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PREFACE 

This monograph considers the behaviour of various types of chi

square goodness-of-fit test statistics. The first chapter gives a review 

of recent literature on the subject. 

i 

Chapter II investigates the influence of the number of classes kin 

the presence of a location-scale nuisance parameter. When k ➔ 00 , we prove 
2 

the asymptotic normality of the Moore-Spruill (1975) class of X statistics 

(extending Morris' (1975) theorem for the Pearson statistic when k ➔ 00 and 

no nuisance parameters are present). Criteria are developed whether to 

choose a large or a small number of classes. A theoretical explanation was 

still lacking for simulations showing that the Rao-Robson-Nikulin test 

dominates other commonly used x2 tests. The present limit theorem implies 

that, when k ➔ 00 , the Rao-Robson-Nikulin test is better in the sense of 

Pitman efficiency. 

The choice of the location-scale estimator is the subject of the 

third chapter. Non-robust estimation (i.e. the estimator is not £-consis

tent under local alternatives) is best: under non-robust estimation general 

EDF tests, including generalized x2 tests, are consistent while the asymp

totic local power remains bounded away from one in more classical situa

tions of e.g .. ML or robust estimation under heavy-tailed alternatives. 

complementary results are given for £-consistent estimators havin~ 

a relatively large bias or variance under local alternatives. A simulation 

study illustrates the theoretical results of the second and the third chap

ter. 

The last chapter deals with power approximations for the Cressie

Read (1984) class of x2 statistics when no nuisance parameters are present. 

Although classical (moment-corrected) x2 approximations work reasonably 

well under the hypothesis, non-central x2 power approximations are inade

quate for moderate sample sizes. A non-local Taylor expansion of the test 



ii 

statistic yields a new approximation based on a weighted sum of independent 
1 

non-central x2 distributions; the distribution error is of order O(n-2 ) 

uniformly in alternatives and levels. Exact power computations for n=20,50 

show that the new approximation is very good and is greatly superior to 

traditional ones. 
It is a pleasure to me to express my deep gratitude to prof.dr. J. 

Oosterhoff and dr. W.C.M. Kallenberg for their constant encouragement and 

6timulating advice. Also I like to thank prof. D.S. Moore for the 

stimulating discussions during his visit at the Vrije Universiteit. Although 

I cannot mention them all, I want to thank everyone who contributed to the 

pleasant working conditions at the Vrije Universiteit. 

I thank Mr. K. Snel for his excellent typing of the manuscript and 
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CHAPTER I 

INTRODUCTION 

I.1. GOODNESS-OF-FIT TESTS FOR SIMPLE HYPOTHESES 

Let Y1 , ••• ,Yn be n independent identically distributed real-valued 

random variables with distribution function FY and consider the general 
y 

testing problem F = H for a given distribution H. A well-known omnibus 

1 

goodness-of-fit test is the classical Pearson chi-square test (cf. Pearson 

(1900)). The original problem is reduced to a multinomial setting parti

tioning the range of the Yjs into k cells Ik1 , ••• ,Ikk• Let Pki(0) = 

= PH(Yj E Ikf denote the cell-probabilities under Hand let Nki = #{j;Yj E Iki} 

denote the cell counts (i = 1, ••• ,k), then Pearson's chi-square test rejects 

for iarge values of 

(I.1.1) 

A common competing statistic is based on the likelihood ratio for grouped 

observations: 

Cressie and Read (1984) have systematized the theory of multinomial good

ness-of-fit tests by considering the class of statistics 

(I.1.2) o .. E :R\{-1,0}); 

for A= 0 and A= -1 CR (A) is defined by continuity in A. This class in-n 
eludes the likelihood ratio statistic (A= 0), the modified likelihood 

ratio statistic (A= -1) and the statistics of Pearson (A= 1), Freeman

Tukey (A=-~) and Neyman (A= -2). 

Little is known about the exact distributions for small and moderate sample 
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sizes. As n + 00 and k is fixed, however, the Cressie-Read statistics have 

limiting chi-square distributions with k-1 degrees of freedom under H 

(cf. Cressie and Read (1984)). Esseen (1945) has shown that this approxi

mation is very accurate if A Rl 1 (cf. also Yarnold (1972), Larntz (1978), 

Cressie and Read (1984)). The large sample theory is less satisfactory 

under alternatives. Local and nonlocal theories lead to different conclu

sions (cf. Cressie and Read (1984)). Moreover, exact power computations and 

simulations are not easily explained by these (non)local theories (cf. e.g. 

west and Kempthorne (1971), Cressie and Read (1984), Kallenberg et al. 

(1985), Quine and Robinson (1985), Kallenberg (1985)). 

In practice the number of classes is taken larger if n is larger: k = kn+ 00 

as n + 00 (cf. Mann and Wald (1942)). Tumanyan (1956) and Steck (1957) 

proved the asymptotic normality of Pearson's chi-square statistic under H 

when k + 00 , k = O(n). Using a different technique Morris (1975) extended 

these results to local alternatives for P and LR. The asymptotically 
n n 

optimal choice of k is investigated in Kallenberg et al. (1985); they 

obtained simple criteria (based on the information function) for P and LR . 
n n 

These results generalize to the Cressie-Read tests. 

Next consider omnibus goodness-of-fit tests which are based on the 

raw data instead of on grouped observations. Well-known examples are the 

Kolmogorov-Smirnov test and the Cramer-von Mises test. They belong to the 

general class of EDF statistics 

which are functionals of the difference between the empirical distribution 

function Fn of Y1 , ••• ,Yn and the hypothesized distribution function H. For 

fixed k the Cressie-Read statistics appear as a special example. In 

principle the limiting distributions of EDF statistics are known, they are 

functionals of Brownian bridges (cf. Billingsley (1968)). In practice they 

are seldom useful. 

I.2. COMPOSITE HYPOTHESES 

The situation sketched above is rather simple. In actual problems one 

often encounters p-dimensional nuisance parameters 0 and one wants to test 

the composite null-hypothesis 

(I.2.1) y { * p HQ: F E H (•;0);0 E 0 c:R_ }, 
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where H* ( •; 6) is a giver. distribution for each 6. 

Several modifications of P have been proposed. Let 
n e:r. = e:r. (Nkl, ••• ,Nkk) be the maximum likelihood estimator of 6 based on 

grouped observations and estimate the unknown cell probabilities by the 

probabilities of Ik1 , ••• ,Ikk under H*(•;~). Replacing unknown by estimated 

probabilities in (I.1.1), one obtains the Pearson-Fisher statistic (cf. 

Fisher (1924)). In a similar way one obtains the statistic of Chernoff and 

Lehmann (1954), who estimated 9 by the maximum likelihood estimator 

GML = 0ML(Y1 , ••• ,Y) under the model H0 • A drawback of these methods is 
n n n 

that cells are supposed to be fixed while the distributions vary with 6. 

This results in widely different cell probabilities. Therefore, when the 

original observations are available, partition the support of H*(·;6) into 

* k 6-dependent classes Iki (6) with probabilities pki (0) > 0 (i = 1, ••• ,k) 

independent of 6. Let 

(I.2.2) 

denote the nwnber of observations in the i-th cell and define the random 

k-vector Vk(6) by its components 

(I.2.3) (i = 1, .•• ,k). 

Let 0 be some estimator of 6, then Roy (1956) and Watson (1957,1958) n 
proposed a Pearson type test nased on random cells: 

(I.2.4) WR = llvk(6 >II 2 n n 

(ii· II denotes Euclidian distance). Similarly the Cressie-Read class is 

generalized to the random-cell situation: 

(I.2.5) 2 k {(N .(6 ))A+1 } CR (A) = __ n_ I: p (0) kl. n 1 
n A(A+1) i=l ki npki(O) - • 

Imposing regularity conditions on 0 , the limiting distributions of 
n 

WRn = CRn(1) under H0 and local alternatives are weighted sums of kin-

dependent (noncentral) chi-square variables. The same holds true for the 

Cressie-Read class because Taylor expansion of CR (A) shows that n 
CRn (A) - WRn converges to zero in probability (cf. Cressie and Read (1984)). 

The limiting null distribution of the Chernoff-Lehmann statistic is known tc 

be of this type too but the limiting null distribution of the Pearson-
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Fisher statistic is an ordinary chi-square. 

To avoid awkward limiting distributions Nikulin (1973) and Rao and 

Robson (1974) proposed to use a quadratic form 

(I.2.6) 

where ~ is a generalized inverse of the asymptotic covariance matrix of 

Vk(Sn) under H0 (cf. (II.1.11)). The Dzhaparidze-Nikulin statistic projects 

Vk(Sn) on a suitable linear subspace of :Rk such that all perturbations due 

to the replacement of 0 by 8 are removed (cf. Dzhaparidze and Nikulin 
n 

(1974)): 

(I.2.7) 

(Bk is defined in (II.1.9)). As opposed to the Cressie-Read class the 

latter two statistics have limiting (noncentral) chi-square distributions. 

Moore and Spruill (1975) developed the theory of general quadratic forms: 

(I.2.8) 

where r k is an arbitrary (k x kl-matrix. They obtained the limiting distri

butions of MSn both under HO and local alternatives. 

For fixed k Spruill (1976) showed that if WRn and RRNn are compared by 

means of the approximate Bahadur slope, RRNn is uniformly at least as 

efficient as WRn. The analogous result for Pitman efficiencies is not true; 

in several cases local theory implies that WRn and DNn are preferable to 

RRNn (cf. Drost (1987), also cf. Moore (1977), LeCam et al. (1984)). The 

simulation studies of Rao and Robson (1974) are better explained by the 

nonlocal theory than by the local theory; RRNn generally dominates WRn. 

In the presence of nuisance parameters a natural extension of 

general EDF statistics is proposed by Chernoff and Lehmann (1954), 

Neuhaus (1976) and Cs8rg8 and Revesz (1981 a) • Estimate the unknown distri

bution function H*(•;0) by H*(•;S) and apply the classical EDF functionals 
½ * n -T to the difference n (F n ( · ) - H ( • ; 0 n) ) : 

(I.2.9) ~ ½ * -Tn=T(n (Fn(·)-H (•;0n))). 

Durbin (1973) suggested a different approach. Lets: :Rx 0 +JR be a trans

formation such that s(Yi;6) is distributed as H under HO if 6 is true and 

replace the original observation Y. by Z. = s (Y. ;6 ) (i = 1, ••• ,n). Then, 
i i i n 
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with F the empirical distribution function of z 1 , ••• ,zn' the classical EDF 
n ~ -

functionals T are applied to n (F n ( • ) - H ( • ) ) : 

(I.2.10) T 
n 

Under regularity conditions, including the asymptotic normality of 0 under n 
H0 and local alternatives the limiting distributions are functionals of 

Brownian bridges with parameters generally depending on Hand the type of 

estimator (cf. e.g. cs8rg8 and Revesz (1981 a)). Stephens (1974) suggested 

useful approximations of these limiting distributions. 

To estimate 0 it is common practice to employ a maximum likelihood 

estimator of 0 under H0 or an asymptotically equivalent estimator. Little 

is known about the influence of the method of estimation on the power of 

tests. This is not surprising: the asymptotic distributions (under alter

natives) are quite complicated for most goodness-of-fit tests in common use 

and hence, a comparison of (asymptotic) powers under different estimators 

may not shed much light on the problem. 

Quite another statistic.is proposed by cs8rg8 and Revesz (1981 bl 

when the nuisance parameter is a location-scale parameter. Their test is 

based. on: spacings between order statistics and is independent of 8. Again 

the limiting distribution under HO is a complex functional of a Brownian 

bridge; under fixed alternatives the test is consistent. 

I. 3 • OUTLINE OF RESULTS 

In the remaining chapters we restrict attention to a location-scale 

nuisance parameter 

e = (µ,cr)' and 

0 =Rx (O,oo) 

and consider the testing problem 

(I.3.1) 

In Chapter II the results of Tumanyan (1956), Steck (1957) and 

Morris (1975) are extended to a subclass of the Moore-Spruill class, in

cluding the classical extensions WR, RRN and DN of P. When k tends n n n n 
slowly to infinity these statistics have normal limiting distributions 
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under Ho and under local mixture alternatives (Theorem II.2.2). The para

meters of the normal distributions are the leading terms of the expecta

tions and variances of the statistics for fixed k. Bickel and Rosenblatt 

(1973) obtained a similar result for the Watson-Roy statistic when the 

Fisher information is finite. In the proof of Theorem II.2.2 we rewrite 

the statistics under consideration as the sum of P and some remainder n 
terms that are small in probability. Then the desired result follows from 

Morris (1975). (Without proof several authors claimed that results for fixed 

k are easily extended to the case where k is of order In .But they seem to 

have overlooked the problems arising from bounding the remainder terms due 

to the growing dimension of Vk(8).) 

As an important consequence of Theorem II.2.2 we show that when k ➔"" 

the Rao-Robson-Nikulin test generally dominates the statistics DNn and Ii/Rn 

in the sense of Pitman (Corollary II.3.1). This partly explains the con

flicting results for fixed k between simulation studies of Rao and Robson 

(1974) and local theory (cf. Moore (1977), LeCam et al. (1984), Drost 

(1986)). 

Theorem II.2.2 implies also that the criterion whether to keep k bounded or 

to let k ➔ 00 for the classical Pearson statistic (cf. Kallenberg et al. 

(1985)) extends to the location-scale nuisance parameter case. 

The effect of the estimation procedure on the asymptotic local power 

is investigated in Chapter III. We show by very crude methods that other 

estimators than the usual maximum likelihood estimators may lead to a large 

increase of power for certain interesting classes of alternatives. 

First we consider stronglynon-robust estimation, i.e. situations where 8 n 
behaves well under H0 but is not In-consistent under local alternatives. 

Then general EDF statistics, including CRn(A) and MSn, are consistent 

(Theorem III.2.1), while the asymptotic local power is bounded away from 1 

in more classical situations where 8 is In-consistent (cf. Durbin (1973), 
n 

Moore and Spruill (1975), Cressie and Read (1984)). 

In the second part of this chapter we assume that 0 is In-consistent. 
n 

Then, for special chi-square type tests, we prove oncemore that it is 

preferable to use non-robust estimators, i.e. estimators which have a 

relatively large bias or variance under local alternatives (cf. Section 

III.3). 

Theoretical results and numerical evidence suggest that non-robust esti

mators are best. Robust estimation leads often to a substantial loss in 
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power for interesting ranges of alternatives while the gain in special 

directions is relatively small. This explains also simulations of Stephens 

(1974), who pointed at the high power of several goodness-of-fit tests when 

parameters are estimated, compared to the same tests with known parameters. 

Finally the last chapter deals with power approximations for tests of 

the Cressie-Read class when no nuisance parameters are present. Although 

classical (moment-corrected) chi-square approximations work reasonably well 

under the null-hypothesis for CRn(A) (cf. Larntz (1978), Cressie and Read 

(1984)), (moment-corrected) non-central chi-square power approximations are 

inadequate for moderate sample sizes (cf. Figure IV. 3 .1). When the power is 

high a simple more or less accurate approximation is a normal one (cf. 

BroffittandRandles (1977)). It gives a crude impression of the power as a 

function of A. Quite often, however, the errors are ten percent or more 

(cf. Figure IV.3.2). In Section IV.2 we present a new approximation based on 

a weighted sum of independent noncentral chi-square distributions. In 

Theorem IV.2.1 we show that the accuracy is of order O(n-~) uniformly in 

alternatives (local or nonlocal) and levels. 

Exact power computations for n = 20 and n 50 show that the approximations 

are very good especially in the range 0 $A$ 2 (cf. Section IV.3). 
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CHAPTER II 

GENERALIZED CHI-SQUARE GOODNESS-OF-FIT TESTS 

FOR LOCATION-SCALE MODELS 

WHEN THE NUMBER OF CLASSES TENDS TO INFINITY 

II .1 • PRELIMINARIES 

II.1.1. Local alternatives 

Let Y1 , ••• ,Yn be i.i.d. real-valued absolutely continuous random 

variables with distribution function FY and consider chi-square type tests 

(I.2.8) for the testing problem (I.3.1) when k + 00 • It seems out of the 

question to obtain useful asymptotic properties for the whole class of 

Moore-Spruill statistics when k + 00 because the choice of rk depends on k 

and the class of all. (k x k)-matrices is too large when k + 00 • Estimating 

the nuisance parameter 6 disturbs the simple covariance matrix of Vk (6) 

when 6 is known. This motivates the following subclass of the Moore-Spruill 

class: 

(II.1.1) 

where Ik is the (k x k)-identity matrix, Dk the orthonormal matrix defined 

in the line preceding (II.1.12) and A(k) a symmetric nonnegative definite 

matrix characterizing x2 • This subclass contains the classical random-cell n 
generalizations WR , RRN and DN of P . The matrix Ik - DkDk' projects n · n n n . 
Vk(8n) on the orthogonal complement of the column space of Dk (col. (Dk)) 

and removes all noise due to 8 (cf. Dzhaparidze and Nikulin (1974)). The n 
second part DkA(k)Dk permits a large degree of freedom in directions 

sensitive to the estimator 8 (cf. Rao and Robson (1974), Hsuan (1974), 
n 

McCUlloch (1985)). 

To study the behaviour of x2 for a broad class of alternatives, let n 
G be any given alternative and consider the contamination family of 

location-scale distributions 

(II.1.2) 
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-i, -½ 
where nn + O as n + 00 • A common choice of nn is of type nn = n Y + o (n ) 

for some fixed y > 0. When k is bounded this rate results in an asymptotic 

local power bounded away from one at the local alternative hypothesis 

(II.1.3) 

(cf. Moore and Spruill (1975)). We consider general nn + 0 when k + 00 • 

II.1.2. Assumptions on the distributions. 

Denote the gradient with respect to 8 by v8 <VJ transposes V8), let 

En{v(Y)} denote the expectation of v(Y) with respect to Gn' let the symbols 

o, o, 0 and O have a componentwise interpretation if they are used for 
p p 

vectors or matrices and put 80 = (0,1)'. 

We denote the null (alternative) distribution H (G) by its equivalent 

G0 (G1) to unify notation in the remainder of this manuscript. Denote the 

densities corresponding to G~(x;8) (Gn(x)) by g~(x;8) (gn(x)) and assume 

the following regularity conditions 

C.II.1 

-b lim xg0 (x) = 0 
lxJ ➔oo 

-c Eo{IIVe log g~(Y;8) l0=801!2} < 00 

-d G1 is differentiable 

-e M1 = sup g 1 (x) < oo 

XElR 

The Lipschitz continuity of g0 implies absolute continuity. Let g~l) be a 

derivative of g 0 with respect to Lebesgue measure; so C.II.1-c is properly 

defined and implies the finite existence of the Fisher-information matrix 
2 

J 8 = CJ J, where 

(II.1.4) 

The conditions C. II . 1-a , e imply that g n is bounded 

(II. 1. 5) sup g (x) < 00 (0 ~ n ~ 1). 
XElR n 



II.1.3. Assumptions on the estimator 6 n 

suppose 6 is location-scale equivariant and admits the pointwise 
n 

representation 

(II.1.6) ½. -½ n (Y,-µ) (Yi-µ· Yn-µ) 
n (0n - 0) = n o j~l h ~ +OQn --0 -, ••• ,--0 - , 

where h = (h1 ,h2)' : R +R2 is the vector-valued influence function and 

Q = (Q1 ,Q2 )' : JRn +R2 the remainder. The influence function h often 
n n n 

coincides with the influence curve (cf. Huber (1981) or Serfling (1980)). 

Assume 

C.II.2 

-a 

-b 
-1 E0[h(Y)h(Y)'] = A 

-c E1{h(Y)} = 0 if n½nn is unbounded 

-e 

where A is a finite nonsingular matrix. sufficient for (II.1.6) to hold 

11 

l 2 
under H1nCn2nn =0(1)) is that (II.1.6) holds under HO and f (g1/g0- 1) dG0 < 00 , 

because under the latter condition the joint distributions of Y1 , ••• ,Yn 

under Hln and under H0 are contiguous (cf. Oosterhoff and van Zwet (1979) 

and Oosterhoff (1985)). However, the integral condition is not satisfied for 

heavy-tailed alternatives as shown in Kallenberg et al. (1985). Of course 

(II.1.6) and C.II.2 may still hold under Hln for particular estimators in 

such cases too. Condition C.II.2 implies that 0n is In-consistent under H0 

and Hln (if Q = o (1) it even implies the asymptotic normality of 0) 
n p n 

(II.1. 7) 
½ • 

n (0n-0) = OP(l) under H0 and Hin· 

In Chapter III we shall consider the case n½\len - e II+ OO under Hin· Under 

regularity conditions Bickel (1982) (cf. also Hajek (1972)) showed that the 

maximum likelihood estimator 6ML admits the representation (II.1.6) with 
n 

Q = o (1) and 
n P 

(II.1.8) 

implying A = J. 
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II.1.4. Definitions and notations. 

