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P R E F A C E 

The papers in this book are dedicated to Leo A.M. Verbeek, professor of 
(Theoretical) Computer Science at Delft University of Technology 
(1968-1974) and at Twente University of Technology (1974-1987). 
Each of the authors has had the privilege to spend part of his scientific 
life in the stimulating atmosphere created by Leo Verbeek. Students. 
Ph.D. students, assistants. and colleagues have had the opportunity to 
benefit from his attitude and integrity with respect to teaching. 
research, and human relations. 

Unfortunately. not everyone who has been associated with 
Leo Verbeek could contribute to this volume. They could, however. 
attend the symposium held on the occasion of his retirement on 
October 16. 1987 at Twente University. Some of the papers in this 
book have been presented at this symposium. 

The editors are indebted to the Centre for Mathematics and Com
puter Science at Amsterdam, and in particular to its Publication 
Department, for the timely and fine technical realization of this 
volume. 

August 1987 

Peter R.J. Asveld, Enschede, The Netherlands 

Anton Nijholt, Brussels, Belgium 
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INTRODUCTION 

Peter R.J. Asveld 

Department of Computer Science, Twente University 
P.O. Box 217, 7500 AE Enschede, The Netherlands 

Anton NiJbolt 

Facul,ty of Sciences, Free University of Brussels 
Pl.einlaa.n 2, 1050 Brussels, Belgium 

Formal Approaches 
Although the papers in this book cover a broad range of topics, they 
possess a common theme: there is no area in Computer Science which 
does not benefit from a formal approach to its methods and concepts. 
Formal approaches in Computer Science require the separation of an 
abstract model from a concrete application and from particular imple
mentation issues. This separation enables computer scientists to study 
and prove properties of the model and to share or borrow other work 
using the same or similar models. 

The following aspects of modeling a subject matter can be dis
tinguished: 

• select or construct a model (or theory) and give an account of the 
domain to be modeled (i.e .• its concepts and processes) in terms of 
the model; assess its adequateness 

• modify - i.e .• extend, restrict, or take a different level of abstrac
tion - the model to grasp as much as necessary, in the best possi
ble manner 

• study the properties of the model and its modifications in order to 
obtain insight in its (descriptive) power and its limitations; this 
insight is useful for assessing its adequateness and it provides 
insight about the subject matter 

• once a formal description of a process - in terms of a particular 
model - has been obtained, then it can be used to build programs 
that facilitate the building or that allow the generation of (parts 
of) programs for the handling of these processes by a computer 

Concern for precision leads to formalization. Formal descriptions can 
be viewed as completely formal objects that can be studied, having 
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2 P.R.J. Asveld & A. Nijholt 

representations which can be manipulated. 

This book contains a collection of papers in which these different 
aspects of modeling subject matters can be recognized. Most papers in 
this volume deal with "artificial" situations. Their subject matters are 
human-defined or human-constructed languages and systems. The 
authors introduce and study formalisms. show how a subject matter 
can be modeled, or discuss the building and usefulness of tools for the 
generation of programs that facilitate the writing or processing of user 
programs. Ultimately, the introduction and study of the formalisms 
that are discussed in these papers have been inspired by practical con
siderations. Practical considerations may lead to intriguing theoretical 
problems. In some contributions to this book the authors concentrate 
on these theoretical problems and they accept that no foreseeable prac
tical application of the results of their investigations can be given. 

Each paper in this book will be discussed in some detail below. It 
is useful to introduce this book with some short remarks about each 
paper. Nijholt's paper is in fact a historical survey of attempts to go 
from intuitive methods, through a process of abstraction, refining and 
borrowing from other fields. to model-based methods in the area of 
(artificial) language description and manipulation. This paper is fol
lowed by a series of papers devoted to topics in some subfields of 
(Theoretical) Computer Science, or to topics and approaches which 
illustrate the aspects of modeling subject matters that have been men
tioned above. As mentioned earlier, most papers deal with the model
ing of "artificial" situations. i.e., what is studied and modeled are 
human-defined or human-constructed systems. Hoenkamp's paper is 
an exception, since it is concerned with an attempt to develop a realistic 
model for aspects of a human activity. viz. human reasoning. Engel
friet, Vogler, Hogendorp, and Asveld study properties of transducers 
and rewriting systems which have been introduced as models for 
describing aspects of languages and their processing by programs. Op 
den Akker studies and tries to formalize issues that rise when 
context-free grammars are used to model programming languages. It is 
an example of a theoretical paper based on observations on the world 
of compiler construction. Fokkinga takes concepts that can be recog
nized in actual programming languages and maps them into equivalent 
ideas in a mathematical formalism - the lambda calculus - to study 
these concepts. On the other hand the work of Kuper deals with some 
fundamental aspects of the lambda calculus itself. Sommerhalder 
presents in his contribution a summary of unification algorithms which 
are relevant in modeling the implementation of (logic) programming 
languages. File's paper addresses some decidability questions about 
properties of a formalism introduced to model aspects of inference 
making. Finally, the contributions of Alblas & Faase and of van 
Hulzen discuss the development of tools which generate parts of pro
grams. There are, however, important differences. The work reported 
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by van Hulzen fits in the tradition of offering programmers an environ
ment which facilitates the construction of software. Alblas & Faase's 
work is a contribution to the development of formalisms with which 
one describes the process of converting a completed program into an 
appropriate sequence of machine instructions. The ultimate aim of 
these formalisms is to obtain efficient programs that convert language 
specifications into a compiler. 

We conclude this introduction to this collection of papers with a 
short exposition of each of the contributions. 

Summaries of the Papers 
The first contribution to this book, From Mechanical. to Theoretical. -
Aspects of the Origins of Theoretical. Computer Science by Anton 
Nijholt, is a survey paper on those aspects of early Computer Science 
from which Formal Language Theory and Theoretical Computer Science 
emerged. The emphasis in this paper is on the early attempts to for
malize the description of programming languages and to delegate the 
conversion from program to machine instructions to the computer. 
Observations on the relation between BNF and Chomsky's phrase 
structure grammars are followed by a presentation of Knuth's 
attempts to characterize the generative power of BNF and his generali
zation of Iron's method of syntax-directed translation to attribute 
grammars. The paper continues with some views on the early develop
ment of Theoretical Computer Science and the developments of its 
subfields. The emphasis is on formal language theory and the relation 
with its domains of application and it is argued that the approaches in 
this subfield of Theoretical Computer Science have set an example for 
the other and more recent subfields. The author's exposition is con
cluded with some contemplative remarks on the interaction between 
theory and practice in Computer Science. 

The next paper, Generating Strings with Hypergraph Grammars. 
by Joost Engelfriet investigates the string-generating power of 
context-free hypergraph grammars. (Hyper )graph grammars constitute 
an obvious generalization of string grammars. Formal definitions of 
context-free hypergraph grammars and their string languages are 
presented and well-known families of string and tree grammars are 
viewed as hypergraph grammars. In addition some useful relationships 
with the set of dependency graphs of derivation trees associated with 
attribute grammars are established. The author presents characterim
tions of the string languages generated by the context-free hypergraph 
grammars in terms of tree-to-tree string transducers (deterministic 
tree-walking transducers) and 2-way deterministic finite state trans
ducers. 

In Modul.ar Tree Transducers, Heiko Vogler defines operations on 
trees with the help of tree transducers. Often, in practical applications, 
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these operations are naturally defined in a structural recursive and 
modular way. Vogler gives some examples of these operations and 
argues that existing formal models such as (generalized) syntax
directed translation schemes. attribute grammars and top-down tree 
transducers do not reflect both the recursive and modular aspects of 
these tree operations. Therefore he introduces a new formal device: the 
modul.ar tree transducer. After illustrating the adequateness of the 
model. its relationships with other. already existing. models are inves
tigated and some formal properties are established. 

Jan Anne Hogendorp generalizes in Nonterminal, Separating Mo.cro 
Grammars some structural definitions. originally introduced for 
context-free grammars. to macro grammars. Then he establishes a few 
characterization results for these macro grammars which are inspired 
by and similar to corresponding known results for context-free gram
mars. 

Peter Asveld summarizes in Complexity Aspects of Iterated Rewrit
ing - A Survey a number of results with respect to the complexity of 
the membership problem of some quite abstract grammar models. Ori
ginally. these abstract grammars have been defined as a generalization 
of some rewriting systems introduced in developmental biology where 
they serve as a model to study filamentous growth. Because these 
abstract grammar models are so general. decidability of and complexity 
bounds on the membership problem are of primary concern. 

Rieks op den Ak.ker's paper On Covers and Left-Gomer Parses 
takes the reader to the area of parsing theory and transformations on 
context-free grammars. Often the objective of transforming a grammar 
is to obtain properties which make the grammar more amenable to cer
tain parsing methods. However. there may be reasons to retain the 
syntax of the original grammar. Hence. after parsing its result should 
be given in terms of the original syntax description. These ideas have 
been modeled with the concept of cover. Op den Ak.ker introduces a 
transformation with some desirable properties which allows the 
definition of a cover between the transformed and the original gram
mar. In addition. the transformation has the property that it yields an 
LL (k ) grammar if and only if the original grammar is LC (k ). The 
traditional cover concept can be viewed as expressing a semantically 
useful but nevertheless syntactic similarity relation between context
free grammars. In the final section of the paper the question is raised 
how to generalize this relation to one between attribute grammars. 
This would allow. for example. attributed variants of transformations 
for left factoring, for the elimination of left recursion, and for 
transforming one class of deterministically parsable attributed gram
mars to another class of deterministically parsable attributed gram
mars. Existing approaches are discussed and suggestions are presented. 
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In the contribution Programmi,ng La.nguage Concepts - The 
Lambda Cal.culus Approach Maarten Fokkinga shows the benefits of 
expressing program.ming language concepts in the framework of 
Church's lambda calculus. Once expressed in this formalism, the pro
perties of a programming language concept can be studied without 
reference to a particular programming language. Obviously. such a 
study may prove useful for the design of new programming languages 
and for a correct understanding of present programming languages. 
Fokkinga illustrates the significance of the lambda calculus for this 
study by expressing a variety of programming language concepts in this 
calculus or its extensions. Readers who are not familiar with the 
lambda calculus do not have to worry since it is introduced as a simple 
programming language with a clear syntax and semantics. Once this 
has been done. syntactic and semantic abstractions of various program
ming language constructs are added to this language. This approach 
allows the introduction and discussion of various useful principles for 
programming language design. Much attention is paid to a description 
of typing. Various theories are discussed, but the emphasis is on SVP
typing, the author's own approach to this problem. 

In the next paper the lambda calculus is not used to study pro
gramming language concepts, but it becomes object of study in itself. 
A Representation Pnncip1.e for Sets and Functions by Jan Kuper is a 
study based on the observation that in the literature on models of the 
lambda calculus selfapplication for functions is considered to be quite 
normal, whereas selfmembership for sets is considered to be undesir
able. Intuitively, this distinction is strange. In order to study this dis
tinction two views on sets and functions are introduced. One view 
considers them as intuitive objects, the other view considers them as 
mathematical objects. The consequences of these different views for 
models of the lambda calculus and for the relationship between such 
models and set theory are investigated. 

Unification is a well-known problem in algebra and logic. Its 
practical importance increased enormously since the introduction of 
Prolog and logic programming in general. In order to obtain efficient 
implementations fast string unification algorithms are necessary. In 
Uni,jication - An Overview Ruud Sommerhalder presents formal results 
on the decidability and the complexity of unification. In addition the 
problem to generate unification algorithms for various equational 
theories is discussed. 

In the paper of Gilberto File, The Relation Between Two Patterns 
with Comparob1.e La.nguages, properties of patterns are studied. Pat
terns are strings consisting of terminals and variables. They may be 
converted into terminal strings by substituting terminal strings to the 
variables. Patterns have been introduced in the context of (inductive) 
inference making. However. the paper is not concerned with this par
ticular application. It studies the formalism by considering a rather 
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natural problem: if we consider two arbitrary patterns, is it decidable 
whether the language generated from one pattern includes the other 
language? This question is given a detailed treatment in which several 
restricted variations of the problem are distinguished. 

Henk Alblas and Frans Faase write about Attributed Abstract Pro
gram Trees. Traditionally, attribute grammars can be viewed as an 
extension of context-free grammars. The grammar symbols are aug
mented with attributes and the grammar rules have associated attri
bute evaluation rules. For a given derivation tree the values of the 
attribute instances at the nodes of the tree can be computed using the 
attribute evaluation rules. Alblas and Faase consider attributes for 
abstract program trees. In these trees information which is redundant 
for further phases in the compilation process is deleted, allowing a 
more compact and simplified representation. In the synthesis phase of 
the compilation this representation has to be translated into the 
instructions of the target machine. The ultimate goal of the authors is 
to specify this translation by a stepwise application of tree transforma
tions. Their paper concentrates on the initial phase of their research: 
the introduction of a formalism for the specification of the structure 
and the attributes of abstract program trees. 

Hans van Hulzen·s paper on Program Generation through Symbolic 
Processing is on the use of a computer algebra system as a facility to 
assist in the construction of programs for numerical purposes. Such an 
application requires a symbolic-numeric interface to transport informa
tion from the symbol processing environment to the numeric processing 
environment. After a discussion on the functioning of computer alge
bra systems and their rich variety of output features, illustrated with 
the REDUCE system. some approaches to the development of 
symbolic-numeric interfaces are presented. Van Hulzen mentions pack
ages and tools to construct programs using output produced by com
puter algebra systems. Special attention is paid to Barbara Gates· work 
on the code GENeration and TRANslation package GENTRAN which 
allows REDUCE (or MACSYMA) users to generate complete and 
efficient programs for numerical purposes. The author reports on his 
present work which aims at o:ff ering REDUCE users integrated facilities 
for (arithmetic) code optimization and program generation. 

In Non-Monotonic Reasoning in Man and Machine Edward Hoen
kamp presents a fundamental discussion on an area in the foundations 
of Artificial Intelligence. namely that of non-monotonic reasoning. 
Humans are able to reason with incomplete and vague information. 
They have default assumptions about the domain and unless evidence 
to the contrary is presented they are unaware of these assumptions 
when they draw conclusions. When new information comes available 
and tacit assumptions are contradicted then certain beliefs have to be 
revised and earlier conclusions based on these beliefs have to be dis
carded. Hoenkamp surveys the approaches that have been taken to 
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model these aspects of human or "default" reasoning. Traditional sys
tems of logic can not be used. When new truths. i.e. new axioms. are 
added to a system then there is no reason to retract earlier conclusions. 
It is this non-monotonic aspect of default reasoning which is difficult to 
formalize. Some approaches that have been taken are McCarthy's 
method of circumscription. the introduction of default rules in the 
traditional logics. and the introduction of so-called meta-devices. A 
well-known example of a meta-device is Doyle's Truth Maintenance 
System (TMS). a system that supports non-monotonic reasoning by 
detecting inconsistencies and by resolving them by altering beliefs. i.e. 
retracting premises. By keeping track of the justifications of conclu
sions TMS can maintain a consistent database of beliefs. 

In the present paper the pros and cons of these logical approaches 
are discussed. One of the shortcomings that is mentioned is that the 
logical approaches allow the derivation of differents sets of beliefs but 
that there is no explanation why people prefer one set over the others. 
In order to study this phenomenon the author turns to a set of well
documented psychological experiments in which the participants are 
hoaxed. i.e. they are deceived about the true nature of the setting of the 
experiment. After the experiment they are "dehoaxed ... i.e. an attempt 
is made to convince them that they have been hoaxed. Hence people 
are asked to change their beliefs. One of these experiments is taken to 
develop a model. based on Doyle's TMS. with which the changes from 
one state of belief to another can be shown. This model is then 
extended to allow the handling of degrees of belief and changes in the 
degrees of belief during the experiment. 





From Mechanical to Theoretical - Aspects of 
the Origins of Theoretical Computer Science 

Anton NiJbolt 

Faculty of Sciences, Free University Brussels 
Pkinlaan 2, 1050 Brussels, Belgium 

Some aspects of the prehistory and the background of Theoretical 
Computer Science are discussed. We consider the introduction of 
notations to describe dynamic processes, the change to the algo
rithmic specification of problems and the attempts to develop pro
grams to make programming easier. The impact of Chomsky's 
theory of generative grammar, its reception and its relationship with 
the BNF-description are discussed. Observations on formal language 
theory and its development into Theoretical Computer Science con
clude this (sketchy) survey. 

1. Viewing Programs as Data 

Notations for Computations 

During the Second World War, after having studied the work of the 
logicians Frege. Hilbert, and Carnap. Konrad Zuse started to develop an 
extension of the propositional and predicate calculus for the description 
of problems for a digital computer. The dynamic process of computa
tion which needs to be described requires that a notation should be 
given for an assignment operation. Since Zuse·s "plancalculus" had to 
be mathematically exact, a notation z + 1 = z with the intended mean
ing: "The new value of z is obtained by adding one to its old value", 
could not be used. Therefore the notation z + 1 ==> z was introduced. 
Knuth and Trabb Pardo [34] remark that such an operation had never 
been used before and they mention that the systematic use of assign
ments distinguishes computer-science thinking from mathematical 
thinking. Another distinction is constituted by the formal description 
of the control mechanism for a computation. In mathematics, even in 
proofs, this is done informally. In the plancalculus the idea of struc
tured data was incorporated. Moreover. Zuse used to state the 
mathematical relations between the variables in his programs, in this 
way giving the start to a theory of program correctness. Zuse·s ideas 
were hardly published and only in the seventies, when interest in the 
history of computers and computing started to develop. his writings 
received attention. One of the first example programs written in this 
language dealt with the checking of the well-formedness of Boolean 
expressions. Instead of Zuse's theoretical and logic-based approach the 
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more pragmatical approach came to dominate the development of pro
gramming languages and programming theory. 

In 1945 John von Neumann wrote his "Draft Report" on the 
EDV AC. In this proposal each 32-bit word was either a number or an 
instruction word. In an instruction word the specific operation was 
denoted by a group of adjacent bits. In this way there were instruc
tions for. among others. addition. multiplication. the transfer of the 
contents of memory locations to registers, test instructions and jump 
instructions. A program had to consist of a sequence of instruction 
words in binary form. In a separate memorandum von Neumann 
wrote a sorting program to test whether this set of instructions would 
be adequate for the control of a nontrivial computation. Von Neumann 
did not write the program in binary notation. Instead he used a private 
notation which came close to a symbolic code. That is. instead of 
presenting instruction words by 32 bits. they were presented with a 
few suggestive words, mostly in a one-to-one correspondence with a 
decomposition (e.g .. in operands and operators) of the binary instruc
tion words. 

Most of the computers constructed after the war were patterned 
after EDVAC's design and were programmed in machine code. i.e., with 
binary coded instructions which operate on the contents of memory 
locations and on the registers or accumulators of the computer. The 
coding of a problem with such instructions is a difficult task with a 
high chance of errors. Therefore symbolic or mnenwnic code was 
developed, and once a program was completed it was translated into 
machine language. This translation was done by humans. The next 
step was to have this translation done by the computer itself and to 
use (almost) conventional mathematical notation and arithmetic 
expressions in these symbolic codes. H. Rutishauser in Switzerland and 
the logician Haskell B. Curry in the United States were among the first 
to consider and program this problem. 

Machine-oriented symbolic code uses the symbolic rather than the 
actual bit-addresses of the memory locations and also the operations to 
be performed are given symbolic (mnemonic) names. In a simple sym
bolic code there is a one-to-one correspondence with the actual 
hardware operations. Despite this improvement programming remains 
a tedious task. Therefore libraries of short programs for standard 
operations and frequently occurring (numerical) computations were 
developed. Hence. 

"All that the programmer has to do is to punch the address in 
which the routine is stored into his main programme." 

(cf. [6]. p. 77). Goldstine [23]. giving an account of the situation at the 
Institute for Advanced Study in Princeton. remarks: 

"One of the first developments in automatic programming was 
introduced in the fall of 1949 on the EDSAC, where the 
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conversion from the symbolic form to the machine one was 
done by the computer itself. . . . . We did not work on what are 
now called higher-level languages. Attention instead was 
focussed on developing of libraries of programs (routines, sub
routines) that cmdd be used repeatedly to save the labour of 
rewriting them many times." 

11 

Subroutines had names and such a name can be considered as a 
macra-instruction which stands for a set of machine instructions. The 
task of an "automatic coder" consists of translating the instructions of 
the symbolic code into machine instructions. This coder or assembler 
takes care of the assignation of machine addresses to the operand 
names, machine operations to the operator names. and the proper treat
ment of the macro-instructions. Once this frame of mind has been 
accepted it becomes clear that it is possible to introduce operations, 
instructions, and control structures in a symbolic code. This further 
reduces the necessity of knowledge of the machine code and makes it 
possible that users which are only familiar with their own problems 
can use the computer. Especially the need of having a way to use a 
notation closer to the customary way of writing mathematical formu
lae started the departure from symbolic codes to programming 
languages. One of the first computers which had this possibility was 
the M.A.D.M. computer of Manchester University (Great Britain). 
With their notation it was possible to describe the numerical calcula
tions (addition. subtraction. and multiplication) and the organization 
of the calculations into an automatic process. For the latter 13 English 
words were used. An example of a "numerical calculation" in this 
description is + x + y + z + a + b -+ c . In [6] it is explained that sub
routines could be evoked by writing the word subroutine followed by a 
number describing which subroutine is meant. 

"By an extension of this technique it would be possible to call 
for the particular subroutine by name . . . . This has not yet 
been done as the gain in convenience would be too small to 
warrant the trouble.'' 

Algebraic Compilers and Formula Translators 
The more complicated '"automatic coders" which were now needed were 
called compilers. A compiler was not only able to convert a simple 
assignment statement with an expression, like, e.g .• a := b +c Xd into a 
sequence of instructions of an assembly-like code but it also converted 
computational contro.i structures and other programming constructs 
into appropriate sequences of machine instructions. The building of 
these compilers provided another view on the use of a computer. Until 
then most of the applications had to do with the computation of 
numerical results. Hence, both the input and the output of a program 
consists of numbers. A compiler, however, is a program which takes as 
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input a program and generates from it another program. Grace M. 
Hopper was aware of this viewpoint when she wrote one of the first 
compilers. In 1949 Francis (Betty) Holberton had already written a 
program which generated another program. In an interview Hopper 
once remarked: 

"Everyone's forgotten that Betty wrote the first program that 
wrote a program, a sort/merge generator. Because she had 
been ahead of me, I had a good deal, more nerve in going 
ahead to "build the A-0 compiler." 

In the same interview (cf. [41]) Hopper recalls another experience 
which had an eye-opening effect on the Harvard staff. An insurance 
company came to Harvard to run a problem on the numerically 
oriented MARK I computer using digits to represent alphabetical char
acters. Hopper: "That opened up a new perspective none of us had ever 
thought of." Hopper's A-0 compiler was built for the UNIVAC com
puter and it was completed in 1952. The compiler was written in the 
following way: 

"There sat that big beautiful, machine whose job was to copy 
things and do addition. So I thought, why not let the com
puter do it. That's why I sat down and wrote that first com
piler. It was very stupid. What I did was watch myself write 
a program and make the computer do what I did. That's why 
it is a single pass compiler, .... " 

The first programming codes were very close to the machine and 
symbolic codes of the machines for which they were used. Also in 
Germany and Switzerland, most notably by K. Zuse and H. 
Rutishauser, the idea of automatic program construction ( .. Automa
tische Rechenplanfertigung") was conceived. In March 1951 
Rutishauser lectured on this subject at a meeting of the West-German 
GAMM (Gesellschaft fiir Angewandte Mathematik und Mechanik). 

The IBM 701 computer could be programmed with "Speed Code'". 
developed by John Backus. For the BIN AC and UNIV AC computers a 
"Short Code" was used. An interpretive routine processed each 
instruction and then the necessary actions were performed. Later these 
machines used the A-0 compiler which did not interpret but instead 
composed a machine code program from the scanned instructions. The 
A-0 compiler handled a code which hardly differed from the machine 
code. Codes which allowed mathematical notation for formulae were 
handled by so-called al.gebraic compilers. During the period 1951-1957 
various of these compilers for specific machines were developed. 
Among the earliest were the Autocode compiler of A.E. Glennie of the 
Royal Armaments Research Establishment in England. written in 1952, 
and the Whirlwind compiler written in 1953 by J.H. Laning and N. 
Zierler of MIT (Massachusetts Institute of Technology). 
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A milestone was the building of the first FORTRAN (FORmula 
TRANslator) compiler. The work started in early 1954. The emphasis 
was not on the design of a language but on the production of a com
piler for the IBM 704 computer. This machine was considered to be so 
powerful that only a few of them would be constructed. In [51] one of 
the designers. John Backus, remembers that in the beginning: 

"We certainly had no idea that languages almost identical to 
the one we were working on wauld be used for nwre than one 
IBM computer, not to mention those of other manufacturers." 

Hopper once remarked that programmers felt insulted when their pro
grams were treated as if they were data. The early programmers were 
sceptical about obtaining efficient programs by writing in a .. high-level" 
language. Hand-coded programs would run faster and would need less 
memory. Their ingenuity could not be matched by a machine. There
fore. in the case of FORTRAN. the efforts were directed towards the 
construction of an efficient translator rather than towards the design of 
a well-structured language. FORTRAN remained close to the 704's 
machine code and a compiler was constructed that produced code which 
could compete in speed with that of experienced programmers. More
over. it was soon recognized that any loss of efficiency was compen
sated by an increase in the programmer's productivity and a reduction 
of the training required for programmers. 

FORTRAN allowed the writing of expressions in the statements of 
a program. The programmer should be informed what form of the 
expressions is expected by the FORTRAN compiler. Below is an exam
ple of the "syntax" specification of (mathematical) expressions as it 
appears in the original FORTRAN Manual. It is borrowed from a par
tial reprint of this manual in [51]. 

Formal Rules for Forming Expressions. By repeated use of the follow
ing rules, all permissible expressions may be derived. 

• Any fixed point (floating point) constant. variable. or subscripted 
variable is an expression of the same mode. Thus 3 and I are fixed 
point expressions. and ALPHA and A (I.J.K) are floating point 
expressions. 

• If SOMEF is some function of n variables, and if E. F, ....• H 
are a set of n expressions of the correct modes for SOMEF. then 
SOMEF(E.F, ... ,H) is an expression of the same mode as SOMEF. 

• If E is an expression, and if its first character is not + or - • then 
+ E and -E are expressions of the same mode as E. Thus -A is an 
expression, but + - A is not. 

• If E is an expression then (E) is an expression of the same mode as 
E. Thus (A), ((A)). (((A))). etc. are expressions. 

• If E and F are expressions of the same mode. and if the first char
acter of F is not + or - . then E + F. E - F, E x F. and E IF 
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are expressions of the same mode. Thus A - + B and A I + B are 
not expressions. The characters +. - . X, and / denote addition. 
subtraction. multiplication and division. 

It is interesting to note the amount of detail in this specification 
and, moreover, that in fact this "syntax" is presented as a generative 
system (" ... by repetitive use of ... "). Moreover, the specification is 
such that the .. syntactic" rules take care of the modes of the expres
sions. On the other hand. without associated rules of precedence for 
the operators this set of formal rules conceived as a generative system 
yields ambiguous expressions. In order to analyze these expressions 
and translate them into an assembly-like language J. Backus and I. 
Ziller developed a technique which inserted parentheses in the expres
sions. By Sheridan [47] the validity of their method was shown. 

The programming language ALGOL. which was developed a few 
years later. was not designed with a specific machine in mind. ALGOL 
grew from attempts from the West-German GAMM and the ACM 
(Association for Computing Machinery) of the U.S.A. to obtain a stan
dard programming language. Unlike FORTRAN. which was an 
., Automatic Coding System" for the IBM 704. ALGOL was a language , 
it had a grammar and an attempt was made to have a clear distinction 
between syntax and semantics. In 1959. at a UNESCO conference in 
Paris, Backus presented the work of a committee on the design and the 
description of this language: cf. [1]. It had its syntax described by for
mal rules, which became known as the Backus Normal Form descrip
tion of the ALGOrithmic Language ALGOL 60. In a preliminary report 
of 1958 on this "International Algebraic Language" the notation did 
hardly differ from that of FORTRAN. At this Paris conference, in 
other sessions. work was presented on discovery procedures for phrase 
structure grammars and in a session on mechanical translation V.H. 
Y ngve presented the MIT programming language CO MIT which was 
intended to be used for mechanical translation purposes. In a footnote 
of Yngve·s paper it is mentioned that "Some of the features of the nota
tion used by N. Chomsky in his theory of grammar has been incor
porated." 

2. Language as a Mathematical Object 

Ma.thematics and Grammar 

In the 19th and 20th century attempts to formalize mathematical 
proofs led to the introduction of formal theories and formal languages 
of logic. In 1879 Gottlob Frege introduced his "Begriffschrift, a for
mula language, modeled upon that of arithmetic, for pure thought .. in 
order to unify and extend existing notations and the use of formal 
language for reasoning in fields such as arithmetic. geometry and chem
istry. Members of the Wiener Kreis studied formal languages of logic. 
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Church. Post and Turing introduced and studied symbol manipulating 
formalisms. In 1943 E.L. Post recognized that the customary proof 
systems can be considered as rewriting systems, that is, systems that 
formalize the rewriting of strings of symbols in order to obtain new 
strings. Post introduced a formalism consisting of an axiom and a 
finite set of productions (rules of inference). Similar systems had 
already been st.udied by the Norwegian logician A. Thue in 1914. 
Another logician, Y. Bar-Hillel. became one of the main representatives 
of the fi.eld of machine translation. Instead of using statistical and 
cryptological methods he suggested the use of (structural) linguistic 
methods. In 1951 Bar-Hillel wrote: 

"A considerable body of descriptive data about the languages 
of the worl.d has been amassed in recent years, but so far no 
operational, syntax of any natural, language exists with a size
able degree of completeness, and the necessity of providing 
such a syntax has apparently not been recognized by 
linguists." 

With this .. operational syntax" it should be possible to analyze the 
sentences of a natural language. This analysis should form the basis of 
the translation. Instead of having a mere word-for-word translation 
this analysis should lead to a phrase-for-phrase or sentence-/or
sentence translation. Bar-Hillel discussed these matters with R. Car
nap and N. Chomsky since 1951. A fi.rst approach, using ideas of the 
Polish logician Ajdukiewicz. to the .. mechanical" determination of the 
syntactic structure of sentences was given by Bar-Hillel in 1953; cf. 
[4]. During the same years Noam Chomsky was concerned with the 
question what part of linguistics could be made purely formal without 
reference to semantics. In 1953 Chomsky introduced an axiom system 
for syntactic analysis; cf. [7]. 

Although it was not the prime interest of the money supplying 
agencies part of the research on machine translation was devoted to 
theoretical issues related to word and sentence analyzing problems. At 
MIT linguistics was classified as a .. communication science" and there
fore it obtained more financial support from the military than at other 
universities. Since 1955 Chomsky was assigned to a research project, 
headed by V. Yngve. on machine translation in the Research Laboratory 
of Electronics at MIT. One of the results of this project was the earlier 
mentioned COMIT programming language. Most of the linguists on the 
project were not much interested in these applied problems and spent 
their time on general linguistic problems. In 1955 Chomsky finished a 
manuscript called The Logical Structure of Linguistic Theory. A 
.. sketchy and informal" version of this manuscript was used as course 
notes of an undergraduate course at MIT and it was published under 
the name Syntactic Structures [9]. This book inaugurated a revolution 
in linguistics by considering a g:rammar as a generative system. That is, 
a finite device that can produce all and only the sentences of the 
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language. It should be done in such a way that this production reveals 
our competence of constructing sentences. Hence. contrary to the pre
vailing viewpoints in linguistics. which were inftuenced by behavioristic 
psychology. Chomsky introduced again. in the tradition of nineteenth
century linguists (e.g .• von Humboldt). a mentalistic interpretation of 
language into linguistics. Other nineteenth-century linguists (e.g .• de 
Saussure and de Courtenay) had already given thought to the use of 
mathematics for linguistics. However. due to Chomsky a mathemati
cally oriented mode of thinking was introduced into linguistics. His 
first publication did not appear in a linguistic journal but in Journal of 
Symbolic Logic. and in the early discussions on generative grammars 
his work was compared with the specification methods for well-formed 
mathematical formulae. In [14] it is remarked that: 

"In fact, a real. understanding of how a language can (in 
Humboldt's words) "make infinite use of finite means" has 
developed only within the last thirty years, in the course of 
studies in the foundations of mathematics." 

After the Second World War the introduction of formal models 
in the different branches of science was widespread. Technological and 
mathematical approaches to the study of human behavior started to 
:flourish and it was thought that natural sciences could be extended to 
describe and explain phenomena of human mind and cognition. The 
pursuit of a precise formulation of the notion of grammar can be illus
trated by the emphasis which laid by many authors in the early nine
teen fifties on their mathematical approach. This is re:flected in the 
titles of their publications by using the words .. logical syntax" (also 
used by Carnap) ... model", "axiomatic syntax" ... syntactic calculus", 
.. quasi-arithmetical notation... etc. During these years formal models 
were sought for the method of constituent analysis. Initiating work on 
this topic had been performed by Wells [50] and Harris [27]. They 
have been considering .. linear" schemes (in contrast to hierarchic) from 
which sentences can be obtained by substitution of elements which 
have the correct distribution. Chomsky [9]. however, introduced the 
following model: 

"Customarily, lingui,stic description on the syntactic level is 
formul.ated in terms of constituent anal.ysis (parsing). We now 
ask what form of grammar is presupposed by description of 
this sort. As a simpl.e example of the new form for grammars 
associated with constituent anal.ysis, consider the following: 

(13) (i) Sentence -+ NP + VP 
(ii) NP -+ T + N 
(iii) VP -+ Verb+ NP 
(iv) T-+ the 
( v) N -+ man. ball •... 
( vi) Verb -+ hit. took •... 
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Suppose that we interpret each rule X -+ Y as the instruction 
"rewrite X as Y". We shall call (14) a derivation of the sen
tence "the man hit the ball", where the numbers at the right 
of each line of the derivation refer to the rule of the "gram
mar" ( I 3) used in constructing that line from the preceding 
line. 

(14) Sentence 
NP+ VP (i) 
T + N + VP (ii) 
T + N + Verb + NP (iii) 
the+ N +Verb+ NP (iv) 
the+ man+ Verb+ NP (v) 
the + man+ hit+ NP (vi) 
the + man + hit + T + N (ii) 
the+ man+ hit+ the+ N (iv) 
the+ man+ hit+ the+ ball (v) 

... We can represent the derivation ( 14) in an obvious way by 
means of the following diagram:" [cf. Figure 1.] 

Sentence 

~ 
NP VP 

I\ 
T N V~P 

I I I /\ 
the man hit T N 

I I 
the ball 

Figure 1. Representation of derivation (14). 
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It is worth noting that unlike immediate constituent analysis a 
generative grammar as used in Chomsky's example predicts the gram
matical sentences. The grammar is a finite and explicit characterization 
of the grammatical sentences. In the tree the dominance and precedence 
of the constituents which constitute the sentence is shown. This domi
nance and precedence can give a formal account of ambiguity of sen
tences. Another aspect to be mentioned is recursion. The rule 
NC -+ NC Conj NC is an example of a recursive rule. It can be 
applied recursively without a limit to the number of applications. 
Recursion is of interest for the description of embedded sentences. In 
the example X -+ Y has been interpreted as '"rewrite X as Y", where 
X should be treated as a single name or symbol. In Syntactic Struc
tures it is also allowed that the rules have the form xAy -+ xwy, 
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where A is a single symbol or name and x • w. and y are strings of 
symbols or single names. Hence, in the context of x and y it is 
allowed to rewrite A to w . 

The Chomsky Hierarchy 

In [11] a mathematical investigation of classes of formal grammars and 
languages is presented. Here. a language is a set of strings of finite 
length over a ( terminal) alphabet. A grammar consists of a vocabulary 
V which is subdivided into two disjoint sets. the terminal alphabet :E 
and the nonterminal alphabet N. and a finite set of rewrite rules. 
Alphabet N contains a distinguished symbol. the so-called "Sentence
symbol", mostly denoted by S or by "Sentence". Let a be a symbol in 
:E: x • and y • and w be words over V and let A and B be symbols in 
N. A grammar is said to be unrestricted (type 0) if its rules are of the 
form x -+ y • context-sensitive ( type 1) if its rules are of the form 
xAy -+ xwy (w is non-empty), context-free (type 2) if its rules are of 
the form A -+ w. and finite state (type 3) if its rules are of the form 
A -+ a or A -+ aB . Hence, by imposing restrictions on the forms of 
the rewrite rules different classes of grammars are induced. Starting 
from the sentence-symbol we can repeatedly apply the rewrite rules. 
The language which is generated by the grammar consists of the strings 
of terminal symbols which can be obtained with this process. 
Languages generated by finite state. context-free. context-sensitive, and 
type O grammars are called finite state. context-free, context-sensitive, 
and type O languages, respectively. It can be shown that the induced 
hierarchy of families of languages is proper. 

In Chomsky's paper the names "context-sensitive" and "context
free" were not yet used. The first occurrence of the name "context
free" in the literature appears in [12]. Finite state grammars had been 
presented before as finite state diagrams (finite state Markov processes) 
in communication theory. The adjective "regular" had been used by 
S.C. Kleene to denote certain sets of strings (regular events). These 
sets turned out to be equivalent to the finite state languages defined by 
the Markov processes. Since then finite state languages have also been 
called regul.ar languages. Later it became clear that they could be 
defined with the above given type 3 restriction. Due to Post, unres
tricted grammars (semi-Thue systems) were already a well-known for
malism in Logic. The language which is generated with an unrestricted 
grammar is also called a recursively enumerabk language. The family 
of languages which have the property that for each string it can be 
decided whether or not it is in the language are called the recursive 
languages. This family is properly situated between the families of 
context-sensitive and recursively enumerable languages. A grammati
cal characterization of this family is not available. 
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3. Computer Science Has Its Eye on Grammar 

The ALGOL 60 Report 

19 

In May 1960 the ALGOL 60 report was published (cf. [37,38]). fol
lowed by a flood of papers. letters to the editor. etc .. on the ALGOL 
definition and on compiling ALGOL. However. none of these authors 
refers to Chomsky's phrase structure grammars for describing 
languages. ACM decided to use ALGOL as the language for communi
cating algorithms and authors were invited to present algorithms in 
ALGOL 60.t An ALGOL BuUetin was set up and made part of ACM's 
newsletter SIGPLAN Notices. In 1970, due to .. :financial reasons" it 
was again separated from this newsletter. 

The ALGOL 60 Report presents the ·· defining" language of 
ALGOL. It is expected to be the basic reference and guide for compiler 
builders. In the (Revised) ALGOL 60 Report the formalism for syntac
tic description is explained as follows. The syntax is described with 
the help of metalinguistic formulae. Their interpretation is explained 
by the following example in which we use two formulae. 

<unsigned integer> ::= <digit> I <unsigned integer> <digit> 

<digit> ::= 011121 314151 6 I 7181 9 

Sequences of characters enclosed in the brackets < and > represent 
metalinguistic variables whose values are sequences of symbols. Hence. 
in the first formula we have two metalinguistic variables. <unsigned 
integer> and <digit>. In the second formula there is only one. viz. 
<digit>. The marks ::= and I (the latter with the meaning of .. or") 
are metalinguistic connectives. Any mark in a formula. which is not a 
variable or a connective, denotes itself. Hence. the marks 0, 1. 2, 3, 4, 
5, 6, 7, 8 and 9 denote themselves. Juxtaposition of these latter marks 
and/or variables in a formula signifies juxtaposition of the sequences 
denoted. Thus the formulae above give a (recursive) rule for the for
mation of values of the variable <unsigned integer> and a rule for 
values of the variable <digit>. Two kinds of expressions in 
ALGOL60 are 

<expression> ::= <arithmetic expression> I <Boolean expression> 

Other metalinguistic variables obtain similar formulae. For exam
ple. 

< arithmetic expression> ::= < simple arithmetic expression> I 
<if clause>< simple arithmetic expression> ELSE<arithmetic expression> 

and in the same style a set of values of < simple arithmetic expression> 
are 

t "AU contributiDns wtll be refereed both by hwnan beings and by an ALGOL compiler." 
(From the ACM Algorithms Policy). 
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< adding operator> ::= + I .;_ 

< multiplying operator> ::= X I / 

<primary> ::= <unsigned number>l<variable>I( <arithmetic expression>) 

<factor> ::= <primary> I <factor> T <primary> 

<term> ::= <factor> I <term> <multiplying operator> <factor> 

<simple arithmetic expression> ::= <term> I <adding operator> <term> I 
< simple arithmetic expression> < adding operator> <term> 

In the previous paragraph only the context-free part of the 
definition of ALGOL 60 has been considered. In the ALGOL 60 Report 
a similar definition is followed by sections with examples and con
siderations on semantics, and with constraints on, e.g., the types 
(modes) of the constituents of the expressions. For example, 

a. An arithmetic expression is a rule for computing a numerical value. 
This value is obtained by executing the indicated arithmetic opera
tions on the actual numerical values of the primaries of the expres
sion. 

a.1 The actual numerical value is obvious in the case of numbers. 

a.2 For variables it is the current value (assigned last in the 
dynamic sense). 

a.3 For arithmetic expressions enclosed in parentheses the value 
must through a recursive analysis be expressed in terms of the 
values of primaries of the other two kinds. 

b. The constituents of arithmetic expressions must be of types "real" 
or "integer··. The operators +. -, and X have the conventional 
meaning (addition, subtraction. and multiplication). The type of 
the expression will be "integer" if both of the operands are of 
"integer" type. otherwise "rear·. 

c. The sequence of operations within one expression is generally from 
left to right, with the following additional rules: 

c.1 According to the syntax given the following rules of precedence 
hold: 

first: T. second: X /. third: + -
c.2 The expression between a left parenthesis and the matching 

right parenthesis is evaluated by itself and this value is used in 
subsequent calculations. 

We have omitted the "semantics" of / and T. and a discussion on the 
interpretation of "real" numbers and variables. This added English 
text on semantics and constraints will be helpful for a compiler builder 
but it is not complete and precise. Interesting are the rules of pre
cedence between operators. They are "according to the syntax given". 
Hence. the syntax does not only define the "well-formed" sequences of 
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symbols which form an arithmetic expression, but the way the syntax 
is organized determines the semantic interpretation of the expressions. 
If a is the name of a variable with current value 2 then the answer to 
the question whether a +4x 3 will be interpreted as an expression with 
numerical value 18 or 14 will depend on the underlying syntax of this 
expression. This dependence can be explained with the help of syntax 
trees. 

Formal Description of Formulae and Languages 

In [5] a short survey is given of the early work on the formal descrip
tion ("rules of spelling") of arithmetic and Boolean formulae with and 
without parentheses. Most of this work is done by logicians between 
1930 and 1950. Later. algorithms were designed which checked the 
well-formedness of these formulae and which were able to evaluate 
them. One of the earliest algorithms for evaluating arithmetic formu
lae is due to H. Rutishauser. The algorithm was made suitable for a 
sequentially working process by C. Bohm in 1952. In one of the first 
FORTRAN compilers similar ideas were used. Before evaluation a 
preprocessor inserted parentheses in the formulae in order to make 
them fully parenthesized. 

The recognition that arithmetic and logical expressions could be 
parsed and converted into assembly-like instructions led to the concept 
of a high-level programming language. In [51] the designer of the 
JOVIAL language recalls that an article on expression analysis (cf. [52]) 
was quite a revelation to them. It was one of the significant things 
which made them decide to develop a high-level language for program
ming the future U.S. Air Force's air defense systems: 

" ... , but the idea of being able to understand and parse com
plex expressions in itself was of sufficient interest to motivate 
our efforts." 

Roughly summarizing. the following "mechanisms" can be dis-
tinguished: 

• rules of well-formedness 
• · algorithms which check well-formedness 

• formalisms which generate the well-formed formulae 

• algorithms which reveal the way a well-formed formula has been 
generated by the formalism 

• algorithms which evaluate expressions to a numerical or Boolean 
value. 

The BNF description of ALGOL 60 is merely a set of rules of 
well-formedness. The ALGOL reports do not provide the notation and 
the terminology to derive, produce. or generate the well-formed pro
grams. However. there is the intention to link well-formed programs 
to conceptual structures by means of meta-linguistic formulae. 
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Moreover, there is the underlying assumption which says that the asso
ciated semantics is .. syntax-directed", that is. derivable from the con
ceptual structure of the program. ff the BNF description is interpreted 
as a context-free grammar, then it allows the generation of the well
formed sequences of symbols which constitute ALGOL 60 programs. 
Checking well-formedness of computer programs has become known as 
checking whether a program is syntactically correct. Analyzing the 
program, in the sense of revealing the structural description, has 
become known as parsing. The algorithms for the evaluation of 
expressions have developed into compiling algorithms. These algo
rithms presuppose a parsing algorithm which reveals the structure. 
From this structure code can be produced which will be used to do the 
actual evaluation of the expression. 

BNF versus Context-Free 

"Is your Clwmsky really necessary?" (F.G. Duncan, in [48]. p.298). 

Historical notes on BNF and some fighting about its introduction 
can be found in [51]. The fighting is done in a paper by P. Naur, com
ments on Naur's view by F.L. Bauer and K. Samelson, and in the tran
script of a question and answer session. Both Bauer and Backus men
tion that the use of the notation came from similar notation in 
mathematical logic. Backus remarks: 

"As to where the idea came from - it came from a class that I 
took from Martin Davis . ... , talking about the work of Emil 
Post and the idea of a production. It was only in trying to 
describe ALGOL 58 that I real.ized that there was trouble 
about syntax description. It was obvious that Post's produc
tions were just the thing, and I hastily adapted them to that 
use." 

(p.162 in [51]). Also in [51] J.E. Sammet discusses the syntax descrip
tion of COBOL in relation to BNF. 

"Unfortunately, because on one hand we called this a notation, 
and on the other because it was a metalanguage quite different 
from that proposed by Backus in his paper, it became very 
fashionable and quite comnwn to say (at least orally if not in 
writing) in 1959-1961 that COBOL had no formal definition. 
I think anyone wlw looks will indeed recognize that the syn
tax of COBOL was (and still is) defined in just a formal way 
as ALGOL 60; ... I would venture to guess that more 
languages are defined today using some variation of the 
COBOL metalanguage than are actually defined today using 
(even a variation of) BNF." 

The BNF description of ALGOL was not appreciated by an IBM 
representative who suggested, after working through the description of 
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ALGOL 60, to add a new entry to Webster's Dictionary. Algolagnia: 
"The finding of pleasure in inflicting or suffering pain."t In 1964 Knuth 
suggested to use the name Backus Naur Form in order to honor P. 
Naur's work as editor of the ALGOL Report. 

In the August issue of Comm. ACM Gorn [24] discussed some 
basic terminology of mechanical languages and their processors. How
ever ... BNF', .. context-free language" or .. formal language" are words 
which are not used. In December, however, Gorn [25] remarks that 

"The specification restrictions impllcit in Backus normal form 
place the languages so specified in the class of "Phrase Struc-
tur Lan " " e guages. 

In the reprinted version of this paper (in: Readings in Automatic 
Language Processing. D.G. Hays (Ed.), American Elsevier, 1966) this 
citation is immediately followed by: "more specifically, they are the 
"context-free languages"", being the only change in the text of the 
paper. In Comm. ACM S (1962) at p.62 we find a Research Summary 
reported by S. Gorn, October 1961, which is titled .. Theory of Mechan
ical Languages" and which mentions research into the relationship 
between Chomsky's phrase structure languages and the languages 
specified with Backus normal form. And on p.185 of the same volume 
we find an interesting discussion in the .. Letters to the Editor" section 
between Knuth and Gorn. Knuth starts his letter by remarking that he 
is interested in Gorn's papers 

" .. . primarily because I have been doing a bit of research in 
my spare time considering various implications of "Backus 
normal form".'' 

Then Knuth continues with a discussion on the generative power of 
BNF: 

" . . . the class of strings ab , aabb , aaabbb , etc., can be 
represented in Backus notation, ... the class of strings abc, 
aabbcc, aaabbbccc, etc., cannot be represented in Backus nota
tion." 

And, in the tradition of Fermat, Knuth concludes with: 

" . . . (I have constructed formal proofs of these facts.) The 
whole subject is quite fascinating." 

At that time it had already been shown that in Chomsky's for
malism the language aba, aabbaa, aaabbbaaa, etc., is not context-free 
(cf. [45]) and in 1960 Bar-Hillel and others (cf. [3]) had introduced 
tools for proving such negative results. Ginsburg and Rice [21] (the 
paper was received in February 1961) further discuss the relationship 
between BNF and phrase structure. Here we see the formal statement 

t Similar remarks have been registered at the reception of the Operation Manual of the 
ENIAC and the ALGOL 68 Report. 
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that 

A. Nijholt 

"The defining scheme for ALGOL turns out to be equivol.ent to 
one of the severol. schemes described by Chomsky in his 
attempt to analyze the syntax of naturol. languages." 

Twenty years later Ginsburg remarks (cf. [22]) 

"That observation opened the flood gates for formal language 
theory.'' 

In two papers Floyd [19,20] showed, using Bar-Hillers technique, 
that programming languages are not necessarily context-free and that it 
is undecidable whether a context-free grammar is unambiguous. The 
latter problem became interesting when it turned out that the initial 
BNF description of ALGOL was ambiguous. However. it became clear 
that considerable parts of programming languages could be defined 
with context-free grammars. Research concentrated on this class of 
grammars and languages, and more general formalisms sometimes were 
obtained as generalizations based on the context-free grammars. 

The various names which were used for the type 2 grammars and 
languages (e.g., (context-free) constituent structure grammar, (simple) 
phrase structure grammar, push-down store grammar, ALGOL-like 
grammar, BNF description. context-free grammar) sometimes gave rise 
to confusion during these early years. Examples of thi~ confusion can 
be found in discussions included in the proceedings of a Working 
Conference on Mechanicol. Language Structures (cf. Comm. ACM, 
February 1964). See also the proceedings of the IFIP Working Confer
ence on Formal Languages: Desaiption Languages for Computer Pro
gramming (cf. [48]) held in New York in September 1964. 

4. The Im.pact of Compiler Construction 

Beyond a Context-Free Description 
In the ALGOL 60 report the syntax of the language was expressed for
mally by means of BNF. Natural (English) language was used to 
express the semantics. Because of the use of BNF rules other. similarly 
defined, languages have been called ALGOL-like languages. However. 
ALGOL is not ALGOL-like. Its BNF rules define a superset of the 
ALGOL language and only by satisfying some restrictions, expressed 
verbally in the defining report, the ALGOL language is obtained from 
the production rules. The same observation can be made for other pro
gramming languages. i.e, additional conditions consisting of context
sensitive dependencies have to be satisfied. Checking of these depen
dencies can be done during parsing or in a subsequent pass of the com
piler which is concerned with the semantic interpretation. Hence, the 
(context-free) parser accepts a superset of the programming language 
and auxiliary information is used to reject the incorrect programs. Res
trictions which filter out the syntactically correct programs from a 
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language which is otherwise described with a context-free grammar 
have become known as contextual constraints. Sometimes these con
straints are referred to as static sema.ntics. See e.g. [35]. where Koster 
explains that static semantics is " ... syntax expressed verbally because 
of impossibility to treat it in a formal way." That is. with a syntax for
malism more powerful than a context-free grammar or BNF this 
"semantics" could have been part of the formal syntax. Although the 
common user of a programming language can be presented a more 
understandable description of the language it is advantageous to have a 
formal description of the static semantics. It provides the compiler 
writer a guide for the implementation and in certain cases the user may 
find it necessary to have an understanding of the details of the 
language. Moreover, programs which automatically generate (parts of) 
compilers need a formal description of their input. 

ALGOL 60 was introduced and subsequently studied as a 
language with a distinction between syntax and semantics. In the 
theoretically oriented research first interest focused on syntactical 
questions and on more powerful formalisms which could define a more 
complete syntax of a language. Moreover. formalisms were introduced 
which lend themselves to the description of the translation from high
level programming language to machine or assembly language. In a 
later stage researchers started to think about defining semantics 
independently from the compilation process. 

In general the attempts to automate the production of those parts 
of a compiler which explicitly deal with the translation are based on 
certain enrichments of context-free grammars. There are obvious rea
sons why in compiling theory the concept of context-free grammar 
never has been abandoned. Context-free grammars give comprehensible 
descriptions of languages and they are easy to handle. A context-free 
grammar is a rigorous mathematical object and therefore it has well
defined properties. It is decidable whether an arbitrary string is part of 
the language of a context-free grammar and there exist methods for 
automatically constructing parsers from a context-free grammar. On 
the other hand, context-free grammars do have some deficiencies. The 
syntax specification can sometimes lead to rather long lists of produc
tions, it is not possible to accommodate the above-mentioned contex
tual constraints and, last but not least. in compiler construction we are 
interested in the translation from the programming language to an 
intermediate language or to, ultimately. some form of assembly code. 
Therefore a formalism which accommodates these tasks is desirable. 
Various generalizations of context-free grammars and BNF have been 
introduced addressing one or more of these deficiencies. Some of these 
generalizations are introduced from the point of view of being able to 
generate or accept a more powerful class of languages, without consid
ering the possibility of efficient parsing and translation methods. 
Explicit use of contextual constraints can be found in formalisms 
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which maintain the BNF:..syntax specification and augment it with 
predicates. Ledgard [36] gives an example of the specification of PL/1 
with a formal notation called Production Systems. In his notation 
context-sensitive requirements such as the compatibility between the 
declaration of an identifier and its uses and the correspondence between 
actual and formal parameters are described by including "predicates" 
in the productions which should be satisfied in order to obtain legal 
strings. Similar descriptions have been given for the semantic rules of 
BASIC and ALGOL 60. 

Consider now the second reason why context-free grammars are 
not satisfactory for the description of programming languages. 
Although not presented in a completely formal way, E.T. Irons [31] 
explicitly defined the problem of translating from source text through 
the intermediate level of a syntax tree to the semantics (meaning). A 
possible solution was given, that is, 

" ... , a translation using the description can be effected by 
fitting already discovered syntactic units ( starting with the 
syntactic units which are the basic symbols of the language) 
into the syntactic structure to produce a new set of larger syn
tactic units, and assign meanings to these new units according 
to the meanings of the original units." 

The aim of this approach was to produce an ALGOL 60 compiler. It is 
generally assumed that Irons' paper started the research on syntax
directed compiling. Irons· ideas amount to defining the semantics by 
associating meanings to each nonterminal symbol of the grammar and 
associating semantic rules to each production. These rules define the 
meaning of the nonterminal symbol in the left-hand side as a function 
of the meanings of the symbols in the right-hand side. This can be 
considered as an application of Frege's principle of assigning meaning to 
composed constructs. 

A first approach to a formalization of Irons' ideas has led to the 
introduction of syntax-directed translation schemes. These schemes 
define string-to-string translations by means of "lock-stepped" deriva
tions in two related context-free grammars. The translation string can 
be considered as the meaning of the original sentence. Consider a 
context-free grammar rule, say A --+ aBcD where A, B and D are 
nonterminal symbols and a and c are terminal symbols. A simp/,e 
syntax directed translation scheme (simple SDTS) has rules of the 
form, say A --+ aBcD, pBqDr where p, q and r are called translation 
symbols. This rule can be viewed as consisting of two rules, a 
context-free source rule A --+ aBcD and an associated context-free tar
get rule A --+ pBqDr. The idea is that when a sentence w is generated 
with the source rules its translation is obtained by simultaneously 
rewriting the associated target rules. Hence, if we start with (S ,S), 
where S is the start symbol. then a translation (w ,w') is obtained. 
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where w' is a sequence of translation symbols. From a more practical 
point of view string w' can be considered as a sequence of semantic 
routine calls for evaluating the semantic rules of the productions and 
make certain checks when necessary. The result of a routine call can be 
a piece of code or text in the target language. 

So far the simple SDTS is a definition of a string-valued transla
tion with a possible practical interpretation. From the parsing point of 
view the recognition of (parts of) the rule A -+ aBcD during context
free parsing invokes the routines represented by p • q and r . The 
above-given quotation suggests a rule of the form A -+ aBcD. BDr 
where the only routine r is called when the complete production 
A -+ aBcD has been recognized during parsing. The target rules of the 
SDTS determine the moment when the routines are invoked. The 
(parsing) properties of the context-free source grammar in combination 
with the form of the target rules determine whether an efficient trans
lation process is possible. Before going to the next generalization it is 
useful to introduce yet another point of view on the translation pro
cess. The rule A -+ aBcD. pBqDr can be considered as the definition of 
the translation associated with a particular node in the parse tree with 
label A. In this view w' is the translation at the root S of the tree and 
at node A the translation is the string consisting of the symbol p • fol
lowed by the string which is the translation at node B (a direct des
cendant of A). followed by the symbol q. followed by the translation 
at node D (a direct descendant of A ). followed by the symbol r. 
Hence, with the following self-explaining notation. the rule can be 
written as 

A-+ aBcD. t(A) = p t(B)q t(D)r. 

Now it is possible to introduce multiple translations at a node. For 
example, 

A -+ aBcD. t1(A) = p t 2(D). t 2(A) = t 1(D)r t 2(B) 

and at the root S of the tree we can obtain multiple translations of 
sentence w. 

Instead of string-valued translations more general translations 
can be introduced. Moreover. it might be necessary to check con
straints which have to be fulfilled at certain nodes of the parse tree. In 
this way each grammar rule. say A -+ aBcD. is accompanied by a set 
of translation rules which determine the .. translations'" of A as a func
tion of the .. translations·· of the symbols which appear in the right
hand side of the grammar rule. Instead of .. translations" it is more 
appropriate to speak of attributes of A and their values. Instead of 
"translation rules'" it is now more appropriate to speak of semantic or 
attribute (evaluation) rules. Values are assigned to the attributes of A 
by evaluating the rules which are associated with the grammar rule 
A -+ aBcD. In [33] the next generalization is presented. In Knuth's 
attribute grammars each vocabulary symbol of the context-free 
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grammar has an associated finite set of attributes which describe the 
properties of that symbol. Each attribute has a not necessarily finite. 
fixed domain· from which its values are taken. Attribute evaluation 
rules associated with the production rules of the grammar determine 
the values of the attributes. In the schemes above the meaning or 
translation at a node in the parse tree was given as a function of the 
meaning of its descendants. One may expect that in certain cases the 
context plays a role. In that case part of the information which deter
mines the meaning at a node in a parse tree may come from outside its 
subtree. As a consequence, the .. meaning" which is obtained from the 
subtree dominated by a node may depend on this context information. 

In order to describe the latter situation Knuth distinguished 
between two types of attributes. If the attribute values are obtained 
from the values of the ancestor or from the siblings of the node in the 
parse tree then the attributes are called inherited. If they are obtained 
from the descendant nodes the attributes are called synthesized. Apart 
from the formal setting provided by Knuth, the main novelty of attri
bute grammars is the added feature to define the semantics .. top-down" 
by the inherited attributes. Since the evaluation is not necessarily in a 
single direction the semantic rules of an attribute grammar can give rise 
to a circular definition. That is. it is not necessarily the case that for 
each parse tree of the grammar there exists an evaluation order which 
guarantees that the arguments of a semantic rule have already been 
evaluated when this rule has to be executed. When such an evaluation 
order exists the grammar is said to be well-defined or non-circular. 
There exist algorithms for deciding well-definedness. Once the 
(context-free) syntax tree has been constructed it is possible to evalu
ate the attributes associated with its nodes. Conditions for well
definedness have been developed which make it possible to evaluate the 
attributes in a fixed number of passes over the syntax tree. Interesting 
cases are those which permit attribute evaluation in a single left-to
right pass and those where the syntax analysis and the attribute 
evaluation can be done together in a single pass from left to right. 
Since in general the programming language will be a context-sensitive 
subset of the language generated by the underlying context-free gram
mar. semantic conditions on the productions must be satisfied by the 
values of the attributes in order to obtain a legal sentence or a program. 

Attribute grammars are more directed towards the handling of 
semantics in the practical situation of compiler writing than towards 
the formal definition of semantics. Other attempts have been made to 
give complete and formal definitions of programming languages. The 
first aim to do so - to have a formal definition which can help in the 
construction of an implementation or which can be used as input to a 
compiler generating system - has already been discussed. The second 
aim is to provide a model in which the meaning of a program is defined. 
The model can be used to prove that programs satisfy claimed 
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properties. Most of the attempts started with the description of 
ALGOL 60. These attempts were invited by the success of its formal 
syntax definition. Markov algorithms were used by de Bakker [2]. 
Others used Church's lambda calculus or recursive functions. For one 
of ALGOL's successors. the language EULER. the semantics was defined 
by showing how the syntactic constructs should be translated to an 
informally described assembly code. In a formal setting this approach 
consists of the definition of an abstract machine and a mapping of the 
syntactic constructs of the language to the operations of this machine. 
The :first language to be defined this way was LISP in 1960. by John 
McCarthy. In denotational semantics each syntactic construct is associ
ated with a mathematical function which expresses its meaning. Hence, 
we have a mapping from a linguistic domain to a domain with well
understood mathematical concepts which model the semantics. The 
resulting meaning of a program is based on its inductive structure. 

Automatic Production of Compilers 

"We call the preparation of a grammar BNF programming, and the pr<r 
cess of modifying it until acceptohle, BNF debugging." (W.M. McKee
man, et al. A Compil.er Generator. Prentice-Hall, 1970; p.183). 

Every program has its own input language. Sometimes this 
language is simple. e.g., when the only input which is allowed is a list 
of numbers in a predefined format. Sometimes the input language is 
rich, e.g., when the input consists of a program which has to be checked 
on syntactic correctness or when the input consists of a compiler 
specification. The approach to compiler construction where a compiler 
specification is converted by a program into a compiler has been pur
sued since the early sixties when a prototype of such a system was 
developed for the ATLAS computer of the University of Manchester 
(Great Britain). The following enthusiastic review appeared in Datama
tion 7, May 1961, p.27: 

"With ATLAS comes a new approach to symbdic program
ming. Dr. RA. Brooker, of Manchester University, has dev
ised a scheme in which any programmi,ng language can itself 
be defined. In effect, this scheme enohles one to "teach" 
ATLAS any language one chooses, after which the computer 
can accept programs written in that language, it is a compiler 
of compil,ers." 

It is necessary to have a meta-language to describe a compiler for a 
specific language. The BNF or context-free grammar notation of a 
specific syntax can be considered as a meta-language. In its turn this 
meta-language can be described with a (simple) grammar. The input of 
a parser generator can consist of a specific set of BNF rules, that is. a 
sentence in this meta-language. A compiler writing system will require 
more than a set of BNF rules. Its input language can consist of sets of 
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BNF rules supplemented with semantic information. A formal attri
bute grammar notation can be considered as a meta-language in which 
the input of compiler writing systems is expressed. This notation can 
gradually evolve into a special purpose programming language suitable 
for writing compilers. Such a language is much less error-prone than 
different formalisms and notations for scanning. syntax, error and 
semantic analysis, and code generation. It should satisfy the condition 
that only straightforward transcriptions have to be done from the 
language designer's definition grammar to the description which will be 
input to the system. 

Floyd [18] was among the first to recognize the necessity of creat
ing a special description language for compilers. Obviously, the 
language was first used in the development of an ALGOL 60 compiler. 
A modified version of this language was used by Evans [15] and it 
became known as the .. Floyd-Evans Production Language". Feldman 
[17] introduced the description of semantics in this language. His For
mal Semantic Language (FSL) was the basis for a compiler-compiler: 

"In the present form FSL itself can be considered a problem 
oriented computer language. The problem involved is the 
representation of meaning in computer languages." 

Often these compiler description languages are simple. e.g .• 
without assignment and hardly any control structures. On the other 
hand some of them have grown to general system implementation 
languages with classical control structures and abstraction and exten
sion mechanisms. Sometimes it is possible to recognize the original 
grammar formalism and intended parsing method in the language 
definition. 

5. Towards Theoretical Computer Science 

Form.al Language Theory 

"We live or die on the context-free languages." (S. Ginsburg. in [22], 
p.7). 

The introduction of the Chomsky hierarchy led to a flood of 
papers on mathematical and, to a lesser degree, linguistic properties of 
its grammar and language classes. Especially machine characterizations 
of the various language classes were sought. Turing machines were 
known to be equivalent to type O grammars. By Chomsky [13] and by 
Evey [16] a pushdown automaton as a recognizing device for context
free languages was introduced. In the next subsection we discuss the 
introduction of pushdown stacks in computer science. There exist 
methods to convert a context-free grammar to an .. equivalent" push
down automaton and vice versa. In the early 1960s these conversions 
were not immediately clear. It was necessary to get used to the idea 
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that instructions of the automaton could be carried out without read
ing the input and, more importantly. that nondeterminism was an 
essential concept. Nondeterminism had been used before in the charac
terization of regular languages by finite automata: cf. [10]. By Rabin 
and Scott [43] it was shown that for these simple devices nondetermin
ism was not really necessary. Each nondeterministic device could be 
converted into an equivalent deterministic device. At that time 
researchers were not yet used to nondeterminism; cf. [26]. 

Machine characterizations of languages could be viewed as models 
of parsers for these languages. At first. parsing methods were not 
based on theory. The following quotation (cf. [30]) on the construc
tion of the FLOW-MATIC compiler might be instructive. 

"In order to quickly pick up the word - we didn't know any
thing about parsing algorithms at that point in time - and 
what happened was you picked up the verb, and then jumped 
to a subroutine which parsed that type of sentence. In order 
to do that quickly, and also to make it easy to manufacture 
that jump, the first and third letters of the verbs in FWW
MATIC were unique." 

However. soon it became clear that in writing programs languages were 
involved and language became an object of study in computer science. 
When the relation between the syntax specification of ALGOL 60 and 
the context-free grammars was established and, moreover. E.T. Irons 
had shown how to use the syntax specification in the construction of 
an ALGOL compiler. computer scientists started to show interest in 
parsing methods. 

Context-free grammars could be shown to be equivalent to (non
deterministic) pushdown automata. Suppose that we write a parsing 
program which uses the (nondeterministic) pushdown automaton in 
such a way that it tries all possible choices until a successful sequence 
of moves for an input string has been obtained (or it can be concluded 
that the input string is not in the language accepted by the automaton). 
It is not difficult to see that due to the nondeterminism the number of 
steps of the parser grows exponentially with the length of the input 
string. Methods which require exponential time are viewed as not 
acceptable. This might become clear from the table in Figure 2. 
Assume that each primitive step of a parser takes 1 microsecond. In 
the table examples are given of linear. polynomial and exponential 
functions which for each input length express the execution time. 

A pushdown automaton which does not use nondeterminism is 
called a deterministic pushdown automaton. Languages which can be 
accepted with a deterministic pushdown automaton are called deter
ministic (context-free) languages. These languages constitute a proper 
subset of the context-free languages. A parsing method which would 
be based on a deterministic pushdown automaton requires linear time. 
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time length of the input n 

function 10 20 30 40 50 

.00001 .00002 .00003 .00004 .00005 
n 

second second second second second 

n2 .0001 .0004 .0009 .0016 .0025 
second second second second second 

n3 
.001 .008 .027 .064 .125 

second second second second second 

2n .001 1.0 17.9 12.7 35.7 
second second minutes days years 

Figure 2. Polynomial and exponential time functions. 

From the table it will be clear that such parsing methods are desirable. 
However, they can not work for all context-free languages. 

Some (selective) backtrack parsing algorithms have been used in 
early compiler writing systems and for parsing natural language. Due 
to the exponential "blow-up" no widespread applications of these algo
rithms could be expected. Moreover, in the computer science area 
researchers had already started to devise practical algorithms for their 
programming languages. These algorithms were suitable for very res
tricted subclasses of the context-free grammars and they worked in 
linear time: cf. [39]. Even when such an algorithm can not handle all 
the syntactic constraints in the specification of a particular program
ming language. methods can be given to reject incorrect structures in an 
additional phase of the compiling process. In the early 1960s Robert 
W. Floyd devised some practical schemes and soon theoretical ques
tions about the properties of the classes of grammars and languages for 
which the methods could be used were asked and studied. Rather than 
being a problem for practitioners in the computer science area the 
search for better algorithms for general context-free grammars became 
a concern for linguists working on natural language processing projects 
and for formal language theorists. Greibach [26] (p.71) comments on 
this situation: 

"We were very much aware of the probl.em of exponential 
blow-up in the number of iterations (or paths), though we felt 
that this did not happen in "real" natural languages; I do not 
think we suspected that a polynomial parsing algorithm was 
pos sibl.e." 

A polynomial time algorithm was already available but not recognized 
as such. This was Cocke's algorithm, first mentioned in [29] and used 
for parsing a context-free grammar for English developed at RAND 
Corporation. 
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Pushdown Stack Applications 
In many early compilation methods the .. last-in first-out" (LIFO) prin
ciple which governs the pushdown stack was implicitly used. The 
principle can be used to convert arithmetical expressions from a tradi
tional infix notation to a more convenient Polish postfix notation (after 
the Polish logician J. Lukasiewicz) and to evaluate expressions 
presented in this form. In postfix form the operators occur in the order 
in which they are to be used. Therefore Polish postfix notation can be 
considered as an intermediate language between the source language and 
the assembly code. It is possible to convert the usual programming 
language constructs into a Polish postfix form. Statements in this 
notation can be easily translated into an assembly-like code. In order 
to understand the conversion to Polish postfix form an analogy with a 
simple railway network (see Figure 3) was introduced. 

input 

shunting of operators 

Figure 3. The railway analogy. 

