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Summary. 

The purpose of this tract is to present a numerical method for the solution of state con
strained optimal control problems. 

In the first instance, optimization problems are introduced 'and considered in an abstract 
setting. The major advantage of this abstract treatment is that one can consider optimality 
conditions without going into the details of problem specifications. A number of results on 
optimality conditions for the optimization problems are reviewed. 

Because state constrained optimal control problems can be identified as special cases of the 
abstract optimization problems, the theory reviewed for abstract optimization problems 
can be applied directly. When the optimality conditions for the abstract problems are 
expressed in terms of the optimal control problems. the well known minimum principle 
for state constrained optimal control problems follows. 

The method. which is proposed for the numerical solution of the optimal control prob
lems. is presented first in terms of the abstract optimization problems. Essentially the 
method is analogous to a sequential quadratic programming method for the numerical 
solution of finite-dimensional nonlinear programming problems. Hence. the method is an 
iterative descent method where the direction of search is determined by the solution of a 
subproblem with quadratic objective function and linear constraints. In each iteration of 
the method a step size is determined using an exact penalty (merit) function. The applica
tion of the abstract method to state constrained optimal control problems is complicated 
by the fact that the subproblems. which are optimal control problems with quadratic 
objective function and linear constraints (including linear state constraints). cannot be 
solved easily when the structure of the solution is not known. A modification of the sub
problems is therefore necessary. As a result of this modification the method will. in gen
eral. not converge to a solution of the problem, but to a point close to a solution. There
fore a second stage. which makes use of the structure of the solution determined in the 
first stage. is necessary to determine the solution more accurately. 

The numerical implementation of the method essentially comes down to the numerical 
solution of a linear multipoint boundary value problem. Several methods may be used for 
the numerical solution of this problem, but the collocation method which was chosen, has 
several important advantages over other methods. Effective use can be made of the special 
structure of the set of linear equations to be solved. using large scale optimization tech
niques. 

Numerical results of the program for some practical problems are given. Two of these 
problems are well known in literature and allow therefore a comparison with results 
obtained by others. 

Finally the relations between the method proposed and some other methods is given. 

1 



Contents 

Contents page 

Summary 1 

1 Introduction 5 

1.1 State constrained optimal control problems 5 

1.2 An example of state constrained optimal control problems in robotics 6 

1.3 Optimality conditions for state constrained optimal control problems 8 

1.4 Available methods for the numerical solution 11 

1.5 Scope 13 

2 Nonlinear programming in Banach spaces 14 

2.1 Optimization problems in Banach spaces 14 

2.2 First order optimality conditions in Banach spaces 17 

2.3 Second order optimality conditions in Banach spaces 22 

3 Optimal control problems with state inequality constraints 27 

3.1 Statement and discussion of the problem 27 

3.2 Formulation of problem (SCOCP) as a nonlinear programming problem in 
Banach spaces 31 

3.3 First order optimality conditions for problem (SCOCP) 34 
3.3.1 Regularity conditions for problem (SCOCP) 34 
3.3.2 Representation of the Lagrange multipliers of problem (SCOCP) 36 
3.3.3 Local minimum principle 43 
3.3.4 Minimum principle 45 
3.3.5 Smoothness of the multiplier i 48 
3.3.6 Alternative formulations of the first order optimality conditions 51 

3.4 Solution of some example problems 55 

3.4.1 Example 1 55 

3.4.2 Example 2 58 

4 Sequential quadratic programming in function spaces 62 

4.1 Description of the method in terms of nonlinear programming in Banach spaces 62 
4.1.1 Motivation for sequential quadratic programming methods 62 
4.1.2 Active set strategies and merit function 65 
4.1.3 Abstract version of the algorithm 66 

4.2 Application of the method to optimal control problems 68 
4.2.1 Formulation of problems (EIQP/SCOCP) and (EQP/SCOCP) 68 
4.2.2 Active set strategies for problem (SCOCP) 71 

4.3 Further details of the algorithm 75 

4.4 Outline of the implementation of the method 80 

2 



5 Solution of the subproblems and determination of the active set 

5.1 Solution of problem (EQP/SCOCP) 
5.1.1 Optimality conditions for problem (ESCOCP) 
5.1.2 Optimality conditions for problem (EQP/SCOCP) 
5.1.3 Linear multipoint boundary value problem for the solution 

Contents 

82 

82 
83 
88 

of problem (EQP/SCOCP) 91 

5.2 Solution of the subproblem (EIQP/SCOCP/~) 92 

5.3 Determination of the active set of problem (SCOCP) 102 
5.3.1 Determination of the junction and contact points based on 

the Lagrange multipliers 103 
5.3.2 Determination of the junction and contact points based on 

the Hamiltonian 106 

6 Numerical implementation of the method 107 

6.1 Numerical solution of problem (EQP/SCOCP) 107 
6.1.1 Solution of the linear multipoint boundary value problem 107 
6.1.2 Inspection of the collocation scheme 112 

6.2 Numerical solution of the collocation scheme 117 
6.2.1 Consideration of various alternative implementations 117 
6.2.2 Numerical solution of the collocation scheme by means of 

the Null space method based on LQ-factorization 121 

6.3 Truncation errors of the collocation method 127 

7 Numerical solution of some problems 130 

7.1 Instationary dolphin flight of a glider 130 
7.1.1 Statement and solution of the unconstrained problem 130 
7.1.2 Restriction on the acceleration (mixed control state constraint) 134 
7.1.3 Restriction on the velocity (first order state constraint) 134 
7.1.4 Restriction on the altitude (second order state constraint) 135 

7.2 Reentry manoever of an Apollo capsule 
7.2.1 Description of the problem 
7.2.2 Solution of the unconstrained reentry problem 
7.2.3 Restriction on the acceleration (mixed control state constraint) 
7.2.4 Restriction on the altitude (second order state constraint) 

7.3 Optimal control of servo systems along a prespecified path. 

136 
136 
137 
139 
140 

with constraints on the acceleration and velocity 141 
7.3.1 Statement of the problem 142 
7.3.2 Numerical results of the servo problem 145 

8 Evaluation and final remarks 148 

8.1 Relation of the SQP-method in function space with some other methods 148 

8.2 Final remarks 152 

3 



Contents 

Appendices : 

A A numerical method for the solution of finite-dimensional quadratic 
programming problems 154 

8 Transformation of state constraints 158 

C Results on the reduction of the working set 159 

D LQ-factorization of the matrix of constraint normals C 167 

E 

F 

Dl Structure of the matrix of constraint normals C 167 
D2 LQ-factorization of a banded system using Householder transformations 170 
D3 LQ-factorization of the matrix C after modifications in the working set 

Computational details 
El Calculation of the Lagrange multipliers for the active set strategy 
E2 Approximation of the Lagrange multipliers of problem (EIQP/SCOCP) 
E3 Calculation of the matrices M 2 • M 3 and M 4 

E4 

E5 
E6 

E7 

Strategy in case of rank deficiency of the matrix of constraint normals 
Automatic adjustment of the penalty constant of the merit function 
Computation of the merit function 
Miscellaneous details 

Numerical results 

175 

177 
177 
178 
179 
181 
182 
185 
185 

References 

187 

203 

209 Notations and symbols 

4 



Introduction 

1. Introduction. 

1.1. State constrained optimal control problems. 

Optimal control problems arise in practice when there is a demand to control a system 
from one state to another in some optimal sense, i.e. the control must be such that some 
(objective) criterion is minimized (or maximized). 

In this tract we are interested in those optimal control problems which are completely 
deterministic. This means that the dynamic behaviour of the system to be controlled is 
determined completely by a set of differential equations and that stochastic influences on 
the state of the system, which are present in practical systems, may be neglected. 

It is assumed that the dynamic behaviour of the system to be controlled can be described 
by a set of ordinary differential equations of the form : 

x (t) = f (x (t ),u (t ),t) (1.J.l) 

where x is an n -vector function on [O.T] called the state variable and u is an m -vector 
function on [O,T] called the control variable. The function f is an n -valued vector func
tion, on JR" xRm x[O,T]. It is assumed that f is twice continuously differentiable with 
respect to its arguments. 

On the one hand one may note that the dynamic behaviour of a large number of systems. 
which arise in practice, can be described by a set of differential equations of the form 
(1.1.1). On the other hand systems with delays are excluded from this formulation. 

The system is to be controlled starting from an initial state x O at t = 0, i.e. 

x(O) = x 0 , (1.1.2) 

over an interval [O,T]. The number T is used to denote the final time. We shall assume 
that T is finite, which means that we are interested in so-called finite time horizon optimal 
control problems. 

The object criterion is specified by means of a functional which assigns a real value to each 
triple (x ,u ,T) of the following form : 

T 

J fo(x (t ).u (t ),t ) dt + g 0(x (T ),T ). (1.1 .3) 
0 

About the functions / 0 and g O it is only assumed that they are twice continuously 
differentiable with respect to their arguments. We note that the rather general formulation 
of (1.1.3) includes the formulation of minimum time and minimum energy problems (cf. 
Falb et al. ( 1966) ). 

For most optimal control problems which arise in practice, the control u and the state x 

must satisfy certain conditions, in addition to the differential equations. It is assumed that 
these conditions, which enter into the formulation of the optimal control problem as con
straints. may take any of the following forms : 

* Terminal point constraints, i.e. the final state x (T) must satisfy a vector equality of the 
form: 

E(x (T),T) = 0. ( 1.1.4) 
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* Control constraints, i.e. the control u must satisfy : 

S0(u(t),t)~ 0 for all 0~ t ~ T. (1.1 .5) 

* Mixed control state constraints, i.e. the control u and the state x must satisfy: 

for all 0~ t ~ T. (1.1 .6) 

* State constraints, i.e. the state x must satisfy : 

Si(x(t ),t) ~ 0 for all 0~ t ~ T. ( 1.1.7) 

For the numerical method to be presented in this book the distinction between control 
and mixed control state constraints is not important. The distinction between mixed con
trol state constraints and state constraints however, is essential. The major difficulty 
involved with state constraints is that these constraints represent implicit constraints on 
the control. as the state function is completely determined by the control via the 
differential equations. 

The optimal control problems formally stated above are obviously of a very general type 
and cover a large number of problems considered ·by the available optimal control theory. 
The first practical applications of optimal control theory were in the field of aero-space 
engineering, which involved mainly problems of flight path optimization of airplanes and 
space vehicles. (See e.g. Falb et al. (1966, 1969), Bryson et al. (1975).) As examples of 
these types of problems one may consider the problems solved in Sections 8.1 and 8.2. We 
note that the reentry manoever of an Apollo capsule was first posed as an optimal control 
problem as early as 1963 by Bryson et al. (1963b). Later optimal control theory found 
application in many other areas of applied science. such as econometrics (see e.g. van Loon 
(1982), Geerts (1985)). 

Recently, there is a growing interest in optimal control theory arising from the field of 
robotics (see e.g. Bobrow et al. (1985), Bryson et al. (1985). Gomez (1985), Machielsen 
(1983). Newman et al. (1986). Shin et al. (1985)). For the practical application of the 
method presented in this tract this area of robotics is of special importance. Therefore we 
will briefly outline an important problem from this field in the next section. 

1.2. An example of state constrained optimal control problems in robotics. 

In general. a (rigid body) model of a robotic arm mechanism. which consists of k links 
(and joints) may be described by means of a nonlinearly coupled set of k -differential 
equations of the form (see e.g. Paul (1981). Machielsen (1983)): 

l(q )if + D (cj ,q) = F (1.2.1) 

where q is the vector of joint positions. cj is the vector of joint velocities and if is the vec
tor of joint accelerations. J (q) is the k xk inertia matrix which. in general. will be inver
tible. The vector D (cj .q ) represents gravity. coriolis and centripetal forces. F is the vector 
of joint torques. 

It is supposed that the arm mechanism is to be controlled from one point to another point 
along a path that is specified as a parameterized curve. The curve is assumed to be given by 
a set of k functions Y; :[0,1]-> JR of a single parameters, so that the joint positions q; (t) 

must satisfy : 
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(J.2.2) 

wheres :[O,T]--+ [0,1]. The value of the function s (t) at a time point t is interpreted as the 
relative position on the path. Thus. at the initial point we have s (O)= 0 and at the final 
point we have s (T )= 1. 

Equation (l.2.2) reveals that for each fixed (sufficiently smooth) function s :[O,T]--+ [0,1]. 

the motion of the robot along the path is completely determined. Differentiation of equa
tion (1.2.2) with respect to the variable t yields the joint velocities and accelerations. t 

q (t ) = Y'(s (t ))s (t ) 

ij (t ) = Y'(s (t ))s"(t ) + Y"(s (t ) )s (t ) 2 

O~t~T. 

O~t~T. 

(J.2.3) 

( 1.2.4) 

The joint torques required to control the robot along the path for a certain function 
s:[O.T]--+[0,1]. follow from the combination of the equations of motion of the robot 
(1.2.1) and equations (1.2.2) - (1.2.4), which relate the path motion to the joint positions, 
velocities and accelerations. 

F(t) = J(Y(s (t )))(Y'(s (t ))s'(t) + Y"(s (t ))s (t )2) 

+ D (Y'(s (t ))s (t ).Y(s (t ))) ( 1.2.5) 

For most robotic systems, the motion of the robot is restricted by constraints on the joint 
velocities and torques. These constraints are of the following type : 

I q; (t ) I ~ V max .i 

IF; (t) I ~ Fmax .i 

0~ t ~ T i = 1. ... ,k. 

O~t~T i=l. .... k. 

(J.2.6) 

(J .2.7) 

The optimal control problem can be formulated completely in terms of the function s , i.e. 
in terms of the relative motion along the path. The joint positions, velocities, accelerations 
and torques can be eliminated using relations (1.2.2) - (1.2.5). The constraints (1.2.6) -
(1.2.7) become: 

IY;'(s(t))s(t)I ~ Vmax,i 1~ i ~ k. (J.2.8) 

IJ(Y(s(t )))(Y'(s(t )).i .. (t) + Y"(s(t ))s(t ) 2) 

+ D (Y'(s (t ))s (t ).Y(s (t))) I~ F max (J.2.9) 

The optimal control problem comes down to the selection of a function s • which minim
izes some object criterion, is twice differentiable and satisfies the constraints~ (C!..8) -
(1.2.9). s (O)= 0 and s (T )= 1. 

The choice of a suitable object criterion depends on the specific robot application. For 
instance. this criterion may be the final time T which yields minimum time control. This 
criterion, however, may have the disadvantage in many practical applications that the 
solution of the optimal control problem is 'not smooth enough', because the second deriva
tive of the function s is likely to be of the bang-bang type. Relation (1.2.5) reveals that 
discontinuities of s' yield discontinuous joint torques which is an undesirable phenomenon 
in many applications from the mechanics point of view (see e.g. Koster (1973)). 

t For equations (1.2.3) - (1.2.5) a vector notation is used. 
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An alternative to minimum time control is to select a smooth function s that satisfies the 
constraints, via the minimization of 

T 

.!. f s"(t )2 dt. 
2 0 

(1.2.10) 

for a fixed final time T. It can be shown. that with this objective function the solution of 
the optimal control problem has a continuous second derivative (provided T is larger than 
the minimum time) and hence. the joint torques will also be continuous. A drawback of 
this approach may be that the final time must be specified in advance. which. in general is 
not known a priori. 

A second alternative. which combines more or less the advantages of both objective func
tions. is to use : 

T 

T + .!. C J s° (t )2 dt , 
2 0 

(1.2.11) 

as an objective function and to 'control' the properties of the solution of the optimal con
trol problem via a suitable (a priori) choice of the parameter c. 

A more formal statement of the problem outlined above shows that the optimal control 
problem is indeed of the type discussed in the previous section and that the solution of 
this problem is complicated in particular by the presence of the (state) constraints (1.2.8) 
- (1.2.9). 

1.3. Optimality conditions for state constrained optimal control problems. 

In this section we shall introduce optimality conditions for state constrained optimal con
trol problems in a formal manner. This is done in view of the central role that optimality 
conditions play in any solution method for these problems. 

It can be shown that the optimal control problems introduced in Section 1.1 are special 
cases of the following abstract optimization problem : 

minimize f (x ). 
xEX 

subject to : g (x ) E B . 

ii <x) = o. 

(1.3.1) 

(1.3.2) 

(1.3.3) 

where j :X--+ JR ; g :X--+ Y ; h :X--+ Z are mappings from one Banach space (X) to another 
(JR .Y .z) and BC Y is a cone with nonempty interior. The ~unctional j denotes the 
objective criterion which is to be minimized over the set of feasible points. i.e. the set of 
points which satisfy the inequality constraints g (x )EB and the equality constraints 
h(x )=O. 

The problem (1.3.1) - (1.3.3) is a generalization of the well known finite-dimensional 

mathematical programming problem (i.e. X = JR" • Y =]Rm'. Z =]Rm') : 
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(1.3.4) 

(1.3.5) 

(1 .3.6) 

It is possible to derive optimality conditions for the abstract optimization problem (1.3.1) 
- (1.3.3), i.e. conditions which must hold for solutions of the problem. Because both the 
state constrained optimal control problems discussed in Section 1.1 and the finite
dimensional mathematical programming problem are special cases of the abstract problem, 
optimality conditions for these problems follow directly from the optimality conditions 
for the abstract problem. As an introduction however, we shall review the optimality 
conditions for the finite-dimensional mathematical programming problem (1.3.4) - (1.3.6) 
directly (e.g. cf. Gill et al. (1981); Mangasarian (1969)). 

First we recall that. for any minimum of the functional j . denoted x , which is not sub
ject to any constraints. it must hold that : 

Vf(x) = o. (1.3.7) 

i.e. the gradient of / at x must vanish. 

For the case that only equality constraints are present the optimality conditions state that 
when x is a solution to the problem, and x satisfies some constraint qualification. then 
there exists a (Lagrange multiplier) vector z. such that the Lagrangian 

(1.3.8) 

has a stationary point at x , i.e. 

'vxL(x;z)= Vf(x)-zTVh(x)= 0. (1.3.9) 

Rewriting condition (1.3.9) we obtain: 

~ me ~ 
V / (x) = r, Zj V hj (x ). (1.3.10) 

j=l 

which shows that at the point x, the gradient of the objective functional must be a linear 
combination of the gradients of the constraints. The numbers Zj are called Lagrange mul
tipliers and have the interpretation of marginal costs of constraint perturbations. 

When there are, besides equality constraints, also inequality constraints present, the 
optimality conditions state that when x is a solution to the problem. and x satisfies some 
constraint qualification, then there exist vectors y and z, such that the Lagrangian 

has a stationary point at x and that in addition 

j= 1. .... m;. 

j= 1, ... ,m;, 

(1.3.11) 

(1.3.12) 

(1.3.13) 

Condition (1.3.12) is called the complementary slack condition. This states that all inac
tive inequality constraints. i.e. constraints for which gj (x) < 0, may be neglected. because 
the corresponding Lagrange multiplier must be zero. 

9 
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Condition (1.3.13) is directly due to the special nature of the inequality constraints. To see 
this, a distinction must be made between negative (feasible) and positive (infeasible) per
turbations of the constraints. The sign of the multiplier must be nonpositive in order that 
a feasible perturbation of the constraint does not yield a decrease in cost. Otherwise, the 
value of the objective function could be reduced by releasing the constraint. 

Having introduced optimality conditions for the finite-dimensional mathematical program
ming problem, we shall now introduce optimality conditions for state constrained optimal 
control problems in a similar way. The Lagrangian of the state constrained optimal control 
problem is defined as : 

T T 

L(x,u;X,'1) 1,g,µ) -- jfo(x,u,t)dt +go(x(T),T)- f>.T(;i-f(x,u,t))dt 
0 0 

T T 

+ f'1)[S 1(x,u,t)dt + f at(tYSix,t)+µTE(x(T).T). 
0 0 

(1.3.14) 

The optimality conditions state that when (x ,u) is a solution to the state constrained 
optimal control problem. and (x .u) satisfy some constraint qualification, then there exist 
multipliers X, 7) 1, g andµ such that the Lagrangian has a stationary point at (x ,u ). Using 
calculus of variations (e.g. cf. Bryson et al. (1963a) or Hestenes (1966)) this yields the 
following relations on intervals where the time derivative of g exists :t 

X (t ) = - Hx [t JT - S lx [t JT 'Y) i(t ) - S 2x [t JT t (t) 0~ t ~ T , 

Hu [t ] + 'Y) 1 (t f S lu [t ] = 0 0~ t ~ T , 

X(T) = gox [T] + µT Ex [T]. 

where the Hamiltonian is defined as: 

H(x ,u .X.t) := fo(x ,u ,t) + xr f(x ,u ,t ). 

(1.3.15) 

(1.3.16) 

(1.3.17) 

(1.3.18) 

At points t; where the multiplier function g has a discontinuity the so-called jump
condition must hold 

X(t;+) = X(t;-)- S2,[t;]df(t;), 

which states that at these points the adjoint variable X is also discontinuous. 

The complementary slackness condition yields : 

i=1, ... ,k 1 , 

(1.3.19) 

(1.3.20) 

g; (t ) is constant on intervals where S 2; [t ] < 0 0~ t ~ T i = 1, ... ,k 2 , (1.3.21) 

and the sign condition on the multipliers becomes : 

f; (t) is nondecreasing on /0,T /. 

(1.3.22) 

(1 .3.23) 

A more detailed analysis reveals that normally the multiplier function g is continuously 
differentiable on the interior of a boundary arc of the corresponding state constraint, i.e. an 

t Straight brackets [t] are used to replace argument lists involving x (t ), u (t ), X (t ). 
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interval where the state constraint is satisfied as an equality. The function g is in most 
cases discontinuous at junction and contact points, i.e. at points where a boundary arc of 
the constraint is entered or exited and at points where the constraint boundary is touched. 

The combination of relations (1.3.15) - (1.3.19) with the constraints of the problem allow 
the derivation of a multipoint boundary value problem in the variables x and A. with 
boundary conditions at t = 0, t = T and at the time points t; where the jump conditions 
must hold. To obtain this boundary value problem the control u and the multipliers 7) 1 

and f must be eliminated. This is usually only possible when the structure of the solution 
is known. i.e. the sequence in which the various constraints are active and inactive. 

Because of the important role that optimality conditions ,play in any solution procedure of 
optimal control problems. optimality conditions have experienced quite some interest in 
the past. We refer to Bryson et al. (1963a. 1975), Falb et al. (1966), Hamilton (1972). 
Hestenes (1966). Jacobson et al. (1971). Kohler (1980), Kreindler (1982). Maurer (1976, 
1977. 1981), Norris (1973), Pontryagin et al. (1962). Russak (1970a, 1970b). 

1.4. Available methods for the numerical solution. 

Among the methods, available for the numerical solution of optimal control problems. a 
distinction can be made between direct and indirect methods. With direct methods the op
timal control problem is treated directly as a minimization problem, i.e. the method is 
started with an initial approximation of the solution, which is improved iteratively by 
minimizing the objective functional (augmented with a 'penalty' term) along a direction of 
search. The direction of search is obtained via a linearization of the problem. With indirect 
methods the optimality conditions. which must hold for a solution of the optimal control 
problem, are used to derive a multipoint boundary value problem. Solutions of the op
timal control problem will also be solutions of this multipoint boundary value problem 
and hence the numerical solution of the multipoint boundary value problem yields a can
didate for the solution of the optimal control problem. These methods are called indirect 
because the optimality conditions are solved as a set of equations. as a replacement for the 
minimization of the original problem. 

Most direct methods are of the gradient type. i.e. they are function space analogies of the 
well known gradient method for finite-dimensional nonlinear programming problems (cf. 
Bryson et al. (1975)). The development of these function space analogies is based on the 
relationship between optimal control problems and nonlinear programming problems. This 
relationship is revealed by the fact that they are both special cases of the same abstract 
optimization problem. With most gradient methods the control u (t ) is considered as the 
variable of the minimization problem and the state x (t) is treated as a quantity dependent 
on the control u (t) via the differential equations. A well known variant on the ordinary 
gradient methods is the gradient-restoration method of Miele (cf. Miele (1975, 1980). This 
is essentially a projected gradient method in function space (cf. Gill et al. (1981)). With 
this method both the control u (t ) and the state x (t ) are taken as variables of the minimi
zation problem and the differential equations enter the formulation as (infinite
dimensional) equality constraints. Similar to the finite-dimensional case where gradient 
methods can be extended to quasi-Newton or Newton-like methods. gradient methods for 
optimal control problems can be modified to quasi-Newton or Newton-like methods. (cf. 
Bryson et al. (1975), Edge et al. (1976). Miele et al. (1982)). 
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With aH gradient type methods, state constraints can be treated via a penalty function 
approach, i.e. a term which is a measure for the violation of the state constraints is added 
to the objective function. Numerical results however. indicate that this penalty function 
approach yields a very inefficient and inaccurate method for the solution of state con
strained optimal control problems (cf. Well (1983)). 

Another way to treat state constraints is via a slack-variable transformation technique. 
using quadratic slack-variables. This technique transforms the inequality state constrained 
problem into a problem with mixed control state constraints of the equality type. A 
drawback of this approach is that the slack-variable transformation becomes singular at 
points where the constraint is active (cf. Jacobson et al. (1969)). As a result of this. it may 
be possible that state constraints. which are treated active in an early stage of the solution 
process. cannot change from active to inactive. Therefore it is not certain whether the 
method converges to the right set of active points. In addition. the numerical results of 
Bals (1983) show that this approach may fail to converge at all for some problems. 

Another type of direct method follows from the conversion of the (infinite-dimensional) 
optimal control problem into a (finite-dimensional) nonlinear programming problem. This 
is done by approximating the time functions using a finite-dimensional base (cf. Kraft 
(1980. 1984)). The resulting nonlinear programming problem may be solved using any 
general purpose method for this type of problem. We note that when a sequential qua
dratic programming method (cf. Gill et al. (1981 )) is used. then this direct method has a 
relatively strong correspondence with the method discussed in this tract . In view of its 
significance for the work presented in this tract , this method is described in more detail in 
Section 8.1. 

A well known indirect method is the method based on the numerical solution of the mul
tipoint boundary value problem using multiple shooting (cf. Bulirsch (1983). Bock (1983). 
Maurer et al. (1974. 1975, 1976). Oberle (1977. 1983). Well (1983)). For optimal control 
problems with state constraints. the right hand side of the differential equations of the 
multipoint boundary value problem will. in general. be discontinuous at junction and con
tact points.t These discontinuities require special precautions in the boundary value prob
lem solver. The junction and contact points can be characterized by means of so-called 
switching functions. which are used to locate these points numerically. 

Another indirect method. which can only be used for the solution of optimal control prob
lems without state constraints. is based on the numerical solution of the boundary value 
problem using a collocation method (cf. Dickmans et al. (1975)). The reason that the 
method cannot be used without modification for the solution of state constrained optimal 
control problems is that these problems require the solution of a multipoint boundary 
value problem whereas the specific collocation method discussed by Dickmans et al. is 
especially suited for the numerical solution of two point boundary value problems. 
Numerical results indicate that the method is relatively efficient and accurate. 

In general. the properties of the direct and indirect methods are somewhat complementary. 
Direct methods tend to have a relatively large region of convergence and tend to be rela
tively inaccurate. whereas indirect methods generally have a relatively small region of 

t Junction points are poin1s where a constraint changes from active to inactive or vice versa. At contact 
points the solution touches the constraint boundary. 
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convergence and tend to be relatively accurate. For state constrained optimal control prob
lems the indirect methods make use of the structure of the solution, i.e. the sequence in 
which the state constraints are active and inactive on the interval [O.T]. for the derivation 
of the boundary value problem. Direct methods do not require this structure. Because 
state constraints are treated via a penalty function approach, most direct methods are rela
tively inefficient. In practice, they are used only for the determination of the structure of 
the solution. An accurate solution of the state constrained optimal control problem can in 
most practical cases only be determined via an indirect method. which is started with an 
approximation to the solution obtained via a direct method. 

1.5. Scope 

In Chapter 2. optimization problems are introduced and considered in an abstract setting. 
The major advantage of this abstract treatment is that one is able to consider optimality 
conditions without going into the details of problem specifications. 

The state constrained optimal control problems are stated in Chapter 3. Because these 
problems can be identified as special cases of the abstract problems considered in Chapter 
2, the theory stated in Chapter 2 can be applied to the optimal control problems. This 
yields the well known minimum principle for state constrained optimal control problems. 

In Chapter 4, the method which is proposed for the numerical solution of state constrained 
optimal control problems is presented first in the abstract terminology of Chapter 2. 
Essentially, this method is analogous to a sequential quadratic programming method for 
the numerical solution of a finite-dimensional nonlinear problem. Hence, it is an iterative 
descent method where the direction of search is determined as the solution of a subprob
lem with quadratic objective function and linear constraints. 

Chapter 5 deals with the solution of the subproblems whose numerical solution is required 
for the calculation of the direction of search. In addition the active set strategy. which is 
used to locate the set of active points of the state constraints. is described. 

The numerical implementation of the method, which essentially comes down to the 
numerical solution of a linear multipoint boundary value problem, is discussed in Chapter 
6. 

The numerical results of the computer program for some practical problems are given in 
Chapter 7. Two of these problems are well known in literature and therefore allow a 
comparison with the results obtained by others. 

In the final chapter the relation between the method discussed in this tract and some 
other methods is established. The chapter is closed with some final comments. 

The method used for the solution of one of the subproblems is based on a method for the 
solution of finite-dimensional quadratic programming problems. which is reviewed in 
Appendix A. Appendix B deals with a transformation of state constraints to a form which 
allows a relatively simple solution procedure for the subproblems. Technical results 
relevant for the active set strategy are summarized in Appendix C. A number of computa
tional details are given in Appendices D and E. Numerical results related to the results 
contained in Chapter 7 are listed in Appendix F. 
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Chapter 2 

2. Nonlinear programming in Banach spaces. 

In this chapter, a number of results from the theory of functional analysis concerned with 
optimization will be reviewed. 

In Section 2.1 some optimization problems will be introduced in an abstract formulation 
and in Sections 2.2 and 2.3 some results on optimality conditions and constraint 
qualifications in Banach spaces will be reviewed. 

2.1. Optimization problems in Banach spaces. 

In this chapter, we shall consider optimization problems from an abstract point of view. 
The major advantage of such an abstract treatment is that one is able to consider the prob
lems without first going into the details of problem specifications. The first optimization 
problem to be considered is defined as : 

Problem (P0 ) : Given a Banach space U, an objective functional, J : U-> JR and a con
straint set S 0 C U, find an ii. E S 0, such that 

J(ii.) ~ J(u) for all ueS 0 . (2.1.1) 

A solution ii. of problem P0 is said to be a global minimum of J subject to the constraint 
u E S 0• In practice it is often difficult to prove that a solution is a global solution to the 
problem. Instead one therefore considers conditions for a weaker type of solution. This 
weaker type of solution is defined as : 

Definition 2.1: In the terminology of problem (P0 ) a vector ii E U is said to be a local 
minimum of J, subject to the constraint u E S0 , if there is an e > 0 such that, 

J(ii) ~ J(u) for all u eS0 n S(ii ,e), (2.1.2) 

with: 

S(ii.e) := l u e U :llu-iin < e ). (2.1.3) 

We shall consider two special cases of problem (P 0). 

Problem (P 1): Given two Banach spaces U and L, two twice continuously Frechet 
differentiable mappings J : U-> JR and S : U-> L, a convex set M C U with nonempty inte
rior and a closed convex cone K C L with O E K, then find an ii. E M, such that S(u )EK 

and that 

J(ii.)~ J(u) forall ueMns- 1(K). (2.1.4) 

Comparing problems (P 0 ) and (P 1), we notice that in problem (P 1) : 

* S 0=Mns-1(K).withS-1(K) := {ueU:S(u)eK). TheassumptionsonK,M andS 
are made in order to obtain a suitable linearization of the constraint set S 0• 

* J is supposed to be twice Frechet differentiable. 

A further specialization of problem (P 0 ) is obtained when a distinction is made between 
equality and inequality constraints. 
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Problem (EIP): Given Banach spaces X, Y and Z, twice continuously Frechet differentiable 
mappings j : X -> JR , g : X -> Y and h : X -> Z , a convex set A C X having a nonempty 
interior, and a closed convex cone B C Y with O E Band having nonempty interior, then 
find an x E A , such that g (x ) E B and h (x ) = 0 and that 

f(x)~ f(x) forall xeAng-1(B)nN(h). (2.1.5) 

In problem (EIP). the equality constraints are represented by h (x )= 0, whereas the ine
quality constraints are incorporated in x EA and g (x )EB (note that A and B have 
nonempty interiors). 

Throughout this chapter we shall use various basic notions from the theory of functional 
analysis without giving explicit definitions. For these we generally refer to Luenberger 
(1969). Because of their central role in the ensuing discussion we explicitly recall the fol
lowing definitions. 

Definition 2.2: Let X be a normed linear vector space, then the space of all bounded linear 

functionals on Xis called the (topological) dual Qf. K, denoted X'. 

Definition 2.3: Given the set K in a normed linear vector space X, then the dual ( or 
coniugate) cone of K is defined as 

K' := {x'eX': <x',x> ~ 0 forall xeK). (2.1.6) 

where the notation <x'. x > is employed to represent the result of the linear functional 
x' EX' acting on x E X. 

In a number of occasions we shall also use the notation x' x instead of < x' . x >. 
With regard to Definition 2.3 we note that the set K' is a cone, as an immediate conse
quence of the linearity of the elements of x•. 
Definition 2.4: Let S be a bounded linear operator from the normed linear vector space X 
into the normed linear vector space Y. The ad ioint operator s• : Y' .... x• is defined by the 

equation: 

<x.S'y'> = <Sx,y'>. (2.1.7) 

The notions of dual cone and adjoint operator play an important role in giving a character
ization of the solutions of the optimization problems (P 1) and (EIP). Other concepts which 
play an important role in the following discussion are conical approximations of the set of 
feasible points. 

Definition 2.5: Let Ube a Banach space, MC U and ii E M. The open cone 

A (M ,ii):= {u E U: 3e0 .r >0. Ve:0<e~e0 , Vv EV:llvll~r .ii+e(u +v )EM}. (2.1.8) 

is called the cone Qf. admissible directions to M at ii. 

This cone is referred to differently in literature : cone of feasible directions (Girsanov 
(1972)): cone of interior directions (Bazaraa et al. (1976)). 
In the case that M has no interior, the cone A (M .ii) is empty for every ii EU. 
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Definition 2.6: Let Ube a Banach space, MC U and ii E M, then the set 

T(M ,u) := { u Eu: :Ken) • En EIR+. En -+O, :Kun) . Un EM. Un -+ii, 
n=O n=O 

u = lim (un -ii)/en}. (2.1.9) 
n-oo 

00 00 

i.e. the set of elements u E U for which there are sequences (un) and (en) , with 
n=O n=O 

Un-+ u, En >0 and En-+ 0, such that 

u = lim (un -ii)/En, 
n-oo 

is called the sequential tangent cone of M at u. 
In literature, the sequential tangent cone as defined in Definition 2.6, is also referred to as 
tangent cone (e.g. Bazaraa et al. (1976); Norris (1971)) or as local closed cone (Varaiya 
(1976)). 
We note that the cone of admissible directions is always contained in the sequential 
tangent cone. i.e. A (M ,u) c T(M .u). 

Definition 2.7: Let Ube a Banach space, M C U and u E M. The set 

C(M.ii) := {X(m-ii):X~O.mEM}. 

is called the conical hull of M - {ii). 

(2.1.10) 

This definition is analogous to the definition of the convex hull of a set A . i.e. the smallest 
convex set which contains the set A . In this context the conical hull of a set A is the 
smallest cone in which the set A is contained. 
In the case that K is a cone with vertex at 0, the conical hull of K-{ii) becomes: 

C(K.u) := {m-Xu:X~O.mEK}. (2.1.11) 

If M is a convex set with nonempty interior, the closure of the cone of admissible direc

tions of Mat ii coincides with the conical hull of M-{ii}. i.e. A (M ,ii)=C(M ,ii) (cf. Gir
sanov (1972)). 

Definition 2.8: Let U and L be Banach spaces, S a continuously Frechet differentiable 
operator U -+ L and Ka closed convex cone in L with OE K. At a point ii E U, the sett 

L (S ,K ,ii) := { u E U: S' (u)u E C (K .S(ii))}. 

is called the linearizing cone of s-1(K) at ii. 

In Definition 2.8 the notation s- 1(K) was used to denote the set 

s-1(K) := {uE U:S(u)E K). 

(2.1.12) 

(2.1.13) 

In view of the optimality conditions to be stated, the following regularity conditions are 
defined. 

t S' is used to denote the Frechet derivative of S . 
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Definition 2.9: Let U and L be Banach spaces, S a continuously Frechet differentiable 
operator U __, L and Ka closed convex cone in L with OE K. The conditions 

L(S,K,u) = T(s- 1(K),u), 

L(S,K,u)' = S'(u)'C(K.S(u))', 

the set R(S' (u )) + C (K .S(u )) is not dense in L, 

(2.1.14) 

(2.1.15) 

(2.1.16) 

are respectively called 

at u. 

the Abadie condition, 
the Farkas condition, 
the Nonsingularity condition, 

We note that condition (2.1.14) is an abstract version of the Abadie constraint 
qualification in Kuhn-Tucker theory, which deals with optimality conditions for nonlinear 
programming problems in finite-dimensional spaces (cf. Bazaraa et al.(1976)). An in
terpretation of the various conditions is given in the next section in the outline of the 
proof of Theorem 2.10. 

2.2. First order optimality conditions in Banach spaces. 

In this section we shall present optimality conditions for solutions of problems (P 1) and 
(EIP). The results presented are mainly taken from the review article of Kurcyusz (1976). 

The conditions involve only the first Frechet derivatives of the mappings which are used 
to define the objective function and the constraints of the problem. This is the reason that 
they are called first order optimality conditions. 

The Definitions 2.5 - 2.9 are used for the formulation of the following Lagrange multiplier 
theorem, which plays a central role in the following discussion. 

Theorem 2.10: (Kurcyusz (1976), Theorem 3.1) Let u be a local solution to problem (P 1 ). 

(i) If either condition (2.1.16) or both (2.1.14) and (2.1.15) hold, then there exists a pair 
(p,z') E JR X L', such that, 

<1>.f') ;:c (o.o· ). 
p~O. (EK', <z'.S(u)>=O, 

pl' (u ) - S' (u )' f· E A (M ,u )' . 

(2.2.1) 

(2.2.2) 

(2.2.3) 

A pair (p,l') satisfying (2.2.1) - (2.2.3) is called a pair of nontrivial Lagrange 
multi pliers for problem ( P 1 ). 

(ii) If conditions (2.1.14) and (2.1.15) are satisfied and 

A (M ,u ) n L (S ,K ,u ) ;:c 0, (2.2.4) 

then there exists a vector f' EL' such that (2.2.2) and (2.2.3) hold with p= l. A vector 
f' satisfying (2.2.2) and (2.2.3) with p= 1 is called a normal Lagrange multiplier for 
probl.em (P 1). 

Conditions (2.2.1) and (2.2.2) are respectively called the nontriviality and the complemen
tary slackness condition. 
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Because of the basic nature of this theorem, we shall discuss in a formal way the main 
lines of the proof. 

In the derivation of optimality conditions for the solutions of nonlinear programming 
problems we are faced with the basic problem of translating the characterization of the op
timality of the solution of the problem into an operational set of rules. The way in which 
this translation is carried out is by making use of conical approximations to the set of 
feasible points and the set of directions in which the objective function decreases. 

A vector u is called a direction Qf.. decrease of the functional J at the point ii, if there exists 
a neighborhood S(ii ,€0 ) of the vector ii and a number a= a(J .ii .ii). a > 0, such that 

J(ii +e.u) ~ J(ii) - ea for all e:O<e <e0 , for all u E S(ii ,e0). (2.2.5) 

The set of all directions of decrease at ii, is an open cone D (J ,ii) with vertex at zero (cf. 
Girsanov (1972)). t 
Using the definition of the cone of admissible directions to M at ii and of the sequential 
tangent cone of s- 1(K) at ii, the local optimality property of the solution ii implies the 
following condition (cf. Girsanov (1972)): 

D(J,u) n A(M,u) n T(S- 1(K).ii)= 0. (2.2.6) 

which states that at a (local) solution point ii there cannot be a direction of decrease, that 
is also an admissible direction to the set M at ii and which is also a tangent direction of 
the set s-1(K) at ii. 

The Abadie condition (2.1.14) is now used to replace (2.2.6) by a more tractable expres
sion: 

D (J ,ii ) n A (M ,u ) n L (S .K ,ii ) = 0. (2.2.7) 

This completes the conical approximation of the optimization problem, where the sets 
D (J ,ii) and A (M ,ii) are open convex cones. and L (S .K ,u) is a (not necessarily open) 
convex cone. 

Condition (2.2.7) is not yet an operational rule. Thereto a further translation is necessary. 
In particular, the Dubovitskii-Milyutin lemma may be invoked, which is essentially a 
separating hyperplane theorem. It states that (Girsanov (1972), Lemma 5.11) : 

Let K 1 , ••••• ,Kn ,Kn +l be convex cones with vertex at zero, where K 1 , ••••• .Kn are 
open. Then 

if and only if there exist linear functionals u;'E K;', not all zero, such that 

(2.2.8) 

Condition (2.2.3) is a translation of (2.2.8). In this translation, the Farkas condition 
(2.1.15) is used to establish a characterization of L (S .K ,ii)', which implies the properties 
(2.2.2) of z'. 
t We note that strictly speaking, the cone D (J ,ii) is only an open cone when the empty set is defined 
to be an open cone. 
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We now consider the implication that if (2.1.16) holds then the optimality of ii implies 
the existence of nontrivial Lagrange multipliers. The Nonsingularity condition (2.1.16) 
deals with the convex cone R(S' (ii ))+C (K .S (ii)). Because this set is not dense in L, the 
origin of L is not an interior point of the set and hence (cf. Luenberger (1969), p.133, 
Theorem 2) there is a closed hyperplane H containing 0, such that the cone 
R(S' (ii ))+C (K .S (ii)) lies on one side of H. The element f' EL' which defines such an 
hyperplane, satisfies (2.2.1) - (2.2.3) with p= 0. 

The second part of Theorem 2.10 is proved by reversing the proof of the implication that 
(2.1.14) and (2.1.15) together imply the existence of nontrivial multipliers with p=0. It 
can be shown that under the hypotheses of Theorem 2.10, assuming p= 0 yields always 
f' = 0, and thus the pair (p,z') is not a pair of nontrivial Lagrange multipliers. Hence of 
any pair of nontrivial Lagrange multipliers the number p cannot be zero. 

It is of interest to investigate the role of the constant p, which is called the regularity 
constant. First, consider the case p= 0 (pathological case). In this case the nontriviality 
condition (2.2.1) implies f' ;z!: 0, which leaves us with a set of equations (2.2.2) - (2.2.3) 
involving only the constraints. and not the object functional of the specific problem. If 

p > 0, we may set p= l. because of the homogenity of (2.2.2) - (2.2.3). Clearly in this case 
equations (2.2.2) and (2.2.3) involve the object functional of the problem. Much research 
has been devoted to conditions which imply p>0. These conditions, which generally in
volve only the constraints of the problem, are usually called constraint qualifications. 

In view of its structure, the set of equations (2.2.1) - (2.2.3) is called a multiplier rule. A 
constraint qualification restricts the multiplier rule as additional conditions are imposed on 
the problem. These conditions may exclude solutions to problems which admit a nonzero 
multiplier p. There are also situations in which a constraint qualification may be difficult 
to validate, whereas the nontriviality condition may be used to establish the case p >0. 
Following this reasoning we are led to the definition of two types of multiplier rules, 
intrinsic multiplier rules (p~ 0) and restricted multiplier rules (p > 0) (cf. Pourciau (1980), 
(1983)). In our terminology, part (i) of Theorem 2.10 is an intrinsic multiplier rule, 
which becomes a restricted one if the conditions stated in part (ii) are added. 

Necessary conditions for optimality for solutions to problem (EIP) may be derived from 
the optimality conditions for problem (P1). presented in Theorem 2.10. To obtain these 
conditions for problem (EIP) we first make an intermediate step and consider the con
straint operator of problem (P 1) S: U -+ L, split up as S = (S 1.S2); L = L 1XL 2, such 
that S1: U -+ L1: S2: U -+ L2-

The operator S 1 is taken to represent the equality constraints, i.e. 

The operator S 2 represents inequality constraints. i.e. 

where K2 is a closed convex cone having nonempty interior. Taking K .- {O)XK2 in 
Theorem 2.10 leads directly to the following result : 
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Lemma 2.11: Let II be a local solution to problem (P1), and L = L1XL2, S = (S1.S2), 

K = {O)XK2. 

(i) If int K2¢0 and R(S 1'(11)) is not a proper dense subspace of L1, then there exist 

nontrivial Lagrange multipliers for problem (P 1) at 11. 

(ii) If 

R(S 1'(11 )) = L 1, 

{S'i(u)u :S' 1(u)u=0) n intC(K2.Si(11)) r= 0. 

and 

A (M ,11 ) n L (S ,K ,11 ) ¢ 0, 

then, a normal Lagrange multiplier exist for problem (P 1) at 11. 

For a proof see Kurcyusz (1976), Theorem 4.4 and Corollary 4.2. 

(2.2.9) 

(2.2.10) 

(2.2.11) 

Using this result we are led to the following multiplier rule for problem (EIP), which has 
the form of an abstract minimum principle (cf. Neustadt (1969)). 

Theorem 2.12: Let x be a solution to probl,em (EIP). 

(i) If 

R(h' (x )) = closed, 

then, there exist a real number p, an y • E Y' , z • E Z • , such that : 

(p,y' ,£') r= (0,0,0), 

p ~ 0, 

<:9' ,g(i)> = 0, 

< y' , y > ~ 0 for all y E B . 

[pf'(x)-y'g'(x)-z'h'(x)](x-x)~ 0 forall xEA. 

(ii) The multiplier p is not zero, when 

R(h'Cx )) = z. 
and, in addition, there is some x E int A , such that 

;;- ·cncx -x) = o. 
and 

g(x) + g'(x)(x-x) E int B. 

Proof: Let U=X .M=A, L 1= Z. L 2=Y. K 2=B, S 1=h, S 2=g. 

(2.2.12) 

(2.2.13) 

(2.2.14) 

(2.2.15) 

(2.2.16) 

(2.2.17) 

(2.2.18) 

(2.2.19) 

(2.2.20) 

Consider first part (i). By definition of problem (EIP), the cone K 2 has nonempty interior. 
By Lemma 2.11, there exist nontrivial Lagrange multipliers, when R(S 1'(11 )) is not a prop
er dense subspace of L 1. We shall show that this is the case. whenever this set is closed. 
Thereto we consider two cases: R(S 1'(11))=L 1 and R(S 1'(11))r=L 1. In the first case the 
condition is satisfied, beca~se the subspace is not proper. In the second case the condition is 
satisfied because the subspace cannot be dense in L 1 • i.e. 
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R(S 1'(u )) = R(S 1'(u )) ;c L 1 

This proves the existence of Lagrange multipliers. or equivalently the conditions (2.2.1) -
(2.2.3) of Theorem 2.10. In order to translate these into the conditions (2.2.13) - (2.2.17) 
we identify f' = (z' ,y' ). Now consider the relations (2.2.2) 

z'EK' and <z'.S(u)>=O. 

In the present situation the dual cone of K is : 

K' = {(y',z')E(Y'xz'): <z',0> ~ 0, <y',y> ~ 0 forall yEB}. 

which reduces trivially to : 

K' = {(y*,z*)E(Y'xz'): <y',y> ~ 0 forall yEB}. 

The relation (2.2.2) thus translates directly into (2.2.15) and (2.2.16). To derive (2.2.17) 
recall condition (2.2.3) : 

pJ' (u ) - S' (u )' f' E A (M ,u )' . 
The set A (M ,u )' is equal with A (M ,u )' . if M has nonempty interior (cf. Girsanov 
(1972). Lemma 5.3). Now (2.2.3) becomes: 

<pJ'(u)-S'(u)'z',u> ~ 0 forall uEA(M,u). 

which. by definition of the adjoint operator, is equivalent to : 

<pJ'(u)-z'S'(u),u> ~ 0 forall uEA(M.u). 

Identification of the various terms in the terminology of problem (EIP) yields : 

[pf '(x) - j' g '(x) - £' h '(.x)]x ~ 0 for all x EA (A .x ). (2.2.21) 

Here A (A ,x )) is the cone of admissible directions of a convex set with nonempty interior 
and hence (cf. Girsanov (1972)): 

A(A.x)= {>..(x-x):xEintA,>..~0}. 

The closure of this set contains the set : 

{A(x-x): x EA .A~ 0}. 

Taking elements x = x - x in (2.2.21) yields (2.2.1 7). 

Now consider part (ii). Condition (2.2.18) is a direct translation of condition (2.2.9) of 
Lemma 2.11. Restating (2.2.10) in terms of problem (EIP). we obtain: 

g'(x)(N(h'(x))) n intC(B,g(x)) ;c 0, 

which is equivalent to (cf. Kurcyusz (1976), eq.(33); Zowe (1978), Theorem 3.2; Zowe 
(1980)): 

3x E X : h '(x )x = 0 /\ g (x )+ g '(x )x E int B. (2.2.22) 

Now consider (2.2.11): 

A (M ,u ) n L (S ,K ,u ) ;c 0. 

which becomes in terms of problem (EIP) : 
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3xeA(A.x):h'(x)x = 01\g(x)+g'(x)x EB. (2.2.23) 

Clearly. (2.2.19) - (2.2.20) are a sufficient condition under which both (2.2.22) and 
(2.2.23) hold. It should be noted that instead of part (ii) of Theorem 2.12 a somewhat 
stronger theorem could be stated. This would however yield also a more complicated state
ment. 
D 

2.3. Second order optimality conditions in Banach space. 

In the previous section we considered optimality conditions of first order. i.e. only the first 
Frechet derivatives of the mappings involved in the definition of the optimization problem 
considered. were taken into account. In this section we shall consider optimality condi
tions of second order. i.e. the second Frechet derivatives of the mappings will also be used 
for the derivation of optimality conditions. 

The notion of second Frechet derivatives is somewhat more complicated than that of first 
Frechet derivatives. Consider for instance the mapping l : U-+ .R of problem (P 1). Its first 
Frechet derivative at u EU is denoted J' (u) and its Frechet differential. denoted 81. is 

81 (u; 8u) = J' (u )8u = <J' (u ),8u > for all 8u EU. (2.3.1) 

Equation (2.3.1) reveals that l' (u) can be interpreted as an element of the dual space U'. 
Using this interpretation we obtain : 

1· C·) : u _. u· . (2.3.2) 

It is this interpretation that is used to define the second Frechet derivative of l, i.e. the 
second Frechet derivative of l is the first Frechet derivative of the mapping l' (. ). 

The second Frechet differential of l at u, denoted 8 2 l. becomes : 

82l(u; 8u 1, 8u2) = J" (u )(8u1)(8u2) 

= <J"(u)8u1,8u2> forall 8u1,8u2EU. (2.3.3) 

The form (2.3.3) leads to two different interpretations of J" (u ). i.e. 

J" (u )(.) : u -+ u•. (2.3.4) 

and 

J" (u )(.)(.): U XU -+ JR. (2.3.5) 

The interpretation of (2.3.4) is the interpretation of J" (u) as a linear mapping from the 
space U into its dual. whereas the interpretation (2.3.5) is a bilinear mapping from the 
productspace U XU to the space JR. Using (2.3.4) concepts like invertibility of J" (u) can 
be defined. whereas (2.3.5) may be used to define concepts like positive definiteness. 

Thusfar we have considered a real valued mapping l, i.e. l : U -+ JR. The interpretation 
of the second Frechet derivative of S : U -+ L is even more complicated. For our purposes. 
however. it suffices to consider only Frechet derivatives of mappings of the form 

z• S(u) = <l', S(u )>. (2.3.6) 

where z' is a bounded linear functional on the space L. so that 
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l'S(.):U->JR, (2.3.7) 

is a real valued mapping. 

We now return to the subject of optimality conditions for problem (P 1). 

The purpose of considering second order optimality conditions. is to augment the set of 
first order conditions in some way. This leads quite naturally to the investigation of direc
tions which satisfy the first order optimality conditions. 
To simplify such an investigation, we use a somewhat more tractable form than (2.2.1) -
(2.2.3) for the optimality conditions by assuming : 

j, > o. 

M=U i.e.A(M.u)' = {O). 

(2.3.8) 

(2.3.9) 

The reason for (2.3.8) is obvious, p= 0 corresponds to pathological types of problems. in
volving only the constraints of the problem. The reason for (2.3.9) is that this leads to a 
suprisingly simple form of the set of directions which satisfy (2.2.1) - (2.2.3). For the 
closed convex cone K c L and the bounded linear functional l' on L . the set 

K (K .l' ) := Kn {Z EL : < [' ,l > = o). (2.3.10) 

is defined. We note that when K is a closed convex cone. then K(K .z') is also a closed 
convex cone. 

Lemma 2.13 : In the terminology of problem (P 1) with M = U, when f' is a normal 
Lagrange multiplier for problem (P 1) at u (cf. Theorem 2.10, part(ii)), then the linearizing 
cone of s- 1(K(K .f' ))) at u, i.e. 

L(S.K(K.z').u). (2.3.11) 

contains all directions ou such that 

J'(u)ou = 0, 

S (u) + S' (u )ou E K, 

<f'.S(u)+S'(u)ou> = 0. 

Proof : Using Definition 2.8 the inclusion ou EL (S ,K (K .f' ),u) is equivalent to 

S' (u )ou E C (K (K .z' ).S (u )). 

(2.3.12) 

(2.3.13) 

(2.3.14) 

(2.3.15) 

Because K is a cone with vertex at zero, K (K .f.' ) is also a cone with vertex at zero. Using 
(2.1.11), (2.3.15) becomes: 

::!Xe.JR+: >..S(u) + S'(u)ou E K(K.z'). (2.3.16) 

Because f• is a normal Lagrange multiplier, the following relations hold : 

S(u)EK <z'.S(u)>=O. 

r Cu) - i's Cu) = o. 

Combination of (2.3.16), (2.3.17) and the fact that K is a cone gives: 

S' (u )ou E K and <l' , S' (u )ou > = 0, 

which proves (2.3.13) and (2.3.14). 

(2.3.17) 

(2.3.18) 

(2.3.19) 
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(2.3.18) is equivalent to : 

J' (u )8u = f' S' (u )8u. 

Combination with (2.3.19) gives (2.3.12). 

□ 

The interpretation of the set K(K .f') leads us to consider the minimization of the Lagran
gian 

L(u.l*) := J(u)-l'S(u). 

at z' = f' . over the set K (K .f' ). i.e. 

S(u) E K(K .z' ). 

(2.3.20) 

(2.3.21) 

Following the same path as in the previous section. we may derive optimality conditions 
for the minimization problem corresponding to (2.3.20) - (2.3.21). 

As a result of the nonlinearity of the constraint (2.3.21 ). this derivation involves also a 
Abadie-type of constraint qualification. which becomes : 

L (S .K(K .f' ).u) = T(s- 1(K(K .f' ).u )). (2.3.22) 

Obviously. the first order optimality conditions for this minimization problem will not 
yield more information about properties of the solution of problem (P 1). than the first 
order optimality conditions for problem (P1). stated in the previous section. The first ord
er optimality conditions do show however. that the Lagrange multiplier corresponding to 
constraint (2.3.21) is zero and hence the minimization of the Lagrangian (2.3.20) seems 
not to be restricted by the constraint (2.3.21). This leads quite naturally to the considera
tion of the second Frechet derivative of the Lagrangian (2.3.20) on the set K(K .f' ). In 
the following theorem second order necessary conditions for optimality for problem (P 1) 

with M = U are summarized. 

Theorem 2.14 : Let u be a (local) solution to problem (P 1) with M =-U and let f' be a nor
mal Lagrange multiplier for problem (P 1) with M=U. lf condition (2.3.22) is satisfied at 
(u .f' ), then 

L"(u.z')(8u)(8u);,:: 0 for all 8uEL(S.K(K.z').u). t (2.3.23) 

For a proof of this theorem we refer to Hestenes (1975) (see also Maurer et al. (1979)). 
Note that a more explicit form of the variations 8u in (2.3.23) is given in Lemma 2.13. 

Using the interpretation of the second Frechet derivative of the Lagrangian as a bilinear 
mapping. we see that (2.3.23) states that the second Frechet derivative of the Lagrangian is 
positive semi-definite on L (S .K (K .f* ).u ). i.e. on the subspace spanned by the linearized 
constraints at u . 
Theorems 2.10 and 2.14 are involved with necessary conditions fQr. optimality for solutions 
to problem (P 1). i.e. they are of the form 

"If u is a (local) solution to problem (P 1), then 'certain conditions' must hold." 

t The,J,irst and second ,Frechet ~erivatives of the Lagrangian L with respect to the argument u and for 
fixed l are denoted L and L . 
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In other words, the (local) optimality property of a solution implies certain conditions. As 
a consequence of this, we are not sure whether a point u, which satisfies the necessary con
ditions for optimality is. or is not, a solution to problem (P 1). 

This question leads us to the consideration of conditions for which the implication above is 
reversed, i.e. conditions which imply optimality. The general form of these conditions is : 

"If 'certain conditions' hold at u, then u is a local solution to probl.em (P 1)." 

These conditions are referred to as suffecient conditions fQr. optimality. 

The ideal situation would be that the conditions of Theorems 2.10 and 2.14, which are 
necessary for optimality are also sufficient for optimality. However, this is only true for 
special cases of problem (P 1) and not for the general (nonlinear) problem (P 1). 

Sufficient conditions for optimality which are of practical importance involve the second 
Frechet derivatives of the mappings involved in the definition of problem (P 1). 

The derivation of second order sufficient conditions for optimality in the case of infinite
dimensional space U, turns out to be quite complicated. However, the result. which is 
stated in the theorem below, has a relatively simple connection with the second order 

necessary conditions for optimality. 

Theorem 2.15: Let u be a point for which S (u) E K is satisfied and f' be a normal 
Lagrange multiplier for problem (P 1 ) with M=U at the point u. Suppose that condition 

( 2 .2 .14) is satis fled and that there are a 6 > 0 and a {:J > 0 such that 

L"(u,z')(6u)(6u) ~ 6116ull 2 for all 6uE{hEU :S(u)+S'(u)hEK /\ 

i' (S(u )+s· (u )h )~ {:Jllh II}. (2.3.24) 

then u is a local solution to problem (P 1) with M = U. 

For a proof of this result the reader should consult Maurer et al. (1979). 

A comparison of the condition of Theorems 2.14 and 2.15 reveals that the sufficient condi
tions are a strengthened form of the full set of necessary conditions. A formal interpreta
tion of Theorem 2.15 is that the second Frechet derivative of the Lagrangian (2.3.20) must 
be sufficiently positive definite on a slightly enlarged constraint set. 

We note that for finite-dimensional U the condition of Theorem 2.15 may be strengthened 
to: 

"The second Frechet derivative of the Lagrangian must be positive definite on 

LCs .KCK l ).u )," 
i.e. the~ sign in (2.3.23) is replaced by > (cf. Maurer et al. (1979). Lemma 5.7 ). 

As in the previous section, we are interested in deriving optimality conditions for problem 
(EIP), which is essentially a special case of problem (P 1). Therefore we shall apply the 
results of Theorems 2.14 and 2.15 to this case. Both theorems deal with the case that the 
constraint set M equals U. Correspondingly, we shall consider problem (EIP) with 
A=X. 
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The theorem below is a direct consequence of Lemma 2.3 and Theorems 2.14 and 2.15. We 
note that the Lagrangian for problem (EIP) becomes 

L(x.y',z') .- f(x)-y'g(x)-z'h(x). (2.3.25) 

Theorem 2.16: 

(i) Let x be a local solution to problem (EIP) with A= X, for which both part (i) and (ii) 
of Theorem 2.12 hold with y' and i'. If 

then 

R(g'(x )) = Y. 

