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• 
I 

In this tract we are concerned with combinatorial opt,:mization 
Lawler, 1976; Papadimitriou & Steiglitz, 1982, the search for optima 

of functions of discrete variables. Combinatorial optimization prob
lems are nowadays ubiquitous in such diverse areas as, for example, 
design of algorithms Aho, Hopcroft & Ullman, 1974 , of integrated 
circuits Breuer, 1972 and operations research Wagner, 1975 . 
An instance of a combinatorial optimization problem is formalized 
as a pair R, C , where R is the finite - or possibly countably infi
nite - set of configurat,·ons also called configuration space or solution 
space and C a cost function, C : R ► IR, which assigns a real number 
to each configuration. For convenience, only minimization problems 
are considered which can be done without loss of generality . Thus, 
the problem is to find a configuration 1:0 E R, for which C takes its 
minimum value, i.e. such that 

Copt = C io - minC i, 
iER 

where Oopt denotes the minimum cost value. 

1.1 

When dealing with a combinatorial optimization problem TI, there 
are two ways to go. One can try to construct either an opti·miza
tion algor1:thm for IT, i.e. an algorithm that returns a globally mini
mal configuration for every instance of IT, or an approximat1:on algo
rithm, i.e. an algorithm that merely returns a configuration for each 
instance Garey & Johnson, 1979 . Preferably, the latter algorithm 
should have the property that for all instances the returned configu-

1 



2 CHAPTER 1. INTRODUCTION AND SUMMARY 

ration is "close'' to a globally minimal configuration. 
The reason why many combinatorial optimization problems are tack
led by constructing approximation rather than optimization algo
rithms is related to the fact that many combinatorial optimization 
problems are )./ P-hard, or that the decision version of many com
binatorial problems is }JP-complete Garey & Johnson, 1979 . For 
such problems it is commonly believed that no algorithm can be con
structed that solves each instance of the problem to optimality with 
an amount of computational effort bounded by a polynomial function 
of the input length1 of such an instance. Indeed, it would be a ma
jor breakthrough in complexity theory if a polynomial-time algorithm 
could be found for an )/ P-complete problem, since in that case all 
JI P-complete problen1s would be solvable in polynomial time. 
Furthermore, the distinction between NP-hard problem.s .. and prob-

. . 

len1s solvable in polynomial time seems to be clo.sely related to the die\-
tinction between hard and easy problerns. Computational experience 
has increased evidence for this relation: though there is, of course, 
the possibility of such contrasts as an O 1.001" exponential-time al
gorithm and an O n 100 polynomial-time algorithm, these kinds of 
complexities hardly ever seem to occur in practice Cook, 1983; John
son & Papadimitriou, 1985 . 
The aforementioned facts have led to the belief that large JI P-hard 
combinatorial optimization problems cannot be solved to optimality 
in acceptable amounts of computation time. A more reasonable goal 
then is to find an approximation algorithm that runs in low-order 

"'"' 
polynomial time and has the property that final configurations are 
''close'' to globally minimal ones. For many combinatorial optimiza
tion problems such algorithms are nowadays available, but usually 
they suffer from the fact that they are only applicable to the par
ticular problem they are designed for in this connection, the notion 
tailored algorithm is used . As soon as a new combinatorial optimiza
tion problem arises, a new algorithm has to be constructed. General 
approximation algorithms, able to find near-optimal configurations 
for a wide variety of combinatorial optimization problems, are rare. 
The simulated annealing algorithm, the subject of this tract, is such a 

1The i11put length is a forn1al 111easure of i11sta11ce size [Garey & Johnson, 1979). 
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generally applicable approximation algorithm. 
The simulated annealing algorithm can be viewed as a randomized 
version of an ·iterative improvement algorithm2 • The application of an 
iterative improvement algorithm presupposes the definition of configu
rations, a cost function and a generation mechanism, i.e. a simple pre
scription to generate a transition from one configuration to another. 
The generation mechanism defines a ne1:ghbourhood Ri for each config
uration i, consisting of all configurations that can be reached from i in 
a single transition. Iterative improvement is therefore also known as 
neighbourhood search or local search Papadimitriou & Steiglitz, 1982 . 
Alternatively, instead of defining a generation mechanism, one can de
fine a ne,.■ghbourhood structure, i.e. a description of the neighbourhood 
of each configuration. In many cases, it is then implicitly assumed 
that the generation mechanism is such that each transition from a 
configuration to one of its neighbours is generated with equal proba
bility. 
The iterative improvement algorithm can be formulated as follows. 
Starting off at a given configuration, a sequence of trials is generated. 
In each trial a configuration is selected from the neighbourhood of the 
current configuration. If this neighbouring configuration has a lower 
cost, the current configuration is replaced by this neighbour, otherwise 
another neighbour is selected and compared for its cost value. The 
algorithm terminates when a configuration is obtained whose cost is 
no worse than any of its neighbours. 
Iterative improvement algorithms possess the following disadvantages: 

\ 

• By definition, iterative improvement algorithms terminate in the 
first local minimum encountered; generally, such a local mini
mum deviates substantially in cost from a global minimum. 

, 

• The returned local minimum depends on the initial configura
tion, for the choice of which generally no guidelines are available. 

• In general, it is not possible to give an upper bound on the 
computation time. For instance, the worst-case complexity of 
the iterative improvement algorithm for the travelling salesman 

2 Strictly speaking, an iterative improvement algo1'itl1111 11eed 11ot be completely 
deterministic itself, since the neighbourhood can be searched in a randon1 order. 
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problem based on Lin's e-change strategy • Lin, 1965 is an open 
problem, see Johnson, Papadimitriou & Yannakakis, 1985 and 
the references therein. 

It should be clear, however, that iterative improvement does have the 
advantage of being generally applicable: the main ingredients, viz. 
configurations, a cost function and a neighbourhood structure, are 
usually easy to define. Besides, though upper bounds for computation 

• • • , • • )- • : ·' , • • • • , ., •• ·:· • C : •,:,•;•:-,, • , • ,••.":: •• 

can . on the average be executed in a small an1ount of computa'... 
tion time. For instance, dealing with Lin's 2-change strategy for the 
travelling salesman problem, Kem .1986a recently showed that for a 
certain class of problem instances the expected computation time is 
bounded by a polynomial function of the input length of the instance. 
B,ecause of the small computational cost of one run of an iterative im
provement algorithm, it is customary to execute the algorithm for a 
large number of initial configurations, drawn independently from the 
configuration space R .. In this way, the first two of the disadvantages 
mentioned can be removed. 
We recall that the reason why iterative improvement algorithms termi
nate in the first local minimum they encounter is that only transitions 
corresponding to a decrease in cost are accepted by the algorithm. 
Alternatively, we might think of an algorithm which also accepts, in 
some limited way, transitions corresponding to an increase in cost. 
Simulated annealing is an example of the latter approach: in addi
tion to cost-decreasing transitions, cost-increasing transitions are ac
cepted with a non-zero probability, which gradually decreases as the 
algorithm continues its execution. Ever since its introduction, inde
pendently by Kirkpatrick, Gelatt & Vecchi 1983 and Cerny 1985 , 
the algorithm has attracted much attention, partly because it is based 
on an intriguing combination of ideas from completely different and 
at first sight totally unrelated fields of science, and partly because it 
is claimed by many authors not to exhibit any of the aforementioned 
disadvantages of the iterative improvement algorithm, whilst main
taining its advantages. Thus, it is often asserted that the simulated 
annealing algorithm is a generally applicable, high-quality combina
torial optimization tool. 
The major contribution of this tract is threefold: 

' 
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1. An implementation of the algorithm is described which provably 
leads to polynomial-time execution. 

2. Extensive computational evidence is presented to support the 
aforementioned assertion that simulated annealing is a generally 
applicable, high-quality optimization tool. At the same time it is 
shown not to be a panacea, since it is often not able to compete 
with tailored algorithms for a particular problem. 

3. A novel Bayesian approach to the analysis of the algorithm is 
presented. 

The tract is organized as follows. The algorithm itself is extensively 
discussed in chapters 2 and 3. In chapter 2, after an introduction to 
the algorithm and the analogy on which it is based, simulated an
nealing is mathematically described as the generation of a sequence 
of homogeneous Markov chains. Necessary and sufficient conditions 
are derived to ensure that asymptotically the algorithm finds a glob
ally minimal configuration with probability 1. Thus, these conditions 
relate to the asymptotic behaviour as an optimization algorithm. 
In chapter 3, the finite-time behaviour of simulated annealing is ad
dressed .. Since the aforementioned necessary and sufficient conditions 
cannot be satisfied in finite time, the finite-time behaviour of simu
lated annealing is that of an approximation algorithm. The problem 
then is to find values for certain parameters of the algorithm referred 
to as a cooling schedule that ensure that near-optimal configurations 
are returned. A cooling schedule which tries to achieve the latter 
by closely imitating the aforementioned asymptotic behaviour is de
scribed in chapter 3. This schedule is compared with other schedules 
from the literature on the basis of numerical results obtained by solv
ing instances of the graph part,:tion,:ng and travell,:ng salesman prob
lems. 
The quality of an approximation algorithm can be judged on its per
formance in terms of the quality of the configuration returned by the 
algorithm and the computation time needed by the algorithm to find 
that configuration for the moment, we discard other criteria such as 
ease of implementation, flexibility and simplicity . When theoretical 
results with respect to these criteria are lacking, as is largely the case 
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with simulat,ed annealing, one has to resort to numerical tests of the 
quality of an algorithm by running the algorithm on a large set of rep
resentative problem instances and measuring computation times and 
quality of returned configurations. Such t.ests are described in chapter 
4, where results are presented obtained by running simulated anneal
ing on instances of the travelling salesman, the 1"'ob shop scheduling 
and· the football .··· ·•.··.·l pro:blems. Whe·re possi.ble, simulated/ annealing 
is pitted against.other approximation and·optimiz.ation algotitbms for 

. ' ' : . . . 

these pro/btems. . .. 
In chapter 5,. we consider simulated annealing from a Bayesian point 
of view. In this appro , the generation of each Markov chain is seen 
.as.a. fa.11dom experiment with u.nknown parameters characterizing the 
outcome of the expe.riment. In the case of simulated annealing, the 
unknown parameters are the probability of occurrence of values of the 
cost function and the minimum value of the cost function. Assuming 
a probability distribution on the values of these unknown parameters 

.. · referred to as the pr1:or distri"bution and given the outcome of the 
experiment ·the sequence of configurations resulting from the gen
eration of a Markov chain , we use Bayes 's theorem to derive the 
poster·ior distribut,:on on the values of the parameters. Numerical ex
periments are described in which the posterior distribution firstly is 
shown to predict accurately the behaviour of the algorithm during the 
next Markov chain and secondly is used to compute the a posteriori 
expectation of the minimum value of the cost function. Furthermore, 
the Bayesian information is used to derive optimal rules for choosing 
some of the parameters of a cooling schedule. 
The tract is ended with some conclusions and remarks .. 



• • 

The simulated annealing algorithm Kirkpatrick, Gelatt & Vecchi, 
1983; Cerny, 1985 originates from the analogy between two problems: 
that of finding the ground state of a solid and that of finding a glob
ally minimal configuration in a combinatorial optimization problem. 
In condensed matter physics, anneal,:ng denotes a physical process by 
which, if carried out sufficiently slowly, the ground state of a solid can 
be found. The simulated annealing algorithm takes its name from the 
fact that it is based on an algorithm to simulate parts of the an
nealing process. 
The physical process denoted by annealing is one in which a solid in 
a heat bath is heated up by increasing the temperature of the heat 
bath to a value at which all particles of the solid randomly arrange 
themselves in the liquid phase, followed by cooling through slowly 
lowering the temperature of the heat bath. In this way, the particles 
arrange themselves in the low-energy ground state, provided the cool
ing is carried out sufficiently slowly. Starting off at a given value of 
the temperature, the cooling phase of the annealing process can be 
described as follows. At each temperature value T, the solid is allowed 
to reach thermal equilibrium. In thermal equilibrium the probability 
of occurrence of a state with energy E is given by the Boltzmann 

7 



8 CHAPTER 2. SIMULATED ANNEALING 

distribution: 

Pr E=E 
1 

ZT 
•exp 2.1 

where Z T is the partition function and kB the Boltzmann constant. 

temperature decreases, the Boltzmann distribution concentrates on 
the low-energy states and finally, when the temperature approaches 
zero, only the minimum-energy states have a non-zero probability of 
occurrence. However, if the cooling is t.oo rapid, i.e. if the solid is not 
allowed to reach thermal equilibrium at each temperature value, de
fects can be 'frozen' into the solid resulting in metastable amorphous 
structures instead of the low-energy crystalline structure.. If the tem
perature of the heat bath is lowered instantaneously the particles are 

. 

frozen into one of the metastable a·morphous structures. This process 
is known as quenching. 
There is some similarity between a solid and a combinatorial opti
mization problem: in both cases there are many degrees of freedom 
the positions of the particles of the solid, the configurations in an op

timization problem and in both cases some global quantity has to be 
minimized the energy of the solid, the cost function in combinatorial 
optimization . The observation of this analogy is the first step in the 
construction of the simulated annealing algorithm, the next step is to 
extend this analogy to the Metropolis algorithm. 
To simulate the evolution to thermal equilibrium of a solid, Metropo
lis, Rosenbluth, Rosenbluth, Teller & Teller 1953 proposed a Monte 
Carlo method, which generates sequences of states of the solid in the 
following way. Given the current state of the solid, characterized by 
the positions of its particles, a small, randomly generated, perturba
tion is applied, i.e. a small displacement of a randomly chosen particle. 
If the perturbation results in a lower energy state of the solid, then the 
process is continued with the new state. If ~E > 0, then the prob-

This rule for accepting new states is referred to as the Metropol1:s 
cri·terion. Guided by this criterion, the solid eventually evolves into 
thermal equilibrium, i.e. after a large number of perturbations, using 
the aforementioned acceptance criterion, the probability distribution 
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of the states approaches the Boltzmann distribution, given by 2.1 . 
In statistical mechanics this Monte Carlo method, which is known as 
the Metropolis algorithm, is a frequently used method to estimate av
erages or integrals by means of random sampling techniques; see for 
example Binder's review article 1978 . 
The Metropolis algorithm can also be used to generate sequences of 
configurations of a combinatorial optimization problem. In that case, 
the configurations assume the role of the states of a solid while the cost 
function C and the control parameter c assume the roles of energy and 
ten1perature, respectively. The simulated annealing algorithm can be 
viewed as a sequence of Metropolis algorithms evaluated at decreasing 
values of the control parameter. It can thus be described as follows. 
Initially, the control parameter is given a large value and a sequence 
of trials is generated using the same generation mechanism as in the 
iterative improvement algorithm. Thus, in each trial, a configuration 
1· is generated by choosing at random an element from the neighbour
hood of the current configuration i. This corresponds to the small 
perturbation in the Metropolis algorithm. Let ~Gii = C 1· - C i , 
then the probability of configuration j being the next configuration 

the Metropolis criterion . Thus, there is a non-zero probability of 
continuing with a configuration with higher cost than the current 
configuration. · This sequence of trials is continued until equilibrium 
is reached, i.e. until the probability distribution of the configurations 
approaches the Boltzmann distribution, now given by 

P fl . . def 
r con gurat1on = i qi c 

1 
•exp 

Qc 

Ci 
C ' 

2.2 

where Q c is a normalization constant depending on the control pa
ra1neter c, being the equivalent of the aforementioned partition func
tion. 
The control parameter is lowered in steps until it approaches 0, with 
the system being allowed to approach equilibrium for each step by 
generating a sequence of trials in the previously described way. After 
termination, the final 'frozen' configuration is taken as the solution of 
the problem at hand. 
Thus, as with iterative improvement, we have again a generally appli-
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cable approximation algorithm: configurations, a cost function and a 
neighbourhood structure are the only prerequisites to be able to apply 
simulated annealing. 
Comparing iterative improvement and simulated annealing, it is ap
parent that the situation where the control parameter in the simulated 
annealing algorithm is set to O corresponds to a version of iterative 
improvement it is not iterative improvement per se, because in an 
iterative improvement approach the neighbouring configurations are 
not necessarily examined in random order . In the analogy with con
densed matter physics, setting the control parameter to O corresponds 
to the aforementioned quenching process. 
On the other hand, simulated annealing is a generalization of iter
ative improvement in that it accepts, with non-zero but gradually 
de,creasing probability, deteriorations in cost. It is not clear, however, 
whether it performs better than ·a repeated application of iterative 
improvement for a n,1mber of different initial configurations: both al
gorithms converge asymptotically to a globally minimal configuration 
of the problem at hand. For simulated annealing asymptotic conver
gence is proved in the next section; for repeated application of iterative 
improve:r:nent it is obvious that convergence is obtained for N ➔ oo, 
where N denotes the number of initial configurations for which the 
algorithm is applied, if only for the fact that a global minimum is 
encountered as an initial configuration with probability 1 as N ➔ oo. 
However, Lundy & Mees 1986 construct an example of a combinato
rial optimization problem, for which, in expectation, both repeated 
application of iterative improvement and a complete enumeration of 
all configurations of the problem take an order of magnitude more 
elementary operations to reach the global minimum than simulated 
annealing. In chapter 4, extensive comparisons are made between the 
two algorithms on the basis of a large set of numerical experiments 
and computational evidence is presented for the assertion that if both 
algorithms are allowed the same amount of computation time, simu
lated annealing returns substantially better configurations in terms 
of cost than repeated application of iterative improvement. 
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• 

Simulated annealing can be viewed as an algorithm that continuously 
attempts to transform a configuration into one of its neighbours. Such 
an algorithm can mathematically be described by means of a Markov 
chain: a sequence of trials, where the outcome of each trial only de
pends on the outcome of the previous trial Feller, 1950 . In the case 
of simulated annealing, trials correspond to transitions. Since the ac
ceptance of a transition depends only on the cost values of the current 
and generated configuration, it is clear that the outcome of a tran
sition the new configuration only depends on the outcome of the 
previous transition the current configuration . 
A Markov chain is described by means of a set of conditional proba
bilities Pi; k for each pair of outcomes i, 1· ; Pi; k is the probability 
that the outcome of the k-th trial is 1·, given that the outcome of the 
k - 1 -th trial is i. Let X k denote the outcome of the k-th trial, 

then we have: 

-Pr X k • 
- t . 2.3 

If the conditional probabilities do not depend on k, we write Pii in
stead of Pii k . The corresponding Markov chain is then called ho
mogeneous, otherwise it is called inhomogeneous. 
Returning to simulated annealing, we note that P 1j k denotes the 
probability that the k-th transition is a transition from configuration 
i to configuration 1· and that X k is the configuration obtained after 
k transitions. In view of this, Pii k is called the trans,:tion probab1:l1:ty 
and the R x R -matrix P k the transition matr,:x. 
The transition probabilities depend on the value of the control pa
rameter c, the analogue of the temperature in the physical annealing 
process. Thus, if c is kept constant, the corresponding Markov chain 
is homogeneous and its transition matrix P == P c is given by: 

P.·. C 1:, 

Gij C Aij C 

IR I 
1 - I: Gil c Ail c 

l-1,l~i 

• • 2.4 
J == z, 
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where the generation probability Gi; c denotes the conditional prob
ability of generating configuration J·, given that the current configura
tion is i, and the acceptance probability A;3 c denotes the conditional 
probability of accepting the transition from configuration i to con
figuration j. The corresponding matrices G c and A c are called 
the generation and acceptance matrix, respectively. As a result of the 
definition in 2.4 , P c is a stochastic matrix, i.e. a matrix satisfying 
i:; P,; c . = 1 for all i. 
We remark that in the initial formulation of the algorithm, the gen-
eration matrix is defined by 

Ri -i if J. E Ri 
0 elsewhere, 

2.5 

i.e .. G is independent of c and corresponds to a uniform distribution on 
the neighbourhoods, while A,i c is given by the Metropolis criterion, 
• 1.e. 

exp 

1 

_O(i)-O(i) 
C 

ifc1· >Ci 
ifC1· <Ci. 

2.6 

As pointed out before, the control parameter c is decreased during 
the course of the algorithm. We distinguish two mechanisms to carry 
out this decrement: 

• a decrement of c after each transition, resulting in an algorithm, 
which can be described by a single inhomogeneous Markov chain 
the inhomogeneous algor1ithm ; 

• a decrement of c after a number of transitions, resulting in an 
algorithm which can be described by a sequence of homogeneous 
Markov chains, each generated at a fixed value of c the homo
geneous algorithm . Note that we do not exclude the possibility 
that c is decreased after an infinite number of transitions. 

The distinction is not as clear-cut as the foregoing suggests: the in
homogeneous algorithm can be considered as a special case of the ho
mogeneous algorithm the sequence of homogeneous Markov chains 
collapses into one inhomogeneous Markov chain , but the reverse is 
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also true if we think of a zero-decrement of c in between the transitions 
of the homogeneous Markov chains. However, the results with respect 
to asymptotic convergence of the homogeneous algorithm, which are 
derived in the next section, presuppose that the length of each homo
geneous Markov chain is taken to infinity. Consequently, these results 
do not pertain to the inhomogeneous algorithm . 

• 
• r1 

In this section we consider arbitrary generation and acceptance ma
trices and derive conditions on these matrices to ensure asymptotic 
convergence of both the homogeneous and the inhomogeneous algo
rithm to a globally minimal configuration. 
For the homogeneous algorithm we derive sufficient conditions on G c 
and A c that ensure that if the Markov chains are all of infinite length 
and if the limit c ! 0 is taken, then the algorithm converges in prob
ability to a globally minimal configuration. For the inhomogeneous 
algorithm we briefly discuss conditions that are both necessary and 
sufficient. These conditions not only relate to the matrices A c and 
G c but also to the way the limit c 1 0 is taken. 
Essential to the convergence proof for the homogeneous algorithm is 
the fact that, under certain conditions, the stationary distribut,:on of 
a homogeneous Markov chain exists. The stationary distribution is 
defined as the vector q whose i-th component is given by Feller, 1950 

qi == lim Pr X k 
Jc ► oo 

== i X 0 • 

== J ' 2.7 

for an arbitrary 1·. 

If q exists, we have that 

lim Pr X k • 
== i 

k ~oo 

== i X 0 
• 

===J 

• 

-J 2.8 
• 

J 
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Thus, the stationary distribution is the probability distribution of the 
configurations after an infinite number of trials transitions . 

' 

The proof of theorem 2.1 is now based on the following arguments. 
First, it is shown that under certain conditions on the matrices A c 

and G c the stationary distribution q c exists for all c > 0. Next, it 
is shown that under additional conditions q c converges to a uniform 
distribution on the set of globally minimal configurations. 

Theorem 2.1 
Suppose the J ollowing conditions on the matrices G c and A c are 
sat,jJfied: 

Vc>O, Vi,J.ER~p>l,3.:\0 ,A1 , ••• ,ApER i=Ao,J0 =Ap: 

4• 
5 

6 .. . 

Then 

where 

and 

Pr X k 

Proof 

GJ..1c>..1c+1 e > 0, k = o, 1, ... 'p - 1; 2.9 

Ve > O, Vi,J. E R : G;i c = Gi; c ; 2.10 

Ve > 0, Vi,J·, k E R : 

C i < C J. < C. k => Aik C = Ai; C A;k C ; 

'r/c > O, 'tli,j E R : C i > C i· => Ai; c = 1; 

Ve> O, Vi,3" E R : C i < C i· => 0 < Ai.i c < 1; 

'vi,;· ER : C i < C 1· => liIIlclO Ai; c = 0. 

limq· c 
c!O 1 0 

R -1 
.opt if i E Ropt 

elsewhere, 

2.11 

2.12 

2.13 

2.14 

2.15 

2.16 

=j Xk-1 = G ij c Aij c , k = 1, 2, . . . 2 .1 7 

Markov chain is: 
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1. irreducible, i.e. if for all pairs of configurations i, 1· there is a 
positive probability of reaching J. from i in a finite number of 
transitions: 

Vi, 1· :3p : 1 < p < 00 /\ PP ij > O; 2.18 

2. aperiodic, i.e. if for all configurations i E R, the greatest common 
divisor of all integers n > l, such that 

pn .. > 0 
'' 

2.19 

is equal to 1. 

According to the same theorem, the stationary distribution q of a 
finite, irreducible and aperiodic Markov chain is uniquely determined 
by the following equations: 

Vi : qi > 0, 2.20 
• 

I 

Vi: Qi = 2.21 
• 

1 

We use condition 1 and the fact that Aii c > 0 for all i, 1· E R 
conditions 4 and 5 to establish irreducibility: 

pP .. C 
13 Pili C pl1l2 C • • • plp-li C 

(l1 , ... ,lp-1) 

Gil1 C Aili C • • • Glp-Ii C A,p-1i C 

( l 1, '. .. ,l p-1) 

2.22 

To establish aperiodicity, we use the fact that an irreducible Markov 
chain is aperiodic if Romeo & Sangiovanni-Vincentelli, 1985 : 

:3i ER: ~i > 0. 2.23 

Clearly, 
2.24 
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otherwise condition 1 would not be satisfied for i E Rapt, J. Ropt• 

Using condition 5 , we find that 2.24 implies: 

\/c > 0 3ic,J0c E R : Aicic C < 1 /\ Gicic C > 0. 2.25 

Thus, using the fact that Ai; c < 1 for all i,J· E R. conditions 4 
and 5 , we find 

R 
Giel C Aicl C 

l · l,.l:¢ic 

Giel C + Gicic C 
l=1,l¢i 0 ,jc 

and, consequently, 

=1-

R. R. 
Giel C < _ Giel C = 1, 2.26 

l=l,l~i 0 l=l 

R. 
2.27 

Next, we prove that the stationary distribution q c c > 0 is given 
by 

2.28 

for an arbitrary io E Ropt• 

First, we remark that q c , as defined by 2.28 , clearly satisfies 2.20 . 
Let N denote the denominator in 2.28 . We have that, for all i, 

• 
3 

1 

j;ci.O(j)~O(i) 

1 
.. Aioi C Gij C · + qi C Gij C + qi C Pii C 

j¢i.C(j)>O(i) 

Qi c __,, Gi;· .. c· + __ qi c Gii c + Qi c Pii c 
j~i,O(i):50(i) j,cilC(i)>O(i) · 

2.29 
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and 

1- G ·. C A·. C •1 ,, 

i ;ci, a (i) ~ a ( i) 

• 

Gij C Aij C 

j~i,O(i)>O(i) 

1 
G,;.; C 

j~i,O(i)~O(i) i:¢i,O(i)>O(i) 

q. C - qi C - G.; C qi C Gij C • 

j :¢i,O (i) >0 ( i) j;ei,O(j)~O(i) 

Combining 2.29 and 2.30 yields 

Vi ER: 
• 

3 

Using 2.28 and conditions 4 and 6 , we have: 

limqi c 
c!O 

• 

X Ropt 1, 
1m------ = 
c!O "1·e D A.-l.,J· C "",·en 1 L.J ,,.;.. • L..J ~opt 

Rapt 

17 

2.30 

2.31 

2.32 

where XR is the characteristic function of Rapt· In general, the 
opt 

characteristic function XA of a set A is defined as follows: 

1 if i EA, 
0 elsewhere. 

Finally, combining 2.8 and 2.32 yields 

lim lim Pr X k 
c!O k ► oo 

Rovt 
-1 . 

XRopt i ' 

or 
lim lim Pr X k E Rapt 
c!O k •oo 

== 1. 

A few remarks are appropriate at this point .. 

2.33 

2.34 

2.35 
□ 

First of all, we note that condition 2 can be replaced by 
Lundy & Mees, 1986 

2 ' Vi E R : Gii -
R i - 1 if 1· E R. i 

0 elsewhere, 
2.36 
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in which case the stationary distributions are given by 

:E;eR R;. Aioi c 
• 2.37 

In other words, it suffices to demand that G is either symmetric or 
given by the uniform distribution on the neighbourhoods. If G is 
both, it can be shown that there exists an integer S satisfying 

=S 2.38 

in the following way. Take an arbitrary i,J· E R, then condition 1 
implies that there are ;\1 , .•• , Ap-l E R, such that 

2.39 

Hence,· R~k = R~1:+i , k = 0, 1, ... ,P - 1 and R; = R; . 