With this analogy it is easy to see how an infix expression, e.g .. 
a x(b +c ). is converted into the postfix expression ahc +x. The 
identifiers are directly moved from input to output and the operators 
are moved from input to output via the .. siding" (the pushdown 
stack). 

A slightly more complex example might be more instructive. 
Consider the expression a -b +c Xd. With the normal precedence rules 
we expect this to be evaluated as (a -b )+(c Xd ). The normal pre
cedence rules are 

l (raising to the power) highest precedence 
X and / are of next highest precedence 
+ and - are of lowest precedence 

The relative precedences of the operators can be collected in a table. 
The Polish postfix form of a-b+cxd becomes ah-cdx+. In order 
to realize this conversion the pushdown stack is used as follows. The 
string is read from left to right. Each operand is copied directly to the 
output. Each operator will be moved to the output via the stack. 
However. before stacking the precedence of the current operator is com
pared with that of the operator on top of the stack. If it has greater 
precedence, then the current operator is pushed on the stack. If it has 
lower or equal precedence then operators are popped from the stack 
and copied to the output until the stack is empty or a top operator has 
lower precedence. Then the current operator is pushed on stack. The 
process has become table-driven. We have an algorithm, based on an 
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input and output tape and a pushdown stack, and a table which con
trols the actions. H, e.g., we want to change the precedences of the 
operators only the table need to be revised. 

Stack applications first appeared in the fifties. Scientists to which 
the idea has been attributed include, among others. W.L. van der Poel 
(1952), who proposed it to store subroutine return calls, A.W. Burks, 
D.W. Warren and J. Wright (1954), who used it to check and evaluate 
parenthesis-free notations of logical expressions. and A. Newell and 
J.C. Shaw (1957). who used it in the description of their Logic Theor
ist. The railway analogy appeared after a rather explicit introduction 
of the pushdown stack (or cellar, after the German word Keller) in 
parsing theory by Samelson and Bauer [44]. The principle was used in 
attempts to develop ALGOL 60 compilers and it was implemented in 
computer architectures, e.g .• the Burroughs 5000 system issued in 1963, 
to allow the efficient compilation of ALGOL 60. At that time context
free languages where not widely known among computer scientists and 
pushdown automata were not yet introduced. The analogy has been 
attributed to E.W. Dijkstra who used it in the report Making a transla
tor for ALGOL 60, first published in May 1961. Dijkstra's object 
machine performed its arithmetic with the help of a stack. Notice that 
in the evaluation of an expression in Polish postfix form the operands 
are pushed on the stack and operators are applied to the two topmost 
elements of the stack. In this way the stack can hold all temporary 
intermediate results. In order to realize the translation from an 
ALGOL 60 program to the object program, with the help of a stack, 
precedence rules were introduced by assigning priority numbers to the 
terminal symbols (BEGIN. END, IF. THEN, ELSE, :=. X. +. etc.) of the 
ALGOL 60 grammar. 

The formal and explicit introduction of the pushdown stack in 
mathematical linguistics was motivated by a particular kind of parsing 
method (cf. [40]) which grew out of reflections on a technique used by 
Ida Rhodes and others in the automatic translation from Russian to 
English. See [5] and [26] for further historical references on the push
down principle. 

Theoretical Computer Science 
Although the definitions and the focus of interest are not at all 
independent of the notions of interest for natural languages, their 
grammars, and other possible applications (e.g.. in computer science, 
developmental biology, psycholinguistics and pattern recognition), the 
properties of formal languages and grammars and the theory developed 
to study these systems are not necessarily directly relevant to the field 
in which the concepts being modeled play a role. In order to exist 
theory has to abstract away from practical details. Without abstrac
tion and formalization no deep scientific results can be obtained. For
mal methods are part of a theory or theory can be developed which 
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suits the methods. Therefore errors in methods can be avoided and 
more reliable systems can be created since there are means to show that 
a system meets the given specifications and. moreover. it may have 
become possible to automatically generate system parts from a formal 
description. In Computer Science a full formal analysis of non-trivial 
systems is not always possible. Only parts or aspects of a complete 
system can be looked at and errors have to be avoided by careful 
design. Investigation of limitations of formalisms helps in understand
ing the formalisms and whether or not they can be applied in what 
practical situations and at what cost. Insight will be gained from 
becoming acquainted with formal methods and concepts and this will 
improve the quality of the use of more ad hoc techniques. This is not 
only true for formal language theory. It holds as well for any theory 
which is developed to be applied to benefit practice. 

Formal language theory is part of Theoretical Computer Science 
and Theoretical and Computational Linguistics. Theoretical Computer 
Science. a field of knowledge born in the mid-1960s. studies the fun
damental concepts of computer science by theoretical tools. In this 
field formal models are provided to study and clarify concepts of com
puter science. The study of these models is done with theoretical tools 
borrowed from mathematics and logic and developed in the field itself. 
The study of these models and the development of theoretical tools to 
be used in this study result in a coherent framework unifying a body 
of practice. In models we refrain from looking at all practical details. 
By distinguishing between relevant and less relevant matters and by 
emphasizing certain points of view only the essential parts of the prob
lem remain. Due to this abstraction of concrete situations meaningful 
theorems can be obtained which apply to many concrete situations and 
which otherwise would not be recognized or would be impossible to 
state. The framework and its theorems can help to understand practi
cal situations and to manage the complexity of the design of practical 
systems. Moreover. the framework provides a means to communicate 
results and methods to others and to teach them to the students of the 
field. 

The three classical subfields of Theoretical Computer Science are 
formal language theory. automata theory and computability theory. 
Formal language theory :O.ourished after the introduction of the gram
mar concept in computer science. Generative linguistics and the design 
of programming languages such as ALGOL have been the two main 
sources from which formal language theory has been developed. 
Greibach [26] states that until 1964 formal language theory still could 
be considered part of (mathematical) linguistics. After 1964 formal 
language theory developed as a separate branch within several fields of 
knowledge. Formal language theory has been successful in the 
classification of grammar and language classes. either by properties of 
the grammar rules. by parsing properties or by complexity properties. 
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The study of such properties demonstrates the theoretical limitations 
of the formal systems. From these limitations their suitability as a 
model of. e.g .• cognitive or linguistic concepts or as an abstract device 
whose implementation can be used in compiling a (programming) 
language. can be judged. Automata theory started much earlier than 
formal language theory. It was recognized as a research area in the 
mid.fifties, especially after Automata Studies appeared. This book, 
edited by C.E. Shannon and J. McCarthy. contained a collection of 
papers on different versions of Turing machines, automata to model 
brain activity and automata to describe the operation of electromechan
ical systems. The in- and output of automata can be considered as 
strings of symbols (sentences) from an in- and output language. 
Therefore the study of automata theory became closely related to that 
of formal language theory. Computability theory started in the early 
thirties as a subfield of logic. Its :first components were recursive func
tion theory and the Turing machine as a model of a "computer". 
Presently, incorporated in Theoretical Computer Science, it is concerned 
with the (theoretical) limitations of computer science. It shows what 
can and cannot be computed by establishing fundamental properties of 
recursive and recursively enumerable sets. In this :field a body of 
theory has been developed to provide evidence in support of the 
Church-Turing Thesis. Cf. [32] for a sketch of the development of 
computability theory. 

Especially when equivalences between recognizing and generating 
devices were established these subfields were linked together. The 
method of study in formal language theory has become exemplary for 
the the other subfields of Theoretical Computer Science. Many con
cepts in other subfields :find their origins in formal language theory and 
often problems in these subfields can be reduced to problems in formal 
language theory. Because of practical needs other research areas came 
into existence. Complexity theory is the theoretical study of concepts 
which can be used to measure the effectiveness of algorithms and their 
application in order to :find more efficient techniques for solving prob
lems. The measures are in terms of the spending of computational 
resources (e.g .. computing time and memory space) on specific machine 
models (e.g. Turing machines or Random Access Machines). While 
computability theory may yield the result that a particular problem is 
solvable or unsolvable. complexity theory may give the answer 
whether a possible solution is practically realizable. Cf. [28] for a 
sketch of the development of complexity theory. The Theory of Seman
tics is concerned with the development of formal systems for describ
ing the meaning of programming language constructs. The main 
methods of semantic description are the so-called operational and the 
mathematical methods. In the operational approach each language con
struct is associated with a piece of behavior - i.e., the execution of a 
certain sequence of elementary actions - on an abstract machine. The 
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mathematical approaches are the axiomatic Floyd-Hoare approach and 
the functional or denotational approach of D.S. Scott and C. Strachey. 
In the latter approach mathematical functions are associated with the 
linguistic constructs of the programming language. Much of this 
theory is based on models of the lambda calculus provided by Scott 
[ 46]. Background knowledge of semantic theories can help the designer 
of a programming language to avoid ill-understood constructs. For a 
particular programming language a formal definition helps in the 
(automatic) implementation of the language and the theory can be used 
to develop valid proof rules for proving program correctness. 

However. there are many other subfields of Computer Science 
which invite theoretical approaches. It is beyond the goals of this 
paper to survey these fields. We mention theories developed in support 
of relational database design, search and representation techniques in 
Artificial Intelligence. computational geometry, the description of 
parallel processes, etc. The approaches in these fields rely heavily on 
the results and the methods of the other. older and more extensively 
worked out subfields of Theoretical Computer Science. The origins of 
the subfields' tools and concepts can often be found in the same areas. 
In the case of formal language theory these areas are mentioned in the 
table of Figure 4. 

Logic, Recursive Thue, Post, Carnap, 1910--1955 
Function Theory Church, Turing, Kleene 
Communication Theory, Shannon 1935-1950 
Cryptography, 
Switching Theory 
Neurophysiology McCulloch, Pitts, Kleene 1940--1956 
Linguistics Chomsky 1950--
Machine Translation Bar-Hillel, Yngve, 1950--

Oettinger, Rhodes 
Programming Language Backus, Naur, Irons, 1958-
Specification, Floyd 
Compiler Construction 
Algebra Chomsky, Schiltzenberger, 1963-

Nivat, Ginsburg, Eilenber11: 
Developmental Biology Linden mayer 1968-

Figure 4. Origins of formal language theory. 

Some of these origins can be characterized as the application of logic in 
attempts to formalize the mo.nipul,ation of symbols in certain fields. 
Much of this work was done by logicians interested in more practical 
research areas. 
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It will be clear that formal mathematical methods play an impor
tant role in Theoretical Computer Science. The workers in this research 
area are assumed to maintain a mathematical integrity and its subfields 
use the paradigms of mathematics. When Compiler Construction was a 
new. and therefore important. topic in computer science much of the 
research dealt with syntax instead of semantics. for the simple reason 
that syntax could be formalized. This led to a concentration of 
research activity in a rather restricted area. This area has been exten
sively worked out, its results have been and still are applied in practice 
and many results have lasting value. Moreover. it has been an impor
tant. necessary and useful phase in the maturing of computer science 
and computer scientists. An important part of Computer Science"s 
preoccupation is the manipulation of symbols and strings. Having 
become acquainted with the formal methods (and their limitations) 
which govern this manipulation is a sign of maturity. Research in this 
area has introduced fruitful and scientific attitudes and methodologies 
in Computer Science. Nevertheless. part of the interest in this area can 
be explained from the background of computer scientists. Workers in 
computer science used to be from an engineering/industrial or from a 
pure mathematics/logic background. This latter background and the 
association of computer science groups with mathematical departments 
makes it understandable that such an emerging science wants to earn 
respect by adhering to the paradigms of its environment and by con
centrating on publishable research. 

Wegner [49] distinguishes three phases of programming language 
development, corresponding roughly to the 1950s, 1960s and 1970s. 
These phases are discovery and description of concepts, elaboration and 
anal,ysis of concepts, and software technology. They are characteri2ed 
by an empirical. mathematical and an engineering approach, respec
tively. A similar global distinction in periods can be made for more 
topics of Computer Science. However, often this static tripartition does 
not do justice to the area. There is a continuous interaction between 
theory and practice. In this interaction the empirical. mathematical 
and engineering approach can often be recognized but not always and 
not always in that order. Therefore it is useful to add the following 
three observations to such a global view. Firstly. as in any scientific 
area, there is a development of theory as a means to advance our 
understanding of the basic concepts of the theory itself. This develop
ment is not necessarily irrelevant for practice. The theoretical frame
work can provide a common cultural background for the practitioners 
from which practical concepts and methodologies can emerge. More
over, advances in technology may make it possible to use theoretical 
ideas which until then had to be discarded. Secondly. there is the con
tinuous effort to grasp more aspects of a practical situation - in this 
case compiler construction - in a comprehensive theoretical frame
work. Finally, the theory receives impulses from new ideas and 
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concepts which are discovered· in practical situations or are invoked by 
technological advances. 

Practical problems are far from clean and clear. Research in com
puter science should also be motivated by practical technological con
siderations. It is difficult to discriminate in this practical research 
between concepts which really advance our understanding of computa
tional processes and concepts which will have no lasting value. More 
fundamental research may provide the framework in which concepts 
can be judged and accepted or rejected. Computer Science has many 
commercial and military implications. Its funding of projects is often 
determined by short-term yield. Researchers are looking for fashion
able research areas with a direct practical payoff and for which funding 
is easy and publications will be accepted. They are not necessarily 
motivated by the objective of obtaining deep results which advance our 
understanding of computational processes and their management. Nei
ther are they motivated to leave behind a coherent body of methods 
and results before moving to the next fashionable field. This following 
of trends of fashion is not necessarily beneficial for the long-term 
development of computer science. 
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Context-free hypergraph grammars generate the same string 
languages as deterministic tree-walking transducers. 

1. Introduction 

A graph grammar generates a set of graphs. also called a graph 
language. To obtain an overview of the usefulness of graph grammars, 
see [6.10.11]. Since strings can be viewed as (chain-like) graphs. every 
string grammar can be viewed as a graph grammar in an obvious way. 
More importantly. every type of graph grammar may also be used as a 
type of string grammar: just restrict attention to those graph grammars 
that generate strings only. Thus the sentential forms of such a gram
mar may be arbitrary graphs. but the generated graphs are strings. In 
this paper we investigate the string-generating power of a particular 
type of graph grammar: the context-free hypergraph grammar. recently 
(re-)introduced in [5.19.24] (see [19] for historical remarks). In such a 
grammar the sentential forms are directed hypergraphs. of which the 
hyperedges are labeled by terminal and nonterminal symbols. One 
derivation step consists of replacing one hyperedge (labeled by a non
terminal) by a hypergraph. according to some production of the gram
mar. These grammars are of interest because (1) they generate area
sonably large class of (hyper)graph languages. and (2) the way they 
work is easy to understand and to visualize (a vital feature of graph 
grammars). They can be used. e.g .• to model the top-down design of a 
relational database scheme [4]. 

We will characterize the string languages generated by context
free hypergraph grammars to be those generated by the tree-to-string 
transducers of [1]. thus answering question (4) in the conclusion of 
[19]. These languages are also closely related to the dependency path 
languages of attribute grammars (see [12]). Intuitively. this characteri
zation can be understood through the notion of derivation tree of a 
context-free hypergraph grammar; cf. [23]. In fact, the graph (in par
ticular. string) generated in a derivation of the grammar, is distributed 
over the corresponding derivation tree in a .. snake-like" manner. rem
iniscent both of the route taken on a derivation tree by a tree-walking 
automaton. and of the dependency graph of a derivation tree in an 
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attribute grammar. As a special case we characterize the string 
languages generated by linear hypergraph grammars to be those gen
erated by 2-way finite state transducers. 

2. Hypergraphs and Hypergraph Grammars 

A directed hypergraph consists of a set of nodes and a set of 
(hyper)edges, just as an ordinary graph except that an edge is incident 
with any number of nodes rather than exactly two. The edges are 
directed in the sense that the nodes incident with a given edge are 
linearly ordered. Formally (cf. [5.24]), a (directed edge-labeled) hyper
graph (or. shortly, graph) is a system H = (V.E,I.,nod,lab) where V 
is a finite set of nodes (or vertices). E is a finite set of (hyper)edges, :E 
is an alphabet of edge labels, nod : E- V* is the incidence function. and 
lab : E-. I, is the edge labeling function. Thus. nod maps every edge 
into a sequence of nodes (of any length). If nod (e) = (v 1 ..... Vn ). 

n ;;i,;o, then e is called an n-edge, v; is also denoted by nod(e.i), and e 
and v; are said to be incident. Pictorially (cf. [24]). nodes are indicated 
by fat dots. as usual. and the edge e is indicated by a box containing 
lab (e ). with a line between e and v; labeled by i. for each 1 ~ i ~n. 
These lines are called the .. tentacles" of the hyperedge [19]. 

C 

1 

1 

Figure 1. 

C 

1 

As an example, the hypergraph in the left part of Figure 1 has 
(enumerated from left to right) V = {u.v.w} and E = {e 1,e 2,e 3,e 4 }. 

and it has :E = {a,b,c}, nod(e 1)= (u). nod(e 2)= 0. nod(e 3)= 
(u,w,v,w). nod(e 4)= (v.w). lab(e 1)= c, lab(e 2)= lab(e 3)= a, and 
lab (e 4) = b . To simplify comparison with ordinary directed graphs we 
will also draw a 2-edge e. with nod (e) = (v 1• v 2). as an ordinary 
directed edge from v 1 to v 2• labeled by lab (e ). and we will also draw a 
1-edge e. with nod (e) = (v ). as a .. balloon", "tied" at v and labeled 
by lab (e ). as indicated in a picture of the same hypergraph in Figure 1. 
to the right. Note that the .. balloons" can serve as node labels; thus 
each ordinary node- and edge-labeled directed graph can be viewed as a 
hypergraph in a natural way. 

For a given hypergraph H. its components are denoted by VH, 
EH. :EH. nodH. and labH. respectively (and the subscript H is dropped 
if it is clear from the context). For an alphabet :E. the set of all hyper
graphs H with :EH = I, is denoted by HGR (:E). A subset of HGR (:E) 
is called a (hyper)graph language. 
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• • • 

Figure 2. 

Since we will be interested in particular in strings. we now define 
the graphs that we use to model strings: cf. [19]. Let :E be an alphabet, 
and let w = u 1 · · · u lc be a string over :E with k ~ 0, u i e :E. Then the 
string graph corresponding to w is gr (w) = (V.E.:E,rwd,lab) with 
V={0,1, ... ,k}, E={1, ...• k}. rwd(i)=(i-1.i). and lab(i)=ui. 
Note that gr(X). where A is the empty string, consists of one node and 
no edges. As an example. Figure 2 shows the string graph gr (abaa ). 
In what follows we will not always distinguish between a string w 
and the string graph gr (w ). and, similarly, between a string language 
L and the string graph language gr (L) = {gr (w) lw e L }. It should be 
observed here that in graph languages we will, as usual. not distinguish 
between isomorphic graphs ( where isomorphisms are defined in the 
obvious way). Thus, in gr (w ). the fact that the nodes and edges are 
integers is irrelevant. 

To be able to discuss the application of grammatical productions 
to hypergraphs, we need four easy operations on hypergraphs. 

(1) Removal of one edge. For H EHGR(:E) and e EEn, H-e denotes 
the hypergraph (VH ,EH-{e },:E,rwd,lab) where rwd and lab are the 
restriction to EH-{e} of rwdH and labH. respectively. Pictorially, one 
hyperedge is removed, by erasing the corresponding box with its tenta
cles. 

(2) Disjoint union. LetH.KEHGR(:E) be disjoint graphs, i.e., VH, Vx 
and En, Ex are disjoint sets. Then 

H +K = (VH U Vx ,En UEx,:E,rwdH U rwdx .labn U labx ). 

Pictorially, the pictures of H and K are put together into one picture, 
without interconnection. 

(3) Identification of nodes. Let HEHGR(:E) and let R~VHXVH. 
Intuitively. we want to identify nodes u and v. for every pair 
(u, v) e R . Let = R denote the smallest equivalence relation on V H 

containing R; for v e VH, let [v ]R denote the equivalence class of v 
with respect to =R, and let Vnl=R = {[v ]R Iv E Vn }. Then 

H !R = (Vnl=R ,En ,:E,rwd.labn) 

where, for every n -edge e E En. 

rwd (e) = ([nod (e, 1)]R •... , [rwd (e,n )]R ). 

Note that H /R has the same edges as H. Pictorially. for each 
(u. v ) e R • nodes u and v are moved together (carefully) until they 
coincide. 
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(4) Gluing along an edge. · Let H.K e HGR (I:.) be disjoint hypergraphs. 
and let e e EH and / e Ex be n -edges for some n ~ 0. Define 
R = {(nodH(e.i).nodx<f,i))lt'i ,n}. Then 

glue (H.e.K.f ) = ((H -e )+ (K -f ))/ R. 

Intuitively. the graphs are glued together by pairwise identification of 
the nodes of e and/: the edges e and/ themselves disappear. Put 
your fingertips together and think about it. An example is given in 
Figure 3: from left to right: H withe. K with/. and glue CH.e.K,f ). 
with edge labels omitted. 

Figure 3. 

We are now prepared for the definition of context-free hyper
graph grammar. 

Deftnition 1. A context-free hypergraph grammar (shortly cfhg) is a 
system G = (F..A.P.S) where E is an alphabet. A!;F. is the terminal 
alphabet (and E-A is the nonterminal alphabet). P is the finite set of 
productions. and S EE-A is the initial nonterminal. Every production 
in P is of the form (e.H) where H EHGR(E) and e EEH with 
labH(e )e r.-A. o 

Cl. 

Figure 4. 

Intuitively. the application of a production (e.H) consists of 
replacing an edge e by the hypergraph H -e. A picture of (e,H) is 
given by a picture of H. in which the box corresponding to e is 
decorated with black comers. As an example. Figure 4 shows the three 
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productions of a cfhg G = (F..'1..P.S) with I,= {S.A.a} and '1. = {a}. 
Terminology: A nonterminal edge is an edge e with lab (e ) e I,- '1. and 
similarly for a terminal edge. For a production (e.H). e is called the 
left-hand side and H the right-hand side of the production. 

Let G = (I..'1..P.S) be a cfhg. Formally. application of a produc
tion ,,, = (e.H) of G is defined as follows. Let Ke HGR (I.); in case K 
is not disjoint with H. take an isomorphic copy of K that has this pro
perty. Then 'IT is applicable to K at a nonterminal edge/ of K if 
labK (f ) = labH (e ) and / .e are both n -edges for some n ~ 0. The 
application of 'IT to K at/ results in the graph K' = glue (H.e.K.f ). or 
any graph isomorphic to K'; notation: K ===> K'. As usual. the 
language generated by G is L (G ) = {HE HGR ('1.) 1£. ===> • H} where S 
is the hypergraph without nodes and with one edge e such that 
nod (e) = () and lab (e) = S. A graph H E HGR (I,) such that 
S ===> • H is called a sentential form of G. The class of all languages 
generated by context-free hypergraph grammars is denoted by CFIIG. 
Moreover. the class of all string (graph) languages generated by cfhg's 
is denoted by STR(CFIIG). Thus 

STR( CFIIG) = {L E CFIIG IL ~ gr ('1. •) for some alphabet '1.}. 

Figure S. 

Figure 6. 
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As an example. for the grammar G of Figure 4. L (G ) consists of 
all "ladders" of the form given in Figure 5. As another example. the 
grammar G of Figure 6 generates the language gr (L ) with L = 
{anbncn In ~O}; thus. identifying L and gr(L). L ESTR(CFHG). 
Using the productions of G in the way suggested by Figure 6. one can 
see that G generates the string an bn en in a "snake-like" fashion. as 

· shown in Figure 7 for n = 4. As a :final example. very similar to the 
previous one. consider the cfhg G of Figure 8. with 6 productions 
(x = a or x = b ). G generates all strings $w$w$ where w is an odd
length palindrome over the alphabet {a.b }. This time. the way the pro
ductions are drawn suggests that the strings are generated as chains 
rather than snakes. 

a. (L (L 

b b 

C C C. 

Figure 7. 

As the reader may have noticed in Figures 1 and 6. different ten
tacles of a hyperedge may lead to the same node. However. as sug
gested by [9]. this phenomenon can always be avoided in cfhg's for 
nonterminal edges (not for terminal edges of course). To formulate 
this as a result. we need some terminology. An edge e in a hypergraph 
H is loop-free if the nodes in nodH (e ) are all different. A cfhg G is 
loop-free if. for every production (e.H) of G. all nonterminal edges of 
H are loop-free. Thus. the cfhg's of Figures 4 and 8 are loop-free. but 
the one of Figure 6 is not. We now state the "loop-free lemma". 
Theorem 2. For every cfhg G there is a loop-free cfhg G' such that 
L (G' ) = L (G ). D 

Rem.arks. (1) This result is similar to the removal of A-productions 
from a context-free grammar. (2) In [19.24] every production in a cfhg 
should have a loop-free left-hand side: in [5] arbitrary left-hand sides 
are allowed. D 

Loop-free cfhg's are more attractive than arbitrary cfhg's because 
the way they work is much easier to visualize: when computing 
glue (H.e,K.f) = ((H-e )+(K-f ))/R. in the application of a produc
tion (e.H). both e and/ are loop-free, and hence no other nodes than 
those indicated by R are identified (i.e., =R =RU R-1). This means 
that nodes of a sentential form can never be identified in a later stage 
of the derivation, and, consequently, the "terminal part" of the 
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Figure 8. 

sentential form (obtained by removing all nonterminal edges) is a sub
graph of the generated graph. It also means that for every production 
(e.H ). applied in a derivation. the terminal part of H is a subgraph of 
the generated graph. 

In this sense. the loop-free lemma may be viewed as a way of 
showing the power of the attractive formalism of loop-free cfhg's. 
Thus. whenever we will construct cfhg's that are not loop-free. we will 
say that this is possible "due to the loop-free lemma". 

3. Known Formalisms Viewed as Hypergraph Grammars 
To become more familiar with cfhg's, we consider in this section some 
well-known string and tree grammars that can be viewed as context
free hypergraph grammars. Also, cfhg's are very suitable to generate 
the dependency graph language of an attribute grammar, as shown in 
[7]. 

Figure 9 contains a cfhg generating the string language a *b. It 
clearly corresponds to a regular (string) grammar with productions 
S-+ A , A -+ aA , and A -+ b. Note that, in general. all nonterminal 
edges (except S) are 1-edges. Regular string grammars can be 
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Figure 9. 

~----i. A ---

Figure 10. 

generalized to context-free string grammars and to regular tree gram
mars. Figure 10 contains a cfhg generating the string language of all 
well-formed parenthesis expressions ( where a is the left- and b the 
right-parenthesis); it corresponds to the context-free grammar with 
productions S-+A, A-+aAbA, A -+X. Note that A-productions can be 
simulated .. due to the loop-free lemma··. From this example it should 
be clear that all context-free grammars can be viewed as cfhg's (where 
all nonterminal edges. except S. are 2-edges). Hence STR(CFHG) con
tains all context-free (string) languages (properly of course. see Figures 
6 and 8). Figure 11 contains a cfhg that generates all ordered binary 
trees. Internal nodes of the trees are labeled a. and leaves are labeled 
b ; the order is indicated by edge labels / and h (standing for left and 
right. respectively). This cfhg corresponds to the regular tree grammar 
(cf. [17. 7]) with productions S-+ A . A -+ a (A.A). A -+ b. 

For the reader familiar with context-free tree grammars (cf .. e.g., 
[15]) we note that they can also easily be simulated by cfhg's, as long 
as they are noncopying and nondeleting. For a copying. nondeleting. 
(IO) context-free tree grammar G it is possible to construct a cfhg G' 
that generates DOAGs (directed ordered acyclic graphs) which, when 
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Figure 12. 

unfolded, give the trees generated by G; thus L (G) = unfold(L (G' )). 
In this sense the cfhg of Figure 12 simulates the context-free tree 
grammar with productions S-+ A (b ), A (x )-+ A (a (x.x )). A (x )-+ x. 
generating all full binary trees. 

In general, a graph grammar can also be used to generate a 
transduction, i.e., a relation between graphs: if (H,K) is in the relation. 
then the grammar generates the disjoint union H + K, and in some way 
marks H and K, to distinguish the input graph H from the output 
graph K. Thus, one may investigate how the top-down tree transducer 
(see. e.g., (17]) and even the macro tree transducer (see, e.g., [16]) can 
be simulated by cfhg's. 

We now turn to the dependency graphs of attribute grammars 
(AGs). An attribute grammar [22] associates a .. dependency graph" 
with each production and each derivation tree of a given context-free 
(string) grammar. The set of all dependency graphs of derivation trees 
forms the dependency graph language defined by the AG. We assume 
the reader to be familiar with attribute grammars: see, e.g., [22,2,12]. 
Let DEP-AG denote the class of all dependency graph languages of 
AGs. We will assume here that the nodes of dependency graphs 
(corresponding to attributes) are not labeled, but the edges 
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(corresponding to dependencies between attributes) are: in particular, 
each edge of the dependency graph of a production is given a unique 
label; see [12]. Now the following result is straightforward to show: 
see Section 16.8 of [7]. 

Theorem 3. DEP-AG S: CFHG. D 

In fact, each dependency graph of a production of the AG 
corresponds to a production of the simulating cfhg, in a straightfor
ward way. The nonterminals of the underlying context-free grammar 
of the AG are also the nonterminals of the cfhg: each nonterminal has a 
tentacle to each of its attributes. An example should make this clear. 
Figure 13 contains the dependency graphs of an AG, corresponding to 
the productions S-+ A , A -+ AA , A -+ a of the underlying context-free 
grammar. The nonterminal A has an inherited attribute a and a syn
thesized attribute /J, and the nonterminal S has attribute /J only. The 
dependency edges are given arbitrary unique labels a to f • Figure 14 
shows the cfhg that generates the dependency graph language of this 
AG. 
Remarks 4. (1) Suppose that, in Figure 13, the edge labeled e is not 
present. Then the dependency graph language is clearly a string 
language. Let STR(DEP-AG) denote the class of string languages in 
DEP-AG. Then STR(DEP-AG) S: STR(CFHG), by Theorem 3. 

(2) It is shown in [13] that NLC graph grammars can also be used to 
generate dependency graph languages. However, cfhg's do this in a 
more natural way. 

(3) It should be clear from the example that the translation of an AG 
into an equivalent cfhg can be realized in deterministic logarithmic 
space. This implies that lower bounds carry over from dependency 
graph languages of AGs to languages in CFHG. As an example~ it is 
immediate from [21] that there is no polynomial time algorithm to 
decide, for a given cfhg G. whether all graphs in L (G) are acyclic. 
The same holds, e.g., for "planar" and "bipartite" instead of "acyclic" 
(These properties are decidable for cfhg's, by the elegant result of [8]). 

(4) Some edges in dependency graphs of an AG are often known to be 
"passing" edges: the nodes (i.e., attributes) connected by such an edge 
are meant to have the same value. Thus, it is meaningful to define a 
variation of dependency graphs in which these nodes are identified. 
Due to the loop-free lemma the new dependency graph language can 
still be generated by a cfhg. If, e.g., the edge labeled e in Figure 13 is a 
passing edge. then one just identifies the incident nodes in the 
corresponding production in Figure 14 (removing the edge). □ 
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Figure 13. 

Figure 14. 
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4. The String Generating Power of Hypergraph Grammars 

Up to now we did not say anything new. In this section we turn to a 
new result: we characterize STR(CFHG) as a class of string languages 
known in formal language theory. in particular the theory of tree 
transducers and attribute grammars. It is the class OUT(DTWT) of 
output languages of the deterministic tree-walking transducers of [1]; 
see also [14.12]. These transducers walk on the derivation trees of a 
context-free grammar. and translate them into strings. The class 
OUT(DTWT) is equal to the class yT1c (REC) of yields of images of the 
regular (or recognizable) tree languages under :finite-copying top-down 
tree transducers: see Corollary 4.11 of [14]. where OUT(DTWT) is 
denoted DCT(REC). From this and the proof of Theorem 5. 7 of [12]. it 
follows that OUT(DTWT) ~ HOM(STR(DEP-AG)) where HOM 
denotes the class of homomorphisms (on strings). Thus. to show that 
OUT(DTWT) ~ STR(CFHG). it suffices. by Theorem 3 of the previous 
section (cf. Remarks 4(1)). to prove the following lemma. 

Lemma 5. STR(CFHG) is closed under (string) horrwrrwrphisrns. 

Proof: Let G = (E.11.P.S) be a cfhg that generates a string (graph) 
language. and let h: 11•-. O* be a string homomorphism. We have to 
show that h(L(G))ECFHG. A cfhg G' = ((E-/i)U 0,0.P'.S) gen
erating h (L (G )) is constructed from G by changing every right-hand 
side H of a production of G as follows: every terminal edge e of H is 
replaced by gr (h (labH (e ) ) ) . More precisely. let labH (e ) = a and 
nodH (e) = (u. v ). If h (a)= b 1 · · · bk (bi E 0) with k ;;i:: 1, then k-1 
"new" nodes w 1 ..... wk-l are added to H. and e is replaced by k 
"new" edges e1, .. ,,ek with lab(ei)= bi and nod(e;)= (wi-1,wi) for 
1 ~i ~k (where w 0 = u and wk = v ). If h (a)=>., then e is dropped 
from H and the nodes u and v are identified ( which is possible due to 
the loop-free lemma). D 

It remains to show that STR(CFHG) ~ OUT(DTWT). We prove 
this by a direct simulation of a string-generating cfhg by a tree
walking transducer. A deterministic tree-walking transducer (abbrevi
ated dtwt) is an automaton with a finite control, an input tree. and an 
output string. The input trees are all derivation trees of a given 
context-free grammar. At any moment of time the automaton is at a 
certain node of the input tree. Depending on the state of its finite con
trol and the label of the node. it changes state. outputs a string to the 
output tape. and either stays at the node or moves to the father or a 
specific son of the node. The automaton starts in its initial state at the 
root of the input tree, and halts whenever it reaches a final state. In 
this way it translates the input tree into an output string. The output 
language of the automaton is the set of all output strings obtained in 
this way. OUT(DTWT) denotes the class of all such output languages. 
For more details see [1]. or [14] ( where the dtwt is called a dct
transducer). 
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Lemma 6. STR(CFHG) ~ OUT(DTWT). 

Proof (sketch): Let G = (I..a,P.S) be a loop-free cfhg generating a 
string language. To better understand the idea of the proof we first 
assume that G satisfies the following two restrictions: 
(1) There is a unique production 'TT';,,, = (e.H) in P with labH(e) = S. 
Moreover, H-e consists of a 2-edge, i.e., VH = {u. v}. EH = {e,e' }. 
rwdH (e) = (), and rwdH (e') = (u. v ). Furthermore, the first [last] node 
of every string generated by G is u [v. respectively]. 
(2) Each node of the right-hand side of a production in P is incident 
with at most one nonterminal edge. 

The cfhg of Figure 10 satisfies (1) but not (2). and the cfhg of 
Figure 8 satisfies both restrictions (and is loop-free). In [19] 
STR(CFHG) is defined in such a way that (1) is always satisfied. 

The dtwt M to be constructed walks on the derivation trees of a 
context-free grammar G' obtained directly from G as follows (in fact. 
these trees should also be viewed as derivation trees of G ). The non
terminals of G' are the productions of G, and G' has no terminals. Its 
initial nonterminal is 'TT';,,,, see (1) above. G' contains all productions 
1To-+1T11T2 ···1T1 with 'TT';=(e;,H;)EP such that H 0-e0 contains 
precisely k nonterminal edges, and, for 1 ~ i ~k , the i -th nonterminal 
edge has the same label as e; and both are n -edges for some n ~ 0 
(assuming that these k nonterminal edges are given some fixed but 
arbitrary order). It should be clear that every derivation tree t of G' 
determines a graph H(t) in L (G ). obtained by taking the disjoint 
union of all terminal parts of (right-hand sides of) productions of G 
that occur as labels of nodes of t . and identifying nodes as follows: if 
production 'TT'o-+ 'TT'1'1T'2 · · · 'TT't of G' occurs int and/; is the i -th non
terminal edge of H 0-e 0 , then rwd (f i , j ) should be identified with 
rwd(e;,j). for all l~j ~n. l~i ~k. This is the key to understand
ing how the dtwt M can walk through t • producing H (t ) on its out
put tape. When M is at a node x of t, labeled 'TT'= (e.H ). then M 
also keeps track in its finite control of a node of H; in other words, M 
is also "at a node of H", and consequently also .. at a node of H(t )". 
M starts at the root of t. labeled 'TT';,,,. and at the node u of H;,,, (see 
(1) above); it halts when it returns to the root, at node v of H;,,,. Now 
suppose that M is at node x oft. labeled 'TT'= (e,H). and at node u of 
H. Then M behaves as follows. 

(i) If H has a terminal edge / with rwd H (f ) = (u, v ) • then M 
"moves·· to node v of H, remains at node x oft. and outputs labH(f ). 

(ii) Otherwise, if H has a nonterminal edge/ ;c e incident with u. f 
is the i-th nonterminal edge of H-e, and u = rwdH(f ,j ). then M 
moves to the i-th son of x in t, labeled, say, by 'TT'; = (e; ,H; ). and 
moves to rwd (e; ,j) in Hi (without producing output). 

(iii) Otherwise u is incident with e. In that case M moves to the 
father y of x. Suppose that u = rwdH (e, j ), that x is the i -th son of 
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y. and that y is labeled by 7To = (e 0,H 0) in t. Then M moves to 
nod (f; .j) in H 0• where Ii is the i-th nonterminal edge of H 0-eo. M 
does not produce output. 

This ends the description of M. In the general case, the fact that 
a node may be incident with more than one nonterminal edge makes it 
impossible for M to choose the correct edge deterministically. How
ever, G can first be changed in such a way that its new nonterminals 
are of the form (X,p) where X is an old nonterminal and p is a partial 
function from {1. .... n} to itself for some n ~O. If (X.p) labels an n
edge e. in some sentential form of G, and nod (e) = (u 1 • .. ,,Un). then 
p (i ) = j means that (X,p) generates the substring of H (t ) from node 
u; to node u1 (viewing u 1, •.. ,Un as nodes of H(t) too). From this 
information M can easily see which nonterminal edge to take. in case 
of doubt. A slight extension of the information allows M to find the 
start and end of H(t ). Note that this kind of information is analogous 
to the ifs-graphs (in attribute grammars) that model the dependency 
paths in the dependency graph of a derivation subtree. D 

Our main result follows from Lemmas 5 and 6. 

Theorem 7. STR(CFHG) = OUT(DTWT) 
and STR(CFHG) = HOM(STR(DEP-AG)). D 

To illustrate this result, it is easy to see from the cfhg's of Figures 
8 and 10 (and Lemma 5) that. for every context-free language L. a 
cfhg can be constructed generating the language {ww I w EL } . Of course 
this language can also be generated by a dtwt that walks on the deriva
tion trees of a context-free grammar for L : the dtwt just walks twice 
through the tree in a depth-first left-to-right fashion. The language 
can also easily be defined by a 2-pass attribute grammar (and a 
homomorphism). 

Quite a lot is known about OUT(DTWT): see, e.g .. [14]. For 
instance. it is a full APL containing Parikh languages only. The hierar
chy result for STR(CFHG) in Theorem 4.4 of [19] can also be under
stood from a similar hierarchy result for OUT(DTWT) (in Theorems 
3.2.5 and 4.9 of [14]): roughly speaking. if nonterminal edges have at 
most 2k tentacles. then the dtwt is at most k-crossing. 

As an interesting special case we consider the linear cfhg's (stu
died in [25] and. as finite graph automata, in [20]). A cfhg is linear if 
every right-hand side of a production contains at most two nontermi
nal edges (The cfhg's in Figures 4, 6, 8. 9, and 12 are linear). Let 
LIN-CFHG denote the class of languages generated by linear cfhg's. 
Clearly, in the linear case. the derivation trees of the context-free 
grammar on which the dtwt works are not branching. Thus. we may 
view the dtwt as a 2-way deterministic finite state transducer with 
strings as input and output; see. e.g .. [14]. Let OUT(2DGSM) denote 
the class of output languages of such transducers. 
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Theorem 8. STR(LIN-CFHG) = OUT(2DGSM). □ 
Also about OUT(2DGSM) quite a lot is known. As an example. 

we obtain the fact that there is a string language in CFHG that is not in 
LIN-CFHG. In fact there exists even a context-free language that is not 
in OUT(2DGSM): see. e.g .. [18]. We also note that linear cfhg's are 
related to parallel rewriting: one nonterminal edge can grow pieces of 
graph at different places of the sentential form simultaneously (as in 
Figure 8). For strings there is a formal relationship between cfhg's and 
ET0L systems (a well-known type of parallel rewriting systems: see, 
e.g .. [3. 14]): OUT(2DGSM) = ET0LFIN. the class of ET0L languages of 
finite index: see Corollary 4.11 of [14] where OUT(2DGSM) is denoted 
DCS(REG). 

References 
1. A.V. Aho & J.D. Ullman: Translations on a context free grammar, 

Inform. and Control 19 (1971) 439-475. 

2. H. Alblas: A characterization of attribute evaluation in passes. 
Acta Inform. 16 (1981) 427-464. 

3. P.R.J. Asveld: Controlled iteration grammars and full hyper
AFL's, Inform. and Control 34 (1977) 248-269. 

4. C. Batini & A. D'Atri: Relational data base design using refinement 
rules, RA.l.R.O. Inform. Theor. 17 (1983) 97-119. 

5. M. Bauderon & B. Courcelle: Graph expressions and graph rewrit
ings (1986), Report 1-8623, University of Bordeaux 1. France. 

6. V. Claus. H. Ehrig & G. Rozenberg (Eds.): Graph-Grammars and 
Their Application to Computer Science and Biowgy. Leet. Notes in 
Comp. Sci. 73 (1979). Springer-Verlag. Berlin, Heidelberg. New 
York. 

7. B. Courcelle: Equivalences and transformations of regular systems 
- Applications to recursive program schemes and grammars. 
Theoret. Comput. Sci. 42 (1986) 1-122. 

8. B. Courcelle: Recognizability and second-order definability for sets 
of finite graphs (1986), Report 1-8634, University of Bordeaux 1. 
France. 

9. B. Courcelle: personal communication. 

10. H. Ehrig, M. Nagl & G. Rozenberg (Eds.): Graph-Grammars and 
Their Application to Computer Science, Leet. Notes in Comp. Sci. 
153 (1983), Springer-Verlag, Berlin, Heidelberg. New York. 

11. H. Ehrig. M. Nagl & G. Rozenberg (Eds.): Proc. Third Workshop on 
Graph-Grammars and Their Applications to Computer Science 
(1986), Warrenton. Va. 



58 J. Engelf riet 

12. J. Engelfriet & G. File: Passes and paths of attribute grammars, 
Inform. and Control 49 (1981) 125-169. 

13. J. Engelfriet, G. Leih & G. Rozenberg: Apex graph grammars and 
attribute grammars (1987). Report 87-04, University of Leiden. 
The Netherlands. 

14. J. Engelfriet, G. Rozenberg & G. Slutzki: Tree transducers, L sys
tems, and two-way machines, J. Comput. System Sci. 20 (1980) 
150-202. 

15. J. Engelfriet & E.M Schmidt: IO and 01. J. Comput. System Sci. 15 
(1977) 328-353 and J. Comput. System Sci. 16 (1978) 67-99. 

16. J. Engelfriet & H. Vogler: Macro tree transducers. J. Comput. Sys
tem Sci. 31 (1985) 71-146. 

17. F. Gecseg & M. Steinby: Tree automata (1984). Akademiai Kiado. 
Budapest. 

18. S.A. Greibach: One-way :finite visit automata, Theoret. Comput. 
Sci. 6 (1978) 175-221. 

19. A. Habel & H.-J. Kreowski: Some structural aspects of hypergraph 
languages generated by hyperedge replacement, in: Proc STACS 
"87, Leet. Notes in Comp. Sci. 247 (1987) 207-219. Springer
Verlag, Berlin, Heidelberg. New York. 

20. D. Janssens & G. Rozenberg: Hypergraph systems and their exten
sions. RA.I.R.O. Inform. Theor. 17 (1983) 163-196. 

21. M. Jazayeri, W.F. Ogden & W.C. Rounds: The intrinsically 
exponential complexity of the circularity problem for attribute 
grammars, Comm. Assoc. Comp. Mach. 18 (1975) 697-706. 

22. D.E. Knuth: Semantics of context-free languages. Math. Systems 
Theory 2 (1968) 127-145; Correction Math. Systems Theory 5 
(1971) 95-96. 

23. H.-J. Kreowski: Rule trees represent derivations in edge replace
ment systems, in: G. Rozenberg & A. Salomaa (Eds.): The Book of 
L (1986). Springer-Verlag. Berlin. Heidelberg. New York. 

24. U. Montanari & F. Rossi: An efficient algorithm for the solution of 
hierarchical networks of constraints (1987). University of Pisa, 
Italy. 

25. T. Pavlidis: Linear and context-free graph grammars, J. Assoc. 
Comp. Mach. 19 (1972) 11-23. 



Modular Tree Transducers 

Heik.o Vogler 

Lehrstuhl fur Informatik II, R.W.T H. Aachen 
Biichel 29-31, D-5100 Aachen, F.R.G. 

In this article a new class of transducing devices, called modular tree 
transducers, is introduced and their relationship to (compositions of) 
macro tree transducers is studied. Modular tree transducers are term 
rewriting systems which define operations on trees in a structural 
recursive and modular way. The class of defined operations is closed 
under composition where the resulting transducers have in general 
more modules than the transducers started with. Modular tree 
transducers with one module correspond to macro tree transducers; 
however, every composition of macro tree transducers can be simu
lated by a modular tree transducer with just two modules. On the 
other hand "calling restricted" modular tree transducers characterize 
this composition in the sense that the number of modules 
corresponds to the number of composed macro tree transducers. 

1. Introduction 

In theoretical computer science one often is confronted with the task of 
defining operations on tree-structured objects. If these arise in practical 
applications, then frequently it is possible to specify them in a struc
tural recursive way. Then the definition of such an operation f has the 
form of a case analysis on the (finitely many) different structures of 
the actual values of one particular argument position. For every struc
ture t of this so-called recursion argument. an equation eq is entered 
into the case analysis; it specifies the result of/ if the actual value of 
the recursion argument has the structure t . In general eq does not pro
vide the final result immediately but only gives an approximation of it: 
besides the application of basic functions the right-hand side of eq may 
contain the operation f itself with the important restriction that / 
must be applied to one of the substructures of the recursion argument. 
Since we are interested in operations on trees only. we regard the basic 
functions as symbols with rank; thus the right-hand sides of equations 
are just trees. 

Let us look at an example in which operations on binary trees are 
defined in a structural way. We only consider binary trees which 
either have the form of a "right-growing comb'" or the form of a 
"left-growing comb". and in which the inner nodes are labeled by 
cons; cf. Figure 1(a) and (b). Note that the combs of Figure 1 may be 
viewed as representations of the lists (a B C) and (((() c) b) A). 
respectively, where a,b,c,A,B and C are atoms. (Clearly, the comb in 
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cons 

~ a cons 

B/~ns 

C/ -............._NIL 

(a) 

H. Vogler 

cons 

~ 
cons A 

~ 
cons b 

NIL~c 

(b) 

Figure 1. (a) right-growing comb with leaves a, B, C and NIL, 
(b) left-growing comb with leaves NIL, c, b and A . 

Figure 1(b) is not the standard representation of the list 
(((() c) b) A). but we have chosen this one because of technical con
venience). Now we want to define the unary operation mirror which 
mirrors every right-growing comb at a vertical line and turns it into a 
left-growing comb; cf. Figure 2(a). 

mirror 

I 
cons cons 

/~ ~ 
a cons cons a 

/~ 
B cons 

/~ = cons B 

/ ~ / ~ 
C NIL NIL C 

Figure 2. (a) Application of mirror to cons (a.cons (B,cons (C,NIL ))). 

shovel cons 

~ I\ 
cons cons c cons 

1\-. /\ 
cons a D NIL 

I\ 
b cons 

I"-. 
cons B 

I\ 
A cons 

NI{''-c /\ 
D NIL 

Figure 2. (b) Application of shovel to cons (cons (cons (NIL,C ).B ),a) 
and cons (D,NIL ). 

This partial operation can be specified by the equations 

mirror (NIL)= NIL 

mirror (cons (x 1.x 2)) = cons (mirror (x 2),x 1). 

Here the two possible structures of the recursion argument are NIL 
and cons(x 1.x2 ). where x 1 and x 2 are variables that represent the sub-
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structures of the recursion argument. Note that in the right-hand side 
mi,rror is applied to a substructure ( viz. to x 2) of the actual value of 
the recursion argument. Note also that cons and NIL are both con
structors for the values of the recursion argument and basic function 
symbols. 

Another operation is slwvel which has two arguments. As first 
argument it takes a left-growing comb, and its second argument is a 
right-growing comb. Now the operation shovels the leaves from its 
:first argument onto its second argument. and simultaneously. it 
modifies them according to some table: cf. Figure 2(b). In our example 
a unary operation table replaces capital letters by the corresponding 
small letters and vice versa. The operation slwvel can be defined by 
the following equations 

slwvel (NIL.y) = y 

slwvel(cons (x 1.x2).y) = slwvel (x 1,cons (table (x2),y )). 

The first argument of this operation is the recursion argument. and the 
second one serves as a kind of 0 accumulator". Note that the value of 
the accumulator depends on the output of the operation table ; we say 
that table occurs nested in the accumulating parameter of slwvel. But 
also observe that slwvel is still defined in a structural recursive way. 
It is clear how to define table. 

In this situation we want to design the unary operation reverse 
which takes as argument a right-growing comb and produces also a 
right-growing comb of the same height. but in the resulting tree the 
order of the leaves is reversed, and capital letters and small letters are 
interchanged: cf. Figure 3. One natural way of defining reverse would 
be to compose mi,rror and slwvel as follows: 

reverse (x ) = slwvel (mi,rror (x ).NIL). 

reverse 

I 
cons cons 

/"--_ ~ 
a cons = c cons 

B~ b~cons 

C~IL /" A NIL 

Figure 3. Application of reverse to cons (a.cons CB.cons (C.NIL ))). 

Clearly, this equation does not obey any more the principle of a struc
tural recursive definition: the recursion argument position of slwvel in 
the right-hand side does not consist of a substructure of the recursion 
argument x of the left-hand side. but is computed by another opera-
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tion. On the other hand. reverse is defined now in a very natural way. 
and hence. any design method for operations on trees should offer the 
feature of such a modular definition: the value of the recursion argu
ment of one module is computed by another module. 

Well. until now we discussed in an informal way the method of 
defining operations on trees and we did not give any syntax or seman
tics definition of the metalanguage in which the definitions are written 
down. What about formal metalanguages that also comprise computa
tion models? Clearly. the simplest formalization of the structural 
recursive definition method are top-down tree transducers [12.13.3]. 
They allow the specification of unary operations by using simultaneous 
structural recursion. Equivalent concepts are generalized syntax
directed translation schemes [1] and attribute grammars with syn
thesized attributes only [11]. 

However. an operation like shovel cannot be specified by a top
down tree transducer. because the definition relies on the concept of 
accumulating parameter in which nested operations may occur. A for
mal model for the structural recursive definition method with the pos
sibility of handling accumulating parameters is the macro tree trans
ducer [ 4.2,6] (In [2] they are called primitive recursive schemes with 
parameters). Another formalization of this extended definition method 
are attribute grammars [11] which are slightly less powerful than 
macro tree transducers [5]. 

Are there also formalizations which reflect the feature of modu
larity? Clearly, one could just take lambda calculus and that is it. But 
we are interested in "'the weakest" metalanguage that realizes our 
definition method. To answer the question under this aspect. let us 
examine what modularity means for tree transducers. Assume that 
there are transducers M 1 and M 2 that perform the operations mirror 
and shovel • respectively. Then we can define reverse as 

comp (-r(M 1),-r(M 2),NIL) 

where -r(Mi) denotes the operation induced by M;, NIL is the unary 
operation that maps every argument to NIL, and comp (f .g 1.g 2) 

denotes in an obvious way the composition of/ with g 1 and g 2. Thus, 
if one wishes to specify operations in a modular way, then the class of 
operations induced by the used metalanguage should be closed under 
composition. And this requirement excludes macro tree transducers 
and also attribute grammars from the list of candidates: neither of 
them is closed under composition [5,6]. 

In this article we propose a formal computation model which 
realizes the method of defining operations on trees in a structural 
recursive and modular way: the modular tree transducer. Just as top
down tree transducers and macro tree transducers. modular tree trans
ducers are (linear and non-overlapping) term rewriting systems in 
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which the operations and equations are realized by states and by 
rewrite rules. respectively. Actually. modular tree transducers are 
derived in a straightforward way from macro tree transducers by 
adding one more building rule for right-hand sides of rewrite rules: 
this new building rule reflects the modular principle. To every state q 
of a modular tree transducer a natural number is associated which is 
called the level of q. Intuitively. states of the same level together with 
the corresponding rewrite rules constitute one module. An n -modular 
tree transducer has n modules. Macro tree transducers as they have 
been de.fined in [6] are exactly the 1-modular tree transducers in which 
the initial state (i.e .. the main operation) has one argument. Hence, 
macro tree transducers induce unary operations only. 

Here we start the investigation of modular tree transducers by 
concentrating on two subjects: the closure under composition and the 
relation to compositions of macro tree transducers. This article con
sists of six sections. In Section 2 some general notations and notions 
are fixed. In Section 3 the basic model of modular tree transducer is 
introduced and an example is provided to illustrate the new device. In 
Section 4 the closure under composition is shown (Theorem 9), and it 
is proved that 2-modular tree transducers are more powerful than the 
composition closure of macro tree transducers (Theorem 11). In Sec
tion 5 "calling restricted" modular tree transducers are introduced 
which are also closed under composition (Theorem 15). The equiva
lence of "calling restricted" n-modular tree transducers and then -fold 
composition of 1-modular tree transducers is proved inductively 
(Theorem 17). Finally, in Section 6 connections to other transducing 
devices are mentioned. 

2. Preliminaries 

We recall some notations and notions which will be used in this paper. 
In general some knowledge about special term rewriting systems such 
as top-down tree transducer (as presented in [3]) or macro tree trans
ducer [4,6] would be helpful. Nevertheless. the paper is self-contained. 

2.1. General notations 

For every n ~ 0, the set { 1. .... n} is abbreviated by [n ]; hence. [O] is the 
empty set. The end of definitions. lemmas. theorems etc. is indicated 
by □. The elements in the sets X = {x 1.x 2• · · · } and Y = {y 1,Y 2, • · · } 

are used as substitution variables of term rewriting systems. For 
n ~O. Xn = {x1,••·•xn} and Yn = {y1,••·•Ynl- For two sets A and B, 
A~ B means that A is included in B; we use AC B to denote strict 
inclusion. 

For the substitution of strings into strings we use the following 
abbreviation. Let v be a string. let U and U' be arbitrary sets of 
strings, and let <p be a mapping from U into U'. If for every two 
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different elements u 1 and it 2 of U, u 1 and u 2 are not overlapping in v . 
then v [u /q,(u ),u e U] denotes the string obtained from v by replacing 
every occurrence of u EU by ¢Cu). If U = {u 1, .... Zl,i}. then we abbre
viate this substitution by v [uJq,(u; ).i € [n ]]. 

2.2. Composition of relations 

Let A be an arbitrary set. For k ~ 1. a (k + 1)-ary relation R over A is 
a subset of A k+l. A (k +1)-ary relation over A in which for every 
a 1 ..... ak €A. there is at most one b € A such that (a 1 • ... ,ak ,b) e R is 
called k -ary operation over A . Let R O be an (r + 1)-ary relation over 
A for some r ~ 1, and for some k ~ 1. let R; be a (k + 1)-ary relation 
over A for every i € [r ]. The composition of R O with R 1 .... ,Rr . denoted 
by comp (R o,R 1, .... Rr ). is the (k + 1)-ary relation 

{(a 1 •...• ak .a )I Vie [r ]: :3 b;: (a 1 ..... a1c .b; )ER;. and (b 1 ..... b7 ,a)€ R 0}. 

Let REL1 en REL 2 be two classes of relations over A. Then 
COMP(REL 1.REL2) denotes the class of relations comp (R 0,R 1 • .... Rr) 
for RoEREL1, and R1, .... R7 EREL 2 and appropriate r. If REL1 and 
REL 2 are classes of binary relations. then COMP(REL 1.REL2) is also 
denoted by REL2 ° REL 1. For n ~0 and a class REL of relations, 
COMPn (REL ) is the class of relations defined inductively as follows: 

COMP 0(REL) = REL, and 
COMPn+l(REL) = COMP(REL.COMPn(REL)). 

COMP(REL) denotes the union of COMPn(REL) for every n ~0. If 
REL is a class of binary relations. then for every n ~ 0, COMPn (REL) 
is also denoted by RELn+i. 

2.3. Ranked alphabets and trees 

A ranked alphabet :E is a finite set in which to every symbol a unique 
number is associated, viz. its rank. The rank of a symbol is sometimes 
indicated as a superscript. E.g. u<2> means that u has rank 2. 

Let :E be a ranked alphabet. The set of (labeled) trees over :E is 
denoted by T'E. A tree t in T'E is denoted by u(t 1 .... ,t1c) where the 
root of t is labeled by u<1c > e :E and t i, .. ,h are the immediate subtrees 
of t . If k = 0, then t is denoted by u. The height of a tree is defined 
as usual inductively over the structure of the tree: (i) for u e :E of rank 
0. height(u)= 1. (ii) for ue:E of rank k ~1 and t 1, ... ,t1c ET'£, 
height (u(t 1 • ... ,tk )) = 1 + max{height (t;) Ii e [k ]}. If :E contains only 
symbols with rank 0 or 1, then trees over :E are also denoted in the 
usual way as strings. 

Let A be an arbitrary set. Then T'E(A) denotes the set TwA 
where the elements of A are viewed as symbols of rank 0. Any subset 
of T 'E is called a tree language and the class of recognizable tree 
languages is denoted by RECOG . 
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3. Basic Model and Example 
In this section we give the formal definition of the concept of modular 
tree transducer and of the class of operations on trees induced by them. 
The definition is illustrated by an example that describes the operation 
reverse on binary trees as discussed in the introduction. 

Definition t. Let n ~ 1. An n -modul.ar tree transducer M is a tuple 
((Q.level).:t,qin .R) where 

Q is the ranked alphabet of states (Every state has rank at least 
1.) and level : Q ➔ [n ] is a mapping. 

:t is the ranked alphabet of terminal (or input and output) sym-
bols (Q and :t are disjoint.). · 

qin e Q is the initial state with level(qin) = 1. 

R is a finite set of productions of the form 

q (u(x l•···•Xm ).y l•···•Yr )-+ C (*) 

where q EQ with rank r+l (r ~O). ue:t with rank m (m ~0). 
and some C ERHS(Q.:t.j.m.r) where j = level(q) (Recall that 
x l•··-.Xm and y l•···•Yr are substitution variables). 

RHS(Q.:t.j.m.r) is the smallest subset RHS of Tau1:CXmUYr) such 
that the following conditions are satisfied. 
(i) Yr is a subset of RHS • 
(ii) if 8 e :t with rank k (k ~ 0) and C 1 •...• ( 1 are elements of RHS. then 
8((1 •...• (t )E RHS. 
(iii) if p e Q with rank k + 1 (k ~ 0) and level (p ) = j • x; e Xm • and 
(1, .... ( 1 ERHS. thenp(x;.(1 •...• ( 1 )ERHS. 
(iv) if p E Q with rank k (k ~ 1) and level (p )> j. and ( 1 •...• ( 1 E RHS. 
then p ((1 •...• ( 1 )ERHS. D 

Remarks. (a) A rule like(*) is also called q-rule or. more specific. a 
(q.u)-rule. (b) For every j ~n. the set of q-rules with level(q) = j 
form the module with level number j. (c) The :first argument of a 
state is also called its recursion argument; the other arguments are 
ref erred to as accumulating parameters. D 

A modular tree transducer is an n -modular tree transducer for 
some n ~ 0. Note that the previous definition only deals with the non
deterministic version of modular tree transducers. Before defining the 
total deterministic version. we insert a few easy examples of possible 
right-hand sides. because the inductive definition seems to be a bit 
involved. 

Example 2. Let Q = {v<3>.p<1>.qC1>.r<2>.s<3>.t<1>} be a set of states, 
where the superscripts indicate the ranks. and let level ( v ) = level (p ) 
= level (q) = level(r) = 1 and level (s) = level (t) = 2. Let :t = {a (O). 

b<0>.u<1J.a<2>,-y<3>}. One possible left-hand side is 
v(-y(x1.x2.x3).y1,Y2) and the following trees are in RHS(Q.:t.1.3,2): 
1. 8(a.b ). 
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2. 8(p(x1),u(q(x2))). 
3. 8(y1,r(x1,u(q(x2)))). 
4. r (x 1.u(s (t (y 2),a.q (x 1)))). 

Definition 3. Let M be an n -modular tree transducer. 
(1) M is unary if qin has rank 1. 

H. Vogler 

D 

(2) M is total deterministic if for every q E Q and every u EI:, there is 
exactly one (q. u )-rule in R . □ 

Actually. macro tree transducers are precisely the unary 1-
modular tree transducers. i.e .. unary modular tree transducers with one 
module. Note that in 1-modular tree transducers, the building rule 
(iv) of the set of right-hand sides is never applicable, because there are 
no states with a level greater than 1. Indeed, rule (iv) mirrors the 
modular principle which is not realized by macro tree transducers. 
Top-down tree transducers [12.13] are macro tree transducers in which 
every state has rank 1. Thus. in Example 2. the terms 1-3 [terms 1 
and 2] are possible right-hand sides of productions of macro tree trans
ducers [of top-down tree transducers. respectively]. 

The translation induced by a modular tree transducer is defined 
by means of a derivation relation. 

Definition 4. Let M = ((Q,level),I:,qin ,R) be an n-modular tree 
transducer and let q in have rank k for some k ~ 1. 
(1) The derivation relation of M. denoted by ==:;> M, is the binary rela
tion on T Q U l: defined as follows. For f 1• f 2 ET Q U l:• f 1 ==:;> M f 2 if and 
only if 
there is a EE TQ u 1:C{z}) and z occurs exactly once in E, 
there is a production q (u(x 1 ..... xm),Y1,-.. ,Yr )➔ tin R, 
there are s 1, ... ,sm ETQUl: and t 1 , ... ,tr ETQ Ul: such that 

f 1 = f[z /q (u(s 1, ... ,Sm ),t 1, ... ,tr)]. and 
E2 = E[z 1r1 and"= t[xi/si. i E [m]: YJ lt1' j E [r ]]. 

(2) The translation induced by M. denoted by T(M ). is the (k + 1)-ary 
relation {(s 1 ..... sk,t)ET!+1 lqin(s 1, ... ,sk)==;>Mt} where as usual 
==;> M denotes the reflexive and transitive closure of ==:;> M. □ 

Note that the rank of the initial state determines the arity of the 
induced translation. The class of translations induced by n -modular 
tree transducers is denoted by n -ModT; ModT denotes the union of 
the classes n-ModT for every n ~ 1. If the involved transducers are 
unary or total deterministic, then n -ModT is indexed by un or prefixed 
by D, , respectively. E.g .. D, n -ModT un denotes the class of translations 
induced by total deterministic unary n-modular tree transducers. Let 
D, MT denote the class of translations induced by total deterministic 
macro tree transducers. Thus, D, 1-ModT un = D, MT. Note that D, MT 
is a class of mappings (i.e .. total functions) with one argument: cf. Sec
tion 3.3 of [6]. 
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Claim 5. The relations in D1 ModT are total. operations. □ 

Observation 6. For every n ~ 1, D1 n-ModT ~ D1 (n +1)-ModT. □ 

We illustrate the above definitions by means of an example: the 
unary operation reverse as it was discussed in the introduction, is for
mulated as a modular tree transducer. The example shows that the 
present definition of modular tree transducer does not so much refl.ect 
the paradigms of a comfortable specification language. Rather it should 
serve as an appropriate starting point for theoretical studies and com
parisons with other existing tree transducers. Nevertheless, the next 
example indicates how comfort can be gained without increasing the 
power of the underlying formalism. 

Example 7. Here the unary operation reverse on binary trees is real
ized as al-modular tree transducer M. As repetition: reverse takes a 
right-growing comb as argument and produces a right-growing comb of 
the same height but with reversed order of leaves. Simultaneously, 
capital letters are turned to lower case and vice versa; cf. Figure 3 for 
an example of the application of reverse. As set of involved leaves we 
use LEAVES = {A.B,C ..... a,b,c , ... }. From the introduction we :first 
recall the equations that define the partial operations mirror, shovel. 
and reverse; cf. Figure l for an illustration of the meanings of the 
operations mirror and shovel . 

SPEC1: 

(la) 
(lb) 

(la) 
(lb) 

(3) 

(4) 

mirror (NIL) = NIL 
mirror (cons (x 1.x 2)) = cons (mirror (x 2), x 1) 

shovel (NIL.y) = y 
shovel(cons (x 1,x2),y) = shovel (x 1,cons (table (x 2),y )) 

reverse (x ) = shovel (mirror (x ).NIL) 

table (z) = z' for every z e LEAVES 
where z' is obtained from z by replacing capital letters 
by lower case letters and vice versa. 

From this specification we develop the transducer M by eliminat
ing step by step the "illegal'' syntactic constructs. We only show the 
changes. The "free" occurrence of x 1 in the right-hand side of equation 
(lb) is not allowed in modular tree transducers. This is simulated by 
introducing an additional unary function id that just computes the 
identity, and by inserting id above x 1. Also some equations have to be 
added to realize id . 

SPEC2: 

(lb) 

(5a) 
(5b) 

mirror(cons (x 1.x 2)) = cons (mirror(x 2),id (x 1)) 

id(z) = z for every z €LEAVES 
id (NIL)= NIL 
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(5c) id (cons (x 1,x 2)) = cons (id (x 1), id (x 2)). 

In the next step equation (3) is compiled into two equations in 
order to get rid of "non-reading equations". For this purpose mirror is 
unfolded one step. 

SPEC3: 

(3a) 
(3b) 

reverse (NIL)= NIL 
reverse (cons (x 1,x 2)) = shovel (cons (mirror (x2),id (x 1)),NIL ). 

Actually, SPEC3 can be turned immediately into the desired 
transducer M = ((Q,level ), E,reverse.R) as follows: 

Q = {reverse(l>,mirror<1>,shovel<2>,table<1>,id<1>} where the super
scripts indicate the ranks, 
level (reverse) = level (mirror) = level (id ) = 1 and 
level (shovel) = level (table ) = 2. 
"f, = LEAVEs<0> U {cons <2> ,NIL <0>}. 
R contains the following rules 

(la) mirror (NIL)-+ NIL 
(lb) mirror (cons (x 1,x2))-+cons (mirror (x 2),id (x 1)) 

(2a) shovel (NIL,y )-+ y 
(2b) shovel (cons (x 1.x 2).y )-+ shovel (x 1,cons (table (x 2),y )) 

(3a) reverse (NIL)-+ NIL 
(3b) reverse (cons (x 1,x2))-+ shovel (cons (mirror (x2),id (x 1)),NIL) 

( 4) table (z )-+ z' for every z e LEAVES 

(5a) id (z )-+ z for every z e LEAVES 
(5b) id (NIL)-+ NIL 
(5c) id (cons (x 1,x 2))-+ cons (id (x 1),id (x 2)). 

This completes the construction of the modular tree transducer for 
reverse. Intuitively. the rules (3a). (3b), (la). (lb) and (5a) form the 
module of level number 1. and the rules (2a). (2b) and (4) constitute 
the module with level number 2. Note that M is deterministic, but not 
total deterministic, because M only accepts input trees that have the 
form of right-growing combs. We finish this example by computing 
the application of reverse to the comb 

t = cons (a.cons (B,cons (C.NIL ))). 

The numbers at the beginning of the lines indicate the applied rule. 

(3b) 
(5a) 
(lb.5a) 

reverse (cons (a.cons (B,cons (C,NIL )))) 
==:>shovel (cons (mirror (cons (B.cons (C.NIL ))).id (a )),NIL) 
==:>shovel (cons (mirror (cons (B.cons (C,NIL ))),a ).NIL) 
==:> 2shovel (cons (cons (mirror(cons (C.NIL )).B ),a ),NIL) 
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(1b,5a) ==:;> 2shovel (cons (cons (cons (mirror (NIL ),C ).B ).a ).NIL) 
(la) ==;>shovel(cons (cons (cons (NIL,C ).B ),a ),NIL) 
(Note that at this point of the derivation, the first argument of shovel 
is the result of the application of mirror tot). 
(2b,4) ==:;> 2shovel (cons (cons (NIL.C ).B ),cons (A.NIL)) 
(2b.4) ==:;> 2shovel (cons (NIL,C ),cons (b,cons (A.NIL))) 
(2b.4) ==:;> 2shovel (NIL.cons (c,cons (b,cons (A.NIL)))) 
(2a) ==:;> cons (c,cons (b,cons (A.NIL))). □ 

4. Composition of Modular Tree Transducers 

In this section we prove the closure of total deterministic modular tree 
transducers under composition; cf. Theorem 9. By means of an exam
ple, we give an impression of the possible growth rate in the relation
ship between input and output trees of modular tree transducers 
(Example 10). Together Theorem 9 and Example 10 prove that (in the 
total deterministic case) 2-modular tree transducers are more powerful 
than the composition closure of macro tree transducers; cf. Theorem 
11. 

