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PREFACE
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serve as an introduction to the Inverse Scattering method.
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CHAPTER |
INTRODUCTION

1. Historical Introduction

In 1895, D.J. Korteweg and G. de Vries derived a model equation for the
behaviour of long waves in shallow water, [KdV]. In dimensionless scaled
variables this equation, the so-called Korteweg-de Vries equation, is:

(1.1) u, - 6uuX tu s 0, (Kdv).

.This equation has solitary wave solutions:

(1.2) u(x,t) = 2a2 sechza(x—4a2t-x0) .

In physical variables these solitary waves represent shallow water waves.

In 1965, N.J. Zabusky and M.D. Kruskal, [ZK], discovered the soliton. They
studied the KdV because of its relevance to plasma physics, as well as, to
the Fermi-Pasta-Ulam problem. An interesting account of the motivations of
Zabusky and Kruskal for studying the KdV has been given by Kruskal, see [Kr].
They took two waves of type (1.2) with the smallest one in front as the
initial condition for the KdV..By means of numerical integration they found
that the larger solitary wave overtook the smaller one and came in front.
The remarkable fact is that the only effect of their interaction was a
change of phase, compared with the positions they would have had without
mutual interaction. The larger solitary wave was shifted to the right, while
the smaller one was shifted to the left. This particle-like behaviour in-
spired Zabusky and Kruskal to the name 'soliton'.

Nowadays it has become common use to use the term soliton for any solitary

wave.

A great breakthrough came in 1967 when C.S. Gardner, J.M. Greene, M.D.
Kruskal and R.M. Miura found a way to solve the KdV initial value problem

analytically by means of the spectral transform technique, [GGKM 1].



Soon afterwards Lax put their method into a mathematical framework, that
clearly indicated its generality (see Lax ). The method became known as the
Inverse Scattering Transform, (IST). A search was opened for nonlinear
evolution equations that are solvable by IST. Following Calogero and
Degasperis we will call such evolution equations S-integrable. As it turned
out, there are large classes of S-integrable equations (for instance, see

[AKNS], ICd 1’2:3]9 [Lax]; [Zs])-

Since 1967, much literature about the KdV, solitons and IST has appeared,
especially the textbooks: [AS], [Ccd 4], [DEGM], [EvH], [L], [NMPZ].
Moreover, the concept of the soliton and IST has spread out to other areas
of mathematics, such as algebraic and differential geometry and functional
and numerical analysis. Applications of the subject occur through the whole
of physics. For more literature about IST and solitons, I refer to [Cd 4],

in which a wealth of references has been given.

The first scientific description of the soliton as a natural phenomenon was
given by J. Scott Russell in the first half of the nineteenth century, [SR].
While riding on horseback beside a channel, the boat he was observing
suddenly stopped. Scott Russell noted that it set forth:

"e.e..... a large solitary elevation, a rounded, smooth and well defined
heap éf water, which continued its course along the channel apparently
without change of form or diminuition of speed. .......... Its hight gradu-
ally diminished, and after a chase of one or two miles I lost it in the
windings of the channel. Such, in the month of August 1834, was my first

chance interview with that singular and beautiful phenomenon .........."

2. Main goal of this research; Short description of the way by which this
goal is achieved

When deriving a mathematicai model that describes some physical phenomenon,

'small' terms are being neglected. Therefore it is important to investigate

how such a model behaves under perturbations. A way of doing this is insert—
ing new small terms in the model. This will be done for the KdV initial

value problem.



We consider:

(1.3) u, - 6uux tu o= ef(u) ,

u(x,0) = U(x)

where f(u) is some function of the real variables u and x—-derivatives of u.
An interesting perturbation is given by:

3.2 5 _ 23 19
(1.4) £(w) = 2% Y% * 2 Ylixx 4 Yx UYxx * 40 Yxxxxx
This expression is found when the KdV is derived for shallow water waves by
means of an expansion in the small parameter e, neglecting terms of order 52

2

and higher. (e N-% N-%;, where a is a typical wave—amplitude, % a typical
wave—length and h the depth of the water.) A derivation of this perturbed
KdV (pKdV) is given in Appendix F.1.

The construction of a perturbation theory for the KdV or other non-linear
S-integrable evolution equations is far from completed. Steps in this direc-
tion have been described in: [EvH], [J], [K], [KA], [RK], [KM], [KMcL],
[RN], [KS], [LSO], [McLS], [N]. In this thesis a consistent perturbation
theory for the problem (1.3) is presented which is based on the idea of
applying the IST to (1.3). As a starting point, we take the formal perturba-
tion procedure as outlined by W. Eckhaus and A. van Harten in [EvH], chapter
7.

We will now give a short description of the way in which the main results

were obtained.

As mentioned earlier, the KdV has soliton solutions. Moreover, for large
classes of initial functions the solutions of the KdV have a soliton charac-
ter. By this we mean the following:

The solution u(x,t) of (1.1) can be decomposed:
(1.5) u(x,t) = us(x,t) + uc(x,t) s, With

1°) us(x,t) for t » = separates into solitary waves of type (1.2).

N
sup |us(x,t) + 2 Zai sechzah(x - Aazt - Xon)l =o0o(1) , t=>ewo,
x€R n=1 n

In the above expression given by Tanaka in [T 1], the quantities

N and a, depend only on the initial function U(x).



2°) uc(x,t) vanishes on half-lines for t + «.

1im Gc(i,c) =0, with
too
x2M

x = x-vt, v > 0 arbitrary; ﬁc(E,t) = u (x,t); M an arbitrary

constant.

This result is also due to Tanaka, see [T 3]. It was obtained in a
more rigorous way by Eckhaus and Schuur, [ES]. Moreover, in [S],
Schuur improved on the result by showing that u (x,y) even vanishes
on the half-line x 2 —t1/3. ‘

We show that the solutions of (1.3) display a similar behaviour. Instead of
t > » asymptotics, however, we perform € + 0 asymptotics on compacta on

1/8(e)-timescales with §(e) = o(1) and 55—1(5) = 0(1).

" Our theory is built on three basic steps.

In the first step, we determine the structure of ug and show that u, sepa-
rates into solitary waves.

The second step consists of showing that u- ug vanishes asymptotically.
Finally, we use the results from the first two steps in order to give

asymptotical approximations of the solitary waves.

This leads to rigorous results on e P timescales, with:
0
0

We pay special attention to the-%—timescale. On this time-scale, we present

IA

p < 1 for solutions containing only one solitary wave, and

IA

1 . . .
p < 3 for solutions containing more than one solitary wave.

a consistent theory. Here, by consistency, we mean that in the second step
certain conditions on quantities associated with u, are shown to be satis-

fied for corresponding quantities associated with u -

References to a more mathematical description of these results are given in

the next section where we give a summary of the contents of this tract.



3. Summary of the contents

II.1:
- Explanation of the IST, including the Lax—approach and the AKNS system.
- Derivation of the S-integrable evolution equations (2.1.14) and (2.1.17).

(See Appendix A.1.)

I1.2:
- In this section, we will discuss everything we need to know about
scattering theory of the one-dimensional, time independent Schrddinger

equation (S.E.):

d2
[- —5 t u(x)]w(x) = AP(x) .
dx
Most of the theory presented here can be found in Eckhaus and van Harten,
[EvH].
Much attention is paid to the asymptotic behaviour of the spectral data.
A survey is given of mutual relations between the spectral data, respec-—
tively, of relations between the spectral data and the potential.
Various, possibly known, results are proved in a way that links up with
the theory presented in [EvH]. Moreover, some existing results are ex-—
tended or stated more precisely. We mention: Theorem (2.2.3), (2.2.36)
and Theorems (2.2.4,6,9).

II.3: .

- We give the Gel'fand-Levitan or Marchenko equation. This is a linear
integral equation by means of which a potential in the S.E. can be
recovered from a given set of spectral data.

— The IST is applied to the KdV.

- The 'emergence of solitons' phenomenon is explained.

Chapter III:

- We give evolution equations for the spectral data of a potential u(x,t)
that solves the pKdV.

- The decomposition u(x,t) = us(x,t) + uc(x,t) is introduced. We emphasize
that this decomposition is based on properties of the S.E., and is not a
specific feature of the (p)KdV. What is a specific feature of the (p)KdV
is the emergence of solitons from us(x,t). This is treated in § 2. Theo-

rem (3.2.1), the theorem that expresses this emergence of solitons,



describes the asymptotic behaviour of us(x,t) and x-derivatives of us(x,t).

The results given in Theorem (3.2.1) are new, also for the KdV itself.

Chapter IV:

- Theorems are given that provide bounds on u-ug and wn-wns (wn and wns’
respectively, are Lz—eigenfunctions of the S.E. with u, respectively U,
as potential).

The theorems in § 1 are based on the work of Eckhaus and Schuur, [ES], [S]

In § 2, we take the Trace-formula (2.2.55) as a starting point.

Chapter V:

- This chapter is dedicated to applying the theorems of Chapter IV to the
pKdv.
In § 1 it is shown how we can get results on 6—1(6)—timescales by using
Theorem (4.1.3), with:

]
m
o
o
IA

§(e)

< p < 1 if the solution contains only one soliton,

]
™
el
o
IA

§(e)

1. . . .
p < 3 if the solution contains one or more solitons.

These results are given by (5.1.37).

In § 2, we start by giving a more detailed description of the way by which
our main results are obtained. A survey is given of what steps are done
and what steps are still to be carried out. Then, we show that we can get
estimates for u- u, on the 6_1—timesca1e, that are consistent with the
conditions of the theorems used. These results are expressed by (5.2.28,

29). They hold for perturbations of type (5.2.6).

Chapter VI:

- In this chapter, we carry out the last step of our perturbation scheme,
namely giving approximations for the solitons. For this, we take Theorem
(3.2.1) and the consistency results (5.2.28,29) as the starting point.
The main result of this chapter is expressed by Theorem (6.1.1).

On pages 111-114, we give a review of the most important results, and
the conditions under which they hold, that are needed to obtain the
main result of this research. This main result is given by (6.23,24,25).
Finally, we conclude the chapter by giving a physical interpretation of

the results.



VII.1:
- We discuss the rather trivial perturbation f(u) = Uyt This example is

important because it illustrates a possible way of obtaining better

approximations of the solitonms.

VII.2:
- Here, we show that in the case of a polynomial perturbation (f£(u) as in
(7.2.1)), many of the calculations needed to obtain the soliton approxima-

itions are extremely simple. As examples, we take f(u) = u and f(u) = iuxx'

VII.3:

- We apply our perturbation scheme to the perturbation (1.4) and find that
in this case the solitons of the KdV are good approximations of the soli-
tons of (1.3) on the 9—1—timescale. Moreover, we try to get a solution by
substituting a power series in e. We show that this method of finding
solutions is not suitable for solving the pKdV-initial value problem, but

can be useful when used in combination with the perturbation scheme.

VII.4:

- We consider Fhe pKadV with f(u) = u + %xux. This pKdV is S-integrable (see
§ IT.1).
By calculating the pure two-soliton solution, we show how our perturbation
scheme can be adapted (in a formal way) to give results that match those
obtained by direct integration. (The perturbation scheme must be adapted

because ui-ixux does not fall into the class of admissible perturbations
(5.2.6)).



CHAPTER II
FUNDAMENTALS

I1.1. The Inverse Scattering Transform

For various classes of evolution equations, the Cauchy problem can be solved
by means of the Inverse Scattering Transform (IST). We will explain here the
essential principle behind the method. To keep the reasoning transparent, we

do not bother about technical details.

In their study of the KdV-initial value problem, Gardner, Green, Kruskal and
. Miura, ([GGKM 1,2]), coupled the KdV equation to the one-dimensional time inde-
pendent Schrddinger equation (S.E.). They made the S.E. dependent of the time
parameter t by taking as a potential the, yet unknown, solution of the KdV.

(2.1.1) u - 6uux tu = 0

u(x,0) = U(x) ,

2

(2.1.2) {- d—z + u(x,y)]lP(X,t) = Ap(x,t) .
dx .

Of course, with the eigenvalue problem

d2
(2.1.3) [— —5 + u(x)]v(x) = aw(x) ,
dx

we can associate a set of spectral data. The problem (2.1.3) has the impor-
tant property that it admits Znverse—scattering. That is: Given 'the spec-
trum S', it is possible to determine the potential u(x) that generates this
spectrum.

What must be understood by the spectrum S so that there is a 1-1 relation-
ship between u and S, is explained in the next two sections. Moreover, it
will be shown how u(x) can be recovered from S. We already mention that the
spectrum partly consists of the set of eigenvalues. That is, the set of A's

for which (2.1.3) has a solution v(x) € LZ(HO.



GGKM established the miraculous fact, that in (2.1.2) it is possible to
determine how the spectrum depends:on the parameter &, without explicit
knowledge of the potential u(x,t). In particular, it turned out that the set

of eigenvalues is time-independent.
We will illustrate the IST by applying it to the KdV-equation. Consider:
u_ - 6uu_ + u = 0
t X XXX

U(X,O) = U(X) .

Step 1: Determine the spectrum of U(x).

Step 2: Now, we use the fact that it is possible to determine the evolution
of the spectrum of the potential in the S.E., without knowing this
potential explicitly. All that is used is that u(x,t) solves the KdV.
With initial conditions given by Step 1, this enables us to give the
spectrum S(t) at any time t.

AStep 2: Since (2.1.3) allows inverse scattering we can determine the poten—
tial u(x,t) belonging to the spectrum S(t) at any time t. Because of
the 1-1 relationship between u and S the so found potential u(x,t)

solves (2.1.1).

A generalization of the above method was given by Lax, ([Lax]).
Consider two operators L, M associated with respectively an eigenvalue prob-

lem and a time evolution problem:

(2.1.4) a) Lv = Av,

b) v, = Mv .

L, M and v depend on the real variable x and the real parameter t. Following

GGKM, the eigenvalue parameter A is taken to be time independent.

(2.1.5) At =0.

This implies:

(2.1.6) Ltv + v, = Avt .

Substitution of (2.1.4b) into (2.1.6) leads to a necessary condition for

making (2.1.4a) and (2.1.4b) compatible.

(2.1.7) L,+IM-ML=0 .
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For a suitable choice of L and M, (2.1.7) represents a (non)-linear evolu-

tion equation.
2

For instance: For L = - é%; + u, Lax found a hierarchy of possible M's,

among which:

-_4d = -
a) M= =~ Y w o
b) M=-4 lti—+ 3 iL-+ 4 3u=u -6uu +u =0 (Kdv)
de Udx T dx t X XXX :

Other S-integrable evolution equations can be found by taking other choices

of L and M. Of course, L must be so that (2.1.4a) allows inverse scattering.

We conclude this section by mentioning the famous Ablowitz, Kaup, Newell and
Segur-system, [AKNS]. AKNS studied the generalized Zacharov-Shabat eigen—

value problem, related to a time evolution equation.

-iz ¢ v,
(2.1.8) a) v, = v, V= .
r iz Vo
) A B
b) v,_= v .
ol -a

q and r are potentials depending on the real variable x and the real param-—
eter t. A, B and C are scalar functions of x and t. Again, the eigenvalue
parameter ¢ is taken time independent:

(2.1.9) T, = 0.

The eigenvalue problem (2.1.8a) admits inverse scattering.
The compability conditions are here given by:
PR PR .
(2.1.10) E(B—}EVl)—-é;(ﬁvl) ’ 1—1,2.
These conditions can be translated into conditions for A, B and C. Working
out these conditions in general leads to yet another condition. This condi-
tion is the evolution equationm.
Examples of well-known evolution equations that can be solved with the

AKNS-system are:



1

(2.1.11) a) r=-1 > Q. * 6qqx Q= 0 , Kdv

- 2 c e

b) r = *q > Q. * 6q U + Ay = 0, modified KdV

) r=+gq , iqt =4, ¥ ZqZE , non-linear Schrddinger

d) q=-r= -iux s W, o= sin u , sine-Gordon

e) qgq=71 = iux s U= sinh u , sinh-Gordon
We see that, for r = -1, we again find the KdV-equation. This is not remark-
able since, for r = -1, the system (2.1.8) is equivalent to (v2 =4y, q = u,
2=

(2.1.12) a) wxx+-(x+uhp= o,

b) b, = Ay + By .

So far we have dealt with the eigenvalue parameters ), respectively ¢, as
being time-independent. However, this is not an essential condition for
being able to apply the IST. In Appendix A.1, we work with the system
(2.1.12) and take:

(2.1.13) A, = £0)
For instance, for At = 0 we find:

(2.1.14) u,_+6uu_+u = g{u + 10uu + 20u_u +30u2u } .
t X XXX XXXXX XXX X XX X

We also find the following class of evolution equations:

3
(2.1.15) u, = %-ftg (N(A)u) +-§ £(A) + 2(A+u) g% (N(A)u) +

+ (bé“)(t) s X EQ) + N(A)u)ux

(¢9)

Here the function bék)(t) and the operator N are free to choose under the

following restrictions:

(2.1.16) a) The right-hand side in (2.1.15) is A-independent,

b) 1im @MW) =0 .
X
Examples are:
(2.1.17) &) A, = pA, bék) o, ¥y == jou=



3 1
u + 5 Cqu + % CuXXX = p(u+ ixux) .

b) A, = ZPAZ, béx) =CA, N(A)u = ip ( J u(y,t)dy - xu) - $Cu =
X

[=<]

ut+4;-Cqu+%CuxXX = p{-z- u ‘{ udy - uxx—%xuxxx— Zuz-%xuux} .
X

The reason why we explicitly mention equations (2.1.14,17) is that for small
g or p they represent perturbations on the KdV-equations. The equations
(2.1.17) are also given in [CD 4], but there they are derived in a different
way from that presented here.
In Appendix A.1 we also determine the evolution of the spectrum of potentials
u(x,t) satisfying (2.1.14), respectively (2.1.15,17). Therefore, it is ad-
visable to'read § II.2 before studying Appendix A.1. In that section, we

.will treat the scattering properties of the S.E. in detail.

I1.2. Scattering properties of the one-dimensional, time-independent
Schrédinger Equation

In this section, we present all the properties of the 'spectrum' of the
S.E. that will be needed later on. Of all the properties and theorems given

here without proof or reference, a proof can be found in [EvH], chapter 4.

The one-dimensional time—independent Schrddinger equation is given by:
(2.2.1) v+ A-wy =0, ' = — x€ IR .

u is a real function, called the potential, and A is a spectral parameter.

We consider potentials that satisfy the following conditions:

(2.2.2) a) u€cC(m ,

b) lim Ju®x)| =0,
| x|
c) [ luG) 1 (1 + 1xD™dx < =

-—00

The last condition is called a growth condition on u of order m, and if u

satisfies such a condition, we note this by u = [m].
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We write:
(2.2.3) A= k2 , with k € E+ (meaning Im k 2 0) .
In the rest of the study we will always take k € §+, unless stated otherwise.
We define solutions ¥, and xpg of (2.2.1) by:
—ikx
(2.2.4) wr(x,k) = R(x,k)e ,
where R(x,k) satisfies:

(2.2.5) a) R" - 2ikR' = uR ,

b) 1lim R(x,k) =1, 1lim R"(x,k) =0
X300 Xoymo00

and

(2.2.6) &x(x,k) = L(x,k)elk®

where L(x,k) satisfies:

LI}

(2.2.7) a) L" + 2ikL' = uL ,

b) lim L(x,k) = 1 , lim L'(x,k) = 0 .
X0 X->0

In the following we will restrict ourselves bo properties of R(x,k). Analo-

gous results hold for L(x,k).
We have the following'importan; theorem.

Theorem (2.2.1):
If u= [0], then for k € E+\ {0} the problem for R has a unique solution in

the space of continuous functions of x, which are bounded for x +~ —», This

solution satisfies (2.2.5) in classical sense. Moreover:

a) R, R', R" are continuous in (x,k) on R x E+\~{0} and analytic in k on ¢
(i.e. Im k > 0) for each x € TR.

b) If u = [1] then the theorem also holds for k = 0 and R, R', R" are con-

tinuous on R x § .

c) Ifu =a[2], then also Rs Rﬂ, R; are continuous in (x,k) on R XE+.
(R = 7% R
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Since the solution of (2.2.5) is unique, we get:
(2.2.8)  R(x,k) = R(x,-k) ; Er(x,k) = q,r(x,—i) .
So R and y, are real for k on the poéitive imaginary axis.,

Completely analogous results can be given for L(x,k).

Another important remdark is that for k € IRN{0} the functions ¥, and ;p-r are
two linearly independent solutions of (2.2.1). The same is true for q;z and
7y

So, because (2.2.1) is a second order ODE, we can define the functions

2,5 %_, r,, T_ of k € RN{0} by:

(2.2.9) ¥y =Ry *+ 4V,

wr r+lpE + r_wl .

We can describe the asymptotic behaviour for |x| - « of Vs q;{_, \pz, 111,;' with
k € R0} fixed:

(2.2.10) lPZ(X,k) ~ e:LkX for x + @
~ !L-“(k)elkx + JL__(k)e“:ka for x » -=
1'.1_k lp,;‘(x,k) ~ elkx for x + =»
~ !?,_'_(k)elkx - ,Q,_(lc)e-.lkx for x > -
q;r(x,k) ~ e—]'kx for x > -
~ r+(k)elk¥ + r_(k)emlkX for x >
'iI—k V1) ~ —eHE fof X » -
~ r-i._(k)e1kx - r_(k)e-'lkx for x + o ,

Using (2.2.10) and the fact that the Wromskian of two linearly independent
solutions 1})1, 1112 of the S.E.

(2.2.11) W@0,) = ¥ivs = Vi,

is a constant for x € IR, it is easily proved that:
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1 = vt : .
TR w(wr,wl) 5Tk {RL'-L'R+ 2ikRL}, k€ IR~N{0},

(2.2.12)  r_(k) = 2, (k)

(2.2.13) 1,(K) =-2_(K) = 512 W@ ) = o1 {IR'- RL' e 21 | ke m{0).

Since we will make use of the above Wronskians later on, we define:

(2.2.18) W) = W(,p,) 5 W) = W@,,v.)

It is obvious that we can extend the range of definition of r_(k) to

k € ¢, ~{0}.

Moreover, we have the following, very useful, integral expressions for r_(k)
and r+(k):

t- E%E J u(y)R(y,k)dy , k€ § ~{0},

-0

(2.2.15) r_(k)

©

(2.2.16) (k) J 2K L ()R(y,K)dy ,  k € RNO} .

We now define the following quantities:

(2.2.17) For k € T, ~{0}, with r_(k) # 0: a(k) := ;‘%i? :

a(k) Zs called the (right) transmission coefficient.

r, (k)
r_(k) °

b(k) Zs called the (right) reflection coefficient.

(2.2.18) For k € BRN0}: b(k) :=

(2.2.19) For k € IRN{0}: v(x,k) := a(k)wr(x,k) 18 the solution of the
S.E. with asymptotic behaviour:
-ikx

(2.2.20) y(x,k) ~ ae for x > -

e_lkx + be1kx for x » »
These definitions are motivated by the fact that for k real and positive, we
have the following physical interpretation:
we_lxt represents a wave coming from the right of which an amplitude frac-
tion la(k)| travels towards —e« and an amplitude fraction |b(k)] is scat-

tered back.
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Potentials with b = 0 play an important role in our analysis. They are
called reflectionless potentials.

It is easily seen that as an analogon of (2.2.8) we have:

(2.2.21) a) T_(k) = r_(-k) ; a(k) = a(-k) , ke, ~{0};

b) T, (k) =1, (k) ; B(k) =b(-k) , k€ RSO} .

Moreover, in accordance with the physical interpretation, we have:
2 2
(2.2.22) [r_@[° =1+ [r, W]|°, k€ RSO},
2 2
la(k)|“ + |[b(R)|“ =1, k € R~{0} .

We will now give a review of properties of R(x,k), r_(k), a(k) and b(k).

When a stronger growth condition than u = [0] is needed, this is mentioned.

" The problem (2.2.5) for R can be reformulated to an integral equation

X
(2.2.23) R(x,k) =1 + J G(x,y,k)R(y,k)dy ,
with

u(y) (ezik(x—}’)_1) , keg~{0},

(2.2.24) a) G(x,y,k) ik

b) G(x,y,0) = u(y)(x-y) ;3 u-= [1].

R(x,k) can be given as a Neumann series

(2.2.25) R(x,k) = ] G (x,k) , k€§ {0},
n=0

with
x

(2.2.26) GO =1, Gn+1(x,k) = J G(x,y,k)Gn(y,k)dy .

-0

The functions Gn satisfy the following bound:

UO(X) U
(2.2.27) IGn(x,k)I < < ,
n! k1™ a! Ik

with



X ©
(2.2.28) U, (x) = I lu(y)ldy 5 Uy = J lu(y) Idy .
Also R'(%,k) can be presented as a Neumann series:

o

2 an(xyk) > k € é

n=0

(2.2.29) R'(x,k)

+ 9

with

X

J G'(x,y,k)Gn(y,k)dy , ' =

-0

an(x,k)

3
ax °

The following theorem holds.

Theorem (2.2.2):

The sertes (2.2.25) and (2.2.29) represent convergent asymptotic expansions
'for' Ikl + ». The n-th term is of order IkI™™ and the first N terms approxi-

mate R(x,k), respectively R'(x,k), with order |k|™ | wniformly in x on R.

A trivial consequence of (2.2.25,27) is that:

Uy )/ 1kl _
(2.2.30) |R(x,k)| s e » k€ ~{0}.

Some other properties of R(x,k) are summarized in a theorem.

Theorem (2.2.3): i
If u = [0]; u € C(R); u(p)(x) 18 bounded for x + -, 0 2 p = m, then:

X
. _ P -
2.2.31) RP*D (10 = J 21k (x=y) -3—5 (u()R(y,K))dy , k€ E~{0},
—o 3y 0 £ p < m+l
If moreover o) - [0], O £ p £ m, then:
u./ Ikl
(2.2.32) a) |R<p)(x,k)| < Ce 0 , k € E+\~{O} , 02p2mHl,

b) R(P)(x,k),=o(%), lkl =, k€&, 1spsm,

uniformly in x on R.

Proof:

Given in Appendix A.2.
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We also have bounds for R that are uniformly valid in k:

(2.2.33) a) |[R(x,k)| sB(1+x), wu=[1], (xk) € Rx ¢, ;

b) |R"(x,k)| =B , u=[1], (xk €Rx§, .

B is a constant depending only on u(x). X, = max {0,x}.

Finally, we specify the asymptotic behaviour of R(x,k) for x + . We have:

(2.2.34) 1lim R(x,k) = r_(k) ; 1lim R'(x,k) =0 ,
X->00 X->o0

both limits are uniform in k on compacta < C+.
We will now focus our attention on r_(k), a(k) and b(k).
As a corollary to Theorem (2.2.1), r_(k) and a(k) have the following
smoothness properties:
(2.2.35) r_(k) is analytic on €,
r_(k) s continuous on €, ~ {0},
a(k) is meromorphic on ¢ _with poles at the zeros of r_(k),
a(k) Zs continuous on E+\~{O,zeros of r_(k)}.
If u = [2], then a(k) is also continuous in k = 0.
To be precise, we have:
(2.2.36) a) IfW(0) # 0, then

2ik

a(k) ~ Wy

for k>0, k€&, ; b)) =-1,

b) If W(0) = 0, then I% (0)] 2 2 and

a(0) = 21(% (o)) S =d—";(k°—)(% (o)) "
The case W(0) # 0 (i.e. wr(x,O) and wz(x,O) are linearly independent) is
referred to as the generic case, while W(0) = 0 is referred to as the
exceptional case.
Proof of (2.2.36) is given in Appendix A.2. (The proof is analogous to that
of 'Corollary of theorem 4.2.5.1' in [EvH].)
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For the asymptotic properties of r_(k), a(k) and b(k) we have the following
results:

(2.2.37) &) (W) =1 - 5o J u(y)dy + o(——17> , Ikl » =, k€T, {0},
Ikl

-0
©

b) a(k) = 1 +ﬁ J u(y)dy + O(—|k17> , Ikl >, k€, ~{0}.

-0

(2.2.37) is a trivial corollary of (2.2.15,25) and Theorem (2.2.2).
Some other asymptotical results are given in the next theorem.

Theorem (2.2.4):

a) If u€ ¢'(®) and u® (x) = [0], p = 0,1, then

©

1+o<_1._2>, k| +=, k€, , if Ju(X)dX#O,

Ik|

i |rw]?

1+ O(TiTZ> , |k] >, k€ f+, if { u(x)dx = 0 .

iy |rm|?

-0

M_HUGCWRMu@%m=[M,Oépému@%ﬁiSMW@dﬁrx+—m
0<p=m, then

—2(m+1))

[b(k)|% = o(Ikl , Ikl >&, k€ER,

—2(m+1))

la(k)| = 1 + 0(lk] k| =, kK € R.

Proof:

See Appendix A.2.

Finally, we give conditions under which b(k) can be extended to a meromor-
phic function on a strip in the complex k-plane.
With (2.2.15,16,30,33) and Theorem (2.2.1) it follows that:

(2.2.38) If u=[1] and lim u(x)e?*™

X->co

< o, then

i) b(k) Zs meromorphic on 0 < Im k < u, with poles in the zeros

of r_(k),



20

ii) b(k) ¢sicontinuous on {k € f,r\{zeros of r_(k)} | Im k <y},

iii) b = 0(IkI™"), Ikl > =, 05 In k < min {u,k,},
where k is such that r_(k) #0 for 0 = Im k < k.

From [CD 4], § 2.1, we know that:

(2.2.39) If lim u(x)eilelix = 0, then, b(k) is meromorphic in the so-called
X->too

'Bargmann strip'; —min {u_,u+} < Im k < y,, with poles at the zeros
of r_(k).

We now turn our attention to the so-called discrete spectrum of the S.E.
That is, we look for values of A for which the S.E. has a solution in LZ(IR).
These A's are called eigenvalues. The corresponding Lz—solutions of the S.E.
_are called eigenfunctions. (Solutions of the S.E. that are not in L, are
often called generalized eigenfunctions.)

We have the following important theorem:

Theorem (2.2.5):
Ifu-= [1]‘then

1°. The number N of eigenvalues is finite.
2°, They are given by An = (ikn)2 with k € R, and r_(ikn) = 0.
(r_(k) has no other zeros.)
Each eigenvalue is simple. f%at 1s8: The eigenspace E(An) 18 one~dimen—
stonal and is spanned by the real function wr(x,ikn).
So for k = ikn there exists a(k) € R~ {0} with wr(x,k) = a(k)wz(X,k)-

(Terminology: The spectrum of the S.E. is non-degenerate.)

In the following the eigenvalues are ordered by

(2.2.40) 0 < ky <ky < oee <Ko

With these eigenvalues we define the following quantities:
(2.2.41) wn(x) = wr(x,lkn) .

~ ~ k'ﬂx
(2.2.42) a) c = lim wn(x)e

X0

a(ikn) >
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1
1 «©

b) Yy = J $ﬁ(x)dx .

