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CHAPTER 0 

INTRODUCTION 

At the end of the nineteenth century special functions, such as Jacobi 

polynomials, were studied mainly by using analytic methods. Starting off 

from one defining property one obtained series expansions, functional 

equations, orthogonality relations, integral representations, differential 

equations, etc. by analytic manipulation. Note that each of these expansions 

and relations represents a property that could itself be used as a defini

tion. A sunnnary of many such results, proved by analytic methods, can be 

found in ERDELY [SJ. 

For instance an addition formula for Gegenbauer polynomials was ob

tained by Gegenbauer in 1893 in a purely analytic way, cf. [5,3.15(19)]. 

But no such formula for Jacobi polynomials of general order was known. The 

first proof of an addition formula for Jacobi polynomials was given by 

KOORNWINDER (cf.[19]) by using group theoretic interpretations for Jacobi 
V 

polynomials. See also VILENKIN & SAPIRO [30] for this subject. For certain 

values of the parameters Jacobi polynomials can be interpreted as complex 

spherical harmonics: restrictions of bihomogeneous polynomials of acer

tain bidegree to the sphere s2n-l c ~n. Now the addition formula for those 

values of the parameters for which this interpretation holds follows from 

(highly nontrivial) analysis on the sphere, and the general case is proved 

by using differentiation and analytic continuation. This example shows the 

strength of the combination of group theory and special functions. (Sur

prisingly, the case of Legendre polynomials was originally also treated by 

means of "group theory": Legendre's proof of the addition formula used po

tential theory, cf. ASKEY [I]). 

Let (U,K) be a Riemannian symmetric pair of the compact type of rank 

one. That is, U is a compact connected semisimple Lie group, Ka closed 

subgroup of U such that there exists an involutive automorphism 0 of U 
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with (U9) 0 c Kc u9, and the -I eigenspace of d9 in u (the Lie algebra of U) 

"contains a one dimensional maximal abelian subalgebra. If (U,K) is a Rie

mannian syEDetric pair, then the homogeneous space U/K is a Riemannian sym

metric space. In gen~ral, the dimension of a maximal abelian subalgebra in 

the -I eigenspace of d9 in u is called the Pank of U/K. 

Let D(U/K) be the algebra of all U-invariant differential operators 

on U/K. A function <Pon U/K is called a sphencal function if <P satisfies 

the following conditions: 

. (t) <P(eK) I, 

(O. I) (2) <Pis left K-invariant, 

(3) ])p ADI() for each D E D (U /K) 

If U/K has rank one, then D (U/K) consists of all polynomials in the Laplace

Beltrami operator on U/K, where the Laplace-Beltrami operator is the analogue 

of the Laplacian for a symmetric space. Thus a spherical function on a 

Riemannian symmetric space of rank one is a K-invariant eigenfunction of the 

Laplace-Beltrami operator. 

Now CARTAN [3] proved that if U/K has rank one, then the spherical 

functions on U/K can be considered as Jacobi polynorrrials. These are poly

nomials, orthogonal on the interval [-1,1] with respect to the weight func

tion (l-x) 0 (1+x)a. In the case of spherical functions on a rank one symme

tric space the parameters a and a are certain half integers. The orthogonali

ty follows from the fact that the spherical functions are also matrix co

efficients of certain finite dimensional representations of U, and these 

matrix coefficients are orthogonal with respect to the invariant measure 

o.n U/K (the "orthogonality relations of Schur"). In this model the weight 

function thus corresponds to the invariant measure on U/K, and this measure 

gave rise to Jacobi polynomials. In this way one obtains a tool to 'prove 

formulas for Jacobi polynomials which extends the above mentioned method 

of complex spherical harmonics. 

Besides the rank one symmetric spaces, it was known for two more ex

amples of Riemannian symmetric spaces of the compact type that the spheri

cal functions gave rise to orthogonal polynomials: The Koornwinder poly

nomials on certain SY111llletric spaces of rank two, cf. KOORNWINDER [20], 

and Grassmann manifolds of general rank, cf. JAMES & CONSTANTINE [18]. 
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Koornwinder polynomials are orthogonal polynomials in two variables on the 

region n := {(1;,n) E R 2 I n > 0, 1-l;+n > 0, 1; 2-4n < 0, 0 < I; < 2} with re

spect to the weight function 17a(l-l;+n) 6 (1; 2-4n)Y. Then for certain values of 

the parameters a,S,y the Koornwinder polynomials are spherical functions on 

compact symmetric spaces of rank two with a root system of type BC 2, where 

the restricted roots a 1,2a 1 and a 2 have multiplicities 2a-2S, 2S+l and 

2y+l, respectively. 

James and Constantine proved that the spherical functions on the 

Grassmann manifold 0(p+q)/0(p)x0(q) can be considered as orthogonal polyno

mials on the region n := {(y 1, ... ,y) ERP I I.:': y 1 .:':···.:': y .:': 0} with re-
p P l(q-p-1) -1 p 

spect to the weight function TT. 1(1-y.) 2 y. 2 TT .. (y.-y.). (In fact 
i= i i i<J i J 

they even proved more, but that subject will be discussed later.) 

In [31] Vretare generalized these results to Riemannian symmetric 

spaces of the compact type of general rank. Let U/K be a Riemannian symme

tric space of the compact type of rank l. Then the spherical functions on 

U/K can be considered as orthogonal polynomials in l variables. For the 

proof the structure theory for compact Lie groups was needed, and the or

thogonality was obtained by means of a translation of the Schur orthogonali

ty relations. Since these results were the basis for this thesis we shall 

briefly review Vretare's method here, 

So let Ube as before the Lie algebra of U. Write, by abuse of nota

tion, also 0 for the differential of e. Thus 0 is an involution of u. Let 

k be the +l eigenspace of 0 in u, then k is the Lie algebra of K, and let 

ip be the -1 eigenspace of e in u. Then u decomposes as u k + ip, Let g 
C 

be the natural complexification of u, and put g := k + p. Then g is a real 

Lie algebra for which the corresponding Lie group is noncompact; g is called 

the dual of (u,e). 

For XE g define the linear operator ad(X) on g by 

ad(X)Y ·= [X,Y] 

The bilinear form B0 on g x g defined by 

B0(X, Y) := -tr(adXad0Y) 

defines an inner product on g. Choose a maximal abelian subalgebra a in p, 

then the linear operators ad(X) (XEa) on g are symmetric, hence they can 

be simultaneously diagonalized. Therefore, for a real linear form A on a, 
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put 

gA :={XE g I ad(H)X = A(H)X for all HE a}. 

If g, # (0) and A# 0, A is called a root of the pair (g,a). Let~ be the 

set of all roots of the pair (g,a). ~ is called a root system. 

A set of roots {a 1, ..• ,al} in a root system~ is called a base of~ if 

{a 1, .•• ,al} is a basis of span(~) such that each root SE~ can be written 

as S = f I m.a. (m.E7l) with either all m. nonnegative or all m. nonpositive. 
i= ii i i i 

The restriction of B0 to a induces an inner product on a*, which we 

shall denote by (•,•), Choose a base {a 1, .•• ,al} of~, and let 
* -I µ 1, ••• ,µl Ea be such that (µi,aj) = 0 if i # j, and (µi,ai)(ai,ai) = 2 

or I according to whether Zai is a root or not. (If a is a root, then the 

only possible multiples of a which are also roots are ±½a,±a,±Za). Let$ be 

the partial ordering on a* defined by , 1 ::5 , 2 if , 2-, 1 = ~=I miai (miE7l) 

* with all mi nonnegative (A 1,,2Ea ). 

Let TT be a finite dimensional irreducible representation of u in a 

* vector space V. For any A Ea put 

v, := {v EV: TT(H)v A(H)v for all HE ia}, 

where A(iH) := iA(H) (HEa). If v, # (0) A is called a (restricted) weight 

of TT, and VA is then called the weight subspace corresponding to the weight 

A. Because ad(ia) acts in a semisimple way on v, we have V = ~,Ea* v, 
(direct sum). 

The representation TT of U is said to be of class I if there exists a 

nonzero vector e EV which is left fixed by K, i.e. TT(k)e = e for all k EK. 

By a theorem of Cartan-Helgason (cf. WARNER [33, Theorem 3.3.1.1]) the 

representations of class I are parametrized by their highest weight, and 

precisely all A = f I m.µ. (m.E7l) with all m. nonnegative do occur as 
i= ii i i 

highest weights. Here highest is meant to be with respect to the partial 

ordering :S. We shall identify the set of all f I m. µ. as above with the 
l i= i i 

lattice 7l+ of all !-tuples (m1, ... ,ml) of nonnegative integers mi. 

We shall now indicate how the spherical functions can be considered as 
l 

matrix coefficients of representations of U of class I. For A E 7l+ let TIA 

be the corresponding representation of class I. Let (·J•) be an inner product 

in the representation space V(A) according to which TIA is unitary., The K-· 

fixed vector e E V(A) is unique up to a constant factor. Choose it such that 



(e J e) I. Then the function ~A on U defined by 

(0. 2) (XEU) 

is a spherical function on U. Here we identify functions on U/K with right 

K-invariant functions on U. Moreover, if~ is a spherical function on U, 
l 

then there exists a A E 7l+ such that ~ =~A. 

Put A:= exp a. Then because of the Cartan decorrrposition 

(O. 3) u KAK 

7 

the spherical functions are completely determined by their restriction to A. 

By means of an induction process with respect to a total ordering on 7l: 

(which we shall not specify here) we obtain that the spherical function 

~A (A = ~ m.µ. E 7ll) is a polynomial in the "lowest" spherical functions 
i i + -) 

~µ 1 , ••• ,~µ,t' Hence ~A°F is a polynomial on Q := F(a), where Fis defined 

by 

(0.4) F(H) := (~ (expH), •.• ,~ (expH)) 
µI µl 

l . 1 . Because of the fact that for A1,A 2 E 7l+ ~Al= ~Az if and on y if TIA) 

and nA 2 are equivalent (which is the case if and only if Al= A2) the or

thogonality for the ~A will follow from the Schur orthogonality relations for 

different representations of U. This gives the following weight function on 

Q: 

(0.5) w(F(H)) := TT 
m 

sin aa(iH) TT sin- 1a(~H)j (HEia). 
aE~+ 

2a,/.~+ 

Here~+ c ~ is the positive system defined by SE~+ if S = ~=I miai (miE7l) 

with all mi nonnegative (SE~), and ma:= dim ga is the multiplicity of a E ~

Observe that the first part in the right hand side of (0.5) is just the 

Jacobian which occurs in the integral formula for the Cartan decomposition 

(0.3), cf. HELGASON [IO, Proposition X.1.19]. The second part in the right 

hand side of (0.5) is the Jacobian of the mapping F: a+ ~l defined by (0.4). 

Now Vretare obtained the following result. 

THEOREM 0.1 (VRETARE [31]). The spherical functions on U/K can be considered 

as orthogonal polynomials with respect to the positive weight function w, 
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defined on the region~-

Via Theorem 0.1 one obtains, for each Dynkin diagram, a set of or

thogonal polynomials, labeled by a (discrete) set of parameters, namely the 

multiplicities of the roots. By letting the parameters take arbitrary real 

values one obtains highly nontrivial examples of families of orthogonal po

lynomials in several variables with group theoretic interpretations as 

spherical functions for certain values of the parameters. Except in the 

rank one and rank two case these polynomials have hardly been studied yet. 

A start was made in VRETARE [32]. 

Thus from the point of view of special functions Vretare's result is 

quite useful. The method we mentioned for Koornwinder's proof of the addi

tion formula for Jacobi polynomials works in a more general context. A 

standard method of proving explicit formulas for orthogonal polynomials of 

the above mentioned type is to consider first those values of the parameters 

for which group theoretic interpretations can be given, for instance as 

spherical functions. For these values of the parameters the whole machinery 

of (say) spherical func,tions is available and it may yield a proof of the 

desired formula. The general result then often follows by a process of 

analytic continuation, using Carlson's theorem (cf. TITCHMARSH [28, p.186]). 

However, in many cases the distribution of parameter values admitting 

a spherical function interpretation does not allow an analytic continua

tion to all parameter values. Therefore it is desirable to find group theo

retic interpretations of more general nature for special functions. 

An obvious generalization of a spherical function is obtained if one 

replaces the K-biinvariance by left-K-, right-H-invariance. Here (U,H) is 

(another) Riemannian synnnetric pair of the compact type, with an involutive 

automorphism er such that (U0 ) 0 c H c Uer' and er and 8 commute. The left-K--, 

right-H-invariant functions on U which are matrix coefficients of some 

irreducible finite dimensional representation of U (or, equivalently, 

which are eigenfunctions of all left-U-, right-H-invariant differential 

operators on U, cf. Theorem 4. 3) are called intertwining functions. An in

dication that intertwining functions might also be considered as orthogonal 

polynomials is the above mentioned article of James and Constantine. Their 

proof is not only valid for the spherical functions on O(p+q)/O(p)xO(q), 

but also for the intertwining functions on O(p')xO(q')\O(p+q)/O(p)xO(q) 

(p'+q'=p+q): The intertwining functions are orthogonal polynomials on the 

region n as before (here it is assumed that p $ p') with respect to the 
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weight function nPi'--I (1-y.)½(q-p'-I) y~(p'-p-l) TT .. (y.-y.). 
i i i<J i J 

In this thesis, intertwining functions on a compact Lie group are 

proved to be orthogonal polynomials indeed. Our result contains Vretare's 

result (Theorem 0.1) as a special case. Also the line of proof is roughly 

the same as in the original proof for spherical functions, see [31]. Still 

this generalization is far from a routine excercise: the details of the 

proof turn out to be much more involved than in [31]; many difficulties of 

an algebraic nature arise. This corresponds to many new phenomena which oc

cur when a complex semisimple Lie algebra is studied with two commuting in

volutions instead of one. Some of the results obtained in this way may have 

their use elsewhere. 

To conclude this introduction we treat the example of spherical func

tions on a rank one synnnetric space. This gives the above cited result of 

CARTAN [3] that all spherical functions on a rank one symmetric space are 

Jacobi polynomials. 

EXAMPLE 0.2 (the rank one case). Assume dim a= I. Let~ { (-2a) , -a, a, (2a)}, 
+ 

~ = {a,(2a)}. Let HO € a be,such that a(H0) =I.Thenµ ka, with k = I 

€ ~. generates the lattice ~I • We shall consider the 

polynomials in the variable 

if 2a i ~. k = 2 if 2a 

spherical functions as 

(0.6) y := cos k6. 

Since <P = a cos k6 + b, with a,b € R such that a+b = I, the weight func-
µ 

tion in the variable cos k6 equals w (cf.(0.5)) up to a constant factor. By 

abuse of notation we shall denote this weight function by was well. Thus 

the weight function becomes 

(0. 7) 

(0.8) 

m . m2cx 
w(cos.kS) = lsin ~8 sin 28! 

sin k8 • 

w(cos8) 

0, then (0.7) becomes 

Hm -1) 
(l-cos8) a (l+cos8) 

1 (m -1) 
2 a 

and if 2a € ~. i.e. m2a > 0, then (0.7) becomes 

(O .9) w(cos28) 
1 (m +m -1) 
2 a 2a (l-cos28) . · 

½(m2cx - I) 
(I +cos8) 
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Thus, via the transformation y := cose in (0.8) and y := cos28 in (0.9) 

we get that in the rank one case the spherical functions can be considered 

as Jacobi polynomials of order (!Cm-!), !Cm -1)) (or Gegenbauer polynomials) 
CL CL 

if 2CL I. '.E, and of order (Hm +m2 -!) , ½(m2 -1)) if 2CL E ~. 
CL CL CL 

REMARK 0.3. Because of the fact that m2 CL = 1,3, or 7 if 2CL E ~(cf.for in

stance WARNER [33, Appendix 1.1.3.1]), .Example 0.2 gives group theoretic 

interpretations for Jacobi polynomials of order (!m,!m), (!(m+l),0), 

(!(m+3),I) and (!(m+7),3). Herem is a certain nonnegative integer. As will 

be seen in chapter II intertwining functions yield group theoretic inter

pretations for Jacobi polynomials of order (!m,½n), where m and n are non

negative integers. 
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CHAPTER 1 

REAL SEMISIMPLE LIE ALGEBRAS WITH TWO INVOLUTIONS 

Let g be a noncompact real semisimple Lie algebra, let gc be a com

plexification of g. Leto be an involution of g, not necessarily a Cartan 

involution, Then there exists a Cartan involution 0 of g such that o and 0 

connnute, cf. LOOS [23, p.153]. By abuse of notation we will use a and 0 for 

the extensions of a and 0 to gc. 

