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Summary.

The purpose of this tract is to present a numerical method for the solution of state con-
strained optimal control problems.

In the first instance, optimization problems are introduced ‘and considered in an abstract
setting. The major advaniage of this abstract treatment is that one can consider optimality
conditions without going into the details of problem specifications. A number of results on
optimality conditions for the optimization problems are reviewed.

Because state constrained optimal control problems can be identified as special cases of the
abstract optimization problems, the theory reviewed for abstract optimization problems
can be applied directly. When the optimality conditions for the abstract problems are
expressed in terms of the optimal control problems, the well known minimum principle
for state constrained optimal control problems follows.

The method., which is proposed for the numerical solution of the optimal control prob-
lems, is presented first in terms of the abstract optimization problems. Essentially the
method is analogous to a sequential quadratic programming method for the numerical
solution of finite-dimensional nonlinear programming problems. Hence. the method is an
iterative descent method where the direction of search is determined by the solution of a
subproblem with quadratic objective function and linear constraints. In each iteration of
the method a step size is determined using an exact penalty (merit) function. The applica-
tion of the abstract method to state constrained optimal control problems is complicated
by the fact that the subproblems, which are optimal control problems with quadratic
objective function and linear constraints (including linear state constraints), cannot be
solved easily when the structure of the solution is not known. A modification of the sub-
problems is therefore necessary. As a result of this modification the method will, in gen-
eral, not converge to a solution of the problem, but to a point close to a solution. There-
fore a second stage. which makes use of the structure of the solution determined in the
first stage, is necessary to determine the solution more accurately.

The numerical implementation of the method essentially comes down to the numerical
solution of a linear multipoint boundary value problem. Several methods may be used for
the numerical solution of this problem, but the collocation method which was chosen, has
several important advantages over other methods. Effective use can be made of the special
structure of the set of linear equations to be solved. using large scale optimization tech-
niques.

Numerical results of the program for some practical problems are given. Two of these
problems are well known in literature and allow therefore a comparison with results
obtained by others.

Finally the relations between the method proposed and some other methods is given.



Contents

bontents
Summary
1 Introduction
1.1 State constrained optimal control problems
1.2 An example of state constrained optimal control problems in robotics
1.3 Optimality conditions for state constrained optimal control problems
1.4 Available methods for the numerical solution
1.5 Scope /
2 Nonlinear programming in Banach spaces
2.1 Optimization problems in Banach spaces
2.2 First order optimality conditions in Banach spaces
2.3 Second order optimality conditions in Banach spaces
3 Optimal control problems with state inequalify constraints
3.1 Statement and discussion of the problem

3.2 Formulation of problem (SCOCP) as a nonlinear programming problem in
Banach spaces

3.3 First order optimality conditions for problem (SCOCP)
3.3.1 Regularity conditions for problem (SCOCP)
3.3.2 Representation of the Lagrange multipliers of problem (SCOCP)
3.3.3 Local minimum principle
3.3.4 Minimum principle N
3.3.5 Smoothness of the multiplier ¢
3.3.6 Alternative formulations of the first order optimality conditions

3.4 Solution of some example problems
3.4.1 Example 1 :
3.4.2 Example 2

4 Sequential quadratic programming in function spaces

4.1 Description of the method in terms of nonlinear programming in Banach spaces
4.1.1 Motivation for sequential quadratic programming methods
4.1.2 Active set strategies and merit function
4.1.3 Abstract version of the algorithm

4.2 Application of the method to optimal control problems
4.2.1 Formulation of problems (EIQP/SCOCP) and (EQP/SCOCP)
4.2.2 Active set strategies for problem (SCOCP)

4.3 Further details of the algorithm

4.4 Outline of the implementation of the method

page

e N U

11
13
14
14
17
22
27
27

31

34
34
36
43
45
48
51

55
55
58

62

62
62
65
66

68
68
71

75
80



5 Solution of the subproblems and determination of the active set

5.1

5.2
53

Solution of problem (EQP/SCOCP)

5.1.1 Optimality conditions for problem (ESCOCP)

5.1.2 Optimality conditions for problem (EQP/SCOCP)

5.1.3 Linear multipoint boundary value problem for the solution
of problem (EQP/SCOCP)

Solution of the subproblem (EIQP/SCOCP/A)

Determination of the active set of problem (SCOCP)

5.3.1 Determination of the junction and contact points based on
the Lagrange multipliers

5.3.2 Determination of the junction and contact points based on
the Hamiltonian

Numerical implementation of the method

6.1

6.2

6.3

Numerical solution of problem (EQP/SCOCP)
6.1.1 Solution of the linear multipoint boundary value problem
6.1.2 Inspection of the collocation scheme

Numerical solution of the collocation scheme

6.2.1 Consideration of various alternative implementations

6.2.2 Numerical solution of the collocation scheme by means of
the Null space method based on LQ-factorization

Truncation errors of the collocation method

7 Numerical solution of some problems

8

7.1

7.2

7.3

8.1
8.2

Instationary dolphin flight of a glider

7.1.1 Statement and solution of the unconstrained problem

7.1.2 Restriction on the acceleration (mixed control state constraint)
7.1.3 Restriction on the velocity (first order state constraint)

7.1.4 Restriction on the altitude (second order state constraint)

Reentry manoever of an Apollo capsule

7.2.1 Description of the problem

7.2.2 Solution of the unconstrained reentry problem

7.2.3 Restriction on the acceleration (mixed control state constraint)
7.2.4 Restriction on the altitude (second order state constraint)

Optimal control of servo systems along a prespecified path,
with constraints on the acceleration and velocity

7.3.1 Statement of the problem

7.3.2 Numerical results of the servo problem

Evaluation and final remarks

Relation of the SQP-method in function space with some other methods

Final remarks

Contents

82
82
83
88
91
92
102

103

106
107

107
107
112

117
117

121
127
130

130
130
134
134
135

136
136
137
139
140

141
142
145

148
148
152



Contents

Appendices :

A

A numerical method for the solution of finite-dimensional quadratic
programming problems

B Transformation of state constraints
C  Results on the reduction of the working set
LQ-factorization of the matrix of constraint normals C
D1 Structure of the matrix of constraint normals C
D2 LQ-factorization of a banded system using Householder transformations
D3 LQ-factorization of the matrix C after modifications in the working set
E  Computational details
E1  Calculation of the Lagrange multipliers for the active set strategy
E2  Approximation of the Lagrange multipliers of problem (EIQP/SCOCP)
E3  Calculation of the matrices M,, M4 and M4
E4  Strategy in case of rank deficiency of the matrix of constraint normals
E5  Automatic adjustment of the penalty constant of the merit function
E6  Computation of the merit function
E7  Miscellaneous details
F  Numerical results
References

Notations and symbols

154
158
159

167
167
170
175

177
177
178
179
181
182
185
185

187
203
209



Introduction

1. Introduction.

1.1. State constrained optimal control problems.

Optimal control problems arise in practice when there is a demand to control a system
from one state to another in some optimal sense, i.e. the control must be such that some
(objective) criterion is minimized (or maximized).

In this tract we are interested in those optimal control problems which are completely
deterministic. This means that the dynamic behaviour of the system to be controlled is
determined completely by a set of differential equations and that stochastic influences on
the state of the system, which are present in practical systems, may be neglected.

It is assumed that the dynamic behaviour of the system to be controlled can be described
by a set of ordinary differential equations of the form :

@)= fle@aul)r) 0<:<T, (1.1.1)

where x is an n-vector function on [0.7] called the state variable and u is an m ~vector
function on [0,7] called the control variable. The function f is an n -valued vector func-
tion, on R" X R™x[0,T]. It is assumed that f is twice continuously differentiable with
respect 1o its arguments.

On the one hand one may note that the dynamic behaviour of a large number of systems,
which arise in practice, can be described by a set of differential equations of the form
(1.1.1). On the other hand systems with delays are excluded from this formulation.

The system is to be controlled starting from an initial state x, at £ =0, i.e.
x(0) = xq, (1.1.2)

over an interval [0,7]. The number T is used to denote the final time. We shall assume
that T is finite, which means that we are interested in so-called finite time horizon optimal
control problems.

The object criterion is specified by means of a functional which assigns a real value to each
triple (x u.T) of the following form :.

T
[ 7olx @)ue)e) de + golx (T)T), (1.1.3)
1]

About the functions fo and g, it 'is only assumed that they are twice continuously
differentiable with respect to their arguments. We note that the rather general formulation
of (1.1.3) includes the formulation of minimum time and minimum energy problems (cf.
Falb et al. (1966)).

For most optimal control problems which arise in practice, the control « and the state x
must satisfy certain conditions, in addition to the differential equations. It is assumed that
these conditions, which enter into the formulation of the optimal control problem as con-
straints, may take any of the following forms : /

* Terminal point constraints, i.e. the final state x (7 ) must satisfy a vector equality of the
form :

EG(T)T)= 0. (1.14)



Chapter 1

* Control constraints, i.e. the control ¥ must satisfy :

Seu@))< 0 forall 0<t<T. (1.1.5)

* Mixed control state constraints, i.e. the control v and the state x must satisfy :
Six@u))< 0 forall O0<t<T. (1.16)

* State constrainis, i.e. the state x must satisfy :

Sy(x(z)2)< 0 forall 0X:t<T. (1.1.7)

For the numerical method 10 be presented in this ‘book the distinction between control
and mixed control state constraints is not important. The distinction between mixed con-
trol state constraints and state constraints however, is essential. The major difficulty
involved with state constraints is that these constraints represent implicit constraints on
the control, as the state function is completely determined by the control via the
differential equations.

The optimal control problems formally stated above are obviously of a very general type
and cover a large number of problems considered by the available optimal control theory.
The first practical applications of optimal control theory were in the field of aero-space
engineering, which involved mainly problems of flight path optimization of airplanes and
space vehicles. (See e.g. Falb et al. (1966, 1969), Bryson et al. (1975).) As examples of
these types of problems one may consider the problems solved in Sections 8.1 and 8.2. We
note that the reentry manoever of an Apollo capsule was first posed as an optimal control
problem as early as 1963 by Bryson et al. (1963b). Later optimal control theory found
application in many other areas of applied science, such as econometrics (see e.g. van Loon
(1982), Geerts (1985)).

Recently, there is a growing interest in optimal control theory arising from the field of
robotics (see e.g. Bobrow et al. (1985), Bryson et al. (1985), Gomez (1985), Machielsen
(1983). Newman et al. (1986). Shin et al. (1985)). For the practical application of the
method presented in this tract this area of robotics is of special importance. Therefore we
will briefly outline an important problem from this field in the next section.

1.2. An example of state constrained optimal control problems in robotics.

In general, a (rigid ‘body) model of a robotic arm mechanism, which consists of & links
(and joints) may be described by means of a nonlinearly coupled set of k-differential
equations of the form (see e.g. Paul (1981), Machielsen (1983)) :

J(q)g + D{Ggg)=F (1.2.1)

where g is the vector of joint positions, ¢ is the vector of joint velocities and ¢ is the vec-
tor of joint accelerations. J(g ) is the X Xk inertia matrix which, in general, will be inver-
tible. The vector D (g .g) represents gravity, coriolis and centripetal forces. F is the vector
of joint torques.

It is supposed that the arm mechanism is to be controlled from one point to another point
along a path that is specified as a parameterized curve. The curve is assumed to be given by
a set of k¥ functions Y;:[0,1]= R of a single parameter s, so that the joint positions ¢; (¢ )
must satisfy :
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@)=Y, 6@ 0<:t<T 1£i<k, (1.2.2)

where 5:{0,77]-[0.1]. The value of the function s (¢ ) at a time point ¢ is interpreted as the
relative position on the path. Thus, at the initial point we have s (0)=0 and at the final
point we have s (T )=1.

Equation (1.2.2) reveals that for each fixed (sufficiently smooth) function s:0,7]-{0,1],

the motion of the robot along the path is completely determined. Differentiation of equa-

tion (1.2.2) with respect to the variable ¢ yields the joint velocities and accelerations. ¥
g&) =Y Nse) 0<:<T, {1.2.3)
G@)=YGENSE) + Y (s ))s(e)? 0<r<T. (1.2.4)

The joint torques required to control the robot along the path for a certain function
s:{0.71-[0.1], follow from the combination of the equations of motion of the robot
(1.2.1) and equations (1.2.2) - (1.2.4), which relate the path motion to the joint positions,
velocities and accelerations.

F@)=TGEEMGEEN;E)+ Y (s N P)
+ DY (s (s @)Y(s )y 0Sr<T. {125)

For most robotic systems, the motion of the robot is restricted by constraints on the joint
velocities and torques. These constraints are of the following type :

PAIE N7 0<t<T i=1,.k, (12.6)
IF;(8)) € Fr 0St<T i=1..k (1.2.7)

The optimal control problem can be formulated completely in terms of the function s, i.e.
in terms of the relative motion along the path. The joint positions, velocities, accelerations
and torques can be eliminated using relations (1.2.2) - (1.2.5). The constraints (1.2.6) -
(1.2.7) become :

IV GENs@E) € Vg s 0St<T 1<i<k, (1.2.8)
(TG EMNY G ENSE) + Y (s Ns @)D
+ DY ENsE)YGCEINISF  0St<T. (1.2.9)

The optimal control problem comes down to the selection of a function s, which minim-
izes some object criterion, is twice differentiable and satisfies the constraints (1.2.8) -
(1.2.9), s (0)=0 and s (T )= 1.

The choice of a suitable object criterion depends on the specific robot application. For
instance, this criterion may be the final time 7 which yields minimum time control. This
criterion, however, may have the disadvantage in many practical applications that the
solution of the optimal control problem is ‘not smooth enough’, because the second deriva-
tive of the function s is likely to be of the bang-bang type. Relation (1.2.5) reveals that
discontinuities of 5 yield discontinuous joint torques which is an undesirable phenomenon
in many applications from the mechanics point of view (see e.g. Koster (1973)).

+ For equations (1.2.3) - (1.2.5) a vector notation is used.
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An alternative to minimum time control is to select a smooth function s that satisfies the
constraints, via the minimization of

T
1 Of §()ae, (1.2.10)

for a fixed final time 7. It can be shown, that with this objective function the solution of
the optimal control problem has a continuous second derivative (provided T is larger than
the minimum time) and hence, the joint torques will also be continuous. A drawback of
this approach may be that the final time must be specified in advance, which, in general is
not known a priori.

A second alternative, which combines more or less the advantages of both objective func-
tions, is to use :

T
1 o 2
T+ Ecofs(t) dt, (1.2.11)

as an objective function and to ‘control’ the properties of the solution of the optimal con-
trol problem via a suitable (a priori) choice of the parameter c.

A more formal statement of the problem outlined above shows that the optimal control
problem is indeed of the type discussed in the previous section and that the solution of
this problem is complicated in particular by the presence of the (state) constraints (1.2.8)
-(1.2.9).

1.3. Optimality conditions for state constrained optimal control problems.

In this section we shall introduce optimality conditions for state constrained optimal con-
trol problems in a formal manner. This is done in view of the central role that optimality
conditions play in any solution method for these problems.

It can be shown that the optimal control problems introduced in Section 1.1 are special
cases of the following abstract optimization problem :

minien%ize }(x ) (1.3.1)
subjectto : g(x) € B, {1.3.2)
h(x)= 0, (13.3)

where f :X =R ;:g:X =Y ;k:X—Z are mappings from one Banach space (X) to another
(RY.Z) and BCY is a cone with nonempty interior. The functional f denotes the
objective criterion which is to be minimized over the set of feasible points, i.e. the set of
points which satisfy the inequality constraints g(x)eB and the equality constraints
h(x)=0.

The problem (1.3.1) - (1.3.3) is a generalization of the well known finite-dimensional
mathematical programming problem (ie. X=R" ,Y=R™, Z=R"):
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minimize f(x), (1.3.4)

x€R"
subjectto : g(x) € 0, (1.3.5)
R(x) =0, (1.3.6)

It is possible to derive optimality conditions for the abstract optimization problem (1.3.1)
- (1.3.3), i.e. conditions which must hold for solutions of the problem. Because both the
state constrained optimal control problems discussed in Section 1.1 and the finite-
dimensional mathematical programming problem are special cases of the abstract problem,
optimality conditions for these problems follow directly from the optimality conditions
for the abstract problem. As an introduction however, we shall review the optimality
conditions for the finite-dimensional mathematical programming problem (1.3.4) - (1.3.6)
directly (e.g. cf. Gill et al. (1981); Mangasarian (1969)).

First we recall that, for any minimum of the functional f , denoted X, which is not sub-
ject to any constraints, it must hold that :

vViE)=o0, (137)

i.e. the gradient of f at X must vanish.

For the case that only equality constraints are present the optimality conditions state that
when X is a solution to the problem, and i satisfies some constraint qualification, then
there exists a (Lagrange multiplier) vector Z, such that the Lagrangian

L(x:2) = f(x)=3Th(x), (1.3.8)
has a stationary point at X , i.e.
V.LGE)= ViR) - FVRE) = 0. (13.9)
Rewriting condition (1.3.9) we obtain :
ViGE) = ¥ 3 Vh @) (1.3.10)
i=1

which shows that at the point X, the gradient of the objective functional must be a linear
combination of the gradients of the constraints. The numbers Z; are called Lagrange mul-
tipliers and have the interpretation of marginal costs of constraint perturbations.

When there are, besides equality constraints, also inequality constraints present, the
optimality conditions state that when X is a solution to the problem, and % satisfies some
constraint qualification, then there exist vectors y and Z, such that the Lagrangian

L(x§2) = FGx)=573&x) = iTh(x). (13.11)
has a stationary point at x and that in addition

3,8 (E)=0 j=1l..m;, (13.12)

3, <90 j=1..m, (1.3.13)

Condition (1.3.12) is called the complementary slack condition. This states that all inac-
tive inequality constraints, i.e. constraints for which g; (x )<0, may be neglected. because
the corresponding Lagrange multiplier must be zero.
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Condition (1.3.13) is directly due to the special nature of the inequality constraints. To see
this, a distinction must be made between negative (feasible) and positive (infeasible) per-
turbations of the constraints. The sign of the multiplier must be nonpositive in order that
a feasible perturbation of the constraint does not yield a decrease in cost. Otherwise, the
value of the objective function could be reduced by releasing the constraint.

Having introduced optimality conditions for the finite-dimensional mathematical program-
ming problem, we shall now introduce optimality conditions for state constrained optimal
control problems in a similar way. The Lagrangian of the state constrained optimal control
problem is defined as :

T . I
Lxudmuép) = [folxue)dt +gox@)T)— [N G—flxur))dt
0 0

T T
+ [nIsixut)d + [d&@) Sy(x )+ uTEG(T)T). (13.14)
0 o

The optimality conditions state that when (X.Z) is a solution to the state constrained
optimal control problem, and (x &) satisfy some constraint qualification, then there exist
multipliers X, M. § and £ such that the Lagrangian has a stationary point at (x % ). Using
calculus of variations (e.g. cf. Bryson et al. (1963a) or Hestenes (1966)) this yields the
following relations on intervals where the time derivative of E exists o

A= - BtV — St Fa,G)— S, ]TE(t) 0<:<T, (1.3.15)
H 1+ 7Y S,t]l=0 o<t<rT, (1.3.16)
M) = go [T+ wTE T (1.3.17)

where the Hamiltonian is defined as :
Hxu X t) = folxut) + AN flxuz). (1.3.18)

At points z; where the multiplier function E has a discontinuity the so-called jump-
condition must hold

AG+) = A=) — So 0t 1d &), (1.3.19)

which states that at these points the adjoint variable X is also discontinuous.

The complementary slackness condition yields :
Au@)Syltl=0 0S:<T  i=1..k,, (1.3.20)
£.(t) is constant on intervals where Syultl< 0 0€t<T i=1,.k, (1321)
and the sign condition on the multipliers becomes :
Au)Z 0 0<t<T  i=1..k,. (1.3.22)
é,- (¢) is nondecreasing on [0.T]. (1.3.23)

A more detailed analysis reveals that normally the multiplier function £ is continuously
differentiable on the interior of a boundary arc of the corresponding state constraint, i.e. an

1 Straight brackets [t ]are used to replace argument lists involving x(t ), u (), A(e).

10
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interval where the state constraint is satisfied as an equality. The function £ is in most
cases discontinuous at junction and contact points, i.e. at points where a boundary arc of
the constraint is entered or exited and at points where the constraint boundary is touched.

The combination of relations (1.3.15) - (1.3.19) with the constraints of the problem allow
the derivation of a multipoint boundary value problem in the variables x and A, with
boundary conditions at t=0, t =7 and at the time points ¢; where the jump conditions
must hold. To obtain this boundary value problem the control # and the multipliers 1,
and £ must be eliminated. This is usually only possible when the structure of the solution
is known, i.e. the sequence in which the various constraints are active and inactive.

Because of the important role that optimality conditions play in any solution procedure of
optimal control problems, optimality conditions have experienced quite some interest in
the past. We refer to Bryson et al. (1963a, 1975), Falb et al. (1966), Hamilton (1972),
Hestenes (1966). Jacobson et al. (1971), Kéhler (1980), Kreindler (1982), Maurer (1976,
1977, 1981), Norris (1973), Pontryagin et al. (1962), Russak (1970a, 1970b).

1.4. Available methods for the numerical solution.

Among the methods, available for the numerical solution of optimal control problems, a
distinction can be made between direct and indirect methods. With direct methods the op-
timal control problem is treated directly as a minimization problem, i.e. the method is
started with an initial approximation of the solution, which is improved iteratively by
minimizing the objective functional (augmentied with a "penalty’ term) along a direction of
search. The direction of search is obtained via a linearization of the problem. With indirect
methods the optimality conditions, which must hold for a solution of the optimal control
problem, are used to derive a multipoint boundary value problem. Solutions of the op-
timal control problem will also be solutions of this multipoint boundary value problem
and hence the numerical solution of the multipoint boundary value problem yields a can-
didate for the solution of the optimal control problem. These methods are called indirect
because the optimality conditions are solved as a set of equations, as a replacement for the
minimization of the original problem.