-00

(2.2.43) y (x) = Y;i $;(x) .

knx
(2.2.44) a) c, = lim wn(x)e .
Xy
-knx
b) dn = lim wn(x)e .
K>

Note that

o

(2.2.45) a) J Vo =1,

In the following we will mostly work with the eigenfunctions wn(x). We

therefore define:

(2.2.46) The normalization coefficient assoctated with the elgenvalue
A, = —kﬁ, s the value c, as defined in (2.2.44).
With b, we can associate a second solution ¢n(x) of the S.E., which is line-
arly independent of ¥, . We choose ¢n(x) such that the asymptotic behaviour
of ¢n is specified by:
-k x

. n” _ _ 1
(2.2.47) a) 1lim ¢n e ==
X0 n
knx 1
b) lim ¢n e = T .
X—co n

Or equivalently

(2.2.48) a) lim¢_y_ =-1,
K00

b) 1lim ¢nwn =1
K>

Of course, the asymptotic behaviour of ¢, for x + -« is determined by the
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asymptotic behaviour of o for x + o (and vice versa) by the Wronskian:

(2.2.49) W(y_,¢) = =2k -

There are a number of important equalities that exhibit relations between
the discrete spectrum (An;¢n(x)), the continuous spectrum (b(k);y(x,k),
k € R) and the potential u(x).

We have:

(2.2.50) r_(k)

exp{_L_ J l_og_l_a(sudq} -

271

r_(k) lim r_(k +ie) , kER.

40

This expression is given by Zacharov & Faddeev in [ZF]. It is derived from
the knowledge of the zeros of r_(k) and the analyticity of r_(k) for k € C+.
Note: If u = [2], we have no convergency problems in q = 0 because of
(2.2.36). Because of Theorem (2.2.4b) (m = 0), we have no convergence prob-

lem at infinity.

The next ekpression follows from (2.2.50) and Lemma (4.3.4) in [EvH], which
says that:

g

dr 2
J ¢r(x,k)dx , for k = ikn .

- _ 1
(2.2.51) T " Talk

We get:

(2.2.52) Yo

Log(1 = 13 1%) )
k2 + k2
n

i
O
o]
[0]
X
s
1
=
=|§
—_—

with

5n T2k
n p=1

pfn

|
0
=]
o=
T
P
|
_UW
—

Using (2.2.51), we can reformulate formula (20) on page 20 of [NMPZ], so
that in our notation we get:
k,x -ik'x
N cy (x)e b(-k")y,(x,-k")e
n'n _ 1 2 ax'
k-fikn 271 k' -k - io

-0

©

v (x,k) = eikx{1— i
% n=1



Now, using y(x,k) = b(k)wz(x,k) + Ex(x,k), this leads to:

-k _x

. N c_y_(x)e
(2.2.53) y(x,k) = b(k)elkx{1 - n'n
n=1

k + 1k
n

'x

. © oy o1y "1k
_ b(k)elkx » b(-k )wz(x, ke
271 k' - k - io
-k_x
+ e—ikx 1+1 N ann (x)e .
& k -1k 2wl
n=1 n

|

-00

f+

dk'} +

« b(k')wi(x,k')eik'x

k' - k + io

For reflectionless potentials this reduces to the more attractive formula

—knx
cnwn(x)e

. N
_ —ikx _ _nm
(2.2.54) Y(x,k) = e {1 Z kK + ik
n=1 n

The following equality is very important for our work. It is called the

Trace formula:
' o

N .

2 21

-4 z knan(x) - =
n=1

(2.2.55) u(x)

—00

2
J Kb (-k) YLK g

a(k)l2

This formula is derived by Deift & Trubowitz, [DT].

Sufficient conditions for the formula to hold are: u € CZ(BR); u

u(p) = [0], p = 0,1.

The following theorem provides us with a set of expressions that

integrals over polynomials in u and x-derivatives of u, with the

data of u.

Theorem (2.2.6):

If u satisfies

w€C™® ; u=1[2]; u® =707,
lim u(p)(x) =0, 0sps=m,
x|
then
1 1
(2.2.56) —('2—1——)2;17 J 02n+1 dx =T

—-00

0

= [1];

relate

spectral

J K 1og(1- Ib(k) 12)dk +

23

dk'} .
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2

N
.. y2n+1
“mmer L KT, 0sms
=1

where o is defined as

0 () = - u® 5 o) = - L () ;

[\
N
.

Onet = é% ot Z 995 » B
i+j=n

Remark:

This theorem is based on the work of Zacharov & Faddeev, [ZF]. These authors
show that an infinite set of integrals for the KdV-equation is given by
(2.2.56) withm = . In their presentation, however, it is not emphasized
that in fact (2.2.56) is a property of the S.E. (Indeed, if a potential
u(x,t) evolves with t according to the KdV-equation, then the eigenvalues

as well as |b(k,t)] do not change in time and (2.2.56) represents a set of
Aintegrals for the KdV.) Moreover, in [ZF] the analysis is performed under
the conditions that: 'u € Cm(DR) and along with its derivatives decreases
rapidly'. This gives no insight into the number of equalities of type

(2.2.56) that hold under less stringent conditioms.

Proof of Theorem (2.2.6):

Given in Appendix A.2.

We explicitly mention the equalities obtained from (2.2.56) with n = 0,1. We

have:
’ N 2 [ 2
(2.2.57) a) J u(x)dx = -4 2 kn - J log(1 - |b(k) |7 )dk ,
n=1
— 0
i 6 Y 3 g [ 2 2
b) J u (x)dx = 5 nZ1 k-~ J’ k“ log(1 - Ib(k)|1“)dk .
. 0

We conclude this summary with a theorem about reflectionless potentials, see

[GerM 2].

Theorem (2.2.7):
Given an arbitrary set of positive numbers e, n=1,..0,N, and an arbitrary
1,...,N.

set of mutually different positive numbers k,n
Define the N x N-matrix I + C(x) by



c ¢ —(km+kn)x
(2.2.58) I = identity , C = [cmn]m,n=1,...,N with Cm = i;:fﬂ; e
Then :
d2
(2.2.59) ux) = - 2-——7 log det(I +C(x)) <Zs the reflectionless potential
dx

with eigenvalues k, and normalization coefficients che

The eigenfunctions wn(x) are given by

N -k x
1 m
(2.2.60) \[)n(x) = det(I+C(X); mZ1 Cme Ql'lln(X) ’

where Qyn are the cofactors of 1 + C(x).

For future purposes we mention the following lemma.

Lemma (2.2.1):
Let 1 + C(x) be defined by (2.2.28), then:

—anx’ n

det(I+C(x)) Zs a polynomial in cie =1,...,N, with positive coeffi-

ctents. The O-th order term equals 1.

Proof:
The proof is elementary, but it is presented in Appendix A.2 for the sake of

completeness.

The final part of this section deals with parameter dependent potentials
u = u(x,t).

First, we introduce the following notation.

(2.2.61) u = [m]u means that u(x,t) satisfies a growth condition of order

m in x, uniformly in t on the time regions under consideration.
From (2.2.30) and Theorem (2.2.3) it is seen that:
(2.2.62) If u(+,0) € c(®; u® = (0], 05p s m; u® ie bounded for
X >=-o, 0= psm, then:

U0/|k| _

|R(P)(x,k,t)| < Ce , kE€ €+‘~{O} , O < m+l o,

IA
o

IA

where Uy e so that _J7 Tux,0) |ax

(For p = 0 we can take C = 1, for p

UO, Yt.
1 we can take C = UO.)
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We also have (see (2.2.37)):

(2.2.63) If u= [0] thena(k,t) =1+ °(T11<T)’ Ikl + ®, Im k > 0, uniformly

in t.

A question that arises when studying parameter dependent potentials is
'where' and 'when' eigenvalues can emerge or can vanish. Concerning this
matter we have got the'following theorems.

The first theorem can be abstracted from § 4.2.5 and Theorem 4.3.III in
[EvH].

Theorem (2.2.8):
If u(x,t) satisfies

a) u € C(R x [TO’T1]) 5 . max ]u(x,t)l S G(x) and ﬁ(x) = [o],
. tE[TO,T1]
b) g_lt.:l € C(R* [T),T,]),  max |§_1t*(x,t)| $u,(® and U (x) = [0,
t€[TO’T1]

|
[=]

then for t € [TO’T1] etgenvalues can only vanish at, or start from, k =

Moreover, 1f u = [1], then A = 0 is not an eigenvalue.
This answers the question 'where' eigenvalues can vanish or emerge.
Theorem (2.2.9):

If u(x,t) € C(Rx [T,T,1) with max |u(x,t)| = ux) and u(x) = [11,
tE[TO,T1]

then:
For t € (TO’T1)’ etgenvalues can only emerge or vanish at times ty for
which W(0,t,.) = 0.

Proof:

In a completely analogous way to the proof of Theorem 4.2.5, I(a), given in

[EvH], it is proved that:

ot ot =

— R(x,k,t) and — L(x,k,t) are continuous in (x,k,t) on Rx ¢, x [T.,T. 1,
i i + 0’71

9x 9x

for i = 0,1,2.

Now suppose an eigenvalue emerges or vanishes at time t = 0, with

W(O,to) # 0.
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Consider u(x,t) on IR x [to—d,t0+6] c R x [TO’T1]' Because of the continuity
of W there is a neighbourhood U < E+ x [to—d,t0+5] of (O,to) where W(k,t) # 0.
1

For eigenvalues (# 0), we know that r_(k,t) = TR W(k,t) = 0.

So, no eigenvalue trajectories can cross the region U.

Q.E.D.

This answers the question 'when' eigenvalues can vanish or emerge.

I1.3. Inverse scattering for the Schrédinger Equation;

The IST applied to the KdV-initial value problem

We have seen how we can associate a set of spectral data with a potential in
the S.E.

2.3.1) 8 = {{k,c ) _, b(k), k € R}

yeoe N’
It is also possible to find the potential u belonging to a given set of

spectral data S. This can be done with the Gel'fand-Levitan equation, [GL].

©

(2.3.2) B(y,x) + Q(x+y) + J Q(x+y+2z)p(z,x)dz = 0 , y >0.
0

A similar equation corresponding to a somewhat different inverse scattering
context was derived by Marchenko, [M]. In consequence, (2.3.2) also occurs
under the name Marchenko equation.

In this linear integral equation, the unknown function B depends on a

variable y and a parameter x. Q is defined as

(2.3.3)  a@®) =a,) +a (€) ;

N -2k _&
2 2 cze n s
n
n=1

2,(5)

g

% J b(k)ezikg dk .

—o00

2, (8)

The potential u with spectral data S is given by:
d +
(2.3.4) u(x) = - = B(0 ,x)

As a matter of fact, solving the Gel'fand-Levitan equation is not trivial.
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Only for b = 0 can explicit solutions be obtained. These solutions are given
by (2.2.59).

Proof is given in [EvH], §§ 4.4,4.5, of the following important results.

(2.3.5) If a potential u satisfies u = [2], then, (2.3.2) has a unique
solution B € F(BR%-LZ(O,m)). (F(IR+ V) is the set of functions on

IR with values in V.)
Moreover,

(2.3.6) @) BECHRD) N C(R+L,(0,®)) NC(R>L,(0,0)) , with

co(lif) ={w € c([0,2) xR) | Vx€R limw(y,x) = 0},

y—)oo

38 =2, . 38 =2
b) 35 € CUR) 5 32 € Co(R)

By now, we can specify the steps given in § II.1, needed to solve the KdV-

initial value problem (2.1.7) by means of the IST.
Step 1: Determine the set of spectral data S(0) belonging to u(x,0).

5(0) = {{k_(0),c_(0)} _ b(k,0), k € R} .

Tyeuo,N?
Step 2: From GGKM 1,2 we know that the set of spectral data at time t is
given by:

(2.3.7) s(t) = {{kn(t),cn(t)}n= b(k,t), k € R} , with

1,00.,N°
4k3t
(2.3.8)  k (£) =k (0) 5 c (£) =c_(0)e % . b(k,t) = b(k,0)e

8ik’ t
Step 3: Use the Gel'fand-Levitan equation to find the potential u(x,t) with
spectral data S(t). Because of the 1-1 correspondence between u(x,t)

and S(t), this potential is the solution of (2.1.7).

We have seen that, to be able to use the IST, the potential u(x,t) must
satisfy certain conditions. In the case of problem (2.1.7) fulfillment of
these conditions can be guaranteed by putting conditions on u(x,0).

In [Co]l, A. Cohen gives the following set of sufficient conditions on u(x,0):

(2.3.9) a) u(x,0) € C3(ER) with piecewise continuous fourth derivative.
p
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b) u(p)(x,O) = O(IxI-M), |x] +» for p £ 4
M > 8 in the generic case (W(0) # 0),
M > 10 in the exceptional case (W(0) = 0).

with

3

As was said earlier, the Gel'fand-Levitan equation can be solved explicitly
for b = 0. Since, from (2.3.8), we know that b(k,0) = 0 implies b(k,t) = 0,
this means that explicit solutions of (2.1.7) can be found by taking u(x,0)
reflectionless. These solutions are given by (2.2.59) with kn and <, evalu—
ating according to (2.3.8). They are called N-soliton solutions on account
of their remarkable asymptotic behaviour. The following theorem, given by

Tanaka in [T 1], specifies this asymptotic behaviour.

Theorem (2.3.1):
Let uS(x,t) and wns(x,t) be defined by (2.2.59), (2.2.60), with kn(t) and
Cn(t) given by (2.3.8). Then

(2.3.10) lim 2 (x,t) - 4k sech’ k_(x -4k

+
t- 6;) = 0, uniformly in x on IRR.
t>too

Here 6:_; are defined by

2
ct(0) N k- k.\2
+ 1 n _n 1
(2.3.11) a) §_ =g~ log—p— T (k +k.> ’
' n n i=n+1 ‘'m 1

b) 8 = 5 log 5 —
n n

c2(0) n-1 /k_ - k.\2
n n (2—2*
. (k + k.>
i=1 n i

Corollaries:

2 2 2+
(2.3.12) a) lim u_(x,t) + ) 2k sech”k (x-4k.t-62) =0,
S n n n n
>t n=1

uniformly in x on IR.

. 2 2 2 +
b) 1lim us(x,t) + 2kn sech kn(x-éknt-én) =0,
t>too

uniformly in x on a strip:

2 2 ~
(4kn-otn)t + B sx s (Akn+ o.n_H)t + B,

. 2 2 ~
with O s a < 4(kn- kn_1); B, B are constants.
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(2.3.12a) follows from (2.3.10) with (2.2.55).
(2.3.12b) follows from (2.3.12a) and the asymptotic behaviour of sechzx.

Remark:

As can be seen by direct substitution, every function of the form

- 2a2 sechza(x-éazt-fc) satisfies the KdV-equation.

So, the formulas (2‘3ﬁ12) describe the fact that the solution us(x,t)
separates into N — so-called - soliton solutions when t -+ * o, Moreover,

the solitons for t » « only differ from the solitons for t - —» by a change
of phase.

This is a truly remarkable phenomenon, since the KdV-equation is non-linear.
The solution us(x,t) is called the N-soliton solution.

The phenomenon described by (2.3.12) is referred to as the emergence of

solitons.



CHAPTER Il
EMERGENCE OF SOLITONS FOR THE pKdV

I11.1. Evolution of the spectral data for potentials satisfying the pKdV

As pointed out in the introduction, we wish to use the IST in order to study
the pKdV-initial value problem:

(3.1.1) u - 6uuX tu = ef (u)

u(x,0) = U(x) .

For an eigenvalue problem, we take the S.E., with potential u(x,t) evolving

according to (3.1.1):
(3.1.2) prx(x,t) + [A(t) —u(x,t)]v(x,t) =0 .

Of course, the‘existence and uniqueness of a solution of (3.1.1), as well as
the possibility of solving (3.1.1) with the IST, will depend on U(x) and
f(u).

In this thesis, no attention has been paid to the above problems. We assume
f(u) and U(x) to be such that (3.1.1) has a unique solution, that among

other conditions satisfies:

(3.1.3) a) wu(x,t) sufficiently smooth.

b) u [0]u and £(u) = [0], on the time-regions under consideration.

c) u=[2] and £(u) = [2], vVt .

d) lim u(x,t) = 1lim f(u(x,t)) =0, Vt .
x| | x|+

What in (3.1.3a) is meant by sufficiently smooth and what the other condi-
tions are will be specified later on.

For some literature about the problems of existence, uniqueness and regular-
ity, we refer the reader to: [BBM], [BS], [Col, [D], [Lax], [ST], [T 21,
[Te], [m].
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The first essential step in solving (3.1.1) with the IST, consists of giving
evolution equations for the spectral data. We use the evolution equations as

derived in [EvH], Chapter 7.

©

dln(t) 2 2
(3.1.4) el J f(u(x,t))wn(x,t)dx 3 An(t) = - kn(t) .
(3.1.5) il?i;i—’tl - 8ik b (k,t) - o5 J £ (ulx, )97 (x,k, £)dx .
de_(t)
n 3, \~
(3.1.6) ——a-E—— - Skn(t)cn(t) =
'E'n(t) - N dx_(t)
= Ei;z?j-{e I f(u(x,t))¢n(x,t)¢n(x,t)dx - Gn(t) __EE__} ,
with
x .
(3.1.7) ?n(t) = lim { J ($;(x',t)$;(x',t)— 1)dx' + ZX} .

xe L
However, they are not a set of evolution equations with which we can perform
inverse scattering, because in (3.1.4) we have used the eigenfunction wn(x,t)
normalized according to (2.2.44), while the eigenfunction $;(x,t) in (3.1.6)
is normalized according to (2.2.42). What we really need is an evolution
equation for the normalization coefficient cn(t) of wn(x,t).
With:

(3.1.8) v () = I'Ji(x,t)dx ,

-0

it easily follows that:

Nt T -
(3.1.9) =y "5 e = é s e =y e .
Now, it should be obvious that we can derive an evolution equation for cn(t)
if we can find one for Yn(t). In Appendix B.1 we derive an evolution equation
for yn(t) in a way analogous to that presented in the second edition of [EvH].
We include all details because of some unfortunate misprints in [EvH].

The evolution equation for Yn(t) is given by:



(3.1.10)

33

4y (0 -8y (o = ;n—i-g 1o (D)6, (),

with

© © X X

(3.1.11) ¢_(b) = J %"’n{ J £y ax .. J¢§ax' - J f(u)¢§dx'}dx +

© x
+ J \pr21< J f(_u)¢n1pn dx') dx +
) © X
2 2 ' 1
- ( J f(u)wndx)- J l[}n {X + f (¢nlpn— 1)dx' + 'ﬁ‘}dx .
n

Using (3.1.4,6,9,10,11) it follows thats

de_(t) ec_(t)

n 3 n
‘ (3.1.12) T 4kn(t)cn(t) = Tkn(_t) Hn(t) ,
with
(3.1.13) Hn(t} == G (£) + J £(u)¢ v dx = 6 J f(u)wﬁ dx .

We conclude that the set of evolution equations required to use the IST, is

given by (3.1.4,5,12).

Remarks (3.1.1):

1°.

2°.

3°.

4°,

Of course at t = 0, the set of spectral data S(0) is given by the spec-
tral data of the initial potential u(x,0) = U(x).

Convergence of the integral _mf°° f(u)lp2 dx in formula (3.1.5) follows
immediately from (2.2.22), (2.2.33) and (3.1.3c).

The function ¢n(x,t) is not uniquely defined by (2.2.47), since we can
always add a multiple of the eigenfunction wn(x,t) to it. It is easily
seen, however, that Gn(t) and Hn(t) do not change under this transformation.
In Appendix B.2 it has been proved that, if u satisfies a growth condi-
tion of order 1 and f(u) satisfies a growth condition of order 0, then

Gn(t) and Hn(t) are well-defined.

Although it is not needed for inverse scattering we will given an evolu-
tion equation for the transmission coefficients a(k,t) as well. This is

done in Appendix B.1.
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In the preceding section, we have shown how a solution u(x,t) of (3.1.1) is

associated with the set of spectral data:

(3.1.14) 8(t) = {{k (t),c ()} _, 5 b(k,t), k € R},

where the spectral data are evolving according to the evolution equations
(3.1.4,5,12).

We now define the function us(x,t) as follows:

(3.1.15) us(x,t) 18 the function associated with a solution u(x,t) of the
pKdV-initial value problem that, when viewed as a potential in the
S.E., has the following set of spectral data:

5.(1) = {{k_(t),c_(©)}; 0} ,

where ko and <y evolve according to (3.1.4), respectively
(3.1.12).

Note that the quantities occurring on the right-hand side of these evolution
equations are still given by £(u), wi, etc., and not by f(us), wis’ etc.
Here the s-indexed quantities are defined in the obvious way. That is, for

instance:

(3.1.16) wns(x,t) is the eigenfunction of the potential us(x,t) at eigen-

value A = - ki(t), normalized according to:

' k (£)x °,
lim wns(x’t)e = Cn(t) 3 J wns(x,t)dx =1.
K->

-0

From the theory given in Theorem (2.2.7), we know that we can write us(x,t)
and wns(x,t), respectively, in the form (2.2.59), respectively (2.2.60),

where kn and ¢ are now time-dependent according to (3.1.4) and (3.1.12).
We also define:
(3.1.17) uc(x,t) = u(x,t) - us(x,t) .

Of course, we can integrate (3.1.4) and (3.1.12), which leads to:

=

t
(3.1.18) A_(£) = A_(0) + ¢ J { J (f(u)wi)(x,t')dx}dt' ,
0

-0
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t 5 t Hn(t')
(3.1.19) cn(t) = cn(O) exp'{4 J kn(t')dt' + e J EE;TETT dt'}
0 0

Another useful observation is that we have two different equations for yn(t),
namely, (2.2.52) and (3.1.10). Differentiating (2.2.52) and carrying out

some elementary computations leads to:

dYn(t) 3
(3.1.20) g = 8k () (£) + ey (DR (t) +
K (t) _ 2
-y ® ad“t( n J Log(1 = 1b(e,0) %) dk) ,

2
k 4-kn(t)

where Rn(t) is defined as:

(3.1.21) R (1) = Er-:-(t—) J £(ux, ) (x, )y (x,t)dx +

©

1 1 2
* 2k _(t) (kn(t) -'%$t)> J £ulx, )y (x,t)dx +

—co

N k() ® )
+ ) (“———' [ £(u(x, )9 (x,t)dx +
m

m=1 ke (£) .
m#n
k (t) ®
- km'_(t) J f(u(X:t))lprzl(X,t)dx) —12_ .
n - kn(t) - km(t)

Matching (3.1.20) to (3.1.9) gives the following equality:

k (£) [ 2 ¢ (t)
(3.1.22) &L . m [ Llog(1= Ib(k, ) 17) 4y _ €<Rn(t) . )

dac 7w 2 .2 k (t)
0 k +-kn(t) n
This result will be useful for giving estimates on _mf°° u(x,t)dx and

_wfoo uz(x,t)dx. (See equations (2.2.57).)
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I11.2. Asymptotic behaviour of eigenfunctions LlJn(x,t);

The emergence of solitons

The asymptotic behaviour of the eigenfunctions plays an important role in
this analysis. Among other things, we use the asymptotic results to show the
emergence of solitons for a potential us(x,t) of the form (2.2.59) with
scattering data evolving according to (3.1.4,12).

Since the evolution equations of the scattering data are related to the
ﬁKdV, the time scales on which solitons emerge and remain separated will

depend on e. We express this property by introducing a long-time variable:

(3.2.1) 1 =6(e)t, 6(e) = o(1) orderfunction such that 3{%7 = 0(1).

Instead of carrying out asymptotics for t + «, uniformly in x € D on certain
regions D, we will now work with asymptotics for ¢ + O uniformly in T € [0,A],
x € D. A is a positive constant.

When changing from the variable t to t, we will not indicate this in our

notation. So:

kn(t) = kn(T) 3 wn(x,t) = wn(x,r) , etc.

From the evolution equations for the eigenvalues kn(T), we can see that they

are subject to an 0(1)-change on compacta on the 1/e-timescale, if:

(3.2.2) 3 constant C such that

| J f(u(x,T))lJ)rzl(x,T)dxl sCc, fort€ [0,A].

-—00

This condition is trivially fulfilled because of (3.1.3b).
Throughout this paper we assume that:

(3.2.3) a) On the timescales under consideration, the number of eigen-—
values of a solution of the pKAV initial value problem does
not change. So: N(t1) = N(t=0) = N.

b) 3 positive constants M1, M2 and uj such that on the timescales

under consideration:

0 <M1 < k1('r) £ ... 2 kN(T) §M2 and
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kj(r) - kj_1(1) 2 uj . j=1,.0.,8-1 .

Remarks (3.2.1):

1°. The question of what perturbations and initial conditions leave the
number of eigenvalues unchanged on finite time intervals is still open.
We do have a criterion in the form of conditions on u(x,t) and its eigen-—
functions, that guarantees the number of eigenvalues to be invariant on

certain time intervals, namely Theorem (2.2.9).

2°, An additional fact concerning (3.2.3b) is that eigenvalue trajectories
cannot intersect each other, since the spectrum of the S.E. is non-

degenerate.

In Theorem (2.3.1), we saw that with each soliton there was associated a
moving coordinate z = x- 4k§t. Of course, the relationship between these
moving coordinates and the evolution equation for cn(t) is no coincidence.

Therefore, in our case, we replace the expression 4kit by:

T T [
4 Hn(T )

- 3 v 1 € '
% (0 = F (o J R OO J G
: 0 0

(3.2.4)

This expression for wn(T) is not very convenient. To simplify it needs

further investigation of Gn(T) and Hn(r).

We expect wn(x,T) to be a function of the variables x = x- @(t,e) and

T: wn(x,T) = ¢n(x,1). With this in mind, it is obvious that we try to obtain
a first idea about the behaviour of Gn(T) and Hn(T) by introducing the x
variable in Gn(T) and Hn(T), with @(1,e) unspecified.

We define:

© o

GH(T) + ( J f(u)¢idx> J Xwi dx ,

-0 -—00

(3.2.5) a) GE(T)

© ©

b) HE(T) Hn(T) + < )[ f(ﬂ)dﬁdx) (en - J xl,l)rz1 dx) .

-~ —-00

. . . . . o o
When, in the integrals occurring in the expressions for Gn(r) and Hn(T), we

replace x by x = x = @(1,€), x' by x' = x' - ¢ and u(x,t) by u(x,1), etc.,
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then the values of these integrals do not change. The other terms in Gn’ H

will change, however, in the following way:

o ©

(3.2.6) ( J f(u)widx) J xwi dx =
= ( f f(G)EidE) J §$§ dx + @(1,¢) J f(ﬁ)&ic& s
2 2
( J f(u)lpndx) (en - J Xy dx> =
(o] ;( (o]
= (_ I f(G)&idﬁ) {(;l;i ) J (¥ = Ddx" + 2;2) - ] [ Iujfl d§} +

o

+ 0(t,e) J E@PL dx

o s7 ;@i dx and lim __s* (3 ¥_-1)dx + 2%, we

Using boundedness of Gg, H

: : n? - x>
can now prove the following lemma.
Lemma (3.2.1):
T
0 (1) =~ | KB(dr’ + 0E5D) , 1 € [0,A]
n §(e) n §(e)’ ’ .

0

Proof:

We start with deriving an estimate for wn(x,r). We have:
wn(x,T) = dn(r)wr(x,ikn,T) = cn(T)¢£(x’ikn’T) .

So, using (2.2.62) and (3.2.3) we find:

IA

kn(r)x —kn(r)x
(3.2.7) lwn(x,T)l £ C min {dn(T)e , cn(T)e }

Introducing zn(x,T) X - wn(T,e) we get:

-k_(1)x -k _(1)z_(x,1)
(3.2.8) a) cn(T)e o = cn(O)e n n s
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_ -3 _ 3 0 -knwn -€ ‘ Gn - Hn ac!
b) dn(T) =Y, (1) = Y, (0)e * exp w1y an T
) 0

With (3.2.5,6) we see that G, - Hn only contains terms that are bounded.
So:

k_(1)x 0= k2
(3.2.9)  d_(v)e " = 4_(0)e §(e)” gn'n

Combining (3.2.7,8a,9) leads to

_knlznl
(3.2.10) Iwn(X,T)l < Ce .

It should be noted for further purposes, that the same bound holds for
2 y_(x,7). This also follows from (2.6.62) and (3.2.3).

Ll _knlznl
(3.2.11) ’SE b, G, )] = Ce

Now, taking x = z_, we find that:

TOH (t) ’ T () R
(3;2.12) a) J Z—k—(T—,) dT' = J Hn(T')dT' - J T(—TT)— ( J f(u)wn dZn) dT' >
0 " 0 0 n —

with
_ 40 _ =\72 T
b) 2ann = Hn ( { f(u)wndx>

X (o]
. <{1im J ($n$n'—1)d§'+ 2§} - I E@i d;) is bounded on [0,A].

K>
—o0 —o0

Next, we substitute (3.2.12a) in (3.2.4) and use (3.1.4). This leads to

4 ! 3 ] 1 1 ' 1 dkn 1
% = 5 m J k(T 1wy J‘Dn“ g art Y
0 0
T
€ 1 '
ICIRG) f Hy (1 dr
"o
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T T dk T

_ 4 3., n € [ '
eko = HOJ J k dt' + J Oy To7 dr' + Ol J Hn(T )dt
0 0 0
H_ (1)
d _ 4 2 € n
a?-wn(T) IO kn(T) * 6(eiikn(1)
®
@ (0) =0
T
@0 (1) = 5y J Kaehar + 06T
0 Q.E.D.

An important corollary of the lemma is:

Corollary (3.2.1):

a) For all positive constants A and §(e) with Eféy = 0(1), a positive con—
stant o exists such that:

(3.2.13) @, (D - 0 (1) 2 057, n=0,...,81, T € [0,A].
(py = 0)

b) If 8(e) = e, then there exist positive constants:A and o, such that
(3.2.13) holds.

Proof:

Trivial, using kn(r) = kn(O) + 063%%7) and (3.2.3).

Corollary (3.2.1) is an important tool in the proof of the following theorem,
concerning the behaviour of wns(x,r).

In this theorem, we use the following definitions:

Definitions:

2
Cn(o) N (kn(t) - ki(t)>2} ‘

2kn(t) ; n kn(t) + kn(t)

(3.2.14) a) &°(t) = =—— log {
n 2kn(t) =n+1

b) z (x,8) = x - @ (t) ;

) T (6,t) =z (x,t) - 65(t) ;
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IA

d) E (t) = {x€ R| i _,(B)+q (£)) s x = i (O)+q (O},

n=2,...,N-13

B (8) = (-, 3o (0 +0,(e)] 5 Eg(e) = [Hlog(e) + @y, (£),2)

—kn(t)x
e) hn(x,t) = cn(t)wns(x,t)e .

Corollary of (3.2.13):

ot .

v
1\

(3.2.15) TFor x € En(t), m S n-1: zm(x,t) i«pn(t)-wn_1(t))

v
IA

o (-9 ,(B)) = -0t .

