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Preface 

This is a study on methods for comparing several mean values when 

the assumptions for a classical test are not fulfilled. 

For normal distributions with unequal and unknown population vari­

ances some tests for the hypothesis of equal location parameters are 

compared. Besides some methods that are specially designed for this 

situation some attention is also given to the robustness of the Kruskal 

and Wallis test against variance heterogeneity. 

For symmetric distributions two nonparametric methods are con­

sidered that adapt themselves to the estimated tail-weights. It is 

demonstrated that these tests have more power than some non­

adaptive tests for a representative mixture of distributions. 

Several approaches are considered for dealing with the possible 

occurrence of some extreme outliers. This is done for normal distribu­

tions and equal variances. Outliers are represented by symmetric and 

one-sided contamination. 

For almost every well known classical Multiple Comparisons Test 

alternatives are given that can deal with variance heterogeneity or with 

some extreme outliers. These modifications are compared and some 

recommendations are given. 

Several people have contributed to this study and I want to express 

my gratitude to them. ln alphabetical order they are: Prof. dr. W. 

Albers, Prof. dr. R. Doornbos, J. Hontelez, J.C. Linders, Ir. L. van Reij, 

R.V.H. Rooijakkers, Prof. dr. P.J. Rousseeuw. Prof. dr. P.C. Sander, T. 

Smeulders, Mrs. E.H.A.M. Stijnen-Stribos and Ir. P.S.P.J. Werter. 
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:L mtroduction 

This tract is about the hypothesis that some location parameters are 

equal. The model is: 

The chapters number 2, 3, 4 and 5 consider the hypothesis H 0 : µ 1 = ... 
= µk where the observations within the samples are numbered from 1 

ton;. Chapter 6 is about a collection of hypotheses:µ; = , where i = 

1 , .... k and j = 1 , ... , i-1. For the errors e ij various distributions will 

be considered with = 0 and special attention will be given to nor­

mal distributions with variance heterogeneity and to the presence of 

some extreme outliers. 

As a consequence of several approximations the probability of rejecting 

a hypothesis when in fact it is true win not for every test be equal to 

the chosen size a:. In those situations methods are considered for which 

this probability differs as little as possible from a:. whatever the value 

of the nuisance parameters may be. For example. in the Behrens-Fisher 

problem there are two samples from normal distributions with unk­

nown and possibly different variances. The nuisance parameter here is 

e. the ratio of the population variances. Following the Neyman and 

Pearson conditions a validation of a test for which the distribution 

under the hypothesis is only approximately known, involves repeated 

sampling for fixed 0. For every value of 0 the fraction of samples for 

which the hypothesis is rejected under should be almost equal to 

a. When no analytical approach seems to exist a simulation is per­

formed with a limited set of values for e that should represent the 

collection one might meet in practical situations. 

Those who are in favour of :fiducial statistics see the ratio ff of the 

sample variances as the nuisance parameter in the Behrens-Fisher prob­

lem. And they are lucky. because there exists an exact solution for this 

problem. This is usually called the Behrens-Fisher test [Behrens 

(1929). Fisher (1935)] and for every fixed value of 0* the probability 

of rejecting a true hypotheses is a:. But that is not the case for every 

fixed value of 0. for 0 = 0 or 0 = oo the Behrens-Fisher test 
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controls the confidence error probability. For aH other values of 9 this 

method is conservative in the classical sense [Wallace 0980)]. In this 

study conservatism will be regarded as undesirable, because it usually 

results in a loss of power. Progressiveness (meaning that the actual 

level exceeds its nominal value) is considered to be unacceptable. 

The Behrens-Fisher solution uses the following distribution: 

Here X; denotes the sample mean and s/ the sample variance. The 

tables are entered with the numbers of degrees of freedom v; = n; - ::I. 

and the ratio 0'. In the original publication the following parameter 

was used instead of 0 * : 

The desideratum of all tests in this dissertation is that the nominal 

level a controls the error probability under the hypothesis. This pro­

bability is considered with the classical confidence meaning. Therefore 

the fiducial solutions will be discarded and for the Behrens-Fisher 

problem approximate solutions like Welch's (1947) modified t-test 

will be recommended. 

Ll. Variance heterogeneity 

Chapter 2 is about tests for the equality of several means when the 

population variances are unequal. The data are supposed to be nor­

mally and independently distributed. The situation can be described as 

the k-sample Behrens-Fisher problem, and several approximate solu­

tions are considered. ln order to understand why such special tests are 

necessary it is of interest to know what will happen if the classical 

method is used and the problem of variance heterogeneity is simply 

ignored. Table 1 gives the estimated size of the classical test for one­

way analysis of variance. For the nominal size the usual values of 

10%, 5% and 1 % were chosen. The statistic F is given by: 
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Table 1: Actual size of classical F-test 

sample size sigma 10% 5% 1% 

4,6,8,10,12 1,1,1,2,2 6.28 3.16 0.72 

1,l.2,3,3 5.88 3.12 0.72 

1,2,3,4,5 5.52 2.72 0.56 

1,2,3,5,7 5.92 2.88 0.76 

2,2.::1 .• Ll. 22.28 14.20 6.04 

3,3,2,1,1 26.00 17.64 8.08 

5,4,3,2,1 27.12 19.52 9.24 

7,5,3,2,1 31.28 24.44 13.28 
8,8,8,8,8 l.l.1.2,2 11.72 6.92 1.88 

1,1,2,3.3 12.00 7.08 2.32 

1,2,3,4,5 12.60 7.88 2.24 

1.2,3,5,7 13.88 8.60 3.24 

F'=_i=_I ______ _ 
k 

L (n;-1)s;2/(N-k) 
i= 1 

k 

Here N = En; denotes the combined sample size. If the population 
j == 1 

variances are equal F follows under the hypothesis of equal means an 

F-distribution with k-1 degrees of freedom for the numerator and N-k 

fo:r the denominator. If the sample sizes a:re equal and the population 

variances (or the standard deviations) are unequal the actual size will 

exceed its nominal value, as can be seen in the last four lines of table 

1. This effect is even stronger if the sample sizes are unequal and the 

smaller samples coincide with the bigger variances. But if the smaller 

sample sizes correspond with the smaller variances the reverse of this 

can be seen: the test becomes conservative, meaning that the actual 

probability of rejecting the hypothesis is lowe:r than the nominal size 

a:. This can be understood by looking at the denominator of the 

expression for F. 



- 4 -

This F-test is based on the ratio of variances and therefore it seems 

natural to call it analysis of variance. But in this dissertation other 

tests will be considered that are based on quite different principles. 

Therefore from now on such tests will be looked upon as special cases 

of analysis of means, and the term analysis of variance will be avoided 

in this context. 

The tests in chapter 2 originate from James (1951). Welch (1951) and 

Brown &. Forsythe (1974). The test statistic used by James is very 

simple, but for the critical value a somewhat forbidding expression 

exists. Brown and Forsythe compared these tests by a simulation 

study. They used a first order Taylor expansion for the critical value 

of the method of James. Their conclusion was that this test was infe­

rior when compared to their own and the method of W ekh. In this 

dissertation a second order Taylor expansion will be considered. h will 

be demonstrated that in this case the test of James is superior to the 

other two in the sense of size control. None of the methods under con­

sideration is uniformly mo:re powerful than the other two. and there­

fore the method of James will be recommended with the second order 

Taylor approximation for the critical value. A practical disadvantage 

of this test is that its statistic does not result in the tail-probability 

with the help of a table or a standard statistical routine. But that 

problem can be overcome by a minor modification. 

1.2. The Kruskal &. Wallis test 

When the :results of the study on tests for the of several 

mean values the population variances are unequal) were 

presented at a conference, someone from the audience :remarked: Why 

do you use such a complicated method? If I feel that the conditions for 

a classical test are not fulfilled I simply use the Kruskal &. Wallis test. 

3 is a study on the behaviour of the Kruskal &. Wallis test for 

:normal populations with variance heterogeneity. The exact distribution 

of the test statistic is considered, as well as the popular x2 approxima-

tion and the more conservative Beta approximation Wallace 

The results are compared with those for a nonparametric test that is 
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specially designed for unequal variances. 

The Kruskal & W alhs test is developed for the hypothesis that all 

samples come from the same continous distribution against the alter­

native that the location parameters are unequal. But unfortunately this 

test appears to be also sensitive for differences in the scale parameters. 

The test statistic is: 

Ru denotes the rank of observation in the combined sample. R; 1s 

the mean of the ranks in sample number i and R = N; 1 . The formula 

for K suggests a transformation of the classical test that is to be 

applied to the ranks. So it will not be amazing to see in chapter 3 that 

the sensitivity of this test to unequal variances is similar to the sensi­

tivity of the classical test. Therefore the Kruskal & Wallis test cannot 

be recommended in this situation if one uses it with the exact distribu­

tion of the test statistic, or if one uses the x2 approximation. The Beta 

approximation is somewhat conservative. Therefore it can handle a 

limited amount of variance heterogeneity. but the maximum ratio of 

the standard deviations should not exceed J. for greater differences it 

is possible that the actual probability of declaring the means to be 

different when in fact they are equal will exceed the nominal level a. 

Another disadvantage is that if one uses this approximation the loss of 

power relative to the method of James can be quite impressive, espe­

cially if extreme means coincide with small variances. 

1.3. An adaptive nonparametric test 

a conference on Robustness in Statistics, ) once 

remarked that a modem statistician who can use a computer should 

have a bouquet of tests for each of the most popular hypotheses. Some 

characteristics of the samples involved could then be used to determine 

which test would have optimal power in some particular situation. 

Such strategies usually involve adjustment of the level, but this is not 

necessary if the selection scheme uses information that is m<::le-i:,en1C1 
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of the information used for the computation of the test statistic. 

The Kruskal & Wallis test is a member of a large family of non­

parametric methods that are designed for the hypothesis that k sam­

ples come from the same distribution. These tests can be used for the 

hypothesis that some location parameters are equal if the distributions 

involved are at least similar in shape and scale. If one uses the Kruskal 

& Wallis method for this purpose it is well known that the power will 

be optimal if the underlying distribution is logistic. More power can be 

obtained for distributions with shorter tails by using the Van der 

W aerden test, and for heavier tails the Mood & Brown test is a better 

choice [Hajek and Sidak (1967)]. 

In chapter 4 two adaptive tests will be discussed that are based on the 

selection scheme that is given in table 2. 

Table 2: Selection scheme 

tail method 

light Van der W a er den 

medium Kruskal & Wallis 

heavy Mood & Brown 

One of these tests is a pure adaptive nonparametric method that uses 

independent information for the selection and the computation of the 

statistic. The other test involves some kind of moderate cheating con­

cerning this independency in order to get some more power. It will be 

demonstrated that both methods have more power than any of the 

separate tests mentioned in table 2 if the underlying distribution is a 

mixture with equal occurencies of the following distributions: (1) uni­

form, (2) normal, (3) logistic, (4) double exponential and (5) Cauchy. 

If this mixture would represent the situation that nothing about the 

distribution is known except the fact that it is symmetric, then these 

adaptive tests would be highly recommendable. But unfortunately the 

superiority of the power vanishes for small samples if one drops dis­

tributions (1) and (5). In that case the Kruskal & Wallis test is better 

for samples containing not more than 15 observations each. 
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The adaptive tests are not recommended in their present form. The 

moderate gain in power (for the above mentioned mixture of 5 distri­

butions) is not worth the extra programming effort for the selection 

scheme. But two possible improvements are mentioned in chapter 4 

that are still under consideration while this was written. So there is 

some hope that a better adaptive test will be found. 

1.4. Some extreme outliers 

ln chapter 5 an error distribution will be considered that is N 2 ) 

with probability 1-€ and N(O,Oa- 2 ) with probability€. Since this dis­

tribution is intended to describe outliers the value of € will be small 

and that of e very large. This is a model for symmetric contamination; 

one-sided contamination will also be considered. 

The behaviour of the classical method for one-way analysis of means 

will be compared with the behaviour of some alternatives that seem 

more promising with respect to their :robustness against variance 

heterogeneity. The classical method cannot be recommended; one single 

outlier can remove all power from this test. The alternatives are the 

following: (1) Trimming. (2) Winsorizing, (3) Van der Waerden and 

(4) A method proposed by Huber (1981). Number (2) can handle a 

limited fraction of outliers, but it does not matter much how big 

are. The other three are more robust and concerning the control over 

the chosen size their differences are very small. So the recommendation 

has to be based on the power and it will be demonstrated that Huber's 

method is the best choice. 

Some attention will be given to two approaches that entered the study 

but that were discarded before the final simulation. One is based on a 

very robust method for regression problems that is called Least 

Median of Squares and that is proposed by Rousseeuw ( This 

method is suitable for testing in linear models as long as the predictors 

are continuous. But if the predictor is nominal. so that the 

method reduces to regression with dummy-variables. the control over 

the chosen size becomes very unsatisfactory. The other method that 

was discarded was one based on adaptive nonparametric testing with 



optimal scores for the model-distribution. This involves simultaneous 

estimation of o- 2 • 6 and € (for symmetric contamination) and it seems 

that the sample sizes needed for such an approach by fa:r exceed the 

values that one usually meets in practice. 

Table 3: Preliminary data description 

sample minimum Q1 Qz Q3 maximum 

1 1.56 1.63 1.70 1.78 1.90 

2 1.45 1.62 1.75 1.83 1.89 

3 1.52 1.60 1.79 1.88 195 

The simulations of chapters 2 and 5 will be combined. and this results 

in a somewhat disappointing conclusion: The test that is most robust 

against variance heterogeneity cannot even handle one single outlier. 

and Huber's method cannot be recommended if the variances are 

unequal. So the user has to perform some explorative data analysis 

before he can choose his test. But that is not very difficult here; look 

for instance at table 3 where Q; denotes the quartiles so that Q 2 is the 

median. h is not difficult to recognise the outlier here: the analist prob-

just forgot to enter the decimal point once. Such tables can be 

considered as a preliminary data description for every analysis of 

means. 

LS. Simultaneous statistical inference 

In chapter 6 a collection of hypotheses is considered: µ; for i = 1 

..... k and j = 1 ..... i-1. The objective is to find tests for which the 

level a means the accepted probability of declaring any pair of means 

different when in fact they are equal. ff the variances are equal. and in 

the absence of outliers. there are several approaches one can consider: 

( 19 35) Least Significant Difference test 

in 1986). 

Pairwise comparisons based on the t-distribution with some level 

/3 that is a function of 0t. and the number of pairs. 
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The Newman (1939). Duncan (1951) and Keuls (1952) Multiple 

Range tests with level o.P for a range containing p means. Suit­

able choices for OLP are proposed by Duncan (1955). Ryan ( 

and Welsch (1977). 

Tukey·s (1953) Wholly Significant Difference test that uses the 

studentized range distribution for pairwise comparisons. 

The Multiple F-test that was proposed by Duncan (1951). Here 

the same values for Cl P can be considered that were already men­

tioned for the Multiple Range test. 

For an these methods alternatives will be considered that can handle 

variance heterogeneity or outliers. Tests with desirable properties are 

found for every approach that is based on pairwise comparisons, 

including the Least Significant Difference test. For unequal sample sizes 

the methods that are based on the Multiple Range test or the Multiple 

F-test have some very unpleasant properties. that do not disappear for 

equal sample sizes but unequal variances. However, these strategies can 

be succesfully adapted to error distributions with outliers as long as 

the design remains balanced. 
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2. Testing the equality of several means when the population 

vadanoos are unequal 

2.1. Introduction 

We are interested in the situation where there are k independent sam­

ple means x 1 •...• xk from normally distributed populations. Denote 

the population means by µ 1 • ... . µ k and the variances of their esti­

mates by a 1 • ••• , ak. So we have 01.;=a}/ni where a} is the variance 

within the i-th population and n; is the i-th sample size. The null 

hypothesis to be tested is H O : µ 1 = ... = µk. For the moment we will 

suppose that the u? are known. Unlike the situation in which the clas­

sical analysis of means test can be applied we will not suppose that er? 
k 

= a-J for i , j = 1 ..... k. If we write w; = 1/ 0I. i, w = L w;. x 
i=l 

k 
LW;X;/w and r = k - 1 it is well known that under Ho: 

; ""1 

k 

L W; (x; -x)2 :::::.: x;-
; == 1 

So it is no problem to test this null hypothesis. Now we will suppose 

that the population variances are unknown. If an the samples contain 

many observations it still is not a difficult problem. If we write a; = 
It. J.: 

s/!n;, V; = n; - 1, w; = 1/a;, w = r, w; and x = L w,x;lw then 
i= 1 i== 1 

k 

L w; (x; -x)2 will be approximately distributed as x;. 
;:= 1 

The topic of this chapter is the situation in which the population vari­

ances are unknown, and the samples are small. 

2.2. The method of James 

We will go back to the situation where the population variances are 

known. In that case we have: 
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Pr[ W;(x;-x)2~1jl Gr('I/J) 
i= 1 

Here Gr (t/J) denotes the distribution function of a )(2-distribution with 

r degrees of freedom. If the population variances are unknown. every 

°'; can be estimated by an a; . Using these estimates James ( 951) 

tried to find a function h (a; , ... , ak ;if.,) for which the following holds: 

Pr[ W;(x;-x)2~h(a; , ... ,ak,'1/f)]= ) 
i= 1 

The function h will be implicitly defined if we write: 

k f Pr [ L W; (x; -x)2 ~ h (a ,tf, )I a ]*Pr [da ]= Gr (l/f) 
i= 1 

Here the integration is from O to co for every a;. The first Pr -

expression denotes the probability of the relation indicated for fixed a, 
and Pr [da] denotes the product of the probability differentials given 

by: 

1 ( V;a; )lv,-1 ( V;a;) ( V;a;) 
-- 2 exp----· d --r ( ! v · ) 2a 2a 2a · 2 l l l l 

Using a Taylor expansion James found an approximation of order -2 in 

the v;. To give this expression we define the following two 

R = f _ _l_( 2 )1 
st L., 5 , 

i==l V; ½ 

Here x2(a) denotes the percentage point of a x2-distributed variate 

with r degrees of freedom, having a tail probability of a. For the fol­

it is important to .realize that Xzs depends on the chosen size°'. 

whereas is independent of a. After a good deal of algebra James 

found: 
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+l (-Rl2 +4R 
4 

+(Rz3-3R22+3R21-R20)(5X6+2x4+X2) 

+3(R lz-4R 23+6R 22-4R 21+R20)(35xs+ 15X6+9x4+5x2)/16 

+(-2R22+4R21-R20+2R 12R 10-4R 11R 10+R fo )(9xs-3X6-5X4-xz)/16 

(-R22+Ri\ )(21xa+3x6+x4+x2) 

+¼ (R z3-R 12R 11)(45Xs+9X6+ 1X4+3xz)) 

k 

The decision rule is to reject H O if ,E w;(x;-x)2 > h 2(a). Fork= 2 
i= l 

this test is identical to Welch's approximate solution of the Behrens-

Fisher (1929) problem. This problem concerns the topic of this 

chapter. but it is limited to the case of two samples. Welch uses the 

test statistic: 

V= x1-x2 

,lsl ln 1+sl; /nz 

This test statistic is to be compared with a Student t-variable with / 

degrees of freedom, where f is computed as: 

(sf In 1+sl ln,)2 

It may seem 

complicated second order James test in the case of two samples. But 

certain non-linear relations between the quantities Rsr exist in the spe­

cial case k = 2. so that the expression for h z(a) :reduces to the square 
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of Welch's critical value. 

For k > 2 James proposes to use the )(' 2 test for large samples given in 

the introduction, and a very simple first order method for smaller 

samples. This method uses the critical value: 

In his opinion it would involve too much numerical calculation to 

include the second correction term. But then it should be noted that in 

1951 the computers were not the same as they are now. 

2.3. The method of Welch 

Welch ( 1951) started by using the same test statistic as James. For k = 
2 this is the square of the statistic that Welch used for the Behrens­

Fisher problem: 

w 1wz(x i-x2)2 

w1+w2 

2 

I: w;Cx;-x)2 
i == 1 

Since Wekh used a t-distribution for the two-sample test it was 

natural for him to try an F-distribution for the more general case of k 

samples. He started with the moment-generating function of 
k k 
L w; (x; -x )2 where x = L w; X; /w. The moments of this statistic 
i=l i=l 

become infinite after a certain order. but W ekh proceeded 

if the moment--generating function existed: 

M (u )= E exp[u w; (x; -x)2] 
i = 1 

Here E denotes averaging over the joint distributions of x; and 

a Taylor expansion, just like James did, Welch found: 

M (u )= (1-2u )-½(k-1)[1+(2u (1-2u )-1+ 

as 
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3u 2(1-2u)-2)c±.-1 (1-~)2)] 

i=l 11; LW; 
i= I 

Therefore the cumulant-generating function of V 2 can be approximated 

by taking the natural logarithm of this expression: 

K(u )= -½ (k -1)log., (1-2u )+ 

[2u(1-2u)- 1+3u 2(1-2u)- 2][ - 1 (1-
i= 1 Y; 

i == 1 

Welch did not compare this result with the cumulant-generating func­

tion of an .F -distributed variate. but he used a transformation: 

G =[(k-1)+A 

Here F has an F-distribution with / 1 and f 2 degrees of freedom. For 

f 1 Welch choose the natural value k - 1 and for G he found to order 

-1 in / 2 the cumulant-generating function: 

+2(k -l))u (1-2u 

This is the same cumulant-generating function as that of the test 

statistic if the following two conditions hold: 

A 2(k -2) 
k +1 

i= 1 

1 w 
-(1---'-)2 

i=l !I; ~ 
"--w; 
i=l 

Therefore the test statistic V 2= w; -.i )2 is ap·prc,x1matte1 distri-
; = 1 

buted as [(k-1)+A 2}.F where the parameters/ 1 and f 2 of the F-
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distribution are given as follows: f 1 = k - 1 and f 2 is with A impli­

citly defined in the above given two equations. In order to get a statis­

tic that is approximately distributed as an F-distribution Welch 

modified the simple form of V 2 into: 

I. 
L W; (x; -x-)2/(k -1) 

W=---i=_l _________ _ 

i = 1 

This statistic can be approximated by an F -distribution with / 1 = k -

1 and / 2 degrees of freedom, where f 2 is given by: 

i=l 

Since f 2 wm usually not be an integer it should be rounded to the 

nearest one before a table for the F-distribution can be used for this 

test. It can be shown that this method is equivalent to the method of 

James to order -1 in the v; . 

2.4, The method of Brown and Forsythe 

If we may assume that the population variances are can be 

tested by classical one-way analysis of means. using the statistic: 

k 

L n; (x;-x)2 /(k -1) 
F = _; =_1 _______ _ 

k 

L (n;-1)s/!(N-k) 
i = 1 

t t 
Here N = L n; and x = L n; x; IN. Brown and Forsythe :replaced the 

i = l i= 1 

denominator of this formula by an expression that has the same expec-

tation as the numerator when H O holds. Their test statistic becomes: 
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F' ::::: _; =_l ----­
k 

L (1-n; IN )s,2 
,=l 

This statistic is approximated by an F-distribution with f 1 and f 2 

degrees of freedom. where f 1 == k - L For finding f 2 Brown and For­

sythe used the Satterthwaite (1941) technique. Their result is: 

f 2= [ c,2/v; J- 1 where 
; == 1 

c;=(1-n;IN)s,2![ (1-n;IN)s,2] 
; == 1 

If k = 2 the W and test give (just like the James method) results 

that a.:re equivalent to Welch's approximate solution of the Behrens­

Fisher problem. Although Scheffe'(1944) has already proven that exact 

solutions of this type cannot be found. a simulation study of Wang 

( 1971) has shown that the approximate solution for k = 2 gives excel­

lent control over the size of the test. whatever the value of the nui­

sance parameter 61 = u ;2 I u J may be. 