Secondly, it is easily verified that in the initial formulation of the 
algorithm, conditions 3 - 6 are satisfied. The generation matrix is 
given by 2.36 ; thus, according to the previous remark, condition 2 ' 
is also satisfied.. Consequently, one should only verify that condition 
1 is satisfie,d. Note that condition 1 states that the Markov chain 

associated with the matrix G c is itself irreducible.. If this is not the 
case, i.e. if it is not possible for an arbitrary pair of configurations 
i,J· to construct a finite sequence of transitions leading from i to 

j, we can still prove asymptotic convergence to a globally minimal 
configuration if the following condition is satisfied: 

1' Vi ER 3io E Ro,,t, p > l,Ao,A1,• . . ,Ap ER i = Ao,io = Av : 

GA1c>.1:+1 C > o, k = o, 1, ... 'p - 1, 2.40 

i.e. if for an arbitrar·y configuration i it is possible to construct a finite 
sequence of transitions leading from i to a globally minimal configu
ration ,;o this situation occurs when we study the job shop scheduling 
problem in section 4.3 . Note that by replacing J. by i0 in 2.22 we 
find that satisfaction of condition · 1 ' implies that a similar condition 
is satisfied for the matrix P c . 

To prove asymptotic convergence in this case we introduce the no
tions of a closed set and of recurrent and transient configurations 
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Feller, 1950 . A closed set S is a set of configurations such that 
Pi; = 0 whenever i E S and 1· S - in the case of an irreducible 
chain the only closed set is the set of all configurations. A configura
tion i is called recurrent if the probability that the Markov chain ever 
returns to i is equal to 1, otherwise it is called transient. In every 
chain the recurrent configurations can be uniquely divided into closed 
sets S1, 82, ... , SK such that from any configuration of a given set all 
configurations of that set and no other can be reached. 2 In addition to 
the closed sets there is a set T of transient configurations from which 
configurations in the closed sets can be reached but not vice versa . 
Now consider the sequence of configurations constituting the Markov 
chain associated with P c . There are two possibilities: either the 
Markov chain starts in a transient configuration or it does not. In the 
latter case, the configurations constituting the Markov chain all be
long to the same closed set S1c k E 1, ... , K - the Markov chain can 
then be considered as a Markov chain with transition matrix P1c c , 

where P1c c is obtained from P c by deleting the rows and columns 
from P c corresponding to configurations not belonging to S1c. Note 
that this Markov chain is aperiodic this can be shown in the same 
way as for the Markov chain associated with P c and irreducible 
because of the properties of S1c ; furthermore, S1c contains at least 

one globally mini111al configuration. The latter observation is an 
immediate consequence of 2.40 and the definition of a closed set. In 
other words, the proof of theorem 2.1 can be repeated with R replaced 
by S1c. 

~·/ 

If the Markov chain starts in a transient configuration, it will even-
tually 'land' Feller, 1950 in a closed set S1c, k E 1, ... , K , though 
it is not a priori· known which one. The line of reasoning described 
above can then be applied again. 
We can make the preceding arguments more precise by introducing 
the notion of a stati·onary matrix Q, whose elements Qii are defined 
by 

qii = lim Pr X k 
le •oo 

• 

== i . 2.41 

2 We say that a configuration 1· can be reached fro111 a co11figl1ratio11 i if 3n : 1 < 
n<oo I\ (Pn)i;>O. 
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Note that for an irreducible Markov chain, qii does not depend on i cf. 
2.7 . Because the Markov chain associated with P c · is aperiodic, 

we can use the results in Feller, 1950, chapter 15, sections 6-8 to 
obtain 

0 . • 

_' i 

if;· E T or i E S1c, j S1c, for some k E 1, ... , K , 
if i, j E S 1c for some k E 1, ... , K , 

2.42· 

if i E T, j E S1c for some k E 1, ... , K , 

where Xi1c i.s the probability that the Markov chain, starting from the 
transient configuration i, eventually reaches the closed set S1e. 
From 2.42 we obtain, for a recurrent configuration 1· E S1c, 

iET 

O < lim Pr X k • 
=J 

le •oo 

• 

iER 

= i · XiJc + _ Pr X 0 
iES1c 

A10; C < . 
I:zes1 Aiol C 

Using conditions 4 and 6 we find 

• 
=t 

2.43 

2.44 

tf J
0 

E sk, j Ropt• Consequently, limc!O limk •oo Pr X k = 1· = 0 
'or any transient or non-globally recurrent configuration 1·. In other 
,ords, 

= 1, 2.45 

where .R~pt denotes the non-empty set of globally minimal recurrent 
configurations. 
In chapter 4, where applications of simulated annealing to several 
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combinatorial optimization problems are discussed, we prove that ei
ther condition 1 or condition 1 ' is satisfied for each of these prob
lems. 

Finally, we remark that theorem 2.1 does not pertain to the inhomo
geneous algorithm, because it is implicitly assumed that an infinite 
number of transitions is necessary to reach the stationary distribution 
of each Markov chain. More precisely, it can be shown that the num
ber of transitions necessary to approach the stationary distribution 
arbitrarily closely is of exponential order see section 2.4 . 

We now discuss briefly necessary and sufficient conditions for the in
homogeneous algorithm to converge to a global minimum. The in
homogeneous algorithm is described by an inhomogeneous Markov 
chain, whose transition matrix P k k = 1, 2, . . . is given by 

2.46 
• • 

J === i, 

where the sequence ck , k = 1, 2, ... denotes the sequence of values 
of the control parameter. A number of authors derive sufficient con
ditions for asymptotic convergence of the inhomogeneous algorithm 
to a global minimum, notably Geman & Geman 1984 , Anily & Fed
ergruen 1986 , Mitra, Romeo & Sangiovanni-Vincentelli 1985 and 
Gelfand & Mitter 1985 . These derivations are all based on ergodic
ity theorems for inhomogeneous Markov chains Seneta, 1981. 
Necessary and sufficient conditions are derived by Hajek 1986 . Ha
jek's result is restricted to the case where the generation matrix is 
independent of c and the acceptance matrix is given by 2.6 the 
Metropolis criterion . In order to formulate this result, we need two 
definitions: 

Definition 2.1 Hai·ek, 1986 
A configuration J. is called reachable at height L from a configurat1:on 
i, if the following holds: 

2.47 
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and 
C Ak < L, k = o, 1, ... , p. 2.48. 

Definition 2.2 Ha1·ek, 1986 . 
The depth of a local minimum i is defined as the smallest number 
d i such that there is a configuration 1· with C 1· < C i reachable at 
height C i. + d i from i. If i ,:s a global minimum, then by definition 
di = +oo. 

The reader is referred to Kern, 1986b for a detailed discussion of 
the notion depth. In particular, Kern considers the maximum depth 
D of all local minima cf. theorem 2.2 . For several combinatorial 
optimization problems, upper bounds on D are derived and it is shown 
that the computation of D cannot be done in polynomial time, unless 
P = NP. 
Hajek's result can be formulated as follows: 

Theorem 2.2 Ha3·ek, 1986 
Suppose that the transition matrix is given by 1!.46 , where A c1c is 
given by £.6 .· .. the Metropolis criterion and G CJc = G satisfieB the 
f ollo,wing two conditions: 

1. condition 1 of theorem f.1; 

2. /or any real number L and any two configurations i and i·, i 
is reachable at height L from j if and only if;· is reachable at 
height L from i. 

Assume furthermore that the sequence 
Jollow,ing two conditions: 

C1c ' k = 

1. limk,, ,,•oo c1c = O; 

2. CJc > CJc+l, k = 1,2, .... 

Then 
lim Pr · X k E Ropt 

k •oo 
= 1, 

if and only if 
00 D 

= oo, 

1, . . . satisfies the 

2.49 

2.50 

2.51 

2.52 
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where D is given by 

D = max d i i Ropt, i is a local minimum . 2.53 

Again, a few remarks on this result are in order. First of all we 
D ' -

a transition which corresponds to an increase in the cost function of 
value D. 
Secondly, if c1c is of the form 

CJc = = 1, 2, ... , 2.54 

for some constant r, theorem 2.2 implies that 2.51 holds if and only 
if r > D. Note that 2.54 is the expression for c1c which results from 
the necessary conditions derived in Geman & Geman, 1984; Anily 
& Federgruen, 1986; Mitra, Romeo & Sangiovanni-Vincentelli, 1985; 
Gelfand & Mitter, 1985 . 
Finally, we remark that theorem 2.2 can also be applied to the homo
geneous algorithm. If c1c , k = 1, 2, ... is the sequence of values of 
the control parameter and L1c the length of the k-th Markov chain of 
the homogeneous algorithm, we define the sequence ,l , l = 1, 2, ... 
as follows: 

2.55 

and 
2.56 

' 

The homogeneous algorithm can now be thought of as an inhomo-
geneous algorithm with sequence of control-parameter values "Yl , 

l = 1, 2, .... 

• 

In the previous section conditions are derived for the homogeneous as 
well as the inhomogeneous algorithm to converge in probability to the 
set of globally minimal configurations. In this section, we show that 
the aforementioned conditions imply that both algorithms must be 
allowed unlimited computation times. In addition, we derive results 
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indicating that exponential-time behaviour is to be expected if the 
asymptotic behaviour is to be approximated arbitrarily closely. 
Let us first discuss the consequences of the results of the previous 
section for the computation time of the homogeneous algorithm. In 
this case, the requirement that the computation time be unlimited is 
an immediate consequence of 2. 7 , which implies that each individual 
Markov chain is of infinite length. At this stage it is appropriate to 
make two further remarks on the speed of convergence of the proba
bility distribution of the configurations to the stationary distribution. 
Bot.h remarks relate to the distance between the stationary distri
buti·on and the probability distribution of the configurations after a 
finite number of steps. 

1. Consider an arbitrary irreducible, aperiodic and finite Markov 
chain with transition matrix P and stationary distribution q. 
Let the vector a k · denote the probability distribution of the 
configurations after k transitions. Hence, a O denotes the initial 
probability distribution and 

a. 2.57 
le •oo 

We are interested in a k - q 1 for any finite k and in order 
to say something about this quantity we use the following two 
theore1ns from Seneta 1981. theorem 2.3 is a11 abridged version 
of the Perron-Frobenius theorem for primitive matrices . 

Tbeore111 2.3 Seneta,. 1981 
Let P be a non-negative primitive3 matrix. Then there exists a 
real-valued eigenvalue r of P, which has the following properties: 

a r is the largest eigenvalue of P r > ,\ , for any eigenvalue 
,\ # r; 

b with r can be associated strictly positive left and right eigen
vecto,rs, which are uniq,ue to constant multiples; 

· c r lies l,,etween the smallest and largest row sums of P. 

3 A primitive matrix P is a matrix fo.r which there exists a positive integer M 
h th t P M • ..,..,1. • l . " sue a is ~net y posrt.t~v~. . .. · . . 

' 
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Theorem 2.4 Seneta, 1981 
Suppose the distinct eigenvalues of a primitive matrix P are 
r, A2, ... , At, where r > A2 > As > ... > At . Let s2 = m 2 - 1, 
where m2 ,:s the mult,:plicity of A2. Then we have, as k ► oo 

2.58 

elementwise, where w and v are any positive right and left 
eigenvectors, respectively, correspondi·ng to r guaranteed by the
orem 2.9, prov,:d,,*ng they are normed so that vTw = 1. 

Now suppose the matrix P is primitive and stochastic, i.e. 
satisfies I:; P;; = 1 for all i. According to theorem 2.3, the 
largest eigenvalue r is equal to 1. Putting 1 for the vector with 
unity in each position, we find Pl= 1 by the stochasticity of P. 
Hence, 1 can be taken as the right eigenvector in theorem 2.4 
and we have, as k · > oo 

2.59 

elementwise, where v is the positive left eigenvector of P satis
fying vT · 1 == ~i vi == 1. According to 2.20 and 2.21 , v is the 
unique stationary distribution q of the Markov chain associated 
with P. 
Consequently, for k ➔ oo 

2.60 

elementwise, and 

aT k 2.61 

Equation 2.61 bears on the homogeneous algorithm, because 
the transition matrix P c is both stochastic and primitive. The 
latter follows from the fact that an irreducible aperiodic matrix 
is primitive Seneta, 1981 . From 2.61 it is apparent that the 
speed of convergence to the stationary distribution is determined 
by the 'second largest' eigenvalue -\2 c of the transition matrix 
P c . However, for large matrices, such as the ones that occur in 
problems to which simulated annealing is applied, it is virtually 
impossible to compute A2 • 
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2 . 
. · 2.61 ... 

Theorem 2.5 Seneta, 1981 

and let a be an arbitrary probability vector. Then for k > <.p n , 
where tp n is the number of distinct regular n x n-matrices with 
elements in O, 1 , 

2.62 

where /J is a constant independent of P and a, 0 < /3 < 1. 

To apply this b,ound to the hom.ogeneous algorithm, we remark 
h h·. . · · P .· · . h t· d . d . bl d t at. t e tra.ns1uon rr,atrix c 1.s stoc as 1c an 1rre uc1 e an 

. aperiodic and thus regular .. Putting a · a O , we find 

Thus, 
:aT le 

•.2.63 

the following condition is sufficient to ensure 
- q7 c : 1 < E for ~ome small positive number e: 

k- > ,p R • 2.64 

According to Isaacson & Madsen 1974, we may take 
<,p R = . R 2 

- 3 · R + 3. Hence, 2.64 implies that to approx
imate the stationary distribution arbitrarily closely, we need an 
a.:mount of transitions at least quadratic in the number of config
urations. Since this number is usually some exponential function 
of the size of the problem, 2.64 would typically result in an 
exponential-time algorithm . 

. 

4 A regu.la.:r matrix is a sto<:ha.stic matrix, whose essential indices form a single 
a.p1e1·iodic class .(Seneta, 1981]. It would lead us beyond the scope of this tract 
to explain this notion in more detail. It suffices to ren1ark that a Markov chain 
with a regular transition matrix has a unique stationary distribution and that an 
it·x·,educible, aperiodic matrix is regular {Seneta, 1981]. 
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For the inhomogeneous algorithm, unlimited computation time is a 
consequence of 2.49 , 2.50 and 2.52 : from 2.49 and 2.50 we 
conclude that all c1c are non-negative, whereas 2.52 implies that 
there can be no integer K, such that ck = 0 for k > K unless 
D = 0, in which case there are no non-global local minima, so that 
even iterative improvement always finds the global minimum . Hence, 
c1c > 0 for all k and the limit in 2.49 is attained only after an infi
nite number of transitions. Thus, the corresponding inhomogeneous 
Markov chain is of infinite length. 
For the inhomogeneous algorithm, results similar to 2.61 have been 
obtained independently by a number of authors, notably Anily & 
Federgruen 1986 , Gidas 1985 and Mitra, Romeo & Sangiovanni
Vincentelli 1985 . As an example we discuss the result of Mitra, 
Romeo & Sangiovanni-Vincentelli 1985 . 
Suppose the sequence ck k == 1, 2,.. . is given by cf. 2.54 

r . t:,,. 
2.65 

where a is the maximum difference in cost between any two configu
rations i E R,J· E Ri for which C 1· > C i and r is given by 

r == min max d i,J· . 
iER\Rmax iER 

2.66 

Here, d i,j is the minimal number of transitions to reach J. from 
i and Rmaz is the set of locally maximal configurations. Note that 
r is an integer such that there is at least one non-locally maximal 
configuration from which any other configuration can be reached in 
no more than r transitions. If 1r is the uniform probability distribution 
on the set of globally minimal configurations, then 

where a and b are given by 

and 

1 
a == - min min G ii r, 

r iER. iER.-

2.67 

2.68 

2.69 
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cost value. This bound is rather po,or in the sense that if one works it 

for good accuracy i.s larger than the number of configurations. For 
the n-city travelling salesman problem, for example, one cannot do 
much better than estimating r by n. Under the assumption that the 
G-m&trix is given by a uniform distribution on £-opt nei"ghbourhoods 
. see section 4.2 · · 2.88 .. l·e ·. ·. to 

1 •· 2 
n 

a ..... ., -
n·nn-1 

·2.10 

and, using a <: b, we find that for some small number e > 0 

2.71 

i1:oplies that le (f. 0 .··.E_,..=-+i· ..... , whereas the number of con . · urations 

is O ·n.! ll Thus, an enumeration of all configurations would take less 
comput.ation time than the inhomogeneous algorithm. 
Summarizing we have that both algorith1ns behave as optimization 
a.lgorithm.s if they are allowed an infinite number of transitions. Of 
course, the latter can never be realized in any practical implementa
tion of such an algorithm. Furthermore, if the asymptotic behaviour 
is to be approximated arbitrarily closely, we can only derive expo
nential upper bounds on the number of elementary operations taken 
by the algorithms. Such operations are the transitions in the Markov 
c.hains for the homogeneous algorithm and the steps in the control 
paramet,er for the inhomogeneous algorithm. 
In chapter 3 we des.cribe how to imitate the asymptotic behaviour of 
the homogeneous algorithm in polynomial time, with as an inevitable 
result the loss of any guarantee with respect to the optimality of the 
configuration returned by the algorithm. 



• • • 

• • 

• 

In this chapter, we discuss the behaviour of the homogeneous algo
rithm in finite time on the basis of the notion of a cooling schedule, a 
set of parameters determining the finite-time behaviour of the algo
rithm. These parameters are chosen so as to imitate the asymptotic 
behaviour of the homogeneous algorithm in polynomial time, thereby 
losing any guarantees with respect to the optimality of the configura
tion returned by the algorithm. We do not describe any approxima
tions to the asymptotic behaviour of the inhomogeneous algorithm. 
Such approximations are not reported in the literature, which is prob
ably due to the fact that in practice it is virtually impossible to give 
accurate approximations to the constant r in 2.54 . One resorts to 
conservative estimates, see for example Kern, 1986b , which lead to 
unnecessarily slow convergence of the algorithm Geman & Geman, 
1984; Lundy & Mees, 1986 . 

• 

We recall from the previous chapter that the asymptotic behaviour of 
the homogeneous algorithm is characterized by 

29 
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1. an infinite number of transitions for each value of the control 
paranieter; 

2. an infinite sequence of values of the control parameter c1c , 

k = 1, ... , s.atisfying lim c" = 0 and c1c > 0 for all k. 
/c .. ~ 00 

Thus, in any finite-time implementation of the algorithm, the follow
ing . · .. · ·. · ameters should be specified: 

1. a finite nUID!ber of transitions for each value of the control pa-
, 

rarneter or, in other words, a finite length of each homogeneous 
M t.. 'h. ar&ov c··. a1n; 

'.& , an m.itial ·, ,1 :•e of the eontrol .p..,a,rro,e·ter e1;: ··· ····.. ·· . 
. ' ' ' ' . 

;:. l a rale for eh ,,>.i!ll the current .'•· .· .·ue of the cont.rol paria1·•·1~. 
·e•·.,· '·' , ,; . m1,' '1•1o·· ·,, •, ,. ,'h' ·e·. 'D· ·e· (X· ,,,, ·Oft·· ·,e· ~ 

' . , . ~ . . ' . . ' . • ,,,,., , ,, ' ' t ' -· ' . , 1 '•" ' '., _,- .. ' . ', ' .. ,., 1 
, ___ ., _.'.,- •,-,.,'_. , 

a flaaJ · .· .. ,·.··. 1:u(e of the control parar11eter · a stop criterion . 

A ,choice for these paran:1eters is referred to as a cool,:ng schedule or 
an annealing schedule .. In this section, we first discuss some general 

, uments on which the construction of a cooling schedule is usually 
based and next some approaches from the literature to the problem of 
determining a cooling schedule. The discussion is confined to genera
tion and acteptance matrices as given by 2.5 and 2.6 , respectively, 
i.e. only the annealing algorithm in its original formulation is consid
ered. 
Central in the construction of many cooling schedules is the concept 
of quasi-equilibrium: if Lk is the length of the k-th Markov chain and 
a l, c1c denotes the probability distribution of the configurations after 
l transitions of the k-th Markov chain, then the homogeneous algo
rithm is said to be in quasi-equilibrium at ck, if ''a Lk, ck is close to 
q c,c ". The precise statement of this proximity is one of the major 
points differentiating one cooling schedule from the other - from sec
tion 2.4 we know that exponential-time behaviour is to be expected if 
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small real number e. 
The actual construction of a cooling schedule is usually based on the 
following arguments. 

• For c ·· ► oo, the stationary distribution is given by the uniform 
distribution on the set of configurations R, which follows im
t11ediately from 2.28 , if we substitute the Metropolis criterion 
2.6 for the acceptance matrix and take the limit c ► oo. Ini

tially, quasi-equilibrium can therefore be achieved by choosing 
the initial value ·of c, c1 , such that virtually all transitions are 
accepted. For in that case all configurations occur with equal 
probability, which corresponds to the aforementioned uniform 
distribution and thus to q oo . 

• A stop cr,:ter1:on is usually based on the argument that execution 
of the algorithm can be terminated if the observed improvement 
in cost over a number of consecutive Markov chains is small. 

• The length L1r. of the k-th Markov chain and the transformation 
rule for changing c1c into c1c+1 are related through the concept 
of quasi-equilibrium. L1r. is usually determined by specifying 
111ore precisely the meaning of ''a Lk, c1c is close to q c1c ". 

Concerning the transformation rule usually a decrement rule , 
it is intuitively clear that large decrements in c1c will make it 
necessary to attempt more transitions at the new value of the 
control parameter, c1c+i, to restore quasi-equilibrium at c1c+1• 

For, given quasi-equilibrium at c1c, the larger the decrement in 
c1c, the larger the difference between q c1c and q c1c+1 and the 
longer it takes to establish quasi-equilibrium at ck+l· Thus, 
there is a trade-off between fast decrement of c1c and small values 
for L1r,. Usually, one opts for small decrements in ck to avoid 
extremely long chains , but alternatively, one could use large 
values for L1c in order to be able to make large decrements in c1c. 

The search for adequate cooling schedules has been addressed in many 
papers during the last few years. In this section we briefly discuss the 
schedule proposed by Kirkpatrick, Gelatt & Vecchi 1983 , and sim
ilar schedules. These conceptually simple schedules are all based on 
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of computational effort should be spent to restore quasi-equilibrium. 
Since accepted transitions are the only ones that contribute to a pos
sible evolution of the algorithm towards quasi-equilibrium, L1c is de
termined such that the number of accepted transitions is at least some 
fixed number T/min• However, since transitions are accepted with de
creasing probability, one would obtain L1c ➔ oo_for c1c l 0. Conse
quently, a ceiling is put on L1e by some constant L to avoid extremely 
long Markov chains for low values of c1c; see for instance Johnson, 
Aragon, McGeoch & Schevon, 1987; Kirkpatrick, Gelatt & Vecchi, 
1983; Leong & Liu, 1985; Leong, Wong & Liu, 1985; Morgenstern & 
Shapiro, 1986 . 

- decrement of the control parameter 

As mentioned before, one usually opts for small changes in the value 
of the control parameter and a frequently used decrement rule is given 
by 

3.3 

where a is a constant smaller than 1, typically between 0.9 and 0.99; 
see for instance Bonomi & Lutton, 1984, 1986; Burkard & Rendl, 
1984; Johnson, Aragon, McGeoch & Schevon, 1987; Leong & Liu, 
1985; Leong, Wong & Liu, 1985; Lundy & Mees, 1986; Morgenstern 
& Shapiro, 1986; Sechen & Sangiovanni-Vincentelli, 1985 . 

, 

• 
• po yno1111a 

In this section we discuss the cooling schedule also described in 
Aarts & Van Laarhoven, 1985a. We emphasize once more that this 

cooling schedule leads to polynomial-time execution of the algorithm 
on the one hand, but on the other hand precludes any guarantee for 
the proximity of the final configuration to a globally minimal one1 . 

The discussion is again gathered around the four parameters men
tioned in the previous section.· 

1 To the best of our knowledge, the only reference to such a guarantee in the 
literature is given by Sasaki & Hajek [1986J, who derive an upper bound on the 
aforementioned proximity for the maximum matching problem. 
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3.5 

value of the contr·ol para.meter. 

- d.:rement rule for the control parameter 

We recall fr,om section 3.2 that if the control parameter is decreased in 
I: · · I steps, the stationary distributions of successive Markov chains 
are c·: , to each other .. We may then expect that, after decreasing c1c 

to e.•·+t, a small number of transitions suffices to let the probability 
diltribution of th,e configurations approach the new stationary dis
lribution q ci+i ·· ··. this is, of course, under the assumption that the 
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of C1 • 

On the other hand, if we allow large steps in c and thus fewer Markov 
chains , we may expect that it will take more transitions to restore 
quasi-equilibrium after each decrement of c. In other words, there is a 
trade-off between a large amount of short Markov chains and a small 
amount of long chains. We readdress this trade-off in section 5.5, 
where we discuss it from a Bayesian point of view. For the time 
being, we take the first alternative as a starting-point, i.e. we want 
the stationary distributions for two successive values of the control 
parameter to be 'close': 

< 1 + 6, k = 1, 2, ... , 3.6 

for some 'small' real number 6, hereinafter referred to as the distance 
parameter. The actual choice of 6 is extensively discussed in chapter 4. 
The following theorem provides a sufficient condition to satisfy 
3.6. 

Theorem 3.1 Aarts 8 Van Laarhoven, 1985a 
If 

exp 
3.7 

for some arbitrary i 0 E Rapt and for c1c+1 < ck, then the ,:nequalities of 
9. 6 are satisfied. 

Proof 

First, we remark that if the acceptance matrix is given by 2.6 
the Metropolis criterion , the stationary distribution is, according 

to 2.28 , given by 

3.8 

for some arbitrary i0 E Ropt, where the normalization factor Qo c1c is 
given by 

• 3.9 
jER. 
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From · 3. 7 we deduce, using c1,;+1 < c1e, 

< -
iER 

whence 

iER 

exp -dC· · CL < 1 + 6 1o3. ~ 

;eR. 
3.10 

3.11 

The second inequality in 3.6 now immediately follows from 3. 7 , 
·3.8 and the first inequality in 3.11 , whereas the first inequality in 
3.6 immediately follows from 3.8 , the second inequality in 3.11 

and the fact that 

Vi ER: exp ilC"o' -
CJc+l 

< exp 

Equation 3. 7 can be rewritten as 

6.C,oi -
C1; 

k = 1, 2, ... 

3.12 

.□ 

3.13 

We make a slight simplification by restricting the condition of 3.13 
to the set of configurations that 'most probably' occur during the 
generation of the k-th Markov chain. This set Rc1c is determined by 
recording the cost values of the configurations X 1 , ... , X L1,; E R 
~.ctually occurring during the generation of the k-th Markov chain 

i assuming that the probability distribution of the cost values of 
: k-th Markov chain can be approximated by a normal distribution2 , 

(jh mean µ1c given by 

µ,k = µ Ck 3.14 

2 Such an assumption is often made in the literature a11d support,ed by computa
tional evidence; see for example [Aarts, Korst & Van Laarhoven, 1988; Hajek, 1985; 
White, 1984). 
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and variance a? by 

3.15 

respectively. We now define Rc1c as 

3.16 

so that, due to the properties of a normal distribution, a configuration 
occurring during the generation of the k-th Markov chain has a prob
ability of close to 1 to belong to Rc1c. Next, we replace the condition 
of 3.13 by the following condition 

3.17 

Clearly, the condition of 3.17 is a stronger condition for the config
urations in Rc1c. Finally, since for most optimization problen1s Copt is 
not known, we replace µ1r, - Capt+ 30-1c by 3u1c to obtain the following 
decrement rule: 

l + c~,-In(1+6) · 
30'1r: 

3.18 

We argue that· the neglect of µ1r, - Copt can be taken into account by 
choosing smaller values of 6, since in computational experiment,s the 
curves of µk - Capt µ 1 - Capt and a1e u 1 as a function of c1e are al
most identical; see for instance Aarts, Korst & Van Laarhoven, 1988 . 

