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PREFACE 

This tract has been written at£indhoven University of Technology. The 

research, however, was done at the State University of Utrecht. 
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ity with asymptotic expansions, no specific mathematical background is 
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The material covered is outlined in detail in Chapter 1. Chapter II can 

serve as an introduction to the Inverse Scattering method. 

I wish to thank Prof. W. Eckhaus for his support during the preparation of 

this tract; I am also grateful to the Mathematics Department of.Eindhoven 

University of Technology for giving me the opportunity to finish this 

tract. 

My special thanks to Prof. M, Hazewinkel for his careful reading of the 

manuscript. He corrected many of my grammatical mistakes. 

Finally, I thank Elsina Baselmans who typed the manuscript faster and more 
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CHAPTER I 

INTRODUCTION 

1. Historical Introduction 

In 1895, D.J. Korteweg and G. de Vries derived a model equation for the 

behaviour of long waves in shallow water, [KdV]. In dimensionless scaled 

variables this equation, the so-called Korteweg-de Vries equation, is: 

(1.1) u - 6uu + u 
t X XXX 

0 , (KdV). 

.This equation has solitary wave solutions: 

( 1 • 2) 2 2 2 u(x, t) = 2a sech a(x - 4a t - x0) 

In physical variables these solitary waves represent shallow water waves. 

In 1965, N.J. Zabusky and M.D. Kruskal, [ZK], discovered the soliton. They 

&tudied the KdV because of its relevance to plasma physics, as well as, to 

the Fermi-Pasta-Ulam problem. An interesting account of the motivations of 

Zabusky and Kruskal for studying the KdV has been given by Kruskal, see [Kr]. 

They took two waves of type (1.2) with the smallest one in front as the 

initial condition for the KdV. By means of numerical integration they found 

that the larger solitary wave overtook the smaller one and came in front. 

The remarkable fact is that the only effect of their interaction was a 

change of phase, compared with the positions they would have had without 

mutual interaction. The larger solitary wave was shifted to the right, while 

the smaller one was shifted to the left. This particle-like behaviour in

spired Zabusky and Kruskal to the name 'soliton'. 

Nowadays it has become common use to use the term soliton for any solitary 

wave. 

A great breakthrough came in 1967 when C.S. Gardner, J.M. Greene, M.D. 

Kruskal and R.M. Miura found a way to solve the KdV initial value problem 

analytically by means of the spectral transform technique, [GGKM 1]. 
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Soon afterwards Lax put their method into a mathematical framework, that 

clearly indicated its generality (see Lax). The method became known as the 

Inverse Scattering Transform, (IST). A search was opened for nonlinear 

evolution equations that are solvable by IST. Following Calogero and 

Degasperis we will call such evolution equations S-integrable. As it turned 

out, there are large classes of S-integrable equations (for instance, see 

[AKNS], [Cd 1,2,3], [Lax], [ZS]). 

Since 1967, much literature about the KdV, solitons and IST has appeared, 

especially the textbooks: [AS], [Cd 4), [DEGM), [EvH), [L], [NMPZ]. 

Moreover, the concept of the soliton and IST has spread out to other areas 

of .mathematics, such as algebraic and differential geometry and functional 

and numerical analysis. Applications of the subject occur through the whole 

of physics. For more literature about IST and solitons, I refer to [Cd 4], 

in which a wealth of references has been given. 

The first scientific description of the soliton as a natural phenomenon was 

given by J. Scott Russell in the first half of the nineteenth century, [SR]. 

While riding on horseback beside a channel, the boat he was observing 

suddenly stopped. Scott Russell noted that it set forth: 

" •••••••• a large solitary elevation, a rounded, smooth and well defined 

heap of water, which continued its course along the channel apparently 

without change of form or diminuition of speed •••••••.•.• Its hight gradu

ally diminished, and after a chase of one or two miles I lost it in the 

windings of the channel. Such, in the month of August 1834, was my first 

chance interview with that singular and beautiful phenomenon .•..••..•• " 

2. Main goal of this research; Short description of the way by which this 

goal is achieved 

When deriving a mathematical model that describes some physical phenomenon, 

'small' terms are being neglected. Therefore it is important to investigate 

how such a model behaves under perturbations. A way of doing this is insert

ing new small terms in the model. This will be done for the KdV initial 

value problem. 



We consider: 

( 1 • 3) 
{ 

ut - 6uux + uxxx 

u(x,O) U(x) 

Ef(u) , 

where f(u) is some function of the real variables u and x-derivatives of u. 

An interesting perturbation is given by: 

( 1 .4) 3 2 5 23 19 
f(u) = 2 u ux + 2 uuxxx - 4 ux uxx + 40 uxxxxx 

3 

This expression is found when the KdV is derived for shallow water waves by 
2 means of an expansion in the small parameter E, neglecting terms of order E 

a h2 
and higher. (E RJ h RJ ¥, where a is a typical wave-amplitude, !l a typical 

wave-length and h the depth of the water.) A derivation of this perturbed 

KdV (pKdV) is given in Appendix F.1. 

The construction of a perturbation theory for the KdV or other non-linear 

S-integrable evolution equations is far from completed. Steps in this direc

tion have been described in: [EvH], [J], [K], [KA], [KK], [KM], [KMcL], 

[KN], [KS], [I,,SO], [McLS], [N]. In this thesis a consistent perturbation 

theory for the problem (1.3) is presented which is based on the idea of 

applying the IST to (1.3). As a starting point,we take the formal perturba

tion procedure as outlined by W. Eckhaus and A. van Harten in [EvH], chapter 

7. 

We will now give a short description of the way in which the main results 

were obtained. 

As mentioned earlier, the KdV has soliton solutions. Moreover, for large 

classes of initial functions the solutions of the KdV have a soliton charac

ter. By this we mean the following: 

The solution u(x,t) of (1.1) can be decomposed: 

( 1 • 5) 

1°) us(x,t) fort ➔ 00 separates into solitary waves of type (1.2). 

N 
sup lu (x,t) + I 
xEJR s n=1 

2a2 sech2 a (x - 4a2 t - x ) I n n n on 0(1) ' 

In the above expression given by Tanaka in [T 1], the quantities 

N and an depend only on the initial function U(x). 
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2°) uc(x,t) vanishes on half-lines fort+ 00 • 

lim ~c(~,t) = 0, with 
t+oo 

~M 

x = x-vt, v > 0 arbitrary; 

constant. 

uc(x,t); Man arbitrary 

This res.ult is also due to Tanaka, see [T 3]. It was obtained in a 

more rigorous way by Eckhaus and Schuur, [ES]. Moreover, in [S], 

Schuur improved on the result by showing that uc(x,y) even vanishes 

on the half-line x ~ -t113 • 

We show that the solutions of (1.3) display a similar behaviour. Instead of 

t + 00 asymptotics, however, we perform£+ 0 asymptotics on compacta on 

1/o(E)-timescales with o(E) = o(1) and Eo- 1(£) = 0(1). 

Our theory is built on three basic steps. 

In the first step, we determine the structure of us and show that us sepa

rates into solitary waves, 

The .second step consists of showing that u~ us vanishes asymptotically. 

Finally, we use the results from the first two steps in order to give 

asymptotical approximations of the solitary waves. 

This leads to rigorous results on £-p timescales, with: 

for solutions containing only one solitary wave, and 

for solutions conta~ning more than one solitary wave. 

We pay special attention to the .!.-timescale. On this time-scale, we present 
£ 

a consistent theory. Here, by consistency, we mean that in the second step 

certain conditions on quantities associated with u, are shown to be satis

fied for corresponding quantities associated with u. 
s 

References to a more mathematical description of these results are given in 

the next section where we give a summary of the contents of this tract. 



3. Summary of the contents 

II .1: 

- Explanation of the 1ST, including the Lax-approach and the AKNS system. 

- Derivation of the S-integrable evolution equations (2.1.14) and (2.1.17). 

(See Appendix A.1.) 

II. 2: 

- In this section, we will discuss everything we need to know about 

scattering theory of the one-dimensional, time independent Schrodinger 

equation (S.E.): 

[- d22 + u(x)] ijJ (x) 
dx 

Most of the theory presented here can be found in Eckhaus and van Harten, 

[EvH]. 

Much attention is paid to the asymptotic behaviour of the spectral data. 

A survey is given of mutual relations between the spectral data, respec

tively, of relations between the spectral data and the potential. 

Various, possibly known, results are proved in a way that links up with 

the theory presented in [EvH]. Moreover, some existing results are ex

tended or stated more precisely. We mention: Theorem (2.2.3), (2.2.36) 

and Theorems (2.2.4,6,9). 

II. 3: 

We give the Gel'fand-Levitan·or Marchenko equation. This is a linear 

integral equation by means of which a potential in the S.E. can be 

recovered from a given set of spectral data. 

- The 1ST is applied to the KdV. 

The 'emergence of solitons 1 phenomenon is explained. 

Chapter III: 

- We give evolution equations for the spectral data of a potential u(x,t) 

that solves the pKdV. 

- The decomposition u(x,t) = u (x,t) + u (x,t) is introduced. We emphasize 
S C 

that this decomposition is based on properties of the S.E., and is not a 

specific feature of the (p)KdV. What is a specific feature of the (p)KdV 

is the emergence of solitons from u (x,t). This is treated in§ 2. Theo-
s 

rem (3.2.1), the theorem that expresses this emergence of solitons, 

5 
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describes the asymptotic behaviour of u (x,t) and x-derivatives of u (x,t). 
s s 

The results given in Theorem (3.2.1) are new, also for the KdV itself. 

Chapter IV: 

- Theorems are given that provide bounds on u - us and ij,n -1),ns (ij,n and ij,ns' 

respectively, are L2-eigenfunctions of the S.E. with u, respectively us, 

as potential). 

The theorems in§ 1 are based on the work of Eckhaus and Schuur, [ES], {S]. 

In§ 2, we take the Trace-formula (2.2.55) as a starting point. 

Chapter V: 

This chapter is dedicated to applying the theorems of Chapter IV to the 

pKdV. 
-1 In§ 1 it is shown how we can get results on o (£)-timescales by using 

Theorem (4.1.3), with: 

a Cd 0 ~ p < 1 if the solution contains only one soliton, 

0 ~ p <} if the solution contains one or more solitons. 

These results are given by (5.1,37). 

In§ 2, we start by giving a more detailed description of the way by which 

our main results are obtained. A survey is given of what steps are done 

and what steps are still to be carried out. Then, we show that we can get 
-1 

estimates for u- us on the £ -timescale, that are consistent with the 

conditions of the theorems used. These results are expressed by (5.2.28, 

29). They hold for perturbations of type (5.2.6). 

Chapter VI: 

- In this chapter, we carry out the last step of our perturbation scheme, 

namely giving approximations for the solitons. For this, we take Theorem 

(3.2.1) and the consistency results (5.2.28,29) as the starting point. 

The main result of this chapter is expressed by Theorem (6.1.1). 

On pages 111 -114, we give a review of the most important results, and 

the conditions under which they hold, that are needed to obtain the 

main result of this research. This main result is given by (6.23,24,25). 

Finally, we conclude the chapter by giving a physical interpretation of 

the results. 
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VII.1: 

- We discuss the rather trivial perturbation f(u) = uxxx• This example is 

important because it illustrates a possible way of obtaining better 

approximations of the solitons. 

VII.2: 

- Here, we show that in th_e case of a polynomial perturbation (f(u) as in 

(7.2.1)), many of the calculations needed to obtain the soliton approxima

i.tions are extremely simple. As examples, we take f(u) = u and f(u) = ± uxx• 

VII.3: 

- We apply our perturbation scheme to the perturbation (1.4) and find that 

in this case the solitons of the KdV are good approximations of the soli-
-1 tons of (1.3) on the E -timescale. Moreover, we try to get a solution by 

substituting a power series in E. We show that this method of finding 

solutions is not suitable for solving the pKdV-initial value problem, but 

can be useful when used in combination with the perturbation scheme. 

VII.4: 

We consider the pKdV with f(u) = u + ½xu. This pKdV is S-integrable (see 
. X 

§ II. 1). 

By calculating the pure two-soliton solution, we show how our perturbation 

scheme can be adapted (in a formal way) to give results that match those 

obtained by direct integration. (The perturbation scheme must be adapted 

because u+ !xu does not fall into the class of admissible perturbations 
X 

(5.2.6)). 



CHAPTER II 

FUNDAMENTALS 

II. 1. The Inverse Scattering Transform 

For various classes of evolution equations, the Cauchy problem can be solved 

by means of the Inverse Scattering Transform (IST). We will explain here the 

essential principle behind the method. To keep the reasoning transparent, we 

do not bother about technical details. 

In their study of the KdV-initial value problem, Gardner, Green, Kruskal and 

Miura, ([GGKM 1,2)), coupled the KdV equation to the one-dimensional time inde

pendent Schrodinger equation (S.E,). They made the S.E. dependent of the time 

parameter t by taking as a potential the, yet unknown, solution of the KdV. 

(2.1.1) 

(2.1.2) 

lu - 6uu 
·t X 

u(x,O) 

+ u 
XXX 

U(x) , 

= 0 

[- d2
2 + u(x,y)] 1/J (x, t) 

dx . 
AI/J(x,t) • 

Of course, with the eigenvalue·problem 

(2.1.3) [- d2
2 + u(x)] v(x) = ;>,.v(x) , 

dx 

we can associate a set of spectral data. The problem (2.1.3) has the impor

tant property that it admits inverse-scattering. That is: Given 'the spec

trum S', it is possible to determine the potential u(x) that generates this 

spectrum. 

What must be understood by the spectrum S so that there is a 1-1 relation

ship between u and S, is explained in the next two sections. Moreover, it 

will be shown how u(x) can be recovered from S. We already mention that the 

spectrum partly consists of the set of eigenvalues. That is, the set of ;>,.'s 

for which (2.1.3) has a solution v(x) E L2(JR). 



9 

GGKM established the miraculous fact, that in (2.1.2) it is possible to 

determine how the spectrum depends :on the parameter t, without explicit 

knowledge of the potential u(x,t). In particular, it turned out that the set 

of eigenvalues is time-independent. 

We will illustrate the 1ST by applying it to the KdV-equation. Consider: 

{ 
u - 6uu + u = 0 

t X XXX 

u(x,O) = U(x) • 

Step 1: Determine the spectrum of U(x). 

Step 2: Now, we use the fact that it is possible to determine the evolution 

of the spectrum of the potential in the S.E., without knowing this 

potential explicitly. All that is used is that u(x,t) solves the KdV. 

With initial conditions given by Step 1, this enables us to give the 

spectrum S(t) at any time t. 

Step 2: Since (2.1.3) allows inverse scattering we can determine the poten

tial u(x,t) belonging to the spectrum S(t) at any time t. Because of 

the 1-1 relationship between u and S the so found potential u(x,t) 

solves (2.1.1). 

A generalization of the above method was given by Lax,([Lax]). 

Consider two operators L, M associated with respectively an eigenvalue prob

lem and a time evolution problem: 

(2.1.4) a) Lv = AV 

L, Mand v depend on the real variable x and the real parameter t. Following 

GGKM, the eigenvalue parameter>.. is taken to be time independent. 

(2.1.5) 

This implies: 

(2.1.6) 

Substitution of (2.1.4b) into (2.1.6) leads to a necessary condition for 

making (2.1.4a) and (2.1.4b) compatible. 

(2.1.7) Lt+ LM - ML= 0. 
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For a suitable choice of Land M, (2.1.7) represents a (non)-linear evolu

tion equation. 

For instance: For L 

among which: 

a) M 

b) M 

d2 
- -- + u, Lax found a hierarchy of possible M's, 

dx2 

- u 
X 

d3 d d 4 -- + 3u - + 3u ~ u - 6uu + u 
dx3 dx dx t x xxx 

0 (KdV) • 

Other S-integrable evolution equations can be found by taking other choices 

of Land M. Of course, L must be so that (2.1.4a) allows inverse scattering. 

We conclude this section by mentioning the famous Ablowitz, Kaup, Newell and 

Segur-system, [AKNS]. AKNS studied the generalized Zacharov-Shabat eigen

value problem, related to a time evolution equation. 

(2.1.8) a) 

b) 

V 
X [-ii:; . ql V ' V = [V 1] ' 

r ii:; V2 

[: _:] V 

q and rare potentials depending on the real variable x and the real param

eter t. A, Band Care scalar functions of x and t. Again, the eigenvalue 

parameter i:; is taken time independent: 

(2.1.9) 

The eigenvalue problem (2.1.8a) admits inverse scattering. 

The compability conditions are here given by: 

(2.1.10) i 1 , 2 • 

These conditions can be translated into conditions for A, Band C. Working 

out these conditions in general leads to yet another condition. This condi

tion is the evolution equation. 

Examples of well-known evolution equations that can be solved with the 

AKNS-system are: 
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(2.1.11) a) r = -1 qt + 6qqx + qxxx = 0 
' KdV 

b) :;: 2 
0 ' modified r = ±q qt 6q qx + qxxx KdV 

-c) r = ±q iqt qxx + 
2-

2q q non-linear Schrodinger 

d) q -r = -!ux ' u sin u sine-Gordon xt 

e) q r = !u 
X uxt sinh u sinh-Gordon 

We see that, for r = -1, we again find the KdV-equation. This is not remark

able since, for r = -1, the system (2.1.8) is equivalent to (v2 = ¢, q = u, 

1;2 = >.): 

(2.1.12) a) ¢ + (>. + u)¢ xx 0 ' 

So far we have dealt with the eigenvalue parameters>., respectively 1;, as 

being time-independent. However, this is not an essential condition for 

being able to apply the 1ST. In Appendix A.1, we work with the system 

(2.1.12) and take: 

For instance, for At= 0 we find: 

(2.1.14) 

We also find the following class of evolution equations: 

(2.1.15) 

Here the function b6>.)(t) and the operator N(>.) are free to choose under the 

following restrictions: 

(2.1.16) a) The right-hand side in (2.1.15) is >.-independent, 

b) lim (N(>.)u)(x) = 0. 
x--

Examples are: 

(2.1.17) a) 
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3 +_!_Cu p(u+ ½xux) ut + 2 Cuux 4 XXX 
, 

0:, 

b) "t 2p/ b (A) 
0 

= CA, N(A)u 
½P ( J u(y,t)dy- xu) - ½Cu~ 

X 

u +1.cuu +..!.cu = p{..!.u t2 x4 xxx 2x J 1 2 3 } udy- u --xu - 2u --xuu xx4xxx 2 x 
X 

The reason why we explicitly mention equations (2.1.14,17) is that for small 

Sor p they represent perturbations on the KdV-equations. The equations 

(2. 1 .17) are also given in [CD 4], but there they are derived in a different 

way from that presented here. 

In Appendix A.1 we also detennine the evolution of the spectrum of potentials 

u(x,t) satisfying (2.1.14), respectively (2.1.15,17). Therefore, it is ad

visable to read§ 11.2 before studying Appendix A.1. In that section, we 

.will treat the scattering properties of the S.E. in detail. 

11. 2. Scattering properties of the one-dimensional, time-independent 

Schroclinger Equation 

In this section, we present all the properties of the 'spectrum' of the 

S.E. that will be needed later on. Of all the properties and theorems given 

here without proof or reference, a proof can be found in [EvH], chapter 4. 

The one-dimensional time-independent Schrodinger equation is given by: 

(2.2.1) 1/J" + (A- u)ljJ 0 ' XE IR • 

u is a real function, called the potential, and A is a spectral parameter. 

We consider potentials that satisfy the following conditions: 

(2.2.2) a) u E C (IR) , 

b) lim lu(x)I 0 , 
lxl-+oo 

0:, 

c) J lu(x)I (1 + lxl)mdx < 00 • 

-oo 

The last condition is called a growth condition on u of order m, and if u 

satisfies such a condition, we note this by u = [m]. 
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We write: 

(2.2.3) A= k2 , with k E ~+ (meaning Im k .; O) 

In the rest of the study we will always take k EC+, unless stated otherwise. 

We define solutions tr and ti of (2.2.1) by: 

(2.2.4) 
. -ikx 

tr(x,k) = R(x,k)e , 

where R(x,k) satisfies: 

(2.2.5) 

and 

(2.2.6) 

a) R" - 2ikR 1 = uR 

b) lim R(x,k) = 1 
x-oo 

. ikx 
ti(x,k) = L(x,k)e 

lim R 1 (x,k) 
x-oo 

where L(x,k) satisfies: 

(2.2. 7) a) L" + 2ikL' 

b) lim L(x,k) 
x:-+oo 

uL ' 

1 , lim L' (x,k) 
X-l-«> 

0 

0 • 

in the following we will restrict ourselves bo properties of R(x,k). Analo

gous results hold for L(x,k). 

We have the following important theorem. 

Theorem (2.2.1): 

If u = [O], then for k E t\, {O} the problem for R has a unique solution in 

the space of continuous functions of x, which are bounded for x + - 00 • This 

solution satisfies (2.2.5) in classical sense. Moreover: 

a) 
-+ 

R, R', R" are continuous in (x,k) on lR x t , {O} and analytic in k on lj;+ 

(i.e. Im k > O) for each x E lR. 

b) If u = [ 1] then the theorem also holds for k O and R, R', R" are con

tinuous on lR x C +. 

c) If u = [2], then also ~• ~• ~ are continuous in (x,k) on lR x {+. 
a 

(~ = 3k R.) 
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Since the solution of (2.2.5) is unique, we get: 

(2.2.8) R(x,k) = R(x,-k) ~ (x,k) = ~ (x,-k) r r 

So Rand ~rare real fork on the positive imaginary axis. 

Completely analogous results can be given for L(x,k). 
-

Another important remark is that fork E lR.,{O} the functions ~rand ~rare 

two linearly independent solutions of (2.2.1). The same is true for ~i and 

~i· 
So, because (2.2.1) is a second order ODE, we can define the functions 

i+, i_, r+, r of k E m.,{O} by: 

(2.2.9) 

We can describe the asymptotic behaviour for lxl + 00 of ~r' ~;, ~i• ~I with 

k E m.,{O} fixed: 

(2.2.10) ~i(x,k) 
ikx for ~e X + 00 

~ i (k)eikx + i (k)e -ikx for X-+ -oo + -

i1k ~I (x,k) 
ikx for e X + 00 

~ i+(k)e 
ikx i_(k)e -ikx for - X ➔ -oo 

~r(x,k) 
-ikx for ~e X + -oo 

ikx (k)e -ikx for ~ r+(k)e . + r X + 00 -

i1k ~; (x,k) 
ikx 

fot ~ -e x+-co 

~ r+(k)e 
ikx - (k)e -ikx for r X + 00 -

Using (2.2.10) and the fact that the Wronskian of two linearly independent 

solutions ~1, ~2 of the S.E. 

is a constant for x E JR., it is easily proved that: 



Since we will make use of the above Wronskians later on, we define: 

It is obvious that we can extend the range of definition of r_(k) to 

k E ¢+ '- {0}. 
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Moreover, we have the following, very useful, integral expressions for r_(k) 

and r+(k): 

(2.2.15) r_(k) - 2 ik J u(y)R(y,k)dy 
-+ 

k E 4: , {O} , 

co 

(2.2.16) r+(k) = 2ik J e-2iky u(y)R(y,k)dy, k E lR'-{0} • 

We now define the following quantities: 

(2.2.17) Fork E ¢+ ,{0}, with r_(k) f- 0: a(k) := r)k) 

(2.2.18) 

a(k) is called the (right) transrrrission coefficient. 

r+ (k) 
Fork E lR'-{0}: b(k) := r_(k) 

b(k) is called the (right) reflection coefficient. 

(2.2.19) Fork E lR'-{0}: ¢(x,k) := a(k)¢r(x,k) is the solution of the 

S.E. with asyrrrptotic behaviou:r>: 

(2.2.20) ¢(x,k) 
-ikx ~ ae for x ➔ -co 

~ e-ikx + beikx for x ➔ co 

These definitions are motivated by the fact that fork real and positive, we 

have the following physical interpretation: 
-iAt . . 

¢e represents a wave coming from the right of which an amplitude frac-

tion la(k)I travels towards -co and an amplitude fraction lb(k) I is scat

tered back. 
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Potentials with b = 0 play an important role in our analysis. They are 

called refleetionless potentials. 

It is easily seen that as an analogon of (2.2.8) we have: 

(2.2.21) a) r_(k) r_(-k) a(k) = a(-k) 

b(k) = b(-k) 

k E ~+, {0} 

k E JR,{O} • 

Moreover, in accordance with the physical interpretation, we have: 

(2.2.22) lr_(k)J 2 = 1 + lr+(k)J 2 , 

Ja(k)J 2 + Jb(k)J 2 = 1 , 

k E JR,{O} , 

k E JR,{O} 

We will now give a review of properties of R(x,k), r_(k), a(k) and b(k). 

When a stronger growth condition than u = [O] is needed, this is mentioned. 

· The problem (2.2.5) for R can be reformulated to an integral equation 

X 

(2.2.23) R(x,k) 1 + J G(x,y,k)R(y,k)dy 

with 

( ) ) ( ) =u(y) (2ik(x-y)_ 1) 2.2.24 a G x,y,k 2ik e , 
-+ k E (; , {O} , 

b) G(x,y,O) = u(y)(x:-y) ; u = [1] 

R(x,k) can be given as a Neumann series 

(2.2.25) R(x,k) L Gn(x,k) , 
n=O 

with 

X 

(2.2.26) GO 1 , Gn+l (x,k) J G(x,y,k)Gn(y,k)dy 
-oo 

The functions Gn satisfy the following bound: 

(2.2.27) JG (x,k)J n 

u0 (x) u0 
:a---:a---

n! lkln 

with 



X 00 

J lu(y)ldy J lu(y)ldy 
-oo 

Also R'(x,k) can be presented as a Neumann series: 

(2.2.29) R'(x,k) = I Gn(x,k) , 
n=O 

with 

X 

k E ~+ , 

G (x,k) 
n J G'(x,y,k)Gn(y,k)dy, 

The following theorem holds. 

Theorem (2.2.2): 
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The series (2.2.25) and (2.2.29) represent convergent asyrrrpt<btic expansions 

for lkl + 00 • Then-th term is of order lkl-n and the first N terms approxi

mate R(x,k), ,respectively R'(x,k), with order lkl-N- 1 uniformly in x on JR. 

A trivial consequence of (2.2.25,27) is that: 

(2.2.30) 
u0 (x)/lkl 

IR(x,k)I ~ e , 

Some other properties of R(x,k) are summarized in a theorem. 

Theorem (2.2.3): 

If u = [O]; u E Cm(JR); u (p) (x) is bounded for x + - 00 , 0 ~ p ~ m, then: 

X 

(2.2.31) J 2ik(x-y) aP 
e - (u(y)R(y,k))dy, 

ayP 
0 ~ p ~ m+1 

If moreover u(p) = [O], 0 ~ p ~ m, then: 

(2.2.32) a) k E 4;+, {O} , 0 ~ p ~ m+1 

b) (p) - 1 
R (x,k) - O(TIT) , lkl + 00 , 

uniformly in x on JR. 

Proof: 

Given in Appendix A.2. 
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We also have bounds for R that are uniformly valid ink: 

(2.2.33) a) IR(x,k) I ::a B(1 + x+) 

b) IR'(x,k)I ::a B 

u = [1] (x,k) E lR x q;+ 

u = [ 1] , 

Bis a constant depending only on u(x). x+ = max {0,x}. 

Finally, we specify the asymptotic behaviour of R(x,k) for x ➔ 00 • We have: 

(2.2.34) lim R(x,k) = r_(k) ; lim R'(x,k) 0, 
x--

both limits are uniform ink on compacta c C+. 

We will now focus our attention on r_(k), a(k) and b(k). 

As a corollary to Theorem (2.2.1), r_(k) and a(k) have the following 

smoothness properties: 

(2.2.35) r (k) is analytic on c+ , -
r (k) is continuous on f+,{O}, -
a(k) is meromorphic on C+ with poles at the zeros 

a(k) is continuous on f+, {0,zeros of r -

If u = [2], then a(k) is also continuous ink= 0. 

To be precise, we have: 

(k)} . 

(2.2.36) a) If W(0) f 0, then 

2ik 
a(k) ~ W(0) for k + 0, k E 4\; b(0) -1 , 

b) dW 
If W(0) = 0, then I dk (0) I ? 2 and 

( dW )-l 
a(0) = 2i dk (0) ; b(0) = dW(O) (dw (o))-1 

dk dk 

of r_(k), 

The case W(0) -IO (i.e. ~r(x,0) and ~t(x,0) are linearly independent) is 

referred to as the generic case, while W(0) = 0 is referred to as the 

e=eptional case. 

Proof of (2.2.36) is given in Appendix A.2. (The proof is analogous to that 

of 'Corollary of theorem 4.2.5.I' in [EvH].) 
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For the asymptotic properties of r_(k), a(k) and b(k) we have the following 

results: 

co 

(2.2.37) a) r_(k) - 2ik f u(y)dy + OCk\2) !kl ➔ co, k E ~+ '-{O}, 

-co 

co 

b) a(k) + 2ik f u(y)dy + o(lk\2) 
-co 

(2.2.37) is a trivial corollary of (2.2.15,25) and Theorem (2.2.2). 

Some other asymptotical results are given in the next theorem. 

Theorem (2.2.4): 

a) If u E c1(1R) and u(p)(x) = [OJ, p 0,1, then 

co 

i) lr_(k)l2 1 + 
o(,~,2) 

!kl ➔ oo, k E v+ , if f u(x)dx / 0 ' 
-oo 

co 

ii) lr_(k)i 2 = 1 + o(~) lkl ➔ co, k E v+, if J u(x)dx = 0 • 
lkl -oo 

b) If u E Cm(lR); u (p) (x) 

0 :a p :a m, then 

[OJ, 0 :a p :a m; u (p) (x) is bounded for x-r-oo, 

Proof: 

lb(k)i 2 = O(lkl-2 (m+ 1)) 

ia(k)I = 1 + O(lkl-2 (m+l)) , 

!kl ➔ co., k E lR, 

!kl ➔ co, k E lR. 

See Appendix A.2. 

Finally, we give conditions under which b(k) can be extended to a meromor

phic function on a strip in the complex k-plane. 