2.5. Results of previous simulation studies 

Brown and Forsythe compared their test with the classical analysis of 

means test. the first order method of .James and the test of Welch. 

Their conclusions were as follows: 

If the population variances are unequal then the difference 

between the nominal size and the actual probability of an error of 

the fi.:rst kind can be considerable for the classical analysis of 

means and the first order method of James. even when the 

differences between the population variances are relatively small. 

The power of the tests of vVelch and Brown & Forsythe is only 

slightly smaller than the power of the classical analysis of means 

test when the population variances are equal. 
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If extreme means correspond to small variances then the method 

of Welch is more powerful than the test of Brown & Forsythe. 

And if extreme means correspond to the bigger variances then the 

method of Brown & Forsythe has more power, as can be seen by 

comparing the numerators of the test statistics: 

Welch: W;X;/W 
; = 1 i= 1 

and w == w;. 
i = l 

Brown & Forsythe: n;(x;-x)2 • where x== n;x; and 
i = l i = 1 

N== n; 
i = 1 

Ekbohm (1976) published a similar simulation study. He also left out 

the second order method of James, but included a test of Scheffe' 

(1959). His conclusions agree with the results of Brown and Forsythe. 

Ekbohm found, however, something extra. He recognized the possibil­

ity that an important difference between two means might not be 

found because of a big variance in a third population. Dealing ade­

quately with this problem is a topic of simultaneous statistical infer­

ence. Serious attention to this problem will be given in the last 

chapter. 

2.6. An example 

Data from three groups, where the assumption of variance homo­

geneity seemed unreasonable, were submitted to the methods given in 

the previous sections. After a suitabe scaling the data were: 

Sample : 1.72 -1.56 0.98 0.31 0.92 

Sample 2: 2.51 2.56 2.17 1.69 1.83 1.04 1.34 3.38 2.98 1. 79 U38 

2.05 

Sample 3: 2.50 7.33 -5.34 -18.64 0.04 4.27 4.78 -5.52 -3.11 -8.84 

-0.13 -0.19 15.55 13.36 2.97 
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These data can be summarized as follows: 

X 1 = 0.469 S 1 = 1.242 n l = 5 

X2=2.102 S2=0.665 n2=12 

X3 = 0.601 S3 = 8.532 n3 = 15 

The hypothesis of interest conce:rs the equality of the population 

means. Normality seems a :reasonable assumption. but variance homo­

geneity can not be assumed. Welch's test :resulted in W = 3.757 with 2 

and 10 degrees of freedom. The critical value of the F-statistic with 

these parameters and a = 0.05 is given as 4.10. So the hypothesis can 

not be rejected at this level, but the difference between the test statistic 

and the critical value is small. For the James second order test one has 

to compute not only the statistic. but also the critical value. In order 

to get a more interpretable result. the tail-probability of the test was 

computed. This yielded a value of 0.066 wich just exceeds the size of 

the test. So the results of the tests by Welch and James are similar. 

Since these tests originate from the same statistic, this is just what one 

might expect. 

The test by Brown and Forsythe gives F' = 0.439 with 2 and 15 

degrees of freedom. Here the critical value of the F-statistic = 3.68 so 

the hypothesis can not be :rejected. The acceptance of the hypothesis is 

far more convincing than with the other two methods. This is in 

accordance with the fact that the extreme mean of the second sample 

coincides with the smallest standard deviation. 

Since the variance in the third group is much bigger than the other two 

variances it is interesting to examine what will happen if the third 

group is removed and the hypothesis of equal population means is res­

tricted to the fifSt two samples. Here Welch's method yields W = 
7 .663 with 1 and 5 degrees of freedom. The critical value of the F­

statistic is 6.61 so the hypothesis is :rejected. The method of James 

gives a tail probability of 0.038, resulting in the same conclusion. The 

test of Brown and Forsythe gives exactly the same results as the 

method of Welch. which is just what one might expect since they are 

identical for two samples. Because we have only two samples this is an 

example of the Behrens-Fisher problem and the hypothesis of equal 
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population means can also be tested with \Vekh's approximate t·­

solution. Here the statistic V = ·-2.768 with 5 degrees of freedom. This 

is essentially the same result as that of the Brown & Forsythe test or 

Welch's solution for the k-sample problem. We have V 2 = F = W and 

the parameter of the t-distributed statistic is equal to the number of 

degrees of freedom for the denominator in the f-distributed statistics. 

In this example the significant difference between the first two popula­

tion means is hidden because of the big standard deviation in the third 

group. Such problems are well known in the classical case of equal 

population variances but unequal sample sizes. Allowing the variances 

to be unequal can make things worse in this respect. The researcher 

should consider carefully before deciding to perform an overall test in 

this situation. In many cases a couple of pairwise comparisons might be 

a better choice. 

2. 7. The difference between the nominal size 

babHity of rejecting a true nuH hypothesis 

the actual pro-

For this study pseudo-random numbers were generated from k normal 

distributions. Since we are interested in the behaviour of the tests 

under the null hypothesis all population means were equal and 

without any loss of generality their value was set to zero. The samples 

were generated using the Box and Muller ( 1958) technique [see appen­

dix 1]. For the tests of Brown & Forsythe and Welch the probability 

function of the F-distribution was computed following suggestions of 

Johnson & Kotz (1970) [see appendix 2]. For computing h 1(a) and 

h 2(a) in :respectively the first and second order test of James one needs 

the inverse x2-distribution. The method for computing this function 

can be found in Stegun & Abramowitz (1964) [see appendix 3). Fork 

the values 4 and 6 were chosen. The nominal size p is given three 

values: 0.05 and 0.01. The results of this simulation study are 

given in tables 1, 2 and 3. The actual relative frequency of rejecting a 

true null hypothesis has of course not necessarily the same but 

one might expect it not to differ too greatly from p. An acceptable 

difference seems to be 2o-, where a is the standard deviation of a 
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Table 1: Actual size with nominal size = 10% 

sample size sigma Br-Fo James1 James2 Wekh 

4,4,4,4 1.1.1.1 7.72 12.96 10.28 9.96 

1.2.2.3 9.84 13.88 11.08 11.36 

4.6.8,10 1.1.1.1 8.08 11.44 9.96 10.28 

1,2.2.3 9.56 10.00 9.12 9.16 

3.2.2.1 10.24 12.64 10.24 10.92 

10,10,10,10 1.1.1.1 9.60 10.68 10.44 10.48 
1.2.2,3. 10.80 10.40 9.72 9.92 

10,15.15.20 1.1.1.1 9.04 9.64 9.52 9.52 

1.2.2,3 10.68 10.40 10.16 10.24 

3.2.2.1 10.12 10.24 9.72 9.84 

20.20,20.20 1.1.1.1 9.20 9.32 9.28 9.28 

1.2.2.3 10.80 10.04 9.96 9.96 

4.4.4.4.4.4 1.1.1.1.1.1 8.04 15.04 9.84 11.52 

1.1.2.2,3.3 9.44 16.56 11.12 13.08 

4,6,8.10.12,14 1.1.1.1.1.1 8.56 11.52 9.56 10.20 

1.1.2.2.3.3 10.16 10.76 8.88 9.48 

3,3.2.2.1.1 10.32 12.20 9.84 11.12 

10.10.10.10.10.10 1.1.1.1.1.1 10.48 11.60 11.00 11.20 

1.1.2.2.3,3 12.48 12.12 11.00 11.76 

10.10.15 .15 .20.20 3.3.2,2.1.1 11.44 10.16 9.40 9.92 

binomial distribution. In this case we have u= ../pq In . where q = 1 -

p. The number of simulations n for each case was 2500. So we have 

u 10 = 0.600%, u 5 = 0.436% and u 1 = 0.199%. Let d be the estimated 

size of the test minus the nominal size and this difference divided by 

the appropriate value of u. Then we may call the behaviour of the test 

conservative if d < -2. accurate if -2 ~ d < 2 and progressive if 2 ~ 

d. Table 4 gives the occurances of various categories for d. The regions 

for conservative. accurate and progressive behaviour are separated by 
double lines. From table 4 we learn that the first order method of 

James has an extremely progressive behaviour and should therefore not 
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Table 2: Actual size with nominal size = 5% 

sample size sigma Br-Fo Jamesl james2 Welch 

4.4.4.4 1,1,1,1 3.48 7.40 4.64 4.52 

1,2.2,3 4.80 8.56 5.48 5.84 

4,6,8,10 1.1.1.1 4.16 6.44 4.56 4.96 

1,2,2,3 5.16 5.56 4.72 4.72 

3,2,2J. 5.64 7.48 5.64 6.32 

10,10,10,10 1.1.1.1 4.64 5.60 5.36 5.36 

1,2,2,3 6.12 5.92 5.52 5.56 

10,15,15.20 1,1,1,1 4.68 5.04 4.88 4.88 

1.2.2,3 5.96 5.12 5.00 5.00 

3,2.2.1 4.84 5.00 4.72 4.84 

20.20.20,20 1.1.1.1 4.80 4.88 4.80 4.84 

1.2.2,3 5.96 4.60 4.48 4.48 

4.4.4.4.4.4 1.1.1.1.1.1 3.32 8.92 5.28 6.12 

1.1.2.2,3,3 4.64 10.40 6.12 6.88 

.1.1,1.1,1 4.32 6.80 5.04 6.04 

1. 1,2,2.3,3 5.88 5.36 3.92 4.72 

3,3,2,2,1.1 5.72 7.80 5.40 6.72 

Ll.1.1.1.1 5.12 6.60 5.84 6.00 

1.1.2,2,3,3 6.84 6.72 5.76 6.24 

10,10,15,15 ,20,20 1,1,2,2,3,3 7.24 5.20 4.76 5.00 

3,3,2.2.1.1 6.60 5.60 4.88 5.24 

be used. Welch's test has about the same tendency to progressiveness 

as the method of Brown & Forsythe. but of these tests only B:rown 

Forsythe can also demonstrate a conservative behaviour if the pattern 

of sample sizes and variances makes this possible. The second order 

method of James is clearly the best in this respect. The only entry in 

this table that suggests a :really progressive behaviour originates from 

table 3. where we can see that the actual size is estimated as 1.96% 

while the nominal size== 1%. This occured with six very small samples, 

containing only 4 observations each. Besides this a very slight 
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Table 3: Actual size with nominal size= 1% 

sample size sigma Br-Fo James1 James2 Welch 

1.1.1 J 0.44 2.32 0.84 0.76 

1,2,2,3 0.96 3.12 1.32 1.12 

1.1.1.1 0.64 1.80 1.20 1.28 

1.2.2,3 1.00 1.60 1.00 1.00 

3,2,2.1 1.24 3.08 1.52 1.68 
10,10,10,10 1.1.1.1 1.24 1.24 0.88 0.92 

1,2,2,3 1.72 1.28 0.84 0.92 

10,15,15,20 1.1.1.1 0.92 1.28 1.12 1.16 

1.2,2,3 1.48 1.36 1.28 1.32 

3.2.2,1 1.44 1.16 0.96 1.00 
20,20,20,20 1.1.1.1 1.12 1.00 0.92 0.92 

1.2.2,3 1.48 0.84 0.76 0.76 

1.1.1.1.1.1 0.44 3.44 1.12 1.44 

1.1,2,2,3,3 1.04 4.36 1.96 2.36 

1.1.1.1.1.1 0.60 2.00 1.28 L44 

1.1.2.2,3,3 1.48 1.28 0.68 0.88 

3,3,2,2.1.1 1.48 2.76 1.44 2.16 
10,10,10,10,10,10 l.l.1.1.1.1 0.84 1.72 1.24 1.36 

1.1.2.2,3,3 2.12 1.56 1.16 1.32 
10,10,15,15 ,20,20 1.1.2 .2 ,3 ,3 1.92 0.88 0.76 0.84 

3,3,2.2.1.1 1.68 1.24 1.08 1.20 

suggestion of progressiveness occured three times for the second order 

method of James and these occurences have in common that a rela-

tively big standard deviation was combined with a very small sample 

size of 4 observations. So the conclusion of this section can be that as 

far as the control over the chosen size is concerned, the second order 

method of James is the best. 
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Table 4: Summary of tables 1, 2 and 3 

Br-Fo Jamesl James2 Welch 

d <-3 5 
-3~d <-2 3 1 

-2~d <-1 6 1 8 6 

-1~d <1 23 19 36 31 

1~d <2 7 11 14 10 

2~d <3 10 6 3 9 

3~d <4 3 6 3 

4~d <5 4 5 1 1 

5~d 2 15 3 

2.8. The power of the tests 

Table 5 is similar to the tables in the previous section. though of 

course here the equality of the population means is dropped. The 
number of replications for each entry is 2500. Table 5 suggests the 

following concusions: 

None of the methods is uniformly more powerful than the other 

two. 

If extreme means coincide with big variances the power of the 

test of Brown & Forsythe is superior. as was already found by 

the originators of this method. It can also be seen that the tests of 

James and Welch are more powerful if extreme means coincide 

with small variances. 

In Dijkstra and Werter (1981) more tables like this can be found. 

where the first order method of James is left out. These tables suggest 

the same conclusions concerning the power and the control over the 

chosen size. Table 6 is a summary of table 5. For each test the mean 

percentage of rejections was computed in three categories: EMSV 
(Extreme Means with Small Variances). EMBV (Extreme Means with 

Big Variances) and EQV (EQual Variances). From table 6 we can get 

the impression that Welch's test is slightly more powerful than the 
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Table 5: Estimated power with nominal size = 5% 

ss mean sigma B:r-Fo James1 James2 Welch 

A 3,0,0,0 1.1.1.1 93.80 91.92 86.84 86.48 
5,0.0,½ 100 99.96 99.94 99.68 
3.0.0,0 1.2.2,3 31.16 72.04 60.28 59.88 
0.0.0.3 30.64 28.72 22.72 22.68 
5,0,0,½ 75.24 98.60 97.08 97.08 
½ .0.0,5 63.52 52.44 43.72 43.44 

B 3,0,0.0 1.1.1.1 98.80 95.40 92.88 93.52 
3.0.0.0 1.2.2.3 54.28 89.12 86.96 87.28 
0.0.0.3 73.76 55.24 50.40 51.32 
5,0.0,½ 97.88 99.96 99.88 99.88 
½,0.0,5 98.92 92.92 91.48 91.56 
3.0.0,0 3.2.2.1 34.80 30.00 24.12 25.76 
0.0.0.3 67.04 97.04 94.64 95.40 
5.0.0,½ 71.20 60.60 51.64 54.28 
½,0.0.5 95.88 100 100 100 

C 3,0.0,0.0,0 1.1.1.1.1.1 99.16 94.72 91.60 93.76 
1.1.2.2.3,3 48.96 93.72 90.76 92.44 
3.3.2.2.1.1 33.56 29.92 23.96 27.12 

ss sample size 

A 4.4.4.4 
B 4.6,8,10 

C 4.6.8.10.12.14 

second order method of James. and that the first order method of 

James has considerably mo:re powe:r that the second order method. But 

these results are misleading. because Welch's test has a slight tendency 
to progressiveness and the first o:rder method of James has an 

extremely p:rog:ressive behaviour (see table 4). The test of Brown & 
Forsythe seems a bit more powerful that the other three if the 
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Table 6: Summary of table 5 

category Br-Fo James1 James2 Welch 

EMSV 67.21 92.93 89.94 90.24 

EMBV 58.06 49.98 43.97 45.17 

EQV 97.94 95.50 92.74 93.36 

variances are equal. This is not amazing, because the numerator in the 

test statistic of Brown & Forsythe is the same as that of the classical 

one-way analysis of means test. And the latter is the best choice in the 

case of normal populations and variance homogeneity. 

Since the second order method of James gives the best control over the 

actual size. and none of the tests is uniformly the most powerful, this 

method is recommended for implementation is statistical software 

packages. However there seem to be two disadvantages, namely the 

very complicated algorithm and the fact that the result of applying 

this test can only be "H O accepted" or "H O rejected". Using the methods 

of Welch or Brown & Forsythe the value of the test statistic gives, in 

combination with a table or a numerical procedure. the tail probability 

for the test. This is of course useful information and it would be nice 

if the method of James could be modified so that the result would be 

the appropriate tail probability. This can easily be achieved by solving 

the equation f ) = 0, where: 

/.: 

f (a)= :[,wi(x;-x)2-hz(a) 
i= 1 

W;X; and w = w;. Because h 2 is monoto-
= i= l 

nous in a, an acceptable precision of 10-3 can be expected in less than 

ten function evaluations. Please note that many parts of the formula 

fo:r h i{a) a:re independent of a. and should therefore be evaluated 

once. In the iterative process it is only necessary te recompute Xzs 
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every time. 

This modified second order test of James was tried on a Burroughs 

87700 computer. The average amount of processing time needed for 

common cases was about 0.026 sec. We may conclude therefore that 

modern computers are fast enough to accept this rather complicated 

method. even in its iterative version. Since this test of James is supe­

rior to its competitors. it should be implemented in statistical packages 

such as SAS and SPSS. 
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3. Using the Kruskal & W aUis test with normal distributions and 

unequal variances 

3.1. Introduction 

Consider k samples with sample size n; for i = 1 , .... k. The observa­

tions are xij for j = 1 , .... n; and let the rank of every observation be 

denoted as Rij . In the case of equal observations the mean of their 

rank is used. The test statistic of Kruskal & Wallis (1952) is given as: 

_ 12 k - _ - 2 

K- N(N+1);~.n;(R; R) 

* - N+1 -
Here N = I:, n; and R = - 2-. R; denotes the mean of the ranks 

;:::: 1 

within the i-th group. With K we can test the hypothesis H O that all 

samples come from the same population. This test is frequently used 

for a non-parametric analysis of means. because it is sensitive to shifts 

in the location parameters. If the distribitions are symmetric the test 

statistic does not seem to be very much influenced by inequality of the 

shape parameters. Therefore one might be tempted to use the Kruskal 

& Wallis test for the hypothesis H~ that the population means are 

equal in the case of normal distributions with possibly unequal vari­

ances. The suggestion that this might work lies mainly in the fact that 

for symmetrical distributions the median and the mean of a sample 

have the same expectation. And t.he primary goal of the Kruskal & 

Wallis test is the detection of a shift in the medians. 

3.2. The distribution of K under H 0 

Under H O the test statistic K is asymptotically distributed as x2 with 

k -1 degrees of freedom. For moderate samples the approximation 

seems to be reasonable (Hajek and Sidak. 1967) and this test is com­

monly used if all the samples contain at least 5 observations. For very 

small samples the exact distribution of K is tabulated Oman, Quade 

and Alexander. 1975). An alternative for x2 or these tables is given by 

Wallace (1959). He has shown that K is approximately distributed 



- 28 -

under as Beta(p.q), where the parameters p and q are given as p = 

½ (k - 1 )d and q = ½ (N - k)d. The constant d is given by: 

d==l-~N_+1 1 
5 N-1 ~+_!i_ 

5 1-T 

T == N (N + 1) ( _1 _ k 2 ) 

2(k-l)(N-k) i= 1 n; N 

The behaviour of the Kruskal & Wallis test with the x2 and Beta 

approximation under the hypothesis H~ that an the population means 

are equal for normal populations with unequal variances will be exam­

ined further in this chapter. Some attention will be given to small 

samples in combination with tables for the exact distribution of the 

test statistic under H 0 , while we are using it for H~. 

tests for the hypothesis H ~ 

testing the equality of several means from normal populations one 

usually performs a classical one-way analysis of means. For this 

method the population variances have to be equal. Simulation studies 

of Brown & Forsythe (1974) and Ekbohm (1976) have already demon­

strated that this test is not robust against variance heterogeneity. An 

exact test with a reasonable power, that is based on the F-distribution, 

does not exist for the hypothesis of equal means from normal popula­

tions under variance heterogeneity. Scheffe'cHd already prove that fo:r k 

= 2 no symmetrical t-test can be found. In this context 

means that the test is insensitive to permutations within the samples. 

And since the order in which the observations in a sample are submit­

ted to the analysis has no meaning for the researcher, an asymmetrical 

test seems undesirable. Another disadvantage of asymmetrical tests is 

that they usually have little power if the sample sizes are very 

different. In the two-sample case with unequal population variances 

we have the Behrens-Fisher problem and for th is Bartlett suggested the 

following asymmetrical test that he did not publish. but that was 

mentioned by Wekh Let the sample sizes be n 1 and n 2 and 

suppose n 1 ~ n 2 . Let: 



- 29 --

n2 

d; ::: X J; - L C;; X 2; 
;=1 

Then the variables d, have a multivariate normal distribution. Scheffe' 

showed that necessary and sufficient conditions that they have the 
n 2 n 

same mean 6 and equal variances o- 2 are L c;j = 1 and c;k 

1=l k=l 

c 28ij for some constant c 2 • where 6;; = 1 and S;j = 0 if i :¢ j. If 

these conditions are met we can construct the following t-test: 

n n 

Here L = d; In 1 and Q = (d;-L)2. In this situation 
i = 1 i= l 

.fn';(L -o )j(J" is standard normally distributed, and Q /u 2 is distri-

buted as X2 with n 1 - 1 degrees of freedom, and they are independent 

of each other. 

Bartlett's solution consists of taking cu = 6ij, so that we have essen­

tially a t-test for a random permutation within the samples. 

where n 2 - n 1 observations are completely ignored from the biggest 

sample. Scheffe' improved this test a little by minimizing the expected 

length l of the confidence interval for 6: 

2t n _ 1 ( 0. )CY E JQia-2 
E (l)== __ 1 --;::=;:::==:.=--

-Jn 1(n 1-1) 

Here t .,(a) denotes the critical value for a t-distributed variate with v 

degrees of freedom having a tail probability a for a two-sided test. 

Scheffe'found that the minimum was reached if: 

Later (19 Scheffe' stated that Welch's approximate t-solution for 
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the Behrens-Fisher problem resulted in even shorter confidence inter­

vals for 6 than this optimal member of the above mentioned asym­

metrical family produces. He mentioned his own result under the 

header: An impractical solution. In referring to his test he gave as his 

opinion: 

These articles were written before I had much consulting experi­

ence. and since then I have never recommended the solution in 

practice. The reason is that the estimate sd requires putting in 

random order the elements of the larger sample. and the value of 

sd and hence the length of the interval depends very much on the 

result of this randomization of the data. The effect of this in 

practice would be deplorable. 

So we can not have a symmetrical F-test for n: and it seems reason­

able not to accept an asymmetrical test. Therefore the only alternative 

for a nonparametric test can be an approximation. In the previous 

chapter we saw that the second order method of James gave the user 

better control over the chosen size than some other tests. and none of 

these tests was uniformly most powerful. Therefore it seems interest­

ing to compare the Kruskal & Wallis test with the test by James for 

normal populations with possibly unequal variances. 