L" (x ,y' ,z' )(6x )(6x);:., 0 for all 6x E {xE X : g(x )+g'(x)xEB 

11 h'(x)x=o11 y'(g(x)+g'(x)x)=o}. 

(2.3.26) 

(2.3.27) 

(ii) Conversely, if 

R(h'Cx )) = z. 
and 

3x E X : h '(x )= 0 I\ g (x )+ g '(x )x E int B . 

and x satisfies 

g(x) E B. 

hCx) = o. 
and there exist multipliers y' and i' satisfying 

< y • . y > ;;., 0 for all y E B . 

<f .g(x)> = o. 
L' (x . y' . i' ) = O. 

and there are a 6 > 0 and a {:l > 0 such that 

(2.3.28) 

(2.3.29) 

(2.3.30) 

(2.3.31) 

(2.3.32) 

(2.3.33) 

(2.3.34) 

L"(x.y',i')(6x)(6x);;., 6116xll 2 forall 6xE{xEX :g(x)+g'(x)xeB 

I\ h'(x)x=O/\ y'(g(x)+g'(.x)x)~{:lllxll}. (2.3.35) 

then x is a local solution to problem (EJP). 

A proof of this theorem is omitted because it follows in all but one aspect directly from 
Lemma 2.13 and Theorems 2.14 and 2.15. The only aspect which requires some explana
tion is the constraint qualification (2.3.26). This is a result of the constraint qualification 
(2.3.22) in Theorem 2.14. One may easily verify that the cone K (K .f') has no interior 
when f' :;:c 0. A sufficient condition for (2.3.22) to hold in this case is (2.3.26). We note 
that it is possible to state a less explicit, but stronger result. For our purposes however. 
(2.3.26) suffices. 
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3. Optimal control problems with state inequality constraints. 

3.1. Statement and discussion of the problem. 

In this thesis, the following type of State Constrained Optimal Control Problem (SCOCP) 
will be considered : 

Problem (SCOCP): Determine a control function u E L 00 [0,rr, a state trajectory 
x E W 1_00 [0,T]" and a final time f >0, which minimize the functional 

T 

ho(x (0)) + f fo(x (t ),u (t ),t) dt + g 0(x (T),T), 
0 

subject to the constraints : 

x (t ) = f (x (t ) .u (t ) .t ) 

D(x(0)) = 0, 

E(x(T),T) = 0, 

U (t) E U 

S 1(x (t ).u(t ).t) ~ 0 

Si(x (t ).t) ~ 0 

a.e. 0~t~T. 

a.e. 0~t~T. 

a.e. 0~t~T. 

(3.1.1) 

(3.1.2) 

(3.1.3) 

(3.1.4) 

(3.1.5) 

(3.1.6) 

(3.1.7) 

where ho:lRn-+JR; fo:RnxJR.mxJR-+JR.ll; go:lRnxlR-+JR; D :JR.n-+JRC; 

f : JR" XlRm XlR-+JR"; E: JR.n XlR-+JR.q; S1: ]Rn xJR.m XJR-+JR.k'; S 2 : JR" XlR-+lR.k 2 ; 

UC ]Rm, is a convex set with nonempty interior. 

ForallxERn,uEJR.m rank S 1u(x,u,t)= k1 a.e. 0~t~T.t (3.1.8) 

The functions ho, fo, go, f, D, E S1 and S2 are twice continuously differentiable functions 
with respect to all arguments. 

W 1_00 [0,Tl" := {xis an absolute continuous n-vector function on [0.T] 

with x E L 00 [0,T]" ). 

A motivation for problem (SCOCP) is given in the discussion below. 

We assume that the dynamic behaviour of the system to be controlled, can be described by 
a set of ordinary differential equations of the form : 

x (t ) = f (x (t ) .u (t ) ,t ) for all 0~ t ~ T, (3.1.9) 

where x is an n-vector function on [0.T] called the state variable and u is an m-vector 
function on [0.T] called the control variable. 

We are interested in problems where the system is to be controlled from an initial state x 0 

at time t = 0, i.e. 

t This condition may be weakened to a more complicated condition, which involves only the gradients of 
the components of S 1 on intervals where these components are active, i.e. where these components are 
zero on an interval, along a solution trajectory. 
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x(O) = x 0 • (3.1.10) 

over an interval [O.T]. The number T is used to denote the fi,nal time. We shall assume 
that T is finite, which means that we are interested in problems with finite time horizon. 

One of the more difficult technical details of the statement of the problem are the condi
tions that the control function u : [O.T] ..... ./Rm must satisfy. In view of the fact that we 
want to identify the optimal control problem as a specialization of the abstract nonlinear 
programming problem (EIP). it is desirable to identify u as a vector in a function space. 
Because u governs the state variable via the right hand side of the set of differential equa
tions (3.1.9). u must be at least integrable (in the sense of Lebesgue) on [O.T]. A sufficient 
condition for this is that u is measurable and essentially bounded on [O.T] (see e.g. Kol
mogorov et al. (1961) or Rudin (1976)). 
Therefore it is possible to identify u as an element of the space of m -vector functions 
which are measurable and essentially bounded on [O,T]. which is denoted by Loolo,Tr. 

We note that the space L 00 [0,Tr is particular well suited for the statement of optimal 
control problems. which are to be identified as specializations of abstract nonlinear pro
gramming problems in Banach space with Frechet differentiable mappings. This is due to 
the fact that when more general control functions would be allowed, either the space of 
control functions is not a Banach space or the mappings involved are not Frechet 
differentiable. When the type of control functions would be restricted further, it is possi
ble to identify the optimal control problem as a specialization of problem (EIP) only in the 
case that the control is assumed to be a continuous function on [O,T]. Simple examples ex
ist that show that controls which are solutions to the rather general type of optimal con
trol problems that we want to consider. can be discontinuous. 

As a result of the smoothness assumptions on the function f , we have 

f(x(-),u(-) .. )E L 00 [0,Tf, 

whenever u E Loolo,Tr and x is a continuous function on [O,T]. Because elements of 
L 00 [0,T] which differ on a set of zero Lebesgue measure are regarded as equivalent. the 
differential equation (3.1.9), which is an equality relation between two vectors in LoolO,T], 

is allowed to differ on a set of zero Lebesgue measure. We note that because the 
differential equation must only hold almost everywhere on [O.T]. the differential equation 
is interpreted as the integral equation : 

I 

x(t)= x(O)+ ff(x(T),u(T),T)d'T. 
0 

The state variable x can also be identified as a vector in some function space. Because x is 
always a continuous function on [O.T], x can be identified as an element of the space Qf_ 
continuous functions on [Q.IJ, denoted by C [O,T]n. This space however, contains also vec
tors that cannot be a solution to any differential equation, because there exist continuous 
functions which are not the integral of their derivatives. This would complicate the appli
cation of the results on optimality conditions, stated in Chapter 2. unnecessary (cf. Section 
3.3.1). The space of absolutely continuous functions on [Qzl with measurable and 
essentially bounded fJk:.Rl time derivatives, denoted by W 1,00 (0,Tf, is more suitable for our 
purpose. 
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As to the explicit dependence of the left hand side of (3.1.9) on the time t, we introduce 
the following terminology. When / does not depend explicitly on t, the system (3.1.9) is 
called autonomous and when it does nonautonomous. 

A nonautonomous system may be transformed into an autonomous one by means of an 
additional state variable. Let y satisfy 

then 

y(O) = 0, 

y (t) = 1 

y (t) = t 

a.e. O~t~T. 

Substituting y fort in (3.1.9) yields an autonomous system. 

An other distinction is made between variable final time problems. i.e. T is not fixed in ad
vance and fixed final time problems. It is possible to transform variable time problems into 
fixed final time problems via a standard approach, which again requires the introduction of 
an additional state variable (cf. Section 3.3.4). 

From a theoretical point of view, there is no objection to the introduction of additional 
state variables to transform nonautonomous and variable final time problems into auto
nomous, fixed final time problems. However, in the numerical method to be proposed, all 
state variables are treated similar and therefore an increase in the dimension of the state 
vector gives an increase in numerical effort. Because there is no great difficulty in dealing 
with nonautonomous and variable final time problems directly. they are included in the 
formulation of problem (SCOCP). 

The foregoing discussion focussed on the specification of the differential system. Now we 
shall consider the specification of the object criterion, which is done by means of a func
tional which assigns a real value to each triple (x ,u .T). called the obiective function. The 
following forms are of common use in optimal control theory 

T 

f fo(x (t ),u (t ),t ) dt , 
0 

go(x (T),T). 

T 

J to<x (t ).u (t ),t) dt + g 0(x (T ).T ). 
0 

(3.J.11) 

(3.1.12) 

(3.J.13) 

Again from a theoretical point of view. there is no great difference between working with 
either one of (3.1.11), (3.1.12) or (3.1.13), when the functions / 0 and g 0 are sufficiently 
smooth. This is because an objective function of the form (3.1.11) can be transformed into 
the form (3.1.12) and vice versa. From a practical point of view it does matter which form 
of objective function is used, because the transformation from (3.1.11) to (3.1.12) requires 
the introduction of an additional state variable, whereas the transformation from (3.1.12) 
to (3.1.11) may lead to complicated expressions for the objective function. Therefore 
(3.1.13) is assumed, which covers both the forms (3.1.11) and (3.1.12). 

Having discussed the specification of the differential system and the objective function, we 
now turn to the specification of the constraints, which restrict the solution of the optimal 
control problems. 
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In most optimal control problems. there are constraints on the final state of the system. 
i.e. the state x (T) must satisfy certain conditions. These constraints are called terminal 
point constraints. A general way of specifying these conditions. is by means of a vector 
function E : .m.n XR-+ .D?.9. with q:;;; n +1. of the form 

E(x (T),T) = 0. 

It is obvious that this formulation includes fixed final time and fixed final state problems. 

In most cases the initial state of the system (3.1.9) is known completely and specified in 
the form of (3.1.10). There are however problems. where the initial state of the system is 
not specfied completely in advance. To tackle this type of problems the initial state is 
specified similar to the way in which the terminal state in specified. i.e. using a vector 
function D : .m.n-+ .m.c. with c:;;; n such that. 

D(x(0)) = 0. 

Of course the specification (3.1.10) is included in this formulation. A logical extension of 
(3.1.13) is now to consider an objective function of the form (3.1.1). 

Beside terminal point constraints. most optimal control problems include constraints on 
the control u and the state x. which must hold at all time points of the interval [O.T]. A 
distinction is made between the following types of constraints : 

Control constraints : u (t ) E U 
Mixed control state constraints : S i(x (t ).u (t ).t) :i::; 0 

State constraints : Six (t ).t):,;; 0 

a.e. o:,;;t:,;;T, 
a.e. o:,;;t:,;;T, 

o:,;;t:,;;T. 

In most cases. control constraints can be written as a set of inequalities and therefore this 
type of constraints could also be treated as mixed control state constraints. 

For example. let U := {u : o:i::; u:;;; u). Then the constraint u EU may be replaced by 
S1(u) = -u(u-u):,;; 0. 

When optimal control problems are solved analytically. this approach involves unneces
sary effort. However, with a numerical solution of the problem. this approach is quite use
ful. because in a numerical context we need an explicit expression for the set U. Therefore 
an explicit dependence of the function S 1 on the argument x is not supposed. 

A similar argumentation for the state constraints would imply that the state constraints 
are a subclass of the mixed control state constraints. For the solution of the problem how
ever, it is essential to make the distinction between mixed control state - and state con
straints. One might say that a distinction must be made between the explicit constraints 
on the control by way of the mixed control state constraints and the implicit constraints on 
the control by way of the state constraints. The explicit dependence of the function S 1 on 
the argument u is certified by means of Assumption (3.1.8). 

The functions ho, f o, go, f . D. E. S 1 and S 2• which define the optimal control problem 
are called problem functions. Most optimal control problems involve problem functions 
which are at least continuous with respect to their arguments. When we want to identify 
the problem (SCOCP) as 11 specialization of the abstract nonlinear programming problem 
(EIP). we need that the mappings involved in problem (EIP) are at least twice continuous
ly Frechet differentiable. A requirement for this is that all problem functions are at least 
twice continuously differentiable with respect to all their arguments (cf. Section 3.2). 
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If we consider a problem with variable final time for which the control variable and the 
state variable are to be identified as elements of function spaces, e.g. u E L 00 [0,T]m and 
x E W 1,00 [0,T]n, then we have to deal with the technical detail that the function spaces 
depend on the parameter T, i.e. on the final time. Via this dependence, the functions x and 
u depend on T. This makes the abstract formulation difficult, if not impossible. Fortunate
ly. it is possible to transform any variable final time problem into a fixed final time prob
lem. Using this transformation approach, optimality conditions for variable final time 
problems can be derived from the optimality conditions for the transformed fixed final 
time problem (cf. Section 3.3.4). 

3,2. Formulation of problem (SCOCP) as a nonlinear programming problem in 
Banach spaces. 

This section deals with the formulation of problem (SCOCP) as an abstract nonlinear pro
gramming problem (EIP). In this formulation, problem (SCOCP) will be treated as an op
timal control problem with fixed final time. The optimality conditions for the case that 
problem (SCOCP) has variable final time will be derived from the optimality conditions 
for the case of fixed final time (cf. Section 3.3.4). 

A basic choice has to be made, as to the manner in which the differential system (3.1.2) is 
treated. There are two possibilities, either the control variable is considered as the only 
variable of the optimal control problem, or both the control variable and the state variable 
are considered as variables of the optimal control problem. In the former approach the 
state variable is treated as a quantity which depends on u via (3.1.2). Following the latter 
approach, (3.1.2) enters the formulation of the optimal control problem as an equality 
constraint. We prefer the latter approach because. as will follow from the discussion in the 
next section, it leads to a weaker constraint qualification. In addition, the approach extends 
in a logical way to the numerical method which is described in Chapters 4, 5 and 6. 

Thus, we consider in the formulation of problem (EIP) as variables the pair (x ,u ). The 
space X becomes the product space of the spaces which contain the variables x and u , i.e. 

X = W 1,oo[0,T)" XL 00 [0,Tr. ( 3.2.1) 

In the formulation of problem (EIP), the assumption is made that X is a Banach space. We 
shall show that with the selection of a suitable norm on X this assumption is satisfied. In 
general. the space X cannot be expected to be a Banach space unless the spaces W 1,00 [0,T]" 
and L 00 [0,rr are both Banach spaces. 

For every measurable and essentially bounded function v : [O,T]-> JR"', the oo-norm is 
defined by: 

llvll 00 := ess sup llv (t )II, 
O.(r.(T 

where 11-11 is the Euclidian vector norm on /Rw. 

Equipped with the oo-norm the space L 00 [0,T]"' is a Banach space. 

Analogously, the space W 1,00 [0,T]" is a Banach space when equipped with the norm 

llxll1,oo = max{llxll 00 ,llill 00 } for all xEW 1,00 [0,T]". 

(cf. Kirsch et al. (1978), p.91-92). 

(3.2.2) 
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The space X is now a product of Banach spaces for which we may use the following rule 

to select a norm : 

"X 1 and X 2 are Banach spaces with norms 11-11 x 
1 

and 11-11 x 
2

, the norm on X 1X X 2 

is taken as max{ll-llx
1
,11-llx/" 

With this norm, the space X 1XX 2 is also a Banach space. Using this rule we obtain as 
norm on X: 

ll(x,u)llx := max{llxll 00 ,ll.ill 00 ,llull 00 }. (3.2.3) 

The formulation of the objective function of problem (EIP) follows directly from the ob
jective function of problem (SCOCP). 

T 

f(x,u) := h 0(x(O))+ Jto<x(t),u(t),t)dt +g 0(x(T),T). (3.2.4) 
0 

The smoothness assumptions on the problem functions h 0 , / 0 and g 0 , together with the 
fact that the norm on the space X is an oo -norm. yield the following result. 

Lemm.a 3.1: Let the functions h 0 , / 0 and g 0 satisfy the assumptions of probl,em (SCOCP) 

and j: X-+ R be defined by (3.2.4), then the mapping j is twice Frechet differentiable at 
all points (x ,u ) of X and 

T 

f'(x ,u )(Bx .Bu)= hox (x (0))Bx (0) + f (fox (x ,u ,t )Bx (t) + 
0 

fou (x .u ,t )ou (t )) dt + g ox (x (T ).T )Bx (T ). (3.2.5) 

For a proof of this lemma we refer to the proof of Lemma 1.4a, p.94 of Kirsch et al. 
(1978), who prove that J is once Frechet differentiable. The second Frechet 
differentiability follows from an application of the same lemma to (3.2.5) for fixed 
(Bx ,Bu). 

The constraints (3.1.2) - (3.1.4) enter the formulation of the abstra:_t problem as equality 
constraints. This leads to the following formulation of the mapping h 

h(x,u) := (x(-)-f(x(-).u(-) .. ).D(x(0)).E(x(T),T)). (3.2.6) 

To m~ke the formulation of the mapping h complete, we have to identfy the range space 
Z of h . which must be a Banach space. A logical choice for Z is : 

(3.2.7) 

which equipped with the norm 

ll(z1,z2,z3)llz = max{llz1lloo.llz2ll.llz3II} for all z1EL 00 [0,T]" ,ZzERc ,z 3 E./Rq, (3.2.8) 

is indeed a Banach space. 

With regard to the Frechet differentiability of h we have the following lemma : 
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Lemma 3.2: Let the functions f , D and E satisfy the assumptions of probl,em (SCOCP) 
and let the mapping h : X---+ Z be defined by (3.2.6), then the mapping h is twice continu
ously Frechet differentiable for all (x ,u) of X and, 

i, ·ex .u )Cax .au) = cax C· )-fx ex c. ).u c. ) .. )ax c. )-f" ex c. ).u c. ) .. )au C· ). 

Dx(x(O)).Sx(0) ,Ex(x(T).T).Sx(T)). (3.2.9) 

This lemma is a direct extension of Lemma 1.4b. p.94 of Kirsch et al. (1978). 

In the abstract formulation, the inequality constraints of problem (SCOCP) take the form 
of a required membership of a set A and a restriction. of the value of a mapping g to a 
cone B. 

The set A is used to formulate the control constraint (3.1.5) : 

(3.2.10) 

where 

(3.2.11) 

Because U is assumed to be a convex set with a nonempty interior. Au is also a convex set 
with a nonempty interior. 

The mixed control state constraints (3.1.6) and the state constraints (3.1.7) are formulat
ed as: 

A logical choice for the range space Y is : 

Y := Loolo,rl 1xC[o,r{ 2 • 

Equipped with the norm 

II (y 1,Y2)II }' := max{lly 111 oo,lly2lloo} for all y 1 E L 00 [0,rt 1,y2E C [o,r{ 2• 

(3.2.12) 

(3.2.13) 

(3.2.14) 

To the choice of the range space Y we note that an alternative choice is 
k k 

L 00 [0,T] 1XW 1_00 [0,T] 2
• However, the choice (3.2.13) is preferred because the space 

k 
C [O,T] 2 has a standard representation of the elements of the dual space (cf. Luenberger 
(1969)). We note that unfortunately. the representation of the elements of the dual space 
of Loo[0,T] is rather complicated and that there seems to be no suitable alternative for the 
choice of the range space of the operator S 1(x (. ),u (. ). · ). This complicates the application 
of the optimality conditions, stated in Chapter 2. to the state constrained optimal. control 
problem, as discussed in Section 3.3.2. 

Lemma 3.3: Let the functions S 1 and S2 satisfy the assumptions of problem (SCOCP) and 
the mapping g : X---+ Y be defined by (3.2.12), then the mapping g is twice continuously 
Frechet differentiable for all (x ,u) of X and 

g '(x ,u )(8x ,.Su) = (S 1x (x (. ),u (. ). · ).Sx (. )+ S lu (x (· ),u (. ). ·),Su(.). 

S 2x (x (. ). ·)ax(.)). (3.2.15) 

To make the abstract formulation of the inequality constraints complete. we have to speci
fy the cone B. which in the formulation of problem (EIP). is assumed to be closed and 
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convex, with OE B and having nonempty interior. 

If we choose B to be : 

B .- B 1XB2, 

Bi . - {y1EL00[0,Tf I: yi;(t )~ 0 a.e . 0~ t ~ T. i = l, ... ,k 1l, 

B2 .- {yzE C [o,Tf 2
: Y2i (t )~ 0 0~ t ~ T, i = 1, ... ,k 2l. 

(3.2.16) 

(3.2.17) 

(3.2.18) 

then one can easily verify that the cone B statisfies the assumptions of problem (EIP). 

This completes the formulation of the optimal control problem (SCOCP) as a specialization 
of the abstract nonlinear programming problem (EIP). 

3.3. First order optimality conditions for problem (SCOCP). 

3.3.1. Regularity conditions for problem (SCOCP). 

In view of the application of Theorem 2.12 to the optimal control problem (SCOCP) in the 
formulation of Section 3.2. we consider the regularity conditions of parts (i) and (ii) of 
Theorem 2.12. 

We start off by noting that throughout this chapter we shall use the following standard 
result on linear ordinary differential equations (e.g. cf. Hermes et al. (1969). p.36). 

Lemma 3.4: Let A (t) be an n Xn matrix defined on [O,T] with components aij E L 00 [0,T) 

(all i ,j = 1. ... n ), then for all h E L 00 [0,T)" the ordinary differential equation 

.i (t) - A (t )x (t) = h (t) a.e. 0~ t ~ T, 

x(O)=x 0 , 

has exactly one solution x E W 1_00 [0,T)" . This solution has the form 

t 

x (t ) = 4'(t )x O + 4'(t ) J 4i-1(s )h (s) ds 
0 

(3.3.1.1) 

(3.3.1.2) 

( 3.3.1.3) 

where then Xn matrix <l> is the fundamental matrix solution of (3.3.1.1 ), i.e. the unique solu

tion to the homogeneous differential equation : 

ci>(t) - A (t )4'(t ) = 0. 

4>(0) = /. 
( 3.3.1 .4) 

(3.3.1.5) 

We note that the solution of (3.3.1.1) that satisfies the boundary condition x(T)=xr has 
the form: 

T 

x (t) = 4'(t )<l>- 1(T )xr - <l>(t) f <l>- 1(s )h (s) ds (3.3.1 .6) 
t 

As a first step towards the derivation of regularity conditions for problem (SCOCP). we 
consider the range of the Frechet derivative of the mapping h : X--> Z, at a solution (x ,u) 
of problem (SCOCP). 
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Lemma 3.5: 

(i) Let the functions f, D and E satisfy the assumptions of probl,em (SCOCP) and let the 

mapping h be defined by (3.2.6), then 

R(h '(x ,u ) ) = closed. 

(ii) If at (x .u ), 
rank (Dx (x (0))) = c. 

and 

rank (Ex (x (T ).T )) = q. 

then 

RCii ·ex .u )) = z. 

(3.3.1 .7) 

(3.3.1.8) 

(3.3.1.9) 

(3.3.1.10) 

Proof Using Lemma 3.4 we first prove that the range of the operator 
h1'(x ,u): X->L=[O,T]", with 

ii 1·cx .u )(8x .au) := (8.x C· )- fx [. Jax C· )-/. [· J8u <· )). t 

is L=[O,T]". For this purpose we consider the equation 

h 1'(x ,U )(8x ,8u) = h. 

(3.3.1.11) 

(3.3.1.12) 

with h E L=[O,T]". The range of the mapping h 1' equals L=[O,T]" if and only if equation 
(3.3.1.12) has a solution (8x ,8u )EX for every h E L 00 [0,T]". Using (3.3.1.11) equation 

(3.3.1.12) is equivalent to: 

8.x - fx 8x - fu 8u = h , ( 3.3.1.13) 

which has a solution for each h E L=[O,T]" by Lemma 3.4. (8x (0) and 8u can be set to 
zero.) 

Part (i) of the Lemma follows, because the ranges of the operators Dx(x(0))(.): X->JR.c 

and E, (x (T ),T )(.) : X-> JR.g are always closed. due to the fact that the range spaces of 
these operators are finite-dimensional. 

Part (ii) follows directly from (i) and the fact that (3.3.1.8) and (3.3.1.9) imply 

RCD, ex co))) = JRC. 

R(E,. (x (T ).T )) = JR.g. 

D 

Part (i) of Lemma 3.5 enables the application of part (i) of Theorem 2.12 to problem 
(SCOCP) without any additional regularity conditions on the problem. With regard to the 
result contained in part (ii). we note that this is the weaker form of the constraint 
qualification we promised at the start of Section 3.2. For if we would have treated x as a 
quantity dependent on u, condition (3.3.1.10) would rt!quire, beside (3.3.1.8) and 
(3.3.1.9). that the linearized system 

t The notation[. J is used to replace (x (. ).u (. ), ·) or (x (. ), • ). 
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6i = fx 6x + fu 6u, 

should be completely controllable on [0.T] (cf. Norris (1973)). 
We note that we do not need this controllability as a result of the fact that we consider 
both x and u as variables and that the differential equation was used directly as a con
straint. instead of first transforming the differential equation into an integral equation. 
When both x and u are used as variables. but when the differential equation would first 
be transformed into an integral equation and x was considered to be an element of the 
space of continuous functions, then the controllability of the linearized system would also 
be required (cf. Girsanov (1972). Assumption 9.1). 

The theorem below is a specialization of the constraint qualification of part (ii) of Theorem 
2.12 for problem (SCOCP). 

Theorem 3.6: Let (x .u) be a solution to problem (SCOCP). When 

rank (Dx (x (0))) = c. 

and 

rank (Ex (x (T),T)) = q. 

and, in addition, there is a pair (6x .6u) for which t 

u (t ) + 6u (t ) E int U 

Dx [0]6x (0) = 0, 

6i (t) = f x [t ]6x (t ) + fu [t ]6u (t ) 

Ex[T]6x(T) = 0, 

S 1[t] + S 1x [t ]6x (t) + S lu [t ]6u (t ) < 0 

sit l + s 2, [t l6x (t ) < o 

then the regul.a.rity constant p is not zero. 

a.e. 0~t~T. 

a.e. 0~t~T. 

a.e. 0~t~T. 

(3.3.1.14) 

(3.3.1.15) 

(3.3.1.16) 

(3.3.1.17) 

(3.3.1.18) 

(3.3.1.19) 

(3.3.1.20) 

(3.3.1.21) 

Proof : The hypotheses (3.3.1.14) and (3.3.1.15) imply by Lemma 3.5, (3.3.1.10). Equa
tions (3.3.1.16) - (3.3.1.21) are counterpart to conditions (2.2.19) - (2.2.20) of part (ii) of 
Theorem 2.12. 
D 

3.3.2. Representation of the Lagrange multipliers of problem (SCOCP). 

In this section we shall consider the representation of the Lagrange multipliers for solu
tions of problem (SCOCP). In the abstract formulation of problem (EIP) these multipliers 
are denoted as y' and £'. In the case of problem (SCOCP) they can be expressed as ele
ments of function spaces. The major problem we have to deal with is the fact that. the 
elements of the dual space of L 00 [0,T] do not admit a simple standard representation. 

In establishing a formulation of problem (SCOCP) in the terminology of problem (EIP) 
(cf. Section 3.2). the range spaces of the constraints, i.e. Y and Z were chosen to be pro-

t We used the notation [t l to replace (x (t ).u (t ).t) or (x (t ).t ). 
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ducts of Banach spaces. A particular choice of the norm on the product spaces was made in 

such a way as to make the product spaces Banach spaces too. In this case the representation 
of linear functionals on these product spaces is induced by the components. i.e. when X 1 

and X 2 are both Banach spaces and 

then all continuous linear functionals on Xs admit a representation of the form (cf. Porter 
(1966). p.299) : 

with X; E x; and X; E x; . 
We shall now develop a representation of the Lagr_ange multipliers fo~ problem (SCOCP) 
by considering the products <y'. g > and <z'. h >. where g and h are the mappings 
defined in Section 3.2. Using the fact that Y and Z are product spaces we obtain : 

<y'.g> = <'111,Sil-]> + <g,sz[-]>. 

<z'.;;, > = <X.; - t[-]> + <u. nc; co))> + <µ. E(x cn.r)>. 

with: 'IJ1E (L=[o,Tf 1)', 

g E(C[o,Tf 2)'. 

X E(Lco[O,T]n )', 

CT E(JR. C )' • 

µ E(JR.q )' . 

(3.3.2.1) 

(3.3.2.2) 

Equations (3.3.2.1) and (3.3.2.2) admit an interpretation of ( fJ 1,t .X ,CT,µ) as Lagrange 

multipliers associated with a particular constraint (i.e. '!Ji is associated with the constraint 
S1(x(-).u(-). -)EB1). 

A representation of the Lagrange multipliers for problem (SCOCP) will be established, 
once we have a representation for the linear functionals on the right hand side of (3.3.2.1) 
and (3.3.2.2). These will be considered individually. We start with the representation of 
the linear functionals which do not pose a problem as they have a standard representation. 

Because JR.< and Rq are Hilbert spaces. the linear functionals on JR.c and Rq have the 
form: 

<u.D(x(O))> = -CTTD(x(O)). 

<µ.E(x(T),T)> = -µTE(x(T),T), 

with : CT E JRc. 
µ, E ]Rq. 

(3.3.2.3) 

(3.3.2.4) 

The dual space of C[o,rt 2 is the space NBV[o,Tt 2 ,i.e. the normalized space of k 2-vector 
functions on [O.T] of bounded variation (cf. Luenberger (1969). p.113-115 ). The standard 
representation of these linear functional is given by means of a Stieltjes integral. i.e. 

T 

<i.sz<x(-).-)> = - Js2Cx(t).t)T at(t). (3.3.2.5) 
0 

A k 
with: [ E NBV[O,T] 2

• 
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We note that the minus signs on the right hand sides of (3.3.2.3) - (3.3.2.5) were chosen 
in order to obtain the usual form of the minimum principle to be stated in the next sec
tion. 

The representation of the functionals 

(3.3.2.6) 

and 

<X, x (-)-f(x (-),u (-). · )>, (3.3.2.7) 

is a more difficult problem. because the linear funcionals on L=[o,rt I and L=[O,T]" are 
elements of L=[O,T]' and as such admit, in general. only a very complicated representation 
(cf. Dunford et al. (1958), Ch. IV, Thm. 8.16). 

Fortunately, by making use of the fact that fi 1 and X are Lagrange multipliers for problem 
(SCOCP) we are able to derive a practically useful representation of the functionals 
(3.3.2.6) and (3.3.2.7). 

We shall first consider the representation of the functional (3.3.2.6). Here we are faced 
with the difficulty that the constraint S 1(x(-).u(-). -)EB 1 represents only in part the ex
plicit constraints on the control. The other part is represented by the constraint u E Au , 

which is a very general representation of a constraint. In order to cope with this difficulty 
we shall make the following assumption : 

Assumption 3. 7 : The set U is of the form : 

U = {ue.Rm :S0(u)~ O}. 

where SO : .Rm-+ .Rk O is a twice continuously differentiable mapping. 

Assumption 3.7 merely states that the control constraints can be transformed into a set of 
inequalities, i.e. 

u (t) E U 

may be replaced by 

So(u(t )) ~ 0 

a.e. 0~ t ~ T, 

a.e. O~t~T. 

Because we did not make any assumptions about the explicit dependence of S 1(x ,u ,t) on 
the argument x , all explicit constraints on the control can be treated in a similar manner. 
Thus, we end up with one vector function for the constraints on u , 

[ 
So(u) I 

Sc (x ,u ,t ) = S i(x ,u ,t ) (3.3.2.8) 

The solution must now satisfy the following constraint : 

a.e. O~t~T. ( 3.3.2.9) 

As we already discussed in Section 3.1. we must futhermore assume that all components 
of the vector function Sc have an explicit dependence on the argument u. 
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Assumption 3.8: If (x ,u) is a solution to prob/,em (SCOCP) and Assumption 3.7 holds, 

then t 
rank (Seu (x (t ),u (t ).(t )) = ko + k 1 a.e. 0~t~T. 

Assumptions 3.7 and 3.8 enable the derivation of a representation of the linear functional 

<7)1,>-

Lemma 3.9: Let (x ,u) be a solution to prob/,em (SCOCP) and let in addition Assumptions 
3.7 and 3.8 hold, then the linear functional <-ij 1• • >, whose existence is garanteed by 
Theorem 2.12, has the following representation : 

T 

<'1)1,Y1> = - f1'Ji(t)Ty1(t)dt forall Y1EL 00 [0,Tf 1
• 

0 

with: 'T)1ELoo[O,Tf 1
. 

(3.3.2.10) 

Proof : Using the fact that Assumption 3.7 holds. we consider the formulation of problem 
(SCOCP) with the vector function (3.3.2.8). The corresponding Lagrange multiplier is 

denoted by 7Jc. 
Using the representation of the Lagrange multipliers discussed earlier in this section, we 
obtain from part (i) of Theorem 2.12 : 

pf'(x.u)(6x.6u)- <'T)c,Scx6x+Scu6u> - <l.S2x6x> -

<X.6x-fx6x-f.6u> - <u.Dx6x(0)> -

<µ.Ex6x(T)> = 0 forall 6xEW1_00 [0,T]",6uEL 00 [0,Tr. (3.3.2.11) 

Using the representations (3.3.2.3) - (3.3.2.5) and the result of Lemma 3.1 we obtain: 

<X.6x-fx6x-f.6u > + <'T)c,Scx6x+Scu6u > = p(hox6x(0) + 
T T 

J (fox 6x + fou 6u) dt + g ox 6x (T) )+ J 6xT S~x d g + ij-T Dx 6x (0) + 
0 0 

µTEx6x(T) forall 6xEW 1_00 [0,T]".6uEL 00 [0,T]"'. (3.3.2.12) 

We shall consider (3.3.2.12) using variations (6x ,6u) that satisfy : 

a.e. 0~t~T. 

6x (0) = 0. 

For these variations the functional < X, 6x -fx 6x - fu 6u > is zero and the right hand side 
of (3.3.2.12) then gives an explicit relation for the functional < 7lc. Sex 6x +Seu 6u >. 
Next we consider the functions : 

a.e. 0~t ~ T. (3.3.2.13) 

Clearly. h E L 00 [0,Tf o+k 1• because 6u E L 00 [0,T l"'. Assumption 3.8 ascertains that for every 

h EL 00 [0,rfo+k,, there is at least one ou. that satisfies equation (3.3.2.13). To select for 

each fixed function hEL 00 [0,rfo+k, a particular function 6u that satisfies (3.3.2.13). we 

t In Assumption 3.8 we used Seu to denote the partial derivative of Sc with respect to U • 
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make use of the pseudo inverse of the matrix Seu [t ]. Because the matrix Seu [t] is of full 
row rank, the pseudoinverse of Seu [t ] has the form : 

a.e. o:;,; t:;,; T. 

The variation 6u must therefore satisfy : 

6u (t) = Seu [t ]+(h (t) - Sex [t] 6x (t )) a.e. o:;,; t:;,; T. 

Because (6x ,6u) satisfy the linear system, the variations (6x) satisfy : 

6x = Ix 6x + fu Seth - fu set sex 6x. 

Using Lemma 3.1 we can write 6x dependent on h as: 

r 

6x (t) = <P(t) j<P(s )-1fu [s] Seu [s ]+h (s) ds 
0 

where ili is the solution of : 

<P(O) = I. 

Rewriting (3.3.2.12) with (3.3.2.15) and (3.3.2.16)yields: 

T t T 

(3.3.2.14) 

(3.3.2.15) 

( 3.3.2.16) 

(3.3.2.17) 

<r,e,h> = j(a(t)jB(s)h(s)ds +c(t)h(t))dt +eili(T) jB(t)h(t)dt + 
0 0 0 

T r 

/(<li(t)/B(s)h(s)ds)TS 2x[t]Tdf(t) forall hEL 00 [0,T( 0+k 1, (3.3.2.18) 

where : a (t) .- p(f ox -fou Seu [t ]+ Sex )ili(t ). o::,; t :;,; T 
B(t) .- <P(t )- 1fuSeu[t]+, o:;,;c:;,;T 

c(t) .- P!ouSeu[t]+, o:;,;c:;,;T 

e -- Pgox +µEx• 

Changing the order of integration (cf. Luenberger (1969), p.153-154) : 

T t T T 

j j K (t .s ) ds dt = j j K (s ,t ) ds dt . 
o. o o r 

yields: 

<r,c,h> = /{< /a(s)ds +e<P(T))B(t)+c(t)+ /df(s)TS 2x[s]<P(s)B(t)) 
O r r 

h (t) dt for all h E Loo[o,rt o+k 1 (3.3.2.19) 

The vector f~nction 7"/e : [O,T]-->.D/ 0+k' is now defined as: 

T/e(t)T := - [ /a(s)ds + ldf(sfS2x[s]<P(s)+e<P(T)IB(t) 

+ C (t) (3.3.2.20) 

And hence: 
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T 

<T/c,h> = - JT/c(t)Th(t)dt forall hEL=[o,Tfo+k 1
, 

0 

which proves (3.3.2.10). 

7) 1EL=[o,T{ 1 follows directly from inspection of the components of (3.3.2.20). 

□ 

The proof of this Lemma is nonconstructive in the sense that we do not obtain a simple re
lation for 7) 1 • only a representation. For the multiplier X. we do obtain relations from the 
derivation of the representation, which follows similar lines as the proof of Lemma 3.9. 

Lemma 3.10: Let (x ,u) be a solution to probl.em (SCOCP) and let, in addition, Assumptions 

3.7 and 3.8 hold, then the linear functional <X. ·>,whose existence is implied by Theorem 

2.12, has the representation : 

T 

<X, y > = J X(t )Ty (t) dt for all y E L=[0,T]" , 
0 

with XE NBV[0,T]", which satisfies 

and 

'1 

X(t1)T - X(to)T = - J (pfox[t]+~(t)Tfx[t]+'1)1(t)TSix[t])dt 
, 0 

'1 

f d [ (t )TS 2x [t ] 
t 0 

X(O)T = - phox [0] - <J-T Dx [0]. 

~(T)T = Pgox[T] + VEx[T]. 

(3.3.2.21) 

(3.3.2.22) 

(3.3.2.23) 

(3.3.2.24) 

Proof : We use equation (3.3.2.12). with variations 6u = 0 and the representation of 

<71 I•·> of Lemma 3.9 : 

T 

<X, 6i-fx 6x > = (phox +<J-T Dx )6x (0) + J (P!ox +'l)[S 1x )6x (t) dt + 
0 

T 

f6xTSfxd[(t)+ (pgox+flTEx)6x(T) forall 6xEW1.=[0,T]". (3.3.2.25) 
0 

Now consider : 

6i - fx6x = h 6x(0) = 0, 

which has (by Lemma 3.1) a solution for every h E L=[0,T)ll ,i.e. 

t 

6x (t) = <l>(t) J <l>(s )-1h (s) ds, 
0 

where cl> is as in Lemma 3.1. 

(3.3.2.26) 
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Using relation (3.3.2.26) in (3.3.2.25) yields : 

T I 

<X.h> = f(Pfo,+MS1,)<t>(t)j<t>(s)- 1h(s)ds + 
0 0 

T I 

J dt(t)TS 2,[t]<t>(t)j<t>(s)-1h(s)ds + · 
0 0 

T 

(pgo,+µTE,)<t>(T) J<t>(t)- 1h(t)dt foral,l hEL 00[0,Tf. 
0 

Changing the order of integration in (3.3.2.27) yields : 

T T T 
<X.h> = Jlj(pfo,+11[S1x)<t>(s)ds + Jat(s)TS2,[s]<t>(s) 

0 I I 

Define now: 

T T 

X(t)T .- lj(pf0,+11[S1,)<t>(s)ds + Jat(s)TS 2,[s]<t>(s) 
t t 

(3.3.2.27) 

(3.3.2.28) 

(3.3.2.29) 

from which (3.3.2.21) directly follows. XENBV[o,rr follows from an inspection of the 
various components of (3.3.2.29). 

We shall next prove relations (3.3.2.22) and (3.3.2.24). Relation (3.3.2.24) follows from 
(3.3.2.29) for t = T. Now consider the product X T <t> : 

d (X(t )T <t>(t )) = d X(t f <t>(t) + X(t f -i>(t) dt. (3.3.2.30) 

Because -i> satisfies : 

(p = f,<t>, 

equation (3.3.2.30) becomes 

d (X T (p) = d X T (p + X T fx (p dt. 

Using (3.3.2.29) we obtain : 

d XT <P + XT fx <t> dt = - (pfox +11[S1, )<t>(t) dt - d t(t )TS2, [t ]<t>(t ). 

Because <t> is invertible this yields : 

dXT = -(pfo,+XTfx+T1[S1,)dt -dt(t)Ts2,[t], 

which is equivalent to (3.3.2.22), because 

'1 

J dXT = X(t 1)T - X(t 0 )T for all O~t 0~t1~T. 
'o 

To prove (3.3.2.23), the whole proof should be repreated using variations 6x that satisfy: 
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6x(T) = 0. 

In this case the variations 6x satisfy 

T 

6x(t) = - <l>(t) J <l>(s )-1h(s) ds. 
t 

The counterpart to (3.3.2.29) becomes 

t t 

X(t)T == -{J(P!ox+Ms1x)<l>(s)ds + fdi(sYS2x[s]+ 
0 0 

(phox +&T Dx ))<l>(t )-l 

which yields (3.3.2.23) fort= 0, because <1>(0)- 1= I. 

□ 

3.3.3. Local minimum principle. 

In this section, the results contained in part (i) of Theorem 2.12, will be expressed in the 
formulation of problem (SCOCP). 

An important role is played by the Hamiltonian, which is defined as : 

H(x,u,p,X,t) := pfo(x,u,t) + XTf(x,u,t). (3.3.3.1) 

In the theorem below the notation [t] is used to replace (x (t ),t ), (x (t ),u (t ),t) or 
ex Ct ).u Ct ).f> .x Ct ).t ). 

Theorem 3.11: If (x ,u) is a solution to problem (SCOCP) for which Assuptions 3.7 and 3.8 

hold, then there exist a real number p';:;0, and vector functions XENBV[O,T]n, 

'YJiE L 00 [0,Tf 1, gE NBV[o,rf 2 and vectors O'E JRc, µE JR 9 , not all zero, such that, 

,, 
X(t1Y-X(to)T = - J(Hx[t]+rJ1(t)TS1x[t])dt 

'o 
,, 

f d g(t )TS 2x [t ] 
'o 

X(O)T = - f>hox [0] - a,r D, [0], 

X(T)T = {)gox[T]+µTEx[T], 

(3.3.3.2) 

(3.3.3.3) 

(3.3.3.4) 

CHu[t] + 'YJ1(tlS1u[t])(u - u(t)) ';:; 0 for all uEU a.e. Q'!!;,,t'!!;,,T, (3.3.3.5) 

'YJ1(t ) ';:: 0 a.e. 0'!!;,,t'!!;,,T, 

'YJ v (t )S v [t ] = 0 a.e. 0'!!;,,t'!!;,,T i=1.. .. k 1, 

t (t) = nondecreasing on [0,T] i = 1. ... k 2, 

g; (t ) = constant on intervals where S 2; [t ] < 0 i = 1, ... k 2, 

(3.3.3.6) 

(3.3.3.7) 

(3.3.3.8) 

(3.3.3.9) 

Proof : The existence of nontrivial Lagrange multipliers for problem (SCOCP) follows 
from part (i) of Theorem 2.12 and Lemma 3.5. 
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Using the representation of the Lagrange multipliers derived in Section 3.3.2, equation 
(2.2.17) becomes : 

T 

p(hox [ 0]6x (O)+ J (fox [t ]6x +fou [t ]6u) dt + g ox [T]6x (T)) -
0 

T T 

f >.. (t )T (6.i - f x [t ]6x - fu [t ]6u ) dt + f 'T) 1 (t )T (Sb [t ]6x + S lu [t ]6u ) dt 
0 0 

T 

+ Jal(tYS2x[t]6x(t)+&TDx[0]6x(O)+VEx[T]6x(T)~ 0 
0 

for all 6x E WI,= [O,T]" , u +6u E Au . (3.33.10) 

Without loss of generality. the variations (6x ,0). (0,6u) may be considered separately. be
cause these variations are independent. 

The variations (6x ,0) were used to derive the representation of the linear functional 
<X, • > and hence (3.3.3.2) - (3.3.3.4) follow (cf. Section 3.3.2). 

The variations (0,6u) yield : 

T 

f <Pfou[t]+X(t)Tfu[t]+'T)1(t)S1u[t])6u dt ~ 0 for all u+6uEAu. (3.3.3.11) 
0 

Equation (3.3.3.11) is equivalent to (3.3.3.5), because (3.3.3.11) is a supporting functional 
to the set Au at the point u (cf. Girsanov (1972). p.76-77). 

Equation (2.2.16) yields : 

T 

<y', y > = - f 'TJ1(t )y 1(t) dt 
0 

T 

f dg(t)Tyz(t) ~ 0 for all Y1EB1,Y2EB2. 
0 

Considering the cases where all components of the vectors y I and y 2 are zero except one 
yields: 

and 

T 

J 'T) Ii (t )y Ji (t) dt ~ 0 for all y li E Lco[O,T) 
0 

with Yli(t)~0 a.e. 0~t~T i=l, ... k 1, 

T 

J ag;(t)yz;(t) ~ 0 for all Y2;EC[0,T] 
0 

with y 2i (t )~ 0 

which imply (3.3.3.6) and (3.3.3.8). 

Equation (2.2.15) yields : 
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T T 

<9*. i <£ .u) = J 'I) 1 (t )TS 1[t ] dt 
0 

J dg(t)rsz[t] = o. 
0 

(3.3.3.]2) 

Because of (3.3.3.6) and (3.3.3.8) and the fact that S 1[t J:::; 0 a.e. o:;; t:;; T and 
S 2[t ]:::; 0 o:::; t:;; T, equations (3.3.3.7) and (3.3.3.9) follow from (3.3.3.12). 

□ 

The result contained in Theorem 3.11 is called a local minimum principle, as a result of 
equation (3.3.3.5), which implies that the function : 

(3.3.3.13) 

is minimized almost everywhere on [O,T] with respect to the argument u over values in 
the set U. 

3.3.4. Minimum principle. 

In this section optimality conditions for variable final time problems will be presented. At 
the same time the results of the previous section will be strengthened in the sense that the 
local character of the minimization of (3.3.3.13) will be replaced by a pointwise global 
minimization of the so-called augemented Hamiltonian over the entire set U. 

The reason that such a result is desirable is that for spike variations (i.e. variations which 
are only nonzero over a small interval of time), the corresponding variation of the state 
variables and the objective function will be small. Obviously, spike variations need not be 
small in the co -norm. However, making the interval of time sufficiently small will make 
these variations comparable to variations which are small in the co-norm, but nonzero 
over a larger interval of time. 

Theorem 3.12: If (x ,u .T) is a solution to problem (SCOCP), for which Assumptions 3.7 
and 3.8 hold, then, in addition to (3.3.3.2) - (3.3.3.9) t the following conditions hold, 

f 

H[t ] = - pg or [T] - V Er [T] - J (H, [t ] + 'IJ i(t )TS 1, [t ]) dt 
l 

f 

f dg(t)TS2,[t] a.e. (3.3.4.1) 
t 

and 

H[t] = max H(x (t ),u ,p,X(t ).t) + 'IJ1(t )TS 1Cx (t ).u .t) 
u EU 

a.e. (3.3.4.2) 

Proof : We shall only outline the main lines of the rigorous proof given by Girsanov 
(1972), Lectures 13 and 14. 

Girsanov considers the case that the mixed control state constraints are not present and 
that the set of admissible controls U is not necessarily convex, nor is U supposed to have 
an interior. There is however no great difficulty in treating the present case of mixed con
trol state constraints following entirely the same approach. 

The essence of the proof is to admit spike variations on the control in an indirect way, via 
a variable time transformation. 

t In these conditions the final time T must be replaced by T. 
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This transformation has the following form : 

T 

t ( r) .- f v (s ) ds 0~ r ~ 1. 
0 

t(l) = T, 

a.e. 0~ T~ 1. 

The inverse of this transformation is defined as : 

r(t) := inf {TE [0,1): t (r )= t }. 

(3.3.4.3) 

(3.3.4.4) 

(3.3.4.5) 

(3.3.4.6) 

Using this transformation, problem (SCOCP) is transformed to an optimization problem 
involving the functions x ( T ). u ( T) and v ( T ). which are functions of the artificial time 
variable T. In this transformed problem the function v ( T) is considered as an additional 
control variable on [0,1), which is to satisfy the control constraint (3.3.4.5). 

In a formal notation the transformed problem is : 

I 

Minimize h 0(x(0))+ ffoCx,u,y)v(r)dr+go(x(l).y(l)). 
XAS,V o 

subject to: 

~ = v(r)f(x,u,y) 
dT 

±1- = v(r) 
dT 

D(x(0))= O. 

y(0) = 0, 

E(x(l).y(1)) = 0, 

U (t) E U 

v(r) ~ 0 

S 1 (x ,u ,y )v ( T) ~ 0 

Si(x .y) ~ 0 

a.e. 0~ T~ l, 

a.e. 0~ T~ l, 

a.e. 0~ T~ l, 

0~ T~ 1. 

(3.3.4.7) 

(3.3.4.8) 

(3.3.4.9) 

(3.3.4.10) 

( 3.3.4.11) 

(3.3.4.12) 

(3.3.4.13) 

(3.3.4.14) 

(3.3.4.15) 

(3.3.4.16) 

As a result of the variable time transformation, the transformed problem is autonomous 
although the original problem can be nonautonomous. 

If v(r) is considered to be a fixed positive function on [0.1). then problems (SCOCP) and 
(3.3.4.7) - (3.3.4.16) are equivalent. If v(r) is zero over an interval. the state variables x 

and y will be constant on this interval. On such an interval the value of the control func
tion does not affect the value of the objective function. nor does it involve other con
straints than u EU. Following a, similar reasoning for the case that v ( T) is considered to 
be a variable in the problem (3.3.4.7) - (3.3.4.16). the following result is obtained : 
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"If (x(t),u(t)) is a solution to problem (SCOCP), then for any function v(T) 
satisfying (3.3.4.3) - (3.3.4.5), the triple (x(T),u(T),v('T)) is a solution to the 

transformed problem (3.3.4.7) - (3.3.4.16). The control u (T) is allowed to have any 
value satisfying u EU on intervals where v ( 'T) is zero." 

Because of the assumptions on the differentiability of the problem functions with respect 
to the argument t (cf. definition of problem (SCOCP)), application of the results of part 
(i) of Theorem 2.12 on the transformed problem is possible. 

Assumptions 3. 7 and 3.8 hold for the transformed problem on intervals where v ( 'T) > 0, 
whenever these assumptions hold for problem (SCOCP). (Note that the transformed 
problem contains an additional control v with a constraint v ~ 0 which is independent of 
u .) The special form of the constraint (3.3.4.15) was chosen because we do not want to let 
the constraint S 1(x ,u ,t )~ 0 restrict the choice of the values u (T) on intervals where v ( 'T) 
is zero. As a result of this the regularity Assumption 3.8 does not hold on these intervals. 
because on these intervals the constraint vanishes completely from the optimization prob
lem. For the representation of the Lagrange multipliers corresponding to the mixed control 
state constraints this poses no problem. because these Lagrange multiplier may be assigned 
an arbitrary value on intervals where v ( 'T) vanishes ( the constraints are no longer present 
on these intervals) and the regularity Assumption 3.8 is only of interest on intervals 
where v ( 'T) is nonzero. The Lagrange multipliers correponding to the mixed control state 
constraints are assigned the following value : 

The application of the results of part (i) of Theorem 2.12 for variations llx and llu fol
lows similar lines as the previous section. The counterpart to (3.3.3.5) for the additional 
control variable v ( 'T) becomes : 

(Pfo(x('T).u(T),y(T)) + ~(Tlf(x(T).u(T).y(T)) + ~y('T) + 

'T)i(T)TS 1(.x(r).u(T).y(T)))(v -v('T))~ 0 forall v~0 a.e. 0~T~l. (3.3.4.17) 

(~y is the adjoint variable associated with (3.3.4.9).) 

Because every v(t) which satisfies (3.3.4.3) - (3.3.4.5) is a solution to the transformed 
problem. we may consider (3.3.4.17) with v (T) strictly positive on [0.1]. This implies 

Pfo(x('T),u(T),y(T)) + K(T)Tf(x(T),u(T).y(T)) + ~y('T) + 

a.e. 0~T~l. (3.3.4.18) 

Alternatively. we may consider functions v ( 'T) which are zero on intervals. In these cases 
(3.3.4.17) implies 

P!o(x('T),u(r).y(T)) + ~(Tlf(x('T),u('T).y(T)) + ~y('T) + 

a.e. on Ro, (3.3.4.19) 

where R O denotes the set of time points for which v ( 'T )= 0. 

The essence of the approach is now that on the set R 0 , the values of u ( 'T ), which are res
tricted to the set U, may still be chosen (they do not affect the value of the object func
tion, nor any of the other constraints). On the set R O all other quantities are constant and 
hence the choice 
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u(r) := u(t(r)). 

yields the equality implied by (3.3.4.18). Therefore u (t (r )) must be a global minimum of 

Pfo(x (T ).u .y (T )) + X('T )T f(x (T ).u .y (T )) + 7Jh )TS 1Cx (r).u .y (T )). 

over the set U . 

Of course this reasoning is not a rigorous proof for (3.3.4.2). which should involve a prop
er choice of the function v(-r) and u(r) on R 0 • that shows that (3.3.4.2) must hold almost 
everywhere on [O.T] and at the same time be a pointwise global minimization (cf. Girsanov 
(1972) for further details). 

Equation (3.3.4.1) is obtained from (3.3.4.18) following the derivation below. Here the use 
of the variable time transformation (3.3.4.3) - (3.3.4.5) is further superfluous. Therefore 
we set v (r) constant on [0.1]. 

a.e. o:,;; t:,;; f. (3.3.4.20) 

Because Xy is the adjoint variable corresponding to (3.3.4.9). it satisfies relations similar to 
(3.3.3.2) - (3.3.3.4) : 

'1 '1 

J (H, [t ]+7]1(t )TS 1, [t]) dt J d g{t )TS 2, [t ] 
l t 

(3.3.4.21) 

and 

(3.3.4.22) 

Taking t 1= f and combination of (3.3.4.21) - (3.3.4.22) with (3.3.4.20) yields (3.3.4.1). 
D 

3.3.5. Smoothness of the multiplier g. 
In this section the smoothness of the multiplier g is considered. which is essential for the 
practical application of the optimality conditions stated in the previous sections. 

Because g is a function of bounded variation on [O.T]. it has at most a countable number 
of discontinuities and its derivative exists almost everywhere on [O.T] (cf. Royden (1963). 
p.86). Hence equation (3.3.3.2) is equivalent to : 

'( )T - A ( )T AT [ l "ti+ ->..ti- -viS2xti at points of discontinuity of g. 
(3.3.5.1) 

(3.3.5.2) 

where : 'T)i(t ) := g (t ). 
;:,j == lctj +)- lctj-). 

The conditions (3.3.3.8) and (3.3.3.9) of Theorem 3.11. i.e. t; = constant if S 2;[t]<0 
and t = nondecreasing on [O.f] are equivalent to the conditions: 

7) 2; (t) = o if S2; [t l < o. (3.3.5.3) 

7J 2;(t) ;;i: o if S 2;[t l = o. (3.3.5.4) 

and 
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if S 2;[ti] < 0, 

if S 2;[ti] = 0. 

(3.3.5.5) 

(3.3.5.6) 

The application of these optimality conditions is complicated by the fact that we have no 
information, about the time points ti at which [ is possibly discontinuous. on intervals 
where one or more of the components of S 2 are zero. 

Before the main result of this section is stated, some terminology and some definitions are 
introduced. 

Let P; and l be integers with 1 ~ P; ~ l . Assume that the functions f (x ,u ,t ) and S 2; (x ,t ) 

are respectively C 1 - and CP' -functions with respect to all arguments. Define the functions 
(cf. Hamilton (1972)) : 

Ff;(x,u,t) .- S 2;(x,t), 

oF~;- 1(x ,u ,t) ( ) oF~;- 1(x ,u ,t) 
F~;(x,u,t) .- OX f x,u,t + at j=l.2, ... ,p;. 

The order Qf_ the state constraint S 2; is Pi . if 

I. oFt(x o,Uo,t o) 
p; = min{ q E 1/V : 3x oE JR" I\ :3uoE lRm I\ 3t oE JR ou 

(3.3.5.7) 

(3.3.5.8) 

Based on this definition the functions S ~; : JR n X JR -+ JR for j = 0, 1.. .. P; -1 and 

S~\ : JRn xlRm XlR -+ R are defined as S~; := F~;, for j = 0,1,. .. p;. 

Along a trajectory (x ,u) that satisfies the differential system (3.1.2) we have 

dt i s~; (x (t ),u (t ).t) 

j=0.1. .... p;-1 

j=p; 
(3.3.5.9) 

By definition the functions S 2; (x ,t) do not depend on u explicitly and hence we have 
p;;;:. 1 for all i = 1 .... k 2• A logical extension to the definition of order of a state constraint 
is, to define mixed state control constraints as state constraints Qf_ order zero. 

We now introduce: 

~ k +k 
S : JR" xlRm XlR-+ JR I 2 , 

sex ,u .t) := (3.3.5.10) 

and 
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SP (x ,u ,t) .-

S 1(x ,u ,t) 

S~f (x ,u .t) 

pk 2 ( ) 
S2k 

2 
X ,u ,t 

Definition 3.13 : Let (x ,u .f) be a solution to probl,em ( SCOCP) and l,et 

1; == t t e [o.i1: s i <x (t ).u (t ).t) = o l i = 1.2 •... k 1+k2, 

( 3.3.5.11) 

(3.3.5.12) 

be the set of active points of the state constraint S; (x ,u ,t )~ 0. With respect to S;, a subin

terval [t 1,t 21c[O.T1, t 1<t 2, is called a boundary interval if [t 1,t21CJ; and an interior 

interval if [t 1 ,t 21n I;= 0. Entry-points respectively exit-points, also called iunction points, 
and contact points, are defined in an obvious way. 

The possibilities that t = 0 is an entry- or contact point or t = T is an exit- or contact point 
are included. [t 1 ,t 21 is a boundary interval for S if [t 1 ,t 21 is a boundary interval for every 
component S;. i = l, ... ,k 1 +k 2-

For simplicity we shall assume two cases in the sequel. either [t 1,t 21 is an interior interval 
or [t 1,t 21 is a boundary interval for S. Cases where some but not all state constraints are 
active on an interval [t 1,tz1 are similar to the case that [t 1,t 21 is a boundary interval for S. 
In these cases all assumptions and results correspond to the case that all inactive com
ponents of S are omitted completely. 

The following regularity condition is of importance : 

Assumption 3.14: Let the function SP : Rn XR'" XR -+ Rk 1+k 2 be defined by (3.3.5.11) 

and l,et (x ,u .T) be a solution to problem (SCOCP), then 

rank St(x(t),u(t),t) = k1 + k2 a.e. on l1Ul2U ... Uh1+k2· (3.3.5.13) 

The following theorem establishes the smoothness of g on boundary intervals : 

Theorem 3,15: Let (x ,u .T) be a solution to problem (SCOCP) for which Assumptions 3.7, 
3.8 and 3.14 hold, and let fo, f and S be ci+1-functions (p := max p;) with respect, to all 
arguments and l ~ 0. Let [t 1,t 21 be a boundary interval. Assume in addition that u (t ) is a 
ci+1-function on [t 1,t 21 with 

u(t) E int U for all t E(t1.tz). ( 3.3.5.14) 

Then the functions~ and g in the adjoint equation (3.3.3.2) are c1+1-functions on (t 1,t 2). 

