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Preface 

In this book, I consider least squares estimation of a regression function. The 
study was initiated by a statistical consultation where I was confronted with a 
two-phase .... regression problem with a halfspace as u ::. own parameter. 
Richard · pointed out to me that halfspaces fotm a Vapnik-Chervonenkis 
class. en I looked up the concept of a Vapnik-Chervonenkis class, I 
encountered the recent empirical process theory, and this ii1unediately led to 
the f or1nulation of a consistency theorem for a general regression model. 
Further research consisted partly in re · g this result, hoping that eventually 
it could be applied directly to two-phase regression. However, I did not 
succeed in avoiding ad hoc arguments for this model .. 

The Centre for Mathematics and Computer Science provided me the oppor
tunity to ca1·1y out the research. I am indebted to Richard Gill for his many 
good suggestions conce1ning all aspects of preparing the manuscript. I received 
much help from Wini van Zwet, who spent a great arnount of tjme on conver
ting my 'impressionistic' ideas into precise mathematics. I want to express my 
thanks to Wilbert Kallenberg for his suggestions that led to the proof of 
Theorem 7.2.6, to Michel Voors for c · gout the computations and to Jossi 
Kustina for her excellent typing .. I a1n most grateful for the support of my 
friends and especially want to mention the assist~ce of Leen . Stougie and 
Sjoerd Verduyn Lunel during the last months when t1n1e was runrung out . 

Sara van de Geer 
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hapter 1 

Introduction 

1.1. GOAL AND ITINERARY OF 1HIS STUDY 

The problem we investigate is least squares estimation of a regression function. 
We haven. observations (xk,Yk), k = I, · · · ,n, which are assumed to satisfy 

where the disturbances £k are independent and all have expectation zero and 
finite va1·iance, and where the xk are vectors in some Euclidean space. The 
function g( ·) is in part own. The least squa.res method for estimating g is: 

A 

find a g,, such that 

1 n 
....., (Yk -g(xk))2 

nk=l 

is n1ini111ized, where the minir:aization is over the class § of the regression func
tions that one considers feasible. The properties of the least squares estimator 
&r d nd on to which extent g is u ..ii.. own, i.e. on ~- If it is known that the 
regression is linear, then@ == {g(x)-xfJ: 8E0} is the class of linear functions 
and we are in a classical situation. Linear regression has been studied exten
sively. More recent work in this field focuses e.g. on necessary conditions for 
consistency (LAI, ROBBINS and WEI (1978)). 

Linear regression is a special case of the situation where g is known up to a 
finite-dirnensional pararneter. This more general case is called nonlinear regres
sion. The class §is@ == {g ==g( ·,IJ): 8e0}, with 0 clRr. Because of the possi
ble no · earity, the approach to the study of the least squares estimator is 
mostly asymptotic. TLEY and BAKER (1965) prove asymptotic 1101mality 

under the assumption of norn1ally distributed errors. As in JENNRlCH (1969), 
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· · · ater 
these conditions have been refined u (1981)). However, there st~l rema1n 

LE 1.1. 
' 

• tfl) +Ek , if Xk ~)' 

a<2) +E:k , if Xk >y . 

Both the Ji), i = I, 2, and y are u own parameters. The class § is 

g = = - 00, Yl 'Y, 00 • ' ' • 

models which includes non- and semipara1netric regression. In the latter cases 

parameter . 

. . . ·. PLE 1.2. 

Yk = g(xk)+Ek, 

'° = { R R h d · ati· es g<m) 2 =---:K}, get, g : . ·. ➔ , g as m env v , ~ 

with K a known constant .. 

Another exa1nple of nonpara1netric regression is e.g.. the situation where only 
. .. f h . f . . -ed monotomcity o · t . e regression unction 1s assurn .. 

We shall take a unified approach in investigating the asymptotic properties 
of the least squares esti.mator. We regard the function g itself as own 
parameter and we shall study how well g can be esti1nated by the least squares 
method, given that g is a member of a class g of regression functions. It is to 
be expected that the asymptotic behaviour of g,, is pritnarily determined by the 
properties of§, the parameter space. In particular, the larger or richer§ is, the 
harder it will be to estimate g. Using concepts of empirical process theory, we 
shall give a precise description of the link between the 'size' of § and the 
behaviour of g.. Empirical process theory is the theory of unifo1·m laws of 
large numbers and unifot'In central li1nit theorems. Its topics are li1nit theorems 
for processes indexed by sets or functions. For instance, let Hn be the empi ,i
cal distribution based on n independent observations xk from H. Rn puts mass 
I / n on each of the xk, k = 1, · · · ,n. The theory supplies us with sufficient 
and - modulo measurability - also necessary conditions such that for a class § 
of H-square integrable functions g 

s . lg 2d(Hn-H) >0 
g 

ost surely, (I.I) 

as n tends to infinity (V APNIK and VONENK.IS ( 1971, 1981 ), POL 
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(1984), DUDLEY (1984)). A result like (I.I) is very helpful for proving con
sistency of in . 

We shall now present one more two-phase regression model. This model 
drew our attention to empirical processes indexed by sets because it has sets as 
unknown parameters. 

LE 1.3. 
' • 

Here, the measurements Yk, k = 1, · · · ,n are the log-lifeti1nes of plastic pipes 
for the transportation of fluids. The xk =(xk, 1,xk, 2) are (stress)/(absolute tem
perature) and (absolute temperature)- 1• The idea is that at high stress and 
temperature the pipes become brittle and break due to a mechanism different 
from the one at ~ow stress and temperature. 

Related to (1.2) is the model 
a<I) + xk, I /3 l) + Xk, 2/3 l) + f.k if Xk EA 

Yk == a<2> + xk, 1 /3 2> + xk, 2/3 2> + Ek if Xk f£A ' 

where A == { xk : XJc, 1 y 1 + xk, 2 y2 ~ 1 } . The class of regression functions is now 

§ = {g(x 1 ,x2) ==(a<1> + x 1 /3 I)+ x2P l))IA(x 1 ,x2) (1.3) 

+ ( a<2) +XI /J 2) + X2/J 2))}Ac (x 1,X2): 

(a(i) ,pi) ,/3 i))T ED'i3' i == 1,2, A Eci:}, 

with cf the collection of halfspaces in R2 . The only difference between this 
model and (1.2) is that in the latter one iinposes the restriction 
y1 =(ft I) -p 2>) / (a<2> -a<1>), t = 1,2. In both models, the halfspace A is an 
unknown pararneter. In (1.2) the the set A is a f11nction of the other u own 
para1neters a<i), i) and in (1.3) it is a function of the Euclidean parameter y. 
However, in the general two-phase regression model, the class (i in (1.3) need 
not be indexed by a finite-dimensional parameter. An exa·mple is the case 
where ~ is the collection of all monotone sets, i.e. the class of sets A such that 
if (x1,x2)EA also (i1,x2)EA for all (.x1,i2) with i1 ~x 1 and i2 ::s;;x2. 

We shall take two-phase regression models of the fo11n presented in Exa1nple 
1.3 as the major illustration of the theory we develop for general regression 
models. In this way, we hope to provide some insight into the si'-,) · cance of 
our results. Exa1nples conce1ning other (nonparametric) models occur 
throughout the manuscript and are sometimes not explored in full detail. 

The presentation is organized as follows. Chapter 2 sets the background for 
proving consistency. We give an overview of the history that led to the uniform 
law of large numbers ( 1.1 ), which goes from sets via bounded functions to 
integrable functions. We extend the uniform law of large numbers to the case 
of non-identically distributed va1·iables and allow virtually everything to 
depend on the number of observations (i.e. on then-th experi1nent). With these 
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vi int on regression than as a recipe for checking consistency. One of its 
conditions often does not hold for the original §, but only for a subclass of g, 
c.f. the ass1,1mption in para.metric maximum likelihood that the P8:fan1eter 
space is compact. In sp · c situations one faces the problem of proVIDg that 
eventually g,, lies in this subset, which can be just as difficult as showing con
sistency directly. We elaborate on_this in Section 3.4, where we apply the gen
eral theorem to the models of Exainple 1.3. 

Chapter 4 summa1 izes some results from the literature on unifor1n central 
li1nit theorems. We use these in Chapter 5 to prove asymptotic no1·mality of 
the least squares estimator of the af-i) and i) of Exarnple 1.3. In Chapter 6 we 
return to the more general case. We exploit the techniques for proving uni
for1n central · · t theorenis to obtain rates of convergence for ~- Here, we 
make the distinction between finite-dir11ensional models and infinite
dimensional models more explicit. We show to what extent the speed of esti
mation, i.e. the rate at which the esti.:1nation error goes to zero, can be deduced 
from the entropy of @. In Section 6.4 the theory is applied to two-phase regres
sion and the results are compared with those of Chapter 5. 

use two-phase regression is closely related to change-point models, we 
devote a separate chapter to the latter: Chapter 7 concentrates on tests for a 
change-point. Finally, in Chapter 8 we compute the least squares estimators 
for the model of Exa1nple 1.3, using simulated and real data. 

Throughout, we make extensive use of Chapters II and VII from POLLARD 
(1984). In fact, this present study is very much in the spirit of this book. 

We now mention some of our notational conventions: 
- P is the probability measure underlying either the whole sequence of ran

dom variables, or the random variables involved in the n-th experiment, 
.. boldface symbols will always represent random quantities but not vise versa: 

some random quantities are not boldface because of the Ji1nited possibilities 
of a word processor, 

- e (in boldface) is always the disturbance te1·m. Unfortunately, this typo-
graphic distinction is hard to see ( c .. f. t:), 

- for small numbers we mostly use the greek letter r,, 
- fJ is a finite- · ensional para,neter that possibly indexes g, 
- o is usually employed for defining a-entropy, but it can also be a small 

number such as 11, or the point mass 8(.), 
- x or x is always a row-vector, 
-

functions not identified with equivalence classes, 
- II.II is the no1m of a Euclidean vector or of a function in L 2 (in that case it 

is a pseudo-norm), 
Theoretns, lerrunas and corollarieS will be numbered according to the section 

chapter they are in. 
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Although many other models also fit into the theory, we mainly consider two
phase regression as an application. For this reason, we shall present a brief 
overview of the literature on this subject in the next section. 

1.2. MULTI-PHASE REGRESSION AND CHANGE-POINT MODELS 

QUANDT (1958) is one of the earlier workers on two-phase regression. He con
siders the model 

a<1> +xk I) +£k if xk ~y 
Yk == a<I) +y I) +(xk -y 2) +£k if xk ~y ' (1.4) 

with a<1>, l), 2) and the change-point y u own parameters. The model 
aiises in many fields. A famous example (BACON and WATTS (1971)) is the 
relation between stagnant surface layer height and flow rate in an inclined 
chann.el. The model also describes the influence of warfarin concentration on 
blood factor VII, of nitrogen concentration on the intake of protein, of after
tax income on the expenditure on luxury goods, etc .. Recently, IPPEL and 
BEEM (1986) fitted the model to reaction times as function of some measure of 
discrepancy between stimuli. 

Methods for finding the exact solution for the least squares rninimization 
problem are discussed in HUDSON (1966) and WILLIAMS (1970) extended these 
techniques to the case of linear three-phase regression. Smooth approxi1na
tions to the non-differentiable model are given by BACON and WATTS (1971) 
and TISHLER and ZANG (1981). HINKLEY (1969,1971) studies the asymptotic 
properties of pararneter esti1nators and procedures for obtaining approximate 
confidence intervals. FEDER (1975) establishes asymptotic theory for a con
tinuous model of the form 

g(l)(Xk,(J(l))+£k if Xk ~y 
Yk - g(2)(xk,(1(2)) +£k if xk ~y . 

He provides conditions for consistency, and - for the situation with g<i>(x,(J(i)) 
linear in fl-i), i == 1,2 - asymptotic normality, assuming that the model is 
identified at the underlying true state of nature. 

A more general model does not i 1npose continuity in the paraineters, e.g. 
a<1) +xk l) +Ek if Xk ~y 

af..2) +xk 2) +£k if Xk >y . 

An exar11ple is the model for eruptions of the Old Faithful Geyser in Yellow
stone National Park (COOK and WEISBERG (1982)). I a.m not aware of any 
asymptotic theory for this model. 

An identification problem comes up if for instance in (1.4) I) 2). For 
testing the constancy of the regression relationship, BROWN, DURBIN and 
EVANS (1975) propose a cusum and cusum of squares test. 1bey assume normal
ity of the errors, so that their tests can be compared with the likelihood ratio 
test. Asymptotic comparison in the large deviations sense is carried out by 
DESHAYES and PICARD (1982). Many other tests have been developed (e.g. 



6 Chapter 1 

model - with obvious extension to p-phase regression - assumes functions of 
the fotm 

• 

g(x) = 
· g<1>(x,d1)) if x EA 

g<2)(x,lf2>) if x ~A ' 

where g<1>:RdX0➔R is linear in the parameter, i =1,2, 0cRr and where 1-
varies in a class &. of subsets of Rd. In Section 3.4 we shall fo1mulate condi
tions on lt that can lead to consistency of the least squares estimators of fJ(i), 
i = 1,2 and A and Chapter 5 presents conditions for asymptotic no1·1nality of 
the estimators of the Euclidean para1neters. In cluster analysis (see e.g. POL-

.. · (1981) and two-lines least squares (LENSTRA et al. (1982)) @, is the collec
tion of all subsets of Rd. In that case the least squares estimator of g · gen
erally be inconsistent. However, the ajm in cluster analysis and two-lines least 
squares is not to estimate the regression but some other quantity of interest. 

Let us return for a moment to the model in Example (1.1). It is widely used, 
e.g. in ROYSTON and AB (1980) it describes the shift in basal body tem-
perature of a woman. It can be written in the more conventional fo1·m 

(1) + a Ek k == 1 · · · ,, ' ' 
a.<2) +Ek ,k == T+ 1, · · · ,n · Yk = (1.4) 

In a general change-point model , one has observations y1, • • • ,Y-r from disti
bution p(l} and Y1+ 1, • • • ,Yn from F'-2>, where ,,. as well as p(l) and p<2> are in 
whole or in part u own. In EY (1970) and HINKLEY and HINKLEY 
(1970), this model is considered for the no1mal and the binomial distribution 
respectively. WORSLEY (1985) studies the model for a one-parameter exponen
tial family. Of special interest is testing p(I) =F<2). Worsley considers the exact 
distribution of the likelihood ratio test and confidence intervals for the 
change-point T. The asymptotic null-distibution is given in HAccou et al. 
( 1985) in the case of exponential distributions, and in Chapter 7 in the case of 
no1mal errors .. In Chapter 7 also Bahadur efficiency in the situation of a one
paraineter e~ponential family is obtained and contrasted with efficiency at 
l · altemauves. 

WOLFE and SCHECHTMAN (1984) establish nonparametric confidence inter-

. l): 2) · · · · · ~ · 

broad class o! linear r statistics are compared. 
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shall only investigate changes in parameters in a sequence of independent ran
dom variables, i.e. two-phase regression type of models. We also point out that 
in the literature mentioned above, the sample size is nonrandom. The problem 
is to be distinguished from what one could call 'ala,m detection', where a pro
cess is followed in time and the airn is to react as quickly as possible when it is 
likely enough that a change has occurred (see e.g. SHIRYAYEV (1963)) .. 

• 



...... hapter 2 

2.1. VAPNIK AND CHERVONENKIS' THEORY 

Let us reconsider the multi-di1nensional two-phase regression model of Exa1n
ple 1.3: 

Yk -
a<I) +xk l) +t:k if Xk "Y~ 1 

a.<2) + xk/f2) + Ek if Xk -y> l ' 

with x1, - • • ,xn i.i.d. (row-)vectors in Rd with distribution H, and 
(Ii) ==(a(i), i)T)T and y u own (colu1r1n-)vectors. Example 1.3 is about the 
case d-2. In the more simple situation with d == 1, the subsets A == { x: xy~ I} 
are half-lines, and the model can be written as 

a<1) + ~k) I) +E:(k) if k ~,,. 

with ~I)~ · · · ~"(n) the order statistics, and Y(k) and E(k) the regressor and 
disturbance ter111 corresponding to "<_k), respectively. The least squares esti1na
tors are obtained in the following way. For each /, compute (if possible) ordi
nary least squares estimators 8 i), i == 1,2 of (Ii), i = 1,2, and the residual sum 
of squares (S t))2 , i = 1,2, given that the change-pain; is at /. Let;. be the value 
of I where (S 1>)2 +(S 2))2 has its minimum. Then Bi =6~), i == 1,2 is the least 
squares estimator in the two-phase regression model (without the continuity 
restriction a<1) +·1 I) ==a.<2) +-yP-2)). The subsets of the for1n { xy:.c;; I} of the 
data are 

{ "( 1) } , { "( 1} , "(2) } , · · · , { "( 1) , • • • , "( n) } 

and complements. Hence, the number of times one has to do ordinary least 
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where both lf1> and ff.2) are identified. If all xk's are different, l can take the 
values {2,3, · .. · ,n -2} and n. 

In the case d> 1, the xk can no longer be ordered. Still, it is not difficult to 
generate all different subsets of the fo1m {x: xy:<; 1} of the data (see also 
STEINER (1826), SCHLAFLI (1901), CovER (1965), HARDING (1967) and WAT
SON (1969) for combinatorial results). Let x11 , • • • ,x,d be a d-tuple from 

{x1 · - • • x } Write X, 1 =(x,r • • · x,r)r and let e be the d-ditnensional 
' ' ,Z • I , .. • , d I ' ' d 

vector (1, • • • , 1). For x,,, ... ,I. non-singular, we can take as the partition 
corresponding to °Xj

1
~ ••• ,l: {A,,, ... ,Jd = {x: xy,1, ••• ,Id< I}, Af1, ••• ,1, }, with 

non-singular, the number of times one has to do ordinary least squares is 
(9(nd). The computation of the least squares estimator can be done in polyno
mial tjme. 

As we shall see, the fact that the number of different partitions is polyno
mial in n can also be used to derive some asymptotic properties of the least 
squares estimator. So-called empirical process theory provides the theoretical 
background. 

Let & be a class of measurable subsets of Rd, and let ~ ~(x 1, • • · , Xn) be the 
number of different partitions of {x1, • • • ,xn} of the fortn An{x1, · · · ,xn}, 
Ac n {x1, • • • ,xn }, A e&. Then Ll~(x1, • • • ,xn) is always at most 2n. We have 
seen that for 

on x1 , • • • ,Xn. The Glivenko-Cantelli Theorem states that if te is the collection 
of lower-orthants {(- co,x]: x ERd}, then 

fun su Hn(A)-H(A) =O ost surely. (2.1) 
n )00 AE 

V APNIK and CHERVONENKIS ( 1971) extended this to more general classes of 
subsets Cf. than lower orthants. They show that if Ll<£(x1, · • • ,xn) does not grow 
exponentially fast, then (2.1) holds for lt - provided some conditions on 
measurability are fulfilled. 

We have to impose measurability conditions, because the supremum of an 
uncountable set of measurable functions need not be measurable. We shall 
assume that~ is permissible in the sense of POLLARD (1984). The definition of 
per1ni.ssibility is given in Section 2.4. At this stage, it is only necessary to know 
that for a permissible class~ supAe~ Hn(A)-H(A) is measurable. 

nnss1ble. However, 1t tu 1·ns out that if probability statements about 

upper-expectations, the theory goes through. For definiteness, let (Q, to,P) be 
the underlying probability space, and write IE(·) for taking expectations under 
P. Define for A C 0, 
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IP>*(A) == inf{P(B): B-:JA, BE&} 

and for a real function f on Q and the Borel a-algebra cffi on R, 

IE*(()== inf{IE(g): g";>.;j, g &/~-measurable}. 

THEOREM 2.1.1. For a permissible class tt the following statements are equivalent 

n p 
(ii) SU 

AE 
Hn(A)-H(A) > 0, 

I P* 
( ... ) 1 Aci 1ll - ogu (x1, · · · ,xn) · ➔ 0, 

n 
(iv) su I Hn(A)-H(A) ➔ 0 almost surely. 

AE 

PROOF. See VAPNIK and CHERVONENKIS (1971), and for measurability issues 
and (iv) STEELE (1978) and POLLARD (1981). □ 

Results of this type can be used in two-phase regression to obtain strong con
sistency. But there are also results available that are even more directly appli
cable. 

Let § be a class of measurable real functions on ~d. Suppose that the func
tions in § are unif o y bounded, i.e. 

SU lg ~ M, 
ge 

for some constant M. Endow§ with L 00 (Rd,Hn) semi-nor1n II· 11 00 ,n: 

Ilg II oo,n == max g(xk) I. 
l~k~n 

For each 8>0, let N 00 (8, Hn, §) be the mini1num value of m, such that there 
exist functions g1 , • • · , ~, in §, such that for each g E § 

. min !lg-gJlloo,n < o. 
1 = l · · · m , ~ 

For example, if § is a class ct of indicator functions, then (identify sets with 
their indicators) N 00 (o,Hn, (t)==.tl~(x1, • • • ,xn), o< 1. 

We call N 00 (0, Hn, §) the (o-)cove1'i11g number of § with respect to the 
L 00 (Rd, Hn)-norm. ·s te1minology is also used by POLLARD (1984), but he 
does not reqtiire that the covering set {g1, J == 1, · · · ,m} is a subset of §. Note 
that if g1, · • • , &n form a o-covering set, not necessarily in §, one can always 
construct a 28-covering set g1, · · · , &n with gj E §. 

In the following theorem, we assume permissibility of §. In fact this concept 
is defined for classes of functions, with a collection of sets as special case. Per
missibility of§ itnplies measurability of 

gd(Hn-H) . 
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Again, perrnissibility need not result in measurable coveting numbers 
N 00 (8, Hn, ~ (see Section 2.4). 

'l'Hf:OREM 2.1.2. For a permissible class @ of uniformly bounded functions, the fol
lowing statements are equivalent 

(i) 
n P 

(ii) SU I gd(Hn - H) ➔ 0, 
E 

P* 
(iii) - logN 00 (8, Hn, ~ · > 0 for all 8>0, 

n 
(iv) su I gd(Hn -H) ➔ 0 almost surely. 

ge 

PROOF. VAPNIK and CHERVONENKIS (1981) obtained the uniform weak law of 
large numbers, and STEELE ( 1978) shows that convergence in probability 
i1nplies ost sure convergence, by noting that 

SU l gd(Hn -H) 
ge 

is a subadditive process. Statement (iv) of Theorem 2.1.1 is a special case of 
this. □ 

In two-phase regression, least squares estimators can be obtained in polyno
mial ti 1ne, if the covering number of the class of feasible partitions does not 
grow exponentially fast. This property also leads to a uniform law of large 
numbers, as Theorems 2.1.1 and 2.1.2 assert. We shall briefly indicate why .. 

For bounded random variables (such as lA(x) or g(x), g bounded), one has 
exponential probability inequalities (see e.g. BERNSTEIN (1924, 1927), HOEFFD
ING (1963)). For instance, for g ~M, Berstein's inequality says that 

-nt2 
P(I gd(Hn-H) >t)~2exp · ·2 , 

2rr+ 3 Mt 

where i1-=E(g(x)-Eg(x))2• Now if the covering number of§ does not grow 
exponentially fast, there are only m ==exp(o(n)) essentially · erent g's in §. 
Moreover, if card (§)=m 

H) I >t) ~ m max P( I gd(Hn -H) I >t). 
gE@ 

These observations, and a randomization device (which is necessary because 
N 00 (0, Rn,~ is random) are the major ingredients of the proof of the 
sufficiency part of Theorem 2.1.2 (2.1.1 ). 
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2.2. POLLARD'S LAW OF LARGE NUMBERS 

( g sdQ)11s<oo. In most of what follows, Q will be the empirical meaSure 
Rn or the (theoretical) measure H. We denote the Ls(IRd, Hn)-(pseudo)no1·1n by 

II · lls,n = ( I · I dHn) 115 

• 

and we sometimes call this the empirical no1·1n. The theoretical counterpart 1s 

ll·lls = ( I· lsdH) 11s. 

For § a class of functions, the envelope G of § is defined as 

G = SU I g 1-
gE 

Moreover, for §cLs(IRd, Q), we define the covering number Ns(f>, Q, ~ as the 
smallest value of m such that there exist g1, • • • ,&n in § such that for all g E§ 

. min ( g -gj I sdQ)lls < 8. 
1=l,···,m 

1be logarithm of Ns(o, Q, §) is called the ~-entropy of § for the metric 
( . lsdQ)lls_ 

In the previous subsection, we considered a class of unif o y bounded 
functions, i.e. GEL 00 (Rd, Q) for all Q .. In that case L 00 (Rd, Hn)-covering 
numbers are useful. For a class of possibly unbounded functions, with 
GeLs(Rd, H), l~s<oo, it is more appropriate to work with the Ns(o, Hn, §)
covering number of § equipped with II · lls,n-nor1n.. We shall first treat the case 
s - 1 and afterwards extend this to arbitrary s ~I. 

'l'HEOREM 2.2.1. Suppose § is a permissible class with envelope G. Then 

SU gd(Hn -H) > 0 (2.2) 

almost surely if and only if both GEL 1(Rd, H) and 

for all o>O. 

1 p• 
-logN1(8,Hn,§) >0 
n 

(2.3) 

PROOF. POLLARD (1981) shows that if GEL 1(Rd, H), (2.3) irnplies (2.2), and 
GINE and ZINN (1984) prove necessity of (2.3) and of the envelope condition 
GEL 1(Rd, H). □ 

Remember that for bounded random variables, exponential probability ine
qualities are available, whereas this need not be the case for unbounded ran
dom variables. Therefore, one might have expected that in the unbounded case 
a more stringent condition than (2.3) on the covering numbers is needed, in 
order to a1·rive at the unifor·n1 law of large numbers (2.2). The following 



14 Chapter 2 

theorem shows that if N 1(8, Hn,§) does not grow exponentially fast, it does not 
grow at all. ·s result is due to VAPNIK and CHERVONENKIS (1981) and GINE 
and ZINN (1984). Because the result is somewhat hidden in literature, we give a 
full proof. 

'l'HEOREM 2.2.2. Suppose § is a permissible class with envelope GEL 1 (Rd, H). 
Then 

• 1 P* 
- logN 1 (o, Hn, §') > 0 n . (2.4) 

for all o>O implies that the theoretical covering number N 1 (o, H, g') is finite:, i.e. 

T 1 ( o) = N 1 ( o, H, fJ) 

is a finite function of o>O. Furthermore 

P*(lim sup N1(0, Hn, §)>T1(0-1J)) = 0, O<TJ<o, o>O. (2.5) 
n >OO 

PROOF. Consider the class §'= { lg-g : g, gEfl}. This class has envelope 
2GeL 1(Rd, H), and moreover (2.4) i1nplies that also 

I P* 
- logN 1 (o, H,,, §') ► 0 for all o>O. 
n 

Hence, we can apply Theorem 2.2.1 to §1
, provided it is permissible. Indeed, 

this follows easily from the pe1missibility of §, as we show in Section 2.4. It 
fallows that 

S!}p 
g,geg 

lg-g d(Hn-H) 

is measurable, and that 

(2.6) 

s~p 
g,ge§ 

I g-g I d(H,,-H) -----➔ 0 almost surely. 

Or, using the notation in L 1(Rd, · )-nor·1ns 

s11p I llg-gll1,n -llg-gll1 I ➔ 0 almost surely. 
g,ge§ 

(2.7) 

Let 

An= 
g,ge§ 

Note that An E&, i.e. An is measurable. Moreover, the 
(2.7) implies convergence in probability. So, for 
sufficiently large 

P(An) > 1-o. 

ost sure convergence 
n >n 0'( =no'(8)), n 0 ' 

Let {g1, · · · ,gm} be a o/2-covering set of § endowed with II · ll i,n•no1·1n. On 
the set An, we have 
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. min Ilg -g1111 ~ . min Ilg 
J = 1, · · · ,m J = I, · · • ,m 

Hence, for w EAn' N 1 (o, H, §)~NI (812, Hn' §)(w ). 
Condition (2.4) means by definition that there exists a Bn E& such that 

l?(Bn)>l-8, and l/nlogN 1(8/2,Hn,§)(w)~o for wEBn and for all 
n '?=::no''(==no''(6)). It follows that for n0 =max(n0 ', n0 '') 

. P(An
0 

nBn
0

) > 1-28. 

But for wEAno nBno 

N 1 (o, H, §) ~ exp(no~). (2.8) 

Since (2.8) does not depend on wEO, this proves that N 1 (o, H, §) is finite for 
all o>O. 

The alrnost sure convergence (2.7) means that for some A ES with P(A )= 1, 
and all 0<11<0 

sup I Ilg -gll1~n - Ilg -gll 1 I (w) :s:; 'fl 
g,g 

for all n ~n0(w)(=n 0 (8, 'IJ, w)) and all wEA. Thus 

N 1 (8, Hn, @)(w)~N 1 (o-1J, H, §) = T1 (o-r,). 

for all n~n0 (w), wEA. This shows that 

P*(lim sup N1(0, Hn, §)>T1(0-11)) = 0. □ 
n ➔ OO 

VAPNIK and CHERVONENKIS (1981) proved that for a uniformly bounded 
class§, 

} P* 
- logN 00 (8, Hn, ~ ,➔ 0 for all o>O 
n 

implies that N 1 (o, H, §) is finite, for all o>O, and that this in tum implies that 
N 1 (o, Hn, §) remains finite in probability, for all ~>0. They do not concern 
themselves with measurability problems. 

The situation with unbounded functions is treated in GINE and ZINN (1984). 
Their approach to measurability issues differs somewhat from ours. Modulo 
measurability, their Remark 8 .. 9 asserts that for a class § with GEL 1 (Rd, H) 
and for §c ,.. {gl6~c: gE§}, C>O, 

1 P* 
- logN 1(o, Hn, @c) > 0 for all 8>0, C>O (2.9) 
n 

implies that there exists a finite function T ( o) such that 

lirn (Fl>* (N 1 (o, Hn, §)> T(o)) == 0, for all o>O. 
n )00 

It is easy to see that if GEL 1(Rd, H), than (2.9) and (2.4) are equivalent. 
We call a class § equipped with some metric totally bounded if for all o>O, 

the number of elements of a mini1nal o-covering set is finite. Since (2.4) is a 
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necessary condition for the uniform law of large numbers over a pennissible §, 
a ref or1nulation of one of the results of Theorem 2.2.2 says that a necessary 
condition for the unif or·m law of large numbers, is that § is totally bounded for 
II · 11 1 • In other words, the closure of § should be compact. 

We shall now investigate the relation between L 00 (Rd, Hn)-, L 1(1Rd, Hn)- and 
other Ls (Rd, Hn)-covering ntJmbers, and what consequences conditions like 
(2.3) on these covering n1,111bers have if G ELs(Rd, H). Note first of all, that 
combination of Theorems 2.1.2 and 2.2.1 yields that for a permissible class § of 
uniformly bounded functions 

iff 

1 P* 
- logN 1 (o, H,,, §) > 0 
n 

I P* 
- logN 00 (8, Hn, §) ➔ 0. 
n 

For classes of unbounded functions, it is often easier to employ a truncation 
device. GINE and ZINN (1984) use truncation at { G>C} and work with 
gc={gla:E;c: ge§}, C>O. For reasons that · become clear in Section 2.3, 
we introduce an other way of truncation. Define for all C >0 

(g)c = 
C if g>C 
g if -C~g~C. 

-C if g<-C 

Let ( ~c ~-- { (g )c: g E §}. 

LE:MMA 2.2.3. If GELs(Rd, H1 1 ~s < oo., then for all 8>0 there exists a C>O 
such that 

and with probability 1 for n sufficiently large 

Moreover,for l~s<oo and arbitrary probability measure Q, o>O, C>O 

Ns(8, Q, (§)c) :s;:; Ns(O, Q, §) 

and, if we denote by ~ 

ff = { g s: g E §} 

os 
-- 'Q,(§)c) 

--- ' Q, (f1)c1,, ). 