- final value of the control para1neter 

The stop criterion is based on the decrease of µ1r,, as defined by 3.14 , 
during the execution of the algorithm. Figure 3.1 shows a typi
cal example of the behaviour of the average value of the cost func
tion as a function of the control parameter. The behaviour shown 
in figure 3.1 is observed for many different problem instances and 
is reported in the literature by a number of authors · Aarts & Van 
Laarhoven, 1985a; Aarts, Korst & Van Laarhoven, 1988; Hajek, 1985; 
Kirkpatrick, Gelatt & Vecchi, 1983; White, 1984 . The dashed curve 
is obtained by smoothing the data points, i.e. by replacing each data 
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Traveling Salesman Prob,lem 

100 cities 

average cost 
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Figure 3.1: Average value of the cost function, µk, as a function of the 
control para.meter ci for a 100-city travelling salesman problem. The 
dashed curve is obtained by smoothing the data reproduced from 
· Aa.rts & Van Laarhoven, 1985a . 

p-oint c, µ c by an average over a number of consecutive data points 
around · c, µ c. ·.•. Let µ : c · ,➔ µ, .. c describe the dashed curve and de
fine 

- Capt• 3.19 

It seems reasonable to terminate execution of the algorithm if ~µ, c 
is small compared to µ1 the average cost value·· of the first Markov 
chain•.·. For c <:: 1 we have 

Aµ C 3.20 
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Hence, the algorithm is terminated if 

Ck 8µ 
• 3.21 

µl 

where Es is some small positive number, hereinafter r·eferred to as the 

da~shed curve. 

- length of the Markov chains 

The decrement rule for the control parameter is such that a 'small' 
number of transitions should suffice to approach rapidly the stationary 
distribution for each value of the control parameter see above . We 
specify 'small' as the size of the largest neighbourhood, i.e. 

Lk = L = max Ri , k = 1, 2, ... , 3.22 
iER 

primarily because we want the algorithm to have the possibility to 
visit at least a major part3 of the neighbourhood of the current con
figuration before starting the generation of the next Markov chain. 

Su111marizing, we have derived a cooling schedule which is controlled 
by three problem-independent parameters: the initial acceptance ra
tio Xo, the distance parameter 6 and the stop parameter e,. In chap
ter 4 we present additional computational evidence for the assertion 
that near-optimal configurations can be obtained for a wide variety of 
con1binatorial optimization problems with the aforementioned cool
ing schedule without tuning the three parameters to the problem the 
algorithm is applied to. 
We now prove a theorem stating that the aforementioned decrement 
rule for the control parameter, together with the final value of the 
control parameter c determined by 3.21 , leads to a total number of 
steps in the control parameter bounded by O In R . In the proof of 
the theorem we need three additional quantities: · 

• the expected cost in equilibrium, Ck , given by 

C Ck 3.23 
iER. 

3 It can be shown that the expected number of different elen1e11ts fou11d whe11 
sampling N times with replacement fron1 a set witl1 N elen1ents is approxitnately 
iN for N > 5000 [Aarts, Beenker & Korst, 1985}. 
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• where q c1 1s 

Markov chain; 

-~ · • ·1·b · m <1~ , g1·ven by • the expectr:;a variance 1n equ1 1 r1u , ,i; 

2 
(J . CJe 

iER 

• the entropy in equilibrium, Sk, given by 

Theorem 8.2 Aarts 8 Van Laarhoven, 1985a 

C 2. 
k ' 

Let the decrement of the control parameter be given by 

t1:1ith 
In 1 + 6 

then, for the first integer K, satisfying 
' 

we have 
K=OlnR, 

under certain assump·tions with respect to the derivatives ----
8 .. 

a"c s c . 

Proof 

3.24 

3.25 

3.26 

3.27 

3.28 

3.29 

The pro-of of the theorem consists of two parts. First, we express the 
total number of steps K in the final value of the control parameter 
cK. Next, we derive a. lower bound on cK. Equation 3.29 is then 
obtained by combining the two result.s. 
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1. It is easily seen that 

Ct 
C1c < -------, k = 1,2, ... , 

1 + k 1 . 0:. C1 

41 

3.30 

where a = min1c 0.1c. The proof of 3.30 is by induction. Clearly, 
3.30 holds for k = 1. Suppose, 3.30 holds for k. By using 

o.1r, > o: and the induction hypothesis we obtain 

3.31 

Hence, 3.30 holds fork+ 1. Consequently, we obtain for K 

1 

In 1 + 6 · CK In 1 + 6 · CK 
3.32 

2. By using 3.8 and 3.9 , the following relations can be 
straightforwardly shown to hold: 

and 

a 
Cc 

ac 

8 00 

so 

a 
= C • -8 C 

ac 

lim Sc 
C •OO 

= In 

u 2 C 

c2 

= limS c 
c!O 

= In Rapt • 

' 
3.33 

3.34 

3.35 

From 3.33 we conclude that S c is increasing in c. Further
more, we remark that 

3.36 

where µ1r, is defined by 3.14 , since the probability distribution 
of the configurations approaches the stationary distribution for 
Lk ➔ 00. 

Using 3.33 - 3.35 , we can now express Kin terms of In R as 
follows. From 3.21 we conclude 

3.37 
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A . t· 8 pprox1ma 1ng acµ c · and using 3.33 , we obtain 

3.38 

to obtain 

- In Ropt 
f ""' __:,_.:,___~__,_.;;;..- < ----. 3.39 

µ1 CK µ,1 

Consequently, 

3.40 

and 
In R 3u1 • In R 

K 1 < l"vl ------

a • µ 1 • f.1 In 1 + 6 · µ 1 · e' · 
3.41 

Thus, the total number of steps in the control para111eter is 

□ 

With respect to the approximations in the proof of theorem 3.2, we 
rer:nark that the first approximation is motivated by 3.36., but is 
merely supported by computational evidence. The second approx
imation is motivated by the fact that cK is very small note that 
a . _ s cK -so .. . 

· Be · c -0 
· e finally cone ude that, provided µ 1 and o-1 are independent of the 

size of the problem and the aforementioned approximations are ac
curate, the computation time T of the algorithm with the aforemen
tioned three-parameter schedule satisfies 

T=Or•L·lnR, 3.42 

where the term L originates from the length of the Markov chains 
3.22 , the term ln R is the upper bound on the number of Markov 

chains given by the·orem 3.2 and T is the computation time of one 
transition. For many combinatorial optimization problen1s, L and r 
can be chosen as a polynomial in the problem size, whereas R usu
ally is an exponential or super-exponential function of the problem 
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size. Consequently, the algorithm runs in polynomial time. 
In section 3.4 and in chapter 4, the analytical bound given by 3.42 
is compared with numerical calculations found by measuring compu
tation times when applying the algorithm to several combinatorial 
optimization problems . 

• 

To compare several of the cooling schedules discussed in sections 3.2 
and 3.3, we use simulated annealing with different cooling schedules 
to solve instances of two well-known combinatorial optimization prob
lems, viz. the graph partitioning problem and the travelling salesman 
problem. 
In an instance of the graph part,:tioning problem, a graph G = V, E 
is given. The set of configurations of an instance is given by the set 
of partitions V1 , V2 of the vertex set V, the cost of a configuration 
is a weighted sum of the difference in cardinality between V1 and V2 

the imbalance and the number of edges with one endpoint in V1 and 
one in V2 • The problem is to find a partition with minimal cost. 
To be able to apply simulated annealing, we need to define, in addition 
to the configurations and the cost function, a neighbourhood struc
ture. Let V = v1 , ••• , Vn denote the set of vertices, with n = V , 
then each configuration of the problem is characterized by a sequence 
ri = ri1, ri2 , •.. , r,n , where 

j=l,2, ... ,n. 

Consequently, the total number of configurations, R , is 2"-1 . 

The imbalance e is given by 

n 

3.43 

3.44 



CHAPTER 3. FINITE-TIME BEHAVIOUR 

1 n n. 

= a;k T;,j 
4 i=l k=j+l 

From · 3.44. and • 3 .. 45 we obtain 

n. n 1 1 n 
2.A-

2 j=lk 

n 

a;1c, 
i+l 

3.45. 

3.46 

where A is some real-valued weighting factor. The squared value of 

imbalances than for increases at large imbalances. Omitting the last 
two tern1s from •·3.46 , which are constant and thus irrelevant to the 
optimization, we obtain the following expression for the cost of a 
configuration i: 

Ci = 

T.h . ewe1 

n n. 1 

i=lk=i+l 
3.47 

;a vertex, i.e. the average number of edges per vertex. In that way we 
ieve that the contribution of the two terms in 3.47 to the total 
t . ·- t l 1 cos m approx1,ma ,e1 y equa1. 

Finally, a tra.nsit,ion is generated by changing an arbitrarily chosen 
element r,i ··•· · m the current sequence r;. to -rik • Thus, the neigh
bourhood R, of a configuration i is given by 

n 

=2 .3.48 

and Xi ..... n for all i .. Furthermore, if i and 1· are two arbitrary con

then a sequence of ,c transitions can be generated such that, starting 
at configuration i, we en·d up in configuration 1·. Consequently, the 
first condition of theorem 2.1 is satisfied and accordingly the homo
geneo,us algorithm converges asymptotically to a global minin1um. 

ules: 



3.4. COMPARISON OF SCHEDULES 45 

1. Cooling schedule 1 is the three-parameter schedule described in 
section 3.3. All results are obtained with the following parame
ter setting: Xo = 0.95, 6 = 10-1 and Ea = 10-s. 

2. Cooling schedule 2 is the schedule used in the computational 
study of Johnson, Aragon, McGeoch & Schevon 1987 and is 
similar to the schedule of Kirkpatrick, Gelatt & Vecchi 1982 ; 
see section 3.2. The initial value of the control parameter is 
identical to the one of schedule 1, the decrement rule for the 
control para1neter is given by ck+l = ack k 1, 2,. . . and ex
ecution of the algorithm is terminated if the cost values of the 
last configurations of p consecutive Markov chains are identical. 
Here, we use Xo = 0.95, a = 0.95 and p = 4. 
Generation of the k-th Markov chain is terminated if either 
11 • A· n transitions have been accepted or A·n transitions have 
been generated, whichever occurs first. Here, we use f'/ = 0.25 
and choose A such that the computation time taken by sched
ule 2 is at least as large as that of schedule 1. 
Assuming that the stop criterion of this schedule has a similar 
effect as the stop criterion of the first schedule, we use 3.40 
and 

lncK - In c1 
K=l+-----, 

lna 
. 3.49 

where the K-th Markov chain is again the first Markov chain 
for which the stop criterion is satisfied, to obtain 

K = 0 In In R • 3.50 

3. Cooling schedule 3 is identical to schedule 2, except for the fact 
that the length of each Markov chain is fixed to A·n transitions. 
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1 Vi, j E . 1, 2, ... , n : ai; E 0, 1, • • • , amaz 

2 ~J=l I:k=i+l aii = e · n. 

' 

3.51 

3.52 

and 10 and 30, respectively. The averages in table 3.1 are taken over 
the 25 final solutions obtained by generating, for given values of n 
and e, five problem instances and running the algorithm five times 
on each instance with five different seeds for the random number 
generator··. The standard deviations are calculated from five average 

. ues, where each average corresponds to an instance and is obtained 
by averaging over the five runs for that instance. Computation times 
are CPU~times on a VAX 11 785-computer. 
From table 3 .. 1, we conclude that schedules 1 and 3 return final solu
tions of approximately the same quality, whereas schedule 2 performs 
slightly b,ett,er. As for computation times, for fixed e the average 
computation time t taken by schedule 1 is approximately given by 
t ··•. t 1 • n 1

·
7 for some constant t 1 x2 = 0.998, 0.9'98 and 0.999 for 

e ····· 10, 20 and 30, respectively . We remark that the bound for 
the computation time given by theorem 3.2 is O n 2 : L = n and 
In R. = n In 2, whereas r is independent of n for fixed e. 
For schedules 2 and 3 we have chosen the parameter A such that the 
average computation time is again approximately O n 1·7 • We note 
that the b,ound found by using 3.50 is O A n Inn : the Markov chain 
length L is bounded by O A n . and K = 0 In n In 2 = 0 ln n . 

Next, we present some data that have been obtained by applying 
simulated annealing with different cooling schedules to instances of 

plication of the algorithm to this problem the reader is referred to 
section 4.1. 

4, rJ 
Xo ·:~:~ 0.95, a = 0.95, P = 4 and A = 6 · schedule 3 . The schedules 
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l, in seconds on a VAX 11/785 
and standard deviations u0 and ul, respectively for different-sized instances of the graph partitioning 
problem. The results are obtained with schedules 1, 2 and 3, respectively. For each instance, the best 
average cost value is marked with an asterisk. 

Size 

-n I e 

50 I 10 
100 I 10 
150 I 10 
200 10 
250 10 
300 10 

• 

-
Schedule 1 Schedule e Schedule 9 

--.. .., 
-138.3 8.8 1.7 0.6 2.25 -138.1 8.4 1.8 I 0.1 111.75 I -140.0*I 8.2 I 1.7 I o.o 
-287 .8 6. 7 5.2 0.1 3.00 -286.9 6.2 4.8 0.3 2.50 -288. 7* I 5.8 5.2 I 0.3 

-431. 7 5. 7 10.8 0.4 3. 75 -432.2* 9.2 10.2 0.6 3.25 -430.9 6.8 I 11.4 I 0.4 
-579.2 10.3 18.9 1.9 4.50 -582. 7 12.3 18.4 0.6 4.00 -584.1 * 15. 7 18.9 0.8 

-730.2 2.3 25.0 4.2 5.25 -733.9* 6.4 24.3 1.9 4.00 -732.9 6. 7 24.4 1.6 

-896.8. 9.0 35.9 5.0 6.00 -895.5 6.6 35.9 2.0 4.50 -890.2 5.0 35.2 1.9 
I 

• • 

-185.3* I 5.4 2.1 I 0.2 
7.0 0.3 

15.1 0.5 
20.1 0.9 

50 20 -182.6 5.6 2.1 0.1 2.25 -185.0 5.6 1.9 0.1 1. 75 
100 20 -405.1 5.8 6.6 0.3 3.00 -404.5 8.5 6.1 0.5 2.50 -406.9* 7.8 

20 -619.4 14.0 13.1 0.6 3. 75 -622.4* I 16.8 I 13.1 I 0.8 II 3.25 -621.2 15.2 
20 -845.0 9.5 20.6 0.7 4.50 -852.l*l 11.7 I 22.3 I 1.0 II 3.25 -849.3 10.4 

. 150 
200 
250 
300 

20 -1063.3 10.0 29.0 1.6 5.25 
20 II -1289. 7 I 23.2 I 42.8 I 2.5 II 6.00 

~1065.6*1 15.0 I 32.8 I 2.1 II 3.50 I -1060.4 I 14.1 I 29.5 I 1.1 

\,A, 

50 30 
100 30 

-212.4 
-482.5 

150 
200 
250 
300 

30 -758.1 
30 II -1017. 9 
30 -1273.7 
30 -1550.6 

'' 

-
8.5 2.5 0.1 2.25 
9.9 8.0 0.4 3.00 

14.8 15.8 0.4 3. 75 
23.4 23. 7 0.8 4.50 
24.9 36.2 1.7 5.25 
12.6 51.2 3.2 11 6.00 ... 

-1291.3* 
-212.6 
-484.1 • 
-763.0* 

-1021.a• 
-1290.9* 
-1561.9. 

26.3 I 46.6 I 3.1 II 4.25 I -1281.7 I 24.9 I 43.3 I 2.4 
I F 

• 

.. 

6.0 2.6 0.2 1. 75 
12.0 8.3 1.0 2.50 
17 .2 16.0 0.5 2. 75 
18.2 29.6 1.5 3.25 
20.8 41.3 2.3 3.50 
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di1play,ed in table 3.2 they are calculated by averaging over the ten . 
final solutions obtained by running the algorithm ten times on each 
instance.·. From this table we conclude that the quality of the final 
solutions returned by the three schedules is again approximately the 
sa,me .. 
From the experiments we draw the following conclusions: 

1. H 'cooling' is carried out with 'reasonable accuracy', the quality 
of the final solution returned by the algorithm hardly depends 
on the p,articular cooling schedule used. 

2. The average time complexity of the schedules can be quite ac
curately predicted by the worst-case time complexity given by 
theorem 3.2 and relate,d observations. 

3. Sche,dule 1 is consistently slightly worse than schedule 2, but 
makes up for this in our opinion by the fact that it needs sub
s tially less parameter tuning: in schedule 1, the only param
eter relevant to the quality of the final solution is 6,4 whereas 
in schedule 2, we need to find a good choice for a, TJ and A. 
There.fore, in the applications of simulated annealing discussed 
in the next chapter, we restrict ourselves to implementations of 
simulated annealing with schedule 1. 

L O . "'"111. •W ,-

. . . . .· e c 01ce o e ecrement 
. . . . . .· . .. .•· ·· · · ar. ov c a1ns, see or instance 
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Table 3.2: Average cost of final solution C final , average computation 
time t, in seconds on a VAX 11 785 , standard deviations a 0 and CTt, 

respectively and % of average final solution above optimal solution 
for a set of five travelling salesman problems. The results are obtained 
with schedules 1, 2 and 3, respectively. For each instance, the best 
average cost value is provided with an asterisk. 

Problem 
no. 

24 
25 
26 
27 
28 

24 
25 
26 
27 
28 

Optimal C inal 

solution 

' 

21282 
22148 
20749 
21294 
22068 

21282 
22148 
20749 
21294 
22068 

r----

21467.8 
22492.8 
20928.4 
21436.1 * 

22454.9 

21436.3* 
22323.4* 
20939.4 
21442.7 
22211.0* 

% above 
ua optimal 

Schedule 1 

102.0 0.87 
163. 7 1.56 
168.8 
122.5 
190.3 

0.86 
0.67 
1.75 

Schedule e 
69.0 0.73 

131.9 0.79 
63.6 

110.9 
69.6 

0.92 
0.70 
0.65 

-
t 

822.2 
813.2 
807.4 
823.1 
832.5 ... 

16.3 
16.7 
13.1 
15.5 
18.4 

819.0 20.8 
886.6 63.5 
970.6 28.3 
861.8 38.9 
894.7 86.4 

.... 

... ====~===:::;=====-===:::::::::;=:::;:::::;:=======:::::===,, 
Schedule 9 

24 
25 
26 
27 
28 

21282 
22148 
20749 
21294 
22068 

21473.6 
22435.0 
20900.4* 
21515.8 
22293.2 

134.3 0.90 
133.2 
116.4 
143.2 
129.9 

1.30 
0.73 
1.01 
1.02 

813.4 40.0 
901.6 42.6 
903.5 56.1 
825.4 · 34.3 
866.3 · 54.2 
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When a.nalysi,ng the performance of an approximation algorithm, one 
might c,onsider the following aspects Ball & Magazine, 1981 : 

• the e · · .. ciency of the algorithm, i.e. the number of elementary op
erations the running time required by the algorithm to return 
a solution; 

• the effectivity of the algorithm, i.e. the difference 'in cost between 
the returned s,olution and a globally minimal solution; 

• the simplicity of the algorithm; 

• the ease of implementation of the algorithm; 

• the flexibility or robustness of the algorithm. 

With respect t,o the simulated annealing algorithm, we make some 
general remarks on the last three aspects. The first two aspects are 
extensively addressed in the remainder of this chapter; with respect 
to the ,difference in cost we remark that we only consider the relative 
difference, i.e. the ratio between the difference and the globally mini
mal cost value. 

50 
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The simplicity of simulated annealing hardly calls for any further 
comment - it is part of its attraction. It is also an easy-to-implement 
algorithm - the various simulated annealing algorithms described in 
this chapter typically consist of a few hundred lines of computer code 
- though it is not always easy to formulate a problem in a way that 
lends itself to application of the algorithm, as is shown in the remain
der of this chapter. Flexibility refers to the ability of an algorithm to 
handle problem variations and different problems. The rich variety 
of proble1,1s to which the algorithm is applied, see Van Laarhoven & 
Aarts, 1987 , strongly supports the claim that simulated annealing is 
a very flexible optimization technique. 
With regard to the first two aspects, one usually distinguishes three 
ways in which the analysis of an approximation algorithm is actually 
carried out see for instance chapters 5, 6 and 7 in Lawler, Lenstra, 
Rinnooy Kan & Shmoys, 1985 : 

1. worst-case analysi·s, which involves finding bounds on how large 
the aforementioned difference and running time can be in the 
worst case. To the best of our knowledge, the only worst-case 
analysis of the difference in cost between the returned solution 
and a globally minimal one has been carried out by Sasaki and 
Hajek 1986 for the maximum matching problem - their results 
combine a worst-case analysis of the difference and an average
case running time analysis see next approach for this problem. 
A worst-case running time result for a specific version of simu
lated annealing is given by theorem 3.2. Another type of analysis 
is briefly described on page 27 and leads to an upper bound on 
the distance between the probability distribution of the configu
rations after k transitions of the inhomogeneous algorithm and 
the uniform distribution on the set of globally minimal configu-

• rations. 

2. average-case or probabilistic analysis. Underlying such an anal
ysis is a probability distribution over the set of all problem in
stances. The analysis involves finding analytical expressions for 
the expected running time and the expected difference between 
the returned solution and a globally minimal one, where the ex
pectations are calculated according to the aforementioned prob-
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bilis·tic nature. Cons,equently, even for a fixed problem instance, 
the running time and difference are stochastic variables. It is 
precisely t:o this additional element that the previously men
tioned r·esult of Sasaki and Hajek 1986 refers: they give an 
1analytica.l expression for the expected running time of the algo
:ritt,i: , · •·.• and the worst-case di:ff erence between returned solution 
and a globally minimal one given an arbitrary instance of the 
maximum matching problem. We are not aware of any other 
&?erage11•case analysis results in the literature. 

3. empirical a ysis, which involves the analysis of running time 
and difference, based on a large set of computational exper
iments. A number of such computational studies have been 
published in recent years, e.g. by Golden & Skiscim 1986 , Kirk
patrick 1984, Morgenstern & Shapiro 1986, Nahar, Sahni & 
Shragowitz 1985,1986 and by Skiscim & Golden 1983 . While 
not intending to belittle these studies, we feel that they are 
sometimes carrie,d out in a haphazard way, in particular when 
it comes to the choice of the parameters of a cooling schedule. 
Furthe:rruore, the results found by simulated annealing are not 
always pitted against those found by tailored algorithms for the 
pro,blem under consideration. Finally, the widely cited compu
tational study of Johnson, Aragon, McGeoch & Schevon 1987 
has unfortunately not been published so far. 

The empirical analysis described in the remainder of this section has 
the following characteristics: 

known coioling schedules from the literature see section 3 .. 4 . 

1 ·- • ems, viz.: 
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the travelling salesman problem, which is probably the 
best-known problem in combinatorial optimization, and for 
which many approximation and optimization algorithms 
were constructed during the past decades see Lawler, 
Lenstra, Rinnooy Kan & Shmoys, 1985 ; 

the 1·ob shop scheduling problem, which is among the hard
est combinatorial optimization problems: not only is it 
),/ P-hard, but even among the members of the latter class it 
belongs to the most difficult ones see for instance Lawler, 
Lenstra & Rinnooy Kan, 1982 ; 

- the football pool problem, which is an example of a prob
lem which had never been solved by considering it as an 
optimization problem before it was tackled by simulated 
annealing. Through this problem we also illustrate that 
the choice of a neighbourhood structure can be very criti
cal. 

• Where possible, the results found by simulated annealing are 
not only pitted against those found by other tailored approxi
mation algorithms, but also against upper bounds on globally 
minimal solutions of the problems under consideration. 

• All results are obtained by averaging over several runs of the 
algorithm. For a probabilistic algorithm, multiple runs on the 
same problem are a prerequisite to get meaningful results, but 
this is not always done in other computational studies. 

Each of the following sections is devoted to one of the aforementioned 
problems. Throughout these sections, computation times are CPU
times on a VAX 11 785-computer, unless explicitly mentioned other
wise. The last section of this chapter is devoted to conclusions based 
on the computational results. 

• e 

The attraction of the Travelling Salesman Problem TSP is proba
bly due to the paradoxical characteristic that it is simple to state and 
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very difficult to solve to optimality. 

his home city, visits ea.ch city on a given list exactly once and returns 
to his home city. His problem is to select the order in which he visits 
the cities such that the total distance travelled in his tour is as small 
as possible. 
More formally, the problem can be described as follows. If a permuta
tion 1r of the set }I = 1, ... , n is interpreted such that 1r k , k E N, 
denotes the successor of city k in the tour of a salesman who is to visit 
n cities, then each tour can be characterized by a cyclic permutation 
of J./, i.e. a permutation ,r of )I such that for every k E JI we have 

1r1 k =f. k, l = 1, 2, ... , n - I, ,rn k = k. 4.1 

The n-,city TSP can now be stated as follows. Given an n x n-matrix 
D -- , dt; · , hereinafter ref erred to as the distance matrix, find a cyclic 

t t . f l / • • • • permu a. ion 1f o .,..,. m1n1m1z1ng 

4.2 

To apply simulated annealing, we recall that we need to define con
figurations, a cost function and a neighbourhood structure. 
Each configuration i of the problem is characterized by a cyclic per
mutation 1f,, of ).J; consequently, for a symrnetric distance matrix, the 

t . . h t . d b · · · b ura ion i, c · arac er1ze · y a permutation ,ri, 1s given y 

Ci 4.3 

Finally, a transition is generated by replacing two edges in the cur
rent tour by two non-tour edge,s see figure 4.1 an edge in a tour, 
characterized by a permutation 1r, is a pair of cities k, 1T k . This 
transition is calle·d 2-change and is a special case of k-change Lin, 

transition have been shown to be quite effective for the TSP· see for 
. L" & K · ' instance 1n . •· ern1ghan, 1973 .. 
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a b 

Figure 4.1: 2-change example; a_ current tour b tour after reversing 
the order between cities l and 1r'n l . 

A 2-change can also be seen as a reversal of the order in which the 
cities in between a selected pair of cities are visited. If ,r is the cyclic 
permutation corresponding to the current tour and 2-CH l ,m denotes 
a 2-change, where l,1rm l m =I= n is the aforementioned pair of 
cities, then 2-CH l ,m results in a cyclic permutation µ, given by 

µ l = Trm-1 l . , 
µ 1r: l = 1rm l ; 

= nr-1 l , r = 2, ... , m - 1; 

k-:/=1r 8 l, s=0,1, ... ,m-1. 

µ 1rr l 

µk ==1rk, 

4.4 
4.5 

4.6 

4.7 

Thus, the neighbourhood Ri of a configuration i, characterized by a 
permutation 1r;, is given by 

and Ri 
n 
2 

1· 1ri is obtained from 'lri by a 2-change 4.8 

!n n - l for all i. Furthermore, suppose i and 
2 

j are two arbitrary tours. Define the sequence of permutations 7r,xt , 

t = 0, 1, ... by the following two relations: 
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= 'Kj t . 4.9 

Note that mt is chosen such that the successor oft in tour At, 

the tour At are identical to the first t cities in the tour 1·, or, more 
precisely, that for t > 1 

= 1r,· k , 1 < k < t. 4.10 

Fort = 1, we find that 1rA 1 is obtained from 1r1 by 2-CH 1, m1 , where 
m 1 satisfies 

Substituting µ, 
combining it with 

= 'lf j 1 . 

,rAl, 1r = 'Ki, l 
4.11 yields 

m1-l 1 = ,r. 
1 

1 and m 

= 7rj 1 . 

• 
m1 lll 

4.11 

4.4 and 

4.12 

Thus, 4.10 holds fort= 1. Now suppose 4.10 holds for t-1. Using 
4.9 and substituting µ ,rAt, ,r = ,rAt-i, l = t and m = mt in 4.4 

yields 
== 1f j t . 4.13 

Thus, 4.10 also holds fort. For t = n, 4.10 implies 7r>.n = 1r;, so 
that we have a sequence of n transitions leading from 1ri to 1r;. 
We recall from theorem 2.1 that if the generation and acceptance 
matrix are given by the uniform distribution on the neighbourhoods 
and the Metropolis criterion, respectively, then the only condition for 
asymptotic convergence of the homogeneous algorithm is a condition 
which we have just shown to be satisfied, namely that it is possible, 
for every two configurations i and 3·, to construct a finite sequence of 
transitions leading from i to i·. 

