
CWI Tract 49

Numerical solution of the
shallow-water equations

F.W. Wubs

Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

1980 Mathematics Subject Classification: 65M05, 65M10, 65M20, 76-08.
ISBN 90 6196 349 4
NUGl-code: 811

Copyright© 1988, Stichting Mathematisch Centrum, Amsterdam
Printed in the Netherlands

Preface

This tract results from the research project "Evaluation and stabilization of
numerical methods for the shallow-water equations", which started June 1983.
The project was financed by the Foundation for Technical Research (STW),
future Technical Science Branch Division of the Netherlands Organization for
the Advancement of Pure Scientific Research (ZWO), and carried out at the
Centre for Mathematics and Computer Science (CWI) in Amsterdam under
the guidance of Prof. dr. P.J. van der Houwen. The project was supervised by
a user committee with members:

Ir. G . .J.A. Loman (Hydronamic bv)
Dr. ir. G.K. Verboom (Delft Hydraulics)
Prof. dr. ir. P. Wesseling (Technical University Delft)
and Prof. dr. P.J. van der Houwen (University of Amsterdam, CWI).

The tract consists of two parts; part I describes a numerical model for the
shallow-water equations on the CYBER 205 and part II consists of 2 papers
presenting theoretical aspects of the numerical integration of partial differential
equations.

I am grateful to all those who contributed in some way to the realization of
this tract. I like to mention some of them explicitly.

In particular, I thank Prof. dr. P.J. van der Houwen for his continuous stimu
lation during the research, for his cooperation in the development of the
papers in this tract, and for his numerous valuable suggestions for the
improvement of the final manuscript.

Special thanks go to Dr. ir. G.K. Verboom and B.P. Sommeijer; Dr. Verboom
for the illuminating discussions we had on the results of the various shallow
water flow computations presented in this tract, and Mr. Sommeijer for his
careful examination of the formulas in this tract and the many constructive
remarks on the manuscript.

Furthermore, I wish to express my thanks to Drs. J.G. Blom, Mr. W.M. Lioen
and Mr. D.T. Winter for their assistance in exploiting the computer facilities.

For the technical realization of this tract, I would like to acknowledge Mr.
R.T. Baanders, Mr. J. Schipper and Mr. D. Zwarst.

Finally, I wish to express my gratitude to the Centre for Mathematics and
Computer Science for providing the necessary computer time for the project,
and to the Delft Hydraulics and the Data Processing Division of Rijkswater
staat who allowed me to use the WAQUA system.

)

Groningen, June 1988. F.W. Wubs

lll

Preface
Contents m
General Introduction 1

Part I: An SWE solver for use on the CYBER 205 5
1. Introduction 5
2. Problem description 6

2.1. The equations 6
2.2. The domain 7
2.3. The boundary conditions 8

2.3.1. Closed boundaries 8
2.3.2. Open boundaries 8

2.3.2.1. The inviscid case (A = 0) 8
2.3.2.2. The viscid case (A=~O) 10

2.4. The initial values 14
3. The numerical algorithm 14

3.1. Grid staggering 14
3.2. Representation of the boundaries 15
3.3. Space discretization 15
3.4. Discussion 20

3.4.1. On the effect of the boundary treatment 20
3.4.2. Discretization near 'zig-zag boundaries' 22
3.4.3. Artificial diffusion 23
3.4.4. Conservation of mass 24

3.5. Time discretization 25
3.6. Stabilization of the time integration 26

3.6.1. The choice of S 27
3.6.2. One-dimensional problems 27
3.6.3. Two-dimensiohal problems 32
3.6.4. Analysis of smoothing procedures 33
3.6.5. Accuracy 37

3.7. Discretization of the weakly-reflective boundary conditions 38
3.8. Drying and flooding 39

iv

4. Vectorization aspects 40
4.1. Preliminaries 40
4.2. Explicit or implicit methods 43
4.3. Boundary treatment 44

4.3.1. Factorization of discretizations 47
4.4. Drying and flooding 49
4.5. Data structure 51
4.6. On the computational costs of the CYBER 205 code 52

5. The program system 55
5.1. The system parts 55
5.2. The INPUT PROCESSOR 56

5.2.1. Domain definition 56
5.2.2. Boundary conditions 60
5.2.3. Initializations of the U, V and Z-field 61
5.2.4. Definition of the depth and Manning values 61
5.2.5. Definition of problem and integration parameters 61
5.2.6. Definition of time history points and

flow field output parameters 61
5.3. The SOLVER 62
5.4. The OUTPUT PROCESSOR 62

6. Numerical results 62
6.1. A time-dependent flow in the Taranto bay 63
6.2. A stationary flow in the Anna Friso Polder 67
6.3. A time-dependent flow in the Eems-Dollard Estuary 71

References 73

Part II: Theoretical aspects 77
1. Stabilization of explicit methods for hyperbolic partial

differential equations 79
2. Analysis of smoothing operators in the solution of partial

differential equ~tions by explicit schemes 97

Index 115

General Introduction

In recent years, numerical methods for solving problems in fluid dynamics
have become more and more important, because (i) numerical methods are
more flexible and now-a-days cheaper than scale models, and (ii) numerical
models have become reliable for the simulation of a large variety of flow prob
lems.
In the hydraulic engineering computations in the Netherlands, three models
are widely used for the simulation of shallow-water flow:
1. The model of Leendertse [24] based on a finite-difference space discretization

and on a one-dimensional implicit time discretization (ADI discretization).
2. The model of Stelling [38] which is a storage economic and stabilized

modification of the original Leendertse model.
3. The model of Praagman [31,35] based on a finite element space discretization

and on an explicit time discretization (Runge-Kutta discretization and
Sielecki discretization [7,37]).

In general, finite differences are used on regular grids and finite elements are
used on unstructured grids. Finite elements have the advantage that the spatial
geometry of the problem can be approximated with higher accuracy than with
finite differences, but, at the same time, the disadvantage that the associated
code is less efficient because computers, especially vector computers, perform
better for well-structured data (see, e.g. , the various contributions on vectori
zation in [34]). Since it is to be expected that vector computers will become
more and more widely used, this aspect is important in developing codes for
flow problems.

As far as the time discretization is concerned, explicit methods vectorize
extremely well but the time step is limited by a stability condition so that they

2

have the undesirable property that often the time step is not dictated by accu
racy considerations. To be more precise, the time step is much smaller than
needed to achieve the required accuracy. The one-dimensional implicit ADI
methods do not have this undesirable property, but cannot exploit the facilities
of a vector computer as well as explicit methods can.

When, now four years ago, we started the project "Evaluation and stabilization
of numerical methods for the shallow-water equations", the CYB ER 205 com
puter of SARA (Stichting Academisch Rekencentrum Amsterdam) was just
about to be installed. This motivated us to concentrate on methods which can
take full advantage of this new architecture. In view of the above considera
tions, we decided to base our method on (i) a finite-difference space discretiza
tion and on (ii) a fully explicit time discretization. At the same time, we
decided not only to develop a code for use on the CYBER 205, but also to
study numerical techniques for optimizing finite difference discretizations and
for stabilizing explicit time integration. In a later stage of the project, the code
was tested on real engineering problems. The details of the numerical model
for use on the CYBER 205, results of the various computations, and theoreti
cal results which apply immediately to the shallow-water equations are
reported in Part I of this tract, and the more general investigations on the time
integration are presented in Part II, in the form of 2 papers (i.e. [19, 49]). We
shall briefly indicate the subjects studied in this tract.

Finite-difft:rence space discretization
For the finite-difference space discretization we used as a starting point the
ideas of Stelling [38]. In this work, second-order accurate differences at inter
nal points and first-order or even zero-order accurate differences at the boun
daries are used. Although, this discretization proved to be well-suited for a
large variety of practical engineering problems, we have investigated whether it
is possible to improve upon the efficiency of the numerical method by applying
fourth-order accurate space discretizations in the internal domain. The fourth
order accuracy allows to use a coarser spatial grid by which the stability condi
tion imposed by the explicit time discretization is relaxed. However, using a
coarser grid may decrease the accuracy by which the geometry can be
represented, so that the accuracy improvement obtained by the higher-order
discretization is not always observed. Nevertheless, if the geometry can be
approximated accurately by a small number of points then the use of high
order finite differences is relevant.

Explicit time discretization
Because of its relatively large imaginary stability interval, the standard fourth
order Runge-Kutta method is often applied in the time discretization of hyper
bolic problems such as the shallow-water equations (e.g., in [31]). In order to
compensate for the still severe stability condition, several authors have
employed a form of smoothing (cf. [25,21,44]). However, these papers all
employ implicit smoothing which is less attractive on vector computers.

3

Therefore, for vectorization reasons, we have developed an explicit smoothing
technique which is extremely efficient on a vector computer (cf. [49,111). In
(19] and [17] a detailed analysis of explicit smoothing techniques is given, not
only for hyperbolic problems but also for parabolic and elliptic problems.

The implementation of the numerical method
In order to obtain an optimal performance on the CYBER 205, special atten
tion is given to the implementation. The most difficult part to optimize is the
boundary treatment. Boundaries can occur at any place in the domain and
their location may change during the computation due to drying and flooding.
To determine the location of the boundary points in the computational
domain, we used so-called bit vectors (see FORTRAN 200 reference manual
[1]). This type of vectors allows to execute efficiently logical operations over
all grid points. Once the location of the boundary points is known, we con
struct the discretizations by using their factorized form (see Section 4.3.1). By
this form, the bookkeeping in the program can be simplified.
For the large scale problems we are aiming at, the CYBER 205 code turned
out to run at a rate of 100 Megaflops.
The CYBER 205 code was extensively tested for a large variety of geometries.
Furthermore, computations were performed for real engineering problems by
incorporating it into the WAQUA system, which is a large computational sys
tem with extensive plotting facilities. This system is in use at Rijkswaterstaat
and Delft Hydraulics for the simulation of water flow. Such type of computa
tions are important for the appreciation of the practical merits of the code,
because (i) it proves that the numerical method performs satisfactorily for
non-academic problems, (ii) it shows that the code is capable of handling very
complex geometries.
In addition to the CYBER 205 code, we also implemented an input processor
and an output processor. By means of the input processor the user can gen
erate in a convenient way input data for a flow simulation by the CYBER 205
code. The output processor allows the user to visualize the output data of the
simulation run.

Conclusions
The research project "Evaluation and stabilization of numerical methods for
the shallow-water equations" has led to the following conclusions:

Explicit methods are well-suited for the numerical integration of partial
differential equations on vector computers.
The classical Runge-Kutta method proves to be a robust integration method
for shallow-water flow computations.
The drawback of a limited time step, which is inherent in explicit methods,
can be relaxed considerably by appropriate smoothing of the discretized
right-hand side function, with only a modest increase of the computational
effort per time step.
Bit vectors and gather and scatter operations contribute to a large extent to
the efficient implementation of the boundary treatment.

4

By a large number of experiments it was shown that the physical behaviour
of shallow-water flow was satisfactorily simulated (relatively to the available
input data) by the numerical model.

Future research
This project has left a number of topics to be studied. We mention the most
important ones.

The representation of the boundary and the discretization near the boundary
such that higher-order methods are more effective.
Other integration methods may be considered as well. Since the solution
often varies slowly in time, efficient techniques should possess a high-order
of accuracy in combination with large stability regions. One such method is
described in this tract. An alternative may be fully implicit methods. How
ever such schemes lead to the problem of solving a large algebraic system in
each integration step. A third possibility is offered by using so-called
explicit-implicit methods. A few first results show that such methods are
promising (cf. [12]). .
Extension of the numerical model to three space dimensions. Such an ambi
tious project has become within the scope of numerical computations.

5

An SWE solver for use on the CYBER 205

1. INTRODUCTION

In hydraulic engineering, the shallow-water equations (SWEs) are used to
describe flows in shallow seas, estuaries and rivers. Numerical models based
on these SWEs can be used to determine the influence of infrastructural works
on the flow. Furthermore, output from these models can be used to calculate
salt intrusion, the effect of waste discharges, water quality parameters, cooling
water recirculation and sediment transports. An important application, in the
Netherlands, is the storm surge barrier in the mouth of the Eastern Scheldt
(Oosterschelde) estuary, by which this estuary can be separated from the sea
during storms. In this case, a numerical model, based on the SWEs, was exten
sively used in the development phase of the barrier. Furthermore, after the ins
tallation, a similar numerical model provides guide lines for the operation of
the barrier, not only to protect the dikes along the border of the Eastern
Scheidt, but also in order to preserve the delicate ecological balance in the
estuary, which has an important fish nursery as well as oyster and mussel cul
tures.
The nature of the applications is such that strong gradients in the solution are
common, though shocks do not appear. As a consequence, it is not strictly
necessary to satisfy numerically conservation of momentum or energy. (These
conservation properties are indispensable for the approximation of physical
shocks [23, 33).) However, the conservation of mass is important as the local
amount of mass is directly connected to the depth and the latter determines
largely the propagation of the waves (see [38, p. 155) and [39)). Moreover,
using the model for the calculation of the dispersion of dissolved matter, mass
conservation is even more needed in order to prevent loss of matter.

In the following we will briefly describe the contents of each section.

6

In Section 2, the problem is described, i.e. the equations, the domain, the
boundary conditions and the initial values. Many of these topics are already
treated by other authors (e.g. [3, 24, 38]), but it is briefly summarized for com
pleteness. In addition, in Section 2.3.2, we propose some new boundary condi
tions for the SWEs in the viscid case.

Various aspects of the numerical algorithm are discussed in Section 3. With
respect to the space discretization, attention will be given to the assumptions
near the boundaries. Furthermore, the time discretization and its stabilization
are treated. The latter will be discussed in more detail with respect to its appli
cation to the SWEs. Finally the drying and flooding procedure is described.

Section 4 is devoted to the vectorization aspects of the CYBER 205 code. The
various techniques which were used to construct an efficient code are presented
in detail.

The components of the developed software and their actual use are discussed
in Section 5.

In Section 6, results are given of some computations for complex geometries.
To obtain these results either our own system or the WAQUA system has been
used. In the latter case interfaces were made such that our computational rou
tines could replace those of Stelling in WAQUA. This enabled us to test the
code on real engineering problems.

2. PROBLEM DESCRIPTION

2.1. The equations
In this section, the equations are given and it will be briefly indicated how they
are derived from the Navier-Stokes equations. Consider Figure 2.1, where a
vertical cross section of a flow field is drawn,

FIGURE 2.1. Vertical cross section of a flow field.

and let z =O be a reference plane, which is, for example, the mean sea level.
With respect to this reference plane, we define the local bottom profile by
-h(x,y) and the local elevation by t(x,y,t); the total depth is then given by

7

H =h +t. The SWEs can be derived from the Navier-Stokes equations in a
few steps (see [3, p. 1901). First, the Navier-Stokes equations are simplified by
assuming hydrostatic pressure and incompressibility of water. Then, the result
ing equations are integrated over the total depth, where the vertical boundary
conditions follow from the assumptions that the bottom as well as the water
surface are stream surfaces. The integrated equations are expressed as far as
possible in terms of the depth integrated horizontal velocities. Furthermore,
for the stress along the bottom an empirical formula is substituted and the tur
bulent velocity fluctuations and the dispersion due to the non-uniform vertical
distribution of the horizontal velocities are represented by viscosity (see [22, 81).
The resulting equations read

u,= -uux-vu,-gtx+ Jv--§r-Vu 2 +v 2 U / H+Aau+F",

v,= -uvx-vv,-gt,-Ju--§r-Vu2 +v2 v / H+Aav+P, (2.1)

t, = -(Hu)x -(Hv)y + F(

The first two equations are momentum equations describing, in this
incompressible case, the change in time of the depth-averaged velocities u and
v. The third one is a continuity equation. In the momentum equations appear
the Coriolis force parametrized by f, which is due to the rotation of the
earth, and the bottom friction parametrized by C (Chezy coefficient). Further
more, g and A respectively denote the acceleration due to gravity and the
viscosity coefficient for horizontal momentum exchange. F" and P are exter
nal forcing functions such as wind stress or barometric pressure and pt
represents a source of water or a sink. The last is used in the model of the
Berns-Dollard estuary described in Section 6.2. In this model, it represents the
discharges of ·some rivers into the estuary. More details on these parameters
can be found in [3].

2.2. The domain
The domain for these equations is to a large extent arbitrary. An example is
drawn in Figure 2.2.

open - - --

closed ---

FIGURE 2.2. Example of a domain.

The contour of the domain consists of parts along "land-water" lines (e.g.,

8

river banks or coast lines), which are called closed boundaries, and parts across
the flow field, which are called open boundaries. The latter are artificial boun
daries that have been chosen judiciously across the flow field in order to res
trict the size of the domain (see Section 2.3.2). However, due to assumptions
near these open boundaries, it is advised to choose these boundaries far from
the region of interest.

2.3. The boundary conditions
As said in the previous section, there are two types of boundaries to be dis
tinguished: closed boundaries along "land-water" lines and open boundaries
across the flow field. In this section, we present boundary conditions for both
cases.

2.3.1. Closed boundaries. Let (.,.) define an inner product. Then at closed
boundaries we have the conditions (see Stelling [38))

~aj=~ ~~

(1-a)(v,s)-a(~(v,s),n)=O for A=f=O, (2.3)

where v=[u,v]T and s and n respectively are the local tangential unit vector
(direction counter clock wise) and the normal unit vector (direction inward) at
the boundary. Physically, condition (2.2) describes that there is no mass flow
through the boundary. Furthermore, condition (2.3) represents partial slip
along the closed boundary. This partial-slip condition becomes important
when the mesh size used in the numerical model is smaller than the thickness
of occurring boundary layers in the flow (see e.g. [29)). The amount of "slip"
is parametrized by a. For the special cases a= I and a= 0 this is a "perfect
slip" and a "no slip" boundary condition, respectively. In general a= 1, i.e.
the mesh size is much larger than the boundary layers.

2.3.2. Open boundaries. The open boundaries are artificial "water-water" boun
daries. In general, the conditions at these boundaries consist of combinations
of (v,n), (v,s),t (~(v,n),n), (~(v,s),n), (~f,n), v, and f,. The data needed for
the conditions are usually obtained from measurements or from a model which
encloses the model at hand. In practice, it appears to be more difficult to
measure accurately the velocity than the elevation. As a consequence velocity
data are mainly used for the boundary conditions if the model at hand is
nested in a larger model.
For the purely hyperbolic case (A = 0) it is known that at an inflow boundary
((v,n)>O) two boundary conditions are needed, whereas at an outflow boun
dary ((v,n)..;;;O) only one boundary condition is required [29). In the incom
pletely parabolic case [42) (A::f=O), we need at each boundary one extra condi
tion.

2.3.2.1. The inviscid case (A =O). Usually, at open boundaries the normal velo
city (v,n) or the elevation is prescribed. Moreover, the tangential velocity (v,s)

9

is prescribed if (v,n)>O. In our model, we use the modification of these condi
tions as proposed by Stelling [38], which are weakly-reflective for short wave
components in the solution. At a "velocity boundary", i.e. a boundary where
the velocity is prescribed, we specify the value of

a
(v,n)+yat R (2.4)

and at an "elevation" boundary we specify the value of

Here,

a
f+yatR. (2.5)

R =(v,n)+2Vgll (2.6)

denotes the so-called ingoing Riemann invariant. Furthermore, in both cases
we prescribe the value of the tangential velocity

(v,s) if (v,n)>O. (2.7)

The prescription of the value of the expressions (2.4) and (2.5) needs some
explanation. In these expressions, the time derivative of the ingoing Riemann
invariant is introduced [29, 4, 15, 5, 6, 10], because including these Riemann
invariants into the boundary conditions has the effect that these boundary con
ditions become weakly reflective for short wave components (see [45] and [38,
p. 153]). These short wave components originate mainly from the initial condi
tion and the eigenfrequencies of the model. If these Riemann invariants are
not used, then these short wave components may disturb the solution for a
long time as there is, in general, little dissipation in the model. When the
value of R is not known, then (2.4) and (2.5) can still be used if the parameter
y is chosen such that after the start-up period (see Section 2.4) the expression
yaR / at is small with respect to the magnitude of the normal velocity in the
case of (2.4) or with respect to the magnitude of elevation in the case of (2.5).
We will derive these Riemann invariants for the simplified one-dimensional
case. Consider the one-dimensional equations

u, = -uux-gfx,

f,=-(Hu)x,

which are identical to (recall that f=H -h)

u,= -uux-gHx +ghx,

H, = - Hux -uHx.

(2.8)

(2.8')

Multiplying the second equation with V g / H and adding and subtracting the
equations, we obtain

(u+2Vgll)1 = -(u+VgH) (u+2VgH)x+ghx, (2.9)

or, introducing R± =u+2Vgii,

10

Rf= -(u+VgH)Rf +ghx. (2.9')

These equations express that the solution of (2.8) can be described by two
waves moving in opposite directions with propagation speeds u+ VgH. Notice
that, in this one-dimensional case, we have at the left boundary R = R + and
at the right boundary R = - R - , where R is defined by (2.6). Suppose that
the Riemann invariants are available at the boundaries. Then by prescribing
R + and R - at the left and right boundary, respectively, we are led to a non
reflective boundary treatment. In the two-dimensional case these conditions
can also be used but they yield only in very special cases a non-reflective
boundary treatment, i.e. if the flow is normal to the boundary and if the
Coriolis force and the bottom friction are negligible. Nevertheless, in practice
the flow is often very "close" to such a special case and consequently the
weakly-reflective properties of these conditions are still substantial. It should
be mentioned that Verboom and Slob [45] derived boundary conditions with
improved weakly-reflective properties. Currently, this type of boundary treat
ment is implemented in and tested for the WAQUA system (see [27]). Await
ing the results of this implementation, we used the weakly-reflective boundary
conditions (2.4) and (2.5) as proposed by Stelling.
The well-posedness of the SWEs using these boundary conditions is treated by
Verboom et al. [46].

2.3.2.2. The viscid case(A*O). As already mentioned, in the viscid case at each
boundary one extra condition is needed. Oliger and Sundstrom [29] propose to
prescribe the value of the following expressions:
At an inflow boundary (Ras defined by (2.6)):

R (21~

(V(v,n),n) (2.11)

(v,s),

and at an outflow boundary:

(v,n)

or

A
R - , ~ (V(v,n),n),

vgH

and

(V(v,s),n).

(2.12)

(2.13)

(2.14)

(2.15)

Similar conditions can be prescribed in the inviscid case as we discussed at the
end of the preceding section (see also [29]).
In addition to this set of conditions, we would like to have conditions which
resemble conditions (2.4) and (2.5). In order to find such conditions, we will
derive a class of boundary conditions for the one-dimensional equations. We

11

restrict our considerations to the one-dimensional case, because we assume that
the condition for the tangential velocity is given by the prescription of (2.12)
or (2.15) at an inflow or outflow boundary, respectively. For the viscid case the
equivalent of (2.9') is

Rf= -(u+ Vgll)Rf +ghx + ~ (R + + R-L. (2.16)

In the following, we try to find boundary conditions such that (2.16) is well
posed. An important condition for the well-posedness of (2.16) is that the
right-hand side should satisfy a so-called one-sided Lipschitz condition (see
[2, 9]). We will explain the relevance of this condition briefly. Let a partial
differential equation be given by

(2.17)

with appropriate boundary conditions, where w and f are functions
(w: ~-~n and f: ~n x~n x~n-~n). Furthermore, let an inner product be
defined by

X,

<g,h> = j(g,h)dx, (2.18)
x,

with a generated norm denoted by 1-1- Then the one-sided Lipschitz condition
we will use is defined by

(2.19)

where aE~. If this condition is satisfied then it can be proven (e.g. Dahlquist
[2]) that

lw(t2)-w(t2)l =:;;;e''(',-,,i lw(t1)-w(t1)I for t2;;,,,t1. (2.20)

Now, we can proof the following theorem for the frozen coefficient form of
(2.16). (In this theorem the difference w-w will be denoted by /J.w.)

THEOREM 2.3.1. Let the flow be subcritical and the frozen coefficient form of
(2.16) be given by

Rf= -(uo+ y'gii;)Rf +ghx + ~ (R + + R-)xx•

Let the conditions at the left boundary be prescribed by

!J.u=O

or

A (AR + + AR -)x + aAR + + /3AR - = 0

with /3-a=2 y'gii; and a=:;;;-y'gii; in the case of outflow, and by

Au=O and M=O

(2.21)

(2.22)

(2.23)

(2.24)

12

or

A(JlR+ +aR-)x+aM+ +paR- =0 and aR- +MR+ =0 (2.25)

with (2 v'gii; +a)- (a+ /3)8 + {382 :,;;;; 0 in the case of inflow. Let the conditions at
the right boundary be given by interchanging the roles of M + and aR - in
(2.22)-(2.25). Then the right-hand side of (2.21) satisfies the one-sided Lipschitz
condition with a= 0.

PROOF. For this linear case, substitution of the right-hand side of (2.21) into
the Lipschitz condition with a=0 yields the inequality

{-(c+(aR+)2 +c-(M-)2)+ (2.26)
x,

A(aR+ +M-)x(aR+ +M-)} I ;;-A j(aR+ +aR-)~dx..;;0
x,

wJltre c± =u0 + v'gii;. The boundary conditions for both solutions
(R- and R±) are equal. Hence, the differences JlR± have homogeneous
boundary conditions. Furthermore, forcing terms cancel out. Now, appropri
ate boundary conditions have to be found such that (2.26) holds. Notice that
the integral has a negative contribution to the left-hand side of (2.26). There
fore, we will omit the integral.
If one chooses the boundary condition aR + + aR - = 0 (i.e. au= 0), then
from (2.26) there remains

-2u0(M +)2 I;; ..;;o.

The term at the left boundary, i.e. at x1, is negative at outflow (u 0 <0). Hence,
it is sufficient to prescribe (2.22) at an outflow boundary. If the left boundary
is an inflow boundary, then the term at this boundary is positive and therefore
an extra condition is needed such that M + =0. For example by the condition
as=0. Hence, it is sufficient to prescribe (2.24) at in inflow boundary.
Next, at the left boundary, we consider boundary conditions of the type

A(JlR+ +aR-)x+aflR+ +paR- =0. (2.27)

Substitution into the inequality (2.26) yields, at the left boundary, the inequal
ity

(c+ +a)(aR +)2 +(a+/3)aR + aR- +(c- + /3)(aR-)2 ..;;0. (2.28)

The constants a and /3 should be chosen such that this quadratic form is nega
tive definite. It is definite if its discriminant is negative. Evaluation of this
discriminant leads to the condition

(a-{3)2-4(c+c- +(ac- +pc+))..;;0.

Assuming that u0 =0, then this inequality is equal to

(a-{3+2 v'gii;)2..;;o.

(2.29)

(2.30)

13

It is now e~verified, that (bW is satisfied at outflow (u0 .;;;;0) for the choice
/3-a.=2 V gH0 and a,;;;- y gH0 . This proves condition (2.23).
At an inflow boundary we add to (2.27) the condition !::.R- +MR+ =0. Sub
stitution into (2.28) yields the inequality

c+ +a-(a+f3)8+(c- +/3)82 .;;;;0.

As the flow is subcritical, we have that c + .;;;;2 viii; and c - .;;;;0. Using these
inequalities we are led to condition (2.25). □

The inflow conditions (2.10) and (2.11) proposed by Oliger and Sundstrom are
now found for a= f3 = 0 and 8 = - oo in (2.25). For this choice we obtain from
(2.25) that we have to impose the conditions !::.ux =0 and !::.R + =0, which are
the perturbed one-dimensional equivalents of (2.11) an,.Q._..(1.10), respectively.
Furthermore at outflow we find for a= - 2 y gH O the condition
A!::.ux - ;t;fi; !::.R + which is the perturbed linearized equivalent of (2.14).
Furthermore, at inflow the theorem suggests to impose the conditions (chosing
a= /3, 8 = - 1) A !::.ux + a!::.u = 0 and !::. VgH = 0 which are, assuming the
differences to be small, the perturbed equivalents of prescribing the expres
sions:

A I.,,;-; (v,n)+-('v(v,n),n) and { for a_.;;;;- 2 vgH.
a

(2.31)

At outflow we find from the theorem the condition (chosing /3= -a= viii;)
A!::.ux-ygii;!::.(2VgH) =0 which is for small differences (!::.H<<H0) the
perturbed equivalent of the condition imposed by prescribing the value of

g{-A ('v(v,n),n). (2.32)

The boundary conditions (2.31) and (2.32) are almost of the same form as the
conditions (2.4) and (2.5).

REMARK. The boundary conditions given in the theorem are not changed when
also a linear bottom friction term is taken into account. Suppose that a term
-Au is introduced in the right-hand side of the first equation of (2.8). Then we
will find in (2.21) the term -X(R + + R -) and in (2.26) the term

-Xj(t::.R+ +!::.R-)2dx.
X1

If the inequality (2.26) is satisfied without the last term (which is the case for
the various boundary conditions specified in the theorem), then it will also
hold when this term is included because the term is negative.

14

2.4. The initial values
In practical applications, almost any smooth initial function, consistent with
the boundary conditions, will eventually lead, after the start-up period, to the
same solution. This period is determined by the amount of dissipation in the
equations (2.1), by the reflection at the open boundaries (parametrized by y, cf.
(2.4) and (2.5)), by the geometry and by the difference between the initial func
tion and the true solution at the starting time. Hence, after the start-up
period, the solution is completely determined by the boundary conditions and
the forcing terms, and does not depend anymore on the initial values. It
should be noticed that these boundary conditions may be time-dependent,
which consequently yields a time-dependent solution.

3. THE NUMERICAL ALGORITHM

In this section, we will describe the discretization of the SWEs. Since the space
discretization is performed on a so-called staggered grid, we will first describe
this staggering. Next, we discuss how the boundaries of the domain are
represented in this grid. Thereafter, the space discretization of the various
terms is given. Further, the time discretization, its stabilization, and the
discretization of the weakly-reflective boundary conditions will be described.
Finally, the drying and flooding procedure used is explained.

3.1. Grid staggering
Grid staggering, originally introduced by Hansen [14], is often applied in the
space discretization of partial differential equations. By this technique
u, v and f are calculated at different grid points, which makes it possible to
decrease the storage requirements by a factor four without loss of accuracy
with respect to the main terms of the SWEs. The idea will be illustrated by the
one-dimensional equations

u,=-gfx,

f,=-Houx,

(3.1)

which describe the dominant part of the SWEs in one dimension. If these
equations are semi-discretized using second-order central differences, then we
obtain

(U1);= -g(Z;+1-Z;-1)/(2il.x),

(Z,)1 = - Ho(½+ 1 - u1 _ i)/(2Llx),

(3.2)

where (U(t)); and (Z(t)); approximate u(illx,t) and WLix,t), respectively.
Observe that the subset of equations with i even, j odd is independent of the
subset with i odd, j even. Hence, we may omit one of these sets, without loss
of accuracy, thereby reducing the number of equations (and thus the number
of dependent variables) by a factor two. Applying the same technique in the
y-direction will lead to a final reduction by a factor four. A part of the result
ing grid is drawn in Figure 3.1.

15

5ZUZUZU
4 V V V
3ZUZUZU
2 V V V
lZUZUZU

I 2 3 4 5 6

FIGURE 3.1. Position of the variables U, V and Z in space.

Those components, which are not available in a particular point can be
obtained by averaging. In [38] more details can be found on the advantages of
a space staggered grid.