(2C) s 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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PROOF. Let g, gE@ be arbitrary. If GEL5 (Rd, H), then 

fun IIG -(G)clls == O 
C )~ 

as well as 

lim lim sup IIG -(G)c lls,n == 0 almost surely. 
C ➔ oo n ➔ oo 

Since for arbitrary Q 

( g-g sdQ)lls ~ ( (g)c-(i)c I sdQ)l/s +2( G-(G)c sdQ)1ls, 

this implies (2.10) and (2.11 ). 

17 

Of course, I (g)c -(i)c I~ I g -g I, so (2.12) follows easily. Furthe1·rnore, 
for arbitrary Q, 

(g)c-(i)c ldQ ~ ( (g)c-(i)c sdQ) 11s 

~ ((2CY - 1 I (g )c -(i)c I dQ)11s, 

which yields (2.13). 
Finally, (2.14) follows from 

s -I 

s -I 

~ (2C) s I (g)cits -(i)c11s I dQ. □ 

The following theorem is the analogue of Theorem 2.2.1, albeit that we do not 
present necessary conditions. 

'l'HEOREM 2 .. 2.4. Suppose § is a permissible class with envelope G EL s (Rd, H), 
1 ~s < oo. Then 

implies 

SU 
ge 

(2.15) 

Ilg 11s,n - Ilg 11s I > 0 almost surely. 

PROOF. We show in Section 2.4 that also §S is permissible. Thus, the theorem 
is proved if (2.15) i1nplies 

l P* 
-logN1(o,Hn,§S) >0 forall o>O, (2.16) 
n 

because then, we can apply Theorem 2.2.1 to §S. But application of (2.11) and 
(2.12) with s == 1 to @S', shows that it suffices to prove that (2.16) holds for the 
truncated class, i.e. that 

1 P* 
- logN 1 (o, Hn, (§S)c) > 0 for all 8>0, C>O. 
n 
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And this follows i:rru11ediatly from (2.13) and (2.14): 

(2C) s 

8 
~ Ns(--s--1-' Hn, (§)cl/s ). □ 

(2C) s 
• 

Of course, it also follows from Lemma 2.2.3 that it doesn't really matter which 
covering numbers are used. This is made explicit in Lemma 2.2.5 below, 
where we show the analogue of Theorem 2.2.2. 

LEMMA 2 .. 2.5. Suppose that § is a permissible class with envelope GEL s (Rd, H), 
1 ~s < oo. Then 

1 P* 
- logN 1 (o, Hn, §) ➔ 0 for all 8>0 (2.17) 
n 

implies that @ is totally bounded for II · lls, i.e. 

Ts(o) = Ns(o, H, ~ 

is a finite function of 8>0. Furthermore 

p* (fun sup Ns(o, Hn, §)> Ts(o-11)) == 0, 0<11<0, o>O. (2.18) 
n➔OO 

PROOF. We have seen in Theorem 2.2.2 that (2.17) implies that 
T1(o)=N1(o,H, §) is a finite function of o. In view of (2.12) and (2.13), for all 
C>O 

and moreover, by (2.10) 

for C sufficiently large. This gives that T5 (o)=Ns(o, H., §) is a finite function of 
8. 

Using again (2.12), (2 .. 13), we see that (2.17) also implies that for all C >0, 
5>0 

and from (2.11), for all o>O 
p• 

I 
- logNs(8, Hn, ~ ➔ 0. 
n 
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Hence, in view of Theorem 2.2.4 

s I llglls,n - llglls > 0 a]most surely. 
g 

But this means that for o arbitrary, 0<71<6, a (0-71)-covering set of§ for II· lls 
is for n sufficiently large a 6-covering set of § for II· lls,n, almost surely. Thus, 
by the same argument as in the proof of Theorem 2.2.2 

· l?*(lim sup N5 (8, Hn, §)>Ts(B-11)) = 0. D 
n )00 

We conclude that if (2.17) holds and GEL 5 (1Rd, H), 1 ~s < oo then § is totally 
bounded for II· lls. Ifs== oo, (2.17) is equivalent to 

1 P* 
- logN 00 (5, Hn, @) ➔ 0, for all 6>0, 
n 

in particular, if GEL s (R.d, H), (2.17) is equivalent to 
1 P* 

- logN 00 (0, Hn,(§)c) ) 0, for all 5>0, C>O. 
n 

This observation is useful because L 00 (Rd, Hn)-covering numbers are often 
• easier to compute. 

We shall illustrate the results of this subsection with an exa 1nple. In a sub
stantial number of applications the conditions on the covering numbers can be 
checked without i1nposing distributional assumptions, apart from a moment 
condition on the envelope G. An important special case occurs when a collec
tion Ci of sets satisfies 

sup Llll(x 1, · · • ,Xn) ~ n7
, (2.19) 

{x I, .•• ,Xn} 

for some rand all n, a(i(x 1 , • • • ,xn) being defined in Section 2.1. Recall for 
instance that if Ci={ {x: xy~l}, yEIRd} 

{x1,···,x11} 

An Ci satisfying (2.19) is called a VC-class (V APNIK and CHERVONENKIS 

(1971)). 
For classes of functions, PoL (1984) introduces the related concept of 

VC-graph classes. Let g: Rd >IR be some function and define the graph of gas 
the subset 

{(x,t): O~t~g(x) or g(x)~t~O} 

of Rd + 1 • A class § is a V C-graph class if the collection of graphs of functions 
in § form a VC-class. 



20 Chapter 2 

'l'H"BOREM 2.2.6. Let Q be some probability measure on Rd, and let § be a VC
graph class with envelope GdQ=CQ say. Then 

. N 1 (o, Q, §) ~ A 1 C~o-r' for all o>O, 

where A 1 and r' are constants independent of Q. 

PRooF. See POLLARD (1984). D 

It is easy to see that if§ is a VC-graph class, then so is (§)c. Thus, then 

N 1 (o, Q, (§)c) ~ A 1 er' o-r' for all o>O, C>O 

and from Letmna 2.2.3, I ~s < oo 

Note that if ct is a VC-class, then {IA: A Ett} is a VC-graph class. Since the 
envelope of a collection of indicator functions is bounded by I, this gives for & 
a VC-class 

Ns(fl, Q, ~ ~ Aso-r's for all fJ>O, 1 ~s< co 

for some As and r', and by (2.19) 

N 00 (o, Q, @;J ~ nr 

for some r. 

LE 1.3 continued. In this two-phase regression model, § is a class of 
regression functions of the form 

§ == {g(x)=(aC1>+x l))l{xy~I}(x)+(a<2>+x 2))I{xr>I}(x): 

a(i) ER, i) ERd, i == 1,2, yERd}. 

The graph of age§ is the union of two intersections of three halfspaces. Now, 
the class of halfspaces forms a VC-class. And it is easy to see that the VC
property is preserved under taking finite unions and intersections. Hence, § is 
a VC-graph class. 

2.3. ExTENSIONS 

In many regression models, the class of feasible regression functions is allowed 
to vary with the nu·mber of observations. Also, the independent va1·iables and 
disturbances are often not identically distributed, and their distributions might 
vary with n too. To handle these situations, we generalize some of the results 
of the previous sections. 

Let for each n = 1,2, · · · , Xn~ 1, • • • ,xn,n be independent random vectors in 
Rd, Xn,k having distribution Hn,k· Furthermore, let for each n eN, §n be a class 
of functions on Rd with envelope Gn == SUPge§n g 1. Define 
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n 
n(n) = I In ...., Hn k , 

k =I 

and let Hn be the empirical measure generated by Xn, 1, • • • , Xn,n. 

To establish a uniform law of large numbers, we make use of Hoeff ding's 
inequality. 

LEMMA 2.3.1 (HOEFFDING's INEQUALITY). Let y 1, • • • ,Yn be independent ran
dom variables with zero means and bounded ranges: ak ~Yk ~bk. Then for each 
11>0 

1 n 1 n 
l?(- Yk ~11) ~ exp[-2n712 /- (bk -ak)2]. 

nk=l nk=l 

PROOF. HOEFFDING (1963). □ 

We have seen that in the i.i.d. case with §n = § (Section 2.2), necessary condi
tions for the uniform law of large numbers are that the covering numbers 
N 1 (~, Hn, §) remain bounded in probability, and that the envelope of § is. in 
L 1(Rd, H). In general however, the coveri11g numbers are allowed to grow 
with n. Furthern1ore, the L 1(Rd, n<n))-norm of the envelope of §n is allowed 
to grow with n too, but the faster N 1 ( o, Hn, §n) grows, the more stringent the 
envelope conditions become. This result is stated in Theorem 2.3.2 below. We 
shall also show that for the case of i.i.d. random va1iables and §n not depend
ing on n, the conditions of Theorem 2.3.2 reduce to those of Theorem 2.2.1. 

In the general set up, 'With triangular ar1 ays, it is not possible to obtain a 
strong unifo1·1n law of large numbers: all results only concern convergence in 
probability. The assumption of permissibility is needed again to guard against 
measurability difficulties (see Section 2.4). We shall prove the uniform law of 
large numbers exactly according to the recipe Pollard supplies for the i.i.d. case 
(POLLARD (1984), Ch. II). This illustrates the power of the techniques Pollard 
proposes. 

'1)--IEOREM 2.3.2. Let { §n} be a sequence of permissible classes with envelopes 
Gn == supge§. g . Suppose that for some sequence Cn ~ 1, Cn - 0(n) 

fun~sup GndH(n) = 0, (2.20) 
n >oo G > ,, c,, 

- 0, (2.21) 

and that (cnln)logN 1(o, Hn, §n) remains bounded in probability, i.e. 

- logN1(8, Hn,@n) > T) = 0 
T ,.oo n >oo n 

(2.22) 

for all 8>0. Then 
p 

I ---llo) 0. (2.23) 
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PRooF. First, we shall show that it suffices to prove a uniform law of large 
nu1nbers for the truncated class {g 1Gn~Cn: gE§n }. Let 0<8~ 1 be arbitr . 

In view of (2.20) 

G11 >c11 

n 4 

for all n sufficiently large. Apply Chebyshev's inequality to _see that 
• 

Hence 

IP(s gd(Hn -H<n)) >8) (2.24) 
ge 

~ P(su gd(Hn 
g E 11 G,, ~c" G,. >en 

~P(su gd(Hn 
ge " G ~c 

JI " 

Next, we symmetrize the process. For this p ose, we use that for arbitr 
1J >0, and for all n sufficiently large 

C n 
n G ~c 

11 II 

by assumption (2.21). Application of Chebyshev's inequality gives that for each 
gegn 

(2.25) 
G,,~cn . 

1 

for 'IJ sufficiently small, and all n sufficiently large. For the symmet1ization, we 
introduce an independent copy {x' n, 1, · · • ,x' n,n} of { Xn, 1, · • · ,Xn,n }, i.e_ 
Xn, 1 , • · · , Xn,n, x' n, 1 , · • · , x' n,n are independent and x' n,k has distribution H n., k • 

Let H' n be the empirical distribution, based on x' n, 1 , • • • , x' n,n. Since (2.25) 
holds, we have for all ge§n 

P(I - -- :;:;;,, - (2.26) 
Gn~C11 

_ The assumption of permissibility of §n ensures that for some random g* e§n, 

mdependent of H' n 
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on the set 

0 {su gd(Hn-H(n) >-} 
gE n G ~ 2 

n .. C,, 

(see- Section 2.4). Because (2.26) holds for g* too, • 

(2.27) 
ge " G ~c n n 

2 

We shall now describe the randomization device. Let a1 , • • • , an be indepen
dent random va1·iables, independent of {xn, 1, · · · ,xn,n, x'n, 1, · · · ,x'n,n}, with 

I 
2 . 

Write H~ for the signed measure that puts mass 1 / n uk at Xn,k, e.g. 

Then 

gdH~ -
1 n 

k == 1 

P(s 
ge " G ~c 

n n 

1 n 
=l?(su I - (g(xn,k)l{G

11
~c,.}(Xn~k) 

gen nk=l 

ge,, n n 

1 n 8 

gen nk=l 

ge,, k=l 

KE " G E;;c 
n n 

Let g1, • • • ,~, m== 

Observe that if 

4 

(2.28) 
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Chapter 2 

G!rt~Cn 

1 ,, 02 

ncn k = 1 

we have by Hoeff ding's inequality 
8 

gE 11 G11 ~c.. 
8 

Therefore, by Fubini's theorem 

nT 
512cn . 

' 

· o _ nT * 

gE n G <c " ,, 

with 

An= 

and 

(2.29) 

We shall now show that P(An) and P(Bn) can be made arbitrarily small. 
Using (2.21), we see that 

I 
CnG _. n T 

,.-en 

for all n sufficiently large. Again by Chebyshev's inequality, this irnplies 

Moreover 

P"'(Bn)<8 

for T large enough and all n large enough, because of assumption (2.22). 
Retu1·ning to (2.29), we see that 
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P(su gdH~ 
ge ,, G E;;;c 

II II 

for T sufficiently large and all n sufficiently large. In view of the truncation, 
synunetrization and rando1nization inequalities ((2.24), (2.27) and (2.28) 
respectively), this completes the proof. □ 

We present a w er version of Theorem 2.3 .. 2 for two reasons. First, this 
cla I i:fies that Theorem 2.3.2 is a gener · ation of the sufficiency part of 

eorem 2.2.1 and secondly, the weaker version · be used in Chapter 3 to 
prove consistency of the least squares esti1nators .. 

LE 2.3.3. Suppose {§n} is a sequence of permissible classes with envelopes 
Gn. Assume that for some sequence bn ~ 1, bn == o(n 112 ) 

lim_sup GndH(n) = 0 (2.30) 
n ➔ oo G >b 

" " 

and 

(2.31) 

en 
p 

s l gd(Hn -n<n)) > 0. 
ge 

i •RooF. Since 

is nondecreasing in o, (2.31) ensures the existence of sequences 1Jn.!O and on.J..O 
such that 

- ~ -
·s implies that there exists a sequence bn~l with bnlbn >OO, bn=o(_n½), 

such that 

(2.32) 

By (2.30) we have 

GndH(n) ~ GndH(n) > 0. (2.33) 
-2 

G,. >bn G,. >b,. 

Moreover, also 
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bn G,.~b,, bn b,,<G,.~b~ 

dH<n) 
n (2.34) 

b2 
~ -2 + GndH(n) ) 0. 

bn G,,>b,. 

Together, (2.32), (2.33 and (2.34) ensure that the conditions of Theorem 2.3.2 
are fulfilled with Cn -bn. □ · 

Recall that in the i.i.d. case with gn =@, a necessary condition for the unifortn 
law of large numbers is that the envelope G is integrable .. This corresponds to 
imposing (2.30) with { bn} any sequence tending to · ·ty. Letting bn grow 
slowly enough, we see that (2.31) reduces to condition (2.3) of Theorem 2.2.1: 

I P* 
- logN 1 (8, Hn, §) > 0. 
n 

Moreover, we showed in Theorem 2.2.2 that under the conditions of 
Theorem 2.2.1 the covering numbers in fact remain bounded. Obviously, if §n 
va:ries with n the uniform law of large numbers no longer irnplies that 
N1(8,Hn,§n) does not grow with n. 

. ....... LE 2.1. Let § be a permissible VC-graph class with envelope not neces
sarily in L 1(Rd,n(n)). As in Section 2.2 we define (§)c as the class of functions 
truncated at C: 

(§)c == {sign(g)[lg /\C]: gE§}. 

The class (§)c is still a VC-graph class (with envelope the constant function C). 
Application of Theorem 2.2.6 yields that for all 8>0 

N 1 (8, a, (§)c) ~ AC' a-r 
for some constants A and r. Also, if § is pei·missible, then so is (§)c for all 
C>O. 

Let 1'J >0 be arbitrary and take en =n(log n )- 1 , then (2.20) and (2.21) hold 
for (§}ntt(logn)_*_11 

s (g)n*(Iogn)-!¼-,, :s;; n ½(Iogn )-½-17 ~en for n sufficiently large 
g 

ge 
(g)n½(logn)_*_" 2 ~n(logn )- 1- 271 = o(cn)

Also, (2.23) is met for (§)n.;(logn)-.;-11 : 

Cn 
logN 1 (~, Hn, (§)n*(logn)-½-") == 

n 

Hence, for a permissible VC-graph class 

1 
ogn 

=='9(1). 
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The remainder of this section is devoted to the situation where higher order 
moments of the envelopes exist: 

GnELS(Rd,H(n>), l~s<oo. 

As before, we write 

Ilg lls,n == ( I g s dHn )11s 

for the empirical no1·111 of g. The theoretical nor1n now also depends on n, and 
is denoted by 

llglls. (n) == ( (g I sdH(n))lls_ 

Define 

Because in general the Ls(Rd, H<11 >) norm will be allowed to grow with n, it 
is no longer possible to replace conditions on L 1(Rd, Hn)-covering numbers by 
conditions on Ls(Rd, H11 )-covering numbers. We present a lemma to clarify 
this. 

LE:MMA 2.3.4. For l~s<oo and a/18>0 

N1(~,Hn,§~) s:; Ns(8/(s(2su llglls.nY- 1),Hn,§n). (2.35) 
gE,a 

PROOF. For a;;::,;b;:;eO as-bs~s(a-b)as-l for all l~s<oo. Using this and 
Holder's inequality, we obtain that for all g,g Egn 

(gls -fils dHn ~ S lg - lgl [max( gl, lgl)f - l dHn 

~s lg-gl[lgl + lilf- 1 dH,, ~s llg-glls,n II g + Iii 11:,; 1 

. . - . -1 ~s Ilg -g lls,n(2su Ilg lls.n Y . □ 
ge " 

Hence, if supge:~ .. Ilg lls,n remains bounded, say 

SU· Ilg lls,n ~ K 
ge~. 

(2.36) 

with arbitrary large probability for all n sufficiently large, then N 1 (o,Hn, §~) 
and Ns(~,H11 , gn) are of the same order of magnitude. 

'l'HEOREM 2.3.5. Let { §n} be a sequence of permissible classes with envelopes Gn 
satisfying 

fun sup II Gn lls~ (n) < oo, I ~s < 00 
n ➔ oo 

l 

Suppose that for some sequence Cn ~ 1, Cn = e(n s ) 

(2.37) 
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and 

Then 

lim sup G~dH<n) =O 
n➔oo G > 

It c,. 

p 

SU lllglls,n - llglls,(n)I ►0. 
ge II 

for all 4S>O 

PROOF. Conditions (2.38) and (2.39) iinply that 
p 

IIGn lls,n - II Gn lls, (n) I ➔ 0. 

It now follows from (2.37) that for some K < oo 

SU Ilg lls,n ~ II Gn lls,n ~K 
ge II 

Chapter 2 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

with arbitrary large probability for all n sufficiently large. Apply Lenuna 2.3.4 
to see that (2.40) implies 

c! P* 
n logN 1 (o, Hn, §:i) ➔ 0 for all o>O. (2.42) 
n 

The conclusion of the theorem now follows easily from Theorem 2.3.2. □ 

If (2.37) is not fulfilled, one can check lJDifo11n convergence of Ilg lls,n to 
llglls, (n) by verifying (2.42) directly. 

2.4. MEASURABILITY I 
Let x1 ,x2,... be independent, identically distributed random var·lables, with 
distribution H on Rd. As underlying probability space, we take the product 
space 

where (M, ~ Q) is some probability space on which some auxiliary random 
va1iables live (we need some additional space for randomization). Without loss 
of generality, (Q, &, P) is assumed to be complete. We observed that 

wt-+ SU gd(Hn -H)(w) 
ge 

need not be measurable. Of course if § is a countable class of measurable func
tions, there are no problems. Suppose now that there exists a countable 0 § 
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such that 

IP s gd n -H) =/= SU I gd(Hn -H)I =O, n ~ 1. 
geo 

Then application of Theorem 2.2.1 to 0 § yields 

iff both 

SU 
gE 

su lg!EL 1(Rd,H) and 
geo 

1 p 
- logN 1 (o, H,,,o§) -➔ 0 
n 

ost surely 

for all o>O. 

29 

(2.43) 

(2.44) 

Now, suppose § is separable. The process g 1-+ f gd(Hn -H) is called stochgsti
cally separable if there exists a countable 0 § C§ such that for all closed §c§ 
and open B CR 

-
gd(Hn -H)EB for all gE§no§ 

i1nplies 
-

gd(Hn - H) EB for all g E § 

with probability one (GIRMAN and SKOROHOD (1974)). If g1-+ f gd(Hn-H) is 
stochastically separable, (2 .. 43) holds. 

Stochastic separability suffices for most practical purposes (DUDLEY ( 1984), 
Section 11.3). Note that it implies measurability of 

SU 
ge 

gd(Hn-H)I. (2.45) 

However, the proof of a unifor1n law of large numbers needs measurability of 
other quantities too. If one assumes that § is nearly linearly supremum measur
able (ALEXANDER (1984), GINE and ZINN (1984)), measurability difficulties are 
overcome without the assumption of stochastic separability. 

POLLARD (1984) introduces the con t of permissibility. A permissible class 
g is also nearly linearly supremum measurable, but need not result in stochas
tic separability of the process. We shall now copy the definition of permissibil
ity - of a class of functions on lRd - from Pollard's book (POLLARD (1984), 
Appendix C). We say that§ can be indexed by T if§= {g(·,t):t ET}. 

DEFINITION: § is per1nissible if § can be indexed by a separable metric space T 
such that 
(i) g( ·, ·) is <&,®~(7) - measurable on Rd® T ➔ lR (~ is the Borel a-algebra 

on Rd, <ffi(T) the Borel a-algebra on 7), 
(ii) T is an analytic subset of a compact metric space T (from which it inher

its its metric and Borel a-field). 
-
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POL (1984) eleborates on the merits of assu1ning perrojssi1?ility. He shows 
that (arnong other things) pe11nissibility of§ implies ~easurability of (2.45). 

Note that if § is permissible, then so is { g-gl: g, g E §} (see (2.6)) and 

- {lg s: gEf1}, l~s<ao, 

and also the class of truncated functions 

(§Jc = {sign(gXg AC): gErJ}, C>O. 

The quantities Ns(o,Hn,~ still need not be measurable even if § is permissi
ble. However, the use of outer-probabilities for statements about the possibly 
non-measurable covering numbers does not interfere with proving laws of large 
numbers. 

Suppose now that Xn, 1, • • • ,xn,n are independent random variables, Xn,k 

having distribution Hn,k, k = I, · · · ,n, n ~ 1. For each n, we denote the 
underlying probability space by (On, &n, Pn), and we shall assume that it is 
complete. Let {§n} be a sequence of classes of measurable functions on Rd. In 
order to handle measurability for the non i.i.d. case and triangular arrays, it 
suffices to assume pe11nissibility of each §n· To see this, recall the proof of 
Theorem 2.3.2. Note that all probability statements are for fixed (sufficiently 
large, but nonrandom) n. For each n, 

SU I gd(Hn -n<n>) 
ge " 

is measurable, provided su llglli,(n) < oo. POL 
ge ,, 

(1984) shows that for fixed 

n, the syrmnetrization device 

gd(H,,-H(n))~ gd(Hn -H'n) 

is valid. Of course, if §n is permissible, then {g(x)o: ge§n} is a permissible 

The use of Fubrm s Theorem m (2.30) 1s thus legiti1nate. 
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3.1. L 2 -CONSISTENCY 
Consider the regression model 

y == g(x)+t: 

where xis a Rd-valued random vector with distribution H, £ is independent of 
x and has expectation zero and finite va1·iance, and g is a member of a class § 
of regression functions on Rd. For an esti1nator of the u own g to be sta
tistically meaningful, it should at least be consistent in some sense. In the 
least squares context the most natural requirement is L 2 -consistency. In this 
chapter we show that entropy conditions on a (rescaled and truncated version 
of) § j,nply this type of consistency. The results from Chapter 2 are used to 
prove this. 

Let L 2(Rd, H) be the Hilbert space of H-s uare integrable functions on Rd. 
Writing K for the distribution of £, let L 2(R X R, P) be the Hilbert space of 
measurable P ==H X K-square integrable functions on Rd X R with nor1n II · 11 2. 
For convenience, we omit the subscript 2, i.e. we write II · II. Confusion is not 
likely, because from now on Ls-norms with s=/=2 · only appear sporadically 
and then we shall use our old notation. 

Denote by x and t the first and second coordinate projections into Rd and 
R respectively, and write g -g(x), g0 ==g0(x), y ==go+£, where we assume that 
g0 , the true state of nature, is in L 2 (Rd, H). We have for gEL2(Rd, H) 

llY -gll2 == E(y-g(x))2 == llt:112 +Ilg-go 112 , 

since x and t independent. 
Let (x1, t:1 ), (x2, t:2), · · · be independent copies of (x, t) with 

Yk =go(xk)+t:k. Write Pn for the empirical distribution based on 
(x1, E1), · · · ,(xn, ~n) and Hn for the marginal empirical distribution generated 
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by X1, · · · ~x,,. Suppressing the subscript 2., we write 11 • lln for the correspond
ing L 2(Rd XR, P11 )-norm: 

I n • k , 
n k =l 

1 n 
I l;' - g If~ = - (y k - g( Xf.: ) )2 11 t: - {g - g O ) 11 ~. 

n k =I 

The least squares estimator ~ is ... not necessarily uniquely - defined by 

llv -g,.11~ = inftl),, -gll~. 
gE9 

The estimator in is strongly L 2 (Rd, H)-consistent if 

llin -go II , .. ~ 0 almost surely. 

Strong L 2(Rd, H,.)-consistency is defined in a similar manner. We concentrate 
on convergence with respect to these metrics because the infoi·rnation on the 
regression function is dete1·11lined by the distribution of the data.. The addi
tional knowledge that ~ is in a class of regression functions § can sometimes 
be used to prove consistency in., for instance, the sup-norm. 

Observe that go is the essentially unique minimizer of llv -gll, whereas &z 
minimi.zes the empirical counter part lly -gll11 • By the strong law, llv -glln 
converges for each fixed gEL2(Rd, H) to I~' -gll almost surely, and if this 
convergence is unifor1n, consistency in both II ·11- and II· 11 11 -norm follows 
almost innnediately. The almost sure convergence, uniformly over a class of 
functions §, was studied in the previous chapter. Recall Theorem 2.2.4. For 
the case s -- 2, it states that, for ~ a permissible class with envelope G, 

su I llglln - llglll > 0 almost surely (3.2) 
ge 

if the envelope condition 

G2dH < oo 

and the entropy condition 
pr 

1 
- logN 2(o, Hn, ~ ➔ 0 for all o>O 
n 

(3.3) 

(3.4) 

are fulfilled. Remember that logN 2(o, H,,, §) is called the entropy of g for 
lt · lln. 

PROPOSITION 3.1.1. Suppose that§ is a permissible class with g0 E~ and that (3.3) 
and (3.4) are fulfilled, then 

Ilg., -g0 II > 0 almost surely, 

as well as 

Ilg,, -g0 lln -> 0 almost surely. 
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PROOF. Obviously, conditions (3.3) and (3.4) ensure that we can apply 
Theorem 2.2.4 to the class {y -g: gE§}, so 

su lty -glln -llY -gll I ➔ 0 almost surely. 
ge 

Now, ll};-gll2 
· lltll2 +llg-gol 2, and since g0 Ef3, ll,'-g,,ll~~llt:11~- Hence, 

for arbitrary 1J >0, and for all n sufficiently large 

llt:112 + lli,,-go 11 2 ~ llY -L II~ +11~ llfll; +TJ~ 11£11 2 + 211 

almost surely. Or 

lli,,-go 11 2 ~ 271 almost surely. 

Thus Ilg,, -go II >0 a1tnost surely, and since Ilg -g0 lln >Ilg -go II al1nost surely, 
11niformly in gE§, this implies that also lli,,-g0 lln >0 alrnost surely. □ 

The uniform convergence (3.2) is cert · y not necessary for consistency and it 
is clear that condition (3.3) and (3.4) from empirical process theory · hardly 
ever be satisfied for a class of regression functions §. For exa •nple, for 
§={g(x,6)=x8=81x 1 + · · · +fJdxd: 8ERd} (3.3) and (3.4) do not hold. 1bis 
partly due to the fact that § is a cone (i.e. if gE§ also agE§ for all a>O). 
Therefore, we consider a class scaled functions 

~= {f----

Then 11.fll ~ 1 for all f E ~ and §" is often essentially smaller that §, e.g. if § is a 
cone. In smooth enough models, (3.3) and (3.4) · hold for §: This is for 
instance the case in linear regression. However, the envelope condition on §=" 

still seems to rule out many interesting models. Therefore, we propose to 
weaken (3.3) to unifor1n square integrability of ~ and to irnpose the entropy 
condition on a class of truncated functions. 

A class '!f is unifo y square integrable if 

dH = 0. fun SUJ? 
C >oo /e ~ l/l>C 

(3.5) 

The class of truncated versions of functions in 6J is defined as before: i.e. let C 
be a positive number and denote 

(f)c -
C if f >C 
f if ~c, 

-C if/ <-C 

and (~c ={(f)c: f E6J}. 



34 Chapter 3 

THEOREM 3.l.2. Suppose that g is a permissible class with go es, that §" is uni
.fe>rm~l~ square i1ztegral»le and that for each C >0 

p· 

o>O. (3.6) 
n 

Then ~ is .. ,trongiy L 2 (Rd, H)-consistent. 

PROOF. We shall first construct a covering set of the class 

E+go 
1 + llgll c 

Let f1, J = 1,2, · · · ,N 2(8, Rn, (§>c) be a covering set of ('j}c, i.e. for each 
f =g-1( l + !lgl!)E~ there exists an~ such that 

11(/)c -~ lln <o. (3.7) 

For all j = l, · · · ,1\12(8, H11 (§-)c ), define 

hj,k - (k8(£+go))c-~, k =O, 1, · · · ,[l/o]. 

Then for all n sufficiently large, {h1.k:j=l, · · · ,N2(0,Hn,(~c), 
k ...... 0, l, · · · ,[l/8]} is a CO\lvering set of :"Kc- To see this, choose f =g/(1 + llgll), 
~ as in (3.7) and k =[ 1/(o(l + llgll))]. Then 

t:+go 

C 

I ~1, 
l+llgll 

OPI g 
I+ llgll C 

<ollf + go II,,+ 8~ollt-go 11 + 2o 

almost surely, for n sufficiently large. Thus, we can apply Theorem 2.2.4 to 
· , which yields that 

SU 
ge .. 

e+go 
11-----

1 + llgll 

almost surely, for all C>O. 

C 

C 

g II- (3.8) 

g lln ➔ o 

Let 11>0 be arbitrary. Then from (3.8) we have that for all gE§, C>O and 
n sufficiently large 

t+go 

C 

g ' 112 
l + llgll C 

(3.9) 
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.K., · Ii~+ 1J almost surely. 
I+llgll 

C 

To get rid of the truncation in (3.9), we argue as follows. Obviously, 

. E:+ go _ g 2 E: + go -g 2 

g C g C g 
• 

For the lefthand side of (3.9), we have 

(3. 10) 

II · g ,, 
1 + Ilg II c 

C 

ause of the assumed unifor1n square integrability, 
ll(g/(l + llgll))c-g/(1 + llgll)II can be made arbitrary small by taking C 
sufficiently large. Moreover, llr+ g0 II is finite, so { (t: + g0)/( I+ llgll: g e§} is 
also uniformly square integrable. Hence, for C large enough 

t+go _ g 2 E:+go-g 2_ 
11· 

C C 

Thus, (3.9) irr1plies that for n sufficiently large 

r+go-g 2 e+go-g 2 
almost surely. 

Since £ and x are independent, this can be written as 

11£112 + Ilg-go 11 2 

~ IIE + go -gll~ + 217(1 + llglt)2 al111ost surely, 

for all 2e§. 
For g.,, we have 

A 12 2 llt:+ go-~ In ~ 11£11,,, 
because g OE§. Hence (3.11) implies that for all n sufficiently large 

llt:112 + Ilg,, -go 11 2 ~ llt:ll; + 211(1 + li&z 11)2 

ost surely, 

or 
A 

I + Ilg,, II 
ost surely. 