The empirical analysis of the finite-time behaviour of the algorithm 
is carried out by running the algorithm on a number of instances of 
the travelling salesman problem, varying in size from 48 to 442 cities. 
The instances can be divided into three sets: 
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• 

1. Nine Euclidean instances, i.e. instances for which the entries 

i, J., k E JI: di1c < dii + d; 1c. These instances are all taken from the 

the 48 cities are 48 major German cities with the distances given 
in Shell's Road Atlas of Germany. TOM57 is a 57-city problem 
due to Karg & Thompson 1964; the 57 cities are 57 major 
US cities with the distances given in the Rand-McNally Road 
Atlas of the Un,:ted States. EURlOO is a 1 city problem due 
to Aarts, Korst & Van Laarhoven 1988 .; the 100 cities are 100 
major European cities with the distances calculated from the 
degrees of latitude and longitude of the cities. KR0124 through 
KR0128 are 100-city problems due to Krolak, Felts & Marble 
1971 ; the original data are randomly generated coordinates 

in the plane. GR0120 is a 120-city problem due to Grotschel 
1977 ; the 120 cities are 120 German cities with distances given 

in the Deutscher General Atlas. 

2. Two non-Euclidean instances taken from the literature: LIN318 
is a 318-city problem due to Lin & Kernighan 1973 and 
GR0442 is a 442-city problem due to Grotschel 1984. The 
data for both problems come from actual proble1ns involving the 
routing of a numerically controlled drilling machine through a 

• 

number of points in the plane. Since the drilling time is the same 
for each point, the problem can be formulated as a TSP, the only 
exception from a standard TSP being that a particular start a.nd 
end point are to be used. The latter is enforced by setting the 
distance between start and end city to a large negative value, 
as a consequence of which the problems become non-Euclidean. 
GR0442 is one of the largest instances discussed in the litera
ture for which, without using a part,.tioning approach, a prov
ably globally minimal solution has been found Grotschel, 1987 
the largest instance solved to optimality is, to our knowledge, 

Rinaldi Johnson, 1987 . 

3. Randomly generated non-Euclidean instances, i.e. instances 
for which the entries of the distan·ce matrix are drawn from 



58 CHAPTER 4. EMPIRICAL ANALYSIS 

a uniform distribution on the interval 1, 100n . We have gener

the Euclidean TSP. Computational evidence for this assertion 
can be found in, for instance, Lin & Kernighan, 1973 ; in ad-

inst&nces are more difficult to solve than instances obeying the 
triangle inequality; see for instance Johnson & Papadimitriou, 
19 .. ··.g·5 F . '" - . , 1 - , - -•· ,, , - - : , I 

Th1e pierfo,rmance of simulated annealing for the Euclidean instances 
is reported in tables 4.1 and 4.2. The averages in table 4.1 4.2 are 
comput1ed from the five ten final solutions obtained by running the 
aJgor'it . ·· , controlled by the cooling schedule described in section 3.3, 
five ,ten··· times on ea.ch instance. All results are obtained with the pa
rameters xo and €8 set to 0.95 and 10-6 , respectively, and for different 
values of the distance parameter 6. 
From tables 4.1 and 4.2 we observe firstly that the quality of the 
average solution the average cost value returned by the algorithm 
impr·oves when 6 is decreased. This is in accordance with the the
ory underlying the employed cooling schedule: a smaller value of 6 
s, . ds for a smal.ler distance between the stationary distributions of 
. two. successive Markov chains. Consequently, we may expect that, for 
a smaller value of 8, after a given number of transitions the prob
ability distribution of the c9nfigurations is closer to the stationary 
distribution. In other words, a smaller value of 6 leads to a better 
ap,proximation of the asymptotic behaviour of the algorithm. Further
more, we observe that the standard deviation in the final cost values 
deer ·· · · •· ... with decreasing o, which indicates that the reliability of the 
results increases with decreasing 6. This is especially true for the fi-
nal cost values in table 4.2, which are a more accurate reflection of 

since the averages and standard deviations in the former table are 
computed from twice as many runs as those in the latter. We also 

deviation from the global minimum is less than 2%. 
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Table 4.1: Average cost of final solution C final , average computa
tion time in seconds t , standard deviations u0 and at, respectively 
and % of average final cost value above globally minimal cost value 
for different-sized instances of the travelling salesman problem. The 
results are obtained with the simulated annealing algorithm with dif
ferent values of the distance parameter 6. The averages are obtained 
from 5 runs. 

Problem 6 
.... C final Uc % -t Ut 

GR048 10.0 5203.6 65.5 3.12 6.3 0.3 
. 1.0 5203.0 111.4 3.11 15.9 1.5 

0.1 5094.8 23.9 0.97 93.8 5.6 
TOM57 10.0 13340.8 241.4 2.98 10.2 0.5 

1.0 13218.6 153.2 2.03 26.9 2.3 
0.1 13068.0 50.5 0.87 158.2 3.9 

EURlOO 10.0 21852.6 329.7 3.40 45.8 1.7 
1.0 21711.8 200.9 2.73 121.2 2.5 

0.1 21339.4 171.9 0.97 801.6 8.3 
GR0120 10.0 7269.6 81.1 4.72 72.2 3.2 

1.0 7174.8 29.8 3.35 205.6 1.5 
0.1 7057.2 72.0 1.66 1369.4 24.5 

LIN318 10.0 43132.8 545.3 4.44 1126.8 29.7 
1.0 42262.6 183.4 2.33 3437.6 147.1 

0.1 41957.4 176.8 1.59 23941.6 967.8 

GR0442 10.0 5287.0 28.2 4.30 2749.6 70.0 
1.0 5206.8 25.5 2.72 8458.4 106.9 

I 
0.1 5147.0 20.9 1.54 58674.6 432.4 
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Table 4.2: Average cost of final solution C final , average computation 
ti1r,~ in seconds t , standard deviations o-0 and O't, respectively and 
9ti of average final cost value above globally minimal cost value for 
the set of five instances of the travelling salesman problem taken from 
Krolak, Felts & Marble 1971 . The results are obtained with the 
sirr1ulated annealing algorithm with different values of the distance 
parameter 6. The averages are obtained from 10 runs. 

Problem 6 C final % t 
•. KR0124 ··•· 10.0 · 22014.5 283.8 3.44 49.5 1.4 

1.0 . 21632.6 
· 0.1 21467.8 

254.0 1.65 129.6 5.6 
102.0 0.87 822.2 16.3 

-

' ' . 

•. KR0125 : 10.0 
----4----1-1 

• 
! ' 

440.0 3.98 46.4 1.1 
. · 1.0 

23030.5 
22737.0 
22492.8 

288.6 2.66 124.1 3.5 
· .. 0.1 163.7 1.56 813.2 16.7 

·• KR0126 •• 10.0 . . 

.. . : , 1.0 
21465.7 
21162.9 

302.9 3.45 46.6 1.4 
278.2 1.99 121.8 2.3 

+--------· 0.1 20928.4 168.8 0.86 807.4 13.1 
.·. KR0121 .·t-1---·o-.o-+-2-2-01-2-.4-. +--21·-3-.o--1-------+---3_66 45.8 2.5 

' 

• 1.0 21757.6 . 229.4 2.18 123.5 3.9 
: . 

.. 0.1 · 21436.1 122.5 0.67 823.1 15.5 +----- ----+------H 
. KR0128 •· 10.0 . 22912.9 259.6 3 83 45 8 . . 1.3 

1.0 · 22548.4 252.0 2.18 125.1 3.5 
0.1 22454.9 190.3 1. 75 832.5 18.4 

' .. 
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As for computation times, we observe that the average computation 
time t is approximately given by t = t0 • nP • Inn, for some constant 
to, where p is 2.53, 2.62 and 2.69 for 6 is 10, 1 and 0.1, respec
tively x 2 = 1.000 . We remark that the bound for the computation 
time given by theorem 3.2 is O n 3 • Inn since L = !n n - 1 and 

2 

the observed computation times. Finally, we observe that smaller 
values of 6 lead to larger computation times, which is in accordance 
with the appearance of 6 in the denominator of the right-hand side of 
3.41 . 

In table 4.3, simulated annealing is compared with repeated execu
tion of iterative improvement based on 2-changes. The initial con
figurations to which the iterative improvement algorithm is applied 
are randomly generated cyclic permutations. The averages for itera
tive i1nprovement are obtained from five macro-runs ten for KR0124 
through KR0128 . Each macro-run consists of repeated execution of 
the iterative improvement algorithm for a large number of initial con
figurations and thus yields a large number of local minima. Execution 
of each macro-run is terminated as soon as the computation time ex
ceeds the computation time of an average run of simulated annealing 
applied to the same problem instance with the distance parameter 6 
set to 0.1; C1,est is the average of the best cost value found during 
each n1acro-run. The results for simulated annealing are taken from 
tables 4.1 and 4.2 6 == 0.1 . 
We observe that repeated execution of iterative improvement is easily 
outperformed by simulated annealing for the larger problems. For 
GR0442 the difference is. especially pronounced and the results sug
gest that the quality of the average best solution returned by repeated 
execution of the iterative improvement algorithm deteriorates signif
icantly with increasing problem size, contrary to simulated annealing. 

In table 4.4, a similar comparison is made with repeated execution of 
the Lin-Kernighan algorithm Lin & Kernighan, 1973, an approxima
tion algorithm tailored to the TSP. The Lin-Kernighan algorithm is 
a sophisticated iterative improvement algorithm, based on k-changes, 
where at each stage the algorithm chooses dynamically a 'good' value 
for k. For each instance, the number of randomly generated initial 



• 

in 1,conda (t), standard deviationa u0 and"'' ,·espectively , average nu1nber of local minima 
macro-run of iterative improvement lm and% of average final cost ue annealing) above aver
age best cost value iterative improvement for different-sized instances of the travelling salestnan 
problem. The results are obtained with repeated execution of the iterative improvement algorithm 
and with simulated annealing, respectively. The averages are obtained from five (macro-\ runs ( ten 
for KR0124 throudi KR0128,. ~ 
;;::::.=.::::.::::..::::::.::::.:=.::::..=:;;;::=::=:::::::::;:::::::;::====::;.t. - - . ·-·----- ---
,, - •·· . Iterative Simulated Iterative Simulated --

u 

....... _,.. __ 

Problem 

GR048 
TOM57 
EURlOO 
KR0124 
KR0125 
KR0126 

' 

KR0127 
KR0128 
GR0120 
LIN318 
GR0442 

'Tl' 

.... 

• 

Improvement Annealing Improvement Annealing 

Cheat 

5056.0 
12997.0 
21596.6 
21555.1 
22480.7 
21056.9 
21752.0 
22551.2 

7146.6 
43313.8 
5389.6 

... 
O'o 

4.6 • 
46.4 
77.3 
93.4 
92.2 

106.3 
96.0 

100.3 
32.0 

169.8 
13.7 

C JinoJ 

5094.8 
13068.0 
21339.4 
21467.8 
22492.8 
20928.4 
21436.1 
22454.9 
7057.2 

41957.4 
5147.0 

.., 

.. 

Uo 

23.9 
50.5 

171.9 
102.0 
163.7 
168.8 
122.5 
190.3 
72.0 

176.8 
20.9 ... 

% Tm t 
' .. ' 

0.76 399.6 93.9 
0.55 435.6 158.4 

-1.19 528.2 802.9 
-0.41 562.0 823.0 
0.05 548.9 814.3 

-0.61 537.5 808.1 
-1.45 558.8 823.8 
-0.43 569.2 833.5 
-1.25 606.8 1370.7 
-3.13. 861.4 23967.8 
-4.50 1011.0 58699.5 ... .. ... 

O't 

0.1 
0.2 
0.3 
0.5 
0.5 
0.5 
0.4 
0.4 
0.4 
3.7 

17.2 .. 

.• - ·-...----· - - " -

.... 
t 

93.8 
158.2 
801.6 
822.2 
813.2 
807.4 
823.1 
832.5 

1369.4 
23941.6 
58674.6 

O't 

5.6 
3.9 
8.3 

16.3 
16.7 
13.1 
15.5 
18.4 
24.5 

967.8 
432.3 .,, 

0) 
a..111 
111W 

C 

t,:i 

~ 
.. • 

~ ...... 

~ 

> 

t:-c 

ti, 

• 
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solutions for repeated execution of the Lin-Kernighan algorithm was 
predetermined such that the average computation time of a macro
run for that instance was approximately the same as an average run 
of simulated annealing with the distance parameter 6 set to 0.1. For 
computational reasons, it was not possible to calibrate computation 
times more precisely, for instance in the same way as in the previ
ous comparison. For GR0442, calibration was impossible because of 
limited memory capacity of the computer; here, the Lin-Kernighan 
algorithm was allowed substantially less computation time than sim
ulated annealing. The comparison is also biased in favour of simulated 
annealing by the fact that the cost values in the right-hand part of 
table 4.4 were obtained by simulated annealing, followed by itera
tive improvement based on 2-changes and a special type of 3-changes 
those where two of the three cities are successors in the current tour . 

The results of table 4.4 clearly indicate that repeated execution of 
the Lin-Kernighan algorithm is superior to the simulated annealing 
algorithm; in fact, even if the former is allowed only a limited fraction 
of the computation time taken by the latter, it still finds substan
tially better solutions. For the Krolak problems, for instance, the 
Lin-Kernighan algorithm can be executed for ca. 200 initial solutions, 
when a macro-run is allowed approximately 800 seconds of CPU time 
- of the returned 200 solutions one third to one half is globally mini
mal, so that even in a few seconds the Lin-Kernighan algorithm can 
be expected to find a globally minimal tour. 
The difference in performance between simulated annealing and re
peated execution of the Lin-Kernighan algorithm is even better illus
trated by the results for non-Euclidean instances, as given in table 4.5. 
The cost value of the average solution returned by simulated annealing 
followed by iterative improvement, as in the previous comparison· is 

compared with a conjectured globally minimum value, found by run
ning the Lin-Kernighan algorithm on 50 randomly generated initial 
solutions; the latter typically takes some 20 seconds CPU time. 

We observe that even for extremely small values of the distance pa
rameter, the average solution returned by simulated annealing still 
deviates substantially in cost from the conjectured global minimum. 
However, even in this range of <5-values, smaller values for 6 still lead 
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Table 4.4: Average coet of best solution o.,., or final solution C 1,MI , average computation time 
in seconds (t), standard deviations r,0 and u,, respectively , average number of local minima per 
macro-1 .. un of the Lin-Kernighan algorithm Im and% of average final cost value annealing) above 
average best cost value Lin-Kernighan) for different-sized instances of the travelling salesman 
problem. The results are obtained with repeated execution of the Lin-Kernighan routine and 
simulated annealing foil owed by 2-change and limited 3-cha.nge, respectively. The average8 are 
obtained from five (macro-)runs {ten for KR0124 through KR0128,. 

--

Lin-Kernighan 
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Annealing 

•t----~--J. . 

Problem 
IJ 
ff 

GR048 
. TOMS7 

EURlOO 
KR0124 
KR0125 
KR0126 
KR0127 
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GR0120 
LIN318 
GR0442 

c,,,., 
5046.0 

1 .0 
21135.0 
21282.0 
22141.0 
20749.0 
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22068.0 
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41433.2 
5080.8 
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0.0 22374.1 
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Table 4.5: Average cost of final solution C fina.l , average computa
tion time in seconds t , standard deviations a 0 and at, respectively 
and % of average final cost value above best cost value found by the 
Lin-Kernighan algorithm for different-sized instances of the travel
ling salesman problem. The results are obtained with the simulated 
annealing algorithm followed by 2-change and limited 3-change 
with different values of the distance parameter 6. The averages are 
obtained from five runs. 

Problem n 

10-1 11826.2 490.0 16.10 113.2 RAN50a 50 2.0 
.... 

10-2 10992.2 227.4 7.91 916.4 13.1 
10-3 10757.0 175.4 5.61 9649.3 85.0 

t+------++----t--~ ----+----+----+----tt 
10- · 11094.8 222.4 14.44 113.1 2. 7 RAN50b 50 
10-2 10721.4 322.4 10.59 932.4 12.8 
10-3 10226.8 166.6 5.49 9594. 7 103.1 

M-------++-..-----1--·--· --·----+-----
·so 10- 13103.4 833.1 14.50 111.5 4.3 RAN50c 

10-2 12075.8 338.6 . 5.52 935.0 7.5 
10-s 11919.2 150.2 4.15 9493.4 54.4 

RAN50d 50 10-1 12406.2 582.1 20.19 113.8 1.9 
10-2 11073.4 365.5 7.28 941.5 18.5 
10-3 10827.8 259.6 ·. 4.90 9638.6 111.7 

--4-----+--------+----
RAN50e 50 10- 13134.8 881.7 22.26 109.4 5.3 

10-2 12243.8 332.3 13.97 906.4 6.2 
10-3 11403.8 263.0 6.15 9252.3 66.1 
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to better solutions, of course at the cost of a substantial increase in 
computation time. 

of o lead to better final solutions and larger computation times. 

• If simulated annealing and repeated execution of iterative im
provement are based on the same type of transition and if they 
are allowed the sa.me amount of computation time, the former 
easily outperforms the latter for large problem instances. 

• Simulated annealing cannot compete successfully with the Lin
Kernighan algorithm, a tailored approximation algorithm for 
the TSP. 

The general job shop scheduling problem can be formulated as fol
lows see e.g. Lenstra, 1977 . There are n jobs J 1 , J 2 , ••• , Jn that 
have to be processed on m machines M 1 , M 2 , ••• , Mm. Each job J;, 
i = 1, ... , n consists of ni operations Oi1 , Oi2 , ••• , Oini that have 

to be processed in a given order.. Each operation 0,3 has a pro
cessing time t,;, during which it cannot be interrupted. A machine 
can handle only one operation at a time. Let M1c k = I, ... , m 
denote the set of mk operations t.o be processed on machine M1c 
I:h:1 m1c = Li=l ~ = N and let 1r1e denote a permutation of the 

set M1c. 1r1c is to be interpreted as the order in which the operations 

respectively, 'Jf'A: Oo = oij and 7f1c Ost = ON+l· ' 

such that 
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• the corresponding set of machine processing orders is not in 
conflict with the set of orders in which the operations of each 
job are to be carried out, 

' 

• the maximum complet,:on time is minimized, i.e. the time to 
complete all jobs. 

In order to apply simulated annealing, we need to define again the 
problem in terms of configurations, a cost function and a neighbour
hood structure. 
Each configuration of the problem corresponds to a set of m permu
tations. It is convenient to represent a configuration i by means of 

• 

a weighted digraph Gi. Let rri = 1r;1 , ..• , ,rim be the current set of 
permutations, then the digraph Gi = V, AU Ei is defined as follows: 

• Each vertex in V corresponds to an operation Ov, where it is 
assumed that the operations 0.;,3 are renumbered as Ov, with 

• 

v = .si-1 + j, where 8,; = 2:ic=t n1c. Furthermore, two vertices 0 
and N + 1 are added to V, corresponding to the fictitious initial 
and final operations 0 0 and ON+i; t 0 and tN+i are set to 0. The 
weight of a vertex v equals the processing time tv of operation 
Ov. 

• Each edge e = v, w in A connects two vertices corresponding 
to consecutive operations of the same job. Thus, A contains all 
edges v, v + 1 for which v =I- 8 1 i = 1, ... , n . Furthermore, 
A contains edges connecting O with 1, s 1 + 1, ... , Sn-1 + 1 the 
vertices corresponding to the first operation of each job and 
connecting s 1 , s 2 , ••• , Sn the vertices corresponding to the last 
operation of each job with N + 1. 

• Each edge e = v, w in Ei connects two vertices correspond
ing to consecutive operations on the same machine.. Thus, Ei 
contains all edges e = v, w for which Ow = 1rik Ov for some 
k E 1, ... ,m. 

Note that the set of edges A is common to all configurations. Fig
ure 4.2 illustrates the graph Gi for a 3-job 3-machine instance, in 
which each job consists of three operations. 
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For each configuration i, we also define the digraph G;. = V, AUE •. , 
such that an edge v, w belongs to Ei if it belongs to E1 or if oper
ation Ow is processed after operation Ov on some machine Mk and 
Ow # 1r11c Ov . For example, for the instance shown in figure 4.2, 
Ei = Ei U · 1, 9 , 2, 8 , 7, 3 . 

5-----►6----- 10 

Figure 4.2: A configuration i of a 3-job 3-machine instance. Opera
tions 01, Os and Og are processed by machine M 1 in the af oremen
tioned order, so are 0 2 , 0 4 and 0 8 by machine M 2 , whereas Os, Oa 
and 01 are processed by machine Ms in the order 0 7 , 0 6 , Os .. Oo and 
010 are the fictitious initial and final operations, respectively. Thin 
arrows denote edges in A, thick arrows edges in Ei. 

We now use the following two observations Lenstra, 1977 : 

• A set IIi of m permutations corresponds to a configuration i if 
and only if the corresponding digraph G1 is acyclic. 

• If the digraph Gi is acyclic, the time to complete all jobs is given 
by the length of the longest directed path from vertex O to vertex 
N + 1 in Gi. Here, the length of a path is given by the sum. of 
the weights of the vertices on the path. 
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From the first observation we learn that the number of configurations 

From the second observation we learn that the cost of a configura
tion i is given by the longest directed path from O to N + 1 in Gi. 
To compute such a cost, we use a simple labelling algorr:thm, based 
on Bellman's equations Bellman, 1958 , for solving the longest-path 
problem in a digraph G = V, E . The algorithm is based on process
ing the edges of G one by one and can be described as follows. 

Step 0: Label all vertices to O label v :== 0, Vv E V . Set k :== 1 and 
E1c := E. 

Step 1: Seek an edge e = v, w in the graph Gk = V, E1c , whose 
start vertex v has no predecessors. If such an edge cannot be 
found then terminate, else go to step 2. 

Step 2: Relabel w 
E1c+i := E1c 

to max label w , label v + weight v . 
e and k := k + 1. Go to step 1. 

Set 

If G is acyclic, the algorithm terminates after E steps, when 
EIEl+t = 0. The label of each vertex then equals the length of the 
longest path from the source the vertex in G without predecessors 
to that vertex., 
In our case, the sets A and E; contain N + n and N + m edges, re
spectively. Consequently, the number of edges in the digraph Gi is 
2N + n + m and accordingly the labelling algorithm takes O N time 
to compute the length of the longest path from O to N + 1. The longest 
path itself is constructed by building a path from O to N + 1, con
sisting of edges e = v, w , for which label v + weight v = label w . 
Usually, there are several longest paths from Oto N + 1; we say that 
an edge is cr,,.tical with respect to Gi if it is on some longest path in 

Gi. 
Finally, a trar1.sition is generated by choosing vertices v and w, such 
that 

1. Ov and Ow are successive operations on the same machine Mk, 

2. v, w is a critical edge, 
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and reversing the order in which Ov and Ow are processed on machine 
M1c. Thus, in the digraph G, such a transition results in reversing the 
edge connecting v and w and changing the edges u, v and w, x to 
u, w and v, x , respectively, where Ou = 1r;,,,1 Ov and Oz = 1rik Ow • 

Note that for each configuration i, the size of the neighbourhood R, 
is bounded by 

m 

m1c - 1 =N-m. 4.14 
lc=l 

Our choice of transition is motivated by two facts: 

• Reversing a critical edge in a digraph G; can never lead to a 
cyclic digraph G; see lemma 4.2 . 

• H the reversal of a non-critical edge in G;, leads to an acyclic 
graph G i, the longest path q in G i cannot be shorter than the 
longest path p in G1 because G; still contains the path p . 

Thus, we exclude beforehand some co,st-increasing transitions and, in 
addition, all transitions that might result in a cyclic digraph. 

Summarizing, we associate to each configuration i an acyclic digraph 
G,, the cost of a configuration i is given by the longest path in Gi and 
ca.lculated by the labelling algorithm, and a transition corresponds to 
the reversal of a critical edge in· Gi. 

To study the asymptotic behaviour of the homogeneous algorithm ap
plied to an instance of this problem, we recall that we need to check 
whether condition · 1 of theorem 2 .. 1 is satisfied. However, this con
dition cannot always be satisfied: in figure 4.3 an instance is shown in 
which there are pairs of configurations i, i· for which it is not possible 
to construct a sequence of transitions leading from i to 1·. However, 
the subsequent theorem theorem 4.1 states that for an arbitrary 
configuration i there is always a sequence of transitions leading from 
i to a globally minimal configuration. Thus, condition 1 ' is satisfied 
and, in accordance with the remarks on page 18, the homogeneous 
algorithm still converges asymptotically to a glob~lly minimal config
uration. 
To prove theorem 4.1, we need two lemmas. 



4.3. THE JOB SHOP SCHEDULING PROBLEM 71 

3 

4--► 

G1 - longest pa.th = {O, 4, 5, 2, 3, 7} G2 - longest path = 0,1,2,5,6,7} 

1---► 2-· -►3 

4--►5-- 4--► 

Gs - longest pa.th = {O, 4, 5, 6, 1, 2, 3, 7} G4 - longest path = {O, 1, 2, 3, 4, 5, 6, 7} 

Figure 4.3: The four configurations of a 2-job 3-machine instance. 
Operations 0 1 and 0 6 are processed by machine M 1 , 0 2 and 0 6 by 
machine M 2 and Os and 0 4 by machine M 3 • All operations have a 
processing time of one time unit; 0 0 and 0 7 are the fictitious initial 
and final operations, respectively. Thin arrows denote edges in A, 
thick arrows edges in E;.. Configurations 1 and 2 are globally minimal; 
it can be easily checked that 1 and 2 are reachable from 3 and 4, 
respectively, and from each other. However, 3 and 4 are not reachable 
from any other configuration. 

Le111111a 4.1 
Consider an arb'itrary configuration i and an arbitrary global minimum 

• 

io E Ropt• If i Ropt, then the set io defined by 

is not empty. 

Proof 

e= v, w E Ei e is crit,:cal I\ w, v E Eio 4.15 

The proof consists of two parts: first, we show that Ei always contains 
critical edges, unless i E Rapt, next that there are always critical edges 
in Ei. that do not belong to Eio unless again i E Ropt• 
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1.. Suppose Ei contains no critical edges, then all critical edges 
belong to A. Consequently, the longest path consists of edges 
connecting vertices corresponding to operations of the same job; 
accordingly, its length is given by the total processing time of 
that job. But this is a lower bound to the longest path in any 
graph G;, hence i E Ropt• 

2. Suppose that for all critical edges e in E,, we have that e E E.0 • 

We then know that the longest path p in G; is also a path q 
in Gio. The longest path r in Gi0 is also the longest path in 
G,;0 and because io E Ropt, we have length r < length p . But 
by definition length r > length q = length p . Consequently, 
length p = length r and i E Ropt. 

□ 

L~1;11ma 4. 2 
Sup110se e = v, w · E Ei is a critical edge. Let G 3· be the graph obtained 
from the acyclic graph Gi by reversing the edge e in E,;.. Then G; is 
also acycli'c. 

Proof 

Suppose G3· is cyclic. Because Gi is acyclic, the edge w, v is part of 
the cycle in G,. Consequently, there is a path v, x, y, ... , w in G;. 
But this path can also be found in G1 and is clearly a longer path 
from v to w than the edge v, w . This contradicts the assumption 
that v, w is on a longest path in G,;.. Hence, G; is acyclic. 

D 

Given a configuration io E R0 p.t, we now define the following two sets 
for an arbitrary configuration i: 

• 

0 = e= W, V E Ei.-. 4.16 

e= WV 
' 4.17 

.eorem 4.1 
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Proof 

quence of configurations Ao, A1 ,... as follows: 

1. Ao= i 

2. 