Let g = k + p be the decomposition of gin +I and -I eigenspaces of 0. 

Then this decomposition is a Cartan decomposition. Let g = h + q be the de

composition of gin +I and -I eigenspaces of a. 

Since oe = ea we have the following direct sum decomposition 

(I.I) g kn h +kn q + p n h + p n q. 

Let u := k + ip be 

put ho :=kn h + i(p n 

a compact real form of g (cf. HELGASON [13]) and 
0 C 

h), q :=kn q + i(p n q). Then the decomposition of 
. ho o o ho . o u in +I and -I eigenspaces of a is given by u + q • Put g := + iq , 

h O . 1 f f d O ho . O · d .. ten g is area orm o gc, an g = + iq is a Cartan ecomposition 

of go. If a~ id go is a noncompact real form of gc, See FLENSTED-JENSEN 

[8,§2] for this duality. 

Let a c p n q be a 
pq consists maximal abelian subalgebra. Note that a pq 

of semisimple elements. Choose aph 

maximal abelian in p. Choose l\q c 

mal abelian in q. 

c p n h such that ap := apq + aph is 

kn q such that a 
q := apq + l\q is maxi-

PROOF. Let XE aph' YE l\q· Then [X,Y] E p n q. Let HE apq' then 

[H,[X,Y]] = [[Y,H],X] + [[H,X],Y] = O. Since a is maximal abelian in 
pq 
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.p n q this implies that [X,Y] Ea Hence pq 

(I .2) Ca 
pq 

But a is abelian, so we have 
p 

( I. 3) ad(X)(a ) = (0). pq 

Now the fact that ad(X) is semisimple together with (I .2) and (1.3) implies 

ad(X)(¾_q) = (O), hence [aph'¾_q] (0). D 

COROLLARY I • 2. There exists ¾.h c k. n h such that a : = a pq + a ph + ¾_q + akh 

is a Cartan subalgebra of g. 

PROOF. By [13, Lemma VL3.2] it is enough to show that there exists 

¾.h ck. n h which is abelian, such that a +ah+ ¾_q +¾.his maximal 
. . pq p . . . 

abeli.an in g. But by Lemma I. I a + a h + a. 1.s maximal abeli.an in pq p kq 
p n q + p n h + k. n q, hence can be extended to a maximal abelian subalge-

bra of g. D 

Put ak := akq + ¾.h' ~ := aph + ¾.h· Then a= ap +¾_,and also 

a a +a.. Let~ denote the set of roots of the pair (g ,a). Then 
q h c C 

~ c (i¾_+a )*. Via the Killing form iak + a can be identified with its 
p p * 

dual. In particular, this yields an inner product(•,•) on (iak+ap) . Let 

~ denote the set of roots of the pair (g ,a ) , and let ~ denote the set of 
p O p q 

roots of the pair (g ,a +ia. ). It is well known that~ and~ are root 
pq kq p q 

systems. 

Let~ denote the set of roots of the pair (g,a ), then~ satis-
M pq ~ 

fies the axioms of a root system, cf. [26, Theorem 5 J. Its elements consist 

of all nonzero restrictions of roots in~ (or, equivalently,~) 
p q 

to a 
pq 

For a real linear form\ on ap + iak (i.e. for\ in the real span of 

~) put (TIA)(X) := -\(0X), (T2A)(X) := -\(crX) (XEap+i¾_), Now 

r := !(\+TIA) gives the restriction of A to ap, 

? := !(\+T2\) the restriction of\ to aq, and 

~ := ¼(\+T 1\+T 2\+T 1T2\) the restriction of\ to apq 

REMARK 1.3. It follows from the above that we have the following situation: 

gc is a complex semisimple Lie algebra, e and cr are two commuting involu

tions of gc. gc = k. + p is the decomposition of g with respect toe, 
C C C 
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g h + q the decomposition of g with respect to o, and 
C C C C 

ac (apq)c + (aph)c + (~q)c + (~h)c is a CSA(:= Cartan Subalgebra) of 

g such that (a ) is maximal abelian in p n q, (ah) + (a ) is maxi-c pq C C C p C pq C 

mal abelian in p, and (a.. ) + (a ) is maximal abelian in q . For a E ~ 
C kq C pq C C 

define T 1a := -a 0 8, T2a := -a 0 o. This complex setting simplifies calcula-

tions in concrete examples since all the real forms introduced in the be

ginning of this chapter are avoided. Of course, in this setting we need to 

know that gc has a compact real form u which is 8-, and a-invariant such 

that u n acis a CSA of u. The existence of such a compact real form is as

sured by the following theorem. 

THEOREM I .4. Let gc be a corrrplex semisirrrple Lie algebra. Let 01, •.• ,8n be 

corrorruting involutions on g , and let a be a (8 1 , ••• ,8 )-invariant CSA of 
C C n 

gc. Then gc has a (8 1, ••• ,8n)-invariant compact real form u such that 

u n ac is a CSA of u. 

PROOF. Choose root vectors X E ga according to HUMPHREYS [17, Proposition 
a C 

25.2]. That is, for all a,8,a+8 E ~: 

[X ,X ] Ha, a -a 

where c O satisfies c O = -c 0 , and H Ea is chosen according to a.,µ a,µ -a,-µ a c 
[17, Proposition 8.3]. Let 8-ra, ••• ,8+qa be the a-string through 8. Then 

([17, Proposition 25.2]): 

( I .4) q(r+I) (a+8,a+8) 
(8,8) 

For an involution 8 on g put (8A)(X) := A(8X) (XEa ,AEa*). Then (I .4) im-
c C C 

plies 

Let Ka EC be defined by 8Xa 

definition of c · 
a,8· 

K -a 
-I 

(K ) , and by the 
a 
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Let K. be the K corresponding to 6. (i = I, ••• ,n), and for i. = 0, I let 
. 1., a . a 1. i I i nJ 

Kal.J, •.• ,1.n be the Ka corresponding to the involution e 1 .•. en . Put 

( I .5) µ := 
a 

TT 
i I , ... , in =O, I 

µe.a = n 
l. (K. ) 2 

i,a 

Put Y := jµ j-(!)n X. Then for all a,S,a+S E ~ 
a a a 

and 

[Y , y J HN, a -a u 

K. 
6.Y ~y 

1. a IK. I e.a· l. ,a- l. 

Now {iH I a E ~} u {zY -zY I a E ~. z E ~} span a compact real form u of 
a a -a 

gc (cf.[22, Corollary 2.4]). u is Si-invariant: 

K. 
6. (zY -zY ) = z -,-2:_,~ Y 

1. a -a !Ki,al a 

K • 

since IK~,aj has absolute value I. D 
11.,a 

/\ 
LEMMA 1.5. Let a E ~, and suppose a 

K • 
- z i,-a y 

I K. I -a 
1.,-a 

0. Then a= 0 or~= 0. 

PROOF. Suppose a E ~ is such that~= O, and a f 0, ~ f 0. Let O I Xa E gc 

be such that [X,X J = a(X)X for all XE ac. By the decomposition (I .I) we a a 
can write 

( I .6) X 
a 

O, hence 
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The decomposition (I .6) being direct, this forces [X0 ,x J = 0. But a is 
pq pq 

Now let x1 E aph be such that 

(I. 7) 

Thus a(X 1)~q = 0, thus ~q = 0. But, again by (1.7), this imp 1_ies that 

X = O. 
pq 

Let x2 E ~q be such that a(X2) f O. Then 

Hence a(X2)~h = a(X2)Xph = 0, thus ~h = XPh.= 0. Thus we have ~q 

= x_h = X = X = 0 thus X = 0. Contradiction. D -K ph pq ' Cl 

THEOREM I .6. Choose a positive system L+ . There exist positive systems 
pq 

..,+ ..,+ a:nd + h 1·- ll ~p,~q ¢ sue tr/Ll,t for a a E ¢: 

Cl E L+ 

---7 
p 
~ 

(I .8) " L+ + 
Cl E Cl E ¢ pq 

~ 
L+ 

---7 
RS 
Cl E 

q 

PROOF. Choose a lexicographic ordering on the dual of ap + i~ with respect 

to the decomposition a +ah+ i~ + i~h' and choose positive systems 
+ pq p q 

L+ L+ 
p' q and¢ with respect to this ordering. These positive systems satisfy 

(1.8) because of Lemma 1.5. □ 

REMARK I .7. Corollary 1.2 and Theorem 1.6 were also stated (without proof) 

in OSHIMA [ 25 J. 

REMARK 1.8. It is a natural question whether all the efforts in this chap

ter are worthwile, that is, if there exist triples (g,k,h) such that aph 

and ~q are both non-trivial. An example of such a triple is given by: 

9 = .6.l(n;a:), k = .6u.(n), h = .6(g.l(p;O:)xg.l(n-p;a:)), with p '.> ½n. Then 

crX = JXJ, with J = diag(l, ••• ,1,-1, ••. ,-1), where the first p entries are 

+I, and ex= -x*. 
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Let 0 .. denote the (ixj) matrix with only zeros as entries and put 
l.J 

q := n-p, k := q-p. Then we can choose: 

and 

a pq 

a 
p 

T 

{ (: : ~::) 
Okp Ok? 

T 

Y diag(y 1, ••• ,yk); ti,si,yi E: R for all i,J1 2sj+J1 yj=o} 

Z O Opk) 

qq 
z 

As a last result in this chapter we mention the following theorem; In 

fact it states that the triple (w,T 1 ,T 2) is independent of the choice of ac 

It was proved by Loek Helminck, and the proof can be found in [14]. 

THEOREM 1.9. Let a and a' be two CSA's of g such that their intersections 

idth p n q, p and q are maximal abeZian in p n q, p and q, respectively. 

Then a and a' are conjugate under Int(knh). 
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CHAPTER 2 

REPRESENTATIONS OF K,H-CLASS 1 

Let G be a simply connected Lie 
0 C 

group with Lie algebra gc. Let G, 

G with Lie algebras g,k,h,hO and u, 
C 

K,H,H and Ube analytic subgroups of 

respectively. We shall, analogous to WARNER [33], identify a finite dimen-

sional representation of G with its restriction to G or U. 
C 

Let A be the weight lattice corresponding to~- Let A+ c A denote the 

set of dominant weights (for a choice of~+ as in Theorem 1.6). For A EA+ 

let rrA denote the finite dim~nsional irreducible representation of G with 

highest weight\. Let V(\) denote the representation space of rr\, and for 

µ E A let the weight space in V(\) with weight µ be denoted by V(\) . Final
µ 

ly, let (•J •) denote a U-invariant inner product in V(\). 

DEFINITION 2.1. rrA is said to be of K-class I if there exists a nonzero K

fixed vector eK € V(\), that is such that rrA (k)eK = eK for all k € K. rr\ is 

said to be of K,H-class I if there exist both a nonzero K-fixed vector eK 

and a nonzero H~fixed vector eH. 

(eK and eH, if they exist, are unique up to a constant factor.) The 

next theorem gives the generalization of Theorem 3.3.1.1 of WARNER [33]. 

For spherical functions this theorem seems to go back to Cartan, see also 

HELGASON [II]. Let us agree to use the convention to extend a Ek to all p 
of a by rendering it trivial on i~, and similarly for a€ kq. 

THEOREM 2.2. Let\ EA+. Then rr\ is a representation of K,H-class I if and 

only if 

(I) 

(2) 

\ l¾uak = o 

(\,a) 
Tu,a) E 7l for all a E k u k . 

p q 



I 8 

PROOF. This theorem follows immediately by applying [33, Theorem 3.3.1.1] 
• . ( ) . ( 0 0) h O . twice: once for the pair G,K and one for the pair G ,H , were G is 

the analytic subgroup of G with Lie algebra g0 • D 
C 

A root system~ with an involution Tis called normal if, for all 

CL € ~, CL-TCL j ~. 

LEMMA 2.3. Let CL e: w,~ # o. Then 

(;',;') and 

(" ") CL ,CL 

Fl:$ Fl:$ 
(CL,CL) = 

A A 1,2 or 4. 
(CL,CL) 

If value 4 is attained, then 2~ e: ~ 
pq 

PROOF. We shall prove the lemma by considering all possible values of 

First, consider the exceptional cases CL= , 1CL, CL TI , 2CL. If 
~ Fl:$ A 

CL= , 1CL, then CL= CL, CL~ CL, thus m2 I, 

and, in case of value 4,2"/t. e: ~, by HELGASON 
q 

the lemma follows by a similar reasoning. If 

[13, Lemma VII,8.4]. If CL= , 2CL 
~ A Fl:$ 

CL= , 1, 2CL, then CL= CL= CL and 

the lemma is obvious, Also CL= 

Thus, because of the fact 

Lemma 1.3.6]) only the cases 

• • A -, 1CL,-,2CL or -, 1, 2CL implies CL= 0. 

-1 < 
(CL,T.CL) 
__,_.._J~ :s; 0 

(CL ,CL) 

that (w,,.) is a normal root system {[33, 
J 



- (a.,T la.) (a.,T2a.) (a.,TIT2a.) (;;,;;.') ~/~) (~.~) -(a.,a.) (a.,a.) (a.,a.) (a. ,a.) (a.,a.) (a.,a.) 

1. 0 0 0 
1 I 1 

- 2 2 4 
2. 0 0 I 1 1 3 
- 2 ' 2 2 8 
3. 0 0 I 1 1 1 
- 2 2 2 8 
4. 1 0 0 1 1 1 
- - 2 4 2 8 
5. I 0 1 1 I 1 
- -2 2 4 2 4 
6. 1 0 1 I 1 0 - -2 -2 4 2 
7. 0 1 

0 1 I I 
- -2 2 4 8 
8. 0 1 1 I 1 1 
- -2 2 2 4 4 
9. 0 1 1 I 1 0 - -2 -2 2 4 

10. 
I 1 

0 1 1 0 - -2 -2 4 4 
11. 1 1 I I 1 1 
- -2 -2 2 4 4 8 
12. 1 I I I 1 1 
- -2 -2 -2 4 4 -8 

Because of Lelllllla 1.5 cases 6, 9 and 10 are impossible, and case 12 is im
A A 

possible because (a.,a.) < 0. Thus the lelllllla follows if we have proved that 

case 2 does not occur. 
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So assume that there exists an a.€~ such that (a.,T1a.) = (a.,T2a.) = 0, 

(a.,T1T2a.) = !(a.,a.). Because a.~ T1T2a. this implies B := a.-T 1T2a. € ~- Thus 

8 = 0, hence B = 0 or 'ii'= 0, by Lemma 1 .5. But (8,8) = (i,i) = !(a.,a.), a 

contradiction. Thus m1,m2 = 1,2 or 4. 