A natural choice for the cell-boundaries in the location-scale model 

is of typeµ +ao. Let {ak}k:2:2 be a sequence of (k+l)-vectors with com

ponents - 00 = ~O < ••• < akk = 00 inducing a partition of R into k disjoint 

intervals (for each 8) 

(i 1, •.. ,k). 

Let Iki be the interval 

and put 

p;.<n,8*,8) = f dGn*<x;8) 
i I~i(8*) 

* * * the probability of Ik. (8 ) under G (x;8) (i = 1, ..• ,k). The cell-probabili-
i * n 

ties are independent of 0 = 8 

Define the (kx2)-matrices Bk 

rows 

(II.1.9) 

f 
1ki 

dG (x) 
n 

[Blk'B2k] and ck 

f h(x) 1 dG0 (x)) ·A 

1ki 

(i = 1, ••. ,k). 

(i = 1, ••• ,k). Direct calculation shows that the rows of Bk can also be 

written as 

Bki = p~~(O) J 1/0 logg~(x;8) '8=8/Go(x) 
1ki 

(i = 1, ... ,k). 

Note that Ck= Bk when using e:L (with hML given by (II.1.8)). Using 

Lemma A of Kallenberg et al. (1985), the Cauchy-Schwarz inequality and the 

finite existence of J and A it is easily seen that in the general case 

(II.1.10) 

Straightforward calculation shows that the asymptotic covariance matrix 
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under HO of the non-vanishing part of Vk(0n) is given by (cf. Remark II.4.1) 

(II.1.11) 

½ ½ I where qk = (pkl (O), ••• ,pkk(O)). Lk does not depend upon the location-scale 

parameter. Note that JJqkJJ2 = 1, qkBk = qkck = 0. Let Dk be a matrix with 

orthonormal columns such that col. (Dk) = col. ([Bk,ck]) and let ,(k) be the 

nonnegative definite matrix 

(II.1.12) 

Then, substituting (II.1.12) in the RHS of (II.1.13), 

(II.1.13) 

Define the k-vector dk(nn) by its components 

(i = 1 , ••• , k) • 

Finally define ~~(nn), the noncentrality parameter ~k(nn), the location 

parameter ~(nn) and the variance parameter si(nn) by 

(II .1.14) 

~<nn) = IIA(k)½D~(dk(nnl -Bkn½nnE1{h(Y)})JJ 2 

~k <nn) = II [ Ik - DkD~] (dk <nn) - Bkn ½nrf 1 {h (Y) }>112 + ~~ (nn) 

~ (nn) = k + ~k (nn) and 

2 
sk <nnl = 2k + 41\ <nn) • 

The last two parameters are the leading terms of the expectation and the 

variance of x!. Note that ~k(O) = O, thus mk(O) = k and s~(O) = 2k. 

II.1.5. Assumptions on the rate of k. 

Let k = k(n} be a particular choice of the number of cells and 

assume (under HO put nn = 0) 
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-a k + 00 and nn +Oas n + 00 

-b lim max pk. (0) = 0 
k+oo 1:5:iSk 1 

C.II.3 
max d~.(n )/(k+JJdk(n J!i 2J -c lim = 0 

n+oo 1:5:iSk 1 n n 

(n-½+nnl (1 +k-\\k) 
.3. k -1 

-d log2 k I: pki (0) 
i=l 

o (1) 

where Ak is the maximum eigenvalue of A(k). Condition C.II.3-b puts a more 

or less natural restriction on the cell-width ask+ 00 and implies 

lim max pk. (T"\ ) = 0 
n+oo lSiSk 1 n 

Condition C.II.3-c is the uan (uniformly asymptotically negligible) 

condition of Morris (1975). A better grasp of C.II.3-d is obtained by 
-½ -½ -1 . looking at the special case nn = n y +o (n ) and pki (0) = k (i = 1, •.. ,k). 

Then C.II.3-d reduces to 

_l _l 2 t 
n 2 ( 1 + k 2 Ak) k log k = o (1) • 

l 
For the test statistics with A = O(k2 ) this implies that the maximum 

k l 
number of cells is slightly less then n 4 ; examples are WRn and DNn (cf. 

Section II.3). In other important examples where Ak ~ k this bound reduces 
l 

to n 5 (cf. RRNn in Examples II.3.3 - II.3.5). We end this subsection with 

some technical conditions (under H0 put nn = 0) 

-a Q (Y1 , •.• ,Y) = o (k!/(1 +Ak)!) under GT"\ 
n n p n 

-b 
I l I 

tr. (A(k)2'1'(k)A(k) 2 ) = o(k2) 

C.II.4 

The curious condition C.II.4-a is often implied by C.II.3-d because the 
_1 

remainder term Qn is usually of order Op(n 4 ) (Serfling (1980), Ch.2 proves 

this for estimators based on quantiles; for regular estimators one even 
_1 

expects Q = 0 (n 2 )). 
n p l 

In the Appendix II.5 it is shown that D~dk(T"\n)/(n2nnl is a kind of Riemann-

Stieltjes sum approximating an integral. Under very restrictive conditions 

this approximation is quite accurate, but even if the conditions of 
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Lemma II.5.1 are not satisfied the accuracy is often of order o(l), 
.l. 

implying D~dk(nn) = O(n2nn). The last condition puts a restriction on the 

extreme cell-probabilities. Often the tail-behaviour of g 0 bounds the akis 

by log k, in which case C.II.3-d implies C.II.4-d. 

II. 1. 6. Complementary remarks. 

Consider statistics which do not depend on h through ck and suppose 

Ak = o(k½). Then the representation (II.1.6) is not necessary to obtain 
-1 

Theorem II.2.2 but (II.1.7) suffices. Taking, however, h = 0 and A=A =0 

(reducing a lot of terms to zero in this section) we can incorporate these 
l 

cases in the framework of (II.1.6). Thus, assuming Ak = o(k2 ) and (II.1.7), 

we omit the conditions C.II.2 and C.II.4-a,b (to delete C.II.4-b use 

tr.A(k) = O(Ak) = O(k½) and derive from (II.1.10) that tr.f(k) = 0(1)). 

Finally note that the conditions C.II.3-b,c and C.II.4-c can be 

replaced by 

lim max pk. ( 1 ) = 0 
k-l-00 lSiSk J. 

if nn = n -½y + o (n -½) and if all cells are equiprobable (use 

lldk(nnlll 2 = o(kl). 

II • 2. MAIN RESULTS 

In this section the limiting null and alternative distributions of 

the test statistic x! are given for the testing problem H0 versus Hln" In 

the proofs it is sufficient to restrict attention to the special choice 

00 = (0,1)' of 0 because the distribution of x! is invariant with respect 

toe. 

PROPOSITION II.2.1. (Morris (1975)) Assume C.II.3, then 

(P -k)/(2k)½ +d N(0,1) and 
n O 

(II.2.1) 

(Pn - (k+lldk(nn>ll 2»/(2k+4ll~(nn>ll 2J½ +d N(0,1). 
ln 

2 
PROOF. Under H1n. Let µk and oik be the expressions appearing in (5.5) and 

(5.7) of Morris (1975). Straightforward calculation shows 

µk = k + lldk <nn>II 2 + o (1) and I:~=l o~k = (2k + 4lldk <nn>f) (1 + o (1)). The 

conditions of Theorem 5.1 of Morris (1975) are directly implied by our 
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conditions. Application of this theorem yields the desired result. D 

REMARK II.2.1. The conditions of Proposition II.2.1 can be relaxed. For 

more detailed results about Pn we refer to Morris (1975) and Kallenberg et 

al. (1985). □ 

THEOREM II.2.2. Consider the statistics x! for testing H0 against the 

family of alternatives (II.1.2) determined by G1. Assume c.rr.1 -C.II.4, 

then 

(II. 2. 2a) (X2 -k)/(2k)½-+d N(0,1), 
n O 

(II. 2. 2b) (X~-mk(nn))/sk(T\n) -+dln N(0,l), if l~up l\:(nn)/sk(nnl < 00 and 

(II.2.2c) (X~-k)/(2k)½ -+Pln 00 if~~ l\~(nn)/sk(nn) 00 

PROOF. cf. Section II.4. 0 

REMARK II.2.2. Obviously Theorem II.2.2 continues to hold if 8 is either a 

location or a scale parameter. The proof requires some slight modifications 

in notation. D 

In the remainder of this section we state some corollaries concerning 

the number of classes, the relative efficiency of test statistics of type 

(II.1.1) and the choice of estimators. 

It is common pra<t:tice to choose the parameter nn such that the 

asymptotic local power is bounded away from a and 1. So the additional 

* condition on l\k(nn) to obtain limiting normal distributions in Theorem 

II.2.2 is quite natural, since otherwise there exists a subsequence of {X2} 
n 

for which the power tends to one. This is further elaborated in Corollary 

II.2.3; the ratio of the noncentrality parameter l\k(nn) and the square root 

of k determines the asymptotic power 

of x2 
n' where the critical values ck are given by 

COROLLARY II.2.3. Assume C.II.1 - C.II.4, then 



(II.2.3) 

PROOF. The critical values of the test x2 satisfy 
n 

l l 
ck = k + ( 2k) 2/;a + o (k2) , 

r 
-1 

where i;a = ~ (1-a.) denotes the upper a-point of the standard normal dis-

tribution function~- Because every subsequence of 6;(nn)/sk(nnl has a 

further sequence with a limit (finite or infinite) we assume without loss 

of generality that the sequence 6;(nn)/sk(nn) has a lilllit. If 

lilll 6*k<n )/sk(n) < 00 apply n->oo n n 

2 2 
Sa<Xn,n'nnl = Pln(Xn > ck) = 

17 

2 l 
Pln((Xn -mk(nnll/sk(nnl > -6k(nn)/sk(nnl + i;a(2k)2/sk(nnl +o(l)) 

(using (II.2.2b)) and otherwise apply 

(using (II.2.2c)). Combination of these two results yields (II.2.3). D 

REMARK II.2.3. Assume C.II.1 - C.II.4, then Corollary II.2.3 illlplies 

l l 
lilll 6k(n-1 )/k,: 
n->oo 

JO ,,. asymptotic local power J bounded k 

100 of x2 highest for 1 k ➔ 00 
n 

because the choice nn = n -½y + o (n -½, results in an asymptotic local power 

between a and 1 for bounded k. D 

To evaluate the relative efficiency of test statistics of type 

(II.1.1) we introduce some more notation. Let S~i) be a statistic of type 

(II.1.1) induced by the matrix J\ (k) (i) and the estimator 0 (i) (i = 1, 2) 
n 

and define the sequence n1 (n) 

. { (1) (2) 
n1 (n) = min n1 ; Sa (Sk ,n, nn) - Sa (Sk (nl) ,n1 , nn) ~ o}. 

The Pitman efficiency of S~l) with respect to s~2) is defined by 
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provided that this limit exists. In Corollary II.2.4 it is shown that the 
. (1) (2) 

relative performance of Sk and Sk only depends upon the ratio of their 

6~2) <nnl • 
(1) 

noncentrality parameters 6k (nn) and 

COROLLARY II.2.4. Consider a nonincreasingsequence {n} such that nn 2 
(1) (1) 1 n n 

varies slowly as n + 00 • For Sk assume 6k <nnl/k~ + c 1 > O and assume 

C.II.1 - C.II.4 under H0 and H1 (with contamination factor n l. For Sk(2) 
121 ½ n n 

assume 6k (nnl/k + c 2 < 00 and assume C.II.1 - C.II.4 under H0 and Hln 

(for aU contcuni1:ation factors T = n 1 with m(n) + 00 as n + 00 and such 
* n m- (n) * 

that limsup m (n) /n < 6 + c/c2 for some small fixed 6 > 0). 
n ➔ oo 

Then 

(II.2.4) 

PROOF. Let an~ bn have the interpretation: (V £ > 0) (3 n0 ) (V n > n0) 

la -b I < £. Note that S (Sk(l) ,n,n ) ➔ <l>(c1 -s ) > a. First assume nn a n a 
0 < c 1 ,c2 < 00 and let {m = m(n)} be a sequence such that ms (-o+c/c2)n=n 

for some O < 6 < c 1/c2. If m remains bounded 

otherwise 

( n2 11 <n l ) 
S cs 12 l ,m,n l ~ <I> -1L 7<:(ml m - s 

Cl. k(m) n ri; k2(m) a 

Similarly one proves for m (n) = (6 + c/c2) n (0 < 6 < 6*) 

Sa (S~~~) ,m, nn) ~ <I> ( (6 + c/c2) c 2 - sa,l 

> <l>(c 1 -s ) ~ S (Sk(l) ,n,n) 
a, a, n 

and thus ep(S(l) ,s 121 ) = c 1/c2 • Next consider sequences {m = m(n)} such 

that ms Mn= n for some ME JR. Then, if c 1 = oo, 



and, if c 2 O, 

(2) (1) 
1\i (Sk (m) ,m, T]n) Fd a. < <I> (cl - sa.) Fd Sa. (Sk ,n, T]n). 

Hence e (S(l) ,s(2)) = 00 • D 
p 

This corollary resembles Theorem 5.1 of Shirahata (1976); the 

dependence upon kin relation (5.4) of Shirahata (1976) disappears when 

k + oo. 
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The noncentrality parameter of X2 is heavily influenced n 
the estimator via the influence function h. The relative 

by the choice of 
2 

performance of X 
n 

for different kinds of estimators can be calculated from 

cf. subsection III.3.2 for a more detailed discussion. 

II.3. CLASSICAL EXTENSIONS OF P AND EXAMPLES 
n 

II.3.1. Asymptotic distributions. 

Corollary II.2.4, 

In this section we investigate several properties of the statistics 

WRn' RRNn and DNn (cf. Section I.2). The Rao-Robson-Nikulin statistic is 

not precisely defined in (I.2.6) because we did not specify the generalized 

inverse of rk. Although the exact distribution of RRNn depends upon the 

choice of r~ in several examples where r(rk) < k-1, the limiting null

distribution of RRNn is generally independent of this choice when k is 

fixed. If k + 00 the choice of r~ is more delicate (cf. Example II.3.2). 

Therefore we restrict attention to the Moore-Penrose generalized inverse 
+ ~of~; from now on we assume that 

(II.3.1) RRN 
n 

To make comparisons of WRn, RRNn and DNn more transparant define the 

modified Dzhaparidze-Nikulin statistic 

(II.3.2) 

which projects Vk(Sn) on the linear subspace of Rk orthogonal to col.(Dk). 

Note that DN = DN when using the maximum likelihood estimator eML and 
n n n 

the influence function hML of Bickel (1982) (cf. (II.1.8)). In Table II.3.1 
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the limiting null-distributions of the statistics WR , RRN , DN and DN 
n n n n 

are given when k is fixed. Note that these statistics belong to the class 

of statistics (II.1.1). 

Table II.3.1. Classical extensions of P 
n 

x2 J\(k) limiting null-distribution 
n 

2 r(Dk) 2 *1) WR I 
r(Dk) Xk-1-r (Dk) + L AkiXli n i=l 

RRN 'l'(k) + 2 *2) 
n Xr (I:k) 

DN -1 *3) 2 I -z(z'z) z' 
Xk-1-r(Bk) n r(Dk) 

~ 2 DN 0 
Xk-1-r(Dk) n 

Let k + 00 as n + 00 • Then the conditions C.II.4-a,b are trivially 

satisfied for the statistics WR, DN and DN because Ak ~ 1 = o(k½). 
_1 n n n 

Taking h = 0, A= A = 0 condition C.II.2 is also automatically fulfilled 

for the Watson-Roy statistic and the Dzhaparidze-Nikulin statistic (cf. 

subsection II.1.6). This choice is not possible for the modified 

Dzhaparidze-Nikulin statistic because we essentially use a non-null 

function h in the definition of Dk (Ck). Note also that C.II.4-b is 

satisfied for RRN. n 
The Watson-Roy test also appears in density estimation theory. As a 

particular case Bickel a~d Rosenblatt (1973) obtained limiting distri

butions of this type when the Fisher information is finite. In Example 

II.3.1 these results are derived from Theorem II.2.2. 

-1 
EXAMPLE II.3.1. Put pki (0) = k (i = 1, ••• ,k), nn 

assume C.II.1, C.II.3-c, C.II.4-c,d, (II.1.7) and 

k + 00 and n + 00 • Then 
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l 
(WRn -k)/(2k) 2 -+do N(0,1) and 

(WRn-k)/(2k)½ -+dln N(~ I(g1 ,2),1), 

where I(g1 ,2) is the Fisher information (cf. (II.3.7)). 

PROOF. Lemma Al of Kallenberg et al. (1985) shows lldk(nn)\1 2/(nn!)-+ I(g1 ,2). 

Application of Theorem II.2.2 yields the statements. 0 

For such distant alternatives as considered in Example II.3.1 the 

asymptotic local power is bounded away from 1 if the Fisher information 

is finite. Indeed, in view of Remark II.2.3, we recommend bounded kin 

our testing problem (I.3.1). 

The second example shows that special sequences for the generalized 

inverse can have a disastrous effect on RRN. This is due to the fact that 
n 

one has to choose a generalized inverse for every k. 

EXAMPLE II.3.2. Consider the Laplace null-hypothesis with unknown location 

½exp <-lx-µI);µ E F.}. 

-1 
Put pki (0) = k · (i = 1, ... ,k), let µ = med (Y1 , •.. , Y ) and let k 

n n 2 1 
a sequence of even numbers tending to infinity such that k log2 k 

k(n) be 
I 

o (n,:). 

Then the limiting null-distributions of WRn and DNn = RRNn (with the Moore

Penrose generalized inverse) are asymptotically normal with parameters k 

and 2k. 

In general the asymptotic distribution of RRNn depends upon the choice 

of I:;. 

PROOF. Under Ho the median satisfies condition C.II.2 with hML(x) = sgn(x) 

and Qn = 0 (n-¼) (cf. Serfling (1980), Ch. 2) and,because BkBk = J = 1,we 
p + * * I , * -½ -½ _,I_ -½ I obtain I:k = I:k Ik - qkqk - qk (qk), with qk = (-k , ..• ,-k ,k 2, ••• ,k ) • 

C.II.1-C.II.4 are easily verified using \ak1 1 = ~k-l = log (k/2). 

Theorem II.2.2 yields the first statement. 

To prove that the asymptotic distribution of RRNn depends upon the choice 

of I:; we consider the generalized inverse 
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{
o 

WR + 
n k 

{
even 

if n • 
odd 

Thus (RRN* - k) / ( 2k) ½ does not converge to a normal distribution. D 
n 

Note that the distribution of RRNn does not depend on the choice of L~ if 

r(Lk) = k-1. Although r(Lk) < k-1 seems rather pathological it quite often 

occurs when using estimators based on quantiles, e.g. the median or the 

interquartile range. 

In Example II.3.3 we consider a normal null-hypothesis against a 
l. -

Cauchy alternative. Although n2 (Y - µ) = 0 (1) does not hold at the fixed 
n P 

alternative, it is satisfied under the sequence of local alternatives. 

EXAMPLE II.3.3. Consider the testing problem of a normal null-hypothesis 

with unknown location 

against the local alternative 

H1n: FY e: {(1-nn)<I>(x-µ) +nn(½+} arctan (x-µ));µ ERL 

Pllt pk.(O) = k-1 (i=1, ••• ,k), n = n-½y+o(n-½), let Jln = n-1 LnJ"=l YJ. and 
1 n ! i I 

let the sequence k = k(n) + 00 such that k log k = o(n~). Then 

lim S (WR ,n,n ) = lim S (DN ,n,n ) = lim S (RRN ,n,n ) = 1. 
n-+oo a n n n-+oo a n n n-+oo a n n 

PROOF. First we derive the limiting distributions of WRn, RRNn and DNn 

under H0 • The mean estimator fulfills C.II.2 with hML(x) = x. 