With (2.2.15,16,30,33) and Theorem (2.2.1) it follows that: 

(2.2.38) If u = [1J and lim u(x)e2µx < co, then 
x➔oo 

i) b(k) is meromorphic on O < Im k <µ,with poles in the zeros 

of r_(k), 
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ii) b(k) is:continuous on {k E II:+, {zeros of r (k)} I Im k ~ µ}, 

iii) b(k) = O(lki- 1), lkl + 00 , 0 ~ Im k < min {µ,k 1}, 

where k1 is such that r_(k) f 0 for 0 ~ Im k < k1 • 

From [CD 4), § 2.1, we know that: 

(2,2.39) If lim u(x)e±2µ±x = O, then, b(k) is meromorphic in the so-called 
x+±oo 

'Bargmann strip'; -min{µ_,µ+} < Im k < µ+, with poles at the zeros 

of r_(k). 

We now turn our attention to the so-called discrete spectrum of the S.E. 

That is, we look for values of A for which the S.E. has a solution in L2(IR). 

These A1 s are called eigenvalues. The corresponding 1 2-solutions of the S.E. 

are called eigenfunctions. (Solutions of the S.E. that are not in 1 2 are 

often called generalized eigenfunctions.) 

We have the following important theorem: 

Theorem (2.2.5): 

If u = [1] then 

1°. The number N of eigenvalues is finite. 

2°. They are given by A = (ik / with k E IR+ and r_ (ikn) = 0. n n n 
(r_(k) has no other zeros.) 

Each eigenvalue is simple. That is: The eigenspace E(An) is one-dimen

sional and is spanned by the real function ijJ (x, ik ) • 
r n 

So for k = ik there exists a(k) E IR'- {0} with ijJ (x,k) a(k)1Jin (x,k). n r N 

(Terminology: The spectrum of the S.E. is non-degenerate.) 

In the following the eigenvalues are ordered by 

(2.2.40) 0 < k1 < k2 < ••• < ~ 

With these eigenvalues we define the following quantities: 

(2.2.41) ';p' (x) = 1jJ (x,ik) 
n r n 

(2.2.42) a) C 
n 

k X 

lim ';p' (x)e n 
n 

x➔oo 



(2.2.44) a) 

b) 

Note that 

(2.2.45) a) 

b) 

C n 

d n 

-oo 

C n 

00 

J 

J ~2 
1/Jn (x)dx 

k X 

lim 1/J (x)e n 
n x-too 

lim 
x-oo 

2 
1/Jn(x)dx 

-! ~ yn C n 

1 
' 

d n 
-! 

yn 

In the following we will mostly work with the eigenfunctions 1/Jn(x). We 

therefore define: 

(2.2.46) The normalization coefficient associated with the eigenvalue 

;l.n = -k!, is the value en as defined in (2.2.44). 
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With 1/Jn we can associate a second solution ¢n(x) of the S.E., which is line

arly independent of 1/Jn· We choose ¢n(x) such that the asymptotic behaviour 

of ¢n is specified by: 

(2.2.47) a) 

b) 

-k X 

lim ¢ e n 
n x-too 

lim 

Or equivalently 

(2.2.48) a) lim ¢n 1/Jn -1 
x-too 

b) lim ¢n 1/Jn 1 
x-oo 

' 

. 

1 
C 

n 

Of course, the asymptotic behaviour of ¢n for x ➔ - 00 is determined by the 
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asymptotic behaviour of¢ for x ➔ oo (and vice versa) by the Wronskian: 
n 

- 2k 
n 

There are a number of important equalities that exhibit relations between 

the discrete spectrum (An;~n(x)), the continuous spectrum (b(k);~(x,k), 

k E JR) and the potential u(x). 

We have: 

(2.2.50) r_(k) 

r_ (k) 

exp { 2:i J 

lim r (k + iE:) 
dO 

2 N k - ik 
log la(q)I dq} n 

k - q n~l k + ikn' 
Im k > 0, 

k E 1R • 

This expression is given by Zacharov & Faddeev in [ZF]. It is derived from 

the knowledge of the zeros of r_(k) and the analyticity of r_(k) fork Et+· 

Note: If u = [2], we have no convergency problems in q = 0 because of 

(2:2.36). Because of Theorem (2.2.4b) (m = O), we have no convergence prob

lem at infinity. 

The next expression follows from (2.2.50) and Lemma (4.3.4) in [EvH], which 

says that: 

(2.2.51) 

We get: 

dr 
1 

dk = ia.(k) J ~;(x,k)dx 

00 

fork ik n 

k 

J 
2 

dk}, (2.2.52) yn 0 exp {- 7fn 
log ( 1 - I b (k) I ) 

n k2 + k2 
0 n 

with 
C N k - k 

0 
n 

TT 
(k: + /). n = 2k 

p=1 n p 
pin 

Using (2.2.51), we can reformulate formula (20) on page 20 of [NMPZ], so 

that in our notation we get: 

. { N ~ !l (x, k) = e1 kx 1 - i I 
n=1 

-k X 

c ~ (x)e n 
n n 

k + ik 
n 

J
00 b(-k 1 )~ 0 (x,- k 1 )e-ik'x 
-~~~~-dk'}. 

k' - k - io 



Now, using w(x,k) b(k)wi(x,k) + ~i(x,k), this leads to: 

(2.2.53) w(x,k) 

b(k)eikx 
211i 

N 
+ e-ikx{1 + i I 

n=1 

N 
- i I 

n=1 

-k X 

c w (x)e n 1 
n nJ l + 

k + ik 
n 

-k X 

cw (x)e n 
n n 

k- ik n 

For reflectionless potentials this reduces to the more attractive formula 

(2.2.54) w(x,k) e-ikx{1 - I 
n=1 

-k X 

c ,µ (x)e n } n n 
k + ik 

n 

The following equality is very important for our work. It is called the 

Trace formula: 

(2.2.55) u(x) 
N 

- 4 I k ¢2<x) 
n=1 n n 

2i 
1T 

This formula is derived by Deift & Trubowitz, [DT]. 

Sufficient conditions for the formula to hold are: u E c2(JR); u [1]; 

u(p) = [O], p = 0,1. 

The following theorem provides us with a set of expressions that relate 

integrals over polynomials in u and x-derivatives of u, with the spectral 

data of u. 

Theorem (2.2.6): 

If u satisfies 

then 

(2.2.56) 
(2i/n+1 

-co 

u [2] ; U (p) = [O] 
' 

0, 0::ap::am, 

00 

J cr2n+ 1 dx = :i J k2n log(1 - lb(k) J2)dk + 

0 

23 
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where an is defined as 

cr 1 (x) = - u(x) 

n :::; 2 • 

Remark: 

This theorem is based on the work of Zacharov & Faddeev, [ZF]. These authors 

show that an infinite set of integrals for the KdV-equation is given by 

(2.2.56) with m = oo. In their presentation, however, it is not emphasized 

that in fact (2.2.56) is a property of the S.E. (Indeed, if a potential 

u(x,t) evolves with t according to the KdV-equation, then the eigenvalues 

as well as lb(k,t) I do not change in time and (2.2.56) represents a set of 

integrals for the KdV.) Moreover, in [ZF] the analysis is performed under 

the conditions that: 'u f C00 (1R) and along with its derivatives decreases 

rapidly'. This gives no insight into the number of equalities of type 

(2.2.56) that hold under less stringent conditions. 

Proof of Theorem (2.2.6): 

Given in Appendix A.2. 

We explicitly mention the equali,ties obtained from (2.2.56) with n O, 1. We 

have: 

00 00 

I u(x)dx 
N 2 I log(1 - lb(k) 12)dk (2.2.57) a) -4 I k 

n=1 n 1T 
-oo 0 

00 00 

J 
2 16 N 

k3 8 f k2 log(1 - lb(k) 12)dk • b) u (x)dx =3 I 
n=1 n 1T 

-oo 0 

We conclude this summary with a theorem about reflectionless potentials, see 

[GGKM 2]. 

Theorem (2.2.7): 

Given an arbitrary set of positive numbers en' n = 1, ••• ,N, and an arbitrary 

set of rrrutuaZZy different positive numbers kn, n = 1, ••• ,N. 

Define the N x N--matrix I+ C(x) by 
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(2.2.58) I identity , C [c ] _ with mn m,n-1, .•• ,N 

Then: 

(2.2.59) u(x) 
d2 

2--2 log det(I+C(x)) is the reflectionless potential 
dx 

with eigenvalues kn and normalization coefficients ~n· 

The eigenfunctions ~n(x) are given by 

(2.2.60) 
1 N 

det(I+C(x)) I 
m=1 

-k X 

cm e m ~n (x) 

where ~n are the cofactors of I+ C(x). 

For future purposes we mention the following lemma. 

Lemma (2.2.1): 

Let I+ C(x) be defined by (2.2.28), then: 

det(I+C(x)) is a polynomial in c 2 e-2knx, n = 1, ••• ,N, with positive coeffi
n 

cients. The 0-th order term equals 1. 

Proof: 

The proof is elementary, but it is presented in Appendix A.2 for the sake of 

completeness. 

The final part of this section deals with parameter dependent potentials 

u = u(x,t). 

First, we introduce the following notation. 

(2.2.61) u = [m]u means that u(x,t) satisfies a growth condition of order 

minx, uniformly int on the time regions under consideration. 

From (2.2.30) and Theorem (2.2.3) it is seen that: 

(2.2.62) If u(•,t) E Cm(JR.); u(p) = [O]u, 0;:, p;:, m; u(p) is bounded for 

x -+ - oo , 0 ;:, p ;:, m, then: 

0 ;:, p ;:, m+1 , 

where u0 is so that _00! 00 lu(x,t)ldx;:, u0 , Vt. 

(For p =Owe can take C = 1, for p = 1 we can take C u0 .) 
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We also have (see (2.2.37)): 

(2.2.63) If u = 
in t. 

1 [O]u then a(k, t) = 1 + O(lkl), lkl + oo, Im k ;;; O, uniformly 

A question that arises when studying parameter dependent potentials is 

'where' and 'when' eigenvalues can emerge or can vanish. Concerning this 

matter we have got the following theorems. 

The first theorem can be abstracted from§ 4.2.5 and Theorem 4.3.III in 

[EvH]. 

Theorem (2.2.8): 

If u(x,t) satisfies 

a) u E C(JR x [TO,T1]) . max Ju(x,t)I ;:a u(x) and u(x) [O] 
tE[T0 ,T1] ' 

b) au E 
at C(JR x [TO,T1]), max I~~ (x, t) I ;:a u1 (x) and u1 (x) [O] , 

tE[T0 ,T1] 

then fort E [T0 ,T1] eigenvalues can only vanish at, or start from, k O. 

Moreover, if u = [1], then\= O is not an eigenvalue. 

This answers the question 'where' eigenvalues can vanish or emerge. 

Theorem (2.2.9): 

If u(x,t) E C(JRx [TO,T1]) with max lu(x,t)I ~ u(x) and u(x) [1], 
tE[T0 ,T1] 

then: 

Fort E (T0 ,T1), eigenvalues can only emerge or vanish at times t 0 for 

which W(O,t0) = O. 

Proof: 

In a completely analogous way to the proof of Theorem 4.2.5, I(a), given in 

[EvH], it is proved that: 

ai ai 
--. R(x,k,t) and--. L(x,k,t) are continuous in (x,k,t) on JRx ¢+ x [T0 ,T1], 
ax]. ax]. 

for i = 0,1,2. 

Now suppose an eigenvalue emerges or vanishes at time t O, with 
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Consider u(x, t) 

of W there is a 

For eigenvalues 

on IR x [t0-a,t0+o] c IR x [T0 ,T 1]. Because of the continuity 

neighbourhood Uc~+ x [to-o,to+a] of (O,to) where W(k,t) I 0. 
1 (f O), we know that r_(k,t) = 2ik W(k,t) = O. 

So, no eigenvalue trajectories can cross the region U. 

This answers the question 'when' eigenvalues can vanish or emerge. 

11. 3. Inverse scatteri.ng for the Schrodinger Equation; 

The 1ST applied to the KdV-initial value problem 

Q.E.D. 

We have seen how we can associate a set of spectral data with a potential in 

the S.E. 

(2. 3.1) S = {{ k , c } _ 1 N; b (k) , k E IR} • n n n- , ... , 

It is also possible to find the potential u belonging to a given set of 

spectral data S. This can be done with the Gel'fand-Levitan equation, [GL]. 

(2.3.2) S(y,x) + Q(x +y) + J Q(x +y+ z)S(z,x)dz 

0 

0 ' y > 0 • 

A similar equation corresponding to a somewhat different inverse scattering 

context was derived by Marchenko, [M]. In consequence, (2.3.2) also occurs 

under the name Marchenko equation. 

In this linear integral equation, the unknown function S depends on a 

variable y and a parameter x. Q is defined as 

(2.3.3) Q (!;) Qd(!;) + QC(/;) ; 

N 2 -2kni; 
Qd (!;) 2 I C e 

n=1 
n 

00 

Q (!;) J 
b(k)e2iki; dk. C 'IT 

-oo 

The potential u with spectral data Sis given by: 

(2.3.4) d + 
u(x) = - dx S(O ,x) 

As a matter of fact, solving the Gel 1 fand-Levitan equation is not trivial. 
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Only for b = 0 can explicit solutions be obtained. These solutions are given 

by (2.2.59). 

Proof is given in [EvH], §§ 4.4,4.5, of the following important results. 

(2.3.5) 

Moreover, 

(2.3.6) 

If a potential u satisfies u = [2], then, (2.3.2) has a unique 

solution SE F(JR+ L2(0, 00)). (F(JR+ V) is the set of functions on 

JR with values in V.) 

c0 (JR:) = {w E C([0, 00 )xJR) 1 'v'xEJR limw(y,x) O}, 
y+oo 

By now, we can specify the steps given in § 11.1, needed to solve the KdV

initial value problem (2.1.7) by means of the 1ST. 

Step 1: Determine the set of spectral data S(O) belonging to u(x,O). 

Step 2: From GGKM 1,2 we know that the set of spectral data at time tis 

given by: 

(2.3. 7) 

(2.3.8) 

S(t) = {{kn(t),cn(t)}n=l, ••• ,N; b(k,t), k E JR}, with 

4k3 t 
c (O)e n 

n 
8ik3 t b(k,t) = b(k,O)e . 

Step 3: Use the Gel'fand-Levitan equation to find the potential u(x,t) with 

spectral data S(t). Because of the 1-1 correspondence between u(x,t) 

and S(t), this potential is the solution of (2.1.7). 

We have seen that, to be able to use the 1ST, the potential u(x,t) must 

satisfy certain conditions. In the case of problem (2.1.7) fulfillment of 

these conditions can be guaranteed by putting conditions on u(x,O). 

In [Co], A. Cohen gives the following set of sufficient conditions on u(x,O): 

(2.3.9) a) u(x,O) E c3 (JR) with piecewise continuous fourth derivative. 



b) u(p)(x,O) = O(lxl-M), lxl ➔ 00 for p ;a 4, with 

M > 8 in the generic case (W(0) f 0), 

M > 10 in the exceptional case (W(0) 0). 
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As was said earlier, the Gel'fand-Levitan equation can be solved explicitly 

for b = 0. Since, from (2.3.8), we know that b(k,0) = 0 implies b(k,t) = 0, 

this means that explicit solutions of (2.1.7) can be found by taking u(x,0) 

reflectionless. These solutions are given by (2.2.59) with k and c evalu-
n n 

ating according to (2.3.8). They are called N-soliton solutions on account 

of their remarkable asymptotic behaviour. The following theorem, given by 

Tanaka in [T 1], specifies this asymptotic behaviour. 

Theorem (2.3.1): 

Let u (x,t) and~ (x,t) be defined by (2.2.59), (2,2,60), with kn(t) and s ns 
cn(t) given by (2.3.8). Then 

(2.3.10) 2 
lim ~ns (x, t) 
t➔±oo 

O, uniformly in x on JR. 

+ 
defined by Here 0- are n 

1 c2(0) N 
(n - ki )2 

(2.3.11) a) a+ n 
= 2k log~ TT k + k. n i=n+1 n n n 1. 

2 
ki )2 1 c (0) n-1 (kn -b) a n . 

n = 2k log~ _TT k + k. n n 1.=1 n 1. 

Corollaries: 

(2.3.12) a) 
N 2 2 2 + 

lim us (x, t) + I 2kn sech kn (x - 4kn t - a~) 
t➔±oo n=1 

0 ' 

uniformly in x on JR. 

b) 0 ' 

uniformly in x on a strip: 

with 0 ;a a < 4 (k2 - k 2 ) • 0 'a are constants. n n n-1 ' .., ' .., 
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(2.3.12a) follows from (2.3.10) with (2.2.55). 

(2.3.12b) follows from (2.3.12a) and the asymptotic behaviour of sech2 x. 

Remark: 

As can be seen by direct substitution, every function of the form 

- 2a2 sech2 a(x- 4a2 t + c) satisfies the KdV-equation. 

So, the formulas (2.3.12) describe the fact that the solution u (x,t) 
s 

separates into N - so-called - soliton solutions when t ➔ ±ro, Moreover, 

the solitons for t ➔ ro only differ from the solitons for t ➔ - oo by a change 

of phase. 

This is a truly remarkable phenomenon, since the KdV-equation is non-linear. 

The solution us(x,t) is called the N-soliton solution. 

The phenomenon described by (2.3.12) is referred to as the emergence of 

solitons. 



CHAPTER Ill 

EMERGENCE OF SOLITONS FOR THE pKdV 

111. 1. Evolution of the spectral data for potentials satisfying the pKdV 

As pointed out in the introduction, we wish to use the IST in order to study 

the pKdV-initial value problem: 

(3.1.1) 
{

u - 6uu + u = £f(u) t X XXX 

u(x,O) = U(x) • 

For an eigenvalue problem, we take the S.E., with potential u(x,t) evolving 

according to (3.1.1): 

(3. 1. 2) 1/Jxx (x, t) + [), ( t) - u(x, t) )1/J (x, t) = O • 

Of course, the existence and uniqueness of a solution of (3.1.1), as well as 

the possibility of solving (3.1.1) with the 1ST, will depend on U(x) and 

f(u). 

In this thesis, no attention has been paid to the above problems. We assume 

f(u) and U(x) to be such that (3.1.1) has a unique solution, that among 

other conditions satisfies: 

(3.1.3) a) u(x,t) sufficiently smooth. 

b) u = [O]u a:nd f(u) = [O]u on the time-regions under consideration. 

c) u = [2] and f(u) = [2], Vt. 

d) lim u(x, t) = 
lxl--

lim f(u(x,t)) 
lxl--

0, Vt • 

What in (3.1.3a) is meant by sufficiently smooth and what the other condi

tions are will be specified later on. 

For some literature about the problems of existence, uniqueness and regular

ity, we refer the reader to: [BBM], [BS], [Co], [D], [Lax], [ST], [T 2], 

[Te], [™]. 
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The first essential step in solving (3.1.1) with the 1ST, consists of giving 

evolution equations for the spectral data. We use the evolution equations as 

derived in [EvH], Chapter 7. 

00 

(3.1.4) J f(u(x,t))~~(x,t)dx 

(3. 1.5) ab (k, t) - 8ik3 b (k, t) £ 

J 
2 

at = 2ik f(u(x,t))~ (x,k,t)dx 

(3.1.6) 

with 

(3.1.7) 

-oo 

de (t) 
Sk\t)c (t) 

n _d_t_ -
n n 

c (t) { 
= 2: (t) £ 

n 

e (t) 
n 

lim 
x--

-oo 

X 

{ I (¢ (x' ,t);p' (x' ,t)- 1)dx' 
n n 

-oo 

+ 2x}. 

l!owever, they are not a set of evolution equations with which we can perform 

inverse scattering, because in (3.1.4) we have used the eigenfunction ~n(x,t) 

normalized according to (2.2.44),, while the eigenfunction ;ji'n(x,t) in (3.1.6) 

is normalized according to (2.2,42). What we really need is an evolution 

equation for the normalization coefficient cn(t) of ~n(x,t). 

With: 

(3.1.8) J ~2 
~n(x,t)dx 

it easily follows that: 

(3. 1.9) 

Now, it should be obvious that we can derive an evolution equation for cn(t) 

if we can find one for yn(t). In Appendix B.1 we derive an evolution equation 

for yn(t) in a way analogous to that presented in the second edition of [EvH]. 

We include all details because of some unfortunate misprints in [EvH]. 

The evolution equation for yn(t) is given by: 
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with 

X 

(3.1.11) I f(u)ijJ~ dx 1 } dx + 

oo X 

+ J ljJ~( J f(u)qinlj!n dx') dx + 
-oo -oo 

oo oo X 

-( Jf(u)ijJ!dx)• JljJ!{x+ f <qinlj!n-1)dx'+ 2~Jdx. 
-oo -oo -oo 

Using (3.1.4,6,9,10,11) it follows that: 

(3.1.12) 
den (t) 

4k3<t)c (t) 
£Cn (t) 

~- n n = 2k (t) Hn (t) 
n 

with 

00 00 

(3.1.13) Hn (t) - G (t) + J f(u)qin lj!n dx - J 
2 e f(u)lj!n dx n n 

-oo -oo 

We conclude that the set of evolutrion equations required to use the IST, is 

given by (3.1.4,5,12). 

Remarks (3. 1 • 1) : 

1°. Of course at t = O, the set of spectral data S(O) is given by the spec

tral dita of the initial potential u(x,O) = U(x). 

2°. Convergence of the integral f 00 f(u)ljJ 2 dx in formula (3.1.S) follows 
-oo 

innnediately from (2.2.22), (2.2.33) and (3.1.3c). 

3°. The function ~n(x,t) is not uniquely defined by (2.2.47), since we can 

always add a multiple of the eigenfunction lj!n(x,t) to it. It is easily 

seen, however, that Gn(t) and Hn(t) do not change under this transformation. 

In Appendix B.2 it has been proved that, if u satisfies a growth condi

tion of order 1 and f(u) satisfies a growth condition of order O, then 

Sn(t) and Hn(t) are well-defined. 

4°. Although it is not needed for inverse scattering we will given an evolu

tion equation for the transmission coefficients a(k,t) as well. This is 

done in Appendix B.1. 
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In the preceding section, we have shown how a solution u(x,t) of (3.1.1) is 

associated with the set of spectral data: 

where the spectral data are evolving according to the evolution equations 

(3.1.4,5,12). 

We now define the function us(x,t) as follows: 

(3.1.15) us(x,t) is the function associated with a solution u(x,t) of the 

pKdV-initial value problem that, when viewed as a potential in the 

S.E., has the following set of spectral data: 

where k and c evolve according to (3.1.4), respectively 
n n 

(3.1.12). 

Note that the quantities occurring on the right-hand side of these evolution 

equations are still given by f(u), w!, etc., and not by f(us), w!s' etc. 

Here the s-indexed quantities are defined in the obvious way. That is, for 

instance: 

(3.1.16) wns(x,t) is the eigenfunction of the potential us(x,t) at eigen-

value A k2(t), normalized according to: n n 

k (t)x 
lim w (x, t) e n en ( t) 
~ ns 

1 • 

From the theory given in Theorem (2.2.7), we know that we can write us(x,t) 

and wns(x,t), respectively, in the form (2.2.59), respectively (2.2.60), 

where kn and en are now time-dependent according to (3.1.4) and (3.1.12). 

We also define: 

Of course, we can integrate (3.1.4) and (3.1.12), which leads to: 

t 00 

An(O) + £ J { J (f(u)w!)(x,t 1 )dx}dt 1 

O -oo 



(3.1.19) C (t) 
n 

35 

dt'}. 

Another useful observation is that we have two different equations for yn(t), 

namely, (2.2.52) and (3.1.10). Differentiating (2.2.52) and carrying out 

some elementary computations leads to: 

d (k (t) Joo - y (t) - _n __ 
n dt 'IT 

0 

where Rn(t) is defined as: 

(3.1.21) 

J f(u(x,t))~~(x,t)dx + 

N (n(t) 
00 

J 
2 

+ m11 km(t) 
f(u(x,t))~m(x,t)dx + 

min -oo 

km(t) 
00 

J f(u(x,t))~~(x,t)dx) - k (t) 
k2(t) - k2(t) n 

-oo n m 

Matching (3.1.20) to (3.1.9) gives the following equality: 

ddt _kn'IT( t) J (3.1.22) 

0 

log(1-lb(k,t)l 2) ( _Gn(t)) 
2 2 dk = s Rn ( t) k (t) 

k+k(t) n 
n 

This result will be useful for giving estimates on 

100 u2 (x,t)dx. (See equations (2.2.57).) 
-oo 

-oo 
100 u(x,t)dx and 
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111. 2. Asymptotic behaviour of eigenfunctions \j)n ( x, t); 

The emergence of solitons 

The asymptotic behaviour of the eigenfunctions plays an important role in 

this analysis. Among other things, we use the asymptotic results to show the 

emergence of solitons for a potential us(x,t) of the form (2.2.59) with 

scattering data evolving according to (3.1.4,12). 

Since the evolution equations of the scattering data are related to the 

pKdV, the time scales on which solitons emerge and remain separated will 

depend on 8. We express this property by introducing a long-time variable: 

(3. 2.1) T = 8(8)t, 8(8) = o(1) orderfunction such that 8 (8) = 0(1). 

Instead of carrying out asymptotics fort ➔ oo, uniformly in x €Don certain 

regions D, we will now work with asymptotics for 8 + 0 uniformly in T € [0,A], 

x € D. A is a positive constant. 

When changing from the variable t to T, we will not indicate this in our 

notation. So: 

k (t) = k (T) 
n n 

From the evolution equations for the eigenvalues kn(T), we can see that they 

are subject to an 0(1)-change on compacta on the 1/8-timescale, if: 

(3.2.2) 3 constant C such that 

J f(u{x,T))ijJ!(x,T)dxl :, C , for T € [O,A] • 

This condition is trivially fulfilled because of (3.1.3b). 

Throughout this paper we assume that: 

(3.2.3) a) On the timescales under consideration, the number of eigen

values of a solution of the pKdV initial value problem does 

not change. So: N(T) = N(t=O) = N. 

b) 3 positive constants M1, M2 and µj such that on the timescales 

und.er consideration: 
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k.(T) - k. 1 (-r) "' 
J r j 1, ••• ,N-1 • 

Remarks (3.2.1): 

1°. The question of what perturbations and initial conditions leave the 

number of eigenvalues unchanged on finite time intervals is still open. 

We do h~ve a criterion in the form of conditions on u(x,t) and its eigen

functions, that guarantees the number of eigenvalues to be invariant on 

certain time intervals, namely Theorem (2.2.9). 

2°. An additional fact concerning (3.2.3b) is that eigenvalue trajectories 

cannot intersect each other, since the spectrum of the S.E. is non

degenerate. 

In Theorem (2.3.1), we saw that with each soliton there was associated a 

moving coordinate zn x - 4k;t. Of course, the relationship between these 

moving coordinates and the evolution equation for c (t) is no coincidence. 

Therefore, in our case, we replace the expression 4~2 t by: 
n 

T 

(3.2 .4) f 
0 

This expression for ~n(T) is not very convenient. To simplify it needs 

further investigation of Gn(T) and Hn(T). 

We expect 1/Jn(x,T) to be a function of the variables x = x-~(T,d and 

T: 1/J (x,T) = ~ (;,T). With this in mind, it is obvious that we try to obtain n n 
a first idea about the behaviour of Gn(T) and Hn(T) by introducing the x 

variable in Gn(T) and Hn(T), with ~(T,E) unspecified. 

We define: 

"' 
(3.2 .5) a) G0 (T) n Gn(T) + ( f f(u)i/J;dx) J 

2 
xi/Jn dx 

-oo -oo 

"' "' 
b) H0 (T) n Hn(T) + ( f f(u)i/J;dx) (en - f xi/J; dx) 

-oo 

When, in the integrals occurring in the expressions for G0 (T) and H0 (T), we 
n n 

replace X by;= X - ~(T,E), x' by;, = x' - ~ and u(x,T) by u(i,T), etc., 
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then the values of these integrals do not change. The other terms in Gn' Rn 

will change, however, in the following way: 

(3.2.6) 

00 

-00 -oo -oo 

00 00 

-

(($n~n - 1)di' + 2x) - (x~~ dx} + 

0 0 00 - -2 -
Using boundedness of Gn' Rn' _00J xijJn dx and lim 

x-+oo 
can now prove the following lemma. 

Lemma (3.2.1): 

Proof: 

T 

<pn(T) = otE) J k~(T')dT 1 + O(o(:)) ' 
0 

-oo 

Jx ($ ~ - 1)di + 2x, we 
- 00 n n 

T E [O ,A] • 

We start with deriving an estimate for ijJn(x,T). We have: 

So, using (2.2.62) and (3.2.3) we find: 

(3.2.7) 

(3.2.8) a) 
-k (T)z (x,T) 

c (O)e n n 
n 



G - H 
b) n n d,' . 

2k 
n 

With (3.2.5,6) we see that Gn - Rn only contains terms that are bounded. 

So: 

(3.2.9) 
O(~) 

d (O)e cS(E) 
n 

Combining (3.2.7,Sa,9) leads to 

-k lz I 
(3.2.10) [¢n(x,,)[ ~ Ce n n 

e 
k z 

n n 

It should be noted for further purposes, that the same bound holds for 
a 8x ¢n(x,,). This also follows from (2.6.62) and (3.2.3). 

(3 .2. 11) 

Now, taking x 

T 

-k Jz I 
~ Ce n n 

we find that: 

T T 
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Rn(,') <.j) (TI) 

(3.2.12) a) I d,' I Hn(T')d,' - I n ( I f(~)~ 2 dz )d,', 2kn(,') 2kn(,') n n 
0 0 0 -co 

with 

00 

b) 2k H = Ho - ( I f (~)~~ d;) • n n n 

X oo 

({t: J (¢n~n -1)d;, + 2i} Ji~! d;) is bounded on [0,A]. 
-oo -oo 

Next, we substitute (3.2.12a) in (3.2.4) and use (3.1.4). This leads to 

4 
cS (E)k (,) 

n 
+ k (,) I 

n 0 

T dk 
<.jln(,') d,~ d,' + 
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+ 0(0 (:)) • 

Q.E.D. 