3.2. Representation of the boundaries
In the discretization, the boundary of the domain is approximated by a
polygon. This polygon consists of line pieces which are parallel to either the
x-axis or the y-axis. The boundary is always parallel to the x-axis when it
crosses a V-point and parallel to the y-axis when it crosses a U-point. Boun
dary pieces in both directions can cross through Z-points. An example of such
a polygon is given in Figure 3.2.

r--v,
Z U Z V
t.7 v Lv--v1
?,VZUZVZU v-v, V V I

vzvzv
LV---V_J

FIGURE 3.2. Boundary of the computational domain.

Due to this convention, we have that at a closed boundary either U or V is
zero. Hence, this approximation does not simulate well situations where the
physical boundaries are not parallel to either the x-axis or the y-axis. This has
some consequences for the discretization as will be discussed in Section 3.4.2.
In fact, for complex geometries this representation of the domain is only first
order accurate, i.e. the maximal distance between the numerical boundary and
the true boundary decreases linearly with the mesh size.

3.3. Space discretization
In this section, the space discretization of the various terms of (2.1) will be
described. As the y-derivatives are discretized similar to the x-derivatives, we
only consider the x-derivatives. This similarity property is also used in the
implementation, which reduces the length of the code considerably. For
presentation reasons only, an exception will be made for the approximation of
U at a V-point. Furthermore, with respect to the discretization near

16

boundaries, only the treatment at left boundaries is given. The treatment at
right boundaries is analogous.
Two discretizations are implemented, a second-order and a fourth-order accu
rate discretization. The fourth-order accurate discretization allows the use of a
coarser spatial grid by which the stability condition imposed by the explicit
time discretization used is relaxed. However, this advantage cannot always be
exploited, because there are many cases where the choice of the space mesh is
determined by the resolution needed to represent the boundary to a sufficient
accurate degree (see the previous section). In such cases, the second-order ver
sion may already simulate the flow at internal points very accurately. At the
boundaries, lower-order discretizations are used in order to obtain a stable
discretization. It turns out that this lower-order discretizations do not neces
sarily lead to a reduced accuracy (see Section 3.4.2). By Gustafsson [13] it is
shown for the discretized form of hyperbolic equations that, under certain
assumptions, the order of convergence is not decreased if at the boundaries
approximations of one-order lower accuracy are used. The second-order
discretization is almost identical to that of Stelling [38]. The fourth-order
accurate discretization does not give additional problems in the implementa
tion.

Below all discretizations are tabulated. In Table 3.1, the discretization of U at
a V-point is given, whereas in Table 3.2 the other discretizations used are
specified.
The Tables 3.1 and 3.2 differ only in the presentation of the quantities given in
the first column. In the first column of Table 3.1 notational details are given,
whereas in the first column of Table 3.2 the terms to be discretized are listed.
The second column specifies the position of the point at which the discretiza
tion is needed. For all terms, first the discretization at an internal point is
given followed by the discretization in the neighbourhood of a boundary. In
the latter case, the point at which the discretization is needed is denoted by a
bold letter. A closed (open) boundary is indicated by I (j). In our notation, I
or j directly follows the actual position of the boundary. In order to save
space, we have represented several situations at the same time. For example,
the discretization (3.3.b) is used to approximate U at Z. Here, three different
cases may occur, viz. U I Z U Z U, U j Z U Z U, and U Z I U Z U. These
notations respectively mean a closed U-boundary, an open left U-boundary,
and an elevation boundary. Hence, when more boundaries are indicated then
this represents as many cases, where in each case only one of the indicated
boundaries is valid. An exception is made for the case denoted by an asterisk
in (3.10.b). Here a discretization is needed at an elevation point located
between two closed boundaries.
The third column gives the actual discretization formulas. It is assumed that
the space mesh is constant in x and y-direction and it will be denoted by /::,.x_
This is the space mesh of the unstaggered grid (cf. (3.2)). For the notation of
the discretizations we use the so-called shift operator E. Let ~ be a function
defined on ~ 2• Then the shift operator Eis defined by E~i:=~i+l, where

17

- -
g;=g(ilh,y). Likewise, the shift operator Eis defined by Eg/=g1+ 1, where
g1 =~x,j!iy) (!iy =Lh). Below we omit the subscripts.
The order of accuracy of the discretizations is denoted by p, as given in the
fourth column. The value of p is found by applying the discretization to a
smooth test function.
In the fifth column the formula number of the discretization is given for later
reference. Moreover, an asterisk is used in this column to indicate that the
discretization is different from that used by Stelling.

As already mentioned, in Table 3.1 the discretization for the averaged value of
U at a V-point is given. The construction of this averaged value proceeds in
two steps; fir~t U is appro~ated at a Z-point by averaging in x-direction
(denoted by ft), thereafter ft is averaged in y-direction which finally gives
the approximation of U at the V-point (denoted by "f?Y)_

notation position Discretization of p Formula

U at a V-point number

internally { __2.__(E+ E- 1)-_J_(E3 +E- 3)}U
16 16

4 (3.3.a)*

vx u11z1uzu T{E+E- 1}U 2 (3.3.b)

u11zuzu -½-PE-E3}U 2 (3.3.c}*

internally { __2.__(E + i;-l) _ _J_(E3 + i;-3)} vx
16 16

4 (3.3.d)*

vxy z1vzvz -½-{E+E- 1}Ux 2 (3.3.e)
VI I zv z

z IV z V -½-Pi-i3}ux 2 (3.3.f)'

TABLE 3.1. Approximation of U at a V point

Stelling uses at all points (3.3.b) and (3.3.e), successively. This approach does
not always lead to a first-order accurate approximation of U at a V-point near
a boundary (see Section 3.4.2). Nevertheless, "f?Y is used in (3.5.c) (see Table
3.2), which itself is a rather crude approximation (see the discussion in Sec
tions 3.4.1 and 3.4.2). The other discretizations are given in Table 3.2. For a
discussion on the choice of the discretizations, we refer to the next section.

18

term position Discretization p Formula

number

internally I/ (2Ax){ f<E2-E-2)-fi(E4- E-4)}V 4 (3.4.a)'

v1z1vzu I/ (2Ax){ f(E 2 -E-2)}V 2 (3.4.b)'

Ux I/ (2Ax){ f(E 2 - £-2)}V for v;;;.o 2
v1zuzv

I /(2Ax){£2- l}V for V<O I
(3.4.c)'

I /(2Ax){E2 - l}V for V<O I
v1z1uzv

0 for v;;;.o 0
(3.4.d)

(Ax)3uxxxx internally I/ (16Ax){6-4(£2 + £-2)+(£4 + £-4)}V 3 (3.4.d)'

internally I/ (2Ax){f(£2 -£-2)-fz(E4_ £-4)} V 4 (3.5.a)'

V V
VI 1zvz

V V I/ (2Ax){-}(E2 - £-2)} V 2 (3.5.b)'
V V V
z1vzvz

Vx V V V

V V
VI IZV z l/(2Ax){(E2-J)}Vfor uxv<O I

V V
V V

(3.5.c)

ZI vz 0 for [ixr;;;.o 0
V V

(Ax)3vxxxx internally J / (16Ax){6-4(£2 + £-2)+(£4 + E-4)} V 3 (3.5.d)'

internally J / (2Ax){ 1I.(£ I - £-1)-_!_(£3 _ £-3)}2 4 (3.6.a)'
tx

24 24

v11z1uzv I/ (2Ax){E 1 -£- 1 }Z 2 (3.6.b.)

internally { _..2_(£ + £-1)-_1_(£3 + £-3nz
16 16 4 (3.7.a)

t v1z1uz -}{E+E- 1}Z 2 (3.7.b)

UIZ V z -}{3E-£3}Z 2 (3.7.c)'

internally I /((2Ax)2){-t+t(E2 +£-2)-fz(E4+ £-4)}V 4 (3.8.a)'

Uxx v11z1vzu I/ ((2Ax)2){£2 -2+ E- 2 }V 2 (3.8.b)

v11z1uzv I/ ((2Ax)2){£ 2 -l}V 0 (3.8.c)'

TABLE 3.2. Discretizations (to be continued)

19

term position Discretization p Formula

number

internally I /((2,h:)2){-t +4"(£2 + E-2)-fi-(E4 + E-4)}V 4 (3.9.a}'

V V
UI IZUZ (3.9.b)

V V
I/ ((2~)2){(£ 2 -2+ E-2)} V 2

V V V
z1uzuz
V V V

V V
Vxx u1zuz (3.9.c)

V V
I/ ((2~)2){(£2-/)} V 0

V V
ZI uz
V V

V V
I/ ((2~}2){(£2 -(3-211)/)} V

u1zuz I (3.9.d)
V V

11= I/ [I +(I -a)~/ a))

internally I/ (2~){ 11.(£ 1 -E- 1)-_J_(E3 - E- 3)}HU 24 24 4 (3.10.a}*

UI z u z
(Hu)x ZI uzu I/ (2~){£ 1 -E- 1 }HU 2 (3.10.b)

u I z I u·

UIZ uz I /(2~){ -~E- 1 +1§..£ 1 _ _J_E 3)}HU 24 24 24 0 (3.10.c)*

TABLE 3.2 (cont'd). Discretizations.

As already mentioned, we have implemented a second-order accurate version
and a fourth-order accurate version. In these tables the discretizations are
given exactly as they are used in the fourth-order implementation. It will be
clear that the fourth-order accuracy is only obtained at internal points. The
discretizations as used in the second-order implementations are found from the
tables by replacing the discretization at internal points by the discretizations
with number (* .b). Moreover, in the second-order case (3.3.e) is used instead
of (3.3.d) at internal points.

20

3.4. Discussion
In this section, we motivate the choice of the preceeding discretizations. Spe
cial attention will be given to the following topics: boundary treatment,
discretization near 'zig-zag boundaries', artificial diffusion and conservation of
mass.

3.4.1. On the effect of the boundary treatment. The given discretizations at the
boundaries are only in part consistent with the boundary conditions derived in
Section 2.3. The main terms of the SWEs are treated always consistent with
these boundary conditions, but the advection and viscosity terms are not. The
reason for this is that the representation of the boundary may cause severe
numerical errors if straightforward consistent approximations of the advection
terms are used (see Section 3.4.2). In the following we analyse the effect of
such an (inconsistent) discretization. The discretization at the left boundary
given in the tables may be considered as an approximation of the perturbed
SWEs on the strip of width 6.x located at this boundary (see Figure 3.3); the
perturbed SWEs are given by:

Wr =f(W,Wx,WyWxx,Wyy,X,t)+p(w,Wx,Wxx,X,t), (3.11)

where w=(u,v,!)7 and f is the right-hand side of (2.1). Furthermore, the per
turbation p is given by

Pl =(-u'+ 21.x)ux+uux-AUxx,

- - . -4._ - l-11 -P2 -(mm(u, O)+ 26,x,)vx 2A (26,x,)2 v +uvx Avxx, (3.12)

p3=0,

where u'=min(u, 0) at a closed boundary and at an elevation boundary, and
u'=u at a velocity boundary.

(3.11) (2.1)

plw.:t: where houndar~
(ondition~ arc impo~i:d

FIGURE 3.3. Domains where (3.11) and (2.1) are valid.

Furthermore, the boundary conditions are given by (2.2) if the left boundary
is closed, i.e. u = 0, and by (2.4) or (2.5) if the left boundary is open, i.e.
u +yR1 = f"(t) or f +yR1 = .f (t). It should be noticed, that condition (2.7) is
not imposed. This is avoided by an adaptation of the equation at an inflow
boundary such that the coefficient of vx is always non-negative.(see the second
equation of (3.12)). At the right-hand side of the strip for which (3.11) is
valid, the SWEs are as given in (2.1).

21

The terms u'ux and min(u, 0)vx arise from the discretizations {(3.4.c),(3.4.d)}
and (3.5.c), respectively. Furthermore, 1 /(2Ax) Ux follows from (3.8.c) and
1 / (2A.x)vx and 2(1-11) / ((2Ax)2) v can be derived from (3.9.d) in the follow
ing way:

l (E2 -(3-211)J)V=
(2Ax)2

1 1 1
(2Ax) { (2Ax) (E2-J)V}- (2Ax)2 (2-211)V~

1 1-y
2Ax Vx -2 (2Ax)2 V.

If we let Ax tend to zero, then we find from (3.11) that additionally (2.3) and
(2.15) are imposed, i.e. (1-a)v-vx =0 at a closed boundary and Vx =0 at an
outflow boundary. Moreover, we find at all types of boundaries the condition
ux=0 and at an inflow boundary (u>0) vx=0 (which replaces (2.7)). The
latter causes that, for example, at a closed boundary three conditions are
imposed. Hence, if Ax tends to zero the problem is overspecified. This may
lead to instabilities and discontinuities (see Oliger and Sundstrom [29]), but so
far these were not observed, which we ascribe to the fact that Ax is still very
large.

REMARK. By a small adaptation of the discretization, the expression (2.13) or
(2.32) can be prescribed at an outflow boundary.
The expression (2.13) is specified if at an open outflow boundary u is also used
as a boundary condition for the viscosity term. Thereby, in the case of an open
boundary Aux / (2Ax) in p 1 (see (3.12)) is replaced by Auxx ·
The expression (2.32) is prescribed at an outflow boundary if in the first
momentum equation in the viscosity term ux = 0 is imposed and furthermore
the elevation is specified. This is identical to prescribing the expression
Aux+ gr In fact, this expression is specified in this way in the first momen
tum equation. However, an adaptation of the calculation of H, which needs t
should be made. Instead of discretization (3.7.b), the expression (3.7.c) should
be used to approximate Hat the velocity point adjacent to the boundary. We
have refrained from implementing these adaptations, because it is specious to
do so as long as the treatment at inflow boundaries and closed boundaries is
not fully consistent.

We observe that the discretizations described above lead to a simple imple
mentation. Moreover, from (3.11) we conclude that the perturbed SWEs are
close to the true SWEs if
1.a. the flow at the boundary is strongly sub-critical i.e. I u I << viii if u >0

at a left boundary or if u <0 at a right boundary,
1.b. the mesh-size is such that A/ (2Ax) is much less than viii,
or if
2. the terms Ux and Vx are approximately zero at the boundaries and a= l

22

(see Section (2.3.1)).
In many engineering problems these conditions are fulfilled to a sufficient
degree (see also the discussion of Stelling and Willemse on this subject [40]).

Condition 1 can be understood from (2.9). From this equation, we have that
the propagation speed of the waves is given by the factor I u I + Vgll. Simi
larly, for the two-dimensional equations the propagation speed is Iv I + Vgll.
If, over one mesh width, we perturb this speed by a quantity of magnitude less
than or equal to I u I + A / (2Lh), which is the case when (3.11) is valid, then
the error may be expected to be small if I u I +A/ (2Lh)< < VgH, i.e. for a
strongly subcritical flow and for a space mesh such that A / (2Lh) is small.
Condition 2 is derived by comparison of (3.11) and (2.1). If this condition is
satisfied then (3.11) and (2.1) are equal.

3.4.2. Discretization near 'zig-zag boundaries'. The discretization of the advec
tion terms and viscosity terms near boundaries seems to be crude. However,
this treatment is more accurate than standard central differences for flows
along boundaries which are neither parallel to the x-axis nor to the y-axis (so
called 'zig-zag boundaries'). For example consider the boundary drawn in Fig
ure 3.4, which should simulate a boundary given by a "diagonal" boundary.

',(; ... z U z U z numerical boundary

L:'V,.0 V V physical boundary

-~-f ... ~ i u
'u ... z u
~v-

'·
FIGURE 3.4. "Zig-zag" boundary.

A flow parallel to the "diagonal" physical boundary is not disturbed by the
boundary in the free slip case, i.e. a=O in (2.2). In the numerical scheme
where the "diagonal" boundary is represented by a "zig-zag" boundary this
property should be approximated as best as possible. A straightforward cen
tral (second-order) discretization of ux at the point indicated by U would lead
to

[ux]= 1 / (4Lh){E2}U.

If in this case U is positive, then the discretization of -uux will act as a bot
tom friction term. If, on the other hand, U is negative, then this term will have
a destabilizing effect. Therefore, the differences are chosen as given in (3.4.d).
A straightforward discretization of uxx at the same point would lead to

[UxxJ= 1 / (2LU)2{E2 -2}U. (3.13)

This discretization will also act as a friction term and thereby a free slip boun
dary is not correctly simulated. Therefore, the discretization is chosen as given
in (3.8.c). Stelling uses (3.13) in this case [38, p. 147].

23

A similar reasoning justifies the discretizations (3.5.c) and (3.9.c) of uvx and
vxx, respectively, at the point indicated by V. An additional problem at this
point is the computation of U at V. Stelling approximates U at V by averaging
over the four neighbouring U-values. This gives only 3/4 of the real value if
the flow is parallel to the boundary. Therefore, we employed approximations
as given in Table 3.1, which give at least a first-order approximation in cases
as discussed here.
With respect to the continuity equation, the "zig-zag" representation of the
boundary has little influence. Considering the discretization of the continuity
equation at the point indicated by Z and assuming constant depth, then the
second-order discretization of the right-hand side of the continuity equation is
of the form -H(U+V-(U+V))/(2.lx) where U and V are zero. This
discretization does not change if we set U = - V, where V may have an arbi
trary value, i.e. a flow parallel to the boundary.
As a consequence of the above approach the deficiency in the "zig-zag"
representation of a "diagonal" boundary is partly compensated by the discreti
zation. An alternative is the transformation of the domain to another domain
in which boundaries coincide with grid lines (see e.g. [48, 47]). However, when
drying and flooding should be taken into account similar problems as dis
cussed in this section can occur in the transformed domain.

3.4.3. Artificial diffusion. A known problem of the discretizations (3.4.a),
(3.4.b), (3.5.a) and (3.5.b) is that they may give rise to so-called 2.lx waves (see
[38] and [43]). This is caused by the fact that some eigenvalues of the operator
become close to zero for high-frequency components in the solution. The
occurrence of the 2.lx waves can be avoided by adding "artificial diffusion" to
the momentum equations. Adding diffusion of the form (fu:)uxx to the discre
tized first momentum equation, where a second-order derivative is used, gives
rise to a considerable amount of numerical diffusion and decreases the accu
racy to first-order. As a consequence, for many practical flow problems the
accuracy of the low-frequency components in the solution is seriously
influenced. Therefore we applied diffusion of the form -c(ilx)3uxxxx, where a
fourth-order derivative is used and where c is a parameter which is to a large
extent independent of the problem. This gives rise to a third-order discretiza
tion. For low-frequency components in the solution the damping effect of the
fourth-order diffusion term is much less than for the second-order term. For
high-frequency components, however, the damping effect of both treatments
may well be of the same order of magnitude depending on the constants used.
By numerical experiments it was found that c E[.2, .8] gives the desired robust
ness for a large variety of problems. For the same reasons, (3.5.d) multiplied
by - c is added to the second momentum equation.

24

3.4.4. Conservation of mass. The discretization (3.10) used in the continuity
equations conserves mass near closed boundaries and in the internal domain.
This can be shown by inspection of the associated matrix:

-2s 1 26 -1

1 I -27 27 -1
1

I 1 -27 27 -1
48Ax

I 1 -27

I
where the first column corresponds with the boundary point (which has a zero
value in this case). The first row originates from (3.10.c), whereas the other
rows originate from (3.10.a). For conservation the column sums of this matrix,
except for the first column, should be zero (see also [12, p. 61), which is clearly
the case. At closed boundaries, the discretization is zero-order consistent. The
conservation property is in this case more important than consistency. In the
same way it can be seen that at open boundaries the discretization does not
preserve mass. The associated matrix is of the form

-24 1 24

1 I -27 27 -1
1

I 1 -27 27 -1
48Ax

I 1 -27

I 1

where the first column is again associated with the boundary point. Here, the
first row originates from (3.10.b). Applying this matrix to the vector UH and
summing over all elements of the result vector yields a non-zero contribution
at the open boundary of the form

48~ {-23-2E+E2}UH=

-1 1 -I
2Ax UH+ 48AxE{E -2+E}UH,

where the boundary point is used as a reference for the shift operator. If
instead of (3.10.b) the approximation (3.10.c) is also used at open boundaries,
then after the same manipulations a contribution -1 / (2Ax)UH will be
found. This is considered ideal, because the only increase or decrease of the
amount of mass is determined by the quantity imposed at the boundary.
Using (3.10.b) there is an additional increase or decrease of mass. The amount
of mass is solution-dependent. This contribution is small if the second deriva
tive of the solution is small, which is usually the case. Therefore, we prefer to
use the second-order discretization instead of the mass-conserving discretiza
tion. Nevertheless, there is no additional difficulty in implementing the mass
conserving approximation.

25

3.5. Time discretization
In this section, the time integration will be described. For this purpose the
method of lines approach will be used. First we write (2.1) in the compact
notation

W1 =f(W,Wx,WyWxx,Wyy,X,t), t>to, XEfJ, (3.14)

where w=(u,v,tf. After space discretization of this PDE and its boundary
conditions (see Section 2.3) on the space staggered grid, we obtain the system
of ODEs

d
dt W(t)=F(W,t), t>t0 . (3.15)

For the time integration of this system several integrators can be used. A sur
vey is given in [18]. We use the classical Runge-Kutta formula given by (for a
discussion of our choice we refer to Section 4.2., see also Praagman [31])

wn+I =W" +M(K1 +2K2 +2K3 +!¼) / 6, (3.16)

where

K1 =F(W",tn),

K2 =F(W" +½iltK1,tn +½.:lt),

I I
K3 =F(W" + 2 iltK2,tn +2 M),

I¼ =F(W" +iltK3,ln +i).

In this formula, tn=t0+nM and W" approximates W(tn)- The stability region
of this formula in the complex plane is drawn in Figure 3.5. For linear stabil
ity it is needed that the eigenvalues of iltJ are within this region. Here J is the
Jacobian matrix of F (J =aF(W,t) I aw)

Cf)

2 .>(
Cll
>,

() ~

-2

FIGURE 3.5. Stability region of the classical Runge-Kutta method.

This picture shows that the classical Runge-Kutta method is conditionally
stable, i.e., given a certain problem there is a restriction on the time step. For
the SWEs, the eigenvalues may vary from almost purely imaginary to real
depending on the depth. The imaginary parts of the eigenvalues are due to the

26

main terms of the SWEs (see (3.1)) and to the advection terms. The negative
real parts of the eigenvalues arise from the bottom friction and the viscosity
terms. In general, the ratio A / (l'.l.x VgH), reflecting the relative importance of
the viscosity terms to the main terms with respect to stability, is rather small.
Hence, in general, the viscosity terms are not so important with respect to sta
bility. However, if the depth tends to zero (for example on a tidal flat), then
the bottom friction term tends to minus infinity. As this will lead to an
unstable calculation, an upper limit is set to this friction term in such a way
that the corresponding eigenvalue is still within the stability region. This adap
tation of the momentum equations does not seriously influence the accuracy of
the solution as shallow regions are, in general, only important as a water
storage area (see [31). We will describe this in more detail in Section 3.8.

3. 6. Stabilization of the time integration
In this subsection, the stabilization procedure as employed in the code will be
described. The stabilization, based on smoothing of the discretized right-hand
side function, allows to use significant larger time steps than the maximum
time step dictated by the stability condition of the explicit method used.
Several authors [25,21,44] described and applied implicit smoothing. However,
with respect to vector computing, we prefer to use explicit techniques (see Sec
tion 4.2). The general concept of this type of smoothing for hyperbolic partial
differential equations is treated in [49]. It is analysed more extensively in [19]
for hyperbolic as well as for parabolic equations, and in [17] for solving elliptic
equations, A review of the various applications of smoothing is given in [16].

The technique basically consists of solving

d
dt W(t)=S(F(W,t)), t>t0 , (3.17)

instead of (3.15), where S is a smoothing function. The function S should be
chosen such that the spectral radius of oS(F(W,t)) / aw is minimized provided
that the evaluation of S(F) is cheap and the error due to the smoothing is lim
ited. Evidently, the error introduced by this smoothing depends on the
difference

S(F(W,t))- F(W,t) (3.18)

where W is a solution of (3.15). This error is small if F(W,t) is smooth, i.e. if
successive elements of the vector F(W,t) differ slightly. For the original equa
tion (3.14) this implies that the right-hand side f(.) should also be smooth if the
solution w is substituted, i.e. it should have small space derivatives. This is
trivially the case when we consider a stationary solution. In that case, the time
derivative of w is zero and consequently all space derivatives of the right-hand
side are zero. In the case, that the solution varies slowly in time, i.e. the solu
tion is close to a steady state, we expect that the space derivatives of the right
hand side are close to zero. In [49] examples are given for which it is shown
that small time derivatives of the solution result in small space derivatives of

27

the right-hand side. Moreover, in this paper it is shown that smoothing
inherently appears in implicit time integration methods, which explains the
improved stability behaviour of such methods.
It should be noticed that this type of smoothing is different from smoothing
the numerical solution itself. In the latter case smoothing may only be applied,
without danger of loss of accuracy, if the solution itself is smooth, i.e. if the
solution has small derivatives with respect to the space variables. This is in
general not the case. Smoothing of the solution is, for example, proposed by
Shuman [36]. A more sophisticated example is the Richtmeyer scheme [33],
which may be regarded as a two-stage second-order Runge-Kutta method,
where in the first stage the solution is smoothed, in order to obtain a stable
method for hyperbolic equations.
In the following we introduce the smoothing used, we derive the reduction of
the spectral radius obtained after its application to the two-dimensional SWEs,
and we consider its influence on the accuracy of the solution.

3.6.1. The choice of S. As a starting point in our presentation, we consider a
smoothing based on the Jacobian matrix of (3.15), i.e. Sis of the form

S(F)=Q(Jn)F+g (3.19)

where Q(z) is a rational function with Q(z)➔ l for z➔O, g is a correction term
such that the error (3.18) tends to zero if the mesh size tends to zero, and In is
the normalized Jacobian, i.e. In =I / p(I). Evidently, the eigenvalues of In are
all contained within the unit disc in the complex plane. Evaluation of Q(In)F
is in general expensive. Therefore, we shall attempt to find simplified forms of
In, which we denote by ln, such that Q(Jn)F can be computed efficiently. We
will start to consider the one-dimensional SWEs, which can be found from
(2.1) by setting v and all y-derivatives equal to zero. For the construction of
the smoothing procedure we only take into account the main terms of the
SWEs (see (3.2)), because, in the problems we consider, these terms dominate
the spectral radius. Nevertheless, the smoothing is applied to the complete
discretized right-hand side of the SWEs (cf. (3.17)).

3.6.2. One-dimensional problems. We start with the description of our smooth
ing technique for one-dimensional problems. The explicit smoothing function
for the one-dimensional case we use, is defined by

where

Sk(F)=SkF+g_,,,

Sk=I+µkDk,

Dk=4Dk-1(/+Dk-1), k~2,
-2

D1 =In,

(3.20)

28

- - 2(.::u) -
ln- , c;;-1.

ygHo

Here, J is of the form

_ [O -gl3T l
J= Hol3 0 '

where the submatrix H013 follows from the discretization (3.10.b) with constant
depth H (denoted by H 0). Later on, we will show that by this smoothing
function the spectral radius of the Jacobian of the SWEs can be r~uced very
effectively. It is straightforward to show that the eigenvalues of Jn are con
tained in the interval [-i,i) on ~~ imaginary axis (see also Section 3.6.4).
Consequently, the eigenvalues of J n are real and contained in the interval
[-1,0]._For the smoothing operator (3.20), the function Q(z) is of the form
Q(z)=Q(z2).

REMARK. For the stability properties of the smoothing as applied here it is
enough to consider the spectrum of the smoothed Jacobian matrix. This is due
to the fact that the Jacobian matrix is similar to a symmetric matrix by means
of a positive definit matrix which itself is independent of the meshsize (see for
more details the proof of Lemma 3.6.2). In contrast with the famous Von Neu
mann analysis the boundary conditions are included in this approach.
Nevertheless, the Von Neumann analysis yields the same results as the
approach followed here (see [49]).

ExAMPLE 3.1. In order to illustrate the form of J, Sk and~. we consider the
one-dimensional problem on the interval [O,L], where at the left and right
boundary the velocity and the elevation are respectively prescribed, i.e.

u(O,t)=u0(t), (3.21)

t(L,t)= tL(t).

Let the ordering of the dependent variables be given by

~(t)= U2j(t) for j = l, ... ,N, (3.22)

~(t)=Z2j-2N-1(t) for j =N + 1, ... ,2N,

where U3/t) and Z 2j- 1(t) approximate u(2j.::u,t) and t((2J-l)LU,t), respec
tively. l•urthermore, LU= LI (2N + 1). The values of W 0(t) = u0(t) and
W2N+I =tL(t) are given and occur in_!he forcing term of the discretized equa
tion. For this ordering the Jacobian J assumes the form given in Figure 3.6.

-I
21x

FIGURE 3.6. The form of the simplified Jacobian.

29

Starting from this J we find, according to (3.20), that Dk is of the form as
given in Figure 3.7. A number written on a (anti-) diagonal denotes the value
for all elements of the (anti-) diagonal. If an anti-diagonal and a diagonal cross
through the same point then the values of the anti-diagonal and the diagonal
are simply added. This only occurs if the elements of the anti-diagonal have
the value -1/4 (see (3.24)).

30

I
4

FIGURE 3.7. The structure of Dk.

I
4

From this structure we observe that at internal points Sk(F) is given by the
simple formula

1 1 1
(Sk(F))j = 4/LkF'_;-t-1 +(l -2P.k)F'_; + 4P.kFj +t-1 , (3.23)

as for these points (~)j is zero. Furthermore, near boundaries we have

31

for j = l, ... ,2k-l _ l:
I I

(Sk(F))1= -4µkF-1+2k-l +(l-2µdF1

I
+4µkFj+2•-, +(~)j

forj=2k-l:
I I

(Sk(F))1=0-2µk)FJ+4µkFJ+2k-l +(~)j

for j =N-2k-l + l, ... ,N:
I I

(Sk(F))1=4µkFj-t-' +(l-2µk)F1

I
+4µkF -J+2N+l-2k-l +(~)j

for j =N + l, ... ,N +2k-l: (3.24)
I I

(Sk(F))j =4µkF -J+l+2N+2k-l +(l -2µk)Fj

I
+4µkFJ+t- 1 +(~)J

for j = 2N - 2k - I :

I I
(Sk(F))1=4µkFj-2k-l +(l-2µk)F1+(~)1

for j =2N-2k-l + l, ... ,2N:
I I

(Sk(F))1=4µkFj-2k-l +(l-2µk)Fj

I
-4µkF -J+4N+2-2k-l +(~)j

In order to let the error (3.18) tend to zero if Ax tends to zero, ~ is chosen as
follows:

I d
(~)1 = 2 µk dt u0(t) for j = 1, ... ,2k - I -1,

I d
(~)1=4 µkdtuo(t) forj=2k-l,

(~)1=0 for j =2k-l + l, ... ,2N-2k-l _ l, (3.25)

I d
(~)j= 4 µk dt tL(t) for j =2N -2k-l,

I d
(~)1=1:µkdttL(t) forj=2N-2k- 1 +1, ... ,2N. □

From this example problem with boundary conditions given by (3.21), it is
straightforward to find the smoothing for problems where at both boundaries
the elevation or the velocity is prescribed or for problems where at the left and
right boundary the elevation and the velocity are respectively prescribed. A
suitable choice of µk is given by (3.45).