(3.11) 
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Since r, was arbitrary we can take 311 < 1. 
((llg0 -~ll)/(l +11~11) <I for all n sufficiently large i,nplies 
constant K <oo 

lli.zll ~ K 

for all n sufficiently large. 
This yields 

llgo -g,, 11 2 ~ 311(1 + K)2 ost surely, 

which completes the proof. □ 
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But then 
that for some 

It is easy to see that the conditions of Theorem 3.1.2 are irnplied b those of 
Proposition 3.1.l, but that in general they do not in1ply L (Rd, Hn)
consistency. Consistency properties of regression esti1nators for more specific 
models have been studied by other authors. In no · ear regression, § is a class 
of functions of the fo11n {g(x, 8): fJeE>} with 0 some metric space and g(x, 8) 
continuous is 8 for H- ost all x. It is shown in Section 3.2 that condition 
(3.6) is fulfilled for this § if e is compact. JENNRICH ( 1969) proves consistency 
under the ass11mption that 0 is compact and that the envelope condition on § 

holds: 

HUBER (1967) imposes an envelope condition on a rescaled version of @. He 
allows for more general scale transfor·rnations, but there appears to be not 
much loss of generality if we restrict ourselves to the choice of §=: If the 
envelope F of '!fbelongs to L2(Rd, H), then it can be shown that if (3.6) holds, 
g,, is also strongly L2(Rd, Hn)-consistent. Moreover, the truncation device 

mes redundant .. 
In nonpara1netric regression, there is usually no paramet1·ization such that 

the regression functions are continuous in the para:rneter for H-almost all x. In 
Theorem 3.2, this continuity assun1ption is not required. The relation with the 
assumption of compactness of parameter space is made clear in the following 
lemma. Remember that a class <ff is called totally bounded for II · II if for all 
8>0 the o-entropy logN2(~, H, £}}) with respect to the L 2(Rd, H)-nor·m, is finite. 
The closure of a totally bounded '?f is compact. 

L 3.1.3 The conditions of Theorem 3.1.2 imply that <J is totally bounded for 
II· II. Moreover, if§" is totally bounded for II· II, then <ff is uniformly square integr
able. 

PRooF. I~ view of condition (3.6), application of Le1n111a 2.2.5 to (§)c yields 
~at (§)c 1s. totally bounded for II · II. The uniform square integrability now 
gives that f 1s also totally bounded. This proves the first assertion. 

Suppose now that 'Jf is totally bounded for II· II. Let 8 be arbitrary and let 
!1, • • • ,fm, m = 1, ... ,N 2(8, H, §), be a 8-cove1·ing set of §: Then for C 



Consistent least squares estimation .. 

sufficiently large 

. _ max 11(/j)c-J;II ~ o. 
J-1, ... ,m 

Furthermore, for/ e~ II/ -jj 11 ~8 

ll(f)c -jll ~ ll(f)c -(fj )c II+ 11(/j )c -JJ II 
+ llfj-jll ~2IIJ-jj II+ 11(/j)c -Jjll ~ 38. 

It follows that 

fun sul? 11(/)c-Jll == 0. 
C, ► oo fe ~ 

'Ibis is equivalent to unifo1·1n square integrability. □ 
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So far we did not consider classes of regression functions depending on n, gn 
say. Such a situation a r·ises for instance in spline regression, nearest neighbour 
regression and some other nonpararnetric regression models. The situation with 
§n depending on n · be treated in detail in Section 3.3. Here, we maintain 
the assumption of i.i.d. random vaa iables, but because of the practical in1por
tance we consider a si111ple application of Lem111a 2.3.3. Suppose {§n} is a 
permissible sequence, then Lerm11a 2.3.3 asserts that 

·,,_ li 1111p es 

n 

ll(g )c lln ll(g)c I 

p· 

(3.12) 

p 

~) 0. 

Note that the convergence is now in probability (almost sure results can only 
be obtained if the entropy remains small). It is now not difficult to adjust 
Theorem 3.1.2 to this situation, assun1jng uniform square integrability of 
U ~' ~ = {g/(1 + llgll): gE§n }, together with (3.12) for (~)c, C >0. 

3.2. APPLICATIONS 
In this section we shall concentrate on conditions for the entropy condition 
(3.6) on (§Jc to hold. The technique to prove the lemr11as is construction of a 
covering set and some combinatorics to count the number of elements. The 
unifo1n1 square integrability of ~ imposes requirements on the (u ,.,.. own) H. 
Often, it has to be shown by separate means that inJ(l + Ilg,, II) is eventually in 
a totally bounded subset of~ (see e.g. HUBER (1967)). To avoid digressions, 
we shall not elaborate on the uniform square integrability condition for 
sp · c situations, but only hi_ "ght that (3.6) is a conunon feature of regres
sion models. 

An i111portant special class of functions, that appears in several applications, 
is the collection of indicator functions of VC-classes of sets. A minor 
modification of Theorem 2.2.6 says that for a VC-class of sets, and more 
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generally, for a VC-graph class 6J of functions 

!vr2(8, Q~(~j}c) ~ ACr8-r for all ~>0 

Vv·here ,.4 and r are constants not depending on Q. Exan1ples of VC-graph 
classes "rill be given below. 

~1~ 2. I. 1'l'<>nlinear regression 
If the functions inL § form a (subset of a )finite-dimensional· vector space, then 
both ~i imd <ff are VC-graph classes (see POLLARD (1984, Ch. II, Lemma 28), 
Dtrr>LEY ( I 984):). This is a consequence of the fact that the collection of half
spaces is a Jtl"C-class. Here is one more exa:rnple where the regression functions 
f ()rm a J1'C-graph class. 

EXAMPLE. A model considered in BARD (1974) is 

p(-8 -fl2X2)+ {).>.Q .:::::►-o · y ex I XI e E:, 1 - , X 1 - , l 1,2. 
The graphs are of the fo1·1n 

t = 1,2 }. 

!bus_ (use Theorem 9.2.2 of DUDLEY (1984)) § is a VC-graph class and since§ 
1s uniformly bounded, this implies that 6J satisfies (3.6). 

··. LE. The p-compartment model 

y= 
i = J 

- 1, · · · ,p, x~O. 

have for some A and r 

N2(0, Hn,(§)c) ~ AC'8-', 0<8< I. 

p 

tness of the para1neter space. 
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LEMMA 3.2. l. Suppose that g (x, IJ) is continuous in (J for H-almost all .. ~, and that 
(0, II· II) is compact. Then for all C>O, 8>0 

I p· 

as well as 

' 

PROOF. The proof shows that for all 8>0 there exists a finite 8-bracketing set, 

(gyL>, g;R>] with 1L) ~ )c~g1 > and llgyL> - gyR>ll<8 (see DEHARDT (1971)). 
Define for all x e R ., 8 e 8 

-
w(x, 8,p) -·.. _ .su (g(x, fJ))c-(g(x,O))cl-

(e: 118- 11 =E;p) 

Then 

lim w(x, ll,p) = 0 
p .. ➔o 

for every I) and H~alrr1ost all x. Since (g(x, 8))c~C for all x, do111inated con
vergence implies that also 

limllw( · ,U,p)ll2 = o. 
p )0 

Hence for arbitrary 8>0 there exists a finite covering set of 0 by balls with 
radius p; and centres 8i, such-that 

For all n sufficiently large, also 

llw( · ,8;, p;)II~ < o2• 

But then {(g( · ,Oi))c} is a finite covering set of (§)c with L 2(Rd, Hn)-norm: 

ll(g( · ,IJ))c-(g( ·, O;))clln ~ 11¾1( ·, Oi, P;)lln<8, 

for all llO-ll;ll<p;. 
In the sarne way, one can construct a finite covering ser of~ since the class 

{ag: aE[O,l], ge§} also satisfies the assumptions of Le1runa 3.2.1. □ 

If the regression functions are not continuous in fJ, one can often split them up 
into continuous parts. An exa,nple is mu/ti-phase regression, which is treated 
in detail in Section 3.4. 

In the next three applications§ is always a cone. Thus, to check the entropy 
condition for the (§)c it cert · y suffices to verify the entropy condition for 
the (~c- In the proofs, the order symbol e( ·) holds for n , >oo. 
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3.2.2. Monotone functions (isotonic regression) 

A (i) are in a class ....... 1> of intervals, for which 

~(fi} (x1, ... ,Xn) = (9(n2). 

Thus, we have $(n2T) functions of the type ~;g(i) IA<i>. Also, 

supl(g(x ))c - (i)(x) IA<,> I < o. 
X . 

I 

Thus, 

Chapter3 

The result can be extended to functions of bounded va 1·iation and uni modal 
functions. If d> 1, further conditions are in general necessary to make sure 
that the entropy condition is fulfilled, e.g. assumptions on H or the condition 
that ~ is a class of distribution functions of bounded Stieltjes-Lebesgue meas
ures. 

3.2.3. Smooth functions 
Let gn, n ~ 1, be a sequence of classes such that the elements of U §12 have all 
partial derivatives of order s~m, m~O. 

LEMMA 3.2.3. For x eRd, let llx ll denote the Euclidean norm of x. Suppose there 
exists an a~l and 

m+a 

Ln == o(n d ) 

such that 

lg<m>(x)-g(m)(.i)l ~ Lnllx -xlta 

for all x, x, gegn· There for all o>O., C>O 
1 . p· 
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ll(glx)c-(g)clln ~ C(l-ffn(K))112 >C(l-H(K)) 112 <o, 
alanost surely. Let { B(i}} be a covering of K by balls with centres x<') and 
radius m!(o/ Ln)llm +a. The number of balls needed is S(Lnlo)dlm +a . 
Ca.nstruct from the { B(i)} a partition { A (i)} of K, e.g. take 
A(')=={xEB(i), xf!BU>, J<i}. 

Let gE§n be arbitrary, and expand g(x) for xEA(i) in a Taylor series 
around x<t> 

' 
g(x) == g<i)(x)+ R(i)(x), x EA (i), 

where g<i)(x) is the m-th order Taylor expansion. The Lipschitz condition tells 
us that 

R(i)(x) ~ Lnlm! llx -x(i) llm +a <8. 

Thus we have that 

supj(g(x))c-( (g(i)(x))clA<i>(x)) <o. 
X j 

As g varies in §n, the g(i) f 01111 a class of polynomials of fixed degree, § say. 
'I 'his class is a finite-di rnensional vector space, so there exist constants A and r 
such the for arbitrary measure Q 

N2(0, Q,(~c) ~ Acr5-r_ 

For each i with Hn(A (i))=t=O we make the following choice for Q 

II,, (i) 

'Ibis shows that there is a cover~ng set { 1i)} of (§)c with at most AC' s-r ele-
ments, such that for arbitr g<1

) E§ there is a g;:) with 

ll(g(i))c lA<i) -g;~) lA<j> If~ = (g(i))c -g5:> 2dHn 
Ac;i 

But then 

II (g(i))c lA<i> - g};) IA<'> II~ 
• • 
l l 

Hn(A (i)) (g(i))c-g;:> 2dQ~) <02 
i: H., (A (iJ =foO 

and 

ll(g)c 
• 
l 

Hence, the functions { g;:) IA<i>} form a 28-covering set of (§n)c. The number 
• 
l 

of different functions in this covering set is 
L a 
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• I.e. 
d 

=o(l). D 

If the functions in fin are uniformly bounded and H has compact support, then 
gn is totally bounded with respect to the sup-no1·m (see KoLMOGOROV and 
TIKHOMIROV (1959)). In our situation, §n need not be unifo~y bounded. The 
functions in (§n)c no longer have m derivatives, except in the case m =O. 

The result of LeIIDna 3.2.3 can be applied in penalized least squares. Let 
d == l and let the penalized least squares estimator &,z be obtained by 1nini1niz-
• mg 

llv -gll~ + A~J(g), 

where J (g) is the penalty 

J(_g) = (g<m +l)(x))2dx, m~O 

(see e.g. WAHBA (1984)). We use Lemma 3.2.3 with d == 1 and a== 1 to estab-
lish the following. 

LE 3.2.4. Suppose J (go)< oo and nm+ 1 An >OO, then there exists a sequence 
§n such that g,, E §n almost surely for all n sufficiently large, and such that for all 
8>0, C>O 

PROOF. The penalized least squares estimator ~ has 2m continuous deriva
tives (see WAHBA (1984)). We have 

(see IBRAGIMOV and HAs'MINSKII (1981, page 81)). Also 

II "" 112 2 - 2 2 LY-~ n +AnJ(~) ~ IIElln +i\nl(go), 

which implies that for all n sufficiently large, 

n 

almost surely. Take 

§n = {g: SU llg(ni)(x)-g(m)(.x)II ~Ln llx -xii} 
X, 

with Ln =211£11 / An +J112(go)==o(_nm + 1) and apply Lemma 3.2.3 with a= 1 and 
d=l. □ 
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3.2.4. Nearest neighbour regression 
We consider the nearest neighbour regression estimator of the form 

A 

&i 
. 

where the g~) are polynon1ials of fixed degree and A~), i = 1, · · · ,Pn f orn1s a 
random partition of Rd. For instance, one may take the A.~) as the set con
taining the N == [ n I Pn] nearest neighbours of some xk. In general, let 

(3.13) 

In a sense, this is an extension of a p-phase regression model to Pn-phase 
• regression. 

L 3.2.5. Suppose that in (3.13) § is a VC-graph class and Ci a VC-class, 
and that Pn = o(n /logn), then for all o>O, C>O 

p· 1 - logN 2(0, Hn,(§n)c) > 0. 
n 

PRooF. Since § is a VC-graph class, we have 
-r 

Pn Pn 

for some constants A and r. 
Let {g1} be a (o/pn)-covering class of (§)c, such that for arbitrary g<i) E§ 

there is a g1 E {g1} such that 

1 Pn 
Then 

Pn Pn Pn 
II (g(i))c IA(i) - gj; IA(i) lln ~ llg(i))c -gj; lln <o. 
i=l i=1 i=l 

For a fixed partition A <1>, · · • ,A (p"), there are at most (AC'(olpn)-r n 

dif~ferent functions of the type }:f"= 1g11 1A<i>. Since ~ is a VC-class, 

~~(X1, ... ,Xn) = e(ns) 

for some s ~O. Thus the n11mber of L 00 (Rd, Hn )-different partitions is e(n 8P" ). 

The total number of L 00 (Rd, Hn )-different functions ~f~ 1 g1, I A (j) is thus 
p,. 

Pn 
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3.3. Ti·IE NON-1.J.D. CASE ANl) '1"'RlANGt.,TI~AR ARRA )'S 

In t.his section" we assume that fc)r ef1ch n, ""· 1 'l • • • , x,,..n a.re independent ran
dom vect()rs in R' ~ x~., having distribution H rJ,k. Furthermore., tn. 1, · · · , En.n 

are independent rand<)m variables \\r:ith distribution Kn.k., Etn.k = 0, 
k == l., · · ' ~ n, a.nd { E'.n, I, · · · • En,n } is i11dependent t)f { Xn, I " • •• , Xn,n } • We 
obsen"e ·(x , , 1 

• ) k =: l · · · 11 where "·"' ,,. n,k , , , , 

,tnd where g o,n is a 111ember of a class ~3n of regression functions. The least 
squares estimatl)f ~ is defined as a solution of the mini1nization problem 

. f l f · )·)" an, -· · .4'..d (y n,J..: -· g( Xn,k .· .. , 
4,t~Ct n b it',: ~~- ' k ::::: I 

As in Section 3.1,, Pn denotes the empirical measure based on 
(x11• 1 ,t:n. 1 ), · · · ,(Xn.n,En.n) and H,. is the empirical measure generated by 
Xn, l, ... ,Xn,n· Moreover, we write 

The theoretical 
gEL 2(Rd, H(rt)) 

llgll(n> = 

is denoted by 11 · ll(n), i.e. for 

and for g, go,n EL 2(Rd, H(n)) and /lel2dK(n)(€)<oo 

lty-gll(n) = IE+go.n(x)-g(x)l2dP(n)(x,i) 

= IIEll(n) + Ilg -go,n llfn)· 

The empirical no1·n1 on L 2(Rd X R, P,,) is denoted again by 11 · lln, e.g. 

llgll~ .,- (gl2dH,., 

11.,v -g II~ = 

Finally, the class ~i of rescaled functions is defined as 

bounded. Moreover, we shall impose cond1t1ons that ensure that l llEll(n) - IIElln I 

cond1t1on on the class of truncated functions (~ )c
11

, Cn = bn , bn ~ 1, 
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h,,,=o(n 112
), endowed with L2(Rd,Hn)-norr·n., as well as on 

(~ )~'" ... ·· · /\ C~: f E ~} endowed with L 1 (Rd .. Hn )-nor111. Recall Lemn1a 
2.3.4, where a relation between these covering numbers is presented. 

'l'HEOREM 3.3. l. Suppose that {@11 } is a sequence of permissible classes li1ith 
go,n E§11 , n ;;?r. 1. Assume that for so,ne sequence { bn }, bn ~ 1, b,, = o(11 112 ) 

and 

lim sup SU l/12 dH(n) = 0. 
n - ➔ oo f E .. l/12 > b. 

Moreover, assume that 

lim-+sup El2dK(n)(t) = 0 
n ~ oo IEl:i >b., 

and 

Then~ is L 2(Rd, H<11 >)-consistent, i.e. 
p 

ll&w -go,n ll<n> ➔ O. 

for all 8>0, 

for all ~>0, 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

PROOF. ,,___...The proof is very siinilar to the proof for the i.i.d. case. Define 
C,, - bn . We construct a covering set of the class 

I I I I .. .Kt! I 

I+ llgll<n> 
C,. 

as before: let fj, j = 1, · · · ,N 2(8, Hn,(~n)c,.) b,e a covering set of (%r)c,,, take 
for f =(g!(l + llgllcn)))e~, fj the corresponding neighbour of (f)clt (as in 
(3.7)) and take 

hJ.k = (k8{f.+go,n))c. -fj, k -·-[I/o(l + llgll<n>)]. 
Then 

I llioglhi W 

C,, I+ llgll<n> 
C,. 

Use Lemrna 2.3.3 to see that conditions (3.17), (3.18) and (3.19) imply that 
ll{+go,,. lln =e-,(1). Thus from (3.15) 
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b2 P* 
_n logN 2(8, Hn, ,.) ➔ 0 for all o>O. 
n 

If we apply Lemma 2.3.3 to (~n)~n, we obtain that 
p 

-➔ 0. 

Therefore 
• 

SU llh lln ~ IIE + go,n lln + SU 11(/)c,. lln == 0p ( 1 ). 
he n fE " 

Application of Le1nrr1a 2.3.4 now gives that (3.20) implies 
b2 p· 
_n logN 1 (8, Hn, 2 ) > 0 for all S>O. n n 

Use Lenuna 2.3.3 now for 2,. to get 
p 

SU lllhll~-llhllfn)I > 0. 
he 

In other words, for arbitrary 17>0 

SU 11 
E:+ go,n 

I + Ilg ll<n> gE en 
p 

I I 
t:+ go,n 

I+ llgll<n) ell 

for all fl sufficiently large. 

g 
1 + Ilg ll<n) 

C,. 

, .. g_" 11 ~ 
I+ llgll(n) c,. 

II [n) 

~,,., 
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(3.20) 

>l 11 (3.21) 

Using inequality (3.10) and assumptions (3.17) and (3.18), we get that for all 
fl sufficiently large 

1 + Ilg ll<n> c,, 
11 ~ (3.22) 

- 2 ( 1 + I lg 11 <n)) 
11, 

for all gE@n. The fact that go.,n E§n for all n gives that 

I A 2 2 
1£ + go,n -~ II n ~ 11£1! n· 

Combine (3.21), (3.22) and (3.23) and use (3.18) and (3.19) for 11£11~, to obtain 
that for all n sufficiently large 

A -
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Since llgo,n ll(n) is assumed to remain bounded, we can complete the proof as 
before. □ 

We can now establish consistency in the empirical metric II· lln using two 
approaches which depart from apparently different sets of assumptions. The 
first approach resembles the one for the i.i.d. case: assume that the envelope 
Fn of %i is square integrable. The second approach is to. work conditionally 
on Xn 1 , • • • ,xn n. We su1nma1·ize the result in two le1nmas. , , 

LEMMA 3.3.2. Suppose that { §n} is a sequence of permissible classes, that 
go,n E§n for all n and that for some bn ;>.; 1, bn == o(n 112 ) 

and 

b2 p· 
_n logN2(0, Hn, ~) ➔ 0, 
n 

b2 p· 

_n logN1(0, Hn, ~) ➔ 0, 
n 

lim_sup F~ dH(n > == 0. 
n )00 F:.>b 

n n 

for all «S>O. 

for all o>O. 

Moreover, suppose that (3.18) and (3.19) hold for this { bn }. 
A 

as well as ll&i -go,n lln converge to zero in probability. 

(3.24) 

(3.25) 

(3.26) 

A 

Then II~ -go,n ll(n) 

PRooF. Of course (3.26) implies (3.17). It is also obvious under (3.26), (3.25) 
and (3.16) are equivalent, and that (3.24) and (3.15) are equivalent too. So 

p 
A 

II~ -go,n ll(n) > 0 

In other words, for all 11>0, llgn -go~n ll(n) <11 with large probability for all n 
sufficiently large. It now suffices to show that 

p 

SU llg-go,n11n-llg-go,n11(n)I ➔ 0. 
Ilg-go,n (n) <17 

ge~" 

Now, application of Lemrna 2.3.3 to ~ yields 
p 

S 111/lln -11/ll(n) ) 0, 
fe 

which easily leads to (3.27). □ 

Recall that under (3.24) 

Jim sup IIFn llcn> < oo 
n • ➔ OO 

implies (3.25). 

(3.27) 

We now discuss the alternative approach.. Conditioning on Xn,k ==xn,k 
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k = 1, ... , n, n = 1,2, • • • can be seen as assuming nonstochastic regressors. 
Therefore, we take Hn k =ox in the following theorem. 

, n,k 

LEMMA 3.3.3. Suppose {§,,} is a sequence of permissible classes, go,n E§n, n ~ 1. 
=I, ... ,n, n= 

n 
ogN 2( , Hn, ~n >0 for all «S>O (3.28) 

fun sup SU 2dHn = 0 
n ➔ OO /e ,. l/12>b,. 

and (3.18) and (3.19) are met, then 
p 

" ll&i -go,n lln ➔ 0. 

(3.29) 

PROOF. Conditions (3.28) and (3.29) correspond to (3.15) and (3.17) respec
tively, with Hn,k =ox,..1c, k = I, ... , n (under (3.29), truncation becomes redun
dant). Also (3.16) holds, since Lt111IDa 2.3.4 can be applied: 

Ilg lln 
SU llflln = SU 
fe II gen 

□ 

If the Xn,k are actually stochastic, condition (3.29) is to be replaced by 

fun sup P(su · 2dHn>11)=0 for all 11>0. 
n · ➔ 00 f E lfl2>bn 

Then, provided (3.28) holds in P*-probability, consistency in empirical nor1n 
follows. Lerruna 3.3.3 does not give any clue on consistency in theoretical 
norm and (3.28) and (3.29) seem to be substantially weaker than the condi
tions of Le11una 3.3.2. We shall consider the particular case of i.i.d. xk and 
§n = g, where nevertheless the assurnptions of Le1n1na 3.3.3 imply those of 
Lemma 3.3.2. 

LEMMA 3.3.4. Suppose that x1 ,x2, · · • are i.i.d with distribution H and that §' is 
a permissible class with envelope F. If 

1 p· 
logN 2(0, Hn, ~ ➔ 0 for all o>O 

n 

and if for all 11>0 

fun sup P(su lfl2 >11) = 0, 
n ~oo /e. l/l2>b

11 

for all bn tending to infinity arbitrarily slowly then 

FEL2(Rd, H). 

(3.30) 
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PROOF. As in the proof of Lemma 2.3.3, we can choose sequences €n!O, 8nJ,O 
such that 

It now follows from application of Lerruna 2.3.4 that for some sequences 
bn➔ OO, bn = o(_n 112), 

Let u1 ,a2, · · · be independent random var·iables 
l?(ak == l)==l?(uk - -1)== 1/2. It follows from (3.31) that 

p 

-> 0. 

Hence by (3.30) 

1 n 
SU ,- ak (xk) ~ 
fe n k =1 

1 n 

fe'J n k =1 " /EOJ lfl2>bn 

Since 

1 n 
SU j- Uk (xk) 
fe n k =I 

is a reversed submartingale (see e.g. PoL (1984)) this i1nplies 
1 n 

s - uk (xk) · ➔ 0 a]inost surely. 
fe n k =I 

(3.31) 

with 

But by the Borel Cantelli Lemma, the strong uniform law of large numbers 
implies that the envelope is integrable 

SU ~·dH < 00 
/e 

(see GINE and ZINN (1984)). □ 

It turns out that in case of stochastic xn,k (i.e.. Hn,k does not degenerate at 
Xn,k ==xn,k) it is often difficult to verify whether the entropy condition (3.28) 
holds in P* -probability, unless the envelope condition (3.26) holds. For obtain
ing consistency in both 11 · ll(n) - and II · !In-norm, our approach indeed needs the 
envelope condition (3.26). 

LE 3.1. Suppose (for simplicit ) that (x1,E:1),(x2 ,t:2 ), • • • are i.i.d. a11d 
that go is fixed. Suppose that §CL (Rd,H) is a per1nissible VC-graph class 
with go E@. Let bn >OO, bn =o(n 112(1ogn)- 112 ) and define 
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Let~ be the function in §n which minirnjz.es llY-glln- Then one can prove 
that 

p 

II~ -go II > o 
as well as 

• p 

II~ -go lln > O. 

To see this, recall Theorem 2.2.6, which says that for all C >0, o>O, n ~ I and 
for some constants A and r 

N 1 (o, Hn, (§)c) ~ AC'o-r. 

Let 'J,, = {g /(1 + llgll): g E§n }. By straightforward computation 

N2(0, Hn, ~) ~ A'b~+ 112 , o-2r- 1, o>O 

for some A', and 

N 1 (8, Hn, ~) ~ 4A 'b: + 1 o- 2r- 1, o>O. 

Thus, the conditions of Lenuna 3.3.2 are met, except that go need not be §n 

for all n, i.e. (3.23) need not hold. However, we can replace (3.23) by 

lty-g,, lln ~ llt:lln + ll(go-(go)b!'2 )l!gol2 >bn lln ~ ll(lln +11 

almost surely, since ll(go -(g0)b!'2 )l1g012 >b
11 

lln >0 almost surely. 

We end this section with the foil owing observation. Since everything may 
depend on n, one can define a new class §~ = { a12g: g E§n }, with {an} some 
sequence converging to infinity, and use the uniform laws of large numbers of 
the previous chapter to prove that llan(in-go,n)lln converges to zero. In other 
words, in this way one obtains a rate of convergence. However, the resulting 
rate · not always be the best possible. Note that so far, we only assumed 
existence of second order moments of the f.n,k· We shall show in Chapter 6 
how the existence of higher order moments of disturbances can lead to optimal 
rates and laws of large deviations. 

Nevertheless, consistency of llan(~ -g0,n)11n can be concern in cert-ain 
parametric models, where 

with 0 CR'. 

LE 3.2. In linear regression 

gs(x) = x8 

with X a row-vector in Rd and fJ a colurr1n vector. Let Hn,x =oxn,lc and let 

(3.32) 



Consstent least squares estimation 51 

• 

• 
• 

X n..n 

be the desi . matrix. Denote by A1,n and X2.n the smallest and largest eigen
value of X,,, X,, res · tively .. It is easy to see that if 

• 

A2.nlA1,n = (9(n 112(l-c)) for some O<c~l, 

then conditions (3.29) and (3.30) of Lemma 3.3.3. are fulfilled with 
b,,, m ... n 112<1 ·-c>. It follows that 

p 

llin-go,n lln > 0, 

provided that the regularity conditions (3.18) and (3.19) are met. If 

l 
fun inf A1.n > 0, 

n n- ► OO 

this in tum implies 
A 

II 811 - 80.n II 

g,. · · gi,~ ,go,n =ge0.,,. However, if Xn I X,., is ill-conditioned, i.e. if n - l Al,n goes to 
zero, consistency of g,. in II· II-norm no longer implies consistency of 6n. 

The following lennna presents a direct proof of consistency of the least squares 
estimator of a finite-dimensional paran1eter. It is a straightforward application 
of Theorem 2.3.2. To a1,1·ive at the sa:me result as in Wu (1981), we assume 
compactness of parameter space. By a simple argument, this assumption can 
be drop . at the cost of strengthening (3.33) (see also Section 6.2). Moreover, 
we ass111ne nonstochastic x,, k. , 

L 3.3.5. Let §= {ge: 8e0}, with 0 a compact subset of Rd, go =go
0

, 

80 E0, and let Hn~k =oxn,k' k = 1, ... .,n, n = 1,2, . . . . Suppose 

Ilg e -g Bo lln ;>.: K 1,n 118-80 II 

for all 8 E 0, where K l,n >0, 

lg,(x)-g,(x)I ~ A2,n(x)ll6-8'll 

for all fJ,ff E0, and where IIA2,11 lfn =K2~n =e(l) and 
xi+c 

2,n 

Kt.n 
for some O<c:s;; I. Moreover, impose the regularity conditions 

(3 .. 33) 
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Then 

PROOF. Since 

ll,, -g,, lln ~ llt:lln, or 

2 n - ~ A -go 111, 
k =1 

it suffices to show that for all 71 >0 

I n 
£n,k(g9(Xn,k)-ga0 (xn,k)) p 

n k=1 
s -------2 --- --,r,.➔ 0. 

110-Do >rt llgo-geolln 
8e0 

Define 

and en ==n l-c12 . It is now easy to see that Theorem 2 .. 3.2 can be applied to :J4. 
Thus 

I n P 
SU I- h(f.n,k,Xn.,k) -) 0, 
he nk=l 

and the proof is complete. □ 

3.4. Two-PHASE REGRESSION IN DETAIL: IDENTIFIED CASE 

We noted already in Example 1.3 that the class § of functions of the f 01·m 

g(x) = (3.34) 

is a VC-graph class. Thus there exist constants A and r such that for arbitr 
probability measure Q 

N1(B,Q,(§)c) ~ Ao-rcr, for all C>O, a>O. (3.35) 

Since, ~ is a cone, the same holds for any rescaled version of §, e.g. 
~=={g/(l+llgll(n)):ge§}. In other words, no distributional assumptions are 
needed to verify the entropy conditions (3.6) (or (3.15) and (3.16)) of the previ
ous sections. To investigate consistency, we now have to check some unifor1n 
square integrability condition. Here, we do need to specify the distributional 
assumptions. 

By making use of the results of Section 3.3, one can study the general setup 
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with possibly non-i.i.d. random vaaiables. However, to simplify the exposition 
we m · y restrict ourselves to the i.i.d. case and only briefly address the 
non-i.i.d. case at the end of this section. We assume that x1 ,x2 , • • • are i.i.d. 
with distribution H, and t:1, i 2 , · • • are i.i.d. with expectation zero and finite 
va 1·iance and independent of the xk, k - I, 2, · · - . Also g O is assumed to be 
fixed. We consider the class of regression functions 

a(i) 

i) 

(3.36) 

where Cf is a pe1missible class of subsets of Rd. For convenience, we often write 
~ 1) =ct and $ 2) ={Ac: A E~}- We do not restrict ce to be the class of halfspaces 
{ { x : xy ~ I } , y E Rd}. Moreover, the regression functions are allowed to be 
discontinuous .. The least squares estimator is defined by 

ILv - ~ lln == inf lly -g lln' 
geg 

where § is given in (3.36). 
Theorem 3.1.2 asserts that~ is L 2 (Rd, H)-consistent if both 

p· 
1 

- logN2(0, Hn, ~ > 0 
n 

and ~== {g/(1 + llgll): gE§} unifo y (H-)square integrable. However, it turns 
out that even if the regression functions are of the form (3.34), <j is in general 
not uniformly square integrable. Here are three examples. 

LE 3.3. Take d = I and consider the class §s defined by 

§s = {al(-oo;y]: aEIR, yER}. 