An important corollary of the lemma is.: 

Corollary (3.2.1): 

a) For all positive constants A and o(E) with m = 0(1), a positive con

stant a exists such that: 

(3.2.13) (Dn+l(-r) - (Dn(-r) ~ cr o(E) , n = 0, ••• ,N-1,, E [0,A]. 

b) If o(E) = £, then there exist positive constants A and a, such that 

(3.2.13) holds. 

Proof: 

Trivial, using kn(,)= kn(0) + 0( 0(:)) and (3.2.3). 

Corollary (3. 2 .1) is an important tool in the proof of the following theorem, 

concerning the behaviour of tns(x,-r). 

In this theorem, we use the following definitions: 

Definitions: 

2 
..,+(t) 1 1 { en (0) N (kn (t) - ki (t))2} 

(3 .z. l 4) a) un = 2k (t) og 2k (t) TT k (t) + k (t) 
n n i=n+1 n n 

b) 

c) ~ (x,t) 
n 



n = 2, ••• ,N-1 ; 

e) 
-k (t)x 

hn(x,t) = C (t)w (x,t)e n n_ ns 

Corollary of (3.2.13): 

(3.2.15) For x E En(t), m ~ n-1 

For x E En(t), m ~ n+1 

zm(x,t) ~ l(q:,n(t)-q:,n_1(t)) ~ crt. 

zm (x, t) ~ ½(q:,n (t) - (l)n+l (t)) ~ - crt • 
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In some parts of our analysis it is h (x,t) instead of w (x,t) that plays a n ns 
significant role. Therefore, for later convenience, some of the following 

results will be expressed in terms of hn(x,t) as well as in terms of Wns(x,t). 

Theorem (3. 2 .1) : 

Let u (x,t) be a potential in the S.E. (3.1.2) of the form (2.2.59), with 
s 

scattering data evolving according to (3.1.4,12). Let (3.2.3) and (3.2.13) 

be satisfied. Then: 

(3.2.16) Vk, 3 constant C such that for x E lR we have: 

n = 1, ••• ,N 

ak 2 1-k W (x,t)I 
ax ns 

( -k z k z )-2 
~Ce nn+enn , n = 1, ••• ,N • 

ex is some positive constant. For the functions h we can give explicit exmn 
pressions. In the case m = n we have: 

aj 2 aj 2 t 
(3.2.18) -. w (x,t) =-. (!km sech k z) (1+0(e-cx )) , 

axJ ms axJ m m 
XE E (t) • 

m 
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(3.2.19) Vk, 3 constant C such that for x E En(t) we have: 

Proof: 

k+1 
I½ 1/J <x, t) I ~ 
8t8x ms 

-k z 
Ce m n 

k z ( 2k z )-1 
~ Ce n n 1 + e n n 

k z 
~ Ce mm 

if m < n, 

if m n, 

if m > n. 

The starting point for this proof is a set of equations for the eigenfunc

tions ljJns(x,t). These equations appear in the derivation of the explicit 

expressions (2.2.59) and (2.2.60) for us and 1/Jns' from the Gel 1fand-Levitan 

equation, see [GGKM 2]. We have: 

(3.2.20) 
N 

1/Jms(x,t) + I 
n=1 

m = 1 , •• , ,N • 

We can rewrite (3.2.20) as 

(3.2.21) (A(t) + D-2(x,t))h(x,t) = 1, 

where 

We define: 

(3.2.22) 

A(t) is the N x 

D(x,t) is the N 

N-matrix with coefficients (k (t) + k (t))- 1 ; n m 
-k (t)x 

x N-matrix with coefficients o c (t)e n 
mn n 

~ T 
1 = (1, ••• ,1) . 

K(x,t) = det(A+D-2); 

K (x,t) is the determinant of the matrix that is obtained by 
n -2 

replacing the n-th coltnnn in A+ D by 1. 

Using Cramer's rule we get: 

(3.2.23) 

The following facts can be observ,ed: 

Let C be the matrix as defined in (2.2.58), then: 

C = DAD and det(I+ C) = (det D) 2 det(A+ D-2) 
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Now, using zn(x,t) x - (pn(t) and Lemma (2.2.1), it follows that: 

2k (t)z (z,t) 
(3.2.24) a) K is a polynomial in e n n n 1, ••• ,N, 

with positive coefficients; 

b) Km is a polynomial in e 
2k (t)z (x,t) 

n n 
n 1 , ••• , m-1 , m+ 1 , ••• , N. 

2k.z. 
l. l. Moreover: If a combination of terms e occurs in Km, then this same 

2~zm . combination, as well as this combination multiplied bye , occurs 1.n K. 

(Of course, the coefficients are different.) 

Now, using (3.2.3b), it follows from (3.2.24) that a constant C exists such that: 

( 2k z ) 
1 + e mm Km ::a C•K , for x E IR, TE [O,A]. 

And so, using (3.2.23), we get that for x E IR: 

m 1 , ••• ,N • 

For the first x-derivative of hm(x,t),we note the following: 

2k.z. 
It is obvious that aKm/ax, respectively aK/ax are again polynomials in e 1 1 

in which the same combination of terms occur as in Km' respectively K, with 

exception of the 0-th order term that disappears when we differentiate. 

So, following the same reasoning as above, we conclude that there exist 

constants c1, c1 such that 

( 
2k z ) aK 

1 + e mm ~ :5 c1•K 
ax - and 

This again implies the existence of a constant C, such that: 

ah (x,t) 
I max I ( 

2k z )-1 
::.C 1+e mm m = 1, ••• ,N • 

In a completely analogous way, it follows that a constant C exists for 

every k, such that 
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m 1 , ••• ,N, x E IR • 

Finally, using the boundedness of the eigenvalues and (3.2.14e) this leads to 

the fact that for all k there exists a constant C such that: 

ak 2 
j-k 1jJ (x,t)I ax ms 

x E IR, m 1 , ••• ,N • 

This completes the proof of (3.2.16). 

We will now continue with the proof of (3.2.17,18). For this, it is necessary 

to analyze the functions Km(x,t) and K(x,t) in more detail. Using (3.2.15), 

it follows that: 

(3,2.25) K 

n-1 2k.z.( 2k z ) 
K = (1 + O(e-at)) 11 c:2(0)e J J D + (1-o )c-2(0)e n nD 1 , 
m j=l J n,m mn n n+ ,m 

In these expressions, a is some positive constant and 

(3.2.26) D = D (t) = det(k .. ) with k .. 
n n l.J - l.J k. + k. ' 

i,j n, ••• ,N 

D = D (t) = det(a .. ) n,m n,m l.J 
j aij 

with l 
a. l.m 

l. J 

k .. , i,j =n, •.. ,N,j#m, 
l.J 

1, i=n, .•. ,N. 

We have the following relations concerning Dn and Dn,m 

(3.2.27) 1 N (k - k.) D - 11 _m ___ 1. D 
n - 2k . k + k1. n,m 

ID 1.=n ID 

i;!,m 

From (3.2.23,25) we get: 



(3.2.28) h (x, t) 
m ( 

2k z )-1 D + c-2 (0)e n nD 
(t+O(e-o.t)) n n n+1 

2 2k z 
- n n D + c (O)e D 1 n,m n n+ ,m 

With the help of (3.2.27), we can write (3.2.28) as 

b) hm (x, t) 

-at (t+O(e )) • 

-at (1+0(e )) • 
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for x E En (t) 

m e: n+1 ; 

N k + k.)-1 m l. 
TI ~ , for x E Em(t). 

i=m+1 m 1. 

So, indeed we have 

(3.2.30) -at hm(x,t) = (1 + O(e ))h (k , .•• ,k __ ,z ) , ,mnn -~n 

As in the proof of (3.2.16), from the structure of Km(x,t) and K(x,t), it is 

easy to see that the result (3.2.30) can be extended to (3.2.17). 

The proof of (3.2.18) is now simple. From (3.2.29b), we get: 

2 
1/Jms 

2k z 
h2 c-2(0)e mm 
m m 

2kz( N k-k. 2kz N k+k.)-2 
(1 + O(e-o.t))cm-2(0)e mm 2k1 TI m l. + c-2(0)e mm TI m l. 

m i=m+1 km+ ki m i=m+1 km - ki 

-4k z 
mm N 

TI 
i=m+1 

( km - ki)2 
k + k. 

m i 
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2 

(
c (0) -2k z m mm . zre 

m 

N 
TI 

i=m+1 
( km - ki)2 + 1 )-2 

k + k. m i 

-2k z 
2k e mm 

(1 + O(e-at)) __ m ____ _ 

( -2k'z )2 
e m m+ 1 

2 ~ sech k z 
m m 

It remains to prove (3.2.19). From (3.2.21) we have: 

N 
(3.2.31) I am£(x,t)h£(x,t) 1 , 

£=1 

with 

This implies that: 

(3.2.32) 

N [ d -2 I ---- - (k + k ) + 2om£ cm (0) • 
£=l (k + k ) 2 dt m £ 

m £ 

From Lennna (3.2.1) we know that ~n(t) does not grow faster than linearly 

with t for all n. Therefore: 

(3.2.33) for x E En(t) , T = o(£)t E [0,A] 

Since our first goal is to derive estimates for ;t hm(x,t) we have to invert 

the matrix (am£)= A+D-2• This is possible because K = det(A+D-2) > 0. 

We define: 

(3.2.34) 

Now using (3.1.4) and (3.2.3,4,16,32,33,34) it easily follows that 



(3.2.35) 

The matrix coefficients bmt are given by: 

(3.2.36) 
K 

b = (- 1)m+t Kitm , 
mt 
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where Ktm is the determinant of the N-1 x N-1 matrix that remains when the 

i-th row and the m-th column are omitted from A+ D-2• 

Using (3.2.15), we can estimate bmt in exactly the same way as we estimated 

hm(x,t) when proving (3.2.16). We get: 

-2k z -2ktzt 
(3.2.37) lbmt(x,t) I ;;; Ce mm e 

-2k z ( 2k z r1 
I b (x, t) I ;;; Ce mm 1 + e n n 

mn 

-2k z 
lbmt(x,t)I ;;; Ce mm 

lbnt(x,t)I ;;; 
-2ktzt( 2knzn)-1 

Ce 1 + e 

lbnt(x,t)I ;;; C1+e nn ( 2k z r1 

lbmt(x,t)I ;;; Ce 
-2ktzt 

( 2k z r1 
lb (x,t)I ;;; C1+e nn 

mn 

lbmt(x,t)I ;;;c, 

We also need bounds for 

Using (3.2.15,16,37), we get: 

m,t < n, 

, m < n, 

m < n < t, x EE (t) • 
n 

t < n, 

t ~ n, 

m > n, 

m,t > n, 
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-2k z -2k z 
(3.2.38) JBm,(l, (x, t) J Ce mm e ,(', ,(', 

~ 

-2k z -2knlznl 
jB (x,t)j ~ Ce mm e mn 

-2k z 2k,(l,z,(l, 
JBm,(l,(x,t)J ~ Ce mm e 

' 

JBn,(l, (x, t) J 
-2k,(l,z,(l,( 2knzn)-1 

~ Ce 1 + e 
' 

,(', < n, XE En(t) 

-2k lz I 
J B (x, t) J ~ Ce n n 

' 
X E En (t) nn 

JBn,(l,(x,t)J ~ 
2k,(l,zt( 2knzn)-1 

Ce \ 1 + e ' 
,(', > n, x E En(t) 

JBm,(l,(x,t)J ~ Ce 
-2ktzt 

,(', < n < m, x E En (t) 

-2k lz I 
jB (x,t)j ~ Ce n n 

mn 

JBmt(x,t)I 
2k,(l,z,(', 

~ Ce , 

From (3.2.35,37,38) we conclude: 

(3.2.39) 
-2k z mm 

m > n, 

t,m > n, 

-2k lz I} n n 
e ' 

n n -2k lz I} 
+ e ' 

{ 
-2k lz I 

J a\ hm (x, t) J ~ C E + e n n } ' 

The relationship between ;t ~ms and ;t hm is given by: 

So finally, from (3.2.15,16,39,40),we conclude that: 

XE En (t) 

x E En(t) 

' 

' 

' 

' 



(3.2.41) For x EE (t), we have 
n 

-k z 
Ce mm 

k z ( 2k z )-1 I a ,,, ( t) I < Ce n n 1 + e n n at 'fms x, = 

k z 
Ce mm 
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if m < n, 

if m n, 

if m > n 

Again, (3.2.41) can be extended to estimates on (ak+l /axkat)ip (x, t) without ms 
difficulty. We will demonstrate how such an extension can be made. 

We define: 

N. 

I 
e; .R,=1 

· Note that, with (3.1.4) and (3.2.3,16) it follows that 

elk 
1-k P (x,t) I 
ax m 

( 2k z )-1 
::ac 1+e mm 

Now, equation (3.2.32) can be written as 

Inverting this equation and differentiating it with respect to x gives: 

So it follows that: 
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(3.2.42) { 
N a 

C £ L (lb 0 (x,t) I + I-;;- b 0 (x,t) I) + 
t=l m,, oX m,, 

Comparing (3.2.42) with (3.2.35) shows that we get the same estimates for 
a 2 a . a 

axat hm as fo; at hm' provi.ded that we have the same estimates for ax bmt 

respectively-;,- h, as we have for b 0 , respectively h. 
ox m m,, m 0k+1 

In an analogous way, we see that the same estimates are found for -k- h 
a ak ax at . m 

as for-;,- h, provided that we have the same estimates fork respectively 
ak ot m ax 

--..:- , as for b 0 , respectively h. axl<. m,, m 

For hm(x,t), we already know that the above condition is satisfied. That it 

is satisfied for bm2 (x,t) as well, is easily seen from the structure of the 

polynomials in exp(2kizi): K2m and K. 

So, we have: 

(3. 2. 43) For x E: En ( t): 

-2k z -2k z -2k lz I} 
c{£e mm+e mme n n , m < n , 

+ e n n 
-2k lz I} 

m n ' 

m > n . 

Moreover, with ~ms c -l (O)h e kn?m we see that 
m m 

(3.2.44) 

With (3.2.15,16,43,44), we get (3.2.19). 

Q.E.D. 
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Corollaries: 

From (3.2.13,16) it follows that 

(3.2.45) 3 positive constants a, C such that 

It is obvious that also 

ak 2 -at [O,A] x E Ec(t) (3.2.46) jk sech k ~ I ~ Ce , T E ' ax n n n 

ak 2 ~ Ce-at ' TE [O,A] x E Em(t) n Fm • (3.2.47) Jk sech k ~ I ' ' ax n n 

So with (3.2 .. 18,45~46) we see 

(3.2.48) 
ak 2 2 -at 

1-k (iji (x, t) - ¼k sech k ~ ) j ~ Ce , T E [O ,A] , x E lR • 
ax ns n n n 

Moreover, using 

N 

-4 I 
n=1 

k (t)i (x, t) n ns 

with (3.2.47,48) we find: 

ak N 
2k2 sech2 kn ~n) I (3.2.49) a) I- (u/x,t) + l ~Ce-at, TE[O,A], XE JR 

axk n=1 n 

b) 
ak 2 2 ~ I ~ Ce -at ' TE [O,A]' xEEm(t) . I- us (x, t) + 2km sech k z ) 
axk m m 

Remarks: 

1°. The choice of En(t) is such that 

lR and E0 (t) n E0 (t) n m ¢ for n F m • 

(where A0 stands for the interior of the region A.) This choice, however, 
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is rather arbitrary. All the results still hold if we define: 

{ x E 1R I a ( t) + a ((V 1 ( t) - (p ( t) ,::a x - (p ( t) ,::a n n n- n n 

$ a < t) + a <<P 1 < t) - (j) < t)} , - n n n+ n 

with a and a E (0,1) being constants and a (t), a (t) being arbitrary n n n n 
functions that remain 0(1) on,= o(E)t E [O,A] • 

. 2°. We can give estimates that are valid uniformly in (x,,) on certain regions. 

Let, E [s(E),A], where s(E) satisfies: 

(3.2.50) o(E) = o(1) ., o s(e}° 'E.,. and o(1) , E -1- 0 • 

Then: 

s(E) 
-at -a~ 

e ,:a e o(1) , E + 0 , uniformly in, on [s(E),A]. 

So, for instance from (3.2.45), we see that: 

ak 2 
(3.2.51) kip (x,,) 

ax ns 
o(1) , E + D , uniformly on Ee(,) x [s(E),A] 

n 

3°. Of course all the results also hold for the KdV, i.e. E = O. In that 

case there is no restriction on the time interval, t E (0, 00 ). 

The proof of Theorem (3.2. 1)' is based on the proof of Theorem (2.3.1), 

see [T 1). 

The results (3.2.48,49) can be considered as an extension of Theorem 

(2.3.1). They express the emergence of solitons for the pKdV. 

4°. In the case N = 1, the results (3.2.49) naturally simplify to 

(3.2.52) 

with 

(3.2.53) 

u (x,t) 
s 

-2£ log (1+ c~ e-2k1x) = - 2k2 sech2 k1(x-p 1) 
dx2 2k1 1 

2 2 
1 cl 1 { c1 (O) [ 

Pl (t) = 2k log 2k = 2k log~+ log exp 
1 1 1 1 

+ E 

t H I 2:1 dt' ]} 
0 

2 
c1(0) 4 I 

log~+k 
1 1 

0 

t 

k3 dt' 
1 

dt' . 



CHAPTER IV 

APPROXIMATING A POTENTIAL IN THE SCHRODINGER EQUATION 

BY ITS ASSOCIATED SOLITON-POTENTIAL 

IV.1. Theorems based on the work ofW. Eckhaus and P.C. Schuur 

In the previous chapter we have seen what the asymptotic behavious of us(x,t) 

is like. This chapter is dedicated to showing that u(x,t) can in some sense 

be approximated by us(x,t). To do so, we return to the initial value problem 

for the pKdV and integrate this problem by means of 1ST. 

(4.1.1) u - 6uu + u = £f(u) t X XXX 

u(x,O) = U(x) 

The solution of (4.1.1) is given by 

(4. 1. 2) u(x, t) a + 
- ax S(O ,x,t) 

where S(y,x,t) is the solution of the Gel'fand-Levitan equation: 

(4.1.3) 

00 

S(y,x,t) + Q(x+y,t) + J Q(x+y+z,t)S(z,x,t)dz O, 

0 

with y > 0, x E JR, t > 0 and 

(4.1.4) 

(4.1.5) 

(4.1.6) 

N 
2 I 

j=1 

00 

c~(t) exp (- 2k. (t)I;) 
J J 

1f 
J b(k,t)e2ikl; dk 

and the spectral data evolve according to (3.1.4,12). 

Note that in (4.1.3) y is the variable and x and t are parameters. 
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Even for potentials satisfying the KdV, we cannot solve (4.1.3) explicitly for 

b(k, t) #c O. Therefore, some of the problems we encounter here, are similar to 

the problems that occur when deriving asymptotic estimates for u(x, t) - us (x, t) 

in the case of the KdV itself. An analysis of this asymptotic behaviour has 

been carried out by Tanaka, [T 3), and, more rigorously, with better results, 

by Eckhaus and Schuur, [ES], [SJ. In the following section we will give an 

outline of the work of Eckhaus and Schuur, and adapt it to our needs. 

Let V be the Banach space of real continuous bounded functions on (0, 00), 

equipped with the supremum norm. For each g EV we define the mappings 

(4.1.7) 

(4.1.8) 

f Qd(x+y+z,t)g(z)dz 

0 

f Qc(x+y+z,t)g(z)dz 

0 

Note that Td clearly is a mapping of V into V. The problem is to find SE V 

such that: 

(4.1.9) - Q ' 

We know the solution Sd of 

which produces the pure N-soliton solution of the KdV equation with the aid 

of the formula: 

(4. 1. 12) us (x, t) 

By imposing suitable conditions on b(k,O), it is shown that: 

(4.1.13) In (x+y,t)I +jdd Q (x+y,t)j ~ H(y,t)' t,; to, X = x-vt,; -M, 
C X C 

v > 0, with 
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(4.1.14) a) H(y,t) is a monotonically decreasing function of y for fixed 

t, and 

b) a(t) := j H(z,t)dz + 

0 

c) a(t) ➔ 0 as t ➔ oo. 

sup H(y,t) < oo, 
O<y<oo 

The integrability of H(y,t) is used to show that Tc is a continuous mapping 

of V into V with IIT II ➔ 0 for t ➔ oo: 
C 

(4.1.15) IITcgll s llgll J H(z,t)dz s llglla(t) • 

0 

It can be shown that Tc is x-differentiable in V, and, as a final result we 

get: 

(4.1.16) II S"l II , II T II , II S"l' II , II T' II s a ( t) , 
C C C C 

where ' means taking the x-derivative. 

We now return to the Gel'fand-Levitan equation 

Since Td is an integral operator with degenerate kernel, solutions of 

f,g EV 

can be studied explicitly. In fact, it is easily seen that the solution of 

(4.1.18) is given by 

g(y) 
N 

f(y) - I 
j=1 

-2k.y 
A. e J 

J 

where the A. satisfy 
J 

N 

I 
j=1 

a •• 
l.J 

a •. A. 
l.J J 

Joo -2k.z 
2 e ls f(z)dz 

0 

2 2k.x 
- J o .. c.e +k k 

l.J J i + j 

-2 (Note that the matrix (a .. ) = A +D as defined in (3.2.21).) 
l..l 
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So it follows that 

A.= 2 
J 

N 

I 
i=1 

Joo -2k.z 
bil e l. f(z)dz) , 

0 

where (b .. ) 
l.J 

-1 
(a .. ) 

l.J 

We restate the result above as a lemma. (See [S], Ch. 2, lemma 5.1.) 

Lemma (4.1.1): 

Let S 

(4.1.19) (Sf)(y) 
N 

f (y) - 2 I 
i, j=1 

Joo -2k.z -2k.y 
bil e l. f(z)dz) e J 

0 

Corollary: 

N lb .. 1 N lb!. I 
(4.1.20) IISII :a ao := 1 + I l.J lls' II :a al := I l.J 

-k-.- -k-.-
i,j=1 l. i,j=1 l. 

In [S], the following explicit bounds on b .. and b!. are given: 
l.J l.J 

(4.1.21) a) 

b) 

I b .. 1 :a N .. 
l.J l.J 

½ := 2(k.k.) 
l. J 

I b ! -1 :a 2a0 k. N. . • 
l.J J l.J 

N 
TI 

R.=1 
Mi 

N 
TI 

p=1 
plj 

lkj + kpl 
k. - k 

J p 

(More specific information about bounds on (ak/axk)b .. can be obtained from 
l.J 

the estimates (3.2.37) which also hold for the repeated derivatives of the 

b ..• Moreover, we have: 
l.J 

(4.1.22) 

and 

(4.1.23) 

N 

S/y,x,t) = -2 I 
i ,j=1 

Sci.(y,x,t) 
N 

4 I 
R-,p=1 

-2k.y 
b .. e J 

l.J 

( 
-2k y 

k b e p 
p R.p 

By inverting (4.1.17) we obtain: 

(4.1.24) S = -Srl-STcS 

Now consider the mapping T, defined by: 

N b.. -2k.y) I l.J e J • 
. . k. + k 
l.,J=1 J p 
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(4.1.25) Tg=f-STcg' f,g EV. 

It_ can easily be proved that (4.1.24) possesses a unique solution SE V, by 

showing that Tis a contractive mapping in V: 11ST II :a IISII IIT II :a a0cr(t) < 1 
C C 

for sufficiently large t. So indeed Tis a contractive mapping in V. 

An estimate for the solution g of Tg = g is given by 

(4.1.26) 1 
II gll :a 1 - II srll llfll ' 

C 

Now all the estimates needed for the final result are derived. We write: 

with 

. Substitution in (4.1.24) gives 

From the preceding analysis, we know that a unique solution Sc exists. 

Using (4.1.16,20,21,26), this solution can be estimated by: 

(4.1.30) IIScll :a 1 _ ~ST II (IISllll!\11 + IISTcll llSdll) :a b•cr(t) , 
C 

where bis some constant. 

The estimate (4.1.30) is valid.for x = x-vt;:: -M (v > 0), and fort large 
~ enough to let T be a contraction. 

Since the solution of the KdV equation is given by 

(4.1.31) 

estimates are needed for S~(y,x,t). 

Differentiating equation (4.1.29) we get: 

(4.1.32) s' + ST s' = - s {T' <s +s ) + n' + T s'} - s' {n + T <s +f3 ) } 
C C C C C d C C d C C C d 

Again, we conclude that fort large enough, a unique solution f3~ exists. 

Using (4.1.16,20,21,30,32) we estimate S~ by 
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(4.1.33) IIS'II :a Bo(t), where Bis some constant, and the estimate is valid 
C 

on i = x - vt G - M (v > 0) and t large enough to let T be a con-

traction. 

From (4.1.31) and (4.1.33) we get the result: 

(4. 1. 34) lu(x,t)-u (x,t)I :a Bo(t) on x = x-vt G -M, v > 0, 
s 

and fort large enough. 

This concludes the outline of the work of Eckhaus and Schuur. 

The following important remarks can be made. 

Remarks (4.1.1): 

1°. For the KdV, the eigenvalues are constant in time. However, this feature 

has not been used in the above theory. In fact, if the time evolution of 

the eigenvalues is such that the 'constants' a0 , a 1 and Nij as defined 

in (4.1.20,21) remain bounded, then the whole scheme still functions. 

2°. The validity of the final result (4.1.34) on the region x = x- vt G -M 

hinges on the fact that the estimate (4.1.13) is valid on that region. 

If (4.1.13) is valid for x E I(t), I(t) being a time dependent interval 

(for instance [-M+vt, 00)), then (4.1.34) is valid for x E I(t), t large 

enough. 

3°. The condition 0J00 H(y,t)dy ➔ 0, as t + oo, has been used in the following 

parts of the theory: 

a) To establish the existence and uniqueness of a solution in V of the 

problems (4.1.29,32), by showing that IISTcll < 1 fort large enough. 

b) To give an estimate on the solution g EV of Tg =gin (4.1.26). 

Again, by showing that IISTcll :a a< 1 fort large enough. 

We observe that 0J00 H(y,t)dy does not have to decrease fort ➔ 00 • 

That is, the results will remain valid, if instead of (4.1.14), we 

have the weaker properties: 

(4.1.35) a) 00 > sup H(y,t) = o(t) + 0 as t + 00 

0<y<oo 

b) 

00 

J H(y,t)dy :a cr < 

0 

for t G T, & a constant. 



4°. It is easily seen that if we alter conditions (4.1.14,35a) into 

(4.1.36) a) I rl (x+y, t) I + I dd Q (x+y, t) I S H(x+y, t) , 
C X C 

x E I(t), t ~ t 0 , 

y > 0 

b) ro > sup H(x+y,t) 
O<y<ro 

a(x,t) ' XE I(t), t ~ to 

then in the final result (4.1.34),we can replace a(t) by a(x,t). 
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If one knows a priori that (4.1.3) is uniquely solvable in V, then, one can 

do with weaker conditions on !Jc, This is the situation we are in, since we 

are looking for solutions u(x,t) of the pKdV satisfying u(x,t) = [2]. So, we 

can use the results (2.3.5). 

When it is given that (4.1.3) is uniquely solvable, then to estimate u- us, 

it is not necessary to start from (4.1.29,32). We can also take the following 

equation as a starting point: 

(4.1.37) (I+T)Sc 

(4.1.38) (I+T)S' = -ri' -T'S -T 13 1 -T'S c c cd cd c 

It now follows that if: 

(4.1.39) k o, 1 , 

then, with (4.1.37) and (4,1.38), respectively, we find: 

(4.1.40) II S II s 1 ( II rl II + II T Sd II ) , 
C a 0 (x,t) C C 

(4.1.41) IIS'II s -~- (llrl II+ IIT'Sdll + IIT Sd'll + IIT'S II) • c a1 (x, t) c c c c 

With (4.1.20,21,22) it is easily seen that the right-hand side of (4.1.40) 

can be estimated using only (4.1.36), The right-hand side of (-4.1.41) can 

be estimated using (4.1.36) and the following condition: 
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Smmnarizing we have: If (4.1.36,39,42) hold, then 

(4.1.43) !113 1 11 ~ Ccr(x,t) • 
C 

Of course, the same results can be obtained using (4.1.29,32) instead of 

(4.1.37,38). Then, however, the conditions (4.1.39,42) must hold for STc 

instead of T. 

With regard to conditions (4.1.39,42), we make the following observations. 

cibservations: 

1°. If (4.1.39) holds for STc' then it holds for T: 

(4.1.44) I+ T = I + Td + T = (I + T ) (I + ST ) # 
C d C 

# I + ST = S (I + T) ~ II (I+ T) 13 II ~ _!_ II (I+ ST ) 13 II 
C C a0 C C 

.2°. From [EvH], § 4.5, we know that in L2(0,oo), the equation (I+ T)g = 0 

only has the trivial solution. (Of course, this is part of the proof 

that (4.1.3) is uniquely solvable in F(lR ➔ L2(0, 00)) .) The ak(x,t) in 

(4.1.39) are therefore well-defined and positive. 

3°. (4.1.42) is certainly fulfilled if IIT'13cll ~ ca1(x,t)IIT13cll: 

ST 
C 

In the last equivalence we have used the second .observation. In this 

case (4.1.37,38) reduce to: 

(I+T )13' = -n'-T'l3 
C C C C C 

We can stmmLarize the preceding theory in a theorem. 

Theorem (4.1.1): 

Let u(x,t) be a t--parameter family of potentials in the time-independent 

S.E. satisfying u(x,t) = [2]. Let {{k {t),c (t)} _1 N; b(k,t), k E lR} n n n- , •.. , 
be the scattering data of u(x,t). Let u (x,t) be the potential with scatter

s 
ing data {{k (t),c (t)} _ 1 N; O}. n n n- , ••• , 
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Suppose that: 

1°. The nwnber N of eigenvalues is time-independent and there exist constants 

M1 , M2 , µ j > 0 such that 

\k.+ 1(t)-k.(t)\ ~ µ., j = 1, ... ,N-1, Vt~O 
J J J 

20. d \n (x+y,t)\ + \-d n (x+y,t)\ ~ H(x+y,t) 
C X C 

for y > O, t ~ t 0 and x E I(t), where I(t) is a time-dependent interval, and 

00 > sup H(x+y,t) = o(x,t) , x E I(t), t ~ t 0 • 
O<y<oo 

3°. For P Tor P = ST we have 
C 

Then: 

k 0, 1 , 

\u(x,t)- us(x,t) \ ~ Co(x,t) , x E I(t), t ~ t 0 • 

Remark (4.1.2): 

A special case arises if 0100 H(x+y+z,t)dz 

with &(t) ➔ 0 as t ➔ 00 • Then IIT II~ o(t), 
C 

of Theorem (4.1.1) is trivially fulfilled 

~ o(t) for x E I(t), y > 0, t ~ ta, 

IIT'II ~ o(t) and the third condition 
C 

for P = STc. 