By the above table it is clear that if value 4 is attained, then either 

(a.,Tja.) = -!(a.,a.) < 0, hence y := a.+Tja. € ~ (j = 1,2), or (a.,T 1T2a.) = 
-!(a.,a.) < 0, hence y := a.tT 1T 2a. € ~- In all these cases 

A A 
0 ~ y = 2a. € ~ • 0 

pq 

So we can skip 2,6,9,10 and 12 from the table in the proof of Lelllllla 

2.3. Since 11 can be killed by exactly the same method as 2 (cf. the proof 

of Lelllllla 2.3), we are left with the following possibilities for 

a.€~ with ±a.~ T 1a.,T2a. or T1T2a.: 
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I. 

2. 

3. 

4. 

5. 

6. 

(2. I) 

0 

0 

Put, for o. E :E 
pq 

0 

0 

0 

0 

I 
- 2 

0 

I 
2 

0 

I 
2 

TABLE I 

C (o.) J <s,s) <'s.l)} 
:= max L(o.,o.) , (o.,o.) • 

~E<!J 
/3=o. 

Now Lemma 2.3 has the following corollary. 

I 
2 
I 
2 
I 
4 
I 
4 
I 
2 
I 
2 

I 
2 
I 
2 
I 
2 
I 
2 
I 
4 
I 
4 

I 
4 
I 
8 
I 
8 
I 
4 
I 
8 
I 
4 

COROLLARY 2.4. Leto. E :E Then c(o.) = 1,2 or 4. If c(o.) = 4 then 2o. E :E 
pq pq 

COROLLARY 2,5. Condition (2) in Theorem 2.2 can be replaced by: 

(2') (A ,o.) E c (o.) 7Z for aZZ o. E :E 
(o.,o.) pq 

We shall now give an example for :E such that c(o.) pq 
0. E L 

pq 

2 for all 

EXAMPLE 2.6. Let U := SU(2) x SU(2). Put J := (-~ ~), and define the invo

lutions 6 and a by 6(u,v) := (v,u), cr(u,v) := (JuJ,JvJ) (u,vESU(2)). Then 

K = diag (SU(2)), HO= U(J)xU(l). For the maximal abelian subalgebras we 

choose: 

a= a 
q := {A s,t 

0
22 ) it O : 

0 -it 



a 
p 

a pq 
f A 

:= 1. s,-s s E R }. 

Denote the linear form A '+ as+ bt on a by (a,b). Put a := (1,0), 

21 

s,t + 
S := (0,I). Then~= {a,-a,S,-S}. Choose an ordering such that~ {a,-S}. 

A ~ A 
Then, because TIY = -yce, T2Y = -y 0 rJ (yE~), we have a= a= <L-½) = -s=-s. 

Now (A,µ) E A+ if and only if A E ½zt, µ E ½7l+. The restricted root systems 

are given by~+ = ~+ = {~}, ~+ ~+ {a,-S}. Now: 
pq p q 

((A,-A) '<L-D) + ½7l + 
«L-!),<L-D> E 7l - A E 

But: 

((A,-A)' (I ,0)) + 
((1,0), (1,0)) E 7l 

} + - A E 7l 

((A,-A), (0,-1)) + 
((0,-1), (0,-1)) E 7l 

Let A be the weight lattice corresponding to~ , A+ the set of pq pq pq 
dominant weights in A . It follows from Theorem 2.2 that if TI, is of K,H-pq /\ 
class I, then A lives only on a , and the set of all such A forms a lattice. 

pq 
Hence there exist µ 1, .•• ,µ1 E A;q such that TIA is of K,H-class I if and on-

ly if A= f I m.µ. for nonnegative integers m .. Let us identify 
J= J J J 

A= f_ 1 m.µ. (m. E 7l for j = l, ... ,l) with the point (m 1, ... ,m1) E 7ll 
- J- J J J . l 
Let the set of all (m 1, ••• ,m1) E 7l with all mj nonnegative oe denoted 

by iz:. (This is analogous to the case of representations of K-class I, 

see VRETARE [31]). Thus TIA is of K,H-class I if and only if A E 7l:. 

In the next chapter we shall obtain explicit expressions for µ 1, ••• ,µ1 . 
We conclude this chapter with one more example for~. namely one for 

which (~,T 1T2) is not a"normal root system. In this example (~q,TI) also is 

not a normal root system 

EXAMPLE 2.7. Let g := -01(4,t). Put 
C 

022 ) 
I 0 
0 I 
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I 
0 

0 

Define the involutions 0,cr by 0X := J 1XJ 1, crX := J 2XJ2 (XEgc). Let 

a := {diag(z1,z2,z3,z4): z. EC (j = I, .•. ,l), L~ I z. = 0}. Put 
C J J= J 

a .. : diag(z 1,z2 ,z3,z4) + z.-z. (ilj). Then <I>= fo .. : i,j = I, ... ,4, i 'f j}. 
1J 1 J 1J 

We have T1a 13 = a 32 , T2a 13 = a42 and T1T2a 13 = a 14 . Thus (a 13 ,T 1a 13) = 

= -Hal3'al3), (al3'T2al3) = O, and (al3'TIT2al3) = Hal3'al3). Thus 
a 13-T 1T2a 13 E <I>, since (a13 ,T 1T2a 13) > 0. Hence (<l>,T 1T2) is not a normal root 

system. 
R$ R$ 

For Lq we get a 13 = ½(a 12-a34), T1a 13 = ½(a 12+a34). Thus 

~ 13-T 1~ 13 = a 43 = (a 13 -T 1T2a 13 )Ri E Lq' since a 13-T 1T2a 13 E <!>. Hence 

(Lq,Tl) is not a normal root system. 

NB. Observe that this gives an example of row 4 (and hence also of 

row 6) from Table I. 
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CHAPTER 3 

THE LATTICE r-

In this chapter we shall obtain epxlicit expressions for the genera

tors of the lattice 'd!- (see chapter 2). For this, we need to study the 

function c(a) (a€~ ), as defined by (2.1), first. Let W be the Weyl group pq 
of~. W the Weyl group of~, W the Weyl group of~, and W the Weyl p p q q pq 
group of~ For a E ~ , lets be the reflection corresponding to a. 

pq pq a * 
That is s (B) := B- 2 (B,a)/(a,a) a (BEa ). 

a pq 

PROPOSITION 3.1. Lets E w-. Then there exists w E W suah tha.t wla* = s, 
pq pq 

and WT.= T.W (i = 1,2). 
]. ]. 

PROOF. Let a E ~ • We shall show that there exists w E W, connnuting with 
pq 

, 1 and , 2 , such that wlap*q = s • Since the s (a€~ ) generate W this a a pq pq 
proves the proposition. 

Let B €~be such that i =a.If B = , 1B,,2B or , 1, 2B, then we are 

back in the case of one involution, and the assertion follows from WARNER 

[33, Lennna 1.1.3.4], since thew constructed there is easily seen to be 

connnuting with , 1 as well as 't" If Bf , 1s,,2B or , 1, 2B then Bis one of 

the cases from Table I, since~ f O. In this case we can also quite easily 

construct win the same fashion. For instance, if B satisfies row 1 of 

Table 

wla.* 
pq 

I, put w := sBs Bs Bs B" Then w commutes with , 1 and , 2 , and 
'I '2 '1'2 

= s • The other cases are left to the reader. D 
a 

COROLLARY 3.2. c(a) is W -invariant. pq 

PROOF. Lets E W • Choose w E W, connnuting with , 1 and , 2 such that 
I ~pq RI A 

w a* = s. Let w := wja*• w := wla*· Then for all BE ~,Bf Owe have 
I), pq A p ~ ~ q ~ ~ ~ ~ ~ ~ 

SfS = (wB) . Thus, if B = wy, (B,B) = ((wy) , (wy) ) = (wy,wy) = (y,y), 
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RJRJ RJRJ AA 
and hence also (13,13) = (y,y) and (13,13) 

Let ~c be defined by 
pq 

(3 •I) ~c := {c(a)a I a E ~ }. pq pq 

LEMMA 3.3. ~c is a root system. 
pq 

PROOF. By Corollary 3.2 we have, for a,13 E ~ pq 

c(s (13) )s (13) E ~c • 
a a pq 

Choose a E ~ such that c(a) = (;,;)/(a,a) (if~ E ~ is such that 
RJRJP q 

c(a) = (a,a)/(a,a) the proof is exactly the same). Then 

(3. 2) 2 (c(a)a,c(13)$) 
(c(a)a,c(a)a) 

2 c(l3) (a,13) = ( (~,13) 
c(a) (a,a) 2 C l3) -(a,a) 

By Corollary 2.4 c(l3) = 1,2 or 4. If c(l3) 

equals 

I, then 13 

2 c;, s) 
(;,;) 

which is an integer since~ is a root system. If c(l3) 
p 

equals 

'c(l3){2 (~~.~~13) + 2 (a,,26)} 
~ (a,a) (~,@) ' 

13 (SE~), thus (3.2) 
p 

2 or 4, then (3.2) 

which is an integer since ~pis a root system and , 213 E ~p. D 

As a corollary to Lemma 3.3 we obtain the following. Let a,2a E ~ pq 
Then we have the following possibilities: 

(3 .3) l (a) c(2a)2a 2c(a)a ~ c(a) 

(b) c(2a)2a c(a)a ~ c(a) 

(c) c(2a)2a ½c(a)a ~ c(a) 

c(2a), 

2c(2a), 

4c(2a). 



Now: ir A is of K,H-class I - A E 'llf!.. 

()..,a) E c(a)'ll 
+ - (a,a) 

(3.4) 
(A, c (a)a) - ------- E 

(c(a)a,c(a)a) 

Let (Lc )' be the reduced root system defined by pq 

(3.5) := {c(a)a E Lc I 2c(a)a ,/. Lc } • 
pq pq 
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for all a EL+ 
pq 

(by Corollary 2.5) 

+ 
'll for all a E L+ 

pq 

Let {a 1, ••• ,af!..} be the base of Lpq corresponding to the chosen positive 

system L+. Let S. E (Lc )' be such that S. = c.a. with c. > 0 (j = I, .• ,f!..). 
pq J C pq 1 J J J 

Then for all SE (L )' we can write S = L~ 1 d.S., with all d. E 'll+ or all 
- pq J= J J J 

dj E 7Z • Thus, by [17, Theorem IO.I'], the set {S 1, ... ,Sf!..} forms a base of 

(LC ) I. 
pq 

It follows from (3.4) that ir).. is of K,H-class I if and only if A is 

twice a dominant weight for (Lc )' (dominant with respect to the base 
pq 

{S1,····So} of (LC)'), namely c(a)a is positive in (LC)' if and only if 
,t, pq pq 

a EL+. Thus, if A is the weight lattice corresponding to (Lc )', then 
f pq C C pq 

7l-= 2A. Since the Weyl group of (L )' clearly equals W , this implies: 
C pq pq 

PROPOSITION 3 .4. 'llf!.. is W -invariant. 
pq 

Letµ'. be the fundamental weight corresponding to S .. Thusµ'. is de-
J J J 

fined by 

f!.. Put µ. := 2µ '., then the µ. generate 'll , by the above remarks, and thus 
J J J 

we have proved: 

THEOREM 3.5. A E 'll: - ).. = LJ!..J.=I n.µ. (n.E'll ,n.<CO for j = I, •.. ,f!..). 
J J J J 

Let fo 1, ••• ,af!..} be the base for Lpq as above. Then the following two 

lennnas are obvious. 

LEMMA 3 • 6 • ( µ • , a . ) # 0 - i 
l. J 

j (i' j I ' ••• ,f!..) • 
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LEMMA 3 • 7. Let A E 'll.e.. • Then 

(A,a.) ~ 0 
J 

(j = I , ••• ,l) . 

REMARK 3.8. Let S. E ~ be such that i. = a. (j = l, ••• ,l). Because of the 
J /\ J J 

obvious fact that µi µi for all i, Lemma 3.6 also implies that 
( .J. ~ Rj_l • 

µi,Sj) r O - i j, (µi,Sj) 'f O - i = j, and (µi,Sj) r O - i j 

(i,j = 1, ••. ,l). 

LEMMA 3.9. Let v E 'lll. Then there exists s E W such that sv E 'lll+. 
pq 

PROOF. Apply HUMPHREYS [17, Theorem I0.3(a)J. □ 



27 

CHAPTER 4 

INTERTWINING FUNCTIONS 

From now on we shall work with the compact real form U of the simply 

connected complex Lie group G. Then Kand HO are the analytic subgroups 
C 0 

of U corresponding to the Lie algebras k. and h . Let ID0 (U) be the algebra 

of differential operators on U which are left-U-, and right-H0-invariant. 

DEFINITION 4.1. Let 

with highest weight 

an HO-fixed vector. 

0 rrA be a representation of U of K,H -class I on V(A), 
.e. 

A E 7l+. Let eK E V(A) be a K-fixed vector, eH E V(A) 

Let (• J•) be an inner product in V(A) according to which 

rrA is a unitary representation of U. Then the function ~A defined by 

(uEU) 

is called an intertwining function. 

Thus ~A is determined by rrA up to a constant factor • If (eKJeH) f 0, 

then ~A(e) f O and it is convenient to normalize ~A such_ that ~A (e) = I. 

If, however, ~A(e) = 0, then we fix a normalization for ~A. In chapter 7 

this (arbitrary) normalization will be somewhat refined. 

REMARK 4.2. The earliest reference for the name intertwining function is 

JAMES & CONSTANTINE [18], see also DUNKL [4]. The name is motivated by the 

following characterization: Let rrA be an irreducible representation of U of 

K,H0-class I in a vector space V(A). Then there exist continuous embeddings 

jK,jH which realize rrA in L2 (U/K) and L2(U/HO): 
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Here (jKv)(x) :: (vlrr/x)eK), (jHv)(x) :: (vlrr,_(x)eH). Since these reali

zations yield equivalent representations of U, there exists an intertwining 

operator for these realizations. Such an operator is given by jHj;. Let 

f 2( / ) . . * J ) ( ) EL UK. Since JKf: U f(x rr,_ x eKdx we have: 

: J f(y)(eKlrr,_(y-lx)~)dy (f*~,_)(x). 

u 
Thus the mapping A: f 1➔ f~,_:L 2(U/K) 1➔ L2(U/HO) is an intertwining operator. 

0 Hence~ E C(K\U/H) is an intertwining function if and only if 

dim(L 2(U/K)~) > 0, and there is no~• E C(K\U/HO) such that 
2 2 

(O) f L (U/K)*~' 'f, L (U/K)*~. 

0 Let dk,dh denote the Haar measures on Kand H, respectively, normal-

ized such that JKdk: f 0dh: I. 
H 

THEOREM 4.3. Let~ be a funetion on V. The following conditions are equiv

alent: 

(I) There exists a K,H0-class I representation 1T,_ such that~ : ~". 

(2) ~ is continuous, not identically O and there exists a cf Osuch that 

~(x)~(z)~(y) : c J J ~(xhz- 1ky)dhdk for all x,y,z EU. 