Note that §s is a subclass of § in case a:. is the collection of halfspaces. Define 
H(y)=H(- oo,y]. Suppose there exists a sequence {Ym}~=l, with H(Ym)>O, 
m = 1,2, · · · and 

lim H(ym) = 0. 
m )00 

2 

dH == -
lgml>2C 

since · gm > 2C for m sufficiently large. • 

• 

• 

gm • 
• • 
• • 
• • 
• • 

Ym ♦1 Ym 

--+➔ I / 4, m ➔ oo, 

FIGURE 3.1. His the unifo1111 distribution on (0, 1) 
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LE 3.4. Let d = 1 and 

§s = {g13(x)=1nin(,83 + {3x,O): /3>0}. 

LetH(x)=-
x 

• 

LE 3.5. Let d = 1 and 

2 

FIGURE 3.2. /31 </32 

6 
§s = {g1 (x)= -1(-oo;y](x): y>O}. 

Chapter 3 

1 I l 
Let H(x)= 2 x + 2 , O:s;;x<l, H({O})= 2 . Then llgy II= I for all g1 E§s and 

2 
lim gy . 1 

= 4. 

• 
• • 
• • 

• • 
• • 

• • 

• 

• • 

. -
• • 

FIGURE 3.3. YI <y2 
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Our conclusion is that Theorem 3 .. 1.2 cannot be applied under fairly general 
conditions on II. We shall now take the following approach. We first show 
that for a subclass §R of §, ~R == {g/(1 + llgll): gE§R} is uniformly square 
integrable, provided of course that 

Ex7x < oo. (3.37) 

In the sequel, we assume t.hroughout that (3.37) is fulfilled. Next, we show 
that under certain conditions on g0 and H, g,, automatically belongs to this 
subclass gR for all n sufficiently large (see Le1nma 3.4.2). 

As before, write ll(J(i) II for the nonn of the Euclidean vector ffi). Define 

(3.38) 

Define for A C Rd 

l X 
h(A) - xT xTx dH(x) . 

• 4 

If H(A):¥:0 we denote by AA the smallest non-zero eigenvalue of }:(A), and 
otherwise we take AA -1. Note that in all three exa1nples 3.3, 3.4 and 3.5, we 
constructed a sequence of functions g =gg.,> IA with i\A ➔O. The following 
lemma asserts that if one prevents AA from becoming arbitrarily small this 
results in unifOI"m square integrability. 

LEMMA 3.4.l. For 11>0, consider the restricted class of regression functions 

§R = {g = g 11'' IA<•>: g e@., AA(,) >11, i = 1, 2 }. (3.39) 
i = 1.2 

The class 

= {g /( l + llgll): g E§R} 

is unifomily square integrable. 

PROOF. Take g= gt11i IA••> e@R and C>O. We have 
i = l.2 

lgl(l + !Igll)l>C 

' g ' ' 
I + Ilg II 

2 

dH ~ 
i;::: 1,2 lgt(i) l,c(i)I 

l + llg,i,> l,.<,) II > C 

2 

l + I lg (1i) I A (i) 11 dH. 

-
For 4 end, H(A)*O, let AA be the diagonal matrix of eigenvalues of L(A), 
and PA the matrix of eigenvectors: 

.... --' ,__T .... --T (l/llWT_,,, 
~(A)= PAAAPA, PAPA = PAPA =I. 

The diagonal matrix of non-zero eigenvalues is denoted by AA, and the 
corresponding matrix of eigenvectors by PA : 

~(A) = PAAAPJ. 
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~ 
So PA =(PA, Po,A), with Po,A the eigenvectors corresponding to the eigen-
values equal to zero. 

We have 

(1,x)Po,AP6,A(l,x)T dH(x) = 0. 
A 

Hence 

If AA >11, then 

2 

1 + I lg fji) 1 A 11 
j(l,x)PAP-'ifi> IA! >C 

1 + llg,<i) ]A II 

(1,x)PAPifli) 

I+ llgu,i IA II 

(1,x )PAP} lfi) 

1 + I g U') 1 A 11 

2 

dH(x) 

2 

dH(x). 

llgffi)IAII = ((fi)T}:(A i))½>r,1/2IIPAP{ffi)11. 

Therefore 

s 
{A: X,f 

But the class 

(1,x )µ<1> 

I +11½ llµ<i> II 

{g µ(i} /(1 + 11½ llµ(i) II): µ,(i) E Rd+ 1} 

is uniformly square integrable. □ 

Write 

and 

2 

dH(x). 

2 

dH(x) 
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Moreover, let for A C Rd, 

== AnAc AM 
' 

-
A \A 

- -
== (A \A)U(A \A). 

To show that eventually g,, E§R, with §R the restricted class defined in (3.39), 
we first of all need an entropy condition on ~ Secondly, we require that g0 is 
actually a two-phase regression function, not a one-phase regression function. 
This can be seen as an identifiability condition, since if g0 consists of only one 
phase one cannot identify the A i) or equivalently, one of the 8 i). However, 
this type of identifiability is not a necessary condition for II· II-consistency, as 
we shall see in Chapter 6. 

'l'hirdly, we i111pose a regular'ity condition on H. For this purpose, we intro
duce the class e of all hyperplanes in Rd, i.e. 

e == {C= {x: (1,x)7 ==PPT(l,x)T}: PE0l} 

were <3l is the class of (d + l)Xs matrices P, I~s~d + 1, pTp=J. As in the 
proof of the previous lem1na, let PA denote the eigenvectors correspondin to 
non-zero eigenvalues of ~(A), A cRd, H(A)=;t=O. Then CA ={x: x=PAPAx} 
is an element of e with positive mass. Such hyperplanes will play an impor
tant role in Lermna 3.4.2 below. We shall assume that the probability in 
Hausdorff-neighbourhoods of each C ee - neighbourhoods not including C 
itself - is unifo y small (see (3.42)). ·s assumption is e.g. fulfilled if H has 
a unifo y bounded density with respect to Lebesgue measure at all x in such 
neighbourh s. The Hausdorff-distance is denoted by 

d(x,C) == inf llx -.x II, C CIRd, 
ieC 

where llx -xii is the Euclidean distance between x and x. 

LE 3.4.2. Suppose that the entropy condition: 
p· I 

- logN 2(0, Hn, cf) - > 0 for all ~>0, 
n 

the identi bility condition: 

llg0 -gk II > 0 for some sequence . gk = Kfll> I Ar> e§ 

implies A.A~> >0, i -1,2, 

and the regularity condition: 

lim su H({x: O<d(x, C)~11}) == 0 
11JO CE 

i = 1,2 

(3.40) 

(3.41) 

(3.42) 

are Jul.ft.lied Then there exists an 11>0 such that eventually "-A:i> >11 almost surely. 

PROOF. Define 
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We have 

ll),-g,, II~ ~ llt:11~, 
which implies 

II~ lln ~ 2lltlln + llgo lln· 
Hence for some constant K < oo 

• 

Ilg,, II~ ~K 

for all sufficiently large n. Write this as 

i = 1 2 ' 

n.l ",d+I 

Chapter3 

• 

(3.43) 

and define XA::~ · 1 and AA;:~+
2 

=O, i = 1,2. In other words, AA~) =i\A:; for some 
O~si~d+I and AA(i) =O for s>s;. For each infinite subsequence {n'}C{n} 

n,s 

one can construct a further infinite subsequence { n *} C { n'} such that for some 
O<si~d +2 and some 1li>O, AA<':. >0 and AA<i~ _ >r,;, i == 1,2. In view of 

11 ,:,1 n .s1 I 

assumption (3.40), :En(A (i)) ➔ ~(A (i)) almost surely, unifo y in A (i) E~i), 

i = 1,2. A(•) 

A~,)1 = I and .A.g}d + 2 =O, it follows that A <~1,s, >0 and for n * sufficiently large, 
A n · s. - l > ½11;, i = 1, 2. 

' I 

4t. p~) be the matrix of igenvectors corresponding to the eigenvalues of 

11; 

where µ.U)= 

c~> = {x: (l,x)T=J>U>p(j)T(l,x)T}, i = 1,2. 

Because for the subsequence, A <~1,s, )0, we have that for each TJ >0 

n· n x:d(x1, n >11 ➔ 0. 

But then from (3.43) 

+ H({x: O<d(x, c<Q- )<11}) ➔ 0, as r, >0, 

or equivalently 

(3.44) 

-1,2. 
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The class 

satisfies 
p· 

I d) - lt)gN 2(8, Hn, 9'1 
) - ➔ 0 for all o>O, 

n 
' 

because (3.40) holds. Moreover, the envelope of ffi) is in L 2(Rd, H'). Thus 

I tl(t:+g0 -g":1
•1)l 8 ~~1 II~· -ll(t+g0 -g~!)10~~1 11 2 I ➔ 0 almost surely. 

i = l,2 

Furthe1·n1ore 

11 (t: + g O -g ,.~~l ) ] B~1 11 ~. ll(t + go -g,"1
:
1

) le~:} II~· 
i == l,2 i = l,2 

~ ll(t + go -giJ~:> )lA~': II;· lit:+ go -g,,· 11~- ~ 11£11~·. 
i = l,2 

This yields that 

liql sup 
n - ~oo 

ost surely. 

From (3.44) it now follows that 

ll(g0 -g14~~, )IA;:1 112 .. > 0 alrnost surely, 
i = 1,2 

or 

llgo - g,,.~~> IA~:> 11 2 ) 0 almost surely. 
i = 1.2 

But then by (3.41), A.4.~? ) 0, i = 1,2. 
Summa 1·izing, we have that for each · · te subsequence { n '} C { n } there 

exists a further i ·te subsequence {n*} C{n'} such that AA~'; does not con-
verge to 0, i = 1,2.. ·s shows that there exists an 11>0 such that AA~, >11 for 
all n sufficiently large. □ 

It requires virtually no additional effort to conclude from the proof of Len1ma 
3.4.2 that under assumptions (3.40), (3.41) and (3.42), gn is II · II-consistent. 
However~ we alternatively ;.use Theorem 3.12 to show this. 

PROPOSITION 3.4 .. 3. Suppose (3.40), (3.41) and (3.42) are met, then 
A 

Ilg,, -go II > 0 almost surely. 

PROOF. By Lenn11a 3.4.2 there exists an 11>0 such that AA~' >71, i .. -•-1,2, ost 
surely for all n sufficiently large. Thus it suffices to show that the conditions of 
Theorem 3 .1.2 are fu1fi11ed for the restricted class · 
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§R = {g= gui1 IA<1>, ffi>eRd+I, A(i)e@i), AA<i>>tJ, i ==1,2}. 
i = 1,2 

The entropy condition follows from (3.40): 
p· 1 

-logN 2(0, Hn,(~R)c) > 0 for all C>O, 8>0. 
n 

Furthermore, we have shown in Le1mna 3.4.1 that ~R is unifo y square 
integrable. □ 

For consistency of the estimators of the para1neters OH) and A i), _i = I, 2, we of 
course need a further identifiability condition. If A O is known, (J ,) is identified 
if }:(A i)) is of full r . In the situation with A O u own, this is no longer 
true, even when 1188) -6 ·) 11:f:O. 

LE 3.6. Let d ==2 and suppose H puts all its mass on 8 points 
x 1), • • • ,x 1), x 2), · · • ,x 2), H(x i))>O, t = 1, · · · ,4, i == 1,2. Let 
A 1) = { x I) ,x 1> ,x I) ,x I)} and A (l) { x l) ,x I) ,x 2) ,x~2)} (see Figure 3.4). 

Then there exists a 00 such that 110 I)-() 2> 11*0, and a 8 such that 
118-80 11*0, with 

I I gui> lA<i) -go II == 0. 
i = 1,2 

A(l) 

FIGURE 3.4. 

Obviously, the roles of (U1>, A (l)) and (U2), A (2>) can often be interchanged. 
Id~ntifi~bility should ~e u~derstood in the wide sense, i.e. modulo a possible 
re-mdexmg of the { (d1

), A <1>): i = 1,2 }. A sufficient condition for identifiability 
that can easily be verified, is given in Lemrna 3.4.4. Let 

T= x: H({x: llx x 11<11}) > 0 for all 11>0 
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be the su port of H. We assume below that there are sufficiently many points 
in T nA 1 

, i == 1,2, in order to identify fJ. 

LE 3.4.4. Suppose that 118 I) -I) 2) 11=#=0 and that there are 2(d + 1)-1 points 
{x~i): t = 1, · · · ,2(d + 1)-1} CA i) n T, with no d + 1 x~i) on a (d -1)
dimensional ,..hyperplane, i == 1,2. Suppose furthermore that (3.40) and (3.42) are 
met. Then 116n -80 II >0 almost surely. _If moreover 

H({x: g11o1>(x)==gUo2)(x)}) - 0, (3.45) 
" 

PROOF. We shall first show that the identifiability condition (3.41) is fulfilled. 
Let gk = ~, = 1,2 g£1-;> IA~> Eg be some sequence with llgk -g0 II >0. Either A~1) or 
A 2) contains at least 2(d + I)- I points from 
{xi): t = 1, · · · ,2(d + 1)-1, i == 1,2}. Therefore, at least (d + 1) of the xi) in 
one of the A i), say A I), must all be x 1)'s or x 2)'s. Without loss of generality, 
we can therefore assume that at least (d + l) x~1)'s are in A I) for all k. This 
in1plies that AS/! stays away from zero. Moreover, it i1nplies that f) 1> >8 1). 

·s in turn yields that A~1) cannot contain more than d x 2)'s, since 
118 l) -8 2> ll=r6=0. So A~2) must contain more than (d + 1) x 2)'s and thus "J\.<]} 
stays away from zero and (J 2> >8 2>. In other words (3.41) holds. 

Conditions (3.40) and ,..(3.42) yield consistency of~' and obviously this now 
results in consistency of 6n. 

Since 

Ilg,, -go 112 = 
i:;af:je{l,2} 

A 

the consistency of ~ and 8n implies that 
A 

(8 l) _O 2))T}:(AnAAo)(8 1) -f) 2)) ) 0. (3.46) 
,.. 

Now, let Aia.4 0 ,1 ~ • • · ~A~AAo,d + 1 be the eigenvalues of ~(AnAA 0), and take 
AA11M 0,o==l and Aia.4 0,d+2==0. Construct an infinite subsequence {n*} C{n} 
such that for some O<s :s;;d + 2 and some TJo >0, AA ·AA s, >0 and 

n o, 

Ai.AA 0 ,s-1 >110- Let P ~llAo be the matrix of eigenvectors corresponding to the 
eigenvalues larger than 1Jo, with P A"aAo =O if all eigenvalues are smaller than 
1Jo .. Define 

and 
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CO = { x : g ffol> (x) = g tfo2> (x)}. 

It follows from (3.46) that 

( l) - 2))T p A11·AA0 Pll1Ao ( l) -IJ 2)) ➔ 0. 

Therefore for each '1}>0 

H(B Aw-~O n {x: d(x,Co)>11}) ➔ 0. • 

• 

Assumptions (3.42) and (3.45) now yield 

H(BA.a.flAo) ~ H({x: d(x, Co)=O})+H({x: O<d(x,Co)~r,}) 

+ H(B An•aAo n {x: d(x,Co)>11}) ➔ 0. 
A 

Again by (3.42) this implies that also H (An· Mo)· >0. □ 

Here is an exarnple where (3.45) is not fulfilled. 

LE 3.7. Take d=l and g0(x)=rnin(ao+xfi0 ,0). Suppose that /Jo-=/=O 
and that there is positive mass m concentrated at the change point -ao / Po
Let Ai)=(- oo, -04}/ Po] and A~)= (- oo, -an! /Jn) with an! /Jn some sequence 
converging from above to 04}/ /Jo. Then 

I ao 
/3o 1 X 

~(AnAAo) x2 dH(x) >m 2 • 
X ao ao -~ -ao 

fin <x<; A, f3o fio 

Thus the li11riting matrix is sin 

In the non-i.i .. d. case, consistency of g,, and of the parameter estimates can be 
proved using e.g. Theorem 3.3.1. We shall not do this, but only investigate 
one particular case. for later reference (Examples 6.6 and 6.7). We take 
Et, ... ,En i.i.d. and Xn 1, · · · ,Xn n fixed points on a unifo11n lattice in the d-' , 
ditnensional unit cube. Furthermore, we let te.= { { x: xy~ I}, ye Rd} be the 
class of halfspaces. Finally, we take g0 =~; = 1~2gu~> IA~> fixed. Define 
Hn -1/n~Z = 1 Oxn,k and 

1 X 

A XX 

The conditions of Proposition 3.4.3 and of the le11una following it all have 
their counterpart for the non-ii.d. case. In the particular situation we have 
now, we have introduced so much regularity that the only additional 
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assumption we need is some kind identifiability. 

PROPOSITION 3.4.5. Suppose that the Ai), i = 1,2, have positive Lebesgue meas
ure and that 110 1>-8 2> 11~0, then 

,.. p I'\ p 

116n -Bo II > 0 and Hn(AnM o) > 0 . 

• 

PROOF. We have as before that for some constant K 

i=12 
' 

We can wijhput loss of ge:q.e ality assume that for all n the eigenvalues of one 

that 6n remains bounded. But then by Theorem 2.3.5 
p 

lll(t:+go-~)l.4.~2
> ll~-11(£+go -~)lA~2

> 11~>1 ) o, 
which yields 

p 

- lie IA~'> ll[n)) ~ 0. 

p 

llgo -g,, lien) > O. 
A 

= 1,2, and An now follows easily. □ 
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4.1. INTRODUCTION 
Just as a uniform law of large numbers can be a tool to prove consistency of 
the least squares estin1ator, a uniform central limit theorem can be applied to 
obtain rates of convergence and asymptotic distributions. First, we briefly dis
cuss the idea which led to Proposition 3.1.1 of the previous chapter. Let § be 
a class of measurable functions in L 2(Rd, H), let y=g(x)+£, gE§ be a regres
sion model, where it is ass11med that iEE:=0, IE £ 2 < oo and that x and £ are 
independent, and let (x1 ,£1 ), (x2,£2), · · · be independent copies of (x,E) .. 

If we define -<E,g>-n as 

-<.!,g>-n = 

then we can write 

A 2 A llg,,-golln ~ 2-<t:,g,,-go>-n- (4.1) 

The uniform law of large numbers says that if§ is a e1missible class satisf · g 
some entropy condition and with envelope GEL2 (R , H), then 

su 1-< l,g -g O >-n > 0 almost surely. 
ge 

· s irnplies by ( 4.1) that lli.z -g0 lln >0 a11nost surely (see Proposition 3.1.1). 
By the central limit theorem, we have that for each gE§ with Ilg -g0 ll:pO 

n -<t.,g -go >n e 
II - II ➔ o, 11£112 ). g go n 

(4.2) 
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Thus 

<t - . >-
Ii ll ip n . lg -··~ g O , · n · 

(4.3) 

Suppose now that ( 4.3) also holds for ~, then ( 4.1) shows that 
!lg,, -g0 li,1 - e,,(n ·~ 

112 ). Indeed under entropy conditions on ~' (4.3) holds for 
g,,. We shall establish this in (~hapters 5 and 6. The present chapter provides 
the theoretical b,1ckground. Unift}r·1n central limit theorems will be used 
directl}' in Chapter 5. The techniques for proving unifor111 central limit 
theorems are adjusted for proving rates of convergence in Chapter 6. 

Let us return to (4.1) for a moment. Ob,iously, for each gE§ 

. t 
(4.4) 

suppose this pr ..,.,; converges to some limiting process with uniformly con
tinuous sample paths for II · II (we shall make this more precise in the next sec
tion). In view of the II· II consistency of~, this would imply 

"' _ '--- = IV'!,(n -1,'2) ~(,&t go ,,.-n ...,... 

and by (4. l ), one obtains 

11 L -go 1111 = op ( n - 114 ). 

In Chapter 6, we shall also encounter this rate, and in fact all rates ranging 
from Sp(n - 112 _) to op(n - 114). 

4.2. UNIFORM CENTRAL LIMIT 1'HEOREMS 
Define ~lC= {t:(g(x)-g0(x)): ge§} and 

P,,(h) = n hdP,,, h E'X 

The process JJ11 ( ·) is an element of some space~ of real valued functions on :JC, 
'.9(, being equip · with suprsmum no1n1. A function y e::X is continuous if 
llh -h II >0 implies l,v(h)-y(h)I ➔O. We introduce a Gaussian process GP on 
X with mean zero and covariance structure 

- -
cov(G,(h ), Gp(h )) · ···· hhdP, 

where we assume that Xis GpBUC (or P-pregaussian), i.e. :JC is such that G 
admits a version with bounded and uniformly continuous sample paths. 
sufficient condition for :JC to be G,BUC is the entropy-integrability condition 

1 

· (logN 2(x, P, :JC))112dx < oo (4.5) 
0 

(see DUDLEY (1967)). 
We first present the definition of a functional Donsker class. The word func

tional refers to the fact that convergence in law is strengthened to convergence 
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in probability. 'l'his makes it possible to postpone some measurability con
siderations. 

DEFINITION. :JC is called a functional Donsker class if 
(i) Xis GpBUC, 
(ii) there exist independent copies Yk(h, w) of GP such that h )-3, Yk(h, w) is 

bounded and unifo y continuous on :JC for all k, and such that for all 
. 11>0 . 

m 

P*(n- 112max su (h(€.k, xk)-Yk(h )) >r,) > 0. 
m~n he k =I 

Here is a characte1 ization of a functional Donsker class. 

'l'HEOREM 4.2.1. X is a functional Donsker class ifJ :JC is totally bounded for II · II 
and for all 11>0 there exists a o>O such that . 

~ 
IP* sup Vn(h )-vn(h) >11 <11 (4.6) 

h,h.E.X 
llh -hll<B 

for all n sufficiently large. 

PROOF. See DUDLEY (1984). □ 

Condition ( 4.6) is ed the asymptotic equicontinuity criterion. 
In the literature on empirical processes, there are several results available 

which make it feasible to check whether a particular :JC is a Donsker class. We 
present one of these results. Let S be a finite collection of points in Rd+ 1 and 
denote by Ps the empirical distribution based on S. Write II· Iii= ( · )2dP8 • 

Define for H=su h 
he 

(4.7) 

'l'HEOREM 4.2.2.. Suppose that H EL 2(Rd + 1, P), that X is permissible, and that 
the entropy integrability condition 

1 

(logD2(x, :JC))112dx < ao 
0 

holds. Then X is a functional Donsker class. 

PROOF. POLLARD (1982). □ 

(4.8) 

Recall that :JC={e(g(x)-g0(x)): gE§}. We use Theorem 4.2.2 to show that 
under entropy conditions on §, :JC is a functional Donsker class, provided a 
higher order moment of£ exists. Observe that (4.8) is met if 
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l D (. ~ '-"11'\ - M ~ - , og 2 · 0 11 A./ ~ . · ·.· U 

for some constants !tf and 0< 11< 2 and for all o. 
im . ( 4.9) t)ll 9. 

(4.9) 

In the following theorem, we 

THEOREM 4.2.3. Suppose that g is a pern1issible cla<1s l+'ith envelope 
Ge L 2(Rd, Ht and with 

log D2(8, f~ ~ Ms .. ·- 11 (4.10) 

for some c·c»nstarits M and 0<,<2 and for all 8>0. Moreover, suppose that 
EfEf2f <oo for some p>2/(2 -,.). Then :1( .... ,, .... {!(g(x) g0(x')): geg} is a func
tional Donsker class. 

PROOF. If D2(o, S)< oo for all 8>0, then @ is totally bounded for ll · ll (see 
DUDLEY (1984)). Since E and x are independent, this yields that :1C is totally 
bounded for II· II too. Thus, the theorem is proved if we show that the asymp
totic equicontinuity criterion ( 4.6) ho'lds. In fact, the envelope and entropy 
condition on @ imply that II · !In •· ► II · ii almost surely unifo1·1nly on §, so it is 
also sufficient to show that for all 11>0 there exists a o>O such that 

P( s~p f,i 112 -<~, g -g >-,,I> 311)<571. ( 4.11) 
Ilg - g Ii .. <«S .. --'~ g,gES 

Without loss of generality, we may assume that ( is syrmrietric about zero (see 
the symmetrization device in Section 2 .. 3). Let a 1, .. • • ,a,, be independent ran
dom variables, independent of (x1, t:1 ), • · • , (x11 , En), with P(ok = l )= 
P( ak = - l) ·· ·· l / 2. Write 

... l n 
-<t:,g-g>-~ ::: . O'kEk(g(x1c)-g(xk)). 

n k =l 
• 

_JL 
For each j EN, let ffJ) be a minimal (2 2 8)-covering set of @ endowed with 

L 2(R4 , H12 )-norm. Then · 

Card(§<i>) ~ exp(M8-"2/P"12 IIGII~) 

for all J ef\l and o>O. Define gv> =gU> 11(1~1 128•1 1,, gU> EgJ>. We have 

P( s~ In 112 -<~,g-g>-~1>311)~2P(su In 112 <t,g -g(o)>~l>-rJ) 
l!g-_g!<8 ge. · · 

g,geg 

. t l/? - 0 (l) (2) +P( s~p n ·-<e,g(O) -g(O) >-nl>11) ...... 2P +P , 
!lg~• - g~ II.< 3B 

where g(O) =g(O) l1E1<a"''', g<O) ==g<0>(g)e§'<0), llg(O) -gll,, <o. 
Let r =r(n) be the smallest integer such that 2rp ";3;n and write 

r-1 
<.e,g -g(O) >,-~ ~··- <.E,g -g(r) >-2 + .., -<t:,g(j + l) -g(i) >--2, (4.12) 

j=O 
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g(J) ==g<J> ll<l~i'2a-•1,, gU> =gV)(g)Eg.})' j =O, 1, ... ,r. Now, 

I lg (i + l) -g (j) lln ~ I (gV + l) -gV)) l lt:1~2''28- 1'' lln + II G 1 lt:I > 2112 0- 11, lln, 
and 

Thus 

~ 00 1 I ., ' ----~ < 2 TJ, 

l for 8 sufficiently small. Hence, with probability > I - 2 11 

for some constant C 0 • 
r-1 1 

Take E = . 2 and 11J = 
j=O (j + 1) 

p SU 
ge 

gu> =gv>(g) 
(j+I) =g(j+l)(g) 

By Hoeff ding's inequality (Le1mna 2.3.1 ), for 

• 

69 

( 4.13) 

(4.14) 

l 
+ 2 TJ. 
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~2exp 

• 

2 

2(2/+ 1o 

Chapter4 

for some constant C 1 and with p11</3<2p -2. Thus, on the set with 
11Glln~2IIGII, 

I 1/2~ sup _ n --..t,g(J + I) 

~ N~ (2-u + l)pl2o, Hn, §)2 exp(-C I r,2'2Jf3128-f31P) 

~exp(4Mo-"2iP"12 IIGll,,)2 exp(-C 11122iP120-P1P)~2 exp(-C 31J22iP""12o-"), 

for some C 2 , C 3 and all 6>0 sufficiently small. Insert this in (4.14) to see that 
for n sufficiently large 

r -I 

I 1 12 _ '-- o I 1 
sup n -<t,g(J + J) g(J) ,,- n > 2 11 

gv, =gv)(g) j =O 
g(j+I) =glj+l)(g) 

ge@ 

p 

r - I . l 
~ 2 exp(-C 31J2'}JP,,128-") + 2 11<11, 

j=O 

for o sufficiently small. 
Representation (4.12) now shows that 

I 

But 

In 112 -<£,g -g(r)(g)>- ~ ~ n 112 llelln Ilg -g<r) (g)lln 

+ n 112-< jej 1 !t:I >2''20-''' 'G>-~

Since 2rp ~ n and Ilg -g<r>(g )lln ~2-'P12 o, 

(4.15) 

(4.16) 

( 4.17) 

for o small. Thus for the second term on the right hand side of (4.16) we have 
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( 4.18) 

~(4/11)22r(l-p)a2 - 21P1E £!2p IIGll2 <r,, 

for 5 small enough. Combination of ( 4.16), ( 4.17) and ( 4.18) gives 

and· it follows from ( 4.15) that p(I) <271. 
It remains to show that 1?<2> ~11, where 

p(2> == P( S}lp n 112 -<t:,g(o) -g(O) >~I >11). 
llg(O) - g(O) Jin <3~ 

Again by Hoeffding's inequality , we have that on the set IIGlln =:;;2IIGII, 

I?( S}lp n 112 <t:,g(o)-g(o)>~ >11 (x1,t:1), • · • ,(Xn,tn)) 
llg(O) - g(O) 11n < 38 

2 

188 - P . 

with C4 some constant and with 8 sufficiently small. □ 

4.3. MEASURABILITY II 
We have specified vn( ·) as an element of some space X of functions on% The 
problem is that the supremum metric generally makes X into a nonseparable 
space. As a consequence , vn( ·) is not Borel measurable. Now, denote by GJI 
the a-algebra on ~ that makes all finite-dimensional projections measurable 
and that contains all closed balls with centres y E'X- that are unifo y continu
ous. E.g. in D[O, 1 ], the space of functions on [O, I] that are right-continuous 
and have left hand limits, the a-algebra generated by closed balls coincides 
with the smallest a -algebra that makes all coordinate projections measurable. 
Denote by (0,S,P) the underlying probability space. If :JC is permissible and 
separable for II· II , then v( ·) is &IGJI - measurable ( POLLARD (1984)). Then by 
definition the random process Pn converges in law to some limiting process 
P{·) if 

P(g(Pn)) ➔ P(g(v)) 

for all real continuous measurable functions g on ~ . 
If the li 1niting process ,,( ·) concentrates on a separable set, then some ' 

important theorems for the Euclidean case (the Continuous mapping theorem 
and the Almost sure representation theorem) go through for the situation with 
more general ~ . A separable set in X is for instance the set of bounded con
tinuous functions. Now, the )irniting distribution of i,n( · ), if it exists, must be 
some Gaussian process on X. If Xis G,BUC, then the limiting distribution of 
Pn( ·) concentrates on a separable set. 
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DEFINITION. A pe11nissible class Xis a Donsker class if 

(ii) Pn( • ), ➔Gp(·). 

In Theorem 4.2.2 we have presented sufficient conditions for :JC to be a func
tional Donsker class. POLLARD (1982) assumed stochastic separability of the 
process v12 ( ·) (see Section 2.4) and only proved the Donsker property (not the 
functional Donsker property). Using the results of POLLARD (1984) and DUD

LEY and PHILIPP ( 1983), one sees that stochastic separability of vn( ·) can be 
replaced by per1nissibility of X , and that the word functional can be added. 
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As mptotic Theor in Two-Phase Re ression: 

Identified ..... ase 

5.1. INTRODUCTION 

In this chapter, we study the model 

y = g(x)+£ (5.1) 

with 

g = ....., g(i) 1 A (i> 

i = 1,2 

where _(i) is in the class of linear functions, i.e. g<i>(x)=ge;>(x)=a<i)+x 1>, 
l)(i) = ( 

write 8== =A <1>. The set A is an u 

ass11rned to be an element of a class @. of subsets of Rd. As in Section 3.4, we 
sometirnes write $ 1) =&. and ~ 2> ={Ac: A E~}-

We are interested in conditions for asymptotic normality of the least squares 
esti111ator of 0, based on n copies of (x,y). First, the continuous model is 
investigated. In this model, 

~ = {A(y)={x: xy~l}: yeRd} 

and the class of regression functions is 

= {ge,c(x )=min(aCl) + x I), a<2) + x 2)): (J(i) _ 
Ol.(i) d + 1 · 

1) E R , 1 == 1, 2}. ( 5 .2) 

Thus, in this model the least squares estimator of A (y) is a function of the esti
mator of fJ. Also, a discontinuous model is considered, where 
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(5.3) 

and where cf is e.g. {A(y) ..... {x: xy~ l }: yeRd}, but also more general classes 
are allowed. Note that in this model, the sets A are actually u own parame
ters. We also derive the asymptotic distribution of the estimator of A. 