Furthermore note that I akl I = akk-l !> ( 2 log k) ½ and >-.!RN = 1 / ( 1 - B~Bk) !> 

!> 2k log k. From Theorem II.2.2 it follows that WRn, RRNn and DNn are 

asymptotically normal with parameters k and 2k. With the previous choice 

of h condifion C.II.2 is violated under local alternatives. Note, however, 

that n2(µ -µ) +d N(0,1) + yCauahy = 0 (1). Application of Remark 
n ln P 

II.4.2 yields the limiting distributions of WRn and DNn under local alter-

natives. Corollary II.2.3, RRN ~ DN = DN, (Bk'Bk)-½Bk'dk(n) = 0 and 
WR DN l n n n n 

I\: (nn) = ~k (nn) ~ n 2 nn(pkl (1) -1/k)2 k ~ ck/log k (for some c > O) imply 

the desired statements. D 



II.3.2. Pitman efficiencies. 

Let 6 be a particular choice for the estimator and assume that the 
n 

same influence function his used for each of the statistics under con-
·ML sideration. Mcculloch (1985) proved that if one uses 0n the Rao-Robson-
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Nikulin statistic is the sum of theDzhaparidze-Nikulin statistic and the 

positive statistic for testing normality which is proposed by Hsuan (1974). 

This result generalizes to 

(II.3.3) DN s DN s WRn; n n 
DN s RRN. 

n n 

Similar relations are true for the corresponding noncentrality parameters. 

COROLLARY II.3.1. Assume the conditions of CoroZZary II.2.4 for the 
I 

statistics DNn, DNn, WRn and RRNn and suppose D~dk(nn) = o(k4), then 

(II.3.4) e (DN,DN) = e (DN,WR) = 1 and 
p p 

(II.3.5) e (DN,RRN) = lim lldk(n lll 2//\RRN<n ls 1. 
P n->oo n 71: n 

PROOF. The noncentrality parameters of WR, DN and DN are equal to 
--- 2 1 n n n 
lldk(nnlll +o(k2 ). Application of Corollary II.2.4 yields (II.3.4) and 

(II.3.5). 0 

Hence, under mild conditions the Rao-Robson-Nikulin test turns out to be 

the best one of the classical generalizations of P if k tends slowly to 
n 

infinity (cf. Section III.4 for numerical illustrations). 

The tests (II.1.1) can also be used for the simple testing problem 

G0 versus Gn, inserting the 
n 

location-scale parameter. In 

estimator 0 for the known value of the 
n 

this manner X2 becomes a competitor for the 
n 

classical Pearson chi-square statistic. The limiting distributions of X2 
n 

for simple hypotheses are identical to the limiting distributions under 

composite hypotheses because the testing problem is invariant with respect 

to the location-scale parameter. Thus, assuming the conditions of 

Corollary II.3.1, 

(II.3.6) e (P,RRN) s 1 
p 

e (P,DN) 
p 

e (P,DN) 
p 

e (P,WR). 
p 

1 2 
Finally we investigate the behaviour of the ratio A (n )/(k2nn) for 

71: n n 
the test statistics (I.2.4), (I.2.7), (II.3.1) and (II.3.2); it plays an 
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essential role in our discussions. For fixed k the parameter ~k(nnl heavily 

depends upon the choice of the estimator 0 and the matrix A (k) . When 
n 

k ➔ 00 Proposition II.3.2 shows under very severe conditions that the 
2 l 

behaviour of ~k(nnl/(nnnk2 ) is only determined by the information function 

(cf. Vajda (1973)) 

(II.3.7) I(g1,rl = Eo{ lg1 (Y)/go(Y) -1 Ir} (1 $ r < oo) 

4 -for values near r = 3 and not on en. In this very regular case the 

criterion to keep k bounded or to let k ➔ 00 only depends on the ratio of 

the densities g1 and g0 (cf. Remark II.2.3). 

PROPOSITION II.3.2. 

i) Let x2 be a statistic of type (II.1.1) with noncentrality parameter 
n 

~k <n ) . Assume 
n 4 

- I(g1 ,3 +p) = 00 for some p < O 

-1 -1 . 
- V £ > o q(x) = g1 (G0 (x))/g0 (G0 (x)) ~s bounded on [£,1-£] 

- if q(x) is not bounded in a neighborhood of O 
-1 

(q(l-x )) varies regularly at oo 

- limsup max kpk. (0) 
Jc-+oo 1SiSk 1 

Then 

(II.3.8) 

< 00 

-1 
(1), then q(x ) 

ii) Let x2 be one of the statistics (I.2.4), (I.2.7), (II.3.1) and (II.3.2) 
n 

,,nth noncentrality parameter ~k (nn). Assume 
4 - I(g1 ,3 +p) < 00 for some p > o 

-1 
- for sufficiently small£ the components of h(G0 (x)) are Lipschitz 

continuous of order¼ on [£,1-£] and monotone on the intervals 

(0,£) and (1-£,1) 

-1 -o -1 -o - h(G0 (x)) = O(x ) and h(G0 (1-x)) O(x ) as x + O for some 

Os o < ¼ 
l 2+~ 28 

). =o(k2+4+3p- )ask+oo 
k 

liminf min kpk. (0) > 0 
k➔oo 1SiSk 1 
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Then 

(II.3.9) 0. 

PROOF. cf. Section II. 4 • 0 

In Example II.3.4 we consider the testing problem of an exponential 

null-hypothesis against the contamination of two exponential densities. 

It is shown that the Pitman efficiency of RRNn with respect to DNn and WRn 

is strictly greater than one. 

EXAMPLE II.3.4. Consider the testing problem of an exponential null

hypothesis with unknown scale 

y 
HO: F E {1 - exp (-x/0);0 > 0} 

against the contamination of two exponential densities 

a 1n : FY E { (1 - nn> (1 - exp (-x/a)) + nn(l - exp (-x/(4a)));a > o}. 

-1 -½ -½ ~ -1 n Putpk1.(0) =.k (i=l, ••• ,k) andn =n y+o(n ), letan=n r._1 YJ. 
n 5 3 l )-

and let the sequence k = k(n) + co such that k2 log2 k = o(n2). Then 

e (RRN,WR) = e (RRN,DN) > 1. 
p p 

ML 
PROOF. Take h(x) = h {x) = x-1 and note that OS akl S akk-l = log k, 

(B~Bk) -½ I~¾: (f\i) I S 2ylog k and that ;\/k = k-l / (1 - B~Bk) is bounded away 

from zero and infinity. Now the conditions C.II.1 -C.II.4 are easily veri

fied. By tedious algebra one can show 1::,fN (Tl ) = I::,:: (Tl ) + 0 (log2 k) 

= O(k½) and liminf (l::,Rk:RN(n) -ADN(n ))/k½ /o. Applic:tion of Corollary 
n➔oo n 7<.n 

II.3.1 yields the desired result. D 

Proposition II.3.2 is not applicable to Example II.3.4 because the para-
4 meters are suc:h that I (g1 ,3 + p) = 00 for all p > 0. If, however, we choose 

4 an alternative G1 such that I(g1 ,-:r+ri) < 00 for some p > 0, the conditions 
ML -1 

of Proposition II.3.2 are satisfied because Ak = O(k) and h2 (F0 (1-x)) 
-o = - log x - 1 = o (x ) for all o > 0. 

Note that the contaminativn of two different distributions from the same 

location-scale family does not lie in that family. This is an unpleasant 

feature of the local family (II.1.2): Although H0 and H1 coincide Example 

II.3.4 shows that the power at local alternatives Hln can be appreciable. 
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The final example shows that, for fixed k, one cannot order the 

classical extensions of P. The order which holds fork ➔ 00 may even be 
n 

reversed. 

EXAMPLE II.3.5. Consider the testing problem of a normal null-hypothesis 

with unknown location versus a regular symmetric alternative. PUt 

pki(O) = k-l (i=l, ••• ,k), nn=n-½y+o(n-½), and let µn = n-l r;=l Yj. 

Then, for fixed k, 

e (DN,WRJ > 1 
p 

e (WR,RRN) > 1 
p 

while, fork+ 00 and kf logf k 
l 

o(n2), 

e (DN,WRJ 
p 

e (WR,RRNJ 
p 

1. 

PROOF. cf. Example 5. 1 of Drost ( 198'.7) • D 

II.4. PROOFS 

II.4.1. Proof of Theorem II.2.2. 

The proof is based on three lemmas. The first one rewrites Vk(Sn) as 

the sum of the classical Pearson term and two remainder terms. The last two 

le!IDDas investigate the influence of the error terms. Proofs are only given 

under Hln and 0 = 0 0 = (0, 1 )' (the proof under H0 is obtained by substi

tuting nn = 0). Note that (II.1.7) implies that µn ➔p O and On ➔p 1 if 00 
is true. Throughout this section we assume without further references the 

conditions C.II.1 - C.II.4. 

Introduce the notations (a .. ) .. for the matrix with (i,j)-th entry 
l.J l.J 

aij'(bi)i for the vector with elements bi and let oij be the Kronecker 

symbol. The relevant values for the indices i and j are derived from the 

text. Let Gn(U) = J0 dGn(x) and let g(x)I: = g(b) -g(a); g(x)l:-1~ is 

defined in a similar manner. 

LEMMA II.4.1. (Moore and Spruill (1975)) 

(II.4.1) 

where 1\ R1 k + R2k, R1 k and R2k are random k-veators with components 



l. l µ +ak,cr -~ n in = pk. (O)n2 fr (x) -Gn (x)} 
i n n - -

µn +aki-1°n 

and 

½ - -½ ½ * -Bkin (en-eO) +pki(O)n (pki(nn,en,eO) -pki(nn)) 

(i=l, ••• ,k). 

PROOF. Direct calculation. D 
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- -½ n REMARK II.4.1. Relation (II.1.6) implies Vk(0n) =Vk(0o> -Bkn rj=l h(Yj) + 

- BkQn(Y1, •.• ,Yn) + ¾ and the covariance matrix rk (cf. (II.1.11)) is 

obtained by evaluating the expectation 

LEMMA II. 4. 2. 

11¾112 = ap(l) under HO and Hln and 

(II.4.2) 

PROOF. Under Hin· The conclusions are implied by similar statements about 

Rlk and R2k. 

A. IIR1klf = ap(l) and IIA(k)½D~R1klf 

The proof is a modification of Ruymgaart (1974). His theorem is not direct

ly applicable because fork+ 00 the mean of k tight random variables is 

not necessarily tight. 

Let B(n,p) be a random variable having a binomial distribution with para

meters n and p. Let c be some sufficiently large constant. We use the 

following inequalities (cf. Bahadur (1966), Hoeffding (1963)). 

(II.4.3) 

(II.4.4) 

(II.4.5) 

P(IBin (n,p) -npl ~ nt) $ c • exp(-2nt2) uniformly in p E (0,1) 

andt>O, 

P( JBin (n,p) - npJ 
2 

~ t) $ c • exp <-½t / (np+t)) uniformly in 

p E (0,1) and t > 0, 

P (sup J F (x) - F (x) J ~ t) $ c • exp (-2nt2) uniformly in t > 0 
xEJR n 

and distribution F. 

Let E > 0. Because of (II.1.7) there exists NE such that for all n 
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pl (n~le - 0011 > N ) :,; £/4. n n £ 

Let n0 be a sufficiently large integer. Define intervals 

where the constants crii ~ 0 are chosen such that for n ~ n0 

(II.4.6) ( i = 1 , •.• , k-1 ) • 

Note that C.II.3-d implies that the RHS of (II.4.6) tends to zero. The 

construction is possible because of (II.1.5) and C.II.4-d. Note 

P1n(3 i E {1, ..• ,k-1} µn+aki&n /. Jni) 

=P1n(3 i E {1, ••• k-1} Iii +a..(o -1)1 > c .+(l+lak.l)n-½N£) n Ki n ni i 

:,; pl (n½lii I> N) +Pl (n½1a -11 > N£):,; £/2. n n £ n n 

Leto> 0. Because of C.II.3-d, for n ~ n0 , 

256 n-½ logf k ~ pk-~(O):,; o and 
i=l i 

_1 -½ ~ k -1 
256 n ~k Ak log' k l: pk.(O):,; o. 

i=l i 

Because IIA(k)½D~Rlklf:,; Aki1R1klf the probabilities P1n<i1Rnl ~ o) and 

pln <IIA(k) ½D~Rlklf ~ ok½) are both bounded by 

(II.4. 7) 

( 
k 

P l: 
ln i=l 

:,; P1n(3 i E {1, ... ,k-1} 

+ Pln(v i E {1, .•• ,k-1} 

3 i 

lµn + aki-1°n/ ~ 
aki-1 
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where J. = {u c J ,; u is an interval}. To prove that the second term of 
Ill. Ill. 

(II.4.7) is bounded by £/2 define the conditional probability 

7T.(j) = P1 (sup IF (U) -Gn (U)!?: 8n-¾ log¾klF (J .) = j/n) 
J. n UEJni n n n ni 

(i = 1, •.. ,k-1; j = 0, •.. ,n). 

Then 

P1 (su:e IF (U) - Gn (U) I 
n UEJ. n n 

_1 3 
?: 8n 4 logli' k) 

(II.4.8) Ill. 

( I: l 1 + L l l ) 7T. ( j) Pl (F (J . ) 
j:Sn2 log2 k j>n2 log2 k J. n n ni 

j/n). 

For n?: n0 it is easily seen that the first sum of the RHS is bounded by 

£/ ( 4k) using ( II. 4. 3) , (II. 4. 6) , 7T i ( j) :S 1 and 

Pl (F (J .) :Sn-½ log½ k) 
n n ni 

l l 
:S P1 (n I F (J . ) - Gn (J . ) I ?: n2 log2 k) 

n n ni n ni 

:S c • exp (-2 log k) :S £/ (4k) • 

Next we show that the second sum of (II.4.8) is also bounded by £/(4k). 

Note that for j # 0 conditionally given Fn(Jni) j/n 

suJp IF n (U) -Gnn (U) I :S Gnn (Jni) { sup I/ n ;~).) -
UE ni UEJni nn ni 

Gn (J · l I] n Ill. 

s IF (J .l-Gn (J .ll +Gn (J .) sup IF.(Ul-Gn <u>I, 
n Ill. n Ill. n Ill. UEJ. J n 

Ill. 

where Gn is the conditional distribution of Y1 under H1 given J. and 
n n ni 

F. is the corresponding empirical distribution function based on j 
J 

observations. Define 

3 3 

+ 

P1 <IF (J .l-Gn (J .>! ?:4n-li' logli'klF (J .)=j/n) and 
n n ni n ni n ni 

(sup IF. (U) - Gn (U) I ?: 2n -¼ log¼ k) 
UEJni J n 

( i = 1 , ••• , k-1 ; j = 1 , ••• , n) • 
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Using (II.4.4), (II.4.5) and 1Ti (j) :;; 1Tli (j) +1r 2i (j), for n <! n0 the second 

sum of (II.4.8) is bounded by 

L J.. 1 (1Tl .(j) +1r2 . (j))Pl (F (J . ) = j/n) 
j>n"2" log"2" k 1. 1. n n ni 

l l 
:s P1 (n IF (J . ) - Gn (J . ) I <! 4n4 log4 k) + 

n n ni n ni 

+ I: 1 l P1 (sup W<x) -Gn (xll <! n-¼ log¼k)P1 (F (J .) =j/n) 
j>n2 log2 k n xElR J n n n ni 

:s c • exp(-41ogk/(1 +2n-¼ loi k)) + 

+ L l 1 c • exp (-2jn-½ loi k)Pl (F (J . ) j/n) 
j>n2 log2 k n n ni 

:s 2c • exp (-2 log k) :s £/ (4k) • 

Thus from 1 (II.4.7) and1 (II.4.8) we obtain P1n(!IR1kll2 <! o) :s £ and 

pln<IIA(k) 2D~R1klf <! ok2 ) :s £. 

B. IIR2klf = op(1) and IIA(k)½D~R2klf = op(k½) 

Observe that for i = 1, ••• ,k 

lpki(O)Bki(Sn-SO)+Gnn<x) - -
½ - laki +µn + (On -1)aki 

aki-1 + µn + (On - 1) aki-1 

I-go (x>i1\ + (on - 1 )x} I aki + 
aki-1 

. a 

+ gnn (x* (x) ){µn + (On -1)x}I ki I 
aki-1 

where x* (x) is a random point between x and x + ii + (O - 1 )x 
n n 

:;; max 2{lii I+ lo - 11 lxl} • 
{akl' ••• ,akk-1} n n 

• {Lolx*(x) -xi +nn g1 (x*(x)) -go<x*(x)) I} 

:s 2L0 max · {Iµ I + I & - 1 I Ix I }2 + 
{akl'akk-1} n n 

+ 2n (Mo +Ml) max {Iµ I + I o - 1 I Ix I } 
n { } n n 

akl'akk-1 

:s c •max(a~1 ,a~_1>lliin-e 0 ll<lliin-eoll + nnl. 
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Thus IIR2kll2 S 2c2nlle -0oll2 dle -0oll2 +n2)max{a!1,a!k-l} J p;~(O). Using 
l 2 n 2 n n i-1 l. 

i!A(k) 2D~R2kll $ >-JIR2kll, Bis implied by (II.1.7), C.II.3-d and 

C.II.4-d. 0 

LEMMA II.4.3. 

i) 

(II.4.9) 

ii) 

(II.4.1O) 

lln~(Vk(0 O) -dk(nnllll 2 = OP(l) unde:r> H1n. 

IIA(k)½ok' (Vk(0 O) -Bkn-½ _£ h(Y.lli1 2 = o(k½) under HO and 
J=l J P 

·1 l _J. n } 112 I A(k) 2ok' (Vk(0 O) -dk(n l -Bkn 2 _I: {h(Y.l -En h(Y.l =o•.(sk<n ll 
n J=l J n J P n 

under H1n. 

PROOF. Under Hin· First we evaluate the expectations 

Enn [ (Vk (00) - dk (nn)) (Vk (00) - dk (nn) )'] 

- -½ -½ -½ -½ I 
- Ik + n (oijpki (O)dki (nnl) ij - (qk + n dk (nn))(qk + n dk (nn))' 

-1 n { } n { }' , ] En [Bkn I: h(Y.) -En h(Y.) I: h(Y.) -En h(Y.) Bk 
n j=1 J n J j=l J n J 

= (1 -nn)BkA-1B~ +nnBkEl [h(Y)h(Y)']B~ + 

- n!BkEl {h(Y) }El {h(Y)'}B~ and 

En [Bkn-½ .r {h(Y.) -En h(Y.)}(Vk(0 O) - dk(nn))'] 
n J=l J n J 

_ -1 I -½ J I I 
-BkA ck +nnBk(pki (0) Iki h(y) dGl(y) -Go(y))i + 

- nnBi/1 {h(Y)} (qk + n-½dk (nnl )'. 

Proof of part i): note that (using C.II.3-d) 

Enn{llo~(vk(0 O) -dk(nnllll 2 } 

I _J. _J. 
s tr.Dk[Ik+n 2 (oijPk1.(O)dki(nnllij]Dk 

-½ -½ I I I s (1 + max n pki(O) dk. (n) )tr.DkDk 
lSiSk l. n 

= 0(1). 
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The proof is completed using the implication 

Proof of part ii): let A(U) denote the maximum eigenvalue of the matrix 

U (as before Ak is the maximum eigenvalue of A(k)), then 

l -1 n 2 
En {liA(k) 2D~(Vk(00) -dk(n) -Bkn 2 .r {h(Y.) -Enh(Y.)}>11} 

n n J=l J n J 

I -½ -½ -1 t 
~ tr.A(k)Dk[Ik+n (Oijpki(O)dki(nn))ij+BkA Bk+ 

E [ t ] I -1 I -1 I 
+ nnBk 1 h(Y)h(Y) Bk - BkA ck - CkA Bk + 

~ f ' -nBk(pk~(O) I h(y)'dGl(y)-Go(y)). + 
n J. ki J. 

1 
- n (pk--~(O) JI h(y) 1 dG1(y)-Go(y)).Bk1 + 

n J. ki J. 
1 

+ nnBkE 1 {h (Y)} (qk + n-Idk <nn)) I + 

_1 { '} '] + nn(qk +n 2dk(nn))E1 h(Y) Bk Dk 

l ½ I 
~ tr.A(k)2lJl(k)A(k) +nnAk tr. DkDk max pk-~ (0) IPkJ._(1) - pki.(O)I + 

l~i~k J. 