KHO 

(3) ~ is C00
, left-K-, and right-H0-invariant, not identically O and there 

exists a function ": n0 (U) 1➔ a:: such that 

Dp : t-(D)~ for all D E ID0 (U) • 



PROOF (I)~ (2) 

Hence: 

(TIA (y)eHleK) (eKlnA (z)eH) 

(eKleK) (eHleH) eH 

~)lfJA (z) 

(eKleK)(eHleH) eH. 

ff (eKlnA (xhz- 1ky)eH)dhdk 
KHO 

lfJA (y)lfJA (z) -I 
I ) ( j ) (n, (x )eKJeH) (eK eK eH eH /\ 

lfJA (x)~)lfJA (y) 

(eKleK)(eHjeH) 

00 0 
(2) ~ (3) Let p EC (K\U/H) be such that 

Then: 

(4. I) 

(4 .2) 

f p(z)l{J(z)dz # 0. 

u 

j l{J(z)p(yz- 1x)dz = j lfJ(xz- 1y)p(z)dz 

u u 

=ff I lfJ(xhz- 1ky)p(z)dzdhdk 
UK HO 

= c. {J lfJ(z)p(z)dz}lfJ(x)lfJ(y). 

u 
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Because of the fact that p E C00 (K\U/Ho), (4.1) is C00 in x. Hence (4.2) is 

C00 in x, thus lfJ is C00
• Hence for all D E D0 (U) : 
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dj <,0(z)p(z)dz}(Dp)(x)<,0(y) = f <,0(z)Dxp(yz- 1x)dz 

u u 

J -I 
<,0(z)(Dp)(yz x)dz 

u 

= c{J W)(Dp)(z)dz}<,0(x)<,0(y). 

u 

( ' ' 1 ' h O ' ' b D D (U) ) H Dp is again eft-K-, rig t-H -invariant ecause E: 0 • ence: 

fu <,0(z)(Dp)(z)dz 
(Dcj>) (x) = ------ \0 (x). 

fu <,0(z)p(z)dz 

(3) ~ (I) Let w be a spherical function corresponding to the symmetric pair 
(u Ho) c. . . . o o . . . f . ) , in our setting this means that w is an H ,H -intertwining unction. 

Then Dw = "w (D)w for all D E: D0 (U), and the "w determine w completely, 

cf. HELGASON [IO, ch.X]. Let p be a continuous function on U. Then: 

and 

(w*P""P)(x) ~ J f w(y)p(y-lz)<,0(z-lx)dydz 

u u 

ff -I -I 
w(xy)p(y z)<,0(z )dydz, 

u u 

J -1 
(w*P""P)(e) = (<P*\),)(y)p(y )dy. 

u 

Hence W*P""P is again H0-biinvariant, and belongs to the space spanned by all 

right-translates of W• Hence: 

W*P""P = {J (<P*w)(y)p(y- 1)dy}w. 

u 
Also D(w*P""P) = \(D) (w*p*\O) for all D E: DO (U). 

Hence: 

(4.3) 0. 
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Equation (4.3) is valid for all continuous p on U and for all spherical 

functions w. Hence AW f A implies that <P*W 0, and thus <P belongs to the 

irreducible representation of U which corresponds to the spherical function 

w with A= AW. 0 

REMARK 4.4. The implication (I)~ (2) already occurs in DUNK [4]. 

REMARK 4.5. By the equivalence (2)-(3) in Theorem 4.3 we see that it 

would have changed nothing if we had replaced n0 (U) by the algebra of left

K-, and right-U-invariant differential operators on U. This settles the con

jecture in FLENSTED-JENSEN [6] for a compact Lie group. (NB. In [6] inter

twining functions are called "spherical" functions). Thus we could even re

place ID0 (U) by Z(U): the algebra of left-, and right-U-invariant differen

tial operators on U. The proof of (2) ~ (3) remains the same, and the proof 

of (3) ~ (I) even becomes simpler, by using the fact that every representation 

is completely determined by its infinitesimal character. 

We are now able to generalize some of the results in section 2 in [31] 

to the case of intertwining functions. Therefore, we shall consider inter

twining functions on exp ac, which is no real restriction because of the 

generalized Cartan decomposition for U, cf. chapter 6. 

Let f 0 , ••• ,fd be an orthonormal basis of V(A), such that fj is a weight 

vector of weight Aj (j = O, ••• ,d) with AO= A. Then 

(4 .4) 
A. (X) 

rrA(expX)fj = e J fj 

Hence, by analytic continuation from iap+ak to ac, 

(4.5) 

t We have already shown A = 2: j=I m/j (mjE7l) with all mj nonnegative, and 

the following theorem is the analogue of Theorem 2 .4 in [31]. 

THEOREM 4.6. Suppose that 

d Ai (X) 
(4.6) <PA (expX) ~ c.e (XEac). 

i=O 1. 

Then c. f O irrrpUes that A. = !:~ n/j (n.E7l) . 
1. 1. J=I J 
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Rl 
PROOF. We have to prove Ai= Ai' Ai= Ai and (Ai,a)/(a,a) E 7l for all 

a Ek u k. Just like Vretare we follow the corresponding proof for the 
p q 

highest weight of a K,K-class I representation in [33, Theorem 3.3.1.1], 

using P1 := JK TIA (k)dk (projection of V(A) on ~eK)' and P2 := JH0 TIA (h)dh 

(projection of V(A) on ~eH). 

Again, if p 1f. f O and P2f. f 0, the proof works and we obtain Ai= Ai' 
Rl 1. 1. 
A.= A. and (A.,a)/(a,a) E 7l for all a Ek u k. However, if P1fl.. = O, 1. 1. 1. p q 
then ci = (eKlfi)(eHlfi) = (eKIP 1fi) (eHlfi) = O, and in the same way we 

obtain that P2f. = 0 implies c. = O. D 1. 1. 

REMARK 4.7. It is easily seen that the coefficient of the highest weight 

in (4.6), i.e. c0 , is nonzero, cf. the proof of Theorem 3.3.1.1 in [33]. 

Let v 

ev appears 

* . . . . . ( l) h 
E apq. If there 1.s an 1.ntertw1.n1.ng function <PA AE7l+ such t at 

with nonzero coefficient in the "series expansion" (4.5) of ;pA, 
then we shall call van appearing weight. Next, we introduce a partial or-

* * dering :S on a.pq by putting for A 1, A2 E apq 

(4. 7) m.a. 
J J 

with all mj nonnegative integers. Here {a 1, ••• ,a,e_} 

chapter 3. Write Al< ;._ 2 if Al ::; A2 and Al f A2 • 

l 
LEMMA 4.8. Let A E 7l+. 

(I) Let A. be a weight of TI,. Then~-< A. 
i. l " i. -

is the base for a* from 
pq 

( 2) #{ \) E 7l + : \) :5 A} < 00. 

(3) 7l: is the colZection of alZ highest weights of representations of 
0 K,H -class 1. 

+ PROOF. (I) Ai= A-S 1- •.• -Sk' with all Si E ~ (cf. HUMPRHEYS [17, Proposi-

tion 21.3]). Hence 

with all mi nonnegative integers. 

(2) (µ.,a.)/(a.,a.) = c.o .. with c. :cc 0. Also (a.,a.) s; 0 if i # j, 
J 1. ,1. 1. 1. 1.J 1. 1. J 

thus(µ.,µ.) 2 0. Hence v E ;,zl can be written as 
J J + 

l 
v = k 

i=I 
a.a. 1. 1. 



and thus also 

\ 

f. 

L 
i=I 

b.a. 
1. 1. 

(3)_Alreadyknown. D 

33 





CHAPTER 5 

THE ACTION OF THE WEYL GROUP 

It is a natural question whether our intertwining functions are in

variant under the Weyl group. However, there are some complications here. 

Therefore, let us introduce another root system (cf. FLENSTED-JENSEN 
- 8 2 J) +cre ( . ) . . . ~ , § • Let g be the reductive Lie algebra of fixed points of the 

involution cre in g, thus g+cre =kn h + p n q. Let LO be the root system 

corresponding to the pair (g+cre,a ). Then for any root a E LO we have 
.e_ pq 

If!;\ (exp saX) = ,p;\ (exp X) (;\ E 7l+ ,X E iapq), cf. Remark 5 .3. 

Of course, LO c L • Now the above question leads to two questions 
pq 
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here: (i) Can it occur that LO f L ? , and (ii) If LO f L , is If!, invariant pq pq A 

under all sa., a EL ? Both'questions will be answered in this chapter. 
pq 

EXAMPLE 5. I. Let g := .6l (2, R) , k := o(2), h := o(J,I). Then we have: 

p { (: _:) a,b ER}, 

q I( a b) 
l -b -a 

a,bEJR}. 

Hence 

p n q = { C _:) : a E R }, 

and kn h = (O), thus g+cre = p n q. Since p n q is abelian we can put 

a := p n q. Then a is a Cartan subalgebra for g, thus 
pq pq +cre 

~q = aph = ~h = (0). Now Lpq = {2a,-2a}, whereas LO is void, g being 

abelian. Thus LO f L pq 
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Let a E ~ . If XE g, then obviously o8X E g . Hence, if we define 
· 8 pq a -08 a 
g-o to be the -1 eigenspace of 08 in g (thus g =kn Q + p n h), we have 

d . . +08 -08 J 
the direct sum ecomposition ga =gang +gang Let Or Xa E ga be 

such that o8X X or o8X -X. Normalize X such that a a a a a 

Then Xa,exa and Ha := - [Xa,exa J form a standard basis for a .6£(2,R) . 

Define A Ea by 
a pq 

for all X E a pq 

* Then H 2/(a,a) A. Under the identification of a and a we have 
a a pq 

s X = X - 2 a(X)/a(A) A for all XE a Put a a a pq 

(5. I) k := exp !TI(X +ex), a a a 

and 

Then k EK. Also 
a 

and 

+oe l PROPOSITION 5. 2. If ga n g 'f (0), then for all X. E 7l + : 

(Xda ) • pq 

+oe 
PROOF. Let Xa Egan g • Then o8Xa = Xa, hence ka 

Thus, by Definition 4.1, we have for all XE ia pq 

pq 

by (5. I). 
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REMARK 5.3. The condition ga n g+cre f (O) means that a E ~0 ; Thus Proposi

tions 5.2 states that ~A is invariant under w0 , the Weyl group of ~0 • 

LEMMA 5.4. pk = exp(-½rriH ). a a a 

PROOF. Let Ua be the analytic subgroup of U with Lie algebra spanned by 

{X +8X, i(X -ex), iH }. Then UN is compact with SU(2) as simply connected a a a a a ~ 

covering group. The lemma now follows by a simple calculation in SU(2), 
using the identification: 

( Cl I X + ex +-+ 0), a a -I 

i(Xa-exa) 
0 ]. 

+-➔ 

i 0)' 

iH i 
~) +-+ 

0 a -]_ 

of X + exN, i(X -ex) and iH with elements of ~u(2). □ a ~ a a a 

-cre l 
PROPOSITION 5.5. If gang f (O), then for all A E 72+ 

(Xda ) . 
pq 

-cre 
PROOF. Let X E g n g • Then creXN = -X, hence k EK, by (5.1), and 

0 a a ~ a a 
Pa EH, by (5.2). Thus, by Definition 4.1 and Lemma 5.4, we have for all 

XE ia 
pq 

(eK/rrA (exp(X+½rriHa))eH) 

= ~A (exp(X+½rriHa)). D 

-cre +cre COROLLARY 5.6. If gang f (O) and gang f (O), then 

(A. ,a) 
_L_ E 272 
(a,a) 

for all appearing weights A•• 
J 

PROOF. By Proposition 5.2 and Proposition 5.5 we have 
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But, by (4.3): 

(5 .3) :PA (exp X) 

Hence: 

(5 .4) 

d 
~ 

j=O 

A. (X) 
C. e J 

J 
for all X ,:: ia pq 

d 
~ 

")... (X+½11iH ) 
c .e J a 

j=O 

d 
~ 

j=O 

J 

c.e 
J 

(A. , a) 
11i __l__() A. (X) 

a,a e J 

(5.4) being equal to (5.3), the corollary follows. D 

for all X ,:: ia pq 

So far we have set up some symmetries for the action of the Weyl group 

on the function~ •• However, the question remains whether for a E ~ , /\ pq 
a i ~O'~").. (exp saX) / ~A (exp X) (XEiapq). Therefore, let us consider the 

following example. 

Let U := SU(2), a~d let Hl be the irreducible SU(2)-module of dimen

sion Zl+I (l<::½7l+) with orthonormal basis 1/Jl (n = -l,-l+l, ••• ,l) as con

sidered in KOORNWINDER [21], see also VILE~IN [29, ch.III]. Here the 1/Jl . n 
are also weight vectors with respect to ia • Hl is the space of homogeneous 

polynomials of degree 2l in two complex va~iables x and y, and 1/Jl is de-
f" d b l( ) (Zl ) ½ l-n l+n . . fn H b ine y 1/Jn x,y = l-n x y • Define a representation 11! o U on l y 

a f3 11l(y 0)f(x,y) := f(ax+yy,f3x+oy), 

then 11! is a unitary irreducible representation of U, and each unitary ir

reducible representation of U is equivalent to some 11!, cf. [29, Theorem 

III. 2.5.1]. Let d11l denote the differential of 11!. Then (cf. Example 5.1) 

(5.5) 

(5 .6) 0. 

Now (5.5) and (5.6) determine eK and eH up to a constant factor. Namely 



0 !J.t .t.t} Hence if dn 0 (_ 1 0 ) 1~ 0 c ~ · = 0, then 
<- L n=-<- n n 

.t .t 
and cl-I = 0 = c-.l+! • Hence .l ,/. 7l implies eK = 0, and if .l E 7l 

(5. 7) 
.t 

eK = c. L 
n=-.l 

f-nE27l 

The same reasoning shows that .l ,/. 7l implies eH = 0, and for .t E 7l 

(5 .8) 
.t 

c. L 
n=-.l 

f-nE27l 
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eK and eH both being nonzero, .l has to be an integer, ie . .l E Zl • Now let 

X E ia Then for a certain ¢ E R we have pq 

and for the spherical functions on U with respect to K we get, by (5.7): 

.t 
(eKln.t(exp X)eK) = c. ~ 

n=-.t 
f-nE27l 

c. P.t(cos 2¢). 

Here Pl is a Legench:>e polynomial,. By (5.7) and (5.8) we get the following 

expression for the intertwining functions on U: 

.t 
X)~)=c.~ 

n=-l 
l-nE27l 

( ½) Hl-n) ( ½) Hl+n) ½ (.l-n) 2in¢ 
O<-l··n)): 0 <.t+n)): <-o e 

= c. P.l(cos(2¢-½n)). 

Lets be the nontrivial element of the Weyl group of L , then sX = -X 
pq 

(XE ia ) . Then 
pq 

~.t(exp sX) = ~.t(exp(-X)) 
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,Thus in this case we obtain that for s i w0,~l(exp X) # ~l(exp sX). 

LEMMA 5. 7. 'Ill is the coUection of aU a:ppearing weights. For given >,. E 'll: 

the collection of a:ppearing weights is invariant under W pq 

PROOF. According to (4.5) we can write 

(5.9) ~>,. (exp X) 

We claim that for all a Ek ,c # 0 if and only if c # 0. Indeed, if 
pq ll Sall 

there exists an X E g such that cr8X = X, then ~,(exp s X) =~,(exp X), 
a a a a A a A 

and in this case the assertion follows from (5.9). So assume that 

crexa -Xa. Then it follows from (5.9) that 

(5. 10) ~,(exp(s X+½TiiH )) 
A a a 

½Tiill(H) 
a 

e 

But, according to Lemma 5.5 i>,. (exp X) = ~>,. (exp(saX+½TiiHa)). Thus, by (5.9) 

and (5. 10) 

½Tiill(H ) 
k c e a 

Hence 

(5 . I I) C 
ll 

ll jJ 

Now (5.11) implies that c 
ll 

Let v be an appearing 

½Tii(s ll) (H ) a a 
e 

ll (X) 
e . 

