa$ 
(eds.). Interfaces between computer science and operations. 
research. 1'178. 
100 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part 
I. 1979. 
IOI P.C. Baayen, D. van Dulst, J. Oosterhof! (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part 
2. 1979. 
102 D. van DulsL Reflexive and superrejlexive Banach spaces. 
1978. 
103 K. van Ham. Classifying infinitely divisible distributions 
by functional equations. 11nlr. 
104 J.M. van Wouwe. Go-spaces and generalizations of metri
zability. 1979. 
I OS R. Helmers. Edgeworth expansions for linear combinations 
of order statistics. 1982. 
:~9~. Schrijver (ed.). Packing and covering in combinatorics. 

107 C. den Hcijer. The numerical solution of nonlinear opera
tor equations by imbedding methods. 1919. 
108 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science III, part I. 1979. 
109 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer scienee III, part 2. 1919. 
110 J.C. van Vliet. ALGOL 68 transput, part/: historical 
review and discussion of the implementation model. 1979, 

:~tl,;;';;,;:/. Y:fJ: ALGOL 68 transput, part II: an implemen-

112 H.C.P. Berbee. Rant/am walks with stationary increments 
and renewal theory. 1919. 
113 TAB. Snijders. Asymptotic optimality theory for testing 
problem, with restricted alternatives. 1919. 
114 AJ.E.M. Janssen. Application of the Wigner distribution to 
harmonic analysis of generalized stochastic processes. 1919. 
115 P.C. Baayen, J. van Mill (eds.). Topological structures II, 
part I. 1979. 
116 P.C. Baayen, J. van Mill (eds.). Topological structures II, 
part 2. 1919. 
117 P J.M. Kallenberg. Branching processes with continuous 
state space. 1979. 
118 P. Groeneboom. Large deviations and asymptotic efficien
cies. 1980. 
119 F.J. Peters. Sf'!'se matrices and substructures, with a novel 
implementation oJfinite element algorithms. 1980. 
120 W.P.M. de Ruyter. On the asymptotic analysis of large
scale ocean circulation. 1980. 
121 W .H. Haemers. Eigenvalue techniques in design and graph 
theory. 1980. 
122 J.C.P. Bus. Numerical solution of systems of nonlinear 
equations. 1980. 
J ~~i.' Yuhasz. Cardinal functions in topology - ten years later. 

124 R.D. Gill. Censoring and stochastic integrals. 1980. 
125 R. Eising. 2-D systems, an algebraic approoch. 1980. 
126 G. van der Hoek. Reduction methods in nonlinear pro
gramming. 1980. 
127 J.W. Klop. Combinatory reduction systems. 1980. 
128 A.JJ. Talman. Variable dimension fixed point algorithms 
and triangulations. 1980. 
129 G. van der Laan. Simplicial fixed point algorithms. 1980. 
130 P.J.W. ten Hagen, T. Hagen, P. Klint, H. Noot, H.J. 
Smt, A.H. Veen. /LP: intermediate language for pictures. 
1980. 

131 RJ.R. Back. Correctness preserving program refinements: 
proof theory and applications. 1980. 
132 H.M. Mulder. The interval function of a graph. 1980. 
133 C.A.J. Klaassen. Statistical performance of location esti
mators. 1981. 
134 J.C. van Vliet, H. Wupper (eds.). Proceedings interna
tional conference on ALGOL 68. 1981. 
135 JAG. Grocnendijk, T.M.V. Janssen, M.J.B. Stokhof 
(eds.). Formal methods in the study of language, part I. 1981. 
136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof 
(eds.). Formal methods in the study of language, part II. 1981. 
137 J. Telgen. Redundancy and linear programs. 1981. 
138 H.A. Lauwerier. Mathematical models of epidemics. 1981. 
139 J. van der Wal. Stochastic dynamic programming. succes
sive approximations and nearly optimal strategies for Markov 
decision processes and Markov games. 1981. 
140 J.H. van Geldrop. A mathematical theory of[.ure 
r98'r'nge economies without the no-critical-point iypothesis. 