J.4. The nominal and estimated size 

The second order method of James is already extensively described in 

the previous section. Tables 1, 2 and 3 give the estimated size for vari­

ous patterns sample sizes and standard deviations. The Kruskal & 
Wallis test is considered with the Beta (that will be denoted as {j in 

the tables) and the x2 approximation. and these results are compared 

with the results of the James test. For the nominal size the values 

0.10, 0.05 and 0.01 were chosen. Since every entry of these tables is 

based on 2500 replications, the estimated sizes have the following 

standard deviations: u 10 = 0.600%, u 5 = 0.436% and a- 1 = 0.199%. 

For the Beta approximation we need the Beta distribution function that 

is defined as follows: 
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Table 1: Actual size with nominal size== 10% 

sample size 

4,4,4,4 

4,6,8,10 

4,4,4,4,4,4 

4,6,IU0,12,14 

10,10,10 

Beta (p ,q ,x 

sigma KW (3 KW X2 

1,1J,1 5.88 9.24 

1,2,2,3 7.68 10.44 
1,1,1,1 3.08 9.08 

1,2,2,3 2.60 6.52 

3,2,2.1 8.00 18.84 

1,1,1,1 6.76 8.32 

1,2,2,3 5.00 11.04 

1,1,1,1,1,1 6.16 8.32 

1,1,2,2,3,3 8.68 10.36 

1,1,1,1,1,1 3.68 8.40 

1,1,2,2,3.3 2.04 5.12 

3 ,3 ,2 ,2, 1, 1 10.08 16.92 
1,1,1,1,1,1 4.80 9.72 
1,1,2,2,3,3 6.64 11.88 

f(p +q +2) jtP (l-t )g dt 
r(p +1)r(q +1) 0 

James2 

10.28 

11.08 

9.96 

9.12 

10.24 

9.64 

9.72 

9.84 

11.12 

9.56 
8.88 

9.84 

11.00 

11.00 

This function is definied for 0 ~ x ~ 1, p > -1 and q > -1. For the 

computation algorithm 179 from the Communications of the ACM was 

used, that was written by Ludwig (1962). The speed of this algorithm 

was improved following suggestions by Pike and Hill (1963). 

Table 4 is a summary of the tables 1, 2 and 3 where the value of d is 

defined as the estimated size minus the nominal value and this result 

devided by the appropriate standard deviation. ff d < -2 we may caU 

the behaviour of the test conservative, if -2 ~ d < 2 the test seems 

accurate, and if 2 ~ d the test shows a progressive behaviour. These 

categories are separated in table 4 by double lines. At first sight the 

following conclusions may be drawn from this table: 

The Kruskal & Wallis test with the Beta approximation has a 

st:rong tendency towards conservatism. There are patterns for the 
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Table 2: Actual size with nominal size= 5% 

sample size sigma KW /3 KWX2 James2 

4.4.4.4 1.1 .1 .1 3.08 3.40 4.64 

1.2.2.3 4.40 4.76 5.84 
4,6,8.10 1.1.1.1 1.52 3.80 4.56 

1.2.2.3 1.20 2.60 4.72 
3.2.2.1 4.68 7.96 5.64 

10.10.10,10 1.1.1.1 1.64 4.28 5.36 

1.2.2.3 2.64 5.68 5.52 

4.4.4.4.4.4 1.1.1.1.1.1 3.44 3.08 5.28 
1.1.2.2.3,3 4.92 4.60 6.12 

4.6.8,10,12.14 1.1.1.1.1.1 1.64 3.28 5.04 
1.1.2.2.3.3 0.92 1.92 3.92 
3.3.2,2.1.1 5.96 9.36 5.40 

10.10.10.10.10.10 1.1.1.1.1.1 2.08 4.80 5.84 

1.1.2,2.3,3 3.04 6.60 5.76 

sample sizes and variances where the behaviour seems accurate, 

but this occured only 12 times against 30 occurences of a value of 
d going below -2. 

If we use the x2 approximation with the Kruskal & Wallis test 

the conservatism seems to lessen. There are more cases where the 
behaviour seems accurate, but a new problem arises: Patterns of 

sample sizes and variances exist for which the test seems progres­
sive. 

The second order method of James behaves reasonably except 

once. where the variances are unequal and all six of the samples 

contain only 4 observations. This situation was already discussed 

in the previous chapter. 

Since the results for the Kruskal & Wallis test with both approxima­

tions are not satisfactory in this study with unequal variances. it is 

sensible to have a closer look at the tables 1. 2 and 3. In table 5 a 

smaU section of these tables is given in order to demonstrate a 
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Table 3: Actual size with nominal size= 1 % 

sample size sigma KW {3 KWX 2 James2 

4,4,4,4 1,1,1,1 0.76 0.16 0.84 

1.2,2,3 1.08 0.24 1.32 

4,6,8,10 1,1.1.1 0.28 0.28 1.20 

1,2,2,3 0.20 0.28 1.00 

3,2.2.1 0.88 1.04 1.52 

10.10.10.10 1,1,1.1 0.36 0.76 0.88 

1.2.2.3 0.52 0.96 0.84 

4,4,4,4,4,4 1.1,1,1.1,1 0.60 0.16 1.12 

1.1.2.2.3,3 1.24 0.36 1.96 

4.6.8,10,12 1.1.1,1.1.1 0.36 0.48 1.28 

1.1.2.2,3,3 0.32 0.36 0.68 

3,3,2 .1 1.56 2.28 1.44 

1.1.1.1.1.1 0.40 0.68 1.24 

1.1.2,2.3.3 0.72 1.16 1.16 

Table 4: Summary of tables 1. 2 and 3 

KW {3 KW;>< 2 James2 

d:::;;-3 27 14 

-3:::;;d <-2 3 4 1 

-2:::;d<-1 4 5 4 

-1:::;a <1 5 10 20 

1:::;;d <2 1 2 13 

2:::; j <3 2 3 

3:::;d <4 2 

4:::;;d <5 1 

5:::;;d 5 
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remarkable effect. This section consists of an the results for sample 

sizes 4, 6, 8, 10, 12 and 14. 

Table 5: Kruskal & Wallis, n; = 4,6,8,10,12.14 

13 x2 
sigma 10% 5% 1% 10% 5% 1% 

1.1.1.1.1,1 3.68 1.64 0.36 8.40 3.28 0.48 

1.1.2,2,3,3 2.04 0.92 0.32 5.12 1.92 0.36 

3,3,2.2,1.l 10.08 5.96 1.56 16.92 9.36 2.28 

What do we learn from table 5? If the variances are equal then both 

approximations yield a conservative test. We have here the situation 

where the Kruskal & Wallis test should behave properly (all samples 

come from the same population) so the only source of this deviation 

can be that the approximations are not very good for these sample 

sizes. Asymptotically the approximations are good, and if all the sam-· 

ples contain 10 observations at least the ;x 2 approximation shows far 

better results in the tables 1, 2 and 3. But these samples, o:r at I.east 

some of them, are simply too small. 

U we take this conservatism into account it is interesting to note that 

in the second line, where the bigger sample sizes coincide with the 

bigger variances, every entry is lower than the corresponding one in 

the first line. And in the third line we have the reverse of this: the 

bigger sample sizes coincide with the smaller variances, and all the 

entries are higher than the corresponding ones in the first line. More 

than that: The nominal size is exceeded everywhere in the last line. For 

the Beta approximation only a little, but for the )(2 approximation con­

siderably. 

In the next section more attention to this effect will be given, but now 

we can :reach a preliminary conclusion: The Kruskal & Wallis test is 

not :recommended for normal populations with possibly unequal vari­

ances. If this test is used with a )( 2 approximation deviations from the 

nominal size can occur in both directions. If a (:3 approximation is used, 

the test will be conservative if the variances are equal. and very 
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conservative if the bigger sample sizes coincide with the bigger vari­

ances. ff one is willing to accept conservatism one is usually con­

fronted with unsatisfactory power. This is also the case here, as will 

be seen later in this chapter. 

3..5. The effect of unequal sample sizes and variances 

The effect of the sample size and variance on the control over the 

chosen size seems to be independent of the chosen approximation. If a 

correction for the conservatism with small samples due to the approxi­

mation is made. we saw in the previous section that the behaviour of 

the test is consistently conservative if the bigger sample sizes coincide 

with the bigger variances and progressive if it is the other way around. 

For very small samples the critical levels for the test statistic K are 

tabulated by Iman. Quade and Alexander (1975). These results are 

exact; no approximation is involved. In table 6 the effect of unequal 

sample sizes and variances is demonstrated for the exact K:ruskal & 

Wallis test. 

Table 6: Kruskal & Wallis (exact) 

sample size sigma 10% 5% 1% 

1,1,1 9.71 5.07 1.01 

1.2.3 5.59 3.33 0.86 

3.2,1 21.57 10.07 2.39 

In order to explain this effect the test statistic K will be rewritten as a 

variance ratio VR. The Kruskal & Wallis test is equivalent to a one­

way analysis of means on the ranks. We have: 

The 

V R = _,_· "'-1--------­
k n; 

L L (Rij -R; )2/(N-k) 
i == lj == l 

between K and VR is: 



- 36 -

VR= K(N-k) 
(k-1)(N-1-K) 

k 

The denominator of VR can be rewritten as 1:.(n;-1)s,2/(N-k). 
i = J 

where s;2 is the sample variance of the ranks within the i-th sample. 

And here we have the explanation for the effect we saw in table 6. If 

the bigger variances happen to coincide with the bigger samples, the 

denominator will grow while the numerator will not be affected by 

this situation. Therefore the variance ratio VR will decrease. If we 

reverse the relation between K and VR we have: 

K= (N-1)(k-1)VR 
(N-k )+(k -0VR 

In this expression a decrease in VR will result in a decrease in K, 

because the denominator contains the term (N -k) that is positive and 

unaffected by VR. Therefore the probability of rejecting a hypothesis 

will decrease, leaving the test conservative. 

3.6. Adaptation to unequal variances 

Since the Kruskal & Wallis test is not robust against variance hetero­

geneity it seems attractive to replace the observations xu by 

(xij-med(x ))/6;. where med(x) is the pooled sample median and 8; 

is a consistent estimate of the i-th scale parameter. Unfortunately Sen 

has already shown that such a test is not asymptotically 

distribution-free unless all the scale parameters are equal. However it 

is possible to construct a studentized quantile test that is based on the 

method of Mood & Brown (1950). Sen proposed the following test 

statistic: 

k 1 
S = 4[ L -(m, 

i= l n; 

Here m; is the number of observations in the i-th sample not 

than ) and A = Under mild conditions this statistic has 
j=: 1 6 

asymptotically a x2 distribution with k - 1 degrees of freedom. For the 
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estimates of the scale parameters Sen suggested: 

en, 
~ n; . 3 
L, (-- J )·ziJ 

j = 1 2 

Here en; denotes the entier of ½n; and zij = X;(n 1 -j+IJ - X;(j), where 

x;u) is the j--th ordered value in the i-th sample. The efficiency of this 

estimate is 0.88 for the normal distribution with respect to the classi-· 

cal standard deviation. Since the asymptotic distribution of the test 

statistic does not depend on the choice of the scale parameter. and we 

want to use it here for normal distributions. Sen·s test wm also be 

considered in this study with the classical standard deviation. 

Table 7: Sen's test with 6 

sample size sigma 10% 5% 1% 

4.4.4.4 1.1.1.1 5.72 4.88 0 

1.2.2.3 7.08 4.60 0.08 

4,6,8,10 1.1.1.1 7.44 2.64 0.40 

1.2.2.3 5.92 3.00 0.36 

3.2 10.92 4.88 0.48 

10,10,10,10 1.1.1.1 9.32 4.67 0.88 
1,2,2,3 9.24 5.20 0.44 

4,4,4,4,4,4 1.1.1.1.1.1 8.64 3.36 0.04 

1.1.2,2,3.3 9.16 3.32 0.16 

4,6,8,10.12.14 1.1.1.1.1.1 7.52 2.88 0.28 

1,1,2.2.3,3 5.72 3.20 0.32 

3,3,2,2,1,1 9.12 4.40 0.48 
1,1,1,1,1,1 9.64 4.60 0.76 

1.1,2,2,3,3 9.16 4.52 0.36 

From tables 7 and 8 we can see that this studentized modification of 

the Mood & Brown test gives better control over the chosen size than 

the Kruskal & Wallis test if the variances are unequal. It does not 

seem to matter very much whether the scale parameter for each group 

is estimated by S; or by the standard deviation s;. Table 9 gives a 



Table 8: Sen's test with s 

sample size sigma 10% 5% 1% 

4,4,4,4 1.1.1.1 5.96 4.68 0.04 

1.2.2.3 6.28 4.36 0.08 

1.1.1.1 8.80 4.00 0.60 

1.2.2.3 8.84 3.72 0.48 

3,2,2,1 10.60 4.40 0.72 

1,1,1,1 9.40 4.84 0.48 

1.2,2,3 10.52 4.80 0.76 

.1.1.1.1.1 8.08 3.96 0.72 

1. 1.2 .2 .3 ,3 9.08 3.00 0.16 

4.6.8,10.12.14 1.1.1.1.1.1 8.68 3.96 0.72 

1.1.2.2,3,3 7.64 3.92 0.56 

3 ,3 ,2 ,2 .1.1 9.80 4.36 0.80 

0,10.10 1,1,1,1.1.1 9.24 4.48 0.80 

1.1.2,2,3,3 9.76 4.56 0.72 

summarized comparison between the influence of these estimates on the 

actual size of the test. 

Table 9: Mean estimated size 

scale nominal mean si.gma 

6; 10% 8.23 0.44 

S; 10% 8.76 0.37 

6; 5% 4.01 0.27 

S; 5% 4.22 0.13 

1% 0.36 0.07 

S; 1% 0.55 0.07 

ln table 9 sigma denotes the estimated standard error of the mean. 

Every mean is based on 14 entries in table 7 or 8, and each of these 

entries is based on 2500 replications. 1t seems that the results fo:r the 

standard deviation a:re slightly better than those fo:r the scale 
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parameter il;. If the nominal size is 5% or 10% the difference between 

the effects of the scale parameters is not very convincing. Only if the 

nominal size is 1 % the choice of the standard deviation results in an 

improvement that exceeds the sum of the two estimated standard 

errors. 

3. 7. A comparison of powers 

1n table 10 the Kruskal & WaHis test with x2 is left out because the 

actual size exceeded the nominal size too much for some patters of 

sample sizes and variances. For a closer examination table 11 is pro-­

duced. Here EMSV denotes that extreme means coincide with small 

variances. ErvffiV that extreme means coincide with big variances and 

EQV that all variances are equal. This distinction is made in order to 

compare the Kruskal & Wallis test with the second order James test. 

James uses the test statistic: 

J=- wJx;-x)2 

== 1 

n- k k 

Here w1 = ~- w = :E, w; and x·= :E, w;.i:";/w. This formula suggests 
S; i=l i=l 

that the power of the James test wiH be small if extreme means coin-­

cide with big variances. The Kruskal & Wallis test will not suffer from 

this problem because here the weights are simply n;. If we compare for 

Sen·s test his own scale parameter with the classical standard deviation 

we see that the latter gives slightly superior power. This is in accor­

dance with the fact that the standard deviation is a more efficient esti­

mate for the scale if the distribution is normal. However if we compare 

all the results for this studentized Mood & Brown test with the other 

two tests we see that the power is highly unsatisfactory. This can be 

explained by looking at the Asympotic Relative Efficiency of the 

Mood & Brown test relative to the Kruskal & Wallis test. Andrews 
(1954) found: 
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Table 10: Estimated power with nominal size= 5% 

ss mean sigma KW (3 James2 Sen 8 Sens 

A 3.0.0,0 1.1,1,1 86.92 86.84 33.72 28.68 

5,0,0,½ 99.64 99.64 27.96 36.24 

1.2.2.3 34.20 60.28 22.64 24.92 

0,0,0,3 25.36 22.72 13.56 12.64 

5,0.0,½ 76.76 97.08 30.84 30.56 

½ .0.0,5 56.00 43.72 18.72 18.92 

B 3,0,0,0 1.1.1.1 88.32 92.88 12.68 16.12 

0,0,0,3 100 100 99.76 99.56 
3,0,0,0 1,2,2,3 25.08 86.96 8.48 13.48 

0,0,0,3 43.64 50.40 35.76 38.28 

5,0,0,½ 72.04 99.88 12.60 18.68 

½ ,0,0,5 90.08 91.48 77.16 80.32 

3,0,0,0 3,2.2.1 26.84 24.12 10.32 9.24 

0,0,0,3 89.64 94.64 90.84 90.44 

5 .0.0,.! 
2 

62.56 51.64 16.16 16.44 

C 1,1,1,1,1,1 66.08 91.60 9.20 13.96 

L 1.2 .2 ,3 .3 14.36 90.76 10.04 12.04 

3,3,2,2.1.1 24.12 23.96 9.20 8.08 

ss sample size 

A 4.4.4.4 

B 4,6,8,10 

C 4,6,8,10,12,14 

00 

)/ F' )dF(x 

Here M is the median of the distribution function F. ff all the popula­

tion variances are equal we have for the normal distribution 

ARE MB .KW = 2/3. And for this :reason it is a pity that we cannot have 

a nonparametric studentized K:ruskal & W aBis test. 
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Table 11: Summary of table 10 

category KW 13 James2 Sen o Sens 

EMSV 52.01 88.27 29.24 31.69 

EMBV 46.94 44.00 25.90 26.27 

EQV 88.19 94.19 36.66 38.91 

If we compare the first two columns of table 11 we see that only in 

the EMSV case the second order test of James has considerably more 

power than the Kruskal & W a His test. In the EMBV case the Kruskal 

& Wallis test has even slightly more power than the James test. and in 

the EQV case the superiority of the James test is only moderate. Can 

we conclude from this study that the Kruskal & Wallis test with the 

Beta approximation is a reasonable alternative for a test that is spe­

cially developed for normal populations with unequal variances? The 

answer can be yes, but with two serious restrictions: 

1. U the sample sizes and the variances are unequal. and if the 

bigger variances coincide with the smaller samples, then the test 

will become progressive if the pattern is more extreme than those 

presented in the tables l, 2 and 3. Roughly one might say that 

the maximum ratio of the standard deviations should not exceed 

3. 

2. A computer program for the Kruskal & Wallis test with Beta is 

much simpler than a program for the second order test of James. 

Therefore one might be tempted to use the former if the variances 

are not too different. h should be noted that by doing this one 

can lose a considerable amount of power, especially if extreme 

means coincide with small variances. 
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4. Nonparametric comparison of several mean vahues with 

tation to the tail-weights 

4.1. Introduction 

Several nonparametric tests exist for the hypothesis H O that k samples 

come from the same continuous distribution. Three of them will be 

considered in this study as a basis for an adaptive test with attractive 

properties for symmetric distributions with arbitrary tail-weights. The 

first one of these tests is the Van der Waerden test that uses the statis­

tic: 

Let x 1 , ... , xN be a combination of the samples coming from k groups. 

S1 denotes the collection of indices in the j-th sample and n J is the 

corresponding sample size. ~ is the standard normal distribution func­

tion. Nonparametric tests do not use all the information contained in 

the observations x; but only their ranks R; in the combined sample. 

The Kruskal & Wallis test was already mentioned in the third chapter. 

It uses the statistic: 

This formula is essentially the same as the one mentioned in the previ­

ous chapter. The third test originates from Mood & Brown (1950). It 

uses the statistic: 

-ln]2 
2 J 

= I: ½ [sign (R; 
iE S j 

(N + 0)+ 1) 

Although the hypothesis under consideration is that aH come 

from the same distribution, these tests are mostly used for the 
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detection of a shift in the location parameters for distributions that are 

at least similar in shape and scale. The asymptotic distribution of the 

statistics under H O is x2 with k - 1 degrees of freedom. The behaviour 

of these tests if H O does not hold can differ considerably. For each test 

a distribution exists for which the power is asymptotically optimal 

(see table 1 ). 

Table 1: Asymptotic optimality 

test distribution 

Kruskal & Wallis logistic 

Mood & Brown double exponential 

Van der W aerden normal 

It is possible to have a look at the data and then to decide which of 

these tests is the appropriate choice. The primary difference between 

the logistic, the double exponential and the normal distribution lies in 

their tails. If we call the tails of the logistic distribution moderate, it is 

natural to say that the normal distribution has light tails and that the 

tails of the double exponential distribution are heavy. So the principle 

of the adaptive test under consideration will be as follows: ( 1) get an 

impression of the tails from the samples, (2) determine whether 

are light, moderate or heavy and (3) apply the appropriate test. 

and Sidak (1967) show that the information in the combined sample is 

independent of the ranks. Therefore the tails can be estimated, but it 

must be done from the observations without using information con­

cerning the group to which they belong. If the location parameters are 

equal this is not a serious restriction. But if H O does not hold it is pos­

sible that the combined sample will suggest a tail-weight that differs 

considerably from the true value. One can put forward that this does 

not matter very much, because if the location ,.,..,,,,,,,,." are so 

different that the combined sample does not represent the distribution 

of the separate samples, it is reasonable to suppose that any test will 

the hypothesis, so that it is not important whether the right one 

has been chosen. And if the location parameters differ only a little, 
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then the tails will be estimated accurately, resulting in optimal power 

just where it is needed. 

An adaptive nonparametric test where the above mentioned selection is 

based on the combined sample is not a rank test, but a permutation 

test. It would even be a test for which the probability of rejecting H 0 

is equal to the chosen size 0t. were it not that one usuaBy is confronted 

with moderate sample sizes where the distribution of the test statistic 

can only be approximated by a x2-distribution. So if it is common 

practice to accept an approximation it is not unnatural to tolerate 

another deviation as long as it is small in comparison with the 

difference between the x2-distribution and the actual distribution of 

the test statistic for moderate samples. A kind of cheating that would 

introduce an error is the following: compute QK\\, , QMB and QVdw and 

then compare the maximum of these values with the critical value 

based on the l( 2 approximation. Such a strategy will certainly :result in 

a powerful test, but it is something no serious statistician would con­

sider because the probability of rejecting H O when true will exceed the 

chosen size a. 

There is however a kind of "moderate cheating" that will be considered 

in this study. In the selection scheme the tails will be estimated from 

the combined sample, but also from an artificial sample that is based 

on the original observations after a shift to give every group the same 

location parameter. It is :reasonable to suppose that this shift will 

result in better estimates for the tails. In a simulation study we will 

examine this. and an attempt will be presented to quantify the error 

that is introduced by this incorrect use of information. 

4.2. Asymptotic relative efficiency 

Application of an adaptive test that is based on the methods of Van 

der W aerden, Kruskal & Wallis and Mood & Brown is only 

worthwhile if the powers of these separate tests are very different for 

the distributions under consideration. An attractive criterion for com­

paring the powers is the Asymptotic Relative Efficiency ) that is 

also known as the Pitman efficiency. Let A and l3 be tests and let a and 
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b be the corresponding number of observations involved. For some 

chosen size OL both tests are used for the same hypothesis H O against a 

class of alternatives He. Then AREA .B is defined as the asymptotic 

value of E_ when a varies such that the powers are (and remain) equal 
a 

while b -0 oo and He -+ H 0 . 

