

CW& Tracts

Managing Editors

J.W. de Bakker (CWI, Amsterdam)
M. Hazewinkel (CWI, Amsterdam)
J.K. Lenstra (CWI, Amsterdam)

Editorial Board

W. Albers (Maastricht)
P.C. Baayen (Amsterdam)
R.T. Boute (Nijmegen)
E.M. de Jager (Amsterdam)
M.A. Kaashoek (Amsterdam)
M.S. Keane (Delft)
J.P.C. Kleijnen (Tilburg)
H. Kwakernaak (Enschede)
J. van Leeuwen (Utrecht)
P.W.H. Lemmens (Utrecht)
M. van der Put (Groningen)
M. Rem (Eindhoven)
A.H.G. Rinnooy Kan (Rotterdam)
M.N. Spijker (Leiden)

Centrum voor Wlskunde en Informatica
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

The CWI is a research institute of the Stichting Mathematisch Centrum, which was founded
on February 11, 1946, as a nonprofit institution aiming at the promotion of mathematics,
computer science, and their applications. It is sponsored by the Dutch Government through
the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

CWI Tract

Essays on concepts,
formalisms, and tools

editid by
P.R.J. Asveld
A. Nijholt

42

Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

1980 Mathematics Subject Classification: 68-02, 68-03, 68B05, 68C01, 68C05, 68C20,
68C30,68C40,68O22,68O25,68O35,68Fxx,68F05,68F10,68F20,68F25,68G15,68G99.
1983 CR Classification Scheme: 0.1.2, 0.1.4, 0.2.2, 0.3.1-4, F.0, F.1.1-3, F.2.2, F.3.2-3,
F.4.0-3, G.1.0, 1.1.1-2, 1.2.3, K.2.
ISBN 90 6196 326 5
NUGl-code: 811

Copyright© 1987, Stichting Mathematisch Centrum, Amsterdam
Printed in the Netherlands

Essays on Concepts,

Formalisms, and Tools

A Collection of Papers Dedicated
to Leo A.M. Verbeek

iii

P R E F A C E

The papers in this book are dedicated to Leo A.M. Verbeek, professor of
(Theoretical) Computer Science at Delft University of Technology
(1968-1974) and at Twente University of Technology (1974-1987).
Each of the authors has had the privilege to spend part of his scientific
life in the stimulating atmosphere created by Leo Verbeek. Students.
Ph.D. students, assistants. and colleagues have had the opportunity to
benefit from his attitude and integrity with respect to teaching.
research, and human relations.

Unfortunately. not everyone who has been associated with
Leo Verbeek could contribute to this volume. They could, however.
attend the symposium held on the occasion of his retirement on
October 16. 1987 at Twente University. Some of the papers in this
book have been presented at this symposium.

The editors are indebted to the Centre for Mathematics and Com
puter Science at Amsterdam, and in particular to its Publication
Department, for the timely and fine technical realization of this
volume.

August 1987

Peter R.J. Asveld, Enschede, The Netherlands

Anton Nijholt, Brussels, Belgium

C O N T E N T S

Introduction 1
P .RJ. Asveld & A. Nijholt

From Mechanical to Theoretical - Aspects of the Origins of 9
Theoretical Computer Science

A. Nijholt

Generating Strings with Hypergraph Grammars 43
J. Engelfri,et

Modular Tree Transducers 59
H. Vogler

Nonterminal Separating Macro Grammars 77
J.A. Hogendorp

Complexity Aspects of Iterated Rewriting - A Survey 89
P.RJ. Asveld

On Covers and Left-Comer Parses 107
HJ.A. op den Akker

Programming Language Concepts - The Lambda Calculus 129
Approach

MM. Fokkinga

A Representation Principle for Sets and Functions 163
J. Kuper

Unifi.cation - An Overview 183
R. Sommerhal.der

The Relation Between Two Patterns with Comparable 205
Languages

G. File

Attributed Abstract Program Trees 217
H. Alblas & F J. Faase

Program Generation through Symbolic Processing 231
J.A. van Hulzen

Non-Monotonic Reasoning in Man and Machine 261
E.Hoenkamp

V

INTRODUCTION

Peter R.J. Asveld

Department of Computer Science, Twente University
P.O. Box 217, 7500 AE Enschede, The Netherlands

Anton NiJbolt

Facul,ty of Sciences, Free University of Brussels
Pl.einlaa.n 2, 1050 Brussels, Belgium

Formal Approaches
Although the papers in this book cover a broad range of topics, they
possess a common theme: there is no area in Computer Science which
does not benefit from a formal approach to its methods and concepts.
Formal approaches in Computer Science require the separation of an
abstract model from a concrete application and from particular imple
mentation issues. This separation enables computer scientists to study
and prove properties of the model and to share or borrow other work
using the same or similar models.

The following aspects of modeling a subject matter can be dis
tinguished:

• select or construct a model (or theory) and give an account of the
domain to be modeled (i.e .• its concepts and processes) in terms of
the model; assess its adequateness

• modify - i.e .• extend, restrict, or take a different level of abstrac
tion - the model to grasp as much as necessary, in the best possi
ble manner

• study the properties of the model and its modifications in order to
obtain insight in its (descriptive) power and its limitations; this
insight is useful for assessing its adequateness and it provides
insight about the subject matter

• once a formal description of a process - in terms of a particular
model - has been obtained, then it can be used to build programs
that facilitate the building or that allow the generation of (parts
of) programs for the handling of these processes by a computer

Concern for precision leads to formalization. Formal descriptions can
be viewed as completely formal objects that can be studied, having

1

2 P.R.J. Asveld & A. Nijholt

representations which can be manipulated.

This book contains a collection of papers in which these different
aspects of modeling subject matters can be recognized. Most papers in
this volume deal with "artificial" situations. Their subject matters are
human-defined or human-constructed languages and systems. The
authors introduce and study formalisms. show how a subject matter
can be modeled, or discuss the building and usefulness of tools for the
generation of programs that facilitate the writing or processing of user
programs. Ultimately, the introduction and study of the formalisms
that are discussed in these papers have been inspired by practical con
siderations. Practical considerations may lead to intriguing theoretical
problems. In some contributions to this book the authors concentrate
on these theoretical problems and they accept that no foreseeable prac
tical application of the results of their investigations can be given.

Each paper in this book will be discussed in some detail below. It
is useful to introduce this book with some short remarks about each
paper. Nijholt's paper is in fact a historical survey of attempts to go
from intuitive methods, through a process of abstraction, refining and
borrowing from other fields. to model-based methods in the area of
(artificial) language description and manipulation. This paper is fol
lowed by a series of papers devoted to topics in some subfields of
(Theoretical) Computer Science, or to topics and approaches which
illustrate the aspects of modeling subject matters that have been men
tioned above. As mentioned earlier, most papers deal with the model
ing of "artificial" situations. i.e., what is studied and modeled are
human-defined or human-constructed systems. Hoenkamp's paper is
an exception, since it is concerned with an attempt to develop a realistic
model for aspects of a human activity. viz. human reasoning. Engel
friet, Vogler, Hogendorp, and Asveld study properties of transducers
and rewriting systems which have been introduced as models for
describing aspects of languages and their processing by programs. Op
den Akker studies and tries to formalize issues that rise when
context-free grammars are used to model programming languages. It is
an example of a theoretical paper based on observations on the world
of compiler construction. Fokkinga takes concepts that can be recog
nized in actual programming languages and maps them into equivalent
ideas in a mathematical formalism - the lambda calculus - to study
these concepts. On the other hand the work of Kuper deals with some
fundamental aspects of the lambda calculus itself. Sommerhalder
presents in his contribution a summary of unification algorithms which
are relevant in modeling the implementation of (logic) programming
languages. File's paper addresses some decidability questions about
properties of a formalism introduced to model aspects of inference
making. Finally, the contributions of Alblas & Faase and of van
Hulzen discuss the development of tools which generate parts of pro
grams. There are, however, important differences. The work reported

Introduction 3

by van Hulzen fits in the tradition of offering programmers an environ
ment which facilitates the construction of software. Alblas & Faase's
work is a contribution to the development of formalisms with which
one describes the process of converting a completed program into an
appropriate sequence of machine instructions. The ultimate aim of
these formalisms is to obtain efficient programs that convert language
specifications into a compiler.

We conclude this introduction to this collection of papers with a
short exposition of each of the contributions.

Summaries of the Papers
The first contribution to this book, From Mechanical. to Theoretical. -
Aspects of the Origins of Theoretical. Computer Science by Anton
Nijholt, is a survey paper on those aspects of early Computer Science
from which Formal Language Theory and Theoretical Computer Science
emerged. The emphasis in this paper is on the early attempts to for
malize the description of programming languages and to delegate the
conversion from program to machine instructions to the computer.
Observations on the relation between BNF and Chomsky's phrase
structure grammars are followed by a presentation of Knuth's
attempts to characterize the generative power of BNF and his generali
zation of Iron's method of syntax-directed translation to attribute
grammars. The paper continues with some views on the early develop
ment of Theoretical Computer Science and the developments of its
subfields. The emphasis is on formal language theory and the relation
with its domains of application and it is argued that the approaches in
this subfield of Theoretical Computer Science have set an example for
the other and more recent subfields. The author's exposition is con
cluded with some contemplative remarks on the interaction between
theory and practice in Computer Science.

The next paper, Generating Strings with Hypergraph Grammars.
by Joost Engelfriet investigates the string-generating power of
context-free hypergraph grammars. (Hyper)graph grammars constitute
an obvious generalization of string grammars. Formal definitions of
context-free hypergraph grammars and their string languages are
presented and well-known families of string and tree grammars are
viewed as hypergraph grammars. In addition some useful relationships
with the set of dependency graphs of derivation trees associated with
attribute grammars are established. The author presents characterim
tions of the string languages generated by the context-free hypergraph
grammars in terms of tree-to-tree string transducers (deterministic
tree-walking transducers) and 2-way deterministic finite state trans
ducers.

In Modul.ar Tree Transducers, Heiko Vogler defines operations on
trees with the help of tree transducers. Often, in practical applications,

4 P.R.J. Asveld & A. Nijholt

these operations are naturally defined in a structural recursive and
modular way. Vogler gives some examples of these operations and
argues that existing formal models such as (generalized) syntax
directed translation schemes. attribute grammars and top-down tree
transducers do not reflect both the recursive and modular aspects of
these tree operations. Therefore he introduces a new formal device: the
modul.ar tree transducer. After illustrating the adequateness of the
model. its relationships with other. already existing. models are inves
tigated and some formal properties are established.

Jan Anne Hogendorp generalizes in Nonterminal, Separating Mo.cro
Grammars some structural definitions. originally introduced for
context-free grammars. to macro grammars. Then he establishes a few
characterization results for these macro grammars which are inspired
by and similar to corresponding known results for context-free gram
mars.

Peter Asveld summarizes in Complexity Aspects of Iterated Rewrit
ing - A Survey a number of results with respect to the complexity of
the membership problem of some quite abstract grammar models. Ori
ginally. these abstract grammars have been defined as a generalization
of some rewriting systems introduced in developmental biology where
they serve as a model to study filamentous growth. Because these
abstract grammar models are so general. decidability of and complexity
bounds on the membership problem are of primary concern.

Rieks op den Ak.ker's paper On Covers and Left-Gomer Parses
takes the reader to the area of parsing theory and transformations on
context-free grammars. Often the objective of transforming a grammar
is to obtain properties which make the grammar more amenable to cer
tain parsing methods. However. there may be reasons to retain the
syntax of the original grammar. Hence. after parsing its result should
be given in terms of the original syntax description. These ideas have
been modeled with the concept of cover. Op den Ak.ker introduces a
transformation with some desirable properties which allows the
definition of a cover between the transformed and the original gram
mar. In addition. the transformation has the property that it yields an
LL (k) grammar if and only if the original grammar is LC (k). The
traditional cover concept can be viewed as expressing a semantically
useful but nevertheless syntactic similarity relation between context
free grammars. In the final section of the paper the question is raised
how to generalize this relation to one between attribute grammars.
This would allow. for example. attributed variants of transformations
for left factoring, for the elimination of left recursion, and for
transforming one class of deterministically parsable attributed gram
mars to another class of deterministically parsable attributed gram
mars. Existing approaches are discussed and suggestions are presented.

Introduction 5

In the contribution Programmi,ng La.nguage Concepts - The
Lambda Cal.culus Approach Maarten Fokkinga shows the benefits of
expressing program.ming language concepts in the framework of
Church's lambda calculus. Once expressed in this formalism, the pro
perties of a programming language concept can be studied without
reference to a particular programming language. Obviously. such a
study may prove useful for the design of new programming languages
and for a correct understanding of present programming languages.
Fokkinga illustrates the significance of the lambda calculus for this
study by expressing a variety of programming language concepts in this
calculus or its extensions. Readers who are not familiar with the
lambda calculus do not have to worry since it is introduced as a simple
programming language with a clear syntax and semantics. Once this
has been done. syntactic and semantic abstractions of various program
ming language constructs are added to this language. This approach
allows the introduction and discussion of various useful principles for
programming language design. Much attention is paid to a description
of typing. Various theories are discussed, but the emphasis is on SVP
typing, the author's own approach to this problem.

In the next paper the lambda calculus is not used to study pro
gramming language concepts, but it becomes object of study in itself.
A Representation Pnncip1.e for Sets and Functions by Jan Kuper is a
study based on the observation that in the literature on models of the
lambda calculus selfapplication for functions is considered to be quite
normal, whereas selfmembership for sets is considered to be undesir
able. Intuitively, this distinction is strange. In order to study this dis
tinction two views on sets and functions are introduced. One view
considers them as intuitive objects, the other view considers them as
mathematical objects. The consequences of these different views for
models of the lambda calculus and for the relationship between such
models and set theory are investigated.

Unification is a well-known problem in algebra and logic. Its
practical importance increased enormously since the introduction of
Prolog and logic programming in general. In order to obtain efficient
implementations fast string unification algorithms are necessary. In
Uni,jication - An Overview Ruud Sommerhalder presents formal results
on the decidability and the complexity of unification. In addition the
problem to generate unification algorithms for various equational
theories is discussed.

In the paper of Gilberto File, The Relation Between Two Patterns
with Comparob1.e La.nguages, properties of patterns are studied. Pat
terns are strings consisting of terminals and variables. They may be
converted into terminal strings by substituting terminal strings to the
variables. Patterns have been introduced in the context of (inductive)
inference making. However. the paper is not concerned with this par
ticular application. It studies the formalism by considering a rather

6 P.R.J. Asveld & A. Nijholt

natural problem: if we consider two arbitrary patterns, is it decidable
whether the language generated from one pattern includes the other
language? This question is given a detailed treatment in which several
restricted variations of the problem are distinguished.

Henk Alblas and Frans Faase write about Attributed Abstract Pro
gram Trees. Traditionally, attribute grammars can be viewed as an
extension of context-free grammars. The grammar symbols are aug
mented with attributes and the grammar rules have associated attri
bute evaluation rules. For a given derivation tree the values of the
attribute instances at the nodes of the tree can be computed using the
attribute evaluation rules. Alblas and Faase consider attributes for
abstract program trees. In these trees information which is redundant
for further phases in the compilation process is deleted, allowing a
more compact and simplified representation. In the synthesis phase of
the compilation this representation has to be translated into the
instructions of the target machine. The ultimate goal of the authors is
to specify this translation by a stepwise application of tree transforma
tions. Their paper concentrates on the initial phase of their research:
the introduction of a formalism for the specification of the structure
and the attributes of abstract program trees.

Hans van Hulzen·s paper on Program Generation through Symbolic
Processing is on the use of a computer algebra system as a facility to
assist in the construction of programs for numerical purposes. Such an
application requires a symbolic-numeric interface to transport informa
tion from the symbol processing environment to the numeric processing
environment. After a discussion on the functioning of computer alge
bra systems and their rich variety of output features, illustrated with
the REDUCE system. some approaches to the development of
symbolic-numeric interfaces are presented. Van Hulzen mentions pack
ages and tools to construct programs using output produced by com
puter algebra systems. Special attention is paid to Barbara Gates· work
on the code GENeration and TRANslation package GENTRAN which
allows REDUCE (or MACSYMA) users to generate complete and
efficient programs for numerical purposes. The author reports on his
present work which aims at o:ff ering REDUCE users integrated facilities
for (arithmetic) code optimization and program generation.

In Non-Monotonic Reasoning in Man and Machine Edward Hoen
kamp presents a fundamental discussion on an area in the foundations
of Artificial Intelligence. namely that of non-monotonic reasoning.
Humans are able to reason with incomplete and vague information.
They have default assumptions about the domain and unless evidence
to the contrary is presented they are unaware of these assumptions
when they draw conclusions. When new information comes available
and tacit assumptions are contradicted then certain beliefs have to be
revised and earlier conclusions based on these beliefs have to be dis
carded. Hoenkamp surveys the approaches that have been taken to

Introduction 7

model these aspects of human or "default" reasoning. Traditional sys
tems of logic can not be used. When new truths. i.e. new axioms. are
added to a system then there is no reason to retract earlier conclusions.
It is this non-monotonic aspect of default reasoning which is difficult to
formalize. Some approaches that have been taken are McCarthy's
method of circumscription. the introduction of default rules in the
traditional logics. and the introduction of so-called meta-devices. A
well-known example of a meta-device is Doyle's Truth Maintenance
System (TMS). a system that supports non-monotonic reasoning by
detecting inconsistencies and by resolving them by altering beliefs. i.e.
retracting premises. By keeping track of the justifications of conclu
sions TMS can maintain a consistent database of beliefs.

In the present paper the pros and cons of these logical approaches
are discussed. One of the shortcomings that is mentioned is that the
logical approaches allow the derivation of differents sets of beliefs but
that there is no explanation why people prefer one set over the others.
In order to study this phenomenon the author turns to a set of well
documented psychological experiments in which the participants are
hoaxed. i.e. they are deceived about the true nature of the setting of the
experiment. After the experiment they are "dehoaxed ... i.e. an attempt
is made to convince them that they have been hoaxed. Hence people
are asked to change their beliefs. One of these experiments is taken to
develop a model. based on Doyle's TMS. with which the changes from
one state of belief to another can be shown. This model is then
extended to allow the handling of degrees of belief and changes in the
degrees of belief during the experiment.

From Mechanical to Theoretical - Aspects of
the Origins of Theoretical Computer Science

Anton NiJbolt

Faculty of Sciences, Free University Brussels
Pkinlaan 2, 1050 Brussels, Belgium

Some aspects of the prehistory and the background of Theoretical
Computer Science are discussed. We consider the introduction of
notations to describe dynamic processes, the change to the algo
rithmic specification of problems and the attempts to develop pro
grams to make programming easier. The impact of Chomsky's
theory of generative grammar, its reception and its relationship with
the BNF-description are discussed. Observations on formal language
theory and its development into Theoretical Computer Science con
clude this (sketchy) survey.

1. Viewing Programs as Data

Notations for Computations

During the Second World War, after having studied the work of the
logicians Frege. Hilbert, and Carnap. Konrad Zuse started to develop an
extension of the propositional and predicate calculus for the description
of problems for a digital computer. The dynamic process of computa
tion which needs to be described requires that a notation should be
given for an assignment operation. Since Zuse·s "plancalculus" had to
be mathematically exact, a notation z + 1 = z with the intended mean
ing: "The new value of z is obtained by adding one to its old value",
could not be used. Therefore the notation z + 1 ==> z was introduced.
Knuth and Trabb Pardo [34] remark that such an operation had never
been used before and they mention that the systematic use of assign
ments distinguishes computer-science thinking from mathematical
thinking. Another distinction is constituted by the formal description
of the control mechanism for a computation. In mathematics, even in
proofs, this is done informally. In the plancalculus the idea of struc
tured data was incorporated. Moreover. Zuse used to state the
mathematical relations between the variables in his programs, in this
way giving the start to a theory of program correctness. Zuse·s ideas
were hardly published and only in the seventies, when interest in the
history of computers and computing started to develop. his writings
received attention. One of the first example programs written in this
language dealt with the checking of the well-formedness of Boolean
expressions. Instead of Zuse's theoretical and logic-based approach the

9

A. Nijholt

more pragmatical approach came to dominate the development of pro
gramming languages and programming theory.

In 1945 John von Neumann wrote his "Draft Report" on the
EDV AC. In this proposal each 32-bit word was either a number or an
instruction word. In an instruction word the specific operation was
denoted by a group of adjacent bits. In this way there were instruc
tions for. among others. addition. multiplication. the transfer of the
contents of memory locations to registers, test instructions and jump
instructions. A program had to consist of a sequence of instruction
words in binary form. In a separate memorandum von Neumann
wrote a sorting program to test whether this set of instructions would
be adequate for the control of a nontrivial computation. Von Neumann
did not write the program in binary notation. Instead he used a private
notation which came close to a symbolic code. That is. instead of
presenting instruction words by 32 bits. they were presented with a
few suggestive words, mostly in a one-to-one correspondence with a
decomposition (e.g .. in operands and operators) of the binary instruc
tion words.

Most of the computers constructed after the war were patterned
after EDVAC's design and were programmed in machine code. i.e., with
binary coded instructions which operate on the contents of memory
locations and on the registers or accumulators of the computer. The
coding of a problem with such instructions is a difficult task with a
high chance of errors. Therefore symbolic or mnenwnic code was
developed, and once a program was completed it was translated into
machine language. This translation was done by humans. The next
step was to have this translation done by the computer itself and to
use (almost) conventional mathematical notation and arithmetic
expressions in these symbolic codes. H. Rutishauser in Switzerland and
the logician Haskell B. Curry in the United States were among the first
to consider and program this problem.

Machine-oriented symbolic code uses the symbolic rather than the
actual bit-addresses of the memory locations and also the operations to
be performed are given symbolic (mnemonic) names. In a simple sym
bolic code there is a one-to-one correspondence with the actual
hardware operations. Despite this improvement programming remains
a tedious task. Therefore libraries of short programs for standard
operations and frequently occurring (numerical) computations were
developed. Hence.

"All that the programmer has to do is to punch the address in
which the routine is stored into his main programme."

(cf. [6]. p. 77). Goldstine [23]. giving an account of the situation at the
Institute for Advanced Study in Princeton. remarks:

"One of the first developments in automatic programming was
introduced in the fall of 1949 on the EDSAC, where the

From Mechanical to Theoretical

conversion from the symbolic form to the machine one was
done by the computer itself. We did not work on what are
now called higher-level languages. Attention instead was
focussed on developing of libraries of programs (routines, sub
routines) that cmdd be used repeatedly to save the labour of
rewriting them many times."

11

Subroutines had names and such a name can be considered as a
macra-instruction which stands for a set of machine instructions. The
task of an "automatic coder" consists of translating the instructions of
the symbolic code into machine instructions. This coder or assembler
takes care of the assignation of machine addresses to the operand
names, machine operations to the operator names. and the proper treat
ment of the macro-instructions. Once this frame of mind has been
accepted it becomes clear that it is possible to introduce operations,
instructions, and control structures in a symbolic code. This further
reduces the necessity of knowledge of the machine code and makes it
possible that users which are only familiar with their own problems
can use the computer. Especially the need of having a way to use a
notation closer to the customary way of writing mathematical formu
lae started the departure from symbolic codes to programming
languages. One of the first computers which had this possibility was
the M.A.D.M. computer of Manchester University (Great Britain).
With their notation it was possible to describe the numerical calcula
tions (addition. subtraction. and multiplication) and the organization
of the calculations into an automatic process. For the latter 13 English
words were used. An example of a "numerical calculation" in this
description is + x + y + z + a + b -+ c . In [6] it is explained that sub
routines could be evoked by writing the word subroutine followed by a
number describing which subroutine is meant.

"By an extension of this technique it would be possible to call
for the particular subroutine by name This has not yet
been done as the gain in convenience would be too small to
warrant the trouble.''

Algebraic Compilers and Formula Translators
The more complicated '"automatic coders" which were now needed were
called compilers. A compiler was not only able to convert a simple
assignment statement with an expression, like, e.g .• a := b +c Xd into a
sequence of instructions of an assembly-like code but it also converted
computational contro.i structures and other programming constructs
into appropriate sequences of machine instructions. The building of
these compilers provided another view on the use of a computer. Until
then most of the applications had to do with the computation of
numerical results. Hence, both the input and the output of a program
consists of numbers. A compiler, however, is a program which takes as

12 A. Nijholt

input a program and generates from it another program. Grace M.
Hopper was aware of this viewpoint when she wrote one of the first
compilers. In 1949 Francis (Betty) Holberton had already written a
program which generated another program. In an interview Hopper
once remarked:

"Everyone's forgotten that Betty wrote the first program that
wrote a program, a sort/merge generator. Because she had
been ahead of me, I had a good deal, more nerve in going
ahead to "build the A-0 compiler."

In the same interview (cf. [41]) Hopper recalls another experience
which had an eye-opening effect on the Harvard staff. An insurance
company came to Harvard to run a problem on the numerically
oriented MARK I computer using digits to represent alphabetical char
acters. Hopper: "That opened up a new perspective none of us had ever
thought of." Hopper's A-0 compiler was built for the UNIVAC com
puter and it was completed in 1952. The compiler was written in the
following way:

"There sat that big beautiful, machine whose job was to copy
things and do addition. So I thought, why not let the com
puter do it. That's why I sat down and wrote that first com
piler. It was very stupid. What I did was watch myself write
a program and make the computer do what I did. That's why
it is a single pass compiler, "

The first programming codes were very close to the machine and
symbolic codes of the machines for which they were used. Also in
Germany and Switzerland, most notably by K. Zuse and H.
Rutishauser, the idea of automatic program construction (.. Automa
tische Rechenplanfertigung") was conceived. In March 1951
Rutishauser lectured on this subject at a meeting of the West-German
GAMM (Gesellschaft fiir Angewandte Mathematik und Mechanik).

The IBM 701 computer could be programmed with "Speed Code'".
developed by John Backus. For the BIN AC and UNIV AC computers a
"Short Code" was used. An interpretive routine processed each
instruction and then the necessary actions were performed. Later these
machines used the A-0 compiler which did not interpret but instead
composed a machine code program from the scanned instructions. The
A-0 compiler handled a code which hardly differed from the machine
code. Codes which allowed mathematical notation for formulae were
handled by so-called al.gebraic compilers. During the period 1951-1957
various of these compilers for specific machines were developed.
Among the earliest were the Autocode compiler of A.E. Glennie of the
Royal Armaments Research Establishment in England. written in 1952,
and the Whirlwind compiler written in 1953 by J.H. Laning and N.
Zierler of MIT (Massachusetts Institute of Technology).

From Mechanical to Theoretical 13

A milestone was the building of the first FORTRAN (FORmula
TRANslator) compiler. The work started in early 1954. The emphasis
was not on the design of a language but on the production of a com
piler for the IBM 704 computer. This machine was considered to be so
powerful that only a few of them would be constructed. In [51] one of
the designers. John Backus, remembers that in the beginning:

"We certainly had no idea that languages almost identical to
the one we were working on wauld be used for nwre than one
IBM computer, not to mention those of other manufacturers."

Hopper once remarked that programmers felt insulted when their pro
grams were treated as if they were data. The early programmers were
sceptical about obtaining efficient programs by writing in a .. high-level"
language. Hand-coded programs would run faster and would need less
memory. Their ingenuity could not be matched by a machine. There
fore. in the case of FORTRAN. the efforts were directed towards the
construction of an efficient translator rather than towards the design of
a well-structured language. FORTRAN remained close to the 704's
machine code and a compiler was constructed that produced code which
could compete in speed with that of experienced programmers. More
over. it was soon recognized that any loss of efficiency was compen
sated by an increase in the programmer's productivity and a reduction
of the training required for programmers.

FORTRAN allowed the writing of expressions in the statements of
a program. The programmer should be informed what form of the
expressions is expected by the FORTRAN compiler. Below is an exam
ple of the "syntax" specification of (mathematical) expressions as it
appears in the original FORTRAN Manual. It is borrowed from a par
tial reprint of this manual in [51].

Formal Rules for Forming Expressions. By repeated use of the follow
ing rules, all permissible expressions may be derived.

• Any fixed point (floating point) constant. variable. or subscripted
variable is an expression of the same mode. Thus 3 and I are fixed
point expressions. and ALPHA and A (I.J.K) are floating point
expressions.

• If SOMEF is some function of n variables, and if E. F,• H
are a set of n expressions of the correct modes for SOMEF. then
SOMEF(E.F, ... ,H) is an expression of the same mode as SOMEF.

• If E is an expression, and if its first character is not + or - • then
+ E and -E are expressions of the same mode as E. Thus -A is an
expression, but + - A is not.

• If E is an expression then (E) is an expression of the same mode as
E. Thus (A), ((A)). (((A))). etc. are expressions.

• If E and F are expressions of the same mode. and if the first char
acter of F is not + or - . then E + F. E - F, E x F. and E IF

14 A. Nijholt

are expressions of the same mode. Thus A - + B and A I + B are
not expressions. The characters +. - . X, and / denote addition.
subtraction. multiplication and division.

It is interesting to note the amount of detail in this specification
and, moreover, that in fact this "syntax" is presented as a generative
system (" ... by repetitive use of ... "). Moreover, the specification is
such that the .. syntactic" rules take care of the modes of the expres
sions. On the other hand. without associated rules of precedence for
the operators this set of formal rules conceived as a generative system
yields ambiguous expressions. In order to analyze these expressions
and translate them into an assembly-like language J. Backus and I.
Ziller developed a technique which inserted parentheses in the expres
sions. By Sheridan [47] the validity of their method was shown.

The programming language ALGOL. which was developed a few
years later. was not designed with a specific machine in mind. ALGOL
grew from attempts from the West-German GAMM and the ACM
(Association for Computing Machinery) of the U.S.A. to obtain a stan
dard programming language. Unlike FORTRAN. which was an
., Automatic Coding System" for the IBM 704. ALGOL was a language ,
it had a grammar and an attempt was made to have a clear distinction
between syntax and semantics. In 1959. at a UNESCO conference in
Paris, Backus presented the work of a committee on the design and the
description of this language: cf. [1]. It had its syntax described by for
mal rules, which became known as the Backus Normal Form descrip
tion of the ALGOrithmic Language ALGOL 60. In a preliminary report
of 1958 on this "International Algebraic Language" the notation did
hardly differ from that of FORTRAN. At this Paris conference, in
other sessions. work was presented on discovery procedures for phrase
structure grammars and in a session on mechanical translation V.H.
Y ngve presented the MIT programming language CO MIT which was
intended to be used for mechanical translation purposes. In a footnote
of Yngve·s paper it is mentioned that "Some of the features of the nota
tion used by N. Chomsky in his theory of grammar has been incor
porated."

2. Language as a Mathematical Object

Ma.thematics and Grammar

In the 19th and 20th century attempts to formalize mathematical
proofs led to the introduction of formal theories and formal languages
of logic. In 1879 Gottlob Frege introduced his "Begriffschrift, a for
mula language, modeled upon that of arithmetic, for pure thought .. in
order to unify and extend existing notations and the use of formal
language for reasoning in fields such as arithmetic. geometry and chem
istry. Members of the Wiener Kreis studied formal languages of logic.

From Mechanical to Theoretical 15

Church. Post and Turing introduced and studied symbol manipulating
formalisms. In 1943 E.L. Post recognized that the customary proof
systems can be considered as rewriting systems, that is, systems that
formalize the rewriting of strings of symbols in order to obtain new
strings. Post introduced a formalism consisting of an axiom and a
finite set of productions (rules of inference). Similar systems had
already been st.udied by the Norwegian logician A. Thue in 1914.
Another logician, Y. Bar-Hillel. became one of the main representatives
of the fi.eld of machine translation. Instead of using statistical and
cryptological methods he suggested the use of (structural) linguistic
methods. In 1951 Bar-Hillel wrote:

"A considerable body of descriptive data about the languages
of the worl.d has been amassed in recent years, but so far no
operational, syntax of any natural, language exists with a size
able degree of completeness, and the necessity of providing
such a syntax has apparently not been recognized by
linguists."

With this .. operational syntax" it should be possible to analyze the
sentences of a natural language. This analysis should form the basis of
the translation. Instead of having a mere word-for-word translation
this analysis should lead to a phrase-for-phrase or sentence-/or
sentence translation. Bar-Hillel discussed these matters with R. Car
nap and N. Chomsky since 1951. A fi.rst approach, using ideas of the
Polish logician Ajdukiewicz. to the .. mechanical" determination of the
syntactic structure of sentences was given by Bar-Hillel in 1953; cf.
[4]. During the same years Noam Chomsky was concerned with the
question what part of linguistics could be made purely formal without
reference to semantics. In 1953 Chomsky introduced an axiom system
for syntactic analysis; cf. [7].

Although it was not the prime interest of the money supplying
agencies part of the research on machine translation was devoted to
theoretical issues related to word and sentence analyzing problems. At
MIT linguistics was classified as a .. communication science" and there
fore it obtained more financial support from the military than at other
universities. Since 1955 Chomsky was assigned to a research project,
headed by V. Yngve. on machine translation in the Research Laboratory
of Electronics at MIT. One of the results of this project was the earlier
mentioned COMIT programming language. Most of the linguists on the
project were not much interested in these applied problems and spent
their time on general linguistic problems. In 1955 Chomsky finished a
manuscript called The Logical Structure of Linguistic Theory. A
.. sketchy and informal" version of this manuscript was used as course
notes of an undergraduate course at MIT and it was published under
the name Syntactic Structures [9]. This book inaugurated a revolution
in linguistics by considering a g:rammar as a generative system. That is,
a finite device that can produce all and only the sentences of the

16 A. Nijholt

language. It should be done in such a way that this production reveals
our competence of constructing sentences. Hence. contrary to the pre
vailing viewpoints in linguistics. which were inftuenced by behavioristic
psychology. Chomsky introduced again. in the tradition of nineteenth
century linguists (e.g .• von Humboldt). a mentalistic interpretation of
language into linguistics. Other nineteenth-century linguists (e.g .• de
Saussure and de Courtenay) had already given thought to the use of
mathematics for linguistics. However. due to Chomsky a mathemati
cally oriented mode of thinking was introduced into linguistics. His
first publication did not appear in a linguistic journal but in Journal of
Symbolic Logic. and in the early discussions on generative grammars
his work was compared with the specification methods for well-formed
mathematical formulae. In [14] it is remarked that:

"In fact, a real. understanding of how a language can (in
Humboldt's words) "make infinite use of finite means" has
developed only within the last thirty years, in the course of
studies in the foundations of mathematics."

After the Second World War the introduction of formal models
in the different branches of science was widespread. Technological and
mathematical approaches to the study of human behavior started to
:flourish and it was thought that natural sciences could be extended to
describe and explain phenomena of human mind and cognition. The
pursuit of a precise formulation of the notion of grammar can be illus
trated by the emphasis which laid by many authors in the early nine
teen fifties on their mathematical approach. This is re:flected in the
titles of their publications by using the words .. logical syntax" (also
used by Carnap) ... model", "axiomatic syntax" ... syntactic calculus",
.. quasi-arithmetical notation... etc. During these years formal models
were sought for the method of constituent analysis. Initiating work on
this topic had been performed by Wells [50] and Harris [27]. They
have been considering .. linear" schemes (in contrast to hierarchic) from
which sentences can be obtained by substitution of elements which
have the correct distribution. Chomsky [9]. however, introduced the
following model:

"Customarily, lingui,stic description on the syntactic level is
formul.ated in terms of constituent anal.ysis (parsing). We now
ask what form of grammar is presupposed by description of
this sort. As a simpl.e example of the new form for grammars
associated with constituent anal.ysis, consider the following:

(13) (i) Sentence -+ NP + VP
(ii) NP -+ T + N
(iii) VP -+ Verb+ NP
(iv) T-+ the
(v) N -+ man. ball •...
(vi) Verb -+ hit. took •...

From Mechanical to Theoretical

Suppose that we interpret each rule X -+ Y as the instruction
"rewrite X as Y". We shall call (14) a derivation of the sen
tence "the man hit the ball", where the numbers at the right
of each line of the derivation refer to the rule of the "gram
mar" (I 3) used in constructing that line from the preceding
line.

(14) Sentence
NP+ VP (i)
T + N + VP (ii)
T + N + Verb + NP (iii)
the+ N +Verb+ NP (iv)
the+ man+ Verb+ NP (v)
the + man+ hit+ NP (vi)
the + man + hit + T + N (ii)
the+ man+ hit+ the+ N (iv)
the+ man+ hit+ the+ ball (v)

... We can represent the derivation (14) in an obvious way by
means of the following diagram:" [cf. Figure 1.]

Sentence

~
NP VP

I\
T N V~P

I I I /\
the man hit T N

I I
the ball

Figure 1. Representation of derivation (14).

17

It is worth noting that unlike immediate constituent analysis a
generative grammar as used in Chomsky's example predicts the gram
matical sentences. The grammar is a finite and explicit characterization
of the grammatical sentences. In the tree the dominance and precedence
of the constituents which constitute the sentence is shown. This domi
nance and precedence can give a formal account of ambiguity of sen
tences. Another aspect to be mentioned is recursion. The rule
NC -+ NC Conj NC is an example of a recursive rule. It can be
applied recursively without a limit to the number of applications.
Recursion is of interest for the description of embedded sentences. In
the example X -+ Y has been interpreted as '"rewrite X as Y", where
X should be treated as a single name or symbol. In Syntactic Struc
tures it is also allowed that the rules have the form xAy -+ xwy,

18 A. Nijholt

where A is a single symbol or name and x • w. and y are strings of
symbols or single names. Hence, in the context of x and y it is
allowed to rewrite A to w .

The Chomsky Hierarchy

In [11] a mathematical investigation of classes of formal grammars and
languages is presented. Here. a language is a set of strings of finite
length over a (terminal) alphabet. A grammar consists of a vocabulary
V which is subdivided into two disjoint sets. the terminal alphabet :E
and the nonterminal alphabet N. and a finite set of rewrite rules.
Alphabet N contains a distinguished symbol. the so-called "Sentence
symbol", mostly denoted by S or by "Sentence". Let a be a symbol in
:E: x • and y • and w be words over V and let A and B be symbols in
N. A grammar is said to be unrestricted (type 0) if its rules are of the
form x -+ y • context-sensitive (type 1) if its rules are of the form
xAy -+ xwy (w is non-empty), context-free (type 2) if its rules are of
the form A -+ w. and finite state (type 3) if its rules are of the form
A -+ a or A -+ aB . Hence, by imposing restrictions on the forms of
the rewrite rules different classes of grammars are induced. Starting
from the sentence-symbol we can repeatedly apply the rewrite rules.
The language which is generated by the grammar consists of the strings
of terminal symbols which can be obtained with this process.
Languages generated by finite state. context-free. context-sensitive, and
type O grammars are called finite state. context-free, context-sensitive,
and type O languages, respectively. It can be shown that the induced
hierarchy of families of languages is proper.

In Chomsky's paper the names "context-sensitive" and "context
free" were not yet used. The first occurrence of the name "context
free" in the literature appears in [12]. Finite state grammars had been
presented before as finite state diagrams (finite state Markov processes)
in communication theory. The adjective "regular" had been used by
S.C. Kleene to denote certain sets of strings (regular events). These
sets turned out to be equivalent to the finite state languages defined by
the Markov processes. Since then finite state languages have also been
called regul.ar languages. Later it became clear that they could be
defined with the above given type 3 restriction. Due to Post, unres
tricted grammars (semi-Thue systems) were already a well-known for
malism in Logic. The language which is generated with an unrestricted
grammar is also called a recursively enumerabk language. The family
of languages which have the property that for each string it can be
decided whether or not it is in the language are called the recursive
languages. This family is properly situated between the families of
context-sensitive and recursively enumerable languages. A grammati
cal characterization of this family is not available.

From Mechanical to Theoretical

3. Computer Science Has Its Eye on Grammar

The ALGOL 60 Report

19

In May 1960 the ALGOL 60 report was published (cf. [37,38]). fol
lowed by a flood of papers. letters to the editor. etc .. on the ALGOL
definition and on compiling ALGOL. However. none of these authors
refers to Chomsky's phrase structure grammars for describing
languages. ACM decided to use ALGOL as the language for communi
cating algorithms and authors were invited to present algorithms in
ALGOL 60.t An ALGOL BuUetin was set up and made part of ACM's
newsletter SIGPLAN Notices. In 1970, due to .. :financial reasons" it
was again separated from this newsletter.

The ALGOL 60 Report presents the ·· defining" language of
ALGOL. It is expected to be the basic reference and guide for compiler
builders. In the (Revised) ALGOL 60 Report the formalism for syntac
tic description is explained as follows. The syntax is described with
the help of metalinguistic formulae. Their interpretation is explained
by the following example in which we use two formulae.

<unsigned integer> ::= <digit> I <unsigned integer> <digit>

<digit> ::= 011121 314151 6 I 7181 9

Sequences of characters enclosed in the brackets < and > represent
metalinguistic variables whose values are sequences of symbols. Hence.
in the first formula we have two metalinguistic variables. <unsigned
integer> and <digit>. In the second formula there is only one. viz.
<digit>. The marks ::= and I (the latter with the meaning of .. or")
are metalinguistic connectives. Any mark in a formula. which is not a
variable or a connective, denotes itself. Hence. the marks 0, 1. 2, 3, 4,
5, 6, 7, 8 and 9 denote themselves. Juxtaposition of these latter marks
and/or variables in a formula signifies juxtaposition of the sequences
denoted. Thus the formulae above give a (recursive) rule for the for
mation of values of the variable <unsigned integer> and a rule for
values of the variable <digit>. Two kinds of expressions in
ALGOL60 are

<expression> ::= <arithmetic expression> I <Boolean expression>

Other metalinguistic variables obtain similar formulae. For exam
ple.

< arithmetic expression> ::= < simple arithmetic expression> I
<if clause>< simple arithmetic expression> ELSE<arithmetic expression>

and in the same style a set of values of < simple arithmetic expression>
are

t "AU contributiDns wtll be refereed both by hwnan beings and by an ALGOL compiler."
(From the ACM Algorithms Policy).

20 A. Nijholt

< adding operator> ::= + I .;_

< multiplying operator> ::= X I /

<primary> ::= <unsigned number>l<variable>I(<arithmetic expression>)

<factor> ::= <primary> I <factor> T <primary>

<term> ::= <factor> I <term> <multiplying operator> <factor>

<simple arithmetic expression> ::= <term> I <adding operator> <term> I
< simple arithmetic expression> < adding operator> <term>

In the previous paragraph only the context-free part of the
definition of ALGOL 60 has been considered. In the ALGOL 60 Report
a similar definition is followed by sections with examples and con
siderations on semantics, and with constraints on, e.g., the types
(modes) of the constituents of the expressions. For example,

a. An arithmetic expression is a rule for computing a numerical value.
This value is obtained by executing the indicated arithmetic opera
tions on the actual numerical values of the primaries of the expres
sion.

a.1 The actual numerical value is obvious in the case of numbers.

a.2 For variables it is the current value (assigned last in the
dynamic sense).

a.3 For arithmetic expressions enclosed in parentheses the value
must through a recursive analysis be expressed in terms of the
values of primaries of the other two kinds.

b. The constituents of arithmetic expressions must be of types "real"
or "integer··. The operators +. -, and X have the conventional
meaning (addition, subtraction. and multiplication). The type of
the expression will be "integer" if both of the operands are of
"integer" type. otherwise "rear·.

c. The sequence of operations within one expression is generally from
left to right, with the following additional rules:

c.1 According to the syntax given the following rules of precedence
hold:

first: T. second: X /. third: + -
c.2 The expression between a left parenthesis and the matching

right parenthesis is evaluated by itself and this value is used in
subsequent calculations.

We have omitted the "semantics" of / and T. and a discussion on the
interpretation of "real" numbers and variables. This added English
text on semantics and constraints will be helpful for a compiler builder
but it is not complete and precise. Interesting are the rules of pre
cedence between operators. They are "according to the syntax given".
Hence. the syntax does not only define the "well-formed" sequences of

From Mechanical to Theoretical 21

symbols which form an arithmetic expression, but the way the syntax
is organized determines the semantic interpretation of the expressions.
If a is the name of a variable with current value 2 then the answer to
the question whether a +4x 3 will be interpreted as an expression with
numerical value 18 or 14 will depend on the underlying syntax of this
expression. This dependence can be explained with the help of syntax
trees.

Formal Description of Formulae and Languages

In [5] a short survey is given of the early work on the formal descrip
tion ("rules of spelling") of arithmetic and Boolean formulae with and
without parentheses. Most of this work is done by logicians between
1930 and 1950. Later. algorithms were designed which checked the
well-formedness of these formulae and which were able to evaluate
them. One of the earliest algorithms for evaluating arithmetic formu
lae is due to H. Rutishauser. The algorithm was made suitable for a
sequentially working process by C. Bohm in 1952. In one of the first
FORTRAN compilers similar ideas were used. Before evaluation a
preprocessor inserted parentheses in the formulae in order to make
them fully parenthesized.

The recognition that arithmetic and logical expressions could be
parsed and converted into assembly-like instructions led to the concept
of a high-level programming language. In [51] the designer of the
JOVIAL language recalls that an article on expression analysis (cf. [52])
was quite a revelation to them. It was one of the significant things
which made them decide to develop a high-level language for program
ming the future U.S. Air Force's air defense systems:

" ... , but the idea of being able to understand and parse com
plex expressions in itself was of sufficient interest to motivate
our efforts."

Roughly summarizing. the following "mechanisms" can be dis-
tinguished:

• rules of well-formedness
• · algorithms which check well-formedness

• formalisms which generate the well-formed formulae

• algorithms which reveal the way a well-formed formula has been
generated by the formalism

• algorithms which evaluate expressions to a numerical or Boolean
value.

The BNF description of ALGOL 60 is merely a set of rules of
well-formedness. The ALGOL reports do not provide the notation and
the terminology to derive, produce. or generate the well-formed pro
grams. However. there is the intention to link well-formed programs
to conceptual structures by means of meta-linguistic formulae.