73 

According to lemma. 4.2, this can be done without creating a 
cycle in G ~A:+i. Furthermore, this operation is of the af oremen
tioned type of transition. 

It can easily be seen that for all k, 

• . . '() 

MAie -1. 4.18 

• • 
' 'ltl 

Hence, for k = Mi , 0. Using Kf° C ·o C M:0
, we 

• 

find Kl~ = 0 for k According to lemma 4.1, this implies 
Ak E Ropt• 

□ 

The e1npirical analysis of the finite-time behaviour is carried out by 
running the homogeneous algorithm on a number of instances, varying 
in size from 6 jobs on 6 machines to 30 jobs on 10 machines. For all 
instances, the number of operations of each job equals the number of 
machines. In that case, the number of configurations of each instance 
is bounded by . n! m, the labelling algorithm takes O n · m time to 
compute the cost of a configuration and the size of the neighbourhood 
of a configuration is bounded by m n - 1 . 
FISl, F!S2 and FIS3 are three instances due to Fisher & Thompson 
· 1953 , the forty instances in tables 4. 7 and 4.8 are due to Lawrence 
1984 ·. FIS2 is a notorious 10-job 10-machine instance that has de

fied solution for more than 20 years. A couple of years ago, a solution 
with cost 930 was found after a combination of manual operations 
and several hours of computation time. This solution was only re
cently proved to be globally minimal Carlier & Pinson, 1986 . For 
FISl, FIS2 and FIS3, the processing times of the operations are ran
domly drawn and range from 1 to 10 FISI or 99 FIS2 and FIS3 
units of time. The sequence of machines for each job is such that 
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lower-n11robered machines tend to be used for earlier operations. For 
the Lawrence instances, processing times are drawn from a uniform 
distribution on the interval 5,99 ; the sequence of machines for each 
job is random. 
The performance of simulated annealing on these instances is reported 
in table 4.6 for the Fisher-Thompson instances, and in tables 4. 7 and 
4.8 for the Lawrence instances. The averages in these tables are com
puted from five solutions, obtained by running the algorithm, con
trolled by the cooling schedule described in section 3.3, five times on 
each instance and recording the best configuration encountered dur
ing each run ·this need not necessarily be the final configuration . All 
results are obtained with the parameters Xo and Es set to 0.95 and 
10-6 , respectively, and for different values of the distance parameter 
6. For the Lawrence instances, 6 is chosen such that the average best 
solution is comparable in cost to the best known solution for each 
instance · as reported by Adams, Balas & Zawack 1988 . 
From tables 4.6, 4. 7 and 4.8 we can make similar observations as for 
the travelling salesman problem see section 4.2 : 

• From table 4.6 we observe that both the quality and the reli
ability of the average best solution increase with decreasing 6; 
the difference between the average best solution and a globally 
minimal one does not deteriorate significantly with increasing 
pr,oblem size. For the notorious second instance, the five best 
solutions returned have cost values of 937 twice , 945 twice 
and 948, respectively. 

• As for computation times, we remark that the bound for the 
computation time given by theorem 7 is O n,1i 3 Inn L 
0 nm , • R = 0 n! m. and r = 0 nm . Thus, for fixed 11i 

the bound is O n3 ln n , for fixed n it is O m 3 • For the A, B 
and C instances in table 4.7, for which m is constant and for 
which the displayed results are obtained with the same value 

- = 2.215 · 

instances G2, B2 and 12, for which n is constant and for which 
the displayed results are again obtained with the same value 
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Table 4.6: Average cost of best solution Chest , average computation 
time in seconds t , standard deviations u0 and O"t, respectively , 
cost of best solution Cbest , number of local minima per macro-run 
of iterative improvement lm and % of average best cost value above 
globally minimal cost value for different-sized instances of the job 
shop scheduling problem. The results are obtained with the simulated 
annealing algorithm with different values of the distance parameter 6 

• 

upper part and with repeated execution of the iterative improvement 
algorithm lower part , respectively. The averages are obtained from 
five macro- runs. 

S1:mulated annealing 
• 

Prob m n 6 Chest o-a % Cbest 
-t Ut 

• 

FISl 6 6 10- 56.0 1.3 1.82 55 8 1 
10-2 55.0 0.0 0.00 55 52 8 

FIS2 10 10 10- 1039.6 15.1 11.78 1028 113 13 
10-2 985.8 22.1 6.00 951 779 61 
10-3 942.4 4.5 1.33 937 5945 180 

FIS3 20 5 10- 1354.2 26.5 16.24 1325 123 13 
10-2 1229.0 33.6 5.49 1184 848 93 
10-3 1187.0 18.7 1.89 1173 6840 389 

... 

Iterative Improvement ... 

-
Prob m n lm Cbest o-o % Cbest t Ut 

l,,.J, 

FISI 6 6 803.2 
.. 

55.4 0.8 0.73 55 52 0 

FIS2 10 10 . 9441.2 1018.2 9.1 9.48 1006 5945 0 

FIS3 20 5 5221 .. 0 1331.4 9.5 14.28 1319 6841 0 
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-t 
observed computation times are in good 
bound given by theorem 7. 

1.00 . Thus, the 
accordance with the 

Table 4.6 also contains results obtained by repeated execution of the 
iterative improvement algorithm based on the same neighbourhood 
structure as simulated annealing. The averages are again obtained 
from 5 macro-runs, where each macro-run is terminated as soon as 
the computation time exceeds the computation time of an average run 
of simulated annealing with the distance parameter 6 set to 10-3

• 

We observe that repeated execution of iterative improvement is eas
ily outperformed by simulated annealing for the two larger proble111s. 
In comparison with the travelling salesman problem, the difference 
between simulated annealing and iterative improvement is even more 
pronounced: for FIS3, for instance, the average best solution obtained 
by simulated annealing is almost 11 % better in cost than the one ob
tained by repeated execution of iterative improvement. 
Tables 4. 7 and 4.8 also contain for each instance the cost value of the 
best solution obtained by the algorithm of Adams, Balas & Zawack 
1988 . This is a sophisticated approximation algorithm tailored to the 

job shop scheduling problem; it is based on a partial enumeration of 
configurations using branch-and-bound techniques. In Adams, Balas 
& Zawack, 1988, the algorithm is shown to be superior to approaches 
based on priority dispatching rules rules for choosing an operation 
from a specified subset of as yet unscheduled operations : the typical 
improvement is reported to be between 4 % and 10%. The compu
tation time taken by this algorithm is significantly less than that of 
simulated annealing: for FIS2, for instance, the algorithm takes ap
proximately 15 minutes on a VAX 11 780 computer which amounts 
to ca. 7 minutes on a VAX 11 785 . 
From tables 4. 7 and 4.8 we observe that for all instances where Adams, 
Balas & Zawack find a globally minimal solution, the average best 
solution obtained by simulated annealing is also globally minimal, ex
cept for instances Cl, D3 and D5, where it is slightly higher in cost 
than a global minimum. For all instances where Adams, Balas & 
Zawack do not find a globally minimal solution, the best solution ob
tained in 5 runs of the simulated annealing algorithm is significantly 

• 
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··• · .. ble 4 .. 7: Average cost of best solution C1,611t , computation time 
. i., in seconds on a VAX 11 785 , standard deviations · a0 and <Jt, 

respectively and best cost of 5 runs C1;,st for different-sized instances 
of the job shop scheduling problem. The averages are obtaine,d from 5 
runs o·f the simulated annealing algorithm. The table also includes for 
each instance the cost of the best solution found by Ada:c:r1s, Balas & 
Zawack .1987 · CA . Provably globally minimal solutions are marked 
with an asterisk . 

• • 

... 
I 
' . ' 
f 
' I 
l m 

. t 
n I 6 t· ' ' " . . , "" , ... 

-
Cbest Uo Cbe11t CA t C1t 

. Al I 10 966.2 10.1 956 978 685.7 83.3 . I . ·. 

A2 787.8 1.6 785 787 719.7 109.0 
· A3 10 10 . 10-2 ! 861.2 0.4 861 859 672.6 69.0 
., 

:i A4 •• 10 . 10 10-2 853 .. 4 4.6 848 860 830.1 85.4 
• 
. . 

. A6 10 10 1 10-2 908.4 4.2 902 914 6-67.4 126.9 
' 
' --
; Bl 10 15 ! 10- 1067.6 3.7 1063 1084 1991.0 341.1 
.. B2 10 15 10-2 944.2 4.7 938 944 2163.2 154.6 

' ' 

.. B3 10 15 10-2 1032.0 0.0 1032* 1032* 2092.9 89. 7 

.: B4 10 15. 10-2 966.6 8.7 952 976 2097.7 406.0 
B5 10 15 10-2 1004.4 14.4 992 1017 2133.4 374.5 

. ----H•--- --l---+-----+-----+----+-----------..w 
Cl · 10 20 10-. 1219.0 2.0 1218* 1218* 4342.4 597.8 
C2. • 10 20 10-2 1273.6 5.2 1269 12·91 4535.3 392.0 

20 10-2 1244.8 15.4 1224 1250 4354.0 349.8 
.•. 04 · 1 10 · 20 10-2 1226.0 6.5 1218 1239 4408.4 450.9 
. cs ! 10 20 10-2 13ss.o o.o 13ss· 13ss· 3956.4 42s.2 

• 

30 10- 1784.0 0.0 1784* 1784* 1517.4 58.1 
·· .. D2 1 10 30 10-1 1850.0 0.0 1850* 1850* 1752.2 124.6 

l 
' ' 

I D3 •··· 10 .·· 30 10-1 1726.6 15.2 1719* 1719* 
' 

·.· D4 ,' 10 .; 30 10-2 1721.0 j 0.0. 1721* 1721* 

U .., I 

11075.4 402.9 I 

1667.6 107 .9 ! 
• 
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Table 4.8: Average cost of best solution Cbest , computation time 
t, in seconds on a VAX 11 785 , standard deviations oo and O't, 

resp,ectively and best cost of 5 runs Cbest for different-sized instances 
of the job shop scheduling problem. The averages are obtained from 5 
runs of the simulated annealing algorithm. The table also includes for 
each instance the cost of the best solution found by Adams, Balas & 
Zrawack .1987 . CA . Provably globally minimal solutions are marked 
with an asterisk . 

. , 

• 

' 
' ' -' m n f> Cheat <Jo Cbest CA t O't ,; . 

" ' 

!, 

tJ; Fl 5 10 10- 666.0 0.0 666* 666* 20.2 3.5 ' ' 

( : 
i• ' ,; ' 

I, . 
'., 

10-3 
• ' ' 

F2 5 10 655.0 655* 655* 1066. 7 45.0 t ' 0.0 ' ' 1; .. 
ii 
' ' ' 

10-s ' ' 

F3 5 10 597 63.0 ' ' ' 601.6 5.4 605 1041.8 ' ' ' 
'. 

I ' ' 
' ' 

' ' ,, ' 

,: ' 

F4 5 10 10-3 590.0 975.1 191.8 I 0.0 590 593 ' ;, 
. ' ' ' ' 

. •· F5 ; ·' 

5 10 10-1 593.0 0.0 593 593 19.0 4 .. 2 . : . ! .: . ' ' ' 

' ' ' ' ' 

' 
' 

Gl 
' 

5 15 10-·· 926* 926* 
' 

' 926.0 0.0 51.9 5.8 ' 
' ' 
' 

' ' 

G2 5 10-2 ' 15 890.0 890* 890* 376.2 
' ' 

0.0 48.3 
' 

' 

' ' 
' ' 

G3 10-1 ' 5 15 863.0 0.0 863* 863* 54.9 7.3 ' 
,' 

' 

G4 5 
' ' 

15 10-1 951.0 ' 0.0 951* 951* 47.1 5.9 ' 
i ' . ' ' ,. 
' ' 

G5 10-1 ' ' 

5 15 958.0 0.0 958* 959 2.0 
' ' 

44.6 ' 
' ' 

fj Hl 5 ' 20 10- 1222.0 0.0 1222* 1222* 107.8 17.2 
,, 
:,i ' ' 

' 
' 
' p 
' 

10-2 ' 5 20 1039.0 0.0 1039* H2 1039* 655.1 30.7 
' ' ' ' 

' ... " 

' ' ' ' 

' 

H3 ' 10-1 ' ;! 

5 20 1150.0 ' ' 0.0 1150* 1150* 
' ' ' 

117.6 18.0 
•, 

' ', ' 

', ' 

H4 10-1 ' ' 5 2:0 1292.0 1292* ' ' 0 .. 0 1292* 93.1 20.6 
' H5 5 10-2 
' ' ' 20 1207.0 0.0 1201· 1207* 735.6 26.3 

II 
' .. 

" 15 15 10-. 1300.0 ' 7.8 1293 1305 5345.6 399.8 
I 
' 

' 
' 

' 

' 

12 15 I 

15 10-2 1442.4 5.7 1433 1423 5287.4 688.5 
13 

' 

10-2 15 15 1227.2 8.2 1215 1215 5479.8 614.8 ' 

14 ' 15 15 10-2 1258.2 5.2 1248 1248 5765.6 800.3 
15 15 ' 15 10-2 1247.4 ' 9.9 1234 1234 5373.4 1066.4 
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lower in cost than the best solution found by Adams, Balas & Zawack 
the typical improvement is between 1 and 3 % ; the average best 

solution is only marginally better. 
Admittedly, the performance of the tailored algorithm is likely to im
prove if it is allowed more computation time. Nevertheless, the results 
in tables 4. 7 and 4.8 indicate that simulated annealing is a promising 
approach to job shop scheduling and certainly superior to traditional 
approaches to this problem, such as procedures based on priority dis
patching rules. 

e 

Consider the set Vf of all n-tuples x = x 1 , ••. , Xn with elements 
Xi in Z1c = 0, ... , k - 1 and define the Hamm,:ng distance dH x, y 
between two tuples x and y in V1c" as the number of positions in which 
x and y differ, i.e. 

dn x,y i E 1, 2, . . . , n Xi # Yi . 

The rook doma,:n R X of a tuple X in vr is defined as 

Rx 

A subset W of V,:1 is called a covering by rook domains of V1cn if 

V"= k 
xew 

RX. 

4.19 

4.20 

4.21 

Equation 4.21 implies that each tuple in V,:1 i.s on a Hamming dis
tance not larger than one from at least one tuple in W. Hereinafter, 
the tuples in W are called rooks. 
We are now interested in determining the size of the smallest subset 

lem: in a football pool of n matches, u n, 3 is the minimal number of 
forecasts containing at least one forecast with at. most one incorrect 

a n,3 . 
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Table 4.9: Some results for an, n between 2 and 8 . 
.. 

n 2 3 4 5 6 7 8 
M .. .. 

< 567 Un, 3 5 9 27 < 79 < 216 
' 

Wilie's paper Wille, 1987 is the first attempt to solve the football 
pool problem by simulated annealing: table 4.9 is taken from this pa
per and contains the values of u2 through cr6 and upper bounds for o-6 

through <18 • All entries in the table are the result of work of a com
binatorial nature;1 indeed, Wilie's paper is the first attempt to solve 
the problem by stating it as an optimization problem and following 
an algorithmic approach. The main result is a new upper bound to 
c,6 : 74 instead of the previously known value of 79. 
Here, we discuss this problem for two reasons: 

It is challenging, because globally minimal solutions of its 
stances are not known for n > 5. 

• It illustrates clearly the care one has to take in formulating a 

problem in terms of configurations, a cost function and a neigh
bourhood structure. Because it is mainly discussed to illustrate 
this implementation aspect and because of the limited amount 
of computational experiments, we do not address asymptotic 
convergence in this section nor do we extensively analyse the 
numerical data obtained. 

Both aspects are also characteristics of many problems in for instance 
computer-aided circuit design to which simulated annealing has been 
successfully applied; see Van Laarhoven & Aarts, 1987 . 

Each configuration i of the problem corresponds to a covering Wi of 
Vk". Thus, the total number of configurations R is bounded by the 
total number of subsets of vkn, given by 2fVk"I. Since vkn == 3n, we 
h R gn ave < 2 ·. 

1 We refer to [Wille, 1987] for references to the pa.pers i11 which the entries of 
table 4.9 were originally publisl1ed. 
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uration or solution i is said to be partial, otherwise it is called f easi·ble. 
Thus, in the case of a partial solution i, Vf contains tuples not covered 
by any rook in ;. A tuple x in V,:' is said to be covered by a tuple y 
in vkn if dH x, Y · < 1. A partial solution;· is easily transformed into a 
feasible solution k by adding those tuples to W3 that are not covered 
by any rook in W 3, i.e. by putting 

xEW· J 

RX . 4.22 

Since the cost function is related to the generation mechanism em
ployed for transitions, we discuss the two items together. For each 
mechanism we also derive values or bounds for Ri , the size of the 
neighbourhood of a configuration i we recall that in the cooling sched
ule employed, . Ri determines the length of the Markov chains; see 
section 3.3 . We have carried out numerical experiments with three 
generation mechanisr:r,s: 

• mechanis,11, A 
A transition is generated by either deleting a rook from the 
current covering Wi or adding a tuple x ._,_ Wi to W; the two 
alternatives are each chosen with a probability of 50% .. If the 
first alternative results in a subset W3 which is not a covering, 
4.22 is used to transform the partial configuration;· into a fea

sible configuration k. In this way, we achieve that the algorithm 
generates feasible configurations only. The cost of a configura
tion i is given by the number of rooks in the covering Wi. The 
average value of R; is given by 

- 0.5 · Pi + 0.5 · 3n - p;, 4.23 

where Pi is the number of rooks in the covering Wi .. 

• mechanism B 

current covering wi or adding a tuple X wi to wi the two 
alternatives are each chosen with a probability of 50% • Note 
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sum of the number of rooks in Wi and the number of uncovered 

partial configuration is not feasible. 
If the algorithm eventually returns a partial configuration 1·, it 
is transformed into a feasible configuration k by a simple algo
rithm, based on a complete enumeration of all pairs of tuples 
not yet covered by a rook in W;. If dn x, y < 2 for such a pair 
x, y , it i.s straightforward to show that 

3z E V1r."' : dH x, z < 1 /\ dH y, z < 1. 4.24 

The tuple z is then added to W;. After the enumeration, the 
tuples still uncovered are also added to W; to obtain a covering 
W1c. Note that C k < C 1· . 
The average value of Ri is again given by 4.23 . 

• mechanism C 
A transition is generated by replacing a rook in the current cov
ering Wi by a tuple x Wi. In this case all configurations, partial 
or feasible, correspond to subsets of Vk" of the same cardinality 
s. In other words, the algorithm attempts to find a covering of 
V1c" with s rooks. The cost of a partial configuration is now 
given by the number of uncovered tuples in Vf. 
If the algorithm eventually returns a partial configuration 3·, the 
aforementione·d enumeration is used to obtain a feasible config
uration k. Finally, Ri is given by 

= S 3n - .S • 4.25 

Mechanism C is the same as the one used by Wille 1987 , except 
that in the latter mechanism a rook y is replaced by a tuple 
XE Ry • W,;. 

The performance of simulated annealing on the football pool problem 
for 6 matches is given in table 4.10. The averages are computed from 
five solutions, obtained by running the algorithm five times with each 
of the aforementioned mechanisms. If necessary, the final solution 
found by using mechanisms B or C is transformed into a feasible so
lution by means of the enumeration described above. All results are 
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Table 4.10: Average number o·f rooks in final configuration of the 
6-match problem Ptinal , average computation time in seconds t 
and standard deviations up and ut, respectively . The results are 

eration mechanisrr,s for transitions and different values of the distance 
parameter 6. The averages are obtained from 5 runs. 

Mechanism 6 -
P final (7 p t O't 

w. 

A 0.10 126.4 2.4 1400.8 79.6 
B 0.01 86.0 0.6 410.9 4.0 
C 10.00 83.6 1.9 668.6 28.1 
C 0.10 79.0 2.5 8175.8 254.5 

obtained with the parameters xo and f. 8 of the cooling schedule set to 
0.95 and 10-6 , respectively. Since different Markov chain lengths are 
used in each of the three alternatives and, moreover, the computation 
time of one transition is different for each alternative, identical values 
of the distance parameter o would result in widely different compu
tation times.. To avoid this, the value of 6 is chosen such that the 
resulting computation times are somewhat comparable. The results 
for mechanism C are obtained with s == 10. 

From table 4.10 we observe that the results obtained by the algo
rithm with mechanism A are inferior to those obtained by the other 
implementations, in terms of both cost and computation time. This 
seems to indicate the necessity to allow the algorithm to generate 
partial solutions in order to obtain near-optimal solutions. Note that 
the results obtained by the algorithm with mechanisms B or C are 
comparable: C is slightly better, but takes slightly more computation 

time as well. 
The best solutions we obtained during a large number of runs con-
sisted of 73 rooks. These results were typically found in ca. 80'00 
seconds of CPU time. Consequently, we conclude that o-6 < 73, which 
is a slight improvement over Wilie's result and a significant one over 
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the b•ound found by combinatorial analysis as displayed in table 4.9 . 
Using simulated annealing, we have also improved the upper bounds 
for u1 and 0 8 , to 186 and 486, respectively. For a detailed description 
of these results the reader is referred to Van Laarhoven, Aarts, Van 
Lint & Wille, 1988 . 

• 

The prece,ding sections illustrate that simulated a11nealing is indeed 
a wide.ly applicable optimization technique. Moreover, the results 
des\cribed in various sections are consistent in the conclusions which 
can be drawn from them: 

• The algorithm has a potential for finding high-quality solutions; 
a sufficient ainount of computation time to realize this potential 
is usually quite large. 

•: The prob,ab·ilistic element of the algorithm the acceptance of 
cQSt-increasing transitions with a non-zero probability makes 

· · s,imnl,ated ~nealing a significantly better technique than the 
iier,ative improvement algorithm on which it is based. The dif
ference between the two algorithrns is especially pronounced for 
large p.roblem instances. 

• Simulated annealing is not a panacea: if a sophisticated tailored 
al.gorithm is available from the literature, it is usually competi
tive with and often superior to simulated annealing. 

• Formul.ating a. problem in a way that lends itself to application 
of simulated annealing is not a trivial task; once a formulation 
is found, the algorithm is easy to implement. 

With respect to the last conclusion, it is appropriate to make two 
further remarks: 

• Although we have tried to equalize the influence of computation 
times, in the comparisons between simulated annealing and tai
lored algorithms, we should add that computation times 'may 
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depend as much on the effort and skill applied to the program
ming as on the algorith1ns themselves' Johnson, Aragon, Mc
Geoch & Schevon, 1987 . Thus, even if algorith11r1s are allowed 
the same amount of computation time, it is difficult to guaran
tee equality of treatment in this respect. This leaves the first 
conclusion unaffected, however. 

• We did not investigate the possibility of improving the perfor
mance of simulated annealing by introducing more problem
specific elements into the algorithm, besides the three basic ones 
configurations, a cost function and a neighbourhood structure . 

For large instances of the TSP, for example, one could think of 
partitioning the set of cities into subsets, each of which contains 
a number of cities situated close to each other, and restricting 
transitions to pairs of cities belonging to the same subset. Such 
an approach is followed by Bonomi & Lutton 1984 - they report 
satisfactory solutions of TSPs with up to 10 000 cities. 



• 
1 

In. chapters 3 and 4, the fi.nite-time behaviour of the simulated anneal-
• 11- ·th· • d.,. d · t ·-- f th · t· . d b tag a,Jgorl · m m . iscus~se · 1n ern,s o e running 1me require y 
the al .•.... ,ithm and the difference in cost between the returned solution 

. . ' . ' . - -· . . . . 

and a 1:lob&Jly minimal one. A worst-case bound for the running time 
:u·1 • : by a particular implementation of the algorithm is derived 

in chapter 3, and in chapter 4 both running time and difference are 
analysed in an empirical way. In this chapter we analyse the finite
time b(iliaviour of the aJ.gorithm by considering the algorithm from a 
B .. . t f· • th fi t· t·t t· th M k . 4!/Ul&n po1tn· o• view: .. e con. gura ions cons 1 u .1ng e · · ar ov 
chains are seen as the. outcome of a random experiment, with unknown 
·.· .. ·.·.·. · , ters characterizing the probability distribution from which this 
outcome is genera.· .. .. Given the outcome, i.e. the Markov chain,. and 
the p·rob,ability ·distribution, we would like to draw conclusions about 
the·•·•·· a111ieters,. for instance by computing their expected values. This 
,·riferen.ce prol>l'em and its Bayesi.an solution are the main subjects of 
this chap,te. Since W'E! assume that the configurations are sampled 
f t. h "" "'.. d·. ·· t .. b t· f h d · M k h . rom ·e s1ca.i.1on '. . ·· · is r1 1 u 10n o t e correspon 1ng ar ov c a1n, 
the Bayesian solution amounts to the development of a Bayesian mech
anism to estimate the ever-·changing stationary distribution. 
After a brief digression on Bayes's method in section 5.2, where we 

86 
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cloee.ly follow Bo-ender, 1984, we return to simulated annealing in 
eection 5.3, where we use Bayea's method to analyse the finite-time 
•·. ,. avi·our of simulated annealing. Numerical experiments are de
scribed in section 5.4, and in section 5.5 we show how the Bayesian 
information can be used to derive 'optimal' rules for choosing some of 
the para:meters of a cooling schedule. We end this chapter with some 
concluding remarks. 

Consider a random experiment whose outcome is generated from a 
probability distribution with unknown parameters. An exa·mple of 
such an experiment is the sampling of configurations of a combinato
rial optimization problem R, G ; if we assume that the cost function 
C takes its values from the set of integers l, ..... , u , the outcome of 
the experiment can be described by the values taken by the random 
variables Ni, Ni+1 , .•. , Nu. Here, the frequency count Ni i = l, ... , u 
denotes the number of configurations with cost value i in the outcome 
of the experiment. If the fraction of configurations with cost value i 
·.·i ·· l, ... , u · in the population is equal to (Ji and if the configurations 
are sampled from a uniform distribution on R, the frequency counts 
&r'e well known to follow a multi·nomial d,·stribution with parameters 
11, ... , lu Feller, 1950 , i.e. 

0 

u 
if En;= n, 

i=l 

elsewhere, 

5.1 

where n is the sample aize., i.e. the number of configurations sampled 
in the experiment. 
In this chapter, we consider the case where the parameters charac
terizing the distribution from which the outcome is generated are 
unknown. Hereinafter, we refer to this distribution as the likelihood 
function. In our example, these parameters are the minimum and 
maximum cost values, l and u, respectively, and the values (Ji of the 
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fractions of configurations with cost value i. The problem we are in
terested in is to say something about the values of the parameters, 
given the outcome of the experiment and the likelihood function. 
The Bayesian solution to this inference problem is due to the Reverend 
Thomas Bayes 1763 and can be described as follows. It is assumed 
that some information is available on the values of the unknown pa
ra.r11eters in the form of a probability distribution. This distribution 
is known a.s the prior distribution. Given the prior distribution, the 
outcome of the experiment and the likelihood function, Bayes's for
mula is used to derive another probability distribution, known as the 
poster1:or distribution. The latter is the Bayesian answer to the afore
mentioned inference problem .. 
Bayes 's formula is given by 

Pr X=xY=y 5.2 

and is immediately obtained from the definition of a conditional prob
ability and the equality 

Pr Y=y 5.3 

In the inference problem, the random variables X and Y denote the 
set of unknown parao1eters a11d the outcome of the experiment, re
spectively. Thus, Pr X = x. and Pr X = x Y = y are the 
aforementioned prior and posterior distributions, respectively, and 
Pr Y = y X = x is the likelihood function given values of the 
parameters . Given the outcome of the experiment, Bayes 's formula 
converts the prior distribution on the values of the para,rneters into a 
posterior distribution. 
The use of a prior distribution introduces a subjective element in 
Bayesian statistics, because the choice of a prior distribution is usu
ally left to the user. Consequently, different assumptions about the 
prior distribution will not neces.sarily lead to identical posterior dis
tributions, as a result of which 'Bayesians' are sometimes accused of 
fabricating data. However, this criticism is only valid in situations 
where the prior distribution is not generally agreed upon and where 
the posterior distribution is predominantly determined by the prior 
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distribution and not by the outcome of the experiment. In the exper
iments we 8tudy in this chapter the latter is certainly not the case, 
because of the large amounts of data constituting the outcomes of the 
experiments - the length of the Markov chains varies between 108 and 
106 in the TSP-instances to which the Bayesian approach is applied 
in section 5.5. We can therefore call upon the observation that, al
though Bayesian solutions obtained under distinct prior distributions 
are different, they converge to the same answer for n ► oo under cer
tain mild conditions on the prior distributions. We would also like to 
point out that 'non-Bayesians' can be considered to be merely unso
phisticated Bayesians, since they the non-Bayesians recognize only 
the trivial prior distributions which assign to every possible value of 
the unknown parameter a probability of either O or 1. 
In addition, it is often thought that the use of a prior distribution en
tails the controversial sub;·ective interpretation of probabilities.1 How
ever, Von Mises 1964 , a chief exponent of the relative frequency ap
proach, argues that this view is definitely wrong. For a discussion of 
Von Mises's arguments the reader is referred to Boender, 1984 ; here, 
it suffices to quote Boender's conclusion that 'the arguments put for
ward by Von Mises .. . also suffice to justify our assumptions on the 
existence of probability distributions on relevant problem parameters' 
Boender, 1984, p. 13 . 