In our theory not only do we need an estimate on u(x,t)- us(x,t), we also 

need estimates on the differences 1jJ (x, t) - 1jJ (x, t), n 1, ••• ,N. n ns 
We emphasize the fact that 1jJ f 1jJ • n ns 
By definition of u (see (3.1.15)), the eigenvalues A = - k2 and normaliza-s n n 
tion coefficients en of us' are equal to those of u. 

1/Jn(x,t) is the eigenfunction at eigenvalue An(t) of the potential u(x,t) with 
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k (t)x 
lim ~n(x,t)e n cn(t) . 
X-l-00 

~ns is the eigenfunction at eigenvalue An of the potential us(x,t) with 

k (t)x 
lim ~ (x,t)e n cn(t) • ns 
X-l-00 

The estimates on ~n - ~ns can be expressed in terms of the estimates on u- us 

in the following way: 

Theorem(4.1.2): 

Let ~ns and ¢ns~n be W'!iforrnly bounded on the region x E [a(t), 00), t ~ T. 

(See (3.2.10)) and (2.2.44,48).) Then: 

l~n(x,t)-~n/x,t)I :aC f iu(i;,t)-'-u/1;,t)jdi;, xE [a(t), 00), t~T. 

X 

Proof: 

For ~n' ~ns and ¢ns we have the following equations: 

( 1) 

(2) 

(3) 

(4) 

(5) 

We define: 

(4. 1.45) 

0 • 
' 

k X k X 
lim~ en =lim~ en c 

n ns n 
X-l-00 X-l-00 

k X 

lim~•en 
n 

k X 

lim ~~s e n - k C 
n n 

x-i-oo 

lim ¢ns e 
~ 

-k X 
n 

x-i-oo 

C 
n 

lim ¢~s e 
~ 

v (x, t) = ~ (x, t) - ~ (x, t) n n ns 

-k X 
n k 

n 
C 

n 

From the above equations, it follows that vn is the solution of the follow

ing problem: 



b) 
k X 

lirn v e n 
n 

Therefore, vn is given by 

k X 

= lirn v' e n 
n 

x.-

co 

0 • 

(4.1.47) vn(x,t) = Zk 1(t) J 
n 

[1)! (x,t)<j, <s,t)-<j, (x,t)ij! (s,t)]. ns ns ns ns 
X 

It can easily be seen that (4.1.47) satisfies (4.1.46a) by substitution. 

The conditions (4.1.46b) are shown to be satisfied as follows: 
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1 Jco k (t)x 
+ 2k' (t) le n <f, (x,t)i)! (s,t)iji <s,t) I lu(s,t)- u Cs,t) Ids. ns ns n s 

n 
X 

Now using the formulas (3) and (5) it is obvious that 

X 

That lirn v' e¾x = 0, can be proved analogously. 
~ n 

For vn(x,t) we have the following estimate: 

11)! (x,t) I lu(s,t) - u Cs,t) Ids + ns s 

X X 

where we have used the boundedness of ijins and of <j,nsij!n. 

for x + co 

(t fixed). 

Q.E.D. 
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As an example of the use of Theorems (4.1.1,2), we will apply them to a 

potential that satisfies the KdV-initial value problem, where u(x,O) = U(x) 

is such that the reflection coefficient b(k,O) satisfies: 

(4.1.48) There exists a constant n > 0 such that 

a) b(k,O) is analytic on O ~ Im k ~ n and 

b) In that strip b(k,O) = o(lkl 2), for lkl ➔ 00 • 

(2.2.39) provides us with sufficient conditions for (4. 1.48) to hold. 

In [ES] it was proved, by means of contour integration in the complex k

plane, that, if (4.1.48) is satisfied for a solution u(x,t) of the KdV, then 

we have: 

(4.1.49) -2n(x+y) 8n 3 t ):l(x+y,t) = ye e , 

y a positive constant. 

We define: 

(4.1.50) x = x -vt , v > 0 constant. 

Now we taken such that: 

(4.1.51) Cl 
2 := 2n(v-4n) > 0. 

Then we have: 

(4.1.52) a) -;;<x, t) := cr(x,t) = ye -2nx 

-uniformly on X ~ -M, t ,c; 

00 

x E m , t ,c; t 0 > o , y > o , 

-at 
~ Ce -at e 

' 
to; 

b) J H(x+y+z,t)dzl = l e-2n(x+y) ~ Ce-at , x ,c; -M, y > 0, 
2n 

o t ,c; t 0 • 

So, with Theorem (4.1.1) we find: 

(4.1.53) I u(x, t) - u (x, t) I ~ Ce - 2nx e -at 
s 

x ,c; -M, t ,c; T , 

and using Theorem (4.1.2) we find: 
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(4.1.54) l;j; (i,t) -;j; (i,t) I 
n ns :,; C f I ii<s, t) - ii <s, t) Ids s 

-2nx -at :,; Ce e 

X 

x:2:-M, te::T. 

(In [SJ, P.C. Schuur improves on the estimate (4.1.53) for u(x,t)- u (x,t) 
-1/3 s 

in the sense that he gives an O(t ) , t + co, estimate for u(x, t) - us (x, t) 

uniformly valid on regions x a:: - (µ + vt 1 / 3), t a:: t 0 , where µ, v and t 0 are 

nonnegative constants.) 

In the preceding part of this section we have presented results that can 

be used fort+ co asymptotics. As explained in§ 111.2, for our purposes, we 
• 1 . 

need results that can be used for E + 0 asymptotics on o(E) -timescales, 

with o(E) = 0(1). Therefore, we need to reformulate Theorems (4.1.1,2) in 

such a way that they can be applied to solutions of the pKdV-initial value 

problem. 

Theorem (4.1.3): 

Let u(x,,) be a family of regular potentials in the time-independent S.E. 

with 

(4.1.55) a) u(x,,) = [2], , E [O,A]. 

Then: 

b) The eigenvalues kn(,) satisfy condition(3.2.3), , E [O,A]. 

c) ID (x+y,,) I+ ldd Q (x+y,,) I ;i; o(x,t) , y > 0, , E [m(E) ,A], 
C X C 

d) For P Tor P ST we have 
C 

and 

(4.1.56) lu(x,,) - u/x,,) I ;i; Co(x,,) , , E [m(E),A], x a:: a(E,,). 
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If, moreover, we ha:ve 

then 

(4.1.58) [ijin (x,T) - ljins (x,T) [ ;;, C f cr(l;,T)dl; 

X 

Remark (4.1.3): 

As an analogue of Remark (4.1.2), we have that: 

If 

Jin c(x+y+z,T)[ + 1:x nc(x+y+z,T)[dz 

0 

T E [m(E) ,A], x £ a(e:,T). 

0 ( 1) ' 

uniformly on y > 0, x £ a:(e:,T), T E [m(e:) ,A], 

then IIT II = o(1) and IIT' II = o(1), so that (4.1.55d) is trivially fulfilled. 
C C 

Of course, (4.1.55d) is also trivially fulfilled under the weaker condition: 

(4.1.59) f [nc(x+y+z,T)[dz;;, 

0 

f 1:x nc(x+y+z,T)[dz;;, C 

0 

for some constant a, 

for some constant C • 

Both bounds must be valid uniformly on y > O, x £ a:(e:,T), TE [m(e:),A]. 

We will postpone applying Theorem (4.1.3) to solutions of (4.1.1) until 

Chapter V. 

First, in§ IV.2, we will give another useful theorem which can be used to 

find estimates for u(x,t)-us(x,t) and ljin(x,t)-ljins(x,t). 



IV. 2. Theorems based on the Trace-formula 

We re-introduce the Trace-formula: 

N 
u(x,t) -4 1 

n=1 

2i 
1T 

2 

J kb(-k,t) ~ (x,k,t) dk 
la(k,t)l 2 

We define: 

(4. 2. 1) 

(4.2.2) r (x, t) 

So, we have: 

N 

- 4 I 

Zi 
1T 

n=1 

co 

I kb(-k,t) ~z(x,k,t~ dk. 
la(k,t)I 

(4.2.3) u(x,t) = ud(x,t) + r(x,t) • 

We also have: 

(4.2.4) 
N 

- 4 I 
n=1 

k ( t)ii/ (x, t) n ns 
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Since ¢n f ¢ns' we see that in general ud f us. Although obvious from the 

above, the fact that ud f us remains a point of confusion. This confusion is 

caused by that fact, that it is quite natural to refer to ud as well as to 

us' as the reflectionless part of u. We will illustrate the difference 

between ud and us once again, by pointing at the way by which these poten

tials are defined. 

Starting from the set of spectral data S = { {k ,c } _1 N; b(k), k E JR} 
n n n- , ... , 

of the potential u, us is defined as follows: 

In S replace b(k) by zero. us is the potential belonging to the 

set of spectral data thus obtained: {{k ,c} _1 N; O}. 
n n n- , ... , 

ud is defined in the following way: 

First, express u in terms of its set of spectral data S, using 

the Trace-formula. Then, in this formula, replace b(k) by zero. 

ud is equal to the remaining terms in the Trace-formula. 
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Since the actions: 'Expressing a potential in terms of its set of spectral 

data' and 'Replacing b(k) by zero', do not cODD11ute, we see that ud r us. 

We have the following theorem, (Though this theorem, like Theorem 4.1.3), is 

applicable to a wide class of potentials u(x,t), we will restrict ourselves 

to potentials that occur as solutions of the (p)KdV-initial value problem 

(4.1.1) and state the theorem in (e,T)-language.) 

Theorem (4.2.1): 

Let u(x,t) be a solution of the (p)KdV-initial value problem. Let o(e), A be 

suah that (3.2.3) and (3.2.13) are satisfied. 

Take u(x, t) as the potential in the time-independent S. E. If: 

co 

(4.2.5) J jr(x,T)jdx ~ Co(T,e) , 

.:_M+ VT 

~ 

for Ma positive constant (taken to be large enough, see proof), 

C a positive constant, and v, v 1 positive constants -with 
O < T T < ( ) . = V ~ < V l ~ = (j)l T, E • 

Then, positive constants p, µ, C exist, suah that: 

(4.2.6) 

where 

(4.2.7) 

(4.2.8) 

Proof 

uniformly in x on lR,. TE [Tµ<e),A] , n = 1, ... ,N, k E {0,1}, 

~ T cr(T,e) = max fo(T,e), exp (-pTIE))} , 

Tµ<e) taken so that: 0 ~ cr(T,e) < µ for T .: Tµ<e) • 

(o(T,e) must be suah that this is possible.) 

We start by recalling the bounds we have for the eigenfunctions• (x,T) and 
n 

• (x,T). (See (3.2.10,11).) ns 
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(4.2.9) 
-k Cr) lz (x,-r) I 

\1/Jn(x,-r)\,la°x 1/Jn(x,,)\,ll/Jn/x,,)\,laax 1/Jn/x,,)\:;; Ce n n ' 

XE JR' '[ E [O,A]. 

By definiton 1/Jn and 1/Jns have the same eigenvalues and normalization coeffi

cients. Therefore: 

(4.2.10) a) 

b) 

c) 

We define: 

[-d2 _ 2] (u+ k ) 1/J 
dx2 n n 

k X 
n 

lim 1/Jn e 
X.+oo 

k X 
n 

lim 1/Jns e 
X-t<>O 

k X k X 

lim 1/J I e n "' lim 1/J I e n 
n ns 

x--r-oo x-+-oo 

C 
n 

- k C 
n n 

0 ' 

By substitution of (4.2.1,2,3,4) in (4.2.10), and subtracing the equations 

for 1/Jn from the equations for 1/Jns' we find: 

(4.2.12) a) 

b) 
k X 

lim v e n 
n 

x-t<>O 

N 

r(vn + 1/Jns) - (vn + 1/Jns) L 
m=1 

N 

4k v2 + m m 

- (v + 1/J ) n ns I 8km vm 1/Jms ' n 
m=1 

1 , ••• ,N , 

k X 

lim v' e n 
n 

x-t<>O 

0 • 

From this equation we see that it is more convenient to work with 

(4.2.13) 

wn has to satisfy: 

(4.2.14) a) 
<lw 

2kn a: = (u1n + u2nwn + u3nw~)wn + fn 
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b) 

with 

lim w 
n 

lim w' 
n 

x..- x..-
0 ' 

N 
(4.2.15) I 

m=1 

N 
k 1/J v - 4 I 
m ms m m=l 

k v 2 + r , m m 

m#an mrn 

We define: 

- 4k v 2 
n n 

k x ( N 
f =l/J en r-8I 
n ns m=l 

m#an 

X 

N 
kl/J v-4I 
m ms m m=l 

m#an 

From u = [OJ and (3.2.3) it follows that: u 

k v 2) • m m 

(4.2.17) Un(x,T) :a C and U~(x,T) :a C, uniformly in (x,T) on ]Rx [O,A], 

for some positive constant C. 

Then (4.2.9) yields: 

By some elementary calculations we see that wn is a classical solution of 

(4.2.14) iff: 

(4.2,19) W (x,T) 
n 

Starting with the bound (4,2.18), by iteration in (4.2.19) with T fixed, we 

find that: 



So for vn(x,T) we have 

-k (T)X Joo k (T)y 
(4.2.21) lvn(x,T)i :£ Ce n lwns(y,T)ie n • 

X 

• (ir(y,t) I + 4 I [2k (T) lw (y,T) I Iv (y,T) I+ k (T)v2(y,T)})dy 
1 m ms m m m 

m= 
mi/,n 

We rewrite (4.2.21), using the notation f(x,T) = f(z ,T), in order to get: 
n 

(4.2.22) 

00 I l~ns(y,T)j/ny 

z 
n 

• (ir<y,T)I +4 I c2k I~ llv l+k v2 J)dy 
m=l m ms m m m 

mk 
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We will use (4.2.22) on regions zn ~ -M. First we consider (4.2.22) for the 

fastest soliton, so for n = N. 

Note that, from (4.2.9) and (3.2.13), it follows that: 

(4.2.23) There exist positive constants C, p such that, fork E {0,1}: 

-k a 
:£ Ce m e 

for zn ~ a, m < n, T E [O,A] , k E {O, 1}; 

ak 
1-k 1jJ (x,T) I 
ax m 

for zn;;; f:l, m > n, T E [O,A], k E {O, 1}. 

Here, M1, M2 are the constants used in (3.2.3b), 
M2 

The factor (1 +M1) in the exponent has been introduced for later convenience, 

Moreover, also for later use, we take p so small that 
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Of course, the bounds (4.2.23) also bold for~ (x,T), and consequently for ms 
vn (x,T) as well. 

Now, using (4.2.5,7,9,22,23), we get 

(4.2.25) forzNie;-M, TE[O,A], 

where cr(T,e) is as defined in (4.2.7) with pas in (4.2.23,24). 

We can derive analogous results for avn/ax in the following way. Differenti

ate :(4.2.19) to obtain: 

aw Joo -2k (y-x) . 2 
(4.2.26) at = - . e n ([u1n + u2n wn + u3n wn ]wn + fn) dy 

X . 

With (4.2 . .17) and (4.2.20) this leads to: 

(4.2.27) J
oo -2k {y-x) · Joo . · 

e n lfn(l;;,T)jdt;;dy+ 

X y X 

00 

:, C J lfn(y,T)ldy 

X 

Using this inequality for avn/ax we find 

(4.2.28) 
-k x Joo k y ( N 2) 

:, Ce n I~ · I e n Ir I + 4 l 2k I~ 11 v I + k v dy ns m= 1 n ms m m m 
X MFll 

Now, with (4.2.5,23,28), we come to the analogue of (4.2.25): 

(4.2.29) 

Moreover, from (4.2.9) we have: 

(4.2.30) 
elk -

1-k v (z ,T) I :, Ccr(T,e), 
az n n 

n 

for zn :, "t- log cr(T,e) , 
n 

T € [O,A], kE {0,1}, n = 1, ••• ,N. 



73 

1 Zn E {(-co, k log cr(-r,e:) U (-M,co)} • 
n 

However, we need bounds that are valid on the whole real axis. We can get 

these bounds by using the following leIIlllla: 

LeIIlllla: 

Let cr(,,e:) be as defined in (4.2.7) with pas in (4.2.23,24). 

Let, (e:) be so that O ~ cr(,,e:) <µfor, E [, (e:),A]. µ µ 
Then, there exist constants µ, M such that if: 

1 
a= k (,) log cr(,,e:) 

n 
S = -M , 

elk -1-k v (S,,) I ~ Ccr(,,e:) , 
clz n 

n 

for k O, respectively k 0,1, then: 

for z E [a,S] , , E h (e:) ,A] , n µ 

for k 0, respectively k 0, 1. 

Proof: 

First we will finish the proof.of this theorem assuming the leIIlllla to hold. 

Subsequently the leIIlllla will be proved. 

Using (4.2.25,30) and the lemma we get: 

(4.2.31) uniformly in x on JR, , E [, (e:) ,A] • 
µ 

By means of this bound on vN, which is valid on the whole real axis, we can 

give a bound on vN_ 1• In fact, using (4.2.5,22,23,31), we find: 

co 

(4.2.32) 
-~ z 

~ Ce -1 N-1 
J 

I- I ~-1Y 
i/lN-1 s e • 

' 
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Now, using (4.2.30,32) and the lemma, we find: 

(4.2.33) [vN_ 1(x,T)[ ~ Co(T,E) unifonnly in x on IR, 

Proceeding in this way leads to: 

T E [ T (s) ,A] • 
µ 

(4.2.34) [vn(x,T)[ ~ Co(T,E) unifonnly in x on IR, TE [Tµ(s),A], 

n = 1 , ••• ,N • 

Analogously, starting from (4.2.28,29) and using (4.2.30) and the lemma, we 

find: 

(4.2.35) 1:x vn(x,T) [ ~ Co(T,E) uniformly in x on JR, T E [ T (E) ,A] ' 
µ 

n = 1, ••• ,N • 

This proves the theorem, provided that we can prove the lemma. 

Proof of the lemma: 

For vn, we have the following boundary-value problem: 

(4.2.36) 

2-
d V 

n 
:lz 2 -

n 

v (a) 
n 

2-k V 
n n 

v (S) 
n 

with [o.[ ~Co(T,s), i 
1 

1 , 2 • 

;:;_ v + 'i=(v + ~ ) - (v +~ ) I 4kmvm2 + Bkmvm~ms s n n ns n ns m=l 

Since, 
T T 

{~ -p o(E)}, -p o(E) 
o = max o,e ~ e 

we see that for the left boundary a, we have: 
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Together with (4.2.23) this implies that: 

~k -p~ 
(4.2.39) ,~k ~ (z ,T)j ~ Ce O\£} 

az m n 
for m f= n, zn E [a,S], T (: [O,A]. 

n 

The boundary conditions in (4.2.36) are satisfied by the linear function $n 

defined by: 

We notice that: 

We now can write the solution :;;n of (4.2.36) in the form 

where xn has to satisfy: 

(4.2.43) a2 2 
- X -k X 
822 n n n 

n 

The Green's function for the problem (4.2.43) is given by: 

n n n n [ 
k (i;-2a-2S) -k (i;+ZS)] k z 

e - e e + 

n n n n [ 
k (i;-2o.-2S) -k (i;+Za)] k z 

e - e e + 

n n n n [ 
-k i; k (i;-2S)] -k z 

+ e - e e 

with 

Notice that: 
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I r (z , s) [ :a C , a :a z :a s :a 8 r n n 

For the solution xn of (4.2.43) we have: 

a 

Because of (4.2.24) we have: 

So, with (4.2.5), we get: 

co 

z I n[r.R,(zn,s)[ds :a c, znE [a,8], 

a 

z 
n 

z 
n 

n = 1,, •• ,N. 

(4.2.47) I [r(y,T) [dy :a Co(T,e:) , n = 1, .•. ,N. 

a 

Now, using (4.2.9,37,39,41,42,45,46,47), we find: 

(4.2.48) 
-k (s+28)] k z n n n 

+ e e + 

8 
1 I ([ kn(s-2a-2S) -2kn(s+2a)l knzn 

+~ e +e Je + 

z 
n 

[ 
-k s k (s-28)1 -k z ) 2k s } 

+ e n+en Jenne nlxn(s,T)[ds+O(T,e:)' 

for zn E [a,S], T E [0,A]. 

In formula (4.2.48) we have: 



zn 2k I; 
(4.2.49) a) J ( ..... )e n di;= 

ct 

n n n n n n 1 { 
k (4z -2a-2S) 2k (z -s) 2k (z -a) 

= 3k e + 3e + 3 + e + 
n 

- 4e n n - 4e n n ;a 
k (a-2S+z ) k (a-z )} 

< - 1_ ( 2kn (S-a) ) 
= 3k 2e + 6 

n 

S 2k I; 
b) f ( ..... ) e n di; 

z 
n 

1 { 
k (z +S-2a) k (S-z) 

= - 4e n n + 4e n n + 
3k 

n 

< _4_ 
= 3k 

n 

k (4z -2a-2S) 2k (z -a) 2k (z -S)} 
_ e n n _ 3e n n _ 3 _ e n n ;a 

( 
2kn(S-a) kn(S-a)) 

e + e • 

From (4 .2. 49) is innnediately follows that: 

(4.2.50) For S =-Mand a;.µ, with M large andµ small enough, we have: 

We define 

(4.2.25) 

b) X I 
z 
n 

s 
( 

2k S ) 
( ••••• ) di; ;a C e n + cr ;a p < 1 , 

max 
z E[a,S] n 

lx(z ,T) I • n 

zn E [a,S] , 

T E [T ,A] • 
µ 

With (4.2.48,50,51) we get 

(4.2.52) with p < 1 , T E [ T ,A] • 
µ 
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And so we have: 

(4.2.53) T E [T ,A]. 
µ 

Now with (4.2.41,42,53) we finally arrive at: 

It remains to prove the bourrd for av /az. To that end, we differentiate n n 
(4.2.46), and find the following inequality for axn/azn: 

z n 

~ c(ll~II + cr(-r ,e:)) ~ ccr(-r ,e:) , z E [a,a], TE [T ,A]. n µ 

Obviously, we also have: 

la$nl 
az ~ Ccr(-r,e:) for Zn E [a,a] ' 

n 

therefore, we find: 

(4.2.56) 
dV (z , T) 
I n n J ( ) az ~ Ccr -r,e: ' 

n Q.E.D. 

Theorem (4.2.1) has the following important corollary: 

Corollary (4.2.1): 

Let the conditions of Theorem (4.2.1) be satisfied and let, moreover, r(x,-r) 

satisfy the foZZO/JJing condition: 
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(4.2.57) 
ak lk r (x, T) I ;;a Ccr 1 ( t, £) , k = 0, 1 , ••• ,m , 
ax 

t E (,: (£),A], x ED(,:,£) 
µ 

where D is an arbitrary region. 

Then: 

(4.2.58) 
ak lk (u(x,t) - u (x,t)) I ;;a C max {cr(,:,£) ,cr1 (,,£)} , 
ax s 

Proof 

We have 

k=0,1, ••• ,m, 1:E[tµ(E),A], xED(t,£). 

N 
u(x,t) - us (x,1:) -4 I 

n=1 
k (1/J + 1/J ) (1/J - 1jJ ) + r , n n ns n ns 

N 

u'(x,1:)-u~(x,1:)=- 4J1 kn(ijJ~+ijJ~s)(ijJn-ipns)+kn(ipn+i/Jns)(ijJ~-ij;~s)+r'' 

etc. 

u"(x,1:) - u"(x,t) 
s 

N 

- a I 
n=1 

N 
- a I 

n=1 

For the higher derivatives of u- us, we use the S.E. to reduce the higher 

derivatives of 1/Jn and 1/Jns' to zeroth and first order derivatives. By doing 

this, we obtain terms that contain derivatives of u and us. However, when 

deriving a bound on (3k/3xk)(u-us), the maximum degree of these derivatives 

is k - 2. 
k k So, starting with the bounds that hold for (3 /ax )(u- us), k 0,1, we 

obtain the bounds on the higher derivatives by induction. 

Q.E.D. 

In this corollary, we have seen how, with given bounds on ij;n- 1/Jns and condi

tion (4.2.57), we can derive bounds on u-us. We can also do the opposite. 

That is, starting with a bound on u- u and condition (4.2.57), we can 
2 2 s 

derive a bound for ipn-ij;ns· We note that from (3.2.15) and (4.2.9) it is 

already known that: 
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(4.2.59) There exist positive constants C, p, such that 

T -p--
lt (x,T)[ ~ Ce o(E) 

ns 

So, it suffices to derive a bound for ,1,2 - t 2 that is valid on En(T). 'f'n ns 

We have the following theorem: 

Theorem (4.2.2): 

Let u(x,t) be a solution of the (p)KdV-initial value problem. Let o(E), A be 

so that (3.2.13) is satisfied. 

If: 

(4.2.60) a) Ju(x,T)- u (x,T) I ~ Ccr(T,E) for x E D(T,E), T E [m(E) ,A], 
s 

for x E D(T,E), T E [m(E) ,A] , 

then, a positive constant p exists, such that: 

T 

(4.2.61) I 2 2 I < { - P 6CET} 1jJ (x,T)-ijJ (x,T) = max cr(T,E),e , n ns 

Proof: 

(4.2.61) is a trivial consequence of 

2 2 N 
u(x,T)-u (x,T) = -4k (1/J -ijJ ) - 4 I s n n ns 

and formulas (4.2.59,60). 

m=1 
mi/,n 

k <i- t 2 ) + r(x,T) m m ms 

Q.E.D. 

The combination of (4.2.59) and Theorem (4.2.2) can be used as an alterna

tive for Theorem (4.1.2). And, as a matter of fact, that is what we will do 

when working on the pKdV. The reason why Theorem (4.2.2) is preferred over 

Theorem (4.1.2) is that we run up against difficulties when trying to find 

x-integrable o(1) bounds for u-us. We will encounter the same difficulties, 

when trying to establish that o(T,E) in formula (4.2.5) can be taken to be 

o(1) uniformly on some interval TE [m(E),A]. Therefore, the obvious way is 
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to use Theorem (4.1.3) in combination with (4.2.59) and Theorem (4.2.2). All 

this will be explained in the next chapter, in which we will apply the theo

rems that have been presented in this chapter, to solutions of the pKdV

initial value problem. 



CHAPTER V 

APPLYING THE THEOREMS OF CHAPTER IV TO SOLUTIONS OF THE pKdV 

Throughout this chapter we will assume: 

u(x,t) is a solution of the pKdV initial value problem. 

Condition (3.2.3) is satisfied. 

6(£), A are such that (3.2.13) is satisfied. 

V .1. Results on i'r1 (£)-timescales with i5 (£) = £p, 0,:;; p < 1 

In this section, we will apply Theorem (4.1 .3) to solutions of the pKdV

initial value problem. We will start with considering the condition (4.1.55c). 

As before, we will use the long-time variable T. Moreover, we introduce the 

moving coordinate: 

(5.1.1) i = x - ~(T,£) , where ~(T,£) is such that: 

VT ::a o(£)~(T,£) ;:a VT, T E [O,A], where v, v are positive constants. 

When changing from the variable x to i, the x dependent quantity is given a 

bar. So u(x,t) = u(i,t), etc. 

First, we give the set of evolution equations for the spectral data in 

integrated form: 

T 

(5.1.2) An(T) ;;.n(O) 
£ 

J J 
- - -2 - -

+~ f(u(x,T'))iµ (x,T 1 )dxdT 1 
n 

0 -oo 

T 

(5.1.3) cn(T) cn(O) exp {at£) J k~(T')dT 1 +wn(T)} 

0 

with 

T 
Hn(T 1 ) 

(5.1.4) W (T) £ 
J 

dT I 
n = 6(£) 2kn(T 1 ) 

0 



(5.1.5) 
8ik3 o(£) e: 1 

b(k,r) = b(k,O)e + TIE) 2ik 

T 00 8"k3 (T-T') 

J Jei~. 
0 -00 

8ik3 T 
-- 2- - "FW <"" • f(u(x,T'))ljl (x,k,T 1 )dxdT 1 =: b(k,O) + o(k,T) 

For n (x+y,T) = n (i~(T)+y,T) we get: 
C C 

(5.1.6) 
00 8ik3 T -

n (i+~(T)+y,T) = - J b(k,O)e . °FW e 2ik(x+y) eZik~(T) dk + 
C n 

00 00 

J Idk + no(€) J IIdk 
-00 -00 

We can see that nc consists of two parts. We start by putting a bound on 

_ 00/
00 I dk. We have: 

Lemma (5.1.1): 
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Let u(x,O) satisfy the aondition (4.1.48). Then, positive aonstants C, µ, a 

exist so that: 

00 00 T 

(5 .1. 7) J Idki + I a_ 
ax 

J < c -2µ(i+y) -a o(e:) 
Idki = e e , TE [mo(e:),A], 

-00 i,:; -M(T,E), 

where m is an arbitrary positive aonstant and M an arbitrary bounded funation 

of T, E, 

If aondition (4.1.48a) is satisfied, and moreover: 

on the strip O ;;;; Im k ;;;; n , 

then (5.1.7) is valid for TE [O,A), i;;:; -M(T,e:). 
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Proof: 

We chooseµ< n so that: a.:= 2µ(v-4/) ;\ 0 (v as in (5.1.1)). 

We- integrate over the rectangle r in the complex k-plane with vertices at 

±p, ±p+iµ. 

Obviously, we have: 

f Idk = 0 

r 

Along the verticals: k ± p +is, 0 :a s :a µ, we have: 

and 

So 

(5. 1. 9) 

( 8i(±p+is) 3 .! . . -
b(±p+is,O)e O eZi(±p+is)(x+y+<p) i dsl :a 

0 

-2µ(i+y) 
:a e f µ -24p 2 s.! 