32

Notice that at a closed boundary (i.e. a U-boundary) the column sum of that
part of Dk operating on the right-hand side of the continuity equation is zero
(see Figure 3.7). As a consequence the column sum of the matrix Sk is one.
This means that, in the case that the left as well as the right boundary is
closed, the sum of the right-hand sides over the grid points is preserved. This
property of the smoothing is essential for the conservation of mass (see also
Section 3.4.4).
The reader mal wonder what the structure of the matrix Dk will be when k is
so large that 2 - I becomes of the same order of magnitude as N. In this case,
the structure can still be found from (3.20) but in addition to its dependence
on k it will also depend on N. As N varies in the case of a complex geometry
we use an implicit smoothing operator when q is such that 2q - I ~ N - 2. This
operator is, for the one-dimensional problem, defined by

(3.26)

where D I is given in (3.20) and g,:= g1 in which we choose µ.1 = µ., µ. being an
arbitrary parameter. In this case, Q(z) is of the form

Q(z)=-l-
1-l!..z

4

(3.27)

For the implicit operator a system of equations has to be solved with a tridiag
onal matrix.

3.6.3. Two-dimensional problems. For the two-dimensional case we proceed as
follows. In this case, a simplified Jacobian is given by

lx +J,, (3.28)

where

0 0 -g8I 0 0 0

J= X 0 0 0 J= y 0 0 -g8J '
(3.29)

Ho8x 0 0 0 Ho8y 0

and where the submatrices H 08x and H 08, follow again from the discretization
(3.10.b) with constant depth H (i.e. H 0) for the x andy-direction, respectively.
Starting from this Jacobian, the structure of the smoothing matrix will become
complicated and consequently an expensive smoothing arises. Therefore, we
applied one-dimensional smoothing in the x and y-direction, successively. This
smoothing is defined in terms of Q (see 3.19) by

S(F)=Q(2 k1x)(Q(2 kJ,)F+~)+gy, (3.30)
gH0 gH0

where ~ and g, are correction terms defined similarly as m the one
dimensional case (cf. (3.25)).

33

3.6.4. Analysis of smoothing procedures. Having developed our explicit smooth
ing technique for one-dimensional and two-dimensional grid functions, and
having shown its implementational simplicity, we will now proceed with ana
lysing the effect of this particular smoothing procedure on the spectral radius
of the Jacobian matrix associated with the SWEs. We start with a lemma
characterizing the function Q(z)=Q(z 2) introduced in (3.19).

LEMMA 3.6.1. The function Q(z)for the smoothing (3.20) is given by the polyno
mial

(3.31)

where T t- 1 is a Chebyshev polynomial of degree 2k - 1•

PROOF. The result follows immediately (cf. (3.20)) if we can proof that Dk is
generated by the polynomial

1
Dk= 2 (Tt- 1(l +2D1)-J), k;;;a,1. (3.32)

This can be shown by induction as follows. Clearly, for k = l (3.32) is valid.
Further, from (3.20) we have

Dk+1 =4Dk(l+Dk), k;;;,ol;

and consequently, on substitution of (3.32), we obtain

· Tt- 1(1 +2D1)-I Tt- 1 (1 +2D1)-l
Dk+I =4 2 (J + 2). (3.33)

Using Tt - l =2(T~•- 1 -1) in (3.33), (3.32) follows. □

In the following, we will use the term reduction factor, by which we mean the
factor by which the spectral radius of the Jacobian matrix is reduced when
smoothing is applied. A useful lower bound for this reduction factor is given
in the subsequent lemma.

LEMMA_ 3.6.2. On application of the smoothing procedure (3.30) with
Q (z) = Q (z 2), the spectral radius of the Jacobian (3. 2 9) is at least reduced by

1 (3.34)

PROOF. In order to derive the reduction factor, we compare the spectral radius
of the smoothed Jacobian with the spectral radius of the non-smoothed Jaco
bian. The smoothed Jacobian can be written in the form

(3.35)

For stability, it is enou&! to consider the spectral radius of the smoothed Jaco
bian as Ix, Iy and Ix +Iy are each similar to a normal matrix by the same

34

diagonal transformation matrix A =diag(A1 ,A2,A3), where
A1 =A2 =(gH0)114J and A3 =(gH0)- 114I. Here, the size of A; corresponds
with the size of the diagonal matrices of (3.29) (or (3.36)). Due to this similar
ity property, the numerical integration by the Runge-Kutta method is stable in
the L2 norm if the eigenvalues of (3.35) multiplied by f:.t are within the stabil
ity domain drawn in Figure 3.5 (see [33, p.75 and p.79]). In the following, we
will derive the eigenvalues of (3.35). Elaboration of (3.35) yields

where

0
0

Ho Q(-(2Ax)2 8y8J)8x

0
0

HoQ(-(2Ax)28x8I)8y

-_- 2 T -_- 2 T 8x-Q(-(2Ax) 8x8x)8x, 8y-Q(-(2Ax) 8y8y)8y.

-T
-g8x

-T
-g8y ' (3.36)

0

Solving the eigenvalue problem for this matrix, we find that the nonzero eigen
values are determined by

det[-gHo{Q(-(2Ax)28y8J)Q\-(2Ax)28x8I)8x8I +
Q(-(2Ax)28x8I)Q\-(2Ax)28y8J)8y8J}->.2I]=O.

The matrices 8x8I and 8y8J are normal and they commute. Hence, the eigen
values are found to be

where A and Ay are the eigenvalues of the matrices 2Ax ~ and
211.x M, respectively. These eigenvalues are real and positive and con
tained in the interval [O, 1]. The reductipn factor is found by dividing the max
imum eigenvalue without smoothing (Q = 1 in (3.37)) by the maximum value
with smoothing. This gives the ratio

I

max [:\~+:\;]T
o..;>.,.Ay..;1

max [Q(-;\2)Q\-;\2);\2 +Q(-;\2)Q\-;\2);\2]+ ·
Q,;;X,.Ay..; J '.)' X X X '.)' '.)'

As the numerator is equal to V2 and the denominator is less than

max yQ\-;\2);\2 +Q\-;\2);\2
Q,;;>,,.Ay,;;J X X '.)' '.)' '

we have that (3.38) is bounded below by (3.34). □

(3.38)

REMARK. The spectral radius of the Jacobian in case of the fourth-order space
discretization is reduced by the same factor as in the case of second-order
discretization, which can be shown by the following reasoning. The simplified
Jacobian of the fourth-order discretization is of the form

35

(3.39)

where i= 1 / 6 and lx and ly are given in (3.29). Now, we obtain instead of
(3.37)

A=[(~~~ {Q(-A])Q\-A~)(l +¾A~)2A~ +

Q(-A~)Q\-A;)(l +¾AJ)2AJ }]+

(3.40)

A ratio similar to (3.38) can be derived using (3.40). The resulting reduction
factor is again bounded below by (3.34). Hence, the reduction factor of the
fourth-order accurate discretization is estimated by the same factor as the
reduction factor of the second-order accurate discretization. We remark that
(3.39) is not valid near boundaries. (In order to retain (3.39) near the boun
daries, we apply (3.10.c) if possible and (3.10.b) otherwise. Furthermore, a
similar discretization should be used to approximate fx near the boundaries.)
However, the influence on the reduction factor of this simplification in the
analysis was not observed in the problems we have tested.

THEOREM 3.6.1. Let /3 be the imaginary stability boundary of the classical
Runge-Kutta method, i.e. /3=2V2. Let the main terms of the SWEs dominate
the spectral radius of the Jacobian matrix (i.e. the spectral radius of the Jacobian
matrix p is given by p~(y2gH max) I LU, where H max is the maximum value of
the depth in the computational domain). Then application of the smoothing gen
erated by (3.31) to the SWEs leads for µk = 1 to the stability condition

At</3 2q ! Y3 / p. (3.41)

PROOF. According !O Lemma 3.6.2, we have to find the maximum of Q(- z2)z
for zE[O,l], where Q is given by (3.31). For µk=l we have that (3.31) is equal
to

(3.42)

(see [19 . The maximum of P 2, _ 1 (- z 2)z for z E [O, 1] is equal to the maximum
of P2• _ - z 2 z 2 for z E [O, 1], which in turn is equal to the maximum of

-P2•-i(z)P2•-i(z)z for zE[-1,0]. Substitution of (3.42) in the latter
expression yields

max
-1.;;z.;;0

T2,(l +2z)- l T2,(l +2z)-l

4q2z 4q2

Using the identity T2, -1 =2(T~,-, -1), we have that (3.43) is equal to

(3.43)

36

where T*=T2,~ 1(1+2z). The first square root term (cf. (3.42)) is at most one
(see also [19)). The second is less than 4 V3 / 9, which follows from an elemen
tary analysis. Hence, the reduction of the spectral radius of the smoothed
Jacobian is at least 3 V3 2q / 4.
For the full non-linear SWEs, we assume that the method is stable if a linear
ized numerical model for the SWEs, with constant coefficients, is stable for
every set of coefficients assumed somewhere in the domain in the non-linear
numerical model (see also [33)). As the main terms of the SWEs dominate the
spectral radius, we find, according to this approach, the stability condition
(3.41) is found. □

The arguments given in the preceeding Remark lead us to the following corol
lary.

COROLLARY. The stability condition (3.41) holds also when the fourth-order space
discretization is applied except that the spectral radius is now given by
P~(? / 6 y2gH max) / /1x.

Due to the simple structure of Dk (cf. Figure 3.7) the number of operations is
linear in q, whereas the maximum allowed time step increases exponentially
with q. Thus a very efficient smoothing is constructed.
In practical computations, µk is chosen less than I in order to obtain diagonal
dominancy in (3.20) for all k. The values used are given by

µk = 1-2-(q + l-k)_ (3.45)

For this choice of µk the constant 3 V3 / 4 in (3.41) has to be replaced by I.
Explicit methods should satisfy the Courant-Friedrichs-Lewy condition. The
CFL condition says that for an hyperbolic problem the convex hull of the
domain of dependence of the exact solution at some point in space and time
must be contained in the convex hull of the domain of dependence of the
approximating solution at the same point. From (3.20), it can be shown that
the influence domain of the explicit method increases exponentially with q.
According to the CFL condition this increase is optimally exploited if the time
step is also allowed to increase exponentially. As argued above this is the case,
so that the numerical domain of dependence is as large as the physical domain
of dependence of the PDE itself.
Finally, we give a similar theorem for implicit operators. (The various quanti
ties are defined in Theorem 3.6.1.)

THEOREM 3.6.2. Let the main terms of the SWEs dominate the spectral radius of
the Jacobian matrix. Then application of the implicit smoothing operator gen
erated by (3.27) yields the stability condition

b.t</3\1µ / p. (3.46)

PROOF. For the implicit smoothing generated by (3.27) we have to find the
maximum of the expression z / (1 + µz 2 / 4) for z E[O, 1]. This is

37

straightforward and leads to a reduction of the spectral radius of the Jacobian
by a factor Vµ. By a similar reasoning as in the proof of Theorem 3.6.1, we
arrive at the condition (3.46). □

For any time step /:),,t, the parameters µ and q of the implicit and explicit
smoothing operator, respectively, can be chosen such that a stable method
results.
In practice, the bottom profile may change considerably over the domain.
This may result in a too· strong smoothing in shallow regions. Therefore, we
have made µk and µ (of the explicit and implicit smoothing, respectively)
dependent on the depth.

3.6.5. Accuracy. The local error introduced by the smoothing (3.19) can be
investigated by considering at an internal point the expression

(3.47)

where cf, is a _smooth test function and cJ,1 = c/>(j fuc). Let Q (z) again be of the
form Q(z) = Q(z 2), then the error (3.47) can be written as

-
((Q(D1)-/)cf,)j, (3.48)

with D I given in (3.20). For small z, a Taylor expansion of Q(z) yields

- dQ I d2Q
Q(z)=l+ d (0)z+ 2 2 (0)z 2 +O(z 3). (3.49)

z dz

Furthermore, D I cf, is given by

(D cf,)·~ (2fuc)2 fi(jfuc) (3.50)
I 'J~ 4 ax2 •

Substitution oJ (3.50) into (3.48) reveals that the error decreases quadratically
wi,th fuc if dQ(z) / dz=/=O. For the smoothing operator generated by (3.31),
dQ(z) / dz is found to be

dn- ~ A T ,-,(1)-1
~(0) = 2' µk(2k - I)2 11 (1 + µ, 2)
dz k = 1 1 = 1,/cf=k 2

= f µk4k-l_
k=I

Hence, for µk = 1 we find the local truncation error

(3.51)

((Q(D 1)- l)cJ,)1 = ½(4q - l)(fui:)2 a2t (jfuc)+ O(fui:4). (3.52)
ax

For the SWEs the magnitude of this error can be expressed in terms of the
time step if the maximum allowed time step after smoothing is used. Evidently,
the amount of smoothing needed in order to stabilize the method decreases
with the time step and as a consequence the error due to smoothing decreases.
The order by which this error decreases with the time step (see also [49])

38

determines the order of accuracy of the smoothing. For the error (3.52) we
proceed as follows. If we use the maximum allowed time step in (3.41), then
the resulting relation for !lt and tJ.x can be written as

flt
!J.x = 3 • r,;- (p!J.x), (3.53)

2q {J4 V 3

where the factor p!J.x is, according to the definition of p in Section 3.6.1,
independent of !J.x. Substitution of (3.53) into (3.52) yields

((Q(D1)-/)q,)j= ~~ 2~; I (~)2(pi:u)2 ::1 (ji:u)+O((i1t)4). (3.54)

Hence, the local error decreases quadratically with !lt and therefore the
smoothing is second-order accurate in time. According to (3.30) the expression
(3.54) corresponds to the truncation error introduced by smoothing the first
momentum equation and the continuity equation. Its analogue for the y
direction is introduced by smoothing the second momentum equation and
again the continuity equation.
In a similar way, the truncation error introduced by the implicit operator gen
e_rated by (3.27) can be derived. For this operator we find the derivative of
Q(z) to be simply µ. / 4. Consequently, the error is

((Q(D1)-l)<p)j=¼(!J.x)2 ~:t (i!!.x)+O((!J.x)4). (3.55)

Using the maximum allowed time step according to (3.46) we obtain

((Q(D1)- l)<p)j = ! (~)2(p!J.x)2 ~:t (i!!.x)+ O((llt)4). (3.56)

Again we observe that the smoothing is second-order accurate in time. This
truncation error and its analogue for they-direction are introduced by smooth
ing the respective equations in exactly the same way as the case of the explicit
smoothing.

3. 7. Discretization of the weakly-reflective boundary conditions
In this section, details will be given on the discretization of the weakly
reflective boundary conditions as given by (2.4) and (2.5).
The discretization of (2.4) and (2.5) at a left boundary is given by

unew - uold + y' a I H E(znew - zold) unew +-y·-----=!i..._ __ __._ ____ ...__ =(cJ>U)"ew (3.57)
tnew -told

and

znew +"' E(Unew - uold)+ Yg/H(znew -zold) =(cJ>Z)new
, tnew - told , (3.58)

re~ectivel_l. Here, E is the shift operator as defined in Section 3.3 and
cI> and cI> respectively are the value of U and the value of Z as given at the
boundary. The superscripts in (3.57) and (3.58) depend on the stage of the

39

four-stage Runge-Kutta time integrator in which the various quantities are
computed (see Section 3.5). For the first stage new is at time level n and old at
time level n -1. In the other stages new is at time levels n + l / 2, n + l / 2
and n + l, respectively, and old is at time level n.
The weakly-reflective boundary conditions (2.4) and (2.5) have also implica
tions for the boundary treatment of the stabilization. But in the present ver
sion we have refrained from implementing this treatment, because of complex
ity. Nevertheless, we found in the experiments that the implementation of
(3.57) and (3.58) results in a satisfactory weakly-reflective behaviour of the
open boundaries.

3.8. Drying and flooding
In many problems, it occurs that during the tide some part of the domain
becomes dry land. Such dry flats, if not handled correctly may cause numerical
instabilities. Therefore, following the ideas of Stelling [38, p. 153], prior to
every time step the following actions with respect to drying and flooding are
performed:
I. In all velocity points it is checked whether

H<Hmin (3.59)

where H is the total depth and H min is an a-priori given minimum depth.
2. If the answer of the check in I. is true at a certain velocity point, then the

velocity at this point is set to zero and the point will be treated as a closed
boundary.

Furthermore, as it is possible that in the performance of the time step (i.e. in
the second, third or fourth stage of the time integrator, see (3.16)) the depth
becomes very close to zero or even negative, the following procedure is applied
throughout the stages.
a. If after the calculation of Hit appears that H <£ at certain velocity points,

where £ is a small quantity, then we set H =£ at these points. This avoids
that the depth becomes negative during the time step and furthermore it
avoids overflow during the division by H in the bottom friction term. This
approach is different from that of Stelling. In the latter case, such a point is
treated as a closed boundary point.

b. In shallow regions, i.e. where H is small, the factor !itg v' U2 + V2 / (C2 H),
occurring in the bottom friction term, may become very large. (In that case,
the flow is slowed down strongly.) The classical Runge-Kutta method is
unstable if this factor is greater than 2.78 (see Figure 3.5). Therefore, we test
whether the factor is greater than 2 (below we explain why we use 2 instead
of 2.78). If at a certain velocity point the outcome of the test is true then
we set the factor at this point equal to 2. We do not want to set this factor
equal to 2. 78, because the amplification factor of points on the boundary of
the stability domain (2.78 is on the boundary) is equal to one, whereas the
amplification factor is almost minimal if we set !itg v' U2 + V2 / (C2 H)

40

equal to 2. A minimal amplification factor is to be preferred because it
represents better the strong damping behaviour of the bottom friction term
in very shallow regions.

4. VECTORIZATION ASPECTS
In this section, we will describe the vectorization aspects of the SWEs solver.
The subjects that will be dealt with are: the choice of the time-integration
method and its stabilization, the boundary treatment, the drying and flooding
procedure and the data structure.

4.1. Preliminaries
On the CYBER 205 we used the language FORTRAN 200 [l], which contain
(vector) extensions with respect to FORTRAN 77. In this section, some typi
cal vector programming features of this language will be briefly described.

Vectors. On the CYBER 205 a vector is defined as a series of values that are
stored in contiguous memory locations. Vectors can be referenced by so-called
vector references or by descriptors. A vector reference or descriptor specifies the
following information: the first element of the vector, which must be an array
element, the length of the vector, and the data type of the vector.

ExAMPLE 4.1. Declare an array by DIMENSION A(1O). Then the vector refer
ence, compactly denoted as A< 3; 5), refers to the vector
A(3),A(4),A(5),A(6),A(7).
Furthermore, declare a descriptor by DESCRIPTOR ADESC. Then by the
assignment ASSIGN ADESC, A(3;5) we achieve that ADESC denotes the same
vector as A(3;5) . □

Some "DO-loops" can be rewritten by using these vector references or descrip
tors.

ExAMPLE 4.2. The "DO-loop"

DO 1 I=1,5
A(I)=A(I)+A(S+I)

1 CONTINUE

can be written in the form

A(1;5)=A(1;5)+A(6;5)

using vector references, or in the form

DESCRIPTOR ADESC1, ADESC2
ASSIGN ADESC1, A(1;5)

ASSIGN ADESC2, A(6;5)
ADESC1=ADESC1+ADESC2

using descriptors. □

41

In some cases, a temporary vector is needed for an intermediate result. Using
descriptors, it is possible to define this storage dynamically.

EXAMPLE 4.3. A dynamical vector of length N is defined by

ASSIGN ADESC, .DYN.N D

Gather and Scatter operations. "DO-loops" in which indirect addressing is
used, do not vectorize well on the CYBER 205 as the data are not stored in
contiguous memory locations. Therefore, there exist optimized gather instruc
tions which create vectors from these data on which vector operations can be
performed. Furthermore, optimized instructions exist which scatter elements
of a vector to non-contiguous memory locations. For our purpose, gather and
scatter operations are extremely helpful. We will show by some examples what
the effect of these operations is.

EXAMPLE 4.4. In standard FORTRAN the gather operation reads

DIMENSION V1(5),U1(4),I1C4)
DO 1 I=1,4

U1 CI)=V1 CI 1 CI))
1 CONTINUE

Due to the indirect addressing this "DO-loop" does not vectorize automati
cally. However, there exists an optimized alternative for this "DO-loop":

DIMENSION V1(5),U1(4),I1(4)
U1(1;4)=Q8VGATHR(V1(1;4),I1(1;4);U1(1;4))

The scatter operation given in standard FORTRAN is

DIMENSION V1(5),U1(4),I1(4)
DO 1 I=1,4

V1 CI 1(I))=U1C I)
1 CONTINUE

This operation is optimized by

DIMENSION V1(5),U1(4),I1(4)
V1(1;5)=Q8VSCATR(U1(1;4),I1(1;4);V1(1;5))

42

Notice that the gather and scatter operations are each others inverse when the
same index array I 1 is used. □

Bit vectors An important feature of the FORTRAN 200 language is the availa
bility of the data type BIT. Bit vectors are important in the handling of "IF
statements". In this case bit vectors are used in connection with WHERE con
structions.

EXAMPLE 4.5. Consider the "DO-loop"

DIMENSION U1(100),V1(100)
DO 1 1=1,100

IF (U1CI) .LT •• 0) THEN
V1C I)=100.

ELSE
V1(I)=-100.

ENDIF
1 CONTINUE

Such a "DO-loop" is not vectorized automatically by the FORTRAN 200
compiler. However, using a WHERE construction this is vectorized by

DIMENSION U1(100),V1(100)
WHERE (U1(1;100) .LT .. 0)

V1C 1; 100)=100.
OTHERWISE

V1C 1; 100)=-100.
END WHERE

An equivalent form is

DIMENSION U1(100),V1(100)
BIT BITV(100)
BITVC1;100)=U1(1;100) .LT .0
WHERE (BITV(1;100))

V1C1;100)=100.
OTHERWISE

V1(1;100)=-100.
END WHERE

In the latter case the information stored in the bit array BITV can be used
several times. □

Timings. To give some impression of the performance of the CYBER 205, tim
ings and relative costs (with respect to a vector addition) will be given of some
elementary operations. The timings are given for N=1000 in full precision.

Declaration
DIMENSION U(N),V(N),W(N),IND(N)

Instruction

U(1;N)=VC1;N) + W(1;N)
U(1;N)=V(1;N) * W(1;N)
U(1;N)=(V(1;N) + W(1;N))*C
U(1;N)=V(1;N) / W(1;N)
U(1;N)=SQRT(V(1;N);UC1;N))
U(1;N)=Q8VGATHR(VC1;N),

IND(1;N);UC1;N))

U(1;N)=Q8VSCATR(V(1;N),
INDC1;N);UC1;N))

timings
10-5 sec

2.1
2 .1
2.1

12.6
12.6

3.6

3.6

relative
costs

1.0 (by def.)
1.0
1.0
6.0
6.0

1. 7Xnp for F.P.
3.4Xnp for H.P.

1. 7 X np for F.P.
3.4Xnp for H.P.

TABLE 4.1. Timings of some elementary operations.

43

In general, a vector instruction speeds up linearly with the number of vector
pipes used (denoted by np in the table). Furthermore, it speeds up by a factor
two when changing from full precision (F. P.) representation (14 decimal
digits representation) to half precision (H.P.) representation (7 digits
representation). These properties do not hold for operations acting on non
contiguous data such as gather and scatter operations. This explains why the
gather operation in Table 4.1 becomes, relatively, more expensive with respect
to a vector addition, when changing from full precision to half precision or
when more vector pipes are used.

4.2. Explicit or implicit methods
In this section, we motivate the choice we made for the numerical time integra
tion of the SWEs. In Table 4.2 we have indicated the vectorizability of the
various operations occurring in time integration methods.

44

type of right-hand side construction of taking linear solving systems

time integrator evaluation Jacobian matrix combinations of of equations

right-hand sides

implicit fully fully fully partly

(if occurring)

explicit fully - fully -

TABLE 4.2. Vectorizability of operations in time integration methods.

The words "fully" and "partly" denote that the operation at hand is fully or
partly vectorizable, whereas "-" denotes that the operation is not occurring in
the time integrator.
In the table it is indicated that solving a system of algebraic equations is only
partly vectorizable. This is mainly due to the inherent recursiveness of the
solution process of such systems. Moreover, it is difficult to avoid in such a
process operations on non-contiguous data and operations on vectors of
moderate length (say less than 50 elements). On the CYBER 205, these opera
tions do not accelerate when we change from full precision to half precision
calculations or when a computer with more vector pipes is used. Hence, it is
this type of operations which causes an upper limit to the performance of an
implicit method on a CYBER 205. For this reason, we decided to use an expli
cit method which does not have such a limit. A drawback of explicit methods
is that the time step may be restricted for stability reasons. This drawback may
become important if the variation of the solution in time is small. Therefore,
we developed the fully vectorizable stabilization technique as discussed in Sec
tion 3.6 by which the stability condition, as we have shown, is relaxed consid
erably. From the above discussion it is clear that, on the CYBER 205, the
explicit approach is to be preferred.

4. 3. Boundary treatment
As we assume that the solver should be able to handle arbitrary domains, the
vectorization of the boundary treatment needs special attention. First we will
describe how the differences are calculated at internal points and thereafter
how this is done at boundary points.
Consider the domain given in Figure 4.1, which is covered by a rectangular
grid.

45

2NY
~ -...

i, ,.,

2
2 2NX

FIGURE 4.1. Example domain.

The variables defined at position (i,j) on this grid (see also Figure 3.1) are
stored at location {[i / 2]-1 }NY+ U / 2] of the associated array, where NY as
well as NX are given in Figure 4.1 and [.] denotes the integer part function.
Hence, the points are counted in the y-direction. We will call this storage
structure a rectangular storage structure (see also Section 4.5). In the following,
we denote by NN the total number of components of one dependent variable,
i.e. NN=NXXNY.
Using this storage structure, the calculation of x and y-differences vectorizes
well, i.e. the operation can be performed on vectors of length determined by
the number of grid points NN. Long vectors are to be preferred because
start-up times of the vector instructions become negligible in this case. An x
difference of U is calculated by

DIMENSION UX(NN),UY(NN),U(NN)
UX(1;NN)=(U(1+NY;NN)-U(1-NY;NN))/(4*DX)

and a y-diff erence is calculated by

UY(1;NN)=(U(1+1;NN)-U(1-1;NN))/(4*DX)

The boundary treatment is performed using so-called index arrays. Such an
array contains all locations of points which need the same boundary treat
ment; for example the locations of all left closed boundaries. Using these
arrays, the boundary points and, if needed, its neighbours can be gathered
from the computational array. Thereafter, the boundary operations can be per
formed with vector instructions on the gathered arrays and, finally, the results
are scattered into the result array.
In the following, we will describe the implementation of the discretization of
(Hu)x given by (3.10). We assume that His already calculated at U-points.

46

Due to the staggering (see Figure 3.1) and the way the components of the
dependent variables are stored in the arrays (see above), a second-order central
difference is computed in all points by the operation

DIMENSION HUX(NN),HU(NN)
HUXC1;NN)=(HUC1+NY;NN)-HUC1;NN))/(2*DX)

A straightforward implementation of the fourth-order discretization of (Hu)x
together with its boundary treatment is given by

C ===
C DESCRIPTION OF VARIABLES
C

HU(NN) ARRAY CONTAINING H*U C
C
C
C
C
C
C
C

HUX(NN) RESULT ARRAY CONTAINING D(UH)/DX AT EXIT
HUXH DESCRIPTOR; DUMMY VARIABLE
HUL1H DESCRIPTOR; DUMMY VARIABLE
HUR1H DESCRIPTOR; DUMMY VARIABLE
HUL2H DESCRIPTOR; DUMMY VARIABLE
HUR2H DESCRIPTOR; DUMMY VARIABLE
I1CI1T) INDEX ARRAY INDICATING THE POINTS WHERE

C HAS TO BE APPLIED
(3.1O.b)

C IL(ILT) INDEX ARRAY INDICATING THE POINTS WHERE (3.1O.c)
C HAS TO BE APPLIED
C IRCIRT) INDEX ARRAY INDICATING THE POINTS WHERE THE
C RIGHT-HAND ANALOGUE OF (3.1O.c) HAS TO BE APPLIED
C ===

C1=27./24.
C2=-1./24.
C3=1./C1
C4=1./C1
C5=C2/C1

* .1/C2*DX)
* 1/(2*DX)
* 1/(2*DX)
* 25./24. * 1/(2*DX)

C ---
C CALCULATION OF CENTRAL DIFFERENCES USING ONLY TWO POINTS
C ---

HUX(1;NN)=(HUC1+NY;NN)-HUC1;NN))*C1
C ---
C SAVING OF CENTRAL DIFFERENCES NEAR BOUNDARIES
C ---

ASSIGN HUXH,.DYN.I1T
HUXH=Q8VGATHRCHUXC1;NN),I1(1;I1T);HUXH)
ASSIGN HUL1H,.DYN.ILT
ASSIGN HUL2H,.DYN.ILT
HUL1H=Q8VGATHR(HUX(1+NY;NN),ILC1;ILT);HUL1H)
HUL2H=Q8VGATHRCHUX(1+2*NY;NN),ILC1;ILT);HUL2H)
ASSIGN HUR1H,.DYN.IRT

ASSIGN HUR2H,.DYN.IRT
HUR1H=Q8VGATHR(HUX(1;NN),IR(1;IRT);HUR1H)
HUR2H=Q8VGATHR(HUX(1-NY;NN),IR(1;IRT);HUR2H)

C ---
C CALCULATION OF FOURTH-ORDER DIFFERENCES
C ---

HUX(1;NN)=HUX(1;NN)+(HU(1+2•NY;NN)-HU(1-NY;NN))*C2
C ---
C CALCULATION OF DIFFERENCES NEAR BOUNDARIES USING SAVED
C CENTRAL DIFFERENCES
C ---

HUXH=HUXH*C3
HUXC1;NN)=Q8VSCATR(HUXH,I1(1;I1T);HUXC1;NN))
HUL2H=C4*HUL1H+CS•HUL2H
HUX(1;NN)=Q8VSCATR(HUL2H,IL(1;ILT);HUX(1;NN))
HUR2H=C4*HUR1H+C5*HUR2H
HUX(1;NN)=Q8VSCATR(HUR2H,IR(1;IRT);HUX(1;NN))

47

In this approach, an extra index array I 1 is needed for the application of
(3.10.b). The index arrays have to be constructed every time step, due to the
drying and flooding. Hence, it is important to minimize the number of index
arrays. This can be accomplished by factorizing the discretization, which will
be described in the subsequent section. Using this factorization, only 12 index
arrays are needed. These result from the three boundary types, viz. elevation,
velocity or closed boundary, which can each occur at four boundary locations,
viz. at the left, at the right, at the bottom or at the top (see Figure 3.2).

4.3.1. Factorization of discretizations. For the numerical approximation of a
term of the equations the location of the computational point, under con
sideration, in the domain determines which variant of the discretization should
be used (e.g. the fourth-order, the second-order or the one-sided variant). In
general, it is needed to know the position of the point with respect to the
boundaries. However, using the factorized form the only information needed is
the location of the boundaries themselves. As a consequence the number of
index arrays can be minimized and the programming of the discretizations is
simplified.
For example, we consider again the discretization (3.10.a). This discretization
can also be written in the factorized form

[(Hu)x]=(l +aE-2)(1 +aE2)f3(E-E- 1)HU,

where a and /3 follow from

a/3= -1 /24X 1 / (26.x),

(1 +a2-a)/3=27 /24X 1 /(26.x).