# 0 if and only if c # 0. 
l Sall 

weight, then v E 'll by Theorem 4.6. Conversely, 
l 

let v E 'll • Then there exists s E W 
l 

such that sv E 'll , by Lemma 3.9. 
pq - l + 

Thus csv # 0 in the expansion (5 .9) of ~ s)svE'll+), hence by what is said 

above c # 0 in the expansion of~ • Hence vis an appearing weight. D 
V SV 

LEMMA 5.8. Let >,. ,>,. 2 E 'Ill. There exists a +'unction c , : 'Ill -+ C such 
I + J' AJ'A2 + 

that 

(5. I 2) 

a:nd 
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PROOF. TIAl®TIAZ is a representation of U of highest weight A1+A 2 • Let V be 

the representation space of TIAI®TIAZ' then we have the following direct sum 

decomposition 

(5. 13) V 

i i 
with V. irreducible. Let TI, be the representation of U on V .. Let eK(eH) 

denoteJthe K-fixed (HO-fix~d) vector of TIA. in the represen~ation space 
I 2 i I 2 

V(Ai) (i = 1,2). Then eK := eK®eK is a K-fixed vector in V, eH := eH®eH 

an H -fixed vector in V, hence TIA 1@TIAZ is of K,H0-class I. Thus we have 

n 
(5. 14) eK = j~J eK,j' 

with eK . E U. (j = I, ••• ,n). Because the decomposition (5 .13) is direct 
,J J 

the vectors eK . in (5.14) are K-fixed (apply TI, ®TIA (k) to both sides of 
'J "I 2 

(5.14) and use the directness of (5.13)). In the same way we obtain 

(5 .15) 
n 

eH = ,}; eH'J' • J=I 

with eH. EU. and HO-fixed vector (j = l, ... ,n). Hence we have for all 
, J J 

u EU, by using (5.13), (5.14) and (5.15): 

n 
(5. 16) J.~ 1 (eK ,ITI.(u)eH .). 

'J J 'J 

If eK,j f O and eH . f 0, then rr. is of K,H0-class I, hence rr. = rr with 't ,J J J V 

v E lZ~, and v-< \ 1H 2, by Lemma 4.7(1). If however eK,j = 0 or eH,j = O, then 

TI. does not occur in (5.16). Hence (5.12) follows. The fact that 
J 

cA A (A 1H 2) f O follows by considering the "series expansion" (4.5) of 
I• 2 AJ+Az 

both sides of (5.12) and observing that the coefficient of e is non-

zero in the left-hand side. D 





CHAPTER 6 

THE GENERALIZED CARTAN DECOMPOSITION U 

Let notation be as in chapter 1, and put B := exp a . Then, as was 
pq 

proved in FLENSTED-JENSEN [7, Theorem 4.l(i)], one has the decomposition 

(6. 1) G KBR. 

In the case cr = e (6.1) states G = KBK, ie. the Cartan decomposition. 

Therefore we shall call (6.1) the generalized Cartan deaorrrposition for G. 
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In fact (6.1) is much older than the paper of Flensted-Jensen (it goes back 

to BERGER [2]), but nowadays'it gets more attention because of the increased 

interest in harmonic analysis on pseudo-Riemannian syrrnnetric spaces. For 

our intertwining functions on U, which are left-K-, and right-HO-invariant 

we shall need an analogous decomposition for a compact Lie group. This 

generalized Cartan decomposition for U will be the main result in this chap

ter. But first we prove a Cartan decomposition for Ho. 

Let Ube a compact connected Lie group with connnuting involutions e 

and cr. Put K := (U0 ) O, H := (U0 ) O• 

LEMMA 6.1. (H,(KnH) O) is a Riemannian symnetria pair. 

PROOF. Observe that (KnH) O = (H0) O• □ 

Lennna 6.1 enables us to use differential geometric methods, cf. eg. 

HELGASON [13, chapter I], for H/(KnH) O. Therefore, introduce an H-invariant 

Riemannian structure on H/(KnH) O• In this chapter only, write u = k+p = h+q 

for the decompositions of the Lie algebra u of U with respect toe and a 

respectively. 

LEMMA 6.2. H = (KnH) O exp(pnh). 
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PROOF. By Lemma 6.1 H/(KnH) 0 is a compact Riemannian synnnetric space. 

Hence every closed, bounded subset of H/(KnH) 0 is compact, hence H/(KnH) 0 
is complete, by [13, Theorem I. 10.3]. Now identify p n h with the tangent 

space to H/ (KnH) 0 at o ( := e (KnH) 0), then it follows from [ 13, Proposition 

I. IO.SJ that Exp(pnh) = H/(KnH) 0 . 0 

Let bph be maximal abelian in p n h, and put Bph := exp bph" 

LEMMA 6.3. p n h = U Ad(k).bph" 
kE(KnH)O 

PROOF.his a subalgebra of u, invariant under the Cartan involution 8, 

hence his reductive. If his semisimple, the lemma follows by 

[13, Lemma. V.6.3]. So suppose his not semisimple. Then h = [h,hJ + z(h) 
(direct sum), with [h,h] semisimple and z(h) the center of h 

([17, Proposition 19.1]). The only part in the proof of [13, Lemma V.6.3] 

in which the semisimplicity of h would be used is Bjknhxknh is negative 

definite (here B denotes the Killing form on h), hence B([Ad(k0)X,H],T) 0 

for all TE kn h implies [Ad(k0) .X,H] = O (k0EKnH,XEpnh,HEbph). But if h 

is reductive we can argue: B([Ad(k0).X,H],T) = 0 for all TE kn h implies 

[Ad(k0) .X,H] E z(h) n [h,hJ = (O), hence [Ad(k0) .X,H] = O (k0EKnH,XEpnh,HEbph). 

Thus the proof of [13, Lemma V.6.3] also works in the case his reductive. D 

PROOF. Leth EH. Then we can write 

(6. 2) h = ! 1 exp X 

and 

(6 .3) 

because of Lemma 2.2 and Lemma 2.3, respectively. Combination of (6.2) and 

(6.3) yields 

Let notation be 

analytic subgroup of 

fined analogously to 

again as introduced in chapters 1,2. Let u0 be the 
. . +00 +08 -00 Ge with Lie algebra u0 := u (U and u are de-

+08 -00 . g and g in chapter 5). Thus 



45 

u0 =_kn h + i(p n q). 

In the rest of this chapter we shall need Lemmas 6.1, 6.2, 6.3 and 

Theorem 6.4 also in the case where the pair (8,a) is replaced by the pair 

(8,08). For later reference we shall state these results in a lemma. There

fore, put 

(6 .4) A := exp ia 
pq pq 

Observe that (KnU0) 0 

LEMMA 6 .5. 

(I) HO exp i(pnh).(KnHO) 

u0 exp i(pnq).(KnHO) 

uo = (KnH0)A (KnH0). 

(2) 

(3) 
pq 

Let Exp be the exponential mapping in the space U/K. 

LEMMA 6.6. Left multiplication with exp i(pnh) leaves Exp i(pnh) invariant. 

PROOF. exp i(pnh)exp i(pnh) c HO= exp i(pnh).(KnH0), by Lemma 6.5(1). Thus 

exp i(pnh) Exp i(pnh) c Exp i(pnh). D 

Now Lennna 6.6 has the following corollary: 

COROLLARY 6.7. Exp i(pnh) is a totally geodesic suhmanifold of U/K. 

NB. Note that Corollary 6.7 also follows from the fact that i(pnh) is a Lie 

triple system included in ip, as defined in [13,p.224], by using 

[13, Theorem IV.7.2]. 

LEMMA 6.8. Exp i(pnh) is closed in U/K. 

PROOF. HO is closed in U, hence compact. Because of Lennna 6.5(1) we have 
0 Exp i(pnh) TI(H ), where TI: U ➔ U/K is the natural projection. Hence 

Exp i(pnh) is closed in U/K. D 

PROPOSITION 6.9. U = K exp i(pnq)exp i(pnh). 

PROOF. We shall prove U/K = exp i(pnh)Exp i(pnq), which implies the propo

sition. Let PE U/K. Let XE i(pnh) be such that Exp Xis an element of 

Exp i(pnh) with minimal distance to P (such an X exists because of Lennna 

6.8). Leto := TI(e), and put Q := exp(-X)P. Then it follows from Lennna 6.6 
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that o is an element of Exp i(pnh) with minimal distance to Q. Let 

y(t) Exp tY (YEip) be a geodesic which realizes the minimal distance be

tween o and Q (such a y exists because of [13, Theorem I.10.4], U/K being a 

complete Riemannian manifold, cf. [13, Theorem I.10.3]). We shall prove 

that YE i(pnq), hence P = (exp X)Q = exp X Exp t 0Y E exp i(pnh)Exp i(pnq) 

(t0ER) • 

Let W be an open ball around o in ip of sufficient small radius such 

that Exp: W ➔ V := Exp Wis a diffeomorphism and, for any Q1,Q 2 EV, Q1 and 

Q2 can be joined by precisely one geodesic of minimal length, which lies 

entirely in v,.cL [13, Theorem I.9.9]. 

Let Q' be an element of y lying in V between o and Q. Suppose Q' has 

a shorter distance to Exp i(pnh) than d(Q',o) (d denoting the Riemannian 

metric in U/K), say to Exp Z (ZEi(pnh)). 

Then 

d(Q,Exp Z) ~ d(Q,Q')+d(Q',Exp Z) < d(Q,Q')+d(Q',o) = d(Q,o),a contradiction, 

since o was the element of Exp i(pnh) with minimal distance to Q. So we may 

assume Q EV. 

Vis a ball around_ o, hence Vis a-invariant, hence oQ EV. Let 13(t) 

be the unique geodesic in V which joins Q and oQ. Since 13 is unique, we 

have 13 ol3. We claim o E 13. Namely, suppose o i 13. Since 13 013 there 

exists a Q" E 13 such that oQ" = Q", hence 13 n Exp i(pnh) 3 Q". Now Q" Io, 
since o is. Let d13 be the distance between points along S, dy distance 

along y. S minimalizes the distance between Q and oQ, and d(Q,o) = d(oQ,o). 

Hence: 

ds(Q,Q") = ids(Q,oQ) < Hd (Q,o)+d (o,oQ) = d (Q,o)' a contradiction. y ay y 
Hence o ES, hence S y. 

Remember that YE ip is such that y(t) = Exp tY. Since S = y, 

oy(t) = y(-t), hence oY = -Y, ie. YE i(pnq), which proves the proposition 

by the above remarks. D 

THEOREM 6.10. (Generalized Cartan decorrrposition for U) 

U KA Ho. 
pq 

PROOF. Let u EU. Then, by Proposition 6.9 there exists an XE i(pnq) such 

that: 

(6.5) u E K expX exp i{pnh) •. 



By Lerrnna 6.5(3) there exists an a EA such that: 
pq 

(6.6) 0 0 exp XE (KnH )a(KnH). 

Combination of (6.5) and (6.6) gives u E KaH0 • D 

REMARK 6.11. The above proof of the generalized Cartan decomposition also 

applies to the case of a noncompact semisimple Lie group. In HOOGENBOOM 
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[16] we present a proof of the generalized Cartan decomposition for a general 

semisimple Lie group G. 
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CHAPTER 7 

INTERTWINING FUNCTIONS ON THE COMPACT GROUP U 

LEMMA 7.1. Let~ be a function on u. Then~ is an interturining function on 

U if and only if i is an intertwining function on u. 

PROOF. This follows innnediately from Theorem 4.3(2). D 

l REMARK 7. 2. Let ;\ E lZ , and let 11, be the corresponding unitary represen-
0 + /\ 

tation of U of K,H -class I,~" the corresponding intertwining function. 
- V 

Then~" corresponds to the contragredient representation 11;\ of U, which is 

also unitary and of K,HO-class I. 

Let~;\ be an intertwining function. Then i;\ is also an intertwining 

function, by Lennna 7. I • Hence there exists ;\' E zi:f such that i" = est-~;\, • 

Normalize the~;\ such that i" = ~;\' (cf. the remarks at the beginning of 

chapter 4). 

Let du be a Haar measure on U, normalized by fu du= I. Let ~"I and 

~;i. 2 be intertwining functions on U. Then, because of the fact that ~"I and 

~"z belong to different representations of U whenever ;i. 1 # >- 2, it follows 

that 

f ~" (u);" (u) = 0 
U I 2 

(7. I) 

Define an inner product(•,•) on the space of all L2-functions on U by 

(7. 2) (~,1/J) := j ~(u)~(u)du 

u 

2 
(~, 1/JEL (U)) . 

THEOREM 7. 4. Let ", µ E zi:f . Then there exists a function d 
:\,µ 

that: 
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2:: dA µ (v)•,c\+µ (v) 
-µ ':sv:S'il , 

A+w,'11.l 
+ 

(7.3) 

PROOF. (7.1) implies, together with Lemma 5.8, that: 

(7.4) 

Also 

(7.5) 

It follows from (7.4) and (7.5) that c , (v) ~ 0 implies that 
µ,/\ 

-µ'::S: V-A-,S µ. (For the definition of cµ,A (v) see Lemma 5.8). This proves 

the theorem. D 

Observe that the number of terms in the sum (7.3) is independent of A, 

hence (7.3) can be seen as a recurrence relation for the intertwining func

tions. 
l ml ml A 

If A = (m1, ••• ,ml) E '11.+, denote the monomial x 1 •• • xl by x Thus 

we can define a polynomial P(x) = ~V~A rv x"(rvE~ for all v) with rA I 0 

to be of degree L For i = I, ... ,l put ,p. := ,pµ .• For a polynomial P (X:) as 
]. ]. 

above LellDlla 5.8 implies 

(7.6) 

So we can speak of polynomials in the variable ,p = (,p 1, ••• ,,pl), and it is 

clear that P(,p(u)) = 0 for all u EU implies that Pis identically zero. 

Let< denote the lexicographic ordering on a* with respect to an 
* pq 

orthogonal basis {p,e2, ... ,el} of a . Here we have put p := ! 2:: 2:;+ ma, 
pq ·aE pq ll 

where m = dim g • (NB. any other total ordering< which satisfies 
ll ll l 

(I) Al-< A2 implies Al < A2' and (2) #{v E '11.+: \) < A} < 00 for all 

A1,A 2 E 'Ii-, A E '11.: will do. It is clear that the total ordering< defined 

above satisfies conditions (I) and (2)). 

The proofs of the following two theorems are taken from VRETARE [31]. 

For reason of completeness we shall reproduce them here. 

THEOREM 7 .5. ,pA is a polynomial of degree A in the variable ,p. 
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PROOF. We prove the theorem by induction with respect to the total ordering 

< defined above. If A= 0 the theorem is obvious. 

the theorem is true for al 1 v E 'llR.. v < \. Write 
+ ' 

R.. 
Suppose O f \ E 7l+ , and 

- ...,t s· A - ""· 1 m. µ. . 1.nce 

A f O there is a j such that m. f 0, 
J 

R.. 1.= l. l. 

hence \-µ j E 'll + • Now, by Lennna 5. 8 

with cf O. This proves the theorem by the induction hypothesis. D 

THEOREM 7.6. For all k (l~k~J!..) there exists a j (l~j~J!..) such that ik = <Pj. 

PROOF. Let P(<P) denote the polynomial <P , • Then 
µk 

<Pµk = <P\lk 

h d . ...,t If t e egree of Pis..,_ 1 J= 
degree~- m.µ'.'. Sinceµ'. 

J=,l J J J 
j. □ 

m.µ. it follows that <Pµ is a polynomial of 
J l k 

E 7l+ this is possible only if µk = µj for some 

DEFINITION 7.7. Let XE ia Define a function F: ia + tJ!.. by 
pq pq 

F(X) := (<P 1(expX), ••• ,<PR..(exp X)). 