Most direct methods are of the gradient type, i.e. they are function space analogies of the
well known gradient method for finite-dimensional nonlinear programming problems (cf.
Bryson et al. (1975)). The development of these function space analogies is based on the
relationship between optimal control problems and nonlinear programming problems. This
relationship is revealed by the fact that they are both special cases of the same abstract
optimization problem. With most gradient methods the control u(¢) is considered as the
variable of the minimization problem and the state x (¢) is treated as a quantity dependent
on the control #(z) via the differential equations. A well known variant on the ordinary
gradient methods is the gradient-restoration method of Miele (cf. Miele (1975, 1980). This
is essentially a projected gradient method in function space (cf. Gill et al. (1981)). With
this method both the control u (¢ ) and the state x (¢ ) are taken as variables of the minimi-
zation problem and the differential equations enter the formulation as (infinite-
dimensional) equality constraints. Similar to the finite-dimensional case where gradient
methods can be extended to quasi-Newton or Newton-like methods, gradient methods for
optimal control problems can be modified to quasi-Newton or Newton-like methods. (cf.
Bryson et al. (1975), Edge et al. (1976), Miele et al. (1982)).

11
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With all gradient type methods, state constraints can be treated via a penalty function
approach, i.e. a term which is a measure for the violation of the state constraints is added
to the objective function. Numerical results however, indicate that this penalty function
approach yields a very inefficient and inaccurate method for the solution of state con-
strained optimal control problems (cf. Well (1983)).

Another way to treat state constraints is via a slack-variable transformation technique,
using quadratic slack-variables. This technique transforms the inequality state constrained
problem into a problem with mixed control state constraints of the equality type. A
drawback of this approach is that the slack-variable transformation becomes singular at
points where the constraint is active (cf. Jacobson et al. (1969)). As a result of this, it may
be possible that state constraints, which are treated active in an early stage of the solution
process, cannot change from active to inactive. Therefore it is not certain whether the
method converges to the right set of active points. In addition, the numerical results of
Bals (1983) show that this approach may fail to converge at all for some problems.

Another type of direct method follows from the conversion of the (infinite-dimensional)
optimal control problem into a (finite-dimensional) nonlinear programming problem. This
is done by approximating the time functions using a finite-dimensional base (cf. Kraft
(1980, 1984)). The resulting nonlinear programming problem may be solved using any
general purpose method for this type of problem. We note that when a sequential qua-
dratic programming method (cf. Gill et al. (1981)) is used. then this direct method has a
relatively strong correspondence with the method discussed in this tract . In view of its
significance for the work presented in this tract , this method is described in more detail in
Section 8.1.

A well known indirect method is the method based on the numerical solution of the mul-
tipoint boundary value problem using multiple shooting (cf. Bulirsch (1983), Bock (1983),
Maurer et al. (1974, 1975, 1976), Oberle (1977, 1983), Well (1983)). For optimal control
problems with state constraints, the right hand side of the differential equations of the
multipoint boundary value problem will, in general, be discontinuous at junction and con-
tact points.t These discontinuities require special precautions in the boundary value prob-
lem solver. The junction and contact points can be characterized by means of so-called
switching functions, which are used to locate these points numerically.

Another indirect method., which can only be used for the solution of optimal control prob-
lems without state constraints, is based on the numerical solution of the boundary value
problem using a collocation method (cf. Dickmans et al. (1975)). The reason that the
method cannot be used without modification for the solution of state constrained optimal
control problems is that these problems require the solution of a multipoint boundary
value problem whereas the specific collocation method discussed by Dickmans et al. is
especially suited for the numerical solution of two point boundary value problems.
Numerical results indicate that the method is relatively efficient and accurate.

In general, the properties of the direct and indirect methods are somewhat complementary.
Direct methods tend to have a relatively large region of convergence and tend to be rela-
tively inaccurate, whereas indirect methods generally have a relatively small region of

+ Junction points are points where a constraint changes from active to inactive or vice versa. At contact
points the solution touches the constraint boundary.
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convergence and tend to be relatively accurate. For state constrained optimal control prob-
lems the indirect methods make use of the structure of the solution, i.e. the sequence in
which the state constraints are active and inactive on the interval [0.T ], for the derivation
of the boundary value problem. Direct methods do not require this structure. Because
state constraints are treated via a penalty function approach, most direct methods are rela-
tively inefficient. In practice, they are used only for the determination of the structure of
the solution. An accurate solution of the state constrained optimal control problem can in
most practical cases only be determined via an indirect method, which is started with an
approximation to the solution obtained via a direct method.

1.5. Scope

In Chapter 2, optimization problems are introduced and considered in an abstract setting.
The major advantage of this abstract treatment is that one is able to consider optimality
conditions without going into the details of problem specifications.

The state constrained optimal control problems are stated in Chapter 3. Because these
problems can be identified as special cases of the abstract problems considered in Chapter
2, the theory stated in Chapter 2 can be applied to the optimal control problems. This
yields the well known minimum principle for state constrained optimal control problems.

In Chapter 4, the method which is proposed for the numerical solution of state constrained
optimal control problems is presented first in the abstract terminology of Chapter 2.
Essentially, this method is analogous to a sequential quadratic programming method for
the numerical solution of a finite-dimensional nonlinear problem. Hence, it is an iterative
descent method where the direction of search is determined as the solution of a subprob-
lem with quadratic objective function and linear constraints.

Chapter 5 deals with the solution of the subproblems whose numerical solution is required
for the calculation of the direction of search. In addition the active set strategy, which is
used to locate the set of active points of the state constraints, is described.

The numerical implementation of the method, which essentially comes down to the
numerical solution of a linear multipoint boundary value problem, is discussed in Chapter
6.

The numerical results of the computer program for some practical problems are given in
Chapter 7. Two of these problems are well known in literature and therefore allow a
comparison with the results obtained by others.

In the final chapter the relation between the method discussed in this tract and some
other methods is established. The chapter is closed with some final comments.

The method used for the solution of one of the subproblems is based on a method for the
solution of finite-dimensional quadratic programming problems, which is reviewed in
Appendix A. Appendix B deals with a transformation of state constraints to a form which
allows a relatively simple solution procedure for the subproblems. Technical results
relevant for the active set strategy are summarized in Appendix C. A number of computa-
tional details are given in Appendices D and E. Numerical resuits related to the results
contained in Chapter 7 are listed in Appendix F.
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Chapter 2

2. Nonlinear programming in Banach spaces.

In this chapter, a number of results from the theory of functional analysis concerned with
optimization will be reviewed.

In Section 2.1 some optimization problems will be introduced in an abstract formulation
and in Sections 2.2 and 2.3 some results on optimality conditions and constraint
qualifications in Banach spaces will be reviewed.

2.1. Optimization problems in Banach spaces.

In this chapter, we shall consider optimization problems from an abstract point of view.
The major advantage of such an abstract treatment is that one is able to consider the prob-
lems without first going into the details of problem specifications. The first optimization
problem to be considered is defined as :

Problem (Pg) : Given a Banach space U, an objective functional J :U—-R and a con-
straint set So C U, find an @ € S, such that

J@) S J(u) forall ueS,. (2.1.1)

A solution u of problem P, is said to be a global minimum of J subject to the constraint
© €Sy In practice it is often difficult to prove that a solution is a global solution to the
problem. Instead one therefore considers conditions for a weaker type of solution. This
weaker type of solution is defined as :

Definition 2.1: In the terminology of problem (P,) a vector u € U is said to be a local
minimum of I, subject to the constraint u € S, if there is an € > 0 such that,

J@) < J(w) forall ueS,NS(z.e). (2.1.2)
with :

Swe)={ueU:lu-ul<el (2.1.3)

We shall consider two special cases of problem (2).

Problem (P,) : Given two Banach spaces U and L, two twice continuously Frechet
differentiable mappings J :U =R and S : U= L, a convex set M C U with nonempty inte-
rior and a closed convex cone K C L with 0 € K, then find an @ € M, such that S(@)e X
and that

JW@YK J() foral ueM NS~ YK). (2.1.4)

Comparing problems (P,) and (P;). we notice that in problem (P,) :

* So=MNS™HK), with STHK) = {uelU:S(u)eK). The assumptions on K,M and S
are made in order to obtain a suitable linearization of the constraint set S.

* ] is supposed to be twice Frechet differentiable.

A further specialization of problem (P,) is obtained when a distinction is made between
equality and inequality constraints.

14
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Problem (EIP) : Given Banach spaces X, Y and Z, twice continuously Frechet differentiable
mappings f :X—R, g :X—Y and R:X—Z , a convex set A C X having a nonempty
interior, and a closed convex cone B C Y with 0 € B and having nonempty interior, then
findan % € A, suchthat (%) € B and k(%) = 0 and that

FE)S F(x) forall xeANZ Y (BINNR). (2.1.5)

In problem (EIP), the equality constraints are represented by (x )=0, whereas the ine-
quality constraints are incorporated in x€A and g(x)eB (note that A and B have
nonempty interiors).

Throughout this chapter we shall use various basic notions from the theory of functional
analysis without giving explicit definitions. For these we generally refer to Luenberger
(1969). Because of their central role in the ensuing discussion we explicitly recall the fol-
lowing definitions.

Definition 2.2 : Let X be a normed linear vector space, then the space of all bounded linear
functionals on X is called the (topological) dual of X, denoted X" .

Definition 2.3 : Given the set K in a normed linear vector space X, then the dual { or
con jugate) cone of K is defined as

*

K = {x'eX":<x’,x> 2 0 fordl xeK}, (2.1.6)
where the notation <x',x > is employed to represent the result of the linear functional
x e X" actingon x € X.

In a number of occasions we shall also use the notation x” x instead of <x*, x >.

With regard to Definition 2.3 we note that the set X is a cone, as an immediate conse-
quence of the linearity of the elements of X .

Definition 2.4 : Let S be a bounded linear operator from the normed linear vector space X
into the normed linear vector space Y. The ad joint operator S*: Y™ — X' is defined by the
equation :

<x,8'y'>= <Sx.,y" >. (2.1.7)
The notions of dual cone and adjoint operator play an important role in giving a character-
ization of the solutions of the optimization problems (P;) and (EIP). Other concepts which

play an important role in the following discussion are conical approximations of the set of
feasible points.

Definition 2.5 : Let U be a Banach space, M C U and @@ € M. The open cone
AMa):={ue U:Feer>0,Ye0<eSey, WelillviiSr utelu+v)eM}, (2.1.8)

is called the cone of admissible directions to M at u« .

This cone is referred to differently in literature : cone of feasible directions (Girsanov
(1972)); cone of interior directions (Bazaraa et al. (1976)).
In the case that M has no interior, the cone A (M &) is empty for every weU.
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Definition 2.6 ¢ Let U be a Banach space, M C U and & ¢ M, then the set
TMiz) = {uelU:Xe,) 0.eneR“.en—'O,Ei(u,z) 0,u,,eM.u,,—nT,
n= n=

v = lim (u,—w)/€,}, (2.1.9)

n=co

ie. the set of elements u € U for which there are sequences (u,) . and (€,) o with

n= n=

u,—u,€, >0 and €, — 0, such that
v= lim (u, —)/e,,
n oo

is called the sequential tangent cone of M at .

In literature, the sequential tangent cone as defined in Definition 2.6, is also referred to as
tangent cone (e.g. Bazaraa et al. (1976); Norris (1971)) or as local closed cone (Varaiya
(1976)).

We note that the cone of admissible directions is always contained in the sequential
tangent cone, i.e. A(M u) € T(M ).

Definition 2.7 : Let U be a Banach space, M C U and @ € M. The set
CM@) == {AMm—u):AZ20,meM}, (2.1.10)
is called the conical hull of M - {ir }.

This definition is analogous to the definition of the convex hull of a set A , i.e. the smallest
convex set which contains the set A. In this context the conical hull of a set A is the
smallest cone in which the set A is contained.

In the case that K is a cone with vertex at O, the conical hull of X —{&z} becomes :

CK i) = {m=\i :A\20,mekK}. (2.1.11)

If M is a convex set with nonempty interior, the closure of the cone of admissible direc-
tions of M at # coincides with the conical hull of M —{iz}, i.e. A (M @)=C (M @) (cf. Gir-
sanov (1972)).

Definition 2.8 ¢ Let U and L be Banach spaces, S a continuously Frechet differentiable
operator U — L and K a closed convex conein L with 0 € K. At a point it € U, the set T

LS. Ki) = {uelU:S@u e CK.S@), (2.1.12)
is called the linearizing cone of S~ NK) at @,

In Definition 2.8 the notation $™}(K) was used to denote the set
SME) == {ueU:Su)e K}. (2.1.13)

In view of the optimality conditions to be stated, the following regularity conditions are
defined.

+S' is used to denote the Fréchet derivative of S.
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Definition 2.9: Let U and L be Banach spaces, S a continuously Frechet differentiable
operator U — L and K a closed convex cone in L with 0 € K. The conditions

L(S.K2) =TS M K)a), (2.1.14)
LS.KLY =S@YCc&.s@)). (2.1.15)
the set R(S'(2)) + C(X.S(&)) is not dense in L, (2.1.16)

are respectively called
the Abadie condition,
the Farkas condition
the Nonsingularity condition,

atu.

We note that condition (2.1.14) is an abstract version of the Abadie constraint
qualification in Kuhn-Tucker theory, which deals with optimality conditions for nonlinear
programming problems in finite~-dimensional spaces (cf. Bazaraa et al.(1976)). An in-
terpretation of the various conditions is given in the next section in the outline of the
proof of Theorem 2.10.

2.2. First order optimality conditions in Banach spaces.

In this section we shall present optimality conditions for solutions of problems (P;) and
(EIP). The results presented are mainly taken from the review article of Kurcyusz (1976).

The conditions involve only the first Frechet derivatives of the mappings which are used
to define the objective function and the constraints of the problem. This is the reason that
they are called first order optimality conditions.

The Definitions 2.5 - 2.9 are used for the formulation of the following Lagrange multiplier
theorem, which plays a central role in the following discussion.

Theorem 2.10 : (Kurcyusz (1976), Theorem 3.1) Let @i be a local solution to problem (P).
(i) If either condition (2.1.16) or both (2.1.14) and (2.1.15) hold, then there exists a pair
(p.l')e R x L, such that,

(6.77) = (0,0), (2.2.1)

pz o ek, <i'.s@)> =0, (2.2.2)
PI@) —S@Y e AMAY. (2.2.3)

A pair (f),lA*) satisfying (2.2.1) - (2.2.3) is called a pair of nontrivial Lagrange
rultipliers for problem (P ).
(ii) If conditions (2.1.14) and (2.1.15) are satisfied and

AMu)N L(S.Ku) =@, (2.2.4)

then there exists a vector I € L* such that (2.2.2) and (2.2.3) hold with p=1. A vector
r satisfying (2.2.2) and (2.2.3) with p=1 is called a normal Lagrange multiplier for
problem (P).

Conditions (2.2.1) and (2.2.2) are respectively called the nontriviality and the complemen~
tary slackness condition.
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Because of the basic nature of this theorem, we shall discuss in a formal way the main
lines of the proof.

In the derivation of optimality conditions for the solutions of nonlinear programming
problems we are faced with the basic problem of translating the characterization of the op~
timality of the solution of the problem into an operational set of rules. The way in which
this translation is carried out is by making use of conical approximations to the set of
feasible points and the set of directions in which the objective function decreases.

A vector u is called a direction of decrease of the functional J at the point &, if there exists
a neighborhood S(« .€, ) of the vector # and a number o= a(J 2 ,2), & > 0, such that

J(@+eu) € J(@) — ea forall e:0<e<eqn forall ueS( €). (2.2.5)

The set of all directions of decrease at i, is an open cone D (J ) with vertex at zero (cf.
Girsanov (1972)). ¥

Using the definition of the cone of admissible directions to M at # and of the sequential
tangent cone of S™(X ) at @, the local optimality property of the solution # implies the
following condition (cf. Girsanov (1972)) :

DUZINAML)N TS HK)L) =@, (2.2.6)

which states that at a (local) solution point # there cannot be a direction of decrease, that
is also an admissible direction to the set M at # and which is also a tangent direction of
the set S~ 1K) at .

The Abadie condition (2.1.14) is now used to replace (2.2.6) by a more tractable expres-
sion :

DUa)yn AMa)n L(S.Ku)=@. (2.2.7)
This completes the conical approximation of the optimization problem, where the sets

D(J i) and A(M i) are open convex cones, and L(S.K i) is a (not necessarily open)
convex cone.

Condition (2.2.7) is not yet an operational rule. Thereto a further translation is necessary.
In particular, the Dubovitskii-Milyutin lemma may be invoked, which is essentially a
separating hyperplane theorem. It states that (Girsanov (1972), Lemma 5.11) :

if and only if there exist linear functionals u; € K., not all zero, such that

uy s Uyt 41 = O. (2.2.8)

Condition (2.2.3) is a translation of (2.2.8). In this translation, the Farkas condition

(2.1.15) is used to establish a characterization of L (S.X ,z)", which implies the properties
(222) of I".

1 We note that strictly speaking, the cone D (J , ) is only an open cone when the empty set is defined
to be an open cone.
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We now consider the implication that if (2.1.16) holds then the optimality of # implies
the existence of nontrivial Lagrange multipliers. The Nonsingularity condition (2.1.16)
deals with the convex cone R(S' (& ))+C (X ,S(%)). Because this set is not dense in L, the
origin of L is not an interior point of the set and hence (cf. Luenberger (1969), p.133,
Theorem 2) there is a closed hyperplane H containing O, such that the cone
R(S' (£ ))+C (K .S(&)) lies on one side of H. The element " € L* which defines such an
hyperplane, satisfies (2.2.1) - (2.2.3) with p=0.

The second part of Theorem 2.10 is proved by reversing the proof of the implication that
(2.1.14) and (2.1.15) together imply the existence of nontrivial multipliers with $=0. It
can be shown that under the hypotheses of Theorem 2.10, assuming p= 0 yields always
"=0, and thus the pair (p.0") is not a pair of nontrivial Lagrange multipliers. Hence of
any pair of nontrivial Lagrange multipliers the number p cannot be zero.

It is of interest to investigate the role of the constant p. which is called the regularity
constant. First, consider the case p=0 (pathological case). In this case the nontriviality
condition (2.2.1) implies I* # 0, which leaves us with a set of equations (2.2.2) - (2.2.3)
involving only the constraints, and not the object functional of the specific problem. If
p>0, we may set p= 1, because of the homogenity of (2.2.2) - (2.2.3). Clearly in this case
equations (2.2.2) and (2.2.3) involve the object functional of the problem. Much research
has been devoted to conditions which imply p>0. These conditions, which generally in-
volve only the constraints of the problem, are usually called constraint gualifications.

In view of its structure, the set of equations (2.2.1) - (2.2.3) is called a pudtiplier rule. A
constraint qualification restricts the multiplier rule as additional conditions are imposed on
the problem. These conditions may exclude solutions to problems which admit a nonzero
multiplier p. There are also situations in which a constraint qualification may be difficult
to validate, whereas the nontriviality condition may be used to establish the case p >0.
Following this reasoning we are led to the definition of two types of multiplier rules,
intrinsic multiplier rules (p2 0) and restricted multiplier rules (5 >0) (cf. Pourciau (1980),
(1983)). In our terminology, part (i) of Theorem 2.10 is an intrinsic multiplier rule,
which becomes a restricted one if the conditions stated in part (ii) are added.

Necessary conditions for optimality for solutions to problem (EIP) may be derived from
the optimality conditions for problem (2,). presented in Theorem 2.10. To obtain these
conditions for problem (EIP) we first make an intermediate step and consider the con-
straint operator of problem (P,) § :U — L, split upas S = (§,.52): L = L;XL,, such
that $;:U — L,; S,:U = L,

The operator S, is taken to represent the equality constraints, i.e.
S 1(12) € {0}

The operator S, represents inequality constraints, i.e.
S,(&) € Ky,

where K, is a closed convex cone having nonempty interior. Taking X := {0}XK, in
Theorem 2.10 leads directly to the following result :
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Lemma 2.11: Zet © be a local solution to problem (P,), and L = LXL,, S = (§..55),

(i) If int K,#@ and R(S,'(@)) is not a proper dense subspace of L1, then there exist
nontrivial Lagrange multipliers for problem (Py) at 4 .

() If
R(S; (@) = L,, (2.2.9)
{S')@ ) : '@ =0} N int C(K2.8,(d)) = @, (2.2.10)
and '
AME) N LS.KL)#= @, ' (2.2.11)

then, a normal Lagrange multiplier exist for problem (Py)at iz .
For a proof see Kurcyusz (1976), Theorem 4.4 and Corollary 4.2.

Using this result we are led to the following multiplier rule for problem (EIP), which has
the form of an abstract minimum principle (cf. Neustadt (1969)).

Theorem 2.12: Let x be a solution to problem (EIP).

W If
R (£)) = closed, (2.2.12)
then, there exist a real number p,an 5 €Y', 2" €2, such that :
$.5°.27) = (0.0.0), (2.2.13)
p=o, (2.2.14)
<y3".g(&)> =0, (2.2.15)
<3°,y> 2 0 fordl yeB, (2.2.16)
Bf(£)— 5 2'G) = 2R (E)x=%) 2 0 forall x€A. (2.2.17)

(ii) The multiplier p is not zero, when

RGN =Z. (2.2.18)
and, in addition, there is some x € int A, such that

R'(E)x—%)= 0, (2.2.19)
and

g§(x)+ g'(xNx—%) ¢ int B. (2.2.20)

Proof : Let U=X.M=A,L,=Z,L,=Y,K,=B.S;=h,S5,=3.