Let 

go . g1~1 IA:i 
i = 1,2 

be the true underlying regression function. oughout, the identifiability con
dition 110b1>-~2>11=1=0 is imposed. Moreover, for model (5.3) it is assumed that 
g0 is discontinuous in some sense. Chapter 6 treats the situation where d = 1, 
llefJ1> ---9b2)11 =O and also the case where d = 1 and g0 continuous, but the con
tinuity is not taken into account in the estimation procedure. 

5.2. THE CONTINUOUS MODEL 

The regression function is assumed to be of the fo1n1 

go.c(X) = min(<f 1) + x~1), a(2) + x/f-2>), fJ= 

Define 

A e = A~1> = {x: a<1> + x l) ~a(2> + xp(2)} 

If.I) 

ff.2) 
di) 

' U' = 

A 

Theorem 5.2.1 below asserts that the asymptotic distribution of 6n does not 
differ f~om the asymptotic distribution of the least squares estimator for the 
case Ak > known but without continuity restriction. In the latter situation the of 
regression functions are of the for1n 

(Ji)+ x i))l.4~)(x) 
i = l,2 

(5.4) 

=1,2 u 

neces · · y continuous. The conditions of Theorem 5.2.1 are those of Lemma 
3.4.4 plus the assumption that an arbitrary higher order moment of tj2 exists. 

1HEOREM 5.2.1. Suppose that the conditions of Lemma 3.4.4 are met: 

(i) lim su H( { x: O<d(x, C)~"l}) ·· 0 (5.5) 
,r!O Ce 0 

where e is the class of hyperplanes in Rd and d ( · , · ) is the Hausdorff distance, 

(ii) there exist 
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{ x~i): t = 1, · · · ,2(d + 1)-1} CA i) n T, 

75 

(5.6) 

where T is the support of H, such that no d + 1 x i) lie on a ( d - I )-dimensional 
hyperplane, i = I, 2, 

(iii) H({x: g11o1>(x)-gffo21 })=O (5.7) 

and 

(iv)· 118 I) -8 2) 11*0. 

independent, with limiting distribution 
d (J

A(2) 
an n 

-1,2. 

' 

(5.8) 

are asymptotically 

(5.9) 

PROOF. The functions go,c(x)=min(goc1>(x), g82>(x)) are Lipschitz continuous 
in IJ for every x, i.e. at 80 

go,c(x)-go0 ,c(x) ~ J(x)IIO-Ooll, 

where J(x)== 1 + z 1 I+ · · · + zd, with z 1, • · • ,zd the coordinates of x EIRd .. 
Consider the functions 

}o(x) == 

g 8,c(X )-go0 ,c(X) 

118-0o II 
1 

if 118-80 11*0 

otherwise. 

These functions fo1m a VC-graph class i==U8 : 8EJR2(d+I)} 

J eL2(Rd, H). Thus (Theorem 2.2.4) 

➔ 0 almost surely. 

But 
-

with envelope 

(5.10) 

=------~ ------------, 
119n -Oo 11 2 

II};" lln ~ KI 

for some constant K 1 >0. 
Write 

, this i rnplies that 

(5.11) 

O~lty-g,,11~-llt:II~ == -2-<E, &i-go>-n+ll&z-goll~ (5.12) 
~ A 

= -2116n -Doll-<£, j'iJ,, >-n + 116n -80112 11}0,, 11~-
Because i is a VC-graph class 
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D2(6,i) w•= su N 2(~IIJll1 , Hs, i>~exp(M8-') 
.. 

for all ,>O and some M (see Theorem 2.2.6). Take v<2-2/p and conclude 
from Theorem 4.2.3 (take @=j and go='O in this theorem) that 
{ q,(x): 9eR2<d + 1>} is a (functional) Donsker class, which implies 

.-',r 1•R "--- = it'-. (n-½). --... 't:.' '• .,,,,,-n "-"'P (5.13) 

Insert (5.13) in (5.12) to obtain that 
A ~ 

-21l6n -80 IIE'1> (n -½) + 118n -Bo 11 2 IIJ e" II~ ~ 0, 

or 
"' 116n-8ollll}elfll~ = 6-,(n- 112

). 

Hence by (5.11) 
A 

118n -Do II = f1p(n -;~ ). 

-1,2. By (5.7), 
- p 

we have H(A,,M 0} ) 0. Thus, again because of the VC-graph property of all 
classes of functions involved 

ll(gi",c -go)I.4.:1 II~ 
-

-(Ji))+ 116n -Bo 11 2 IIJo" l.4.~1 \A~, II~ 

= 1,2. 

s· · arly, since the Donsker property implies asymptotic equicontinuity 

-<t,(gi
11
,c -go)l,i~'> >-n 

I 

Thus, if we write III!½(A i) )a 11 2 =a 7 :E(A i) )a, a ERd + 1, and 

n x.eA~' 
f.k 1,xk) = NU) ERd + 1, i == 1,2, 

'I - I 2 2 ,[Y -g ,.,c In - llt:11 n 

n n 
i = 1.2 n 

(5.14) 
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- A 

In particular (5.14) holds for On ==On, so that 

o~ llY-&z II~ -11£11~ 

i = 1,2 

n 

llv -gii,,,c lln - llell~ 
i==l2 n 

' 

Since llY -g,, lln ~ llY -go,,,c lln combination of (5. 15) and (5.16) yields 

; :::: 1,2 

or 

n 

i)) == ~-½(A i))N~> +op(n-½), i ==1,2. 
e 

77 

(5.15) 

(5.16) 

Because 
□ 

n N~> > ~ 0, llfll2~(A i) )), i == 1,2, this proves the required result. 

Condition (5.7) ensures that 8 >80 implies H(A 8AA 0 ) >0. If it is not fulfilled, 
then a I~ e fraction of observations is concentrated at {x: gto1>(x)==gUo2>(x)}, 
and the o: · no longer be asymptoti ..,.I' y independent. · s situation can 
be compared with the case A O known, where because of the continuity restric
tion, the least squares estimators of £11) and lf2) are also not independent. 

The object of study in FEDER (1975) is a continuous model with one
dj111ensional change-point, i.e. d = 1 and 

y == gfJ1>(x)l(-oo~y](x)+g11-2i(x)l[y,oo)(x)+f, 

where the g ffi> are linear in (J(i), i == I, 2, and satisfy g d'' ( y) = g 112> ( y). Feder 
obtains asymptotic norn1ality of the least squares estimators, under 
identifiability conditions. His method of proof makes extensive use of the spe
cial structure of the class te= { (- oo, y]: y E IR} of subsets of R. Extension of 
Peder's method to two-phase regression models with sets in higher-dimensional 
Euclidean space as u own para1neters appears to be cumbersome. 

5.3. 'l'HE DISCONTINUOUS MODEL 

In this section, we deal with two-phase regression functions of the form 
g11-1>(x) if x EA 

(5.17) 

with g0;>(x)=a(i) +x ' , ' ==( i)) and with A Elt The class &. may be the 
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class {A(y)= {x: ~:(Y~ l }: yeRd}, but we shall not require this because it turns 
out that also other classes can be handled Vvith,1ut t0t1 much increa.~ of c-0m-
plexi ty. "' ,.. 

We assume again that the conditions for consistency of 8,, and A11 are 
fulfilled't i.e. ti is a permissible class satisfying the entropy condition 

p• 

n . 

and n1oreover 

lim s~ ~ H({.,"(: O<d(x,C)~11}) = 0 
1!0 ( f.~ • 

and t.here exist 

{x~i): t = 1, · · · ,2(d + 1)-1} CA~) n T, i = 1.,2, 

with nod+ l x}') on a (d- l)-dimensional hyperplane, 

llllfl1>~-*9b2>11 =f:= 0, H({x:. ;>(x) · g
0
>(x)}) = 0. 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

Here is a description of discontinuity at the true parameter value. 

DISCONTINUITY ASSUMPTION. There exists an 11>0 such that 

inf E · !)(x)-g 
0
>(x)fxEAaAo)>O. 

A Et!: 0<H(~4AA@)<11 
(5.22) 

MPLE 5.1. Take d --· 1 and ~== { ( .... oo., y]: y ER}. If 
af,1> +y0J3b1):;!::ab2> + y0JJ~>, and if H puts positive mass on some interval 
around Yo, then the discontinuity assumption is satisfied. 

In the discontinuous odel, 'With discontinuity assumption. the least squares A()) A ) ' 
estimators Bn · and 8,, · are asymptotically independent and asymptotically 
equivalent to the least squares estimators of the (1i> ,i = 1,2 in the case A 0 
knovm. This is asserted in Theorem 5.3.2, and the result is called adaptation : 
the fact _that A O is unknown has asymptotically no influence on the estimators 
of the ff 1> ,i .... 1,2. 

THEOREM 5.3.2. Suppose that the conditions (5.19), .. , (5.21) and the discon
tinuity assumption are fulfilled, and that ( 5.18) can be strengthened to 

D2(0, ti) = su N 2(8, Rs,@) ~ exp{M8-Jf) (5.23) 

for some constants Mand 0<v<2. Assume that xlAa.4
0
(x) is bounded uniformly 

in A E ~ A in a neighbourhood of A 0, i.e. there exists a constant KO< co such 
that for some 110 >0 

H({x: su lxlA~ (x)f >Ko}) ....... 0. (5.24) 
A Eei: H(Awr20)<11o O 

A ( l) A (2) 
Finally, assume that EIE:J2p<oo for some p>21(2-v). Tlzen 8

11 
and 8n are 
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asymptotically independent with limiting distribution 

,.. 

i -1,2. 

79 

(5.25) 

PROOF. We shall first show that H(AnAAo)==0p(n -½). Of course, for A ==Ao 
fixed the class 

· { t(g 11-i> -g fit>) 1 Ag> : (Ii) in a neighbourhood of fJ i) } 

A(") 
is a Donsker class, i == 1,2. Since e: >B i) this implies that 

-<t,(gi,~i) -go<~> )IA~> >-n = op(n - 1/2), i == 1,2. 

By (5.23) and (5.24) and using the assumption that IE£ 2p < oo, we see that also 
the class 

{t:(g(l-1> -g(fi(>)lAa.4
0

: (J(i) in a neighbourhood of 8 ·>, A El1:., H(AdA0)<110} 
A 

is a Donsker class, i, je{l,2}. Hence, since H(AnaA.o) >0, 

as well as 

--< £, (g 9~• -g 0';!1 ) 1 A~>\ A~> >-n 

But then also 

+ 
i = 1,2 

+ 
i=;t:je{l,2} 

· s shows that 

= ( -½) . == 1 2 opn , l ,, 

= ( -1/2) op n . 

(5.26) 

Assumptions (5.23) and (5.24) also i1nply that the class 

{(gfi► -g~>)2 1AM0 : 8 in a neighbourhood of 80 , A Elf,H(AAA0)<110}, i,jE{l,2} 

is Donsker, so from (5.26) 

11 (g,, -go) I A,,aA 
O 

11 2 = 11 (g,, -go) I ~LiA 
O 

11 ~ + 0p ( n - ½) == 0p ( n - ½ ). ( 5 .27) 

We shall now utilize the discontinuity assumption. In view of (5.24), for all 
n sufficiently large, 

Thus, for arbitrary 111 >0 
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A 

ll(L ·-go )1 Aw~, 112 :;.., ll(g,*i4 -g,:l ') li.,b.A® 11 2 -111 H(AnaA o ), 

for all n sufficiently large. Combine this with (5.22) to obtain that for some 
con.stant K 1 >0 

A 

II(~ ~···go)li\AAijll2 ~ KiH(A,,Mo) 

for all 11 sufficiently large. In view of (5.27), we thus t)btain 
A 

H(AnM o) = €ip(n - 112
). 

expression for t.he least squares estimator 

1 

By (5.24) and (5.26) 

l 

n A'I' "it E n 

A 

(5.28) 

But ,.the Donsker-property for {AaA 0 : A E~} and H(A11 AA 0)=(9p(n-½) imply 
H,,(A11 M 0)=f)p(n - 11 ). Therefore, we can write (5.28) as 

" 
(On··-~)) = 

n (I) 

"* EA,i 

n (i) 

Xtt EA., 

because { E:(l,x)T1A6Ao(x): A e@~ H(AM 0 )<710 } is also a Donsker class. □ 

.... 
We shall derive an expression for the Jimiting distribution of An. This limiting 

LEMMA 5.3.3. Under the conditions of Theorem 5.3.2 
" AndAo - argsu 8-n(A)+op(l), 

AE' 

with 
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Ek(l,xk)/i) -
n x1c eA: nA~> 

Thus, using the Donsker-property 

n(llt:lA~>nA~> II~ - ll(y -g(80 +n-½-r)~A,.)IA~>nA~> II~) 

n x1ceA~) 

-1,2. 

i = 1,2, 

uniformly in IITII ~L and {An} C (P, H (AnaA o )~T/n > 0. Furthermore 

n(lltlA~)\A~) II~ -ll(y-g(6o+n-½-r),An)lA~)\A~) II~) 

= 2 t:k(g (U~) +,Ji) 1 Yn)(xk )-g ec~> (xk)) 
X1cEA~ \A~) 

(gu,,, (xk)-gog> (xk))2 + op(l), i == 1,2, 
x.eA: \A~> 

0 

81 

i:f:JE{l,2}, unifo yin IITll~L, {An} C@., H(AndA)~1Jn,-- ➔"'O. 
We have seen that with arbitr large probability, n 116n -00 11 ~L for L 

and n sufficiently large. Moreover , H(AnaAo) ➔O implies ~that there exists a 
sequence 11nio such that with arbitrary large probability H(AntiAo)~11n for all 
n sufficiently large.. Thus with arbitrary large probability 

n(llt:11~ -lty-&ill~)== SU n(llt:11~ -lty-g(0
0
+n- 11 ,-),A II~) 

11-rll ~L 
A eci 

11-rll~L 1 2 n A, 
A E tt: H(A AA o)~TJn i = ~ 0 

+s 
A □ 

LE 5.2. Take d - 1, ~= { (- oo, y]: y ER} and g g:,i - a<i). Then for y>y0 

Rn((- oo, y]) == 2 E:k(a I) -a 2))-(a l) a 2))2 nHn(Yo, y]. 
Yo<~ :s;;;;y 

Apply the law of the iterated loga,ithm for partial sums to see that condition
ally on x1,x2, · ...... · · =x1,x2 · · · 

'f.k(a I) -a 2>) == '9((nHn(Yo,r])½Ioglog(nHn(Yo, y])½), 



82 

uniformly in nHn((y0 , y]) ➔O. Hence 

supR,,((- oo, y]) = 6p(l), 
y 

and 

A 

Hn((- oo, Yn]~(- CO, Yo]) == 
• 

n 
• 

This result is comparable with HINKLEY (1970), who assumes nor1nality of the 
f.k , k = 1, 2, .. · · . 

In Exarnple 5.2, we showed that supAeetRn(A)=0p(l), and this in tum 
iinplies that n(llt:11~ -lty-g,, 11~)=(9p(l) and lli..r-go lln =(9p(n -l/2 ). Here is an 
exat11ple where SUPaettRn(A) does not remain bounded in probability. 

LE 5.3. Take d=2, Ct={A(y)=={x: xy~l}, yER 2 } and gr1-1> =a(i), 

i == 1,2.Let A I) = { x = (z 1,z 2): (z 1 + 2)2 + z~ ~ 1} and let H be the unifo1m dis
tribution on A&1> UA 2>, where A 2) ={x=(z 1,z2 ): (z 1 -2)2 +z~ ~I}. Observe 
that if a 1>¥:a 2>, the discontinuity assumption is fulfilled. Also all further con
ditions of Theorem 5.3.2 hold, provided IE t: 2p < oo for some p > 1. 

Now, consider the convex hull of the data { x1, · • • ,Xn} in A l) and A 2) 

respectively. To every point Xy
11 

on the convex hull, which lies between x~~~ 
and x ~h, there corresponds an A(yn)=A I) \ {Xy

11 
}. 

,.,,,,,-- X 1) 
,n X 2) 

,n 

• • 
• Xy,. • 

x<2) 
x(l) 

a~n 
a,n 

Obviously 

su Rn(A);>-sup R,,(A(yn)) -
AE 1n (5.30) 

As n tends to infinity, the number of points Xy,. also tends to infinity, so the 
ma~1nt1m in (?.30) . · be ~aken over an increasing number of independent 
copies of£. This max1m11m · not remain bounded. 
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Rates of _ onver ence 

• 

6.1. INTRODUCTION 

·s chapter is inspired by LECAM (1973) and BIRGE (1983). We shall first 
sketch some of their results. 

Let§ be an index set and {Pg: ge§} a collection of probability measures on 
a Euclidean space. One can equip § with the Hellinger-metric, defined as 

h (g,g) 

Let g~L be the maxjrnum likelihood estirnator of g based on n independent 
observations from P Ko. LECAM ( 1973) shows that if § satisfies certain dimen
sionality restrictions 

h(g~L,g0 ) = 0p(n-½). 

These dimensionality restrictions are entropy conditions on § endowed with 
the Hellinger-metric. 

BIRGE (1983) investigates the mini 1nax risk for estimation. For example, let 
Pg be the probability measure on R with density g with respect to Lebesgue 
measure and let § be a class of densities on R. Define 
d(g, g) g(x)-g(x)ldx. The minimax risk is 

Rn(d) = inf su Eg
0 
(d (Tn, go)), 

T,, g0 e 

where Tn is any estimator of g0 • Denote by logNd(o, §) the 8-entropy of§ for 
d. Birge shows that 

logNa(8, §) ~ M5_,, for all 8>0 

implies 
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• 

l -
Rn(d) :s;;; M'n 2+P • 

In regression theory, least squares estiinators coincide with ~a~iinum likeli
h esti rnators if the disturbances are i.i.d. and normally distnbuted. Thus, 
in that case a111's theory can be applied to obtain conditions under which 
g,, converges with rate 0p(n-½) in the Hellinger-metric. We shall prove that if 
the disturbances are not necessarily normally distributed, but satisfy some 
moment conditions, and if certain di1nensionality restrictions on § endowed 
with II · lln-notm are met, then &i converges with rate (9p(n -½) in 11 · lln-norm. 
This result is established in Theorem 6.2.2 while Corollary 6.2.6 contains the 
result as a s · al case of a partly more general situation, where the para rneter 
space may be · ·te-dimensional, but stronger moment conditions are 
i1nposed .. 

The relation with Birge's work becomes clear from Corollary 6.2.7. Here, it 
is shown that 

logN 2(o, Rn,§) ~ M8-, for all o>O, n ~ 1 

and 0<v<2, implies 
1 -

Ilg,, -go lln = 8p(n i+P ). 

Because the :minin:1ax theorem of Birge in the situation of density estirnation 
has its obvious co11nterpart in regression analysis, this means that the least 
squares esti111ator is n1ini1nax in the sense of rates of convergence in II · lln
norm. 

Theorem 6.2.5 gives the most general result, albeit under fairly strong 
moment conditions on the disturbances. We allow for classes of regression 
functions §n depending on n and the true underlying go,n E§n may vary with n 
too. In some situations, the rate of convergence can actually depend on go,n, 
which generally means that a rate faster than 1ninimax is obtained. We denote 
by 

(6.1) 

a ball with radius p around go,n, intersected with ~n- The covering nun1ber of 
· neighbourh of g otn is 

(6.2) 

In the following section, we prove that the behaviour of Nn ( o, p, §n, g O n) as 
function_of 8, p and n determines the speed of esti1nation. We call a filodel 
finite-dim.ensional if Nn(8, p, §n, go,n) remains in some sense sinal] (see (6.3)). 
In Subsection 6 .. 2.1 we obtain rates under moment conditions depending on 
the di111ension. Subsection 6.2.2 deals with infinite-dirnensional models. Here, 
~e _in1pose an. ~tropy-integrability condition on Nn(o, p, §n, go,n), which is 
s1:c1111ar to condition ( 4 .. 8) of Theorem 4.2.4 ( see ( 6 .. 21 )). 

Now, in general Nn(o, p, ~n, go,n) is random. However, to sirnp · the expo-
sition, we ass11111e throughout Section 6.2 that Hn k =8 k = I • • • n n ~ 1 

, X,r.,.t, ' ' ' .,_ • 
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If the Xn,k are actually stochastic, this is equivalent to working conditionally on 
(xn, 1, · · • ,xn,n) =(xn, 1, · · · ,Xn,n). It is not difficult to adjust the results of the 
next section for the case of stochastic xn,k: one si rnply i 1nposes the condition 
that for each n §n is per111issible (in order that Fubini's theorem can be 
applied) and assumes that the appropriate entropy-conditions hold in I?* -
probability. We elaborate on this in Section 6.3, Corollary 6.3.1, in the situa
tion of i.i.d. Xn,k. Theorem 6.3.2 presents sufficient conditions such that the 
rates of convergence in II · lln· and II· II-norm are the same. 

In Section 6.4 the results are applied to two-phase regression and compared 
with those of Chapter 5. 

6.2. 'J'HE RATE OF CONVERGENCE OF 'I'HE LEAST SQUARES ESTIMATOR 

Let 

Yn,k = g(xn,k)+f.n,k, k = 1, · · · ,n, gE§n, n == 1,2, · · · , 

where Xn, 1, · · · ,Xn,n are vectors in Rd and En, I, · · · ,f.n,n are independent ran
dom va1iables with expectation zero and finite va.,iance. The finite-dimensional 
case and the (possibly) infinite-di 1nensional case are treated separately, because 
in the latter we need more stringent moment conditions on the En,k· 

6.2.1. The finite-dimensional case 
Call the sequence {§n, 11 · lln} of finite metric dimension r at {go,n} if there exist 
constants no,Jo,80 such that 

• 

SU sup SU . ., , A < oo. (6.3) 
n~ 0 j~Jo 0<8 8o 2lr 

For instance, suppose §n can be indexed by an Rr -valued parameter: 

Then {f1n, 11 • lln} is of finite metric di1nension r at {go,n} if for some 
O<K l,n ~K2,n < 00 with 

-- < 00 (6.5) 
n)OO Kin , 

the following holds: 

llgo-geO,nlln ?-!: K1,nllll-80,nll for all 8EE>n, (6.6) 

where ge0_,. =go,n, and 
- ~ 

llgs-galln ~ K2,nll8-8II for all 8, 8E8n. (6.7) 

Observe that if g 6(x) is differentiable \Vi.th respect to (J for all x, this can be 
exploited to compute Ki,n and K 2,n. We also remark that it is of course 
sufficient to consider neighbourhoods of 80,n once consistency is already esta
blished. We shall see examples of this in Section 6.4. 

To establish a rate of convergence for g,,, we need a probability inequality 
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for the random variables 

LEMMA 6.2.1. Ifforsomep~I 

• sup max E tnk 2p = y<oo, 
n l<k"-n · ' 

then for some C depending only on p and y 

for all a >0, all g, g and all n ~ I. 

• 

' 

PROOF. Wa1·1·rLE (1%0) shows that for some Cp depending only on p 

(6.8) 

n p 

E --<t:, g - 2 I 2.p 11 (g(xn,k)-g(xn,k)) (IE €.n,k ) p • 
k=l 

Application of Chebyshev's inequality now gives the required result. □ 

'l'HEOREM 6.2.2. If {§n, 11 · lln} is of finite metric dimension r at {go,n} and (6.8) 
holds for some p>r, then there exist constants A', L' and n' such that for all 
L~L' and n~n' 

(6.9) 

PROOF. Define 8n =n-1h. Remember that go,n e§n implies 

2 A A 2 --<t, g,, -goyn >-n - Ilg,, -go,n lln ;?-?: o. 
Therefore, replacing L by 2L in (6.9), the theorem is proved if we show that for 
all L sufficiently large and n sufficiently large 

p 

Ilg - Ko." II"> 2 8" 

In particular, we shall take L;>.j0 , where Jo is defined in (6.3). 
Clearly, 

(6.10) 

Ko,n >-n - Ilg -go,n II~ ~o 

' 

j 

. 
• 
' 

• 
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Let {g<0>} be a 111ini111al 011 -cover.in set of Bn('2i + 1 On, §n, go,n ), i.e. for each 
gEBn(2J+ 18n, §11 ,go,n) there exists a g O)(g)E{g<0>J such that 

Ilg -g<O)(g)lln < o,,. 
Since { §n, 11 • 11 n } is of finite metric di 111ension r at {g o,n } , 

card ( {g<0>}) ~ A 2V + l)r 

for all n and j sufficiently large. We get 

pj == p .~~ 2-<£, g-go,n >-n ~2210~ 
EBn('J! 11, §n, go,n} 

Since llg<0> -g0,n II,, ~2i +28,,, application of Le111ma 6.2.1 yields 

p(l) = IP sun -<E g<0) -g >- I ~22u- 1>02 
J {g~ , O,n n . n 

for all n sufficiently large. · s can tidied up to 

(6.11) 

P}1) ~A C2' + 8P 2-J (2p - r). ( 6.12) 

Next, we shall use the chaining method to show that the P}2) are also small 
(see e.g. POL (1984), Ch. VII). Let fork el\l, {g(k)} be a minirrnal 2-kon-

. ·+1 '..i+l cover1n set of Bn(21 on, §n,go,n)- Then for geBn(2 8n, §n,go,n), 
llg-g< (g)lln<2-k8,,, kEN 

00 

g -g(O)(g) = 
11111 

g(k)(g)-g(k-l){g) 
k=1 

pointwise on Xn, I, ... ,Xn,n. Define 

s - 1-(rlp) (6.13) 
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The number of pairs {g(k)(g), g<k - 1>(g)} is at most 
(6.14) 

-.::e,. n n, n, n, O,n 

for all n sufficiently large. 
Hence, application of Lemma 6.2.1 gives 

-(k -2)0 2p 
(6.15) 

k = 1 n '11k n 

00 
-A 2C22r +sp E2p2-2i<2p-r) k-2p_ 

k=l 

Retu1·ning to (6.10), we see that 

00 
~ (A C2' +sp + A 2 c22r +sp E2p _ k-2p)2-j(2p -r) ~A 12-<2p -r) 

j;;.L k = l 
• 

for Land n sufficiently large. Thus the proof is complete. □ 

In (6.3), where we defined finite-dimensionality, we assumed that the constant 
A does not depend on n. A weak.er version of (6.3) would be 

(6.16) 

where {An} is some possibly unbounded sequence. One can easily adjust the 
proof of Theorem 6.2 .. 2 to show that under (6.16) the rate becomes 
6p(n-½ A!1P) (replace B,, =n-½ by Bn =n -½ A!1P). 

Now, let us reconsider the case 

(6.17) 

with {@n, Ii· II,,} satis · g (6.6) and (6.7), but not necessarily (6.5). Obviously, 
then (6.16) is met with An=(K2,nlK1,nY, and the rate is thus €Jp(n-½A!1P). 
However, careful inspection of the metric structure of Euclidean space reveals 

p> 2 rm (6.8) and that the rate 1s (9p(n ¼A!'(2p>). This 1s shown below. 
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LEMMA 6.2 .. 3. Suppose that §n is of the form (6.17) and that for some 
O<K l,n ~K 2,n < 00 

llga-gso.n lln > K1~n 118-0o,n II for all 0E0n, 
~ -

llgo-giilln ~ K2,n 118-811 for all fJ,6E0n. 

- o(_nP1r), then there exist 

constants A ', L' and n' such that for all L ~ L' and all n ~ n' 

l,n 
A A 

(On being defined by &i =ge"). 

PROOF. Take 

i:' = -½A1l2p A Un n n , n 

and consider the set 

Since for 8 EBn(21 + 18n, §n, g o,n) 

l,n 

we have 

L)~A'L -<2p-r} 

Bn(2J+ 1sn,gn,Ko,n) C {ge: 8ebn,J+1}. 

The r-dimensional cube bn,J + 1 can be covered by 
2i+k+I2 rK r 
_____ ...... 2,_n + I 

K1 n , 

small cubes with side of length 2-k(onl( r K 2,n)). We have 
r 

K1~n 

(6.18) 

for some constant Cr de __ ending only on r. Write 
N~(2-kon, 2J+lon, §n,Ko,n)=CrAn2<J+k l}r_ Let {c(k)} be the collection of 
comers with the smallest co-ordinates of the cubes covering bn,J + 1 . Then 
card({c(k)})~N~(2-kon, 21+ 1sn, §n,Ko,n)- For 8==(81, ... ,Or)Ebn,j+l, write 

ck)(go) == Kc•k> if max 8s-cik)j < 2-k(8nl( r K2,n)). 
l~s~r 

Then 
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So {gc(k)} forms a 2-kOn-covering set of Bn(2J+ 1on, gn, go,n) with 

card( {gc<kl } ) ~ N~ (2-k On, 'lJ + 1 On, §n, g O,n ). 

Chapter 6 

The coveri.ng sets {gc<k)} have as s ecial feature that the number of pairs 
{gc<k>(ge), gc<•- 1>(go)}, with c<k)=t=-c<k- , is at most 

· (2r - 1 )N~ (2 - k 8n, 21 + 1 S,, , §n, g O,n ). 
• 

Now, in the proof Theorem 6.2.2 one can make the following adjustments. 
Take 011 as in (6 .. 18), replace g<k)} by {gc<k> }, k =O, 1,2, · · · and 
Nn(2-k8,,, 1J + 1 On, §11 , go,n) by N~(2- On, 2/ + 1 On, §n, go,n), k = 1,2, · · · , j EI\I. 

Define in (6.13), s = 1-(rl2p) and replace the bound in (6.14) by 
(2r - l)N~(2-kon, 11 + 1on, §n, go,n)- The rate "'ep(On) for ~ now follows easily 
and this rate implies the 0p(K~Jo11 )-rate for 8n. □ 

LE 6 .. 1. In Example 3.2 of Chapter 3, we studied the linear model 

g9(x) = x8, fJe0n, 

with-811 =0, 80 n =90 • The smallest and. largest eigenvalue of xr Xn, 

Lemrna 3.3 .. 5 that under regula1·ity conditions on the second moments of the 
f.n,k 

A p 
119n -6011 > o 

provided that for some c >0 
A ½(I +c) 

2,n 

A1n , 
==(9(1) 

and provided 0 is compact. 
If ( 6 .. 8) holds for some p > 1, then the regularity conditions on the second 

moments of the f.n,k are met. Now, obviously (6.6) and (6.7) are fulfilled, with 

6.2.3 that 
A p 

116n -80 II ~➔ o 
provided 

l 'J_n - r 
-(1- !L ···) A 2 2p +r 

A1,n 

Compactness of 0 is not needed. 

' 
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6.2.2. The infinite-dimensional case 
The condition on the 1En,kl2 we need in finite-di1nensional models is the 
existence of an absolute moment of order larger than the diinension of param
eter space. In possibly infinite-di rnensional models, we assume existence of the 
moment generating function of lt:n,k I 2 • Of course, this assumption also estab
lishes an improvement of the bound in (6.9) (see Corollary 6.2.6). We start off 
by formulating a pendant of the Chebyshev-type inequality which we 
presented in Lemma 6.2.1. 

LEMMA 6.2.4. If for some /3>0 

sup max IE( exp(filt:n,k 2 )) ~ f < 00, 
n l~k~n 

(6.19) 

then there exists an a>O depending only on /3 and r such that 

ana 2 

llg-gll~ ' 
for all a >0., all g,g and all n ~ l. 

PROOF. For all h>O 

IP(l-<t,g-g>-nl;:;=::a) ~ exp(-hna)IE[exp(hn-<£,g-g>-n)] 
n 

~exp(-hna) IE[exp(h E:n,k g(xn,k)-g(xn,k)I)]. 
k =1 

KUELBS (1978) shows that under (6.19) for some A depending only on p and r 

IE[exp(h f.n,k g(xn,k)-g(xn,k) )] ~ exp[h2(g(xn,k)-g(xn,k))2 A2]. 

Thus 

IP( -<e,g-g->-n ;.>;a)~ exp(-hna)exp(h 2nllg-gll~A2). 

Take h =(2aa)Jllg-gll~, with a=(4A2)- 1• Then 

exp 

na 2 
----- ex 
2A2 11g-

ana2 
-----. D 

Ilg -gll~ 

a2 A2 n Ilg -gll~ 
4A2 Ilg -g II! 