Before returning to simulated annealing, we consider once again our 
example and apply Bayes's method to it. First, we need to assume 
a prior distribution on the random variables L, U and 0L, ... , 0u, 
corresponding to the values of the unknown parameters l, u, and 
81, ••• , Ou, respectively. For the random variables corresponding to 
the minin1um and maximum values of the cost function, L and U, 
respectively, we assume arbitrary prior distributions, i.e. 

Pr L = l 5.4 

and 
Pr U == u 5.5 

1 This is the approach in which the statement 'event A occurs with a probability 
~' is believed to express someone's personal or subjective belief, as opposed to the 
relativd frequency approach, in which such a staten1ent exp1,esses tl1at tl1e outco111e 
of a certain experiment is A two out of five times [Hogg & Craig, 1978]. 
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have to be provided by the u.ser. Next, given L = l and U = u, 
the random variables 0i, ... , 0u are assumed to follow a Dirichlet 
d~tribution, which is well known to be the natural con1·ugate prior2 
for tche para.1neters 81, ..• , Ou of the multinomial distribution given 
by 5.1 · Lindley, 1978 . The Dirichlet distribution with pararneters 
az, ... , au, which is denoted by[) ai, ... , au , is given by the following 
joint probability density function Wilks, 1962 : 

u. 

r Ea, u 
-.,, i=l _ n fJ;. a;-1 

fl r(a.) i=l 
i=l 

u 
if L, (Ji = 1, 

i=l 5.6 

0 elsewhere. 

The choice of a Dirichlet distribution is only a minor restriction, be .. 
cause it, para.,1neters can be chosen such that the expected values 
Ei Q, :, i ·. l, .. . , u, with respect to the Dirichlet distribution are equal 
to those with respect to any other distribution. 
By mu.ltiplying the distributions given by 5.4 , 5.5 and 5.6 we 
obtain the following joint prior distribution for L, U, 0 L, •.. , 0u .· : 

f l, u, llz, ... , flu · = Pr L = l · Pr U = u · f fJ,, ... , Ou l, u 

if mm < l < mM, Xm. < u < XM 
u 

d ~ fJ 1 5.7 an L-t .; = , 
i-,-l 

0 elsewhere, 

where the ~flu are &ls,o hyperparameters to be provided by the user. 
We writ,e ~llu, because the prior distribution for 0z, ... , 0u is con
ditional on l and u, i.e. conditional on given values of the random 

2 If .. d" .-:b t· b l I " . . "d , a. pnor 18""" u 10n e ong$ to a c ass .1,,., of distributions, then 1t 1s sa.1 
to b,e the natural conjugate p,rior if the posterior distribution also belongs to £. 
Natura.I conjugate priors are usually chosen because they lead to a relatively simple 
computatio.n of the p08terior distribution. 
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variables L and U. 
In addition to the frequency counts Ni i = l, ... , u , we define W 
and Z to be the random variables corresponding to the minimum 
and maximum sampled cost values. Following Boender 1984 , we 
use the notation Cnwz for the event or outcome of the experiment 

Nw, . .. , N z = nw, .. . , nz . The probability of this event, given 
values of the parameters, is given by cf. 5.1 : 

if l < w, z < u. 
% 

Pr Cnwz L, U, 0 l, u, 8 and I: ni = n '5.8 

0 elsewhere, 

where 0 and (J denote the vectors eL,••·•,0u and 8i, .... ,9u, re
spectively. 
Using 5.7 , 5.8 , Bayes's formula and the fact that ni = 0 for i < w 
or i > z, we obtain the following expression for the joint posterior 
distribution for L, u, eL, ... 'E>u : 

, ' • • "l u 8. ·. I ,l, u, Oz' . .. '(Ju Pr .. Cnwz \L, U, e. 

• • • 

• • • 

if m,n < l < w, z < u < XM, I:f=l ()i 
that since the prior distribution in our 

. ' ' . 

' 

5.9 
1 and O elsewhere. Note 

example is the product of 
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two probability density functions of the discrete type and one of the 
continuous typ•e, we have to replace the summation in Bayes 's formula 
by a com ·.. lie of two sum1·natione and one multifold integral. 
Equation . 5 .. 9 can be sitnplified by using the identity 

t 
f t .n r o:,,st + n; 

• • • dt/J; = _,=_s _____ _ 
t 5.10 

t 

{•IE ,,,,=1l 
r ~ a,1st + n 

•=s 

• 

5.11 
By integrating the joint posterior distribution given by 5.11 over all 
Ii, • •• , llt1., we obtain the marginal joint probability density function 
for · .· L, U .·, giv'1} by · cf.. B·oender, 1984 · : 

nt.Uz 
if mm < l < w, z < ti, < XM, 

5.12 

0 elsewhere, 

where the terms biun, and Bnwa are defined as 

and 

u r ~llu + n, 

i=l f aijlu 
5.13 

5.14 
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respectively. 
Finally, using 

we obtain 

0 

f l, U, 81, • • • , Bu Cnwz = ------.----------
Pr L = l, U = U Cnwz ' 

5.15 

U, 

if ~ f}i = 1, 
i=l 5.16 

elsewhere .. 

Hence, given L == l and U = u, the posterior distribution for 
E>z, ... , E>u is again a Dirichlet distribution with parameters 

az11u + ni' .•. ' aullu + nu. 
Equations 5.12 and 5.16 are the Bayesian solutions to the infer-
ence problem and provide the posterior information on the values of 
the unknown parameters l, u and fJz, •.. , Ou .. 

• 

5.3.1 Introduction 

In our Bayesian approach to simulated annealing, we consider the 
generation of each homogeneous Markov chain as an instance of the 
experiment described in the previous section. Thus, in contrast to 
the usual approach, in which Bayes's method is used to make infer
ences from the outcome of one experiment, we have a sequence of 
experiments and we use the posterior information of each experiment 
to choose the prior distribution of the next experiment. In addition, 
there are three modifications for each experiment: 



1. 

2. 

bound to all cost values. 

distribution on the set of configurations. Instead, we assume 
t,hat the configurations are drawn from the stationary distribu
tion of the Markov chain under consideration. This ,,.seumption 
is motivated by two facts: 

a Asymptotically, the configurations are sampled from the 
stationary distribution. 

b Our choice of the parameters of a cooling schedule is such 
that the probability distribution of the configurations is 
always 'close' to the stationary distribution see the dis
cussion in section 3.3 . 

3. The frequency counts do not follow a multinomial distribution, 
because the random variables X k are not mutually stochas
tically independent X k denotes the k-th sampled configura
tion . However, in appendix A we show that asy11:1ptotica.lly, 
i.e. for n • oo, there is only a slight difference between the sit
uation where the random variables X. k are independent and 
the situation we are dealing with. In both cases, the frequency 
counts follow a multivariate normal distribution; the mean vec
tors of both distributions are identical, but the covariance ma
trices are slightly different. Moreover, in the appendix we show 
that the difference between the two covariance matrices can be 
made arbitrarily small by considering only the sequence of con-

nrations X ,t , X 2t , etc., for some properly chosen integer 
t > 1. Hereinaftrer, we nevertheless consider the original se
quence of configurat.ions X 1 , X 2 , etc., and we assume that 
for the k-th Markov chain, the frequency counts do follow a 
multinomial distribution with parameters fJkz, ••• , 81cu, where (Jki, 

a configuration with cost value i, under the assumption that the 
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, 

configurations are sampled from the stationary distribution of 
the k-th Markov chain. 

The natural way to connect the Bayesian approach to Markov chain 
k with the one to Markov chain k + 1 is to take the posterior distribu
tions found for Markov chain k as prior distributions for Markov chain 
k+l. However, the posterior results for the k-th Markov chain concern 
the random variables 01cL, ... , eku and L, whereas for the k + 1 -th 
Markov chain we need to assume a prior distribution on the random 
variables E>k+l,L, ... , 01c+1,u and, again, L. Under the aforementioned 
assumption with respect to the distribution from which the configura
tions are sampled, we can derive a simple relation between the param
eters 8 ki and 81c+ l ,i, i == l, ... , u, which can then be used to transform 
the conditional posterior distribution for 01cz, ... , 0ku cf. 5.16 
into a conditional prior distribution for 01c+i,z, ... , 0k+l,u . This re-
lation is obtained in the following way. 
Let X denote the random variable corresponding to a sampled config
uration, then, using the expression for the stationary distribution of 
a Markov chain given by 3.8 and 3.9 , we find that (Jki, i == l, ... , u, 
is given by 

81c; == Pr C X == i Vx E R : Pr X == x 
exp -G(:c) 

CJc == ___ ....;__ ....;..;;..__:..._.,.... 
' 

t1ER CJc 

5.17 
where c1c is the value of the control parameter for the k-th Markov 
chain. From 5.17 , we obtain 

• -, 
exp Ck. 

i=l, ... ,u, 5.18 
E exp c 

yER 1c 

where Ei, i = l, ... , u, denotes the fraction of configurations with cost 
value i. Furthermore, 

Combining 
11ER 

5.18 

exp 
-C u 

j=l 

yields 
• 

• 
-J 

ei exp ~: 
(Jk· - ----~~- ' i == l, ... ' u. 

• tt _· 

i=l 

• 5.19 

5.20 
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From 5.20 , we find, using I:f_z ei == Ef-l (Jki = 1, 

• 

()ki exp c
1
1c 

ei = _u ___ __;__;..;_,;__.. -, i = l, ... 'u 5.21 

i l 

and, consequently, 

5.22 

where alci, i = l, . .. , u, is given by 

a1c:i == exp • 5.23 

Given the conditional posterior distribution / 81cz, ••. , 81cu l; Cnw1c for 
0/cl, ... , 01cu cf. 5.16 , we can now obtain a joint probability den

sity function g 81c+1,l, ••• , 81c+1,u l; Cnw1r. for 01c+1,l, • • •, 01c+1,u by 
putting 

a1cielci 
u , i=l, ... ,u 5.24 
I: a1c; e 1c; 
j=l 

and considering the transformation given by 5.22 and 5.23 . This 
transformation is the subject of the next subsection. Unfortunately, 
g 91c+1,l, ••• , 01c+i,u l; Cnw1e is not a Dirichlet distribution so that it is 
not a natural conjugate prior and as such not an attractive candidate 
for the conditional prior distribution for E>1c+i,z, •.. , E>1c+i,u • Instead, 
in subsection 5.3.3, we compute approximations of the expected val
ues E·0k+l,i l; Cnw1c , i = l, ... , u, with respect to the distribution 
g 81c+1,l, • • • , 61c+1,u l; Cnw1c • 
Next, in subsection 5.3.4, we construct a Dirichlet distribution whose 
parameters O:k+l,lll,.". 'a1c+l,ull are such that the E e k+I,i l; Cnwk 's 
with respect to the Dirichlet distribution are identical to the ap
proximations of the expected values as they are computed in subsec
tion 5.3 .. 3 .. Furtherm_ore, since the latter requirement yields only u - l 

• 



5.3. BAYES'S METHOD AND SIMULATED ANNEALING 97 

one additional requirement on the parameters ak+i,z11, ..... , ai+i.utz• Fi
nally, the [) a,:+1,111, .•. , n1:+1,ufl distribution is taken as the condi
tional prior distribution for 81t+1,,, ... , 01e+1,u • 

In subsection 5.3.4, we also summarize the results obtained by giving 
the full expressions for the prior and posterior distributions of each 
Markov chain. 

6.3.2 ansfor1r1ation of the posterior distribu-
tion 

In this subsection we consider the transformation given by 5.22 and 
5 .. 23 . According to section 5.2, the conditional posterior distribution 

f flw, .... , 9iu l; Cnw&; for 0tz, ... , eku is a 
D aw1z + n1e,, ••. , a1eu1i + n1eu distribution 5.16 , where nki, 
i = l, ..... , u, denotes the number of configurations in Markov chain 
k with cost value i; na = 0 for i < w,1:, where w1c is the smallest 
coat value sampled during the generation of Markov chain k. We are 
thus interested in solving the following problem: given that the joint 
probability density function of the random variables 01c1, .... , 81cu is 
a D · aw1z + n1e1, •.• , akull + nku distribution, find the joint probability 
density function of the random variables 01c+i,z, ... , 01c+i,u, defined by 
5.24 . 

For convenience sake, we reformulate this problem as follows. Let 
Xo, ..... , Xm-1 be random variables following a 1) f3o, ... , f3m distribu-
. . s tion, 1.e. 

i=O 
--m. 

II r(.Bi) 
icO 

0 

,,a.-1 m-1 
TI Xi,lli-l . 1 - E Xi 

I'm. -1 

i=O i 0 

m-1 5.25 
if O < L Xi < 1, 

i=O 

elsewhere 

3 We have explicitly taken into account the fact that f is non-zero only for those 
val:11es of zo, ... , Xm for which E~o Xi= 1 by the substitution x,n = 1- ~;:~1 

Xi. 
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and let the random variables Yo, ... , Ym-1 be defined by 

OiX;, 
~ = ----::-----~-----, i = 0, ... , m - 1, 

m-1 m-1 
am 1 - i: X; + E a;X; 

i=O i=O 

5.26 

• 

where the a.;'s a.re positive, real-valued para.meters, satisfying cf. 
5.23 

5.27 

We express Xm in terms of X 0 , ••• , Xm-t, because for convergence of 
the series involved in the computations of subsection 5.3.3, it is es
sential that the parameter a; associated with the dependent variable 
X; be the smallest of all parameters ai, i = 0, .... , m. In our case, the 
latter can be achieved by choosing Xm as the dependent variable. 
Fo·r ease of notation, we renumber X0 , ••• , Xm-1 and Yo, ... , Y,n-1 

to Xm., ... , X1. and Ym, ... , Y1 , respectively, and the parameters a;, 
i = 0, .... , m accordingly. We are thus interested in the following prob-
lem. L,et X1, ... , Xm be random variables following a [) Po, . .. , f3m 
distribution, i.e. 

Po-1 

f X1, • • • , Xm. ,n. 5.28 
if O < 1: Xi < 1, 

t=l 

0 elsewhere 

and let the random variables Y1 , •.. , Y m be defined by 

a;Xi 
Y. = ------:-------, ,,; == 1 • (I , ••• ,m, 

m m 
ac, 1 - I: X; + E a·X· . 1 . J J ,= 3=1 

where the parameters a; satisfy 

5.29 

5.30 
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then the problem is to find the joint probability density function of 
Y1, ... , Ym. . We solve this problem by considering the transformation 

aiXi . 
-----:-------, t = 1, ... , m, 

m m 
Ex; + }:: a;x; 
i=l j=l 

1-

from which we obtain 

JJi 
X; ai 

1 m 

ao 1 E Yi 
j l j la; 

where the term S is defined by 

S def l + 
,n 

i=l 

aoYi • 

aiS' 
i 

Yi a; . 
a· 1 

1, ... , m, 

5.31 

5.32 

5.33 

The joint probability density function of Y1 , ... , Ym can now be 
found by substituting the expression of 5.32 in / x 1 , ••• , Xm , given 
by 5.28 , and multiplying the result by the Jacobian, defined as the 
determinant of the matrix J = 
From 5.32 and 5.33 

where 6i; is the Kronecker symbol. 
From 5.34 we deduce 

ao-a · = ' ' J a; , 

a0 y,. a0 a; 
• 

aiS2 a; ' 

J S -2 D _ T = p. q , 

5.34 

5.35 

where the diagonal m x m-matrix D and the m-vectors p and q are 
defined as 

T def p 

' ... ' 

Y1 Ym 
ao -, ... 'ao 

a1 am 

' 
5.36 

5.37 
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and 

t . l I"eap,ec 1ve y. 

T def q ' . . . ' 
- a,n 

' a,n. 

The Jacobian can now be found by using the following lemma .. 

Lenlll14 5.1 

5.38 

Suppose M · D + s • tT, where M and D are m x m-matrices, s and 
i m-v~tora and D = diag d1 , ••• , dm . Then 

Proof 

M 

m. 

,,..,., . : s1ct k • 

~---1 

1 + U1 

1 
• • .. 

1 

M 

d1 + s1t1 
82t1 

• • • 

8mt1 

• • • 

B1t2 

d2 + s2t2 

• 
" • 

Smt2 

• • 
• 

m 

i=l 

• • • 

• • • 

• • • 

.... 
••• 

s1tm 

82tm 

• • • 

dm + Smtm 

1 
1 
• • 
• 

1 1 •... 1 + dm ... 
8m.tm 

1 ••• 1 
1 + U2 • • • 1 m 

Ut 
u1+ • • • • Ui • " i=l 

1 • • • l+um 

m 

5.39 

• 5.40 

ni 

U· J 
• 

1 2 

5.41 



5.3. BAYES'S METHOD AND SIMULATED ANNEALING 101 

- - for u,, i = 1, ... , m, in 5.41 we obtain 
1 1 

m m s·t• m d· ffl .sit, m 

B1et1e 1+ 1 1 j 
1+ d;. 5.42· 

di 1 s;t; d, le 1 • 1 • I 

' i=l i=l 
□ 

Using lemma 5.1 we obtain 

J = s-2m . D _ pqT 

m aoJli. . a.o-ai m aoS 5-2,11, 1 a, Cli 

a0 S a· ' • 1 • 1 1 a, 3 ' 
and thus 

. 5-1 

5-1 

m. 

i=l 

ffl 

;=l 

a·S 3 

5.43 
a·S 
' 

• 5.44 

Equation 5.44 yields, by substituting for f a [) /3o, ... , /3m distrib
ution and using the equality 

1 

s 
s 

1 

s 

m 

1- 5.45 

the following joint probability density function for Y1, ... , Y m. : 

g Y1, · · ·, Ym 

where (j 

Y1, ... ,Ym 

m 

m a· Y, 
TI r(,,.-) i.=t • i=l 

1 - I: Yi 
i=l 

i=O m -P m 
X 1 - "" Bj-0.0y. 

~ Bi '& 
if O < ~Yi< 1, 5.46 

i=l i=l 

0 elsewhere, 

E:1' 0 f3i. From 5.46 we obtain, after 

t "'V" y; and resubstituting Y m 0 .L m-1, • • •, O 

renumbering 
m-1 

1 - E 1', 
" 0 
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-, -' ' 

,' 

0 

u 
' ' 

' 

• ·. 11 I'( OtJ:ijl+nA:i) i . l 
' ,, ., •=·· 

u 
' ' 

i=l I 

' ' ' 
l . 
' 
' 

Yo,. • • , Y m : 

i 0 

u 

,n. 
if E Yi= 1, 

i 0 

elsewhere, 

if E Bm+1,i = 1, 
i l 

elsewhere, 

• • 

5.47 

5.48 

· ~=l awfl• Clearly, · 5.48 is not a Dirichlet distribution. 
' 

In this au.·.· ...... · tion we consider the following problem: given that the 
joint probability density function of the random variables 
e~+l),. ". '0.+1,u is given by 5.48 ' find the expected values 
JS'.•.8•+1,,·.f; Craw1c , i = l, •• • , U. 

For convenience sake, we reformulate the problem as follows. Let the 
joint probability density function of the random variables Y1 , •.. , Y, 1,, 

be given by 5.46 , then the problem is to determine E ~ , 
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i = 1, ... , m, i.e. to compute the expression 

X 

r 
E Yi m 

TI r ,B; 
• 

J 0 

1-
m 

Y; 
;=1 

m 

• 
J 

1-

ao /3; 
• • • Yi 

1 a· , 
m. 

{0~ L tlj~l} 
j=l 

m a; - ao 
Yi 

-/3 

i=l a· , 

m 
/3 ·-l Yi' 

• 1 ' 

5.49 

A straightforward approach to the computation of the expression 
given by 5.49 is due to Boender 1986 and is based on rewriting 
E ~ in terms of the stochastic variables X 1 , •.. , Xm and using the 
Taylor expansion of the integrand. This approach, which is discussed 
in more detail in appendix B, is not as elaborate as the one discussed 
in the remainder of this section, but it leads to an approximation of 
E ~ with unknown accuracy. We therefore resort to a more intricate 
approach, which consists of three steps: 

• Firstly, we show that the expected value E ~ is the integral 
representation of a Lauricella function Lauricella, 1893 ; 

• Secondly, we show that the Lauricella function, which is defined 
as a multiple series, can be written as a simple series of cycle 
indicator functions Riordan, 1978 ; 

• Thirdly, we derive an approximation of the sum of this series 
and discuss its accuracy. 

We now discuss these steps in more detail. 

STEP 1 

We need the following two lemmas. 

Lemma 5.2 
For m > 1, K > 0 and Z:E1 z.a < 1 the following identity holds: 

m 00 

1- .... 5.50 
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where ·It de.notes tht Pochhammer symbol: n 

f IC+ n 
K, n = • 5.51 

Proof 

We use the serial expansion of 1 - z -a, which, for z < 1 , is given 
by 

00 a i ,· 
1 - Z -a= Z ., . 

i=O t. 
5.52 

The proof of· 5.50 .· is by induction on m. Form= 1, the equality in 
.5.50 is immediately obtained from 5.52 by the substitution z = z1 , 

i ····• i 1 and a ,,.,,. K. Suppose that 5.50 holds for some m > 1. We 
write 

m+l -,c. 

1 Zi 1 Zi 
i=l i=l 

ffl, -K, 

1-
i-1 

5.52 , we can rewrite 5.53 as 

•+1 -It m. -,:, 00 ' 

-It 
1 

• 
1 

-1 . 
' i 

:Em.+1 Z· 
-K, 

i 1 1 

E"" Z· i 1 ' 

• 

im.+l and a 

m 

5.53 

• 
K,, Ill 

• 1,n.+ 1 K, • 
1 1 Zi tm.+!., z im.+1 1 z.; Z· . ! m.+l 1 

t·•·· 1 i=l im.+1-0 lm+l 

Kt i +1 . m 

••+1-0 'm+l i-1 

and by using t.he induction hypothesis as 

m+l 
1-

00 00 

• • • 

Zi 

• l 1 

5.54 

5.55 

JC i+m in 5.55 , we 

D 
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Lemina 5.3 
The integral representation of the Lauricella function 
Fv a, b1, .... , bm,; c; ,1, .... , "Im defined by 

00 00 

" . . 5.56 
C . +. 

11 +··· 1m 

where, for convergence, · 'Yi < 1, ... , "Im < 1, is given by 

f C 

m m 
re-Eb, Tifb, 

i=l i=l 

m m. m -a 

X ••• 1-
m i=l i=l i=l 

{O< I: µ..~1} 
i=l 

5.57 

Proof 

m m m -a 

• • • 1- 1-
m • 1 i=l i=l 

{o~I: µ.~1} 
i=l 

00 

• • • 

m 

m m c-1- I: bi 

X • • • 
b·+i·-1 1 µ1 I I -

i=l dµ1 .... dµm 
i=l 

• • • 
a i 1 + · · · +i m i 1 i m 

• , • , • 1 ,1 · · · 1m 
t1.i2 .• •. tm· 

i1=0 im=O . 

00 

r 
m 

• 

f C + i1 + · · · + tm 
x-------

i=l 
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m 
r b1 •.. r bm. r c - }: b; 

f C 

00 

X .... 
00 b1 · . . . bm · 11 Im 

m 

I'b1 ... fbmr c-I:bi 
i=l F b b = ------------ · . D a, 1, · • ·, m; c; '11," • ·, 'Ym • 

f C 

5.58 
N.B. Form= 1, 5.56 defines the well-known hypergeometr,:c function 
2F1 a,, b1; c; '11 ; for m = 2, we obtain the Appell /unct,:on 
F1 a,b1 ,bi;c;ry1,,2 see Appell & Kampe de Feriet, 1926; Slater, 
1966 . The Lauricella funqtions are known as hypergeometric func
tions of m variables. 

□ 

We can now express the expected value E ~ , given by 5.49 , as a 
Lauricella function. 

Theorem 5.1 
Let the 1·oint probab,.lity density function of the m random variables 
Y1, •.. , Ym be given by 5 • .,/.6 , then for i = I, ... , m 

m /j; 00 00 

E ~ • /3i ••• 

; ... , 1 a· 
0 /3 + ' i1=0 • 

Im, 

Proof 

1 
m 

E 
• t . 
3 • 1 J 

1 
i=l 

• 1 . 

ao 
, 

• 
a· 1 

5.59 

/Ji + 1, 
1, ... , m 

5.57 and 
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combining the resulting equality with 5.49 , we obtain 

r 
m 

TI r /3; 
i=O 

m 

j=l a· 1 

m 

13,. r f3o TI r f.3; r f3i + 1 
j=l,j#i ------------x 

r P+ 1 

ao 
' .. , 1 -

am. 

a· J 

ao 
Fv /3, /31, .. , /3i-t, /3i + 1, ,B.;+1, .. , f3m; /3 + 1; 1 - - ' .. , 1 - -- • 

a1 am 
5.60 

Substituting the expression for the Lauricella 
5.56 , in 5.60 yields the desired result. 

function, given by 

D 

STEP 2 

In this step we show that the multiple series of 5.59 can be written 
as a simple series of cycle indicator functions. Again, we need two 
lemmas. 

Le111111a 5 .4 
Consider the funct,·on G b1, ... , b,n; ,1, ... , ,m , given by 

• • 
00 00 

••• 5.61 
')'1 •1 /m •m 

i1=0 im.=O i l • lm. 

note that G is the Lauricella function Fv a, b1, ... , b1n; a; ,1, ... , 1m . 
Let A1c be the k-th degree term of G b1, ... , bm; ,1, ... , ,m , denoted by 
A1c = G 1c, i.e. A1c is found by summing those terms 1:n 5.61 , for 
which i 1 + · · · + im = k k O, 1,... . Then Ao = 1 and for k > 0, we 
have 

1 
• • • ' 

5.62 
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where the t; 's ;· = 1, ... , k are given by 

m 

l=l 

Proof 

• 

5.63 

.A.o = 1 is in·1111ediately obtained by observing that i1 + · · · + im 
implies i; = 0 j = 1, ... , m . 

=0 

Next, we use 5.52 to rewrite 5.61 as 

m 
-bi 1 - ,z . 5.64 

l-1 

Consequently, we have to prove that for k > 0 

m 1 

-1 

Using 

-z 

we find 

m. 