Consider first part (i). By definition of problem (EIP), the cone K, has nonempty interior.
By Lemma 2.11, there exist nontrivial Lagrange multipliers, when R(S;'(&)) is not a prop-
er dense subspace of L;. We shall show that this is the case, whenever this set is closed.
Thereto we consider two cases : R(S'(Z))=L, and R(S; @ )# L,. In the first case the
condition is satisfied, because the subspace is not proper. In the second case the condition is
satisfied because the subspace cannot be dense in L, i.e.
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R(S{(2)) = R(S; @) = L,

This proves the existence of Lagrange multipliers, or equivalently the conditions (2.2.1) -
(2.2.3) of Theorem 2.10. In order to translate these into the conditions (2.2.13) - (2.2.17)
we identify I =(Z",7"). Now consider the relations (2.2.2)

"¢ k" and <I,S@)>=0.
In the present situation the dual cone of K is :

K ={(",2")e(¥"xZ"):<2",0> 2 0, <y".y> 2 0 forall yeB},
which reduces trivially to :

K ={(3".2)e(Y'XZ): <y",y> 2 0 forall yeB}.

The relation (2.2.2) thus translates directly into (2.2.15) and (2.2.16). To derive (2.2.17)
recall condition (2.2.3) :

Prr@)—s @y e AMA).
The set A(M i) is equal with AM 2) . if M has nonempty interior (cf. Girsanov
(1972), Lemma 5.3). Now (2.2.3) becomes :
<PI@)—S@EYT w>2 0 foral uecAMD),
which, by definition of the adjoint operator, is equivalent to :
<pI @)= @)au>2 0 forall ucA(Ma).
Identification of the various terms in the terminology of problem (EIP) yields :
Bf(£)—F'8"E)— 2 h'(E)E 2 0 forall TeA(A.Z). (2.2.21)

Here A (A x)) is the cone of admissible directions of a convex set with nonempty interior
and hence (cf. Girsanov (1972)) :

AAX)= AMx—x):x€int A XZ0}.
The closure of this set contains the set :
AMx—x):xeA X220}

Taking elements x =x —x in (2.2.21) yields (2.2.17).

Now consider part (ii). Condition (2.2.18) is a direct translation of condition (2.2.9) of
Lemma 2.11. Restating (2.2.10) in terms of problem (EIP), we obtain :

ZENNGREN) N int C(B, (X)) = @,

which is equivalent to (cf. Kurcyusz (1976), eq.(33); Zowe (1978), Theorem 3.2; Zowe
(1980)) :

TeeX :h'(E)x = 0N g(E)4g(£)x € int B. (2.2.22)
Now consider (2.2.11) :
AMZIN L(S.K.G) = @,

which becomes in terms of problem (EIP) :
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FeA(A£): A (E)x = 0N g(E)+3'(E)x € B. (2.2.23)

Clearly, (2.2.19) - (2.2.20) are a sufficient condition under which both (2.2.22) and
(2.2.23) hold. It should be noted that instead of part (ii) of Theorem 2.12 a somewhat
stronger theorem could be stated. This would however yield also a more complicated state-
ment.

O

2.3. Second order optimality conditions in Banach space.

In the previous section we considered optimality conditions of first order, i.e. only the first
Frechet derivatives of the mappings involved in the definition of the optimization problem
considered, were taken into account. In this section we shall consider optimality condi-
tions of second order, i.e. the second Frechet derivatives of the mappings will also be used
for the derivation of optimality conditions.

The notion of second Frechet derivatives is somewhat more complicated than that of first
Frechet derivatives. Consider for instance the mapping J : U — R of problem (P,). Its first
Frechet derivative atu €U is denoted J' (1) and its Frechet differential, denoted 87, is

8T (u; 8u)=J (u)du = <J' (u)bu> forall Suel. (2.3.1)

Equation (2.3.1) reveals that J' (u) can be interpreted as an element of the dual space U".
Using this interpretation we obtain :

v - U, (2.3.2)

It is this interpretation that is used to define the second Frechet derivative of J, i.e. the
second Frechet derivative of J is the first Frechet derivative of the mapping J' ().

The second Frechet differential of J at u, denoted 8§27, becomes :
827 (u; Suq, Suy) = J" (u )(8u ) (Suy)
= <J"(u)uy, Suy> for all Suyduyel. (2.3.3)
The form (2.3.3) leads to two different interpretations of J" (u), i.e.
') ):U - U, (2.34)
and
J@)):UxU - R (2.3.5)

The interpretation of (2.3.4) is the interpretation of J"' (¢) as a linear mapping from the
space U into its dual. whereas the interpretation (2.3.5) is a bilinear mapping from the
productspace U XU to the space R. Using (2.3.4) concepts like invertibility of J* (x) can
be defined, whereas (2.3.5) may be used to define concepts like positive definiteness.

Thusfar we have considered a real valued mapping J, i.e. J : U — R. The interpretation
of the second Frechet derivative of S : U — L is even more complicated. For our purposes,
however, it suffices to consider only Frechet derivatives of mappings of the form

U'sw)= <*,5w)>, (2.3.6)

where I is a bounded linear functional on the space L, so that
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'S():U - R, (23.7)

is a real valued mapping.

We now return to the subject of optimality conditions for problem (P ).

The purpose of considering second order optimality conditions, is to augment the set of
first order conditions in some way. This leads quite naturally to the investigation of direc-
tions which satisfy the first order optimality conditions.

To simplify such an investigation, we use a somewhat more tractable form than (2.2.1) -
(2.2.3) for the optimality conditions by assuming :

p>0, , (2.3.8)
M=Uie AMMLY = {0} (2.3.9)

The reason for (2.3.8) is obvious, p= 0 corresponds to pathological types of problems, in-
volving only the constraints of the problem. The reason for (2.3.9) is that this leads to a
suprisingly simple form of the set of directions which satisfy (2.2.1) - (2.2.3). For the
closed convex cone K C L and the bounded linear functional [ on L, the set

K(KLI') = Knf{leL : <"1l> = 0}. , (2.3.10)

is defined. We note that when K is a closed convex cone, then K (X .I') is also a closed
convex cone.

Lemma 2.13: In the terminology of problem (P;) with M=U, when " is a normal
Lagrange multiplier for problem (P,) at @ (cf. Theorem 2.10, part(ii)), then the linearizing
cone of STHK(K I W ar i, ie.

L(S.K(K.QDaG), (2.3.11)

contains all directions Su such that

J(@)su = 0, (2.3.12)
SW)+ S@)u € K, (2.3.13)
<i*,S)+ §@)du> = 0. (2.3.14)

Proof : Using Definition 2.8 the inclusion 8u € L(S,K (X .[*)) is equivalent to
S'(@)8u € C(K(K.I)SEN. (2.3.15)

Because K is a cone with vertex at zero, K (K i) is also a cone with vertex at zero. Using
(2.1.11), (2.3.15) becomes :

MeR* :AS@) + 5 @)u € K(K.I). (2.3.16)
Because ' is a normal Lagrange multiplier, the following relations hold :

s@ek  <i',S@)> =0, (2.3.17)

@) -I's@) =o. (2.3.18)

Combination of (2.3.16), (2.3.17) and the fact that X is a cone gives :
S'@)u € K and <i',§(@Wu> =0, (2.3.19)
which proves (2.3.13) and (2.3.14).

23



Chapter 2

(2.3.18) is equivalent to :
T @) = 1" 5 (@ )ou.

Combination with (2.3.19) gives (2.3.12).
]

'w . e
The interpretation of the set K (X " ) leads us to consider the minimization of the Lagran-
gian

L@, ™) = Jw)—=1"S), (2.3.20)
at"=1I", over the set K(XK .0, ie.
Sw)e K&K (2.3.21)

Following the same path as in the previous section, we may derive optimality conditions
for the minimization problem corresponding to (2.3.20) - (2.3.21).

As a result of the nonlinearity of the constraint (2.3.21), this derivation involves also a
Abadie-type of constraint qualification, which becomes :

LS.K(KI)E) = TS UK (&K IDG). (2.3.22)

Obviously, the first order optimality conditions for this minimization problem will not
yield more information about properties of the solution of problem (P,), than the first
order optimality conditions for problem (P;), stated in the previous section. The first ord-
er optimality conditions do show however, that the Lagrange multiplier corresponding to
constraint (2.3.21) is zero and hence the minimization of the Lagrangian (2.3.20) seems
not to be restricted by the constraint (2.3.21). This leads quite naturally to the considera-
tion of the second Frechet derivative of the Lagrangian (2.3.20) on the set K (K I ). In
the following theorem second order necessary conditions for optimality for problem (P;)
with M =U are summarized.

Theorem 2.14 : Let & be a (local) solution to problem (P,) with M=U and let " be a nor-

mal Lagrange multiplier for problem (Py) with M=U. If condition (2.3.22) is satisfied at
(@2 .1), then

L@, T )(8u)u) 2 0 for all SueL(S.K(K.I)L). F (2.3.23)

For a proof of this theorem we refer to Hestenes (1975) (see also Maurer et al. (1979)).
Note that a more explicit form of the variations 8« in (2.3.23) is given in Lemma 2.13.

Using the interpretation of the second Frechet derivative of the Lagrangian as a bilinear
mapping, we see that (2.3.23) states that the second Fréchet derivative of the Lagrangian is
positive semi-definite on L (S,K (KX ,i")4), i.e. on the subspace spanned by the linearized
constraints at & .

Theorems 2.10 and 2.14 are involved with necessary conditions for optimality for solutions
to problem (2,), i.e. they are of the form

“If G is a (local) solution to problem (P1), then ‘certain conditions’ must hold."

+ Thefirst and second Fréchet derivatives of the Lagrangian L with Tespect to the argument ¥ and for
fixed [ aredenoted L' and L".
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In other words, the (local) optimality property of a solution implies certain conditions. As

a consequence of this, we are not sure whether a point #, which satisfies the necessary con-

ditions for optimality is. or is not, a solution to problem (P ).

This question leads us to the consideration of conditions for which the implication above is

reversed, i.e. conditions which imply optimality. The general form of these conditions is :
"If ‘certain conditions’ hold at @ , then @ is a local solution to problem (Py)."

These conditions are referred to as sufficient conditions for optimality.

The ideal situation would be that the conditions of Theorems 2.10 and 2.14, which are

necessary for optimality are also sufficient for optimality. However, this is only true for

special cases of problem (P;) and not for the general (nonlinear) problem (P;).

Sufficient conditions for optimality which are of practical importance involve the second

Frechet derivatives of the mappings involved in the definition of problem (P;).

The derivation of second order sufficient conditions for optimality in the case of infinite-

dimensional space U, turns out to be quite complicated. However, the result, which is

stated in the theorem below, has a relatively simple connection with the second order

necessary conditions for optimality. )

Theorem 2.15: Let & be a point for which S(¢) € K is satisfied and " be a normal

Lagrange multiplier for problem (P;) with M=U at the point ii. Suppose that condition

(2.2.14) is satisfied and that there are a § >0 and a B > 0 such that

L@, ) (8u)(8u) = 8llsul? foral 8uelheU :S@)+S' (WheK A
" (S@)+5 @RI BIRINY, (2.3.24)

then @is a local solution to problem (Py) with M=U .
For a proof of this result the reader should consult Maurer et al. (1979).

A comparison of the condition of Theorems 2.14 and 2.15 reveals that the sufficient condi-
tions are a strengthened form of the full set of necessary conditions. A formal interpreta-
tion of Theorem 2.15 is that the second Frechet derivative of the Lagrangian (2.3.20) must
be sufficiently positive definite on a slightly enlarged constraint set.

We note that for finite-dimensional U the condition of Theorem 2.15 may be strengthened
10 :
"The second Frechet derivative of the Lagrangian must be positive definite on
L(S.K(K )G
i.e. the 2 sign in (2.3.23) is replaced by > (cf. Maurer et al. (1979), Lemma 5.7 ).
As in the previous section, we are interested in deriving optimality conditions for problem
(EIP), which is essentially a special case of problem (P;). Therefore we shall apply the
results of Theorems 2.14 and 2.15 to this case. Both theorems deal with the case that the

constraint set M equals U. Correspondingly, we shall consider problem (EIP) with
A=X.
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The theorem below is a direct consequence of Lemma 2.3 and Theorems 2.14 and 2.15. We
note that the Lagrangian for problem (EIP) becomes

L(x,y".2") 1= fx)—y'g(x)— 2" A(x). (2.3.25)

Theorem 2.16 :

(i) Let x be a local solution to problem (EIP)with A =X, for which both part (i) and (ii)
of Theorem 2.12 hold with 3" and z*. If

RN =Y, (2.3.26)
then
L'(£.5" .2 X8xX8x) 2 O forall SxefxeX : g(i)+g(X)xeB
ANREE=0A 5 (E)+g ' )E)=0). (2.3.27)
(ii) Conversely,if
RE'E) = Z, (2.3.28)
and
FeX (h'(£)=0A F(£)+§'(X)xcint B, (2.3.29)
and X satisfies
g(x)e B, (2.3.30)
R(Z) =0, (2.3.31)
and there exist multipliers §° and " satisfying
<3',y>2 0 foral yeB, (2.3.32)
<3 .8(x)> =0, (2.3.33)
L'(x.3 .2 )=0, (2.3.34)

and there are a § >0 and a B > 0 such that
L"(£.5 .2 X8xX8x) 2 818x11? forall Sxe{xeX : g(£)+5'(£)xeB
AR(GEE=0A$ (5 E)+g'E)T)IS Bl (2.3.35)
then x is a local solution to problem (EIP).

A proof of this theorem is omitted because it follows in all but one aspect directly from
Lemma 2.13 and Theorems 2.14 and 2.15. The only aspect which requires some explana-
tion is the constraint qualification (2.3.26). This is a result of the constraint qualification
(2.3.22) in Theorem 2.14. One may easily verify that the cone X (X .°) has no interior
when I" #0. A sufficient condition for (2.3.22) to hold in this case is (2.3.26). We note
that it is possible to state a less explicit, but stronger result. For our purposes however,
(2.3.26) suffices.
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Optimal control problems with state inequality constraints

3. Optimal control problems with state inequality constraints,

3.1. Statement and discussion of the problem.

In this thesis, the following type of State Constrained Optimal Control Problem (SCOCP)
will be considered :

Problem (SCOCP) : Determine a control function ue€L[0,T1", a state trajectory
X €W, [0TT and a final time T >0, which minimize the functional

T
hox O + [ folx(@u@)e) dt + golx (T)T), : (3.1.1)
0 .

subject to the constraints :

@)= fle(@dult)t) ae. 05t<T, (3.1.2)
D(x(0)) = 0, (3.1.3)
Ex(T)T)=0, (3.14)
u(t)e U ae. 0StST (3.1.5)
Six@)u@))< 0 ae. 0St<T (3.16)
Sxx(®)r) €0 0€<t<T (3.1.7)
where : ho:R"—R; fo:R*"XR"XR-R"; go:R"XR—-R; D:R"-R°;

f iR"XR"XR-R"; E:R"XR-R?; S;: R"XR™"XR—R*'; §,: R"XR—R"?;
UCR™, is a convex set with nonempty interior.

Forallxe R" ue R™ rank Sy, (x ut)=k, ae. 05:<TF (3.1.8)

The functions hy, fo. go, f , D, E S, and S, are twice continuously differentiable functions
‘with respect to all arguments.

Wielorl = { x is an absolute continuous n-vector function on [0.T]
with X € L [0,T]" }.

A motivation for problem (SCOCP) is given in the discussion below.

We assume that the dynamic behaviour of the system to be controlled, can be described by
a set of ordinary differential equations of the form :

@)= fx@lu@)e) foral 05:<T, (3.1.9)

where x is an n-vector function on [0,7] called the state varigble and v is an m-vector
function on [0.7'] called the control variable.

We are interested in problems where the system is to be controlled from an initial state x
at time £ =0, i.e.

¥ This condition may be weakened to a more complicated condition, which involves only the gradients of
the components of S on intervals where these components are active, i.e. where these components are
zero on an interval, along a solution trajectory.
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x(0) = x, (3.1.10)

over an interval [0.7]. The number T is used to denote the final time. We shall assume
that 7" is finite, which means that we are interested in problems with finite time horizon.

One of the more difficuit technical details of the statement of the problem are the condi-~
tions that the control function u :[0,7]— R™ must satisfy. In view of the fact that we
want to identify the optimal control problem as a specialization of the abstract nonlinear
programming problem (EIP), it is desirable to identify u as a vector in a function space.
Because u governs the state variable via the right hand side of the set of differential equa-
tions (3.1.9), u must be at least integrable (in the sense of Lebesgue) on [0.T]. A sufficient
condition for this is that » is measurable and essentially bounded on [0,T'] (see e.g. Kol-
mogorov et al. (1961) or Rudin (1976)).

Therefore it is possible to identify u as an element of the space of m-vector functions
which are measurable and essentially bounded on [0.T], which is denoted by L [0,7]1".

We note that the space L[0,7]" is particular well suited for the statement of optimal
control problems, which are to be identified as specializations of abstract nonlinear pro-
gramming problems in Banach space with Frechet differentiable mappings. This is due to
the fact that when more general control functions would be allowed, either the space of
control functions is not a Banach space or the mappings involved are not Frechet
differentiable. When the type of control functions would be restricted further, it is possi-
ble to identify the optimal control problem as a specialization of problem (EIP) only in the
case that the control is assumed to be a continuous function on [0.7]. Simple examples ex-
ist that show that controls which are solutions to the rather general type of optimal con-
trol problems that we want to consider, can be discontinuous.

As a result of the smoothness assumptions on the function f , we have
Flxu) ) e Lolory,

whenever u € Lo[07]" and x is a continuous function on [0,7]. Because elements of
L 10,T] which differ on a set of zero Lebesgue measure are regarded as equivalent, the
differential equation (3.1.9), which is an equality relation between two vectors in L[0,T],
is allowed to differ on a set of zero Lebesgue measure. We note that because the
differential equation must only hold almost everywhere on [0.7], the differential equation
is interpreted as the integral equation :

x()=x(0) + ff(x('r).u(‘r).r)dT.
b

The state variable x can also be identified as a vector in some function space. Because x is
always a continuous function on [0,T'], x can be identified as an element of the space of
continuous functions on [0,.T], denoted by C[0,7]*. This space however, contains also vec-
tors that cannot be a solution to any differential equation, because there exist continuous
functions which are not the integral of their derivatives. This would complicate the appli-
cation of the results on optimality conditions, stated in Chapter 2, unnecessary (cf. Section
3.3.1). The space of absolutely continuous functions on [0.T] with measurable and
essentially bounded (first) time derivatives, denoted by W, [0,7T, is more suitable for our
purpose.
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As to the explicit dependence of the left hand side of (3.1.9) on the time ¢, we introduce
the following terminology. When f does not depend explicitly on ¢, the system (3.1.9) is
called autonomous and when it does nonautonomous.

A nonautonomous system may be transformed into an autonomous one by means of an
additional state variable. Let y satisfy

"y(0) =0,

y@)=1 ae. 0St<T,
then

y)=1¢ 0<t<T.

Substituting y for ¢ in (3.1.9) yields an autonomous system.

An other distinction is made between variable final time problems, i.e. T is not fixed in ad-
vance and fixed final time problems. It is possible to transform variable time problems into
fixed final time problems via a standard approach, which again requires the introduction of
an additional state variable (cf. Section 3.3.4).

From a theoretical point of view, there is no objection to the introduction of additional
state variables to transform nonautonomous and variable final time problems into auto-
nomous, fixed final time problems. However, in the numerical method to be proposed, all
state variables are treated similar and therefore an increase in the dimension of the state
vector gives an increase in numerical effort. Because there is no great dificulty in dealing
with nonautonomous and variable final time problems directly, they are included in the
formulation of problem (SCOCP).

The foregoing discussion focussed on the specification of the differential system. Now we
shall consider the specification of the object criterion, which is done by means of a func-
tional which assigns a real value to each triple (x u,T"), called the objective function. The
following forms are of common use in optimal control theory

s
[ folx @ @)e) e, (3.1.11)
0
golx (T).T), (3.1.12)
3
S Folx @) @) de + golx (T).T). (3.1.13)
0

Again from a theoretical point of view, there is no great difference between working with
either one of (3.1.11), (3.1.12) or (3.1.13), when the functions f, and g, are sufficiently
smooth. This is because an objective function of the form (3.1.11) can be transformed into
the form (3.1.12) and vice versa. From a practical point of view it does matter which form
of objective function is used, because the transformation from (3.1.11) to (3.1.12) requires
the introduction of an additional state variable, whereas the transformation from (3.1.12)
to (3.1.11) may lead to complicated expressions for the objective function. Therefore
(3.1.13) is assumed, which covers both the forms (3.1.11) and (3.1.12).

Having discussed the specification of the differential system and the objective function, we
now turn to the specification of the constraints, which restrict the solution of the optimal
control problems.
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In most optimal control problems, there are constraints on the final state of the system,
i.e. the state x(7') must satisfy certain conditions. These constraints are called terminal
point constraints. A general way of specifying these conditions, is by means of a vector
function E : R” X R — R?, with ¢ €n +1, of the form

Ex(T)T)=0.

It is obvious that this formulation includes fixed final time and fixed final state problems.