The proof of the composition closure of total deterministic modu
lar tree transducers is prepared in the next lemma. 

Lemma 8. For every n,m ~ 1, 

COMP (Dt n -ModT.Dt m-ModT) ~ Dt max -ModT 

where max = max{n +1.m }. In porticul,ar, 

Dt m -ModT UJI, 0 Dt n -ModT un, ~ Dt max -ModT UJI, • 

Proof: Let n,m ~1 and let TECOMP(Dtn-ModT,Dtm-ModT) be a 
(k + 1)-ary operation over T 1: for some k ~O and some ranked alphabet 
:E. According to the definition of COMP, there is a total deterministic 
n-modular tree transducer M 0 = ((Q 0 ,level0),:E,qin,O,R 0) and qin,O has 
rank r for some r ~ 1. and for every i E [r ], there is a total determinis
tic m-modular tree transducer Mi= ((Qi,levelJ,:E.qin,i ,RJ such that 
T = comp(-r(M 0),T(M 1) •••• ,T(Mr)) and qin,i has rank k+1. Without 
loss of generality we can assume that the involved sets of states are 
disjoint. 

Construct the max -modular tree transducer M = ((Q.level ), 
I:,q in ,R) with max = max{n + 1.m} as follows. 

Q = U {Q; IO~ i ~ r } U {q in } and q in has rank k + 1 and level (q in ) 
= 1: for every q E Qi with i ~ 1, level (q) = level; (q ); for q E Q 0• 

level(q) = level 0(q )+1 (Thus in particular, level(qin,O) = 2). 

R contains U {Ri I0~i ~r) _and. for every o-E:Ei with j ~0. if 
for every i E [r] the rule qm· 1 (0-(x1,••·•XJ ).y 1 •...• y,t)-+ t is in Ri. 
then q in (o-(x l• ... ,XJ ),y l• ··••Yk )-+ q in,O({ l• .•• ,{r) is in R. 
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Note that M is total deterministic. We skip the formal proof of the 
correctness of the construction. D 

Theorem 9. COMP(D,ModT)<;;. D,ModT. 

Proof: The statement of the theorem is an immediate consequence of: 
(*) for every n ~0. COMPn(D,ModT)<;;.D,ModT. The proof of(*) is 
an easy induction on n using Lemma 8 and Observation 6. D 

The next example gives an impression of the possible growth rate 
in the relationship between input and output trees of 2-modular tree 
transducers. To be more precise, define the mapping exp: N-+ NON is 
the set of non-negative integers.) inductively on the first argument: 
exp (0.k) = k and exp (n +1.k) = 2r with r = exp (n.k ). Then define 
the unary mapping super-exp by super-exp (k ) = exp (k.1). We con
struct a 2-modular tree transducer for which the growth rate between 
input and output trees is described by the mapping super-exp . 
Example 10. Let :E = {u<l).a<0>} be a ranked alphabet; trees over :E 
will be written in the obvious way as strings. The mapping 
coding: N-+ T 'I'. codes non-negative integers as monadic trees over :E. 
i.e., coding (k) = uk a. Then define 

coding (super-exp)= {(coding (k ).coding (super-exp (k ))) lk ~O}. 
We construct a total deterministic unary 2-modular tree transducer 
M = ((Q,level),:E,q,R) such that -r(M) = coding (super-exp). 

Q = {q (o) ,exp <2>} where superscripts indicate ranks, and level (q) 
= 1 and level (exp ) = 2, 

R contains the following four rules 
q (ux )-+ exp (q (x ).a) 
q(a)-+ua 
exp (u x,y )-+ exp (x,exp (x,y )) 
exp (a ,y )-+ uy . 

This completes the construction. It is easy to show that for every 
k~0. q(uka):::::;,.kexp( ... exp(ua) .... a) with k occurrences of exp 
and k + 1 occurrences of a. Another easy induction yields the state
ment: for every m ~0. exp (um a ,y):::::;,. *ur y with r = 2m. Together 
this proves that -r(M) = coding (super-exp). D 

In [6] (see Theorem 3.24) it is shown that macro tree transducers 
can perform at most an exponential growth rate between input and 
output trees. More precisely. for every macro tree transducer M there 
is a constant c such that if (s,t)E-r(M). then the height oft is 
bounded by exp (Le.height (s )). Clearly, if (s.t) is an element of the 
translation induced by then-fold composition of macro tree transduc
ers, then height (t )~exp (n.c'.height (s )) for some constant c' (that 
depends on the involved transducers). An immediate consequence of 
this growth-rate property of macro tree transducers. the previous 
example, and Lemma 8 is the fact that D, 2-ModT un strictly includes 
the class of operations that are induced by the composition closure of 
macro tree transducers. 
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Theorem 11. U {D, MT" In ;;;, 1 }c D, 2-ModT"" . 

Proof: By Lemma 8. D,2-ModTun ° D,MT~D,2-ModTun. Hence. by 
induction. U {D, MT" In ;;;, 1} ~ D, 2-ModT"" . The strictness of this 
inclusion follows now immediately from Theorem 3.24 of [6] and from 
Example 10. □ 

S. Characteri7.&tion of Compositions of Macro Tree Transducers 
In this section we introduce "calling restricted" modular tree transduc
ers and prove that [unary] "calling restricted" n-modular tree trans
ducers are as powerful as the n-fold composition of 1-modular tree 
transducers [of macro tree transducers. respectively]. 

Clearly. in view of Theorem 11. it is necessary to restrict modular 
tree transducers if one wishes to decompose them into macro tree 
transducers. Let us motivate the nature of the used calling restriction 
at an example. Let M be a 6-modular tree transducer and let r be a 
q -rule of M where q is a state of M with level (q ) = 2 and 
rank (q ) = 2. Then it is possible that the right-hand side of r has the 
form p (t (y 1, ... ) •... ) where p and t are states each with rank 2. and 
level (p ) = 3. Now the important point is that level (t ) may range 
between level (q) and 6; in particular. it may be higher than the level 
of p . Thus in general it is possible that the value of the recursion 
argument of a state with level number k can be computed by states 
with level number equal to or greater than k. Actually. this feature 
makes modular tree transducers more powerful than compositions of 
macro tree transducers. In fact. if the computation of the value of the 
recursion argument only calls states with level number less than k • 
then every so-obtained "calling restricted" modular tree transducer can 
be decomposed into 1-modular tree transducers; cf. Lemma 16. Actu
ally. every module of a "calling restricted" modular tree transducer is 
transformed into one 1-modular tree transducer. In particular. every 
"calling restricted" unary n-modular tree transducer can be simulated 
by the composition of n macro tree transducers. 

The calling restriction is realized by requiring the existence of a 
mapping "call .. from states to the set of involved level numbers such 
that in particular. the following holds: for every right-hand side of a 
rule. if the state t occurs in the recursion argument of the state p, then 
level (p ) must be greater than ca11 (t ). 

Definition 12. Let n ;;;,1 and let M = ((Q.level),:t.qin .R) be an n
modular tree transducer. M is caUing restricted if there is a mapping 
ca11: Q -+ [n] such that the following holds. 
(a) For every q E Q • level (q ) ~ call (q ). 
(b) ff q (u(x 1, ••• ,Xm ).y 1, .. ,,Yr)-+ C is a rule of M then 
- for every state p occurring in C. call (p) ~ call (q ). and 
- if p((1,••·•Ct) is a subtree of(. then for every state t occurring in 
C 1, ca11 (t ) < level (p ). □ 
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A calling restricted modular tree transducer is a calling restricted 
n -modular tree transducer for some n ~ 1. The class of translations 
induced by calling restricted modular tree transducers is denoted by 
ModT er . This denotation is modified in the obvious way for n -
modular, unary, and total deterministic transducers; in particular. 
D, n -ModT er,wi denotes the class of translations induced by unary total 
deterministic calling restricted n-modular tree transducers. Clearly, 
for 1-modular tree transducers. there is no difference between the 
unrestricted and the calling restricted version, i.e.. 1-ModT = 
1-ModTer. 

Observation 13. (a) D, 1-ModTer = D, 1-ModT. 
(b) For every n ~1. D,n-ModTer ~D, (n +1)-ModTer. D 

Before decomposing calling restricted modular tree transducers. 
we :first show that these transducers are closed under composition too: 
cf. Theorem 9 for the corresponding result of the unrestricted version. 
The following preparing lemma is similar to Lemma 8, but now an 
additivity relation holds between the maximal levels of the involved 
transducers. 

Lemma 14. For every n,m ~ 1, 

COMP(D,n-ModTer ,D,m-ModTer) ~ D,(m+n )-ModTer. 

In particular, 

D, m -ModT er,wi O D, n -ModT er,wi ~ D, (m +n )-ModT er,wi . 

Proof: The involved construction is literally the same as in the proof 
of Lemma 8 except for one important point: the levels of the states of 
M O are not just incremented by 1. but they have to be incremented by 
m • i.e .• for every q E Q 0• level (q ) = level 0(q )+ m . 

Then it is possible to define the calling function for the resulting 
transducer M. For 0~i ~r. let coll; be the calling function of trans
ducer M; . Define col,l : Q -+ [m +n] for M as follows: 

for every q E Q; with i E [m ]. coll (q) = col,l; (q ), 
for every q E Qo, col,l (q) = col,l 0(q )+m, 
col,l (q in ) = n + m . 

It is easy to verify that this mapping fulfills the requirements of 
Definition 12. D 

Theorem 15. COMP (D, ModT er) ~ D, ModT er . □ 

Now we decompose calling restricted n-modular tree transducers 
into n calling restricted 1-modular tree transducers. The decomposi
tion proceeds by induction. Consider an (n + 0-modular tree trans
ducer M with terminal alphabet :E. Intuitively. M is turned into an 
n-modular tree transducer M 1 by splitting up the module with level 
number n +1; that is, we consider in right-hand sides of productions 
every state q with level n + 1 as a new terminal symbol: the q -rules 
are deleted. Thus M 1 computes trees over :E and the new terminal 
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symbols. Now M 1 is composed with a macro tree transducer (i.e .• 
unary 1-modular tree transducer) M 2 which realizes the module that 
has been split up from M. For this purpose. first M 2 "activates'" every 
new terminal q by replacing it by the state q• with level number 1. 
and second, M 2 evaluates these states by means of the rules of M that 
have a state with level number n + 1 in their left-hand side. 

Lemma 16. Let n ;;i:: 1. 
(a) D, (n + 1)-ModT er ~ D, n-ModT er O D, MT. 
(b) D, (n + 1)-ModT er,un. ~ D, n -ModT er,un. 0 D, MT. 

Proof: Let M = ((Q.level),I.,qin .R) be a calling restricted total deter
ministic (n +1)-modular tree transducer and let coll be the involved 
calling function. Let rank (q in) = r for some r ;;i:: 1. Define Q [n + 1] = 
{qlqEQ andlevel(q)= n+l}. 

· Construct the calling restricted total deterministic n -modular tree 
transducer M1 = ((Q1,level1),I.1,qin·1.R1) as follows. 
- Qi= Q-Q[n+l] and for everyqEQ1, level 1(q)= level(q). and if 
coll(q ),n. then coll 1(q) = coll(q ). if coll(q) = n +1. then call 1(q) = 
n, 

qin,l = qin • 
I.1 = I. U Q [n + 1] and ranks are carried over from Q [n + 1] to I.1• 

R 1 contains all (q. u )-rules of R for which level (q ) E [n ]. 

Construct the unary total deterministic 1-modular tree transducer 
M2 = ((Q2,level2),I.2,*,R 2) as follows. 
- Q2 = {•}U {q*lq EQ[n +1]} and every state has level number 1. 
rank C•) = 1 and ranks carry over from Q [n + 1] to Q 2• 

- I.2 = I.U Q [n +1] (ranks carry over). 
- R 2 contains the following rules. 
(a) For every a<t >e I. with k ;;i:: 0, 
•(B(x 1 • ...• xk ))-+ B(•(x 1) • ...• •(xk )) is in R 2. 
(b) For every q EQ [n +1] with rank (q) = k +1 for some k ;;i::o. 
•(q(x1,••·•Xt+1))-+q*(x1,*(x 2). ...• •Cxt+i)) is in R 2. 
(c) If q(u(x1,••·•xm).Yl••··•Yr)-+( is in R with level(q)E[n+l]. then 
q*(u(x 1, ... ,Xm ).y 1, ···•Yr)-+(* is in R2, where (* is obtained from ( by 
replacing every state p by p*. 

This completes the construction. Note that the calling restriction 
on m guarantees that every actual value of the recursion argument of a 
state q• is already evaluated before the point at which q is activated 
and replaced by q*. Intuitively. it is clear that T(M) = T(M 1) 0 T(M 2). 

The formal proof of the correctness of the construction is left to the 
reader. □ 

Now the main theorem of this article follows immediately: the 
characterization of calling restricted n -modular tree transducers by the 
n-fold composition of 1-modular tree transducers. 

Theorem 17. (a) For n ;;i::o, D,(n +1)-ModTer =COMP,,, (D, 1-ModT). 
(b) For every n ;;i:: 1. D, n -ModT er,un. = Dt MT,,, . 
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Proof: The inclusions in (a) and (b) can be proved by an easy induc
tion on n using Lemma 14 and Lemma 16. □ 

From the viewpoint of defining operations on trees. the previous 
theorem says the following: the concept of calling restricted modular 
tree transducer is the appropriate metalanguage to construct new opera
tions from existing ones that have been specified by macro tree trans
ducers. Actually, the 2-modular tree transducer of Example 7 that 
realizes the operation reverse. is calling restricted. 

6. Conclusion 
In this section we mention some relations to other tree transducing 
devices that have been studied in [14]. Section 8 of [8] contains a list 
of various classes of tree transducers which are equivalent with respect 
to their transformational power. All of them obey the concept of 
structural recursion, and some of them use an additional storage. Here 
we can add another equivalent class to this list. That is, for every 
n ;;l!; 1. the total deterministic versions of the following transducers are 
equivalent: 
- n -fold composition of macro tree transducers. 
- n -iterated pushdown tree transducers; cf. Definition 4.10 of [8], 
- n -level tree transducers: cf. Definition 4.5 of [8]. 
- unary calling restricted n -modular tree transducers. 
The equivalence of the composition of macro tree transducers and 
iterated pushdown tree transducers is shown in Theorem 8.12 of [7]. 
In Theorem 7.12 of [8], high-level tree transducers are characterized by 
iterated pushdown tree transducers. In Theorem 17 of the present 
paper. it is proved that composition of macro tree transducers induce 
the same class of unary tree operations as unary calling restricted n
modular tree transducers. 

Since the present paper just starts the investigation of modular 
tree transducers. some important questions remained open. In particu
lar. we claim that Dt ModT coincides precisely with the class of primi
tive recursive operations on trees as defined in [10]. 
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Nonterminal Separating Macro Grammars 

Jan Anne Hogendorp* 
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P.O. Box 217, 7500 AE Ensch.ede, Th.e Netherlands 

We extend the concept of nonterminal separating (or NTS) context
free grammar to nonterminal separating m -macro grammar where 
the mode of derivation m is equal to "unrestricted", "outside-in" or 
"inside-out". Then we show some (partial) characterization results 
for these NTS m -macro grammars. 

1. Introduction 

Macro grammars have been introduced in [6,7] as a way to describe 
context-dependent aspects of the syntax of programming languages. 
They are an extension of context-free grammars generating. for each 
mode of derivation, a family of languages in between the families of 
context-free languages and of context-sensitive languages. Though 
outside-in (or 01 -) macro languages are able to describe correctly the 
declaration and use of program variables. they have the disadvantage 
of possessing an NP-complete membership problem. For JO-macro 
languages the problem is roughly as complex as for context-free 
languages [1]: so it can be solved deterministically in polynomial time 
or in space log2n . But JO-macro grammars seem to be less suitable for 
modeling the declaration of program variables. 

Without considering this complexity issue any further we investi
gate in this paper a way to restrict macro grammars. It is inspired by a 
restriction on context-free grammars. viz. by the nonterminal separat
ing (or NTS) condition [3]. For context-free grammars this restriction 
results in deterministic languages that have "disjunct syntactic 
categories" [3,5]. The actual NTS condition requires that adding the 
reductions corresponding to the productions of a grammar does not 
extend its set of sentential forms. Or, equivalently. the set of senten
tial forms does not change when we apply the rules of the grammar in 
both directions. 

In Section 2 we provide the necessary notions. elementary results 
and terminology on macro grammars and on context-free grammars 
that satisfy the NTS condition. Section 3 is devoted to the definition of 
NTS macro grammar and some of their properties as far as they extend 

• The work of the author has been supported by the Netherlands Organization for the Ad
vancement of Pure Research (Z.W.O.). 
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the corresponding results on NTS context-free grammars. We restrict 
our attention to characterization results of the NTS property for m -
macro gram.mars where m is a mode of derivation, i.e., m equals either 
.. outside-in" (or 01) . .. inside-out" (or IO) or .. unrestricted" (or 
UNR ). Finally, Section 4 contains some concluding remarks. 

2. Preliminarfos 

2.1. Macro Grammars 
Macro gram.mars have been introduced by Fischer in [6,7] as an exten
sion of context-free gram.mars. In essence, they di:ff er from context
free grammars in possessing a ranked alphabet of nonterminal symbols 
and so macro grammars are a particular kind of term rewriting system. 

A ranked alphabet A is a finite set of symbols each of which is 
provided with a natural number, called its rank. For i ~O. let Ai 
denote the subalphabet of A that consists of all symbols of rank i . 
Thus if i ~ j • then Ai n A 1 = fZJ. 

Definition 2.1. 1. Let A be a ranked alphabet and PC the set of punc
tuation characters (i.e., left and right parenthesis and comma symbol). 
The set T(A) of terms over A is the smallest set of strings over AU PC 
that sa tis:fi.es 

(i) A0 U {>.}S: T(A);). denotes the empty word, 

(ii) if t 1,t 2 ET(A). then t 1t 2 ET(A). 

(iii) ifAEAn andt1, .. ,,tnET(A),thenA(t1, .. ,,tn)ET(A). D 

Formally, we ought to write A () if A E A0; in practice we will 
omit the parentheses in that case. However, the notation A (t 1, .... tn) 
does not imply that n > 0. 

Definition 2.1.2. A macro grammar G is a 5-tuple G = (<l>,'E.,X,P.S) 
where <I> is a ranked alphabet of nonterminals. E is an alphabet of ter
minals, X is a finite set of variables (Each terminal and variable has 
rank zero. The sets <I>. E and X are disjoint.), S E <1>0 is the start sym
bol, and P is a finite set of productions or rules of the form 
A (x 1, ... ,Xn )➔ t with A E <l>n, x 1, ... ,Xn are mutually distinct elements 
of X. and t is a term over EU <I> U {x 1, ... ,Xn }. D 

Sentential forms of a macro grammar are terms over EU c;I>. Some 
specific subsets of terms give rise to interesting special types of macro 
grammars and corresponding sets of sentential forms. Viz. the set 
BT (E U <I>) of basic terms over EU <I> is the subset of T (E U c;I>) of 
terms in which no A E <I> appears in the argument list of another sym
bol of <I> (i.e., nonterminals are not nested). And the set LBT(E U c;I>) 
of linear basic terms over EU c;I> is the subset of T (E U <I>) of terms con
taining at most one nonterminal. 
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A production A (x 1 •...• Xn )-+ t is called [linear] basic if t is a 
[linear] basic term. A macro grammar is [linear] basic if all its produc
tions are [linear] basic. A production A (x 1 • ...• .x,i )-+ t is called argu
ment preserving if for each i ( 1, i , n ). t contains at least one 
occurrence of x; • and it is called non-duplicating if t contains at most 
one occurrence of X; for each i c1,i ,n). 

In order to describe several modes of derivation for macro gram
mars we need the following concepts. 
De:finition 2.1.3. Let u be a term over :EU <b. T is a subterm of u if,,. 
is a term over l: U <b and T is a substring of u. 

A subterm T of u occurs at top level in u if there exist subterms 
u 1 and u 2 such that u = u 1Tu 2• So T does not appear within the 
argument list of some nonterminal in u. 

A term over l: U <b is called expanded if it contains no nontermi
nals together with its associated argument list. or equivalently. if it is a 
string over l:. D 

Using the productions of a macro grammar one can expand terms. 
As usual we distinguish three modes of derivation. 
Unrestricted mode (UNR): An occurrence of a nonterminal together 
with its arguments can be expanded according to a production by 
replacing the nonterminal and its arguments by the right-hand side of 
that production in which the arguments have been substituted for the 
corresponding variables. 
Inside-Out (IO): A nonterminal with its arguments is expanded only if 
its arguments are all expanded terms. 
Outside-In (OJ): A nonterminal with its arguments is expanded only if 
it occurs at top level. 

Each of these modes of derivation gives rise to a derivation rela
tion. formally defined as follows. 

De:finition 2.1.4. Let G = (<b.:E.X.P.S) be a macro grammer and let 
u. T E T (l: U <b ). The relations ==> UNR • ==> 10 and ==> 01 over 
T (l: U <b) are defined by 
(1) u ==> UNR T holds if u contains a subterm of the form A (t l• ...• tn) 
where A E<bn and t 1 •...• tn ET(l:U <b). P contains a production 
A (x 1, ... ,Xn )-+ t and '1' results from u by substituting A (t 1, ...• tn) by 
t [t 1/x 1, ... ,tn fxn ]. 
(2) u ==> 10 T holds in case u ==> UNR T and all the arguments of the 
rewritten nonterminal are expanded terms. 
(3) u ==> 01 T holds in case u ==>uNRT and the subterm of u which 
is rewritten occurs at top level in u. □ 

Let <= m be the converse of ==> m • i.e .• for all u. T E T (l: U <b). 
u <= m T holds if and only if '1' ==>mu. And let <=;> m be the 
union of ==> m and <= m • The reflexive and transitive closures of 
==> m. <= m and <=;> m are denoted by ==>;,, <= ! and 
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<l===> :z. respectively. In case u < :z,, [u-<= mT] we say that u 
reduces [directly] to T. 

It is easy to see that <l===> :Z is a congruence relation. Obviously. 
it is an equivalence relation and the congruency follows from: 
u <l===> :z,, and a <l===> :Z~ imply ua <l===> :z,,~: form = UNR this is 
trivial and in the other cases it follows from the fact that concatena
tion does not cause any additional nesting. 

Definition 2.1.5. Let G be a macro grammar and m a mode of deriva
tion. An m-macro grammar is a pair (G.m ). or simply denoted by G 
when m is known from the context. · The language generated by an 
m-macro grammar G = (cl>,'E.,X,P.S) is defined by 

Lm(G)= {wE'E*IS ===>:Zw}. 

By OI, IO and UNR we denote the family of languages generated by 
OJ-. IO- and UNR -macro grammars. respectively. □ 

In [6] Fischer proved the equality OI = UNR. and the fact that IO 
and OI are incomparable. 

In the sequel many of our results are restricted to macro gram
mars which possess the property that every term derived by the macro 
grammar has a derivation that ultimately yields a string over the ter
minal alphabet. These macro grammars are called admissible macro 
grammars [6]. This property is defined as follows. 

Definition 2.1.6. Am-macro grammar G = (cl>,'E,X.P,Z) with ZS: 11>0 

is admissible if either cl> = Z and P = f2J or 
(1) for each A E cl>, there exists a sentential form of G in which A 
occurs, 
(2) for each A E cl>n (n :J!:: 0) and each u 1, ... , u n E 'E* there exists a string 
w over'EsuchthatA(u 1 ..... un)===>:Zw. □ 

In [6] it is shown that for each m -macro grammar there exists an 
equivalent admissible m-macro grammar. For m = IO every (G,m) 
has an equivalent admissible subgrammar: form= OJ the task to find 
such an admissible grammar is more elaborate. 

Example 2.1.7. Let L 0 S: {O. 1}* the language containing exactly those 
words in which the number of l's is equal to 2n for some n :J!:0. L 0 is 
generated by the OJ-macro grammar G = (cl>,'E,X,P,S) with 
cl> = c1> 0 U cl>i, 11>0 = {S,A } • cl> 1 = {B}, X = {x}. 'E = {O. 1} and P consists 
of the rules 

S-+B(A) 
B (x ) -+ B (xx ) I x 
A-+ OA I AO 11 

In [6] it has been shown that L O cannot be generated by any JO-macro 
grammar. □ 
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2.2. The NTS Property for Context-Free Grammars 

NTS or nonterminal separating grammars have been introduced by 
Boasson [3]. A context-free grammar possesses the NTS property if its 
set of sentential forms is invariant when we apply the rules in both 
directions. i.e .• when we use apart from its productions the correspond
ing reductions too. 

Let G = (V.:t,P.Z) be a context-free grammar with alphabet V. 
terminal alphabet :t (:t!:: V). set of productions P. and start set Z 
(Z !:: V -:t). For each w Ev• we denote the set of words over :t deriv
able from w by G as 

L(G.w)= {we:t*lw =>*w}. 

We call this set the language generated by G from w. The language 
generated by G is 

L(G)= {we:t*l:3SEZ:S=>*w}. 

The set of sentential forms generated by G from we v• is 

L(G.w)= {I/IEV*lw =>*I/I}. 

The relations ~ • ~ •. <=> and <=> • are defined in a way 
similar to §2.1: however. historically they were :first defined for 
context-free grammars [3]. 

The set of words over V derivable from w E v• by both produc
tions and the corresponding reductions is 

LR(G.w)= {I/IEV*lw <=> *I/I}. 

Definition 2.2.1. A context-free grammar G = (V.:t,P.Z) has the NTS 
property or is an NTS grammar if for all A EV-:t. LR(G.A)= 
L (G.A ). A language L is called an NTS language if there exists an 
NTS grammar that generates L. □ 

Proposition 2.2.2. [3,5]. Let G = (V.:t,P.Z) be an NTS grammar. 
Then for all A and B in V-:t, either L(G.A)nL(G.B)= 12' or 
L (G.A) = L (G.B) holds. □ 

This property motivates the name of the concept defined in 2.2.1. 
However. the converse of 2.2.2 does not hold: e.g. {anbn In ~l}U 
{an b2n In~ 1} is not an NTS language [5]. but it is easy to show that 
this language can be generated by a grammar that possesses .. disjunct 
syntactic categories". 

On the other hand NTS grammars can be characterized in the fol
lowing way. 

Theorem 2.2.3. [5.10]. Let G = (V.:t,P,Z) be a conte'Xt-free grammar. 
G has the NTS property if and only if for all A.B E V -:t and for all 
a. (:1. u E V* the following implication holds: 

if A =>*au(:1 and B =>*u,thenA =>*a.B(:1. 
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□ 
For further details of context-free NTS grammars and languages 

the reader is referred to [2,3,5,8,9,10]. 

3. The NTS Property for Macro Grammars 

3.1. Definitions 

We use the following notational conventions. Usually, (c,- 1 .... ,O' n) is 
abbreviated to (ct (n )). The subscript (n ) is necessary to distinguish 
for example A (x (n >) and B (x (le>). Only if no confusion is possible we 
write x. For A E cl>, A (x) is the left-hand side of a production: so 
A (x) = A if A E cl>0• In the sequel an m -macro grammar will have a 
finite set Z (Z ~ cl>0) of initial symbols of rank O instead of a single 
initial symbol; cf. the definition of NTS context-free grammar. 

Definition 3.1.1. Let G = (cl>,E,X,P,Z) be an m-macro grammar. 
Then the language generated by (G,m) is 

Lm (G) = {w Er I :3 s E z: s =>,: w}, 
and for each t ET(EU XU cl>), 

Lm(G,t) = {w E (EU X)*lt =>; w }. 
bz(G.t) = {c., ET(EU XU cl>)lt =>; c.,}, 

LR"'(G,t)= {ooET(EUXUcl>)lt ~,:oo}. D 

We are now ready to define the nonterminal separating property 
for m-macro grammars. 

Definition 3.1.2. An m-macro grammar G = (cl>,E,X,P.Z) has the 
NTS property or is an NTS m-macro grammar if for all n ~O. A E cl>n. 
{x1, ... ,Xn }~X, 

LRm(G,A (x)) = bz(G.A (x)). □ 
Here we consider the variables x 1, ... ,Xn as members of a terminal 
alphabet E' with E~ E', according to Fischer [6]; cf. also [4]. 

Proposition 3.1.3. Let G = (cl>,E,X,P,Z) be an NTS m-macro grammar. 
Then for all n,k ~o. A E cl>n, BE cl>le, {x l• ... ,Xn }~ X , {x1, .. ,,xle }~ X, 

bn (G,A (x(n )))n bn (G.B (x (k))) = 0 
or 

bn (G,A (x (n ))) = bn (G,B (x (k ))). 

Proof: Let c., be an element of bi (G,A (x (n >)) n bi (G,B (x (le>)). Then 
A (x (n )) => ;oo as well as B (x (k )) => ;oo holds. This implies 
A (x (n >) ~ ; B (x (le>). With the NTS property of G we get 
A (x (n >) => ;B (x (k )) and B (x (le>) => ;A (x (n >) which implies 
bi (G,A (x (n >)) = bi (G,B (x (le>)). □ 

We see that NTS m-macro grammars have a similar .. nonterminal 
separating property" as context-free grammars: cf. Proposition 2.2.2. 

Example 3.1.4. Consider the linear basic macro grammar G = 
( cl> .'E,X,P.Z) with cl>= cl>oU cl>3, cl>0 = {S} = Z, cl>3 = {A}. X = {x.y,z}, 
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~ = {a,b,c,[.],# }. and P consists of the productions 

S-+ A(A,A,A) 
A (x,y,z) -+ A (ax,by,cz) 
A (x,y.z)-+ [x#y#z] 
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The language generated by G is L(G)= {[an#bn#cn]ln ~O}, and 
L (G,S) = {S}U {A (an ,bn ,en )In ~O}U L(G ). Because A (an ,bn ,en). 
(n ~ 1) only reduces to terms A (ak ,bk ,ck) with o,k <n. and 
[an #bn #en] only reduces to A (an ,bn ,en). we have L (G.S) = 
LR (G.S ). A similar argument for A (x.y,z) yields L (G.A (x.y,z )) = 
LR(G.A (x.y,z )); so G is an NTS macro grammar. D 

We see also that in case cf>= cf>0 and. consequently, G is a 
context-free grammar, Definition 3.1.2 corresponds to Definition 2.2.1 
for context-free grammars. 

3.2. Properties of NTS Macro Grammars 
This section is devoted to some results which generalize Theorem 2.2.3 
to m -macro grammars. To facilitate formulation and proofs we use 
the following notation. 

Definition 3.2.1. Let G = (cf>.~.X.P.Z) be an m-macro grammar. 
Then G has property II(m) if for all A E lf>n. BE cf>k. u ,au~ E 
T(~UXUcf>), with {x 1, ... ,Xn}~X and <T(k)ETk(~UXUcf>) the fol
lowing implication holds 

if A (x (n )) ===:>;,au~ and B (u (k )) ===:> ;,u. 
then A (xcn>) ===:>;,aB(uck>)~. □ 

First, we note that property II(m ) is a natural extension of the 
property mentioned in Theorem 2.2.3 in the sense that if cf>= cf>0, i.e., 
G is context-free. the two properties coincide. To establish Theorem 
3.2.3 we need the following lemma. 

Lemma 3.2.2. Let G be an admissible m-macro grammo.r. Let 
CAJ ,"1 E T (~ U X U cf>). Then CAJ ===:> UNR "1 implies CAJ <==> 01 "1 as well as 
"' <=> io "1. As a cordlary we have CAJ ===:> UNR "1 implies CAJ <==> ;, "1 for 
both m = 01 and 10. 

Proof: Let CAJ = aA (u)~ with A E lf>n. n ~O. u ETn (~U XU cf>) and 
if,= a8(u)~. Then CAJ ===:>uNRl/1 using the rule A (x)-+ 8(x). 8(x)E 
T(~U XU cf>). 
m = OJ. First we have aA (ct)~ ===:> 01a 'A (u )~ '. This is the string 
obtained from "' such that every A (u) is on top level. Next we derive 
a'A (u)W ===:> 01a'8(u)W. Now all new occurrences of 8(u) are on 
top level; so we can write a'8(u)~• <= 01a8(u)~. 
m = 10. Similarly, using A (ct)===:> j0 A (t). A (t) ===:> j0 8(t) and 
8(t) <= io8(u ). where t E (r)n. D 

Theorem 3.2.3. Let G be an admissible m-macro grammo.r. Then 
(G.m) is an NTS m-macro grammar if and only if G has property 
II(m). 
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Proof: First we prove the if-part. We have to show for G satisfying 
II(m) that for each A E ~n (n ~O). 

Lm CG.A Cx )) = LRM CG.A ex)). 
The inclusion from left to right n:) is trivial. To establish the con
verse inclusion (::2 ). we ought to prove that A (x) <=> :it implies 
A (x) ==:>;t. This is done by induction on the length of <=> ;. 
Basic step (p = 0): A (x) <=> ~t implies A (x) ==>:it trivially. 
Induction step. As induction hypothesis we take: A (x) <=> Cit 
implies A (x) ==:> ;t. 
Consider A (x) <=> Ci +i t . We distinguish two cases: 

Case 1. A (x) <=>Cit' ==>mt. Obvious. 

Case 2. A (x(n)) <=>Cit'<? mt. Suppose t ==>mt' by the deriva
tion step B (u (k 2) ==:>mu and let t = ot.B (u (k ))f3. t '= ot.U (3 with 
OI.U (3. u. B (u (k ))E T(l: u Xu~). By the induction hypothesis we 
have A (x (n >)==:>:it'. Using II(m) on A (x (n >) ==:> :iau (3 and 
B (u (k )) ==:>mu we get A (x (n )) ==:> :a ot.B (u (k ))f3 = t . This completes 
the induction and the proof of the second inclusion. 

To prove the only if-part we need the following. Let G be an NTS 
m-macro grammar. Then for all u,ot.u{3 ET(l:U XU~). BE ~k. 
U(1;)ETk(J:U XU~). 

B (u (k )) ==:> :au implies ot.B (u (k ))f3 <=> :iau (3. 
It is easy to see that for m = IO and m = UNR this holds even without 
G being NTS and with ==:>; instead of <=> :i. For m = 01 we 
obtain this implication as follows. If B (u (k >) ==:> 01u. then 
B (u (k )) ==:> [JNRU trivially: so ot.B (u (k ))f3 ==:> UNROI.U (3 and by Lemma 
3.2.2. we have ot.B (u c1: >)f3 <=> 01au (3. (Note that because G is NTS. 
we now can even prove the stronger fact: B (u (k >) ==:> 01u implies 
aB Cu c1: >)f3 ==> 01au f3 ). 

Now. if A(xcn>)==:>;au{J and B(uc1:>)==>:iu. then we get 
A (xcn>) <=> :iaB(clc1:>){3. Since (G.m) is NTS. we conclude with 
A (x (n )) ==:> :a ot.B (u (k ))f3. D 

3.3. The Pre-NTS Property for Macro Grammars 

Closely connected to the NTS property for context-free grammars is 
the pre-NTS property [3,5,9]: informally, the pre-NTS property equals 
the NTS property formulated for terminal strings only. It is still an 
open problem whether these two properties are equivalent for context
free grammars [3,5,9]. 

In this section we introduce and study the pre-NTS property for 
m -macro grammars. 

Definition 3.3.1. Let G = (~.J:.X,P,Z) be an m-macro grammar with 
Z ~ ~ 0• Then (G.m) is pre-NTS or has the pre-NTS property if for all 
A E~n (n ~O). and {x1, .. ,,xn}~X. Lm(G.A(x)) = LRm(G.A(x)) 
where LRm(G.A (x)) = LRm(G,A (x))n (l:U X)"'. D 
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Definition 3.3.2. Let G = (~.~.X.P.Z) be an m-m.acro grammar with 
Z ~ ~o- Then G has property 1r(m) if for all A E ~n (n ~O). BE ~t. 
u '.aufJ e (~U X)*. {x1 •...• .x,i }~ X. and if ET1 (~U XU~). the follow
ing implication holds: 

if A (x) => :Zotu fJ. B (if)=> :Zu and B (if)=> :Zu '. 
then A (x) => :Zotu 'fJ. □ 

We want to prove the equivalence of Definition 3.3.1 and Definition 
3.3.2. It turns out to be the easiest way to do this by introducing a 
second property p(m ) which is equivalent to both of them. 
De:finition 3.3.3. An m-m.acro grammar G has property p(m) if for 
all A E ~n (n ~O). and {x1,••••Xn }~X. t ET(~U XU~). u.u 'E 
(~ U X )* the following implication holds: 

ifA(x)=>:Zu. t =:>,:u.andt =:>,:u'.thenA(x)=>:Zu'. D 

Theorem 3.3.4. Let G be an admissible m-ma.cro grammar. Then the 
following statements are equi,val.ent: 

(1) (G.m) is pre-NTS, 
(2) G has property w{m), 
(3) G has property p(m ). 

Proof: (1) => (2): Suppose there exist derivations B (if)=> :Zu. 
B(if)=>:Zu' and A(x)=>:ZaufJ for u', aufJE(~UX)*. Because 
au fJ is a word over ~ U X there is no distinction between the three 
modes of reduction from au fJ. Therefore we have A (x) =>,: 
aufJ ¢= :ZaB(if)fJ. Now in otB(if)fJ. B(if) is on top level. so we 
continue with aB(if)fJ =>:Zau 'fJ which is a word over ~U X. Thus 
A (x) <=> :Zotu 'fJ and. as (G.m) is pre-NTS, A (x) =>:Zotu 'fJ. 
Hence G has property 1r(m ). 

(2) => (3): Let A (x) => :Zu. t => :Zu and t => :Zu '. Obviously, it 
is possible to write t as an unique sequence of terms, viz. t = t 1 .. .t1 • 

such that no ti is a concatenation of two or more terms. It is clear that 
in expanding some ti. none of the other terms tJ is affected. So we can 
write u as u 1 ••• u1 and u' as u 1' ••• u1 ' with ti =>:Zui and ti =>:Zu/. 
respectively. Now we have for some ;,, 1~;, ~k A(x)=>:Z 
u1•••ui ••·ut. ti =>:Zui. ti =>:Zu;'. and with 'ff'(m) we get 
A(x)=>:Zu 1 ••• u;' ... u1 • We apply this argument to each ui consecu
tively. which finally yields A (x) =>,: u 1 ' ... u1 ' = u ' which is the 
desired result. 
(3) =>(1): We have to show LRm(G.A (x))~ Lm(G.A (x)). which 
we · do by induction on the number of reduction steps in 
A (x) <=> ,: w • with w E (~ U X )*. We denote this by <==> ,:n which 
means that a <==> :'/J holds if and only if a <==> :Z/J in which n 
reduction steps have been used. 
Basic step (n = 0). A (x) <==> ,:0 w directly implies A (x) =>:Zw. 
Induction step. As induction hypothesis we have: A (x) <==> :zn w 
implies A (x) =>,: w • Let A (x) <==> ,:n + 1 w . To show that 
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A (x) ~;, w we look at the last reduction step in A (x) ¢=;> ;,n +l w. 
We write this as A(x) ¢=;> ;,nt 4= mt•~;,w. Because G is 
admissible there is a word u E Ct U X )* with t ~;, u. Applying the 
induction hypothesis we get A (x) ~;, u • with t ' ~;, u • and 
t ' ~;, w and property p(m) this gives us A (x) ~;, w . D 

4. Concluding Remarks 
In the previous section we generalized some characterizations of NTS 
and pre-NTS context-free grammars to corresponding statements for 
(pre-) NTS m -macro grammars. On the other hand one wants results 
that are specific for NTS macro grammars in the sense that there is no 
analogue for context-free grammars. Or. in other words. results that 
are due to the fact that we deal with macro grammars rather than 
context-free grammars. 

A first example of such a result shows that NTS "reduced macro 
grammars". i.e .• admissible NTS macro grammars with no initial sym
bols in the right-hand sides of their productions, are argument
preserving. 

Proposition 4.1. Let G = (<l>,k,X,P,Z) be an admissible NTS m-macro 
grammar, with no elements of Z occurring in the right-hand side of any 
production. Then G is argument-preserving. 

Proof: Suppose we have a production rule A (x 1 • .... xn)-+ t with 
A f <1>0 • which is not argument-preserving. say xi does not occur in t . 
1~i ~n. Suppose further that we have obtained a word c,, ET(kU <I>) 
derived from some SE Z on which this rule is applicable. Writing c,, as 
aA (u i, •..• u n )(3 we derive 

at [u 1/x 1• .... u i-1l xi-l, U i+l/xi+l• ... ,u n lxn ]{3. 
This last term however is, for instance, for some T in Z reducible to 
aA (u 1 .... , u i-1,T,u i +l• .... u n )(3. which we write as c,, (T ). So we have 
S ¢=;> ;,c,,(T). Since G is NTS. we obtain S ~;,c,,(T). But no pro
duction rule can ever introduce a T from Z in a sentential form. Thus 
we cannot derive such a term c,, (T) from S. □ 

The following statement is much more interesting. However. we 
are unable to prove it and therefore we formulate it as 

Conjecture 4.2. Each admissible NTS IO-macro grammar generates a 
basic macro language. □ 

The first easy step in proving this conjecture, consists of the fol
lowing observation. 

Lemma 4.3. Let G be an admissible NTS IO-macro grammar. Then for 
all A E <I>, 

kNR (G.A (x )) = L.ro (G.A (x )). 

Proof: We only have to show kNR(G.A(x))!::L.,0 (G.A(x)), since 
the converse inclusion is trivial. Let t E T(k U XU <I>) and 
A (x) ~ UNRt. Then we have by Lemma 3.2.2 A (x) ~ j0 t, and 
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using the fact that CG.JO) is NTS. we obtain A (x) ==> iot. □ 

In order to complete the proof of Conjecture 4.2 it is sufficient to 
establish 

Conjecture 4.4. Let G be an NTS 10-ma.cro grammar that contains a 
nested production 

A~) ➔ B~~D W 
i.e., some entry of y contains a nonterminal symbol.. If 
/J(x)ELuNR (G.B(x)), tlwt in the derivation A (x) ==> io/J(y(x)) the 
rule ( •) has not been applied. □ 
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We present an overview of results on the complexity of the member
ship problem for families of languages generated by several types of 
generalized grammars. In particular, we consider generalized gram
mars based on iterated context-independent rewriting, i.e., grammars 
consisting of a finite number of (non)deterministic substitutions, and 
on iterated context-dependent rewriting, i.e., grammars composed of 
a finite number of transductions. We give some conditions on the 
classes of these substitutions and transductions that guarantee the 
solvability of this membership problem within certain time and 
space bounds. As consequences we obtain additional closure proper
ties of some time- and space-bounded complexity classes. 

t. Introduction 

The concept of iteration grammar has been introduced as a generaliza
tion of a particular kind of parallel rewriting system, viz. ETOL
system [18], in order to extend some ad hoc combinatorial arguments to 
more general. structural proof techniques. For the origins and the early 
history of iteration grammars we refer to [2] and the references men
tioned there. 

In essence an iteration grammar is an ETOL-system in which the 
finite substitutions or tables have been replaced by arbitrary substitu
tions. So each table in an iteration grammar contains for each symbol a 
countable rather than a finite number of productions. Instead of ordi
nary substitutions one can also use deterministic substitutions which 
yields a generalization of EDTOL-systems, the so-called deterministic 
iteration grammars [6,7]. A deterministic substitution differs from an 
ordinary or nondeterministic substitution in the way it is applied to a 
string: instead of making a possibly different choice for each occurrence 
of the same symbol in a string we make a single choice in advance and 
then substitute this choice consistently for each occurrence of the sym
bol. Another different way to generalire EDTOL- or ETOL-systems 
consists of replacing the tables by transductions which yields an 
abstract context-dependent grammar model [5]. This latter approach 
extends some earlier generalizations in [9,22,16.4,17]. The major part 
of the research on these general grammar models is concerned with 
extending known results from L-system theory in the hope to obtain 
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general. algebraic or structural arguments rather than the combinatorial 
proofs usually applied in the original finite case. 

In this paper we survey some results that have been obtained in 
this way with respect to the complexity of the membership problem 
for these types of grammars, i.e .. given such a grammar G and a string 
x over the terminal alphabet of G. how much time and space does it 
take to decide whether x EL (G )? As usual in this area, the answer 
highly depends on the properties of the underlying set of (non)deter
ministic substitutions and transductions. Or, in other words, making 
some appropriately chosen assumptions on the set of substitutions or 
transductions enables us to extend results from L-system theory to 
these abstract grammars. As a spin-off it becomes clear on which pro
perties of the finite languages the original proof in L-system theory 
actually depends. 

The remaining part of this paper is organized as follows. Some 
notions of formal language and complexity theory are recalled in Sec
tion 2. In Section 3 we consider controlled (non)deterministic iteration 
grammars and their membership problem: Section 4 is devoted to the 
complexity of this problem. Context-dependent grammars, i.e., gram
mars based on transductions are described in Section 5, where we also 
provide some conditions that imply the decidability of the correspond
ing membership problem. In Section 6 attention is focused on the com
plexity of this membership problem. Sections 4 and 6 also provide 
some interesting closure properties of some complexity classes. Finally. 
Section 7 contains some open problems and concluding remarks. 

2. Preliminaries 

We assume the reader to be familiar with the rudiments of formal 
language theory and of automaton-based complexity theory. For all 
unexplained concepts and notation we refer to standard texts like 
[10.11.18]. For each set X, P (X) denotes the power set of X. The 
empty word is denoted by X. 

Let K be a family of languages and let V be an alphabet. A 
(nondeterministic) K -substitution over V or nK -substitution is a map
ping r: V-+ Kn P (V*) extended to words over V by r(X) = {X}. 
r(xy) = r(x )r(y) for each x.y Ev•. and to languages L over V by 
r(L) = U {T(x) Ix EL}. Similarly. a deterministic K -substitution over 
V or dK -substitution is also a mapping r: V-+ Kn P (V*) but now it is 
extended to words by r(x) = {h(x )lh is a homomorphism such that 
h (a)E r(a) for each a in V}. and to languages L over V by 
r(L)= U {T(x)lxEL}. Notice that applying a dK-substitution 7" 

implies that each occurrence of a symbol a in a string ought to be sub
stituted by the very same word from r(a). A dK- or nK-substi
tution T over V is called X-free if X e:r(a) for each a in V. 
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An Abstract Family of Languages or AFL is a family of languages 
different from {0}. which is closed under union, concatenation, Kleene 
+. A-free homomorphism, inverse homomorphism and intersection 
with regular languages. 

Frequently. we will tacitly assume that families of languages are 
closed under isomorphism ("renaming of symbols"). 

Let g: N-+ N be a monotonic function, i.e., m ~n implies 
g (m ) ~ g (n ). For each such g , DSP ACE(g ) [NSP ACE(g ) ] is the fam
ily of languages accepted by [non]deterministic two-way multi-tape 
Turing machines that use no more than g (n ) tape cells on any storage 
tape during a computation on an input of length n. And DTIME(g) 
[NTIME(g )] denotes the family of languages accepted by [non]
deterministic two-way multi-tape Turing machines that finish their 
[accepting] computations within time g (n ) on all inputs of length n . 
We use the following well-known abbreviations: 

PSPACE = U {DSPACE(n 4 )ld ~1} = U {NSPACE(n 4 )ld ~1}. 

P = U {DTIME(n 4 )ld ~1}. NP= U {NTIME(n 4 )ld ~1}. 

A [X-free] nondeterministic generalized sequential machine with 
accepting states or NGSM [XNGSM] 'I'= (Q.A1,A2,8.q 0.QF) consists of 
a set of states Q with initial state q O (q 0 € Q ). a set QF of final states 
(QF ~ Q ). an input alphabet A1• an output alphabet A2, and a function 
8 from Q xA1 into the finite subsets of Q xA2 [Q XA{]. The function 
8 is extended from Q X Ai into the finite subsets of Q X A2 by 
(i) 8(q.X) = {(q,X)}. 

(ii) 8(q.xa)= {(q'.y)ly=y 1y 2 and for some pEQ, (p.y1)E8(q.x), 
and (q'.y 2)e 8(p.a)}. where q e Q. a e A1• x e Ai. 

Each [X-free] NGSM T induces a transduction T: P (Ai)-+ P (Ai). called 
[X-free] NGSM mapping. defined by T(x) = {y I (q,y )e 8(q 0,x) for 
some q e QF } for each x in Ai. and 'I' (L ) = U {T (x ) Ix e L } for each 
language L over A 1 · 

A NGSM [XNGSM],,. is called deterministic or DGSM [XDGSM] 
if 8 is a function from Q xA1 into Q xA2 [Q xA{]. By NGSM 
[XNGSM] we also denote the family of [X-free] NGSM mappings. and 
similarly we use DGSM [XDGSM] in the deterministic case. 

3. Iterated Context-Independent Rewriting 

Iteration grammars have already been discussed in an informal way in 
Section 1. Now we recall the formal definition together with the con
trolled variant which clearly generalizes the concepts of controlled 
EDTOL- and ETOL-system studied in [1,2,6,7,8,13,14]. 

Definition 3. 1. Let r and K be language families. A [non]deter
ministic K -iteration grammar or dK -iteration [nK -iteration] grammar 
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G = (V,:t,U.S) consists of an alphabet V, a terminal alphabet :t 
(:ES: V), an initial symbol S (SE V), and a finite set U of [non]deter
ministic K -substitutions over V. The language L (G ) generated by G 
is defined by L (G) = U*(S) n :t*. A r -controlled dK -iteration [nK -
iteration] grammar (G;C) = (V,:t,U,S.C) consists of a dK -iteration 
[nK-iteration] grammar (V,:t,U,S) together with a control language 
CS: u• with CE r. The language generated by (G;C) is defined by 

L (G:c) = c Cs)n r = cu fr p c. .. C-riCs )) ... )l-r1••·-r p e c })n :t*. 
The family of languages generated by dK-iteration [nK-iteration] 
grammars is denoted by 'T)(K) [H(K)]. And 'T)(r ,K) [H(r ,K)] 
denotes the family of languages generated by r-controlled dK -
iteration [nK -iteration] grammars. A Cr-controlled) iteration grammar 
is called '>..-free when each of its substitutions is }.-free. □ 

In derivations of controlled ('>..-free) iteration grammars we can 
use long control words to derive relatively short terminal strings. In 
this way we are able to simulate an erasing homomorphism. Basicly, 
this is the core in proving the following characterization of RE, the 
family of recursively enumerable languages. 

Proposition 3.2. [1.2,6]. If K and r are language families such that 
{L I card (L )= 1} S: K S: RE , and {h (L ) IL E r; h is an arbitrary homo
morphism}= RE, then 'T)(r ,K) = H(r .K) =RE. D 

Thus in order to obtain recursive languages (of which we want to 
determine the complexity) at all, we ought to restrict the families K 
and r in some way. The conditions in the following lemma provide a 
first step to such a restriction. 

Lemma 3.3. [3]. Let K be a family which contains all alphabets. 
(1) Let r be a family closed under finite substitution and intersection 
with regul.ar languages, and let (G;C)= (V,:t,U.S.C) be a '>..-freer
controlled dK -iteration [nK -iteration] grammar. Then there exists a }.
free r-controlled dK -iteration [nK -iteration] grammar (G';C') = 
(V',:t,U',S,C') such that L(G';C')=L(G;C), and for each x in 
L (G';C') there is a control word T 1 ... T P in C' such that x ET P ... T 1(S) 
and p ~2lx I. 
(2) For each '>..-free dK -iteration [nK-iteration] grammar G = 
(V,:t,U,S) there exists a '>..-free dK-iteration [nK -iteration] grammar 
G' = (V',:t,U',S) such that L(G')= L(G), and for each x in L(G') 
there is a string T 1 ... T P over U' such that x ET P ••• T 1(S) and p ~ 21 x I. □ 

The proof of this lemma can be found in [3] and will not be 
repeated here: it extends an earlier result on controlled ETOL-systems 
from [8]. In Section 5 we meet a similar situation and a corresponding 
lemma of which the proof will be sketched. 

Proposition 3.4. [5]. Let r and K satisfy the assumptions of Lemma 
3.3. If both r and K are '>..-free subfamilies of the family of recursive 
languages, then each language in H(r .K), H(K), 'T)(r .K) and in 
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7)(K) is recursive. 

readx 
if X n::+ then reject else 

:fi.. 

for all u in C' with lu I ~2lx I do 
if x e u (S) then accept :fi. 

od: 
reject 

Figure 1. 
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Proof: Given a A-free r-controlled [non]deterministic K-iteration 
grammar (G:C ). we first apply Lemma 3.3. Then the algorithm in Fig
ure 1 determines whether a word x belongs to L (G';C' ). Since after 
the execution of an accept- or reject-statement the algorithm. is sup
posed to halt, termination is guaranteed for each input x. Hence 
L (G';C') is recursive. In the uncontrolled case we replace .. for all u 
in C' " by .. for all u in U' *" in Figure 1. □ 

Other conditions that guarantee the decidability of the member
ship problem for (controlled) A-free iteration grammars can be found 
in [1.2]. 

4. Complexity Aspects of Iterated Context-Independent Rewriting 

With respect to the complexity of the membership problem for (con
trolled) deterministic iteration grammars the following result is of 
principal interest. Its proof is too long to be given here: it consists of a 
straightforward generalization of the argument that EDTOL is included 
in NSPACE (logn) [12]: cf. [3] for details. 

Let 1-NSPACE (g) be the family of languages accepted within 
space bound g: N-+ N by nondeterministic multi-tape Turing machines 
with a one-way read-only input tape. 

Theorem 4. 1. [3 ]. Let g (n ) ~ log n for al,l n e N, let r and K be f ami
lies satisfying the assumptions of Lemma 3.3, and let r be closed under 
reversal,. 
(1) If r and K are included in 1-NSPACE (g ), with g (2n )~c.g (n) 
for some constant c and for al,l n e N, then 'Y)(r .K)S: NSPACE (g ). 
(2) If KS: 1-NSPACE (g ), then 7)(K)S: NSPACE (g ). D 

Since for functions g : N-+ N with g (n ) ~ n for all n EN. the 
family 1-NSP ACE (g ) equals NSP ACE (g ), this implies immediately 

Theorem 4.2. [3]. Let g (n )~n for all n e N, and let r and K be 
families which satisfy the assumptions of Lemma 3.3. 
(1) If g (2n )~ c.g (n) for some constant c and for al,l n EN, and if both 
r and K are included in NSPACE (g ), then 7)(r ,K) S: NSP ACE (g ). 
(2) If KS: NSPACE (g ), then 7)(K)S: NSPACE (g ). D 
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A similar results holds for H(r .K) and H(K); it has been men
tioned implicitly in [20] and formulated in [3] in the following way. 

Theorem 4.3. [20,3]. Let g (n )~n for all n EN, and let r and K be 
families which satisfy the conditions of Lemma 3.3. 
(1) If g (2n) ~ c.g (n) for some constant c and for all n EN, and if both 
r and K are included in NSPACE (g ), then H (r .K) S: NSPACE (g ). 
(2) KS: NSPACE (g) implies H(K)S: NSPACE (g ). D 

An inclusion analogous to 4.2(2) and 4.3(2) for DSPACE (g) ori
ginates from [20]; the proof is based on a divide-and-conquer technique 
to determine a derivation. The obvious extension to controlled itera
tion grammars is from [3]. 

Theorem 4.4. [20,3]. Let g (n )~n logn for al.l n EN, and let r and 
K be families which satisfy the assumptions of Lemma 3.3. 
(1) If g (2n )~c.g (n) for some constant c and for all n EN, and if both 
r and K are included in DSP ACE (g ), then H (r.K) S: DSPACE (g ). 
(2) If KS: DSPACE (g ), then H(K)S: DSPACE (g ). D 

Van Leeuwen's proof of 4.4 can also applied to (controlled) deter
ministic iteration grammars: as observed in [3] the bound g (n )~ 
n log n can in that case be replaced by g (n ) ~ n for all n E N. 

Theorem 4.5. [3]. Let g (n )~n for all n EN, and let r and K be 
families which satisfy the conditions of Lemma 3.3. 
(1) If g (2n )~c.g (n) for some constant c and for all n EN, and if both 
r and Kare included in DSPACE (g ), then '1}(r ,K) S: DSPACE (g ). 
(2) KS: DSPACE (g) implies '1}(K)S: DSPACE (g ). D 

Taking K equal to DSPACE (g) or NSPACE (g ) in 4.2(2) - 4.5(2) 
yields some interesting closure properties for these complexity classes. 
A language family K is closed under iterated ')..-free [non]deterministic 
substitution if for each K -language L over V and each finite set U of 
')..-free [non]deterministic K -substitutions over V the language U*(L ) 
belongs to K. 

Theorem 4.6. [3]. Let for all n EN, g(n)~n and g(2n)~c.g(n) for 
some constant c . Then NSPACE (g) and DSP ACE (g ) are AFL 's closed 
under intersection and iterated X-free deterministic substitution. More
over, NSPACE (g) is closed under iterated ')..-free nondeterministic sub
stitution; this al.so applies to DSP ACE (g ) provided that g (n ) ~ n log n 
for all n EN. D 

Corollary 4.7. [3]. The following language families are AFL's closed 
under intersection and under iterated ')..-free deterministic substitution: 
(1) PSPACE, 

(2) NSPACE(n ), the family of nondeterministic context-sensitive lan
guages, 

(3) DSPACE(n ), the family of deterministic context-sensitive langua
ges, 
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( 4) NSP ACE(n 2), the family of two-way nondeterministic nonerasing 
stack automaton languages, 

(5) DSPACE(n logn ), the family of two-way deterministic nonerasing 
stack automaton languages. 

Moreover, the families under (1), (2), (4) and (5) are also dosed under 
iterated >..-free nondeterministic substitution. □ 

We call a language family K closed under controlled iterated >..
free [non]deterministic substitution if 'T)(K.K)~ K [H(K,K)~ K]. To 
obtain in a similar way closure under controlled iterated >..-free substi
tution for these complexity classes fails: cf. Proposition 4.8, the proof 
of which is based on Proposition 3.2 and the fact that the Dyck set is 
in DSP ACE Clog n ). 

A language family K is closed under removal of right endmarker 
if for each language Le in K where L ~ :t* for some alphabet :E with 
c ~ :t. the language L is in K too. 

Proposition 4.8. [3]. Let K be a family closed under removal of right 
endmarker. If DSPACE (logn )~Kc RE, then K is not closed under 
controlled iterated >..-free (non)deterministic substitution. In particular 
this applies to each complexity class which includes DSP ACE Clog n ). □ 

For the time complexity classes P and NP we have the familiar 
situation: viz. NP has "strong" closure properties, whereas P shares 
these properties if and only if P = NP. 

Theorem 4.9. [3]. 
(1) NP is an AFL closed under intersection and iterated >..-free (non)
deterministic substitution. 
(2) Let C be either DSPACE(logn), NSPACE(logn), or P. Then the 
following propositions are equivalent. 

(a) C = P= NP. 

(b) C is closed under iterated >..-free nondeterministic substitution. 

(c) C is closed under iterated >..-free deterministic substitution. 

(d) C is closed under >..-free homomorphism. □ 

S. Iterated Context-Dependent Rewriting 
Central in our approach (cf. [5]) to introduce an abstract context
dependent grammar model is the notion of transduction. 

Definition 5.1. Let V be an alphabet. A transduction T over V is a 
function -r: V*-+ P (V*) extended to languages by T: P (V*)-+ P (V*) 
with T(L) = U {T(x )Ix EL} for each language L over V. 
Let f be an n-ary operation on languages. A family T of transduc
tions is closed under (composition to the left with) f , if for all T -
transductions T 1, ... ,Tn over some alphabet V. there exists a T
transduction T over V such that T(x) = f (T 1(x ) •... ,T n (x )) for all x 
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in v·. □ 
In many proofs one wants to construct a new grammar GN from 

an old one G0 by attaching a finite amount of information to the sym
bols of G0 . Then the transductions in GN over this extended alphabet 
will be defined in terms of the old transductions of G0 using closure 
under isomorphism. Finally, we strip this additional information by 
applying an isomorphism in order to obtain words over the original 
alphabet. Therefore we make the following basic assumption. 

Assumption 5.2. Henceforth T is a family of transductions that 
(1) is closed under (composition to the left with) isomorphisms; cf. 
Definition 5 .1, 
(2) is closed under composition to the right with isomorphisms, i.e., for 
each T -transduction T 1 over V 1 and each isomorphism i : V -+ V 1 there 
exists a T-transduction T over V such that T(x) = -r 1(i (x )) for each 
X in v·. and 
(3) contains for each V the identity mapping over V. □ 

From 5.2 it follows that T also contains all isomorphisms. We 
are now ready for the main formal definition. 

Definition 5.3. Let T be a family of transductions. A T-grammar 
G = (V,:E,U,S) consists of an alphabet V. a terminal alphabet :E 
(:ES: V), an initial symbol S (SE V). and a finite set U of T-transduc
tions over V. The language L (G ) generated by G is defined by 

L(G) = U*(S)n :t* = 
= cu t-rpC. .. C-r1Cs)) .. .)lp~o: -rieu. l~i~p})n:t*. 

Let r be a family of languages. A r -controll.ed T-grammar 
(G;C) = (V.:E,U,S.C) is a T-grammar (V,:E,U,S.) provided with a con
trol language C S: u• from r. The language L (G;C) generated by 
(G;C) is defined by 

L(G;C) = c(s)n :E* = cu {-rpC. .. C-r1CS)) ... )l-r1 · · · "P ec})n:E". 

L (T) [L (T ;f). respectively] is the family of languages generated 
by [r -controlled] T-grammars, and L (T ;m) [respectively L (T; r ;m )] 
is the subfamily of languages generated by [f-controlled] T-grammars 
that possess at most m (m ~ 1) T-transductions. □ 

Example 5.4. (1) Let HOM and FINSUB be the families of all homo
morphisms and of all finite substitutions. respectively. Then L(HOM) 
= EDTOL and L(FINSUB) = ETOL. For f-controlled variations. see 
e.g. [1,2,6,8,13,14]. 
(2) Let dK-SUB [nK -SUB] denote the family of all [non]deterministic 
K-substitutions. Then L(dK -SUB) = 'T)(K) [respectively, L(nK-SUB) 
= H(K)] i.e., the family of languages generated by [non]deterministic 
K-iteration grammars. 
(3) The language families L (T ;f) and L (T) with T equal to XNGSM. 
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>i.DGSM. NGSM, and DGSM have been investigated in [9.22,16.4.17]: 
see [17] in particular, where e.g. the family of context-free languages is 
characterized by L (T) for a family T of restricted NGSM mappings. □ 

All the examples in 5.4 are transductions in the sense of 
Definition 5.1. and they all satisfy Assumption 5.2. 

For these context-dependent abstract grammars we also need a 
decidable membership problem; cf. Proposition 5.7. Therefore we res
trict our attention to so-called locally context-independent transduc
tions [20,5] which enables us to establish an analogue of Lemma 3.3, 
viz. Lemma 5.6. 

Definition S.S. A transduction T over some alphabet V is called locally 
context-independent if 

(1) T is rrwnotonic, i.e., for each y in v•. y E T(x) implies I y I ~ Ix I. 
(2) T is context-independent in length-preserving applications. i.e., for 

all xi,Yi in v• with lxil = IYil (i=1.2.3). Y1YzY3ET(x1x2x3) 
implies y 1Y 3Y 2 E T(x 1x 3X 2). D 

Lemma 5.6. [5]. Let T be a family of locoll,y context-independent trans
ductions, and let T contain for all alphabets V the length-preserving 
finite substitutions 

T(a) = W a in V, W~V. 
(1) Let r be a family closed under finite substitutions and under inter
section with regular languages, and let (G;C) = (V,:E,U,S,C) be a r
controlled T-grammar. Then we can effectively construct a r -controUed 
T-grammar (G';C')= (V,::E,U',S,C') such that L(G';C')= L(G;C), 
and for each x in L(G';C'), there is a control word T 1 ... TP in C' such 
that x e,,. P •• _,,. 1 cs) and p ~ 21 x I . 
(2) For each T-grammar G = (V. :E,U,S ), we can effectively construct a 
T-grammar G' = (V,:E,U',S) such that L (G') = L (G ), and for each x 
in L (G' ), there exists a word T 1 ... T P in u•• such that x E,,. P ••• T 1(S), 
and p ~2lx I. 
Proof: (1) We add new control words to C such that the correspond
ing derivations possess the property that each length-preserving step in 
such a derivation is immediately followed by a length-increasing step. 

If V = {a 1 •... ,ak} for some k ~ 1. then we define U' = 
uu {[T,q]ITEU,qEQ} with Q = {<X1,••·•Xk>IXi~v. 1~i~k}. 
and C' = CT(C) where CT= (Q,U,U',B,q 0.QF) is an NGSM with q0 = 
<{a1}, .... {at}>.QF = {q 0},whileB is defined by 

B( <X l•···•xk > ,T) = {(qo,T) I <X l•···•xk > = qo} u 
u {(<T(X1)n v •...• T(Xk)n V>.>i.).(qo,[T.<X1,••·•xk >D} 

(Notice that C ~ C' ). 

Next we indicate the way in which the new additional control 
words are obtained by means of CT from C. together with the effect of 
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these new control words. · Consider an arbitrary derivation D accord
ing to (G:C ). At each step in D. determined by the application of 
some T-transduction T, one of the following three cases applies (cf. the 
definition of 8 ): 
Case ( a): This application of T is length-increasing. 
The corresponding transition in ,:r is the identity transition: (q o, T) E 
8 (q 0, T ). This case does not give rise to the addition of new control 
words. 

Case (b ): This application of T is length-preserving and the next step in 
D will also be length-preserving. 
The corresponding occurrence of T in the control word is erased. and 
the length-preserving context-independent effect (cf. Definition 5.5) of 
T is stored by means of changing the state of ,:r from <X 1 • ...• Xk > to 
<-r(x 1)n v ..... -r(xk )n v >. 
Case (c): This application of T is length-preserving but either the next 
step in D will be length-increasing. or this application of T is the last 
step in D. 
In the old control word we replace the corresponding occurrence of T 

by [-r. <X 1, ... ,Xk >] where <X 1 • ... ,Xk > is the current state of ,:r in 
which the ultimate length-preserving effect of a consecutive sequence of 
erased transductions (cf. Case (b)) has been stored. This new 
transduction [-r. < X 1 .... , Xk >] is a length-preserving finite substitution 
defined by 

[T, <X 1, ... ,Xk > ](ai) = T(Xi )n V for each i (1 ~ i ~k ). 

(2) Define u· = U U fru lu eu+} with for each u in u+. Tu is the 
length-preserving substitution defined by 

Tu(a) = u(a)n V a in V. 

Then U' is finite, because there are only a finite number of length
preserving substitutions over V. □ 

The proof of the following result is almost identical to the one of 
Proposition 3.4. 

Proposition 5.7. [5]. Let r and T satisfy the assumptions of Lemma 
5.6. If r is a subfamily of the family of recursive languages and if Tis 
a subfamily of the family of recursive transductions, then each language 
in L (T :r) and in L (T) is recursive. □ 

6. Complexity Aspects of Iterated Context-Dependent Rewriting 

In this section we determine upper bounds for the space and time com
plexity of languages generated by (controlled) T-grammars; viz. 
Theorems 6.2, 6.5 and 6.8. 

Throughout this section "function" means a monotone increasing 
function g over the natural numbers satisfying g (n ) ~ n for each 
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nEN. 

Definition 6. 1. Let for each function g : N-+ N. DSP ACETR(g ) 
[NSPACETR(g ). respectively] be the family of those transductions T 

that satisfy 
(1) T is locally context-independent. and 
(2) there exists a [non]deterministic algorithm that can decide a query 
"ye T(x )?" for each x and y within space g ( ly I). □ 

Theorem 6.2. [5]. Let g be a function. 
(1) lfT ~NSPACETR (g ), then L(T)~ NSPACE(g ). 
(2) L (NSPACETR (g )) = NSPACE (g ). 
(3) Let r be a fomi,ly closed under ftmte substitution and under intersec
tion with reRUl,ar languages. If r ~ NSPACE (g ), T ~ NSPACETR (g ), 
and g (2n )~c.g (n) for some constant c, then L (T ;r) ~ NSPACE (g ). 

Proof: (1) Consider the algorithm in Figure 2; remove the assignments 
in which the variable control is involved. and replace the last state
ment by accept. 

read x; 
control := A; 
if Xu:+ then reject else 

y:=S; 

A; 

while y ¢ x and ly I~ Ix I do 
guess TEU; 

od 

guess z ev+ with ly I~ lz I~ Ix I; 
if z e T(y) then control := control.T; 

y:=z 
else reject 

A 

if control e C then accept else reject A. 