In Theorem 6.2.5 below, the entropy conditions (6.20) and (6.21) are perhaps 
at first sight rather unappe · g. However, after proving the theorem we shall 
give several cla1·ifying exa,nples. 
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'IHEOREM 6.2.5. Let 8n➔O be some sequence with lim infn >oon½8n >0 and sup
pose that 

fun SU 
j , ➔ OO n;;. o 

=O (6.20) 

l 

fun sup 
j >OO n;;.n0 0 n 8 21 n 

(6.21) 

If moreover (6.19) holds for some {3>0, then &i converges with rate Sp(8n). In 
fact, there exist constants M',L' and n' such that for all L';?.:-L' and all n ~n' 

P(llg,, -go,n lln >8nL) ~ exp(-M' L 2n8~). 

PR.ooF. As in the proof of Theorem 6.2.2 we replace L by 2L and write 

P SU 2-<.f., g -go,n >-n - Ilg -go,n II~ ~o 
ge " 

Ilg - Ko.11 ll,. > 2L 8,. 

Le~, for each k E {O, 1,2, · · · }, {g<k)} be a minirnal 2-kBn-covering set of 
B,,(21 + 18,,, §n, g0,,,) and let g(k)(g) be defined by 

As before 

pj = p ·~'H 2-<£,g-go,n>-n~221o~ 
eBn('t ,,, §"' go,") 

~ p Stln -<f. g<O) -go >- ;>:22(;- 1)02 
{g~ , ,n n n 

eB,,('i 11 , ~"' go,11 ) 

Application of I~111IDa 6.2 .. 4 gives 

~ e ogNn(On,2J+l8n, §n, go,n)-a2- 622Jn8~)-
l ·+1 ~I · 

sufficiently large, so 
for all j and n 

P}1) ~ exp(-a2-722jn8~). 
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00 

1Jj,k - max 
' • 

Then in view of (6.21) 

CO 00 

n.k ~ ·11, .. =I 
k-1 k=l 

00 

k=l 

00 

~ exp -a2-124j22knS2'114 n ·11.k 
k=l 

oo -k ½ 2 

~ exp 
k=l 

00 

k =1 
11 (2£)2 . 

He11ce for L sufficiently large, n sufficiently large 

(Pyl) +Py2)) 
j-;;.L 

00 

-a2-722in~;)+ exp(-
k =I "(2E 

The entropy-integrability condition (6.21) makes the chai.ning method work .. 
POLLARD (1982) uses this method to establish the uniform central Ji.mit 
theorem that was reprodu here as Theorem 4 .. 2.2. We have adopted his 
technique in the proofs of Theorems 6.2 .. 2 and 6.2.5. We also mention 
Pollard's chaining le1nma (Po (1984) Ch. VII), which presents the 
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relation between entropy-integrability and asymptotic equicontinuity in a more 
general context. 

A first corollary of Theorem 6.2.5 concerns the finite-dimensional case. 

COROLLARY 6.2.6. Suppose that (6.16) holds, i.e. 

Nn(o, 2i 8, gn, go,n) 
SU sup SU . < 00 

• 

• 

for some r and some sequence {An}, lim inf An >0. Without loss of generality we 
assume Ah ;>-2 for all ~ so that IogAn >0.. Then for On =n -½(IogAn)½, (6.20) 
and (6.21) are fulfilled: 

and 

IogNn(Dn, 2i8n, §n, go,n) 

n½8n'21 
~c .. r 

• 

log2/ 
• 

21 

1 logNn(UOn, 'lion, §n, go,n) 1 1 ½ _ __,,;;;;_,. _______ du ~ C'r (log-) du, 
o n½.~n'P o u 

• 

for all n~no, j~jo, on~~, where Cr and C'r only depend on r.. Thus provided 
(6.19) holds for some /3>0, 

ll&z -go,n lln = ~p(n -½(logAn)1h.). 

In particular, if {§n, II· lln} is of finite metric dimension i.e. fun supAn< oo 

M'a 2 

for all n~n' and a>L'n'-1h. This is called a law of large deviations for &z. 

LE 6.1 CONTINUED. In the linear model, application of Corollary 6.2.6 
yields that if (6.19) holds for some /3>0, then 

A ,- A2n 
116n -8n II = <9p( 

1,n 

The remainder of this section deals with application of Theorem 6.2.5 to 
( y) infinite-di rnensional models. The first example we give, however, shares 
a common feature with finite-dimensional models. Consider the global entropy 
logN 2(6n, Hn, §n) of the space gn· Provided 11 · lln remains bounded on §n, we 
have that if { §n, 11 • lln} is of finite metric dimension r, then 

SU SU 6'N2(8,Hn, @n) ~A. 
n;;,: o 8E; o 

This is also true for §n in Exa1·nple 6.2. 

LE 6.2. Let ~n =§ be a VC-graph class with envelope G, and let { II · lln} 
be such that 
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limsupll G lln < oo. 
n, ~oo 

Then by Theorem 2.2.6 

SU SU 8rN2(f>, Hn, {ff) ~ A 
n ";I:. o o> 

• 
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(6.22) 

for some constants r and A, where A only depends on { II · lln} via the left-hand 
side_ of (6.22). It is straightforward to see that (6.20) -..;:and (6.21) hold with 

under (6.19), Ilg,, -go,n lln == (9p(n - ½(log n )½) for all sequences {go,n} C §. 

Corollary 6.2.7 below cJa, .. ifies the relation with Birge's results (BIRGE (1983)). 

COROLLARY 6.2.7. Suppose that for some constants P>O and M 

SU SU 8"logN2(8, Hn, §n) ~ M. 
n~ 0 0<8 8o 

l -
Take 8n ==n l+v • Then (6.20) holds, and if v<2, (6.21) holds too. It follows 
that under ( 6.19) 

1 -
Ilg,, -go,n lln == 0p (n 2+ P ) 

for P<2 and for all {go,n }, go,n Ef)n, n ~no. 

Here is an application of the previous corollary. 

E 6.3. Let 

== {g: K >R, g has m derivatives, (6.23) 

(m) X - (m) X 
S!}P ..,.__ _____ ........ ~L, lgl~C}, 

x,xeK llx -x Ila 
with a>O, K is a compact subset of Rd and where llx -xii is the Euclidean 
distance between x and x. KoLMOGOROV and 'l':IHOMIROV (1959) show that 

d 

SU 8 m +a logN 00 (6, Hn, §) ~ M. 
6> 

Thus if dl(m +a)<2 and (6.19) holds 
m+a -

llin-go,n lln == t9p(n 2(m +a)+d) 

for all {go,n} c§ Similarly, let 

§ == {g: K >R, g has m derivatives, 

g<m)(x) 2dx<L, gl~C} 

(6.24) 

• (6.25) 

where K is a compact subset of IR. Given the result (6.24) for § defined in 
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(6.23), it is easy to see that the g of (6.25) satisfies 

SU m1ogN2(0, Hn, §) ~ M 
8> 

Chapter 6 

so under (6.19) , ll&a-go,n lln =0p(n -m/(2m + l)) for all {go,n} C§. STONE (1982) 
proves that these rates are optimal. 

6.4. Let 

= {g: R )R, g increasing, g ~C}. (6.26) 

BIRGE ( 1980) shows that the L 1-entropy of @ is of order 0- 1 • It is not clear 
whether the L 2-entropy is also of this order. Le1:·ri1na 6.2.8 below presents a 
bound for the L2-cove1ing number that by application of Theorem 6.2.5 leads 
to the rate llg,.-go,nlln =6p(n -½(logn)½) for all {go,n} C§. 

LEMMA 6.2.8. For § defined in (6.26) 

logN 2(8, Q, §) ~ M8- 1 log(o- 1) for all 8>0, (6.27) 

where Q is any probability measure on R and where M only depends on C. 

PROOF. Without loss of generality we assume that O~g~l for all ge@. 
Define T=[l/o2]+1 and let -oo==ao<a 1 < · · · <ar- 1<ar=oo be such 
that Q(ai-I,ai]~82 for i =1, · · · ,T. Define for each ge§ 

and 

Then 

Hence 

gi(g) = gdQ I Q(at -1,ai] 

k;(g) -

T 

g;(g) 
8 

, i=l,···,T. (6.28) 

-g(a;-1)2 }+Q(ai-1,a;]62 , i-1, · · · ,T. 

g-8 k;(g)l<a,_,,a
1
12dQ ~ 62(g(an)2 -g(a0)2)+o2 ~282• (6.29) 

k=l 

We have that O~k 1(g)~ · · · ~kr(g)~[l/8] and k;(g)eZ, i = I, · · · , T. 
The nu1nber of ft1nctions of the forr11 

T 

ki l(a;-i,a;], O~k1 ~ · · · ~kr~[l/o], k; EZ, i = 1, - - · , T, (6.30) 
i =I 

is equal to 
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Thus 

(T + l)+[l/o]-1 
[l/8] 

[ 1 / o2] + [ l / o] + I 
[I/oJ 

[ I / o2 ] + [ 1 / o] + I 
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• (6.31) 

□ 

We end this section with some remarks. First, Theorem 6.2.5 presents a fairly 
general result, but since the calculation of entropies is often quite difficult, the 
merit of the theorem is pri1narily that it shows that the statistical problem can 
be replaced by a combinatorial one. 

It should secondly be noted that if the rate on is slower than n - lfi, then the 
probability inequality of Theorem 6.2.5 implies that for some constant L 0 

P(ll&r-go,n lln ~Loon) ➔ I. (6.32) 
1 --

Moreover, if the rate is slow enough - e.g. on ==n 2+ 11
, v>O- then by Borel-

Cantelli's theorem ll&z -go,n lln ~Loon al1nost surely, provided of course that 
the sequence of disturbances all live on the sa1ne probability space. 

Finally, due to the entropy integrability condition (6.21) Theorem 6.2.5 can-
not handle opti rnal rates slower than op (n - ¼ ). Such slow rates are the conse
quence of lar e entropies, mean1ng that §n has so little metric structure that 
the process n --<.E,g -g0 >-n might not be asymptotically equicontinuous (see 
also Chapter 4). 

6.3. STOCHASTIC DESIGN 
Let x1, x2 , • • - be independent random vectors with distribution H, and_let 
Nn(8, p, §n, go,n) be defined as in (6.2). The randomness of this covering 
number prohibits direct application of Theorem 6.2.5, but of course by condi
tioning one ca11 easily adjust this theorem to the case of stochastic design. 
Before doing this, we make some simplifying assumptions to facilitate the 
exposition. We assume that also t:1, t:2 , • • • are i.i.d. (of course with expecta
tion zero, finite variance and independent of the xk) and that §n ==§ and 
go,n =go( e§). · s b1·ings us back to the situation of Section 3.1. Finally, we 
restrict ourselves to (:)p(n - 11<2 +v>)-rates, O~v<2. Then the stochastic counter
part of Theorem 6.2.5 becomes: 

COROLLARY 6.3.1. Suppose § is a permissible class, satisfying 

8,,logNn(o, 2i 8, §n, go,n) 
• 

log2/ 
>M = 0, (6.30) 

1 

for some L>O, M>O and O~v<2. If 

Ee lt:1 2) < oo for some /J>O, (6.31) 

then 
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l --
il~ -go,n lln = (9p(n 2+, ). (6.32) 

It ap .· A.ls to be difficult to check (6.30). However, we have seen examples 
(e.g. Exa1nples 6.3 and 6.4) where covering numbers can be computed even 
when one has virtually no knowledge about the metric used (i.e. II· lln)
Nevertheless, in general one faces the problem of drawing conclusions about 
the random L 2(Rd, H,,)-covering numbers from the theoretical L 2(Rd, H)
covering numbers. In other words, one is asking for the order of magnitude of 
the ratio II · ti,. I It · II. We address this problem in Lemma 6.3.4. 

The main aim of this section is to present sufficient conditions such that a 
rate of convergence in 11 · lln-norm implies the sa1ne rate in II· II-norm (see 
Theorem 6.3 .. 2). A natural question is whether it is possible to prove rates in 
II · \I-norm directly. Recall that the conditions we needed in Section 3.1 for con
sistency in II · lln ... nor1n are stronger than those for consistency in II · ll-no1·1n: in 
the latter case an envelope condition could be replaced by a uniforrri square 
integrability condition. Indeed, an envelope condition is implicit in ( 6.30). 
This is illustrated by Lemma 3.3.4 and also by for instance Examples 6.3 and 
6.4. It is not clea.r whether any · g can be gained on the assumptions if one 
is only interested in rates in ll · 11-norin. 

A situation where ll · II- and II · II,,- norms can in a certain sense be inter
c ged freely, arises when there exist covering sets with bracketing. A o
bracketing with respect to II· ll of a function g eL2(Rd, H) is a pair [g 1, g2] 

such that g1 ~g~g2 and llg1 -g2ll<o. The mi.ni1n111n ntimber of brackets 
necessary to cover ~ is denoted by N l ( o, H, §). Lemma 6.3.4 · show that 
under appropriate conditions on N l(o, H, §) the metrics 11 · lln and II· II are 
asymptotically equivalent. 

We already encountered covering sets with bracketing in Application 3.2.l. 
Here, 

= {go: 8e0} 

with g8(x) continuous in 8 for all x, 0 compact and 

SU lg, EL 2(Rd, H). 
le 

We asserted in Application 3.2.1 that N 2 (o, Rn, g) remains bounded almost 
surely for all o>O. To prove this, we showed that N · 1 (o, H, §) is finite. 

Another illustration is given b Exa1nple 6.4. It is not difficult to see that in 
this exa1nple N2(8, Q, §) and N. l(o, Q,@) are of the sa1ne order of magnitude 
(in 8) for all probability measures Q. 

Now, let B(.p, g, go), p>O, be a ball with radius p for II· II around g0 inter
sected with g and let 

Nl 1(o, p, §, go) = N 1(o, H, B(p, §, go)), O<o~p. 

THEOREM 6.3.2_ Suppose ~ is a unifo,mly bounded permissible class with 

o'logNil(o, Lo, g, g0) 
s s I L ~ M, 11~0, (6.33) 

L> 0<8 og - -
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l 1 - --
then lli,,-go lln =(9p(n 2+" ) implies Ilg,, -go II ==0p(n 2+v ). 

PROOF. This follows from Lemmas 6.3.3 and 6.3.4 below. □ 

We first present the probability inequality we use and then prove that the ratio 
llg-g0 1ln!llg-goll cannot · er too much from l if llg-g0 11 is large enough. 
Theorem 6.3.2 then follows i:rnmediately. · 

LE 6.3.3. If lg ~ 1, g ~ 1, then 

1P(lllg-gll~-llg-gll2 l~a) ~ 2exp na 2 
ct 

8llg-
, a>O. 

PROOF. If z1, • • • ,Zn are independent random variables with expectation zero, 
variance IEz~=o~ and with zk ~M, k==I, · · · ,n, then Bernstein's inequality 
(BERNSTEIN (1924, 1927), BENNETT (1962)) says that 

n 
P(I zk ~a) ~ 2exp 

k =1 

a2 

n 2 
2( oj)+ 3 Ma 

• 

k =l 

Apply this with zk==(g(xk)-g(xk))2 -llg-g\12 , lzkl~4 and IE zk 2 :<4llg-goll2, 

k == 1, · · · ,n. □ 

LE 6.3.4. Suppose that § is a uniformly bounded class satisfying (6.33) for 
some v;>-:0 and M. Then for all 11>0 there exists an L.,, >0 and a.q >0 such that 
for all n ;.>;no(==«So<2+v>, with oo defined in (6.33)) 

SU 
ge i 

-
llg-goll;.,L,,n i+ .. 

I -

Ilg -go lln -
Ilg -go II 

8 ~-exp 
a.,, 

PROOF. Define on=n 2+P. Asstime without loss of generality that gl~l for 
all g E§. Let {[g1, g 2]} be a mini.mal on-bracketing set of B(LBn, §, go), where 
L~L.,,, L.,, to be specified later. We shall first show that for all L~Lr,, n~no 

(6.35) 

Let {g1} be the set of left brackets from {fg1, g2]}. We have 
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all L ;:;e: L.,,, then 

From Lemma 6.3.3-we see-that for llg 1 -goll~(L +...._l)on 

-na<1> L2o2 
11 n , 

for all L~L.,,, L 11 sufficiently large and for some constant a~1) depending only 
on 11- Moreover, for L~Lo and n ~no =80<2+ii> 

logN---=l1(8n, Lon,§, go,n) ~ M(logL)o;;i-, 

-na<I) L2o2 
11 n 

~ 2exp 

As for P 2), we have that for L~L.,,, L 11 sufficiently large, n ~no 

~I?* SU 
[g1,g;z]E{ 1,E2l} 

~p• s 
[gl, g:z]E { 



Rates of convergence 101 

::;:; 2exp 

for some constant a~2). 

PL~ I? I)+p 2)~4exp -~L2nv/(2+v) ' 

for all L~L71 , n ~no. This proves (6.35). Assertion (6.35) in tum implies that 
if we take L~L.,,, L 11 sufficiently large, n "?-:n 0 

1 
sup llg-golln>(l+ 2 11)L8n 

g E B(Lon, (3, go) 

Similarly, 

~ 4exp(-~L2n"1<2 +v)). 

P* inf 
(L - I )o" :E; Ilg - g0 II :E;Lo,, 

geg 

Ilg-go lln 
Ilg-go II 

<l-11 

~ P* su llg 1 -goll2 - llg1 -goll~>(L-2)20~ -(1 
llg1 -goll-,, L + l)o,, 

gl E {g,} 

-, ,.,,,_, __ .. ·<.~ .•. ,. 

(6.36) 
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We already showed that for L ~ L 11 , n ~no 

P 2) ~ 2exp 

If we take LTJ sufficiently large then for L ~ Lr, 

~ 2exp 

P* 
(L -1)811 ~ Ilg-go II ~L8,. Ilg -

ge'3 

s:; 4exp . -aqL 2n111(2+11) • 

Finally, combine (6.36) and ( 6.37) to obtain that 

Chapter 6 

(6.37) 

P* 
Ilg - go II~ L.,,8,. I lg -

ge§ 

___. 8 -rJ_L2nv/(2+v) ~ exp ..,.,., 
L;;;,:L.,, 

6.4. APPLICATION TO TWO-PHASE REGRESSION 

We consider the models of Chapter 5 and compare the va,ious sets of assump
tions and outcomes with those of Section 6.2. To avoid digressions, we assume 
throughout that the disturbances t:1 , E2, · · · fo11n an i.i.d. sequence (E1 having 
expection zero and finite variance) and that go,n =go is fixed. We start with 
the continuous model: 

- {ge,c(x)=min(a<1> + x I), aC2) + x 2>): (6.38) 

a<i) . 
(J = (12) , = i) , l = 1, 2} 

6.4.1. Let Xn,k =xk, k = I, · · · ,n, with X1, X2, · · · a sequence of i.i.d. 
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random vectors with distribution H. Let § be given by (6.38). Then there exists a 
constant K2 < oo such that for all n sufficiently large and for all go,c, go,c E§ 

~ 
llgo,c -ge,c lln ~ K2118-011 almost surely. (6.39) 

Define for all ,-, >0 the restricted class 

§R(1J) = {ge,cE§: 110-8011<17}. 
Suppose that there exists a set of points 

{ x i) : t = I, · · · , 2( d + l) - 1 } c A i) n T, ( 6 .40) 

where Tis the support of H, and no d + 1 xi) lie on a (d-1)-dimensional hyper
plane, i == 1, 2, and that 

118 l} -8 2) II =I= 0. (6.41) 

Then there exists an 11>0 and a constant K 1 >0 such that 

llgo,c-go0 ,clln ~ K1118-Boll almost surely, (6.42) 

for all n sufficiently large and all ge,c e§R(r,). 

PROOF. Result (6.39) follows from the fact that the functions go,c(x) are 
Lipschitz continuous in 8 for every x: 

-
go,c(x)-go,c(x) ~ J(x)ll8-811, 

where J(x)= I+ z1 + · · · +lzdl, x =(z1, · · · ,zd)- Since llllln >IIJII almost 
surely, 

-
Ilg o,c -ge,c lln ~ 211111118- 811 al1nost surely, 

for all n sufficiently large. 
Inequality (6.42) is of course closely related to (5.11) (see the proof of 

Theorem 5.2.1) which asserts that (6.42) holds for 8=6n. Condition (6.40) 
implies that if the (J(i), i = 1, 2, in 8 are appropriately indexed, then there are at 
least (d + 1) x I),s in A I). ·s implies that, apart from a possible re-indexing, 
the smallest eigenvalue of :'.En(A 1> nA i)) is bounded away from zero for all fJ 
and all n sufficiently large. Hence 

(lf-l)_(J l))TI:n(A~l) nA l))((J(l)_(J I))~ Kr,1 ll(J(l)_(J 1)112 (6.43) 

for some constant K 1, 1 >0, all properly indexed fJ and all n sufficiently large. 
Moreover, by taking 7J sufficiently small we see that 118-()0 II <r, and (6.39) 
imply that A I) cannot contain more than d x 2>'s, because of assumption 
(6.41). Thus, for 11 sufficiently small the eigenvalues of l:n(A ) nA 2) ), 

118-80 II <r,, are eventually also bounded away from zero, and so 

(fl2) -(J 2))T:En(A 2) nA 2) )((J(2) -8 2)) ;>-; K~,2 ll(J(2) -8 2) 112 

for some constant K 2,2 >0, all 110-00 II <11 and all n sufficiently large. (In fact, 
if 1J is sufficiently small re-indexing of 8, 118-00 II <11, in (6.43) is not needed). 
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Thus 

i=l2 ' 

~ min Kr i 110-80 11 2 aJ1nost surely 
i = 1~2 ' 

for all IIIJ-00 II <r,, r, sufficiently small, and all n sufficiently large. □ 
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In other words, under (6.40) and (6.41) the sequence {§R(TJ), II· lln }, with §R('IJ) 
defined in Lenuna 6.4.1, is for 71 small enough of finite metric dimension 
2(d + 1). We can now app!Y the results of Section 6.2, because jn Lemma 3.4.4 
the strong consistency of 6n is established, i.e. for every 11>0 On E§R(11) for all 
n sufficiently large. The conditions of Lemma 3.4.4 include ( 6.40) and ( 6.41 ). 
R furthe11nore that in Theorem 5.2.1 we also needed the conditions of 
Lerr,rna 3.4.4. The following proposition collects previous results and those 
obtained by application of the theory in Section 6.2. 

PROPOSITION 6.4.2. Define § as in (6.8) and let Xn~k -xk, with X1, X2, · · · i.i.d. 
with distribution H. Suppose that the conditions of Lemma 3.4.4 are fulfilled. We 
have 

"_ ---+ A 

dent and 

A 

P( 118n -80 11 > n - 1
h L) ~ A 'L -{2p - r), 

(iv) if E exp{PIE1 2)<oo for some /3>0, then for all L?-:;L', n ?en' 
" P(l18n-8oll>n-½L) ~ exp(-M'L2). 

PROOF. 
(i) This is Le1nma 3 .. 4.4. 
(ii) This is Theorem 5 .2.1. 
(iii) Combine Lenuna 3.4 .. 4, Lemrna 6 .. 2.3 and Lemrna 6.4.1. 
(iv) Combine Len·1111a 3.4.4, Theorem 6.2.5 and Lem1na 6.4.1. □ 

A 

Note that the 8p(n-½)-rate for 6n in (iii) and (iv) of Proposition 6.4.2 follows 
from the 6p(n-½)-rate for &a· The situation is somewhat different in the 
discontinuous model. Here, the class of regression functions is 

(6.44) 
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, A (i) E~i), i = 1,2 }. 

We shall first consider a special case with d == I. 
difficulties in higher dimensions. 

· s will clarify the 

LE 6.4.3. Let d -1, Xn,k =xk, k == 1, · · · ,n, with Xi, X2, · · · i.i.d. with 
distribution function H: R ➔R. Let § be defined in (6.44), with 
te=={A.,, =(-oo, y]: yEIR}. Define for all 11>0 

§R(11) == {ge,A., E§: 118-8011 <11, H(A-,,~0)<71}. 

Suppose there exist {xi): t == 1,2,3, x ~) *x !) , t 1 *t2 } CA i) n 7; i == 1,2. Furth
ermore, suppose that the discontinuity assumption (5.22) can be strengthened to: 
for some 111 >0, K>O we have 

H(Yo -111, 'Yo +111] > 0 

and 

gflo1>(x)-gu;)(x) > K, 

for all x E(Yo -111, Yo +111 ]. Then for 1J sufficiently small 

Nn(o, 'Yo, §R('TJ), go) ~ A 2rJ, almost surely, 

for all n sufficiently large, where r = 2( d + I) + 2 == 6. 

PROOF. Let glJ,Ay EBn(21o, §R(TJ), go): 

llge,A., -go lln ~ 2io. 

Since for 1J sufficiently small H (A 1LiA 0)<11 implies that yE(Yo -111, Yo +111 ], 
we have 

Also 

(2i8) ;::e ll(g£J,A., -go)IA~> nA~> lln ~Ki [j(J(i) -8 i) II, almost surely, i == 1,2 

for some Ki >0, 11 sufficiently small and n sufficiently large. Hence 

Bn(2io, §R("l), go)C {go,A., E§R(TJ): IIIJ(i) _O i) 11~2iol Ki, i == 1,2, 

H(Ay'1A o)~(2io)2 I K}. 

Since 
-

N2(8,Hn,{A 1 : H(AyLiAo)~(2io)2/K}) ~ A22J (6.45) 

for all O<o< 1, this irnplies that for 1J sufficiently small 

Nn(o, 2i~, §R(TJ), go)~ A271, r =2(d + 1)+2. □ 
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uality (6.45) in the proof of Lemma 6.4.3 is a special feature of the class of 
intervals {(-oo, y]: yER}. If d=2 and a:.={x: xy~l}: yER2 }, then in gen
eral the number of xk in the set 

LJ {A E~: Hn(AAAo) ~ ('2/n-
1/2)2 } (6.46) 

need not remain bounded ( see Exa 1nple 6.5). It is not clear how to calculate 
the entropy of neighbourhoods like (6.46) for general ~ An upper bound is of 
course the global entropy of@.. We use this upper bound in' (iv) of Proposition 
6.4.4. 

PROPOSITION 6.4.4. Let§ be defined in (6.44) and let Xn,k ==xk, X1, X2, · · · i.i.d. 
with distribution g_ Suppose that the conditions of Lemma 3.4.4 are fulfilled We 
have 

A ~ 

(i) 118n -80 ll , > 0., X(AnM o) >0 almost surely. 
Suppose in addition that H satisfies (5.24). 
(ii) If the~ ~discontinuity assumption ( 5. 2 2) holds and if moreover 

(iii) 

(iv) 

• 
l 1,2 . 

If d = 1 and the conditions of Lemma 6.4.3 hold (i.e. if (5.22) is replaced 
by the stronger assumption)., then IE E:n 2p < oo for some p >6 implies that 

II~ go lln = 0p(n -lh). 
- -

If D2(8, @;)~Ao-', r>O., and 1Eexp(/Jl<1 2)< 00 for some /3>0, then 

lli..i-golln = e;,(n-½(Jogn)½). 

If D2(8, lt)~exp(Mo-p), 0<11<2 and IEexp(P £1 
2)< oo for some :/3>0, 

then 

PROOF. 

(i) This is Lem1na 3.4.4. 
(ii) This is Lemrna 5.3.1. 
(iii) Combine Len1rna 3.4.4, Theorem 6.2.2 and Lemma 6.4.3. 
(iv) For 1Jo defined in (5.24), the class 

§R(110) = {glJ,A e§: 118-0o ll ~'JJo, H(A ~ 0)<110} 

satisfies 

N 2(8, Hn' gR(tJo)) ~ Aa-2<d + l) D2(cS, ct). 

Insert this in conditions (6.20) and (6.21) of Theorem 6.2.5, with 
8n =n-½(1ogn)½ and 8n =n- 11<2 +v) respectively. 0 
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LE 6.5. Let d =2, lt= {A (y)= { x: xy~ 1 }, yER2 }, g ui} =a<i), i = 1,2, 
a I)*a 2) (i.e. we assume for si1nplicity that pi) =O, i = 1,2 is known), and let 
H be the unifo1m distribution on A 1> UA 2>, where A I) and A 2) are the two 
disjoint discs defined in Exan1ple 5.3.. Since ce is a VC-class, it follows from 
Proposition 6 .. 4.3 (iii) that if IE exp(/3£112 )< oo, then 
II~ -golln =t9p.(n - 1

/2(/og n)½). ·s irnplies the rate l9p(n-½(Iogn)½) for the 
estimator of a8), i == 1,2, but from (ii) of Proposition 6.4.3 we know that in fact 

Hn(AnaAo)='9p(n- 1logn), i.e. 0p(logn) observations are assigned to the 
wrong sample. 'I'his rate cannot be improved, in the sense that if e.g. 
t:1, t:2 , • • • are normally distributed, then one can show that for some a >0 

fun inf IP( 
n -).00 n 

In the following three examples, we again restrict ourselves to the case d = I 
and te= {(- oo, y]: yER }. We take nonrandom Xn,k, with the particular choice 
xn,k =kin. Speeds of esti1nation are investigated in the discontinuous model, 
with the assumption of discontinuity of the underlying true regression function 
(Exa rnple 6.6), the assumption of continuity and identifiability of the underly
ing regression (Exa1nple 6.7) or without identifiability at g0 (Example 6.8). 
The first example treats virtually the sa,11e situation as the one in Lemma 6.4.3. 
We present it to facilitate the compa1·ison with Exa1nple 6.7. 

' n ' 
== -[(n -1)/2], · · · , [n /2], 

and 

g0(x) = (a i) + x{J i))IA~>(x), a I)=;;t=:a 2) ,A I)=(- oo, Yo], Yo =O. 
i = 1,2 

A p p 

Application of Proposition 3.4.5 yields that 118n -80 II --+➔ 0 and l'n -yol · ➔ 0. 
Moreover, for 11 sufficiently small the class 

§R(1J) = {go,A: 110-0oll~'TJ, y-yo <11} 

satisfies for some constant A 
• 

Nn(81218, §R(11), go) 
su sup su 6 . s:; A 
j -;;;,: 0 n ;;-a: no 8 :,;;;; o 2 1.1 

Hence if E t:1 l2p < oo for some p >6 

lli.r-golln = t9p(n-½) 

which i r11plies 
A 

Yn Yo n 
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I d. -~ 1 th l}<1) a<2) d ,. t is now not1flicu t to prove at vn , .,n an Yn are asymptotically 
in ndent, with limiting distributions 

e 2 o l x 1 
-0 1>) ➔ ~O, llt:11 ( 2 dx )- ), 

X X 
-½ 

e ½ I x 
-(J 2)) ➔ 'Vl(O, 11£112( 2 dx )- 1 ), 

O X X 

f l 
n(yn --yo) ➔ arg s 2( ) - >) £k -(a l) -a 2))2 / 

I k =O 

(compare with Exa,nple 5.2). 

, n ' 
== -[(n -1 )/2], · · · ,[ n /2], 

and 

go(x) = 1nin(O, x/30), Po>O (Ao-(-oo, Yo], Yo-0). 
A p p 

From Proposition 3.4.5 we obtain that 118n -80 II ➔ 0 and 111'n -yo > 0. For 
1J sufficiently small, the class 

~R('Jl) = {go,A: ll9-0oll~1J, 111-110!~11} 

satisfies for some constant A 

Nn(~,2j o, §R('l1), go) 
m ~ m . ~A 

Ilg,, -go lln = (9p(n -½) 

which i [nplies 
A 

118n -Boll = 0p(n-½), Yn -yo} == 6p(n-½). 

distributions 

½ ,. e µ. 
n 3(Yn -yo) ➔ arg su (2/3011£11 x (x )-/35µ3 /3) 

/~ 
0 
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where W( ·) is standard Brownian motion. So the difference with Exa1nple 6.6 
lies in the slower rate for 1n. 

LE 6.8. Let d == 1, Xn,k ==kin, k -1, · · · ,n, 

g a,A.., 

and 

go== 0. 