In most cases the initial state of the system (3.1.9) is known completely and specified in
the form of (3.1.10). There are however problems, where the initial state of the system is
not specfied completely in advance. To tackle this type of problems the initial state is
specified similar to the way in which the terminal state in specified, i.e. using a vector
function D : R" = R¢, with ¢ €n such that,

D(x(0)) = 0.
Of course the specification (3.1.10) is included in this formulation. A logical extension of
(3.1.13) is now to consider an objective function of the form (3.1.1).

Beside terminal point constraints, most optimal control problems include constraints on
the control # and the state x, which must hold at all time points of the interval [0.T]. A
distinction is made between the following types of constraints :

Control constraints : ult)e U ae. 0S:t<T,
Mixed control state constraints : Sy{x(¢Ju(z)2)<0 ae. 0S:¢<T,
State constraints : S x()r)< 0 0<:<T.

In most cases, control constraints can be written as a set of inequalities and therefore this
type of constraints could also be treated as mixed control state constraints.

For example, let U = {u : 0OSu<i}. Then the constraint ueU may be replaced by
Siw)= —ul@—u) € 0.

When optimal control problems are solved analytically, this approach involves unneces-
sary effort. However, with a numerical solution of the problem, this approach is quite use-
ful, because in a numerical context we need an explicit expression for the set U/ . Therefore
an explicit dependence of the function S, on the argument x is not supposed.

A similar argumentation for the state constraints would imply that the state constiraints
are a subclass of the mixed control state constraints. For the solution of the problem how-
ever, il is essential to make the distinction between mixed control state - and state con-
straints. One might say that a distinction must be made between the explicit constraints
on the control by way of the mixed control state constraints and the implicit constraints on
the control by way of the state constraints. The explicit dependence of the function S; on
the argument u is certified by means of Assumption (3.1.8).

The functions k. fo. go. f . D, E. S; and S,, which define the optimal control problem
are called problem functions. Most optimal control problems involve problem functions
which are at least continuous with respect to their arguments. When we want to identify
the problem (SCOCP) as a specialization of the abstract nonlinear programming problem
(EIP), we need that the mappings involved in problem (EIP) are at least twice continuous-
ly Frechet differentiable. A requirement for this is that all problem functions are at least
twice continuously differentiable with respect to all their arguments (cf. Section 3.2).
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If we consider a problem with variable final time for which the control variable and the
state variable are to be identified as elements of function spaces, e.g. w€ L, [0.7]" and
x€W;,[0.T], then we have to deal with the technical detail that the function spaces
depend on the parameter T, i.e. on the final time. Via this dependence, the functions x and
u depend on 7. This makes the abstract formulation difficult, if not impossible. Fortunate-
ly. it is possible to transform any variable final time problem into a fixed final time prob-
lem. Using this transformation approach, optimality conditions for variable final time
problems can be derived from the optimality conditions for the transformed fixed final
time problem (cf. Section 3.3.4).

3.2. Formulation of problem (SCOCP) as a nonlinear programming problem in
Banach spaces.

This section deals with the formulation of problem (SCOCP) as an abstract nonlinear pro-
gramming problem (EIP). In this formulation, problem (SCOCP) will be treated as an op-
timal control problem with fixed final time. The optimality conditions for the case that
problem (SCOCP) has variable final time will be derived from the optimality conditions
for the case of fixed final time (cf. Section 3.3.4).

A basic choice has to be made, as to the manner in which the differential system (3.1.2) is
treated. There are two possibilities, either the control variable is considered as the only
variable of the optimal control problem, or both the control variable and the state variable
are considered as variables of the optimal control problem. In the former approach the
state variable is treated as a quantity which depends on v via (3.1.2). Following the latter
approach, (3.1.2) enters the formulation of the optimal control problem as an equality
constraint. We prefer the latter approach because, as will follow from the discussion in the
next section, it leads to a weaker constraint qualification. In addition, the approach extends
in a logical way to the numerical method which is described in Chapters 4, 5 and 6.

Thus, we consider in the formulation of problem (EIP) as variables the pair (x .z ). The
space X becomes the product space of the spaces which contain the variables x and u, i.e.

X = W Jor"xL lorl". (3.2.1)

In the formulation of problem (EIP), the assumption is made that X is a Banach space. We
shall show that with the selection of a suitable norm on X this assumption is satisfied. In
general, the space X cannot be expected to be a Banach space unless the spaces W [0,T]"
and L [0,T7]" are both Banach spaces.

For every measurable and essentially bounded function v :[0,7]- R, the co-norm is
defined by :

lvil, = ess sup v (@M, (3.2.2)
where |-l is the Euclidian vector norm on R" .

Equipped with the co-norm the space L,[0,71" is a Banach space.
Analogously, the space W ,[0,71" is a Banach space when equipped with the norm

hxlly e = maxllixllolxl,} for all x €W, [0TF.

(cf. Kirsch et al. (1978), p.91-92).
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The space X is now a product of Banach spaces for which we may use the following rule
to select a norm :

"Xy and X, are Banach spaces with norms -l x| and -l x ,, the norm on X X X3

is taken as max{II~I|X1,|l~l|X2}."

With this norm, the space XXX is also a Banach space. Using this rule we obtain as
normon X :

N(x,uly = max{lxllolxltully) (3.2.3)

The formulation of the objective function of problem (EIP) follows directly from the ob-
jective function of problem (SCOCP).

T
Flea) = holx(@) + [ folx@ule)s)dt + golx(T).T). (32.4)
0

The smoothness assumptions on the problem functions kg, fo and go, together with the
fact that the norm on the space X is an co-norm, yield the following result.

Lemma 3.1: Let the functions hg, fo and g, satisfy the assumptions of problem (scocp)
and f :X = R be defined by (3.24), then the mapping f is twice Frechet differentiable at
all points (x u) of X and

T
7l u)(Bx 8u) = hoy (x(00)8x(0) + [ (for (x . 2)8x () +
0

fou(x e 2 )8u(t)) dt + go, (x(T).TI8x(T). (3.2.5)

For a proof of this lemma we refer to the proof of Lemma 1.4a, p.94 of Kirsch et al.
(1978), who prove that f is once Frechet differentiable. The second Fréchet

differentiability follows from an application of the same lemma to (3.2.5) for fixed
(8x ,8u).

The constraints (3.1.2) - (3.1.4) enter the formulation of the abstract problem as equality
constraints. This leads to the following formulation of the mapping A :

hGa) = (#O)=fxOu).) ., D&0), E(T).T)). (3.2.6)

To make the formulation of the mapping h complete, we have to identfy the range space
Z of h, which must be a Banach space. A logical choice for Z is:

Z = L[0TV XR XRY, (3.2.7)
which equipped with the norm
H(zy.z0.207 = max{lzyl Nzl Nz3ll} for all z1€ Lo [0,TT .z0e RS .z3e RY, (3.2.8)

is indeed a Banach space.

With regard to the Fréchet differentiability of % we have the following lemma :
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Lemma 3.2: Let the functions f , D and E satisfy the assumptions of problem (SCOCP)
and let the mapping h : X = Z be defined by (3.2.6), then the mapping h is twice continu-
ously Frechet differentiable for all (x u) of X and,

B w)(Ex.8u) = (85 ()—f, (x (D (), 8x (=f, Ge (D (), )8 (),

D, (x(0))8x(0) , E, (x(T).T)8x(T)). (3.2.9)

This lemma is a direct extension of Lemma 1.4b, p.94 of Kirsch et al. (1978).

In the abstract formulation, the inequality constraints of problem (SCOCP) take the form
of a required membership of a set A and a restriction of the value of a mapping ¢ to a
cone B.

The set A is used to formulate the control constraint (3.1.5) :

A = Wi lorl xA, (3.2.10)
where

A, = lueLl [0 :u(t)eU ae. 0S:<T} (3.2.11)

Because U is assumed to be a convex set with a nonempty interior, 4, is also a convex set
with a nonempty interior. ‘
The mixed control state constraints (3.1.6) and the state constraints (3.1.7) are formulat-
edas:

glxau) = (S1xu(). ). Sxx (), (3.2.12)
A logical choice for the range space ¥ is :

Y = L lorl'xclorl2. (3.2.13)

Equipped with the norm

Iy by My = maxllylelyslle} for all yie Lo yeClor] 2 (3.2.14)

To the choice of the range space Y we note that an alternative choice is
Lm[O,T]k‘XWLm[O,T ]k 2, However, the choice (3.2.13) is preferred because the space
clo,r ]k2 has a standard representation of the elements of the dual space (cf. Luenberger
(1969)). We note that unfortunately, the representation of the elements of the dual space
of L[0,T] is rather complicated and that there seems to be no suitable alternative for the
choice of the range space of the operator S;(x (-)u(-),-). This complicates the application
of the optimality conditions, stated in Chapter 2, to the state constrained optimal control
problem, as discussed in Section 3.3.2.

Lemma 3.3 : Let the functions Sy and S, satisfy the assumptions of problem (SCOCP) and
the mapping g : X Y be defined by (3.2.12), then the mapping g is twice continuously
Frechet differentiable for all (x u) of X and

'l uX8x ,8u) = (S, (x (D (), )8x ()81, (x (D (), )8u (),
8o (x (), )8x()). ) (3.2.15)

To make the abstract formulation of the inequality constraints complete, we have to speci-
fy the cone B, which in the formulation of problem (EIP), is assumed to be closed and
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convex, with Oe B and having nonempty interior.

If we choose B to be:

B = B,xB, (3.2.16)
By = {y1€L,[0771:y;(2)S0 ae. 0S:<T,i=1,.ky). (3.2.17)
B, = {y,6Cl0IT2:y, ()0 0Kt<T,i=1,.k,) (3.2.18)

then one can easily verify that the cone B statisfies the assumptions of problem (EIP).

This completes the formulation of the optimal control problem (SCOCP) as a specialization
of the abstract nonlinear programming problem (EIP).

3.3. First order optimality conditions for problem (SCOCP).

3.3.1. Regularity conditions for problem (SCOCP).

In view of the application of Theorem 2.12 to the optimal control problem (SCOCP) in the
formulation of Section 3.2, we consider the regularity conditions of parts (i) and (ii) of
Theorem 2.12. :

We start off by noting that throughout this chapter we shall use the following standard
result on linear ordinary differential equations (e.g. ¢f. Hermes et al. (1969), p.36).

Lemma 3.4: Let A(z) be an n Xn matrix defined on [0.T ] with components a;; € L ,[0,T']
(alli,j=1,..n ), then for all h ¢ L [0,T 1 the ordinary differential equation

i@)=AQ@x(@)=h(t) ae. 0S:<T, (3.3.1.1)
x(O) = X (3312)

has exactly one solution x € W1 ,[0.T1" . This solution has the form
4
x@)= ®@)xo+ @) [O7UsIh(s)ds 0<e<T, (33.1.3)
0

where the n Xn matrix ® is the fundamental matrix solution of (3.3.1.1), i.e. the unique solu-
tion to the homogeneous differential equation :

d@)— A@)®E) =0, (3.3.1.4)
®(0) = I. (3.3.1.5)

We note that the solution of (3.3.1.1) that satisfies the boundary condition x (7 )= xr has
the form :

. T
(@)= )0 Txy — @) [ Us)h(s)ds  0SeST. (33.16)

As a first step towards the derivation of regularity conditions for problem (SCOCP). we
consider the range of the Fréchet derivative of the mapping & : X = Z, at a solution (£ .z)
of problem (SCOCP).
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Lemma 3.5:

(i) Let the functions f, D and E satisfy the assumptions of problem (SCOCP) and let the
mapping h be defined by (3.2.6), then

R(A(Z.42)) = closed. (3.3.1.7)

(i) Ifa(x.22),

rank (D, (£(0)) = e, (33.1.8)
and
rank (E,(x (T).T)) = q. ) (3.3.1.9)
then
R(R'(F &) = Z. (3.3.1.10)
Proof : Using Lemma 3.4 we first prove that the range of the operator
R 2): X=-L,lor), with
By(R2)(8x 8u) = (85 ()£, [Bx()~f,[1u()), + (3.3.1.11)
is L [0,7T* . For this purpose we consider the equation
hy(Z.2)(8x.8u) = h, (3.3.1.12)

with h € L,[0,T7T". The range of the mapping };1' equals L [0,7]T if and only if equation
(3.3.1.12) has a solution (8x.8u)eX for every he L[0T . Using (3.3.1.11) equation
(3.3.1.12) is equivalent to :

8x — f,8x — f,8u = h, (3.3.1.13)
which has a solution for each h € L,[0,7]" by Lemma 3.4. (§x(0) and du can be set to
zero.)

Part (i) of the Lemma follows, because the ranges of the operators D, (£ (0))(-) : X =+ R°®
and E, (x(T),T):): X = RY are always closed, due to the fact that the range spaces of
these operators are finite-dimensional.

Part (ii) follows directly from (i) and the fact that (3.3.1.8) and (3.3.1.9) imply
R(D, (£(0))) = R°,
R(E, (X(T)T) = RY.

0

Part (i) of Lemma 3.5 enables the application of part (i) of Theorem 2.12 to problem
(SCOCP) without any additional regularity conditions on the problem. With regard to the
result contained in part (ii), we note that this is the weaker form of the constraint
qualification we promised at the start of Section 3.2. For if we would have treated x as a
quantity dependent on u, condition (3.3.1.10) would require, beside (3.3.1.8) and
(3.3.1.9). that the linearized system

+ The notation | I is used to replace (x( Y (), Dor (x (), ).
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8% = f,6x + f,0u,

should be completely controllable on [0.7] (cf. Norris (1973)).

We note that we do not need this controllability as a result of the fact that we consider
both x and v as variables and that the differential equation was used directly as a con-
straint, instead of first transforming the differential equation into an integral equation.
When both x and u are used as variables, but when the differential equation would first
be transformed into an integral equation and x was considered to be an element of the
spaee of continuous functions, then the controllability of the linearized system would also
be required (cf. Girsanov (1972), Assumption 9.1).

The theorem below is a specialization of the constraint qualification of part (ii) of Theorem
2.12 for problem (SCOCP).

Theorem 3.6 : Let (x i) be a solution to problem (SCOCP). When
rank (D, (X (0))) = ¢, (3.3.1.14)

and

rank (E,(x(T)T)) = gq. ) (3.3.1.15)

and, in addition, there is a pair (8x .8u) for which T

20) +8ult)e it U ae. 0St<T, (3.3.1.16)
D, [0]5x(0) = 0, (3.3.1.17)
8x£() = f,[tBx@)+ f,lt Bule) ae. 0SS, (3.3.1.18)
ET18x(T) = 0, (3.3.1.19)
Siltl+ S5, [ex@)+ 8, But) <0 ae. 0St<T, (3.3.1.20)
Solt]1+ Sy lel8x () <0 0<<T, (3.3.1.21)

then the regularity constant p is not zero.

Proof : The hypotheses (3.3.1.14) and (3.3.1.15) imply by Lemma 3.5, (3.3.1.10). Equa-
tions (3.3.1.16) - (3.3.1.21) are counterpart to conditions (2.2.19) - (2.2.20) of part (ii) of
Theorem 2.12.

[m]

3.3.2. Representation of the Lagrange multipliers of problem (SCOCP).

In this section we shall consider the representation of the Lagrange multipliers for solu-
tions of probliem (SCOCP). In the abstract formulation of problem (EIP) these multipliers
are denoted as § and 7 . In the case of problem (SCOCP) they can be expressed as ele-
ments of function spaces. The major problem we have to deal with is the fact that, the
elements of the dual space of L [0,7] do not admit a simple standard representation.

In establishing a formulation of problem (SCOCP) in the terminology of problem (EIP)
(cf. Section 3.2), the range spaces of the constraints, i.e. Y and Z were chosen to be pro-

¥ We used the notation [t ] to replace (JE () )t)or (J? @ )e).
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ducts of Banach spaces. A particular choice of the norm on the product spaces was made in
such a way as to make the product spaces Banach spaces too. In this case the representation
of linear functionals on these product spaces is induced by the components, i.e. when X
and X, are both Banach spaces and

X: = X1><X2,

then all continuous linear functionals on X; admit a representation of the form {(cf. Porter
(1966), p.299) :

<xg x> = <x71.x1> 4+ <x3,x,>,

with x] € X} and x5 € X5.

We shall now develop a representation of the Lagrange multipliers for probiem (scocp)
by considering the products <3 ,g > and <Z ,h >, where § and h are the mappings
defined in Section 3.2. Using the fact that ¥ and Z are product spaces we obtain :

<5 > = <fin Sil> + <&.8,[1>. (3.3.2.1)
<3 h>= <k, i~ flI> + <é.DEON> + <i,EGET).T)>, (3.3.2.2)

with : 1€ (Lol0,711)",

EeClor!?,

A (L lorr ),

G e(R°Y,

o e(RY .
Equations (3.3.2.1) and (3.3.2.2) admit an interpretation of (fi;.£.A.6.4) as Lagrange
multipliers associated with a particular constraint (i.e. 7); is associated with the constraint
Sy (£ (), JeBy).
A representation of the Lagrange multipliers for problem (SCOCP) will be established,
once we have a representation for the linear functionals on the right hand side of (3.3.2.1)
and (3.3.2.2). These will be considered individually. We start with the representation of
the linear functionals which do not pose a problem as they have a standard representation.

Because R and R? are Hilbert spaces, the linear functionals on R and R? have the
form :

—-6TD(x (0)), (3.3.2.3)
S A ACIVSN ) (3.3.2.4)

<&.D(x(0)>

<p.EEZ(T)T)>

with : & € R¢,
e RY.

The dual space of C[0,I ]k2 is the space NBV[0,T ]kz,i.e. the normalized space of k,-vector
functions on [0.7] of bounded variation (c¢f. Luenberger (1969), p.113-115 ). The standard
representation of these linear functional is given by means of a Stieltjes integral, i.e.

T
<€, 5)i(),)> = = [S;(E@) Y dE@), (3.3.2.5)
0

with : £ € NBV[o.rT2
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We note that the minus signs on the right hand sides of (3.3.2.3) - (3.3.2.5) were chosen
in order to obtain the usual form of the minimum principle to be stated in the next sec-
tion.

The representation of the functionals
<Ay, S3(x (), >, (3.3.2.6)
and

<A A O=fle () D)>, (3.3.2.7)

is a more difficult problem, because the linear funcionals on L[0,T ' and Lo} are
elements of L,[0,7] and as such admit, in general, only a very complicated representation
(cf. Dunford et al. (1958), Ch. IV, Thm. 8.16).

Fortunately, by making use of the fact that 7); and X are Lagrange multipliers for problem
(SCOCP) we are able to derive a practically useful representation of the functionals
(3.3.2.6) and (3.3.2.7).

We shall first consider the representation of the functional (3.3.2.6). Here we are faced
with the difficulty that the constraint $(x ()2 (-), -)e B; represents only in part the ex-
plicit constraints on the control. The other part is represented by the constraint #€A4,,
which is a very general representation of a constraint. In order to cope with this difficulty
we shall make the following assumption :

Assumption 3.7 ¢ The set U is of the form :
U= {ueR™:S,u)< 0}

where So: R™— R ko s a twice continuously differentiable mapping.

Assumption 3.7 merely states that the control constraints can be transformed into a set of
inequalities, i.e.

u(@)e U ae. 0S:<XT,
may be replaced by
SN0 ae. 0St<T.

Because we did not make any assumptions about the explicit dependence of S;(x u.t) on
the argument x, all explicit constraints on the control can be treated in a similar manner.
Thus, we end up with one vector function for the constraints on u,

So(u )
S‘.(x U ,Z) = Sl(x u ,t) (3328)
The solution must now satisfy the following constraint :
S x@u@)e)< 0 ae. 05:<T. (3.3.2.9)

As we already discussed in Section 3.1, we must futhermore assume that all components
of the vector function S, have an explicit dependence on the argument u.
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Assumption 3.8 : If (X @) is a solution to problem (SCOCP) and Assumption 3.7 holds,
then

rank (S, (X ()i @)(t)) = ko + k, ae. 0St<T.

Assumptions 3.7 and 3.8 enable the derivation of a representation of the linear functional
<f1s>.

Lemma 3.9: Let (X i) be a solution to problem (SCOCP) and let in addition Assumptions
3.7 and 3.8 hold, then the linear functional <,.->, whose existence is garanteed by
Theorem 2.12, has the following representation :

T .
<Hnyi> =~ [$:7yt)de forall yeLalorl™, (3.3.2.10)
0

with : 7)€ Lw[O,T]k‘.

Proof : Using the fact that Assumption 3.7 holds, we consider the formulation of problem
(SCOCP) with the vector function (3.3.2.8). The corresponding Lagrange multiplier is
denoted by 7. .

Using the representation of the Lagrange multipliers discussed earlier in this section, we
obtain from part (i) of Theorem 2.12 :

5}'(:? 2)8x.8u)— <N, .Sy 8x+5,8u> — <£,52x Sx> —
<A.8%—f, 8x—f,8u> — <&.D,8x(0)> —
<L.E8x(T)> =0 forall 8xeW,[0T],8uel[oT]". (3.3.2.11)
Using the representations (3.3.2.3) - (3.3.2.5) and the result of Lemma 3.1 we obtain :

<K, 8i—f 8x—f,8u> + <A, Sex 8x +5c,8u > = p(h o, 52(0) +
T T
[ Gox8x +fo,8u) dt + g0, 8x(T) )+ [8x7 ST, d€ + 67D, 8x(0) +
0 [

ATE 8x(T) forall 8xeW, [0, 8uel o). (33.2.12)
We shall consider (3.3.2.12) using variations (8x ,8u ) that satisfy :
8% = f,8x + f,8u ae. 0XtST,
8x(0) = 0.

For these variations the functional <X, 8x—f,8x —f,8u > is zero and the right hand side
of (3.3.2.12) then gives an explicit relation for the functional <%, S, 8x +S,, du >.