In particular the adjoint equation 

K(t)T = - H_,[t1- fl(t)Tsx[t1 t1<t <t2, (3.3.5.15) 

holds, where 'T)T := (fl[.gT) is a C 1-function. 

The proof of this theorem can be found in Maurer (1976.1979). who put the heuristic 
proof of Jacobson et al. (1971) on a solid base. 

The proof is done in two steps. The first step deals with the case of one state constraint 
and one control. Because of (3.3.5.14) condition (3.3.3.5) becomes (k 1= 0): 
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H.[t] = 0 for all t 1 <t <t 2 • 

Consideration of the (p-1)-th time derivative of H.[t] on (t 1,t 2) yields the result. We 
note that this approach is essentially based on the smoothness assumption made on the 
control u (t ). 
The second step deals with the general case of multiple state constraints and multiple con
trols. The regularity Assumption 3.14 is used to apply the same techniques used in the 
first step via an elimination process. 

Under the hypothesis of Theorem 3.15 we may thus be sure that points of discontinuity of 
the function g cannot be interior points of boundary intervals. From (3.3.5.5) we know 
that these points are also not points of interior intervals. Hence points of discontinuity of 
g can only be junction or contact points. At these points equation (3.3.5.2), which is 
called the 'jump' -condition, must hold. 

3.3.6. Alternative formulations of the first order optimality conditions. 

This section deals with some alternative formulations of the first order optimality condi
tions. To simplify things we consider the problem (SCOCP) for the case that there are no 
mixed control state constraints (k 1= 0), one state constraint (k 2= 1) and one control 
(m = 1). We note however. that the results of this section can be extended to more general 
cases in a straightforward manner. Because the manipulations on the state constraints are 
done for each boundary interval separately. we assume without loss of generality that the 
set of active points of the state constraint S 2 consists of only one boundary interval 
[t 1 ,t 2]. with 0< t 1 < t 2 <T. The order of the state constraint S 2 is denoted by p. 

For all i = 0,1.2 .... p the augmented Hamiltonian is defined as : 

Hi(x .u .fi.xi :i/ .t) == fitoCx .u .t) + x;r f(x .u .t) + Yli s~ Cx .u .t ). (3.3.6.1) 

where the functions S~ are defined by (3.3.5. 7) - (3.3.5.8). 

Setting X0= X and T) 0= T)= g, Theorems 3.11. 3.12 and 3.15 involve the augmented Hamil
tonian for the case i = 0. 

The main result of this section will be a similar statement for all i = 1,. .. ,p. Its statement 
is simplified by means of the following definitions : 

t 2 

v2+ J T) 0(T) dT = lCt2+)-g(t) 
t 

(3.3.6.2) 
0 elsewhere 

.- T1 1Ct1+)+v1 = tCt2+)-tCt1-), (3.3.6.3) 

(3.3.6.4) 
0 elsewhere 
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i=2 .... p?::2. (3.3.6.5) 

and 

0 ~t ~f i = l,...,p. (3.3.6.6) 

With these definitions the following minimum principle holds : 

Theorem3.16: Let (x,u.T) be a solution to probl.em (SCOCP) with k 1=0, k 2=1 and 

m = 1. Suppose that / 0 , f and S are CP -functions and that Assumption 3.14 holds. Assume 
in addition that the set of active points consists of one boundary interval [t 1,tzl with 
O<t 1 <t 2<T and that u is a GP-function on (t 1,t 2 ) with 

u (t) E int U for all t E (t 1,t z). (3.3.6.7) 

Let p,a- ,µ,X and g satisfy the conditions of Theorems 3.11, 3.12 and 3.15 and let xi and 'Y)i 
be defined by (3.3.6.2) - (3.3.6.6) for all i = l,...,p. 

Then, for all i = 1, ... p, the following relations hold : 

x i(t t = - it[t] a.e. O~t~T. (3.3.6.8) 

Xi (0)T = - Phox [O] - &T Dx [O]. (3.3.6.9) 

Xi(T)T = Pgox [T] + V Ex [T], (3.3.6.10) 

Xi (t 1+ )T = xiCt1-)r - r,&j as~-1[til. (3.3.6.11) 
j= I OX 

&j ;;:: 0 j = 1,2, ... i. (3.3.6.12) 

'Y)j (t ) ;;:: 0 j = 1.2, ... i t1 <t <t2, (3.3.6.13) 

Hi [t l = max Hi Cx Ct ).u .p.x i Ct ).rii Ct ).t) 
uEU 

a.e. O~t~T. (3.3.6.14) 

Hi[fl = - PgodT] - µT Er[T]. (3.3.6.15) 

dHi[t] = H/[t l a.e. 0~ t ~ f. (3.3.6.16) 
dt 

Hi [t 1+ l Hi[t1-l + 
j as~-1 [t] 

( 3.3.6.17) = j~l ilt . 

Proof : The theorem is quite similar to Theorem 5.1 of Maurer (1979). who considered the 
autonomous case with fixed final time. 

The hypotheses are such that the conditions implied by Theorems 3.11, 3.12 and 3.15 
hold. 

Condition (3.3.6.9) and (3.3.6.10) follow directly from (3.3.3.3) and (3.3.3.4). Taking the 
time derivative of (3.3.6.6) results in : 

f; = f o - .E_ [ r, rij as~-1 j. 
dt j = 1 ilx 

(3.3.6.18) 

and definitions (3.3.6.2) and (3.3.6.4) yield : 
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fii = - fii-1 j=l,2, .. p, (3.3.6.19) 

ilS~ -I ils~-1 
s~ = --+--f 

at ax 
(3.3.6.20) 

as~ 02s~-1 02s~-1 0s2- 1 af 
ax = ~ + aFf + a;-ax"· (3.3.6.21) 

d [ os~-1 ] - 02s~-1 + 02s~- 1 _ as~ _ as~-1 af 
dt ax iltilx ax 2 f ax ax ax. 

(3.3.6.22) 

Combination of (3.3.6.18) with (3.3.6.19) and (3.3.6.22) gives: 

;.i ;.of[ A·-10s~-1 AilS2; A.ils~-lilfl 
A = A - ~ -71 1 -- + 71 1 -- - 71 1 --- • 

j = I OX OX OX OX 
(3.3.6.23) 

Using (3.3.5.1) for XO yields (3.3.6.8). 

The entry point condition (3.3.6.11) follows from the 'jump' -condition (3.3.5.2) fort= t 1 , 

which becomes 

AO A; A ilS 2[t 1l 
A (t1+) = A (ti-)- 111~• (3.3.6.24) 

Definitions (3.3.6.3). (3.3.6.5) and (3.3.6.6) give: 

A; Ao A1 A os~- 1 [til f Ai ils~-1[t 1] 
>.(t1+)=>.(t1+)-({3-111) ax -j~/ ax. (3.3.6.25) 

Combination of (3.3.6.24) and (3.3.6.25) give (3.3.6.11). 

A similar derivation at t = t 2 reveals that for all i ~ 1. the functions X; are continuous at 
this point. 

Conditions (3.3.6.12) and (3.3.6.13) follow directly from the properties of fi 0
, i) 1 and v2 

and the defining equations (3.3.6.2) - (3.3.6.5). 

it Ci Ct ).u .p.Xi Ct).fi;Ct ).t) = PfoCxCt ).u .t) + x°Ct )fCxCt ).u .t) -

~ Ac )ils~-1[tl A A. . A 
j~

1
71 1 t ax f(x (t ).u ,t) + 71' (t )Si (x (t ).u ,t ). 

Because. 

as~-1 [t l A 

ax f (x (t ).u ,t .) = 

.[ l asr 1 [tl 
S2 t - at j= 1,. .. p-1 

j=p 

we obtain 

aSf- 1 [t] 
s~ (x (t ).u ,t) - --a-t -

Jii(x(t),u,p,Xi(t),'Y)i(t),t) = H0(x(t),u,p,X(t),'Y)(t),t) + 
; A ilS~ -l [t] 

i~
1

71 1 (t) at for all u EU. 

(3.3.6.26) 

(3.3.6.27) 

Because the second term does not depend on u, (3.3.6.14) follows directly from (3.3.4.2). 
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(3.3.6.15) follows from (3.3.4.1) fort= f because 'Y}i (T)= 0 for all j. 

(3.3.6.16) and (3.3.6.17) follow from (3.3.4.1) via a derivation similar to the derivation of 
(3.3.6.8) and (3.3.6.11). 
D 

With regard to Definition (3.3.6.4) we note that it implies: 

'Y}i (t 2-) = 0 i = 2, ... p. (3.3.6.28) 

In essence Theorem 3.16 states a mm1mum principle for each fixed i E {J, ... p}. From the 
Definitions (3.3.6.2) - (3.3.6.6) it is clear that the multipliers associated with the various 

minimum principles for i = 0,1 .... p are related. Given a set of multipliers associated with a 
principle for one specific i . it is possible to obtain the multipliers associated with other 
minimum principles via either integration or differentiation. 

Before this section is finished. we shall make some notes on related results in literature. 

For i = p the minimum principle is similar to the conditions given by Bryson et al. (1963). 
These conditions were derived following an indirect approach. Instead of treating the state 

constraint direct, the constraint was replaced by : 

j=0,1, ... p-1. (3.3.6.29) 

and 

(3.3.6.30) 

The conditions given by Bryson et al. however. are somewhat weaker, e.g. they involve 
(3.3.6.13) only with j = p. 

This fact was recognized by Jacobson et al. (1971), who were the first to derive the 
minimum principle for i = 0. Later Norris (1973) put the proof of Jacobson et al. on a 
solid base, except for the results on the smoothness of the multiplier g. These results are 
due to Maurer (1976.1979). Kreindler (1982) showed that the conditions given by Bryson 
et al. can be made as strong as the minimum principle for i = 0 by augmenting the set of 
conditions with a number of additional conditions on the multipliers and their derivatives. 
In fact this yields the minimum principle of Theorem 3.16 for the case i = p. 
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3.4. Solution of some example problems. 

In this section we shall give some examples that will be solved using the optimality condi
tions of the previous sections. 

3.4. 1. Example 1. 

1 

Minimize ½ f u 2(t ).dt, 
X ,U Q 

subject to: X1 = X2 

X2 = U 

xi(0) = 0, 
X2(0) = 0, 
xi(l)=l. 
X2(l) = 0, 

U (t) - Umax ~ 0 

0~ t ~ 1. 
0~ t ~ 1. 

(3.4.1.1) 

(3.4.1.2) 
(3.4.1.3) 
(3.4.1.4) 
(3.4.1.5) 
(3.4.1.6) 
(3.4.1.7) 

(3.4.1.8) 

The problem specified by (3.4.1.1) - (3.4.1.8) is a problem with fixed final time, and fixed 
initial and terminal state. The constraint (3.4.1.8) is treated as a mixed control state con
straint. The control constraint can, in the formulation of problem (SCOCP). be handled in 
two ways, i.e. by means of the set U or by the constraint function S 1. We shall follow the 
latter road by setting S 1=u-umax• Because the problem specified by (3.4.1.1) - (3.4.1.8) is 
a special case of problem (SCOCP). the optimality conditions of Section 3.3.3 can be ap
plied straightforward. Because we have fixed initial and terminal states, the boundary con
ditions (3.3.3.3) and (3.3.3.4) can be discarded as they only introduce additional multi
pliers. whose values follow directly from the values of A(0) and A(T). 

The Hamiltonian (3.3.3.1) becomes : 

( 3.4.1.9) 

The optimality conditions of Theorem 3.11 take the following form : 

A 1 = 0 a.e. 0~ t ~ 1. (3.4.1.10) 
A A 

A2 = - Ai a.e. 0~ t ~ 1. (3.4.1.11) 

r,i2 + ~2 + TJ1 = o a.e. 0~ t ~ 1, (3.4.1.12) 

'TJ1 ~ 0 a.e. 0~ t~ i, (3.4.1.13) 

1)1(u -umax) = 0 a.e. 0~t ~ 1, (3.4.1.14) 

We shall first consider the regularity of the problem. If there is an interval of nonzero 
length with u(t )<umax then p= 1. because p=0 would according to (3.4.1.12) imply 

~i(t) = - TJ1(t ). 

Because. on an interval where u (t ) < u max we have 

the zero solution would follow for Ai(t ) and A i(t ). and that would contradict the main 
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statement of the theorem. 

The situations u (t) < u max and u (t )~ u max (i.e. equality holds on a nonzero interval),. are 

considered separately. 

1n the case that 

U (t) < Umax 

condition (3.4.1.14) implies 

substitution into (3.4.1.12) yields : 

u(t) = - Xz(t) 

Xz(t) follows from (3.4.1.10) and (3.4.1.11) as 

X 1Ct) = X 1 = constant 

Xz(t) = Xi{O) - X1t 

(3.4.1.15) 

(3.4.1.16) 

(3.4.1.17) 

(3.4.1.18) 

(3.4.1.19) 

Substitution of the control (3.4.1.17) in (3.4.1.2) and (3.4.1.3) and integration using the 
boundary conditions (3.4.1.4) and (3.4.1.5) yields : 

xz(t) = - xz(o)t + ½ X1t 2 

X1(t) = - ½Xi{O)t 2 + i, X1t 3
. 

(3.4.1.20) 

(3.4.1.21) 

The numerical values of Xi{O) and A1 are determined from the boundary conditions 
(3.4.1.6) and (3.4.1.7) : 

Xz(O) = - 6, 

Ai = - 12. 

(3.4.1.22) 

(3.4.1.23) 

This solution is only a candidate for the solution if Umax>6. i.e. in the situation that the 
control constraint is not active at any time point (cf. Figure 3.1). 

In the case that umax<6. the situation is a little more complicated. Based on the uncon
strained solution we may guess that the constraint is active over an interval [0.t 1] and 
inactive over the interval (t 1,1]. 

Conditions (3.4.1.10) - (3.4.1.14) imply in this case: 

U (t) = n:_ax A 

\

u 0~t~t 1 

-Az(0)+A 1t t 1<t~l 
(3.4.1.24) 

A 1-Xz(t )-umax 0~ t ~ t I 

'TJ1(t)= 0 t1<t~1 (3.4.1.25) 

Substitution of the control (3.4.1.24) in (3.4.1.2) and (3.4.1.3) and integration using the 
boundary conditions (3.4.1.4) and (3.4.1.5) yields: 

(3.4.1.26) 
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1 t2 
2Umax 

X i(t) = ½ Umaxt [ +(u maxt 1+X2(0)t 1-½ X1t r)(t -t 1)

½ Xz(O)(t 2-t:r )+}X1(t 3-t f) 
(3.4.1.27) 

The boundary conditions (3.4.1.6) and (3.4.1.7) are satisfied when Xz(O) and X1 are: 

-12+6umaxl 1 = ------
(1-t 1)3 

A -6(1+t1)+umaxt1(t:r+t1+4) 
Az(O) = 

(1-t 1)3 

Combination of (3.4.1.25) and (3.4.1.24) with (3.4.1.13) yields 

and (3.4.1.14) 

results in the condition 

Xz(t) ~ - Umax 

and 

Solution of Example 1 for Umax>6 and Umax= 4. 
Figure 3.1 

(3.4.1.28) 

(3.4.1.29) 

(3.4.1.30) 

(3.4.1.31) 

(3.4.1.32) 

(3.4.1.33) 

Because X2 must be continuous on [0.1) as a result of the fact that there are no state con
straints of order higher than zero. we must have 

(3.4.1.34) 

and hence 

(3.4.1.35) 

i.e. the control must also be continuous at t = t 1. 

With (3.4.1.18), (3.4.1.28) and (3.4.1.29), equation (3.4.1.35) may be solved fort 1 : 
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(3.4.1.36) 

For 2<uma.,<6 we have O<t 1 <1. For umax:;,;2 the problem has no solution because there 
is no feasible control for which the boundary conditions (3.4.1.6) and (3.4.1.7) can be 
satisfied. In Figure 3.1 the optimal control u (t ) is presented for two values of u max· 

An alternative method for the determination of the time point t 1 is to use condition 
(3.3.4.1). which states for this autonomous problem that the Hamiltonian must be con
stant on [0,1] and hence 

(3.4.1.37) 

A simple derivation shows that this conditions implies that the control must be continu
ous at t = t I and hence the same result follows. 

3.4.2. Example 2 

1 

Minimize ½ Ju 2(t ).dt . 
X ,U 0 

subject to : X1 = X2 

X2 = U 

X ,(O) = o. 
x2(0) = 0, 
x,(1)= 1. 
xi1) = o. 
xlt) - X2.max :;,; 0 

o:;;; t:;;; 1. 
o:;;; t:;;; 1. 

(3.4.2.l) 

(3.4.1 .2) 

(3.4.2.3) 
(3.4.2.4) 
(3.4.2.5) 

(3.4.2.6) 

(3.4.2.7) 

(3.4.2.8) 

This problem is similar to the problem of Example 1. except for the constraint (3.4.2.8). 
which is now a state constraint of first order. 

The optimality conditions of Theorem 3.11 combined with the smoothness results of Sec
tion 3.3.5 take the following form : 

x, = 0 

A2=-X,-7J2 

iiu + X2 = o 

7)2 ~ 0 

7)2(:t 2-X 2,ma, ) = 0 

Xlt;+) = xCt;-)-v; 

a.e. o:;;; t:;;; 1, 

a.e. o:;;; t:;;; 1, 

a.e. o:;;; t:;;; 1, 

a.e. o:;;; t:;;; 1, 

a.e. o:;;; t:;;; 1, 

at junction or contact points t;, 

at junction or contact points t; . 

(3.4.2.9) 

(3.4.2.10) 

(3.4.2.11) 

(3.4.2.12) 

(3.4.2.13) 

(3.4.2.14) 

(3.4.2.15) 

We note that the hypotheses of Theorem 3.16 are fullfilled because on boundary intervals 
the control u (t ) is zero and hence at least once differentiable with respect to t . 

As with Example 1. a simple derivation shows that if there is an interval of nonzero 
length on which x 2 < x 2.max then the regularity constant p must be nonzero. 
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The unconstrained solution of the problem. i.e. if -"it )<x 2 ,,,a, is identical with the one 

derived in the previous section. The state variable x 2 corresponding to this solution is 

given in Figure 3.2. ,x 2 _,,,
0

, > 1.5 

1.5 X 2,ma., = 1.25 

1.0 

t I 
--, l 

Solution of Example 2 for x 2 ,na., > 1.5 and x 2 ,,,a, = 1.25. 
Figure 3.2 

For x 2.ma, < 1.5 the solution. if it exists. will be constrained by the state constraint 
(3.4.2.6). 

Considering this case we assume that the set of active points of the state constraint 
(3.4.2.6). consists of one interval [t 1 .1 2]. with 0<t 1 <t 2 < 1. 

The functions S~ defined by (3.3.5.7) and (3.3.5.8) are: 

S~1 = J:.·2 - ·'-·2.mo\ • 

and hence the constraint is of first order. 

On the interval [t 1.t 2] the control is determined by 

s1 (x .u) = o. 
which yields in the present case 

u (t) = 0 

and hence 

= 0 

combination with (3.4.2.10) yields : 

'7)2(1) 

Csing (3.4.2.10), (3.4.2.14) and (3.4.2.19) we obtain 

V1+Ai(t 1-l) 

K2<1 l = o 
-v2-A1(t-12) 

With (3.4.2.11) the control becomes : 

0~ t <t I 

l 1 <t <t 2 

t2<t~l 

(3.4.2.16} 

(3.4.2.17) 

(3.4.2.18} 

(3.4.2.19} 

(3.4.2.20) 

(3.4.2.21) 
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-v 1-.\ 1Ct 1-t) 

u (t) = 0 

Pz+A 1(t -t z) 

Q::,, t <t I 

t1<t<l2 

[ 2<t::,; 1 

Csing the boundary conditions (3.4.2.4) and (3.4.2.5) integration yields: 

xi(t)= Xz.ma, t1::,,t::,,t2 

X2.ma,+vi(t-t2)+½A1(t-t2)2 t2::,,t::,,} 

-} v1t 2-.\1(-}t 3+½ t 1t
2) 

1•?,13 () - 2 11 1ti-1'13tl +x2.ma., t-t1 

-.!.v1rr-x12.i 3 
2 3 I 

+x 2.ma., Ct -t 1)+v2½ (t -t 2)2+.\ 1}Ct -t 2)3 

Q::,, t::,, t I 

t I::,, t::,, t 2 

(3.4.2221 

(3.4.2.231 

(3.4.2.24) 

The multipliers v 1 , v2 and .\ 1 follow from the boundary conditions (3.4.2.6) (3.4.2. 7) and 
the condition that the state variable x 2 is continuous at the point t 1. 

Ai= _
12 

l-{x2.ma,(l-t1+t2) 

ti3+(l-t 2)3 

-x2.ma,-.!..\1t[ 

t I 

-x2.ma, -} .\ 1( 1-t 2)2 

(l-t 2 ) 

The time points t I and t 2 may be determined as follows 

and 

Consider the state variable x 2 on [O,t iJ, 

xz(t) = -Cv1+X1t 1)t +½ X1t 2 

Thus 

;zet) = -cv1+X1r1)+>-1t 

iz(t)= >-1 

At the point 
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v1 
t = -x-+t l• 

X1 
(3.4.2.35) 

the state variable x 2 has an extreme point. Because of (3.4.2.20) and (3.4.2.31) we have 

(3.4.2.36) 

Thus x 2 has a maximum at t. Because of (3.4.2.28) this maximum cannot be a point of the 
interval [O,t 1) and hence either 

or 

v1 
--x-+t I~ 0. 
X1 

(3.4.2.27) 

(3.4.2.28) 

Using (3.4.2.26) it follows that (3.4.2.37) cannot hold. Because of (3.4.2.29) and 
(3.4.2.36), in the case of (3.4.2.38) it must be 

v1 = o. 
A similar derivation on the interval [t 2 , 1] yields 

v2 = o. 

(3.4.2.39) 

(3.4.2.40) 

Using (3.4.2.25) - (3.4.2.27). (3.4.2.39) and (3.4.2.40), it is possible to determine t 1 and t 2 

as 

3 X2,ma., -1 
t1 = 2 X2,ma., 

(3.4.2.41) 

(3.4.2.42) 

As with the previous ex,ample, an alternative method is to use condition (3.3.4.1). i.e. 

H[t;+] = H[t;-] i=l,2. (3.4.2.43) 

A simple derivation shows in this case that (3.4.2.39) and (3.4.2.40) must hold. 
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4. Sequential quadratic programming in function spaces. 

In this chapter a first step is taken towards a numerical solution of problem (SCOCP). In 
Section 4.1 we shall present the method in the abstract terminology of problem (EIP) of 
Chapter 2. Section 4.2 deals with the application of the method to optimal control prob
lems. The formulation follows from the interpretation of problem (SCOCP) as a speciali
zation of the abstract problem (EIP). A number of details concerning the application of the 
abstract method to the problem (SCOCP) are discussed in Section 4.3. An outline of the 
implementation of the method is given in Section 4.4. 

4.1. Description of the method in terms of nonlinear programming in Banach spaces. 

The method that is proposed in this section for the solution of the abstract optimization 
problem (EIP) is a generalization of a certain sequential quadratic programming method 
for the solution of finite-dimensional nonlinear programming problems. For a description 
of various of these sequential quadratic programming methods we refer to Bertsekas 
(1982), Gill et al. (1981). Han (1976). Powell (1978. 1980), Schittkowski (1980, 1981). 
Stoer (1984), Tapia (1974a. 1974b. 1977, 1978). 

4.1.1. Motivation for sequential quadratic programming methods. 

In this section we shall give a motivation for the use of sequential quadratic programming 
methods by considering the solution of problem (EIP) stated in Section 2.1 : 

Problem (EIP): Given Banach spaces X, Y and Z, twice continuously Frechet differentiable 
mappings j : X-+ JR, g : X-+ Y and h : X-+ Z , a convex set A C X having a nonempty 
interior, and a closed convex cone B C Y with O E Band having a nonempty interior, then 
find an x E A , such that g (x ) E B and h (x) = 0, and that 

f(x) ~ j (x) for all X EA n g- 1(B )n N(h). 

In the sequel we shall assume that in the formulation of problem (EIP), the set A is the 
entire space X, i.e. A= X. This is done because in a numerical method the more explicit 
formulation of inequality constraints of the form g (x )EB is required. 

Sequential quadratic programming methods (SQP-methods) are based on the observation 
that 'near' the solution, the original problem may be replaced by a suitable quadratic pro
gramming problem. SQP-methods make use of the sequential solution of quadratic sub
problems. to generate directions of search. Along these directions better approximations to 
the solution are determined. 

The motivation for the quadratic subproblems ro;1ows directly from the second order 
sufficient conditions for optimality discussed in Section 2.3. It may be deduced from 
Theorem 2.16 that the Lagrangian L (x ,y' .z·) has a local minimum in the subspace 
spanned by the linearized constraints, at a point (x ,y' ,z') for which the sufficient condi
tions for optimality of part (ii) of Theorem 2.16 hold. 

This observation is the motivation for the idea to calculate a direction of search for the 
improvement of the current estimate x; of the solution by solving the linearly constrained 
subproblem : 
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Minimize L (x; + Ax; .y;' .z;'). 
tl.x; 

subject to: g(x;) + g'(x; )(Ax;) E B. 

h (x;) + h '(x; )(Ax;) = O. 

where g and h are as defined in problem (EIP) and y;' and z;' are estimates of the Lagrange 
multipiers y' and g'. 
What is obtained is a linearly constrained minimization problem with a nonlinear objective 
function. which may be approximated by a second order expansion at x = x;. 

L (x; +Ax; .y;'.z;') ~ L (x; .y;'.z;') + f'(x; )(Ax;) - y;'g'(x; )(Ax;) - z;'h '(x; )(Ax;)+ 

½ L" (x; .y;'.z;')(Ax; )(Ax;). 

Based on this expansion the following linearly constrained quadratic subproblem is con
structed for the calculation of a direction of search Ax;. 

Problem (EIQP): 

subject to: g(x;) + g'(x; )(Ax;) E B. 

h (x;) + h '(x; )(Ax;) = 0. 

(4.1.1.1) 

(4.1.1.2) 

(4.1.1.3) 

In this problem formulation the term (y;'g (x;) + z;'h (x; ))(Ax;) is omitted. The reason for 
this is that we want to obtain a quadratic subproblem which. at the optimal point x. has 
the same Lagrange multipliers as the original problem. When the term 
(y;'g (x;) + z;'h (x; ))(Ax;) would not have been omitted. then the Lagrange multipliers of 
the subproblem at the point x; would have been y' -y;' and z· -z;'. which would have 
meant that the Lagrange multipliers of the subproblem would have converged to zero as 
x; ..... x. Because the Lagrange multipliers of the subproblem play an important part in the 
determination of the set of active constraints. this is an undesirable phenomenon. With the 
modification mentioned above the Lagrange multipliers obtained via the solution of prob
lem (EIQP) may be used as new estimates of the Lagrange multipliers y' and z' of the 
original problem. 

An alternative motivation for the subproblems follows from the application of Newton's 
method to the first order necessary conditions for optimality. Consider thereto problem 
(EIP) without the constraint g (x )EB. Assuming that the hypotheses of part (ii) of 
Theorem 2.12 hold. the first order necessary conditions for optimality imply that at a 
point x . there exists a z' E Z • . such that 

F(x .£') = o. 

where the operator F : X xz' ..... X' xz is defined by: 

F(x .z') := I/ '(x ) =- z' h '(x ) ] 
h (x) 

The method of Newton applied to (4.1.1.4) requires the iterative solution of: 

(4.1.1.4) 

(4.1.1.5) 
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or, equivalently, 

f '(x;) - z;'h '(x;) + L" (x; ,z;')(t:.x;) - t:..z;'h '(x;) = 0, 

h (x;) + h '(x; )(L':..x;) = 0. 

Setting: 

yields: 

L" (x; ,z;')(t:.x;) - z;\1h '(x;) = - f '(x; ), 

(4.1.1 .6) 

(4.1.1.7) 

(4.1.1 .8) 

When the multiplier z,'+ 1 is interpreted as a Lagrange multiplier, then the equations 
(4.1.1.7) - (4.1.1.8) constitute precisely the first order necessary conditions for optimality 
of: 

Problem (EQP) : 

Minimize f'(x;)(t:.x;) + lL"(x;.z;')(t:..x;)(t:.x;). 
~, 2 

subject to : h (x;) + h '(x; )(t:.x;) = 0. 

(4.1.1.9) 

(4.1.1.10) 

The extension of the method of Newton to nonlinear programming problems with inequal
ity constraints is not straightforward. To investigate this consider instead of (4.1.1.4) the 
inequality (inclusion in a positive cone) : 

F(x ,y') E C. 

where the operator F: XxY' -+ x• xYxY' XR is defined by: 

f '(x ) - y' g (x ) 

g(x) 
F(x ,y') .- y' 

y' g (x) 

and 

C ·- {O}xB xB+x {O}. 

with 

(4.1.1.11) 

(4.1.1.12) 

(4.1.1.13) 

(4.1.1.14) 

Similar to the case of equality constraints. the inclusion (4.1.1.11) constitutes the first 
order necessary conditions for optimality for problem (EIP) under the assumption that the 
regularity constant p may be set equal to one. A generalization of Newton's method to 
(4.1.1.11) implies the solution of: 

F(x; .y;') + F' (x; .y;')(t:.x; .t:.y;') E C. 

or. equivalently using y,'+ 1 := y,'+t:.y;'. 
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L" (x; ,y;')(,h;) - Y;'+1i '(x;) = - J '(x; ). 

g(x;) + g'(x;)(Ax;) EB, 

(4.1.1.16) 

(4.1.1.17) 

(4.1.1.18) 

(4.1.1.19) 

The conditions (4.1.1.16) - (4.1.1.19) are not necessary conditions for optimality of any 
(sub)problem as in the equality constrained case. However, if we replace (4.1.1.19) by 

(4.1.1.20) 

then conditions (4.1.1.16). (4.1.1.17). (4.1.1.18) and (4.1.1.20) are the first order neces
sary conditions for optimality of : 

Problem (IQP): 

MiT-r;iize f'(x; )(Ax;) + ½ L" (x; .y;')(Ax; )(Ax;), 

subject to : g (x;) + g '(x;)(Ax;) E B. 

(4.1.1.21) 

(4.1.1.22) 

Summarizing the discussion sofar, we gave a motivation for an algorithm which makes use 
of directions of search calculated via the solution of problem ((E)IQP). either as a minimi
zation of the Lagrangian in the subspace spanned by the linearized constraints. or as a 
Newton-like method applied to the first order necessary conditions for optimality. We 
note that in the discussion of the algorithm, implicitly the assumption was made that at 
every point (x; ,y;'.z;') the problem ((E)IQP) has a solution which satisfies the sufficient 
conditions for optimality of Theorem 2.16. 

4.1.2. Active set strategies and merit function. 

In this section we shall consider some algorithmic options for SQP-methods for the solu
tion of problem (EIP). 

There are essentially two ways in which inequality constraints of the form g (x )EB may 
be handled. One way is to use in each iteration of the method an estimate of that part of 
the constraints which is active at the solution. This estimate is called the working set and 
is updated before each iteration. The constraints in the working set together with the 
equality constraints define a nonlinear programming problem with only equality con
straints. Application of the SQP-method to this problem requires in each iteration the 
solution of a problem of the type (EQP). i.e. a quadratic programming problem with linear 
equality constraints. A strategy which is used to determine the working set is called an 
active set strategy. In the case of SQP with equality constrained subproblems the active set 
strategy is based on an estimate of the solution of the original problem. The second way 
to handle the inequality constraints g (x )EB is to solve the problem (EIQP) as a quadratic 
programming problem with linear equality and inequality constraints. The major problem 
in a solution procedure of problem (EIQP) is again the determination of the active set, i.e. 
that part of the constraints g (x; )+ g '(x; )(Ax; )EB which are satisfied as equalities at the 
solution point. Thus in this case the active set strategy is part of the quadratic program
ming algorithm that calculates the solution of the subproblem (EIQP). 

We note one essential difference between the two methods. With the first method the ac
tive set strategy focusses directly on the active set of the original (nonlinear) problem 
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whereas with the second method the active set strategy is used to determine the active set 
of problem (EIQP). 

The discussion in the previous section focussed on the motivation for the calculation of 
directions of search via the solution of a quadratic programming problem. The derivation 
of this quadratic programming problem is entirely based on linearization arguments that 
hold only in a neighborhood of a solution (x ,y' ,z' ). Hence it must be assumed that the 
current iterate (x; .y;'.z;') is 'sufficiently close' to the solution. For a practical procedure 
this assumption is too restrictive. Fortunately it is possible to 'globalize' the method pro
posed, by means of a merit function. This is a function which assigns a real value to each 
triple (x ,y' ,z' )EX xY' xz'. and which has the property that it has a minimum at the 
point (x ,y' ,z' ). Using the direction of search Ax; and the Lagrange multipliers (y' ,z') 
obtained via the solution of the problem (EIQP). the current iterate (x; .y;'.z;') is. at each 
iteration. modified such that the merit function is minimized along the direction of search 
(Ax; ,y' -y;',z' -z;'), i.e. 

M{a;} = min M{a). 
o>O 

where M denotes the merit function and the notation {a} is used to replace 
(x; +a Ax;. y;'+a(y' -y;'). z;'+a(z' -z;')). 

The parameter O!; is called the step size. 

We note that in order to preserve the excellent local convergence properties of Newton·s 
method, the merit function must have the property that in a neighborhood of the solution, 
the step size a; converges to one. 

4.1.3. Abstract version of the algorithm. 

Based on the sequential solution of quadratic programming problems (EIQP) we are led to 
the following algorithm : 

Algorithm 4.1 : 

(0) Set x 0 := given value; i .- 0; 

(i) Calculate first order Lagrange multiplier estimates (y;'.z;') as the multipliers 
corresponding to the solution of: 

Min~mize J '(x; )(d) + ½ <Gd, d >, 

subject to: g(x;) + g'(x; )(d) E B, 

h (x;) + h '(x; )(d) = 0. 

where G : XX X -+ JR is a positive definite mapping used to imitate an inner product 
in the Banach space X, as (x ly) = <Gx, y >. t 

(ii) Calculate the Hessian of the Lagrangian at x; 

- -L" (x; .y;' ,z;') := f"(x;) - y;'g "(x;) - z;'h "(x; ). 
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(iii) Calculate second order Lagrange multipl.ier estimates (y' .z') and the Newton direction 

d N as the solution of : 

Minimize f'(x; )(d) + l <L" (x; .y;'.z;')d. d >. 
d 2 

subject to : g (x;) + g '(x; )(d) E B. 

h (x;) + h '(x; )(d ) = 0. 

(iv) IflldNll~ethenready. 

(v) Cal.culate a step size a; such that 

M{a;} = minM{a}. 
0<>0 

and set 

(vi) i := i + 1 
goto (ii). 

The algorithm above is based on the sequential solution of quadratic programming prob
lems with equality and inequality constraints (EIQP). A similar algorithm follows for the 
case that the calulation of the direction of search is based on the solution of quadratic pro
gramming problems with only equality constraints (EQP). In this case the active set stra
tegy is to be performed at the point of step (ii). 

t The mapping G can be chosen the identy operator in Hilbert spaces. Using the interpretation of the 
mapping G as an imitation of an inner product, the solution d of step (i) has the interpretation of a 
generalized projection of the negative gradient on the subspace spanned by the linearized constraints. 
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4.2. Application of the method to optimal control problems. 

4.2.1. Formulation of the problems (EIQP/SCOCP) and (EQP/SCOCP). 

In this section we shall consider the formulation of the problems (EIQP/SCOCP) and 
(EQP/SCOCP) which are the specializations of the problems (EIQP) and (EQP) for the 
state constrained optimal control problems (SCOCP). From Section 3.1 we recall 

Problem (SCOCP): Determine a control function u E L=[o,rr, a state trajectory 
x E W l.=[0,T]n and a final time f > 0, which minimize the functional 

T 

h o(x (O)) + f fo(x (t ).u (t ).t) dt + g 0(x (T).T). 
0 

subject to the constraints : 

i(t) = f(x(t),u(t).t) a.e. 0~t~T. 

D(x(0))= O. 

E(x (T).T) = 0. 

u (t) E U 

S 1(x(t ).u(t ),t) ~ 0 

Six(t).t)~ 0 

a.e. 0~t~T. 

a.e. 0~t~T. 

where ho:lRn-+JR; fo:RnxJRmxJR-+JR"; go:lR"xlR-+JR; D :JR"-+JRc; 

f :JR"xlRmxJR-+JR"; E:JR"XJR-+JR. 9 ; S1:lR"xlRmxJR-+1Rk 1 ; S2:1Rnx1R-+1Rk 2 ; 

UC JR'", is a convex set with nonempty interior. 

For all x ER" ,u ElRm rank S 1u(x .u .t) = k 1 a.e. O~t ~ T. 

The functions h 0 , / 0 , g 0 , f, D, E Si and S2 are twice continuously differentiable functions 
with respect to all arguments. 

For the sake of brevity we shall consider fixed final time problems, because variable final 
time problems can be transformed into fixed final time problems (cf. Section 3.3.4). 

The assumption that. in the formulation of problem (EIP). the set A is the entire space X. 
becomes in the formulation of problem (SCOCP) : 

U = L=[O,Tr'. (4.2.1.1) 

This will be assumed in the sequel without any further reference. 

To denote the variables in the current approximation to the solution of problem (SCOCP) 
we shall use the notation xi (t ), ui (t ), Ai (t ), 'Y)i(t ), t (t ). '1) 2(t ), v j, cri and µi. The no
tation [t] is used to replace argument lists involving xi (t ), ui (t ), >._i (t ). 'Y){(t ). f;(t ), cri 
and µ i • e.g. [t] = (xi (t ).u; (t )). 

For the formulation of the problems (EIQP) and (EQP) an expression for the second 
Frechet differential of the Lagrangian is required. 
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Lem.ma 4.2: Under the assumptions given in the formulation of probl,em (SCOCP), the 
Lagrangian is twice continuously Frechet differentiable for all x; E W 1,00 [0,T)ll, 

ui E Loo[O,Tl"', Ai E NBV[o,rr, TJIE Loo[o,rf 1, ei E NBV[o,rf 2, cri E JR.C, µi E JR.q and 

L" (xi ,ui ,Ai ,TJi.t ,cri ,µi )(8x 1,8u 1)(8x2,8u2) = 8x 1(0)T (h 0xx [O]+cr*Dxx [0])8xz(O) 

T [Hxx [t ]+TJJ(t hS lxx [t] Hxu [t ]+'T){(t )*S lxu [t]] [8xz(t)] 
+ J[8x1(tl8u1(tl] [] i() [] [] i() [] "() dt 

0 Hux t +1)1 t *Siux t Huu t +1)1 t *Siuu t uU2 t 

T 

+ f 8x i(t )T (d g; (t hS2xx [t ])8xz(t) + 
0 

(4.2.1.2) 

where the Hamiltonian H (x ,u .X.t) is defined by: 

H (x ,u ,A ,t) := f 0(x ,u .t) + AT f (x ,u ,t ). 

A proof of this lemma is not given here as it follows in a straightforward fashion from the 
application of Lemma 1.4a. p.94 of Kirsch et al. (1978) to the first Frechet differential of 
the Lagrangian. 

In the sequel we shall occasionally use the pair 'TJ~ and v j instead of the multiplier g;. The 
multiplier TJi represents the time derivative of g; whenever it exists and the multipliers 
v j represent the discontinuities of the multiplier g; at time points ti. i.e. 

a.e. O~t~T. (4.2.1.3) 

and 

(4.2.1.4) 

The specialization of problem (EIQP) for problem (SCOCP) follows directly from Lemma 
4.2 and the abstract formulation of problem (SCOCP) as given in Section 3.2. 

t The notation a*M is used to denote the tensor product of a vector ii with a block matrix M. The in
terpretation of this product is that for instance CT*Dxx [O] is the Hessian of the functional crT D (x) 
with respect to x for fixed er at x ( 0). 
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Problem (EIQP/SCOCP): 

T . 

Minimize hox[O]dx(O) + j(fox[t]dx(t)+fou[t]du(t))dt + gox[T]dx(T) + 
d.>. ,du 0 

+ fL.dx (ti )TM 6[t i ]dx (ti) + ½ dx (T )TM sdx (T), 
j 

subjectto:dx = fx[t]dx +fu[t]du +f[t]-ii(t) 

D [O] + Dx [O]dx (0) = 0, 

E[T]+Ex[T]dx(T)= 0, 

a.e. O~t~T. 

where 

S 1[t ] + S lx [t ]dx + S lu [t ]du ~ 0 

S2[t]+S2x[t]dx ~ 0 

:M1 .- h oxx [0] + cnDxx [0], 

a.e.O~t ~ T, 

Mi[t] .- foxx [t] + >,_i*fxx[t] + 7J{*Sixx [t] + 7Jj*S2xx [t ], 

Mit] ·- f 0xu [t ] + Ai* f XU [t] + 7J { *s lxu [t ]. 

Mit] -- fouu [t] + A i*fuu [t] + 7J{*S luu [t ], 

Ms .- g 0xx [T] + µ*Exx [T ], 

M 6[t i] -- v>S2xx[ti] for all j. 

(4.2.1.5) 

(4.2.1.6) 

(4.2.1.7) 

(4.2.1 .8) 

(4.2.1 .9) 

(4.2.1.10) 

(4.2.1.11) 

(4.2.1.12) 

(4.2.1.13) 

(4.2.1.14) 

(4.2.1.15) 

(4.2.1.16) 

The statement of problem (EQP/SCOCP) requires the introduction of the following some
what complicated terminology. 

Recall the definition (3.3.5.10) of the vector function S(x ,u .t) which contains all control 
and state constraints. With every component S 1 (l = 1.. .. k 1+k 2) a set W1 C [O,T] is associ
ated, which is the collection of all time points for which the constraint SI is supposed to 
hold as equality. The set W1 is called the working set of S 1 • 

The sets W1 consist of m/ boundary intervals [t~i _1 .t~) (j = 1.2 .... m/) and m{ contact 
points t 1

2 b+. (j = 1,2,. .. mn. m, J 

I (t ) is used to denote the index set Qf. active constraints at the time point t , i.e. 

for all 

k (t ) denotes the number of constraints in the working set. i.e. the number of indices in 
the set I (t ). 

Elements of the index set J(t) are referred to as i 1,i 2, .... etc., i.e. 

The state constraints of the subproblem (EQP/SCOCP) follow from the linearization of the 
constraints 
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(4.2.1.17) 

which (along (x; (t ).u; (t )) are given by : 

S / [t] + S ix[t ]dx (t) + S iu[t ]du (t) = 0 a.e. tEW1 .l=l.2 .... k1+k2. (4.2.1.18) 

The f (t )-vector R [t] is used to denote all constraints in the working set at time point t in 
a compact way. i.e. 

l = 1.2 .... k(t ). o~ t ~ T. (4.2.1.19) 

The linearization of the state constraints is denoted by 

(4.2.1.20) 

(We note that when k(t) is zero. then R [t] has dimension zero and hence. at these time 
points, there is no constraint on dx and du). With the terminology introduced above. 
problem (EQP/SCOCP) becomes: 

Problem (EQP/SCOCP): 

T 

Minimize hox[0]dx(0) + f (fox[t]dx(t)+fouft]d.(t))dt + gox[T]dx(T) + 
d, .du 0 

T [Mi[(] Mit]l [dx(t)I 
½dx(0)TM1dx(0)+½ /[dx(t)T d.(tll MitY Mit] d.(t) dt 

+ ½ Ldx (ti )TM 6[ti ]dx (ti)+ ½dx (T )TM sdx (T). 
j 

(4.2.1.21) 

subject to: dx = f,[t ]dx + fu [t ]du + f[t ]- i:i(t) 

D [O] + Dx [O]dx (0) = o. 
E[T] + Ex[Tldx(T) = o. 
R[t] + Rx[tldx + R.[t]d. = 0 

a.e. 0~ t ~ T. (4.2.1.22) 

(4.2.1.23) 

(4.2.1.24) 

a.e. 0~t~T. (4.2.1.25) 

where the matrices M 1, M2, M3, M 4 , Ms, M6 are defined by (4.2.1.11)- (4.2.1.16). 

4.2.2. Active set strategies for problem (SCOCP). 

Most solution procedures for the solution of optimal control problems involving con
straints on the control and/or state consist of two stages. In the first stage the structure Qf. 
the solution is determined, i.e. the sequence of time intervals on which the constraints are 
active and inactive on [O.T]. In addition to the (estimated) structure of the solution. this 
stage yields also a rough approximation to the solution. In the second stage. the exact solu
tion is determined using the results of the first stage. In this section an argumentation for 
and definition of the two stages will be given. 

Consideration of the SQP-methods described in Section 4.1 for the solution of problem 
(SCOCP) yields the sequential solution of problems of the type (EIQP/SCOCP) or 
(EQP/SCOCP). In the case that problem (EIQP/SCOCP) has a unique solution for which 
the sufficient conditions for optimality of Theorem 2.16 are satisfied. the main problem of 
obtaining the solution of problem (EIQP/SCOCP) is the determination of the set of active 
points of the state constraints. For if this set is available. then the solution of problem 
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(EIQP/SCOCP) can be determined as the solution of problem (EQP/SCOCP) using the set 
of active points as working set. The solution of problem (EQP/SCOCP) can be obtained as 
the solution of a linear multipoint boundary value problem (cf. Section 5.1). which admits 
more or less standard numerical solution procedures. Unfortunately. there are no stan
dard procedures for the solution of problems of the type (EIQP/SCOCP). or more 
specifically for the determination of the active set of this type of problems. As a first step 
towards a ,solution procedure, we consider a general procedure for the solution of the 
finite-dimensional counterpart of problem (EIQP/SCOCP). which is reviewed in Appendix 
A. This method has the following characteristics : 

1) The method has an iterative nature using as candidates for the solution. solutions to 
quadratic programming problems with only linear equality constraints. 

2) The iterates are all feasible points. i.e. the complete set of inequality constraints of the 
quadratic programming problem are satisfied at each iteration. 

3) The active set strategy consists of addition of constraints to the working set whenever 
the step size is restricted (i.e. when one or more constraints become violated at the can
didate solution point). or the (possible) deletion of constraints from the working set 
whenever the direction of search becomes zero (i.e. the minimum in the current sub
space is achieved) and the Lagrange multiplier corresponding to the constraint has a 
wrong sign. 

It is not possible to apply the method to the solution of problem (EIQP/SCOCP) without 
adaptation. The reason for this is the infinite-dimensional nature of the constraints 
(4.2.1.9) - (4.2.1.10) In fact the constraints (4.2.1.9) - (4.2.1.10) represent a k 1+k 2 set of 
constraints at each time point t. As a NSUlt of this it is likely that during the execution 
of the method the stepsize becomes zero, because any nonzero step would lead to a viola
tion of the constraint (cf. Figure 4.1) and hence the method would fail to converge. 

',,---, t 
',,_solution of problem (EQP/SCOCP) 

current estimate of the solution 

Infeasible direction of search. 
Figure 4.1 

We recall that if it would be possible to solve problem (EIQP/SCOCP) at each iteration of 
Algorithm 4.1. then ultimately (assuming convergence) the solution of problem (SCOCP) 
would be obtained. In that case, the stucture of the solution would follow simply via an 
inspection of the set of active points. However. because problem (EIQP/SCOCP) cannot be 
solved easily. the solution process is broken into the two stages mentioned earlier. the first 
being the determination of an estimate of the set of active points of the state constraints. 

Having this goal in mind we consider the replacement of problem (EIQP/SCOCP) by a 
simpler problem such that the solution of this problem is an approximation to the solution 
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of problem (EIQP/SCOCP). Therefore the grids A1 and A2 are introduced as: 

j= 1,2 (4.2.2.1) 

and 

A := A1XA2 • (4.2.2.2) 

where the (time) points t/e [O,T] satisfy: 

~-j~-j ~-j~ 0-..:: t 0 -..:: t 1 ...... -.:: ti; --:: T j = 1.2. (4.2.2.3) 

Problem (EIQP/SCOCP) is now replaced by a similar linear-quadratic optimal control 
problem, where the junction and contact points of the constraints (4.2.1.9) and (4.2.1.10) 
are restricted to the grids A1 and A2 respectively. The problem (EIQP/SCOCP) with 
function and contact points restricted to the grid~ is called problem (EIQP/SCOCP/ A). 

Presumably, if the grid A is sufficiently 'fine'. then the solution of problem 
(EIQP/SCOCP/A) will be an approximation to the solution of problem (EIQP/SCOCP). As
suming that the SQP-method converges with the direction of search obtained via the solu
tion of problem (EIQP/SCOCP/A), the structure of the solution of problem (SCOCP) will 
be obtained as the structure of the converged solution. 

The definition of problem (EIQP/SCOCP/A) will now be made more explicit. By restricting 
the junction and contact points to a finite set of points. the problem (EIQP/SCOCP) is in 
fact replaced by a minimization problem over a set of problems (EQP/SCOCP) where the 
working set must be chosen according to the restriction that the junction and contact 
points are points of the grid A. 

Definition 4.3: Given a pair of functions d, E W 1_00 [0,T]" and du E PC [O,TJm, the sets of 
boundary points of the constraints (4.2.1.9) and (4.2.1.10) with respect to the grid A (defined 
by (4.2.2.1) - (4.2.2.3)) are defined as follows: 

J}1(d, ,du ,A 1) is the union of the intervals [i;:1:,;;t :,;;i;:1+ 1 ] (r=0,1.. .. p1-1) for which: 

S 11 [t;:1+] + S 11 .x [t;:1+ ]d, (i-;') + S 11 ,u [t;:1+ ]du (41+) = 0 (4.2.2.4) 

and 

s 11 [i::1+1 -] + s 11,x [f '+1 - ]d, (41+1) +s ll ,u [41
+1 - ]du Cf\, - ) = 0. 

J }'(d, ,A2 ) is the union of the intervals [i;_2:,;; t :,;; 42+1 ] (r = 0,1, ... p2-1) for which 

s 21 [42
] + s 21 ,x [42]d X (i;:2) = 0 

and 

(4.2.2.5) 

(4.2.2.6) 

(4.2.2.7) 

The definition of problem (EIQP/SCOCP/ A) is stated as a combination of problems 
(EIQP/SCOCP) and (EQP/SCOCP), and uses the sets of boundary points as working sets. 
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Problem (EIQP/SCOCP/A): Determine, if it exists, a control function du E PC[0,T]m, and 

a state trajectory dx E W l.=[O,TI', which minimize the functional 

T 

hox[0]dx(0) + j(fo,[t]dx(t)+fou[t]du(t ))dt + go.[T]dx(T) + 
0 

T IM i(t] M it] l ldx (t) I 
½dx(o)TMidx(0) + ½ /ldx(t)T du(t)I'i M3[tY MJt] du(t) dt 

+ ½ 1:dx (t j )TM 6[tj ]dx (tj) + ½ dx (T )TM 5d, (T ). 
j 

(4.2.2.8) 

subject to: 

dx = fx[t]dx + fu[t]du + f[t]- xi(t) 

D[0] + D,[0]dx(0) = 0. 

E[T] + Ex[T]d,.(T) = 0, 

S 11 [t] + S 11 ,x [t ]dx (t) + S 11 ,u [t ]du (t ) = 0 

a.e. 0~t ~ T. 

forall tEljl(dx,du,A 1). l=1.2 ..... k1, 

l=1.2 ..... k2, 

(4.2.2.9) 

(4.2.2.10) 

(4.2.2.11) 

(4.2.2.12) 

(4.2.2.13) 

S 1[i?+] + S l,x [i?+ ]dx (i?) + S l,u [t?+ ]du (t?+) ~ 0 r = 0,1... .. p i-1. (4.2.2.14) 

S 1[i?-J + S 1,x [t}- ]d, (t;1) + S 1,u [i;1- Jdu (t;1-) ~ 0 r = 1, .... Pi, (4.2.2.15) 

(4.2.2.16) 

where the matrices M 1, M 2, M 3 , M 4 , M 5, M 6 are defined by (4.2.1.11 )- (4.2.1.16). 

The definition above shows that restricting the junction and contact points of problem 
(EIQP/SCOCP) to the grid A is not equivalent to replacing the constraints (4.2.1.9) -
(4.2.1.10) by a finite set of inequalities. because on boundary intervals the constraints are 
still to be satisfied as equalities. 

The method for the solution of problem (EIQP/SCOCP/ A). is essentially an adaptation of a 
certain method for the solution of finite-dimensional quadratic programming problems. 
The adaptation of the method for the solution of problem (EIQP/SCOCP/A) is discussed in 
detail in Section 5.2. 

The first stage of the method is completed once the direction of search is 'sufficiently' 
small. At this point the structure of the solution of problem (SCOCP) is estimated as the 
structure of the current iterate. Because the junction and contact points were in the first 
stage, restricted to a (fixed) finite set of points. it is not likely that the current iterate is a 
'good' approximation to the solution. 

Therefore a second stage is started. such that in each iteration one or more junction and/ or 
contact points are shifted. The amount of shift required for each point is determined using 
the violation of the constraints (4.2.1.9) - (4.2.1.10) on interior intervals and the sign in
formation of the Lagrange multipliers on boundary intervals. The techniques used, are 
essentially strategies which focus on the active set of the original (nonlinear) problem 
(SCOCP). These techniques are described in Section 5.3. When one or more junction 
and/or contact points are shifted. a direction of search is calculated via the solution of 
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problem (EQP/SCOCP). Contrary to the first stage. the second stage is thus based on the 
sequential solution of quadratic programming problems with only equality constraints. 

4.3. Further details of the algorithm. 

In step (i) of the abstract Algorithm 4.1 use is made of a mapping G to imitate an inner 
product in the Banach space X. In the application of the algorithm to problem (SCOCP). 
we take G such that <G (x 1,u 1). (x 2,u2)> resembles the Lrinner product, i.e. 

T 

<G(x1,u1),(x2,u 2)> := J<x1(tlx2(t)+u1(tlu2(t))dt 
0 

(4.3.J) 

With this choice, step (i) of Algorithm 4.1 involves the solution of problem 
(ElQP/SCOCP/ Ll) with M 1= 0, M 2[t ]=In. M it]= 0. M Jt ]=Im.Ms= 0 and M 6[t ]= 0. 

In the first stage of the method. the step size Cl!; is determined using a merit function. 
Essentially this merit function is a combination of the objective function and a ~ 
term, which is some measure for the constraint violation. The direction of search ( which 
was motivated only by linearization arguments) wiU, in general. not give a decrease of 
both the objective function and the penalty term. Decreasing both terms simultaneously 
can be conflicting goals. ln these cases the merit function provides a balance between 
achieving either of these goals. with the intension that in each iteration progress towards a 
solution point is made. 

We shall now give a formal motivation of the merit function that is used in the current 
implementation of the method. Recent literature on SQP methods indicate that there are 
various alternatives to this choice. We do not intend to give a complete survey of possible 
choices for the merit function; for this we refer to Bertsekas (1982), Fletcher (1981. 1983) 
and Gill et al. (1984). To the particular choice made in this section we note that. contrary 
to other choices of merit functions. it allows a rather complete convergence analysis in the 
finite-dimensional case (cf. Schittkowski (1981)). 

A merit function should satisfy the following requirements : 

1) The solution of the original problem should be a (local) minimum of the merit func
tion. 

2) In combination with the direction of search. it should always be possible to choose a 
step size. such that the merit function is decreased. 

3) The merit function should not inhibit convergence of the step size to one. in a neighbor
hood of a solution point. 

For problems with only equality constraints, a suitable choice of the merit function is the 
so-called augmented Lagrangian: 

M (x ),. ;p) == f (x ) + >J h (x ) + ½ pll h (x )II 2 , (4.3.2) 

where A is an estimate for the Lagrange multiplier corresponding to the equality constraint 
and p > 0 is a penalty constant. 

A motivation for this choice of merit function is that the Lagrangian has a minimum in the 
tangent subspace of the linearized constraints at a solution point (assuming that the 
sufficient conditions for optimality of Theorem 2.16 hold at this point). The penalty term 
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is added to extend this feature to a larger set, outside the tangent subspace of the linear
ized constraints. 
For a 'sufficiently high' value of p, the merit function (4.3.2) satisfies the requirements 1) 
- 3) in the case of finite-dimensional nonlinear programming. 

For the extension of this merit function to include also inequality constraints we first con
sider the finite-dimensional case of one scalar function g : X--+ JR, which defines the con
straint : 

g (x) ~ 0. 

The augmented Lagrangian is defined in this case as: (e.g. cf. Bertsekas (1982)): 

M(x ,µ;p) == f(x) + µg(x ,µ;p) + ½pg(x ,µ;p)2, 

where: g(x ,µ;p) := max {g (x ),-µIp}. 

A simple analysis of the penalty term 

T(x ,µ;p) := 2
; g(x ,µ;p) + g(x ,µ;p)2, 

yields the Figures 4.2 and 4.3. T(x ,µ;p) 

i 

(g(x )+µJp)2-(µ!p)2 

T(x ,µ;p) = 

76 

-µ!pi 
-----'---~--- -- -(µ!p)2 

----+ g(x) 

T (x ,µ ;p considered as a function of x for fixed µ. 
Figure 4.2 

!
(g(x)+µ/p)2 -(µ/p)2 g(x)~ -µIp 

-(µ/p)2 g (x) < -µIp 

(4.3.3) 

(4.3.4) 

(4.3.5) 

(4.3.6) 
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T(x ,µ;p) 

g(x )2 

-g(x): -> µ/p 
-g (x )2 

T (x .µ ;p considered as a function of µ for fixed x . 

Figure 4.3 

T(x .µ;p) = lg (x )2+2g (x )µIp µ/p :J:- -g (x) 

-(µ/p)2 µ/p<-g(x) 
( 4.3.7) 

Figures 4.2 and 4.3 show that T (x .µ ;p) is continuously differentiable with respect to both 
x and µ, whenever g (x) is continuously differentiable with respect to x. 

A similar approach to problem (SCOCP) yields the following merit function : t 
T 

M(x .u ,A,7)1,e,a ,µ;p) := ho(x (0)) + aT D(x (0)) + J (fo(x ,u ,t) -
0 

k I k 2 

>._T(i,-f(x ,u ,t )) + :E 71 11 S 11 (x ,u ,7) 11 ,t ;p) + + L 7J21S21Cx ,7)21 ,t ;p)) dt + 
1=1 l=l 

k2 

L, I:. II ii S2/x ,II ii ,ti ;p) + g 0(x (T),T) + µT E(x (T),T) + 
j I= 1 

½ p I /c11x-/ (x ,u ,t )11 2 + t S11 (x ,u ,7)11 ,t ;p)2 + ts21 (x ,7)21 ,t ;p)2) dt + 
0 I=! l=l 

f 
1
¥/21 (x ,II ii ,ti ;p)2 + IID(x (0))11 2 + IIE(x (T),T)II 2 ), (4.3.8) 

with: 

S11 (x ,u ,7)11 ,t ;p) := max {S 11 (x ,u ,t), -7)11 /p). 

S21Cx ,7) 21 ,t ;p) := max {S21Cx ,t), -7121/p}. 

(4.3.9) 

(4.3.10) 

We note that the inequality constraints are incorporated in the merit function similar to 
the finite-dimensional approach, using the smooth penalty terms T (x ,µ ;p ). As a result of 
this the merit function (4.3.8) is Frechet differentiable and has therefore essentially the 
same properties as its finite-dimensional counterpart. 

We now consider the actual determination of the step size ex;, which must be calculated 
such that the merit function is minimized along the direction of search. To this end vari
ous strategies may be used. (For a survey on methods for step size determination we refer 

t Again we use 7)21 and II jl to denote the time derivative and 'jumps' of the multiplier e1 (cf. 
(4.2.1.3) - (4.2.1.4)). 

77 



Chapter 4 

to Gill et al. (1981) and Bertsekas (1982).) We mention : 

1) Exact line minimization, i.e. 