Then for§== {g a,Ay: a ER, y~O} 

Nn(f>,2/8, §R(11), go) 
su sup su 3 . ~ A < oo. 
j~ 0 n~no 8~ 2 Vlogn 

To see this, let ga,A,, E§ with a ~2/o/ H~(y). 
llga,y -go lln == ja 2 Hn(Y)~2i o. Define g; ==a; 1(- 00, 1',], where 

and 

a· = --;==- k-
' I 

k- = l 

Yi 

a 'Yi 
0 

Iog(nHn(Y)) 

log(I -2- 21)- 1 

• 

Then (1-2-2j),s;;y; / Hn(Y)~ 1. Furthermore 

It follows that 

a 'Yi 
0 

-1 
Yi 

llga,Ar -g, lln == (a-a;)2Y; +a2(Hn(y)-y;) 

Yi 

~ 82 +22102(1-y;/ Hn(Y))~2o2 . 

We have 

O~k- -.. I 

The nun1ber of functions of the form 

Y; 

with k eZ, O~k ~21, and with 

• 

(6.47) 

Then 
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is equal to 

• 

(2/ + 1) . ... logn 
log(I -2-21) 

~ a (1ogn)23i . 

logn _ 
log(l-2- 21) 

It follows that if E(exp(filt:112))< oo for some /3>0, then 

llg,,-golln = 6p(n-½(loglogn)½) 

Chapter 6 

( see Corollary 6 .. 2.6). In fact, DARLING and ERnos ( 1956) prove that if 
Elt:1 

3 < oo, then 

-------- ~ 2 al111ost surely 

and 
1 1 

a + 2loglog n + 2 logloglog n - 2 logw 
limp 
n➔oo n o ogn · 

-oo<a<oo 

(see also Chapter 7.4 for related results). 

RE , ·. . In the continuous model without identification at g0 , the same rates 
as in Example 6.8 can occur, i.e. the continuity restriction cannot prevent 
n ½ ll&a -g0 II,. from exploding. 

We conclude that the application of the theory of Section 6.2 to two-phase 
regression problems can lead to some extent to more refined results than the 
ones obtained by the direct methods of Chapter 5. It shows that the continu
ous model .. with identification at g O - is of finite metric dimension, whereas 
for d> 1 the discontinuous model can be infinite-dimensional.. Example 6.5 
illustrates this. However, Proposition 6.4.4 reveals a m.t1 · or shortcoming: the 

concentrates on !~tes for &r, the techniques there cannot produce possible fas
ter rates for the 8~). 

In Exa.mples 6.6 and 6.7, where d = 1, the models are again finite
dimensional. These examples only differ as regards the assumptions on go. In 
Exa.mple 6.6 the rate 0p(n-½) for in implies that -y11 --y01 =ep(n -I), whereas 
in Exa1nple 6.7 we have that llg,.-g0 11n · ep(n-½) leads to l1'n -yo! ==0p(n -½). 
If in Exa.mple 6.7 the continuity of g0 were known and a continuity restriction 
were super imposed on the estirnated model, then the rate for -Yn would of 
course have been 0p(n -½). It is important to note that in Chapter 5 we could 
not handle the model of Exarnples 6.6 and 6.7 without restricting g0 to satisfy 
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the discontinuity assumption (5.22). Exarnple 6. 7 now treats a situation where 
(5.22) (or rather its counterpart for the non- i.i.d. case) is violated. 

Given the rate of convergence, the asymptotic distributions in Exa.1r1ples 6.6 
and 6.7 are relatively easy to find. We remark that in e.g. LECAM (1970), the 
rate ep(n -½) for the Euclidean parameters indexing a parametric model is 
taken as a starting point. Then asymptotic no11·nality can be proved without 
assu1r1ing the existence of first and second derivatives aJmost eve here: 
essentially only differentiability in quadratic mean is required. The continuous 
model of Section 5 .2 can be viewed in this light, since there the esti 1nator of 8 
indexing g o,c converges with (9p (n - ½ )-rate and it can be shown that g fJ,c is 
differentiable in quadratic mean II· II at 00 • Also for other non-linear regression 
models, it may be convenient to prove the 0p (n - ½ )-rate for the Euclidean 
parameters first, using the results of Section 6.2 (more specifically, Lemma 
6.2.3), and then establishing asymptotic normality given this rate. 

If the rate for ~a-:is 0p(n - 112
) but the rate for some of the Euclidean para1ne

ters indexing g difTers from 0p(n -½), then ad hoc methods are necessary in 
order to obtain as ptotic distributions. Yet, Examples 6.6 and 6. 7 suggest 
that they can again be found more easily, once the rates !\aye already been 

ance matrix llt:11 2L- 1(A i)), i =1,2. 
In Exaanple 6.8, the model is again as in Examples 6.6 and 6.7, but g0 is 

now assumed to be a one-phase function. The example shows that the rate for 
i,, can qepend on g0 • It illustrates the merit of concentrating on g,, instead of 
6n and An: the latter are not identifiable at g0 • We already elaborated on this 
in Section 3.4. However, even though we did not assume identifiability of all 
(J(i), we did need condition (3.41), which can be seen as an identifiability condi
tion on A. Exarnple 6.8 now suggests that if (3.41) is not imposed, then tech
niques that $O beyond uniform laws of large numbers are needed to prove con
sistency of g,,. To find the Jj1niting distribution of g,, in this exan1ple, we used 
the fact that the expression for Ilg,, -g0 lln coincides with the maxj1~a1111n of the 
absolute value of weighted partial su1ns- The question a1~ises whether in ....,_eneral 
the knowledge of the rate of convergence - possibly slower than (9p(n- )- for 
~ can substantially facilitate the investigation of its as ptotic distributional 
behaviour. 
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Tests for a _ han..::. e-Point 

7.1. INTRODUCTION 

Example (1.1) deals with the change-point model 
X(I) +t:k k = I ... T 

k , , , 

In Section 6.4, Ex.a rnples 6.6 and 6.8, entropy considerations led to the conclu
sion that if there is no a priori knowledge about A(i), i == 1,2 or T then 

llgn -go lln == 0p(n -½), if X 1>=1=-x 2> 

whereas 

provided that the proper moment conditions on Ek hold. 
In this Chapter, we shall study the model where y1, • • · ,Yn are independent 

random variables, y1, • • • ,Y-r having distribution F>,..<1> and Y-r+ 1, · · • ,Yn having 
distribution F >-.._(2>. { F >.: AEA} is a set of probability measures, with probability 
densities /'A with respect to some a-finite measureµ. We are interested in the 
testing problem Ho: A(I) ==A<2) against H 1: "'A_(l)=/=-"'A.<2> .. 

The (log)likelihood ratio test statistic is 

'T max Tn(-), 
l~T~n-1 n 

where 

n 

- == inf 
AEA 

suP. 2log 
A.T11 eA ,,. 

IT A(2) (Yk) 
k =-r+ 

• n 

II >._(yk) 
k =,-+ 



• 
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The rate 0p (n - ½ (loglogn )½) that we encountered in Exa1nple 6.8 suggests 
that under Ho, Tn =0.,0oglogn). In fact, if F"A is the normal_distribution with 
va1·iance 1, then this is a straightforward consequence of Exa1nple 6.8. In other 
words, Tn behaves in a non-standard way. 

We shall consider two approaches for investigating the asymptotic efficiency 
of Tn: efficiency in the sense of Bahadur and efficiency at local alternatives. 
We show in Section 7 .2 that if { F "A : A EA} is e.g. a one-para tneter exponential 
farnily, then Tn is opti1t1al in the sense of Bahadur. Section 7.3 compares the 
Bahadur slope of Tn with the slopes of some alternative tests. We shall how
ever also give evidence that Tn's opti1nality in Bahadur's sense is for practical 
p . ses not very relevant. In Section 7 .4 we show that if FA is the normal 
distribution or the exponential distribution, then at local alternatives Tn has 
asymptotic power equal to its as mptotic significance level. al alternatives 

· be those alternatives with I X > -A <2> = 0( n - ½ ). 

Section 7 .5 deals with the testing problem for a regression model with 
change-point. There is an obvious analogue of Tn in a regression model with 
possibly u :r. own error distribution. However, the theory developed in Sec
tions 7.3 and 7.4 indicates that this analogue has too many unfavourable pro
perties. Therefore, we shall propose several alternative test statistics, also bear
ing in mind that a more user-friendly test is desirable. 

7.2. B UR. EFFICIENCY OF LIKELIHOOD RATIO TESTS 
For a description of the concepts of Bahadur slope and efficiency, we refer to 
BAHADUR (1967,1971) and GROENEBOOM and OOSTERHOFF (1977). Bahadur 
looks at probabilities of large deviations, i.e. probabilities which are exponen
tially small as n ➔ oo. We shall first review some general results. 

Let {Pa:8e80U81} be a set of probability measures dorninated by a a
finite measure p.. Let p IJ = dP o / d µ. and let {T n} be a sequence of test statistics, 
b on n i.i .. d. observations from P 8 , for testing Ho: fJ E 0 0 against H 1 : 

8E81. Define for all t >0 

Gn(t)=P1:1o(Tn~t)=su . Po(Tn ;>-t). 
De 0 

The sequence {Tn} has (exact) Bahadur slope c(8) at lJE01 if 
1 P, 

-½c(fJ) . 

The word 'exact' refers to the fact that one uses the exact null-distribution of 
Tn, as opposed to its asymptotic null-distribution. 

For the evaluation of the Bahadur slope, the following theorem is useful. 

''l'HEOREM 7 .2.1. Suppose that 

1 P, 
-Tn ➔ c(fJ), 8E81 
n 

and that for all a >0 in a neighbourhood of c(8) 
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1 
-logl?~(Tn~na) = -l(a), 
n 

where I (a) is a nonnegative function, continuous at c ( fJ), then the Bahadur slope 
of {Tn} is equal to 2/(c(fJ)). 

PROOF. See BAHADUR (1967,1971). 0 

An upper bound for the Bahadur slope is twice the Kullback-Leibler informa
tion J ( 0), defined as 

-
J (6) == K(fJ,8), 

fJE0o 

with 

- polog(po /pe)dµ if Po<<Po 
K(fJ,8) == 

00 otherwise • 

'IHEOREM 7.2.2. For each IJ 

-➔ 0 for all TJ >0. 

PROOF. See BAHADUR (1971). 0 

The f ollowi.ng le1runa is a rninor modification of Corollary 5 in BAHADUR and 
R.AGHA VA CHARI ( l 972). 

LEMMA 7.2.3. Suppose that 

n ➔ 00 n 

n ➔ 00 n 

-r,) == 0 for all 11 >0, 

-..: -1/2a for all a >0, 

(7.1) 

(7.2) 

then {Tn} is optimal in the sense of Bahadur, i.e. its Bahadur slope is equal to 
2/ (8). 

PROOF. Let 11>0 be arbitrary. Then 

n ➔ 00 n 
=--- -J(O) +11) 

n J,,00 n n 

n > 00 n 

n )00 n 
:;;.,,- -J(fJ)+TJ, -

n 
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If n- 1 Tn >21 (8)-11, then 

n n 

and application of (7.2) with a =21-..;:(8)-TJ gives that for all n sufficiently large 

Thus 

n ➔ OO n 

n ➔ 00 n 
3 

n 

= 0. 

Since according to Theorem 7 .2.2 we have 

--..:: -J (U)-11) = 0, 
n ➔ 00 n 

this completes the proof. □ 

Lemr11a 7.2.3 is the basic tool for proving optirnality in Bahadur's sense of the 
statistic 

We shall first describe the c ge-point model in an i.i.d. setting to enable us 
to use the previous results. Let 8=(A(l) ,x<2>, y), and let (xk,Yk), i = 1, · · · ,n, be 
independent observations from the probability distribution 

xF>..<1>(y) if x~y 

yF>..<'>(Y)+(x-y)FA(2}(y) if x>y · 

In the sequel, we shall assume that Yr" =yk, where rk is the r of xk in the 
ordered sequence "(I)~ · · · ~"(n)· Then given (x1, · · · ,xn)-(x 1, · · · ,Xn) we 
have that Yi' ... ,y,,n are i.i .. d. with distribution function FAcl) and 
YT,,+I, · · · ,Yn are i.i.d. with distribution function FA<2>, where Tn =Tn(y)= 
{number of xk~Y, l~k~n}. We shall regard Tn as the unconditional likeli
hood. 

The para1neter space is 

e = { O=(A<1) ,A<2), y): A(i) EA, i = 1,2, yE(O, 1) }. 

For J(IJ), 8= (A<I) ,x<2>, 1'), we find the following expression: 
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Lemmas 7.2.4 and 7.2.5 below present sufficient conditions such that the 
assumptions (7.1) and (7.2) of Lemtna 7.2.3 hold for {Tn }. 

LEMMA 7.2.4. Suppose that for fJ==(;\< 1> ,"'A.<2), y), 

n )00 n n r,) == 0 for all 11 >0. (7.3) 

Then also 

lim l?o(Tn ~21 (0)-r,) == 0 for all 11>0. 
n • ➔ oo 

PRooF. This follows immediately from-the fact that 

L== - ~ -- o 
l~k~n-1 n n 

If we define 

T 

and 

n 
II >..<21 (Yk) 

k=-r+ 
n , 
n A(Yk) 

k =T+ 

then 

LEMMA 7.2.5. Suppose that for every sequence {kn}, I ~kn ~n -1, n = 1,2, · · · 

fun sup -
n ➔ CO n AE 

~ -½a, a >0, i == l,2. (7.4) 

Then also 

--= -½a. 
n )C() n 

PROOF. For each AQEA 

inf [1<1)("'A k ) + 1<2> (A k )] XeA n , n n , n 
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Hence 

n Aoe1\. 
(7.5) 

Let 1l>O be arbitrary. Then for all Ao EA 

· PAo (1~1)(Ao,kn)+ 1~2)(Ao,kn)~na) 

[a TJ] 
~ PAci(1~1)(Ao,kn)E[ni11,n {i + 1}11), 1~2)(Ao,kn)~na -n (i + l)q) 

i=O 

+ PAo (l~2>(Ao,kn)~na) 

[a 11] 
~ l?i\(1~1)(Ao,kn)~ni'l))Pi\(l~)(Ao,kn)~na -n(i + l)'q) 

i=O 

+ PAo (l~)(Ao,kn)~na ). 

From (7.4) we know that for arbitrary ~>0 and for n sufficiently large 

Aoe1\. 

and 

Aoe~ 

which implies 

SU PAo(l~1)(Ao,kn)+l~2)(Ao,kn)~na) 
AcJE 

[a 11] - a -
--= 

• 

a -28)). 
11 

Since 1l and~ are arbitrary, this iinplies 

n )00 j\e n 

From (7.5) it follows that-also 

sup ogPHo(Tn(-);:>.na) ~ -1/2a. 
n )00 n 

And since this is true for all sequences { kn } , also 

lim I sup-P1-1o(T,., ~na) 
n ,oo n 

__ (it,1)11 _ 

a -o)) 

-½a. 
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~ lim sup 
n )00 n 

k 
n max 1?1-1o(Tn(-)~na) 

l~k~n n 

- 1ha = □ 
n >00 n 

Now, LENBERG (1978) shows that (7.3) holds for {FA: AeA} an exponen
tial farnily in standard representation and )\_(i), i = 1,2, in the interior of para1n
eter space. Moreover, he proves that (7.4) also holds if {FA: AEA} is a one
parameter exponential farnj]y .. Thus, we a1·rive at the following theorem. 

THEOREM 7.2.6. For {FA: AEA} a one-parameter exponential family in standard 
representation, { T n} is optimal in the sense of Bahadur at all alternatives 
O=(A(l) ,A<2), y), A(i), i == 1,2, in the interior of~ ye(O, 1 ). □ 

Note that for k-parar11eter exponential farnllies (k > 1 ), Bahadur-optimality of 
{Tn} follows if (7.4) holds. 

Related results have been obtained by DESHA YES and PICARD ( 1982). They 
consider the no1mal distribution and derive large deviations results both at Ho 
and H1. 

7 .. 3. UR EFFICIENCY IN THE NO AND EXPONENTIAL CASE 

Examples of one-para1neter exponential families are the normal distribution 
with known variance and the exponential distribution. We shall treat these in 
some more detail. In Subsection 7.3.1 we compute the slopes for Tn and some 
alternative tests that are easier to use in practice. Furthermore, the fact that 
these alternative tests are ep(l) under Ho might also be considered as a 
theoretical advantage. To explain why, we actually need the results of Section 
7.4, which imply that the alternative tests always behave better than Tn at local 
alternatives. 

Subsection 7.3.2 presents a test statistic which is asymptotically equivalent to 
Tn under Ho, but which has Bahadur slope zero. 

7. 3.1. The normal case 
For FA =4b( · -A), A.ER, <I, the standard normal distribution, we have 

k Tn = max Tn(-), 
l<k~n-1 n 

k(n -k) 
n n 

1 
n-k 

n 

Y; · 
i =k +l 

(7.6) 

The exact null-distribution of Tn is quite cumbersome and it turns out that 
the · · ting null-distibution of the appropriately nor1n · ed T n is not a good 
approximation for finite satnple sizes. 
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We propose statistics of the fo1m 

k - k T,.,+ - max l/,{_-)Tn(-), 
l<k <;n -1 n n 

where l[i(..) is a function that diminishes the weights in the tails. For practical 
purposes it is convenient to take l/,{s) =s ( 1 --- s ), because then the approxi1r1ate 
si · . · cance level can be found in standard tables: under Ho 

e 
T11 + ➔ SU£ B2(s), for ~s) s(I-s), 

• O<s <e 1 

where B(.) is a standard Brownian bridge. 
Other relatively easy to use tests statistics are 

t~ I = 
k =l 

and more generally 

k=l n n 

The superscript 'S' refers to sum-statistic, as in GMAN (1986) .. Under Ho 
e 1 

lt'nl _. -2))1 

and 

Let c(T,s,,8) and c( I ,fJ) denote the Bahadur slope at 8=(A<1) ,A.<2>, y) of 
{T,,,+} and { t~,+ I} respectively. 

L ·.· 7.3.1. If FA · 4>( · -X1 
c(T,8) = y(l-y)(X(l) -x<2))2, 

c( I~ I ,8) 
I 

( 211 )'(l y) -(1-y)arcsin 1 · -y .. ,--yarcsin y )2 

= ------------------ (A(l) ---X(2))2 

l w2-2 
4 

and for lf(s)=s(l-s) 

c(T+,6) = 4 (1-y (:\_(l) -'A_(2))2, 

c( l ti I ,8) = 3y2(1-y)2("'A_(l) -"'A_(2))2 

PROOF. The Kullback-Leibler infor·rnation number is 
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Hence c (T,IJ)==y(l -y)(A<1) -"J...(2))2. 

We apply Theorem 7 .2.1 to calculate the slopes of the other statistics. It is 
easy to see that for a sequence of nor1nally distributed random variables Nn, 
with expectation zero and va1iance a~ >a2 

n ► 00 n 

Straightfo1ward calculation now gives 

n )OQ n 

Moreover 

a2 

2 

-2 

== -½ inf 
O<s<l 

, 

a2 

4'(.s) 
== -2a2 

== -6a2. 

12 

(s /(1-s))½(l-y) A(I)_i\(2) I if s~y 
n n ) 

n ((1-s)/ s)1hyji\<1>-A<2) if s>y 

unifo yins E(O, 1). Thus 
P, y 

n -½ t~ f > (1 -y) 
1 

s 
s -y s 

' 

y(l -y) -(1--y)arcsin 1-y -yarcsin y) I "J...(I) -i\<2) I, 

and 
P, y I 

n -½ t~,ir I -➔ (1-y) sds +y (1-s)ds I i\(1) -'"/\<2) 

As is to be expected, the loss of Bahadur efficiency for the alternative tests is 
always the most substantial for values of y near O or 1. 
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7.3.2. The exponential case 
Suppose F"(Y)= 1-exp(-Ay), X>O, y~O. Then 

k 
Tn = max Tn(-), 

l~k<n n 

with 

• 2klog -2(n -k)log 1-k In ' . 

k 

Yt 
i=l k =1, · · · ,n. 

n ' 

Y; 
i == l 

At 8=(A<1> ,'"A.<2), y) we have 

J(O) -(1 I 

and the Bahadur slope of {Tn} is 2/(8). 
The second order Taylor expansion of the right-hand side of (7.7) at 

/3ncYn,k)=k / n is equal to 

-k / n) · 

Define 

T*= T*k n max . 

It is shown in HAccou et al (1985) that after the appropriate norm · tion, 
Tn and T: have the same limiting null-distribution. Moreover, 

' 

where 
2 

is the likelih ratio test for the case of no1mally distributed random vari-
ables ( see equation (7 .6) ). 

LE:MMA 7.3.2. If FA(y)=l-exp(-Xy) then T~ has Bahadur slope zero. 

PROOF. It is easy to prove that T: converges in P 8-probability for each fJ. 
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Thus, it remains to show that for all a >0 

=O 
n ),OC) n 

Now, under Ho, fin(Y,,,k) has the sa1ne distribution as the k-th order statistic 
Un(k) from a sample of size n - I from the unifo1rn distribution. Hence, if we 
taken sufficiently large 

. * -* I 
l?tto (Tn >-na) ~ PHo (T n(-)~na) 

n 

n n n 
n -1 

1-2( a)½ 
n • 

Thus, 

-➔ 0. □ 

In the sa1ne way it can be shown that T~ also has Bahadur slope zero. In 
Section 7.5, we shall introduce the residuals-test, based on the least squares 
estimators of the pararneters in a two-phase regression model. The residuals
test has the same appearance as the likelihood ratio test for no1mally distri
buted random va , .. iables. The result of this subsection therefore indicates that 
from the point of view of Bahadur efficiency it is not sensible to use the residu
als test. Furthe1more, the f ollomng section i1nplies that also its Pitman 
efficiency is zero. 

7.4. EFFICIENCY OF 'l'HE LIKELIHOOD RATIO TEST AT LOCAL ALTERNATIVES 

We study the behaviour of Tn at alternatives 8n=(A~1),A~2),'Tn /n) for which 
the following holds: for some {An}, 

A~l) _An 

"J\(;)-"A.n 

== 0( T; 112 
), 

- 0((n -,,.n)-½). 

(7.8) 

Again, we shall only consider the normal case with known variance and the 
exponential case. Then, condition (7.8) defines exactly the alternatives which 
are contiguous to the null-hypothesis and it is equivalent to the condition that 
the Hellinger distance between (F"~1> )-r"(F)..~2) )n -~,, and (FA,. )n remains bounded 
(see e.g. OosTERHOFF and VAN ZWET (1979)). We shall only study the situa
tion where r,<(Tn / n)< l-71 for some 11>0 and for all n sufficiently large. 



124 Chapter 7 

Then we can assume without loss of generality that Tn / n >yE(O, 1) and (7.8) 
reduces to 

7. 4.1. The nurmal case 
Let FA ==<P( · -A). The limiting null-distribution of Tn is given in Lemma 
7.4.1.1 below. Since Tn =(9p(loglogn) under Ho we need to renon11 · it. 
Define for 0<11n < 1-Bn < 1, 

.. 

Furthermore, write 
I 1 

b(x) = 2logx + 2 Ioglogx- 2 logrr, (7.9) 

a(x) == 2(logx)½, 

bn == b(logn ), 

an = a(logn ). 

Let in (k / n ), k -1, · · · , n I be defined as in (7 .6). 

L 7.4.1.1. 

fun P max 
n ► OO Ho 11,,<k / n < 1-8,. n n ... a(p(TJn,On )) 

-oo<s<oo. 

PROOF. A minor extension of Corollary 1.9.1, page 57 in CsoRGO and REVEsz 
(1981) says that for B(x) a standard Brownian bridge 

S +b(p{1Jn,On)) ~=-----
x (1-x) .. a(p(71n8n)) 

lim p 
n ) oo 

-oo<s <oo. 

Now, t,,(k / n), k -1, · · · ,n -1, is under Ho in distribution equal to 

n ---:::===, k =1, · · · ,n -1. 

n n 

The increments of B satisfy 

B u+x -Bu fun sup su · -~ -- 1 

• almost surely ( CsoRGO and REVEsz (1981), Theorem 1.4.1, page 42). For 
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simplicity, we only consider the interval (0, ½]. Take ~n ==a (p(1Jn ,on))(logn )2 / n, 
then 

Bx 
SU ----, 

k / n <x ~ k + 1) / n x(l-x) 

ost surely, in view of (7.10). On the remaining subinterval (TJn,ijn) we have 

max 
11,,<k /n<~,, (k / n)(l -k / n) · a(p(1Jn,On)) 

BX S + b(p(1Jn,On)) 
sup_ -==~==="'~ 

11,.<x<11,, x(l-x) .. a(p('1JnOn)) 
~ IP ~) 0, 

... 
since P<.11n, 1-11n)=o(a(p(1Jn,On)). D 

It follows that 

-> exp(-2e-s), -oo<s <oo. 

We can also use Leroma 7.4.1.1 to draw conclusions about the behaviour of 
the maximum likelihood estirnator of the change-point. Let Tn be defined by 

A T k 
'f'n = arg max n(-). 

l~k <:,n -1 n 

It follows from Lemma 7.4.1.2 below that 1"n / n > 0 or 1 in ?Ho-probability, 
so under Ho Tn / n is in a sense a consistent estimator of the change-point. 
However, at contiguous alternatives Bn also Tn / n ➔ 0 or I in Pn" -probability, 
so in general ;. n is inconsistent. 

LE'MM.A 7.4.1.2. 
A 

-....:::-- or Tn ~n -
n- :.oo logn 

n 

limp A.-- n ,., ____ n 
.::::,,...-...:_ 0 f T n ~ n 

II n ~ oo 
1, 

for all contiguous alternatives Bn =(A~1>,A~2>,,,n / n). 

PROOF. We have that 

s+b 
?Ho max 

n n 
I <k<n- I ogn ogn 



126 Chapter 7 

max 

l <k<n - I 
ogn ogn 

where s(pn)=(a(pn)/ an)(s +bn) "b(pn) and Pn =log[logn(l-1 /logn)]. Since 
s(pn) > oo as n ➔ oo, application of Lem1na 7 .4.1. l now implies that under Ho, 
Tn:r:::;n /logn or Tn;>;n -n / logn with probability tending to 1. 

Because ( F )l.~1> ) 
7

" ( F )l.~2) )n - -r" is assumed to be contiguous to· (FA.. )n, the same is 
true in Pe,. -probability, IJn =(A~1),A~2),Tn / n). □ 

Define y~~ =yn,k -IEo.Yn,k, k = 1, · · · ,n, and let 

be the likelihood ratio evaluated at y~~)1 , • • • , y~~1- Then under Po,, 

k 
2 n 

if k ~Tn 
k Tn 

2 (7.11) 
k ' n Tn )½C if k~Tn 

T n n n 

where • 

In view of (7 .11 ), we have at contiguous alternatives with ( T n / n) ➔ y 

-'fl. ormly in k~n /logn or k~n -n /logn. Thus the extra term added to 

to its si · cance level at alternatives On ==(A~1) ,A~2), y), An1> -)\~2) =0(n-½). 

,·lHEOREM 7.4.1.3. 

· s+b 
Po . Tn>( n )2 

n a 
n 

s+b 

n 
--+➔ 0, - oo <s < oo, 

for all contiguous alternatives 8n =(A~1) ,A~2) ,Tn / n) with (Tn / n) >ye(O, 1). 

PROOF. For n sufficiently large, 

max 
s+qn+bn >-__.;_--

J :r:;..k ~ 
1 

n or n -
1 

n <k ~n - 1 
ogn ogn 

an 

max 
I..;k< 

1 
n or n -

1 
n :s;;k:s;;n -1 

ogn ogn 
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max 
l ~k ~ 

1 
n or n - n ~ k ~n - 1 

ogn logn 

where 

• 

The theorem now follows from: 

lim Pe max 
n ➔ OO " l ~k ~ n or n -

1 
n ~k ~n - l 

logn ogn 

s+b 

n 
lim l?o 

n ➔ 00 n 

and 

max 
n ➔ oo l ~k < 

1 
n or n - n ~k ~n -1 

ogn logn 

• 

max == lim sup P~ 
n ➔ 00 1 ~k ~ _n_ or n -

1 
n :s;;.k ~n - l 

logn ogn 

l-exp(-2e-s), 

for all qn >0. □ 

127 

' 

--,) 0 . 

s +b 

n 

-

n 

In Theorem 7 .4.1.3 we excluded the cases ( 'T n / n) >0 or l. One can however 
also show that if ( T n / n) converges to zero very fast ( e.g. 
'Tn = o(logn / loglogn )), then Tn has again asymptotic power equal to its asymp
totic significance level at contiguous alternatives (A~1> ,;\.}i2>, rn / n ). On the other 
hand, at contiguous alternatives with e.g. Tn -$((loglogn)logn), lim inf 
Tn /logn>O, Tn does have some nontrivial power. 

7.4.2. The exponential case 
Let FA(y)= 1-exp(-Xy), y ~0,A>O. Most of the results of the previous sub
section also hold for the case of exponentially distributed random variables. 
We shall again only consider contiguous alternatives f)n =(Ah1) ,A~2) ,'Tn / n) with 
(Tn / n) ➔-yE(O, 1), so that 

A~1) -xf> 1 (7.12) 

Let an and bn be defined as in (7.9). 
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'f'HEOREM 7 .4.2.1. 

- exp(-2e-s), -oo<s<oo. 

PRooF. See HAccou et al. (1985). □ 

Define y~~ =yn,k / Eo,. (Yn,k), k = 1, · · · ,n. Let 

TtO) = 
l~k E;;n - l n 

be the likelih ratio evaluated at (y~?)1, · · · ,y~~h)- We compare Tn(k / n) 

only consider the case k~Tn. 

LEMMA 7 .4.2.2. 
(7n / n )➔yE(O, 1) 

At contiguous alternatives 

uniformly in k ~Tn. 

PROOF. We have 

- 2nlog 

2klog 

so for k ~Tn, 

n 

1 1 'T,, 

n n 

1 1 2 
2 

n n Tn n -+--------
n n 

n 

1 n 

n Yn,i 
i =1 

2(n -k)log I n 

I T,, (O} 

2klog n 1 =l 

1 k 

'\(2). Yn,i 
l\.n , = 1 

with 

(7.13) 
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+ 2nlog 

2klog(l +xk) + 2nlog(l +xn) say. 

Note that xk =Bp
11
n (n -½) uniformly in k~Tn. Expand the two terms on the 

right-hand side of (7.13) in a second order Taylor series around xk and Xn 

respectively, to obtain that uniformly in k ~Tn 

l 1 

n n 

n n 

l 1 2 
1'11 'Tn 

Y~?} y~~i 
+ n n n(i=l )2 +'9 (n -lh) 

P," n 

y~~} y~~) 
n i = 1 i = 1 

1 1 Tn 1"11 

Y~?} y~~/ 
n n i = 1 i = I 

1 I n 1 k 

y~~i y~~} A (2) 
ni=l ki=l n 

1 l 2 -
2 

n n Tnn-k +------
1 2 n k □ 

n 

We pr by showing that the maxia.num likelih estimator Tn / n is incon
sistent under contiguous alternatives, i.e. the pendant of Lemma 7 .4 .. 1 .. 2 for 
exponentially distributed random variables. 

LEMMA 7.4.2.3. 

n .,.. n 
ogn 
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as well as 

n "' n 
II ogn 

for all On of the type (7.12). 

k-1 k 
PROOF. Let Tn(x)-Tn(k /n}, XE(-

n -
• 

k 

-1 k 
Yn,i 

Un(x) = ---, XE 
n n-

Yn,i 
i == 1 

From HAccou et al. (1985), we have that under Ho 
n(Vn(x)-x)2 

-
x(l-x) sup Tn(x) 

(loglogn}4 <x < 1 _ (loglof!!)4 

n n 

== o(loglogn ), ost surely. 

' 

(7.14) 

On a rich enough probability space, one can define a sequence of Brownian 
bridges {Bn(X ): O~x ~ 1} such that 

sup n½(Un(x)-x)-Bn(x) 
~oglog_n <x < 1 _ . logloW! 

n n 

= e(n-½Iogn), ost surely 

under Ho (see CsoRGO and REvisz (1981)). Thus under Ho· 

(x(l-x))½ (x(l-x))½ 
sup 

1 l 
1 <x<l- l ogn ogn 

n½ 
ost surely. 