Next we consider the functions :
h(t)= S, [t]18x(t)+ S,[t]ldulz) ae. 0St<T. (3.3.2.13)

Clearly, he L[0T 11 because du € L ,[0,71". Assumption 3.8 ascertains that for every
heLoloT1 o1, there is at least one Su, that satisfies equation (3.3.2.13). To select for
each fixed function k€ Lo[0,7T 01 2 particular function 8u that satisfies (3.3.2.13), we

+In Assumption 3.8 we used S, to denote the partial derivative of S, with respect to .
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make use of the pseudoinverse of the matrix S, [¢]. Because the matrix S_,[z] is of full
row rank, the pseudoinverse of S, [¢] has the form :

Seult ]t = 8o, [t F (Se [e1 S, [t F)~? ae. 0St<T. (3.3.2.14)
The variation 8u must therefore satisfy :
Bu)= S, @)— S, [t]18x()) ae. 0St<T. (3.3.2.15)
Because (8x ,8u ) satisfy the linear system, the variations (8x ) satisfy :
8x = f,8x + f,Sath — fu S S 8x.

Using Lemma 3.1 we can write 8x dependent on A as :
t
8x ()= () [B(s)Y,[s1 S0 [s 1R (s) ds 0<:<T. (3.3.2.16)
o

where @ is the solution of :
T~ (fy—f.838,)@=0 B(0)= I (33.2.17)
Rewriting (3.3.2.12) with (3.3.2.15) and (3.3.2.16) yields :

T 11 T
<Aeh>= [(a() [B(Ir(s)ds +c@h@) dr +eDBT) [BGIr@)dr +
0 0 0

T t
f(ilf(t)!B(s)h (s)ds VS, [t ¥d£G) forall he L lorT o™, (3.3.2.18)
o

Pfox —fou S [t 1S, )B(2)., 0Kt<T

it

where:a(z) :

B(t) == @Yy ,S.,[1, 0Lt<T
c(t) == pfouSale]h, 0<t<T
e = ﬁng +/2Ex .
Changing the order of integration (cf. Luenberger (1969), p.153-154) :
I 1t Ir T
[ [kGs)asar = [ [K(se)asar,
d ¢ ¢ 7

yields :

T T T
<Ne B> = f[( fa(s)ds +edTNBE)+c)+ fdg(s)TSZX[s]ﬁ(s)B(t)
0 t t

£ otk

h(t)dt forall hel,l0,T] (3.3.2.19)
The vector function 7, : [0.7]— R ™1 s now defined as :
T T
@) = — | [a(s)ds + [V S s1B(s) + e BT |B()
t 11
+c(z) 0<:<T. (3.3.2.20)
And hence :
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T
<fe.h> == [HYh()d forall heLolorl o™,
¢
which proves (3.3.2.10).
N1€ L lo,7 ]k ! follows directly from inspection of the components of (3.3.2.20).
=]

The proof of this Lemma is nonconstructive in the sense that we do not obtain a simple re-
lation for 7;. only a representation. For the multiplier A, we do obtain relations from the
derivation of the representation, which follows similar lines as the proof of Lemma 3.9.

Lemma 3.10 : Ler (x ) be a solution to problem (SCOCP) and let, in addition, Assumptions
3.7 and 3.8 hold, then the linear functional <\, ->, whose existence is implied by Theorem
2.12, has the representation :

T
<k.y>= [A@Yy@)dt forall yeLolorl, (3.3.2.21)
V)

with e NBV [0,7)*, which satisfies

L1
AT = X = = [ Gfox[e WAGY £l A1) Sy, [e D ar
Ig
51
— [ad@)Y5sy,lt]  forall 01,$t,<T, (3.3.2.22)
Io
and
AMOY = — phy,[0] — 67 D, [0]. (3.3.2.23)
AT = pgoT1+ ATEIT] (3.3.2.24)

Proof : We use equation (3.3.2.12), with variations 8u=0 and the representation of
<%y -> of Lemma 3.9 :

T
<\, 8x~f,8x> = (Pho, +67 D, )8x(0) + f(ﬁf0X+ﬁ1TSlx)8x(t)dt +
)

T
foTngdf(t) + (f)gox-i-,&TEx Wx(T) foral SxeW,[0TF. (3.3.2.25)
¢

Now consider :
§x — f,dx =nh 3x(0) = 0,

which has (by Lemma 3.1) a solution for every h € L [0,TT" e
1
8x ()= @) [@(s)n(s) ds, (3.3.2.26)
6

where @ is as in Lemma 3.1.
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Using relation (3.3.2.26) in (3.3.2.25) yields :

T 1
<hn> = [Bfor +01S0)0() [@(s)h(s) ds +
0 0
s t
JaECEY S, [t 10() fo(s)h(s) ds +
o 0

7
(Pgox+A"ENST) [ @) m(t)dr forall he L loTT .
¢
Changing the order of integration in (3.3.2.27) yields :
. roT T
<hoh>= [{[Gro+ifsSu)eG)ds + [dE() S, [s10(s)
0 1 7

+ (Pgox +ATED®TNO(t ) 1 (t) dt forall he Lo 0TI .

Define now :

s T
X@Y = A [Bloc+fSp )Y ds + [a&(s ) S5 [510(s)

14

+ (Pgox +ATENO(T)}®(e )" 0<:<T,

(3.3.2.27)

(3.3.2.28)

(3.3.2.29)

from which (3.3.2.21) directly follows. XGNBV[O,T]” follows from an inspection of the

various components of (3.3.2.29).

We shall next prove relations (3.3.2.22) and (3.3.2.24). Relation (3.3.2.24) follows from

(3.3.2.29) for t =T . Now consider the product A7 & :
dREY ®@)) = dAG Y @@) + A Y &) ar.
Because ® satisfies :
®=f0Q
equation (3.3.2.30) becomes
dOAT®) = dATd + \Tf, @ ar.
Using (3.3.2.29) we obtain :

ANT® + AT f @ dt = — (Pfoe +D7S1, )0 ) dt — d &2 )T S5, [t J0(2).

Because @ is invertible this yields :
AN = — (Pfox NI fo4mIS1 ) dt — dE@ ) Sa (2],

which is equivalent to (3.3.2.22), because

LE
J AT = X)) — R forall 0S2oS2,<T.
fo

(3.3.2.30)

To prove (3.3.2.23), the whole proof should be repreated using variations 8x that satisfy :

42



Optimal control problems with state inequality constraints

8i — f,8x = h 8x(T)= 0.

" In this case the variations 8x satisfy
T
8x(t) = — @(t) [@(s)n(s) ds.
r

The counterpart to (3.3.2.29) becomes

A~ ! ! -~

A = = { [(foe +7{S1)0(s) ds + [d &) S, [s]+

0 1]

(Phoy +67 D@2 )71 0S:<T,

which yields (3.3.2.23) for z = 0, because ®(0)"'=1.
O

3.3.3. Local minimum principle.

In this section, the results contained in part (i) of Theorem 2.12, will be expressed in the
formulation of problem (SCOCP).

An important role is played by the Hamiltonian, which is defined as :

Hxuw.pAit) == pfolxat) + N flx u.t). (3.3.3.1)
In the theorem below the notation [¢] is used to replace (x(¢).z¢), (x ()i (¢)z) or
(@)a@)pr()e).

Theorem 3.11: If (X i) is a solution to problem (SCOCP) for which Assuptions 3.7 and 3.8
hold, then there exist a real number pZ0, and vector functions Ne NBV[0o,TT,

1€ Lw[O,T]k t Ee NBV[O,T]I(2 and vectors &€ R, ue RY, not all zero, such that,

5]
ARG = = [ (H 1+ 7@ ) 5, [eD ar
Iy
1
- [d€a)s, 1] forall 0St,$e,ST, (3.3.3.2)
A = — pho,[0] - 67 D, o). (3.3.3.3)
ATY = pgolr]+ ATEIT], (3.3.3.4)

H ]+ 2@ S tDw ~a(@))Z2 0 foral uelU ae. 05t<T, (3.3.3.5)

)2 0 ae. 0S:<T, (3.3.3.6)
N )S;lel=0 ae. 0X:tST i=1,.k,y, (3.33.7)
2,(:) = nondecreasing on [0.T] i=1,.k, (3.3.3.8)
gi(t) = constant on intervals where S»;{t] < 0 i=1,.k,, (3.3.3.9)

Proof : The existence of nontrivial Lagrange multipliers for problem (SCOCP) follows
from part (i) of Theorem 2.12 and Lemma 3.5.
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Using the representation of the Lagrange multipliers derived in Section 3.3.2, equation
(2.2.17) becomes :

T
P70y 10185 (004 [ (fo It I+, [¢ 18D dt +.0, [T 1% (7)) —
0
T,, T
f}\(t Y (8xi—f, [t 16x—f, [t Bu) dt + fﬁ,(t V(S [t16x+5,, [t 16u) de
9 )

's
+ [dE@) S5 [t1x () + 67 D,[018x(0) + AT E[T8x(T) > 0
0

forall 8xeW, [0T]", i+8ucA,. (3.3.3.10)

Without loss of generality, the variations (8x,0), (0.8 ) may be considered separately, be-
cause these variations are independent.

The variations (8x,0) were used to derive the representation of the linear functional
<\.-> and hence (3.3.3.2) - (3.3.3.4) follow (cf. Section 3.3.2).

The variations (0,8u ) yield :
, ,
[ Bfoult HAG Y £,[e A1 )S 1 [ DOu dz > O for all i+8ucA,. (3.3.3.11)
0

Equation (3.3.3.11) is equivalent to (3.3.3.5), because (3.3.3.11) is a supporting functional
1o the set A, at the point 2 (cf. Girsanov (1972), p.76-77).

Equation (2.2.16) 'yields :
s a R
<3 y>=— [A@ye)de = [a&@)y(t)> O forall y,eBy. ys€B,.
) 0

Considering the cases where all components of the vectors y; and y; are zero except one
yields :

T
~ [Aul ) dt = 0 forall yyeLolo]
0

with y;(¢)S0 ae O0St<T i=1,k,
and

r
- fdé,-(t)yz,-(t)> 0 for all y,;€Cl[0,T]
¢

with yzl(t )<0 0<t<T l::l,.-.kz,

which imply (3.3.3.6) and (3.3.3.8).
Equation-(2.2.15) yields :
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T T
<§.gGEa)=— [A@)siltla — [a&@Y Slt]= 0. (3.3.3.12)
0 o

Because of (3.3.3.6) and (3.3.3.8) and the fact that S,;[t]J€0 ae 0Sz<T and
S,lt]€0 0<€:<T,equations (3.3.3.7) and (3.3.3.9) follow from (3.3.3.12).
O

The result contained in Theorem 3.11 is called a local minimum principle, as a result of
equation (3.3.3.5), which implies that the function :

M1+ DGV S D —a@ N2 0 {3.3.3.13)

is minimized almost everywhere on [0,T] with respect to the argument u# over values in
the set U.

3.3.4. Minimum principle.

In this section optimality conditions for variable final time problems will be presented. At
the same time the results of the previous section will be strengthened in the sense that the
local character of the minimization of (3.3.3.13) will be replaced by a pointwise global
minimization of the so-called augemented Hamiltonian over the entire set U .

The reason that such a result is desirable is that for spike variations (i.e. variations which
are only nonzero over a small interval of time), the corresponding variation of the state
variables and the objective function will be small. Obviously, spike variations need not be
small in the co-norm. However, making the interval of time sufficiently small will make
these variations comparable to variations which are small in the co-norm, but nonzero
over a larger interval of time.

Theorem 3.12: If (£ &.T) is a solution to problem (SCOCP), for which Assumptions 3.7
and 3.8 hold, then, in addition to (3.3.3.2) - (3.3.3.9) ¥ the following conditions hold,

s
Hitl= — pgorlT)— AT E[T]1— [ 1]+ 7,075, [e D ar

f
— [ak@)Ysylt]  ae 05¢<7, (334.1)
4

and

Hl] = max HE@u pAE)L) + MG S,(E@)ur) ae 0S:<T.  (334.2)

Proof : We shall only outline the main lines of the rigorous proof given by Girsanov
(1972), Lectures 13 and 14.

Girsanov considers the case that the mixed control state constraints are not present and
that the set of admissible controls U is not necessarily convex, nor is U supposed to have
an interior. There is however no great difficulty in treating the present case of mixed con-
trol state constraints following entirely the same approach.

The essence of the proof is to admit spike variations on the control in an indirect way. via
a variable time transformation.

1 In these conditions the final time 7' must be replaced by 7.
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This transformation has the following form :

t(r) = [v(s)ds 0<7<1, (3.34.3)
0

t() =T, (3.34.4)

v(tr) 20 ae. 0S7X1. (3.34.5)

The inverse of this transformation is defined as :
7@) = inf {rel01]:t(v)=1t }. (3.3.4.6)

Using this transformation, problem (SCOCP) is transformed to an optimization problem
involving the functions x (7). u(7) and v (7), which are functions of the artificial time
variable 7. In this transformed problem the function v(7) is considered as an additional
control variable on [0,1], which is to satisfy the control constraint (3.3.4.5).

In a formal notation the transformed problem is :

1
Minimize ho(x(0)) + [folxa.y (1) d7 + golx (1)y (1)), (3.34.7)
xuy.v o -
subject to :

3—’; = v(1)f (xu.y) ae. 0S7<1, (3.3.4.8)
dy _

ar - v(1) ae. 0S7<1, (3.34.9)
D) =0, (3.34.10)
y(0) = 0, (3.34.11)
EG(DyU) =0, (3.3.4.12)
u(@)eU ' ae. 0<7<1, (3.3.4.13)
v(it) 2 0 ae. 0€7<1, (3.34.14)
Sixuyw(@)< 0 ae. 0S7E1, (3.34.15)
Saxy)< 0 oS 7<1. (3.34.16)

As a result of the variable time transformation, the transformed problem is autonomous
although the original problem can be nonautonomous.

If v(7) is considered to be a fixed positive function on [0,1], then problems (SCOCP) and
(3.3.4.7) - (3.3.4.16) are equivalent. If v{(7) is zero over an interval, the state variables x
and y will be constant on this interval. On such an interval the value of the control func-
tion does not affect the value of the objective function, nor does it involve other con-
straints than ueU. Following a similar reasoning for the case that v(7) is considered to
be a variable in the problem (3.3.4.7) - (3.3.4.16), the following result is obtained :
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"If (£(£).4(t)) is a solution to problem (SCOCP), then for any function v (7)
satisfying (3.3.4.3) - (3.3.4.5), the triple (x (7). (7). (7)) is a solution to the
transformed problem (3.34.7) - (3.34.16). The control u(7) is allowed to have any
value satisfying u €U on intervals where v (7) is zero."

Because of the assumptions on the differentiability of the problem functions with respect
to the argument ¢ (cf. definition of problem (SCOCP)), application of the results of part
(i) of Theorem 2.12 on the transformed problem is possible.

Assumptions 3.7 and 3.8 hold for the transformed problem on intervals where v(7)>0,
whenever these assumptions hold for problem (SCOCP). (Note that the transformed
problem contains an additional control v with a constraint v 2 0 which is independent of
u.) The special form of the constraint (3.3.4.15) was chosen because we do not want to let
the constraint S1(x ,u .z )< 0 restrict the choice of the values % (7) on intervals where v (7)
is zero. As a result of this the regularity Assumption 3.8 does not hold on these intervals,
because on these intervals the constraint vanishes completely from the optimization prob-
lem. For the representation of the Lagrange multipliers corresponding to the mixed control
state constraints this poses no problem, because these Lagrange multiplier may be assigned
an arbitrary value on intervals where v (7) vanishes (the constraints are no longer present
on these intervals) and the regularity Assumption 3.8 is only of interest on intervals
where v (1) is nonzero. The Lagrange multipliers correponding to the mixed control state
constraints are assigned the following value :

(7)== Nz @)).

The application of the results of part (i) of Theorem 2.12 for variations §x and 8u fol-
lows similar lines as the previous section. The counterpart to (3.3.3.5) for the additional
control variable v (7) becomes :

Bl (M)E()F () + AV FZ (1A (7).5 (1)) + Ay (r) +
MET S @A FEMNG =3 @EN 2 0 forall vZ0 ae. 057<1. (334.17)

( » is the adjoint variable associated with (3.3.4.9).)

Because every v (7) which satisfies (3.3.4.3) - (3.3.4.5) is a solution to the transformed
problem, we may consider (3.3.4.17) with v (7) strictly positive on [0,1]. This implies

PfoE@AMFEN + AGY FEME .S ) + Xy () +
M SE@EE)FEN =0 ae. 0S7<1. (3.34.18)

Alternatively, we may consider functions ¥ (7) which are zero on intervals. In these cases
(3.3.4.17) implies

PIE (A ()5 (1) + AV F(E(T).a ()5 () + X, (1) +
NS E@aE) @) 2 0 ae. on Ry, (3.34.19)

where R, denotes the set of time points for which v (7)=0.

The essence of the approach is now that on the set R,, the values of ¢ (7), which are res-
tricted to the set U, may still be chosen (they do not affect the value of the object func-
tion, nor any of the other constraints). On the sel R, all other quantities are constant and
hence the choice
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u(r) = a@(r)).
yields the equality implied by (3.3.4.18). Therefore % (¢ (7)) must be a global minimum of
P M N + A@E FEMa 3 () + MV S1(E ()5 (1)),

over the set U .

Of course this reasoning is not a rigorous proof for (3.3.4.2), which should involve a prop-
er choice of the function v (7) and # (7) on R, that shows that (3.3.4.2) must hold almost
everywhere on 0.7 ] and at the same time be a pointwise global minimization (cf. Girsanov
(1972) for further details).

Equation (3.3.4.1) is obtained from (3.3.4.18) following the derivation below. Here the use
of the variable time transformation (3.3.4.3) - (3.3.4.5) is further superfluous. Therefore
we set v (7) constant on [0,1].

~

A(@)=—Hz]— A,V S,le]= — Hz]l  ae 05:<T. (3.34.20)

Because A » is the adjoint variable corresponding to (3.3.4.9), it satisfies relations similar to
(3.3.32)-(333.4):

ll - tl
NaED=A, )= — [ Ine TS, Dd — [ dE@) S,lr]

for all 05¢<¢,&7, (3.34.21)
and
M (T) = pgor[T]1+ BT EFIT]. (3.34.22)

Taking £;=7 and combination of (3.3.4.21) - (3.3.4.22) with (3.3.4.20) yields (3.3.4.1).
O

3.3.5. Smoothness of the multiplier £.
In this section the smoothness of the multiplier E is considered, which is essential for the
practical application of the optimality conditions stated in the previous sections.

Because 2 is a function of bounded variation on [O,f 1 it has at most a countable number
of discontinuities and its derivative exists almost everywhere on [0,T ] (cf. Royden (1963),
p.86). Hence equation (3.3.3.2) is equivalent to :

AN = —H 11— 7@ S [t]— A Y S, [2] ae. 0<t<T, (33.5.1)

}:(tj +Y = X(tj—)r — 9182, 0t;]1  at points of discontinuity of 3 {3.3.5.2)
where : N,(¢) = g(t ), )

v, = Er;4) — £ -).

The conditions (3.3.3.8) and (3.3.3.9) of Theorem 3.11, i.e. E,- = constant if S, [t]1<0
and £; = nondecreasing on [0.T ] are equivalent to the conditions :

@) =0 if Sultl <o, (3.3.5.3)

ﬁz,‘(t)} 0 if S2i[t] = 0, (3354)

and
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] if Sull<o, (3.3.5.5)

;=0
P, 20 if Syxlt;1= 0. {3.35.6)
J J

The application of these optimality conditions is complicated by the fact that we have no
information, about the time points ¢; at which ¢ is possibly discontinuous, on intervals
where one or more of the components of S, are zero.

Before the main result of this section is stated, some terminology and some definitions are
introduced.

Let p; and ! be integers with 1X p; <. Assume that the functions f(x u .t ) and S5 (x 2)

are respectively C'- and C* -functions with respect to all arguments. Define the functions
(cf. Hamilton (1972)) :

Flilxuit) = Sy(x.t) (3.3.5.7)
j—1 j—1
Fi(xur) = iF-’é‘—a(;’;—’u—'f—)—f(x at)+ Eﬁ—;t’f—"—il ji=12,...p;. (3.358)

The order of the state constraint So; is p;. if

F%;(x gugut
7 = min{geN : Troe R” A Tuge R™ A Foe R ——E—’;‘;ﬂ—‘i = of}.

Based on this definition the functions S, : R*XR — R for j=0,1,..p;—1 and
S5 : R"XR™XR — R are defined as S4; = Fj;, for j=0.1...p;.
Along a trajectory (x ,u) that satisfies the differentjal system (3.1.2) we have

di8y(x(@)e)  |Sh=@)e) i=01,..p—1

; = 1.2 (3.35.9)
dr’ S5 () (2 )) i=pi

By definition the functions S,; (x.t) do not depend on u explicitly and hence we have
piz1foralli=1,..k, A logical extension to the definition of order of a state constraint
is, to define mixed state control constraints as state constraints of order zero.

We now introduce :

§:R*XR"xR—R""*?,
N Silxup)
Sxur) = Sy(x 2) (3.3.5.10)

and

§7 : R"xR™ xR~ R,
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Si(xut)
SQ} (x,u.t)

SPxut) = ) (3.35.11)

Pr
SZkzz (x u ,t)

Definition 3.13: Let (£ .2.7) be a solution to problem (SCOCP) and let
L = {teloT]: §,G@a@)e)=0)  i=12,.k +k,. (3.3.5.12)

be the set of active points of the state constraint S ;(x u &)< 0. With respect to §;, a subin-
terval [t12,0C[0.7), ¢,<t,, is called a boundary interval if {t,£,]CI; and an interior
interval if [t,t,]N I;=3. Entry-points respectively exit-points, also called junction points,
and contact points, are defined in an obvious way.