22 A. Nijholt

Moreover, there is the underlying assumption which says that the asso
ciated semantics is .. syntax-directed", that is. derivable from the con
ceptual structure of the program. ff the BNF description is interpreted
as a context-free grammar, then it allows the generation of the well
formed sequences of symbols which constitute ALGOL 60 programs.
Checking well-formedness of computer programs has become known as
checking whether a program is syntactically correct. Analyzing the
program, in the sense of revealing the structural description, has
become known as parsing. The algorithms for the evaluation of
expressions have developed into compiling algorithms. These algo
rithms presuppose a parsing algorithm which reveals the structure.
From this structure code can be produced which will be used to do the
actual evaluation of the expression.

BNF versus Context-Free

"Is your Clwmsky really necessary?" (F.G. Duncan, in [48]. p.298).

Historical notes on BNF and some fighting about its introduction
can be found in [51]. The fighting is done in a paper by P. Naur, com
ments on Naur's view by F.L. Bauer and K. Samelson, and in the tran
script of a question and answer session. Both Bauer and Backus men
tion that the use of the notation came from similar notation in
mathematical logic. Backus remarks:

"As to where the idea came from - it came from a class that I
took from Martin Davis , talking about the work of Emil
Post and the idea of a production. It was only in trying to
describe ALGOL 58 that I real.ized that there was trouble
about syntax description. It was obvious that Post's produc
tions were just the thing, and I hastily adapted them to that
use."

(p.162 in [51]). Also in [51] J.E. Sammet discusses the syntax descrip
tion of COBOL in relation to BNF.

"Unfortunately, because on one hand we called this a notation,
and on the other because it was a metalanguage quite different
from that proposed by Backus in his paper, it became very
fashionable and quite comnwn to say (at least orally if not in
writing) in 1959-1961 that COBOL had no formal definition.
I think anyone wlw looks will indeed recognize that the syn
tax of COBOL was (and still is) defined in just a formal way
as ALGOL 60; ... I would venture to guess that more
languages are defined today using some variation of the
COBOL metalanguage than are actually defined today using
(even a variation of) BNF."

The BNF description of ALGOL was not appreciated by an IBM
representative who suggested, after working through the description of

From Mechanical to Theoretical 23

ALGOL 60, to add a new entry to Webster's Dictionary. Algolagnia:
"The finding of pleasure in inflicting or suffering pain."t In 1964 Knuth
suggested to use the name Backus Naur Form in order to honor P.
Naur's work as editor of the ALGOL Report.

In the August issue of Comm. ACM Gorn [24] discussed some
basic terminology of mechanical languages and their processors. How
ever ... BNF', .. context-free language" or .. formal language" are words
which are not used. In December, however, Gorn [25] remarks that

"The specification restrictions impllcit in Backus normal form
place the languages so specified in the class of "Phrase Struc-
tur Lan " " e guages.

In the reprinted version of this paper (in: Readings in Automatic
Language Processing. D.G. Hays (Ed.), American Elsevier, 1966) this
citation is immediately followed by: "more specifically, they are the
"context-free languages"", being the only change in the text of the
paper. In Comm. ACM S (1962) at p.62 we find a Research Summary
reported by S. Gorn, October 1961, which is titled .. Theory of Mechan
ical Languages" and which mentions research into the relationship
between Chomsky's phrase structure languages and the languages
specified with Backus normal form. And on p.185 of the same volume
we find an interesting discussion in the .. Letters to the Editor" section
between Knuth and Gorn. Knuth starts his letter by remarking that he
is interested in Gorn's papers

" .. . primarily because I have been doing a bit of research in
my spare time considering various implications of "Backus
normal form".''

Then Knuth continues with a discussion on the generative power of
BNF:

" . . . the class of strings ab , aabb , aaabbb , etc., can be
represented in Backus notation, ... the class of strings abc,
aabbcc, aaabbbccc, etc., cannot be represented in Backus nota
tion."

And, in the tradition of Fermat, Knuth concludes with:

" . . . (I have constructed formal proofs of these facts.) The
whole subject is quite fascinating."

At that time it had already been shown that in Chomsky's for
malism the language aba, aabbaa, aaabbbaaa, etc., is not context-free
(cf. [45]) and in 1960 Bar-Hillel and others (cf. [3]) had introduced
tools for proving such negative results. Ginsburg and Rice [21] (the
paper was received in February 1961) further discuss the relationship
between BNF and phrase structure. Here we see the formal statement

t Similar remarks have been registered at the reception of the Operation Manual of the
ENIAC and the ALGOL 68 Report.

24

that

A. Nijholt

"The defining scheme for ALGOL turns out to be equivol.ent to
one of the severol. schemes described by Chomsky in his
attempt to analyze the syntax of naturol. languages."

Twenty years later Ginsburg remarks (cf. [22])

"That observation opened the flood gates for formal language
theory.''

In two papers Floyd [19,20] showed, using Bar-Hillers technique,
that programming languages are not necessarily context-free and that it
is undecidable whether a context-free grammar is unambiguous. The
latter problem became interesting when it turned out that the initial
BNF description of ALGOL was ambiguous. However. it became clear
that considerable parts of programming languages could be defined
with context-free grammars. Research concentrated on this class of
grammars and languages, and more general formalisms sometimes were
obtained as generalizations based on the context-free grammars.

The various names which were used for the type 2 grammars and
languages (e.g., (context-free) constituent structure grammar, (simple)
phrase structure grammar, push-down store grammar, ALGOL-like
grammar, BNF description. context-free grammar) sometimes gave rise
to confusion during these early years. Examples of thi~ confusion can
be found in discussions included in the proceedings of a Working
Conference on Mechanicol. Language Structures (cf. Comm. ACM,
February 1964). See also the proceedings of the IFIP Working Confer
ence on Formal Languages: Desaiption Languages for Computer Pro
gramming (cf. [48]) held in New York in September 1964.

4. The Im.pact of Compiler Construction

Beyond a Context-Free Description
In the ALGOL 60 report the syntax of the language was expressed for
mally by means of BNF. Natural (English) language was used to
express the semantics. Because of the use of BNF rules other. similarly
defined, languages have been called ALGOL-like languages. However.
ALGOL is not ALGOL-like. Its BNF rules define a superset of the
ALGOL language and only by satisfying some restrictions, expressed
verbally in the defining report, the ALGOL language is obtained from
the production rules. The same observation can be made for other pro
gramming languages. i.e, additional conditions consisting of context
sensitive dependencies have to be satisfied. Checking of these depen
dencies can be done during parsing or in a subsequent pass of the com
piler which is concerned with the semantic interpretation. Hence, the
(context-free) parser accepts a superset of the programming language
and auxiliary information is used to reject the incorrect programs. Res
trictions which filter out the syntactically correct programs from a

From Mechanical to Theoretical 25

language which is otherwise described with a context-free grammar
have become known as contextual constraints. Sometimes these con
straints are referred to as static sema.ntics. See e.g. [35]. where Koster
explains that static semantics is " ... syntax expressed verbally because
of impossibility to treat it in a formal way." That is. with a syntax for
malism more powerful than a context-free grammar or BNF this
"semantics" could have been part of the formal syntax. Although the
common user of a programming language can be presented a more
understandable description of the language it is advantageous to have a
formal description of the static semantics. It provides the compiler
writer a guide for the implementation and in certain cases the user may
find it necessary to have an understanding of the details of the
language. Moreover, programs which automatically generate (parts of)
compilers need a formal description of their input.

ALGOL 60 was introduced and subsequently studied as a
language with a distinction between syntax and semantics. In the
theoretically oriented research first interest focused on syntactical
questions and on more powerful formalisms which could define a more
complete syntax of a language. Moreover. formalisms were introduced
which lend themselves to the description of the translation from high
level programming language to machine or assembly language. In a
later stage researchers started to think about defining semantics
independently from the compilation process.

In general the attempts to automate the production of those parts
of a compiler which explicitly deal with the translation are based on
certain enrichments of context-free grammars. There are obvious rea
sons why in compiling theory the concept of context-free grammar
never has been abandoned. Context-free grammars give comprehensible
descriptions of languages and they are easy to handle. A context-free
grammar is a rigorous mathematical object and therefore it has well
defined properties. It is decidable whether an arbitrary string is part of
the language of a context-free grammar and there exist methods for
automatically constructing parsers from a context-free grammar. On
the other hand, context-free grammars do have some deficiencies. The
syntax specification can sometimes lead to rather long lists of produc
tions, it is not possible to accommodate the above-mentioned contex
tual constraints and, last but not least. in compiler construction we are
interested in the translation from the programming language to an
intermediate language or to, ultimately. some form of assembly code.
Therefore a formalism which accommodates these tasks is desirable.
Various generalizations of context-free grammars and BNF have been
introduced addressing one or more of these deficiencies. Some of these
generalizations are introduced from the point of view of being able to
generate or accept a more powerful class of languages, without consid
ering the possibility of efficient parsing and translation methods.
Explicit use of contextual constraints can be found in formalisms

26 A. Nijholt

which maintain the BNF:..syntax specification and augment it with
predicates. Ledgard [36] gives an example of the specification of PL/1
with a formal notation called Production Systems. In his notation
context-sensitive requirements such as the compatibility between the
declaration of an identifier and its uses and the correspondence between
actual and formal parameters are described by including "predicates"
in the productions which should be satisfied in order to obtain legal
strings. Similar descriptions have been given for the semantic rules of
BASIC and ALGOL 60.

Consider now the second reason why context-free grammars are
not satisfactory for the description of programming languages.
Although not presented in a completely formal way, E.T. Irons [31]
explicitly defined the problem of translating from source text through
the intermediate level of a syntax tree to the semantics (meaning). A
possible solution was given, that is,

" ... , a translation using the description can be effected by
fitting already discovered syntactic units (starting with the
syntactic units which are the basic symbols of the language)
into the syntactic structure to produce a new set of larger syn
tactic units, and assign meanings to these new units according
to the meanings of the original units."

The aim of this approach was to produce an ALGOL 60 compiler. It is
generally assumed that Irons' paper started the research on syntax
directed compiling. Irons· ideas amount to defining the semantics by
associating meanings to each nonterminal symbol of the grammar and
associating semantic rules to each production. These rules define the
meaning of the nonterminal symbol in the left-hand side as a function
of the meanings of the symbols in the right-hand side. This can be
considered as an application of Frege's principle of assigning meaning to
composed constructs.

A first approach to a formalization of Irons' ideas has led to the
introduction of syntax-directed translation schemes. These schemes
define string-to-string translations by means of "lock-stepped" deriva
tions in two related context-free grammars. The translation string can
be considered as the meaning of the original sentence. Consider a
context-free grammar rule, say A --+ aBcD where A, B and D are
nonterminal symbols and a and c are terminal symbols. A simp/,e
syntax directed translation scheme (simple SDTS) has rules of the
form, say A --+ aBcD, pBqDr where p, q and r are called translation
symbols. This rule can be viewed as consisting of two rules, a
context-free source rule A --+ aBcD and an associated context-free tar
get rule A --+ pBqDr. The idea is that when a sentence w is generated
with the source rules its translation is obtained by simultaneously
rewriting the associated target rules. Hence, if we start with (S ,S),
where S is the start symbol. then a translation (w ,w') is obtained.

From Mechanical to Theoretical 27

where w' is a sequence of translation symbols. From a more practical
point of view string w' can be considered as a sequence of semantic
routine calls for evaluating the semantic rules of the productions and
make certain checks when necessary. The result of a routine call can be
a piece of code or text in the target language.

So far the simple SDTS is a definition of a string-valued transla
tion with a possible practical interpretation. From the parsing point of
view the recognition of (parts of) the rule A -+ aBcD during context
free parsing invokes the routines represented by p • q and r . The
above-given quotation suggests a rule of the form A -+ aBcD. BDr
where the only routine r is called when the complete production
A -+ aBcD has been recognized during parsing. The target rules of the
SDTS determine the moment when the routines are invoked. The
(parsing) properties of the context-free source grammar in combination
with the form of the target rules determine whether an efficient trans
lation process is possible. Before going to the next generalization it is
useful to introduce yet another point of view on the translation pro
cess. The rule A -+ aBcD. pBqDr can be considered as the definition of
the translation associated with a particular node in the parse tree with
label A. In this view w' is the translation at the root S of the tree and
at node A the translation is the string consisting of the symbol p • fol
lowed by the string which is the translation at node B (a direct des
cendant of A). followed by the symbol q. followed by the translation
at node D (a direct descendant of A). followed by the symbol r.
Hence, with the following self-explaining notation. the rule can be
written as

A-+ aBcD. t(A) = p t(B)q t(D)r.

Now it is possible to introduce multiple translations at a node. For
example,

A -+ aBcD. t1(A) = p t 2(D). t 2(A) = t 1(D)r t 2(B)

and at the root S of the tree we can obtain multiple translations of
sentence w.

Instead of string-valued translations more general translations
can be introduced. Moreover. it might be necessary to check con
straints which have to be fulfilled at certain nodes of the parse tree. In
this way each grammar rule. say A -+ aBcD. is accompanied by a set
of translation rules which determine the .. translations'" of A as a func
tion of the .. translations·· of the symbols which appear in the right
hand side of the grammar rule. Instead of .. translations" it is more
appropriate to speak of attributes of A and their values. Instead of
"translation rules'" it is now more appropriate to speak of semantic or
attribute (evaluation) rules. Values are assigned to the attributes of A
by evaluating the rules which are associated with the grammar rule
A -+ aBcD. In [33] the next generalization is presented. In Knuth's
attribute grammars each vocabulary symbol of the context-free

28 A. Nijholt

grammar has an associated finite set of attributes which describe the
properties of that symbol. Each attribute has a not necessarily finite.
fixed domain· from which its values are taken. Attribute evaluation
rules associated with the production rules of the grammar determine
the values of the attributes. In the schemes above the meaning or
translation at a node in the parse tree was given as a function of the
meaning of its descendants. One may expect that in certain cases the
context plays a role. In that case part of the information which deter
mines the meaning at a node in a parse tree may come from outside its
subtree. As a consequence, the .. meaning" which is obtained from the
subtree dominated by a node may depend on this context information.

In order to describe the latter situation Knuth distinguished
between two types of attributes. If the attribute values are obtained
from the values of the ancestor or from the siblings of the node in the
parse tree then the attributes are called inherited. If they are obtained
from the descendant nodes the attributes are called synthesized. Apart
from the formal setting provided by Knuth, the main novelty of attri
bute grammars is the added feature to define the semantics .. top-down"
by the inherited attributes. Since the evaluation is not necessarily in a
single direction the semantic rules of an attribute grammar can give rise
to a circular definition. That is. it is not necessarily the case that for
each parse tree of the grammar there exists an evaluation order which
guarantees that the arguments of a semantic rule have already been
evaluated when this rule has to be executed. When such an evaluation
order exists the grammar is said to be well-defined or non-circular.
There exist algorithms for deciding well-definedness. Once the
(context-free) syntax tree has been constructed it is possible to evalu
ate the attributes associated with its nodes. Conditions for well
definedness have been developed which make it possible to evaluate the
attributes in a fixed number of passes over the syntax tree. Interesting
cases are those which permit attribute evaluation in a single left-to
right pass and those where the syntax analysis and the attribute
evaluation can be done together in a single pass from left to right.
Since in general the programming language will be a context-sensitive
subset of the language generated by the underlying context-free gram
mar. semantic conditions on the productions must be satisfied by the
values of the attributes in order to obtain a legal sentence or a program.

Attribute grammars are more directed towards the handling of
semantics in the practical situation of compiler writing than towards
the formal definition of semantics. Other attempts have been made to
give complete and formal definitions of programming languages. The
first aim to do so - to have a formal definition which can help in the
construction of an implementation or which can be used as input to a
compiler generating system - has already been discussed. The second
aim is to provide a model in which the meaning of a program is defined.
The model can be used to prove that programs satisfy claimed

From Mechanical to Theoretical 29

properties. Most of the attempts started with the description of
ALGOL 60. These attempts were invited by the success of its formal
syntax definition. Markov algorithms were used by de Bakker [2].
Others used Church's lambda calculus or recursive functions. For one
of ALGOL's successors. the language EULER. the semantics was defined
by showing how the syntactic constructs should be translated to an
informally described assembly code. In a formal setting this approach
consists of the definition of an abstract machine and a mapping of the
syntactic constructs of the language to the operations of this machine.
The :first language to be defined this way was LISP in 1960. by John
McCarthy. In denotational semantics each syntactic construct is associ
ated with a mathematical function which expresses its meaning. Hence,
we have a mapping from a linguistic domain to a domain with well
understood mathematical concepts which model the semantics. The
resulting meaning of a program is based on its inductive structure.

Automatic Production of Compilers

"We call the preparation of a grammar BNF programming, and the pr<r
cess of modifying it until acceptohle, BNF debugging." (W.M. McKee
man, et al. A Compil.er Generator. Prentice-Hall, 1970; p.183).

Every program has its own input language. Sometimes this
language is simple. e.g., when the only input which is allowed is a list
of numbers in a predefined format. Sometimes the input language is
rich, e.g., when the input consists of a program which has to be checked
on syntactic correctness or when the input consists of a compiler
specification. The approach to compiler construction where a compiler
specification is converted by a program into a compiler has been pur
sued since the early sixties when a prototype of such a system was
developed for the ATLAS computer of the University of Manchester
(Great Britain). The following enthusiastic review appeared in Datama
tion 7, May 1961, p.27:

"With ATLAS comes a new approach to symbdic program
ming. Dr. RA. Brooker, of Manchester University, has dev
ised a scheme in which any programmi,ng language can itself
be defined. In effect, this scheme enohles one to "teach"
ATLAS any language one chooses, after which the computer
can accept programs written in that language, it is a compiler
of compil,ers."

It is necessary to have a meta-language to describe a compiler for a
specific language. The BNF or context-free grammar notation of a
specific syntax can be considered as a meta-language. In its turn this
meta-language can be described with a (simple) grammar. The input of
a parser generator can consist of a specific set of BNF rules, that is. a
sentence in this meta-language. A compiler writing system will require
more than a set of BNF rules. Its input language can consist of sets of

30 A. Nijholt

BNF rules supplemented with semantic information. A formal attri
bute grammar notation can be considered as a meta-language in which
the input of compiler writing systems is expressed. This notation can
gradually evolve into a special purpose programming language suitable
for writing compilers. Such a language is much less error-prone than
different formalisms and notations for scanning. syntax, error and
semantic analysis, and code generation. It should satisfy the condition
that only straightforward transcriptions have to be done from the
language designer's definition grammar to the description which will be
input to the system.

Floyd [18] was among the first to recognize the necessity of creat
ing a special description language for compilers. Obviously, the
language was first used in the development of an ALGOL 60 compiler.
A modified version of this language was used by Evans [15] and it
became known as the .. Floyd-Evans Production Language". Feldman
[17] introduced the description of semantics in this language. His For
mal Semantic Language (FSL) was the basis for a compiler-compiler:

"In the present form FSL itself can be considered a problem
oriented computer language. The problem involved is the
representation of meaning in computer languages."

Often these compiler description languages are simple. e.g .•
without assignment and hardly any control structures. On the other
hand some of them have grown to general system implementation
languages with classical control structures and abstraction and exten
sion mechanisms. Sometimes it is possible to recognize the original
grammar formalism and intended parsing method in the language
definition.

5. Towards Theoretical Computer Science

Form.al Language Theory

"We live or die on the context-free languages." (S. Ginsburg. in [22],
p.7).

The introduction of the Chomsky hierarchy led to a flood of
papers on mathematical and, to a lesser degree, linguistic properties of
its grammar and language classes. Especially machine characterizations
of the various language classes were sought. Turing machines were
known to be equivalent to type O grammars. By Chomsky [13] and by
Evey [16] a pushdown automaton as a recognizing device for context
free languages was introduced. In the next subsection we discuss the
introduction of pushdown stacks in computer science. There exist
methods to convert a context-free grammar to an .. equivalent" push
down automaton and vice versa. In the early 1960s these conversions
were not immediately clear. It was necessary to get used to the idea

From Mechanical to Theoretical 31

that instructions of the automaton could be carried out without read
ing the input and, more importantly. that nondeterminism was an
essential concept. Nondeterminism had been used before in the charac
terization of regular languages by finite automata: cf. [10]. By Rabin
and Scott [43] it was shown that for these simple devices nondetermin
ism was not really necessary. Each nondeterministic device could be
converted into an equivalent deterministic device. At that time
researchers were not yet used to nondeterminism; cf. [26].

Machine characterizations of languages could be viewed as models
of parsers for these languages. At first. parsing methods were not
based on theory. The following quotation (cf. [30]) on the construc
tion of the FLOW-MATIC compiler might be instructive.

"In order to quickly pick up the word - we didn't know any
thing about parsing algorithms at that point in time - and
what happened was you picked up the verb, and then jumped
to a subroutine which parsed that type of sentence. In order
to do that quickly, and also to make it easy to manufacture
that jump, the first and third letters of the verbs in FWW
MATIC were unique."

However. soon it became clear that in writing programs languages were
involved and language became an object of study in computer science.
When the relation between the syntax specification of ALGOL 60 and
the context-free grammars was established and, moreover. E.T. Irons
had shown how to use the syntax specification in the construction of
an ALGOL compiler. computer scientists started to show interest in
parsing methods.

Context-free grammars could be shown to be equivalent to (non
deterministic) pushdown automata. Suppose that we write a parsing
program which uses the (nondeterministic) pushdown automaton in
such a way that it tries all possible choices until a successful sequence
of moves for an input string has been obtained (or it can be concluded
that the input string is not in the language accepted by the automaton).
It is not difficult to see that due to the nondeterminism the number of
steps of the parser grows exponentially with the length of the input
string. Methods which require exponential time are viewed as not
acceptable. This might become clear from the table in Figure 2.
Assume that each primitive step of a parser takes 1 microsecond. In
the table examples are given of linear. polynomial and exponential
functions which for each input length express the execution time.

A pushdown automaton which does not use nondeterminism is
called a deterministic pushdown automaton. Languages which can be
accepted with a deterministic pushdown automaton are called deter
ministic (context-free) languages. These languages constitute a proper
subset of the context-free languages. A parsing method which would
be based on a deterministic pushdown automaton requires linear time.

32 A. Nijholt

time length of the input n

function 10 20 30 40 50

.00001 .00002 .00003 .00004 .00005
n

second second second second second

n2 .0001 .0004 .0009 .0016 .0025
second second second second second

n3
.001 .008 .027 .064 .125

second second second second second

2n .001 1.0 17.9 12.7 35.7
second second minutes days years

Figure 2. Polynomial and exponential time functions.

From the table it will be clear that such parsing methods are desirable.
However, they can not work for all context-free languages.

Some (selective) backtrack parsing algorithms have been used in
early compiler writing systems and for parsing natural language. Due
to the exponential "blow-up" no widespread applications of these algo
rithms could be expected. Moreover, in the computer science area
researchers had already started to devise practical algorithms for their
programming languages. These algorithms were suitable for very res
tricted subclasses of the context-free grammars and they worked in
linear time: cf. [39]. Even when such an algorithm can not handle all
the syntactic constraints in the specification of a particular program
ming language. methods can be given to reject incorrect structures in an
additional phase of the compiling process. In the early 1960s Robert
W. Floyd devised some practical schemes and soon theoretical ques
tions about the properties of the classes of grammars and languages for
which the methods could be used were asked and studied. Rather than
being a problem for practitioners in the computer science area the
search for better algorithms for general context-free grammars became
a concern for linguists working on natural language processing projects
and for formal language theorists. Greibach [26] (p.71) comments on
this situation:

"We were very much aware of the probl.em of exponential
blow-up in the number of iterations (or paths), though we felt
that this did not happen in "real" natural languages; I do not
think we suspected that a polynomial parsing algorithm was
pos sibl.e."

A polynomial time algorithm was already available but not recognized
as such. This was Cocke's algorithm, first mentioned in [29] and used
for parsing a context-free grammar for English developed at RAND
Corporation.

From Mechanical to Theoretical 33

Pushdown Stack Applications
In many early compilation methods the .. last-in first-out" (LIFO) prin
ciple which governs the pushdown stack was implicitly used. The
principle can be used to convert arithmetical expressions from a tradi
tional infix notation to a more convenient Polish postfix notation (after
the Polish logician J. Lukasiewicz) and to evaluate expressions
presented in this form. In postfix form the operators occur in the order
in which they are to be used. Therefore Polish postfix notation can be
considered as an intermediate language between the source language and
the assembly code. It is possible to convert the usual programming
language constructs into a Polish postfix form. Statements in this
notation can be easily translated into an assembly-like code. In order
to understand the conversion to Polish postfix form an analogy with a
simple railway network (see Figure 3) was introduced.

input

shunting of operators

Figure 3. The railway analogy.

With this analogy it is easy to see how an infix expression, e.g ..
a x(b +c). is converted into the postfix expression ahc +x. The
identifiers are directly moved from input to output and the operators
are moved from input to output via the .. siding" (the pushdown
stack).

A slightly more complex example might be more instructive.
Consider the expression a -b +c Xd. With the normal precedence rules
we expect this to be evaluated as (a -b)+(c Xd). The normal pre
cedence rules are

l (raising to the power) highest precedence
X and / are of next highest precedence
+ and - are of lowest precedence

The relative precedences of the operators can be collected in a table.
The Polish postfix form of a-b+cxd becomes ah-cdx+. In order
to realize this conversion the pushdown stack is used as follows. The
string is read from left to right. Each operand is copied directly to the
output. Each operator will be moved to the output via the stack.
However. before stacking the precedence of the current operator is com
pared with that of the operator on top of the stack. If it has greater
precedence, then the current operator is pushed on the stack. If it has
lower or equal precedence then operators are popped from the stack
and copied to the output until the stack is empty or a top operator has
lower precedence. Then the current operator is pushed on stack. The
process has become table-driven. We have an algorithm, based on an

34 A. Nijholt

input and output tape and a pushdown stack, and a table which con
trols the actions. H, e.g., we want to change the precedences of the
operators only the table need to be revised.

Stack applications first appeared in the fifties. Scientists to which
the idea has been attributed include, among others. W.L. van der Poel
(1952), who proposed it to store subroutine return calls, A.W. Burks,
D.W. Warren and J. Wright (1954), who used it to check and evaluate
parenthesis-free notations of logical expressions. and A. Newell and
J.C. Shaw (1957). who used it in the description of their Logic Theor
ist. The railway analogy appeared after a rather explicit introduction
of the pushdown stack (or cellar, after the German word Keller) in
parsing theory by Samelson and Bauer [44]. The principle was used in
attempts to develop ALGOL 60 compilers and it was implemented in
computer architectures, e.g .• the Burroughs 5000 system issued in 1963,
to allow the efficient compilation of ALGOL 60. At that time context
free languages where not widely known among computer scientists and
pushdown automata were not yet introduced. The analogy has been
attributed to E.W. Dijkstra who used it in the report Making a transla
tor for ALGOL 60, first published in May 1961. Dijkstra's object
machine performed its arithmetic with the help of a stack. Notice that
in the evaluation of an expression in Polish postfix form the operands
are pushed on the stack and operators are applied to the two topmost
elements of the stack. In this way the stack can hold all temporary
intermediate results. In order to realize the translation from an
ALGOL 60 program to the object program, with the help of a stack,
precedence rules were introduced by assigning priority numbers to the
terminal symbols (BEGIN. END, IF. THEN, ELSE, :=. X. +. etc.) of the
ALGOL 60 grammar.

The formal and explicit introduction of the pushdown stack in
mathematical linguistics was motivated by a particular kind of parsing
method (cf. [40]) which grew out of reflections on a technique used by
Ida Rhodes and others in the automatic translation from Russian to
English. See [5] and [26] for further historical references on the push
down principle.

Theoretical Computer Science
Although the definitions and the focus of interest are not at all
independent of the notions of interest for natural languages, their
grammars, and other possible applications (e.g.. in computer science,
developmental biology, psycholinguistics and pattern recognition), the
properties of formal languages and grammars and the theory developed
to study these systems are not necessarily directly relevant to the field
in which the concepts being modeled play a role. In order to exist
theory has to abstract away from practical details. Without abstrac
tion and formalization no deep scientific results can be obtained. For
mal methods are part of a theory or theory can be developed which

From Mechanical to Theoretical 35

suits the methods. Therefore errors in methods can be avoided and
more reliable systems can be created since there are means to show that
a system meets the given specifications and. moreover. it may have
become possible to automatically generate system parts from a formal
description. In Computer Science a full formal analysis of non-trivial
systems is not always possible. Only parts or aspects of a complete
system can be looked at and errors have to be avoided by careful
design. Investigation of limitations of formalisms helps in understand
ing the formalisms and whether or not they can be applied in what
practical situations and at what cost. Insight will be gained from
becoming acquainted with formal methods and concepts and this will
improve the quality of the use of more ad hoc techniques. This is not
only true for formal language theory. It holds as well for any theory
which is developed to be applied to benefit practice.

Formal language theory is part of Theoretical Computer Science
and Theoretical and Computational Linguistics. Theoretical Computer
Science. a field of knowledge born in the mid-1960s. studies the fun
damental concepts of computer science by theoretical tools. In this
field formal models are provided to study and clarify concepts of com
puter science. The study of these models is done with theoretical tools
borrowed from mathematics and logic and developed in the field itself.
The study of these models and the development of theoretical tools to
be used in this study result in a coherent framework unifying a body
of practice. In models we refrain from looking at all practical details.
By distinguishing between relevant and less relevant matters and by
emphasizing certain points of view only the essential parts of the prob
lem remain. Due to this abstraction of concrete situations meaningful
theorems can be obtained which apply to many concrete situations and
which otherwise would not be recognized or would be impossible to
state. The framework and its theorems can help to understand practi
cal situations and to manage the complexity of the design of practical
systems. Moreover. the framework provides a means to communicate
results and methods to others and to teach them to the students of the
field.

The three classical subfields of Theoretical Computer Science are
formal language theory. automata theory and computability theory.
Formal language theory :O.ourished after the introduction of the gram
mar concept in computer science. Generative linguistics and the design
of programming languages such as ALGOL have been the two main
sources from which formal language theory has been developed.
Greibach [26] states that until 1964 formal language theory still could
be considered part of (mathematical) linguistics. After 1964 formal
language theory developed as a separate branch within several fields of
knowledge. Formal language theory has been successful in the
classification of grammar and language classes. either by properties of
the grammar rules. by parsing properties or by complexity properties.

36 A. Nijholt

The study of such properties demonstrates the theoretical limitations
of the formal systems. From these limitations their suitability as a
model of. e.g .• cognitive or linguistic concepts or as an abstract device
whose implementation can be used in compiling a (programming)
language. can be judged. Automata theory started much earlier than
formal language theory. It was recognized as a research area in the
mid.fifties, especially after Automata Studies appeared. This book,
edited by C.E. Shannon and J. McCarthy. contained a collection of
papers on different versions of Turing machines, automata to model
brain activity and automata to describe the operation of electromechan
ical systems. The in- and output of automata can be considered as
strings of symbols (sentences) from an in- and output language.
Therefore the study of automata theory became closely related to that
of formal language theory. Computability theory started in the early
thirties as a subfield of logic. Its :first components were recursive func
tion theory and the Turing machine as a model of a "computer".
Presently, incorporated in Theoretical Computer Science, it is concerned
with the (theoretical) limitations of computer science. It shows what
can and cannot be computed by establishing fundamental properties of
recursive and recursively enumerable sets. In this :field a body of
theory has been developed to provide evidence in support of the
Church-Turing Thesis. Cf. [32] for a sketch of the development of
computability theory.

Especially when equivalences between recognizing and generating
devices were established these subfields were linked together. The
method of study in formal language theory has become exemplary for
the the other subfields of Theoretical Computer Science. Many con
cepts in other subfields :find their origins in formal language theory and
often problems in these subfields can be reduced to problems in formal
language theory. Because of practical needs other research areas came
into existence. Complexity theory is the theoretical study of concepts
which can be used to measure the effectiveness of algorithms and their
application in order to :find more efficient techniques for solving prob
lems. The measures are in terms of the spending of computational
resources (e.g .. computing time and memory space) on specific machine
models (e.g. Turing machines or Random Access Machines). While
computability theory may yield the result that a particular problem is
solvable or unsolvable. complexity theory may give the answer
whether a possible solution is practically realizable. Cf. [28] for a
sketch of the development of complexity theory. The Theory of Seman
tics is concerned with the development of formal systems for describ
ing the meaning of programming language constructs. The main
methods of semantic description are the so-called operational and the
mathematical methods. In the operational approach each language con
struct is associated with a piece of behavior - i.e., the execution of a
certain sequence of elementary actions - on an abstract machine. The

From Mechanical to Theoretical 37

mathematical approaches are the axiomatic Floyd-Hoare approach and
the functional or denotational approach of D.S. Scott and C. Strachey.
In the latter approach mathematical functions are associated with the
linguistic constructs of the programming language. Much of this
theory is based on models of the lambda calculus provided by Scott
[46]. Background knowledge of semantic theories can help the designer
of a programming language to avoid ill-understood constructs. For a
particular programming language a formal definition helps in the
(automatic) implementation of the language and the theory can be used
to develop valid proof rules for proving program correctness.

However. there are many other subfields of Computer Science
which invite theoretical approaches. It is beyond the goals of this
paper to survey these fields. We mention theories developed in support
of relational database design, search and representation techniques in
Artificial Intelligence. computational geometry, the description of
parallel processes, etc. The approaches in these fields rely heavily on
the results and the methods of the other. older and more extensively
worked out subfields of Theoretical Computer Science. The origins of
the subfields' tools and concepts can often be found in the same areas.
In the case of formal language theory these areas are mentioned in the
table of Figure 4.

Logic, Recursive Thue, Post, Carnap, 1910--1955
Function Theory Church, Turing, Kleene
Communication Theory, Shannon 1935-1950
Cryptography,
Switching Theory
Neurophysiology McCulloch, Pitts, Kleene 1940--1956
Linguistics Chomsky 1950--
Machine Translation Bar-Hillel, Yngve, 1950--

Oettinger, Rhodes
Programming Language Backus, Naur, Irons, 1958-
Specification, Floyd
Compiler Construction
Algebra Chomsky, Schiltzenberger, 1963-

Nivat, Ginsburg, Eilenber11:
Developmental Biology Linden mayer 1968-

Figure 4. Origins of formal language theory.

Some of these origins can be characterized as the application of logic in
attempts to formalize the mo.nipul,ation of symbols in certain fields.
Much of this work was done by logicians interested in more practical
research areas.

38 A. Nijholt

It will be clear that formal mathematical methods play an impor
tant role in Theoretical Computer Science. The workers in this research
area are assumed to maintain a mathematical integrity and its subfields
use the paradigms of mathematics. When Compiler Construction was a
new. and therefore important. topic in computer science much of the
research dealt with syntax instead of semantics. for the simple reason
that syntax could be formalized. This led to a concentration of
research activity in a rather restricted area. This area has been exten
sively worked out, its results have been and still are applied in practice
and many results have lasting value. Moreover. it has been an impor
tant. necessary and useful phase in the maturing of computer science
and computer scientists. An important part of Computer Science"s
preoccupation is the manipulation of symbols and strings. Having
become acquainted with the formal methods (and their limitations)
which govern this manipulation is a sign of maturity. Research in this
area has introduced fruitful and scientific attitudes and methodologies
in Computer Science. Nevertheless. part of the interest in this area can
be explained from the background of computer scientists. Workers in
computer science used to be from an engineering/industrial or from a
pure mathematics/logic background. This latter background and the
association of computer science groups with mathematical departments
makes it understandable that such an emerging science wants to earn
respect by adhering to the paradigms of its environment and by con
centrating on publishable research.

Wegner [49] distinguishes three phases of programming language
development, corresponding roughly to the 1950s, 1960s and 1970s.
These phases are discovery and description of concepts, elaboration and
anal,ysis of concepts, and software technology. They are characteri2ed
by an empirical. mathematical and an engineering approach, respec
tively. A similar global distinction in periods can be made for more
topics of Computer Science. However, often this static tripartition does
not do justice to the area. There is a continuous interaction between
theory and practice. In this interaction the empirical. mathematical
and engineering approach can often be recognized but not always and
not always in that order. Therefore it is useful to add the following
three observations to such a global view. Firstly. as in any scientific
area, there is a development of theory as a means to advance our
understanding of the basic concepts of the theory itself. This develop
ment is not necessarily irrelevant for practice. The theoretical frame
work can provide a common cultural background for the practitioners
from which practical concepts and methodologies can emerge. More
over, advances in technology may make it possible to use theoretical
ideas which until then had to be discarded. Secondly. there is the con
tinuous effort to grasp more aspects of a practical situation - in this
case compiler construction - in a comprehensive theoretical frame
work. Finally, the theory receives impulses from new ideas and

From Mechanical to Theoretical 39

concepts which are discovered· in practical situations or are invoked by
technological advances.

Practical problems are far from clean and clear. Research in com
puter science should also be motivated by practical technological con
siderations. It is difficult to discriminate in this practical research
between concepts which really advance our understanding of computa
tional processes and concepts which will have no lasting value. More
fundamental research may provide the framework in which concepts
can be judged and accepted or rejected. Computer Science has many
commercial and military implications. Its funding of projects is often
determined by short-term yield. Researchers are looking for fashion
able research areas with a direct practical payoff and for which funding
is easy and publications will be accepted. They are not necessarily
motivated by the objective of obtaining deep results which advance our
understanding of computational processes and their management. Nei
ther are they motivated to leave behind a coherent body of methods
and results before moving to the next fashionable field. This following
of trends of fashion is not necessarily beneficial for the long-term
development of computer science.

References
1. J.W. Backus: The syntax and semantics of the proposed interna

tional algebraic language of the Zurich ACM-GAMM Conference.
Proc. Int. Con/. on Inform. Processing. UNESCO Paris. 1959,
125-132.

2. J.W. de Bakker: Formal Definition of Programming Languages,
with an Application to the Definition of ALGOL 60. Math. Cent.
Tracts 16, Mathematisch Centrum. Amsterdam, 1967.

3. Y. Bar-Hillel. M. Perles & E. Shamir: On formal properties of sim
ple phrase structure grammars. Z. Phonetik. Sprach. Komm. 14
(1961) 143-179. Also: Tech. Rep. No. 4 (July 1960). Applied
Logic Branch. The Hebrew University of Jerusalem.

4. Y. Bar-Hillel: Language and Information. Selected Essays on Their
Theory and Application, Addison-Wesley. Reading. Mass .. 1964.

5. F.L. Bauer: Historical remarks on compiler construction. in:
F.L. Bauer & J. Eickel (Eds.): Compiler Construction: An Advanced
Course, Leet. Notes Comp. Sci. 21 (1974) 603-621. Springer
Verlag. Berlin. Heidelberg. New York.

6. B.V. Bowden (Ed.): Faster Than Thought. Pitman. London. 1953.

7. N. Chomsky: Systems of syntactical analysis. J. Symbdic Logic
18 (1953) 242-256.

8. N. Chomsky: Three models for the description of language. IRE
Trans. in Inform. Theory. 2 (1956) 113-124.

40 A. Nijholt

9. N. Chomsky: Syntactic Structures. Mouton. The Hague, 1957.

10. N. Chomsky & G.A. Miller: Finite state languages, Inform. and
Control 1 (1958) 91-112.

11. N. Chomsky: On certain formal properties of grammars, Inform.
and Control 2 (1959) 137-167.

12. N. Chomsky: A note on phrase structure grammars. Inform. and
Control 2 (1959) 393-395.

13. N. Chomsky: Context-free grammars and pushdown storage, RLE
Quart. Prog. Rept. No. 65, MIT. Cambridge. Mass .• 1962.

14. N. Chomsky: Aspects of the Theory of Syntax. The MIT Press.
Cambridge, Mass., 1965.

15. A. Evans Jr: An ALGOL 60 compiler, Annual Review in Automatic
Programming 4 (1964) 87-124. Pergamon. Elmsford, N.Y.

16. R.J. Evey: The theory and application of pushdown machines, in:
Mathematical Linguistics and Automatic Translation. Computa
tion Lab. Rept. NSF-10, Harvard University, Cambridge. Mass.,
1963.

17. J.A. Feldman: A formal semantics for computer languages and its
application in a compiler-compiler, Comm. Assoc. Comput. Mach. 9
(1966) 3-9.

18. R.W. Floyd: A descriptive language for symbol manipulation. J.
Assoc. Comput. Mach. 8 (1961) 579-584.

19. R.W. Floyd: On the nonexistence of a phrase structure grammar
for ALGOL 60, Comm. Assoc. Comput. Mach. 5 (1962) 483-484.

20. R.W. Floyd: On ambiguity in phrase structure grammars, Comm.
Assoc. Comput. Mach. 5 (1962) 526, 534.

21. S. Ginsburg & H. Rice: Two families of languages related to
ALGOL. J. Assoc. Comput. Mach. 9 (1962) 350-371.

22. S. Ginsburg: Methods for specifying families of formal languages
- Past, present. future. in: R.V. Book (Ed.): Formal Language
Theory. Perspectives and Open Problems, Academic Press. 1980,
pp. 1-22.

23. H.H. Goldstine: The Computer from Pascal to von Neuman. Prince
ton University Press, 1972.

24. S. Gorn: Some basic terminology connected with mechanical
languages and their processors, Comm. Assoc. Comput. Mach. 4
(1961) 336-337.

25. S. Gorn: Specification languages for mechanical languages and their
processors - A baker's dozen. Comm. Assoc. Comput. Mach. 4
(1961) 532-542.

26. S.A. Greibach: Formal languages: Origins and directions. in: 20th
Annual IEEE Symposium on Foundations of Computer Science.

From Mechanical to Theoretical 41

1979, 66-90.

27. Z. Harris: Metlwds in Structural Linguistics. University of Chi
cago Press, 1951.

28. J. Hartmanis: Observations about the development of Theoretical
Computer Science. in: 20th Annual IEEE Symposium on Founda
tions of Computer Science, 1979, 224-233.

29. D.G. Hays: Automatic language-data processing, in: H. Borho
(Ed.): Computer Applications in the Behavioral Sciences. Prentice
Hall, Englewood Cliffs. N.J., 1962.

30. G.M. Hopper: Keynote Address, in: [50], 7-20.

31. E.T. Irons: A syntax directed compiler for ALGOL 60, Comm.
Assoc. Comput. Mach. 4 (1961) 51-55.

32. . S.C. Kleene: Origins of recursive function theory, in: 20th Annual
IEEE Symposium on Foundations of Computer Science, 1979,
371-382.

33. D.E. Knuth: Semantics of context-free languages, Math. Systems
Theory 2 (1968) 127-145. Correction in: Math. Systems Theory 5
(1971) 95-96.

34. D.E. Knuth & L. Trabb Pardo: The early development of pro
gramming languages, in: Encyclopedia of Computer Science and
Technology, Vol. 7, Dekker, New York, 1977, 419-493.

35. C.H.A. Koster: Two-level grammars, in: F.L. Bauer & J. Eickel
(Eds.): Compil,er Construction: An Advanced Course. Leet. Notes
Comp. Sci. 21 (1974) 146-156, Springer-Verlag, Berlin. Heidel
berg, New York.

36. H.F. Ledgard: Production systems: or Can we do better than BNP?
Comm. Assoc. Comput. Mach. 17 (1974) 94-102.

37. P. Naur (Ed.): Report on the algorithmic language ALGOL 60,
Comm. Assoc. Comput. Mach. 3 (1960) 299-314.

38. P. Naur (Ed.): Revised report on the algorithmic language
ALGOL 60, Comm. Assoc. Comput. Mach. 6 (1963) 1-17.

39. A. Nijholt: Deterministic Top-Dawn and Bottom-Up Parsing: His
torical Notes and Bibliographies. Mathematical Centre. Amster
dam. 1983.

40. A.G. Oettinger: Automatic syntactic analysis and the pushdown
store. in: R. Jakobson (Ed.): Structure of Language and its
Mathematical Aspects. Proc. of Symposia in Appl. Math., Vol.
XII. Amer. Math. Soc., Providence, R.I., 1961. 104-129.

41. E. Pantages: They made the future in the past: Captain Grace
Murray Hopper. Data 11 (1981) Nr. 1/2, February. 14-19.

42. E.L. Post: Formal reductions of the general combinatorial prob
lem, Amer. J. Math. 65 (1943) 197-268.

42 A. Nijholt

43. M. Rabin & D.S. Scott: Finite automata and their decision prob
lems. IBM J. Res. Devewp. 3 (1959) 114-125.

44. K. Samelson & F.L. Bauer: Sequentielle Formelubersetzung. Elek
tron. Rechenanlagen 1 (1959) Vol.4. Also: Sequential formula
translation. Comm. Assoc. Comput. Mach. 3 (1960) 76-83.

45. S. Scheinberg: Note on the Boolean properties of context-free
languages, Inform. and Control 3 (1960) 372-375.

46. D.S. Scott: Outline of a mathematical theory of computation.
Proc. 4th Annual Princeton Conference on Inf. Sciences and Sys
tems. 1970. 169-176.

47. P.B. Sheridan: The arithmetic translator-compiler of the IBM
FORTRAN automatic coding system. Comm. Assoc. Comput. Mach.
2 (1959) 9-21.

48. T.B. Steel Jr (Ed.): Formal Languages: Description Languages for
Computer Programming. Proc. of the IFIP Working Conf. (held in
New York 1964). North-Holland. Amsterdam. 1966.

49. P. Wegner: Programming languages: The first 25 years. IEEE
Trans. Comput. 25 (1976) 1207-1225.

50. R.S. Wells: Immediate constituents. Language 23 (1947) 81-117.

51. R.L. Wexelblat (Ed.): History of Programming Languages.
Academic Press. New York, 1981.

52. H. Wolpe: Algorithm for analyzing logi_cal statements to produce
truth function table, Comm. Assoc. Comput. Mach. 1 (1958) 4-13.