Andrews ( 1954) gives a formula for the ARE of the Mood & Brown 

test relative to the Kruskal & Wallis test: 

AREMB.Kw= ![F'(M)/ f F'(x)dF(x)]2 
-oo 

Here M is the median of F. A more general formula has been given by 

Puri (1964) that can be used to compare any pair of nonparametric k­

sample tests for some chosen distribution. This could be used to com­

pute the other asymptotic relative efficiencies. but in this study they 

are found in a different way. Terry and Hoeffding proposed a test that 

is very similar to the Van der Waerden test and that has the same 

asymptotic relative efficiencies [Bradley (1968)]. Hodges and Lehman 

( 1961) examined the two-sample situation for ARErH .w stands for 

Wikoxon which is the Kruskal & Wallis test for two samples). With 

these results it is possible to construct table 2. 

Table 2: Asymptotic Relative Efficiency 

distribution ARE·wwxw AREvdW.MB ARE1,:w .MB 

normal 
1T 1T 3 
3 2 2 

logistic 
3 4 4 -
'ff 1T 3 

double 
8 2 3 

311" rr 4 

Some of the entries in table 2 differ seriously from 1. This suggests 

that an adaptive test that is based on the methods by Van der Waer­

den, Kruskal & WaHis and Mood & Brown will have good power for a 

large class of symmetric distributions with arbitrary tail-weights. For 

this it wm be necessary to have an accurate met.hod to estimate the 
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distribution from the samples. Suppose the estimation is done with the 

combined sample while the location parameters are unequal. If the data 

come from a normal distribution the combined sample will look flatter 

so that it can be classified as a double exponential distribution. This 

will result in a considerable loss of power relative to the correct selec-

tion. Centralisation on the location parameters can 

tion from happening. 

4.3. Criteria for selecting the test 

this situa-

In a simulation study samples were generated from normal. logistic 

and double exponential distributions [see appendix 4]. study was 

restricted to the case of 4 samples. each coming from the same (but 

shifted) distribution. Several criteria for selecting the test were con­

sidered. The first was the sample kurtosis of the combined sample: 

(x;-x)4/N 

K= 
;:::: 1 

3 
N 

[ I: -x)2/N]2 
i := 1 

The kurtoses for the distributions under consideration are well known 

(see table 3). To use the kurtosis as a criterion for selecting the test it 

was necessary to choose boundary values for K somewhere between 

the kurtoses for the distributions under consideration. In the absence 

of a better idea the midpoints were chosen. Table 4 shows how K is 

tried in the adaptive test. This use of K as a method to recognise the 

normal, logistic and double exponential dist:r:ibution proved to be very 

disappointing. The second idea was to shift the samples to make the 

means equal and to compute K for the combination of these shifted 

samples. This :resulted in an improvement but the fraction of correct 

classifications was still not satisfactory. Another improvement was 

achieved by a centralisation on the medians instead of the means. This 

was tried because the experiment involved the double exponential dis­

t:ril:mtion with very heavy tails. Unfortunately also this approach did 

not prove to be a succes. The last attempt with the kurtosis was based 
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Table 3: Kurtosis 

distribution K criterion 

normal 0 

0.6 

logistic 1.2 

2.1 

double exponential 3 

Table 4: Selection on K 

kurtosis test 

K<0.6 Van der W aerden 

0.6~ K <2.1 Kruskal & Wallis 

2.1~K Mood & Brown 

on the weighted mean of the values K; for the separate samples. This 

proved to be similar to centralisation on the means. 

So the kurtosis as a criterion for selecting the test had to be rejected. 

How is it possible that this statistic that is often :referred to as a meas­

ure of flatness can not be used as an indicator for three distributions 

that are so different in their tail-weights? Mood. Graybill and Boes 

(1963) mention that the kurtosis can be used to measure the peaked­

ness or flatness of a density. but mostly around the center. It seems 

that they are right; it is certainly impossible to get much information 

about the tails from the kurtosis. 

This disappointment made it necessary to look for others measures of 

and two were found. Uthoff (1970 and suggested: 

ZN-Z1 
U=----------N 

2 I: IZ;-med; (Z; )I IN 
i= 1 

Here Z 1 •...• ZN is the ordered sample. Uthoff has shown that the best 

location and scale invariant test of an underlying uniform distribution 
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against the double exponential is based on a :ratio to which U is an 

approximation. Since the uniform distribution has lighter tails (if one 

may even speak of them) than the normal distribution. this statistic 

seems a promising candidate. Hogg, Fisher and Randles (1975) sug­

gested using: 

Q = 10(U .o5- L .os) 
U.s-L.s 

They tried this statistic in a similar study as the present one, where 

they also included a measure of skewness, but their objective was res­

tricted to the construction of a two-sample adaptive distribution-free 

test. U_ 05 denotes the sum of the upper 5% of the observations. If N is 

not a multiple of 20 then one observation is only fractionally 

included. The other parts of this formula have a similar meaning, 

where L stands for lower. h turns out that U and Q are very similar 

and 10U and Q are even identical if N does not exceed 20. The use of 

Q as a c:r.iterion for selecting the test is given in tables 5 and 6. 

Table 5: Criterion Q 

distribution Q criterion 

normal 2.58 

2.72 

logistic 2.86 

3.08 

double exponential 3.30 

Table 6: Selection on Q 

Q<2.n Van der W aerden 

2.72~Q <3.08 Kruskal & Wallis 

3.08~Q Mood & Brown 

The derivation of the population values of Q for the normal, logistic 

and double exponential distribution is given in 5. For the 

criterion the midpoints between these population values were chosen. 
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Two adaptive tests were considered for this selection scheme. In the 

coming sections A-P will denote the test where the selection is not pre­

ceded by centralisation so that Q is computed for the combined sample. 

resulting in a pure adaptive nonparametric test where the only source 

for a difference between the nominal size and the actual probability of 

a rejection under the hypothesis of equal population means comes from 

using the X2 approximation. As an alternative A-C will also be con-· 

sidered where the computation of Q is preceded by centralisation on 

the medians. So we have: 

A-P: A Pure Adaptive test 

A-C: An Adaptive test with Centralisation (or Cheating) 

4.4. The tests under the nuU 

In a simulation study the probability of a rejection under H O is exam­

ined. For 4 groups and 5. 15 and 60 observations for each group the 

actual percentage of rejections is estimated. In table 7, 9 and 11 every 

entry is based on 2500 replications. The actual size was chosen as 5%, 

so that the standard er:ror for the estimated sizes was 0.436%. Not 

only the normal. logistic and double exponential distributions were 

used in this simulation, but also the uniform distribution with lighter 

tails than the normal, and the Cauchy distribution with heavier tails 

than the double exponential [see appendix 4]. 

Table 7: Estimated size, n; = 5 

distribution K&W M&B VdW A-P A-C 

uniform 3.92 4.92 3.72 3.72 3.72 

normal 3.72 5.04 3.40 3.48 3.52 

logistic 3.80 4.84 3.48 3.92 4.28 

double exponential 4.16 4.92 3.88 4.24 4.44 

Cauchy 3.88 4.52 3.52 4.40 4.36 

As the size tends to infinity the values of Q for the uniform 

and the Cauchy distribution are respectively 1. 9 and 10 [see appendix 

The probability that the appropriate test is selected is not 
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Table 8: Selected tests, n; = 5 

A-P A-C 

distribution VdW K&W M&B VdW K&W M&B 

uniform 2494 6 2358 126 16 

normal 1927 407 166 1777 474 249 

logistic 1470 594 436 1351 621 528 

double exp 893 649 958 829 620 1051 

Cauchy 90 163 2247 84 150 

Table 9: Estimated size, n; = 15 

distribution K&W M&B VdW A-P A-C 

uniform 4.48 3.44 4.56 4.56 4.56 

normal 4.92 4.00 5.32 5.24 5.40 

logistic 4.76 4.20 4.92 4.92 4.96 

double exponential 4.92 4.24 4.72 4.44 4.56 

Cauchy 5.00 4.44 4.72 4.44 4.44 

Table 10: Selected tests, n; = 15 

A-P A-C 

distribution VdW K&W M&B VdW 

uniform 2500 2483 17 

normal 1997 469 34 1902 552 46 

logistic 1062 1049 389 997 1062 441 

double exp 200 803 1497 182 782 1536 

Cauchy ] 2499 2500 

everywhere satisfactory. For the double "'"''"'"'"""'"" 

and Cauchy distribution the test with the highest power was selected 

in most cases for every sample size and both adaptive tests. But for the 

logistic distribution with = 5 both A-P and A-C selected the Van 



- 51 -

Table 11: Estimated size. n; = 60 

distribution K&W M&B VdW A-P A-C 

uniform 4.48 4.24 4.72 4.72 4.72 

normal 5.44 5.52 5.20 5.32 5.32 

logistic 5.32 5.28 5.36 5.28 5.40 

double exponential 5.12 4.64 5.04 4.76 4.72 

Cauchy 5.68 5.32 5.52 5.32 5.32 

Table 12: Selected tests, n; = 60 

A-P A-C 

distribution VdW K&W M&B VdW K&W M&B 

uniform 2500 2500 

normal 2224 276 2188 312 

logistic 468 1904 128 447 1911 142 

double exp 1 319 2180 1 313 2186 

Cauchy 2500 2500 

der W aerden test more often than the Kruskal & Wallis test. This 

strange effect is still visible in the results for n; = 15 and it vanishes 

almost completely for n; = 60. 

In order to find the origin of this effect the following experiment was 

carried out. Since there were 4 groups with 5. 15 or 60 observations 

A-P selected the test on the value of Q for a sample of 20, 60 o:r 240 

random numbers from the chosen distribution. For the logistic distri­

bution 1000 values of Q were computed with each of these sample 

sizes. Histograms were plotted and these demonstrated that the distri­

bution Q 20 is strongly skewed, the distribution of Q 60 is somewhat 

skewed and the distribution of Q 240 is nearly symmetric. The results 

can be summarized by the minimum, modus and maximum of these 

estimated distributions of Q (see table where the extremes are 

added to give an indication of the tails. Table 13 explains the unsatis­

i.:f the distribution is logistic. For 
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Table 13: Skewness of Q (logistic distribution) 

sample size minimum modus maximum 

20 1.59 2.55 4.79 

60 2.05 2.76 4.06 

240 2.48 2.84 3.39 

combined samples of 20 observations the modus of Q is even slightly 

smaller than the expectation for the normal distribution. So it is clear 

that the selection scheme can be improved by taking the combined 

sample size into account. The gain in power can only be very moderate, 

because the ARE of the Van der Waerden test :relative to the Kruskal 

& Wallis test is 1._ for the logistic distribution. ff one takes N into 
7T 

account A-P will still be a pure nonparametric adaptive test. because 

the information contained in the sample size is already present before 

the experiment is carried out. A study on such an adaptive scheme is 

started while this is written. so it can nol be presented he:re. h may 

result in a very smaU gain concerning the power, but it is unreasonable 

to expect much of it. 

Since the location parameters were equal in this simulation the com­

bined sample should represent the underlying distribution better than 

the result of a centralization on the medians. In table 14 the perfor­

mance of the selection methods :in A-P and A-C is compared. In addi­

tion lo the criteria given in table 5 and 6 it is dear that the uniform 

distribution should select the Van der Waerden test and that for the 

Cauchy distribution the Mood & Brown test would be the best choice. 

For both adaptive tests and the three sample sizes under consideration 

the number of correct selections is presented. In the case of a 

misclassification a distinction is made between a neighbouring lest and 

the selection of the opposite extreme (Van der Waerden when it should 

be & Brown and vice versa). For both tests the probability of a 

correct selection increases rapidly with the sample size. As was to be 

expected the selection scheme of A-P is better under /I O than that of 

A-C. The difference is noticable if n; = 5 and it nearly vanishes if n; = 
60. 
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Table 14: Comparison of selection schemes under H 0 

test sample size correct neighbour opposite 

A-P 5 8220 3131 1149 

15 9542 2724 234 

60 11308 1191 1 

A-C 5 8073 3249 1178 

15 9483 2789 228 

60 11285 1214 1 

The test A-C with centralisation on the medians is not a pure non­

parametric adaptive test, because it uses information that is not con­

tained in the ranks. The worst that could happen as a result of this is 

that the probability of a rejection under H O exceeds the chosen size a. 

To examine this table 15 is produced. where the results for all the 

sample sizes are combined. The standard error of the estimated sizes is 

0.436%. Let d be the actual percentage of rejections under H O minus 

the nominal size and this divided by the standard deviation. The test 

will seem accurate concerning the size if -2, d <2. conservative if 

d <-2 and progressive if 2, d. These categories are separated by dou­

ble lines. Because the Kruskal & Wallis. Van der Waerden and Mood & 
Brown tests are somewhat conservative for small samples if the x2 

approximation is used, it is not amazing that both adaptive tests show 

the same inclination. In table 15 both A-P and A-C never showed a 

size that exceeded the nominal value by more than one standard devia­

tion. In this respect they seem even better than the original tests, 

where this value was exceeded by all three of them. So in this stage of 

the study there seems to be no reason to distrust A-C. and if its power 

should prove to be much better than that of A-P. then the use of a 

centralization in the selection scheme could be recommended. 
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Table 15: Summary of tables 7, 9 and 11 

K&W M&B VdW A-P A-C 

d <-3 1 3 1 1 

-3~d <-2 4 1 2 2 1 

-2~d<-1 3 5 1 5 6 

-1~d <1 6 7 8 7 7 

1~d <2 2 1 1 

2~d <3 

3~d 

4.5. A comparison of powers 

Table 16: Estimated power, n; = 15 

Location: 0, 0.15, 0.3, 1.05 

distribution K&W M&B VdW A-P 

uniform 62.3 25.0 73.0 73.0 73.0 

normal 70.7 43.3 70.7 70.3 71.0 

logistic 26.3 15.0 25.3 24.0 25.3 

double exponential 51.7 45.7 47.7 48.0 50.3 

Cauchy 20.0 23.3 16.7 23.3 23.3 

The powers of the tests under consideration are estimated the 

number of :rejections from 300 :replications. The :results are as 

percentages. Samples are considered with 40 and 65 observations. 

In practical analysis of means situations one is not often confronted 

with samples containing more than 40 observations. A sample size of 

65 is only included in the analysis because with the other two values 

it will be possible to see the performance of the selection schemes of 

A-P and as a function of the sample size. Eight different sets of 

location parameters were tried, but since the :results of them proved to 

be very similar, only two sets are presented in the tables. The 

normal. double and Cauchy distribution have a scale 
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Table 17: Selected tests, n; = 15 

Location: 0. 0.15, 0.3, 1.05 

A-P A-C 

distribution VdW K&W M&B VdW K&W M&B 

uniform 300 300 

normal 228 64 8 216 77 7 
logistic 126 139 35 109 152 39 

double exp 51 127 122 28 97 175 

Cauchy 1 299 1 299 

Table 18: Estimated power, n; = 40 

Location: 0, 0.15. 0.3. 1.05 

distribution K&W M&B VdW A-P A-C 

uniform 98.0 69.7 99.3 99.3 99.3 

normal 100 95.3 100 100 100 

logistic 68.7 55.3 69.0 65.7 66.7 

double exponential 94.3 92.7 90.3 93.0 93.3 

Cauchy 56.0 67.7 44.3 67.7 67.7 

parameter. For all these parameters the value 1 was chosen. ln order to 

get a uniform distribution with unit variance the range of this distri­

bution was chosen as fil. If the location parameters a:re unequal the 

combined sample will suggest a flatter density than the actual distri­

bution. Centralization can result in an improvement here. especially if 

the location parameters are very different. In this simulation the shifts 

were chosen such that for sample size 65 at least one in the table 

for the estimated power was 100%. This value was not permitted to 

occur for every entry in a :row. because this would not yield any infor-­

mation concerning the relative powers. These restrictions resulted in 

moderate shifts and a simulation was needed to decide whether cen­

tralization improves the probability of a correct selection if the loca­

tion ,u,,«::L•.:.:1 differ only as little as presented in the tables. In table 
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Table 19: Selected tests. n; = 40 

Location: 0. 0.15. 0.3. 1.05 

A-P A-C 

distribution VdW K&W M&B VdW K&W M&B 

uniform 300 300 

normal 259 41 252 47 1 

logistic 106 177 17 80 198 22 

double exp 1 125 174 3 66 231 

Cauchy 300 300 

Table 20: Estimated power. n; = 65 

Location: 0. 0.15. 0.3, 1.05 

distribution K&W M&B VdW A-P A-C 

uniform 100 89.0 100 100 100 

normal 100 99.7 100 100 100 

logistic 92.0 77.3 89.7 90.7 91.7 

double exponential 99.7 99.0 99.7 99.3 99.3 

Cauchy 80.7 89.7 70.3 89.7 89.7 

Table 21: Selected tests, n; = 65 

Location: 0, 0.15, 0.3, 1.05 

A-P A-C 

distribution VdW K&W M&B VdW K&W M&B 

uniform 300 300 

normal 282 18 274 26 

logistic 67 220 13 46 238 16 

double exp 92 208 40 260 

Cauchy 300 300 
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Table 22: Estimated power. n, = 15 

Location: 0, 0.1. 0.5. 0.9 

distribution K&W M&B VdW A-P A-C 

uniform 51.0 18.7 62.3 62.3 62.3 

normal 53.7 32.0 55.7 55.0 55.3 

logistic 23.3 15.3 24.0 22.3 22.0 

double exponential 44.3 39.0 41.0 41.3 43.3 

Cauchy 15.7 15.7 13.0 15.7 15.7 

Table 23: Selected tests, n; = 15 

Location: 0, 0.1. 0.5, 0.9 

A-P A-C 

distribution VdW K&W M&B VdW K&W M&B 

uniform 300 297 3 

normal 242 51 7 227 62 11 

logistic 122 140 38 113 135 52 

double exp 49 HO 141 31 91 178 

Cauchy 1 299 300 

Table 24: Estimated power. n; = 40 

Location: 0, 0.1, 0.5, 0.9 

distribution K&W M&B VdW A-P A-C 

uniform 94.3 51.7 99.0 99.0 99.0 

normal 97.0 88.3 97.3 97.3 97.3 

logistic 56.3 41.3 52.0 53.0 54.3 

double exponential 88.3 85.7 81.3 88.0 88.0 

Cauchy 47.3 57.0 33.3 57.0 57.0 
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28 the performance of the selection rules of A-P and A-C are 

presentec. Just like in table 14 a distinction is made between the selec­

tion of a neighbouring test and the selection of an opposite one (Van 

der W aerden when it should be Mood & Brown and vice versa). For 

both rules the probability of a correct selection increases with the sam­

ple size. We saw already that under H O it is better not to centralize on 

the medians. But here, where the location parameters are different. it 

can be seen that for every sample size the selection rule of A-C per­

forms better than that of A-P. This is not only true for the combina­

tion of all the results in this section as presented in table 28. but also 

for each of the separate alternatives concerning the location parame­
ters. 

Table 25: Selected tests. n; = 40 
Location: 0. 0.1. 0.5, 0.9 

A-P A-C 

distribution VdW K&W M&B VdW K&W M&B 

uniform 300 300 

normal 264 36 254 46 

logistic 78 195 27 76 201 23 

double exp 3 117 180 78 222 
Cauchy 300 300 

Table 26: Estimated power. n; = 65 
Location: 0, 0.1. 0.5, 0.9 

distribution K&W M&B VdW A-P A-C 

uniform 99.0 78.7 100 100 100 
normal 100 97.7 100 100 100 

logistic 79.7 67.7 80.8 79.3 80.0 

double exponential 98.7 99.0 97.3 99.0 99.3 

Cauchy 15.0 85.0 59.3 85.0 85.0 

In table 29 the powers of all tests considered are estimated as the 
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Table 27: Selected tests. n; = 65 
Location: 0, 0.1. 0.5, 0.9 

A-P A-C 

distribution VdW K&W M&B VdW K&W M&B 

uniform 300 300 

normal 272 28 260 40 

logistic 62 229 9 43 245 12 

double exp 101 199 51 249 

Cauchy 300 300 

percentage of rejections for all situations in this section together. This 

means that a mixture with equal occurences from the uniform, normal. 

logistic, double exponential and Cauchy distribution is submitted to 

the analysis. It can be seen that for every sample size the adaptive 

tests have more power than the separate tests. A-C is always better 

than A-P. but the difference is only marginal. 

Table 28: Comparison of selection schemes 

Location parameters are unequal 

test sample size correct neighbour opposite 

A-P 15 2210 675 115 

40 2449 547 4 

65 2610 390 

A-C 15 2279 644 77 

40 2558 438 4 

65 2726 274 

The final conclusions of this study are a bit disappointing. If one is 

interested in the comparison of several mean values. and the only 

thing that is known about the underlying distribution is that it is 

symmetric. one can consider to use an adaptive test like A-P or A-C. 

But in the simulation presented here the gain in power relative to the 

Kruskal & W ams test ( which is optimal for the middle range of Q and 
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Table 29: Comparison of powers 

Mixture of 5 distributions 

sample size K&W M&B VdW A--P A-C 

15 41.90 27.63 42.93 43.53 44.17 

40 80.03 70.47 76.60 82.00 82.27 

65 92.47 88.27 89.63 94.30 94.50 

therefore never the worst choice) is only moderate. Asymptotically 

both adaptive tests are superior for a mixture of distribu­

tions as described in this study. And the element of cheating in A-C 

wiH disappear as the sample size increases. But for finite samples the 

results are disappointing. This can be partly explained by the observa­

tion that for sample sizes 15 and 40 the Kruskal & Wallis test demon­

strates more power for the double exponential distribution than the 

Mood & Brown test that is asymptotically optimal for this distribu­

tion. Only for samples with 65 observations the asymptotical superior­

ity of the Mood & Brown test becomes visible in table 26. but in table 

20 for the same sample size the Kruskal & Wallis test is still slightly 

superior for the double exponential distribution. In this study only 

two shifts of the location parameters were presented out of the total of 

that were generated. There were situations in the other six where 

the Mood & Brown test showed more power for the double exponential 

distribution than the Kruskal & Wallis test for samples with 40 obser­

vations. But for smaller samples the Mood & Brown test was always 

inferior. 

So for smaH samples the correct recognition of a double exponential 

distribution leads to a loss of power in the adaptive tests relative to 

the Kruskal & Wallis test. This, as well as the skewed distribution of 

Q for the logistic distribution (see table 13), leads to the conclusion 

that a better adaptive test can be constructed by taking the sample size 

into account in the selection scheme. These improvements are the topic 

of a study that has just started and therefore the results will not be 

presented here. The expected outcome of this study is not a 
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considerable gain in power. as can be concluded from the tables in this 

section. But for the tool-forger every small improvement can be templ­

ing, even if it has not much practical value. 

For symmetric distributions the Kruskal & Wallis test is never a very 

bad choice. It is possible to get a bit more power by using an adaptive 

test. but the gain is little in comparison with the extra programming 

effort. The selection scheme in this study can be improved by taking 

the sample size into account, but also this can only result in a very 

moderate gain in power. 
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5. Comparison of several mean values in the presence of outliers 

5.1. Introduction 

The model in classical one-way analysis of means is Yi.i "'' µ; + e;i 

where the errors eiJ are supposed to be independently distributed as 

N ( O.o- 2 l with unknown population variance u 2 . The index i denotes 

the group-number (i = 1 ..... k) and j identifies the elements within 

the groups (j = 1 ..... n; ). The hypothesis of interest is H 0 : µ 1 = ... = 
µ1,:. According to the above conditions, this hypothesis can be tested 

with: 

F = _,_·=_1 ________ _ 
I,: n; 

L L (y;j -y; )2 /(N -k) 
i = lj == l 

I,: 

Here N = L n; , Y; is the sample mean within the i-th group and y is 
i=l 

the overall sample mean. This statistic has under H O an F-distribution 

with k - 1 and N - k degrees of freedom. 