• lb(±p+is,O) I e O ds 

0 

0 

Jµ -24p2 s.! 
lb(±p+is,O) le 0 

0 

C 
ds :a - 2- max 

pm O:as:aµ 
lb(±p+is,O)I + 0 

for lpl + 00 , T,;; mo(E) if (4.1.48) is satisfied, 

fµ -24p2 s.! 
lb(±p+is,O)le · 0 ds :aµ max 

0:as:aµ 
lb(±p+is,O)I + 0 

for IPI + 00 , Ti;; 0 if (5.1.8) is satisfied. 

00 00 

f I(k)dk = f I(k + iµ)dk = 

-co 

00 8i(k+iµ) 32. . . -f b(k+iµ,O)e o e2i(k+iµ)(x+y+<p) dk' 

-co 

which gives 

f I -2µ(i+y) 
Idk :a e f 00 -24µk22. 

lb(k+iµ,O)le O dk 
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Under the consitions imposed it is evident that 

Joo -24µk2 ~ 

[b(k+iµ,O)[e o dk ;:a C 

Since the integrand on the right-hand side of (5.1.9) and its x-derivative 

are continuous in (i,k) E IR x IR and _00J00 1}:x I(k+iµ)[dk is uniformly 

convergent in x on x ;;; -M(-r, £), we may interchange differentiation with respect 

to x and integration with respect to kin (5.1.9). Doing this we arrive at: 

J Idk[ 

-24µk2 ~ 

J [k+iµ[ [b(k+iµ,O)[ e o dk, 

x,;; -M. 

· Again, under the conditions imposed, it is evident that: 

Joo -24µk 2..!. 
[k+iµ[ [b(k+iµ,O)[e o dk ;:a C • 

Q.E.D. 

For J00 IIdk we want to derive a bound in an analogous way. We have the 
-co 

following lemma. 

Lemma (5. 1 • 2) : 

We assume that, fork O, we are in the generic situation, that is (see 

(2.2.36)): 

(5.1.10) W(O,-r) F O , -r E [0,A]. 

Moreover, the following conditions must hold: 

There exist n = n(£) and c,; = c,; (e:) with: 

(5.1.11) a) 0 < n(e:) < M1 ;:a k1(-r) , -r E [O,A]; 

co 

b) sup 
0;:aim k;:an(e:) 

-rE[O,A] 

J f(u(x,-r))1/J 2 (x,k,-r)dx[ = o( lkl 3 ) lkl ➔ 00 ; 

log lkl ' 



86 

co 

c) j f(u(x,T))il(x,k+in,T)dxl ~ 1,;(T,E:) uniformly ink on JR, 

TE [O,A]; 

d) II(k) is analytic ink on the strip O < Im k < n, and con

tinuous on O ~ Im k ~ n. 

Then a positive constant C exists so that: 

(5.1.12) J Ildkl + 11=: j Ildkl ~ 
ax 

-oo -oo 

c o(dl;(T,d 
n3(E:) 

-2n(E:) (i+y) 
e • 

e 
-2n(E) ((J)(T,E)-4n2 (E) o(:)) 

X G -M(T,E:), T E [O,A]. 

Remark (5.1,1): 

From (5.1.10), (2.2.4,19,35,36) and Theorem (2,2.1) it immediately follows 

that (5.1.11d) is satisfied. 

Proof: 

Again we integrate over the rectangle r in the complex k-plane with vertices 

at ±p, ± p + i • 

From (5.1.11d) we see that 

(5. 1. 14) f II dk = 0 • 
,, 

Along the verticals: k = ± p + is, 0 ~ s ~ n, we have: 

(5.1.15) 

n . . . - 8i(±p+is)32. 

I J 2i(±p+is)(x+y+(j)) o 
_e ----=-=-:~e _ 

2i(± p + is) 
0 
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I 

1 -2s(x+y+q>) Jn -
~"'z"'fpj" e 

-(24p2 s-8s 3 )..l( J-r (24p2s-8s3)T ) 
e O e d-r' ds • 

Since: 

0 0 

co 

sup I f(u(x,-r))w 2(x,±p+is,-r)dxj ~ 
O~-r~A 
O~s~n 

-00 

-(24p2 s-8s3 ) 1. 
1 - e 0 

2 3 ds • 
(24p s - 8s ) f 

sup I f(u(x,-r))w 2(x,±p+is,-r)dxl 
O~-r~ -co 

O~s~n 

-x 
lim_-_e_ 
x+O x 

d - e-x 
and dx --x-- < 0 , for x > 0, 

for p large enough we find: 

(5.1.16) ,.( 

-(24p2 s-8s3 ) 1. n 
1 - e O J 

2 3 -r ds ~ -rO 
(24p s - 8s ) 5 

-16p 2 s.!. 
1 - e 0 

2 -r ds 
16p s 8 

16p2 -rn 
o I o 1-e-w 

=~ --w-dw 
p 0 

2 'r ) (with w = 16p s -g- ~ 

o (e:) (1 + 1 16p2-rn(e:)) 
= --2 og o(e:) • 

16p 

Combining (5.1.15,16) we find that: 

For fixed -r, e:, the contribution along the verticals k = ± p +is, 0 ~ s ~n , 

is bounded by: 

(5 .1.17) sup 
O~-r~ 
O~s~n 

-co 

co 

J f(u(x,-r))w 2(x,±p+is,-r)dxl 

With (5.1.11b), we see that the bound in (5.1.17) tends to zero asp ➔ co. 

So we find: 
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(5.1.18) f II (k)dk = f Il(k + in)dk = f
00 e2i(k+in)(x+y+~) 

2i(k+in) 

. { J'e8i(k+in) 3 (,~,') ( 

J f(u(x,, 1 ))l(x,k+in,,')dx) d,'} dk 

0 -oo 

Using (5.1.11c,19) we get: 

(5. 1. 19) f II(k)dki ~ e-2n(x+y) e-2n~·s•o I 
-oo 0 

By substituting z = v3k we get: 

(5.1.20) J 
0 

-811 (z2 -n 2 )2. 
< J_ (n 

,13 0 

1 - e 0 
2 2 2 dz 

8n (z - n ) 

T 

+ J_ Joo 1 - e-8n(z2-n2 )6 

2 2 2 dz 
13 2n 8n (z - n ) 

We have 

2n -8n(z 2-n2 )2. -8n (z2 -n2 )2. 

J 
1 - e 8 1 - e 0 

(5.1.21) dz ~ 2n 
e 

2 2 2 max 2 2 2 
0 8n (z - n ) zf[0,2n] 8n (z - n ) 

and 

00 -8n(z2-n2 )2. 00 

f 
1 - e 0 

I 1 _ log 3 (5.1.22) 2 2 2 dz ~ 2 2 2 dz 
- 16n3 

2n 8n (z - n ) 2n 8n (z - n ) 

Combining (5.1.19) to (5.1.22) we get: 

(5.1.23) There exist a positive constant C, so that: 

I II(k)dki 

x E JR, ya:: 0, , E [O,A]. 

8n3 2. 
0 

4n3 

-1 

As in the proof of Lennna (5.1 •• 1), it follows that on regions x a:: -M(,,£), 
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it is allowed to interchange differentiation with respect to x and integra

tion with respect to k, so that: 

ax 
f II(k)dk 

00 

a 
ax 

f II(k + in)dk 

f 2i (k+in) (i+y+(I)) 
e • 

. { f Te8i(k+in)3 (T~T') ( 

0 -oo 

This integral can be estimated in a way similar to the one used for esti

mating the integral in (5.1.18). The only difference in the result is a 

factor 1/2n that disappears under the i-differentiation. This is an improve

ment when n = o(1). So, certainly, the bound (5.1.23) is also valid for 

I~ /'° II(k)dki. 
ai -oo 

Q.E.D. 

A combination of the Lemmas (5.1.1,2) provides us with a bound for nc that 

c.an be used in Theorem (4.1.3). 

Of course, the question arises when the conditions imposed in the le!Illllas 

are fulfilled, and in the case of condition (5.1.11), for what choice of n, 

i;. We can make the following remarks in relation to this question: 

Remarks (5.1.2): 

1°. The condition W(O,T) f 0, TE [O,A], is not quite satisfactory. Although 

generically W(O,T) f 0, this condition is certainly not satisfied if we 

take a reflectionless potential as initial function. However, if: 

(5.1.24) For all TE [O,A] with W(O,T) = 0, there exists r(E) such that 

II(k,T) is analytic on Br(E) (0), {O} (Br(E) (0) is the circle with 

radius r(E) and center O), 

then, we can replace (5.1.10) by the weaker condition: 

(5 .1.25) W(O,T) f O almost everywhere on T E [O,A]. 
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Again, we observe that (5.1.24) is certainly satisfied if u(x,T) decays 

exponentially for lxl ➔ oo, see (2.2.39). 

The proof that indeed the same results hold under condition (5.1.25), is 

given in Appendix C. 

2°. Because of the fact that 'birth' or 'death' of eigenvalues is only 

possible at times TO for which W(O,T0) = 0, see Theorem (2.2.9), the 

condition (3.2.3a) follows directly from (5.1.10). 

3°. It is easy to see that, in (5.1.11b), it is not the asymptotic behaviour 

ink, but the convergence of the x-integral, that causes the biggest 

restriction. 

We know that: 

~(x,k,T) is analytic ink on O < Im k < n and continuous on O ~ Im k ~ n. 

Moreover, from (2.2.62,63) we see: 

-ikx 
J~(x,k,T) J = Ja(k,T)R(x,k,T)e J 

So (5.1.11b) is certainly satisfied if 

(5.1.26) J jf(u(x,T))Je2nx dx converges. 

x Imk 
e 

This also provides us immediately with an upper bound on ,CT,E). 

We have: 

(5.1.27) 

As it turns out, the above method of contour-integration with the smallest 

upperbound on ,CT,E) given by (5.1.27), does only give results on rather 

short timescales. We will illustrate this by showing what we get from 

(5.1.27) when the solution of the pKdV has an N-soliton stYUCture. That is, 

we take f(u) so that: 

(5. 1 . 28) f ( u) 

We then find 

(5. 1.29) 

N 
z. fi(x-cpi(T,s)) • 

i=1 
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Substituting~(,,£) 
Zn~(,,£) . 

e · in (5.1.12), we get: 

(5.1.30) f (1 j Ildkl + I clcl~ j Ildkl) ::a 

-oo -oo 

Of course, since we do not want to lose information about the soliton struc

ture of the solution, we must take: 

Using (3.2.13), this implies that for N > 1 a positive constant o exists so 

that 

To avoid explosion of the bound in (5.1.30), we must taken(£) such that: 

n(£) = 0(1) I 0 
0 ( £) ' £ " • 

Moreover, for getting a o(1)-bound in (5.1.30), we must have: 

£ - 3-- o(1) , £ + 0. 
n (£) 

So, in this way, one only finds o(1)-bounds on 80 -timescales with 

£113/0(£) = o(1). 

For 0(£) = £P, 0 ::a p < j we get: 

(5.1.31) J lldkJ + I~ 
clx 

J IIdkJ) ::a 
C£ 1-3p 

-oo 

with a an arbitrary positive constant. 

If we take N = 1, so f(u) = f(x- (j) ) , the results will improve. 
s 

Taking (1)(,,£) = (l)s(,,£), we get: 

(5.1.32) J Ildkl + I~ 
clx 

C ~ e-Zn(~+y) 
n3 

Now, sufficient conditions for getting an o(1)-bound are: 
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3 
(5 1 33) n (£) = 0(1) . . ~ -f- = o(1) • 

n (£) 

(5.1.33) can be satisfied on all 1/6(£)-timescales, 

For o (£) = £P, 0 ::a p < 1 ' we get: 

00 00 

(5. 1. 34) { ( I J Ildk[ + I~ J Ildk[) ::a C£ 1-p elh 
ax 

-oo -oo 

with a, S positive constants and p ::a 3q < 1. 

with £lo(£) o( 1). 

-a£q(x+y) 
e 

' 

For solutions of the (p)KdV for which (5.1.29) holds, we can stlllllllarize the 

results on condition (4.1.55c) as follows: 

Define: x = x-(j)(-r,£), with(j)(T,£).; v a(£) for somev > O; a(£) £P, 

0 ::a p ::a 1. 

We have: 

with 

1°. If (4.1.48) is satisfied, then 

-2µ(x+y) 
::a Ce . e 

-2µ (v-4µ 2 )-T
O (£) 

-M('r, £) , y .; 0 , 

T E [mo(£) ,A], 0 ::a p ::a 1. 

Here µ is a constant with O < µ ::a n and v - 4µ 2 > 0. 

2°. If (5.1.25) is satisfied and if n(£) exists, with: 

b) J f(u(x,,))e2n(£)x dx converges; 

c) II(k,,) is analytic on O ::a Im k ::an(£) if W(O,T) f 0. 

II(k,T) is analytic on {O ::a Im.k ::an(£) n lkl.; r(£)} U 

U Br(£) (0), {o} if W(O,T) = 0. 



then: 

(Of course, it is also sufficient if the second condition holds 

for all, E [O,A].), 

For N > 1 and(()(,,£) ~ <P1(,,£), we have: 

1 0 ~ p < 3 , , E [O,A] , 

x a:: -M( T, £) , y a:: 0 • 

For N 

For o(x,,) in Theorem (4.1.3) we have: 
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= 0 (/µm(v-4µ 2 ) + £ 1-3p) 

, E [mo(£) log _!_, A] , for N a:: 
£ 

'[ 

uniformly on x = x - v O (£) a:: -M , 

with 0(£) = £P, 0 ~ p <} and m, M arbitrary constants. 

( 2µm(v-4µ 2 ) 1-p) (5.1.36) o(x,,) = O £ · + £ uniformly on x = x- <P1 (, ,£) a:: -M, 

1 ' 
, E [mo(£) log £, A] , for N = 1 , 

with 0(£) = £P, O ~ p < 1 and m, M arbitrary constants. 

It is easily seen that, on the (x,,)-regions used in (5.1.35,36), we are in 

the situation described in Remark (4.1.3). 

With Theorem (4.1.3), we now find: 

(5.1.37) X G -M' 

with m, M arbitrary constants and: 

1 , E [mo(£) log - , A] 
£ 

a) x = x-v o(£), 0(£) = £P, 0 ~ p <~and a(x,,) given by 

(5. 1. 35) if N a:: 1 ; 
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b) x = x- (1)1 (-r,e:), l'l(e:) 

(5.1.36) if N = 1. 

e;P, O ::; p < 1 and o(x,-r) given by 

No results are thus obtained that are useful for solutions with an N-soliton 

structure on the 1/e:-timescale. 

In the next section we present a consistent perturbation theory on the 

1/e:-timescale. 

V. 2. Consistency results on the 1 le-timescale 

In the introduction we gave a brief explanation of the way in which we want 

to obtain our asymptotic results. We will again outline the method and 

indicate which of the necessary steps have been derived so far. 

In the first step we gave asymptotic results for 'the soliton part' u (x,t) 
s 

of a solution u(x,t) of the pKdV, as well as for the eigenfunctions 1jJ (x,t) ns 
of us(x,t); without specifying the exact behaviour of the spectral data. 

This has been done in Chapter III. 

The second step consists of giving asymptotic results for u - u and 
s 

1/ln - ljlns, again without specifying the exact behaviour of the spectral data. 

Theorems that provide results in that direction are given in Chapter IV, in 

particular Theorem (4.1.3) and Theorem (4.2.2). The conditions of these 

theorems require certain behaviour of nc, respectively r. In case of the 

pKdV, using (3.1.5), (4.1.6), (2.2.55) and (4.2.2), these conditions can be 

considered as conditions on u and its (generalized) eigenfunctions. We are 

not able to verify these conditions for solutions of the pKdV on the 1/e:

timescale. However, we can prove consistency of the approximations, by 

demonstrating that the conditions are satisfied by u and its (generalized) 
s 

eigenfunctions. This will be done in the sequel of this section. 

We need the results of the first and the second step to give an approximation 

for the eigenvalues. That is, we will show that using the consistency results, 
00 2 00 2 

we can approximate J f(u)ljl dx by J f(u )1/1 dx. 
- 00 n - 00 s ns 



-1 co ( ) 2 . . On its turn, kn • -cof f us ijJns dx can be approximated by some function g 

depending on kn only, using the results of step 1. 

This finally leads to the result that kn(T), being the solution of: 

co 
dk 

I 2 n £ 
<lT = 2o (e:) kn f(u)ijJndx 

-co 

kn(O) K n 

can be approximated by the solution k0 (T) of the ordinary differential 
n 

equation: 

where 
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co 2 . co 2 
Only in proving that -cof f(u)ijJn dx can be approximated by -cof f(us)ijJns dx, 

we need the results of the second step. The other parts of step 3 give no 

difficulties (as we will see in the next chapter). 

As explained, consistency is obtained if the conditions of Theorems (4.1.3) 

and (4.2.2) are satisfied, when in these conditions we replace the occurring 

quantities u, ijJn' etc., by us, ijJns' etc. To verify this, we use the expres

sions (2.2.53) and (2.2.54) for the generalized eigenfunctions ijJ(x,k). 

In particular, for the pure one-soliton potential, we have: 

u(x,t) 

~ Q < C (t) 
n 

k X 

lim 1jJ (x,t)e n 
n 
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_,. C (t)l/J (x, t) n n 

which leads to: 

(5.2.1) 

-k (t)(x-p (t)) 
n n "kx{ k (t)e -1 n 

tjJ(x,k,t) = e 1 - k (t) + ik 
n 

We define for k E lR: 

(5.2.2) -ikx{ e 1 -
N 

r 
n=1 

-kn (t)x 
c (t)l/J (x,t)e } n ns 

k (t) + ik 
n 

t 

2~k J eBik3 (t-t')( J f(u/x,t'))l/J;(x,k,t')dx)dt' 

(5 .2 .3) b (k, t) 
s 

0 -ex, 

for lkl ~ Eo-½(E) 

b(k, t) for lkl < Eo-½(E) ( see (5. 1 • 5) ) ; 

C)C) 

(5.2.4) Q (l;, t) = - I e2ikl; b (k, t)dk 
cs 1T s 

-ex, 

C)C) 

(5.2.5) rs(x,t) 
2i I 2 kb (-k,t)l/J (x,k,t)dk 
1T s s 

-ex, 

Note that when deriving results with 1/J (x,k,t) instead of 1/J(x,k,t) in the 
s 

expression !"' f(u)ljJ2 dx, we can only speak of consistency when we take U(x) 
-oo 

to be reflectionless. 

In view of the theory presented in the previous section, however, the condi

tion of starting reflectionless seems to be more or less artificial. There, 

when deriving approximations for u - u and 1/J -1/J by means of contour integra-s n ns 
tion in the complex k-plane, we have separated Qc into two parts. The first 

part depending explicitly on b(k,O), and the second on the reflection gener

ated by the perturbation. From Lemma (5.1,1), we know that the first part 

gives no problems when deriving bounds on Q. However, one should realize 
C 

that, though in an implicit way, also the second part depends on b(k,O). 

We have the following theorem: 
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Theorem (5.2.1): 

Let the perturbation f be of the follOuJing form: 

(5.2.6) 

Then 

(5. 2. 7) 

Proof: 

a) 
~ h (as )Ps.11,) 

f ( u) = ( }. a JI, TT ~ · L ( u) , 
Jl,=0 s=O ax 

and L E Cm ( JR) is a function of the real variable u satisfying: 

b) j L (m) (u) - L (m) (v) j ~ CI u - v I uniformly on compacta K c JR. 

00 

c) J £(- 2k!(t) sech2 kn (t)x) e-2ikx dx is differentiable to kn 

with a uniformly bounded derivative on TE [O,A], k E IR. 

2ikb (k,T) 
s 

( 1 2 -1 ) o E: + IB E: o (Eh E:0-!(E) ~ lkl ~ 1, 

TE [O,A] 

o(-E-) k E IR, lkl ~ 1, uniformly on TE [0,A]. 
lklm ' 

The proof is based on the results obtained from§ III.2. We will start with 

giving a review of the notations used and the results required. 

Notations: 

t t 

(jln ( t) = - 4- I k3(t')dt' k (t) n 
n 0 

+ k (t) J 
n 0 

(5.2.8) p (t) = cp (t) + o+(t) ; n n n 

'; = X - p ( t) n n 

n = 2, ••• ,N-1 ; 
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-kn(t)x 
h (x,t) = c (t)¢ (x,t)e n n ns 

Results (Valid for TE [O,A] unless mentioned otherwise.) 

(2) 

(3) 

(4) 

(5) 

Z ~ Gt 
m 

l 2 
1 1-k ¢ (x,t) 

ax ms 
;;,Ce mm+emm ( -k z k z )-2 

elk C 1-k h (x,t) I ;a---- ;a C , 
clx m 2k z 

1 + e mm 

XE 1R 

X E 1R 

-at 
Ce , 

elk (l (x,t) - ½ sech2 k ~) 
clxk ms m m 

~k 2 ~ O(e-at) o h k 
~ sec z ax m m 

(6) 
aj 
-. h (x,t) 
axJ m 

~ -at h. (k (t), .•• ,k_ (t),z )•(1 + O(e )) , x E En(t), Jm n -N n 

(7a) 

(7b) 

elk 2 
-k sech k z 
ax m m 

2 ~I~ -at sech k z dz = O(e ) • mm m 

We have the following trivial corollaries of these results: 

(1) + (2) => 

(8) n-/=m. 

m ~ n; 
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(1) + (2) + (5.2.6) ~ 

dj 2 A 

= -. f(-4k 1jJ )+ g .(x,t) , x E Em(t) 
:)XJ m ms mJ 

with 

O(e -a.t) , x E Em ( t) , and J I ~j (x, t) I dx = O(e -a.t) • 

Em(t) 

(5) + (5.2.6) ~ 

(1 O) 

Here, fOj is an operator with the same structure as f. 

Now, we will start with the actual proof of the theorem. We have: 

t co 

(5.2.9) 2ik b s (k, t) =£I eSik3 (t-t') ( J f(u/x,t'))i/J;(x,k,t')dx)dt' 

0 -co 

(5.2.10) 2 1/Js (x,k, t) 
-2ikx -ikx NI hn(x,t) -2ikx( N hn(x,t))2 

e - 2e --- + e ' 
n=1 kn+ ik n~1 kn+ ik 

-2ikx =· e + H(x,k,t) 

We define 

(5.2.11) a) f (k , ';: ) 
m m m 

J -2ik';: 
f (k ,;: ) e n d;: 

n n n n 
]R 

c) ~(x,t) f(u (x,t)) - f (k ,';:) • s m m m 



Using (9,10), respectively, (8) and (5.2.6), we see that: 

I aj -at 17 ~(x,t)I dx ~ Ce ; 
E (t) ax 
m 

(5.2.13) J I aj ~ I ~ -at -. f .(k ,z ) dz ~ Ce 
J m m m m 

Ec(t) ax 
m 

At first, we consider the contribution in the integral (5.2.9) coming from 
-2ikx 2 

thee -part of ws(x,k,t): 

00 

(5.2.14) J -2ikx ~ J ( -2ikx f(u/x,t))e dx = L f(us x,t))e dx = 
n=1 

En (t) 

N { -2ikp ( t) J -2ikz 
'i' n ~ n L e f (k ,z ) e dz + 
-1 n n n n J ( ) -2ikx } gn x, t e dx = 

n- E (t) 
n En(t) 

'i' n n Le •x(k,k(t))-e • ~ n ~ f (k ,z )e dz + 
n n n n 

N { -2ikp (t) 2ikp (t) 

n=1 n n 
J 

-2ikz 

Ec(t) 
n 

+ j gn(x,t)e-2ikxdx} • 

En (t) 

From (5.2.12), respectively (5.2.13), we see that: 

t 

(5.2.15) e: j j lgn(x,t')I dxdt' = O(e:) 

0 En(t') 

Using (5.2.6c) and 

we find: 
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(5.2.16) 
• 3 t -2ik(4k2 t'+p (t')) 

Je8ik t re n ·x (k,k (t'))dt'I = 
J n n 

0 

• 3 t -2ik(4k2 t'+p (t')) 
= le8ikt f e n (4k2+1\(t'))(4k2+pn(t'))-1 • 

0 

8ik3 t ft -2ik(4k2 t'+p (t')) e . n 
+ ~ e • 

0 

Combining (5.2.14,15,16) gives: 

t 00 

(5.2.17) e: f eBik3 (t'-t) ( f f(us(x,t'))e-2ikxdx)dt' 

0 -00 

Now, we consider the contribution in the integral (5.2.9), coming from the 

H(x,k,t)-part of w~(x,k,t): 

(5.2.18) 

00 

f f(us(x,t))H(x,k,t)dx = I J f(u (x,t))H(x,k,t)dx = 
n=1 · s 

= I f f(us(x,t)) • 
n=1 E (t) 

n 

En (t) 
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n-1 h (x, t) -2ikx ( -ikx hm(x,t)hr(x,t)) 
I 

m + 
I • - 2e k + ik e 

(km+ ik) (k£ + ik) dx + m=1 m m;:;n-1 
or 

r~n-1 

N j f(us(x,t)) + I . 
n=1 

En (t) 

(- -ikx N hm(x,t) -2ikx hm(x,t)hr(x,t)) 
2e I k ik 

+ e I (km+ ik) (k£ + ik) dx • + m=n m m,£,;;n 

For the first I:=1-summation in (5.2.18) it is easy to find a bound, since 

with (4) it follows that: 

(5.2.19) -2ikx \' 
• •• + e L 

~n-1 
or 

r~n-1 

The second part can be estimated as follows: 

I -ikx hm(x,t) 
(5.2.20) f(us(x,t))e k + ik dx = 

E (t) m 
n 

( I -ikz h (x,t) ) -ikpn(t) 
f (k .~ )e n m 'k dx e + n n n k + i 

E (t) m 
n 

+ 
hm(x,t) 
k + ik dx 

m 
, m G n • 

Using (6), (5.2.12) and (5.2.20) we get 

t 
I j e 8ik3 ( t-t,) j f(us(x,t'))e-ikx 

E (t') 0 
n 

~ C + I e8ik3 t ft -ik(8k2 t 1+pn(t')) 
e • 

·{ I 
E ( t I) 

n 

0 

-ikz 
n } e ~ ~ ~ , 

-k + 'k f (k ,z )hOm(k , ... ,k ,z )dz dt I i n n n n -"N n n 
m 

-at 
Ce • 

, m ~ n • 
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Definition: 

(5.2.21) a) Since (aj/axj)hm(x,,) is uniformly bounded on lR.x [0,A], we 

can easily extend the function h. (x,,) defined for x EE(,), 
Jm n 

m G n, to a function h~ (x,,) which is uniformly bounded in 
Jm 

(x,,) on ]Rx [0,A]. 

b) J 
1R 

f (k ,z ) n n n 
k + ik e m . 

Completely analogous to (5.2.15,16), we now find that: 

It is obvious that the same method is suitable for the part: 

J -ikx >hm (x, t)hR. (x, t) 
f(u/x,t))e (k + ik)(k + ik) 

E (t) m R. 
n 

dx , m,R. G n • 

So, combining (5.2.18) to (5.2.22), we find: 

t 00 

(5.2.23) J 8ik3 ( t-t I) 
e: e ( J f(u/x,t'))H(x,k,t')dx) dt' 

0 -co 

O(E) 

= 0 le: ( 1 + e:t 2 )) = 0 re: ( 1 + e:o-1<e:1 )) uniformly on T E [0,A] • 
\ k(1 + k ) \ k(1 + k ) 

Finally, with (5.2.9,17,23) we find 

lkl :a 1 , 

(5.2.24) kb (k,t) 
s 

O(e:) uniformly on , E [0,A] , for lkl G 1 • 
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We can improve the estimate for lkl ~ 1 in the following way: 

Since u and its x-derivatives tend to zero for lxl + 00 , by m times partial 
s 

integration in / 00 f(u )e-2ikxdx we find: 

-m 

Analogously: 

-m S 

00 00 

J f(us)e-2ikx dx ( 1 )m 
2ik J e-2ikx aro f(u )dx 

axm s 

I k :nik + e-2ikx( I k :nik)2)dx = 
n=1 n n=1 n 

00 

J e-ikx am (f(u ) ~ .... hrt ) 
. L k + ik dx + 

axm s n=1 n 
-m 

Jme-2ikx a: (f(us)( I 
ax n=1 

-m 

h 2) 
kn +n ik) dx • 

For the x-derivatives of ~ns and hn' we have the same bounds as for ~ns and 

hn. Moreover, also (6), (10) hold for all j € lN. Therefore, by working com

pletely in the same way as is used to derive (5.2.24), we find that for 

m € lN for which (5.2.6) holds, the bounds in (5.2.24) can be multiplied by 

a factor k-m, without losing their validity. This leads to (5.2.7). 

Q.E.D. 

Remark (5.2.1): 

We have proved the theorem for perturbations of the form (5.2.6), because 

these are the perturbations to which we have to restrict ourselves later. 

(See Chapter VI.) From the proof, however, it is evident that the theorem 

holds for a larger class of perturbations. It is sufficient to assl.Ulle that 

the perturbation f = f(u,u(l) , ••• ,u(p)) is a function of u and x-derivatives 

of u up to a certain power p, that satisfies: 

i) 

ii) I (m) ( ) (m) I f x0 , ... ,xp -f (y0 , ••• ,yp) ;;; cll~-yll, 

uniformly on compacta K c IRp+l; 

iii) Condition (5.2.6c). 
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Corollaries of Theorem (5.2.1): 

1) Using 

-1 for lkl < a(t:) := E:o (£) and (5.2.7) we get 

2) Let (5.2.6) hold form= 2, then: 

Ir (x,,)I < I f !kb (-k,,)I 1~2(x,k,,)!dk ~ 
S - TI S S 

-1 -a(E:) a(E:) 

~c{ Jikb/-k,,)idk+ J lkb/-k,,)idk+ 
-oo -1 

J lkbs(-k,,)!dk+ 

-a(E:) 

1 

+ j lkbs(-k,,)!dk + 

a(t:) 
J lkbs(-k,,) !dk} • 

1 

-1 "' For _00! and 1J we use (5.2.7),(lkl ~ 1), to find that these integrals 

areO(t:). 