IA

For x € En(t), m 2 n+l zm(x,t)
In some parts of our analysis it is hn(x,t) instead of wns(x,t) that plays a
significant role. Therefore, for later convenience, some of the following

results will be expressed in terms of hn(x,t) as well as in terms of wns(x,t).

Theorem (3.2.1):

Let u_(x,t) be a potential in the S.E. (3.1.2) of the form (2.2.59), with
scattering data evolving according to (3.1.4,12). Let (3.2.3) and (3.2.13)
be satisfied. Then:

(3.2.16) Vk, 3 constant C such that for x € R we have:

ak i 2knzn -1
|——Eh(x,t)léc<1+e ) s n=1,...,N;
9X n ‘

-k _z k z \—-2
")

Bk 2 n' n n
| = v (x,t)[éC(e +e N N PN

Bxk ns
3j Bj -ot ' )
(3.2.17) aj h (x,t) = -ax_j hmn(kn,...,kN,zn) (1+0(e 77) , xEEn(t), nEm.

o T8 some positive constant. For the functions b we can give explicit ex—

pressions. In the case m = n we have:

i oo i 2. o —at
-a—jwms(x,t) = —3—3 (b sech”k ¥ ) (1+0(e*D)) , x€E_(r) .

(3.2.18)
. 93X X’
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(3.2.19) Vk, 3 constant C such that for x € En(t) we have:

ak+1 —kmzn
| " me(X,t)[ < Ce s Zfm < n,
otox Kz,  2kz\~1
< Ce <1+ e ) » Zfm=n,
kmzm
< Ce , ifm >n.

Proof:
The starting point for this proof is a set of equations for the eigenfunc-
tions wns(x,t). These equations appear in the derivation of the explicit
expressions (2.2.59) and (2.2.60) for ug and wns’ from the Gel'fand-Levitan
equation, see [GGKM 2]. We have:
- (e (D) (£))x
N c (t)e (t)e -k (t)x

m n _ m
k_(t) + k_(t) wns(x’t) a Cm(t)e ’
n m

(3.2.20) wms(x,t) +
n=1

m=1,...,N.

We can rewrite (3.2.20) as

(3.2.21)  (A(t) + D 2(x,t)h(x,t) = T,
where
A(t) is the N x N-matrix with coefficients (kn(t)+ km(t))_1;
—kn(t)x
D(x,t) is the N x N-matrix with coefficients Gmncn(t)e 5
= T - T
h(x,t) = (h1(x,t),...,hN(x,t)) s 1= (1,0..,1)7 .

We define:

(3.2.22) K(x,t) = det(A+D 2);

Kn(x,t) is the determinant of the matrix that is obtained by

replacing the n-th column in A+D? by 7.

Using Cramer's rule we get:

Km(x,t)

(3.2.23) hm(x,t) = m— .

The following facts can be observed:
Let C be the matrix as defined in (2.2.58), then:

C = DAD and det(I+C) = (det D)2 det(a+D 2) .
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Now, using zn(x,t) =x - @n(t) and Lemma (2.2.1), it follows that:

2k (t)zn(z,t)

(3.2.24) a) K is a polynomial in e , n=1,...,N,
with positive coefficients;
2kn(t)zn(x,t)
b) Km is a polynomial in e ,n=1,.,.,m1,m+1,...,N.
2k.z.

. . 171 . .

Moreover: If a combination of terms e occurs in Km’ then this same
. . .. .. 2k z .

combination, as well as this combination multiplied by e K M occurs in K.

(0f course, the coefficients are different.)

Now, using (3.2.3b), it follows from (3.2.24) that a constant C exists such that:

2kmzm
<1+ e )Km <CsK, for x€ R, 1t € [0,A].

And so, using (3.2.23), we get that for x € IR:

kazm
\hm(x,t)lgc<1+e ) , m=1,...,N.

For the first x—-derivative of hm(x,t),we note the following:

O e e T
dx ’ K ox 2 9x °
K
2kizi

It is obvious that BKm/Bx, respectively 9K/3x are again polynomials in e
in which the same combination of terms occur as in Km, respectively K, with
exception of the O-th order term that disappears when we differentiate.
So, following the same reasoning as above, we conclude that there exist

€, such that

constants C1, 1

kazm SKm kazm 9K A 2
<1+e )—5;—§C1-K and <1+e )-K—§C°K .

This again implies the existence of a constant C, such that:

ahm(x,t)

2k z \—-1
m m
9x ) ’

< C(1+ e

In a completely analogous way, it follows that a constant C exists for

every k, such that
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ok 2k z (-1
|—?EJ&O|§CO+e ) , m=1,...,N, x € R .
9X

Finally, using the boundedness of the eigenvalues and (3.2.14e) this leads to
the fact that for all k there exists a constant C such that:
ak

2
—k “bms(x’t)I
9X

IA

-kmzm kmzm -2
C <e + e ) s, XE€R, m=1,...,N.

This completes the proof of (3.2.16).

We will now continue with the proof of (3.2.17,18). For this, it is necessary
to analyze the functions Km(x,t) and K(x,t) in more detail. Using (3.2.15),
it follows that:

n-1 2k.z. 2k_z

- -at -2 373 -2 n“n
(3.2.25) K= (1+0(e ))j];!1 &s 0)e (Dnﬁhcn (0)e Dn+1> s

for x € En(t) 3

2k z
n'n

—t. T, ijzj -9
Kn= (1+0(e ) m cj (0)e (Dn,m+ (1—5mn)cn (0)e

j=] Dn+1sm) ’

formz2n, x € En(t) .

In these expressions, o is some positive constant and

(3.2.26) D =D (t) = det(kij)‘ with k. = K K s 1, =mn,.0.,N
a.. = k.., 1,7 =n,...,N,j#m,
D =D (t)=det(a,.) with [ R
n,m  m,m o o, =1 i=n N
im , yeeesN.

We have the following relations concerning Dn and D o

A S
(3:2.21) Dy = I (m)Dn,m;
m m 1

i=n
ifm
1 N kn - ki 2
D =—-—0D m (————————) .
n an n+1 i=n+1 kn + ki

From (3.2.23,25) we get:



(3.2.28) B (x,t)

hm(x,t)

(1+0(e %)

(1+0(e™%%))

With the help of (3.2.27), we can write (3.2.28) as

(3.2.29) a) h_(x,0) = (1+ 0@ %)) .

PR
2km i=n+1
ifm

B) B (x,6) = (1+0(e D)

N
1
(Zk T

m i=m+1

So, indeed we have

1

an i=n+1

N - /k -k,
"

k_+k.
n 1
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, for x € En(t) .

n+l 3

B
v

for x € Em(t).

2k z

n 1 2 -2 n n
—————) e, (0)e

'(

for x € En(t), m 2

k +k
m

n+1 ;

-2 2k z N
+en (0)e mmo

N - Kk —k.\2
n) 1 n n i), -2
k -k_/2k €n
m n

k_+k

ni=n+t > n 1

k + k.
m i

i=m+1 km_ ki

2k z ’
n'n

(0)e

=1
) , for x € Em(t).

(3.2.30) h (x,£) = (1+o(e‘“t))hmn(kn,...,kN,zn) , for x€E (t), nsm.

As in the proof of (3.2.16), from the structure of Km(x,t) and K(x,t), it is

easy to see that the result (3.2.30) can be extended to (3.2.17).

The proof of (3.2.18) is now simple. From (3.2.29b), we get:

11}2 - h2 c—Z(O)e m m

ms m m
_ -0ty -
= (1+0(e ))cm

2k z

= (1+0(e *“F))e B R i

N k - ki -2 2kmzm
m a——m +c_ “(0)e
-4k z N k = k.\2
m - m i
(&)
m
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ka i=m+1 km+k1
—ka'i'm
= (1+0(¢e *ty) i S (1+0(e5) 4k sech® k%
= e _zkm,zm 2 = e n sec mZm °
e + 1

It remains to prove (3.2.19). From (3.2.21) we have:

N
(3.2.31) 221 a_(x,0)h (x,£) =1,

with

This implies that:

N 3 N
(3.2.32) z amgl(x,t) 3t hQ(x,t) = - 2

9
h (x,t) — a_ (x,t) =
= 2 2 ot mR

1

2

] .
I~

1 d -
1 [ 545 (k) + 28, ¢ “(0) -

2 (k_+ kz)

dk 2k (x=@ )
d m m m
<_dt k@ x————dt>e ]hz(x,t) .

From Lemma (3.2.1) we know that Lpn(t) does not grow faster than linearly
with t for all n. Therefore:

(3.2.33) ex = ocgfty) for x € E_(t) , t=6(e)t € [0,4] .

Since our first goal is to derive estimates for % hm(x,t) we have to invert

the matrix (amf,) = A+D_2. This is possible because K = det(A +D_2) > 0.

We define:

-9 =1
(3.2.34) B = (b)) = (A+D 5,

Now using (3.1.4) and (3.2.3,4,16,32,33,34) it easily follows that
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5 N N . Zklzl
(3.2.35) |sz-hm(x,t)l < C{e 221 lbml(x,t)l + 21 [bmz(x,t)e hl(x,t)|}.

The matrix coefficients bm are given by:

2

- (_1)m+£ K&m

(3.2.36) b, i

where Klm is the determinant of the N-1 x N-1 matrix that remains when the
2-th row and the m—th column are omitted from A-PD_Z.

Using (3.2.15), we can estimate bm in exactly the same way as we estimated

2
hm(x,t) when proving (3.2.16). We get:

—kazm _Zklzl
Ce e , m,% <n, x€ En(t) s

IA

(3.2.37) |bm2(x,t)|

=2k z 2knzn -1
lbmn(x,t)l <ce ™ m(1+ e > , m<n,

< x € En(t) ,
-kazm
Ibmg(x,t)| < Ce s m<n<g, x€ En(t) .
: -2k£zg 2knzn -1
Ibng(x,t)] < Ce (1+ e ) , & <nm, x € En(t) ,
anzn -1
|bn£(x,t)| < C<1+ e ) , 22 n, x € En(t) .
—2klz£
Ibml(x,t)l £ Ce , 2 <n<m x € En(t) ,
2knzn -1
|bmn(x,t)| < C<1+ e ) , m > n, x € En(t) ,
Ibmz(x,t)| <c, m,% >n, x€E((t).
We also need bounds for
2k, z
_ 2%
Bml(x’t) i= bml e hz .

Using (3.2.15,16,37), we get:
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—kazm _Zklzl

(3.2.38) ijg(x,t)| < Ce e s 2,m <n, xE€ En(t) ,
-2k z =2k |z_|
]an(x,t)] < Ce e , m < n, x € E_(t) ,
-2kmzm 2k222
]Bmz(x,t)I < Ce e s m<n< &, x€ En(t) .
—2k2z2 2knzn -1
ang(x,t)| < Ce <1+e ) , % <n, x € E (1),
—2kn|zn|
IBnn(x,t)| < Ce , x € E (),
Zklzﬁ anzn -1
]an(x,t)| < Ce (1 +e ) , % >n, x € E_(t)
—2k£z£
[Bmz(x,t)] < Ce , 2 <n<m x € En(t) ,
—2kn|znl
|an(x,t)| < Ce s m > n, x €E (t) ,
ZRZZQ
|Bm2(x,t)| < Ce , 2,m > n, x € En(t) .
From (3.2.35,37,38) we conclude:
’ 5 —2kmzm —kazm —anlzn]
(3.2.39) ]3; h (x,t)| = C{ee + e e } m<m, x€E(t),
, , ‘ 2k z \-1  =2k_|z_|
I—a_t hn(x,t)| < C{e <1_+ e ) + e } . X € En(t) ,
3 -2kn|zn|
|—a—thm(x,t)| §C{5+e }, m>r1,x€En(t).
2

The relationship between and é%'hm is given by:

ot wms

km(t)(x—wm(t)) )

3
(3.2.40) 3t wms(x,t)

-1 9
cy (0) Sz-hm(x,t)e

-1 ] 3 Hm dkm kmzm
ch (0)[‘5? hm + (- 4km-e Ek—m + Xﬁ) hvm]e .

So finally, from (3.2.15,16,39,40), we conclude that:
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(3.2.41) For x € En(t), we have

_kmzm
Ce ifm<n,
5 knzn 2knzn -1
Isz-wms(x,t)l < 1 Ce (1+ e ) ifm=n,
kmz
ce® ™ ifm>n .

Again, (3.2.41) can be extended to estimates on (3k+1/8xk3t)wms(x,t) without
difficulty. We will demonstrate how such an extension can be made.

We define:

d
N. — (k +k )
dt m 2
2 5 hl(x,t) .

2=1 (km+ kg)

o=

Pm(x,t) =

- Note that, with (3.1.4) and (3.2.3,16) it follows that
ak kazm -1
l—-E P (x,t)] 5 C(1+e ) .
90X

Now, equation (3.2.32) can be written as

N H 2k z
2 a 2 h =¢P + (8k3 + g 2 - 2x Jl—k ) c 2(O)e mm
m m m/ m

=1 mf 9t % km dt hm

Inverting this equation and differentiating it with respect to x gives:

% 5 Y Yo
X9t hm =€{5§ Pm 2 bml * Pm Z §§‘bm1} *

g=1 g=1
+ § {53; bml(Ski re -2}-11{‘— - xS k2> c;2(0)h2e2k£zl *

g=1 )
+ bml(Zkl[Skz ve % - 2% % kQ] -2 % k£> 2O, eZklz" +
+ bm£<8k2 + € :—é - 2x ad? k,Q,) 022(0) eZklzZ %} .

So it follows that:
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(3.2.42)

N
2 3
lE)x{)t hm(x’t)| sC {E £Z1 (lbml(xst)l + IB_X bmz(x’t)l] +

kpzg

2
+ (]bmk(x,t)l + [% bml(x,t)l][hg(x,t)]e +

e~

2=1

N 2k, z
il 2
+ 7 b G50 2= b (e, |e ’L} .
2=1

Comparing (3.2.42) with (3.2.35) shows that we get the same estimates for
2

) . . ]
3%0C hm as for 3t hm, provided that we have the same estimates for 3% bm!L

respectively % hm, as we have for bml, respectively hm’

In an analogous way, we see that the same estimates are found for
d . . ok pxKoe m

as for — h , provided that we have the same estimates for —- respectively

gk 9t m axK

a—xE , as for bml’ respectively hm'

For hm(x,t), we already know that the above condition is satisfied. That it

is satisfied for bmﬂ(x,t) as well, is easily seen from the structure of the

polynomials in exp(Zkizi): K,Qm and K.

So, we have:

(3.2.43) For x € En(t):

-2k z -2k z_ -2k _|z_|
m m m m n'n
C{ee + e e } , m<n,
8k+1 anzn -1 —anlznl
| ” hm(x,t)lé C{e(1+e ) + e }, m=n,
9x ot
—2kn['z |
C{s+ e n } s m>n .

_ z
Moreover, with Ve = cm1(0)hmekm ™ we see that

5 Ko7t %+ kZn
(3.2.44) | v lsc i (l——— h| + | h }) e .
t 9x 9x

With (3.2.15,16,43,44), we get (3.2.19).
Q.E.D.
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Corollaries:

From (3.2.13,16) it follows that
(3.2.45) 3 positive constants o, C such that

Bk 2 -at c
——wns(x,t)l < Ce » T€[0,A], x€E(t) := RNE (£) .

axk
It is obvious that also

—ot

k
(3.2.46) |2~ ce ™, te[0,A], x€E(D) ;

axk

IA

sech2 k Z i
n'n

ce ®t ., 1€ [0,A], x€E (), ntm.

IA

ok 2, o~
(3.2.47) lgx_k sechk_z |

So with (3.2.18,45,46) we see

k -
(3.2.48) |2 (2 G, - kg seeh’k % )| s Ce®F, te [0,A], x€R.
9X

Moreover, using

N 2
us(x,t) = —4nz1 kn(t)lj)ns(x,t)

with (3.2.47,48) we find:

Bk N 2 2 ~ -ot
(3.2.49) a) |— (us(x,t)+ Z 2kn sech knzn)l < Ce , 1€ [0,A], x€EIR ;

9X n=1
Bk 2 2, ~ -at
b) |§ us(x,t)+ ka sech km zm)l < Ce , TE[0,A], xEEm(t) .
Remarks:
1°. The choice of En(t) is such that
N
= o o -
nL=J1 En(t) = IR and En(t) n Em(t) =0 forn#m .

(where A° stands for the interior of the region A.) This choice, however,
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is rather arbitrary. All the results still hold if we define:

En(t) = {x€R | an(t)+an((pn_1(t)—(pn(t) < x-cpn(t) <
s G (0)+3 (o, (D-@ (D),

with a, and 3; € (0,1) being constants and an(t), E;(t) being arbitrary

functions that remain 0(1) on T = §(e)t € [0,A].

2°, We can give estimates that are valid uniformly in (x,T) on certain regions.
g g

Let T € [s(e),A]l, where s(e) satisfies:

(3.2.50) %%%% =0(1) , e +0 and s(e) =o(1) , e + 0.
Then:
- s(e)
e %t ce 8 (e) =0(1) , e + 0, uniformly in T on [s(e),A].

So, for instance from (3.2.45), we see that:

k
jii wis(x,T) =0(1) , e + 0, uniformly on EE(T) x [s(e),A] .
90X

(3.2.51)

3°, Of course all the results also hold for the KdV, i.e. € = 0. In that
case there is no restriction on the time interval, t € [0,»).
The proof of Theorem (3.2.1) is based on the proof of Theorem (2.3.1),
see [T 1]. v
The results (3.2.48,49) can be considered as an extension of Theorem

(2.3.1). They express the emergence of solitons for the pKdVv.

4°, In the case N = 1, the results (3.2.49) naturally simplify to

a? ¢} ~Zx 2 2

(3.2.52) u (x,t) ==-2—= log (1+5— e = = 2k sech" k,(x-p,) ,
s 2 2k 1 1 1

dx 1

with
1 SR ¢t (©) F s
(3.2.53) p1(t) = Tk—al ].Og —k—1 = Z—k; {].Og —ZIT + 10g[exp 8 J kndt' +
0

t t

2
H c;(0) H
S \ 1 4 3., 1.,
+ € J EET dt ]} T log T T J k1 dt’ + O J T de’ .
0 'o 1o



CHAPTER 1V
APPROXIMATING A POTENTIAL IN THE SCHRODINGER EQUATION
BY ITS ASSOCIATED SOLITON-POTENTIAL

IV.1. Theorems based on the work of W. Eckhaus and P.C. Schuur

In the previous chapter we have seen what the asymptotic behavious of us(x,t)
is like. This chapter is dedicated to showing that u(x,t) can in some sense
be approximated by us(x,t). To do so, we return to the initial value problem

for the pKdV and integrate this problem by means of IST.

(4.1.1) u - 6uuX +,uxxx = ef (u)

u(x,0) = U(x) .

The solution of (4.1.1) is given by
9 +
(4.1.2)  u(x,t) = - % B(0 ,x,t) ,

where B(y,x,t) is the solution of the Gel'fand-Levitan equation:

©

(4.1.3)  B(y,x,t) % Qlxry,t) + [ Q(xty+z, £)B(z,x,t)dz = 0 ,
0

withy >0, x € R, t >0 and

(4.1.4) ag,t) = ,(,t) +a (E,t) ;

I 12

4.1.5)  94(E,0) =2} ef(e) exp (- 2k, (D)D) ;

=1

o

J bk, t)e2tKE gy |

—00

1
(4.1.6) Qc(g,t) =5

and the spectral data evolve according to (3.1.4,12).

Note that in (4.1.3) y is the variable and x and t are parameters.
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Even for potentials satisfying the KdV, we cannot solve (4.1.3) explicitly for
b(k,t) # 0. Therefore, some of the problems we encounter here, are similar to
the problems that occur when deriving asymptotic estimates for u(x,t) - us(x,t)
in the case of the KdV itself. An analysis of this asymptotic behaviour has
been carried out by Tanaka, [T 3], and, more rigorously, with better results,
by Eckhaus and Schuur, [ES], [S]. In the following section we will give an

outline of the work of Eckhaus and Schuur, and adapt it to our needs.

Let V be the Banach space of real continuous bounded functions on (0,«),

equipped with the supremum norm. For each g € V we define the mappings

[

J Qd(x+y+z,t)g(z)dz ,
0

4.1.7)  (Tz8)(y)

©

J Qc(x+y+z,t)g(z)dz .
0

(4.1.8) (Tcg)(y)

Note that Td clearly is a mapping of V into V. The problem is to find B € V
such that:

(4.1.9) (I+Td)B+TcB=—Q R
(4.1.10) Q = Qd + QC .
We know the solution Bd of

(4.1.11) (T+T)B; = -9, ,

which produces the pure N-soliton solution of the KdV equation with the aid

of the formula:

9 +
(4.1.12) US(X,t) = - % Bd(o »X,t) .
By imposing suitable conditions on b(k,0), it is shown that:

(4.1.13) IQC(x+y,t)| + IHdE Qc(x+y,t)] S H(y,t) , tztg, X = x-vt 2 M,

v >0, with
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(4.1.14) a) H(y,t) is a monotonically decreasing function of y for fixed
t, and

©

b) o(t) := J H(z,t)dz + =sup H(y,t) < o ,
0 O<y<e

c) o(t) >0 as t »>w ,

The integrability of H(y,t) is used to show that T, is a continuous mapping

of V into V with HTCH + 0 for t » o

©

(4.1.15) HTch < lgl J H(z,t)dz = lglo(t) .
0

It can be shown that T is x-differentiable in V, and, as a final result we

get:

. A 1
(4.1.16) lg_ll, IT_I, Gall, 17!l s o)

1

where ' means taking the x-derivative.

We now return to the Gel'fand-Levitan equation

(4.1.17) (I+THB == (2+TB) .

Since Td is an integral operator with degenerate kernel, solutions of
(4.1.18) (I+Td)g=f , f,g€eV,

can be studied explicitly. In fact, it is easily seen that the solution of
(4.1.18) is given by
N -2k.y
gly) =f@y) - § A.e I,
j=1 1

where the Aj satisfy

N ¥ -2k, 2
z o..A. =2 J e * f(z)dz ,
j= 0

(Note that the matrix (aii) = A-i-D_2 as defined in (3.2.21).)
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So it follows that

N ® —Zkiz -1

Aj = 2121 bij( J e f(z)dz) s where (bij) = (aij) .
0

We restate the result above as a lemma. (See [S], Ch. 2, lemma 5.1.)

Lemma (4.1.1):

Let S := (I +Td)—1, then:

N ® -2k.z -2k.y
(4.1.19) (SE)(y) = £(y) =2 ) bij( J e 1 f(z)dz)e i

i,5=1 M\,
Corollary:
‘ N lel N Ib;J[
41.20) Msl s ag =+ ) g dsTlsag = )
151 & i,j=1 "4

In [S], the following explicit bounds on bij and bij are given:

) 3 N ki+kl N ch.+kp
(4.1.21) a) b,.| sN,, = 2(k;k,)* T — } m } — H
ij 1] 1] 0=1 ki kk p=1 kj kp
241 p#j

]
b) |bij] s 2apk, N; o .
(More specific information about bounds on (Bklaxk)bij can be obtained from
the estimates (3.2.37) which also hold for the repeated derivatives of the

bij' Moreover, we have:

N -2k.y
(4.1.22) B (y,x,t) = =2 ) b, .e J
. 2 1]
i,3=1
and
N -2y N bij —ijy
1 — - P— —
(4.1.23) Bi(y,x,t) = 4 2_ kpblp(e I el )
2,p=1 i,3=1 7] 2

By inverting (4.1.17) we obtain:
(4.1.24) B =-8Q- STCB .

Now consider the mapping T, defined by:
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(4.1.25) Tg = f- ST.g, f,8€V.

It can easily be proved that (4.1.24) possesses a unique solution B € V, by
showing that T is a contractive mapping in V: HSTJIé HSHHTCH < aoo(t) <1
for sufficiently large t. So indeed T is a contractive mapping in V.

An estimate for the solution g of Té = g is given by

(4.1.26) gl = Nl .

R

1 - IISTI
c

Now all the estimates needed for the final result are derived. We write:

(4.1.27) B = Bd'+BC ’

with

(4.1.28) = -35Q

Bq a-
_Substitution in (4.1.24) gives

(4.1.29) Bc + STch = - SQc - STCBd .

From the preceding analysis, we know that a unique solution Bc exists.

Using (4.1.16,20,21,26), this solution can be estimated by:

€4.1.30) (HSHHQCH + HSTCHHBdH) < beo(t) ,

1
18 = T—Tsr T
[

where b is some constant.
The estimate (4.1.30)vis valid for X =x-vt 2 -M (v > 0), and for t large
enough to let T be a contraction.

Since the solution of the KdV equation is given by

(4.1.31) ulx,t) = u (x,t) - é% B.(0,x,t)

estimates are needed for Bé(y,x,t).

Differentiating equation (4.1.29) we get:
' | ' ' 11 _ Qt
(4.1.32) Be* ST B, S{Tc(Bc+Bd)+ Q.+ Tch} S {QC+ TC(BC+Bd)} .

Again, we conclude that for t large enough, a unique solution Bé exists.

Using (4.1.16,20,21,30,32) we estimate Bé by
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(4.1.33) HB;" < Bo(t), where B is some constant, and the estimate is valid
on x =x-vt 2-M (v >0) and t large enough to let T be a con-

traction.
From (4.1.31) and (4.1.33) we get the result:
(4.1.34) |u(x,t)— us(x,t)| < Bo(t) onx=x-vt2-M, v>0,
and for t large enough.
This concludes the outline of the work of Eckhaus and Schuur.
The following important remarks can be made.

Remarks (4.1.1):

1°. For the KdV, the eigenvalues are constant in time. However, this feature
has not been used in the above theory. In fact, if the time evolution of
the eigenvalues is such that the 'constants' ags 3y and Nij as defined

in (4.1.20,21) remain bounded, then the whole scheme still functioms.

2°. The validity of the final result (4.1.34) on the region x = x- vt 2 M
hinges.on the fact that the estimate (4.1.13) is valid on that region.
If (4.1.13) is valid for x € I(t), I(t) being a time dependent interval
(for instance [-M+vt,»)), then (4.1.34) is valid for x € I(t), t large

enough.

3°. The condition Ofw H(y,t)dy - 0, as t + », has been used in the following
parts of the theory:

a) To establish the existence and uniqueness of a solution in V of the

problems (4.1.29,32), by showing that HSTCH < 1 for t large enough.

b) To give an estimate on the solution g € V of Eg = g in (4.1.26).
Again, by showing that HSTCH < a < 1 for t large enough.
We observe that Of°° H(y,t)dy does not have to decrease for t - =,
That is, the results will remain valid, if instead of (4.1.14), we

have the weaker properties:

(4.1.35) a) o > sup H(y,t) = o(t) +0 as t > o ;
O<y<e

b) j H(y,t)dy < ¢ < :L— for t 2 T, ¢ a constant.
0
0
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4°, It is easily seen that if we alter conditions (4.1.14,35a) into

(4.1.36) a) IQC(x+y,t)| + |% nc(x+y,t)l < H(x#y,t) , x € I(t), t = tg,

y >0

b) « > sup H(x+y,t) = o(x,t) , x€ I(t), t 2t

s
0<y<co 0

then in the final result (4.1.34),we can replace o(t) by o(x,t).

If one knows a priori that (4.1.3) is uniquely solvable in V, then, one can
do with weaker conditions on Q.- This is the situation we are in, since we
are looking for solutions u(x,t) of the pKdV satisfying u(x,t) = [2]. So, we

can use the results (2.3.5).

When it is given that (4.1.3) is uniquely solvable, then to estimate u- u,
it is not necessary to start from (4.1.29,32). We can also take the following

equation as a starting point:

(4.1.37) (1+T)8,

]

I
e

I
L]
™
[=1

L]
|
3
+
L]

(4.1.38) (1+»T)sé —Qé—TéBd-TCB&"T'B'C-

It now follows that if:

“.1.39) 1T+ - ai{(x,t)llBék)ll L k=0,1, g -2 4 |

with ak(x,t) 2 oy > 0,

then, with (4.1.37) and (4.1.38), respectively, we find:

(4.1.40) g Il = a—(}‘{—t—) (ol + 1T g 1) ,
0 b

i ____1___ ' 1 '

(4.1.41) thH < a1(x,t) (HQCH + "Tch" + HTCBdH + T BCH) .

With (4.1.20,21,22) it is easily seen that the right-hand side of (4.1.40)
can be estimated using only (4.1.36). The right-hand side of (4.1.41) can

be estimated using (4.1.36) and the following condition:

(4.1.42) HT'BCH < Ca1(x,t){HBcH + o(x,t)} .
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Summarizing we have: If (4.1.36,39,42) hold, then

(4.1.43) llec'll < Co(x,t) .

Of course, the same results can be obtained using (4.1.29,32) instead of
(4.1.37,38). Then, however, the conditions (4.1.39,42) must hold for ST,

instead of T.

With regard to conditions (4.1.39,42), we make the following observations.

Observations:

1°. If (4.1.39) holds for STc’ then it holds for T:

(4.1.44) I+T=T1+T +Tc = (I+Td)(I+STC) e

d

- 1
© I*l'STc =S(I+T)= I(I+ T)Bcll 2 a_o Ih(T+ STC)BCH .

.2°, From [EvH], § 4.5, we know that in L2(0,w), the equation (I+ T)g = 0
only has the trivial solution. (Of course, this is part of the proof
that (4.1.3) is uniquely solvable in F(H{%-Lz(o,w)).) The uk(x,t) in

(4.1.39) are therefore well-defined and positive.

3°, (4.1.42) is certainly fulfilled if HT'BCH < Ca1(x,t)HTBCH:

B = =2 T BB, =

IA

= HTBCH s HQCH + HTcBaH + HBCH < o(x,t) + HBCH .

4°, STC=T=)TC=T(I‘+Td)ﬁ(I+T)Td=0=tTd=0.
In the last equivalence we have used the second observation. In this

case (4.1.37,38) reduce to:
= - . 1" = V' =t
(I*'TC)Bc 2,3 1+ TC)BC N TCBC .
We can summarize the preceding theory in a theorem.

Theorem (4.1.1):

Let u(x,t) be a t-parameter family of potentials in the time—independent
S.E. satisfying u(x,t) = [2]. Let {{kn(t)’cn(t)}n=1,...,N; b(k,t), k € R}
be the scattering data of u(x,t). Let us(x,t) be the potential with scatter-—
ing data {{kn(t),cn(t)}n=1 0}.

seee,N?
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Suppose that:

1°. The number N of etigenvalues is time—independent and there exist constants

M., M, My > 0 such that

0 <M, s k1(t) £ ... £ kN(t) §M2,Vt;0;

|kj+1(t)-kj(t)|‘ 2y s j=1,...,N-1,Vt20 .
° d
2°. IQC(X+y,t)| + Ia; Qc(x+y,t)| < H(x+y,t)

fory>0, tz to and x € I(t), where 1(t) is a time-dependent interval, and

o > sup H(x+y,t) = o(x,t) , x€ I(t), tzt

O<y<ew 0°
- 3°. ForP=TorP=STcwehave
e 2@ = 0 Gote®1 L k=01, g0 25
c k. H) c H H E) BC - exk BC 9

1\

with otk(x,t) o > 0, x€S(t), tzt

0
HP'BCH < Ca1(x,t){HBCH+-o(x,t)} » XE€I(t), tzt

Then:

[u(x,t)—us(x,t)l S Colx,t) , x€I(8), tz¢t.