For contaminated normal data we consider the following modification: 

with (small) probability € the distribution becomes eiJ ~ N (O,0cr 2), 

where 9 > > 1, and with probability 1-€ the distribution remains 

N ( O,u 2). This contamination is symmetric; in the asymmetric case, 

multiplication by 0 is performed on the positive errors only, with pro­

bability 2e. In both cases, the expected fraction of outliers is e. 

Classical one-way analysis of means is not designed for contaminated 

normal data. Using this test here might result in a probability of 

rejecting H O when true that differs from the chosen size a, or in a seri­

ous loss of power. Suppose for example that the data represent the 

heights of people, coming from different groups. Suppose the analist 

works at a computer-terminal and he enters the data in meters with 

two decimals. But sometimes, though not often, he can forget to enter 

the decimal point. Here we have a small value of e, the multiplication 

factor 0 is considerably bigger than L and the contamination is one­

sided. 



- 63 -

What will happen to the statistic F? The overall sample mean y will 

increase as well as one or more of the group means. As a consequence 

the numerator of the statistic will increase. but also the denominator. 

So at first sight it seems difficult to predict what will happen to F. 

More attention to this will be given further in this chapter. Some alter­

natives will be presented that seem more robust in these respects. A 

comparative study concerning the size and power of all the tests under 

consideration will be given, where the effect of symmetric and one­

sided contamination is demonstrated by simulation. 

5.2. Nonparametrk analysis of means 

In a nonparametric test the hypothesis is not the same as in the previ­

ous section. but it can be expressed as "all samples come from the same 

continuous distribution". Nonparametric analysis of means has very 

little power in the comparison of shapes, so it can only be used to test 

the equality of location parameters. The density in case of symmetric 

contamination is given by: 

1 x 2 1 x 2 
f (x )=€ -/lfFiiexp[-112]+(1-€) ..ffiiexp[--2 ] 

er 2w 2vcr CJ' 211" 2a-

and this represents a continuous distribution. Therefore the application 

of nonparametric analysis of means is permitted. h is easily seen that 

this also holds for one-sided contamination. 

Several nonparametric tests are available, but here we will only use 

the Van der W a er den ( 195 2) test. This test is based on the following 

statistic: 

Here y 1 , ... , YN represents the combined sample, where the groups are 

represented by sets of indices S; for i = 1 .... , k. Rg is the rank of .Yg 

and 4> denotes the standard normal distribution function. Q is 
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asymptotically distributed as x2 with k - 1 degrees of freedom. The 

reason for choosing the Van der Waerden test from the existing collec­

tion of methods for nonparametric analysis of means. lies in the fact 

that this is the only test that has for e = 0 asymptotically the same 

efficiency as the classical test [Hajek ( 1969) ]. By using this non­

parametric method one is insured against the possible presence of 

outliers. and the premium one has to pay is the loss of power for small 

samples. For k = 2 this loss has already been shown to be moderate 

[Van der Laan and Oosterhoff (1967)] and further in this chapter we 

win see that this is also true for more than two samples. ff there are 

many outliers the tests by Mood & Brown or Kruskal & Wallis are 

better choices [Hampel. Ronchetti. Rousseeuw and Stabel (1986)]. But 

this situation will not be considered in this chapter. 

S.J. Winsorizing and trimming 

Applications of these methods to the t-test for two samples have been 

published already [Fung and Rahman (1980). Yuen and Dixon (1973)]. 

The t-test uses the statistic: 

n; 

with SS; = I:, (y;i-Yi )2 

j=l 

Under the hypothesis of equal population means this test statistic fol­

lows a t-distribution with N-2 degrees of freedom if e= 0. This 

method is equivalent to classical one-way analysis of means for k = 2 
(t 2= F and for the critical values the same relation holds: t; =:::. F; ). 

Fung and Rahman (1980) Winsorized the t-test in an attempt to make 

it robust against the presence of outliers. This is done as follows: let a 1 

....• an be an ordered sample. Then the mean and sum of squares of 

this sample. after two-sided Winsorizing with parameter g. are defined 

as: 
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iiwg == ~ [(g +1)ag+1+ag+2+ ... +an-g-1+(g +1)a,, _g] 

ss»·g::::: (g + l)(ag +1-awg ) 2 +(ag +2-<Zwg )2+ 

+(a,, -r-J-llwg )2+(g + )(all -g -a ... , )2 

The number of relevant observations hereby reduces to h = n-2g. The 

value of g should be chosen such that it is reasonable to suppose that 

all the outliers will be contained in the tails of the samples, so that 

their values become irrelevant. Application of this technique to the t­

test gives the following formula: 

-· --
y h·g-Y2wg 

t,, g = .J(SS lwg +SS 2»•1; )!(h 1+h 2-2).Jl!h 1+ 1/h 2 

This statistic approximately follows a t-distribution with h 1 + h 2 - 2 

degrees of freedom. Fung and Rahman used n; instead of h; under the 

second square-root sign, but that appears to have been a typing error 

as can be concluded from a study by Yuen and Dixon (1973) on which 

they based their approach. 

Winsorizing means replacing the tail--elements by the most extreme 

elements that are not considered to belong to the tails. Trimming is a 

different technique in which the tail-elements are simply deleted. 

Yuen and Dixon examined the behaviour of the trimmed t-test. where 

the numerator is based on trimmed means. but the denominator still 

contains Winsorized sums of squares. In a simulation study with sam­

ples containing at least 10 observations each, both methods show the 

same qualities: The probability of rejecting when true is almost 

equal to the chosen size, and the power for normal distributions is 

slightly below that of the classical t-test for moderate values of 

g. for distributions with heavier tails the Winsorized and trimmed t­

tests are even more powerful than the classical t-test for moderate 

values of g [Fung and Rahman (1980)]. 

Therefore it could be attractive to apply these techniques to classical 

one-way anova, which is the natural generalisation of the t-test for 

more than two samples. The Winsorized F-statistic is given by: 
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k 

E,h; (y;,.,g-.Ywg )2/(k -1) 
i= 1 

Fwg:::::: -----------

SS;wg l(H -k) 
i == I 

Here :::: h;Yiwg IH and H:::::: h;. For the trimmed F-statistic F1g 
i=l i=l 

only the numerator is modified; the Winsorized means are replaced by 

trimmed means Yirg and the trimmed overal1 sample mean is given by 
k 

Yrg:::::: r, h, )1;1g IH. It is assumed that both Fwg and Frg are approxi-
;"' l 

mately distributed as an F-distribution with k-1 and H--k degrees of 

freedom. In a previous simulation [Dijkstra ( 1986)] it was found that 

the probability of rejecting H O when true differs too much from the 

chosen size for Winso:rized analysis of means. But after correction of 

the above mentioned typing error in the paper by Fung and Rahman 

the behaviour of these tests improved remarkably as wm be shown 

later in this chapter. 

The model for analysis of means can be rewritten as a reg:ression 

model: 

The observations are represented by y and for every observation the 

group to which it belongs is identified by the dummy-variables x 1 , ...• 

xk. This can be done as follows: X; = 1 if y belongs to group i and oth­

erwise x; = 0. If the errors were independently distributed as N 2) 

then testing: H 0 : /3 1:::::: ... = f3 k would be equivalent to testing H 0 : µ 1 = 
... :::::: µk in the model for classical one-way analysis of means. The 

values of F and the corresponding numbers of degrees of freedom 

would be the same. 

Several methods for dealing with outliers in regression have already 

been published. Huber (1973) suggested a method with attractive pro­

perties that can be applied to the analysis of means problem in this 
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N 

The objective of classical regression is to minimize L (y, -x; (3 )2 as a 
I c= j 

function of (3 = ((3 1 , .... (3 k ). Here X; = (x,1 , .... X;1, )1. It can easily 

be understood that outliers in y will have considerable influence on the 

estimation of (3. because classical regression will square their residuals. 

A more robust method minimizes another objective: 

In the classical case p(r )= r 2 , but in robust regression one chooses a 

function that limits the influence of extreme residuals. Holland and 

Welsch (1977) mention eight different functions p with this desirable 

property. The objective M ((3) will be at its minimum if: 

for j "'" 1 , ... , k and W(r )= d p(r) . Several iterative methods for solv-
dr 

ing these equations can be considered. Initial estimates for (3 1 , ... , 

can be obtained by ordinairy least squares. whereafter u can be 

estimated as: 

Here med; denotes the median over the index L The factor 1.4826 

makes this an approximately unbiased estimate of the standard devia­

tion in the case of normal errors. Without restrictions on the weight 

function, convergence cannot in genera.I be guaranteed if the estimation 

of u is part of the iteration. Huber (1973) found a p that allows 

re-eslima ting of u : 

r2 
p(r )= 2 for Ir I~ H 



- 68 .. 

The sensitivity to outliers depends on the value of H. for H = 1.345 

the efficiency is 95% for normal distributions. If the absolute value of a 

standardised residual exceeds H, its influence becomes linear instead of 

quadratic. Although Huber's p does not yield .m extremely :robust esti­

mate (some authors prefer a p that becomes a constant for large values 

of I rl ), this method is a considerable improvement on ordinary least 

squares in the presence of outliers. In this case Newton's method yields 

a very efficient algorithm, because 'l' is a broken linear function. 

For the construction of an outlier-resistant analysis of means pro­

cedure we consider the above mentioned robust regression with 

Huber's p and H = 1.345. This approach results in fitted values y; and 

an estimate iJ for u. Huber ( 1981) suggested a test for the hypothesis 

of equal population means that uses these estimates. His suggestion is 

the topic of the next section. 

5.5. Huber's method 

In the classical situation ( without outliers) the test statistic for H 0 : µ 1 

= ... = /Lk is: 

F = _i_=_l ________ _ 

k n, 

L L (yij -y; )2/(N-k) 
i = lj = 1 

Huber gave an F' that is similar to F. but on which the outliers have 

less influence. In the numerator the first step is to replace Y; by Y;. In a 

more general model Huber suggests to replace y by an ordinary least 

squares fit using Y; :instead of y;. In this case covariables) 

such a fit wm yidd the weighted mean: 
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After scaling this modified numerator follows under mild conditions 

asymptotically a x2 distribution with the same number of degrees of 

freedom as the classical test. 

Dealing with the denominator is a bit more difficult: one single outlier 

can be the cause of an extremely high value, so that ll O can be accepted 

although the location parameters are very different. Huber proposes to 

replace the denominator by the folowing expression ( where the 

influence of the outliers is reduced considerably): 

'l'( r: )28-2 
1 __ ; =_I __ u ___ where 

N-k 1 f: w•(: )]2 
Ni==l u 

c=l+ kVar(v') 
N [E('l' ')]2. 

Here E ( 'l' ')= ! 
i= 1 

r-
'l''( -f:-) and 

er 

1 N r 
Var ( v ')= N L ['I''( -f_-)-E ( W ') ]2· 

i=l O" 

These formulae are valid for every reasonable choice of W. Since we use 

Huber's 'I' here they can be simplified considerably. because for V' 

only the values O and 1 are possible. In this case we have: 

N-p 
c=l+k-­

Np 

r· 
Here p is the number of observations for which V '( -f_-) = 1. Just like 

u 
in classical analysis of means ll 0 : µ 1 = ... = µ1,: is to be rejected if 

exceeds the critical value of an F-dist.ributed variate with k-1 and N-k 
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degrees of freedom for some chosen size cu. Huber claims that the 

approximation of p* by an F-distribution is reasonable if all the sam­

ples contain at least five observations. This is the same condition that 

is usually put forward for using nonparametric tests with a X2-

distribution. 

h is fortunate that in analysis of means models the predictors are 

dummy-variables that do not contain any errors, because Huber's 

approach is very sensitive to situations where the predictors have out­

lying values. Covariables can be included in the model. provided that 

they do not contain outliers. The test can be generalized to more com­

plex designs, including interactions. In this respect Huber's method 

seems more promising than its nonparametric alternatives, where the 

concept of rank-interaction is a complex matter. even in a simple two­

way layout [De Kroon and Van der Laan (1981)]. 

5.6. The actual size of the tests 

The probability of rejecting H O when true was estimated by using a 

simulation with 2000 replications. This was done for 3 and 6 groups, 

symmetric and one-sided contamination and sample sizes of 10, 25 and 

40. The samples were generated from normal populations with µ; = 0 

and o- 2 = L Symmetric contamination was simulated by using u 2 •= 50 

with probabilities 0, 0.03 and 0.1. For trimming and winsorizing the 

constant g was chosen proportional to the sample sizes. The results of 

these simulations are presented in tables 1 and 2, where the estimated 

size for each simulation is given as the percentage of rejections for a 

test with nominal size a = 0.05. Coded values for n; and g are 

explained in table 3. In these tables the classical test is denoted as 

Anova. 

In the case of one-sided contamination the use of er 2 =c 50 was res­

tricted to positive observations. At the same time. the probability of a 

multiplication by 50 was doubled to 2€, in order to get the same 

expected number of outliers as with symmetric contamination. The 

results of this simulation are presented in tables 4 and 5. 
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Table 1: Symmetric contamination. k = 3 

n; E g Anova VdW Trim Wins Huber 

10 0 2 4.95 4.15 5.25 5.25 5.45 

10 0.03 2 3.95 4.10 5.00 5.20 5.15 

10 0.1 2 2.85 4.90 5.70 5.45 5.25 

25 0 3 4.80 5.05 5.40 5.05 5.35 

25 0.03 3 3.25 4.20 4.80 4.75 5.20 

25 0.1 3 4.00 5.05 4.95 6.40 5.40 

40 0 5 5.15 4.95 5.15 4.65 5.00 

40 0.03 5 5.15 5.20 5.30 4.80 5.25 

40 0.1 5 4.35 4.65 4.70 5.45 4.60 

A 0 B 4.45 3.80 3.90 3.85 4.40 

A 0.03 B 4.85 5.00 4.10 4.40 5.10 

A 0.1 B 5.30 4.75 4.25 4.95 5.25 

Table 2: Symmetric contamination. k = 6 

n; E g Anova VdW Trim Wins Huber 

10 0 2 5.25 4.50 5.65 4.95 6.05 

10 0.03 2 3.10 3.50 5.35 4.70 5.45 

10 0.1 2 3.20 3.85 5.20 5.25 5.20 

25 0 3 4.40 4.20 4.50 3.95 5.05 

25 0.03 3 4.25 4.95 4.95 4.70 5.30 
25 0.1 3 3.95 5.00 4.35 7.20 5.15 

40 0 5 5.90 5.65 5.90 5.30 6.05 
40 0.03 5 4.20 4.70 5.30 5.05 5.30 

40 0.1 5 4.30 4.35 4.20 6.10 4.15 

C 0 D 4.75 4.65 3.95 3.40 5.25 

C 0.03 D 4.45 4.55 4.75 4.20 5.75 
C 0.1 D 6.20 5.15 4.00 5.85 5.55 
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Table 3: The codes used 

Code Meaning 

A 10,25,40 

B 2,3,5 

C 10,10,25.25.40.40 

D 2,2,3,3,5,5 

Table 4: One-sided contamination. k = 3 

n; € g Anova VdW Trim Wins Huber 

10 0 2 4.75 4.15 5.60 5.45 6.35 

10 0.03 2 4.00 4.75 5.75 5.70 5.65 

10 0. 2 3.75 5.00 5.20 5.35 5.65 

25 0 3 5.65 5.20 5.30 5.20 6.00 

25 0.03 3 3.80 4.40 4.75 4.65 5.20 

25 0.1 3 3.50 4.90 3.90 7.50 5.15 

40 0 5 4.85 4.70 4.60 4.10 4.60 

40 0.03 5 4.75 5.25 5.45 5.15 5.80 

40 0.1 5 4.95 5.60 4.75 9.40 5.55 

A 0 B 5.10 5.35 4.60 4.50 5.65 

A 0.03 B 4.35 4.80 4.40 4.50 5.30 

A 0.1 B 4.90 4.55 3.60 6.05 5.35 

The tables are not very clear if one wants to compare these tests. The 

standard deviation of the estimated size is -./0.05* 0.95/2000 = 0.00487 

or 0.487%. Let d be the percentage of rejected hypotheses minus 5 and 

divided by this standard deviation. Tables 6 and 7 show the values of 

d for each test. Three categories have been separated 

d <-2 (conservative). -2~ d < 2 (accurate) and 

6 and 7 suggest the conclusions: 

double lines: 

d (progressive). 

analysis of means tends to be conservative in the pres­

ence of outliers. 



- 73 -

Table 5: One-sided contamination. k = 6 

n I € g Anova VdW Trim Wins Huber 

10 0 2 5.80 4.65 4.85 5.10 6.10 

10 0.03 2 3.95 4.60 5.90 5.75 6.15 

10 0.1 2 3.15 5.05 4.85 5.20 6.35 

25 0 3 4.55 4.15 5.00 4.55 5.20 

25 0.03 3 5.55 5.20 5.35 6.00 5.90 

25 0.1 3 4.15 4.90 4.25 11.80 5.65 

40 0 5 4.15 4.35 4.30 3.55 4.30 

40 0.03 5 4.40 4.90 4.55 4.90 4.95 

40 0. 5 4.35 4.10 3.55 12.70 4.10 

C 0 D 5.55 4.95 4.60 4.55 6.20 

C 0.03 D 5.20 4.80 3.95 4.30 5.55 

C 0.1 D 5.90 5.15 4.05 9.15 6.15 

Table 6: Symmetric contamination 

Anova VdW Trim Wins Huber 

d <-3 4 1 1 

-3~d <-2 3 2 3 2 

-2~d <-1 7 6 5 2 2 

-1~d<1 8 14 13 15 17 

1~d <2 1 1 3 1 3 

2~d <3 1 2 2 

3~d <4 

4~d <5 1 

5~d 

The method of Van der Waerden is unaffected concerning the size 

by this kind of non-normality, which is just what might be 

expected from a nonparametric test. 
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Table 7: One-sided contamination 

Anova VdW Trim Wins Huber 

d <-3 2 

-3~d <-2 4 4 1 

-2~d<-1 5 5 4 4 2 

-1~d<1 8 18 13 10 7 

1~d <2 5 1 3 2 8 

2~d <3 2 7 

3~d <4 

4~d <5 

5~d 5 

The trimmed test seems slightly conservative in this situation. 

but less than classical analysis of means. 

Symmetric contamination does not seem to affect the Winsorized 

test very much. but this method is clearly not robust against 

one-sided contamination. Tables 4 and 5 show that the cases 

where 5~ d have a very high proportion of outliers: € = 0. L Such 

values of E make it possible that outliers are found in the body of 

a sample and not only in its tails (as defined by g). It would be 

unreasonable to expect robustness against this situation in a Win­

sorized test. because a tail consisting of outliers can enter the 

computation. This problem can not occur in a trimmed test. 

Huber's method seems the best for symmetric contamination. 

although the differences with the other tests are not convincing 

(only classical anova is too conservative). Against one-sided con­

tamination the suggestion of a slight progressiveness exists. 

Values of d between 2 and 3 occurred in 7 cases. It is interesting 

to note that 4 of these cases contained no outliers (E ,,_,, 0), so that 

the results for these rows in the tables for symmetric and one­

sided contamination should be similar. An examination of all the 

results for Huber's method shows that indeed a very slight 
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progressiveness exists. but that the contamination has almost no 

influence (see table 8). 

Table 8: Huber's method 

Con tam ina t ion Estimated size in % 

none (e = 0) 5.437 

symmetric 5.228 

one-sided 5.528 

The estimated sizes in table 8 are based on 16*2000 replications. 

so that their standard deviation is 0.487/4 = 0.122. Two of the 

three sizes differ significantly from 5% and it is clear that the 

approximation of Huber's test statistic by an F-distribution can 

be improved. But for practical purposes these results are accept­

able. 

5.1. A comparison of powers 

Here a simulation study is presented that differs from the one in the 

previous section in only one respect: the samples were generated with 

unequal location parameters. Table 9 is based on symmmetric contami­

nation with three samples. Tables were generated also from symmetric 

contamination with k = 6 and one-sided contamination with k = 3 and k 

= 6, but the results were very similar and therefore they will not be 

presented here. A summary of these results is given in table 10, where 

the powers for uncontaminated data (€ = 0) are the means of 16 

separate simulations with 2000 replications each. The other results are 

based on 8 simulations with the same number of replications. Table 10 

suggests the following conclusions: 

Classical analysis of means is the most powerful test for normal 

data, but contamination reduces the power of this method consid­

erably. It does not matter whether the contamination is symmetric 

or one-sided; only the number of outliers (for some chosen vari-­

ance) appears to have any influence. 
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Table 9: Symmetric contamination. k = 3 

n; E g µ; Anova VdW Trim Wins Huber 

10 0 2 p 88.05 85.50 77.85 78.05 84.50 

10 0.03 2 p 64.55 75.95 74.05 73.95 80.75 

10 0.1 2 p 36.75 59.20 64.70 65.05 69.25 

25 0 3 Q 88.20 87.25 84.45 84.50 85.45 

25 0.03 3 Q 59.50 80.90 80.95 81.25 82.45 

25 0.1 3 Q 29.00 63.25 69.05 69.15 71.00 

40 0 5 R 89.55 89.30 87.15 87.30 87.05 

40 0.03 5 R 57.30 82.15 82.95 82.90 83.65 

40 0.1 5 R 27.45 66.15 73.65 74.10 75.50 

A 0 B s 92.65 92.10 86.95 86.85 91.00 

A 0.03 B s 64.75 86.20 83.10 83.10 87.35 

A 0.1 B s 31.25 72.00 74.80 75.55 80.45 

µ; 10µ; 

p 0,8,16 

Q 0,5.10 

R 0.4,8 

s 0,8,13 

Table 10: Comparison of powers 

Contamination E Anova VdW Trim Wins Huber 

none 0 90.50 89.44 85.25 85.41 88.19 

symmetric 0.03 59.63 82.06 81.70 81.70 84.68 

0.1 28.55 65.54 71.43 72.54 75.12 

one-sided 0.03 59.59 82.99 81.71 81.78 85.19 

0.1 29.20 68.71 65.48 68.88 75.08 

Table 9, as well as the tables that were not included in this 

chapter. show that the difference in power for normal data (e = 0) 

between classical a.nova and the test of Van der ·w aerden almost 

disappears as the sample size increases from 10 to 40. Even for 

small samples (n; = 10) the difference is only marginal. The 

influence of outliers on Van der \Vae:rden's test is considerably 

smaller than on classical analysis of means, especialy as their 
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number increases. 

Trimming and Winsorizing give similar results, except for one­

sided contamination with E = 0.1, where Winsorizing seems to pro­

vide a more powerful test. But that is just the situation where 

winsorizing should not be trusted because outliers can occur 

between the tails of a sample (as defined by g) resulting in a pro­

bability of rejecting H O when true that considerably exceeds the 

chosen size a. Table 7 shows that trimming is insensitive to this 

problem, at least with our values of g. For smaller values of €, the 

values of g could be lowered, which might result in a somewhat 

higher power. 