Figure 2. 

Then each step in this modified algorithm requires at most linear space. 
except the test .. z e T(y )" for which we need g ( I z I)~ g (Ix I ) space. 
Thus for Ix I= n. the total amount of space is O (n +g (n )) = 
0 (g (n )). 

(2) The inclusion L (NSPACETR (g ))~ NSPACE (g) follows immedi
ately from (1) by taking T = NSPACETR (g ). 

Conversely. let L 0 ~ :t• be a language in NSPACE (g ). Define 
G = (V.:t,{T}.S) with V = :EU {S}. and-, is defined by 

T(S) = Lo 
T(w) = {w} for each w in :t*. 

Then TENSPACETR(g). G is an NSPACETR(g)-grammar, L(G)= 
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L 0• and hence NSPACE (g )~ L (NSPACETR (g )). 
(3) Consider the algorithm of Figure 2. By Lemma 5.6 the last state
ment requires space O (g (2n )) which is O (g (n )) due to the assump
tion on g . So the total space needed to execute the algorithm is 
0 (n +g (n ))+O (g (n )) = 0 (g (n )); cf. the proof of (1). D 
Corollary 6.3. [5]. L (NSPACETR (n )) = NSPACE (n ). D 

NSPACE (n) or. equivalently. the family of A-free context-sensitive 
languages can be characterized by much simpler transductions than 
those used in 6.3; in 6.4 we combine results from [9.22.16.4.17] 
together with some simple properties. 
Theorem6.4. 
L (ANGSM;REG) = L (ANGSM) = L (ANGSM: 1) = 
L(ADGSM:REG) = L(ADGSM) = L(ADGSM ;2) = NSPACE(n ). D 

Although this solves partially an open problem from [22]. viz. 
L (ADGSM :2) = NSPACE (n ). the precise nature of L (ADGSM : 1) and 
an analogous characterization of DSP ACE (n ) are still unknown. How
ever. it is easy to show that L(ADGSM :1)~ DSPACE (n ). 

For a deterministic counterpart of Theorem 6.2 we can generalize 
the proof of Theorem 5.2 in [21] straightforwardly. The details are 
left to the reader. 

Theorem 6.S. Let g be a function with g (n) ~ n log n for each n e N, 
and there exists a constant c such that g (2n ) ~ c.g (n ) for each n e N. 
Let r be a family of languages closed under finite substitution and under 
intersection with regul.ar languages. 
(1) If T ~ DSPACETR (g ), then L (T )~ DSPACE (g ). 
(2) L (DSP ACETR (g )) = DSP ACE (g ). 
(3) If r ~ DSPACE (g) and T ~ DSPACETR (g ), then L (T :r) ~ 
DSPACE(g). D 

Next we turn to time-bounded transductions and time-bounded 
complexity classes. Instead of a single bounding function we now con
sider a class of functions that is closed under certain operations. The 
following definition is a slight modification of a concept from [20J 

Definition 6.6. A class C of functions is called natural if 
(1) C contains the identity function AX. x. 
(2) for each / and g in C. there is a monotone increasing function in 
C that majorizes AX. (f (x )+ g (x )). 
(3) for each/ and g in C. there is a monotone increasing function in 
C that majorizes AX. (f (x )g (x )). and 
(4) for each/ in C. there is a monotone increasing function in C that 
majorizes Acc./ (2x ). D 
Definition 6.7. Let for each class C of functions. NTIMETR (C) be 
the family of those transductions 'f that satisfy 
(1) 'f is locally context-independent. and 
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(2) there exists a nondeterministic algorithm that can decide a query 
"y E T(x )?" within time g ,.( ly I) for some g,. in C. D 

For a class C of functions NTIME (C) is defined by NTIME (C) = 
U {NTIME (g) lg EC}. Let pol,y be the class of all polynomials over 
the natural numbers. Obviously. poly is a natural class. 
Theorem 6.8. [5]. Let C be a natural cla,ss of functions, o.nd let r be a 
famiJ.y of languages closed under finite substitution o.nd under intersec
tion with regul.ar languages. 
(1) If T S::NTIMETR (C), then L(T)S:: NTIME(C). 
(2) L (NTIMETR (C )) = NTIME (C ). 
(3) If r S:: NTIME (C) o.nd TS:: NTIMETR (C ), then L (T ;r) S:: 
NTIME(C). 

Proof: The proof is similar to the one of Theorem 6.2. As an example 
we show (3). Let (G;C) = (V.:t.U.S.C) be a r-controlled T
grammar. Assume U = fr1, ...• Tm}, and for each i (1,i ,m) a query 
"z E T(y )?" can be resolved within time g; ( lz I) for some g; in C. 
Since C is natural there exists a function g in C that majorizes 
Xx.(g 1(x)+ ... +gm(x)) and hence g(x)~g;(x) for each x and each i 
c1,i ,m). 

Consider the algorithm of Figure 2. By Lemma 5.6 it suffices to 
execute the body of the while-loop at most 2n times where n is the 
length of the input. All statements in this body require time O (n ) 
only. except the test "z E T(y )?" which is O (g (n )). Therefore this 
while-loop can be executed in time at most O (n. (n +g (n ))). The 
preceding statements consume O(n) time. while the last statement of 
the algorithm needs time h 1(2n) for some h 1 in C (assuming that 
C E NTIME (h 1)). AB C is natural. Xn.h 1(2n) is majorized by some h 
in C . Thus the total time to execute the algorithm is 
O(n+n(n+g(n))+h(n)). Since C is natural this is majori7.ed by 
some function in C. Hence L (G;C )E NTIME (C ). D 
Corollary 6.9. L(NTIMETR(poly)) = NP. D 

Theorem 6.8(2) and Corollary 6.9 are variations of results esta
blished by Van Leeuwen [20] for another rather abstract grammatical 
model. 

In addition to Theorem 6.8 we remark that from the main result 
in [19] it follows that if T contains all (X-free) finite substitutions. 
then· the membership problem for L (T ) is NP-hard. 

We conclude this section with a counterpart of Theorem 4.6 with 
respect to closure under iterated locally context-independent time- or 
space-bounded transductions. We call a family K of languages closed 
under iterated T-transductions if for each language L in K with 
L S: v• for some alphabet V. and each finite set U of T -transductions 
over V. the language U*(L ) belongs to K. 
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Theorem 6.10. [5]. Let g be a function such that there exists a con
stant c with g (2n ) ~ c.g (n ) for each n e N. 
(1) If g (n );,;n for each n e N, then NSPACE (g) is the smallest AFL 
closed under iterated T.ocolly context-independent nondeterministic g
space-bounded transductions. In particul.ar this applies to 
- NSPACE (n ), the family of context-sensitive languages; 
- NSP ACE (n 2), the family of two-way nondeterministic nonerasing 
stack automaton languages; 
- PSPACE. 
(2) If g (n ) ;,: n log n for each n EN, then DSPACE (g ) is the smoJlest 
AFL closed under iterated T.ocolly context-independent deterministic g
space-baunded transductions. In particul.ar this applies to 
- DSPACE (n logn ), the family of two-way deterministic nonerasing 
stack automaton languages. 
(3) If C is a natural class of fundions, then NTIME (C) is the smoJlest 
AFL closed under iterated T.ocolly context-independent nondeterministic 
C-time--bounded transductions. In particular this applies to NP. 
Proof: From 6.2(2). 6.5(2) and 6.8(2) closure under iterated T
transductions easily follows for T equal to NSPACETR (g ). 
DSPACETR (g ). and NTIMEI'R (C) respectively. Closure under 
iterated T-transductions implies closure under union, concatenation. 
Kleene + and A-free homomorphism. The remaining two APL
properties (closure under inverse homomorphism and intersection with 
regular languages) can be proved by standard automaton-theoretic con
structions. Since each AFL closed under iterated T-transductions 
includes L (T ). it is easy to see that L (T) is the smallest AFL closed 
under iterated T-transductions. 

For the characterimtion of two-way nonerasing stack automaton 
languages in terms of complexity classes we refer to [11]. D 

It is an open problem whether a similar proposition holds for 
DSPACE (n ). the family of deterministic context-sensitive languages. 

7. Concluding Remarks 

We summarized some results on the complexity of the membership 
problem for (controlled) iteration grammars (Section 4) and for (con
trolled) grammars based on transductions (Section 6). In the former 
case these results are rather satisfactory; in the latter one we could 
extend the results of Section 4 only at the price of requiring local 
context-independency. Whether this is a serious restriction is still 
open. However, when we drop this condition we will probably need a 
rather different approach to solving the membership problem in the 
context-dependent case. 

Apart from this general problem. a few more concrete open ques
tions have already been mentioned; cf. the remarks after Theorems 6.4 
and 6.10. Another long standing open problem in this area. is the 
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question whether DSPACE(n) is a hyper-APL, i.e .. whether it is an 
AFL closed under iterated A-free nondeterministic substitution [21.3]. 
It is even unknown whether this question is equivalent to the classic 
LBA-problem, i.e .. is DSPACE(n) = NSPACE(n )?. Thus. our know
ledge in this respect is more restricted in case of linear space than it is 
in case of polynomial time; cf. Theorem 4.9. 

Finally. we mention a different approach to the subject of this 
survey based on the notion of nondeterministic log-space-bounded 
reducibility; cf. [15]. Let for each language family K. NLOG(K) be 
the family of languages that are many-one reducible to a language in K 
by a reduction function computable nondeterministically in space log n 
by a Turing machine of which each computation is of polynomial 
length. As usual. LOG(K) is the class of languages many-one log
space reducible to languages in K. Then the following holds. 

Proposition 7.1. [15]. 
(a) LOG(EDTOL) = NSPACE(log n ). 
(b) NLOG(EDTOL) = NP. 
(c) LOG(ETOL) = NP. 
(d) NLOG(ETOL) = NP. D 

Let ONE be the language family of singleton sets. i.e .. ONE = 
{LI card(L) = 1}. Then, e.g .. '1}(ONE) = EDTOL. 

Theorem 7.2. [15]. Let r be a language family closed under reversal, 
finite substitution and intersection with regular languages. Then 
'1} er .ONE) ~ NLOG(r ). □ 

As corollaries one obtains the restricted version of Theorem 4.1 
with K = ONE. the main result of [12]. and implications of the form: 
if r satisfies the conditions of Theorem 7.2 and r ~ LOG(CF). then 
'l}(r .ONE)~ LOG(CF) where CF is the family of context-free 
languages; cf. [15]. On the other hand it is still open whether 
'l}(EDTOL.ONE) ~ P. 
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On Covers and Left-Corner Parses 

Rieks op den Akk.er 
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P.O. Box 217, 7500 AE Enschede, The Netherlands 

A transformation is defined which is a modification of a classic 
transformation on context-free grammars. By means of this 
transformation, a proof is presented of the fact that any cycle-free 
context-free grammar can be left-to-left-corner covered by a non
left-recursive grammar, The proof method is based on the idea to 
transform the characteristic grammar associated with the simple 
syntax-directed translation scheme which defines the left-corner 
parse of the strings generated by the input grammar of the scheme. 
It is shown that the transformation yields an LL (k ) grammar if and 
only if it is applied to an LC (k) grammar. Finally, some ideas are 
presented to extend the theory of covers to the semantical covering 
of attribute grammars. 

1. Introduction 

Let G 1 and G 2 be context-free grammars. G 1 and G 2 are called weakly 
equivalent if they generate the same context-free language. Let x 
denote a string in the language L = L (G 1) = L (G 2). Weak 
equivalence of G 1 and G 2 does not imply that there is a structural 
similarity between the parse tree or parse trees of x with respect to G 1 

and the parse tree or parse trees of x with respect to G 2• Here we will 
consider a stronger form of equivalence between context-free gram
mars. We say that G 2 covers G 1 if we can transform G 1 into the 
weakly equivalent grammar G 2 and we can systematically find the 
parse tree of each string x in L with respect to G 1 from the parse tree 
of x with respect to G 2• 

A class Y of context-free grammars covers the class X of 
context-free grammars if there is a transformation defined on all gram
mars in X such that the transformed grammar is a grammar in class Y 
and covers the original grammar. If a class Y covers a class X then we 
can use a compiler writing system (CWS) based on a parsing method 
for grammars of class Y also for grammars in class X; see Figure 1. 

First, we transform a grammar G from class X into the covering 
grammar G' and then built a parser for G'. The output of this parser 
is a parse tree with respect to G'. This tree is transformed into the 
corresponding parse tree with respect to the original grammar G . This 
last transformation makes it possible to define the semantics of x with 
respect to the semantical definition based on grammar G . 

107 
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typeX 
grammar 

transformation 

typeY I 

grammar 

CWS for type Y 
grammar 

compiler for 
,, 

type X grammar 

Figure 1. 

For this reason the original grammar on which the syntax
directed semantics is based is called semantic gromtn11T in [7] and the 
grammar obtained after transformation(s) is called the parsing gram
mar. The reason for using two grammars may be that the parsing 
grammar is not convenient for expressing semantics. Sometimes it is 
possible and also useful to do semantic actions or - in terms of the 
formalism of attribute grammars [S] - to evaluate attributes during 
the parsing of the input string. This allows for the use of semantic 
properties (attribute values) of the already analyzed part of the input 
string in making parsing decisions. Then it becomes practically 
interesting to adapt the transformations on context-free grammars in 
such a way that they preserve the semantics defined by the original 
(attribute) grammar. 

We will define a transformation on context-free grammars. If 
this transformation is applied to a context-free grammar G. then the 
resulting grammar G' covers the original grammar G. If the transfor
mation is applied to an LC (k) grammar. then the resulting grammar is 
LL (k ). The transformation is a modification of the one given by 
Rosenkrantz and Lewis II [9]. The modification is due to the fact that 
our definition of the LC (k ) grammars is that of Soisalon-Soininen [11]. 
which is a modification of the original definition of Rosenkrantz and 
Lewis II. The equivalence of this modified definition and the definition 
of LC (k ) grammars of Soisalon-Soininen and Uk.konen is proved in 
[2]. 
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This paper is organized · as follows. In Section 2 we give some 
preliminary definitions concerning parse relations and cover relations 
between classes of context-free grammars. In Section 3 we define the 
left-corner parse relation. In Section 4 we define a transformation on 
context-free grammars. In Section 5 we consider general cover proper
ties of the transformation. Section 6 presents definitions of LL (k ) 
grammars and left-corner or LC (k ) grammars. In Section 7 we show 
that the transformation yields an LL (k ) grammar if and only if it is 
applied to an LC (k) grammar. Finally, we present in Section 8 some 
ideas to extend the notion of cover to the semantical covering of attri
bute grammars. 

2. Preliminaries on Covers 
The first results on cover relations between context-free grammars 
were obtained by workers in the area of compiler writing. One of the 
first theoretical studies in this field is that of Gray and Harrison [6]. A 
general theory of covers has been developed by Nijholt [8]. 

We recall some preliminary notions from this theory of covers. 
Since we will only consider cover relations between grammars that 
have the same terminal alphabets, we do not need all notions in the 
general formulation presented by Nijholt. 

< w, G > denotes the degree of ambiguity of w with respect to G . 
Let G be a cfg (context-free grammar) and l:,,.G a set of unique labeling 
symbols for the productions of G . 

Definition 2.1. A relation f GS: :E*xaJ is a parse relation for G if it 
satisfies the following conditions. 

i. For each string w EL (G ) there exists at least one element 
(w,1r)EfG. 

ii. For each w Er. 1{1r I (w,1r)EfG }I~ <w.G >. □ 

Definition 2.2. A relation f G S: :E*x !:,,.J is a proper parse relation for G 
if it satisfies the following conditions. 

i. If (w,1r)EfG and (w',1r)EfG then w = w'. 

ii. ForeachwE:E*, 1{1r I (w,1r)EfG }I= <w.G>. □ 

Thus a proper parse relation for G is a parse relation for G. 

Definition 2.3. Let G = (N,:E,P.S) and G' = (N',:E,P',S') be con
text-free grammars with labeling sets for the productions l:,,.G and /:,,.G,. 
Let f G and f G' be parse relations for G and G'. respectively. A 
homomorphism </>: /:,,.6,-+ !:,,.J is a parse homomorphism if (w,1r)Ef G' 
implies (w,q,(1r))Ef G. □ 

Definition 2.4. A parse homomorphism is a cover homomorphism if for 
all (w,1r)Ef G. there exists (w,1r') E f G· such that q,(1r') = 1r. □ 
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Definition 2.5. Let G = (N,"£.P.S) and G' = (N',"E.,P'.S') be cfgs. 
Let f G and f G' be parse relations for G and G' respectively. Grammar 
G' f G' -to -f G covers G if there exists a cover homomorphism 
¢: AJ, -+ AJ. Notation: G' [JG' If G ]G. D 

Two well-known parse relations are the following. The left parse 
relation for G is lG = { ( w. 11') I S ==:;:> t w } . The right parse rel,ation 
for G is rG = { ( w. 'TT'R ) I S ==:;:> r'r w }. in which 'TT'R denotes the reverse 
of 71'. 

The cover relation satisfies the transitivity property. Let f .g.h be 
parse relations for cfgs F.G.H. respectively. If F[j lg ]G with respect 
to cover homomorphism ¢ 1 and G [g lh JH with respect to cover 
homomorphism ¢ 2 then F[J lh JH with respect to cover homomor
phism tj,2 o tj, 1. 

Most results on covers between cfgs concern left-to-left (or sim
ply left). right-to-right (right). left-to-right and right-to-left-covers 
by grammars in some normal form, as for example Greibach Normal 
Form or Chomsky Normal Form. by grammars without E-rules or by 
non-left-recursive grammars. All the results obtained upto 1980 can 
be found in Nijholt [8]. 

3. The Left-COrner Parse 

Before we come to the definition of the left-corner parse of a string 
with respect to a given context-free grammar. we define a useful 
homomorphism. Let A be a set of symbols and "E, ~ A . The "£,-erasing 
honwrrwrphism on A • h :E : A• -+ A• is defined by h 1:Ca ) = a if a ~ r, and 
h 1:Ca ) = E if a E I:. For a language L we define h 1:CL ) = 
{ h 1:Cx ) I x E L } . 

Let G = (N.:E.P.S) be a cfg. IP I= m, A a set {p 1 ..... pm} such 
that "E, n A = 0 and AG :P -+ A a labeling function associating with 
each production in P a unique symbol in A. We will omit the sub
script G and simply write X instead of AG . 

With each cfg G and label set A we associate the cfg 
G1c = (N,"E, U A,P1c ,S) in which P1c is defined as follows. 

P1c = {A -+ Pi I A -+ E in P and >.(A -+ e) = Pi } U 

{ A -+ Xp; ot I A -+ X ot in P and >.(A -+ X ot) = Pi } . 

Clearly, hA(L (G1c )) = L (G ). 

We use the grammar G1c in order to define the left-corner parse of 
a string x EL (G ) with respect to G . 

Definition 3.1. Let G be a cfg. x EL (G) and A. G1c as defined above. 
11' EA• is a left-comer parse of x with respect to G if there is a string 
y EL (G1c ). such that h1:(Y) = 11' and hA(y) = x. □ 
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The left-corner parse relation for G - {(h 4(y ),h'E.(y )) ly EL (G1c )} - is 
the same as the one denned by a simpk syntax directed translation 
scheme (SDTS) in [1] or [8]. In fact the grammar G1c is the characteris
tic grammar [1] associated with the simple SDTS defining the left
comer parse relation. The left-comer parse relation is a production 
directed parse relation as defined by Nijholt [8]. 

Example 3.2. Let G be the cfg given by the productions in the left
most table of Figure 2. The right-most table shows the productions of 
the cfg G1c associated with G and the production label set 
A= {p1,P2,p3.p4 }. 

1. S-+aSa 
2. S-+ Ab 
3. S-+ C 

4. A-+ S 

1. 
2. 
3. 
4. 

S-+ a P1S a 
S-+ A P2b 
S-+ C p3 
A-+ SP◄ 

Figure 2. The productions of grammars G and G1c. 

Let X1 = ap1ap 1CP3P4Pibaa and x 2 = ap 1ap 1cp 3aap4P2b. Since X1 

and x 2 are both sentences in L (G1c ) and h 'E.(x 1) = h 'E.(x 2) although 
h 4 (x 1) :;,,!: h 4 (x 2). the left-comer parse relation is not proper for G. 
The sentences aacbaa and aacaab both have left-comer parse 
P1P1P3P4P 2 The derivation trees of the sentences h 4 (x 1) and h 4 (x 2) 

are shown in Figure 3. D 

s 
~ 

a S a 

~ a S a 

l'b 
I 
s 
I 

C 

s 
~ 

A b 
I 
s 
~ 

a S a 

~ 
a S a 

I 
C 

Figure 3. Derivation trees of aacbaa and aacaab . 

4. The Transformation T 

We describe a transformation - we call it T - which, when applied to 
a cfg yields a cfg that is equivalent to the original one. T is a 
modification of a transformation described by Rosenkrantz and Lewis 
II in [9] for transforming an LC (k) grammar into an LL (k) grammar. 
Also Griffith and Petrick have used this transformation. The 
modification is because we pref er the definition of LC (k) grammars by 
Soisalon-Soininen [11] which is equivalent to a slightly modified 
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version of the original LC (k) definition in [9]. In Section 5 we show 
that transformation T when applied to a cfg G yields a cfg T(G) which 
left-to-left-comer covers G . In Section 7 we will proof that ,,. yields 
an LL (k) grammar if and only if it is applied to an LC (k) grammar. 
LL (k ) grammars and left-comer grammars are defined in Section 6. 

As we already noticed in Section 2. most of the cover results con
cern left. right. left-to-right or right-to-left covers. The reason for this 
is simply that the parse relations involved in these covers correspond 
with the canonical left-most and right-most derivations in a cfg. For 
the left-comer parse relation there is not such a smooth canonical 
derivation. A left-corner parser (see for instance [1] or [9] for a 
description) jumps through the parse tree: the left-corner parsing 
method is a method which combines top-down and bottom-up recogni
tion of parts of the parse tree. Proofs of theorems on left-comer gram
mars or related concepts tend to be long and tedious and are therefore 
mostly omitted. 

Before we come to a description of T we introduce some notation 
and one definition. 

Let G = (N."E..P.S) be a cfg. Context-free grammars are always 
assumed to be reduced. that is they do not contain useless symbols. 
We write E for the empty string. V will denote N U "E,. Ve will denote 
the set VU {e} and "E.e the set "E. U {e}. If a Ev• then I a I denotes the 
length of a. Furthermore. for an integer k > 0. k :a denotes a if 
I a I , k and k :a denotes the prefix of a of length k if I a I > k (notice 
that k :e = E for any k ). The left-corner of a production A --+ a is the 
symbol 1:a. 

Deftnition 4.1. We define the relation ~g with respect to a cfg G as 
follows: 

i. ~{1<;;.NxVe. 

ii. (X.Y)E ~g if and only if X--+ a is a production of G and 
Y = 1:a. D 

We will write X ~1cY instead of (X.Y)E ~g. ~;% will denote 
the transitive closure of ~ 1c . 

Let G = (N."E..P.S) be a context-free grammar and let N be the 
set {A E N I A = S or there is a .E,_l'Oduction in P of the form 
B--+ aAp. where a¢e}. (Thus A EN if A is the start symbol of G 
or A occurs in the right-hand side of a production of G of which it is 
not the left-comer). Let N be ordered: N = {A 1.A 2 ..... An }. The 
transformed grammar T(G) of G is the context-free grammar 
(N' ."E..F .S). N' is a superset of N and contains all symbols of the 
form [A.Y]. with A EN and YE Ve• which appear in the productions 
of T(G ). 

F is defined as follows. Start with F = 0. F will contain only 
those productions added to F in one of the following three steps. 
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1. For all i, 1 ~ i ~n • for all a E :Ee add to P' the production 
A; -+ a [A; .a] if A; ~ zt a . 

2. For all [A; ,Y]. where YE Ve, which occur in the right-hand side 
of a production in P' • for all productions in P of the form 
B -+ Y (3. where (3 E v• such that A; ~ zt B • add the production 
[A; ,Y] -+ (3 [A; .B] to P' if it is not already in P' . 

3. Add [A; ,A;] -+ E to P' . 

Grammar T(G) does not contain useless symbols. 

We give two examples of the transformation. 

Example 4.2. Consider the context-free grammar G given by the fol
lowing productions. 

1. S-+S+T 
2. S-+ T 
3. T-+ TX id 
4. T-+ id 

The symbols id,+ and X are terminal symbols. The transformed 
grammar G' has the following productions; cf. Figure 4. D 

1'. S-+id[S,id] 2'. [S,id]-+[S,T] 
3'. [S.T]-+ [S.S] 4'. [S,T]-+ x id [S.T] 
5'. [S.S]-+ +T[S.S] 6'. [S,S]-+ e 
1'. T -+ id [T,id] 8'. [T.id]-+ [T,T] 
9'. [T.T]-+ E 10'. [T,T]-+ X id [T.T] 

Figure 4. 

Example 4.3. If we apply T to the cf g G of Example 3.2. we obtain 
the grammar H given by the productions shown in Figure 5. Do not 
pay attention yet to the last column. We will later return to this 
example. D 

1' S-+ a [S,a] E 

2' S-+ c [S,c] E 
3' [S.a ]-+ Sa [S.S] 1 
4' [S,c] -+ [S.S] 3 
5' [S.S] -+ [S.A ] 4 
6' [S.A ] -+ b [S.S] 2 
7' [S,S]-+ E E 

Figure 5. 

5. General Properties of T 

In this section we will show that if transformation T is applied to a cfg 
G we obtain a cfg G' which left-to-left-corner covers G. Therefore we 
have to show that there exists a homomorphism which maps left 
parses of a string x EL (G) with respect to G' onto left-corner parses 
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of x with respect to G . The method of proof is inspired by Soisalon
Soininen [10]. The diagram of Figure 6 shows the grammars involved 
in the proof and the steps we will take. 

;:--\ 
G' • H'----H 

Figure 6. 

We apply transformation T to the grammar G1c associated with G to 
obtain the cfg H. L (H) should be L (G1c ). Then we define the gram
mar H' and a homomorphism </:>.,. such that L (H') = L (G) and more
over H'[l/lc]G with respect to¢.,.. Finally, we construct the cfg G' 
from H' in such a way that G' = T(G) and define a homomorphism 1/1 
such that G' [l ll ]H' . By the transitivity property of the cover relation 
we obtain the desired result. 

We first show that T preserves the language generated by the cfg 
to which it is applied. 

Lemma 5.1. Let G = (N.I.,P,S) be a context-free gramma.r. Then 
L(G) = L(T(G )). 

Proot_ From the construction of T(G) from G. it follows that for all 
A EN (for the meaning of N see the transformation): 

A ::::;,. z A 1 a 1 :::::;,. z A 2a 2a 1 :::::;,. z • • · 

==::;,.z An-lO!n-1 · · · 0!20!1 ==::;,.zaO!nO!n-1 · · · 0!20!1, (5.1.1) 

a E I.E. is a derivation in G if and only if 

A ==::;,. r a [A.a] :::::;,. r a O!n [A,An -11 :::::;,. r a O!n O!n-1[A,An -21 

==::;,.r a O!n O!n-1 · · · 0!20!1[A,A] 

(5.1.2) 

is a derivation in T(G ). Notice that each symbol that occurs in 
an · · · a2a1, is either a terminal symbol or a symbol in N. 

Any derivation A ::::;,. z* x in G can be seen to be constructed 
from derivations of the form (5.1.1). And with these derivations there 
are corresponding derivations in T(G) of the form (5.1.2). As a special 
case we have S ::::;,. • x in G if and only if S ::::::;:. • x in T(G ). Thus 
L (G) = L (T(G )). So we can proof the Lemma by induction on this 
construction. We do not give the complete proof here. 

As !_ basis for the induction consider the following observations. 
Let A E N and let A -+ x be a production of G . with x E :t*. First 
suppose that x ¢ e. Let x = ax' for some a EI. and x' E :E*. By the 
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definition of the transformation. it follows that in T(G) there is a 
derivation A ====> a [A.a ] ====> ax' [A.A ] ====> ax' = x. On the other 
hand this last derivation exists in T(G) only if A -+ x is a production 
in G. Now suppose that x = E. Then in T(G) we have the derivation 
A ====> [A,E] ====> [A.A] ::::>e. And also this last derivation only 
exists in T(G) if A -+ E is a production in G. D 

Let G = (N."E.,P.S) be a cfg. Ii a set of labeling symbols for the 
productions of G (X denotes the corresponding labeling function). 
G1c = (N."E.U li,P1c,S) the grammar associated with G and Ii defined 
in Section 3 and H the grammar T(G1c ). i.e .• the grammar obtained 
from G1c by the transformation T. H = (Nn,"E.U li,Pn,S). Further
more. let H' = (Nn U li,"E..Fn .S). where Fn = Pn U {p; -+ E I Pie Ii}. 

Lemma 5.2. There is a leftmost derivation A ====> i" x for a terminal 
string x in H' if and only if there is a string y in L (H) such that 
h.tJ,.(y)= x, hr,(y)= '11'1'11'2 ... 'IT,,, and '11'11'11'1'11''2'11'2 ···,,,..,,,,,,.,,,='IT, where 
'11''1 ... 'IT',,, is a left parse of y from A in H. 

Proof: By induction on the length of 'IT. □ 

We now define a homomorphism"'" which should map left parses 
of a string x with respect to H' onto left-comer parses of x with 
respect to the original grammar G = (N. "E.,P.S ). Let /i'n be a set of 
labeling symbols for the productions in PH . Let A' be a one-to-one 
labeling function from F onto li'n• Define the homomorphism "'" 
from li'if to Ii• as follows. For all productions in Pn of the form 
[A.X]-+ l3[A.B ]. where 13 e (VU Ii)*. introduced in step 2 of the 
transformation applied to G1c we have: </>iX'([A.X]-+ l3[A.B]))= 
X(B -+ X l3). For all other elements q of /i'n: </>"(q) = E. 

Lemma 5.3. H' [l Ile ]G with respect to homorrurphism </,". 
Proof: By definition of a left-comer parse of a string x e L (G ) with 
respect to G we have to show that S ====> i" x in H' if and only if 
S ====>*y in G1c. where h.tJ,.(y) = x and hE(y) = </>"('IT). 

By the previous Lemma there is a left parse ,,,. of x e L (H' ) if and 
only if there is a stringy in L(H) such that h.tJ,.(y)= x and 
hE(Y) = 'IT1'IT2--•'ITn. and 'IT11'11'1'11''2'IT2 · · · ,,,..,,, ,,,.,,, = 'IT, where '11''1•••,,,.•n. is a 
left parse of y in H. Since L(H)= L(G1c) by Lemma 5.1. we are 
done if we could prove the following Claim. 

Claim. </>i'IT) = 'IT1'IT2--•'1Tn, 
Proof of the Claim: Recall that 'IT= 'IT11'1T1'1T12'1T2 · · · ,,,..,,, ,,,.,,, and notice 
that I '11'1; I~ 0 and I 'IT; I = 1 for all i. 1 ~i ~n. Since </>"('IT;)= E, we 
have to show that </,"(,,,.•1,,,.•2 .•• 'IT',,,) = '11'1 ... 'IT,,,. If G does not contain 
E-productions then simply </,"('IT';)= 'IT;. Let B -+ E be an e
production in P and let X(B -+ E) = p. Then B -+ p is a production in 
P1c . . Suppose that A -+ p [A.p] is a production of H = T(G1c) intro
duced in step 1 of the construction of H. Then [A,p]-+ [A.B] is a 
production of H introduced in step 2 of the construction of H . By 
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definition of 'PT• c/>iA '(A ➔ p [A,p ])) = E and c/>iA '([A,p ]-+ [A,B ])) = 
p . Let 'IT) in 'IT denote the production p -+ E in P' H • Then 'IT' J + 1 
equals )..'(LA,p]-+ [A,B ]). Thus cf,T(1:'IT'J +1) = 'ITJ. 
End of the proof of the Claim. □ 

Now we should obtain T(G) from H'. Define G' = (NH,'£,P'G ,S) 
where P'G = { A -+ ht:,.(a) I A -+ 01. in PH }. Let t:,.'G be the produc
tion label set for G' and let )..'G denote a label function which satisfies 
the following: for all productions in P'G, )..'G (A -+ ht:,.(a)) = 
A '(A -+ a). 

It is not difficult to see that G' = T(G ) (Equality is meant here up 
to renaming of some nonterminal symbols). Thus we have: 
L(G') = L(T(G )) = L(G) = L(H' ). 

Define the homomorphism t/1 from ll.'6 to ll.'k as follows: 
t/J(A 'G (A -+ ht:,.(a))) = ).'(A -+ a), if a= ht:,.(a). 

t/J(A 1G (A -+ ht:,.(a))) = A '(A -+ a)). '(pi -+ E), if 1:a = Pi E fl.. 
Lemma S.4. G' [l/l]H' with respect to t/J. 
Proof: This follows immediately from the construction of grammar G' 
and the definition of t/1. □ 

Theorem S.S. G' [l /lc ]G. 

Proof: Use Lemma 5.3 and Lemma 5.4 and the transitivity property of 
the cover relation. □ 

Example S.6. See Example 4.2 in the previous section. Let fl.' be the 
set {1',2', ... ,10'} of unique labeling symbols of the productions in G' 
and let fl. be the set {1,2,3,4,5} of unique labeling symbols of the pro
ductions in G. Define the homomorphism cf, from fl.' into fl.* as fol
lows. q,(1') = E, q,(2') = 4, q,(3') = 2, q,(4') = 3, q,(5') = 1. q,(6') = E, 
cf,(7') = E, cf,(8') = 4, cf,(9') = E and cf,(10') = 3. 

The sentence id Xid +id has left-parse 1' 2' 4' 3' 5' 7' 8' 9' with 
respect to G' . This left-parse is mapped by cf, on the left-corner-parse 
4 3 214 of id Xid +id with respect to G. □ 

Example S.7. See Example 4.3 in the previous section. With respect to 
grammar H the sentences a.acbaa and aacaah have left-parses 
1' 3' 1' 3' 2' 4' 5' 6' 7' 7' 7' and 1' 3' 1' 3' 2' 4' 7' 7' 5' 6' 7'. The homomor
phism 'PT• given by the second column in Figure 5. maps both left
parses onto the left-corner parse 1 1 3 4 2 with respect to G . D 

Before we can present the following result we recall the definition 
of cycle-freeness of a context-free grammar. 

A cf g G = (N. '£,P,S) is called cycle-free if for no A EN there is a 
derivation A ==:>+A in G. 

Theorem S.8. Any cycle-free context-free grammar is left-t<>-left-corner 
covered by a non-left-reaersive grammar. 
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Proof: The only thing left to show is that cycle-freeness of a cf g G 
implies non-left-recursiveness of -r(G ). 

Let G = (N."'E..P.S). First notice that a symbol in N cannot be 
left-recursive in -r(G ). We show that there is in G a derivation 

Y ==;>+ z. (5.8.1) 

where Y.Z EN. if there is in -r(G) a derivation of the form 

(5.8.2) 

where x Er.•. We use induction on the length of derivation (5.8.2). 
Let [A.Z] ==> [A.Y]x be a derivation in T(G ). It follows from the 
construction of -r(G ). that Y -+ Z is a production in P (and x = e). 

Suppose that if there is a derivation in -r(G ) of the form (5.8.2) 
with length less than or equal to n. then there is a derivation (5.8.1) in 
G. Consider a derivation of the form (5.8.2) with length n +1. This 
derivation has the form: 

[A.Z] ==>/[A.X] ==>r+[A.Y]z. 

By the induction hypothesis we may conclude that Y ==> + X and 
X ==> + Z are derivations in G. Thus Y ==> + Z in G. □ 

6. Two Classes of Grammars 
In this section we give definitions of LL (k ) grammars and left-corner 
or LC (k) grammars. 

Definition 6.1. Let G be a cfg. Let A EN. a.J3.y Ev•. we :t* and let 
A -+ a and A -+ J3 be two distinct productions of G. G is an LL(k) 
grammar if the conditions 

(i) S ==>z* wA8 ==>z wa8 ==>* wz1 

(ii) S ==> z* wA 8 ==> z w J38 ==>* wz2 
(iii) k :z1 = k :z2 

always imply that a = /3. □ 

In the following definition of the class of LC (k ) grammars. the 
notion of a left-earner sentential form (lcsf) is used. Informally, a 
left-corner sentential form is a left sentential form uYa such that the 
nonterminal or terminal symbol Y is not the left-corner of the produc
tion that introduced Y in the leftmost derivation S ==> z* uY a . If 
uY a is a left-corner sentential form. we write: S ==> k uY a . For
mally. S ==> k uY a if and only if either this derivation has the form: 

S ==>z*u'Ba' ==>z u'y1Yy2a' ==>z* u'u"Yy2a' = uYa. 

where B -+ 'Y 1Y y 2 is a production rule in which y 1 ¢ e, or uY a = S 
(The first left sentential form in any derivation). We write 
A ==> z* B 'Y if for some integer n ~ 0 there are Bi in N , 'Yi in v•. with 
Bo= A. B,,, = B and y,,, ... y 1 = y. such that 
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A =>z B1')'1 =>z B2')'2')'1 =>z · · · =>z Bn Yn •··'Yl· 

Definition 6.2. Let G = (N,'T,,,P,S) be a cfg and let k be an integer 
(k > 0). G is an LC (k) grammar if and only if 

1. the conditions 

(i) S =>ic u1A81 =>tu1B1')'181 =>z u1Xt31-Y181 

(iii) u 1 x 1 = u 2x 2 and k :z 1 = k :z 2 

imply B1 = B2 and 131 = /32. 

Notice that if X is a terminal symbol then X = x 1 = x 2 and con
dition (iii) implies that u 1 = u 2. If X /3 1 = E then X /32 = E, 

u 1 = u 2 and x 1 = x 2 = E. 

2. (condition for €-rules) If 

s =>ic uA 81 =>t uB1')'181 =>z U')'181 =>t UZ1 

is a derivation in G. then there is no derivation of the form: 

S => ic uA 82 => z* uB2')'282 =>z uat3-y282 => z* uaz2 

in G. such that k :z 1 = k :az2• 

3. (condition for left recursive nonterminal symbols) If 

S =>ic u1A 81 =>t u&1-Y181 =>z u1A /31')'181 

=>t U1X1/31')'181 :=>z" U1X1Z1 

is a derivation in G. then there is no derivation of the form 

S =>ic uA8 =>t ux8 =>t uxz 

such that ux = u 1x 1 and k :z 1 = k :z . □ 

This definition is equivalent with the definition of LC (k ) grammars in 
terms of right-most derivations given by Soisalon-Soininen [11]. For a 
proof of this equivalence see [2]. Any LL (k ) grammar is LC (k ) and 
any LC (k ) grammar is LR (k) [11]. 

Example 6.3. Grammar G in Example 4.2 is an LC (1) grammar. D 
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7. Special Properties of Transformation T 

In this section we show that the transformation T yields an LL (k) 
grammar if and only if it is applied to an LC (k ) grammar. 

Lemm.a 7.1. Let G = (N,'f.,P,S) be a context-free grammar. For al,l 
A 0 EN (For the meaning of N see Section 4.), there exists in G a 
derivation 

A 0 ==;>z* B181 ===!;>za1A 1')'161 ==;>z"w1A1')'161 

==;>z*w1B262')'161 ==;>z w1azA2'Y282')'161 

==;>z*w 1w 2A 2y262')'181 ==;>z" • • • 

==;>z°w1W2 ... wnAn'Ynan ... ')'161, 

if and only if in grammar T(G ) the derivation 

Ao ==;> t w 1A 1'Y 1CA o,B 11 ==;> t w 1w zA 21zCA 1,B 2h 1[A o,B 1l 
===!;> t . . . ===!;> t 
==;>z*w1W2 · · · WnAn'Yn[An-1,Bnhn-1[ ... ] ... y1[Ao,B1], 

exists, such that for al,l i , if 1 ~ i ~ n then 

CA;-1,Bd ===!;>: 8;[A;-1,A;-1] ===!;> 7 6;. 

Proof: By induction on the length of the derivations. D 

Lemm.a 7.2. For any k >O, if G is an LC(k) grammar, then T(G) is 
an LL (k ) grammar. 

Proof: Let G = (N,'f.,P,S) be an LC(k) grammar for some k >O. G' 
denotes the grammar T(G ). Suppose that G' is not an LL (k) gram
mar. Then for some Z EN' . 

S ==;> z* wZ 8 ==;> z w cu 16 ==;> • wz 1 

and 

S ==;> t wZ 8 ==;> z w cu 28 ==;> • wz 2 

are derivations in G' , where cu 1 ¢: cu 2• although k :z 1 = k :z 2• 

We distinguish three cases: I) Z is a symbol in N • II) Z is of the 
form [A.Y]. where A EN.Ye V-{A} and III) Z is of the form [A.A]. 

Case I. It follows from the construction of the grammar G'. that the 
productions Z --+ cu 1 and Z --+ cu 2 both have the form A --+ a [A.a]. 
where a E'f.E. Since k >O. k:z 1 = k:z 2 and y 1 ¢: y 2• the following 
derivations exist in G'. 

S ===!;> t wA 8 ===!;> z wa [A.a ]6 ==;> z* wau 18 ===!;> z*wau 1V 1 = wz 1 

S ==;> t wA 8 ==;> z w [A,e]6 ==;> t wu28 ==;> z°wu2v2 = wz2 

Because of the first part of these derivation in G' we may conclude, 
using Lemma 7.1, that S ==;> z*c wA 8' in G such that 6 ==;> • 8' in G'. 
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Notice that in general we may not conclude from 8 ::::::;> • 8' and 
8 ::::::;>*v that 8' ::::::;>*v. However, by Lemma 7.1 the derivation 
8 ::::::;> • 8' has a special form. 

If in Lemma 7.1 [A;-1,Bd ::::::;>*y1 then [A;-1,Bd :::::;>:Yi and 
thus CA;-1.B;] ::::::;>;8;CA;-1.A;-11 ::::::;>;8; ::::::;>;y1. Therefore we 
may conclude here that 8' ::::::;> • v 1 and 8' ::::::;> • v 2 in G . Since 
A -+ a [A.a 1 is a production in G'. it follows from the construction of 
G' that A ::::::;>,* B1')'1 ::::::;>aP1'Y1 is a derivation in G. In the same 
way. since A -+ [A,e1 is a production of G'. there is a derivation 
A ::::::;> ,* B 2')'2 ::::::;> ')' 2 in G . Furthermore we know (See the proof of 
Lemma 5.1.) that aP1'Y1 ::::::;>*au1 and ')'2 ::::::;>*u2 in G. Thus deriva
tions 

s ::::::;> k w A 8 I ::::::;> t w lb,y 28 I ::::::;> l w 'Y 28 I ::::::;> ,* WU 2 V 2 = w z 2 

and 

S ::::::;> k w A 8' ::::::;> ,* w B 1')'18' ::::::;> z wa P 1')'18' ::::::;> z* wau 1V 1 = wz 1 

exist in G . Since k :z 1 = k :z 2• we conclude that G does not satisfy the 
condition for e-productions in Definition 6.2 and so we have shown 
that the assumption that G is LC (k) leads to a contradiction. 

Case II. In this case the productions Z -+ ru 1 and Z -+ ru 2 in the intro
duction of this proof have the form [A,Y1-+ y 1[A.Y 11 and 
[A,Y1-+ y 2[A.Y 21. Suppose that 

and 

s ::::::;> t w [A.Y18 ::::::;> l w 'Y 1CA,Y 118 ::::::;> z* WU 1CA,Y 118 

::::::;> z* WU 1Y 18 ::::::;> WU 1Y 1V 1 = WZ 1 

s ::::::;> t w [A.Y 18 ::::::;> l w 'Y 1CA,Y 118 ::::::;> z* WU 1CA,Y 118 

::::::;> z* WU 1Y 18 ::::::;> WU 1Y 1V 1 = WZ 1 

are derivations in G'. where y 1[A.Y 11 ¢ y 2[A.Y 2]. although 
k :z 1 = k :z 2. From the construction of G' it follows that the first part 
of these derivations has the form: S ::::::;> ,* w'A 8 ::::::;> ,* w'w" [A.Y18. 
where w = w'w" and Y ::::::;>* w" is a derivation in G. By Lemma 7.1 
we know that S ::::::;>t: w'A 8' is a derivation in G. such that 8 ::::::;>*8' 
in G'. It will be clear that in G the derivations 

A ::::::;> ,* Y 1P 1 ::::::;> Y 'Y 1 P 1 ::::::;> t w" 'Y 1P 1 

and 

A ::::::;> ,* Y 2P 2 ::::::;> Y 'Y 2P 2 ::::::;> ,* w" 'Y 2P 2 

exist, such that [A,Y 11 ::::::;>; ~ 1 and [A.Y 21 ::::::;>; ~ 2 in G'. Notice that 
we may conclude that P 1 ::::::;> • y 1 and also that P 2 ::::::;> • y 2 (see Case I 
for the justification of this). Thus we know that 

S ::::::;> • w'A 8' ::::::;> • w'Y o. 8' ::::::;> w'Y"' o. 8' le - l -1,., 1 1 1,-, 1 
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(7.2.1) 

and 

(7.2.2) 

are derivations in G. Since k :z 1 = k :z 2 we have k :w"z 1 = k :w"z 2-

From this last equality and derivations (7.2.1) and (7.2.2) we conclude 
that clause 1 of Definition 6.2 is not satisfied. This, however. contrad
icts the assumption that G is LC (k ). 

Case III. We consider the case in which the productions Z ➔ cu 1 and 
Z ➔ cu 2 in the introduction of this proof have the form [A.A] ➔ e and 
[A.A ] ➔ li[A.B ]. Suppose that in G' derivations 

s ===;> t w [A.A ]8 ===;> z w 8 ===;> t wz 2 

and 

S ===;> ,* w [A.A ]8 ===;> z w l3[A,B ]8 ===;> z* wy 1[A.B ]8 

===;> t wy 1V 18 ===;> wy 1V 1Z 1 

exists, such that k :z 2 = k :y 1v 1z 1• 

(7.2.3) 

(7.2.4) 

From the construction of G' it follows that the first part of 
derivations (7.2.3) and (7.2.4) has the form 

S ===;> t w'A 8 ===;> ,*w'w" [A.A ]8 

and A ===;>*w" in G. By Lemma 7.1 we know that in G derivation 
S ===;>z*c w'A 8' exists, such that 8 ===;>*8' in G'. From derivation 
(7.2.4) we conclude that in G the derivation 

A ===;> t B '>' ===;> z A 13 '>' 
exist. where [A.B] ===;>;.,, in G'. We may conclude that')' ===;>*v 1. 

Thus in G derivations 

S ===;> i*c w'A 8' ===;> t w'w" 8' ===;> * w'w"z 2 

and 

S ===;> * w'A 8' ===;> '"w'B8' ===;> w'A a-v8' ===;> '"w'w" tl-v8' le - l - l /JT l /JT 

===;> z* w'w"y 1')'8 1 ===;> t w'w"y 1V 1z 1 

exist. Since k :z 2 = k :y 1v 1z 1 we conclude from these derivations that 
G doesn "t satisfy clause 3 in Definition 6.2. This contradicts the 
assumption that G is LC (k ). 

We finally conclude that G' must be LL(k ). □ 

We now show the converse of Lemma 7 .2. 

Lemma 7.3. Let G be a context-free grammar. Far any k >O, if G is 
not an LC (k ) grammar, then r(G ) is not an LL (k ) grammar. 
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Proof: Let G = (N. "E..P.S) be a context-free grammar which is not 
LC (k ). G' will denote T(G ). 

Case I. Suppose that G does not satisfy clause 1 in the definition of 
LC (k ) grammars. Then there exist derivations 

S ====>: u1A81 ====>t uJ!1')'181 ====>z u1X/31')'181 

(7.3.1) 

and 

S ====> k u2A82 ====> t u-z/l2')'282 ====> z u2X /32')'282 

====>t U2X2/32')'282 ====>t U2X2)'2V2Z2 (7.3.2) 

in G. where B1 ;a!: B 2 or /3 1 ;a!: /3 2• although u1x1 = u2x2 and 
k :y1V1Z1 = k :y2V2Z2. 

Consider derivation (7.3.1). By Lemma 7.1 we conclude from the 
:first part of this derivation that in G' the derivation S ===:>tu 1A 8'1 
exists. such that 8'1 ===:>*8 1. From the second and third part of the 
derivation we may conclude that [A,X] ➔ /3 1CA.B 1] is a production of 
G' and [A.B1] ===:>*y 1 in G'. Moreover. we may conclude that 
A ====>tx1[A.X] in G'. Similar conclusions can be derived from 
derivation (7.3.2) in G. Thus in G' the derivations 

and 

S ====>tu1A8'1 ====>z*u1x1CA,X]8'1 ====> u1x1/31CA,B1]8'1 

===:>tu 1X 1Y 1CA.B 118' 1 ====>tu 1X 1Y 1V 1Z 1 

S ====>tu2A8'2 ====>z*u2x2CA,X]8'2 ===:> u~2/32[A.B2]8'2 

===:> z* U 2X 2Y 2CA,B 2l8'2 ====> z* U ~ 2Y 2V 2Z 2 

exist. Since B 1 ;a!: B2 or /3 1 ;a!: /3 2• the productions [A,X] ➔ /3 1CA.B1l 
and [A.X] ➔ /3 2[A,B2]. used in these derivations, are not the same. 
Because of the equalities u 1x 1 = u2x 2 and k :y1v 1z 1 = k :y2v2z2• we 
conclude that G' is not LL (k ). 

Case II. Suppose that G does not satisfy clause 2 in the definition of 
LC (k ) grammars. Then there exist derivations 

and 

S ====>: uA 81 ====>t uB1')'181 ====>z uy181 

S ====>: uA82 ====>tuB2')'282 ====>z ua/3')'282 

===:> t ua /3 2')' 28 2 ===:> t uavy 2Z 2 

in G. such that k :y 1z 1 = k :avy2z2, 

(7.3.3) 

(7.3.4) 
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From derivation (7.3.3) we conclude that in G' derivation 
S =>iuA8'1 exists, such that 8'1 =>*81. In addition, A-+ [A.e] 
and [A.e]-+ [A,B 1] are productions of G' and [A.B 1] => * ')' 1 in G'. 
From derivation (7.3.4) we conclude that in G' derivation 
S => k uA 8'2 exists, such that 8'2 => * 82. Moreover. A -+ a [A.a] 
and [A.a]-+ /3[A.B 2] are productions of G' and [A.B 2] =>*12 in G'. 
Thus in G' derivations 

S =>z*uA8'1 =>z[A.e]8'1 =>tu[A,B1]8'1 =>*u118'1 =>*uy1z1 

and 

S =>z*uA8'2 =>z ua[A,a]8'2 =>z*ua/3[A,B2]8'2 

=>z*uav[A.B2]8'2 =>z*uavy28'2 =>z*uavy2z2 

exist. Sincek:avy 2z 2= k:y 1z 1 weconcludethatG' isnotLL(k). 

Case ill. Suppose that in G the derivations 

S =>i u1A81 =>z*u1B1')'181 =>z u1A/31')'161 

(7.3.5) 

and 

s => i uA 8 => t ux 6 => t uxz 

exist, such that ux = u 1x 1 and k :u 1y 1z 1 = k :z. In a way similar as in 
the other two cases we may conclude from these derivations that the 
derivations 

and 

S =>tu1A8'1 =>z"'u1x1[A.A ]8'1 => u1x1/31[A,B1]8'1 

=;> z* U 1X 1Y 1[A.B 1]6'1 =;> z* U 1X 1Y 1V 1Z 1 

S =>z"uA 8' =>z'"ux[A,A ]8' => 1 ux8' =>*uxz 

exist in G'. Since ux = u 1x 1 and k :z = k :y 1v 1z 1 we conclude that G' 
is not LL(k ). D 

From Lemma 7.2 and Lemma 7.3 we may conclude the following 
result. 

Theorem 7.4. The transformation T yields an LL (k) grammar (k >O) 
if and only if it is applied to an LC (k) grammar. □ 

8. Semantical Covering of Attribute Gram.mars 

In the introduction we already noticed that it is sometimes possible to 
evaluate attributes of the nodes of the parse tree during parsing. 
Therefore it makes some sense to consider transformations on attribute 
grammars which yield a semantically equivalent attribute grammar 
based on a cfg which covers the original cfg. It lies at hand to call the 
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result of such a transformation a semantical covering grammar of the 
original attribute g,-ammar. Here we consider the question whether all 
translations definable by a class X of attribute grammars can also be 
de.fined by attribute grammars in a class Y which semantically covers 
class X. A similar question is posed by Aho and Ullman for syntax
directed translation schemes [1]: Suppose that G 2 left or right covers 
G 1• Is every SOTS with G 1 as underlying grammar equivalent to an 
SOTS with G 2 as underlying grammar? A partial answer to this ques
tion is given by Shyamasundar in [14]. For special classes of SOTS this 
question has been studied by Rosenkrantz and Lewis II [9] and by 
Soisalon-Soininen [11]. These studies consider the semantical cover 
relation between classes of simple syntax directed translation schemes 
(simple SOTS) [1]. SOTS can be viewed as a special class of attribute 
g,-arnmars (See File [13] for a precise description of SOTS in the for
malism of attribute grammars). 

The semantic equivalence of covering attribute grammars is also 
studied by Bochmann [4]. However. the notion of semantical covering 
introduced by Bochmann is quite different from the semantical cover 
relation we have in mind. Let us :first introduce some notions and 
notation. 

Let G be an attribute g,-ammar (AG). The reader is referred to 
File [13] for a definition. Notice that the specification of the semantic 
domain. that is a set of sets of values of the attributes together with 
the set of functions denoted by the evaluation rules of the attributes. is 
a part of the definition of an AG. Let 6 denote the distinguished syn
thesized attribute of the start symbol of the AG G . In an evaluated 
complete grammatical tree (parse tree). 6 is a special attribute of the 
root of the tree of which the value represents the meaning or the trans
lation of the yield of the tree. Let D denote the value set of 6. Let Tr 
denote the set of complete grammatical trees of the underlying cfg G 0 

of G . Let 6 (t ) e D denote the value of 6 of tree t e Tr and let the 
translation of x e L (G) be t/l(x) = { 6(t) It e Tr and yield (t) = x }. 
t/1 is called the translation function of G . Even if G O is (syntactically) 
ambiguous t/1 (x ) may contain only one element (We assume that the 
AG is non-circular so 8(t) is always de.fined). The translation 
TRANS (G ) de.fined by the AG G is: 

TRANS(G)= {(x.t/l(x)) Ix EL(G)}. 

Let 2D denote the power set of D . The following definition is from 
Bochmann [4]. 

Definition 8.1. Let G 1 and G 2 be AG's over the same terminal alpha
bet. 6 1 and 62 the distinguished attributes of G 1 and G 2• respectively. 
D 1 and D 2 their value sets and t/1 1 and t/1 2 the translation functions. G 2 

is semantically finer then G 1 if there exists a mapping <f,: 2D2 ➔ 2D 1• 

such that: for all x EL(G 1)n L(G 2). t/1 1(x )~ <f>(t/12(x )). D 
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Thus G 2 is semantically finer then G 1 implies that for all x in both 
languages the translation according to G 1 can be obtained by applying 
the mapping cf, to the translation according to G2- Because of the simi
larity between this definition and the definition of cover Bochmann 
uses the phrase "semantical covering". In order to explain our idea of 
semantical covering a little more. we consider for a start the following 
definition. 

Definition 8.2. An AG G 2 sema,ntically covers an AG G 1 if 

i. the underlying cfg of G 2 covers the underlying cfg of G1, 

ii. TRANS (G 1) = TRANS (G 2). D 

If an attribute grammar has a deterministically parsable underlying cfg 
and all attributes of all parse trees are evaluable during parsing fol
lowing a parsing method suitable for the cfg. then we call the AG a 
one-pass AG. We are specially interested in one-pass AG's. All one
pass AG's are £-attributed. at least if we adopt the strict one-pass 
evaluation strategy as defined in [3]. £-attributed LL (k) grammars 
are one-pass AG's since all attributes are evaluable during top-down 
parsing. For other classes of one-pass AG we refer to [3] where also 
the class of LC -attributed grammars is defined. Let X -AG and Y -AG 
be classes of one-pass AG's over a specific semantic domain. If we 
want to compare different classes of AG with respect to their ability to 
define translations (or their "formal power". cf. [12]) we must expli
citly mention the semantic domain because this ability not only 
depends on the number of attributes and the kind of attribute depen
dencies in the AG but also on the types of attributes and the function 
types in the semantic domain. Knuth already showed in [5] that any 
translation defined by an AG can be defined by an AG which has only 
synthesized attributes. The question whether a class X -AG semanti
cally covers a class Y -AG asks for a transformation which yields a cf g 
in class X when applied to a cf g in Y and a redefinition of attributes 
and attribute-rules such that the translation is preserved and the AG 
obtained is in X -AG . By Definition 8.2 semantically covering of attri
bute grammars does not imply any correspondence between attribute 
values of internal nodes of corresponding parse trees. However, if we 
want to show that an AG G 1 semantically covers an AG G 2, we need 
some inductive argument on the construction of corresponding deriva
tion trees of the involved underlying cfgs. Therefore we can use a 
stronger form of sema,ntical covering which implies the equality of 
attribute values of the roots of corresponding subtrees of corresponding 
parse trees. What .. corresponding subtrees" are should follow from a 
particular transformation by means of which the covering grammar is 
obtained. For example the left factoring transformation applied to a 
grammar which is not left factored yields a left factored grammar that 
right covers the original grammar. If a grammar is not left factored 
then there exist productions A ➔ otf3 and A ➔ ot')', with a¢ E and 
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fJ ;= y. A step in the process of left factoring consists of replacing the 
productions A -+ 01 fJ and A -+ 01y by the productions A -+ 01H, 
H -+ fJ and H -+ y. where H is a newly introduced nonterminal sym
bol. In [3] an informal algorithm is given for transforming AG's in the 
class LP-AG based on left-part grammars into the class LL-AG • the 
class of L -attributed LL (k) grammars. This transformation is an 
attributed variant of the left factoring transformation. Here it is 
immediately clear what the corresponding subtrees of corresponding 
parse trees are. 

If we want to consider semantical cover relations between AG's 
with semantical conditions or disambiguating predicates - which play 
a role in making parsing decisions based on attribute values [3] -
Definition 8.2 is not suitable. In this case the language generated by the 
AG is a subset of the language generated by the underlying cf g so we 
cannot say anything about the existence of a cover relation between the 
underlying cfgs without considering attribute values of internal 
corresponding nodes. 
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The Lambda Calculus is a formal system, originally intended as a 
tool in the foundation of mathematics, but mainly used to study the 
concepts of algorithm and effective computability. Recently, the 
Lambda Calculus and related systems acquire attention from Com
puter Science for another reason too: several important programming 
language concepts can be explained elegantly and can be studied suc
cessfully in the framework of the Lambda Calculi. We show this 
mainly by means of examples. We address ourselves to interested 
computer scientists who have no prior knowledge of the Lambda 
Calculus. The concepts discussed include: parameterization, 
definitions, recursion, elementary and composite data types, typing, 
abstract types, control of visibility and life-time, and modules. 

t. Introduction 
The Lambda Calculus is a completely formally defined system. consist
ing of expressions (for functions or rather algorithms) and rules that 
prescribe how to evaluate the expressions. It has been devised in the 
thirties by Alonzo Church to study the concept of function (as a 
recipe) and to use it in the foundation of mathematics. This latter goal 
has not been achieved (although recent versions of the Lambda Cal
culus come quite close to it. see Martin-Lof [16]. Coquand & Huet [6]); 
the former goal. the study of the concept of function. has led to 
significant contributions to the theory of effective computability. 

Recently. the Lambda Calculus and related systems. together 
called Lambda Calculi. have aroused much interest from computer sci
ence because several important programming language concepts are 
present - or can be expressed faithfully - in them in the most pure 
form and without restrictions that are sometimes imposed in commer
cial programming languages. Expressing a programming language con
cept in the Lambda Calculus has the following benefits: 

• It may shed some light upon the concept and thus give some 
insight. 

• It may answer fundamental questions about the concept via 
theorems already available in the Lambda Calculus. And there 
are quite a lot of them. 

129 
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• It proves that the coricept does not add something essentially new 
to the language. In particular it guarantees that there can not be 
nasty interferences with other such concepts. (It has always been 
a problem in programming language design to combine concepts 
that are useful in isolation but have unexpected and undesired 
interferences when taken together.) 

Some programming language concepts cannot be expressed in the 
Lambda Calculus. In view of the expressive power of the Lambda Cal
culus one should first become suspicious of such a concept. Secondly. 
one may try to extend or adapt the Lambda Calculus in such a way 
that the concept is expressible. The techniques and tools developed for 
the Lambda Calculus may then prove useful to study the extension. 
Examples of such concepts are assignment and exception handling . 

In this paper our aim is to show the significance of the Lambda 
Calculus approach to .. Programming Language Concepts", and to raise 
interest in the Lambda Calculi. We address ourselves to (experienced) 
programmers: no knowledge of the Lambda Calculus is assumed. To 
this end we keep the formalism to a bare minimum and use computer 
science terms and notations as much as possible. We discuss a variety 
of programming language concepts, such as parameterization, definition, 
recursion, elementary and composite data types. typing, abstract types, 
control of visibility and life-time, and modules. All this is preceded 
by a brief exposition of the Lambda Calculus and its role as an area of 
research in itself. 

The importance of the Lambda Calculus for the design of pro
gramming languages has already been recognized in the sixties by Lan
din [12, 13, 14]. Algol 68's orthogonality is very similar to the simpli
city of the Lambda Calculus. Reynolds [26] explains the essence of 
Algol as follows: 

·· Algol is obtained from the simple imperative language by 
imposing a procedure mechanism based on a fully typed, 
call-by-name lambda calculus." 

2. The Lambda Calculus 

We describe the Lambda Calculus as a mini programming language in a 
notation and a terminology that is conventional in computer science. 
(Thus the title of this section might have read: .. Lambda Calculus Con
cepts - the programming language approach"). Some topics of past 
and current research are mentioned. 

Expressions. We assume that some set of identifiers is available, and 
we let x denote an arbitrary identifier. For expressions there are three 
syntactic formation rules: 

e ::= X identifier 
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e ::= (fn x.e) 
e ::= e(e) 

function expression 
function call 

We let e. ef. ea, eb, ... denote arbitrary expressions: (f is mnemonic for 
function. a for argument and b for body). Fully capitalized WORDS 
will abbreviate specific expressions. The sign = stands for syntactic 
equality. 

Notes 

2.1. In an expression (fn x • eb ). x is called its parameter and eb its 
body; the parameter is a local name. so that renaming of the parameter 
and all its occurrences in the body is allowed and is considered not to 
change the expression. We thus identify (fn X•X) and (fn Y•Y ). both 
denoting the identity function as we shall see below. 

2.2. We leave out parentheses if no confusion can result; this is often 
the case with the outermost parentheses of a function expression under 
the convention that the expression following the dot• should be taken 
as large as possible. 

2.3. An expression fn x • eb is an anonymous function. In contrast to 
conventional languages. the concepts of function and of naming are 
separated here syntactically. Naming is discussed in §3.1. 

2.4. Church originally wrote xe for fn x • e , but for typographical 
reasons changed this to J\xe and later to Axe. This is still the standard 
notation and clearly explains the part 'Lambda' in the name. 

2.5. As an example. consider the expression fn X•f (f (x )) which we 
shall call TWICE1 : called with argument x O this function will return 
f (f (x 0)), i.e.. the result of calling / twice. The function 
fn / • TWICE1 will return for each argument function / the function 
that calls/ twice. So both the argument and the result of a function 
may be functions themselves. Actually. each expression denotes a 
function. 

We shall now formally define the semantics of expressions analo
gously to the way in primary school children are taught to evaluate 
fractions like (5x8+8)/(10x8): they are given some simplification 
rules that may be applied in any order. 

Evaluation. An expression e evaluates to an expression e'. notation 
e ==:;> e'. if e' is obtained from e by repeatedly (zero or more times) 
applying the following evaluation rule: 

replace a part (fn x • eb )(ea) by [ea Ix ]eb . 

Here. and in the sequel. [ea Ix ]eb denotes the result of substituting ea 
for each occurrence of x in eb. (taking care to avoid clash of names by 
renaming local identifiers where appropriate). 
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Notes 

2.6. Substitution is a syntactic manipulation that is tedious to define 
formally. Let it suffice here to say that [ea If] f (f (fn x • x )) equals 
ea (ea (fn x • x )). and that 

[ .. .x .. ./f] f (fn x • f (x )) = ... x ... (fn x' • ... x ... (x' )). 

where x' is a new identifier distinct from x. 

2.7. As an example we have 

(fn f • TWICE1 )(sin )(zero) 
=:;> TWICEsm (zero ) i.e. (fn x • sin (sin (x ) ) )(zero ) 
=:;> sin (sin (zero ) ) 

and this can not be evaluated further at this point. 

2.8. In Algol 60 jargon [23] the evaluation rule is the body replace
ment rule : the effect of a function call is explained by replacing it by 
the function body with substitution of the argument for the parameter. 
In the Lambda Calculus the rule is called the ~-rule. and evaluation is 
called reduction. 

This seemingly simple mini programming language gives rise to a 
large number of thorough questions that in turn have led to substantial 
research efforts and a lot of results. We mention but a few. 

1. Do there exist expressions whose evaluation may not terminate? 
Answer: yes there are. for we shall see that arbitrary recursive 
definitions are expressible. 

2. Is the evaluation strategy (the choice what part to evaluate next) 
of any importance? Answer: different strategies cannot yield different 
final outcomes, but one may terminate in cases where the other does 
not. Also the number of evaluation steps to reach the final outcome. if 
any. depends on the strategy. 

3. Is it possible to express numbers and to do arithmetic in the 
Lambda Calculus? Answer: yes. see §3.4. 

4. Clearly function expressions denote functions in the sense of 
recipes of how to obtain the result when given an argument. Is it pos
sible to interpret expressions as functions in the sense of a set of ( argu
ment, result~pairs, such a set itself being a possible argument or result? 
Answer: this has been a long standing problem. D. Scott formulated 
the first such models in 1969; a lot of others have been found since. 

5. When may or must expressions be called semantically equivalent? 
(Of course we want semantic equivalence to satisfy the usual laws of 
equality and to be preserved under evaluation.) If two expressions may 
both evaluate to a common intermediate or final outcome, they must be 
called equivalent. However, it is possible that they do so only "'in the 
limit". after an infinite number of evaluation steps: in this case they 
may be called equivalent. And what about calling expressions equi
valent if they have no outcome, not even in the limit? 
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6. What are the consequences of the restriction that in fn x • eb 
parameter x must occur at least once in the body eb? And of the extra 
evaluation rule 

replace fn x • ef (x ) by ef 

(because both denote the same function intuitively)? 

More information about the Lambda Calculus may be obtained 
from [1. 11. 29]. 

3. Basic Programming Language Concepts 

In this section we express various basic programming language concepts 
in the Lambda Calculus. Justified by this. we also give specific syntac
tic forms for each concept together with derived evaluation rules. 

3.1. Definitions 
We extend the syntactic formation rules for expressions by: 

e ::= (df x = e • e ) definition expression 

Within (df x =ea• eb ) the part x = ea is a local definition that extends 
over the body eb. We consider this new expression as an abbreviation 
for (fn x.eb )(ea). so that the Lambda Calculus is not extended in an 
essential way. and the evaluation rule has to read: 

replace a part (df x=ea.eb) by [ea/x]eb. 

Notes 
3.1.1. The definition x = ea in df x =ea• eb is nonrecursive. This is a 
consequence of our choice to let it abbreviate (fn x • eb )(ea). 

3.1.2. By construction there is a close correspondence. or rather iden
tity. between definitions df x =ea• eb and parameterimtions as in 
(fn x • eb )(ea ). This can be taken as a guiding principle in the design 
of programming languages: 

for each kind of parameter (think of value. in. out. ref and 
name) there exists a semantically identical definition. and con
versely. 

The consequences of adhering to this Principle of Correspondence have 
been worked out by Tennent [30]. Pascal strongly violates it. 

3.1.3. There is another principle involved here. the Principle of Nam
ing . In df x =ea• eb identifier x names ea locally in eb • and both 
ea. eb and x are arbitrary. This principle is violated in Pascal. because 
e.g. statements cannot be named and naming can be done only locally 
to procedure and function bodies. 

3.1.4. We have explained the local name introduction of df x=ea.eb 
in terms of the fn -construct. Reynolds [26] makes this to a guiding 
principle for the design of programming languages: 
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every local name introduction can be explained by the fn -
construct. 

We shall apply this Principle of Local,ity to the expression for recur
sion. below. 

3.1.5. As an example, we now name the function TWICE: 

df twice = (fn f • (fn x • f (f (x ) ) ) ). .. ... twice (sin )(zero ) ...... 

Here sin and zero are just identifiers for which a definition may be 
provided in the context; (Principle of Naming). 