141 G.E. Welters. Abel-Jacobi isogenies for certain types of 
Fano three/olds. 1981. 
142 H.R. Bennett, D.J. Lutzer (eds.). Topology and order 
structures, part 1. 1981. 
143 J.M. Schumacher. Lrynamic feedback in finite- and 
infinite-dimensional linear systems. 1981. 
144 P. Eij$enraam. The solution of initial value problems using 
;':]Bl.al arithmetic; formulation and analysis of an algorithm. 

145 A.J. Brentjes. Multi-dimensional continued fraction algo
rithms. 1981. 
146 C.V.M. van der Mee. Semigroup and factorization 
methods in transport theory. I 981. 
J;~t-H. Tigelaar. Identification and informative sample size. 

148 L.C.M. Kallenberg. Linear programming and finite Mar
kovian control problems. 1983. 
149 C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxemburg, 
W.K. Vietscli (eds.). From A to Z. proceedings of a symposium 
in honour of A. C. Zaanen. 1982. 
I 50 M. Veldhorst. An analysis of sparse matrix storage 
schemes. I 982. 
15 I R.J.M.M. Does. Higher order asymptotics for simple linear 
rank statistics. 1982. 
J~~2?.F. van der Hoeven. Projections of lawless sequences. 

153 J.P.C. Blanc. Application of the theory of boundary value 
problems in the analysis of a queueing model with paired ser
vices. 1982. 
154 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational 
methods in number theory, part I. 1982. 
155 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational 
methods in number theory, part I I. 1982. 
156 P.M.G. Apers. Query processing and data a/location in 
distributed database systems. 1983. 
I 57 H.A. W .M. Kneppers. The covariant classification of two
dimensional smooth commutative formal ~roups over an alge
braically closed field of positive cnaracterrstic. 1983. 
158 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science IV. distributed systems, part 1. 1983. 
159 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science IV. distributed systems, part 2. 1983. 
160 A. Rezus. Abstract AUTOMATH. 1983. 
161 G.F. Helminck. Eisenstein series on the metaplectic group, 
an algebraic approach. 1983. 
162 J.J. Dik. Tests for preference. 1983. 
163 H. Schippers. Multiple grid methods for equations of the 
second kind with applications in fluid mechanics. 1983. 
164 F.A. van der Duyn Schouten. Markov decision processes 
with continuous time parameter. 1983. 
165 P.C.T. van der Hoeven. On point processes. 1983. 
166 H.B.M. Jonkers. Abstraction, specification and implemen~':Jtt techniques, with an application to garbage collection. 

167 W.H.M. Zijm. Nonnegative matrices in dynamic program
ming. 1983. 
168 J.H. Evertse. Upper bounds for-the numbers of solutions of 
diophantine equations. 1983. 
169 H.R. Bennett, D.J. Lutzer (eds.). Topology and order 
structures, part 2. 1983. 