Huber's method yields the most powerful test, except when the 

data come from uncontaminated normal distributions in which case 

classical analysis of means has slightly more power. 

The aim of the study presented in this chapter was to select a test for 

outlier-resistant one-way analysis of means that could be added to the 

local collection of statistical software at Eindhoven University of Tech­

nology. Considering the accuracy of the actual size, and the superior 

power of Huber's method. the conclusion was reached that this test was 

the appropriate choice. However, the differences with Van der 

Waerden's test and trimming are moderate, and Huber's greater power 

may be attributed to its slightly greater size. So Van der 

Waerden's test and trimming can be considered as reasonable alterna­

tives. 

5.8. An example with one outlier 

Consider the heights of people, coming from three groups. Every sample 

contains ten observations and the data are given in meters with two 

decimals. The results are presented in table 11. All tests reject the 

hypothesis H O of means. The results are: 

Classical analysis of means: F = 6.64 with 2 and 2 7 degrees of free­

dom. The critical value for these parameters is 3.39 

Therefore H O can be rejected. 

Van der Waerden: The test statistic is 9.49 with 2 degrees of free­

dom. The critical value for a x2-distributed variate here is 5.99 

resulting is the same conclusion. 
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Table 11: Heights of people 

Group 1 Group 2 Group 3 

1.88 1.86 1.56 

UH 1.75 1.67 

1.99 1.78 1.57 

1.8-4 1.77 1.72 

1.89 1.80 1.90 

1.90 1.71 1.80 

1.97 1.87 1.76 

1.85 1.92 1.77 

1.88 1.60 1.73 

1.91 1.68 1.95 

Trimmed analysis of means: F = 5.44 with 2 and 21 degrees of 

freedom. The loss of 6 degrees of freedom for the denominator 

comes from deleting one observation from both tails in each sam­

ple. The critical level here is 3.47 so that the difference of the 

means remains significant. 

Winsorized analysis of means: F = 5.15 with 2 and 21 degrees of 

freedom. The conclusion remains the same. 

Huber's method: F = 6.65 with 2 and 27 degrees of freedom. This 

result is almost equal to that of the classical method. 

Now suppose that for the first observation in the first group the decimal 

point is forgotten. So the value 1.88 is replaced by 188. And here we 

have a very serious outlier. What will ~appen to the results? 

Classical: F = 1.10 with 2 and 2 7 degrees of freedom. The 

difference of the means has been masked by the presence of the 

outlier. 

Van der Waerden: The test statistic is 10.63 with 2 degrees of free­

dom so that H O will still be :rejected. 

Trimmed test: F = 6 .21 with 2 and 21 degrees of freedom. The con­

clusion is not affected by the presence of an outlier. 

Winso:rized test: F = 6.46 with 2 and 21 degrees of freedom. The 

conclusion is the same. 

Huber's method: F = 9.30 with 2 and 27 degrees of freedom. 
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In the last line, just like with the other robust methods, the difference 

of the means has become more significant. In this respect there is quite a 

difference with classical analysis of means where the power has been 

absorbed completely by the presence of one single outlier. 

5.9. Least median of squares 

In this section and the following methods for outlier-resistant one-way 

analysis of means will be described that entered this study, but were 

discarded before the final simulation. The first method is Least Median 

of Squares (LMS) that originates from Rousseeuw (1984) and is 

designed for :regression models. Instead of minimizing the sum of 

squares, LMS minimizes the median of the squared residuals. This 

results in very robust estimates for the parameters f3; : up to 50% 

outliers have no influence on the estimated values. No simple formula 

for this method seems to exist, but Leroy and Rousseeuw (1985) [or 

Rousseeuw and Leroy (1987)] present an heuristic algorithm that is easy 

to implement. LMS results in fitted values y; + that can be used to esti­

mate the scale parameter: 

Here N is the number of observations for a regression model with k 

parameters. The next step is to delete observations y; if: 

ff the :residuals a:re normally distributed, :roughly 2% of the observa­

tions will be deleted. The remaining observations a:re the:reafte:r used in 

an ordinary :regression, where tests of significance can be performed as if 

these observations were the only ones in the analysis. In regression 

situations the results of this approach are very satisfactory, and there-· 

fore it seemed attractive to try LMS for anova models. The LMS esti­

mate of location is the midpoint of the shortest half of the ordered 

observations. This was used to estimate the parameters in the one-way 

analysis of means model in this study. Thereafter the outliers were 

deleted and a classical test was performed on the remaining observa­

tions. Since LMS was only validated for continuous predictors it was 

necessary to verify the control over the chosen size again, because here it 

was used with dummy variables. The results of a simulation were 

rather with a nominal size of 5% the estimated size varied 
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between 9% and 26% in similar tables as where the size was estimated 

for the other tests. The results were especially bad when there were no 

outliers (E = 0), or if the samples were small. This can be explained as 

follows. The LMS estimate of location is very robust. but not very 

efficient. U a sample happens to be seriously skewed one can expect that 

u win be under-estimated. This results in deleting more observations 

than the probability of I u I > 2.5 indicates ( where u denotes a standard 

normal distributed variate). Since the deleted observations are the ones 

that differ most from the estimate of location. this wm lead to under­

estimating the within-variance, while leaving the between-variance rela­

tively unaffected. This explains the fact that the values of F exceed their 

expectations under H 0 . In the presence of outliers the deleted observa­

tions will be the ones that ought to be deleted. And for bigger samples 

the probability of being seriously skewed decreases. 

So LMS is in its present stage not a good candidate for outliers-resistant 

analysis of means. We need more insight in the distribution of the test­

statist:ic under H 0 , since the way the F-statistic is used here is certainly 

not appropriate. There is however a situation with a nominal predictor 

where LMS could be considered. Suppose there are some continuous 

covariables. Then LMS can be used for every value of the nominal pred­

ictor. The outliers can be deleted and ordinary regression can be applied 

to the remaining observations. Of course this can only be done if the 

nominal predictor has only a few different values, and many observa­

tions for each value. An attractive property of LMS, that might prove 

useful here, is its insensitivity to leverage points (points with outlying 

values for the predictor variables). In that respect LMS is far better than 

Huber's method that can also handle covariables but only in the absence 

of leverage points. 

5.:m. An adaptive nonparametric test 

For a short while it seemed possible to construct an adaptive non­

parametric test with reasonable power for the contamination models 

used in this study. The approach was strongly related to the distribu­

tions under consideration. The density for symmetric contamination is: 

Suppose we are sure that this model :represents the data. and that we 

know the parameters €, o- and 8. For this distribution it is possible to 
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construct a nonparametric test with asymptotically optimal power. The 

test-statistic is given by: 

Q= 

This denotes a large family of which the Mood & Brown. Kruskal & 

Wallis and Van der Waerden tests are members. The scores a; can be 

chosen in order to get optimal power for some selected distribution. Si 

is the sum of the scores within the j-th sample. The statistic Q is 

asymptotically distributed as x2 with k - 1 degrees of freedom [Hajek 

( 1969)] if the score-generating function </, is reasonably smooth. The 

scores are generated as: 

In order to get asymptotically optimal power for some distribution F 

with density f the function </, has to be chosen as follows: 

Using these principles it is possible to construct an optimal test for the 

distribution that represents symmetric contamination. And if the 

parameters are not known they can be estimated. The estimated values 

can then be used in the density function and this would result in a non­

parametric test with satisfactory power for the contamination model if 

the parameters were efficiently estimated. The first parameter to be 

estimated is u. This can be done by using a robust regression procedure 

like Huber's or LMS. Fitting the model will result in a- and fitted values 

J; for the observations Y;. The residuals are given as ei = Y; - Y;. And 

with these it is possible to estimate the other parameters e and e. Sup­

pose x is a normally distributed stochastic variable with zero mean and 

variance u 2 . Then we have Elx I = CJ'-,/2/-lr and Ex 2 = cr 2 • These 
1 N 1 N 

moments can be estimated as N ;~
1
le; I and N ;~/;2 respectively. Com-

bining this with the known density of the errors results in the following 

two equations: 
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After substituting the robust estimate 6- for u the parameters e and 6 

can be estimated from these equations. 

Some experiments have led to the conclusion that the sample size needed 

for a :reasonable estimate of the parameters u. E and 6 by far exceeds 

the sample sizes that are common for analysis of means situations. And 

this is not the only reason for rejecting this approach. A test like this 

will be strongly adapted to the chosen model for the outliers. And even 

if this test would show good power in a simulation where the distribu­

tion of the errors matches the model on which the computation of the 

scores is based. almost nothing could be said about its behaviour for 

other models describing the outliers. 

S.11. Robustness of Hube~s method against variance heterogeneity 

Since Huber's method was selected as the best choice for normal popula­

tions with some extreme outliers it is interesting to examine what will 

happen if this test is used in situations where the second order method 

of James [see chapter 2] is recommended. If we examine the different 

scale parameters relative to the smallest one. it is possible to describe the 

situation of variance heterogeneity in the language of this chapter. The 

parameter 6 is not the same for every group. but the values for 6; are 

moderate. For every group the parameter E; = 1 except for the group 

with the smallest variance where E; = 0. So variance heterogeneity is 

quite different from the model with outliers. 

Every entry in table 12 is based on 2500 replications. so that the actual 

size is estimated with a standard deviation of 0.436% for a nominal size 

of 5%. The conclusion is very dear: Huber's method is not robust 

against variance heterogeneity. The behaviour of this test is similar to 

that of classical anova [see chapter 1). If the sample sizes are equal and 

the population variances are unequal then the actual probability of 

:rejecting a hypothesis when true will exceed the nominal value. If the 

sample sizes are unequal then the test will become even more progressive 

if the bigger variances coincide with the smaller samples. Conservatism 

can be expected if the bigger variances coincide with the bigger samples. 
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Table 12: Huber's method 

sample size sigma percentage 

10.10.10 1.1.1 6.16 

1.2.3 10.08 

25.25.25 1.1.1 5.16 

1.2.3 12.16 

40.40.40 1.1.1 5.96 

1.2.3 12.36 
10,25.40 1.1.1 5.28 

1.2.3 2.16 

3.2.1 24.60 

10,10.10,10,10,10 1.1.1.1.1.1 5.12 

1.1.2.2,3,3 12.28 

25 ,25 .25 .25 ,25 ,25 1,1,1,1,1,1 5.40 

1.1.2.2.3.3 16.36 

40.40.40.40 .40.40 1,1,1,1,1,1 4.80 

1.1.2.2.3.3 15.32 

10,10,25,25 ,40.40 1.1.1.1.1.1 5.84 

1,1.2,2.3,3 3.48 

3.3.2.2.1.1 25.16 

What is the practical value of a test that is outlier-resistant but not 

robust against variance heterogeneity? It can handle some typing errors 

if the data are entered at a computer-terminal. It can also handle some 

really extreme observations as long as they are evenly distributed over 

the samples. But Huber's method can certainly not be recommended if 

there are reasons to suppose that the scale parameters of the populations 

involved are different. 

5.12. Robustness of the second order method of James against 

outliers 

In chapter 2 we saw that the second order method of James gives the 

user excellent control over the chosen size and has reasonable power in 

most situations. The only condition is that the samples come from nor­

mal populations. Variance homogeneity is not assumed. In this section 

the behaviour of the method of James will be examined in the presence 

of outliers. Table B presents a simulation study under the hypothesis 
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Table 13: James method (size) 

sample size € percentage 

10,10,10 0 4.80 

0.03 3.15 

0.1 1.85 

25,25,25 0 4.75 

0.03 4.00 

0.1 2.30 

0 5.10 

0.03 3.25 

0.1 3.80 

10,25 0 5.10 

0.03 3.70 

0.1 2.90 

10,10,10,10,10,10 0 5.50 

0.03 3.85 

0.1 2.00 

25 ,25 ,25 ,25 ,25 ,25 0 5.10 

0.03 3.65 

0.1 2.50 
40 ,40 ,40 ,40 ,40 ,40 0 5.25 

0.03 2.70 

0.1 2.95 

10, 10 ,25 ,25 .40 ,40 0 5.00 

0.03 3.95 

0.1 2.40 

H O that the location parameters are equal. From table 13 we can con­

clude that an error distribution with outliers can make the method of 

James conservative. This simulation was based on 2000 replications for 

each cell. The samples were generated from normal populations with /L; 

= 0 and a 2 = 1. With probability E the variance was increased to c, 2 = 
50. 

Conservatism in a test usually results in a loss of power. To a first 

impression the method of James was applied to the data :representing the 

heights of people from three groups that was mentioned earlier in this 

This :resulted in a tail probability of so that the 



Table 14: James method (powe:r) 

sample size E 10µi Anova James Huber 

10.10.10 0 0,8.16 88.05 84.70 84.50 

0.03 64.55 69.85 80.75 

0.1 36.75 43.20 69.25 

25,25,25 0 0,5,10 88.20 87.30 85.45 

0.03 59.50 66.20 82.45 

0.1 29.00 33.90 71.00 

40,40,40 0 89.55 88.60 87.05 

0.03 57.30 62.55 83.65 

0.1 27.45 30.90 75.50 

10,25 0 0,8,13 92.65 89.75 91.00 

0.03 64.75 71.30 87.35 

0.1 31.25 44.30 80.45 

hypothesis of equal means could be rejected without any doubt. Then 

the decimal point of the first observation in the first g:roup was removed. 

Instead of 1.88 we got 188 and this resulted in a tail probability of 

0.525. So one outlier can remove an power from this test. just like we 

already saw for classical one-way analysis of means. 

Table 14 presents a comparison of the powers of James test with classi­

cal analysis of means and Huber's method. If there are no outliers (E = 

0) the difference in power is very small. The classical method is the best, 

and James test seems slightly better than Huber's method. but more 

simulations should be done before the difference would be convincing. ff 

the fraction of outliers increases to 0.03 and 0.1, then the power of 

James test decreases, but not so fast as the power of the classical 

method. with these two, Huber's method is very outlier­

resistant. 

The conclusion can be that the method of James is not to be recom­

mended if there are reasons to suppose that outliers may be present. In 
practice it will not always be easy to determine whether a more robust 

method than classical anova is needed. And it is very unfortunate that 

the methods of James and Huber, that have excellent characteristics in 

the situations for which they are designed, are not robust against vari­

ance heterogeneity as well as outliers. So the user of these methods has 

the difficult task to choose carefully. 
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In the introduction we saw already some kind of preliminary data 

analysis that involves the extreme values of every sample, as wen as the 

quartiles. Q 2 is the median and that is a more robust estimate of loca­

tion than the sample mean. The difference between QI and Q 3 is an indi­

cation of the scale and the values for these differences should be similar 

if one is considering a test that assumes variance homogeneity. The clas­

sical variances or standard deviations are not suitable for this purpose if 

one is taking the possible presence of some extreme outliers into account. 

A more robust alternative is based on the MAD estimate of scale: 

SMAD = 1.4826medi lx;-medi (xi )I 
Here MAD stands for Median of the Absolute Deviations from the 

median. A more attractive kind of preliminary data analysis than the 

one given in section 1.4 is given in table 15: 

Table 15: Preliminary data description 

sample minimum median SMAD maximum 

1 1..56 1.73 0.124 UH 
2 1.58 1.75 0.151 1.90 

3 1.61 1.79 0.148 1.88 

4 1.51 1.80 0.160 185 

The data represent the heights of people, coming from 4 groups. h is 

easily seen that variance homogeneity can be assumed here (if the sam­

ple sizes are moderate). but that the analyst has made a typing error. In 
this case it is more appropriate to replace the observation 185 by 1.85 

and try a similar data description again in order to find out if there are 

more typing errors of this kind. But in other situations one might prefer 

an outlier-resistant method. 
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6. Robustness of multiple comparisons against variance hetero­

geneity and outliers 

6.1. Introduction 

ln the preceding chapters we saw that the second order James test is 

very robust against variance heterogeneity and that Huber's method 

can handle some extreme outliers. Both tests are designed for the 

hypothesis of equal population parameters. and acceptance of this 

hypothesis is usually the end of the analysis. But if the location 

parameters seem to be unequal a new question arises and that concerns 

some kind of grouping of the samples. For the moment we will con­

sider samples from normal populations with equal variances and no 

outliers. Fisher (1935) suggested the Least Significant Difference test 

that consists of two stages. At first an ordinary one-way analysis of 

means is performed and if the hypothesis is accepted then no further 

action is taken. But if the hypothesis is rejected than all the pairs are 

compared with a Students t-test with the same size a. The standard 

error is based on the pooled variance from all the samples with the 

appropriate number of degrees of freedom. The t-tests are preceded by 

the F-test as some kind of protection against loss of control over the 

chosen size. Suppose the analysis consisted of only the paired t-tests 

with the same size a = 0.05. Then the probability of declairing any 

pair different when in fact their location parameters are equal can 

easily exceed this chosen size. Duncan (1951) showed that the actual 

size in this context will be about 0.1223 for 3 samples, 0.2034 for 4 

samples and even 0.9183 for 20 samples. So some kind of protection is 

needed and Fisher's idea works if one only wants to protect the overall 

size if all the location parameters are equal. But suppose there are some 

groups of samples having different means, but that within these groups 

the samples come from populations with the same means. For instance. 

we can have 10 samples, 5 of them with expectation µ, 1 and 5 with 

expectation µ 2 . Then the F-test will not give the necessary protection. 

because after rejection of the overall hypothesis the t-tests will be 

applied to every pair with the same a. Hayter (1986) has examined 
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this situation and he proved the following theorem: 

For any balanced one-way model and for an unbalanced model 

with k = 3 the Maximum Familywise Error Rate MFWER of the 

a level Least Significant Difference test of k populations with v 
degrees of freedom for the error is: 

Here qk -t,v is a studentized range random variable with parame­

ters k-1 and v, and t)a/2) is the upper a/2 point of the t­

distribution with v degrees of freedom. 

The Min MFWER denotes that the maximum is taken over all possible 

values of the population means µ;. Hayter also showed that 

o/ (k .Y .a) provides an upper bound on the MFWER for any unbal­

anced one-way model with more than three samples. Therefore the 

Least Significant Difference test can be improved by using qk-l.v(a)/../i 

instead oft z,(a/2) for the pairwise comparisons in the second stage of 

this test. Adaptations of this idea to variance heterogeneity and to 

outliers will be discussed further in this chapter. First attention will 

be given to simple pairwise comparisons that are not protected by an 

overall test. but by modifications of the pairwise size a. 

6.2. Pairwise comparisons based on the t-distribution 

In this section we will drop the equality of the population variances. 

The pairwise comparisons need a procedure for the Behrens-Fisher 

problem and a good candidate is Welch's approximate t-solution. This 

test has been evaluated by Wang (1971) and he concluded that it gives 

the user excellent control over the chosen size. whatever the value of 

the nuisance parameter 0= a}/u l may be. The test statistic is: 

x--x-
t = I J 

.Js;2/n; +s//ni 

Here x 1 denotes the i-th sample mean. s;2 the corresponding sample 

variance and n; the sample size. Pooling of the k variances as in the 

second stage of Fishers Least Significant Difference test is avoided here. 
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The test statistic t follows unde:r the hypothesis of equal population 

means approximately at-distribution with v ij degrees of freedom: 

2 2 
( !_:_ + ~ )2 

n; nj 

s 4 5·4 
I + j 

n/(n;-1) n/(nj-1) 

V;j::: 

Ury and Wiggings (1971) proposed this test fo:r pairwise comparisons 

with the Bonferroni f3 that controls the familywise error rate if these 

comparisons are not preceeded by an overall test. For k samples there 

are k(k-1)/2 pairs. Therefore the probability of declaring any pair 

different when in fact they are equal is limited by a if for {3 the fol··· 

lowing value is chosen: 

(3 == 2a 
k (k -1) 

result will be conservative if one considers the familywise error 

rate. Another problem seems to lie in the fact that v ij is generally not 

an integer. But Wang has shown that replacing it by the nearest integer 

is a reasonable solution provided that v ij is not too small. An alterna­

tive is to use Peiser·s (1943) approximation for which the parameter 

does not need to be an integer: 

Here u Cl stands for the upper a point of the standard normal distribu­

tion. The simultaneous confidence intervals for the U.ry and 

test are given by: 

'ft v . ((312).Js?ln; +s/!n1 ] 
IJ 

There are some alternatives mentioned in the literature. Hochberg 
( suggested using: 

µ; E[x;-xi 'f'}'Oi.Js;2!n;+s/!nj] 

H.e:re y 0/ is the solution of: 
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Here the same vii is used as in the previous test. Tamhane ( 1979) has 

shown that these tests are very similar in all :respects (if all the sample 

sizes are equal. the tests are even exactly the same). And since the Ury 

and Wiggins approach is easier to apply no further attention will be 

given to Hochberg's proposal. Tamhane (1977) suggested using 

Banerjee's (1961) approximate solution of the Behrens-Fisher problem 

with Sidak's y for the pairwise comparisons. This y also results in a 

conservative overall test, but it exceeds the Bonferroni fJ and therefore 

reduces the conservatism: 

2 

y= 1-(1-a)m=TT 

This approach results in the following confidence intervals: 

µi-µj dx;-xj 'f .Jt;i c.,n)s/lni+t';j (")'12)s}!nj l 

Later Tamhane (1979) showed that this will result in a very conserva­

tive test and he suggested to use the Welch test with "Y instead of f3 

for the pairwise comparisons. Ury and Wiggins (1971) found that the 

choice of vii can be improved by taking ni +ni-2 if one of the follow­
ing conditions is met: 

9/10~ n; /ni ~ 10/9 

9/10~ (s/ln, )/(s/!ni )~ 10/9 

4/5~ n;/ni ~ 5/4 and 1/2~ (s/ln; )/(s/!ni )~ 2 

2/3~ n; /ni ~ 3/2 and 3/4~ (s;2/n; )/(s//ni )~ 4/3 

Tamhane (1979) showed that among some competitors this is the best 

test for pairwise comparisons based on the t-distribution. Further in 

this chapter some alternatives will be discussed that use other distri­

butions. For equal variances the natural choice is: 
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Here the standard deviation s is based on the pooled variance with v = 
N -k degrees of freedom. An adaptation of this method to the situa­

tion of equal variances with a small probability of some extreme 

outliers will also be discussed (see section 7 of this chapter). 

range tests 

In this section a strategy will be pointed out that was originated by 

Newman (1939). Duncan (1951) and Keuls (1952). At first we will 

assume the sample sizes to be equal. Also variance heterogeneity will 

not be allowed. Later on these restrictions will be dropped. 

Let x (1) , ... , x (k) be the sample means, sorted in non-decreasing order. 

The first hypothesis of interest is H 0 : µ 1 = ... = µ k • where the popula­

tion means are renumbered so that their ordering becomes the same as 

the sample means which are their estimates. Then H O can be tested 

with: 

Here qk ,vCa) is the upper 01 point of the studentized range distribution 

with parameters k and v. The standard deviation s is based on the 

pooled variance with v = N - k degrees of freedom: 

Duncan (1951) remarks that this test has a serious disadvantage rela­

tive to the F-test for one-way analysis of means: 

When an F-test is used the nun hypothesis has a smaller likeli­

hood in every case in which it is rejected than in every case in 

which it is accepted. This is not true for a range test. For that 

test, the null hypothesis is sometimes rejected in cases when it 

has a larger likelihood than in other cases when it is accepted. 