3.2. Multiple Parameters and Definitions 

Consider once again the expression TWICE(/ 0)(x 0 ), where 
TWICE = fnf • (fn X•f (f (x ))). One may easily verify that 
TWICE(/ o)(xo) ==;:,. (fn X•f oCJ oCx )))(xo) ==;:,. f oCJ oCxo)). We 
might say t~.at both f and x are parameters. and both f O and x O are 
arguments. Thus multiple parameters are possible, for which we 
design a special syntax: 

e ::= (fn x 1, ... ,Xn•e) for distinct x 1, .. ,,Xn 
e ::= ef(e , .... e) 

These expressions are to abbreviate (fn x 1• ( · · · (fn Xn • e )"·)) respec
tively ef (e 1) · · · (en ). so that the evaluation rule has to read: 

replace (fn x 1, ... ,Xn • e )(e 1, ... ,en) by [e 1, ... ,en Ix 1, ... ,Xn ]e. 

Guided by the Principle of Correspondence we also design the 
corresponding definition form: 

e ::= (df x 1=e1, .. ,,Xn =en•e) 

with evaluation rule: 

for distinct x 1, ... ,Xn 

replace df x 1 = e 1, ... ,Xn =en• e by [ea 1 • ... ,ea,Jx 1, ... ,Xn ]e. 

Notes 

3.2.1. For example, we may now write TWICE' (f 0,x0 ) where 
TWICE'= fnf.x•f(f(x)). We can also write df f=/ 0• x=xo• 
f (f (x )). 

3.2.2. The industrious reader may verify that the multiple definitions 
and substitutions are simukaneous rather than sequential: it turns out 
that the definition xi = ei extends only over e and not over e 1 through 
en. The distinctness of x 1 • .... xn is necessary to formulate the evalua
tion rule so simple (and to guarantee that the substitution is well 
defined). 

3.2.3. Exercise. Let df x 1 = e 1; · · · ; Xn =en• e abbreviate the sequent
ial definition (df x 1=e 1.( · · · (df xn=en•e) .. ·)). Now think about 
the corresponding "sequential parameterization". 
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3.3. Recursion 
A recursive definition is a definition in which the defined name occurs 
in the defining expression. A stupid evaluation strategy that first of all 
tries to eliminate the recursively defined name will therefore certainly 
get into an infinite loop of evaluation steps. However, sometimes 
(unfortunately not always) the recursively defined name occurs in a 
subexpression (then- or else-branch in particular) whose evaluation is 
not needed to reach the final outcome. A moderately clever evaluation 
strategy will not attempt to evaluate such needless occurrences. Thus 
the concept of recursion is fully captured by an expression in which 
designated occurrences evaluate - if time has come - to the expression 
itself. We "extend" (not really, see Note 3.3.4 below) the Lambda 
Calculus by the following grammar and evaluation rules: 

e ::= (rec x • e) recursion expression 
replace (rec x • e) by [(rec x • e )Ix ]e. 

Notes 

3.3.1. Within (rec x • e) the occurrences of x in e are the points of 
recursion: such an occurrence evaluates to the original recursive expres
sion. (But if such an occurrence is contained in a then- or else
branch, it may happen that after one expansion it is not any more sub
ject to the above evaluation rule.) 

3.3.2. The concepts of recursion and of definition have been separated 
syntactically. We may combine them by abbreviating 
(df x = (rec x •ea). eb) by (df rec x =ea• eb ): the occurrences of x 
in eb as well as in ea will evaluate - if time has come - to the recur
sive expression (rec x • ea ). 

3.3.3. Assuming that if then else and arithmetic are possible, we may 
write the definition of the factorial function as follows: 

df rec Jae = (fn neif n = 0 then 1 else n xJae (n -1)) 
i.e. df Jae = (rec Jae• (fn n • if n = 0 then 1 else n xJae (n -1))) 
= df Jae = (rec J • (fn neif n=O then 1 else n xJ (n-1))) 

The part (rec J • ..... J (n -1)) denotes the factorial function without 
giving it a name that can be used elsewhere. 

3.3.4. In (rec x • e) the identifier x is a local name whose scope 
extends over e . Following the Principle of Locality we explain that 
local naming in terms of the fn -construct: provided that REC satisfies 
the property 

REC (fnx.e) evaluates to [REC (fnxee)/x]e 

we may consider (rec xee) to abbreviate REC (fn X•e ). We could 
now add a constant "REC· to the Lambda Calculus with the above 
evaluation rule. but it turns out (space limitations prohibit to give the 
motivation) that we may take: 
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REC = fn / • W 1 (W1 ) where W1 = fn y • f (y (y )) 

as is easily verified. 

3.3.5. Notice that recursion (as in the rec -expression). circularity (as 
in the df rec -definition). self-activation (as in the evaluation rule for 
rec ) and self-application (as in w1 : y is applied to itself) are inti
mately related. 

3.3.6. Mutual recursion can also be expressed, but we shall not do so 
here. 

3.4. Truth Values and Enumerated Types 

We shall choose two expressions TRUE and FALSE and some function 
expressions AND. OR, NOT and IF such that the laws that we expect 
to hold. are indeed true of these expressions. The observable behaviour 
of TRUE and FALSE is in their being used as the condition part of an 
IF call: we wish to have 

IF(TRUE.e 1,e2) ~ e 1, 
IF(FALSE ,e1,e2) ~ e2. 

Hence we let TRUE and FALSE be selector functions: 

TRUE= fn x,y.x 
FALSE= fn x.y.y 

so that we may choose 

IF = fn b,x,y.b(x,y ). 

The evaluation property for IF is true indeed. Now functions 
AND, OR and NOT are easy to define: 

Notes 

AND= fnbl ,b2.IF(bl .b2,FALSE). 
OR = fn bl .b2oIF(bl ,TRUE,b2). 
NOT = fn beIF(b,FALSE ,TRUE). 

3.4.1. Plugging in the expression IF into the expression NOT and per
forming some evaluation steps. we see that we also may set NOT = 
fn beb(FALSE ,TRUE). Similarly for AND and OR. 

3.4.2. Suppose PROG is a program (an expression) in which identifiers 
True, Fa/,se, If. And, Or and Not occur and have been assumed to 
satisfy the usual Boolean laws. We may then form 

df True= TRUE. Fal.se =FALSE, ... , Not= NOT• PROG . 

In other words, the definitions True= TRUE •...• Not= NOT can be con
sidered to belong to the standard environment and the application pro
grammer need not know the particular representation choices made for 
truth values. We shall see in Section 4 how to hide the representation 
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choices so that the application programmer is not allowed to write 
True (e 1,e2) (but has to use the //-function explicitly). 

3.4.3. Rather than providing a standard environment we can also 
design specific syntactic expressions for truth values, thus: 

e ::= true I false I (e and e) I (e or e) I (not e) 
e ::= if e then e else e 

together with the derived evaluation rules: 

replace ( true and e ) by e 
replace (false and e ) by e 
~eplace if true then e 1 else e 2 by e 2 

3.4.4. Elements of a finite enumeration type can be represented analo
gously: selector function fn x 1, ... ,xn • x; represents the i th element. 
and elt (e i, ... ,en) is the implementation of 

case elt in 1: e 1• · · · , n: en endcase. 

3.4.5. The above representation has been chosen in the assumption 
that the evaluation strategy does not evaluate the argument expressions 
before the body replacement rule is applied. Otherwise both the then
and the else-branch are always evaluated. and that is undesirable. We 
can, however, adapt the representation to that strategy, but we shall 
not discuss it here. 

3.5. Arithmetic: (Natural) Numbers 

Throughout the paper we say 'number' instead of 'natural number' 
(0,1,2, ... ). As motivated below in Note 3.5.3 we choose to represent 
number n by an n -fold repeated call of a function / on an initial 
argument a, where both/ and a are parameters: 

fnf,a•f( · · · (f(f (a))···) 

In particular we set 

ZERO = fnf,a•a 
ONE= fnf,a.f(a) 
TWO = fn f,a.f (f (a)). 

The successor function SUGG may be implemented by 

SUGG= fnn."n+1-fold iteration" 

(n times an / ) 

= fn n • (fn /,a• f ("n -fold iteration of/ on a")) 
= fn n. (fn / ,a.f (n (f .a))) 

For example, one easily verifies that 



138 M.M. Fokkinga 

SUCC(1WO) ==> fnf.a.J(1WO(f.a)) ==> fnf,a•f(f(f (a))) 

which represents 3. The test for equality is also easy: 

EQO = fn n • n (F,TRUE) where F = fn x •FALSE 

so that 

EQO (ZERO) ==> ZERO (F .TRUE) ==> TRUE. 
EQO(ONE) ==> ONE(F.TRUE) ==> F(TRUE) ==> FALSE. 

The construction of a predecessor function is more complicated. The 
idea is to reconstruct the number itself. n say. and simultaneously 
"remember" at each step in the reconstruction the outcome of the pre
vious step. So each intermediate result consists of a pair. in which one 
component is a number (initially O and at most n) and the other com
ponent its predecessor. We use here pair-expressions of the form 
<e 1,e2> and suffixes .1 and .2 for selection of the first and second 
component of a pair; in §3.6 we show how to express these in the 
Lambda Calculus. Now we set 

Notes 

PRED = fn neFINISH(n (F,A )) 
where 
A = <ZERO .DONTCARE > 
F = fn pair• <SUCC (pair .1),pair .2> 
FINISH = fn pair• pair .2 

3.5.1. The choice for DONTCARE in PRED determines the outcome 
of PRED (ZERO). If no outcome is wanted, because within the set of 
numbers zero has no predecessor. we may take a nonterminating ex
pression like (rec x • x ). 

3.5.2. One way to define addition is: 

df rec add = fn m.n e lF(EQO (m ).n,add (PRED (m ).SUCC (n ))) 

However. use of recursion expressions is not necessary: 

df add = fn m,n • m (SUCC.n ). 

One can prove that all effectively computable total functions on 
numbers can be defined solely in terms of the number zero, the succes
sor function and so-called primitive recursions (of higher order). For 
our representation it turns out that we can express primitive recursion 
off and a as: fnn.n(f.a). So letNREC = fnf,a.(fnn.n(f,a)). 
Then knowledge of the representation of numbers is not needed any 
more. and in particular we can replace all expressions 'n (ef ,ea)' above 
by 'NREC (ef ,ea )(n )'. 

3.5.3. The representation choice might be motivated thus: we have 
represented the data structure "number" by its most characteristic 
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control structure. namely the use of it to control a repetition (or: 
repeated call; compare var x := a; for i := 1 to n do x := / (x ) with 
f ( · · · (f (f (a)))···)). A better motivation reads as follows. Numbers 
form an inductively definable data type: Zero is a .. number" and if n is 
a "number" then so is Succ(n ). If we are able to replace Zero and Succ 
in an arbitrary "number" Succ( · · · (Succ(Succ(Zero))) .. ,) by any a 
and /. then we are effectively able to construct all functions on 
"numbers" that are definable by (structural) induction. Thus 
Succ( · · · (Succ(Succ(Zero)))-.. ) is represented by 

fn Succ. Zero• Succ ( · · · (Succ (Succ (Zero ) ) )-.. ) = 
fn/.a./( · · · (f(f (a))) .. ,). 

and primitive recursion has been built in. 

3.5.4. One might object to the above representation of numbers: it can 
hardly be called a faithful modeling of commercial programming 
languages, because the representation length. and therefore storage 
space too, for a number n is linear inn and also the number of evalua
tion steps to compute the predecessor of m. or the sum of m and n . is 
linear in m. We can however improve upon this drastically. Observe 
that the above representation is close to the unary notation of numbers: 
number 1...11 (in unary notation) has been represented by 
fn f .a•f ( · · · (f (f (a)) .. ·). Now we represent e.g. number 1001101 
(in binary notation) by fn / .g.a • f (g (g (f (f (g (f (a))))))); an / for 
1 and a g for 0. The representation length grows only logarithmically. 
The successor function may be defined thus: 

SUCC' = fn n.fn f.g,a.FINISH(n (F.G. <CARRY.a>)) 
where 
CARRY= fn x.y.x (= TRUE) 
NOCARRY = fn x.y.y (= FALSE) 
F = fn < carry • result > • carry (g ./ )(result ) 
G = fn <carry ,result >•carry(f.g )(result) 
FINISH = fn <carry .result>• carry (f (result ).result) 

In a similar way addition can be defined. It turns out that evaluation 
of both SUCC (n ) and PRED (n ) takes O(log n ) steps, and ADD (m,n ) 
takes O(log m + log n ) steps. No programming language can improve 
upon this whenever it allows unbounded numbers. 

3.5.5. Similar remarks as in Notes 3.4.2-3 apply here as well. In view 
of the complicated representation of numbers, and implementation of 
the operations. this is very welcome. 

3.6. Composite Data Types: Records and Lists 

We can be very brief with respect to lists. Note 3.5.3 provides the clue 
to choose the representation: the list 

Cons(x 1,Cons(x 2 .... , Cons(xn .Nil) ... )) 



140 M.M. Fokkinga 

is represented by 

fn Cons.NU.Cons(x1,Cons (x2, .. ,.Cons(xn .NU}··))= 
fn / .a•/ (x1,/ (x2, .. ,.f Cxn .a), .. )). 

We leave it to the reader to define functions NIL. CONS and LREC 
(cf. ZERO. SUCC and NREC of §3.5). and to build HEAD. TAIL. 
EQNIL and so on in terms of them. (Typed versions will be given in 
§5.3). 

In the next section we discuss typing and shall require that lists 
be homogeneous: all elements of a list must belong to the same data 
type. So we need a kind of record-construct for inhomogeneous aggre
gates. For simplicity we discuss pairs (2-tuples) only; the generaliza
tion to n -tuples is straightforward. The tuple Pair(x .y) is represented 
by fn PairePair(x.y ). i.e. fn / •/ (x.y ). The constituting elements 
can be retrieved by applying the pair to the appropriate selector func
tions. Thus we let 

<e1,e2> = fn/e/(e1,e2) 
e .1 = e(fn x.y.x) 
e .2 = e(fn x.y.y) 

or we introduce the left-hand sides as new syntactic forms, together 
with the appropriate. derived. evaluation rules: 

e ::= <e.e > I e .1 I e .2 
replace <e1,e2>.1 by e1 
replace <e1,e2> .2 by e2. 

3.7. Concluding Remarks 

3.7.1. We have shown how data structures may be represented by 
functions. Reynolds [25] and Meertens [17] show the usefulness of 
such representations in practice. (However. they term the technique 
procedural, data abstraction rather than procedural ( ==:::: functional) data 
representation.) 

3. 7 .2. In a similar way arbitrary Turing machines and similar devices 
can be represented by functions. see Fokkinga [7] and Langmaack [15]. 
It turns out that the functions do accept functions as parameters. but 
do not yield functions as result: the representation can therefore be 
carried out in conventional languages (if recursive types are available. 
as in Algol 68). From this. one immediately concludes several funda
mental limitations of compile-time checks. 

4. Typing 
We consider typing a well-formedness check where attributes, called 
types • are assigned to subexpressions and the type of a subexpression 
has to satisfy specific requirements in relation to the types of its direct 
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constituent parts. An expression that passes the check is said to be 
typed or typahle . 

The assignment of types to expressions may be facilitated by an 
explicitly written type at each introduction of a local name: but this is 
not necessary. In the former case we speak of explicit typing, in the 
latter case of implicit typing or type deduction. An expression that can 
be assigned only one type is called nwnomorphic . An expression is 
called polymorphic if it is assigned many related types. a type scheme 
so to speak. In particular. a function expression is polymorphic if it 
may be applied to arguments of various but schematically the same 
types. We call a function generic if it may be applied to a type (which 
may determine the types of the following arguments and :final result). 
(Another term for genericity is parametric polynwrphism .) Examples 
will be given in the sequel. The type of a function whose arguments 
must have type nat and whose result has type bool. is written 
(nat➔ bool). 

In this section we discuss the Monomorphic Typing M, the 
Polymorphic Typing P and the Generic Typing G. These are exten
sively studied by Hindley & Seldin [11]. Other overviews on typing 
are given by Reynolds [28] and Cardelli & Wegner [4]; they cover more 
features than we do. 

4.1. The Usefulness of Typing 

· Typing proves its usefulness if the typable expressions satisfy a useful 
semantic property, (chosen by the designer of the typing). We list here 
some properties that may or may not be aimed at in the design of a 
typing. 

1. Set theoretic interpretation. For the class of typable expressions a 
simple set-theoretic interpretation is possible, in which expressions of 
type (nat➔ bool) are interpreted as mappings from the set of numbers 
to the set of truth values, rather than recipes that prescribe how to 
obtain the outcome when given an argument. (This property precludes 
self-application and therefore also the unrestricted use of the rec -
expression.) 

2. Termination. The evaluation of typable expressions terminates. 
One might argue that non-terminating evaluations are useless, but 
apart from that, the existence of nonterminating expressions invali
dates conventional mathematical laws such as 

0 X e = 0 for any expression e of type nat. 

(This property too precludes general recursion.) 

3. Implementation ease. For typable expressions the size of the storage 
space for the values that appear during the evaluation, is compile-time 
computable. This property is aimed at by the Pascal typing; conse
quently the programmer is forced to specify the size of arrays by 



142 M.M. Fokltinga 

constants. The property eases the task of the implementor, not of the 
programmer. 
4. Representation independence. The outcome of typable expressions 
does not depend on the representation chosen for internally used data 
like truth values. numbers and other data types. This property allows 
the implementor to switch freely from the unary representation to the 
binary representation; cf. §3.5 and Note 3.5.4. Moreover. the imple
mentor may even implement arithmetic in hardware: the outcome of 
typable expressions will not change. This property. as well as property 
1 precludes the use of nat-expressions as functions even if we know 
they are; cf. §3.5. 
5. Error prevention. For typable expressions many errors of the kind 
"Ah, of course. I see. this is a misprint" and "Ah, of course. this is an 
oversight" are impossible. This is a rather fuzzy property and much of 
it is implied by properties 1 and 4. 

4.2. The Monomorphic Typing M 
We describe here a simple typing M that gives the essence of Pascal-like 
typing. We concentrate on the Lambda Calculus and shall derive the 
M-typing requirements for the derived expressions. 

M-types. The attributes assigned to expressions. and called M-types. 
are syntactic forms defined by the following grammar: 

t ::= (t -+ t ) I nat I bool I char I · · · . 

We let t. ta. tb denote arbitrary types. 
M-typable expressions. We write the type assigned to a (sub)expres
sion as a superscript. It is required that within (fn x • e) all 
occurrences of x in e have the same type; this type is written at the 
parameter position: (fn x 1 • e ). Now consider the following infinite set 
of grammar rules, one for each choice of t. ta. and tb : 

et ::= xt 
eta ➔ tb ::= (fn xta.etb) 
etb ::= eta ➔tb(eta) 

The grammar generates. by definition. the M-typed expressions. Alter
natively we may consider it as a formalization of the requirements for 
a M-type assignment: 

• if x has been assigned type ta and e type tb, then (fn x • e) may 
be assigned type (ta -+ tb ); 

• if ef has been assigned type ta -+tb and ea type ta. then ef(ea) 
may be assigned type tb; 

• if identifier x has been assigned type t. then considered as a 
subexpression it may be assigned type t. 
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For example, for any t the expression 

( (fn X tt • X tt )tt ➔ tt (fn X t • X t )t ➔ t )tt 

where tt = t _. t, is M-typed. But 

(fn id .id (id ))(fn X•X) 

is not M-typable although it evaluates in one step to the preceding 
expression. 

Notes 
4.2.1. One may succeed easily in deriving the M-typing requirements 
for derived expressions like fn x.y • e and elf x = ea• eb. Extend the 
grammar for types by 

t ::= (t 1• ••• ,tn _. t) 

where t 1 ••••• tn -t is thought 
t1-.(t2_. ···Ctn -.t)•··). Then the 
may be extended by 

of as an abbreviation of 
grammar for typed expressions 

4.2.2. We may decide to assign ZERO. ONE, TWO ... type nat and 
SUCC type nat-. nat; and so on: 

enat ::= ZERO I ONE I TWO I · · · 
enat-+nat ::= SUCC 
e bool ::= TRUE I FALSE 
ebool,bool➔ bool ::= AND I OR 
ebool,t,t ➔ t ::= IF. 

A justification for this decision is given in §5.2. Notice that different 
occurrences of IF may be assigned different types: IF is a polymorphic 
expression. However. in 

elf lf=IF •.... If .... If .... If .... 

there is only one occurrence of IF. so that all occurrences of If are 
assigned the same type bool.T,T-. T for one specific type T. In this 
way the programmer is forced to spell out IF each time again. One 
solution to this problem is given in §4.3: polymorphic typing. Another 
solution is to extend the grammar by: 

et ::= if e bool then et else et . 

This is justified by considering if e then e 1 else e 2 as an abbreviation 
of IF(e,e 1.e 2 ). Yet another solution is given in §4.4: generic typing. 

4.2.3. We may treat the other polymorphic expressions similarly to 
IF: build the polymorphism into the derived syntax and typing. For 
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example for pairs: 

t ::= <t.t > 
e <tl ,t2 > ::= <etl .et2 > 

type for pairs 

et ::= e <t ,t' > .1 
et ::= e <t',t > .2 

and analogously for n -tuples. lists. arrays and so on. 

4.2.4. The M-typing as described so far validates properties 1. 2. 4 
and 5 of §4.1. 
4.2.5. Expression REC is not M-typable. So the following typing rule 
properly extends the set of M-typable expressions: 

et ::= (rec xt.et.) 

or equivalently: cf. Note 4.2.1. 

e<t ... t) ... t ::= REC. 

Now property 2 (Termination) is invalidated. the other three are 
preserved. 

4.2.6. One may extend the monomorphic typing by allowing recursive 
types. as in Algol 68. It turns out that every expression of the pure 
Lambda Calculus is typable. with the recwsive type fun = jun➔ fun. 
Nevertheless not all expressions are typable. and properties 4 and 5 
remain valid. if we require that ZERO is assigned type nat only. and 
SUCC type nat➔ nat and so on. We shall not discuss recursive types 
any further. 

4.3. Polymorphic Typing P 
The monomorphic typing M has a 11.agrant deficiency: there are only 
monomorphic types and consequently one is forced to duplicate expres
sions solely for the purpose of letting different occurrences be assigned 
different types. For example consider 

df id= (fnx.x) 

• ... id (zeronat) ... id (true bool) ... id (id ) ... 

df compose = (fn f.g• (fn X•/ (g (x )))) 
• ... compose(notbool ... bool.notbool ... bool) ... 

••• compose (sqrnat ... nat .ordcha.r-➔ nat) .•. 

df sort = sorting function 
• ... sort (number list) ... sort (character list) ... 

These expressions are not M-typable. but after substituting the defining 
expressions for the defined identifiers (or multiplicating the definitions. 
one for each use) they are M-typable. The solution to this deficiency is 
simple: polymorphism. It has been introduced into computer science 
by Milner [20]. but was already known in the Lambda Calculus as 
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Principal Typing. 
P-types. We let z range over identifiers. (One may stipulate that the 
identifiers denoted by z are distinct from those denoted by x, but this 
is not necessary). The P-types are now denned thus: 

t ::= z I (t -+ t ) I nat I bool I char I · · · . 

The identifiers occurring in P-types shall play the role of place holders 
for which arbitrary types may be substituted consistently. AP-type 
may therefore be considered as a "M-type scheme ". 

P-typable expressions. There is only one difference in the type 
assignment rules in comparison with those of the M-typing: 

within df x =eat• eb the occurrences of x in eb may be assigned 
instantiations of t, more precisely: P-types must be substituted 
for the identifiers in t that have been used in the typing of eat 
only (and not in its context); different occurrences of x may be 
assigned different instantiations oft. 

All the other rules for the M-typing are valid for the P-typing as well. 
Notes 

4.3.1. The examples above are all P-typable. For instance: 

df id = (fn x 0 ex 0 )a-•a 
id nat➔ nat( nat) • ... zero ... 

... id bool➔ bool(true bool) ... 

... id(b ➔ b)➔ (b ➔ b)(id(b ➔ b)) ... 

But unfortunately. (fn id• ... id (zeronat) ... id (true bool) ... )(fn x • x) is 
not P-typable. This also shows that the P-typing violates the Principle 
of Correspondence. 
4.3.2. The polymorphic typing is used in modern functional 
languages, like Miranda [31. 32]. as well as in the modern imperative 
language ABC [18]. 

4.3.3. One obvious advantage of the P-typing over the more "power
ful" G-typing of the next subsection, is that types need not be written 
explicitly in the program text (although it is permitted): the type
checker will deduce them anyway. (and show or insert them on 
request). 

4.3.4. The language can be enriched by further constructs for the 
definition of user denned types. One particularly simple and elegant 
way has been built in in Miranda [31, 32]. We discuss type definitions 
more fundamentally in the next subsection. 

4.4. Generic Typing G 

The P-typing, although quite successful for programming in the small, 
is not very satisfactory for at least two reasons. First, as we have seen 
in Note 4.3.1 parameters can not be used polymorphically. Second. the 
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facility of assigning nat to ZERO. ONE • ... and nat-t nat to SUCC is 
not generally available to the programmer. (Recall that ZERO, ONE, 
... SUCC are merely ordinary expressions.) The programmer does need 
such a facility in order to get Representation Independence for his own 
devised data types. The solution is to control the type assignment 
explicitly. by indicating for each parameter the desired type and in 
addition allowing types to be parameters ( .. genericity"). The resulting 
language is often called Second Order Lambda Calculus and was 
invented by J.-Y Girard and. independently, Reynolds [24]. 

G-types. As before z ranges over identifiers. G-types are defined by 
the following grammar. 

t ::= z I (t -. t) I (z : tp-t t ). 

The third form of type is called a generic type . Within (z : tp-t t ) 
identifier z is a local name whose scope extends overt: of course sys
tematic renaming is allowed. We let t, ta, tb .... denote arbitrary types. 
(Type constants like nat and bool are no longer needed. We shall see 
that the programmer can ·· define" them.) 

G-Typable expressions. As for the M-typing we define: 

e' ::= x' 
eta-+eb ::= (fnx'a:ta.e th ) 
etb ::= eta-+tb(eta) 

Note the explicit type for x 

Henceforth we shall omit a type superscript at a parameter. if it also 
occurs explicitly. We add two new expressions: 

ez:tp-+t ::= (fnz:tp.e') 
e[ta/z]t ::= ez:tp-+t (ta) 

generic function expression 
generic instantiation/ call 

Deliberately generic instantiation looks like a normal function call, but 
it is not: it is a new kind of expression with a type as one of its direct 
constituents. Similarly for generic function expression. Within 
(fn z : tp. e ) identifier z is a local name whose scope extends over e; z 
may e.g. occur in the explicit types in e. For simple examples see the 
first note below: Section 5 contains further examples. 

Evaluation. For the new expressions we have to define an evaluation 
rule. The rule is evident: 

replace (fn z : tp. e )(ta ) by [ta I z ]e. 

Notes 

4.4.1. For example, the generic identity function reads GID = 
fn z : tp. (fn x : z • x z )z ... z and has type z : tp-t (z -. z ). The generic 
instantiation GID (nat ) has type [nat I z ](z -. z) = nat -. nat and 
evaluates to (fn x: nat • xnat )nat -+nat as expected and desired. Simi
larly, GID (bool) has type [bod I z ](z -. z) = bool -t bod, and evaluates 
to the identity function for bod -expressions. 
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4.4.2. In Section 5 we shall introduce some syntactic sugar like we did 
before. Let it suffice here that we may write the left-hand sides for the 
right-hand sides: 

(z : tp.x : z -. z) 
(fn z: tp,x: Z•Z) (= GID') 
GID' (nat,zeronat) 
and 

(z : tp-. (x : z -. z ) ) 
fn z :tp. (fn x :z.x) (= GID) 
GID (nat )(zeronat ) 

(df z: tp = nat. x: z = zeronat • x) GID' (nat.zeronat ). 

4.4.3. The richness of the G-typable expressions is already perceptible 
from the possibility of generically calling GID with its own type: 
GID (z: tp-. (z-. z )) has type (z: tp-. (z -. z ))-. (z: tp-. (z _. z )) and 
evaluates to the identity function fn x: (z: tp-. (z-. z )). x. This in 
turn may be applied to GID and then evaluates to GID again. 

4.4.4. The following theorems have been proved for the class of G
typed expressions. For (a)-(e) see [9] and for (f) [27]. 
a. Different evaluation strategies cannot produce different outcomes. 
b. Any evaluation of any expression terminates. 
c. G-typability is preserved under evaluation. 
d. The G-type of an expression is uniquely determined and compile
time computable. 
e. The generic function expressions and instantiations are semantically 
insignificant. That is. they can be eliminated compile-time from any 
expression (by compile-time evaluation). provided, of course. that nei
ther the expression nor the global identifiers in it have a generic part 
(z : tp-. ···) in their type. For example GID (nat) has type nat -. nat; 
it evaluates compile-time to fn x : nat • x that contains no generic con
structs any more. GID itself does contain a generic construct that can 
not be eliminated, for its type explicitly demands so. 
f. A classical set-theoretic interpretation of expressions and types is 
not possible. 

4.4.5. It is still a topic for research how much of the explicit types 
and generic functions and instantiations can be left out of expressions, 
while still keeping G-typability decidable. 

4.4.6. It is easy to extend the language with a recursive construct: this 
however invalidates the Termination property (b) above. 

4.4.7. A technical detail. Consider (fn z: tp. et )z:tp➔ t and assume 
that some global identifier x with type ... z ... occurs in it. There are 
now a global z and a local z involved in the type assignment to e. To 
avoid problems one should either forbid such occurrences of x or else 
require that [z' /z ]e has type [z' /z ]t for some brand-new identifier z', 
rather than that e has type t ). 
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S. Type Definitions, Abstract Types and Modules 
Clearly a typing is not satisfactory if there is no facility for something 
like "user defined types". "abstract types" and "modules". Pascal. 
Algol 68. Ada, Modula 2 and others all have their own way to do so. 
and the result is an astonishing diversity of different constructs: (think 
only of type definitions and the problem of choosing between 
occurrence equivalence. name equivalence and structural equivalence). 
We have refrained from designing such facilities in an ad-hoc way, 
because we get them for free. in a fundamental way. from the G
typing: according to the Principle of Correspondence we may write a 
generic instantiation of a generic function expression as a definition: a 
type definition. This is done in §5.1; § 5.2 and 5.3 give some examples 
and §5.4 discusses modules. Throughout §5.1-3 we use the G-typed 
Lambda Calculus. 

5.1. User Defined Types 

Like we did for the un-. M- and P-typed Lambda Calculus, we intro
duce some special syntactic forms for special (frequently used) compo
site expressions. The abbreviations for (normal) multiple parameters. 
arguments and definitions are straightforward: both with respect to the 
form of the expressions. as well as with respect to the typing and 
evaluation rules. But generic types. functions and instantiations call 
for an abbreviation too: in particular we write the left-hand sides, 
below. for the right-hand sides: 

Z: tp, t l• ... , tn -+ t 
fn Z: tp, X 1: t 1• ... , Xn: tn • e 

ef (t,e 1,, .. ,en) 
df z:tp,x 1:t 1=e 1, ... ,xn:tn=en•e 

z:tp-+(t1-+( ···Ctn -+t)- .. )) 
fnz:tpe(fnx 1:t 1e( · · · 

(fn Xn: tn • e ) .. ·)) 
ef(t )Ce1) · · ·(en) 
(fn Z: tp, X1: t1,, .. , Xn: tn ee) 

(t.e 1, ... ,en) 

Notice that in al,l these expressions the scope of z extends aver t 1, ... ,tn 
and e but not aver e 1 • .... en. This is particularly true of the df -

expression. Hence the derived typing rules have to read 

ez:tp,tl .... ,tn ➔ t ::= (fn z: tp. X1: tl ..... Xn :tn.et) 
e[tlz]tb ::= ez:tp,tl , ... ,tn-+tb (t, elt/z]tl , .... en[tlzltn) 

e[t/z]tb ::= (df z:tp=t,x1:tl=e!tlz]tl ..... xn:tn=en[tlzltn.etb) 

In words: if z is defined to be t and an expression ei outside the scope 
of z: tp is required to have - formulated inside the scope of z - type 
ti • then ei must actually have [t / z ]ti , i.e. the required type ti in 
which t is read for z. Within the scope of a type definition z = t 
identifier z is a type that is unrelated to t as far as type-checking is 
concerned. (Thus far all our type-checking rules require exact match
ing, Le. equality: there has not been introduced any notion of type 
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equivalence.) 

Notes 
5.1.1. Referring to the expressions discussed above, the collection 

Z: tp, X 1: t 1• ... , Xn: tn 

constitutes the signature of an abstract data type. z being the name for 
the carrier. The collection 

constitutes the/an implementation; t being the representation type. i.e. 
the type to represent the "abstract z-values", and e1, ... ,en being the 
implementation of x 1: t 1, ...• xn: tn. The G-typed Lambda Calculus pro
vides no way to express laws between the x 1 •••• ,Xn that one might 
wish to hold. See also Section 6. 

5.1.2. One might introduce a new expression 

df z = t • e to stand for [t /z ]e. 

In this expression. z and t may be used interchangeably within e: as is 
to be seen in the right-hand side all z' s are replaced by t. So here the 
definition z =t is completely transparent fore. We shall not use this 
construct in the sequel. 

5.2. Simple Abstract Types: not 

We have already seen how numbers may be represented by function 
expressions and that the definitions for zero, successor and primitive 
recursion in principle suffice to define the other total functions on 
numbers. We shall now adapt the expressions to the G-typing and 
provide suggestive names (identifiers) for them. 

Remember, number n was represented by 

fnf,a.f( · · · (f(f (a))···). 

This may be typed 

(fn /: (t -+t ), a :t. f ( ... (f (f (a )}··)))<t ➔ t),t -t 

for any type t. Therefore we make t to an explicit parameter (called 
z ). getting 

fnz:tp,f :(z-+z).a:z.f( · · · (f(f (a)}··). 

The type of these expressions is abbreviated NAT, so 

NAT = (z: tp, (z-+ z ), z -+ z ). 

Now we form, given a user program PROG: 

df not: tp = NAT. 
zero: not = (fn z: tp. /: (z-+ z ). a: z •a), 
succ : not -+ not 
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= fn n: NAT• fn z: tp, f : z-+ z. a: z • f (n (z.f .a)). 
nrec: (z: tp, (z-+ z ). z-+ (nat -+ z )) 

= fn z: tp. f : z-+ z. a: z • (fn n: NAT• n (z.f ,a)) 
• PROG 

5.2.1. Notice that uses of number representations have to get an expli
cit type argument. which determines (see NAT) the types of the subse
quent arguments and the :final result. 

5.2.2. Within PROG the identifiers can only be used as prescribed by 
their type at the left-hand sides of the definitions; other use within 
PROG is not G-typable. In particular, although zero evaluates to a 
function. the .. expression" zero (bool. (fn x: bod .x ). truebool) is type
incorrect. 

5.2.3. The right-hand sides may be replaced by G-typed versions of 
the .. binary" representation suggested in Note 3.5.4: the entire df -
expression remains G-typable. Also. as long as PROG has no nat in its 
type. the outcome does not change by this replacement. Cf. 4.1.4. 

5.2.4. Nothing prevents us from replacing a by f (f (f (a))) in the 
right-hand side of the definition of zero: what results is G-typable 
again. but does not have the intended semantics. 

5.2.5. Suppose PROG has type nat. Then the entire expression has 
type NAT (not nat ). Hence the context of the entire expression 
"knows" that the outcome is a generic iterator function. rather than a 
number, and it may use the outcome accordingly. This is not at all 
surprising if one realizes that it is the very context writer who also 
provides the right-hand sides (and possibly delegates the construction 
of PROG to another programmer, the left-hand sides and the type of 
PROG being the interface between the two). 

5.2.6. Within PROG one may define other arithmetic functions, e.g. 

df eqO: nat-+ bool = nrec (bool, (fn x: bool. false). true) •... 

assuming that the global identifiers bool. false and true have been 
defined properly in that context. Similarly one can adapt the expres
sion PRED to the G-typing. and use it to define pred: nat-+ nat within 
PROG. 

5.2.7. An alternative type and definition for nrec is: 

nrec': (nat-+ NAT) 
= fn n :NAT. (fn z:tp, f: (z-+ z ). a :zen(z.f,a)) 

and the right-hand side may even be replaced by fn n: NAT• n and 
GID (NAT). But notice that with the definition 

nrec": (nat-+ nat) = ....... as for nrec' ...... . 

we cannot use nrec" differently from the identity function on nat -
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expressions. 

5.2.8. Let us abbreviate the sequence of the left-hand sides by SIGna1 
and the sequence of right-hand sides by IMPLNAT. ('SIG· is mnemonic 
for signature and 'IMPL • for implementation.) Then we may also 
write 

(fn SIGna1 • PROG )(IMPLNAT) 

and this is G-typed and equivalent to the previous program (w.r.t. 
both typing and evaluation). The expression shows more clearly that 
the implementation may be changed independently of the signature. 

5.3. Parameterized Abstract Types: List of Elements 
We shall construct something like "list(elt )" where elt is a parameter, 
in such a way that the construct "list (elt )" can be used with different 
choices for elt. The problem here is that "list (elt )" can not be a G
type. because we would then have ( ... -+ tp) as type for list and such 
G-types do not exist. Nevertheless a satisfactory solution is possible 
and is easily generalized to, say. "array(elt,n)" for arrays of run-time 
determined :fixed length n. 

As for numbers it suffices to have nil (the empty list). cons (for 
constructing an element and a list into a new list) and lrec (for generic 
primitive recursion over lists) as the primitive operations and constant 
of lists. Head, tail, eqnil, append, map and so on can be defined in 
terms of them. (There is however no objection at all to enlarge the set 
of primitives.) We set 

SIG = list: tp, 
nil: list, 
cons: (elt,list -+list). 
lrec: (z: tp,(elt,z-+ z ). z -+ (list-+ z )). 

So SIG gives the signature of the abstract data type of lists. It is not an 
expression, but a series of left-hand sides of definitions or formal 
parameters. Notice also that elt occurs globally in SIG; it will be used 
as the type of the list elements. For the time being we assume that we 
have an implementation for the signature, i.e. a series of expressions 
that we call IMPL: 

IMPL = LIST. NIL. CONS. LREC 

where, again, identifier elt occurs globally in LIST ..... LREC. We post
pone the construction of IMPL and first focus on instantiating IMPL 
by different choices for elt. 

Let PROG be a user program that computes with lists of 
numbers: within PROG list is assumed to be a type. cons to be of type 
(nat,list-+ list) (rather than Celt.list-+ list)). and similarly for nil and 
lrec. In short, PROG is G-typed under the typing assumptions 
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[nat felt ]SIG. We may then form 

(fn [nat felt ]SIG• PROG )([nat felt ]IMPL) 

to obtain a G-typed expression with the desired behaviour. Now sup
pose that PROG uses both lists of nat s and lists of bool s. Let 
[nat felt ]SIG' and [boolfelt ]SIG" be the assumptions under which 
PROG is G-typed. (By a single/ double prime on SIG we mean that 
each of list, ... ,lrec gets a single/double prime.) As before we may now 
form 

(1) (fn [nat felt ]SIG'. [bool felt ]SIG"• PROG) 
([nat felt ]IMPL, [bool felt ]IMPL) 

to obtain a G-typed expression with the desired behaviour. However, 
we have duplicated IMPL and performed the substitutions nat felt 
and bool/elt in IMPL manually. This is quite unsatisfactory. and can 
not claimed to be (a good model of) a practical programming language 
concept. Fortunately. there is better way by using parameterization. 
In the following expression "AT' is mnemonic for 'abstract type', ·gen' 
for ·generic' or ·generate', and T is the type of PROG. 

(2) 
df genListAT: (elt : tp. (SIG -+ T) -+ T) 

= (fn elt: tp, p: (SIG-+ T)e p (IMPL )) 
• genListAT (not. (fn [nat I elt ]SIG• PROG ) ) 

respectively 
genListAT (not, (fn [nat felt ]SIG' 

• genListAT (bool, (fn [bool,elt ]SIG" 
• PROG )))) 

So inside genListAT the user program receives the implementation. and 
thanks to the argument for parameter elt the implementation is suit
ably instantiated. Notice also that the nested call of genListAT is not 
at all recursive. There is yet one adaptation necessary; it concerns 
PROG 's result type T. As it stands. T is fixed within genList AT but 
naturally we want T to vary with the argument for p. Hence T should 
be made a parameter and we get: 

(2') 
df genListAT: (elt : tp, t : tp. (SIG -+ t) -+ t ) 

= (fn elt: tp, t: tp, p: (SIG-+ t ). p (IMPL )) 
• genListAT (not, T. (fn [nat felt ]SIG• PROG )) 

and so on ... 

Actually the type-checker may deduce T from PROG and the pro
grammer need not write it explicitly. 

Notes 

5.3.1. One might now go on and design new expression forms for the 
definition and use of abstract types. This has been done indeed, and 
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gives rise to the introduction of a V- and a 3 -type and a special syn
tax for program scheme (2'). Essentially \/elt•t is a generic type and 
abbreviates (elt : tp- t ). whereas 3 elt • t is a generic signature and 
abbreviates elt: tp. t ( where t may be a cartesian product t 1,t 2, ...• tn ). 
See Cardelli & Wegner [4] and Mitchell & Plotkin [21]. A formal 
Representation Independence has been proved for the typing system of 
[21]. see [22]. 

5.3.2. Consider once more expressions (1) and (2') and in particular 
type T of PROG. In (1) T may be expressed in terms of list' and list" 
and there is no problem whatsoever with the G-typability of the entire 
expression (1). E.g. if T = list' then (1) has type [nat felt ]LI,ST; cf. 
also Note 5.2.5. Within (2') however it seems impossible to arrange 
that T = list'. The reason is that T falls outside the scope of 
[nat felt ]SIG. i.e. T is not in the scope of the locally defined list. This 
forms uur explanation of the requirement AB.3 in [21]. viz. that a pro
gram may not deliver a value of a locally defined abstract type. 

5.3.3. Constructions like "list of list of elements" are possible too. 
For example, replace in (2) bool by list' (i.e. list of nat s). 

5.3.4. Within PROG other list manipulating functions can be defined. 
thereby using the entries of [nat felt ]SIG. For example 

df hd : (list - nat ) 
= lrec (nat. (fn x: nat, y: nat • x ). DONTCARE) 

defines the head-function for lists of numbers. ( with DONTCARE 
determining the outcome for "the head of the empty list nil"). 

It remains to construct some IMPL. i.e. some LISI'. NIL, CONS. 
LREC . The construction below is quite analogous to the definitions of 
nat. zero. succ and nrec given in §5.2. and follows the suggestion of 
§3.6. Here are the type and expressions: 

LI,ST = (z: tp. (elt,z - z ). z - z) 
NIL = fn z:tp. /: (elt,z-z ). a :zea 
CONS = fn x: elt, l :LI,ST 

• (fn z': tp./: (elt,z' -z• ). a: z' •I (x, l (z',f ,a))) 
LREC = fn z :tp. /: (elt,z -z ). a :z. (fn l :LISI'el(z.f,a)). 

5.4. Modules 
For large scale programs modularity is of utmost importance. The 
wide variety in modem programming languages is substantially due to 
the constructs for modularity: packages in Ada. modules in Modula 2, 
clusters in CLU. programs in Modular Pascal and so on. We shall 
express a very general module concept in the Lambda Calculus and 
design a new syntactic form for this particular expression scheme. For 
simplicity we do not consider typing. 



154 M.M. Fokkinga 

In order to demonstrate the generality (not to express the con
cept) we assume in this subsection that the Lambda Calculus has been 
extended with assignment, assignable variables. sequencing and, if you 
wish. exception handling. (These extensions surely invalidate so much 
of the properties of the Lambda Calculus that no one would ever call it 
"Lambda Calculus" any more.) 

The example problem that we tackle is a classical one: it is 
requested to write a "module" for a random number generator that 
allows the user to specify the "seed" (which determines the pseudo
random sequence completely) and that ·· exports" a parameterless func
tion for "drawing" a next random number from the sequence. It 
should also be possible that several instantiations of the module be 
active simultaneously for several independent pseudo-random 
sequences. 

It is known that a 0,a 1,a 2• • • • is a pseudo-random sequence if, 
for some suitable constants m and d, a; = a;_1xm mod d (i >0); a 0 

is the seed. Therefore we wish to construct the solution from the fol
lowing three ingredients: 

var a :nat ....... 
a:= seed 

local store for the a; 

initiali.7Jltion 
DRAW = (fn (). a:= a Xm mod d; {result is} a) 

function that yields the next random number 

There are two main problems: to control the visibility so that the scope 
of var a does not extend over the user's program, and to control the 
life-time of var a so that storage is allocated for a precisely during the 
evaluation of the user's program PROG. 

Quite surprisingly our successful attempts to express parameter
ized abstract types in the G-typed Lambda Calculus provide already 
the solution. In expressions (2) and (2') above. IMPL is invisible in 
PROG even if all typing were omitted I Moreover. had there been 
Pascal-like variables in the body of genListAT. these would exist as 
long as the evaluation of p (and therefore of PROG) would last. Thus 
we find: 

df rng = (fn seed, p • var a: nat • a:= seed; p (DRAW)) 

rng (041130, (fn draw.FROG)) 
respectively 
mg (041130, (fn draw. 

rng (161087, (fn draw'• PROG' )))) 

It seems worthwhile to design a special syntactic form for the above 
scheme: module expressions and module invocations. First we show 
their use and then we define them formally. Here is the above program 
written with the module constructs. 
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df rng = (fn seed• module 

• 

var a : not• a := seed; export(DRA W) 
endmod) 

(invoke draw = mg (041130). PROG) 
respectively 
(invoke draw = mg (041130). 

(invoke draw' = mg (161087). PROG' )) 

The module consists of an expression in which one subexpression is 
tagged with export. An invoke-expression is syntactically similar to a 
df -expression. The evaluation of invoke x = em. eb consists of 
evaluating the module expression em after replacing the part 
export(ea ) in it by df x =ea• eb . Thus it may be better to say that eb 
is imported into em rather than that ea is exported to eb. Formally. 
we consider the left-hand sides. below, as abbreviations for the right
hand sides: 

module ... .. export(ea ) .... endmod 
invoke x =em• eb 

fn P• ..... p (ea) .... 
em(fn x.eb) 

Hence. the derived evaluation rule reads: 

Notes 

replace 
by 

invoke x = (module ..... export(ea ) .... endmod)e eb 
..... (df x = ea. eb ) .... 

5.4.1. One may. of course, replace a:=seed; p(DRAW) by 
df drw =DRAW• a:= seed; p (drw ). It thus turns out that the (first) 
solution can be transliterated to Pascal, so that in principle no extra 
module construct is needed in Pascal. 

5.4.2. A formal proof that .. storage for a is allocated precisely during 
the evaluation of PROG" can not be given before assignment and vari
ables have been added formally to the Lambda Calculus. 

5.4.3. Neither Pascal-like dynamically allocated variables. nor Algol 
68 heap variables, facilitate a solution to the problem of controlling 
the life-time of a satisfactorily. Algol 60 has the concept of own vari
able for this purpose. But, whereas the interference of recursion and 
own variables gives problems in Algol 60, there are no such problems 
here (because both recursion and the above solution are expressed 
entirely within the Lambda Calculus). 

5.4.4. Generalization to multiple export and invocation is straightfor
ward. 

5.4.5. Not only initialization "before the export" is possible, but also 
finalization "after the export", and even exception handling "around 
the export". For the latter, imagine an "exception" defined locally 
within the module, possibly "raised" from within DRAW when used 
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in PROG. and .. handled" at/around the export expression within the 
module. Other arrangements are possible too, e.g. exporting a locally 
defined .. exception" jointly with DRAW so that it may be handled 
from within PROG as well. Also, by a slight adaptation of the rng 
definition. we get a module that yields initialized variables: export a 
itself rather than DRAW. For details see Fokkinga [7]. 

6. Beyond Generic Typing 

As shown informally in Section 5, generic typing is quite expressive; a 
precise characterization of the G-typable arithmetic functions is given 
by Fortune et al. [9]. Nevertheless there are reasons for further gen
eralization: 

e There still exist expressions that are semantically meaningful but 
not G-typable; e.g. TW (TW )(K) where TW = 
fn/ • (fn X•f (f (x ))) and K = fn xe(fn Y•X ). [10]. 

• Functions like fn n,x1, .. ,,Xn•X1+ · · · +xn for which the first 
argument determines the number of following arguments, are not 
G-typable. 

e Referring to SIG and IMPL of Section 5, it seems natural to 
make the implementation IMPL into one tuple expression 
<IMPL >. from which the individual components can be 
retrieved by selections .1 .. 2 ... ; the type of <IMPL > would 
then be a tuple type <SIG>. (Notice the dependency between 
the first and following components within <SIG>.) 

• One might wish to extend the type formation rules in such a way 
that arbitrary properties can be expressed in types. and typability 
means total correctness with respect to the properties expressed in 
the types. 

Much work is, and has been, done towards the fulfillment of the 
last point above: the AUTOMATH project [2]. Martin-Lof's Intuitionis
tic Theory of Types [16]. and recently the Theory of Constructions [5]. 
Space limitations do not permit us to discuss these very promising 
approaches. Instead, we briefly present our own devised typing, called 
SVP-typing [8]. Due to its far going generalization. it is quite simple to 
define but, as a price to be paid, has some weak points that have been 
avoided consciously in AUTOMATH, the Intuitionistic Theory of Types 
and the Theory of Constructions: 

• there is no distinction any more between types and normal value 
expressions: 

e the evaluation of typed expressions may not terminate. 

Consequently, compile-time type-checking may sometimes not ter
minate. This is really a pity, but hopefully not disastrous: 
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• we expect that type errors will be detected far more often than 
that the type-checker does not terminate; 

• nontermination of the type-checker can be treated in the same 
way as nontermination of programs nowadays: an unexpectedly 
long type-checking time should make someone suspicious and sug
gests to prove termination or change the program (or typing) oth
erwise. 

It is left open for future research whether this is a sensible approach. 

6.1. SVP-Typing 
The SVP-typing is a generalization of the G-typing that was already 
anticipated when we designed the syntax for generic constructs. Basi
cally, types are now merely expressions that have type tp. In particu
lar they may be the result of functions and components of tuples, and 
tp itself is a type (so that tp has type tp). 

SVP'-typed expressions. The following grammar generates the 
SVP'-typable expressions. In each rule we distinguish constituent parts 
by suffixes / • a • b • x and r, and we stipulate that equally named con
stituents are equal. Moreover, for readability we write 't • for •etP•, 'tx · 
for · ex tp•, 'tr • for · er tp•. and so on. 

t ::= tp 
etx ::= xtx 
t ::= (xtx: tx -+tr) 
ex:tx ➔ tr ::= (fn xtx: tx • ebtr) 
elea/x]tr ::= efx:tx ➔ tr(ea'x) 

t ::= <x'1 :tl,t2> 
e<x:tl,t2> ::= <e1'1,eJe1/x]t2> 

e'I ::= ep<x:tl,t2>.l 
e[ep.1/x]t2 ::= ep<x:tl ,t2> .2 

the type of types 

the type of functions 

the type of tuples 

An expression of type tp is called a type; we let t • ta •... denote arbi
trary types. Within (x :t' -+t" ). (fn x :t' eeb'") and <x :t',t" > 
identifier x is a local name whose scope extends over t" and eb • but 
not over t' . If x does not occur in t" • we simply write (t' -+ t" ). 
respectively <t',t" >. 
Notes 
6.1.1. The evaluation rules and the generalization to multiple parame
ters, definitions and tuples are obvious and tacitly used in the sequel. 

6.1.2. Due to the last rule the type of an expression is not uniquely 
determined. 

6.1.3. Clearly, the SVP'-typing subsumes the G-typing. Thanks to 
the concrete notation that we have designed both a G-type and a G
typed expression are SVP'-typed expressions. 
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6.1.4. Functions that yield types. and tuples that contain types. are 
now possible. For instance. with SIG and IMPL of the previous sec
tion, we may now write: 

df genListAT': (elt: tp ➔ <SIG>)= (fn elt: tp. <IMPL > ) ....... 
On the dots genListAT' (nat) has type [nat felt ]<SIG> so that, 
according to the typing rules for tuple selection: 

genListAT' (nat ).1 (=NLIST) has type tp 
and is the representation type for lists, 

genListAT' (nat ).2 has type NLIST 
and is the nil for lists of numbers. 

genListAT' (nat ).3 has type (nat.NLIST ➔ NLIST) 
and is the cons for lists of numbers, and 

genListAT' (nat ).4 has type (z: tp, (z ➔ z ). z ➔ (NLIST ➔ z )) 
and is the lrec for lists of numbers. 

6.1.5. The dependency has been generalized too. Not only type 
parameters and components may be referred to in later parameters. 
result and components. but also normal value parameters and com
ponents; e.g. sort: (n: nat. elt: tp. a: array (elt.n) ➔ array (elt,n )). 
This kind of dependency has been strived for in the design of PEBBLE, 
a typing system for large scale modularity [3]. 

6.1.6. Given array of type (elt: tp. n: nat ➔ tp). as above. we find 
that 

ef (a: array (bool, 7) -+ ... >(ea array (bool,3+4)) 

is not SVP'-typed: the rule for function call requires that the parameter 
type and the argument type be syntactically equal. This leads to the 
extension below. 

SVP" -typed expressions. The grammar consists of all rules for the 
SVP'-typed expressions. and in addition: 

e'' ::= e'" whenever t' and t" are semantically equivalent. 

(There are several ways to define semantic equivalence; one way is to 
say that expressions are semantically equivalent if they can be 
evaluated to a common intermediate result.) 

Notes 
6.1.7. It is the very combination of this rule with tptP that seems to 
allow for SVP"-typed expressions with nonterminating evaluations: cf. 
Meyer & Reinhold [19]. 

6.1.8. We conjecture that it is impossible to express the tuple con
structs in the others, i.e. to replace the tuple constructs by SVP"-typed 
equivalent functions. 
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6.1.9. Now that evaluation on type positions (superscripts) is 
allowed, we can reformulate the grammar rules for function con
structs: 

t ::= (fn x:tp.tr) (1) 
ernx:tpetr ::= (fnxtx:tx.ebtr) (2) 
etf(ea) ::= eftf<tu:tpetp)(eatx) (3) 

That is, fn x : tx • tr plays the role of the type (x : tx --t tr ); it contains 
the same information and, indeed, (fn x : tx • tr )(ea ) is semantically 
equivalent to [ea/x ]tr. 
6.1.10. According to rule (1) above fn x: t' • t" has type tp, and 
according to rule (2) [taking tx,eb,tr to be t,t', tp] it has type 
fn x: tx • tp too. This suggests to replace rule (1) by 

e'' ::= e'" whenever t" ~t• 
~ is the reflexive and transitive closure generated by 

(fn x: tx.ebtr )~ (fn x: tx •tr) 

This approach has been studied in the context of AUTOMATH and is 
incorporated in some version of the Theory of Constructions. 

7. Concluding Remarks 

Much of the programming language concepts that we have discussed, 
deal with the - intuitive - notion of "abstraction". which is to 
neglect, consciously, some aspects of the subject under consideration. 
It turns out that the fn -construct facilitates this abstraction. Since 
the syntactic manipulation of forming fn x • e out of e and x . is called 
Lambda-abstraction, we conclude from our exposition that 

Lambda-Abstraction is the key to Intuitive Abstraction. 

Many programming language concepts have not been discussed 
here, notably assignment and assignable variables, and exception han
dling. These two concepts in particular require a drastical 
extension/change of the Lambda Calculus. In [7] we have done so. and 
it turns out that the formalism does not change much: the properties 
do. There we also show how the conventional stack-based implemen
tations may be derived in a systematic way from the the "replacement" 
semantics of the Lambda Calculus. Thus the applicability of the 
Lambda Calculus approach to programming language concepts is wider 
than sketched in this paper. 

Finally we remark that one should not confuse "programming 
language concepts" with "programming concepts". 
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We present a representation principle for sets and functions, essen
tially meaning that sets and functions do exist in two different 
ways: as intuitive objects and as mathematical objects. In this paper 
some aspects of the relationship between these two ways are investi
gated. The principle has consequences for the concept of A-calculus 
model and for the relationship between such models and set theory. 

1. Introduction 

In the literature on A-calculus it is considered quite normal that a func
tion can be applied to itself. whereas a set cannot be a member of itself. 
This difference appears to be a problem in the construction of models 
for the (untyped) A-calculus. because functions (of one argument) can
not be thought of as sets of ordered pairs: for an exception. see [11]. 
This is a remarkable distinction, because intuitively both seem to be 
almost equally strange. at least if function and set are taken in their 
usual sense. i.e. - among other things - that the objects in the domain 
and range of a function are prior to that function itself, just as the 
members of a set are prior to that set. 

In this paper we discuss a representation principle for sets and 
functions. For sets it says that, in a mathematical theory about sets, 
sets in their intuitive sense are represented by sets in their mathemati
cal sense, i.e., as mathematical objects. For functions it works analo
gously. The principle is rather important to mathematical abstraction, 
and the possibility of both self membership for sets and selfapplication 
for functions can be understood as one of its consequences. Due to this 
representation principle. set-theoretical models for untyped A-calculus, 
where functions are just sets of ordered pairs. become very elegant, 
attractive and rather trivial. 

The intention of the paper is not to give a philosophical discussion 
of the notions of (mathematical) object. set and function. We suppose 
that these notions are more or less precisely understood in an intuitive 
way. The paper contains a sketch of the idea of representation, and 
intends to show its consequences for the interpretation of several 
axioms. rules and principles. which are used in set theory or A-calculus. 
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As far as X-calculus is concerned, a semantical point of view is 
taken; so the paper concentrates on functions rather than on terms. The 
same holds of course for set theory, but there a semantical point of 
view is usual. 

2. The Representation Principle 

The main statement of this section can roughly be formulated as fol
lows: axiomatic set theory is not about sets. but about representatives 
of sets. These representatives are abstractions of sets and this form of 
abstraction is rather important to the mathematical way of looking at 
sets. In the second part of this section the same abstraction is dis
cussed for functions. 

2.1. Sets 
Let us start with an example. Suppose we have a sets which consists 
of five objects a.b,c,d,e. Suppose further. that a,b.c together form the 
set p, and that t is the set which consists of d,e and p. According to 
ordinary mathematical usage we can now form the set s U t which 
contains six objects: a,b,c,d,e and p. The question we want to discuss 
is: is this really possible if we think of sets in the normal intuitive 
way? We will argue that the answer to this question is negative. 

In the normal intuitive sense the least we can say about sets is, 
that a set consists of its elements, a set is the totality of its elements. 
and the elements of a set are in some way or another in the set. In the 
example above this means that a,b.c are already in p. and that p is an 
object on a "higher" level than a.b and c. However. if we think of 
s U t as a set in the usual way. then all elements of s U t exist besides 
each other, and on the same level as each other. So if we consider p to 
be an element of s U t. then a,b,c cannot be elements of s U t any 
more. and vice versa. 
In a more daily situation we might say: if you sell your collection of 
stamps. you will get rid of your stamps too, and vice versa. If in the 
example above we think of the objects a,b.c,d,e as physical objects, 
teaspoons say, then it is possible to form the set s or we can form the 
sets p and t, but it is impossible to form the set s U t. We have to 
choose between considering a,b,c as different objects. or as one totality, 
i.e., as the set of a,b,c. 
But also if we think of a,b,c,d,e as non-physical objects, then in order 
to form s U t we have to think of p as existing on its own, indepen
dently of and on the same level as a,b,c. Thus withins U t. p is not 
the set of a,b,c in the normal, intuitive sense, but p is a (mathemati
cal) object playing the role of this intuitive set. So axiomatic set 
theory deals with mathematical objects, called sets. and not with sets 
in their normal intuitive sense. 
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That does not mean, however, that people, at the moment they 
are engaged in (axiomatic) set theory, have lost their ability to form 
intuitive collections from these mathematical objects. So when we 
work on set theory, sets are present to us in two different ways: as 
intuitive collections of objects, and as mathematical objects represent
ing these intuitive collections.1 From now on the word collection is used 
for sets in their normal. intuitive sense. and the word set is reserved 
for objects representing a collection. A set is called the representative 
of a collection.2 

There is still one point to make: the fact that a,b and c are in the 
coUection of which p is the representative. is expressed by letting a,b,c 
have the E -relation with the set p. So x E p holds if and only if x is 
in the collection of which p is the representative. As usual E is called 
the membership relation and x is called a memher or element of p; see 
Figure 1. 

Figure 1. The collection Cp is represented by the set p. 
The single arrows denote the E -relation, 
the double arrow visualizes representation. 

It is important to realize that the above described abstraction is 
presupposed already in the iterative conception of sets. e.g .. in normal 
ZF-set theory. with or without the axiom of choice. and with the 
axiom of foundation. 

2.2. Functions 

Usually a function (only functions of one variable are considered here) 
is thought of as a correspondence by which each object in the domain 
of the function is associated to precisely one object in its range. In this 
paper we are not concerned with functions as .. rules" or as "operation 
processes". but we will restrict ourselves to functions in the 

1 Of course these intuitive collections are objects too, but they exist on a higher level. 
When in this paper the word "object" is used, first order object is meant. Furthermore, 
the word "collection" will mean: collection of first order objects. 

2 There is a difference between collections and classes. Classes are, at least in a Godel
like set theory, mathematical objects which also represent collections. Sets are specific 
classes; proper classes represent collections which are not represented by sets (e.g., because 
they are too "big"). 
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extensional sense, and consider a function as completely determined by 
all its individual correspondences. A function can then be seen, and in 
fact often is seen, as the totality of all these individual correspon
dences. In case of an ordinary mathematical theory this will do. but 
when we want to develop a mathematical theory ohaut functions (i.e .. 
when at least collections of functions are formed, and functions from 
functions to functions are constructed). we make the same abstraction 
to functions as described in Section 2.1 for collections. In other words: 
such a mathematical theory is about (mathematical) objects which play 
the role of functions as described above. 

In the following the word map is used for functions in their nor
mal. intuitive sense as described above. and the word function is used 
for the representative of a map. So a function exists on the same level 
as, and independently of the objects in its domain and range. On the 
contrary a map exists .. above" the objects in its domain and range and 
certainly not independent of them; see Figure 2. 

Figure 2. 

•! 

The map F is represented by the function/ , 
D is the domain, R is the range of F • 
If x is in D , then: / •x = y ifl' F (x ) = y • 

When maps are represented by functions, then the (intuitive) act of 
applying a map F to an argument x - as usual. the result of this act is 
denoted as F (x ) - must be represented too. This can be done in 
different ways. One possibility is to have a binary application operation 
( • ). Let / be a function representing F. then / •x = F (x ) for all x in 
the domain of F. and J•x is undefined when F is undefined for x . i.e .. 
when x is not in the domain of F. 
A more general possibility is, however, to have a ternary application 
relation (appl), such that appl (f,x,y) does hold when F(x) = y, and 
does not hold when F(x) ¢: y or when F is undefined for x. where 
again the function f represents the map F. The advantage of this ter
nary relation is. that appl (f ,x,y) simply does not hold for any y 
whenever F is undefined for x . i.e., when x is not in the domain of F, 
whereas in such a case f•x = y is meaningless. 
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2.3. Representation as a Mathematical Relation 
Both sets and functions are by now considered as (first order) 
mathematical objects which, within the framework of a mathematical 
theory. play the role of (higher order) intuitive collections and maps 
respectively. Furthermore, between sets the binary membership rela
tion can exist, and between functions the ternary application relation 
can exist. 

The representation relation that exists between a collection and its 
representative, or between a map and its representative, can of course 
be mathematized in the sense as described in Sections 2.1 and 2.2, but 
we must not expect to learn much of that. Suppose we tried to do so 
for collections and sets, then the first thing to do would be to represent 
a collection A by an object a' . The next thing to do would be to 
examine the mathemancal "representation relation" p. In this case p 
exists between a' and an already existing representative a of A • so 
p(a',a) holds. That is: the best we would get is a mathematical 
representation of our (intuitive) representation relation, and the 
representation principle itself would be presupposed in the mathemati
cal representation of it. 

In the literature on models of A-calculus it often is considered to 
be unsatisfying that a model of (untyped) A-calculus looks like an 
abstract algebra <D.•>, whereas interpretations of A-terms are 
expected to be functions (maps); see [7.10]. A more "function
oriented" view on such a model is then given by introducing a map~ 
from D to a subcollection of D -+ D • being the collection of all one
place functions (maps) from D to D. such that ~(a )(x ) = a•x for all 
x. An object a in D is then called a "representative" of the function 
(map) ~(a) inD-+D. 
However, the view held in this paper is, that, when introducing such a 
collection D-+ D and map ~ from D to D -+ D , the elements of D-+ D 
are taken as mathematical objects, and so in the sense as described 
above already are representatives (called functions) of (intuitive) maps 
from D to D . From this point of view things do not get better when 
~ is introduced. We can simply suppose D to be a subcollection of 
D -+ D (see also Sections 3.2 and 3.4), and ~ to be the identity map on 
D. Due to the representation principle a model of (untyped) A-calculus 
is expected to be an algebra < D. • > . 

3. Some Questions 
In this section some questions about the representation principle as 
described in Section 2, are discussed. These questions are: 

How many collections [maps] can be represented by the same set 
[function]? 
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How many sets [functions] can represent the same collection 
[map]? 

Does every collection [map] have a representative? 

Which set [function] can (or must) represent a certain collection 
[map]? 

These four questions are discussed in Sections 3.1 to 3.4 respectively. 

3.1. Fundamental for the representation principle as described in Sec
tion 2, is that one set [function] can represent at most one collection 
[map] at a time. 
Suppose there are two collections A 1 and A 2 represented by the same 
set a . The collection generated by this set a is the collection of all 
objects x for which x Ea holds. Thus the only collection which can be 
recognized as the collection represented by a , is the union of A 1 and 
A 2• Generating is something like the reverse of representing, so every 
set must represent at most one collection. 
For maps the same things can be said. Furthermore, if two maps F 1 

and F 2 would be represented by the same function / , then the possi
bility of two different values F 1 (x) and F i(x ) for the same argument 
x would be an additional problem, because what to choose for f•x? So 
the same conclusion as for collections and sets holds even stronger for 
maps and functions. 

In principle it is possible that an object does not represent a collec
tion, but stands for itself Cit represents teaspoons, drawing-pins or the 
like, so to say). The only way to express this, is by not calling such 
objects sets but "urelements", and to agree that only sets do generate 
collections. Still the collection of all objects x, for which x Ee holds 
(where e is a non-set) is empty. and it is rather arbitrary to say that e 
does not represent this empty collection. 
The same holds for functions: if f is a function, then the map F, gen
erated by / . is defined for all x for which f•x is defined, and for those 
x : F (x ) = f•x . If e is a non-function (an "urargument", or an 
"urvalue"), then e does by convention (as in case of sets) not generate 
a map. but we can still think of the map E which is defined for all x 
for which e•x is defined. For non-functions there are no such x , so E 
is the tota/,ly undefined map (the empty map).3 It is arbitrary to say 
that non-functions do not represent the empty map but something else, 
or maybe nothing at all. 
For reasons of elegance and simplicity we will restrict ourselves to pure 
sets. i.e., sets of which all members are sets, and to pure functions. i.e., 
functions whose domains and ranges contain only functions. So all 

3 Because this map is undefined for all possible arguments, it is as a map precisely 
defined. It has just an empty domain, and there is exactly one map with domain the emp
ty collection (though it can have more than one representative, see Section 3.2). 
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objects are either sets or functions. representing collections of sets. or 
maps from functions to functions respectively. 

3.2. In general there is no a priori restriction on the number of sets 
[functions] that can represent a certain collection [map]. 
For collections this means that a given collection of sets can be 
represented by zero. one. or more than one set. If we start with a 
universe of objects (sets). then (in principle) every (sub)collection of 
these objects can exist in the intuitive way. A collection consists of its 
elements. so every collection is unique and completely determined by 
its objects. For sets however. there are some choices concerning these 
points to be made. 

In the :first place it is not necessary that there is a representative 
for every collection. It is possible that in the intuitive way there exists 
a collection of objects, whereas in the universe of sets there is no set 
with these objects as elements. i.e .• which represents the given collec
tion. If we want to be sure that certain collections are represented, 
then we have to require this explicitly. In set theory this is usually 
done by formulating some axioms and axiom schemes. Examples are: 
- The axiom of pairing: 

Vx.y :3 a Vu (u Ea +-+ u = x V u = y) 

Of course the collection consisting of any two objects x and y simply 
exists. According to the axiom of pairing there is also a set with x and 
y as elements. 

- The axiom scheme of separation: 

Va :3 b \Ix (x Eb +-+ x Ea A cf,(x )) 

(Where cf,(x) is a formula not containing b as a free variable). Here 
too. any subcollection of the collection generated by a set a exists, at 
least in principle, but that does not mean that all these subcollections 
are represented. According to the axiom scheme of separation at least 
those subsets of a exist. for which we can formulate (in the language 
of the theory) a property that is distinctive for the elements of this 
subset. 

- The power set axiom: 

Va :3 b \Ix (x E b +-+ x ~ a ). 