CW/ TRACTS 
I D.HJ. Epema. Surfaces with canonical hyperplane sections. 
1984. 
2 JJ. Di~tra. Fmce _topological Hifher! spaces and cluuacteri
zations of dimension ,n terms of negl1g,bility. 1984. 
3 AJ. van der Schaf!. System thearetic descriptions of physical 
systems. 1984. 
4 J. Koene. Minimal cost flow in processing networks, a primal 
approach. 1984. _ 
5 B. Hoogenboom. Intertwining fimctions on compact Lie 
groups. 1984. 
6 A.P.W. Bohm. Dat,iffow computation. 1984. 
7 A. Blokhuis. Few-distance sets. 1984. 
8 M.H. van Hoorn. Algorithms and approximations for queue
ing systems. 1984. 
9 C.PJ. Koymans. Motkls of the lambda calculus. 1984. 
10 C.G. van der Laan, N.M. Temme. Calculation of special 
fimctions: the gamma function, the exponential integrals and 
error-like fimctions. 1984. 
11 N.M. van Dijk. Cantro//ed Markov processes; time
discretization. I '184. 
12 W.H. Hundsdorfer. The numerical solution of nonlinear 
stiff initial value problems: an analysis of one step methods. 
1"85. 
13 D. Grune. On the design of ALEPH. 1985. 
14 J.G.F. Thiemann. Ana!Ytic spaces and dynamic program
ming: a measure theoretic approach. 1985. 
15 F J. van der Linden. Euclidean rings with two infinite 
primes. 1985. 
16 RJ.P. Groothuizen. Mixed elliptic-hype_rbolic partial 
differential operators: a case-stu,ij in Fourier integral opera
tors. 1985. 
17 H.M.M. ten Eikelder. Symmetries for dynamical and Ham
iltonian systems. 1985. 
18 A.D.M. Kester. Some large deviation results in statistics. 
1985. 
19 T.M.V. Janssen. Foundations and applications of Montague 
gr_ammar, part I: Philosophy, framework, computer science. 
1986. 
20 B.F. Schriever. Order dependence. 1986. 
21 D.P. van der Vecht Inequalities for stopped Brownian 
motion. 1986. 
22 J.C.S.P. van der Woude. Topological dynamix. 1986. 
23 A.F. Monna. Methods, concepts and ideas in mathematics: 
aspects of an evolution. 1986. 
24 J.C.M. Baeten. Filters and ultrajilters over definable subsets 
of admissible ordinals. 1986. 
25 A.W J. Kolen. Tree network and planar rectilinear location 
theory. 1986. 
26 A.H. Veen. The misconstrued semicolon: Reconciling 
imperative languages and dataj/ow machines. 1986. 
27 AJ.M. van Engelen. Homogeneous zero-dimensional abso
lute Borel sets. 198"6. 
28 T.M.V. Janssen. Foundations and applications of Montague 
grammar, part 2: Applications to naturri/ language. 1986. 
29 H.L. Trentelman. A/mast invariant subspaces and high gain 
feedback. 1986. 
30 A.G. de Kok. Production-inventory control motkls: approxi
mations and algorithms. 1987. 
31 E.E.M. van Berkum. Ovtimal paired comparison designs for 
factorial experiments. 1981. 
32 J.HJ. Einmahl. Multivariate empirical processes. 1987. 
33 OJ. Vrieze. Stochastic games with finite state and action 
spaces. 1987. 
34 P.H.M. Kersten. Infinitesimal symmetries: a computational 
approach. 1987. 
35 M.L. Eaton. Lectures on topics in probability inequalities. 
1987. 
36 A.H.P. van der Burgh, R.M.M. Mattheij (eds.). Proceed
ings of. the first internat,ona/ conference on industrial and 
applied mathematics (IC/AM 81). 1987. 
37 L. Stougie. Design and analysis of algorithms for stochastic 
integer programming. 1987. 
38 J.B.G. Frenk. On Banach algebras, renewal measures and 
regenerative processes. 1987. 
39 HJ.M. Peters, OJ. Vrieze (eds.). Surveys in game theory 
and related topics. 1987. 

40 J.L. Geluk, L. de Haan. Regular variation, extensions and 
Tauberian theorems. 1987. 
41 Sape J. Mullender (ed.). The Amoeba distributed operating 
system: Selected papers 1984-/987. 1987. 
42 P.RJ. Asveld, A. Nijholt (eds.). Essays on concepts.for
malisms, and tools. 1987. 
43 H.L. Bodlaender. Distributed computing: structure and 
complexity. 1981. 
44 A.W. van der Vaart Statistical estimation in large parame
ter spaces. 1988. 
45 S.A. van de Geer. Regression analysis and empirical 
processes. 1988. 
46 S.P. Spekreijse. Multigrid solution of the steady Euler equa
tions. 1988. 
47 J.B. Di~tra. Analysis of means in some non-standard 
situations. 1988. 
48 F.C. Drost Asvm,,totics for generalized chi-square 
goodness-of-fit tesis. I 988. 
49 F.W. Wubs. Numerical solution of the shallow-water equa
tions. 1988. 
50 F. de Kerf. Asymptotic IJllaiysis of a class of perturbed 
KDrteweg-de Vries initial value problems. 1988. 
51 P J.M. van I..aarhoven. Theoretical and computational 
aspects of simulated annealing. 1988. 
52 P.M. van Loon. Continuous dec"!'Pling transformations for 
linear boundary value problems. 1988. 
53 K.C.P. Machielsen. Numerical solution of optimal control 
problems with state constraints bv sequential quadratic pro
gramming in fimction space. 198'8. 