(4.1)

(4.2)

Obviously, there are two solutions a±= -13+2 \142. Here, we choose a=a+,

48

because it is small in modulus with respect to I and consequently we have
diagonal dominance in the factors (1 +aE±2). In addition to the factorization
(4.1), (3.10.c) can be factorized in the form

[(Hu)x]=((l +a+a2)+aE2)fJ(E-E-1)HU (4.3)

with a and fJ as given in (4.2). The factors of (4.1) are applied successively,
each with a boundary treatment. This treatment is such that at the end we
have (3.10.a), (3.10.b), (3.10.c) and the analogue of (3.10.c) at the right boun
dary at the appropriate places. To be more precise, we perform successively
the operations (R 1 and R2 are used for intermediate results)

R I= fJ(E - E- 1)HU,

R2=(1 +aE2)R 1. (4.4)

At the left boundary, we overwrite R2 by

R2=(y+8E2)R 1.

The values of the constants y, 8 and below of £, 7J, fJ, ,c are given at the end of
this section and are found by comparing the resulting boundary treatment of
the factorized form with the discretizations such as given in (3.10).
Successively, at the right boundary, we overwrite R 2 by

R2=£R 1. (4.5)

The order in these operations is important because the effect of this particular
sequence is that the last equation holds also in the case where there is only one
computational point between two boundaries. Thereafter, we perform

[(Hu)x]=(l +aE-2)R2.

At the right boundary, this is followed by

[(Hu)x]=(7J+(JE-2)R2.

At the left boundary, we finally evaluate

[(Hu)x]=,cR2.

After these operations we obtain (4.1) (= (3.10.a)) in the interior. Further
more, we have at the left boundary

[(Hu)x]=K(y+8E2)R 1,

and at the right boundary (notice that R2 is given by (4.5) at the right boun
dary and by (4.4) at a point adjacent to this boundary)

[(Hu)x]=(7Jt+8E-2(1 +aE2))R I =(7Jt+8a+fJE-2)R 1.

Furthermore, in the case where there is only one point between two boundaries
we have

49

Comparing these resulting equations with (4.3), its analogue at the right boun
dary, and with (3.10.b), the following conditions have to be satisfied:

IC"(=l+a+a2

,c~=a

71£+8a= 1 +a+a2

O=a

Kf.= 1 //3X 1 / (2Ax)

(4.6)

A solution of these equations is 0 = a, y = 1 +a+ a2 , ~=a, £ = 1 / (/3 2Ax),
71=(1 +a)/£, ic= 1. We do not know whether there are better choices, but
for this solution the factors are also diagonal dominant at the boundaries.

4.4. Drying and flooding
The drying and flooding procedure, described in Section 3.8, may be rather
time consuming due to tests which have to be performed to determine the
location of the boundary. Hence it is important to vectorize this procedure. Bit
arrays play an important role in this vectorization. We will treat this again by
an example. For simplicity we consider the one-dimensional case.
Suppose that, after a certain time step, the geometry is as given in Figure 4.2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIGURE 4.2. Geometry after a certain time step.

We assume that at the left boundary (i.e. point 1) the velocity is prescribed
and at the right boundary the elevation is prescribed (i.e. physically in the
middle between point 14 and 15). Condition (3.59) is checked by the state
ment

BITDR(1;NX)=HC1;NX) .LT. HMIN

where NX = 15 in this example. The bit array BITDR contains the following
information after this check

0 0 0 0 1 1 1 1 0 1 0 0 0 0 ?

where the question mark indicates that the result of the check is undefined.

50

The check is undefined for points outside the computational domain such as
point 15. Furthermore, a bit array BITOUT is constructed which has elements
I for velocity-boundary points and for velocity points that are outside the
computational domain during the complete simulation. The elements of this
bit array for the geometry drawn in Figure 4.2 are given by

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Combining these two bit arrays,

BITH(1;NX)=BITDR(1;NX) .OR. BITOUT(1;NX)

gives

1 0 0 0 1 1 1 1 0 1 0 0 0 0 1
+ * + *

+
*

In this array, we want to determine the location of the left boundaries, indi
cated by +, and the location of the right boundaries, indicated by*. We per
form now

BIT2(1;NX)=BITH(1;NX) .XOR. BITH(O;NX)

which results in

? 1 0 0 1 0 0 0 1 1 1 0 0 0 1

Combination of BIT2 and 81TH gives

BIT3(1;NX)=BIT2(1;NX) .AND. BITH(1;NX)

with elements

? 0 0 0 1 0 0 0 0 1 0 0 0 0 1

We have now obtained 1 bits at right boundary locations. As the first point
cannot be a right boundary the corresponding first element is set to zero. The
index array follows from:

51

LIND= Q8SCNT(BIT3(1;NX))
C LIND=3

INDR(1;LIND)= Q8VCMPRS(IND(1;NX),BIT3(1;NX);INDR(1;LIND))
C CONTENTS OF IND
C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
C CONTENTS OF INDR
C 5 10 15

The first statement counts the number of 1 bits and stores it in LIND, i.e. 3 in
this case. The second statement compresses the elements of the array IND indi
cated by the bit array BIT3 into INDR.
If we now perform

BIT3(1;NX)=BIT2(2;NX) .AND. BITH(1;NX)

then BIT3 contains

1 0 0 0 0 0 0 1 0 1 0 0 0 0 ?

BIT3 has 1 bits at left boundary locations. Again the question mark should be
replaced by a zero because at this place no left boundary can occur. In the
same way as before, we now find the index array INDL<1;LIND) with ele
ments

1 8 10

It should be noticed that INDL< I) and INDR(I) respectively give the start
and end point of a row of "wet" points. Prior to the time integration, index
arrays are constructed giving the indices of the open boundaries. These index
arrays are now used to mark the indices in INDL and INDR which correspond
to open boundaries. Once this is performed, the non-marked indices represent
closed boundaries which can be derived straightforwardly from INDL and
INDR.

4.5. Data structure
In order to obtain an optimal performance of the solver on the CYBER 205 it
is important to consider the data structure carefully. A computation on a rec
tangular domain (see Section 4.3) is to be preferred from a vectorization
stand-point. However, often the geometries are very complex, which may lead
to a substantial overhead in the computational costs if the domain is simply
covered by a rectangle. Therefore, we considered in [50] a number of tech
niques to reduce this overhead (see also [41]). The essence of these techniques
is that an x and an y-ordering is constructed for the computational arrays. If
the arrays are ordered according to the x-ordering, then the x-differences can
be calculated efficiently. Likewise, if the arrays are ordered according to they
ordering, then the y-differences can be calculated efficiently. These two

52

orderings imply that during the performance of the right-hand side evaluation
reorderings have to be performed to change from x-ordering toy-ordering and
vice versa. The x and y-ordering should be such that the reordering operation
is as efficient as possible.
We have refrained from implementing such a technique as the geometries
encountered in many practical problems can be enclosed in rectangular region
with only introducing a relatively small number of dummy grid points.
Nevertheless, such a technique can be implemented without much effort.

4. 6. On the computational costs of the CYB ER 205 code
In this section, we discuss the computational costs of the numerical method
implemented. It appears that the CPU (Central Processing Unit) time per grid
point per time step depends on the number of grid points in the actual appli
cation. In order to quantify this dependence, we have performed computations
on various grids for a square geometry. At the left and right boundary of this
square the velocity and the elevation are respectively prescribed, whereas the
upper and lower boundary are closed. The conditions at the open boundaries
are time dependent. In Table 4.3, we give the timings of the computations
including smoothing (q =3 in (3.20)).

N=20X20 N=40X40 N=80X80 N=I60Xl60

type of CPT CPT CPT CPT CPT CPT CPT
CPT CPT CPT CPT CPT

TN N vii N vii !{ vii N

operation 10-,, 10-,, 10-•, 10-,, 10-,, 10-•, 10-,, 10-s, 10-•, 10-,, 10-s, 10-•,

UPDBC .43 2.1 I.I .68 1.7 .4 1.2 1.4 .18 2.2 1.4 .086

CHECK .24 1.2 .6 .28 .7 .2 .44 .55 .07 1.0 .63 .039

ADAP 1.85 9.3 4:6 2.6 6.5 1.6 5.0 6.3 .78 II. 6.8 .43

TIMEST 28.0 14.0 70.0 43.2 108. 27.0 100. 125. 15.6 320. 200. 12.5

TOTAL 30.5 152. 76.3 46.6 116. 29.1 107. 134. 16.7 334. 208. 13.1

TABLE 4.3. Timings for various grids per time step in case of
a fourth-order space discretization.

The number of grid points (N) is chosen 20 X 20, 40 X 40, 80 X 80 and 160 X 160
in these runs. In the first column, the timed operations are specified. UPDBC
computes the values at the boundaries at the new time level from a sine series
(see Section 5.2.2), CHECK checks prior to every time step whether the
geometry has been changed since the previous time step, ADAP adapts the
index arrays if the geometry is changed, and TIMEST performs the actual time
step. The next four columns give the data corresponding to the grid specified
in their respective headers. Each of these columns consists of three sub
columns. In the first subcolumn the observed computation times (indicated by
CPT) of the various operations are listed. In order to compare these values for
the various grids, we have given in the second subcolumn the computation

53

times divided by the square root of the number of grid points and in the third
subcolumn the computation times divided by the total number of grid points.
(Note that the square root of the total number of grid points gives, up to a
constant, the number of boundary points.)
Globally, we observe from this table that the computation speed drops sub
stantially if the number of grid points decreases; for the grid with 400 points
the (overall) speed is more than 5 times smaller than for the grid with 25600
points. Furthermore, we observe that we can distinguish operations whose
costs increase linearly with VN (e.g., UPDBC and ADAP), and operations
whose costs increase linearly with N.
In accordance with this observation we assume that the total computation time
of the method per time step is determined by an expression of the form

a+bVN +cN, (4.7)

where a,b and c are constants. A least squares fit of (4.7) to the values for the
total computation times given in the table yields

a=22576. 10-6 , b=156.22 10-6 , c=ll.24 10-6. (4.8)

In Figure 4.3, we have drawn the curve of the CPU time per grid point per
time step using the coefficients given by (4.8). Hence, the generating formula is
obtained by (4.7) divided by N. Furthermore, the values given in Table 4.3 are
indicated in Figure 4.3 by the symbol + .

D
D

0 3 6 9 12 15 18 21 24 27 30

- N (in thousands)

FIGURE 4.3. Plot of the CPU time per time step per grid point.

This figure shows that the computation speed is close to its maximum if the
number of grid points is larger than say 4000. For smaller values the start-up
times slow down the speed significantly.

Apart from the measurements listed in Table 4.3, the value of c can also be
obtained by counting all vector operations in the code, which act on vectors of

54

length N. As a unit for measuring the costs of the various vector operations
we used a vector addition (cf. Table 4.1). It turned out that the code con
tained 1020 of such unit vector instructions per time step. As a unit vector
instruction in half precision produces one result per 10 nano seconds, we are
led to the value 10.2 10-6 for c. This value is within 10% of the observed
value.
Furthermore, we have computed the megaflop rate of the code. Therefore, we
counted the number of floating point operations. This number is about 3.3 107

for the 160 X 160 grid. The time needed for these operations is found in the
table, i.e .. 334 seconds. Hence the code runs at about 100 megaflops.

In addition to the timings in Table 4.3, we performed the following computa
tions on the 160X 160 grid:

(i) without smoothing,
(ii) without smoothing and second-order space discretization,
(iii) case (ii) on a two-pipe CYBER 205.

Control Data Corporation is greatly acknowledged for offering us the oppor
tunity to perform case (iii). The results are given in Table 4.4.

N==l60X 160

type of CPT CPT
N

run 10-3s 10-6$

from Table 4.3 334 13.l
case (i) 177 6.9
case (ii) 139 5.4
case (iii) 79 3.1

TABLE 4.4. Timings per time step for the 160X 160 grid

Hence, the method is almost twice as cheap when smoothing is not used.
However, the time step must be chosen considerably smaller, which offsets the
advantage. Furthermore, the code speeds up by about 20% when (in addition)
second-order differences are used. Finally, the speed up of the latter method
using a two-pipe CYBER 205 (instead of a one-piper) confirms our expectation
that the method becomes almost twice as fast when changing from a one-pipe
to a two-pipe CYBER 205 (see Section 4.2).

55

5. THE PROGRAM SYSTEM

5.1. The system parts
The system consists of three program parts: the INPUT PROCESSOR, the
SOLVER and the OUTPUT PROCESSOR. The flow chart of the system is
given schematically in Figure 5.1.

INPUT INPUT t~i:~~TnSOLVER TIHIS OUTPUT plots
DATA PROCESSOR IN PREP FLOW PROCESSOR

TERM SOLREP

FIGURE 5.1. Flow of the system.

Toe INPUT PROCESSOR is an interactive program running on the front end
of the CYBER 205. By this program part, the user can specify his problem.
The input for this part is given by means of two files:
INPUT This file is connected to the terminal by the INPUT PROCES

SOR. By means of this file the user can give input to the pro
gram. Toe input consists of answers to questions written by
the program to the terminal display by means of the con
nected file TERM. These questions deal with the data needed
to define the problem and with the control of the INPUT
PROCESSOR.

DATA This file contains data defining the problem specified by the
user in a previous run of the INPUT PROCESSOR. The file is
obtained by renaming the file NEWDAT A, which was created
in the previous run, to DAT A. Toe input on DAT A is read by
the program and written to the terminal display part by part.
The user can change this data and thereby create a new
model. It should be noted that the INPUT PROCESSOR can
be executed without this file giving all input by means of the
file INPUT.

The INPUT PROCESSOR generates four files:
SOLINP This file contains job control statements and input for the exe

cution of the SOL VER.
NEWDATA

INPREP
TERM

All user-given input is written on this file. It is of the same
format as the file DATA. On renaming it to DATA, the user
can create a related model in a convenient way.
On this file a report of the user-defined problem is written.
This file is used by the program to write questions and data to
the terminal display.

The SOL VER, running at the CYBER 205, performs the actual computation
and generates three files:
TIHIS This file contains time-history data at user-specified space

56

points. It is only generated if time histories are requested by
the user.

FLOW This file contains flow-field data from the flow at the end time
of the simulation and from the flow at user-specified times
during the simulation.

SOLREP On this file a report of the simulation is written.

The OUTPUT PROCESSOR, running at the front end, generates plots of the
time-history data and vector plots of the flow-field data.
In the following sections the program parts will be described in more detail.

5.2. The INPUT PROCESSOR
The input for the INPUT PROCESSOR consists of six parts:

the domain definition,
specification of the boundary conditions,
initialization of the U, V and Z-field,
definition of the depth and Manning values,
definition of problem and integration parameters,
definition of output parameters.

The Manning values, which are not mentioned before, are used for the calcula
tion of the Chezy coefficient C (see Section 5.2.4 and formula (2.1)).
To some· extent the program checks the user-given data on consistency, in
order to obtain at the end of the input process a well-defined model. However,
it is a very time consuming task to construct an input processor which guaran
tees a well-defined model on exit. This is beyond the scope of the project.
Therefore our aim was to construct an input processor by which a skilled user
can specify his problem in a convenient way.
In the following, the six parts of the INPUT PROCESSOR will be discussed in
more detail.

5.2.1. Domain definition. The contour of the domain is approximated by a
polygon. This polygon consists of line pieces which are parallel to either the
x-axis or the y-axis. The staggering of the grid (see Section 3.1) has some
consequences for the definition of the polygon.
The polygon is defined by its angle points, { (Xi, Y;)EN X N Ii= 1, ... , n },
where the integers X; and Yi are the numbers of the grid lines defining the ori
ginal (i.e. non-staggered) grid (see Figure 3.1). The contour is found from this
sequence by connecting successive points by straight lines. Furthermore,
according to Figure 3.1, the type of the boundaries is specified as follows. If
X; is even (odd) then there is a U-boundary (Z-boundary) in the "vertical"
direction. Likewise, if Y; is even (odd) then there is a V-boundary (Z
boundary) in the "horizontal" direction. The Z boundaries are always open
but a U or V-boundary is open or closed. The type of the velocity boundaries
is defined by a parameter B;; B; = 0 or 1 means that the boundary between

57

(X;, Y;) and (X;+J, Y;+ 1) is open or closed, respectively. For programming rea
sons, the value of B; for Z-boundaries, which are always open, should also be
zero. Furthermore, as will become clear below, we require that the contour is
passed in clockwise order when passing through the sequence of angle points.

In the next section, on boundary conditions, it will be pointed out that B; may
also have the value 100 which means that the next part is open and that at this
point boundary condition parameters have to be prescribed. Default, the pro
gram will detect the necessary points at which boundary condition data have
to be specified in order to have a well-posed problem. If the user wants to
specify data at other points, then these points should be marked by setting
B; = 100. We will return to this matter in the next section.

Thus, the polygon the program accepts is defined by a set of 3-tuples
{(X;, Y;,B;)el\l X 1\1 X {0, 1,100} Ii= 1, ... , n }. These 3-tuples must have the
property that either X;=X;+ 1 or Y;=Y;+J for i=l, ... ,n-1 and Xn=X1

or Yn=Y1• If this property does not hold for a closed boundary, then points
are inserted such that the property holds. In some cases, this insertion may not
be unique. In such a case, the program chooses that point which is closest to
the straight line drawn between its two neighbours. From the two points
resulting from this approach the program will choose the one which is outside
the domain. The points can only be inserted correctly if the boundary data is
given in clockwise order. We will clarify the functioning of the insertion rou
tine by some examples.

ExAMPLE 5.1. Let the first two points of the input be given by {(0,0),(4,4)}.
Then the insertion routine starts at the first point and checks whether a point
should be inserted. This is the case and the unique intermediate result is
{(0,0),(2,2),(4,4)}. Thereafter, it checks again whether a point should be added
after the first point. This is again the case and the next intermediate result is
{ (0,0),(0,2),(2,2),(4,4)}. The point (0,2) is the point, outside the domain, which
is closest to the straight line connecting (0,0) and (2,2). This is known because
the data is given in clockwise order. Now, the routine checks again whether a
point should be inserted after the first point. Since, this is not needed and the
program proceeds to the second point etc.. Finally the result will be
{(0,0),(0,2),(2,2),(2,4),(4,4)}. This result is drawn in Figure 5.2.a.

58

2

a

4 0 2 4

b
FIGURE 5.2. Insertion of points.

x user given points

0 inserted points

boundary

Next consider the input {(0,0),(4,2)}. Then the routine generates successively
{ (0,0),(2,2),(4,2)} and { (0,0),(0,2),(2,2),(4,2)}. This result is drawn in Figure
5.2.b. D

Below, an example is given of a domain definition.

ExAMPLE 5.2. Consider the domain in Figure 5.3, where at the left and right
boundary the velocity and the elevation are respectively prescribed.

---88km
I
I
I closed boundary I
I
I open boundary I
I

--92km--
I --.
I
I

]
:

] r
0 N I \0.

°' I

j j
I
I

[150 km
I

J
FIGURE 5.3. Example domain.

First, the user should determine the mesh width used in the numerical simula
tion (say 5 km). This defines the grid to be used. In Figure 5.4 the domain of
Figure 5.3 is covered by the grid in which the grid lines are already numbered.
The user should be aware of the fact that closed boundaries can only be
represented by a grid line with an even X; or Y;-grid coordinate. Furthermore,
a Z-boundary can only be represented by a grid line with an odd X; or Y;
coordinate.

,- -r,- - ,- - ,- -r,-1-r,-1-r,-1-r,-,-r,-,-r,-,
. - L ..J- - _._ - _._

I
-t- -t--t- - -t- - -t- - -t--t-t--t--t-t--t--t-t--t--t-t--t--t-t--t-'I

I ,- -r-,- - -,- - ,- - ,-,-r-1-,-r,-,-r-,-,-,-,-,-r,-1
15 -:- -:--:- - -:- - -:- - -:-t-:--:-t-:--:-t-:--:-t-:--:-t-:--:-~

-t- -t---1- - -t- - -1- -1--t-t"--l--t-t--t--+-t--t--t-t--t-,t-t--l-'1
I -,- -r,- - -i- - -,- r-,-,-r-,-,-r,-,-,-,-,-r-1-,-r,-1

-; ... , ... , , , .. , ... , ... , ... , ,--,--:-1-:--:-t-:--:-t-:--:-t-:--:-t-:--:-1
•-1--t-t--1--t-t--1--t-t--t--t-t--1--t-t--1-1-t--1--t-t--t--t-t--t--t-t--t-1

IO i-:-t-~ -:- i-~ -{-t-~ -:-t-~ -:-t-~ -:-t- ~-:-t-~ -:-t-~-:-t-~ -:-{
L-1-~-L-1-~-L-1-~-L-1-~-L..J-~-L-1-~-L-1-~-L..J-~-L-1-~-L..J-~
I
~-1--t-t--1--t-t--1--t-t--1--t-t--1--t-t--1--t-t-~-1-r4-1-r~-1-r4-4
I r,-T-r,-1-r,-,-r,-,-r,-1-r,-,-r,-,-r,-,-r,-,-r,-1
LJ-i-LJ-~_LJ-~_LJ_i_LJ-i-LJ_i_LJ_i_LJ_i_LJ-i-LJ-~

s r7-1-r7-1-r7-1-r7-1-r7-1-r7-1-r7-1-r7-1-r7-1-r~-~ r,-1-r,-,-r-1-1-r.-,-,-r-.-,-r-,-,-r,-,-r-,-,-r,-,-r,-1
LJ_i_LJ-~-LJ-~-LJ-i-LJ-~_LJ_i_LJ-i-LJ-i-LJ_i_LJ-~
I I I I I I I I I l I I I I I I I I I I It I I I I I I I I
•4-1-r4-1-r,-1-r,-1-r4-1-r4-1-r4-1-r4-1-r,-1-r,-4
I I I I l I l I I I I O r,-,-r,-,-r,-,-r,-,-r,-,-r,-,-r,-1-r,-,-r,-,-r,-1

0 5 IO 15 20 25

• points which define
the domain

FIGURE 5.4. Example domain of Figure 5.3 covered by a 5 km grid.

59

In Figure 5.5, the ordered set of angle points defining the numerical domain
according to Figure 5.4 is given. Furthermore, a picture of the domain is
drawn as generated by the program.

0 0 0
0 12 I
12 12 I 0 0 0 0 0 z
12 18 1 0 z
29 18 0 0 0 0 0 0 z
29 0 1 u z

u z
u z
0000000000

FIGURE 5.5. Input example plus resulting domain. □

Islands. After the domain is defined, the user can specify islands. Evidently,
the boundaries of an island are closed. Hence, an island is specified by an
ordered set of angle points which have always even values,
{(X;, Y;)EN XN Ii= 1, ... ,n, X; even, Yi even}. The parameter B;, needed to
define the type of the boundary, is not requested here by the program.

ExAMPLE 5.3. In Figure 5.6 an ordered set of angle points of an island is
given together with the resulting domain when this island is placed in the
domain of Example 5.2.

60

16 IO
16 14
20 14
20 IO

0000oz
0 Z

0 0 0 0 0 0 0 Z
U O O Z
u z
u z
0 0 0 0 0 0 0 0 0 0

FIGURE 5.6. Domain of Example 5.2 with island. □

After the definition of the domain, there is a possibility to check the given data
and to correct them if necessary. After this is completed a simple plot of the
domain, such as given in Figures 5.5 and 5.6, will be given. Thereafter, there
is again a possibility to change the data.

When the domain has been defined the program can generate the so-called
row-column table. This table which is used in SOLVER specifies on the stag
gered grid the start and end point of each row and column in the computa
tional domain. This table is used to construct the index arrays of the boun
daries. For the construction of this table the sorting routine MOIAQF from
the NAG library is used.

5.2.2. Boundary conditions. After the domain has been specified, the program
detects the points at which boundary condition data have to be prescribed in
order to make the problem well-posed. These points will be called prescription
points and are usually the corners of the polygon at which a transition from
one boundary type to another takes place, i.e. from open to closed or con
versely. The values at the boundary between two such points are obtained by
interpolation.
The user should specify whether the problem is stationary or time dependent.
Thereafter, the program lists the points at which the boundary condition data
have to be prescribed. These points also include the points which are given by
the user during the domain definition by setting B; = 100.
In the stationary case, the user should give the values of each prescription
point separately. If the problem has time-dependent boundary conditions then
it is assumed that the boundary condition data, i.e. the values of a U, V or Z
prescription point in time, can be constructed from a series of sine functions,

n

~A;sin(W;t + F;). (5.1)
i =1

The user should specify the number of terms. Furthermore, at each point the
user should specify A;, W; and F;. After this specification the user is offered
the opportunity to change the given values.

61

5.2.3. Initialization of the U, V and Z-field. After the specification of the
boundary condition data, the values are calculated at each boundary part and
the program can proceed with the initialization of U, V and Z. With respect
to the initialization of the U and V field, the program checks whether the
boundary values are zero. If this is the case, then the the initial field is, on
request of the user, set to zero everywhere. Otherwise, the user can specify
points, together with values at these points, from which the program interpo
lates values at all other points in the field by using cubic B-splines. Here we
used the NAG library routines E02ZAF, E02DAF and E02DBF. First the
program will ask for values at special points needed for a correct interpolation.
Thereafter, the user may specify additional points and values.
After the interpolation the field is shown to the user at the points of the stag
gered grid. If the user is not satisfied with the result of the interpolation then
he can correct or add data.
For the Z field the situation is the same, except that the initial field can be a
constant unequal to zero when the initial boundary values are constant.

5.2.4. Definition of the depth and Manning values. The definition of the depth
and Manning values proceeds in the same way as the initialization of the Z
field. The Manning values are needed to calculate the Chezy values using the
formula (see [3])

C=H 116 !n, (5.2)

where n is the space varying Manning field. Again, the user can specify the
field to be constant or to be space dependent. Additionally, there is a default
value for the Manning coefficient, which is equal to 0.022.

5.2.5. Definition of problem and integration parameters. The problem and
integration parameters which have to be specified are:

the mesh size (on the unstaggered grid),
the time step,
the number of time steps,
the viscosity coefficient A (see (2.1)),
the coefficient y for the weakly-reflective boundary conditions (see (2.5))
a parameter which specifies whether second-order or fourth-order finite
differences should be used.

When asking for the time step the program suggests a realistic value.

5.2.6. Definition of time history points and flow-field output parameters. In this
part the user should specify the number of history points and their position.
Furthermore, the user can specify the start time and · the time period defining
the times at which the flow field should be written to the file FLOW during the
simulation. The start time and the time period have to be multiples of the
time step.

62

5.3. The SOLVER
The SOL VER, running at the CYBER 205, consists of three main parts: the
part which reads the input given on SOUNP, the part which performs the
actual computation and the part which writes the output to TIHIS and
FLOW. The SOLVER is activated by submitting the file SOUNP to the
CYBER205.
The computation part performs the user-specified number of time steps (see
Section 5.2.5). Before each time step the drying and flooding conditions are
checked (see Section 3.8 and 4.4). The time step requires four right-hand side
evaluations (see Section 3.5). After each right-hand side evaluation the stabili
zation described in Section 3.6 is performed.
Apart from the computation, at each time step the solution at the time history
points is written to the file TIHIS (see Section 5.1) and flow fields are written
to the file FLOW at the user-specified times.
Finally, we remark that the sorting routine M0IAQF from the NAG library
has been used for initializing the index arrays.

5.4. The OUTPUT PROCESSOR
The OUTPUT PROCESSOR runs at the front-end of the CYBER 205. It gen
erates plots of the time histories given on TIHIS and of the flow fields given
on FLOW. For the time histories, the user can choose the type of the plot;
plots of the following entities can be drawn:

the U-velocity,
the V-velocity,
the elevation,
the magnitude of the velocity,
the direction of the velocity.

The flow field is represented by means of vectors positioned at elevation
points. The length and the direction of such a vector represent the magnitude
and the direction of the flow, respectively. The length of the vectors can be
scaled by the user.

6. NUMERICAL RESULTS
In this section, results obtained by the described solver will be given. First we
present results from flow computations in a bay near Taranto in Italy. To
define this problem the system described in Section 5 is used. Thereafter, we
give results for a stationary flow in the Anna Friso Polder and for a time
dependent flow in the Eems-Dollard estuary. For the last two experiments the
solver is incorporated into the WAQUA system, a large computational system
used for the simulation of water flow and water quality at Rijkswaterstaat and
DeHt Hydraulics [32]. Incorporation into this system gives the possibility to
test the model on real engineering problems. Furthermore, it provides a wide
variety of plot facilities.

63

6.1. A time-dependent flow in the Taranto bay
In this section, we present results from a computation of the time-dependent
flow in a bay near Taranto (Mare Piccolo), which is situated in the south of
Italy; a map of this bay is drawn in Figure 6.1 (for a more detailed figure see
[30]). The schematization of the bay is adopted from Notarnicola and Pon
trelli [28]. Currently, there is no data available from the bottom profile of the
bay. Therefore, a constant value is assumed, viz. 7 meters, which approximates
the mean depth.

MARE GRANDE TARANTO

FIGURE 6.1. The Taranto bay.

The boundaries are closed, except for a small open part; here we prescribe the
elevation, W)=.2cos(27Tt / (3600X 12)). Furthermore, we set the viscosity
coefficient A equal to 5 m2 / s and the value of c equals .8 for this problem
(see Section 3.4.3). In the numerical model, the fourth-order space discretiza
tions is used with a mesh size of 111 meters (on the unstaggered grid). The
flow is simulated over the (real time) period of 48 hours, i.e. over 4 full periods
of the tide. The initial field of the velocity is zero and of the elevation .2 m.
The flow is computed for three values of the time step, viz. lit = 100, 50 and 25
seconds. In Figure 6.2, time histories of the magnitude of the velocity are
drawn at the point indicated by an * and a + in Figure 6.1.

64

=--..---.---,----,,----,,-----,-----,----.
I .. II II 3D • .. • TIit: IN HDIIIS

a. Time history at *.

At= 100
At=50 At=25

;,--..---..---,---i----,r----i'-------,----,
II II at :m • • TIit: IN HDIIIS

b. Time history at + .

FIGURE 6.2. Time histories of the magnitude of the velocities.

They show that the solution becomes periodic after a few tides. Moreover, we
observe that the solution depends on the time step, showing the need for small
time steps in this type of applications. It is interesting to see that the time step
has a much larger influence on the solution at the point * than at the point +.
This can be explained by considering the flow fields. In Figure 6.3, these are
given at times 36, 39, 42 and 45 hours.

65

-velocity scale . I m / s

a. Flow field at 36 hours.

-velocity scale .1 m / s

b. Flow field at 39 hours.

66

✓✓/✓✓.,..,--''

✓/// ✓✓---'''
/////✓-'''
IJ/// ✓ _,1111
I l j J I ' , / / / I 1
\\\ ___ _....,,.,,1,,
'I\" _,,
\, --~-r--i,-... - - - ,.

c. Flow field at 42 hours.

d. Flow field at 45 hours.

FIGURE 6.3. Flow fields.