Remark (4.1.2):
with 6(t) -~ 0 as t + «, Then HTCH < 6(t), HTéH < o(t) and the third condition
of Theorem (4.1.1) is trivially fulfilled for P = ST, .

A special case arises if Of°° H(x+y+z,t)dz s o(t) for x € I(t), vy > 0, t 2 tgs

In our theory .not only do we need an estimate on u(x,t) - us(x,t), we also
need estimates on the differences wn(x,t)-wns(x,t), n=1,...,N.

We emphasize the fact that 1N # Ve

By definition of u (see (3.1.15)), the eigenvalues An = - ki and normaliza-
tion coefficients e, of u,, are equal to those of u.

wn(x,t) is the eigenfunction at eigenvalue An(t) of the potential u(x,t) with
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k (t)x
lim y_(x,t)e " =c (v) .
X0

Vs is the eigenfunction at eigenvalue An of the potential us(x,t) with

kn(t)x
lim wns(x,t)ve = cn(t) .
X0

The estimates on v,V can be expressed in terms of the estimates on u-ug

ns
in the following way:

Theorem(4.1.2):
Let Vs and $¥n be uniformly bounded on the region x € [a(t),»), t = T.
(See (3.2.10)) and (2.2.44,48).) Then:

©

lv (x,t) -9 (x,t)] s¢ J lu@,t)-u (g, 0)[dg, x € [a(t),=), tzT.

X

Proof:

For wn’ wns and ¢ns we have the following equations:

9
" - = T = 2.
M wn + (u An)wn 0, ax
" - = .
& wns * (us An)wns 03
knx knx
(3) lim wne = lim wnse =c
X0 X0
knx knx
. ] —_ 1 [ - - .
(4) lim xpne = lim wnse = kncn ;
X300 X0
—knx 1 —knx kn
1 = — 1 ' = ——
(5) lim ¢nse =T lim ¢nse c
x>0 n X n

We define:

(4.1.45) vn(x,t) = wn(x,t)—wns(x,t) .

From the above equations, it follows that v, is the solution of the follow-

ing problem:
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(4.1.46) a) v; + (u - ln)vn = (u - u)wn s

. n . n
b) 1lim v e = lim v;e =0.
praes ¥>00

Therefore, vy is given by

©

(4.1.47) vn(x,t) = 7EﬁTE7 J [wns(x’t)¢ns(g’t)_ ¢ns(x’t)wns(g’t)] *

X
° [U(E,t) - us(gst)]wn(gat)dg .

It can easily be seen that (4.1.47) satisfies (4.1.46a) by substitution.

The conditions (4.1.46b) are shown to be satisfied as follows:

©

k (£)x : k (£)x
Ivn(x,t)e . I < TRO) e |wns(x,t)| J |¢nswn||u-usld€ +
n X
: © k (£)x
TR O) I e bps O (B, 000 (5,0) | [u(g,t) - u (,0)[dE .
n
X

Now using the formulas (3) and (5) it is obvious that

Kk (£)x ®
Ivn(x,t)e l < C-cn(t) J [u(g,t)- us(g,t)ldg >0 for x>
x (t fixed).
That lim v'ean =0
X0 n

, can be proved analogously.

For vn(x,t) we have the following estimate:

©

|Vn(x,t)l <cC J Iwns(x,t)llu(g,t)— us(E,t)|dE +
X

© ©

+C [ o) | ug, ) - u (g,0)|dE = C f lug,t) - u (g,8)]dE ,

X X

where we have used the boundedness of wns and of ¢nswn'

Q.E.D.
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As an example of the use of Theorems (4.1.1,2), we will apply them to a
potential that satisfies the KdV-initial value problem, where u(x,0) = U(x)
is such that the reflection coefficient b(k,0) satisfies:
(4.1.48) There exists a constant n > 0 such that

a) b(k,0) Zs analytic on 0 < Im k < n and

b) In that strip b(k,0) = o(IkI?), for Ikl + .
(2.2.39) provides us with sufficient conditions for (4.1.48) to hold.

In [ES] it was proved, by means of contour integration in the complex k-
plane, that, if (4.1.48) is satisfied for a solution u(x,t) of the KdV, then

we have:

- 3
(4.1.49) H(xty,t) = ye In(xty) 8n’t » XER, tzt;>0, y>0,

Y a positive constant.

We define:

(4.1.50) .§ =x=-vt , v > 0 constant.
Now we take n such that:

(4.1.51) « := 2n(v=-4n2) >0 .

Then we have:

(4.1.52) a) o(x,t) := o(x,t) = ye 2M¥ 0L ¢ goot

uniformly on x = -M, t 2 to;

b) | JH(x+y+z,t)dz| =2Ln 2n(xty) o ot , x2-M, y>o0,
0 t

A
v

[\%
rt

So, with Theorem (4.1.1) we find:

Ce MOt oM, 2T,

IA

(4.1.53)  |u(x,t) - GS(E,t)|

and using Theorem (4.1.2) we find:
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©

(4.1.54) [Jn(g,t)—ans(;?,c)] < cJ |G(s,t)—Gs(g,t)|dg

Ce—an e-ut ,

IA
IA

X

X2 -M, t=2T.

(In [S], P.C. Schuur improves on the estimate (4.1.53) for u(x,t)- us(x,t)
-1/3y
)

in the sense that he gives an O(t , t =, estimate for u(x,t)-us(x,t)
uniformly valid on regions x 2 - Qj+vt1/3), tztg, where u, v and t; are

nonnegative constants.)

In the preceding part of this section we have presented results that can
be used for t - « asymptotics. As explained in § III.2, for our purposes, we
need results that can be used for ¢ - 0 asymptotics on E%ET -timescales,

. € .
with o) = 0(1). Therefore, we need to reformulate Theorems (4.1.1,2) in
such a way that they can be applied to solutions of the pKdV-initial value

problem.

Theorem (4.1.3):
Let u(x,1) be a family of regular potentials in the time—independent S.E.

with

(4.1.55) a) wu(x,t) =[2], T € [0,A].

b) The eigenvalues kn(T) satisfy condition(3.2.3), T € [0,A].

v
o
-

A
m

c) IQc(x+y,T)|+-|é% Qc(x+y,T)| < o(x,t) , ¥y [m(e),Ad,

d) For P=Tor P = STC we have

),

C

)

I(T+P)B c

= ak(x,T)HB

with ak(x,T) 2o >0, TE [m(e),Al, x 2 a(e,T), k =0,1,

and

1A%

HP'BC" < Ca1(x,r){"BcH+ o(x,1)} , 1€ [m(e),A]l, x 2 ale,T).

Then:

(4.1.56) |u(x,1) - us(x,r)l £ Co(x,1) , T € [m(e),Al, x 2 a(e,T).
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If, moreover, we have

(4.1.57) wns(x,r) and ¢ns(x,r)wn(x,r) are uniformly bounded on t € [m(e),Al,
x 2 ale, 1),

then

o

(4.1.58) [wn(x,T)-wns(X,r)| sC J o(g,1)dg , 1 € [m(e),A]l, x 2 ale,T).

X

IA

Remark (4.1.3):
As an analogue of Remark (4.1.2), we have that:
If

[

[[Q C(x+y+z,'r)| + lé% Qc(x+y+z,r)]dz = o(1) ,
0

uniformly on y >0, x 2 a(e,t), T € [m(e),A]l,

then HTCH = 0(1) and HTéH = 0o(1), so that (4.1.55d) is trivially fulfilled.

Of course, (4.1.55d) is also trivially fulfilled under the weaker condition:

o

(4.1.59) J |Qc(x+y+z,r)|dz S a< £~ for some constant a,
0
0

(o]
J Ig% Qc(x+y+z,r)|dz <cC for some constant C .
0

Both bounds must be valid uniformly ony > 0, x 2 a(e,1), T € [m(e),A].

We will postpone applying Theorem (4.1.3) to solutions of (4.1.1) until
Chapter V.
First, in § IV.2, we will give another useful theorem which can be used to

find estimates for u(x,t)- us(x,t) and wn(x,t)— wns(x,t).
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IV.2. Theorems based on the Trace-formula

We re-introduce the Trace-formula:

©

2
u(x,t) = -4 2 k (t)¢ (x,t) - = J kb (-k,t) Y Gouk.E) gy
n=1 la(k,t)l

-

We define:
(4.2.1)  uy(x,t) = -4 2 k (t)w (x,t) ,
ne1

o

(4.2.2) r(x,t) = - ﬂ J kb(-k,t) ] (X k,t) dk
" la(k, £)12

—-co

So, we have:
(4.2.3)  u(x,t) = ud(x,t) + r(x,t)
We also have:

(4.2.4)  u (x,t) = —42 k(t)lp s (x50

n=1

Since v, # b gs We see that in general uy # ug- Although obvious from the
above, the fact that uy # ug remains a point of confusion. This confusion is
caused by that fact, that it is quite natural to refer to uy as well as to
u_, as the reflectionless part of u. We will illustrate the difference
between Uy and u, once again, by pointing at the way by which these poten-—
tials are defined.

Starting from the set of spectral data S = {{k_,c } ; b(k), k € R}

n’> n'n=1,...,N°
of the potential u, ug is defined as follows:

In S replace b(k) by zero. ug is the potential belonging to the

set of spectral data thus obtained: {{kn,cn}n_ ...,N; 0}.

Uy is defined in the following way:
First, express u in terms of its set of spectral data S, using

the Trace-formula. Then, in this formula, replace b(k) by zero.

uy is equal to the remaining terms in the Trace-formula.
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Since the actions: 'Expressing a potential in terms of its set of spectral

data' and 'Replacing b(k) by zero', do not commute, we see that Yy # ug.

We have the following theorem. (Though this theorem, like Theorem 4.1.3), is
applicable to a wide class of potentials u(x,t), we will restrict ourselves
to potentials that occur as solutions of the (p)KdV-initial value problem

(4.1.1) and state the theorem in (e,T)-language.)

Theorem (4.2.1):

Let u(x,t) be a solution of the (p)KdV-initial value problem. Let 8(g), A be
such that (3.2.3) and (3.2.13) are satisfied.

Take u(x,t) as the potential in the time-independent S.E. If:

(4.2.5) J |r(x,1)|dx = ¢G(t,e) ,
vy VT
M+6(€5
for M a positive constant (taken to be large enough, see proof),

C a positive constant, and v, v, positive constants with

T T
0sv HO) <V, HO) < w1(T,e).

1

Then, positive constants p, u, C exist, such that:

k .
4.2.6) |25 G G0 -y ()] s Colre)

X

uniformly in x on R, T € [Tu(E),A] , n=1,...,N, k€ {0,1},
where

(4_2'7) O’(T’E) = max {‘(\;(T,E)9 exXp (_p 655))} 4

(4.2.8) Tu(e) taken so that: 0 £ o(t,e) < u for T 2 Tu(E) .
((1,e) must be such that this is possible.)

Proof

We start by recalling the bounds we have for the eigenfunctions wn(x,r) and

wns(x,T). (See (3.2.10,11).)
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5 5 “k (Dlz (x,7)1
(4.2.9) Iwn(x,r)l, E wn(x,T)[,lwnS(x,r)l,]3; wns(x,T)I < Ce >

x€ R, 1€ [0,A].

By definiton 1N and Vs have the same eigenvalues and normalization coeffi-

cients. Therefore:

2 ' 2
d 2 _ |47 2 =
(4.2.10) a) [——5 - (U*'kn)]wn = [“3 (ug + kn)]wns =0,
dx dx
knx an
b) 1;m wne = lim wnse =c,
X =00 X
an knx
. ' = 14 ' = -
c) lim wne lim wnse kncn .
KXo X0

We define:

(4.2.11) v (x,7) =y (x,7) - wns(x,r) .

By substitution of (4.2.1,2,3,4) in (4.2.10), and subtracing the equations

for y_ from the equations for ¢_, we find:
n ns

. dZ 2 N 2
(4.2.12) a) [_-7 - (uS+ kn)]vn = r(vni-wns) - (vnd-wns) 2 AEmvm +
dx m=1

N
-(%+%Q ;8%%¢ n=1,...,N,

m=

ms

knx knx
b) limv_e =lim v'e =0.
n n
X->oo X0

From this equation we see that it is more convenient to work with

kn(T)x
(4.2.13) Wn(X,T) i= vn(x,T)e .
v, has to satisfy:
azwn Bwn 2
(4.2.14) a) 5= 2k w— = (u tu, wotug wlw o+ E

9x
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b) limw_=limw' =0,
n n

X-voo0 X0
with
2 N N 2
(4.2.15) u, =u =8k yo -8 y k Ve Vi = 4 ¥ k vo+r,
m=1 m=1
m#n m#n
Yon¥n T -12knwnsvn ’
2 2
U3n¥n T = Ak v,
knx N N 2
fo=v,ce (r -8y k VeV ™ 4y kmvm) .
m=1 m=1
m#n m#n

We define:

1 2
(4.2.16) Un(X,T) = Er-; Uu1n| + Iuannl + |u3nwn” ,

o

J Un(y,'r)dy .

X

pz(x,T)

From u = [O]u and (3.2.3) it follows that:

(4.2.17) Un(x,'r) £ C and Ug(x,'r) £ C, uniformly in (x,1) on IRx [0,A],

for some positive comstant C.
Then (4.2.9) yields:

(4.2.18) [wn(x,‘r)[ < C-cn('r), uniformly in x on IR .

By some elementary calculations we see that v is a classical solution of
(4.2.14) iff:

[

—2kn(y—x) 1 )
(4.2.19) WH(X’T) = J (1—e )E ([u1n+u2nwn+u3nwn]wn+ fn)dy .
x
Starting with the bound (4.2.18), by iteration in (4.2.19) with t fixed, we
find that:
0 (x,1) o ©

(4.2.20) |wn(x,T)[ < 9——2k——- Ifn(y,'r)]dy £C J‘ |fn(y,r)|dy , XxXE R,

noox X T € [0,A].



71

So for Vn(X,T) we have

-k_(1)x Jw k (Dy

(4.2.21) lvn(x,r)| <Ce " Iwns(y,r)]e n .

X

N
2
. (lr(y,t)l + 4mz1[ka(T)]wms(y,T)lIvm(Y,T)I*-km(r)vm(y,T)])dy .
m#n
We rewrite (4.2.21), using the notation f(x,t) = f(zn,T), in order to get:

o

- “koz, - ky
(4.2.22) |v (z,D)] = Ce J v, s ]e ™ -
Z
n

. (1r<y,r>1 * 4m21 2 v vl +kmvfl1)dy .

mfn

We will use (4.2.22) on regions z, 2 -M. First we consider (4.2.22) for the
fastest soliton, so for n = N.

Note that, from (4.2.9) and (3.2.13), it follows that:

(4.2.23) There exist positive constants C, p such that, for k € {0,1}:

My
X a '(1+ﬁf991/5(€)
m 1

Ce e ,

[N

3k
—x wm(x,T)I
9x

for z 20, m<n, T € [0,A], k€ {0,1};

My
k8 '(1+E~JDT/6(E)
m 1

Ce e N

A

3k

]_k wm(X3T) !
X

for z <8, m>n, 1€ [0,A], k€ {0,1}.

Here, M1, M2 are the constants used in (3.2.3b).
The factor (1-*E%J in the exponent has been introduced for later convenience.

Moreover, also for later use, we take p so small that

(4.2.24) 0 <p = M1(v1-v) .
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Of course, the bounds (4.2.23) also hold for wms(x,T), and consequently for
Vn(X,T) as well.

Now, using (4.2.5,7,9,22,23), we get

—K,.Z

(4.2.25) I;N(ZN,T)[ < Co(t,e)e kN N for zZy > -M, 1 € [0,A],

where o(t1,e) is as defined in (4.2.7) with p as in (4.2.23,24).

We can derive analogous results for avnlax in the following way. Differenti-

ate (4.2.19) to obtain:

(4.2.26) —— =

ow e -2k (y-x)
9x -

n ) . 2
¢ ([u1n+u2nwn+u3nwn]»wh+ fn)dy °
x

With (4.2.17) and (4.2.20) this leads to:

©

I

w T -2k (y=x) 7 -2k (y-x)
(4.2.27) |==2] s c. J e © J.lfn(g,r){dgdw fe n lfn(y,'r)]dyé

ox
X y X
c f £ (v,0)|dy -
X

A

Using this inequality for avn/ax we find

8vn —knx © kny N 9
(4.2.28) IK < Ce J v ;e (Irl + am; 2knl¢ms|]vm]+kmvm>dy .

X

m#n

Now, with (4.2.5,23,28), we come to the analogue of (4.2.25):

-k, z
I N
(4.2.29) IEEE‘VN(ZN,T)I < Co(t,e)e , for zZyz2 M, T € [0,A].
Moreover, from (4.2.9) we have:
ok - !
(4.2.30) ;;E n(Zn,T)| £ Co(t,e), for z < i; log o(t,e) ,
n

T € [0,A], k€ {0,1}, n=1,...,N.
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We now have bounds for v T) and —EE-GN(ZN,T) that are valid for

Ny 3z

2, € {(-=, Tj; log o(1,e) U (M=)} .

However, we need bounds that are valid on the whole real axis. We can get

these bounds by using the following lemma:

Let o(t,e) be as defined in (4.2.7) with o as in (4.2.23,24).
Let Tu(E) be so that 0 £ o(1,e) < u for 1 € [ru(e),A].
Then, there exist constants u, M such that if:

1
OL"'k—n'm log o(t,e) , B =-M,

k

(o>

v_(B,1)| = Co(r,e) ,

|-§7;5 (a,7)| = Co(t,e) and | o
0z

n

=l

9z

for k = 0, respectively k = 0,1, then:

k
g Va(ze 0| S Colr,e)  forz € [0,8], t € [r (2,41,

Szn

for k = 0, respectively k.= 0,1,

Proof:
First we will finish the proof.of this theorem assuming the lemma to hold.

Subsequently the lemma will be proved.
Using (4.2.25,30) and the lemma we get:

(4.2.31) |VN(X,T)| < Co(t,e) wuniformly in x on R, T € [Tu(e),A].

By means of this bound on Vi which is valid on the whole real axis, we can

give a bound on v, .. In fact, using (4.2.5,22,23,31), we find:

N-1

©

- YA
co K- 12y§-1 J

z

k1Y

Moy, qle )

IA

(4.2.32) 1§N_1(ZN_1,T)|

N-1
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_ N-2
[|r] +4 Y
m=1

- - -2 - - -
(2 g | 71 g2) + (2 g |+ ) 5| @7 =

IA

Ce “o(t,e) zZy 4 2 M, TE€ [Tu(s),A].
Now, using (4.2.30,32) and the lemma, we find:
(4.2.33) |VN_1(X,T)| < Co(t,e) uniformly in x on R, T € [Tu(e),A].

Proceeding in this way leads to:

(4.2.34) |vn(x,1)| < Co(t,e) wuniformly in x on R, T € [Tu(s),A],
1,...,N.

n

Analogously, starting from (4.2.28,29) and using (4.2.30) and the lemma, we
find:

(4.2.35) |§% Vn(X,T)I < Co(t,e) wuniformly in x on R, T € [Tu(E),A],

n=1,...,N.
This proves the theorem, provided that we can prove the lemma.

Proof of the lemma:

For Gn’ we have the following boundary-value problem:

2_
. 9 Va 2=
(4.2.36) 7 knvn = hn(zn,r) ,
9z
;n(a) =0, ;n(B) =0, with |Gi| < Co(t,e), 1i=1,2.

N
- - - - - - _2 - -
(4.2.37) hn(zn,"r) =u v, + r(vn+ Ipns) - (vn+1pns) 2 4kmvm+ 8kmvmlpm‘.3 .

Since,

_ T
. PS5

V3

T
TPy
0 = max {g,e G(E)} ,

we see that for the left boundary o, we have:

=P
_ S (e 1 T
(4.2.38) o= log 0 2 i; P30 -

w

log e

1 1
k k
n n
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Together with (4.2.23) this implies that:

T
-p
Ce §(e)

IA

k
(4.2.39) [jLE am(zn,r)l form # n, z, € [o,B], T € [0,A].
3z
n

The boundary conditions in (4.2.36) are satisfied by the linear function ¢

defined by:

(4.2.40) ¢n(zn,1) = [(01— 02)2n + (acz— 601)] e

We notice that:

(4.2.41) ]¢n(zn,r)| £ max {|c1|,102[} s Co(r,e) , z € [a,8].

We now can write the solution ;n of (4.2.36) in the form

(4.2.42) v (z,0) = ¢_(z,7) + x,(z,0) ,

where X has to satisfy:

2
d 2 2
(4.2.43) —5 X, kox, =k +k ¢ gy >
9z
n
Xy (@) = x,(8) =0 .

The Green's function for the problem (4.2.43) is given by:

k (£-20-28) -k (£+28)q k z
(4.2.44) Arz(z ,E) = [e -e B ]e nn .,
n
-k E k (E-2a)q -k_z
+ [e ]e nn s 2 2 &,
k_(g-20-2B) -k_(&+20)q k_z
AT _(z_,E) = [e n -e T }e nnoy
r'n
k E k (&-2B)7 -k z
+ [e ]e oo > 2z, S g,

with
-2k o -2k B
A= 2kn(e n_e T ) .

Notice that:
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Z
n
(4.2.45) |r (z ,8)[ =C, asEsz =8 ; J [Ty (2 ,E)]dE = C, 2 € [a,8],
. o
B
[rr(zn,g)] $C, asz SESB ; J |rr(zn,g)|dg§c, z € [a,B].
z
n
For the solution X of (4.2.43) we have:
zn [$]
(4.2.46) x (z ,1) = J r,(z ,8)g (8)dg + J r (z ,8)g (£)dE .
Qo V4
n
Because of (4.2.24) we have:
z2 2a=x zk1—n log o+tpng—ﬁ%+q)n> —-M+V§— , n=1,...,N.

So, with (4.2.5), we get:

Y

(4.2.47) ‘J [;(y,T)|dy < Co(t,e) 5, m = 1,...,N.

[+

IA

Now, using (4.2.9,37,39,41,42,45,46,47), we find:

Zn,r k_(E-2a-28) -k _(£+28)7 k z
4.2.48) |x (z,0)] s c{-l- J ([e n +e P ]e win

o

k (&-20) -k &7 -k z 2k &
+ [e n +e U ]e n n) e " |Xn(€,T)[d€ +

n

+ e e +

J([ekn(E—ZG-ZB) —2kn(£+2a)} knz

z
n

[ k€ kn(a—zs>]
+ e +e e

—knzrl ang
)e |x,(&,0) | ae+ G(T,E)} ,

for %16 [e,8], T € [0,A].

In formula (4.2.48) we have:
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z

n ang
(4.2.49) a) J (eeeoe)e dg =
: a
k (4z_-20-2B) 2k_(z_-B) 2k _(z_-o)
=%{en n 43 BB g, .
n
) Aekh(a—26+zn)_ 4ekn(a-zn)}
2k_(B-a)
1 n
éﬁ—<2e +6).
n
B

2k &
b) J(.....)e ndg =

z
n
k (z_+B-2a) k_(B-z_)
1 {Ae n n + be n n’

- e - 3e -3-e

IA

kn(AZn-Za—ZB) 2kn(zn-a) 2kn(zn-8)}

A

+e

.

4 ( an ( B_(!) kn(B—a)>
ST e
3kn

From (4.2.49) is immediately follows that:

(4.2.50) For B = -M and 0 £ u, with M large and u small enough, we have:

¢ (n X
a) X J (eeuee )dg = C (e + o) sp<1, z € [a,B],
a TE [Tu’A];
C ? ans
b)KI (euene )dEéC(e +G>§p<1, zne[a,B],
z TE [TU,A].
We define
(4.2.25) Iy (+,0l = max Ix(z,t] .

z €la,8]
With (4.2.48,50,51) we get

(4.2.52) Hxnﬂ < p“xnﬂ + Co(t,e) withp< 1, 1€ [Tu,A].
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- And so we have:

(4.2.53) Iyl s 1]_p Colr,e) 5 Calrye) , © € [ Al

Now with (4.2.41,42,53) we finally arrive at:

(4.2.54) l;n(zn’T)| < Co(t,e) for z, € [a,8], TE€ [Tu,A]-

It remains to prove the bound for aGn/azn. To that end, we differentiate

(4.2.46), and find the following inequality for an/azn:

z
3 n,o k (£-20-28) -k (£+28); K z
(4.2.55) |2 s ¢ {1- J ([e " +e © ] e "My
n

- A
o
k_(&-2a) -k & -k z 2k &
. [e n +e D ] e D n) e I Ixn(g,T)ldg +
B
k_(£-20-2B) -k_(&+2 k
4" e I S
z
n

-k & k (E-28)7 -k _z 2k &
+ [e Ty e® ] e T n) e T ]xn(E,T)IdZ+ G(T,e)} <

= C("xn"+ o(t,e)) s Co(t,e) , z € [0,B], TE€ [Tu,A].

Obviously, we also have:

3¢n
152;1 < Co(t,e) for z, € [a,B] ,

therefore, we find:

a;n(zn’T)

(4.2.56)  |—

) | < colr,e) , z, € [¢,B], T € [Tu,A].
Q.E.D.

THeorem (4.2.1) has the following important corollary:

Corollary (4.2.1):
Let the conditions of Theorem (4.2.1) be satisfied and let, moreover, r(x,t)

satisfy the following condition:
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2
k

9x

(4.2.57) | r(x,r)| < CO1(T,€), k=0,1,...,m, T € [tu(e),A] , X € D(t,¢e)

where D is an arbitrary region.

Then :
ak

(4.2.58) |—_i (u(x,r)-us(x,r))| < C max {0(1,3),01(1,5)},
X

k=0,1,,0.,m, TE [Tu(E),A], x € D(t,€) .

Proof
We have
N
u(x, ) - u (x,1) = =4 § k@ +v I@ -v )+,
n=1
N
u'(x,r)-ué(x,r)=—4 2 kn(wr'1+wr'1$)(wn-‘pns)+kn(q)n+wns)(wr'1_w;15)+r' 4
n=1
&) 2 2
O N R I NI A RN (AR TR MR R
n=1
N 2,2 2. 2 2. 2
=-8 ) kK @T-yl)+k [(u+ ks = (u +k)ys T+,
n=1
etc.

For the higher derivatives of u- ug, we use the S.E. to reduce the higher
derivatives of v, and wns’ to zeroth and first order derivatives. By doing
this, we obtain terms that contain derivatives of u and ug- However, when
deriving a bound on (aklaxk)(u-us), the maximum degree of these derivatives
is k- 2.
So, starting with the bounds that hold for (Bk/Bxk)(u— us), k = 0,1, we
obtain the bounds on the higher derivatives by induction.

Q.E.D.

In this corollary, we have seen how, with given bounds on b Vg and condi-
tion (4.2.57), we can derive bounds on u- u . We can also do the opposite.
That is, starting with a bound on u- ug and condition (4.2.57), we can
derive a bound for wﬁ— wis. We note that from (3.2.15) and (4.2.9) it is
already known that:
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(4.2.59) There exist positive constants C, p, such that

T T
P 5Ty 03Ty
lv (x, 0] = ce sle) | v, (x| = Ce 8Ce) |

for x €ES(1), € [0,A].

So, it suffices to derive a bound for wi-wis that is valid on En(T).

We have the following theorem:

Theorem (4.2.2):

Let u(x,t) be a solution of the (p)Kdv-initial value problem. Let §(e), A be
go that (3.2.13) is satisfied.

If:

(4.2.60) a) ]u(x,r)— us(x,T)I s Co(t,e) for x € D(1,e), 1 € [m(e),A],

b) |r(x,1)| = Co(r,e) for x € D(1,e) , t € [m(e),A],

then, a positive constant p exists, such that:

T
HEIO)
(4.2.61) I\przl(x,r)—lprzls(x,r)| £ max {U(T,e),e 8(e },
for x €D(t,e) N E (1), 7€ [m(e),Al.

Proof:

(4.2.61) is a trivial consequence of

~ 2 2 N2 o
u(x,r)-us(x,r) = -4kn(wn-wns) - 4mZ1 km(wm-wms) + r(x,T)

m#n

and formulas (4.2.59,60). Q.E.D.

The combination of (4.2.59) and Theorem (4.2.2) can be used as an alterna-
tive for Theorem (4.1.2). And, as a matter of fact, that is what we will do
when working on the pKdV. The reason why Theorem (4.2.2) is preferred over
Theorem (4.1.2) is that we run up against difficulties when trying to find
x-integrable o(1) bounds for u-u_. We will encounter the same difficulties,
when trying to establish that G(t,e) in formula (4.2.5) can be taken to be

0o(1) uniformly on some interval 1T € [m(e),A]. Therefore, the obvious way is
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to use Theorem (4.1.3) in combination with (4.2.59) and Theorem (4.2.2). All
this will be explained in the next chapter, in which we will apply the theo-
rems that have been presented in this chapter, to solutions of the pKdV-

initial value problem.



CHAPTER V
APPLYING THE THEOREMS OF CHAPTER IV TO SOLUTIONS OF THE pKdV

Throughout this chapter we will assume:

u(x,t) is a solution of the pKdV initial value problem.
Condition (3.2.3) is satisfied.
§(e), A are such that (3.2.13) is satisfied.

V.1. Results on 6-1(8)-timescales with 5(g) =P, 0<p<1

In this section, we will apply Theorem (4.1.3) to solutions of the pKdV-
initial value problem. We will start with considering the condition (4.1.55¢).
As before, we will use the long-time variable T. Moreover, we introduce the

moving coordinate:
(5.1.1) x=x - @(t,e) , where @(1,e) is such that:
vt £ 8(e)o(t,e) £ Vr, 1 € [0,A], where v, V are positive constants.

When changing from the variable x to X, the x dependent quantity is given a

bar. So u(x,t) = u(x,t), etc.

First, we give the set of evolution equations for the spectral data in

integrated form:

T ©

(5.1.2) A (1) =2 (0) *RSEY J J f(ﬁ(;c,r'))ifl&,w)didw ;
0 -
T
(5.1.3) Cn(T) = cn(O) exp {3??7 J ki(TV)dT'+~wn(T)} ,
0
with
t Hn(T')

(5.1.4) (1) = £ J

@ | T de’ 5
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8iks—r :
(5.1.5)  b(k,1) = b(k,00e SO 4 S 2—11'15 J Ie §Ce)

0 -

8ik3—~
GGGk, AR = b(,0) S 4+ Bk, 1) .