This axiom states that there exists a representative of the collection of 
all subsets of a given set, i.e., of all sets which represent subcollections 
of the collection generated by this given set. By the way. this does not 
imply that for all of these subcollections there exists a representative. 
i.e., we can have "incomplete" power sets. 
These axioms of set theory are formulated in some general way. i.e., 
they say that there exist representatives for all collections of a certain 
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sort, e.g .. for all collections consisting of two elements. 
In the second place it is not necessary that there is at rrwst one set 

representing a given collection. If we want any collection to be 
represented by at most one set, we also must state this requirement 
explicitly. This is what the axiom of extensionality does: 

Va,b,x ((x ea +-+ x e b) -+ a = b ). 

Usually in literature on set theory the distinction between sets 
and collections, as described here, is not made, at least not explicitly. 
Mostly "set" and "collection" are considered to be synonyms. as are 
other notions like family, class, etc. A problem different from the one 
discussed in Section 2.1, that arises from this point of view. is that it is 
hard to understand why stating several axioms of set theory is neces
sary. Especially the axiom of extensionality seems to be a necessary 
truth (cf. [3], where the notion "analytic" is used), for how can there 
be two different collections consisting of the same elements, if a collec
tion is precisely that thing which consists of its elements? Extensional
ity is an intrinsic property of the notion of set or collection. One gets 
the impression that formulating the axiom of extensionality is 
super:0.uous, or at least it feels like an axiom of underlying logic. 
According to the representation principle this axiom is not a necessary 
truth, and indeed must be stated explicitly (as must the other axioms). 
In the light of the representation principle it can also easily be under
stood that axioms, e.g .. the axiom of extensionality, can be rejected 
from most theories on sets (ZF for instance). and that we can replace 
them by other axioms. The axiom of extensionality can for instance be 
replaced by an axiom saying that, if there is a representative for a col
lection, then there are two of them. Or even that non-empty collec
tions have as many representatives as elements. Of course we can also 
leave it open, and then we will not know how many representatives a 
given collection has. 

For maps and functions the situation is basically the same. Start
ing with a universe of objects (functions) any map from any (sub)
collection of this universe to any other (sub)collection can exist in the 
intuitive way (at least in principle). Because we are only concerned 
with maps in the extensional sense, every map can be seen as the total
ity of all its correspondences, so every map is unique and completely 
determined by its correspondences. 
Now the same possibilities which occurred for sets, arise for functions, 
understood as representatives of maps. Every map can in principle be 
represented by zero, one, or more functions, i.e .• by zero. one, or more 
objects in the given universe. Here too requirements for functions must 
be stated explicitly. Extensionality for instance is formulated (in the 
more general way) as: 

Vf,g,x.y ((appl (f,x,y) +-+ appl (g.x.y )) -+ f = g ). 
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When the representation relation between maps and functions is itself 
considered as a mathematical relation (cf. Section 2.3). then exten
sionality of functions is sometimes defined by requiring that the map (ll 
from D to D - D is one-to-one; see [10] and also Section 2.3 for the 
meaning of D and (ll. In such a definition it is tacitly assumed that 
D-D itself is extensional. However. we may not rely on this, because 
D - D does not contain maps from D to D. but functions representing 
these maps. 

Concerning the existence of functions no (examples of) axioms 
will be given, but a universe of functions will be defined as a subcol
lection of some given universe of sets. Advantages of this approach are 
that it is rather straightforward and in accordance with our usual con
ception of function. 
In order to keep the definitions below readable, we assume that the 
theory of sets describing the structure of the given universe of sets, is 
strong enough to guarantee the existence of certain sets needed in the 
definitions. We also assume that this theory contains the axiom of 
extensionality. Later on the definitions may be reformulated in such a 
way that they are independent of the chosen theory of sets, but that 
will make them more complicated and less readable. 
The first definition is a well-known definition of ordered pair <x.y >. 
Definition 1. <x.y > = {{x },{x.y }}. □ 

In this definition {x}. {x.y} and {{x },{x,y}} are sets, so <x.y > is also 
a set. i.e .• an object in the given universe of sets. 
Definition 2. The field fl.a of a set a is 

fl.a= {xl:3y(<x.y>Ea V <y.x>Ea)}. □ 

Definition 3. A set a is applicatively closed i1f 

Vx (x E a - /ix S: a ). 

Definition 4. A set b is the applicative closure of a set a i1f 

fl.a S: b. 

b is applicatively closed. 

if c is an applicatively closed set and fl.a S: c. then b S: c. 

The applicative closure of a is denoted as APC (a ). 

□ 

Furthermore, A.f'OIC (a ) = {a } U APC (a ). □ 

Definition S. A set / is a function (in the sense of set theory) iff 

VuEf:3x,y (u=<x.y>) 

Vx,y1,Y2 (<x.y1> E/ /\ <x.y2> E/ - Y1=Y2). 

Notation: fnc. (f). □ 

Note that if / is a function then Ii/ = D (f) U R (f). where D (f) and 
R (f) are the domain and the range of/ respectively. 
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Definition 6. A set f is a pure function (in the sense of set theory) iff 

Vx (x E APQk (/) -+ fncs (x )). D 

It can easily be seen that if f is a pure function, then every 
x E APQk (/) is a pure function. 

Clearly. the ternary application relation (in the sense of set theory) for 
functions is defined as follows. 

Definition 7. appls (a.x.y) +--+ fncs (a) A <x,y >Ea. □ 

As a universe of functions we can take from the universe of sets the 
collection of all pure functions (in the sense of set theory). or even a 
certain subcollection of it. I.e .. from the universe of sets we can leave 
out all sets which are not relevant in the definition of pure function 
(like sets with more than two elements. if such a set is not a pure 
function itself). or which are superfluous from a functional point of 
view (like {x}. {x.y}. <x,y > in a case that f•x = y for some pure 
function f ). 

As mentioned before. these definitions may be reformulated 
independently of the axioms of the underlying theory of sets. For 
example, the resulting universe of functions can then be non
extensional. 

Summarizing: it depends on the chosen theory if there exist zero, 
one or more representatives of a certain collection or map. 

3.3. In the previous section one of the questions discussed was. whether 
it is necessary that every collection [map] is represented. In this sec
tion the question is. whether it is possible that every collection [map] is 
represented by an object. Because of Russell's paradox and related 
antinomies (e.g., Cantor's paradox), the answer to this question is 
definitely negative. 

In case of set theory we can form the intuitive collection R of all 
sets x for which x Ex does not hold. But we can not represent this 
collection by a set r . For suppose we can, and suppose r is in R . 
Because r is a representative of R it follows that r Er. Then, by 
definition of R . r not in R . Thus. while r is a representative of R . 
r rfr. But then, by definition of R again, r is in R . 

So if the collection R can be represented by a set r , we get two forms 
of Russell's paradox: 

risinR 

r Er 

i:ff r is not in R , 

iff r ~r. 

For functions Russell's paradox is present in exactly the same way. 
Suppose we have a universe of functions. and any intuitive map from 
any subcollection of this universe to any (possibly other) subcollection 
can be represented by a function. Suppose in particular. that there are 
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functions representing maps from the entire universe to itself (e.g., a 
function i representing the identity map I which is supposed to be 
defined for the entire universe). Such a function can be applied to 
itself (e.g., i•i=i or. alternatively. appl(i,i,i) holds). Now we can 
define the map F, with domain the entire universe of functions, as fol
lows: 

if appl (x,x.x) does not hold. then F(x) = x. 

if appl (x.x.x) does hold. then F(x) = y. where y is arbitrary. 
buty ¢ x.4 

Russell's paradox for functions can be shown as follows: let f be the 
representative of F. Suppose appl (f .f .f) holds. Then by definition of 
F. F(f) ¢ f. Because f represents F. this implies that appl(f.f.f) 
does not hold. But then. by definition of F again. F (f) = f. And so, 
because f represents F. appl (f .f.f) holds. 
So here too we have two forms of Russell's paradox: 

F(f) = f iff F(/) ¢ f. 

appl (f .f.f) iff not appl (/.f .f). 

The conclusion for both sets and functions is the same: not every 
collection [map] can be represented by a set [function]. It depends on 
the set or function theory at hand which collections or maps cannot be 
represented. Mostly however, there will be present some principle like 
the axiom of separation (in set theory). which is not a very strong 
principle with regard to the existence of sets. It plays an important 
role in preventing .. dangerous" collections from being represented. For 
set theory the axiom of separation implies that collections that are too 
"big" (for example the collection of all sets) can not be represented. 
For function theory such a principle might state something like: given a 
function / and a formula iJ,(x.y ). then there exists a function g (of 
course, g may not be free in iJ,(x,y )) with the same domain as/ such 
that, for each x in this domain: 

if there is a y such that iJ,(x.y) holds. then g•x = y (of course y 
must be unique). 

otherwise: g-x = f•x. 

Such a principle for function theory would imply that maps which are 
too "powerful" (e.g .. having the entire universe as their domain, like 
the total identity map) cannot be represented. 

Of course there can be (mathematical) objects representing collec
tions [maps] which cannot be represented by a set [function]. but these 

◄ y is a constant value, say. Then y must be such that appl (y,y,y) does not hold. Be
cause of the assumption that every map is represented, such a y exists, e.g., let y be the 
representative of the constant map Y(x) = i for all x, then -y-y = i and y ¢ i. 
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objects cannot exist inside the given universe of sets [functions]. Out
side this universe, however, there can exist objects which do the job 
(called proper classes in the case of set theory. and for the moment 
without a name in the case of function theory). Then we have to sup
pose a bigger universe of objects and the problem reoccurs. 

The presence of Russell's paradox does not mean - as is often 
concluded from it - that (possibly indirect) selfreference is not 
allowed, e.g .. a set being a member of itself, or a function being applied 
to itself. In the next section some remarks on this point will be made. 

3.4. In this section the question is discussed which set [function] may 
represent a specific collection [map]. 
Clearly, there are no a priori restrictions at this point. Any set can 
represent any not too big collection and any function can represent any 
not too powerful map. provided of course that every set or function is 
the representative of at most one collection of sets or of at most one 
map from functions to functions respectively. For sets there is no rea
son why, for instance, the representative a of a collection A of sets 
should not lie inside this very collection. H a is in A , then the 
representation principle implies, that a Ea is the case. It will be clear 
that this is no real selfmembership. but just a mathematical form of it 
(as are all instances of the membership relation).5 

There also is no reason why the representative t of a collection T 
should not lie inside a collection U. which in turn is represented by a 
set u in the collection T. In such a case both t Eu and u Et hold. And 
so on.6 

In case of sets, these possibilities are usually excluded by the 
axiom of foundation, saying (if the axiom of extensionality is accepted): 

\la¢= fZJ :3 X Ea (x n a= 0). 

which is motivated by the iterative conception of sets. In the iterative 
conception we start with a possibly empty collection of urelements. 
We then proceed in stages. and the first stage after the basic stage con
tains all subcollections of this basic stage. If the basic stage contained 
no urelements, then the first stage contains only one member: the 
empty collection. The next stage again contains all the subcollections 
of this first stage, and so on. It is thereby understood that a stage con
tains all the collections of all the previous stages as well. 
In such a process it is obvious that for every collection there is a first 
stage at which this collection comes into existence, and that all 
members of this collection already existed at lower stages. That is 

5 Because of the mental state one gets in when imagining ''real" selfmembership, non
founded sets might be called "dizzy sets". 

6 If in the sequel "self membership" is used, cases like t Eu and u E t , etc., will be 
meant too. 
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precisely what the axiom of foundation intends to say. and it is clear 
that according to it no collection can be a member of itself. 
The iterative conception of sets proceeds in forming collections of col
lections and calls them sets, so in this conception sets are collections of 
sets. which in turn are collections of sets. etcetera. So the iterative 
conception of sets admits sets like {a,b,c,p }. where p = {a,b,c }. But as 
was argued in Section 2. these sets can only exist when we think of p 
as in some way or another representing the collection of a • b and c . 7 

The possibility of non-founded sets is a simple consequence of what is 
considered here to be the normal mathematical way of looking at col
lections and objects. 
Of course self membership strongly violates our intuition on collections. 
but the iterative conception already violates this intuition in the same 
way. it only is less apparent. 8 

For functions the situation is basically the same. If we think of a 
map in the normal intuitive and extensional way. then the level on 
which a map exists is higher then the level on which the objects in the 
domain and range of the map exist. We might describe an iterative con
ception of functions in the same way as we did for sets: we start with 
a possibly empty domain of .. urarguments" and a possibly empty range 
of "urvalues". The next stage contains all maps from the given domain 
to the given range, though this could be only the empty map (the 
totally undefined map). The process is the same as described for sets, 
i.e .• a stage contains all maps from any subcollection to any (possibly 
other) subcollection of the union of all foregoing stages. and map and 
function are just different names for the same thing. 
In such an iterative conception of functions, functions cannot be 
applied to themselves. But due to mathematical abstraction a 
mathematical theory about maps does not deal with maps. but with 
representatives of maps. called functions. Here too, there is a priori no 
reason why a function / should not lie inside the domain of the map 
F represented by/ . But then F (f) is defined, and so /•/ too. 
In an analogous fashion it is possible that f•x and x•f are both well
de:fi.ned. And so on.9 

7 Also the necessity of stating several axioms of set theory does not follow from it; cf. 
Section 3.2. 

8 There are other arguments defending the axiom of foundation, like the possibility of 
simple and powerful induction principles. In a universe with non-founded sets such prin
ciples are only valid in its well-founded part. For the non-founded part however, some 
weaker or more complicated induction principles can be found; see [1,2]. But such an ar
gument is concerned with technical, and not with principal aspects. Furthermore there are 
nice and technically simple applications of non-founded sets, e.g., in models of >rc&lculus 
[11] and in models for (projective) geometry [9]. 

' If in the sequel "self application" is used, cases like /•z and z•/ , etc., will be meant 
too. 
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The conclusion of this is. that the possibility of both selfapplica
tion of functions and self membership of sets is the same sort of conse
quence from the same mathematical point of view. It is therefore 
remarkable that in the literature on models of A-calculus self
application for functions is considered to be quite normal, whereas 
selfmembership for sets is considered to be impossible, or at least 
undesirable. 

In order to understand selfapplication maps (functions) are often 
considered intensionally (e.g., in [7]), whereas collections (sets) are 
mostly thought of extensionally. Intensionally a function or map is 
considered as a rule of correspondence. which can (often) be applied to 
any object whatever and not only to objects in a certain domain. 
Because a rule of correspondence can itself be considered as an object, 
self application is possible (at least in principle). 
When collections (sets) are understood intensionally. then we think of 
them as containing all objects whatever which have a specific property, 
or sometimes .. set" and "property" are even considered as identical 
notions. But then the set of all sets (for the moment "set" has its 
usual meaning) has itself the property of being a set, and so is a 
member of itself. Thus intensionally selfmembership can be under
stood equally well as selfapplication. However, thinking intensionally 
of sets (in an unrestricted way) leads to Russell's paradox, and so does 
an (unrestricted) intensional approach to functions; see Section 3.3, 
where the map F was defined as a rule. 

As stated before, set-theoretical models for A-calculus, in which 
functions are considered as sets of ordered pairs. are mostly excluded. 
The possibility of applying a function / to itself would imply that 
there is an ordered pair 

<f.y > Ef. 
With the standard definition of ordered pair 

<a,b > = {{a}. {a,b }}, 

this would give 

/ e{/}e <f.y>ef 
which is generally rejected. But as argued above, selfmembership is 
just as strange, or maybe just as nice. as selfapplication, both being the 
same consequence of the same mathematical abstraction. So if we 
accept one of them, we have to accept the other, and if we reject one of 
them, we have to reject the other. 
By now we do expect that set-theoretical models of (untyped) A
calculus are possible, elegant and rather trivial. Indeed they are as is 
shown in [11]. 

Returning to one of the questions discussed in Section 3.2 we 
have to ask which non-founded sets do exist in the universe of sets. 



A Representation Principle for Sets and Functions 177 

The same question can be posed for a universe of functions. 
As far as set theory is concerned, a rather general way to decide this, is 
by means of the axiom of universality, intuitively saying that there 
exist copies of every possible sort of non-founded sets; see [1.12]. 
where non-founded sets are considered within a theory of sets includ
ing the axiom of extensionality. In order to describe the axiom of 
universality more formally, here too the axiom of extensionality will 
be accepted. The following definitions are needed. 

Definition 8. A set a is transitive (notation: tr (a)) iff for all x 

x Ea -+ x !::a. D 

Definition 9. A structure is an ordered pair <a,r > where a is a set, 
and r ~axa. □ 

Note that a structure is a set. 

Definition 10. A structures= <a,r > is extensional (notation: es (s )) 
iff for all x.y,z Ea 

(<x.y > Er+-+ <x.z >Er)-+ y=z. □ 

Definition 1 t. The internal E -structure E (t ) of a set t is the struc
ture <t .e > . where 

e!::txt 

and <x.y >Ee+-+ x Ey. D 

The axiom of universality now states that for every extensional struc
ture s there exists a transitive set t whose internal E -structure is iso
morphic with s ( where the meaning of isomorphism is obvious): 

Vs(es(s)-+ =3t(tr(t) A E(t)~s)). 

With respect to functions we can again take the subcollection from the 
universe of sets consisting of all pure functions (in the sense of set 
theory) and. if preferable, we can leave out extensionality. The result 
is a rich universe of functions where self application is possible, though 
not for all functions. It seems that it contains a rather universal model 
for typed and untyped X-calculus, where untyped X-calculus can be a 
part of typed X-calculus. i.e., in which untyped terms are of a specific 
type. 

4. Rules 
In Section 3 some aspects of the representation principle were discussed 
from a point of view which is common practice in set theory. i.e., 
axiomatic, concerning the existence of objects, etc. In this section an 
approach from the rule-oriented point of view of X-calculus is given, be 
it that the rules are interpreted in a semantical way, whereas in >. 
calculus they play a syntactical role in the first place. In this section it 
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will become even more obvious that the representation principle is the 
same for collections and maps. i.e .. that we make the same abstraction 
when we think of collections or maps in a mathematical way. In Sec
tion 4.1 some remarks are made on notational matters, and in Section 
4.2 some rules are discussed. 

4.1. Notation 

In A-calculus the A-notation was invented to denote maps (functions) 
as such; see [4]. Let 9(x) be an expression which has for a given x a 
certain value in some range of values (the natural numbers. say). The 
relationship between all the values of x and the corresponding values 
of 0(x) is a map (function). As we have seen we have to distinguish 
between a map and its representing function(s). The map described a 
moment ago is denoted as ~.9(x ). the function representing this map 
as Ax. 0(x ).10 

Because more than one function can represent the same map. there 
is a problem at this point: we have to choose which of these representa
tives is denoted by Ax. 0(x ). The choice is arbitrary in principle.11 

Depending on the specific system of functions, it is also possible that 
Ax. 0(x) does not exist. Due to the paradox of Russell. for some 0 it is 
even necessary that Ax. 9(x) does not exist; cf. Sections 3.2 and 3.3. 
For collections and sets the same things can be said: the collection of all 
objects characterized by some formula <f,(x) is denoted by flx l<f,(x H. 
and an (in principle arbitrary) representative of this collection is 
denoted by {x l</,(x )}. Here too it is possible, and for some <p neces
sary. that {x 1¢(x )} does not exist. 

A first similarity in notation is almost immediate: if we replace 
{x l</>(x )} by crx.<f,(x ). likewise expressed as .. the set of all x such 
that <f,(x )", then the notations for sets and functions reflect the same 
abstraction principle in the same way. We will stick here to the usual 
set-theoretic notation with braces. 

Furthermore. if we do not think of true and false on an intuitive 
level. but as two values in the collection of truth values fl true, false~. 
then we can express that x is a member of a set a as follows: 
x E a = true . From this point it is only a small step to think of a as a 
function which is defined for all members of a • such that a•x = true 
for all x in the collection represented by a. Taken as a function we 

10 Denoting the domain of a map or function within the notation, as in >..x E a.0(x ), 
will not be considered here. 

11 This is in agreement with a usual definition of a model of Arcalculus; see [7,10]. In 
(models of) combinatory logic >..-abstraction (sometimes called >..•, [.], <. >) is defined as 
an "applicative product" of some values, thus fixing the choice of the representative 
denoted by >..•x. 0(x ) to a certain value (for instance: if a does not depend on x then 
>..*x.a = kea , where k is a specific function for which k•x•y = x holds for all values of x 
and y, so kea is a function with constant value a). 
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agree that a is undefined for all other x . If we take for true and fol,se 
two specific functions, then this gives us a possibility for embedding 
sets within a universe of functions. 
The point to be made here however. is a second similarity in notation: 
x ea can simply be elaborated to a•x = true • so x e a for sets 
corresponds to f•x = y for functions. We will stick here to usual 
set-theoretic notation, and consider truth values in the normal intuitive 
way. 

In the sequel 9(x) denotes an expression whose value can depend 
on x. i.e .• x can be free in 9(x ). and tf,(x) denotes a formula whose 
truth can depend on x. i.e .. x can be free in tf,(x ). It is thereby under
stood that 9(x) and tf,(x) contain as non-logical constants only • and 
E respectively. and variables range over functions and sets respec

tively. 

4.2. Some Rules Compared 
The first rule is the rule of a-conversion. For functions this rule says 

>.x. 9(x) = >.y. 9(y ). 

if 9 (x ) does not contain y • 

For sets we get an obvious translation of this rule 

{x ltf>(x )} = {y ltf>(y )}. 
if tf,(x) does not contain y. 

So the a-rule says that the object denoted by >.x. 9(x) or {x ltf>(x )} 
does not depend on the choice of the bound variable, provided of course 
that this object exists ( which is supposed to be the case whenever 
appropriate). 

The second rule is the rule of (3-conversion. For functions this 
rule says 

(>.x. 9(x ))•a = 9(a ). 

For sets it says 

a E {x ltf>(x )} +-+ (/,(a). 

The rules µ and 11 say for functions 

if a = b then for all c, c-a = c-b. 

if a = b then for all c, a-c = b-c. 

(It is supposed here, that c-a is defined if and only if c•b is defined. 
The same holds for a•c and b-c .) 

For sets these rules say (in the same order) 

if a= b then for all c, a e c +-+ b e c. 

if a = b then for all c, c e a +-+ c e b . 
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The rules (3, µ and v speak for themselves. In a semantical surround
ings, as chosen here, they just express ordinary logical facts. 

Two less trivial rules are the rules which are known in X-calculus 
as f and 7). Together they constitute extensionality. The rule f says 
for functions: if for all x , 6 i(x ) is defined iff 6z(x ) is defined, and for 
those x, 6 1(x) = 6z(x ), then 

Xx. 61(x) = Xx. 62(x ). 

The meaning of the rule f can be understood as follows: if we have 
two expressions 6 1(x) and 62(x) which for all x either both have the 
same value, or both are undefined, then of course the map denoted as 
;\x.6 1(x) is the same map as denoted by ;\x.6z(x ). 
As we saw, it is possible to have more than one function representing 
this map, and it is of course also possible to choose for Xx. 6 1(x) one of 
these representatives, and for Xx. 62(x) another. When the rule f is 
accepted, this cannot be the case, but on the contrary there is a canoni
cal representative of the map in question, which is denoted by any A
expression of the form Xx. 6(x) that denotes a function representing 
this map. The rule f does not say that there is at most one representa
tive of a map, but only that one of the possibly more than one 
representatives is chosen as the canonical representative. 

For sets the rule€ says: if for all x, cJ, 1(x) holds iff cJ,z(x) holds, 
then 

The same comment as for functions can be given here: of course the 
collection fix lcJ, 1(x H is the same as the collection fix lcJ,z(x H. But 
only when f is accepted there is a canonical representative of this col
lection, denoted as {x lcJ, 1(x )}, {x lcJ, 2(x )} or any other .. brace expres
sion .. of the form {x lcJ,(x )} denoting a set which represents the given 
collection. Here too it is still possible that there is more than one 
representative for the same collection. 

In order to introduce the last rule (71) recall the notion of genera
tion, which in some sense is the reverse of representation. Let/ be an 
arbitrary function. This function generates the map "Ax.f•x . The 7)
rule now says that Xx.f•x = f, meaning that the function denoted as 
Xx.f•x is the same function as / . One could say that if the 7)-rule is 
accepted, then Xx.f •x • understood as representative of ;\x.f•x , 
.. remembers" which function generated "Ax.f•x. There can for instance 
be two different functions / and g generating the same map, i.e .. 
f•x = g•x for all x, and according to the 7)-rule Xx.f•x ¢ Xx.g•x. 
Again, for sets the same remarks can be made. A set a can be seen as 
generating the collection fix Ix Ea I. According to the 71-rule 
{x Ix Ea}= a, so the 7)-rule chooses for {x Ix Ea} the set that gen
erated fix Ix Ea I. Here too, when the 7)-rule is accepted. then 
{x Ix Ea} ;z:!: {x Ix Eb}, even if a and b (with a ¢b) generate the same 
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collection. i.e .• even if x E a - x E b holds for all x . 
In the literature on A-calculus the meaning of the '>'}-rule some

times is stated as: every object is a function: e.g .• in [10]. For sets this 
naturally translates into: every object is a set. Although indeed the 
(unrestricted) '>'}-rule is inconsistent with non-functions [non-sets]. the 
existence of these is mainly a matter of convention: see Section 3.1. It 
is possible that the '>'}-rule is rejected. and still every object is a func
tion [set]. For instance. in such a case there can exist two functions a 
and b • with Ax.a•x = b and Axb•x = a • and yet a ;a!= b [or a and b 
can be two sets with {x Ix E a } = b and {x Ix E b } = a • and yet a ;a!= b ]. 
Thus the precise meaning of the '>'}-rule is not that every object is a 
function [set]. but it gives an answer to the question which object to 
choose for Ax.a•x [or for {x Ix E a }]. 

As can be seen from the above. and as is also well known in A
calculus. E and '1} do not imply extensionality on their own. Both E 
and '1} are needed to obtain extensionality. In the light of the represen
tation principle this is clear immediately: let. in the case of set theory. 
a and b be two sets generating the same collection. Then the f-rule 
says that {x Ix Ea} and {x Ix Eb} denote the same canonical represen
tative of this collection. Thus according to the '>'}-rule a and b must 
both denote this canonical representative. thus a = b . So when E and '1} 
are accepted. any collection has at most one representative which is 
precisely the meaning of extensionality for sets. 
Of course. the same remarks hold for functions. 

S. Concluding Remarks 

The representation principle for sets and functions. as described in this 
paper. is relevant for a unification of different approaches to sets and 
functions. The axiomatic approach of set theory can be applied to 
functions. and the rule oriented approach of the A-calculus can be 
applied to sets. However. the relationship between these approaches 
must be analyzed further. 

The representation principle is rather universal, and can be 
applied to many branches of mathematics. though it is possible that the 
properties of the principle change slightly. when it is applied to other 
subjects. Numbers. for instance. can also be considered in two different 
ways: as intuitive objects. and as mathematical objects. where a 
number in its mathematical sense represents an intuitive number. It 
seems interesting to investigate what sorts of representation can be dis
tinguished. and to which branches of mathematics they apply. 
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Unifying terms s and t in an equational theory E means finding a 
substitution a such that a (s) = E a (t ). Unification in the empty 
theory, i.e., the theory without axioms and so consisting of free 
terms only, is important for the implementation of programming 
languages such as Prolog; the general case is of importance for pro
gramming languages such as OBJ and for logic programming in gen
eral. In this overview, results about the decidability of the question 
whether given terms s and t are unifiable in an equational theory as 
well as unification algorithms for particular theories of different 
unification types are presented. Recent methods to construct a 
unification algorithm for a theory E 1 +E 2 using given unification 
algorithms for the theories E 1 and E 2 are discussed. Finally, the 
complexity of unification is considered. Unification in the empty 
theory is complete for P and for co-NL; unification is NP-complete 
for instance in Boolean rings and worse in general. 

1. Introduction 

Unification is concerned with equation solving in a general setting. 
Given are two expressions e 1 and e 2 constructed using variables. con
stants and operations. Unifying these two expressions means finding 
an assignment ¢ to the variables occurring in e 1 or e 2 such that 
¢ Ce 1) = ¢ Ce 2): in other words, substituting the values assigned to the 
variables in the equation, results in an equality, i.e .. the equation 
e 1 = e2 is solved. The assignment¢ is called a unifying substitution, or 
a unifyer. 

For example, let e 1 ~fCx,gCa.b)) and e 2 ~fCg(y.b),x). Then 
¢ ~{x := g Ca,b ).y :=a} is a unifyer of e 1 and e 2. because ¢Ce 1) = 
f Cg Ca,b ).g Ca,b )) = ¢Ce 2). In this example ¢Ce 1) is identical to 
¢Ce 2). This will not always be required. We also consider the variant 
where a variable assignment ¢ is called a solution to the equation 
e 1 = e2 if ¢Ce 1) = E ¢Ce2) for some equivalence relation = E. For 
example. consider once more the equation f Cx.g Ca.b )) = f Cg Cy.b ),x) 
and assume that the operation J is commutative. that is f Cx.y) = 
f Cy.x) for all x and y. Now¢ ={y :=a} is also a solution. because 

¢(/ Cx,g Ca,b ))) = f Cx.g Ca.b )) = E f Cg Ca.b ).x) = ¢(/ Cg Cy.b ).x )). 

where = E denotes the equivalence relation induced by the axiom of 

183 



184 R. Sommerhalder 

commutativity. 

Unification is an important problem: it arises in many areas of 
computer science such as: 

• Computational logic. A central component of all current theorem 
provers is a procedure to unify first order terms. This problem was 
first studied by Herbrand [17], who also gave an algorithm to compute 
a unifier. Automatic theorem provers cannot adequately handle equa
tional axioms such as commutativity and associativity. if these are 
treated as just any other axiom. A traditional approach to these prob
lems is to develop unification algorithms which directly handle proper
ties such as commutativity. by computing unifiers relative to an 
equivalence relation = E. 

• Programming languages. Traditionally, procedures are called by 
name. A deviation from this is pattern directed invocation as in 
PLANNER [19]. QA4 [37]. and Prolog, see [24] for example. Also, the 
fundamental mode of operation for the programming language SNOBOL 
is to detect the occurrence of a string within a larger string. If the sub
string contains SNOBOL don't care variables, then the occurrence prob
lem is an instance of the string unification problem. Prolog is an 
attempt to use Hom clause logic, a subset of full first order predicate 
logic, as a programming language. The success of Prolog as a program
ming language critically depends on the availability of efficient imple
mentations. which in tum depends on the availability of fast string 
unification algorithms. 

• Computer al.gebra or symbol manipul,ation. Here matching algorithms 
also are of utmost importance. For example. the integrand in a sym
bolic integration problem may be matched against a set of patterns to 
determine the class of integration problems to which it belongs, so as to 
trigger the appropriate action. 

• Deductive databases. In a deductive database not all information is 
explicitly stored as data. Instead, the data consists of facts and rules 
using which implied facts can be deduced and given input can be 
checked for integrity. Applying such rules heavily depends on 
unification. 

In [41] Siekmann discusses these and other application areas in 
more detail. 

2. Preliminaries on Formalism 

The concepts used are from universal algebra, see for instance [15]. 
These may be set out as follows. 

1. V is an alphabet of symbols denoting variables. 

2. For each n ;>.:: 0, Fn is an alphabet of symbols denoting n -ary 
functions. i.e., functions of the type An -+ A, where A is the 
carrier of the algebra. 
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3. F i u {F; Ii ;?:o}. 

4. T is the smallest set such that 
1. VUFS:T. 
2. IftiET.1~i~n.and/EFn,thenf(t1,••·•tn)ET. 
The elements of T are called terms. They are formal objects 
replacing the intuitive "expressions" of the introduction. 

5. var (t) denotes the set of all variables occurring in the term t and 
var(t1, .. ,,tn) denotes U {var(t;)ll~i ~n}. A term t is called 
ground if var (t ) = 0. The set of all ground terms is denoted by 
Tg. 

6. The set T ... can be made into an algebra (T.F) by specifying a~ 
operation f : Tn-+ T for every f E Fn as follows: / (t 1 .... ,tn) = 
f (t1, ... ,tn ). 

7. A substitution CT is an endomorphism of (T,F) such that there are 
finitely many x EV for which CT(x) ¢ x. A substitution CT can 
therefore be represented by a finite set {x 1:= t 1 • ... ,Xn := tn}. that 
will also be denoted by CT. For a substitution CT we define 
1. D(CT)i{xEVICT(x)¢ x}and 
2. X(CT) i U {var(CT(x ))Ix ED(CT)}. 
The identity substitution is denoted by e, in set representation 
e = 0. The set of all substitutions is denoted by :r.. 

8. Let CT be a substitution and W S: V a set of variables. Then CT 
substitutes away from W if and only if X (CT) n W = 0. 

9. An equation is a pair of terms s,t ET and is denoted by s = t. 
The equation is valid in an algebra A if and only if cp(s) = cp(t) 
for every homomorphism ¢ : T-+ A . 

10. Let E be a set of equations (axioms). The equational ,..theory 
presented by E is the finest congruence relation = E of (T.F) that 
contains {(CT(s ),CT(t )) ICT E :r.. (s =t )EE}. The equational theory 
is recursively decidable [enumerable] if and only if = E as a set of 
pairs is recursively decidable [enumerable]. 

11. A substitution CT E :r, is an E-unifier of the terms s and t if 
u(s) = E CT(t ). The set of all E-unifiers of s and t is denoted by 
UI:,E (s,t ). 

12. A unification probkm is a pair <s,t> E for which the set 
u:r,E (s,t) has to be determined. 

13. Let W S: V. E-equality is extended to substitutions by defining 
CT = (E. w) T if and only if CT(x) = E T(x) for all x E W, in which 
case CT and T are said to be E -equal in W. 

14. Substitution p is an instance of substitution CT. and CT is more 
general than p. in symbols p ~ (E, w )CT, if and only if there exists a 
7" E :r, such that p = (E. W) T·CT. 
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15. For a given unification. problem <s.t> E we do not wish to com
pute the whole set U :EE • but a smaller set that can be used to 
represent U:tE. To that purpose we define: 
1. A set CU:tE(s.t )~ U:tE(s,t) is a complete set of unifiers of s 
and t if and only if for every p E U:tE (s.t) there is a 
u ECU:tE(s.t) such that P,(E.w)U. where W = var(s.t ). 
2. The set µ.U:tE(s.t) of most general unifiers of s and t is a 
complete set of unifiers CU:tE(s.t) such that for all p,ue 
µ.U:tE(s.t ). p =(E.w)U whenever P,(E.w)U. where W = 
var(s.t ). 
3. If for all u E µ.U:tE (s.t) and a set Z ~ V of variables we have 
X(u)n Z = 0, then µ.U:tE(s.t) is called the set of most general 
unifiers away from Z. (The concept away from for a complete set 
of unifiers CU:tE(s.t) is defined in the same way). 

16. An operation related to unifying is matching. 
1. A term s matches a term t if and only if there is a substitu
tion u such that u(s) = t. 
2. The sets M:tE(s,t ). CM:tE(s,t) and µ.M:tE(s,t) are defined 
in the same way as for unifying substitutions in 15 above. 
3. It follows from the results summarized in Section 6 on com
plexity. that it can be safely conjectured that matching is simpler 
than unifying. 

17. In all of the above. we drop the subscript E whe~E = 0. that is. 
if we are consi~ering equality in the algebra (T.F) instead of in 
the algebra (T.F)/E. 

In the sequel attention is restricted to recursively decidable. finitely 
presentable. equational theories. 

3. Decidability of Unifiability 
First consider the following fundamental problem: is it recursively 
decidable whether or not terms s and t are unifiable? That is, is Xst 
[(3 u E U:tE )[u(s) = E u(t )]] a recursively decidable predicate? 

The answer to this question obviously depends on the equational 
theory involved. In the case of the empty theory. the answer to the 
question is "yes". this is a recursively decidable predicate. The algo
rithm below finds a unifier of a finite non-empty set S of terms if one 
exists and reports failure otherwise. The algorithm can be found in 
almost every book on Prolog and Logic Programming; see for example 
[27]. 

Definition. The disagreement set of a finite non-empty set S of terms 
is defined as follows. Find the leftmost position at which at least two 
terms in S have different symbols. Extract from each term in S the 
smallest subterm beginning at that position. The set of all these sub
terms is the disagreement set. D 
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For example, if S = {/ (g (x ).h (y ),a ).f (g (x ).z.b )} • then the dis
agreement set is {h (y ).z }. 

The unification algorithm is as follows. 

input: a finite non-empty set S of terms 
output: a unifier er 
method: 

er= 0: 
while er (S ) is not a singleton do 

od. 

D := the disagreement set of er(S ); 
if there exist x,t ED such that 
x is a variable and x Evar (t) then CT:= CT ·{x := t} 
else report that S is not unifiable and halt 

A proof of the total correctness of the above algorithm can be 
found in [27]. It can also be shown that for every s and t. µU'E(s,t) 
is either empty or a singleton and that the above algorithm produces a 
most general unifier. 

The algorithm can be very inefficient, due to the occur check. This 
is the test x Evar (t) in the algorithm above. Consider the following 
example from [5]: 

S = {p (x l• •.• ,Xn ),per (x o,Xo),/ (x 1,X 1), ... ,/ (Xn-l>Xn-1))}. 

In the different iterations of the while-loop the following substitutions 
are obtained: 

CT= {x 1:= / Cxo,xo)} 

CT= {x1:= / Cxo,xo),x2:= / er (xo,xo).f Cxo,xo))} 

er = {x 1:= / (x o,xo),x 2:= / er (x o,x o),/ (x o,x o)). 
X3:= / er er (xo,Xo),f Cxo,Xo))./ er (xo,Xo),f Cxo,Xo)))} 

and so forth. In the final substitution we have Xn := t where the term 
t has 2n -1 occurrences of the symbol /; thus, performing the occur 
check takes exponential time. 

In Section 6 on complexity results it will be shown that the most 
general unifier can be found in linear time. 

Although a linear time algorithm is known, most Prolog imple
mentations combat the complexity by simply dispensing with the occur 
check. This can result in non-termination and in strange results, as in 
the following example from [32]. 

:- op(100, xfx. less_than). 
X less_than s(X). 
3 less_than 2 :- s(X) less_than X. 

The answer to the goal?- 3 less_than 2. will be "yes". In [32] Plaisted 
describes a method that will insert occur checks where necessary and 
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claims that this does not appreciably slow down the execution of most 
Prolog programs. 

Maluszynski and Komorowski go further than that. In [28] they 
give a sufficient condition to replace run-time unification in Prolog pro
grams by term matching. The reason for this is that matching can be 
accomplished in O (Xn [(log n )2]) time on a parallel machine and there 
is no fast parallel algorithm for unification known while there are rea
sons to believe that it does not exist: see the discussion on complexity 
results in Section 6. 

Returning to the question whether the predicate Xst [(:3 Ci E U'EE) 
[c;(s) = E c;(t )]] is recursively decidable. There exist non-empty equa
tional theories for which this predicate is recursively decidable, and 
also theories for which unifiability is not recursively decidable. 

Consider for example the equational theory of arithmetic as 
presented by Peano's axioms or in any other suitable way. The 
unification problem in this theory is precisely Hilbert's tenth problem 
and is therefore not recursively decidable. 

In the sequel we will consider some special theories which are 
presented by combinations of the following axioms. 

A associativity I (f (x.y ).z) = I (x,f (y,z) 

C commutativity f(x.y)=f(y.x) 

Di, left-distributivity f (x.g (y.z )) = g (f (x.y ).f (x,z )) 

Da right-distributivity f (g (x.y ),z) = g (f (x,z ).f (y.z )) 

D distributivity Di,+ Da 
I idempotence f (x,x) = x 

u unit I (1.x) = f (x, 1) = x 

In the sequel, the empty theory, that this. the equational theory 
that does not have any axioms and terms are therefore equal if and 
only if they are identical, is denoted by 0. 

The status of the unifiability problem in different theories is as 
follows: 

• it is recursively decidable in the theories mentioned in Figure 1. 

• and recursively undecidable in those listed in Figure 2. 

• the status of the unifiability problem is open in the theories given 
in Figure 3. 

The D + A unification problem is also of interest with respect to 
Hilbert's tenth problem. An axiomatization of arithmetic sufficient to 
pose Hilbert's tenth problem involves the axioms A and D and some 
other axioms regarding the integers. The D + A-unsolvability result 
implies that the unsolvability of Hilbert's tenth problem does not 
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Theories 
0 
A 
C 
I. C+I 
Di,. nit. u 
A+C. A+C+I 
A+I. D+A+I 

Figure 1. 

Theories 
D+A. D+A+C 
Di,+A+U 

Figure 2. 

Theories 
D 
D+C 
D+U 
Di,+A 
Di,+U 
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Figure 3. 

depend on any specific property of the integers. 

4. Unifi.cation in Specific Theories 
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We have seen above that in the empty theory every unifyable pair of 
terms has precisely one unifier. This is not the case in all equational 
theories. There are equational theories where every unifiable pair of 
terms has a :finite number of most general unifiers. equational theories 
where at least some unifiable terms have an infinite number of most 
general unifiers and also equational theories where some unifiable terms 
have no most general unifier at all. Thus the number of most general 
unifiers induces the following classification of equational theories. 

Definition. 
1. An equational theory is unitary. if for every pair of unifiable 

terms s and t the set µ.UI,E(s.t) has precisely one element. 

2. An equational theory is ftnitary. if for every pair of unifiable 
terms s and t the set µ.U'EE (s.t) is non-empty and :finite. 
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3. An equational theory is inftnitary, if for every pair of unifiable 
terms s and t the set µU'EE(s,t) is non-empty and there are 
terms s and t such that µU"f.E(s,t) is infinite. 

4. An equational theory is nullary, or of unification type 0, if there 
are unifiable terms s and t such that µU'EE (s,t) = 0. D 

As we have seen above. the free theory 0 is unitary. 

The theory C is finitary. Consider for example <f (x.y ).f (a,b )>c, 
where f is commutative. There are two most general unifiers, namely, 
cr 1 = {x := a,y :=b} and cr 2 = {x :=b,y :=a}. 

The standard 0-unification algorithm can easily be adapted to 
commutative functions. To unify f (s 1,s 2 ) and f (t 1,t 2). where f is 
commutative, it is necessary to try to unify s 1 with t 1 and s 2 with t 2 

and also try to unify s 1 with t 2 and s 2 with t 1• Continuing in this 
fashion, the C-unification problem is reduced to a number of 0-
unification problems exponential in the number of occurrences of the 
commutative function symbol. 

The equational theory A is infinitary. Consider for example the 
terms f (a,x) and f (x,a ). These two terms have the following most 
general unifiers. 

cr1 = {x:=a} 

cr2 = {x := f (a.a)} 

CT3 = {x := f (a,f (a.a))} 

er 4 = {x := / (a.f (a.f (a.a)))} 

and so on. 

In [42.45,33] can be found descriptions of adaptations of the standard 
0-unification algorithm so that it can handle associative functions. 

For associative functions it is convenient to drop the distinction 
between/ (x.f (y,z )) and f (f (x.y ).z) and represent them both by an 
argument list [1 x,y,z 11. Assume given the argument lists of two 
terms to be unified. The algorithm proceeds as follows. 

1. Consider the elements of the list one-by-one in left-to-right 
order. Determine the first non-empty disagreement set. If one 
list is exhausted before the other, unification fails. 

2. If the disagreement set does not contain a term t and a variable 
x. such that x §!:var (t) then unification fails with this substitu
tion. 

3. Otherwise, two unification subprocesses are created. one exploring 
the substitution x := t, the other the substitution x := / (t,u ), 
where u is a new variable. 

4. The algorithm returns all substitutions constructed by success
fully terminating subprocesses. 
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Consider the following example, where / is an associative function 
symbol. a,b and c are constants and all other letters variables. The 
terms to be unified are/ (x,y) and/ (a,/ (b,c )). thus the input to the 
algorithm are the lists [1 x,y 11 and [1 a,b,c 11 . In the sketch of the 
computation given below, argument lists are denoted just using square 
brackets, dropping the subscript / . 

[x,y 1 = [a,b,c 1 
1. x := a, [a,y 1 = [a,b,c 1 

1. y := b, [a,b 1 = [a,b,c 1. FAIL 
2. y := / (b, v ). [a,b, v 1 = [a,b,c 1 

1. v := c, [a,b,c 1 = [a,b,c 1. O.K. 
2. v := / (c,z 1). [a,b.c,z 11 = [a,b,c 1. FAIL 

2. x := / (a,u ). [a,u,y 1 = [a,b,c 1 
1. u := b, [a,b,y 1 = [a,b,c 1 

1. y := c, [a,b,c 1 = [a,b,c ]. O.K. 
2. y := / (c,z 2). [a,b,c,z 21 = [a,b,c ]. FAIL 

2. u := / (b, w ). [a,b, w ,y 1 = [a,b,c 1 
1. w := c, [a,b,c,y] = [a.b.c ]. FAIL 
2. w := / (c,z 3), [a,b,c,z 3,y 1 = [a,b,c ]. FAIL 

Two most general unifiers are obtained, namely 
CT 1 = {x := a,y := / (b,c )} and 

CT2 = {x := / (a,b ).y := c }. 
Much work has been done on associative-commutative unification 

because of its practical significance in automatic theorem proving. The 
equational theory A + C is :fi.nitary. Complete algorithms have been 
developed by Livesey and Siekmann (261 and by Stickel (431. Let + 
denote a binary, associative and commutative function symbol and let 

s = (x +(x +y )) + (f (a +(a +a))+ (b +c )) and 

t = ((b+b)+(b+z))+c 

be the terms to be unified, where x.y and z are variables and a,b and 
c constants. The terms are represented by argument lists, thus 
s = [x,x,y,f (a +(a +a )).b,c 1 and t = [b,b,b,z,c 1. 

Stickel (431 has proved that arguments common two both lists can 
be canceled in pairs without changing ur.A+cCs,t ). Thus the given 
problem is equivalent with unifying the lists [x,x,y.f (a +(a +a ))1 and 
[b,b.z 1. Consider :first two argument lists, which contain only vari
ables, [x,x,y,u] and [v, v,z 1 in our current example. If CT is a unifier 
and t a specific term, then twice the number of occurrences of t in 
CT(x) plus the number of occurrences oft in CT(y) plus the number of 
occurrences of t in CT(u) must be equal to twice the number of 
occurrences of t in CT(v) plus the number of occurrences oft in CT(z ). 
Thus unification of argument lists is related to solving linear homo
geneous diophantine equations 
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In our current example the equation is 2x +y +u = 2v +z. 

Any positive integer solution to such an equation can be obtained 
as a linear combination of elements from a :finite basis set of solutions. 
This finite set can be enumerated by a backtracking procedure using a 
bound on the values of the variables. Huet [20] describes an algorithm 
to enumerate a basis set of solutions. The following seven solutions 
form a basis for our current example 2x +y +u = 2v + z . 

X 

S1 0 

S2 0 

S3 0 

S4 0 

S5 0 

S6 1 

S7 1 

y U V 

0 1 0 

1 0 0 

0 2 1 

1 1 1 

2 0 1 
0 0 0 

0 0 1 

z 

1 

1 

0 

0 

0 

2 

0 

Any linear combination of these is a solution to the equation. How
ever. because we have no zero in the unification problem, we must con
sider all subsets of the basis with the constraints that the sum of 
coefficients in any column must be non-zero and must be equal to 1 if 
the corresponding term is not a variable. Fortenbacher [13] describes a 
method to reduce the number of subsets which need to be considered. 
The reduction can be very significant. 

Consider for instance {s 1,s 2.s6,s 7}. The corresponding solution is 
x = s6+s 7• y = s 2• u = s1, v = s 7 and z = s1+s 2+2s6. Substituting 
the constants and simplifying, we arrive at the unifier {x := s 6+b, 
z :=/(a +(a +a ))+y +s6+s6}. 

Termination of A+ C-unification has remained an open problem 
for a long time. a termination proof of Livesey and Stickers algorithm 
has been given by Fages [11]. 

Little or nothing is known about why the combination of an 
infinitary theory A and a finitary theory C gives a finitary theory 
A + C. whereas the combination of another infinitary theory D and the 
finitary theory C results in an in:finitary theory D + C. 

The first theory of unification type 0 has been presented by Pages 
and Huet in [10]. The theory has two constants a and 1, a one-place 
function q , and a two place-function / . The axioms are 

f (1,x) = X 

q(f (x.y )) = q(y) 
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Consider the following unifiers of the terms q (x) and q (a ). 

uo= {x :=a} 

0"1 = {x := / Cx1.a)} 

0"2 = {x := / Cx2./ (x 1.a ))} 

u i = {x :=/(xi .f (. ... a) ... )} 
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Let S ~{ui Ii ;;i!::O}. Then S is a complete set of unifiers CUI:.E(s,t) and 
also u i +1 is strictly more general than u i . Assuming this, it follows 
that there does not exist a µ.UI:.E(s,t ). Let R be any CUI:.E(s,t) and 
W={x}. For every uER there is an i such that u,(E,W) 
ui <(E.w)Ui+1• because S is complete. On the other hand, there is a 
pER such that ui+l,(E,w)P, because R is complete. But then 
u <(E,w)P, whence R is not a µ.UI:.E(s,t ). 

Recently there also have been found "natural" equational theories 
of unification type 0, namely the theory of idempotent semigroups: see 
[3.39]. 

We have seen equational theories of unification type 0, 1 and co. 
There exists no hierarchy of theories of bounded unification type. That 
is, if E is a suitable equational theory which is neither nullary nor 
unary. then there is no integer n such that for all unifiable pairs 
<s,t> E the number of most general unifiers is at most n. A proof can 
be found in [6]. The proof is a generalization of the technique shown in 
the following example. 

Let / be a commutative function symbol and h any free binary 
function symbol. The unification problem </ (x,y ).f (a,b )>c, where 
a and b are constants. has n = 2 most general unifiers, namely 
{x := a,y := b} and {x := b,y :=a}. Construct a new unification problem 
namely <h(f (x 1,y1)./ (x2,Y2)).h (f (a,b ).f (a,b ))>c- This problem 
has n 2 = 22 = 4 most general unifiers, namely 

{x1:=a.y1:=b,x2:=a,y2:=b }. 

{x 1:= a.y 1:= b.x 2:= b,y 2:= a}. 

{x1:=b,y1:=a.x2:=a.y2:=b} and 

{x1:=b,y1:=a.x2:=b.y2:= a}. 
The result of course does not depend on commutativity, but gives a 
general method to construct new terms which have n 2 most general 
unifiers from given terms having n most general unifiers. 

S. Combining Equational Theories 

For each equational theory of interest a unification algorithm must be 
designed and implemented. A general design methodology is not 
known. However. for equational theories presentable by convergent 
term rewriting systems. there is an algorithm that automatically 
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generates unification procedures: see Fay [12]. Some progress has been 
made by Yelick [50]. Tiden [47]. Herold [18] and Kirchner [23]. These 
authors describe algorithms to produce a unification algorithm for an 
equational theory E 1 + E 2 given unification algorithms for theories E 1 

and E 2• The combination algorithms cannot handle arbitrary theories, 
furthermore. there must be no interaction between the two theories. 
Yelick's method, which can be applied to regular, collapse-free theories, 
is described below. 

Definition. 
1. An equational theory is regular if and only if var (s) = var (t ) 

for every axiom s = t of the theory. 

2. An equational theory is collapse-free if and only if the theory 
does not contain an axiom s = t . where either s or t is a variable 
and the other term is not. D 

First. it is assumed that the sets of function symbols handled by 
the different unification algorithms are mutually disjoint. Let E be a 
presentation of an equational theory. Then 7T = {E1.E2 ••••• En} is called 
a partioned presentation of E if and only if 

1. 0E1r, 

2. U {E; l1~i ~n }= E, 

3. F(E;)nF(EJ)=0 for all i and j. 1~i.j~n: where F(Em) 
denotes the set of function symbols occurring in axioms of Em. 
F (E) denotes the set of all function symbols and F (0) denotes 
the set of all free function symbols, that is. symbols which do 
not occur in any axiom. 

Such a partioned presentation induces an equivalence relation ~ on 
F (E) as follows. 

f ~ g if and only if either 

1. there is a block E; E 7r such that / .g E F (Ei ). or 

2. / i!:X and g EX. for all X E1r. 

1r = {E 1,E2,0} 

x+y = y+x 
(x+y)+z = x+(y+z) 

E 2: x•y = y•x 
(x *Y )•z = x•(y•z) 

0: 

Figure 4. 

F(E) = {+.•.a,b,f} 

F(E1)= {+} 

F(0) = {b,f} 

Figure 4 contains an example of a partioned presentation of an equa
tional theory. 
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The combined unification algorithm begins by transforming the input 
terms into simpler ones, containing only function symbols from a sub
set F(Ei ). for which by assumption an Bi-unification algorithm is 
known. The transformation consists of replacing subterms whose 
top-function symbol does not belong to the set F(Ei) by new vari
ables. The information lost in this way. is saved in the form of a sub
stitution. For example, considering the set F(E 2) of function symbols 

termt 
x•(a+y) 
x•Ca•b) 
x+y 

" is replaced by term t 

where v 1.v 2 and v 3 are new variables. The newly constructed terms 
can then be unified using an E 2~unification procedure, which is assumed 
to be giyen. To restore a term t to its original t • a substitution CT such 
that CT(t) = t. i.e .. a matcher is constructed. 

The recursive procedure to E -unify terms using Ei -unification 
algorithms to unify subterms, is as follows. 

procedure E-unify 

input: terms s and t 
output: a set of E -unifiers of s and t 
method: 

1. If s and t are both variables, return {t := s }. 

2. If s is a variable and t is not, return the result of 
var_unify(s.t ). Similarly. if t is a variable and s is not. 
return the result of var_unify(t.s ). 

3. If the top-function symbols of s and t are not ~ -
equivalent. return 0. 

4. Otherwise the top-function symbols of s and t are ~ -
equivalent. Assume that these symbols belong to theory Ei. 

1. Compute the reduced terms s and t and the 
corresponding matchers CT s and CT t, such that 
CT s (s) = s and CT t (t) = t. 

2. Let CT = CT s U CT, • 

3. Let P = Ei -unify(s ,t). 
4. Return U {map_unify(p,CT)lpEP}. 

In the above map_unify(p,CT) computes the set of E-unifiers of 
{ <p(x ).CT(x )> Ix ED (p)U D (CT)} and the procedure var_unify is 
specified as follows. 

procedure var_unify 

input: a variable v and a term t 
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output: a set of unifiers of v and t 
method: 

... 

R. Sommerhalder 

Let £ be the reduced term and u t the matching substitution, i.e., 
u t (t ) = t . Also assume that the top-function symbol of t 
belongs to the subtheory E; . 
1. If v ivar (t ), return {v := t }. 

2. If v E var (t ) and v ix (u t ) 

1. let P = E;-unify(v,t), 

2. return U {map_unify(1r,ut)l7rEP}. 

3. If v E var (t) and v E X(u ). return 0. 

Consider the unification of s = b +(x *Y) and t = a +z in the equa
tional theory E with partioned presentation {E1,E2,0} as given in Fig
ure 4. Both are non-variable terms and the top-function symbol ( + in 
both cases). beloqgs to theory E 1• thus case 4 of E -unify applies. Thus 
s = v 1+v 2 and t = v 3+z and the combined restorjng substitution is 
u= {v1:=b,v2:=x•y.v3:=a}. Bi-unifying sand t produces the set 
{p1.p2} where p 1 = {v 3:=v 1,z:=v2} and p 2 = {v3:=v2,z:=v 1}. Now 
map_unify(p1,u) and map_unify(p2.u) are called. map_unify(p1,u) 
returns 0, because a E F (E 2) must be unified with b E F (0 ). To com
pute map_unif y(p2,u ). the term a must be unified with term x *Y . 
These terms are E runifiable with a single most general unifier {x := a • 
y :=a}. Using this, E-unify(s.t) returns {z := b,v 1:= b. v2:=a •a.x :=a. 
y:=a}. We can check the result: b+(a•a)=Ea+b. In [50] Yelick 
sketches the proofs of correctness and termination. Full proofs are to 
be found in her Master's thesis. MIT Laboratory for Computer Science. 

Tiden [47] gives an extension of this method and proves that it is 
correct for the whole class of fi.nitary equational theories and that it 
terminates for the class of collapse-free equational theories. Herold 
[18] also gives an algorithm that is totally correct for the class of regu
lar collapse-free equational theories. He does not replace subterms 
with new variables but with new constants in such a way that E -equal 
subterms are replaced with the same constant and claims that this is 
more efficient in many cases. 

6. Complexity of Unifi.cation 

In this section we will mainly be concerned with 0-unification: most 
published results concern the unification of free terms. The following 
notation will be used. 

L denotes the set of all languages that can be accepted by a 
An [log n ] space-bounded deterministic Turing machine. 

NL denotes the set of all languages that can be accepted by a 
An [log n ] space-bounded non-deterministic Turing machine. 
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P denotes the set of all languages that can be accepted by a polyno
mial time-bounded deterministic Turing machine. 

NP denotes the set of all languages that can be accepted by a polyno
mial time-bounded non-determi,nistic Turing machine. 

The following notation is used to denote reductions between problems. 

A ~LB means that there is a function/ that can be computed by a 
Xn [log n ] space-bounded deterministic Turing transducer such 
that (Vx )[x EA iff / (x )EB]. 

A ~pB means that there is a function / that can be computed by a 
polynomial time bounded deterministic Turing transducer such 
that (Vx )[x EA iff / (x )EB]. 

In Section 3 on decidability of unification an algorithm for 0-
unification has been described which has exponential running time in 
the worst case. Better algorithms are known, in particular. the most 
general unifier can be computed in linear time using the algorithm of 
Paterson and Wegman [31]. 

As we have seen the size of terms constructed during unification 
may be exponential in the size of the terms to be unified. Thus 
representing terms as trees is out of the question. Paterson and Weg
man use directed acyclic graphs (dags) in which common subexpres
sions are represented by a single subgraph. The nodes are labeled by 
function symbols and variable symbols. A node labeled with a k -place 
function symbol has outdegree k and the outgoing arcs are labeled 1 to 
k. so that we can refer to the i th son. Variable nodes have outdegree 0 
and there is one node for each variable. The terms to be unified are 
represented by a single (not necessarily connected) dag with two dis
tinguished nodes corresponding to the top-function symbols of the 
terms involved. Computing a most general unifier of two terms is 
equivalent to computing a certain equivalence relation on the nodes of 
the corresponding dag. 

An equivalence relation on the nodes of a dag is val,id if it has the 
following properties. 

1. If two function nodes are equivalent. their corresponding sons are 
equivalent in pairs. 

2. Each equivalence class is homogeneous, that is. it does not contain 
two nodes with distinct function symbols. 

3. The equivalence classes may be partially ordered by the partial 
order on the given dag. 

Paterson and Wegman [31] prove that the terms corresponding to nodes 
u and v are unifiable if and only if there is a valid equivalence rela
tion, such that u and v are equivalent. In that case there also exists a 
unique minimal valid equivalence relation, that corresponds to the 
most general unifier. All the nodes in an equivalence class of a valid 
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equivalence relation represent the same term. Thus with a given valid 
equivalence relation corresponds a unifying substitution that assigns to 
every variable the term corresponding to the equivalence class which 
contains that variable. 

The well-known UNION -FIND algorithm. see [1] can be used to 
handle the equivalence relation. which results in an O (An [n a(n )]) 
time algorithm. where a is the inverse of Ackermann's function and 
thus grows extremely slowly. Setting sons of nodes equivalent when 
their fathers are. is called "propagating the equivalence". Paterson and 
Wegman achieve the linear running time of their algorithm by pro
pagating the equivalence in a carefully ordered way. taking one com
pleted equivalence class at a time. 

Martelli and Montanari [30] describe an algorithm and its imple
mentation in Pascal. The standard unification problem is an equation 
< s = t > . Martelli and Montanari' s algorithm uses transformations of 
sets of equations into other sets of equations, which are equivalent to 
the given ones in that both have the same sets of unifiers. Examples of 
such transformation rules are 
1. Term reduction. An equation / (s 1, ... ,sn) = f (t 1, ...• tn) may be 
replaced by the set of equations {s; = t; I 1~i ~n }. 
2. Variable elimination Let E be a set of equations containing the 
equation x = t, where x is a variable. The new set of equations is 
obtained by applying the substitution {x := t } to all terms occurring in 
the equations of E-{x = t} and then adding the equation x = t. 

The efficiency of the algorithm is obtained by handling equations 
in groups called multi-equations. The running time of the algorithm is 
0 (An [n log n ]). 

In typical applications, such as theorem provers, the unification 
algorithm is not used on very long terms but very often on rather 
small terms. In these circumstances the asymptotic difference between 
Paterson and Wegman's and Martelli and Montanari's algorithm cannot 
be exploited. Martelli and Montanari [30] claim that their algorithm 
performs better most of the time in these circumstances. An additional 
advantage of the algorithm is that it can be generalized to handle E -
unification, see Kirchner [23]. 

Dwork. Kanellakis and Mitchell [8] also study the time complex
ity of the unification problem. They show that unification is complete 
for P with respect to log-space reducibility ~ L • using the Monotone 
Circuit Value problem. 

The monotone circuit value problem MCV is defined as follows. 

MCV i{(/3o,/31, .... /3n)I for all i (0~i <n). /3; = IN(0) or /3; = 
IN(1) or /3; = AND(j.k) or /3; = OR(j,k) such that 
1. if /3 i is an input (IN (0) or IN (1)) then the index i 
appears at most once in the sequence (fj 0, ... ,/3n): if l3i is a 
gate (AND (j.k) or OR(j,k )) then the index i appears at 
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most twice in the sequence ((3 0 ••••• (3 n ) and i > j > k ; 
2. /3n is an or-gate OR(j.k) whose output according to the 
circuit and its given inputs is equal to 1}. 

The problem MCV is complete for P with respect to ~L; see [14]. 

Dwork Kanellakis and Mitchell use labeled dags to represent 
terms. In order to get complexity results where the size of the instance 
corresponds with the length of a string representation of the terms, 
Dwork et al. introduce simple dags as dags where the only nodes with 
indegree greater than 1 are leaves. Thus there are two versions of the 
unification problem. 

UNIFY ~ {(G.u,v )IG is a labeled dag. u and v are nodes of G and the 
terms corresponding to u and v are unifiable}. 

UNIFY-SIMPLE ~{(G.u,v)IG is a labeled simple dag. u and v are 
nodes of G and the terms corresponding to u and v are 
unifiable}. 

Dwork et al. show that MCV ~ L UNIFY and also that MCV ~ L 

UNIFY-SIMPLE. whence both of these problems are complete for P. 

The authors conclude that in consequence there most probably is 
no efficient parallel algorithm for unification. Here "having an efficient 
parallel algorithm" must be identified with membership in .. Nick's 
Class" NC. NC is the class of all problems solvable on a parallel RAM 
using Xn [(log n )k] parallel time for some k • and Xn [nm] processors 
for some m. It is clear that NC!: P: it is generally believed. but as yet 
unproved that the inclusion is strict. 

Vitter and Simons [48] also study the possibilities of using paral
lel processors to perform unification. The parallelization of a number 
of sequential algorithms is discussed in detail, among which the algo
rithm of Paterson and Wegman and an algorithm using the algorithm 
for the UNION-FIND problem mentioned before. A limited speed-up 
of approximately the number of processors used is achieved. 

Lewis and Statman [25] have studied the space complexity of the 
unification problem. 

NON-UNIFY ~{(G.u.v)IG is a labeled dag. u and v are nodes of G 
and the terms corresponding to u and v are not unifiable}. 

Lewis and Statman give a space-efficient implementation of a naive, 
non-linear equivalence handling algorithm described by Paterson and 
Wegman [31]. thus establishing that NON -UNIFY is in NL. 
CDG ~ {G IG is a directed cyclic graph}. 

The problem CDG is complete for NL: see [21]. Lewis and Statman 
then show that CDG ~ L NON -UNIFY and conclude that unifiability is 
complete for co-NL. 

Unification has an important special case which does admit 
efficient parallel algorithms. in particular the matching problem. 
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Dwork, Kanellakis and Mitchell [8] show that matching is in NC and 
describe a parallel algorithm requiring O (Xn [(log n )2] time and 
0 (Xn [M(n 2)]) processors, where M(n) is the time complexity of 
matrix multiplication. In [9] an improvement is given in the form of a 
randomized parallel algorithm requiring O (M (n )) processors with the 
same asymptotic running time on inputs of size n . 

Many matching problems are NP-complete, for example the prob
lem ACM of associativ~ommutative matching. see Benanav, Kapur 
and Narendran [4]. 

ACM £ {(F. V,s,t) IF is a set of function symbols some of which may 
be associative and commutative, V is a set of variables, s 
and t are terms and there is a matching substitution u 
such that u(s) = t }. 

Similarly defined are the problems AM of associative matching. CM of 
commutative matching. AIM of associative idempotent and ACIM of 
associative, commutative, idempotent matching. Benanav, Kapur and 
Narendran [4] show that ACM, AM and CM are all NP-complete 
problems. Kapur and Narendran [22] show that AIM and ACIM are 
NP-hard. 

Returning now to the unification problem. Kapur and Narendran 
[22] consider the complexity of unifying sets of terms in the form of 
the Set Unification Problem SUP defined as follows. 

SUP £ {(F. V,S.T) IF is a set of function symbols, V a set of variables. 
S and T sets of terms and there is a substitution u such 
that u(S) = u(T)}. 

Kapur and Narendran [22] show that SUP E NP and that 
3-CNF-SAT ~pSlJP. so that SlJP is NP-complete. 

In closing this section and also this overview we want to mention 
a result of Mannila and Ukkonen [29]. These authors relate Prolog 
execution with sequences of UNIFY -DEUNIFY instructions and these 
with sequences of UNION-FIND instructions. Consider for example 
the following Prolog program 

p(a). 
p(b). 
q(c). 
q(b). 

and the Prolog goal :- p(X), q(X). Solving this goal creates the follow
ing sequence of UNIFY -DEUNIFY instructions. 

UNIFY(X.a), UNIFY(X.c), UNIFY(X,b), DEUNIFY, 

UNIFY(X.b ), UNIFY(X,c), UNIFY(X,b ). 

The instruction UNIFY(s,t) tries to unify the terms s and t and if 
successful returns the common instance of these terms: the instruction 
DEUNIFY cancels the last successful UNIFY instruction which has 
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not yet been canceled. 

Mannila and Ukkonen show that this UNIFY -DEUNIFY problem 
is at least as difficult as the UNION-FIND problem and is therefore 
non-linear on a large class of algorithms. 

7. Conclusions 
We have given an impression of possibilities. complexities and prob
lems with respect to unification in equational theories. We have res
tricted ourselves to homogeneous algebras. In most practical applica
tions, variables are typed. The extension of the known results to many 
sorted algebras, depending on the relation between the sorts, is not 
trivial. Some results can be found in [7.38.49]. Using many sorted 
algebras also provides opportunities to reduce the complexity of 
unification algorithms. 
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A pattern is a string consisting of terminals and variables. The 
language defined by a pattern is the set of terminal strings obtained 
by substituting (uniformly) terminal strings to its variables. A pat
tern simulates another pattern when its language includes that of the 
other one. 

If q simulates p , one may intuitively think. that there must be a 
substitution that, applied to q, produces p. This hypothesis is con
sidered under different assumptions. The main result says that it is 
true only for very restricted patterns (with variables only) and only 
when erasing substitutions are considered. The relation between two 
patterns is studied also in the case that the languages they produce 
are equal. 

1. Introduction 

A pattern is a word consisting of terminal symbols and of variables. 
The language defined by a pattern is the set of strings obtained by sub
stituting consistently terminal strings to all its variables. Patterns 
were introduced in [1]. see also [3]. in the context of inductive infer
ence. We consider patterns independently of this application. In the 
study of patterns it is natural to consider the following problem PD: 
for any two patterns p and q decide whether the language of p 
includes that of q. Angulin [1] has left the decidability of PD as an 
open question. How would one attack such a question? Intuitively, 
the following hypothesis H seems reasonable and. if verified. would 
immediately give a decision method for PD : 

H: If the language of q includes the one of p. then there must be a 
substitution cf, such that tf,(q) = p. 

Unfortunately. in [1] it is shown that H is false in the case that 
one considers only nonerasing substitutions in the definition of 
language of a pattern. In this paper we study whether H holds at least 
in some restricted case. Namely. the following cases are considered: 

(i) also erasing substitutions are allowed. 

(ii) only pure patterns are considered. i.e .• patterns that contain only 
variables. 
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This gives us the four cases shown in Figure 1. Correspondingly. one 
has the four problems PD 1-PD4 and the four hypothesis H 1-H 4• 

Only H 4 is known to be false: we study the remaining three cases. 

erasin nonerasin 

Figure 1. 

The first result that we obtain is. that H 1 is true. After this we 
want to verify whether the conditions of pure patterns and erasing 
substitutions are both necessary. This is indeed the case. Relatively 
simple counterexamples suffice to show that both H 2 and H 3 are false. 