Generating Strings with Hypergraph
Grammars

Joost Engelf riet

Department of Computer Science, University of Leiden
P.O. Box 9512, 2300 RA Leiden, The Netherlands

Context-free hypergraph grammars generate the same string
languages as deterministic tree-walking transducers.

1. Introduction

A graph grammar generates a set of graphs. also called a graph
language. To obtain an overview of the usefulness of graph grammars,
see [6.10.11]. Since strings can be viewed as (chain-like) graphs. every
string grammar can be viewed as a graph grammar in an obvious way.
More importantly. every type of graph grammar may also be used as a
type of string grammar: just restrict attention to those graph grammars
that generate strings only. Thus the sentential forms of such a gram
mar may be arbitrary graphs. but the generated graphs are strings. In
this paper we investigate the string-generating power of a particular
type of graph grammar: the context-free hypergraph grammar. recently
(re-)introduced in [5.19.24] (see [19] for historical remarks). In such a
grammar the sentential forms are directed hypergraphs. of which the
hyperedges are labeled by terminal and nonterminal symbols. One
derivation step consists of replacing one hyperedge (labeled by a non
terminal) by a hypergraph. according to some production of the gram
mar. These grammars are of interest because (1) they generate area
sonably large class of (hyper)graph languages. and (2) the way they
work is easy to understand and to visualize (a vital feature of graph
grammars). They can be used. e.g .• to model the top-down design of a
relational database scheme [4].

We will characterize the string languages generated by context
free hypergraph grammars to be those generated by the tree-to-string
transducers of [1]. thus answering question (4) in the conclusion of
[19]. These languages are also closely related to the dependency path
languages of attribute grammars (see [12]). Intuitively. this characteri
zation can be understood through the notion of derivation tree of a
context-free hypergraph grammar; cf. [23]. In fact, the graph (in par
ticular. string) generated in a derivation of the grammar, is distributed
over the corresponding derivation tree in a .. snake-like" manner. rem
iniscent both of the route taken on a derivation tree by a tree-walking
automaton. and of the dependency graph of a derivation tree in an

43

44 J. Engelfriet

attribute grammar. As a special case we characterize the string
languages generated by linear hypergraph grammars to be those gen
erated by 2-way finite state transducers.

2. Hypergraphs and Hypergraph Grammars

A directed hypergraph consists of a set of nodes and a set of
(hyper)edges, just as an ordinary graph except that an edge is incident
with any number of nodes rather than exactly two. The edges are
directed in the sense that the nodes incident with a given edge are
linearly ordered. Formally (cf. [5.24]), a (directed edge-labeled) hyper
graph (or. shortly, graph) is a system H = (V.E,I.,nod,lab) where V
is a finite set of nodes (or vertices). E is a finite set of (hyper)edges, :E
is an alphabet of edge labels, nod : E- V* is the incidence function. and
lab : E-. I, is the edge labeling function. Thus. nod maps every edge
into a sequence of nodes (of any length). If nod (e) = (v 1 Vn).

n ;;i,;o, then e is called an n-edge, v; is also denoted by nod(e.i), and e
and v; are said to be incident. Pictorially (cf. [24]). nodes are indicated
by fat dots. as usual. and the edge e is indicated by a box containing
lab (e). with a line between e and v; labeled by i. for each 1 ~ i ~n.
These lines are called the .. tentacles" of the hyperedge [19].

C

1

1

Figure 1.

C

1

As an example, the hypergraph in the left part of Figure 1 has
(enumerated from left to right) V = {u.v.w} and E = {e 1,e 2,e 3,e 4 }.

and it has :E = {a,b,c}, nod(e 1)= (u). nod(e 2)= 0. nod(e 3)=
(u,w,v,w). nod(e 4)= (v.w). lab(e 1)= c, lab(e 2)= lab(e 3)= a, and
lab (e 4) = b . To simplify comparison with ordinary directed graphs we
will also draw a 2-edge e. with nod (e) = (v 1• v 2). as an ordinary
directed edge from v 1 to v 2• labeled by lab (e). and we will also draw a
1-edge e. with nod (e) = (v). as a .. balloon", "tied" at v and labeled
by lab (e). as indicated in a picture of the same hypergraph in Figure 1.
to the right. Note that the .. balloons" can serve as node labels; thus
each ordinary node- and edge-labeled directed graph can be viewed as a
hypergraph in a natural way.

For a given hypergraph H. its components are denoted by VH,
EH. :EH. nodH. and labH. respectively (and the subscript H is dropped
if it is clear from the context). For an alphabet :E. the set of all hyper
graphs H with :EH = I, is denoted by HGR (:E). A subset of HGR (:E)
is called a (hyper)graph language.

Strings and Hypergraphs 45

• • •

Figure 2.

Since we will be interested in particular in strings. we now define
the graphs that we use to model strings: cf. [19]. Let :E be an alphabet,
and let w = u 1 · · · u lc be a string over :E with k ~ 0, u i e :E. Then the
string graph corresponding to w is gr (w) = (V.E.:E,rwd,lab) with
V={0,1, ... ,k}, E={1, ...• k}. rwd(i)=(i-1.i). and lab(i)=ui.
Note that gr(X). where A is the empty string, consists of one node and
no edges. As an example. Figure 2 shows the string graph gr (abaa).
In what follows we will not always distinguish between a string w
and the string graph gr (w). and, similarly, between a string language
L and the string graph language gr (L) = {gr (w) lw e L }. It should be
observed here that in graph languages we will, as usual. not distinguish
between isomorphic graphs (where isomorphisms are defined in the
obvious way). Thus, in gr (w). the fact that the nodes and edges are
integers is irrelevant.

To be able to discuss the application of grammatical productions
to hypergraphs, we need four easy operations on hypergraphs.

(1) Removal of one edge. For H EHGR(:E) and e EEn, H-e denotes
the hypergraph (VH ,EH-{e },:E,rwd,lab) where rwd and lab are the
restriction to EH-{e} of rwdH and labH. respectively. Pictorially, one
hyperedge is removed, by erasing the corresponding box with its tenta
cles.

(2) Disjoint union. LetH.KEHGR(:E) be disjoint graphs, i.e., VH, Vx
and En, Ex are disjoint sets. Then

H +K = (VH U Vx ,En UEx,:E,rwdH U rwdx .labn U labx).

Pictorially, the pictures of H and K are put together into one picture,
without interconnection.

(3) Identification of nodes. Let HEHGR(:E) and let R~VHXVH.
Intuitively. we want to identify nodes u and v. for every pair
(u, v) e R . Let = R denote the smallest equivalence relation on V H

containing R; for v e VH, let [v]R denote the equivalence class of v
with respect to =R, and let Vnl=R = {[v]R Iv E Vn }. Then

H !R = (Vnl=R ,En ,:E,rwd.labn)

where, for every n -edge e E En.

rwd (e) = ([nod (e, 1)]R •... , [rwd (e,n)]R).

Note that H /R has the same edges as H. Pictorially. for each
(u. v) e R • nodes u and v are moved together (carefully) until they
coincide.

46 J. Engelfriet

(4) Gluing along an edge. · Let H.K e HGR (I:.) be disjoint hypergraphs.
and let e e EH and / e Ex be n -edges for some n ~ 0. Define
R = {(nodH(e.i).nodx<f,i))lt'i ,n}. Then

glue (H.e.K.f) = ((H -e)+ (K -f))/ R.

Intuitively. the graphs are glued together by pairwise identification of
the nodes of e and/: the edges e and/ themselves disappear. Put
your fingertips together and think about it. An example is given in
Figure 3: from left to right: H withe. K with/. and glue CH.e.K,f).
with edge labels omitted.

Figure 3.

We are now prepared for the definition of context-free hyper
graph grammar.

Deftnition 1. A context-free hypergraph grammar (shortly cfhg) is a
system G = (F..A.P.S) where E is an alphabet. A!;F. is the terminal
alphabet (and E-A is the nonterminal alphabet). P is the finite set of
productions. and S EE-A is the initial nonterminal. Every production
in P is of the form (e.H) where H EHGR(E) and e EEH with
labH(e)e r.-A. o

Cl.

Figure 4.

Intuitively. the application of a production (e.H) consists of
replacing an edge e by the hypergraph H -e. A picture of (e,H) is
given by a picture of H. in which the box corresponding to e is
decorated with black comers. As an example. Figure 4 shows the three

Strings and Hypergraphs 47

productions of a cfhg G = (F..'1..P.S) with I,= {S.A.a} and '1. = {a}.
Terminology: A nonterminal edge is an edge e with lab (e) e I,- '1. and
similarly for a terminal edge. For a production (e.H). e is called the
left-hand side and H the right-hand side of the production.

Let G = (I..'1..P.S) be a cfhg. Formally. application of a produc
tion ,,, = (e.H) of G is defined as follows. Let Ke HGR (I.); in case K
is not disjoint with H. take an isomorphic copy of K that has this pro
perty. Then 'IT is applicable to K at a nonterminal edge/ of K if
labK (f) = labH (e) and / .e are both n -edges for some n ~ 0. The
application of 'IT to K at/ results in the graph K' = glue (H.e.K.f). or
any graph isomorphic to K'; notation: K ===> K'. As usual. the
language generated by G is L (G) = {HE HGR ('1.) 1£. ===> • H} where S
is the hypergraph without nodes and with one edge e such that
nod (e) = () and lab (e) = S. A graph H E HGR (I,) such that
S ===> • H is called a sentential form of G. The class of all languages
generated by context-free hypergraph grammars is denoted by CFIIG.
Moreover. the class of all string (graph) languages generated by cfhg's
is denoted by STR(CFIIG). Thus

STR(CFIIG) = {L E CFIIG IL ~ gr ('1. •) for some alphabet '1.}.

Figure S.

Figure 6.

48 J. Engelf riet

As an example. for the grammar G of Figure 4. L (G) consists of
all "ladders" of the form given in Figure 5. As another example. the
grammar G of Figure 6 generates the language gr (L) with L =
{anbncn In ~O}; thus. identifying L and gr(L). L ESTR(CFHG).
Using the productions of G in the way suggested by Figure 6. one can
see that G generates the string an bn en in a "snake-like" fashion. as

· shown in Figure 7 for n = 4. As a :final example. very similar to the
previous one. consider the cfhg G of Figure 8. with 6 productions
(x = a or x = b). G generates all strings ww$ where w is an odd
length palindrome over the alphabet {a.b }. This time. the way the pro
ductions are drawn suggests that the strings are generated as chains
rather than snakes.

a. (L (L

b b

C C C.

Figure 7.

As the reader may have noticed in Figures 1 and 6. different ten
tacles of a hyperedge may lead to the same node. However. as sug
gested by [9]. this phenomenon can always be avoided in cfhg's for
nonterminal edges (not for terminal edges of course). To formulate
this as a result. we need some terminology. An edge e in a hypergraph
H is loop-free if the nodes in nodH (e) are all different. A cfhg G is
loop-free if. for every production (e.H) of G. all nonterminal edges of
H are loop-free. Thus. the cfhg's of Figures 4 and 8 are loop-free. but
the one of Figure 6 is not. We now state the "loop-free lemma".
Theorem 2. For every cfhg G there is a loop-free cfhg G' such that
L (G') = L (G). D

Rem.arks. (1) This result is similar to the removal of A-productions
from a context-free grammar. (2) In [19.24] every production in a cfhg
should have a loop-free left-hand side: in [5] arbitrary left-hand sides
are allowed. D

Loop-free cfhg's are more attractive than arbitrary cfhg's because
the way they work is much easier to visualize: when computing
glue (H.e,K.f) = ((H-e)+(K-f))/R. in the application of a produc
tion (e.H). both e and/ are loop-free, and hence no other nodes than
those indicated by R are identified (i.e., =R =RU R-1). This means
that nodes of a sentential form can never be identified in a later stage
of the derivation, and, consequently, the "terminal part" of the

Strings and Hypergraphs 49

Figure 8.

sentential form (obtained by removing all nonterminal edges) is a sub
graph of the generated graph. It also means that for every production
(e.H). applied in a derivation. the terminal part of H is a subgraph of
the generated graph.

In this sense. the loop-free lemma may be viewed as a way of
showing the power of the attractive formalism of loop-free cfhg's.
Thus. whenever we will construct cfhg's that are not loop-free. we will
say that this is possible "due to the loop-free lemma".

3. Known Formalisms Viewed as Hypergraph Grammars
To become more familiar with cfhg's, we consider in this section some
well-known string and tree grammars that can be viewed as context
free hypergraph grammars. Also, cfhg's are very suitable to generate
the dependency graph language of an attribute grammar, as shown in
[7].

Figure 9 contains a cfhg generating the string language a *b. It
clearly corresponds to a regular (string) grammar with productions
S-+ A , A -+ aA , and A -+ b. Note that, in general. all nonterminal
edges (except S) are 1-edges. Regular string grammars can be

50 J. Engelf riet

A _-1 __ a._.___,, _ A

Figure 9.

~----i. A ---

Figure 10.

generalized to context-free string grammars and to regular tree gram
mars. Figure 10 contains a cfhg generating the string language of all
well-formed parenthesis expressions (where a is the left- and b the
right-parenthesis); it corresponds to the context-free grammar with
productions S-+A, A-+aAbA, A -+X. Note that A-productions can be
simulated .. due to the loop-free lemma··. From this example it should
be clear that all context-free grammars can be viewed as cfhg's (where
all nonterminal edges. except S. are 2-edges). Hence STR(CFHG) con
tains all context-free (string) languages (properly of course. see Figures
6 and 8). Figure 11 contains a cfhg that generates all ordered binary
trees. Internal nodes of the trees are labeled a. and leaves are labeled
b ; the order is indicated by edge labels / and h (standing for left and
right. respectively). This cfhg corresponds to the regular tree grammar
(cf. [17. 7]) with productions S-+ A . A -+ a (A.A). A -+ b.

For the reader familiar with context-free tree grammars (cf .. e.g.,
[15]) we note that they can also easily be simulated by cfhg's, as long
as they are noncopying and nondeleting. For a copying. nondeleting.
(IO) context-free tree grammar G it is possible to construct a cfhg G'
that generates DOAGs (directed ordered acyclic graphs) which, when

Strings and Hypergraphs 51

--1 - A

Figure 11.

Figure 12.

unfolded, give the trees generated by G; thus L (G) = unfold(L (G')).
In this sense the cfhg of Figure 12 simulates the context-free tree
grammar with productions S-+ A (b), A (x)-+ A (a (x.x)). A (x)-+ x.
generating all full binary trees.

In general, a graph grammar can also be used to generate a
transduction, i.e., a relation between graphs: if (H,K) is in the relation.
then the grammar generates the disjoint union H + K, and in some way
marks H and K, to distinguish the input graph H from the output
graph K. Thus, one may investigate how the top-down tree transducer
(see. e.g., (17]) and even the macro tree transducer (see, e.g., [16]) can
be simulated by cfhg's.

We now turn to the dependency graphs of attribute grammars
(AGs). An attribute grammar [22] associates a .. dependency graph"
with each production and each derivation tree of a given context-free
(string) grammar. The set of all dependency graphs of derivation trees
forms the dependency graph language defined by the AG. We assume
the reader to be familiar with attribute grammars: see, e.g., [22,2,12].
Let DEP-AG denote the class of all dependency graph languages of
AGs. We will assume here that the nodes of dependency graphs
(corresponding to attributes) are not labeled, but the edges

52 J. Engelf riet

(corresponding to dependencies between attributes) are: in particular,
each edge of the dependency graph of a production is given a unique
label; see [12]. Now the following result is straightforward to show:
see Section 16.8 of [7].

Theorem 3. DEP-AG S: CFHG. D

In fact, each dependency graph of a production of the AG
corresponds to a production of the simulating cfhg, in a straightfor
ward way. The nonterminals of the underlying context-free grammar
of the AG are also the nonterminals of the cfhg: each nonterminal has a
tentacle to each of its attributes. An example should make this clear.
Figure 13 contains the dependency graphs of an AG, corresponding to
the productions S-+ A , A -+ AA , A -+ a of the underlying context-free
grammar. The nonterminal A has an inherited attribute a and a syn
thesized attribute /J, and the nonterminal S has attribute /J only. The
dependency edges are given arbitrary unique labels a to f • Figure 14
shows the cfhg that generates the dependency graph language of this
AG.
Remarks 4. (1) Suppose that, in Figure 13, the edge labeled e is not
present. Then the dependency graph language is clearly a string
language. Let STR(DEP-AG) denote the class of string languages in
DEP-AG. Then STR(DEP-AG) S: STR(CFHG), by Theorem 3.

(2) It is shown in [13] that NLC graph grammars can also be used to
generate dependency graph languages. However, cfhg's do this in a
more natural way.

(3) It should be clear from the example that the translation of an AG
into an equivalent cfhg can be realized in deterministic logarithmic
space. This implies that lower bounds carry over from dependency
graph languages of AGs to languages in CFHG. As an example~ it is
immediate from [21] that there is no polynomial time algorithm to
decide, for a given cfhg G. whether all graphs in L (G) are acyclic.
The same holds, e.g., for "planar" and "bipartite" instead of "acyclic"
(These properties are decidable for cfhg's, by the elegant result of [8]).

(4) Some edges in dependency graphs of an AG are often known to be
"passing" edges: the nodes (i.e., attributes) connected by such an edge
are meant to have the same value. Thus, it is meaningful to define a
variation of dependency graphs in which these nodes are identified.
Due to the loop-free lemma the new dependency graph language can
still be generated by a cfhg. If, e.g., the edge labeled e in Figure 13 is a
passing edge. then one just identifies the incident nodes in the
corresponding production in Figure 14 (removing the edge). □

Strings and Hypergraphs 53

Figure 13.

Figure 14.

54 J. Engelfriet

4. The String Generating Power of Hypergraph Grammars

Up to now we did not say anything new. In this section we turn to a
new result: we characterize STR(CFHG) as a class of string languages
known in formal language theory. in particular the theory of tree
transducers and attribute grammars. It is the class OUT(DTWT) of
output languages of the deterministic tree-walking transducers of [1];
see also [14.12]. These transducers walk on the derivation trees of a
context-free grammar. and translate them into strings. The class
OUT(DTWT) is equal to the class yT1c (REC) of yields of images of the
regular (or recognizable) tree languages under :finite-copying top-down
tree transducers: see Corollary 4.11 of [14]. where OUT(DTWT) is
denoted DCT(REC). From this and the proof of Theorem 5. 7 of [12]. it
follows that OUT(DTWT) ~ HOM(STR(DEP-AG)) where HOM
denotes the class of homomorphisms (on strings). Thus. to show that
OUT(DTWT) ~ STR(CFHG). it suffices. by Theorem 3 of the previous
section (cf. Remarks 4(1)). to prove the following lemma.

Lemma 5. STR(CFHG) is closed under (string) horrwrrwrphisrns.

Proof: Let G = (E.11.P.S) be a cfhg that generates a string (graph)
language. and let h: 11•-. O* be a string homomorphism. We have to
show that h(L(G))ECFHG. A cfhg G' = ((E-/i)U 0,0.P'.S) gen
erating h (L (G)) is constructed from G by changing every right-hand
side H of a production of G as follows: every terminal edge e of H is
replaced by gr (h (labH (e))) . More precisely. let labH (e) = a and
nodH (e) = (u. v). If h (a)= b 1 · · · bk (bi E 0) with k ;;i:: 1, then k-1
"new" nodes w 1 wk-l are added to H. and e is replaced by k
"new" edges e1, .. ,,ek with lab(ei)= bi and nod(e;)= (wi-1,wi) for
1 ~i ~k (where w 0 = u and wk = v). If h (a)=>., then e is dropped
from H and the nodes u and v are identified (which is possible due to
the loop-free lemma). D

It remains to show that STR(CFHG) ~ OUT(DTWT). We prove
this by a direct simulation of a string-generating cfhg by a tree
walking transducer. A deterministic tree-walking transducer (abbrevi
ated dtwt) is an automaton with a finite control, an input tree. and an
output string. The input trees are all derivation trees of a given
context-free grammar. At any moment of time the automaton is at a
certain node of the input tree. Depending on the state of its finite con
trol and the label of the node. it changes state. outputs a string to the
output tape. and either stays at the node or moves to the father or a
specific son of the node. The automaton starts in its initial state at the
root of the input tree, and halts whenever it reaches a final state. In
this way it translates the input tree into an output string. The output
language of the automaton is the set of all output strings obtained in
this way. OUT(DTWT) denotes the class of all such output languages.
For more details see [1]. or [14] (where the dtwt is called a dct
transducer).

Strings and Hypergraphs 55

Lemma 6. STR(CFHG) ~ OUT(DTWT).

Proof (sketch): Let G = (I..a,P.S) be a loop-free cfhg generating a
string language. To better understand the idea of the proof we first
assume that G satisfies the following two restrictions:
(1) There is a unique production 'TT';,,, = (e.H) in P with labH(e) = S.
Moreover, H-e consists of a 2-edge, i.e., VH = {u. v}. EH = {e,e' }.
rwdH (e) = (), and rwdH (e') = (u. v). Furthermore, the first [last] node
of every string generated by G is u [v. respectively].
(2) Each node of the right-hand side of a production in P is incident
with at most one nonterminal edge.

The cfhg of Figure 10 satisfies (1) but not (2). and the cfhg of
Figure 8 satisfies both restrictions (and is loop-free). In [19]
STR(CFHG) is defined in such a way that (1) is always satisfied.

The dtwt M to be constructed walks on the derivation trees of a
context-free grammar G' obtained directly from G as follows (in fact.
these trees should also be viewed as derivation trees of G). The non
terminals of G' are the productions of G, and G' has no terminals. Its
initial nonterminal is 'TT';,,,, see (1) above. G' contains all productions
1To-+1T11T2 ···1T1 with 'TT';=(e;,H;)EP such that H 0-e0 contains
precisely k nonterminal edges, and, for 1 ~ i ~k , the i -th nonterminal
edge has the same label as e; and both are n -edges for some n ~ 0
(assuming that these k nonterminal edges are given some fixed but
arbitrary order). It should be clear that every derivation tree t of G'
determines a graph H(t) in L (G). obtained by taking the disjoint
union of all terminal parts of (right-hand sides of) productions of G
that occur as labels of nodes of t . and identifying nodes as follows: if
production 'TT'o-+ 'TT'1'1T'2 · · · 'TT't of G' occurs int and/; is the i -th non
terminal edge of H 0-e 0 , then rwd (f i , j) should be identified with
rwd(e;,j). for all l~j ~n. l~i ~k. This is the key to understand
ing how the dtwt M can walk through t • producing H (t) on its out
put tape. When M is at a node x of t, labeled 'TT'= (e.H). then M
also keeps track in its finite control of a node of H; in other words, M
is also "at a node of H", and consequently also .. at a node of H(t)".
M starts at the root of t. labeled 'TT';,,,. and at the node u of H;,,, (see
(1) above); it halts when it returns to the root, at node v of H;,,,. Now
suppose that M is at node x oft. labeled 'TT'= (e,H). and at node u of
H. Then M behaves as follows.

(i) If H has a terminal edge / with rwd H (f) = (u, v) • then M
"moves·· to node v of H, remains at node x oft. and outputs labH(f).

(ii) Otherwise, if H has a nonterminal edge/ ;c e incident with u. f
is the i-th nonterminal edge of H-e, and u = rwdH(f ,j). then M
moves to the i-th son of x in t, labeled, say, by 'TT'; = (e; ,H;). and
moves to rwd (e; ,j) in Hi (without producing output).

(iii) Otherwise u is incident with e. In that case M moves to the
father y of x. Suppose that u = rwdH (e, j), that x is the i -th son of

56 J. Engelf riet

y. and that y is labeled by 7To = (e 0,H 0) in t. Then M moves to
nod (f; .j) in H 0• where Ii is the i-th nonterminal edge of H 0-eo. M
does not produce output.

This ends the description of M. In the general case, the fact that
a node may be incident with more than one nonterminal edge makes it
impossible for M to choose the correct edge deterministically. How
ever, G can first be changed in such a way that its new nonterminals
are of the form (X,p) where X is an old nonterminal and p is a partial
function from {1. n} to itself for some n ~O. If (X.p) labels an n
edge e. in some sentential form of G, and nod (e) = (u 1 • .. ,,Un). then
p (i) = j means that (X,p) generates the substring of H (t) from node
u; to node u1 (viewing u 1, •.. ,Un as nodes of H(t) too). From this
information M can easily see which nonterminal edge to take. in case
of doubt. A slight extension of the information allows M to find the
start and end of H(t). Note that this kind of information is analogous
to the ifs-graphs (in attribute grammars) that model the dependency
paths in the dependency graph of a derivation subtree. D

Our main result follows from Lemmas 5 and 6.

Theorem 7. STR(CFHG) = OUT(DTWT)
and STR(CFHG) = HOM(STR(DEP-AG)). D

To illustrate this result, it is easy to see from the cfhg's of Figures
8 and 10 (and Lemma 5) that. for every context-free language L. a
cfhg can be constructed generating the language {ww I w EL } . Of course
this language can also be generated by a dtwt that walks on the deriva
tion trees of a context-free grammar for L : the dtwt just walks twice
through the tree in a depth-first left-to-right fashion. The language
can also easily be defined by a 2-pass attribute grammar (and a
homomorphism).

Quite a lot is known about OUT(DTWT): see, e.g .. [14]. For
instance. it is a full APL containing Parikh languages only. The hierar
chy result for STR(CFHG) in Theorem 4.4 of [19] can also be under
stood from a similar hierarchy result for OUT(DTWT) (in Theorems
3.2.5 and 4.9 of [14]): roughly speaking. if nonterminal edges have at
most 2k tentacles. then the dtwt is at most k-crossing.

As an interesting special case we consider the linear cfhg's (stu
died in [25] and. as finite graph automata, in [20]). A cfhg is linear if
every right-hand side of a production contains at most two nontermi
nal edges (The cfhg's in Figures 4, 6, 8. 9, and 12 are linear). Let
LIN-CFHG denote the class of languages generated by linear cfhg's.
Clearly, in the linear case. the derivation trees of the context-free
grammar on which the dtwt works are not branching. Thus. we may
view the dtwt as a 2-way deterministic finite state transducer with
strings as input and output; see. e.g .. [14]. Let OUT(2DGSM) denote
the class of output languages of such transducers.

Strings and Hypergraphs 51

Theorem 8. STR(LIN-CFHG) = OUT(2DGSM). □
Also about OUT(2DGSM) quite a lot is known. As an example.

we obtain the fact that there is a string language in CFHG that is not in
LIN-CFHG. In fact there exists even a context-free language that is not
in OUT(2DGSM): see. e.g .. [18]. We also note that linear cfhg's are
related to parallel rewriting: one nonterminal edge can grow pieces of
graph at different places of the sentential form simultaneously (as in
Figure 8). For strings there is a formal relationship between cfhg's and
ET0L systems (a well-known type of parallel rewriting systems: see,
e.g .. [3. 14]): OUT(2DGSM) = ET0LFIN. the class of ET0L languages of
finite index: see Corollary 4.11 of [14] where OUT(2DGSM) is denoted
DCS(REG).

References
1. A.V. Aho & J.D. Ullman: Translations on a context free grammar,

Inform. and Control 19 (1971) 439-475.

2. H. Alblas: A characterization of attribute evaluation in passes.
Acta Inform. 16 (1981) 427-464.

3. P.R.J. Asveld: Controlled iteration grammars and full hyper
AFL's, Inform. and Control 34 (1977) 248-269.

4. C. Batini & A. D'Atri: Relational data base design using refinement
rules, RA.l.R.O. Inform. Theor. 17 (1983) 97-119.

5. M. Bauderon & B. Courcelle: Graph expressions and graph rewrit
ings (1986), Report 1-8623, University of Bordeaux 1. France.

6. V. Claus. H. Ehrig & G. Rozenberg (Eds.): Graph-Grammars and
Their Application to Computer Science and Biowgy. Leet. Notes in
Comp. Sci. 73 (1979). Springer-Verlag. Berlin, Heidelberg. New
York.

7. B. Courcelle: Equivalences and transformations of regular systems
- Applications to recursive program schemes and grammars.
Theoret. Comput. Sci. 42 (1986) 1-122.

8. B. Courcelle: Recognizability and second-order definability for sets
of finite graphs (1986), Report 1-8634, University of Bordeaux 1.
France.

9. B. Courcelle: personal communication.

10. H. Ehrig, M. Nagl & G. Rozenberg (Eds.): Graph-Grammars and
Their Application to Computer Science, Leet. Notes in Comp. Sci.
153 (1983), Springer-Verlag, Berlin, Heidelberg. New York.

11. H. Ehrig. M. Nagl & G. Rozenberg (Eds.): Proc. Third Workshop on
Graph-Grammars and Their Applications to Computer Science
(1986), Warrenton. Va.

58 J. Engelf riet

12. J. Engelfriet & G. File: Passes and paths of attribute grammars,
Inform. and Control 49 (1981) 125-169.

13. J. Engelfriet, G. Leih & G. Rozenberg: Apex graph grammars and
attribute grammars (1987). Report 87-04, University of Leiden.
The Netherlands.

14. J. Engelfriet, G. Rozenberg & G. Slutzki: Tree transducers, L sys
tems, and two-way machines, J. Comput. System Sci. 20 (1980)
150-202.

15. J. Engelfriet & E.M Schmidt: IO and 01. J. Comput. System Sci. 15
(1977) 328-353 and J. Comput. System Sci. 16 (1978) 67-99.

16. J. Engelfriet & H. Vogler: Macro tree transducers. J. Comput. Sys
tem Sci. 31 (1985) 71-146.

17. F. Gecseg & M. Steinby: Tree automata (1984). Akademiai Kiado.
Budapest.

18. S.A. Greibach: One-way :finite visit automata, Theoret. Comput.
Sci. 6 (1978) 175-221.

19. A. Habel & H.-J. Kreowski: Some structural aspects of hypergraph
languages generated by hyperedge replacement, in: Proc STACS
"87, Leet. Notes in Comp. Sci. 247 (1987) 207-219. Springer
Verlag, Berlin, Heidelberg. New York.

20. D. Janssens & G. Rozenberg: Hypergraph systems and their exten
sions. RA.I.R.O. Inform. Theor. 17 (1983) 163-196.

21. M. Jazayeri, W.F. Ogden & W.C. Rounds: The intrinsically
exponential complexity of the circularity problem for attribute
grammars, Comm. Assoc. Comp. Mach. 18 (1975) 697-706.

22. D.E. Knuth: Semantics of context-free languages. Math. Systems
Theory 2 (1968) 127-145; Correction Math. Systems Theory 5
(1971) 95-96.

23. H.-J. Kreowski: Rule trees represent derivations in edge replace
ment systems, in: G. Rozenberg & A. Salomaa (Eds.): The Book of
L (1986). Springer-Verlag. Berlin. Heidelberg. New York.

24. U. Montanari & F. Rossi: An efficient algorithm for the solution of
hierarchical networks of constraints (1987). University of Pisa,
Italy.

25. T. Pavlidis: Linear and context-free graph grammars, J. Assoc.
Comp. Mach. 19 (1972) 11-23.

Modular Tree Transducers

Heik.o Vogler

Lehrstuhl fur Informatik II, R.W.T H. Aachen
Biichel 29-31, D-5100 Aachen, F.R.G.

In this article a new class of transducing devices, called modular tree
transducers, is introduced and their relationship to (compositions of)
macro tree transducers is studied. Modular tree transducers are term
rewriting systems which define operations on trees in a structural
recursive and modular way. The class of defined operations is closed
under composition where the resulting transducers have in general
more modules than the transducers started with. Modular tree
transducers with one module correspond to macro tree transducers;
however, every composition of macro tree transducers can be simu
lated by a modular tree transducer with just two modules. On the
other hand "calling restricted" modular tree transducers characterize
this composition in the sense that the number of modules
corresponds to the number of composed macro tree transducers.

1. Introduction

In theoretical computer science one often is confronted with the task of
defining operations on tree-structured objects. If these arise in practical
applications, then frequently it is possible to specify them in a struc
tural recursive way. Then the definition of such an operation f has the
form of a case analysis on the (finitely many) different structures of
the actual values of one particular argument position. For every struc
ture t of this so-called recursion argument. an equation eq is entered
into the case analysis; it specifies the result of/ if the actual value of
the recursion argument has the structure t . In general eq does not pro
vide the final result immediately but only gives an approximation of it:
besides the application of basic functions the right-hand side of eq may
contain the operation f itself with the important restriction that /
must be applied to one of the substructures of the recursion argument.
Since we are interested in operations on trees only. we regard the basic
functions as symbols with rank; thus the right-hand sides of equations
are just trees.

Let us look at an example in which operations on binary trees are
defined in a structural way. We only consider binary trees which
either have the form of a "right-growing comb'" or the form of a
"left-growing comb". and in which the inner nodes are labeled by
cons; cf. Figure 1(a) and (b). Note that the combs of Figure 1 may be
viewed as representations of the lists (a B C) and (((() c) b) A).
respectively, where a,b,c,A,B and C are atoms. (Clearly, the comb in

59

60

cons

~ a cons

B/~ns

C/ -............._NIL

(a)

H. Vogler

cons

~
cons A

~
cons b

NIL~c

(b)

Figure 1. (a) right-growing comb with leaves a, B, C and NIL,
(b) left-growing comb with leaves NIL, c, b and A .

Figure 1(b) is not the standard representation of the list
(((() c) b) A). but we have chosen this one because of technical con
venience). Now we want to define the unary operation mirror which
mirrors every right-growing comb at a vertical line and turns it into a
left-growing comb; cf. Figure 2(a).

mirror

I
cons cons

/~ ~
a cons cons a

/~
B cons

/~ = cons B

/ ~ / ~
C NIL NIL C

Figure 2. (a) Application of mirror to cons (a.cons (B,cons (C,NIL))).

shovel cons

~ I\
cons cons c cons

1\-. /\
cons a D NIL

I\
b cons

I"-.
cons B

I\
A cons

NI{''-c /\
D NIL

Figure 2. (b) Application of shovel to cons (cons (cons (NIL,C).B),a)
and cons (D,NIL).

This partial operation can be specified by the equations

mirror (NIL)= NIL

mirror (cons (x 1.x 2)) = cons (mirror (x 2),x 1).

Here the two possible structures of the recursion argument are NIL
and cons(x 1.x2). where x 1 and x 2 are variables that represent the sub-

Modular Tree Transducers 61

structures of the recursion argument. Note that in the right-hand side
mi,rror is applied to a substructure (viz. to x 2) of the actual value of
the recursion argument. Note also that cons and NIL are both con
structors for the values of the recursion argument and basic function
symbols.

Another operation is slwvel which has two arguments. As first
argument it takes a left-growing comb, and its second argument is a
right-growing comb. Now the operation shovels the leaves from its
:first argument onto its second argument. and simultaneously. it
modifies them according to some table: cf. Figure 2(b). In our example
a unary operation table replaces capital letters by the corresponding
small letters and vice versa. The operation slwvel can be defined by
the following equations

slwvel (NIL.y) = y

slwvel(cons (x 1.x2).y) = slwvel (x 1,cons (table (x2),y)).

The first argument of this operation is the recursion argument. and the
second one serves as a kind of 0 accumulator". Note that the value of
the accumulator depends on the output of the operation table ; we say
that table occurs nested in the accumulating parameter of slwvel. But
also observe that slwvel is still defined in a structural recursive way.
It is clear how to define table.

In this situation we want to design the unary operation reverse
which takes as argument a right-growing comb and produces also a
right-growing comb of the same height. but in the resulting tree the
order of the leaves is reversed, and capital letters and small letters are
interchanged: cf. Figure 3. One natural way of defining reverse would
be to compose mi,rror and slwvel as follows:

reverse (x) = slwvel (mi,rror (x).NIL).

reverse

I
cons cons

/"--_ ~
a cons = c cons

B~ b~cons

C~IL /" A NIL

Figure 3. Application of reverse to cons (a.cons CB.cons (C.NIL))).

Clearly, this equation does not obey any more the principle of a struc
tural recursive definition: the recursion argument position of slwvel in
the right-hand side does not consist of a substructure of the recursion
argument x of the left-hand side. but is computed by another opera-

62 H. Vogler

tion. On the other hand. reverse is defined now in a very natural way.
and hence. any design method for operations on trees should offer the
feature of such a modular definition: the value of the recursion argu
ment of one module is computed by another module.

Well. until now we discussed in an informal way the method of
defining operations on trees and we did not give any syntax or seman
tics definition of the metalanguage in which the definitions are written
down. What about formal metalanguages that also comprise computa
tion models? Clearly. the simplest formalization of the structural
recursive definition method are top-down tree transducers [12.13.3].
They allow the specification of unary operations by using simultaneous
structural recursion. Equivalent concepts are generalized syntax
directed translation schemes [1] and attribute grammars with syn
thesized attributes only [11].

However. an operation like shovel cannot be specified by a top
down tree transducer. because the definition relies on the concept of
accumulating parameter in which nested operations may occur. A for
mal model for the structural recursive definition method with the pos
sibility of handling accumulating parameters is the macro tree trans
ducer [4.2,6] (In [2] they are called primitive recursive schemes with
parameters). Another formalization of this extended definition method
are attribute grammars [11] which are slightly less powerful than
macro tree transducers [5].

Are there also formalizations which reflect the feature of modu
larity? Clearly, one could just take lambda calculus and that is it. But
we are interested in "'the weakest" metalanguage that realizes our
definition method. To answer the question under this aspect. let us
examine what modularity means for tree transducers. Assume that
there are transducers M 1 and M 2 that perform the operations mirror
and shovel • respectively. Then we can define reverse as

comp (-r(M 1),-r(M 2),NIL)

where -r(Mi) denotes the operation induced by M;, NIL is the unary
operation that maps every argument to NIL, and comp (f .g 1.g 2)

denotes in an obvious way the composition of/ with g 1 and g 2. Thus,
if one wishes to specify operations in a modular way, then the class of
operations induced by the used metalanguage should be closed under
composition. And this requirement excludes macro tree transducers
and also attribute grammars from the list of candidates: neither of
them is closed under composition [5,6].

In this article we propose a formal computation model which
realizes the method of defining operations on trees in a structural
recursive and modular way: the modular tree transducer. Just as top
down tree transducers and macro tree transducers. modular tree trans
ducers are (linear and non-overlapping) term rewriting systems in

Modular Tree Transducers 63

which the operations and equations are realized by states and by
rewrite rules. respectively. Actually. modular tree transducers are
derived in a straightforward way from macro tree transducers by
adding one more building rule for right-hand sides of rewrite rules:
this new building rule reflects the modular principle. To every state q
of a modular tree transducer a natural number is associated which is
called the level of q. Intuitively. states of the same level together with
the corresponding rewrite rules constitute one module. An n -modular
tree transducer has n modules. Macro tree transducers as they have
been de.fined in [6] are exactly the 1-modular tree transducers in which
the initial state (i.e .. the main operation) has one argument. Hence,
macro tree transducers induce unary operations only.

Here we start the investigation of modular tree transducers by
concentrating on two subjects: the closure under composition and the
relation to compositions of macro tree transducers. This article con
sists of six sections. In Section 2 some general notations and notions
are fixed. In Section 3 the basic model of modular tree transducer is
introduced and an example is provided to illustrate the new device. In
Section 4 the closure under composition is shown (Theorem 9), and it
is proved that 2-modular tree transducers are more powerful than the
composition closure of macro tree transducers (Theorem 11). In Sec
tion 5 "calling restricted" modular tree transducers are introduced
which are also closed under composition (Theorem 15). The equiva
lence of "calling restricted" n-modular tree transducers and then -fold
composition of 1-modular tree transducers is proved inductively
(Theorem 17). Finally, in Section 6 connections to other transducing
devices are mentioned.

2. Preliminaries

We recall some notations and notions which will be used in this paper.
In general some knowledge about special term rewriting systems such
as top-down tree transducer (as presented in [3]) or macro tree trans
ducer [4,6] would be helpful. Nevertheless. the paper is self-contained.

2.1. General notations

For every n ~ 0, the set { 1. n} is abbreviated by [n]; hence. [O] is the
empty set. The end of definitions. lemmas. theorems etc. is indicated
by □. The elements in the sets X = {x 1.x 2• · · · } and Y = {y 1,Y 2, • · · }

are used as substitution variables of term rewriting systems. For
n ~O. Xn = {x1,••·•xn} and Yn = {y1,••·•Ynl- For two sets A and B,
A~ B means that A is included in B; we use AC B to denote strict
inclusion.

For the substitution of strings into strings we use the following
abbreviation. Let v be a string. let U and U' be arbitrary sets of
strings, and let <p be a mapping from U into U'. If for every two

64 H. Vogler

different elements u 1 and it 2 of U, u 1 and u 2 are not overlapping in v .
then v [u /q,(u),u e U] denotes the string obtained from v by replacing
every occurrence of u EU by ¢Cu). If U = {u 1, Zl,i}. then we abbre
viate this substitution by v [uJq,(u;).i € [n]].

2.2. Composition of relations

Let A be an arbitrary set. For k ~ 1. a (k + 1)-ary relation R over A is
a subset of A k+l. A (k +1)-ary relation over A in which for every
a 1 ak €A. there is at most one b € A such that (a 1 • ... ,ak ,b) e R is
called k -ary operation over A . Let R O be an (r + 1)-ary relation over
A for some r ~ 1, and for some k ~ 1. let R; be a (k + 1)-ary relation
over A for every i € [r]. The composition of R O with R 1 ,Rr . denoted
by comp (R o,R 1, Rr). is the (k + 1)-ary relation

{(a 1 •...• ak .a)I Vie [r]: :3 b;: (a 1 a1c .b;)ER;. and (b 1 b7 ,a)€ R 0}.

Let REL1 en REL 2 be two classes of relations over A. Then
COMP(REL 1.REL2) denotes the class of relations comp (R 0,R 1 • Rr)
for RoEREL1, and R1, R7 EREL 2 and appropriate r. If REL1 and
REL 2 are classes of binary relations. then COMP(REL 1.REL2) is also
denoted by REL2 ° REL 1. For n ~0 and a class REL of relations,
COMPn (REL) is the class of relations defined inductively as follows:

COMP 0(REL) = REL, and
COMPn+l(REL) = COMP(REL.COMPn(REL)).

COMP(REL) denotes the union of COMPn(REL) for every n ~0. If
REL is a class of binary relations. then for every n ~ 0, COMPn (REL)
is also denoted by RELn+i.

2.3. Ranked alphabets and trees

A ranked alphabet :E is a finite set in which to every symbol a unique
number is associated, viz. its rank. The rank of a symbol is sometimes
indicated as a superscript. E.g. u<2> means that u has rank 2.

Let :E be a ranked alphabet. The set of (labeled) trees over :E is
denoted by T'E. A tree t in T'E is denoted by u(t 1 ,t1c) where the
root of t is labeled by u<1c > e :E and t i, .. ,h are the immediate subtrees
of t . If k = 0, then t is denoted by u. The height of a tree is defined
as usual inductively over the structure of the tree: (i) for u e :E of rank
0. height(u)= 1. (ii) for ue:E of rank k ~1 and t 1, ... ,t1c ET'£,
height (u(t 1 • ... ,tk)) = 1 + max{height (t;) Ii e [k]}. If :E contains only
symbols with rank 0 or 1, then trees over :E are also denoted in the
usual way as strings.

Let A be an arbitrary set. Then T'E(A) denotes the set TwA
where the elements of A are viewed as symbols of rank 0. Any subset
of T 'E is called a tree language and the class of recognizable tree
languages is denoted by RECOG .

Modular Tree Transducers 65

3. Basic Model and Example
In this section we give the formal definition of the concept of modular
tree transducer and of the class of operations on trees induced by them.
The definition is illustrated by an example that describes the operation
reverse on binary trees as discussed in the introduction.

Definition t. Let n ~ 1. An n -modul.ar tree transducer M is a tuple
((Q.level).:t,qin .R) where

Q is the ranked alphabet of states (Every state has rank at least
1.) and level : Q ➔ [n] is a mapping.

:t is the ranked alphabet of terminal (or input and output) sym-
bols (Q and :t are disjoint.). ·

qin e Q is the initial state with level(qin) = 1.

R is a finite set of productions of the form

q (u(x l•···•Xm).y l•···•Yr)-+ C (*)

where q EQ with rank r+l (r ~O). ue:t with rank m (m ~0).
and some C ERHS(Q.:t.j.m.r) where j = level(q) (Recall that
x l•··-.Xm and y l•···•Yr are substitution variables).

RHS(Q.:t.j.m.r) is the smallest subset RHS of Tau1:CXmUYr) such
that the following conditions are satisfied.
(i) Yr is a subset of RHS •
(ii) if 8 e :t with rank k (k ~ 0) and C 1 •...• (1 are elements of RHS. then
8((1 •...• (t)E RHS.
(iii) if p e Q with rank k + 1 (k ~ 0) and level (p) = j • x; e Xm • and
(1, (1 ERHS. thenp(x;.(1 •...• (1)ERHS.
(iv) if p E Q with rank k (k ~ 1) and level (p)> j. and (1 •...• (1 E RHS.
then p ((1 •...• (1)ERHS. D

Remarks. (a) A rule like(*) is also called q-rule or. more specific. a
(q.u)-rule. (b) For every j ~n. the set of q-rules with level(q) = j
form the module with level number j. (c) The :first argument of a
state is also called its recursion argument; the other arguments are
ref erred to as accumulating parameters. D

A modular tree transducer is an n -modular tree transducer for
some n ~ 0. Note that the previous definition only deals with the non
deterministic version of modular tree transducers. Before defining the
total deterministic version. we insert a few easy examples of possible
right-hand sides. because the inductive definition seems to be a bit
involved.