The proof is completed using (II.4.11). D 

PROOF of Theorem II.2.2. Under Hln" The column space of [Bk,ck] is the 

kernel of the projection matrix Ik-DkD~, thus (using Lemma II.4.1) 

(II.4.12) 

_l n 
+ (Vk(0o> -dk(n) -Bkn 2 .r {h(Y.) -En h(Y.)} + 

n J=l J n J 



l 
+ <\: {nn) - Bkn2Enn {h {Y) } + 1\ - BkQn {Yl 1 ••• 1 yn )) 1 Dk A (k) D~ • 

_1 n 
• {Vk{0 O) -dk(n) -Bkn 2 _!: {h{Y.) -En h{Y.)} + 

n J=l J n J 

+ dk {nn) - Bkn½Enn {h{Y)} + 1\ - BkQn {Yl, ••. , Yn)). 

Proposition II.2.1 implies P = 0 (k+lldk{n >11 2 > = 0 {sk2 (n )) , thus the n p n p n 
first term of the RHS can be rewritten as 

llvk{0O>ll 2 -llo~{vk(0 OJ -dk(nn»ll 2 -llo~dk{nn>ll 2 + 

- 2{Vk{0OJ -dk{nn»'oko~dk(nnl + ll[1k-oko~J½l\f + 

+ 2Vk (0 OJ'[Ik - DkD~]l\ 

= AN(k+ ll[1k-oko~]½dk(nn>ll 2 ,2k+4ildk(nn>ll 2 > +op(sk(nn)) 

(use the previous lemmas, C.II.4~c and the Cauchy-Schwarz inequality for 

the cross-terms). Similarly we treat the second term of (II.4.12) 

IIA{k)½D~{Vk{00) -dk(n) -Bkn-½ .r {h(Y.) -En h{Y.)}>11 2 + 
. n J=l J n J 

+ IIA{k)½D~{l\ - BkQn (Y1 , ••• ,Yn) >11 2 + L{<nn) + cross-terms 

* * ½ = 6k{n l +o {sk{n)) +o ({6k{n Jsk(n ll ) n p n p n n 
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(also use C.II.4-a). Formulas {II.2.2a) - {II.2.2c) are directly implied by 

x2 = AN{mk{n J,sk2<n J - 6*k<n )) + o (sk<n ll + o ({6*k(n l sk<n ii½> n n n n p n p n n 

x2 = k+6k(n J +O {sk<n)) +o {(6*k<n Jsk<n >i½J. D n n p n p n n 

REY.LARK II.4.2. Cmit the conditions C.II.2-c,d,e under local alternatives 

but assume that (II.1.7) holds. Then, if Ak = o(sk(nn)), some minor modi

fications in the final part of the proof show that Theorem II.2.2 is still 

applicable (replace E1{h(Y)} by zero). D 

II.4.2. Proof of Proposition II.3.2. 

If 6*k<n )/(k½nn2) ➔ 0 under the conditions of part ii) the propo-
n n 

sition follows directly from Propositions 4.2 and 4.4 of Kallenberg et al. 

(1985) because ll[rk-okok]½dk(nnlll 2 s i\(nn) s lldk(nnlll 2 +6:(nn>· The 

proof of A*(n )/(k½nn2 J + 0 is only required for the Rao-Robson-Nikulin 7c n n 
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statistic. First we give some algebraic relations 

B'B- B'BAB'B nonnegative definite,. 

I - BAB' nonnegative definite and 

A,B nonnegative definite and symmetric,. 

A-A(A +B) +A nonnegative definite, 

which follow from the spectral decomposition of symmetric matrices. These 
-1 -1 I 

are used for the matrices (Bk -Ck)A (Bk -Ck)' and Ik - CkA Ck. To prove 

that the last matrix is nonnegative definite we show A-C~Ck 2: 0. Define 
2 

for each v € ::R gv(y) = v'Ah(y), then 

v' (A-CkCk)v 

= v'A(J h(y)h(y)' dG0 (y) + 

- ~ P;i(O) JI h(y)dG0 (y) JI h(y) 1 dG0 (y))Av 
i=l ki ki 

it {Jiki g!(y)dGO(y) -p~iCO>{Jiki l•gv(y)dGO(y)}2} 2: O. 

Thus, with A(kl. = 'l'(k)+ = (D~IkDk)+, 

~(nnl = IIA(k)½D~(dk(nnl -Bkn½Enn{h(Y)}>ll 2 

_ IIA ½c , _ • -1 , , -1 , 1 • - (k) Dk Dk DkCkA CkDk + DkCkA CkDk 

• D~(dk(nn> -Bkn½Enn{h(Yl}>ll 2 

s 21!A(k)½[D~Dk-D~CkA-1c~Dk]D~(dk(nnl -Bkn½Enn{h(Y)})ll 2 + 

+ 2IIACk)½D~CkA-1c~DkD~(dk(nnl -Bkn½Enn{h(yl}>ll 2 

s 2ll[D~Dk-D~CkA-1C~Dk]½D~(dk(nnl -¾n½Enn{h(Y)}>ll 2 

+ 2IIACkl½D~CkA-1(c~~cnnl -An½Enn{h(Y)} + 

. + (A - ckckl n½En {h (Yl} - c~ (Bk - ck) n½En {h (Yl })1 II 2 
n n 

s 2lldk Cnn> - Bkn½Enn {h (Yl }II 2 + 

+ 6IIACkl½D~CkA-1 (c~A-1 (c~~Cnnl -An½Enn{h(Yl}>ll 2 + 
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IIA ½c I I -1 I I ] I ½ { }112 + 6 (k) DkDk - DkCkA CkDk - DkDk Dk (Bk - Ck) n En h (Y) 
n 

s 4lldk(nn>11 2 +4\\Bkn½Enn{h(Yl}ll 2 + 

+ G>..J\o~ckA-1 (c~dk(nn) -An½Enn{h(Y)}>ll 2 + 

+ GIIA (kl ½[D~Dk - D~CkA- 1c~Dk]D~Ckn½En {h (Y)} II 2 + 
n 

J. ½11 2 
+ 12\\A(k)2D~(Bk-Ck)A- A'Zn'ZETJ {h(Y)}II + 

n 

+ 12IIA<k) ½[D~Dk -D~CkA-1~Dk]D~ (Bk - ck)nhn {h(Y)}l! 2 
n 

s 4lldk(nnlll 2 +411Bkn½Enn{h(Yl}ll 2 + 

+ G>..k\lA-½ (c~~ <nnl - An½Enn {h(Y) }>II 2 + 

+ G\\[D~Dk -D~CkA- 1C~Dk]½D~ckn½En {h(Yl}II 2 + 
n 

+ 12\\A½n½En {h(Yl}ll 2 + 
n 

+ 12jj[D~Dk-D~CkA-1C~Dk]½D~(Bk-ck)n½En {h(Y)}jj 2 
n 

s 4jjdk <~>II 2 + nn!IIE1 {h(Yl }II 2( 4>..(B~Bkl + G>.. (c~ck) + 

+ 12A(A) +12A((Bk-Ck)'(Bk-Ck))) + 

+ 6A.knn211A½ -~ p-k~(O) JI gl(y)dy JI . h(y)go(y)dy + 
n i=l J. ki ki 

- JI h(y)gl (y)dyll2 
ki 

using Proposition 4.2 of Kallenberg et al. (1985), (II.1.10), C.II.2-c and 

Lemma II.5.1. □ 

II.5. APPENDIX 

LEMMA II.5.1. Let q and r be nonnegative measurable functions on (O,a), 

a> O satisfying the following conditions 

a !t.+p 
J q 3 (x)dx < 00 for some p > O 
0 
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r is a monotone function, bounded on (a*,a) for each O <a*< a 
-6 1 and r(x) = O(x ) for some O $ 6 < 4 as xi 0. 

Then, bJI.'iting uki = (i;l, ½"a), as k + oo 

a [ak]+1 
(II.5.1) 1 r(x)q(x)dx - L k 1 

0 i=1 

PROOF. Put w = 1; r(x)q(x)dx and note that w < 00 • Let 

[ak]+1 
w = L k 1 r(x)dx 1 q(x)dx (k <!: 1) • 

k 
i=2 Uki Uki 

First consider the case that r is nonincreasing. By Holder's inequality 

and the inequality (a-b)c $ ac-bc if a> b > 0 and c <!: 1 

wk<!: L r(½)l q(x)dx 
i<!:2 Uki 

<!: L 1 r(x)q(x)dx - L {r (i;i) - r(½)} l q(x)dx 
i<!:2 Uki i<!:2 Uki 

,! w - 1 r(x)q(x)dx - L {r (i;1) _ r (½)} 1 q(x)dx 
Uk1 i<!:2 Uki 

4+3p 3 
q(x)dx)_3_]4+3p 

0 4+3p 1+3p 3 

2! w - [1 x- 1+3p c1x]4+3p [j q!+P(x)dx]4+3p0(1) + 

Uk1 0 

4+3p 4+3p 1+3p 1+3p 

-[i;Z {r e;1)} 1+3p -{r (½)}1+3p] 4+3p k - 4+3p 

(to bound the last factor within brackets we applied Lemma A 1 of Kallen

berg et al. (1985)). By the same line of argument 



-~o _IBP~ 

wk~ w+O(k 4+3P+ ).since k fukl r(x)dx fukl q(x)dx=O(k 4+3P ) 

(by HOlder's inequality), (II.5.1) follows. 

Now supposer is nondecreasing, hence bounded on (O,a). Proceeding as 

( _1+30) 
before we obtain w-wk = 0 k 4+3P and the proof is ccmplete. D 

-o REMARK II.5.1. If r(x) = O(x ) for all o > O, then LEIIDDa II.5.1 
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guarantees that the LHS of (II.5.1) is of order O(k-!-E) for some E > 0. 

One easily generalizes LEIIDDa II.5.1 to partitions where the intervals have 

variable length. One obtains the same bound if k•minimal length is bounded 

away from zero. D 

Observe that the sum in the LHS of (II.5.1) is a kind of Riemann

Stieltjes sum approximating the integral J; r(x)q(x)dx. Under strong 

regularity conditions LEIIDDa II.5.1 shows that the precision is of order 

( -lli%+o) -1 -1 -1 0 k 4+ P • E.g. with q(x) = g1 (GO (x))/g0 (GO (x)) and r(x) = Ah(G0 (x)), 

C~dk(n )/(n½n) = ~ p;i<O) f q(x)dx J r(x)dx 
n n i=1 uki uki 

approximates the integral J~ q(x)r(x)dx = AE1{h(Y)}. Even if the conditions 

of LE!JDDa II.5.1 are not satisfied the precision of this approximation is 

often of the order o(l), implying c~¾ = 0(1). In the same manner 

B~dk = 0(1) and D~dk = 0(1). 





CHAPTER III 

THE POWER OF EDF TESTS OF FIT UNDER NON-ROBUST ESTIMATION 

OF LOCATION-SCALE NUISANCE PARAMETERS 

III.1. PRELIMINARIES 

III.1.1. Assumptions. 

It is well-known that under regularity conditions, including the 
J. A 
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asymptotic normality of n2 (0n - 0) under H0 , the estimated empirical process 

converges to a Brownian bridge Be which may depend one (cf. 

Durbin (1973), Neuhaus (1976), Csorgo and Revesz (1981a) ): 

J. A A * A A A 

n2 (F(µ+•O)-G(µ+•0;0))+d B 
n n n O n n n o 0 

In principle this leads to the asymptotic null-distributions of EDF 

statistics. Of course the only EDF statistics "of practical ,interest are 

those whic~ have a limit distribution independent of e under H0 . If the 

estimator en of e is location-scale equivariant, i.e. {cf. (II.1.6)) 

C.III.1 

then the exact distribution of F and hence of T is invariant under 0. 
n n 

The limiting distribution of T is often a bounded functional of B = B0 , 
n ~ 

thus Tn is bounded in probability (uniformly in 0). (The statistic Tn often 

satisfies this relation too.) Therefore equivariant estimators are often 

used. In this chapter we do not bother about the derivation of the limiting 

distributions under H0 , but assume T = 0 (1) under H0 and T = 0 (1) under 
n p n p 

HO uniformly in 0. 

Traditionally one assumes that the estimator 0 is In-consistent both 
n 

under H0 and local alternatives in order to obtain the limiting distribu-

tions. Note, however, although the sample mean and the sample variance are 

optimal estimators in a normal null-hypothesis model, they need not to be 
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Iii-consistent for particular heavy-tailed alternatives. In this chapter we 

consider such strongly non-robust estimators: 

C.III.2 

where Hln is a sequence of local alternatives 

Htn: FY€ {(1-17n)G;(•;0) +nnG~(•;0);µ E R,O > O} 

such that n½n = 0(1). 
n 

Estimators based on sample quantiles cannot satisfy C.III.2 because their 

influence curves are bounded. 

III.1. 2 •. EDF tests. 

our consistency Theorem III.2.1 applies to the following EDF test 

statistics: 

the Kolmogorov-Smirnov statistic 

(III.1.1) 

where 

n½ sup {F (y) - G0 (y) } and 
YER n 

-n' inf {i- (y) - G0 (y)}, 
yEJR n 

the Kuiper statistic 

(III.1.2) 

the Cramer-van Mises statistic 

(III.1.3) I ~ 2 
CMn = n {F n (y) - GO (y)} dG0 (y) , 

the Anderson-Darling statistic 

(III.1.4) 

generalized x2-statistics based on random cells 

(III.LS) 

generalized x2-statistics based on fixed cells 



(III.1.6) 

Cressie-Read statistics based on random cells 

(III.1. 7) 

and Cressie-Read statistics based on fixed cells 

(III.LB) CR (A) 
n 

2n 
A(A+ll 

Her: e0 = (0,1)', N~i = #{j;Yj E Ik!}, /ki(Sn) 

= (Nki-npki(o,e0 ,0n))/(npki(o,e0 ,0n)) 2 (i=l, .•• ,k) and rk is a positive 

definite (k x k)-matrix (the other symbols are defined in Sections I. 2 and 

II.1.4). 

The test statistics (III.1.6) and (III.1.8) belong to the class 

defined in (I.2.9), the other ones to the class defined in (I.2.10). The 

statistics x2 defined in (II.1.1) are of the form (III.LS) if A(k) - I is 
n 

a nonnegative definite matrix. This condition excludes the (modified) 

Dzhaparidze-Nikulin statistic. Using estimators based on quantiles it 

excludes also RRNn in special cases (cf. Example II.3.2), but quite 

generally '¥(kl+ - I is nonnegative definite (e.g. if r(~) = k-1). 

III.2. STRONGLY NON-ROBUST ESTIMATION 

III.2.1. A consistency theorem for EDF statistics. 
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Throughout this section we assume C.III.1. and suppose that the EDF 

statistics are bounded in probability under H0 . In view of the discussion 

in Section III.1 these assumptions are satisfied in practical applications. 

In combination with the strongly non-robustness property C.III.2 and a 

harmless regularity condition this leads to the following consistency 

theorem. 

THEOREM III.2.1. Assume C.III.1 and C.III.2. 

i) Suppose G0 is differentiable on a non-errrpty open sets such that 

(Vy E S) g0 (y) > c > O. If the test statistics (III. 1. 1) - (III. 1.4) are 

bounded in probability under H0 , then the power of the corresponding tests 

tends to one under local alternatives Hln" 

ii) Suppose there exist at least two boundary points aki and akj 
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(i # j E {1, ••• ,k-1}) such that GO is continuously differentiable with 

positive derivative on small open balls around aki and akj" If the test 

statistics (III.1.5) and (III.1.7) are bounded in probability under H0 , 

thEn the power of the corresponding tests tends to one under local alter

natives Hin· 

iii) Suppose G0 is continuously differentiable on:JR. and suppose g 0 is 

positive on :JR. If the test statistics (III.1.6) and (III.1.8) are bounded 

in probability under H0 , then the power of the corresponding tests tends 

to one under local alternatives Hln (but not uniformly in 8). 

PROOF. cf. Section III.5. 0 

A slight modification of the proof shows that Theorem III.2.1 also 

applies to the one-sided tests based on KS+ (KS-) provided that S contains 
n n 

positive and negative numbers and that C.III.2 is replaced by 
11_ I ½ - l -n 2 CJ -a-+ 00 andn (µ -µ) =0 (1) underH orbyn2 (µ -µ) +p 00 

l. n Pin n p ln n ln 
(n2 (µ - µ) +P - 00). The result for KS+ also holds for the peak statistic 

n ln n 
max Vk.(0) introduced in Dijkstra et al. (1984) in a special case. 

lSi~k l. n ~ 
Examples show that Theorem III.2.1 is not necessarily true for MSn and MSn 

if rk has an eigenvalue zero (e.g. the Dzhaparidze-Nikulin statistic). 

Similarly Theorem III.2.1 is not true for the Watson statistic: 

W = CM - n[f {F (y) -Go(y)}dGO(y)] 2 • 
n n n 

Both terms of the RHS tend to infinity under the conditions of Theorem 

III.2.1 but they may kill each other. 

In practice the number of classes on which the statistics (III.1.5) -

(III.1.8) are based is often taken larger if n is larger; k =kn-+ 00 as 

n-+ 00 • In this setup EDF tests are no longer bounded in probability under 

H0 • Strengthening the non-robustness condition C.III.2, another version 

of Theorem III.2.1 is still in force. 

1 1 
COROLLARY III.2.2. Let k = k -+ 00 as n-+ 00 , assume k-2 n2 l1Ei -81I-+ 00 , 

n n Pln 
c.III.1 and suppose that the eigenvalues of rk (kE:N) are bounded away from o. 

i) Suppose, for each k, there exist at least two boundary points aki 

and akj (i # j E {1, •.. ,k-1}) such that GO is continuously differentiable 

with positive derivative on small open balls (with fixed radius) ar~~nd 

aki and akj and such that max{lakil,lakjl} < M < 00 and laki -akjl > o > O. 

If the test statistics (III.1.5) and (III.1.7) are of order O (k) under 
p 



H0 , then the power of the aorresponding tests tends to one under loaal 

alternatives Hln" 

ii) Suppose G0 is aontinuously differentiable on JR and suppose g0 is 

positive on JR. AsSW1'1e tha.t, for eaah k, there exist at least two boundary 

points aki and akj (i I j E {1, ••• ,k-1}) suah tha.t (V k) 

max {I aki I , I akj I } < M < 00 and I aki - akj I > o > 0. If the test statistias 

(III.1.6) and (III.1.8) are of order OP(k) under H0 uniformly in e, then 

the power of the aorresponding tests tends to one under loaal alter

natives Hln 

PROOF. cf. Section III.5. □ 
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Compare the results of Theorem III.2.1 and Corollary III.2.2 with 

more classical situations. Assuming 6 to be In-consistent and to satisfy 
n 

some additional regularity conditions under local alternatives, the EDF 

statistics are also bounded in probability under Hln" Hence the power is 

bounded away from one. Non-robust estimation thus leads to a substantial 

gain of power! 

Of course it is clear that one cannot choose estimators that satisfy 

C.III.2 for the whole range of alternatives. Theorem III.2.1 and Corollary 

III.2.2 do not give any information about the possible loss in directions 

where 6 is In-consistent under H1 • Simulations, however, show that losses 
n n 

are comparatively small (cf. Section III.4). 

Since sample moments are very sensitive to heavy tails, EDF tests based on 

sample moment type estimators are expected to perform well against heavy 

tailed alternatives (not only for a normal null-hypothesis!). Medians, 

trimmed means, interquartile ranges or median absolute deviations are less 

attractive estimators from this point of view. 

Stephens (1974), pointing at the high power of several goodness-of

fit tests when parameters are estimated compared to the same tests with 

known parameters, merely commented that the precise location and scale are 

relatively unimportant when fitting data. For EDF tests the effect on non

robust estimation is a more satisfactory explanation, since in the 

examples considered by Stephens the sample mean and sample variance are 

used as estimators. The tests discussed by Witting (1959) and Bofinger 

(1973), however, for which both the cell boundaries and the estimators are 

based on sample quantiles, will not enjoy the increased power due to non

robust estimation. 
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III.2.2. Extension to Neyman smooth tests. 

Results similar to Theorem III.2.1 hold for quite different classes 

of goodness-of-fit tests. Consider the Neyman smooth tests based on the 

test statistics 

(III.2.1) N 
n u (0 >' rku (Sn) , n n n 

where Un(6) is a k-vector with components 

u . (6) 
Ill. 

n-½ jgl {G~C{µ) - (i+l)-1} (i = 1, •.• ,k) 

and f k is a positive definite (k x k) -matrix (cf. Thomas and Pierce (1979) 

for a recent discussion). A natural choice for fk is the inverse of the 

asymptotic covariance matrix of u (0) under H0 • 
n n 

PROPOSITION III .• 2.3. Assume C.III.1, C.III.2, n½(0n -6) 

and 

(III.2.2) min{Jµ -µJ,J& -al} ->-P O. 
n n 1n 

Suppose G0 is symmetric about zero, twice continuously differentiable with 

bounded derivatives go and go and bounded ygo(y) and y2go(y) (OnlR). Then 

the power of the Neyman smooth test Nn, with k ~ 2, tends to one under H1n. 