This is a decided intuitive weakness of any test of a null 

hypothesis which does not conform to the likelihood ratio 
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criterion. 

If H O is rejected, the next stage is to test µ 1 = ... = µk _ 1 and µ 2 "" ... = 
µ, . Proceeding like this until every hypothesis is accepted will result 

in some kind of grouping of the samples such that µ; and µ j will be 

called significantly different if they do not belong to the same group. It 

is possible that the resulting groups partially overlap. so that the fol­

lowing situation can be met: 

µ 1 = µ 2 : accepted 

µ 2 = µ 3 : accepted 

µ 1 = µ 3 : rejected 

This is only natural: pairwise comparisons often wiB yield similar 

results. If a candidate for the splitting process contains p means then 

qP _,,(a P) is to be used instead of qk _11 (01 ). Newman and Keuls suggested 

aP = a and Duncan preferred: 

The Newman and Keuls aP will only guarantee the overall size a for 

the hypothesis that all the means are equaL Duncan's method does not 

control the familywise error rate, but it controls each pairwise com­

parison at the a level. Both choices will be discarded since in this 

chapter we are more interested in controlling the MFWER. This can be 

done by following a suggestion of Ryan ( 1960) for which Einot and 

Gabriel (1975) demonstrated that the actual probability of declaring 

any mean different when in fact they are equal will never exceed a: 

Now the equality of the sample sizes will be 

moment the variances still have to be equal. Miller suggested 

the median of n 1 , •..• n1:. Winer (1962) suggested the harmonic 

mean H: 
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H= 1 
1 k 1 -I:-
k i= t n; 

Kramer ( 1956) modified the formula of the test to this situation: 

J; 

Here v = N -k and N = I: n;. Only in Kramer's case (and then only 
i=l 

for two samples) does the studentized range distribution hold. For 

Miller and Winer the approximation will be reasonable if the sample 

sizes are not too different. Kramer"s test contains a trap that can be 

explained by considering four samples with unequal sample sizes. Let 

x (l) •...• x (4 ) be the ordered sample means and n 1 •..•• n 4 the 

corresponding sample sizes. Suppose that n 1 and n 4 are much smaller 

than n 2 and n 3 . Then the hypothesis µ 1 = ... = µ 4 can be accepted 

while µ 2 and µ 3 are significantly different. But the strategy will make 

sure that this difference will never be found. This problem was pointed 

out by a referee of Kramer's contribution and it was mentioned in the 

revised publication. 

From here on the variances wm be allowed to be unequal. For equal 

sample sizes Ramseyer and Tcheng (1973) found that the studentized 

range statistic is remarkably robust against variance heterogeneity. So 

for almost equal sample sizes it seems reasonable to use the Winer or 

Miller approach and ignore the differences in the variances. But suppose 

that in the above mentioned example the variances sf and s l are 

much smaller than s l and s l ( this is a situation that was not con­

sidered by Ramseyer and Tcheng). Then it is possible that a pairwise 

comparison of µ 2 and µ 3 would lead to a significant result. while the 

hypothesis for some group of samples to which these means belong is 

accepted. So the pairwise comparison will never be performed and here 

we have a conflict between the stepwise strategy and the individual 

tests. 

Unfortunately. the robustness of Kramer's test is rather poor [Games 

and Howell (1976)]. so if the sample sizes differ greatly one might be 
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tempted to consider: 

Here pooling of the variances is a voided and v ij comes from W ekh 's 

test and is restricted to the extreme samples in the range under con­

sideration. The studentized range distribution does not hold for these 

separately estimated variances, but in another context the approxima­

tion seems reasonable though a bit conservative as we will see in the 

next section. However the conflict with the strategy of the multiple 

:range test is even stronger here, because if the extreme samples have 

big variances or small sample sizes it is possible that important 

differences within the range are obscured. 

The conclusion from this section can be that generalisations of the 

multiple range test to unequal sample sizes or variance heterogeneity 

are not to be :recommended. An important difference between two 

means can be masked by the presence of some small samples or some 

samples with bigger variances. Within the strategy of pairwise com· 

parisons however. the studentized range distribution is a very attrac­

tive tool for unbalanced designs with variance heterogeneity as will be 

shown in the next section. 

6.4. Pairwise comparisons based. on the q-distribu.tion 

U the sample sizes and the variances are equal one can use 

(1953) method for pairwise comparisons: 

Here s is based on the pooled variance with v 0= N - k degrees of free­

dom. This test is known as the Tukey Significant Difference 

test and Miller ( 1 has stated that it is the most powerful test for 

pairwise comparisons that controls the familywise error rate. An 

:important difference of this test with Hayter·s modification of 

Least Significant Difference test that was mentioned in the introduction 

lies in the fact that Tukey uses qk .icu) while Hayter suggested 
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q1,: -i,v(G'. ). This difference comes from the fact that Tukey considers 

unprotected pairwise comparisons while in Hayter's case the pairwise 

comparisons are only performed if the hypothesis that an the means 

are equal is rejected by an o level F-test. 

If the sample sizes are unequal one can consider Kramer"s modification: 

Games and Howell (1976) mention that this puts the familywise error 

rate slightly below a. while using the median or the harmonic mean 

often results in exceeding G'.. They based the conservatism of the 

Tukey-Krame:r method on a simulation study. Later (1984) Hayter 

gave an analytical proof for this conjecture. Games and Howell recom­

mended Kramer's idea and suggested the following modification for 

unequal variances: 

Here comes from Welch's modified t-test. Therefore this method 

differs from pairwise comparisons based on Welch's test with Sidak's 

)' only in the factor that scales the combined standard deviation. 

Tamhane (1979) has shown that: 

Here the only holds if k = 2. Therefore the test Games and 

Howell will be more powerful. But they use the studentized range 

statistic in combination with separately estimated variances so there is 

some reason to fear that the actual familywise error rate win exceed 

its nominal value. In 1983 Games and Howell mentioned that for their 

test this error rate varied between 0.0286 and 0.0622 for a nominal 

value of 0.05 in a study with a wide variety of conditions. 

In 2 we saw that the second order method of James is a good 

choke for the hypothesis that all the means are equal. This test can 

handle variance heterogeneity very well. but it is not designed for 

multiple comparisons and therefore the Games and Howell test seems 
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more attractive for cases where more information about the separate 

means is needed. In a simulation study both tests are compared under 

H 0 : µ 1 = ... = µ,. as well as under some alternatives. For the Games 

and Howell test the hypothesis H O is considered to be rejected if at 

least one pairwise comparison leads to a significant result.. Each entry 

in tables 1 and 2 is based on 2500 replications. 

Table 1: Actual size with nominal size= 5% 

sample size a I G&H James 

4.4,4.4 1.1.1.1 4.52 4.64 

1.2.2.3 6.08 5.84 

.8.10 .1.1.1 3.20 4.56 

1,2,2,3 2.60 4.72 

3,2,2,1 4.88 5.64 

10.10.10.10 1.1.1.1 2.44 5.36 

1.2.2.3 3.20 5.52 

.10.12 1.2.3.4.5 3.84 4.68 

1.2.3.5,7 3.84 4.92 

5.4.3.2.1 6.72 5.72 

7.5.3.2.1 6.64 5.92 

8,8.8.8,8 1.2.3.4.5 4.60 4.56 

1.2.3,5,7 4.20 4.68 

From table 1 it is clear that the test by James controls the chosen size 

much better than the Games and Howell method. which can be conser­

vative but also slightly progressive. The pattern is similar as in classi­

cal one-way analysis of means: ff the bigger samples coincide with the 

bigger variances then the Games and Howell test will be conservative. 

For more balanced situations the conservatism will decrease but not 

vanish. And if the bigger samples coincide with the smaller variances 

then the test wm become slightly progressive if the differences are not 

too small. 

A comparison of powers is given in table 2. It is remarkable that 

the method of James has more power. the difference with the 
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Games and Howell test is only moderate, even in cases where the 

actual size of this test was reduced to 2.60% while a nominal value of 

5% was chosen. 

Table 2: Estimated power with nominal size = 5% 

sample size µ; U; G&H James 

4.4.4.4 3,0.0,0 1.1.1.1 86.00 86.84 

1.2.2.3 52.76 60.28 

3.2.2.1 21.56 22.72 

5,0,0,½ 1.1.1.1 99.68 99.64 

1.2.2,3 91.60 97.08 

3.2.2,1 43.16 43.72 

4.6.tU0 3.0.0,0 1.1.1.1 88.24 92.88 

1.2.2.3 75.60 86.92 

3,2.2.1 20.12 24.12 

0.0.0,3 1.2.2.3 47.80 50.40 

3,2.2.1 87.12 94.64 

The conclusion of these simulations can be that for the hypothesis that 

an the means are equal the method of James is a better choice than the 

Games and Howell test. If one is interested in an adaptation of Fisher's 

Least Significant Difference test to the situation of variance hetero­

geneity. a good start will be to replace the first-stage F-test by the 

method of James. Considering the results of this chapter and Hayter·s 

suggestion a good candidate for the second stage of this test is: 

µ; -µi E [x;-xi =F qk-1,11;/a )-J(s;2!n; +s/!ni )/2] 

The difference with the unprotected Games and HoweH approach lies in 

the fact that here qk -l 11 (a) is used instead of qk 11 (a). Whichever 
• l} ' l] 

approach the user may prefer. in both cases the q-statistic is a very 

good tool for this kind of simultaneous statistical inference. Similar 

methods for a model with outliers will be given further in this chapter 
(see sectons 7. 8 and 9). 
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F-tests 

This test was proposed by Duncan ( 1951). In the original version the 

population variances must be equal. The procedure is the same as for 

the multiple range test. only the q-statistic is replaced by an F, so that 

the first stage becomes classical one-way analysis of means. In every 

stage the pooled variance is used with the appropriate number of 

degrees of freedom, based on all the samples and not only on the ones 

within the range under consideration. At first Duncan proposed using 

D= 1-(1-a)P-l in order to set the error rate for pairwise comparis­

ons to 0/.. The operating characteristics of this approach are similar to 

repeated t-tests at level Of. if the sample sizes are not too different 

[Petrinovich and Hardyck (1969)]. Later (1955) Duncan suggested 

what he called protection levels for which the familywise error rate 

will never exceed a if the sample sizes are equal: 

O!.D'=. 1-(1-a)(p-l)/(k-1) 
p 

This D" will always be lower than Ryan's a:= 1-a)Plk except 

in the first stage when the value for both will be the chosen size a. 

And since a} already controls the familywise error rate, Duncan's 

suggestion will not be considered further. Welsch ( 1977) found that 

even a/} can be improved a little and he suggested: 

OJ.PW= 1·-(1-0l)Plk for p <k-1 

0t. p"'' = OI for p ~ k - 1 

ln the context of the strategy with ordered sample means a/;*. 0/: and 

at· are only safe to control the fami]ywise error rate if the design is 

balanced. The strategy can be adapted to the situation of unbalanced 

designs as we will see further in this section. For the moment we will 

simply ignore this and examine what can happen. The nature of the 

F-test allows unequal sample sizes. This seems to make this approach 

more attractive than the multiple range test, but there is a problem. 

Consider four samples with only a few observations for the smallest 

and largest sample mean and considerable sample sizes for the second 

and third ordered mean. U µ1 = ... = µ 4 is rejected. the next two 
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hypoheses to be tested are µ 1 = ... = µ 3 and µ 2 = ... = µ 4• So µ 1 and µ 4 

will always be called different. But in this unbalanced design it is pos­

sible that a pairwise comparison of µ 1 and µ 4 would not yield any 

significance. One can of course apply an a level t-test to every pair 

that seems significant as a result of the multiple F-test. But it will not 

be easy to predict the effect of this approach on the f amilywise error 
rate. 

Now the equality of the variances will be dropped. It is well known 
that the F-test is not robust against variance heterogeneity [Brown and 

Forsythe (1974). Ekbohm (1976)]. So it seems reasonable to use the 

non-iterative version of the second order method of James [see chapter 

2]. thus making a Multiple James test. This new test contains the same 

problem as the multiple F-test. but that is not all. In a design with 

four samples µ 1 and µ 4 will always be called different if H 0 : µ1 = ... = 
µ 4 is rejected. Now suppose that Sf and s l are much smaler than s t 
and s J. Then the difference between µ 1 and µ 4 may not be significant 

in a pairwise comparison. Here the structural difference between this 

test and generalisations of the multiple range test to unequal sample 

sizes and variance heterogeneity comes into the picture: If extreme 

means coincide with big variances or small samples, then these general­

isations of the multiple range test can ignore important differences. 

while the Multiple James test can wrongly declare means to be 
different. 

One can of course apply Wekh"s test for the Behrens-Fisher problem 

to the pairs that seem significant as a consequence of the Multiple 

James test. But if many pairwise comparisons are needed. and if for 

every pair the same level a is used. it is dear that we can loose control 

over the familywise error rate. So another strategy is needed and the 

answer is given by Einot and Gabriel (1975). If a multiple F-test is to 

be performed and the design is unbalanced one can simply start with 

the overall F-test with level a. If the hypothesis is rejected one does 

not look at the ordered sample means and try only the hypotheses µ 1 

= ... = fJ.k-l and µ 2 = ... = µk. but every subset has to be considered 

where one µ i is left out. The same values a/?*. 01 l or 01 t can be used 



with p = k-1 and the acceptance of a hypothesis means that the split­

ting process for this subset stops. This strategy is not limited to the 

second stage. but it is applied to every subset that becomes a candidate. 

For every step the level is some aP where p is the number of samples 

in the subset under consideration. This approach will avoid the classi­

cal trap in the multiple F-test. but if it is applied to the multiple 

James test it can also handle the specific problem that comes from 

variance heterogeneity. 

This strategy can be very expensive in computer-time. In the worst 

case situation. where all the means are isolated. the number of tests 

will be 2k -(k +1) instead of only ½k (k-1) for the ordinary multiple 

James test or any strategy based on pairwise comparisons. For 15 sam­

ples this means 32752 tests instead of only 105. In order to find out 

whether this improved method is worth the additional computations. 

the ordinary multiple James test and this method were applied to 7 

case studies with unbalanced designs and variance heterogeneity (from 

a chemical experiment and from a study on perception). There were 

277 pairs and only for two of these the conclusions were different. 

meaning that the improved method did not confirm a pairwise 

significance that was found by the multiple James test. 

The conclusion of this section can be that if one favours the multiple 

F-test one can deal with variance heterogeneity by modifying it into a 

multiple James test. The best choice for the level in every range under 

consideration is at by Welsch. If the improved strategy is too expen­

sive in computer time. a terminal-oriented program should not only 

produce the final result, but also the separate sample sizes and stan­

dard deviations. If an interesting pairwise significance is based on sam­

ples where the sample sizes or standard deviations are very different. 

the user should confirm the outcome by using Welch's test for the 

Behrens-Fisher problem. The program should incorporate this possibil­

ity in a user-friendly conversation. 

The results of a multiple James test can be represented by a vertical 

ordering of identified sample means with bars representing the possibly 

overlapping groups. This is visually more attractive than the matrix 
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one needs for pairwise comparisons. especialy if there are many sam­

ples. 

6.6. An example with unequal variances 

Some of the methods mentioned in the previous sections will be 

applied to an example with four samples. The sample sizes are equal. 

but the variances are very different. The data are artificial: they are 

chosen in order to demonstrate the differences between some strategies. 

Table 3 gives the original data and table 4 is a summary of the 

relevant statistics. 

Table 3: Four samples. n; == 15 

1 2 3 4 

-0.79 0.80 1.16 0.81 

0.78 1.45 1.24 -1.02 

-1.09 0.56 1.59 2.22 

1.67 0.95 1.12 -0.03 

2.26 0.88 1.51 2.11 

1.57 0.52 1.21 3.93 

0.55 0.82 1.44 2.95 
-2.45 0.10 1.51 2.61 

2.01 0.63 1.29 -0.63 

0.58 0.86 0.90 0.96 

2.27 0.56 1.88 3.39 

0.58 1.05 1.78 2.31 

1.36 0.82 0.98 4.99 

4.63 0.24 1.40 1.65 

-3.06 1.14 1.35 3.66 

The variances of samples number 1 and 4 by far exceed those of 

number 2 and 3. The first stage of the multiple range test involves 

only the extreme samples and since they are already ordered this 

means that only the bigger variances are involved. Not assuming vari­

ance homogeneity the statistic will be based on the separately 
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Table 4: Summary of table 3 

sample µ; U; size 

1 0.725 1.958 15 

2 0.759 0.343 15 

3 1.358 0.273 15 

4 1.999 1.722 15 

estimated variances with Welch's number of degrees of freedom. This 

results in 1.892 as the test statistic. The critical value here is q 4,28/-./i 
= 2. 730 with level a = 0.05 so that the first hypothesis is accepted and 

the splitting process stops. Samples number 2 and 3 will therefore not 

be compared. And that is very unfortunate because the test statistic 

would be 7.478 with 27 degrees of freedom. resulting in an extremely 

significant difference. 

The multiple James test (based on the ordered means) with level a = 
0.05 results in two disjunct groups: samples 1 and 2 in one group and 

samples 3 an 4 in the other. Therefore the difference between µ 2 and 

µ 3 is recognized. but also some other pairwise differences that are not 

so convincing. In table 5 the results of the multiple James test are 

compared with the tail probability of Welch's test for every pair. 

Table 5: Results of multiple James test 

pair multiple James Welch 

1.2 accepted 0.948 

1.3 rejected 0.234 

1,4 rejected 0.069 

2.3 rejected 0.000 

2.4 rejected 0.015 

3,4 accepted 0.175 

The multiple James test rejects the equality of µ 1 and µ 4 with level O! 

== 0.05 while a pairwise comparison leads to a tail probability of 0.069. 

This pseudo-paradox is a consequence of the strategy with ordered 
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means. This strategy is only really appropriate if the sample sizes and 

variances are almost equal. An even more striking conflict can be seen 

by comparing the results for samples number 1 and 3. 

The third approach that we will consider is based on pairwise com­

parisons. Ury & Wiggins. Tamhane and Games & Howell all use essen­

tially the same test statistic; only the critical value is different (if 

there are more than two groups). In every case the number of degrees 

of freedom JI ii comes from Welch's approximate solution for the 

Behrens-Fisher problem. The results are given in table 6. 

Table 6: Pairwise comparisons 

pair statistic Jlii 

1.2 -0.066 15 

1.3 -1.239 15 

1,4 -1.892 28 

2,3 -5.288 27 

2.4 -2.736 15 

3.4 -1.424 15 

The critical values for the tests under consideration are: 

U:ry & Wiggins: t 11 }f312) with /3= k(;~l) 

2 

Tamhane: t 11;/y/2) with;,= 1-(1-a)~ 

Games & Howen: Qk 11 (a )/../2 
' lJ 

For four groups and the values of JI ii that come from table 6 this 

:results in critical values that are given in table 7. From tables 6 and 7 

it is clear that the procedures by Ury & Wiggins. Tamhane and Games 

& Howell result in the same conclusions: Only the equality of µ 2 and 

µ 3 has to be rejected and the difference between µ 2 and µ 4 is almost 

significant. 

This example demonstrates the dangers of using strategies based on 

ordered sample means in situations with variance heterogeneity. The 
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Table 7: Critical values (k = 4) 

V ij Ury Tamhane Games 

15 3.036 3.026 2.882 

27 2.847 2.838 2.737 

28 2.839 2.830 2.730 

data were artificial; they were chosen specially in order to give as much 

discredit to these strategies as possible. h is clear that in this situation 

the methods based on pairwise comparisons result in the most accept­

able conclusions. 

6.7. Dealing with outliers 

Just like in the previous chapter we wiU consider here contaminated 

normal data. With (small) probability € the variance will be a for 

some a>> 1 and with probability 1-E the variance will remain . We 

saw that Huber's method performs very well in this situation with 

respect to power and control over the chosen size if one is interested in 

testing the overall hypothesis µ 1 = ... = µ1,. The method can be used to 

estimate the separate location parameters and it is also suitable for the 

within-groups variance. Therefore one can consider a modification of 

the multiple :range test if the sample sizes are (almost) equal. A Multi­

ple Huber test is also possible in this situation by using the F-statistic 

instead of the q-statistic. But if one permits the sample sizes to be 

unequal it is better to consider pairwise comparisons. Two tests will be 

examined. ff the model does not permit outliers they are based on the 

following critical differences for the sample means: 
2 

Sidak: t iyl2)s -Jl/n; +1/nj with y= 1-(1-a)f"ff"=TT 

Kramer: qk ,v(a)s -/(1/n; + 1/ni )/2 

If outliers are allowed v can remain the same N -k. but the separate 

location parameters and s need modified estimators. We choose the 

estimators that are given in the previous chapter (see Huber's method) 

where the influence of the outliers is reduced considerably. The 
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resulting tests will be denoted as Huber-Sidak and Huber-Kramer 

respectively. If there are no outliers we know already that the original 

Sidak and Kramer approaches are both conservative considering the 

familywise error rate. And we also know that Huber's test is slightly 

progressive, almost independently of the presence of outliers. In a 

simulation study we will try to find out whether this combination of 

conservatism and progressiveness will result in an acceptable control 

over the chosen size in the Huber-Sidak or Huber-Kramer test. 

Table 8: Pairwise comparisons (Huber) 

n; € Kramer Sidak Kramer Sidak 

k=3 k=3 k=6 k=6 

10 0 6.00 4.95 6.55 4.90 

10 0.03 5.55 4.85 5.85 4.55 

10 0.1 5.90 5.05 5.95 4.55 

25 0 5.60 5.00 5.50 4.55 

25 0.03 5.55 4.75 5.70 4.30 

25 0.1 5.30 4.70 5.65 4.65 

40 0 5.15 4.80 6.05 4.35 

40 0.03 5.65 5.15 4.45 3.70 

40 0.1 5.35 4.35 4.45 3.35 

A 0 5.20 4.50 5.00 3.85 

A 0.03 4.50 3.95 4.85 4.00 

A 0. 5.40 4.95 3.65 3.05 

The entries in table 8 are based on 2000 replications each. The actual 

size is estimated by the percentage of rejected hypotheses. The nominal 

size is 5%, so that the standard error for these entries is given by 

.J0.05* 0.95/2000 = 0.00487 or 0.487%. A fraction E of the data were 

generated from a normal distribution with µ ""' 0 and cr 2 "" 50, and the 

remaining 1-E came from the standard normal distribution. The sam­

ple size A denotes [10,25,40] for three samples and [10.10.25,25,40,40] 

for six samples. From table 8 we can conclude that both tests give the 

user a reasonable amount of control over the chosen size. We knew 
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already that the Kramer modification results in a uniformly more 

powerful test than pairwise t-tests with Sidak's y. Since Huber's origi­

nal test is a bit progressive it is not amazing that for three samples 

Huber-Sidak controls the chosen size better than Huber-Kramer. But 

all simultaneous tests based on pairwise comparisons tend to conserva­

tism if the number of samples increases and the design is unbalanced. 

The simulation confirms this. Therefore Huber-Kramer is a better 

choice if there a.re many samples with unequal sample sizes. 