Example 2. Let Q = {v<3>.p<1>.qC1>.r<2>.s<3>.t<1>} be a set of states,
where the superscripts indicate the ranks. and let level (v) = level (p)
= level (q) = level(r) = 1 and level (s) = level (t) = 2. Let :t = {a (O).

b<0>.u<1J.a<2>,-y<3>}. One possible left-hand side is
v(-y(x1.x2.x3).y1,Y2) and the following trees are in RHS(Q.:t.1.3,2):
1. 8(a.b).

66

2. 8(p(x1),u(q(x2))).
3. 8(y1,r(x1,u(q(x2)))).
4. r (x 1.u(s (t (y 2),a.q (x 1)))).

Definition 3. Let M be an n -modular tree transducer.
(1) M is unary if qin has rank 1.

H. Vogler

D

(2) M is total deterministic if for every q E Q and every u EI:, there is
exactly one (q. u)-rule in R . □

Actually. macro tree transducers are precisely the unary 1-
modular tree transducers. i.e .. unary modular tree transducers with one
module. Note that in 1-modular tree transducers, the building rule
(iv) of the set of right-hand sides is never applicable, because there are
no states with a level greater than 1. Indeed, rule (iv) mirrors the
modular principle which is not realized by macro tree transducers.
Top-down tree transducers [12.13] are macro tree transducers in which
every state has rank 1. Thus. in Example 2. the terms 1-3 [terms 1
and 2] are possible right-hand sides of productions of macro tree trans
ducers [of top-down tree transducers. respectively].

The translation induced by a modular tree transducer is defined
by means of a derivation relation.

Definition 4. Let M = ((Q,level),I:,qin ,R) be an n-modular tree
transducer and let q in have rank k for some k ~ 1.
(1) The derivation relation of M. denoted by ==:;> M, is the binary rela
tion on T Q U l: defined as follows. For f 1• f 2 ET Q U l:• f 1 ==:;> M f 2 if and
only if
there is a EE TQ u 1:C{z}) and z occurs exactly once in E,
there is a production q (u(x 1 xm),Y1,-.. ,Yr)➔ tin R,
there are s 1, ... ,sm ETQUl: and t 1 , ... ,tr ETQ Ul: such that

f 1 = f[z /q (u(s 1, ... ,Sm),t 1, ... ,tr)]. and
E2 = E[z 1r1 and"= t[xi/si. i E [m]: YJ lt1' j E [r]].

(2) The translation induced by M. denoted by T(M). is the (k + 1)-ary
relation {(s 1 sk,t)ET!+1 lqin(s 1, ... ,sk)==;>Mt} where as usual
==;> M denotes the reflexive and transitive closure of ==:;> M. □

Note that the rank of the initial state determines the arity of the
induced translation. The class of translations induced by n -modular
tree transducers is denoted by n -ModT; ModT denotes the union of
the classes n-ModT for every n ~ 1. If the involved transducers are
unary or total deterministic, then n -ModT is indexed by un or prefixed
by D, , respectively. E.g .. D, n -ModT un denotes the class of translations
induced by total deterministic unary n-modular tree transducers. Let
D, MT denote the class of translations induced by total deterministic
macro tree transducers. Thus, D, 1-ModT un = D, MT. Note that D, MT
is a class of mappings (i.e .. total functions) with one argument: cf. Sec
tion 3.3 of [6].

Modular Tree Transducers 67

Claim 5. The relations in D1 ModT are total. operations. □

Observation 6. For every n ~ 1, D1 n-ModT ~ D1 (n +1)-ModT. □

We illustrate the above definitions by means of an example: the
unary operation reverse as it was discussed in the introduction, is for
mulated as a modular tree transducer. The example shows that the
present definition of modular tree transducer does not so much refl.ect
the paradigms of a comfortable specification language. Rather it should
serve as an appropriate starting point for theoretical studies and com
parisons with other existing tree transducers. Nevertheless, the next
example indicates how comfort can be gained without increasing the
power of the underlying formalism.

Example 7. Here the unary operation reverse on binary trees is real
ized as al-modular tree transducer M. As repetition: reverse takes a
right-growing comb as argument and produces a right-growing comb of
the same height but with reversed order of leaves. Simultaneously,
capital letters are turned to lower case and vice versa; cf. Figure 3 for
an example of the application of reverse. As set of involved leaves we
use LEAVES = {A.B,C a,b,c , ... }. From the introduction we :first
recall the equations that define the partial operations mirror, shovel.
and reverse; cf. Figure l for an illustration of the meanings of the
operations mirror and shovel .

SPEC1:

(la)
(lb)

(la)
(lb)

(3)

(4)

mirror (NIL) = NIL
mirror (cons (x 1.x 2)) = cons (mirror (x 2), x 1)

shovel (NIL.y) = y
shovel(cons (x 1,x2),y) = shovel (x 1,cons (table (x 2),y))

reverse (x) = shovel (mirror (x).NIL)

table (z) = z' for every z e LEAVES
where z' is obtained from z by replacing capital letters
by lower case letters and vice versa.

From this specification we develop the transducer M by eliminat
ing step by step the "illegal'' syntactic constructs. We only show the
changes. The "free" occurrence of x 1 in the right-hand side of equation
(lb) is not allowed in modular tree transducers. This is simulated by
introducing an additional unary function id that just computes the
identity, and by inserting id above x 1. Also some equations have to be
added to realize id .

SPEC2:

(lb)

(5a)
(5b)

mirror(cons (x 1.x 2)) = cons (mirror(x 2),id (x 1))

id(z) = z for every z €LEAVES
id (NIL)= NIL

68 H. Vogler

(5c) id (cons (x 1,x 2)) = cons (id (x 1), id (x 2)).

In the next step equation (3) is compiled into two equations in
order to get rid of "non-reading equations". For this purpose mirror is
unfolded one step.

SPEC3:

(3a)
(3b)

reverse (NIL)= NIL
reverse (cons (x 1,x 2)) = shovel (cons (mirror (x2),id (x 1)),NIL).

Actually, SPEC3 can be turned immediately into the desired
transducer M = ((Q,level), E,reverse.R) as follows:

Q = {reverse(l>,mirror<1>,shovel<2>,table<1>,id<1>} where the super
scripts indicate the ranks,
level (reverse) = level (mirror) = level (id) = 1 and
level (shovel) = level (table) = 2.
"f, = LEAVEs<0> U {cons <2> ,NIL <0>}.
R contains the following rules

(la) mirror (NIL)-+ NIL
(lb) mirror (cons (x 1,x2))-+cons (mirror (x 2),id (x 1))

(2a) shovel (NIL,y)-+ y
(2b) shovel (cons (x 1.x 2).y)-+ shovel (x 1,cons (table (x 2),y))

(3a) reverse (NIL)-+ NIL
(3b) reverse (cons (x 1,x2))-+ shovel (cons (mirror (x2),id (x 1)),NIL)

(4) table (z)-+ z' for every z e LEAVES

(5a) id (z)-+ z for every z e LEAVES
(5b) id (NIL)-+ NIL
(5c) id (cons (x 1,x 2))-+ cons (id (x 1),id (x 2)).

This completes the construction of the modular tree transducer for
reverse. Intuitively. the rules (3a). (3b), (la). (lb) and (5a) form the
module of level number 1. and the rules (2a). (2b) and (4) constitute
the module with level number 2. Note that M is deterministic, but not
total deterministic, because M only accepts input trees that have the
form of right-growing combs. We finish this example by computing
the application of reverse to the comb

t = cons (a.cons (B,cons (C.NIL))).

The numbers at the beginning of the lines indicate the applied rule.

(3b)
(5a)
(lb.5a)

reverse (cons (a.cons (B,cons (C,NIL))))
==:>shovel (cons (mirror (cons (B.cons (C.NIL))).id (a)),NIL)
==:>shovel (cons (mirror (cons (B.cons (C,NIL))),a).NIL)
==:> 2shovel (cons (cons (mirror(cons (C.NIL)).B),a),NIL)

Modular Tree Transducers 69

(1b,5a) ==:;> 2shovel (cons (cons (cons (mirror (NIL),C).B).a).NIL)
(la) ==;>shovel(cons (cons (cons (NIL,C).B),a),NIL)
(Note that at this point of the derivation, the first argument of shovel
is the result of the application of mirror tot).
(2b,4) ==:;> 2shovel (cons (cons (NIL.C).B),cons (A.NIL))
(2b.4) ==:;> 2shovel (cons (NIL,C),cons (b,cons (A.NIL)))
(2b.4) ==:;> 2shovel (NIL.cons (c,cons (b,cons (A.NIL))))
(2a) ==:;> cons (c,cons (b,cons (A.NIL))). □

4. Composition of Modular Tree Transducers

In this section we prove the closure of total deterministic modular tree
transducers under composition; cf. Theorem 9. By means of an exam
ple, we give an impression of the possible growth rate in the relation
ship between input and output trees of modular tree transducers
(Example 10). Together Theorem 9 and Example 10 prove that (in the
total deterministic case) 2-modular tree transducers are more powerful
than the composition closure of macro tree transducers; cf. Theorem
11.

The proof of the composition closure of total deterministic modu
lar tree transducers is prepared in the next lemma.

Lemma 8. For every n,m ~ 1,

COMP (Dt n -ModT.Dt m-ModT) ~ Dt max -ModT

where max = max{n +1.m }. In porticul,ar,

Dt m -ModT UJI, 0 Dt n -ModT un, ~ Dt max -ModT UJI, •

Proof: Let n,m ~1 and let TECOMP(Dtn-ModT,Dtm-ModT) be a
(k + 1)-ary operation over T 1: for some k ~O and some ranked alphabet
:E. According to the definition of COMP, there is a total deterministic
n-modular tree transducer M 0 = ((Q 0 ,level0),:E,qin,O,R 0) and qin,O has
rank r for some r ~ 1. and for every i E [r], there is a total determinis
tic m-modular tree transducer Mi= ((Qi,levelJ,:E.qin,i ,RJ such that
T = comp(-r(M 0),T(M 1) •••• ,T(Mr)) and qin,i has rank k+1. Without
loss of generality we can assume that the involved sets of states are
disjoint.

Construct the max -modular tree transducer M = ((Q.level),
I:,q in ,R) with max = max{n + 1.m} as follows.

Q = U {Q; IO~ i ~ r } U {q in } and q in has rank k + 1 and level (q in)
= 1: for every q E Qi with i ~ 1, level (q) = level; (q); for q E Q 0•

level(q) = level 0(q)+1 (Thus in particular, level(qin,O) = 2).

R contains U {Ri I0~i ~r) _and. for every o-E:Ei with j ~0. if
for every i E [r] the rule qm· 1 (0-(x1,••·•XJ).y 1 •...• y,t)-+ t is in Ri.
then q in (o-(x l• ... ,XJ),y l• ··••Yk)-+ q in,O({ l• .•• ,{r) is in R.

70 H. Vogler

Note that M is total deterministic. We skip the formal proof of the
correctness of the construction. D

Theorem 9. COMP(D,ModT)<;;. D,ModT.

Proof: The statement of the theorem is an immediate consequence of:
(*) for every n ~0. COMPn(D,ModT)<;;.D,ModT. The proof of(*) is
an easy induction on n using Lemma 8 and Observation 6. D

The next example gives an impression of the possible growth rate
in the relationship between input and output trees of 2-modular tree
transducers. To be more precise, define the mapping exp: N-+ NON is
the set of non-negative integers.) inductively on the first argument:
exp (0.k) = k and exp (n +1.k) = 2r with r = exp (n.k). Then define
the unary mapping super-exp by super-exp (k) = exp (k.1). We con
struct a 2-modular tree transducer for which the growth rate between
input and output trees is described by the mapping super-exp .
Example 10. Let :E = {u<l).a<0>} be a ranked alphabet; trees over :E
will be written in the obvious way as strings. The mapping
coding: N-+ T 'I'. codes non-negative integers as monadic trees over :E.
i.e., coding (k) = uk a. Then define

coding (super-exp)= {(coding (k).coding (super-exp (k))) lk ~O}.
We construct a total deterministic unary 2-modular tree transducer
M = ((Q,level),:E,q,R) such that -r(M) = coding (super-exp).

Q = {q (o) ,exp <2>} where superscripts indicate ranks, and level (q)
= 1 and level (exp) = 2,

R contains the following four rules
q (ux)-+ exp (q (x).a)
q(a)-+ua
exp (u x,y)-+ exp (x,exp (x,y))
exp (a ,y)-+ uy .

This completes the construction. It is easy to show that for every
k~0. q(uka):::::;,.kexp(... exp(ua) a) with k occurrences of exp
and k + 1 occurrences of a. Another easy induction yields the state
ment: for every m ~0. exp (um a ,y):::::;,. *ur y with r = 2m. Together
this proves that -r(M) = coding (super-exp). D

In [6] (see Theorem 3.24) it is shown that macro tree transducers
can perform at most an exponential growth rate between input and
output trees. More precisely. for every macro tree transducer M there
is a constant c such that if (s,t)E-r(M). then the height oft is
bounded by exp (Le.height (s)). Clearly, if (s.t) is an element of the
translation induced by then-fold composition of macro tree transduc
ers, then height (t)~exp (n.c'.height (s)) for some constant c' (that
depends on the involved transducers). An immediate consequence of
this growth-rate property of macro tree transducers. the previous
example, and Lemma 8 is the fact that D, 2-ModT un strictly includes
the class of operations that are induced by the composition closure of
macro tree transducers.

Modular Tree Transducers 71

Theorem 11. U {D, MT" In ;;;, 1 }c D, 2-ModT"" .

Proof: By Lemma 8. D,2-ModTun ° D,MT~D,2-ModTun. Hence. by
induction. U {D, MT" In ;;;, 1} ~ D, 2-ModT"" . The strictness of this
inclusion follows now immediately from Theorem 3.24 of [6] and from
Example 10. □

S. Characteri7.&tion of Compositions of Macro Tree Transducers
In this section we introduce "calling restricted" modular tree transduc
ers and prove that [unary] "calling restricted" n-modular tree trans
ducers are as powerful as the n-fold composition of 1-modular tree
transducers [of macro tree transducers. respectively].

Clearly. in view of Theorem 11. it is necessary to restrict modular
tree transducers if one wishes to decompose them into macro tree
transducers. Let us motivate the nature of the used calling restriction
at an example. Let M be a 6-modular tree transducer and let r be a
q -rule of M where q is a state of M with level (q) = 2 and
rank (q) = 2. Then it is possible that the right-hand side of r has the
form p (t (y 1, ...) •...) where p and t are states each with rank 2. and
level (p) = 3. Now the important point is that level (t) may range
between level (q) and 6; in particular. it may be higher than the level
of p . Thus in general it is possible that the value of the recursion
argument of a state with level number k can be computed by states
with level number equal to or greater than k. Actually. this feature
makes modular tree transducers more powerful than compositions of
macro tree transducers. In fact. if the computation of the value of the
recursion argument only calls states with level number less than k •
then every so-obtained "calling restricted" modular tree transducer can
be decomposed into 1-modular tree transducers; cf. Lemma 16. Actu
ally. every module of a "calling restricted" modular tree transducer is
transformed into one 1-modular tree transducer. In particular. every
"calling restricted" unary n-modular tree transducer can be simulated
by the composition of n macro tree transducers.

The calling restriction is realized by requiring the existence of a
mapping "call .. from states to the set of involved level numbers such
that in particular. the following holds: for every right-hand side of a
rule. if the state t occurs in the recursion argument of the state p, then
level (p) must be greater than ca11 (t).

Definition 12. Let n ;;;,1 and let M = ((Q.level),:t.qin .R) be an n
modular tree transducer. M is caUing restricted if there is a mapping
ca11: Q -+ [n] such that the following holds.
(a) For every q E Q • level (q) ~ call (q).
(b) ff q (u(x 1, ••• ,Xm).y 1, .. ,,Yr)-+ C is a rule of M then
- for every state p occurring in C. call (p) ~ call (q). and
- if p((1,••·•Ct) is a subtree of(. then for every state t occurring in
C 1, ca11 (t) < level (p). □

72 H. Vogler

A calling restricted modular tree transducer is a calling restricted
n -modular tree transducer for some n ~ 1. The class of translations
induced by calling restricted modular tree transducers is denoted by
ModT er . This denotation is modified in the obvious way for n -
modular, unary, and total deterministic transducers; in particular.
D, n -ModT er,wi denotes the class of translations induced by unary total
deterministic calling restricted n-modular tree transducers. Clearly,
for 1-modular tree transducers. there is no difference between the
unrestricted and the calling restricted version, i.e.. 1-ModT =
1-ModTer.

Observation 13. (a) D, 1-ModTer = D, 1-ModT.
(b) For every n ~1. D,n-ModTer ~D, (n +1)-ModTer. D

Before decomposing calling restricted modular tree transducers.
we :first show that these transducers are closed under composition too:
cf. Theorem 9 for the corresponding result of the unrestricted version.
The following preparing lemma is similar to Lemma 8, but now an
additivity relation holds between the maximal levels of the involved
transducers.

Lemma 14. For every n,m ~ 1,

COMP(D,n-ModTer ,D,m-ModTer) ~ D,(m+n)-ModTer.

In particular,

D, m -ModT er,wi O D, n -ModT er,wi ~ D, (m +n)-ModT er,wi .

Proof: The involved construction is literally the same as in the proof
of Lemma 8 except for one important point: the levels of the states of
M O are not just incremented by 1. but they have to be incremented by
m • i.e .• for every q E Q 0• level (q) = level 0(q)+ m .

Then it is possible to define the calling function for the resulting
transducer M. For 0~i ~r. let coll; be the calling function of trans
ducer M; . Define col,l : Q -+ [m +n] for M as follows:

for every q E Q; with i E [m]. coll (q) = col,l; (q),
for every q E Qo, col,l (q) = col,l 0(q)+m,
col,l (q in) = n + m .

It is easy to verify that this mapping fulfills the requirements of
Definition 12. D

Theorem 15. COMP (D, ModT er) ~ D, ModT er . □

Now we decompose calling restricted n-modular tree transducers
into n calling restricted 1-modular tree transducers. The decomposi
tion proceeds by induction. Consider an (n + 0-modular tree trans
ducer M with terminal alphabet :E. Intuitively. M is turned into an
n-modular tree transducer M 1 by splitting up the module with level
number n +1; that is, we consider in right-hand sides of productions
every state q with level n + 1 as a new terminal symbol: the q -rules
are deleted. Thus M 1 computes trees over :E and the new terminal

Modular Tree Transducers 73

symbols. Now M 1 is composed with a macro tree transducer (i.e .•
unary 1-modular tree transducer) M 2 which realizes the module that
has been split up from M. For this purpose. first M 2 "activates'" every
new terminal q by replacing it by the state q• with level number 1.
and second, M 2 evaluates these states by means of the rules of M that
have a state with level number n + 1 in their left-hand side.

Lemma 16. Let n ;;i:: 1.
(a) D, (n + 1)-ModT er ~ D, n-ModT er O D, MT.
(b) D, (n + 1)-ModT er,un. ~ D, n -ModT er,un. 0 D, MT.

Proof: Let M = ((Q.level),I.,qin .R) be a calling restricted total deter
ministic (n +1)-modular tree transducer and let coll be the involved
calling function. Let rank (q in) = r for some r ;;i:: 1. Define Q [n + 1] =
{qlqEQ andlevel(q)= n+l}.

· Construct the calling restricted total deterministic n -modular tree
transducer M1 = ((Q1,level1),I.1,qin·1.R1) as follows.
- Qi= Q-Q[n+l] and for everyqEQ1, level 1(q)= level(q). and if
coll(q),n. then coll 1(q) = coll(q). if coll(q) = n +1. then call 1(q) =
n,

qin,l = qin •
I.1 = I. U Q [n + 1] and ranks are carried over from Q [n + 1] to I.1•

R 1 contains all (q. u)-rules of R for which level (q) E [n].

Construct the unary total deterministic 1-modular tree transducer
M2 = ((Q2,level2),I.2,*,R 2) as follows.
- Q2 = {•}U {q*lq EQ[n +1]} and every state has level number 1.
rank C•) = 1 and ranks carry over from Q [n + 1] to Q 2•

- I.2 = I.U Q [n +1] (ranks carry over).
- R 2 contains the following rules.
(a) For every a<t >e I. with k ;;i:: 0,
•(B(x 1 • ...• xk))-+ B(•(x 1) • ...• •(xk)) is in R 2.
(b) For every q EQ [n +1] with rank (q) = k +1 for some k ;;i::o.
•(q(x1,••·•Xt+1))-+q*(x1,*(x 2). ...• •Cxt+i)) is in R 2.
(c) If q(u(x1,••·•xm).Yl••··•Yr)-+(is in R with level(q)E[n+l]. then
q*(u(x 1, ... ,Xm).y 1, ···•Yr)-+(* is in R2, where (* is obtained from (by
replacing every state p by p*.

This completes the construction. Note that the calling restriction
on m guarantees that every actual value of the recursion argument of a
state q• is already evaluated before the point at which q is activated
and replaced by q*. Intuitively. it is clear that T(M) = T(M 1) 0 T(M 2).

The formal proof of the correctness of the construction is left to the
reader. □

Now the main theorem of this article follows immediately: the
characterization of calling restricted n -modular tree transducers by the
n-fold composition of 1-modular tree transducers.

Theorem 17. (a) For n ;;i::o, D,(n +1)-ModTer =COMP,,, (D, 1-ModT).
(b) For every n ;;i:: 1. D, n -ModT er,un. = Dt MT,,, .

74 H. Vogler

Proof: The inclusions in (a) and (b) can be proved by an easy induc
tion on n using Lemma 14 and Lemma 16. □

From the viewpoint of defining operations on trees. the previous
theorem says the following: the concept of calling restricted modular
tree transducer is the appropriate metalanguage to construct new opera
tions from existing ones that have been specified by macro tree trans
ducers. Actually, the 2-modular tree transducer of Example 7 that
realizes the operation reverse. is calling restricted.

6. Conclusion
In this section we mention some relations to other tree transducing
devices that have been studied in [14]. Section 8 of [8] contains a list
of various classes of tree transducers which are equivalent with respect
to their transformational power. All of them obey the concept of
structural recursion, and some of them use an additional storage. Here
we can add another equivalent class to this list. That is, for every
n ;;l!; 1. the total deterministic versions of the following transducers are
equivalent:
- n -fold composition of macro tree transducers.
- n -iterated pushdown tree transducers; cf. Definition 4.10 of [8],
- n -level tree transducers: cf. Definition 4.5 of [8].
- unary calling restricted n -modular tree transducers.
The equivalence of the composition of macro tree transducers and
iterated pushdown tree transducers is shown in Theorem 8.12 of [7].
In Theorem 7.12 of [8], high-level tree transducers are characterized by
iterated pushdown tree transducers. In Theorem 17 of the present
paper. it is proved that composition of macro tree transducers induce
the same class of unary tree operations as unary calling restricted n
modular tree transducers.

Since the present paper just starts the investigation of modular
tree transducers. some important questions remained open. In particu
lar. we claim that Dt ModT coincides precisely with the class of primi
tive recursive operations on trees as defined in [10].

Acknowledgments. Again I am grateful to Joost Engelfriet for patiently
considering my "mental outputs" and improving them by valuable
remarks. Moreover. I would like to thank Klaus Indermark for helpful
discussions about structural recursion.

References
1. A.V. Aho & J.D. Ullman: Translations on a context-free grammar.

Inform. and Control 19 (1971) 429-4 75.

2. B. Courcelle & P. Franchi-Zannettacci: Attribute grammars and
recursive program schemes I. II. Theoret. Comput. Sci. 17 (1982)

Modular Tree Transducers 75

163-191. 235-257.
3. J. Engelfriet: Bottom-up and top-down tree transformations - a

comparison. Math. Systems Theory 9 (1975) 198-231.

4. J. Engelfriet: Some open questions and recent results on tree
transducers and tree languages. in R.V. Book (Ed.): Fomwl.
Language Theory: Perspectives and Open Problems (1980).
Academic Press. New York.

5. J. Engelfriet: Tree transducers and syntax-directed semantics.
TW-Memorandum No. 363 (1981). Twente University of Tech
nology. Enschede. The Netherlands.

6. J. Engelfriet & H. Vogler: Macro tree transducers. J. Comput. Sys
tem Sci. 31 (1985) 71-146.

7. J. Engelfriet & H. Vogler: Pushdown machines for the macro tree
transducer. Theoret. Comput. Sci. 42 (1986) 251-368.

8. J. Engelfriet & H. Vogler: High-level tree transducers and iterated
pushdown machines. Technical Report 85-12 (1985). University
of Leiden. The Netherlands.

9. P. Henderson: Functional Programming - Application and Imple
mentation (1980). Prentice-Hall. Englewood Cliffs. N.J.

10. U.L. Hupbach: Rekursive Funktionen in mehrsortigen Peano
Algebren. El.ektrm. Informationsverarb. Kybernet. 14 (1978)
491-506.

11. D.E. Knuth: Semantics of context-free languages. Math. Systems
Theory 2 (1968) 127-145. Correction. Math. Systems Theory 5
(1971) 95-96.

12. W .C. Rounds: Mappings and grammars on trees. Math. Systems
Theory 4 (1970) 257-287.

13. J.W. Thatcher: Generalized2 sequential machine maps. J. Comput.
System Sci. 4 (1970) 339-367.

14. H. Vogler: Tree Transducers and Pushdown Machines (1986). Doc
toral Dissertation. Twente University of Technology. Enschede.
The Netherlands.

Nonterminal Separating Macro Grammars

Jan Anne Hogendorp*

Department of Computer Science, University of Twente
P.O. Box 217, 7500 AE Ensch.ede, Th.e Netherlands

We extend the concept of nonterminal separating (or NTS) context
free grammar to nonterminal separating m -macro grammar where
the mode of derivation m is equal to "unrestricted", "outside-in" or
"inside-out". Then we show some (partial) characterization results
for these NTS m -macro grammars.

1. Introduction

Macro grammars have been introduced in [6,7] as a way to describe
context-dependent aspects of the syntax of programming languages.
They are an extension of context-free grammars generating. for each
mode of derivation, a family of languages in between the families of
context-free languages and of context-sensitive languages. Though
outside-in (or 01 -) macro languages are able to describe correctly the
declaration and use of program variables. they have the disadvantage
of possessing an NP-complete membership problem. For JO-macro
languages the problem is roughly as complex as for context-free
languages [1]: so it can be solved deterministically in polynomial time
or in space log2n . But JO-macro grammars seem to be less suitable for
modeling the declaration of program variables.

Without considering this complexity issue any further we investi
gate in this paper a way to restrict macro grammars. It is inspired by a
restriction on context-free grammars. viz. by the nonterminal separat
ing (or NTS) condition [3]. For context-free grammars this restriction
results in deterministic languages that have "disjunct syntactic
categories" [3,5]. The actual NTS condition requires that adding the
reductions corresponding to the productions of a grammar does not
extend its set of sentential forms. Or, equivalently. the set of senten
tial forms does not change when we apply the rules of the grammar in
both directions.

In Section 2 we provide the necessary notions. elementary results
and terminology on macro grammars and on context-free grammars
that satisfy the NTS condition. Section 3 is devoted to the definition of
NTS macro grammar and some of their properties as far as they extend

• The work of the author has been supported by the Netherlands Organization for the Ad
vancement of Pure Research (Z.W.O.).

77

78 J.A. Hogendorp

the corresponding results on NTS context-free grammars. We restrict
our attention to characterization results of the NTS property for m -
macro gram.mars where m is a mode of derivation, i.e., m equals either
.. outside-in" (or 01) . .. inside-out" (or IO) or .. unrestricted" (or
UNR). Finally, Section 4 contains some concluding remarks.

2. Preliminarfos

2.1. Macro Grammars
Macro gram.mars have been introduced by Fischer in [6,7] as an exten
sion of context-free gram.mars. In essence, they di:ff er from context
free grammars in possessing a ranked alphabet of nonterminal symbols
and so macro grammars are a particular kind of term rewriting system.

A ranked alphabet A is a finite set of symbols each of which is
provided with a natural number, called its rank. For i ~O. let Ai
denote the subalphabet of A that consists of all symbols of rank i .
Thus if i ~ j • then Ai n A 1 = fZJ.

Definition 2.1. 1. Let A be a ranked alphabet and PC the set of punc
tuation characters (i.e., left and right parenthesis and comma symbol).
The set T(A) of terms over A is the smallest set of strings over AU PC
that sa tis:fi.es

(i) A0 U {>.}S: T(A);). denotes the empty word,

(ii) if t 1,t 2 ET(A). then t 1t 2 ET(A).

(iii) ifAEAn andt1, .. ,,tnET(A),thenA(t1, .. ,,tn)ET(A). D

Formally, we ought to write A () if A E A0; in practice we will
omit the parentheses in that case. However, the notation A (t 1, tn)
does not imply that n > 0.

Definition 2.1.2. A macro grammar G is a 5-tuple G = (<l>,'E.,X,P.S)
where <I> is a ranked alphabet of nonterminals. E is an alphabet of ter
minals, X is a finite set of variables (Each terminal and variable has
rank zero. The sets <I>. E and X are disjoint.), S E <1>0 is the start sym
bol, and P is a finite set of productions or rules of the form
A (x 1, ... ,Xn)➔ t with A E <l>n, x 1, ... ,Xn are mutually distinct elements
of X. and t is a term over EU <I> U {x 1, ... ,Xn }. D

Sentential forms of a macro grammar are terms over EU c;I>. Some
specific subsets of terms give rise to interesting special types of macro
grammars and corresponding sets of sentential forms. Viz. the set
BT (E U <I>) of basic terms over EU <I> is the subset of T (E U c;I>) of
terms in which no A E <I> appears in the argument list of another sym
bol of <I> (i.e., nonterminals are not nested). And the set LBT(E U c;I>)
of linear basic terms over EU c;I> is the subset of T (E U <I>) of terms con
taining at most one nonterminal.

NTS Macro Grammars 79

A production A (x 1 •...• Xn)-+ t is called [linear] basic if t is a
[linear] basic term. A macro grammar is [linear] basic if all its produc
tions are [linear] basic. A production A (x 1 • ...• .x,i)-+ t is called argu
ment preserving if for each i (1, i , n). t contains at least one
occurrence of x; • and it is called non-duplicating if t contains at most
one occurrence of X; for each i c1,i ,n).

In order to describe several modes of derivation for macro gram
mars we need the following concepts.
De:finition 2.1.3. Let u be a term over :EU <b. T is a subterm of u if,,.
is a term over l: U <b and T is a substring of u.

A subterm T of u occurs at top level in u if there exist subterms
u 1 and u 2 such that u = u 1Tu 2• So T does not appear within the
argument list of some nonterminal in u.

A term over l: U <b is called expanded if it contains no nontermi
nals together with its associated argument list. or equivalently. if it is a
string over l:. D

Using the productions of a macro grammar one can expand terms.
As usual we distinguish three modes of derivation.
Unrestricted mode (UNR): An occurrence of a nonterminal together
with its arguments can be expanded according to a production by
replacing the nonterminal and its arguments by the right-hand side of
that production in which the arguments have been substituted for the
corresponding variables.
Inside-Out (IO): A nonterminal with its arguments is expanded only if
its arguments are all expanded terms.
Outside-In (OJ): A nonterminal with its arguments is expanded only if
it occurs at top level.

Each of these modes of derivation gives rise to a derivation rela
tion. formally defined as follows.

De:finition 2.1.4. Let G = (<b.:E.X.P.S) be a macro grammer and let
u. T E T (l: U <b). The relations ==> UNR • ==> 10 and ==> 01 over
T (l: U <b) are defined by
(1) u ==> UNR T holds if u contains a subterm of the form A (t l• ...• tn)
where A E<bn and t 1 •...• tn ET(l:U <b). P contains a production
A (x 1, ... ,Xn)-+ t and '1' results from u by substituting A (t 1, ...• tn) by
t [t 1/x 1, ... ,tn fxn].
(2) u ==> 10 T holds in case u ==> UNR T and all the arguments of the
rewritten nonterminal are expanded terms.
(3) u ==> 01 T holds in case u ==>uNRT and the subterm of u which
is rewritten occurs at top level in u. □

Let <= m be the converse of ==> m • i.e .• for all u. T E T (l: U <b).
u <= m T holds if and only if '1' ==>mu. And let <=;> m be the
union of ==> m and <= m • The reflexive and transitive closures of
==> m. <= m and <=;> m are denoted by ==>;,, <= ! and

80 J .A. Hogendorp

<l===> :z. respectively. In case u < :z,, [u-<= mT] we say that u
reduces [directly] to T.

It is easy to see that <l===> :Z is a congruence relation. Obviously.
it is an equivalence relation and the congruency follows from:
u <l===> :z,, and a <l===> :Z~ imply ua <l===> :z,,~: form = UNR this is
trivial and in the other cases it follows from the fact that concatena
tion does not cause any additional nesting.

Definition 2.1.5. Let G be a macro grammar and m a mode of deriva
tion. An m-macro grammar is a pair (G.m). or simply denoted by G
when m is known from the context. · The language generated by an
m-macro grammar G = (cl>,'E.,X,P.S) is defined by

Lm(G)= {wE'E*IS ===>:Zw}.

By OI, IO and UNR we denote the family of languages generated by
OJ-. IO- and UNR -macro grammars. respectively. □

In [6] Fischer proved the equality OI = UNR. and the fact that IO
and OI are incomparable.

In the sequel many of our results are restricted to macro gram
mars which possess the property that every term derived by the macro
grammar has a derivation that ultimately yields a string over the ter
minal alphabet. These macro grammars are called admissible macro
grammars [6]. This property is defined as follows.

Definition 2.1.6. Am-macro grammar G = (cl>,'E,X.P,Z) with ZS: 11>0

is admissible if either cl> = Z and P = f2J or
(1) for each A E cl>, there exists a sentential form of G in which A
occurs,
(2) for each A E cl>n (n :J!:: 0) and each u 1, ... , u n E 'E* there exists a string
w over'EsuchthatA(u 1 un)===>:Zw. □

In [6] it is shown that for each m -macro grammar there exists an
equivalent admissible m-macro grammar. For m = IO every (G,m)
has an equivalent admissible subgrammar: form= OJ the task to find
such an admissible grammar is more elaborate.

Example 2.1.7. Let L 0 S: {O. 1}* the language containing exactly those
words in which the number of l's is equal to 2n for some n :J!:0. L 0 is
generated by the OJ-macro grammar G = (cl>,'E,X,P,S) with
cl> = c1> 0 U cl>i, 11>0 = {S,A } • cl> 1 = {B}, X = {x}. 'E = {O. 1} and P consists
of the rules

S-+B(A)
B (x) -+ B (xx) I x
A-+ OA I AO 11

In [6] it has been shown that L O cannot be generated by any JO-macro
grammar. □

NTS Macro Grammars 81

2.2. The NTS Property for Context-Free Grammars

NTS or nonterminal separating grammars have been introduced by
Boasson [3]. A context-free grammar possesses the NTS property if its
set of sentential forms is invariant when we apply the rules in both
directions. i.e .• when we use apart from its productions the correspond
ing reductions too.

Let G = (V.:t,P.Z) be a context-free grammar with alphabet V.
terminal alphabet :t (:t!:: V). set of productions P. and start set Z
(Z !:: V -:t). For each w Ev• we denote the set of words over :t deriv
able from w by G as

L(G.w)= {we:t*lw =>*w}.

We call this set the language generated by G from w. The language
generated by G is

L(G)= {we:t*l:3SEZ:S=>*w}.

The set of sentential forms generated by G from we v• is

L(G.w)= {I/IEV*lw =>*I/I}.

The relations ~ • ~ •. <=> and <=> • are defined in a way
similar to §2.1: however. historically they were :first defined for
context-free grammars [3].

The set of words over V derivable from w E v• by both produc
tions and the corresponding reductions is

LR(G.w)= {I/IEV*lw <=> *I/I}.

Definition 2.2.1. A context-free grammar G = (V.:t,P.Z) has the NTS
property or is an NTS grammar if for all A EV-:t. LR(G.A)=
L (G.A). A language L is called an NTS language if there exists an
NTS grammar that generates L. □

Proposition 2.2.2. [3,5]. Let G = (V.:t,P.Z) be an NTS grammar.
Then for all A and B in V-:t, either L(G.A)nL(G.B)= 12' or
L (G.A) = L (G.B) holds. □

This property motivates the name of the concept defined in 2.2.1.
However. the converse of 2.2.2 does not hold: e.g. {anbn In ~l}U
{an b2n In~ 1} is not an NTS language [5]. but it is easy to show that
this language can be generated by a grammar that possesses .. disjunct
syntactic categories".

On the other hand NTS grammars can be characterized in the fol
lowing way.

Theorem 2.2.3. [5.10]. Let G = (V.:t,P,Z) be a conte'Xt-free grammar.
G has the NTS property if and only if for all A.B E V -:t and for all
a. (:1. u E V* the following implication holds:

if A =>*au(:1 and B =>*u,thenA =>*a.B(:1.

82 J.A. Hogendorp

□
For further details of context-free NTS grammars and languages

the reader is referred to [2,3,5,8,9,10].

3. The NTS Property for Macro Grammars

3.1. Definitions

We use the following notational conventions. Usually, (c,- 1 ,O' n) is
abbreviated to (ct (n)). The subscript (n) is necessary to distinguish
for example A (x (n >) and B (x (le>). Only if no confusion is possible we
write x. For A E cl>, A (x) is the left-hand side of a production: so
A (x) = A if A E cl>0• In the sequel an m -macro grammar will have a
finite set Z (Z ~ cl>0) of initial symbols of rank O instead of a single
initial symbol; cf. the definition of NTS context-free grammar.

Definition 3.1.1. Let G = (cl>,E,X,P,Z) be an m-macro grammar.
Then the language generated by (G,m) is

Lm (G) = {w Er I :3 s E z: s =>,: w},
and for each t ET(EU XU cl>),

Lm(G,t) = {w E (EU X)*lt =>; w }.
bz(G.t) = {c., ET(EU XU cl>)lt =>; c.,},

LR"'(G,t)= {ooET(EUXUcl>)lt ~,:oo}. D

We are now ready to define the nonterminal separating property
for m-macro grammars.

Definition 3.1.2. An m-macro grammar G = (cl>,E,X,P.Z) has the
NTS property or is an NTS m-macro grammar if for all n ~O. A E cl>n.
{x1, ... ,Xn }~X,

LRm(G,A (x)) = bz(G.A (x)). □
Here we consider the variables x 1, ... ,Xn as members of a terminal
alphabet E' with E~ E', according to Fischer [6]; cf. also [4].

Proposition 3.1.3. Let G = (cl>,E,X,P,Z) be an NTS m-macro grammar.
Then for all n,k ~o. A E cl>n, BE cl>le, {x l• ... ,Xn }~ X , {x1, .. ,,xle }~ X,

bn (G,A (x(n)))n bn (G.B (x (k))) = 0
or

bn (G,A (x (n))) = bn (G,B (x (k))).

Proof: Let c., be an element of bi (G,A (x (n >)) n bi (G,B (x (le>)). Then
A (x (n)) => ;oo as well as B (x (k)) => ;oo holds. This implies
A (x (n >) ~ ; B (x (le>). With the NTS property of G we get
A (x (n >) => ;B (x (k)) and B (x (le>) => ;A (x (n >) which implies
bi (G,A (x (n >)) = bi (G,B (x (le>)). □

We see that NTS m-macro grammars have a similar .. nonterminal
separating property" as context-free grammars: cf. Proposition 2.2.2.

Example 3.1.4. Consider the linear basic macro grammar G =
(cl> .'E,X,P.Z) with cl>= cl>oU cl>3, cl>0 = {S} = Z, cl>3 = {A}. X = {x.y,z},

NTS Macro Grammars

~ = {a,b,c,[.],# }. and P consists of the productions

S-+ A(A,A,A)
A (x,y,z) -+ A (ax,by,cz)
A (x,y.z)-+ [x#y#z]

83

The language generated by G is L(G)= {[an#bn#cn]ln ~O}, and
L (G,S) = {S}U {A (an ,bn ,en)In ~O}U L(G). Because A (an ,bn ,en).
(n ~ 1) only reduces to terms A (ak ,bk ,ck) with o,k <n. and
[an #bn #en] only reduces to A (an ,bn ,en). we have L (G.S) =
LR (G.S). A similar argument for A (x.y,z) yields L (G.A (x.y,z)) =
LR(G.A (x.y,z)); so G is an NTS macro grammar. D

We see also that in case cf>= cf>0 and. consequently, G is a
context-free grammar, Definition 3.1.2 corresponds to Definition 2.2.1
for context-free grammars.

3.2. Properties of NTS Macro Grammars
This section is devoted to some results which generalize Theorem 2.2.3
to m -macro grammars. To facilitate formulation and proofs we use
the following notation.

Definition 3.2.1. Let G = (cf>.~.X.P.Z) be an m-macro grammar.
Then G has property II(m) if for all A E lf>n. BE cf>k. u ,au~ E
T(~UXUcf>), with {x 1, ... ,Xn}~X and <T(k)ETk(~UXUcf>) the fol
lowing implication holds

if A (x (n)) ===:>;,au~ and B (u (k)) ===:> ;,u.
then A (xcn>) ===:>;,aB(uck>)~. □

First, we note that property II(m) is a natural extension of the
property mentioned in Theorem 2.2.3 in the sense that if cf>= cf>0, i.e.,
G is context-free. the two properties coincide. To establish Theorem
3.2.3 we need the following lemma.

Lemma 3.2.2. Let G be an admissible m-macro grammo.r. Let
CAJ ,"1 E T (~ U X U cf>). Then CAJ ===:> UNR "1 implies CAJ <==> 01 "1 as well as
"' <=> io "1. As a cordlary we have CAJ ===:> UNR "1 implies CAJ <==> ;, "1 for
both m = 01 and 10.

Proof: Let CAJ = aA (u)~ with A E lf>n. n ~O. u ETn (~U XU cf>) and
if,= a8(u)~. Then CAJ ===:>uNRl/1 using the rule A (x)-+ 8(x). 8(x)E
T(~U XU cf>).
m = OJ. First we have aA (ct)~ ===:> 01a 'A (u)~ '. This is the string
obtained from "' such that every A (u) is on top level. Next we derive
a'A (u)W ===:> 01a'8(u)W. Now all new occurrences of 8(u) are on
top level; so we can write a'8(u)~• <= 01a8(u)~.
m = 10. Similarly, using A (ct)===:> j0 A (t). A (t) ===:> j0 8(t) and
8(t) <= io8(u). where t E (r)n. D

Theorem 3.2.3. Let G be an admissible m-macro grammo.r. Then
(G.m) is an NTS m-macro grammar if and only if G has property
II(m).

84 J .A. Hogendorp

Proof: First we prove the if-part. We have to show for G satisfying
II(m) that for each A E ~n (n ~O).

Lm CG.A Cx)) = LRM CG.A ex)).
The inclusion from left to right n:) is trivial. To establish the con
verse inclusion (::2). we ought to prove that A (x) <=> :it implies
A (x) ==:>;t. This is done by induction on the length of <=> ;.
Basic step (p = 0): A (x) <=> ~t implies A (x) ==>:it trivially.
Induction step. As induction hypothesis we take: A (x) <=> Cit
implies A (x) ==:> ;t.
Consider A (x) <=> Ci +i t . We distinguish two cases:

Case 1. A (x) <=>Cit' ==>mt. Obvious.

Case 2. A (x(n)) <=>Cit'<? mt. Suppose t ==>mt' by the deriva
tion step B (u (k 2) ==:>mu and let t = ot.B (u (k))f3. t '= ot.U (3 with
OI.U (3. u. B (u (k))E T(l: u Xu~). By the induction hypothesis we
have A (x (n >)==:>:it'. Using II(m) on A (x (n >) ==:> :iau (3 and
B (u (k)) ==:>mu we get A (x (n)) ==:> :a ot.B (u (k))f3 = t . This completes
the induction and the proof of the second inclusion.

To prove the only if-part we need the following. Let G be an NTS
m-macro grammar. Then for all u,ot.u{3 ET(l:U XU~). BE ~k.
U(1;)ETk(J:U XU~).

B (u (k)) ==:> :au implies ot.B (u (k))f3 <=> :iau (3.
It is easy to see that for m = IO and m = UNR this holds even without
G being NTS and with ==:>; instead of <=> :i. For m = 01 we
obtain this implication as follows. If B (u (k >) ==:> 01u. then
B (u (k)) ==:> [JNRU trivially: so ot.B (u (k))f3 ==:> UNROI.U (3 and by Lemma
3.2.2. we have ot.B (u c1: >)f3 <=> 01au (3. (Note that because G is NTS.
we now can even prove the stronger fact: B (u (k >) ==:> 01u implies
aB Cu c1: >)f3 ==> 01au f3).

Now. if A(xcn>)==:>;au{J and B(uc1:>)==>:iu. then we get
A (xcn>) <=> :iaB(clc1:>){3. Since (G.m) is NTS. we conclude with
A (x (n)) ==:> :a ot.B (u (k))f3. D

3.3. The Pre-NTS Property for Macro Grammars

Closely connected to the NTS property for context-free grammars is
the pre-NTS property [3,5,9]: informally, the pre-NTS property equals
the NTS property formulated for terminal strings only. It is still an
open problem whether these two properties are equivalent for context
free grammars [3,5,9].

In this section we introduce and study the pre-NTS property for
m -macro grammars.