-velocity scale . I m / s

Due to the periodicity of the solution, the flow field at 48 hours is equal to the
flow field at 36 hours. We observe that the tide gives rise to a recirculating
flow in that part of the bay where the open boundary is located. It is known
(see [8] and Section 6.2) that, for stationary problems, the recirculating flow is
determined by delicate balances. As we expect a similar behaviour in the nons
tationary case, it is not surprising that the influence of the time integration
error is much larger in the point indicated by *, since this point is in the recir
culation zone.

67

6.2. A stationary flow in the Anna Friso Polder
In order to test the spatial discretization we shall consider in this section
numerical solution of stationary flows in the Anna Friso Polder (AFP). Solu
tions will be given for various values of the viscosity parameter A. The AFP is
a small recess at the southern coast of the south-west entrance of the Eastem
Scheldt estuary, the so-called Roompot (see Figure 6.4).

~
"'

FIGURE 6.4 Location of the Roompot.

The area modelled is about 2.5 X 1.5 km 2 with a complex shore line and a pro
nounced bottom profile. A typical cross-section normal to the coast of AFP
shows a rather shallow area with a near shore depth well below 10 m, a steep
slope region with slopes up to 1 :5, followed by a rather flat main channel with
depth up to 35 m. The boundary conditions are taken from a steady-state max
imum flood situation which was simulated by a hydraulic scale model at the
Delft Hydraulics. We prescribe at the left and upper boundary of the
mathematical model the normal velocity component and at the right boundary
the water level (see Figure 6.5). Furthermore, the mesh width !:u of the
unstaggered grid is 22.5m. This model is extensively discussed in [8]. It is of
interest for the study of steady recirculating flow. A plot of the computational
domain is drawn in Figure 6.5.

68

u

FIGURE 6.5. Computational domain.

In the computations, the time step is 7.5 seconds, the constant c is .24 (see Sec
tion 3.4.3) and the constant y in (2.4) and (2.5) is set equal to 50. The time
step used is four times larger than the maximum time step without smoothing
(see Sections 3.5 and 3.6). It is assumed that the steady-state is reached if the
amplitude of the elevation has a magnitude less than I mm. This requires
about 6 hours of simulation. As we are only interested in the recirculating
flow, we will give plots of the indicated area only. In Figure 6.6, vector plots
are given for A= IO, 1,.1,0 m 2 Is, respectively.

N

i

+ 1:
//

~l .. 1_~j-~~~
, A=10m 2 /s 1

~" ~·-~ - - ~- --- -
.. ' --.... --:➔---➔

\ "~ ---
----~ --➔

_, I , I

,-~
✓ •' j_ tit:

I i I i I

1-------j

VELOCITY SCALE I m / s

~~~-=-~--~·:::.-:::~~--~'-.~----~--" 
-------~~~_;...-~ __________ ___. ---• __ __. 

•. 

~---l + 

I A=.1m2 /s 

- M 

\ \ \ '\ 

\ . 
' '· '-. ' 

\""·---....--. 
"'--...... 

..,. I \-.... 

✓. -· •. ,•·rr-1.' 
/ _,./ / 

. / :- : 
_ .. _~_ I 

I ! I 

1-----l 

VELOCITY SCALE I m / s 

--=---~__.,__.-~------. ...____-_-=--1· ~~~-~--~~~------
.~~/ / ' ' \ " '.. ----. --. 

/ ' .. 
' \ ' 

A=l m2 /s 

"' -+-

T 

+A=Om2 /s 

·1 

\ "··---. 
l "- -rlffi//j\-

/ 

' 

1-------j 

VELOCITY SCALE I m / s 

--=-=~-----
'· "' ·-<_--•-.. 

I 

7 VELOCITY SCA~ m / s 

FIGURE 6.6. Vector plots for A= 10, 1,.1,0 m2 / s. 0) 
co 



70 

These plots show a significant change of the flow when A is decreased from 10 
to 1, but a further decrease of A hardly effects the flow pattern. This is even 
more clear when we consider vertical cross-sections of the magnitude of the 
velocities at M =28, 33, 36 (see Figure 6.7). The variables Mand N are the 
cell indices for the horizontal and vertical axis, respectively, as used in the 
plots. 

+ A =10 m2 /s 
N N N 

X A =I m 2 /s 

,.:;-
'-.... 0 0 0 * A =.I m2 /s 

E 
.s 
'-' 

.e-. 
., 
ci 

m m 
ci ci 

·g 
'a3 > .. .. .. 
] .... 

ci ci 0 

'o 

] ~ 

ci 
~ ~ 

0 ci 

·a s N 

ci 
N N 

ci ci 

i 0 

ci 
0 0 

ci+---,~~~~~~~ci+-~~~~~~~ 
5 6 7 e 9 10 11 12 13 14 5 6 7 B 9 10 11 12 13 1i 5 6 7 B 9 10 11 12 13 11: 

---+ N ---+ N ---+ N 

M=28 M=33 M=36 

FIGURE 6.7. Cross-sections of the magnitude of the 
velocity at M = 28, 33, 36. 

Flokstra et al. (8) explain these results qualitatively by argueing that for 
A = 10 m2 / s the dissipation of momentum due to turbulent viscosity is more 
important for the flow pattern than the dissipation due to bottom friction. In 
the cases, A= 1 and .1 m 2 / s bottom friction determines largely the flow pat
tern. Therefore, the pattern does hardly change when the eddy viscosity is 
decreased from 1 to .1 m2 / s. In (8), additional computations are reported for 
the same model, however, (i) with perturbed bottom friction and (ii) with a 
perturbed bottom profile. 
The results given in this section are compared with those reported in (8) 
obtained by the ADI method designed by Stelling. It appeared that the above 
plots are almost indistinguishable for the region of interest. Small differences 
occur near boundaries. This can be traced back to a difference in the 



71 

discretization of vuy and uvx and the viscosity terms near boundaries (see Sec
tion 3.4.2). 

6.3. A time-dependent problem in the Eems-Dollard estuary 
In many engineering problems, flows have to be calculated in estuaries in 
which drying and flooding occurs during the tide. The Eems-Dollard estuary is 
an example of such a problem. Hence, this model provides a good case to test 
our drying and flooding procedure. Details on this model can be found in 
[26). 
The Eems-Dollard estuary is situated in the north of the Netherlands. In Fig
ure 6.8, the computational domain is drawn together with the used grid. 

FIGURE 6.8. The Eems-Dollard estuary. 

Closed boundaries are modelled from the coast of Groningen to Rottumeroog 
and from Borkum to Westerbalje. Water level boundaries are modelled at the 
Ranselgat, i.e. the opening between Rottumeroog and Borkum, and from 
Westerbalje to the coast of Germany. The inflows from the rivers Eems and 
Westerwoldse Aa as well as industrial discharges at Delfzijl are modelled as 
sources. The mesh size of this grid is 800 m, whereas the mesh size of the 
unstaggered grid is 400 m. The second-order space discretization is applied. 
The time step in this simulation is 150 seconds, the eddy viscosity 
A =60 m2 / s, and c = .24. The boundary conditions are derived from a 
Fourier analysis of measurements. They are adapted such that the tide is 
purely periodic with period 12 hours and 30 minutes (a motivation for this 
approach is given in [26)). In this computation y (the coefficient in the weakly 
reflective boundary conditions) is zero. 
With respect to drying and flooding, the minimal allowed water depth at a 
velocity point is 9.25 cm. 
At the start of the simulation the elevation is set equal to 1.23 m the velocity 



72 

to zero. 
We first present time histories associated with the elevation and the magnitude 
of the velocity at Reide (see Figure 6.8 for this location). 

2.0 1.0 ·---· -···· ·--· ---·· 
1.0 

0.8 

0.6 
0.0 

0.4 

-1.0 
0.2 

-2.0 0.0 
0 8 16 24 8 16 24 0 8 16 24 8 16 24 

0 0 
26 APR' 82 27 APR' 82 26 APR' 82 27 APR' 82 

a. Water level (m). b. Magnitude of the velocity (m / s). 

FIGURE 6.9. Time histories at Reide. 

These plots show that the periodic behaviour of this flow is reached very soon 
after the start of the simulation (within one period of the tide). Furthermore, 
we give in Figure 6.10 a vector plot of the flow field at low tide (27-th April, 1 
hrs. 13 min.). The closed boundaries resulting from the drying and flooding 
procedure are drawn as dashed lines . 

..., ...,-+__,+"T+ ..... +-..,......:r--+++~i:r,.::r+++:'P,1:1,1,1,1;1;1;1;1;1,1 
-1 L+-L...1.-j I L++..1 .. +- .. • t, a 6 • a a• at ~- =~ _1 __ :t: ~~ 4 • 4 A A ► 1" ' •• • 9 

-I --1 f-+T+- "' " • ' • • 
f,-.1 -..L-" l>I f",J I I I 

..L-, • • 4 4 <ILC-C..14 ,._ • c <I" .. ••• 4 4 c <f ,r 

.................................... -~~·~·· .................................... ----,~ ......... .. ....... ··--~, - .. ~~~, .~, ,., . 
..L-, •, " .... , ........ 

FIGURE 6.10. Flow field at low tide. 

This plot shows that significant tidal flats occur during the tide. From both 
plots (Figures 6.9 and 6.10), we conclude that the drying and flooding 



73 

procedure as used in our method does not give rise to instabilities or unwanted 
phenomena in the solution. 

REFERENCES 
I. CONTROL DATA CORPORATION (1986). FORTRAN 200 VERSION 

1; Reference manual, Publications and Graphics Division, California. 
2. G. DAHLQUIST (1959). Stability and Error Bounds in the Numerical Integra

tion of Ordinary Differential Equations, no. 130, Trans. Roy. Inst. Techn .. 
3. J.J. DRONKERS (1964). Tidal Computations, North-Holland Publishing 

Company, Amsterdam. 
4. T. ELVIUS and A. SUNDSTROM (1973). Computational Efficient Schemes 

and Boundary Conditions for a Fine-Mesh Barotropic Model Based on the 
Shallow Water Equations, Tel/us, 25, pp. 132-156. 

5. B. ENGQUIST and A. MAIDA (1977). Absorbing Boundary Conditions for 
the Numerical Simulation of Waves, Math. Comp., 31, pp. 629-651. 

6. B. ENGQUIST and A. MA.JDA (1979). Radiation Boundary Conditions for 
Acoustic and Elastic Wave Calculations, Comm. Pure Appl. Math., 32, pp. 
313-357. 

7. G. FISCHER (1956). Ein numerisches Verfahren zur Errechnung von 
Windstau und Gezeiten in Randmeeren (German), Tel/us, 11, pp. 289-300. 

8. C. FLOKSTRA, G.K. VER.BOOM, and A.K. WIERSMA (1986). Computation of 
Steady Recirculating Flow, Report RI 150-II, Delft Hydraulics, Delft. 

9. R. FRANK, J. SCHNEID, and c.w. UEBERHUBER (1981). The Concept of B
Convergence, SIAM J. Numer. Anal., 18, pp. 753-780. 

10. H. GERRITSEN (1982). Accurate Boundary Treatment in Shallow-Water Flow 
Computations, Thesis, TU Twente. 

1 I. E.D. DE GOEDE (1986). Stabilization of the Lax-Wendroff Method and a 
Generalized One-Step Runge-Kutta Method for Hyperbolic Initial Value Prob
lems, Report NM-R8613, to appear in Appl. Numer. Math., CWI, 
Amsterdam. 

12. E.D. DE GOEDE and F.W. WUBs (1987). Explicit-Implicit Methods for 
Time-Dependent Partial Differential Equations, Report NM-R8703, CWI, 
Amsterdam. 

13. B. GusTAFSSON (1975). The Convergence Rate for Difference Approxima
tions to Mixed Initial Boundary Value Problems, Math. Comp., 29, pp. 
396-406. 

14. W. HANSEN (1956). Theorie zur Errechnung des Wasserstandes und der 
Stromungen in Randmeeren nebst Anwendungen (German), Tel/us, 8, pp. 
289-300. 

15. G.W. HEDSTROM (1976). Nonrefl.ecting Boundary Conditions for Non
linear Hyperbolic Systems, J. Comput. Phys., 30, pp. 333-339. 

16. P.J. VAN DER HouwEN (1987). Stabilization of Explicit Difference Schemes 
by Smoothing Techniques, to appear in Proceedings of the 4th International 
Seminarium on Numerical Analysis of Ordinary Differential Equations, 
Halle. 

17. P.J. VAN DER HOUWEN, C. BOON, and F.W. WUBS (1987). Analysis of 



74 

Smoothing Matrices for the Preconditioning of Elliptic Difference Equations, 
Report NM-R8705, to appear in Z. Angew. Math. Mech .. 

18. P.J. VAN DER HOUWEN, B.P. SOMMEIJER, J.G. VERWER, and F.W. WUBS 
(1986.). Numerical Analysis of The Shallow-Water Equations, in 
Mathematics and Computer Science: Proceedings of the CWI symposium, 
November 1983, CWI-Monographs no.I, ed. J.W. de Balcker, M. Hazewinkel 
and J.K. Lenstra, North-Holland, Amsterdam. 

19. P.J. VAN DER HOUWEN, B.P. SOMMEIJER, and F.W. WUBS (1986). Analysis 
of Smoothing Operators in the Solution of Partial Differential Equations by 
Explicit Difference Schemes, Report NM-R8617, CWI, Amsterdam. 

20. P.J. VAN DER HOUWEN and F.W. WUBS (1987). The Method of Lines and 
Exponential Fitting, Internat. J. Numer. Methods Engrg., 24, pp. 557-567. 

21. A. JAMESON (1983). The Evolution of Computational Methods in Aero
dynamics, J. Appl. Mech., 50, pp. 1052-1076. 

22. J. KUIPERS and C.B. VREUGDENHIL (1973). Berekeningen van Twee
Dimensiona/e Horizontale Stromingen (Dutch), Report-Sl63, Delft Hydraul
ics, Delft. 

23. P.D. LAX (1954). Weak Solutions of Non-Linear Hyperbolic Equations 
and their Numerical Computation, Comm. Pure Appl. Math., 1, pp. 159-
193. 

24. J.J. LEENDERTSE (1967). Aspects of a Computational Model for Long-Period 
Water-Wave Propagation, Memorandum RM-5294-PR, Rand Corporation, 
Santa Monica. 

25. A. LERAT (1979). Une Classe de Schemas aux Differences Implicites pour 
les Systemes Hyperboliques de Lois de Conservation (French), C.R. Acad. 
Sci. Paris t. 288 (18 juin 1979) Serie A, pp. 1033-1036. 

26. K.D. MAIWALD, L. POSTMA, and A.K. WIERSMA (1984). 
WA QUA/ DELWAQ Berekeningen Eems-Dollard Estuarium (Dutch), 
S296.02, Delft Hydraulics, Delft. 

27. J. MOOIMAN (1987). Implementatie van Zwak-Reflecterende Randvoorwaar
den in DELFLO (Dutch), Report Zll7, Delft Hydraulics, Delft. 

28. F. NOTARNICOLA and G. PONTRELLI (1987). Un Mode/lo Idrodinamico per 
Acque Basse con Termini Sorgenti e sue Integrazione Numerica (Italian), 
Internal Report/ 1, Institute for Research of Applied Mathematics -CNR-, 
Bari. 

29. J. OLIGER and A. SUNDSTROM (1978). Theoretical and Practical Aspects of 
some Initial Boundary Value Problems in Fluid Dynamics, SIAM J. Appl. 
Math., 35, pp. 419-446. 

30. P. PARENZAN (1984). II Mar Piccolo di Taranto (Italian), C.C.I.A.A., 
Taranto. 

31. N. PRAAGMAN (1979). Numerical Solution of the Shallow Water Equations 
by a Finite Element Method, Thesis, TU Delft, Delft. 

32. M.A.M. RAs and G.S. STELLING (1984). WAQUA, een Simulatie pakket 
voor Twee-Dimensionale Waterbeweging en Waterkwaliteit, DIVISIE 1984-4, 
Rijkswaterstaat, Rijswijk. 

33. R.D. RICHTMYER and K.W. MORTON (1967). Difference Methods for Initial 



75 

Value Problems, Interscience Publishers, Wiley, New York, London. 
34. W. SCHONAUER and W. GENTZSCH (Eos.) (1985). The Efficient Use of Vec

tor Computers with Emphasis on Computational Fluid Dynamics, Notes on 
Numerical Fluid Mechanics, 12, Friedr. Vieweg & Sohn, 
Braunschweig/Wiesbaden. 

35. A. SEGAL and N. PllAAGMAN (1986). A Fast Implementation of Explicit 
Time Stepping Algorithms with the Finite Element method for a Class of 
Non-Linear Evolution Problems, Internal. J. Numer. Methods Engrg., 23, 
155-168. 

36. F. SHUMAN (1957). Numerical Methods in Weather Prediction: II, 
Smoothing and Filtering, Monthly Weather Review, 85, pp. 357-361. 

37. A. SIELECKI (1968). An Energy Conserving Difference Scheme for Storm 
Surge Equations, Monthly Weather Review, 96, pp. 150-156. 

38. G.S. STELLING (1983). On the Construction of Computational Methods for 
Shallow Water Flow Problems, Thesis, TU Delft, Delft. 

39. G.S. STELLING, A.K. WIERSMA, and J.B.T.M. WILLEMSE (1986). Practical 
Aspects of Accurate Tidal Computations, J. Hydr. Engrg., ASCE, 112, pp. 
802-817. 

40. G.S. STELLING and J.B.T.M. WILLEMSE (1984). Remarks about a Compu
tational Method for the Shallow Water Equations that works in Practice, in 
Colloquium Topics in Applied Numerical Analysis, pp. 337-362, ed. J.G. 
Verwer, CWI, Amsterdam. 

41. G.S. STELLING, J.B.T.M. WILLEMSE, and A. ROOZENDAAL (1986). A Com
putational Model for Shallow Water Flow Problems on the Cyber 205, 
Supercomputer, 11. 

42. J.C. STRIKWERDA (1976). Initial Boundary Value Problems for Incompletely 
Parabolic Systems, Thesis, Stanford University, Stanford. 

43. L.N. TREFETHEN (1982). Wave Propagation and Stability for Finite 
Difference Schemes, Thesis, Stanford University, Stanford. 

44. E. TuRKEL (1985). Acceleration to a Steady State for the Euler Equations, 
in Numerical Methods for the Euler Equations of Fluid Dynamics, pp. 281-
311, SIAM, Philadelphia, PA. 

45. G.K. VERBOOM and A. SLOB (1984). Weakly-Reflective Boundary Condi
tions for Two-Dimensional Shallow Water Flow Problems, Adv. Water 
Resources, 7, pp. 192-197. 

46. G.K. VERBOOM, G.S. STELLING, and M.J. OFFICIER (1982). Boundary Con
ditions for the Shallow Water Equations, in Engineering Applications for 
Computational Hydraulics, ed. M.B. Abbott and J.A. Cunge, Pitman Pub
lishing. 

47. J.H.A. WIJBENGA (1985). Determination of Flow Patterns in Rivers with 
Curvilinear Coordinates, in Proceedings of the XXI Congress of the Interna
tional Association for Hydraulic Research, Melbourne. 

48. J.B.T.M. WILLEMSE, G.S. STELLING, and G.K. VERBOOM (1985). Solving 
the Shallow Water Equations with an Orthogonal Coordinate Transforma
tion, in Proceedings of the International Symposium on Computational Fluid 
Dynamics, Tokyo. 



76 

49. F.W. WUBs (1986). Stabilization of Explicit Methods for Hyperbolic Par
tial Differential Equations, Internat. J. Numer. Methods Fluids, 6, pp. 641-
657. 

50. F.W. WUBs (1987). An Explicit Shallow-Water Equations Solver for Use 
on the CYBER 205, in Algorithms and Applications on Vector- and Parallel 
Computers, ed. H.J.J. te Riele, Th. J. Dekker and H.A. van der Vorst, 
North-Holland, Amsterdam. 



Part II 

Theoretical Aspects 





INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 6, 641-657 ( 1986) 

STABILIZATION OF EXPLICIT METHODS FOR 
HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS 

F. W. WUBS 

Centre for mathematics and Computer Science, Amsterdam 

SUMMARY 

79 

It is well known that explicit methods are subject to a restriction on the time step. This restriction is a 
drawback if the variation of the solution in time is so small that accuracy considerations would allow a larger 
time step. In this case, implicit methods are more appropriate because they do allow large time steps. 
However, in general, they require more storage and are more difficult to implement than explicit methods. In 
this paper we propose a technique by which it is possible to stabilize explicit methods for quasi-linear 
hyperbolic equations. The stabilization turns out to be so effective that explicit methods become a good 
alternative to unconditionally stable implicit methods. 

I. INTRODUCTION 

In numerical analysis, we distinguish explicit and implicit time integrators for partial differential 
equations. It is well known that explicit methods are subject to a restriction on the time step. This 
restriction is a drawback if the variation in time is so small that accuracy considerations would 
allow a larger time step. In this case, implicit methods are more appropriate because they do allow 
large time steps. However, in general, they require more storage and are more difficult to 
implement than explicit methods. In this paper, we propose a technique by which it is possible to 
stabilize explicit methods for quasi-linear hyperbolic equations. The stabilization turns out to be so 
effective that explicit methods become a good alternative to unconditionally stable implicit 
methods. More precisely, the stabilized explicit methods are competitive with conventional 
implicit methods with respect to both accuracy and computational costs. In fact, we will show, for 
some examples, that the technique also inherently appears in implicit methods, which explains the 
improved stability behaviour of implicit methods. In the fifties, explicit methods were quite popular 
because of their simplicity. Thereby, they were well suited for hand calculations and small 
computers. With the coming of more powerful computers in the sixties, having also a larger 
memory, implicit methods became popular. In the seventies, when the vector computers were 
introduced, the explicit methods became in scope again, because they allow a high degree of 
vectorization. Therefore, the stabilization technique given here may be of interest for the efficient 
use of explicit methods in a large variety of problems. In fact, our attention was focused on explicit 
methods when we started to construct a shallow-water equation solver for use on the vector 
computer CYBER 205. 

In this paper, we restrict ourselves to hyperbolic problems; however the theory develops in a 
similar way for parabolic problems. In Section 2 the theory is presented and in Section 3 some 
numerical illustrations will be given. 

0271-2091/86/090641-17$08.50 
© 1986 by John Wiley & Sons, Ltd. 

Received 2 May 1985 
Revised 11 February I 986 



80 

642 

Consider the equation 

F. W. WUBS 

2. THEORY 

(I) 

where u = (u1, (x, t), u2(x, t), ... , uN(x, t}f, defining a first-order quasi-linear hyperbolic system of N 
equations. 1 Using explicit methods for (1), the time step is restricted by the Courant-Friedrichs
Lewy (C.F.L.) condition (see (25)). In many problems, this time step restriction is much more severe 
than the one following from accuracy considerations. For instance, in order to represent an 
irregular geometry, a fine space mesh is needed. At the same time the variation of the solution in 
time may be very slow. In that case, one likes to use much larger time steps than the one allowed by 
the C.F.L. condition. In the following sections, we will show that it is possible to stabilize an explicit 
method by an appropriate smoothing of the right-hand side. Smoothing of the right-hand side will 
not give rise to larger errors when u, has small space derivatives. We will show for some examples 
that small time derivatives of u imply, under certain conditions, small space derivatives of u,. 
Moreover, this property is trivial for the limiting stationary case. We emphasize that u itself may 
have large space derivatives. For example, we may think of solutions which are close to a steady 
state and which can be written in the form 

u(x, t) = u0 (x) + u1 (x, t) (2) 

where u0 (x), the stationary solution, has large space derivatives and u1 (x, t) is a smooth function in 
both variables x and t. 

For the stabilization of explicit methods, smoothing is often used before, but then usually the 
grid function u is smoothed, 2 •3 rather than the right-hand side. This smoothing of u may only be 
applied, without danger of loss of accuracy, if u itself is smooth, i.e. if u has small derivatives with 
respect to the space variables, which, in general, is not true. As an example, the famous variant of 
the Lax-Wendroff scheme proposed by Richtmyer and Morton4 may be regarded as a two-stage 
second-order Runge-Kutta method, 5 where, in the first stage, the solution u is smoothed, in order 
to obtain a stable method. 

In the field of the boundary-value problems the stabilization technique is known by the name 
residual averaging. 6 In this case, explicit time stepping is used to solve a boundary-value problem. 
The explicit method is then stabilized by using an implicit smoothing operator (see Section 2.4) in 
order to accelerate the convergence. Our contribution will be the construction of explicit 
smoothing operators which are less expensive than the implicit smoothing operators, especially if 
we want to use a vector computer. 

2.1. The smoothness of the right-hand side 

The assumption of a smooth right-hand side (or, equivalently, of u,) is important for the error 
introduced by smoothing. In hyperbolic equations we may expect in some cases that there is a 
relation between the variation of the solution in time and in space. For example, we may think of 
wave-like phenomena moving with some characteristic speed over the field. We will show for two 
examples that such a relation exists. 

Example I. Consider the one-dimensional system of equations 

(3) 



81 

STABILIZATION OF EXPLICIT METHODS 643 

where u = (u 1 (x, t), u2(x, t), ... , uN(x, t)?, A is a non-singular, constant N x N matrix, Ba constant 
N x N matrix and g an arbitrary continuous function of x. Differentiating (3) with respect to time 
yields 

a 
(u,), = A ox u, + Bu, (4) 

Using (4) it follows that if all time derivatives of u up to order n are small, then the (n-l)th space 
derivative of u, is small. Hence, the right-hand side in (3) has small space derivatives if u has small 
time derivatives. 

Example 2. As a second example we consider the linearized shallow-water equations given by 

u, = f(ux, uy) = -( A :x + B £;) u + h(x, y) (5) 

where u = (u, v, (?, h(x, y) is an arbitrary function of x and y, and 

o ~ [o 0 0 , B= 0 
0 0 0 

0 ~ 0 g , g,H >0 
H 0 

Differentiation of (5) with respect to t gives 

(u,), = ( A :x + B £;) u, (6) 

Hence u, is also a solution of the linearized shallow-water equations, in this case, without the 
forcing term h(x,y). Let us define by ((x,y),11(x,y) a normalized orthogonal co-ordinate system. 
After transformation (in terms of these co-ordinates) (6) becomes 

[ ( a( a a11 a) (a( a a11 a)] 
(u,),= - A oxo(+ OXOlj +B oyo(+ oyolj u, (7) 

Now we assume that the partial derivatives with respect to 17 are negligible and that all the time 
derivatives of u are small. Furthermore, we assume that 

011 ou, 011 ov, --+-ox a( ay a¢ (8a) 

is small. This condition says that the vector ((u,),, (v,),? is small in the 11-direction, given by the 
vector(IJ,, 11,)T. Using the special structure of A and B, it follows from the first and second equations 
in (6) that ((,lx and ((,), are small. Furthermore, from the third equation in (7), it follows that 

a¢ au, a( av, 
ax a~+ aya[ (8b) 

is small. Combining (8a) and (8b), we have that (u,), and (v,), are small. As the derivatives with 
respect to IJ are negligible, it follows that (u,)x, (u,), and (v,)x, (v,), are small. Hence, all first-order 
space derivatives of u, are small. Proceeding in the same way, under similar assumptions, it is 
possible to show that all higher-order space derivatives of u, are small. 

These two examples show that, under certain assumptions, we may expect that the right-hand 
side is smooth in space if the time derivatives of the solution are small. The property of a smooth 



82 

644 F. W. WUBS 

right-hand side in space can be used effectively to stabilize an explicit time integration method by 
smoothing the discretized form off(u, ux,, ux,, ... , ux"• x, t), which is obtained by the method oflines. 
In this approach, the space discretization gives rise to a system of ordinary differential equations' 

d 
dt V = F(V, t), (9) 

where U is a grid function approximating u, and F(., t) a vector function approximating f(., x, t). 
Thereafter, an appropriate time integrator is used to solve this equation. Instead of (9), we propose 
to solve 

d 
dt V = SF(V, t), (10) 

where Sis a smoothing operator, with the property S-+ I, the identity operator, when the mesh size 
tends to zero. 

In fact, many unconditionally stable time integrators, applied to (9), can be written as a 
conditionally stable (explicit) integrator applied to (10). We will illustrate this for Euler's backward 
method applied to 

u, = f(u,,x) 

f(u,, x) = Ux + g(x) 

(11) 

where g(x) is an arbitrary function of x. The right-hand side in (11) is discretized, on a grid with 
mesh size h, with the usual second-order central differences 

F/U) = (DVt + g(x), xi= jh (12) 
where 

(13) 

and Ui approximates u(x). When backward Euler is applied to (9), with F given by (12), we find 

U';+ l - At(DUJr l = uj + !H g(x) 

where U" approximates the exact solution V(t) of (9) at t" = nAt. This can be rewritten as 

U1 + 1 - At(DU); + 1 = U1 - !H(DV)1 + AtFiV") 

As the operator (J - AtD) is invertible, we find 

U';+ 1 = u1 + At{ (I - !HD)- 1 F(U") L 

(14) 

(15) 

(16) 

which is simply forward Euler applied to (10) with the smoothing operator S = (I -AtD)- 1. A 
discussion of this smoothing operator and another example can be found in the Appendix. Here, we 
mention that the time step appears in the smoothing operator. Because the magnitude of the time 
step determines the amount of smoothing needed to obtain a stable method, it will also appear in 
our smoothing operators. Moreover, the time step in the smoothing operator ensures the 
consistency of (10) with (9). 

In the remainder of this section, we will illustrate the theory by the scalar equation (11) and its 
semi-discretization ( 12). We are aware of the fact that (11) is simple, but it gives relevant 
information for less trivial cases (see Section 3.3). 

2.2. Stability 

In order to solve the initial value problem (9) we consider explicit m-point single step Runge-



STABILIZATION OF EXPLICIT METHODS 

Kutta formulae, i.e. formulae of the type 
m-1 

u•+ 1 =U"+ I: e,K, 
i=O 

K, = MF(u• + 'i' O(,.,K,, t" + µ/!!.t) 
l=O 

µo =0 

When (17) is applied to the scalar equation 

we obtain 

du =Au 
dt 

u"+ 1 = Pm(.1.tA)u" 

where P m(z) is a polynomial of the form 

Pm(z)=/30 + /3 1z+ ··· + /Jmzm 

83 

645 

(17) 

(18) 

(19) 

of which the coefficients /3; can be expressed in terms of the Runge-Kutta parameters. The 
polynomial P m(z) is the so-called stability polynomial associated with formula (17). The 
polynomial is compatible with a Runge-Kutta formula of order p, provided that 

Furthermore, the region defined by 

1 
/3;= 1 , j=0, 1, ... ,p 

]. 
(20) 

(21) 

will be called the stability region of the Runge-Kutta formula and P m(L\Jc) is called the 
amplification factor. 4 In this paper, scheme (17) is said to be stable when the set of points '1.tA, where 
A is an eigenvalue of the Jacobian matrix of (9), belongs to the stability region S. 

For example, if we apply (17) to (9) with the right-hand side (12) and if we assume periodic 
boundary conditions, then the eigenfunctions of the Jacobian matrix are Fourier components, 

(22) 

and the associated eigenvalues are 

(23) 

Thereby, the amplification factor becomes P m(L\ti sin(bh)/h). Furthermore, the method is von 
Neumann stable if the absolute value of this amplification factor is smaller than one.4 

The largest constant C, such that \P m(iy)\ < 1 for ye[ - C, CJ and yeR, is called the imaginary 
stability boundary. For the classical Runge-Kutta method C = 2J2. 5 If, in general, an explicit 
method has an imaginary stability boundary C, then when this method is applied to { (9), (12)) we 
have the von Neumann stability condition 

'1.t<Ch (24) 

When smoothing is applied it is of interest to compare the stability condition with the C.F.L. 



84 

646 F. W. WUBS 

condition, because the stability condition can never exceed the C.F.L. condition. The C.F.L. 
condition says that the convex hull of the domain of dependence of the exact solution at a point x at 
time t 1 must be contained in the convex hull of the domain of dependence of the approximating 
solution at the same point in space and time. 7 

Lemma I. Let (11) be discretized with central differences involving I points to the left and to the 
right. If an explicit Runge-Kutta method with stability polynomial P m(z) is used to solve the 
resulting system of ODEs then we have the C.F.L. condition 

~t,,;;mlh (25) 

Proof 

It is straightforwardly proved that (25) is the C.F.L. condition for the Runge-Kutta method. 

2.3. Explicit smoothing operators 

2.3.1. Derivation. Consider the smoothing operator S defined by 

(S,F)i=(Fj+l +Fj_i)/2 (26) 

In order to determine the maximum allowed time step, we now need the eigenvalues of S 1 D. These 
are simply the products of the eigenvalues of S1 and D, because S1 and D have the same 
eigenfunctions (22). The eigenvalues of S1 are 

As, = cos(bh) 

and the products of the eigenvalues of S1 and D 

..1.5 , 0 = cos(bh)i sin(bh)/h = i sin(2bh)/(2h) 

(27) 

(28) 

Hence, compared with (23) the maximum eigenvalues have been reduced by a factor two. However, 
this may stiil be very restrictive. Therefore, we repeat the smoothing. Defining a second smoothing 
operator by 

(29) 

we have, along the same line, that again a factor two is won. In general, we apply the smoothing 
operator 

(30) 

where 
(31) 

The maximum eigenvalue is now reduced by a factor 2". This means that the time step can be 
increased exponentially, whereas the costs grow linearly. Hence, as 2" time steps are more 
expensive than one time step with n smoothings, smoothing makes the method much more 
efficient. 

The reader may have noticed that in the case g = 0 the smoothing degenerates to a discretization 
on a coarser grid. This appears quite natural, because of the following reasoning. The solution is of 
the form 

u(x, t) = r(x + t) (32) 

where r is a function depending on the initial and boundary conditions. If in this case the time 



85 

STABILIZATION OF EXPLICIT METHODS 647 

derivatives are small, then also the space derivatives are small. Hence, if for accuracy reasons the 
time step may be increased then also the mesh size may be increased. If, however, g is non-zero the 
discretization differs essentially from the one on a coarser grid. For example, a function g(jh) = 
( - l)j cannot be approximated on a coarser grid. 

We now will define the smoothing operator more generally by 

n 

S:= n sk (33) 
k =ko 

where 
(34) 

Notice that the smoothing operator in (34) appears to be an identity operator plus a discretized 
form of a diffusion operator. For µk =½for all k and k0 = I we have again (30). Another, special 
smoothing operator following from (33) is the case where µk =¼for all k and k0 = 2. The eigenvalue 
of (34) for this value of µk is 

is,= cos 2(2'- 2 bh) (35) 

Now, when (33) is applied to (12), again the corresponding eigenvalues may be multiplied and we 
find 

n 

;,sv =in cos(2k- 2 bh)sin(2"- 1 bh)/(2"- 1h) 
k=2 

In order to approximate the modulus of the maximum eigenvalue we need the inequality 

lcos(x)sin(2x)I = 12(1 - sin 2 (x))sin(x)I ~ t;J3 

(36) 

(37) 

Isolating cos(2"- 2 biz) from the product sequence (36) and combining it with sin(2"- 1 bh), we can 
apply inequality (37) to find an upper bound for the maximum modulus of (36). This gives 

(38) 

In Reference.Sit is shown that (30), (31) defines an optimal smoothing operator for the considered 
equation. However, for initial-boundary value problems we found that this operator gave unstable 
results, whereas the operator (34) with k0 = 2 and µk slightly smaller than¼ gave stable results (see 
Section 3.3). This is possibly due to the fact that in the latter case (33) has positive eigenvalues. 

With respect to the C.F.L. condition (25) we remark that an application of (33) gives rise to a 
differencing in which I= I+ L~=ko2k- l = 2" - 2k 0 - 1 + I. In the case without smoothing I= I. 
Application of Lemma 1 in both cases shows that with the resulting method after smoothing an 
increase of the time step with a factor 2" - 2•0 - 1 + I is possible. This factor is obtained for k0 = I 
and almost obtained for k0 = 2, as can be seen from the reduction of the magnitude of the spectral 
radius of the Jacobian matrix. 

2.3.2. The smoothing error. Here we will give an approximation of the error due to the 
smoothing operation (33), for µk independent of k. This is achieved by comparing the smoothed and 
non-smoothed right-hand sides. We will see that the smoothness of the original right-hand side and 
the time step determine the magnitude of the error. If, in the following, the subscript his used in 
connection with a continuous function, then this denotes the restriction of that function to the grid. 

Lemma 2. Let A(~h) be a discretization of a(((x), ~Ax), x). If A(~h) and ~h satisfy the condition 

Ai~h) = a(~(x), Ux), x) + Cjh 2 + O(h4 ) (39) 

(40) 



86 

648 F. W. WUBS 

and, moreover, a(<;(x), <;x(x), x)eC4, then the error due to the smoothing operator (33) is, with 

(41) 

Proof 

Let <f>(x) = a(<;(x), <;x(x),x). Using Taylor expansions, we find by substitution of <f>(x) into (34) 

(Sk</>h)j = ( I + µ(2k- 1h)2 ::2 )<t>(xj) + O(h4 ) (42) 

Hence, we have the following error due to the smoothing (33) for <f>(xj): 

(S</>h)j - </>(x) = IT ( I + µ(2k- I ) 2 aa\)<t>(xj) + O(h4)- </>(x) 
k=ko X 

(43) 

=µh2( ± (2k-1)2)a\<t>(xj)+O(h4) 
k=ko ax 

22n_22ko-2 a2 
= µhl ---- a 2 </>(x) + O(h4) 

3 X • 

With (39) it follows that 

(SA(<;h))j - A Rh)= (Sah)j - a(<;(x1), (x(x), xj) + h2((SC)j- C) + O(h4) (44) 

It follows from (40) that (SC)j - Cj is of O(h2). Furthermore, by assumption </>(x) = a(<;(x), <;Ax), x), 
hence, the lemma follows by substitution of (43) into (44). 

Corrollary. The error due to the smoothing operator (2.33) is of O(h2 ). 

Theore,,:z J. Let the conditions of Lemma 2 be satisfied. Let F be defined by (12). Let C be the 
imaginary stability boundary of an explicit method (see (24) ). Then the error due to the smoothing 
operator (33) is, when the maximum allowed time step is used, for the special case µk = ½, k0 = I, 

(t11/c)2 - h2 a2 

(SF(uh))j - Fj(uh) = ----a 2 f(ux, x) + O(h4) 
6 X 

(45) 

and for the special case µk = ¼, k0 = 2 

(46) 

Proof 

First we prove (45). Denote by !1t0 the maximum time step without smoothing. Hence, from (24) 
!1t0 /h = C. In Section 2.3.1 we have found that the time step can be increased by a factor 2". This 
gives (ti.t/l:!.t0 ) = 2". Substituting this into (41) and setting <;(x) = u(x, t) for some time t, we arrive at 
(45). The proof of (46) follows the same line, except that from (38), the time step can now be 
increased by a factor ¾✓32"- 1. 

2.4. An implicit smoothing operator 

Another smoothing operator, we want to introduce, is an implicit one. This smoothing 



STABILIZATION OF EXPLICIT METHODS 

operator is implicitly defined by 

- µ(SF)j+ 1 + (1 + 2µ)(SF)j- µ(SF)j- 1 = Fj 

For the eigenfunctions (22), the eigenvalues of this system are 

As= 1/[1 +4µsin 2(bh/2)] 

The reduction factor is found by the multiplication of the eigenvalues of S and D, giving 

AsD = i sin(bh)/{h[l + 4µ sin2 (bh/2)]} 

= 2i sin(bh/2)cos(bh/2)/{h[l + 4µ sin2(bh/2)]} 

Omiting cos(bh/2), which is less than one, and writing x = sin(bh/2) we find 

IAsDI < 2x/[h(l + 4µx 2)], 0 < x < 1. 

By differentiation with respect to x we find a maximum of the right-hand side for 

X = 1/✓(4µ), µ > ¼, 
x= 1, 0<µ<¼. 

Substitution in (50) gives 

maxlAsDI < 1/(2h✓µ) 

87 

649 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

Hence, increasing µ by a factor of four will decrease the maximal eigenvalue by a factor of two. 
Notice that from the stability condition (24) and from (52) it follows that 

µ;;;,¼M 2/(C2h2) (53) 

Ifµ satisfies this condition, then we have constructed an unconditionally stable method. Compared 
to the usual implicit time integrators, this method is simpler to implement. Especially if the right
hand side (see (I)) becomes non-linear and complicated. 

Theorem 2. Let the conditions of Lemma 2 (see Section 2.3.2) be satisfies. Let F be given by (12). 
Let C be the imaginary stability boundary of an explicit method (see (24)). Assume periodic 
boundary conditions and equality in (53). Then the error due to the implicit smoothing operator 
(47) is given by 

(54) 

Proof 

From (47) we obtain 

(55) 

Using Gerschgorin's'theorem,9 we have that the minimum eigenvalue of s- 1 is greater than or 
equal to 1. Hence the spectral radius of Sis smaller than or equal to I and thereby Sis bounded in 
any matrix norm. Let S' be defined by 

(56) 



88 

650 F. W. WUBS 

then for a test function <f,(x)EC2 we have 

(S<t>h - S'<t>hl; = {S(<t>h - s- 1 s'<t>hl}; 

= { S [ <ph - s- 1 ( I + µh 2 ::2) <ph + O(h3)] t 
= {S(<f,h - s- 1</>h)}; + O(h2) 

= { s[ <t>h-( I+ µh 2 a:2 )<t>h]L + O(h 2 ) 

= { s( -µh 2 ::2 <ph) }; + O(h 2 ) = O(h 2 ) 

From (39), (56) and (57) it follows that 

(SF(uh)); - F;(uh) = { S[F(uh) - s- 1 F(uh)]}; 

={S[fh-s- 1Jh+h 2 (C s- 1 C)]};+O(h4 ) 

= { s[µh 2 ::2 f(ux, x) ]1 + O(h4 ) 

= { S'[ µh 2 ::2 f(ux, x)] 1 + O(h4 ) 

From (58) and equality in (53), we obtain (54). 

2.5. Systems 

(57) 

(58) 

In the case of systems, the same smoothing operators can be used again. This proceeds as follows. 
First the terms on the right-hand side which play an important role with respect to stability have to 
be determined. These terms contain, in general, a derivative in one of the space directions. Then the 
right-hand side of the equation containing such a term has to be smoothed in the same direction as 
that of the derivative. If this equation contains important derivatives with respect to stability in 
more directions, then this equation is successively smoothed in all these directions. We will clarify 
this by an example. 

Example 3. The shallow-water equations can be written in the form 

U1 = f(u, Ux, Uy, Uxx, Uyy, X, y, t) 

where u = (u, v, (JT and 

/"(-) = - UUx - vu, - g(, + vilu - czJ(u2 + v2 )u/H 

/"(·) = - uvx - vv, - g(, + vilv - C,J(u2 + v2 )v/H 

J'(-) = - (Hu)x - (Hv), 

H(x, y, t) = h(x, y) + ((x, y, t) 

(59) 

where g, v and C, are positive constants. These equations are again discretized by standard central 
differences (13). In many applications it suffices to consider for stability a reduced Jacobian of the 



STABILIZATION OF EXPLICIT METHODS 

space discretized form of (59), i.e. 

J,= -[) 
HDX 

0 
0 

HD,, 

gDx] 
gD, 
0 

89 

651 

(60) 