For Qc(x+y,T) = QC(§+w(T)+y,r) we get:

sika__T__ . - .
(5.1.6) Qc(§+m(1)+y,T) = %' J b(k,0)e 8(e) 2ikGery) 2iko(T) 4
® T gipeLoTl) ® .
o e [T (ot .
—c0 0 -
.ezikcp(T)dl; - 1 Tdk + —o IIdk
_ ) '

We can see that Qc consists of two parts. We start by putting a bound on
_wfm Idk. We have:

Lemma (5.1.1):

Let u(x,0) satisfy the condition (4.1.48). Then, positive constants C, u, o
exist so that:

© o

T
= -a
(5.1.7) | Jldk] |2 JIdkl s g MGxy) o 8 g

bl
9%
-—C0 =00

[Tﬂ(S (5) aA] s
-M(t,e),

v m

X

where m is an arbitrary positive constant and M an arbitrary bounded function
of T,¢. ’

If condition (4.1.48a) is satisfied, and moreover:

(5.1.8)  3£>0 , with: b(k,0) = o(Ikl™F*®)) | x| >
on the strip 0 < Im k < 1,

then (5.1.7) is valid for 1 € [0,A], x 2 -M(1,e).
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Proof:
We choose p < n so that: o := Zp(v-4p2) >0 (v as in (5.1.1)).

We integrate over the rectangle T in the complex k-plane with vertices at
tp, tp+ip.

Obviously, we have:

§ Idk =0 .
T

Along the verticals: k = +p+is, 0 £ s £ p, we have:
u

| J b(tp+is,0)e
0

8i(p+is)3t . N
S e21(tpf1S)(x+y+<o) ids| <

Gy 2oy -24p? s
<e 2u(x+y) e § . J Ib(ip+is,0)|e 8 ds

0
and
L —24pzsI
‘ . 8
J [b(ip+1s,0)|e
0

ds

IA

ax |b(ip+is,0)| +0
ssu

<
p2m 0

In B
IA

for lp| e, T 2 mé(e) if (4.1.48) is satisfied,

H —24pzs%
J |b(2p+is,0)|e - ds

0

IA

u max [b(ip+is,0)] +0
O<s=p

for |p| +», 120 if (5.1.8) is satisfied.

So

© o

(5.1.9) J I(k)dk J I(k+ip)dk =

-00 =00

[

J b(k+iu,0)e

-0

T

81 (k+ip)? . . -
LIS 21 (lorin) Grryr0) gy ’

which gives

© T [

— -0~ -24pk?~
| J 1dk| s MY o 78 J |b(k+iy,0)|e $ k.

-C0 -—C0
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Under the consitions imposed it is evident that

® - 24k
I |b(k+ip,0)|e dk = C .

-0

Since the integrand on the right-hand side of (5.1.9) and its x-derivative
are continuous in (;c,k) € R xR and _mfw -Z%'(- I(k+iu)ldk is uniformly

convergent in X on X 2 -M(t,¢e), we may interchange differentiation with respect

to x and integration with respect to k in (5.1.9). Doing this we arrive at:

o (=] T
I ot -24uk2
K= Ildkl < T Ey) 78 J |k+in| |bCk+iy,0)]e S ak,
X . o
Xz M.
"Again, under the conditions imposed, it is evident that:
® —24ukL§
J |k + iy |b(k+in,0) e dk £ C .
—w Q.E.D.

For _mf°° IIdk we want to derive a bound in an analogous way. We have the

following lemma.

Lemma (5.1.2):

We assume that, for k = 0, we are in the generic situation, that is (see
(2.2.36)):

(5.1.10) W(0,1) #0 , =t € [0,A].

Moreover, the following conditions must hold:
There exist n = n(e) and ¢t = r(e) with:

(5.1.11) a) 0 <n(e) <M, = k1(r) , T € [0,A];

1

o

2 k>
b) sup | I f(ulx, )Y (x,k,r)dx| = O<T3§_TET> , k| > o

0sIm ksn(e)
T1€[0,A]
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©

c) | J f(u(x,'r))wZ(X,k+in,,T)dx| < ¢(1,e) wuniformly in k on IR,

T € [O’A];

d) 1I1(k) Zs analytic in k on the strip 0 < Im k < n, and con-

tinuous on 0 < Im k £ n.

Then a positive constant C exists so that:

(5.1.12) | J rdk| + | J r1dk| s ¢ $(e)elre) ~2n(e) Gy
. o% _, n3(e)
-2n(e) (@(1,e)-4n2 (e) =rv)  _
. e §(e) , x2 -M(t,e), T € [0,A].

Remark (5.1.1):
From (5.1.10), (2.2.4,19,35,36) and Theorem (2.2.1) it immediately follows
that (5.1.11d) is satisfied.

Proof:
Again we integrate over the rectangle T in the complex k-plane with vertices
at tp, xp+1i .

From (5.1.11d) we see that

(5.1.14) § IIdk = 0 .

T
Along the verticals: k = +p+1is, 0 £ s £ n, we have:

: . 3T
M 2i(spris) (ryrg) BLUEPHS)T

(5.1.15) ’ j iz p+is) :
0
T —81(¢p+is)3%§ © 5
. { { e ( J £(ulx, "))y (x,ip+is,1')dx>d1'} ids| <

0 -



< — e
= 2]pl
0 0
« sup | J f(u(x,T))wz(x,ip+is,T)dx[ <
O=t=A
O<szn
n -(24pzs—833)%-
T 1-e
< Ce ds -
Zlel 0 (24pzs —8s3)%-
2 .
e sup ] flulx,t))¥ (x,ip+1s,r)dx| .
Ost=A
Osszn
Since:
=X =X
lim l-e . 1 and dil-e . 0, forx>0,
X dx X
x+0

for p large enough we find:

n —(24p25—833)% n —16p2s%
1-e 1-e
(5.1.16) TJ dsé’rJ —————ds =
2 31 2 T
0 (24p S 8s )3‘ 0 16{3 S—S
16p2—%r—]
8 1-ewd . a2 Ty
=— —— dw (with w = 16p SE_) =
16p 0
21N
1 16p s

IA

Combining (5.1.15,16) we find that:
For fixed 1, ¢, the contribution along the verticals k = *p+is, O
is bounded by:

©

(5.1.17) C 19%;3- sup l I f(u(x,T))wz(x,¢p+is,T)dx| .
p Ost=A
0=sszn

With (5.1.11b), we see that the bound in (5.1.17) tends to zero as

So we find:

2
. ( { dw + J l-dw) - 8(e) (1 + log 1§E—ID£EL> .
16p2 o 1 oW 16p2 §(e)

I

IA

©,

87

1
n - —(24pzs—8s3)l- T (24p25—8s3)1—
! J e—Zs(x+y+w) e 6( J 8 dT'> ds
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© ©

7 21 0ketin) Gery+o)
(5.1.18) J 1I(k)dk = J II(k +in)dk = J TSy .
- ©
T 8i(k+in)3(T6T ) )
. { J e ( J fF(ux,t"))v (x,k+in,r')dx)d1'}dk .
0 -0
Using (5.1.11c,19) we get:
o © - (24nk2-8n? )+
-2n(x+y) -2ng 1-e 8
(5.1.19) | J II(k)dk| < e e -g-aj 3 35— 51 I -
. of  (24nk"- 8n7) (k" +n")

By substituting z = V3 k we get:

= ~(24nk2=81) 5 @ -8n(z2-n2)5
1-e 1 1-e
(5.1.20) J dk = — I = dz <
o @nd-e)alendt a3 ) enGl-n) e B’
2n -8n(zz—n2)§- o ‘BH(ZZ—HZ)%
1 1-e 1 J 1-e
< —_ dz + — dz .
V3 8n’(z%- n%) /3 gn’(z% - n?)
0 2n
We have
2n -8n(z2—n2)% -8n(zz-n2)% 8n3%
(5.1.21) I 1= e2 5 5 dz £ 2n  max 1= e2 73 =& 3—1
0 8n“(z°-n") : z€[0,2n] 8n“(z"-n") 4n
and
@ -8n(z2-n? )-g— ®
1-e 1 log 3
(5.1.22) ) 3 dz = 55 5 dz = 3
n 8n“(z"-n") 2 8n“(z"-n") 161

Combining (5.1.19) to (5.1.22) we get:

(5.1.23) There exist a positive constant C, so that:

| J I1(k)dk| = C ——‘S(Eég(“e) (e Gety)
n~(e)

—2n(e) (0(t,e)=4n2(e)5 (TE))

b

x €ER, y=z20, 1€ [0,A].

As in the proof of Lemma (5.1..1), it follows that on regions x 2 -M(t,e),
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it is allowed to interchange differentiation with respect to x and integra-
tion with respect to k, so that:

o o

J II(k)dk = > I II(k +in)dk =
9x

-0 -0

9
ax

J 21 0erin) Getyr) |

=00

T 8i(k+in)3(T_T') L ,
. { J e § ( J £(ulx,t"))Y (x,k+in,'r')dx) d'r'} dk .
0 -0

This integral can be estimated in a way similar to the one used for esti-
mating the integral in (5.1.18). The only difference in the result is a
factor 1/2n that disappears under the x-differentiation. This is an improve-
_ment when n = o(1). So, certainly, the bound (5.1.23) is also valid for

|2 T 1roa|.
x

Q.E.D.

A combination of the Lemmas (5.1.1,2) provides us with a bound for QC that
can be used in Theorem (4.1.3).

Of course, the question arises when the conditions imposed in the lemmas
are fulfilled, and in the case of eondition (5.1.11), for what choice of n,

z. We can make the following remarks in relation to this question:

Remarks (5.1.2):

1°. The condition W(0,t) # 0, T € [0,A], is not quite satisfactory. Although
generically W(0,t1) # O, this condition is certainly not satisfied if we

take a reflectionless potential as initial function. However, if:

(5.1.24) For all tv € [0,A] with W(0,t) = 0, there exists r(e) such that
I1(k,t) is analytic on Br(e)(O)\~{0} (Br(e)(o) is the circle with

radius r(e) and center 0),
then, we can replace (5.1.10) by the weaker condition:

(5.1.25) W(0,t) # 0 almost everywhere on T € [0,A].
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Again, we observe that (5.1.24) is certainly satisfied if u(x,t) decays
exponentially for Ix| » «, see (2.2.39).
The proof that indeed the same results hold under condition (5.1.25), is

given in Appendix C.

2°. Because of the fact that 'birth' or 'death' of eigenvalues is only
possible at times T for which W(O,TO) = 0, see Theorem (2.2.9), the
condition (3.2.3a) follows directly from (5.1.10).

3°. It is easy to see that, in (5.1.11b), it is not the asymptotic behaviour
in k, but the convergence of the x-integral, that causes the biggest
restriction.

We know that:

Y(x,k,7) is analytic in k on 0 < Im k < n and continuous on 0 £ Im k £ n.
Moreover, from (2.2.62,63) we see:
- U,/ 1kl
lpGe,k,1) | = |alk, DRGx,k,1)e %] s (1+0(ﬁ) e 0 XImk

So (5.1.11b) is certainly satisfied if

©

(5.1.26) J |f(u(x,T))|e2nX dx converges.

-—00

This also provides us immediately with an upper bound on ¢ (t1,e).

We have:

g o

(5.1.27) ] J f(u(x,T))¢2(X,k+in,T)dx] C J lf(u(X,T))lean dx‘.

-0 -0

IA

As it turns out, the above method of contour-integration with the smallest
upperbound on z(t,e) given by (5.1.27), does only give results on rather
short timescales. We will illustrate this by showing what we get from
(5.1.27) when the solution of the pKdV has an N-soliton structure. That is,

we take f(u) so that:

Il >~12

(5.1.28) £f(u) =
i

1 fi(x'(\oi(T,E)) .

We then find

©

(5.1.29) J f(u(x,'r))e2nx dx = 0<e

=00

anN(T, s)>
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anh(r,s? :

Substituting z(t,e) = e n (5.1.12), we get:

© o

(5.1.30) § <| J IIdk| + | < J IIdk]) ¢S5
9x n

-0 —o0

- -2 8n3L
~2n(xry) . ”Q°'¢N) . n*3 .

IA

Of course, since we do not want to lose information about the soliton struc—

ture of the solution, we must take:
o(t,e) = w1(r,a) .

Using (3.2.13), this implies that for N > 1 a positive constant ¢ exists so

that

-

, T € [0,A].

[
Q

(DN(T’E)_(D(T’E) 2

To avoid explosion of the bound in (5.1.30), we must take n(e) such that:

n(e)

5(oy = 0, e+o0.

Moreover, for getting a o(1)-bound in (5.1.30), we must have:

£ = o(1) , €+v0.
n>(e)

So, in this way, one only finds o(1)-bounds on E?%j-—timescales with

91/3/6(5) = o(1).
P 1
For 8(e) = e, 0 s p < 3 we get:

0 o

-3p -0eP(%
(5.1.31) Ef%j <| J T1dk| + |-> J IIdk|> < ce!™IP gmae Gevy)
9x

-—C0 -—00

with o an arbitrary positive constant.
If we take N = 1, so f(u) = ?(x—(ps), the results will improve.

Taking @(1,e) = wS(T,e), we get:

g © T

—on(x 8n’<
9x n

-C0 —00

Now, sufficient conditions for getting an o(1)-bound are:
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3
n (e) _ . € _
(5.1.33) HONE o(1) ; n3(€) o(1) .

(5.1.33) can be satisfied on all 1/8(e)-timescales, with ¢/8(e) = o(1).

For 68(e) = ep, 0=p< 1, we get:

© 3

(5.1.34) —§<| JIIdk|+|—§_— JIIdk[)

9x

- -

- —ae(%
Ce1 P eBT e ae (x+y) .

IA

with a, B positive constants and p £ 3q < 1.
For solutions of the (p)KdV for which (5.1.29) holds, we can summarize the
results on condition (4.1.55c) as follows:

Define: x = x-@(1,e), with@(1,e) 2 v 62;) for some v > 03 68(e) = eP,

d
Iﬂc(x+y,T)]+ |E§‘Qc(x+y,r)] < H1(x+y,T) + Hz(x+y,T)
with

1°. If (4.1.48) is satisfied, then

o (= -2u(v-4u2)~437 _
e 2u(x+y? e 8(e , x2 -M(t,e), y20,

T € [mé(e),A]l, O=ps=1.

H1(x+y,T) £ C

Here uw 18 a constant with 0 < u £ n and v-4u2 > 0.

2°. If (5.1.25) is satisfied and if n(e) exists, with:

a) 0 < n(e) <M, < k1(T) H

1

©

b) J f(u(x,r))ezn(g)X dx converges;

c) I1(k,t) s analytic on 0 £ Im k = n(e) <f W(0,t) # O.

I11(k,T) 28 analytic on {0 < Im.k < n(e) N |kl 2 r(e)} U
U B,y (010} £f W(O,1) = O.



93

(Of course, it is also sufficient if the second condition holds
for all T € [0,A].),

then:
For N > 1 and @(1,e) = @,(1,¢), we have:

Ce1

A
A

= - Pk
e ) g cp <l e 0,41,

-M(1,e) ,y 2 0.

H2 (X+y’ T)

I\

X

v

For N = 1 and @(t,e) = (ps(r,e), we have:

s —0ed(3
Hz(x+y"r) < Ce1 P T0E Gety) , O

A

Pp<3qg<1.

For o(x,t) in Theorem (4.1.3) we have:

- - —hy2 Y— -
-(5.1.35) o(x,t) =C <e'2ux e 2u (o=t )6(5) +e1‘3P e—(xepx) -

- 2 - -
= O(EZum(v 4ur) ve! 3p) , uniformly on x = xX=v 2 M,

T € [mé(e) log-l—,A‘] , forNz1,

and m, M arbitrary constants.

W=

with §(e) = e, 0 5 p <

(5.1.36) o(x,1) = O(EZum(v-auz)\ + 51—p) uniformly on x = x-@ (1,e) 2 -M,

T € [m8(e) log%,A] ., for N =1,

. with 8(e) = P, 0 < p < 1 and m, M arbitrary constants.

It is easily seen that, on the (x,T)-regions used in (5.1.35,36), we are in
the situation described in Remark (4.1.3).

With Theorem (4.1.3), we now find:

(5.1.37)  |ulx,1) - uS(X,T)|

IA

o(x,1) , x2 -M, 1€ [m8(e) log %,A]
with m, M arbitrary constants and:

% = T P 1 .
a) x—x—vm,s(e)=e, 0§p<§ and o(x,T) given by

(5.1.35) if N2 13
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IA

b) x = x-.¢1(1,€), sCe) =€P, 0 p <1 and o(x,t) given by

(5.1.36) if N = 1.

No results are thus obtained that are useful for solutions with an N-soliton

structure on the 1/e-timescale.

In the next section we present a consistent perturbation theory on the

1/e-timescale.

V.2. Consistency results on the 1/e-timescale

In the introduction we gave a brief explanation of the way in which we want
to obtain our asymptotic results. We will again outline the method and

indicate which of the necessary steps have been derived so far.

In the first step we gave asymptotic results for 'the soliton part' us(x,t)
of a solution u(x,t) of the pKdV, as well as for the eigenfunctions wns(x,t)
of us(x,t); without specifying the exact behaviour of the spectral data.

This has been done in Chapter III.

The second step consists of giving asymptotic results for u - ug and
¥n" Vns

Theorems that provide results in that direction are given in Chapter IV, in

, again without specifying the exact behaviour of the spectral data.

particular Theorem (4.1.3) and Theorem (4.2.2). The conditions of these
theorems require certain behaviour of QC, respectively r. In case of the
pKdv, using (3.1.5), (4.1.6), (2.2.55) and (4.2.2), these conditions can be
considered as conditions on u and its (generalized) eigenfunctions. We are
not able to verify these conditions for solutions of the pKdV on the 1/e-
timescale. However, we can prove consistency of the approximations, by
demonstrating that the conditions are satisfied by ug and its (generalized)

eigenfunctions. This will be done in the sequel of this section.

We need the results of the first and the second step to give an approximation
for the eigenvalues. That is, we will show that using the consistency results,

we can approximate _m.fgo f(u)widx by _wf°° f(us)wisdx.
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On its turn, kr_11 . —oofw f(us)gprzls dx can be approximated by some function g
depending on kn only, using the results of step 1.

This finally leads to the result that kn('r), being the solution of:

o

dk
n _ _ € 2
T I J £(uly, dx ,

-00

kn(o) = Kn >

can be approximated by the solution krc:('r) of the ordinary differential

equation:
dkg € o
F Y ) g(kn) ’
o
kn(o) = Kn s
where

o

= _ o2 2 2
g(kn) = 4 J £( 2k sech knx)sech k x .

-—00

Only in proving that _m,f°° f(u)\prz1 dx can be approximated by _oa.f00 f(us)wis dx,
we need the results of the second step. The other parts of step 3 give no

difficulties (as we will see in the mext chapter).

As explained, consistency is obtained if the conditions of Theorems (4.1.3)
and (4.2.2) are satisfied, when in these conditions we replace the occurring
quantities u, lpn, etc., by ugs wns’ etc. To verify this, we use the expres-—
sions (2.2.53) and (2.2.54) for the generalized eigenfunctions y(x,k).

In particular, for the pure one-soliton potential, we have:
u(x,t) = -~2k2 sechzk (x-p ) = -4k q;z(x t) >
; ? n n n n'n

2
= q;n(x,t) = ﬁkn sech2 kn(x-pn) =

k x knpn
=0 < cn(t) = lim wn(x,t)e = 2kn e =
X-¥o0
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knpn
= cn(t)wn(x,t) = kn e sech.kn(x-pn) ,

which leads to:

-k (£) G-p, (1))
-ikx kn(t)e
(5.2.1)  v(,k,t) = e {1 - kn(t)+ = sech kn(t)(x-pn(t))} .
We define for k € R:
—kn(t)x
. N c (£)y  (x,t)e
-1ikx n ns
(5.2.2) ws(x,k,t) = e {1 - z "ROIET } 5
n=1 n
t . «©
%k J e81k3 (t-t )( J f(us(x,t'))xpz(x,k,t')dX)dt' ,
4] -0

(5.2.3) Bs(k’t) = for |kl 2 eﬁni(e)

g(k,t) , for |kl| < 86—%(8) (see (5.1.5));
(5.2.4) @ (£,0) =+ J 21kE b, (k,t)dk ;

o

(5.2.5) 1 (x,0) = - 2 J Kb (~k, )y2 (e, k, D) dk

Note that when deriving results with ws(x,k,t) instead of Y(x,k,t) in the
expression _wfco f(u)wzdx, we can only speak of consistency when we take U(x)
to be reflectionless.

In view of the theory presented in the previous section, however, the condi-
tion of starting reflectionless seems to be more or less artificial. There,
when deriving approximations for u-ug and wn-wns by means of contour integra-
tion in the complex k-plane, we have separated Qc into two parts., The first
part depending explicitly on b(k,0), and the second on the reflection gener-
ated by the perturbation. From Lemma (5.1.1), we know that the first part
gives no problems when deriving bounds on QC. However, one should realize

that, though in an implicit way, also the second part depends on b(k,0).

We have the following theorem:



97

Theorem (5.2.1):
Let the perturbation f be of the following form:

ig 95, \"s2
(5.2.6) @) £ =(§ 3, T (=) )iw, s, em, p,em,
2=0 s=0 .}\3x

and L € C*(R) s a function of the real variable u satisfying:

b) IL(m) (U)-L(m) )| = Clu-v| wuniformly on compacta K cCR.

c) J £(- 2kr21(t) sech? kn(t)x) o 2K gy is differentiable to k

-0

with a uniformly bounded derivative on T€ [0,A], k € R.

Then

IA
—_
-

0( A 25_1(5)1) s 56_5(2) < |kl

+
€ 'kl €
(5.2.7)  2ikb_(kg) = T € [0,A]

0( em) » k€ TR, Ikl 21, uniformly on © € [0,A].
Ikl

Proof:
The proof is based on the results obtained from § III.2. We will start with

giving a review of the notations used and the results required.

Notations:
t t .
Hn(t )

3 € v,
OJ kn(t’)dt' + kn(t) 0,[ an(t') dt' ;

4
@ () ——kn(t)

2
¢ (0) N (kn(t)-ki(t))z)-

+ _ 1
%0l = 7 ey o8 (2kn(t) RV CENG)

(5.2.8)  p () =@ (£) + & (t) 3

z =x-@(t); Z =x-p (t) ;

n n

E (1) ={x€ R |4 _(t)+@(t)=x=i@, ()+o ()},
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E (t) = [~ o, 30 (1) + ()], Eg(t) = (Rqy(t) +qy_{(£)),=) 3
EC(t) = RNE () 3

—kn(t)x
hn(x,t) = cn(t)¢ns(x,t)e .

Results (Valid for t € [0,A] unless mentioned otherwise.)

1) z S-ot, X € En(t) , m 2 n+l ,
z z ot, x€En(t),m§n—1,
E)k 2 --kmz111 _kmzm -2
(2) |_k wms(x,t)] sC (e + e > , X € IR;
9x
8k C
3) —Ehm(x,t)lg - SC, x€ER;
9x m m
1+e
ak C -ot
(%) |;"E hm(x,t)l < o =) < Ce , x€E (1),
X m n-1 n m
‘ 1+e m <n-1;
k k
d 2 2. e~y _ . -aty 3 2.~
(5) % (wms(x,t) 3 sech kmzm) =0(e ) —x sech kmzm ,
9xX 9x
x € Em(t) 3
(6) 2l h (x,t) = h, (k (t) (), )1+ 0(e*)) €E (t)
3Xj o (s 5m *n ,...,kN 2, e s X n ’
mzn;
Bk 2 ~ -at c
(7a) ;—X? sech kmzm =0(e ), xE€ Em(t) ;
k
3 2.~ o~ —at
(7b) . J lﬁ sech” k z |dz = 0(e ")
E_(t)

We have the following trivial corollaries of these results:
1)+ (2) =

k
(8) J a—k ¢is(x,t)|dx = o(e *%) , n#m.

9x
XEEm(t)
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(1) + (2) + (5.2.6) =

] ] N
] ) 2
) Bt =25~ 4 T Ky )=
BXJ S 9% n=1 n'ns
L RPYS S (x,1) €E (t)
axJ m¥ms’ * By Xot) s X € By
with
a -ot - -ot
gmj(x,t) C 0y | xe Em(t), and J ]gmj(x,t)ldx = 0(e %Y.
E_(t)
(5) + (5.2.6) =
j j N
(10) 2 -4k 92 ) = 2 £(- 2% sech®k 2. ) +
BxJ m ms BXJ o mm
-ot 2 2 ~
+ 0(e o, )foj(— ka sech szm) s X § Em(t).

Here, foj is an operator with the same structure as f.

Now, we will start with the actual proof of the theorem. We have:

©

t
(5.2.9)  2ikb_(k,t) = ¢ J Bik? (t-th) ( J f(us(x,t'))\pz(x,k,t')dx)dt' :

-0

. . N h_(x,t) . N h (x,t)\2
2 _ —2ikx_ , -ikx n "’ -2ikx n " -
(5.2.10) ws(x,k,t) =e 2e L% v +e ( ! i:—j:—IE)
n=1 "m n=1 n
=3 e—ZIkX + H(x,k,t) .

We define
(5.2.11) a) £ (k ,2.) = £(- 2k sech’k_%.) 3
e m' m’ m m m“n’ ?
L CkE
b) Xn(k,kn(t)) = J fn(kn,zn)e dzn ;
R

c) gm(x,t) = £(u (x,0)) - fm(km,gg) .
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Using (9,10), respectively, (8) and (5.2.6), we see that:

j _
(5.2.12) I |iij g (x,t)]dx < Ce ot .
X
E (t)
3j ~ ~ -ot
(5.2.13) ]——?-fm(km,zm)]dzm < Ce .
E;(t) dx

At first, we consider the contribution in the integral (5.2.9) coming from

the e_21kx—part of ¢§(X,k,t):
® . N .
(5.2.14) J £u (x,t))e "M ax = ) J £ (x,0))e ¥ gy =
n=1
~ E ()
N  -2ikp_(t) —2iK% .
_ n ~ n =2ik
) nz1 {e ' J‘ fn(kn,zn)e dz_ + J gn(x,t)e xv:lx} =
En(t) En(t)
N -2ikp (6) 2ikp_(t) L 20K
=n=1 {e ~Xn(k,kn(t))—e . . J fn(kn’zn)e dzn+
E _(t)
+ j gn(x,t)e—Zlkx dx} .
En(t)
From (5.2.12), respectively (5.2.13), we see that:
(5.2.15) ¢ I J |gn(x,t')|dxdt' = 0(e) ;
1
0 En(t )
t
~ Py '
€ . J Ifn(kn,zn)]dzn at' = o(e) .
1
0 En(t )
Using (5.2.6c) and
dk dp 2
n _ n _ 2 d _
d_t = 0(e) N F = 4kn(t)+0(€) N —dtz pl’l = O(E) s

we find:
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[t -2ik(4k2t"+p_(t"))
e

OJ

_ lesikﬁt J

0

1 k3
(5.2.16) |eBiK°E

-Xn(k,kn(t'))dt'] =

t :
-2ik(k2t"+p_(t')) . . -
e n e (et (e

© Xy (kk (£1))de'| =

- -2ik(4k2t"+p_(t")) t
ikt [_ 1 2, - -1
e R L T e g G )]
| Bk Jt -2ik(4k2t"+p_(£"))

7ik | ¢ ’
0

( . . _1 . 1 . an dkn , l
(T bt e e ) e
(k% + pn)2 AT B k dt :

1 + et
o)
k(1+k2)

Combining (5.2.14,15,16) gives:

©

t
(5.2.17) ¢ { (Bike (t'-t) ( J f(us(x,t'))e_Zikxdx> at' =
0 -0

et | o)
= 0(5(1 +€—2)> = 0(9(1 +E———§—21)) , T € [0,A].
k(1+ k) k(1+ k%)

Now, we consider the contribution in the integral (5.2.9), coming from the

H(x,k,t)-part of xpg(x,k,t) :

(5.2.18) J f(us(x,t))H(x,k,t)dx = |
o n=1 En(t)

Il 12

f(us(x,t))H(x,k,t)dx =

N
=1 J £(u (x,t))
n=1
E_(t)
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. (.ze_ik# n-1 hm(x,t) —2ikx hm(x,t)hl(x,t)
oo kp * ik m<n—1 (km+ 1k)(k2+ ik)
or
2sn-1
N
+ 2 f(us(x,t)) .
n=1
En(t)
) ( ze_lkx N hm(x,t) e—Zikx hm(x,t)hz(x,t)
m=n km + ik m, 2n (hn+ 1k)(ﬂl+ ik)

) dx +

)

For the first 2§=1—summation in (5.2.18) it is easy to find a bound, since

with (4) it follows that:

. n—1 o ) -
(5.2.19) J ]f(us(x,t))(— T ) ...)[dx < ce ot
En(t) m=1 m%g:1
25n-1
The second part caﬁ be estimated as follows:
. (x,t)
-ikx m 7’ _
(5.2.20) J f(us(x,t))e W dx =
En(t)
-ikZ_ h (x,t) -ikp_(t)
= ( J £ (k ,z)e © —EL——T—-dx) e T4
n*n’“n K * ik
E ()
. h (x,t)
-ikx m 7’
+ I gn(x,t)e E;—:—IE dx , mzn.
En(t)
Using (6), (5.2.12) and (5.2.20) we get
t 8110 (t-t") o B (5T
1 t-t -1 m
l J e f(us(x,t'))e —E;:TIE— dx| <

En(t')

sC+ |e

t_. it .
ikt t I . ik(8k2 t +pn(t )

0

P

E (t")

n
e ~ ~ ~ f
1§;I'IE £ (k »z )hy (kn,...,kN,zn)dzn} at'| ,

2 n.
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Definition:

(5.2.21) a) Since (BJ/BXJ)hm(x,T) is uniformly bounded on R x [0,A], we
can easily extend the function hjm(X,T) defined for x € En(T),
m 2 n, to a function h?m(x,T)'which is uniformly bounded in

(x,7) on Rx [0,A].

n n’‘n n.,u ~
b) xnm(k,kn,...,kN) = J —T§:1?Z£_‘e hOm(kn""’kN’Zn)dzn .
‘R

(5.2.22) a) e |- Pon (ks e+ -skys 20| 2 dt' = 0(e) 5

8ik3t - -ik(8k2t'"+p (t'))
b) ]e 1 . [ e n

'Xnm(k,kn(t'),...,kN(t'))dt'[ =

It is obvious that the same method is suitable for the part:

'hm(x,t)hz(x,t)
(kmi-ik)(k£+ ik)

X

f(us(x,t))e_lk dx , m,% 2 n.