PROOF. cf. Section III.5. 0 

REMARK III.2.1.Inview of the preceding results the condition (III.2.2) is 

somewhat startling. Note, however, that a lot of estimators are consistent 

under local alternatives although they are not In-consistent. D 

From the proofs it is obvious that all previous results continue to 

hold if 6 is one-dimensional, i.e. in pure location or in pure scale 

families. In this case the condition (III.2.2) in Proposition III.2.3 can 

be suppressed. In pure location models this proposition also holds for 

k = 1. Note that for pure scale families onlR+ g0 need only be positive 

and continuous on R+ in Theorem III.2.1 iii). 

III.3. COMPLEMENTARY RESULTS FOR NON-ROBUST ESTIMATION 

The non-robustness condition C.III.2 imposed on the estimator 8 
n 

seems to be very strong. For instance if H0 specifies a normal location 
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family and G1 is a standard Cauchy alternative, the sample mean Yn does 

not yet satisfy C.III.2 under local contamination families with contami

nation factor 17 = n-½y+o(n-½), because n½(Y -µ) still has a (non-normal) 
n n 

limit distribution. Hence Theorem III.2.1 only applies to rather extreme 

classes of alternatives. However, to describe small sample size behaviour 

extreme classes of alternatives may be of interest. 

In this section we show that the good power properties of RRNn under non

robust estimation also holds true for broader, less extreme classes of 

alternatives. Although this is hard to prove we believe nevertheless that 

this extends to general EDF statistics. Numerical evidence in a couple of 

examples supports this view (cf. Section III .4) . 

Let 17 = n-½y + o(n -½) , consider local families of type (II.1. 2) and 
n 

assume C.II.1 and C.II.2 (with Q = o (1) both under G0 and G17 ). Then, 
n p n 

under Hln' RRNn converges in distribution to a noncentral chi-square dis-

tribution with r(~) degrees of freedom (cf. Moore and Spruill (1975)). In 

the remainder of this section we assume r(Lk) = k-1; hence 

(III.3 .1) 

where ~k(lln) is defined in (II.1.14). One can show by straightforward 

1 1 ' h L+ ' ' b ca cu ation tat 7 _ is given y 

where 

s 

III.3.1. Bias effects. 

Consider the simple situation that 8 =µ.To analyse the effect of 

the estimation procedure we compare the maximum likelihood estimator eML 
n 

with some arbitrary estimator 0 . Suppose that both estimators allow the 
n 

representation (II.1.6) and that the limiting distributions under Hln are 

0). For the influence function hML of 

0. In location families this holds 

true e.g. if both the densities g0 and g 1 and the partition Ik1 , .•• ,Ikk 
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are symmetric about zero. This is not uncommon. 

To compare the respective powers it is sufficient to analyse 

~k(nn) -~~(nn). Clearly, if ~k(nn) > f\L(nn)' the Rao-Robson-Nikulin test 

based on en will be asymptotically at least as efficient than the same test 

based on 8ML. Tedious algebra shows (A is now a scalar) 
n 

(III.3.2) 

where 

-1 -1 k -1 
s1 (h) =Y A ~dk(nn) = _L pk. (l)pk. (0) JI h(y)dGO(y} 

i=l 1 1 ki 

is a kind of Riemann sum corresponding to E1{h(Y}}. 

By assumption the denominator is positive. Hence the maximum likelihood 

estimator is the worst choice for 0. Note, however, that in symmetric 
n 

location models E1{h(Y}} - s1 (h} = 0 if his antisymmetric; although the 

choice of an asymmetric influence function improves the power this is quite 

unnatural. 

Note that E1 {h(Y}} - s 1 (h) = 0 if h is constant on the invervals 

Ikl, ... ,Ikk. Conversely, since s 1 (h} is bounded by .!..2 max p-k\o)E0{ I h(Y)i} , 
lSiSk 1 

it follows that IE1 {h(Y)} - s1 (h} I is large for those alternatives for 

which IE1{h(Y}}i is large, i.e. for which en has a large bias. Of course, 

one can also compare two arbitrary estimators; in the RHS of (III.3.2) one 

obtains the difference of two cc:mplex expressions. A comparison is 

difficult because it is not the bias E1{h(Y)} but the difference 

E1 {h(Y)} - s1 (h} which plays a crucial role. 

Imposing similar conditions in scale or in location-scale models one 

may derive similar expressions (cf. Drost et al. (1985)). The conditions 

E1{hML(Y}} = B~dk(nn) = 0 are, however, rather restrictive in these cases. 

III.3.2. Variance effects. 

In the local contamination family C.II.2 implies 

i.e. the asymptotic variance of en under HO and under Hln is the same. In 

view of the previous results it is, however, not unlikely that a much 

larger variance of en under alternatives than under H0 might increase the 
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power of the Rao-Robson-Nikulin test. To model this situation, we slightly 

modify the family of local alternatives: 

(III.3.3) 

where T n n-½y + O(n-½), Gln has density gln and satisfies, for given 

partition Ik1 , •.• ,Ikk, 

(III.3.4) ( i = 1 , .•• , k-1 ) . 

* We briefly denote the local alternatives (III.3.3) by Hln and assume that 

the representation (II.1.6) of 0n continues to hold under H~n with 

-a E {h(y)} = 0 
T,n (n EN) 

-b lim covT,n{h(Y)} = A- 1 +A2 
C. III.3 n->oo 

l 
-c lim n-2 f lih(yllldG1n (y) = 0 

n->oo 

-d Qn (Yl, .•• , Yn) = 0 (1) 
p under G T,n 

where A2 is a finite ( 2 x 2) -matrix. For A2 not to vanish the tails of the 

distribution determined by Gln must strongly depend on Tn. The trick of 

condition (III.3.4) is that the multinomial part of the distribution of 

RRNn behaves exactly as in the local family Hln· Note that (III.3.3) forces 

A2 to be nonnegative definite. 

We first show that Theorem 4.2 of Moore and Spruill (1975) remains 

valid in the present situation. 

LEMMA III.3.1. Consider the fcunily of alternatives (III.3.3) and an esti

mator 0 of 8. Assume C.II.1, C.II.2 (under H0 with o = o (1)) and C.III.3, 
n ~ P 

let B~dk(Tn) = C~dk(Tn) = 0, let r(~) = k-1 and k ~ 4, Then 

(III.3 .5) 

PROOF. Since the distribution of RRNn is invariant under 8, take 8 = 80 

= (0,1)'. Obviously Lemma II.4.1 remains valid under H7n with¾= op(l) 

(cf. also Moore and Spruill (1975), Theorem 4.1). Asymptotically the co

variance matrix of the principle part of Vk(0n) under H~n equals 
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where we have used C.III.3-a,b and Remark II.4.1. The central limit theorem 

implies 

Vk(6) +d* N(dk(T ),L ) 
n ln n T ,n 

since, for each linear combination of the components of Vk(8n), the 

Lindeberg condition holds. 

The conditions B~dk (Tn) = C~dk (Tn) = 0 imply LT ,n dk (Tn) = Lk dk(Tn) = dk(Tn). 

Let Pk be an orthonormal matrixsuchthat Pkdk(T) = clldk(T >11,o, •.. ,O)' and 
P (L+)½r (L+)½P' - , , (L+)½ n , (L+)J ,n_ 

k k T ,n k k - Ik - PkqkqkPk + pk k BkA2Bk k pk -
diag(l, ••. ,1,l+p1 ,l+p2 ,0). Hence 

This can also be derived from Corollary 2.2 in Dik and de Gunst (1985). D 

PROPOSITION III.3.2. Let 8(i) satisfy the conditions of Lemma III.3.1 and 

let p?) and p~i) be the c~rresponding eigenvalues (i = 1, 2). If P{l) and 

p~l) are both larger (smaller) than P{ 2) and p~ 2l, then the Rao-Robson

Nikulin test based on 8~l) is asymptotically more (less) powerful than the 

same test based on 0< 2> against the local alternatives (III.3.3). 
n 

PROOF. Immediate from Lemma III.3.1 and the fact that both test statistics 

are asymptotically distributed as x!_1 under H0 • D 

Roughly speaking, the proposition states that if A2 is large relative 

to rk, the test RRNn has a large asymptotic power. This will general-

ly be true if the variance of 8n is much larger under H~n than under H0 • As 

noted before, the condition B~dk(Tn) = C~dk(Tn) = 0 is severely restrictive 

in (location-) scale families, but is often satisfied in symmetric location 

families. 

REMARK III.3.1. Suppose the matrix L~l) associated with 0~l) satisfies 

r(L~l)) = r $ k-2 (instead of r = k-1). Then the first term on the right in 

(III.3.5) has r-2 df's. Since in this case the asymptotic null distribution 

of RRNn also has r-2 df's, we still have the implication 

p~l) > p~2) • the asymptotic power of RRNn is higher with 
- (2) en , but the implication for the reverse inequalities is 

(2) (1) 

(1) > (2) 
P1 pl , 

0 (1) than with 
n 

not necessarily 

true, depending on how large the differences pi - pi are. □ 
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Results similar to those in subsections III.3.1 and III.3.2 cannot be 

obtained for the Watson-Roy test, or in general for ~Sn and CRn(A), since 

the asymptotic null-distribution depends on the choice of the estimator. 

Nevertheless, in view of the close relationship between RRNn, MSn and 

CRn(A) it is quite likely that materially the same properties hold for 

these classes of tests. 

Since influence functions of almost all estimators of location and 

scale are bounded on compact sets, light-tailed alternatives with heavy 

centers will not distort the random intervals as much as heavy-tailed 

alternatives. Hence it is more rewarding to choose estimators appropriate 

for heavy-tailed alternatives than for light-tailed alternatives. 

III. 4. NUMERICAL EXAMPLES 

The asymptotic theory of the previous sections suggest the following 

rule of thwnb, 

To achieve a high power of EDF tests against.a class of alternatives, 

non-robust estimators are best. 

Moment estimators are expected to perform well against heavy-tailed alter

natives. One expects a similar result for light-tailed alternatives: high 

powers for estimators with influence curves concentrated in the center of 

the alternative density. However, since the densities considered here are 

bounded, the latter effect is probably small. 

The power of various EDF tests is compared for a couple of well

known estimators 0 of 0. The estimators, based on a sample Y1 , ••• ,Y are: n n 
M 

n 
y 

n 
D 

n 

sample median, Y 1 = trimmed mean with 10% trimming on both sides, n,. 
sample mean, Mad =median of IY.-M I (j=l, .•. ,n), 
-1 - n 2 J n 

n :r.~ 1 IY. - Y I, S . = sample variance and I = interquartile range. 
J= J n n - n 

The influence curves are given in Table II.4.1 (~a denotes the a point of 

the distribution G0). 
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Table III.4.1. Influence functions 

estimator 

estimator 
forµ 

M 
n 

y 
n 

estimator 
for CJ 

s n 

y 
n 

influence function 

y 

{E0 1Yi}-1 IYI -1 

½{ (y-r) 2 -1} 

y-1 

conditions for C.II.2 
under H0 

g 0 symmetric and 

go<1";_9>>o 

g0 symmetric and 

go<1";_1s> > 0 

g 0 exponential 

In location-scale models the influence functions are obtained by com

bining the corresponding influence functions. 

We consider four different null hypotheses and simulate for each 

of them the power at a heavy-tailed, a light-tailed and a skew alternative. 
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I. H0 : normal location family N(µ,1), µ € R. 

Alternatives: Cauchy (CJ = ½> density 21T-l (1 + 4y2)-l heavy-tailed 

normal (cr = ¾> density f <P cfyl light-tailed 

Gumbel density e-Y exp (,-e-Y) skew 

Estimators ofµ: Mn, Yn,•l and Yn. 

II. H0: normal location-scale family N(µ,cr2), µ € R, cr > O. 
-1 2 -1 Alternatives: Cauchy density 1T (1 + y ) heavy-tailed 

III. 

r.v. 

normal mixture density ½{<j)(y+!l +cji(y-f)} 

Gumbel density e-y exp (-e-Y) skew 
-1 3 - -1 3 Estimators of (µ,cr): (Mn,Madn/~ (4 )),(Yn,Madn/~ (4)), 

(Y , (-~-J' D ) and (Y ,s ) . 
n ~ n n n 

HO: Laplace location family, density ½ exp <-ly-µj) ,. µ € R. 

( cr = ½> -1 2 -1 heavy-tailed Alternatives: Cauchy density 21T (1 + 4y ) 

normal (0 = ¾> density f<P <jy) light-tailed 

Gumbel density e-y exp (-e-Y) skew 

Estimators of µ: Mn, Yn,·1 and Y . n 

. . -1 -(y/ol 
H0: exponential scale family, density cr e l(O,oo) (y), cr > 0. 

1 3 -1 1 -y 
Alternatives: gamma (a=~) (r(~)) y 2 e l(O,oo) (y) heavy-tailed 

gamma (a=¾> crc¾>>1y-ke-yl(O,oo) (y) light-tailed 

halfnormal 2<j)(y)l(O,oo) (y) light-tailed 

Estimators of cr: In/log 3, Yn and Sn. 

Comment: According to the rule of thumb, the tests based on the estimators 

should be increasingly (decreasingly) powerful against heavy-tailed and 

skew (light-tailed) alternatives. The third problem is included, not for 

its intrinsic importance, but to demonstrate that efficient estimation 

under H0 is not necessarily effective. 

We verify the assumptions of the previous sections. The conditions 

C.II.1 and C.III.1 are trivially satisfied in all cases and C.II.2 is also 

fulfilled with the following exception: the estimators involving Y with 
n 

respect to Cauchy alternatives. 

For symmetric null-distributions and alternatives (ignoring Cauchy 

alternatives but e.g. including Laplace heavy-tailed alternatives) the 

first two location estimators listed satisfy assumption C.III.3; note 
-1 3 

that A2 = 0 for Mn, Yn,•l and (Mn,Madn/~ (4 )). The only example satis-
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fying the non-robustness condition C.III.2 is given in case II: the Cauchy 

alternative with estimator (Y ,S ): a very high power is thus expected. 
n n 

The sample mean Y alone does not satisfy the non-robustness condition at 
n 

the local Cauchy shift alternatives and hence our theory does not predict 

high power in this case. However, to embed a sample of moderate size from 

a Cauchy distribution in a local contamination family, this family must 

have an even heavier-tailed distribution as an endpoint. For such a con

tamination family the non-robustness condition will be satisfied. Of 

course such a family will not often exist, but the argument explains 

nevertheless that the effect of heavy-tailed alternatives extends much 

further than the non-robustness condition suggests. 

Monte Carlo experiments have been run to estimate the true power of 

several goodness-of-fit tests for sample size n = 50 and nominal level 

a= .05. For the chi-square type tests LRn, WRn and RRNn equiprobable 

cells (under H0) are employed with k = 4,5,6,7,8,9,10,12 and 15. Note 

that r(L) < k-1 when using estimators involvingµ = M and k even: x n n 
r(Lk) k-3 if 0 = (M ,Mad) and k is a multiple of 4, otherwise n n n 
r(Lk) k-2. Since Vk(BJ Ecol. (Ek) for these cases the Rao-Robson-Nikulin 

statistic is invariant under the choice of L~. In fact we used a more 
+ simple form than the Moore-Penrose generalized inverse Lk. 

Critical values are estimated for each H0 based on 20000 samples 

and compared to the asymptotic critical values from x2 distributions 

for LRn, WRn and RRNn and the critical values reported in Stephens (1974). 

Quite surprisingly the obtained values were close to the asymptotic values 

for moment estimators while, for robust estimators, the asymptotic values 

often lead to errors of more than .005 in size. 

For the EDF tests the power at the alternatives in the testing 

problems I-IV was simulated using 10000 samples in each case, thus 

reducing simulation error to less than .01 with confidence .95. For each 

test and estimator the same samples were employed for better comparison. 

The simulated powers are displayed in Figures III.4.1 -III.4.4. 

In most cases the power differences can be well explained by the rule of 

thumb. In problem II the very low power of the test based on (Mn,cMadn) 

stands out; the predicted increase of power of the tests based on con-
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secutively (Yn 1 cMadn), (Yn 1 cDn) and (Yn,Sn) against heavy-tailed alterna

tives is rather small, suggesting that estimation ofµ has more effect on 

the power than estimation of o. In problem III the test based on the median 

(the asymptotically efficient estimator) does not perform well, in agree

ment with the rule of thumb. For case IV the picture is less clear. 

Although for such a family Theorem III.2.1 still applies, the assumptions 

of Section III.3 are far from satisfied due to the lack of symmetry. With 

skew distributions the relative robustness of different estimators is less 

clear. 

Full location-scale families generally do not satisfy the assumptions 

of Section III.3 either, since the scale component violates the symmetry 

conditions. This may not be so serious if the effect of estimating location 

is more important than the effect of estimating scale and if for fixed 

scale the family is symmetric (cf. problem II). 

Instead of using simulation, the true power of the Rao-Robson

Nikulin test can also be approximated by the theoretical asymptotic x2 

power computed from (III.3.1), replacinq nn by 1. Another approximation is 

suggested by (III.3.5), taking Tn = 1 and determining p1 and p2 from 

for those cases where the covariance matrices are finite. Note that the 

approximations coincide whenever A2 = 0. Both approximations, however, turn 

out to be unreliable; errors between .1 and • 25 or larger are quite 

common (for n = 50). 

Apart from the numerical inaccuracy of the approximation, there is 

also a more theoretical problem. The true power of the tests does not 

depend on the values of the location-scale parameters, but the asymptotic 

* power in the local models H1n and Hln does depend on the choice of the 

alternative G1 (or Gl,n,k) and hence on the choice of the location-scale 

parameters defining G1 (or Gl,n,k). In symmetric pure location models it 

is natural to fix G1 so that points of symmetry under G0 and G1 coincide, 

but in other models the choice is not unambiguous and yet determines the 

asymptotic power. As an extreme case, when testing the normality hypo

thesis of problem II with 50 observations, the x2 approximation (III.3.1) 

yields considerable power at fixed normal (!) alternatives if one takes 
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Figure III.4.la Normal location null-hypothesis. Powers under three alter

natives for several EDF tests and three estimators:····················= Mn; 
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Figure III.4.2. Normal location-scale null-hypothesis. Powers under three 

alternatives for several EDF tests and four estimators:····················= (Mn,Madn); 
- - ½ -·---------- = (Yn,Madn) ;-·--·-=(Yn, (TI/2) On);---- -(Yn,Sn). 
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Figure IIIo4.3. Laplace location null-hypothesis. Powers under three alter

natives for several EDF tests and three estimators::····················= Mn; 
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Figure III.4.4. Exponential scale null-hypothesis. Powers under three al-

ternatives for several EDF tests and three estimators: ..................... = In/log 3; 
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G0 to be N(0,1) and G1 to be N(O,o2 ) with o2 much larger than one (cf. also 

Example II.3.4 for problem IV). The reason, of course, is that the corres

ponding local family of alternatives consists of mixtures of normals which 

are non-normal. A sound asymptotic approximation to the small-sample power 

of chi-square type goodness-of-fit tests in the presence of location-scale 

parameters still seems to be lacking. 

The simulations also illustrate the theory of Chapter II. For the 

Watson-Roy test and the Rao-Robson-Nikulin test we expect an increasing 

(decreasing) power as a function of k for heavy (light) tailed alternatives. 

Comparison of Figures III.4.1 -III.4.4 with Figure 1 of Kallenberg et al. 

(1985) indicates that the effect of the choice of k is relatively small in 

the presence of nuisance parameters. Note also the higher power of the Rao

Robson-Nikulin test compared to the Watson-Roy and the likelihood ratio 

test. The most powerful test statistic, however, seems to be the Anderson

Darling statistic (cf. also Green and Hegazy (1976)). 

III. 5. PROOFS 

III.5.1. Proof of Theorem III.2.1. 