Lee Qo C ~R.. be defined by no := F(ia ). 
pq 

Theorem 7.6 implies that ~k E {<P 1, .•. ,<PR..} for Is ks R... Thus we can 

renumber the .p. such that 
J 

<P • • 
J+Jo 

if j I' ••• 'jO 

(7.7) <P • 
J 

<P • • 
rJo 

if j jo+1' .•• ,2jo, 

<P • if j Zjo+1, •.. ,R... 
J 

In the rest of this monograph we shall always assume that the <Pi are 

numbered according to (7.7). 

R.. R.. DEFINITION 7.8. Let~:~ + t be given by ~(z 1, .•• ,zJ!..) 

x. defined by 
J 
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x. := 
J 

Hz .. +z.) 
J+Jo J 

½(z .. -z.) 
rJo J 

z. 
J 

if 

if 

if 

j I, ••• , jO 

j j O + I , ••• , 2j O, 

j 2j 0+I, ••• ,l 

l Let n C R be defined by n := iµ(no). 

For a E L define V by V := { (µ,a) : µ E 'lll}. Then Vis an additive 
pq a a (a,a) 

subgroup of 'll, hence there exists a smallest positive element in V . Thus 
CJ. 

the following definition makes sense. 

DEFINITION 7.9. k(a) := mi1 
µE'll 

(µ,a);i!O 

(µ ,a) I 
(a ,a) ' 

LEMMA 7.10. Lets E W . Then k(sa) pq k(a), 

a E L pq 

PROOF. 'lll is W -invariant, by Lemma 4 .5. Hence V pq SCI. 
V , thus k(sa) 

CJ. 

k(a). □ 

By using the techniques introduced in chapter 3, we have for a EL pq 

k(a) c(a). min 
µE'lll 

(µ ,a) ;,!O 

(µ,c(a)a) I 
(c(a)a,c(a)a) ' 

and, by (3.4), 

l 
µ € 'll -

(µ ,c(a)a) 
(c(a)a,c(a)a) € 'll for all a EL pq 

Thus we have the following implications, by (3.3) 

(a) a E L , ½a, 2a pq f. L * pq k(a) c(a), 

(b) a,2a EL • Then: pq 

(7. 8) c(a) c(2a) * k(2a) C (2a), k(a) 

c(a) 2c(2a) * k(2a) C ( 2a), k(a) 

2c(a) 

c(a) 

c(a) 4c(2a) * k(2a) 2c(2a), k(a) = c(a). 

Together with Corollary 2.4 (7.8) implies: 

LEMMA 7.11. For all a EL ,k(a) = 1,2 or 4. pq 

+ae 
Now, let LO be the set of all roots of the pair (g ,apq), 
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cf. chapter 5. That is, LO 

plement of L in L , that 

+oe = {a EL : g n g # (O)}. Let LI be the com-

0 pq + 
L 1 := {a, E L+ : la ,/. L } 

pq pq 2 pq' 

pq a +oe 
is LI= {a EL : g n g = (0)}. Put 

pq a 
and for i = 0,1 put Li! := L. n L1 • }_ pq 

THEOREM 7.12. det dF(X) = c.TT ~• sin k(a)a(iX) TT L' sin k(a)(a(iX)-½rr). aE~0 aE 1 

PROOF. Theorem 4.6 and Lennna 4.7(1) imply, just as in the spherical case 

(cf. VRETARE [31, Lennna 3.3]), that det dF is a linear combination of ex

ponentials e v, v E 'lll, v ::s "o, where we have put 

(7.9) µ .• 
J 

Because of Proposition 5.2 and Proposition 5.5 the function ~A transforms 

under the action of the Weyl group W as follows (aEL ): pq pq 

(7. IO) 

for all A E 'll: ,X E iapc). Since F is a combination of ~A's, it follows that 

det dF transforms under the Weyl group W as follows (aEL ) pq pq 

det dsa det dF(X) 

(7. I I) 

~ det dF(saX) = det ds~ det dF(X) 

for all XE ia • Here we have puts': X + s X - ½rriH for a E L 1, XE ia , pq a a a pq 
ands~= sa for a E L0 • Thus we have that det ds~ = det dsa = -1. 

For XE ia , put pq 

(7 .12) sin k(a)ia(X) TT sin k(a)ia(X+¼rriHa). 
aELj 

V J!._ 
Since a linear combination of exponentials e ,v E 'll , v :s "o is uniquely 

det~rmined, up to a constant factor, by the transformation properties (7.11), 

we only need to prove that G(X) is also a linear combination of exponentials 
V J!._ 

e , v E 'll , v :S "o which transforms under s (a EL ) according to (7. 11) . 
a pq 

Let {a 1 , ••. ,aJ!._} be the base of Lpq from chapter 3. Then we know 

(cf. HUMPHREYS [17]) thats permutes the roots in L 1 except a., and 
aj pq J 



54 

Sa.a.= -aJ .• Let Al be defined by 
' J J 

(7. I 3) 
aE:E 1 

pq 

k(a)a, 

and let a. be a simple root. Then it follows from the above that 
J 

(7. 14) 

Also 

(7 .15) 

Al - 2k(a.)a. 
J J 

(µ.,a.) 
Al - 2 J J a. 

(a.,a.) J 
J J 

(µ.,a.) 
s A = A - 2 J J a 
a. 0 0 (a.,a.) j' 

J J J 

(by Lemma 7. 10) 

by Lennna 3.6. Combination of (7.14) and (7.15) yields 

for j l, ... ,l. 

Thus Al= A0 • This implies that G(X) is also a linear combination of ex

ponentials e 'I, with v E 'll.l, v ~ A 1 = AO. Now we only need to prove that 

G(X) transforms under s (with a simple) according to (7.11), because the 
a 

s generate W • Therefore, let a E fo 1, ••• ,a 0 }, and puts 
a pq .(.. 

:= S ,SI 
a 

If a E :!l0 then sin k(a)ia(sX) = - sin k(a)ia(X). If a€ :!lj then 

sin k(a)ia(s'X+¼niH) = - sin k(a)ia(X+¼niH). 
a a 

:= SI• 
a 

We claim thats leaves the rest of G(X) invariant. If a E :!l0 then, 

because of the fact that :!l0 u -:!l0 is a reduced root system, s permutes 

:E0\{a}, and sa = -a (HUMPHREYS [17, Lennna I0.2B]), and thus s also permutes 

:!lj. Thus if a E :!l0, then det dF(sX) = -det dF(X), by Lemma 7.10 and the 

fact that sH6 = HsB (BE:!lpq). 

If a E :!lj then the above 

which sB € :!l0 and to those B 
that sB = y, BE :!lj, y E :!l0. 
Write 

reasoning also applies to those BE :E0 for 

E :!lj for which sB E :!lj. So assume a E :!lj such 
-ae -ae +ae Thus g cg , 9 0 cg and g n g + (O). 

a µ Y 

(7. 16) G(X) = ••• sin k(y)iy(X) sin k(B)iB(X+¼niH6) •••• 

By Lennna 7.10 k(B) = k(y). If k(B) 2 or 4, then (7.16) becomes (k(B) 2, 
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the c.ase k(S) = 4 being similar): 

G(X) sin 2iy(X) sin 2iS(X+¼niHS) ... 
sin 2iy(X) sin ( 2iS (X) - !nS(HS)) 

••• -sin 2iy (X) sin 2iS(X) ... , 

because we have normalized S(HS) = 2, see chapter 5. Also 

G(s'X) sin 2iy(sX-½niH ) sin 2iS(sX-½niH ) ... 
a a 

-sin (2iS(X)-nS(H ))sin(2iy(X)+nS(H )) ... , 
a a 

because y(Ha) = -S(Ha). It follows that this part is invariant under s. So 

assume k(S) = k(y) = 1. Then we have, because of Corollary 5.6, that 
+ae 

gy c g • Thus 

G(s 'X) sin iy(s'X) sin iS(s'X+¾niHS) ... 

sin iy(sX-½niH) sin iS(sX-½niH +¼niHS) 
a a 

sin isy(X+½niH) sin(isS(X+½niH )-½n) ... . a a 
(7, 17) sin iS(X+½niH) sin(iy(X+½niH )-½n) ... 

a a 

Thus we need to prove that the expression in (7.17) is equal to (7.16). Now 

we claim that 

(7 .18) sin(iS(X)-!nS(H )) = ± sin(iS(X)-½n) 
a 

and 

(7. 19) sin(iy(X) - ½n(l-S(H ))) =±sin iy(X), 
a 

with the same signs in (7.18) and (7.19). If we have proved (7.18) and 

(7.19), it follows that (7.17) equals (7.16) and the theorem will be proved. 

To prove (7.18) and (7.19) we proceed as follows. 

Because sS # S we have that S(H) # 0. Thus, because of the definition 
a 

of ~;q' S(Ha) = ±1,±2, or ±3 (remember that S(Ha)E~). 

If S(H) = I, then sin(iS(X)-!nS(H )) = sin(iS(X)-½n), and a a 
sin(iy(X)-½n(l-S(H ))) = sin iy(X), thus (7.18) and (7.19) both hold with 

a 
sign +l. If S(Ha) = -1 or ±3, then the assertion follows in the same way. 

Now we shall prove that S(H) = ±2 is impossible, thus (7.18) and (7.19) 
a 
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hold, which proves the theorem. 

So assume 13(H) = 
a 

-2, the case 13(H) = 2 being similar. Then 
a 

L 3 y = s 13 = 13 - 2 13(H )/a(H) a pq a a a = 13 + 2a. Choose Xa E 9a as in chapter 

5. Since Xa,exa and Ha form a standard basis of a Lie algebra isomorphic to 

4f(Z,JR), it follows from the representation theory of this Lie algebra that 

there exists Y13 E 9 13 such that Z := (ad X ) 2Y / O. Then Z E 9l3+Za = 9y' 
h ( . +oe) a -a@ -ae ence oez = Z s:mce 9Y c 9 • But 9a c 9 and 9 13 c 9 , thus 

aez = o6[X ,[X ,Y13 JJ = -Z, so Z = 0. Contradiction. D 
a a 

A A 
REMARK 7.13. Let 13 E <P,13 / O. By checking all possible values for k(B) one 

sees that in the spherical case (ie. T1=T 2) 2S i L implies that k(S) = I, 
~ ~ p ~ A ~ 

and 213 EL implies that k(l3) = 2 (remember that here 13 = 13 = 13 for all p 
13 E <P). Thus in that case one gets 

"1 r 13' . 
SE~ 
~ p 

213/L 
p 

which is the way in which >- 1 was originally defined by Vretare. 



CHAPTER 8 

THE SINGULAR SET 

0 LEMMA 8.1. Let k EK, h EH and a,b EA be such that b = kah. Then pq 
b4 = ka4k-l. 

PROOF. Apply e,cr and ecr to b = kah and eliminate 0h and crk. This gives 

a3 = hb 3k, or b3 = h- 1a 3k-l. Thus b4 = b.b 3 = kah.h- 1a3k-l = ka4k- 1• □ 

Put 

D := {X E ia k(a)a(X) E rri?l for some a E ~0•, or pq 

k(a)(a(X)+½rri) E rri?l for some a E ~;}, 

(8. I) A' := A \exp D. pq pq 

By abuse of notation we shall denote the function on A defined by pq 
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exp X•+ F(X) (XEia ) also by F. Let F' denote the restriction of F to A' • 
* pq * pq 

Put~:= NK(ia ), ~ := CK(ia ), MO := NHO (iapq), MHO := C o<ia ), * pq * pq H H pq 
then wpq = ~/~ = MH0 /MH0 . 

* DEFINITION 8.2. Let J be the set of all pairs (s,mh) such that m E ~• 

h E HO, mh EA ands= Ad(m) 1-a... . 
pq i pq 

Then J is a finite set, since Jc (W ,KH0nA ), W is finite by 
0 pq pq pq 

definition, and KH n A is discrete (by Lemma 8.1) as well as compact, pq 
hence also finite. Let j := /J/ be the number of elements of J. 

Observe that J can be given a group structure. For (s 1,m1h 1), 

(s2,m2h2) E J put 

(8 .2) 
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-I 
Since (8.2) equals (s 1s 2,m1 (m2h2)m1 (m1h 1)) this is well-defined. The in-

verse of (s,mh) E J is given by 

(8. 3) 
-I -I -I -I 

(s,mh) := (s ,m h ) . 

Thus (8.2) gives J a group structure. Moreover, J acts on A in a diffeopq 
morphic way, via 

(8. 4) (s,mh)(exp X) := (exp sX)mh (Xda. ) , 
pq 

and Fis invariant under this action. 

Now we would like to calculate j. For this, notice that the set 
. -1 -I 

A is a group: (m1h 1)(m2h2) := m1m2h 2h 1, (mh)(m h ) = e, and 
pq I -I 0 

= m- (mh) m E M__Ho n A • Put w := Jw I, k := JM_H n A J. -~ pq pq -~ pq 

LEMMA 8.3. Lets E W • There exists mh E M_*HO suah that (s,mh) E J. pq -~ 

PROOF. Let a E ~ • As a first step we show that there exists g E M_*HO pq -~ 
such that (s,g) E J. Let Xa be as in chapter 5, and let ka,pa be as in 

(5.1), (5.2). Then either oex = X or aex = -x. If o8A = Xa, then 
0 a a _1 a * 0a a 

k EH, hence we may take g := e = k k EM H n A . If o8Xa = -Xa' then a O a a --ic Pi 0 
P EH, hence we may take g := exp(!uiH) = k p E M__H n A a a a a -~ pq 

Next, lets E W • Then, if {a 1, ••• ,a 0 } is the base for~ from chap-pq ~ pq 
ter 3, we may writes= sa .... sa. for certain i 1, ••• ,i E {l, ••• ,l}. For 

1 1 1 n 
i = 1, ••. ,l let m.h. E M__HO n A ge such that (sa.,m.h.) E J. Put 

1 1 -~ pq 1 1 1 

m := mi 1 ••• min• h := hin···hii· Then m EM;, h E HO, and Ad(m)lia.pq s. 
Moreover 

Thus (s,mh) E J. D 

PROPOSITION 8.4. j = wk. 

-I 
••• mi ) . 

n-2 

E A pq 

PROOF. The mapping (s,mh) 1+ s: J + W is a surjective homomorphism. The pq 



kernel of this homomorphism is 

{mh: m E 

0 
Hence !JI= lw I ,IM_H n A I pq -1( pq 

mh E Apq' Ad(m) lia 
pq 

wk. □ 
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id} 

THEOREM 8.5. Fis regular at a EA if and only if a EA' . F' is a regular pq pq 
wk-to-one mapping of A;q onto an open dense subset D0 of D0 • 

PROOF. Regularity follows from Theorem 7.12, and A' pq is open dense in A , pq 
hence F(A' ) is open dense in F(A ) = D0 • So the only thing pq pq 

left to prove 

is the fact that F' is wk-to-one. Therefore, let A" be the set of all 
4 8 12 pq 

a EA such that the sequence {a ,a ,a , ..• } is dense in A pq pq 
dense in A pq 

Then A" 
pq 

Assume a 1 EA" a EA such that F(a1) = F(a2). It follows from pq' 2 pq 
Theorem 7.5 that F(a 1) = F(a2) if and only if ~A (a 1) c ~A (a2) for all 

is 

A E 7.l:. But the functions ~A form a complete set of functions on K\U/Ho, 

thus because of Theorem 6. JO we obtain ~ A (a 1) = ~ A (a2) for all A E 7l: if 

and only if k1a 1h 1 = k 2a2h 2 .-Or, by putting k := k 2k~) h := h 1h; 1, a2 = ka 1h. 
4 4 -I Thus, by Lemma 8.1, we obtain a2 = ka1k (hence a 2 E A;q). 