The possibilities that £ =0 is an entry- or contact point or =T is an exit- or contact point
are included. [z,.t,] is a boundary interval for § if [¢,.,] is a boundary interval for every
component S;,i=1,....k+tk,.

For simplicity we shall assume two cases in the sequel, either [¢ 1.t ;] is an interior interval
or [¢1.t5] is a boundary interval for S. Cases where some but not all state constraints are
active on an interval [z ,¢,] are similar to the case that [£,¢,] is a boundary interval for S.
In these cases all assumptions and results correspond to the case that all inactive com-
ponents of $ are omitted completely.

The following regularity condition is of importance :
Assumption 3.14: Let the function §7 : R" XR"XR - R“1**2 be defined by (3.3.5.11)
and let (x 4 .T) be a solution to problem (SCOCP), then

rank SPE @) ()t) = ki+ky ae on I;UILU - UL 4, (3.3.5.13)

The following theorem establishes the smoothness of 2 on boundary intervals :

Theorem 3.15 : Let (£ ii.T) be a solution to problem (SCOCP) for which Assumptions 3.7,
3.8 and 3.14 hold, and let fo, f and S be C?* -functions (5 = max p;) with respect to all
arguments and 12 0. Let [t,.t,] be a boundary interval. Assume in addition that u(t) is a
C?* _function on [t 1t 5] with

@) eimt U forall te(t ty). {3.3.5.14)
Then the functions A and & in the adjoint equation (3.3.3.2) are C!*1-functions on (¢ 1.t ).
In particular the adjoint equation

AGY = — H.lt1— AG) 8, [t]  1,<t <t,. (3.3.5.15)
holds, where 7 = ( IT.ET) is a C'-function.

The proof of this theorem can be found in Maurer (1976,1979), who put the heuristic
proof of Jacobson et al. (1971) on a solid base.

The proof is done in two steps. The first step deals with the case of one state constraint
and one control. Because of (3.3.5.14) condition (3.3.3.5) becomes (£ ;=0) :
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H,[t]1= 0 forall t,<t<t,.

Consideration of the (5—1)-th time derivative of H,[t] on (¢,.t5) yields the result. We
note that this approach is essentially based on the smoothness assumption made on the
control # (¢ ).

The second step deals with the general case of multiple state constraints and multiple con-
trols. The regularity Assumption 3.14 is used to apply the same techniques used in the
first step via an elimination process.

Under the hypothesis of Theorem 3.15 we may thus be sure that points of discontinuity of
the function E cannot be interior points of boundary intervals. From (3.3.5.5) we know
that these points are also not points of interior intervals. Hence points of discontinuity of
2 can only be junction or contact points. At these points equation (3.3.5.2), which is
called the 'jump’-condition, must hold.

3.3.6. Alternative formulations of the first order optimality conditions.

This section deals with some alternative formulations of the first order optimality condi-
tions. To simplify things we consider the problem (SCOCP) for the case that there are no
mixed control state constraints (k;=0), one state constraint (k,=1) and one control
{m=1). We note however, that the results of this section can be extended to more general
cases in a straightforward manner. Because the manipulations on the state constraints are
done for each boundary interval separately, we assume without loss of generality that the
set of active points of the state constraint S, consists of only one boundary interval
[£1.6,). with 0<¢,<t,<T. The order of the state constraint S5 is denoted by p.

For all i=0,1,2....p the augmented Hamiltonian is defined as :
HxaupXifie) = pfolxat) + N flxus)+ A S0 ur) (336.1)

where the functions S5 are defined by (3.3.5.7) - (3.3.5.8).

Setting A°=X and #°=f=£, Theorems 3.11, 3.12 and 3.15 involve the augmented Hamil-
tonian for the case i = 0.

The main result of this section will be a similar statement for all i = 1,...,p. Its statement
is simplified by means of the following definitions :

L]
ot [A%r)dr = B 4)=8() 6+ SeSe,-
1
) = (3.36.2)
0 elsewhere
Bl = AN, 4)49, = EG,)—E( ). (3.36.3)
[2 ‘
[A™M) dr 6 4<tSi,— i=2..p22
1
() = (3.36.4)
0 elsewhere
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~

Bf = H(H) i=2,.p22, (3.36.5)
and
-~ i 884z -
Ao )T - }: I )——5—Ll 0<t<T i=1..p (3.36.6)

Ji=1

N

With these definitions the following minimum principle bolds :

Theorem 3.16 : Let (£.i.T) be a solution to problem (SCOCP) with k=0, k,=1 and
m=1. Suppose that fo, f and S are C?-functions and that Assumption 3.14 holds. Assume
in addition that the set of active points consists of one boundary interval [t ,1,], with
0<t,<t,<T and that @i is a CP-function on (¢ ,,t,) with

w(t)eintU foral te(zyt,). (3.36.7)

Let p.6 ..\ and E satisfy the conditions of Theorems 3.11, 3.12 and 3.15 and let \' and #'
be defined by (3.3.6.2) - (3.3.66) foralli=1....p.

Then, for alli=1,...p, the following relations hold :

Ni@)Y = —Hit] ' ae. 0S:<T, (3.368)
N0 = — phol0l— &7 D, [0], (3.3.6.9)
N@Y = pgelTl+ BTEIT], (3.3.6.10)
.. 8541
M@+ = AN@=)Y — Zﬁ!——ﬁ—ill, (3.36.11)
j=1
g/ > 0 j=12..0. (336.12)
AHE) 2 0 j=12,.0 t;<t <t, (3.36.13)
Hr] = max H @) pN @A E)E) ae. 0S:<T, (336.14)
BTl = —pgorll]— AT EIT] (3.36.15)
i—‘fit—[fl = ] ae. 0S:<T. (336.16)
_. _. i 384Tz
Hlt,+] = HIe,—1+ Z——%t—[]- (3.36.17)
j=1

Proof : The theorem is quite similar to Theorem 5.1 of Maurer (1979). who considered the
autonomous case with fixed final time.

The hypotheses are such that the conditions implied by Theorems 3.11, 3.12 and 3.15
hold.

Condition (3.3.6.9) and (3.3.6.10) follow directly from (3.3.3.3) and (3.3.3.4). Taking the
time derivative of (3.3.6.6) results in :

8541
Zn Ox

and definitions (3.3.6.2) and (3.3.6.4) yield :

(3.36.18)

52



Optimal control problems with state inequality constraints

41 = — g i=12..p. (3.36.19)
sj = as;‘t‘1 + 686%: 5 (3.36.20)
R

Combination of (3.3.6.18) with (3.3.6.19) and (3.3.6.22) gives :

Ai=Ro- x|~

i=1
Using (3.3.5.1) for A © yields (3.3.6.8).

The entry point condition (3.3.6.11) follows from the 'jump’-condition (3.3.5.2) forz =¢,,
which becomes

883! LTS ;88471 af
b U By =L, 36.23
0x + 1 Ox K dx Ox (3.36.23)

ROz 4+) = Az, =) — ﬁlasgit’], (3.36.24)
Definitions (3.3.6.3), (3.3.6.5) and (3.3.6.6) give :
1 P -
RiG+) = 3% ,+) — (B3, )M pxd "’55 [ 2y (3.3.6.25)

Combination of (3.3.6.24) and (3.3.6.25) give (3.3.6.11).

A similar derivation at ¢ =¢, reveals that for all 2 1, the functions A\’ are continuous at
this point.

Conditions (3.3.6.12) and (3.3.6.13) follow directly from the properties of 9° §; and ¥,
and the defining equations (3.3.6.2) - (3.3.6.5).

HE@upr@)A @) = pfoF@)us) + NG GE@)ut)—

i '——1
YA @) é I ]f(x(t)u 2+ A EISEE @ u ).
ji=1
Because,
, 85471
asg-l[z] Sé[t]——é—az[t—] ji=t.p—1
f(x(t)u Na )— asg—.l[t] (33626)
Sé’(f(r),u,t)-————r j=p
we obtain
@@ pA )R E)e) = HGE @a pA)AE ) +
i 1
PG )Es—ﬁé—u forall uel. (3.36.27)
j=1

Because the second term does not depend on u, (3.3.6.14) follows directly from (3.3.4.2).
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(3.3.6.15) follows from (3.3.4.1) for ¢ =7 because 7/ (7 )=0 for all ;.

(3.3.6.16) and (3.3.6.17) follow from (3.3.4.1) via a derivation similar to the derivation of
(3.3.6.8) and (3.3.6.11).
]

With regard to Definition (3.3.6.4) we note that it implies :
AE,-)=0 i=2..p (3.36.28)

In essence Theorem 3.16 states a minimum principle for each fixed i€ {/,..p}. From the
Definitions (3.3.6.2) - (3.3.6.6) it is clear that the multipliers associated with the various
minimum principles for i =0,1,...p are related. Given a set of multipliers associated with a
principle for one specific {. it is possible to obtain the multipliers associated with other
minimum principles via either integration or differentiation.

Before this section is finished. we shall make some notes on related results in literature.
For i = p the minimum principle is similar to the conditions given by Bryson et al. (1963).

These conditions were derived following an indirect approach. Instead of treating the state
constraint direct, the constraint was replaced by :

Six(@de)=0 j=01,.p—1, ) (3.36.29)
and

S5 ()u@)t) =0 ¢;€e<zt, (3.36.30)
The conditions given by Bryson et al. however, are somewhat weaker, e.g. they involve
(3.3.6.13) only with j=p.

This fact was recognized by Jacobson et al. (1971), who were the first to derive the

minimum principle for i =0. Later Norris (1973) put the proof of Jacobson et al. on a

solid base, except for the results on the smoothness of the multiplier £. These results are

due to Maurer (1976.1979). Kreindler (1982) showed that the conditions given by Bryson

et al. can be made as strong as the minimum principle for i =0 by augmenting the set of
conditions with a number of additional conditions on the multipliers and their derivatives.

In fact this yields the minimum principle of Theorem 3.16 for the case i=p.
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3.4. Solution of some example problems.

In this section we shall give some examples that will be solved using the optimality condi-
tions of the previous sections.

3.4.1. Example 1.

1

Minimize 1 Of u?(z)dt, (34.1.1)

subject to : b Xa o< <1, (34.1.2)
X2 = u 0L <1, (34.1.3)
x,(0)= 0, . (34.14)
x,(0) = 0, (34.15)
(=1, (34.16)
x,(1) = 0, (34.17)
() —uUpex € 0 0L < 1. (34.18)

The problem specified by (3.4.1.1) - (3.4.1.8) is a problem with fixed final time, and fixed
initial and terminal state. The constraint (3.4.1.8) is treaied as a mixed control state con-
straint. The control constraint can, in the formulation of problem (SCOCP), be handled in
two ways, i.e. by means of the set U or by the constraint function §;. We shall follow the
latter road by setting S1=u =u ,,,. Because the problem specified by (3.4.1.1) - (3.4.1.8) is
a special case of problem (SCOCP), the optimality conditions of Section 3.3.3 can be ap-
plied straightforward. Because we have fixed initial and terminal states, the boundary con-
ditions (3.3.3.3) and (3.3.3.4) can be discarded as they only introduce additional multi-
pliers, whose values follow directly from the values of A(0) and A(T').

The Hamiltonian (3.3.3.1) becomes :

H(x z.p\) = -;-puz + Axp + Aou (34.1.9)

The optimality conditions of Theorem 3.11 take the following form :

Ai=0 ae. 05:<1, (3.4.1.10)
Az=— Ay ae. 0S:<1, (34.1.11)
Pl + ha+ M1 =0 ae. 05151, (34.1.12)
20 ae. 0Sr<1, (3.4.1.13)
N1 = pe) = O ae. 0€:<1, (34.1.14)

We shall first consider the regularity of the problem. If there is an interval of nonzero
length with # (z }<u 0, then p= 1, because p=0 would according to (3.4.1.12) imply

Aa(t) = = fi;(e).
Because, on an interval where 4 (¢ }<u,,,, we have
'ﬁl(t) = 0,

the zero solution would follow for A,(¢) and X (¢ ). and that would contradict the main
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statement of the theorem.

The situations @ (f ) <u nqy and & (¢ )€ up,, (i-e. equality holds on a nonzero interval), are
considered separately.

In the case that
U(t) < U 0€e<€1, (34.1.15)

condition (3.4.1.14) implies

ne)=10 0< <1, (34.1.16)
substitution into (3.4.1.12) yields : ’

4() = — A,(2) 0<r<1. (34.1.17)
Xz(t ) follows from (3.4.1.10) and (3.4.1.11) as

M) = X, = constant 0<¢ <1, (34.1.18)

M) = A,00) — Ayt 0<¢<1. ' (3.4.1.19)

Substitution of the control (3.4.1.17) in (3.4.1.2) and (3.4.1.3) and integration using the
boundary conditions (3.4.1.4) and (3.4.1.5) yields :

Zat) = = Xp(0) + LAyr? 0<<1, (34.1.20)
Re)= — IR0+ LXp®  0<z<1, (34.1.21)

The numerical values of ):2(0) and ):1 are determined from the boundary conditions
(3.4.1.6) and (3.4.1.7) :

A0 = — 6, (34.1.22)
A= -—120 (34.1.23)
This solution is only a candidate for the solution if #,,,> 6, i.e. in the situation that the

control constraint is not active at any time point (cf. Figure 3.1).

In the case that u,,, <6, the situation is a little more complicated. Based on the uncon-
strained solution we may guess that the constraint is active over an interval [0.t 1] and
inactive over the interval (¢,,1}

Conditions (3.4.1.10) - (3.4.1.14) imply in this case :

R U pmax 0$t<t1
Q) =05 Ay r,<e <1 (34.1.24)
R ‘;\z(t )"umax Ostgtl
M) =1, £<t<1 (34.1.25)

Substitution of the control (3.4.1.24) in (3.4.1.2) and (3.4.1.3) and integration using the
boundary conditions (3.4.1.4) and (3.4.1.5) yields :

U sl 0t <ty

e = Ut 1= A 202 —¢ D+: A2 ) t,<t<€1

(34.1.26)
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%u,m,,t2 <<,
£1308) = |2t part F+ Wt 1A ,(0) -1 Nt 2)e—2,)— (34.1.27)
%)\2(0)(12——t12)+é_)\1(t3-—tf’) t<t<1

The boundary conditions (3.4.1.6) and (3.4.1.7) are satisfied when 2,(0) and A, are :

. — 12461 et
A = — 34.1.28)
! (1—¢ 1)3 (
- —6(142 D+t pgut 1 £ +2,44)
A(0) = . 34.1.29
2(0) s (3.4.1.29)
Combination of (3.4.1.25) and (3.4.1.24) with (3.4.1.13) yields
MZ0 0<: <ty (3.4.1.30)
and (3.4.1.14)
() € Uy t,<t<1, {34.1.31)
results in the condition
2a(t) € =t gy 0<2<t,, (34.1.32)
and
AN(E) 2 = t<t<1. (34.1.33)
)
u(r) ]‘ 4
0

Solution of Example 1 for u,,,,>6 and u 5= 4.
R Figure 3.1
Because A, must be continuous on [0,1] as a result of the fact that there are no state con-
straints of order higher than zero, we must have

X2("‘ l) = = Upax» (34134)
and hence
ﬁ(t l+) = U paxr (34135)

i.e. the control must also be continuous at ¢t =t¢;.
With (3.4.1.18), (3.4.1.28) and (3.4.1.29), equation (3.4.1.35) may be solved for z; :

57



Chapter 3

6

u max

t=1 -1} (34.1.36)

For 2<u,,,,<6 we have 0<z;<1. For u,,,,< 2 the problem has no solution because there
is no feasible control for which the boundary conditions (3.4.1.6) and (3.4.1.7) can be
satisfied. In Figure 3.1 the optimal control # (¢ ) is presented for two values of u -

An alternative method for the determination of the time point z; is to use condition

(3.3.4.1), which states for this autonomous problem that the Hamiltonian must be con-
stant on [0,1] and hence

Hl¢,+] = Hlz—1 , (34.1.37)

A simple derivation shows that this conditions implies that the control must be continu-
ous at £ =¢, and hence the same result follows.

3.4.2. Example 2

1

Minimize 1 [u?(2)adt, (34.2.1)

XU 0

subject to : X, = x, o< <1, (34.1.2)
X, = u 0<r<1, (34.2.3)
x1(0) = 0, (34.24)
x,(0) = 0, (34.2.5)
xl(l) = 1, (3.4.2.6)
x,(1) = 0, (34.2.7)
xo(t) — Xopar £ 0 0<<1. (34.2.8)

This problem is similar to the problem of Example 1, except for the constraint (3.4.2.8),
which is now a state constraint of first order.

The optimality conditions of Theorem 3.11 combined with the smoothness results of Sec-
tion 3.3.5 take the following form :

Ay

=0 ae. 05¢t<1, (34.29)
iz = — A~ s, ae. 0Sr<1, (3.4.2.10)
Pu+r,=0 ae. 05¢<1, (34.2.11)
N2 0 ae. 0S:¥1, (34.2.12)
NoX =Xz max ) = O ae. 05¢<1, (34.2.13)
Aot +) = A =)=, at junction or contact poinits t;, (34.2.14)
v; 2 0 at junction or contact points t;. (34.2.15)

We note that the hypotheses of Theorem 3.16 are fullfilled because on boundary intervals
the control # (¢ ) is zero and hence at least once differentiable with respect to ¢ .

As with Example 1, a simple derivation shows that if there is an interval of nonzero
length on which X< X 3 e, then the regularity constant  must be nonzero.
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The unconstirained solution of the problem, i.e. if X,(¢f })<x, 4 is identical with the one
derived in the previous section. The state variable %, corresponding to this solution is

given in Figure 3.2.
1.5T

x 2([ )"

101 /

!
1
'
'
I
'
i
i

. A2 may > 1.5

X 2.mav = 1.25

~

L

N

Solution of Example 2 for x 3,44, > 1.5 and x5 0y = 1.25.

Figure 3.2

For x3m0 <1.5 the solution, if it exists, will be constrained by the state constraint

(3.4.2.8).

Considering this case we assume that the set of active points of the state constraint
(3.4.2.8), consists of one interval [z ,.t.], with 0<z,<z,<1.

The functions S{ defined by (3.3.5.7) and (3.3.5.8) are :

SO =
5 =

X2 ™ X2 s

Svl =u,

and hence the constraint is of first order.

On the interval [z 1.t 5] the control is determined by

Se(xu)= 0,

which yields in the present case

uz) =0 01€:<1,,
and hence
X)) =0 1, €€,

combination with (3.4.2.10) vields :

ﬁz([) =’_;\1 t1<l$t2.

Using (3.4.2.10), (3.4.2.14) and (3.4.2.19) we obtain

i;l+}:1(t 1t )
Ao(t) =

<

172—):1([ —t 2)

With (3.4.2.11) the control becomes :

0<r <t,
1<t <t,
t,<r <1

(34.2.16)
(34.2.17)

(34.2.18)

(34.2.19)

(3.4.2.20)

(34.2.21)
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u(t) =

Using the boundary conditions (3.4.2.4) and (3.4.2.5) integration yields :

xz(l)

-7?1(2')

P 1=y =1) 0 <1,
0 1<t <t,
V2+}\]([“'[2) lz<t< 1

—pp=x(—Le 4 ) 0L<t,
X 2, max I3 IS 14 < Ly
X2 e F02(0 =1 2)+ I N (0 =1 2P 1,5 <1
- 1’)1[2*‘)\1(_%[3‘{'%—[1[2) : 0<t$t1
=10 =M1 P 4 x g (2—2)) t,€t<¢,

1
Z
1
2
15 2% 1,3
Tyiei—A

sVt 1?11
x

+ 2 max (6 =1 1)+7 51 (t—t2)2+):1é_(t——22)3 t,<t €1

3

(34.2.23)

(34.2.24)

The multipliers 7,, 7, and A, follow from the boundary conditions (3.4.2.6) (3.4.2.7) and
the condition that the state variable x, is continuous at the point z;.

AME o—~12

1-71,' X 2 max (1_—t 1+t2)
P +(1—1,)3

152
2. max —)\ltl

P, = —2ar 2
vV, = s

—_—X

B

2 max _'2_,— Al(l_[ 2)2

The time points

(1=t 2)

t, and ¢, may be determined as follows

XZ([)< X 2 max O<t<t1/\t2<t$1.

and
v, 20
v, 20
NAz) 2 0 1€t <t,.

Consider the state variable x5 on [0,z ],

Ra(e) = =Bk e+ Ay 0<e e,
Thus

$o(t) = —(B+h gt )HAy 0< <1,

it)= A, 0<r <,

At the point
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(34.2.26)

(34.2.27)

(34.2.28)

{3.4.2.29)

{34.2.30)

(34.2.31)

(34.2.32)

(3.4.2.33)
(34.2.34)
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~

- v
F= ety (34.2.35)
Al

the state variable x, has an extreme point. Because of (3.4.2.20) and (3.4.2.31) we have
A <o (34.2.36)

Thus x, has a maximum at . Because of (3.4.2.28) this maximum cannot be a point of the
interval [0t ;) and hence either

~

it <o ' (34.2.27)
X1 ,
or
vy S
TH‘ Z 0. (34.2.28)
1

Using (3.4.2.26) it follows that (3.4.2.37) cannot hold. Because of (3.4.2.29) and
(3.4.2.36), in the case of (3.4.2.38) it must be

Py = 0. ' (34.2.39)
A similar derivation on the interval [¢,,1] yields
7, = 0. (34.2.40)

Using (3.4.2.25) - (3.4.2.27), (3.4.2.39) and (3.4.2.40), it is possible to determine ¢ and 7,
as

X 2max—1
ty= 322m o (34.241)

2 X2max
t, = 1—¢,. (34.2.42)
As with the previous example, an alternative method is to use condition (3.3.4.1), i.e.
Hlz; +] = Hl;~] i=12. (34.2.43)

A simple derivation shows in this case that (3.4.2.39) and (3.4.2.40) must hold.
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4. Sequential quadratic programming in function spaces.