Introduce the error tenn 

(y E :R) • 

In the proof of part i) and ii) it is sufficient to restrict attention to 

the special choice 00 = (0,1)' of 0 because the distribution of Tn is in

variant with respect to 0. 

i) Take x 1 # x 2 ES. Observe that C.III.2 implies 

p1n(JJen-0oll > (max{(x1 +x2) 2 ,(x1 -x2) 2}+4)½t;n/lx1 -x2ll ➔ 1 

for a sequence {i;} such that n½t; ➔ 00 and t; ➔ 0. Calculation of the 
n n n 

intersection points of the lines En(x1) = t;n, En(x2) = t;n, -En(x1J = t;n 

and -En (x 2J = t;n in the (µn ,on - 1 )-plane shows 

{max{JE (x1 ) I, IE (x 2 ) J} > t; } n n n 

=> {liinl > t;nmax{::~ ::~J ,1}} u ~Gn-1J > 2t;n/Jx1 -x2 1} 

=> {IJen-0011 > (max{(xl +x2i2,(x1 -x2,2}+4)½t;n/lx1 -x2I}. 
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Hence 

(III.5.1) P1 (max{IE (x1) I, IE (x2) I} > , ) + 1. 
n n n n 

(We consider two different arguments x 1 and x 2 because P1n<IE (x 1 ) I >,) 
l. n n 

does not necessarily tend to one as n + 00 .) Put b = .!.cn:t, and note that 
n " n 

b + 00 as n + 00 • Observe that 
n 

{n½1Fn(x1) -G0 (x1 >1 > bn} 

{n½IFn(11n +xlcrn) -Go'11n +xlcrn) +Go(xl +En(xl)) -Go(x1l I > bn} 

l 

=> {nZ sup IF (y) -G0 (y)I < ½b} n {IE Cx1) I >, } n 
y,;:JR n n n n 

n {n½IG0 (x1 +En(x1)) -G0 (x1 >1 > ½bn} 

{n½ sup IF (y) -G0 (yll < .l.b} n {IE (x1) I >, } 
y,;:R n ~ n n n 

for n sufficiently large. A similar relation holds true for x 2 • Hence, 

using the weak convergence of n½ (F n ( •) - G0 ( ·)) under Hln (cf. Shorack 

(1979)), 

(III.5.2) 

In a similar way one proves for sufficiently small£ 

(III.5.3) 

This immediately implies that the test statistics (III.1.1) - (III.1.4) 

tend to infinity in probability under Hin· Noting that the critical values 

of the tests are bounded above, the proof is complete. 

ii) Grouping of observations decreases the Cressie-Read statistics. Pool 

the observations twice into two classes, once with cells (- 00 ,aki],(aki' 00 ) 

and once with cells 

i = 1 and j k-1). 
- :X.+1 

(n-Nkl ( 0 n)) 
- 1, 

n:X.+1(1-p (O))A 
kl 

- ,\+1 -,}-+ 
(n-Nkk(0n)) 

nA+l(l-pkk(O)f 



60 

Taylor expansion of the last expression and bounding its second derivative 

with respect to Nk. (8 )/n (i = 1 or k) yields the further inequality 
J. n 

-1 { - 2 - 2} 
CRn (;\) <'. n max (Nkl (6n) - npkl (0)) , (Nkk (6n) - npkk (0)) 

nmax {\Fn(akll -GO(akll 12, \Fn(akk-1) -GO(akk-1) \2}. 

Let B(ak1) and B(akk_1) be small open balls with centers akl and akk-l. Let 

Kc B(ak1) u B(akk-l) be a compact set such that akl and akk-l are interior 

points of K. Choose c = ½ ~~~ g0 (yl and puts= {y E B(ak1) u B(akk_1); 

g0 (y) > c}, then application of (III.5.2) with x 1 = akl and x 2 = akk-l 

yields CR (;\) ➔p 00 • Finally 
n ln 

where y1 > 0 is the smallest eigenvalue of rk, completes the proof of 

part ii). 

iii) As in part ii) it is sufficient to show that 

The distribution of Tn is not invariant with respect to 6 and hence the 

proof has to be given for arbitrary 6. Fix 6. Replacing akl and akk-l by 

(akl -µ)/cr and (akk-l -µ)/cr, construct c = c(6) ands= S(6) as in part ii). 

Choosing [,n = [,n(6) as in part i) implies (cf. (III.5.1)) 

Define 

E (y) - y - J.lj, L..H. - -crE (y-].l);cr 
n - & - cr - n cr n 

n 
(y ER) 

and let{~} be a sequence such that~ ➔ 00 and n½[, /~ ➔ 00 as n ➔ 00 • Then 
n n n n 

> [, /~ ;& /a :;; ~ l 
n n n n 

( {\- \ 1- akk 1-akl( cr)I} + P ln max En (akl) ' En (akl) - - cr 1 - On > [,n/~n; 

a /a>~) n n 

➔ 1. 
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l 
Put b = b (0) = 1.2 en~!; fl (b -+ 00 as n -+ 00 ) and note that 

n n n n n 

{n½!Fn(akl) -G~(ak1;!\) I > bn} 

{n½IFn(akl) -Go(ak;-µ) - (Go(ak;-µ +En(akl)) -Go(¥))1 
> bn} 

:o {n½~~IFn(y)-GO(y~µ)I < ½bn} n {1En(ak1ll > 1;/t.n} 

n {n½ IGo(ak;-µ + En(akl)) - Go(ak;-µ)I > ½bn} 

{n½ ~~ IF n (y) - Go(y~µ)I < ½bn} n { !in (akl l I > !;n/t.n} 

for sufficiently large n. Proceeding as in part i) yields the desired 

result. D 

REMARK III.5.1. From the proof of Theorem III.2.1 one observes that this 

theorem applies also to other EDF tests. It is sufficient to require that 

(III.5.2) or (III.5.3) implies T -+p 00 • A similar result holds true for 
n 1n 

'if. □ n 

III.5.2. Proof of Corollary III.2.2. 

Similarly to the proof of Theorem III.2.1 ii),iii) one may construct 

c (c (0)) and S (S (0)) since for each k there exist boundary points 

aki f- ¾j such that (V k) max { I aki I , I akj I } < M < 00 • Then proceeding as in 

the first part of the proof of Theorem III.2.1, choose E, (1; (0)) such 
.l 1. n n 1 

that E, -+ O, n21; /k~-+ 00 and (III.5.1) holds true. Put b* = b /k~, then 
n n n n 

b*-+ 00 and for each of the tests (III.1.5) - (III.LB) 
n 

Pln(Tn;;.,: 

Pln (Tn ;;.,: 

(b*) 2k) -+ 1 and 
n 

(b*) 2k) -+ 1. 
n 

The proof of the corollary is complete since the critical values of the 

tests are of order k. D 

III.5.3. Proof of Proposition III.2.3. 

It is sufficient to restrict the proof to 0 00 = (0,1)'. Write 
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Application of the mean value theorem and the central limit theorem yields 

u . ( 0 ) = 0 (1 ) ( i = 1 , •.• , kl and hence N = 0 ( 1) under HO. ni n p n p 
To show that N +p 00 define the random variables 

n ln 

l min {Iii I , I & - 1 I } if min { J ii I , I & - 1 I} > n -½ log n n n n n 

i; = max { I ii J , I O - 1 I } if max { I ii I , J O - 1 I} < n -½ log n n n n n n 
1· 

n -'2' log n elsewhere 

Note that by C.III.2 and (III.2.2) i; + 0 and n½i; + 00 • Let S (£) be 
n Pnl n Pin n 

the event such that 

(i=l,2) 

where A(A) denotes the maximum eigenvalue of A. Note that for all£> 0 

Pln(Sn(E)) + 1 as n + 00 • Put£= ½min{EO{gO(Y)}, EO{ygO(Y) (GO(Y) -_ ½)}; > 0 

and let y 1 > 0 be the smallest eigenvalue of rk. Then Nn ~ y1llun(0nlll 

implies 

(III.5.4) 

Suppose (Y1 , ••• ,Yn) E Sn(£) and l&n-11 !, iin' then l&n-11 !, i;n !, µn and 

the error in the Taylor expansion given below is uniformly less than i;n£. 

It follows under Hln 



Similarly (Yl, .•• , Yn) E s (£) and I a - 11 $ -ii implies n n n · 

and hence the first probability in the RBS of (III.5.4) is equal to 

P1n<l&n-ll:,; liinl'sn(E)). Next suppose (Y1 , ••• ,Yn) e: Sn(£) and 
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I ii I < & - 1, then i P I :,; I; $ & - 1 and the error in the Taylor expansion 
n n n n n 

given below is uniformly less than I;£. In this case 
n 

U 2 (6 ) -u 1 (8 ) :,; n-½ £ {(G (Yj:iin) 
1 2 1 2 

-2l -(GO(Yj)-2) }+ 
n n n n j=l O on 

+ 2n½I; £ 
n 

l 2 l 
(G0 (Yj) - 2 ) } + 2n2 /;n£ 

1 1 n 
-n-,:1; n - 2 I: Y .g0 (Y.) (GO (Y.) 

n j=l J J J 

$ -n½l;n(2E0{Yg0 (y) (G0 (Y) - ½>} - 5£) $ 

- ½> + 3n½l;n£ 

l 
-n2 1; 5£. 

n 

Similarly (Y1 , ••• ,Y) e: s (£) and Iii I < 1-& implies 
n n n n 

l. 
u 2 (8 ) -u 1 (0 ) ~ n 21;n5£ 

n n n n 

and hence the second probability in the RBS of (III.5.4) is equal to 

P 1 <Iii I< I& -1!,s (£)). Thus n n n n 

and the proof is complete. D 
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CHAPTER IV 

POWER APPROXIMATIONS TO MULTINOMIAL TESTS OF FIT 

IV.l. INTRODUCTION 

In this chapter we return to the simple hypothesis 

H · FY= G 0 . 0 

for some specified distribution function G0 and consider the class of 

Cressie-Read statistics CR (A). For this class the null hypothesis reduces 
n 

to the following multinomial testing problem 

(IV.1.1) p, 

where p = (p1 , ••• ,pk) is the vector of cell-probabilities under H0 • 

Since classical asymptotics for multinomial goodness-of-fit tests fail to 

adequately describe the finite-sample truth, we present instead a new 

large-sample approximation to the distribution of the statistics CR (A). 
n 

The new approximation follows the structure of the statistics CR (A) more 
n 

closely, avoiding local expansion of the alternative cell probabilities. 

Hence the approximation is valid for an almost unrestricted range of alter

native distributions G of the observations Y1 , ••• , Yn and a fixed number :ic of 

cells. This method is computationally feasible, gives excellent agreement 

with exact computations and Monte Carlo results, and enables us to extend 

the qualitative insights obtained in earlier work. 

The classical approximation to the limiting alternative distribution 

of CRn(A) fork fixed is based on sequences of local alternatives Gn with 

cell probabilities Tiin such that 

k 2 
L (TI, -p.) /p. 

i=l in i i 
(IV.1.2) o = lim n 

n--

exists and is finite. Then the limiting distribution of any CR (A) under G 
n n 

is noncentral chi-square, X~-l (o). The distribution X~-l (o) gives an 
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Figure IV .1.1., Three approximations to the power of the LR test, compared 
n 

to simulated true powers for n=lOO and level a=.05. For the AO approxima-

tion see (IV.2.8). The testing problems and data are taken from Kallenberg 

et al. (1985), Fig 2. Equal (0) and unequal (+) null probabilities are con

sidered. 
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adequate approximation to the power of Pn (A= 1) against an alternative Gn. 

The approximation is less good for LR (A=O), as Figure 2 of Kallenberg et 
n 

al. (1985) demonstrates, and further calculations show it to be very poor 

for more extreme values of A. 

The classical limiting distributions under the null hypothesis and 

sequences of local alternatives follow from a Taylor series expansion of 

the statistic CR (A) to second order terms. All CR (A) are asympto-
n n 

tically equivalent. To illustrate the insensitivity of this approach, 

note that the same Taylor series expansion shows that one can also write 

the noncentrality parameter as 

(IV.1.3) 6 = lim 2nIA(TI :p) 
n-+oo n 

for arbitrary A, where 

A 
I (q:p) 

1 k A+l 
.,,...--,;- L pi,{(qi./pi,) - 1} 
I\ (A+l) i=l 

is a directed divergence between the discrete distributions p and q on k 
A points. A discussion of the role of 2I (TI:p) as a measure of lack of fit 

is given in Moore (1984). 

For finite n, this alternative choice of o with A= 0 does in fact improve 

the numerical accuracy of the noncentral chi-square approximation to the 

power of LR, as Figure IV.1.1 shows. But for A far from 1, the chi-square 
n 

approximation to the power is very poor, just as is the case for the chi-

square approximation to the null distribution. 

We propose the use of a large-sample approximation AA based on a 

Taylor series expansion of CR (A) under an arbitrary sequence of alterna-
n 

tives Gn. The expansion is essentially the same as in the classical ap-

proximation, but does not rely on the local character of Gn. It reduces 

to the usual null hypothesis theory when G1 =G0.But the first order terms 

are not negligible under fixed G1 ,f G0• Hence the approximating distributions 

are more complex, generally linear combinations of noncentral chi-squares 

plus a constant. The approximating distribution is simplest when A= O, 

taking the form X~-l ( o0) + 1;0 , where the constant 1; 0 and noncentrality para

meter o0 are functions of the Tii and pi given by (IV.2.9). Figure IV.1.1 

shows that this approximation to the distribution of LR is superior to 
n 

the classical result based on (IV.1.2) or the alternative expression 
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Figure IV.1.2. Three approximations to the power of the Pn test, compared 

to simulated true powers for n=l 00 and level a.= • 05. For the A 1 approxima

tion see (IV.2.7), for the B1 approximation see (IV.2.10). Same data as in 

Figure IV.1.1. 
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(IV.1.3). Our approximations are easily implemented via suitable software, 

and are analytically much simpler than such competing methods as Edgeworth

type expansions of the distribution functions. 

A second approach is to look for the "locally best" noncentral chi

square approximation. In the series expansion of CR (A) only the coeffi
n 

cients of the quadratic term are expanded locally to obtain an approxima-

tion BA which is still as close as possible to CR (A) but with the 
n 

pleasing feature that it has a simple distribution of the form 
2 (cS(A)) ,.(A) h" h · · . ( V 2 10) F LR th" rAxk-l + s , w ic is given in I. . . •or n is 

approximation coincides with the AA approximation described above. In 

Figure IV.1.2 both approximations are compared with the classical x!_1 (o) 
approximation for P. Although the locally best noncentral x2 approximation n 
cannot be expected to do as well as the AA approximation, it performs a lot 

better than the x!_1 (o) approximations with o from (IV.1.2) and (IV.1.3). 

Similar expansions of CRn(A) under fixed G1 and k are easily obtained 

for the case of testing fit to a parametric family {G~(-;0);0 E 0 c RP}, 

where the parameter 0 is estimated by 6 (Y1 , ••• ,Y ). Yet we do not know 
n n 

whether a result like Theorem IV.2.1 holds true for these cases too. The 

distribution theory of the resulting expressions is complex and needs 
l -

second order expansions of n 2 (0n - 0). We confine the present investigation 

to the case of completely specified G0 • 

IV.2. APPROXIMATIONS 

IV.2.1 Expansions and approximations. 

For an alternative Gn let Tin= (Tiln'"""'Tikn) be the vector of cell 

probabilities. The Tiin are assumed to be bounded away from zero. The dis

tribution of the vector Nk of cell counts under Gn will often be denoted 

by Pn; En and varTI have a similar interpretation. Put 
n n n 

(IV.2.1) 

(i=l, •.• ,k) 

and consider the following Taylor expansion of CRn 0.) under Gn, for A ,f -1,0, 
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(IV.2.2) 

where 

(IV.2.3) 

(IV.2.4) 

The linear 

(IV.2.5) 

A -1 
A (Y ) + 0 (n 2 ), 

n P 

k A -1 1 2 A -2 k A 
I: r. {Y. +A (n7T. )2} + 2nI (TI :p) -nA I: TI. r. 

i=l in in in n i=l in in 

- A part of CRn(A) (and A) is given by 

A i 1 k l ;>,. A 
L (Yn) = 2n 2A- l:i Tiin(rin-1)Yin+2nI (Tin:p). 

The second expression for AA is useful because with this form the 

expansion (IV.2.2) extends to A= 0 or -1 by taking appropriate limits in 

both CR (A) and AA. Note that AA = CR (A) if A = 1 and l =i if A= 0. The 
n n 

quadratic BA is introduced because its asymptotic distribution is simple 

due to equal coefficients of the quadratic terms; among such forms it is 

A - {A A } closest to A (and thus to CR (Al) in the sense that ETI A (Y ) - B (Y ) = 0. 

Inserting rnA = 1 

denoted by B~, which is 

n n n n A 
in (IV.2.4) we get a slightly simpler form of B, 

sometimes useful too. 

The leading 

pansion of CR (A) 
n 

A A A A 
parts A (Yn), B (Yn) (or B1 (Yn)) and L (Yn) of the ex-

can be used to construct approximations to the distribu-

tion of CR (A). Let u 
n n 

have a multivariate normal distribution 



l l I 

Un= (U1n•·--,Ukn) 1 ~ Nk(0,1c-11!11!) 

where 'IT~ <;In' ••• ,nL)'. Since Yn is asymptotically distributed as Un 

(under G ) , replace Y by U in AA, BA and LA and consider the approxi,ma-
An A n An A 

tions A (Un), B (U) and L (U ). The construction suggest that A (U) is 
A n n n 

the best and L (Un) the least reliable approximation. 
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To derive their distributions, we employ the following notation. Let 

Qn be the diagonal matrix 

Q = n 
• lA 
r2 

kn 

Let e 1 , ••• ,ekn be the eigenvalues and s the (k x k) orthonormal matrix of 
n ½ ½' n 

eigenvectors of the matrix Qn(Ik-'ITn'ITn )Qn: 

(IV.2.6) 

w = (w1 , ••• ,wkn)' = s'Q µ • n n n n n 

z 1 ,z2 , ••• are independent standard normal rand.ail variables; 
I A Apply the orthogonal transformation Sn to A (Un). Then 

= lls'Q (U +µ >11 2 + 2nIA(n :p) - lls'Q µ 112 
nn n n n nnn 

½ 2 2 A k 2 
9~..tQ6in(Zi+Win/6in) + I: Wi +2nI ('IT :p) - I: Win 
inr ein=O n n i=l 

l ½' since s'Q (U +µ ) ~ Nk(W ,s'Q (Ik-11I11 )Q S ) = Nk(W ,T ) • As one of the 
nn n n n nn nn nn A n n 

6. vanishes, assume ekn = O. It follows that A (U) is distributed as w n 
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or, in a more suggestive notation, as 

(IV.2.7) 
k-1 2 2 A k-1 2 

I 0. Xi· (w. /0. )+ 2nI (TI :p) - I w. 
i=l in i in in n i=l in 

This can also be derived from Corollary 2.2 in Dik and de Gunst (1985). 

In the particular case A= 0, the AA approximation to the distribu

tion of LR reduces to the shifted noncentral x 2 distribution 
n 

(IV.2.8) 

where 

(IV.2.9) 

50 
k 2 

- n{ ~ TI. log r. } 2 = n I Tiin(log rin) n i=l i=l in in 

~o k 
- 00 • 2n I TI in log rin n i=l n 

In all other cases we get linear combinations of noncentral xf distribu

tions. The approximation for P is no exception; it is just (IV.2.7) with n 
A = 1. 

as 

A similar orthogonal transformation shows that BA(U) is distributed 
n 

(IV.2.10) 

where 

(IV.2.11) 
- { ~ TI. cl - 1 >}2] 

i=l in in 

In the sense explained above BA is the "best noncentral x 2 approximation" 

to the distribution of CR (A). For A= O it coincides with AA. The distri-
A n -

bution of B1 (Un) follows by inserting rnA = 1 in (IV.2.10) and (IV.2.11). 

The more classical approximations xk2 
1 (o) with o = 2nI1 (TI :p) or 

A - n),. n n 
o = 2nI (TI :p) are in fact approximations to B1 for max. ITT. -p. I+ 0 as 

n n i in i 
n + 00 • In an expansion of TTin around pi the parameters of the B~(Un) 

distribution can be written as 

(A) 1 k 3 2 4 o 1 =2nI (TI :p) +nA I (TI. -p.) /p, + O(nmax. !TI. -p. I ) 
n n i=l in i i i in i 

_1.n(2'+1) k 3 2 I 14 3 A I (TI. - p.) /p. + 0 (n max. TI. - p. ) • 
i=l in i i i in i 
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The x;_1 {on) distributions a~ise if o~~) is approximated by on and'~~) by 

0. The advantage of A and B, that no expansions of 1fin around pi are 

made, is thus lost. 