Definition 3.3.1. Let G = (~.J:.X,P,Z) be an m-macro grammar with
Z ~ ~ 0• Then (G.m) is pre-NTS or has the pre-NTS property if for all
A E~n (n ~O). and {x1, .. ,,xn}~X. Lm(G.A(x)) = LRm(G.A(x))
where LRm(G.A (x)) = LRm(G,A (x))n (l:U X)"'. D

NTS Macro Grammars 85

Definition 3.3.2. Let G = (~.~.X.P.Z) be an m-m.acro grammar with
Z ~ ~o- Then G has property 1r(m) if for all A E ~n (n ~O). BE ~t.
u '.aufJ e (~U X)*. {x1 •...• .x,i }~ X. and if ET1 (~U XU~). the follow
ing implication holds:

if A (x) => :Zotu fJ. B (if)=> :Zu and B (if)=> :Zu '.
then A (x) => :Zotu 'fJ. □

We want to prove the equivalence of Definition 3.3.1 and Definition
3.3.2. It turns out to be the easiest way to do this by introducing a
second property p(m) which is equivalent to both of them.
De:finition 3.3.3. An m-m.acro grammar G has property p(m) if for
all A E ~n (n ~O). and {x1,••••Xn }~X. t ET(~U XU~). u.u 'E
(~ U X)* the following implication holds:

ifA(x)=>:Zu. t =:>,:u.andt =:>,:u'.thenA(x)=>:Zu'. D

Theorem 3.3.4. Let G be an admissible m-ma.cro grammar. Then the
following statements are equi,val.ent:

(1) (G.m) is pre-NTS,
(2) G has property w{m),
(3) G has property p(m).

Proof: (1) => (2): Suppose there exist derivations B (if)=> :Zu.
B(if)=>:Zu' and A(x)=>:ZaufJ for u', aufJE(~UX)*. Because
au fJ is a word over ~ U X there is no distinction between the three
modes of reduction from au fJ. Therefore we have A (x) =>,:
aufJ ¢= :ZaB(if)fJ. Now in otB(if)fJ. B(if) is on top level. so we
continue with aB(if)fJ =>:Zau 'fJ which is a word over ~U X. Thus
A (x) <=> :Zotu 'fJ and. as (G.m) is pre-NTS, A (x) =>:Zotu 'fJ.
Hence G has property 1r(m).

(2) => (3): Let A (x) => :Zu. t => :Zu and t => :Zu '. Obviously, it
is possible to write t as an unique sequence of terms, viz. t = t 1 .. .t1 •

such that no ti is a concatenation of two or more terms. It is clear that
in expanding some ti. none of the other terms tJ is affected. So we can
write u as u 1 ••• u1 and u' as u 1' ••• u1 ' with ti =>:Zui and ti =>:Zu/.
respectively. Now we have for some ;,, 1~;, ~k A(x)=>:Z
u1•••ui ••·ut. ti =>:Zui. ti =>:Zu;'. and with 'ff'(m) we get
A(x)=>:Zu 1 ••• u;' ... u1 • We apply this argument to each ui consecu
tively. which finally yields A (x) =>,: u 1 ' ... u1 ' = u ' which is the
desired result.
(3) =>(1): We have to show LRm(G.A (x))~ Lm(G.A (x)). which
we · do by induction on the number of reduction steps in
A (x) <=> ,: w • with w E (~ U X)*. We denote this by <==> ,:n which
means that a <==> :'/J holds if and only if a <==> :Z/J in which n
reduction steps have been used.
Basic step (n = 0). A (x) <==> ,:0 w directly implies A (x) =>:Zw.
Induction step. As induction hypothesis we have: A (x) <==> :zn w
implies A (x) =>,: w • Let A (x) <==> ,:n + 1 w . To show that

86 J .A. Hogendorp

A (x) ~;, w we look at the last reduction step in A (x) ¢=;> ;,n +l w.
We write this as A(x) ¢=;> ;,nt 4= mt•~;,w. Because G is
admissible there is a word u E Ct U X)* with t ~;, u. Applying the
induction hypothesis we get A (x) ~;, u • with t ' ~;, u • and
t ' ~;, w and property p(m) this gives us A (x) ~;, w . D

4. Concluding Remarks
In the previous section we generalized some characterizations of NTS
and pre-NTS context-free grammars to corresponding statements for
(pre-) NTS m -macro grammars. On the other hand one wants results
that are specific for NTS macro grammars in the sense that there is no
analogue for context-free grammars. Or. in other words. results that
are due to the fact that we deal with macro grammars rather than
context-free grammars.

A first example of such a result shows that NTS "reduced macro
grammars". i.e .• admissible NTS macro grammars with no initial sym
bols in the right-hand sides of their productions, are argument
preserving.

Proposition 4.1. Let G = (<l>,k,X,P,Z) be an admissible NTS m-macro
grammar, with no elements of Z occurring in the right-hand side of any
production. Then G is argument-preserving.

Proof: Suppose we have a production rule A (x 1 • xn)-+ t with
A f <1>0 • which is not argument-preserving. say xi does not occur in t .
1~i ~n. Suppose further that we have obtained a word c,, ET(kU <I>)
derived from some SE Z on which this rule is applicable. Writing c,, as
aA (u i, •..• u n)(3 we derive

at [u 1/x 1• u i-1l xi-l, U i+l/xi+l• ... ,u n lxn]{3.
This last term however is, for instance, for some T in Z reducible to
aA (u 1 , u i-1,T,u i +l• u n)(3. which we write as c,, (T). So we have
S ¢=;> ;,c,,(T). Since G is NTS. we obtain S ~;,c,,(T). But no pro
duction rule can ever introduce a T from Z in a sentential form. Thus
we cannot derive such a term c,, (T) from S. □

The following statement is much more interesting. However. we
are unable to prove it and therefore we formulate it as

Conjecture 4.2. Each admissible NTS IO-macro grammar generates a
basic macro language. □

The first easy step in proving this conjecture, consists of the fol
lowing observation.

Lemma 4.3. Let G be an admissible NTS IO-macro grammar. Then for
all A E <I>,

kNR (G.A (x)) = L.ro (G.A (x)).

Proof: We only have to show kNR(G.A(x))!::L.,0 (G.A(x)), since
the converse inclusion is trivial. Let t E T(k U XU <I>) and
A (x) ~ UNRt. Then we have by Lemma 3.2.2 A (x) ~ j0 t, and

NTS Macro Grammars 87

using the fact that CG.JO) is NTS. we obtain A (x) ==> iot. □

In order to complete the proof of Conjecture 4.2 it is sufficient to
establish

Conjecture 4.4. Let G be an NTS 10-ma.cro grammar that contains a
nested production

A~) ➔ B~~D W
i.e., some entry of y contains a nonterminal symbol.. If
/J(x)ELuNR (G.B(x)), tlwt in the derivation A (x) ==> io/J(y(x)) the
rule (•) has not been applied. □

Acknowledgment. I thank Peter Asveld for his helpful comments and
for his aid during the preparation of the text.

References
1. P.R.J. Asveld: Time and space complexity of inside-out macro

languages. Jnternat. J. Com.put. Math. 10 (1981) 3-14.

2. J.M. Autebert. L. Boasson & G. Senizergues: Langages de paren
theses. langages N.T.S. et homomorphismes inverses. RA.I.R.O.
Inform. theor./Theor. Inform. 18 (1984) 327-344.

3. L. Boasson: Derivations et reductions dans les grammaires alge
briques. in "7th International Colloquium on Automata
Languages and Programming" Leet. Notes Comp. Sci. 85 (1980)
109-118. Springer-Verlag, Berlin - Heidelberg - New York.

4. J. Engelfriet. E.M. Schmidt & J. van Leeuwen: Stack machines and
classes of non-nested macro languages. J. Assoc. Comput. Mach.
27 (1980) 96-117.

5. L. Boasson & G. Senizergues: NTS languages are deterministic and
congruential. J. Comput. System Sci. 31 (1985) 332-342.

6. M.J. Fischer: Grammars with Macrrrlike Productions, Ph.D. Thesis
(1968), Harvard University. Cambridge. Mass.

7. M.J. Fischer: Grammars with macro-like productions. Proc. 9th
Ann. IEEE Symp. on Switching and Automata Theory (1968)
131-142.

8. Ch. Frougny: Simple deterministic NTS languages. Inform. Prrr
cess. Lett. 12 (1981) 174-178.

9. G. Senizergues: A new class of C.F.L. for which the equivalence is
decidable. Inform. Process. Lett. 13 (1981) 30-34.

10. G. Senizergues: The equivalence and inclusion problems for NTS
languages. J. Comput. System Sci. 31 (1985) 303-331.

Complexity Aspects of Iterated Rewriting
-A Survey-

Peter R.J. Asveld

Department of Computer Science, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

We present an overview of results on the complexity of the member
ship problem for families of languages generated by several types of
generalized grammars. In particular, we consider generalized gram
mars based on iterated context-independent rewriting, i.e., grammars
consisting of a finite number of (non)deterministic substitutions, and
on iterated context-dependent rewriting, i.e., grammars composed of
a finite number of transductions. We give some conditions on the
classes of these substitutions and transductions that guarantee the
solvability of this membership problem within certain time and
space bounds. As consequences we obtain additional closure proper
ties of some time- and space-bounded complexity classes.

t. Introduction

The concept of iteration grammar has been introduced as a generaliza
tion of a particular kind of parallel rewriting system, viz. ETOL
system [18], in order to extend some ad hoc combinatorial arguments to
more general. structural proof techniques. For the origins and the early
history of iteration grammars we refer to [2] and the references men
tioned there.

In essence an iteration grammar is an ETOL-system in which the
finite substitutions or tables have been replaced by arbitrary substitu
tions. So each table in an iteration grammar contains for each symbol a
countable rather than a finite number of productions. Instead of ordi
nary substitutions one can also use deterministic substitutions which
yields a generalization of EDTOL-systems, the so-called deterministic
iteration grammars [6,7]. A deterministic substitution differs from an
ordinary or nondeterministic substitution in the way it is applied to a
string: instead of making a possibly different choice for each occurrence
of the same symbol in a string we make a single choice in advance and
then substitute this choice consistently for each occurrence of the sym
bol. Another different way to generalire EDTOL- or ETOL-systems
consists of replacing the tables by transductions which yields an
abstract context-dependent grammar model [5]. This latter approach
extends some earlier generalizations in [9,22,16.4,17]. The major part
of the research on these general grammar models is concerned with
extending known results from L-system theory in the hope to obtain

89

90 P.R.J. Asveld

general. algebraic or structural arguments rather than the combinatorial
proofs usually applied in the original finite case.

In this paper we survey some results that have been obtained in
this way with respect to the complexity of the membership problem
for these types of grammars, i.e .. given such a grammar G and a string
x over the terminal alphabet of G. how much time and space does it
take to decide whether x EL (G)? As usual in this area, the answer
highly depends on the properties of the underlying set of (non)deter
ministic substitutions and transductions. Or, in other words, making
some appropriately chosen assumptions on the set of substitutions or
transductions enables us to extend results from L-system theory to
these abstract grammars. As a spin-off it becomes clear on which pro
perties of the finite languages the original proof in L-system theory
actually depends.

The remaining part of this paper is organized as follows. Some
notions of formal language and complexity theory are recalled in Sec
tion 2. In Section 3 we consider controlled (non)deterministic iteration
grammars and their membership problem: Section 4 is devoted to the
complexity of this problem. Context-dependent grammars, i.e., gram
mars based on transductions are described in Section 5, where we also
provide some conditions that imply the decidability of the correspond
ing membership problem. In Section 6 attention is focused on the com
plexity of this membership problem. Sections 4 and 6 also provide
some interesting closure properties of some complexity classes. Finally.
Section 7 contains some open problems and concluding remarks.

2. Preliminaries

We assume the reader to be familiar with the rudiments of formal
language theory and of automaton-based complexity theory. For all
unexplained concepts and notation we refer to standard texts like
[10.11.18]. For each set X, P (X) denotes the power set of X. The
empty word is denoted by X.

Let K be a family of languages and let V be an alphabet. A
(nondeterministic) K -substitution over V or nK -substitution is a map
ping r: V-+ Kn P (V*) extended to words over V by r(X) = {X}.
r(xy) = r(x)r(y) for each x.y Ev•. and to languages L over V by
r(L) = U {T(x) Ix EL}. Similarly. a deterministic K -substitution over
V or dK -substitution is also a mapping r: V-+ Kn P (V*) but now it is
extended to words by r(x) = {h(x)lh is a homomorphism such that
h (a)E r(a) for each a in V}. and to languages L over V by
r(L)= U {T(x)lxEL}. Notice that applying a dK-substitution 7"

implies that each occurrence of a symbol a in a string ought to be sub
stituted by the very same word from r(a). A dK- or nK-substi
tution T over V is called X-free if X e:r(a) for each a in V.

Complexity Aspects of Iterated Rewriting 91

An Abstract Family of Languages or AFL is a family of languages
different from {0}. which is closed under union, concatenation, Kleene
+. A-free homomorphism, inverse homomorphism and intersection
with regular languages.

Frequently. we will tacitly assume that families of languages are
closed under isomorphism ("renaming of symbols").

Let g: N-+ N be a monotonic function, i.e., m ~n implies
g (m) ~ g (n). For each such g , DSP ACE(g) [NSP ACE(g)] is the fam
ily of languages accepted by [non]deterministic two-way multi-tape
Turing machines that use no more than g (n) tape cells on any storage
tape during a computation on an input of length n. And DTIME(g)
[NTIME(g)] denotes the family of languages accepted by [non]
deterministic two-way multi-tape Turing machines that finish their
[accepting] computations within time g (n) on all inputs of length n .
We use the following well-known abbreviations:

PSPACE = U {DSPACE(n 4)ld ~1} = U {NSPACE(n 4)ld ~1}.

P = U {DTIME(n 4)ld ~1}. NP= U {NTIME(n 4)ld ~1}.

A [X-free] nondeterministic generalized sequential machine with
accepting states or NGSM [XNGSM] 'I'= (Q.A1,A2,8.q 0.QF) consists of
a set of states Q with initial state q O (q 0 € Q). a set QF of final states
(QF ~ Q). an input alphabet A1• an output alphabet A2, and a function
8 from Q xA1 into the finite subsets of Q xA2 [Q XA{]. The function
8 is extended from Q X Ai into the finite subsets of Q X A2 by
(i) 8(q.X) = {(q,X)}.

(ii) 8(q.xa)= {(q'.y)ly=y 1y 2 and for some pEQ, (p.y1)E8(q.x),
and (q'.y 2)e 8(p.a)}. where q e Q. a e A1• x e Ai.

Each [X-free] NGSM T induces a transduction T: P (Ai)-+ P (Ai). called
[X-free] NGSM mapping. defined by T(x) = {y I (q,y)e 8(q 0,x) for
some q e QF } for each x in Ai. and 'I' (L) = U {T (x) Ix e L } for each
language L over A 1 ·

A NGSM [XNGSM],,. is called deterministic or DGSM [XDGSM]
if 8 is a function from Q xA1 into Q xA2 [Q xA{]. By NGSM
[XNGSM] we also denote the family of [X-free] NGSM mappings. and
similarly we use DGSM [XDGSM] in the deterministic case.

3. Iterated Context-Independent Rewriting

Iteration grammars have already been discussed in an informal way in
Section 1. Now we recall the formal definition together with the con
trolled variant which clearly generalizes the concepts of controlled
EDTOL- and ETOL-system studied in [1,2,6,7,8,13,14].

Definition 3. 1. Let r and K be language families. A [non]deter
ministic K -iteration grammar or dK -iteration [nK -iteration] grammar

92 P.R.J. Asveld

G = (V,:t,U.S) consists of an alphabet V, a terminal alphabet :t
(:ES: V), an initial symbol S (SE V), and a finite set U of [non]deter
ministic K -substitutions over V. The language L (G) generated by G
is defined by L (G) = U*(S) n :t*. A r -controlled dK -iteration [nK -
iteration] grammar (G;C) = (V,:t,U,S.C) consists of a dK -iteration
[nK-iteration] grammar (V,:t,U,S) together with a control language
CS: u• with CE r. The language generated by (G;C) is defined by

L (G:c) = c Cs)n r = cu fr p c. .. C-riCs)) ...)l-r1••·-r p e c })n :t*.
The family of languages generated by dK-iteration [nK-iteration]
grammars is denoted by 'T)(K) [H(K)]. And 'T)(r ,K) [H(r ,K)]
denotes the family of languages generated by r-controlled dK -
iteration [nK -iteration] grammars. A Cr-controlled) iteration grammar
is called '>..-free when each of its substitutions is }.-free. □

In derivations of controlled ('>..-free) iteration grammars we can
use long control words to derive relatively short terminal strings. In
this way we are able to simulate an erasing homomorphism. Basicly,
this is the core in proving the following characterization of RE, the
family of recursively enumerable languages.

Proposition 3.2. [1.2,6]. If K and r are language families such that
{L I card (L)= 1} S: K S: RE , and {h (L) IL E r; h is an arbitrary homo
morphism}= RE, then 'T)(r ,K) = H(r .K) =RE. D

Thus in order to obtain recursive languages (of which we want to
determine the complexity) at all, we ought to restrict the families K
and r in some way. The conditions in the following lemma provide a
first step to such a restriction.

Lemma 3.3. [3]. Let K be a family which contains all alphabets.
(1) Let r be a family closed under finite substitution and intersection
with regul.ar languages, and let (G;C)= (V,:t,U.S.C) be a '>..-freer
controlled dK -iteration [nK -iteration] grammar. Then there exists a }.
free r-controlled dK -iteration [nK -iteration] grammar (G';C') =
(V',:t,U',S,C') such that L(G';C')=L(G;C), and for each x in
L (G';C') there is a control word T 1 ... T P in C' such that x ET P ... T 1(S)
and p ~2lx I.
(2) For each '>..-free dK -iteration [nK-iteration] grammar G =
(V,:t,U,S) there exists a '>..-free dK-iteration [nK -iteration] grammar
G' = (V',:t,U',S) such that L(G')= L(G), and for each x in L(G')
there is a string T 1 ... T P over U' such that x ET P ••• T 1(S) and p ~ 21 x I. □

The proof of this lemma can be found in [3] and will not be
repeated here: it extends an earlier result on controlled ETOL-systems
from [8]. In Section 5 we meet a similar situation and a corresponding
lemma of which the proof will be sketched.

Proposition 3.4. [5]. Let r and K satisfy the assumptions of Lemma
3.3. If both r and K are '>..-free subfamilies of the family of recursive
languages, then each language in H(r .K), H(K), 'T)(r .K) and in

Complexity Aspects of Iterated Rewriting

7)(K) is recursive.

readx
if X n::+ then reject else

:fi..

for all u in C' with lu I ~2lx I do
if x e u (S) then accept :fi.

od:
reject

Figure 1.

93

Proof: Given a A-free r-controlled [non]deterministic K-iteration
grammar (G:C). we first apply Lemma 3.3. Then the algorithm in Fig
ure 1 determines whether a word x belongs to L (G';C'). Since after
the execution of an accept- or reject-statement the algorithm. is sup
posed to halt, termination is guaranteed for each input x. Hence
L (G';C') is recursive. In the uncontrolled case we replace .. for all u
in C' " by .. for all u in U' *" in Figure 1. □

Other conditions that guarantee the decidability of the member
ship problem for (controlled) A-free iteration grammars can be found
in [1.2].

4. Complexity Aspects of Iterated Context-Independent Rewriting

With respect to the complexity of the membership problem for (con
trolled) deterministic iteration grammars the following result is of
principal interest. Its proof is too long to be given here: it consists of a
straightforward generalization of the argument that EDTOL is included
in NSPACE (logn) [12]: cf. [3] for details.

Let 1-NSPACE (g) be the family of languages accepted within
space bound g: N-+ N by nondeterministic multi-tape Turing machines
with a one-way read-only input tape.

Theorem 4. 1. [3]. Let g (n) ~ log n for al,l n e N, let r and K be f ami
lies satisfying the assumptions of Lemma 3.3, and let r be closed under
reversal,.
(1) If r and K are included in 1-NSPACE (g), with g (2n)~c.g (n)
for some constant c and for al,l n e N, then 'Y)(r .K)S: NSPACE (g).
(2) If KS: 1-NSPACE (g), then 7)(K)S: NSPACE (g). D

Since for functions g : N-+ N with g (n) ~ n for all n EN. the
family 1-NSP ACE (g) equals NSP ACE (g), this implies immediately

Theorem 4.2. [3]. Let g (n)~n for all n e N, and let r and K be
families which satisfy the assumptions of Lemma 3.3.
(1) If g (2n)~ c.g (n) for some constant c and for al,l n EN, and if both
r and K are included in NSPACE (g), then 7)(r ,K) S: NSP ACE (g).
(2) If KS: NSPACE (g), then 7)(K)S: NSPACE (g). D

94 P .R.J. Asveld

A similar results holds for H(r .K) and H(K); it has been men
tioned implicitly in [20] and formulated in [3] in the following way.

Theorem 4.3. [20,3]. Let g (n)~n for all n EN, and let r and K be
families which satisfy the conditions of Lemma 3.3.
(1) If g (2n) ~ c.g (n) for some constant c and for all n EN, and if both
r and K are included in NSPACE (g), then H (r .K) S: NSPACE (g).
(2) KS: NSPACE (g) implies H(K)S: NSPACE (g). D

An inclusion analogous to 4.2(2) and 4.3(2) for DSPACE (g) ori
ginates from [20]; the proof is based on a divide-and-conquer technique
to determine a derivation. The obvious extension to controlled itera
tion grammars is from [3].

Theorem 4.4. [20,3]. Let g (n)~n logn for al.l n EN, and let r and
K be families which satisfy the assumptions of Lemma 3.3.
(1) If g (2n)~c.g (n) for some constant c and for all n EN, and if both
r and K are included in DSP ACE (g), then H (r.K) S: DSPACE (g).
(2) If KS: DSPACE (g), then H(K)S: DSPACE (g). D

Van Leeuwen's proof of 4.4 can also applied to (controlled) deter
ministic iteration grammars: as observed in [3] the bound g (n)~
n log n can in that case be replaced by g (n) ~ n for all n E N.

Theorem 4.5. [3]. Let g (n)~n for all n EN, and let r and K be
families which satisfy the conditions of Lemma 3.3.
(1) If g (2n)~c.g (n) for some constant c and for all n EN, and if both
r and Kare included in DSPACE (g), then '1}(r ,K) S: DSPACE (g).
(2) KS: DSPACE (g) implies '1}(K)S: DSPACE (g). D

Taking K equal to DSPACE (g) or NSPACE (g) in 4.2(2) - 4.5(2)
yields some interesting closure properties for these complexity classes.
A language family K is closed under iterated ')..-free [non]deterministic
substitution if for each K -language L over V and each finite set U of
')..-free [non]deterministic K -substitutions over V the language U*(L)
belongs to K.

Theorem 4.6. [3]. Let for all n EN, g(n)~n and g(2n)~c.g(n) for
some constant c . Then NSPACE (g) and DSP ACE (g) are AFL 's closed
under intersection and iterated X-free deterministic substitution. More
over, NSPACE (g) is closed under iterated ')..-free nondeterministic sub
stitution; this al.so applies to DSP ACE (g) provided that g (n) ~ n log n
for all n EN. D

Corollary 4.7. [3]. The following language families are AFL's closed
under intersection and under iterated ')..-free deterministic substitution:
(1) PSPACE,

(2) NSPACE(n), the family of nondeterministic context-sensitive lan
guages,

(3) DSPACE(n), the family of deterministic context-sensitive langua
ges,

Complexity Aspects of Iterated Rewriting 95

(4) NSP ACE(n 2), the family of two-way nondeterministic nonerasing
stack automaton languages,

(5) DSPACE(n logn), the family of two-way deterministic nonerasing
stack automaton languages.

Moreover, the families under (1), (2), (4) and (5) are also dosed under
iterated >..-free nondeterministic substitution. □

We call a language family K closed under controlled iterated >..
free [non]deterministic substitution if 'T)(K.K)~ K [H(K,K)~ K]. To
obtain in a similar way closure under controlled iterated >..-free substi
tution for these complexity classes fails: cf. Proposition 4.8, the proof
of which is based on Proposition 3.2 and the fact that the Dyck set is
in DSP ACE Clog n).

A language family K is closed under removal of right endmarker
if for each language Le in K where L ~ :t* for some alphabet :E with
c ~ :t. the language L is in K too.

Proposition 4.8. [3]. Let K be a family closed under removal of right
endmarker. If DSPACE (logn)~Kc RE, then K is not closed under
controlled iterated >..-free (non)deterministic substitution. In particular
this applies to each complexity class which includes DSP ACE Clog n). □

For the time complexity classes P and NP we have the familiar
situation: viz. NP has "strong" closure properties, whereas P shares
these properties if and only if P = NP.

Theorem 4.9. [3].
(1) NP is an AFL closed under intersection and iterated >..-free (non)
deterministic substitution.
(2) Let C be either DSPACE(logn), NSPACE(logn), or P. Then the
following propositions are equivalent.

(a) C = P= NP.

(b) C is closed under iterated >..-free nondeterministic substitution.

(c) C is closed under iterated >..-free deterministic substitution.

(d) C is closed under >..-free homomorphism. □

S. Iterated Context-Dependent Rewriting
Central in our approach (cf. [5]) to introduce an abstract context
dependent grammar model is the notion of transduction.

Definition 5.1. Let V be an alphabet. A transduction T over V is a
function -r: V*-+ P (V*) extended to languages by T: P (V*)-+ P (V*)
with T(L) = U {T(x)Ix EL} for each language L over V.
Let f be an n-ary operation on languages. A family T of transduc
tions is closed under (composition to the left with) f , if for all T -
transductions T 1, ... ,Tn over some alphabet V. there exists a T
transduction T over V such that T(x) = f (T 1(x) •... ,T n (x)) for all x

96 P.R.J. Asveld

in v·. □
In many proofs one wants to construct a new grammar GN from

an old one G0 by attaching a finite amount of information to the sym
bols of G0 . Then the transductions in GN over this extended alphabet
will be defined in terms of the old transductions of G0 using closure
under isomorphism. Finally, we strip this additional information by
applying an isomorphism in order to obtain words over the original
alphabet. Therefore we make the following basic assumption.

Assumption 5.2. Henceforth T is a family of transductions that
(1) is closed under (composition to the left with) isomorphisms; cf.
Definition 5 .1,
(2) is closed under composition to the right with isomorphisms, i.e., for
each T -transduction T 1 over V 1 and each isomorphism i : V -+ V 1 there
exists a T-transduction T over V such that T(x) = -r 1(i (x)) for each
X in v·. and
(3) contains for each V the identity mapping over V. □

From 5.2 it follows that T also contains all isomorphisms. We
are now ready for the main formal definition.

Definition 5.3. Let T be a family of transductions. A T-grammar
G = (V,:E,U,S) consists of an alphabet V. a terminal alphabet :E
(:ES: V), an initial symbol S (SE V). and a finite set U of T-transduc
tions over V. The language L (G) generated by G is defined by

L(G) = U*(S)n :t* =
= cu t-rpC. .. C-r1Cs)) .. .)lp~o: -rieu. l~i~p})n:t*.

Let r be a family of languages. A r -controll.ed T-grammar
(G;C) = (V.:E,U,S.C) is a T-grammar (V,:E,U,S.) provided with a con
trol language C S: u• from r. The language L (G;C) generated by
(G;C) is defined by

L(G;C) = c(s)n :E* = cu {-rpC. .. C-r1CS)) ...)l-r1 · · · "P ec})n:E".

L (T) [L (T ;f). respectively] is the family of languages generated
by [r -controlled] T-grammars, and L (T ;m) [respectively L (T; r ;m)]
is the subfamily of languages generated by [f-controlled] T-grammars
that possess at most m (m ~ 1) T-transductions. □

Example 5.4. (1) Let HOM and FINSUB be the families of all homo
morphisms and of all finite substitutions. respectively. Then L(HOM)
= EDTOL and L(FINSUB) = ETOL. For f-controlled variations. see
e.g. [1,2,6,8,13,14].
(2) Let dK-SUB [nK -SUB] denote the family of all [non]deterministic
K-substitutions. Then L(dK -SUB) = 'T)(K) [respectively, L(nK-SUB)
= H(K)] i.e., the family of languages generated by [non]deterministic
K-iteration grammars.
(3) The language families L (T ;f) and L (T) with T equal to XNGSM.

Complexity Aspects of Iterated Rewriting 97

>i.DGSM. NGSM, and DGSM have been investigated in [9.22,16.4.17]:
see [17] in particular, where e.g. the family of context-free languages is
characterized by L (T) for a family T of restricted NGSM mappings. □

All the examples in 5.4 are transductions in the sense of
Definition 5.1. and they all satisfy Assumption 5.2.

For these context-dependent abstract grammars we also need a
decidable membership problem; cf. Proposition 5.7. Therefore we res
trict our attention to so-called locally context-independent transduc
tions [20,5] which enables us to establish an analogue of Lemma 3.3,
viz. Lemma 5.6.

Definition S.S. A transduction T over some alphabet V is called locally
context-independent if

(1) T is rrwnotonic, i.e., for each y in v•. y E T(x) implies I y I ~ Ix I.
(2) T is context-independent in length-preserving applications. i.e., for

all xi,Yi in v• with lxil = IYil (i=1.2.3). Y1YzY3ET(x1x2x3)
implies y 1Y 3Y 2 E T(x 1x 3X 2). D

Lemma 5.6. [5]. Let T be a family of locoll,y context-independent trans
ductions, and let T contain for all alphabets V the length-preserving
finite substitutions

T(a) = W a in V, W~V.
(1) Let r be a family closed under finite substitutions and under inter
section with regular languages, and let (G;C) = (V,:E,U,S,C) be a r
controlled T-grammar. Then we can effectively construct a r -controUed
T-grammar (G';C')= (V,::E,U',S,C') such that L(G';C')= L(G;C),
and for each x in L(G';C'), there is a control word T 1 ... TP in C' such
that x e,,. P •• _,,. 1 cs) and p ~ 21 x I .
(2) For each T-grammar G = (V. :E,U,S), we can effectively construct a
T-grammar G' = (V,:E,U',S) such that L (G') = L (G), and for each x
in L (G'), there exists a word T 1 ... T P in u•• such that x E,,. P ••• T 1(S),
and p ~2lx I.
Proof: (1) We add new control words to C such that the correspond
ing derivations possess the property that each length-preserving step in
such a derivation is immediately followed by a length-increasing step.

If V = {a 1 •... ,ak} for some k ~ 1. then we define U' =
uu {[T,q]ITEU,qEQ} with Q = {<X1,••·•Xk>IXi~v. 1~i~k}.
and C' = CT(C) where CT= (Q,U,U',B,q 0.QF) is an NGSM with q0 =
<{a1}, {at}>.QF = {q 0},whileB is defined by

B(<X l•···•xk > ,T) = {(qo,T) I <X l•···•xk > = qo} u
u {(<T(X1)n v •...• T(Xk)n V>.>i.).(qo,[T.<X1,••·•xk >D}

(Notice that C ~ C').

Next we indicate the way in which the new additional control
words are obtained by means of CT from C. together with the effect of

98 P.R.J. Asveld

these new control words. · Consider an arbitrary derivation D accord
ing to (G:C). At each step in D. determined by the application of
some T-transduction T, one of the following three cases applies (cf. the
definition of 8):
Case (a): This application of T is length-increasing.
The corresponding transition in ,:r is the identity transition: (q o, T) E
8 (q 0, T). This case does not give rise to the addition of new control
words.

Case (b): This application of T is length-preserving and the next step in
D will also be length-preserving.
The corresponding occurrence of T in the control word is erased. and
the length-preserving context-independent effect (cf. Definition 5.5) of
T is stored by means of changing the state of ,:r from <X 1 • ...• Xk > to
<-r(x 1)n v -r(xk)n v >.
Case (c): This application of T is length-preserving but either the next
step in D will be length-increasing. or this application of T is the last
step in D.
In the old control word we replace the corresponding occurrence of T

by [-r. <X 1, ... ,Xk >] where <X 1 • ... ,Xk > is the current state of ,:r in
which the ultimate length-preserving effect of a consecutive sequence of
erased transductions (cf. Case (b)) has been stored. This new
transduction [-r. < X 1 , Xk >] is a length-preserving finite substitution
defined by

[T, <X 1, ... ,Xk >](ai) = T(Xi)n V for each i (1 ~ i ~k).

(2) Define u· = U U fru lu eu+} with for each u in u+. Tu is the
length-preserving substitution defined by

Tu(a) = u(a)n V a in V.

Then U' is finite, because there are only a finite number of length
preserving substitutions over V. □

The proof of the following result is almost identical to the one of
Proposition 3.4.

Proposition 5.7. [5]. Let r and T satisfy the assumptions of Lemma
5.6. If r is a subfamily of the family of recursive languages and if Tis
a subfamily of the family of recursive transductions, then each language
in L (T :r) and in L (T) is recursive. □

6. Complexity Aspects of Iterated Context-Dependent Rewriting

In this section we determine upper bounds for the space and time com
plexity of languages generated by (controlled) T-grammars; viz.
Theorems 6.2, 6.5 and 6.8.

Throughout this section "function" means a monotone increasing
function g over the natural numbers satisfying g (n) ~ n for each

Complexity Aspects of Iterated Rewriting 99

nEN.

Definition 6. 1. Let for each function g : N-+ N. DSP ACETR(g)
[NSPACETR(g). respectively] be the family of those transductions T

that satisfy
(1) T is locally context-independent. and
(2) there exists a [non]deterministic algorithm that can decide a query
"ye T(x)?" for each x and y within space g (ly I). □

Theorem 6.2. [5]. Let g be a function.
(1) lfT ~NSPACETR (g), then L(T)~ NSPACE(g).
(2) L (NSPACETR (g)) = NSPACE (g).
(3) Let r be a fomi,ly closed under ftmte substitution and under intersec
tion with reRUl,ar languages. If r ~ NSPACE (g), T ~ NSPACETR (g),
and g (2n)~c.g (n) for some constant c, then L (T ;r) ~ NSPACE (g).

Proof: (1) Consider the algorithm in Figure 2; remove the assignments
in which the variable control is involved. and replace the last state
ment by accept.

read x;
control := A;
if Xu:+ then reject else

y:=S;

A;

while y ¢ x and ly I~ Ix I do
guess TEU;

od

guess z ev+ with ly I~ lz I~ Ix I;
if z e T(y) then control := control.T;

y:=z
else reject

A

if control e C then accept else reject A.

Figure 2.

Then each step in this modified algorithm requires at most linear space.
except the test .. z e T(y)" for which we need g (I z I)~ g (Ix I) space.
Thus for Ix I= n. the total amount of space is O (n +g (n)) =
0 (g (n)).

(2) The inclusion L (NSPACETR (g))~ NSPACE (g) follows immedi
ately from (1) by taking T = NSPACETR (g).

Conversely. let L 0 ~ :t• be a language in NSPACE (g). Define
G = (V.:t,{T}.S) with V = :EU {S}. and-, is defined by

T(S) = Lo
T(w) = {w} for each w in :t*.

Then TENSPACETR(g). G is an NSPACETR(g)-grammar, L(G)=

P.R.J. Asveld

L 0• and hence NSPACE (g)~ L (NSPACETR (g)).
(3) Consider the algorithm of Figure 2. By Lemma 5.6 the last state
ment requires space O (g (2n)) which is O (g (n)) due to the assump
tion on g . So the total space needed to execute the algorithm is
0 (n +g (n))+O (g (n)) = 0 (g (n)); cf. the proof of (1). D
Corollary 6.3. [5]. L (NSPACETR (n)) = NSPACE (n). D

NSPACE (n) or. equivalently. the family of A-free context-sensitive
languages can be characterized by much simpler transductions than
those used in 6.3; in 6.4 we combine results from [9.22.16.4.17]
together with some simple properties.
Theorem6.4.
L (ANGSM;REG) = L (ANGSM) = L (ANGSM: 1) =
L(ADGSM:REG) = L(ADGSM) = L(ADGSM ;2) = NSPACE(n). D

Although this solves partially an open problem from [22]. viz.
L (ADGSM :2) = NSPACE (n). the precise nature of L (ADGSM : 1) and
an analogous characterization of DSP ACE (n) are still unknown. How
ever. it is easy to show that L(ADGSM :1)~ DSPACE (n).

For a deterministic counterpart of Theorem 6.2 we can generalize
the proof of Theorem 5.2 in [21] straightforwardly. The details are
left to the reader.

Theorem 6.S. Let g be a function with g (n) ~ n log n for each n e N,
and there exists a constant c such that g (2n) ~ c.g (n) for each n e N.
Let r be a family of languages closed under finite substitution and under
intersection with regul.ar languages.
(1) If T ~ DSPACETR (g), then L (T)~ DSPACE (g).
(2) L (DSP ACETR (g)) = DSP ACE (g).
(3) If r ~ DSPACE (g) and T ~ DSPACETR (g), then L (T :r) ~
DSPACE(g). D

Next we turn to time-bounded transductions and time-bounded
complexity classes. Instead of a single bounding function we now con
sider a class of functions that is closed under certain operations. The
following definition is a slight modification of a concept from [20J

Definition 6.6. A class C of functions is called natural if
(1) C contains the identity function AX. x.
(2) for each / and g in C. there is a monotone increasing function in
C that majorizes AX. (f (x)+ g (x)).
(3) for each/ and g in C. there is a monotone increasing function in
C that majorizes AX. (f (x)g (x)). and
(4) for each/ in C. there is a monotone increasing function in C that
majorizes Acc./ (2x). D
Definition 6.7. Let for each class C of functions. NTIMETR (C) be
the family of those transductions 'f that satisfy
(1) 'f is locally context-independent. and

Complexity Aspects of Iterated Rewriting 101

(2) there exists a nondeterministic algorithm that can decide a query
"y E T(x)?" within time g ,.(ly I) for some g,. in C. D

For a class C of functions NTIME (C) is defined by NTIME (C) =
U {NTIME (g) lg EC}. Let pol,y be the class of all polynomials over
the natural numbers. Obviously. poly is a natural class.
Theorem 6.8. [5]. Let C be a natural cla,ss of functions, o.nd let r be a
famiJ.y of languages closed under finite substitution o.nd under intersec
tion with regul.ar languages.
(1) If T S::NTIMETR (C), then L(T)S:: NTIME(C).
(2) L (NTIMETR (C)) = NTIME (C).
(3) If r S:: NTIME (C) o.nd TS:: NTIMETR (C), then L (T ;r) S::
NTIME(C).

Proof: The proof is similar to the one of Theorem 6.2. As an example
we show (3). Let (G;C) = (V.:t.U.S.C) be a r-controlled T
grammar. Assume U = fr1, ...• Tm}, and for each i (1,i ,m) a query
"z E T(y)?" can be resolved within time g; (lz I) for some g; in C.
Since C is natural there exists a function g in C that majorizes
Xx.(g 1(x)+ ... +gm(x)) and hence g(x)~g;(x) for each x and each i
c1,i ,m).

Consider the algorithm of Figure 2. By Lemma 5.6 it suffices to
execute the body of the while-loop at most 2n times where n is the
length of the input. All statements in this body require time O (n)
only. except the test "z E T(y)?" which is O (g (n)). Therefore this
while-loop can be executed in time at most O (n. (n +g (n))). The
preceding statements consume O(n) time. while the last statement of
the algorithm needs time h 1(2n) for some h 1 in C (assuming that
C E NTIME (h 1)). AB C is natural. Xn.h 1(2n) is majorized by some h
in C . Thus the total time to execute the algorithm is
O(n+n(n+g(n))+h(n)). Since C is natural this is majori7.ed by
some function in C. Hence L (G;C)E NTIME (C). D
Corollary 6.9. L(NTIMETR(poly)) = NP. D

Theorem 6.8(2) and Corollary 6.9 are variations of results esta
blished by Van Leeuwen [20] for another rather abstract grammatical
model.

In addition to Theorem 6.8 we remark that from the main result
in [19] it follows that if T contains all (X-free) finite substitutions.
then· the membership problem for L (T) is NP-hard.

We conclude this section with a counterpart of Theorem 4.6 with
respect to closure under iterated locally context-independent time- or
space-bounded transductions. We call a family K of languages closed
under iterated T-transductions if for each language L in K with
L S: v• for some alphabet V. and each finite set U of T -transductions
over V. the language U*(L) belongs to K.

102 P.R.J. Asveld

Theorem 6.10. [5]. Let g be a function such that there exists a con
stant c with g (2n) ~ c.g (n) for each n e N.
(1) If g (n);,;n for each n e N, then NSPACE (g) is the smallest AFL
closed under iterated T.ocolly context-independent nondeterministic g
space-bounded transductions. In particul.ar this applies to
- NSPACE (n), the family of context-sensitive languages;
- NSP ACE (n 2), the family of two-way nondeterministic nonerasing
stack automaton languages;
- PSPACE.
(2) If g (n) ;,: n log n for each n EN, then DSPACE (g) is the smoJlest
AFL closed under iterated T.ocolly context-independent deterministic g
space-baunded transductions. In particul.ar this applies to
- DSPACE (n logn), the family of two-way deterministic nonerasing
stack automaton languages.
(3) If C is a natural class of fundions, then NTIME (C) is the smoJlest
AFL closed under iterated T.ocolly context-independent nondeterministic
C-time--bounded transductions. In particular this applies to NP.
Proof: From 6.2(2). 6.5(2) and 6.8(2) closure under iterated T
transductions easily follows for T equal to NSPACETR (g).
DSPACETR (g). and NTIMEI'R (C) respectively. Closure under
iterated T-transductions implies closure under union, concatenation.
Kleene + and A-free homomorphism. The remaining two APL
properties (closure under inverse homomorphism and intersection with
regular languages) can be proved by standard automaton-theoretic con
structions. Since each AFL closed under iterated T-transductions
includes L (T). it is easy to see that L (T) is the smallest AFL closed
under iterated T-transductions.

For the characterimtion of two-way nonerasing stack automaton
languages in terms of complexity classes we refer to [11]. D

It is an open problem whether a similar proposition holds for
DSPACE (n). the family of deterministic context-sensitive languages.

7. Concluding Remarks

We summarized some results on the complexity of the membership
problem for (controlled) iteration grammars (Section 4) and for (con
trolled) grammars based on transductions (Section 6). In the former
case these results are rather satisfactory; in the latter one we could
extend the results of Section 4 only at the price of requiring local
context-independency. Whether this is a serious restriction is still
open. However, when we drop this condition we will probably need a
rather different approach to solving the membership problem in the
context-dependent case.

Apart from this general problem. a few more concrete open ques
tions have already been mentioned; cf. the remarks after Theorems 6.4
and 6.10. Another long standing open problem in this area. is the

Complexity Aspects of Iterated Rewriting 103

question whether DSPACE(n) is a hyper-APL, i.e .. whether it is an
AFL closed under iterated A-free nondeterministic substitution [21.3].
It is even unknown whether this question is equivalent to the classic
LBA-problem, i.e .. is DSPACE(n) = NSPACE(n)?. Thus. our know
ledge in this respect is more restricted in case of linear space than it is
in case of polynomial time; cf. Theorem 4.9.

Finally. we mention a different approach to the subject of this
survey based on the notion of nondeterministic log-space-bounded
reducibility; cf. [15]. Let for each language family K. NLOG(K) be
the family of languages that are many-one reducible to a language in K
by a reduction function computable nondeterministically in space log n
by a Turing machine of which each computation is of polynomial
length. As usual. LOG(K) is the class of languages many-one log
space reducible to languages in K. Then the following holds.

Proposition 7.1. [15].
(a) LOG(EDTOL) = NSPACE(log n).
(b) NLOG(EDTOL) = NP.
(c) LOG(ETOL) = NP.
(d) NLOG(ETOL) = NP. D

Let ONE be the language family of singleton sets. i.e .. ONE =
{LI card(L) = 1}. Then, e.g .. '1}(ONE) = EDTOL.

Theorem 7.2. [15]. Let r be a language family closed under reversal,
finite substitution and intersection with regular languages. Then
'1} er .ONE) ~ NLOG(r). □

As corollaries one obtains the restricted version of Theorem 4.1
with K = ONE. the main result of [12]. and implications of the form:
if r satisfies the conditions of Theorem 7.2 and r ~ LOG(CF). then
'l}(r .ONE)~ LOG(CF) where CF is the family of context-free
languages; cf. [15]. On the other hand it is still open whether
'l}(EDTOL.ONE) ~ P.

References

1. P.R.J. Asveld: Controlled iteration grammars and full hyper
AFL's, /nform. and Control 34 (1977) 248-269.

2. P.R.J. Asveld: Iterated Context-Independent Rewriting - An
Algebraic Approach to Families of Languages, Doctoral Disserta
tion (1978). Twente University of Technology, Enschede, The
Netherlands.

3. P.R.J. Asveld: Space-bounded complexity classes and iterated
deterministic substitution. Inform. and Control 44 (1980) 282-
299.

4. P.R.J. Asveld: On controlled iterated GSM mappings and related
operations, Rev. Roumaine Math. Pures Appl. XXV (1980) 139-
145.

104 P.R.J. Asveld

5. P.R.J. Asveld: Abstract grammars based on transductions.
Memorandum INF-85-13 (1985). Twente University of Technol
ogy, Enschede. The Netherlands.

6. P.R.J. Asveld & J. Engelfriet: Iterated deterministic substitution.
Acta Inform. 8 (1977) 285-302.

7. P.R.J. Asveld & J. Engelfriet: Extended linear macro grammars,
iteration grammars. and register programs, Acta Inform. 11
(1979) 259-285.

8. P.R.J. Asveld & J. van Leeuwen: Infinite chains of hyper-AFL's,
TW-memorandum No. 99 (1975), Twente University of Technol
ogy. Enschede, The Netherlands.

9. A.C. Fleck: Formal languages and iterated functions with an
application to pattern representations, Report No. 75-03 (1975).
Department of Computer Science, The University of Iowa. Iowa
City.

10. M.A. Harrison: Introduction to Formal Language Theory (1978),
Addison-Wesley. Reading. Mass.

11. J.E. Hopcroft & J.D. Ullman: Introduction to Automata Theory,
Languages, and Computation (1979). Addison-Wesley. Reading,
Mass.