En(t)

So, combining (5.2.18) to (5.2.22), we find:

[

t
(5.2.23) J Bk (e-t') ( J f(us(x,t'))H(x,k,t')dx> P

-—00

; -1
= O(e[1+—§—t-:————)> = 0(5(1-!—86_(52)—)) uniformly on t € [0,A].
k(1 +k%)

Finally, with (5.2.9,17,23) we find

2 2.1
O(e N %E%) - 0(3 + E_ﬁTﬂéill), Tt € [0,a], Ikl s1,

0(e) wuniformly on t € [0,A], for |kl 2 1.

(5.2.24) kb_(k,t) =
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We can improve the estimate for |k| 2 1 in the following way:
Since ug and its x-derivatives tend to zero for |x| + «, by m times partial

integration in _mfw f(us)e_Zlkde we find:

. m s . m
~2ikx _ (1 =2ikx 3~
J f(uS)e dx = <§IE) I e — f(us)dx .
D4
- —o
Analogously:
® ... N h N h (2
-1kx n -2ikx n _
J f(lls) - 2e z m + e ( z m) dx =
o n=1 "n n=1 "n
m o _ip. am N . b
_ 1 -ikx 3 \ n
- _z(ﬁ) J elkx 2 (f(us). R +ik>dx .
oo 9x n=1 mn
m * . m N h 2
1 -2ikx 9 . n
* (m) J © T a (f(“s)( Iis ik) ax -
o X n=1 "n

For the x-derivatives of wns and hn’ we have the same bounds as for wns and
h . Moreover, also (6), (10) hold for all j € IN. Therefore, by working com-
pletely in the same way as is used to derive (5.2.24), we find that for

m € N for which (5.2.6) holds, the bounds in (5.2.24) can be multiplied by
a factor k_m, without losing their validity. This leads to (5.2.7).

Q.E.D.

Remark (5.2.1):

We have proved the theorem for perturbations of the form (5.2.6), because
these are the perturbations to which we have to restrict ourselves later.
(See Chapter VI.) From the proof, however, it is evident that the theorem
holds for a larger class of perturbations. It is sufficient to assume that
the perturbation f = f(u,u(1),...,u(P)) is a function of u and x-derivatives

of u up to a certain power p, that satisfies:

i) £fe ™R s

’ A s
i1) ]f(m)(xo,...,xp)—f(m)(yo,...,yp)l < cl=-31,
uniformly on compacta K < IRP+1;

iii) Condition (5.2.6c).
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Corollaries of Theorem (5.2.1):

1) TUsing

b G, )| = [b(k, 0| s b, D]+ [b(k,0)| 5 2

for |kl < a(e) 56-1(5) and (5.2.7) we get

(5.2.25) kb (k,1) = 0(56—%(6)) , uniformly in (k,t) on {lk|] = 1} x [0,A].

2) Let (5.2.6) hold for m = 2, then:

v G| s 2 J b, (k) | 42,1, )k 5

-0

-1 -a(e) a(e)
< c{ J]kbs(—k,T)|dk + J |kb_(-k,7) | dk + J lkbs(—k,‘r)ldk+
- =1 -a(e)
1 oo
+ J |kbs(—k,T)]dk + J |kbs(—k,'r)]dk} .
a(e) 1

For _wf—1 and 1[0° we use (5.2.7),(lk] 2 1), to find that these integrals
are 0(e).

For _1f_a and af1 we use (5.2.7), (lk] = 1), to find that these integrals

are O(e+ 626_1(5)1og a(e)).

For _afa we use lbs(k,r)l < 2, to find that this integral is O(az(e)).
We again take: 8(e) = ep, 0 £p = 1. Since a(e) = eéfi(e), this leads to
(5.2.26) rs(x,T) = 0(e+ 625_1(8) log €) uniformly in (x,t) on IR x [0,A].

3) Analogously we find
(5.2.27) a) QCS(E,T) = 0(65_£(8)) uniformly in (£,t) on R x [0,A] ;

b) %%-QCS(E,T) = 0(e+ 526_1(2) log €)

uniformly in (&,t) on R x [0,A].
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This implies, that in any case for b(k,0) = 0, we have satisfactorily consis-—
tency results for conditions (4.1.55c) and (4.2.62b). (And also for (4.2.57)
with k = 0.)

Since (4.1.55d) can only give problems in the exceptional case that

"STch" ~ HBCH and HTBCH ~ HBCH, we will not go into this condition any

further.

We finish this chapter by concluding that we have shown consistency of the

following results:

(5.2.28) a) |u(x,0)-u (x,7)| = 0(q(e))

uniformly on x € I(e,1) , 1 € [m(e),Al;

b) |wn(x,T)"¢ns(X,T)| = 0(q(e))
uniformly on x € I(e,t), T € [m(e),A],
with
(5.2.29) §(e) = P, 0sps1, q =¢ P and

a) m(e)

0, I(e,7) =R 2f b(k,0) = 03

b) m(e) = m§(e) log % , I(e,T) = [M+v 5'; @)

with m, v positive constants (m taken so large that in the
bound (5.1.7) we have om 2 1-ip) and M an arbitrary constant,
if b(k,0) # 0.

As to not to lose information about the soliton structure, v

must be such that there exists a positive constant v, with:

T

~ T <
5y © Vs (e

v

In the next chapter we will give the third step of the perturbation analy-
sis, such as outlined at the beginning of this section. We take as a
starting point Theorem (3.2.1) with corollaries, and the estimates (5.2.28),

. P 1 .
with q(e) unspecified and m(e) = mdé(e) log-E , I(e,1)=[M+v 5%%7 ,©) if
b(k,0) # 0, respectively m(e) = 0, I(e,t) = R if b(k,0) = 0.



CHAPTER VI
EXPLICIT APPROXIMATIONS FOR SOLUTIONS OF THE
pKdV-INITIAL VALUE PROBLEM

Our final task is to derive approximations for the eigenvalues. The evolution

of the eigenvalues is given by:

©

6.1) - L - J £ (a9 Gy dx

In this chapter, the perturbation f(u) has the following structure:
(6.2) f(u) is as in (5.2.6a), with L € CJ(R), where j = max {jo,...,jq}.

(If j = 0, then the only condition on L is that L must be Lipschitz

continuous uniformly on compacta.)

We define:

©

(6.3) g(k) = 4% J f(- 2k2 sech2 kx) sechzkx dx .

First, we show that as a consequence of Theorem (3.2.1) we have the following
lemma:
Lemma (6.1):

bl T

S
J f(us(x,'r))w;s(x,r)dx -k gk ) = 0<e 5(8)) ,

-00

for some positive constant o, T € [0,A].

Proof:

The proof is given in Appendix D.

. e 2 © 2
Now we need an estimate for _ f f(U)IPndX ) f(us)wns dx.
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We discriminate between the situations b(k,0) = 0 and b(k,0) # 0. For
b(k,0) # 0 we have the following lemma:

Leﬁa (6.2):
If
(6.4) a) u(X,T)—QS(X,T) = 0(q(e)) uniformly on x 2 M+v-6% s

T € [m6(c) logT,A] ,

b) b (x,0)- 9 (x,7) = 0(q(e)) wniformly on x 2 M+v?§—(‘5€7 ,

T € [m§(e) 103-1-,A] s

with q(e) unspecified, m a positive constant and M, v satisfying
(5.2.29),

and 1f moreover

. .
(6.5) E-L(%’—Q- , 8 =0,1,...,2j ts uniformly bounded on R x [0,A],
9x
then
(6.6) I £Qu(x, 1) (x, 1) dx - J £(u, (x, 1)V (x,0)dx =
T
IOARE
= O(q(s) + e ) for some positive constant o
"and t € [m6(e) log%,A] .

Proof:

The proof is given in Appendix D.
For b(k,0) = 0, we use:

Lemma (6.3):
If

6.7)  a u(x,T)—uS(x,r) = 0(q(e)) wuniformly on x € R, 1 € [0,A];

b oy G-y (x,1) = 0(q(e)) wniformly on x € R, t € [0,A],
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then:

(6.8) I £(ulx, 1IP2 (x, 1) dx - J £u (6,09 (x,1dx = 0(a(e))
uniformly in T on [0,A].

Proof:

The proof is a simplified analogue of the proof for Lemma (6.2) and is there-

fore omitted.

Before coming to the main theorem of this chapter, we will give one more

lemma.

Lemma (6.4):

g(k) s uniformly Lipschitz—continuous in k on compacta K < IR.

" Proof:

Trivial, using the explicit structure of the perturbation f as given in (6.2).

Theorem (6.1):
Let (3.2.13) and the conditions of Lemma (6.2), respectively Lemma (6.3), be
satisfied for © € [0,A]. Let k () be the solution of:

o

d - _ € 2
(6.9) I kn(T) = EETESE;TET f f(u(x,T))¢n(x,T)dx ,

kn(O) =Ky -

Let kg(T) be the solution of:

d o € o
(6.10) I kn(‘[) = - 75(e) g(kn('l')) s

[o]
kn(O) =K, -

Then:

6.11) sup |k (1) -k2(0)| = oCel1+q(e)6" (D)) %f b(k,0) = 0 ;
€[0,A] © n

(6.12) sip [k (0 -k2(D)| = OCellog T +q(e)6 () 4f b(k,0) £ 0.

€[0,A]
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Proof:

We use:

A
IA

(6.13) |g(x) - g(y)| s Lix-yl| uniformly on M1 X,y S M2 .

~

(M1, M, as in (3.2.36).

At first, we look on T € [O,AO] with A S A and AfL < 2.
For b(k,0) = 0, we have:

Y T
Sy
T:; J f(u)q;rz1 dx = g(kn) + 0(q(e)) + O(e 6(2))
T . N
= kn(r) =K, ~ ﬁ%zi J 8(kn(Tf))de + O(iSq((eE))) + 0(e) =
0
T
0
T
+-2T‘(°’€—) J [g(kz(r'))—g(kn(T'))]dT'+0(6[1+q(€)6_1(e)]) =
0
T
- ko( € O/ 1 ] '
=k (1) + VO] gk (') - gk (7 Nldt' +
0
+0(elt+q)6 (@] .
[k () - K2() | s Ce(1+ q(e)s™ ' (e)) %
= sup k (t)-k_ (T s Ce(1+ q(e)§ €)) + 57 °
TE[O,AO] n o 26(e)
sup |k (T)—ko(T)|
1€[0,4] n n
sup |k ()= k20| = 0(el1+ q(e)s” (D) .
T€[0,AO]

For b(k,0) # 0, we divide the 1-interval into [O,Tm] and [Tm,AO]. Here,

1
L md () 1og€ .

For 1 € [O,Tm] we only have the rough approximation:
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kn(T) = kZ(T) + 0(e 1og~%) uniformly on [0, ] .

For T € [Tm,AO] we get

B0
€ §(e
i< kn = - 75(e) g(kn) + 0(q(e)) + 0 (e ) N
k () = kKot ).+ 0(e log l)
n' m n°m €
T
= k() = k() - gy J gl (t"))dt" +
T
m
T
O J [g(k2(c") - g(k, (1'))]dr" + 0(e[log T +q(e)s ()])
Tm
= sup Ikn(r)-kS(T)l = O(e[log%—+q(€)5—1(€)]) .
T€[0,Ao]

Now we have p#oved (6.11) and (6.12) for t € [O,AO]. Taking AO as a new
starting time, we can easily extend the validity-region to [O,ZAO] by
following the same procedure as in the proof for the case b(k,0) # O.
Continuing in this way, we see that the validity-region can be extended to
any interval [0,A] on which the conditions of the theorem hold.

Q.E.D.

Corollary (6.1):

The position of the n-th solution is given by:
T
1 2, '
HO) J 4kn(T Ydt' +
0

1 20 Nk (D-k (D2 .,
*E (o o8 {Zk @ . (k (T)+k.(T))}+°(a(e)>'
n n 1 n 1

=n+1

Pn(T) =0 (1) + Gz(r) =

We define

T 2 o o 2
c (0) N k (t)-k; (1)
(6.14) po(1) = g ) J 4O )) 2 drt + 10g{ - n ( 5 : > } )
n §(e n 2%° 2ko(T) {=n+1 ko(T)+k?(T)
0 n n n 1
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(Note that on the-é—timescale we can just as well omit the second term in

pg(T), because then, the 065%57)—term in pn(r) becomes of order 1.)

With (3.2.3b) and Theorem (6.1) we see that

m
o
-

(e) T .
0(8(1 + R E))(1+*6(—E-5-)) if b(k,0)

1 (g)

(6.15)  p (1)-po(1) =
T .
o(a(lc)gz+ﬂ--—6(€))(1+-—--H(e )) if b(k,0) £ 0 .

(Of course, it requires that eq(a)6_1(e) = o(1).)

Remark (6.1):
As a consequence of (6.15) and Remark (3.2.2.1°), the results of Theorem
(3.2.1) and corollaries valid for x € En(T),valso hold on EE(T), where EZ(T)

is defined as:

[N

- (6.16) Es(T) ={x € R | i(pg_1(1)-p§(r))v x-—pg(T) S i(Pg+1(T)' Pg(T))},

n=2,...,N~13
EQ(D) = (-3 (0J(D +p3()] 3 (D = [1(py () + py_y (1)),

We will now summarize the previous results and conditions that are needed to

P

find an approximation for a solution u(x,t) of the pKdV on € P-timescales,

0sp=s1.

Summary of conditions needed for (3.2.49), (5.2.28,29) and (6.11,12):

(6.17) a) The perturbation f has the following form:

i asu Pgy
f(u)=(§ a 1 (—) )L(u) , a, ER, p_, €EN,
2=0 L s=0 \3x° . sk

with L(u) € Cm(HO, where: m = max {2,3}, j = max{jo,...,jq}.

If m = 2, then as an additional condition, we have:

D2L(u) must be Lipschitz-continuous.

b) The number N of eigenvalues is invariant in time.
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c¢) The eigenvalues satisfy: There exist positive constants M1, M,,

L such that

0 < M1

A

IA
=

k1(r) < el <) , and k (1)- kn_1(T) E T

n=2,...,N.

d) In the case of §(g) =¢ , the t-interval [0,A] must be taken so

that a positive constant ¢ exists with:

X )

n+1(T)—(Dn(T)) zo0t, n=0,...,8-1, 1€ [0,A].

(Existence of such intervals has been proved.)

e) i) u(x,t) € CZJ(IR) for all the values of the parameter
T € [0,A].
All the x-derivatives of u up to degree 2j, must be

uniformly bounded on IR x [0,A].

ii) _mfw lu(x,t)ldx and _wfw |£f(u(x,t))ldx are uniformly

bounded on [0,A].

iii) u(x,t) must satisfy a second order growth condition in x,

that is: _mfoo (14~x2)u(x,t)dx converges.

£) 3In>0 with b(k,0) is analytic on 0 < Im k £ n, continuous on

0<Imk £n, and moreover: b(k,0) =o(lk|2), k] >, 0 £Imk £n.

We point out that our starting point is:

Given a perturbation f of type (6.17a), we define:
(6.18) Hf is the class of solutions u(x,t) of the pKdV satisfying (6.17).

Our perturbation results are valid for solutions in Hf. The problem of

showing existency of these solutions is not treated in this thesis.

Results based on (3.2.49), (5.2.28,29) and (6.11,12):

Let u(x,t) be a solution in Hf of:

(6.19) u, - 6uux tu = ef (u)

u(x,0) = U(x) .
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We can find an approximation of u(x,t) in the following way:

1°. Calculate the eigenvalues k of U(x).

120Ky
See whether b(k,0) = 0 or not.

2°. Derive the solutions of the 0.D.E.'s

o

d ,o0 _ _ __E 50042 2.0 2.0
(6.20) Frs kn('f) il yIess I £( 2(kn) sech krl x) sech knx dx ,

o
kn(O) =K, -

We have to discriminate the situations b(k,0) # 0 and b(k,0) = O.

Situation b(k,0) # O:

We define:

6.21)  1(e) = [md(e) log—:-:-,A] ,
D=RxI,
+ -1
D = [M+vtS (e),») x I, where

i) M is an arbitrary positive constant.

. . . 2
ii) v is a constant with 0 < v < 4M1. (In fact, we can take each

positive v with vt < vt = w1(r) for some positive constant v.)

iii) m is a positive constant, so large that am 2 1-ip, with o as
in (3.2.47,49), respectively (5.1.7). (In fact, the exponen-

tially fast decaying bounds in (3.2.49), respectively (5.1.7),
are better than a 0(51_£p)-bound.)

We have:

(6.22) a) sup [u(x,T)— u (x,1)]| = 0(51—£p) 3
D* s

N
2 2 1-4
2 an sech kn(x-pn)l = o(e 2Py ;

b) sup ]us(x,1)+
D n=1

c) sup lus(x,1)+-2ki sechzkm(x-pm) = 0(81_£p) .

EOXI
m
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Combining these results, we find:

N
(6.23) a) sup |u(x,T)+ ) 2k% sech?k (x-p)| = 0(91 iP) :
ot n=1 o n °
b) sup |ulx,1) + Zki sechzkm(x-pm)| = 0(61—£p)

+ o
D n{meI}

(Notice, that for m 2 2: p* n {ng 1} = E; x I.)

Moreover:
(6.24) sup |kn(T)"kz(T)l =8,
w€[0,A]
with
3
O(e2 Zp) , % <ps1,
B= 1o , 0sps3, b0 z0,
o(c log D) , 0spsZ, b0 70.

So, each soliton can be approximated in the following way:

(6.25) 2k sech’k % = 2((k;)2+ g) -
. sech2 [(k:*-ﬁ) (x - pE(T) + 0(B(1+ Te_p))>}

Situation b(k,0) = O:

The only difference between this situation and the situation b(k,0) Z O is,
that in (6.22a) we can take R x [0,A] instead of D+, whilst in (6.23a), we

can take D instead of D+.

For a physical interpretation of the results on the 1/e-timescale, two
aspects are of interest. First, the difference in shape and position between
a soliton of the pKdV with initial function U(x) and the corresponding soli-
ton of the KAV with the same initial function. Second, the difference in
shape and position between a soliton of the pKdV and its approximation.

As to the first aspect, we conclude that, generally, the effect of the per-

turbation will be considerable. Namely, a soliton of the KdV is given by



116

2K§ secthn(x‘—4Ki t), while the corresponding soliton of the pKdV is given
by 2k§(T) sechzkn(T)(x-—pn(T)). From the evolution equation of kn(T) it can
be seen that the difference between kn(r) and Ky will generally become of
0(1) on the 1/e-timescale. Accordingly, the difference in shape and the
relative difference in position will become of 0(1) too. The absolute dif-
ference in position will become of 0(1/¢g).

Regarding the second aspect, we have: The difference in shape is of 0(65).
The difference in position seems, at first sight, to be unsatisfactory.

4 4

is not the absolute fault but the relative fault in the position of the

Namely, pn(T)— pS(T) = 0(e® + € ?1). However, it should be realized, that it

soliton that determines whether the approximation is satisfactory or not.

3/2

This relative fault is of O(e + eir).

Summarizing, we have that on the 1/e-timescale, the maximal fault in shape

as well as in position is of O(ei).

. Illustrating both aspects in a picture, we get:

Generic situation for t =

™ |=
.

o(1/e) o(1//e) 0(1/¢)

| ,
=0 A
0(e) « 1o \/

In this picture the left-hand curve represents a soliton of the pKdV. The

curve in the middle represents its approximation. The right—hand curve
represents the corresponding KdV-soliton. (Of course, the choice of this

order is arbitrary.)



CHAPTER VI1I
EXAMPLES, APPLICATIONS AND EXTENSIONS

VII.1. A trivial but illustrative example, f(u) = U ex

Consider:

(7.1.1) u, - 6qu + g = Bl s € 0,
u(x,0) = - 2 sechzx .

By the change of variables:

7.1.2) g=x(1-ot; t-t0-07t, a&D = ux,0) ,
this equation changes into an initial value problem for the KdV:
(7.1.3) G - 6uuiE + fgos = 0,

PP _ 2 3.
4(%,0) = - 2 sech" (1 - e)*% .

In, for instance, [F], the spectral data were calculated for potentials of

the form:
(7.1.4) u(x)=—Asech2ax, A>0, o>0,.
With n € IR defined by
2
(7.1.5) A=0a0"nn-1), n>1, n€ R,
the eigenvalues Xm = - ki are given by:
(7.1.6) km=a{n—([n]+1—m)} , m=1,...,[n] .

To solve (7.1.3) by IST, we must calculate the eigenvalues of:

(7.1.7) - 2 sech® (1-e)? & = = (1-e)n(n-1) sech® (1- )32 ,

forn =3} + £(1+1T88)ﬁ .
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They are given by

(7.1.8) ﬁ1 =oa(n-2) = - %-/1—3 + % V9-¢ =-§s:+ O(ez) ,
s 1 1 1 2
k2 =an=-1) = - E'V1_€ + 5 V9-¢ = 1 + et 0(e™) .

a

Since #(%,0) decays exponentially for |%] + », we can use (4.1.53). Com~

bining this with (3.2.49) leads to

0 , if c # R1,R2 ,
(7.1.9)  _ lim _ 3ED = |- 28 seen’k %, ifc=k, ,
|R]=|%=4c2t|=M
T ~2 2~ . . 2
- 2k2 sech k2x , if ¢ = k2 .

Or, in (x,t) variables:

(7.1.10)  _  lim u(x,t) =
|x|=|x-4c2t]|=M
t-roo
0 , c# R1,E2 .
= | - ZE? sechzlz1 X - 0(62) , C = ﬁ1 ,
Vi-¢
- 2E§ sechzﬁ2 X _=-2 sech2§ +0(e) , c= EZ .
Vi-¢

Now, we calculate the soliton approximation on the 1/e-timescale for the

solution of (7.1.1) with the perturbation scheme:

u(x,0) = -2 sechzx has only one eigenvalue A1 = -1. So, k?(T) is the solu-
tion of:
d .o Ood3 0,2 2.0 2.0
(7.1.11) I k1('r) = -1 J——§ (— 2(k1) sech k1 x) sech k1 x dx ,
o dx
k‘;(O) =1

. 2.0 . . L. .
Since sech k1 x 1s an even function, it is obvious that:

(7.1.12) k‘;(r) =1,
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Using (6.23,24) we get:

(7.1.13) sup ,  |ulx,T)= 2 sech’ [x -t (4t + 02N = 0(/E) .
Hu[melogE,A] €

Indeed, this result agrees with (7.1.10).

We make the following observationms:

Rémarks (7.1.1):

1°. Apparently, the solution 4(®,0) = u(x,t) contains two solitons. This
does not contradict the assumption that no new eigenvalues will be
created, since the eigenvalue problems that have been used:
Yoy * (A-u)y = 0 and $§§ + (A-8)) =0, are not identical.
Moreover, the small soliton is 0(92) for all t and, therefore, is cover-
ed by the 0(/e)~term in (6.23).

2°. Better perturbation results can be expected if we do not approximate the

soliton position by:

T 2
: ¢’ (0)
i I(kﬁ’(ﬂ))zd P+ —— log ——,
0 2k, (1) 2k, (1)
but by:
T T =0 2
HY () cs(0)
(7.1.14) %{4](1{?(’['))2&('4- - J 1s dT'}+ L 1og ‘0 .
O¢. 1
0 k1(T) 0 2k1(1 ) 2k1(T) 2k1(T)
Here ﬁ?S(T) is defined by:
(7.1.15) i) Replace x, u, oys ¥y in the definition for H1(T) by

~

- - - rad = r -
z, =X @1 61, u(z1,t) (= u(x,t)), ¢1, ¢1.

The expression so formed is defined aS’ﬁ1(T).
ii) Replace u, 51, @1 in ﬁ1(T) by Gs’ $1s’ $1s'

The expression so formed is defined as ﬁ1s(r).

iii) Replace ES, 613’ 613 in 515(1) by their soliton approxima-

tions:
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-0 ._ _ 042 2.0, , To __ o o~ |
ug i= 2(k1) sech k1 Z, s “’15 i= §k1 sech k1z1 H

90 = -Vl (2, + L sinh 2k°%, ) sech 03, .
1s 1 1 2k0 171 171
1

(o}

The expression so formed is defined as ﬁ1

s('r).

(The eigenfunction w1s and generalized eigenfunction ¢1s of the one-soliton
potential
2
C‘| 2k1X)
’
1

PG
u, = - *2-10g1+-ﬁ{—e
dx

are easily calculated by using the variable
2
~ , 1 1
Z1 . X-‘.D1"61 = X-z—k‘l ],Ogak—1 .

We then find

. k
=~ 2 2.~ - e~ _\/__1__ ~
us(x,t) = us(zl,t) = 2k.I sech k1 z, = ¢1S(z1,t) = 7 sech k1 z,

. 2
(since u = - 41(1 KP1 s) =
. o z) —
915(zq5) = = 2ky ¥y j ¥y (rst)dy =
0
1

-»’Zk1 (z1+_2T‘T sinh 2k1 z1)sech k1 z, .)

When calculating I_i;)s('c) we find that:

~
L 2

Zo _ <0 o
Big(™ = J(¢1swis J

-0 -—00

1 2
-0\ =0 ~y ~
f(us)lj)1s dz1)dz1 +

~
©

2 1 ,
-0 —0y30 FO o~y o~
- Jw1s ( J f(us)¢1sw1sdzi)dzl *

-00 -0
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©

“oyzo To o _ (8,16 _8
* J Fdey by dy =0 -3+ 3 = 3.
-0
Since c1(0) = ¥2, substitution of k? =1, ﬁ?s = % and c1(0) in (7.1.14)

leads to:

The position of the soliton is approximated by:

4 1
< (T + 3 €T) .

This indeed agrees with the real position of the soliton, given by:
412§t =401 +%e+ 0(&:2))t .

This example illustrates the idea that, especially in the 1-soliton case,

_better approximation of the soliton positions can be given hy:

T T

- .,
J Ot 2dr’ + ! J Fing (1)
o n RS(T) 0 Zkz(T')

1 2o N () - K2\
+ log { 2 m = } .
Zkﬁ(T) Zkg(T) i=n+1 kg(T) + kg(T)

(7.1.16) dt' +

[LRE

Proving this concept, comes down on showing that:

T
(7.1.17)  a) j ﬁn(T') - ﬁns(r')dr' =o(1) , t€ [0,A],
0
T
b) I ﬁnS(T') - ﬁgs(T')dT' =o(1) , 1€ [0,A].
0

Because of the expressions with ¢n¢n in.Hn(T), we cannot prove (7.1.17) in a
way analogously to the proofs of Lemmae (6.1,2,3).
In the case of one-soliton and _oof°° f(us)wisdx = 0, the problem is consider-

ably simplified. However, proving (7.1.17a) is still far from trivial.
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VIl.2. Pure polynomial perturbations

In this section, we will consider the case that f(u) is a polynomial.

ig
m psz#o.

q iy 3%u sf
@2 £ = § ey (2. e k0. p enu, A

X s=0 axs

. . . o
For the eigenvalue approximation kn(r), we then have:

(7.2.2) (f—T kﬁ(r) =

- _€¢
468 (g)

)

q ig s P
. 2 a J { m [L (-2(1(0)2 sechzko x)] Sﬁ} sechzkoxdx =
2 s n n n
=0 s=0 Lox

with

j P
‘ _n P Jl s sl
(7.2.3) a) a, = ag(—Z) s=0 "st I [ mn (E—g sech2x> } sech® x dx :

iy
b) By =-1+ ] (2+s)p_, .
s=0

Since sechzx is an even function, it immediately follows that:

ig
(7.2.4) 2 SPg, is odd , 2 =0,...,q =-§% kﬁ(r) =0
s=0
o
0) N ,k_-k.\2
o _ o _ 4 2 1 cn( n i) |
=190 =k, =20 = gy e+ g tog {Gp— T (rn—)}
n n i=n+1‘ n i

We will now investigate the situation that f(u) consists of only one 'term':

i asu
(7.2.5) f(u) =a T (———) .
s=0 ‘ax°

We have:
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k|
0 iff Z P is odd ;
s=0

(7.2.6)  a) 5% K2(x)

d [¢] € Q.B
b) Frs kn(T) TIO) a(kn) ,

with
Taco s (3 /s° 2\ 5% 2
(7.2.7) a) o = a(-2) J [ m (——; sech x) ] sech” x dx ;
e 8570 M3x
i i
b) B=-1+ zo 2+ s)pS is odd (i.e. SZO SP is even) .

We note that:

a) .

W]~

(7.2.8) B=1e Py = 13 P, = 0, 5=1,.00,j & f(u) = au (o=

Integration of (7.2.6b) with kZ(T) =K, gives:

ae
= T
(7.2.9) &) k(1) =k_ e 38(e) " gk fu) = au ;

1
o) _ OET _ 1-B|1-B ~ 2t
S O R LI R

We can apply these results to, for example, the 'Korteweg-de Vries—gBurgers
equation':

(7.2.10) u, - 6uux + Uy = + ew -

With (7.2.7,9) we find

2
(7.2.11) a) B=3, oa==%4 J (jli sechzx) sechz)cdx =% 4 .32
9x

-00

| -4
o _ |- 64 ¢ -2
O R

For the approximation of the soliton positions this gives:
T

2 -
(7.2.12) p2(1) = Gé;) J [kg(r')) dt' = l%-%% log (1%«
0

(=)}

15 &8(¢)

2 64 € T)I
n
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If (7.2.10) has a —-sign, then we have consistency with respect to (3.2.3b)
for arbitrary compacta on the 1/e-timescale. If, however, (7.2.10) has a

+ sign, then we only have consistency with respect to (3.2.3b) on the 1/e-

timescale for T € [0,A] with A > %% K;.

Vill.3. The shallow water wave perturbation,
=3 s 23 -5
f(u) = 27U P 7 Uaex T T UxYxx T 10 Yxxxxx

In this section we consider:

i I B T 2. .19 _
(7.3.1) Y 6uux+ Ugxx 8{2 uuy *32 Ul xx * % “xY%x T %0 uxxxxx} -
=: g¢f(u)

- The motivation for looking at (7.3.1) is the following: In modelling so

called 'shallow-waterwaves', two small parameters play a role, namely

a : typical wave amplitude

' a
a =33 B=
b,

Nl OB.N

5 % : typical wave length

x

hO: depth of water in rest

Taking o and B to have the same order of magnitude, the number of significant
small parameters is reduced to one, called €. When carrying out a formal
expansion in e, the KdV—equatioﬁ will be found as the lowest order term (see
[KaV], [W]). Also taking into account first order contributions, leads to

(7.3.1). This is shown in Appendix E1.

Since (7.3.1) is obtained from a formal expansion in e, it is natural to try
to find solutions of (7.3.1), in the form of a power series in e. Inspired

by the solitary-wave solutions of the KdV, we substitute:
(7.3.2)  u(x,t) =) " u ® ,
0 n

where, for % and UO(;) we take:

(7.3.3) a) x=x- (4K2 - eaK4)t - % s

b) uO(;) = - 2K2 sech2K§
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We will now determine u, (x), in such a way that v(x,t) = uo(;() + €u1(}_<)

satisfies:

(7.3.4) v, = 6vvx Vo = ef(v) + O(sz)
For u, (x), this leads to:

2
(7.3.5) -4k u, - = 6(u0u1);{ +

1% = f(uo) - a|<4u — .