Obviously the linear approximation LA(U) is normally distributed 
n 

with expectation 2nIA(1f :p) and variance 
n 

k k 
-2 A 2 A 2 

4nA {I: 1f. (r . - 1) - {I: 1f. (r . - 1)) }. 
i=l in in i=l i in 

IV.2.2. Asymptotic error bounds. 

As a counterpart to the stochastic expansions in subsection IV.2.1 

we have the following theorem on the distribution error of the expansions. 

See Cox and Reid {1986) for related work. 

THEOREM IV.2.1. Let k ~ 3 and A ER. Let O < £ < fc and IT£= 

= {n E Rk; min. n. ~ £, I: n, = 1}. Let {s }, s > O, be a nondecreasing 
i i i n n l. 

sequence, Zet IT(s) = {n E IT£; max. In. -p. I~ s /nZ} and let IT*(s) = 
n i i i n n 

= IT£\ IT(sn). 

i) As n -+ 00 

(IV.2.12) sup 
1f EIT£ 

sup IP1f(CR (A)> c) -P(AA(U) >ell= O(n-½). 
c>O n n 

ii) Ifs /n!-+ 
n 

O, then as n -+ 00 

(IV.2.13) su:e sup IP (CR (A)> c) -P(BA(U) > c)I 
1fEIT(sn) c>O 1f n n 

iii) Ifs /n½-+ 0 and o, = 2nIA(1f:p), then as n-+ 00 

n Ill\ 

1 
-2 

O(s n ). 
n 

(IV.2.14) su2 sup IP (CR (A) > c) -P(X~ 1(o A)> c) I= O(snn-½). 
TIEH(sn) c>O 1f n - n 

iv) Ifs /n¼-+ 0 and o = 2nI1 (n:p), Ai 1, then as n-+ 00 
n n 

(IV.2.15) sup sup IP (CR (A) > c) -P(Xk2 
1 (o ) 

TIEIT(s) c>O 1f n - n 
n l. 

v) If sn-+ 00 and sn/n2 < 1, then as n-+ oo 

(IV.2.16) sup* sup IP (CR (A) > c) -P(LA(U) > c) I = O(s-1). 
TIEIT (sn) c>O 1f n n n 

-l. 
The error bounds in iv) and v), when larger than O(n 2), are sharp. 

PROOF. cf. Section IV.4. 0 
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REMARK IV.2.1. The theorem also holds fork= 2 if c is restricted to 

Y < c < 00 for any fixed y > 0, i.e. for levels bounded away from one. The 

bound in ii) remains valid if we further simplify BA(Un) by taking rnA = 1 

everywhere. D 

REMARK IV.2.2. The error bound in v) also holds for normal approximations 

based on moments of CR (A) or A A (U ) and remains sharp. D 
n n 

REMARK IV.2.3. We have no proof that the bounds in i) - iii) are sharp. □ 

The strength of the theorem lies in the uniformity of the error 
A _1 

bounds. The error of the A approximation is at most Cn 2 for all alter-

natives Tin E TIE (and all significance levels an). Hence the AA approxima

tion is satisfactory both from a local and a nonlocal point of view. Taking 

TI. = p. (i = 1, •.• ,k), AA (U ) = !lunll2 and hence under the null hypothesis 1.n 1. n 
the approximation is equivalent to the classical x~-l null approximation. 

The BA and the X~-l (on) approximations have the same error bound 
_l A .l 

O(n 2 ) as A for contiguous alternatives (with max. In. -p. I = O(n- 2 )). For 
i in i 

more distant alternatives they do not perform as well and they 

may not be any good at all for fixed alternatives. The classical approxima

tion does even worse. For alternatives with max. In. - p. I ~ n-4 the error 
l. in i_ 

bound in iv) approaches 0(1), whereas the bounds in ii) and iii) are still 
1 

O(n-4). Examples show that for appropriate c and 

maxi lnin -pil > n-¼ the actual approximation error of X~-l (on) with 

o 2nI1 (n :p) can indeed increase to one for any A# 1! 
n n 

Of course these results are not surprising. For contiguous alterna-
2 A A tives A , B 

p. the three 
l. 

and Xk-l (on) do equally well because expanding nin afound 

statistics are asymptotically equivalent up to O (n-!). For 
p 

more distant alternatives the use of local expansions leads to a loss and 

hence AA is superior. 

The linear approximation LA shows quite different behaviour. It 
A works quite well for fixed alternatives (comparable to A), but breaks 

down completely for contiguous alternatives. Broffitt and Randles (1977) 

used the asymptotic normality of the Pearson statistic under fixed alter

natives to propose a normal approximation to large powers of the P test. 
n 

For large k (k + 00 as n + 00 ) the normal approximation also improves locally, 

see Morris (1975), but here we restrict ourselves to moderate values of k. 
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IV.2.3. Moments and moment adjustments. 

The fit of the approximations to the true distribution of CR (A) can 
n 

also be judged from the similarity of the moments. Under fixed alternatives 

we find by elementary calculations 

and 

E {CR (A)}= E{B"(u )} +n-1 (11.-1){1.3 I:i(l -31T. +2i)/1T. + 
1T n n 1. 1. 1. 1. 

+ -4
1 (>..-2n:i'. (1-1r.) 2/1r.} + O(n-2 ), >.. > -1 

]. ]. ]. . 

E{B"cun)} = 2nl(1T:p) +rA (k-1) 

A A 
E{B1 (Un)} = 2nI (1T:p) + k- 1 

2 A 
E{xk-l (2nI (1T:p))} 

2 1 
E{Xk-l (2nI (1T:p))} 

A var{A (U ) } 
n 

A 
2nI (1T:p) + k - 1 

1 
2nI (1T:p) + k - 1 

varfa"(un)} = var{L"(un)} + 2rf (k-1) 

A A 
varfa1 (Un)} = var { L (Un)}+ 2 (k-1) 

2 A A 
vadxk-1 (2nI (1T:p))} BnI (1T:p) + 2 (k-1) 

2 1 1 
var{xk-l (2nI (1T:p))} BnI (n:p) + 2(k-1) 

var{L"(u )} 4nA- 2{I: n.r~"- (I: n.//} 
n i i i i 
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The first moment of AA 

fit deteriorates if we 

and BA fits best 
A 

go to B1 and the 

to the moment of CR (:),.) . The 
n 

other approximations. 

Of course the statistics can be adjusted by a linear transformation 

to get the "right" first two moments (of CR 0,.)). Such transformations are 
n 

quite common for the Pearson statistic and the likelihood ratio statistic 

under the null hypothesis. 

Cressie and Read (1985) calculate the first and second moment of 

CRn(A) under contiguous alternatives and suggest a moment adjusted 

X~-l (on) approximation, but they do not pursue this subject. 

Broffitt and Randles (1977) use the exact moments of P under fixed 
n 

alternatives to construct a normal approximation to the power of the P 
test. This is nothing else than the moment adjusted LA approximation. n 

fhe order of maqnitude of the error bound in Theorem IV.2.lv) is not 

changeu. More numerical details are reported in Section IV.3. 

IV.2.4. Asymptotic efficiencies. 

A comparison of the (asymptotic) efficiency of the different CR (Al's 
·n 

is not easily based on (IV.2.7) since this expression lacks transparency. 

From (IV.2.2) - (IV.2.4) 

- A _l 
CR (A)/n = 2I (TI :p) +O (n 2), 

n n p 

A 
suggesting that 2I ('Tfn:p) may be a good measure of the relative power of 

the tests in the Cressie-Read class. This coincides with the approach by 

approximate Bahadur efficiencies, since the approximate slope of the 

statistic CR (A) at 'IT equals 2IA('IT:p). Of course this is also in accor-
n 

dance with the X~-l (2nIA('IT:p)) approximation of the power of the test 

based on CR (A) (cf. also Moore (1984)). n 
The discrepancy measure 2IA('IT :p) is still rather unwieldy. For 

n 
alternatives with 'IT. p.+o(l) (i=l, ••. ,k) a Taylor expansion is 

in l. 

informative: 

(IV.2.17) 

k 2 1. k 'IT, 2 
I: ('IT. -p.) /p.+ 3 (A-1) I: <pin-l)('IT -p.) /p.+ 

i=l 1.n 1. 1. i=l i in 1. 1. 

1 k 1/13. + -12 (A-1) (A-2) _I: (TI. -p.) p. + •.•• 
i=l in l. l. 

The first two terms of the expansion suggest an increase of power with A 

for those alternatives 'Tfn for which the more important contributions 



77 

(1T. - p.) 2 /p. to the leading term 211 (1T :p) have positive 1T. - p., and a 
in 1. 1. n in 1. 

decrease in the opposite case. In other words: large values of A seem a 

good choice for sharply peaked likelihood ratios 1Tin/pi; small values of A 

seem preferable for deep dips of 1Tin/pi. Cressie and Read (1984) make the 

same recommendations, based on numerical evidence. 

If p 1 = ••• =pk and the alternatives are anti-symmetric, i.e. for 

each i there is an index j such that 1T. - p. = - (1T. - p.) , the second term 
1.n l. Jn J 

of the expansion (IV.2.17) vanishes and the third term may be of interest. 

This term suggest a local minimum of the power between A = 1 and A = 2. 

IV.3. NUMERICAL RESULTS 

To investigate the small-sample performance of the AA and BA approxi

mations relative to the other approximations discussed in Section IV.2 we 

present some new numerical work and survey other work in the same area. Our 

conclusions are summarized in subsection IV.3.3. 

IV.3.1. Power computations. 

For sample sizes n = 20 and n = 50 and level a= .OS the true power 

of the tests in the Cressie-Read class is computed in a number of examples 

by direct enumeration. Randomization was used to get exact size .05. The 

corresponding critical values were also used as a starting point for the 

various power approximations, to put all approximations on an equal 

footing. 

For small n and AS -1 the critical value increases in giant steps 

to +00 as a ➔ 0 (cf. Read (1984)). In fact, for AS -1 the null probability 

P (CR (A) 00 ) = P (min1.N1. = 0) is considerable if min.E {N.} is small, 
P n P ip l. 

e.g. for n = 20, k = 5 or n = 50, k = 10. If the critical value turned out 

to be + 00 , we discarded values AS -1. (Since computations are in steps of 

.25 for A, the smallest A reported in such cases is -.75.) 

The true power of the tests is an irregular discontinuous function 

of A if n is small (this is somewhat obscured in our graphs due to linear 

interpolation). The reason is, that as A varies sample points (n1 , ••• ,nk) 

in the rejection region are replaced by others with different probabilities 

under alternatives. 

In Figure IV.3.1 the true power of the CR (A) tests is compared to the 
n 

traditional x;_1 (2nI1) approximation, the AA approximation (IV.2.7) and the 
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Figure IVa3a1. Three approximations to the power of the test CRn(A) 

(-2 ~A~ 4), compared to exact powers for level et= .05 in a couple of exam

ples with varying k,n,p and TI: ---- exact power;-----------= AA approxi

mation;···················= BA approximation; -- - -= x2 (2nr 1 (n :p)) approximation. 
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Figure IV.3.1 (continued). 

power 

.8 

.6 

.4 

.2 

-2 -1 0 
power 

.8 

.6 

• 4 

.2 

.8 

.6 

.4 

.2 

-2 -1 0 

n=20 k=S 

p= Cl, 1, 1, 1, ll/5 

ff=l3,3,2,1,ll/10 • 8 

.6 

.4 

.... 
.. ~~-~:-:: . 2 

2 3 

n=50 k=S 

p= 11, 1, 1, 1, ll/5 

ff= (8, 3, 3, 3, 3) /20 

n=50 k=S 

p= ll, 1, 1, 1, ll/5 

ff= 13, 3, 2, 1, 1 l /10 

2 3 

.6 

• 4 

.2 

.4 

.2 

power 

-2 
ower 

-2 

0 

I 

n=20 k=S 

p= 11, 1, 1, 1, ll/5 

ff= 17, s, 4, 3, 1l /20 

2 3 

\ ----\_ - -

0 

n=50 k=S 

p= 11, 1, 1, 1, ll/5 

ff= (1, 1, 1, 1,0)/4 

n=S0 k=S 

p= ll, 1, 1, 1, ll/5 

ff= 17,5,4,3, ll/20 

2 3 

79 



80 

Figure IVo3o1 (continued)o 
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BA approximation {IV.2.10). Based on these graphs and numerous other 

examples not reported here, we draw the following conclusions: 
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- the x!_1 {2nI1) approximation is tolerable but not quite satisfactory for 

A= 1 {the Pearson test); the approximation error often exceeds .04, even 

for n = 10Q For values of A away from 1 the approximation breaks down 

completely; 

the AA approximation is superior to the other approximations and is quite 

accurate for a wide range of A values; the approximation error is usually 

smaller than .03 {n = 20, 0 S A S 2½) or .015 {n = 50, -½ S A S 3); for 

the P test the approximation is excellent; 
. n A 

- the BA approximation is satisfactory but not as accurate as the A 

approximation {except near A= 0 where they coincide); 

- if one or more of the expected cell counts under the hypothesis is small, 

approximations are often inaccurate for AS O, but probabilities Tii = 0 

{under G) do not invalidate the AA approximation; 
n 

for alternatives where one Tii/pi is very large, the power increases with 

A; for alternatives with one very small value of Tii/pi, the power de

creases, and for alternatives with only moderate values of Tii/pi, the 

highest power is usually achieved for A between -1 and¼-

These conclusions confirm the simulation results displayed in Figures 

IV. 1 • 1 and IV. 1 . 2 and agree with the theory developed in Section IV. 2. 

Somewhat surprisingly, the AA and BA approximations under alternatives are 

satisfactory for a broader range of A values than the x 2 null hypothesis 
A A approximation {cf. Cressie and Read (1984)), although A and B reduce to 

this approximation under H0 • 

We also comment on some other approximations discussed in Section 

IV.2. The x!_1 {2nIA) approximation is an improvement on the x!_1 {2nr1) 

approximation for A# 1, but falls short of the BA approximation. 

Adjusting the first moments, using the nonlocal terms of 

E{CR {A)}, reported in subsection IV.2.3, the adjusted xk2 1 cc) approxi-
n - n 

mations for o = 2nIA and o 2nr1 almost coincide. For small sample 
n n 

sizes these approximations turn out to be serious competitors to BA. 0 

This can be theoretically justified, the moment corrected approximations 

have the same error bound as BA. 

A few typical cases are displayed in Figure IV.3.2. The B~ approximation 

is about as effective as BA. for O < A < 1, but slightly less 
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Figure IV.3.20 Four approximations to the power of the test CRn(A) 

(-2 :SA :S 4), compared to exact powers for level a= 005 in a couple of exam

ples with varying k,n,p and 1T: ---- exact power;····················= moment 
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corro X (2nI (1T:p)) approx.; -- - - = X (2nI (1T:p)) approx.; 
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-·--·- = x (2nI (TT :p)) approx.; ·--------- ~ N (E 0 {A } , var0 {A J) approx. 
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accurate outside this interval. 

The linear approximation LA, cf. (IV.2.5), is disastrous. Adjusting its 

moments by using a normal approximation with the moments of CR (A) is an 
n 

improvement, but the normal approximation is still better when the AA 

momer.ts are employed (see subsection IV.2.3). It then competes with 
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2 A 
Xk-l (2nI ). Yet, errors of .06 (n = 20) or .04 (n = 50) are quite common in 

the range-½< A< 2½. See Figure IV.3.2. 

A few words on computational aspects are in order. The noncentral x2 

approximations do not present any difficulties since library routines are 

widely available. To compute the AA approximation (IV.2.7) the eigenvalues 

and eigenvectors in equation (IV.2.6) are first determined. One can then 

proceed in different ways. We have employed a procedure described by Kotz, 

Johnson and Boyd (1967) which expresses the cdf of (IV.2.7) as a weighted 

sum of cdf's of central x2 distributions with positive and negative 

weights. Sheil and O'Muircheartaigh (1977) give a similar procedure with 

positive weights only. A different approach is described in Davies (1980), 

cf. also Farebrother (1984). 

IV.3.2. Related work. 

The AA statistic for A= 1 first appears in Patnaik (1949, p. 219), 

he refers to a Pearson Type III distribution and finds the approximation 
2 1 

too cumbersome. In his opinion the Xk-l (2nI) approximation is adequate for 

practical purposes (when P is used). 
n 

Slakter (1968) simulated the power of the Pearson test in a large 

number of cases and compared it to the x;_1 (2nI1) approximation. His main 

conclusion is that the x2 approximation overestimates the true power quite 

a bit for small sample sizes. Haber (1980) remarks that Slakter's con

clusion is too pessimistic; he only finds that x2 approximations close to 

one are suspect. 

In West and Kempthorne (1971) and Kallenberg et al. (1985) the powers 

of the P n test and the LR test are compared. West and Kempthorne ( 1971) n 
find that the "P 

n 
test seems to have more sensitivity against alternatives 

for which one component of TI is relatively large, whereas the LR test 
n 

appears better against alternatives where one component is relatively 

small". This exactly confirms our own results and is also in agreement with 

the numerical results in Cressie and Read (1984) and in Kallenberg et al. 

(1985). West and Kempthorne (1971) also note that, for fixed alternatives, 
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the differences between the sensitivities of both tests are diminished if 

n increases. This can be explained by a local expansion of the noncentrality 

2nr0 (TI:p). However, even for very large n there are alternatives for which 

the power differences are large since 2nl r 1 (TI :p) - r 0 (TI :pl! can be made 
n n 

large for any n. 

IV.3.3. Discussion 

Global asymptotic expansions of test statistics are a useful tool 

for constructing satisfactory power approximations. The importance of a 

global approach is illustrated not only by the striking accuracy of the 

AA approximation, but also by the fact that the strictly nonlocal normal 

approximation (with AA moments) is a serious competitor to the strictly 

local X~-l (on) approximation. The asymptotic error bounds give a good 

idea of the relative accuracy of the various approximations in small 

samples. Moment adjustments OTten improve approximations. 

OUr recommendations on the use of power approximations are as 

follows: 

i) 2 1 -do not use the Xk-l (2nI) approximation for other CRn(A) tests 

than P ; 
n 

for accurate work always use the AA approximation (or exact compu-ii) 

tation); 

iii) for many practical purposes BA is a good and simple approximation 

for -1 <A< 3. For O ~A~ 1 the B} approximation is equally 

effective and slightly simpler; 

iv) for quick and dirty work the unorthodox normal approximation based 

on the moments of AA (see subsection IV.2.3) deserves consideration. 

Since global expansions are not very transparent, local expansions 

are still useful to get insight in qualitative power properties of the 

tests. Local theory and extensive numerical work by several authors lead 

to the following recommendations concerning the choice of A: 

a) if alternatives with one or two large values of Tii/pi are of 

special interest, use the Pearson test (A= 1) or CR (A) with 
n 

A= 2; 

b) if alternatives with one or two small values of Tii/pi are of special 

interest, use the likelihood ratio test (A= 0) or the Freeman-Tukey 
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test (A = -½); 
c) in other cases the P and LR test are competative; the LR test is 

n n n 
perhaps more powerful for a somewhat broader range of alternatives, 

but the null hypothesis distribution of P is easier to control 
n 

(Cressie and Read (1984) advise A= j-). 
There seems to be no sound reason to choose extreme values of A; distribu

tions under hypothesis and alternative are hard to approximate and the 

power gain is uncertain. 

IV.4. PROOFS 

Before proving Theorem IV.2.1 we derive some preliminary results. 

Let z1 ,z 2 , ••• be i.i.d. standard normal variables with cdf ~ and density~

Repeatedly we use the order relation 

(IV .4.1) 

which continues to hold if z1 is replaced by a standardized binomial 

Bin(n,p) variable, uniformly in p bounded away from O and 1. We begin with 

a crucial lemma, which is in the same spirit as Theorem 1 in Cox and Reid 

(1986). Although many constants and sets in the sequel depend on n, sub

scripts n are suppressed to simplify notation. 

LEMMA IV .4.1. Let ai ,bi (i = 1, ... ,m) and c be real numbers, m <'. 2, let 

Pi ( ·) (i = 1, ••• ,m) be polynomials of fixed degree q <'. O and let a O > O and 

d 0 > O be fixed. Uniformly for ai > a 0 , bi ER, c > O and the coefficients 

of the Pi bounded by d O, 

(IV.4.2) ( m 2 -½ m ) ( m 2 ) P I a.(Z. -b.) +n I P.<lz.l) :<:c =P I a.(Z.-b.) :".c 
i=l 1 1 1 i=l 1 1 i=l 1 1 1 

+O(n-½). 