OI; = arg,minM{Oi}j, 
01>0 

(4.3.11) 

where {01} was used to replace (x;+01d1, u;+01dj, >._i+01(fi-x_i), 'T){+01(71{-TJD. 
g; +01((i -g; ), er; +01(o'"; -er;),µ; +01(µ; -µ; )). 

2) Approximate line minimization. As an example we mention the Armijo step size rule, 
i.e. given scalars {3E (0,1) and EE (0,½) determine the step size 01 as 

01={3k 

where k is the smallest nonnegative integer that satisfies 

(4.3.12) 

The choice as to which strategy is followed is not critical for Newton-like methods (exact 
second derivatives are used), because it is not important that the exact minimum is 
achieved along the direction of search. When the solution is approached, the step size OI; 

will converge to one anyway. In a numerical implementation the approximate line minim
ization tends to be more efficient, because the number of evaluations of the function M {OI} 

is less. Therefore the Armijo rule is used in the first stage of the method in the.current im
plementation. 

Because in the second stage of the method, the current iterate (x; ,u; ,A; ,'T){,g; ,er;,µ;) is 
supposed to be 'sufficiently' close to the solution a step size procedure is omitted. The 
complete method may be summarized as follows : 

Algorithm 4.4 : 

(0) A, and (x 0 ,u 0 ) given. 
i := 0. 

Stage 1 : steps (i) c (vi) 

(i) Calculate first order Lagrange multiplier estimates (X. 0 .'T)f,g0 ,er 0,µ 0
) as the multipliers 

corresponding to the solution of problem (EIQPISCOCPI A) with the matrices M 1= 0, 
Mi(t ]=In, MJlt ]=0, M it ]=Im, Ms=0, M 0[t ]=0. 

(ii) Calculate the matrices Mi (j=l,2, ... ,6) corresponding to (4.2.1.ll )- (4.2.1.16). 

(iii) Calculate the Newton direction (d] ,dJ) and second order Lagrange multiplier estimates 
(fi ,71{,li ,o'"; ,µ;) as the solution of problems (EIQPISCOCPIA) (using the matrices Mi 
determined in the previous step). 

(iv) Ifll(d],d~)llx~e 1 then goto (vii). 

( v) Given scalars f3 E (0.1) and EE (0,½) determine the step size OI; as 
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a; = (3k. 

where k is the smal.l.est nonnegative integer that satisfies 

M {O} - M {(3k I ;;,; -e(3k M' {O}(d} ,dJ xi->.. i .'if i-'I') (li -f i .er; -(Ti.µ;-µ i ). 

and set: 

xi+l 

ui+l 

>,.i+l 

'l')/+1 

fi+l 

CTi+l 

µi+l 

(vi) i == i +1, 
goto (ii). 

.-

.-

.-

.-

.-

.-

.-

x; + a;d;. 

u; + aidj, 

>,.i + a;(fi->,.i), 

'I'll+ a;C'i'Ji-'l'lD, 
g; + ai ((i -fi ). 

(Ti + ai(ui-cri), 

µi + a;(µi-µi). 

Stage 2 : steps (vii)- (xii) 

( vii) Use (x; ,u; .>.. i ,'I') J,g i ,CT;µ; ) to determine working sets Wi for the constraints Si . 

( viii)Calculate the matrices Mi {j=l ,2, ... ,6) corresponding to (4.2.1.11) - (4.2.1 .16 ). 

(ix) Calculate the Newton direction (d, ,d,,) and second order Lagrange multiplier estimates 
(fi ,'r)i,t; ,er; .µi) as the solution of probl.em (EQPISCOCP). (Using the working sets 
determined in step (vii) and the matrices Mi determined in step (viii).) 

(x) If II (d} .dDII x ~ e 2 then ready. 

(xi) Set: 

Xi+l .- xi + d:. 

ui+l .- ui + dJ, 

>,.i+l .- fi, 

'l')/+1 -i .- 'I') 1• 

gi+l .- [i' 
CTi+l -i .- CT , 

µi+l -i . - µ . 

(xii) i .- i +1, 
goto (vii). 
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4.4. Outline of the implementation of the method. 

In this section an outline of the implementation of the method will be given. This outline 
may serve as a guide for the Chapters 5 and 6. which deal with the most important aspects 
of the implementation of Algorithm 4.4. In Chapter 5 the solution of the subproblems 
(EQP/SCOCP) and (EIQP/SCOCP/ .6.) and the active set strategy used in the second stage of 
the algorithm are discussed. Chapter 6 deals with a discussion on the numerical implemen
tation of the method. which essentially comes down to the numerical solution of a linear 
multipoint boundary value problem. 

One of the most important aspects of the method is the calculation of a direction of search. 
With the SQP-method of Algorithm 4.1 the direction of search is determined either as the 
solution of problem (EIQP) or as the solution of problem (EQP). which in the application 
of the method to problem (SCOCP) become problems (EIQP/SCOCP) and (EQP/SCOCP). 
Because problem (EIQP/SCOCP) cannot be solved easily. the solution process is split up 
into two stages. In the first stage the structure of the solution is determined. whereas in 
the second stage the actual solution is determined. The first stage of the solution process 
requires the solution of problem (EIQP/SCOCP/ .6.) which is a simplification of problem 
(EIQP/SCOCP). Extension of the ideas of finite-dimensional quadratic programming to the 
solution of problem (EIQP/SCOCP/ .6.) requires also the solution of problem (EQP/SCOCP). 
for the calculation of a direction of search (cf. Section 5.2). Application of the first order 
optimality conditions to problem (EQP/SCOCP) yields a linear multipoint boundary value 
problem (LMPBVP) (cf. Section 5.1). The numerical solution of this linear multipoint 
boundary value problem is done by means of a collocation method (cf. Section 6.1). This 
collocation method yields a set of linear equations. The numerical solution of the set of 
equations several methods may be used (cf. Section 6.2). In the current numerical imple
mentation of the method the so-called Null space method is used. which finally yields the 
direction of search. 
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In the scheme below the various relations between the problems are summarized. 

Stage 1 

simplification 

adaptation of 
finite
dimensional 
quadratic pro
gramming 

Problem 

(EIQP)t 

Problem 
(EIQP/SCOCP) 

t 
Problem 

(EIQPTXOP/ A) 

Problem 
(EQP/SCOCP) 

Problem (EIP) 

+ SQP - method 

LMPBVP 

t 
set of linear 

·•"'T 
direction 
search 

of 

Problem (EQP) 

t 
Problem 
(EQP/SCOCP) 

Scheme for the calculation of the direction of search 

Newton-like 
method 

Stage 2 

Application to 
problem (SCOCP) 

first order op
timality condi
tions for problem 
(EQP/SCOCP) 

collocation method 

solution by means 
of the Null space 
method 
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5. Solution of the subproblems and determination of the active set. 

This chapter deals with three different aspects of the method presented in the previous 
chapter. In Section 5.1 the solution of the subproblem (EQP/SCOCP) is considered. Section 
5.2 deals with a method for the solution of subproblem (EIQP/SCOCP/.6.). This method, 
which is essentially an adaptation of a common method for the solution of finite
dimensional quadratic programming problems, requires the repeated solution of problem 
(EQP/SCOCP). The active set strategy which is used in the second stage of the method is 
described in Section 5.3. The direction of search in this second stage is again determined as 
the solution of problem (EQP/SCOCP). 

5.1. Solution of problem (EQP/SCOCP). 

In view of the solution of problem (EQP/SCOCP) this section deals with optimality condi
tions for optimal control problems with state equality constraints. These conditions do not 
follow directly from Chapter 3, because there only state inequality constraints were con
sidered. The results contained in this section will show that there is a basic difference 
between the optimality conditions for optimal control problems with state equality con
straints and optimal control problems with state inequality constraints. 

For the sake of clarity. we shall first consider optimality conditions for a problem 
(ESCOCP), which is similar to problem (SCOCP) but contains only state equality con
straints. This approach will enable us to make use of most aspects of the formulation of 
problem (SCOCP) as an abstract nonlinear programming problem in Banach spaces. One 
may easily verify that problem (EQP/SCOCP) is a special case of problem (ESCOCP). 

Problem (ESCOCP): Determine a control function u E L 00 [0,T]"' and a state trajectory 

x E W 1_00 [0,T]", which minimize the functional 

T 

h 0(x (0)) + f fo(x (t ),u (t ),t) dt + go(x (T)), 
0 

subject to the constraints : 

x (t ) = f (x (t ) ,u (t ) ,t ) 

D(x(0)) = 0, 

E(x(T)) = 0, 

S 11 (x (t ),u (t ).t) = 0 

S 21 (x (t ) ,t ) = 0 

a.e. 0~t~T. 

a.e. t E W1 , l= l.2 .. k 1, 

tEWk,+t• l=l,2 ... k 2 , 

(5.1.1) 

(5.1.2) 

(5.1.3) 

(5.1.4) 

(5.1.5) 

(5.1.6) 

where: h 0 : R"-+JR; fo: JR" XlR'"xJR-+lR"; g 0 : JR"-+JR; D: JR" -+JR< ;E: lR"-+JRg; 

f : JR" xJRm xlR-+ JR"; SI : JR" XJR"' xlR-+ ]Rk 1; S2: JR" XlR-+ ]Rk 2 ; 

For all x ER" ,u E JRm rank S lu (x ,u ,t) = k 1 a.e. 0~ t ~ T. (5.1.7) 

The functions ho, fo, g 0 , f , D, E S 1 and S 2 are twice continuously differentiable functions 

with respect to all arguments. 

The sets Wj are closed subsets of the interval [0.T]. 
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5.1.1. Optimality conditions for problem (ESCOCP). 

Similar to the approach in Chapter 3, problem (ESCOCP) is considered as a special case of 
problem (EIP). The difference between the formulations of problem (SCOCP) and 
(ESCOCP) as special cases of problem (EIP) are the definition of the mapping h and the 
fact that the constraint g (x .u )EB is not present at all in the latter case. 

We shall first consider two special cases of problem (ESCOCP). the first one being the case 
of only mixed control state constraints. and the other one being the case of a single state 
constraint (with order greater than zero). 

In the first case the mapping h is defined as : 

h (x .u) := (x (. )- f (x (. ).u (. ). ·). D (x (0)) .E(x (T)) .S i(x (· ),u (. ). · )). (5.1.1.1) 

The range space of h is : 

k 1 

2 = Loo[O,T)" x.JR< X./Rq X ITLoo(W1 ). (5.1.1.2) 
l=l 

with 

k 1 

ITLoo(W1) = L 00 (W1)XLoo(W2)X ........ L 00 (Wk/ (5.1.1.3) 
l=l 

The spaces L 00 (W1 ) are spaces of measurable and essentially bounded functions on W1 

equipped with the norm : 

II v II 00 w := ess sup II v (t )II . 
• 1 1EW

1 

(5.1.1.4) 

The spaces Loo(W1) are Banach spaces (cf. Kantorovitch et al. (1982)). 

The Frechet differentiability of h follows directly from Lemmas 3.2 and 3.3 and the 
Frechet differential is given by : 

h'(x.u)(ox,ou) = (ox(·)-fxox(-)-fuou(·) ,Dxox(0) ,Exox(T). 

S 1x OX(. )+S lu OU(.)). (5.1.1.5) 

The hypothesis rank S lu = k I implies 

k 1 

R(S1xox(.)+S1uou(-)) = ITLoo(W1). (5.1.1.6) 
l=l 

Thus for the mapping h defined by (5.1.1.1) the hypotheses of part (i) of Lemma 3.5 hold 
and hence there exist nontrivial Lagrange multipliers for problem (ESCOCP) with k 2= 0. 

Using a derivation similar to the proof of Lemma 3.9 a representation for the linear func
tional <'1) 1, · > may be derived as: 

k 1 

<1J1,Y1> = -
1
"f,

1
/1J11(t)y11(t)dt forall Y11ELuo(W1) l=1.2 .. k1 (5.1.1.7) 

with'l) 11 ELoo(W1 ) l=1.2 .. k 1• 

To simplify notation the domain of definition of the multipliers '1) 11 is extended to the 
entire interval [O.T] as: 
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which yields the notation : 

T 

<'Y)J,Y1> = - f TJ1(t)Ty1(t)dt for all Y1EL=[o.r{ 1
. 

0 

(5.1.1.8) 

(5.l.1.9) 

With a representation of the linear functional <A.·> as given by Lemma 3.10 we thus 
have the following optimality conditions : 

Lemma 5.1 : If (x .u) is a solution to probl,em (ESCOCP) with k 2= 0, then there exist a real 

number p~0. and vector functions XENBV[O.T]", '1) 1EL=[o,r{ 1
, and vectors ifE.IRc, 

ji, E JR.9 , not all zero, such that, 

X (t )T = - Hx [t ] - 'T) i(t )TS Ix [t ] 

X(O)T = - phox [O] - ifT Dx [O], 

X(T)T = Pgo,[t] + [i,TEx[T]. 

Hu [t ] + 'T) J (t )TS Ju [t ] = 0 

a.e. 0~t ~T. 

a.e.0~t ~ T. 

'TJ11(t) = 0 for all tE[0.T]\ W1 l=l.2 .. k 1. 

(5.J.J.10) 

(5.1.1.11) 

(5.1.1.12) 

(5.1 .J.13) 

(5.1.1.14) 

A proof of this lemma is omitted as it is a direct analogue to the proof of Theorem 3.11. 

We next turn to the second special case of problem (ESCOCP). i.e. we assume that instead 
of mixed control state constraints there is (only) one state equality constraint 
(k 1= 0,k2= 1) of the form: 

Sz(x(t).t) = O (5.1.1.15) 

i.e. W= [t 1,tz]. with 0<t 1 <t 2<T. 

In a similar treatment, the mapping h would now be defined as : 

h(x ,u) := (i(-)- f(x(-).u(-). -) . D(x(0)) .E(x(T)) .Sz(x(-). -)). (5.1.1.16) 

with 

(5.1.1.17) 

This mapping h is again Frechet differentiable by LE;_mmas 3.2 and 3.3. In contrast to the 
situation considered above the range of the mapping h' is not closed. because the range of 

S2x (x (-),·)(Bx(.)) 

is not closed and hence nontrivial Lagrange multipliers need not exist. 

We note that this is a consequence of the fact that the range space of the operator is 
C[t 1,t 2 ]. When the range space would have been chosen to be W 1.=[0,T] then the range of 
the operator would have been closed. Unfortunately. this space has no standard represen
tation for the elements of the dual space and hence it is not a simple task to derive 
optimality conditions via this road. 
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Instead of the approach suggested by (5.1.1.16), we may replace the state equality con
straint (5.1.1.15) by interior point constraints of the form : 

j=0,1,. .. p-1. (5.1.1.18) 

and the mixed control state constraint : 

s~ (x (t ).u (t ),t) = 0 (5.1.1.19) 

where p is the order of the state constraint S 2 and the functions S~ are defined by 
(3.3.5. 7) - (3.3.5.8). 

The mapping h becomes: 

h(x ,u) == (x(-)- f(x(-),u(-), -) . D(x(0)) ,E(x(T)), 

where 

N (x ,t) .-

with range space : 

N (x (t 1),t 1) , S~ (x (. ),u (. ), · )), 

Six ,t) 
S} (x ,t) 

(5.1.1.20) 

(5.1.1.21) 

(5.1.1.22) 

The regularity of h follows from the lemma below. 

Lemma 5.2: Let the functions f,D,E and S2 satisfy the assumptions of probl,em (ESCOCP) 

with k 1 = 0 and k 2= 1 and let the functions f and S 2 be p-times differentiable with respect 
to all arguments. Let the mapping h be defined by (5.1.1.20)- (5.1.1.22). Assume that 

then 

R(h '(x ,u)) = closed. 

Furthermore if, in addition, at (x .u) 
rank D,. (x (0)) = c 

rank E, (x (T ) ) = q 

rank N., (x (t 1),t 1)) = p 

then 

R(h ·ex .u )) = z. 

(5.1.1.23) 

(5.1.1.24) 

The proof follows from the same arguments as the proof of Lemma 3.5. Condition 
(5.1.1.23) is used to establish 

(5.1.1.25) 
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Using an approach similar to Subsections 3.3.2 and 3.3.3 we obtain the following optimal
ity conditions : 

Lemma5.3: If (x.u) is a solution to problem (ESCOCP), with k 1=0, k 2=1, W=[t1.til 
and if the functions S 2 and f are p-times differentiable with respect to all arguments and 

S2u (x (t ).u (t ),t) ;c 0 (5.1.1.26) 

then, there exist a real number p~0, and functions KENBV[O.T]", -yEL=[O,T] and vectors 
aEJR<, µEJRq and numbers ~j (j=l, ... p), not all zero, such that 

~ (t )T = - Hx [t ] - -Y (t )S 2x [t J 

~(O)T = - phox [O] - a-r Dx [O]. 

~(T)T = pg ox [T] + µr Ex [T]. 

Hu [t ] + -y (t )S 2u [t ] = O 

a.e. 0:i::t:i::T, 

a.e. 0:i::t:i::T, 

~(t1+)T = ~(t1-)T - t~jS~; 1[ti), 
j = 1 

-y(t)= 0 for all 0:i:: t < t 1 and t 2 < t :i:: T. 

(5.1.1.27) 

(5.1.1.28) 

(5.1.1.29) 

(5.1 .1 .30) 

(5.1.1.31) 

(5.1.1.32) 

Because the approach of replacing (5.1.1.15) by (5.1.1.18) - (5.1.1.19) is quite similar to 
the approach of Bryson et al. (1963), it is not surprising that the optimality conditions of 
Lemma 5.3 are quite similar to the results contained in Theorem 3.16 for the case i = p 
The difference are the relations that. by definition, the multipliers 'Y)j must satisfy. i.e. 
(3.3.6.5) and (3.3.6.28). In the present case, the multiplier -y need not satisfy these rela
tions. (Obviously. if t I and t 2 are chosen to coincide with the true entry- and exit points 
of the inequality constrained problem, we shall have W (t )= -y(t )). 

Up to this point, it is still not clear why the approach using (5.1.1.16) was not feasible. To 
investigate this we consider the Lagrangian : 

T 

L == p(ho(x (0)) + f fo(x (t ).u (t ).t) dt + g 0(x (T))) -
0 

T 

f A(t )T (x (t) - f (x (t ),u (t ).t )) dt + (J"T D (x (0)) + µT E(x (T)) + 
0 

T 

f y(t )S1 (x (t ),u (t ),t) dt + t {3j S~-l (x (t 1),t 1), (5.1.1.33) 
0 j = 1 

which has a stationary point at (x ,u i .a-.µ .-y .~ 1 ). Assuming that the multiplier -y is 
sufficiently smooth, we consider the integration by parts of the term : 

T 

A:= J -y(t)S1[t]dt + t~jS:/- 1 [t 1]. (5.1 .1.34) 
0 J=l 

which yields : 

'2-
A = J -y(t) ds1-1 [t l + t ~j s~-1 [t 1l, (5.1.1.35) 

t1+ j = 1 
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'2-
A = J c-1}y(t )s~-1 [t 1 at + y(t2-)s~-1 [t21 - y(t 1+ )s~-1 [t 11 + 

'1+ 

t ~j s~-1 [t 11- (5.1.1.36) 
j-1 

Continuing this integration by parts we obtain after p times : 

'2-
A = f T1o(t)S2[t]dt + t lv{-1S~-1[t1]+11J-1S~-1[t2]]. 

'1+ j=l 
(5.1.1.37) 

with: 

j = l, .... p. (5.1.1.38) 

j = l, .... p, (5.1.1.39) 

(5.1.1.40) 

And hence, at the optimal point (x ,u ,X,& ,µ,y.~j) the Lagrangian may be expressed as: 

L = p[ho[O]+ /to[t]dt +go[T]l- /x(t)T(}_ -f[t])dt +&TD[O]+ 

T 

µTE[T]+ J'Y)oSilt]dt + tcv1-1s~-1[til+v1-1s~-1[t2D-
o j = 1 

(5.1.1.41) 

We observe that expression (5.1.1.41) is in fact the Lagrangian belonging to the abstract 
formulation of the problem based on (5.1.1.16) augmented with entry- and exit point con
straints of the form : 

S~(x(t 1).t 1 ) = O 

S~(x(t 2 ),t 2 ) = 0 

j = 0,1, ..... p-1 

j=O,l, ... .,p-1 
(5.1.1.42) 

This reveals that the approach following (5.1.1.16) was not feasible because the state 
equality constraints require in general. additional entry and exit point constraints of the 
form (5.1.1.42). When the entry- and exit point are such that they coincide with the 
entry- and exit point of the corresponding inequality constrained problem. then these con
straints are no longer necessary and hence the multipliers v { and vd (j = 1,. .. p-1) will 
automatically be zero. We note however, that the inclusion of the constraints (5.1.1.42) in 
the formulation of problem (ESCOCP) would still leave the question about the closedness 
of the range of the operator h' open, with the approach following (5.1.1.16). 

The formulation of the optimality conditions of Lemma 5.3 will be used for the solution 
of problem (EQP/SCOCP). whereas the alternative formulation of the Lagrangian 
(5.1.1.41) will be used to derive an active set strategy for problem (EIQP/SCOCP/.6.). 

Extension of the previous results to the general case of problem (ESCOCP) is straightfor
ward. We note that to derive a representation for the linear functionals <T) 1• · > and 
< y, · > the matrix of the partial derivatives of the active mixed control state constraints 
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with respect to u, consisting of rows of the matrices S lu and s~. is required to be of full 
row rank. 

5.1.2. Optimality conditions for problem (EQP/SCOCP). 

In this section optimality conditions for problem (EQP/SCOCP) are considered. B~_ause 
problem (EQP/SCOCP) is a special case of problem (ESCOCP) these conditions will follow 
from the previous section. However for problem (ESCOCP) the optimality conditions in
volve the functions S~ as defined by (3.3.5.7) - (3.3.5.8). 
To apply the optimality conditions of problem (ESCOCP) to problem (EQP/SCOCP) the 
counterpart to the functions S~ must be determined for problem (EQP/SCOCP). 

The state constraints of problem (EQP/SCOCP) are considered individually and are 
denoted by: 

l = l,2, ... k2. (5.1.2.1) 

To the notation S 21 (x; (t ),t ) we note that this function is considered to be a function of 
time only, in contrast to the notation S 21 (x ,t ) where S 21 is considered as a function of x 

and t. 

The partial derivative of (5.1.2.1) with respect to the argument t becomes: 

81',(dx,t) · · · · r · 
--

8
t-- = S21x(x'(t ),t )i'(t) + S21, (x'(t ).t) + i'(t) S 21xx (x'(t ),t )dx + 

( 5.1 .2.2) 

In the formulation of problem (EQP/SCOCP) Definitions (3.3.5.7) - (3.3.5.8) become: 

f 1 

ofi- 1 of;- 1 
·i 

-
8
-t- + ~(fx dx + fu du+ f -x ) 

where Pt is the order of the state constraint (5.1.2.1). 

j=O 

j=l, .... pl 

(5.1.2.3) 

Lemma 5.4: Let the functions S~1 be defined by (3.3.5.7) - (3.3.5.8) and let the functions 
1'1 be defined by (5.1.2.1). lf 

(5.1.2.4) 

then the functions defined by (5.1.2.3) satisfy: 

S~1(xi(t).t)+S~1x(xi(t),t)dx j=0.1.. ... pi-1 l=l.2 .... k2 

Proof : (5.1.2.5) is proved by induction. For j = 0 equation (5.1.2.5) is true by Definitions 
(5.1.2.1) and (5.1.2.3). 

Now suppose (5.1.2.5) holds for some j, with 0~ j <Pl. By definition 
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af; af; ·i Ti +I= 8t + -r;-(fxdx +fudu + f -x ), 

using (5.1.2.5) we obtain 

~; . . . ·c)r. . at= S21.,x' (t) + S21, + x' t S21nd, + S21x,dx 

and 

Combination of (5.1.2.6), (5.1.2. 7) and (5.1.2.8) gives 

f;+ 1 = S~1xxi(t) + s~lt + xi(tYS~lxxdx + S~1xtdx + 

S~1xfJ, + S~1xfudu + S~1xC/-x;(t )). 

(5.1.2.6) 

(5.1.2.7) 

(5.1.2.8) 

(5.1.2.9) 

We now use the special structure of the functions S~1 , induced by the Definition (3.3.5.8), 
i.e. 

and hence 

S~1;1 = s~lxt + S~t.n f + S~1xfx • 

S~1!1 = S~1xfu 

(We note that for (5.1.2.12) use is made of the fact that j <p1 .) 

Substitution of (5.1.2.10) - (5.1.2.12) in (5.1.2.9) yields: 

f /+ 1 = S~/1 + (xi (t )-f)T S~xxdx + S~1; 1dx + S~1! 1du. 

By definition. if j <p1-1. the term S~1! 1 is zero. 
To make the induction step complete use is made of the hypothesis (5.1.2.4). 
D 

(5.1.2.10) 

(5.1.2.11) 

(5.1.2.12) 

(5.1 .2.13) 

Lemma 5.4 provides quite a simple expression for the functions f; which, along a trajec
tory (dx ,du) of (4.2.1.22) may be considered as the time derivative of this constraint. The 
hypotheses of Lemma 5.4 state however, that the state constraints S 2 must be linear func
tions in the variable x. In practice this is quite a heavy assumption. Fortunately, it is 
possible to tranform any problem (SCOCP) which does not satisfy (5.1.2.4) in a way such 
that, for the transformed problem condition (5.1.2.4) will hold. i.e. such that the 
transformed problem has only linear state constraints. This transformation is outlined in 
Appendix B. 

In the sequel we shall always assume that condition (5.1.2.4) is satisfied, because it gives 
the simple expressions of the functions f i1• As a consequence of this the matrix M 6, in the 
object functions of problems (EQP/SCOCP) and (EIQP/SCOCP) will be zero (cf. 
(4.2.1.16)). 

In the general case of problem (EQP/SCOCP) the regularity conditions (5.1.7) and 
(5.1.1.23) require some modification. This is due to the fact that, in the formulation of 
problem (EQP/SCOCP). it is allowed that boundary arcs of various constraints coincide or 
overlap. 
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Using a notation similar to (4.2.1.19) - (4.2.1.20) the k(t )-vector is defined as: 

Rf[t] := Sf, l = 1.2, ... k(t ). (5.1.2.14) 

where SP is defined by (3.3.5.11) and the indices of the active constraints i1 are elements 
of the index set I (t ). 

A straightforward generalization of (5.1.7) and (5.1.1.23) is that the rank of the matrix 
R,f[t] must be k(t ). This is a consequence of the fact that in the approach of Section 5.1.1 
the state constraints are transformed into the mixed control state constraints 

a.e. 0~t~T. (5.1.2.15) 

We are now ready to state the optimality conditions for problem (EQP/SCOCP) which fol
low directly as a generalization of the results contained in Section 5.1.1. 

Theorem 5.5: Let (dx .if.) be a solution to probl,em (EQPISCOCP) and assume 

rank R,f[t] = k(t) a.e. 0~t~T. (5.1.2.16) 

and 

forall j=0,1,. .. p1-1. l=1.2, ... k 2, (5.1.2.17) 

then there exist a real number p":?-0, and vector functions XeNBV[0,T]n, rj"EL 00 [0,Tl 1+k 2 

and vectors <TE ]Re , µE JR 9 , and numbers lih, vlj, not all zero, such that, 

~°(t )T = - X (t )T fx [t] - rj(t )TS f[t] - Pfox [t] 

- pd, (t )TM i[t] - pd. (t )TM it ] 

X(O)T = - phox [O] - (TT Dx [O] - pdx (o)T Ml• 

X(T)T = pg Ox [T] + µT .E, [T] + pdx (T )TM 5, 

X(t )T fu [t] + rj(t )TS ,f[t] + Pfou [t] + 

a.e. 0~t ~T. 

pdx (t )TM itl + pd. (t )TM itl = O a.e. o~ t ~ T. 

rj, (t ) = 0 if l e I (t ) 0~ t ~ T. 

At an entry point t~i-l of the state constraint f I the multiplier X satisfies : 

P1 

X(t~j -1 +) = X(t ~j-1 - ) - r, /3,) s~,:;;- 1[t~j -1 J. 
k=l 

At a contact point t ~mf + i of the state constraint f I the multiplier X satisfies : 

X(t 2
1 

h+ +) = X(t 2
1 

h+ -) - iilj S21x [t 1
2 h+.]. m1 J m1 J m1 J 

(5.1.2.18) 

(5.1.2.19) 

(5.1.2.20) 

(5.1.2.21) 

(5.1.2.22) 

(5.1.2.23) 

(5.1.2.24) 

We remind the reader to Definition (3.3.5.11) of SP and that in the formulation of prob
lem (EQP/SCOCP) the notation [t] is used to replace argument lists involving x; (t ). 
u;(t ), >._i(t ). etc. 

With respect to Theorem 5.5 we note that it does not explicitly include the case of coincid
ing entry - and contact points. In these cases however. the jump conditions (5.1.2.23) and 
(5.1.2.24) are generalized in a straightforward manner. 
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5.1.J. Linear multipoint boundary value problem for the solution of problem 
(EQP/SCOCP). 

When it is assumed that problem (EQP/SCOCP) has a solution for which the regularity 
constant jS may be set nonzero, then, under certain hypotheses, the solution of problem 
(EQP/SCOCP) can be obtained as the solution of a linear multipoint boundary value prob
lem. 

Theorem 5.6: If probl,em (EQPISCOCP) has a solution for which the regularity constant jS 

may be set nonzero, and 

for all j = 1.2, ... p1-1. l = 1.2 .... ,k 2 , 0~ t ~ T. ( 5.1 .3.1) 

and 

IM it ] R,f [t y I -
rank R,f[t ] 0 = m + k (t ) a.e. O~t~T. (5.1.3.2) 

then the solution of problem (EQPISCOCP) can be obtained as the solution of the following 
set of equations : 

[ 
Rf[t] 

M3[tY 

711 (t ) = 0 if l t I (t ) 0~ t ~ T, 

[D;}~l ~] [t~}] + [n, foy ]u = - [h~~~~T] · 
[E~:l ~1] [ic~}] + [E, l~Y ]µ = - [g~;f)i]. 

( 5.1.3.3) 

( 5.1.3.4) 

( 5.1 .3.5) 

( 5.1.3.6) 

(5.1.3.7) 

j=l.2, ... ml l=l.2 ... kz, (5.1.3.8) 

s~,[t~j-1 l + s~1Jt~j-1 ]d, Cr~j-1) = o 

k=O.l.. .. p1-1 j=l.2 .... m/ l=l.2 ... k 2 , (5.1.3.9) 

X(t'2 b+·+) = X(t 1
2 "+_-)- V1;·S21,-[t 12 b+Y m1 J m1 J m1 J 

j=l.2 .... m{ l=l.2, .. kz, (5.1.3.10) 

[ I l [ I ]- I -S 21 t zmf+ j + S 2/x t Zm,'+ j d, (t Zmf+ j ) - 0 j= 1,2 .... m{ l= 1,2, .. kz. ( 5.1 .3.11) 

The theorem follows directly from the combination of the constraints of problem 
(EQP/SCOCP) and the optimality conditions of Theorem 5.5. The system of equations of 
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Theorem 5.6 becomes a standard linear multipoint boundary value problem, when 
(5.1.3.4) and (5.1.3.5) are used to eliminate the control du and the multiplier 7J from 
(5.1.3.3). This is possible as a result of assumption (5.1.3.2) and hence du and 7J satisfy an 
equation of the form 

I~ (t) I = A (t) [d_:_ (t) I + b (t) 
ri(t) >.(t) 

a.e. O~t ~T. (5.1.3.12) 

Equations (5.1.3.6) and (5.1.3.7) constitute boundary equations for the differential equa
tion (5.1.3.1) (combined with (5.1.3.12)), whereas (5.1.3.8) and (5.1.3.9) constitute inte

rior point conditions. 

5.2. Solution of problem (EIQP/SCOCP/A). 

This section deals with a method for the solution of problem (EIQP/SCOCP/ A). The main 
problem we are faced with is the determination of the active set of constraints, because 
once this set is known. the solution of problem (EIQP/SCOCP/A) may be obtained as the 
solution of problem (EQP/SCOCP). Problem (EQP/SCOCP) may be solved via the solution 
of the linear multipoint boundary value problem discussed in Section 5.1.3. For simplicity 
we shall assume, throughout this section, that problem (EIQP/SCOCP/ A) has a unique 
solution. 

The method for the solution of problem (EIQP/SCOCP/A) that is proposed in this section, 
is an adaptation of a well known method for the solution of finite-dimensional quadratic 
programming problems, which has the following characteristics (cf. Appendix A) : 

1) The method has an iterative nature, using as candidates for the solution, solutions to 
quadratic programming problems with only equality constraints. 

2) The iterates are all feasible points, i.e. the complete set of inequality constraints of the 
quadratic programming problem are satisfied during each iteration. 

3) The active set strategy consists of the addition of constraints to the working set when
ever the step size a; is restricted, or the (possible) deletion of constraints from the 
working set. whenever the direction of search becomes zero and one or more Lagrange 
multipliers have a wrong sign. 

Essentially each iteration of the method consists of the following three steps : 

(i) Calculation of a direction of search. 

(ii) Calculation of a step size. 

(iii) Updating the working set (active set strategy). 

One iteration of the method for the solution of problem (EIQP/SCOCP/A) consists essen
tially of the same steps (i). (ii) and (iii). The adaptation of these steps will be considered 
individually. 

In steps (i) and (ii) the working set, i.e. the current estimate for the active set of con
straints in a solution point of problem (EIQP/SCOCP/A), is kept fixed and given a working 
set: 

w := w 1xw2x ..... xwk 1+k 2, 

a solution of problem (EQP/SCOCP). denoted (d:.J,;), is a (new) candidate for the solu
tion of problem (EIQP/SCOCP/ A). This is because the definition of problems 
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(EQP/SCOCP) and (EIQP/SCOCP/ A) show that when the working set of problem 
(EQP/SCOCP) is the active set of problem (EIQP/SCOCP/A) then the solutions of both 
problems are the same. Hence an obvious choice for the direction of search in the ith itera
tion. denoted (Ad; .Adj) is: 

Adi -- J; - d}. 

Adj -- dj - dj. 

(5.2.1) 

( 5.2.2) 

where (d ~ ,dj) denotes the iterate in the ith iteration. (We note that this choice is entirely 
analoguous to the finite-dimensional case). 

Now the determination of the step size a; is considered. i.e. 

dj+I ·- dj + a;Ad;. 

dj+I .- dj + a;Adj. 

( 5.2.3) 

(5.2.4) 

In the finite-dimensional case the step size a; is chosen so that the objective function is 
minimized along the direction of search subject to the restriction that (dj+ 1,dj+1

) must be 
a feasible point of the constraints of the problem. 

We shall show that in the case of problem (EIQP/SCOCP/ A) such a choice is not always 
possible (cf. Figure 5.1). 

s i 
--.t 

~-. - S 21 [t ]+S21, [t ]dj(t) 

S 21 [t ]+S21,- [t ]dj (t) 

Feasible point and infeasible direction of search. 
Figure 5.1 

The case considered is of a state constraint which has a working set W1 = [t 1.t 2]. The solu
tion of problem (EQP/SCOCP). i.e. J;. is not a feasible point of the state constraint, 
because 

S 21 [t;:2] + S 2/x [t;:2]d} (t;.2) > 0 

For the values aE [O,a). with 

_ . S 21 [i/] + S 21x [i;:2]d~ (i;.2) 
a .=-----------

S 21x [t,.2]Ad} (t,.2) 

the objective function is as a function of a decreasing and the points 

dx(t;a) -- d;(t)+aAdi(t), 

du (t ;a) .- dj(t) + aAdj(t ). 

are feasible, because for a E [O.ii") 

(5.2.5) 

( 5.2.6) 

(5.2.7) 

(5.2.8) 

93 



Chapter 5 

S21[t;.2] + S2ix[t;.2]d, (t;_2;a) < 0. ( 5.2.9) 

However. the point (dx (t ;a),du (t ;a)) is not feasible, because 

(5.2.10) 

In spite of this fact. we still would like to choose the step size a; .- a, because the objec
tive function is as a function of a decreasing on [O,a) and (d, (t ;a),du (t ;a)) is 'almost' 
feasible. We now define : 

Deftnition5.7: A pair of functions dxEW 1_00 [0,Tf and duEPC[0.T]m are called A
feasible with respect to the constraints of problem (E1QPISCOCPI A) if they satisfy : 

dx = fx [t ]dx + fu [t ]du + f[t] - xi (t) 

D [0] + Dx [0]dx (0) = 0, 

E[t] + Ex[T]dx(T) = 0, 

a.e. 0~t~T. 

S 1[t;:1-] + S Ix [t;:1- ]dx (t,:1) + S Ju [t;.1- ]du Ci?-) ~ 0 for all r = 1.2 .... p 1, 

for all r = 0.1, ... p 2-

(5.2.11) 

(5.2.12) 

(5.2.13) 

(5.2.14) 

(5.2.16) 

It is obvious that when (a; ,dJ) is A-feasible. and strict inequality holds for all constraints 
(5.2.14) - (5.2.16) which are not in the working set in iteration i. then it is always possi
ble to select a nonzero step size O!; such that (dj+1,aJ+ 1) is also A-feasible. Thus contrary 
to the finite-dimensional case. the iterates (dj ,dJ) are in general not feasible. but only A
feasible. i.e. the state equality constraints may be violated at interior points of boundary 
intervals. On the other hand they will always be satisfied at junction and contact points 
(at all grid points). 

As a consequence of this the direction of search consists of two components. A range space 

component, which is a result of the constraint violation (i.e. to restore (dj ,dJ) from A
feasible to feasible) and a null space component, which is the actual direction of descent of 
the objective function in the tangent subspace of the constraints. t 
We now turn to the active set strategy. i.e. how the working set is modified in each itera
tion. This active set strategy is performed after the step size a; has been determined. 

Similar to the finite-dimensional case a constraint is added to the working set when the 
step size O!; is restricted by one or more constraints. Considering the example of Figure 5.1, 
the interval (t 2.t/] is added to the working set. In the finite-dimensional case. only one 
constraint is added to the working set in order to maintain that the constraint matrix 
remained of full row rank. In the present case however, an infinite number of constraints 
are added to the working set. because the constraint must hold at all time points of the 
interval (t 2.i?J. In a numerical setting this may in fact cause trouble, i.e. a matrix of con
straint normals. which approximates the constraints of problem (EQP/SCOCP) may 
become rank deficient as a result of the addition of several constraints in one iteration (cf. 
Appendix E4). 

t We note that with the method of Appendix A, only the null space component needs to be computed, 
because the range space component is always zero. This fact was used in the replacement of (A13) -
(A15) by (Al6) - (A18). 
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In the case that the step size a; is restricted by more than one constraint. i.e. equality 
holds for several constraints (5.2.14) - (5.2.16) at the point (a;+ 1,a;+1 ). which were strict 
inequalities at the point (d; ,d;), then only one such constraint is added to the working set. 
This strategy is similar to the (conservative) strategy of the method for the finite
dimensional case and is followed in the hope to circumvent problems of rank deficiency 
mentioned above. Using this strategy it is possible that the step size a; becomes occasion
ally zero, because a constraint which is satisfied as an equality at the point (d; ,dJ) is not 
necessarily in the working set. 

We now turn to the subject of deleting constraints from the working set, when the direc
tion of search has become zero. 

First we note that when the direction of search has become zero. then (d; .d~) must be a 
solution to problem (EQP/SCOCP) with the current working set and hence a feasible point 
of the constraints. 

In the finite-dimensional case, only one constraint. which has a Lagrange multiplier with a 
wrong sign. is deleted from the working set. The situation of the present case however. is 
considerably more complex. Reasons for this are. that it seems not possible to derive 
optimality conditions for problem (EIQP/SCOCP/ Li) using the theory contained in Chapter 
2, and the fact that the state constraints of order greater than zero represent implicit con
straints on the control. 

The elimination of constraints from the working set, takes in the present case the form of 
the elimination of time points or time intervals from one of the working sets w/- 1• i.e. 
the working sets which were used in the previous iteration for the constraints (cf. 
(4.2.1.18)) : 

(5.2.17) 

The determination as to which point(s) can be deleted from the working sets is based on 
the Lagrange multipliers ( fj,/31t .v1,. ). which are obtained as the solution of the linear mul
tipoint boundary value problem (5.1.3.3) - (5.1.3.11). 

The first k 1 components of the vector fj are the Lagrange multipliers associated with the 
mixed control .state constraints 

t E W/-l l = 1, .... ,k 1. (5.2.18) 

The last k 2 components of the vector fj are Lagrange multipliers associated with the con
straints : 

(5.2.19) 

which may formally be interpreted as the p1 th time derivatives of the state constraints : 

(5.2.20) 

The multipliers lil are Lagrange multipliers associated with the entry point constraints at 
-2 . 
t,. . 1.e. 

(5.2.21) 

The multipliers v1,. are Lagrange multipliers associated with the interior point constraints 
-2 . 

at t,- • 1.e. 
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(5.2.22) 

The actual determination as to which point(s) are deleted from the working sets is based 
on the signs of the Lagrange multipliers corresponding to the state constraint(s). For the 
mixed control state constraints (5.2.18) and the interior point constraints (5.2.22). the 
Lagrange multipliers are directly available (i.e. the first k I components of the vector 11 and 
the multipliers v1, ). For boundary intervals of the state constraints (5.2.20) the Lagrange 
multipliers may be obtained from the last k 2 components of the vector 11 and the numbers 
-k 131, as : 

dp111k +1Ct) 
1101 (t):=(-ll' 1 

dtp' 
(5.2.23) 

The Lagrange multipliers associated with entry - and exit point constraints of the form (t 1 

is an entry point and t 2 is an exit point) : 

S~1- 1[ti) + S~1;1[t1]d,(t1) = 0 k=l.. ... ,pl. 

s~1- 1[t2l + st1:-1[t2ld,Ct2) = o k=1... .. ,P1• 

are respectively : 

(5.2.24) 

(5.2.25) 

(5.2.26) 

(5.2.27) 

The active set strategy consists of the elimination of one time point or one time interval 
from the working set and is based on these multipliers. 

The criteria which are used to delete time points from the working sets may now be sum
marized as follows ( these rules are in fact based on the more rigorous results contained in 
Appendix C) : 

Case 1 : Boundary intervals of mixed control state constraints. 
1t is supposed that the Lagrange multiplier corresponding to this constraint, 111 • 

is continuous on boundary intervals. If at some grid point i;.1. the multiplier 111 

is strictly negative, then the interval (i?_ 1 ,t, 1+1 ) can be deleted from the work
ing set, provided lt,1

_ 1 -t,\- 1 I is 'sufficiently' small (Lemma C2). The results in 
Appendix C do not give any information about how small the interval must be. 
Fortunately. for the specific numerical implementation of the method, it can be 
shown that the numerical approximations to the multipliers 111 are also 
Lagrange multipliers of a certain finite-dimensional quadratic programming 
problem (cf. Section 6.1.2). Therefore, for any mixed control state constraint 
with a Lagrange multiplier having wrong sign at a grid point i;.1. the interval 
(i? ... 1 .i::1+1) may be deleted from the working set. 

Case 2 : Contact points of state constraints (order;;,,. 1). 
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s T S 1 [t ]+ S Ix [t ]di (t )+ S lu [t ]d j (t ) 

~t ~------;-_- -·-·::···-_---------·· 

~-I tr tr+! 

SI [t ]+ S Ix [t Jd; (t )+ S Ju [t ]dj (t ) 

Cases 1 and 3. 
Figure 5.2 

Case 3 : Interior points of boundary intervals of state constraints (order ~ 1). When the 
multiplier 7Jo, is strictly negative at a grid point t,.2 which is also an interior 
point of a boundary arc, then the interval (i;:2_ 1 ,t;:2+1 ) can be deleted from the 
working set, provided lt;:2+ 1 -i;:2_1 I is sufficiently small (Lemma C5). 

Case 4 : Entry- and exit points of boundary intervals of first order state constraints. 
To each entry- and exit point of a first order state constraint, one multiplier v1? 
is associated. If the multiplier v1? is strictly negative, then the boundary inter
val can be reduced. provided the interval which is eliminated from the working 
set is sufficiently small (Lemma C4). 

Case 5 : Entry- and exit points of second order state constraints. 
For the sake of brevity we consider only the case of an entry point, because the 
case of an exit point is quite similar. 

To each entry point of a second order state constraint two multipliers are asso
ciated, i.e. vi? and vl. 

s i 

_,- _,.,< S 21 [t]+ S 2/x [t ]J; (t ) 

-->t 

/ 

/ S 21 [t ]+ S 2/x [t ]d ~ (t ) 

Cases 4 and 5 .1. 
Figure 5.3 
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Case 5.1 : If 

_ 0 vl 
V1r - 2 2 < 0, 

t,. +l -t,. 

then, the interval [i?.i/+1 ) can be eliminated from the working set, provided 
this interval is sufficiently small. In this case the entry point t;.2 is eliminated 
itself and the boundary arc is thus reduced (Lemma C3, part (i)). 

Case 5.2: If 

and 

vl < o. 
and, i-:.2+ 1 is not an exit point, then the interval (t,.2 .t/+2 ) can be eliminated from 
the working set, provided I i-:.2+2 -i";.2

1 is sufficiently small (Lemma C3, part 
(ii)). 
In this case the entry point becomes a contact point and the boundary arc is 
reduced. 

-t 

Case 5.2 
Figure 5.4 

The various cases are visualized in Figures 5.2 - 5.4. 

From the rules stated above it becomes clear that. when the multipliers U::.rf.a'",µJjl ,v1, ) 
satisfy the conditions (5.2.28) - (5.2.33). then no time points will be deleted from the 
working set. 
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for all r = 0,1, ... p 1, l = l,. .. k 1, 

for all contact points 

for all interior points of boun
dary intervals of state con

straints 

for all entry- and exit points 

of first order state constraints 

for all entry points of second 
order state constraints 

for all exit points of second 

order state constraints 

(5.2.28) 

(5.2.29) 

(5.2.30) 

(5.2.31) 

(5.2.32) 

(5.2.33) 

On the other hand. if the multipliers do not satisfy these conditions then improvement of 
the objective function can be made by deleting time points from the working set. However, 
in the case that a time interval is eliminated from the working set (cases 3 - 5). a !:i.
feasible direction of search can only be garantueed if the interval is 'sufficiently small'. 
If the junction and contact points are restricted to an a priori chosen and fixed grid, this 
condition may not always be satisfied. Both situations are depicted in figures 5.5 and 5.6. 

sr 

I 
I 

---, t 

'<----- S2tft ]+S21., [t ]di(t) 

S 2/ [t ]+ S 2/x [t w:: (t ) 

!:i.-feasible direction of search. 
Figure 5.5 

A possible remedy for this problem is to check whether the direction of search is or is not 
!:i.-feasible and in the case that the direction of search is not !:i.-feasible to adjust the grid !:i.. 
We note that up to this point the grid !:i. was treated as though it is specified in advance 
and kept fixed throughout the first stage of Algorithm 4.4. An advantage of this remedy 
is that after the grid !:i. is modified properly, it is possible to continue the algorithm and to 
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---'>t 

Infeasible direction of search. 
Figure 5.6 

stop only at a point (d1 ,dJ) which is a solution to problem (EQP/SCOCP) and for which 

the Lagrange multipliers. corresponding. to the solution of problem (EQP/SCOCP) satisfy 
the conditions (5.2.28) - (5.2.33). 

The strategy which is used to modify the grid A is essentially motivated by the same 
arguments as the rules for the active set strategy. The following cases may be dis
tinguished : 

1) An interval interior of a boundary arc was eliminated from the working set. In this 
case the grid A is 'too course' and the grid may be adjusted by inserting additional grid 
points in the interval which was deleted. 

2) An entry- or exit point was eliminated from the working set. In this case, it is 
sufficient to shift the grid point which was deleted from the working set. The actual 

time point to which the grid point is shifted is simply determined by reducing the 
corresponding interval with a constant factor. 

The algorithm outlined above may be summarized as follows : 

Algorithm 5.8 : 

(0) Given a A-feasible pair (d,0 ,d,,°). 
i :=O. 

(i) If (df .d:) is feasible, the direction of search ( Ad;- 1,1:;.dJ- 1) was zero and the 

Lagrange multipliers corresponding to the solution of problem (EQPISCOCP) satisfy the 
conditions (5.2.28)- (5.2.33), then ready. 

(ii) Calculate a /:;.-feasible direction of search ( Ad) ,!:;.dJ ). 

(iia) Calculate a direction of search ( Ad; ,Ad,;), based on the solution of problem 
(EQPISCOCP). 

(iib) If the direction of search is not feasible for the constraint which was deleted from 
the working set in the iteration i-1, then "Modify the grid/:;." and goto (iia). 

(iii) If II (Ad; ,Adj)II = 0 then goto (vii). 

(iv) Calculate a step size a; and set 
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(v) If the step size ex; was restricted by one or more constraints, add one of these con
straints to the working set. 

( vi) i : = i + 1. 
goto (i) 

( vii) Check signs of multipliers and, if possible, delete a constraint from the working set. 
goto (ii). 

In Algorithm 5.8 it is assumed that an initial A-feasible point (d},du0 ) is available in step 
(0). In general however, as in the case of finite-dimensional quadratic programming, such 
a point is not available. 

With finite-dimensional quadratic programming an initial feasible point may be computed 
using a phase 1 - simplex procedure (cf. Gill et al. (1981)). This phase 1 - simplex pro
cedure may be started with an arbitrary point and generates directions of search for a 
linear programming problem by means of a simplex strategy. 

A related method is to make use of an algorithm which is essentially similar to Algorithm 
5.8. As with the phase 1 - simplex procedure, the constraints of the problem are put in the 
objective function when they are violated at the current point, or treated as constraints 
when they are satisfied at the current point. The objective function for the linear pro
gramming problem takes the following form : 

k 1+k 2 

f(d,,du):= r, Jcs1,[t]dx +S1u[t]du)dt, (5.2.34) 
l=I w

1
+ 

where 

( 5.2.35) 

Instead of using the simplex technique for the generation of a direction of search, a direc
tion of search can be determined as the solution of a quadratic programming problem (i.e. 
as in Algorithm 5.8). this is done by means of augmenting the objective function (5.2.34) 
with the term 

½{x(O)Tx(O)+ c/(x(t)Tx(t)+u(t)Tu(t))dt +x(T)Tx(T)J. (5.2.36) 

The solution of the resulting quadratic programming problem has the interpretation of the 
negative gradient of the objective function (5.2.34) projected on the subspace of feasible 
points. 

The starting point of this procedure is in general arbitrary. A plausible choice is to take the 
solution of problem (EQP/SCOCP) with the last working set which was used in the previ
ous iteration of Algorithm 4.4. When this point is feasible with respect to the constraints 
of problem (EIQP/SCOCP/ A). then Algorithm 5.8 is started at this point and when it is 
not feasible. then the point is used as a starting point of the phase 1 procedure outlined 
above. 
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S.J. Determination of the active set of problem (SCOCP). 