Therefore we only have a decision method for the inclusion of 
pattern languages in one of the four cases. Clearly. this does not imply 
that the other problems are undecidable. However, they are difficult 
problems: PD 4 is shown to be NP-hard in [1] and it is easy to modify 
this proof to show that the same is true for PD3• 

The paper is organized as follows. First, the necessary definitions 
are given in Section 2. In Section 3 we show that H 1 is true and in Sec
tion 4 that H 2 and H 3 are false. In Section 5 the relation between two 
patterns defining equal languages is studied. The paper is closed by a 
short conclusion in which some open problems are pointed out (Section 
6). 

2. Preliminaries 

For any set S. IS I is the number of elements of S and for any string 
s • Is I is its length. A is a finite set of terminal symbols: A = 
{a,b,c, ... }. V = {x 1,x 2.x 3 •••. } is a set of variables. A pattern p is a 
word in (AU V)*. Var(p) = {x Ix is in V and appears in p }; 
Term(p) ={ala EA and a appears in p }. A pattern is pure if it con
tains only variables. A substitution u is a function u: V-+ (A U V )*. 
A substitution u is nonerasing if. for every x in V • u (x ) :;z!: X . A sub
stitution is said to be a variable renaming if it defines a bijection from 
V to V. The language generated by a pattern p is the set L (p ) = {w I 
w EA• and w = u (p ) for some substitution CT}. The set of all termi
nal strings that can be generated from p by means of nonerasing sub
stitutions only is denoted by LN (p ). 

For a pattern p • the i -th position of p • 1 ~ i ~ Ip I, is denoted by 
<p,i >. If the symbol occurring in <p.i > is x then <p,i > is an 
occurrence of x in p. When the pattern under consideration is clear 
from the context, a position <p,i > is denoted with i only. For 
x E Var (p ), the sequence of occurrences of x in p is denoted by 
Occ(p.x) and is the sequence <i 1 ..... ih > such that 1~i 1 <i 2 < ... < 
< ih ~ Ip I and such that i 1 • ... ,ih are all and the only occurrences of x 
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inp. 

As already explained in the Introduction. see also Figure 1. we 
want to show the truth or the falsity of the following four hypothesis 
H1 toH4: 

Given any two pure patterns p and q . 

H 1: L (p )~ L (q) ==> there is a substitution er such that cr(q) = p. 

H 2: LN (p) ~ LN (q ) ==> there is a nonerasing substitution er such 
that cr(q) = p. 

The hypothesis H 3 and H 4 are obtained from H 1 and H 2 , respectively. 
by dropping the hypothesis that p and q are pure. 

The falsity of H 4 has been shown in [1] by means of the follow
ing counterexample. Let A = {O, 1}. 

p = 0x10xx1 and q=xxy. 

Similar counterexamples can be found for any finite A ; see [1]. 

It is important to remark the role of the size of the terminal 
alphabet A for the problems under consideration. On the one hand, if 
IA I = 1. then it is easy to show that H 1 to H 4 are all false. For 
instance, the following counterexample suffices for showing that H 1 

and H 2 are false: 

p = xyyx and q = xx. 

On the other hand. if IA I~ I Var (p) I+ !Term (p) I then H 1 to H 4 are 
trivially verified: substitute each variable of p with a distinct symbol 
of A that is not in Term (p ). let w be the word obtained, since 
L (p )f;. L (q) there is a substitution er such that cr(q) = w: this er 
trivially gives a substitution er' such that cr'(q) = p. Thus, when con
sidering two patterns p and q we will always assume that 
2~ IA I< IVar(p)I. 

3. The First Hypothesis Is True 

The goal of this section is to show the following theorem. 

Theorem 1. For an alphabet A containing at least two symbols, H 1 is 
true. □ 

The proof of the theorem is quite long and it is split in several lemmas. 
Throughout the rest of the section the following notation is used. 

Notation. p and q are patterns such that L (p )f;. L (q ); k = 
IVar(p)l,k' = IVar(q)l,n = Ip l.m = lq I. □ 

The idea of the proof of Theorem 1 is that of defining a substitu
tion 1r that associates to each variable of p a word that has .. nothing" 
in common with the words of the other variables. Through 7T we 
obtain an effect similar to that of having an alphabet A such that 
I A I ~ I Var (p) I: see the observations at the end of Section 1. 
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Substitution Tr. The notation introduced above is used. Fix an arbi
trary total order among the variables of p. i.e., fix a bijection 
ord: Var (p )➔ [1.k ]. For each x E Var (p ). Tr is as follows: let A = 
{a,b} and ord (x) = i, 

Tr(x) = as1as2 .. ,asLa. where L = 6mk and s1 = b(i-l)L+J, 

j E[l.L]. 
A subword abt a of Tr(x) is called a module of Tr(x ). 

In what follows ,,,, is a substitution such that Tr'(q) = Tr(p ). Such a 
substitution exists because L (p )~ L (q ). □ 

The reason for making Tr depend on L (and thus on q) is technical and 
it will become clear in Lemmas 1 and 3 below. The following is an 
important property of Tr. 

Property (*). For any x E Var (p) consider a decomposition Tr(x) = 
aw {3. where w contains at least a module of Tr(x ). There is no other 
decomposition a'w {3' of Tr(x) where a¢ a'. □ 

If i E 0cc (p,x) then with 1r( <p. i >) we will denote 1r(x ). Simi
larly, for Tr'. This notation is extended to sequences of positions as fol
lows: 1r(p,i,i + 1. ... ,i +h) denotes Tr( <p,i > ) ... Tr( <p,i +k > ). 

We define the following two relations: 

(1) A position <p,i> is simulated by the positions <q.j>, ... , 
<q,j +h > if, 
(a) Tr'(q.1, ... ,j-1) is a prefix of Tr(p,1, ... ,i-1) and, 

(b) 1r'(q. 1. ... ,j +h) contains Tr(p,1, ... ,i) as a prefix. 

With lssim(i) we denote the sequence < j, .... j +h >. 
(2) A position <q,j > simulates the positions <p,i >, ... , <p,i +h > 

when lssim (i -1) (if it exists) does not contain j , lssim (i ), ... , 
lssim (i +h) all contain j, and lssim (i +h + 1) does not. 

The sequence <i •... ,i+h > is denoted by Sim(j). 

It is useful to be able to be more precise about what simulates 
what: we want to specify also what part of a string is simulated. 

Consider two positions <p.i > and <q.j > such that the first is simu
lated by the second one. It is easy to understand that in this case 
Tr( <p,i >) and Tr'( <q.j >) must have a common substring w. Figure 
2 shows one possible situation of the simulation of <p.i > by <q.j >. 
Obviously, there are other cases. but for each the above statement 
remains true. Assume that the substring w produced by both <p.i > 
and <q.j > starts and ends in the positions h 1 and h 2 of Tr( <p,i > ). 
i.e., Tr( <p.i >)=aw {3, where la I= h 1-1 and lw I= h2-h1+1. In 
this case we say that <q.j > simulates <p,i > from h 1 to h 2• In case 
the string w contains at least one module of Tr( <p.i > ). one says that 
<q,j > is principal, for <p,i >. If this is the case, j EOcc(q,y) and 
i E 0cc (p,x) then y is said to be principal for x. 
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7T(p.1 ..... i-1) 
+--

7r'(q.1, ...• j-1) 

7T( <p.i >) 
-+------+ - - - - -

I 
w I 

I 
----+ - - - - - - -

7r'( <q.j >) 

Figure 2. 
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In what follows we will prove three lemmas that will enable us to 
prove Theorem 1. Before doing this let us describe intuitively the line 
of thought that is followed. What we want to do is the following: 

First, in Lemm.a 1. it is shown that each position <p,i > is simu
lated by at least one position <q.j > that is principal for it, (clearly, 
j E Issim (i)). 

In Lemm.a 2 it is shown that if an occurrence <q.j > of y is 
principal for an occurrence <p,i > of x. then every other occurrence 
of y must be principal for some other occurrence of x . 

Finally, in Lemma 3 we show that each position i E [1.n] of p can 
.. choose·· a position <q.j > of Issim(i) that is principal for <p.i >. 
such that the following holds: let <p,i > and <q.j > be occurrences 
of x and y. respectively; since <p,i > has chosen <q.j >, every other 
occurrence <p.i' > of x such that an occurrence <q.j' > of y is in 
Issim(i' ). chooses <q.j' >. 

Once this is shown. it is easy to construct a substitution <p such 
that <f,(q) = p (thus showing the theorem): 

(i) for all variables y of q that are never chosen in the above process. 
<f,(y) = >.. 

(ii) for every other variable z of q • consider an occurrence < q. j > of 
z and let <ih •..• ih+l > be the elements of Sim(j) that have 
chosen <q.j >; if x 0 ••••• xz are the variables occurring in 
ih •.. ,ih +l • respectively, then <f,(z) = x 0 •• .xz. 

Lemma 1. For every i E [1.n ], Issim (i ) contains at least one element j 
suchtluzt <q.j> is principal/or <p,i>. 

Proof: A variable y E Var (q) that is principal for no variable of p. is 
such that I 7r'(y) I ~ 2(kL + 1). In fact. 7r'(y ) can have the forms. 
bt aabt' or bt abt' • where t and t' are at most kL; see the definition of 
'1T. Now, since lq I= m. Issim(i) is at most <1. .... m >: in this case. 
the string that q can generate for simulating 7T( <p.i >) has length at 
most 2m (kL + 1). This cannot be sufficient because the length of 
'1T( <p.i >) is as follows: let r = ord (x ). where x is the variable in 
<p,i >. then 

l7r(x)I = (L+l)+JtJcr-l)L+j] = (L+1)+(r-1)L 2 + L(L2+t). 
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Because I 1T(x) I depends on the square of L . it is easy to prove that 
I '1T(x) I > 2m (kL + 1). Recall that L = 6mk ; it suffices to consider the 
second term only (the first may be equal to zero if r = 1): we want to 
show that. 

L (L2 +l) > 2m(kL + 1). 

This is true if L 2>4m(kL +1). now L 2>5mkL >4m(kL +1). Thus 
the lemma is true. D 

Lem.ma 2. Consider two positions <p.i > oruJ <q,j > such that the 
second simula.tes the first from h 1 to h 2 oruJ it is principal, for it. Let 
j e 0cc (q.y) = < j 1 • ..• jh > oruJ i e 0cc (p.x ); for every f e [1,h ], there 
is an element i' of Occ(p.x) such that <q,h > simula.tes it from h1 to 
h 2 oruJ is principal, for it. 

Proof: By definition of '1T. only occurrences of x produce in '1T a module 
of '1T(x ). Hence, if y is principal for x , every occurrence of y in q 
must participate to the simulation of an occurrence of x. This, 
together with Property (*) shows the lemma. D 

The following concept is very important for the sequel of the 
proof. 

Definition. Let x EVar(p) and Occ(p,x)= <i 1, .. ,ih >. A choice for 
x is a sequence Cx = < j 1 ... , jh > of positions of q such that the fol
lowing two conditions are satisfied: 

(1) jr Elssim(ir) and <q,jr > is principal for <p.ir >. 
(2) Let y be the variable in position <q.jr > and assume that 

<q.jr> simulates <p.ir> from h 1 to h2: for any other iz, 
z E [1,h]. such that < p. iz > is simulated from h 1 to h 2 by an 
occurrence <p.j > of y. it must be that jz is equal to j. □ 

The second point of the above definition may appear mysterious. Its 
goal is explained intuitively as follows. From a choice for each variable 
of p we intend to construct the substitution </> such that cf>(q ) = p • To 
this end we need that once a simulation task (e.g .. simulate <p,ir >) is 
given to one occurrence of y. (e.g., <q,jr >) that same task must be 
assigned to every other occurrence of y (Thus, <q.jz > must simulate 
<p.iz > ). Intuitively. one can require this condition because of Lemma 
2; the formal proof is given in the following lemma. 

Lem.ma 3. For each variable x E Var (p) there is a choice for x. 

Proof: Let 0cc (p.x) = < i 1 • .. ,ih > and H = I '1T(x) I. For each 
f E [1,H ], Cut (f ) is the sequence < h, .. , jh > such that for every 
r€[1,h]. <q.jr> simulates <p.ir> from h1 to h2 and h1:!::.f :!::.hz. 
For proving the lemma it suffices to show that there is at least one f 
such that for each r E [1,h ], <q.jr > is principal for <p,ir >. That 
such a Cut (f ) is a choice for x is shown as follows. 



Patterns with Comparable Languages 211 

Cut (f) satisfies trivially condition (1) of the definition of choice. 
It satisfies also condition (2) because otherwise the following would be 
true: Cut (f ) contains two elements ill and i12 of 0cc (p,x) such that, 

(i) <q.jz 1> simulates <p,iu> fromh 1 toh 2;letjz 1 E0cc(q.y), 

(ii) <q.jz2 > simulates <p,iz 2 > from h 1' to h 2' and h2 is not in 
Occ(q,y ). 

(iii) there is an occurrence <q.j > of y that simulates <p.i12 > from 
h1 to h2. 

It is easy to see that this cannot be true because f is both in [h 1.h 2] 

and in [h 1',h 2'] and hence, if (ii) and (iii) would be true at the same 
time. the f -th symbol of <p.iz2 > would be .. simulated twice". 

An f • such that Cut (f ) has the property specified above. exists 
because, otherwise. the non principal variables of q should generate 
more than H symbols and in the proof of Lemma 1 we have shown 
that this is not possible. D 

We are .finally in the condition of proving Theorem 1. For this 
proof we need the following notation. Consider a variable x E Var (p ). 
letOcc(p.x)= <i1, .. ,ih> andlet'Cx = <h,--,ih> beachoiceforit; 
let <p,i > be an occurrence of x. i.e .. i = ir for some r E [1.h ]. then 
with Cx ( <p,i >) we denote the element ir of Cx. Intuitively, 
Cx ( <p.i >) is the position in q that has been chosen for simulating 
<p,i >. 
Proof of Theorem 1: Let for x E Var (p ). Cx be a choice for x. The 
definition of the substitution <f, such that <f,(q) = p is as follows: 

Definition of <f,. For each y E Var (q) one needs .first to .fix the nota
tion (a): 

(a) Consider any occurrence < q. j > of y and let S = 
< <p.i > .... , <p,i +h > > be all the positions that have chosen 
<q.j >; formally, S is the maximal sequence of positions of p 
such that, for each r E [i,i +h ]. if x is the variable occurring in 
<p.r >. then Cx ( <p.r >) = j. 

Now, if S is empty then <f,(y) =>...otherwise. if x 0 •••• ,xh are the vari
ables of p occurring in the positions i ... . ,i + h of p , then 
q, (y ) = XO• ••• ,Xh • □ 

Notice that S consists of contiguous positions: this is the case because if 
<q.j > is chosen by <p,r > and <p.r+2> then it is the only princi
pal position of <p.r+1> and hence, it must be chosen by <p.r+l>. 

Since for de.fining <f,(y) just any occurrence of y is taken, the 
reader may wonder whether the above definition characterizes a unique 
substitution. This is the case because of the following reason (*): 

(*) If an occurrence <q.j > of y simulates an occurrence <p,i > of 
x from h 1 to h 2 , then, by Lemma 2. every other occurrence 
<q.j' > of y must simulate from h 1 to h 2 some other occurrence 
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<p,i' > of x. By point (2) of the definition of choice, if 
Cx ( <p,i >) = j. then Cx ( <p,i' >) = j'. Hence. considering j 
or j' for defining cf>(y) is precisely the same. 

It remains to show that cf>(q) = p. To this end remark that p can 
be cut into h pieces, h ~ 1, 

< 1. ... ,i (1) >. <i (1)+1. ... ,i (2)> , ... , <i(h-1)+1. .... i (h )> 

such that every position in each piece has chosen the same position of q 
(Each piece is like the sequence S in the definition of cf> above). Let jr 
be the position of q that is chosen by the r -th piece. r E [1.h ]. For 
obtaining the desired result, it suffices to observe that the definition of 
cf> and reason(*) imply the following two points: 

(1) The positions < ji ..... jh > are all and the only positions in q of 
the variables y such that cf>(y ) :¢: X. 

(2) If y is the variable in <q.j7 >. r E [1.h ]. cf>(y) is equal to the 
sequence of variables corresponding to the positions in the r -th 
piece of p. i.e., <i (r-1)+ 1. ... ,i (r )>; we assume that i (0) = 0.0 

This result gives an exponential test for the inclusion of the 
languages of two pure patterns under erasing substitutions. 

4. Hypotheses 2 and 3 Are False 

These negative results are easier to present than the first one because it 
suffices to give a counterexample for each of them. 

Counterexample for H 2• (Pure patterns and nonerasing substitu
tions) Let the terminal alphabet be A = {a,b }. 

p = xyzwkmr and q = xyzyw . 

L (q) contains all words of length at least five and that can be decom
posed into. w 1w 2w 3w 2w 4• such that all w; are non empty. For show
ing that L (q ) ;J. L (p ) observe that. if L 5 is the set of all words of 
length at least five on A , any w EL 5 can be decomposed in, 
W1W2W3W2W4, where W1 and w 4 may be empty. Since Ip I= 7, every 
word w EL (p) can be decomposed into w 1w 2w 3 , where w 2 EL 5 and w 1 

and w 3 are not empty. Hence, w EL(q ). It is evident that no noneras
ing substitution cf> exists such that cf>(q) = p. 

It is not difficult to generalize this example to a larger alphabet A. □ 

Counterexample for H 3• (Any pattern and erasing substitutions) The 
case that A = {a,b} is very simple: 

p = xaybz and q = xaby . 

Clearly, there is no erasing substitution cf> such that cf>(q) = p, but 
L (p ) = L (q ): they both contain all words in A• containing ab . This 
example is due to Codognet [2]. 

We are not able to generalize this example to larger alphabets. A 
quite different counterexample is needed if A = {a,b,c }. For simplicity 
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we write p and q using the extra symbol ¢ to denote the string abc • 

p = ¢aa ¢ba ¢ca ¢¢ab ¢bb ¢cb ¢¢yayb 

q = x¢y¢z¢w¢r¢kykw 

Let us show that L (p )S: L (q ). Intuitively. the idea is that k of q 
cannot produce both ya and yb and hence, it must be .. helped" by y 
and w. but y and w cannot be just a and b; they are at least strings of 
length 2. The last character of the string generated by y (under any 
substitution) can be a • b • or c • thus y must have the possibility of 
becoming. according to the need, aa • ba and ca • whereas w must be 
able to become ab • bb , and cb • This can be done by varying accord
ingly the values of the variables x. z. and r. More formally, consider 
any substitution CT and let the last character of CT (y ) be, for instance. 
c. Then one can define a substitution CT 1 such that CT'(q) = CT(p) as 
follows: 

. CT'(x) = ¢aa ¢ba 

CT'(y) = ca 

CT'(z) = ¢ab ¢bb 

CT'(w )= cb 

CT'(r)= A 
CT'(k) = CT(y) of which the last letter has been deleted. 

Assume now that there is a substitution </> such that <f>(q) = p. 
Any such </> must satisfy the condition that <f>(kykw) = yayb and 
hence, <f,(k) = y. <f>(y) = a. and <f,(w) = b. But, considering q, one 
sees that this is possible only if the first part of p contains ¢a¢ and 
¢b ¢. If ¢ = abc this is not possible. D 

Observe that these negative results do not imply the undecidabil
ity of the inclusion of pattern languages in the conditions of H 2 and 
H 3• However, they seem to imply that any method for deciding these 
problems will not be simple. In [1] it is proved that whether 
L (p )~ L (q) for any patterns p and q under nonerasing substitutions 
is NP-hard. It is simple to modify this proof for showing the NP
hardness of the problem also in the case that erasing substitutions are 
considered. This proof is not included here because it is a straightfor
ward modification of the one of [1]. 

5. On Pattern Equivalence 

Based on the results of the previous sections, one may say that, in gen
eral, the condition L (p ) S: L (q ) is not sufficient for showing a strict 
relationship between p and q. It is natural to wonder whether the 
condition that L (p) = L (q) would then be strong enough. 

Angulin in [1] shows the following result (a). 
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(a) For any two patterns· p and q. LN (p ) = LN (q ) if and only if p 
and q are equal modulo a variable renaming. 

The proof of this result uses the (obvious) fact that if 
LN (p) = LN (q) then Ip I = I q I. Therefore, this proof breaks down 
if erasing substitutions are considered. In that case the following 
results can be shown: 
(b) If p and q are pure patterns, then L (p) = L (q) if and only if 

there are two substitutions CT and y such that CT(p) = q and 
y(q)= p. 

(c) For any two patterns p and q and for an alphabet A containing 
at least three symbols, if L (p) = L (q ), then p and q must be as 
follows: 

p = W10!1W2 .. ,WtO!tWt+1 

q = W1/31W2 .. ,Wt /3t Wt+l 

where. for each i E [1.k +1]. w; is in A* and for each i E [1.k]. ai 

and /3i are in Var(p )+ and in Var(q )+, respectively. When two 
patterns respect the above condition they are said to have the 
same structure. 

Point (b) is an immediate consequence of the fact that H 1 is true. 
Point (c) is somehow a weaker version of (a). Point (c) can be proved. 
roughly. as follows (This proof was suggested by [2]). First, remark 
that the hypothesis that A contains more than two symbols is neces
sary: the first counterexample for H 3, where A = {a,b}. contradicts 
(c). Consider two patterns p and q such that L (p ) = L (q ). It is easy 
to see that if t (p) and t (q) denote the terminal strings obtained from 
p and q by deleting the variables, then t (p) = t (q ). Assume that p 
and q contradict (c). This means that the following situation (or the 
symmetric one) takes place: 

p = Owa 1w' .n• and q = Ilww' Il'. 

Assume that this is the left-most such situation. Let a be a symbol in 
A that is different from the last symbol of w and from the first one of 
w' . Let CT be the substitution sending every variable of p to a . There 
is no CT' such that CT'(q) = cr(p ). Assume. in fact, that such er' exists. 
Since CT sends all variables of p to a. by the fact that t (p) = t (q ). er' 
must do the same. From the assumption that .n and Il respect point 
(c), it follows that Ow and Ilw contain the same number (at least 
one) of symbols different from a: CT and er' must be such that these 
symbols occur in corresponding places of cr(p) and cr'(q ). Thus, in 
particular. lcr(.nw )I= lcr'(Ilw )I= k. Observe now that the k +1-th 
symbol of cr(p) is a. whereas the k +1-th symbol of cr'(q) is the first 
symbol of w' that is different from a by construction. Hence, 
cr'(q) ;c cr(p ). □ 
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6. Conclusions and Open Problems 

We have studied the problem whether, for two patterns p and q, the 
fact that the language of q includes the one of p implies the existence 
of a substitution er such that cr(q) = p. This is true only in the case 
that p and q are pure patterns and that erasing substitutions are con
sidered. Thus, only in this case we have an exponential method for 
deciding the inclusion of pattern languages. 

The stronger hypothesis that LN (p ) = LN (q ) implies the equal
ity (modulo renaming) of p and q, whereas. under the hypothesis that 
L (p ) = L (q ). we are able to prove only the equality of the structures 
of p and q • see point (c) in the previous section. 

Several problems must still be answered: 

(1) Can a stronger result than that of point (c) of the previous sec
tion be shown for any two patterns p and q such that 
L(p) = L(q )? 

(2) Are there methods for deciding the inclusion of two pattern 
languages when the two patterns are not pure or if one considers 
nonerasing substitutions? 

(3) In the case of erasing substitutions. is it possible to define a set of 
rules for transforming a given pattern into one of minimal length 
still defining the same language? 
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Traditionally, an attribute grammar is presented as a context-free 
grammar which is augmented with attributes and attribute evalua
tion rules. This makes attribute grammars a suitable means for the 
specification of the semantics of programming languages in the con
text of derivation trees. For the specification of semantic integrity 
constraints in the context of abstract program trees the concept of 
attribute grammars has to be re-defined. For this purpose, a language 
for the specification of context-free tree grammars is defined. This 
language is extended to an attribute tree grammar specification 
language. 

1. Introduction 

In the classical theory [7] attribute grammars form an extension of the 
context-free grammar framework in the sense that information is asso
ciated with programming language constructs by attaching attributes to 
the grammar symbols representing these constructs. Each attribute has 
a set of possible values. Attribute values are defined by attribute 
evaluation rules associated with the productions of the context-free 
grammar. 

The attributes associated with a grammar symbol are divided into 
two disjoint classes. the synthesized attributes and the inherited attri
butes. The attribute evaluation rules associated with a production 
define the synthesized attributes attached to the grammar symbol on 
the left-hand side and the inherited attributes attached to the grammar 
symbols on the right-hand side of the production. 

A non-ambiguous context-free grammar assigns a single deriva
tion tree to each sentence. The values of the synthesized attributes at a 
node of a derivation tree and the inherited attributes at its immediate 
descendents are defined by the attribute evaluation rules associated 
with the production applied at that node. The value of a synthesized 
attribute of the parent is computed from the values of the attributes at 
its children and (possibly) other attributes of the parent itself. The 
value of an inherited attribute of a child is computed from the values 
of attributes at its parent and its siblings and (possibly) other attri
butes of the child itself. 

Generally speaking, a synthesized attribute attached to a tree node 
contains information concerning the subtree at that node. This 
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attribute therefore contains information from the terminal string 
derived from the nonterminal symbol labeling that node. Inherited 
attributes are convenient for expressing the dependence of a program
ming language construct on the context in which the construct appears. 

The traditional way of thinking about attribute grammars is in 
terms of derivation trees. First. the parser generates a derivation tree 
for a given program. Next, the attribute evaluator computes the values 
of the attribute instances attached to the nodes of the derivation tree 
by executing the attribute evaluation rules associated with these attri
bute instances. 

In this research we consider attribute grammars for abstract pro
gram trees in which nonterminal symbols are no longer used and where 
operators and keywords do not appear as leaves, but rather are associ
ated with the interior node that would be the parent of those leaves in 
the derivation tree. Another reduction found in abstract program trees 
is the elimination of chain productions. This allows an abstract pro
gram tree to be viewed as a compact and simplified representation of a 
derivation tree, where each operator is represented by an interior node 
whose children represent the arguments of that operator and where all 
redundant information needed for the syntactical analysis has been 
deleted. In other words, an abstract program tree is a non-redundant 
representation of the hierarchical structure of a source program. In this 
paper we want to describe abstract program trees as a separate concept. 
not as an adaptation of context-free grammars. We also do not discuss 
the conversion of derivation trees of a context-free grammar to abstract 
program trees, nor do we discuss how context-free grammars can be 
transformed into abstract program trees as described in [10]. 

Essentially the compilation process consists of an analysis phase 
and a synthesis phase. The result of the analysis phase (i.e.. lexical 
and syntactic analysis) is a tree (possibly in a linearized form). which 
expresses the structure of the source program. Attributes can be 
attached to the nodes of the tree to carry semantic information. 
Semantic analysis (e.g.. type checking) can be expressed by attribute 
evaluation rules and semantic conditions. The aim of the synthesis 
phase is the inclusion of necessary constraint checks (e.g .. array bound 
checks) and the translation of the control structures and the data 
structures of the source program into the instructions and the storage 
locations of the target machine. Our ultimate goal is to specify these 
translations by a stepwise application of tree transformations, starting 
from the structures of the source program and ending with the struc
tures of the target machine. 

Tree transformations also form a suitable means for the 
specification of compiler optimizations. These transformations replace 
complicated and non-efficient tree structures by equivalent but simpler 
and more efficient tree structures. 
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For the specification of tree transformations. both for the purpose 
of translations and for optimizations. the classical attribute grammar 
framework has to be extended with conditional tree transformation 
rules [2,6,11]. The predicates on attribute values (carrying context 
information) may be used to enable the application of these transfor
mations. 

So. we are interested in non-redundant program trees, which can 
be used as a concept to define the information fl.ow of the associated 
program and which can also be considered as an object to be operated 
on. In this paper we restrict ourselves to the description of the struc
ture and the attribution of abstract program trees. We will deal with 
tree transformations in a future paper. 

This paper is organized as follows. Section 2 provides an intro
duction to the basic concepts of the classical attribute grammar frame
work, based on context-free grammars. A language for the specification 
of abstract program trees is given in Section 3. In Section 4 this 
language is extended to an attribute grammar specification language. 
Concluding remarks are made in Section 5. 

2. Classical Attribute G.ramrnars 
In the classical theory [7] an attribute grammar AG is based on a 
context-free grammar G which is augmented with attributes and attri
bute evaluation rules. 

The underlying grammar G is a 4-tuple (VN.VT,P,S). The finite 
sets V N of nonterminal and VT of terminal symbols form the vocabu
lary V = V N U VT. P is the set of productions and S E V N is the start 
symbol, which does not appear in the right part of any production. 
The grammar G is reduced in the sense that each nonterminal symbol 
is reachable from the start symbol and can generate a string which con
tains no nonterminal symbols. 

Each symbol X E V has a finite set A (X) of attributes, parti
tioned into two disjoint subsets I (X) and S (X) of inherited and syn
thesized attributes, respectively. 

Let P consist of r productions, numbered from 1 to r and let the 
p -th production be 

Xpo-+ XP 1 Xp2 ... XpnP 

where nP ;;l::O, XpoE VN and Xpk EV for 1~k ~nP. 

Production p is said to have the attribute occurrence (a.p,k) if 
a EA (Xpk ). The set of attribute occurrences of production p will be 
denoted by AO (p ). This set can be partitioned into two disjoint sets 
of defined occurrences and used occurrences denoted by DO (p ) and 
UO (p ). respectively. 
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These subsets are defined as 

DO(p) = {(s.p.0)ls ES(Xpo)} 
U {(i.p,k)li EI(Xpk)A1~k ~np} 

UO(p) = AO(p)-DO(p) 
= {(i.p,0)li E/(Xpo)} 
U {(s,p,k) Is E S(Xpk) A 1 ~k ~nP} 

Associated with each production p is a set of attribute evaluation 
rules which specify how to compute the values of the attribute 
occurrences in DO (p ). The evaluation rule defining attribute 
occurrence (a,p,k) has the form 

(a,p,k) := / ((a 1,p,k 1),(a 2,P,k2), · · · ,(am ,p,km )) 

where (a,p,k )E DO (p ). f is a total function and (aJ .p.ki )E AO (p) 
for 1~j ~m. 

An attribute grammar is said to be in normal form if the extra 
condition (aJ ,p,kJ )E UO (p) holds for 1 ~ j ~m. It is easy to 
transform every attribute evaluation rule (by a sequence of transfor
mations) such that only attribute occurrences in UO (p ) appear as 
arguments of / . 

For each sentence of G a derivation tree exists. The nodes of the 
tree are labeled with symbols from V. At each inner node a produc
tion p :XP O ➔ XP 1 XP 2 · · · XpnP is applied, such that the node is labeled 
with XP O and its sons with XP 1.XP 2• • • • ,XpnP. 

Given a derivation tree, instances of attributes are attached to the 
nodes in the following way: if node N is labeled with grammar symbol 
X. then for each attribute a EA (X) an instance of a is attached to 
node N. An attribute instance a of node N will be denoted by 
a of N. 

Let No be a node, p the production at N O and N 1• N 2, · · · ,Nn 
p 

its sons from left to right, respectively. An attribute evaluation 
instruction 

a of Nk := f (a1 of Nk 1,a2 of Nk 2, ···,am of Nk,,.) 

is associated with attribute instance a of Nk if the attribute evaluation 
rule 

(a,p,k) := f ((a 1,p,k 1), (a 2,p.k 2), · · · • (am ,p,km )) 

is associated with production p. 

The task of an attribute evaluator is to compute the values of all 
attribute instances attached to the derivation tree by executing their 
associated evaluation instructions. In general the order of evaluation is 
unimportant, with the only restriction that an attribute evaluation 
instruction cannot be executed before the values of its arguments are 
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available. Initially the values of all attribute instances attached to the 
derivation tree are undefined, with the exception of the inherited attri
bute instances attached to the root (containing information concerning 
the environment of the program) and the synthesized attribute 
instances attached to the leaves (determined by the parser). 

At each step we choose an attribute instance whose value can be 
computed. The evaluation process continues until all attribute 
instances in the derivation tree are defined or until none of the remain
ing attribute instances can be evaluated. 

An attribute grammar is circular if a derivation tree exists for 
which it is not possible to evaluate all attribute instances. 

Several methods have been developed to evaluate the semantic 
attributes within the derivation tree of a program. An overview is 
given in [4]. 

3. Abstract Program Trees 

In this section we present a mechanism to define abstract program 
trees. One could think of defining an abstract program tree by a 
transformation applied to a derivation tree. This is, however, not a 
suitable approach as we want the definition mechanism of abstract pro
gram trees to be a framework that can easily be extended to an attri
bute grammar-like definition. Moreover, we view an abstract program 
tree as an intermediate structure subject to further transformations. 
The concept of a derivation tree is therefore not a good starting point. 
Instead, we shall use a completely different model. namely graphs. 
Starting with graphs we will make a number of restrictions which will 
finally bring us to a grammar for the specification of abstract program 
trees. 

3.1. Starting with Graphs 
First of all we restrict our graphs to be directed and we assume every 
graph includes one node from which all other nodes can be reached 
when following the arcs. We will call this distinguished node the root 
node, because for trees it can be considered as the node on which the 
whole tree stands (or from which it hangs). 

Secondly, we will color the nodes and the arcs (using graph ter
minology) and put some restrictions on the coloring. In our terminol
ogy we would refer to typing and labeling. The idea is to associate 
with every node a type and to define node types by a type rule that 
determines the number of outgoing arcs, their labeling (or distinguish
ing colors) and the permitted node types pointed to by these arcs. 

We will now have a closer look at the type system that we are 
going to use. For each node type a (possibly empty) set of pairs could 

--be given determining the number of arcs. Each pair consists of a 



222 H. Alblas & F.J. Faase 

unique label and a non-empty set of allowed node types. 
This leads to 

RULE(rwde_type) 
= { ( label1.frwde_Jype1,1, · · · .rwde_type1,m 1}) 

. 
• ( loheln • {rwde_typen, 1• • • · ,rwde_typen,m,,} ) 
} 

where n ;;i:o, m; >0 for 1 ~i ~n. and label; ¢.label) for 1 ~i <j ~n. 

Now a family of graphs can be defined by a 3-tuple (N,L.R ). 
where N is the set of node types. L is the set of labels and R is the set 
of type rules with a single type rule for every node type. Each 
member of this family is a typed graph in which all the nodes have the 
right number of arcs with the right labels, and the right node types at 
the end of the arcs. 

3.2. Towards an Abstract Program Tree G ... arnrnar 
Having constructed a language for the definition of graphs one could 
think of an extension of the classical attribute grammar framework 
from trees to graphs. However, such an extension introduces complica
tions which go far beyond the scope of this paper. For this reason in 
this paper we restrict ourselves to trees only. 

The above-mentioned type system applied to trees defines for 
every node type a fixed number of sons. The type of the father node 
puts some restrictions on the types of the son nodes. Every tree node 
can be reached from the root node through a unique path. The root 
node is considered as the highest node from which all other nodes hang. 

We require a strict ordering of the sons of a node. which is the 
same for all the nodes of the same type. Such an ordering is needed for 
the definition of certain tree traversal strategies (e.g .. especially for the 
pass-oriented strategies [1]). 

In Section 3.1 the. node types allowed at a certain arc have been 
written as a set. In practical applications, these sets are often similar. 
We therefore introduce an abbreviation mechanism called classes for 
these sets. A class will be defined as a subset of the node types. Hav
ing defined classes, trees can be defined by so-called tree rules, which 
are similar to the node type definitions in the previous section, but 
differ in that the labels have a fixed order, and the sets are replaced by 
a class or a node type. The labels will be called partnames, because 
they indicate a part of the tree under a node. 

Tree rules are of the form 

a_rwde_type 
=> partname 1 : element 1 

partnamen : elementn 
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where n :=!= O. elementi E node_types U classes for 1,, ,n and 
partnamei-;,t: partnanut J for 1,, < j , n . 

In our formalism we shall also expand the class definitions. In 
most applications it is possible to divide the members of a certain class 
into groups that have the same properties. i.e .• they have tree rules that 
are similar if we look at the allowed node types at their parts. This 
observation leads to two extensions of the previous definition. 

We first introduce a hierarchical class definition by allowing 
classes to have other classes as their members. A class definition is of 
the form 

a class = {element 1 · · · element } - • • n 

where n >O and elementi E node_Jypes U classes for 1,, ,n. 
The introduction of hierarchical class definitions requires some restric
tions. We exclude recursive class definitions. as for example 

class_A = {class_B.class_A.node_type_N} 
class_B = {dass_A.node_Jype_M} 

We now introduce the concept of the closure over the class definitions. 
We shall use the function class (C ) to denote the set of members of 
class C. Likewise we shall use the function clos_class(C ). for the clo
sure over the member-of-class relation that will return all the 
members of class (C) together with the clos_class of all the classes in 
class(C). 

Although recursive class definitions are not allowed. there 
remains a kind of ambiguity. as illustrated by the example 

class_A = {class_B.class_C} 
cl,a,ss_B = {node_Jype_N.node_type...J,f} 
class_C = {node_Jype_N.node_type_K} 

In this example node_type_N is a member of clos_class(class_A ). but 
in the case of an instance of class_A in an abstract program tree. 
where node_type_N is selected. it is not clear whether node_type_N 
is a member of class_B or class_C. The question whether we will 
allow these ambiguous class definitions. is further dealt with in Section 
4.1. 

Secondly. we make the extension that tree rules may also be asso
ciated with a class. This means that in addition to a node_Jype. we 
will also allow a class as the left-hand side of a tree rule. The tree 
rule associated with the class C holds also for all the elements in 
clos_class (C ). 

In the previous section we decided to associate exactly one tree 
rule with each node type. With respect to classes this rule requires 
that once a tree rule has been written for a class. no tree rule may be 
written for a member (or a member of a member, etc) of the class. 
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Also, if an element is a member of more than one class, it is not possi
ble that more than one of these classes has an associated tree rule. 

3.3. Form.al Definition of Abstract Program Trees 

In this section the concept of an Abstract Program Tree Grammar 
(APTG) will be defined formally. An APTG can be defined as a 5-
tuple (VN, Ve, TR. CD, R). The finite set VN of node types and Ve of 
classes form the set of elements V = V N U Ve. TR is the set of tree 
rules and CD is the set of class definitions. R is the root element 
which may be either a class or a node type. 

The members of TR will be of the form 

Vo ==;> P1: V1, · · · ,Pn : Vn . 

where n ~O. Vi EV for O~i ~n. Pi is a partname and P;¢:P1 for 
1~i<j~n. 

The members of CD will be of the form 

C = {V 1, · • ·, Vn} 

where CE Ve, n >O and V; EV for 1~i ~n. For each CE Ve there is 
exactly one member in CD which has C as its left-hand side. All the 
members of CD together should not include recursive class definitions. 
TR and CD combined should not define more than one tree rule for 
each node type of the grammar. 

We will define the function class (e : V) in the context of CD as 

class(e :V) 
= if eEVN 

then fiJ 

else {V 1, • · • , Vn } 
where 'e= {V 1, · · ·, Vn }'ECD 

fl. 

We will now define the set of abstract program trees defined by 
an APTG. We do not talk about derivations here, thus this cannot be 
viewed as an extension from string to tree grammars. Before we can do 
this we have to choose a representation for trees. We use the represen
tation where every subtree is represented by the node type of its root, 
followed by the sequence of representations of its subtrees (in the same 
order as they are hanging in the tree), enclosed in the brackets .. <" 
and ·· > ". The brackets may be omitted if a node type has no sons. 
Each node type name with its associated brackets represents one 
instance of a node. with that node type, and the links (or arcs) to its 
subtrees. Because we have only one tree rule associated with every 
node type. this representation will be complete. The following example 
depicts the tree representing the arithmetic expression 3*( 4+5) 

mul_op < num . plus_op < num , num > > 



Attributed Abstract Program Trees 225 

In this representation the values of the numbers are not represented. 

We first define a function Tree that returns all subtrees for acer
tain root element as 

Tree(VN. Ve. TR. CD. s EV) 
= { N < t 1 • • · • • t" > 

I N e VN n clos_class_and (s) 
A 'Vo===>P1:V1. · · ·• Pn:Vn'ETR 
A N e clos_class_and (V 0) 

A VO~i ~n 
(ti E Tree(VN, Ve.TR.CD. Vi)) 

} 
where clos_class_and (s e V) 

= {s } U I I clos class and (e ) 
eE~.r(.r) - -

Using this definition we can define the function Tree that for a given 
APTG G yields the set of all trees that are defined by it as 

Tree (G :API'G) = Tree (V N (G ). V c (G ).TR (G ).CD (G ).R (G )) . 

Above we have essentially presented a language to describe APT's. and 
defined the set of APT's that are defined by a given APTG. This 
language shows certain similarities with the Interface Description 
Language IDL [8.9]. A more restricted formalism for the description of 
abstract program trees is presented in [3 ]. 

4. Attributed Abstract Program Trees 

For the specification of the information :ft.ow in abstract program trees 
we will augment our abstract program tree grammars with attributes 
and attribute evaluation rules in a similar way as classical attribute 
grammars have evolved from context-free g,-ammars. However. for 
abstract program tree grammars this extension turns out to be far more 
complex. 

4.1. How to Add Attributes 
Abstract program trees are assumed to be decorated with attributes in 
the same way as attributes are attached to the nodes of a derivation 
tree in a classical attribute grammar implementation. As for classical 
attribute grammars. the attribute instances attached to an abstract pro
gram tree can be partitioned into inherited and synthesized attributes. 
according to the way they carry and receive their information to and 
from other attribute instances. The simplest way of defining the attri
butes of abstract program trees is to associate with each node type 
Ee VN a finite set A (E) of attributes. partitioned into two disjoint 
subsets I (E) and S (E) of inherited and synthesized attributes. respec
tively. 
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Given a tree rule, the problem occurs of how to identify the attri
bute occurrences of this tree rule, as both the left-hand side and the 
right-hand side may contain classes which do not have attributes. In 
the rest of this paper we shall identify the elements of a tree rule by 
their partnames, and introduce # as the partname for the left-hand 
side element. 

We distinguish two ways to identify an attribute occurrence of a 
tree rule VO ===::;> P 1:V 1• · · · ,Pn :Vn. The first way is to write it as 
attr of Pi .N. where O~i ~n, P 0 = #. attr EA (N) and 
NE VN U clos_class_and (Vi). The second way is to write it as a 
sequence of elements expressing the hierarchical structure of classes 
containing classes, in the following way: attr of Pi. E 1. · · ·.Em, 
where attrEA(Em), EmEVN, m~1. E1=V;, E1EVc and 
EJ+l E class(E1 ) for 1~j <m. 

At first sight the second method seems to be unnecessarily com
plicated or appears to use redundant information. This is true if we 
require the inclusion of node types in classes to be non-ambiguous; cf. 
3.2. If classes are allowed to be ambiguous we can ask the question 
whether attributes at node types. ambiguously included in a class, have 
to be considered as different. In the latter case, we need to distinguish 
such attributes, and the only way to do this is to use the second 
method. We shall use the first method in the rest of this paper. and 
leave open the question of how to handle ambiguous classes. 

The set of attribute occurrences associated with the tree rule of 
element E will be denoted by AO (E). This set can be partitioned into 
two disjoint sets of defined occurrences and used occurrences, denoted 
by DO(E) and UO(E). respectively. 

These subsets are defined as 

DO(E) = { s of P0.N I s ES(N)} 
U { i of P; .N I i E / (N ) A 1 ~ k ~ n } 

UO(E) = AO(E)-DO(E) 
= { i of P 0.N I i E / (N ) } 
U { s of P; .N I s ES (N) A 1 ~ k ~ n } . 

We have defined above how to address attribute instances in the 
tree by attribute occurrences. and we have defined the sets of attribute 
occurrences associated with a tree rule. The set of attribute instances 
attached to a concrete node in a tree and its sons, is generally only a 
subset of the attribute occurrences associated with the tree rule applied 
at this node. This is because attributes are attached to node types, and 
for a given tree rule, classes can be involved in both sides of the rule. 
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4.2. The Attribute Evaluation :Rules 
In the same way as for attribute grammars we associate with each tree 
rule a set of attribute evaluation rules which specify how to compute. 
the values of the attribu.te occurrences in DO(E). where E is the ele
ment in the left part of the tree rule. Only the evaluation rules for 
those attributes that are attached to a certain node in a tree are applied. 
But for the right-hand side of the rule some problems may arise. We 
cannot know whether an attribute occurrence is available at a certain 
position in the tree. Take for example the tree rule 

plus ==;> left : expression, 
right : expression. 

together with the class rule 

expression = {constant.plus} 

and an attribute value EA (constant ). At a node typed plus we cannot 
with certainty refer to value of left.constant because its identity may 
not be of type constant but of type plus . 

To solve this problem we need a mechanism to find out which 
node type is applied at a position in the tree. where a tree rule has a 
class. We do this by introducing case-expressions on the partnames. 
Ref erring to the above example, we could for example write 

case left of 
constant : value of left .constant ; 
plus: O 

esac 

to express that we want the value of attribute value if the actual node 
at left is of type constant, and otherwise the value 0. In the case of 
hierarchical class definitions we need nested case-expressions. We shall 
now define the expressions which form the right-hand side of the attri
bute evaluation rules. We distinguish three different constructs. 
Firstly an attribute occurrence, secondly a general function format in 
which the arguments are again expressions, and thirdly the case
expression. We could describe the syntax using 

expr ::= attr of partname 
I f (expr 1, • • • ,expr n) 

I case partname of 
E1: expr1; 

Em : exprm 
esac 

We need a number of semantic conditions. To every subexpression a 
context can be assigned that specifies the binding of elements to part
names. In the context of the whole expression the binding is specified 
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by the tree rule. For an attribute occurrence attr of partname , 
attr of partname.N has to be a member of UO (E ). where N is the 
node type that is bound to partname partname , and E the element in 
the left part of the tree rule. The context of the arguments of a func
tion will be the same as the context of the whole function-expression. 
For a case expression the following restrictions should be imposed. If 
we assume C to be the element bound to partname partname • then 
C EVc, class(C)= {E1, ···,Em} and Ei ¢ EJ for l~i <j ~m. The 
context of each subexpression expri has to be such that Ei will be 
bound to partname , and the rest of the context will be the same as the 
context of the whole case-expression. 

We can now define the attribute evaluation rules to be of the 
form 

attr of partname.N = expr 

where attr of partname.N E DO (E) and expr is a correct expression as 
described above. 

We could also introduce for reasons of orthogonality a case 
mechanism for the left-hand side of the evaluation rules. With these 
case constructions it is possible to combine several rules together that 
have the same partname for the left-hand side. Furthermore, if we 
make the extension that we can combine cases with the same expression 
into one case. then this can lead to a reduction on the size of the rules. 
However, these extensions are merely syntactic sugar. 

4.3. Attributes Attached to Classes 
In the foregoing discussion we attached attributes to the node types of 
the grammar only. In practical applications it often occurs that the 
same attributes are associated with all the members of a class. This 
leads to case-expressions which have the same expression for all the 
cases. To solve this problem, we allow an attribute to be associated 
with a class if it is associated with all the members of that class. Of 
course, this rule applies recursively over the hierarchy of the class 
definitions. This has implications to the definition of AO (E), UO (E) 
and DO(E). We can now write attr of partname.E', where E' EV 
instead of E' E V N. We can also weaken the semantic restriction on the 
attribute occurrences in the expression on the right-hand side of an 
evaluation rule. For the attribute occurrence attr of partname, 
attr of partname.E' has to be a member of UO(E) where the element 
bound to the partname partname is a member of clos_class_and (E' ). 

4.4. How to Evaluate Attributes 
Just as with traditional attribute grammars we have to define how the 
attributes are evaluated for a given tree. For each tree t E Tree (G ). 
instances of attributes are attached to the nodes in the following way: 
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if a node n is of node type N. then for each attribute a e A (E) where 
N e clos_class (E ). an instance of a is attached to node n • An attri
bute instance a of node n will be denoted by a of n . 

Let n O be a node with node type N O and let n 1,n 2, • • • ,nm be its 
sons with node types N 1.N 2• • • • .Nm respectively. An attribute 
evaluation instruction 

a of n1c := / (a 1 of n1c 1.a 2 of n1c 2• • • • ,Clm of n1c1) 

is associated with the instances of a of n1c • which is extracted from the 
evaluation rule of a of P1c ,N1c. where a; of n1c1 represent the instances 
that are used. Because we now know which node types are applied at 
the different partnames with the tree rule of node type N 0• we can 
replace every case P; of · · · E : expr · · · esac in the evaluation rule of 
a of P1c .N1c by expr where N 1 Eclos_class(E). Thus the function/ 
representing the applied evaluation rule. depends only on the attribute 
values attached to the nodes. 

The task of an attribute evaluator is to compute the values of all 
attribute instances attached to the nodes of a tree by executing their 
associated evaluation instructions. in the same manner as for tradi
tional attribute grammars. 

S. Conclusions 
In this paper we have demonstrated how to describe abstract program 
trees with a tree grammar and we have shown that it is possible to add 
attributes to the definition of that grammar. 

A more detailed description of this approach can be found in [5]. 
A similar solution is presented in [9]. The attribution of abstract pro
gram trees is also discussed in [6] and [11]. 

In our research project on compiler-compilers we have imple
mented an attribute evaluator generator that given an APTG generates 
a PASCAL program to evaluate the attributes in any APT of that 
grammar. In this work we encountered a number of problems in pro
ducing efficient code. These implementation problems involved making 
non-trivial choices in the storage of the attributes associated with the 
classes in a tree. This work will be reported in a future paper. 

Our current research includes the description of transformations 
of abstract program trees for the purpose of program optimization. and 
the generation of programs that can perform these transformations 
while keeping attribute values consistent. It should also be possible to 
generate transformations from one grammar to another. for example in 
the code generation phase of a compiler. 

Acknowledgement. We are grateful to Albert Nymeyer who helped in 
the preparation of this paper. 



230 H. Alblas & F.J. Faase 

:References 

1. H. Alblas: A characterization of attribute evaluation in passes. 
Acta Inform. 16 (1981) 427-464. 

2. H. Alblas: Incremental simple multi-pass attribute evaluation. 
Proc. NGI-SION Symposium 4 (1986) 319-342. 

3. F.L. DeRemer & R. Jullig: Tree-affix dendrogrammars for 
languages and compilers. in: Semantics-directed compiler genera
tion. Leet. Notes Comp. Sci. 94 (1980) 300-319. Springer-Verlag. 
Berlin - Heidelberg - New York. 

4. J. Engelfriet: Attribute GTarnrnars: Attribute evaluation methods. 
in: B. Lorho (Ed.): Met'lwds and Tools for CompUer Construction, 
Cambridge University Press. (1984) 103-138. 

5. F.J. Faase: Een attribuut evaluator generator. Masters thesis. Dept. 
of Computer Science. University of Twente. Enschede. The Neth
erlands. (1986). 

6. I. Glasner. U. Moncke & R. Wilhelm: OPTRAN. a language for the 
specification of program transformations, Informank-Fachberi,chte 
34, (1980) 125-142. Springer-Verlag, Berlin - Heidelberg - New 
York. 

7. D.E. Knuth: Semantics of context-free languages. Math. Systems 
Theory 2 (1968) 127-145, Correction in: Math. System Theory S 
(1971) 95-96. 

8. J.R. Nestor. W.A. Wulf & D.A. Lamb: IDL-Interface Description 
Language. Technical Report. Dept. of Computer Science. Carnegie 
Mellon University (1981). 

9. J.R. Nestor. B. Mishra, W.L. Scherlis & W.A. Wulf: Extensions to 
attribute grammars, Technical Report TL 83-36, Tartan Labora
tories Inc .• Pittsburgh (1983). 

10. H: van Thienen: Automatic Generation of Abstract Grammars, 
Memorandum INF-87-19, Dept. of Computer Science. University 
of Twente. Enschede. The Netherlands. (1987). 

11. R. Wilhelm: Computation and use of data fl.ow information in 
optimizing compilers, Acta Inform. 12 (1979) 209-225. 



Program Generation 
through 

Symbolic Procesm.ng 

J.A.van Hulzen 

Departmsnt of Computer Science, University of Twente 
P.O. Box 217, 7500 AE Enschede, The Netherlands 

Computer algebra systems can be useful when attempting to automa
tize mathematics. One can use these facilities to assist in the con
struction of programs for numerical purposes, i.e., to assist in making 
the problem dependent parts of the software needed to solve a prob
lem numerically. We discuss aspects of the symbolic-numeric inter
face required to accomplish this. Special attention is given to pro
gram generation aspects and to code optimization. 

1. Introduction 
Powerful computing resources are available today on a personal basis 
and for limited costs. It is therefore predictable that the use of per
sonal computers to perform scientifi.c computations will considerably 
increase. This in turn will enlarge the interest in a further and better 
integration of various mathematical software tools. such as computer 
algebra features and numeric and graphic facilities. It is therefore also 
expectable that computer algebra will slowly shift from a seemingly 
exotic and expensive hobby to an essential toolkit in problem solving. 
assuming adequate symbolic-numeric and symbolic-graphic interfaces 
are created. Computer algebra systems require dynamic development 
and dynamic storage of the mathematical expressions they allow to 
elaborate. But a language like FORTRAN. frequently employed to 
solve problems numerically. is used in a compile. load and execute 
fashion. The solution strategy is often based on the use of library sub
routines in a problem defined context. A computer algebra system can 
be used for the construction of the mathematical expressions. which 
together define a specifi.c problem and how to utilize the library facili
ties for its solution. Hence a symbolic-numeric interface is needed to 
transport information from one world to another. from a symbolic 
processing environment to a numeric scene. This. of course. must be 
worth the effort. i.e .• the information to be transported must be exten
sive. In fact so extensive. that producing it by hand is not only error 
prone and impractical. but almost impossible. The symbolic-numeric 
interface will therefore ideally cover possibilities for program construc
tion. code optimization and (a priori) error analysis (features). We dis
cuss some of the aspects of such an interface. which are needed for 
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program generation. The · type of generation we are interested in con
centrates on •· easy" construction of efficient and reliable programs. But 
such a discussion needs as a prerequisite some insight in the overall 
functioning of a computer algebra system. We hope to provide this 
knowledge in Section 2. using REDUCE to illustrate our assertions. 
Relevant aspects of and approaches to a symbolic-numeric interface are 
then presented in Section 3. Section 4 is dedicated to program genera
tion. We mention some ideas about code optimization, intended for the 
production of more reliable and more efficient programs in Section 5. 
before some conclusions are given. Our contributions to the develop
ment of a symbolic-numeric interface are. in fact. realized as extensions 
of REDUCE. This is an additional reason to pay attention to REDUCE. 

2. Computer Algebra 
The di1ferentiation programs of Kahrimanian [35] and Nolan [44]. 
presented in 1953, are often considered as the first attempts to employ 
a digital computer to perform formal mathematical operations. We 
now know a rich diversity of computer algebra systems [63]. Some of 
these systems are frequently and routinely used to assist in solving 
non-trivial problems in science and engineering [2.13.48]. Well known 
are MACSYMA [48]. MAPLE [16]. muMATH [53,58]. REDUCE [21) 
and SCRATCHPAD [34]. This list is certainly not exhaustive. We 
only mentioned some of the intended general purpose systems, which 
are either widely used, like REDUCE. or have a noteworthy design. like 
SCRA TCHP AD. Introductory surveys of computer algebra are given in 
[47,70). Recent summaries of the state of the art can be found in 
[11.15.19]. The mathematical capabilities of the better systems of 
today are of course strongly correlated to the early successes of com
puter algebra in such areas as integration. celestial mechanics, general 
relativity and quantum electro dynamics. These applications tended to 
shape the classes of mathematical expressions. to be formulated and 
manipulated in the various systems. Polynomial and rational function 
algebra was considered as a basic requirement. All of the well-known 
elementary transcendental functions. naturally entering in the descrip
tion of our (approximate) models of physical reality. were and are con
sidered as intriguing objects. A classification of computer algebra sys
tems can be based on the class of mathematical expressions they allow 
to operate on. The impact of such a system is largely related to the 
class of transformations, which it allows to perform on its expressions. 
either automatically or via user control. Examples of such transf orma
tions are di1f erentiation, integration and substitution. Portability. 
maintenance and ergonomic aspects. such as ease of interactive use. 
comprehensibility of output and performance. are additional criteria 
for judging such a system. 

The mathematical criteria are strongly related to the quality of 
the algebraic simplification algorithms implemented in the system. 
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Simplification was once qualified as the most pervasive process in alge
braic manipulation [ 42]. Much of the controversy around it is due to 
di1ferences between the desires of a user and a designer. because the 
notion of simplicity is not context-free. Simplification has two aspects. 
An important issue is to be able to obtain an equivalent but simpler 
representation of a mathematical object. either internally or externally. 
Another aspect deals with the question how to compute a unique 
representation for equivalent objects. Finding equivalent but simpler 
objects requires an eft'ective procedure S : T ➔ T. where T is a class of 
mathematical objects. such that for all t in T holds that S (t ) ._ t and 
S (t ) , t • if ._ is an equivalence relation on T and if .. , .. connotes 
.. simplicity". Obtaining a unique representation requires. in addition. 
that for all s.t in T holds s ._ t =;. S(s) = S(t ). Hence S is meant 
to single out a unique representative for each equivalence class. S (t ) is 
therefore called the canonical form oft. However. it is proven that a 
canonical simplifier can not always be found for an equivalence rela
tion on a given set of (mathematical) objects [12.14]. Therefore - in 
practice - weaker notions are employed. such as zero-equivalence and 
regular simplification. Zero-equivalence can be defined when a given 
set of expressions contains a zero-element 0. We then call S : T ... T a 
zero-equivalence (or normal) simplifier if for - on T holds that for 
all t in T: S(t) ._ t and t ._ 0 =;. S(t) = S(O). Regular simplifica
tion is used in the context of expressions involving transcendental 
functions. It guarantees that transcendentals occurring in an expres
sion are algebraically independent. a requirement which is for instance 
needed in the design of symbolic integration facilities. based on the 
Risch-Norman algorithm (45.46]. Simplification can be used as a ( .. pol
itical") instrument to produce a classification of computer algebra sys
tems. as once done by Moses (42]: 

Radical systems can handle a single well defined class of expres
sions (polynomials. rational functions. for instance). by using a 
canonical simplifier to get all expressions into their internal 
canonical form. This implies that the task of the manipulating 
algorithms is well defined. But it can lead to inefficiencies. On 
input a user can present an expression as a string over a certain 
alphabet in any desired. syntactically correct form. This string is 
just one possible external representation of one internally unique 
object. being the representative of a whole equivalence class. To 
obtain such a unique object we need a set of rules. defining term 
ordering via degree ordering or - alternatively - ordering of the 
(irreducible) factors of an expression. in combination with some 
lexicographical ordering of the variable-symbols. occurring in the 
alphabet. This can imply that the output. being a refiection of the 
internal ordering. can surprise a user. 

New Left systems arose in response to some of the difficulties 
with radical a systems. such as caused by automatic expansion 
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(think of (x +y )1000) or factorization (for instance x 1000-y 1000). 

Expansion is brought under user control. Such systems usually 
can handle a wide variety of expressions with greater ease by 
using labels for non-rational (sub)expressions. REDUCE is such a 
system. 

Liberal systems give more freedom to a user and are therefore in 
general slower than new left systems. 

Catholic systems, finally, can use more · than one internal 
representation and know different approaches to simplification. 
They tend to be large. A well-known example is MACSYMA. 

Most computer algebra systems are interactive. The system reac-
tion, an output expression, is of course just one of many possible visual 
representations of an internally stored expression. Other striking 
aspects of the use of such a system are time and space requirements. 
Intermediate expression swell is a well-known phenomenon. It can be 
caused by temporary fill-in. Factorization for instance requires expan
sion. Differentiation is another example of possible intermediate 
expression explosion. Since the purpose of computing can be qualified 
as an attempt to increase insight, it is obvious that we are interested in 
obtaining the most simple form of an expression. This is often also the 
shortest representation of an expression. Hearn. who designed and 
implemented most of REDUCE. has been studying these problems since 
he started making this system. He recently [29,30] gave a nice 
classification of simplification approaches. when considered as expres
sion structuring activities: 

Structure preserving techniques are concerned with maintaining 
structure in an expression as long as possible in a given computa
tion. 

Structure determining techniques cover attempts to induce struc
ture on otherwise unstructured expressions. 

Structure reducing techniques are those which can be employed 
to reduce an expression using a set of side relations. 

Structure displaying techniques allow to present the output in a 
form that makes its structure more apparent to the user. 

Structure preserving techniques are based on the reasonable 
presumption that the initial formulation of most scientific problems 
has a natural structure. Most simplifiers are based on this structure 
preservation philosophy. For instance taking an expression like 

(x +1)2 - 2•x 

we immediate see that it has the simpler form 

x 2 + 1. 

We want our algebra system to produce this result as well. Input 
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expansion easily allows to get this result, if we collect terms of equal 
degree and employ ordering considerations. However, a form like 

(x + 1)100 + 1 

can better not be expanded at all. Brown [7] was the first who 
observed that more flexibility was needed, against the price of drop
ping a canonical representation. He proposed to guarantee a normal 
form by representing a polynomial as a product of expanded factors in 
the form: 

NI 

IT( L Un1Xn1t 1 

i n1=0 

Simplification is straightforward. When multiplying polynomials, 
given in such a form, one simply maintains the existing factor struc
ture. For addition one starts collecting equal factors, before adding the 
expanded remaining portions to produce a new factor. Hearn imple
mented similar facilities in REDUCE. An implication is the need to 
allow two internal forms. i.e .• an expanded as well as a factored form. 
The user operates by default with expanded forms, thus using a canon
ical simplifier. He can employ a factored form on request. implying 
that the non-expanded form construction is based on normal 
simplification. But this does not always result in a factored form. 
Internally a comparison is always made between the two alternatives. 
The shortest is stored. But how? In REDUCE a recursive polynomial 
definition is used [27]. The system is implemented using Standard LISP 
[41], to guarantee a degree of portability. Thus the internal representa
tion is always in the form of lists. The recursive definition implies 
that a polynomial is stored as a pair consisting of a leading term and a 
reductum. formed by the remaining terms of the polynomial. ordered 
in some system dependent way, with (of course) the possibility of user 
influence. A leading term is considered to be a pair again. This time 
formed by a leading coefficient and a leading power. The coefficient can 
again be a polynomial. The leading power also consists of a pair. now 
formed by a main variable and its leading degree. The leaves of this 
binary tree are either integer coefficients, non-zero integral powers or 
variables, of which the ordering can be determined either via the object 
list, or by user defined alternatives. To resolve the problem of 
undesirable expansions, like for 

(x + 1)100 + 1 • 

Hearn generalized the variable-concept [28]. In stead of the notion 
variable REDUCE utilizes the kernel-concept. A kernel can either be a 
variable in the traditional sense or a polynomial. So in the above given 
example (x + 1) acts like a variable and expansion can thus be avoided. 
Once the parser knows of transcendental functions, like sine and 
cosine, lists of the form (sine argument), for instance, can also be used 
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as a kernel. And again the argument can be a recursively defined poly
nomial. The REDUCE simplifier assumes all input to be the quotient of 
two polynomials (again a pair). When the input is really a polynomial 
the denominator-part of this so called Standard Quotient is simply 1. 
In summary: 

<Standard Quotient> ··- <Numerator> I <Denominator> .. -
<Numerator> ::== <form> 
<Denominator> ··- <polynomial> .. -
<form> ··- I <polynomial> .. -
<polynomial> ··- <integer> I .. -

<Leading Term>+ <Reductum> 
<Reductum> ··- <form> .. -
<Leading Term> ::== <Leading Power>* 

<Leading Coefficient> 
<Leading Coefficient> ··- <polynomial> .. -
<Leading Power> ··- <Kernel> t <Leading Degree> .. -
<Leading Degree> ··- < nonzero positive integer> .. -
<Kernel> ··- <variable> I <polynomial> I .. -

<operator> ( <list of operands> ) 

In addition it ought to be mentioned that the rich output repertoire of 
REDUCE can assist a user in influencing the visual version of the inter
nal representation of the result of a computation, always being the 
transformation of an expression. Worth mentioning are tools to change 
the variable precedence or to display a partly factored form. Another 
facility which allows to modify output is formed by certain structure 
displaying commands, as mentioned by Hearn. The expression, sub
jected to such a command, is cut into obvious pieces which are renamed 
and separately shown. The renaming allows to list repeatedly occur
ring subexpressions only once. 

The main reason to explain the overall functioning of REDUCE in 
some detail is to simplify our discussion of the symbolic-numeric 
interface. It might be illustrative to give 

Example 2.1. Let us assume that we are interested in the determinant 
DM of the symmetric matrix 

t 0 t1 t2 
M = t1 t3 0 

t2 0 t4 

So obviously we have 

DM = to*t3*t4- tl *t4- t/ *t3. 

Let us now assume that the entries of M have the following values 
(This matrix was derived in the course of research reported in [3]): 
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2 2 2 
M(l,l) :~ - ((9*P *M30 + J30Y - J30Z)*SIN(Q3) - (18*M30 + Ml0)*P -

2 
18*COS(Q3)*COS(Q2)*P *M30 - J30Y - JlOY) 

2 2 
M(2,1) :• M(l,2) :• - ((9*P *M30 + J30Y - J30Z)*SIN(Q3) - 9*COS(Q3)* 

2 2 
COS(Q2)*P *M30 - 9*P *M30 - J30Y) 

2 
M(3,l) :• M(l,3) :• - 9*SIN(Q3)*SIN(Q2)*P *M30 

2 2 . 2 
M(2,2) :• - ((9*P *M30 + J30Y - J30Z)*SIN(Q3) - 9*P *M30 - J30Y) 

M(3,2) :• M(2,3) :• 0 

2 
M(3,3) :• 9*P *M30 + J30X 

Neglecting the above given structure and using the facility REDUCE 
offers to compute the determinant of a given matrix, can lead to a 
number of different visualizations of one and the same object. 

1. The result is presented in expanded form. 
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4 26 3 4 24 2 
729*SIN(Q3) *SIN(Q2) *P *M30 + 8l*SIN(Q3) *SIN(Q2) *P *M30 *J30Y - 81 

4 2 4 2 2 2 6 ·3 
*SIN(Q3) *SIN(Q2) *P *M30 *J30Z - 729*SIN(Q3) *SIN(Q2) *P *M30 - 81* 

2 24 2 26 3 26 
SIN(Q3) *SIN(Q2) *P *M30 *J30Y - 729*SIN(Q3) *P *M30 - 8l*SIN(Q3) *P 

2 24 2 24 2 
*M30 *MlO - 8l*SIN(Q3) *P *M30 *J30Y + 8l*SIN(Q3) *P *M30 *J30Z - 81* 

24 2 24 2 24 
SIN(Q3) *P *M30 *JlOY - 8l*SIN(Q3) *P *M30 *J30X - 9*SIN(Q3) *P *M30• 

2 4 2 4 
J30Y*Ml0 + 9*SIN(Q3) *P *M30*J30Z*Ml0 - 9*SIN(Q3) *P *M30*Ml0*J30X - 9 

2 2 2 2 2 
*SIN(Q3) *P *M30•J30Y*JlOY - 9*SIN(Q3) *P *M30*J30Y*J30X + 9*SIN(Q3) * 

2 2 2 2 2 
P *M30*J30Z*JlOY + 9*SIN(Q3) *P *M30*J30Z*J30X - 9*SIN(Q3) *P *M30* 

2 2 2 2 
JlOY*J30X - SIN(Q3) *P *J30Y*Ml0•J30X + SIN(Q3) *P *J30Z*Ml0*J30X -

2 2 2 
SIN(Q3) *J30Y*JlOY*J30X + SIN(Q3) *J30Z*JlOY*J30X - 729*COS(Q3) * 

26 3 2 24 2 6 3 
COS(Q2) *P *M30 - 8l*COS(Q3) *COS(Q2) *P *M30 *J30X + 729*P *M30 + 

6 2 4 2 4 2 4 2 
8l*P *M30 *MlO + 8l*P *M30 *J30Y + 8l*P *M30 *JlOY + 8l*P *M30 *J30X 

4 4 2 2 
+ 9*P *M30*J30Y*Ml0 + 9*P *M30*Ml0*J30X + 9*P *M30*J30Y*JlOY + 9*P * 

2 2 
M30*J30Y*J30X + 9*P ~M30*JlOY*J30X + P *J30Y*Ml0*J30X + J30Y*JlOY*J30X 

2. We turn off the expansion and get a normal form. 

2 2 2 
((9*P *M30 + J30Y - J30Z)*SIN(Q3) - (18*M30 + MlO)*P - 18*COS(Q3)* 

2 2 2 
COS(Q2)*P *M30 - J30Y - JlOY)*((9*P *M30 + J30Y - J30Z)*SIN(Q3) - 9* 

2 2 
P *M30 - J30Y)*(9*P *M30 + J30X) -

2 2 2 2 
((9*P *M30 + J30Y - J30Z)*SIN(Q3) - 9*COS(Q3)*COS(Q2)*P *M30 - 9*P * 

2 2 2 
M30 - J30Y) *(9*P *M30 + J30X) + 81*((9*P *M30 + J30Y - J30Z)* 

2 2 2 2 4 2 
SIN(Q3) - 9*P *M30 - J30Y)*SIN(Q3) *SIN(Q2) *P *M30 

3. We use the possiblily to get the structure of the determinant 
displayed for the unexpanded form of DM. and now denoted by S7: 
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S7 

WHERE 

2 2 2 4 2 
S7 :• S3*S4*S5 - S6 *S5 + 8l*S4*SIN(Q3) *SIN(Q2) *P *M30 

2 2 2 
S6 :• Sl*SIN(Q3) - 9*COS(Q3)*COS(Q2)*P *M30 - 9*P *M30 - J30Y 

2 
S5 :• 9*P *M30 + J30X 

2 2 
S4 :• Sl*SIN(Q3) - 9*P *M30 - J30Y 

2 2 2 
S3 :• Sl*SIN(Q3) - S2*P - 18*COS(Q3)*COS(Q2)*P *M30 - J30Y -

JlOY 

S2 :• 18*M30 + MlO 

2 
Sl :• 9*P *M30 + J30Y - J30Z 

4. Finally we display this DM -structure in FORTRAN-notation. 

S1•9*P**2*M30+J30Y-J30Z 
S2•18*M30+Ml0 
S3•Sl*SIN(Q3)**2-S2*P**2-18*COS(Q3)*COS(Q2)*P**2*M30-

J30Y-JlOY 
S4•Sl*SIN(Q3)**2-9*P**2*M30-J30Y 
S5•9*P**2*M30+J30X 
S6•Sl*SIN(Q3)**2-9*COS(Q3)*COS(Q2)*P**2*M30-9*P**2* 

• M30-J30Y 
S7•S3*S4*S5-S6**2*S5+8l*S4*SIN(Q3)**2*SIN(Q2)**2*P**4 

*M30**2 
S•S7 
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None of these forms is as compact as the originally given one using the 
t; ·s. The conclusion is that much room for improvement of output 
presentation exists and that the results, although easily obtained, can 
be far from optimal. especially when a numerical value for DM is 
required for a given set of input values for the different variables 
occurring in DM. 