The relation continues to hold form= 1 if c > y for some fixed y > O. 

PROOF. Assume without loss of generality bi <'. 0 (i = 1, .•• ,m). We systema

tically treat the case m <'. 2 and only comment on points where arguments 

form= 1 are different. ?ut 

We consider three cases. 
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i) Let q = 0. The statistic in the LHS of (IV.4.2) is now of the form 
2 _1 I I r a. (Z. -b.) +n 2d with d :s; d 0 and (IV.4.2) follows from the mean value 

1 1 1 2 
theorem if the density of r ai (Zi - bi) is bounded. For m = 2 it is easily 

derived from a convolution representation that the density is smaller than 
.1. -½ 2 (a1a 2) • An induction argument shows that form~ 3 the density is 

bounded by the same bound. Form= 1 the density is trivially bounded for 

arguments away from zero. 

ii) Let c ~ c 0 and q ~ 1. It is sufficient to prove the lemma for the 

special cases P. ( I z. I) = d 0 r~ 1 I z. I j (i = 1, ... ,ml and P. ( I z. I) = 
, 1 1 J= 1 1 1 

= -d0 I:j=l I zi I J (i = 1, ... ,m) (the constant terms have been dealt wtih in i) ). 

Let T(z) = r a.(z. -b./+n-½ r P.(!z.l> (z= (z 1 , ••• ,zm)' E Rm) and T = 
1 1 1 1 1 

= T(z1, .•• ,Zm). Write T = T+ for the first special case and T = T for the 

second special case. Put 

s {z E Rm; r ai (zi - bi) 2 = c} 

q+l _.1, -1 
tz = 2 d 0n 2 c h(z). 

and 

We first show that O $ tz $½for z ES and large n. Note that 

maxilzil :s; maxilzi-bil +maxi bi 

:s; a~½{r ai (zi - bi) 2}! + maxi bi 

a -½c½ + max b 
0 i i. 

'f b > -½ ½ th Hence, i maxi i _ a 0 c, en in view of c ~ c 0 

q+l _.l -1 -q-- q q , 
t :s; 2 d 0n ~c m min{log n,max{2 max b 2 max b }} :s; .J...2 . 

z i i' i i 

Conversely, if max.b. :s; a-0½c½, then for large n 
1 1 

otherwise. Hence tz s ½. Let 
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z-t(z-b),t < tsl,zES,max. jy.l < log n} 
z l. l. 

Suppose y EA+. Then 

2 2 _l q ' m j 
(1-t) :ra.(z.-b.) +n 2d 0 L min{mlogJn, L lz.-t(z.-b.)j} 

1. 1. 1. j=l i=l 1. 1. 1. 

2 - 1 g ' '-1 . 
s (1-t) c+n 2d 0 L min{mlogJn,2J mmax. lz.lJ + 

j=l i l. . 1 . . 
+ 2J- tJm max. jz. -b. jJ} 

l. l. l. 

+n-½do ! min{mlogjn,2jtjmmax.lz.-b,jj} 
j=l i i i 

s c-tc+½t c+n-½d0m ! min{logj- 2 n,(2a-0½c½)j-2}4a-1c 
z j=2 0 

+ 2n -½d0m (a0c) -½c 

s c, 

where the last inequality holds for large n. Hence T+(y) s c if y EA+. 

Next let 

A= {yEJRm; y=z+t(z-b),t <t< 00 ,zES,max.jy.j<logn}. 
z l. l. 

Suppose y EA. Then by a similar argument, for large n, 

T_(y) 

2 2 _1 q j m . 
(l+t) La.(z.-b.) -n 2d 0 L min{mlog n,_:r lz.+t(z.-b.)IJ} 

1. 1. 1. j=l 1.=1 1. 1. 1. 
_l g · 1 1 • 

c: c+2tc- .1.t c-n--zd,,nr L min{logJn,(2ta-2 c'Z)J} 
2 z V j=l 0 

> C 

(to obtain the last inequality consider small and large values oft 

seperately). Hence T_(y) > c if y EA_ and if n is large enough. Put 

The preceding 

{z: T(z) s c} 

the surface S 

arguments show that the 

and {z : La. (z. - b. J2 s 
l. l. l. 

t S t ,z E S}. 
z 

symmetric difference of the sets 

c} is contained in the strip D around 

of an m-dimensional ellipsoid and possible in the distant set 
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1 
{z ;max. lz.l > log n} which has probability O(n-'2"). The width of the strip 

J. J. 

is larger for points z of S far from the origin than for points close to 

the origin. The probability of the event (Z1 , ••• ,Zm) ED is small precisely 

because the strip is very narrow in the region of large density. Obviously 

m 2 m 1 
IP(T $ c)-P( I: a.(Z.-b.) $ c)I :Sf ••• f II (/l(y.)dy1 ••• dy +o(n-2'). 

i=l 1 1 1 D i=l 1 m 

For large n we have on D n {y; max. IY. I $ log n} 
J. J. 

m m m 
II (/l(y.) = II (/l(z. +t(z. -b.)) = II (/l(z.) (1 +o(l)) 

i=l 1 i=l 1 1 1 i=l 1 

. 2 2 2 -1 
This follows from t I: (zi - bi) $ tzaO c = 

(z E S). 

Schwarz inequality, from ltI:z. (z. -b.) I $ o(l) since 
2 2 2 2 111 2 

I: zi $ 2 I: y i + 2t I: (zi - bi) $ 2 (m+l) log n for large n. 

Hence it suffices to prove that uniformly 

(IV.4.3) f ... f 
D 

m -½ 
II(/l(z.)dy1 •.• dy =O(n ). 

i=l 1 m 
1 

Substituting vi (yi -bi)af (i=l, ••. ,m) the LHS of (IV.4.3) equals 

(IV.4.4) 

where 

m -½ f f m -½ II a. .•• II ¢(a. w. +b.)dv1 ••• dv , 
i=l 1 o* i=l 1 1 i m 

s* 

t = 
w 

{w E Jtll; ! w~ = c} 
i=l 1 

2q+ld0n-½c- 1h*(w) 

Introduce polar coordinates r,01 , .•• ,0m_1 ; let v 1 = rcos0 1 , v 2 

= r sin 01 cos 02, ••• ,vm-1 = r sin 01 ••• sin 0m-2 cos 0m-1' 

vm = r sin 0 1 ••• sin 0m_ 2 sin 0m-l. 
.l 

Write g(0) = (sin01)m- 2 (sin0 2)m-3 ..• sin0m_2 , r 1 = (1-tw)c 2 and 

r 2 = (1 +tw)c½. Noting that w Es* only depends on 0 1 , ••• ,0m-l (and not 

on r) and that r~ - r~ $ (2c½)mtw (since O $ tw $ ½ ), (IV .4.4) equals 

m 1 Tr Tr 2rr r 2 1 m 1 
-'2" f ff I m- -'2" II a. •.• r g(0) II ¢(a. w.+b.)drd0 1 ••• d0 1 

i=l 1 O O () r 1 i=l 1 1 1 m-

-l -½ -½ ½m-l rr rr 2rr * -½ 
(IV.4.5) :Sy0m (Ila, )n c f ••• f f h (w)g(0) II(/l(a. w.+b.)d0 1 .•• d0 1 

1 0 0 0 1 1 1 m-

-½ -½ ½m-1 rrf rrf 2,Jf l. -½ :Sy0y1(IIa, )n c ••• J g(0) II¢( 2 (a. w.+b,))d0 1 ••• d0 1 
1 0 0 0 1 1 1 m-
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q+l+m I la -1 2 where y O = 2 d O• The last inequality follows from max. z. • II e 8 z. s 
2 J.J. J. 

s max. jz.lqexp (-*max. z.) s y 1 , for all z E ]Rm. The integral in the RHS 
J.J. 0 J.J. 

of (IV.4.5) is certainly bounded and hence (IV.4.3) is proved if c is 
-1 1 -1{ -1 m -1 m} bounded. Suppose c > 1. Note that c s 2 m (1 + c ) - (1 - c ) • Put 

-1 .l -1 ½ 
p1 = (1-c )c 2 and p2 = (1 +c )c, then the RHS of (IV.4.5) is smaller 

than 

where 

{ m -1 -1 
Do = y E R ; y = z + t (z-b) ,-c $ t $ C ,z E s} 

and where we have used the inequality (in the reverse order) 
2 2 2 -2 2 2 -1 :r yi =!: (zi +t(zi -bi)) s 2!:zi +2c :r (zi -bi) s 2!:zi +2a0 , valid for 

y E D0 • Since the last integral is bounded, (IV.4.3) is proved in this case 

too. 

Form 1 (IV.4.3) is replaced by 

<l>(zo+tzoC) -<l>(zo-tzoc) +<l>(zoo+tzol> -<l>(zoo-tzoll = O(n-½) 

.l 1 
by the mean value theorem, where z 0 = b 1 + (c/a1 ) 2 , z 00 = b 1 - (c/a1 ) '2' and 

c = (c/a0)! and where c is assumed bounded away from zero. 

iii) Let c < c 0 • We first show that uniformly 

(IV.4.6) 2 -½ p (L a. (Z. - b.) s c 0 ) = 0 (n ) 
J. J. J. 

The noncentral chi-square density (at x) of (Z 1 - b 1 ) 2 + z; is given by 

(41T)-l J y-½(x-y) -½{1 + exp (-2b y½)} exp {-½(y! - b >2 - ½<x-y)}dy 
O 1 1 

-1 _l_ 1. 2 l X ½ ½ 
s (21T) exp (- 2 x- 2 b 1 +b1x 1 ) ~ y- (x-y)- dy 

<½ n) ½cp (x½ - b 1 ) • 

Assuming b 1 = maxi bi, it follows that 

P(!: a. (Z. -b,) 2 $ c O) 
J. J. J. 
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_1 
It is easily verified that the RHS is of order O(n 1 ), proving (IV.4.6). 

Form= 1 and c bounded away from zero this case does not occur. 

Now suppose the lemma is proved for c = c 0 (see i) and ii)). Then 

for c < c 0 

P(T Sc) S P(T S c 0 ) = P(l: a, (Z. -b.) 2 S c 0 ) +O(n-½) = O(n-½). 
J. J. J. 

Since also P(l: ai (Zi -bi) 2 s c) = O(n-½), (IV.4.2) immediately follows. 

This completes the proof of Lemma IV.4.1. D 

REMARK IV.4.1. There is nothing sacred about the integers n E :N in (IV.4.2). 

They can be replaced by any sn > 0 such that sn + 00 as n + 00 • D 

COROLLARY IV.4.2. Let u 1 , ••• ,Uk be jointly Nk(O,Ik-1r½1r½ 1
) distrilJuted with 

TIE IT£. Replaeing z 1 , ••• ,zm in Lemma IV.4.1 by u 1 , ••• ,uk, the lemma remains 

valid in the sense that (IV.4.2) holds fork~ 3 (and also fork= 2 if 

C > Y > 0). 

PROOF. By an orthogonal transformation similar to that in Section IV.2 

and 

k 2 
l: a. (U. - b.) 

i=l 1 1 1 

k 
1:: r .< I u. I > 

i=l 1 1 

k-1 2 2 
l: a..(Zi-8.) +80 i=l 1 1 

k q . 
l: l: di. lu. I J 

i=l j=O J 1 

k f lki:1 z lj l: d 1,J. g, 
i=l j=O s=l is s 

where the Cl.i are positive.and bounded away from zero, the gis (and dij) 

are bounded and~ denotes "is distributed as". Since for 1 S j Sq 

I ki:1 g z I j $ ki: 1 h ~ j ) I z I j , 
s=l is s s=l is s 

where the h(j) are again bounded, the desired result follows from 
is 

Lemma IV.4.1. D 

LEMMA IV.4.3. Let a., 
J. 

a 0 > o and a0 > o be 

and C > 0, 

di (i = 1, ••• ,m) and c be real munbers, m ~ 1, and let 

fixed. Then, uniformly for max. la. I > a,,, la. I < d 0 l.J. V l. 

P( ~ a.z. +n-½ ~ d.Z~ < c) = P( ~ a 1.z1• < c) + O(n-½). 
i=l 1 1 i=l 1 1 i=l 
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The error bound is sha.rp; Remark IV.4.1 again applies. 

PROOF. It is sufficient to prove that 

(IV.4.7) 
_l 2 -½ 

P(L a.Z. ±n 2 d 0 LZ. < c) = P(L a,Z. < c) +O(n ). 
1 1 1 1 1 

Consider an 

matrix with 

orhtogonal transformation Z = 'l'Z where 'l' is an m x m orthonormal 

first row II a 1!1 (a1 , .•. ,am) • Then 

P(L a.z. ±n-½d0 LZ~ < c) = Pdjajlz1 ±n-½d0 LZ~ < c). 
1 1 1 1 

By direct calculation, using Jjajj ~ a 0 , uniformly 

Hence, by a convolu.tion argument, 

where z1 and ~-l are independent. A conditioning argument immediately 

shows that the RHS equals P(jjajjz1 < c) +O(n-½) and (IV.4.7) is proved. 

That the error bound is sharp follows by direct calculation for 

m = 1 and hence in general. D 

LEMMA IV.4.4. Let fm(x;o) denote the density of the noncentral x!<ol dis

tribution, m > 1. Then 

for x > 0, o > 0 

_l 1 l .l 2 
f (x;o) < C X 2 exp{--(x 2 -o 2 ) } 

m - m 2 
for O < X < 40 

where the positive constants c do not depend on x or o. Conversely, 
m 

_l 1 l 

f (x;o) >CO 2 for jx2 - 02 I < 1, 0 > 4. m m 

PROOF. All statements are trivial form= 1; so assume m ~ 2. 

Let v = v(x,o) be a real-valued function satisfying O ~ v-~ 1x, and let 
m - 1 -1 

bm = (2 11) 2 r ( (m-1) /2) • Then 
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X 

fm(x;o) = ~ fm-l (x-y;O) fl (y;o) dy 

X _l (m-3)/2 1 1 1 1 
< b J y 2 (x-y) exp(-2 o - 2x + o2y 2 ) dy 
- m 0 

1 l l 2 l l l x-v _l (m-3)/2 
< b exp{-2 (x 2 -o 2 ) }[exp{-o 2 (x 2 -(x-v) 2 )} J y 2 (x-y) dy 
- m 0 

X _l (m-3)/2 l l l 
+ J y 2 (x-y) exp{-o 2 (x 2 -y2 )}dy] 

x-v 

1 l l 2 1 l X - 1 (m-3)/2 
~bm exp{-2 (x 2 -o 2 ) }[exp{-2 (o/x) 2 v} ~ y 2 (x-y) dy 

+ (x-v)-½; z(m-3)/2exp{-~(o/x)½z} dz] 
0 

1 l l 2 1 l (m-2) /2 (1 1 
~bm exp{-2 (x 2 -o 2 ) }[exp{-2 (o/x) 2 v} x B 2 , 2 (m-l)) 

l 1 
, , ( 1)/4 lo/x)2v (m-3)/2 -2w 

+ 22x-2 (x/o) m- J w e dw]. 
0 

The first inequality follows by taking v = 0. The second inequality follows 

from the first one if x < 4m2 ; otherwise take v(x,o) = 2(m-l)log x (bound 

the last integral by 2(m-l)/2f(~(m-1))). The third inequality is obtained 

by taking v(x,o) = (m-1) (x/o) 2 1og x (bound the last integral as before). 
l l 

To prove the reverse inequality, assume o > 4, let lx 2-o 2 J < 1 and 

observe that 

1 X -½ (m-3)/2 1 1 1 1 

fm(x;o) > 2 bm ~ y (x-y) exp(-2o - 2x + o2y 2 ) dy 

1 1 l l 2 _l X (m-3)/2 l l l 
:':_ 2 bm exp{-2 (x 2-o 2 ) } x 2 j (x-y) exp{-o 2 (x 2-y2 )} dy 

x-1 

We are now prepared to prove our main theorem. 

PROOF of Theorem rv.2.1. 

i) Let E denote the set {y E :R\ max. IY, I < log n}. In view of (IV.4.1) n 1 1 

p (Y E E ) = 1 - a (n -½) uniformly for 7T E II . By Corollary 17. 2 in 
7T n n E 

Bhattacharya and Ranga Rao (1976) 



sup IP (Y E B) - P(U E B) I = O(n-½) 
B 1T n 

where the supremum is taken over all Borel measurable convex sets B c :Rk 

and where U = cu1 , ••• ,Uk)' is distributed as in Corollary IV.4.2. The 

error bound is uniform in 1T E IT. Consider CR (A) as a function of Y, 
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E n n 
CR (A) =:R~Y ). Since CR (A) is a convex function of Y on E , and E itself n n n n n n 
is a convex set, it follows that 

or 

(IV.4.8) 

where the supremum is taken over 1T E TIE and c > 0. 

Conditionally on Y EE, the terms in the expansion (IV.2.2) beyond 
n n -1 4 

the third power of Yin are uniformly bounded by En= dAn log n, where dA is 

a suitable positive constant. This remains true after replacing Yn by U. 

By Corollary IV.4.2 (with q = 3) 

Combining this result with (IV.4.8), i) is established. 

ii) By (IV.2.3) 

AA(U) = lcu) + :r (r~ -i\)U~ 

where rA-+ 1 and r~-i\ = O(maxilni -pill as maxilni -pil-+ O. By 

Corollary IV.4.2 (with q = 2) 

The desired result now follows fran part i). Note that this argument 

remains valid if one takes rA = 1. 

(iii) Let 

(IV.4.9) 

~>. 
Define B by (IV.2.4) with rA replacing rA. Obviously 
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where r, l+O(max. Jn.-p. j) and r~-;, = O(max. Jn.-p. JJ. Similarly to 
A i i ~A i A i i i 

(IV.2.10) and (IV.2.11) B (U) is distributed as 

By Corollary IV.4.2 (with q = 2) 

Moreover, in the notation of Lemma IV.4.4, 

(IV.4.10) P (BA (U) < c) 
TT 

where en= c + tn(c-onA) (1-;A)/;A, 0 .::_ tn .::_ 1. The first part of Lemma 

IV.4.4 implies 

_l 1 l l 2 1 1 

c e 2 exp <-- ce 2 -0 2 , , if I 02 -0 2 I < n 2 n nA n nA 

otherwise. 

Since c - onA = (6n-onA) (l+o(l)), it follows that 

1 

Hence the last term in the RHS of .(IV.4.10) is of order O(s n-2) and the 
n 

desired result follows from part (i). 
~ A 1 

(iv) Define rAl as rA in (IV.4.9) with I (n:p) replaced by I (TT:p) and 

define B~(U) as BA(U) with rA replaced by rA 1 . Again 
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and 

Proceeding as in (iii) 

By a local expansion 

(IV.4.11) 1 3 2 I 4 o ,-o = -3 (>.-l)n E (,r,-p.) /p. + O(n max. n.-p. I ) , nA n i i i i i i 

l 2 _l 1 
implying (on>.-on)/o~ = O(sn n 2 ). Since by Lemma IV.4.4 fk-l (x;o) < C o- 2 

(all x > 0), another application of the mean value theorem yields 

The desired result follows again from part (i). 

To prove that the bound in (iv) is sharp, it suffices to show that 

for given {s} 
n 

2 _l 
> e: s n 2 

n 

for some e: > 0 and appropriate n1 , .•. ,,rk; First note that n1 , ... ,1Tk exist 

such that both o /s2 and lo ,-o l/(s3 n-2) are bounded away from O and 00 , 
n n nA n n 

cf. (IV.4.11). Since 

..!. l 
lo - co -o i 1 2 -0 2 

n n>. n n 
o (1) 

2 _l 
ass n 2 + 0, 

n 

the second part of Lemma IV.4.4 and the mean value theorem imply the above 

inequality. 

(v) By (IV.2.3) 1 (IV.2,5) and (IV.2.7) 
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(IV.4.12) 

The 8. (i=l, ... ,k-1) are bounded away from O and 00 and the first k-1 
in . 2 

components of w = S'Q µ (see subsection IV.2.1) satisfy max. w. > 
A/2 ~A/ 2 n n n i in 

E1n max. (r. -r. ) 2/A2 for some El> 0. Hence, dividing both members in 
i i i l A/2 -A/2 

the last event of (IV.4.l~by n 2 max. Ir. -r. I/IA!, Lemma IV.4.3 implies 
i i i 

that the RHS of (IV.4.12) equals 

where the remainder term is O(s-1). The desired result now follows from 
n 

part (i). That the bound is sharp is an easy exercise. D 
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