In this chapter a first step is taken towards a numerical solution of problem (SCOCP). In
Section 4.1 we shall present the method in the abstract terminology of problem (EIP) of
Chapter 2. Section 4.2 deals with the application of the method to optimal control prob-
lems. The formulation follows from the interpretation of problem (SCOCP) as a speciali-
zation of the abstract problem (EIP). A number of details concerning the application of the
abstract method to the problem (SCOCP) are discussed in Section 4.3. An outline of the
implementation of the method is given in Section 4.4.

4.1. Description of the method in terms of nonlinear programming in Banach spaces.

The method that is proposed in this section for the solution of the abstract optimization
problem (EIP) is a generalization of a certain sequential quadratic programming method
for the solution of finite-dimensional nonlinear programming problems. For a description
of various of these sequential quadratic programming methods we refer to Bertsekas
(1982), Gill et al. (1981), Han (1976), Powell (1978, 1980), Schittkowski (1980, 1981),
Stoer (1984), Tapia (19742, 1974b, 1977, 1978).

4.1.1. Motivation for sequential quadratic programming methods.

In this section we shall give a motivation for the use of sequential quadratic programming
methods by considering the solution of problem (EIP) stated in Section 2.1 :

Problem (EIP) : Given Banach spaces X, Y and Z, twice continuously Frechet differentiable
mappings /; :X-R,g:X~Y and h :X—=Z, aconvex set A C X having a nonempty
interior, and a closed convex cone B C Y with 0 € B and having a nonempty interior, then
find an % € A, suchthat 3(3) ¢ B and h(Z) = 0, and that

TGS fx) fordal xeANGTABINNG).

In the sequel we shall assume that in the formulation of problem (EIP), the set A is the
entire space X, i.e. A=X. This is done because in a numerical method the more explicit
formulation of inequality constraints of the form g (x )¢ B is required.

Sequential quadratic programming metbods (SQP-methods) are based on the observation
that ‘near’ the solution, the original problem may be replaced by a suitable quadratic pro-
gramming problem. SQP-methods make use of the sequential solution of quadratic sub-
problems, 1o generate directions of search. Along these directions better approximations to
the solution are determined.

The motivation for the quadratic subproblems foilows directly from the second order
sufficient conditions for optimality discussed in Section 2.3. It may be deduced from
Theorem 2.16 that the Lagrangian L(x.y .2") has a local minimum in the subspace
spanned by the linearized constraints, at a point (£ ,3",2" ) for which the sufficient condi-
tions for optimality of part (ii) of Theorem 2.16 hold.

This observation is the motivation for the idea to calculate a direction of search for the
improvement of the current estimate x; of the solution by solving the linearly constrained
subproblem :
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Mirg;mize Lx;+Ax; .y .20),

subject to : g (x;) + g'(x; )(Ax;) ¢ B,
l;(x,« )+ i:'(x,« )(Ax,-) =0,
where § and / are as defined in problem (EIP) and y; and z; are estimates of the Lagrange
multipiers 3 and 3.

What is obtained is a linearly constrained minimization problem with a nonlinear objective
function, which may be approximated by a second order expansion at x =x;.

L(x;+Ax;,95.2]) ~ L(x;y;20) + F'e XAx;) — yig'(x; N Ax;) — 27k (e Ax;) +
%L" (x,- ,y,-*,z,-‘)(Ax,' )(Ax; )

Based on this expansion the following linearly constrained quadratic subproblem is con-
structed for the calculation of a direction of search Ax;.

Problem (EIQP) :

Mir&ilmize ?'(x,v WAx;) + %L" (x;.y] .2 NAx; NAx; ), (4.1.1.1)
subject to : g (x;) + g'(x; )(Ax;) € B, (¢4.1.1.2)
h(x;) + h'(x; XAx;) = 0. (4.1.1.3)

In this problem formulation the term (y;g (x;) + z,-'i’{ (x; ))(Ax; ) is omitted. The reason for
this is that we want to obtain a quadratic subproblem which, at the optimal point X, has
the same Lagrange multipliers as the original problem. When the term
(978 (x;) + 2k (x,))(Ax;) would not have been omitted, then the Lagrange multipliers of
the subproblem at the point x; would have been 3 —y; and Z° —z;, which would have
meant that the Lagrange multipliers of the subproblem would have converged to zero as
x; — % . Because the Lagrange multipliers of the subproblem play an important part in the
determination of the set of active constraints, this is an undesirable phenomenon. With the
modification mentioned above the Lagrange multipliers obtained via the solution of prob-
lem (EIQP) may be used as new estimates of the Lagrange multipliers ' and Z' of the
original problem.

An alternative motivation for the subproblems follows from the application of Newton's
method to the first order necessary conditions for optimality. Consider thereto problem
(EIP) without the constraint g(x)e¢B. Assuming that the hypotheses of part (ii) of
Theorem 2.12 hold, the first order necessary conditions for optimality imply that at a
point %, there exists a 2 € Z”, such that

F(x:)=0, (4.1.14)
where the operator F : XXZ" — X' XZ is defined by :

FUx) = 2 h'(x)

A () (4.1.1.5)

F(x.,z") =

The method of Newton applied to (4.1.1.4) requires the iterative solution of :
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F(x;.z}) + F' (x;.2))(Ax; .Az]) = 0, (4.1.1.6)
or, equivalently,

Fe) = 2R (x) + L (e z))(Ax,) — AzR () = 0,

h(x;) + 7'(x; )(dx;) = 0.

Setting :
z,-*+1 =z + Az,

yields :
L' (x.2))(Ax) = ziqh () = = fxi), (4.1.1.7)
ﬁ'(x,-)(Ax,») = — A(x,). (4.1.1.8)

When the multiplier Z 41 IS interpreted as a Lagrange multiplier, then the equations
(4.1.1.7) - (4.1.1.8) constitute precisely the first order necessary conditions for optimality
of :

Problem (EQP):
Minimize J'(x;)(Ax;) + 11" (x;.2))(Ax XAx), (4.1.1.9)
subject to : I;(x,») + i:'(x,- WAx;) = 0. (4.1.1.10)

The extension of the method of Newton to nonlinear programming problems with inequal-
ity constraints is not straightforward. To investigate this consider instead of (4.1.1.4) the
inequality (inclusion in a positive cone) :

F(x3)ecC, (4.1.1.11)
where the operator F : X XY* — X" XY XY  XR is defined by :

Fx)—y"g(x)

F(x.,y") = gy(’f) (4.1.1.12)
yglx)
and
C = {0IxBxB*x{0}, (4.1.1.13)
with
B 1= {y7eY':<y',y>20 forall yeB}. (4.1.1.14)

Similar to the case of equality constraints, the inclusion (4.1.1.11) constitutes the first
order necessary conditions for optimality for problem (EIP) under the assumption that the
regularity constant p may be set equal 1o one. A generalization of Newton's method to
(4.1.1.11) implies the solution of :

Flx;90) + F (x;.9 XAx; Ay e C, (4.1.1.15)

or, equivalently using y;; := y;+Ay],
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L (i )XBx) = yid () = = F'x), (4.1.1.16)
g(x) + g'(x; NAx;) e B, (4.1.1.17)
yis1 € BT, (4.1.1.18)
<yi1, 8 (x )+ G NAx; )> — Ayig'(x; Ax;) = 0. (4.1.1.19)

The conditions (4.1.1.16) - (4.1.1.19) are not necessary conditions for optimality of any
(sub)problem as in the equality constrained case. However, if we replace (4.1.1.19) by

<yiers 8GxHE G (Bx)> = 0, : (4.1.1.20)

then conditions (4.1.1.16), (4.1.1.17), (4.1.1.18) and (4.1.1.20) are the first order neces-
sary conditions for optimality of :

Problem (IQP) :
Minimize 7 )(Ax,) + L LY Gxy ) Ax; X Ax,), (4.1.1.21)
subject to : g(x;) + g'(x; (Ax;) € B. (4.1.1.22)

Summarizing the discussion sofar, we gave a motivation for an algorithm which makes use
of directions of search calculated via the solution of problem ((E)IQP), either as a minimi-
zation of the Lagrangian in the subspace spanned by the linearized constraints, or as a
Newton-like method applied to the first order necessary conditions for optimality. We
note that in the discussion of the algorithm, implicitly the assumption was made that at
every point (x;,y;.z;) the problem ((E)IQP) has a solution which satisfies the sufficient
conditions for optimality of Theorem 2.16.

4.1.2. Active set strategies and merit function.

In this section we shall consider some algorithmic options for SQP-methods for the solu-
tion of problem (EIP).

There are essentially two ways in which inequality constraints of the form g (x )¢ B may
be handled. One way is to use in each iteration of the method an estimate of that part of
the constraints which is active at the solution. This estimate is called the working set and
is updated before each iteration. The constraints in the working set together with the
equality constraints define a nonlinear programming problem with only equality con-
straints. Application of the SQP-method to this problem requires in each iteration the
solution of a problem of the type (EQP), i.e. 2 quadratic programming problem with linear
equality constraints. A strategy which is used to determine the working set is called an
active set strategy. In the case of SQP with equality constrained subproblems the active set
strategy is based on an estimate of the solution of the original problem. The second way
10 handle the inequality constraints g (x )€ B is to solve the problem (EIQP) as a quadratic
programming problem with linear equality and inequality constraints. The major problem
in a solution procedure of problem (EIQP) is again the determination of the active set, i.e.
that part of the constraints g (x;)+g '(x; J(Ax; )¢ B which are satisfied as equalities at the
solution point. Thus in this case the active set strategy is part of the quadratic program-
ming algorithm that calculates the solution of the subproblem (EIQP).

We note one essential difference between the two methods. With the first method the ac-
tive set strategy focusses directly on the active set of the original (nonlinear) problem
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whereas with the second method the active set strategy is used to determine the active set
of problem (EIQP).

The discussion in the previous section focussed on the motivation for the calculation of
directions of search via the solution of a quadratic programming problem. The derivation
of this quadratic programming problem is entirely based on linearization arguments that
hold only in a neighborhood of a solution (£,5 .2 ). Hence it must be assumed that the
current iterate (x; ,y,-’,z,-*) is ‘sufficiently close’ to the solution. For a practical procedure
this assumption is too restrictive. Fortunately it is possible to ‘globalize’ the method pro-
posed, by means of a merit function. This is a function which assigns a real value to each
triple (x,y".z")e X XY XZ", and which has the property that it has a minimum at the
point (£.5°.27). Using the direction of search Ax; and the Lagrange multipliers (5 .z )
obtained via the solution of the problem (EIQP), the current iterate (x;,y;.z;) is. at each
iteration, modified such that the merit function is minimized along the direction of search
(Ax; 5 —y, .2 —z]), ie.

Mio;} = min M{a),
a>0
where M denotes the merit function and the notation {a} is used to replace
(x; +abx;, yi+aG —y)), 2z talz' —2z})).
The parameter «; is called the step size.

We note that in order to preserve the excellent local convergence properties of Newton's
method, the merit function must have the property that in a neighborhood of the solution,
the step size a; converges to one.

4.1.3. Abstract version of the algorithm.

Based on the sequential solution of quadratic programming problems (EIQP) we are led to
the following algorithm :

Algorithm 4.1:
(0) Set xy = given value;i = 0;

(1) Calculate first order Lagrange nudtiplier estimates (y;.z;) as the multipliers
corresponding to the solution of :

Minimize f'Gxi)(d)+1<Gd.d >,

subject to : g (x;} + g'(x;(d ) e B,
B(x;) + R'(x;)Xd) = 0.

where G : XXX — R is a positive definite mapping used to imitate an inner product
in the Banach space X, as (x ly) = <Gx,y>.%

(ii) Calculate the Hessian of the Lagrangian at x;

L (xiyizl) = F(x) = 38 "(x) — 2R (x;).
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(iii) Calculate second order Lagrange multiplier estimates (5 .Z" ) and the Newton direction
dy as the solution of :

Minf.'lmize ?‘(x,' Xd)+ _21. <L"(x;y1.20)d .d >,
subject to : g(x;) + g'(x;)(d) € B,
h(x)+ R'(x;)d) = 0.

(iv) Iflldyll< € then ready.

(v) Calculate a step size o; such that
Mia;} = min Mo},

and set

Xip1 = ox; tady,
yier = ¥+ ai G =y,

Zi* + o (Z_‘ _Z,‘*).

il

.
Zit1

(vi) i =i+ 1
goto (ii).

The algorithm above is based on the sequential solution of quadratic programming prob-
lems with equality and inequality constraints (EIQP). A similar algorithm follows for the
case that the calulation of the direction of search is based on the solution of quadratic pro-
gramming problems with only equality constraints (EQP). In this case the active set stra-
tegy is to be performed at the point of step (ii).

t The mapping G can be chosen the identy operator in Hilbert spaces. Using the interpretation of the
mapping G as an imitation of an inner product, the solution d of step (i) has the interpretation of a
generalized projection of the negative gradient on the subspace spanned by the linearized constraints.
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4.2. Application of the method to optimal control problems.

4.2.1. Formulation of the problems (EIQP/SCOCP) and (EQP/SCOCP).

In this section we shall consider the formulation of the problems (EIQP/SCOCP) and
(EQP/SCOCP) which are the specializations of the problems (EIQP) and (EQP) for the
state constrained optimal control problems (SCOCP). From Section 3.1 we recall

Problem (SCOCP) : Determine a control function weL[0TY, a state trajectory
xe W1 xl0.TT and a final time T >0, which minimize the functional

T
Ro(x(0) + [ folx (e)ae(e)e) dt + golx (T).T),
0

subject to the constraints :

@)= fx@)u@)t) ae 0S:<7T,

D(x(0)) = 0,

E&(T)Tr)=0,

u(@)e U ae. 0St<7T,
S1ixc@u@)t)< 0 ae. 0St<T,
Sx(@)t)< 0 0<t<T,

where : ho:R"—R; fo:R"XR"XR-R"; go:R"XR-R; D:R"-R°;
f iR"XR"XR—-R"; E:R"XR-R; S§;:R*XR"XR-R""; S,: R"xR—~R"?;
U CR™,is a convex set with nonempty interior.

Forall xe R" ue R™ rank Sy, (xut)=k, ae. 0Lt<T.
The functions ho, fo, go, [, D, E Sy and S, are twice continuously differentiable functions
with respect to all arguments.

For the sake of brevity we shall consider fixed final time problems, because variable final
time problems can be transformed into fixed final time problems (cf. Section 3.3.4).

The assumption that, in the formulation of problem (EIP), the set A is the entire space X ,
becomes in the formulation of problem (SCOCP) :
U= Lglorl". (4.2.1.1)

This will be assumed in the sequel without any further reference.

To denote the variables in the current approximation to the solution of problem (SCOCP)
we shall use the notation x'(¢), v (¢), A (¢}, ni(¢), £ (t), i), v, ! and u'. The no-
tation [z ] is used to replace argument lists involving x'(z), u’(z ), N (z), n{(t), €(t), o’
and p',eg [t]= (x'@)ui@)).

For the formulation of the problems (EIQP) and (EQP) an expression for the second
Frechet differential of the Lagrangian is required.
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Lemma 4.2t Under the assumptions given in the formulation of problem (SCOCP), the
Lagrangian is twice continuously Frechet differentiable for all x;€ Wi[0TT,
wieL [0TY", Nie NBVIOTY , mie L [0TT !, £ e NBVIOr T2, oie RS, uie RY and

L' (P ui Al g0l ui)(8x1.8u)(8x,5.8uz) = 8x1(0) (h oy [Ol+0xD,, [0D8x,(0)

T . r Hxx [t ]+'n1‘(t )*Slxx [t] qu [t ]+7){(t )*Slxu [t] axZ(t)
+ ST B N g e )58l ] Hule i )sS le]] [Suse) | %
T
+ faxl(t)r(dfi(t)*SZxx[t])8x2(t)+
]
Sx l(T )T (g Oxx [T]+/L*Ex,\ [T])SJCZ(T ) T (4212)

where the Hamiltonian H (x ,u A\t ) is defined by :
Hxuhr)= folx ut)+ AT flxut).
A proof of this lemma is not given here as it follows in a straightforward fashion from the

application of Lemma 1.4a, p.94 of Kirsch et al. (1978) to the first Fréchet differential of
the Lagrangian. : i

In the sequel we shall occasionally use the pair 14 and v J' instead of the multiplier £*. The
multiplier nd represents the time derivative of ¢’ whenever it exists and the multipliers
v} represent the discontinuities of the multiplier £’ at time points ¢;, i.e.

i) = £ @) ae. 0S:€T, (4.2.1.3)
and
vii= £, +) — €, -). (4.2.14)

The specialization of problem (EIQP) for problem (SCOCP) follows directly from Lemma
4.2 and the abstract formulation of problem (SCOCP) as given in Section 3.2.

+ The notation @x M is used to denote the tensor product of a vector & with a block matrix M . The in-
terpretation of this product is that for instance 0% Dyy [0] is the Hessian of the functional &7 D (x )
with respect 10 x for fixed 0 at X (0).
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Problem (EIQP/SCOCP) :

T .
Mliini;nize ho, [0}, (0) + f (Fox [ Jd, (¢ ) ¥ fou [£1d, (¢ Ndt + g oy [T1a, (T) +
x Py L)

14,0 Md,(0)+ 1 fr[d',(z)f d (z)T][Mz[t]T Mle ]} 4 (0) dr
2 x z ) u Mt ¥ Ml 4. @)
+ 1 7d, () Mlt;1d, (e;) + 1d, (TY Msd, (T), (4.2.1.5)
J

subject to 1 d, = f,[tld, + f,leMd, + flt]1—%'(t) ae. 0X:<T. (4.2.16)
D[0] + D, [0)d,(0) = 0, (4.2.1.7)
ElT]+ EIT.(T) =0, (4.2.1.8)
Sdel+ 8,0t +8,,[tld, €0 ae 0St<7T, (4.2.1.9)
Solel+ 8yt €0 0<:<7T, (4.2.1.10)

where M, = hoy 0]+ o+D,, [0l (4.2.1.11)
Mylt]l = fouult]+ Mgt 1+ nixS1le]+ mixSon 2], (4.2.1.12)
Mjlt] = foult]+ Nafy 1+ nixSy,, e ], (4.2.1.13)
MJt] = foult1+ Nixf, [t1+ mixSy, [t ] (4.2.1.14)
Ms = gounlll+ wE,[T] (4.2.1.15)
Mlt;] = vixSa,[t;] forall j. (4.2.1.16)

The statement of problem (EQP/SCOCP) requires the introduction of the following some-
what complicated terminology.

Recall the definition (3.3.5.10) of the vector function S (x .z .t) which contains all control
and state constraints. With every component S, U=1,.k+k) aset W, c[0,T]is associ-
ated, which is the collection of all time points for which the constraint S; is supposed to
hold as equality. The set W, is called the working set of S,.

The sets W, consist of m? boundary intervals [th;. 1 .t5;1 (j=12...m{) and m{ contact
points tlZm,”-é-j (j=12,..mf).

I(¢) is used to denote the index set of active constraints at the time point 7, i.e.

1) = {1 ;1K1 k kA teW,} forall OXt<T.

k(¢) denotes the number of constraints in the working set, i.e. the number of indices in
the set J(z).

Elements of the index set I(¢ ) are referred 10 as i1.is.....etc., i.e.

I(t) = {il’iZ ...... i/\_(t)}'

The state constraints of the subproblem (EQP/SCOCP) follow from the linearization of the
constraints
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S,@u@)e)=0 ae teW,, 1=12, &k +k,. (4.2.1.17)
which (along (x (¢ ),u?(¢)) are given by :
S el+ 8,01, )+ S,ltld,(t)=0  ae teW, =12,k +k, (42.118)

The & (¢ )-vector R[¢]is used to denote all constraints in the working set at time point ¢ in
a compact way, i.e.

Rle] == §;[¢] 1=12..k(), O0<:<T. (4.2.1.19)
The linearization of the state constraints is denoted by
Rle]+ R [tld, () + Rt 1d, )= 0 0S¢ <T. (4.2.1.20)

"(We note that when % (¢ ) is zero, then R[¢] has dimension zero and hence, at these time
points, there is no constraint on d, and d,). With the terminology introduced above,
problem (EQP/SCOCP) becomes :

Problem (EQP/SCOCP) :

T
Minimize  ho,[01d, (0) + [ (foxl2 1, (& )+fo, [t M, (¢ Dde + g0, [T1d, (T) +
1]

L, O Mady (@) + 3 [ 1d, ) dy )T]le[t]T Ml ()
2 x z J u M3V Ml |d.@)
+ 1 X (6, Melt; 1 (t)) + 1 d (T Msd, (T, (4.2.1.21)
j

subject to :d, = f ltld, + f,le)d, + flz1— xi(2) ae. 0St<T, (4.2.1.22)
D[0] + D, [0]4,(0) = 0, (4.2.1.23)
E[T]+ E [T, (T)= 0, (4.2.1.24)
Rt1+ R tld, + RItld, =0 ae. 0StST, (4.21.25)

where the matrices My, My, M3, M 4, M 5, M ¢ are defined by (4.2.1.11) - (4.2.1.16).