-a 1 
For _1! and af we use (5.2.7), (lkl ~ 1), to find that these integrals 

are O(t:+ /o-1(t:) log a(E:)). · 

For fa we use lb (k,,)I ~ 2, to find that this integral is O(a2(t:)). -a s 

We again take: o(t:) = E:P, 0 ~ p ~ 1. Since a(t:) = t:o~½(t:), this leads to 

(5. 2. 26) 2 -1 
r/x,,) = O(t:+ E: o (t:) log £) uniformly in (x,,) on IR x [0,A]. 

3) Analogously we find 

(5.2.27) uniformly in (!;,,) on JR x [O,A] 

a 2 -1 
b) ~ rlc/i;,,) = O(t:+ t: o (t:) log £) 

uniformly in (!;,,) on JR x [0,A] • 
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This implies, that in any case for b(k,O) = O, we have satisfactorily consis

tency results for conditions (4.1.55c) and (4.2.62b). (And also for (4.2.57) 

with k = O.) 

Since (4.1.55d) can only give problems in the exceptional case that 

IISTcScll ~ IIScll and IITScll ~ IIScll' we will not go into this condition any 

further. 

We finish this chapter by concluding that we have shown consistency of the 

following results: 

(5.2.28) a) lu(x,,)- u (x,,) I = O(q(£)) 
s 

uniformly on x E I(e:,,) , , E [m(£) ,A]; 

b) It (x,,)-1/J (x,,)I = O(q(e:)) n ns 

uniformly on x E I(e:,,) , , E [m(e:) ,A] , 

with 

(5.2.29) o(e:) =e: P, o :a p :a 1, q(e:) = e:l-½p and 

a) m(e:) = 0, I(e:,,) = IR if b(k,O) = 0; 

b) m(e:) = mo(e:) log¾, I(e:,,) = [M+v TI£J, 00 ) 

with m, v positive constants (m taken so large that in the 

bound (5.1.7) we have am~ 1-½p) and Man arbitra1-y constant, 

if b(k,O) t 0. 

As to not to lose information about the soliton structure, v 

must be such that there exists a positive constant v, with: 

In the next chapter we will give the third step of the perturbation analy

sis, such as outlined at the beginning of this section. We take as a 

starting point Theorem (3.2.1) with corollaries, and the estimates (5.2.28), 

with q(e:) unspecified and m(e:) = mo(e:) log¾ , I(e:,,) = [M +v o(e:) , 00 ) if 

b(k,O) i 0, respectively m(e:) = 0, I(e:,,) = IR if b(k,O) = 0. 



CHAPTER VI 

EXPLICIT APPROXIMATIONS FOR SOLUTIONS OF THE 

pKdV-INITIAL VALUE PROBLEM 

Our final task is to derive approximations for the eigenvalues. The evolution 

of the eigenvalues is given by: 

00 

(6.1) 2k .;!_ k £ 
n dT n = 6(£) J f(u(x,T))w!<x,T)dx 

In this chapter, the perturbation f(u) has the following structure: 

(6.2) 

We define: 

(6.3) 

f(u) is as in (5.2.6a), with LE Cj(lR), where j = max {j 0 , ... ,jq}. 

(If j = 0, then the only condition on Lis that L must be Lipschitz 

continuous uniformly on compacta.) 

g(k) 

First, we show that as a consequence of Theorem (3.2.1) we have the following 

lemma: 

Lemma (6.1): 

-oo 

for some positive constant a, TE [O,A]. 

Proof: 

The proof is given in Appendix D. 

Now we need an estimate for _00! 00 f(u)ijJ! dx - _00! 00 f(us)w!s dx. 
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We discriminate between the situations b(k,O) - 0 and b(k,O) t 0. For 

b(k,O) t Owe have the following lemma: 

Lennna (6.2): 

If 

(6.4) a) u(x,T) - u (x,T) 
s 

O(q(£)) ·"f l > M T un-z. orm y on x - + v O ( E:) 

1 
T E [mo(E:) log- ,A] , 

E: 

O(q(E:)) uniformly on x c; M+v o(£) 

1 
T E [mo (E:) log£ ,A] , 

with q(E:) unspecified, ma positive constant and M, v satisfying 

(5.2.29), 

and if moreover 

(6.5) s = 0, 1 , ••• , 2j is u:nif ormly bounded on IR x [ 0 ,A] , 

then 

(6.6) 

T 

= o(q(E:) + e-a o(E:)) 'for some positive constant a 

and TE [mo(E:) log.!.,A] 
E: 

Proof: 

The proof is given in Appendix D. 

For b(k,O) = 0, we use: 

Lemma (6.3): 

If 

(6. 7) a) u(x,T) - u (x,T) = O(q(E:)) uniformly on x E IR, 
s 

T E [0 ,A] ; 

b) 1/1 (x,T) - w (x,T) n ns 
O(q(£)) uniformly on x E IR , T E [O ,A] , 
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then: 

(6. 8) J f(u (x,T))~ 2 (x,T)dx = O(q(£)), s ns 

uniformly in Ton [O,A]. 

Proof: 

The proof is a simplified analogue of the proof for Lemma (6.2) and is there

fore omitted. 

Before coming to the main theorem of this chapter, we will give one more 

lemma. 

Lemma (6.4): 

g(k) is uniformly Lipschitz-continuous in k on compacta K c JR. 

· Proof: 

Trivial, using the explicit structure of the perturbation fas given in (6.2). 

Theorem (6.1): 

Let (3.2.13) and the conditions of Lemma (6.2), respectively Lemma (6.3), be 

satisfied for T E [0,A]. Let kn (T) be the solution of: 

(6. 9) d 
-d k (T) 

T n 
£ 

Let k0 (T) be the solution of: n 

(6. 1 O) 

Then: 

(6. 11) 

(6.12) 

k 0 (0) = K • n n 

sup 
TE[O,A] 

sup 
TE[O,A] 

-oo 

if b(k,O) - 0 

0(£[1og..!.+q(£)o- 1(£)]) if b(k,O) i O. 
£ 
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Proof: 

We use: 

(6 .13) Jg(x)- g(y) J ;,; Llx- yl uniformly on M1 ;,; x,y;,; M2 • 

(M1, M2 as in (3.2.36).) 

At first, we look on TE [O,A0] with AO;,; A and A0L < 2. 

For b(k,O) = 0, we have: 

1 
k 

n 

oo T 

j f(u)iji! dx = g(kn) + O(q(E:)) + o(e-a o(E:)) 

T 

Kn - 2o(d J g(kn(T'))dT' + oe=oq(~E/) + 0(£) 
0 

T 

k~(T) + 2o(E) J [g(k~(T 1 ))- g(kn(T 1 ))]dT 1 + 

0 

-1 + o(d1 + q(E)o (E)]) 

-1 o(d1 + q(E)o (£)]) • 

For TE [0,Tm] we only have the rough approximation: 



ko(T) + Q(c log..!_) 0 f 1 [O ] ~ uni orm y on ,Tm • 
n E: 

T 

~ k E: (k) + O(q(1c)) + o fe-a o(d), 
dT n = - 2o(E:) g n \ 

E: 
+ 2o(E:) 

T 

T 

f g(k~(T 1 ))dT 1 + 

T 
m 

f o 1 -1 
[g(k (T'))-g(k (T'))]dT'+o(dlog-+q(E:)o (E)]) 

n n E: 
T 
m 

1 -1 
O(dlog- + q(E)o (1c)]) • 

E: 
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Now we have proved (6.11) and (6.12) for TE [O,A0]. Taking A0 as a new 

starting time, we can easily extend the validity-region to [0,2A0] by 

following the same procedure as in the proof for the case b(k,O) f 0. 

Continuing in this way, we see that the validity-region can be extended to 

any interval [O,A] on which the conditions of the theorem hold. 

Corollary (6.1): 

The position of then-th solution is given by: 

We define 

(6.14) 

T 

( ) ( ) ,.+(T) 1 pn T := {pn T + Un = O(E:) f 4k!(T 1 )dT 1 + 

0 

1 
+ 2k (T) 

n 

c;(o) N 

log {zk (T) TT 
n i=n+1 

Q.E.D. 
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(Note that on the ~-timescale we can just as well omit the second term in e: 
p0 (,), because then, the O(~("))-term in p (,) becomes of order 1.) 

n u e: n 

With (3.2.3b) and Theorem (6.1) we see that 

(6. 15) 

o(e:(1+i~:~)(1+ o(,e:))) if b(k,O) - 0, 

0 (e:<1og¾ + i~:~)(1 + o(,e:))) if b(k,O) ~ 0 • 

-1 (Of course, it requires that e:q(e:)o (e:) = o(1).) 

Remark (6.1): 

As a consequence of (6.15) and Remark (3.2.2.1°), the results of Theorem 

(3.2.1) and corollaries valid for x E En(,), .also hold on E:(,), where E:(,) 

is defined as: 

(6. 16) 

n = 2, ••• ,N-1 ; 

We will now summarize the previous results and conditions that are needed to 

find an approximation for a solution u(x,t) of the pKdV on e:-p_timescales, 

0:ap:al. 

Summary of conditions needed for (3.2.49), (5.2.28,29) and (6.11,12): 

(6.17) a) The perturbation f has the following form: 

f(u) = ( r 
R.=0 

with L(u) E Cm(lR), where: m = max {2,j} , j = max {j 0 , ••• ,jq}. 

If m = 2, then as an additional condition, we have: 

D2L(u) must be Lipschitz-continuous. 

b) The number N of eigenvalues is invariant in time. 
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c) The eigenvalues satisfy: There exist positive constants M1, M2, 

µn' such that 

n = 2, ••• ,N • 

d) In the case of o(e:) =e:, the ,-interval [O,A] must be taken so 

that a positive constant a exists with: 

e) 

(Existence of such intervals has been proved.) 

2· 
i) u(x,,) EC J(ll<) for all the values of the parameter 

ii) 

T E [O,A]. 

All the x-derivatives of u up to degree 2j, must be 

uniformly bounded on ]1{ x [O,A]. 

/' lu(x,,)ldx 
-co 

and are uniformly 

bounded on [0,A]. 

iii) u(x,,) must satisfy a second order growth condition in x, 

that is: _00/
00 

( 1 + x2)u(x, t) dx converges. 

f) 3n > 0 with b(k,O) is analytic on O < Im k :a n, continuous on 
. 2 

0 :a Im k :a n, and moreover: b (k,O) = o( lk I ) , lk I ➔ 00 , 0 :a Im k :a n. 

We point out that our starting point is: 

Given a perturbation f of type (6.17a), we define: 

(6.18) Hf is the ciass of soiutions u(x,,) of the pKdV satisfying (6.17). 

Our perturbation results are valid for solutions in Hf. The problem of 

showing existency of these solutions is not treated in this thesis. 

Results based on (3.2.49), (5.2.28,29) and (6.11,12): 

Let u(x,t) be a solution in Hf of: 

(6. 19) 
{

u -6uu +u =e:f(u) 
t X XXX 

u(x,O) = U(x) • 
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We can find .an approximation of u(x, t) in the following way: 

1°. Calculate the eigenvalues K1, ••• ,KN of U(x). 

See whether b(k,O) = 0 or not. 

2°. Derive the solutions of the O.D.E. 's 

00 

(6.20) e: J o2 2o 2o - 40 (e:) f(- 2(kn) sech kn x) sech kn x dx 

k 0 (0) = K • 
n n 

We have to discriminate the situations b(k,O) t O and b(k,O) - 0. 

Situation b(k,O) t 0: 

We define: 

(6. 21) 

We have: 

(6.22) 

i(e:) = [mo(e:) log..!.,A] , 
E 

D=lRxI, 

+ -1 
D = [M+vTo (e:),oo) XI, where 

i) Mis an arbitrary positive constant. 

ii) vis a constant with O < v ~ 4M~. (In fact, we can take each 

positive v with VT< ~T ~ ~ 1(T) for some positive constant~.) 

iii) mis a positive constant, so large that am~ 1-!p, with a as 

in (3.2.47,49), respectively (5.1.7). (In fact, the exponen

tially fast decaying bounds in (3.2.49), respectively (5.1.7), 

are better than a O(e:l-!p)-bound.) 

a) sup 
o+ 

ju(x,T) - u (x,T) I s 
O(e:1-!p) 

N 
2k2 2 b) sup ju(x,T)+ I sech k (x - p ) j 

D 
s n=1 n n n 

c) sup j us (x, T) + 2k; sech2 km (x- pm) 

E0 xI 
m 

= O(e:1-!p) 



Combining these results, we find: 

(6. 23) 

Moreover: 

(6.24) 

with 

a) 

b) 

sup 
n+ 

N 
lu(x,T)+ I 

n=1 

(Notice, that form 

sup 
TE[O,A] 

o</-h) 

s 0(£) 

0(£ 1 log-) 
£ 

2k2 sech2 k (x-p )I n n n 

s ' 

2 
3 < p ~ 1 

0 ~ p < 3. b(k,O) - 3 , 

< 3. b(k,O) 0 ~ p - 3 ' 

E0 x I • ) 
m 

- 0 

t- 0 

So, each soliton can be approximated in the following way: 

(6.25) 

Situation b(k,O) = 0: 
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The only difference between this situation and the situation b(k,O) t- 0 is, 

that in (6.22a) we can take JRx [O,A] instead of D+, whilst in (6.23a), we 

can take D instead of D+. 

For a physical interpretation of the results on the 1/£-timescale, two 

aspects are of interest. First, the difference in shape and position between 

a soliton of the pKdV with initial function U(x) and the corresponding soli

ton of the KdV with the same initial function. Second, the difference in 

shape and position between a soliton of the pKdV and its approximation. 

As to the first aspect, we conclude that, generally, the effect of the per

turbation will be considerable. Namely, a soliton of the KdV is given by 
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2K 2 sech2 K (x - 4K2 t), while the corresponding soliton of the pKdV is given n n n 
by 2k2(T) sech2 k (T)(x-p (T)). From the evolution equation of k (T) it can n n n n 
be seen that the difference between kn (T) and Kn will generally become of 

0( 1) on the 1 le-timescale. Accordingly, the difference in shape and the 

relative difference in position will become of 0(1) too. The absolute dif

ference in position will become of 0( 1 / £). 

Regarding the second aspect, we have: The difference in shape is of O(E½). 

The difference in position seems, at first sight, to be unsatisfactory. 

Namely, p (T)-p 0 (T) = O(Ei + E-!T). However, it should be realized, that it 
n n 

is not the absolute fault but the relative fault in the position of the 

soliton that determines whether the approximation is satisfactory or not. 

This relative fault is of O(E312 + E i T). 

Summarizing, we have that on the 1/E-timescale, the maximal fault in shape 

as well as in position is of O(Ei) • 

. Illustrating both aspects in a picture, we get: 

Generic situation for t 
E 

0(1/E) 

X = 0 

0(1) 

In this picture the left-hand curve represents a soliton of the pKdV. The 

curve in the middle represents its approximation. The right-hand curve 

represents the corresponding KdV-soliton. (Of course, the choice of this 

order is arbitrary.) 



CHAPTER VII 

EXAMPLES, APPLICATIONS AND EXTENSIONS 

VII. 1. A trivial but illustrative example, f( u) = u 
XXX 

Consider: 

(7. 1.1) u - 6uu + u = £U , £ > 0, 
{t x xxx2 XXX 

u(x,O) = - 2 sech x 

By the change of variables: 

(7.1.2) x = x(1- £!-½; t = t(1- £)-½; u(x,t) = u(x,t) 

this equation changes into an initial value problem for the KdV: 

(7 .1.3) 
{ n_ - 6uu- + 

t X 

u(x,o) = - 2 

In, for instance, [F], the spect_ral data were calculated for potentials of 

the form: 

(7.1.4) 2 
u(x) = - A sech o.x , A > 0 , o. > 0 • 

With n E JR defined by 

(7.1.5) 
2 

A = o. n (n - 1 ) , n > 1 , n E lR , 

the eigenvalues A = - k2 are given by: m m 

(7.1.6) k = o.{n - ( [n] + 1 - m)} , m = 1, ••• , [n] • 
m 

To solve (7.1.3) by 1ST, we must calculate the eigenvalues of: 

(7.1.7) - 2 sech2 (1- £)½ x = - (1-£)n(n-1) sech2 (1- £)½x, 

for n = ½ + H 1 + ~) ½ 
1-£ 
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They are given by 

(7.1.8) 

Since u(x,0) decays exponentially for !xi+ oo, we can use (4.1.53). Com

bining this with (3.2.49) leads to 

0 if c f k1, k2 ' 

fi(i,t) 2k2 2 -
k1 (7.1.9) lim sech 1<1 x if C = 

l~l=lx-4c2 tl::,M 1 

E-- 2k2 2A 
if k2 2 sech k2 x C = 

Or, in (x,t) variables: 

(7.1.10) lim u(i,t) 
lxl=lx-4c2 tl::;M 

t--

0 

A2 2 A x 2 
- 2k sech k -- = - 2 sech x + 0(£) , c = k2 • 

2 2~ 

Now, we calculate the soliton approximation on the 1/£-timescale for the 

solution of (7.1.1) with the perturbation scheme: 

( 0) 2 Sech2 x has 1 · 1 ' 1 S k0 ( ) • h 1 u x, = - on y one e1genva ue Al= - • o, 1 T 1st e sou-

tion of: 

o2 2o) 2o 2 (k1) sech k1 x sech k1 x dx , 

2 0 Since sech k1 x is an even function, it is obvious that: 

(7.1.12) k~(T) 1 • 



Using (6.23,24) we get: 

(7.1.13) sup 1 
IR.x[ ill£ log£ ,A] 

2 1 . 
Ju(x,,)-2 sech [x--(4,+0(l£))JJ 

£ 

Indeed, this result agrees with (7.1.10). 

We make the following observations: 

Remarks (7.1.1): 

1°. Apparently, the solution u(x,t) = u(x,t) contains two solitons. This 

does not contradict the assumption that no new eigenvalues will be 

created, since the eigenvalue problems that have been used: 

ljJ + (}, - u)l}l = 0 and $~~ + (A - u)$ = O, are not identical. 
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xx xx . 2 
Moreover, the small soliton is 0(£) for all t and, therefore, is cover-

ed by the 0(1£)-term in (6.23). 

2°. Better perturbation results can be expected if we do not approximate the 

soliton position by: 

4 
£ 

T r (k~(,•)/ d • 

0 

but by: 

T 

(7.1.14) ¾{4 J (k~(, 1 )/d, 1 

0 

Hf s (TI) 

2ko (,') 
1 

Here Hfs(T) is defined by: 

(7.1.15) i) Replace x, u, ¢1, iJ; 1 in the definition for H1(,) by 

~ 1 = x-cp1 - o1 , 'ii(f1,t) (= u(x,t)), ~1' ~1• 

The expression so formed is defined as H1(,). 

ii) Replace 'ii, ~ ~ · H () b ~ ,,, o/1' o/1 in 1 T Y us' o/1s' o/1s· 

The expression so formed is defined as H1/T). 

iii) Replace us' ¢ls' ~ls in ii1/,) by their soliton approxima

tions: 



120 

-o 
u := -

s 

-o 
The expression so formed is defined as H1s(T). 

(The eigenfunction w1s and generalized eigenfunction ¢1s of the one-soliton 

potential 

are easily calculated by using the variable 

We then find 

-o When calculating H15{T) we find that: 



"' 
+ J f(~~)$~s ~~s di1 

Since c 1(0) = /z, substitution of k~ 

leads to: 

-o 8 1, H1s = 3 and c 1(0) in (7.1.14) 

The position of the soliton is approximated by: 

4 1 
e: (.T + 3 e:,) • 

This indeed agrees with the real position of the soliton, given by: 

1 2 4(1 + 3 e:+ O(e: ))t 

This example illustrates the idea that, especially in the 1-soliton case, 

. better approximation of the soliton positions can be given by: 

(7.1.16) 4 
e: 

2 
1 { en (0) N 

+ --- log --- TT 
2k0 (,) 2k0 (,) i=n+1 n n 

Ho (',) 
_n_s __ d,' + 

2k0 (,') 
n 

Proving this concept, comes down on showing that: 

' 
(7.1.17) a) r -j Hn(,') - H (,')d, 1 

ns o( 1) , E [0 ,A] , 

0 

' 
b) J ii <, ') -o 

0(1) L E [0,A] • - H (,')d,' , ns ns 
0 
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Because of the expressions with $n~n in Hn(,), we cannot prove (7.1.17) in a 

way analogously to the proofs of Lernmae (6.1,2,3). 

In the case of one-soliton and / 00 f(u )~2 dx = 0, the problem is consider-
-00 s ns 

ably simplified. However, proving (7.1.17a) is still far from trivial. 
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VII. 2. Pure polynomial perturbations 

In this section, we will consider the case that f(u) is a polynomial. 

j 9. 
p q 

es~) s9. • (7.2.1) f (u) 1 a9. TT a9. 'I- 0. p sR. E ]N U {O} , 
9,=0 s=O ax 

0 For the eigenvalue approximation kn(,), we then have: 

(7.2.2) 

with 

(7.2.3) 

£ q . o SR. 
- -4"() l an (kn(,)) • 

u £ 9.=0 )<, 

h 
-1 + l (2+ s)ps9. • 

s=O 

Since sech2 x is an even function, it immediately follows that: 

(7.2.4) 
h 
}: sps9. is odd, 9. 

s=O 

d o 
O, ••• ,q ~ d,: kn(,:)= 0 

j 9. 

TT Ps9. 
s=O 

'I- 0. 

We will now investigate the situation that f(u) consists of only one 'term': 

(7.2.5) 

We have~ 



~ ko(,r) 
j 

(7.2.6) a) 0 iff 1 sps is odd d, n s=O 

b) ~ ko(,) 
d, n 

£ r 0) 13 
- 40(£) atkn 

with 

Ij -
00 

C~o 
p 

sps 

J (L 2 ) si] 2 (7.2.7) a) Cl = a(-2) s-0 sech x sech x dx 
3xs 

-co 

j j 
b) 13 - 1 + I (2 + s)p is odd (i.e. I sps is even) • s s=O s=O 

We note that: 

(7 .2.8) 13 = 1 ~ p O = 1 ; p s = 0 , s = 1 , ••• , j ~ f ( u) 4 au (a = 3 a) • 

Integration of (7.2.6b) with k 0 (,) 
n 

(7.2.9) a) 

b) 

Kn gives: 

13 = 3 ,:5; 7, • • • • 
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We can apply these results to, for example, the 'Korteweg-de Vries-£Burgers 

equation 1 : 

With (7.2.7,9) we find 

(7.2.11) a) 13 3' Cl ±4 

± £U xx 

00 

J ( a
2 2 ) - 2 sech x 

ax 
-oo 

sech2 x dx = - 4. B. + 25 

For the approximation of the soliton positions this gives: 

'[ 

( 7 2 12 ) o( ) 4 J (kno (, , )) 2 d, , · • pn ' = o (£) 11 15 ( - 2 64 £ 11 
£16 log 1 + Kn Tso(£)', • 

0 
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If (7.2.10) has a -sign, then we have consistency with respect to (3.2.3b) 

for arb1trary compacta on the 1/E-timescale. If, however, (7.2.10) has a 

+ sign, then we only have consistency with respect to (3.2.3b) on the 1/E-
15 2 timescale for TE [O,A] with A> 64 KN. 

"411. 3. The shallow water wave perturbation, 

f(u) = ~ u 2 u + ~ uu + 23 u u - .!1 u 
2 X 2 XXX 4 X XX !JO XXXXX 

In this section we consider: 

(7.3.1) 

· The motivation for looking at (7.3.1) is the following: In modelling so 

called 'shallow-waterwaves', two small parameters play a role, namely 

h2 a typical wave amplitude 
a a 0 typical length Ct = ho = J/,2 JI, wave 

ho: depth of water in rest 

Taking et and S to have the same order of magnitude, the number of significant 

small parameters is reduced to one, called E. When carrying out a formal 

expansion in E, the KdV-equation will be found as the lowest order term (see 

[KdV], [W]). Also taking into account first order contributions, leads to 

(7.3.1). This is shown in Appendix E1. 

Since (7.3,1) is obtained from a formal expansion in E, it is natural to try 

to find solutions of (7.3.1), in the form of a power series in E. Inspired 

by the solitary-wave solutions of the KdV, we substitute: 

(7.3.2) u(x,t) u (i) 
n 

where, for x and u0 (i) we take: 

(7.3.3) a) 2 4 
X = X - (4K - EaK )t - XQ, 



We will now determine u1(x), in such a way that v(x,t) 

satisfies: 

(7 .3.4) Vt - 6VV X + V XXX 

For u1(x), this leads to: 

(7.3.5) 

Integrating once, using 

um I u0 <x) I + £ I u 1 <x) I o , 
lxl..-

using 

and substituting 

2 2 -
uo (x) = - 2K sech K x , 

gives us: 

(7.3.6) 
2 -2 - 2 

u1xx + (12K cosh K X - 4K )u1 

6 ( -6 - -4 - 76 -2 -) = K 24 cosh K x - 48 cosh K x + [5 + 2a] cosh K x • 

In Appendix E2 the general solution of (7.3.6), satisfying lim u1(x) 
~xl-+<>o 

has been found to be given by: 

(7.3.7) 
4 9 -2 - -4 -

K { <s + !a) cosh K x - 3 cosh K x + 
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0, 

19 - -3 - -3 - -
- <s+!a)KX cosh KX sinhKx} + A cosh KX sinhKX 

It is evident that this method of finding solutions is not suitable for 

solving initial value problems. In order to see what kind of soliton solu

tions emerge from a given initial function, we need the perturbation theory. 

For the eigenvalue approximations, we find with (7.2.4) that: 

(7 .3.8) K n 
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This result indicates that, on the 1/£-timescale, the KdV-equation gives a 

good description of the physical ·reality in the shallow-waterwave theory. 

As in§ VII.1, better approximations of the soliton positions are given by 
-o 

(7.1.16). We will now calculate H1s for the one-soliton case. 

00 

(7.3.9) 
-o 
H1/·r) f ~~s~~s( (1 -o -o 2 ~) ~ f (us)(i/1 1 s) dz1 dz 1 + 

-oo -oo 

00 

(1 

00 

f (~o /( f(u~)¢~s ~~s ctz1)dz 1 + f 
-o -O -o rv 

1s f(us)i/11s 'P1s dz1 
-oo -oo -oo 

Determining H~s(T) is simplified by using: 

X 

(7.3.10) a) f integrable and odd~ J f(t)dt is even, 

X 

b) f integrable and even~ j f(t)dt 

with g(x) 

-oo 

X 

! J f(t)dt is odd. 

-x 

Moreover, we integrate by parts to find 

00 

(1 (7.3.11) I -o 2( f (ii~)¢~ s ~~ s dz 1 ) d? 1 (1/J 1 s) 
-oo -co 

co co 

! J f(t)dt + g(x) , 

z1 

f 
-0 -0 -O rv J ( f (~~s/dzj)f(u~)¢~s~~sd~1 f(us)<j,1s 1/11s dz1 -

-co -co -co 

Using (7.3.9,10,11) and some calculations gives us: 

(7.3.12) 

So, for the soliton position p1(T) we find 

6 124 
- K115 



(7.3.13) 

2 
c 1 (0) 

log - 2-- + 
K1 
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0(1) • 

We see that, when, in (7 .3.3) we take a = 62/15, then the soliton approxima-
2 2 -tion - 2K1 sech K1 (x - p1 (-r)) coincides with u0 (x) up to first order. 

This shows that a combination of the perturbation scheme with the method of 

finding solutions by inserting a power series in£ can be useful. First, 

use the perturbation scheme to determine u0(x) and, then, use (7.3.2) to 

determine next order terms. 

Vll.4. The inadmissible perturbation, f(u) = u + ½xu 
X 

In this section, we apply the perturbation scheme to the pKdV with per

turbation: £(u+ !xux). Since this perturbation depends explicitly on x, we 

must adapt the perturbation scheme in order to obtain useful results. 

Consider: 

(7.4.1) { ut - '6uux + uxxx 

u(x,O) = U(x) • 

As can be seen in Appendix A.1 and (2.1.17a), this problem can be integrated 

with the inverse scattering method. We will calculate the.pure 2-soliton 

solution explicitly, as well as use a modified formal version of the per

turbation scheme to derive an approximation of the 2-soliton solution. Of 

course, our goal is to show that the approximation obtained from the modified 

version of the perturbation scheme matches the real solution. 

We take: 

(7.4.2) 2 U(x) = - 6 sech x 

For this potential we have: 

(7.4.3) b(k) = 0 C = 
1 

16 

With the evolution equations (A.1.20,26,29) for the spectral data, we find: 
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(7.4.4) b(k,t) - 0 ; 

The explicit solution of (7.4.1,2) is given by: 

c1c2 -(k1+k2)x 

(7 .4.5) u(x,t) 
d2 

-2- log det 
dx2 

---e 
kl+ k2 

2 
c2 -2k2x 

1 +-- e 2k2 

_ 12ee:t( 3 + cosh 2n + 4 cosh 2~ ) 

[cosh(n+O + 3 cosh(n-~)] 2 

with 

!e:t 8 
3 

(7.4.6) a) ~ e x-- (e-ze:t - 1) 
3£ 

2e½£t X - 64 
3 t b) (e2 - 1) n 3£ 

In particular we are interested in the asymptotic behaviour of this solution. 

~n order to be able to compare the results obtained directly from (7.4.5), 

with those obtained from the perturbation analysis on the 1/e:-timescale, we 

perpetrate e: + 0 asymptotics on_compacta in,= e:t. 

To obtain asymptotic results from (7.4.5) we use Theorem '(3.2.1). We there

for~ have to show teat conditions (3.2.3,13) are satisfied on the 1/e:-time

scale. 

That (3.2.3) is satisfied is easily seen from (7.4.4). As usual, we define 

(7.4.7) a) <.pl ( T) 
1 -h 8 ( T -h) = 7},e +- e - e 3e: 

b) <.f.J2 ( T) 
1 -h + 32 (e'-e-h) =13.e 3e: . 

So, condition (3.2.13) is satisfied too. 