12. N.D. Jones & S. Skyum: Recognition of deterministic ETOL
languages in logarithmic space, Inform. and Control 35 (1977)
177-181.

13. K.-J. Lange: Context-free controlled ETOL systems, in: J. Dfaz
(Ed.): Automata, Languages and Programming - 10th CoUoquium,
Leet. Notes in Comp. Sci. 154 (1983) 723-733, Springer-Verlag,
Berlin. Heidelberg, New York.

14. K.-J. Lange: Kontextfrei Kontrolierte ETOL-Systeme. Doctoral
Dissertation (1983). University of Hamburg. F.R.G.

15. K.-J. Lange: L systems and NLOG-reductions. in: G. Rozenberg &
A. Salomaa (Eds.): The Book of L (1985). Springer-Verlag. Berlin,
Heidelberg. New York. pp. 245-252.

16. G. Paun: On the iteration of GSM mappings, Rev. Raumaine Math.
Pures Appl. XXIII (1978) 921-937.

17. B. Rovan: A framework for studying grammars, in: J. Gruska &
M. Chytil (Eds.): Mathematical Foundation of Computer Science
1981. Leet. Notes Comp. Sci. 118 (1981) 473-482, Springer
Verlag, Berlin, Heidelberg, New York.

18. G. Rozenberg & A. Salomaa: The Mathematical Theory of L Sys
tems (1980). Academic Press, New York.

19. J. van Leeuwen: The membership question for ETOL languages is
polynomially complete. Inform. Process. Lett. 3 (1975) 138-143.

Complexity Aspects of Iterated Rewriting 105

20. J. van Leeuwen: Extremal properties of non-deterministic time
complexity classes, in: E. Gelenbe & D. Potier (Eds.): Inter-national,
Computing Symposium (1975). pp. 61-64. North-Holland. Amster
dam.

21. J. van Leeuwen: A study of complexity in hyper-algebraic fami
lies, in: A. Lindenmayer & G. Rozenberg (Eds.): Automata,
Languages, Devewpment (1976), pp. 323-333, North-Holland,
Amsterdam.

22. D. Wood: Iterated a-NGSM maps and r systems. Inform. and
Control 32 (1976) 1-26.

On Covers and Left-Corner Parses

Rieks op den Akk.er

Department of Computer Science, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

A transformation is defined which is a modification of a classic
transformation on context-free grammars. By means of this
transformation, a proof is presented of the fact that any cycle-free
context-free grammar can be left-to-left-corner covered by a non
left-recursive grammar, The proof method is based on the idea to
transform the characteristic grammar associated with the simple
syntax-directed translation scheme which defines the left-corner
parse of the strings generated by the input grammar of the scheme.
It is shown that the transformation yields an LL (k) grammar if and
only if it is applied to an LC (k) grammar. Finally, some ideas are
presented to extend the theory of covers to the semantical covering
of attribute grammars.

1. Introduction

Let G 1 and G 2 be context-free grammars. G 1 and G 2 are called weakly
equivalent if they generate the same context-free language. Let x
denote a string in the language L = L (G 1) = L (G 2). Weak
equivalence of G 1 and G 2 does not imply that there is a structural
similarity between the parse tree or parse trees of x with respect to G 1

and the parse tree or parse trees of x with respect to G 2• Here we will
consider a stronger form of equivalence between context-free gram
mars. We say that G 2 covers G 1 if we can transform G 1 into the
weakly equivalent grammar G 2 and we can systematically find the
parse tree of each string x in L with respect to G 1 from the parse tree
of x with respect to G 2•

A class Y of context-free grammars covers the class X of
context-free grammars if there is a transformation defined on all gram
mars in X such that the transformed grammar is a grammar in class Y
and covers the original grammar. If a class Y covers a class X then we
can use a compiler writing system (CWS) based on a parsing method
for grammars of class Y also for grammars in class X; see Figure 1.

First, we transform a grammar G from class X into the covering
grammar G' and then built a parser for G'. The output of this parser
is a parse tree with respect to G'. This tree is transformed into the
corresponding parse tree with respect to the original grammar G . This
last transformation makes it possible to define the semantics of x with
respect to the semantical definition based on grammar G .

107

108 R. op den Akker

typeX
grammar

transformation

typeY I

grammar

CWS for type Y
grammar

compiler for
,,

type X grammar

Figure 1.

For this reason the original grammar on which the syntax
directed semantics is based is called semantic gromtn11T in [7] and the
grammar obtained after transformation(s) is called the parsing gram
mar. The reason for using two grammars may be that the parsing
grammar is not convenient for expressing semantics. Sometimes it is
possible and also useful to do semantic actions or - in terms of the
formalism of attribute grammars [S] - to evaluate attributes during
the parsing of the input string. This allows for the use of semantic
properties (attribute values) of the already analyzed part of the input
string in making parsing decisions. Then it becomes practically
interesting to adapt the transformations on context-free grammars in
such a way that they preserve the semantics defined by the original
(attribute) grammar.

We will define a transformation on context-free grammars. If
this transformation is applied to a context-free grammar G. then the
resulting grammar G' covers the original grammar G. If the transfor
mation is applied to an LC (k) grammar. then the resulting grammar is
LL (k). The transformation is a modification of the one given by
Rosenkrantz and Lewis II [9]. The modification is due to the fact that
our definition of the LC (k) grammars is that of Soisalon-Soininen [11].
which is a modification of the original definition of Rosenkrantz and
Lewis II. The equivalence of this modified definition and the definition
of LC (k) grammars of Soisalon-Soininen and Uk.konen is proved in
[2].

Covers and Left-Corner Parses 109

This paper is organized · as follows. In Section 2 we give some
preliminary definitions concerning parse relations and cover relations
between classes of context-free grammars. In Section 3 we define the
left-corner parse relation. In Section 4 we define a transformation on
context-free grammars. In Section 5 we consider general cover proper
ties of the transformation. Section 6 presents definitions of LL (k)
grammars and left-corner or LC (k) grammars. In Section 7 we show
that the transformation yields an LL (k) grammar if and only if it is
applied to an LC (k) grammar. Finally, we present in Section 8 some
ideas to extend the notion of cover to the semantical covering of attri
bute grammars.

2. Preliminaries on Covers
The first results on cover relations between context-free grammars
were obtained by workers in the area of compiler writing. One of the
first theoretical studies in this field is that of Gray and Harrison [6]. A
general theory of covers has been developed by Nijholt [8].

We recall some preliminary notions from this theory of covers.
Since we will only consider cover relations between grammars that
have the same terminal alphabets, we do not need all notions in the
general formulation presented by Nijholt.

< w, G > denotes the degree of ambiguity of w with respect to G .
Let G be a cfg (context-free grammar) and l:,,.G a set of unique labeling
symbols for the productions of G .

Definition 2.1. A relation f GS: :E*xaJ is a parse relation for G if it
satisfies the following conditions.

i. For each string w EL (G) there exists at least one element
(w,1r)EfG.

ii. For each w Er. 1{1r I (w,1r)EfG }I~ <w.G >. □

Definition 2.2. A relation f G S: :E*x !:,,.J is a proper parse relation for G
if it satisfies the following conditions.

i. If (w,1r)EfG and (w',1r)EfG then w = w'.

ii. ForeachwE:E*, 1{1r I (w,1r)EfG }I= <w.G>. □

Thus a proper parse relation for G is a parse relation for G.

Definition 2.3. Let G = (N,:E,P.S) and G' = (N',:E,P',S') be con
text-free grammars with labeling sets for the productions l:,,.G and /:,,.G,.
Let f G and f G' be parse relations for G and G'. respectively. A
homomorphism </>: /:,,.6,-+ !:,,.J is a parse homomorphism if (w,1r)Ef G'
implies (w,q,(1r))Ef G. □

Definition 2.4. A parse homomorphism is a cover homomorphism if for
all (w,1r)Ef G. there exists (w,1r') E f G· such that q,(1r') = 1r. □

110 R. op den Akker

Definition 2.5. Let G = (N,"£.P.S) and G' = (N',"E.,P'.S') be cfgs.
Let f G and f G' be parse relations for G and G' respectively. Grammar
G' f G' -to -f G covers G if there exists a cover homomorphism
¢: AJ, -+ AJ. Notation: G' [JG' If G]G. D

Two well-known parse relations are the following. The left parse
relation for G is lG = { (w. 11') I S ==:;:> t w } . The right parse rel,ation
for G is rG = { (w. 'TT'R) I S ==:;:> r'r w }. in which 'TT'R denotes the reverse
of 71'.

The cover relation satisfies the transitivity property. Let f .g.h be
parse relations for cfgs F.G.H. respectively. If F[j lg]G with respect
to cover homomorphism ¢ 1 and G [g lh JH with respect to cover
homomorphism ¢ 2 then F[J lh JH with respect to cover homomor
phism tj,2 o tj, 1.

Most results on covers between cfgs concern left-to-left (or sim
ply left). right-to-right (right). left-to-right and right-to-left-covers
by grammars in some normal form, as for example Greibach Normal
Form or Chomsky Normal Form. by grammars without E-rules or by
non-left-recursive grammars. All the results obtained upto 1980 can
be found in Nijholt [8].

3. The Left-COrner Parse

Before we come to the definition of the left-corner parse of a string
with respect to a given context-free grammar. we define a useful
homomorphism. Let A be a set of symbols and "E, ~ A . The "£,-erasing
honwrrwrphism on A • h :E : A• -+ A• is defined by h 1:Ca) = a if a ~ r, and
h 1:Ca) = E if a E I:. For a language L we define h 1:CL) =
{ h 1:Cx) I x E L } .

Let G = (N.:E.P.S) be a cfg. IP I= m, A a set {p 1 pm} such
that "E, n A = 0 and AG :P -+ A a labeling function associating with
each production in P a unique symbol in A. We will omit the sub
script G and simply write X instead of AG .

With each cfg G and label set A we associate the cfg
G1c = (N,"E, U A,P1c ,S) in which P1c is defined as follows.

P1c = {A -+ Pi I A -+ E in P and >.(A -+ e) = Pi } U

{ A -+ Xp; ot I A -+ X ot in P and >.(A -+ X ot) = Pi } .

Clearly, hA(L (G1c)) = L (G).

We use the grammar G1c in order to define the left-corner parse of
a string x EL (G) with respect to G .

Definition 3.1. Let G be a cfg. x EL (G) and A. G1c as defined above.
11' EA• is a left-comer parse of x with respect to G if there is a string
y EL (G1c). such that h1:(Y) = 11' and hA(y) = x. □

Covers and Left-Corner Parses 111

The left-corner parse relation for G - {(h 4(y),h'E.(y)) ly EL (G1c)} - is
the same as the one denned by a simpk syntax directed translation
scheme (SDTS) in [1] or [8]. In fact the grammar G1c is the characteris
tic grammar [1] associated with the simple SDTS defining the left
comer parse relation. The left-comer parse relation is a production
directed parse relation as defined by Nijholt [8].

Example 3.2. Let G be the cfg given by the productions in the left
most table of Figure 2. The right-most table shows the productions of
the cfg G1c associated with G and the production label set
A= {p1,P2,p3.p4 }.

1. S-+aSa
2. S-+ Ab
3. S-+ C

4. A-+ S

1.
2.
3.
4.

S-+ a P1S a
S-+ A P2b
S-+ C p3
A-+ SP◄

Figure 2. The productions of grammars G and G1c.

Let X1 = ap1ap 1CP3P4Pibaa and x 2 = ap 1ap 1cp 3aap4P2b. Since X1

and x 2 are both sentences in L (G1c) and h 'E.(x 1) = h 'E.(x 2) although
h 4 (x 1) :;,,!: h 4 (x 2). the left-comer parse relation is not proper for G.
The sentences aacbaa and aacaab both have left-comer parse
P1P1P3P4P 2 The derivation trees of the sentences h 4 (x 1) and h 4 (x 2)

are shown in Figure 3. D

s
~

a S a

~ a S a

l'b
I
s
I

C

s
~

A b
I
s
~

a S a

~
a S a

I
C

Figure 3. Derivation trees of aacbaa and aacaab .

4. The Transformation T

We describe a transformation - we call it T - which, when applied to
a cfg yields a cfg that is equivalent to the original one. T is a
modification of a transformation described by Rosenkrantz and Lewis
II in [9] for transforming an LC (k) grammar into an LL (k) grammar.
Also Griffith and Petrick have used this transformation. The
modification is because we pref er the definition of LC (k) grammars by
Soisalon-Soininen [11] which is equivalent to a slightly modified

112 R. op den Ak.ker

version of the original LC (k) definition in [9]. In Section 5 we show
that transformation T when applied to a cfg G yields a cfg T(G) which
left-to-left-comer covers G . In Section 7 we will proof that ,,. yields
an LL (k) grammar if and only if it is applied to an LC (k) grammar.
LL (k) grammars and left-comer grammars are defined in Section 6.

As we already noticed in Section 2. most of the cover results con
cern left. right. left-to-right or right-to-left covers. The reason for this
is simply that the parse relations involved in these covers correspond
with the canonical left-most and right-most derivations in a cfg. For
the left-comer parse relation there is not such a smooth canonical
derivation. A left-corner parser (see for instance [1] or [9] for a
description) jumps through the parse tree: the left-corner parsing
method is a method which combines top-down and bottom-up recogni
tion of parts of the parse tree. Proofs of theorems on left-comer gram
mars or related concepts tend to be long and tedious and are therefore
mostly omitted.

Before we come to a description of T we introduce some notation
and one definition.

Let G = (N."E..P.S) be a cfg. Context-free grammars are always
assumed to be reduced. that is they do not contain useless symbols.
We write E for the empty string. V will denote N U "E,. Ve will denote
the set VU {e} and "E.e the set "E. U {e}. If a Ev• then I a I denotes the
length of a. Furthermore. for an integer k > 0. k :a denotes a if
I a I , k and k :a denotes the prefix of a of length k if I a I > k (notice
that k :e = E for any k). The left-corner of a production A --+ a is the
symbol 1:a.

Deftnition 4.1. We define the relation ~g with respect to a cfg G as
follows:

i. ~{1<;;.NxVe.

ii. (X.Y)E ~g if and only if X--+ a is a production of G and
Y = 1:a. D

We will write X ~1cY instead of (X.Y)E ~g. ~;% will denote
the transitive closure of ~ 1c .

Let G = (N."E..P.S) be a context-free grammar and let N be the
set {A E N I A = S or there is a .E,_l'Oduction in P of the form
B--+ aAp. where a¢e}. (Thus A EN if A is the start symbol of G
or A occurs in the right-hand side of a production of G of which it is
not the left-comer). Let N be ordered: N = {A 1.A 2 An }. The
transformed grammar T(G) of G is the context-free grammar
(N' ."E..F .S). N' is a superset of N and contains all symbols of the
form [A.Y]. with A EN and YE Ve• which appear in the productions
of T(G).

F is defined as follows. Start with F = 0. F will contain only
those productions added to F in one of the following three steps.

Covers and Left-Corner Parses 113

1. For all i, 1 ~ i ~n • for all a E :Ee add to P' the production
A; -+ a [A; .a] if A; ~ zt a .

2. For all [A; ,Y]. where YE Ve, which occur in the right-hand side
of a production in P' • for all productions in P of the form
B -+ Y (3. where (3 E v• such that A; ~ zt B • add the production
[A; ,Y] -+ (3 [A; .B] to P' if it is not already in P' .

3. Add [A; ,A;] -+ E to P' .

Grammar T(G) does not contain useless symbols.

We give two examples of the transformation.

Example 4.2. Consider the context-free grammar G given by the fol
lowing productions.

1. S-+S+T
2. S-+ T
3. T-+ TX id
4. T-+ id

The symbols id,+ and X are terminal symbols. The transformed
grammar G' has the following productions; cf. Figure 4. D

1'. S-+id[S,id] 2'. [S,id]-+[S,T]
3'. [S.T]-+ [S.S] 4'. [S,T]-+ x id [S.T]
5'. [S.S]-+ +T[S.S] 6'. [S,S]-+ e
1'. T -+ id [T,id] 8'. [T.id]-+ [T,T]
9'. [T.T]-+ E 10'. [T,T]-+ X id [T.T]

Figure 4.

Example 4.3. If we apply T to the cf g G of Example 3.2. we obtain
the grammar H given by the productions shown in Figure 5. Do not
pay attention yet to the last column. We will later return to this
example. D

1' S-+ a [S,a] E

2' S-+ c [S,c] E
3' [S.a]-+ Sa [S.S] 1
4' [S,c] -+ [S.S] 3
5' [S.S] -+ [S.A] 4
6' [S.A] -+ b [S.S] 2
7' [S,S]-+ E E

Figure 5.

5. General Properties of T

In this section we will show that if transformation T is applied to a cfg
G we obtain a cfg G' which left-to-left-corner covers G. Therefore we
have to show that there exists a homomorphism which maps left
parses of a string x EL (G) with respect to G' onto left-corner parses

114 R. op den Aller

of x with respect to G . The method of proof is inspired by Soisalon
Soininen [10]. The diagram of Figure 6 shows the grammars involved
in the proof and the steps we will take.

;:--\
G' • H'----H

Figure 6.

We apply transformation T to the grammar G1c associated with G to
obtain the cfg H. L (H) should be L (G1c). Then we define the gram
mar H' and a homomorphism </:>.,. such that L (H') = L (G) and more
over H'[l/lc]G with respect to¢.,.. Finally, we construct the cfg G'
from H' in such a way that G' = T(G) and define a homomorphism 1/1
such that G' [l ll]H' . By the transitivity property of the cover relation
we obtain the desired result.

We first show that T preserves the language generated by the cfg
to which it is applied.

Lemma 5.1. Let G = (N.I.,P,S) be a context-free gramma.r. Then
L(G) = L(T(G)).

Proot_ From the construction of T(G) from G. it follows that for all
A EN (for the meaning of N see the transformation):

A ::::;,. z A 1 a 1 :::::;,. z A 2a 2a 1 :::::;,. z • • ·

==::;,.z An-lO!n-1 · · · 0!20!1 ==::;,.zaO!nO!n-1 · · · 0!20!1, (5.1.1)

a E I.E. is a derivation in G if and only if

A ==::;,. r a [A.a] :::::;,. r a O!n [A,An -11 :::::;,. r a O!n O!n-1[A,An -21

==::;,.r a O!n O!n-1 · · · 0!20!1[A,A]

(5.1.2)

is a derivation in T(G). Notice that each symbol that occurs in
an · · · a2a1, is either a terminal symbol or a symbol in N.

Any derivation A ::::;,. z* x in G can be seen to be constructed
from derivations of the form (5.1.1). And with these derivations there
are corresponding derivations in T(G) of the form (5.1.2). As a special
case we have S ::::;,. • x in G if and only if S ::::::;:. • x in T(G). Thus
L (G) = L (T(G)). So we can proof the Lemma by induction on this
construction. We do not give the complete proof here.

As !_ basis for the induction consider the following observations.
Let A E N and let A -+ x be a production of G . with x E :t*. First
suppose that x ¢ e. Let x = ax' for some a EI. and x' E :E*. By the

Covers and Left-Corner Parses 115

definition of the transformation. it follows that in T(G) there is a
derivation A ====> a [A.a] ====> ax' [A.A] ====> ax' = x. On the other
hand this last derivation exists in T(G) only if A -+ x is a production
in G. Now suppose that x = E. Then in T(G) we have the derivation
A ====> [A,E] ====> [A.A] ::::>e. And also this last derivation only
exists in T(G) if A -+ E is a production in G. D

Let G = (N."E.,P.S) be a cfg. Ii a set of labeling symbols for the
productions of G (X denotes the corresponding labeling function).
G1c = (N."E.U li,P1c,S) the grammar associated with G and Ii defined
in Section 3 and H the grammar T(G1c). i.e .• the grammar obtained
from G1c by the transformation T. H = (Nn,"E.U li,Pn,S). Further
more. let H' = (Nn U li,"E..Fn .S). where Fn = Pn U {p; -+ E I Pie Ii}.

Lemma 5.2. There is a leftmost derivation A ====> i" x for a terminal
string x in H' if and only if there is a string y in L (H) such that
h.tJ,.(y)= x, hr,(y)= '11'1'11'2 ... 'IT,,, and '11'11'11'1'11''2'11'2 ···,,,..,,,,,,.,,,='IT, where
'11''1 ... 'IT',,, is a left parse of y from A in H.

Proof: By induction on the length of 'IT. □

We now define a homomorphism"'" which should map left parses
of a string x with respect to H' onto left-comer parses of x with
respect to the original grammar G = (N. "E.,P.S). Let /i'n be a set of
labeling symbols for the productions in PH . Let A' be a one-to-one
labeling function from F onto li'n• Define the homomorphism "'"
from li'if to Ii• as follows. For all productions in Pn of the form
[A.X]-+ l3[A.B]. where 13 e (VU Ii)*. introduced in step 2 of the
transformation applied to G1c we have: </>iX'([A.X]-+ l3[A.B]))=
X(B -+ X l3). For all other elements q of /i'n: </>"(q) = E.

Lemma 5.3. H' [l Ile]G with respect to homorrurphism </,".
Proof: By definition of a left-comer parse of a string x e L (G) with
respect to G we have to show that S ====> i" x in H' if and only if
S ====>*y in G1c. where h.tJ,.(y) = x and hE(y) = </>"('IT).

By the previous Lemma there is a left parse ,,,. of x e L (H') if and
only if there is a stringy in L(H) such that h.tJ,.(y)= x and
hE(Y) = 'IT1'IT2--•'ITn. and 'IT11'11'1'11''2'IT2 · · · ,,,..,,, ,,,.,,, = 'IT, where '11''1•••,,,.•n. is a
left parse of y in H. Since L(H)= L(G1c) by Lemma 5.1. we are
done if we could prove the following Claim.

Claim. </>i'IT) = 'IT1'IT2--•'1Tn,
Proof of the Claim: Recall that 'IT= 'IT11'1T1'1T12'1T2 · · · ,,,..,,, ,,,.,,, and notice
that I '11'1; I~ 0 and I 'IT; I = 1 for all i. 1 ~i ~n. Since </>"('IT;)= E, we
have to show that </,"(,,,.•1,,,.•2 .•• 'IT',,,) = '11'1 ... 'IT,,,. If G does not contain
E-productions then simply </,"('IT';)= 'IT;. Let B -+ E be an e
production in P and let X(B -+ E) = p. Then B -+ p is a production in
P1c . . Suppose that A -+ p [A.p] is a production of H = T(G1c) intro
duced in step 1 of the construction of H. Then [A,p]-+ [A.B] is a
production of H introduced in step 2 of the construction of H . By

116 R. op den Akker

definition of 'PT• c/>iA '(A ➔ p [A,p])) = E and c/>iA '([A,p]-+ [A,B])) =
p . Let 'IT) in 'IT denote the production p -+ E in P' H • Then 'IT' J + 1
equals)..'(LA,p]-+ [A,B]). Thus cf,T(1:'IT'J +1) = 'ITJ.
End of the proof of the Claim. □

Now we should obtain T(G) from H'. Define G' = (NH,'£,P'G ,S)
where P'G = { A -+ ht:,.(a) I A -+ 01. in PH }. Let t:,.'G be the produc
tion label set for G' and let)..'G denote a label function which satisfies
the following: for all productions in P'G,)..'G (A -+ ht:,.(a)) =
A '(A -+ a).

It is not difficult to see that G' = T(G) (Equality is meant here up
to renaming of some nonterminal symbols). Thus we have:
L(G') = L(T(G)) = L(G) = L(H').

Define the homomorphism t/1 from ll.'6 to ll.'k as follows:
t/J(A 'G (A -+ ht:,.(a))) =).'(A -+ a), if a= ht:,.(a).

t/J(A 1G (A -+ ht:,.(a))) = A '(A -+ a)). '(pi -+ E), if 1:a = Pi E fl..
Lemma S.4. G' [l/l]H' with respect to t/J.
Proof: This follows immediately from the construction of grammar G'
and the definition of t/1. □

Theorem S.S. G' [l /lc]G.

Proof: Use Lemma 5.3 and Lemma 5.4 and the transitivity property of
the cover relation. □

Example S.6. See Example 4.2 in the previous section. Let fl.' be the
set {1',2', ... ,10'} of unique labeling symbols of the productions in G'
and let fl. be the set {1,2,3,4,5} of unique labeling symbols of the pro
ductions in G. Define the homomorphism cf, from fl.' into fl.* as fol
lows. q,(1') = E, q,(2') = 4, q,(3') = 2, q,(4') = 3, q,(5') = 1. q,(6') = E,
cf,(7') = E, cf,(8') = 4, cf,(9') = E and cf,(10') = 3.

The sentence id Xid +id has left-parse 1' 2' 4' 3' 5' 7' 8' 9' with
respect to G' . This left-parse is mapped by cf, on the left-corner-parse
4 3 214 of id Xid +id with respect to G. □

Example S.7. See Example 4.3 in the previous section. With respect to
grammar H the sentences a.acbaa and aacaah have left-parses
1' 3' 1' 3' 2' 4' 5' 6' 7' 7' 7' and 1' 3' 1' 3' 2' 4' 7' 7' 5' 6' 7'. The homomor
phism 'PT• given by the second column in Figure 5. maps both left
parses onto the left-corner parse 1 1 3 4 2 with respect to G . D

Before we can present the following result we recall the definition
of cycle-freeness of a context-free grammar.

A cf g G = (N. '£,P,S) is called cycle-free if for no A EN there is a
derivation A ==:>+A in G.

Theorem S.8. Any cycle-free context-free grammar is left-t<>-left-corner
covered by a non-left-reaersive grammar.

Covers and Left-Corner Parses 117

Proof: The only thing left to show is that cycle-freeness of a cf g G
implies non-left-recursiveness of -r(G).

Let G = (N."'E..P.S). First notice that a symbol in N cannot be
left-recursive in -r(G). We show that there is in G a derivation

Y ==;>+ z. (5.8.1)

where Y.Z EN. if there is in -r(G) a derivation of the form

(5.8.2)

where x Er.•. We use induction on the length of derivation (5.8.2).
Let [A.Z] ==> [A.Y]x be a derivation in T(G). It follows from the
construction of -r(G). that Y -+ Z is a production in P (and x = e).

Suppose that if there is a derivation in -r(G) of the form (5.8.2)
with length less than or equal to n. then there is a derivation (5.8.1) in
G. Consider a derivation of the form (5.8.2) with length n +1. This
derivation has the form:

[A.Z] ==>/[A.X] ==>r+[A.Y]z.

By the induction hypothesis we may conclude that Y ==> + X and
X ==> + Z are derivations in G. Thus Y ==> + Z in G. □

6. Two Classes of Grammars
In this section we give definitions of LL (k) grammars and left-corner
or LC (k) grammars.

Definition 6.1. Let G be a cfg. Let A EN. a.J3.y Ev•. we :t* and let
A -+ a and A -+ J3 be two distinct productions of G. G is an LL(k)
grammar if the conditions

(i) S ==>z* wA8 ==>z wa8 ==>* wz1

(ii) S ==> z* wA 8 ==> z w J38 ==>* wz2
(iii) k :z1 = k :z2

always imply that a = /3. □

In the following definition of the class of LC (k) grammars. the
notion of a left-earner sentential form (lcsf) is used. Informally, a
left-corner sentential form is a left sentential form uYa such that the
nonterminal or terminal symbol Y is not the left-corner of the produc
tion that introduced Y in the leftmost derivation S ==> z* uY a . If
uY a is a left-corner sentential form. we write: S ==> k uY a . For
mally. S ==> k uY a if and only if either this derivation has the form:

S ==>z*u'Ba' ==>z u'y1Yy2a' ==>z* u'u"Yy2a' = uYa.

where B -+ 'Y 1Y y 2 is a production rule in which y 1 ¢ e, or uY a = S
(The first left sentential form in any derivation). We write
A ==> z* B 'Y if for some integer n ~ 0 there are Bi in N , 'Yi in v•. with
Bo= A. B,,, = B and y,,, ... y 1 = y. such that

118 R. op den Akker

A =>z B1')'1 =>z B2')'2')'1 =>z · · · =>z Bn Yn •··'Yl·

Definition 6.2. Let G = (N,'T,,,P,S) be a cfg and let k be an integer
(k > 0). G is an LC (k) grammar if and only if

1. the conditions

(i) S =>ic u1A81 =>tu1B1')'181 =>z u1Xt31-Y181

(iii) u 1 x 1 = u 2x 2 and k :z 1 = k :z 2

imply B1 = B2 and 131 = /32.

Notice that if X is a terminal symbol then X = x 1 = x 2 and con
dition (iii) implies that u 1 = u 2. If X /3 1 = E then X /32 = E,

u 1 = u 2 and x 1 = x 2 = E.

2. (condition for €-rules) If

s =>ic uA 81 =>t uB1')'181 =>z U')'181 =>t UZ1

is a derivation in G. then there is no derivation of the form:

S => ic uA 82 => z* uB2')'282 =>z uat3-y282 => z* uaz2

in G. such that k :z 1 = k :az2•

3. (condition for left recursive nonterminal symbols) If

S =>ic u1A 81 =>t u&1-Y181 =>z u1A /31')'181

=>t U1X1/31')'181 :=>z" U1X1Z1

is a derivation in G. then there is no derivation of the form

S =>ic uA8 =>t ux8 =>t uxz

such that ux = u 1x 1 and k :z 1 = k :z . □

This definition is equivalent with the definition of LC (k) grammars in
terms of right-most derivations given by Soisalon-Soininen [11]. For a
proof of this equivalence see [2]. Any LL (k) grammar is LC (k) and
any LC (k) grammar is LR (k) [11].

Example 6.3. Grammar G in Example 4.2 is an LC (1) grammar. D

Covers and Left-Corner Parses 119

7. Special Properties of Transformation T

In this section we show that the transformation T yields an LL (k)
grammar if and only if it is applied to an LC (k) grammar.

Lemm.a 7.1. Let G = (N,'f.,P,S) be a context-free grammar. For al,l
A 0 EN (For the meaning of N see Section 4.), there exists in G a
derivation

A 0 ==;>z* B181 ===!;>za1A 1')'161 ==;>z"w1A1')'161

==;>z*w1B262')'161 ==;>z w1azA2'Y282')'161

==;>z*w 1w 2A 2y262')'181 ==;>z" • • •

==;>z°w1W2 ... wnAn'Ynan ... ')'161,

if and only if in grammar T(G) the derivation

Ao ==;> t w 1A 1'Y 1CA o,B 11 ==;> t w 1w zA 21zCA 1,B 2h 1[A o,B 1l
===!;> t . . . ===!;> t
==;>z*w1W2 · · · WnAn'Yn[An-1,Bnhn-1[...] ... y1[Ao,B1],

exists, such that for al,l i , if 1 ~ i ~ n then

CA;-1,Bd ===!;>: 8;[A;-1,A;-1] ===!;> 7 6;.

Proof: By induction on the length of the derivations. D

Lemm.a 7.2. For any k >O, if G is an LC(k) grammar, then T(G) is
an LL (k) grammar.

Proof: Let G = (N,'f.,P,S) be an LC(k) grammar for some k >O. G'
denotes the grammar T(G). Suppose that G' is not an LL (k) gram
mar. Then for some Z EN' .

S ==;> z* wZ 8 ==;> z w cu 16 ==;> • wz 1

and

S ==;> t wZ 8 ==;> z w cu 28 ==;> • wz 2

are derivations in G' , where cu 1 ¢: cu 2• although k :z 1 = k :z 2•

We distinguish three cases: I) Z is a symbol in N • II) Z is of the
form [A.Y]. where A EN.Ye V-{A} and III) Z is of the form [A.A].

Case I. It follows from the construction of the grammar G'. that the
productions Z --+ cu 1 and Z --+ cu 2 both have the form A --+ a [A.a].
where a E'f.E. Since k >O. k:z 1 = k:z 2 and y 1 ¢: y 2• the following
derivations exist in G'.

S ===!;> t wA 8 ===!;> z wa [A.a]6 ==;> z* wau 18 ===!;> z*wau 1V 1 = wz 1

S ==;> t wA 8 ==;> z w [A,e]6 ==;> t wu28 ==;> z°wu2v2 = wz2

Because of the first part of these derivation in G' we may conclude,
using Lemma 7.1, that S ==;> z*c wA 8' in G such that 6 ==;> • 8' in G'.

120 R. op den Akker

Notice that in general we may not conclude from 8 ::::::;> • 8' and
8 ::::::;>*v that 8' ::::::;>*v. However, by Lemma 7.1 the derivation
8 ::::::;> • 8' has a special form.

If in Lemma 7.1 [A;-1,Bd ::::::;>*y1 then [A;-1,Bd :::::;>:Yi and
thus CA;-1.B;] ::::::;>;8;CA;-1.A;-11 ::::::;>;8; ::::::;>;y1. Therefore we
may conclude here that 8' ::::::;> • v 1 and 8' ::::::;> • v 2 in G . Since
A -+ a [A.a 1 is a production in G'. it follows from the construction of
G' that A ::::::;>,* B1')'1 ::::::;>aP1'Y1 is a derivation in G. In the same
way. since A -+ [A,e1 is a production of G'. there is a derivation
A ::::::;> ,* B 2')'2 ::::::;> ')' 2 in G . Furthermore we know (See the proof of
Lemma 5.1.) that aP1'Y1 ::::::;>*au1 and ')'2 ::::::;>*u2 in G. Thus deriva
tions

s ::::::;> k w A 8 I ::::::;> t w lb,y 28 I ::::::;> l w 'Y 28 I ::::::;> ,* WU 2 V 2 = w z 2

and

S ::::::;> k w A 8' ::::::;> ,* w B 1')'18' ::::::;> z wa P 1')'18' ::::::;> z* wau 1V 1 = wz 1

exist in G . Since k :z 1 = k :z 2• we conclude that G does not satisfy the
condition for e-productions in Definition 6.2 and so we have shown
that the assumption that G is LC (k) leads to a contradiction.

Case II. In this case the productions Z -+ ru 1 and Z -+ ru 2 in the intro
duction of this proof have the form [A,Y1-+ y 1[A.Y 11 and
[A,Y1-+ y 2[A.Y 21. Suppose that

and

s ::::::;> t w [A.Y18 ::::::;> l w 'Y 1CA,Y 118 ::::::;> z* WU 1CA,Y 118

::::::;> z* WU 1Y 18 ::::::;> WU 1Y 1V 1 = WZ 1

s ::::::;> t w [A.Y 18 ::::::;> l w 'Y 1CA,Y 118 ::::::;> z* WU 1CA,Y 118

::::::;> z* WU 1Y 18 ::::::;> WU 1Y 1V 1 = WZ 1

are derivations in G'. where y 1[A.Y 11 ¢ y 2[A.Y 2]. although
k :z 1 = k :z 2. From the construction of G' it follows that the first part
of these derivations has the form: S ::::::;> ,* w'A 8 ::::::;> ,* w'w" [A.Y18.
where w = w'w" and Y ::::::;>* w" is a derivation in G. By Lemma 7.1
we know that S ::::::;>t: w'A 8' is a derivation in G. such that 8 ::::::;>*8'
in G'. It will be clear that in G the derivations

A ::::::;> ,* Y 1P 1 ::::::;> Y 'Y 1 P 1 ::::::;> t w" 'Y 1P 1

and

A ::::::;> ,* Y 2P 2 ::::::;> Y 'Y 2P 2 ::::::;> ,* w" 'Y 2P 2

exist, such that [A,Y 11 ::::::;>; ~ 1 and [A.Y 21 ::::::;>; ~ 2 in G'. Notice that
we may conclude that P 1 ::::::;> • y 1 and also that P 2 ::::::;> • y 2 (see Case I
for the justification of this). Thus we know that

S ::::::;> • w'A 8' ::::::;> • w'Y o. 8' ::::::;> w'Y"' o. 8' le - l -1,., 1 1 1,-, 1

Covers and Left-Corner Parses 121

(7.2.1)

and

(7.2.2)

are derivations in G. Since k :z 1 = k :z 2 we have k :w"z 1 = k :w"z 2-

From this last equality and derivations (7.2.1) and (7.2.2) we conclude
that clause 1 of Definition 6.2 is not satisfied. This, however. contrad
icts the assumption that G is LC (k).

Case III. We consider the case in which the productions Z ➔ cu 1 and
Z ➔ cu 2 in the introduction of this proof have the form [A.A] ➔ e and
[A.A] ➔ li[A.B]. Suppose that in G' derivations

s ===;> t w [A.A]8 ===;> z w 8 ===;> t wz 2

and

S ===;> ,* w [A.A]8 ===;> z w l3[A,B]8 ===;> z* wy 1[A.B]8

===;> t wy 1V 18 ===;> wy 1V 1Z 1

exists, such that k :z 2 = k :y 1v 1z 1•

(7.2.3)

(7.2.4)

From the construction of G' it follows that the first part of
derivations (7.2.3) and (7.2.4) has the form

S ===;> t w'A 8 ===;> ,*w'w" [A.A]8

and A ===;>*w" in G. By Lemma 7.1 we know that in G derivation
S ===;>z*c w'A 8' exists, such that 8 ===;>*8' in G'. From derivation
(7.2.4) we conclude that in G the derivation

A ===;> t B '>' ===;> z A 13 '>'
exist. where [A.B] ===;>;.,, in G'. We may conclude that')' ===;>*v 1.

Thus in G derivations

S ===;> i*c w'A 8' ===;> t w'w" 8' ===;> * w'w"z 2

and

S ===;> * w'A 8' ===;> '"w'B8' ===;> w'A a-v8' ===;> '"w'w" tl-v8' le - l - l /JT l /JT

===;> z* w'w"y 1')'8 1 ===;> t w'w"y 1V 1z 1

exist. Since k :z 2 = k :y 1v 1z 1 we conclude from these derivations that
G doesn "t satisfy clause 3 in Definition 6.2. This contradicts the
assumption that G is LC (k).

We finally conclude that G' must be LL(k). □

We now show the converse of Lemma 7 .2.

Lemma 7.3. Let G be a context-free grammar. Far any k >O, if G is
not an LC (k) grammar, then r(G) is not an LL (k) grammar.

122 R. op den Akk.er

Proof: Let G = (N. "E..P.S) be a context-free grammar which is not
LC (k). G' will denote T(G).

Case I. Suppose that G does not satisfy clause 1 in the definition of
LC (k) grammars. Then there exist derivations

S ====>: u1A81 ====>t uJ!1')'181 ====>z u1X/31')'181

(7.3.1)

and

S ====> k u2A82 ====> t u-z/l2')'282 ====> z u2X /32')'282

====>t U2X2/32')'282 ====>t U2X2)'2V2Z2 (7.3.2)

in G. where B1 ;a!: B 2 or /3 1 ;a!: /3 2• although u1x1 = u2x2 and
k :y1V1Z1 = k :y2V2Z2.

Consider derivation (7.3.1). By Lemma 7.1 we conclude from the
:first part of this derivation that in G' the derivation S ===:>tu 1A 8'1
exists. such that 8'1 ===:>*8 1. From the second and third part of the
derivation we may conclude that [A,X] ➔ /3 1CA.B 1] is a production of
G' and [A.B1] ===:>*y 1 in G'. Moreover. we may conclude that
A ====>tx1[A.X] in G'. Similar conclusions can be derived from
derivation (7.3.2) in G. Thus in G' the derivations

and

S ====>tu1A8'1 ====>z*u1x1CA,X]8'1 ====> u1x1/31CA,B1]8'1

===:>tu 1X 1Y 1CA.B 118' 1 ====>tu 1X 1Y 1V 1Z 1

S ====>tu2A8'2 ====>z*u2x2CA,X]8'2 ===:> u~2/32[A.B2]8'2

===:> z* U 2X 2Y 2CA,B 2l8'2 ====> z* U ~ 2Y 2V 2Z 2

exist. Since B 1 ;a!: B2 or /3 1 ;a!: /3 2• the productions [A,X] ➔ /3 1CA.B1l
and [A.X] ➔ /3 2[A,B2]. used in these derivations, are not the same.
Because of the equalities u 1x 1 = u2x 2 and k :y1v 1z 1 = k :y2v2z2• we
conclude that G' is not LL (k).

Case II. Suppose that G does not satisfy clause 2 in the definition of
LC (k) grammars. Then there exist derivations

and

S ====>: uA 81 ====>t uB1')'181 ====>z uy181

S ====>: uA82 ====>tuB2')'282 ====>z ua/3')'282

===:> t ua /3 2')' 28 2 ===:> t uavy 2Z 2

in G. such that k :y 1z 1 = k :avy2z2,

(7.3.3)

(7.3.4)

Covers and Left-Corner Parses 123

From derivation (7.3.3) we conclude that in G' derivation
S =>iuA8'1 exists, such that 8'1 =>*81. In addition, A-+ [A.e]
and [A.e]-+ [A,B 1] are productions of G' and [A.B 1] => * ')' 1 in G'.
From derivation (7.3.4) we conclude that in G' derivation
S => k uA 8'2 exists, such that 8'2 => * 82. Moreover. A -+ a [A.a]
and [A.a]-+ /3[A.B 2] are productions of G' and [A.B 2] =>*12 in G'.
Thus in G' derivations

S =>z*uA8'1 =>z[A.e]8'1 =>tu[A,B1]8'1 =>*u118'1 =>*uy1z1

and

S =>z*uA8'2 =>z ua[A,a]8'2 =>z*ua/3[A,B2]8'2

=>z*uav[A.B2]8'2 =>z*uavy28'2 =>z*uavy2z2

exist. Sincek:avy 2z 2= k:y 1z 1 weconcludethatG' isnotLL(k).

Case ill. Suppose that in G the derivations

S =>i u1A81 =>z*u1B1')'181 =>z u1A/31')'161

(7.3.5)

and

s => i uA 8 => t ux 6 => t uxz

exist, such that ux = u 1x 1 and k :u 1y 1z 1 = k :z. In a way similar as in
the other two cases we may conclude from these derivations that the
derivations

and

S =>tu1A8'1 =>z"'u1x1[A.A]8'1 => u1x1/31[A,B1]8'1

=;> z* U 1X 1Y 1[A.B 1]6'1 =;> z* U 1X 1Y 1V 1Z 1

S =>z"uA 8' =>z'"ux[A,A]8' => 1 ux8' =>*uxz

exist in G'. Since ux = u 1x 1 and k :z = k :y 1v 1z 1 we conclude that G'
is not LL(k). D

From Lemma 7.2 and Lemma 7.3 we may conclude the following
result.

Theorem 7.4. The transformation T yields an LL (k) grammar (k >O)
if and only if it is applied to an LC (k) grammar. □

8. Semantical Covering of Attribute Gram.mars

In the introduction we already noticed that it is sometimes possible to
evaluate attributes of the nodes of the parse tree during parsing.
Therefore it makes some sense to consider transformations on attribute
grammars which yield a semantically equivalent attribute grammar
based on a cfg which covers the original cfg. It lies at hand to call the

124 R. op den Aller

result of such a transformation a semantical covering grammar of the
original attribute g,-ammar. Here we consider the question whether all
translations definable by a class X of attribute grammars can also be
de.fined by attribute grammars in a class Y which semantically covers
class X. A similar question is posed by Aho and Ullman for syntax
directed translation schemes [1]: Suppose that G 2 left or right covers
G 1• Is every SOTS with G 1 as underlying grammar equivalent to an
SOTS with G 2 as underlying grammar? A partial answer to this ques
tion is given by Shyamasundar in [14]. For special classes of SOTS this
question has been studied by Rosenkrantz and Lewis II [9] and by
Soisalon-Soininen [11]. These studies consider the semantical cover
relation between classes of simple syntax directed translation schemes
(simple SOTS) [1]. SOTS can be viewed as a special class of attribute
g,-arnmars (See File [13] for a precise description of SOTS in the for
malism of attribute grammars).

The semantic equivalence of covering attribute grammars is also
studied by Bochmann [4]. However. the notion of semantical covering
introduced by Bochmann is quite different from the semantical cover
relation we have in mind. Let us :first introduce some notions and
notation.

Let G be an attribute g,-ammar (AG). The reader is referred to
File [13] for a definition. Notice that the specification of the semantic
domain. that is a set of sets of values of the attributes together with
the set of functions denoted by the evaluation rules of the attributes. is
a part of the definition of an AG. Let 6 denote the distinguished syn
thesized attribute of the start symbol of the AG G . In an evaluated
complete grammatical tree (parse tree). 6 is a special attribute of the
root of the tree of which the value represents the meaning or the trans
lation of the yield of the tree. Let D denote the value set of 6. Let Tr
denote the set of complete grammatical trees of the underlying cfg G 0

of G . Let 6 (t) e D denote the value of 6 of tree t e Tr and let the
translation of x e L (G) be t/l(x) = { 6(t) It e Tr and yield (t) = x }.
t/1 is called the translation function of G . Even if G O is (syntactically)
ambiguous t/1 (x) may contain only one element (We assume that the
AG is non-circular so 8(t) is always de.fined). The translation
TRANS (G) de.fined by the AG G is:

TRANS(G)= {(x.t/l(x)) Ix EL(G)}.

Let 2D denote the power set of D . The following definition is from
Bochmann [4].

Definition 8.1. Let G 1 and G 2 be AG's over the same terminal alpha
bet. 6 1 and 62 the distinguished attributes of G 1 and G 2• respectively.
D 1 and D 2 their value sets and t/1 1 and t/1 2 the translation functions. G 2

is semantically finer then G 1 if there exists a mapping <f,: 2D2 ➔ 2D 1•

such that: for all x EL(G 1)n L(G 2). t/1 1(x)~ <f>(t/12(x)). D

Covers and Left-Corner Parses 125

Thus G 2 is semantically finer then G 1 implies that for all x in both
languages the translation according to G 1 can be obtained by applying
the mapping cf, to the translation according to G2- Because of the simi
larity between this definition and the definition of cover Bochmann
uses the phrase "semantical covering". In order to explain our idea of
semantical covering a little more. we consider for a start the following
definition.