HIRER 0%

Integrating once, using

lim 1u0(§)| +elu, | =0,

1%
using

Uz = o (4 vz *+ bugugD)
"and substituting

uO(}—() = = 2:<2 sec:h2 KX ,

gives us:

2 -2 - 2.
$7.3.6) Uyoe + (12~ cosh " kx - &4k )u1 =

= K6 (24 cosh-‘6 Kx - 48 coshhé KX + [15§+ 2a]l cosh_2 K;{) .
In Appendix E2 the general solution of (7.3.6), satisfying ll%m U, (x) =0,
LXK |0
has been found to be given by:

(7.3.7) u1_(}_<) = K4{ (%+ 1a) cosh_2 kx - 3 cosh“4 Kx +
19 - -3 R e
- (?+£a)|<x cosh “kx sinhkx} + A cosh “kx sinhkx .

It is evident that this method of finding solutions is not suitable for
solving initial value problems. In order to see what kind of soliton solu-

tions emerge from a given initial function, we need the perturbation theory.
For the eigenvalue approximations, we find with (7.2.4) that:

4 2

(o]
n ° Pn(T) = O) Kn'[ .

(7.3.8) kg(T) =k
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This result indicates that, on the 1/e-timescale, the KdV-equation gives a
good description of the physical reality in the shallow-waterwave theory.
As in § VII.1, better approximations of the soliton positions are given by

(7.1.16). We will now calculate ﬁo for the one-soliton case.

1s
) Z
(7.3.9) H (0= | s 9, 1 £EY G2 ) aF, +
-3 1587 = $1s¥1s ug) by g) dzyg Jdzy
) ;1 ©
=0 2 =0y50 TO .~ -0,=0 =0 .~
- J (g ( J f(“s)¢1s“’1sdz1)dz1 * I £y bygdzy -

Determining ﬁ?S(T) is simplified by using:

X

(7.3.10) a) f integrable and odd = I f(t)dt 1is even,

X o
b) f integrable and even = J f(t)de = } J f(t)dt + gx),
' ) -0
x
with g(x) =} J f(t)dt 1is odd.
-x
Moreover, we integrate by parts to find
® z
-0 .2 ! =0\=0 =0 .~ ,~
(7.3.11) J (¢IS) ( J f(us)¢1sw1S dzl)dz1 =
) © ';1
_ =0,=0 =0 .~ =0 2, , -0,=0 =0 .~
- Jf(us)q)lslhsdzi J( I Wig) dz!)f(us)¢1sw1sd21

Using (7.3.9,10,11) and some calculations gives us:

o

=0 _ -0yz0 =0 .~ _ 6 124
(7.3.12) H1S(T) =} [ f(us)¢1sw1s dz1 =K T3

-0

So, for the soliton position p1(T) we find
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2 (0)
1,2 _ 462 1 1
(7.3.13) P1(T) =< (4K1T €K115'f)+ Sy log 2,

+ o(1) .

We see that, when, in (7.3.3) we take a = 62/15, then the soliton approxima-
tion - 2Kf sech2K1(x-p1(T)) coincides with uo(g) up to first order.

This shows that a combination of the perturbation scheme with the method of
finding solutions by inserting a power series in € can be useful. First,
use the perturbation scheme to determine u0(§) and, then, use (7.3.2) to

determine next order terms.

VIil.4. The inadmissible perturbation, f(u) = u + ixux

In this section, we apply the perturbation scheme to the pKdV with per-
turbation: e(u+'§xux).‘Since this perturbation depends explicitly on x, we
must adapt the perturbation scheme in order to obtain useful results.
Consider:

(7.4.1)" u, -'6uux tu o= e(u+ ixux) ,

U(X,O) = U(x) .

As can be seen in Appendix A.1 and (2.1.17a), this problem can be integrated
with the inverse scattering method. We will calculate the.pure 2-soliton
solution explicitly, as well as use a modified formal version of the per-
turbation scheme to derive an approximation of the 2-soliton solution. Of
course, our goal is to show that the approximation obtained from the modified

version of the perturbation scheme matches the real solution.
We take:

_ 2
(7.4.2) U(x) = -6 sech™"x .

For this potential we have:

(7.4.3) b(k) = 0 ; k1 =13 c,=v6; k,=2; c,=V12.

With the evolution equations (A.1.20,26,29) for the spectral data, we find:
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3
(7.6.6)  blk,t) 205 Kk (0) = et e () = VB exp {{et + 2 (J“—n};
3
k2(t) = 2eiet s cz(t) = /Tf'exp {iet + %%-(eiet —1)} .

The explicit solution of (7.4.1,2) is given by:

1+“;f— e—2k1x kq:?i e—(k1+k2)x
dZ 1 1 2
(7.4.5) u(x,t) = --2—2 log det 9 =
dx ¢y -(k1+k2)x 1.+:ZL e-2k2x
k1 + k2 2k2

]

—12e€t ( 3 + cosh 2n + 4 cosh 2§ )
[cosh(n+ £) + 3 cosh(n- £)1°

with
’ 3
(7.4.6) &) §=efx-L (T,
_ okt _ 64 3t _
b) n=2 e ( 1 .

In particular we are interested in the asymptotic behaviour of this solution.
In order to be able to compare the results obtained directly from (7.4.5),
with those obtained from the perturbation analysis on the 1/e-timescale, we
perpetrate € + 0 asymptotics on compacta in T = €t.

To obtain asymptotic results from (7.4.5) we use Theorem (3.2.1). We there-
fore have to show tkat conditions (3.2.3,13) are satisfied on the 1/e-time-
scale. '

That (3.2.3) is satisfied is easily seen from (7.4.4). As usual, we define

wn(T) by: cn(r) = cn(O) exp(kn(T)qh(T)). With (7.4.4) this gives:

7.4.7)  a) @ (D) =-%Te_iT + é% (e"- e—iT) ;

B) (1) =%Te‘h +32 et iy

So, condition (3.2.13) is satisfied too.

For the quantities 6;, defined by (3.2.14a), we find:



(7.4.8) a)

b)

—% Te%T - -;— enéT log 3 ;

(]

87(0

+ 1 -t _1 -4t
62(1) 7 e log 3 g T® .

From (7.4.7,8) we obtain:

(7.4.9) a)
b)

k1'51 £+ ) log 3 ;

kzz2 =n-4%1log 3.

With Corollary. (3.2.49) we now get:

(7.4.10) a) wu(x,T) + 2e7 sech2 (£ +} log 3) + 8e' sech2 (n—- 4% log 3) =

b)

c)

Note that:

T
-aX
= o(e €‘> , uniformly in x on R, 1€ [0,A].

- ot
u(x,1) + 2e" sech2 (+ 3 1log3)=0 (e 8) .

uniformly in x on (- W,%—(e't -e_éT)] , T€ [0,A].

-at
u(x,t) + ge” sech2 (n-4%1log3)=0 (e e) ,

uniformly in x on [g—g (e"- e_h),m) , T € [0,A].

T
-o—

e

€ = 0(e™) , for T =me log-:; .
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We will now derive an approximation of the solution of (7.4.1,2) by means

of a formal perturbation procedure. On the 1/e-timescale, t € [0,A], we

expect the solitons to be approximated by:

(7.4.11) 2X(D)* sech’ k(1) x-pS(x)) , n=1,2,

where kro1 is the solution of:



130

o

d 1 -~ 2. 0n o~
(7.4.12) = kn(r) ==z J f(uns(zn)) sech knzn dzn +
(=]
1 + d - ~ 2.0~ .~
o | (tpn+ Sn) JdT (uns(zn)) sech kn z, dzn ,
-—C0 Zn
o -
K00) =k (0) ,
and uns(zn) is defined by:
(7.4.13) uw_(z) = - Z[ko)z sechzk? Z
o Yns %0 n nZn *
We have:
- 2,00 o~ _ _ o0 .
(7.4.14) a) J f(uns) sech knzn dzn = 2kn('r) 3

-0

)

d - 2.0 o
b) J - (uns) sech kg z, dzn = 0 (integrand is odd).
dz
—o n

So, we find:
(7.4.15) kf(r) =l kg(r) - 2edT |

Finding an approximation of the soliton positions pg(r) requires the terms
of leading order in (pn('r) to be determined. For perturbations that are not

depending explicitly on x, the leading order term in q)n('r) is given by:

T
J klzl('r')d'r' (see Lemma (3.2.1)).
0

o &

We will show that for the perturbation considered here, the leading order

term in Lpn('r) is given by:

T

4 3,., '

RO} J kn(r )dt' .
R

(7.4.16)
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That is, we have to show that the terms of leading order in Hn(T) cancel out.

We can determine the leading order terms in H in the same way as was done in
§ II1.2. That is: The leading order terms in Hn are those terms that generate
0(p(t))-contributions, when in the definition of H , we replace x by x = x- @,
x' by x' = x'-@, u(x,1) = u(x,1), etc.

Carrying out the above substitution we find:

(7.4.17) J f(u)q;fl dx = J f(a)?pﬁ d% + }o J G}.{Ei dx ;
x % X
J f(u)xpf1 dx = J' f(ﬁ)ﬁﬁ dx' + o J G;{.Jfl dx' ;
[ twouax = [ @i aedo [ 53,76
X X X
J £(u)¢_y_dx = J f(G)q?n@n dx' + o J ‘;{, $n$n dx' ;
warzldx= J§$§d§+m;

kLl

en = ;:{ J (¢nxpn— 1)dx" + 2x}+ 2¢ .

-0

The other integrals in Hn(T) do not change.

As before, we expect the functions E, En, $n to be approximated by the pure

1-soliton quantities:

(7.4.18) Gns = - Zki sechzk%lg , n =1, respectively n = 2 ;
wns = Vikn sech knx , n=1,2;
- - 1 - -
¢ns = - 2kn (x + EE; sinh 2knx> §ech knx , n=1,2,



132

Calculating the relevant integrals, we find:
©
(7.4.19) £ )92 dx = - K2 ;
e ns’'ns n ’

-

0
J —:—(uns)$§S dx = 0 (integrand is odd) ;
dx
® X
- d o= =2 =0 s . . )
J $s¥ns ( J = (uns)wns dx ) dx =0 (integrand is odd) ;

© X
-2 d - - - -
J wns( J ;:T (uns ¢nswns ') dx =
-00 -0 X
_ 2 d - = - 2
=4 ( J ¢nsdx>( J ;i (uns)¢nswnsdx) B an °

Now, using (3.1.11,13) and (7.4.17,19), we see that the leading terms in

Hn(T) add up to:
2 2 2 2
1o 2kn+cp-—kn+ £cp~—4kn-2cp--kn—0 .

It follows that the leading part in wn(r), and so in pn(T), is given by:

T

j () ar .

(7.4.20) p2(1) = =
Ekn(T) 0

Using (7.4.15) we find:

(7.4.21) a) P?(T) é% (" - e—iT) .

b) pZ(T) % (eT-e_h) .
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Indeed, we see that the so derived approximations are in complete accordance

with the explicitly determined asymptotic behaviour of u(x,T).



APPENDIX A

A.1. Derivation of (2.1.14) and (2.1.15); Evolution of the spectral data for

solutions of these equations; The solitary wave solutions of (2.1.14) and
(2.1.17)

We consider:
(A.1.1)  a) Ve ¥ (A+uwy =0 ;

b) b, = Ay + By .

Putting Vot = o leads to the following equations for A and B:

lptX
(A.1.2) a) 2AX + Bxx =0 ;

b) Axx - 2Bx(l+~u) - Bux ==-u,-A
@

(A.1.3) a) A=-4B_+a(t) ;

b) inx + ZBX(A+ u) + BuX =u_+ A_ .

First we investigate the case that:

(A.1.4) At =0 .

We try to find a solution of (A.1.3b) by substituting a truncated power

series in A:

N
(A.1.5)  B(x,t) = } A"B _(x,t) .
n=0 n

Substitution gives:



135

N

- " ' n v 40+ "

(A.1.6) u = ] (B)'+2Blu+u B )X + 2B A, e
n=0
L4
(4.1.7)  a) By(x,t) = By(t)
X
- " -
b) Bn B *Bn+1 UBn+1 +1 J uy(y,t)Bn+1(y,t)dy * Bn(t) 4

-

0

A

n £ N-1 ;
13 \} -
c) QBO + 2uBo + uxB0 =u .
Starting with (A.1.7a), we use the recurrency relation (A.1.7b) to find an

expression for Bo(x,t) with the following structure:

N
(A.1.8)  By(x,t) = By(t) + } B (£)(T w)(x,t) ,
n=1

where Tn are differential-integral operators.

Substitution of (A.1.8) in (A.1.7c¢c) produces an evolution equation for

u(x,t).
Examples:
1°. N=1= u + 6uux tu s 0 , KdV-equation;
2°. B, = 8,
N=2=!B =-48,u+8B,
By = g8yt * 58w T Bt B -

Substitution in (A.1.7c) and choosing:

Bp =0, By = &, B, =168,

leads to:

(A.1.9) u_+6uu_+u = B{u + 10uu +20u u__+ 30u2u }.
t X XXX XXKXX XXX X XX X

The evolution of the 'eigenfunctions' y(x,k,t) in time, is given by (A.1.1b),

with:
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[}

(A.1.10) a) A u +oa+ B(- uxxx-6uux+ M\ux) 3

b) B

- 2u + 4) + B(Zuxx+6u2— 8\u + 16).2) .

For determining the time-evolution of the normalization coefficients cn(t),
we take in (A.1.1b): ¢ = wn(x,t) and A = )‘n = -krzl' Multiplying (A.1.1b) by

wn and integrating over the real axis gives:

© © ©

It J wi(x,t)dx = J Anwi dx + J B oy ¥ dx =

-0 -c0 -0

1]
o
|-

a.1.11) 0

o ©

2 vi2ya 2.
J (A ¥ = §B!y )dx = 2 JAn\pndx a =

-0 -—00

o o

2 2
a + 2(1+ 4>\n8) J ux\pn dx - 28 J (uxxx+ 6uux)lpn dx .

-00 =00

With the help of the S.E. (A.1.1a), it is simple to deduce that:

(A.1.12) a) ux¢2 = gd;Wi‘Wn) ;
b) (uxxx+ 6uux)1p2 = % (uqu)z - Zux¢¢x+ 2u1])}2(+ 2u1p1pxx+

2 2
+ lupxx+ YV Mxpx) .
Using these equalities in (A.1.11) leads to:
(A.1.13) o = 0.
Hence, the evolution of the eigenfunction wn(x,t) is given by:

oY
8 ot 2 2 2 4y, ¥n
(A.1.14) 3_th = [(-2u 4kn) + B(Zuux+ 6u +8ukn+ 16kn)] T +

2
+ [uX + B(- Wex 6uux— 4kn ux)] lpn .

For the asymptotic behaviour of wn we have
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. n" _ . . o _ _ .
(A.1.15) 1lim q;n e = cn(t) 3 lim wnxe kncn(t) s
K00 X->00
knx dcn
1lim lpnt e = —aT .

Taking limit x -+ » in (A.1.14), now leads to:

de (4k3-168K>)t
n _ 3__ 5 _ n n

(A.1.16) E- = (4kn 168kn)cn = cn(t) = Cn(O)e .

The evolution of the reflection coefficient is determined more simply. For

the generalized eigenfunction Y(x,k,t) we have:

ikx ikx
e

(A.1.17) p(x,k,t) ~e 4 b , X+
wx(x,k,t) ~ = ike_1kX + bike1kx , X > o 3
¢t(x,k,t) ~ btelkx y X >,

Substituting ¢(x,k,t) and (A.1.10) into (A.1.1b) and taking limit x + »

gives:
(A.1.18) a) o = 4ik> + 161K ;

13 $391 RIS
b) b, = (8ik3+ 3218k§)b = b(k,t) = b(k,O)e(Blk +32ipk° )t .

With regard to applying inverse scattering, it is important to note that
b(k,0) = 0 implies b(k,t) = 0 for all t.
We now know that (A.1.9) has pure N-soliton solutions. The solitary wave

solutions of (A.1.9) are given by:

(A.1.19) u(x,t) = 2K2 secth(x - (4K2— 16BK4)t)
We return to the equations (A.1.3), but now we take:
(A.1.20) At = £f(2) .

First, we derive an evolution equation for cn(t).

Substituting wn(x,t) into (A.1.1b) and taking limit x -+ « leads to:
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dk dc

_— 1 —0 - (-}B' -
(A.1.21) th .t It ( {;Bn’m+an Bn,wkn)cn ,

where B; o> Trespectively, B o stand for the asymptotic behaviour of B& and
£ k4

Bn’ respectively, for x = =,
It is obvious that the x-dependent terms in (A.1.21) must cancel out. So:

dk

-_Il_ - 1 - . .
(A.1.22) x it Bn,m Bn’mkr1 is x—-independent.

This can easily be established by taking for Bn » & linear function in x:
b

(A.1.23) Bn,m(x,t) = by(t) + xb1(t) s
with

_ 1 "™ _ 1 .
b1(t) = E; rraliaiyw f(An) , bo(t) arbitrary.

n

We will now restrict ourselves to B's of the following form:

(A.1.24) B(x,t) = bé”(t) + X E0) + NNy

H

(€V)

where N u satisfies

4.1.25) 1im @MW) =0 .
bl and

So, for the evolution equation for cn(t) we have:

de £Q1) 00 (1)
n _ n n! 2 _ n
(a.1.26) —— _<4ln + J(N u) ¥ dx = b kn)cn .
Now, we need to derive an evolution equation for b(k,t). Due to the structure
of B(x,t) given by (A.1.24), straightforward substitution of y(x,k,t) in
(A.1.1b) and taking limit x - « will not work. Instead of that, however, we
can give a partial differential equation for b(k,t), with characteristics

given by the solution k(k,t) of:
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2
(A.1.27) ‘% - £k%) ,
k(0) =« .

Of course, in order to be able to use ihverse scattering, k(k,t) must cover
the whole real axis. Therefore, we must restrict ourselves to time-intervals

T, for which we have:

(A.1.28) Vt€T, 3 interval (m(t),M(t)) so that ¢: (m(t),M(t)) + IR,
defined by: @(x) = k(k,t), is a bijection.

Now substituting y(x,k(k,t),t) and (A.1.24) into (A.1.1b) and taking limit

X = o leads to:

@.1.29) & be,),0) = 2ikb{M (6) ble,0),8)
As a final step, we substitute (A.1.24) into (A.1.3b) to get an evolutiom
equation for u(x,t). We find:

@.1.30) u = 4Mu)+ Ze) v 20+ (WP

XXX

+ (bé}‘) tox £+ NO‘)u]uX .

Conclusion:

)

Choose béx)(t) and N'"7u so that:

1°. the right-hand side of (A.1.30) is A-independent;

2°, lim (V0 (x) = 0.
K>

Let T be a time interval satisfying (A.1.28). Then: (A.1.30) is S—integrable.
The evolution of the spectral data is given by (A.1.20,26,29). Due to the
fact that b(k,0) = 0 implies b(k,t) = O, these evolution equations have pure

N-soliton solutions.

Examples of evolution equations of structure (A.1.30) are given by (2.1.17).
For equation (2.1.17a) we see that Condition (A.1.28) is satisfied for all
t € IR,

The solitary wave solutions are given by:
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(A.1.31) 2|<2 ePt sech2 (Keiptx - 3—2 K3 [e%pt - 1))

For equation (2.1.17b) we see that Condition (A.1.28) is satisfied for p > 0,
t20and p<0, t =0, respectively.

The solitary wave solutions are given by:

2

(4.1.32) —2 _ sech? (——ﬁ—— - A (1 - -—1——-) + } log(1+ 2p|<2t)) .
1+ 2pk’t V1+2pk2t P V1+2pk2t

A.2. Proofs of Theorem (2.2.3), (2.2.36), Theorem (2.2.4), Theorem (2.2.6)
and Lemma (2.2.1)

i) Proof of Theorem (2.2.3)

First, we note that with Theorem (2.2.1) and (2.2.5), it is easy to see that
u € C™(R) and u = [0], implies that

2

R(x,k) € ™ (R) for all values of k € E+\{0} .

We prove (2.2.31) with induction to p.
For p = 0, we have:

o

R'(x,k) = 6(x,%,K)R(x,k) + J a2V iy 0yay =
X
i} J u(p) eV Ry 10dy
The induction step is proved by:
-1
(pyt1) x . _ Po
R O (x,k) =L Q2ikGxy) 4~ (pygyl =
dx P~
0
-—C0 dy
Py~ x Py
-4 (uR) + 2ik e21k(x—y) 4 (uR)dy =
p0—1 p0—1

dx —o dy
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Po-1 Py~ 1 -

0 . 0 =X

= d Pa-1 (U-R) - [321k(x y) d Pa-1 (UR)] +
dx ° dy ° y=Te

x . Po
. J e21k(x‘Y) JLB. (uR)dy =
— -~ dy 0
X : P,
J e2ik(x—y) d
Po

(uR)dy .
-—00 dy

In the last step, we have used that it is already known that (2.2.31) is

fulfilled for p = Py» SO that:

lim R(P)(x,k) =0, 1sps Py -
X->—00

(2.2.32a) is a trivial consequence of (2.2.30) and (2.2.31).

(2.2.32b) can be proved by induction too, using the relationship:

X

. P
R(p+1)(x,k) - I e21k(x—y) d (uR)dy =
- ay®
X
P . p+i
.1 4 1 2ik(x~-y) d
7% 3 (uR) + 575 J e PR (uR)dy .

-—00

Q.E.D.

ii) Proof of (2.2.36)

Theorem (2.2.1c) implies:

+

T ecm® =1, = o (O + kF @) + 7.0 , with

Wr(k) € C(IR) and lim 'v}'r(k) =0 .
k>0

4
21k

+

i) W €@, > r_ (0 = o (W0 + kT (©) +w (1, with

Wr(k) € C(€+) and iig Wr(k) =0 .
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vV

From (2.2.22), we know that: |r_(k)| z 1, k € RR. So:

Either W(0) # 0, or W(0) = 0 and |$¥ (0)] 2 2.
We also have:
W) = - w) .

Combining the above results leads to:
If W(0) = 0, then:

-1
aw 1 s [dW i
ax (0) #0 ; a(0) = T - 2i (EE (0)) H

Oy aw o\
v =y - (B ©) (@) .

If W(0) # 0, then:

2ik

a(k) ~ W) °’

k~>03; b(0)=-1.

iii) Proof of Theorem (2.2.4)

First, we prove that:

If:
(A.2.1) u(p)(x) is bounded for x > -« and u(p)(x) = [0], O0=p

then:

w.2.2) 2 (x,k) = o(‘—) , Ikl >, KET
p n n

9x k|

0

IA
S
IA
=

+ 3

(p)

n+1(x,k) and Gép)(x,k):

We have the following relationship between G

X

P
@.2.3 ¢ - %( J G(x,y,k)cn(y,kmy) -
aP”!

X
= = ( J 2HRGY) gy Gn(y,k)dy) =
X

-—Co



aP~2
p-2

X

P2 * ikGey) 3
= = ( I e (uG.) dy> = heeee =
axp'2 n

-0
x
_ I e21k(x—y)(an)p—1 dy , n

-—C0

w
v
-
.

0, p

Note that in (A.2.3), we have used that

(A.2.4) lim Gip)(x,k) =0, nz1
K-

The validity of (A.2.3) for n = 0 follows with conditions (A.2.1). So,
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(A.2.4) holds for n = 1. By induction, the validity of (A.2.3) and (A.2.4)

follows for all n.

Using (A.2.3) for n = 0, we find:

X
G1(p) _ J Q2ikGy) (=) oy,

x
___1 (p-1) 1 2ik(x-y) (p)
= -5 v (x) + 7T e u (y)dy .
-0
So, (A.2.2) holds for n = 1. The validity of (A.2.2) for all n is again

proved by induction to n using the relationship:

X

Géfz _ J eZik(x—y)(an)p—1 dy =

—00

X
_ 1 p-1 1 2ik(x-y) (®)
2ik (an) T 7k J € (an) ) dy .

-0

We will now prove the actual theorem.

ad a):

With (2.2.15), (2.2.25,26) and (A:2.2)j a straightforward calculation leads to:
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ol 11 ) 2
r_(k) =1 - 5TR J u(x)dx + 5 ( J u(x)dx) +

(Zik)2
_11(J
6 (Zik)2

© -

3 1 2 1
u(x)dx) + 3 J u“(x)dx + 0(___Z> ,
(2ik) o k|

-0 -
-0

k|l +=, k€T, .

Taking k = £ +in and using (2.2.21), we now find:

|r_() |2

r_(0r_(-k) = 1 - Loy« o(%) Ikl >,
k| Ikl

2_ 2 ®
e = 1+ 3 2GE-0) Juz(x)dx+.....=
Ikl

-—co

1+o(—‘-—>, Ikl > , if U

el

]
o

0

ad b): ‘
Consider (2.2.16).

m-times partial integration and using lim R(p)(x,k)
X->—c0

0, p2 1, leads to:

-3

r, (k) = (2ik1)m+1 _J g‘Ziky(uR) @ 4y , k€ ’~{0}.
So:
) R0 g2y
[b(k) | = b(K)b(-k) ROIACY 0(1+T;—|)
= oI ™2E® Y k) s, ke R,
and
- lato] - 150U - IO - o)

k] >, k € R.
Q.E.D.
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iv) Proof of Theorem (2.2.6)

Consider (2.2.50). (Because u = [2], this expression is well-defined.)

Taking the logaritim leads to:

©
2 N k-ik
=1 log(1 - Ib(q) 17) )
log r_(k) = 5= J - q dq+R'Z1 1°gk+ik2’ Ink>0.
Using
o1 B oay, 1 (g
k-q kn=0 k k-q \k
and
k-ik o ,ik \2n+1 k
]_og.—-—-?—g’:—zz -—'Q' o__I.__, |_2’|<1’
k+ik & k 2n + 1 k
2 n=0

.we can expand log r_(k) for |kl + « in powers of 1/k.

o

P+l a p+1 _ 2

(4.2.5) logr_ (k) = ) -2+ 1” J q 10g1(<1— @D 4
‘ n=0 k" kP q
—o0

+0(|kl_(p+2)) , Ikl >®, Imk>0,
with
(4.2.6) [0, = 0 (since [b(q)[? = b(@b(-q) is even),

3 N
=1 2n - 2 __2 . y2n+1
Contl - ImT [q log(1- 16()17)dq = 577 221 (iky) .

-0

Using Theorem (2.2.4b), we see that under the conditions of Theorem (2.2.6)
the expansion (A.2.5) is well-defined for 0 £ p £ 2m, since the integrals

converge.
We will now derive an expansion of log r_(k) in another way. We define:

(A.2.7) o(x,k) = BR'?%;’TS_) , Ikl large, Imk >0, r_(k) # 0.

Since |R(x,k)| =1+ 0(1/1k|, |k] =, is positive for |k| large, o(x,k) is

well-defined.
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With (2.2.5b) and (2.2.34) we see that:

©

(A.2.8) J o(x,k)dx = log R(x,k)} = log r_(k) .

-0

By using (2.2.5a), it follows that ¢ solves the following differential equa-

tion:

(4.2.9) o+ o’ - u- 2ike = 0 .

From Theorem (2.2.2) and (2.2.5a), we khow that for |k| + «» we can expand o,

as well as Tys in powers of 1/k, in such a way that the first p terms approx-

-(p+1)

imate o with order k] uniformly in x on IR.

We search for a solution of (A.2.9) by substitution of a power series:

pr1 o ()
(A.2.10) o(x,k) = L+ G5 . (x,k) ,
D=t i® P2
where o, (x) and (—%{- on(x) are bounded, and gp_‘_z(x,k) and —a’% gp+2(x,k) are

0(1/ 1x|P*2) uniformly in x on IR.

This gives:

2 o.o.\
{A.2.11) E _Ef}l)_x_.,. § Sl:n___l_i{ - 3 _.On_“__u=0(|k|"(P+1)) .
n=1 (2ik)" =2 ix)® n=0 (2ik)"
So we find:
(4.2.12) 0,0 = - u( ; o, = - 52 (o) ;

A

Geq = (O Y o6.0., 25n

P -
n itj=n *J

We see that o, has the structure of a polynomial in u and x-derivatives, up

to order n-1, of u. Therefore, under the conditions of the theorem,

_wfw On(x)dx is well-defined for 1 £ n £ mt1.

Combining the above facts, we find that:

(.2.13) logr_(k) = } —+ o(Iki™2) , Jkl+=, Ink>0,
n=1 k

where
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o

(A.2.14) o = — o (x)dx , o defined by (A.2.12) .
n n n

e _

Comparing the expansions (A.2.5,6) and (A.2.13,14) proves the theorem.
(That indeed oy, =0 in the expression (A.2.14) can also be seen from the fact

that crzn(x) is a total derivative, e.g.: 0, = - u

2 x? 04=—uxxx+4uu =

d 2 ¥
=3 Gt 2090 Q.E.D.

v) Proof of Lemma (2.2.1)

From elementary linear algebra, we know that:

N-1
det(I+C) =1 +'det C + ) c,
m=1
where Cm is the sum of the determinants of all m x m diagonal submatrices
of C.
C, as well as each m x m diagonal submatrix of C, is of the form B, where B

is given by:
n,n, —(kni+kn2)x
i L i,0=1,.0.,]

where n, < n, < ves < nj is some subsequence of {1,...,N}.

So, B is a symmetric matrix. Moreover, B is positive definite since it holds
that
=k, +k, )x
T J e knl kn/Q/
£ BE % a. “n En. gn kn +kn a
i 2

j -(k,.+tk, dz
i c c £ E e knl knyv dz =
2

_kn-zz
e 1)dz>0, vg=(gn,...,gn)T#0.
. 1 ;

]
S———y
//~

e
E;M‘_"
0
=]
Yy
=]

Since the determinant- of a real symmetric positive definite matrix is

positive, the lemma has now been proved.
Q.E.D.



APPENDIX B

B.1. The evolution equations for Yn(t) and a(k,t)

Starting point for the derivation of the evolution equations for the spectral
data, is the following evolution equation for a (generalized) eigenfunction
¢k(x,t) corresponding to A = kz, k € E+:

a? 2] (o
(8.1.1) [——2- - u(x,t) +k ] (a_t‘ q;k—Bq;k) = (ef(w) -2y,
dx
By, = —_2(u+2k2) % by * (ux—c)xpk ’

where ¢ is an undetermined constant.

The derivation of this equation can be found in [EvH], § 7.1. As in [EvH],
we define:

=9 - By
(B.'].Z) R——a—t'lj)k Bl[,k .