' 

Combination of (7.14) and (7.15) yields that under Ho 
-½ 

sup [anTn(x)-bn] 
1 <x<l- I 

logn logn 

sup 
1 1 

1 <x<l- I ogn ogn 

bn] + o( I), al 1nost surely. 

Define a(pn) and b(pn) as in (7.9). From CsoRGO and REVESZ (1981) 

p 
I sup I 

1 <x<l- I ogn ogn 

(7.15) 

(7.16) 
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~> exp(-2e-s), -oo<s <oo. 

In view of (7 .16), this gives that under Ho 
sup I Tn(x) ½ = e(logloglogn )1

/2, al1nost surely. 
l l 

1 <x<l- I ogn ogn 
"' Theorem 7.4.2.1 now implies that under Ho, Tn / n ~ 1 / logn or 

Tn / n ~ 1 - 1 / logn with probability tending to one. · 
This is also true under Pe,, because On is contiguous to Ho- □ 

Finally, we show that Tn has asymptotic power equal to its asymptotic 
si...., · cance level at contiguous alternatives of the type (7 .12). 

'IHEOREM 7.4.2.4. For all contiguous alternatives On ==(}\~I) ,X<j) ,'fn / n) with 
(Tn/n) >yE(0,1) 

Po,,(an ITn l
1h -bn>s)-P1-1o(an ITn l½-bn>s) · > 0, -oo<s<oo. 

PROOF. Application of Lenu11a 7.4.2.2 gives that 

sup 1 ½ 

1-<.k ~ 
1 

n or n - _n_-<.k~n -1 
ogn logn 

The sa·cne line of reasoning as in the proof of Theorem 7.4.1.3 now leads to the 
required result. □ 

Of course, the results of this section can be extended to other fa 1ni]ies of dis
tributions. Now, consider the statistic 

max 
k .,,,. <-< 1-TJ,, 
n 

k 

where 0<11n <½. If no a priori knowledge about 'Tn is available, it is desirable 
to let 'Tin tend to zero. But then Tn still cannot detect local altem_atives 
On =(A~1>,>..~),Tn / n) with (Tn / n) >yE(O, 1). The order of magnitude of Tn for 
the case of no11nally distributed random va,·iables is given in Lemrna 7.4.1.1. 

7.5. HYPOTHESIS TESTING IN A REGRESSION MODEL WITH A CHANGE-POINT 

The two-phase regression model we study in this section is 
g(xk l) +£kif Xk~Y 

Yk = g(xk)[J(2) +£.k if xk >y 

where £1 ,£2 , • • • are i.i.d. random variables with var·iance a2, x 1 ,x2 , • • • are 
i.i.d. random va1iables, independent of £ 1 ,E2, • • • , with distribution H :R · ,R, 
and where g :R >Rr is a known function, with 
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00 

G- g(x)T g(x)dH(x) < oo. 
-oo 

The (J(i), i = 1,2, are own elements of Rr and y is the u .. ,.. own change
point. The continuous version of this model, where it is assumed that 

discontinuous model 1s a special case of the one considered m Section 5.3. 
Also Section 6.4 treats models of this fo1·1n. 

We showed that under re a.1~ity conditions, the least squares estj ma tors of 
(Ii), i = I, 2, are asymptotically normal, as long as the true underlying regres
sion function actually obeys two · erent re~· es. Example 6.8 cJa rifles what 
goes wrong if there is only one phase instead of two, and Section 7.3.1 and 
7 .. 4.1 give some more precise results for the case with t 1 not 01ally distributed 
and g=l (i.e. r = 1). We shall now rovide some heuristics for the testing 
probletp. flo1 fll) = ff2) against H1: fl 1 =/=fl..2). 

triction and let Bn, Ho be the least squares esti1nator given that Ho is true. The 
residuals test statistic is 

n " 
Tn = ;..,, (yk -g(xk)8n,Ho)2 

k=1 

Example 6.8 shows that Tn generally explodes at rate (9p(loglogn). Section 
7.4.1 establishes its local inefficiency .. Therefore, we shall consider other test 
statistics, which are the counterparts of the tests Tn,tJ! and t~,tJ! I introduced in 
Section 7.3.1, and for the situation_with a priori knowledge about the change
point, we present the analogue of Tn which was mentioned at the end of Sec
tion 7.4. 

We shall first write Tn in a convenient fo1·1n. Let Tn(Y) be the residuals test 
statistic given that the change-point is at y: 

n A 

Tn(Y) = (Yk -g(xk)8n, Ho 
k=l 

xk~Y, l~k ~n 

"th a<i) . = 1 2 th I ·- · WI un, 1 , i_ , , e east squares est11nators given y. Of course Tn(Y)~O. We 
shall write Tn(Y) in the form 

--T 
Tn(Y) = tn (y)tn(Y), 

t,,(y) defined below, and we shall consider test statistics that are functions of 
tn(y). 

Let Rn be the empirical distribution function based on x 1 , • • • , Xn and 
define -rn(Y) · nH,,(y). Let X(I) ~ • • • :S;"{n) be the order statistics and write 
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Y(I) 

• • 

X n,., • • 

• 

where Y(k) corresponds to the k-th order statistic "(k), k == 1, · · · n. Write 

Gn;y == X{y:X,,,y, Gn == Gn,oo, X,, == "'7,oo, Yn == Yn,oo· 

Then tn(Y) is defined for Gn,y and Gn -Gn,y non-singular: 

•( ) == Q-½A "n Y n;y n;y, 

with 
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• Given (x1, · · · ,Xn)=(x1, · · · ,xn), 
n½ /J,n(Y, Yo)(O I) -I) 2)), where 

has expectation 

and 

J.tn(Y, Yo) = Q;;,~/2 Qn(Y, Yo), 

Rn(Y, Yo) if Y~Yo 

Rn(Yo, y) if Y~Yo ' 

Now, define 

-oo 

and let W be a standard Brownian motion. Then 
e 

tn(y)-n½P,n(-Y,Yo)(fJ I) _I) 2)) ➔ Q;½ B(y) 

as process in ye{y: G1 and G-G1 have all eigenvalues >11}, 11>0. Here 
y 00 

-oo -oo 

We also have that for O<v~1/2 
e 

Q'P t ( )- ½QP ( )(8 1) -I) 2)) = ➔ Q_; 1h+PB(y) n,1 11 Y fl n,yP,n y, Yo 1 
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as process in yeR. 
This suggests test statistics of the f 01 m 

- -~ 
Tn = SU tn (-y)tn{'Y) 

{y: Gy and G-Gy hav all eigenvalues >11} 

which has limiting null-distribution 

SU BT(y)Q- 1 B(y) 
{1: G., and G-G., hav all eigenvalues >71} 1 

' 
• 

and 

with lirniting null-distribution 

sup er (y)Q.;-1 +2,, B(y). 
-oo<y<oo 

Moreover, one can construct uniforrn asymptotic confidence intervals for 
P,,,(Y,YoX01)-8 2)) ,Y, YoE{y: Gy and G-G.., have all eigenvalues >11} and 
for Q:,1~(y, y0)(fJ I) _8 2)), i,>0, yER. 

It will be clear however, that the asymptotic distributions are hardly of any 
practical use. One could alternatively approxi cnate the level of the tests pro
posed so far, by simulating from the null-distribution. However, in general the 
distribution of t:1 • be unknown. One could staa t up as· ulation r ure 
with the disturbances no11nally distributed with variance Un, where an is some 
consistent estirnator of a2, and with (x1, • • • ,Xn)== (x 1, · • · ,xn). Two draw
backs are of course the computer tj1ne needed and the assumption of no1tnal-
ity. . 

A more simple test statistic is 

-oo -oo 

where Cn is some positive (se111i-)definite matrix depending on_(x1 , • • • ,xn) 
and where the integral is taken over those values of y where trz(y) is well
defined. Note that 11nder Ho 

oo _ e oo 

Qn,ytn(y)dy > Q.;-½+vB(y)dy, O~v~½, 
-oo -oo 

i.e. the · "ting null-distribution is multi-dimension~ no11nal, with covariance 
matrix say. One can esti1nate V consistently by Vn say, using (xn, · · · ,xn) 
and a an. Hone chooses for C,, 

A-] 

Cn = Vn 

then the · 
dom. 

· ting null-distribution of T~,1/1 is chi-squared with r degrees of free-

The Pitman efficiency of T~,t/,, at some 
8 1)-(J 2> =n- 1

ht,., can be approximated by 
alternative (8 I) ,8 2), y0 ), with 
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- ,.. 
T - • • 

00 00 

fl.T 
.. .. 

Qn,yP,n(Y, Yo)dy Cn Qn,yP.n(Y, -Yo)dy A 
• -oo -oo 

"-½ "-½ 
(sum eigenvalues V n Cn V n ) 

• 

In the case of no1n1ally distributed errors with known variance, this is also an 
approxirnation of the Bahadur slope (see Section 7.3. l, where the Bahadur 
slopes for a special case are com uted). 

Test statistics of the type T n,l/1 could be called sum-type statistics and the 
tests based on the supremum over y max-type statistics. GMAN (1986) 
shows for a related problem (i.e. linear rank tests for a change-point) that for 
every sum-type statistic there exists a max-type statistic that is at least as 
efficient in Bahadur's sense. This indicates that our sum-type statistics Ti,1/1 are 
not efficient in the sense of Bahadur. However, the practical significance of this 
may be exponentially small. 

The sum-type statistics w~ mentioned above are easier to use in practice 
than the max-type statistics Tn and Tn,4'· BROWN, DURBIN and EVANS (1975) 
propose the CUSUM test statistic, a max-type statistic that is also easy to use 
in practice. 'Ibis test statistic is 

CUSUM == sup t:(y) 
'Y 

where 

l 
-½ 1 T ½ . 

n - 00 (1 + g(X(.,-,,(s)+ J))G;,-s g ("{-rn(s)+ I)) ) 

The limiting null-distribution of t:(y) is 
e 

t:(y) > aw• (H (-y)), 

as process in y, with w• a standard Brownian motion. 
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in a Multi-Dimensional Two-Phase Re~ ression Model 

8.1. DESCRIPTION OF THE ALGORITHM 

We calculate esti1nates for the two-dimensional version of the two-phase 
regression model of Section 5.2: 

y = min(a(I) +x 1> ,a.(2> +x/f..2>)+£, 

with x==(z1 ,z2)ER2 • ·s model is used to describe the lifetj1nes of plastic 
pipes for transportation of fluids as function of temperature and stress. The 
class li: is of the form 

= {{x:xy~l}: yER 2 ). 

Esti1nates are obtained from realizations {(xk,Yk), k = 1, · · · ,n} by the 
method of least squares. We mentioned already in Section 2.1 that the compu
tation can be done in polynomial tirne. At each partition it takes (9(n) time to 
find the least squares esti1nates given this partition. Since there are (9(n 2) 

different partitions of the data { x 1, • • • ,xn }, the total computation takes C9(n 3) 

time. We shall present an algorithm that reduces this to {9(n2). The algorithm 
n s constant time to find the estirnates at a given partition. Our experience 
however is that although asymptotically this is an improvement, the constant 
time needed at each partition is still substantial, i.e. of the same order of mag
nitude as n for moderate sample sizes (n, '70). Some nu111erical results are 
given in the next section (Tables 3 and 4). 

The main idea of the algorithm is to exploit the fact that estimates 
corresponding to one partition can be easily calculated from those at another 
pa •·tition, provided these partitions differ with respect to a Ji rnited number of 
points. The complexity of the calculations increases as a function of the 
number of points at which two partitions differ. Therefore, we aim at a 
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sequence of partitions such that successive par·titions differ in onl one point. 
Denote the partitions of== { x 1, · • • ,Xn} by P1 = { J) ,J52>}, with 

plicity, we assume that no three points of { x 1 , · • • ,xn} are on a line. In Sec
tion 8.2 we shall elaborate on the case with some points in {x 1, • • • ,xn} coin
ciding .. Other violations of the assumption that there are no three points on a 
line necessitate only minor adjustments in the algorithm. There are now 

, 

{ {x 1, • • · ,xn }, 0} because the least squares estimate · not consider this 
partition as feasible. _ _ 

The M partitions P1 are represented as vertices in a graph G==('E>,f), where 
'3> = {PL, · · · ,PM} ( we iden · vertices with the partitions they represent) and 
where r _denotes the collection of edges. Two partitions are connected by an 
edge in r iff they · er in only one point. We shall now describe a method to 
recognize some (not all) of the ~djacent vettices with little effort. The method 
defines a subgraph G=('3',f) of G with rcr. 

Let xk ==(zk, 1,zk. 2), k = I, · · · ,n. We assume that the first co-ordinates 
z 1, 1 ~ • • • ~Zn, 1 are in increasing order and that if zk, 1 =z1, 1 for some k=l=I, 
then zk, 2 <z1, 2 • Consider the line Lk,I through Xk and x,. Denote by Xk,J the 
2X2-matrix 

Write 

and 

ZJ, 1 

Zk I , 

Zk,2 Z/,2 

Zk, I Z/, I 

= x- 1 
Ck,/ k,l I ' 

dk,I = det(Xk,1). 

x,eJ ,J, xkeJ, and for m=/=k,l, XmEJ ~ iff XmCk,1<dk,l (see Fi e 8.1). 
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• 

FIGURE 8.1. Pk,J and some other partitions Pk,m 

In this way, we have defined a one-to-one correspondence between all pairs 
{(xk,x1): k <IE{l, · · · ,n}} and all partitions {Pj: j == I, · · · ,M}. 

The slope of Lk,t is 

- ck,l, 1 k <I 
C ' ' Zk, l ZJ, I k,I, 2 

with sk,l == oo if zk, 1 -z1. 1. We put the slopes in increasing order: s 1 ~ • · · ~sM 
(equal slopes are ordered arbitra1·ily in this sequence). Let Pj be the partition 
corresponding to the j-th slope in the ordered sequence. Define a graph 
G==('3',f), with two partitions Pj, and P12 ,j1<j2 , adjacent iff one of the fol-
lowing conditions holds: 

(i) pjl ==Pk,/, Pj,. == 
(ii) Pj

1 
Pk,J, Pj,. ==Pk,m and for j 1 <j <J2, P1 -Pq,r where q-=/=:l, r=f=l. 

LE 8.1. Let n be equal to 5 (see Figure 8.2) .. 

• 

FIGURE 8.2. n == 5 
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3,4 

2,3 

2,4 / 
4,5 .. ,. 1, 3 

I ,2 

-A 

• 

3,5 

1,4 

FIGURE 8.3. Ordered slopes 
The ordered slopes and the corresponding partitions are 

slope partition 
3,4 I 2 4 3 5 
1,2 211 4 3 5 
3,5 2 l 4 513 
1,4 2 4 I 5 3 
1,5 2 4 5 I 3 
1,3 2 4 5 3 I 
4,5 2 5 4 3 1 
2,5 512 4 3 l 
2,4 5 4 2 3 I 
2,3 5 4 3 2 1 

The graph G ==(~,f) is given in Figure 8.4. 

2,3 
3,4 

2,4 

2,5 

4,5 1,5 
1,3 

1,2 

3,5 

1,4 

FIGURE 8.4. (~,f) corresponding to the data of Figure 8.2 

Chapter 8 

Lerrn11a 8.1.1 asserts that two adjacent partitions in G ==(<8>,f) · er with 
respect to only one point. 
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FIGURE 8.5. P 1,5 = { {2,4,5 }, { 1,3}} is connected with e.g. P 1,3== { {2,4,3,5}, { 1}} 

LEMMA 8.1.l. 
-rcr 

PRooF. Let Pj, and Pj2 , j1<J2, be adjacent in r, with Pj
1

==Pk,t and 
Pj

2 
-Pk,m· Then there are no data-points x 0 such that the slope between x 0 

and xk is larger than sk,l and smaller than sk,m· Hence, the only point at which 
P11 and Pj2 differ is Xm- Si1nilarly, if Pj

1 
==Pk,/ and P11 -Pm,/ are adjacent, they 

can only differ in Xm. □ 

We shall show that G==(~,f) is a connected graph, i.e. there is a path from 
each vertex to any other vertex. · s is a desirable property because given esti
mates at one par·t.ition, one can follow the path to obtain estimates at any 
other partition. Let 

f(Pj) = { all vertices adjacent in G to Pj, including Pj itself}. 

LEM!vlA 8.1.2. G==('8>,r) is a connected graph. 

PRooF. . s can be shown by induction. Let Gn ==(<3'n,rn) be the graph 
representing the pa, titions and edges for a data set of size n. Obviously, the 
lermna holds for n == 2. 

Now, let Gn - I be the graph corresponding to {x 1, · • · ,xn -1 } and suppose 
that Gn-l is connected. All vertices in '8>n \ 0'n-I are of the form 
P1 ==Pa,n: a E { I, · · · ,n -1 }. Let P11 and Pj

2
, j 1 <}2, be two vertices in §)n -1 

which were adjacent in Gn -I, i.e. Pj
1 

EI'n - 1 (P12 ). Define 

B= 
{a: Pa,n==P1 for some}1 <j<J2}={a1, · · · ,ar} say 
0 if no such a exists • 
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We consider four cases: 
]1 , ]2 • , I 2 

P11 and Pj
2 

remajns in Gn. 

. Assume without loss of generality that x, = (0, 0). 

1 

Then sk,1<s1,n is equivalent to 

Zk,2 < Zn,2. 

Zk, 1 Zn, l 

This implies 

---------~. x, 
• 

• 

FIGURE 8.6. 

or, since Zn, 1 >0 and Zn, 2 -zk, 2 >0, 

' zk, 1 Zn, 1 Zk, 1 
Sk,n· 

ChapterB 

8.6 . 

In the sa1ne way, one can show that sk,n <s1,n, S/,n <sm,n and Sm,n <sm,l· Thus, 
one obtains a path 

Pk,/ ➔Pk,n >P1,n '>P m,n➔P m,I· 

In all four cases, we found that the edge between PJ
1 

and P12 remained in 
Gn or was replaced by a path. Clearly, all of the (n -1) vertices added to 6.Pn -1 

are adjacent to at least one vertex of <8>n -I. Since by induction Gn - I is con
nected, the le1nma follows. □ 

The connected graph G=(<B',f) has a connected subgraph Gr=(~,r r), r rCf 
with the mini r1J11.m n1:,,1nber (M -1) of edges. Such a subgraph is called a gen
erating tree. 
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2,3 
3,4 

1,2 

2,4 
.,. 

3,5 
• 

2,5 

1,4 

4,5 
1,3 

1,5 

FIGURE 8.7. Generating tree for Figure 8.4 
One can supply each branch in r r with an orientation such that for some ver
tex - called the root of the directed graph - there is a directed path from this 
vertex to all other vertices. 

The tree Gr endowed with orientations · define a path through the parti
tions. Starting in the root, one follows the directed branches until one reaches 
a vertex where there is no way out. Then one follows back the same path 
against the strean1, until a vertex is entered from whence one can take a 
directed edge to a not previously visited vertex. The fo1·mal description of this 
walk is given below. We create for the original graph G a generating tree Gr 
including root and orientations. 

{I) ALGORITHM FOR FINDING A GENERATING TREE 

( 1) Start in an arbitrary p(I) E <3>. 
(2) Given the vertices p(I), • - • ,p<s>: 

(a) find r =max. ..... t: 1 ~t~s, f(P<')) not a subset of {P(1), • • • ,p(s)} }, 
(b) choose a p(s l) E f(p(r)) \ p(l), ... ,p<s) }, 
(c) take the orientation from Pr) to p(s +I) .. 

(3) Stop if all vertices have been visited. 

While creating the generating tree, we si1nultaneously compute estirnates. 
Thus, estj1nates corresponding to partitions are found according to the order
ing p(I), - · · ,p(M) of the tree. We postpone the exact formulas for the esti
mates to the next section. Here, we only present a more or less verbal descrip
tion. 

The least squares esti1nates without continuity restriction at partition P1 are 

venience, and to stress the fact that these estimates need not respect the con
tinuity restriction, we sometimes write 01=81~0 and SJ=SJ,o. The issue of con
tinuity follows now. 

Define for each 81 

Y. = 1J(l) _ 1J(2) t'. = a(2) -a(I) 
J /JJ f'J , uJ J J • 
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Since 81 does not take the continuity restriction into account, partitions of the 
form 

{ { Xk: Xk l'j ~~j }, {Xk: Xk "Yj ;a:8j}} 

need not coincide with Pj. Therefore, we consider at P1 three types of res
tricted estimates. Suppose Pj -Pk,l· We let 01, 1 be the least squares estimate at 
P1 under the restriction 

a}; + xk P}~ = a}~ + xk P5: , (8.1) 

where (a;;i ,P;; r,a;:\ ,P5~ T) =OJ 1. Simjlarly, 91, 2 is the least squares estimate at 
P1 under the restriction 

a);1 + x,P)! = a}:~+ x,P}7 . (8.2) 

Furthermore, 01,3 · be the estimate at Pj under both restrictions (8.1) and 
(8.2). Obviously, the continuity restriction is always fulfilled at 81, 3. Denote by 
SJ,q the residual sum of squares at 81,q, q = 1,2,3. 

Now, let 81,°!1, be the optimal solution at P1 under the continuity restriction 
that some partition of the form 

{ { Xk: Xk "Yj,opt ~~j,opt }, {xk: Xk "Yj,opt ~8j,opt}} 

is the same as Pi. Here, YJ,opt and oj,opt are defined by 

'Yj,opt =fly;lpt -{J)~~t, ~J,opt =a)~Jpt -a5!Jpt· 
Note that 8j,opt need not be one of the 81,q, q =O, 1,2,3. Hpwever, the algorithm 
is such that nevertheless the overall opti1nal solution 8 · be found (see 
Lenarna 8.1 .. 3). 

,. 
(11) ALGORITHM FOR FINDING THE LEAST SQUARES ESTIMATE 8 
(1) At the root p(I) of the tree, the least squares estimates without continuity 

restriction are calculated, using a standard least squares program. These 
esti 1nates - and some au.xiliary va1iables - are stored. 

(2) Given estimates and a11xiliary vai~iables at p(I), · · · ,p<s), we choose an r 
as in step (2) of algorithm (I). The least squares estimates without con
tinuity restriction at p<s + I) are computed from those at p(r) according to 
the formulas given in Section 8.2. 

(3) 

fulfilled, fJ=IJj
0

, S =S7
0 

and the algorithm stops. 
( 4) If at fJi-0 the continuity restriction is not fulfilled, this necessitates the cal-

culation of 8i
0
,q and SJ

0
,q, q = 1, 2. . s can be done using the f or1nulas of 

Section 8.2. The algorithm replaces SJ
0 

by min{SJ
0
,q, q = 1,2} and 

searches anew for j 1 =arg min{ SJ: j E { 1, · · · ,M} }. Continuing this pro
cedure, one ends up with a sequence of indices j 0 ,j1, • • • ,Jr say. 

(5) If SJ, has already been replaced by an SJ,q, q = 1,2, the algori calcu-
lates fJJ,.,3 and S],,3 and replaces S7,,q, q = 1, 2, by S}r,3 · 
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Algorithm (II) results in an estimate (Jjopr,qop, corresponding to 

J "fH' opt ' 

does not compute all SJ,q, q = 1,2,3. That 81op,,qopr is actually the overall optimal ,.. 
solution fJ is shown in the fallowing le1nrna. 

L 8.1.3. 

(). 
}op,,qop, 

A. 

= 0. 

" 
PROOF. Clearly, if at each partition IJJ,opt were calculated, then 8= f))op,,opt, where 
01 op,,opt is the estimate,,.,,...corresponding to 

Thus, we only need to spow that the IJJ,opt that are not considered are not the 
overall optimal solution fJ. 

Let P1 =Pk,l· If 81,0 1 f£ { 81,q: q -0, 1,2,3} then there is an x 0 , a=/=k,l on the 
line {x: XYJ,opt -81,oyi • Suppose there is exactly one Xa, a=f=.k,l on this line. 
Consider the partition Ph generated by the line through Xa and some other 
point xb say. If Oh satisfies the continuity restriction, then Si<S~,q, q == 1,2, so 
then 8J,opt is not the overall optimum. If alternatively Oh does not satisfy the 
continuity restriction, then 8j,opt - oh,q for some q E { 1, 2}, so then oj,opt is con
sidered. 

Suppose there are two points Xa and xb, a=/=k,l, b-=/=k,/ on the line 
{ x : XYj,opt = 8J,opt}.. Let Ph now be the partition generated by this Xa and xb. 
The same line of reasoning shows that either OJ,opt is not the overall optimal 
solution, and/ or oj,opt = 8h, 3. □ 

8.2. NUMERICAL RESULTS 

We shall first present the for111ulas for the Oi,q and SJ,q· Let Pj
1 
=P(r) and 

Pj
2 

=P<s + I) be two successive partitions in the tree that differ in one single 
. t s p == {J(l) J(2) } . h J(l) Th porn Xm say. uppose 11 1, , 11 , wit Xm E 11 • en 

p(2) = {J(1) \ {x } J(2> u {x }} Let z(t) be the matrix of design-points 
]2 ]1 m ' }1 m · ]1 

zk =(l,xk) with xk Ely~>, i = 1,2. When the algorithm ar1ives at Pj
2 

the follow-
ing quantities are in store at PJ 

1 
: 

1) 

2) 

3) 

Z (i>Tz(i> -1 ,·=I 2 
}1 /1 ' ' ' 

the parameter estimates O)~), i = 1,2, 

the residual sum of squares SJ,. 

From these the B(i) Q(i) and si can be calculated: 
J2 ' J2 )2 

1) (8.3) 
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B(2) Z Z T B(2) 
B(2> (i) }1 . m m Ji 

]2 
m Ji m 

2) 1)(1) 
}2 

(J(l) + B(l)zT (y 
]1 )2 m m 

Z tJ(l)) 
m ]1 ' 

(8.4) 

(j(2) 
]2 

()(2) 
Jt 

B(2)zT (Y 
J2 m m 

z 0(2)) 
m ]1 , 

(y z 9(1))2 (ym Zm8}7))2 . 
3) sJ2 s~ + m m ]1 (8.5) • 

z B(2>zT · 11 I+ z B(1)zT l m Ji m m Ji m 

Given the unrestricted estimates fJj at some partition P1 -Pk,J say, one can 
also calculate the restricted estimates 81,q, q == 1,2, 3. Let 

and 

c. = j 

B(l) O 
BJ2> 

r. I ;., = (zk,-zk), zk=(l,xk), 

r1,2 = (z1, -z1), z1 =(l,x1). 

Calculate for q 1,2 

T 

1) cJ,q C· C1ri,q.'J,'J. c1 
'1,qc1,Iq ' J 

2) 8),q (}. 
J 

'J,qCJ,J,q ' 

3) SJ,q S1 + T • 
rj,qcj,j,q 

Given Cj,q, 91.q and S},q for some q E { 1, 2}, say for q = I, we have 

1) 

2) 

3) 

no need for further matrices 

C· 1r· 2rT20· 1 () = 8 - J, ], J, ' ], ' 
j, 3 j, I C T ' 

'J, 2 J, 1 rj, 2 

(JT 1r'f2r· 28· 1 
Si 3 = si + . ], J.· ], ,, 

J, J, 1 T . 
,1, 2 cj, 1 'J, 2 

We now describe how equal points in { x 1, • • • ,xn} are handled. Slopes sk,l 

are computed for the subset { xk
1

, • • • ,xk,,,} of different points. At the root of 
Gr the initial estirnates at p{I) are calculated using the complete data set 
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{(xk,Yk), k == 1, · · · ,n }. Estimates at P12 =P(s + 1> are found from those at 
pjl ==P(r) using the following transfor·mation. Let Xm E { Xk1, • • • ,Xkn'} be the 
point at which Pj, and Pj2 differ and suppose that there are p observations 
y~>, · · · ,y ) at Xm, i .. e. there is a group of the f 01·1n { (xm ,y~> ), t == 1, · · · ,p} 
in {(xk,Yk): k -1, · · · ,n }. In the expressions (8.3), (8.4) and (8.5) we replace 

- 1/2 d - ½ (t) 
Zm =(l,Xm) by Zm ==p Zm an Ym by Ym ==p - • Ym . 

t == I 
For the algori of Section 8.1 the computer progra111 NEWP was written 

in Pascal by M. Voors. A full description of NEWP can be found in VAN DE 

GEER and VooRS (1986). We first present the result of a simulation, with 
n ==20 and low noise level (Table 1). 

a<I) P\I) 13~1) a<2) p 2) p 2) 

Bo I 3 5 4 I 2 
"" 
I) 1.03 3.00 5.00 4.14 0.98 2.00 

Real data were supplied by a firm for the production of plastic pipes: 

y == log(life-tirne of a pipe) 

stress 
absolute temperature 

I 
absolute temperature 

There are n =295 observations. We first used the prograrn NONLINWOOD 
(see DANIEL and Woon (1980)). ·s is a program for computation of least 
squares esti1nates in a general nonlinear regression model. To obtain starting 
values for NONLI 00D, F. Burger wrote a special program for life-times
of-pipes-data, which calculates estimates at a hopefully representative subset of 
all possible partitions. The progra1n NONLI 00D was 1·1ln several times 
with va1'ying starting values and step sizes. From the outcomes we took the 
one with the smallest residual sum of squares. The result is given in the first 
row of Table 2. 

The prograrn NEWP is too costly to handle the complete data set on the 
interactive system to which we had access, even though after grouping equal xk 

there remained only n'=71 observations (see Table 3 and 4). Therefore, we 
sjk11ply threw away 11 observations. The data turned out to be more or less 
ordered with respect to temperature: in the second row of Table 2 high tem
peratures are disregarded whereas in the fourth row low temperatures are omit
ted. Note that throwing away observations from the reduced data set means 
not using more than four tirnes as many observations from the original data 
set. 
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nor n' 
(I) 295 
(2) 60 
(3) 60 
4 ( ) 60 

a(l) Pl p ·1) a.<2) p 2) 

-45.13 -50.19 21.82 -26.79 -22.55 
-56.20 -62.63 27.19 -41.93 -25.95 
-51.45 -69.99 26.74 -44.08 -27.09 
-41.20 -51.27 20.78 -39.11 -26.13 

TABLE 2. (l)NONLINWOOD, (2)NEWP I -60, 
(3)NEWP 6-65, (4)NEWP 12-71 

/322) s2 
12.21 47.20 
12.21 10.12 
18.47 10.45 
16.72 10.88 

Table 3 and Table 4 present an overview of the relative cost of NEWP as 
function of n'. 

n' SIMP NEWP TREE 
20 3.69 4.31 4.27 
30 6.32 8.01 9.04 
40 13.27 17.89 21.05 
50 29.86 73.33 82.24 
60 65.80 199.93 218.31 
71 *** *** *** 

TABLE 3. NP-costs,*** insufficient field length for load 

n' SIMP NEWP TREE . 
20 41735 43157 42401 
30 62724 64204 63376 
40 112567 114105 113277 
50 151306 152662 152054 
60 216733 220313 217505 
71 *** *** *** 

TABLE 4. CM-costs, *** insufficient field length for load 

The progra,o SIMP uses straightfo1ward calculations, i.e. no generating tree 
is created and at each pa r·tition the esti 11,ates are computed directly without 
making use of previously obtained esti1nates at other partitions. TREE does 
create the generating tree but it does not use it: estimates are computed as in 
SIMP. As to be expected, NEWP is cheaper than TREE as regards NP-costs 
(no1111al priority costs) but less economical with CM-costs (central memory 
costs). Rou y speaking, the · erence between TREE and SIMP represents 
the ti1ne needed for creating a generating tree. ·s tur:ns out to be very costly. 
In order to decide which partition · be next in the generating tree, the pro
gra 1n has to make about 20 comparisons at each partition. ·s may be sub
stantial, but we did not expect it to outweigh the e(n) effort needed for recal
culating esti n1ates at each pa1·tition. 
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