For the quantities o:, defined by (3.2.14a), we find: 



(7.4.8) a) 

From (7.4.7,8) we obtain: 

(7.4.9) ~ + ½ log 3 

With Corollary (3.2.49) we now get: 

Note that: 

( -a.!.) 
O e £ · uniformly in x on IR, T·E [O,A] • 

( -Cl~) b) u(x,T) + 2e T sech2 (~ + ½ log .3) = 0 e 

20 T -h uniformly in x on (- 00 , 3£ (e - e )] , T E [O,A] • 

2 ( - af) c) u(x,T) + 8eT sech (n - ! log 3) = 0 \e , 

e 

uniformly in X on c;~ (eT-e-h), 00), TE [O,Al 

T -a
£ 1 for T = m£ log E 
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We will now derive an approximation of the solution of (7 .4.1,2) by means 

of a formal perturbation procedure. On the 1/£-timescale, TE [O,A], we 

expect the solitons to be approximated by: 

where k0 is the solution of: n 
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CX) 

d 
(7.4.12) -d k (T) 

T n 
1 J - ~ 2 0~ ~ --4 f(u (z )) sech k z dz + ns n n n n 

(7.4.13) 

We have: 

- _s1 (f./l + c/) 
n n 

k 0 (0) = k (0) , 
n n 

- ~ ( o)2 u (z) = - 2 k ns n n 
2 0 ~ sech k: z 

n n 

(7 .4.14) a) 

CX) 

b) J d (- ) sech2 k0 i' dz 
d~ uns n n n 

-ex, n 

So, we find: 

(7.4.15) h 
e ' 

0 (integrand is odd). 

Finding an approximation of the soliton positions p0 (T) requires the terms 
n 

of leading order in f./ln(T) to be determined. For perturbations that are not 

depending explicitly on x, the leading order term in f./ln(T) is given by: 

4 
e: 

(see Lemma (3.2.1)). 

We will show that for the perturbation considered here, the leading order 

term in f./ln(T) is given by: 

T 

(7.4.16) e:k 4(T) J k~(T 1 )dT 1 

n 0 
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That is, we have to show that the terms of leading order in Hn(,) cancel out. 

We can determine the leading order terms in Hn in the same way as was done in 

§ III.2. That is: The leading order terms in Hn are those terms that generate 

0((1)(,))-contributions, when in the definition of Hn' we replace x by x = x- (I), 

x' by x' = x' - (I), u(x, ,) = u(x, ,) , etc. 

Carrying out the above substitution we find: 

co co 

(7.4.17) I f(u)ip 2 dx f f(u)~! dx + ! (j) I n 
-co -co -00 

X x 

J f(u)lji! dx f f(u)~! dx' + ! (j) 
-00 -co -00 

00 

-co -co 

I\ (u).p 1ji dx = 
n n 

00 co 

J X 1/1 ! dx I X ~ ! dx + (j) 

X 

00 

- -2 -
uxlJin dx 

-
X I - -2 -u-, 1/1 dx' 

X n 

-co 

co 

I u- cp 1/1 dx x n n 

Ix_ -
u-x' cj> 1ji dx' n n 

-co 

en ~ { I (~n ~n - 1)dx' + 2i} + 2(1) • 
-co 

The other integrals in H (,) do not change. n 

As before, we expect the functions ii,~,~ to be approximated by the pure 
n n 

1-soliton quantities: 

(7.4.18) u ns 

~ sech k x n n 

n = 1, respectively n 2 

n = 1,2; 

n = 1,2. 
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Calculating the relevant integrals, we find: 

(7.4.19) 

00 

J f(~ns)~!s dx = - k! 

-co -oo 

-00 

-00 

(integrand is odd) 

d (~ );;;2 dx') dx = 0 ns ..,tis 
dx' 

d (~ )¢ ~ dx') dx = 
dx' ns ns ns 

00 

(integrand is odd) 

Now, using (3.1.11,13) and (7.4.17,19), we see that the leading terms in 

Hn{T) add up to: 

It follows that the leading part in ~n(T), and so in pn(T), is given by: 

(7.4.20) 

Using (7.4.15) 

(7.4.21) a) 

b) 

4 

we find: 

0 8 
Pl ( T) = 3E 

0 32 
P2 (T) = 3E 

( (k~ (T 1 ) ) 3 dT 1 

0 

(e T - e-h) 

( T -h) e - e 
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Indeed, we see that the so derived approximations are in complete accordance 

with the explicitly determined asymptotic behaviour of u(x,T). 



APPENDIX A 

A. 1. Derivation of ( 2. 1. 14) and ( 2. 1. 15); Evolution of the spectral data for 

solutions of these equations; The solitary wave solutions of ( 2.1.14) and 

(2.1.17) 

We consider: 

(A. 1 • 1) a) ijJxx + 0,. + u)ijJ O 

Putting ijJxxt = ijJtxx leads to the following equations for A and B: 

(A. 1 • 2) a) 2A + B = 0 ; 
X xx 

b) A - 2Bx(" + u) - Bu = - ut - "t xx X 

~ 

(A. 1.3) a) A=-!Bx+a(t) 

b) !B + 2B (A+ u) + Bu = ut + "t xx X X 

First we investigate the case that: 

(A.1.4) 

We try to find a solution of (A.1.3b) by substituting a truncated power 

series in A: 

(A. 1.5) B (x, t) 

Substitution gives: 

N 

I 
n=O 

An B (x, t) • 
n 



(A.1.6) 

(A. 1. 7) 

b) 

N 

I 
n=O 

B 
n 

(½B"' + 2B' u+ u B ) 11.n + 2B' 11.n+l 
n n x n n 

a =-ax 

X 

- ¼ B" - uB + ! n+1 n+1 J u (y,t)B 1(y,t)dy + S (t) , y n+ n 

0 ;an ;a N-1 

c) 1 B"' + 2uB' + B 2 0 · 0 ux O = ut • 
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Starting with (A.1.7a), we use the recurrency relation (A.1.7b) to find an 

expression for B0 (x,t) with the following structure: 

(A.1.8) 
N 

Bo(x,t) = So(t) + I Sn(t)(Tnu)(x,t)' 
n=1 

where Tn are differential-integral operators. 

Substitution of (A.1.8) in (A.1.7c) produces an evolution equation for 

u(x,t). 

Examples: 

1 0. N 1 ~ ut + 6uux + uxxx O, KdV-equation; 

Substitution in (A.1.7c) and choosing: 

4 , s2 = 16S 

leads to: 

(A. 1.9) u + 6uu + u = S{ u + 1 Ouu + 20u u + 30u2u } 
t X XXX XXXXX XXX X XX X 

The evolution of the 'eigenfunctions' w(x,k,t) in time, is given by (A.1.1b), 

with: 
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(A. 1. 10) a) 

b) 

A = u + Cl + f3 (- u - 6uu + 4>..u ) ; 
X XXX X X 

B = - 2u + 4>.. + f3(2u + 6u2 - 8>..u+ 16>..2) xx 

For determining the time-evolution of the normalization coefficients cn(t), 

we take in (A.1.1b): 1jJ = 1jJ (x,t) and>..=>.. = -k2• Multiplying (A.1.1b) by n n n 
1/Jn and integrating over the real axis gives: 

00 00 00 

(A.1. 11) 0 ½ 
d 

f 
2 f A w2 dx + I dt ijJn(x,t)dx = B n 1/Jn 1/Jnx dx = n n 

-co -00 -00 

00 

I (A w2 - ! B I w2) dx = 2 n n n n I A 1/Jz dx - Cl 
n n n 

00 00 

With the help of the S.E. (A.1.1a), it is simple to deduce that: 

( ) ) U ,I, 2 d ( 2 ) A.1.lZ a x'I' = dx ijJx-ijJijJxx 

b) (u + 6uu )1jJ 2 = dd (u w2 - 2u 1/JljJ + zuw2+ 2uijJiP, + 
XXX X X XX X X X XX 

Using these equalities in (A.1.11) leads to: 

(A.1.13) (l = 0 • n 

Hence, the evolution of the eigenfunction 1/Jn(x,t) is given by: 

2 2 2 4 oijJn 
[(-2u-4kn) + f3(2uu +6u +8uk +16k )]-~-+ x n n ox 

2 +[ux+f3(-u -6uu-4ku)]1jJ xxx x nx n 

For the asymptotic behaviour of 1/Jn we have 



k X 

(A.1.15) liml/Jnen =cn(t) 
x--

k X 
1 . n 

1.m 1/lnt e 
~ 

de 
= ~ • 

dt 

k X 

lim 1/1 e n = - k c ( t) nx n n 
x--

Taking limit x -+ 00 in (A.1.14), now leads to: 

137 

The evolution of the reflection coefficient is determined more simply. For 

the generalized eigenfunction 1/J(x,k,t) we have: 

(A 1 17 ) ( k ) ~ e-ikx + beikx • • 1/1 x, • t X -+ 00 

1/Jx(x,k,t) ~ - ike-ikx + bikikx x-+ 00 

1/lt (x,k, t) ~ bt ikx , x -+ 00 • 

Substituting 1/J(x,k,t) and (A.1.10) into (A.1.1b) and taking limit x-+ 00 

gives: 

(A.1.18) a) a= 4ik3 + 16iSk5 ; 

With regard to applying invers~ scattering, it is important to note that 

b(k,O) = 0 implies b(k,t) = 0 for all t. 

We now know that (A.1.9) has pure N-soliton solutions. The solitary wave 

solutions of (A.1.9) are given by: 

(A.1.19) u(x, t) 2 2 2 4 2K sech K(x - (4K - 16SK )t) 

We return to the equations (A.1.3), but now we take: 

(A.1.20) At = f(A) 

First, we derive an evolution equation for c (t). n 
Substituting 1/Jn(x,t) into (A.1.1b) and taking limit x-+ 00 leads to: 
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dk 
(A.1.21) n -x--c 

dt n 

de 
n 

+ -- = dt 
(-!B' +a -B k )c , 

n,oo n n,oo n n 

where B' , respectively, B , stand for the asymptotic behaviour of Bn' and n,oo n,oo 
Bn' respectively, for x ➔ oo. 

It is obvious that the x-dependent terms in (A.1.21) must cancel out. So: 

dk 
(A.1.22) x dtn - ! B, - B k n,oo n,c::o n 

is x-independent. 

This can easily be established by taking for B a linear function in x: n,oo 

(A.1.23) B (x, t) = b0 (t) + xb 1 (t) , 
n,oo 

with 

We will now restrict ourselves to B's of the following form: 

(A.1.24) B(x,t) 

where N(A)u satisfies 

(A.1.25) lim (N(A)u)(x) 0 
~ 

So, for the evolution equation for cn(t) we have: 

(A.1.26) 
de n 
dt Joo (A ) 2 (A ) ) 

(N n. u) ijJ dx - b0 n k c • 
x n n n 

Now, we need to derive an evolution equation for b(k,t). Due to the structure 

of B(x,t) given by (A.1.24), straightforward substitution of ijJ(x,k,t) in 

(A.1.1b) and taking limit x ➔ oo will not work. Instead of that, however, we 

can give a partial differential equation for b(k,t), with characteristics 

given by the solution k(K,t) of: 
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(A. 1.27) 

k(O) = K. 

Of course, in order to be able to use inverse scattering, k(K,t) must cover 

the whole real axis. Therefore, we must restrict ourselves to time-intervals 

T, for which we have: 

(A. 1. 28) 'v't ET, 3 interval (m( t) ,M( t)) so that (j): (m( t) ,M( t)) + JR, 

defined by: (J)(K) = k(K,t), is a bijection. 

Now substituting ~(x,k(K,t),t) and (A.1.24) into (A.1.1b) and taking limit 

x + 00 leads to: 

(A.1.29) d 
dt b(k(K,t),t) 2ik b6A) ( t) b (k(K, t), t) 

As a final step, we substitute (A.1.24) into (A.1.3b) to get an evolution 

equation for u(x,t). We find: 

Conclusion: 

1°. the right-hand side of (A.1 .30) is A-independent; 

2°. lim (N"-u)(x) = 0. 
x+oo 

Let T be a time interval satisfying (A.1.28). Then: (A.1.30) is S-integrable. 

The evolution of the spectral data is given by (A.1.20,26,29). Due to the 

fact that b(K,0) = 0 implies b(k,t) = O, these evolution equations have pure 

N-soliton solutions. 

Examples of evolution equations of structure (A, 1. 30) are given by (2.1. 17). 

For equation (2.1.17a) we see that Condition (A.1.28) is satisfied for all 

t E JR. 

The solitary wave solutions are given by: 
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For equation (2.1.17b) we see that Condition (A.1.28) is satisfied for p > 0, 

t ~ 0 and p < O, t ~ 0, respectively. 

The solitary wave solutions are given by: 

(A.1.32) 2 ) 2K h2 ( KX _ 4PK (1 1 ) 1 l ( 1 2 2 ) 2 sec ,--.,--- - ,---,----,-- + 2 og + PK t . 
+ 2pK t /1+2pK2 t /1+2pK2 t 

A.2. Proofs of Theorem (2.2.3), (2.2.36), Theorem (2.2.4), Theorem (2.2.6) 

and Lemma ( 2. 2. 1) 

i) Proof of Theorem (2. 2. 3) 

· First, we note that with Theorem (2.2.1) and (2.2.5), it is easy to see that 

u E Cm(lR) and u = [0], implies that 

R(x,k) E Cm+2 (lR) for all values of k E C+ '- {0} • 

We prove (2.2.31) with induction top. 

For p = 0, we have: 

R'(x,k) = G(x,x,k)R(x,k) + J u(y)e2ik(x-y)R(y,k)dy 

X 

J u(y)e2ik(x-y) R(y,k)dy 

The induction step is proved by: 

X 

J e2ik(x-y) 

p -1 
d 0 

=p--=T 
dx O 

(uR) + 2ik 

p -1 
d 0 

p--=T 
dy 0 

X 

J e2ik(x-y) 
p -1 

d 0 

p--=T 
dy 0 

(uR)dy 



p -1 
d 0 

=-- (uR) p -1 

P -1 . 0 y=x 
_ [e2ik(x-y) ¼ (uR)] + 

dx O dy 
Po y=-m 

X • Po 
+ I e2ik(x-y) _d_ (uR)dy = 

Po 
-m dy 

x Po 
= J e2ik(x-y) _d_ (uR)dy 

Po 
-m dy 

In the last step, we have used that it is already known that (2.2.31) is 

fulfilled for p ~ p0 , so that: 

lim R(p)(x,k) = 0, 
JC+-0> 

(2.2.32a) is a trivial consequence of (2.2.30) and (2.2.31). 

(2.2.32b) can be proved by induction too, using the relationship: 

f x e2ik(x-y) dp (uR)dy = 

dyp 

X 

1 dp 1 f 2ik(x-y) dp+1 
= - 2ik dx~ (uR) + 2ik e dyp+1 (uR)dy • 

-m 
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Q.E.D. 

ii) Proof of (2.2.36) 

Theorem (2.2.1c) implies: 

and lim w (k) = 0. 
k-+O r 

ii) W(k) E c1(C+),. r_(k) = 2ik (w(O) + k :~ (0)) + w/k), with 

w (k) E C(C+) and lim w (k) = 0. 
r k-+O r 
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From (2.2.22), we know that: lr_(k) I G 1, k E JR. So: 

Either W(0) -! 0, or W(0) = 0 and 11~ (0) I G 2. 

We also have: 

W(O) = - W(0) . 

Combining the above results leads to: 

If W(0) = 0, then: 

dW 1 . (dW )-1 
dk (0)-! 0; a(0) = r_(0) = 2i dk (0) 

b(O) = ::~~~ = (1! (o)) (1~ (O)r
1 

• 

If W(0)-! 0, then: 

2ik 
a(k) ~ W(0) k ➔ 0 

iii) Proof of Theorem ( 2. 2. 4) 

First, we prove that: 

If: 

b(0)=-1. 

Q.E.D. 

(A.2.1) u(p)(x) is bounded for x ➔ - 00 and u(p)(x) [0], 0::ap::am, 

then: 

(A. 2 .2) !kl ➔ 00 , k E ii;+ , 0 ::a p ::a m. 

We have the following relationship between G(p)1(x,k) and G(p)(x,k): 
n+ n 

X 

(A. 2 .3) G(p) aP ( J G(x,y,k)Gn(y,k)dy) 
n+1 = axP 

-oo 

X 

= ~p-1 ( J ) o e2ik(x-y) u(y) Gn(y,k)dy 
dXp-l 

-oo 



= - 0-- uG + 2ik 
p-2 ( 
p-2 n ax 

= ap-2 ( 
p-2 ax 

X 

-oo 

-oo 

f e2ik(x-y) (uGn)p-l dy , n .;; 0, p .;; 1 • 

Note that in (A.2.3), we have used that 

(A.2. 4) lim 
Je+"-00 

0 ' n .;; 1 • 
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The validity of (A.2.3) for n = 0 follows with conditions (A.2.1). So, 

(A.2.4) holds for n = 1. By induction, the validity of (A.2.3) and (A.2.4) 

follows for all n. 

Using (A.2.3) for n = 0, we find: 

X 

G~p) J e2ik(x-y) u (p-1) (y)dy 

X 

= - 21.!k u(p-1)(x) 1 + 2ik 
f e2ik(x-y) u(p) (y)dy 

So, (A.2.2) holds for n = 1. The validity of (A.2.2) for all n is again 

proved by induction ton using the relationship: 

X 

1 ( G )p-1 1 J e2ik(x-y)(uGn)(p) dy 
- 2ik u n + 2ik 

We will now prove the actual theorem. 

ad a): 

With (2.2.15), (2.2.25,26) and (A;,2.2)i a straightforward calculation leads to: 
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r_(k) 

co co 2 

I u(x)dx + {--1- 2 ( I u(x)dx) + 
(2ik) 

-oo -oo 

- .!_ _1_ ( Jcou(x)dx)3 + _1_ Jcou2(x)dx + o(lk114) ' 
6 (2ik) 2 (2ik) 3 

-oo -oo 

lkl +co' k E ~+ • 

Taking k = I; +in and using (2.2.21), we now find: 

ad b): 

lr_(k)l 2 = r_(k)r_(-k) = 1 - _n_ u + o(-1-), lkl +co, 
lkl 2 O lkl 3 

2 2 Ir_ (k) I 2 = 1 + .!_ n (31; - n ) 
4 lkl 6 

1 + o (-½.) , I k I + co , if u0 = O • 
lkl 

Consider (2.2.16). 

m-times partial integration and using lim R(p)(x,k) = 0, p 6 1, leads to: 
x-

So: 

and 

r+ (k) I e -2iky (uR) (m) dy k E 1R'-{0} • 

lb(k)l 2 = b(k)b(-k) 
r+(k)r+(-k) = o(lkl-2(m+1)) 

r_(k)r_(-k) ( 1 ) 
o 1 +m 

= o(lkl-2 (m+l)) , lkl +co, k E 1R, 

1 - I a(k) I 
2 

1 - I a (k) I 
1 + la(k)I 

Jb(k) 12 = o(lkl-2(m+1)) , 
1 + la(k) I 

lk I + co, k E 1R. 

Q,E.D. 



iv) Proof of Theorem (2.2.6) 

Co_nsider (2.2.50). (Because u = [2], this expression is well-defined.) 

Taking the logarithm leads to: 

145 

1 
log r_(k) = 21ri I log(1 - lb(q) 12) dq + 

k - q 

N k-ik 
l log k + ik R, , Im k > O • 

R,=1 R, 

Using 

and 

k - ikt 00 
( ikt)2n+1 1 

log k + ik = - 2 l k • 2n + 1 ' 
R- n=O 

. we can expand log r_(k) for lkl ➔ 00 in powers of 1/k. 

(A.2.5) 
p+1 an 1 

log r_(k) = l - + --
n=O kn kp+l I qp+l log(1- lb(q) 12) dq + 

k - q 

+ o(lkl-(p+2)) , lkl + 00 , Im k > o , 

with 

(A.2.6) 0 (since lb(q) 1' 2 = b(q)b(-q) is even), 

(X) 

I 2n 2 2 N 2n+1 
q log(1 - lb{q) I )dq - -2--1 l (ikR,) 

n + R-=1 

Using Theorem (2.2.4b), we see that under the conditions of Theorem (2.2.6) 

the expansion (A.2.5) is well-defined for O ~ p ~ 2m, since the integrals 

converge. 

We will now derive an expansion of log r_(k) in another way. We define: 

(A.2. 7) cr(x,k) 

Since IR(x,k) I 

well-defined. 

R' (x,k) 
R(x,k) lkl large, Im k > 0, r_(k) f O. 

+ 0(1/lkl, lkl + 00 , is positive for lkl large, cr(x,k) is 
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With (2.2.5~) and (2.2.34) we see that: 

00 

(A.2.8) J a(x,k)dx = log R(x,k)[
00 

log r_(k) 
-oo 

By using (2.2.5a), it follows that a solves the following differential equa

tion: 

(A.2.9) a + a2 - u - 2ika O. 
X 

From Theorem (2.2.2) and (2.2.5a), we know that for fkJ +"" we can expand a, 

as well as a, in powers of 1/k, in such a way that the first p terms approxx 
imate a with order JkJ-(p+ 1) uniformly in x on JR. 

We search for a solution of (A.2.9) by substitution of a power series: 

(A.2.10) 
p+1 a (x) 

a(x,k) = 2 _n __ + crp+2 (x,k) , 
n=1 (2ik)n 

where an(x) and :x an(x) are bounded, and crp+2 (x,k) and ix crp+2 (x,k) are 

0(1/lkfP+2) uniformly in x on JR. 

This gives: 

(A.2.11) 
( l a.a.\ I i+j=n 1 J/ 

n=2 (2ik)n 
! ~-

n=O (2ik)n 

So we find: 

(A.2.12) a1(x) = - u(x) a (x) = - du (x) · 
2 dx ' 

a.a. 
1 J 

We see that an has the structure of a polynomial in u and x-derivatives, up 

to order n - 1, of u. Therefore, under the conditions of the theorem, 

! 00 a (x)dx is well-defined for 1 ~ n ~ m+1. 
-00 n 

Combining the above facts, we find that: 

(A.2.13) log r_(k) 
m+1 a 

\' _.E_ + o(lkl-m:-2) , lkl + 00 Im k > O L , , 
n=1 kn 

where 



(A.2.14) Cf, 
n (2i)n 

-oo 

00 

J crn(x)dx on defined by (A.2.12) • 

Comparing the expansions (A.2.5,6) and (A.2.13,14) proves the theorem. 
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(That indeed a2n = 0 in the expression (A.2.14) can also be seen from the fact 

th~t cr2n (x) is a total derivative, e.g.: cr2 = - ux• cr 4 = - uxxx + 4uux 

=-(-u +2u2).) dx xx Q.E.D. 

v) Proof of Lemma (2.2.1) 

From elementa11y linear algebra, we know that: 

det(I + C) 
N-1 

1 +·det C + t 
m=1 

C 
m 

where Cm is the sum of the determinants of all m x m diagonal submatrices 

of C. 

C, as well as each m x m diagonal submatrix of C, is of the form B, where B 

is given by: 

B 

where n 1 < n2 < ••• < nj is some subsequence of {1, ••• ,N}. 

So, Bis a symmetric matrix. Moreover, Bis positive definite since it holds 

that 

i 
i,t=1 

00 

J 
X 

i 
i,t=1 

dz 

J 
-ku z)2 

c I;, e i dz > 0 , 
n. n. 

l. l. 
X 

Since the determinant of a real symmetric positive definite matrix is 

positive, the lemma has now been proved. 
Q.E.D. 



APPENDIX B 

B.1. The evolution equations foryn(t) and a(k,t) 

Starting point for the derivation of the evolution equations for the spectral 

data, is the following evolution equation for a (generalized) eigenfunction 

~k(x,t) corresponding to A= k2 , k E f+: 

(B.1.1) 

where c is an undetermined constant. 

The deriv~tion of this equation can be found in [EvH], § 7.1. As in [EvH], 

we define: 

(B.1.2) 

Now, multiplying (B.1.1) by an arbitrary eigenfunction $k corresponding to 

A= k2 , followed by integration between any two points x and x0 , we obtain: 

(B. 1 • 3) 

X 

J (Ef(u)-At)~k~kdx' 

XO 

All the evolution equations for the spectral data can be found by putting 

into (B.1.3) various choices for the (generalized) eigenfunctions ~k and ~k 

and using their asymptotic behaviour for lxl ➔ ©. 

For the evolution equation of yn(t), we take: 

(B. 1 .4) 



We remember that the asymptotic behaviour of ;p'n and 1n is given by: 

(B. 1.5) 
k X 

lim'ip en =c 
n n 

x--

lim 
x-+-oo 

-k X ~ n lji e n 1 • 

Moreover, we have the following relationship between'¥ and ;Ji': n n 

(B. 1.6) 2k n 

Substituting (B.1.4) in (B.1.3) and taking the limit x0 + -oo gives: 

(B. 1. 7) 

Using 

_ d:\n { 
dt 

X 

= £ I f(u)$ i dx' + 
n n 

X 

I (':rn7,n_ 1)dx' + x} + 8k4 + ~k - 2ck ..,.. 't' n dt n n =: 

2k 
and n 

ax:::::-=~2, 
\l) \l) 

n n 

integration of (B.1.7) gives: 

X 

i (x) 
n 

I .!._ dx' 
i2 

n 

Taking the limit for x0 + - 00 

' 
using (B.1.5), we arrive at: 

Using (B.1.2,4,7), this transforms to: 

(B. 1. 8) 

F(x,t) • 
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X 

• ( J~n~n-1)dx' + x+ 2~J-in 
-oo -oo 

oo X 

f f~! dx)( f ~! dx')} 

Integrating (B.1.8) over lR and using (3.1.8,9) and 

results in 

with 

00 00 X X 

G := J $n ~n { ( J f ~! dx) f ~! dx' - J q! dx'}dx + n 
-oo -oo -oo -oo 

00 X 

+ f ~!( f f$n ~n dx')dx + 
-oo -oo 

00 00 X 

- ( I f ~! dx) I ~!{x + I ($n~n -1)dx' + 2~ } dx . 
n 

-oo -oo -oo 

This corresponds to the equation for yn(t) given in (3.1.10). 

For the evolution equation of a(k,t) we take A= k2 , k E lR, arbitrary but 

fixed. So At 0. The generalized eigenfunctions are chosen as follows: 

(B. 1. 9) ~r as defined in (2.2.4). 
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The asymptotic behaviour of ~k is given by: 

-ikx - ikx 
~k ~ ae + ae x + - co 

ikx - -ikx 
~k ~ ( 1 + b) e + ( 1 + b) e , x + co • 

This leads to: 

Introducing al this information into (B.1.3) and taking the limits x0 + -co 

and x + co, we get: 

(B. 1. 10) d - - - 4 - - -2 d a 
2ik dt (b-b)+2ik(bbt-bbt) + 16k (b+b+2bb)+2ika dt::-= 

a 

= £ f f(u)~~ dx 

-ix> 

(We have used that: la1 2 + lbl 2 = 1 .) 

From the evolution equation (3.1.5) for b(k,t) and ~(x,k,t)=a(k,t)~r(x,k,t), 

we see that: 

- 2 f 2 -2 £(1 + b)a f(u)~rdx + £(1 + b)a f -2 
f (u)~r dx 

Combining (B.1.9,10,11), we arrive at: 

co 

(B. 1. 12) 2£ aa f f(u)~ ~ dx = r r 
-co 

co co 

- 2 
J 

2 -2 

f 
-2 -2 d a 

£ ba f(u)~rdx + Eba f(uHrdx+2ika dt::-
a 

-co -co 

We now write: 
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i(I) .(k,t) 
a(k,t) = ia(k,t)le a .• 

-2 By dividing (B.1.12) by a, we find the following evolution equation for the 

phase of the transmission coefficient (j)a (k, t): 

(B.1.13) 

The modulus ia(k,t)I of the transmission coefficient is determined by: 

(B.1.14) ia(k,t)l 2 = 1 - !b(k,t)l 2 • 

So the evolution of the transmission coefficient is given by the equations 

(3.1.5), (B.1.13) and (B.1.14). 

B.2. Well-definedness of Sn and I-In 

In the following lennnas, £ and tare considered to be parameters. The con

stants in the proofs are generic, i.e. they have different values in dif

ferent parts of the proofs. We take£ and t arbitrary but fixed. 

Lennna (B. 2.1): 

If u(x) satisfies a growth-condition of order 1, then, 

exists. 

Proof: 

From (2.2.41,23), we know that ;Ji' (x) can be written as: 
n 

(B. 2. 1) ;Jj' (x) 
n 

k X 

R(x,ik )en 
n 
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where R(x,k) satisfies: 

X 

(B.2.2) R(x,k) 1+ I ~lr{e2ik(x-y)_1}R(y,k)dy, k€~+'{0}, 

-oo 

and 

(B.2.3) lim R(x,k) R(x,k) is continuous in (x,k) on lR x ~+ • 
x-+-oo 

It also holds that: 

X 0 00 

en = ~ { I an~n - 1)dx' + 2x} I an~n - 1)dx + J (1 ~ + 1)dx, 
n n 

-oo -oo 0 

provided that both integrals on the right-hand side converge. 