This section deals with the active set strategy that is to be executed in step ( vii) of Algo
rithm 4.4 and which plays a key role in the second stage of the method. Obviously. con
vergence of the first stage of the method is assumed and hence an estimate of the solution 
of problem (SCOCP) together with estimates for the Lagrange multipliers are available. 
Assuming the direction of search became zero in the last iteration of the first stage. these 
estimates have the interpretation of an approximation to the solution on the grid A as dep
icted in Figure 5.7 for a scalar state constraint. 

ten 

~~~- ' 

lenten
1 

t., 

. --,-. 

----, t 

approximation on grid A 

'~.-solution 

_,- ,approximation on grid A 

solution 

-->t 

Solution of first stage and exact solution. 
Figure 5.7 

In general this approximation will not satisfy the constraints nor the optimality conditions 
of problem (SCOCP) completely. As an example consider Figure 5.7. the state constraint is 
violated just after the constraint switches from active to inactive and the multiplier g is 
not nondecreasing because it has a negative jump at t ,n· 
Using the active set strategy described in this section. the entry- . exit- and contact points 
are adjusted, in order to make convergence to a point which satisfies the constraints and 
the optimality conditions of problem (SCOCP). possible. 

As the example of Figure 5. 7 already indicates. the adjustment of the junction and contact 
points has a local character and hence the adjustment of the different junction and contact 
point is done completely independent of each other. 

In this section we shall consider only those cases where junction and contact points of 
different constraints do not coincide. A strategy for more general cases is still to be investi
gated. Two different strategies for the computation of the actual amount of shift of the 
junction and contact points are described in Subsections 5.3.1 and 5.3.2. (For a more 
detailed treatment we refer to Souren ( 1986).) 
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5.3.1. Determination of the junction and contact points based on the Lagrange multi
pliers. 

One way to adjust the junction and contact points is based on the violation of the con
straints and the conditions that the Lagrange multipliers corresponding to the state con
straints must satisfy. This method was in fact already outlined in Figure 5.7. 
The entry point ten is shifted to the point t,,,•. where l(t,n)=l(t.;), i.e. l(t)-l(t.n)<O 
on (t en•t ,;) and g(t )-l(t ,n)> 0 on (t ,;.T]. The exit point t,x is shifted to a point where 

~;: (x (t,x '),u (t,, '),t,x ') = 0. 

Similar to the description of the active set strategy in Section 5.2 a number of different 
cases may be distinguished. 

Case 1 : Entry- and exit point of boundary intervals of mixed control state constraints. 
We shall only consider the case of an entry point. because exit points are treated 
similarly. The situation which is likely to occur in the optimal point is depicted 
in Figure 5.8. 

ten 

~ 
~ -t t 

Solution. 
Figure 5.8 

S11(xi(t ).u;(t ).t ;Wi) 

If the structure of the solution is correct. but the entry point of the constraint 
is not correct, then one of the two situations depicted in figures 5.9 and 5.10. 
will arise. t 

t S 11 (x 1 (t ),u 1 (t ),t ;Wi) and TJ{,(t ;Wi) denote the value of the mixed control state constraint 
S 11 a'!d the multiplier TJ 11 along the current approximation to the solution in iteration i , with working 
set W'. 
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104 

In the case depicted in Figure 5.9, a new estimate for the entry point, t ,n' is 
determined as : 

( 5.3.1.1) 

ten 

- t 

ten 

- t 

Adjustment of entry point based on multiplier 'T);. 

Figure 5.9 

sf 
--.t 

ten ~ t 

Adjustment of entry point based on constraint violation. 
Figure 5.10 
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In the case depicted in Figure 5.10. a new estimate for the entry point. t.; is 

determined as : 

S 1/ (x; (t en'),u; (t .,,'),t ,,,';Wi) = 0. (5.3.1.2) 

Case 2: Contact points of state constraints (order ~ 1). The situation which will occur 
when the value of the contact point is not correct. is depicted in Figure 5.11. In 
this case the new estimate of the contact point. tc' satisfies : 

dS21 (xi (tc ').tc ';Wi) 
-------- = 0. 

dt 
(5.3.1.3) 

s r 
-->t 

Adjustment of contact points. 
Figure 5.11 

Case 3 : Entry- and exit point of boudary intervals of state constraints (order ~ 1). 
This case is depicted in Figure 5. 7. In the case that there is a violation of the 
constraint (near the exit point in Figure 5. 7), then the strategy is similar to the 
case of a mixed control state constraint with S 1/ (x; (t ),u; (t ).t ;W;) replaced by 

Si\(xi (t ).u; (t ).t ;W; ). i.e. the p1-th time derivative of the state constraint. In 

the case that the Lagrange multiplier g/ is not nondecreasing on [0.T]. then the 
junction points are adjusted as depicted in Figure 5.7. 

We note that in the actual implementation of the method the "nondecreasing" 
condition fort/ is expressed in terms of the multipliers {3 1 and 71 1 as defined by 
(3.3.6.2) - (3.3.6.3). For first order state constraints this means that directly 
use is made of the multiplier y that is associated with the mixed control state 

constraint Sil (cf. Lemma 5.3). 

Following the strategy outlined above, the junction and contact points are adjusted using 
the following scheme : 

(5.3.1.4) 

because the solution of problem (EQP/SCOCP). which is used as a direction of search in 

the second stage of Algorithm 4.4. is governed by the working set W;. Assuming that 
shifting junction and contact points gives only local variations in the solution we replace 
(5.3.1.4) by: 

(5.3.1.5) 

which reveals that the iteration process is essentially a fixed point iteration. When cl> is a 
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smooth function we shall have linear convergence if <I>'(ten) ;c O (ten denotes the optimal 
entry point) and quadratic convergence if <l>'(t,n)=O. If <l>'(t,n) ;c O and <l>'(ten) ;c 1 then 
the rate of convergence of the iteration process may be improved by modification of 
(5.3.1.5) to a secant iteration process. 

5.3.2. Determination of the junction and contact points based on the Hamiltonian. 

An alternative way to adjust the junction and contact points is based on the results con
tained in Theorem 3.12, which state that for all junction and contact points t the follow
ing jump condition must hold : 

H[t +] = H[t-] - d {(t)T S2, [t]. (5.3.2.1) 

Given an approximation to the solution (xi ,ui ,Ai :ri{.{; ,o-i ,µi) we now define for each 
junction and contact point : t 

(5.3.2.2) 

and we consider the equation 

(5.3.2.3) 

where t is a junction or a contact point. Equation (5.3.2.3) may be solved via a standard 
strategy. which determines a zero of a nonlinear function of one variable. The iterates of 
such a strategy will be used for the working sets for successive iterations of Algorithm 
4.4. This strategy will in general yield good results, provided J H '(t) ;c 0. Unfortunately. 
practical examples exist for which J H '(t )= 0 (cf. Figure 5.12). This is a serious drawback 
for the use of this technique in a general solution for problem (SCOCP). 

' \ 
\ 

/- JH'(t) = 0 

I---_,__' - JH '(t) ;c 0 

-t 

Defect of jump condition v.s. junction or contact point. 
Figure 5.12 

t Note that in (5.3.2.1) straight brackets were used to replace argumentlists involving the solution of 
problem (SCOCP) and in (5.3.2.2) these brackets were used to replace argumentlists involving the 
current iterate. 
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6. Numerical implementation of the method. 

This chapter deals with the most important aspect of the numerical implementation of the 
method, i.e. the numerical solution of the linear multipoint boundary value problem, 
which is to be solved in order to obtain a numerical approximation to the solution of prob
lem (EQP/SCOCP). Section 6.1 deals with a motivation for the choice of the integration 
method and an inspection of the set of linear equations to be solved. The solution of this 
set of equations is considered in more detail in Section 6.2. The truncation errors of the 
integration method are considered in Section 6.3. For the sake of completeness, a number 
of computational details of rather specialized nature are given in Appendices D and E. 

6.1. Numerical solution of problem (EQP/SCOCP). 

6.1.1. Solution of the linear multipoint boundary value problem. 

From Theorem 5.6 we recall that the solution of problem (EQP/SCOCP) can be obtained as 
the solution of the following linear multipoint boundary value problem t: 

I
Dx[O] Ol Id, (0)1 [ O I [ D[O] l 

M1 I >.(O) + Dx[O]T cr = - hox[O]T ' 

N,[ti]dx(ti) = - N[tj], 

X(ti+)= X(ti-)-N,[tiYXi• 

IE~:] ~JI[;(~;]+ IEx[~]T Iµ= - [g:,~~]JT ]. 

0~ t ~ T (6.1.1.1) 

(6.1.1.2) 

(6.1.1.3) 

(6.1.1.4) 

(6.1.1.5) 

(6.1 .1.6) 

where 'Y)1 denotes the k(t )-vector of components of the multiplier 'Y) corresponding to the 
active constraints. The matrices N., [ti] and the vectors N [t j ] represent the interior point 
constraints (5.1.3.9) and (5.1.3.11). The vectors Xi contain the multipliers 131) and v1i. 
The notation ti is used for the junction and contact points, in order to simplify notation. 

The set of equations (6.1.1.1) - (6.1.1.6) can be transformed into a standard linear mul
tipoint boundary value problem, by means of substitution of 

Id,, I [Rt O 1-l 
'Y)J = - M4 (Rt:Y I R.f O l [dx I [RP I Mf f[ X + /o,, ' (6.1.1.7) 

into (6.1.1.1) and elimination of the vectors c;, Xi andµ using: 

(6.1.1 .8) 

t Obviously, it is assumed that the hypotheses of Theorem 5.6 hold. 
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Xi = (Nx [ti Y)+(>.(t i - ) - ">..(ti+)). 

µ = - (Ex[TY)+(gox[T]T + ">..(T)- Msdx(T)). 

(6.1.1.9) 

(6.1.1.10) 

Substitution of respectively (6.1.1.8) in (6.1.1.3). (6.1.1.9) in (6.1.1.5). and (6.1.1.10) in 
(6.1.1.6) yields a set of 2n boundary conditions and 2n interior point conditions at each 
point ti. t 
Equations (6.1.1.1) - (6.1.1.6) can thus be transformed into : 

v (t ) = A 1 [t ]v (t ) + B 1[t ]w (t ) + c 1[t ] 

0 = A 2[t ]v (t ) + B i[t ]w (t ) + ci[t] 

Kov(O) +lo= 0. 

a.e. o::,;;t::,;;T, 

a.e. o::,;;t,:,;;T, 

K/v(ti+) + xi-v(ti-) + li = 0 all j. 

(6.1.1.11) 

(6.1.1.12) 

(6.1.1.13) 

(6.1.1.14) 

Krv(T) +Zr= Q. (6.1.1.15) 

For the numerical solution of ordinary boundary value problems two types of methods 
may be distinguished: 

1) Shooting methods. 
For linear boundary value problems these methods are called methods of particular 
solutions. Of practical importance are multiple shooting methods. With these methods 
the entire interval [0.T] is divided into a number of subintervals. The values of the vec
tor v are estimated at one side of the subinterval and the values on the other side of 
the subinterval are obtained as the solution of an initial value problem. The solution 
obtained in this way will not be continuous on boundary points of successive subinter
vals. nor will it satisfy the boundary - and interior point conditions. Using the defect 
of the boundary -. interior point - and continuity conditions of a number of solutions 
with different initial values of the vector v. it is possible to compute the correct initial 
values of v (cf. Stoer et al. (1980) and Miele et al. (1968)). 

2) Approximation methods. 
With these methods the time functions v are approximated using a finite-dimensional 
base. The equations (6.1.1.11) - (6.1.1.15) yield in a way dependent on the actual 
method. a set of linear equations. This usually large and sparse system of equations 
may be solved using sparse matrix techniques. 

In the implementation of Algorithm 4.4 an approximation method is chosen in favour of a 
shooting method. because of the following arguments: 

a) For shooting methods usually a Runge-Kutta like integration method is used, in order 
to allow control of the truncation error in solving the initial value problem. Because the 
right hand side of (6.1.1.11) dependents on the current estimate (x; ,u; .A; :71{,g;) of the 
solution of problem (SCOCP). some kind of interpolation of the time functions 
(x; ,u; ,A; :71{,g;) is required. Practical experience showed that this may cause problems 
(cf. Souren (1984)). With an approximation method these problems are circumvented 
by the use of a fixed step integration method. :j: 

t In addition to equations (6.1.1.4) - (6.1.1.5) use is made of the condition d, (t j + )= dx (t j - ). 

* For the implementation of the active set strategies, discussed in Sections 5.2 and 5.3, an interpolation 
scheme for the time functions is required anyway. 
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b) At every time point where the right hand side of (6.1.1.11) is to be evaluated. the 
equation 

must be solved for w. 
It is considered an advantage of approximation methods that the equations (6.1.1.11) 
and (6.1.1.12) can be treated similar. 

c) The actual implementation of the particular approximation method chosen can be 
linked directly to the solution of a large. sparse quadratic programming problem. This 
allows a more or less standard numerical approach (cf. Section 6.2). 

Within the class of approximation methods a distinction can be made between finite 
difference methods ( with extrapolation) and collocation methods. It can be shown that for 
higher order methods. collocation methods using polynomials of order ~ 2 are more 
efficient than finite difference methods (cf. Souren (1986)). Therefore only methods of this 
type will be considered here. 

The time functions are approximated using piecewise polynomials on [0.T]. i.e. given a grid 

(6.1.1.16) 

the function v(t) is approximated using lth-degree polynomials on (t,. .t,.+ 1). For each time 
function this yields l +1 coefficients on each subinterval (t,. .t,.+ 1). One of these coefficients 
will be determined by the fact that the function v must be continuous at the points t,. (or 
must satisfy equation (6.1.1.15)). The other l coefficients are determined by the condition 
that the differential equation must be satisfied at l distinct points on the interval (t,. .t,. +1). 

These points are called the collocation points. which are defined using l numbers P; which 
satisfy: 

0 ~ P1 < P2 < ······ < P1 ~ 1. (6.1.1.17) 

The collocation points on (t,. .t,. +1) are defined by : 

i = 1 .....• l r=0.1.. .... p-1. (6.1.1.18) 

where 

h,. ·- t,.+ 1 - t,.. (6.1.1.19) 

Because the approximating functions are polynomials on the intervals (t,. .tr+l) the time 
points 'i J. where (6.1.1.15) must be satisfied. can only be points of the grid (6.1.1.16). 
This yields automatically the grid A2 (cf. (4.2.2.1) - (4.2.2.3)). i.e. the grid to which the 
junction and contact points of the state constraints with order ~ 1 of problem 
(EIQP/SCOCP) are restricted during the first stage of the solution process. The grid A 1 • i.e. 
the grid to which the junction and contact points of the mixed control state constraints are 
restricted may be chosen to be all collocation points. The reason for this is that in the col
location method these constraints enter the formulation only at these points. i.e. only the 
values of the mixed control state constraints on the collocation points are required (see 
description of the collocation scheme below). 

The collocation scheme is governed by the actual parameterization scheme used for the 
finite-dimensional representation of the (approximating) time functions. There are two 
obvious alternatives to this parameterization : 
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1) The truncated power base is used to represent the time functions on the interval 
(t,. .t,.+1), i.e. 

I 
V (t ) = L, V 1 ,; (t -tr); t,. ~ t < t,+I· 

i= () 

In this case the coefficients of the polynomials, v,. ,; , are used as parameters in the collo
cation scheme. 

2) The values of the time functions v on the grid points and the collocation points. i.e. 
v (t, ). v ( T Ir· + 1L ..... v (T 1r +I) are used directly as parameters in the collocation scheme. 

The second parameterization scheme was actually chosen. A motivation for this may be 
that the truncated power base is not always a suitable base for piecewise polynomial inter
polation (cf. de Boor (1978)). t The derivation of the collocation scheme based on this 
second scheme is done via the application of implicit Runge-Kutta schemes to the boun
dary value problem (see also Weiss (1974)). To this end the following quantities are 
defined, using numbers p; that satisfy (6.1.1.17) : 

where 

P1 

w ik -- J Lk (s ) ds 
0 

j = 1.. .. .. l k = 1.. .... l 

The weights w ik lead to the following set of quadrature rules : 

p I I 

J <j,(s) ds ~ r. Wjk<j,(pk ). 
0 k = I 

(6.1.1.20) 

(6.1.1.21) 

/6.1.1.22) 

In case that p 1>0 and p1 <1 in the collocation method, the introduction of l additional 
weights is necessary : 

I 

wk == J Lk (s) ds. 
0 

The weights wk are also used in a quadrature formula : 

I I J <j,(s) ds ~ L w 1 <j,(p1 ). 
o k = I 

(6.1.1.23) 

(6.1.1.24) 

Depending on whether p 1= 0 or p 1 > 0, and whether p1 = 1 or p1 < 1. different collocation 
schemes will follow. 

Up till this point the numbers p; were treated as arbitrary fixed quantities. However. the 
actual choice of these numbers is still left open. These numbers may be chosen such that 
the order of the quadrature formulas (6.1.1.24) is maximized. In addition. one is able to 

fix P1 to zero and/or p1 to one. When p 1 and p1 are not fixed. this maximization yields the 
Gaussian quadrature formulas. where p 1>0 and p1 <1 (cf. Stoer et al. (1980). p.142-151). 

t We note that this base was used in an earlier implementation of the method (cf. de Jong et al. (1985)). 
Numerical evidence also pointed out that the second base is a better choice. 
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The numbers P;, which define (collocation) points on the interval [0,1]. are called the 
Gauss points. When either p 1 or p1 is fixed. the points p1 become the so-called Radau 
points and when both p 1 and p1 are fixed then the so-called Lobatto points follow. It can 
be shown that usually the Lobatto points are the most efficient from a numerical point of 
view (cf. Weiss (1974)). However, for the specific case considered here. the use of Gauss 
points seems to have a significant advantage over the use of Lobatto points. The reason for 
this is that. using the Gauss points, the set of linear equations that results from the collo
cation method applied to the specific linear multipoint boundary value problem (6.1.1.1) -
(6.1.1.6) can be tranformed into a symmetric indefinite system. which allows a solution 
procedure that makes efficiently use of this structure. This transformation seems not pos
sible when the Lobatto points are used. Therefore the Gauss points are used in the current 
implementation of the method. 

The collocation scheme follows from the approximation of the integral equations which 
follow from (6.1.1.11) as: 

Tlr+t 

v(T1,.+;) = v(t,.+) + f IA 1[s]v(s) + B 1[s]w(s) + c 1[s]j ds 
,,+ 

i=l. .... ,l r=0.l.. .... p-1. (6.1.1.25) 

'r+l-

v (tr+I-) = dt, +) + f IA 1[s ]v(s) + B 1[s ]w(s) + c 1[s] Ids 
r,+ 

r=0,l.. .... p-l. (6.1.1.26) 

Approximation of (6.1.1.25) - (6.1.1.26) using (6.1.1.22) and (6.1.1.24) yields the follow
ing set of linear equations : 

v (T1, +i) = v (t, +) + h, ,ttik IA 1[-r 1,H ]v(T1, +k) + B 1[-r1,+k ]w('Tlr+k) + 

i=1 ..... ,l r=0,l, ..... p-1. (6.1.1.27) 

r=0.1. .... ,p-l. (6.1.1.28) 

The vector w is determined by the algebraic equation (6.1.1.12) almost everywhere on 
[0.T). For the numerical solution of (6.1.1.27) - (6.1.1.28) the value of this vector is only 
required at the collocation points. this yields the following equations : 

0 = Az[T1,.+;Jv(T1r+i) + B2['T1,+;Jw('T1, +;) + cz[T1,+;J 

i=l.. .... l r=0.l.. .... p-l. (6.1.1.29) 

At every grid point t,. (,- = 1.. ... ,p-1) an equation of the form (6.1.1.14) holds. because 
either t,. coincides with one of the time points t J or the v (t) must be continuous at t,. in 
which case (6.1.1.15) holds with K/= 1. K,-= -1. and z1 = 0. t Combination of (6.1.1.13) 

t At this point it is assumed that t = 0 and t = T are not junction and contact points. Generalization to 
this case may be done by taking the boundary - and interior point conditions together. 
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- (6.1.1.15) with (6.1.1.27) - (6.1.1.29) yields a sparse set of linear equations that can be 

solved using sparse matrix techniques. 

We note that combination of (6.1.1.14) and (6.1.1.28) allows the elimination of either 
v (t, - ) or v (t,. +) from the set of linear equations. 

6.1.2. Inspection of the collocation scheme. 

In this section the set of linear equations that follows from the collocation method applied 
to the linear multipoint boundary value problem for the solution of problem 
(EQP/SCOCP) will be considered in more detail. 

In Section 6.1.1 the collocation method was outlined using the compact formulation, of the 
linear multipoint boundary value problem, of equations (6.1.1.11) - (6.1.1.15). For the 
implementation of the collocation method use is made of the structure of the equations 
(6.1.1.1) - (6.1.1.6) which is hidden by the more compact formulation. To outline the 
essence of the approach, equations (6.1.1.1) and (6.1.1.2) are rewritten as: 

[Mo M3] [d, l [f[ (Rf)T l [ ;\ l 
M{ M4 du + f[ (Rf)T T)J [

/o, l + fou o::,; t::,; T. (6.1.2.1) 

(6.1.2.2) 

Here a distinction is made between the equations due to the constraints of problem 
(EQP/SCOCP). i.e. (6.1.2.2) and the equations which result from the optimality conditions 

for problem (EQP/SCOCP). i.e. (6.1.2.1). The main result of this section will be that the 
linear equations that follow from the collocation method applied to the equations (6.1.1.1) 
- (6.1.1.6) can be transformed into a set of linear equations of the form 

(6.1.2.3) 

where the submatrices C and M are sparse and banded. 
For the solution of the collocation scheme effective use of the special structure of the sys
tem (6.1.2.3) is possible. 

As a first step towards the transformation outlined above we consider the linear equations 
due to the constraints of problem (EQP/SCOCP), that arise in the collocation scheme, in 
more detail. To the notation we note that d; denotes the approximation to d, (t,. ). d; ·' 
denotes the approximation to d, ( r 1,. +;) and d,; ,; denotes the approximation to du ( r 1,.+; ). :j: 

d;·; = d; + h, ±,w;; [t,h,H]d;.k + f,,[r,,.+dd;·.k + e[r1,+;]j. 
k=I 

i = 1.. ... ,l r = 0,1,. ... ,p-1. (6.1.2.4) 

• In the collocation method we must also have d,. (t,. + )= d, (t,. - ). 
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r=0.1 ...... p-1. (6.1.2.5) 

D, [told, (to) = - D [t ol. 

N, [tr ]d, (t,. ) = - N [t,.] r= 1.. .... p-1. 

(6.1.2.7) 

(6.1.2.8) 

E,[tr]d,(tP) = -E[tp]. (6.1.2.9) 

where:e[t]:=f[t]-x;(t) O~t~T. 

using the notation introduced below. the equations (6.1.2.4) - (6.1.2.9) may be written in 

the matrix notation : 

Cd= b. 

where: 

C .-

~ EJ 

The submatrices C,. (r=0.1.. ... p-1) consist of: 

K,. 0 
N,[t,] 0 

0 Rf[T1r+iJ Rf[T1r+IJ 0 

0 0 

0 0 0 

Cr .- 1 G11,. H11, G 12r 
1 G21,. H 21, 

1 G,1, H,1,. 
1 G1, Hi, 

CP .- [£:[~]!· 

(6.1.2.10) 

(6.1 .2.11) 

0 
0 
0 

Rt[T1, +1l 
Hi,,. (6.1.2.12) 

Hu,. 
Hi,. 

(6.1.2.13) 
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with: 

G;, .-

H,1,. .-

H;, .-

r=O 

r= l.. .... p-1 (6.1.2.14) 

h, wJ, [r1, +, J i = 1 .... l 

h,w,1 fu[T1,+) i = 1 .... l 

h,.wdu [r1r+,] i = 1 .... l 

;e j 
= j i=l.. .. l j=l.. .. l r=0.1. ... p-1. 16.1.2.15/ 

r = 0.1.. .. p-1. 

j = 1 .... l r=0.1.. .. p-1. 

r=O.l.. .. p-1. 

(6.1.2.16 J 

(6.1.2.17 I 

(6.1.2.18 I 

The vectors d and b have the following components : 

d .-

Ii4 

do 
' 

d' 
' 

b .-

I 

D[O] 
RP[ri) 

L wk e [r1(r-l)+k] h,.-1 
k = I 

I 

L W 1k e [ T Ir +k ] h,. 
k = I 

I 

L W /k e [ T lr +k ] h, 
k=I 

I 

:[wke[r1,.+1 ]h,. 
k = I 

E[T] 

(6.1.2.19) 
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The optimality conditions for problem (EQP/SCOCP) are treated in a similar way. As a 
notation we use Ar.+ to denote the approximation to >.(tr+). >.r .- for the approximation to 
>.(tr-), >.'·; for the approximation to >.(T1r+i) and 'T)f'; for the approximation to 
'TJ1 ( T Ir +J- The collocation method applied to the optimality conditions for problem 
(EQP/SCOCP) yield the following equations: 

I 
Ar,i = Ar,+ - hr Ew;k(M2[T1,-+k]a;·,k + f,[Ttr+kY>.r,k + M3[T1r+k]a;,k + 

k = 1 

i = 1.. .... l r=0.1.. .... p-1. (6.1.2.20) 

I 
Ar+l.- = Ar.+ - hr Ewk(Mi[Ttr+dd;·k + f,[Ttr+kY>.r.k + M3[T1,-+k]a;,k + 

k = 1 

r = 0,1, ....• p-1. 

i = 1.. .... l r = 0,1, ....• p-1. 

r = l, .... ,p-1. 

(6.1.2.21) 

(6.1.2.22) 

(6.1.2.23) 

(6.1.2.24) 

(6.1 .2.25) 

To equations (6.1.2.23) and (6.1.2.25) we note that >. 0-+ denotes the approximation to 
>.(O) and v-- denotes the approximation to >.(T). 

Now the variables t- .k and 01, +i are introduced as : 

I W,-L ~t-., := ).r,1 _ ;x..r+l,- r=0.1.. ... ,p-1. (6.1.2.26) 
k=l W; 

i=l.. .... l r=0,1.. .... ,p-1. (6.1.2.27) 

Equations (6.1.2.20) - (6.1.2.25) can be transformed into the form : 

Md +er~= - C. (6.1 .2.28) 

provided the weights w ij and W; satisfy the condition : 

i = 1 ...... z j = 1,. ... ,l. (6.1.2.29) 

The matrix M has the following block structure : 
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with 

The components of the vectors { and c are : 

CT 

01 

Ar.-

Xr 

0/r+l 

t .- 0/r+I 

t.1 

t,1 
Ar+l,-

v--
µ 

ho, [OY 

how"ifo,lr1Y 

0 

h,.w ilo., [Tt, +1Y 

h,.w Vou [r1,.+1Y 

h,. W1fox [r,,.+1 Y 

hrw,fou [r1,.+1 Y 

0 

(6.1.2.30) 

(6.1.2.31) 

(6.1.2.32) 

We note that the transformation of (6.1.2.20) - (6.1.2.25) into (6.1.2.28) and vice versa is 
somewhat lengthy and essentially follows similar lines as the proof of Theorem 2.1 of 
Weiss (1974). Condition (6.1.2.29) has been verified for the case that the points P; are the 
Gauss points. 
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The full set of linear equations to be solved, in order to obtain a numerical approximation 
for the solution of the linear multipoint boundary value problem can thus be transformed 
into: 

(6.1.2.33) 

which consistute precisely the first order necessary conditions for optimality for the fol
lowing quadratic programming problem: 

(6.1.2.34) 

subject to : Cd = b, (6.1.2.35) 

provided the matrix M is positive definite on the null space of the matrix C. This shows 
in fact that the solution of the set of linear equations, which follows from the collocation 
method applied to the linear multipoint boundary value problem, which was obtained 
from the combination of the constraints and the optimality conditions of problem 
(EQP/SCOCP), is essentially the same as the solution of a certain quadratic programming 
problem which can be obtained as a certain finite-dimensional approximation to problem 
(EQP/SCOCP). 

We note that when the points P; are the Lobatto points, then a similar transformation 
seems no longer possible, which argues in favour of the use of Gauss points, because in this 
case it is possible to use the special structure of (6.1.2.33) in the numerical solution of the 
set of linear equations. 

6.2. Numerical solution of the collocation scheme. 

In this section the numerical solution of the collocation scheme will be considered. From 
the previous section we recall that the collocation scheme allows the following compact 
formulation : 

(6.2.1) 

where the matrices C and M are sparse and banded. When M is semi-definite then this 
system is regular if and only if both the submatrices (M cT) and C have full row rank. 
Throughout this section we shall assume that at least the matrix C has full row rank. 

As a notation we shall use n as the dimension of the vectors d and c, and in as the 
dimension of the vectors~ and b. The matrices C and M are thus respectively mXn and 
nXn matrices. 

6.2. 1. Consideration of various alternative implementations. 

We shall first consider three alternatives for the numerical solution of the system of linear 
equations (6.2.1) individually. 
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Method 1 : Direct solution of the collocation scheme. 

The left hand side of (6.2.1) contains a symmetric indefinite (n+m)X(n+m) matrix. The 
matrices C and M are both banded. Using suitable column and row permutations. the ma
trix 

!
M CT] 
C O · 

can be transformed into a banded (symmetric indefinite) system. t The resulting banded 
system may be solved by determination of a suitable factorization of the matrix. making 
use of its sparsity and symmetry. followed by the solution of a number of triangular sys
tems (cf. Golub et al. (1983). p.100). 

We note that for the factorization the submatrix M need not be invertible. (As an example 
consider the special case of a linear program. i.e. M = 0 and m = n.) 
Method 2 : Range space methods. 

When the matrix M is invertible, another solution procedure is possible. System (6.2.1) 
then yields : 

(6.2.1.1) 

and 

(CM- 1CT)e = - (CM- 1c + b). (6.2.1.2) 

where d and e are used to denote solutions of system (6.2.1). 

If the matrix C is of full row rank, then also the left hand side of (6.2.1.2) is invertible. 
and hence i can be obtained as 

i = - (cM- 1cT )- 1ccM- 1c + b ). (6.2.1.3) 

Combination of (6.2.1.3) and (6.2.1.1) yields: 

d = - (I +CT (cM- 1cT )- 1c )M-1c - er (cM- 1cT )- 1b. (6.2.1 .4) 

The method requires the determination of suitable factorizations of the matrices M and 
(CM- 1cr)_ Once these factorizations are determined. (6.2.1.3) and (6.2.1.4) can readily be 
solved. Because in the present case the matrix M is not invertible, this method is not 
applicable for the solution of the collocation scheme. (The matrix M is a block diagonal 
matrix with a number of zero blocks on the diagnonal. cf. equation (6.1.2.30)). 

Method 3 : Null space methods. 

A third alternative to the solution of the system (6.2.1) is to split the solution vector d 

into two parts. i.e. 

(6.2.1.5) 

where dR is the component of d in the range space of the matrix cT such that 

t Essentially this yields a system similar to the one given by de Jong et al. (1985), who considered aim
plementation of the collocation method based on an other parameterization scheme. 
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(6.2.1.6) 

and dN is the component in the null space of the matrix C, i.e. 

(6.2.1.7) 

Let Y be an nxm matrix whose columns are a base for the range space of the matrix CT 
and Z an nX(n-m) matrix whose columns are a base for the null space of the matrix C. 
i.e. yr Z = 0 and CZ= 0, then d, as any vector d E JR.", can also be written as : 

d = Ydy + Zd2 = dR + dN, 

with : d R = Yd y , 
dN = Zd2 • 

(6.2.1.8) 

If the matrix C has full row rank. then the rows of the matrix C and the columns of the 
matrix Y are both a base for the range space of the matrix cT, so the matrix (CY) is regu
lar. Hence the range space solution part dR can uniquely be determined from 

(CY)dy = b. 

Combination of the upperpart of equation (6.2.1) with (6.2.1.8) gives: 

MZdz + cT~ = - C - MYdy, 

and premultiplication with Z T yields : 

(ZTMZ)d 2 = - zTc -zTMYdy. 

(6.2.1.9) 

(6.2.1.10) 

(6.2.1.11) 

When the matrix (ZT MZ) is regular. then a unique null space solution component d2 will 
exist. 

The Lagrange multipliers i may be obtained using the upperpart of (6.2.1) premultiplied 
byYr.i.e. 

(6.2.1.12) 

or. equivalently 

(CYli = - yT(c + Md). (6.2.1.13) 

Observing that (CY) is regular yields that (6.2.1.13) can be solved. 

Obviously. a practical implementation of the Null space method requires the determination 
of the matrices Y and Z. We shall mention two alternatives. 

Let the matrix C be partitioned such that 

C = [BS]. (6.2.1.14) 

where B is an (mxm) regular matrix and S an mx(n-m) matrix. Then Y and Z can be 
taken as: 

(6.2.1.15) 

(6.2.1.16) 

Using (6.2.1.14), (6.2.1.15) and (6.2.1.16) one easily verifies that 
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CY= ccr. (6.2.1.17) 

and 

CZ= 0 /6.2118) 

The method based on this choice is called the Null space method based on variable reduc
tion. 

An alternative representation is based on the LQ-factorization of the matrix C. i.e. 

(6.2.1.19) 

where L is an (mxm) regular lowertriangular matrix and Q an (,t" xn) orthogonal 
matrix. 

If the matrices Y and Z are respectively chosen as the first iii and last n -iii columns of 
Q, i.e. 

Q = [Y Z]. 

then 

and 

CZ= 0. 

Because Q is an orthogonal matrix the matrices Y and Z satisfy : 

yTy = I,,;• 

yTz = 0, 

zrz=Jn-m' 

where 1;;; and In-in denote the mXiii and (n-iii)x(n-iii) identy matrix. 

(6.2.1.20) 

(6.2.l .21) 

(6.2.1 .22) 

(6.2.1.23) 

(6.2.1.24) 

(6.2.1 .25) 

The Null space method based on LQ-factorization of the mat1·ix C requires thus the solution 
of : 

Ld,. = b. (6.2.1.26) 

(zT MZ )d, = - zT(c + MYdy), (6.2.1 .27) 

d = Zd2 + Ydy. (6.2.1.28) 

LT~= - yr(c + Md). (6.2.1 .29) 

Considering the various methods for the solution of the collocation scheme mentioned 
above, we notice that in general. Null space methods have an advantage over the direct 
solution of the system (6.2.1) (i.e. method 1). because instead of the solution of an 
(n+m)X(n+m) system. these methods require the solution of two systems of smaller 
dimension. i.e. mXiii and (n-m)X(n-iii). From (6.2.1.26) - (6.2.1.29) we recall that 
with the Null space method the computation of the solution d and of the Lagrange multi
plier vector f are done separately. Because these quantities are used in different steps of 
Algorithm 5.8, they need never be computed unnecessary. as is the case with the first 
method, i.e. the direct solution of (6.2.1 ). 
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The implementation of the Null space method was done using the LQ-factorization of the 
matrix C. This choice was made in view of the condition of the matrix Z T MZ. This con
dition is of great importance for the amount of effort necessary for the solution of system 
(6.2.1.27). because this system is solved using an iterative method. The motivation that in 
general. this is never a bad choice is based on the foll~wing re!soning. Suppose the Null 
space method is implemented with an arbitrary matrix Z . then Z can be written as : 

z = zw. 
where Z is the matrix consisting of the last ii-in columns of the matrix Q and W is an 
(ii-m)X(ii-m) regular scaling matrix. It may be verified that the condition number of 
the matrix z,T MZ satisfies : t 

K(iT Mi) ~ K(Z T MZ )K 2(W ). 

which indicates that the condition number of the matrix W may destroy the condition of 
the matrix zT Mi compared to the condition number of the matrix zT MZ. 

We also note that a much stronger motivation for the use of the LQ-factorization would 
have been possible when the matrix M would have been positive definite (cf. Gill et al. 
(1974b)). For in that case it is possible to show that the LQ-factorization is the optimal 
choice with respect to the minimization of the condition number of the matrix zT MZ. 

6.2.2. Numerical solution of the collocation scheme by means of the Null space 
method based on LQ-factorization. 

The equations involved in the numerical solution of the collocation scheme by means of 
the Null space method are recapitulated below : 

C = [L O]QT. (6.2.2.1) 

Q = [Y Z], (6.2.2.2) 

Ldy = b, (6.2.2.3) 

(ZTMZ)d, = - zT(c + MYdy), (6.2.2.4) 

d = Yd>'+ Zd,. (6 .2.2.5) 

LTl = - yT(c + Md). (6.2.2.6) 

Systems (6.2.2.3) and (6.2.2.6) are respectively lowertriangular and uppertriangular sys
tems. Their solution is quite standard and is done respectively by forward elimination and 
back substitution (e.g. cf. Golub et al. (1983). p.52). The two major problems in the solu
tion of the collocation scheme via (6.2.2.1) - (6.2.2.6) are the LQ-factorization of the 
matrix C and the solution of system (6.2.2.4). 

The LQ-factorization of the matrix C is done by means of Householder transformations. 
Because the matrix C is large and sparse (banded), it is advantageous to modify the usual 
orthogonalization procedure for dense matrices (e.g. cf. Golub et al. (1983) or Lawson et 
al. (1974)) following the ideas of Reid (1967). The LQ-factorization procedure yields the 

t K(W) denotes the condition number of the matrix W, i.e. II Wll 11 w- 111, where we use the 2-norm 
for the matrix norms. 
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matrix L explicitly, which is beside lowertriangular also banded, and the matrix Q impli
citly, as a product of Householder transformations. The vectors which define these House
holder transformations require essentially the same amount of storage as the (sparse) 
matrix C. It can be shown that the matrix Q is. in general. a dense matrix. and hence it is 
not efficient to form the matrix Q explicit. A more detailed description of the LQ
factorization process is given in Appendix D. 

As a result of the fact that the matrix Q is available in factored form. i.e. as a product of 
Householder transformations. it is possible to compute matrix-vector products of the form 
Qd and QT d. Hence Ydy. Zd,. yT d and zT d can also be computed because: 

Q[d; l = Ydy, 

Q[;,] = Zd,. 

QTd = [YT di 
zT d · 

The product (zT MZ )d2 can thus be computed as: 

zT .(M-(Z-d, )). 

(6.2.2.7) 

(6.2.2.8) 

(6.2.2.9) 

(6.2.2.10) 

To form the matrix zT MZ explicitly. the columns may be generated by computation of 
the vectors 

j= 1... ... ii-iii. (6.2.2.11) 

where ei is the jth column of the (ii-iii )x (ii -iii) identy matrix. i.e. I;;-,,,. The product 

(6.2.2.10) is thus to be evaluated (n-iii) times. When the matrix zT MZ is positive 
definite ( which is true in most of the cases considered here). then the solution of equation 
(6.2.2.4) can be obtained using Cholesky factorization. The numerical effort to solve 
(6.2.2.4) after zT MZ has been formed is thus approximately (n-iii) 3/6 flops. t An alter
native way is to solve (6.2.2.4) by means of an iterative method. In many cases. a suitable 
iterative method for the solution of a large sparse system is the linear conjugate gradient 
method (cf. Golub et al. ( 1983)). This method requires in most cases less than ii-iii itera
tions. Each iteration involves one evaluation of the matrix-vector product (6.2.2.10) and 
approximately 5(n -iii) flops. Thus the linear conjugate gradient method requires only 
5(n -iii )2 flops. in addition to at most n -iii evaluations of a matrix-vector product 
(6.2.2.10). This clearly argues in favour of the solution of (6.2.2.4) by means of the linear 
conjugate gradient method. 

An alternative motivation for the use of an iterative method follows from the considera
tion of the dimensions of the matrix Z T MZ . which are equal to the dimension of the null 
space of the matrix C. :j: An upperbound for the dimension of the null space of the matrix 
C is obtained from the case that the working sets Wi of problem (EQP/SCOCP) are empty 
(i.e. no active state constraints). In this case the row dimension of the matrix C is (cf. 

t flops is an abbreviation of floating point operations. 
• We note that because the matrix Z consists of columns of the dense matrix Q, the matrix Z T MZ 
will also be dense. 
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Section 6.1.2) : 

m = C +n(l+l)p +q. 

The dimension of the vector d is : 

n = n(l+l)p + mlp + n. 

and hence, the dimension of the null space of C is in this case : 

n - m = mlp + n - C - q. 

Practical cases are l ;;i: 2 (at least two collocation points per grid interval). p ;;i: 25 (at least 
25 grid points). m ;;i: 1 (at least one control variable), n -c -q = 0 (e.g. c = n , q = 0, initial 
state completely specified and terminal state free). This yields as an optimistic upperbound 
for the dimension of the null space 50 and hence Z T MZ can be a dense 50 x 50 matrix, 
which indicates that in 'normal' cases the matrix Z T MZ can be quite large. 

The linear conjugate gradient method is recapitulated below, from Golub et al. (1983). for 
the solution of the equation 

Gp= -g. 

Algorithm 6.1 (p,g,G,e) 

Initialize 

Po:= 0 
ro := -g 
i := 1 

131 == 0 

Do linear conjugate gradient steps untill the required accuracy is achieved. 

while llr;_ 111/llgll > e 

do 

f3 i .- rF-1r;-1lrF-2r;-2 (i > 1) 

U; .- r;-1 + {3;U;-1 (f31=0) 
Q; .- rF-1r;-1/(uFGu;) 

P; .- Pi-I + O:;U; 

r; .- r;-1 - a;Gu; 
.- i + 1 

od 

(6.2.2.12) 

A formal motivation for this algorithm may be found in the unconstrained minimization 
of the functional 

using directions of search u; and step sizes a;. The vector r; satisfies : 

r; = - g - Gp;. 

and 

V</>(p;) = g +Gp;= r;. 

(6.2.2.13) 

(6.2.2.14) 

(6.2.2.15) 

The linear conjugate gradient algorithm has at least a linear rate of convergence, with 
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convergence factor 

...fictJ;5 - 1 

...fictJ;5 + 1 , 

where K(G) := IIGII-IIG-111 is the condition number of (6.2.2.12). 

(6.2.2.16) 

In order to obtain satisfactory convergence properties, the condition number must be close 
to unity. This leads to the consideration of scaling methods in order to improve the condi
tion of (6.2.2.12). The development of scaling methods is difficult because the matrix G is 
not explicitly available. Hence the application of the usual scaling methods for iterative 
methods, seems not possible. Fortunately, the Null space method allows the simultaneous 
application of the two strategies outlined below. Experiments with the implementation of 
the method show that these strategies do in fact yield a significant improvement with 
respect to the amount of numerical effort. 

Scaling of the collocation scheme. 

The collocation scheme is transformed into: 

= b. 

(6.2.2.17) 

(6.2.2.18) 

where D I is a regular scaling matrix. The solution of the collocation scheme using the Null 
space method is in this case computed from 

CD 1 = [L O]QT, 

Q = [Y Z], 

Lqy = b, 

(zr D{MD1Z )q, = - zr Df (c + MYqy ). 

d = D1Yqy + D1Zqz. 

LT(= - yr D{(c + Md). 

The scaling matrix D 1 must be chosen in a way that 

(6.2.2.19) 

(6.2.2.20) 

(6.2.2.21) 

(6.2.2.22) 

(6.2.2.23) 

(6.2.2.24) 

(6.2.2.25) 

Unfortunately. there is no general rule that can be used for the choice of the scaling 
method. A method that works well in many practical cases is to choose D I as a diagonal 
matrix with elements such that the diagonal elements of the matrix D 1MD I are all equal 
to one. In our case however, the diagonal elements of M can also be negative or zero. 
Therefore the diagonal elements of D I are chosen to be : 

(6.2.2.26) 

where ED is a small quantity. 

Preconditioning of the linear conjugate gradient algorithm. 

A second scaling strategy is based on preconditioning of the linear conjugate gradient 
method, which means that the so-called preconditioned equation 
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Di1GD2-1q, = - Di1g. (6.2.2.27) 

is solved rather than equation (6.2.2.22) (cf. Golub et al. (1983)). Here D 2 is a nonsingu
lar, symmetric scaling matrix. Once the solution of (6.2.2.27) ifz is determined, the solu
tion of (6.2.2.12) follows as: 

q, = D 2 1ifz. (6.2.2.28) 

With this preconditioning strategy. the linear conjugate gradient algotithm becomes: 

Algorithm 6.2 (q,g,G,D2,e) 

Initialize 

qo := 0 

ro == -g 
:= 1 

f31 := 0 

Do linear conjugate gradient steps untill the required accuracy is achieved. 

while llr;_ 111/llgll > e 

do 

od 

Solve (D2)2z;-1 = r;-1 
(3; -- z{-1r;-1lz{_2r;-2 
U; := Z;-1 + (3;U;-J 

a; := z{_1r;-1/(urGu;) 
q; := qi-I+ O!;U; 

r; := r;-1 - a;Gu; 
.- i + 1 

The main problem in making a specific choice for the matrix D 2 is again that the elements 
of the matrix G are not explicitly available. because the matrix G is only available in the 
factored form G = zT D 1MD 12. As with the previous strategy. the scaling matrix D 2 
must be chosen so that 

(6.2.2.29) 

We adopted the strategy given by Nash (1984. 1985). who shows that the elements of the 
matrix G may be approximated using quasi-Newton updates of the matrix G. We note 
that. neglecting the influence of roundoff errors. the matrix G will follow from this 
update process after ii-in iterations of the linear conjugate gradient method. The quasi
Newton updates may be computed during the linear conjugate gradient method with very 
little effort. because most of the quantities used are already available. as is revealed by the 
update formula 

(6.2.2.30) 

(6.2.2.31) 

An important advantage of the form of the update formula (6.2.2.31) is that the elements 
of the quasi-Newton updates B; +I can be computed individually and hence it is also 
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possible to compute the update only partly. In the implementation of the method this 
update scheme is used to obtain an approximation to the diagonal of the matrix G. 

During one execution of the linear conjugate gradient method, an approximation of the 
diagnonal of the matrix G is developed. using (6.2.2.30) and (6.2.2.31). When the linear 
conjugate gradient method is called again. and there have been no modifications in the 
working set since the last call of this algorithm, then the approximation to the diagonal of 
the matrix G developed during the previous call is used as a preconditioner. i.e. as (D2)2. 
Otherwise this scaling strategy is not used. 

We now turn to an other aspect of the solution of the collocation scheme. During the exe
cution of Algorithm 5.8. the collocation scheme is solved in order to obtain a direction of 
search for the improvement d -d of the current estimate d of the solution of problem 
(EIQP /SCOCP I A). 
This improvement may be obtained directly as the solution of : 

Lqy = b - Cd, 

(ZTD1MD1Z)q, = -zrD1(c +M(d+D1Yqy)). 

d-d = D1Yqy + D1Zq,. 

The advantage of the use of (6.2.2.32) - (6.2.2.34) is revealed by the situation 

d - d = 0, 

(6.2.2.32) 

(6.2.2.33) 

(6.2.2.34) 

(6.2.2.35) 

i.e. d is already the solution of the collocation scheme, which yields a direction of search 
of zero. In this case, the linear conjugate gradient algorithm will require no iterations at 
all, because the right hand side of (6.2.2.33) is zero. 

Up till this point it was implicitly assumed that the matrix zr D 1MD 1Z is always posi
tive definite. Cases where the matrix zr D 1MD 1Z is indefinite correspond to those cases 
where. similar to the case of finite-dimensional quadratic programming, the problem 
(EQP/SCOCP) has no bounded solution. In these cases it suffices that the direction of 
search in Algorithm 5.8 is a direction of negative curvature. When zr D 1MD 1Z is 
indefinite. then it is likely (cf. Nash (1983)) that during the execution of the linear conju
gate gradient algorithm. the vector u; becomes a direction of negative curvature. i.e. 

(6.2.2.36) 

Because this quantity is already necessary in the linear conjugate gradient method. it is 
rather simple to detect this situation. In this case it may be advantageous to stop the linear 
conjugate gradient algorithm and to use u; as a direction of search in Algorithm 5.8. 
Because if u; is a direction of negative curvature. then so is -u;. the algorithm can thus 
always be terminated with a vector q which satisfies : 

(6.2.2.37) 

i.e. q is beside a direction of negative curvature also a direction of descent of the function 
(6.2.2.13). 

The following lemma establishes that u; is always the vector which satisfies (6.2.2.37). 
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Lemma 6.3: The vectors U; determined by Algorithm 6.2 satisfy : 

gT U; < 0. 

Proof: The vectors r; and z; satisfy (cf. Golub et al. (1983). p.374): 

rfz; = 0 

Now consider 

i ;e j. 

gT U; = gT(z;-1 + /3u;-1). 

Because r 0= - g this yields : 

gT U; = - rl;z;-1 + /3;gT U;-1-

i = 1 

i>l 

(6.2.2.38) 

(6.2.2.39) 

(6.2.2.40) 

(6.2.2.41) 

(6.2.2.42) 

For i = 1 the result follows from the positive definiteness of D 2• For i > 2 the result fol
lows from an induction argument, because (:3; > 0 for all i. 

□ 

6.3. Truncation errors of the collocation method. 

This section is devoted to the estimation of the truncation errors which deteriorate the 
direction of search in the numerical implementation of the method. 

The truncation errors associated with the solution of the collocation method are considered 
by de Boor et al. (1973) and Weiss (1974). To apply their results to the collocation 
method described in this chapter, we make use of the abstract notation of the linear mul
tipoint boundary value problem of Section 6.1.1. i.e. 

v (t) = A 1[t ]v (t) + B 1[t ]w (t) + c 1[t] a.e. 0~t~T. 

a.e. 0~t~T. 0 = Ai[t ]v(t) + Bi[t ]w(t) + c 2[t] 

Kov(0) +lo= 0. 

K/v(ii+)+Ki-v(ii-)+li = 0 all j. 

Krv(T) + lr = 0. 

The time function w (t ) may be eliminated using (6.3.2). i.e. 

a.e. 0~ I~ T. 

Combination with (6.3.1) yields: 

(6.3.1) 

(6.3.2) 

(6.3.3) 

(6.3.4) 

(6.3.5) 

(6.3.6) 

(6.3.7) 

For the derivation of results on the accuracy of the numerical approximation obtained 
from the collocation method. it is assumed that the coefficients of the matrix 
A 1[t ]-B 1[t ]B i[t J- 1 A 2[t] and the vector c 1[1 ]-B 1[t ]B z[t J- 1c 2[t] are at least (l + 1 )-times 
continuously differentiable on the grid intervals (t,. ,tr+ 1). For simplicity we shall also 
assume that the grid points are uniformly distributed on [0.T]. i.e. t,+ 1-t,=h=T/p 
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(r = 0,1,. .. p-1). 

The exact solution of the linear multipoint boundary value problem will be denoted by 
v (t) and the solution obtained from the collocation method by v (t ). At grid points tr 

where v (t ) is continuous. i.e. grid points that do not coincide with one of the points t j 
the following result holds for sufficiently small h (cf. de Boor et al. (1973) or Weiss 
(1974)): 

llv(tr)-v(tr)II ~ Crh 21
• (6.3.8) 

At points t j where v (t) is possibly discontinuous. a result similar to (6.3.8) holds for 
both v (ti - ) and v (ti+). 

We note that both de Boor et al. (1973) and Weiss (1974) consider two point boundary 
value problems and assume that the right hand side of (6.3. 7) is sufficiently smooth on the 
entire interval [O.T]. These results can be adapted to the present case of piecewise smooth 
coefficients following the approach of Keller (1969). The extension to multipoint boundary 
value problems is straightforward. 

At the collocation points the numerical approximation to the solution obtained from the 
collocation method is less accurate compared to the accuracy of the numerical approxima
tion at the grid points. i.e. for sufficiently small h : 

i=l,. .. ,l r=0.1. ... p-1. (6.3.9) 

Numerical evidence led Souren (1986) to believe that the truncation errors in v have a 
maximum at the collocation points and hence: 

(6.3.10) 

where Cg= max C,. ,i. 
r ,l 

From (6.3.9) and (6.3.6) we obtain for the numerical approximation to the time functions 
w (t ) at the collocation points : 

(6.3.J 1) 

For the derivation of the results stated above. it was assumed that the right hand side of 
the differential equation (6.3.7) is sufficiently smooth on the grid intervals (t,. ,t,.+ 1 ). The 
actual structure of the linear multipoint boundary value problem given by (6.1.1.1) -
(6.1.1.6) reveals that this condition is satisfied when the problem functions of problem 
(SCOCP) are sufficiently smooth and that. in addition. the number of components of the 
vector RP must be constant on the grid intervals (t,. ,t,.+1 ). This last condition is 
equivalent to the condition that all junction and contact points of all constraints must 
coincide with grid points t,.. i.e. constraints are to be taken active and inactive per entire 
grid interval. For state constraints this condition is automatically satisfied, as a result of 
the fact that at junction and contact points, also interior point conditions of the type 
(6.3.4) must be fulfilled. For mixed control state constraints the condition mentioned 
above is not automatically satisfied, because these constraints are (at least in the first stage 
of the method) taken active and inactive per collocation point and not per entire grid inter
val. Taking mixed control state constraints active (inactive) per entire grid interval would 
take with the collocation method the form of taking these constraints active (inactive) at 
all collocation points of the grid interval. In the first stage of the method (Algorithm 4.4) 

128 



Numerical implementation of the method 

the accuracy of the direction of search obtained is not very important and hence the mixed 
control state constraints may well be taken active and inactive per collocation point. (This 
simplifies the active set strategy for these constraints as mentioned in Section 5.2). In the 
second stage of the method, the accuracy of the direction of search is important and hence 
in this stage the mixed control state constraints are taken active and inactive per entire 
grid interval. 

Based on the results given above the truncation errors of each of the time functions, i.e. 
v (t) or w (t) may be estimated numerically by assuming the following model for the 
approximation obtained from the collocation method : 

0(t;h)= 0(t)+C(t)hk +o(hk), (6.3.12) 

where 0(t ;h) denotes either one of the time functions v (t) or w (t) obtained with the col
location method as a numerical approximation to the solution of the linear multipoint 
boundary value problem with grid intervals of size h. Let 0(t ;0t.h) and 0(t ;{3h) be solu
tions to the linear multipoint boundary value problem with grid intervals of the size 0t.h 

and {3h (0< f3 < 0t. < 1), then using the solutions 0(t ;h ). 0(t ;0t.h) and 0(t ;{3h ). the con
stant C (t ) and the order of the integration scheme k may be determined for each time 
point. Define : 

f(t) := 0(t ;0t.h )-0(t ;{3h) 
0(t ;h )-0(t ;0t.h) 

(6.3.13) 

The order of the integration scheme k may be obtained as the solution of the equation 

(l+f(t ))0t.k - {3k = f(t ), 

the constant C (t ) follows as : 

C(t)= 0(t;h)-0(t;0t.h)_ 
(1+0t.k )hk 

The model (6.3.12) implies that, if h is small enough. either: 

0(t ;h) > 0(t ;0t.h) > 0(t ;{3h ), 

or 

0(t ;h) < 0(t ;0t.h ) < 0(t ;{3h ), 

(6.3.14) 

(6.3.15) 

(6.3.16) 

(6.3.17) 

Because the numerical solutions of the linear multipoint boundary value problems contain 
beside truncation errors. also roundoff errors. both the conditions (6.3.16) - (6.3.17) may 
fail to hold. Hence the constant C (t ) and the order k can only be determined when 
f(t )> 0 and when I 0(t ;h )-0(t ;0t.h) I and I 0(t ;0t.h )-0(t ;{3h) I have significant digits. 

An alternative for the estimation of the truncation errors is to make use of the a priori 