In a numerical setting methods for solving systems of linear equa
tions and determinant calculations are polynomial time-bounded opera
tions, both in time and space. In a computer algebraic setting however, 
the algorithms show an exponential behaviour [31]. although we have 
to remark that in such a setting problem size is always moderate in 
comparison with "numerical" problems. This limited size is related to 
core consumption during intermediate stages in the computations and 
to storage requirements for the final result. This example is quite 
illustrative. It clearly suggests what might happen when the matrix
size is enlarged and expansion is not turned off, for instance. □ 

The example also serves to stress that simplification, although 
algorithmic in nature. is not context-free. One has to try to avoid 
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undesirable side effects quite carefully. This is the main reason Hearn 
began considering the possibility of using structure determining tech
niques, i.e., heuristic tools to find structure in an expression, which 
otherwise would remain unchanged. Hearn's presumption is that many 
physical problems have enough structure to allow user-controlled 
regrouping. based on expansion or factorization and applied at some 
lower levels inside an expression, and using knowledge about the 
"weighted", physical meaning of the various variables used to built the 
given expression. What can be done is considering an expression to be a 
(multivariate) polynomial in (a) certain variable(s). factorize its 
coefficients or searching the different terms in these coefficients for com
mon subexpressions to be factored out. These regrouping techniques 
can lead to remarkable compressions as is for instance shown by the 
following 

Example 2.2. We show the effect of compression when applied on the 
expanded form of DM. taken from Example 2.1.1. Application of the 
same compression command on the unexpanded version of DM, as 
shown in Example 2.1.2, does not lead to an improvement. 

- (((9*((J30Y - J30Z)*(JlOY + J30X) + JlOY*J30X)*M30 + J30Y*Ml0*J30X 

2 
- J30Z*Ml0*J30X)*P + 9*(9*(J30Y - J30Z + JlOY + J30X)*M30 + 

4 2 
J30Y - J30Z + J30X)*Ml0)*P *M30 + 81*(9*P *M30 + J30Y)* 

2 4 2 6 2 
SIN(Q2) *P *M30 + 81*(9*M30 + MlO)*P *M30 + J30Y*JlOY*J30X -

2 
J30Z*JlOY*J30X)*SIN(Q3) - (9*((JlOY + J30X)*J30Y + JlOY*J30X)* 

2 2 
M30 + J30Y*Ml0*J30X)*P - 8l*((J30Y - J30Z) + 9*P *M30)* 

4 2 4 2 
SIN(Q3) *SIN(Q2) *P *M30 - 9*(9*(J30Y + JlOY + J30X)*M30 + (J30Y 

4 2 2 
+ J30X)*Ml0)*P *M30 + 81*(9*P *M30 + J30X)*COS(Q3) * 

2 4 2 6 2 
COS(Q2) *P *M30 - 81*(9*M30 + MlO)*P *M30 - J30Y*JlOY*J30X) 

Also quite illustrative is the result of performing some compression 
experiments on the expression EXPR, given below. It shows why it is 
important that algebra systems can be used interactively and it stresses 
again that simplification is not context-free. 
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on exp$ 

expon :- expr; 

2 2 2 2 2 
EXPON :• 2*C*D*E - 2*C*D*F *G - 4*C*D*F *G*H*K - 4*C*D*F *G*H*L - 2* 

2 2 2 2 2 2 2 2 2 
C*D*F *H *K - 4*C*D*F *H *K*L - 2*C*D*F *H *L + F*G + 2*F* 

2 2 2 2 2 
G*H*K + 2*F*G*H*L + F*H *K + 2*F*H *K*L + F*H *L 

TIME: 833 MS 

off exp$ 

expoff :• expr; 

2 2 2 2 2 2 
EXPOFF :• - (2*(((K + 2*K*L + L )*H + 2*(K + L)*G*H + G )*F - E )* 

2 2 2 2 
C*D - ((K + 2*K*L + L l*H + 2*(K + L)*G*H + G )*F) 

TIME: 901 MS 

nfac expoff,c,f,(lfactr); 

2 2 
- (((K + L)*H + G) *(2*C*D*F - l)*F - 2*C*D*E) 

TIME: 1700 MS 

nfac expoff,c,lfactr,(f); 

2 2 2 2 
- (2*(((K + L)*H + G) *F - E )*C*D - ((K + L)*H + G) *F) 

TIME: 1904 MS 

Citing Hearn [26]. the present simplification algorithms in REDUCE, 
being used when the expansion is turned off. are a "moving target". 
This is mainly due to the fact that he is experimenting with the above 
indicated compression facilities, since the first experimental facilities 
were made by Hulshof, when visiting Hearn. Details about these facili
ties, as implemented for REDUCE, can be found in [33]. □ 

The above introduced structure-determining techniques can con
tribute to a reduction of the arithmetic complexity of an expression. 
which is needed in further numerical calculations. Another structure
determining technique - certainly in Hearn's view - is formed by the 
code optimization techniques, which are discussed in Section 5. They 
are based on reduction in arithmetic occurring in a given (set of) 
expression(s) by heuristically searching for common (sub)expressions. 
Hearn hopes that such heuristic techniques can be made instrumental 
for algorithmic methods to assist in a further reduction of the struc
ture of an expression to a more simple form. The key idea is, that such 
common subexpression searches can lead to information about possibly 
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occurring side relations. which can be used for such a reduction. 
Another interesting thought of Hearn is to use a Grabner base algo
rithm to assist in determining if these candidate side relations are con
sistent. by investigating their algebraic interrelations [9.10.29,30]. We 
only made these last remarks to underline that both heuristics and 
algorithmics have an important role to play in future developments in 
computer algebra. directed towards improving the quality of the out
put. certainly also when needed for further numeric work. 

We gave a capsule view of some of the output features of com
puter algebra systems. The main intention in doing so is to provide a 
view on or perhaps a feeling for the rich variety of output possibilities 
- and thus of unwished inefficiencies - allowed by algebra systems. 
Although illustrated by REDUCE. similar remarks can be made for 
other computer algebra systems. These considerations also play a role 
in the next section. 

3. The Symbolic-Numeric Interface 
Aspects of the symbolic-numeric interface are discussed in some detail 
by Brown and Hearn [8] and complementary to them by Ng [43]. The 
apparent need for such an interface suggests, as already indicated in the 
introduction, that certain communication problems exist, related to 
information exchange between computer algebra systems and program
ming facilities. more specifically designed for numerical purposes. 
Brown and Hearn distinguished two problem sources: Numerical 
evaluation of symbolic results and Hybrid problems. The latter 
category demands for solution methods which are a mixture of numeric 
and symbolic techniques. implying that at some stage numerical 
evaluation of symbolic results might be needed as well. For numerical 
evaluation one can choose between, say interpretative evaluation, using 
a computer algebra system for both symbolic and numeric processing, 
and generation of arithmetic statements in an existing language for 
numeric processing. Both alternatives have certain drawbacks and 
implications. 

Interpretation might be convenient for .. one shot" applications 
(citing Ng [43]), if big fl.oat facilities. such as Sasaki's package [54], can 
be used and if problem size is moderate. Kanada and Sasaki [36] found 
their Standard LISP-package to be half as fast as Brent's well-known 
FORTRAN package [5]. if they guarantee portability. Steele [56] and 
Pitman [49] came to similar conclusions concerning the use of 
MACSYMA for numerical evaluation. Pitman made FORTRAN to LISP 
translation facilities. thus creating the possibility of using the IMSL 
(International Mathematics and Statistics Library) in a LISP context. 
A drawback might however be that error analysis. and thus control 
over the precision of the big fl.oat calculations. is still left to the user. 
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When only differentiation is needed one can use instead of a com
puter algebra system special software tools. which in addition allow to 
utilize interval arithmetic to obtain reliable results [18.37.51.52]. 
These tools essentially use augmented FORTRAN or PASCAL com-· 
pilers. which allow to produce subprograms. defining derivatives. 
created by making use of expression ff.ow graphs. refiecting some form 
of intermediate 3-address code [1]. These approaches. however. do not 
provide simplification and thus can severely suff'er from inefficiencies or 
limit the applicability to problems of moderate size. 

The alternative - generation of arithmetic statements - is not 
perfect either. Many computer algebra systems offer users the possibil
ity to obtain output in the form of assignment statements in FOR
TRAN notation. If the user decides to employ such a facility the obvi
ous intend is to construct in some way or another complete programs 
and/or subroutines. which contain this arithmetic in some meaningful 
order. We discuss in this context strategies. which have been 
developed to assist users in producing such code in the next section. 

Expression size might be an additional problem. Applications and 
application strategies. as for instance described by Cook [17]. Smit and 
van Hulzen [55]. Steinberg and Roache [57]. Van den Heuvel et al. [60] 
and Wang et al. [65.66.67] clearly illustrate that computer algebra sys
tems have to be used carefully. Often a form of lazy evaluation is 
employed to reduce or delay simplification activities. These applica
tions illustrate Hearn's warning [29] that we have to learn to deal 
effectively with structure. which for instance might have been imposed 
by symmetry or by additional physical knowledge. Wang [65.66] 
recently showed how profitable this can be for the generation of finite 
element analysis software. Hearn also stated. as explained in the pre
vious section. that the output we obtain is just one of a large number 
of possible representations and that structure determining techniques. 
such as code optimization. to be discussed in Section 5. can have a 
dramatic infi.uence on reducing the arithmetic refi.ected by computer 
algebra output. This is also illustrated in most of the just mentioned 
papers on applications. 

Once we are able to effectively generate efficient code for perform
ing numerical computations it would be quite helpful if we are also 
able to guarantee the reliability of these calculations. In view of the 
existence of multiple precision fioating point arithmetic packages it 
might be attractive to employ the power of a computer algebra system 
to determine. prior to the actual computations. how the precision has to 
be chosen during (parts of) the real computations. as to avoid unneces
sary loss of significant digits. Our experiments with REDUCE and 
using Sasaki's big ff.oat package suggest that. in principle. this is possi
ble [32]. The augmented compiler approach concentrates on creating 
limited symbolic facilities in a numerical context. as to allow to per
form reliable computations, requiring at some stage derivatives. 
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without looking at the efficiency of the production of these derivatives. 
The creation of symbolic-numeric interfaces is still in development and 
has not yet resulted in completed facilities, which can be utilized to 
obtain reliable results. 

The above outlined aspects for the construction of programs for 
numerical purposes are obviously related to the more traditional 
sequential view of programming and program execution. However, we 
believe that our ongoing research. based on variations and deviations of 
this theme, will lead the to development of similar facilities for vector
and parallel architectures, slowly on entering the market. In addition 
we - at least - indicated, that the already available tools do not cover 
the whole spectrum of instruments needed to automatize the process of 
solving a problem reliably. 

4. Program Generation 
The only tool for program generation. until recently provided by com
puter algebra systems such as REDUCE and MACSYMA, was the facil
ity to switch from normal to FORTRAN-coded output. Hence to pro
duce complete and executable FORTRAN programs directly from these 
systems was not possible. This left the user with the necessity to 
shorten output-expressions whenever required. to meet the limitations 
given by the 20-lines rule in FORTRAN. and to find a way (text edit
ing or the use of write statements) to complete the FORTRAN program. 
The first packages to assist in this programming task are MACTRAN 
[69] and VAX.TRAN [39]. MACTRAN. running under MACSYMA. 
allows to construct complete FORTRAN subroutines based on user
supplied template files. Such a file contains an outline of a FORTRAN 
program. the so-called passive parts of the file, and active parts, con
sisting of MACSYMA commands. MACTRAN processes such a file by 
simply copying the passive parts on the actual output file and by exe
cuting the active portions. which of course ought to result in meaning
ful arithmetic assignment statements in FORTRAN notation on the 
same output file. Hence the passive parts of such a template file define 
in fact the control structure of the FORTRAN program or subroutine 
which ought to be produced in this way. VAX.TRAN. implemented in 
Franz LISP to run under V AXIMA. is similar to and based on MAC
TRAN. IN addition to MACTRAN it provides a more general interface 
between symbolic and numerical computing techniques. Although 
VAX.TRAN compiles generated code from V AXIMA, using an aug
mented compiler, and interfaces the resulting compiled code to make it 
callable directly from VAX.IMA. it still relies on the MACSYMA FOR
TRAN switch only. This might effectively limit its use to moderate 
problems. 

More recently GENTRAN [68], a code GENeration and TRANsla
tion package became available, originally implemented in Franz LISP to 
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run under V AXIMA. Although specifically created to generate 
RATFOR-subprograms for use with an existing FORTRAN-based finite 
element package [66]. it has the 11.exibility required to handle most 
code generation applications. A second more recent version of GEN
TRAN is written in RLISP to run under REDUCE [24.25]. This version 
transforms REDUCE prefix forms into formatted FORTRAN. RATFOR 
or C code. GENTRAN does not only allow generation of arithmetic 
expressions or assignment statements, but also of control structures. 
subprogram headings and type declarations. A consequence of this is 
that template file processing. although possible in GENTRAN. is not 
longer required under all circumstances. This implies that a user can 
generate complete (sub)programs for numerical purposes through a 
series of interactive (REDUCE or MACSYMA) commands. Besides a 
variety of 11.exible file handling commands. also allowing recursively 
performed template file processing. GENTRAN has some additional 
facilities which are notably interesting for the generation of numerical 
code: automatic expression segmentation and suppression of 
simplification through the generation of temporary variables. The 
latter facility is for instance quite attractive. as we show below in 
Example 4.1, to produce effi.cient code for the determinant DM. intro
duced in Example 2.1. 

GENTRAN provides very powerful tools for the construction of 
effi.cient programs for numerical purposes. certainly when combined 
with code optimization facilities, to be discussed in the next section. 
We therefore give a short survey of the essentials of GENTRAN and 
conclude this section with an illustrative example. GENTRAN. viewed 
as a REDUCE extension, contains code generation and file handling 
commands. mode switches and global variables. all of which are acces
sible from both the algebraic and symbolic mode of REDUCE. The alge
braic mode is the normal user interface with the system, while the 
symbolic mode - in fact a LISP-like system level - is meant for sys
tem modification and extension. Hence when the package is loaded. 
REDUCE can be considered to be brought in a new state. All REDUCE 
commands preceded by the keyword GENTRAN are now processed 
according to the GENTRAN rules. After conversion of the command 
into REDUCE prefix form it is transformed into formatted FORTRAN. 
RATFOR or C code, depending on the value of the global variable GEN
TRANLANGI*. The whole transformation process is done in three 
stages: Between in pre- and postprocessing the translation phase is per
formed. During this phase either the prefix forms are translated into 
semantically equivalent code strings in the target language or an error 
message is generated. In addition subprogram headings. declarations 
and the like are produced. Hence, prior to translation, REDUCE 
evaluations have to be performed. They are actually done during the 
preprocessing phase. Although this strategy is similar to processing 
passive and active parts of template files. noteworthy differences exist. 
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The passive parts of a template file ought to consist of syntactically 
correct code strings in the target language. GENTRAN accepts translat
able REDUCE commands. The active parts can be dealt with in 
different ways. Partly or full evaluation is under user control. either 
in algebraic or in symbolic mode. through some simple facilities. 

For instance EV AL EXP. where EXP is any REDUCE expression or 
statement, causes EXP to be evaluated before translation takes place. 
So, assuming F stands for 

2*x 2 - 5*x + 6 

and GENTRANLANGI* has the value 'FORTRAN. the command 

GENTRAN Q := EVAL(F) I EVAL(DF(F,X)) $ 

will result in 

GENTRAN also has three additional assignment operators. being:=:,::= 
and ::=:. These operators are constructed out of the usual REDUCE 
assignment operator := by adding (an) extra colon(s). If the extra ":" 
is given on the left it means that the indices occurring in the matrix or 
array element of the left hand side have to be evaluated before transla
tion is carried out. An extra colon to the right means that the right 
hand side has to be evaluated before translation into the target 
language is performed. So if M(2,2) := A and if M(J,3) := B then the 
command 

FOR j := 2:3 DO GENTRAN M(j,j) ::=: j*M(j,j)$ 

will result in, again assuming FORTRAN is the target language. 

M(2,2)=2•A 
M(3,3)=3*B 

During the translation phase prefix forms of those arithmetic state
ments which are longer than a specified length can be replaced by 
equivalent sequences. which assign subexpression values to temporary 
variables whose values are gradually combined. This is simply 
achieved by assigning values to the globals MAXEXPPRINTLENI* and 
FORTLINELENI* (or RAT- or CLINELEN!*) and by turning on the 
GENTRANSEG switch. This segmentation requires a facility to gen
erate temporary variable names. which can be stored in a symbol table. 
like other names, to guarantee to obtain adequate declarations. A com
bination of these name generation facilities and the use of the special 
GENTRAN features for evaluation provides a powerful tool for 
effectively reducing simplification. Through the command VAR := 
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TEMPV ARO$ a temporary variable name is assigned to VAR. The 
command MARKV AR VAR$ serves to further protect VAR for a too 
early reuse as temporary variable name. Thus it guarantees that the 
atom VAR can represent a significant value until further notice. There-· 
fore the commands 

VAR := TEMPV AR()$ 
MARKV AR VAR$ 
M(l,3) := VAR$ 
GENTRAN EV AL(V AR) := M(l,3)$ 

result in the REDUCE setting 

M(l,3) = TO 

and in the FORTRAN assignment 

assuming the value of VAR is TO. Observe that M(1.3) is assigned a 
new value in the REDUCE-context, while T0=M(l,3) is only an output 
string. If all matrix entries are treated similarly the code to be pro
duced for the computation of a determinant or an inverse matrix can be 
made much more efficient. We show the effect of these nice facilities, 
applied on the matrix M, introduced in Section 2, in 

Example 4.1. 

M(l,l)•-(9*SIN(Q3)**2*P**2*M30)-(SIN(Q3)**2*J30Y)+SIN(Q3)**2* 
J30Z+l8*COS(Q3)*COS(Q2)*P**2*M30+18*P**2*M30+P**2*Ml0+J30Y+JlOY 

M(l,2)•-(9*SIN(Q3)**2*P**2*M30)-(SIN(Q3)**2*J30Y)+SIN(Q3)**2* 
J30Z+9*COS(Q3)*COS(Q2)*P**2*M30+9*P**2*M30+J30Y 

M(l,3)•-(9*SIN(Q3)*SIN(Q2)*P**2*M30) 
M(2,2)•-(9*SIN(Q3)**2*P**2*M30)-(SIN(Q3)**2*J30Y)+SIN(Q3)**2* 

. J30Z+9*P**2*M30+J30Y 
M(2,3)•0 
M(3,3)•9*P**2*M30+J30X 
T0•M(l,1) 
Tl•M(l,2) 
T2•M(l,3) 
T3•M(2,2) 
T4•M(3,3) 
DM•T0*T3*T4-(Tl**2*T4)-(T2**2*T3) 

The above given piece of FORTRAN code is the result of executing the 
following mixture of GENTRAN and REDUCE commands : 
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GENTRANLANG!* :•'FORTRAN$ 
FORTLINELEN!* :• 70 $ 
GENTRANOUT "M.OUT" $ 

for j:•1:3 do 
for k:•j:3 do 

GENTRAN M(j,k) ::•: M(j,k) $ 

for j:•1:3 do 
for k:•j:3 do 

if M(j,k) neq O then 
<<VAR:• TEMPVAR() $ 

MARKVAR VAR$ 
M( j, k) :• VAR $ 
M(k,j) :• VAR $ 
GENTRAN EVAL(VAR) := M(EVAL(j),EVAL(k)) 

» $ 

GENTRAN OM:•: det(M) $ 

GENTRANSHUT "M.OUT"$ 

J.A. van Hulzen 

It is obvious that the possibility of generating temporary variables 
after having saved all relevant information - the real values of the 
matrix elements - can in principle lead to an enormous efficiency 
increase by computing - in fact only - the skeletal structure of the 
determinant. □ 

Further examples can for instance be found in [24]. Further 
details about GENTRAN are given in [22.23.24]. 

5. Code Optimization 

The level of sophistication of computer algebra systems easily allows 
generation of output of a size which is far beyond human understand
ing. The examples in the previous sections show that structure 
displaying techniques eventually combined with compression methods, 
based on heuristics, can largely improve the compactness and 
comprehensibility of output expressions. But when producing sets of 
output expressions, which are going to form the arithmetic parts of 
programs for numerical purposes, tools for reducing the computational 
complexity of such sets can be attractive. It is however only relevant 
to consider reducing this complexity if the arithmetic is extensive or 
when the solution strategy requires repetitions of identical sequences of 
arithmetic operations. The programs resulting from attempts to solve 
such, computationally intensive. problems do not meet Knuth's conclu
sion that for an average FORTRAN program the extension of the com
piler, with features for optimization of the arithmetic, is overdone [38]. 
This might explain why optimization of arithmetic code can not be 
qualified as a popular research area. 

We recall that we do not concentrate on average programs. The 
elements of our sets of expressions are viewed as definitions of compu
tational processes. Hence such a set can be seen as a block of straight 
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line code. The arithmetic complexity is defined as the number of ele
mentary arithmetic operations required to obtain the results of these 
computations for a set of permissible inputs. This view can be refined 
by associating weights with the various elementary operations. These 
weights refl.ect computational costs. Attempts to optimize the descrip
tion of such basic blocks can be considered as techniques for minimiz
ing. or at least reducing. the arithmetic complexity of the given sets of 
expressions. However, a reduction is only possible when redundancy 
occurs. Redundancy is a needless form of repetition. i.e. the presence of 
common (sub)expressions. This is certainly true for the traditional 
sequential view on program execution. Other architectures demand for 
other notions, like "not sufficiently vectorized in a reasonable way" or 
.. insufficiently decomposed in (sub)sets which can be processed in 
parallel without causing deadlock problems when combining the 
results to obtain the final answers". We only consider here the tradi
tional sequential processes. 

When attempting to minimize arithmetic, defined through expres
sions producible with a computer algebra system, we ought to know 
what the structure of these expressions can be before we are able to 
design methods allowing to discover eventually existing redundancy. 
As suggested in Section 2-a user can produce almost everything, efficient 
or not, of almost arbitrary size and depth of nesting. Therefore the 
design of algorithms for searching for common (sub)expressions (cse's 
for short) ought to be based on the presumption that the elements of 
the input set of which the description ought to be optimized, can have 
an arbitrary structure. As a consequence such algorithms ought to be 
designed to allow finding cse's of an equally arbitrary structure. The 
representation of cse's inside a set of expressions is certainly normal. if 
we presume the commutative. associative and distributive laws to hold. 
With the REDUCE Standard Quotient form for expressions in mind, we 
can describe expressions, what ever their structure might be. in a prefix 
notation, as pairs of the form (operator . list of operands). Here 
"operator" stands for PLUS. TIMES or .. something else". PLUS and 
TIMES, denote the usual commutative operations of addition and mul
tiplication, respectively. Hence any desirable permutation of the ele
ments of the "lists of operands" will in principle be allowed, when the 
operator is PLUS or TIMES. The lists of operands are again formed by 
such expressions. When for a while excluding the "something else" 
alternative, the expressions are multivariate polynomials over 'ZL Such 
a polynomial can be viewed as a sum (product) of primitive and/or 
composite terms (factors). We call a term primitive if it is an integer. 
a variable or an integer multiple of a variable. These primitives form 
together an (eventually empty) linear expression. Hence the composite 
terms are products. It depends on the ordering considerations of the 
algebra system, where the primitive and composite terms are located in 
the "list of operands". A primitive factor is a constant, a variable or a 
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power of a variable. Hence a product of primitive factors is simply a 
monomial. The composite factors are obviously sums. Every polyno
mial can be thought of as being built up by linear expressions and 
monomials only. what ever its (un)nested structure might be. When· 
searching for cse's we - in principle - use these .. primitive" informa
tion carriers. linear expressions and monomials. As soon as a new cse 
is found, it can be replaced by a new. system selected, variable name, 
assuming its description is added to the set of expressions. To obtain a 
correct basic block we ought to assume our set of expressions to be 
(partly) ordered. Every cse-description has to be inserted correctly in 
this sequence, i.e., before its :first occurrence. When replacing a cse by a 
new variable it might happen that composite terms or factors collapse 
and become a primitive. Hence when basing the search for cse's on 
primitives the overall process becomes obviously iterative. 

In contrast to the usual dag models for the representation of 
arithmetic expressions [1]. we employ. following Breuer [6,61.62]. 
sparse extendible matrices, albeit in a slightly more sophisticated way. 
We therefore have to (re)parse the internally stored list representations 
of the elements of our sets of expressions. multivariate polynomials. in 
more transparent and multi-accessible matrix structures. The columns 
of the matrices are associated with the variables and the rows with the 
(sub)expressions. Although merged in practice. we store the linear 
expressions and the monomials in separate matrices, which are inter
connected via hierarchic information about the structure of the expres
sions, subjected to our cse-search. When a variable occurs in a linear 
(sub)expression its coefficient is stored as matrix entry. Similarly the 
exponent is stored when the variable occurs in a monomial. Therefore 
the validity of the commutative law ought to be presumed. To be able 
to retrieve the original structure of the expressions involved in the 
search, additional information about the hierarchy ought to be associ
ated with the rows of the matrices. What kind of additional informa
tion is of importance? Of interest is a list of so-called children, i.e., a 
list of indices of rows where the descriptions of the composite terms or 
factors of the present row are stored. Also important is a name field, 
used to store the name associated with an expression or if we are deal
ing with a subexpression the index of the so-called father of this 
subexpression. We further mention an operator field and an ordered 
list of cse-indicators, allowing to obtain correct evaluation sequences, 
when translating the result of a cse-search into. for instance, FOR
TRAN code. The operator field is not only important for distinguishing 
between PLUS and TIMES. because we use merged structures inter
nally, but also for effectively using the "something else" alternative. 
These .. strange" operators are "removed" so as to get back to the mul
tivariate polynomial scheme. We again distinguish between primitives 
and composites. When all elements in the .. list of operands" are primi
tives, i.e .. constants and/or variables, the pair (operator . list of 
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operands), a kernel in the REDUCE-setting. is replaced by a new vari
able, such that all identical primitive kernels share the same name. 
Kernels with (partly) composite operands are treated like sums. The 
operator field has a different value and the searches for identical 
operands are slightly different since commutativity is not longer valid. 
To avoid complicating our discussion we further neglect the .. something 
else" alternative. Let us now try to visualize the data structures we 
employ temporarily to obtain an optimized version of a set of expres
sions via 

Example 5.1. Let us assume to have as set of input expressions: 

4 6 5 
El ·• (2*A + 4*8 + 3*C)*A *C *D 

2 4 3 
E2 :• (4*A + 6*C + 5*D)*A *8 *C 

This set is - when oversimplifying reality - parsed and stored in the 
following way: 

Sumscheme : 

A 8 C D! Far 

1! 2 4 3 ! 0 
3! 4 6 5! 2 

Productscheme : 

A C D 8!Far 

0 ! 4 6 5 ! El 
2 ! 2 3 4 ! E2 

More detailed examples are given in [62]. A cse-search will result in: 

so :• 2*A + 3*C 

2 3 
Sl :• A *C 

2 5 
El :• Sl *D *(SO + 4*8) 

4 
E2 := Sl*8 *(2*SO + S*D) 

This set is reconstructed from the matrices, resulting from the cse
search: 
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Sumscheme : 

I so A B C D!Far 

11 1 4 
31 2 
41 2 

Productscheme: 

I 0 
51 2 

3 ! so 

I Sl A C D B!Far 

0 I 2 5 I El 
21 1 41 E2 
5 I 2 3 I Sl 

J.A. van Hulzen 

So initially cse·s are either linear expressions or monomials. To dis
cover them the integer matrices are heuristically searched for sub
matrices of rank 1 of maximal size. A basic scan is used, which can be 
qualified as "test whether the determinant of a (2,2)-matrix of non
zero entries is zero". Its use is based on information about row 
weights. which allow to locate completely dense submatrices. The 
row-weight is a reflection of the arithmetic complexity of the primitive 
denned by that row. Further details are given in [61.62]. Since we 
want to reduce the arithmetic complexity. say the pair AC= (np.nm). a 
cse-detection ought to contribute to a reduction of the number of addi
tions (np) and/or the number of multiplications (nm). This is only 
possible if a cse occurs at least twice and contains at least one addition 
and/or multiplication. Other less detailed criteria are conceivable. 
Another category of cse's is formed by repeatedly occurring constant 
multiples of variables and by single powers. delivering addition chain 
problems. This category can be enlarged during the optimization pro
cess. This can be illustrated by 
Example 5.2. The result shown in Example 5.1 is in fact intermediate. 
The real result. given by the present version of the Optimizer, is: 
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Number of operations in the input is: 

Number of (+,-)-operations: 4 
Number of (*)-operations: 12 
Number of integer exponentiations : 6 
Number of other operations: 0 

50 :• 2•A + 3*C 
53 :• A*A 
s7 :• c•c 
s4 :• c•s7 
51 :• 53*54 
52 :• 51*51 
58 :• D*D 
57 :• 58•58 
55 :• 0*57 
El :• 52*55*(50 + 4*B) 
57 :• B*B 
56 :• 57*57 
E2 :• 51*56*(2*50 + S*D) 

Number of operations after optimization is: 

Number of (+,-)-operations: 3 
Number of (*)-operations: 19 
Number of integer exponentiations: 0 
Number of other operations: 0 
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First a repeated search for cse's with at least two operands is per
formed. Then the optimization is completed with a finishing touch. 

The first step consists of four subsearches: 
1- Application of the commutative law when looking for linear 

(sub)sums and (sub)monomials. respectively. The strategy is 
based on an extension of Breuer's grow factor algorithm. Cse's 
are replaced by new names and their description is added to the 
matrix, implying that composite operands can be reduced to (new) 
primitives. 

2- A kernel search, to discover if composite kernels can now be 
viewed as primitives, followed by update operations. 

3- Merging activities based on the assumption that composites are 
possibly reducible to primitives, i.e., a composite factor, defined in 
the sum matrix and reduced to a primitive, can be migrated, in its 
new form, to the product scheme and visa versa. 

4- Application of the distributive law. i.e., replacement of an expres
sion like a*b + a*c by a*(b + c) by adequate information migra
tion. 

Although the basic scans are always performed on primitive structures 
the cse's can have an arbitrary complex structure, because information 
is continuously migrated through the matrices. 

The finishing touch consists of factoring out contents of integer 
coefficients in sums, detection of repeatedly occurring integer multiples 
of variables and addition chain operations so as to replace all exponen
tiations by multiplication sequences. This phase is characterized by one 



254 J.A. van Hulzen 

row (or one column) operations, in contrast to the :first, where mainly 
completely dense submatrices are examined. 

Example 5.3. The determinant DM of the matrix M. introduced in . 
Section 2. can be compu~ quite efficiently. when using the possibility 
of introducing temporary variables. the t; ·s. via simple GENTRAN
commands. This is even more striking when the inverse matrix is 
required; see [24]. However we can further reduce the arithmetic com
plexity by optimizing the set of expressions formed by the different 
entries of M. leading to: 

Number of operations in the input(T0,Tl,T2,T3 and T4)·is: 

Number of (+,-)-operations : 17 
Number of (*)-operations: 29 
Number of integer exponentiations : 13 
Number of other operations : 9 

SO :• SIN(Q3) 
se :• so•so 
S1 :• COS(Q3) 
S2 :• COS(Q2) 
S7 :• P*P 
S5 :• S7*M30 
s4 :• ss•s1•s2 
S6 :• - J30Y + J30Z 
S13 :• 9•S5 
S10 :• - S13 + S6 
S11 :• Sl0•se 
TO :• S11 + 18*S4 + J30Y + JlOY + S7*(18*M30 + Ml0) 
S9 :• S13 + J30Y 
T3 :• S11 + S9 
Tl :• T3 + 9•S4 
S3 :• SIN(Q2) 
T2 :• - S13•so•s3 
T4 :• S13 + J30X 

Number of operations after optimization is: 

Number of (+,-)-operations: 11 
Number of (*)-operations : 13 
Number of integer exponentiations: 0 
Number of other operations: 4 

Optimization of the various forms of DM. introduced earlier. leads to 
different results, as shown in Table 5.1. Observe that the arithmetic 
complexity of the optimized version of the expanded form of DM is 
compatible with the arithmetic complexity of the not optimized version 
of the unexpanded form of DM. It is obvious that a slight increase of 
the size of M. without increasing the complexity of its entries, will 
result in more drastic differences. D 

As stated before expression size can impose problems. Our 
Optimizer allows to handle extensive input piece wise, but such that 
the results of previous optimization activities are taken into account on 
user request. This offers a possibility to handle expressions via parti
tioning. The user interface is simple. Only a few commands are 
needed, in combination with a number of mode switches and flag set
tings to infl.uence output-notation or to obtain additional information 
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Form of DM Status Number of onerations 
+.- * t other 

expanded input 36 82 30 6 
output 27 51 - 4 

compressed.after input 35 63 23 6 
expansion output 27 42 - 4 
unexpanded input 24 40 21 10 

output 13 19 - 4 

Table 5.1. 
about the optimization process. Details will be given in [64]. 

6. Some Conclusions 
Ideally. as said before, the symbolic-numeric interface ought to provide 
user friendly facilities to allow to produce efficient and reliable numeri
cal programs in a natural way. This requires a further integration of 
program generation and code optimization facilities and an extension of 
optimization techniques as to be able to optimize structured programs 
in stead of only local blocks of straight line code. A priori error 
analysis for such programs is an additional need and more far reaching 
than the present possibilities. It would also be of tremendous help if 
the Optimizer could be extended with a module which allows to dis
cover automatically patterns in the problem formulation. which, for 
instance, are due to symmetries. This is certainly useful if extensive 
differentiation or integration of the code, to be optimized, is an addi
tional need. We expect to witness such extensions during the coming 
years. In fact, our work in progress covers some of these items. We, 
not only work on variations related to program construction for vector 
and parallel architectures. but also on improvements of the symbolic
numeric interface and certain aspects of simplification. Worth men
tioning are : 

Bottom-up structure recognition facilities [20]. to be used to 
develop methods, which allow to discover symmetries, for 
instance. Such algorithms can also be helpful in improving 
differentiation procedures. 

A combined use of unification and simplification. We created 
already an environment to perform experiments in a REDUCE 
context [50]. 

Improvements of the symbolic-numeric interface by investigating 
classes of problems, which can largely profit from such facilities 
for their solution. The design and implementation of programs 
for user friendly generation of Jacobians and Hessians. which 
ought to allow to simply connect their output with NAG library 
routines, learned that a further integration of a package like 
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GENTRAN with our Optimizer is not too complicated and cer
tainly most profitable [59]. 

Thus far we limited the Optimizer activities to expressions with 
integer coefficients and exponents. But expressions over other 
domains are conceivable [ 4]. implying that an extension of the 
Optimizer ought to be considered. 
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In traditional systems of deductive logic adding an axiom gives rise 
to new theorems, i.e., the set of theorems grows monotonically with 
the set of axioms. The study of non-monotonic reasoning started 
with the recognition that, in contrast, people often retract earlier 
conclusions on the basis of new input. This intuition encouraged the 
exploration of diJferent extensions to logic. The present paper 
evolves in three steps: (1) It reviews extensions to monotonic logics, 
(2) It brings to bear psychological findings showing that the exten
sions fail where our intuition falls short: Inferences are often 
remarkably unresponsive to new input even if the original basis for 
the inferences is discredited, and (3) It presents a model that 
accounts for this more accurate view of human retraction behavior. 

1. Introduction 

Life is potentially full of surprises. If we want to act at all, we have 
to do so on the basis of often incomplete, vague. inconsistent or cor
rupted information. Yet. compared to the quality of the information, 
people fare remarkably well under such circumstances. Two important 
mechanisms enable us to do so. One is the use of defaults, i.e .. 
knowledge of what is usually or typically the case; the other is belief 
revision, i.e., the retraction of earlier conclusions to reflect perceived 
changes in the environment or acquisition of new information. Model
ing this aspect of common-sense reasoning has been a challenge to 
Artificial Intelligence (AI) since its early days. So far two main ave
nues have been pursued to cope with this challenge: a formal one, try
ing to extend the logic, and a technical one, attempting to endow com
puter programs with methods to revise their databases. These topics 
will be treated :first. Then this paper opens a third avenue, shedding 
light on the issue by looking at how people actually behave when con
fronted with situations where belief revision is called for. To accom
plish this. well-documented psychological experiments are modeled 
using existing AI methods. It will be apparent that both psychology 
and AI may benefit from this approach. 
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Part A: A Logical Excursion 

2. Ignoring the Impossible vs. Ignoring the Possible. 

In making decisions under mundane circumstances. there are simply too 
many things to consider that might be relevant. At the same time it is 
hardly possible to foresee even a fraction of the consequences of these 
decisions. (To be sure. considering the not-so-obvious may make a 
scientist successful. but here we must realize how rare these happy 
moments are.) Indeed, people are very good at ignoring possibilities. In 
contrast. people are well aware of impossibilities. and reject these with 
facility. The latter has its analogue in artificial intelligence. where 
techniques for rejecting impossibilities are widespread. Depth-first 
search is a very systematic way of doing this. Others are alpha-beta 
pruning and unification. Techniques for ignoring possibilities are much 
harder to come by (and most are even covered in this paper). One case 
is the technique of parsimonious reasoning known as circumscription. 
It has been observed (e.g. [19]) that when trying to solve a problem, 
one assumes that only the relationships mentioned are relevant. For 
example in solving the missionaries and cannibals problem, one usually 
does not discuss the presence of oars. absence of bridges. leakages etc. 
McCarthy [19] formulated a second order inference rule that produces 
axiom schemata from sets of (first order) axioms. It can be shown that 
the models for the new set of axioms are minimal in those for the ori
ginal one. Informally speaking. they contain as few objects as possible 
(e.g .. no bridges or planes). 

Circumscription has gone through various incarnations (predicate. 
joint. formula. prioritized. and point-wise circumscription: see e.g .. 
[19.20.18]). but a simple example may show the gist of this technique. 
Let A be a set of axioms stated in a language containing a predicate P. 
The circumscription schema for P (x ) in A is: 

[A (Q ) & (x )[Q (x ) ➔ P (x ) ]] ➔ (x )[P (x ) ➔ Q (x ) ]. 

As an example, suppose we receive a postcard from Italy showing a 
leaning tower. Of course we jump to the conclusion that this is a pic
ture of the Leaning Tower. Let us summarize the appearance of the 
Leaning Tower (say of an old, leaning tower) with the axiom: 

old-and-leaning(Leaning-Tower ). 

Now. circumscribing this predicate in the set of axioms (in this case 
there is only one element) yields: 

[Q (Leaning-Tower) & (x )[Q (x) ➔ oU -and -leaning (x )]] ➔ 
(x )[old -and-leaning (x) ➔ Q (x )]. 

Now we substitute the only known instance of leaning towers we have 
by taking Q(x) to be "x = Leaning-Tower". One can easily verify 
that the first and second conjunct become true. so that by modus 
ponens we inf er: 
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(x )[old -and -leaning (x) -+ x = Leaning-Tower]; 

i.e .. every old and leaning tower we see we will recognize as the Lean
ing Tower; the desired result. If later we discover that we saw a pic
ture of a maquette. the conclusion is no longer true. and indeed it can
not be derived anymore. Although circumscription has been categor
ized as a fairly successful approach to non-monotonic reasoning. this 
categorization may be disputed on several grounds. First, as in the 
example above. it does not allow one to retract a conclusion construc
tively once it has been drawn. Second. Doyle [9] shows that the intent 
of circumscription is the same as that of "implicit de:fi.nability" from 
monotonic logic. Third, circumscription may generate minimal models 
subsuming implausible ones ([13]. I will come back to this). In short. 
it clearly formalizes one aspect of common-sense reasoning. namely 
that of jumping to conclusions. It may not. however grasp the intui
tive idea of non-monotonic reasoning. 

3. Non-Monotonic Theories 

3.1. Why Non-Monotonic Theories? 
The paradigmatic (and unfortunately somewhat overworked) example 
of non-monotonic reasoning begins with one axiom, namely that birds 
can :fly. If told that Tweety is a bird, we may infer that Tweety can 
fly. Formalized: 

(x ) Bird (x ) -+ CanFly (x ) 

Bird (Tweety ) 

so by universal specialization and modus ponens: 

CanFly (Tweety) 

(1) 

(2) 

(3) 

If. however, we subsequently learn that Tweety is an ostrich we have 
to retract our earlier conclusion. It seems that (1) should be replaced 
by (1'): 

(x ) Bird (x ) & -.Ostrich (x ) -+ CanFly (x ) (1') 

to avoid drawing conclusion (3). Why then, do we need a non
monotonic formalism in the first place? The point is that (1') would 
make it impossible to infer (3) right from the start, which is contrary 
to what we actually did. So instead of questioning the axioms (not to 
mention that (1') should be amended for penguins. emus. kiwis etc.), 
one could reflect on the inference rules. In fact there are more options 
that have been explored, falling broadly in two categories: extensions 
to the logic. and meta-devices. 
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3.2. Extensions To First Order Logics 

One way to extend the logic has been to extend the components of the 
theory with default rules. Defaul.t reasoning is a way of drawing con
clusions in the absence of certain data. by virtue of these data being 
absent. In this way. (3) can be inferred by default. To take another 
example: as long as no-one has come to tell you that your car has been 
stolen, you will confidently walk to the parking lot after your work. 
A default nde is typically of the form: 

• If A. and it is not known that B, then conclude C. (d1) 

For an example of the formalization of such a rule refer to [27], which 
gives a complete proof theory for a large class of generally occurring 
defaults. 

A common instance of (d1). where C is -.B, is the rule "If it is 
not known that B • then conclude -.B ". This is known as the closed
world assumption. It says that relationships not explicit in the data
base do not hold. But what exactly do we mean by "it is not known 
that B "? Suppose (d1) is used by a database manager. A database 
most often encodes only a fraction of its knowledge explicitly, for 
much data can easily be computed on demand (or is rarely used). A 
rule to capture this could be: 

• If A, and it cannot be proved that B, then conclude C. (d2) 

This rule subsumes a mirror-image of the closed-world assumption. 
namely where B is ... c . This is an important special case which has 
been studied by McDermott and Doyle [22]. They extend a first order 
(monotonic) logic by introducing a "non-monotonic modality" M in 
the language, and add the rule "infer Mp from the inability to infer 
""P :· For example (1) would be replaced by 

(x) Bird (x ) & M CanFly (x ) ➔ CanFly (x ) (1 ") 

McDermott and Doyle prove that the non-monotonic predicate calculus 
thus obtained is complete and that the non-monotonic sentential cal
culus is decidable. The modal systems T. S4 and S5 can also be turned 
into non-monotonic theories by interpreting their modal M ("possi
ble") as M above.1 For proof procedures. semantics. and completeness 
results see [21]. 

These desirable formal properties aside. let me mention a com
monality of these and other extensions: first. the definitions for "prov
able" and "consistent" are not constructive [5] and second, non
monotonic modals (such as M above) may not completely capture their 
intended meaning [24]. To finesse, in McDermott's approach M is part 
of the language, whereas in Reiter's approach it is a useful marker in 

1 The sharp-eyed reader will notice that the rule for M is ill-formed, but see [21). 
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non-monotonic inference rules. 

3.3. Meta-Devices 

Above we applied rule (dt) to the example where you were about to 
head for your car after work. Now try to apply rule (d2) instead. It 
could mean that you stay in your office pondering the myriad of cir
cumstances that may have conspired for the car not to be where you 
left it. Obviously, when people engage in deliberation they stop after a 
limited amount of time. In the case of a machine using predicate cal
culus the rule is definitely useless. since this system is undecidable. 
For real applications, as for people, the following rule therefore seems 
more plausible: "If A cannot be proved within some allocated amount 
of time, then conclude B :· A generalization of this rule has been 
implemented in the KRL system [4.35] as: 

• If all resources are exhausted before A is proved, assume A is 
false. 

The rule applies when a number of inference processes occur simultane
ously (e.g., as in human perception [26]). With this rule we have come 
to a point where one moves outside the logical theory. Thus it may 
become impossible to make formal statements about the behavior of 
such a system. Fortunately there are ways to introduce a meta-device 
without loss of rigor. A classic example can be found in the work of 
Weyhrauch [34]. who provides a general framework in which non
monotonic inference rules are part of a first-order meta-theory having 
the object theory as its domain. A third meta-system I want to men
tion actually comprises a whole class of so-called reason maintenance 
systems, which will be studied in the next section. 

3.4. Reason Maintenance Systems 
Suppose we add the following axiom to (1) and (2): 

(x) CanFly (x)-+ Has Wings (x) (4) 

so that in addition to (3) also 

Has Wings (Tweety) (5) 

is inferred. If after this it is stated that Tweety is an ostrich. not only 
(3) must be retracted, but also everything that depends on (3), in this 
case (5). But an ostrich has wings after all, say because: 

(x ) Bird (x ) -+ HasWings (x ) (6) 

so that (5) must not be retracted. We may want to replace (4) by a 
non-monotonic rule since, although planes have wings too, Superman 
does not. It will be clear from the examples that in a more serious 
application most of the time would be spent propagating changes 
through the database. This is particularly the case for artificial 
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intelligence systems. where most problem solvers are forced to reason 
with inconsistent or incomplete information. How. then. can this prob
lem be solved? 

In the example above. the difficulty was to know which conclu
sions were affected in order to know which to retract. We had to 
retrace the inferences mentally. This would have been much easier had 
we remembered for each conclusion the inferences on which it was 
based. This observation is half of the solution that a reason mainte
nance system presents. Fikes [11] kept track of derivations in the 
STRIPS system. and Stallman and Sussman [30] used a similar tech
nique for electronic circuit analysis. A full solution was first proposed 
by Doyle [6] with his TMS (for Truth Maintenance System). TMS is 
used in relation to a database. to which it is invisible. Every assertion 
entering the data base is represented by a node. A record is kept of the 
dependence of nodes on inferential steps. i.e .• the justiftcanons of a 
node. This way the inference steps can be retraced to maintain con
sistency in a system. An assertion that is believed is called IN. 

An assertion that depends on the fact that another assertion is not 
believed (i.e.. is OUT). is called an assumption. For example. one 
assumes that a bird :O.ies as long as there is no reason to believe that it 
is an ostrich or a penguin (a so-called OUT-justifier). A justification is 
valid if all its IN-justifiers are IN and all its OUT-justifiers are OUT. 
A node is IN if it has at least one valid justification. Now it is easily 
seen how a new assertion will affect the network. Believing an asser
tion that was not believed before· means that the node representing it 
will come IN. Every node that has this node as OUT-justifier will now 
go OUT, propagating onwards. (Later in this paper I will give an ela
borate concrete example.) This so called data-dependency backtracking 
takes place on the initiative of the database manager. and the same 
component is responsible for deciding what is inconsistent. 

Two classes of reason maintenance systems can be distinguished 
in the literature. depending on what is recorded during the inference 
process. The justification-based systems. of which TMS is an example, 
record with each assertion the assertions that directly originated it. 
Assumption-based systems (e.g .• de Kleer's ATMS. [16]) record the 
hypotheses (i.e .• the non-derived assertions) that ultimately originated 
it. The latter systems have many advantages over the former in terms 
of efficiency and they have been implemented in some advanced expert 
systems. TMS in its pure form has the advantage that the database 
manager can read off the dependencies to explain to the user why an 
assertion is believed. The two techniques have been combined to pro
duce a control strategy that is more efficient than either one alone [17]. 
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3.5. Reasoned Assumptions 
What has been said so far about reason maintenance and non
monotonic logic can be unified nicely using the concept of a reason. 
The reason for believing C in the presence of A and in the absence of 
B will be denoted as: A II B II- C : cf. [7]. This is called a simple rea
son, where A. B and C can be interpreted as sets of potential beliefs. 
In a reason maintenance system A and B represent the IN- and OUT
justifiers for C. In a non-monotonic logic. a reason represents the 
default reason if we take B to be of the form -.c (the set containing 
the negations of the elements in C ). There are two other special cases 
worth mentioning: If B is empty (0). the inference from A to C is 
like an ordinary implication. If B has the form "Defeated (R )", the 
reason R is called defeasible, i.e., use of the reason has been ruled out. 
Now, given a set of reasons, what collection of beliefs do we want to 
admit as justified by these reasons? In the monotonic case (all of the 
B ·s are empty) the deductive closure would be appropriate. Indeed, 
for the non-monotonic case a closure can be defined analogously. An 
example may illustrate what will happen. Suppose we adopt the rea
sons that. unless there is evidence to the contrary, Quakers are 
pacifists. and Republicans are not. I.e .. 

Quaker (x) II -.Pacifist (x) II- Pacifist (x) 

Republican (x) II Pacifist (x) II- -.Pacifist (x) 

(omitting the curly set brackets for the moment). Let us further 
instantiate one individual N (e.g .• Nixon), who is both a Republican 
and a Quaker. On the basis of these axioms two sets can be derived: 

{Quaker (N ).Republican (N ).Pacifist (N )} 

{Quaker (N ).Republican (N ). -.Paci/ ist (N )} . 

This shows that the closure in this case has two fixed points: they are 
called the admissible extensions of the reasons. It is important to real
ize that there is no good reason to prefer one over the other. No logical 
one, that is. In reality people will have a preference. but that will be 
on psychological grounds. With this observation we have arrived at an 
appropriate point to stop discussing the logical approaches to non
monotonic reasoning and start studying how people actually behave in 
what theoretically may be a choice situation. The source for this study 
is a set of psychological experiments. 
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Part B: A Psychological Excursion 

4. A Case for Non-Monotonic Reasoning in Humans: 
"Debriefing" after Deception Experiments 

A speaker at a conference may be heartened afterwards by someone 
from the audience who congratulates him for his interesting and clear 
exposition. If later he finds that this person mistook him for a poten
tial referee. his self-esteem may decline again somewhat but it will 
probably not sink all the way back to its original level. In contrast to 
the AI examples of belief revision, people are often reluctant to adjust 
their opinion after the original evidence is discredited. This 
phenomenon has received special attention in connection with psycho
logical experiments in which subjects are deceived about the true 
nature of the setting, and are later .. debriefed" about the manipulation. 
The dramatic observations in Milgram's [23] study are a case in point. 
In this experiment, a subject, thinking he participates in an experiment 
on the effects of punishment on learning. has to administer increasingly 
more intense shocks to another subject who is actually a stooge.2 After 
the experiment the subject must be convinced that the information was 
fraudulent, i.e .. he must be dehoaxed. Sometimes, the subject's feelings 
about himself (e.g.. due to having behaved unethically) must be 
altered. This aspect concerns the subject's behavior, which cannot be 
refuted. Dehoaxing on the other hand. concerns the experi1112nter's 
deception. For this aspect, conclusions accepted earlier during the 
experiment can be disproved. 3 Therefore, in the context of non
monotonic reasoning the dehoaxing aspect of debriefing is the more 
appropriate one to study. 

4.1. Experiments on Dehoaxing Per Se 

The aspect of dehoaxing would be difficult to isolate from the experi
ments, since these differ greatly in the nature and degree of deception. 
Fortunately enough. many experiments have been conducted on 
dehoaxing per se. employing different designs. different domains. and 
varying degrees of external validity. A sample of representative stu
dies is summarized in Table 1. As the paradigmatic example I will use 
an experiment by Ross. Lepper. and Hubbard [28], which was very 
carefully designed and has been replicated many times. In it, the sub
ject was presented with cards containing pairs of suicide notes. She 
was told that one note in each pair was genuine, the other bogus, and 

2 The reported traumatic effects on the subjects evoked considerable concern about experi
ments that may involve harmful after-effects [3], and more attention came to be paid to 
debriefing (15,31]. 
3 E.g., when electrodes have been attached, dehoaxing can be achieved by showing the sub
ject that the wires did not lead anywhere, or as in Milgram's case by a friendly reconcilia
tion with the "victim". 
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Perseverance 
Source Domain Deception Debriefing after 

information discrediting 
Valins Swatches slides heartbeat audi- sound tape was S prefeis "rein-
1966 taken from ble feedback, prerecorded forced" slides 

Playboy Maga- changing rate 
zine with some 

slides 
Waister S fills out a high ( vs. low) no such test ex- S rates herself 
et al. ''Social Apti- scores are re- ists as similar to 
1967 tude Achievo- ported person with 

ment Test" high (low) 
score 

Holmes Instructions on (no shocks are experimenter arousal remains 
1973 tape informs S administered) interrupts and 

he will receive tells electrode is 
electric shocks fake 
during subse-
quent period 

Ross et S discriminates report of sue- ratings were S rates herself 
al.1975 authentic from cess (vs. prepared in ad- according to 

unauthentic failure) vance original feed-
suicide notes back 

Anderson S examines re- data suggestive data on ability S perseveres in 
et al. lationship of positive ( vs. are manufac- estimates for 
1980 between risk- negative) rela- tured new cases 

taking and sue- tionshlp 
cess as 
firefighter 

Jennings A blood drive: one reacts posi- both con- S predicts next 
et al. S has to per- tlve ( vs. unin- federates, other ten calls will be 
1981 suade two other terested), other "apparently a success ( vs. 

students to par- doesn't pick up failed to keep failure) 
ticipate line free". 

Caretta 1972 voters for (not applicable) Watergate hear- Nixon voters 
et al. Nixon were ings retain positive 
1982 selected ( vs. feelings 

McGovern 
voters) 

Table 1. A representative selection of experiments on debriefing, with 
an approximate account of the setup. "Vs." indicates, where applicable, 
the success vs. failure manipulation. "S" refers to the subject. 

she was asked to indicate the genuine one. In addition she was 
informed about the average score in a pretest. The subject received 
false feedback indicating success or failure after each card. After com
pletion of the task she was informed that the feedback had been deter
mined prior to the experiment, and that it was not related to her actual 
performance (this was called outcome debriefing). Nevertheless, the 
greater the apparent initial success, the higher she estimated her scores 
for past and future performances. In short, subjects showed a 
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substantial perseverance of the initial, erroneous impressions. Only 
after the process underlying the perseverance was explicitly discussed 
was the initial perception abandoned (the process debriefing). 

Ross et al.'s explanation for the phenomenon has essentially two 
parts. The first part stems from the literature on attribution theory: 
An individual who witnesses a surprising (or extreme) outcome gen
erates (searches for) confirmatory evidence capable of explaining the 
observed outcome. Second, if the original evidence for the outcome is 
removed, these antecedents may survive to give independent evidence 
for the outcome. For example, a subject may attribute her success on 
the discrimination task to the fact that she was once personally 
acquainted with a suicide victim. 

It may be argued that Ross et al.'s experiment does not in itself 
prove the presence of self-generated confirmation-biased evidence. 
Independent support for its presence has been found in various ways, 
however. For example. enhancing the possibility of producing such 
evidence increases perseverance [1]. An even stronger test is to prevent 
the subject from engaging in explanations. This has been done using 
interference: e.g., in a task similar to that of Ross et al.'s experiment, 
Fleming and Arrowood [12] made subjects count backwards from 200 
by 3 between feedback and outcome debriefing. In a variant of Valins' 
[32] heartbeat feedback experiment (see Table 1). Barefoot and Straub 
[2] reduced the exposure time of the slides substantially. In both cases 
no perseverance effect could be established. 

5. A Model for the Process of Debriefing 

5.1. Debriefing Modeled Using TMS 

To introduce the model for Ross et al.'s experiment I will use TMS. the 
reason maintenance technique discussed earlier. The debriefing experi
ment is depicted in Table 2 with the different stadia in terms of TMS. 
Node b represents that the experimenter's assertions are believed as 
long as it is not believed that the other person is lying. H the latter 
belief comes IN. the assumption will go OUT (is not believed 
anymore). 

The subject starts out with no particular beliefs about the task. 
When the experimenter says the subject has performed well (c), she 
infers that this is the case (b). From this she generalizes to the belief 
that she is generally good at recognizing real suicide notes (a). This can 
be probed. e.g .. by asking a subject how she would score in the future, 
or how she thinks she compares to other subjects. At the same time 
she generates confirmatory evidence (e), which comes IN. This evi
dence itself is an additional justification for belief a. 

The debriefing takes place by informing the subject about the 
deception d. Since b depends on d being OUT. b goes OUT when d 
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beginning after after 
BELIEF depen- of after outcome process 

dencies experiment feedback debriefing debriefing 
IN OUT INOUT IN OUT IN OUT 

a. I am good at this kind of task b,l 0 0 0 0 
b. I performed well on this task C d 0 0 0 0 
c. E said I performed well 0 0 0 0 
d. E provided bogus information 0 0 0 0 
e. [self-generated confirmatory C 0 0 0 0 

evidence] 

Table 2. The debriefing experiment by Ross et al. The columns labeled 
"dependencies" show how beliefs depend on other beliefs. The dots 
represent the status of the assertion on the same line. 

comes IN. But when asked. the subject will still believe a, on the basis 
of the independent support e. The process debriefing consists of an ela
borate discussion of the perseverance phenomenon itself. The subject 
becomes aware of the self-generated confirmatory evidence she used, 
and leaves this out of the argument. i.e .• e goes OUT, and as a conse
quence a goes out as well. 

There is more to say about factors that are conducive to belief 
perseverance; see e.g .• [29]. Keeping things simple however, consider a 
variation of the experiment by Ross et al. One could start the system 
with d IN. In other words, the subject is told in advance that feedback 
will not be genuine. What will happen? We will come back to this 
after I have taken a closer look at the states of belief involved in the 
experiment. 

5.2. States of Belief as Admissible Extensions 
The model developed so far describes the intended behavior (i.e., in the 
Ross et al."s experiment) by showing how the subject gets from one 
state of belief to another. To ensure that the system represents the 
intended model. however. it must also rule out behavior not found in 
(or falsified by) the experiments. A way to find this out is by examin
ing what belief states the system is capable of generating. To this let 
us describe the dependencies from Table 2 as a set of reasons R 
(indexed by consequent): 

R = {ra1,ra2,rb,rc,rd,re} 

with 

ra1 = b 110 II- a 
re= 011011- c 

ra2 = e 110 II- a 
rd= 0 11011- d 

rb = c II d II- b 
re= c 11011- e 

Computing the closure (e.g .. [10]) R • of R gives two extensions: 

Ri = R U {a,b,c,e} 
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R2 = R U {a,c,d,e} 

which are precisely the statements believed before and after debriefing. 
Now. where does the process debriefing come in? Statement a perseveres 
via re ,re and raz• At least one of these reasons is apparently attacked 
by E (the experimenter). Reason re cannot be refuted since c is a fact. 
So, by discussing the perseverance process itself. the experimenter 
either defeats re, or raz• Let us first assume the former. This can be 
formalized by rewriting re (and R changing accordingly): 

rel= c II Defeated (re1) II- e 

rez = 0 II 0 II- Defeated (re 1) 

Now. in addition to Ri and R2. two new extensions result: 

Rj = R U {a,b,c,Defeated (re1)} 

RJ = R U {d,c,Defeated(re1)}. 

where R4 gives the belief state after process debriefing. Rj shows the 
efficacy of the process debriefing. i.e .. as measured by the subject's pred
iction of her future performance on a similar experiment. Another 
interpretation is that a subject may be forewarned not to generate 
confirmatory evidence. i.e., to have re 2 ready in advance. A natural 
setting where this could occur is the courtroom. Indeed. in such a 
situation subjects are much easier to debrief. (E.g .. in an experiment by 
Hatvany and Strack [14] two civil court cases were staged. in which the 
credibility of the key witness was manipulated.) Independent support 
to propose re 1 and rez stem from the experiments with an interference 
task. The interference effectively blocks the generation of confirmatory 
evidence, or formally. defeats re 1. In this case Rj and R4 represent the 
states of belief before and after outcome debriefing in the interference 
task. Now re 1 and rez have been sufficiently justified, it remains to dis
cuss the role of raz• It could be that this reason is defeated during pro
cess debriefing, although this cannot be ascertained on the basis of the 
experimental evidence currently available. In any case. it can be for
malized in a manner analogous to our treatment of re above. 

5.3. The Model is Neither too Weak Nor too Strong 

Since the model proposed above is based on an existing formalism for 
non-monotonic reasoning. I want to relate it to a criticism that has 
been advanced concerning such formalisms. Recently. Hanks and 
McDermott [13] questioned whether these formalisms produce the 
expected results. They provide axioms for a simple problem (the .. Yale 
shooting scenario") and show that a well-established technique (c.q. 
predicate-circumscription) produces not only the intended extension. 
but in addition one that is counter-intuitive. Now. whereas Hanks and 
McDermott could have chosen between attacking either the axioms or 
the inference technique. they chose the latter. For this reason. in the 
section above I generated all the extensions of the proposed axioms for 
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the Ross et al. experiment. and checked if they indeed belonged to the 
states of belief I wanted to model. They did. So the model is 
guaranteed neither too weak. nor too strong in generating states of 
belief. Yet. a moment of reflection will show that this is not enough to 
ensure the same holds for the intended behavior. i.e .• for the sequence 
of states. To see this. suppose in the Ross et al. experiment the subject 
is briefed in advance that the feedback will not be genuine. That is. we 
start in Table 2 with d IN. Following through the experiment we will 
see that the same behavior ensues as before. In other words. the sub
ject believes she performs well on the experiment even knowing before
hand that the feedback is bogus. This surely runs counter to our intui
tion. A similar reasoning as in the "shooting scenario" therefore leads 
us to believe that our model. as defined by R. is too weak (it predicts 
unintended behavior). Yet. let us stay in the vein of this paper. and 
see if the prediction can be tested. In fact this has been done already 
by Wegner. Coulton and Wenzlaff [33] who briefed the subjects in 
advance with the same words that were used by Ross et al. during 
debriefing. They found the same perseverance phenomenon. on the 
basis of which they rejected the theory of Ross et al .• and formulated a 
principle of transparency of denial. This principle basically says that 
when people encounter denied information. that information is avail
able despite the denial. However. in their experiment Wegner et al. tell 
the subject in advance that the information she will obtain is false, i.e .• 
the information is not available at that time. In my opinion it is not 
necessary to introduce a new principle. Using our terminology. Wegner 
et al. seem to think they defeat reason re 1, whereas in fact they pro
duce d, so that b cannot be derived but c can. Whichever may be the 
case. the experiment confirms the counter-intuitive behavior predicted 
by our model. 

6. Degree of Belief 
After the painstaking analysis of the debriefing phenomenon, I would 
like to add one last refinement to the model. Since in the dehoaxing 
experiments subjects are often asked to rate their beliefs in certain 
statements, it is justified to ask how such a measure can be modeled. 

6.1. Iterated Retraction 
Let me go back for a moment to the paradigmatic example of Tweety. 
Suppose the :first thing one learns about Tweety is that it is an ostrich: 

Tweety is an ostrich. Tweety is a bird. Tweety cannot fly. (1) 

And there is nothing more to infer, nor to retract. To be sure this 
won't happen, let me start with another Tweety, who is a canary. So 
(since canaries are birds and birds can fly. canaries can fly) we get: 

Tweety is a canary. Tweety is a bird, Tweety can fly. (8) 
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But suppose we learn that 

Tweety broke his wing 

E. Hoenkamp 

upon which we have to retract (8). and infer (7) again. Some time 
later we come to know that 

this happened last summer 

and we retract (7) again. Later we learn that 

it happened again last night 

(and so on). 

By now, most people would be inclined to hedge their bets. The 
belief that Tweety can fly turns out to be graded, and this degree of 
belief drops when the original assumption is reinstated. It is very 
tempting to introduce some scheme for evidential reasoning at this 
point, probabilistic. possibilistic. or otherwise. The problem is: where 
do these numbers come from? In expert systems it is customary to 
have numbers attached to derivations through which certainties of 
data-items are propagated, but there is little theoretical justification for 
this. Some researchers have tried to fight this ad hoc approach. For 
example, Nilsson [25] introduces a probabilistic logic based on a possi
ble world semantics. Broadly speaking. he takes as the probability of a 
sentence the proportion of the possible worlds in which the sentence is 
true. This resembles Doyle's [7] suggestion that these numbers (e.g .. 
subjective probabilities) do not enter into the computation directly but 
into the observation of the computation. 

For the degree of belief in a statement. I take a strictly decreasing 
function on the size of extensions. That is, extensions of equal size are 
equally likely, larger ones are less likely. Here is an example of such a 
function DB for an extension E in the set of extensions R* (cf. [8]): 

DB(E IR*)= 2-IEI/N 

where N normalizes the function's range to [0,1]. For the DB of a 
statement a with respect to the underlying set of reasons, a sensible 
choice could be to sum the DB s of the extensions that contain it: 

DB(a IR*)= r, DB(E IR*) 

During the processing of the example about the canary in the beginning 
of this section, there was a change in degree of belief upon every new 
input. To model a similar change in Ross et al.'s experiment, I propose 
to compute the DB with respect to the extensions the perceiver is 
aware of at the moment she has to do the rating. This is the topic of 
the last section. 
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6.2. Change in Degree of Belief During the Experiment 

Let us apply the last section to Ross et al.'s experiment. In the situa
tion after outcome debriefing. the subject has produced Ri and R2. 
which are of equal size. Thus. since statement a ( .. I am good at this 
kind of task") is in both extensions. it has 1 as degree of belief. After 
process debriefing. R4 is produced. in which a is not believed. so that 
the belief for a will drop. As a final example and to make my proposal 
more vulnerable to experimental verification, let me speculate about an 
experiment that to my knowledge has not yet been conducted. After 
going through the original experiment one could debrief the debriefing. 
i.e .. inform the subject that the feedback had been genuine all along. If 
we amend the rules accordingly the end result is that the new exten
sion contains b but not a (which is no longer supported by any self
generated confirmatory evidence). To get an indication of the degree of 
belief I used the belief function DB defined in the last section. It 
should be very clear that numbers produced this way can only give an 
indication of trend. At this stage there can be little evidence as to 
what extensions the subjects will actually perceive or how large these 
sets might be. For example. in the model I lumped together all 
confirmatory evidence. whereas subjects. when asked. may generate 
several reasons for success or failure [12]. In addition the DB function 
is one of the simplest one can think of. With these reservations. some 
results can be reported: (1) The values for a; the rated ability at the 
task. The simulated numbers show the same trend found in all the 
debriefing experiments. After the last stage of the imaginary experi
ment the value levels off. i.e .• the subject will consider herself no better 
or worse than average. (2) The value fore. the confirmatory evidence. 
This value declines after process debriefing. as it should, but there is a 
notable residue. After the last step of the imaginary experiment the 
value reduces to almost zero. (3) One may wonder why the subject 
should continue trusting the experimenter after the first deception. 
The values for d ( .. E provides mock information") reflect a steeply 
ascending suspicion on behalf of the subject. Although in the past 
great care has been taken to improve the face value of the dehoaxing. 
the simulation seems to make a further investigation into this factor 
worthwhile. 

7. Conclusions 

An overview was presented of a lively area in the foundations of 
artificial intelligence. namely that of non-monotonic reasoning. As it 
turns out. the formal approaches proposed to date fail to explain why 
people prefer particular extensions in the set of extensions allowed by 
the postulated logical theories. The current paper proposed a process 
model that describes how such preferences come into existence and how 
they change. The model also describes formally why people cling to 
their initial beliefs more strongly than appears warranted. The new 
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results prove the value of focusing on how people actually behave in a 
wide variety of experimental settings where change of belief is called 
for. 

Ackrwwledgements: I am grateful to Anthony Jameson, Eric Meyer and 
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