1-
• 

j-1 J 
=exp 

00 1 00 t· 00 00 1 exp -t · J exp . :, • ., 
i=l J .· i=l J • 1 J 

Observing that all product terr·r1s 11P 1 ••• ,mPnt in 

• • • 

' 

m. 

t· 
k· J 

1 
• • 

J 

k· 
~ ' satisfy 
1 

• 

5.65 

5.66 

5.67 

5.68 

we find the k-th degree term of the right-hand s1·de of 5 67 b h . y C 00S-

ing k1, k2, ••• such that 
00 

5.69 
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find 

m 
1 t· A:· 

-bi 1 

1 ' 5.70 "fl 
k., • • 

1 J Jc k} j-1 J• 

□ 

Le111111a 5. 5 

The uricella /unction Fv a, b1 , .... , bm; c; 11 , ... , ,m can be written 
as 

Fv a, b1, . .. , bm; c; ,1, ... , ,m 
00 k A: • 

a k I t· 
, 

1+ J 5.71 k., • ' Jc C k k . J 1 • 1 , • 
{(lc1, ... ,kk)IE;=11k; le}, 

where the t; 's • 
1, ... , k are again given by 5.63 J • 

Proof 

FD a, b1, ... , b,,,,; c; ,1, ... , '1m o 

i1 = · · · = i,n = 0. Furthermore, 
1 is again obtained by setting 

5.56 can be rewritten as 

00 

+ 

00 

=1+ 
/c:=1 

m. a . . 
I 1 +· ··+t.m 

m oo a 

k=l C k 

·5· 72 ' . ':' ' : 

where Ak denotes again the k-th degree t•erm of the function 
G b b 1• en by 5 61 Equat1·on · 5 71 now in1-1, • · • , ,11.; 11, • · · , '1m , g V .. · · · . • 

n1ediately follows from lemma 5.4. 
N .B. The terms A1c are proportional to the cycle indicator funct,:o,as 
ck t1, . .. , t1e given by 

5.73 
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c,. t 1 , .•• , t1c is the generating function for the number of permuta
tions of k elements with k1 unit cycles, k2 2-cycles and so on; see 

' 

Riordan, 1978 . 
□ 

We a.re now able to express E ~ as a simple series of cycle indicator 

functions: 

Theorem 5.2 
Let the 1·0,·nt probability density function of the m random vari"ables 
Y1 , ••• , Ym be given by 5.,46 , then for i = 1, ... , m 

, 5.74 

where the ti; 's J. = 1, ... , k are given by 

m. • 
3 

• 
J 

ti;= ....... /3z 1 - -
l=l al 

• 5.75 

Proof 

Equation 5. 7 4 is i1n.111ediately obtained by combining 5.60 , 5. 71 
and ·5.73 . 

□ 

STEP 3 

In this step we derive an accurate approximation of the su111 of the 
simple series given by 5.74 . We need some properties of cycle indi
cator functions, which are expressed by the following three lerr1mas. 

Lemma 5.6 Riordan, 1978 

relation: 

k k! 
5.76 

j=O J . 

h C def 
w ere O = 1. 
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Lemma 5.7 
Let C1c S and C1c S + t denote C1e S1, ... , Sk and ck 81 + t1, ••. , s1c + 
t1c , respectively, then 

le k 
• 

i=O J 

Proof 

The proof is by induction on k. For k = 1 we have 

so that 5. 77 holds for k = 1. 

1 
1 

1 
0 

Suppose 5.77 holds for some k > 1. Using lemma 5.6 we find 

k! 
s+t 

l=O 

5.77 

5.78 

5.79 

By using the induction hypothesis and lemma 5.6, the first sum in the 
right-ha11d side of 5.79 can be rewritten as follows: 

le k! 
s+t 

l=O 

le k! lc-l k-l 

l=O 
k _ l , si+1 

• i=O 
• 

J 

k k k! 

l=O i=l J. - l ! k - J • 

k k 
• 

i=O J 

• 

3 . ' J . 

l=O • 
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i=O 

k 
• 

J 

k+l 

i=l 
C; s C1e-;+1 t . 

5.80 

Analogously, we find the following identity for the second sum in the 
right-hand side of 5. 79 : 

k! 
s+t 

k 

j=O 

k 
• 

J 
5.81 

By adding the right-hand sides of 5.80 and 5.81 and using the 

we obtain 5.77 for k + 1. 

□ 

identity 
J 

Before stating lemma 5.8, we redefine the terms ti;, given by 5.75 , 
as 

• 

ti; = <1; + Ti' , i = 1, ... , m, j = 1, ... , k, 5.82 

where 
m • 

J 

, j == 1, ... ,k 5.83 
l=l 

and 
' 

def 1 ao 
Ti= - -

• 
, i = 1, ... , m. 5.84 

Lemma 5.8 
Let the variables ti; be given by 5.82 through 5.84 , then the cycle 
indicator function G1c ti1 , ••• , tile is given by: 

~__;.<1_1,_._._.,_U_:3_;_· k-j 
., Ti • 

- J. i=O 
5.85 

Proof 

Equation 5.85 is immediately obtained from lemma 5.7 and the iden-
2 . 

tity C; x, x , ... , x' == 1·! · xi Riordan, 1978 . 

□ 
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Theorem 5.3 
The expected value E Y; , i = 1, ... , m, given by 5. 1,4 , can be rewrit
ten as 

m 

= {3;, 
;=1 a· 3 

00 00 

/3 + k +pk! 

where the variables o; and r,. 
tively. Furthermore, for i 
inequality: 

5.86 
are given by 5. 89 and 5.84, , respec-
1, ... , m, E Yi satisfies the following 

m /3; 't 
m 

/3i TI ~...Jl /3, TI 9D \fl {j a. a· 'T: • 1 , j=l J 
3 E Y. 

1 5.87 < . -
/3 2 ' 1 1 T: 'T: 1 ' 

-' /3 denotes the vector /3o, ... , f3m . 
I 

! 

Proof 

· Equation 5.86 is i111mediately obtained from 5.74 and 5.85 . 
1'9 prove the inequality in 5.87 we introduce the notation tlpJc for 

- 00 

m 8· 00 . , , 

f3i X Tip· \lf /3 
• 1 

a- p=O 3 :, 
l!Ok 

k=O 
' 

5.88. 

where 

l!Ok 

p 1 
--------:--Ck o-1,•••,a1c • 

/3 + k /3 + k + p k! 
5.89 

Hence, 
f;; m, 00 -. ao 

E ~ (3; Tip. W /3 • 

a· p-0 j-1 3 

m, /3; 00 00 p 1 ao 
'ip . Cka1,•••,ok < /3; • 

f3+k+p k' . /3 + k a· • 
j-1 p 0 k=O J 
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m 

/3, 
i=l a· 1 

m 

Theorem 5.4 

/3; 00 

• 

k=O 

1 00 PTip 

+ • p=O + + p 

a· i=l J 

The expected value of the random variable Yo, defined by 

is given by 

E·Yo 

Proof 

m 

Yo= 1-
i=l 

m /3; _. ao -.-
'I! /3 . 

a· j=l 3 

5.90 
□ 

5.91 

5.92 

The derivation of 5.92 consists of the following set of equalities, 
which is obtained by using several of the above lemmas: 

EYo 

m 

X 1-

lemma 5.3 f (J m 

m 

r m 

m 
i=l a; 

/3 ·-1 
· · Yi ' 

n r ,a. 
j=O J 

1-

m. j-1 
{OS E 11;:51} 

m a· a 3 - 0 

i=l a· 1 

m 

i=l 

-/3 

Yi 

/3; r /3o + 1 fl f /3; 
i-1 

IT r fl; ;=1 a; r ,B + 1 
i=O 



= 
f3o m. a0 /3; 

a; 

lemma 6. 6 /Jo m 

a· J 

00 

X 
k-O 

m 

/3o 
j-1 

115 

{3 k 1 

ao /3; ..... 
'V {j ._, __ 

. 5.93 a· j 

D 

Using the fact that 1 - r. -l = a · = 1 th 5 3 d .. , ao, i , ... , m, . eorems · . an ·. 
5.4 yield 

.... 
= T f3 • Oi/3i 1 + Ei , i = 1, ... , m 5.94 

and 

E Yo 
-+ 

= T /3 · ao/3o, 
-+ 

where T /3 is independent of i and is given by 

-• 
T /3 5.96 

ao j=l a; 

and where, according to 5.87 , the absolute value of the relative error 
e, is bounded by ai - a0 a0{3. Consequently, 

lim Ei = 0, i = 0, ... , m. 
/3 ► 00 

6.97 

From 5.94 and 5.97 we conclude that we can make the difference 
' between E ~ and T /3 a;./Ji arbitrary small by choosing /3 sufficiently 

-
large, provided lim13 ► o:, E ¥t and lim.e .• 00 T f3 a;/3i e.xist. Further-

.. 
more, if E ~ would equal T · /3 a;./3i we would have 

-~ -1 
T /3 = I:,';=o a;fi1 , because 5.91 implies that l:~o E Y. ,_,..,_ 1. 
We there ore conjecture that we can also make the difference be

-1 

sufficiently large, provided the limits exist. These argun1ents are made 
more precise in the following theorem. 
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Theorem 5.5 
If we restrict ourselves to limits /3 -. ► oo, / or which 

I 

1m m , i = 0, ... , m, and lim a;/3; · T /3 , J. = 0, ... , m, 
/3 ► 00 

j=O 
5.98 

exist, we have 

lim E Y. 
~ ► 00 

1m m , i = 0, . . . , m. 5.99 

i=O 

Proof 

First, we remark that 5.94 and 5.98 imply the existence of the 
limits 

5.100 

By using 5.94 and 5.97 and the existence of the limits in 5.98 
and 5.100 we can write: 

litn . E ~ 
~ •oo 

a.{Ji 
m 

-E a;fi; 
i-0 

aif3i 
lim m 

a;f3i m. 
I 

m =lim 
/3 ~00 :Z:: a;/3; 

_ a;f3;"f {3 1 + fi 
j=O 

i=O 

m 

lim -1 
/3 •oo ;=o 

m 
~ • 

lim a·/3·T 
3 ' /3 1 . 

/3 . /3 ► oo 1: a;{ji 
-oo . • 0 J 

• 0 1 

-1 

5.101 

Summing the leftmost and rightmost sides of 5.101 for i = 0, ... , m 
and using I:~0 E Yi = 1 yields 

m 

O == 1 · lim 
/3 I 00 

-1 
i=O ' 

5.102 

i 
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which implies 

= 1. 5.103 

D 

expected values E 0k+l,i l; Cnw1t. for i . l, ... , u - we obtain the fol
lowing result: 

. a1n a•ifl + nm . I 1m u , -.. · , .,, .. ,, , , . . l , . .. . , u , 
ar,c11 ~oo ~;=Z a1c; a1e;1z + n1.;. 

5 .. 104 
provided the path akll ► oo is such that the limits in · 5.104 , exist. 

indeed becomes very large cf. 5.113 , so that we conclude that the 
expected values E 01c+i,i l; Gnw1c: , i = l, .... , u, are approximately given 

becomes better as the algorithm pro,ceeds. 

5.3.4 
' 

Construction of the prior distribution and 
su111111ary 

We recall from the previous subsection that the expected va.lues 
E ~k+l,i l; Cnw1c , i = l, •.. , u, with respect to the joint probability 
density function given by 5.48 are approximately given by 5 .. 104 . 
Furthermore, it is well known that the expected values with resp•ect 
to=a [) a1e+i,z1i, .•. , a1c+i,u1z= distribution are given by a1+1;iJl. 01:+1~1, 

now is to choose the parameters a1c+i,zf.1, ••• , a1t:+1,ull such that the ex
pected values with respect to the two· distributions ar·e the same. 

parameters 170 , ••• , 'Im such that 

def 'u f i "" 
• 1, ... • E zi ' m i 

_, 
m ffl , , ' 
~ '1i E r1 

5 .. 105 · 

j=O j=tt 

•• ET' o 11; e, ii 
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we obtain immediately: 

TJi = · = 0, ... , m. 
j-0 ~i 

5 .. 107 

• • 

=l, ... ,u. 
O:ill + n 

I:,i=l a1e; . akjjl + n1c; 
5.108 

We can now sum·u1arize the results obtained as follows. 
At the beginning of Markov chain k+ 1 we have two prior distributions: 

. .... . 

1. The prior distribution for the random variable L is given by cf. 

5.4 

Pr L = l = A1c+1,l, l = mm, ... , v1c, 5.109 

where v1c denotes the minimum of mM and the smallest cost 
value sar11pled during the generation of Markov chains 1, ... , k, 
• 1.e. 

• • v1c = min mM, min wit 
l<;c<lc - -

5.110 

and the parameters A1c+i,z are obtained from the posterior dis
tribution for L of Markov chain k cf. 5.13 : 

u 

r I: O:Jeill 
, i:l 
AW -~u-------:~ 

u r 

f ~ O:kijl + n i=l 

r ·. ~ o:1c,1s 
' •=• AJ:.s u 

r ~ 0:lci/s + n 
1=s 

o:~ill + nki 

f 0:JriJl 

O:.tila + n1ei 

r a:1cils 

5.111 

4 According ~o Silver [1965], the additive property expressed by (5.108) 
(o:k+l.i.ll <:x Okill + n1e1) implies that we can think of the prior parameter ak+l.ill as 
an equivalent number of occurrences of a configuration with cost value i. There
fore, the su.m of the posterior parameters and the sum of the prior parameters 
°"u ( ) "'°'u . . ' .£...,i:::::l aki(l + n1ei and .£.Ji=l a::1c+1.i11, respectively, can be interpreted as the number 
o,f equivalent occurrences representing the posterior knowledge of chain k and the 
prior knowledge of chain k + 1, respectively. It seems reasonable to assume that 
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for l = mm, .. , v1c. Equation 5.111 can be simplified by using 
5.108 , from which we obtain 

u 

i=l 

Consequently, 
u 

u 

l: ak-1,i a1c-1,;11 + n1c-1,; 
i=l 

5.112 

_ a1ill + k - 1 n, 5.113 
i l 

where the hyperparameters a 1z1z, ... , a 1ull are the pararneters of 
the conditional prior distribution for 0 11+1 , ••• , 0 1u of the first 
Markov chain. 
Substituting 5.113 in 5.111 yields 

r o:1 1, + k - I n u r 
Akl --=-------__;:__ 

r a11z + kn 
.A1c+1,z = -----

i=l 

~ Aka_.....,__ _____ __,.;_ 

n-1 

i=l i=O i=O 
n-1 ' 

8 mm i=O 
5.114 

for l = mm, ... 'V1c-

We remark that if the parameters a1c,1s do not depend on s, for 
instance in the case of a symmetric Dirichlet distribution, then 
5.114 simplifies to 

n-1 

j=O 

i-0 
5.115 
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As we can observe from 5.115 , the expression for the parameter 
A1i:+i,, is now independent of the frequency counts, and depends 
only on the sample size n. The cost values of the configurations 
satnpled during the generation of Markov chain k enter 5.115 
only through its denominator by means of the parameter VJ,;. 

Equation 5.114 can be used in the computation of the expected 
value of the random variable L at the beginning of the k + 1 -th 
Markov chain, given by 

t1J: 

5.116 

2. The conditional prior distribution for the random variables 
81c+1,l+1, .•. , 8k+l,u is a [) a1r,+1,lll, .•• , a1c+1,u)l distribution, 
whose para.rneters are given by cf. 5.108 

a1ci a1eill + n1ci a1e1z + n -u-· _,;,___:,__ __ ;.....__, i = l, ... , u. 
E a1c; a1c;1z + n1r,; 
;=l 

5.117 

Consequently, the expected values of the random variables 
81c+1,,, i = mm, ... , u, are given by 

• 

min(oA:,i) min(v,:,i) 

E 0k+l,i 
l=mm Ok+lll 

5.118 

At the end of Markov chain k + 1 we have two posterior distributions. 

1. The posterior distribution for the random variable Lis the prior 
di.stribution for L of Markov chain k + 2, so it is obtained from 
5.109 and 5.114 by substituting k + 2 and k + 1 for k + 1 and 

k, respectively. 

· 2. The conditional posterior distribution for the random variables 

distribution. 
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• 

The computational results with Bayes's method are illustrated in this 
section by results obtained for the 48-city instance of the travelling 
salesman problem GR048 introduced by Grotschel 1977. We have 
also applied the Bayesian analysis to larger instances of the TSP, but 
the results have been more or less the same. Therefore, rather than 
presenting many similar data for different instances, we extensively 
discuss the results obtained for the aforementioned single instance. 

In order to be able to apply Bayes 's method, we have to specify prior 
distributions of the unknown parameters. In our case, we have to pro
vide the hyperparameters of the prior distributions of the first Markov 
chain, viz. mm, mM and Ail, l = mm., ... , mM for the prior distribution 
of L, and u and a1ill, i = l, ... , u, l = m,n., ... , mM for the conditional 
prior distribution of 0 1,, ... , 0 1u • The computational results are 
discussed by considering the influence of the aforementioned hyper
parameters on two quantities: 

• the expected minimum cost value at the beginning of each Mar
kov chain, given by 5.116 ; 

• the expected average cost value at the beginning of each Markov 
chain, given by 

• 

u 

i=mm. 

---'-,- • k+ 1,l • t · 
l-mm i=l at+lll 

· 5.110 

which is 5048 for this instance the second quantity with µ ck+1 , the ' . 

as given by 3.14 . . 

va ues 1c+1, , nwk. ·· 
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Since the cost value of a solution of GR048 can take thousands of 
different values, which requires the computation of a:; for thousands 
of values of i, we simplify the computations by dividing the range of 
cost values mm, u into 500 equally sized intervals. Thus, expressions 
like 5.119 are replaced by similar expressions in which the indices 
refer to intervals and cost values are replaced by the medians of the 
corresponding intervals. 

a The expected minimum cost values 

We recall that the expected minimum cost value Ek+l L at the begin
ning of Markov chain k + 1 is given by 5.116 , and that the quantities 
Ak+l,Z in 5.116 are recursively given by 5.114 . In figure 5.1, E1e+ 1 L 
and v1c are plotted against c1e on a logarithmic scale. The curves in 
this figure are all calculated from the same sequence of Markov chains, 
generated by running the simulated annealing algorithm on GR048 
with the parameters xo, 6 and €8 set to 0.95, 1 and 10 6 , respectively, 
but with different hyperparameters for the prior distributions. The 
first prior distribution of L is chosen as a uniform distribution on 
the interval mm, mM , where mm and mM are set to 5000 and 5999, 
respectively. We choose a uniform distribution, because we assume 
that generally the only a pr,:or,: knowledge we have about the mini
mum cost value is that it is somewhere between mm and mM. The 
hyperparameters a 1ijZ, i = l, ... , u, l = mm, ... , mM are chosen such 
that Ef=, alill = a111 = u - l + 1 · · ainit, where ainit is a constant set 
to 103 , 1 and 10-s in the case of the dashed, the dotted and the thick 
solid curve in figure 5.1. We discuss the choice of the parameters a 1il1 

in more detail in part b of this section. 

From figure 5.1 we observe that the values E1e+ 1 L are highly influ
enced by the choice of ainit• If O:init ~ 1, Ek+l L quickly approaches 
vk,

5 but if we choose <Xinit < 1, there is a substantial difference be
tween E1c+1 L and vk, as indicated by the dotted and thick solid curves 
in figure 5.1. Unfortunately, we have no guidelines for the choice of 
O:init• Here, we briefly discuss a Bayesian solution to the problem of 
cho_osing ltinit• The Bayesian solution is a two-stage approach due to 

• 

5 This observation can be explained more precisely in the case where the hyper
parameters a 1ill are all equal t.o 1 ( as opposed to our case, where only their average 
a11, equals 1). From appendix C we learn that in that case limn .00 E 2 [L] = v 1 • 
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Figure 5.1: Smallest cost value sa111pled during the generation iof a 
Markov chain and expected minimum cost values ... for differe11t values 
of ainit plotted against the value of the control p&raxneter c: on • 

logarithmic scale. 



successfully to similar problems. 
Lei A denote the random variable corresponding to the value of the 

Markov cha.in k + 1 the joint prior distribution for L, A is given by 
cf .. · 5.111 · : 

i=I 5.120 

where the hyperpara.xneters aki(l are completely determined by o:,n1t 

· .. see part · b of this section . 
By integrating the distribution, given by 5.120 , over all ainit, we 
obtain the marginal probability density function of L, yielding a new 
set of equations for the quantities Ae+i,z, and a new expression for 
the · · · ,ected value E1c+i. L , which is, one might hope, a better ap
proximation of the true minimum cost value than the expected value 
compu.;. from . 5.111 .. 
Unfo,rtunately, it does not seem possible to find an analytical expres
sion for the integrals involved, so that one has to resort to numerical 
integ.ration .. 
Finally, we mention that for Oinit ~ 1, the influence of the hyperpa
rameters mm. and mM on E1c+t L is negligible, because, as we have 
seen, in that case E1c+1 L and v1c are virtually identical for sufficiently 
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·b The expected average cost values 

First, we analyse the influence of the parameters for the prior distri
bution of 01z, ... , 01u on the expected average cost values. 
In our experiments, we set u = 25000, which, from computational 
results, is known to be an upper bound to the cost values of virtually 
each configuration of this instance. 
If no information is available on the parameters 0 1i, the unknown 
probabilities of sampling a configuration with cost value i during the 
generation of the first Markov chain, then it is standard Bayesian 
practice to put 

0'.1ill ainit, i = l, ... , u, l =mm, ... , mM, 5.121 

for some constant ainit• 

However, since the configurations are drawn from a uniform distribu
tion on R during the generation of the first Markov chain, we know 
that 811 equals the fraction of configurations with cost value i, de
noted by w i . In the literature, it is usually assumed and co,nfirm;ed 
by computational results that w i follows a normal distribution, see 

for instance Aarts, Korst & Van Laarhoven, 1988 , i.e. 

• 
w i ex: exp 

i- C 

2 2 Uo ' 

where C and u 0 are the average and the standard deviation of the 
cost values of the configurations, respectively. In our exa1r.1ple, w:e 
estimate C and a0 by the average and standard deviation of the 

aa, respectively. By putting 

where Pl is given by 

• 

Pl 

i-C 2 

2 """2 Uo 

. .. ·. 2 ···. . ' 

;-.--l· -.. ~ 

' ' 
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h. h E e L = l def a !il! ,._ w ,,; ' l we ac · 1eve t at 1i «, 
al ll 

that 
def a11z l a 1 jl -------- = <Xi nit, = mm., • • • , m M • 

u-l+l 
5.125 

In other words, if the hyperparameters a1ill are chosen according to 
5.123 and 5.124 , the distribution of the random variable 01i, i = 

l, ... , u, is such that its expected value is approximately equal to the 
value of the parameter 81i, i = l, ... , u. Thus, 5.123 and 5.124 
seem a better choice for the hyperparameters a1ijl than 5.121 . This 
is confirmed by figure 5.2, where the average cost value sampled during 
the generation of a Markov chain is plotted against the value of the 
control parameter c on a logarithmic scale. In the same figure the 
expected average cost values, as given by 5.119 , are also plotted 
against c on a logarithmic scale; the dashed curve is obtained when 
the hyperparameters a 1ilZ a.re given by 5.121 , the dotted curve when 
they are given by. 5.123 and 5.124 . The three curves are calculated 
from the same sequence of Markov chains, obtained by running the 
simulated annealing algorithm with the parameters Xo, ~, f. 8 , 1nm, 
mM and llinit set to 0.9, 10, 10-6

, 5000, 5999 and 1, respectively. 
Clearly, when the a 1ill's are given by 5.121 the expected values for 
the average cost are much too low. This can be explained by using 
the following two observations: 

• In our example, the parameters C and o-0 in 5.123 are given 

to O for i smaller than ca. 17000, whereas for the sa1.11e range of 
i-values 0:1111 is set to ainit == 1 through 5.121 .. 

given by 5.117, satisfies the following condition: 

ak+l,i(l > akill + nki, 

ak+1,i(l < o:kill + nki, 

i==l, ... ,ik, 
i == ik + 1, ... , U. 

5.126 

> ... > 
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Co1nbining the two observations, we have that 5.121 yields a posi
tive bias of the random variables 0 1i for small values of i, and that 
the bias is further increased by the transformation of the posterior 
distribution of 0 1, into a prior distribution of 0 2i and by all subse
quent transformations . 

are given by 5.123 and 5.124 , so that ainit is the only hyperparam
eter to be provided by the user. 
The influence of the value of this parameter is shown in figure 5.3, 
where the relative difference between the expected and the sampled 
average cost value is plotted on a logarithmic scale against the value 
of the control parameter c for different values of a,nit. The relative 
difference A.1c is given by 

• 5.127 
µ Ck 

The three curves are calculated from the same sequence of Markov 
chains, obtained by running the simulated annealing algorithm with 
the parameters Xo, 6, e.,, mm and mM set to 0.9, 1, 10-6

, 5000 and 
5999, respectively. The solid curve is obtained for ~nit = 0.001, the 
dashed and dotted curves for ainit = 1 and a;nit = 1000, respectively .. 
Before analysing figure 5.3, we recall that the conditional posterior 
distribution is a D aklll + n1cz, ••• , a1cu1z + nku distribution, so that 
if ainit <e:: 1, the prior [) a1c+i,i1,, .•• , a1c+i,uJl · distribution is approxi
r:1:ia tely obtained from a posterior D nkl, ... , nku distribution, because 
the a.kill can be neglected. Conversely, if Ot.init ~ 1, we can neglect 
the nki, so that the prior distribution is then approximately obtained 
from a posterior D a1c111, • •• , o:1cu1z distribution. In other words, if 
<:Xi.nit ~ 1, the k + 1 -th prior distribution is determined by the fre
quency counts, which are assumed to follow the stationary distribution 
of the k + 1 -th Markov chain, whereas if ainit ~ I, the k + 1 -th 
prior distribution is obtained from a transformation of the k-th prior 
distribution and thus from k transformations of the first prior dis
tribution, which is assumed to be an accurate approximation of the 
stationary distribution of the first Markov chain. Thus, in b,o:th cases 

tions of the Markov chains. Therefore, we conclude that both small 
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Figure 5.2: Average cost value sampled during the generation of a 
Markov chain and expected average cost values for two prior dis
'tributions of 0 1z, ... , 0 1u plotted against the value of the control 
parameter c on a logarithmic scale. 
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and large values of O:init should yield approximately the same results 
for the expected average cost values. 

Indeed, figure 5.3 confi.rn1s the robustness of the expected average 
cost values with respect to the choice of ainit: the curves obtained for 
ainit = 1 and ainit = 0.001, respectively, almost coincide, whereas the 
curve for O:init = 1000 roughly follows the same pattern as the other 
two. Moreover, if we average the relative difference over all Markov 
chains, we obtain similar values for the three curves: 0.727%, 0.743% 
and 1.756% for ainit = 0.001, 1 and 1000, respectively. Note that 
.6.1c varies between -20% and +30% and approaches O for c l 0.. For 
larger instances of the travelling salesman problem we observed the 
same behaviour, but with smaller fluctuations of -6.t for instance, 
for the 120-city instance introduced by Grotschel 1977 , 8.1: varies 
between -8% and + 18% . 

Apart from being deter:n1ined by the hyperparameters 0:11+1
1
,J,1, the 

expected average cost value E C 1c+i ·· is also determined by the hyp,er
parameters m,,i and mM · cf. 5.119 .. We recall from part · a of this 
section that, for Oinit ~ 1 and sufficiently large k, the parameters 
A1c+1z are approximately given by 

1 if l = V1c:, 

0 if mm < l < 'VJa: • 
• 

Consequently, we can write 

E C1c:+1 
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Figure 5.3: Relative difference between expected and sampled average 
cost values plotted on a logarithmic scale against the value of the 
control parameter c for different values of the hyperparameter O:init. 



5.4. COMPUTATIONAL RESULTS 131 

converge anymore to 0. 

We recall from subsection 5.3.3 that the relative error e, in 5.94 •. is 

the relative error as 
a1e, 

aki 
--1 5.130 

Since a1ci > a1c:z+t > · · · > a1c:u, the relative error is the largest for i ·=·-~::. u; 
its absolute value is bounded by a multiple of 

1 - exp l - u 
C1c C11+1 

Cle • Ck+l 
• 5.131 ·, . 

Consequently, the accuracy of the approximation deteriorates for in
creasing values of c1,:-C1c:+i or, equivalently, for increasing·.·· .. uee of the 
distance parameter 6 of the simulated annealing algorithm .. However, 
even for 6 = 100, the expected average cost values roughly follow the 
same pattern as those obtained for 6 = 1, as can be s,een by comparing 
the thick solid curve and the dashed curve in figure 5 .. 3. 