knowledge on the value of the order of the integration method k . in which case only the 
solutions 0(t ;h) and 0(t ;0t.h) of the linear multipoint boundary value problem are 

needed. A drawback to this alternative is that we have no information on the validity of 
the estimates obtained. 

A drawback of the procedure outlined above is that the solutions 0(t ;0t.h) and 0(t ;{3h) 

the linear multipoint boundary value problem must be solved using a 'finer' grid (e.g. 

0t. = ½ and /3 = ½ ). In cases where it is sufficient to have only a rough estimate for the trun
cation error, a similar procedure can be used with /3 > 0t. > 1. 
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7. Numerical solution of some problems. 

In this chapter the numerical results of the solution of some example problems will be 
given. First in Section 7.1 the instationary dolphin flight of a glider. subject to various con
straints, is considered. The unconstrained instationary dolphin flight has recently been a 
quite popular benchmark for testing numerical methods for the solution of optimal control 
problems (cf. de Jong (1985), Lorentz (1985)). Next in Section 7.2 the reentry manoever 
of an Apollo capsule is considered. This problemt is much more difficult to solve as a 
result of the fact that the solution trajectory of the differential equations depend in an 
extremely sensitive way on the initial data. We quote Stoer et al. (1980). p. 496 : 

"The solution has moving singularities which lie in an immediate neighborhood 
of the initial point of integration. This sensitivity is a consequence of the effect 
of atmospheric forces, and the physical interpretation of the singularity is a 
'crash' of the capsule or a 'hurling' back into space. As can be shown by an a 
posteriori calculation, there exist differentiable solutions of the optimal control 
problem for an extremely narrow domain of boundary data, which is the 
mathematical formulation of the danger involved in the reentry manoever." 

Finally in Section 7.3 the optimal control of two (dynamically) independent servo systems 
along a prespecified geometric path is considered. The optimal control is subject to both 
constraints on the accelerations and the velocities of the servos. The major difficulty with 
these problems is the determination of the correct structure of the solution*· 

7.1. Instationary dolphin flight of a glider. 

7.1.1. Statement and solution of the unconstrained problem. 

A glider, which is flying through an area with a variable vertical velocity of air (a ther
mal), is modelled as a point mass m that experiences a gravity force mg. a lift force L 
perpendicular to the velocity relative to the air, vr and a drag force D opposite to the 
velocity v,.. The variables of the problem are depicted in Figures 7.1 and 7.2 (for more 
details see de Jong (1985) or Lorentz (1985)). The relative velocity vector makes an angle 
TJ relative to the horizontal plane. The motion of the glider is restricted to the vertical 
plane. The vertical moving air mass ( the thermal) is assumed to have a horizontal extent 
of 5R. The upward wind velocity ua is given as a function of the horizontal distance x . 
from the start of the flight at the left end of the thermal as : 

_ [ [ x 12 1-1;-2.sJ2 Ua(x)- Ua,max 1- R-2.5 e for all O ~x~5R. /7.1.1.1) 

The objective of the problem is to control the glider from x = 0 to x = 5R . such that the 
'relative' flight time is minimal. where the relative time is defined as the sum of the time 
required to fly from x = 0 to x = 5R and the time necessary to regain the lost altitude at a 
specified constant rate of climb z. 

t This problem was suggested as a benchmark by Dr. K.H. Well of DFVLR. 
* The sequence in which the different constraints are active and inactive. 
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Velocities. forces and angle. 
Figure 7.1 

0 2.SR 
Upward wind velocity. 

Figure 7.2 

The mathematical formulation of the optimal control problem is : 

. • • SR 1 [ Vy ] 
minimize J- 1- - dx, 

u O Vx Z 
(7.1.1 .2) 

dv, [ l subjectto: dx = -Lsin7J-Dcos7J /mv, (7 .1 .1.3) 

dv, 
-·-= 
dx 

[ L cos71- D cos71-mg] /mv, (7.1.1.4) 

v., (0) = "x (T) = Vx ,Mc, (7.1.1.5) 

(7.1.1.6) 
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where: L 
pSv,2 

= -2-u, (7.1.1.7) 

(7.1.1.8) 

(7.1.1.9) 

V -u 'YJ = arctan-Y __ a __ 

Vx 
(7.1.1.10) 

In the formulation above the distance x is used as independent variable, which is derived 
from the formulation based on the time t by making use of : 

dvx dvx dx dvx 
(7.1.1.11) --= ----= dx Vx. dt dx dt 

dvy _ dvy dx = dvy 
(7.1.1.12) dt - dx dt dx Vx. 

The problem (7.1.1.2) - (7.1.1.10) was solved using the following constants: 

p = 1.13 kg Im 3 Ua.max=5 mis 
g =9.80665 mls 2 

m= 346.5 kg 

ko= 0.0118 
ki=-0.0254 
k2= 0.0770 
k3=-0.0540 
k 4= 0.0166 

Vx.Mc =41.631 mis 
Vy.Mc =-1.344 mis 

S = 10.5 m 2 

R=lO0m 
z =2mls 

Table 7.1 : constants used in the numerical example. 

The starting trajectory for the numerical solution procedure, was given by : 

v., (x ) = Vx .J\h 

Vy (x ) = v,. .Mc 

u (x) = 0.304173 7 

0~x~5R. 

0~x~5R. 

0~x~5R. 

(7.1.1.13) 

(7.1.1.14) 

(7.1.1.15) 

This trajectory is in fact a flight along a straight line from x = 0 to x = 5R. which is obvi
ously the solution when there is no thermal present (i.e. ua .max= 0). 

For the numerical solution of the problem an equidistant grid was used for the collocation 
method and the problem was solved u;:ing p = 20. p = 40, p = 50, p = 80, p = 160 and l = 2, 
l = 3. Recall that p is the number of grid intervals and l is the order of the polynomials 
used for the state variables. 

The solution trajectory of the optimal control problem (7.1.1.2) - (7.1.1.10) for the case to 
which the numerical values in Table 7.1 apply. is given in the Figures 7.3 and 7.4. The 
convergence history of the solution process, corresponding to the case p = 50. l = 2 is given 
in Appendix F. Table Fl. 

The value of the objective function corresponding to the numerical solutions of the 
different values for p and l. is given in Table 7.2. 
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l 

2 
3 

40 60 

r 1 
0 50 

-40 40 
0 2.5R 5R 

-->X 

Solution of unconstrained glider problem, state variables. 
Figure 7.3 

1.3 

ii (x) r 

0 
-0.1 '--------~-------~-

0 2.5R 5R- x 

Solution of unconstrained glider problem. control variable. 
Figure 7.4 

p=20 p=40 p=80 p= 160 

7 .30220430969 7 .3022 77 00518:j: 7.30239324467:J: 7.30240227507:J: 

7 .30222852296:J: 7.30239951524:J: 7 .30240286698:J: 7.30240286637 

Table 7.2 : values of objective function and estimated order. 

order 

3.5 
5.7 

In the most right column of Table 7.2 an estimate of the order of the integration method is 
given. which is based on the values obtained for the objective function. (Theoretically this 
exponent should be ;;:: 2l, cf. Section 6.3). 

* These values were used for the calculation of the order. 
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7.1.2. Restriction on the acceleration (mixed control state constraint). 

The acceleration of the glider is the quotient of the lift force and the mass. i.e. L Im. Be
cause the glider pilot cannot endure great accelerations. a constraint of the form :t 

L pSv/u 
n = - = --- ~ n ax• mg mg m 

(7.1.2.1) 

is necessary. Because (7.1.2.1) contains both the state variables (vr depends on v,. and vy) 

and the control variable u , this constraint is a mixed control state constraint. 

In Figure 7.5 the normal load factor corresponding to the solution n (x) is given for vari
ous values of n max· In the numerical solution of the problem we used p = 20 and l = 2. 

nmax>6.8 
7 

nma,=6 

ii, (x) r nma,=5 

nma,=4 

0 

-1 
0 2.5R 

--+ X 
5R 

Normal load factor n for various values of n max

Figure 7.5 

The convergence history of the solution process corresponding to the case n max= 4 is given 
in Appendix F, Table F2. 

7.1.3. Restriction on the velocity (first order state constraint). 

In many practical cases the velocity of the glider must stay below a certain limit. This 
yields, in the formulation of the optimal control problem the following state constraint : 

v,.(x) ~ Vmax (7.1.3.1) 

which states that the relative velocity of the glider is not to exceed the limit v max· Using 
(7.1.1.9) we obtain : 

(7.1.3.2) 

Differentiating (7.1.3.2). to the independent variable x yields the function S} (this func
tion is defined by (3.3.5.7) - (3.3.5.8)): 

t In most aerospace control applications, the acceleration is limited to 4-6g. 
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(7.1.3.3) 

Substituting the equations of motion of the glider into (7.1.3.3) reveals that the function 
Si contains the control explicitly and hence the constraint is of first order. t 
For values of vmax>58.6 mis the constraint (7.1.3.2.) is inactive on the entire interval of 
control. For values v max~ 58.6 mis the state constraint has a contact point near x = 2.SR. 
In Figure 7 .6 the velocity vr (x) is given for three different values of v max· 

60 

Vmax= 42 

250~------~~------~--==-
2.SR SR X 

Glider velocity v,. for various values of v max· 
Figure 7.6 

The convergence history corresponding to the case v max= 50 is given in Appendix F. Table 
F3. 

7.1.4. Restriction on the altitude (second order state constraint). 

The solution trajectory of the unconstrained glider problem reveals that the glider dives 
first towards the earth and then regains altitude in the second half of the interval. as a 
result of the thermal. In many cases however. the glider is not allowed to flight below a 
certain altitude. The altitude of the glider is determined by : 

(7.1.4.1) 

y(O) = Yo, (7.1.4.2) 

where y O is the altitude at the initial point x = 0. (In the implementation the actual value 
of y 0. which is arbitrary. was set to zero.) 

The altitude constraint which states that the glider may never fly below a certain limit 
becomes: 

t We note that the state constraint (7.1.3.2) does not satisfy (5.1.2.4) and hence in the implementation, 
the constraint is transformed using the technique outlined in Appendix B. 
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Y (x) ~ Y min (7.1 .4.3) 

or. in the terminology of problem (SCOCP). 

S z(y ) = -y + Y min ~ 0 (7.1.4.4) 

Differentiating to the independent variable x and substituting the equations of motion of 
the glider yields (for a formal definition cf. (3.3.5.7) - (3.3.5.8)): 

(7.1.4.5) 

and 

(7.1.4.6) 

which reveals that the state constraint (7.1.4.4) is of second order. 

For values Ymi,,<-81.5 m the state constraint (7.1.4.4) is inactive during the entire flight. 
For values Ymin~-81.5 m. the state constraint has, similar to the constraint on the velo
city. a contact point near x = 2.5R. In Figure 7. 7 the altitude y (x ) is given for four 

different values of y min· 

OAR 

y (x) r -~----Y '"'"= -15 
--...;,., ___ y min= -30 

0 
,L_..,,.c.::::_---=:..._ y mih=-50 

,,__ _____ }'min< -81.5 

-0. 9R ~-------~-------~--
0 2.SR SR~ x 

Glider altitude y for various values of y mill· 

Figure 7.7 

The convergence history corresponding to the case y mi,,= -30 is given in Appendix F. Table 
F4. 

7.2. Reentry manoever of an Apollo capsule. 

7.2.1. Description of the problem. 

The problem deals with the reentry manoever of an Apollo capsule to the earth atmo
sphere, which is depicted in Figure 7.8. 
The space vehicle is modelled as a point mass, subject to a lift force L . a drag force D and 
a gravity force W. The state variables are the velocity v . the flight-path angle y. the 
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L 

---
........... 

t=0 

Flight path 
h ={R 

Variables of the Apollo reentry problem. 
Figure 7.8 

normalized altitude {= h IR and the distance on the earth's surface r These state vari
ables satisfy the following set of differential equations : 

S 2 gosiny v = --pv CD(u )- ---
2m (1+{)2 

'Y = ...§._pvCL (u) + vcosy 
2m R(l+{) 

[ = ; siny 

. V 
t = 1+{ cosy 

g oCOS)' 

V (1+{)2 

where: R = earth's radius (209.0352 105 ft). 
p=p0e-~ 11 G= atmospheric density (p0 =2.3769 l0-3slug lft 3 and 

(3= 110.235 10-5 ft- 1). 

g 0 = gravitational acceleration (23.2172 10-4 105 ft I s 2), 

CD (u )= CD 0+CDL cos u = aerodynamical drag coefficient, 
CL (u )= CL 0sin u = aerodynamical lift coefficient, 

u = angle of attack = control variable. 
S Im = frontal area / mass of vehicle. 

(7.2.1.1) 

(7.2.1.2) 

(7.2.1.3) 

(7.2.1.4) 

The constants CDo• CDL, CLo and S Im differ for the problems discussed in following sec-
tions. 

7.2.2. Solution of the unconstrained reentry problem. 

The flight path of the Apollo capsule is for the problem discussed in this section governed 
by the differential equations (7.2.1.1) - (7.2.1.4) with the following numerical constants 
CDo= 0.88, CDL = 0.52, CDL = -0.505 and S Im= 50000 10-5 f t 2lslug. 

During the reentry manoever the total stagnation point convective heating per unit area. 
given by 
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T 

J = f l 0v 3-vp dt . 
0 

must be minimized. 

The reentry manoever is started at the following initial point : 

v(0) = 0.35 105/t/s 

y(0) = -5.75° 
1

; 00 

[(0) = 4/R 

((0) = 0 

(7.2.2.1) 

(7.2.2.2) 

(7.2.2.3) 

(7.2.2.4) 

(7.2.2.5) 

and at the ( variable) final time. the following terminal point conditions must be satisfied : 

v(T) = 0.0165 105 ft Is 

y(T) = free 

[(T) = 0.75530/R 

((T) = 51.6912 105 ft 

As a starting trajectory the data given by Bals ((1983). Table 17) were used. 

0.4 0.5 0,02 100 

V (t ) y{t) l(t ) fo ) rr---.. 

1 1 1 r 
0.2 0 0.01 50 

0 -0.5 0 0.5 

lei) 
y(t) 

v (t) 

Solution of the unconstrained reentry problem, state variables. 
Figure 7.9 

(7.2.2.6) 

(7.2.2.7) 

(7.2.2.8) 

(7.2.2.9) 

In Figure 7.9 the state variable histories corresponding to the numerical solution of the 
problem are given. Figure 7.10 shows the optimal control history. The convergence history 
corresponding to the numerical solution of the problem is given in Appendix F. Table F5. 
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3.5 

u (t) I 

0 

I -3.5 0 0.5 
I -, t!f 

1.0 

Solution of unconstrained reentry problem, control variable. 
Figure 7.10 

7.2.3. Restriction on the acceleration (mixed control state constraint). 

The flight path of the Apollo capsule is for the problem discussed in this section governed 
by the differential equations (7.2.1.1) - (7.2.1.3)t with the following numerical constants 

Cno= 1.174. CDL = -0.9, CLo= 0.6, S Im= 53200 105 f t 2lslug. 

The optimal control of the reentry manoever should be such that the velocity at the ( vari
able) final time T is maximized. i.e. the functional 

J = -v (T). 

must be minimized. 

The reentry manoever is started at the initial point : 

v(O) = 0.36 105ft Is 

y(0) = -8.1° 
1

; 00 

gco) = 4IR 

After the reentry manoever the state variable y and g should satisfy : 

y(T) = 0 

g(T) = 2.5IR 

(7.2.3.1) 

(7.2.3.2) 

(7 .2.3.3) 

(7.2.3.4) 

(7.2.3.5) 

(7.2.3.6) 

During the reentry manoever the total acceleration of the vehicle should be bounded to 
values which are bearable by the astronauts. In the formulation of the optimal control 
problem this yields the following mixed control state constraint : 

t Because there is no terminal point constraint for the state variable ( and this variable is not present in 
the equations (7.2.1.1) - (7.2.J.3), this variable may be omitted completely. 
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(7.2.3.7) 

As with the glider problem of Section 7.1.2, the maximum normal load factor nmax is nor

mally a value between 4 and 6. 

The problem was solved for a number of different values of nmax· For each of these runs 
the data given by Bals ((1983), Table 14) were used, as a starting trajectory, which is an 
estimate of the solution of the reentry problem when no constraints are present. The 
maximum acceleration which arises during the reentry problem when no acceleration con
straint is taken into account is 9.4g. Thus for values of nmax smaller than 9.4 the optimal 
control will be restricted by the mixed control state constraint (7.2.3.7). 

ii, (t) i 

5 

nmax>9.4 

nmax= 9 
nmax= 8 

nma.,= 1 

nma~.-= 6 

1--ll-+-.....-~ nmax= ~ 

0.5 1.0-- t ;f 
Normal load factor fi. for various values of n max· 

Figure 7.11 

The normal load factor fi. (t) is given in Figure 7.11 for values of nma.,= 9,8,7,6,..fis. For 
values lower than ..fi6 no convergence could be achieved. These results are similar to those 
of Gillessen (1974). Probably there is no feasible control of the reentry manoever possible 
for values lower than ..fi6 and with the boundary conditions (7.2.3.3) - (7.2.3. 7). The 
convergence history of the case n ma.,= 6 is given in Appendix F, Table F6. 

7.2.4. Restriction on the altitude (second order state constraint). 

The reentry manoever of the Apollo capsule is now considered, subject to a restriction on 
the altitude (cf. Bals (1983), Gillessen (1974), Hiltman (1983)). 
An inspection of the solution of the unconstrained reentry problem discussed in Section 
7.2.2 shows that after the vehicle has dived into the earth's atmosphere, the altitude of 
the vehicle g is again increased, in order to minimize the heating of the front shield of the 
vehicle. As a result of this increase in altitude the movement of the vehicle will be 
directed from the earth for some time. This is a dangerous situation because during this 
movement directed from the earth, small errors in the control of the vehicle may lead to 
'hurling' back to space. In order to decrease this danger, a constraint on the altitude g is 
added, once the first altitude minimum is passed. The constraint is thus of the following 
form: 
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01.T~t~T. (7.2.4.1) 

where 01. is an a priori specified quantity (actual value 01.= 0.3). 

An inspection of the functions SJ and S} obtained from (7.2.4.0. (7.2.1.1) - (7.2.1.3) via 
differentiation to the time yields that the state constraint (7.2.4.1) is of second order. 

For the remaining details the problem is similar to the problem discussed in Section 7.2.2, 
except for the final state of y. which should satisfy : 

y(T) = -26.237124° 1:00 (7.2.4.2) 

As a starting trajectory the data given by Bals ((1983), Table 17) were used to solve the 
unconstrained problem, which corresponds to the case tmax>0.0101. Using each time the 
solution obtained for the previous value of tma., as an initial estimate, the value of tmax 
was decreased successively to 0.0090 and 0.0080. For values lower than g max= 0.0080 no 
convergence of the method could be achieved. This was due to the fact that the step size 
became very small and hence there was no longer progress towards a solution point. 

0.02 

0.01 

0.5 1.o ~ t!f 

Relative altitude g for various values of tmax· 
Figure 7.12 

In Figure 7.12 the altitude let) is shown for the values tmax> 0.0101 and 
tmax= 0.0090, 0.0080. The convergence history corresponding to the case tma,= 0.0090 is 
given in Appendix F, Table F7. 

7.3. Optimal control of servo systems along a prespecified path, with contraints on 
the acceleration and the velocity. 

ln this section the optimal control of two dynamically independent servo systems. along a 
prespecified path is considered subject to constraints on the accelerations and the velocities 
of the individual servo systems. 
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7.3.1. Statement of the problem. 

The optimal control problem to be considered is a special case of the problem outlined in 
Section 1.2, namely the case of two dynamically independent servo systems q 1 and q 2 , 

which are to be controlled along a path Y(s) (depicted in Figure 7.13) from the points= 0 
to the points= 1. 

s=O 
0 '----------------"'/'--~ 

0 2.0--> ql 

Path Y(s ). 

Figure 7.13 

The dynamic behaviour of the servo systems is supposed to be described by the following 
differential equations : 

i = 1.2 (7.3.1.1) 

To control the system along the path. the servo position coordinates q 1 and q 2 roust 

satisfy : 

q; (t) = Y;(s (t )) i = 1.2 (7.3.1.2) 

The optimal control problem is now. as in Section 1.2, to find a twice differentiable func
tions :[0.T] ..... [0.1). such that constraints of the type 

If/; (t ) I ~ Vma, ,i i = 1.2 (7.3.J.3) 

and 

i = 1.2 (7.3.1.4) 

are satisfied and that in addition the following objective function is minimized (for fixed 
c;;,: 0): 

T 

T + ½c js"(t)2 dt. 
0 

(7.3.1 .5) 

(The final time T is supposed to be variable.) 

As in Section 1.2 it is possible to eliminate the coordinates q; and the forces F; completely 
from t:t)e statement of the optimal control problem, using (7.3.1.1) - (7.3.1.4). The state 
constraints (7.3.1.3) become: 

I Y; '(s (t ) )s (t ) I ~ Vmax ,; i = 1.2 (7.3.1.6) 

Because the movement along the curve directed from the point s = 0 to the point s = 1 
corresponds with s (t ) > 0. it is likely that the solution of the optimal control problem 
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will (automatically) satisfy the condition : 

Is (t) I ~ 0 (7.3.1.7) 

Under the assumption that this condition is satisfied. the constraints (7.3.1.6) may be 
rewritten as : 

.,,,.,,. Vmax i 
s(t)"" min . 

; = 1,2 I Y ;'(s (t ) ) I 
(7.3.1.8) 

As will follow from the exact statement of the optimal control problem given below, the 
constraint (7.3.1.8) is a state constraint of order one. Instead of using the nonsmooth 
form (7.3.1.8) for the state constraint, the problem is simplified by using a smooth 
approximation to the right hand side of (7.3.1.8). The constraint (7.3.1.8) is now replaced 
by: 

(7.3.1.9) 

In Figure 7.14 both the right hand side of (7.3.1.8) and the function fc (s) are plotted as a 
function of the variables. for the path of Figure 7.13. 

1.5 

0.75 

0 0:::----------~---------'---
0.5 1.0- s 

State constraint function fc (s ). 

Figure 7.14 

For the approximation fc the smoothing spline of Schoenberg and Reinsch is used (cf. de 
Boor (1978)). 

Using relation (7.3.1.1) and the second time derivative of (7.3.1.2), the constraints 
(7.3.1.4) become: 

with: 

IY;'(s(t))s"(t) + Y;"(s(t))s(t)21 ~ Amax.i 

Ama.\· .i ·-
Fma., ,i 

l; 
i = 1,2. 

i = 1.2. (7.3.1.10) 

(7.3.1.11) 

The optimal control problem involves the selection of a twice differentiable function 
s:[0.T]-+[0,1] and a final time T>0, that satisfy the constraints (7.3.1.9) and (7.3.1.11). 
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Because the motion starts at s = 0 and ends at s = 1. we must also have s (0)= 0 and 
s(T )= 1. 

For the sake of completeness we will now give a formal statement of the optimal control 
problem. in the form which is used in combination with the numerical implementation of 
the method. 

The relative path position s is formally denoted by x 1. An artificial state variable is used 
for the value of the state constraint (7.3.1.9). i.e. 

(7.3.1.12) 

The numerical implementation of the method is done for optimal control problems on the 
fixed final time interval [0.1]. therefore the optimal control problem must be transformed 
to this interval using a transformation 

t = TT (7.3.1.13) 

The variable T has the form of a parameter in the transformed optimal control problem, 
which is formally taken into account using a state variable x 3 that satisfies : 

(7.3.1.14) 

The second derivative of the relative path position playes the role of the control variable 
and is therefore denoted by u . 

The optimal control problem may now formally by stated as : 

1 

minimize x 3( 1) + ¼ c f u ( T ) 2 d T. 
X ,U _. Q 

subject to: 
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X1 = X3(x2+fc(x1)) 

x2 = x 3(u-fc'(x1)(x2+fc(x 1))) 

X1(0)= 0, 

xz(0) = -fc (0). 

X1(1) = 1, 

xz(1) = -fc(l), 

X2 ~ 0 

Y;'(x1)u+Y;''(x1)Cx2+fc(x1))2-Ama,,i ~ 0 

-Y;'(x1)u-Y;''(x1)Cx2+fc(x 1))2 - Ama.,,i ~ 0 

O~T~ 1. 

0~ ,,.~ 1. 

i = 1.2 0~ r ~ 1, 

i=l.2 O~r~l. 

(7.3.1,15) 

(7.3.1.16) 

(7.3,1,17) 

(7.3.1.18) 

(7.3.1.19) 

(7.3,1,20) 

(7.3.1 .21) 

(7.3.1.22) 

(7.3.1.23) 

(7.3,1.24) 

(7.3.1.25) 
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7.3.2. Numerical results of the servo problem. 

The problem described in the previous section was solved for a number of different values 
of the maximum servo velocities and accelerations and for different values of the parame
ter c which defines the objective function. 
The numerical solutions discussed in this section were obtained using an equidistant grid 
of 20 points in the first stage of the method (i.e. p = 20). For the approximations to the 
state variables quadratic polynomials were used on the grid intervals (i.e. l = 2). 

The maximum velocities and accelerations of the servo system with index 2 were taken 
dependent on the values of the servo system with index 1 in the following way : 

Vmax,2 = ½ Vma.,·,I• 

Amax ,2 = 2Amax ,I· 

0 1.0---> r 

Path velocity for various values of V1110x .I· 

Figure 7.15 

The first case to be considered is the case that the parameter c and the maximum accelera
tion A 1,w., ,1 are kept fixed (c = l_~-2 and A,,,0 , •1= 3). In Figures 7.15 and 7.16 the path velo
cities s and the accelerations q I which are numerical solutions to the problem for the 
cases that V 1110., .I= 10, Vma., ,1 = 3, V 1110x .I= 1.5 and Vmax .1= 1.25. are given. The dotted lines 
indicate when a constraint is active on either the path velocity or on the acceleration of the 
servo with index 1. 

From Figures 7.15 and 7.16 we note that the solutions corresponding to the cases 
Vmax .1 = 10 and V 1110x ,1 = 3 are indentical. which is a result of the fact that in these cases the 
velocity constraint (7.3.1.10) is not active at all. In these cases the constraint on the 
acceleration is almost always active. When the maximum velocity is decreased to 
Vmax .I= 1. then the acceleration constraint is only active part of the time and the con
straint on the path velocity is active over some period of time. When the maximum velo
city is further decreased, the velocity constraint becomes active over a longer period of 
time. 
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3 

0 
V max ,1 = 3.00 

V ma., ,1 = 1.25 

V max ,1 = 1.50 

-3 --------------------------------

0 0.5 1.0 - 'T 

Acceleration of servo 1 for various values of V max .l· 

Figure 7.16 

Path velocity for various values of Amax .l· 

Figure 7_17 

The second case to be considered is the case in which the maximum velocity is kept fixed 
and where the maximum acceleration is varied (c= 10-2

• Vmax,1=3). The path velocities i 
and maximum accelerations q which are numerical solutions to the problem are given in 
Figures 7.17 and 7.18 for the cases Amax,1=10 and Amax,1=3. The solution corresponding 
to the case Amax ,1 = 3 is again of the bang-bang type. In this case the acceleration constraint 
(7.3.1.10) is almost always active. When the acceleration constraint is increased. the velo
city constraint becomes active. 

The last case that is considered is the case where the maximum velocities and accelerations 
are kept fixed and where the parameter c is varied (V,,,0 ,. ,1 = 1.5 and Amax ,1 = 3 ). In Figure 
7.19 the path velocities corresponding to the numerical solutions of the problem for the 
cases c = 0.01, c = 1, c = 10 and c = 100 are given. The solutions corresponding to the cases 
c = 10 and c = 100 are unconstrained solutions. i.e. no constraints are active at all. 
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3 

0 

-3 

-10 

0 

Ama, ,I= 10.00 

Ama, .I= 3.00 

0.5 1.0---, T 

Acceleration of servo 1 for various values of Amax.!· 

Figure 7.18 

0.8 

i (T) i 

0.4 

c= 100 

0~-------::-'-:--------..cL-_ 
0 0.5 t.0--> T 

Path velocity for various values of c. 
Figure 7.19 

In Table FS, Appendix F the convergence history corresponding to the case Vmax ,1= 1.5, 

Amax ,I= 3 and c = 1 is given. 
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8. Evaluation and final remarks. 

8.1. Relations between the SQP method in function space and some other methods. 

The SQP method in function space. described in the previous chapters for the solution of 
state constrained optimal control problems, is essentially a method based on the abstract 
formulation of the state constrained optimal control problems in infinite-dimensional 
function spaces. The method consists of two stages. In the first stage the optimal control 
problem is approximately solved using a fixed step integration scheme. Hence, the first 
stage yields a rough approximation to the solution and a good estimate for the structure of 
the solution. The problem is solved more accurately in the second stage, which determines 
the exact locations of the junction and contact points of the state constraints. In the 
numerical context this means that during the second stage the integration step is adjusted 
in a neighborhood of junction and contact points. The first stage was developed by exten
sion of the ideas of finite-dimensional sequential quadratic programming, based on the use 
of inequality constrained subproblems, to the abstract formulation. The second stage is 
based on a similar extension of the ideas of finite-dimensional sequential quadratic pro
gramming to the abstract formulation, but now based on the use of equality constrained 
su bpro bl ems. 

A method which is strongly related to the first stage of the SQP method in function space, 
is the method which converts the optimal control problem into a finite-dimensional 
mathematical programming problem. This is done by approximating the control and the 
state functions using piecewise polynomial functions. The polynomial coefficients that are 
associated with this approximation become the variables in the mathematical programming 
problem. The finite-dimensional mathematical programming problem is then solved using a 
general purpose nonlinear programming method. Methods of this type are called methods 
Qf. direct discretization. As we are interested in the relation between the SQP method in 
function space and methods of direct discretization, it will be assumed in the sequel. that a 
sequential quadratic programming method is used to solve the finite-dimensional nonlinear 
programming problem. Before we consider the relation between the SQP method in func
tion space and methods of direct discretization. we will outline two specific methods of 
direct discretization (cf. Kraft (1980, 1984)). 

One way to convert an optimal control problem into a nonlinear programming problem is 
to approximate the control u (t) by means of a spline function on [O.T] (cf. de Boor 
(1978)). Thereto a grid is chosen and the values of the control on the grid points. which 
are called the spline knots, are the variables of the nonlinear programming problem. The 
state variables of the system. x (t ). are treated as quantities dependent on the control u 

and may. at any time point. be obtained as the numerical solution of an initial value prob
lem. With this type of method. gradients are usually obtained via numerical 
differentiation. 

A refinement of this method, which significantly improves the accuracy of the solution 
obtained, is to take the spline knots also as variables of the nonlinear programming prob
lem, i.e. the control is approximated by a spline function on a variable grid. 

Another way to convert an optimal control problem into a nonlinear programming prob
lem is to approximate. not only the control. but also the state by means of spline func
tions. The differential system 
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x(t) = f(x(t).u(t).t) (8.1.1) 

is then converted into a number of equality constraints 

j = 1,. ..... (8.1.2) 

which state that for the finite-dimensional approximation (x ,ii). the differential system 
must be satisfied at the (collocation) points r i. 

We note that the second method is in fact a refinement of the first method, as the second 
method is equivalent to the first method. when the implicit Runge-Kutta scheme. discussed 
in Section 6.1.1. is used as the integration scheme. 

With both methods. state constraints can be treated in essentially three ways : 

1) by taking care of them via penalty terms in the objective function. 

2) via conversion into inequality constraints of the type : 

y(O) = 0, 

j (t ) = max {O.S (x (t ),t )}. 

y (T) ~ YT, 

where YT is a 'small' quantity. 

3) by replacing them by a finite number of inequalities of the form 

S (x (ti ) ,ti ) ~ 0 j = 1. .... 

where the points ti are a finite subset of points of [O.T]. 

(8.1.3) 

(8.1.4) 

(8.1.5) 

(8.1.6) 

Experience shows that the approaches 1) and 2). which are essentially similar, yielding 
relatively inefficient procedures with relatively inaccurate solutions (cf. Well ( 1983)). It 
is obvious that with the third approach the state constraints may be violated at all points. 
except at the time points ti. According to the terminology of Kraft (1984). the state con
straints are treated as a 'soft' constraints with the third approach. 

For problems without state constraints of order ;;,: 1, the first stage of the SQP method in 
function space is equivalent to the method of direct discretization that is based on the 
conversion of the optimal control problem into a nonlinear programming problem in fol
lowing way: 

The state function is approximated using l th order piecewise polynomials on the intervals 
defined by 

0 = t O < t I < .... < tp = T. (8.1.7) 

which are continuous at the points t,. (r = l , ... ,p-1). The control is analogously approxi
mated by means of (l -1 )th order piecewise polynomials on the same intervals (t,. ,t, + 1) 

(r = O, .... p-1). The differential system is replaced by a finite number of equality con
straints : 

x(r1r+;)= f(x(r1r+;),u(r1,-+;),T1,-+;) i=l.. .. ,l r=0.1.. ... p-1. (8.1.8) 

where the collocation points r 1,-+; are as defined in Section 6.1.1. The mixed control state 
constraints are replaced by a finite number of inequality constraints : 
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and the boundary conditions at t = 0 and t = T remain : 

D(x(t 0 )) = 0, 

E(x (tP ).tP) = 0. 

(8.1.9) 

(8.1.10) 

(8.1.ll) 

The objective function is approximated as a finite sum by means of the quadrature rule 
(6.1.1.24), i.e. 

p-1 I 

ho(x (to)) + L, h,. L, iii;f o(x ( 7 /r+i ),u (7 /,- +i ),71,. +i) + g o(x (tp ),tp ). (8.1.12) 
r=O i= 1 

The connection between the two methods (i.e. the first stage of the SQP method in func
tion space and the method of direct discretization) is revealed by the special structure of 
the collocation scheme for the linear multipoint boundary value problem, that follows 
from the necessary conditions for optimality for problem (EQP/SCOCP). This special 
structure indicates that the collocation equations are essentially equivalent to the neces
sary conditions for optimality for the quadratic programming problem obtained from 
problem (EQP/SCOCP) via the above mentioned discretization (cf. Section 6.1.2). Observ
ing that the linear multipoint boundary value problem may be obtained via a Newton 
approach from the nonlinear multipoint boundary value problem, that follows from the 
optimality conditions for problem (SCOCP), yields the connection with the corresponding 
nonlinear programming problem. 

Similar to the case of mixed control state constraints. it follows for problems with state 
constraints of order ~ 1, that when these constraints are replaced by interior point con
straints of the form 

(8.1.13) 

then the first stage of the SQP method in function space and the method of direct discreti
zation using the approach 3) for the state constraints. are again equivalent. 

However, in the case of the SQP method in function space, the state constraints of order ~ 
1 are. on boundary intervals replaced by the conditions 

Si (x (t,. ),t,.) = 0 j = 0,1,. .. ps, 

at the entry points, and the conditions 

SP'(x(71r+i ),u (T1, +i ),71,-+;) = 0, 

(8.1.14) 

(8.1.15) 

at all collocation points. interior to boundary intervals. (p, is the order of the state con
straint). This is an essential difference between both methods. because a similar approach 
seems for direct discretization methods not possible. This is a result of the fact that the 
active set strategy discussed in Section 5.2, is entirely based on the special. infinite
dimensional relationship between the interior point constraints (8.1.14) and the mixed 
control state constraints (8.1.15). 

The advantage of the SQP method in function space, compared to the methods of direct 
discretization, is that boundary intervals are approximated directly. instead of replacing 
them by of a number of interior point constraints. In the terminology of Kraft (1984), the 
state constraints are with the SQP method in function space. treated as 'hard' constraints. 
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Therefore. in general. the solution obtained from the first stage of the SQP method in 
function space will be a better approximation to the exact solution of the problem 
(SCOCP). than the solution obtained from the direct discretization methods. where the 
state constraints are treated as 'soft' constraints. 

In practice. direct discretization methods are often used for the same purpose as the first 
stage of the SQP method in function space. i.e. to obtain the structure of the solution and a 
rough estimate of the solution of the optimal control problem. The solution of the optimal 
control problem can thereafter be obtained more accurately using. for instance, a method 
for the solution of the nonlinear multipoint boundary value problem which may be 
derived from the necessary conditions for optimality for the problem (SCOCP) (cf. Bock 
(1983). Bulirsch (1983). Maurer (1974. 1975)). This approach is essentially similar to the 
stage 1 - stage 2 approach of the SQP method in function space, where the second stage is 
started with the solution and the Lagrange multipliers obtained from the first stage. In 
this context. a serious disadvantage of the direct discretization methods is that the 
Lagrange multipliers obtained. corresponding to the solution of the nonlinear programming 
problem. cannot be used as estimates for the Lagrange multipliers in the second stage. This 
is due to the fact that the state constraints are treated differently in the first and the 
second stage. With the function space approach, the state constraints are treated similarly 
in both stages and hence the Lagrange multipliers obtained from the first stage can be used 
directly as estimates for the Lagrange multipliers in the second stage. 

The second stage of the SQP method in function space can be compared with the 'multiple 
shooting' approach. With this approach the optimality conditions for problem (SCOCP) are 
used to derive a multipoint boundary value problem. which is solved using a multiple 
shooting method. The control and the Lagrange multipliers corresponding to the state con
straints are eliminated analytically. In general. the junction and contact points of the state 
constraints are not known a priori and in addition. the right hand side of the set of 
differential equations and the adjoint variable may be discontinuous at these points. There
fore use is made of so-called switching functions which are used to locate these points, i.e. 
a zero of a switching function coincides with a junction or contact point. The general form 
of the multipoint boundary value problem is thus : 

y = F(y,t.z(y.t)) 

G (y (O).y (T)) = 0, 

H (y (i J ).i J ) = 0 for all ti 

(8.1.16) 

(8.1.17) 

(8.1.18) 

At the junction and contact points one of the switching functions z; has an isolated zero, 
i.e. 

(8.1.19) 

The second stage of the function space method consists of the calculation of a direction of 
search based on the numerical solution of problem (EQP/SCOCP) and of the active set 
strategy described in Section 5.3. Without the active set strategy the second stage of the 
method solves. in fact. a nonlinear multipoint boundary value problem. where the control 
and the Lagrange multipliers corresponding to the state constraints are not eliminated as 
with the multiplie shooting approach, but which are determined by nonlinear algebraic 
equations. The active set strategy of Section 5.3 plays a role similar to the switching 

151 



Chapter 8 

function concept, as it is (only) used to determine the exact location of the junction and 
contact points. With the multiple shooting approach a thorough understanding of the first 
and second order conditions for optimality, for state constrained optimal control problem. 
is required and the actual conversion of the optimal control problem into a nonlinear mul
tipoint boundary value problem in general, involves considerable work. With the SQP 
method in function space the problem functions are the only ones used and hence no 
conversion is required. 

Reviewing the SQP method in function space in the context of Section 1.4. the first stage of 
the method is essentially a direct method and is therefore likely to have a relatively large 
region of convergence and which yields a relatively inaccurate solution. The second stage is 
essentially an indirect method, which has a relatively small region of convergence and 
which yields a relatively accurate solution. In the first stage of the method the structure 
of the solution is determined. The second stage requires, as all indirect methods, the struc
ture of the solution and a relatively good estimate of the solution as an initial starting 
point. Because the first stage yields both the structure of the solution and an approxima
tion to the solution, the second stage is automatically started with the structure and the 
solution obtained from the first stage. The entire method may thus be viewed as a method 
which combines the merits of both a direct and an indirect method. 

8.2. Final remarks. 

The results contained in Chapters 2 and 3 show that, at present, the optimality conditions 
for state constrained optimal control problems can be derived rigorously from a number of 
rather basic results on optimality in abstract vector spaces. Refinements dealing with the 
continuity of the Lagrange multipliers at junction points can be derived from these 
optimality conditions (e.g. cf. Maurer (1977)). An inspection of these refinements shows 
however, that they need not hold for the optimal control problems with state equality 
constraints. as considered in Section 5.1. Because the SQP method in function space 
requires both the solution of proble~s with state equality and state inequality constraints. 
it seems that these results have no application for the method presented in the thesis. 

The SQP method in function space is essentially a Newton-like method applied to the first 
order necessary conditions for optimality. For the SQP method in abstract vector spaces. 
derived in Section 4.1. convergence results similar to those given by Kantorivich et al. 
(1982). can be stated. In applying the SQP method to state constrained optimal control 
problems several heuristic steps were taken. These heuristic adaptations of the SQP 
method, complicate the derivation of convergence results greatly. Because the solution 
method for the subproblem (EIQP/SCOCP/ll.) is also a heuristic adaptation of a method 
for which convergence results can be derived, it is quite likely that the method converges, 
but it seems hard to derive strict convergence results. 

The main problem, in the derivation of the convergence results mentioned above, is the 
fact that with the SQP method in function space, boundary arcs of state constraints of 
order ~ 1. are treated as 'bard' constraints. We note that finite-dimensional sequential 
quadratic programming methods allow a rather complete convergence analysis (cf. 
Schittkowski (1981)). Hence in the case that the SQP method in function space is 
equivalent to a method of direct discretization (as outlined in the previous section) the 
convergence results for the method of direct discretization using finite-dimensional sequen
tial quadratic programming, will also hold for the SQP method in function space. Also in 
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this case the solution method for the subproblem (EIQP/SCOCP/ A) is identical with the 
quadratic programming method reviewed on Appendix A. which allows a standard conver
gence analysis. 

The numerical results on the solution of some benchmark problems. given in Chapter 7, 
show that the method can indeed be used for the solution of state constrained optimal 
control problems. The Apollo reentry problems are the most difficult problems which are 
currently solved with the method. The sensitivity of the problem results in a relative ill
conditioning of the matrices. which determine the subproblems to be solved. A difficulty 
that had to faced in addition to the ill-conditioning of the matrices, was the fact that the 
subproblems were unbounded below (indefinite projected Hessian of the Lagrangian) 
except in a very small neighborhood of the solution. We note that the modifications which 
were implemented in order to overcome these problems led to a significant improvement in 
the implementation of the method. 

For relatively stiff optimal control problems (such as the Apollo reentry problems) the 
collocation method, which is equivalent to an implicit Runge-Kutta integration scheme. can 
be very efficient, as a result of the fact that the integration step size can be varied very 
easily. This requires a mechanism, not present in the implementation yet. which selects the 
grid (integration step sizes) automatically. 

Another improvement in the implementation of the method may be achieved by using 
quasi-Newton updates for the Hessian of the Lagrangian. When these updates are used, it 
is no longer necessary to supply the second derivatives of the problem functions. This will 
simplify the use of the program at the cost of the rate of convergence, which in general 
will no longer be quadratic, but superlinear. 
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Appendix A : A method for the solution of finite-dimensional quadratic program
ming problems. 

In this appendix we shall review a method for the solution of the following quadratic pro
gramming problem (cf. Powell (1974). Gill et al. (1981)): 

Problem (FDEIQP): 

Minimize CT d + !dT Md. 
d 2 

subject to : A 1d = b 1• 

A2d :;,; b2, 

where : c and d are n -vectors, 

M is a symmetric nxn matrix, 

A 1 and A 2 are resp. m1xn and m2xn matrices, 
b 1 and b 2 are resp. in 1 and m2 vectors. 

(Al) 

(A2) 

(A3) 

We shall assume that problem (FDEIQP) has a solution for which the regularity constant 
(cf. Chapter 2) may be set nonzero. The optimality conditions of Kuhn-Tucker (cf. Gill et 

al. (1981)) then imply that there exist multipliers ~ 1E JI/" 1 and ~ 2 E JR. 1112
• that satisfy 

~2i (a2j d - b 2i) 

~2j ~ 0 

=O 

In addition, the second order necessary condition for optimality are 

with: 

(A4) 

(AS) 

(A6) 

(A7) 

(AB) 

i.e. the Hessian matrix M must be positive semi-definite on the tangent subspace of the 
'active' constraints at d. The second order sufficiency conditions have a similar form with 
~ replaced by A>. i.e. M must be positive definite on the tangent subspace of the active 
constraints at d . 

The method we shall discuss is basically an iterative minimization of the objective func
tion 

f(d) == cT d + ! dT Md. 
2 

over the set Q[ feasible points, 

This means that a sequence (d;) is constructed for which 

and 
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for all i =0,1, ... (A12) 

The method assumes that a feasible initial point d 0 is given. which is used as a first ele
ment of the sequenc':'. 

In each iteration of the method. a key role is played by the socalled working set. This set 
consists of the constraints (A2) and a subset of the constraints (A3) which must be 
satisfied as equalities. The working set is an estimate for the set of active constraints in the 
solution point. 

Essentially one iteration consists of three steps : 

1) Calculation of a direction of search ad;. 

2) Calculation of a step size a;. 

3) Updating the working set. 

The direction of search is calculated such that the objective function is minimized with 
respect to the constraints in the working set. i.e. a solution of 

Problem (FDEQP) : 

subjectto:A 1(di+ad)= b 1, 

A 2(d i +ad)= b2 • 

where (A15) denotes the subset of constraints (A3), which are in the working set. 

(AJ3) 

(A14) 

(AJ5) 

Because of the fact that for constraints in the working set equality holds, this problem is 
equivalent to : 

Minimize (c r + d ;r M )ad + .!. ad r Mad , 
4d 2 

subject to: A 1ad = 0, 

If M is positive definite on the subspace 

Hi := {d:A1d=0I\ A2d=O}. 

(A16) 

(A17) 

(A18) 

(A19) 

then the problem (A16) - (A18) will have a unique solution and hence the direction of 
search ad i is uniquely determined. If M is only positive semi-definite on Hi . the prob
lem does not have a unique solution. In this case the direction ad i is chosen to be the 
negative gradient of T. i.e. the vector c + Md i • projected on Hi. When the matrix M is 
indefinite on Hi then a solution to problem (FDEQP) does not exist, because along any 
direction Qi negative curvature on fl:...., i.e. any ad that satisfies 

adTMad <0, (AW) 

and 

(A21) 

the value of the objective function is unbounded from below. When however. problem 
(FDEIQP) has a solution, then along any direction of negative curvature of M of Hi, an 
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inequality constraint, which is not in the working set, must become active. Hence, in the 
case that M is indefinite, any direction of negative curvature is a suitable choice for Adi. 

Once a (nonzero) direction of search is calculated, a step size ai must be determined. 

In the case that M is positive definite on Hi. the step size a i is taken so that f is minim
ized along Ad i on H i , i.e. 

. . l A 2j di -b 2j 
ai-=minl.- . /\A 2jAdi>O}. 

j A 2j Ad' 
(A22) 

A similar choice is made in the case that M is only positive semi-definite on Hi 

. . l (cT +diT M)Adi A2jdi-b2j I\ A2jAdi >0}. 
ai .= mJn - AdiTMAdi ,- A2jAdi (A23) 

If M is indefinite on Hi, the step size ai is taken as 

. . A 2j di -b 2j i 
ai -= min{- . /\A 2jAd >O}. 

j A2j Ad' 
(A24) 

The third step of an iteration consists of updating the working set. 

A constraint is only added to the working set when it restricts the step size ai. We note 
that if the matrix of constraints 

was of full row rank before the constraint was added, then it will also be of full row rank 
after a constraint is added. For if this constraint was linearly dependent of some con
straints already in the working set. then the constraint would not have restricted the step 
size ai. 

If the direction of search Adi is zero. then the minimum in the current subspace is 
achieved and hence no further progress can be made with the current working set. The 
subspace may be enlarged by deleting constraints with negative Lagrange multipliers from 
the working set. If only one such constraint is deleted. then the direction of search Adi. 

computed as the solution of problem (FDEQP). will be directed into the feasible region (cf. 
Powell (1974)). 

When the direction of search Ad' becomes zero and there are no constraints with a nega
tive multiplier. then di is a solution of problem (FDEIQP ). 
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The method described above may be summarized as the algorithm below : 

Algorithm A 1 : 

(0) d 0eH 0 given. 

i == 0. 

(i) Test for convergence. 
Terminate if the minimum in the subspace Hi is achieved and if the Lagrange multi
pliers have correct sign. 

(ii) Calculate a direction of search Adi. 

(iii) If llAd;ll=0 then goto (vii). 

(iv) Calculate a step size a, and set 

(v) If the step size a, was restricted by one or more constraints, add one of these con

straints to the working set. 

( vi) i == i + 1 
goto (ii). 

( vii) Delete a constraint with a negative Lagrange multiplier from the working set. 
goto (ii). 
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Appendix B: Transformation of state constraints. 

Consider problem (SCOCP) with a scalar state constraint 

T(x(t).t) ~ 0 for all 0~t~T. (Bl) 

for which condition (5.1.2.4) is not satisfied. This means that the functions Ti defined as: 

Ti := {T(x;1) . i j=O 
T/- (x .t )f (x ,u .t ) + T,;- (x ,t) j = 1....p 

(B2) 

do not satisfy the condition : 

T/,(x .t) = 0 for all j=0.1. ..... p-1. (B3) 

The transformation requires the introduction of p additional state variables. denoted Yi 
(j = 1 ... p ). that satisfy the differential equations : 

Yp = TP (x ,u .t) 

with initial conditions : 

j = 1 .... p-1 

Yi (0) = Ti-l(x (0),0) j = 1, ... p. 

For a trajectory (x ,y .u) that satisfies (3.1.2). (3.1.3). (B4). (B5) and (B6). we have 

yj(t)= Ti- 1(x(t).t) 0~t~T. 

The state constraint (Bl) is now replaced by : 

(B4) 

(B5) 

(B6) 

(B7) 

which makes no difference for the solution of the orginal problem (SCOCP). However. one 
may easily verify that for the transformed problem we have 

{
Yi +1 

S~ = TP (x .u ,t ) 

j =0.1,. .. p-1 

j=p 
(B9) 

and hence condition (5.1.2.4) is satisfied for the transformed problem. 
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Appendix C: Results on the reduction of the working set. 

During the execution of Algorithm 5.8, which determines a solution of problem 
(EIQP/SCOCP/ b.), the direction of search can become zero. In this case it is possible that 
further progress towards a solution can be achieved by a suitable reduction of the working 
set. In this appendix we shall investigate this reduction of the working set. 

We note that when the direction of search becomes zero, then the current estimate of the 
solution of problem (EIQP/SCOCP/b.), (d],dJ). is the solution to problem (EQP/SCOCP) 
with the current working set. 

The working set of iteration i will be denoted as : 

W ; ·-.- (Cl) 

Reducing the working set in iteration i yields W; c w;-i_ The direction of search 
(b.d} ,b.dJ ). in iteration i will be determined from the solution of problem (EQP/SCOCP) 
with the working set W;. Because all equality constraints of problem (EIQP/SCOCP/ b.) 
will also hold for solutions to problem (EQP/SCOCP), the direction of search satisfies: 

b.d; = fx [t ]b.d] + fu [t ]MJ 

D, [0]b.d} (0) = 0, 

Ex [T ]b.d] (T) = 0. 

a.e. o::,;;t::,;;T, (C2) 

(C3) 

(C4) 

A requirement for the choice of the working set W; is that a step size a; can be deter
mined so that (d}+ 1.dJ+ 1) is at least b.-feasible. This requires that the direction of search 

must satisfy : 

(CS) 

(C6) 

i.e. the direction of search (b.d} .b.d,:) must be feasible for the grid points which were in 