·11 h f 1°(Z:i:'-1)dx. ( 3) W.e wi nows ow convergence o _00 o/no/n From B.2.1. we see that 

3L such that 1 (x) > 0 for x :a L. n 

It can be easily verified that, for x :a L, the solution l (x) of the S.E. n 
can be represented by: 

We now have: 

0 0 

(B,2. 4) I (11 - 1)dx = 
n n I (1 ~ - 1)dx + 

n n 
-oo 

+ 2k n 
-oo 

L 

L ~ I ~-2 1 } ~n(L) 
1/J (F;)df; - - dx +--

n 2kn ~ (L) 
X n -oo 

From this equation, we see that JO <11 - 1 )dx converges, iff 
- 00 n n 

(B,2,5) 

is convergent. 
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From (B.2.1,3) it trivially follows that: 

-k X 

(B.2.6) 1- fn(x) ;;, ;p'n(x)e n ;;;·1 + fn(x) , 

where f (x) := 11 -R(x,ik )I is a positive continuous function which tends n n 
to zero for x ➔ - oo • 

With (B.2.6) it follows that: 

L L 

(B.2. 7) f {1!<x) f ~:2 <s)ds - 2~Jdxl ;;; 
-oo X 

L 2k x L ;;; I I ( 1 + fn (x)} 2 e n f 
-oo X 

L 2k x L -2k s ;;; f e n f e n ds - 2~ I dx + 
n 

-oo X 

L L f 2knx f -2kns{ 1 } ds dx + + e e -1 + 
(1- fn(0} 2 

-oo X 

L 2k 
+ f (2fn(x) + f!(x)}e nx f 

-oo X 

with 

L 2kn(x-L) 

I e 2kn dx = 4:2 
-oo n 

Using 

1 - 1 

(1-f <s))2 n 

L -2kns 
e 

(1 - f <s)} 2 
n 

ds dx = 

(e.g. C=4 if f (O< D, n 
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we get: 

L 2k x L -2k s 
1 2 :,;c fen f fn(s)e n dsdx= 

-co X 

2k x 
[ 

. n 

= C e 2kn 

lim e 
x+-co 

2k x L 
n f -2k s 2k x fL -2k s 

f (s) e n ds :,; C lim e n e n ds 
n x+-co 

X X 

Zknx -2k x -2k L 
= C lim ~ (e n - e n ) = 2~ < 00 • 

x+-00 n n 

So 1 2 converges if _00JL fn(x)dx converges. 

L 2k x L -2k s 

13 :,; C f (2fn(x)+ f!(x))e n f e n dsdx :,; 

-ex, X 

L 
2kn(x-L)) 

:,; C f ( 2fn (x) + f! (x)} ( 1 - e dx. 

-co 

L So, 13 converges if _00J fn(x)dx converges. 

L This leaves us to prove the convergence of _00J fn(x)dx. Using (B.2.2) we 

get: 

L L 

f fn(x)dx = f 11 - R(x, ikn) I dx = 

L 

f 2~n 
fx ( -2k (x-y)) 

u(y) 1 - e n R(y,ikn)dyl dx:,; 

-oo 

L X 

IR(x,ik )I n f f lu(y)I dydx = 

X L 

J lu(y)I dxLco - C 

L 

J xlu(x)I dx 
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Now, if u(x) [ 1], then: 

lim X 

X-¥"00 

X 

j I u(y) I dy lim 2 
x iu(x)I 0 • 

L () Oc~~ ) So, _00J fn x dx < 00 and convergence of _00f q,n 1/Jn - 1 dx is proved. 

0! 00 (¢;J;' + 1)dx can be proved to converge in exactly the same way as the 
n n 

proof that is given above. However, instead of working with ;J;' (x) = 
-~x n 

= R(x,ikn)e , we must use: 

where 

¢ (x)';p' (x) = ;i;'0 (x,ik )ijJ 0 (x,ik) , n n ,, n ,, n 

k X 

L(x,ik )en 
n 

and L satisfies 

L(x,k) 1 + J ~~~ {e2ik(y-x) -1 }L(y,k)dy 

X 

L(x,k) is continub.us in (x,k) on lR x (:+ 

;J;'R,(x,ikn) is the eigenfunction for A= - k~, defined by: 

lim ;J;'R,(x,ikn)ijJR,(x,ikn) 
~ 

Note that we have shown that: 

0 

(B. 2. 8) J Ii ;J;' - 1 I dx and n n 

Lemma (B.2.2): 

-1 • 

J I'¥ ;J;' + 1 I dx n n 
converge. 

0 

-+ kE¢,{O}. 

Q.E.D. 

If u(x) = [1] and f(u(x)) = [O], then all the integrals occUl'ring in Hn(t), 

as defined in (3.1.11,12), converge. 

Proof: 

From (2.2.30), we know that 
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k X k X 

(B.2.9) jR(x,ikn)je n ~ Ce n X < Q ; 

-k X -k X 

j;i;n(x)j = jcnl}JR-(x,ikn)j = cnjL(x,ikn)je n ~ Ce n X > Q • 

Firstly, we will show convergence of: 

-oo -oo 

00 2 
Using (B.2.9) and _00J l}Jn(x)dx = 1, we get: 

0 00 X 

j1 1 j ~ j J $nl}Jn{( J f(u)ijJ~dx) J f(u)ljJ~dx'}dxj + 

-oo -co -oo 

00 

+ j J $nl}Jn { J f(u)ljJ~dx' - ( J f(u)ijJ!dx) J l}J!dx'} dxj ~ 
Q X -oo X 

0 

~ c{ J ( 
x 2k x' 

J e n dx') dx + < 00 • 

Secondly, we use (B.2.8) and $nl}Jn = '¥n';pn to show convergence of: 

oo X 

l 2 : = J 1jJ ! { x + J ( $ n 1jJ n - 1) dx 1 } dx 

00 0 X 

112 1 = I J l}J!{- x+ J ($ 1jJ - 1)dx 1 + J ($ 1jJ + 1)dx'}dxj ~ 
n n n n 

-oo -oo 0 

00 0 00 

~ J l}J!{lxl + J j $ n 1jJ n - 1 J dx, + J j $ 1jJ + 1 j dx 1 } dx < 00 • 

n n 
-00 -oo 0 

Convergence of the remaining integrals in Hn (t) is trivial. 



APPENDIX C 

Proof that (5.1.10) can be replaced by the conditions (5.1.24) and (5.1.25) 

Define g(k,,) as: 

Suppose W(O,,) = 0 for, E [a1,a2] c [0,A]. 

Because of (5.1.24) we have: 

8ik3 (,-,') 

g(k,,') e o e2ik(x+y) dkd,' I 

a oo 

l7Ti J 2 I f(u(x,,'))i(x,O,,')dxd,'I;;, C(a2 -a1). 

So: 

Let Ii c [0,A], i = 1, .•• ,p, be disjoint intervals on which W(O,,) 

W(O,,); 0 for, E [O,A], U I .• 
i ]. 

Then: 

(C. 1) I f_ 
k=rel.(j) U 
0;;,(J);;,7T i 

8ik3 (,-,') 

J g(k,,') e o e2ik(x+y) d,' dkl ;;; 

I. 
]. 

where µ(Ii) is the Lebesgue measure of Ii. 

O, and 

Now, for estimating / 00 II(k,,)dk, 
-oo 

for,' E [O,,],lJ Ii, we integrate 
]. 

along the rectangle {k Et I O;;; Im k;;; n, IRe kl;;; p} and take the limit 
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p + oo, while for T1 E (0,T] n U I., we integrate along the rectangle minus 
i i 

the semicircle with radius r: {k EV I O ~ Im k ~ n, !Re kl~ p, lkl ~ r} 

and take the limits p + 00 , r + 0. 

From (C.1) it immediately follows that, if W(O,T) i O almost everywhere on 

[O,A], then, no extra contribution will come from the integration along the 

semicricle. 

This proves the statement. 

Q.E.D. 



APPENDlX D 

Proofs of Lemmas (6.1) and (6.2) 

i) Proof of Lemma ( 6. 1) 

For each TE [O,A] fixed, we have: 

I f(u (x,T))~ 2 (x,T)dx = s ms 
-oo 

where~ (z ,T) = us(x,T). 
s m 

We split the integration interval into three parts: 

I: -oo < z m 
;;;; ½ {(j)m-1 - (j)m) , 

II: ½ {(j)m-1 - (j)Iii) ;;;; z ;;;; ½ {(j)m+1 - (j)m) , 
m 

III: ½ {(j)m+1 - (j)m) ;;;; z < "' m 

Now, using (3.2.16) and (3.2.13), we get: 

for some positive constant a. 

And analogously: 

j f(~s)~~sdzm = O (exp- 0(:)) , 

III 

I 



161 

J ( 2 2 + ) 2 + ( CIT ) f - 2k sech k (z - o ) • ½k sech k (z - o )dz = 0 exp-~( • m m m m m m m m m o \E:J 

III 

For the region II, we use u = -4 IN 1 k ip2 , (3.2.15, 16) and the special s n= n ns 
structure of the perturbation to get: 

f(~) 
s 

And so, it follows that: 

CIT 

(D. 1) J f(;:i )~2 dz = · .. J (f(-4k i) + 0 (e- o(e:)))~2 dz s ms m m ms \ ms m 
II II 

Using (3.2.18), we see: 

(D. 2) 

CIT 
( 2 2 +) ( -6(£)) ( 2 2 + ) f - 2k sech k (z - o ) + 0 e f 0 - 2k sech k (z - o ) m mm m m mm m 

where f 0 is an operator of the same form as f. 

Combining (D.1) and (D.2) we get: 

, CIT 

I - -2 J { 2 2 + ). 2 + ( -8(E)) f(u)ijJ dz= f-2ksechk(z-o)•½ksechk(z-o)dz+Oe • s ms m m m m m m m m m m 
II II 

Finally, combining the results for the regions I, II and III, we obtain the 

estimate required. 

Q,E.D. 

ii) Proof of Lemma (6. 2): 

We start by defining: 

- -1 
X = X - VT0 (e;) u(x,T) , etc.; 

1 T = mo(e:) log- . 
m e: ' 
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On the region D, we can use the following estimate (use (3.2.9), Lemma 

(3.2.1) and 1jJ = d 1jJ (x,ik ,T)): n n r n 

(D.3) 

k n :a C dn (O) exp TI€) } 
k i 

0(£) e n 

where we take v < 4M7 and a:= kn(4M7-v). (M1 defined as in (3.2.3b.) 

From (D.3) it is easy to see that we also have: 

M 

(D.4) I Jw(i,T)Jdi :a on h ,A] , 
m 

On the region D+, we use condition (6.4). Moreover, we use that: 

(D.5) 
a a 

ljJns 1/Jn clx ljJn ; clx ljJns 

are uniformly bounded on D, 

and 

(D.6) 

implies that: 

J Jf(u)iJJ2 - f(u )iJJ 2 Jdx n s ns 
-oo 

,/u 

ax s 

clsu 
and 

s 

ax s 
s = 0, 1 , ••• , 2j , 

uniformly on [T ,A] , 
m 

for some order-function i;; ( £) , 

uniformly on [T ,A] • 
m 

(Of course, in general, this implication is not true. However, in this case 

we already know that both of the integrals converge and that the smallness 
00 2 2 

of _00! f(u)ljJn - f(us)ljJns dx is due to the smallness of the integrand on 

[T_,A] .) 
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The proof is based on an induction procedure that consists of the following 

steps: 

1°. Show that the lemma holds for f(u) = L(u). 

2°. Show that, if the lemma holds for f(u) = f 0 (u) (where f 0 (u) is of struc

ture (6.2)), then it holds for f(u) = f 0 (u)(osu/oxs), 0 ~ s ~ j, too. 

3°. Show that the lennna holds for h(u) = f(u) + g(u), when it holds for f(u) 

and g(u). 

Ad 1°: 

CX) 

f IL(~)~2 - L(~ )~2 Id~~ n s ns 

M 

+ J (IL<u)I ~2 + IL<~ )I ~2 )di~ n s ns 

~ C sup I u - ~, \ + C sup 
D+ s D+ 

T 

= 0 (q(E) + e-2a8(£)) • 

Ad 2°: 

We know that: 

-2a-T-
ilf0(u)i - f 0 (u )~2 IIL = o(q(E) + e o(£) ). n s ns 1 
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co ~ 

I 2 o - -2 ( .Jsu a us) -
(f 0 (u);j;n + f (u )i/J ) - - -- dxl := s ns -s -s 

ax ax 
-co 

sup 
D 

s-
s- a u a u s o - -2 I-+ -1 •llf (u),,, -s -s o/n 

ax ax 

T 

( + e-2a O (£)) 
= 0 q(E:) 

I + II . 

Performing partial integrations-times and using that 1/Jn and 1/Jns are 12-

solutions of the Schrodinger equation, we get: 

II 

-co 

-co 

co 

IL 
-s ax 

Jco( -2 - a~n -2 - aip ns) - -1 
P1 1/J +P2 i/J - +P3 i/J +P4 i/J -- (u-u )dx n n - ns ns - s ax ax 

where: P1, P2 are polynomials in u and x-derivatives up to degree 2s of u, 

with multiples of ti-derivatives up to degrees of L(u) as coefficients, 

while: P3, P4 are polynomials in us and 'x-derivatives up to degree 2s of us, 

with multiples of us-derivatives up to degrees of L(us) as coeffi

cients. 

Using (6.4), (D,5) and the boundedness of the u-derivatives of L(u), respec

tively, of the u -derivatives of L(u ), it is now easily seen that: s s 

Ad 3°: 

Trivial. 

Q,E.D. 



APPENDIX E 

E. 1. Derivation of the KdV-equation for shallow-water waves 

We consider a two-dimensional model for the flow of an incompressible, 

irrotational, non-viscous fluid in a canal with a flat horizontal bottom 

(see picture). 

We define: 

(E. 1.1) ho: the depth of the canal with water at rest, 

(j) the velocity field potential (-; Vtp)' 

q the gravitational acceleration. 

The system is described by the following set of equations: 

(E.1.2) a) 1:,.tp = 0 , 0 < y < h0 + n(x, t)) • (Conservation of mass) 

b) (Equation of motion) 

c) ,n = 0 
"'y ' y = 0 (Boundary condition at y = O) 

d) nt + (l)xnx = tpy , y = h0 + n(x, t) • (Equation _of motion for the 

free boundary y = h0 + n(x,t). Surface tension is neglected) 

We are looking for waves with the following properties: 

(E.1.3) a=~<< 1 , a is a typical wave amplitude, 
ho 
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h2 
0 S = - << 1 , i is a typical wave length. 

12 

We introduce the following set of dimensionless variables (the old variables 

are given a bar): 

(E.1.4) 1 -y = -y 
ho 

1 - - - co - - - -
n(x,t) = a n(x,t) ' (/)(x,y,t) = gia (/)(x,y,t) 

Here c0 = lgh0 is the phase-velocity of nondispersive gravity 

waves. (See [W], § 13.3,4.) 

In these new variables, we have the following set of equations: 

(E. 1.5) a) S(/)xx + (/)yy 0 , 0 < y < 1+an 

b) (/) = 0 y ' y 0 
' 

c) (a1....-1....)n+ 1 
0 1 + an clt dX a(/)xnx - s (/)y ' y 

' 

d) ( cl cl) 2 a 2 
Cl, - - - (/) + ½Cl.(j) + - (/) clt clx x 2S y + n 0 ' y 1 + an . 

We search for a solution of (E.1.5a,b) of the form: 

(E.1.6) (/)(x,y, t) I 
n=O 

Substitution of (E.1.6) into (E.1.5a) and using (E.1.5b), leads to: 

(E.1.7) (!)(x,y, t) I with f(x,t) 
n=O 

Next, we substitute (E.1.7) into (E.1.5c) and (E.1.5d), respectively, and 

then differentiate to x. This gives: 

(E. 1. 8) - n + w + a(nt+wnx+ nwx) + 0 (-..!.w ) + xx µ6xxx 
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(E.1.9) 

_ _!_aS(ww +w -ww -2nw -2nw )- 214 s2w =O(a3 +s3) 2 XXX XXt X XX X XX XXX XXXXX 

In the above equations, w(x,t) = ;x f(x,t) is the first term in the expansion 

of the horizontal velocity }x lj)(x, t). 

Equations (E.1.8), as well as (E.1.9), imply that a first order approximation 

will give nx = wx, so that: 

(E,1.10) n(x,t) =w(x,t) + q(t) =lj)x(x,t) + q(t) + O(a+S). 

From a physical point of view, it is quite unlikely that the vertical dis

placement n(x,t) and the horizontal velocity lj)x(x,t) differ by a function 

that is only t-dependent. Therefore, we take q(t) = O. 

We now specify the terms in the expansion of n (x, t) up to order O(a2 + s2): 

(E.1.11) n(x,t) = w(x,t) + aA(x,t) + SB(x,t) + a 2C(x,t) + aSD(x,t) + 

For the same reason as mentioned above, the functions A and B neither contain 

constants nor parts depending only on t. 

Substituting (E.1.11) into (E.1.8) and (E.1.9), respectively, we obtain: 

(E.1.12) 1 2 a(n +2nn +A)+ S(B --6 n ) + a (C +nA +n A)+ t X X X XXX X X X 

(E.1.13) 

+ aS(-D +nB +Bn +B -..!.n +ln n +..!.nn +..!.A ) + x x x t 2 xxt 2 x xx 2 XXX 2 XXX 

Adding and subtracting the equations (E.1.12) and (E.1.13) leads to: 
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+ aS(2nB +2Bn +..!.A +n n +B --21 n ) + 
X X 3 XXX X XX t XXt 

2 1 1 3 3 + 13 (-3 B - 30 n ) = 0( a + 13 ) • 
XXX XXXXX 

2 2 
O(a + 13 ) • 

From (E.1.15) we can see that: 

(E. 1. 16) a) , and consequently: 

b) 0 , and consequently: 

From (E.1.14) we see that: 

(E. 1. 17) 

1 2 A(x,t) = - 4 n , 

Substituting (E.1.17) in the expressions for At and Bt in (E.1.16) leads to: 

(E. 1. 18) a) 

b) 

Finally substituting (E.1.16,17,18) into (E.1.14) will give: 

(E.1.19) 

+ Q2 19 
,., 180 nxxxxx 

3 3 
O(a + 13 ) • 

Now, we consider the case in which a and 13 are of the same order of magni

tude: 



Moreover, in order to get the KdV-equation in its most familiar fotm, we 

need to introduce new variables: 

(E. 1. 21) u(x',t) - n(x,t) • 

For convenience, we will omit the ~'sand get: 

(E. 1. 22) u - 6uu + u t X XXX 

This is the KdV-equation + first order terms, such as used in§ VII.3. 
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We will now show that the physical equivalent of a solitary wave solution 

u(x,t) = - 2K 2 sech2 K(x-4it), of the KdV-equation, is a shallowwaterwave. 

Transforming back to physical coordinates: n, xf, tf, we get: 

Inserting ho 1 and a.= a= 1/t2 << 1, we get: 

Indeed, this represents a shalldw-waterwave. 

Note that the wave-velocity c0 (1 + K2/i2) is an O(e)-perturbation of the 

phase-velocity c0 of nondispersive gravity waves. 

E. 2. Solving (7. 4. 6) 

In this section, we will solve: 

(E.2.1) 2 -2 2 
uxx + (12K ch KX - 4K )u 

lim u(x) 0 • 
IX I-+<» 

6 -6 -4 K {2u ch Kx - 48ch Kx + 

76 -2 
+ [5 + 2a] ch Kx} ; 
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We use the notation: 

(E.2.2) ch= cosh; sh_ sinh KX = Y ~(y) = u(x) • 

Define L: c2 (lR) ➔ C (lR) by 

(E.2.3) (Lf)(y) = (D 2f)(y) + (12ch-2 y-4)f(y). 

(E.2.1) is equivalent to: 

(E.2.4) - 4 -6 -4 76 -2 (Lu)(y)=K{24ch y-48ch y+[5 +2a]ch y} 

It is easily seen that a solution of: 

(E.2.5) 

is given by: 

So, what we need is a solution of: 

(E.2. 7) a) 
4 76 -2 (Lv)(y) = K (5 +2a)ch y 

b) lim v(y) = 0. 
lyl-+<x> 

We first solve the homogeneous equation 

(E.2.8) (LijJ) (y) = 0 • 

From the theory in [F], we know that a solution of (E.2.8) is given by: 

(E.2.9) 4 7 3 3 2 
1}! 1(y) = ch y shy F(2 , 2 , 2 ,-sh y) 

The hypergeometric function F satisfies: 

so that 

-a 
F(a,b,b,z) = (1 ""z) , 

(E. 2. 10) 1jJ l (y) 
-3 ch y shy . 
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The general solution of (E.2.8) can now be found by using order-reduction. 

We introduce: t(y) t 1(y)~(y), and we get: 

(E.2.11) t(y) = A ch-3 y shy+ B ch-3 y shy (-32 coth y + sh4y + 16 sh2y + 60y). 

The solution of the inhomogeneous equation (E.2.7a) can be calculated using 

the variation of constants method. We find: 

(E. 2. 12) -3 -3 v(y) =Ach y shy+Bch y shy(-32cothy+sh4y+ 16sh2y+60y)+ 

4 19 1 -2 -3 
+ K <s+-za)(ch y-ych y shy) 

With (E.2.7b), we see that: B = 0, A is arbitrary. 

So, the solution u(x) of (E.2.1) is found to be given by: 

(E.2.13) u(x) = w(Kx) + v(Kx) = 



[AKNS] 

[AS] 

[BBM] 

[BS] 

[cl 

[CD i] 

REFERENCES 

M.J. Ablowitz, D.J. Kaup, A.C. Newell and H. Segur, 
1) Nonlinear evolution equations of physical significance, 

Phys. Rev. Lett. 31 (1973), pp. 125-127. 

2) The inverse scattering transform-Fourier analysis for nonlinear 
problems, 
Stud. Appl. Math. 53 (1974), pp. 249-315. 

M.J. Ablowitz and H. Segur, 
Solitons and the Inverse Scattering Transform, 
SIAM, Philadelphia (1981) 

T.B. Benjamin, J.L. Bona, J.J. Mahony, 
Model equations for long waves in nonlinear dispersive systems, 
Phil. Trans. Roy. Soc. London A.272 (1972), pp. 47-78. 

J.L. Bona and R. Smith, 
The initial value problem for the Korteweg-de Vries equation, 
Phil. Trans. Roy. Soc. Londdn. A.278 (1975), pp. 555-604. 

F. Calogero, 
A method to generate solvable nonlinear evolution equations, 
Lett. Nuovo Cimento 14 (1975), pp. 443-448. _ 

F. Calogero and A. Degasperis, 
1) Nonlinear evolution equations solvable by the inverne spectral 

transform, 
I, Nuovo Cimento 32B (1976), pp. 201-242, 

II, Nuovo Cimento 39B (1977), pp. 1-54. 

2) Extension of the spectral transform method for solving nonlinear 
evolution equations, 
I, Lett. Nuovo Cimento 22 (1978), pp. 131-137, 

II, Lett. Nuovo Cimento 22 (1978), pp. 263-269. 

3) Reduction technique for matrix nonlinear evolution equations 
solvable by the spectral transform, 
J. Math, Phys. 22 (1981), pp. 23-31. 

4) Spectral Transform and Solitons, 
North-Holland, Amsterdam (1982). 

[Co] A. Cohen, 
Existence and regularity for solutions of the KdV-equation, 
Arch. for Rat. Mech. and Anal. 71 (1979), pp. 143-175. 

[D] T.E. Dushane, 
Generalizations of the KdV-equation, 
Prov. of Symp. in Pure Math. (AMS), Vol 23 (1973), pp. 303-307. 



[DEGM] R.K. Dodd, J.C. Eilbeck, J.D. Gibbon and H.C. Morris, 
Solitons and Nonlinear Wave Equations, 
Academic Press (1982). 

[DT] P. Deift and E. Trubowitz, 
Inverse scattePing on the line, 
Comm. Pure Appl. Math. 32 (1979), pp. 121-251. 

[EvH] W. Eckhaus and A. van Harten, 

173 

The Inverse Scattering Transformation and the Theory of Solitons, 
North-Holland, Amsterdam (1981). 

[ES) W. Eckhaus and P.C. Schuur, 
The emergence of soZitons of the KdV-equation from arbit:rory 
initial aonditions, 
Math. Meth. in the Appl. Sci. 5 (1983), pp. 97-116. 

[F) S. Flilgge, 
Practical Quantum Mechanics I, 
Springer Verlag (1971). 

[GGKM i] C.S. Gardner, J.M. Greene, M.D. Kruskal and R.M. Miura, 
1) Method for solving the Xorteweg-de VT'ies equation, 

Phys. Rev. Lett. 19 (1967), pp. 1095-1097. 

2) Xorteweg-de VT'ies equation and generalizations VI, 
Comm. Pure Appl. Math. 27 (1974), pp. 97-133. 

[GL) I.M. Gel'fand and B.M. Levitan, 
On the detennination of a differential equation from its speat:rol 
function, 
Am. Math. Soc. Trans. Ser. 2, 1 (1955), pp. 253-309 
(Izvest. Akad. Nauk 15 (1951), pp. 309-360). 

[J) R.S. Johnson, 
A non-linear equation inaoPpo:roting damping and dispersion, 
J. Fluid Mech., Vol. 42, part 1 (1970), pp. 49-60. 

[K] D.J. Kaup, 
A perturbation expansion for the Zakharov-Shabat inverse saattePing 
t:ronsform, 
SIAM J. Appl. Math. 31 (1976), pp. 121-133. 

[KA] Yu. Kodama and MJ. Ablowitz, 
Perturbations of solitons and solitary waves, 
Studies Appl. Math. 64 (1981), pp. 225-245. 

[KK] K. Ko and H.H. Kuehl, 
1) Xorteweg-de VT'ies soZiton in a slowly varying medium, 

Phys. Rev. Lett. 40, No. 4 (1978), pp. 233-236. 

2) Modified Xorteweg-de VT'ies solitary wave in a slowly varying 
medium, 
Phys. Fluids 23, No. 1 (1980), pp. 31-33. 



174 

[KM] V.I. Karpman and E.M. Maslov, 

[KMcL] 

1) A perturbation theory for the KdV-equation, 
Phys. Lett. 60A (1977), pp. 307-308. 

2) StPUCture of tails prodwed under the action of perturbations 
on solitons, 
Sov. Phys. JETP 48 (1978), pp. 252-259. 

J.P. Keener and D.W. McLaughin, 
Solitons under perturbations, 
Phys. Rev. A16 (1977), pp. 777-790. 

[KN] D.J. Kaup and A.G. Newell, 

[Kr] 

[KS] 

[KdV] 

[L] 

[Lax] 

[LSO] 

[M] 

[McLS] 

[N] 

Solitons as particles, oscillators, and in slowly changing media: 
a singular perturbation theory, 
Proc. Roy. Soc. London A361 (1978), pp. 413-446. 

M.D. Kruskal, 
The birth of the soliton, in: F. Calogero (editor), Nonlinear 
Evolution Equations Solvable by the Spectral Transform, 
Research Notes in Math. 26, Pitman, London (1978), pp. 1-8. 

V.I. Karpman and V.V. Solov 1 ev, 
A perturbation theory for soliton systems, 
Physica 3D, 1&2 (1981), pp. 142-164. 

D.J. Korteweg and G. de Vries, 
On the change of form of long waves advancing in a rectangular 
canal, and on a new type of long stationary waves, 
Philosophical Magazine, Vol. XXXIX (1895), pp. 422-443. 

G.L. Lamb (Jr.), 
Elements of Soliton Theory, 
Wiley-Interscience (1980). 

P.D. Lax, 
Integrals of nonlinear equations of evolution and solitary waves, 
Comm. Pure Appl. Math. 21 (1968), pp. 467-490. 

O.A. Levring, M.R. Samuelson and O.H. Olson, 
Exact and numerical solutions to the perturbed Sine-Gordon equation, 
Physica D, Vol. 11 (1984), pp. 349-358. 

V.A. Marchenko, 
The construction of the potential energy from the phases of the 
scattered waves, 
Dakl. Akad. Nauk. SSSR. 104 (1955), pp. 695-698. 

D.W. McLaughin and A.G. Scott, 
Soliton perturbation theory, in: F. Calogero (editor), Nonlinear 
Evolution Equations Solvable by the Spectral Transform, 
Research Notes in Math. 26, Pitman, London (1978), pp. 225-243. 

A.G. Newell, 
Near integrable systems, nonlinear tunneling and solitons in slowly 
changing media, in: F. Calogero (editor), Nonlinear Evolution 
Equations Solvable by the Spectral Transform, 
Research Notes in Math. 26, Pitman, London (1978), pp. 127-179. 



[NMPZ] S. Novikov, S.V. Manakov, L.P. Pitaevskii and V.E. Zakharov, 
Theory of Solitons, The Inverse Scattering Method, 
Nauka, Moscow (1980), 
Consultants Bureau, New York (1984). 

[S] P.C. Schuur, 
Studies in Soliton Be~aviour, 
Thesis - Rijksuniversiteit Utrecht (1985). 

[SR] J. Scott Russell, 

[ST] 

[T i] 

Report on waves, in: Report of the fourteenth meeting of ~he 
British Association for the Advancement of Science, 
John Murray, London, 1845, pp. 311-390. 

J.C. Saut and R. Teman, 
Remarks on the KdV-equation, 
Israel J. of Math. 24, No. 1 (1976), pp. 78-87. 

S. Tanaka, 
1) On the N-tuple wave solutions of the KdV-equation, 

Publ. R.I.M.S. Kyoto Univ. 8 (1972), pp. 419-427. 

175 

2) KdV-equation. ConstI'UCtion of solutions in temzs of scattering 
data, 
Osaka J. Math. 11 (1974), pp. 49-59. 

3) KdV-equation; asymptotic behaviour of solu-tions, 
Publ. R.I.M.S. Kyoto Univ. 10 (1975), pp. 367-379. 

[Te] R. Teman, 
Sur un probleme non lineaire, 
J. Math. pures et appl. 48 (1969), pp. 159-172 

[TM] M. Tsutsumi and T. Mukasa, 
Parabolic regularizations for the generalized KdV-equation, 
Funkcialaj Ekvacioj, 14 (1971), pp. 89-110. 

[W] G.B. Whitham, 
Linear and Nonlinear Waves, 
John Wiley (1974). 

[ZF] V.E. Zakharov and L.D. Faddeev, 
KdV-equation, a completely integrable Hamiltonian system, 
Funct. Anal. Appl. 5 (1971), pp. 280-287. 

[ZK] N.J. Zabusky and M.D. Kruskal, 
Interactions of solitons in a collisionless plasma and the recur
rence of initial states, 
Phys. Rev. Lett. 15 (1965), pp. 240-243. 

[ZS] V.E. Zakharov and A.B. Shabat, 
A scheme for integrating the non-linear equations of mathematical 
physics by the method of the inverse scattering problem, I, 
Funct. Anal. Appl. 8 (1974), pp. 226-235. 



LIST OF SYMBOLS 

Some of the symbols used in this tract are listed below. 
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which they are used. 

The list is presented in alphabetical order; first Latin alphabet, then 
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