Definition 8.2. An AG G 2 sema,ntically covers an AG G 1 if

i. the underlying cfg of G 2 covers the underlying cfg of G1,

ii. TRANS (G 1) = TRANS (G 2). D

If an attribute grammar has a deterministically parsable underlying cfg
and all attributes of all parse trees are evaluable during parsing fol
lowing a parsing method suitable for the cfg. then we call the AG a
one-pass AG. We are specially interested in one-pass AG's. All one
pass AG's are £-attributed. at least if we adopt the strict one-pass
evaluation strategy as defined in [3]. £-attributed LL (k) grammars
are one-pass AG's since all attributes are evaluable during top-down
parsing. For other classes of one-pass AG we refer to [3] where also
the class of LC -attributed grammars is defined. Let X -AG and Y -AG
be classes of one-pass AG's over a specific semantic domain. If we
want to compare different classes of AG with respect to their ability to
define translations (or their "formal power". cf. [12]) we must expli
citly mention the semantic domain because this ability not only
depends on the number of attributes and the kind of attribute depen
dencies in the AG but also on the types of attributes and the function
types in the semantic domain. Knuth already showed in [5] that any
translation defined by an AG can be defined by an AG which has only
synthesized attributes. The question whether a class X -AG semanti
cally covers a class Y -AG asks for a transformation which yields a cf g
in class X when applied to a cf g in Y and a redefinition of attributes
and attribute-rules such that the translation is preserved and the AG
obtained is in X -AG . By Definition 8.2 semantically covering of attri
bute grammars does not imply any correspondence between attribute
values of internal nodes of corresponding parse trees. However, if we
want to show that an AG G 1 semantically covers an AG G 2, we need
some inductive argument on the construction of corresponding deriva
tion trees of the involved underlying cfgs. Therefore we can use a
stronger form of sema,ntical covering which implies the equality of
attribute values of the roots of corresponding subtrees of corresponding
parse trees. What .. corresponding subtrees" are should follow from a
particular transformation by means of which the covering grammar is
obtained. For example the left factoring transformation applied to a
grammar which is not left factored yields a left factored grammar that
right covers the original grammar. If a grammar is not left factored
then there exist productions A ➔ otf3 and A ➔ ot')', with a¢ E and

126 R. op den Akker

fJ ;= y. A step in the process of left factoring consists of replacing the
productions A -+ 01 fJ and A -+ 01y by the productions A -+ 01H,
H -+ fJ and H -+ y. where H is a newly introduced nonterminal sym
bol. In [3] an informal algorithm is given for transforming AG's in the
class LP-AG based on left-part grammars into the class LL-AG • the
class of L -attributed LL (k) grammars. This transformation is an
attributed variant of the left factoring transformation. Here it is
immediately clear what the corresponding subtrees of corresponding
parse trees are.

If we want to consider semantical cover relations between AG's
with semantical conditions or disambiguating predicates - which play
a role in making parsing decisions based on attribute values [3] -
Definition 8.2 is not suitable. In this case the language generated by the
AG is a subset of the language generated by the underlying cf g so we
cannot say anything about the existence of a cover relation between the
underlying cfgs without considering attribute values of internal
corresponding nodes.

References
1. A.V. Aho & J.D. Ullman: The Theory of Parsing, Translation and

Compiling. Volume 1. Prentice-Hall. Englewood Cliffs, N.J., 1972.

2. R. op den Akker: A left-corner property for context-free gram
mars. Memorandum INF-86-8 (1986), Twente University of
Technology, Department of Informatics, Enschede. The Nether
lands.

3. R. op den Akker: Deterministic parsing of attribute grammars.
Part I: Top-down oriented strategies, Memorandum INF-86-19
(1986). Part II: Left-corner strategies, (to appear). Twente
University of Technology. Department of Informatics, Enschede.
The Netherlands.

4. G.V. Bochmann: Semantic equivalence of covering attribute gram
mars, lnternat. J. Comp. Inform. Sci., 8 (1979) 523-539.

5. D.E. Knuth: Semantics of context-free languages. Math. Systems
Theory 2 (1968) 127-145. Correction in: Math. Systems Theory S
(1971) 95-96.

6. J.N. Gray & M.A. Harrison: On the covering and reduction prob
lems for context-free grammars, J. Assoc. Comput. Mach. 19
(1972) 675-698.

7. H.B. Hunt & D.J. Rosenkrantz: Efficient algorithms for structural
similarity of grammars, Conf. Record of the 7th ACM Symp. on
Principles of Progr. Languages (1980) 213-219.

8. A. Nijholt: Context-Free Grammars: Covers, Normal Forms and
Parsing, Leet. Notes Comp. Sci. 93 (1980), Springer-Verlag. Ber
lin. Heidelberg. New York.

Covers and Left-Corner Parses 127

9. D.J. Rosenkrantz & P.M. Lewis II: Deterministic left corner pars
ing. Conf. Rec. of the 11th Annual IEEE Symp. on Switching and
Automata Theory (1970) 139-152.

10. E. Soisalon-Soininen: On the covering problem for left-recursive
grammars. Theoret. Comput. Sci. 8 (1979) 1-11.

11. E. Soisalon-Soininen: Characterization of LL(k) languages by res
tricted LR(k) grammars, Report A-1977-3 (1977). Department of
Computer Science. University of Helsinki, Helsinki.

12 J. Engelfriet & G. File: The formal power of one-visit attribute
grammars. Acta Inform. 16 (1981) 275-302.

13. G. File: Machines for attribute grammars. Inform. and Control 69
(1986) 41-124.

14 R.K. Shyamasundar: On the covering of syntax-directed transla
tions for context-free grammars. Proc. Indian Acad. Sci. 88 A
Part 3 (1979) 1-19.

Programming. Language Concepts -
The Lambda Calculus Approach

Maarten M. Fok.kinga

Department of Computer Science, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

The Lambda Calculus is a formal system, originally intended as a
tool in the foundation of mathematics, but mainly used to study the
concepts of algorithm and effective computability. Recently, the
Lambda Calculus and related systems acquire attention from Com
puter Science for another reason too: several important programming
language concepts can be explained elegantly and can be studied suc
cessfully in the framework of the Lambda Calculi. We show this
mainly by means of examples. We address ourselves to interested
computer scientists who have no prior knowledge of the Lambda
Calculus. The concepts discussed include: parameterization,
definitions, recursion, elementary and composite data types, typing,
abstract types, control of visibility and life-time, and modules.

t. Introduction
The Lambda Calculus is a completely formally defined system. consist
ing of expressions (for functions or rather algorithms) and rules that
prescribe how to evaluate the expressions. It has been devised in the
thirties by Alonzo Church to study the concept of function (as a
recipe) and to use it in the foundation of mathematics. This latter goal
has not been achieved (although recent versions of the Lambda Cal
culus come quite close to it. see Martin-Lof [16]. Coquand & Huet [6]);
the former goal. the study of the concept of function. has led to
significant contributions to the theory of effective computability.

Recently. the Lambda Calculus and related systems. together
called Lambda Calculi. have aroused much interest from computer sci
ence because several important programming language concepts are
present - or can be expressed faithfully - in them in the most pure
form and without restrictions that are sometimes imposed in commer
cial programming languages. Expressing a programming language con
cept in the Lambda Calculus has the following benefits:

• It may shed some light upon the concept and thus give some
insight.

• It may answer fundamental questions about the concept via
theorems already available in the Lambda Calculus. And there
are quite a lot of them.

129

130 M.M. Fokkinga

• It proves that the coricept does not add something essentially new
to the language. In particular it guarantees that there can not be
nasty interferences with other such concepts. (It has always been
a problem in programming language design to combine concepts
that are useful in isolation but have unexpected and undesired
interferences when taken together.)

Some programming language concepts cannot be expressed in the
Lambda Calculus. In view of the expressive power of the Lambda Cal
culus one should first become suspicious of such a concept. Secondly.
one may try to extend or adapt the Lambda Calculus in such a way
that the concept is expressible. The techniques and tools developed for
the Lambda Calculus may then prove useful to study the extension.
Examples of such concepts are assignment and exception handling .

In this paper our aim is to show the significance of the Lambda
Calculus approach to .. Programming Language Concepts", and to raise
interest in the Lambda Calculi. We address ourselves to (experienced)
programmers: no knowledge of the Lambda Calculus is assumed. To
this end we keep the formalism to a bare minimum and use computer
science terms and notations as much as possible. We discuss a variety
of programming language concepts, such as parameterization, definition,
recursion, elementary and composite data types. typing, abstract types,
control of visibility and life-time, and modules. All this is preceded
by a brief exposition of the Lambda Calculus and its role as an area of
research in itself.

The importance of the Lambda Calculus for the design of pro
gramming languages has already been recognized in the sixties by Lan
din [12, 13, 14]. Algol 68's orthogonality is very similar to the simpli
city of the Lambda Calculus. Reynolds [26] explains the essence of
Algol as follows:

·· Algol is obtained from the simple imperative language by
imposing a procedure mechanism based on a fully typed,
call-by-name lambda calculus."

2. The Lambda Calculus

We describe the Lambda Calculus as a mini programming language in a
notation and a terminology that is conventional in computer science.
(Thus the title of this section might have read: .. Lambda Calculus Con
cepts - the programming language approach"). Some topics of past
and current research are mentioned.

Expressions. We assume that some set of identifiers is available, and
we let x denote an arbitrary identifier. For expressions there are three
syntactic formation rules:

e ::= X identifier

Programming Language Concepts - The Lambda Calculus Approach 131

e ::= (fn x.e)
e ::= e(e)

function expression
function call

We let e. ef. ea, eb, ... denote arbitrary expressions: (f is mnemonic for
function. a for argument and b for body). Fully capitalized WORDS
will abbreviate specific expressions. The sign = stands for syntactic
equality.

Notes

2.1. In an expression (fn x • eb). x is called its parameter and eb its
body; the parameter is a local name. so that renaming of the parameter
and all its occurrences in the body is allowed and is considered not to
change the expression. We thus identify (fn X•X) and (fn Y•Y). both
denoting the identity function as we shall see below.

2.2. We leave out parentheses if no confusion can result; this is often
the case with the outermost parentheses of a function expression under
the convention that the expression following the dot• should be taken
as large as possible.

2.3. An expression fn x • eb is an anonymous function. In contrast to
conventional languages. the concepts of function and of naming are
separated here syntactically. Naming is discussed in §3.1.

2.4. Church originally wrote xe for fn x • e , but for typographical
reasons changed this to J\xe and later to Axe. This is still the standard
notation and clearly explains the part 'Lambda' in the name.

2.5. As an example. consider the expression fn X•f (f (x)) which we
shall call TWICE1 : called with argument x O this function will return
f (f (x 0)), i.e.. the result of calling / twice. The function
fn / • TWICE1 will return for each argument function / the function
that calls/ twice. So both the argument and the result of a function
may be functions themselves. Actually. each expression denotes a
function.

We shall now formally define the semantics of expressions analo
gously to the way in primary school children are taught to evaluate
fractions like (5x8+8)/(10x8): they are given some simplification
rules that may be applied in any order.

Evaluation. An expression e evaluates to an expression e'. notation
e ==:;> e'. if e' is obtained from e by repeatedly (zero or more times)
applying the following evaluation rule:

replace a part (fn x • eb)(ea) by [ea Ix]eb .

Here. and in the sequel. [ea Ix]eb denotes the result of substituting ea
for each occurrence of x in eb. (taking care to avoid clash of names by
renaming local identifiers where appropriate).

132 M.M. Fokkinga

Notes

2.6. Substitution is a syntactic manipulation that is tedious to define
formally. Let it suffice here to say that [ea If] f (f (fn x • x)) equals
ea (ea (fn x • x)). and that

[.. .x .. ./f] f (fn x • f (x)) = ... x ... (fn x' • ... x ... (x')).

where x' is a new identifier distinct from x.

2.7. As an example we have

(fn f • TWICE1)(sin)(zero)
=:;> TWICEsm (zero) i.e. (fn x • sin (sin (x)))(zero)
=:;> sin (sin (zero))

and this can not be evaluated further at this point.

2.8. In Algol 60 jargon [23] the evaluation rule is the body replace
ment rule : the effect of a function call is explained by replacing it by
the function body with substitution of the argument for the parameter.
In the Lambda Calculus the rule is called the ~-rule. and evaluation is
called reduction.

This seemingly simple mini programming language gives rise to a
large number of thorough questions that in turn have led to substantial
research efforts and a lot of results. We mention but a few.

1. Do there exist expressions whose evaluation may not terminate?
Answer: yes there are. for we shall see that arbitrary recursive
definitions are expressible.

2. Is the evaluation strategy (the choice what part to evaluate next)
of any importance? Answer: different strategies cannot yield different
final outcomes, but one may terminate in cases where the other does
not. Also the number of evaluation steps to reach the final outcome. if
any. depends on the strategy.

3. Is it possible to express numbers and to do arithmetic in the
Lambda Calculus? Answer: yes. see §3.4.

4. Clearly function expressions denote functions in the sense of
recipes of how to obtain the result when given an argument. Is it pos
sible to interpret expressions as functions in the sense of a set of (argu
ment, result~pairs, such a set itself being a possible argument or result?
Answer: this has been a long standing problem. D. Scott formulated
the first such models in 1969; a lot of others have been found since.

5. When may or must expressions be called semantically equivalent?
(Of course we want semantic equivalence to satisfy the usual laws of
equality and to be preserved under evaluation.) If two expressions may
both evaluate to a common intermediate or final outcome, they must be
called equivalent. However, it is possible that they do so only "'in the
limit". after an infinite number of evaluation steps: in this case they
may be called equivalent. And what about calling expressions equi
valent if they have no outcome, not even in the limit?

Programming Language Concepts - The Lambda Calculus Approach 133

6. What are the consequences of the restriction that in fn x • eb
parameter x must occur at least once in the body eb? And of the extra
evaluation rule

replace fn x • ef (x) by ef

(because both denote the same function intuitively)?

More information about the Lambda Calculus may be obtained
from [1. 11. 29].

3. Basic Programming Language Concepts

In this section we express various basic programming language concepts
in the Lambda Calculus. Justified by this. we also give specific syntac
tic forms for each concept together with derived evaluation rules.

3.1. Definitions
We extend the syntactic formation rules for expressions by:

e ::= (df x = e • e) definition expression

Within (df x =ea• eb) the part x = ea is a local definition that extends
over the body eb. We consider this new expression as an abbreviation
for (fn x.eb)(ea). so that the Lambda Calculus is not extended in an
essential way. and the evaluation rule has to read:

replace a part (df x=ea.eb) by [ea/x]eb.

Notes
3.1.1. The definition x = ea in df x =ea• eb is nonrecursive. This is a
consequence of our choice to let it abbreviate (fn x • eb)(ea).

3.1.2. By construction there is a close correspondence. or rather iden
tity. between definitions df x =ea• eb and parameterimtions as in
(fn x • eb)(ea). This can be taken as a guiding principle in the design
of programming languages:

for each kind of parameter (think of value. in. out. ref and
name) there exists a semantically identical definition. and con
versely.

The consequences of adhering to this Principle of Correspondence have
been worked out by Tennent [30]. Pascal strongly violates it.

3.1.3. There is another principle involved here. the Principle of Nam
ing . In df x =ea• eb identifier x names ea locally in eb • and both
ea. eb and x are arbitrary. This principle is violated in Pascal. because
e.g. statements cannot be named and naming can be done only locally
to procedure and function bodies.

3.1.4. We have explained the local name introduction of df x=ea.eb
in terms of the fn -construct. Reynolds [26] makes this to a guiding
principle for the design of programming languages:

134 M.M. Fokkinga

every local name introduction can be explained by the fn -
construct.

We shall apply this Principle of Local,ity to the expression for recur
sion. below.

3.1.5. As an example, we now name the function TWICE:

df twice = (fn f • (fn x • f (f (x)))). twice (sin)(zero)

Here sin and zero are just identifiers for which a definition may be
provided in the context; (Principle of Naming).

3.2. Multiple Parameters and Definitions

Consider once again the expression TWICE(/ 0)(x 0), where
TWICE = fnf • (fn X•f (f (x))). One may easily verify that
TWICE(/ o)(xo) ==;:,. (fn X•f oCJ oCx)))(xo) ==;:,. f oCJ oCxo)). We
might say t~.at both f and x are parameters. and both f O and x O are
arguments. Thus multiple parameters are possible, for which we
design a special syntax:

e ::= (fn x 1, ... ,Xn•e) for distinct x 1, .. ,,Xn
e ::= ef(e , e)

These expressions are to abbreviate (fn x 1• (· · · (fn Xn • e)"·)) respec
tively ef (e 1) · · · (en). so that the evaluation rule has to read:

replace (fn x 1, ... ,Xn • e)(e 1, ... ,en) by [e 1, ... ,en Ix 1, ... ,Xn]e.

Guided by the Principle of Correspondence we also design the
corresponding definition form:

e ::= (df x 1=e1, .. ,,Xn =en•e)

with evaluation rule:

for distinct x 1, ... ,Xn

replace df x 1 = e 1, ... ,Xn =en• e by [ea 1 • ... ,ea,Jx 1, ... ,Xn]e.

Notes

3.2.1. For example, we may now write TWICE' (f 0,x0) where
TWICE'= fnf.x•f(f(x)). We can also write df f=/ 0• x=xo•
f (f (x)).

3.2.2. The industrious reader may verify that the multiple definitions
and substitutions are simukaneous rather than sequential: it turns out
that the definition xi = ei extends only over e and not over e 1 through
en. The distinctness of x 1 • xn is necessary to formulate the evalua
tion rule so simple (and to guarantee that the substitution is well
defined).

3.2.3. Exercise. Let df x 1 = e 1; · · · ; Xn =en• e abbreviate the sequent
ial definition (df x 1=e 1.(· · · (df xn=en•e) .. ·)). Now think about
the corresponding "sequential parameterization".

Programming Language Concepts - The Lambda Calculus Approach 135

3.3. Recursion
A recursive definition is a definition in which the defined name occurs
in the defining expression. A stupid evaluation strategy that first of all
tries to eliminate the recursively defined name will therefore certainly
get into an infinite loop of evaluation steps. However, sometimes
(unfortunately not always) the recursively defined name occurs in a
subexpression (then- or else-branch in particular) whose evaluation is
not needed to reach the final outcome. A moderately clever evaluation
strategy will not attempt to evaluate such needless occurrences. Thus
the concept of recursion is fully captured by an expression in which
designated occurrences evaluate - if time has come - to the expression
itself. We "extend" (not really, see Note 3.3.4 below) the Lambda
Calculus by the following grammar and evaluation rules:

e ::= (rec x • e) recursion expression
replace (rec x • e) by [(rec x • e)Ix]e.

Notes

3.3.1. Within (rec x • e) the occurrences of x in e are the points of
recursion: such an occurrence evaluates to the original recursive expres
sion. (But if such an occurrence is contained in a then- or else
branch, it may happen that after one expansion it is not any more sub
ject to the above evaluation rule.)

3.3.2. The concepts of recursion and of definition have been separated
syntactically. We may combine them by abbreviating
(df x = (rec x •ea). eb) by (df rec x =ea• eb): the occurrences of x
in eb as well as in ea will evaluate - if time has come - to the recur
sive expression (rec x • ea).

3.3.3. Assuming that if then else and arithmetic are possible, we may
write the definition of the factorial function as follows:

df rec Jae = (fn neif n = 0 then 1 else n xJae (n -1))
i.e. df Jae = (rec Jae• (fn n • if n = 0 then 1 else n xJae (n -1)))
= df Jae = (rec J • (fn neif n=O then 1 else n xJ (n-1)))

The part (rec J • J (n -1)) denotes the factorial function without
giving it a name that can be used elsewhere.

3.3.4. In (rec x • e) the identifier x is a local name whose scope
extends over e . Following the Principle of Locality we explain that
local naming in terms of the fn -construct: provided that REC satisfies
the property

REC (fnx.e) evaluates to [REC (fnxee)/x]e

we may consider (rec xee) to abbreviate REC (fn X•e). We could
now add a constant "REC· to the Lambda Calculus with the above
evaluation rule. but it turns out (space limitations prohibit to give the
motivation) that we may take:

136 M.M. Fokkinga

REC = fn / • W 1 (W1) where W1 = fn y • f (y (y))

as is easily verified.

3.3.5. Notice that recursion (as in the rec -expression). circularity (as
in the df rec -definition). self-activation (as in the evaluation rule for
rec) and self-application (as in w1 : y is applied to itself) are inti
mately related.

3.3.6. Mutual recursion can also be expressed, but we shall not do so
here.

3.4. Truth Values and Enumerated Types

We shall choose two expressions TRUE and FALSE and some function
expressions AND. OR, NOT and IF such that the laws that we expect
to hold. are indeed true of these expressions. The observable behaviour
of TRUE and FALSE is in their being used as the condition part of an
IF call: we wish to have

IF(TRUE.e 1,e2) ~ e 1,
IF(FALSE ,e1,e2) ~ e2.

Hence we let TRUE and FALSE be selector functions:

TRUE= fn x,y.x
FALSE= fn x.y.y

so that we may choose

IF = fn b,x,y.b(x,y).

The evaluation property for IF is true indeed. Now functions
AND, OR and NOT are easy to define:

Notes

AND= fnbl ,b2.IF(bl .b2,FALSE).
OR = fn bl .b2oIF(bl ,TRUE,b2).
NOT = fn beIF(b,FALSE ,TRUE).

3.4.1. Plugging in the expression IF into the expression NOT and per
forming some evaluation steps. we see that we also may set NOT =
fn beb(FALSE ,TRUE). Similarly for AND and OR.

3.4.2. Suppose PROG is a program (an expression) in which identifiers
True, Fa/,se, If. And, Or and Not occur and have been assumed to
satisfy the usual Boolean laws. We may then form

df True= TRUE. Fal.se =FALSE, ... , Not= NOT• PROG .

In other words, the definitions True= TRUE •...• Not= NOT can be con
sidered to belong to the standard environment and the application pro
grammer need not know the particular representation choices made for
truth values. We shall see in Section 4 how to hide the representation

Programming Language Concepts - The Lambda Calculus Approach 137

choices so that the application programmer is not allowed to write
True (e 1,e2) (but has to use the //-function explicitly).

3.4.3. Rather than providing a standard environment we can also
design specific syntactic expressions for truth values, thus:

e ::= true I false I (e and e) I (e or e) I (not e)
e ::= if e then e else e

together with the derived evaluation rules:

replace (true and e) by e
replace (false and e) by e
~eplace if true then e 1 else e 2 by e 2

3.4.4. Elements of a finite enumeration type can be represented analo
gously: selector function fn x 1, ... ,xn • x; represents the i th element.
and elt (e i, ... ,en) is the implementation of

case elt in 1: e 1• · · · , n: en endcase.

3.4.5. The above representation has been chosen in the assumption
that the evaluation strategy does not evaluate the argument expressions
before the body replacement rule is applied. Otherwise both the then
and the else-branch are always evaluated. and that is undesirable. We
can, however, adapt the representation to that strategy, but we shall
not discuss it here.

3.5. Arithmetic: (Natural) Numbers

Throughout the paper we say 'number' instead of 'natural number'
(0,1,2, ...). As motivated below in Note 3.5.3 we choose to represent
number n by an n -fold repeated call of a function / on an initial
argument a, where both/ and a are parameters:

fnf,a•f(· · · (f(f (a))···)

In particular we set

ZERO = fnf,a•a
ONE= fnf,a.f(a)
TWO = fn f,a.f (f (a)).

The successor function SUGG may be implemented by

SUGG= fnn."n+1-fold iteration"

(n times an /)

= fn n • (fn /,a• f ("n -fold iteration of/ on a"))
= fn n. (fn / ,a.f (n (f .a)))

For example, one easily verifies that

138 M.M. Fokkinga

SUCC(1WO) ==> fnf.a.J(1WO(f.a)) ==> fnf,a•f(f(f (a)))

which represents 3. The test for equality is also easy:

EQO = fn n • n (F,TRUE) where F = fn x •FALSE

so that

EQO (ZERO) ==> ZERO (F .TRUE) ==> TRUE.
EQO(ONE) ==> ONE(F.TRUE) ==> F(TRUE) ==> FALSE.

The construction of a predecessor function is more complicated. The
idea is to reconstruct the number itself. n say. and simultaneously
"remember" at each step in the reconstruction the outcome of the pre
vious step. So each intermediate result consists of a pair. in which one
component is a number (initially O and at most n) and the other com
ponent its predecessor. We use here pair-expressions of the form
<e 1,e2> and suffixes .1 and .2 for selection of the first and second
component of a pair; in §3.6 we show how to express these in the
Lambda Calculus. Now we set

Notes

PRED = fn neFINISH(n (F,A))
where
A = <ZERO .DONTCARE >
F = fn pair• <SUCC (pair .1),pair .2>
FINISH = fn pair• pair .2

3.5.1. The choice for DONTCARE in PRED determines the outcome
of PRED (ZERO). If no outcome is wanted, because within the set of
numbers zero has no predecessor. we may take a nonterminating ex
pression like (rec x • x).

3.5.2. One way to define addition is:

df rec add = fn m.n e lF(EQO (m).n,add (PRED (m).SUCC (n)))

However. use of recursion expressions is not necessary:

df add = fn m,n • m (SUCC.n).

One can prove that all effectively computable total functions on
numbers can be defined solely in terms of the number zero, the succes
sor function and so-called primitive recursions (of higher order). For
our representation it turns out that we can express primitive recursion
off and a as: fnn.n(f.a). So letNREC = fnf,a.(fnn.n(f,a)).
Then knowledge of the representation of numbers is not needed any
more. and in particular we can replace all expressions 'n (ef ,ea)' above
by 'NREC (ef ,ea)(n)'.

3.5.3. The representation choice might be motivated thus: we have
represented the data structure "number" by its most characteristic

Programming Language Concepts - The Lambda Calculus Approach 139

control structure. namely the use of it to control a repetition (or:
repeated call; compare var x := a; for i := 1 to n do x := / (x) with
f (· · · (f (f (a)))···)). A better motivation reads as follows. Numbers
form an inductively definable data type: Zero is a .. number" and if n is
a "number" then so is Succ(n). If we are able to replace Zero and Succ
in an arbitrary "number" Succ(· · · (Succ(Succ(Zero))) .. ,) by any a
and /. then we are effectively able to construct all functions on
"numbers" that are definable by (structural) induction. Thus
Succ(· · · (Succ(Succ(Zero)))-..) is represented by

fn Succ. Zero• Succ (· · · (Succ (Succ (Zero)))-..) =
fn/.a./(· · · (f(f (a))) .. ,).

and primitive recursion has been built in.

3.5.4. One might object to the above representation of numbers: it can
hardly be called a faithful modeling of commercial programming
languages, because the representation length. and therefore storage
space too, for a number n is linear inn and also the number of evalua
tion steps to compute the predecessor of m. or the sum of m and n . is
linear in m. We can however improve upon this drastically. Observe
that the above representation is close to the unary notation of numbers:
number 1...11 (in unary notation) has been represented by
fn f .a•f (· · · (f (f (a)) .. ·). Now we represent e.g. number 1001101
(in binary notation) by fn / .g.a • f (g (g (f (f (g (f (a))))))); an / for
1 and a g for 0. The representation length grows only logarithmically.
The successor function may be defined thus:

SUCC' = fn n.fn f.g,a.FINISH(n (F.G. <CARRY.a>))
where
CARRY= fn x.y.x (= TRUE)
NOCARRY = fn x.y.y (= FALSE)
F = fn < carry • result > • carry (g ./)(result)
G = fn <carry ,result >•carry(f.g)(result)
FINISH = fn <carry .result>• carry (f (result).result)

In a similar way addition can be defined. It turns out that evaluation
of both SUCC (n) and PRED (n) takes O(log n) steps, and ADD (m,n)
takes O(log m + log n) steps. No programming language can improve
upon this whenever it allows unbounded numbers.

3.5.5. Similar remarks as in Notes 3.4.2-3 apply here as well. In view
of the complicated representation of numbers, and implementation of
the operations. this is very welcome.

3.6. Composite Data Types: Records and Lists

We can be very brief with respect to lists. Note 3.5.3 provides the clue
to choose the representation: the list

Cons(x 1,Cons(x 2 , Cons(xn .Nil) ...))

140 M.M. Fokkinga

is represented by

fn Cons.NU.Cons(x1,Cons (x2, .. ,.Cons(xn .NU}··))=
fn / .a•/ (x1,/ (x2, .. ,.f Cxn .a), ..)).

We leave it to the reader to define functions NIL. CONS and LREC
(cf. ZERO. SUCC and NREC of §3.5). and to build HEAD. TAIL.
EQNIL and so on in terms of them. (Typed versions will be given in
§5.3).

In the next section we discuss typing and shall require that lists
be homogeneous: all elements of a list must belong to the same data
type. So we need a kind of record-construct for inhomogeneous aggre
gates. For simplicity we discuss pairs (2-tuples) only; the generaliza
tion to n -tuples is straightforward. The tuple Pair(x .y) is represented
by fn PairePair(x.y). i.e. fn / •/ (x.y). The constituting elements
can be retrieved by applying the pair to the appropriate selector func
tions. Thus we let

<e1,e2> = fn/e/(e1,e2)
e .1 = e(fn x.y.x)
e .2 = e(fn x.y.y)

or we introduce the left-hand sides as new syntactic forms, together
with the appropriate. derived. evaluation rules:

e ::= <e.e > I e .1 I e .2
replace <e1,e2>.1 by e1
replace <e1,e2> .2 by e2.

3.7. Concluding Remarks

3.7.1. We have shown how data structures may be represented by
functions. Reynolds [25] and Meertens [17] show the usefulness of
such representations in practice. (However. they term the technique
procedural, data abstraction rather than procedural (==:::: functional) data
representation.)

3. 7 .2. In a similar way arbitrary Turing machines and similar devices
can be represented by functions. see Fokkinga [7] and Langmaack [15].
It turns out that the functions do accept functions as parameters. but
do not yield functions as result: the representation can therefore be
carried out in conventional languages (if recursive types are available.
as in Algol 68). From this. one immediately concludes several funda
mental limitations of compile-time checks.

4. Typing
We consider typing a well-formedness check where attributes, called
types • are assigned to subexpressions and the type of a subexpression
has to satisfy specific requirements in relation to the types of its direct

Programming Language Concepts - The Lambda Calculus Approach 141

constituent parts. An expression that passes the check is said to be
typed or typahle .

The assignment of types to expressions may be facilitated by an
explicitly written type at each introduction of a local name: but this is
not necessary. In the former case we speak of explicit typing, in the
latter case of implicit typing or type deduction. An expression that can
be assigned only one type is called nwnomorphic . An expression is
called polymorphic if it is assigned many related types. a type scheme
so to speak. In particular. a function expression is polymorphic if it
may be applied to arguments of various but schematically the same
types. We call a function generic if it may be applied to a type (which
may determine the types of the following arguments and :final result).
(Another term for genericity is parametric polynwrphism .) Examples
will be given in the sequel. The type of a function whose arguments
must have type nat and whose result has type bool. is written
(nat➔ bool).

In this section we discuss the Monomorphic Typing M, the
Polymorphic Typing P and the Generic Typing G. These are exten
sively studied by Hindley & Seldin [11]. Other overviews on typing
are given by Reynolds [28] and Cardelli & Wegner [4]; they cover more
features than we do.

4.1. The Usefulness of Typing

· Typing proves its usefulness if the typable expressions satisfy a useful
semantic property, (chosen by the designer of the typing). We list here
some properties that may or may not be aimed at in the design of a
typing.

1. Set theoretic interpretation. For the class of typable expressions a
simple set-theoretic interpretation is possible, in which expressions of
type (nat➔ bool) are interpreted as mappings from the set of numbers
to the set of truth values, rather than recipes that prescribe how to
obtain the outcome when given an argument. (This property precludes
self-application and therefore also the unrestricted use of the rec -
expression.)

2. Termination. The evaluation of typable expressions terminates.
One might argue that non-terminating evaluations are useless, but
apart from that, the existence of nonterminating expressions invali
dates conventional mathematical laws such as

0 X e = 0 for any expression e of type nat.

(This property too precludes general recursion.)

3. Implementation ease. For typable expressions the size of the storage
space for the values that appear during the evaluation, is compile-time
computable. This property is aimed at by the Pascal typing; conse
quently the programmer is forced to specify the size of arrays by

142 M.M. Fokltinga

constants. The property eases the task of the implementor, not of the
programmer.
4. Representation independence. The outcome of typable expressions
does not depend on the representation chosen for internally used data
like truth values. numbers and other data types. This property allows
the implementor to switch freely from the unary representation to the
binary representation; cf. §3.5 and Note 3.5.4. Moreover. the imple
mentor may even implement arithmetic in hardware: the outcome of
typable expressions will not change. This property. as well as property
1 precludes the use of nat-expressions as functions even if we know
they are; cf. §3.5.
5. Error prevention. For typable expressions many errors of the kind
"Ah, of course. I see. this is a misprint" and "Ah, of course. this is an
oversight" are impossible. This is a rather fuzzy property and much of
it is implied by properties 1 and 4.

4.2. The Monomorphic Typing M
We describe here a simple typing M that gives the essence of Pascal-like
typing. We concentrate on the Lambda Calculus and shall derive the
M-typing requirements for the derived expressions.

M-types. The attributes assigned to expressions. and called M-types.
are syntactic forms defined by the following grammar:

t ::= (t -+ t) I nat I bool I char I · · · .

We let t. ta. tb denote arbitrary types.
M-typable expressions. We write the type assigned to a (sub)expres
sion as a superscript. It is required that within (fn x • e) all
occurrences of x in e have the same type; this type is written at the
parameter position: (fn x 1 • e). Now consider the following infinite set
of grammar rules, one for each choice of t. ta. and tb :

et ::= xt
eta ➔ tb ::= (fn xta.etb)
etb ::= eta ➔tb(eta)

The grammar generates. by definition. the M-typed expressions. Alter
natively we may consider it as a formalization of the requirements for
a M-type assignment:

• if x has been assigned type ta and e type tb, then (fn x • e) may
be assigned type (ta -+ tb);

• if ef has been assigned type ta -+tb and ea type ta. then ef(ea)
may be assigned type tb;

• if identifier x has been assigned type t. then considered as a
subexpression it may be assigned type t.

Programming Language Concepts - The Lambda Calculus Approach 143

For example, for any t the expression

((fn X tt • X tt)tt ➔ tt (fn X t • X t)t ➔ t)tt

where tt = t _. t, is M-typed. But

(fn id .id (id))(fn X•X)

is not M-typable although it evaluates in one step to the preceding
expression.

Notes
4.2.1. One may succeed easily in deriving the M-typing requirements
for derived expressions like fn x.y • e and elf x = ea• eb. Extend the
grammar for types by

t ::= (t 1• ••• ,tn _. t)

where t 1 ••••• tn -t is thought
t1-.(t2_. ···Ctn -.t)•··). Then the
may be extended by

of as an abbreviation of
grammar for typed expressions

4.2.2. We may decide to assign ZERO. ONE, TWO ... type nat and
SUCC type nat-. nat; and so on:

enat ::= ZERO I ONE I TWO I · · ·
enat-+nat ::= SUCC
e bool ::= TRUE I FALSE
ebool,bool➔ bool ::= AND I OR
ebool,t,t ➔ t ::= IF.

A justification for this decision is given in §5.2. Notice that different
occurrences of IF may be assigned different types: IF is a polymorphic
expression. However. in

elf lf=IF •.... If If If

there is only one occurrence of IF. so that all occurrences of If are
assigned the same type bool.T,T-. T for one specific type T. In this
way the programmer is forced to spell out IF each time again. One
solution to this problem is given in §4.3: polymorphic typing. Another
solution is to extend the grammar by:

et ::= if e bool then et else et .

This is justified by considering if e then e 1 else e 2 as an abbreviation
of IF(e,e 1.e 2). Yet another solution is given in §4.4: generic typing.

4.2.3. We may treat the other polymorphic expressions similarly to
IF: build the polymorphism into the derived syntax and typing. For

144 M.M. Fokkinga

example for pairs:

t ::= <t.t >
e <tl ,t2 > ::= <etl .et2 >

type for pairs

et ::= e <t ,t' > .1
et ::= e <t',t > .2

and analogously for n -tuples. lists. arrays and so on.

4.2.4. The M-typing as described so far validates properties 1. 2. 4
and 5 of §4.1.
4.2.5. Expression REC is not M-typable. So the following typing rule
properly extends the set of M-typable expressions:

et ::= (rec xt.et.)

or equivalently: cf. Note 4.2.1.

e<t ... t) ... t ::= REC.

Now property 2 (Termination) is invalidated. the other three are
preserved.

4.2.6. One may extend the monomorphic typing by allowing recursive
types. as in Algol 68. It turns out that every expression of the pure
Lambda Calculus is typable. with the recwsive type fun = jun➔ fun.
Nevertheless not all expressions are typable. and properties 4 and 5
remain valid. if we require that ZERO is assigned type nat only. and
SUCC type nat➔ nat and so on. We shall not discuss recursive types
any further.

4.3. Polymorphic Typing P
The monomorphic typing M has a 11.agrant deficiency: there are only
monomorphic types and consequently one is forced to duplicate expres
sions solely for the purpose of letting different occurrences be assigned
different types. For example consider

df id= (fnx.x)

• ... id (zeronat) ... id (true bool) ... id (id) ...

df compose = (fn f.g• (fn X•/ (g (x))))
• ... compose(notbool ... bool.notbool ... bool) ...

••• compose (sqrnat ... nat .ordcha.r-➔ nat) .•.

df sort = sorting function
• ... sort (number list) ... sort (character list) ...

These expressions are not M-typable. but after substituting the defining
expressions for the defined identifiers (or multiplicating the definitions.
one for each use) they are M-typable. The solution to this deficiency is
simple: polymorphism. It has been introduced into computer science
by Milner [20]. but was already known in the Lambda Calculus as

Programming Language Concepts - The Lambda Calculus Approach 145

Principal Typing.
P-types. We let z range over identifiers. (One may stipulate that the
identifiers denoted by z are distinct from those denoted by x, but this
is not necessary). The P-types are now denned thus:

t ::= z I (t -+ t) I nat I bool I char I · · · .

The identifiers occurring in P-types shall play the role of place holders
for which arbitrary types may be substituted consistently. AP-type
may therefore be considered as a "M-type scheme ".

P-typable expressions. There is only one difference in the type
assignment rules in comparison with those of the M-typing:

within df x =eat• eb the occurrences of x in eb may be assigned
instantiations of t, more precisely: P-types must be substituted
for the identifiers in t that have been used in the typing of eat
only (and not in its context); different occurrences of x may be
assigned different instantiations oft.

All the other rules for the M-typing are valid for the P-typing as well.
Notes

4.3.1. The examples above are all P-typable. For instance:

df id = (fn x 0 ex 0)a-•a
id nat➔ nat(nat) • ... zero ...

... id bool➔ bool(true bool) ...

... id(b ➔ b)➔ (b ➔ b)(id(b ➔ b)) ...

But unfortunately. (fn id• ... id (zeronat) ... id (true bool) ...)(fn x • x) is
not P-typable. This also shows that the P-typing violates the Principle
of Correspondence.
4.3.2. The polymorphic typing is used in modern functional
languages, like Miranda [31. 32]. as well as in the modern imperative
language ABC [18].

4.3.3. One obvious advantage of the P-typing over the more "power
ful" G-typing of the next subsection, is that types need not be written
explicitly in the program text (although it is permitted): the type
checker will deduce them anyway. (and show or insert them on
request).

4.3.4. The language can be enriched by further constructs for the
definition of user denned types. One particularly simple and elegant
way has been built in in Miranda [31, 32]. We discuss type definitions
more fundamentally in the next subsection.

4.4. Generic Typing G

The P-typing, although quite successful for programming in the small,
is not very satisfactory for at least two reasons. First, as we have seen
in Note 4.3.1 parameters can not be used polymorphically. Second. the

146 M.M. Fokkinga

facility of assigning nat to ZERO. ONE • ... and nat-t nat to SUCC is
not generally available to the programmer. (Recall that ZERO, ONE,
... SUCC are merely ordinary expressions.) The programmer does need
such a facility in order to get Representation Independence for his own
devised data types. The solution is to control the type assignment
explicitly. by indicating for each parameter the desired type and in
addition allowing types to be parameters (.. genericity"). The resulting
language is often called Second Order Lambda Calculus and was
invented by J.-Y Girard and. independently, Reynolds [24].

G-types. As before z ranges over identifiers. G-types are defined by
the following grammar.

t ::= z I (t -. t) I (z : tp-t t).

The third form of type is called a generic type . Within (z : tp-t t)
identifier z is a local name whose scope extends overt: of course sys
tematic renaming is allowed. We let t, ta, tb denote arbitrary types.
(Type constants like nat and bool are no longer needed. We shall see
that the programmer can ·· define" them.)

G-Typable expressions. As for the M-typing we define:

e' ::= x'
eta-+eb ::= (fnx'a:ta.e th)
etb ::= eta-+tb(eta)

Note the explicit type for x

Henceforth we shall omit a type superscript at a parameter. if it also
occurs explicitly. We add two new expressions:

ez:tp-+t ::= (fnz:tp.e')
e[ta/z]t ::= ez:tp-+t (ta)

generic function expression
generic instantiation/ call

Deliberately generic instantiation looks like a normal function call, but
it is not: it is a new kind of expression with a type as one of its direct
constituents. Similarly for generic function expression. Within
(fn z : tp. e) identifier z is a local name whose scope extends over e; z
may e.g. occur in the explicit types in e. For simple examples see the
first note below: Section 5 contains further examples.

Evaluation. For the new expressions we have to define an evaluation
rule. The rule is evident:

replace (fn z : tp. e)(ta) by [ta I z]e.

Notes

4.4.1. For example, the generic identity function reads GID =
fn z : tp. (fn x : z • x z)z ... z and has type z : tp-t (z -. z). The generic
instantiation GID (nat) has type [nat I z](z -. z) = nat -. nat and
evaluates to (fn x: nat • xnat)nat -+nat as expected and desired. Simi
larly, GID (bool) has type [bod I z](z -. z) = bool -t bod, and evaluates
to the identity function for bod -expressions.

Programming Language Concepts - The Lambda Calculus Approach 147

4.4.2. In Section 5 we shall introduce some syntactic sugar like we did
before. Let it suffice here that we may write the left-hand sides for the
right-hand sides:

(z : tp.x : z -. z)
(fn z: tp,x: Z•Z) (= GID')
GID' (nat,zeronat)
and

(z : tp-. (x : z -. z))
fn z :tp. (fn x :z.x) (= GID)
GID (nat)(zeronat)

(df z: tp = nat. x: z = zeronat • x) GID' (nat.zeronat).

4.4.3. The richness of the G-typable expressions is already perceptible
from the possibility of generically calling GID with its own type:
GID (z: tp-. (z-. z)) has type (z: tp-. (z -. z))-. (z: tp-. (z _. z)) and
evaluates to the identity function fn x: (z: tp-. (z-. z)). x. This in
turn may be applied to GID and then evaluates to GID again.

4.4.4. The following theorems have been proved for the class of G
typed expressions. For (a)-(e) see [9] and for (f) [27].
a. Different evaluation strategies cannot produce different outcomes.
b. Any evaluation of any expression terminates.
c. G-typability is preserved under evaluation.
d. The G-type of an expression is uniquely determined and compile
time computable.
e. The generic function expressions and instantiations are semantically
insignificant. That is. they can be eliminated compile-time from any
expression (by compile-time evaluation). provided, of course. that nei
ther the expression nor the global identifiers in it have a generic part
(z : tp-. ···) in their type. For example GID (nat) has type nat -. nat;
it evaluates compile-time to fn x : nat • x that contains no generic con
structs any more. GID itself does contain a generic construct that can
not be eliminated, for its type explicitly demands so.
f. A classical set-theoretic interpretation of expressions and types is
not possible.

4.4.5. It is still a topic for research how much of the explicit types
and generic functions and instantiations can be left out of expressions,
while still keeping G-typability decidable.

4.4.6. It is easy to extend the language with a recursive construct: this
however invalidates the Termination property (b) above.

4.4.7. A technical detail. Consider (fn z: tp. et)z:tp➔ t and assume
that some global identifier x with type ... z ... occurs in it. There are
now a global z and a local z involved in the type assignment to e. To
avoid problems one should either forbid such occurrences of x or else
require that [z' /z]e has type [z' /z]t for some brand-new identifier z',
rather than that e has type t).

148 M.M. Fok.kinga

S. Type Definitions, Abstract Types and Modules
Clearly a typing is not satisfactory if there is no facility for something
like "user defined types". "abstract types" and "modules". Pascal.
Algol 68. Ada, Modula 2 and others all have their own way to do so.
and the result is an astonishing diversity of different constructs: (think
only of type definitions and the problem of choosing between
occurrence equivalence. name equivalence and structural equivalence).
We have refrained from designing such facilities in an ad-hoc way,
because we get them for free. in a fundamental way. from the G
typing: according to the Principle of Correspondence we may write a
generic instantiation of a generic function expression as a definition: a
type definition. This is done in §5.1; § 5.2 and 5.3 give some examples
and §5.4 discusses modules. Throughout §5.1-3 we use the G-typed
Lambda Calculus.