where Dx and D, are the discretizations of a;ax and a;ay, respectively, and fi is a constant 
approximating H(x, y, t). If this Jacobian is applied to a Fourier component exp[i(b 1 x + b2y)], then 
we obtain the eigenvalues 0, ± J[gH().; +).;)],where Ax and)., are the eigenvalues of Dx and Dy 
for the Fourier component, respectively. According to this outcome, it seems appropriate to 
smooth the right-hand sides of the successive equations in the x-, y- and x, y-directions, 
respectively. Using the same one-dimensional smoothing operators as in the previous sections, the 
third right-hand side has to be smoothed in x- and y-directions, successively. After smoothing, the 
Jacobian matrix becomes 

[ 
0 0 gSxDx] 

J, = - 0 0 gSyDy 
HS,SxDx HSxSyDy 0 

(61) 

where Sx and S, denote the smoothing operators in the x- and y-directions, respectively. The 
eigenvalues of the Jacobian after smoothing are 0, ± J {gH[).5/ics)-xJ2 + A5)ics/y)2 ] ), where ).5x 
snd As, denote the eigenvalues of Sx and Sy, respectively. Hence, as long as the neglected terms in 
(59) do not become important with respect to stability, it is possible to reduce the modulus of the 
maximum eigenvalue to any desired magnitude. 

3. NUMERICAL ILLUSTRATIONS 

To illustrate the foregoing theory, we will give examples of the stabilization for linear and non
linear problems. Furthermore, an application to the shallow-water equations will be shown. 

3 .I. A linear problem 

The linear problem is defined by 

u, = ux - 16n/Lcos(32nx/L), 0 < t < T, 0 < x < L 

u(x,0) = O,S sin(2nx/L) + 0·5 sin(32nx/L) 

u(0, t) = u(L, t) 

where L = 100. The exact solution of this problem is 

u(x, t) = 0·5 sin(2n(x + t)/ L) + 0· 5 sin(32nx/ L) 

(62) 

(63) 

Hence, the solution consists of a non-stationary part, which is slowly varying both in the time and 
in the space variable, and a stationary part which varies rapidly in the space variable only. 

Therefore, the numerical approximation of the stationary part needs a finer space mesh than the 
non-stationary part. This fine space mesh does, when no smoothing is used, severely restrict the 
time step. Here, we will give the accuracy results for five methods which all have the same semi
discretization (12). The basic time integrator we use is the classical fourth order Runge-Kutta 
method. 5 This method, which is used by various others, 6 •10• 11 is conditionally stable for hyperbolic 
partial differential equations. The imaginary stability boundary of this method is C = 2J2. The 
methods are: 



90 

652 F. W. WUBS 

Table I. Numerical results using smoothing operators with T = 2·8 x 128, h = L/N 

Correct digits, Correct digits 
N=384 on coarser grids 

!lt RK4 RK4El RK4E2 RK4I CN RK4 N 

0·7 2·0 2·0(0) 2·0(0) 2·0(0) 1·9 2·0 384 
1·4 2·1(1) 2·0(1) 1·7 1·6 192 
1·866 2·0(1) 
2.8 1·9(2) 1·7(1) 1·4 0·9 96 
3·733 1·7(2) 
5·6 1·4(3) 1·3(1) 0·9 0·3 48 
7·466 1·2(3) 

11·2 0·8(4) 0·7(1) 0·4 -0·1 24 
14·933 0·6(4) 

RK4 the classical Runge-Kutta method without smoothing 
RK4El the classical Runge-Kutta method with smoothing operator (33), where µk =½and 

k0 = I, 11 =[I+ log,(L\t/(2✓2h))] 
RK4E2 the classical Runge-Kutta method with smoothing operator (33), where µk = ¼ 

and k0 = 2, 11 = [2 + log 2 (L\t/(2✓2h))] for I < L\t/(2J2h) < ½ and 11 = [2 + log 2 

(½✓3M/(2✓2h))] for L\t/(2✓2h) > ½ 
RK41 the classical Runge-Kutta method with the implicit smoothing operator (47), where 

µ = ¼L\t 2 /(2✓2h)2 for L\t/(2J2h) > I, and 
CN the Crank-Nicolson method. 

The brackets, [ ], in the expressions for the determination of II denote the entier function. 
Furthermore, no smoothing is performed for L\t/(2✓2h) < 1 in RK4El, RK4E2 and RK4I. In 
Table I we give the number of correct digits produced by these integration methods, i.e. the 
- log 10(lmaximum error I), and in parentheses the number of smoothings. 

The main part of the table presents the results on a grid with 384 grid points. For reference, we 
also added results of the RK4 method on coarser grids using the corresponding maximum allowed 
time steps. These time steps are given in the first column. The hyphens in the column of RK4 denote 
that the method is unstable for the corresponding time step. The results ofRK4EI and RK4E2 are 
given for time steps L\t which are the maximum allowed for the corresponding number of 
smoothings. For RK4EI, this results in a doubling of the allowed time step, each time a new 
operator is applied. If in RK4E2 the first operator of the product sequence is applied, a factor ½✓3 
is gained (see (36) and (38)). Thereafter, as with RK4EI, a factor two is gained each time a new 
smoothing operator of the sequence is applied. RK4I and CN were applied using the same step 
sizes as RK4EI. Because n is an integer, the increase of the maximum allowed time step proceeds in 
a discreet way. However, for accuracy reasons it may be desirable to have a smooth increase of the 
time step as the right-hand side is smoothed more and more. Without going into details, we 
mention that this can be established by varying the coefficient µk of the last smoothing operator in 
the product sequence (34). 

The results on the fine grid (N = 384) develop in the same way for all methods when the time step 
increases: at first, the number of correct digits changes slightly; then, when the time step becomes 
larger than about 3·5, the number of correct digits decreases rapidly. This can be understood by the 
following reasoning. The error due to the stationary part of the solution is independent of the time 
step. For this problem, this error is rather large because of the large space derivatives of the 
stationary part of the solution. Of course, the error due to the non-stationary part is dependent on 



STABILIZATION OF EXPLICIT METHODS 

91 

653 

the time step. Hence, for a certain time step the error due to the non-stationary part becomes larger 
than that due to the stationary part of the solution. This time step is about 3·5 for this problem. 

The results on coarser grids clearly show the need for a calculation on the fine grid, because the 
number of correct digits rapidly decreases on coarser grids. This error is due to the stationary part 
of the solution. 

3.2. A non-linear problem 

In this section, we will use .the stabilization technique for a non-linear equation. The problem is 
given by 

u, = uux + g(x, t), 0 < t < T, 0 < x < L (64) 

where L = I 00. The forcing function g is chosen such that we have a solution consisting of a part 
which is slowly varying in both the time and the space variables, and a part which varies relatively 
rapidly in the space variable only. The solution is given by 

u(x, t) = 0·5sin(2n(x + t)/L) + 0·5 sin(81tx/L) 

Hence, the function g follows to be 

g(x, t) = 2it/L{0·5 cos(2n(x + t)/L)- [0·5 sin(2n(x + t)/L) + 0·5 sin(81tx/L)] 

(65) 

x [0·5cos(2n(x + t)/L) + 2cos(8nx/L)J} (66) 

The initial condition is taken from the exact solution (65). 
We discretized the non-linear term uux by 

{(uj+t +2ui+ui_i)/4}(ui+ 1 -uJ-il/(2h) (67) 

Owing to the non-linear nature of equation (3), almost any time integration will become unstable 
after a certain time period. In our experiments, this discretization (67) performed quite well. For 
more details on discretizations for non-linear problems we refer to References 12-15. For the time 
discretization, we applied the same time integrators as in Section 3.1, except for the CN method. 
This method is modified to 

ur I = uj + ½dt[((uj+ I + 2uj + uj_ 1)/4)(ujt f - uj:: /)/(2h)] 

+ ½dt[((uj! t + 2u'.r 1 + uj:: t )/4)(uj+ 1 - uj_ 1)/(2h)] 

+ Mg(xi, t + dt/2) (68) 

This modification is linearly implicit and still second order in time. In the following this method is 
called MCN. Table II gives the results in the same form as in Table I 

Globally, we observe the same effect for the explicit methods as in the previous section: at first the 
error of the time stepping is negligible with respect to that of the space discretization; then, when 
the time step becomes larger than about 5, the error due to the time stepping becomes significant. 
Furthermore, we find that the application of the smoothing operators gives at first a slight increase 
of the number of correct digits. This is possibly due to an annihilation of errors. The MCN method 
performs relatively poorly for this problem, which is caused by the larger error constants of its 
time discretization. 

The implicit smoothing operator is of course more expensive than one explicit smoothing 
operator of the product sequence. However, as the time step increases, we need more and more 
applications of the explicit smoothing operators, whereas the implicit smoothing operator needs to 
be applied only once. Hence, after a certain number of applications of explicit smoothing operators, 



.92 

654 F. W. WUBS 

Table II. Numerical results using smoothing operators with T = 128 x 8, h = L/N 

Correct digits, Correct digits 
N=384 on coarser grids 

6t RK4 RK4El RK4E2 RK4I MCN RK4 N 

0·8 2·0 2·0(0) 2·0(0) 2·0(0) 1·8 2·0 384 
1·6 2·6(1) 2·4(1) 1·2 1·4 192 
2·1 2·4(1) 
3-2 2·3(2) 2·1(1) 0·2 1·0 96 
4·2 2·1(2) 
6·4 1·8(3) 1·6(1) 0·6 48 
8·4 1·6(3) 

12·8 1·3(4) 0·9(1) O·O 24 
16·8 1·3(4) 

explicit smoothing becomes more expensive than implicit smoothing. On a vector computer this 
number is of course much larger, because the explicit smoothing operators vectorize very well, 
which is not the case for the implicit smoothing operator. 

3.3. The shallow-water equations 

In this section, we give results of a computation with the shallow-water equations where 
smoothing is used. These computations are performed on the CYBER 205. On such a vector 
computer, explicit methods are to be preferred, because they allow a high degree of vectorization. 
The application of the smoothing operators is such as described in Section 2.5. In this computation, 
the operator (34) is applied with coefficients depending on k and n, i.e. 

(69) 

For this choice the eigenvalues of(38) are positive, which appeared important for initial-boundary 
value problems in order to have a stable integration. With this choice, we found in experiments, 
that the factor 0·77 in (38) can be replaced by I. In this computation again the classical Runge
Kutta method is used. For further details we refer to Reference 8. These results will show the 
relevance of smoothing for flow computations. 

The test problem is a square basin, which has sides oflength 5 km (see Figure I). In the middle of 
the basin is a bump. 

0 5km 

G 
5km 

Figure 1. Geometry of a square basin with bump. 



STABILIZATION OF EXPLICIT METHODS 

The bottom profile h(x, y) is given by 

h( {
40- 30 cos(nr/2)m 

x,y)= 
40m, elsewhere 

for r < 1 

where 
r = .j[(x - 2·5 x 103 )2 + (y- 2·5 x 103 ) 2 ]/1000 

At the left and right boundaries, the elevation ( is prescribed 

where 0 < y < 5·0 x 103 m and 

((0, y, t) = - sin(wt), 
((5·0x 103,y,t)= -sin(wt-¢), 

w=2n/(12 x 3600)s- 1 

¢ = 2n5/600 

93 

655 

(70) 

(71) 

(72) 

At the upper and lower boundaries, at y = 0 and y = 5·0 x 103 m, respectively, the normal velocity 
component v is zero. Furthermore, the constants in equation (59) are chosen to be 

v=10m2 /s, Cz=4xl0- 3 

We integrated 15 hours physically with various time steps (see Table Ill). The calculations were 
performed on a 24 x 24 grid. At the end of each integration the solution was compared with a 
reference solution computed on a finer grid (96 x 96). The results are given in significant digits of 
the v-component. In this case, a root-mean-square error is used, defined by 

Sd2 = -log1o(lv- v«rl 2 /lv,.r- ii«r12) 
where 

ii,.f = (L V1)/(24 X 24) (73) 
i 

lvl 2 = .J(2)fl/(24 x 24) 
i 

in which the summation is over all grid points. The results are given in Table III. 
In this table, the number in parentheses denotes the number of applied smoothing operators. In 

the first column again the time step is given; it increases downwards with a factor two. In the second 
column the computation times are given and in the last column the numbers of significant digits are 
given with, in parentheses, the number of smoothings. The time step /1,.t = 8 is the maximum time 
step without smoothing. The general picture is comparable with the previous cases. At first, the 
number of significant digits remains constant as the time step increases and then, when the time 
step becomes greater than 32 s, the error due to the time step becomes dominant. 

The computation times show a significant reduction when smoothing is used. Furthermore, they 

Table III. Significant digits for the 

!i.t 

8 
16 
32 
64 

shallow-water equations 

RK4E2 
Computation time Sd 2 

45 2·1(0) 
26 2·1(1) 
15 2·1(2) 
9 1·6(3) 



94 

656 F. W. WUBS 

contain information about the overhead of the smoothing, because without smoothing the 
computation time should decrease by a factor two downwards. The overhead of one smoothing is 
in this case about ¼ of one right-hand side evaluation. 

4. CONCLUSIONS 

In Section 2, we have set up the theory for the stabilization of explicit methods for purely initial
value problems. For some numerical examples it was shown that the predicted reduction of the 
spectral radius is correct, even in non-linear partial differential equations. Furthermore, a 
significant decrease of the computation time was found (see Table III). 

Our experiences are that the described stabilization is easy to implement. In fact, by its 
simplicity, it can be added easily to an existing program. Moreover, we think that the technique can 
be applied to a large variety of problems, even to problems with non-smooth solutions.6 

APPENDIX: SMOOTHING OPERATORS OCCURRING IN OTHER TIME 
INTEGRATORS 

In Section 2.1 we have rewritten the implicit backward Euler integrator to an explicit method in 
which a smoothing operator occurs. We will now show that the backward Euler method also can 
be considered, for problem {(9), (12)}, as a two-stage first-order Runge-Kutta scheme where an 
implicit smoother of the form described in Section 2.5 occurs. Furthermore, applying the well
known Crank-Nicolson method to problem { (9), (12) }, this method appears to be a second-order 
two-stage Runge-Kutta scheme, where the same implicit smoothing operator occurs. We rewrite 
(16) as 

(74) 

The term (/ - At2 D2)- 1 is an implicit smoothing operator similar to the one described in 
Section 2.5. Furthermore, if this implicit smoothing operator is omitted from (74), then there 
remains a ·two-stage first-order Runge-Kutta scheme, applied to the linear problem {(9), (12)}. 
Proceeding in the same way for an application of Crank-Nicolson to~{ (9), (12)} we have 

Vt 1 = Uj + At{(I -At2D2/4)- 1(/ + AtD/2)F(U")}1 (75) 

Here, again the implicit smoothing operator occurs. Omitting this operator, a two-stage second
order Runge-Kutta method, applied to { (9), (12)} remains. However, this scheme, without 
smoothing operator, is unstable for hyperbolic problems. Hence, by smoothing it is possible to 
stabilize a method that otherwise would be unstable for all At. 

ACKNOWLEDGEMENTS 

These investigations were supported by the Netherlands Foundation for Technical Research 
(STW), future Technical Science Branch Division of the Netherlands Organization for the 
Advancement of Pure Research (ZWO). The experiments were done on a CYB ER 750 and CYB ER 
205 at the expense of the Centre for Mathematics and Computer Science (CWI) and the Control 
Data Corporation (CDC). 

REFERENCES 

I. R. Couranl, and D. Hilbert, Methods of Mathematical Physics, Interscience Publishers, 1962. 
2. E, E. Rosinger, 'Nonlinear equivalence, reduction of PD Es to OD Es and fast convergent numerical methods', Research 

Notes in Mathematics 77, Pitman Advanced Publishing Program, Boston-London-Melbourne, 1982. 



95 

STABILIZATION OF EXPLICIT METHODS 657 

3. F. Shuman, 'Numerical methods in weather prediction: II, smoothing and filtering', Monthly Weather Review, 85, 357-
361 (1957). 

4. R. D. Richtmyer, and K. W. Morton, Difference Methodsfor Initial Value Problems, Interscience Publishers, Wiley, 
New York, l 967. 

5. J. D. Lambert, Computational Methods in Ordinary Differential Equations, Wiley, New York, 1973. 
6. A. Jameson and D. Mavriplis, 'Finite volume solution of the two-dimensional Euler equations on a regular triangular 

mesh', AIAA 23rd Aerospace Sciences Meeting, AIAA-85-0435, Nevada, 1985. 
7. J.C. Wilson, 'Stability of Richtmyer type difference schemes in any finite number of space variables and their 

comparison with multistep strange schemes', J. Inst. Maths Applies, 10, 238-257 (1972). 
8. F. W. Wubs, P. J. van der Houwen and B. P. Sommeijer, 'On the construction of optimal smoothing operators for 

stabilizing explicit time integrators in PDE's', Report NM86, Centre for mathematics and Computer Science, 
Amsterdam, 1986. 

9. P. Lancaster, Theory of Matrices, Academic Press, New York and London, 1969. 
JO. P. J. van der Houwen, Construction of Integration Formulas for Initial Value Problems, North-Holland Publishing 

Company, Amsterdam, I 977. 
11. N. Praagman, 'Numerical solution of the shallow-water equations by a finite element method', Thesis, TH Delft, 1979. 
12. A. Grammeltvedt, 'A survey of finite-difference schemes for the Primitive equations for a barotropic fluid', Monthly 

Weather Review, 97, (1969). 
13. J. G. Verwer and K. Dekker, 'Step-by-step stability in the numerical solution of partial differential equations', Report 

NW 161/83, Mathematical Centre, Amsterdam, 1983. 
14. A. Arakawa, 'Computational design for long-term numerical integration of the equations of fluid motion: I. Two

dimensional incompressible flow', Journal of Computational Physics, I, (l), (1966). 
15. A. Arakawa, and V. R. Lamb, The UCLA general circulation model', Methods in Computational Physics, 17, (1977). 





97 

Analysis of Smoothing Operators in the Solution of Partial Differential 

Equations by Explicit Difference Schemes 

P.J. van der Houwen, B.P. Sommeijer, F.W. Wubs 
Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

A smoothing technique for the "preconditioning" of the right-hand side of semi-discrete partial differential 
equations is analysed. For a parabolic and a hyperbolic model problem optimal smoothing matrices are 
constructed which result in a substantial amplification of the maximal stable integration step of arbitrary 
explicit time integrators when applied to the smoothed problem. This smoothing procedure is illustrated by 
integrating both linear and nonlinear parabolic and hyperbolic problems. The results show that the stability 
behaviour is comparable with that of the Crank-Nicholson method; furthermore, if the problem belongs to 
the problem class in which the time derivative of the solution is a smooth function of the space variables, 
then the accuracy is also comparable with that of the Crank-Nicholson method. 

1980 Mathematics Subject Classification: Primary: 65M10, Secondary: 65M20 
1982 CR Categories: 5.17 
Key Words & Phrases: numerical analysis, initial boundary value problems in partial differential equations, 
method of lines, explicit integration methods, smoothing, stability. 
Note: These investigations were supported by the Netherlands Foundation for Technical Research (STW), 
future Technical Science Branch Devision of the Netherlands Organization for the Advancement of Pure 
Research (ZWO). 
Note: This report will be submitted for publication elsewhere. 

I. INTRODUCTION 

In a number of papers (cf. e.g., [2] and [4]), it has been observed that many initial-boundary value 
problems for partial differential equations of the form 

au 
at(t,x) = D(t,x,u(t, x)) (I.I) 

possess the property that the right-hand side D (t, x,u) is a smooth function of the space variable x if 
the exact solution of the initial-value problem is substituted, even when the exact solution has large 
space derivatives. Here, D may be a (nonlinear) differential operator of parabolic or hyperbolic type. 

The situation described above arises in cases where the solution of the initial-boundary value prob
lem tends to a steady state solution: 

u(t, x) -> r(x) + s(t, x) as t ->oo, (1.2) 

where r(x) is a rapidly varying function of x and s(t, x) is a smooth function of (t, x). Evidently, 

as 
D(t,x,r(x)+s(t,x))-> a7(1,x), 

so that the right-hand side becomes a smooth function of x as t -> oo (see the examples in Section 4). 
For such problems it was proposed in, e.g., [2] and [4] to smooth the right-hand side of the equa

tion (I.I) with respect to x, before applying a numerical integration method. The effect of smoothing 
the right-hand side of (I.I) becomes apparent when the space variable x and the differential operator 
D in (I.I) are discretized: the resulting system of ordinary differential equations is better conditioned 
in the sense that the spectral radius of the Jacobian matrix of this system reduces considerably in 
magnitude by the smoothing process. It is well known that the usually large spectral radius of semi-

Report NM-R8617 
Centre for Mathematics and Computer Science 
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 



98 

discrete partial differential equations makes explicit integration methods unattractive for solving these 
systems, because of the rather restrictive stability condition. However, if smoothing reduces the spec
tral radius sufficiently in magnitude, then explicit time integration methods become of interest. 

The price we have to pay for the "preconditioning" of the system of semi-discrete equations, is a 
possible drop in accuracy of the space discretization. To make this more clear, we consider the quasi 
linear equation 

au 
Tt(t, x) = A (u(t,x))Lu(t, x)+g(t, x), (1.3) 

where L is a linear differential operator with respect to x, and A and g are given functions; let A a and 
La represent discretizations of A and L with A characterizing the accuracy of the discretization, and 
let Sa denote a (linear) smoothing operator. For example, in one space variable x, we may think of 

L = a:' Lau(t,x) = 2~ (Ea-Ei 1 )u(t,x), Sau(t,x) = ½<Ea+E;;: 1 )u(t,x), 

where Ea is the forward shift operator defined by Ea u(t,x) : = u(t,x + A). Instead of solving ( 1.3), we 
try to solve the smoothed, semidiscrete equation 

au 
at(t,x) = SaAa(u(t,x))Lau(t,x)+Sag(t,x). (1.4) 

Let v(t, x) and w(t, x) denote the solutions of the initial-boundary value problem for the equations 
(1.3) and (1.4), respectively. Then, it is easily verified that the difference v-w satisfies the equation 

a 
at(v-w) = SaAa(w)La(v-w)+Sa[A (v)L-Aa(w)La]v (1.5) 

+ [I -Sal [A(v)Lv+g]. 

This "error equation" shows the effect of the space discretization and of the smoothing operator on 
the accuracy by which w approximates v. The second term in the right-hand side of (1.5) represents 
the (smoothed) space discretization error, whereas the last term represents the smoothing error. Evi
dently, the smoothing error vanishes if Sa = I (no smoothing), it is small if A (v)Lv+g is a smooth 
function of x, and it hardly affects the accuracy of w if A (v)Lv+g is much smoother in x than v. 

Thus, we expect that the introduction of smoothing operators into the right-hand side of the partial 
differential equation (I.I) will not severely decrease the accuracy provided that the exact solution of 
(I.I) varies much more rapidly with x than its time derivative does. 

In [4] a few smoothing operators were tested and shown to have the expected effect. In this paper, 
we analyse smoothing operators more systematically, and we derive a family of optimal operators of 
second-order for a parabolic and a hyperbolic model problem. In addition, a family of fourth-order 
smoothing operators are constructed which are not optimal, but still result in a considerable reduction 
of the spectral radius of the Jacobian matrix. 

The various smoothing operators are tested by integrating a few initial-value problems of parabolic 
and hyperbolic type, both linear and nonlinear. The results obtained clearly show that the two-stage 
explicit Runge-Kutta time integrators used in our experiments, when combined with a suitable 
smoothing operator, exhibit a stability behaviour which is comparable with that of the (implicit) 
Crank-Nicholson method, while the accuracy is hardly lower. Since a smoothed Runge-Kutta step is 
"cheaper" than a Crank-Nicholson step, particularly in the case of nonlinear problems, we conclude 
that, for the class of problems described above, explicit Runge-Kutta methods equipped with the right 
smoothing operators are preferable to the Crank-Nicholson method. 



99 

2. SMOOTHING OPERATORS 

By restricting the semi-discrete (partial) differential equation (I .4) to a grid n,.. in the x-space, we are 
led to a system of ordinary differential equations (method of lines). This system will be denoted by 

d~t) = S f(t,y(t)), t;;,, t 0 , (2.1) 

where the matrix S corresponds to the smoothing operators,.. introduced in (1.4). More generally, by 
smoothing the right-hand side of (I.I) and by discretizing x and D, we will always obtain a system of 
the form (2.1 ). 

2.1. Relaxing the stability condition by smoothing 
If the system (2.1) is integrated by an explicit time integrator we are faced with a stability condition 
on the time step 6.t of the form 

!::,. ,,::_/}_ J·-l!.( ()) t-p(SJ)' .-ay t,yt, (2.2) 

where p(SJ) denotes the spectral radius of the matrix SJ, and /3 is a constant (the so-called stability 
boundary ) completely determined by the time integrator. 

Since the stability boundary of explicit methods is relatively small and p(J) usually extremely large, 
the condition (2.2) may be extremely restrictive if no smoothing is applied (i.e., S = /). This may force 
the method to take steps 6.t that are much smaller than accuracy would require. By an appropriate 
choice of the smoothing matrix S we can reduce the magnitude of p(SJ) considerably. 

In general, it is too ambitious to derive optimal smoothing matrices for an arbitrary Jacobian 
matrix J. Therefore, we shall consider the optimization problem for two model problems which 
characterize, respectively, a parabolic and a hyperbolic equation. First, however, we consider the order 
of accuracy of the smoothing operator, that is we require 

S = I + O(Df) (2.3) 

as the spatial grid n,.. is refined. 

2.2. The order of accuracy of smoothing operators 
Let the vector v have components v<J> and define the shift operator E by 

Ev<J> := v<J+IJ_ (2.4) 

Let Qk(z) be a polynomial of degree k in z with Qk(I) = I. Then we may consider smoothing 
matrices S of the form 

(2.5) 

We shall call this matrix a smoothing matrix or smoothing operator of degree k. 
This operator should be sufficiently close to the identity operator I. In order to define the order of 

the smoothing operator (2.5) we apply S to the test vector v = (vVl) : = (w(j6.x)), where w(x) is a 
sufficiently differentiable function of x. We find 

Sv = (f!Qk(E)+ Qk(E- 1 )]w(j6.x)) 

I tu..f!._ -t.x..f!_ 
= <2IQk(e dx )+Qk(e dx )]w(j6.x)) 

= ([Qk(l)+ +(Q'k(l)+ Q'\(1))6.2 X d\ + 0(6.4x)]w(j6.x)). 
dx 



100 

DEFINITION 2.1. The smoothing operator (2.5) is said to be of order p if for all vectors w = (w (j tlx )) 
with w E CP we have 

Sw = w+O(i:Yx) as tlx -> 0. □ 

The following theorem is easily proved: 

THEOREM 2.1. The smoothing operator (2.5) is at least of order p = 2; it is of order p = 4 if Qk(z) 
satisfies Q'k(l)+Q"k(I) = 0. □ 

EXAMPLE 2.1. A two-parameter family of second-order smoothing operators is generated by the poly
nomial 

Q2(z) = I-qi -q2 +q 1z +q2z 2. 

The order can be raised to four if we choose q 1 

operators always require k ;;a, 2. □ 
-4q2 . We observe that fourth-order smoothing 

EXAMPLE 2.2. Let S be defined by 

Sv := (-k(£+2+£- 1)(£2 +2+£- 2)vUl). 

It is easily verified that this operator can be represented in the form (2.5) with 

I 3 I I 
Q3(z) = 4+8z+4z2+8z3. 

Since Q 3(1) = I, this smoothing operator is second-order accurate. □ 

3. CONSTRUCTION OF OPTIMAL SMOOTHING OPERATORS 
In order to investigate the operator S defined by (2.5) we will use the test vectors 

e = (eUl), eU> := exp(iwjtlx), 

where w E II;! and tu is the space discretization parameter. 

DEFINITION 3.1. Let C(z) be the polynomial 

C(z) = f c1z1• 

/=O 

Then we associate to C the polynomial C defined by 

C(z) := f c1Ti(z), Ti(z) := cos(/ arccos z). 
/=O 

THEOREM 3.1. The smoothing operator S satisfies the eigenvalue equation 

Se = Qk(ne, f : = cos(wtlx). 

PROOF. On substitution of e into (2.5) we obtain 

Se= ½[Qk(e;"'ax)+Qk(e-;"'ax)] e 

l=o 

l=O l=O 

(3.1) 



101 

Thl!_s, the test vector e is an eigenvector of S with eigenvalue QkW- The behaviour of the polyno
mial Qk(z) on the interval [-: I, I] determines the properties of the smoothing operator S (notice that 
- I ,;;;t,;;; I). For instance, if Qk(z) is small in magnitude for z -> -1, then Swill damp the high fre-
quencies in the Fourier expansion of the vector v = (w(j.:ix)). , 

In the actual derivation of the smoothing operator S from a given polynomial Qk(z) the following 
corollary of Theorem 3.1 is often convenient. 

COROLLARY 3.1. Let Qk(z) be a polynomial expression in terms of the functions T 0(z), T 1(z), ... , T.(z): 

(3.2a) 

Then the generated smoothing operator is given by 

_ E0 +E0 E"+E-• U> 
Sv - (~( 2 , ... , 2 )v ). (3.2b) 

PROOF. From Theorem 3.1 it follows that the smoothing operator S generated by (3.2a), has the 
eigenvalues 

Qk(n = ~(To(n, ... , T.(s)), t = cos(w.:ix). 

On the other hand, because T/r) is an eigenvah~e of (Ei + E-i)/2, it follows from (3.2b) that the 
operator S has the same eigenvalues. Since S and S are both polynomial operators in E and £- 1 with 
identical eigenvalues, they are necessarily identical. □ 

EXAMPLE 3.1. Suppose that 

(!6(z) = 2Ti(z)T1(z)-Tj(z). 

Then, S is defined by 

Sv = ([½(£2+£-2)(£+£-1)-+(£3+£-3)2]vU>). □ 

The following result is similarly proved by means of Theorem 3.1.: 

·w . 
COROLLARY 3.2. Let the polynomials Q (z) generate smoothing operators sU>, and let a and b be 
scalars. Then the polynomial 

Q(z) := aQ0\z)+bQ<2>(z)Q<3>(z) 

generates the smoothing operator 

S : = as< 11 +bs<2>s<3>_ 0 

The next theorem expresses the order conditions in terms of the polynomial Qk(z). 

' ' THEOREM 3.2.(a) The smooJhing operator generated by Qk(z) is of second-order if Qk(I) = I, and of 
fourth-qrder if, in addit{on, Q'k(i) = 0. 
(b) If Qk(l) = I and Q\(I) =I= 0, then the polynomial 

' ' ' 
P2k(z) := l-a+aQk(z)[2-Qk(z)] 

generates a fourth-order smoothing operator for all values of a. 

PROOF. (a) Since Ti(l) = I and T'1(1) = 12 we have 
k k , 

Qk(i) = ~ q, = ~ q,T,(l) = Qk(i) 
/=O l=O 



102 

and 

/=O /=O 
k , 

= ~ q1T'1(1) = Q'k(I). 
/=O 

From these relations ,and Theorem 2.1 assertion (a) of the theorem easily follows. 
(b) The polynomial P21<(z) is easily shown to satisfy for all a the conditions for fourth-order accuracy 
stated in (a). □ 

Once the polynomial Qk has been specified, the smoothing operator S is easily found, either by 
using Definition 3.1 (to obtain Qd and formula (2.5) (to obtain S), or by using the above Corollaries 
3.1 and 3.2. 

In order to construct an effective operator S, in the sense that p(SJ) is substantially smaller than 
p(J), we need some additional information on the spectrum of J. We shall distinguish Jacobian 
matrices with negative eigenvalues arising in parabolic equations and imaginary eigenvalues arising in 
hyperbolic equations. 

3.1. Smoothing of parabolic problems 
If symmetric space discretizations are used in parabolic problems then J is usually of the form 

Jv = (t[K(E)+K(E- 1)]vUl), (3.3a) 

where K is a polynomial. In the same mann.er as we associated to Qk the polynomial Qk (cf. Theorem 
3.1), we can associate to K the polynomial K, to obtain the eigenvalue equation 

Je = K(!;)e, e: = (eiJ"'t.x), {: = cos(wax). (3.3b) 

EXAMPLE 3.2. Consider the parabolic model problem 

U1 = Uxx + g(x,t). 

The standard three-point discretization leads to a system of differential equations of which the j-th 
equation reads: 

U) 
~ = _l_[E-2+£-IJy(il+gUl(I)· 
~ ~x , 

it is easily seen that the matrix J can be characterized by the polynomial 

K(z) = - at (1-z). 

The polynomial K(z) turns out to be identical with K(z). □ 

EXAMPLE 3.3. If the equation above is discretized by the standard fourth-order five-point discretiza
tion we obtain the polynomial 

and 

K(z) = - - 1-(z2 -16z+l5) 
6.:l2x 



103 

Let us return to our problem of minimizing p(SJ) occurring in the stability condition (2.2). It fol
lows from Theorem 3.1 and (3.3) that 

(3.4) 

Thus, the right-hand side has ~o be minimized taking into account the order condition in Theorem 
3.1. Moreover, the polynomial Qk should be nonnegative on [ -1, l] (otherwise SJ would have positive 
eigenvalues). 
, In general, it is too ambitious to solve this minimax problem for arbitrary eigenvalue functions 
K(n. Therefore, we shall write, instead, 

(3.5) 

and solve the minimax problem for the polynomial (1-DQk(n, which is independent of the parabolic 
equatipn under consideration. This approach is justified by the observation that the resulting polyno
mial Qk does generate optimal second-order smoothing operators in the case of the parabolic model 
problem of ~xample 3.2. In nonmodel problems (where K(n contains the factor t-1), the resulting 
polynomial Qk is not optimal, but it gives rise to the same reduction factor of the spectral radius as in 
the model problem. 

On the basis of (3.5) the stability condition (2.2) becomes 

6.t,;;; µ{3 min t_:-I, 
-1,;;;,,.1 2K(n 

where we introduced the amplification factor 
I A 

/L := [ max 20-DQkmi- 1. 
-1,a;;/;,a;;I 

Notice that /L = I (Q0 = 1) if no smoothing operators are applied. 

3.1.1. Second-order smoothing operators 
The following lemma is basic in our subsequent discussion: 

(3.6a) 

(3.6b) 

LEMMA 3.1. Of all polynomials Pm(z) of degree m in z satisfying the conditions 
Pm(I) = 0, P'm(I) = -1, and Pm(z);;;,, 0 on [-1,11 the polynomial Pm(z) := [l-Tm(z)]/m 2 has the 
smallest maximum norm on [-1, I]. 

PROOF. The assertion of the lemma follows immediately from the various properties of the Chebyshev 
polynomial Tm(z). □ 

With the help of this lemma the following theorem is easily proved. 

THEOREM 3.3. Let the smoothing operator S be generated by the polynomial 

, I -Tk+ 1(z) 
Qk(z) = (k + 1)2(1-z) · (3.7) 

Then, S is second-order accurate, and minimizes, for given k, the spectral radius p(SJ) of the model prob
lem in Example 3.2. 

PROOF. It follows from Example 3.2 and from (3.4) that 

2 l-TH1<n 
p(SJ) = ~ max (k + l)2 u X -1,;;;,,;;;1 



104 

. . 
and from Lemma 3.1 that p(SJ) is as small as possible, while Qk(z) is nonnegative with Qk(l) = 1. □ 

ExAMPLE 3.4. The first few polynomials Qk corresponding to the optimal polynomials Qk specified in 
Theorem 3.3 are given by 

I Q1(z) = 2 (1+z), 

I 
Q2(z) = 9 (3+4z +2z 2), 

I 
Q3(z) = 8 (2+3z +2z 2 +z3). 

Notice that Q3(z) is identical with the polynomial Q3(z) derived in Example 2.2. □ 

THEOREM 3.4. Let J sat~.f/ the conditions (3.3) and let S be generated by (3.7). Then the amplification 
factor µ is given by (k + I) so that 

flt ,s;; fJ(k + 1)2 min J:.;:.!_, (3.6') 
-t<t<t 2K(n 

where K(n is assumed to be negative. 

PROOF. The proof is immediate from (3.7) and (3.6). □ 

We r~I that for k =O the stability condition (3.6') corresponds to the "unsmoothed" method 
because Q0(z) = 1. This indicates that the gain factor obtained by the smoothing technique is as large 
as (k + 1)2 independent of the particular problem under consideration. 

EXAMPLE 3.5. Consider the model problem in Example 3.2. For this three-point discretization we 
have 

.min J:.;:.!_ = fl 2 X • 

-l<t<l 2K(n 4 

Substitution into (3.6') yields the stability condition 

flt ,s;; ¼/J(k + 1)2fl2x. 

We recall that, by virtue of Theorem 3.3, there exists no smoothing operator of degree k which leads 
to a larger maximum stable step flt. □ 

EXAMPLE 3.6. Consider the discretization defined in Example 3.3. For this five-point discretization we 
have 

. f-1 . 3fl2x 3 ,2 
mm -.- = mm --- = - .. x, 

-1 .. r .. 1 2K<n -1<r<1 2(1-n 16 

so that, by Theorem 3.4, the stability condition becomes 

flt ,s;; /6 {J(k + 1)2fl2x. □ 

The following lemma is of interest in the actual implementation of smoothing operators. 

LEMMA 3.2. If m = 2q with q > 0, then 
q-1 

Tm(Z) = 1-m(l -z) IT (I+ T2'(Z)). 
/=O 



PROOF. It follows from the identity T 21 = 2T7- I that 

I-Tm= I-T2• = 2(1-T~•-•) = 2(J+T2•-•)(J-T2•-•) = 

... =2q(J + T2•-• )(I+ T 2'-,) .... (1 + Ti)(I -T1 ). 

This proves the lemma. □ 

By means of this lemma and Corollary 3.1 the foJlowing Theorem is immediate: 

105 

THEOREM 3.5. Let k = 2q - I with q > 0, then the smoothing operator based on (3. 7) can be factorized 
according to 

I q-1 ' , 
Sv = - ( II [£2 +2+£- 2 ]v<i>). □ (3.8) 

22q /=O 

The operator (3.8) is identical to the smoothing operator proposed in WuBs [4]. In this factorized 
form it aJlows a rather efficient implementation on a computer. 

3.1.2. Fourth-order smoothing operators 
Suppose that we can solve the following minimax problem: 

Problem 3.1. Of all polynomials P m(z) of degree m in z satisfying the conditions 
Pm())= 0,P'mO) = -1,P"mO) = 0 and Pm(z) ;;a, 0 on (-1,1], find the polynomial with the smal
lest maximum norm on [-1, I]. □ 

If such a minimax polynomial is found, then by defining 

Q• () - Pk+1(z) k - I kz-~,-m-, 
A A 

we obtain a polynomial satisfying the fourth-order conditions Qk(I) = 1, Q'k(I) = 0, being nonnega-
tive on [ - I, 1 ], and maximizing the amplification factor in the stability condition (3.6). 

Sofar, we did not succeed in deriving closed expressions for the optimal polynomials Pk+ 1 (z) and 
the corresponding maximal amplification factor µ.. The derivation of these polynomials will be subject 
of future investigations. 

An alternative is offered by Theorem 3.2(b). By starting with the one-parameter family of fourth