Let XE ia . Then Ad(k)X E ip, but also cr(ad(k)X) = -Adcr(k)X -Ad(k)X, pq 
hence Ad(k)X E i(pnq). (The last identity follows by applying cre to 

4 4 -I 4 4 -I -I 4 -I 4 
a 2 = ka 1k , which gives a2 cr(k)a 1cr(k ). Hence (k cr(k))a 1(cr(k )k) a 1, 

hence (k- 1cr(k))a(cr(k- 1)k) = a for all a EA , thus Ad(k)X = Adcr(k)X for 
pq 

all X E ia .) 

Moreo~:r, Ad(k)X centralizes iapq' Namely Ad(ai)Ad(k)X = Ad(k)Ad(a;)x 

Ad(k)X, hence Ad(a)Ad(k)X = Ad(k)X for all a EA and all XE ia . 
pq -I -~q 

Thus [Y,Ad(k)X] = 0 for all X,Y E ia 
0 pq 

So, if a 1,a2 E A;q' k EK, h EH, then 

kh EA 

Thus k E ~• and kh = ka 1k a2 
. * a2 ka 1h if and only if k E ~ 

E A pq 
and 

pq 
Now, let a 1 ,a2 E A" , k 1k 2 E K, hi ,h2 E HO be such that a2 = k 1a 1h 1 = 

-I pq -I _ 4 -I 4 
= k 2a 1h2 • Put k := ~t k 1, h := h 1h 2 , then ka1h - a 1, thus ka 1k = a 1, by 

Lemma 8.1. Thus kak = a for all a EA , hence Ad(k)X = X for all XE ia pq pq 
Thus Ad(k 1) liapq = Ad(k2) liapq' thus k 1h 1 = k 2h 2 . 

Thus Fis a j-to-one mapping of A" onto F(A" ). We shall now prove pq pq 
that F is a j-to-one mapping of A' onto F(A' ) . F(A" ) is dense in F(A' ) pq pq pq pq 
because A" is dense in A' • 

pq pq -I -I 
Let y E F(A;q). Assume I (F') (y) I > j, x 1, .•. ,xj+I E (F') (y). Then 
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there is an open neighbourhood V of y, and disjunct open neighbourhoods Ui 

of xi (i = l, ..• ,j+I) such that F: Ui +Vis a homeomorphism. But there is 

a z E V n F(A" ) , thus F-l (z) c A" , and IF-I (z) I :2' j+I. Contradiction. 
pq -1 pq -I 

Assume l(F') (y)I < j, ie. (F') (y) = {x 1, ... ,xt}' t < j. Again, 

take V open neighbourhood of y, and Ui open neighbourhood of xi (i = l, •.. ,t) 

such that F: Ui +Vis a homeomorphism. By the action (8.3) J acts on Apq 

in a diffeomorphic way, and F 0 j = j, hence j(A' ) = A' (jEJ). Let yn + y, pq pq 
with yn EV n (A"). Let z E u 1 be such that F(z) = y . There is a jn E J 

M n n n 
such that j .z £ u 1 u ... u U, because J.z has cardinality j > t, and is 

n n t n 
mapped toy, since Fis injective on each U. (i l, ••• ,t). Hence there is 

n l. 

a subsequence j 0 .zin• with j 0 E J fixed (because J is finite), Zin+ x 1, 

and j 0 .zin + j 0 .x 1 i u 1 u ... u Ut (since Apq\u 1 u ... u Ut is closed), with 

F(j 0 .x1) = F(x 1), and j 0 .x1 EA' since x 1 EA' . Contradiction. 
-1 pq pq 

Thus l(F') (y) I = j = wk, by Proposition 8.4. D 
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CHAPTER 9 

AN INTEGRAL FORMULA FOR THE GENERALIZED CARTAN DECOMPOSITION 

In chapter 6 we have proved the decomposition U = KA Ho. For the non-pq 
compact analogue of this decomposition, ie. G = KBH (for notations, see 

chapter 6), FLENSTED-JENSEN [8] gives an integral formula. Since our treatise 

of the analogue of this formula, for U is mainly based on his ideas, we shall 

sunnnarize the results from [8, section 2] here. For a E ~ , put pq 
d . ( +ae) d" ( -ae) P p0 := im g0 ng , q0 := im g0 ng • ut 

(9. I) 00 (X) := J TT 
OE~+ 

pq 

X E (t 
pq 

Put L' :=Kn H,M' := CL 1 (a ). Then, with a suitable normalization of the pq 
involved measures, we have the following integral formula {[8, Theorem 2.6]): 

(9 .2) J f(g)dg = vol(L'/M') J J+ f f(kexpXh)oo(X)dhdXdk, 

G Ka H pq 

We shall now give the analogue of (9.2) for U. Therefore, put 

L :=Kn HO, M := CL(ia ). Define a mapping~:= K/M x A + U/HO by 
pq pq 

(9 .3) k EK, a EA 
pq 

Normalize measures as follows: 

(9 ,4) J du= J dk = J dh = j dl = J dm = f da 
U K HO L M A 

pq 

I. 

0 The Killing form on u induces invariant measures on U/H, K/M, L/M and ia 
0 pq 

Let the corresponding Riemannian measures be denoted by duH, dkM, diM 

and dX, respectively. Let l,m be the Lie algebras of L,M, respectively. Let 

l' be the orthogonal complement (with respect to the Killing form) of min 



62 

l. Then, just as in the noncompact case, we have to calculate ldet d~(eM,a) I, 
where d~( M ) : l' + (knq) + ia + dT(a)(knq+i(pnq)) is the Jacobi matrix. 

e ,a O pq 0 
Here Tis defined by T(u)xH := uxH for u,x EU. Because of the fact that 

for XE iapq exp X = e implies a(X) E 2Tii~ for all a E Lpq' the following 

definition makes sense. 

DEFINITION 9.1. o(expX) := I TT 
aEL+ 

pq 
LEMMA 9.2. ldet d~(eM,a) I = o(a). 

p q 
sin aa(iX)cos aa(iX) I, XE ia pq 

PROOF. Let q0 be the dimension of the zerospace of ad ia in i(pnh), and pq 
r 0 the dimension of the zerospace of ad ia ink n q. Choose ON(:= orpq 
thonormal) bases as follows: 

I pa + 
X , ••• , X ( a EL ) , 

a a pq 

and 

I pa + I rO 
Z , ••• , Z ( aE L ) , z0 , ••• , z0 of 1z. n q 
a a pq 

such that 

ad(X)Tj 
a 

-a(iX)Yj, 
a 

ad(X)Yj 
a 

a(iX)Tj, 
a 

ad(X)Xj -a(iX)Zj, 
a a 

and 

for all XE iapq· Choose an ON basis {x 1, ••• ,Xl} of iapq" We shall calcu

late the matrix of d~(eM,a) with respect to the ON basis 

of l' + (/z.nq) + ia and the ON basis pq 
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of q0 

If Y E 

+ ia It is clear that d<l>( ,1 ) (X.) = dT(a) (X.). pq er ,a J J 

curve 

follows from differentiation of the I-parameter 

t 1+ n(exptYexpX) -adX expX.n(exp(te -J'.)), 

where n: U + U/HO denotes the canonical projection, and XE ia is such pq 
that a= exp X. Thus 

d<l> (eM, a) (Y) 
-adX adX dT(expX)½(e -J'. - e oY). 

Hence 

dT(expX)cosa(iX)Zj, 
, a 

and 

d~ (Zj) = dT(expX)Z0j, "'(eM,a) 0 

which proves the lennna. 0 

Let (A ) be the set of elements in A such that <l> is regular at pq r pq 
(eM, a) . That is 

(9 .5) 

a(X) + ½ni i ni?Z if q f O for all a Ek+}. 
a pq 

Thus A'p'q c (Apq)r c A' • Let the image of K/M x (A ) under <l>, which is an 
pq O pq r 0 

open dense subset of U/H (by Theorem 6.10), be denoted by (U/H )r. Let 

again wk be the number of elements of J, with Jasin Definition 8.2, cf. 
* 0 Proposition 8.4. Let j 1 := (s 1,m1h 1), j 2 := (s 2,m2h 2) E J (miE~,hiEH, 

s. = Ad(m.) I. ) . Then 
i i ia , 

P<l 

(9.6) 
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Thus there is a well-defined action of Jon K/M x A via pq 

(9. 7) (Ad(m) lia ,mh).(kM,a) 
pq 

-I 
:= (km M,mah). 

If m EM; is such that (s,mh) E J, then m normalizes M, thus (9.6) implies 

that (9.7) is well-defined. 

It is clear that ¢ 0 j = j for all j E J. 

LEMMA 9.3. ¢ is a regular wk-to-one mapping of K/M x (A ) onto (U/HO) . pq r r 

PROOF. Regularity follows from Lemma 9.2, and the open dense subset (U/HO) 
-- r 
is by definition the image of K/M x (A ) • So the only thing left to prove pq r 
is the fact that¢ is wk-to-one. So assume a 1 E A;q' a 2 EA q' k 1,k2 EK be 

such that ¢(k 1M,a 1) = ¢(k2M,a2). Then for certain h 1,h2 E HD we have 

k 1a 1h 1 = k2a2h2 • Thus, just as in the proof of Theorem 8.5, it follows that 

a 2 E A;q and a 2 = j.a1 for a certain j E J. Hence (kz11,a2) = j.(k 1M,a 1) and 

¢(k 1M,a 1) has exactly wk pre-images. Now the extension from A" to (A ) pq pq r 
can be done ,by a reasoning similar to the extension from A" to A' , pq pq 
cf. proof of Theorem 8.5 (see HOOGENBOOM [16, Proposition 4.5] for full 

details). This proves the lemma. 0 

THEOREM 9.4. Let f E C(U). Then, with the normalization of measures (9.4), 

(9 .8) I 
A pq 

6(a)da j f(u)du = J J f 
U KA HO 

f(kah)6(a)dhdadk. 

pq 

PROOF. From what is said above, it follows that we have the following ex

pressions: 

(9 .9) 

(9. IO) vol(U/HO) J 
u 

(9. I I) vol(K/M) I 
K 

= :k I 
A pq 

J 
K/M 

0 f I (kaH )6 (a) dkMda 

I 0 
( y = vo l(A ) , f I E C (U /H ) ) , 

pq 

f 2(u)du = J <J f 2(uh)dh)duHO 
U/Ho Ho 

(f 2EC(U)); 

f 3 (k)dk I <J f 3 (km)dm)dkM (f3EC(K)). 

K/M M 
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Now (9.9), (9.10) and (9.11) imply (cf. HELGASON [JO, p.384]) that for all 

f E C(U): 

vol(U/HO) J f(u)du = w\ vol(K/M) f 
U A pq 

(9.8) follows by substitution off= I. D 

f I f(kah)o(a)dhdkda. 
KHO 

REMARK 9.5. The evaluation of JAo(a)da leads to integrals of Selberg-type. 

See MACDONALD [24] for some explicit values and some conjectured values for 

integrals of this type. 

REMARK 9.6. In chapter II we shall derive some restrictions on the multi

plicities pa and qa in connection with k(a). By using these results one 

obtains quite easily (A ) = A' . pq r pq 
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CHAPTER 10 

INTERTWINING FUNCTIONS ON U AS ORTHOGONAL POLYNOMIALS 

In this chapter we shall prove the analogue of Theorem 3.6 in VRETARE 

[31] for intertwining functions. That is, we show that the intertwining 

functions on U may be considered as orthogonal polynomials on a region in 

Rl (namely n, cf. Definition 7.8), with respect to a certain positive 

weight function. This weight function is given in the following definition. 

DEFINITION IO.I. Let the positive weight function won n be given by: 

w(ijl(F(X))) 
p qa 

sin aa(iX) cos a(iX). 

-
TT sin- 1k(a)a(iX) TT sin- 1k(a) (a(iX)-½11) I, 

UE~Q UE~; 

LEMMA 10.2. For f E c(n0) we mve 

f -I f(ijl (x))w(x)dx = C j f(<P 1(u), ••• ,<Pl(u))du. 

u 

PROOF. As the proof of Lemma 3.5 in [31]. The complements of A' 
pq 

X E ia. 
pq 

in A 
pq 

of n' inn are sets of measure zero (here n' = ijl(n0), cf. Theorem 8.5). 

lemma now follows from Theorem 7.12, Theorem 8.5 and Theorem 9.6. D 

and 

The 

THEOREM 10.3. The mapping P ➔ P0 1jl°F is an isomorphism of the algebra of 

polynomials on n onto the algebra of functions on A spanned by the inter

twining functions such toot the orthogonal polynomi~i P0 1)i of degree A E ~: 

with respect to the weight function w is mapped onto the intertwining func

tion <PA. 

PROOF. According to Theorem 7.5 we have that <PA is a polynomial of degree 

A in the variable <P = (<P 1, .•• ,<Pl). Hence <PA is a polynomial of degree A in 
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the variable~(~). Denote this polynomial by PA, that is PA (~(~(u))) = ~A (u). 

The orthogonality follows from Lemma 10.2 and the orthogonality relations 

of Schur ((7.1)). D 

REMARK 10.4. It follows from Theorem 10.3 that for certain symmetric spaces 

of rank two the orthogonal polynomials considered in SPRINKHUIZEN-KUYPER 

[27] can be considered as intertwining functions for certain values of the 

parameters a,S,y. For this topic, see also VRETARE [32]. In [32] generaliza

tions of the Koornwinder polynomials from [27] to more variables are proved 

to be intertwining functions on symmetric spaces of higher rank for certain 

values of the parameters. Vretare's treatment of intertwining functions,· 

however, is an ad hoc approach for the spaces 

SO(p) x SO(n-p)\SO(n)/SO(q) x SO(n-q), 

S(U xU )\SU(n)/S(U xU ), p n-p q n-q 

and 

Sp(p) x Sp(n-p)\Sp(n)/Sp(q) x Sp(n-q). 

In the first of these three cases the measure w(x)dx becomes the measure on 

the squares of the cosines of the critical angles, as considered in JAMES 

& CONSTANTINE [i8, formula (6.2)]. 

Let again IDO (U) be the algebra of left-U-, right-HO-invariant dif

ferential operators on U. Let o' (n) denote the radial part of the Laplace-
B 1 . / 0 . . . . 00 ( / 0) e tram1 operator on UH, acting on a K-invariant function f EC UH 

(which we shall denote by f E C00 (K\U/HO)). Now the polynomials we have con

structed in Theorem 10.3 can be characterized in yet another way, namely 

as eigenfunctions of o'(n). Remeber (cf. HELGASON [12]) that for a non

compact Lie group Ga function~, which has a certain convergent series 

expansion which is regular at 00 , is an eigenfunction of all invariant dif

ferential operators on G if and only if it is an eigenfunction of o'(n). 

See HOOGENBOOM [IS] for an application of this theorem, For a compact Lie 

group we have the following analogue of this theorem: orthogonal polynomials 

which are spherical functions on a compact Lie group are characterized by 

the fact that they are of the form~ , r (A)eiv(X) and the fact that they 
V5A V 

are eigenfunctions of o'(n). This result can easily be generalized 
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to intertwining functions. 

Therefore, let us first calculate o'(n). Choose a basis x1, ..• ,Xl of 

ia such that B(X.,X.) = o .. , where B(•,•) denotes the Killing form on u. 
pq ]_ J 1-J 

Let the function o on A be as in Definition 9.1. For CLE~ let pq pq 
m be the multiplicity of CL in g. Thus m = p + q. Put p := ½ r ~+ m CL. 