the working set in the previous iteration. Obviously. this requirement is satisfied for all 
time points which remain in the working set in iteration i. because for these time points 
(C5) and (C6) will hold as equalities. The choice of the working set W' is governed by 
the fact that (C5) and (C6) must also hold for time points which are deleted from the 
working set in iteration i -1. In view of this choice we shall first prove Lemma Cl. 

To simplify notation, the superscript i-1 is omitted for the Lagrange multipliers. which are 
used in the sequel. 

Without loss of generality we shall assume that the working set w/-1
• (l = 1, ... k 1+k 2) 

consists of one boundary interval [ttt~] and, in addition. that the working sets Wf~1• 

(l = 1.. .. k 2) contain one contact point t ~ . (l = 1, ... k 2). 

Lemma Cl: Suppose the solutions of problem (EQPISCOCP) with the working sets wi-I 

and W; are unique. Let (d} .dJ) be the solution of problem (EQPISCOCP) with working set 
wi-l and the multipliers (f.'f),a',µJj/1 ,v11 ) satisfy the conditions of Theorem 5.5. Suppose 

that the multipliers 'f)1 , (l = 1, ... k 1 ) are continuous on the intervals !t 1
1 .t~ ), (l = 1,..k 1) and 

that the multipliers 'iJk 1+1 , (l=l...k2J are p1-times differentiable on the intervals 

(t11+1.t;1+l ), (l= l...k2J, 
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Let 

lld] -- dx - di. 

Adj -- du - dj. 

where (dx ,du) is the solution of problem (EQPISCOCP) with working set W; C wi-l. 

If W; is obtained from wi-l and if an interval (t 1_ti)c w/- 1 , (1~l~k 1) with t 1<t2 is 

eliminated from the working set, i.e. if 

w; := wt1 x .... x w/-1\(t 1,t2)x .... wj~ 1 x .... xWL;-1\
2

• 

then 

12 

J 'if1 (t )(S !Ix [t ]lldt (t )+s Jiu [t ]lldj(t )) dt > 0. (C7) 
'1 

If W; is obtained from w;-i and if an interval [t1 1+
1.'i; 1+

1
)CWL~)1 , (1~l~k 2) with 

t ~ 1 +I < t ; 1 +I< t; 1 +I is eliminated from the working set, then 

- ( )s [ ]•di( )d + ~-j-1s1-1[ k1+1]•di( k,+1) o 'Y) 01 t 2/x t '-" x t t L, II I I 2/x ( I '-" x t I > 
j=I 

where: 

'ifo1 (t ) 

-j-1 
1111 

(CB) 

(C9) 

(CJO) 

lf W i . b . d {'. wi-1 d 'f . l c~ k 1+1 k 1+1] wi I ( / l / ) is o tame 1 rom an i an interva t 2 ,t 2 C k~+I• ls::: s:::k 2 with 
k +I ~ k +I k +I 

t 1 
1 < t 2 

1 < t 2 
1 is eliminated from the working set, then 

k 1+1 
1

2 Pt J 'ifo1(t)S21,[t]lld;(t)dt + L,i7/2-
1S~1-;:

1[t; 1+
1
]1ld)(t; 1+

1
) > O (Cll) 

-k 1+l j=1 
I 2 

where: 'if01 (t) is defined by (C9) and 

j=1.2 .. p1, (C12) 
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If W; is obtained from w;-i and if an interval {t 1.[i)CWj~;1, (1~l~k2) with 
k 1+1 k 1+1 

t 1 < t 1 <t 2 < t 2 is eliminated from the working set, then 

I 2 

f1Jo1(t)S21x[t]ti.d}(t)dt > 0 (CJ3) 
'1 

where : 1)01 (t) is defined by (C9 ). 

If W; is obtained from wi-l and if a contact point t'.i E Wj~;1, (1~l~k 2) is eliminated 

from the working set, then 

(C14) 

Proof : As a notation for the objective function of problem (EQP/SCOCP) we shall use 
f(dx ,du). Because (d},dj) is a solution to problem (EQP/SCOCP) with working set wi-l 

and multipliers (>:.7).ir.jI.f3/1,V11), we have 

T 

f '(dj ,dj)(Adx ,ti.du) - J F (Adx -f, [t ]Adx -fu [t ]ti.du) dt + CTT Dx [O]Adx (0) + 
0 

k I t ~ 
jIT Ex [T]ti.dx (T) + L, J 1)1 (t )(S !Ix [t ]Adx +s llu [t ]Adu) dt + 

1=11\ 

T~ 1+1 

J 1Jk 
1
+1 (t )(SiUt ]Adx +si;u[t ]Adu) dt + 

111+l 

for all Ad_, E W 1,00 [0,T]". Adu E L 00 [0,T],,,. (CJS) 

Because the solutions of problem (EQP/SCOCP) with the working sets wi-l and W; are 
supposed to be unique and the working set is reduced, we have 

f(d,,d,,) < f(di,d,J). (CJ6) 

and hence. (f is convex). 

f'(d; ,d,:)(Ad[ ,AdJ) < 0. (CJ7) 

Because for the direction of search (Adj.Adj), equations (C2), (C3) and (C4) hold, (C15) 
yields: 

/.; 1 T ~ 
L J 711 (t )(S 1/x [t ]Adt +s llu [t ]ti.dj) dt + 
/=1,1 
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t~1+l 

f 71k 
1
+1 (t )(S~\,(t ]Adj +s~L[t ]AdJ) dt + 

t~ 1+1 

= - f '(dj ,dj)(Ad} .Adj) > 0 (CJB) 

For all time points which remain in the working set. equality will hold. Therefore (C7) 
and (C14) follow directly from (C18). 
Equations (C8). (Cll) and (C13) follow indirectly from (C18) using 

Similar to the integration by parts performed in Section 5.1.1 on (5.1.1.33) this yields: 

k 1+l 
'2 

f 7101 (t )S21, [t ]Ad] dt + 
k 1+1 

'1 

_1: [ ii 11-1S~,;1[t 1 l+l ]Ad: (t 11+/) + ii/2-1S~1: 1[t; 1+
1 
]Adi (t; ,+I) l > o. 

1=1 

which implies (C8). (Cll) and (C13). 
D 

(C20) 

The results contained in Lemma Cl are used to develope the active set strategy for the case 
that the working set is to be reduced. We shall consider a number of different cases in the 
lemmas below. 

Lemma C2: Assume the hypotheses of Lemma Cl hold. l E { 1.. .. k i}. r E { 1. .... pi), 

711<i?) < o. (C21) 

and 

(t,.:_1 .t,~1) C W/-l. 

If W; is obtained from wi-l and if the interval (t, 1
_ 1 .t,\ 1 ) is eliminated from the working 

set and Ad,) is continuous on the interval (t,.1
_ 1 .i?+i ), then there exist a o > 0, such that for 

all 0<t,\1 -t,:_1 ~ o 

Proof : (C7) gives with t 1= t,.1_1 and t 2= t,\1 . 

;;:'+1 

(C22) 

_/ 711 (t )(Su, [t ]Ad} + S llu [t ]AdJ) dt = (i~.;.1 -t,.1-1 )71, (t,.1)(S 11xlt/]Ad} (t:) + 
1r-1 
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and hence if i?+i -i?_1 is' sufficiently small' this yields 

'rJ1(t})(Sl/xLt,1]Lld}(4i) + S1iu(4 1]AdJ(4 1
)) < 0, 

which in view of (C21) is equivalent to (C22). 
D 

Reduction of the working set 

(C23) 

(C24) 

We note that in case t/ is an entry- respectively exit point, an analogous result can be 
derived under the hypothesis that AdJ is continuous on (4.1,t,.1+1 ) resp. (t/_1 ,t,.1). 

Lemma CJ : Assume the hypotheses of Lemma Cl hold, l E { 1...k 2 ), p1 = 1 and r E {O ..... p2 }. 

(i) Suppose 

v/1 < o. 
and 

t,.2 = t\. 

(C25) 

If W; is obtained from wi-l and if the interval [t,.2.t,.2+ 1 ) is eliminated from the work

ing set, then there exists a 8 > 0, such that for all 0< 4 2+ 1 -t,.2~ 6, 

S 21x [4.2]Ad} (t,.2) < 0. 

(ii) Suppose 

and 

-2 _ I 
t,. - t2-

(C26) 

(C27) 

If W; is obtained from wi-l and if the interval (t,.~1 ,t,.2] is eliminated from the work

ing set, then there exists a 8 > 0, such that for all 0<4.2-i/_1 ~ 8, 

Proof : (CS) is used to prove ( C26) in the following way 

-2 
r,.+1 

J 1Jo1 (t )S 2/x [t ]Lld 1 (t ) dt + vi°1S ~1-:-
1[42]Ad} Ct,2) > 0. 

-2 ,,. 

This gives 

[-o + 1 - (-2)(-2 -2)js [-2]•di(-2) + 
1111 2 7Jo1 t,. t,+1-t, 2/x t,. J.J, ' t,. 

(C28) 

(C29) 

(C30) 

Because the time point 4-2+1 is not removed from the working set. the second term is zero, 
and hence for 'sufficiently small' 42+1 -42 we have 

[
-0 1 _ -2) -2 -2 I [-2i i -2) 1111+ 2 7)01 (t,. (t,.+1 -t,.) S21, t,. Ad.,.(t,. > 0. (C31) 

Also for 'sufficiently small' 4.2+ 1 -42
, condition (C25) yields 
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-0 + 1 - (-2)(-2 -2) < 0 
Vi 1 2 7101 tr tr+l -tr , 

and hence (C31) implies (C26). 
(C28) follows similar from (Cll). 

D 

(C32) 

Lemma C4: Assume the hypotheses of Lemma CJ hold, l E {1, . .k 2). p1 = 2 and r E {0,1.. .. h}. 

(i) Suppose, in addition, that i;.2= ti , 

(C33) 

If W; is obtained from wi-I and if the interval [i;.2.i;:2+ 1 ) is eliminated from the work

ing set, then there is a 6 > 0, such that for all 0<i;-.2+1 -i;.2~ 6, 

(C34) 

(ii) Suppose, in addition, that i/=ti, 

v/i 
v,01 - -=-c--=,,.. > o. (C35) 

(C36) 

(C37) 

t/+1-t/ 
vli < o. 
[i;:2,i::2+21 C Wl~J,. 

If W; is obtained from wi-I and if the interval (t},i'?+2 ) is eliminated from the work

ing set, then there is a 6 > 0, such that for all 0 < ~2+2 -~
2

~ 6, 

(C38) 

(iii) Suppose, in addition, that t;2= t ~, 

-o v/2 
VI 2 + -2 -2 < 0' 

t,. -t,._1 
(C39) 

If W; is obtained from wi-l and if the interval [i;:2_ 1 ,i;.2) is eliminated from the work

ing set, then there is a 6 > 0. such that for all 0<t}-i;2_ 1 ~ 6, 

(C40) 

(iv )Suppose, in addition, that ~ 2= t ~ , 

v/2 > o. 
[t?.2 ,t;:2] C Wj~j,. 

(C41) 

(C42) 

(C43) 

If W; is obtained from wi-I and if the interval (i;2_ 2 .t,2) is eliminated from the work

ing set, then there is a 6 >0, such that for all 0<t}-i;2_ 2 ~ 6, 

(C44) 
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Proof : We shall first prove part (i), which follows from (CS). For the case p1 = 2, this 
yields: 

;;.2..1 
j 710,(t )S21x[t ]M;(t) dt + vi°1S21x[i;:2]M}(t}) + v1\SJ,,[t;:2]M}.(t}) > 0.(C45) 

;;.2 

The last term of (C45) is now considered as : 

S:W?J + sl,,[i;:2]d}(i;:2) = :t [s2,[t] + S21x[t]d;(t)L=i;.2 

sJ,[i?] + sl,x[i;:2]Jx<i-;:2) = :t [s2,[t] + S21x[t]dx(t)],=;;.2 

(C46) 

(C47) 

((C46) and (C47) are true because d} and J, both satisfy the linear differential system of 
problem (EQP/SCOCP)). And hence, 

(C48) 

An approximation of (C48) is: 

S 2/x [t::2+1 ]Ad; (t;:2+1) - S 2/x [t;:2]Ad~(t~2) 
Si1x[i;:2]M;(t7) = -----~~--=c------- + o(i::2+1-i/), (C49) 

t,.2+1 - t,.2 

which becomes: 

S 21x [i;:2]t.d} (i;.2) 
Si1x[i;:2]t.d}(i;2) = - ----~- + o(t?+i -i;.2), 

t/+1 - t/ 
because i;.2+ 1 remains in the working set. 

(CS0) 

The remaining terms of (C45) are treated similar as in the proof of Lemma C3, part (i), 

For' sufficiently small' ~-2+1 -~-
2 we have 

-1 
-0 V12 J (-2 -2)- (-2) 
V11 - 2 2 + - t,.+J -t,. 'YJot t,. < 0, 

tr+! -t,. 2 

whenever (C33) holds. This yields (C34). 

(CSJ) 

(C52) 

To prove part (ii), we consider (C45) with i/+ 1 replaced by ~-2+2 • Because the time point 
~

2 will remain in the working set as a contact point we have 

S21x [i;:2]t.d}(i?) = 0. (C53) 

Therefore (C49) becomes: 

J [-2] i(-2)- S21,[i?+1lt.di,(i?+1) -2 -2 
S21x t,. Adx t,. - 2 2 + o(t,.+1 -t,. ), 

t,.+1 - t,. 
(C54) 

Now (C45) with i;:2+ 1 replaced by ~-2+2 gives : 
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For 'sufficiently small' i;.2+2 -i;.2 we have 

il/1 + (t~~2 -i?)1f01 (t~
2+1 ) < 0, 

whenever (C36) holds. This yields (C38). 

(C55) 

(C56) 

The proofs of parts (iii) and (iv) are omitted because they are straightforward 
modifications of the proofs of parts (i) and (ii), based on (Cll ). 

D 

Lemma CS: Assume the hypotheses of Lemma CJ hold, l E {1. .. k 2} and r E {1.. .. p2-1}. Sup

pose in addition that 

'i101 (i;.2) < 0, (C57) 

and 

(C58) 

If W; is obtained from wi-l and if the interval (i;.2_ 1 .i/+1 ) is eliminated from the working 

set, then there is a 8 > 0, such that for all O < t,\ 1 -i?_ 1 ~ 8, 

(C59) 

A proof of Lemma C5 is omitted because it is a direct analogue to the proof of Lemma C2, 
based on expression (C13). 

Lemma C6: Assume the hypotheses of Lemma Cl hold, l E {1...k 2} and r E {0.1. ... p2}. Sup
pose in addition that 

(C60) 

If W; is obtained from wi-l and if the time point t~ is eliminated from the working set, 
then 

/C61) 

A proof of Lemma C6 is omitted because it follows almost immediate from Lemma Cl. 
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LQ-factorization of the matrix of constraint normals 

Appendix D : LQ-factorization of the matrix of constraint normals C. 

D1 : Structure of the matrix of constraint normals C. 

D2 : LQ-factorization of a block banded system using Householder transformations. 

D3 : LQ-factorization of the matrix C after modifications in the working set. 

This appendix deals with the LQ-factorization of the matrix of constraint normals C (cf. 
(6.1.2.11)). which is an important issue in the application of the Null space method for the 
solution of the collocation scheme. The standard approach for dense matrices is to compute 
the LQ-factorization of an mXn matrix by means of Householder transformations. This 
requires approximately m 2(n-m/3) flops. if m~n (cf. Golub et al. (1983). p.148). In the 
present case in and n are 'large' (in .n > 100) which makes the standard approach not 
feasible. Fortunately. the matrix C is a block banded system for which an LQ
factorization algorithm can be used which preserves its sparsity. In Appendix D1 the 
structure of the matrix C is considered in more detail. The computation of the LQ
factorization of a block banded system using Householder transformations is thereafter 
discussed in Appendix D2. For the solution of problem (EIQP/SCOCP/ Li) via Algorithm 
5.8. it is necessary to solve a series of problems (EQP/SCOCP). each with a slightly 
modified working set. It is possible to obtain the LQ-factorization of the modified matrix 
C in this situation using the LQ-factorization of the matrix C belonging to the previous 
working set. This is discussed in Appendix D3. 

Appendix D1: Structure of the matrix of constraint normals C. 

The matrix C defined by (6.1.2.11) - (6.1.2.13) turns out to have the following structure: 

C = (Dl.1) 

where the matrices CJ are mJ XnJ matrices and aJ (~ 0) denotes the number of rows of 
block CJ which have no overlap with the rows of block CJ +I· For the last block C1, we 

define a1, := m1,. Because C is an mXn matrix: 
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(Dl.2) 

(Dl.3) 

There are various alternatives for the actual choice of the submatrices C,.. One possible 
choice is to set C,. = C,. for all r. However. as revealed by the Definition (6.1.2.12) the sub
matrices C,. still contain a number of trivial elements. One alternative is to split the blocks 
C,. (r=0.1,. .. p-1) into two submatrices C2r+1 and C2,.+2• where the matrix C2r+1 con
tains the first n columns of the block C,. and C 2,. +2 the remaining l (m +n) columns. A 
second alternative is to splitt depending on the upperpart of the last l (m +n) columns C,. 
into two or more submatrices. For simplicity this road was not followed in the actual 
implementation. The submatrices are chosen as : 

K,. 

Nx[t,.] 

0 

0 

I 
I 

I 
I 

r=0.1 ...... p-1. 

I -
c + CZ+l)n + E,k(r;) r=O 

i=l 
m2,+1 ·- I _ 

c, + U+2)n + L,k(T1r+i) r = 1.2 ...... p-1 
i= 1 

(The matrices N, [t,.] are c,. Xn matrices.) 

r=0.1 ...... p-1. 
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Rf[Tzr+1l RJfrzr+l] 0 

0 0 

0 0 

C2r+2 
G11r H11,. G 12, 

.- G21, 

H11r 

H lr 

I -
m2,+2 ·- (l+l)n + L,k(T1,-+;) 

i=1 

n2r+2 .- l(m+n) 

C2p+l .- IEJ~]l· 
m2p+1 ·- n +q. 

n2p+1 := n 

The total number of submatrices Ci is 

le := 2p+l. 

The numbers ai are: 

azr+I := (C n + c,. 

I -

r=O 
r=l.2 .... p-1 

a2,-+2 .- ln + L,k(T1,+ 1 ), 

i=l 

a2p+1 == n + q. 

0 

R,f[T1,. +1 l 
H llr 

r=0.1.. ... ,p-1, 

r=0,1. ..... p-1. 

r=0.1.. .... p-1. (Dl.7) 

(Dl.8) 

(Dl.9) 

(Dl.10) 

(Dl.11) 

(Dl.12) 

(Dl.13) 

(Dl.14) 

(Dl.15) 

(DJ.16) 

If the matrix C is stored in the same way as dense matrices are stored, then the storage 
would require m·n locations. Because the matrix C is large and sparse. i.e. 
L,mrni <<m•n. this would be rather inefficient. In view of the fact that the LQ

factorization exploits the block structure of the matrix C an obvious choice is to store the 
matrices Ci as dense matrices. 
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Appendix D2 : LQ-factorization of a block banded system using Householder 
transformations. 

In this appendix the LQ-factorization of a block banded system. i.e. the matrix C, will be 
considered. Thereto to the notations and terminology of Appendix D1 are adopted. 

For the sake of completeness we shall first recapitul.;te the Householder transformation 
which is used to zero a number of elements of an ii.-vector v (e.g. cf. Golub et al. (1983) 
or Lawson et al. (1974)). 

Essentially a Householder transformation applied to an ii.-vector is an ii. xii. orthogonal 
matrix of the form : 

Q = 1,, + b-1uuT. (D2.I) 

where u is an ii. -vector and b = -II u 11 2 /2. 

V1 V1 

vp-1 Vp-1 

Vp vP 
Vp+I Vp+I 

V = V11-l Q·v V11-l (D2.2) 

V[I 0 

v1, 
0 

V12+l 
"12+! 

V· 
ll 

V· n 

The effect of the matrix Q in transforming the vector v. is depicted by (D2.2) and can be 
described by means of three nonnegative integers p, l I and l 2 ( with p < l 1 ~ l 2 ) as follows : 

1) If p > 1. then the components v 1 ..... ,vp-l are to be left unchanged. 

2) Component vP is permitted to change and is called the pivot element. 

3) If p <l 1-1. then components vP + 1 ..... ,v1 i-l are to be left unchanged. 

4) If Z1~ Z2, then the components v11 ...... v 12 are to be zeroed. 

5) If l 2 <ii,. then components v12+1 ...... v,; are to be left unchanged. 

The components of the vector u and the factor b . necessary to compute the Householder 
matrix Q (p .l 1,l z). which has the above mentioned properties follow from the algorithm 
below (cf. Lawson et al. (1974)): 
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Algorithm DI (p,11,12,v,b,u,ii) 

I 2 

(i) s := - sign(vp) v/ + L v/ 
i=l 1 

I 
2 

(ii) U; -- 0 i = 1.. .... p-1 

(iii) up -- VP -s 

(iv) U; .-
(v) U; .-

0 

V; 

i = p +1. ..... l 1-1 

i =l1,••··•lz 

(vi) U; .-

( vii) b .-

( viii) 

0 

sup 

i =l2+l.. .... n 

if b ;c 0 

if b = 0 

In most cases it suffices when matrix-vector products of the form Q ·v can be computed. 
We note that because Q is symmetric we have (Q-v )T = vT ,Q. Using the vector u and the 
factor b as computed by Algorithm D1. the multiplication Q-v can efficiently make use of 
the special structure of the matrix Q. as follows : 

(D2.3) 

with: 

/D2.4) 

Because matrix-matrix products of the form Q·A and A ·Q consist of a number of 
matrix-vector products. this type of multiplication allows a similar use of the structure of 
the matrix Q. 

As a first step towards the LQ-factorization of the matrix C we will consider the LQ
factorization of the block banded system (D1.1) using the standard procedure for dense 
matrices. which may be described as follows : 

Algorithm D2 

C 0 := C 
For j .- 1 to iii. 

do 

Calculate a Householder transformation Qi (j .j + 1.n) that zeroes the elements 
(j ,j +1) ..... ,(j ,n) of the matrix Ci ·Qi (j .j +l,n). 

CalculateCi+l := Ci-Qi(j,j+l.n). 

ad 

In order to give a simple description of the inefficiency of Algorithm D2 for the LQ
factorization of the matrix C, we consider the following slightly different form of a 
banded system, which is also denoted as the matrix C (strictly speaking it is a special case 
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of the matrix (Dl.1), where the submatrices 15 i contain trivial elements). 

[LJ~ in 

I C 2 I r-1 -=15-2-, in 

I C3 in 

C= in (D2.5) 

in 

I l5,c-l I in 

[3J in 

ii ii ii ii 

The matrices Ci and 15 i are iii xii matrices. with iii~ ii. 

Lemma D3: If Algorithm D2 is used to triangularize the block banded system (D2.5), then 
the matrix C;,;,, i.e. the matrix Ci after i times m orthogonalization steps, (1~ i <le), has 

the following form 

ci,11 = 

in in 

G; 

in i(ii-m) ii 

l5 i+l 

C;+2 

ii 

in 

in 

in 

in 

in (D2.6) 

in 

15,.-1 in 

c\ m 

ii 

where the submatrices Li are in xiii lowertriangular matrices ( j = 1 ..... i ), the submatrices 
Fi ( j = 1, .... i) are in xiii matrices and the matrix G; is an m Xi (ii.-m) matrix. 

Proof : The proof is given by induction. Therefore the case i = 1 is considered first. 

The kth row of the matrix Ci is denoted by c/. The rows of the matrix C 1 satisfy: 

c/:= c/+u 1(u 1Tc/!b), (D2.7) 

where the vector u 1 is calculated by Algorithm Dl and thus satisfies : 
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u/ = 0 for all z =2n +1 ...... n:. (D2.8) 

Because 

cS = 0 for all k = 2m +1.. .. m and l = 1.. ... ,2n. (D2.9) 

we obtain 

c/ = c/ for all k = 2ni + 1. ..... m:. (D2.J0) 

As a consequence of (D2.8). the elements of the columns 2n + 1.. .. ,n will remain 
unchanged. 

Thus 'fill-in' is generated in the rows ,ii+ 1.. .... 2m and columns 1, .... ,n. The matrices 

jj 2•·····D / -1 and C 3 ..... ,c / remain unchanged. 
C C 

The orthogonalization steps for l = 2 ..... m are essentially the same as this first step, because 
the block structure of C 1 is almost the same as the structure of c 0

. 

After m steps we have : 

[cl f>1] [Li o o ] 
o c2 ...... F1 c1 cf 

i.e. the matrices F I and G 1 represent the 'fill-in' in the rows m + 1.. .... 2m and columns 
1,. .. n. The dimension of the matrix G 1 ism x(n -,ii). 

To prove the induction step i ...... i + 1 we use the following result : 

"The first im rows and columns of C;,,, and cU+l),n are identical." (cf. Tewar

son (1973)). 

Because i ~ Z, -1 it suffices to consider the triangularization of 

G; 

E= 

i (n -iii) ii 

D;+1 

c ;+2 

ii 

D 1,-1 
61 

C 

ii 

iii 

iii 

(D2.ll) 

iii 

iii 

The approach is now essentially the same as before. In the first step the vector u satisfies : 

k >i(n-ni)+2n. (D2.12) 

Because only the first 2m rows of E contain nonzero entries in the columns 
1.. ... i(n-m)+2n, fill-in will only be generated in rows m+1.. .... 2m and columns 
1.. .... i(n-m.)+2m. Observing that this proces is essentially the same for the steps 
j = 2, ... ,m, we obtain the desired result. We note that during these steps the total amount 
of fill-in has increased with ,ii (ii, -,ii). 

□ 

The result of Lemma D3 indicates that during the factorization proces of C . fill-in is gen
erated in a way that. if m < n, large nonzero submatrices are generated. Fortunately it is 
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possible to modify the procedure such that this problem is circumvented. This modification 
was invented by Reid ( 1967) and makes use of the block structure of the matrix C as 
depicted by (D1.1). 

The essence of the approach is that instead of zeroing all elements of a row with one 
Householder transformation. the elements of a row are zeroed by several Householder 
transformations. Each of these Householder transformations is constructed so that it 
zeroes all elements on one row of one specific block and leaves the elements of all other 
blocks unaffected. For the statement of the Algorithm D3 we need the following terminol
ogy. Suppose that the nonzero elements of the j th row of the matrix C are in the subma
trices C; and C;+ 1 and that the column indices, relative to the matrix C. of the first and 
the last column of the submatrix C; are respectively i I and i 2 . The column index of the 

last column of the matrix C;+ 1 is denoted by i 3 • Algorithm D2 is modified into: 

Algorithm DJ 

C 0 := C 
For j .- 1 to in 

do 

Calculate a Householder transformation Q/( j .i 1 ,i 2 ) that zeroes the elements 
(j .i 1)... .. ,(j .i 2 ) of the matrix Ci ·Q/(j .i 1.i 2). 

Calculate a Householder transformation Q/(j .i 2+ 1.i 3 ) that zeroes the elements 
(j .i 2+ 1). ..... (j .i 3) of the matrix Ci ·Q/(j .i 1.i 2)-Q/(j .i 2+ 1.i 3 ). 

Calculate Ci +I := Ci ·Q/(j .i 1 ,i 2)-Q/(j ,iz+ 1,i 3). 

ad 

Reffering to the proof of Lemma D3. we observe that in Algorithm D3 the vector u for the 
Householder transformations is chosen so that during this proces only fill-in is generated 
in the pivotal column. The triagularization of the matrix C follows essentially the same 
pattern as in Lemma D3. with the matrix G; containing only zeroes. 

This approach has the following two advantages if iii <n : 
1) There is a considerable saving in flops. 

In the terminology of Lemma D3, using the standard approach the elements of the sub
matrix G; must all be zeroed (cf. Reid (1967)). 

2) Except for the pivot elements up. the nontrivial elements of the vectors u can be stored 
by overwriting the entries of the matrix C. similar to the standard procedure with 
Householder triangularization of dense matrices. This is possible because the matrix G; 
contains only trivial elements and hence requires no storage. 

In the actual implementation of the LQ-factorization the matrix L is formed explicitly. 
This matrix can be stored efficiently by taking the sparse block structure into account. A 
simple analysis reveals that. except in very special cases. the matrix Q is a dense matrix. 
Because of this nonsparsity the matrix Q is not formed explkitly. but it is stored in fac
tored form. i.e. the vectors u defining the Householder matrices Q/ and Q/ are stored. 
Hence the storage of the Householder factors requires the same amount of storage as the 
storage of the matrix C. 
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Appendix D3 : LQ-factorization of the matrix C after modifications in the working 
set. 

The solution of problem (EIQP /SCOCP/ b.) requires. in general. the solution of several 
problems (EQP/SCOCP) with a slightly modified working set. A numerical approximation 
to the solution of problem (EQP/SCOCP) is obtained as the solution of the collocation 
scheme. A modification of the working set of problem (EQP/SCOCP) translates into 
modifications in the matrix of constraint normals C. 
We mention the following possible modifications and their influences on the matrix C. 
that follow immediate from Section 6.1.2 : 

Modification of the working Modification of the matrix C 
set of problem (EQP/SCOCP) 

A mixed control state con- A row is added to C 
straint changes from inactive 
to active at a collocation point 
A state constraint becomes a A row is added to C 
contact point at a grid point 
A boundary arc of a state l rows are added to C 
constraint is expanded with 
one grid interval 
A state constraint has a con-
tact point which changes into 
a boundary arc of one grid in
terval 

l +(pj -1) rows are added to 
C (pi is the order of the state 
constraint) 

In the table above the modifications are all constraints which change from inactive to 
active. A similar table can be made up for the reverse case, i.e. constraints which change 
from active to inactive. The resulting modification of the matrix C is in this case that rows 
are deleted from the matrix C. We note that modifications of the working set of a state 
constraint may result in a modification of the matrix C of more than one row. 

In linearly constrained optimization it is common practice to make use of the previous fac
torization of the matrix of constraint normals, with the calculation of the factorization of 
the modified matrix of constraint normals. We do not intend to give a survey on methods 
for the calculation of these updated LQ-factorizations. for this we refer to Gill et al. 
(1974a). Golub et al. (1983, p.437) and Lawson et al. (1974. p.174 and p.208). Most of 
these techniques focus on calculating an update for the matrix L . The matrix Q is con
sidered to be either explicitly formed, or to be discarded completely, immediately after the 
factorization. 

In the present case however. the matrix Q. which can only be stored in factored form, 
playes a key role in the Null space method. Because it is our desire to preserve the sparsity 
properties of the factored form of the matrix Q, a suitable way of updating the factoriza
tion is to 'restart' the LQ-factorization algorithm at a suitable point. We shall outline the 
method first without making explicit reference to the sparsity of the matrix C. 

Let 
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(D3.l) 

and 

(D3.2) 

where Cfd is an m 1Xn matrix. The LQ-factorization of the matrix C 01d is known and the 
rows m1, ... ,m of the matrix C are modified. 

The LQ-factorization (D3.1) is now rewritten as : 

I Qo/d Qold lco1dl 
C~ld . I " 2 

-1L~ld 01 
- L~ld 0 (D3.3) 

where the matrix Qfd is the product of the Householder transforms which were used to 
obtain L fd , i.e. 

Now consider 

L old 
I . 

IC1/dl IL1ld 01 en<»· Qo
1
1d Qold 

= er"' I = cr""Q'fd 

(D3.4) 

(D3.5) 

Once the matrix C 2'"'Q1/d is calculated, the LQ-factorization proces can be restarted with 
the triangularization of row m1+1. We note that this method is essentially the 'removal 
part' of method 2 of Lawson et al. (1974) (p.177-178). 

Now consider this method for updating the LQ-factorization of the block banded system 
(D1.1). In the implementation of the method, a copy of the matrix C is preserved. When 
the working set is modified, this copy is modified first. The LQ-factorization of the previ
ous matrix C is thereafter updated using this modified matrix. 

For the calculation of the product C2'"'Q11
d , we consider the actual block structure of the 

™Wx C which foll[ s fromC:•-r[;JDL :;::m 

C2,+2 
C2,+1~ .-------. 

Figure D1 

The blocks C2, +I and C2, +2 contain the coefficients of the linear equations, corresponding 
to the constraints on the grid interval [t,. ,t,. +1). 

If the factorization proces is to be restarted at row i 0+m as depicted above, the calculation 
of the matrix C2'"'Q11

d involves only Householder transformations used in the previous 
factorization proces for the triangularization of rows i 0 ,i 0+ 1, ..... i 0+m-1. When the fac
torization proces would be restarted at another point. this would involve also Householder 
transformations from other blocks. (Note : the row of the blocks C 2,. and C 2,. +2 never 
overlap.) Because this strategy allows a simple implementation, this strategy was adopted 
for implementation. 
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Appendix E : Computational details. 

El : Calculation of the Lagrange multipliers for the active set strategy. 

E2: Approximation of the Lagrange multipliers of problem (EIQP/SCOCP). 

E3: Calculation of the matrices M 2 • M 3 and M 4 . 

E4 : Strategy in case of rank deficiency of the matrix of constraint normals. 

ES : Automatic adjustment of the penalty constant of the merit function. 

E6 : Computation of the merit function. 

E7 : Miscellaneous details. 

The Appendices El - E7 deal with a number of computational details of rather specialized 
nature. In Appendix El the computation of the Lagrange multipliers. required for the 
active set strategy of Algorithm 5.8. is discussed. The computation of the Lagrange multi
pliers. which are used for the computation of the merit function. is discussed in Appendix 
E2. The matrices M 2 , M 3 and M 4 (cf. (4.2.1.12) - (4.2.1.14)) can be computed in two 
different ways. this is discussed in Appendix E3. In Appendix E4 the case of rank 
deficiency of the matrix of constraint normals. which may arise during the execution of 
Algorithm 5.8. is considered. A procedure for the automatic adjustment of the penalty 
constant of the merit function is given in Appendix ES and the computation of the merit 
function is discussed in Appendix E6. Appendix E7 deals with some details related to the 
implementation of the method. 

Appendix El: Calculation of the Lagrange multipliers for the active set strategy. 

For the solution of problem (EIQP/SCOCP/ ii). more specifically for the active set strategy 
(cf. Section 5.2). the Lagrange multipliers (110 • • v/1-

1.v/2-
1

) are required. These multipliers 
are related to the multipliers 1Jk 1+k and 'ff L. which are obtained via the solution of the 

linear multipoint boundary value problem, by (5.2.23). (5.2.26) and (5.2.27), i.e. 

dPk 1Jk +k (t ) 
1JOk (t ) := (- 1 tk I 

dtPk 
for all k = l... .. k2, (EJ.1) 

j = 1.. ... p. k = 1. .... k 2 • (El .2) 

j = 1.. ... p. (El.3) 

where Pk is the order of the state constraint S2k. (As in Appendix C. it is assumed that 
-I. +k -I. +k 

the working set S 2• has only one boundary arc [t 1
1 .t 2 

1 
].) 

The collocation method yields a numerical approximation to the multipliers 11k 
1
+k at the 

collocation points T 1, +i. Because a boundary interval contains at least one grid interval 
[t,. .t,. +il and each grid interval contains l collocation points, there are at least l values 
1Jk I H available. 
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To obtain a numerical approximation to the multipliers ('r)0k ,vj1-
1,vj2- 1

) from (El.1) -
(El.3), a numerical approximation to the time function 7lk 

1
+k (t) is required on the entire 

-I: +k -I: +k 
interval [t 1

1 h 1 
]. 

One possible approach is to approximate the function 7Jk 
1
+k (t ) on the grid intervals with 

an (l- l)th order polynomial. However. this approximation will in general be discontinu

ous at the grid points tr. It is reasonable to expect that 7lk 
1
+k (t ) is a CPk _function on 

-1:+k-l:+k -1:+k-l:+k 
(t 1

1 ,t 2
1 

). i.e. 7lk 
1
+k (t) is continuous at the time points tr E (t 1

1 ,t 2
1 

). 

Therefore a more logical choice is to consider an interpolation of 7Jk 
1
+k (t) over the entire 

-I: +k -/; +k 
interval (t 1

1 ,t 2
1 ). In the implementation 7Jk 

1
+k (t ) is approximated using a cubic 

spline (cf. de Boor, (1978)) over the entire boundary interval. This interpolation technique 
is suitable for dealing with the cases Pk= 1 and Pk= 2, because a cubic spline has continu
ous first and second derivatives. For cases with Pk > 2, a higher order spline interpolation 
should be used. because in general. the third derivative of a cubic spline has discontinui
ties. 

Appendix E2 : Approximation of the Lagrange multipliers of problem (EIQP/SCOCP). 

In this Appendix we shall consider the calculation of approximations to the Lagrange mul
tipliers of problem (EIQP/SCOCP). as they are required for the calculation of the merit 
function. 

First consider the exact solution of problem (EIQP/SCOCP). which is also a special case of 
problem (EQP/SCOCP). Using the multipliers defined by (El.1) - (El.3), the Lagrange 
multipliers corresponding to the state constraints of problem (EIQP/SCOCP) satisfy : 

'Tlk (t ) = 7lok (t) for all 

k = l. ..... k2. 

k = l.. .... k2. 

(E2.J) 

(E2.2) 

(E2.3) 

For this solution the multipliers (vj1-
1.vJ1-

1
) (j=2 .... Pk) must satisfy (cf. (3.3.6.2) -

(3.3.6.6)) : 

vj1- 1 = 0 j=2 ...... p, k = l.. .... k2. 

vJ2-1 = 0 j=2 ...... P; k=l.. .... k2. 

(E2.4) 

(E2.5) 

Instead of solving problem (EIQP/SCOCP) exactly. the solution of problem (EIQP/SCOCP) 
is approximated. by using the solution of problem (EIQP/SCOCP/.ti). Based on (E2.1) -
(E2.3) we use the multipliers (7Jok .v?1.vf2) as approximations to the Lagrange multipliers 
corresponding to the state constraints of problem (EIQP/SCOCP). Thus it is neglected that 
(E2.4) and (E2.5) may not hold exactly. 

We now consider the adjoint variable of problem (EIQP/SCOCP). Similar to the approach 
followed above we first consider the exact solution of problem (SCOCP). In this case the 
adjoint variable f. which is obtained as a solution to the linear multipoint boundary value 
problem of Section 5.1.3. satisfies the conditions of Theorem 3.16 for i = p. The adjoint 
variable which satisfies the conditions of Theorem 3.16 for i = 0 may thus be obtained as 
(cf. (3.3.6.2) - (3.3.6.6)) : 
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(E2.6) 

It is this multiplier that is used for the calculation of the merit function. 

The multipliers -ij 1 • ii andµ. corresponding to the solution of problem (EIQP/SCOCP) are 
approximated by the multipliers rj'1, cf' and µ, which are directly obtained as the solution 
of the linear multipoint boundary value problem. 

Appendix E3 : Calculation of the matrices M2 • M3 and M4 . 

In this appendix the calculation of the Hessian of the Lagrangian. more specifically of the 
matrices M 2 • M 3 and M 4 is considered. 

We recall that the matrices M 2 • M 3 and M 4 are defined by (4.2.1.12) - (4.2.1.14) as: t 

Mi(t] := foxx[t] + A(t)*fxx[t] + '1}1(t)*S1xx[t] 

M it]== foxu [t J + A(t hfxu [t J + '1}1(t hS lxu [t J 

Mit] := fouu[t] + A(t)*fuu[t] + '1}1(t)*S1uu[t] 

(E3.l) 

(E3.2) 

(E3.3) 

We note that in the definition of the matrix M 2 use was made of the assumption done in 
Chapter 5: 

forall j=0.1. .... p.-1 k=l. .... k2, (E3.4) 

The multiplier A is the multiplier whose calculation was discussed in Appendix E2 and is 
computed by (E2.6). 

The following lemma shows that the matrices M 2 • M 3 and M 4 can also be calculated using 
multipliers (f .rj'). 
Lemma El: If 

stn[t] = 0 

and 

then 

Mi[t] = fo,x [t] + f(t hfxJt] + rJ1(t )*Sf,[t] O~t ~ T, 

Mit] = fox 11 [t J + ~(t )*fxu [t] + rJ1(t hSfu[t J O~t ~T. 

Mi[t] = fox11 [t] + ~(t hfxu [t] + rJ1(t hSf11 [t J O~t ~T. 

where SP is defined by (3.3.5.11 ). 

Proof : To prove (E3. 7) - (E3.9) we have to show that 

t For the sake of brevity the iteration index i was omitted for the multipliers. 

(E3.5) 

(E3.6) 

(E3.7) 

(E3.8) 

(E3.9) 
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X(t hfxx [t l = ~(t )*fxx [t l + 7)i(t hS2xx[t l 

A(t )*fxu [t] = ~(t)*fxu [t] + 1)i(t )*S2xu[t] 

A(t )*f.rn [t l = ~(th f.,u [t l + 7)i(t )*S2,Jt l 

(E3.10) 

(E3.11) 

(E3.12) 

where 7)2 denotes the last k 2 components of the vector 7) and S2xx, S2xu and S2,,,, denote 
the Hessian of the last k 2 components of the vector SP . 

Considering (E3.10), using (E3.6) we obtain : 

A(t )*fxx [t] = ~(t )*fxx [t] + 

k2 Pk . dPk-j1Jk +k(t) 
.,_. .,_. (-lfk-' 1

. Sj:- 1[t]Tf [t] O~t~T. 
L.,, L., Pk-J 2kx xx 
k=lj=I dt 

From Section 3.3.5 we recall the definition of Sj 

and hence 

S~kx = S~i:;) + S~i:}J + S~i:/fx j= l....Pk. 

Using (E3.5) this becomes : 

S~kx = S~k-;; + Sfi:}f., j = l....Pk. 

and hence 

s~kxx = s~;;;Ix + s~;:}J, + s~k-,,.1fxx j= 1, ... Pk · 

Using (E3.5) once more we obtain : 

0 j = 1.. ... ,pk -1 

j=Pk 

Substitution of (E3.18) in (E3.13) yields (E3.10). 

The proof of (E3.l 1) and (E3.12) follows similar lines. 

□ 

(E3.13) 

(E3.14) 

(E3.15) 

(E3.J6) 

(E3.17) 

(E3.18) 

Lemma El shows that there are two alternatives for the calculation of the matrices M 2 , 

M 3 and M 4 . Now consider the case that the step size a,; in Algorithm 4.4 equals one. In 
this case A; = ~ i-l, i.e. the current estimate of the multiplier A is the multiplier ~ of the 
previous iteration ( the adjoint variable corresponding to the solution of problem 
(EIQP/SCOCP/ A) in the previous iteration). This adjoint variable is obtained from the 
multipliers ~ and 'ij which were obtained as the solution of the linear multipoint boun-
dary value problem, via relation (E3.6). (cf. Appendices El and E2). It is well known 
that in general. the numerical differentiation of 7)2 yields relatively large truncation errors 
in A. Therefore the actual calculation of the matrices M 2 , M 3 and M 4 is done using (E3. 7), 
(E3.8) and (E3.9) with ~ and 7)2 corresponding to the solution of the last linear mul
tipoint boundary value problem. When the step size a; not equals one ~ and 7)2 are 
modified in a way similar to all other multipliers in Algorithm 4.4. 
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Appendix E4: Strategy in case of rank deficiency of the matrix of constraint nor
mals C. 

In Algorithm 5.8 it was assumed that throughout the solution process of problem 
(EIQP/SCOCP/ ..:i), the matrix of constraint normals C has full row rank. However. in 
practice it turns out that this assumption may not always be satisfied. 

We shall first analyse this phenomenon from the point of view of finite-dimensional qua
dratic programming. In this case. the constraints. which restrict the step size. are added to 
the working set one by one. therefore the matrix of constraint normals will never become 
rank deficient. Considering the addition of constraints to the working set in Algorithm 5.8, 
we observe that (in case of state constraints with order ;;,: 1). more than one row can be 
added to the matrix C at the same time (cf. Appendix D3). 

An alternative point of view follows from the consideration of working sets for problem 
(EQP/SCOCP). It is not difficult to establish examples for which a solution does not exist. 
Consider the following example : 

T 

Minimize ½ f d,,2 dt . 
d:,. ,du 0 

subjectto:dx(t)=d,,(t) O~t~T. 

d, (0) = 0 

(E4.I) 

(E4.2) 

(E4.3) 

(E4.4) 

(E4.5) 

If t 3 <t 1 • then problem (E4.1) - (E4.5) has a solution and if t 3 ;;,,t 1 • then (E4.1) - (E4.5) 
may fail to have a solution. In the latter case the matrix of constraint normals will be 
rank deficient. 

We now turn to the consideration of possible remedies for the case that rank deficiency is 
encountered. 

A remedy suggested by Han (1981) in the context of finite-dimensional quadratic pro
grammingt is to use a least squares interpretation of the constraints. At first sight this 
seems a suitable alternative. because we have already an LQ-factorization available for the 
matrix of constraint normals (cf. Appendix D2). A complete orthogonal decomposition can 
be obtained by premultiplication with orthogonal matrices which zero the linear dependent 
rows. 

However. when there are state constraints of order ;;,: 1 present, the solution procedure 
relies entirely on the transformation of state equality constraints into interior point con
straints and mixed control state constraints. This transformation is based on the fact that 
(dx .d,,) satisfies the linear differential system of problem (EQP/SCOCP). If the solution of 
the collocation scheme would be obtained using a least squares interpretation of the matrix 
of constraint normals. then this transformation would no longer be valid, because (d, ,d,,) 
will no longer satisfy the linear equations which were obtained via collocation on the 

t With the method described by Han(! 981) also more than one constraint can be added to the working 
set at one time. 
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linear differential equations. Hence for problems with state constraints of order ~ 1. this 
remedy fails. 

Therefore the following, heuristic, strategy is followed. When rank deficiency is encoun
tered. a kind of restoration phase is started, which calculates a feasible point with a matrix 
of constraint normals of full row rank. This restoration phase follows essentially the same 
strategy as the phase 1 of the Algorithm 5.8 as outlined in Section 5.2. For the sake of 
brevity, we shall not go into the details of this phase. From the new point. obtained from 
the restoration phase. the Algorithm 5.8 is restarted. 

We note that with this strategy cycling is possible to occur. i.e. Algorithm 5.8 may return 
to the same situation. Therefore a check on cycling is made whenever a constraint is to be 
deleted from the working set. i.e. using a unique code for all possible working sets, it is 
verified whether the current working set is equivalent to any of the previous working sets. 

Appendix E5 : Automatic adjustment of the penalty constant of the merit function. 

The merit function (cf. (4.3.8)) is used in the first phase of Algorithm 4.4. The penalty 
constant p is. in first instance, supposed to be specified in advance and for a 'sufficiently 
high' value of p the direction of seach obtained as the solution of problem 
(ElQP/SCOCP/A) will be a direction of descent of the merit function. 

Essentially. the role of the penalty constant p is to balance a decrease of the objective 
function versus violation of the constraints. Taking a very large value for p would there
fore have the effect of placing large penalties on constraint violation and making the merit 
function relatively insensitive to decreasing the objective function. This makes a pro
cedure for the automatic adjustment of the penalty constant attractive. for is such a pro
cedure is available, it is possible to start with a relatively low value of p. The procedure 
will then increase the value of p automatically to a 'sufficiently high' value. 

The procedure is essentially based on the result contained in the lemma below. 
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Lemma E2: Let the merit function be defined by (4.3.8) and let the problem functions satis

fy the assumptions of probl,em (SCOCP). For any direction of search (dx, du, X-X, rj 1-711, 
g-f, ir-o-, µ.-µ) for which (d,.,du) is a solution to problem (EIQPISCOCP!ll) with 
Lagrange multipliers (X ,'Y) 1,g ,er,µ.) that satisfy 

let 

gk (t) is nondecreasing on /0,T/ k = 1.. .. ,k 2 , 

~ ·- T T T 2. 3 X 
T IM M !Id I M(d,,du) .- d,(0) M1dx(0) + /<dx du) M{ M4 du dt + 

T 

ll(dx,du)II}:= lldx(0)ll 2 + j(lldx(t)ll 2 +11du(t)ll 2 )dt +lldx(T)ll 2 , 
0 

11<x-x.ri1-7J1.l-t.ii--o-.f1.-µ)11f == 11ii--o-11 2 + 11;:i.-µ11 2 + l)iij-11j11 2 + 
j 

T 

J (IIX(t )-X(t )11 2+11ri1(t )-7)1(t )ll 2+11rjz(t )-'Y)z(t )11 2 ) dt. 
0 

If there are all >0 and an e > 0, such that 

M (d, ,du) ~ llll (d, ,du )II i, 

and 

ll(d, ,d11 )11} ~ ell(X-A.,'Y)1-'Y)1,g-f ,ir-o- ,µ-µ)Ill, 

then, for all p > 0 

-M' {0)(d,,du .X-X.ri1-'Y)1.l-t .ir-o- ,µ.-µ) ~ ½llll(dx ,du )11:l + 

[ 
Ile l I c~ ~ I: I: ~ ~ ) 2 
2 - p II X-X.'Y)1-'Y)1,1,-1,,o--o-,µ-µ 11 2 • 

(ES.I) 

(ES.2) 

(ES.3) 

(ES.4) 

(ES.SJ 

(ES.6) 

(ES.7) 

(ES.BJ 

The proof of this lemma is a rather lengthy derivation and follows similar lines as the 
proof of part b of Theorem 4.2 of Schittkowski (1981). We note that in the proof use is 
made of the conditions (E5.l) and (ES.2). 

Now we shall consider the existence of a number ll > 0, as mentioned in the hypotheses of 
Lemma E2. Because a solution of problem (EIQP/SCOCP/ fl) is also a solution of problem 
(EQP/SCOCP), the second order sufficient optimality condition of part (ii) of Theorem 2.16 
may be expressed for problem (EQP/SCOCP) at this point. This sufficient optimality condi
toin assumes the existence of a 8 > 0. such that 

L"(d,,d11 .X.rj 1,g,ir,µ.)(llx,llu)(llx,llu) = M(llx.llu) ~ 611(/lx,llu)ll:l, 

for all (llx ,llu) satisfying 

(ES.9) 
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6i: = fx [t ]6x + fu [t ]6u 

Dx [0]6x (0) = 0, 

E, [T]6x(T) = 0. 

R, [t ]6x + Ru [t ]Bu = 0 

a.e. o:;;;t :;;;r. 

a.e. o,;;; t,;;; T. 

(ES.JO) 

(ES.11) 

(ES.12) 

(ES.13) 

Condition (E5.9) is equivalent to (E5.6) and hence the first part of the hypotheses of 
Lemma E2 hold, whenever the second order sufficiency condition of Theorem 2.16 holds 
for problem (EQP/SCOCP) and (dx ,du) satisfy the homogeneous constraints (E5.10) -
(E5.13). Because (d, ,du) satisfy the inhomogeneous relations (4.2.1.22) - (4.2.1.25), the 
hypotheses of Lemma E2 may fail to hold. even when the second order optimality condi
tions hold for the solution of problem (EQP/SCOCP). However, this situation is only 
likely to occur 'far from the solution'. i.e. when the inhomogeneous terms in the relations 
(4.2.1.22) - (4.2.1.25) are relatively large. Considering the second part of the hypotheses 
of Lemma E2. we notice that an e>0 exists. whenever ll(d, ,du )II} ;:c 0. 

The adjustment of the penalty constant is primarily based on expression (E5.8). i.e. if 
ll > 0 and e > 0 both exist, then the penalty constant is increased. such that 

I ll
2
e _ ¾] > o. (E5.14) 

In the case that (E5.9) cannot be satisfied for any 8 > 0, it is likely that the inhomogeneous 
terms in (4.2.1.22) - (4.2.1.25) are relatively large. In this case the direction of search will 
still be a direction of descent of the merit function. for a 'sufficiently high' value of p. 
because (d, ,du) will be a direction of descent of the penalty term of the merit function. 

The penalty constant in iteration i of Algorithm 4.4. denoted pi is adjusted using the 
algorithm below. This adjustment takes place between steps (iv) and (v) of Algorithm 4.4. 

Algorithm EJ 
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Given xi ,ui .>,i ,7Jj,o-i .µ; and d:,d,).~; .i){.iri ,µi and P;-1 . 

If M(dj,dj) > 0then 

lli := M(dj,d,:)lll(d:.dJ)II} 
ei := II (d} ,d,) )II }/11 (~ i ->.. i ,i)1-rJ1,gi -[i ,iri ,o-i .µ i -µ i )II i 
Pi:= Pi-1 
while Pi <2/(lli ei) 

do 

P; -- 10-p; 
ad 

else 

Fi 

Pi:= Pi-1 
while Id, ,d,, ) is no direction of descent 

do 

Pi -- 10-pi 
ad 
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Appendix E6 : Computation of the merit function. 

The computation of the merit function (4.3.8) is based on the quadrature rules discussed 
in Section 6.1.1, i.e. 

T p-1 I f <p(t)dt ~ L, hrL,W;<p(T/r+i), 
0 r=O i=I 

(E6.J) 

where h, == t,+ 1 - t,. 

A consideration of the terms of the merit function that involve the mixed control state 
constraints S 1 yields that (E6.1) gives a suitable approximation for the penalty term : 

k 1 T 

L, J (T)Jk slk (x ,u ,T)Jk t ;p) + ½ pSlk (x ,u ,T}Jk t ;p)2
) dt. 

k=IO 

Because the constraints S lk are taken active and inactive per collocation point. 

Similarily. consider the term : 

k T i J (112k s2k (x •112k t ;p) + ½PS2k (x •112k t ;p)2) dt. 
k=IO 

(E6.2) 

(E6.3) 

Because the constraints S 2, are taken active and inactive per grid interval. formula (E6. l) 
is not suitable for the calculation of this term. For this would lead to penalizing con
straints at collocation points where the constraint is not active. Therefore (E6.3) is 
approximated using a trapeziodal quadrature rule. i.e. 

T p-1 J <f>(t) dt ~ L, ½ h, (<f>(t,) + </>(t,+1)). 
0 t =O 

(E6.4) 

The merit function (4.3.8) is thus computed using the quadrature formula (E6.1) for all 
terms but (E6.3). which is computed by means of the quadrature formula (E6.4). 

Appendix E7: Miscellaneous details. 

In this appendix we shall discuss some details regarding the implementation of the 
method. 

Restoration phase 

Before the first stage of Algorithm 4.4 is started. a restoration phase is executed. This res
toration phase is essentially the same as the one used in the sequential gradient-restoration 
method of Miele (1980). The restoration phase is used in order to obtain an approximately 
feasible point and starts at an initial point. which is specified in advance. 

The direction of search in the restoration phase is determined as the solution of a linear
quadratic optimal control problem which is similar to problem (EIQP/SCOCP/.ti.). More 
specifically. the constraints of this problem are the same as those of problem 
(EIQP/SCOCP/.ti.). but the objective function (4.2.1.5) is replaced by: 
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As a merit function the penalty part of (4.3.8) is used, i.e. 

P(x ,u ,'T)d:p) := ½ { /<nx-f(x ,u ,t )11 2 + l:,S11 (x ,u ,'1)11 ,t ;p)2 + 
0 I= 1 

k 2 k 2 

L S21 (x ,'1)21 .t ;p)2) dt + LL S21 (x ,v jl .tj ;p)2 + 
l=l j I= 1 

11D (x (0))11 2 + IIE(x (T ).T )II 2 l · 
with: 

S11 (x ,u ,'1) 11 ,t ;p) := max {S 11 (x ,u ,t) . -'1) 11 /p). 

S2,(x ,'1)21 ,t ;p) := max {S2,(x ,t). -'1)21/p}. 

(E7.l) 

(E7.2) 

(E7.3) 

(E7.4) 

The restoration phase is terminated once the norm of the direction of search is below a 
specified quantity. 

Implementation of the line minimization. 

The approximate line minimization outlined in Section 4.3 was implemented with (3= ½ 
and e= ¾. In addition to the condition (4.3.12) which must be satisfied for the step size 
a= {3k. the penalty term (E7.2) must satisfy: 

P{a} ~ max k· .P{ol] (E7.5) 

where {a} was used to replace (x; +ad}, u; +adJ, '1Ji+a('i){-'1){), g; +a([; -t ). 
Obviously. condition (E7.5) ascertains that 'away from the solution'. i.e. at points where 
P' < P {O}. the penalty term in the merit function is not increased. 

Non-convergence of Algorithm 5.8 

Non-convergence of the solution procedure of problem (EIQP/SCOCP/A) is possible to 
occur as a result of the following conditions : 

1) Problem (EIQP/SCOCP/A) has no bounded solution. 

2) The constraints of problem (EIQP/SCOCP/ A) are inconsistent (no feasible point). 

3) The maximum number of iterations in Algorithm 5.8 exceeded. 

4) Cycling detected (cf. Appendix E4). 

5) The maximum number of grid modifications exceeded. 

5) Rank deficiency of the matrix of constraint normals was encountered too many times 
(cf. Appendix E4). 

In each of these cases. Algorithm 5.8 is terminated. The last estimate for the solution of 
problem (EIQP/SCOCP/A) which was used in Algorithm 5.8. is used as a direction of 
search in Algorithm 4.4. After the determination of the step size a. Algorithm 4.4 is con
tinued at step (i), i.e. an initialization step is executed which determines first order esti
mates for the Lagrange multipliers at the new point. 

186 



Numerical results 

Appendix F : Numerical results. 

This appendix contains a number of tables, with the convergence histories that correspond 
to the numerical solution process of some of the problems discussed in Chapter 7. The 
Tables Fl - F8 contain : 

Table 

Fl 
F2 
F3 
F4 
F5 
F6 
F7 
F8 

Convergence history of 

unconstrained glider problem. 
glider problem with acceleration constraint, nmax= 4. 
glider problem with velocity constraint, v max= 50. 
glider problem with altitude constraint, y min=~ 30. 
unconstrained reentry problem. 
reentry problem with acceleration constraint, n max= 6. 
reentry problem with altitude constraint. tmax= 0.0090. 
servo problem with Vmax .1= 1.5, Amax .1= 3. c = 1. 

On top of each table the number of gridpoints (p) and the order of the polynomials (l) 
are given. In most cases the convergence table consists of three parts. The first part shows 
the convergence behaviour of the method in the restoration phase (cf. Appendix E7). The 
second part of the convergence table shows the convergence behaviour in the first stage of 
the method. The last part of the table shows the convergence behaviour in the second 
stage. The columns of the convergence table contain the following entities : 

IT 
T 

IID211 
OBJECTIVE 
MERIT FUNCTION 
LAGRANGIAN 
PCRIT 
RHOP 
IQP 

JG 
IR 
QPZ 

DN 

DR 

C 

Iteration number 
Type of iteration (R = Restoration step, I = Initialization step, 
G = Gradient step. N = Newton step) 
Norm of direction of search 
Value of objective function 
Value of merit function 
Value of Lagrangian part of merit function 
Value of penalty part of merit function (excl. penalty constant) 
Penalty constant 
Number of iteration steps used for the solution of 
problem (EIQP/SCOCP/ A) 

Number of grid modifications 
Number of times that rank deficiency of the matrix C was encounted 
Number of linear conjugate gradient steps done during the solution of 
problem (EIQP/SCOCP/ A) 

Dimension of Null space of matrix C after solution of 
problem (EIQP/SCOCP/ A) 

Dimension of Range space of matrix er after solution of 
problem (EIQP/SCOCP/ A) 
Termination condition of Algorithm 5.8 (* = Subproblem unbounded 
from below) 

Below the convergence table the solutions obtained for the state and control vectors are 
given at the time points t = 0. t = 0.1,. ... t = 1 and the active set is listed. 
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... 
00 
00 

NUMBER OF GRIOPOINTS = 50 
OROER OF POLYNOMIALS= 2 

ITT ALPHA 110211 OBJECTIVE MERIT FUNCTION 

0 R 0.10D+Ol 0.420+02 0.6B7096496379D+OO 
1 R 0.10D+Ol 0.12D+Ol 0.299617907164D-02 
2 R 0.10D+Ol 0. 70D+OO 0.721943883111D-04 

E~D OF RESTORATION PHASE 

3 I 0.143825874177D+02 0.144793154540D+02 
3 N 0.25D+OO 0.54D+02 0.104205654109D+02 0.111015203610D+02 
4 N 0.50D+OO 0.27D+02 0.680912177509D+Ol 0.896346291391D+Ol 
5 N 0.10D+Ol 0.980+01 0.621244662912D+Ol 0.747159816745D+Ol 
6 N 0.100+01 0.12D+Ol 0.729339016149D+Ol 0.730254023375D+Ol 
7 N 0.10D+Ol 0.12D+OO 0.730229160901D+Ol 0.7302340835360+01 
8 N 0.100+01 0.960-03 0.7302340799270+01 0.7302340814460+01 
9 N 0.100+01 0.540-06 0.7302340814460+01 0.7302340814460+01 

10 N 0.100+01 0.540-12 0.7302340814460+01 0.7302340814460+01 

STATE VECTOR X 

0.00D+OO 
0. 100+00 
0.20D+OO 
0.300+00 
0.400+00 
0.500+00 
0.600+00 
0.700+00 
0.800+00 
0.900+00 
0 .100+01 

0.41631000000000000+02 
0.41597485717678650+02 
0.41575926174248960+02 
0.40935170775596830+02 
0.45156848858009780+02 
0.58494283314891400+02 