order polynomials 

(3.9) 

where Q °(z) generates a S!_!COnd-order smoothing operator S\ there is only one parameter to be 
optimized such that (1- z)Q(z) has a minimal maxiP!um norm on [- 1, I]. In Table 3.1 the resulting 
amplification factorsµ. ar.e listed for the case where Q (z) is given by (3.7). It seems that µ.l(k + 1)2, k 
denoting the degree of Q, converges to a constant value (recaJI that this values is 1 in the second-
order case). • 

We observe that the spectral radius p(SJ) can be reduced further for a > I. However, then Q(z) is 
not nonnegative on [ - 1, I] anymore which leads to unst,1tble discretizations. 

FinaJiy, we remark that the operator S generated by Q(z), i.e., 

S = (l-a)1+aS'(21-S"), (3.10) 

is to a high degree factorizable if S • is factorizable. 



106 

TABLE 3.1. µ-values for (3.9) with Q • (z) defined by (3.7) 

Degree k of S a µ µl(k + 1)2 
2 2.6 .29 
4 4.7 .19 
6 8.3 .17 
8 12.7 .16 

3.2. Smoothing of a hyperbolic model problem 
Symmetric space discretizations of hyperbolic problems often lead to Jacobian matrices defined by 

Jv = (½[K(E)-K(r 1)]v<i>), (3.lla) 

where K is a polynomial. 

DEFINITION 3.2. Let C(z) be defined as in Definition 3.1. Then C is defined by 

- r 
C(z) := ~ c1U1-1(z), 

/=I 

where U1 is the Chebyshev polynomial of the second kind. □ 

By means of this definition we can write the eigenvalue equation for the Jacobian matrix J in the 
form 

Je = ±i~K(ne, e := (eii"'~), t := cos(wdx), 

where the sign is determined by the sign of sin(wdx). 
In order to prove this, let 

K(z) := f c1z 1. 
l=O 

Then 

I ' . . = - ~ C1(e,lw~ -e-'1"'~) e 
2 /=O 

=if c1 sin(wldx)e =if c1 sin(wdx)U1- 1(coswdx) e 
/=I /=I 

= ±i~ f c1U1-1(t)e. 
/=I 

EXAMPLE 3.7. Consider the hyperbolic model problem 

u, = ux+g(x,t) 

and its three-point discretization 
(j) ddt = 2~ [E - E- I Jy<i) + g<i>(t). 

(3.llb) 



The Jacobian of this system is characterized by 

I 
K(z) = tu z, 

so that 

- I 
K(z) = tu· □ 

l07 

EXAMPLE 3.8. If the above equation is discretized by the fourth-order five-point discretization we 
obtain 

z 
K(z) = 6tu (8-z), 

- I 
K(z) = 3tu (4-z). □ 

For hyperbolic problems we are faced with the problem of minimizing 

p(SJ) = max v'°I=f I {?k{t)K(t) I, 
-1,q,;;1 

(3.12) 

taking into account the order conditions for Qk stated in Thforem 3.2. Notice that, in contrast to the 
minimax problem for parabolic problems, the polynomial Qk is not required to be nonnegative on 
[ -1, I]. Consequently, the polynomials derived for parabolic problems are not optimal in the present 
case. 

Instead of minimizing the right-hand side of (3.12) we shall write 

p(SJ),;;; max v'°I=fl{Mnl- max IK(t)I 
-I,;;f,;;I -!,;;{,;;! 

(3. I 3) 

and we solve the minimax problem for v'"I=f {Mt) independently of K ( cf. the discussion given for 
(3.5)). Similarly to (3.6), we derive from (3.13) the stability condition 

t.t ,s:;;µ/3 min --1-,µ:= [ max v'°I=fl{?k(s)l]- 1. (3.14) 
-1,;;t,;;1 IK(t)I -1,;;f,;;1 

Again, µ is chosen such that µ = I if no smoothing is applied. 

3.2.1. Second-order smoothing operators 
The following lemma plays the role that Lemma 3.1 played for parabolic problems. 

LEMMA 3.3. Of all functions of the form ~ P ~here P m(z) is a polynomial of degree m in z 
satisfying the condition Pm(I) = 1, the function Vl-z2 Um(z)/(m+l) has the smallest maximum 
norm on [-1, I]. 

PROOF. Since Um(I) = m + I the condition Pm(I) = I is satisfied. Furthermore, we deduce from the 
identity 

that the function ~ Um(z) satisfies the equal ripple property from which it can be concluded 
that this function is optimal. □ 

By virtue of this lemma the following theorem is obvious. 



108 

THEOREM 3.6. Let the smoothing operator S be generated by the polynomial 

• Uk(z) 
Qk(z) = k+I. (3.15) 

Then S is second-order accurate, and minimizes, for given k, de spectral radius p(SJ) of the model prob
lem in Example 3. 7. □ 

ExAMPLE 3.9. The first few polynomials Qk(z) generated by (3.15) are given by 

Q 1(z) = z, 

I 
Q 2(z) = 3 (1 +2z2 ), 

I 
Q 3(z)= 2 (z 3 +z). D 

THEOREM 3.7. Let J satisfy the conditions (3.11) and let S be generated by (3.15). Then the amplification 
factor is given by k + I leading to the stability condition 

flt .,;; {J(k + I) min --I__ (3.14') 
-1,;;;i-.. 1 IK(nl 

PROOF. Substitution of (3.15) into (3.14) leads to (3. 14'). □ 

EXAMPLE 3.10. Consider the discretization of Example 3.8. Applying Theorem 3.7 we find that this 
five-point discretization is stable if 

flt .,;; ¾{J(k + !)Ax. □ 

As in the parabolic case the operator S generated by (3.15) can be factorized for special values of k. 
The counterpart of Lemma 3.2 is given by 

LEMMA 3.4. If m = 29 with q > 0, then 
9-I 

Um-1(z) = m II Ti(Z). 
l=O 

PROOF. Using the identity U21 _ 1 = 2V1_ 1 T1, (cf[!), p.782) we deduce that 

proving the assertion of the lemma. □ 

The analogue of Theorem 3.5 is given by 

THEOREM 3.8. Let k = 29 - I with q > 0, then the smoothing operator based on ( 3.15) can be factor
ized according to 

I 9-1 , , 
Sv = -( II [£2 + £ 2- ]vV>). □ (3.16) 

29 /=O 



109 

3.2.2. Fourth-order smoothing operators 
For hyperbolic problems we have the following analogue of Problem 3.1. 

Problem 3.2. Of all functions of the form ~ Pm(z) where Pm(z) is a polynomial of degree min 
z satisfying the conditions Pm()) = I and P'm(I) = 0, find the function with the smallest maximum 
norm on [-1,1). □ 

If this problem is solved form = k, we set {!k(z) = Pk(z) to obtain the generating polynomial for 
a fourth-order smoothing operator with optimal amplification factorµ as defined in (3.14). 

As in the parabolic case Wf ,did not yet find closed expressions for the optimal polynomials and we 
applied, instead, (3.9) with Q (z) given by (3.15). The analogut:_ of Table 3.1 is presented by Table 
3.2. Notice that here a is not restricted by a sign P?ndition on Q(z). The resulting smoothing opera
tors are given by (3.10) withs• corresponding to Q . 

TABLE 3.2. µ-values for (3.9) with Q' (z) defined by (3.15) 

4. NUMERICAL EXPERIMENTS 

Degree k of S 

2 
4 
6 
8 

a 
.67901 
.83512 
.84250 
.95280 

µ µ/(k + I) 
1.38 .46 
2.06 .41 
1.96 .28 
2.56 .28 

In WUBs [4) a few first experiments are reported for hyperbolic problems using smoothing techniques 
in combination with conventional time integrators. Here, we present further experiments, both for 
parabolic and hyperbolic problems. All examples are chosen such that conventional explicit time 
integrators (without smoothing) require unrealisticly small time steps. 

The examples are, respectively, 

u, = Uxx+g1(t,x), 

U1 = u 2Uxx+g2(t,x), 

u, = Ux+g3(t,x), 

u, = ½(u2)x+g4(t,x), 

where the forcing functions gj{t,x) are chosen in such a way that 

u(t,x) = ½!sin(x +t)+sin(wx)], "' E N 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

presents the exact solution. The initial condition is taken from the exact solution, and periodic boun
dary conditions are imposed at x =0 and x =2'1T. In all examples the integration interval is given by 
[0, T], where T is specified in the tables of results, 

The semi-discrete equations are obtained by using, respectively, the three-point discretizations of 
the Examples 3.2 and 3.7, and the five-point discretizations of the Examples 3.3 and 3.8. The spatial 
grid is given by the points xj = Jt:.x, J = l,2, ... ,2'1T/t:.x, where t:.x is chosen such that the forcing 
function and the initial function can adequately be represented. 

The time integrators used (in combination with smoothing operators specified in the tables of 
results) are given by the explicit Runge-Kutta methods (for the notation used see LAPIDUS & SEIN
FELD [31): 



110 

RKP: 0 0 
1/8 1/8 
112 0 112 

0 0 

RKH: 0 0 
112 1/2 
1/2 0 1/2 

0 0 

Both methods are second-order accurate: RKP is used for the parabolic problems (4.1) and (4.2) with 
stability boundary /3 = 6.26 in the stability condition (3.6); RKH is used for the hyperbolic problems 
(4.3) and (4.4) with stability boundary /3 = 2 in the stability condition (3.14). These conditionally 
stable methods were respectively applied with the parabolic smoothers generated by (3.7) and Table 
3.1, and with the hyperbolic smoothers generated by (3.15) and Table 3.2. 

As reference method we apply the implicit Crank-Nicholson method which can be represented by 
the array: 

CN: 0 0 0 
I 1/2 1/2 

1/2 1/2 

This method is also second-order accurate, but it is unconditionally stable both for parabolic and 
hyperbolic problems (i.e., f3 = oo ), and, therefore, it requires no smoothing in order to stabilize the 
integration process. 

The integration steps !!.t are chosen as large as allowed by the stability condition of the smoothed 
RKP or RKH methods. 

In the tables of results we list the degree k of the smoothing operator used, the total number of 
steps N : = TI !!.t, and the number of correct significant digits obtained in IN = T, i.e., the value of 

sd := min(-log101yW-u(T,x1)1). 
. J 

4.1. Problem (4.1) 
This problem is given by (4.1) with solution (4.5) and with w = 16. The solution is therefore rapidly 
oscillating, while its time derivative is slowly varying with x; hence, the problem belongs to the prob
lem class for which the smoothing technique described in the preceding sections should be elf ective. 
In order to represent the initial condition and the forcing function adequately on the spatial grid we 
choose !!.x = 1T 1192. 

The results obtained are listed in the Tables 4.la and 4.lb (see Section 4.5). They show that the 
smoothed RKP method performs stably for all integration steps. Compared with the maximal step 
allowed by the "unsmoothed" RKP method (i.e. k =O), the gain factors for second and fourth-order 
smoothing are at least 64 and 32, respectively. The accuracy is hardly reduced by the smoothing pro
cedure, except for the case where fourth-order space discretization is combined with second-order 
smoothing (here, an increase of the degree of the smoothing operator by I decreases the number of 
correct digits by about .25 if k is small and by about .15 if k becomes larger). In all other cases, the 
accuracy is comparable with that of the CN method. 



111 

4.2 Problem (4.2) 
This problem is a nonlinear modification of problem (4.1), again with w = 16. The results listed in the 
Tables 4.2a and 4.2b show a similar behaviour as for the linear problem ( 4.1 ), provided that the 
degree of the smoothing operator is not too large (k,s;;,5 for second-order smoothing and k<I0 for 
fourth-order smoothing). The respective amplification factors of the maximal stable integration step 
are at least 35 and 18. 

4.3 Problem (4.3) 
The results for the linear hyperbolic problem (4.3) with w = 16 (see the Tables 4.3a and 4.3b) again 
show that the smoothed RKH method performs stably for all integration steps, while the accuracy is 
not or only marginally less than the accuracy obtained by the CN method. The amplification factors 
of the maximal stable integration steps are at least 8 and 4 for second-order and fourth-order smooth
ing, respectively. Notice that, in contrast to the results obtained for the parabolic problems (4.1) and 
( 4.2), the numerical error is not only determined by space discretization and smoothing errors, but 
also contains a time discretization error. 

4.4. Problem (4.4) 
When we integrated the nonlinear problem (4.4) with w = 16, rather low accuracies were obtained on 
a spatial grid with tu = 1T!l 92, and instabilities developed in the case of fourth-order smoothers. 
Due to this low accuracy, the numerical solution did not satisfy the requirement that its time deriva
tive is a smooth function of x. In order to overcome this unwanted behaviour we should decrease tu, 
or equivalently, in order to stay within our budget available for these numerical experiments, we may 
decrease w. Choosing w = 8 we obtained the results listed in the Tables 4.4a and 4.4b. We now have 
stability for all integration steps and accuracies which are even higher than those produced by the CN 
method. 

4.5. Tables of results 

TABLE 4.la. sd-values for problem (4.1) with w=l6,T=I.0,tu=1T/192, and with second
order smoother based on (3.7) 

3-point coupling 5-point coupling 
k N RKP CN N RKP 
0 2400 2.54 2.54 3200 4.59 
I 600 2.54 2.54 800 4.34 
2 270 2.53 2.54 355 4.10 
3 150 2.53 2.54 200 3.90 
4 96 2.52 2.54 130 3.73 
5 68 2.51 2.54 90 3.58 
6 49 3.26 2.54 66 3.46 
7 38 2.49 2.54 50 3.35 

CN 
4.59 
4.58 
4.58 
4.58 
4.56 
4.54 
4.50 
4.44 



112 

TABLE 4.lb. sd-values for problem (4.1) with w=16,T=I.0,il.x='1T!192, and with fourth-
order smoother based on {(3.9), a= 1} 

3-point coupling 5-point coupling 
k N RKP CN N RKP CN 
0 2400 2.54 2.54 3200 4.59 4.59 
2 925 2.54 2.54 1250 4.59 4.59 
4 540 2.54 2.54 710 4.59 4.59 
6 300 2.54 2.54 400 4.58 4.58 
8 192 2.54 2.54 260 4.58 4.58 

10 136 2.54 2.54 180 4.58 4.57 
12 98 2.54 2.54 132 4.57 4.56 
14 76 2.54 2.54 100 4.55 4.55 

TABLE 4.2a. sd-values for problem (4.2) with w= 16, T = 1.0,ll.x ='IT! 192, and with second-
order smoother based on (3.7) 

3-point coupling 5-point coupling 
k N RKP CN N RKP CN 
0 2400 0.62 0.62 3200 3.35 3.35 

600 0.58 0.62 800 2.62 3.35 
2 270 0.74 0.62 355 2.23 3.34 
3 150 1.07 0.62 200 2.03 3.32 
4 96 1.26 0.62 130 1.86 3.28 
5 68 1.40 0.62 90 1.68 3.22 

TABLE 4.2b. sd-values for problem (4.2) with w= 16, T = 1.0,ll.x ='1Tl192, and with fourth-
order smoother based on { (3.9), a= I} 

3-point coupling 5-point coupling 
k N RKP CN N RKP CN 
0 2400 0.62 0.62 3200 3.35 3.35 
2 925 0.52 0.62 1250 3.13 3.35 
4 540 0.59 0.62 710 3.01 3.35 
6 300 0.83 0.62 400 3.18 3.34 
8 192 1.09 0.62 260 3.40 3.33 

10 136 1.13 0.62 180 3.35 3.31 



113 

TABLE 4.3a. sd-values for problem (4.3) with w=16,T= IO, Ax='ll'/192, and with second-
order smoother based on (3.15) 

3-point coupling 5-point coupling 
k N RKH CN N RKH CN 
0 310 2.19 1.96 472 3.57 3.54 
1 155 2.08 1.97 236 2.83 3.05 
2 104 1.94 1.81 160 2.46 2.75 
3 78 1.79 1.77 120 2.20 2.52 
4 62 1.66 1.82 95 2.00 2.33 
5 52 1.54 1.58 80 1.84 2.19 
6 43 1.42 1.49 67 1.70 2.03 
7 39 1.33 1.47 58 1.58 1.91 

TABLE 4.3b. sd-values for problem (4.3) with w= 16, T = 10,ax ='ll'/192, and with fourth-
order smoother based on { (3.9), Table 3.2 } 

3-point coupling 5-point coupling 
k N RKH CN N RKH CN 
0 310 2.19 1.96 472 3.57 3.54 
2 220 2.16 2.16 350 3.39 3.45 
4 145 2.10 2.41 240 3.10 3.06 
6 150 2.11 2.10 260 3.16 3.13 
8 115 2.04 2.28 180 2.86 2.88 

10 110 2.03 2.02 185 2.88 2.91 
12 85. 1.93 1.83 135 2.62 2.64 
14 85 1.93 1.83 145 2.68 2.68 

TABLE 4.4a. sd-values for problem (4.4) with w=8,T=4,Ax ='ll'/192, and with second-
order smoother based on (3.15) 

3-point coupling 5-point coupling 
k N RKH CN N RKH CN 
0 110 1.36 1.37 145 3.12 2.86 
1 50 1.63 1.44 75 2.55 2.19 
2 33 1.83 1.66 45 2.19 1.71 
3 22 1.67 1.27 30 1.81 1.32 
4 17 1.73 1.06 25 1.82 1.20 
5 14 1.42 0.84 20 1.52 1.03 



114 

TABLE 4.4b. sd-values for problem (4.4) with w=8,T=4,ax =?T/192, and with fourth-order 
smoother based on {(3.9), Table 3.2} 

3-point coupling 5-point coupling 
k N RKH CN N RKH 
0 I IO 1.36 1.37 145 3.12 
2 75 1.53 1.38 115 3.09 
4 50 1.65 1.44 70 2.54 
6 45 1.69 1.48 70 2.57 
8 35 1.27 1.62 55 2.10 

10 30 1.34 1.61 40 1.74 

5. CONCLUDING REMARKS 

CN 
2.86 
2.65 
2.13 
2.13 
1.90 
1.59 

In this paper we analysed a smoothing technique for preconditioning a special class of semi-discrete 
partial differential equations. It turned out that, in order to obtain optimal smoothing matrices, one 
should distinguish between parabolic and hyperbolic equations. The resulting smoothing matrices are 
quite different. For instance, application of a smoothing matrix, which is optimal for the hyperbolic 
model problem, would lead to instabilities when applied to a parabolic problem. However, if the 
smoothing operator is appropriately chosen, a substantial amplification of the maximal stable step size 
is obtained, irrespective of the (explicit) time integrators used, while the additional computational effort 
is rather limited. The price to be paid for the less restrictive stability condition is (i) a decrease of the 
accuracy for large degree smoothing matrices, and (ii) the requirement that the right-hand side function 
should be provided in grid points beyond the boundary. 

The reduced accuracy for large k has two sources: firstly, the smoothing technique analysed in this 
paper presupposes that the right-hand side function is a smooth function of the spatial variables and 
rapidly looses accuracy if not; secondly, the error constant of the smoothing operator increases with 
k 2 . On the other hand, the numerical experiments of the preceding section show that smoothing 
matrices of degree as high as 14 still do not reduce the accuracy very much if the problem belongs to 
the class of problems we are aiming at. 

In Section 4, the need of providing right-hand side values outside the domain was solved by impos
ing periodic boundary conditions. In the case of other types of boundary conditions, a plausible 
approach is to generate these values by extrapolation. We repeated the series of experiments of Sec
tion 4 by employing rational extrapolation and we found a comparable stability behaviour and accu
racy behaviour as well (polynomial extrapolation leads, of course, to severe instabilities). Alterna
tively, one may employ the Jacobian matrix of the right-hand side to achieve a correct amount of 
smoothing in the near boundary points. Both approaches will be subject of further investigations. 

REFERENCES 
[I] M. ABRAMOWITZ, & I.A. STEGUN, Handbook of mathematical functions, National Bureau of 

Standards, Applied Mathematics Series 55, U.S. Government Printing Office, Washington, 
1964. 

[2] T.J. BAKER, A. JAMESON and W. SCHMIDT, A fami91 of fast and robust Euler codes, Proc. 
Workshop on Computational Fluid Dynamics (Tullahoma, 1984), pp. 17.1-17.38. 

[3] L. LAPIDUS & J.H. SEINFELD, Numerical solution of ordinary differential equations, Mathematics 
in science and engineering, Academic Press, New York and London, 1971. 

[4] F.W. Wuas, Stabilization of explicit methods for hyperbolic initial-value problems, to appear in: 
Int. J. Numer. Meth. in Fluids, 1986. 



A 
amplification factor, 39,83,103 

B 
bit, 42,49 
boundary, 8 

C 

closed, 8, 15, 16,57 
elevation, 9,16 
open, 8,16,56,57,60 
U-, 16,56 
V-, 56 
velocity, 9,50,56 
"water-water", 8 
Z-, 56 
"zig-zag", 22 

C.F.L.-condition, 84 
Chebyshev polynomials, 33,100 
Chezy coefficient, 7,61 
Crank-Nicholson method, 90,110 

D 
data structure, 51 
descriptors, 40 
drying and flooding, 39,49 

E 
elevation, 6 
error 

F 

smoothing, 37,85,98 
space discretization, 98 
truncation, 37 

factorized form, 47 

G 
gather instruction, 41,45 

I 
index array, 42,45,50 
inviscid, 8 

J 
Jacobian matrix, 25,27 

INDEX 

L 
"land-water" lines, 8 

M 
mass conservation, 5,24 
method of lines, 25,82,99 

0 

115 

one-sided Lipschitz condition, 11 

R 
reduction factor, 33 
Riemann invariant, 9 
Runge-Kutta method, 25,90, 109 

s 
scatter instruction, 41,45 
shallow-water equations, 7,89 
shift operator, 16,99 
smoothing 

explicit, 27,84 
fourth-order, 105 
implicit, 32,87 
optimal, 100 
second-order, 38,103,107 

space discretization, 15,82,102,106 
spectral radius, 26,28,85,99 
stability condition, 25,35,36,87,104 
start-up period, 14 

T 
time-integration, 25,26,43 

u 
U-point, 15 

V 
V-point, 15 
vector, 40 
vector references, 40 
viscid, 10 

w 
WAQUA, 3,62 
"water-water" boundaries, 8 
weakly-reflective boundary 
conditions, 9,38 

z 
Z-point, 15 





MATHEMATICAL CENTRE TRACTS 
I T. van der Walt. Fixed and a/mast fixed points. 1963. 
2 A.R. Bloemena. Sampling from a graph. 1964. 
3 G. de Leve. Generalized Markovian decision processes, part 
I: model and method. 1964. 
4 G. de Leve. Generalized Markovian decision processes, part 
II: probabilistic background. 1964. 
5 G. de Leve, H.C. Tijms, P.J. Weeda. Generalized Markavian 
decision processes, applications. 1970. 
6 M.A. Maurice. Compact ordered spaces. 1964. 
7 W.R. van Zwet. Convex transformations of random variables. 
1964. 
8 J.A. Zonneveld. Automatic numerical integration. 1964. 
9 P.C. Baayen. Universal morphisms. 1964. 
10 E.M. de Jager. Applications of distributions in mathematical 
physics. I 964. · 
11 A.B. Paalman-de Miranda. Topological semigroups. 1964. 
12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken, 
A. van Wijngaarden. Formal properties of newspaper Dutch. 
1965. 
13 H.A. Lauwerier. Asymptotic expansions. I 966, out of print; 
replaced by MCT 54. 
14 H.A. Lauwerier. Calculus of variations in mathematical 
physics. 1966. 
15 R. Doornbos. Slippage tests. 1966. 

16 J.W. de Bakker. Formal definition 1,,programminf; 
~a~ges with an application to the de mition of AL OL 60. 

17 R.P. van de Riel. Formula manipulation in ALGOL 60, 
part 1. 1968. 
18 R.P. van de Riel. Formula manipulation in ALGOL 60, 
part 2. 1968. 
19 J. van der Slot. Some properties related to compactness. 
1968. 
20 P J. van der Houwen. Finite difference methods for solving 
partial differential equations. 1968. 
2 l E. Wattel. 'The compactness operator in set theory and 
topology. I 968. 
22 T.J. Dekker. ALGOL 60 procedures in numerical algebra. 
part 1. 1968. 
23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in 
numerical algebra, part 2. 1968. 
24 J. W. de Bakker. Recursive procedures. 1971. 
25 E.R. Paerl. Representations of the Lorentz group and projec
tive geometry. 1969. 
26 European Meeting 1%8. Selected statistical papers, part I. 
1968. 
27 European Meeting I 968. Selected statistical papers, part Il. 
1968. 
28 J. Oosterhof(. Combination of one-sided statistical tests. 
1969. 

29 J. Verhoefl. Error detecting decimal codes. 1969. 
30 H. Brandt Corstius. Exercises in computational linguistics. 
1970. 

31 W. Molenaar. Approximations to the Poisson, binomial and 
hypergeometric distribution functions. 1970. 
32 L. de Haan. On regular variation and its application to the 
weak convergence of sample extremes. 1970. 
33 F.W. Steutel. Preservation of infinite divisibili~y under mix
ing and related topics. 1970. 
34 I. Juhasz, A. Verbeek, N.S. Kroonenberg. Cardinal func
tions in topology. 1971. 
35 M.H. van Emden. An analysis of complexity. 1971. 
36 J. Grasman. On the birth of boundary layers. 1971. 
37 J.W. de Bakker, G.A. Blaauw, A.J.W. Duijvestijn, E.W. 
Dijkstra, P.J. van der Houwen, G.A.M. Kamsteeg-Kemper, 
F.E.J. Kruseman Aretz, W.L. van der Poe!, J.P. Schaap
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 Informatica 
Sympasium. 1971. 
38 W.A. Verloren van Themaat. Automatic analysis of Dutch 
compound words. 1972. 
39 H. Bavinck. Jacobi series and approximation. 1972. 
40 H.C. Tijms. Analysis of (s,S) inventory models. 1972. 
41 A. Verbeek. Superextensions of topological spaces. 1972. 
42 W. Vervaat. Success epochs in Bernoulli trials (with applica
tions in number theory). 1972. 
43 F.H. Ruymgaart. Asymptotic theory of rank tests for 
independence. 1973. 

44 H. Bart. Meromorphic operator valued functions. 1973. 
45 A.A. Ba1kema. Monotone transformations and limit laws. 
1973. 
46 R.P. van de Riel. ABC ALGOL, a porrable language for 
formula manipulation systems, part I: the language. 1973. 
47 R.P. van de Riel. ABC ALGOL, a portable language for 
formula manipulation systems, part 2: the compiler. 1973. 
48 F.E.J. Kruseman Aretz, P.J.W. ten Hagen, H.L. 
Oudshoorn. An ALGOL 60 compiler in ALGOL 60, text of the 
MC-compiler for the EL-X8. 1973. 
49 H. Kok. Connected orderab/e spaces. 1974. 
50 A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A. 
Koster, M. Smtzofl, C.H. Lindsey, LG.LT. Meertens, R.G. 
Fisker (eds.). Revised report on the algorithmic language 
ALGOL 68. 1976. 
51 A. Hordijk. Dynamic programming and Markov potential 
theory. 1974. 
52 P.C. Baayen (ed.). Topological structures. 1974. 
53 M.J. Faber. Metrizability in generalized ordered spaces. 
1974. 
54 H.A. Lauwerier. Asymptotic analysis, part 1. 1974. 
55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part I: 
theory of designs, finite geometry and coding theory. 1974. 
56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2: 
graph theory, foundations, partitions and combinatorial 
geometry. 1914. 
57 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 3: 
combinatorial group theory. 1974. 
58 W. Albers. Asymptotic expansions and the deficiency con
cept in statistics. 1975. 
59 J.L. Mijnheer. Sample path properties of stable processes. 
1975. 
60 F. Gobel. Queueing models involving buffers. I 975. 
63 J.W. de Bakker (ed.). Foundations of computer science. 
1975. 
64 W.J. de Schipper. Symmetric closed categories. 1975. 
65 J. de Vries. Topological transformation groups, 1: a categor
ical approach. 1915. 
66 H.G.J. Pijls. Logically convex algebras in spectral theory 
and eigenfunction expansions. 1976. 
68 P.P.N. de Groen. Singularly perturbed differential operators 
of second order. 1976. 
69 J.K. Lenstra. Sequencing by enumerative methods. 1977. 
70 W.P. de Roever, Jr. Recursive program schemes: semantics 
and proof theory. 1976. 
71 J.A.E.E. van Nunen. Contracting Markov decision 
processes. 1976. 
72 J.K.M. Jansen. Simple periodic and non-periodic Lame 
functions and their applications in the theory of conical 
waveguides. I 977. 
73 D.M.R. Leivant. Absoluteness of intuitionislic logic. 1979. 
74 H.J.J. te Riele. A theoretical and computational study of 
generalized aliquot sequences. 1976. 
75 A.E. Brouwer. Treelike spaces and related connected topo
logical spaces. 1977. 
76 M. Rem. Associons and the closure statement. 1976. 
77 W.C.M. Kallenberg. Asymptotic optimality of likelihood 
ratio tests in exponential families. 1978. 
78 E. de Jonge, A.C.M. van Rooij. Introduction to Riesz 
spaces. I 977. 
79 M.C.A. van Zuijlen. Emperica/ distributions and rank 
statistics. 1977. 

80 P.W. Hemker. A numerical study of stiff two-point boundalJ' 
problems. 1977. 
81 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer 
science II, part 1. 1976. 
82 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer 
science I I, part 2. 1976. 
83 LS. van Benthem Jutting. Checking Landau's 
"Grundlagen" in the AUTOMATH system. 1979. 
84 H.L.L Busard. The translation of the elements of Euclid 
from the Arabic into Latin by Hermann of Carinthia (?), books 
vii-xii. 1977. 

85 J. van Mill. Supercompactness and Wallman spaces. 1977. 
86 S.G. van der Meulen, M. Veldhorst. Torrix I, a program
ming system for operations on vectors and matrices over arbi* 
trary Jie/ds and oJ variable size. 1978. 
88 A. Schrijver. Matroids and linking systems. I 977. 
89 J.W. de Roever. Complex Fourier transformation and 
analytic functionals with unbounded carriers. I 978. 



90 L.P.J. Groenewegen. Characterization of optimal strategies 
in dynamic games. I 981. 
91 J.M. Geysel. Transcendence infields of positive characteris
tic. 1979. 
92 P.J. Weeda. Finite generalized Markov programming. 1979. 
93 H.C. Tijms, J. Wessels (eds.). Markov decision theory. 
1977. 
94 A. Bijlsma. Simultaneous approximations in transcendental 
number theory. 1978. 
95 K.M. van Hee. Bayesian control of Markov chains. 1978. 
96 P.M.B. Vit3.nyi. Lindenmayer systems: structure, languages, 
and growth functions. 1980. 
97 A. Federgruen. Markovian control problems; functional 
equations and algorithms. 1984. 
98 R. Geel. Singular perturbations of hyperbolic type. 1978. 
99 J.K. Lenstra, A.H.G. Rinnooy Kan, P. van Emde Boas 
(eds.). lnterf<Jces between computer science and operations 
research. I 9"78. 
100 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part 
/. 1979. 
IOI P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part 
2. 1979. 

:~~8~. van Dulst. Reflexive and superrejlexive Banach spaces. 

l03 K. van Ham. Classif)'ing infinite(y divisible distributions 
by functional equations. f978. 
l04 J.M. van Wouwe. Go-spaces and generalizations of metri
zahility. 1979. 
l05 R. Helme~s. Edgeworth expansions for linear combinations 
of order statisflcs. 1982. 
:~~9~. Schrijver (ed.). Packing and covering in combinatorics. 

l07 C. den Heijer. The numerical solution of nonlinear opera
tor equations by imbedding methods. 1979. 
I08 J.W. de Bakker. J. van Leeuwen (eds.). Foundations of 
computer science Ill, part/. 1979. 
109 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science Ill, part 2. 1979. 
110 J.C. van Vliet. ALGOL 68 rransput, part I: historical 
review and disqission of the implementation model. 1979. 
111 J.C. van Vliet. ALGOL 68 transput, part II: an implemen
tation model. 1979. 
112 H.C.P. Berbee. Random walks with stationary incremems 
and renewal theory. 1979. 
113 T.A.B. Snijders. As.vmptotic optimali{v theory/or testing 
problems with restricted alternatives. 1979. 
114 A.J.E.M. Janssen. Application of the Wigner distribution to 
harmonic analysis of generalized stochastic processes. 1979. 
115 P.C. Baayen, J. van Mill (eds.). Topological structures II, 
part I. 1979. 
116 P.C. Baayen, J. van Mill (eds.). Topological structures I I. 
part 2. 1979. 
117 P.J.M. Kallenberg. Branching processes ·with continuous 
state space. 1979. 
118 P. Groeneboom. Large deviations and as_vmptotic efficien-
cies. 1980. · 
119 F.J. Peters. Sparse matrices and substructures, with a riovel 
implementation oJ finite element algorithms. 1980. 
120 W.P.M. de Ruyter. On the asymptotic analysis of large
scale ocean circulation. 1980. 

121 W .H. Haemers. Eigenvalue techniques in design and graph 
theory. I 980. 
122 J.C.P. Bus. Numerical solution ofs}'stems of nonlinear 
equations. 1980. · 

:~~l Yuhasz. Cardinal functions in topology - ten years later. 

124 R.D. Gill. ·Censoring and stochastic integrals. 1980. 
125 R. Eising. 2-D systems, an algebraic approach. 1980. 
126 G. van der Hoek. Reduction methods in nonlinear pro
gramming. 1980. 
127 J.W. Klop. CombinatOf_}' reduction systems. 1980. 
128 A.J.J. Talman. Variable dimension fixed point algorithms 
and triangulations. 1980. 

129 G. van der Laan. Simplicial fixed point algorithms. l 980. 
130 P.J.W. ten Hagen, T. Hagen, P. Klint, H. Noot, H.J. 
Sint. A.H. Veen. /LP: intermediate language for pictures. 
1980. 

131 R.J.R. Back. Correctness preserving program refinements: 
proof theof_}· and applications. 1980. 
132 H.M. Mulder. The inten-alfunction ofa graph. 1980. 
133 C.A.J. Klaassen. Statistical performanff of location esti
mators. 1981. 
134 J.C. van Vliet, H. Wup'ler (eds.). Proceedings interna
tional conference on ALGOl 68. 1981. 
135 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof 
(eds.). Formal methods in the study of language, part I. 1981. 
136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof 
(eds.). Formal methods in the study of language, part II. 1981. 
137 J. Telgen. Redundancy and linear programs. 1981. 
138 H.A. Lauwerier. Mathematical model,; of epidemics. 1981. 
139 J. van der Wal. Stochastic dynamic programming, succes
sive approximations and near(l-' optimal strategies for Markov 
decision processes and Markov games. 1981. 
140 J.H. van Geldrop. A mathematical theory of pure 
exchange economies without the no-critical-point hypothesis. 
1981. 
141 G.E. Welters. Abel-Jacobi isogenies for certain types of 
Fano threefolds. 198 I. 
142 H.R. Bennett, D.J. Lutzer (eds.). Topology and order 
structures, part I. 1981. 
143 J.M. Schumacher. Dynamic feedback infinite- and 
infinite-dimensional linear systems. 1981. 
144 P. Eijgenraam. The solution C!f initial value problems using 
interval arithmetic; formulation and analysis of an algorithm. 
1981. 
145 A.J. Brentjes. Multi-dimensional continuedfraction algo
rithms. 1981. 
146 C.V.M. van der Mee. Semigroup and factorization 
methods in transport theory. 1981. 
:~~2~.H. Tigelaar. Identification and informative sample size. 

148 L.C.M. Kallenberg. Linear programming and finite Mar
kovian control problems. 1983. 
149 C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxemburg. 
W.K. Vietsch (eds.). From A to Z, proceedings of a symposium 
in honour of A. C. Zaanen. 1982. 
150 M. Veldhorst. An analysis of sparse matrix storage 
schemes. 1982. 
151 R.J.M.M. Does. Higher order asymptoricsfor simple linear 
rank statistics. 1982. 
: ~~2?.F. van der Hoeven. Projections of lawless sequences. 

153 J.P.C. Blanc. Application of the theof_}' of bounda,y i'a/ue 
problems in the analysis of a queueing mode{ with paired ser
vices. 1982. 
154 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational 
methods in number theof_}', part I. 1982. 
155 H.W. Lenstra, Jr .. R. Tijdeman (eds.). Computational 
methods in number theory, part //. 1982. 
156 P.M.G. Apers. Quef_}' processing and data allocation in 
distributed database systems. 1983. 
157 H.A.W.M. Kneppers. The covariant classification oftwo
dimensional smooth commutative formal groups over an alge
braically closed field of positive characteristic. I 983. 
158 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science IV, distributed systems, part I. 1983. 
159 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science IV, distributed systems, part 2. 1983. 
160 A. Rezus. Abstract A UTOMATH. 1983. 
161 G.F. Helminck. Eisenstein series on the metaplectic group, 
an algebraic approach. I 983. 
162 J.J. Dik. Tests for preference. 1983. 
163 H. Schippers. Multiple grid methods for equations of the 
second kind with applications in fluid mechanics. 1983. 
164 F.A. van der Duyn Schouten. Markov decision processes 
with continuous time parameter. 1983. 
165 P.C.T. van der Hoeven. On point processes. 1983. 
166 H.B.M. Jonkers. Abstraction, specification and implemen
tation techniques, with an application to garbage collection. 
1983. 
167 W.H.M. Zijm. Nonnegative matrices in dynamic program
ming. 1983. 
168 J.H. Evertse. Upper bounds for the numbers of solutions uf 
diophantine equations. 1983. 
169 H.R. Bennett, D.J. Lutzer (eds.). Topologr and order 
structures, part 2. 1983. 



CW/ TRACTS 
l9~.r.J. Epema. Swfaces with canonical hyperplane sections. 

2 J.J. Dijkstra. Fake topological Hilbert spaces and characteri
zations of dimension in terms of negligibility. 1984. 
3 A.J. van der Sch aft. System theoretic descriptions of physical 
systems. 1984. 
4 J. Koene. Minimal cost flow in processing networks, a primal 
approach. 1984. 
5 B. Hoo gen boom. J ntertwining Junctions on compact Lie 
groups. 1984. 
6 A.P.W. Bohm. Datajfow computation. 1984. 
7 A. Blokhuis. Few-distance sets. 1984. 
8 M.H. van Hoom. Algorithms and approximations for queue
ing systems. 1984. 
9 C.P.J. Koymans. Models of the lambda calculus. 1984. 
IO C.G. van der Laan, N.M. Temme. Calculation of special 

Junctions: the gamma function, the exponential integrals and 
error-like Junctions. 1984. 

~Js,N,~;;!~7;:::. ~tii. Controlled Markov processes; time-

12 W.H. Hundsdorfer. The numerical solution of nonlinear 
stiff initial value problems: an analysis of one step methods. 
!'185. 
13 D. Grune. On the design of ALEPH. 1985. 
14 J.G.F. Thiemann. Analytic spaces and dynamic program
ming: a measure theoretic approach. 1985. 
15 F.J. van der Linden. Euclidean rings with two infinite 
primes. 1985. 
16 R.J.P. Groothuizen. Mixed elliptic-hyperbolic partial 
differential operators: a case•study in Fourier integral opera• 
tors. 1985. 
17 H.M.M. ten Eikelder. Symmetries for dynamical and Ham
iltonian systems. I 985. J~81:D.M. Kester. Some large deviation results in statistics. 

19 T.M.V. Janssen. Foundations and aPf,lications of Montague f9ii;rnar, part l: Philosophy, Jramewor computer science. 

20 B.F. Schriever. Order dependence. 1986. 
21 D.P. van der Vechl Inequalities for stopped Brownian 
motion. 1986. · 
22 J.C.S.P. van der Woode. Topological dynamix. 1986. 
23 A.F. Monna. Methods, concepts and ideas in mathematics: 
aspects of an evolution. 1986. 
24 J.C.M. Baeten. Filters and ultrafilters over definable subsets 
of admissible ordinals. 1986. 
25 A.W.J. Kolen. Tree network and planar rectilinear location 
theory. I 986. 
26 A.H. Veen. The misconstrued semicolon: Reconciling 
imperative languages and datajfow machines. 1986. 
yJi,Ai;-:,:i s~"f:. ~Gt.len. Homogeneous zero-dimensional abso-

28 T.M.V. Janssen. Foundations and applications of Montague 
grammar, part 2: Applications to natural language. 1986. 
29 H.L. Trentelman. Almost invariant subspaces and high gain 
feedback. 1986. 
30 A.G. de Kok. Production-inventory control models: approxi
mations and algorithms. 1987. 
31 E.E.M. van Berkum. Optimal paired comparison designs for 
factorial experiments. 1981. 
32 J.H.J. Einmahl. Multivariate empirical processes. 1987. 
33 O.J. Vrieze. Stochastic games with finite state and action 
spaces. 1987. 
34 P.H.M. Kersten. Infinitesimal symmetries: a computational 
approach. I 987. 
~~8~.L. Eaton. Lectures on topics in probability inequalities. 

36 A.H.P. van der Bur~, R.M.M. Mattheij (eds.). Proceed
ings of the first internat,onal conference on mdustria/ and 
applied mathematics (IC/AM 81). 1987. 
37 L. Stougie. Design and analysis of algorithms for stochastic 
integer programming. 1987. 
38 J.B.G. Frenk. On Banach algebras, renewal measures and 
regenerative processes. 1987. 

39 H.J.M. Peters, O.J. Vrieze (eds.). Surveys in game theory 
and related topics. 1987. 
40 J.L. Geluk, L. de Haan. Regular variation, extensions and 
Tauberian theorems. 1987. 
41 Sape J. Mullender (ed.). The Amoeba distributed operating 
system: Selected papers /984-/987. 1987. 
42 P.R.J. Asveld, A. Nijholt (eds.). Essays on concepts,Jor
malisms, and tools. 1987. 
43 H.L. Bodlaender. Distributed computing: structure and 
complexity. 1987. 
44 A.W. van der Vaart. Statistical estimation in large parame
ter spaces. 1988. 
45 S.A. van de Geer. Regression analysis and empirical 
processes. 1988. :;,:Pi Ji&~kreijse. Mu/tigrid solution of the steady Euler equa-

41 J.B. Dijkstra. Analysis of means in some non-standard 
situations. I 988. 
48 F.C. Drost. Asymptotics for generalized chi-square 
goodness-of-fit tests. 1988. 
49 F.W. Wubs. Numerical solution of the shallow-water equa
tions. 1988. 