CL CL CL CL CLE pq CL 

Let A be defined as in chapter 5, and define A by B(X,A) = p(X) for all 
CL p p 

X E a 
pq 

LEMMA 10.5. o'(n) = ~lJ.=l x: + 2iA + ~ ~+ 
J p CLE pq 

PROOF. (See also [7, formula (4.12)] and [8, 

~we have U = KA HO. Let f E C00 (K\U/HO). pq 
Theorem 9.4 we have 

f f(x)dx = c. f f(a)o(a)da. 
U/HO A. 

pq 

(IO.I) 

p.307]). According to Theorem 

Observe that according to 

Then it follows from HELGASON [12, Theorem I.2.11] that 

(IO. 2) (o' (n) f) (a) 

where 6 is the Laplace-Beltrami operator on A Thus pq 

( IO .3) 0 I (n) 

But if {x1, ••• ,Xl} is an orthonormal basis of iapq' then we have 

6 f x:. 
j =I J 

Thus (10.3) becomes 

(10.4) 0 I (n) 

or, by a simple calculation 

(I0.5) 0 I (n) 
l 2 l -l 1 

.~1 X. + 2 .~1 o 2 oX. (o 2 ) oX .• 
J= J J= J J 

Substitution of o(expX) 
p q 

j TT sin CLCL(iX)cos CLCL(iX) j (XE ia , cf. 
CLE~+ pq 

pq 
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Definition 9.1) in (10.5) gives 

(10.6) _fl x: + 2iA + 2i ~ (p (e 2ia-1)-J-q (e 2ia+l)-l)A • 0 
J= J P aE~+ a a a 

pq 

We shall need a slightly different version of (10.6). For a E ~;q' write 

( 10. 7) (e2ia_ 1)-I = f -2ika 
k=I 

e 

(e2ia+l)-J l c-1l-1 -2ika (10.8) = k~I e 

where (10.7) and (10.8) are to be evaluated in XE -(ia+ ), for reason of pq 
convergence. Here a+ is the positive Weyl chamber in a corresponding to pq pq 
the base fo 1, ••. ,al} of ~pq· Thus (10.6) becomes 

( 10. 9) 
l 2 
. ~1 X. + 2iA 
J= J p 

+ 2i ~ (pa k~I e -2ika + qa k~I (-J)ke -2ika) Aa . 
aE~+ 

pq 

Let A E 7l:. By Theorem 10.3 there exists a polynomial PA, which is of 

the form 

(10.10) (Xda ) , pq 

---with r A (A) f, 0, such that PA is an intertwining function on K\U/HO. Thus, 

by Theorem 4.3, PA is an eigenfunction of all left-U-,right-H0-invariant 

differential operators on U. In particular, this means that PA is an eigen

function of o'(n). By making use of the expression (10.9) for o'(n) we can 

calculate the eigenvalue of PA under o'(n). 

PROOF. Letµ be the eigenvalue of PA under o'(n). Thus 

( 10. I I) 

Substitution of (10.9) and (JO.JO) in (10.11) leads to the following recur

sion formula for rv(A) (here we write rv for rv(A)). 

(10.12) -(µ+(v,v+2p))r 
V 

k 
~ (p +(-1) q )(v+2ka,a)r +Zk, 

k~I a a v a 
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where k runs over all integers 2 I for which v + 2ko: E z;::. But, by ( 10 .10), 

it is clear that v >- A implies rv O. Now substitute v = A in (10.12). 

Then the right-hand side of (10.12) becomes zero, by the above remarks. Thus 

the left-hand side of (10.12) becomes zero, but rA f 0, thusµ+ (A,A+2p) = 0, 

henceµ= - (A,A+2p). D 

REMARK 10.7. If G = G1 x G1 and K = H = diag(G1), then (10.12) reduces to 

Freudenthal's formula, cf. [17, Theorem 22.3]. 

In the case of spherical functions on a noncompact semisimple Lie group 

the above calculation is due to HARISH-CHANDRA [9]. Actually, it is not too 

hard to compute the eigenvalue of PA under o'(n) directly, cf. eg. 

HUMPHREYS [17, Excercise 23.4]. However, in the following we shall need the 

recursion relation for r which was obtained in the proof of Lemma 10.6 
V 

((10.12)). We shall now give the characterization of intertwining functions 

as eigenfunctions of o'(n). Let P be a polynomial of the form 

(10.13) P(X) (Xda ) , 
pq 

with r~ f 0. Assume P transforms under W according to Proposition 5.2 and 
I\ pq 

Proposition S.S. 

THEOREM 10.8. Pis the restriction to A of an intertwining function on 
pq 

V if and only if o'(n)P = µ'P for someµ' E ~. 

PROOF. The "only if" part follows from Theorem 4 .3, hence we only need to 

prove that o'(n)P = µ'P for someµ' E ~ implies that Pis the restriction 

to A of an intertwining function on U. As in the proof of Lemma 10.6 it pq 
follows from (10.9), (10.13) and the fact that Pis an eigenfunction of 

o'(n) that the coefficients r~ satisfy a recursion relation of the form 

(IO. I 2) . Thus 

(IO. I 4) -(µ'+(v,v+2p))r~ = 2 L 
O:EL+ 

pq 

Again as in the proof of Lemma 10.6, (10.14) implies thatµ' = -(A,A+2p). 

But then the coefficients rv for PA, and r~ for P satisfy the same recur

sion relation (10.12). Since (10.12) determines the rv, and hence PA up to 

a constant factor, P must be equal to PA up to multiplication by a con

stant. D 





CHAPTER 11 

EXAMPLE: THE CASE dim apq 1 

As a final example we shall treat the case dim a = 1 here. This is pq 
a direct generalization of Example 0.2 from the introduction. 

So assume a has dimension one. Let~ {(-2a),-a,a,(2a)}, pq pq 
~+ ={a.;(2a)}. Let x0 Ea be such that a(X0) =I. Then µ 1 := k(a)a 

pq I pq 
generates the lattice Zl , and we get for 0 E JR: 

acos(8+!11) + b 0 and k (a) I, 

(I I. I) 

acosk(a)0 + b if pa> 0 or k(a) > I, 

73 

where a,b ER are such that a+b =I. Again as in Example 0.2 we shall con

sider the intertwining functions as polynomials in the variable 

cos (0+!11) 

( 11 • 2) y := { 

cos k(a)0 

if 0 and k(a) 

if p > 0 or k(a) > I. 
a 

Clearly the weight function in the variable y equals w up to a constant 

factor. By abuse of notation we shall denote this weight function by was 

well. Thus the weight function (cf. Definition JO.I) becomes 

(11. 3) 
sin 0 

w(cos k(a)0) = I 
. Pa qa P2a q2a 

cos 0 sin 20 cos 20 
sin k(a)0 

if pa> 0 or k(a) > I (remember that pa> 0 implies that a E ~ 0, and 

k(a) > I implies that Jsin k(a)(a+!11)j = Jsin k(a)aj), and 
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q p q 

(i I .4) w(cos(e+½TI)) 
cos aesin Za28 cos Za28 

sin(e+,ir) 

if pa= 0 and k(a) = I (remember that pa= 0 implies that a E ~;). 

In the following lemma~ may be of general rank. pq 

LEMMA II.I. Let a E ~ Then k(a) = I if and only if 2a i ~ and p 0 pq pq a 
or q = O. 

(J, 

PROOF. Assume k(a) =I.If 2a E ~ , 
--l pq 
µ E 7l , hence (µ,a)/(a,a) E 27l for 

(µ,a)/ (a ,a) E 27l for all µ E 7ll by 

then (µ, 2a) / (2a, 2a) E 7l for all 
l al 1 µ E 7l • If pa > 0 and qa > 0, 

Corollary 5.6 and Lemma 5.7. 

then 

Conversely, suppose 2a i ~ pq' and p = 0 or qa = 0. By (7.8) we have 
a +cre 

k(a) = c(a), hence it suffices to show that for S E 4>, if 0,gi C g 
-cre i 

:::: 
gg C g implies s = s. 

Therefore, let Of XS c 9a· Then cr8Xa = £XS, with£=±), and 

[X,X-..] = S(X)X~ for all XE a. In particular, take XE ah' and apply 

or 

s s p ~ p 
cre. This gives [-X,£X~] = S(X)EX-.., hence [X,X~] -S(X)Xs for all XE aph" 

~ S S S ~ A 
But X-.. f 0, hence S(X) = O for all XE ah' hence S = S. By a similar s p 
reasoning we prove i = @: D 

Hence, if k(a) = I: 

(11.5) w(cos8) 
p ~1 

c.sin a e 
'p -' 2 i a ii 

c.(1-cos 8) if pa f 0, 

( I I .6) w(cos(e+!TI)) 
q -I 

c.sin a (e+½TI) 
lq _I 

2 • a :! 
c.(1-cos (e+½TI)) if qa f 0. 

Observe that, via the substitution y := cos 8 in (11.5) and y := cos(e+½TI) 

in (11.6), (I 1.5) and (I 1.6) both give Jacobi polynomials: orthogonal poly

nomials on [-1,1] with respect to the weight function (1-x)a(l+x)S (a,SER, 

a,S > -1). If k(a) = 2 we have: 

( 11. 7) 
q I +I _ I Iq +Ip _I 

Za 2Pa 2Pza 2 2 a 2 Za ;; 
w(cos28) = c. lcos 28 I (J-cos28) (J+cos28) • 

Note that (I 1.7) gives rise to Jacobi polynomials if and only if q2a = 0. 

Fortu.nately the following proposition holds. Again this proposition is 

valid for~ for general rank. pq 

PROPOSITION 11.2. Let a E ~ . If k(a) pq 2 then q 2a 0. 
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(Observe that this proposition is a corollary from Proposition .]],6 below.) 

Thus we obtain the following weight function: 

(] 1.8) 

The case k(a) = 4 can be treated by the following proposition, which 

again holds for E of general rank. pq 

PROPOSITION 11.3. Let a€ E • If k(a) = 4 then p = q . pq a a 

PROOF. Since k(a) = 4, 2a € E • (If 2a / E , then k(a) = c(a), by (7.8). pq pq 
But c(a) = 4 implies 2a € Epq' by Lennna 2.3). By (7.8) we have moreover 

(c(a), c(2a)) = (4,1), (4,2) or (2,2). We will next show that if 
I\ 

13 €~.a= a, then TIT213 # 13. So suppose not. 

Suppose c(a) = 4. Then there exists y €~such that◊= a and 

(y,y) = 4(a,a) = 4(e,e) (or (~,y) = 4(6,S)). But then (y,Tly) = -!(y,y), 

and 2(y,S)/(y,y) = ½ill. Contradiction. 

Suppose c(2a) = 2. Then there exists y €~such that◊ 2a and 
_,..., ~Ji&I R:JFld r.Jrv 

(y,y) = 2(2a.,2a.) = 8(a.,a.) = '8(13,13) (or (y,y) = 8(13,13)). But then (y,13) 0, 
A~ ~ ~~ hence 2(a.,a.) = (y,13) = (y+T 2y,13) = O. Contradiction. 

I\ 
Hence, if 13 € ~. 13 = a then TIT213 # 13, thus T1T2813 = gTIT213 # 913· Thus 

the collection {13 € ~ : g = a.} is a disjoint union Uf=I {13i,TITZl3i}, and 

h • 0 0 • • d' · 1 f · +oe eac pair µi,TITZµi gives rise to a one- imensiona rootspace o a. in g 
d d . . 1 f . -oe □ an a one- imensiona rootspace o a. in g 

Hence the weight function becomes: 

(11 .9) w(cos48) 4. 

By (11.5), (11.6), (11.8) and (11.9) we obtain the following theorem, which 

generalizes Cartan's result for spherical functions (cf. Example 0.2). 

THEOREM 11 • 4. If dim a = 1 , then the intertwining functions on U can be pq 
considered as Jacobi polynomials of order (!m,!n), where m,n are nonnega-

tive integers. 

As a corollary to the previous results in this chapter, together with 

Proposition 11.6 below, we obtain that k(a.) and k(2a.) are completely de

termined by p ,q ,p2 ,q2 • Hence E' together with the multiplicities a. a. a. a. pq 
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completely determines the weight function w. 

In Lemma 11.5 and Proposition 11.6 below k may be of general rank. pq 

LEMMA 11.5. Let a E kpq" If k(a) = 4 and p2aq2a = 0, then p2a = 0. 

PROOF. As in the proof of Lemma II.I we obtain c(2a) I, hence c(a) = 4 by 
~ 'A ~ ~ 

(7.8). There exists y Ek (or y Ek) such that y = a and (y,y) = 4(a,a). 
p q 

For y we now have the following possibilities: 

(i) 

(ii) 

(iii) 

, 1y = y, 7 =a.Thus a,2a E kq (since c(2a) I). Hence, by [33, 

Appendix 1.1.3], 2a E <I>. Let O 'f XE g, then O 'f [X,, 1, 2xJ E 
-08 y 

g2a n g Hence q2a > 0, thus Pza = 0. 
A 

y satisfies row 2 of Table I. Then y + , 1, 2y E <I>, (y+, 1, 2y) = 2a. 
-oe 

Let O 'f X E gy, 

thus p2a = 0. 

then O 'f [X,, 1, 2xJ E g n g • Hence q2 > 0, 
y+t1t2Y a 

RJ 
y satisfies row 5 of Table I. But then y + , 2y E <I>, (y+, 2y) = 

A = y + , 2y 'f 2a, and (y+,2y) = 2a, hence c(2a) > I. Contradiction. D 

PROPOSITION 11.6. Let a Ek • Then q2 'f O if and only if k(a) = 4. pq a 

PROOF. Since k(a) = 4, the "if" part follows by Lemma 11 .5. So we only need 

to prove the "only if" part here. Assume q2a > 

H2a as in chapter 5. Then A2a = 2Aa' and H2a 
.e. 

for all A E 7l.,_, XE ia by Proposition 5.5: 
' pq 

But sa s 2a, hence (II.IO) implies 

O, and define Aa,Ha,A2a and 

½H. Since q2 > 0 we have 
a a 

We shall now consider two cases, p > 0 and q > O. 
a a l 

(i) pa> 0. Then, by Proposition 5.2, for all A E 7l+, XE iapq 

(11.12) 

Combination of (II.II) and (11.12) yields 



A.s in the proof of Corollary 5. 6 this implies 

(L,a) 
! 

__ J __ E 
27l 

(a,a) 

for all appearing weights \., hence (µ,a) E 47l for all 
J (a ,a) 

7l,e_ (a.ii) qa > o. Then, by Proposition 5.5, for all A E X E 
+' 

(I I. 13) 

Combination of (II.II) and (11.13) implies 

Again as in the proof of Proposition 5,6 this implies 

(L ,a) 
_J __ E 27l 
(a ,a) 

].l E 7l,e_. 

ia pq 

for all appearing weigh ts \., hence ((µ ,a)) E 7l for all µ E 7l,e_. D 
· J a,a 

Now, by Lemma 11,1, Proposition 11.3 and Proposition 11.6 we obtain 

the following table, which is valid for L of general rank. Here* means pq 
nonzero. 

m Pa .qa P2a q2a c(a) C (2a) k(a) k(2a) l 
a 

* 0 0 0 I - I -
* 0 * 0 I I 2 I 

* * 0 0 2 - 2 -
* * * 0 2 I 2 I 

* * 0 * 4 I 4 2 

* * * * 2 2 4 2 
4 { } 

Table II 
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The following corollary shows how k(a) depends upon Pa,qa,Pza and qza· 

COROLLARY 11.7. Let a E ~ 
pq 

a. 2a '- ~ . pq Then: paqa = 0 .. k(a) 

paqa > 0 .. k(a) 2 • 

b. 2a E ~ Then: pq q2a = 0 .. k(a) 2 

q2a > 0 .. k(a) = 4 • 
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