The computational results with Bayes's method are 1ummari. , , in 
the following concluding remarks: 

• We are able to choose the prior distribution of 811, ..... , 8,,. 
such that the 01n 's are in expectation approximately equal to 

is assumed to follow a normal distribution.. The only hyperip,a• 

' . ~ 
,_ .. _'.,--·-_, l --- - . ,,-_·, ___ : ... -·.;· · •• , ;·:'.,,,·., -.,,./"_.·.-:","_, 

' .... 
. . . . . ' - ' . . ', . ' . ,. . 

• • ; .. ·, ,. ; / .' . -, : ·_ . : ',. ;'•_ "'· ' . ,' . : ' ' /- ,,, j~ '. '. ', ; : :; 
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chain quite accurately~ 



20 

ratio 
{%) 

10 

0 

-10 

-20 

TSP-GR048 
relative difference between expected and 
sampled average cost values 

, 

• . • 5 = 10 a, in i 1 = 0. 0 0 1 , [mm , m M ] = [ L. 000. 5 99 9 l 

-30 L__ _ _J.. __ -L... __ _.L,_ __ _.l._ __ ...i...._ __ ...._ __ 

0 1 2 3 4 5 6 7 
ln c 

Figure 5.4: Relative difference between expected and sampled average 
cost values plotted against the value of the control parameter c on a 
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• We choose the first prior distribution of Las a uniform distribu
tion on the interval mm, mM . We then find that the expected 
value of L is highly affected by the choice of O'.init. For example, 
for O:init ~ I, we find that the expected minimum cost value 
E1e+1 L , k = 1, 2, ... , is approximately given by v,e, the mini
mum of mM and the minimum sampled cost value. To find an 
appropriate value for O:init is a difficult problem, but we conjec
ture that it can be solved by a two-stage approach, where a prior 
distribution on ainit is assumed and where the algorithm thus 
uses a probability distribution on values of O'.init rather than a 
fixed value. 

In the next section we are only interested in the expected average cost 
values. For that reason, we no longer assume the existence of a prior 
distribution on the random variable L, but carry out all computations 
with L = l, where l is a lower bound to all cost values. We then only 
have to compute the parameters ak+l,i, i = l, ... , u at the beginning 
of Markov chain k + 1 instead of computing the parameters ak+l,sll, 

i = l, . . " ' u' l = mm' . . . ' V k • 

We recall fro111 chapter 3 that the parameters of a cooling schedule 
are: 

• the length of the Markov chains; 

• the initial value of the control parameter; 

• the decrement rule for the control parameter; 

• the final value of the control parameter. 

In this section we address the decision problem which arises when the 
. decrement rule and the length of the Markov chains are considered. 
The decision problem is connected with the trade-off between fast 
decrement of the control parameter and short Markov chains and can 
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informally be described as the problem of choosing optimally from the 
range of alternatives between a small number of long Markov chains 
. i.e. large steps in the control parameter and a large number of short 
Markov chains i.e. small steps in the control parameter . In this 
section we use the results of section 5.3 to give a Bayesian solution to 

this problem. 
Our approach to the decision problem can be outlined as follows. As 
a starting-point we take the decrement rule of the control parameter 
derived in section 3 .. 3, which is given by 

Ck · 5.132 

so that we can associate the size of the decrement of the control pa
rameter with the size of the distance parameter 6. Next, we compute 
the expected average cost value of Markov chain k + 1 for several val
ues of 6. Suppose D = 61 , ••• , 6d is the set of 6-values for which the 
aforementioned computation is carried out and suppose the elements 
of Dare such that 61 < · · · < 6d. Let c1e+ 1,; and E Ck+l,i , J. = 1, ... , d, 
denote the value of the control parameter and the expected average 
cost value corresponding to the choice 8 = 61 , J. = 1, ... , d, respec
tively. Using 5.108 and 5.129 we obtain 

1 u 

E C1c+i,; a1c· . • u ,, 
I: akii akilv1c: + n ki 

• 
1=v1c 

• 
1=vk 

5.133 
where 

• 

aki; = exp 
'& Ck+ 1,j Ck 

CJc • CJr.+1,j 
, J

0 = 1, ... , d, i = V1c, • •• , u. 5.134 

It is straightforward to show that E C1r.+i,; is a monotonously increas
ing function of c1c+1,; and thus a monotonously decreasing function of 
6;, 1· = 1, .... , d. This is in accordance with our intuition that smaller 
values of the control parameter correspond to smaller average cost 
values. 
We define the yield Yi· associated with the choice b = 6 • as 
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average cost value of all configurations cf. 5.123 , is included so as 
to always have positive yields.6 Thus, Y; denotes the expected im
provement of the algorithm over the average cost when ck+I is set to 
ck+l,i• If we are also able to find a suitable expression for the cost T; 
associated with the choice 6 = 6;, then the optimal choice 1· = Jo in 
the aforementioned decision problem follows from a simple multicr,·
teria analysis: since we are interested in maximal yield and minimal 
cost, we choose Jo such that 

5.136 

where .,\ is a suitably chosen positive weighting factor. 
To find an expression for T;, we define T; as the number of transitions 
sufficient to re-establish quasi-equilibrium after a decrement of c1i to 
c1c+i,; cf. section 3.3 . If .s; is the number of times we have to apply 
5.132 with 6 == 61 to decrease c1c to c1c+1,;, then we assume T; = s1·T1. 

In other words, we assume that the number of transitions to restore 
quasi-equilibrium after one large step from c1c to c1c+i,; is the same as 
the total number of transitions sufficient to restore quasi-equilibrium 
when ck is decreased to c1c+I,i in s3 small steps. 
By applying the same line of reasoning as in the first part of the proof 
of theorem 3.2, we find 

ln 1 + 6; . d 
= 1, ... ' ' 5.137 

where the equality in 5.137 holds if u c is constant for values of c i 
the interval c1c+i,;, c1c • Hereinafter, we approximates; by the boun 
of 5.137 , in which case our decision problem is solved by choosin 
j 0 at the end of Markov chain k from 1, ... , d such that 

_..;,...._ __ . T1 
In 1 + 61 

5.138 

6 There are several alternatives to this definition of yield; for example, we me 
also define the yield as some function of the lOOp-th percentile YJ· corresponding ~ 
the choice 6 = 5,-, i.e. as a function of the value y3· satisfying 

Pr{O(X) < y3·1Markov chain k + 1 is generat,ed at ck+l = Ck+1.;·} = p. (5.13l 

Note that this is also a monotonously increasing function of ck+1.1·· 



5.139 

+ 801c 

and 
L = T 5.140 k+l Sjo . 1, 

decision problem. 
We recall that in the cooling schedule described in section 3.3 the 
length of the . k + I -th Markov chain is given by 

L1c+ 1 = L = max Ri , k = O, 1, 2, . .. 
iER 

5.141 

Note th&t the underlying idea of this cooling schedule is that small 
s\eps in the control parameter enable the use of short Markov chains. 
This corresponds to choosing 'a large amount of short Markov chains' 
in the trade-off discussed at the beginning of this section. Therefore, 
to compare this cooling schedule with the Bayesian schedule, we put 
T1 = L and 61 = 6, where 6 is the distance parameter used in the non
Bayesian schedule. The comparison then allows us to check whether 
there is Bayesian support for this choice. We remark that the choice 
Ti = L implicitly defines a 'short' Markov chain as one with length L 
and that we there.fore only investigate whether it is worthwhile to use 
Markov chains consisting of more than L transitions. There is also 
a computational reason for this restriction: if we consider Markov 
chains consisting of fewer than L transitions, the total nu111ber of 
Markov chains generated by the algorithm with the Bayesian sched
ule increas,es, which entails a further increase in computation time, 
because the computations involved in the Bayesian approach are car
ried out at the end of each Markov chain. 

· with the non-Bayesian schedule, then the total number of transitions 
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Gopt• Thus, 
C - Gopt 

= 
K·L 

5.142 

seems a good choice to weigh transitions and cost values. 
The comparison between the two cooling schedules is carried out by 
running the algorithm on the 11 TSP-instances from the literature, 
discussed in section 4.2. The results are displayed in table 5 .. 1. For 
the non-Bayesian schedule the results are obtained with the distance 
parameter 6 set to 0.1, for the Bayesia11 schedule[; is chosen optimally 
from the-set D = O.l,0.25,0.5,1,2.5,5,10,25,50,100 at the end of 
each Markov chain. The averages are again obtained by running the 
algorithm five times on each instance. 

Table 5.1: Average cost of final solution GtinaJ , average number 
of transitions in thousands tr and standard deviations in thousands 
ua and O'tr, respectively for different-sized instances of the travelling 

salesman problem. The averages are obtained from 5 runs. 

non-Bayesian schedule Bayesian schedule 
-------f. .. ----r-----,.-----r----4----..,....:;...---,------r----, 
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Problem 

GR048 

TOM57 

EURlOO 
KR0124 
KR0125 
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GR0120 
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> HU I 

5095 24 
13068 51 
21339 172 
21468 102 
22493 163 
20928 169 
21436 123 
22455 190 

7057 72 
41957 177 

5147 21 

From table 5.1 we 
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average number of transitions is slightly less for the Bayesian schedule 

is consistent, the small difference between the two schedules should 
either mean that the choice 6 = 61 == 0.1 is nearly always the optimal 
choice or that 5.138 yields almost similar values for J. = 1, ... , d if 
6 ¥- 61 • A closer analysis of the data shows that both conclusions are 
valid; the first one is confirmed by table 5.2, where we display for each 
instance the average number of times ti the choice 6 = 6; is made, and 
from which we conclude that, on average, the choice 6 = 61 is made 
in 93 out of 100 cases. We mention two more observations, which can 
be made from the data: 

• A choice other than 6 == 61 tends to be made only for the first 
Markov chains. 

• The ratio between the CPU-times for the Bayesian and for the 
non-Bayesian schedule is typically between 1.2 and 1.5. The 
difference is due to the additional computational effort involved 
in the Bayesian approach and can be reduced by dividing the 
range of cost values into a smaller number of intervals than the 
500 into which it is divided in order to obtain the results in 
table 5.1. Preliminary investigations indicate that this does not 
significantly influence the results obtained. 

From the comparison we draw the following conclusions: 

• The choice for small steps in the control parameter and short 
Markov chains, underlying the cooling schedule of section 3.3, 
is a good one; there is no Bayesian support for the a.ssumption 
that larger steps and longer Markov chains would lead to a more 
efficient implementation of the algorithm. 

• The observation that the values of the expression of 5.138 for 
different values of J. are almost identical implies that there is not 
much difference between 'slow cooling' with short Markov chains 
and 'fast cooling'_ with long Markov chains. This confirms the 

is carried out reasonably accurately, the average final cost value 
is near-optimal. 
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,, , ... , ' 

averages are obtained from 5 runs. 
- - - .. 

Problem t1 -t2 t3 t4 t5 - - -ta t7 ta tg t10 
• 

GR048 133.6 1.4 3.2 2.0 0.6 1.6 1.6 0.6 1.4 3.2 
TOM57 185.4 2.6 1.4 2.6 2.2 1.0 0.6 0.8 1.8 3.6 • 

EURlOO 284.0 2.4 3.0 2.2 1.8 1.0 0.4 0.4 0.8 9.4 
KR0124 274.2 3.0 1.8 3.6 2.4 0.6 0.2 1.8 1.2 8.0 
KR0125 263.8 2.2 1.8 2.8 2.0 2.4 1.4 1.2 1.4 6.8 
KR0126 280.2 2.8 3.0 1.6 2.4 1.8 1.0 0.8 1.0 8.0 
KR0127 289.2 2.4 1.4 4.0 1.8 2.0 1.2 · 1.2 1.4 7.6 
KR0128 273.8 1.6 2.0 3.6 1.8 1.8 0.8 1.4 0.6 8.1 
GR0120 331.6 3.0 3.0 3.4 1.2 2.6 1.2 1.0 1.0 9.0 
LIN318 782.2 4.4 3.2 2.8 1.4 2.2 1.0 2.0 1.6 20.0 
GR0442 849.2 5.8 7.4 4.8 3.0 1.6 2.4 2.0 2.6 22.4 

• 

The Bayesian approach to the inference problem formulated in sec
tion 5.1 has been successful in so far that the Bayesian results allow 
us to predict quite accurately the average behaviour of the simulated 
annealing algorithm in term.s of the average cost value of the configu
rations constituting the Markov chains. Furthermore, the numerical 
experiments indicate that these predictions are quite robust with re
spect to the choice of the parameters of the Bayesian approach. 

As yet, the Bayesian approach does not allow us to draw conclusions 
about the unknown minimum cost value, because such conclusions 
depend to a great extent on the value of the parameter ainit, for the 
choice of which we have no guidelines available. Here, a Bayesian ap
proach to the problem of finding an appropriate value of ainit might 
be the answer. 

We have revisited the problem of choosing the parameters of a cooling 
schedule and have used the Bayesian results to make an optimal choice 
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in the trade-off between small steps in the control parameter and short 
Markov chains on the one hand and large steps and long Markov 
chains on the other. This has led to the formulation of a Bayesian 
cooling schedule. From numerical experiments we conclude that the 
choice underlying the cooling schedule described in section 3.3, viz. 
the choice for small steps inc and short Markov chains, is usually the 
best one. Furthermore, despite the fact that the Bayesian schedule 
is based on some bold assumptions and approximations, the results 
obtained with both the Bayesian and the non-Bayesian schedule are 
approximately the same. Further research is necessary to investigate 
whether a refinement of the Bayesian schedule might eventually lead 
to a more effective and efficient algorithm than the current algorithm 
with the cooling schedule described in section 3.3. 



• 

In this final chapter we return to some previous conclusions and briefly 
indicate some areas for future research . 

• 

The description of the simulated annealing algorithm in terms of the 
generation of Markov chains makes it possible to analyse the asymp
totic convergence of the algorithm. Under certain mild conditions, 
the algorithm can be shown to find asymptotically a globally minimal 
solution to every combinatorial optimization problem. This is not a 
very satisfactory result - asymptotic convergence can be shown to hold 

. ,;; 

unconditionally for the simplest algorithm imaginable, namely a com-
plete enumeration of all configurations of the problem. Furthermore, 
the aforementi.oned conditions imply that the algorithm is allowed an 
unlimited amount of computation time. In practice, one is of course 
mainly interested in the finite-time behaviour of the algorithm, i.e. in 
the behaviour of simulated annealing as an approximation algorithm. 
However, it does not seem possible to show that simulated annealing is 
a polynomial-time approximation scheme: if the asymptotic behaviour 
is to be approximated arbitrarily closely in finite time, we can derive 
no other than exponential upper bounds on the computation time 
taken by the algorithm. 

In this connection, we mention the area of probabilistic analysis, which 
still presents a host of challenging questions, as for instance: 

1. Given a problem or a probability distribution over the set of all 
problem instances and a specific version of the simulated an-

141 
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the returned solution and a globally minimal one? 

ulated annealing has a lower cost than the best solution found 

same time span? In other words, is simulated annealing a more 
effective approximation algorithm than complete enumeration? 
Thus far we have only discussed some results comparing the 
efficiency of simulated annealing and complete enumeration as 
optimization algorithms. The problem constructed by Lundy 
& Mees 1986 see chapter 2 is an example where simulated 
annealing is more efficient than complete enumeration. On the 
other hand, conditions like 2 .. 64 suggest that only if the num
ber of elementary operations of the simulated annealing algo
rithm exceeds the total number of configurations will the re
turned solution be arbitrarily close to a globally minimal one .. 

In chapter 4, we have considered the performance of the algorithm 
from a computational point of view. The results obtained in this 
chapter support the widely held opinion that simulated annealing is a 
generally applicable, high-quality, but time-consuming approximation 
algorithm. However, we conjecture that the computation times taken 
by the algorithm can be considerably reduced through execution on 
a multi-processor architecture, without affecting the quality of the 
solutions found by the algorithm. See for example Aarts, De Bont, 
Habers & Van Laarhoven, 1986 , where it is shown that an almost 
linear speed-up can be achieved on an 8-processor architecture when 
applying simulated annealing to instances of the travelling salesman 
problem. Another promising area is that of the Boltzmann mach,:ne 
. Aarts & Korst, 1987 , which can be seen as a massively parallel hard
ware implementation of the simulated annealing algorithm. 

In chapter 5, we have considered the algorithm from a Bayesian point 
of view. The Bayesian. approach allows us to analyse accurately the 
average behaviour of the simulated annealing algorithm with respect 
to cost values and gives some further guidance on the choice of im
plementation of the algorithm. 
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We remark that it would be interesting to investigate further appli
cations of the Bayesian results. It would be worth investigating, for 
instance, whether our results support the assumption that the con
figuration density w i see section 5.4 is exponentially distributed 
in the region close to the globally minimal cost value Hajek, 1985; 
Aarte, Korst, Van Laarhoven, 1988 . A Bayesian approach to simu
lated annealing different from the one described in this tract would be 
to use the set of solutions, each solution found by applying simulated 
annealing with a different initial configuration to the same problem 
instance, to make inferences about the true structure of the cost func
tion of that instance. 

Finally, we express the hope that we have been able to show that ran
domization is an important and promising concept in combinatorial 
optimization. 
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• 

following two situations: 

1. a sampling of configurations from a set R, such that the randon1 
variables X k are mutually stochastically independent X k 
denotes the k-th sampled configuration ; 

2 .. a sampling of configurations from a set R., such that the random 
variables X k constitute an irreducible and aperiodic Markov 
chain, with transition matrix P = Pi; . 

We assume that the sampling distribution in both situations is iden
tical and given by the stationary distribution q of the Markov chain 
considered in the second situation. For convenience sake, we assume 
that R Q ,,, · •• 1, ..... , m C IN'. Thus, the frequency counts Ni n are given 
by 

Xk X k = i, 1 < k < n , i = 1, ... , m. A.I 

It is well known Feller, 1950 that in the first situation the probability 
density function of N 1 n , ... , Nm n is a multinomial distribution 
with para.meters q1, ... , qm. Furthermore, according to Serfling 1980 , 

• qm 1S 

asymptotically multivariate normal with mean vector µ = 0, ... , O 
and covariance matrix I:; 1 = O"ij , where 

a .. == 1J 

144 

if )
0 

== i' 
if j =I-= i. A.2 
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In the second situation it is possible to show that the probability den--
• • . N n _ N. n _ .. .. 

multivariate normal with mean vector j1 = . 0, ...... , O· and covariance 
matrix E2, but E:z I E1.. In order to do so, we use the following 
results, which can be found in Billingsley, 1978 : 

• For a function f on R, 

normal with parametersµ= 0 and 

m m 

0'2 = - e f · 1· · ...... e · 
'l! A.3 

where 
m 

e= A.4 

00 
• • 

A.5 
l=l 

and 
• • 

=i ,i--1, ... ,m, A.6 

figuration i after l transitions Billingsley, 1978, p. 318-319 . 

• For random vectors Y n = Y1 n , ... , Ym n . and 
Z = Z1 , ••. , Zm , a necessary and suffi.ci·ent condition for 
Y n => Z is that I:~1 ll.i~ n => E.~1 a;Zi for ea.ch vector 
a 1 , .•. , am E JRm. Here, Y n => Z denotes that for n ·► oo 

the distribution of Y n converges to the distribution of Z. In 
the literature, this result is known as the Cramer- Wold device 
Billingsley, 1978, p. 335 . 

We remark that, by using A.4 , we can rewrite A.3 as 

m m m m m. m 
2 

I 
• f • 

/3;; /3il 0 i J qi " ...... qi f31c; + qiqj ....... - /31c1 • 
i=l j=l l=l le= 1 k=l l=l 

A.7 
The following lemma is an immediate consequence of the first of the 
aforementioned results. 
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Len1ma A.1 
,~ E Rm 'x""m nFo,r each vector a ' , L..,i=l .....,., 

,:s asymptotically nor-

mal with parameters µ = 0 and 

m. m m m m. m 

a;,a; /Jii - q; ..... /3,l 
l-1 Je-1 k=l l 1 

where /J,; is given by A.5 . 

Proof 

fa i == ai, i = 1, ... , m. 

l ""n I X k "",11. N. Consequent y, L..;k=I J a = L-ti 1 ai i n, 

, 

A.8 

A.9 

and • since 

~ a.,N,(n) ----- - q. the lemma im-n n. - t=l °'iQi i-1 °'i n • 

mediately follows from the first observation. 
□ 

W I · h C ' W Id d · ·th v = N;(n) e now a.pp y t . e ramer- o ev1ce w1 · I. i n n - n - qi , 
i" = 1, ... , m and Z a random vector with a multivariate normal 
distribution with mean vector µ = 0, ... , 0 and covariance matrix 
E2 = ·· Tij , where 

m m m m 

Ti; .,,,,,, Pi;-q; __. /3,i -qi ___ /31e; +q,q; ...... __ f31e1, i, j = 1, ... , m, A.10 
l=l k=l le 1 l=l 

where /J,; is again given by A.5 . To prove Y n ~ Z it is, ac
cording to the Cra1-c1er-Wold device, sufficient to show that for each 
vector a . E ]Rm ""m. V . ""m N;(n} - ~ . . I ' ••. ' Dtm. ' L;i=I °'i .i i n = L..,i=l ai n n.· q;, _,,,. 
Er' 1 GiZi. But the latter immediately follows from lemma A.1, be
cause the fact that Z has a multivariate normal distribution 
with parameters µ == 0, ... , 0 and r;2 == rii implies that 
I:r 1 °'iZi has a normal distribution with parameters µ = o and 

To see that E1 #- ~2, we recall that we have just shown that for each 
• 

Qi 1S 

µ and 
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i-1 i=l a;,a;ri;• us, 1 we pu a; = 0 or J i and at: .. ,. 1, we 

is asymptotically normal 
with parameters µ = 0 and cr2 = 'ii. Comparing this result to the 
following one Billingsley, 1978, p. 319 : 

~ · 1 Nc(nl • • 1or i = , ... , m, n · n - q;, 1s asymptotically normal with 
parameters µ == 0 and 

(l) . 
Pii - Qi , i = 1, ... , m, A.11 

we conclude that T;,i = q;, I -

- q; is deleted from A.5 . note that 
I. (l) 
lffiP.;,· = q;. 

l +oo ' 

Summarizing, we have that in both situations the distribution of 

with identical mean vectors and different covariance matrices !:;1 

O'i.; and ~ 2 = 'ii , where the difference O'ii - r .. ; is related to 
00 

(l) 
P;,; - Q; . A.12 

l=l 

Feller, 1950 : 

A.li 

it is straightforward to see that the difference between the two covar 
ance matrices can be made arbitrarily small by considering only tl 
sequence of configurations X t , X 2t , etc., for some integer t > 
in that case, the difference a,; - r,; is related to 

00 
(kt) 

P .. ; - q; ' A.1 
k-1 

and by using A.13 this difference can be bounded by 

00 

A.15 
Jc=l 
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Since Pi E O, 1 , the right-hand side of A.15 can be made arbitrarily 
1mal.l by choosing t sufficiently large. 

, 

I 
• 



In this appendix we describe the alternative approach to the com
putation of the expected values E Ji , i = 1, ... , m, which is due to 
Boender 1986. 
We recall from section 5.3.2 that the joint probability density func
tion of the random variables Y1 , .•• , Ym is obtained by considering 
a transformation of the random variables X 1 , ••• , Xm, following a 
[) {30 , ••• , fj,,1. -distribution. Consequently, we can also write E Yi as 
cf. 5.29 

E 
• 

••• 

m 

ao+ E a; - ao Xi 
j-1 

B.1 

.c • 1 - here / x x is given by 5.28 . Using the 1 or i = , . . . , 11i, w 1 , . . . , m 

Taylor expansion of 

def aiXi </> X1,• • • ,Xm ___ m ____ _ 

a0 + I: ai - a0 x1 
j=l 

149 

B.2 
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at the point .x1, ••. , x,n. llJ.. l!.m. , which is given by 
/j ' ••• ' p 

00 1 m. m 
••• 

an /31 /3m 
axi1 • • • axin /3 

we find that we can rewrite B.1 as 

EY. 

X .. •· 

00 1 

n=l n! 

m 

.... an /31 (Jm 
~---·-¢ --·, ... ' -

In-

B.3 

B.4 
for i = 1, ... , m. 

' 

By considering only the first two terms in B.4 , the following approx
imation of E Yi is found Boender, 1986 : 

m 2 

Oif3i 
Ea; /3; 

ai • 0 E ~ 
, 

B.5 - . ,.- . 
m. /3+1 2 m ' I: a;/3; m E a;/3; I: a1f3,· j=O • 0 J • 0 :, 

for i = 1, ... , m. 
Unfortunately, it does not seem possible to find an analytical ex
pression for the error in the approximation of B.5 - it requires the 
evaluation of integrals of the form 

• • • 

. . . X; 
• ,i 

/Ji,,. 
B.6 
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where t/Ji = lli . 
- /3 ' i = l, ... ,m, Ei E 0,1, i = l, ... ,m 

and i 1 , i 2 , is E 1, ... , m . 
In addition, extending the approximation of B.5 by higher order 
terms does not seem to be a promising way to go either, because of 
the irregularity of these ter1ns the third-order term, for exaruple, is 
given by 

,n 

2 
• 0 :, 

a-a. 
1/Ji 2(3 

-----·------4 /3+2 ,8+1 

m m 

a ·f3. 
' J 

a·2fJ· , ' + 2a; a;/3i 
- 0 j=O ' 

m 

i=O 

2 
m. 

a,;2/3 a;/3; .· 
i=O 

B.7 
4 subterms 

' 
the fourth-order term consists of 17 subte:rrns etc. :. 

.. 



In this appendix we compute E2 L for uniform distributions, i.e. for 
the cue where the parameters A11 and a 1ill are given by 

and 

A11 = ------
mM - mm+ 1' 

Substituting C.1 and C.2 in 5.111 yields 

, z · ' , , l + n· ! u 
A24 

. u 
• • I • • l mm, ... ,mM. ' u 8 ! u s+n ! •-m.-

Consequently, 

mM 

ffiM I: l u l ' u l +n ' • • 
l-mm. E2 L l>..2l mM 

l-m,,., ~ u s ' u .s+n ' • • 
s=mm. 

• 

Putting a = u - mm. and b = u - d · th "d · mM an using e 1 entity 

00 t! 1 a! 
t+n! n-l a+n-1! 

152 

C.1 

C.2 

C.3 

C.4 

C.5 
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see Boender, 1984 , we find for the denominator in C.4 

mM U - 8 ! b t! 00 t! 00 t! 

s mm. U -s+n! t+n! t-b t + n ! t::::::a+ 1 t+n! 

1 b! 

n-1 b+n-1 ! 
a+ I! 

• a+n! 
C.6 

For the nominator in C.4 we find 

,n]\~ l u - l ! b u - t t! tl t! a t + 1 ! 

I ,nm u - l + n ! 
= t+n! 

u+l = 

u+l b! 
n· 1 b+n 1 

Combining C.4 
' 

u+l 

u+l 

t=b t + n ! t=b t + n ! 

a+l ' 1 b+l ' a+2 ' • • • 

' ' b+n ' ' a+n n 2 1 a+n • • • • 

C.7 
C.6 and C.7 yields 

-

n-1 
n-2 

n-1 
n-2 

b+l!a+n!- b+n-l!a+2! 
-- ------

b! a + n ! - b + n - 1 ! a + 1 ! 

.b + 1 ' # ' " ' , ' 

a+2 p~n q ,n. 
~ 

' ' . 

' 
C.8 

pn qn 

• 

where p n = a + n . . . a + Z and q n 
Equation C.8 can be simplified to 

b+n-1 ... b+l. 

u+l 

Finally, using 

n-1 
n-2 

b+l + b-a+l 
• 

q_ n 

1 q 

' 
. • ' 

,, ' p ,n. 
- • ' n p 
• • 

... b + I 1m -- == lim _;;,.__ ______ = 0, 
n •oo p n n •oo a + n . . . b + n 

we find 
u+l b+l 

• . C.9 
n 

• 

C.10 

C.11 
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