6.8. An example with one outlier 

Table 9: Six samples. n; = 10 

1 2 3 4 5 6 

1.68 1.71 1.91 1.91 1.85 2.03 

1.66 1.68 1.74 1.89 1.84 2.00 

1.66 1.67 1.72 1.85 1.84 1.95 

1.59 1.64 1.68 1.84 1.82 1.92 

1.57 1.62 1.68 1.83 1.79 1.92 

1.56 1.61 1.68 1.79 1.79 1.91 

1.56 1.61 1.65 1.77 1.78 1.90 

1.55 1.59 1.61 1.76 1.77 l.89 

1.52 1.56 1.58 1.74 1.74 UN 

1.46 1.53 1.53 1.70 1.72 1.77 

Consider six samples from normal populations with ten observations 

each. The data are given in table 9. A summary of these data is given 

in table 10. Assuming variance homogeneity we may test H 0: µ 1 ''" ... 

= µ 6 by classical one-way analysis of means. The overall mean is 

1.7335 and the pooled variance is 0.004974. The lest statistic F is 

32.98 with 5 degrees of freedom for the numerator and 54 for the 

denominator. The critical value here is 2.37 with level 01. = 0.05. There­

fore the hypothesis can be rejected. If we proceed with Hayter·s 

modified Least Significant Difference test the critical value for the 

difference between two sample means is 0.0890. And if we ignore the 
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Table 10: Summary of table 9 

sample mean variance sigma 

1 1.581 0.00474 0.0689 

2 1.622 0.00304 0.0551 

3 1.678 0.01071 0.1035 

4 1.808 0.00453 0.0673 

5 1.794 0.00192 0.0438 

6 1.918 0.00491 0.0700 

information that the overall hypothesis has already been rejected we 

can use Tukey·s method for pairwise comparisons yielding a critical 

value of 0.0932 for the same difference. In both cases 12 pairs are 

significantly different out of the total of 15. The differences of the 

sample means are given in table 11. We can use this strategy here 

because the sample sizes are equal. 

Table 11: Differences of means 

sample 1 2 3 4 5 

2 0.041 

3 0.097 0.056 

4 0.227 0.186 0.130 

5 0.213 0.172 0.116 0.014 

6 0.337 0.296 0.240 0.110 0.124 

If we use Huber's method we get the following estimates for the loca­

tion parameters: 1.584, 1.622, 1.670. 1.808. 1.794 and 1.922. The 

jointly estimated location parameter is 1. 7333 and the residual vari-· 

ance is 0.004765. The test statistic is 35.16 with the same parameters 

as with classical anova and therefore also this method results in reject­

ing the hypothesis that all the populations have equal means. The 

differences of the robust estimates of the means are given in table 12. 

If we Least Significant Difference test with Huber's 

estimates we get a critical value of 0.08 71 for the differences between 
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Table 12: Differences of robust means 

sample 1 2 3 4 5 

2 0.039 

3 0.085 0.047 

4 0.224 0.186 0.139 

5 0.210 0.171 0.125 0.014 

6 0.339 0.300 0.253 0.114 0.128 

the estimated location parameters. Ignoring the fact that the overall 

hypothesis was rejected we can use Huber-Kramer or Huber-Sidak 

with critical values 0.0912 and 0.0946 respectively. Whatever we do. 

in all these cases 11 out of the 15 pairs differ significantly. The classi­

cal method found 12 differences and that is not very strange because 

for normal populations with equal variances the classical method 

yields the most powerful test. 

Now suppose that the data represent heights of people from six groups. 

The data are given in meters, but the analyst ( working at a terminal) 

has once forgotten to enter the decimal point. The last observation in 

the first group is the one where the mistake occured and so we have 

146 instead of 1.46. The mean in the first group becomes 16.035. the 

sample variance 2085.29938 and the standard deviation 45.6651. This 

has considerable effect on the overall mean and the pooled variance; 

they become 4.1425 and 347.55408 respectively. Classical one-way 

anova results in F = 0.97 and that is far from being significant. There­

fore we can not consider to proceed with the second stage of the Least 

Significant Difference test. 

If we do not start with an overall test we can use Tukey·s method for 

pairwise comparisons. But this test uses the pooled variance and there­

fore the influence of the outlier will also in this situation be consider­

able. The critical value for the sample means is 24.6309. The pairwise 

differences are given in table 13. From table 13 we can see that accord­

ing to Tukey·s classical test none of the pairwise comparisons results 

in a significant difference. Applying Huber's method here results in a 
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Table 13: Differences of means 

One extreme outlier 

sample 1 2 3 4 5 

2 14.413 

3 14.357 0.056 

4 14.227 0.186 0.130 

5 14.241 0.172 0.116 0.014 

6 14.117 0.296 0.240 0.110 0.124 

Table 14: Differences of robust means 

One extreme outlier 

sample 1 2 3 4 5 

2 0.019 

3 0.065 0.047 

4 0.204 0.186 0.139 

5 0.190 0.171 0.125 0.014 

6 0.319 0.300 0.253 0.114 0.128 

considerable improvement. The test statistic for H 0: µ 1 = ... = µ 6 is 

32.36 so that this hypothesis can be rejected. The robust mean for the 

first group becomes 1.604; the o:ther robust means are unaffected by 

the outlier. The jointly estimated location parameter is 1. 7366 and the 

:residual variance is 0.004828. Please note that these values differ only 

slightly from the ones obtained by Huber's method for the original 

data without the outlier. Using Huber's estimates in the next stage of 

Least Significant Difference test results in critical value of 

0.0877. If we ignore the result of the overall test we can use Huber-­

Kramer or Huber-Sidak with critical values 0.0918 and 0.0952 respec-

All these approaches :result in the same conclusion: 11 are 

significantly different (see table 14) and they are the same pairs that 

were found by these methods when the:re was no outlier. 
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6.9. Multiple range and multiple F tests with Huber's estimates 

Ramsey (1978) demonstrated that the multiple range test and the mul­

tiple F test have more power (if the design is balanced) than any test 

based on pairwise comparisons. In the example with one outlier every 

group contained the same number of observations. Therefore we can use 

these tests here after modifying them to deal with outliers. The 

modification consists of using Huber's estimates for the location parame­

ters and the residual variance. The resulting methods will be called mul­

tiple qH test and multiple pH test. First we will examine the multiple F 

test. Table 15 gives the critical F values as a function of the number of 

means in the range under consideration. The overall size a = 0.05 and 

for every range with p means at by Welsch is used. 

Table 15: Critical F values 

means F value 

2 6.072 
3 3.938 

4 3.115 

5 2.543 

6 2.386 

For the samples without the outlier the results for the multiple F test 

are consistent with those for Hayter's modified Least Significant 

Difference test. They are presented in table 16. 

Table 16: Differences of means 

sample 1 2 3 4 5 

2 accept 

3 reject accept 
4 reject reject reject 

5 reject reject reject accept 
6 reject reject reject reject reject 

If the outlier enters the data the multiple F test wiB not recognize any 

difference because the splitting process stops after the first stage. The 

multiple pH test yields the same results for the data with and without 

the outlier. They are presented in table 17. If there is no outlier the 

multiple F test recognizes the difference between the first and the third 
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Table 17: Differences of robust means 

sample 1 2 3 4 5 

2 accept 

3 accept accept 

4 reject reject reject 

5 reject reject reject accept 

6 reject reject reject reject reject 

sample while the multiple F 11 test fails to do so. But it is clear that the 

multiple pH test is to be preferred if there is reason to suspect the pres­

ence of some extreme outliers. 

The critical range in the multiple range test and the multiple qH test 

depends on the estimated residual variance. Table 18 gives the critical 

values if the nominal size a = 0.05 and if for the ranges under con­

sideration a/. is chosen. 

Table 18: Critical ranges 

means S=0.0705 S=18.643 S=0.0690 S=0.0695 

2 0.0777 20.544 0.0755 0.0766 

3 0.0848 22.424 0.0830 0.0836 

4 0.0887 23.444 0.0868 0.0874 

5 0.0890 23.528 0.0871 0.0877 

6 0.0932 24.632 0.0912 0.0918 

Table 19: Summary of F and q tests 

statistic method outlier differences 

F classical 110 12 

F classical yes 0 

F robust no 11 

F robust yes 11 

q classical no 12 

q classical yes 0 

q robust no 12 

q robust yes 12 

In table 18 the values of S (the square root of the residual variance) 
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correspond from left to right with: (1) multiple :range test, no outlier 

(2) multiple range test. one extreme outlier (3) multiple qH test, no 

outlier and (4) multiple qH test, one extreme outlier. The multiple :range 

test :recognizes all 12 differences if there is no outlier. but if the outlier 

is present the strategy stops after the first stage and no difference is 

found. The multiple qH test also finds these 12 differences, but the out­

come :remains the same if the outlier is present. A summary of an the 

:results mentioned in this section is given in table 19. This example sug­

gests that the multiple qH test has more power than the multiple pH 

test. But that is highly unlikely because Ramsey (1978) has shown that 

in almost every situation the multiple F test is more powerful than the 

multiple :range test (if the same Ol.p is used) but that the difference in 

power is very small. And there seems to be no :reason why the order 

should be reversed if the classical estimates are :replaced by Huber·s 

alternatives. 

The conclusion of this and the previous section can be the following: 

Classical methods for multiple comparisons are not robust against the 

presence of outliers. Even one single outlier can remove all power. And 

not only in an overall test. but also in pairwise comparisons if one uses 

the pooled variance. A modification of the classical methods using 

Huber's estimates for the location parameters and the :residual variance 

results in a considerable improvement. The loss of power if there are no 

outliers is only marginal. 
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7. Appendices 

7.1. The generation of random normal deviates 

In this study pseudo-random normal deviates were generated using the 

method of Box and Muller ( 1958 ). Let U 1 and l 7 2 be independent ran­

dom variables from the same rectangular density function on the 

interval [O, 1 ). Using these one can generate a pair of random deviates 

from the same normal distribution as follows: 

X 1= -J-2log0 V 1cos211-U 2 

X 2= -J-2log, U 1sin2-rrl/ 2 

X 1 and X 2 will be independent normal variables with zero mean and 

unit variance as can be demonstrated by inverting the relationships: 

1 
U 2= - --arctan-

2-rr X 1 

This results in the joint density of X 1 and X 2: 

1 -(Xl+X:r) 
f (X1,X2)= -exp-----

. 2-rr 2 

1 -Xl 1 

The pseudo-random real numbers U 1 and U 2 from the uniform distri­

bution on the interval [O, 1) were generated by the mixed congruential 

method. Let N be an integer starting-value. A new value for this vari­

able is computed as: 

N := (A*N + 116177073375)MOD 239 

Where A= 152587890725 and := denotes the replacement operator. 

With this formula sequences of pseudo-random integers are generated. 

To get the desired real numbers the integers are divided by 239. 
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7.2. Computation of the F-distribution 

The real function FISPRO(x .n ,d) computes the probability that an 

F-distributed variate does not exceed x. The number of degrees of free­

dom are n for the numerator and d for the denominator. This function 

is given by: 

X 

F ISPRO (x .n ,d )= C fi ½ (n - 2>(d +tn )-½ (n +d >dt 
0 

Here x is a non-negative real and n and d are positive integers. The 

constant C is given as: 

C - f((n +d )/2) ln d!d 
- f(.!.n)f(.!.d)n 2 2 

2 2 

A distinction is made between the following cases: 

a. n + d ~ 500, n even. 

Q=u½d[1+.!.d(1-u)+d(d+ 2\1-u)2+ ... 
2 2.4 

+d(d+2) ... (d+n-4)(1-u)½<n 
2.4 ... (n -2) 

Here u = d (d +nx . The desired probability is then computed 

as = 1 - Q. If Q happens to be negative then = 1. 

This is also true for the following cases. 

b. n + d ~ 500, d even. 

_ ( )!"[ n n(n+2) 2 Q-1- 1-u 2 1+2 u+ 2.4 u + ... 

+ n (n +2) ... (n +d-4) u½<d-2)] 
2.4 ... (d -2) 

c. n + d ~ 500, n and d both odd. Let 0= a:rctan✓nx Id . Then Q = 

1 - A + fj, where A and /3 are given as follows: If d = 1 then A= 

2fJ/rr. If d ~ 2. then: 
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A = ±._[11+ . ll+2 3ll/3+ + 2.4 ... (d -3) d-2ll] 
7r u smv cos v ... 3_5 ... (d -i) cos v 

If n = 1 then f3 = 0. U n ~ 2 then: 

_ 2 ((d-1)/2)! . d d+1 
!3- ../ii ((d- 2)/2)! smflcos 0[1+ 3 

+ (d + 1)(d +3) ... (d +n -4) sin" _3f,l] 
3.5 ... (n -2) 

d. n + d > 500, 10d ~ n. Q is computed as if the variate were )( 2-

dist:ributed. The procedure CHIPRO is called with d degrees of 

freedom, and the argument is given as: 

e. 

l+ d-1 
2n v=----

_1_+_1_ 
xd 2n 

n + d > 500, 10 n ~ d. Q is computed 

degrees of freedom and argument: 

ln all other cases: 

l+ n-1 
2d v=----

_1_+_1_ 
xn 2d 

CHIPRO with n 

_ 1 (-.12(1-/2)/3/2+/1-l) 1 Q--ERF ----;=====,--- +-
2 .Jtd}+f 1 2 

2 2 l 
Here f 1= 9n. f 2= 9d and f 3= xi. ERF denotes the error func·· 

tion that is defined as follows: 

X 

2 J' ERF(x)= r-- e:xp(-t 2)dt 
V7r 0 

For this function a very stable algorithm is used that yields an 

accuracy of at least 10 digits. In this study only the cases a, b 

and care encountered. The precision here is 
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Lackritz (1984) gave a more attractive method for finding the p-value 

of an F-test. Unfortunately, this method came to the attention of the 

present author when the simulation study was finished already. 

7.3. Computation of the inverse x2 distribution 

A real function CHISTA (a ,v ,e) is defined as follows: The tail proba­

bility of a x2-distributed variate with v degrees of freedom is a. The 

value for which this probability is reached is computed with precision 

e and the result is stored in CHIST A. The algorithm consists of two 

parts: 

a. The estimation of a reasonable initial estimate x O of the solution 

x. Here we use the abbreviation p == 1-a. If Y = 1. then Fa is 

computed by the inverse standard normal probability function 

NOST AT with parameter 1-(p + 1)/2 and precision €. If v= 2, 

then x 0=-2log,(1-p). If v>2. then: 

xo= v(l-.2._+t J2* (9n )- 1 ) 3 

9n 

t is computed by the inverse standard normal probability 

function with tail probabili.ty a. If v = 1 or v == 2 then x == x O and 

the desired value has been found. If: 

n 

0.35 2 
p < n 

- n 
n2 2 r(--) 

2 

or if in the last case the initial estimate is negative, then we use 

x J instead of x 0 , whe:re: 

n 2 

X 6 ::::: (2 2 f ( !:!-_+ 1 n 
2 

b. second part of the algo:ri.thm is an iteration with 

method until the precision e has been reached. The starting value 

is x O or xJ: 
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Here the procedure CHIPRO computes the x2-distribution with v 

degrees of freedom. The derivative f (x,) is given as follows: 

f (x; 

During this process negative values of x; + 1 can occur. In this case 

a Regula Falsi is used instead of Newton's method. In this study 

the precision € has been given the value 10-4_ 

Now a description of the function CHIPRO for the x2-distribution wil 

be given. The result will be the tail probability a that is defined 

Here m = v /2. The computation of this probability is based on the fol­

lowing recurrent relation: 

A distinction is made between two cases: 

1. v is even; n = 2m. 

X m X · 1 
a(v )=exp(--) L (-·· )'-1-.-+a(2) 

2 i== 2 2 r(i) 

Here a(2) is computed as exp(- ; ). 

2. v is odd; n = 2m 1 + 1. 



01(1)= ,;-.._ fexp(-{ t 2 )dt 
v2TT w -

Here w=.Jx. 

;~ow we only have to explain the computation of the inverse standard 

normal distribution function. The algorithm consists of two parts: 

a. The computation of a reasonable initial estimate x O of x: 

( co+c 1t+c2t 2 ) 
xo= t- 1+d1t+d2t2+d3t3 sgn 

Here t = ✓log,, (p- 2) and sgn = 1 if 0 < p ~ 0.5. If 0.5 < p < 1 

then sgn = -1 and t = ✓loge([l-p]-2 ). NOSTAT will be given the 

value 6 if p = 1 and -6 if p = -1. The constants in the function 

for the initial estimate are: 

Co= 2.515517 

C 1 "" 0.80285 3 

C2 = 0.010328 

d 1 = 1.432788 

d 2 = 0.189269 

d 3 = 0.001308 

b. Iteration with Newton's method until a precision € has been 

reached. The starting value is x 0 : 

NO PROB (x; )- p 
X;+1"" X;- f (x;) 

1 
f (x · )= --exp(-.!. x 2) 

I .fiii 2 I 

Here NOPROB gives the standard normal distribution function: 

X 

NOPROB(x )= ..,;k- J exp(-½t 2 )dt 
21r -co 

For this function a very stable algorithm is used that is accurate 

to at least 10 digits. 
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7.4. The generation of double exponential,. logistic and Cauchy 
variates 

The density of the double exponential distribution (also known as the 

laplace distribution) is: 

F(x )= _l_e:xp(- lx-µj) 
2er er 

Here :x is a real number. µ and er are the parameters to be chosen by 

the user with the restriction that u has to be positive. Random 

numbers from this distribution are generated as follows. At first a ran­

dom number u is drawn from the open interval (0,1). Then y is a ran­

dom variate from the double exponential distribution if: 

y = µ+ulog,, (2u) for u ~ ½ 

y = µ-er log,, (2( 1-u )) for½ < u 

This transformation was mentioned by Van Putten and Van der Tweel 
(1979). 

The logistic distribution has the following cumulative distribution 

function: 

F(x)=---1---
x-O! l+exp(---) 

/3 

Here x is a real number. O! and f3 are the parameters than can be 

chosen by the user. The scale parameter /3 has to be positive. Let u be a 

uniform random number from the open interval (0.1). Then a random 

number y from the logistic distribution can be got from the transfor­

mation: 

1-u 
y = a-(3log,, (--) 

u 

This tranformation has been given by Newman and Odell (1971). 

The density of the Cauchy distribution is given by: 
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f (x)= _1 ____ 1 __ 
er rr 1 + ( x - µ )2 

er 

Again x is a real number, µ and CT can be chosen by the user and a­

has to be positive. Let u be a uniform random number from the open 

interval (0.1). The following transformation will result in a random 

number y from the cauchy distribution: 

y = µ +crtan((u -½hr) 

This transformation was mentioned by Van Putten and Van der Tweel 

(1979). 

7.5. The limiting values of Q for some distributions 

In this section the values of the statistic Q for the uniform. normal, 

logistic, double exponential and Cauchy distribution as the sample size 

tends to infinity will be derived. This statistic is defined as follows: 

Q = 10(U os- Los) 
Us-L.s 

Here U_05 denotes the sum of the upper 5% of the observations. ff the 

sample size is not a multiple of 20 then one observation is only frac­

tionally included. The other parts of this formula have a similar 

meaning where L stands for lower. For symmetrical distributions Q 
can be given as follows (for infinite sample sizes): 

00 

10fxf (x )dx 
C 

Q=-=-----

fxf (x )dx 
0 

Here c is the upper 5% point of the distribution F with f. For 

the uniform distribution we take the range from-½ to½ with density 

""1. So we have: 
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.5 

10 J xdx 

Qu= 
.45 

1.9 .5 

fxdx 
0 

For the standard normal distribution the value of c is 1.645. So Q can 

be computed here as follows: 

00 

10 1 J _I x2d 
r,.;--- xe 2 x 

v27r 1.645 
QN = ---------

1 =f ix2d 
r,.;--- xe - 2 x 

v27r 0 

For the logistic distribution we take the simplest form where F (x ) = 
(1+e-x )-1 and therefore c = log., 19. This results in: 

00 -x 

10J xe dx 
c (1+e-x )2 

QL=------­
oof xe-x 
---dx 

o (1+e-x)2 

00 xe-x J---dx= 
c (1 +e-x )2 

1 00 -x 
c(1----)+J e dx= 

1+e-c c l+e-x 

2.86 

For the double exponential distribution we take the standard form and 

look at the density of the absolute values. so that the left tail is mir­

rored in the axis of symmetry. We have: 
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co 

In the numerator we use c=logr10 because then 1-e-<=0.90. This 

results in the following value for Q: 

00 

QD=10 J xe-'dx=10(loge10+1)e-log,H>,=3.30 
log, 10 

For the Cauchy distribution the value of Q is given by: 

. 10(log, (1 +d 2)- log, ( 1 +c 2)) 
hm ------------

J .... 00 log, (1 + d 2 ) 
10 

And this :result is independent of the value of c. For the adaptive tests 

it would be more attractive to have a formula for the expectation of 

the modus or the median for finite samples of given size. This problem 

seems very difficult and it has not yet been solved. 
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10. Short summary 

This tract is about the hypothesis that a number of location parame­

ters are equal. Unequal sample sizes are allowed and for the error dis­

tribution various models are considered. For some methods the distri­

bution of the test statistic under the hypothesis is only approximately 

known. In those cases a validation of the method is based on simula­

tions for a representative collection of values for the population 

parameters. 

For normally distributed errors variance heterogeneity is allowed. 1t is 

demonstrated that in this situation the method of James with a second 

order Taylor approximation for the critical value is superior to some 

more recent methods, considering the control over the chosen level. 

The power of this test is not uniformly dominated by any other exist­

ing alternative, and therefore it is :recommended as the best choke. 

Some statisticians use the Kruskal and Wallis test for the hypothesis 

of equal means in all situations where the classical test for one-way 

analysis of means can not be applied. 1t is shown that this is not to be 

:recommended if the scale parameters are unequal. At least if one uses 

the exact distribution of the test statistic or the well known x2 

approximation. A limited amount of variance heterogeneity can be han­

dled by the Beta approximation of Wallace. but the price one has to 

pay here is a (sometimes considerable) loss of power. 

If the only thing that is known about the error distribution is the fact 

that i.t is symmetric, an adaptive nonparametric test can be considered 

that uses optimal scores for the estimated tail-weight. It is demon­

strated that such a test has more power than any of the existing non-­

parametric tests for the hypothesis of equal means, if the error distri-· 

bution is a mi.xtu:re with equal occu:rences of the following densities: 

uniform, normal. logistic, double exponential and Cauchy. 

The power of the classical method for one-way analysis of means can 

be completely removed by one single outlier. Some more robust alter­

natives will be considered: trimming, Winsorizing, Van de:r Waerden·s 

test, Huber's proposal. Least Median of Squares (Rousseeuw) and an 
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adaptive nonparametric test. A simulation is perfomed for symmetric 

and one-sided contamination. It is shown that Huber's proposal 

results in the most powerful test with satisfactory control over the 

chosen level. 

For the problem of Multiple Comparisons in the classical situation 

with normal populations and variance homogeneity the following stra­

tegies are well known: Least Significant Difference test (Fisher), pair­

wise comparisons based on the t-distribution, Multiple Range tests 

(Newman, Duncan and Keuls), Multiple F-tests (Duncan) and Tukey·s 

Wholly Significant Difference test. Modifications of these methods to 

situations with variance heterogeneity o:r to the presence of some 

extreme outliers are examined. 
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