Now, multiplying (B.1.1) by an arbitrary eigenfunction $k corresponding to

A = k", followed by integration between any two points x and Xy, We obtain:

. R 3 a ~ 3R 3~ _
(B.1.3) [%&T'R‘a;fwk] ey [\”ka—};—-'Rw‘Pk] e
X =X X =X
X
= J (ef(u) = A ¥y b, dx' .
*o

All the evolution equations for the spectral data can be found by putting

into (B.1.3) various choices for the (generalized) eigenfunctions 128 and @k

and using their asymptotic behaviour for |x| + =,

For the evolution equation of yn(t), we take:

_ __2 _~ ~ g
B.1.4) A=A ==k, =T, b= 7F .
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We remember that the asymptotic behaviour of ﬁn and E’n is given by:

k_x
. ~ n _ . . ~o~ = - .
(B.1.5) lim v e =c, ; lim¢ v, 13
X X-»o0
—knx -
lim v,e =1 lim ¢nxpn =1.
K=o . X0

Moreover, we have the following relationship between 'q;'n and 'an:

~ o~ _ 3 ~ _~ _a_- ~ -
(B.1.6)  W(o»¥0 ) = ¢ o7 ¥, ~ ¥, 3% o = 2k, -
Substituting (B.1.4) in (B.1.3) and taking the limit Xy > =@ gives:
x
@.1.7) |3 & -3 =e | £ T dx' +
t n 9x ax' "n x'=x n'n
da ¥
-2 FF - Ddx'+xp + 8+ Lk -2¢k =: F(x,t)
dt n'n n dt n n ° ’ :
Using
L. (R _R”’n) g 200 M
ax % 3-2 9x n Ix Bx'a '52 4
n n n n
integration of (B.1.7) gives:
X- ~ X ~
R(x) R(XO) _ F I lPn X 1 wn 9 '
%) U o = dx' = | —2F - | 2L Fdx'.
~ ~, ~2 2k~ 2k ~ 09X
o (x) @ (x,) ) n ¢ X n [
n n "0 X n n 0 X n
0 0
Taking the limit for Xy > -, using (B.1.5), we arrive at:
~ X ~ o X
ed ed
R ~2 ., n ~2 ~2
R = OF = 5 wandx ok ( If¢ndx>( andx) .
n n nn
-0 —C0 -0
Using (B.1.2,4,7), this transforms to:
i 0
~ n _ _ o2 n~ _ du_ 52
(8.1.8) U = 2(u-2k) = § (ax c)wn +
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€ o~ |~ X~ ~ ' ‘Jn i 2
+-2—n—q;n{\pn Jf@nwndx —;—;( qu;ndx)-
x x
( J@n'gn_1)dxv+x+—2-}<;)—$n Jf$§dx'+
6; ) ~2 %~2 ~2 32
+—§( fopndx>< an dx')}—cwn+4kn\pn.

Integrating (B.1.8) over IR and using (3.1.8,9) and

i W
~ n du ~2 _ l ~2 _ ~ _n - _a_ ~2
- Zulpn Bx * % 1J)n T ox (uwn) 4Uan ax 9X (U‘JJn) *
azwn 2~ B‘Jn 9 2.,~2 B'an :
"*(axz - kn‘Pn> Tx 9% (‘“*-’-knWH‘ 2<ax) ) g

results in

] 3 _ €
3t yn(t) - Bkn(t)Yn(t) = W Yn(t)Gn(t) s

with
o -] X X
G := J ¢n¢n{( J flpidx> J widx' - I flprzldx'}dx +

] X

+ I n];i( I f¢n vy dx') dx +
0 (o] x

—( J fwidx> {wi{x+ J (6.9 - Dax' +%}dx )

ol

This corresponds to the equation for Yn(t) given in (3.1.10).

For the evolution equation of a(k,t) we take A = k2, k € IR, arbitrary but

fixed. So At = 0. The generalized eigenfunctions are chosen as follows:

(B.1.9) ‘I'k = xpk = a\pr + ay_ , l’br as defined in (2.2.4).

r
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The asymptotic behaviour of Yy is given by:
wk ~ ae-lkx + Eelkx X > -
Yy ~ +p)e™® s (1+B)e ™ | 5w

This leads to:

R

3 = = 4 -
Yy % R-B—)—{-1pk~21k(aat aat) + 16k aa , x > - ,

9R 3 . = = 4 =
Yy 5%~ Rox ¥y ~ 28k ((1+B)D, = (14 D)b J+ 16K (1+D)(1+D), x> .
Introducing al this information into (B.1.3) and taking the limits Xy > -

and x + =, we get:

I N bp oz o=y oo=2d a _
(B.1.10) 2ik gz (b-b)+ 2ik(bb_~bb ) + 16k (b+b +2bb) + 2ika r

©

=g J f(u)wlz(dx .

—c0

(We have used that: Ial2 + |b]2 =1.)

From the evolution equation (3.1.5) for b(k,t) and y(x,k,t) = a(k,t)wr(x,k,t),

we see that:

(B.1.11) ZiR% (b—6)+2ik(3bt-b5t)+ 16k (b + b + 2bD) =

© ©

= e(1+b)a’ J f(u)¢§dx+ e(1+b)a’ J f(u)Ei dx .

-—co -—00

Combining (B.1.9,10,11), we arrive at:

©

(B.1.12) 2caa Jf(u)xprardx-

-—00

o ©

= cba? I f(u)\pidx+ ¢ ba? { f(u)Eid}H 2ik§2§t—§ )

-0 -0

We now write:
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ig_(k,t)
a(k,t) = |a(k,t)|e a -,

By dividing (B.1.12) by 52, we find the following evolution equation for the

phase of the transmission coefficient wa(k;t):

© ©o

: 2i¢
2 - 2
(B.1.13) 4k g% L = e{—Z J £(w)]y, | dx + be ° J £(u)y] dx +

- =00

=21 - _
+ be a J fwi dx} .

-co

The modulus |a(k,t)| of the transmission coefficient is determined by:

B.1.16) |aGk,o]? =1 - [b,0]? .

So the evolution of the transmission coefficient is given by the equations

(3.1.5), (B.1.13) and (B.1.14).

B.2. Well-definedness ofen and Hn

In the following lemmas, € and t are considered to be parameters. The con-
stants in the proofs are generic, i.e. they have different values in dif-

ferent parts of the proofs. We.take € and t arbitrary but fixed.
Lemma (B.2.1):
If u(x) satisfies a growth-condition of order 1, then,

X

en=:um{ J({@;-ndw+x}
X0

exists.
Proof:

From (2.2.41,23), we know that E;(x) can be written as:

~ k x
(8.2.1) T (x) = R(x,ik )e no
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where R(x,k) satisfies:

X
(B.2.2) R(x,k) =1 + J uly) [ 2ik(x-y) _ 1}R(y,k)dy , k€ §,~{0},

2ik

-—00
and

(B.2.3) lim R(x,k) =1 ; R(x,k) is continuous in (x,k) on IR x E+.
K-r—00

It also holds that:
. X 0 ®
o, = 1im{ J($$—1)dx'+2x}= f(%ﬁ - 1)dx + J G9 +1dx,

500 nn nn nn
x —eo — 0

provided that both integrals on the right-hand side converge.

We will now show convergence of _wfo (E;E;-—1)dx. From (B.2.1.3) we see that

IA

3L such that $;(x) >0 for x £1L.

It can be easily verified that, for x £ L, the solution $;(x) of the S.E.

can be represented by:

~ 'q\‘;n(L) L~—2 i~
¢, (x) = [N + 2k J b (g)dg’] P, xsL.
wn(L) X
We now have:
0 (0}
(B.2.4) J (?p’n&b'n- 1)dx = J‘ ('an'an— 1)dx +
L L ~ L
~ ~— ¢ (L) ~
+ 2K J {20 J V2 @aE - ot s o J 0 ax
—co x n —o
From this equation, we see that _mfo (E;ﬁn— 1)dx converges, iff
L L
~2 ~-2 1
a2 [ e [Trow -7 o
—w %

is convergent.
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From (B.2.1,3) it trivially follows that:

-k_x
n

A

(B.2.6) 1-f (x) s 'xD'n(X)e M+ f (%),

where fn(x) = [1 - R(x,ikn)l is a positive continuous function which tends

to zero for x + -,

With (B.2.6) it follows that:

L L
G20 | [ e [T - el .
ey X n
L 9 2k _x L _Zl.cng 1
< |1+f(x))en J——e———-——dg*—-dxg
_OOJ ( n (1_ fn(g))z anl
book x Mook g ,
< J e f e n dg —TI dx +
n
—. %

L2knx Lo oce 1
+ Ie Je n{—1+—-————-}d£dx+
( )?

. . 1-£_(8)
L ) anx L —2kn£
+ J (2fn(x)+ fn(x))e J ——— dtdx =
e RENIEENG))
= 11 + I2 + I3 s
with
L
1 2k x -2k L -2k x
I1=7§— J[e (—e +te )—1|dx=
n -0
L 2kn(x—L)
I
2k, 4k2
—c n
Using

2
2£ (8) - £ (&)

—_ = —
\2 2
(1-£ ) (1-£,(8)

s Cef (8) (e.g. C=4 if £@®<h),
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we get:

Pk x -2k

I,=sc¢ I e [ fn(g)e dgdx =
— x
e2knx L _ang L . L
= C[ 7 I fn(g)e dg]—m-kii; I fn(x)dx 3
X -0
2k x L -2k & 2k x (¢ -2k &
lim e J f (E)e dg £C lim e I e dg =
X0 n K=
X x
X gk x -2k L
=C lim e -—e M )= S <
2k 2k
X+ n n
So 12 converges if _me fn(x)dx converges.

L ) 2k x [ -2k E

13 sC J (an(x)+ fn(x))e I e dg dx <
D e x
L ) 2k_(x-L)
<C J (an(x) + fn(x)) (1 -e )dx .

-—00

So, I, converges if _wa fn(x)dx converges.

3

This leaves us to prove the convergence of _me fn(x)dx. Using (B.2.2) we

get:
L L
J £ (x)dx = J |1-RGx,ik )| dx =
b x -2k_(x-y)
= J T | I u(y)(1 -e )R(y,ikn)dyldx <
n
L X
< € max |R(x,ik )| J [ |u@¥)|dy dx =
- n
xs=L oo —oo
X L

L
C [x J ]u(y)ld%} -C J x| u(x)] dx .

—00 -0
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Now, if u(x) = [1], then:

x
lim x I Iu(y)ldy = 1lim x2|u(x)| =0 .

X>—co X>—
=00

0 (E $ - 1)dx 1is proved.

L
So, _J fn(x)dx < » and convergence of _ [ Vn

0./'oo ($;$;+-1)dx can be proved to converge in exactly the same way as the
proof that is given above. However, instead of working with E;(x) =

. -k _x
= R(x,lkn)e , Wwe must use:

BT ) = T, (x,ik Dy, (x,ik )
where
k x
¥, (x,ik ) = Lix,ik e n

and L satisfies

©

L(x,k) = 1 + [ “7(1%) (2RO _31(y0dy , k€ §T~{0} .
X

L(x,k) is continuous in (x,k) on IR X E+

$£(x,ikn) is the eigenfunction for A = - ki, defined by:
lim wl(x’lkn)wl(x’lkn) =-1.
K>

Q.E.D.

Note that we have shown that:

0 o
(B.2.8) J |$;$;- 1]dx and J |$ 7 +1|dx converge.

nn
—c0 0

Lemma (B.2.2):
If u(x) = [1] and £(u(x)) = [0], then all the integrals occurring in Hn(t),

as defined in (3.1.11,12), converge.

Proof:

From (2.2.30), we know that
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k_x k_x
(®.2.9) [T )] = |Rx,ik)|e ™ scCe ™ , x<0;
~ - —knx —knx
|¢n(x)| = ]cn¢2(x,ikn)| = EQIL(xfikn)|e < Ce , x>0.
Firstly, we will show convergence of:
© © X X
I, := I oV {( I f(u)¢2dx) J wzdx"- J f(u)wzdx'}dx
1 ° n'n n n n .
Using (B.2.9) and _mf°° wﬁ(x)dx =1, we get:
0 © X b4
2 2 1 2 )
1,1 =] J ¢n¢n{( J f(u)q;ndx) J g, dx' - I £(u)y dx }dx[ +
+ | Ji'pnl"n{ J f(u)tprzldxf —( I f(u)d;idx) J \bidx'} ax| =
0 X - X
‘ O X ok x' ® 7 =2k x!
éC{ J( Je n dx')dx+ J(Je n dx')dx}<°°.
o =0 0 x

~

Secondly, we use (B.2.8) and ¢nwn = $ n to show convergence of:

n

@ X

Ty = J ‘Pi{x * J.(¢nwn— 1)dx'} dx
IIZI = l I lpi{"' X+ J (d)ndan- 1)dx"'+ J (¢n¢n+ 1)dX'}dxl <
-0 — 0
o 0 -
= I ‘pi{lx' + J' |<I>ann-1|dx'+ J |¢n\pn+1|dx'}dx< © .
-—C0 —oo 0

Convergence of the remaining integrals in Hn(t) is trivial.
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Proof that (5.1.10) can be replaced by the conditions (5.1.24) and (5.1.25)

Define g(k,t) as:

©

gk,t) = % J f(u(x,r))wz(x,k,r)dx .

-0

Suppose W(0,T1) = 0 for 1 € [ai,az] c [0,A].

Because of (5.1.24) we have:

. a ., (t=1")
2 8ik3 ——= .
| J J glk,t') e 8 2AkGety) 4o dk| =
k=rel1~p a
0T
a .. (1=1")
2 8ik3 .
= | J J glk,1') e 8 QMG gy gpr) =
a1 k=relw
Op=m
a, ,
= |ﬂi I I flulx, "))V (x,O,r')dx:dr'| < C(az-a1) .
a —00

1

So:
Let Ii c [0,A], i =1,...,p, be disjoint intervals on which W(0,t) = 0, and
W(0,7) # 0 for T € [0,A]N U L.

i

Then:
., (t=1')
8ik3 .
(C.1) | [ g(k,’r') e [ ezlk(X+y) dT'dkl <C 2 u(Ii) ,
k=rei(p U I. L
Ospsm 1 N

where u(Ii) is the Lebesgue measure of Ii'
Now, for estimating _mfoo II(k,t)dk, for t' € [0,T]~V Ii’ we integrate
i

along the rectangle {k € ¢ [ 0<Imk=<n, |IRe k|l £ p} and take the limit
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p + », while for t' € [0,1] n g Ii’ we integrate along the rectangle minus
the semicircle with radius r: {k € ¢ | 0 < Im k < n, |Re k| £ p, |k] 2 r}
and take the limits p + », r > 0.

From (C.1) it immediately follows that, if W(0,71) # O almost everywhere on
[0,A], then, no extra contribution will come from the integration along the
semicricle.

This proves the statement.
Q.E.D.



APPENDIX D

Proofs .of Lemmas (6.1) and (6.2)

i) Proof of Lemma (6.1)

For each t € [0,A] fixed, we have:
o : Y
flu_ G2 Gndx = | £@ (2,092 (2 ,1)dz
Ugt¥,T lpms X,T)ax s ?m? T wms m’ m °

-co -0

where us(zm,T) = us(x,r).

We split the integration interval into three parts:

I: =<z 4@ _,-9),

IA
N
IA

I (e =@, i(cpmﬂ—cpm) s

IA
N
A

©
.

III: i(me —cpm)

Now, using (3.2.16) and (3.2.13), we get:

"‘((pm—1_(pm) - -2 . ““’m—F“’m) 2kmzm
| I £y dzml scC J e dz =
k (@ _—¢)
=ce®™ ™ LR 0 (exp—g%] , for some positive constant a.

And analogously:

= =2 oT
J f(us)\pms dzm =0 (exp _——_6(5)) s
III

2 2 + 2 + _ 9T
JfPZ%Sﬂm1%“¢W£}*%S“hkéﬁrﬂQ“m"°@W @)
I
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2 2 + 2 + _ __oat
£(- 2k sech” k (z -8 )]+ 4k sech"k (z -8 )dz =0 (exp ?(—J) .
IIL

' . N 2 .
For the region II, we use u, = -4 Zn=1 knwns’ (3.2.15,16) and the special

structure of the perturbation to get:
) = £(-4k 92 - ot
£(u) = £(-4k v ) + 0 (exp 6(9)) .

And so, it follows that:

(D.1) J f(t-.ts)@:ls dzm = J (f(-l»kmi)is) + 0 (e 6(6))) anzm dzm .
II II
Using (3.2.18), we see:
_ ot
(D.2) £(- 4k Eis) =f ([1 +0(e 5155)) . (- 21<:l sech? k (z - 5;)]> =

aT
2 2 + “5(e) 2 2 +
= f(— ka sech km(zm— Gm)) + O(e )fo(— 2km sech km(zm— Sm)) s

where f0 is an operator of the same form as f.

Combining (D.1) and (D.2) we get:

. aT
R _ 2 2 + 2 + 8oy
J f(us)lpmsdzm = J £ [—ka sech km(zm-sm)) . ikm sech km(zm-ém)dzm+ 0 (e ) .

I1 II

Finally, combining the results for the regions I, II and III, we obtain the
estimate required.
Q.E.D.

ii) Proof of Lemma (6.2):
We start by defining:

u(x,1) , etc.;

Xx=x- v16-1(e) s ulx,1)
. =mé(e) 10g-—1- H
m e’
D =1R x [Tm,A] H

+

D. = (-, M] x [Tm,A] s D [M,o) x [Tm’A] .
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On the region D , we can use the following estimate (use (3.2.9), Lemma

(3.2.1) and by = dnwr(x,ikn,r)):

©.3) [5G0l 2 GOl [T G, [T G|
93X 9x

T k x

k
< Cdn(O) exp gzgy {VT“ J 4k§dr' + O(e)}e n
0

IA

<Ce e (= O(Eam) uniformly on D) s
where we take v < 4M% and o := kn(4M$-v). (M1 defined as in (3.2.3b.)

From (D.3) it is easy to see that we also have:

M
(D.4) J |w(§,T)[d§ < Ce

-0

__art
§(e)
, on [Tm,A] ,

for w(g,r) € {ﬁn(;,T), ﬁ

QG0 s By o), = bs G} -

%1l

. + .
On the region D , we use condition (6.4). Moreover, we use that:

S

d 9 5°u 9"ug
(D-S) \bn H E an 5 lan 5 ﬁ wns 5 —_S and s s =0’19°"’2J >
9% 9x
are uniformly bounded on D,
and
(D.6) f(u)w2 - f(u )wz dx = 0(z(g)) uniformly on [1_,A]
. n s’ "ns ’ m’ ’
- for some order-function z(e) ,

implies that:
o

2 2 ~ .
I |f(u)¢n - f(us)wnsldx = 0(z(e)) , uniformly on [Tm,A] .

-00

(Of course, in general, this implication is not true. However, in this case
we already know that both of the integrals converge and that the smallness
of _mf°° f(u)Wi - f(us)wisdx is due to the smallness of the integrand on
[t_,Al.)
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The proof is based on an induction procedure that consists of the following

steps:
1°. Show that the lemma holds for f(u) = L(u).

2°. Show that, if the lemma holds for f(u) = fo(u) (where £°(u) is of struc-
ture (6.2)), then it holds for £(u) = fo(u)(ssu/axs), 0<s s j, too.

3°. Show that the lemma holds for h(u) = £(u) + g(u), when it holds for f(u)
and g(u).

Ad 1°:

J |L(E)$§ - L(Gs)ﬁis|d§ <

I @ - L@ @2 +32) + @@ +LE D) G2 - 52 ) |ax +

IA

M
M
o [ @I I T a5

-0

T
—Zu———s(e)

A

C sgp lG-GSI + C %&p wn—$ns| +Ce

-20‘7—5 Te))
+ e

O(q(s) , TE ['rm,A] .

Ad 2°:
We know that:

- - - 20—
|If_0(1—1)q)121 - f_O(uS)‘pﬁsuL = O(q(e) +eo 008 )
1

Now, for f(u) = f°(G) (3367‘3}_{8), we have:
| [ (E@P2 - £G P2 Jax =
- N L
<4 J (£ (g - f (us)wns) (—_f + ——_—Si) dx| +
— 9% 9%
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o

-
0,==2 0,~ =2 3%u 8 Ug =
+ 4| (£ (wy, + £ (us)wns) —_- dx| =1+ II .

X" 9x°

-

s-

- 9" u '

Bsu s 0,~,=2 0,— =2 _

} sup I—:; "T;;I'"f (u)¢;n - f (us)wnsllL =
D 9xX 9x 1

L]
A

-ZaE%%T
0 (q(e) +e ) .

Performing partial integration s-times and using that in and Ens are L,-

solutions of the Schrddinger equation, we get:

o

9 L 0,-=2 . 0= \=2 1 = = .-
b | JE (£ (wy, + £ (us)wns].(u_us)dxi =

II

© - -

Yn Y
=2 = =2 = ns \ - =
I J (P1 “bn+P2wn 5% +P3wns+P4wns 9% )(u—us)dxl ?

-co

where: P1,‘P2 are polynomials in u and x-derivatives up to degree 2s of a,
with multiples of u-derivatives up to degree s of L(u) as coefficients,

while: P3, P4 are polynomials in Gs and ‘x-derivatives up to degree 2s of Gs’
with multiples of us—derivatives up to degree s of L(us) as coeffi-

cients.

Using (6.4), (D.5) and the boundedness of the u-derivatives of L(u), respec—

tively, of the Gs—derivatives of L(GS), it is now easily seen that:

T

1 = of ’Zam)

q(e) + e

Ad 3°:
Trivial.

Q.E.D.



APPENDIX E

E.1. Derivation of the KdV-equation for shallow-water waves

We consider a two-dimensional model for the flow of an incompressible,
irrotational, non-viscous fluid in a canal with a flat horizontal bottom

(see picture).

We define:

(E.1.1) hO: the depth of the canal with water at rest,
@ : the velocity field potential ~ = V)

q : the gravitational acceleration.
The system is described by the following set of equations:
(E.1.2) a) Mp=0, 0<ycx h0+ n(x,t)) . (Conservation of mass)
2 2 . .
b) e+ i(wx+-wy)+ gn=0, y= h0+ n(x,t) . (Equation of motion)
¢c) @ =0, y=0. (Boundary condition at y = 0)
d) nti-wxnx = wy sy ¥ = h0+ n(x,t) . (Equatlon_of motion for the
free boundary y = h0+ n(x,t). Surface tension is neglected)
We are looking for waves with the following properties:

(E.1.3) o = ﬁL << 1, a is a typical wave amplitude,
0
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<< 1, & is a typical wave length.

We introduce the following set of dimensionless variables (the old variables
are given a bar):

(E.1.4) x =

bl

_ - B acy _
(x-cot) s YERIY . t=— ¢

c
-0 ==-==
n(x,t) , o@x,y,t) = o%a o(x,y,t) .

Here ¢y = VghO is the phase-velocity of nondispersive gravity
waves. (See [W], § 13.3,4.)

In these new variables, we have the following set of equations:

(E.1.5) a) wax + ¢§y =0, 0<y< 1+an ,
b) coy=0, y=0,
] 3 1
) (egp-3n*een ~go, =0, y = 1+an ,

3 _ 3 2 o 2.
d) (a 3t 5;)w + iaq& + 76 @y +n=0, vy

1+an .

We search for a solution of (E.1.5a,b) of the form:

(E.1.6)  0(x,y,8) = ] y £ (x,t) .

n=0

Substitution of (E.1.6) into (E.1.5a) and using (E.1.5b), leads to:

(E.1.7) ©(x,y,t)

o (_B)n 2n a2n
20 —-7757%——-3 5= £(x,t) , with £(x,£) = £,(x,t)
n= X

Next, we substitute (E.1.7) into (E.1.5c) and (E.1.5d), respectively, and
then differentiate to x. This gives:

1
(E.1.8) ntw + a(nt+wnx+ nw) + B(_waxx) +

1 1 2 _ 3 3
iias(nxwxx+Anwxxx) * 120 B wxxxxx = 0(a”+B7) .
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1
(E.1.9) n,-w a(wti-wwx) tp B Y

XX

1 1.2 3.3
7uﬁ(wxxx+wxxt Vo xx 2T]xwxx“ znwxxx) ﬂ-s Yoxxxx 0(a™+ 87 .
In the above equations, w(x,t) = 2 f(x,t) is the first term in the expansion

9x
of the horizontal velocity g%(p(x,t).

Equations (E.1.8), as well as (E.1.9), imply that a first order approximation

will give n, =W, SO that:
(E.1.10) n(x,t) = w(x,t) + q(t) =@ (x,t) + q(t) + 0(a+B) .

From a physical point of view, it is quite unlikely that the vertical dis-—
placement n(x,t) and the horizontal velocity wx(x,t) differ by a function
that is only t-dependent. Therefore, we take q(t) = O.

We now specify the terms in the expansion of n(x,t) up to order 0(a2+ 82):
(E.1.11) n(x,t) = w(x,t) + aA(x,t) + BB(x,t) + uZC(x,t) + oBD(x,t) +
+ 82E(x,t) + 0(a3+ 8 .

For the same reason as mentioned above, the functions A and B neither contain

constants nor parts depending only on t.

Substituting (E.1.11) into (E.1.8) and (E.1.9), respectively, we obtain:
1 2
(E.1.12) aln +2m +A) + BB -gn ) +a"(C +nA +n_A) +

1 1 1
* aB(DX+nBX+ BnX EAXXX 7anXX 7nnXXX) *

1 1

2 3.3 .
f B (Ex .ngxx+'120nxxxxx) = 0(a+ 6

1 2
(E.1.13) a(nt+ nn_ Ax) + B(-Bx+7@{xx) + (-Cx+nAx+ Anx+At) +

A )+

1 3 1
+ aB( Dx+an+an+Bt 72 Mxxt T2 M M T 7 Mkt 7 A

1 E) = 003+ 8) .

2.1
* B Bk ™ 2% Mexxxx ~ Ex

Adding and subtracting the equations (E.1.12) and (E.1.13) leads to:
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1 2
(E.1.14) a(Znt+3nnx) + Eanxx + 0 (ZnAX+ 2Anx+ At) +

! +nn_+B ) +

1
*aB(2nB +2Bn A NNt B T T e

2,1 1 3.3
B (§Bxxx §5nxxxxx) = 0(a™+ ) .

(E.1.15) a(ZAx4~nnx) + B(ZBX-“gnxxx) = 0(a24'62) .

From (E.1.15) we can see that:

(E.1.16) a) 2Ax +omn = 0 , and consequently: A(x,t) = - %nz s
so: A = - 1
: £ znnt’
b) 2B --Zn =0 and consequently: B(x,t) =-ln
x 3 'xxx ’ ! i ’ 3 'xx’
| or B o1

: t = 3Mxxt °

From (E.1.14) we see that:

__3 _1 .- 2 -1
(E1.17) ng =-3m_-zBa n_ +O0(+g+pa ) .

éubstituting (E.1.17) in the expressions for A, and B in (E.1.16) leads to:

2, _322 1 3, 23y .
(E.1.18) a) «o A =gzonn +zaBin o+ 0(a™+B7) 3
b) aB(B —1n ) = -iaBn =
t 2 'xxt 6 xxt
= %as(snxnxx-'- nXXX) * .31_6 62 nXXXXX * O(Cf.3+ 83) °

Finally substituting (E.1.16,17,18) into (E.1.14) will give:

1 32 2 5 23
(E.1.19) a(2nt+ 3nnx) BN T e N, o (g nnxxx+ﬁnxnxx) +
2 19 _ 3.3
+ 8 180 Nxxxxx 0(a™+87) .

Now, we consider the case in which o and B are of the same order of magni-

tude:
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(E.1.20) a=¢3; B=Ce.
Moreover, in order to get the KdV-equation in its most familiar form, we

need to introduce new variables:

(E.1.21) X = (%)ix; T= —l— (—;—c)it s u@®, D) = - nx,t) .

For convenience, we will omit the ~'s and get:
_ 3.2 5 23 _19 2
(E.1.22) u 6uux + u = e{fu u +uu + 7 Uy 70 uxxxxx} +0(e) .

This is the KdV-equation + first order terms, such as used in § VII.3.

We will now show that the physical equivalent of a solitary wave solution
u(x,t) = -‘2K2 secth(x- ln<2t), of the KdV-equation, is a shallow waterwave.

Transforming back to physical coordinates: n, Xg, te, we get:
2 2k /3, _ 2
n(xf,tf) = 2ak” sech + Ve (xf c0(1+0u< )tf) .

Inserting h0 =1 and o = a = 1/11,2 << 1, we get:

(vt = 2 5 secn £4/3 (x-c (1450 ¢
Mg, te) = J2 sech 2 Vz2 (¥~ % 2/ ¢ -

Indeed, this represents a shallow-waterwave.
Note that the wave-velocity c0(1 + KZ/R.Z) is an O(e)-perturbation of the

phase-velocity o of nondispersive gravity waves.

E.2. Solving {7.4.6)

In this section, we will solve:

(E.2.1) u o+ (12»<2 ch2 KX — ln<2)u = K6{2u ch_6 KX — l»8ch_4 KX +

76

+ -—5—-+ 2a] ch--2

kx}

lim u(x) =0 .
x|
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We use the notation:

(E.2.2) ch=cosh; shzsinh; kx=y; u(y)=ulx) .
Define L: C2(R) + C(R) by

(E.2.3) (@LE() = @) () + (12ch 2y -&)E(y)
(E.2.1) is equivalent to:

4

(E.2.4) (L@)(y) = {24 ch ®y -48 ch” y+[15—6-+2a] ch 2y} .

It is easily seen that a solution of:

(E.2.5) (@w)(y) = K4{24 ch_6y-48 ch_4y}
is given by:

2

(E.2.6) w(y) =- K4{2 ch “y-3 ch-4y} .

So, what we need is a solution of:

(£.2.7) a) (Iv)(y) = .<"<15f1+2a) ch 2y ;

b) lim v(y) =0 .
ly |2

We first solve the homogeneous equation
(E.2.8) @@)(y) =0 .

From the theory in [F], we know that a solution of (E.2.8) is given by:
(E.2.9) vy, (y) = ch4y shy F(l,é,é,—shzy) .

1 2222
The hypergeometric function F satisfies:

F(a,b,b,z) = (1=z) 2,

so that

(E.2.10) 'J)1(y) = ch_3y shy .
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The general solution of (E.2.8) can now be found by using order-reduction.

We introduce: y(y) = 12 (y)o(y), and we get:

(E.2.11) y(y) = Ach_3y shy +B ch—3y shy (=32 cothy + sh4y + 16 sh2y + 60y) .

The solution of the inhomogeneous equation (E.2.7a) can be calculated using

the variation of constants method. We find:

(E.2.12) v(y) =Ach Jy shy + Bch Oy shy (-32 cothy + shéy + 16 sh2y + 60y) +

419

+ K (T+-;-a)(ch~2y-ych.3y shy) .

With (E.2.7b), we see that: B = 0, A is arbitrary.
So, the solution u(x) of (E.2.1) is found to be given by:

(E.2.13) u(x)

w(kx) + v(kx) =

4

|<4{ (—§-+-;—a) ch_2|<x - 3ch ‘kx- (1T9+%a) KX ch_3 kx shkx} +

+ A ch~3|<x shkx .
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