4.2.2. Active set strategies for problem (SCOCP).

Most solution procedures for the solution of optimal control problems involving con-
straints on the control and/or state consist of two stages. In the first stage the structure of
the solution is determined, i.e. the sequence of time intervals on which the constraints are
active and inactive on [0.7]. In addition to the (estimated) structure of the solution, this
stage yields also a rough approximation to the solution. In the second stage, the exact solu-
tion is determined using the results of the first stage. In this section an argumentation for
and definition of the two stages will be given.

Consideration of the SQP-methods described in Section 4.1 for the solution of problem
(SCOCP) yields the sequential solution of problems of the type (EIQP/SCOCP) or
(EQP/SCOCP). In the case that problem (EIQP/SCOCP) has a unique solution for which
the sufficient conditions for optimality of Theorem 2.16 are satisfied, the main problem of
obtaining the solution of problem (EIQP/SCOCP) is the determination of the set of active
points of the state constraints. For if this set is available, then the solution of problem
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(EIQP/SCOCP) can be determined as the solution of problem (EQP/SCOCP) using the set
of active points as working set. The solution of problem (EQP/SCOCP) can be obtained as
the solution of a linear multipoint boundary value problem (cf. Section 5.1). which admits
more or less standard numerical solution procedures. Unfortunately, there are no stan-
dard procedures for the solution of problems of the type (EIQP/SCOCP), or more
specifically for the determination of the active set of this type of problems. As a first step
towards a solution procedure, we consider a general procedure for the solution of the
finite-dimensional counterpart of problem (EIQP/SCOCP), which is reviewed in Appendix
A. This method has the following characteristics :

1) The method has an iterative nature using as candidates for the solution, solutions to
quadratic programming problems with only linear equality consiraints.

2) The iterates are all feasible points, i.e. the complete set of inequality constraints of the
quadratic programming problem are satisfied at each iteration.

3) The active set strategy consists of addition of constraints to the working set whenever
the step size is restricted (i.e. when one or more constraints become violated at the can-
didate solution point), or the (possible) deletion of constraints from the working set
whenever the direction of search becomes zero (i.e. the minimum in the current sub-
space is achieved) and the Lagrange multiplief corresponding to the constraint has a
wrong sign.

It is not possible to apply the method to the solution of problem (EIQP/SCOCP) without

adaptation. The reason for this is the infinite-dimensional nature of the constraints

(4.2.1.9) - (4.2.1.10) In fact the constraints (4.2.1.9) - (4.2.1.10) represent a & ;+k, set of

consiraints at each time point . As a result of this it is likely that during the execution

of the method the stepsize becomes zero, because any nonzero step would lead to a viola-
tion of the constraint (cf. Figure 4.1) and hence the method would fail to converge.

s1

Nl

> solution of problem (EQP/SCOCP)

current estimate of the solution

Infeasible direction of search.
Figure 4.1

We recall that if it would be possible to solve problem (EIQP/SCOCP) at each iteration of
Algorithm 4.1, then ultimately (assuming convergence) the solution of problem (SCOCP)
would be obtained. In that case, the stucture of the solution would follow simply via an
inspection of the set of active points. However, because problem (EIQP/SCOCP) cannot be
solved easily, the solution process is broken into the two stages mentioned earlier, the first
being the determination of an estimate of the set of active points of the state constraints.

Having this goal in mind we consider the replacement of problem (EIQP/SCOCP) by a
simpler problem such that the solution of this problem is an approximation to the solution
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of problem (EIQP/SCOCP). Therefore the grids A! and A? are introduced as :
A= @, tg) j=12 (4.22.1)
and

A = AlxA?, (4.2.2.2)

0 ¢ €¢).... & t_pij <7 j=12. (4.2.2.3)

Problem (EIQP/SCOCP) is now replaced by a similar linear-quadratic optimal control
problem, where the junction and contact points of the constraints (4.2.1.9) and (4.2.1.10)
are restricted to the grids A! and A? respectively. The problem (EIQP/SCOCP) with
junction and contact points restricted to the grid A is called problem (EIQP/SCOCP/A).

Presumably, if the grid A is sufficiently 'fine’, then the solution of problem
(EIQP/SCOCP/A) will be an approximation to the solution of problem (EIQP/SCOCP). As-
suming that the SQP-method converges with the direction of search obtained via the solu-
tion of problem (EIQP/SCOCP/A), the structure of the solution of problem (SCOCP) will
be obtained as the structure of the converged solution. -

The definition of problem (EIQP/SCOCP/A) will now be made more explicit. By restricting
the junction and contact points to a finite set of points, the problem (EIQP/SCOCP) is in
fact replaced by a minimization problem over a set of problems (EQP/SCOCP) where the
working set must be chosen according to the restriction that the junction and contact
points are points of the grid A.

Definition 4.3 : Given a pair of functions d, € W, ,[0,T]" and d, e PC[O.T1", the sets of
boundary points of the constraints (4.2.1.9) and (4.2.1.10) with respect to the grid A (defined
by (4.2.2.1)- (4.2.2.3)) are defined as follows :

J3(d, d, AY) is the union of the intervals [t,'<t €£,%1 1 (r=01,..p,—1) for which :

Sult +1+ Sy [ +1d, () + Sy, [ +1d, G +) = 0 (4.2.2.4)
and

Su [t_rl+1 "] + Sy X [i:l-i-l “]dx (t—rl+1 ) +8 Hou [i—r]:f-l _]du (t_rl+1 =)= 0. (4.2.2.5)
J#(d, A?) is the union of the intervals [t,?<t <t,%,1(r =0,1...5,—1) for which

Sul621+ S5, 6214, (2 = 0 (4.2.2.6)
and

Sult% ]+ Su X851, @ 50) = 0, (4.2.2.7)

The definition of problem (EIQP/SCOCP/A) is stated as a combination of problems
(EIQP/SCOCP) and (EQP/SCOCP), and uses the sets of boundary points as working sets.
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Problem (EIQP/SCOCP/A) : Determine, if it exists, a control function d, € PC[O.T ], and
a state trajectory dy € W o, [0,T T, which minimize the functional

s
oo (01, (0) + [ (fou [ M (0 )4 fu, [t M, (e Dt + go, [T1d, (T) +
0

La O Mty 41 [ 14, 4, )T]IMZM e e P
2 Z Mt ¥ Me]||d. (@)
+ 1 2d (&, Y Mlt;1d, (¢;) + 1d, (T Msd, (T), (4.2.2.8)
J
subject to :

d, = fltld, + f,ltld, + flt]1— #'(z) ae 0S:<T, (4.2.2.9)
Do} + D, [0ld, (0) = 0, (4.2.2.10)
EIT1+ E T . (T)= 0, (4.2.2.11)
Syulel+ Sy, ltld, @)+ Sy, ltld, @)= 0

forall teJfd, d,.AD, 1=12,.k1, (4.2.2.12)
Sultl+ Sz, ltld,(¢) =0  forall teJ5d,.A®), 1=12...k, (4.2.2.13)
Sile 41+ 84, [ +1d, (6D + 8., 6 41, G 4) € 0 r=01...5,—1. (422.14)
Syl =1+ S, [ =1d, G + Sy, 51, (G =) € 0 r=1,.5, (4.2.2.15)

St + 8, 0524, 6,2 € 0 7=0,1,...5,. (4.2.2.16)
where the matrices My, M3, M3, M4, M s, M are defined by (4.2.1.11) - (4.2.1.16).

The definition above shows that restricting the junction and contact points of problem
(EIQP/SCOCP) to the grid A is not equivalent to replacing the constraints (4.2.1.9) -
(4.2.1.10) by a finite set of inequalities, because on boundary intervals the constraints are
still to be satisfied as equalities.

The method for the solution of problem (EIQP/SCOCP/A), is essentially an adaptation of a
certain method for the solution of finite-dimensional quadratic programming problems.
The adaptation of the method for the solution of problem (EIQP/SCOCP/A) is discussed in
detail in Section 5.2.

The first stage of the method is completed once the direction of search is ‘sufficiently’
small. At this point the structure of the solution of problem (SCOCP) is estimated as the
structure of the current iterate. Because the junction and contact points were in the first
stage. restricted 1o a (fixed) finite set of points, it is not likely that the current iterate is a
‘good” approximation to the solution.

Therefore a second stage is started, such that in each iteration one or more junction and/or
contacl points are shifted. The amount of shift required for each point is determined using
the violation of the constraints (4.2.1.9) - (4.2.1.10) on interior intervals and the sign in-
formation of the Lagrange multipliers on boundary intervals. The techniques used, are
essentially sirategies which focus on the active set of the original (nonlinear) problem
(SCOCP). These techniques are described in Section 5.3. When one or more junction
and/or contact points are shifted, a direction of search is calculated via the solution of
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problem (EQP/SCOCP). Contrary to the first stage, the second stage is thus based on the
sequential solution of quadratic programming problems with only equality constraints.

4.3. Further details of the algorithm.

In step (i) of the abstract Algorithm 4.1 use is made of a mapping G to imitate an inner
product in the Banach space X . In the application of the algorithm to problem (SCOCP),
we take G such that <G (xy.u1), (x,u3)> resembles the L,-inner product, i.e.

T
<G(x1,u1). (xaup)> = f(xl(t )sz(t) + u,(z )Tuz(t )) dt
)

for all x1x2€ W1lO.T T, uyne Lolo,T1". (4.3.1)

With this choice, step (i) of Algorithm 4.1 involves the solution of problem
(EIQP/SCOCP/A) with My=0, M,ft =1, M3t 1=0, M [t]=1,. Ms=0and Mt ]=0.

In the first stage of the method, the step size «; is determined using a merit function.
Essentially this merit function is a combination of the objective function and a penalty
term, which is some measure for the constraint violation. The direction of search (which
was motivated only by linearization arguments) will, in general, not give a decrease of
both the objective function and the penalty term. Decreasing both terms simultaneously
can be conflicting goals. In these cases the merit function provides a balance between
achieving either of these goals, with the intension that in each iteration progress towards a
solution point is made.

We shall now give a formal motivation of the merit function that is used in the current
implementation of the method. Recent literature on SQP methods indicate that there are
various alternatives to this choice. We do not intend to give a complete survey of possible
choices for the merit function; for this we refer to Bertsekas (1982), Fletcher (1981, 1983)
and Gill et al. (1984). To the particular choice made in this section we note that, contrary
to other choices of merit functions, it allows a rather complete convergence analysis in the
finite-dimensional case (cf. Schittkowski (1981)).

A merit function should satisfy the following requirements :

1) The solution of the original problemv should be a (local) minimum of the merit func-
tion.

2) In combinatioh with the direction of search. it should always be possible to choose a
step size, such that the merit function is decreased.

3) The merit function should not inhibit convergence of the step size to one, in a neighbor-
hood of a solution point.

For problems with only equality constraints, a suitable choice of the merit function is the
so-called augmented Lagrangian:

MG ap)i=Fa)+ NRG) + LplA(x N2, (4.3.2)
where A is an estimate for the Lagrange multiplier corresponding to the equality constraint
and p>0 is a penalty constant.

A motivation for this choice of merit function is that the Lagrangian has a minimum in the
tangent subspace of the linearized constraints at a solution point (assuming that the
sufficient conditions for optimality of Theorem 2.16 hold at this point). The penalty term
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is added to extend this feature to a larger set, outside the tangent subspace of the linear-
ized constraints.

For a ‘sufficiently high’ value of p, the merit function (4.3.2) satisfies the requirements 1)
- 3) in the case of finite-dimensional nonlinear programming.

For the extension of this merit function to include also inequality constraints we first con-
sider the finite-dimensional case of one scalar function g : X = R, which defines the con-
straint :

glx)< 0. (4.3.3)
The augmented Lagrangian is defined in this case as : (e.g. cf. Bertsekas (1982)) :

M(x . uip):

FG) + g Gepip) + Lpg (x .uip)?, (4.3.4)

where : g(x u;p) := max {g (x ) —u/p}).

A simple analysis of the penalty term
T(x up) = %’ig'(x ap) + g0 pip)?, (4.3.5)

yields the Figures 4.2 and 4.3. T(x uip)

I

(g (x )+u/py—(u/p)?

—ul/p — g(x)
''''' T —(n/p)?

T (x .u:p considered as a function of x for fixed w.
Figure 4.2

(g (x ) +u/p)2 — (u/p)? g(x) 2 —ulp
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T (x .pip)

!

g(x)?

— /P
—g (x )2

T (x ,u;p considered as a function of u for fixed x.
Figure 4.3

g (xP+2g(xdulp plp 2 —gx)

T(x .uip) = —(u/p)? pip<—g(x) {4.3.7)

Figures 4.2 and 4.3 show that 7 (x .u;p) is continuously differentiable with respect to both
x and u, whenever g (x ) is continuously differentiable with respect to x.

A similar approach to problem (SCOCP) yields the following merit function : ¥
T
MG u A €.0.0p) = hox(0)+ DO+ [ folxuit)—
¢
ko &

— 2 —
)\T()é—f(x k7382 )) + Z'nuSl,(x LMy d ;P) + + Z'nZISz[(x Moy ok ;P) ) dt +
=1 =1

Ky,
Ty vuSulx vyt p)+ golx(T)T)+ p " E(T)T) +

ji=1

T Ky K,
ip Of(llx—f(x a? + 1§1S11 (xumytp)+ 1§1521 (x.mgy tp))dt +

kz _
T Sulx vyt p)? + 1D (ON? + 1E(THTN?}, {(4.3.8)
Jji=1
with :
S—l[ (x UMk .p) = max {S11 (x U ,z) s~ Nu /P}, (439)
S (x my t:p) = max {Sy (x £) , —m, /pl, (4.3.10)

We note that the inequality constraints are incorporated in the merit function similar to
the finite-dimensional approach, using the smooth penalty terms T (x ,u:p). As a result of
this the merit function (4.3.8) is Fréchet differentiable and has therefore essentially the
same properties as its finite-dimensional counterpart.

We now consider the actual determination of the step size a;. which must be calculated
such that the merit function is minimized along the direction of search. To this end vari-
ous strategies may be used. (For a survey on methods for step size determination we refer

1 Again we use 7)p; and Vj to denote the time derivative and ‘jumps’ of the multiplier §1 (cf.
(4.2.1.3) - (4.2.1.4)).
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to Gill et al. (1981) and Bertsekas (1982).) We mention :

1) Exact line minimization, i.e.

a; = arg . (4.3.11)

min M{a}
oa>0

where {a} was used to replace (x'+ad/, ui+ad], M +a(N'=A), nita(fi—ni.
Eitra( —E), cl+a@ —o!), pital(@ —p' ).

2) Approximate line minimization. As an example we mention the Armijo step size rule,
i.e. given scalars B€(0,1) and €€ (0,1 ) determine the step size o as

a= g~
where k is the smallest nonnegative integer that satisfies
M{O} — M{B*} 2 — eB* M {ONd . d)i X —\i {—n]E —¢&,
Ti—ai mi—ut). (4.3.12)

The choice as to which strategy is followed is not critical for Newton-like methods (exact
second derivatives are used), because it is not important that the exact minimum is
achieved along the direction of search. When the solution is approached, the step size o;
will converge to one anyway. In a numerical implementation the approximate line minim-
ization tends to be more efficient, because the number of evaluations of the function M {a}
is less. Therefore the Armijo rule is used in the first stage of the method in the.current im-
plementation.

Because in the second stage of the method, the current iterate (x'u! N mi€'oi u’)is
supposed to be ‘sufficiently’ close to the solution a step size procedure is omitted. The
complete method may be summarized as follows :

Algorithm 4.4 :

(0) A, and (x4uy) given.
i = 0.

Stage 1 : steps (i) - (vi)

(i) Calculate first order Lagrange multiplier estimates (\°n{.£%0°.1°) as the multipliers
corresponding to the solution of problem (EIQP/SCOCP/A) with the matrices M1=0,
Moltl=1, , Milt]=0,MJt1=1,, Ms=0, Mt ]=0.

(ii) Calculare the matrices M; (j=1,2,....6) corresponding to (4.2.1.11) - (4.2.1.16).

(iil) Calculate the Newton direction {d}.d}) and second order Lagrange multiplier estimates
W 7LE & &' as the solution of problems (EIQP/SCOCP/A) (using the matrices M ;
determined in the previous step).

Gv) IfW(d] . diMx < €, then goto (vii).

(v) Given scalars B€(0,1) and e¢ (0,% ) determine the step size a; as
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o; = Bk »
where k is the smallest nonnegative integer that satisfies

MO} — M{B*} 2 —eB* M (ONdi di X' —\ Fi—miE -t Fi—c! g —ul),

and set :
[ RS i
x = x' + a;dy,
witt = oyl 4+ «,df,

At = )\ +a'_(ii_)\i)’

it = i+« ({i-n).
£i+1 = gi +ai(gi__§i),
citl = g 4 o (T —a),
,lL"H o “i + a;(ﬁi—pi).
(i) i = i+1,
goto (ii).

Stage 2 : steps (vii) - (xii)

(vii) Use (x' u' N mi¢l.0fu') to determine working sets W; for the constraints S j-
(viii)Calculate the matrices M, (j=1.2,...6) corresponding to (4.2.1.11) - (4.2.1.16).

(ix) Calculate the Newton direction (d, d, ) and second order Lagrange multiplier estimates
WM& .5 &) as the solution of problem (EQP/SCOCP). (Using the working sets
determined in step (vii) and the matrices M; determined in step (viii}.)

) IfI(didily € €, then ready.

(xi) Set :
xi*l = x4 4l
wi*tl = oyl 4+ 4]
)\i+1 S Xi
ni*! = AL
gitl = F
O.i+1 = F
,U.H'l = ﬁl

(xii) 1 = i+1,
goto (vii).
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4.4. QOutline of the implementation of the method.

In this section an outline of the implementation of the method will be given. This outline
may serve as a guide for the Chapters 5 and 6, which deal with the most important aspects
of the implementation of Algorithm 4.4. In Chapter 5 the solution of the subproblems
(EQP/SCOCP) and (EIQP/SCOCP/A) and the active set strategy used in the second stage of
the algorithm are discussed. Chapter 6 deals with a discussion on the numerical implemen-
tation of the method. which essentially comes down to the numerical solution of a linear
multipoint boundary value problem.

One of the most important aspects of the method is the calculation of a direction of search.
With the SQP-method of Algorithm 4.1 the direction of search is determined either as the
solution of problem (EIQP) or as the solution of problem (EQP), which in the application
of the method to problem (SCOCP) become problems (EIQP/SCOCP) and (EQP/SCOCP).
Because problem (EIQP/SCOCP) cannot be solved easily, the solution process is split up
into two stages. In the first stage the structure of the solution is determined, whereas in
the second stage the actual solution is determined. The first stage of the solution process
requires the solution of problem (EIQP/SCOCP/A) which is a simplification of problem
(EIQP/SCOCP). Extension of the ideas of finite-dimensional quadratic programming to the
solution of problem (EIQP/SCOCP/A) requires also the solution of problem (EQP/SCOCP),
for the calculation of a direction of search (cf. Section 5.2). Application of the first order
optimality conditions to problem (EQP/SCOCP) yields a linear multipoint boundary value
problem (LMPBVP) (cf. Section 5.1). The numerical solution of this linear multipoint
boundary value problem is done by means of a collocation method (cf. Section 6.1). This
collocation method yields a set of linear equations. The numerical solution of the set of
equations several methods may be used (cf. Section 6.2). In the current numerical imple-
mentation of the method the so-called Null space method is used, which finally yields the
direction of search.
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Sequential quadratic programming in function spaces

In the scheme below the various relations between the problems are summarized.

Problem (EIP)

Newton-like
method
SQP - method
Stage 1 Stage 2
Problem Problem (EQP)
(EIQP)
L Application to
problem (SCOCP)
Problem Problem
(EIQP/SCOCP) (EQP/SCOCP)
simplification
Problem
(EIQP/SCOCP/A)
adaptation of
finite~ 3
dimensional
quadratic pro-
gramming
Problem
(EQP/SCOCP)
first order op-
timality condi-
tions for problem
(EQP/SCOCP)
LMPBVP

collocation method
set of linear
equations
solution by means
of the Null space
method
direction of
search

Scheme for the calculation of the direction of search
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Chapter 5

5. Solution of the subproblems and determination of the active set.

This chapter deals with three different aspects of the method presented in the previous
chapter. In Section 5.1 the solution of the subproblem (EQP/SCOCP) is considered. Section
5.2 deals with a method for the solution of subproblem (EIQP/SCOCP/A). This method,
which is essentially an adaptation of a common method for the solution of finite-
dimensional quadratic programming problems, requires the repeated solution of problem
(EQP/SCOCP). The active set strategy which is used in the second stage of the method is
described in Section 5.3. The direction of search in this second stage is again determined as
the solution of problem (EQP/SCOCP).

5.1. Solution of problem (EQP/SCOCP).

In view of the solution of problem (EQP/SCOCP) this section deals with optimality condi-
tions for optimal control problems with state equality constraints. These conditions do not
follow directly from Chapter 3, because there only state inequality constraints were con-
sidered. The results contained in this section will show that there is a basic difference
between the optimality conditions for optimal control problems with state equality con-
straints and optimal control problems with state inequality constraints.

For the sake of clarity, we shall first consider optimality conditions for a problem
(ESCOCP), which is similar to problem (SCOCP) but contains only state equality con-
straints. This approach will enable us to make use of most aspects of the formulation of
problem (SCOCP) as an abstract nonlinear programming problem in Banach spaces. One
may easily verify that problem (EQP/SCOCP) is a special case of problem (ESCOCP).

Problem (ESCOCP) : Determine a control function €L o[0,TY" and a state trajectory
X €W, ,[0,T]"