0.46331089334338800+02 
0.42263589277387140+02 
0.4250991557002674D+02 
0.4196407959392932D+02 
0.41631000000000000+02 

CONTROL VECTOR U 

0.00D+OO 
0.100+00 
0.200+00 
0.300+00 
0.400+00 
0.500+00 
0.600+00 
0.700+00 
0.80D+OO 
0.900+00 
0.100+01 

0.3937363552837666D+OO 
0.17714230349708260+00 
0.40915883740529250-02 
0.14650004801144000-01 
0.34224763282605460+00 
0.11678946452784960+01 
0.30834163653544290+00 

-0.12972590354201150-0l 
-0.30587235118181970-01 
0.12011310659707420+00 
0.31136774150673810+00 

-0.13440000000000000+01 
-D.30052056688434710+01 
-D.11747221017823930+02 
-0.2387839626636271D+02 
-0.28653765920180150+02 

0.31295409816813520+01 
0.32854598466572750+02 
0.26506648055090310+02 
0.13057527091732550+02 
0.27317633385004900+01 

-0.13440000000000000+01 

LAGRANGIAN PCRIT 

0.14D+04 
0.60D+Ol 
0.14D+OO 

0.144790519615D+02 0.53D+OO 
0.106509887755D+02 0.90D+02 
0.789460581076D+Ol 0.21D+03 
0.732175010675D+Ol 0.30D+02 
0.7302451253110+01 0.180-01 
0.730234083099D+Ql 0.87D-06 
0.7302340814460+01 0.56D-14 
0.7302340814460+01 0.11D-25 
0.7302340814460+01 0.720-23 

CONVERGENCE HISTORY OF THE UNCONSTRAINED GLIDER PROBLEM. 
TABLE Fl 

:i:.. 

RHOP IQP IG IR QPZ DN DR C l 
O.lDD-02 0 0 D 1 98 304 ~-
0.100-02 0 0 0 0 98 304 't:I 0.100-02 0 0 0 0 98 304 

0. 10D-02 4 0 0 4 97 305 
0 .10D-01 3 0 0 33 98 304 
0.100-01 4 0 0 67 97 305 
0.10D-D1 6 0 0 101 94 308 
0.10D-01 9 0 0 98 98 304 
0.100-01 0 0 0 14 98 304 
0. 100+02 0 0 0 13 98 304 
0.100+02 0 0 0 10 98 304 
0. 100+02 0 0 0 3 98 304 



NUMBER OF GRIDPOINTS = 50 
ORDER OF POLYNOMIALS= 2 

ITT ALPHA I I 02 I I OBJECTIVE MERIT FUNCTION LAGRANGIAN PCRIT RHQP IQP IG IR QPZ ON DR C 
0 R D.100+01 0.420+02 0.6870964963790+00 0.140+04 0.100-02 0 0 0 1 98 304 1 R 0.100+01 0 .120+01 0.2996179071640-02 0.600+01 0.100-02 0 0 0 0 98 304 2 R 0.100+01 0.700+00 0.7219438831110-04 0. 140+00 0.100-02 0 0 0 0 98 304 

ENO OF RESTORATION PHASE 

3 I 0.1438259741770+02 0.1434139239180+02 0.1434114285330+02 0.500+00 0.100-02 6 0 0 6 95 307 3 N 0.500+00 0.460+02 0.8299863796960+01 0.9150291518740+01 0.8770832242850+01 0.760+03 0.100-02 25 0 0 301 82 320 4 N 0.100+01 0.110+02 0.6630396294320+01 0.7915319286700+01 0.7906126246680+01 0. 180+02 0.100-02 6 0 0 85 82 320 5 N 0.100+01 0.110+01 0.7896452548060+01 0.7897012056590+01 0.789700B530020+01 0.710-02 0.100-02 3 0 0 29 83 319 6 N 0.100+01 0.180-01 0.7897005238020+01 0.7897004247890+01 0.7897004247890+01 0.820-09 0.10D-02 0 0 0 11 83 319 7 N 0.100+01 0.290-04 0.789700424774D+Ol 0.7897004247760+01 0.7897004247760+01 0.490-20 0.10D+D5 0 0 0 10 83 319 8 N 0.100+01 0.550-06 0.789700424776D+Ol 0.7897004247760+01 0.7897004247760+01 0.740-26 0.10D+05 0 0 0 8 83 319 9 N 0.100+01 0.310-12 0.7897004247760+01 0.789700424776D+Dl D.7897004247760+01 0.99D-26 0. 100+05 0 0 0 3 83 319 

START OF SECOND STAGE 

**** grid update ( add ) ***** AT 0.5700000000000+00 

9N0.10D+Ol 0.97D-Ol 0.789700178725D+Ol 0.800+01 0 0 0 12 84 326 10 N 
0
0. 100+01 0.340-02 0.789597010785D+Ol 0.150-02 0 0 0 11 84 326 11 N 0.100+01 0.85D-06 0.7896497588050+01 0.300-03 0 0 0 9 84 326 12 N O. 100+01 0.920-12 0.789649773292D+Ol 0.30D-03 0 0 0 3 84 326 

***** grid update (shift) ***** FROM 0.420000000000D+OO TO 0.420627886610D+OO 
***** grid update (shift) ***** FROM 0.570000000000D+OO TO 0.574360249681D+OO 

13 N 0.10D+Ol 0. 140+01 0.7956842442990+01 0.380+01 0 0 0 11 84 326 14 N O. 100+01 0.67D-02 0.7902386325890+01 0.300-01 0 0 0 11 84 326 15 N 0.100+01 0.25D-04 0.789670061248D+Ol 0.420-06 0 0 0 9 84 326 16 N O .100+01 0.48D-09 0.789670297623D+Ol 0. 160-15 0 0 0 6 84 326 
17 N O. 100+01 0.23D-12 0.789670297626D+Ol 0.46D-23 D 0 0 3 84 326 

***** grid update (shift) ***** FROM 0.574360249681D+OO TO 0.574376887642D+OO 

18 N O. 100+01 0.500-02 0.7896843289170+01 0.58D-04 0 0 0 10 84 326 
19 N O .100+01 0.930-07 0.7896703075590+01 0.460-11 0 0 0 8 84 326 
20 N 0.100+01 0.320-12 0.789670297981D+Ol 0.630-23 0 0 0 2 84 326 

~ 
& 
[ 
'1 
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.... 
~ 
0 

STATE VECTOR X 

0.000+00 
0. 100+00 
0.200+00 
0.300+00 
0.400+00 
0.500+00 
0.600+00 
0.700+00 
0.800+00 
0.900+00 
0 .100+01 

0.41631000000000000+02 
0.41385083812926420+02 
0.41334865808473080+02 
0.41092758373160510+02 
0.45721388741279020+02 
0.54840827816728680+02 
0.46938810784342320+02 
0.42564323111832580+02 
0.42349233224754130+02 
0.41754036540423450+02 
0.41631000000000000+02 

CONTROL VECTOR U 

0.000+00 
0.100+00 
0.200+00 
0.300+00 
0.400+00 
0.500+00 
0.600+00 
0.700+00 
0.800+00 
0.900+00 
0.100+01 

0.45952142933663440+00 
0.22227234522123430+00 
0.33701691187359360-0l 
0.41076867200336780-0l 
0.46506181753092780+00 
0.75981698602144170+00 
0.41654886408183760+00 
0.96766405642136750-02 

-0.37074093784465460-02 
0.16560614510069980+00 
0.38345202065984840+00 

-0.13440DOOOOOOOODOD+Ol 
-0.11420137080391330+01 
-0.86908916922637670+01 
-0.19921315849930750+02 
-0.22560436389996460+02 
0.25152024163291380+01 
0.26553230147743390+02 
0.22238691474826290+02 
0.97953337853129540+01 
0.72486679391794680+00 

-0.13440000000000010+01 

JUNCTION AND CONTACT POINTS OF CONSTRAINT Sl 

1 0.4206278866100+00 0.5743768876420+00 

CONVERGENCE HISTORY GLIDER PROBLEM WITH CONSTRAINT ON THE ACCELERATION (NMAX = 4). 
TABLE F2 

:i,. 

l 
>i" 
~ 



NUMBC.R Uf- UHlUr'U.LNi ~ _.._ 
OROER OF POL '✓NOMI Ac.S : 

ITT ALPHA 110211 OBJECTIVE MERIT FUNCTION LAGRANGIAN PCRIT RHOP IQP IG IR QPZ DN DR C 

0 R O. 10D+Ol 0.18D+Ol 0.103208813859D-03 0.21D+OO 0.10D-02 0 0 0 1 38 185 
1 R 0.10D+Ol 0.12D+OO 0.368905902594D-07 0.74D-04 0.10D-02 0 0 0 0 38 185 

ENO OF RESTORATION PHASE 

2 I 0.1447755423970+02 0.1448084708470+02 0.1448084704780+02 0.740-04 0.10D-02 0 0 0 2 38 185 
2 N 0.250+00 0.300+02 0.1190020801190+02 0.1209024374000+02 0.1162646699200+02 0.93D+Ol 0. 100+00 4 0 0 52 37 186 
3 I 0.1190020801190+02 0.1672321073870+02 0.1211006863930+02 0.92D+Ol 0. 100+01 3 0 0 4 38 185 
3 G 0.49D+OO 0.210+02 0.1167492792050+02 0.1362924069300+02 0.1217439182840+02 0.29D+Ol 0. 100+01 3 0 0 4 38 185 
4 N 0.130+00 0. 180+02 0.109418058727D+02 0.128680936114D+02 0.1129839890750+02 0.31D+Ol 0 .100+01 4 0 0 50 37 186 
5 N 0.130+00 0.160+02 0.1036391752030+02 0.1220221778020+02 0.1061432769050+02 0.32D+Ol 0 .100+01 0 0 0 13 37 186 
6 N O. 130+00 0.140+02 0.991305712073D+Ol 0.1160635312550+02 0.1008540097540+02 0.30D+Ol 0.100+01 0 0 0 13 37 186 
7 N 0.250+00 0. 120+02 0.921486584679D+Ol 0.1114555382380+02 0.933719613129D+Ol 0.36D+Ol 0 .100+01 0 0 0 13 37 186 
8 N 0.250+00 0.88D+Ol 0.8834792646000+01 0.1045919778800+02 0.892180269189D+Ol 0.31D+Ol 0.10D+Ol 0 0 0 13 37 186 
9 N 0.50D+OO 0.63D+Ol 0.8426909620610+01 0.9797665947180+01 0.8536283663680+01 0.25D+Ol 0.10D+Ol 0 0 0 13 37 186 

10 N 0.10D+Ol 0. 28D+Ol 0.8324058929290+01 0.8603012431730+01 0.841263711532D+Ol 0.38D+OO 0.100+01 0 0 0 14 37 186 
11 N 0.100+01 0.11D+OO 0.8412162676640+01 0.8412429611780+01 0.8412428572060+01 0.21D-05 0.100+01 0 0 0 13 37 186 
12 N 0.10D+Ol 0.56D-03 0.841242856181D+Ol 0.8412428566550+01 0.8412428566550+01 0.13D-14 0.10D+Ol 0 0 0 12 37 186 
13 N O. 10D+Ol 0.180-06 0.841242856655D+Ol 0.8412428566550+01 0.8412428566550+01 0.16D-26 0.10D+Ol 0 0 0 9 37 186 
14 N O .100+01 0.28D-12 0.841242856655D+Ol 0.8412428566550+01 0.8412428566550+01 0.140-26 0.10D+Ol 0 0 0 3 37 186 

START OF SECOND STAGE 

***** grid update (shift) ***** FROM 0.500000000000D+OO TO 0.485088720768D+OO 

14 N 0.10D+Ol 0.750+01 0.6788807914010+01 0.420+03 0 0 0 14 37 186 
15 N O. 10D+Ol 0.94D+OO 0.9095776547010+01 0.720+02 0 0 0 14 37 186 
16 N O. 10D+Ol 0.720-01 0.8429107286390+01 0.49D+OO 0 0 0 13 37 186 
17 N 0.10D+Ol 0.450-03 0.8428091320010+01 0.27D-04 0 0 0 12 37 186 
18 N O .100+01 0.300-06 0.8428130475920+01 0.82D-11 0 0 0 10 37 186 
19 N O .100+01 0.52D-12 0.8428130477770+01 0.29D-22 0 0 0 3 37 186 

***** grid update (shift) ***** FROM 0.4850887207680+00 TO 0.487669500463D+OO 

20 N O. 100+01 0.12D+Ol 0.870682727352D+Ol 0.96D+Ol 0 0 0 14 37 186 
21 N O. 10D+O 1 0.52D-01 0.843408630933D+Ol 0.780-01 0 0 0 13 37 186 
22 N O .10D+Ol 0.71D-04 0.8428800652190+01 0.27D-06 0 0 0 11 37 186 
23 N O. 100+01 0.15D-06 0.8428823133880+01 0.200-11 0 0 0 10 37 186 
24 N 0.100+01 0.40D-12 0.842882313391D+Ol 0.18D-22 0 0 0 2 37 186 

***** grid update (shift) ***** FROM 0.487669500463D+OO TO 0.4872444679860+00 

25 N O. 100+01 0.20D+OO 0.8382809858090+01 0.230+00 0 0 0 13 37 186 
26 N 0.100+01 0.13D-02 0.842900429780D+Ol 0.500-04 0 0 0 12 37 186 '.<: 
27 N O. 10D+Ol 0.20D-06 0.8428812295820+01 0.59D-11 0 0 0 10 37 186 IC! 
28 N O. 100+01 0.30D-12 0.842881230860D+Ol 0.730-23 0 0 0 3 37 186 ;:1 

"' 't 
***** grid update (shift) ***** FROM 0.487244467986D+OO TO 0.487134176851D+OO [ 
29 N 0.10D+Ol 0.52D-01 0.841684031656D+Ol 0.16D-Ol 0 0 0 13 37 186 ;;; 30 N 0.10D+Ol 0.890-04 0.842881541080D+Ol 0.23D-06 0 0 0 11 37 186 

"' .... 31 N 0.10D+Ol 0.22D-06 0.842880289111D+Ol 0.34D-11 0 0 0 10 37 186 
E:-v:, 32 N O. 10D+Ol 0.37D-12 0.8428802891170+01 0.12D-22 0 0 0 3 37 186 .... "' 



... 
"' 1--.l 

••••• grid update (shift) ***** FROM 0.4871341768510+00 TO 0.4871341134370+00 

33 N 0.100+01 0.300-04 0.8428796006270+01 
34 N 0.100+01 0.300-10 0.8428802884980+01 

***** grid update (shift) ***** FROM 0.4871341134370+00 TO 0.4871341134300+00 

35 N 0.100+01 0.360-08 0.8428802884150+01 
36 N 0.100+01 0.450-12 0.8428802884970+01 

••••• grid update (shift) ••••• FROM 0.4871341134300+00 TO 0.4871341134370+00 

37 N 0.100+01 0.360-08 0.8428802885800+01 
38 N 0.100+01 0.800-13 0.8428802884970+01 

STATE VECTOR X 

0.000+00 
0.100+00 
0.200+00 
0.300+00 
0.400+00 
0.500+00 
0.600+00 
D.700+00 
0.800+00 
0.900+00 
0.100+01 

D.41631000000000000+02 
0.39382822225214620+02 
0.38231754050559550+02 
0.37828636175210610+02 
0.40395281921013490+02 
0.49865192295664380+02 
0.41981356922203340+02 
0.39714731852981900+02 
D.39628483011650660+02 
0.39797042521556480+02 
0.41631000000000000+02 

CONTROL VECTOR U 

0.000+00 
0. 100+00 
0.200+00 
0.300+00 
0.400+00 
0.500+00 
0.600+00 
0.700+00 
0.800+00 
0.900+00 
0.100+01 

0.85348294392964940+00 
0.33775039241082350+00 
0.52745753410106540-0l 
0.22033860756926280-02 
0.34227330116992180+00 
0.10608518289433680+01 
0.26113119338940940+00 

-0.43572211915212220-01 
-0.60514884381681960-02 

0.26598404853993760+00 
0.83096442747550090+00 

-0.13440000000000000+01 
0.62212871263452930+01 

-0.20969080374433020+00 
-0.12837558085743890+02 
-0.19941285970397420+02 

0.34616370517733300+01 
0.23850126968963700+02 
0.15128742653945320+02 
0.11349403338641240+01 

-0. 7094857.3937036710+01 
-0.13440000000000000+01 

JUNCTION ANO CONTACT POINTS OF CONSTRAINT 52 

1 0.4871341134370+00 

0.69392514082123970+00 
0.63728250358909810+00 
0.58474592104870010+00 
0.63832337395611280+00 
0.86177208237236630+00 
0.99712665135975160+00 
0.88018167761431760+00 
0.72243791312855820+00 
0.62943844218325220+00 
0.65211015067851170+00 
0.69390832977800130+00 

0.530-08 
0.260-19 

0.760-16 
0.880-23 

0.760-16 
0.480-23 

CONVERGENCE HISTORY GLIDER PROBLEM WITH CONSTRAINT ON THE VELOCITY (VMAX = 50). 
TABLE F3 

::i,. 

0 0 0 11 37 186 ~ 
0 0 0 6 37 186 ~ 

i:;· 
'?:I 

0 0 D 7 37 186 
0 0 0 3 37 186 

0 0 0 7 37 186 
0 0 0 2 37 186 



NUMBER OF GRIOPOINTS = 20 
OROER OF POLYNOMIALS= 2 

ITT ALPHA I 1021 I OBJECTIVE MERIT FUNCTION LAGRANGIAN PCRIT RHOP IOP IG IR OPZ DN DR C 

DR 0.10D+Ol 0. 18D+Ol 0.103221077676D-03 0.21D+OO O.lOD-02 0 0 0 l 38 246 
l R O.lOO+Ol 0.12D+OO 0.3690825439810-07 0.74D-04 O.lOD-02 0 0 0 0 38 246 
2 R 0.10D+Ol 0.96D-03 0.1757045728940-15 0.350-12 0.100-02 0 0 0 0 38 246 

ENO OF RESTORATION PHASE 

3 I O.l44806l76l20D+02 O.l44B06l77947D+02 O.l44806l77947D+02 0.35D-12 0.100-02 0 0 0 8 38 246 
3 N 0.25D+OO 0.29D+02 O.ll8380473l93D+02 0.l2l549l88372D+02 0.ll6880004706D+02 0.93D+Ol 0.10D+OO 4 0 0 51 37 247 
4 N 0.25D+OO 0.200+02 O.l034l4940836D+02 0.l09534360l72D+02 0.l02l480l42l6D+02 0. 150+02 0.10D+OO 0 0 0 12 37 247 
5 N 0.50D+OO 0. l4D+02 0.87l4l583l88lD+Ol 0.l027656420l2D+02 0.891939729313D+Ol 0.270+02 0.10D+OO 0 0 0 13 37 247 
6 N O.lOO+Ol 0.540+01 0.833348936962D+Ol 0.8860433188460+01 0.86368l53l0540+0l 0.45D+Ol 0.100+00 0 0 0 13 37 247 
7 N 0.10D+Ol 0.48D+OO 0.8629057746990+01 0.8632172799980+01 0.8632l33l8l40D+Ol 0.79D-03 0.100+00 0 0 0 14 37 247 
8 N O.lOO+Ol 0.220-0l 0.8632124332560+01 0.8632127999520+01 0.8632127999440+01 0.160-08 0.100+00 0 0 0 13 37 247 
9 N O.lOO+Ol 0.460-04 0.8632127999330+01 0.8632127999350+01 0.8632127999350+01 0.460-19 0.100+04 0 0 0 11 37 247 

START OF SECOND STAGE 

***** grid update (shift) ***** FROM 0.5000000000000+00 TO 0.4931186844290+00 
***** norm grid shift***** 0.6881315571490-02 

9 N 0.100+01 0.3lO+Ol 0.7951950828380+01 0.540+02 0 0 0 14 37 247 
10 N O. lOO+Ol 0.27D+OO 0.87060785ll5lO+Ol 0.250+01 0 0 0 13 37 247 
ll N O.lOO+Ol 0.200-02 0.8634970673070+01 0.330-03 0 0 0 12 37 247 
12 N O.lOO+Ol 0.760-06 0.8635402858970+01 0.480-10 0 0 0 10 37 247 

***** grid update (shift) ***** FROM 0.4931186844290+00 TO 0.4945758461760+00 
***** norm grid shift ***** 0.1457161747300~02 

13 N O. lOO+Ol 0.680+00 0.877828l6l7l3D+Ol 0.27D+Ol 0 0 0 13 37 247 
14 N O. lOO+Ol 0.150-0l 0.8637086708440+01 0.670-02 0 0 0 13 37 247 
15 N 0.lOO+Ol 0.600-05 0.8635544641180+01 0.180-08 0 0 0 ll 37 247 

***** grid update (shift) ***** FROM 0.4945758461760+00 TO 0.4945845199930+00 
***** norm grid shift ***** 0.8673817248520-05 

16 N O.lOO+Ol 0.400-02 0.863639369ll80+0l 0.910-04 0 0 0 12 37 247 
17 N O.lOO+Ol 0.510-06 0.8635546006560+01 0.780-ll 0 0 0 9 37 247 

***** grid update (shift) ***** FROM 0.4945845199930+00 TO 0.4945845304900+00 
***** norm grid shift ***** 0.1049727226670-07 

18 N 0.lOO+Ol 0.490-05 0.863554696793D+Ol 0.13D-09 0 0 0 10 37 247 ~ 
;:! 

***** grid update (shift) ***** FROM 0.4945845304900+00 TO 0.4945845304910+00 "' 'I 
***** norm grid shift***** 0.1140490479830-ll [ 
19 N O. lOO+Ol 0.530-09 0.8635545942090+01 0.160-17 0 0 0 7 37 247 ~ 20 N O. lOO+Ol 0 .160-ll 0.863554594198D+Ol 0.160-21 0 0 0 5 37 247 "' .... 21 N 0.10D+Ol 0.560-12 0.8635545941980+01 0.120-22 0 0 0 3 37 247 f.. "' w "' 



.... 
'C. 

STATE VECTOR X 

0.000+00 
0.10D+OO 
0.20D+OO 
0.30D+OO 
0.40D+OO 
0.50D+OO 
0.60D+OO 
0.70D+OO 
0.80D+OO 
0.90D+OO 
0.10D+D1 

0.41631D0000000000D+02 
0.3865794904643128□+02 
0.3716165916848507 □+02 
0.3673152659982233□+02 
0.3912360699296119□+02 
0.4897853329396234□+02 
0.4156532321835448□+02 
0.3933584038314183□+02 
0.3921301113795262□+02 
0.39509475680780670+02 
0.4163100000000D00D+02 

CONTROL VECTOR U 

0.00D+OO 
0.10D+OO 
0.20D+OO 
0.30D+OO 
0.40D+OO 
0.50D+OO 
0.60D+OO 
0.70D+OO 
0.80D+OO 
D.90D+OO 
0.10D+Ol 

0.9566678077213850D+OO 
0.3590066622340776D+OO 
0.5355751116877D10D-01 

-0.5100D88783443401D-02 
0.3340382371733968D+OO 
0.1116288203511648D+Ol 
0.2646954328340047D+OO 

-0.4321995231511962D-Ol 
-0.1984888449879883D-02 

0.27787440659358040+00 
0.8762832387756803D+OO 

-0.1344DOOOOOOOOOOOD+Ol 
0.7907297249877934D+Ol 
0.1382023450537481D+Ol 
-0.1178647734017963□+02 
-0.1969547642147334□+02 

0.2038002881144761D+Ol 
0.2302090919485750□+02 
0.1424775863983135□+02 
0.2213387283922342D+OO 

-D.7876674521645727D+Ol 
-0.1344000000000000D+Ol 

JUNCTION ANO CONTACT POINTS OF CONSTRAINT 52 

1 0.494584530491D+OO 

0.00000000000000000+00 
0.1303401780865095D-01 
0.2769812324960949D-01 
0.1401552420051215D-01 

-0.3121248155042881D-Ol 
-0.5987655303620844D-01 
-0.2414810721001111D-Ol 

0.2524846803586969D-Ol 
0.4327632584863884D-01 
0.3143357121353932D-01 
0.1543806748626511D-01 

-0.3228363479138142D-01 
0.2045452378649749D+OO 
0,3718898384028388D-Ol 

-0.3208822846977513D+OO 
-0.5D34248658777351D+DO 

0.4032000035715311D-01 
0.5536746845651298D+OO 
0.3620297552533158D+OD 
0.5466232884885979D-02 

-0.1995399266376193D+OO 
-0.3246159094710188D-01 

CONVERGENCE HISTORY GLIDER PROBLEM WITH ALTITUDE CONSTRAINT (YMIN 
TABLE F4 

-3D). 

~ 

~ 
s.. 
>t" 
'l'j 



NUMBER OF GRIDPOINTS = 50 
ORDER OF POLYNOMIALS= 3 

ITT ALPHA 110211 OBJECTIVE MERIT FUNCTION LAGRANGIAN PCRIT RHOP IQP IG IR QPZ ON OR C 

0 R 0.100+01 0.880+00 0.294927849306D-03 0.590+00 o. 100-02 0 0 0 0 148 1007 
1 R 0.100+01 0.350+00 0.114216471618D-D5 0.230-02 0.100-02 0 0 0 0 148 1007 
2 R 0.100+01 0.680-01 0.1140818076600-08 0.230-05 0.100-02 D 0 0 0 148 1007 
3 R 0.100+01 0.260-02 0.381570131351D-14 0.760-11 0. 100-02 0 0 0 0 148 1007 
4 R 0.100+01 0.430-05 0.2764889244750-25 0.550-22 0.100-02 0 0 0 2 148 1007 

ENO OF RESTORATION PHASE 

5 I 0.1680700273250-0l 0.1680700273250-01 0.168070027325D-Ol 0.550-22 0.100-02 0 0 0 4 148 1007 
5 N O .100+01 0.710-01 0.168050458150D-Ol 0.1680504675240-0l 0.1680504675220-01 0.440-09 0.100-02 0 0 0 6 148 1007 * 
6 I 0.1680504581500-0l 0.1680504683570-0l 0.1680504683550-0l 0.440-09 0.100-02 0 0 0 1 148 1007 
6 N 0.100+01 0.710-01 0.1680343093350-0l 0.1680343086620-0l 0.1680343086610-0l 0.290-09 0.100-02 0 0 0 6 148 1007 * 
7 I 0.1680343093350-0l 0.1680343090450-0l 0.1680343090430-0l 0.290-09 0.100-02 0 0 0 1 148 1007 
7 N 0.100+01 0.710-01 0.168017472112D-01 0.168017473677D-01 0.168017473676D-01 0.300-09 0. 100-02 0 0 0 6 148 1007 * 
8 I 0.168017472112D-Ol 0.168017474361D-01 0.168017474360D-Ol 0.300-09 0.100-02 0 0 0 1 148 1007 
8 N 0.100+01 0. 710-01 0.168000317527D-Ol 0.1680003203260-0l 0.1680003203240-0l 0.280-09 0. 100-02 0 0 0 6 148 1007 * 
9 I 0.168000317527D-Ol 0.1680003212310-0l 0.1680003212300-0l 0.280-09 0. 100-02 0 0 0 1 148 1007 
9 N 0.100+01 0.710-01 0.1679825613770-0l 0.1679825663000-01 0.1679825662980-01 0.280-09 0.100-02 0 0 0 6 148 1007 * 

10 I 0.1679825613770-0l 0.167982567498D-Ol 0.167982567497D-Dl 0.280-09 0. 100-02 0 0 0 l 148 1007 
10 N O .10D+Ol 0.710-01 0.167963993195D-Ol 0.167964000989D-Ol D.167964000987D-Ol D.270-09 0.100-02 0 0 0 6 148 1007 * 
11 I 0.167963993195D-Ol 0.1679640025500-0l 0.167964002549D-Ol 0.270-09 0.100-02 0 0 0 l 148 1007 
11 N 0.100+01 0.710-01 0.167944303751D-Ol 0.167944315598D-01 0.167944315597D-Ol 0.260-09 0. 100-02 0 0 D 6 148 1007 * 
12 I 0.167944303751D-01 0.167944317640D-D1 0.167944317638D-Ol 0.260-09 0.100-02 0 0 0 l 148 1007 
12 N 0.100+01 0. 710-01 0.167923090849D-Ol 0.167923108439D-Ol 0.167923108438D-Ol 0.260-09 0.100-02 0 0 D 6 148 1007 * 
13 I 0.167923090849D-01 0.167923111142D-Ol 0.167923111141D-Ol 0.260-09 0. 100-02 0 0 0 1 148 1007 
13 N 0.100+01 0.710-01 0.167899829974D-01 0.167899855800D-01 0.167899855798D-Ol 0.260-09 o. 100-02 0 0 0 6 148 1007 * 
14 I 0.1678998299740-01 0.167899859444D-Ol 0.167899859443D-Ol 0.260-09 0.100-02 0 0 0 1 148 1007 
14 N 0.100+01 0.710-01 0.167873794309D-01 0.167873832312D-01 0.167873832311D-Ol 0.270-09 0. 100-02 0 0 0 6 148 1007 * 
15 I 0.167873794309D-01 0.167873837357D-Ol 0.167873837356D-Ol 0.270-09 0.100-02 0 D 0 1 148 1007 
15 N 0.100+01 0.710-01 0.167843970182D-01 0.167844026772D-01 0.167844026771D~Ol 0.290-09 0.100-02 0 0 0 6 148 1007 * 
16 I 0.167843970182D-01 0.167844033997D-Ol 0.1678440339950-01 0.290-09 0.100~02 0 0 0 1 148 1007 
16 N O. 100+01 0.710-01 0.1678087904150-01 0.167808877230D-01 0.167808877228D-Ol 0.320-09 0.100-02 0 0 0 6 148 1007 * 
17 I 0.167808790415D-Ol 0.167808888096D-Ol 0.167808888095D-Ol 0.320-09 0. 100-02 0 0 0 1 148 1007 
17 N 0.100+01 0.710-01 0.167765627101D-01 0.167765767715D-Ol 0.167765767713D-Ol 0.380-09 0.100-02 0 0 0 6 148 1007 * 
18 I 0.167765627101D-01 0.167765785320D-Ol 0.167765785318D-Ol 0.380-09 0.100-02 0 0 0 l 148 1007 
18 N 0.100+01 0.710-01 0.167709581960D-Ol 0.167709831799D-Ol 0 .167709831796D-Ol 0.540-09 0. 100-02 0 0 0 6 148 1007 * 
19 I 0.167709581960D-Ol 0.167709863882D-Ol 0.167709863879D-Ol 0.540-09 0.100-02 0 0 0 1 148 1007 
19 N D. 100+01 0.710-01 0.167630301015D-01 0.167630819313D-Ol 0.167630819308D-Ol 0.100-08 0.100-02 0 0 0 6 148 1007 * 
20 I 0.1676303010150-0l 0.167630890460D-Ol 0.167630890455D-Ol 0.100-00 0.100-02 0 0 0 l 148 1007 
20 N 0.100+01 0.710-01 0.167506001602D-01 0.167507312701D-Ol 0.167507312684D-Ol 0.340-08 0.100-02 0 0 0 6 148 1007 * 
21 I 0.167506001602D-01 0.1675075205740-0l 0.167507520557D-Ol 0.340-08 0.100-02 0 0 0 1 148 1007 
21 N 0.100+01 0.100+02 0.164395613365D-01 0.165596123978D-Ol 0.165088992686D-Ol 0.10D+OO 0.100-02 0 0 0 13 148 1007 
22 N 0.10D+Ol 0 .140+01 0.165128196265D-Ol 0.165128116490D-Ol 0.165127000397D-Ol 0.220-03 0.100-02 0 0 0 3 148 1007 * 
23 I 0.165128196265D-01 0.165396195768D-Ol 0.165395079675D-Ol 0.220-03 0.100-02 0 0 0 1 148 1007 

~ 23 N 0.100+01 0.660-01 0.165099402060D-01 0.165101143210D-Ol 0.165101143079D-Ol 0.260-07 0.100-02 0 0 0 4 148 1007 * 
24 I 0.165099402060D-01 0.165101233345D-Ol 0.165101233214D-Ol 0.260-07 0.100-02 0 0 0 1 148 1007 ;:! 
24 N 0.500+00 0.150+02 0.1650472494420-01 0.164958815525D-Ol 0.164905125612D-Ol 0.110-01 0.100-02 0 0 0 14 148 1007 ~ 25 N 0.10D+Ol 0.33D+OO 0.164751542618D-01 0.164823832427D-01 0.164822090021D-Ol 0.350-03 0.100-02 0 0 0 12 148 1007 [ 26 N 0.100+01 0.920+00 0.1648256999370-01 0.1648213982750-0l 0.1648212897160-01 0.220-05 0.100-01 0 0 0 11 148 1007 
27 N 0.100+01 0.400-01 0.164821291803D-01 0.164821284692D-01 0.164821284630D-Ol 0.120-10 0.100+01 0 0 0 10 148 1007 
28 N 0.100+01 0.310-03 0.164821284630D-01 0.164821284629D-Ol 0.1648212846290-0l 0.280-19 0 .100+01 0 0 0 9 148 1007 ~ ... 29 N 0.10D+Ol 0.140-05 0.164821284629D-Ol 0.164821284629D-Ol 0.164821284629D-Ol 0.200-23 0.100+01 0 0 0 116 148 1007 '"' ID 30 N 0.100+01 0.300-10 0.164821284629D-01 0.164821284629D-Ol 0.164821284629D-Ol 0.240-23 0 .100+01 0 0 0 13 148 1007 ~ u, 

'"' CONVERGENCE HISTORY UNCONSTRAINED REENTRY PROBLEM. 
TABLE F5 



.... NUMBER OF GRIDPOINTS = 50 :i,. 

'° ORDER OF POLYNOMIALS= 3 
~ a--

ITT ALPHA 110211 OBJECTIVE MERIT FUNCTION LAGRANGIAN PCRIT RHOP IQP IG IR QPZ ON DR C ~ 
0 R O .10D+Ol 0.35D+OO 0.230490100287D+OO 0.46D+Ol 0. 10D+OO 19 0 0 18 132 822 i:;· 
1 R 0.10D+Ol 0.21D+OO 0.139621723486D-02 0. 28D-Ol 0.10D+OO 4 0 0 3 130 824 "'l 2 R 0.100+01 0.200-01 0.104062945419D-06 0.21D-05 0.10D+OO 0 0 0 0 130 824 
3 R 0.10D+Ol 0.29D-03 0.136149530964D-14 0.270-13 O. 10D+OO 0 0 0 0 130 824 

END OF RESTORATION PHASE 

4 I -0.266086386893D+OO -0.266086384951D+OO -0.266086384951D+OO 0.270-13 0.10D+OO 3 0 0 6 131 823 
4 N 0.50D+OO 0.180+02 -0.267615472782D+OO -0.267059148662D+OO -0.267074737774D+OO 0.310-03 0.10D+OO 12 0 0 123 132 822 
5 N 0.50D+OO 0.110+02 -0.267649125884D+OO -0.267304417048D+OO -0.267319901627D+OO 0.310-03 0. 10D+OO 4 0 0 57 131 823 
6 N 0.100+01 0.71D+Ol -0.267605880887D+OO -0.267509849939D+OO -0.267533998480D+OO 0.48D-03 0.10D+OO 5 0 0 30 133 821 
7 N O. 10D+Ol 0.39D+OO -0.267585916311D+OO -0.267569743186D+OO -0.267569832199D+OD 0.18D-05 0.10D+OO 0 D 0 7 133 821 
8 N 0.100+01 0.550-01 -D.267569838D53D+DD -0.267569832486D+D0 -0.267569832487D+OO 0.30D-10 0.10D+OO 0 0 0 7 133 821 
9 N 0.100+01 0.11D-02 -0.2675698324900+00 -0.267569832490D+OO -0.267569832490D+OO 0.65D-17 0.10D+OO 0 0 0 6 133 821 

10 N D.1D0+01 0.30D-04 -0.267569832489D+OO -0.267569832489D+OO -0.267569832489D+OO 0.46D-23 0.10D+OO 0 0 0 22 133 821 
11 N 0.10D+Ol 0.12D-09 -0.2675698324890+00 -0.267569832489D+OO -0.267569832489D+OO 0.47D-24 0 .10D+OO 0 0 0 23 133 821 

START OF SECOND STAGE 

***** grid update ( add ) ***** AT 0.186127016654D+OO 
***** grid update ( add ) ***** AT 0.293B72983346D+OO 

11 N 0.10D+Ol 0.13D+OO -0.267569832489D+OO 0.16D-01 0 0 0 24 137 855 12 N 0. 10D+Ol 0.22D+OO -0.267570788745D+OO 0.32D-01 0 0 0 6 137 855 
13 N O. 100+01 0.360-02 -0.2675645826540+00 0.250-01 0 0 0 6 137 855 14 N O. 100+01 0.110-03 -0.267564510994D+OO 0.25D-01 0 0 0 18 137 855 15 N D. 10D+Ol 0.65D-08 -D.267564510999D+OO D.250-01 0 0 0 23 137 855 

***** grid update (shift) ***** FROM 0.186127016654D+OO TO 0.187332209502D+OO 
***** grid update (shift) ***** FROM 0.293872983346D+OO TO 0.29646081D204D+OO 
***** norm grid shift***** 0.160035654764D-01 

16 N 0.10D+Ol 0.64D+Ol -0.267564510999D+OO 0.35D+Dl 0 0 0 26 137 855 
17 N O. 10D+O 1 0.65D+Ol -0.268979693064D+OO 0.19D+OO 0 0 0 7 137 855 
18 N O. 100+01 0.33D+OD -0.267595382251D+OO 0.18D-03 0 0 0 7 137 855 
19 N D. 100+01 0.15D+OO -0.267569962998D+OO 0.140-05 0 0 0 6 137 855 
20 N O .10D+Ol 0.250-03 -0.267564251622D+DO 0.180-08 0 0 0 6 137 855 
21 N 0.100+01 0.11D-D3 -0.267564238001D+OO 0.710-12 0 0 0 23 137 855 
22 N 0.100+01 0.38D-08 -0.267564237999D+OO 0.15D-20 0 0 0 23 137 855 

***** norm grid shift ***** 0.112314974881D-01 

23 N 0.10D+Ol 0.35D+Ol -0.267564237999D+OO 0.36D-Ol 0 0 0 26 137 855 
24 N 0.10D+Ol 0.74D+OO -0.267798269793D+OD 0.16D-03 0 D 0 7 137 855 
25 N O. 100+01 0.810-02 -0.267545328274D+OO 0.82D-D2 D D 0 6 137 855 
26 N O .10D+Ol 0.39D-04 -0.267542695211D+OO 0.820-02 0 0 0 9 137 855 
27 N D. 10D+Ol 0.13D-08 -0.267542693262D+OO 0.020-02 0 0 0 21 137 855 

***** grid update (shift) ***** FROM 0.192307692308D+OO TO 0.187153814906D+OO 
***** grid update (shift) ***** FROM 0.307692307692D+OO TO 0.2963489958700+00 
****t norm grid shift ***** 0.1134331182240-0l 



.... 
\D 
-..:i 

28 N 0.100+01 0.260+01 -0.2675426932620+00 
29 N 0.100+01 0.170+00 -0.2676340831310+00 
30 N 0.100+01 0.850-03 -0.2675650972840+00 
31 N 0.100+01 0.170-04 -0.2675642872110+00 
32 N 0.100+01 0.21D-08 -0.2675642872000+00 

***** grid update (shift) ***** FROM 0.2963489958700+00 TO 
***** norm grid shift ***** 0.1504874417970-03 

33 N D .100+01 Q.170-02 -0.267564287200D+OO 
34 N 0.100+01 0.140-03 -0.2675643039860+00 
35 N O. 10D+Dl 0.580-08 -0.267564286929D+OO 

STATE VECTOR X 

0.000+00 
0.10D+OO 
0.20D+OO 
0.300+00 
0.400+00 
0.500+00 
0.600+00 
0.70D+OO 
0.800+00 
0.900+00 
0.100+01 

0.36000000000000000+00 
0.36073043704043470+00 
0.34520156298675320+00 
0.3064714230143654D+OO 
0.28906539576445560+00 
0.28171722435947170+00 
0.2773366479898915D+OO 
0.27423535574811070+00 
0.2717610563509446D+OO 
0.2696020152415552D+OO 
0.2675642869291477D+OO 

CONTROL VECTOR U 

0.000+00 
0. 100+00 
0.200+00 
0.300+00 
0.40D+OO 
0.500+00 
0.60D+OO 
0.70D+OO 
0.800+00 
0.900+00 
0.100+01 

0.135538607637325.4D+Ol 
0.13838979599633990+01 
0.97176977518745250+00 
0.4101397228499013D+OO 

-0.4013762177606460D+OO 
-0.62845524562956890+00 
-0.73854600223575780+00 
-0.81612127602069420+00 
-0.87962024078930450+00 
-0.9S442707669116340+00 
-0.98278794323290480+00 

-0.14137160000000000+00 
-0.12054449452247640+00 
-0.72488963949854490-01 

D.25395432371517270-0l 
0.34284362289183190-Dl 
0.21477290445846920-0l 
0.14230617922994630-0l 
D.96454800409498860-02 
0.62114418950739540-02 
0.31644~2982777475D-02 

-D.1594908~76631664D-16 

JUNCTION AND CONTACT POINTS OF CONSTRAINT Sl 

l 0.187153814906D+OO 0.2964994833120+00 

0.2964994833120+00 

D.1913870000000000D-Ol 
0.13574026217138440-01 
0.9224775292482341D-02 
0.83117109394970640-02 
0.96245627187062740-02 
0.10544212872402380-01 
D.11122933729213140-0l 
0.11507146886641250-0l 
0.11760936453776660-0l 
0.11910539914177720-0l 
0.11961700000000000-0l 

D.780+00 0 
0.370-02 0 
0.620-07 0 
0.420-14 D 
D.240-21 0 

0.450-06 0 
0.230-10 D 
0.320-20 D 

0.24681444331834810+03 
0.2468144433183481□+03 
0.24681444331834810+03 
0.2468144433183481 □+03 
0.24681444331834810+03 
0.24681444331834810+03 
0.2468144433183481□+03 
0.24681444331834810+03 
0.24681444331834810+03 
0.2468144433183481□+03 
0.2468144433183481□+03 

CONVERGENCE HISTORY REENTRY PROBLEM WITH ACCELERATION CONSTRAINT (NMAX 
TABLE F6 

6) • 

D D 26 137 855 
0 0 7 137 855 
0 D 6 137 855 
0 0 22 137 855 
0 D 23 137 855 

D D 24 ·137 855 
0 D 22 137 855 
D D 23 137 855 

f 
[ 

l 



NUMBER OF GRIOPOINTS = 25 
ORDER OF POLYNOMIALS= 3 

.... ITT ALPHA 11 D211 OBJECTIVE MERIT FUNCTION LAGRANGIAN PCRIT RHOP IQP IG IR QPZ DN DR C ::i:,.. 
\Q 

~ 00 0 R 0.10D+Ol 0.12D+Ol 0.1554206177290+00 0.31D+OO 0 .100+01 4 0 0 2 71 711 
1 R 0.10D+Ol 0.43D+D0 0.745799264260D-D2 0.15D-01 0.10D+Ql 3 0 0 1 72 710 ;:t 

1:1.. 
END OF RESTORATION PHASE ~-

2 I 0.1717519474B4D-01 0.2940369B2010D-Ol 0.219457055584D-01 0 .15D-01 0.10D+Ol 4 0 D 3 71 711 ">:I 
2 N 0.50D+OO 0.2BD+Ol 0.169597796622D-01 0.2247B6684619D-01 0.181733685245D-01 O.B6D-02 0.10D+Ol D 0 0 2 71 711 • 
3 I 0.169597796622D-01 0.22493270BD88D-D1 0.181918466830D-Ol 0.86D-02 0.100+01 3 0 0 2 72 710 
3 N 0.10D+Ol 0.58D+OO 0.166037685121D-01 0.173939275829D-Ol 0.166483914159D-01 0.15D-02 0. 10D+Ol 0 0 0 2 72 710 • 
4 I Q.166037685121D-Ol 0.176467876914D-Ol D.169012515244D-Ol 0.15D-02 0 .10D+Ol 4 0 0 3 71· 711 
4 N 0.250+00 0 .16D+Ol 0.166429024123D-Ol 0.600704713217D-Ol 0.554136218893D-02 0.11D-02 0. 10D+03 0 0 0 2 71 711 • 
5 I 0.1664290241230-01 0.6570382265740-0l 0.168075463666D-01 0.98D-03 0 .10D+03 0 0 0 1 71 711 
5 N 0.50D+OO 0.55D+OO 0.166932522511D-01 0.318487010994D-01 0.146835950931D-01 0.34D-03 0.10D+03 0 0 0 2 71 711 • 
6 I 0.166932522511D-01 0.328875380472D-01 0.167572246500D-Ol 0.32D-03 0.100+03 0 0 0 1 71 711 
6 N O. 10D+Ol 0.43D+OO 0.1670709597600-0l 0.2074132795080-0l 0.167122315207D-Ol 0.810-04 0.10D+03 0 0 0 2 71 711 • 
7 I 0.167070959760D-Ol 0.207485302717D-Ol 0.167194338416D-Ol 0.81D-04 0.10D+03 0 0 0 1 71 711 
7 N 0.130+00 0.16D+Ol 0.166737562070D-Ol 0.200709335110D-Ol 0.166851752090D-Ol 0.68D-04 0.10D+03 0 0 0 13 71 711 
8 N 0.13D+OO 0.11D+Ol 0.1664693372340-0l 0.196015381263D-Ol 0.166575129701D-Ol 0.59D-04 0.10D+03 0 0 0 12 71 711 
9 N 0.13D+OO 0.72D+OO 0.1662521107130-0l 0.191788345987D-01 0.166350175322D-Ol 0.51D-04 0. 10D+03 D 0 0 13 71 711 

10 N 0.13D+OO 0.5D0+00 0.1660759D9261D-Ol 0.187805686671D-Ol 0.1661667491030-Dl 0.43D-04 0.10D+03 0 0 0 13 71 711 
11 N 0.25D+OO 0.40D+OO 0.165792526830D-Ol 0.184566497167D-Ol 0.165885118941D-Ol 0.37D-04 0.l0D+03 0 0 0 13 71 711 
12 N 0.25D+OO 0.95D+OO 0.1656D9410521D-01 0.179539599217D-Ol 0.165696367846D-01 0.2BD-04 0.100+03 0 0 0 12 71 711 
13 N 0.50D+OO 0.13D+Ol 0.165375504157D-Ol 0.175044797942D-Ol 0.165471185D88D-Ol 0.19D-04 0.10D+03 0 0 0 12 71 711 
14 N 0.50D+OO 0.15D+Ol 0.165304139627D-Ol 0.170721989033D-Ol 0.1653740807210-0l 0.11D-04 0.100+03 0 0 0 12 71 711 
15 N 0.50D+OO O.lDD+Ol 0.165292879354D-Ol 0.168357928508D-01 0.165336085530D-01 0.60D-05 0.1D0+03 D 0 0 11 71 711 
16 N 0.50D+OO 0.57D+OO 0.165298111643D-Ol 0.166729259270D-01 0.165322542664D-Ol 0.28D-05 0.100+03 0 0 0 11 71 711 
17 N 0.50D+OO 0.25D+OO 0.165304670927D-Ol 0.166234863771D-Ol 0.165317830221D-01 0.18D-05 0.10D+D3 0 0 0 11 71 711 
18 N 0.13D+OO 0.13D+OO 0.165305773600D-Ol 0.166095512292D-01 0.165317284987D-Ol 0.16D-05 0.100+03 0 0 0 11 71 711 
19 N O. 13D+OO O. 13D+OO 0.165306765898D-01 0.165985211864D-Ol 0.165316837030D-Ol 0.13D-05 0.10D+03 0 0 0 11 71 711 
20 N 0.13D+OO 0.13D+OO 0.165307657106D-Ol 0.165895554588D-01 0.165316469018D-Ol 0.12D-05 0.10D+03 0 0 0 11 71 711 
21 N 0.13D+OO 0.12D+OO 0.165308456545D-Dl 0.165820276936D-01 0 .165316167180D.-Ol 0.10D-05 D.10D+03 0 0 0 11 71 711 
22 N O. 13D+OO 0.11D+OO 0.165309173099D-Ol 0.165755023139D-Ol 0. 1653159.20359D-O 1 0.88D-06 0. 100+03 0 0 0 11 71 711 
23 N 0.13D+OO 0.11D+OO 0.165309814967D-01 0.165697031202D-Ol 0.165315719329D-Ol 0.76D-06 0.100+03 0 0 0 11 71 711 
24 N 0.13D+OO 0.98D-01 0.165310389564D-01 0.1656447481990-01 0.165315556348D-Ol 0.660-06 0.100+03 0 0 0 11 71 711 
25 N 0.13D+OO 0.91D-01 0.165310903541D-Ol 0.165597430313D-Ol D.165315424857D-Ol 0.56D-06 0.10D+03 0 0 0 11 71 711 
26 N 0.130+00 0.92D-Ol 0.1653113628550-0l 0.165554789358D-Ol 0.165315319288D-Ol 0.48D-06 0.10D+03 0 0 0 11 71 711 
27 N 0.250+00 0.91D-Ol 0.165312187120D-Ol 0.165519403171D-Ol 0.165315161422D-Ol 0.41D-06 0.10D+03 0 0 0 11 71 711 
28 N 0.25D+OO 0.840-01 0.165312830071D-01 0.165472051158D-Ol 0.165315064438D-Ol 0.310-06 0.10D+03 0 0 0 11 71 711 
29 N 0.25D+OO 0.74D-01 0.165313328384D-Ol 0.165426338075D-Ol 0.165315006004D-Ol 0.22D-06 0.10D+03 0 0 0 11 71 711 
30 N 0.50D+OO 0.62D-01 0.165314101292D-Ol 0.165381906818D-Ol 0.165314946245D-Ol 0.13D-06 0.100+03 0 0 0 11 71 711 
31 N 0.10D+Ol 0.37D-01 0.165314916967D-Ol 0.165327796676D-Ol 0.165314923405D-01 0.26D-07 0 .100+03 0 0 0 11 71 711 
32 N 0.100+01 0.28D-02 0.165314923409D-Ol 0.165314923405D-01 0.165314923387D-Ol 0.350-13 0.100+03 0 0 0 10 71 711 
33 N 0.10D+Ol 0.18D-04 0.165314923387D-Ol 0.165314923387D-Ol 0.165314923387D-Ol 0.93D-22 0.10D+03 0 0 0 52 71 711 
34 N 0.10D+Ol 0.43D-06 0.165314923387D-Ol 0.165314923387D-Ol 0.1653149233870-01 0.53D-24 0.10D+03 0 0 0 57 71 711 
35 N 0.10D+Ol 0.290-08 0.165314923387D-Ol 0.165314923387D-Ol 0.165314923387D-Ol 0. 690-24 0.100+03 0 0 0 55 71 711 

START OF SECOND STAGE 

***** grid update (shift) ***** FROM 0.480000000000D+OO TO 0.4913855690840+00 
•••~• norm grid shift ***** 0.113855690835D-Ol 

35 N 0.10D+Ol 0.10D+Ol 0.168978787647D-Ol 0.41D+Ol 0 0 0 71 71 711 
36 N 0.10D+Ol 0.39D-01 0.165489950175D-Ol 0. 220-01 0 0 0 11 71 711 
37 N 0.10D+Ol 0.110-01 0.165324128795D-Ol 0.56D-05 0 0 0 10 71 711 
38 N O .10D+Ol 0. 11D-03 0.1653256282570-0l 0.19D-08 0 0 0 9 71 711 
39 N 0.10D+Ol 0 .17D-05 0.165325630588D-Ol 0.43D-12 0 0 0 60 71 711 
40 N 0.10D+Ol 0.42D-07 0.165325630588D-Ol 0.23D-15 0 0 0 56 71 711 
41 N 0.10D+Ol 0.57D-09 0.165325630588D-Ol 0.45D-19 0 0 0 36 71 711 



.... 
'° '° 

***** grid update (shift) ***** FROM 0.491385569084D+OO TO 
***** norm grid shift ***** 0.223508522835D-02 

42 N 0.100+01 0. 160+00 0.164621549868D-01 
43 N 0.100+01 D.260-02 0.165332833258D-Ol 
44 N 0.10D+Ol 0.130-03 0.165328301374D-Ol 
45 N 0.10D+Ol 0.15D-05 0.165328308810D-Ol 
46 N O. 100+01 D.340-07 0.165328308810D-Ol 
47 N 0.10D+Ol 0.490-09 0.165328308810D-Ol 

***** grid update (shift) ***** FROM 0.489150483855D+OO TO 
***** norm grid shift "'**** 0.8680531398800-04 

48 N 0.10D+Ol 0.480-02 0.165328324938D-Ol 
49 N 0.100+01 0.93D-05 0.165328310422D-Ol 
50 No0.10D+Ol 0.91D-06 0.165328310448D-Ol 
51 N O. 10D+Ol 0.79D-08 0.165328310448D-Ol 

***** grid update (shift) ***** FROM 0.4890636785410+00 TO 
***** norm grid shift ***** 0.3833691119280-06 

52 N 0.10D+Ol 0.210-04 0.165328310518D-Dl 
53 N O. 100+01 0.750-07 0.1653283104480-0l 
54 N 0.100+01 0.400-08 0.1653283104480-0l 

***** grid update (shift) ***** FROM 0.4890632951720+0D TO 
***** norm grid shift ***** 0.103781337690D-09 

55 N O. 100+01 0.570-06 0.1653283104480-0l 
56 N 0.100+01 0.680-11 0.1653283104480-0l 

STATE VECTOR X 

0.000+00 
0. 100+00 
0.200+00 
0.300+00 
0.400+00 
0.500+00 
0.600+00 
0.700+00 
0.800+00 
0.900+00 
0.100+01 

0.3500DOOOOOOOOOOOD+OO 
0.35059714125696690+00 
0.32880867374736400+00 
0.10141586214887730+00 
0.77066064386630800-01 
0.72808915443823130-0l 
0.69001263430333640-0l 
0.54500599338054960-0l 
0.33051694313373650-01 
0.2065950277239199D-Ol 
0.1239929000003645D-01 

CONTROL VECTOR U 

0.000+00 
0.100+00 
0.200+00 
Q.30D+OO 
0.400+00 
0.500+00 
0.600+00 
0.700+00 
0.800+00 
0.900+00 
0.100+01 

D.10865734570264610+01 
0.11037137874273910+01 
0.84901492282780560+00 

-0.14448836220396600+01 
-0.22619542269726860+01 
-0.17927415830172440+01 
-0.17064746114487570+01 
-0.18640889398754450+01 
-0.2114784085705738D+Ol 
-0.20059288170413500+01 
-0.2144879112843496D+Ol 

-0.10035653900000000+00 
-0.70517124075742550-0l 
-0.65039384947916180-0l 
0.77740656945505260-0l 
0.10726245529513070+00 

-0.14536815616371220-0l 
-0.13617762571950760+00 
-0.1524475752641374D+OO 
-0.7752587609383452D-Ol 
-0.1891933773653124D+OO 
-0.4579246880002607D+OO 

JUNCTION ANO CONTACT POINTS OF CONSTRAINT S2 

1 0.4890632952760+00 

0.489150483855D+OO 

0. 489063678541D+.OO 

0.489063295172D+OO 

0.489063295276D+OO 

0.191353300000000QD-01 
0.13412502288042720-0l 
0.9317052269744551D-02 
0.62052167948709170-D2 
0.82698964505732340-02 
0.89727024301721230-02 
0.79182464702871540-02 
0.59836004871910490-02 
0.50807159553159870-02 
0.4510689460658851D-02 
0.36022639999998170-02 

0.140+00 0 
0.240-04 0 
0.25D-08 0 
0.32D-12 0 
0.15D-15 0 
0.320-19 0 

0.22D-05 0 
0.51D-10 0 
0.99D-13 0 
0.93D-17 0 

0.430-10 0 
0 .130-14 0 
D.190-17 0 

0.320-17 0 
0.490-22 0 

o.00000000000000000+00 
0.13770001748098960+02 
0.27421674825232600+02 
o.361a90955551001ao+o2 
0.39473670697054620+02 
0.42434836180559780+02 
Q.45251169235537190+02 
0.47737219858881770+02 
0.49443326281828640+02 
0.50485444997086090+02 
0.51101980000000110+02 

CONVERGENCE HISTORY REENTRY PROBLEM WITH ALTITUDE CONSTRAINT (XIMAX 
TA~I F F7 

0.009). 

0 0 70 71 711 
0 0 10 71 711 
0 0 53 71 711 
0 0 57 71 711 
0 0 56 71 711 
0 0 34 71 711 

0 0 66 71 711 
0 0 42 71 711 
0 0 57 71 711 
0 0 54 71 711 

0 0 60 71 711 
0 0 57 71 711 
0 0 52 71 711 

0 0 55 71 711 
0 0 7 71 711 

f 
[ 

i 
"' 



N NUMBER OF GRIOPOINTS = 40 :i,.. 
0 ORDER OF POLYNOMIALS= 2 

~ 0 
ITT ALPHA 110211 OBJECTIVE MERIT FUNCTION LAGRANGIAN PCRIT RHOP IQP IG IR QPZ DN DR C ;:s 

~ 
0 R 0.10D+Ol 0.3BD-01 0.423749634978D-06 O.B5D-06 0 .10D+Ol 10 0 0 35 31 192 ~-
1 R 0.10D+Ol 0.10D-03 0.860764355028D-15 0.17D-14 0 .10D+Ol 3 0 0 5 32 191 "':I 

END OF RESTORATION PHASE 

2 I 0.257464B85267D+Ol 0.253452336B17D+Ol 0.253268788270D+Ol 0.37D-02 0 .10D+Ol 17 0 0 47 27 196 
2 N 0.10D+Ol 0.76D+OO 0.2406463672B7D+Ol 0.243547619323D+Ol 0.242832025Bl5D+D1 0 .14D-01 0 .10D+Ol 11 0 0 56 19 204 
3 N 0. 10D+Ol 0.83D-01 0.243197932063D+Ol 0.2423B4D72250D+Ol 0.241556317715D+Ol 0.17D-01 0.10D+Ol 0 0 0 5 19 204 
4 N 0.10D+Ol 0.36D-02 0.24320922B269D+Ol 0.243126897128D+Ol 0.243044554424D+Ol 0.16D-03 0.100+02 0 0 0 5 19 204 
5N0.10D+Ol 0.26D-05 0.243209239780D+Ol 0.2431268959630+01 0.243044552146D+Ol 0.16D-03 0.100+02 0 0 0 4 19 204 
8 N O. 10D+Ol 0.11D-11 0.243209239780D+Ol 0.2431268959630+01 0.243044552148D+Ol 0.16D-03 0.100+02 0 0 0 2 19 204 

START OF SECOND STAGE 

***** grid update (shift) ***** FROM 0.250000000000D+OO TO 0.269542610095D+OO 
***** grid update (shift) ***** FROM 0.350000000000D+OO TO 0.337375215392D+OO 
***** grid update (shift) *"'*** FROM 0.500000000000D+OO TO 0.488368704743D+OO 
***** grid update (shift) ***** FROM 0.700000000000D+OO TO 0.671469951075D+OO' 
***** grid update (shift) ***** FROM 0.850000000000D+OO TO 0.847879561436D+OO 
***** norm grid shift ***** 0.285300489253D-Ol 

6 N O .10D+Ol 0.16D+OO 0.243607370726D+Ol 0.13D-01 0 0 0 6 19 204 
7 N O. 10D+Ol 0.12D-01 0.243224121481D+Ol 0.16D-03 0 0 0 5 19 204 
8 N 0.10D+Ol 0.15D-04 0.243186710058D+Ol 0.94D-10 0 0 0 5 19 204 
9 N 0.10D+Ol 0.22D-10 0.243186711916D+Ol 0.28D-21 0 0 0 3 19 204 

***** grid update (shift) ***** FROM 0.269542610095D+OO TO 0.267767976600D+OO 
***** grid update (shift) ***** FROM 0.337375215392D+OO TO 0.339291301013D+OO 
***** grid update (shift) "'**** FROM 0.488368704743D+OO TO 0.488359798384D+OO 
***** grid update (shift) ***** FROM 0.671469951075D+OO TO 0.671598656342D+OO 
***** grid update (shift) ***** FROM 0.847879561436D+OO TO 0.847884340240D+OO 
***** norm grid shift ***** 0.191608562131D-02 

10 N O. 10D+Ol 0.83D-02 0.243180258606D+Ol 0.35D-04 0 0 0 6 19 204 
ll N 0.10D+Ol 0.18D-03 0.243187311710D+Oi 0.35D-06 0 0 0 5 19 204 
12 N O. 10D+Ol 0.26D-08 0.2431868635950+01 0.32D-06 0 0 0 3 19 204 

***** grid update (shift) ***** FROM 0.267767976600D+OO TO 0.267765607362D+OO 
***** grid update (shift) ***** FROM 0.339291301013D+OO TO 0.339246535579D+OO 
***** grid update (shift) ***** FROM 0.488359798384D+OO TO 0.488902688767D+OO 
***** grid update (shift) **"'** FROM 0.671598656342D+OO TO 0.675015506602D+OO 
***** grid update (shift) ***** FROM 0.847884340240D+OO TO 0.848735963857D+OO 
***** norm grid shift***** 0.341685026011D-02 

13 N 0.10D+Ol 0.17D-01 0.243155215611D+Ol 0.68D-04 0 0 0 5 19 204 
14 N

0
0.10D+Ol 0.14D-04 0.243186926823D+Ol 0.31D-06 0 0 0 4 19 204 

15 N 0.10D+Ol 0.30D-10 0.243186856455D+Ol 0.31D-06 0 0 0 3 19 204 

***** grid update (shift) ***** FROM 0.267765607362D+OO TO 0.267768829349D+OO 
***** grid update (shift) ***** FROM 0.339246535579D+OO TO 0.337755039497D+OO 
***** grid update (shift) ***** FROM 0.488902688767D+OO TO 0.4879754310920+00 
***** grid update (shift) ***** FROM 0.675015506602D+OO TO 0.6746526239190+00 
***** grid update (shift) ***** FROM 0.848735963857D+OO TO 0.849825271221D+OO 
***** norm grid shift***** 0.149149608191D-02 



16 N 0.100+01 0.660-02 0.2431654982870+01 0.250-04 0 0 0 6 19 204 
17 N 0.10D+Ol D.45D-03 0.2431870481460+01 D .120-D6 0 D 0 5 19 2D4 
18 N 0.1D0+01 D.59D-07 0.2431867627240+01 0.120-10 0 0 0 4 19 204 
19 N O. 100+01 0.390-13 0.2431867628020+01 0.120-10 0 0 0 1 19 204 

***** grid update (shift) ***** FROM 0.2677688293490+00 TO 0.2677634784210+00 
***** grid update (shift) ***** FROM 0.3377550394970+00 TO 0.3392124802850+00 
***** grid update (shift) ***** FROM 0.4879754310920+00 TO 0.4879747706000+00 
***** grid update (shift) ***** FROM 0.6746526239190+00 TO 0.6746417119300+00 
***** norm grid shift *"'*** 0.1457440788310-02 

20 N □ .. 100+01 0.620-02 0.2431918732890+01 0.140-04 0 0 0 5 19 204 
21 N 0.100+01 0.110-03 □ .2431870948700+01 0.300-06 D D D 5 19 204 
22 N 0.100+01 0.840-09 0.2431868680110+01 0.290-06 0 D D 3 19 204 

***** grid update (shift) *"'*** FROM 0.2677634784210+00 TO 0.2677600377320+00 
***** grid update (shift) ***** FROM □ .3392124802850+00 TO 0.3391799177000+00 
***** grid update (shift) ***** FROM 0.4879747706000+00 TO 0.4879754649860+00 
***** grid update (shift) ***** FROM □ .6746417119300+00 TO 0.6746502988650+00 
***** norm grid shift ***** 0.3256258531810-04 

23 N O. 100+0 l 0.140-03 0.2431866783490+01 0.280-06 0 D D 5 19 204 
24 N D. 100+0 l D.530-07 0.2431868656060+01 0.270-06 D 0 D 4 19 204 
25 N 0.100+01 0.280-13 0.2431868654960+01 0.270-06 D D D 1 19 204 

***** grid update (shift) ***** FROM 0.2677600377320+00 TD □ .2677539730360+00 

***** grid update (shift) ***** FROM D.3391799177000+00 TO □ .3377842460270+00 
*****•grid update (shift) ***** FROM 0.4879754649860+00 TO 0.48793836402°2.0+00 
***** grid update (shift) ***** FROM 0.6746502988650+00 TO 0.6746496584210+00 
***** norm grid shift ***** 0.1395671672650-02 

26 N 0.100+01 0.620-02 0.2431816990850+01 0.150-04 D D D 5 19 204 
27 N 0.100+01 0.460-03 0.2431869823130+01 0.120-06 D D D 5 19 204 
28 N 0.100+01 0.600-07 0.2431867652810+01 0.130-10 D D D 4 19 204 
29 N 0.100+01 D.900-14 0.2431867653590+01 0.130-10 D D D 1 19 204 

***** grid update (shift) ***** FROM 0.2677539730360+00 TO 0.2677778316060+00 
***** grid update (shift) ****• FROM 0.3377842460270+00 TO 0.3377773599510+00 
***** grid update (shift) ***** FROM 0.6746496584210+00 TO 0.6746507600940+00 
***** norm grid shift ***** 0.2385856994800-04 

30 N 0.100+01 0.110-03 0.2431869077500+01 0.260-08 D 0 0 5 19 204 
31 N 0.100+01 0.240-08 0.2431867648250+01 0.820-11 D 0 0 3 19 204 

***** grid update (shift) ***** FROM 0.2677778316060+00 TO 0.2677464420020+00 
***** grid update (shift) ***** FROM 0.3377773599510+00 TO 0.3377773195520+00 
***** grid update (shift) ***** FROM 0.6746507600940+00 TO D.6746422627670+00 
***** norm grid shift***** 0.3138960421670- □4 

~ 
32 N D. 100+01 0.150-03 0.2431865823240+01 0.420-08 0 0 0 5 19 204 I:: 

33 N D .100+01 D.300-08 0.2431867649450+01 0.460-14 D 0 0 3 19 204 ~ 
***** grid update (shift) ***** FROM □ .2677464420020+00 TO 0.2677464103540+00 [ ***** grid update (shift) ***** FROM 0.3377773195520+00 TO 0.3377773599510+00 
***** grid update (shift) ***** FROM 0.6746422627670+00 TO 0.6746420572500+00 cl ***** norm grid shift ***** 0.2□55172036300-06 

"' 1-J ~ 0 34 N 0.100+01 0.100-05 0.2431867659070+01 0.250-12 0 0 0 4 19 204 ,... 
"' 35 N 0.100+01 0.790-13 0.2431867649320+01 0.150-15 0 0 0 1 19 204 



hi 
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hi 

CONSTRAINT Sl ACTIVE AT COLLOCATION POINTS 

1 35 40 

CONSTRAINT S2 ACTIVE AT BREAK POINTS 

1 5 7 
1 10 14 

JUNCTION AND CONTACT POINTS OF CONSTRAINT Sl 

1 O.B49B25271221D+OO O.lODODOOOOOOOD+Ol 

JUNCTION AND CONTACT POINTS OF CONSTRAINT S2 

1 0,26774641D354D+DO 0.337777359951D+OO 
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Notations and symhds 

Notations and symbols. 

Throughout the thesis the following notations are used : 

N(h) 
R(h) 
x· . 
X 

<x' ,x > . 
X X 

K' 

s· 
S(u ,e) 
iiJ(u ;iiu) 

J' (u) 

J" (u ) 

X (.) 

a.e. 
ess sup 
[t] 

ii*M 
/,. • fu 
A-1 

A+ 
AT 
K(A) 

A variable with a hat C) denotes either a solution of an optimization problem or 
a Lagrange multiplier corre~ponding to the solution of an optimization problem. 
Null space of the operator h. 
Range space of the operator h. 
Dual space of the Banach space X . 
Element of the dual space of the Banach space X . 
Result of the linear functional x • Ex• acting on x EX . 
Same as <x' .x >. 
When g is an operator and B a set. then g-1(B) denotes the set {x EX :g (x )EB). 

If K is a set, then K' denotes the dual cone (cf. Definition 2.3). 
If S is an operator thens• denotes the adjoint operator (cf. Definition 2.4). 
Neighborhood of the vector u. 
Frechet differential of the operator J at u with variation iiu. 

Frechet derivative of the operator J at u. 

Second Frechet derivative of the operator J at u. 
Y, ([o,n(x (t )). 

almost everywhere. 
essential supremum. 
Replaces argument lists with x (t ). u (t ). X(t ). etc. in Chapter 3 and argument 
lists with x; (t ). u; (t ). A; (t ). etc. in Chapters 4. 5 and 6. 

Denotes the tensor product of a vector ii with a block matrix M. 
Denote partial derivatives of the function/ (x .u ,t) with respect to x and u. 

Inverse of matrix A . 

Pseudo-inverse of matrix A. 
Transpose of matrix A . 

Condition number of matrix .4 . i.e. II A 11-11 A - 111. The 2-norm is used for matrix 
norms. 
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Nmations and symbols 

.R 

.R" 
C[o,T] 

Loo[O.T] 
L 00 (W1 ) 

W 1,00 [0,T] 

Spaces 

Space of real numbers . 
Euclidian space of n -vectors. 
Space of continuous functions on [O.T]. 
Space of measurable and essentially bounded function on [O.T]. 
Space of measurable and essentially bounded function on the closed set W1 . 

Space of absolutely continuous functions on [O,T] with measurable and 
essentially bounded time derivatives. 

NBV[o,T] Normalized space of functions on [O.T] of bounded variation. 

Acronim 

EIP 
EIQP 

EQP 

IQP 

SCOCP 
ESCOCP 
EIQP/SCOCP 
EQP/SCOCP 
EIQP /SCOCP / A 

210 

Defined Problems 

Description 

Abstract optimization problem with equality and inequality constraints 
Abstract optimization problem with quadratic objective function and 
linear equality and inequality constraints 
Abstract optimization problem with quadratic objective function and 
linear equality constraints 
Abstract optimization problem with quadratic objective function and 
linear inequality constraints 
State Constrained Optimal Control Problem 

Optimal control problem with state equality constraints 
Formulation of problem (EIQP) in terms of problem (SCOCP) 
Formulzation of problem (EQP) in terms of problem (SCOCP) 
Approximation of problem (EIQP/SCOCP) on a grid A 

Page 

15/62 

63 

64 

65 
27/68 

82 
70 
71 
74 



/liotalions and symbols 

Symbols used in terms of nonlinear programming in Banach spaces. 
(Chapters 1. 2 and 4 J 

A (At .ii) 

C ( JJ .ii J 

K(K.l) 

L (S .K ,ii) 
T(Af ,ii) 

J 

K 

L 
[' 

L (u .{ 

A! 
<; 

s .. 
{i 

u 

A 

H 

J 

e. 
I, 

X 
X 

}' 

z 
p 

Mlal 
G 

Cone of admissible directions to ;\,/ at ii. (cf. Definition 2.5). 
Conical hull of AJ-liil. (cf. Definition 2.7J. 
Set of points for second order optimality conditions (cf. (2.3.10)). 
Linearizing cone of s- 1(K) at ii. (cf. Definition 2.6). 
Sequential tangent cone of M at ii. (cf. Definition 2.6). 

Objective functional of problems (P,,) and (P 1 ). 

Cone defining constraints in problem (P 1 ). 

Banach space used in the definition of problem (P 1 ). 

Lagrange multiplier of problem (P 1). 

I .agrangian of problem (P 1 ). 

Constraint set in problem (P 1 ). 

Constraint operator in problem (P 1 ). 

Constraint set in problem (P 0 ). 

Banach space used in the definition of problems (P0 ) and (P 1). 

\'ariable in optimization problems (/' 0 ) and (P 1). 

Constraint set in problem ( EIP). 
Cone defining constraints in problem (EIP). 
Objective functional of problem (Fil'). 
Inequality constraint operator of problem CEIP). 
Equality constraint operator of problem (EIP). 
Banach space used in the definition of problem (EIP). 
\'ariable in optimization problem (EIP). 
Banach space used in the definition of problem (EIP). 
Banach space used in the definition of problem (EIP). 
Hegularity constant (cf. Theorem 2.10). 
Lagrange multiplier of problem (EIP) (corresponding tog). 
Lagrange multiplier of problem ( EIP) (corresponding to h ). 
Lagrangian of problem (EIP). 

\1erit function dependent of step size (cf. Section 4.1.2). 
\1apping used H' imitate an inner product in Banach space. 
Current estimate for the solution in Algorithm 4.1. 
Current estimate for Lagrange multiplier y · in Algorithm 4.1. 
Current estimate for Lagrange multiplier i' in Algorithm 4.1. 
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Noza1ions and symbols 

T 

X (1) 

U (1) 

j,.(x ,U .l) 

g,.(x .T) 

h 0 (x) 

j (x ,u ,l ) 

D(x) 

E(x .T) 

S1(X .u .l) 

S/x.1) 
{! 

n 

m 

C 

7)2 

11} 

H(x .u ,p,>..,t) 

P, 

s 
51• 

Symbols used in terms of optimal control. 
(Chapters 1. 3. 4 and 5) 

Time variable. 
Final time. 
State variable. 
Control variable. 
Problem function of problem (SCOCP) (objective function). 
Problem function of problem (SCOCP) (objective function). 
Problem function of problem (SCOCP) (objective function). 
Problem function of problem (SCOCP) (differential system). 
Problem function of problem (SCOCP) (initial point constraints). 
Problem function of problem (SCOCP) (terminal point constraints). 
Problem function of problem (SCOCP) (mixed control state constraints). 
Problem function of problem (SCOCP) (state constraints). 
Constraint set in problem (SCOCP) (control constraints). 
Dimension of state vector x. 
Dimension of control vector u. 

Dimension of vector function D. 
Dimension of vector function E. 
Dimension of vector function S 1• 

Dimension of vector function S 2• 

Lagrange multipliers corresponding to the differential system 
also called adjoint variable. 
Lagrange multipliers corresponding to the initial point constraints D. 
Lagrange multipliers corresponding to the terminal point constraints E. 
Lagrange multipliers corresponding to the mixed control state 
constraints S 1. 

Lagrange multipliers corresponding to state constraints S 2. 

Time derivative of the Lagrange multipliers-
Discontinuity of the Lagrange multiplier g at time point t 1 . 

Hamiltonian (cf. (3.3.3.1)). 

Functions defined by (3.3.5.7) - (3.3.5.8). that have the interpretation 
of time derivatives of the state constraint S 2;. 

Order of the state constraint S 2; (cf. (3.3.5.9)). 
Vector function of state constraints (cf. (3.3.5.10)). 
Vector function of mixed control state constraints (cf. (3.3.5.11)). 

ii' (x .u ,p.~' :ry' .t) Augmented Hamiltonian (cf. (3.3.6.1)). 
~' Adjoint variable in alternative formulation of optimality conditions. 
'T)' Multiplier in alternative formulation of optimality conditions. 
~' :\.Iultiplier in alternative formulation of optimality conditions. 



X' (t ) 

u' (t ) 

'A' (1 ) 

'T) /(t ) 

g'(t) 

'TJit ) 
11_' 

a-' 
µ; 

w, 
R[t l 
RP[t] 

I (t) 

f Ct) 

ml 
m{ 

[rL-1.r~il 
t' 

2m,6+1 

M( ... ) 

Tio, (t ) 
-k 
1111 
-k 
v,2 

Notations and s_vmbol.s 

Current estimate for the state variable in Algorithm 4.4. 
Current estimate for the control variable in Algorithm 4.4. 
Current estimate for the adjoint variable in Algorithm 4.4. 
Current estimate for the multiplier 'T) 1 in Algorithm 4.4. 
Current estimate for the multiplier g in Algorithm 4.4. 
Current estimate for the multiplier 'T) 2 in Algorithm 4.4. 
Current estimate for the multiplier 11 1 in Algorithm 4.4. 
Current estimate for the multiplier rr in Algorithm 4.4. 
Current estimate for the multiplierµ in Algorithm 4.4. 

'.\1atrix in definition of subproblems (cf. (4.2.1.11)). 
Matrix in definition of subproblems (cf. (4.2.1.12)). 
Matrix in definition of subproblems (cf. (4.2.1.13)). 
Matrix in definition of subproblems (cf. (4.2.1.14)). 
Matrix in definition of subproblems (cf. (4.2.1.15)). 
Matrix in definition of subproblems (cf. (4.2.1.16)). 

Working set of state constraint 51 . 

Vector function of state equality constraints (cf. (4.2.1.19)). 
Vector function of mixed control state equality constraints 
(cf. (5.1.2.14)). 

Index set of active constraints at time point t. 
'.\umber of constraints in the set J(t ). 

!\umber of boundary intervals of working set W1 • 

1\umber of contact points of working set W1 • 

j -th boundary interval in working set W1 . 

j -th contact point in working set W1 • 

Grid for the junction and contact points of the mixed 
control state constraints (cf. ( 4.2.2.1) ). 
Grid for the junction and contact points of the state constraints 
(cf. (4.2.2.1)). 
A 1xA 2

• 

!\:umber of points of the grid Ai. 
Time point i of grid A1 . 

Set of boundary points of constraint S 11 (cf. Definition 4.3). 
Set of boundary points of constraint S 21 (cf. Definition 4.3). 

Merit function (cf. (4.3.8 )). 

Multiplier for active set strategy (cf. (5.2.23)). 
Multiplier for active set strategy (cf. (5.2.26) ). 
Multiplier for active set strategy (cf. (5.2.27)). 
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Notations and symbols 

Symbols used in the numerical implementation. 
(Chapter 6) 

Order of polynomials on grid intervals. 
p :\umber of grid intervals. 
p, Collocation points relative to the interval [0.1]. 
t, Grid point(,·= 0.1.. ... p l. 
T 1, +, Collocation point i on the interval [r, .r, + 1]. 

h, Size of grid interval. 
w Jk Weight in quadrature formula (6.1.1.22 ). 
w 1 Weight in quadrature formula (6.1.1.24). 

r 1 Junction or contact point. 
X Lagrange multiplier associated with interior point constraints (6.1.2.8). 
r, 1 Lagrange multiplier associated with mixed control state constraints (4.2.1.25). 
d; :\umerical approximation to d, (t, ). 

d;·.i :\"umerical approximation to d, (T1, +; ). 

d; ·' l\umerical approximation to d 11 ( T 1, +; ). 

A.:·.+ Aumerical approximation to A, (t, + ). 
>..; -- '.\umerical approximation to >.., (1 1 - ). 

>..; ·' ;\ umerical approximation to >.., ( T 1, +, ). 

>.. '.l.+ '.\umerical approximation to>.., (0). 
>.. f .- :\"umerical approximation to >.., (T ). 

r,}-' :\umerical approximation to r, 1 ( T 1, +, ). 

~' .k Transformed adjoint variable (cf. (6.1.2.26)). 
01,+, Transformed multiplier r,f .i (cf. (6.1.2.27)). 

M Matrix in objective function of quadratic programming problem (cf. (6.1.2.34)). 
C Matrix of constraint normals in quadratic programming problem (cf. (6.1.2.35)). 
c Vector in objective function of quadratic programming problem (cf. (6.1.2.34 )). 
d Variable in quadratic programming problem. 
b Inhomogeneous part of constraints (cf. (6.1.2.35)). 
~ Lagrange multiplier of quadratic programming problem (6.1.2.34) - (6.1.2.35). 
n Dimension of vector d . 

m :\umber of constraints. i.e. row dimension of the matrix C. 

dR Range space part of vector d. i.e. CdR = b. 

dx l\ull space part of vector d. i.e. Cd!\·= 0. 
Y n x in matrix whose columns are a base for the range space of the matrix Cr. 
Z n X (n -in) matrix whose columns are a base for the null space of the 

matrix C. 
L 
Q 

Lower-triangular matrix in LQ-factorization of the matrix C. 
Orthogonal matrix in LQ-factorization of the matrix C. 

in Xin identy matrix. 

j -th columns of the identy matrix. 
Scaling matrices. 
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