5.1. User Defined Types

Like we did for the un-. M- and P-typed Lambda Calculus, we intro
duce some special syntactic forms for special (frequently used) compo
site expressions. The abbreviations for (normal) multiple parameters.
arguments and definitions are straightforward: both with respect to the
form of the expressions. as well as with respect to the typing and
evaluation rules. But generic types. functions and instantiations call
for an abbreviation too: in particular we write the left-hand sides,
below. for the right-hand sides:

Z: tp, t l• ... , tn -+ t
fn Z: tp, X 1: t 1• ... , Xn: tn • e

ef (t,e 1,, .. ,en)
df z:tp,x 1:t 1=e 1, ... ,xn:tn=en•e

z:tp-+(t1-+(···Ctn -+t)- ..))
fnz:tpe(fnx 1:t 1e(· · ·

(fn Xn: tn • e) .. ·))
ef(t)Ce1) · · ·(en)
(fn Z: tp, X1: t1,, .. , Xn: tn ee)

(t.e 1, ... ,en)

Notice that in al,l these expressions the scope of z extends aver t 1, ... ,tn
and e but not aver e 1 • en. This is particularly true of the df -

expression. Hence the derived typing rules have to read

ez:tp,tl ,tn ➔ t ::= (fn z: tp. X1: tl Xn :tn.et)
e[tlz]tb ::= ez:tp,tl , ... ,tn-+tb (t, elt/z]tl , en[tlzltn)

e[t/z]tb ::= (df z:tp=t,x1:tl=e!tlz]tl xn:tn=en[tlzltn.etb)

In words: if z is defined to be t and an expression ei outside the scope
of z: tp is required to have - formulated inside the scope of z - type
ti • then ei must actually have [t / z]ti , i.e. the required type ti in
which t is read for z. Within the scope of a type definition z = t
identifier z is a type that is unrelated to t as far as type-checking is
concerned. (Thus far all our type-checking rules require exact match
ing, Le. equality: there has not been introduced any notion of type

Programming Language Concepts - The Lambda Calculus Approach 149

equivalence.)

Notes
5.1.1. Referring to the expressions discussed above, the collection

Z: tp, X 1: t 1• ... , Xn: tn

constitutes the signature of an abstract data type. z being the name for
the carrier. The collection

constitutes the/an implementation; t being the representation type. i.e.
the type to represent the "abstract z-values", and e1, ... ,en being the
implementation of x 1: t 1, ...• xn: tn. The G-typed Lambda Calculus pro
vides no way to express laws between the x 1 •••• ,Xn that one might
wish to hold. See also Section 6.

5.1.2. One might introduce a new expression

df z = t • e to stand for [t /z]e.

In this expression. z and t may be used interchangeably within e: as is
to be seen in the right-hand side all z' s are replaced by t. So here the
definition z =t is completely transparent fore. We shall not use this
construct in the sequel.

5.2. Simple Abstract Types: not

We have already seen how numbers may be represented by function
expressions and that the definitions for zero, successor and primitive
recursion in principle suffice to define the other total functions on
numbers. We shall now adapt the expressions to the G-typing and
provide suggestive names (identifiers) for them.

Remember, number n was represented by

fnf,a.f(· · · (f(f (a))···).

This may be typed

(fn /: (t -+t), a :t. f (... (f (f (a)}··)))<t ➔ t),t -t

for any type t. Therefore we make t to an explicit parameter (called
z). getting

fnz:tp,f :(z-+z).a:z.f(· · · (f(f (a)}··).

The type of these expressions is abbreviated NAT, so

NAT = (z: tp, (z-+ z), z -+ z).

Now we form, given a user program PROG:

df not: tp = NAT.
zero: not = (fn z: tp. /: (z-+ z). a: z •a),
succ : not -+ not

150

Notes

M.M. Fokkinga

= fn n: NAT• fn z: tp, f : z-+ z. a: z • f (n (z.f .a)).
nrec: (z: tp, (z-+ z). z-+ (nat -+ z))

= fn z: tp. f : z-+ z. a: z • (fn n: NAT• n (z.f ,a))
• PROG

5.2.1. Notice that uses of number representations have to get an expli
cit type argument. which determines (see NAT) the types of the subse
quent arguments and the :final result.

5.2.2. Within PROG the identifiers can only be used as prescribed by
their type at the left-hand sides of the definitions; other use within
PROG is not G-typable. In particular, although zero evaluates to a
function. the .. expression" zero (bool. (fn x: bod .x). truebool) is type
incorrect.

5.2.3. The right-hand sides may be replaced by G-typed versions of
the .. binary" representation suggested in Note 3.5.4: the entire df -
expression remains G-typable. Also. as long as PROG has no nat in its
type. the outcome does not change by this replacement. Cf. 4.1.4.

5.2.4. Nothing prevents us from replacing a by f (f (f (a))) in the
right-hand side of the definition of zero: what results is G-typable
again. but does not have the intended semantics.

5.2.5. Suppose PROG has type nat. Then the entire expression has
type NAT (not nat). Hence the context of the entire expression
"knows" that the outcome is a generic iterator function. rather than a
number, and it may use the outcome accordingly. This is not at all
surprising if one realizes that it is the very context writer who also
provides the right-hand sides (and possibly delegates the construction
of PROG to another programmer, the left-hand sides and the type of
PROG being the interface between the two).

5.2.6. Within PROG one may define other arithmetic functions, e.g.

df eqO: nat-+ bool = nrec (bool, (fn x: bool. false). true) •...

assuming that the global identifiers bool. false and true have been
defined properly in that context. Similarly one can adapt the expres
sion PRED to the G-typing. and use it to define pred: nat-+ nat within
PROG.

5.2.7. An alternative type and definition for nrec is:

nrec': (nat-+ NAT)
= fn n :NAT. (fn z:tp, f: (z-+ z). a :zen(z.f,a))

and the right-hand side may even be replaced by fn n: NAT• n and
GID (NAT). But notice that with the definition

nrec": (nat-+ nat) = as for nrec'

we cannot use nrec" differently from the identity function on nat -

Programming Language Concepts - The Lambda Calculus Approach 151

expressions.

5.2.8. Let us abbreviate the sequence of the left-hand sides by SIGna1
and the sequence of right-hand sides by IMPLNAT. ('SIG· is mnemonic
for signature and 'IMPL • for implementation.) Then we may also
write

(fn SIGna1 • PROG)(IMPLNAT)

and this is G-typed and equivalent to the previous program (w.r.t.
both typing and evaluation). The expression shows more clearly that
the implementation may be changed independently of the signature.

5.3. Parameterized Abstract Types: List of Elements
We shall construct something like "list(elt)" where elt is a parameter,
in such a way that the construct "list (elt)" can be used with different
choices for elt. The problem here is that "list (elt)" can not be a G
type. because we would then have (... -+ tp) as type for list and such
G-types do not exist. Nevertheless a satisfactory solution is possible
and is easily generalized to, say. "array(elt,n)" for arrays of run-time
determined :fixed length n.

As for numbers it suffices to have nil (the empty list). cons (for
constructing an element and a list into a new list) and lrec (for generic
primitive recursion over lists) as the primitive operations and constant
of lists. Head, tail, eqnil, append, map and so on can be defined in
terms of them. (There is however no objection at all to enlarge the set
of primitives.) We set

SIG = list: tp,
nil: list,
cons: (elt,list -+list).
lrec: (z: tp,(elt,z-+ z). z -+ (list-+ z)).

So SIG gives the signature of the abstract data type of lists. It is not an
expression, but a series of left-hand sides of definitions or formal
parameters. Notice also that elt occurs globally in SIG; it will be used
as the type of the list elements. For the time being we assume that we
have an implementation for the signature, i.e. a series of expressions
that we call IMPL:

IMPL = LIST. NIL. CONS. LREC

where, again, identifier elt occurs globally in LIST LREC. We post
pone the construction of IMPL and first focus on instantiating IMPL
by different choices for elt.

Let PROG be a user program that computes with lists of
numbers: within PROG list is assumed to be a type. cons to be of type
(nat,list-+ list) (rather than Celt.list-+ list)). and similarly for nil and
lrec. In short, PROG is G-typed under the typing assumptions

152 M.M. Fokkinga

[nat felt]SIG. We may then form

(fn [nat felt]SIG• PROG)([nat felt]IMPL)

to obtain a G-typed expression with the desired behaviour. Now sup
pose that PROG uses both lists of nat s and lists of bool s. Let
[nat felt]SIG' and [boolfelt]SIG" be the assumptions under which
PROG is G-typed. (By a single/ double prime on SIG we mean that
each of list, ... ,lrec gets a single/double prime.) As before we may now
form

(1) (fn [nat felt]SIG'. [bool felt]SIG"• PROG)
([nat felt]IMPL, [bool felt]IMPL)

to obtain a G-typed expression with the desired behaviour. However,
we have duplicated IMPL and performed the substitutions nat felt
and bool/elt in IMPL manually. This is quite unsatisfactory. and can
not claimed to be (a good model of) a practical programming language
concept. Fortunately. there is better way by using parameterization.
In the following expression "AT' is mnemonic for 'abstract type', ·gen'
for ·generic' or ·generate', and T is the type of PROG.

(2)
df genListAT: (elt : tp. (SIG -+ T) -+ T)

= (fn elt: tp, p: (SIG-+ T)e p (IMPL))
• genListAT (not. (fn [nat I elt]SIG• PROG))

respectively
genListAT (not, (fn [nat felt]SIG'

• genListAT (bool, (fn [bool,elt]SIG"
• PROG))))

So inside genListAT the user program receives the implementation. and
thanks to the argument for parameter elt the implementation is suit
ably instantiated. Notice also that the nested call of genListAT is not
at all recursive. There is yet one adaptation necessary; it concerns
PROG 's result type T. As it stands. T is fixed within genList AT but
naturally we want T to vary with the argument for p. Hence T should
be made a parameter and we get:

(2')
df genListAT: (elt : tp, t : tp. (SIG -+ t) -+ t)

= (fn elt: tp, t: tp, p: (SIG-+ t). p (IMPL))
• genListAT (not, T. (fn [nat felt]SIG• PROG))

and so on ...

Actually the type-checker may deduce T from PROG and the pro
grammer need not write it explicitly.

Notes

5.3.1. One might now go on and design new expression forms for the
definition and use of abstract types. This has been done indeed, and

Programming Language Concepts - The Lambda Calculus Approach 153

gives rise to the introduction of a V- and a 3 -type and a special syn
tax for program scheme (2'). Essentially \/elt•t is a generic type and
abbreviates (elt : tp- t). whereas 3 elt • t is a generic signature and
abbreviates elt: tp. t (where t may be a cartesian product t 1,t 2, ...• tn).
See Cardelli & Wegner [4] and Mitchell & Plotkin [21]. A formal
Representation Independence has been proved for the typing system of
[21]. see [22].

5.3.2. Consider once more expressions (1) and (2') and in particular
type T of PROG. In (1) T may be expressed in terms of list' and list"
and there is no problem whatsoever with the G-typability of the entire
expression (1). E.g. if T = list' then (1) has type [nat felt]LI,ST; cf.
also Note 5.2.5. Within (2') however it seems impossible to arrange
that T = list'. The reason is that T falls outside the scope of
[nat felt]SIG. i.e. T is not in the scope of the locally defined list. This
forms uur explanation of the requirement AB.3 in [21]. viz. that a pro
gram may not deliver a value of a locally defined abstract type.

5.3.3. Constructions like "list of list of elements" are possible too.
For example, replace in (2) bool by list' (i.e. list of nat s).

5.3.4. Within PROG other list manipulating functions can be defined.
thereby using the entries of [nat felt]SIG. For example

df hd : (list - nat)
= lrec (nat. (fn x: nat, y: nat • x). DONTCARE)

defines the head-function for lists of numbers. (with DONTCARE
determining the outcome for "the head of the empty list nil").

It remains to construct some IMPL. i.e. some LISI'. NIL, CONS.
LREC . The construction below is quite analogous to the definitions of
nat. zero. succ and nrec given in §5.2. and follows the suggestion of
§3.6. Here are the type and expressions:

LI,ST = (z: tp. (elt,z - z). z - z)
NIL = fn z:tp. /: (elt,z-z). a :zea
CONS = fn x: elt, l :LI,ST

• (fn z': tp./: (elt,z' -z•). a: z' •I (x, l (z',f ,a)))
LREC = fn z :tp. /: (elt,z -z). a :z. (fn l :LISI'el(z.f,a)).

5.4. Modules
For large scale programs modularity is of utmost importance. The
wide variety in modem programming languages is substantially due to
the constructs for modularity: packages in Ada. modules in Modula 2,
clusters in CLU. programs in Modular Pascal and so on. We shall
express a very general module concept in the Lambda Calculus and
design a new syntactic form for this particular expression scheme. For
simplicity we do not consider typing.

154 M.M. Fokkinga

In order to demonstrate the generality (not to express the con
cept) we assume in this subsection that the Lambda Calculus has been
extended with assignment, assignable variables. sequencing and, if you
wish. exception handling. (These extensions surely invalidate so much
of the properties of the Lambda Calculus that no one would ever call it
"Lambda Calculus" any more.)

The example problem that we tackle is a classical one: it is
requested to write a "module" for a random number generator that
allows the user to specify the "seed" (which determines the pseudo
random sequence completely) and that ·· exports" a parameterless func
tion for "drawing" a next random number from the sequence. It
should also be possible that several instantiations of the module be
active simultaneously for several independent pseudo-random
sequences.

It is known that a 0,a 1,a 2• • • • is a pseudo-random sequence if,
for some suitable constants m and d, a; = a;_1xm mod d (i >0); a 0

is the seed. Therefore we wish to construct the solution from the fol
lowing three ingredients:

var a :nat
a:= seed

local store for the a;

initiali.7Jltion
DRAW = (fn (). a:= a Xm mod d; {result is} a)

function that yields the next random number

There are two main problems: to control the visibility so that the scope
of var a does not extend over the user's program, and to control the
life-time of var a so that storage is allocated for a precisely during the
evaluation of the user's program PROG.

Quite surprisingly our successful attempts to express parameter
ized abstract types in the G-typed Lambda Calculus provide already
the solution. In expressions (2) and (2') above. IMPL is invisible in
PROG even if all typing were omitted I Moreover. had there been
Pascal-like variables in the body of genListAT. these would exist as
long as the evaluation of p (and therefore of PROG) would last. Thus
we find:

df rng = (fn seed, p • var a: nat • a:= seed; p (DRAW))

rng (041130, (fn draw.FROG))
respectively
mg (041130, (fn draw.

rng (161087, (fn draw'• PROG'))))

It seems worthwhile to design a special syntactic form for the above
scheme: module expressions and module invocations. First we show
their use and then we define them formally. Here is the above program
written with the module constructs.

Programming Language Concepts - The Lambda Calculus Approach 155

df rng = (fn seed• module

•

var a : not• a := seed; export(DRA W)
endmod)

(invoke draw = mg (041130). PROG)
respectively
(invoke draw = mg (041130).

(invoke draw' = mg (161087). PROG'))

The module consists of an expression in which one subexpression is
tagged with export. An invoke-expression is syntactically similar to a
df -expression. The evaluation of invoke x = em. eb consists of
evaluating the module expression em after replacing the part
export(ea) in it by df x =ea• eb . Thus it may be better to say that eb
is imported into em rather than that ea is exported to eb. Formally.
we consider the left-hand sides. below, as abbreviations for the right
hand sides:

module export(ea) endmod
invoke x =em• eb

fn P• p (ea)
em(fn x.eb)

Hence. the derived evaluation rule reads:

Notes

replace
by

invoke x = (module export(ea) endmod)e eb
..... (df x = ea. eb)

5.4.1. One may. of course, replace a:=seed; p(DRAW) by
df drw =DRAW• a:= seed; p (drw). It thus turns out that the (first)
solution can be transliterated to Pascal, so that in principle no extra
module construct is needed in Pascal.

5.4.2. A formal proof that .. storage for a is allocated precisely during
the evaluation of PROG" can not be given before assignment and vari
ables have been added formally to the Lambda Calculus.

5.4.3. Neither Pascal-like dynamically allocated variables. nor Algol
68 heap variables, facilitate a solution to the problem of controlling
the life-time of a satisfactorily. Algol 60 has the concept of own vari
able for this purpose. But, whereas the interference of recursion and
own variables gives problems in Algol 60, there are no such problems
here (because both recursion and the above solution are expressed
entirely within the Lambda Calculus).

5.4.4. Generalization to multiple export and invocation is straightfor
ward.

5.4.5. Not only initialization "before the export" is possible, but also
finalization "after the export", and even exception handling "around
the export". For the latter, imagine an "exception" defined locally
within the module, possibly "raised" from within DRAW when used

156 M.M. Fokkinga

in PROG. and .. handled" at/around the export expression within the
module. Other arrangements are possible too, e.g. exporting a locally
defined .. exception" jointly with DRAW so that it may be handled
from within PROG as well. Also, by a slight adaptation of the rng
definition. we get a module that yields initialized variables: export a
itself rather than DRAW. For details see Fokkinga [7].

6. Beyond Generic Typing

As shown informally in Section 5, generic typing is quite expressive; a
precise characterization of the G-typable arithmetic functions is given
by Fortune et al. [9]. Nevertheless there are reasons for further gen
eralization:

e There still exist expressions that are semantically meaningful but
not G-typable; e.g. TW (TW)(K) where TW =
fn/ • (fn X•f (f (x))) and K = fn xe(fn Y•X). [10].

• Functions like fn n,x1, .. ,,Xn•X1+ · · · +xn for which the first
argument determines the number of following arguments, are not
G-typable.

e Referring to SIG and IMPL of Section 5, it seems natural to
make the implementation IMPL into one tuple expression
<IMPL >. from which the individual components can be
retrieved by selections .1 .. 2 ... ; the type of <IMPL > would
then be a tuple type <SIG>. (Notice the dependency between
the first and following components within <SIG>.)

• One might wish to extend the type formation rules in such a way
that arbitrary properties can be expressed in types. and typability
means total correctness with respect to the properties expressed in
the types.

Much work is, and has been, done towards the fulfillment of the
last point above: the AUTOMATH project [2]. Martin-Lof's Intuitionis
tic Theory of Types [16]. and recently the Theory of Constructions [5].
Space limitations do not permit us to discuss these very promising
approaches. Instead, we briefly present our own devised typing, called
SVP-typing [8]. Due to its far going generalization. it is quite simple to
define but, as a price to be paid, has some weak points that have been
avoided consciously in AUTOMATH, the Intuitionistic Theory of Types
and the Theory of Constructions:

• there is no distinction any more between types and normal value
expressions:

e the evaluation of typed expressions may not terminate.

Consequently, compile-time type-checking may sometimes not ter
minate. This is really a pity, but hopefully not disastrous:

Programming Language Concepts - The Lambda Calculus Approach 157

• we expect that type errors will be detected far more often than
that the type-checker does not terminate;

• nontermination of the type-checker can be treated in the same
way as nontermination of programs nowadays: an unexpectedly
long type-checking time should make someone suspicious and sug
gests to prove termination or change the program (or typing) oth
erwise.

It is left open for future research whether this is a sensible approach.

6.1. SVP-Typing
The SVP-typing is a generalization of the G-typing that was already
anticipated when we designed the syntax for generic constructs. Basi
cally, types are now merely expressions that have type tp. In particu
lar they may be the result of functions and components of tuples, and
tp itself is a type (so that tp has type tp).

SVP'-typed expressions. The following grammar generates the
SVP'-typable expressions. In each rule we distinguish constituent parts
by suffixes / • a • b • x and r, and we stipulate that equally named con
stituents are equal. Moreover, for readability we write 't • for •etP•, 'tx ·
for · ex tp•, 'tr • for · er tp•. and so on.

t ::= tp
etx ::= xtx
t ::= (xtx: tx -+tr)
ex:tx ➔ tr ::= (fn xtx: tx • ebtr)
elea/x]tr ::= efx:tx ➔ tr(ea'x)

t ::= <x'1 :tl,t2>
e<x:tl,t2> ::= <e1'1,eJe1/x]t2>

e'I ::= ep<x:tl,t2>.l
e[ep.1/x]t2 ::= ep<x:tl ,t2> .2

the type of types

the type of functions

the type of tuples

An expression of type tp is called a type; we let t • ta •... denote arbi
trary types. Within (x :t' -+t"). (fn x :t' eeb'") and <x :t',t" >
identifier x is a local name whose scope extends over t" and eb • but
not over t' . If x does not occur in t" • we simply write (t' -+ t").
respectively <t',t" >.
Notes
6.1.1. The evaluation rules and the generalization to multiple parame
ters, definitions and tuples are obvious and tacitly used in the sequel.

6.1.2. Due to the last rule the type of an expression is not uniquely
determined.

6.1.3. Clearly, the SVP'-typing subsumes the G-typing. Thanks to
the concrete notation that we have designed both a G-type and a G
typed expression are SVP'-typed expressions.

158 M.M. Fokkinga

6.1.4. Functions that yield types. and tuples that contain types. are
now possible. For instance. with SIG and IMPL of the previous sec
tion, we may now write:

df genListAT': (elt: tp ➔ <SIG>)= (fn elt: tp. <IMPL >)
On the dots genListAT' (nat) has type [nat felt]<SIG> so that,
according to the typing rules for tuple selection:

genListAT' (nat).1 (=NLIST) has type tp
and is the representation type for lists,

genListAT' (nat).2 has type NLIST
and is the nil for lists of numbers.

genListAT' (nat).3 has type (nat.NLIST ➔ NLIST)
and is the cons for lists of numbers, and

genListAT' (nat).4 has type (z: tp, (z ➔ z). z ➔ (NLIST ➔ z))
and is the lrec for lists of numbers.

6.1.5. The dependency has been generalized too. Not only type
parameters and components may be referred to in later parameters.
result and components. but also normal value parameters and com
ponents; e.g. sort: (n: nat. elt: tp. a: array (elt.n) ➔ array (elt,n)).
This kind of dependency has been strived for in the design of PEBBLE,
a typing system for large scale modularity [3].

6.1.6. Given array of type (elt: tp. n: nat ➔ tp). as above. we find
that

ef (a: array (bool, 7) -+ ... >(ea array (bool,3+4))

is not SVP'-typed: the rule for function call requires that the parameter
type and the argument type be syntactically equal. This leads to the
extension below.

SVP" -typed expressions. The grammar consists of all rules for the
SVP'-typed expressions. and in addition:

e'' ::= e'" whenever t' and t" are semantically equivalent.

(There are several ways to define semantic equivalence; one way is to
say that expressions are semantically equivalent if they can be
evaluated to a common intermediate result.)

Notes
6.1.7. It is the very combination of this rule with tptP that seems to
allow for SVP"-typed expressions with nonterminating evaluations: cf.
Meyer & Reinhold [19].

6.1.8. We conjecture that it is impossible to express the tuple con
structs in the others, i.e. to replace the tuple constructs by SVP"-typed
equivalent functions.

Programming Language Concepts - The Lambda Calculus Approach 159

6.1.9. Now that evaluation on type positions (superscripts) is
allowed, we can reformulate the grammar rules for function con
structs:

t ::= (fn x:tp.tr) (1)
ernx:tpetr ::= (fnxtx:tx.ebtr) (2)
etf(ea) ::= eftf<tu:tpetp)(eatx) (3)

That is, fn x : tx • tr plays the role of the type (x : tx --t tr); it contains
the same information and, indeed, (fn x : tx • tr)(ea) is semantically
equivalent to [ea/x]tr.
6.1.10. According to rule (1) above fn x: t' • t" has type tp, and
according to rule (2) [taking tx,eb,tr to be t,t', tp] it has type
fn x: tx • tp too. This suggests to replace rule (1) by

e'' ::= e'" whenever t" ~t•
~ is the reflexive and transitive closure generated by

(fn x: tx.ebtr)~ (fn x: tx •tr)

This approach has been studied in the context of AUTOMATH and is
incorporated in some version of the Theory of Constructions.

7. Concluding Remarks

Much of the programming language concepts that we have discussed,
deal with the - intuitive - notion of "abstraction". which is to
neglect, consciously, some aspects of the subject under consideration.
It turns out that the fn -construct facilitates this abstraction. Since
the syntactic manipulation of forming fn x • e out of e and x . is called
Lambda-abstraction, we conclude from our exposition that

Lambda-Abstraction is the key to Intuitive Abstraction.

Many programming language concepts have not been discussed
here, notably assignment and assignable variables, and exception han
dling. These two concepts in particular require a drastical
extension/change of the Lambda Calculus. In [7] we have done so. and
it turns out that the formalism does not change much: the properties
do. There we also show how the conventional stack-based implemen
tations may be derived in a systematic way from the the "replacement"
semantics of the Lambda Calculus. Thus the applicability of the
Lambda Calculus approach to programming language concepts is wider
than sketched in this paper.

Finally we remark that one should not confuse "programming
language concepts" with "programming concepts".

Ackrwwledgement . I have had much profit from our recent study
group on Lambda Calculus and, earlier, from discussions with Mirjam
Gerritsen and Gerrit van der Hoeven. It has been a great stimulus for

160 M.M. Fokkinga

me to know that this paper would be dedicated to Leo Verbeek.

References
1. H.P. Barendregt: The Lambda Cal,cul,us - Its Syntax and Seman

tics. Studies in Logic 103, North-Holland. Amsterdam, 1981.
(2nd edition 1984)

2. N.G. de Bruijn: A survey of the Automath project. in: J.P. Seldin
& J.R. Hindley (Eds.): To H.B. Curry - Essays on Comhinatory
Logic, Lambda Col.cul,us and Formalism. Academic Press, London,
1980.

3. R. Burstall & B. Lampson: A kernel language for abstract data
types and modules, in: G. Kahn, D.B. MacQueen & G. Plotkin
(Eds.): Semantics of Data Types. Leet. Notes Comp. Sci. 173
(1984) 1-50, Springer-Verlag. Berlin - Heidelberg - New York.

4. L. Cardelli & P. Wegner: On understanding types. data abstrac
tion, and polymorphism. Com.put. Surveys 17 (1985) 471-522.

5. Th. Coquand & G. Huet: Constructions - a higher order proof
system for mechanizing mathematics, EUROCAL 85. Leet. Notes
Comp. Sci. 203 (1985) 151-184, Springer-Verlag. Berlin - Heidel
berg- New York.

6. Th. Coquand & G. Huet: A selected bibliography on constructive
mathematics, intuitionistic type theory and higher order deduc
tion, J. Symbolic Comput. 1 (1985) 323-328.

7. M.M. Fokkinga: Structuur Van Progra.rn.TT1£ertol.en. University of
Twente, Enschede, Netherlands, 1983. (Lecture Notes in Dutch,

· "Structure of Programming Languages".)

8. M.M. Fokkinga: Over het nut en de mogelijkheden van typering ,
University of Twente, Enschede, Netherlands, 1983. (Lecture
Notes. in Dutch, "On the use and the possibilities of typing".)

9. S. Fortune, D. Leivant & M. O'Donnell: The expressiveness of
simple and second order type structures, J. Assoc. Comput. Mach.
30 (1983) 151-185.

10. M. Gerritsen & G.F. van der Hoeven: Private communication,
1987.

11. J.R. Hindley & J.P. Seldin: Introduction to Combinators and
Lambda Col.cul,us. London Mathematical Society Student Texts 1.
Cambridge University Press, Cambridge (U.K.). 1986.

12. P.J. Landin: The mechanical evaluation of expressions, Computer
J. 6 (1964) 308-320.

13. P.J. Landin: A correspondence between Algol 60 and Church's
Lambda notation, Comm. Assoc. Comput. Mach. 8 (1965) 89-101,
158-165.

Programming Language Concepts - The Lambda Calculus Approach 161

14. P.J. Landin: The next 700 programming languages. Comm. Assoc.
Comput. Mach. 9 (1966) 157-166.

15. H. Langm.aack: On procedures as open subroutines I. Acta Inform.
2 (1973) 311-333.

16. P. Martin-Lof: An intuitionistic theory of types: predicative part.
in: Logic Colloquium 1973. pp. 73-118, North-Holland. Amster
dam. 1975.

17. L.G.L.T. Meertens: PD9cedurele datastructuren. in: Colloquium
Datastructuren. Mathematisch Centrum. (Currently CWI),
Amsterdam. 1978.

18. L.G.L.T. Meertens & S. Pemberton: Description of B. ACM SIG
PLAN Notices 20 (1985) 58-76.

19. A.R. Meyer & M.B. Reinhold: 'Type' is not a type - Preliminary
Report. in: ACM Con/. Record of the 13th Annual Symposium on
Principles of Programming Langua,ges 13 (1986) 187-295.

20. R. Milner: A theory of type polymorphism in programming. J.
Comput. System Sci. 17 (1978) 348-375.

21. J.C. Mitchell & G.D. Plotkin: Abstract types have existential type.
in: ACM Con/. Record of the 12th Annual Symposium on Principles
of Programming Langua,ges 12 (1985) 37-51.

22. J.C. Mitchell: Representation independence and data abstraction
(preliminary version). in: ACM Con/. Record of the 13th Annual
Symposium on Principles of Programming Langua,ges 13 (1986)
263-276.

23. P. Naur (Ed.): Revised report on the algorithmic language ALGOL
60. Comm. Assoc. Comput. Mach. 6 (1963) 1-17.

24. J.C. Reynolds: Towards a theory of type structure. in: B. Robinet
(Ed.): Programming Symposium. Leet. Notes Comp. Sci. 19 (1974)
408-425. Springer-Verlag. Berlin - Heidelberg - New York.

25. J.C. Reynolds: User-defined data types and procedural data struc
tures as complementary approaches to data abstraction. in:
S.A. Schuman (Ed.): New Directions in Algorithmic Langua,ges
1975. pp. 154-165. IRIA. France. 1976.

26. J.C. Reynolds: The essence of ALGOL. in: J.W. de Bakker &
J.C. van Vliet (Eds.): Algorithmic Langua,ges. pp. 354-372.
North-Holland. Amsterdam. 1981.

27. J.C. Reynolds: Polymorphism is not set-theoretic. in: G. Kahn.
D.B. MacQueen, G. Plotkin (Eds.): Semantics of Data Types , Leet.
Notes Comp. Sci. 173 (1984) 145-156, Springer-Verlag, Berlin -
Heidelberg- New York.

28. J.C. Reynolds: Three approaches to type structure, in: H. Ehrig et
al. (Eds.): Mathematical Foundations of Software Development.
Leet. Notes Comp. Sci. 185 (1985) 97-138, Springer-Verlag,

162 M.M. Fokkinga

Berlin - Heidelberg - New York.

29. A. Rezus: A Bibliography of Lambda Calculi, Comhinatory Logics
and related topics, Mathematisch Centrum, Amsterdam, 1982.

30. R.D. Tennent: Principles of Programming Languages . Prentice
Hall, 1981.

31. D. Turner: Miranda - a non-strict functional language with
polymorphic types, in: Proc. Int. Con/. on Functional Program
ming Languages and Computer Architecture . Leet. Notes Comp.
Sci. 201, (1985) 1-16, Springer-Verlag, Berlin - Heidelberg - New
York.

32. D. Turner: An overview of Miranda, ACM SIGPLAN Notices 21
(1986) 158-166.

Programming Language Concepts - The Lambda Calculus Approach 161

14. P.J. Landin: The next 700 programming languages. Comm. Assoc.
Comput. Mach. 9 (1966) 157-166.

15. H. Langmaack: On procedures as open subroutines I. Acta Inform.
2 (1973) 311-333.

16. P. Martin-Lof: An intuitionistic theory of types: predicative part.
in: Logic Colloquium 1973. pp. 73-118, North-Holland, Amster
dam, 1975.

17. L.G.L.T. Meertens: P~cedurele datastructuren. in: Colloquium
Datastructuren. Mathematisch Centrum (Currently CWI).
Amsterdam. 1978.

18. L.G.L.T. Meertens & S. Pemberton: Description of B. ACM SIG
PLAN Notices 20 (1985) 58-76.

19. A.R. Meyer & M.B. Reinhold: 'Type' is not a type - Preliminary
Report. in: ACM Con/. Record of the 13th Annual Symposium on
Principles of Programmi,ng Languages 13 (1986) 187-295.

20. R. Milner: A theory of type polymorphism in programming. J.
Comput. System Sci. 17 (1978) 348-375.

21. J.C. Mitchell & G.D. Plotkin: Abstract types have existential type.
in: ACM Con/. Record of the 12th Annual Symposium on Principl.es
of Programming Languages 12 (1985) 37-51.

22. J.C. Mitchell: Representation independence and data abstraction
(preliminary version). in: ACM Con/. Record of the 13th Annual
Symposium on Principles of Programming Languages 13 (1986)
263-276.

23. P. Naur (Ed.): Revised report on the algorithmic language ALGOL
60, Comm. Assoc. Comput. Mach. 6 (1963) 1-17.

24. J.C. Reynolds: Towards a theory of type structure. in: B. Robinet
(Ed.): Programming Symposium. Leet. Notes Comp. Sci. 19 (1974)
408-425. Springer-Verlag. Berlin - Heidelberg - New York.

25. J.C. Reynolds: User-defined data types and procedural data struc
tures as complementary approaches to data abstraction, in:
S.A. Schuman (Ed.): New Directions in Algorithmic Languages
1975. pp. 154-165, IRIA, France. 1976.

26. J.C. Reynolds: The essence of ALGOL. in: J.W. de Bakker &
J.C. van Vliet (Eds.): Algorithmic Languages, pp. 354-372,
North-Holland, Amsterdam. 1981.

27. J.C. Reynolds: Polymorphism is not set-theoretic, in: G. Kahn.
D.B. MacQueen. G. Plotkin (Eds.): Sema.ntics of Data Types. Leet.
Notes Comp. Sci. 173 (1984) 145-156, Springer-Verlag. Berlin -
Heidelberg - New York.

28. J.C. Reynolds: Three approaches to type structure. in: H. Ehrig et
al. (Eds.): Mathematical Foundations of Software Development •
Leet. Notes Comp. Sci. 185 (1985) 97-138, Springer-Verlag.

162 M.M. Fokltinga

Berlin - Heidelberg - New York.

29. A. Rezus: A Bibliography of Lambda Calculi, Combinatory Logics
and rel.ated topics. Mathematisch Centrum. Amsterdam. 1982.

30. R.D. Tennent: Principles of Programming La.nguages • Prentice
Hall, 1981.

31. D. Turner: Miranda - a non-strict functional language with
polymorphic types. in: Proc. Int. Con/. on Functional Program
ming La.nguages and Computer Architecture • Leet. Notes Comp.
Sci. 201. (1985) 1-16. Springer-Verlag. Berlin - Heidelberg - New
York.

32. D. Turner: An overview of Miranda. ACM SIGPLAN Notices 21
(1986) 158-166.

A Representation Principle for
Sets and Functions

Jan Kuper

Department of Computer Science, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

We present a representation principle for sets and functions, essen
tially meaning that sets and functions do exist in two different
ways: as intuitive objects and as mathematical objects. In this paper
some aspects of the relationship between these two ways are investi
gated. The principle has consequences for the concept of A-calculus
model and for the relationship between such models and set theory.

1. Introduction

In the literature on A-calculus it is considered quite normal that a func
tion can be applied to itself. whereas a set cannot be a member of itself.
This difference appears to be a problem in the construction of models
for the (untyped) A-calculus. because functions (of one argument) can
not be thought of as sets of ordered pairs: for an exception. see [11].
This is a remarkable distinction, because intuitively both seem to be
almost equally strange. at least if function and set are taken in their
usual sense. i.e. - among other things - that the objects in the domain
and range of a function are prior to that function itself, just as the
members of a set are prior to that set.

In this paper we discuss a representation principle for sets and
functions. For sets it says that, in a mathematical theory about sets,
sets in their intuitive sense are represented by sets in their mathemati
cal sense, i.e., as mathematical objects. For functions it works analo
gously. The principle is rather important to mathematical abstraction,
and the possibility of both self membership for sets and selfapplication
for functions can be understood as one of its consequences. Due to this
representation principle. set-theoretical models for untyped A-calculus,
where functions are just sets of ordered pairs. become very elegant,
attractive and rather trivial.

The intention of the paper is not to give a philosophical discussion
of the notions of (mathematical) object. set and function. We suppose
that these notions are more or less precisely understood in an intuitive
way. The paper contains a sketch of the idea of representation, and
intends to show its consequences for the interpretation of several
axioms. rules and principles. which are used in set theory or A-calculus.

163

164 J. Kuper

As far as X-calculus is concerned, a semantical point of view is
taken; so the paper concentrates on functions rather than on terms. The
same holds of course for set theory, but there a semantical point of
view is usual.

2. The Representation Principle

The main statement of this section can roughly be formulated as fol
lows: axiomatic set theory is not about sets. but about representatives
of sets. These representatives are abstractions of sets and this form of
abstraction is rather important to the mathematical way of looking at
sets. In the second part of this section the same abstraction is dis
cussed for functions.

2.1. Sets
Let us start with an example. Suppose we have a sets which consists
of five objects a.b,c,d,e. Suppose further. that a,b.c together form the
set p, and that t is the set which consists of d,e and p. According to
ordinary mathematical usage we can now form the set s U t which
contains six objects: a,b,c,d,e and p. The question we want to discuss
is: is this really possible if we think of sets in the normal intuitive
way? We will argue that the answer to this question is negative.

In the normal intuitive sense the least we can say about sets is,
that a set consists of its elements, a set is the totality of its elements.
and the elements of a set are in some way or another in the set. In the
example above this means that a,b.c are already in p. and that p is an
object on a "higher" level than a.b and c. However. if we think of
s U t as a set in the usual way. then all elements of s U t exist besides
each other, and on the same level as each other. So if we consider p to
be an element of s U t. then a,b,c cannot be elements of s U t any
more. and vice versa.
In a more daily situation we might say: if you sell your collection of
stamps. you will get rid of your stamps too, and vice versa. If in the
example above we think of the objects a,b.c,d,e as physical objects,
teaspoons say, then it is possible to form the set s or we can form the
sets p and t, but it is impossible to form the set s U t. We have to
choose between considering a,b,c as different objects. or as one totality,
i.e., as the set of a,b,c.
But also if we think of a,b,c,d,e as non-physical objects, then in order
to form s U t we have to think of p as existing on its own, indepen
dently of and on the same level as a,b,c. Thus withins U t. p is not
the set of a,b,c in the normal, intuitive sense, but p is a (mathemati
cal) object playing the role of this intuitive set. So axiomatic set
theory deals with mathematical objects, called sets. and not with sets
in their normal intuitive sense.

A Representation Principle for Sets and Functions 165

That does not mean, however, that people, at the moment they
are engaged in (axiomatic) set theory, have lost their ability to form
intuitive collections from these mathematical objects. So when we
work on set theory, sets are present to us in two different ways: as
intuitive collections of objects, and as mathematical objects represent
ing these intuitive collections.1 From now on the word collection is used
for sets in their normal. intuitive sense. and the word set is reserved
for objects representing a collection. A set is called the representative
of a collection.2

There is still one point to make: the fact that a,b and c are in the
coUection of which p is the representative. is expressed by letting a,b,c
have the E -relation with the set p. So x E p holds if and only if x is
in the collection of which p is the representative. As usual E is called
the membership relation and x is called a memher or element of p; see
Figure 1.

Figure 1. The collection Cp is represented by the set p.
The single arrows denote the E -relation,
the double arrow visualizes representation.

It is important to realize that the above described abstraction is
presupposed already in the iterative conception of sets. e.g .. in normal
ZF-set theory. with or without the axiom of choice. and with the
axiom of foundation.

2.2. Functions

Usually a function (only functions of one variable are considered here)
is thought of as a correspondence by which each object in the domain
of the function is associated to precisely one object in its range. In this
paper we are not concerned with functions as .. rules" or as "operation
processes". but we will restrict ourselves to functions in the

1 Of course these intuitive collections are objects too, but they exist on a higher level.
When in this paper the word "object" is used, first order object is meant. Furthermore,
the word "collection" will mean: collection of first order objects.

2 There is a difference between collections and classes. Classes are, at least in a Godel
like set theory, mathematical objects which also represent collections. Sets are specific
classes; proper classes represent collections which are not represented by sets (e.g., because
they are too "big").

166 J. Kuper

extensional sense, and consider a function as completely determined by
all its individual correspondences. A function can then be seen, and in
fact often is seen, as the totality of all these individual correspon
dences. In case of an ordinary mathematical theory this will do. but
when we want to develop a mathematical theory ohaut functions (i.e ..
when at least collections of functions are formed, and functions from
functions to functions are constructed). we make the same abstraction
to functions as described in Section 2.1 for collections. In other words:
such a mathematical theory is about (mathematical) objects which play
the role of functions as described above.

In the following the word map is used for functions in their nor
mal. intuitive sense as described above. and the word function is used
for the representative of a map. So a function exists on the same level
as, and independently of the objects in its domain and range. On the
contrary a map exists .. above" the objects in its domain and range and
certainly not independent of them; see Figure 2.

Figure 2.

•!

The map F is represented by the function/ ,
D is the domain, R is the range of F •
If x is in D , then: / •x = y ifl' F (x) = y •

When maps are represented by functions, then the (intuitive) act of
applying a map F to an argument x - as usual. the result of this act is
denoted as F (x) - must be represented too. This can be done in
different ways. One possibility is to have a binary application operation
(•). Let / be a function representing F. then / •x = F (x) for all x in
the domain of F. and J•x is undefined when F is undefined for x . i.e ..
when x is not in the domain of F.
A more general possibility is, however, to have a ternary application
relation (appl), such that appl (f,x,y) does hold when F(x) = y, and
does not hold when F(x) ¢: y or when F is undefined for x. where
again the function f represents the map F. The advantage of this ter
nary relation is. that appl (f ,x,y) simply does not hold for any y
whenever F is undefined for x . i.e., when x is not in the domain of F,
whereas in such a case f•x = y is meaningless.

A Representation Principle for Sets and Functions 167

2.3. Representation as a Mathematical Relation
Both sets and functions are by now considered as (first order)
mathematical objects which, within the framework of a mathematical
theory. play the role of (higher order) intuitive collections and maps
respectively. Furthermore, between sets the binary membership rela
tion can exist, and between functions the ternary application relation
can exist.

The representation relation that exists between a collection and its
representative, or between a map and its representative, can of course
be mathematized in the sense as described in Sections 2.1 and 2.2, but
we must not expect to learn much of that. Suppose we tried to do so
for collections and sets, then the first thing to do would be to represent
a collection A by an object a' . The next thing to do would be to
examine the mathemancal "representation relation" p. In this case p
exists between a' and an already existing representative a of A • so
p(a',a) holds. That is: the best we would get is a mathematical
representation of our (intuitive) representation relation, and the
representation principle itself would be presupposed in the mathemati
cal representation of it.

In the literature on models of A-calculus it often is considered to
be unsatisfying that a model of (untyped) A-calculus looks like an
abstract algebra <D.•>, whereas interpretations of A-terms are
expected to be functions (maps); see [7.10]. A more "function
oriented" view on such a model is then given by introducing a map~
from D to a subcollection of D -+ D • being the collection of all one
place functions (maps) from D to D. such that ~(a)(x) = a•x for all
x. An object a in D is then called a "representative" of the function
(map) ~(a) inD-+D.
However, the view held in this paper is, that, when introducing such a
collection D-+ D and map ~ from D to D -+ D , the elements of D-+ D
are taken as mathematical objects, and so in the sense as described
above already are representatives (called functions) of (intuitive) maps
from D to D . From this point of view things do not get better when
~ is introduced. We can simply suppose D to be a subcollection of
D -+ D (see also Sections 3.2 and 3.4), and ~ to be the identity map on
D. Due to the representation principle a model of (untyped) A-calculus
is expected to be an algebra < D. • > .

3. Some Questions
In this section some questions about the representation principle as
described in Section 2, are discussed. These questions are:

How many collections [maps] can be represented by the same set
[function]?

168 J. Kuper

How many sets [functions] can represent the same collection
[map]?

Does every collection [map] have a representative?

Which set [function] can (or must) represent a certain collection
[map]?

These four questions are discussed in Sections 3.1 to 3.4 respectively.

3.1. Fundamental for the representation principle as described in Sec
tion 2, is that one set [function] can represent at most one collection
[map] at a time.
Suppose there are two collections A 1 and A 2 represented by the same
set a . The collection generated by this set a is the collection of all
objects x for which x Ea holds. Thus the only collection which can be
recognized as the collection represented by a , is the union of A 1 and
A 2• Generating is something like the reverse of representing, so every
set must represent at most one collection.
For maps the same things can be said. Furthermore, if two maps F 1

and F 2 would be represented by the same function / , then the possi
bility of two different values F 1 (x) and F i(x) for the same argument
x would be an additional problem, because what to choose for f•x? So
the same conclusion as for collections and sets holds even stronger for
maps and functions.

In principle it is possible that an object does not represent a collec
tion, but stands for itself Cit represents teaspoons, drawing-pins or the
like, so to say). The only way to express this, is by not calling such
objects sets but "urelements", and to agree that only sets do generate
collections. Still the collection of all objects x, for which x Ee holds
(where e is a non-set) is empty. and it is rather arbitrary to say that e
does not represent this empty collection.
The same holds for functions: if f is a function, then the map F, gen
erated by / . is defined for all x for which f•x is defined, and for those
x : F (x) = f•x . If e is a non-function (an "urargument", or an
"urvalue"), then e does by convention (as in case of sets) not generate
a map. but we can still think of the map E which is defined for all x
for which e•x is defined. For non-functions there are no such x , so E
is the tota/,ly undefined map (the empty map).3 It is arbitrary to say
that non-functions do not represent the empty map but something else,
or maybe nothing at all.
For reasons of elegance and simplicity we will restrict ourselves to pure
sets. i.e., sets of which all members are sets, and to pure functions. i.e.,
functions whose domains and ranges contain only functions. So all

3 Because this map is undefined for all possible arguments, it is as a map precisely
defined. It has just an empty domain, and there is exactly one map with domain the emp
ty collection (though it can have more than one representative, see Section 3.2).

A Representation Principle for Sets and Functions 169

objects are either sets or functions. representing collections of sets. or
maps from functions to functions respectively.

3.2. In general there is no a priori restriction on the number of sets
[functions] that can represent a certain collection [map].
For collections this means that a given collection of sets can be
represented by zero. one. or more than one set. If we start with a
universe of objects (sets). then (in principle) every (sub)collection of
these objects can exist in the intuitive way. A collection consists of its
elements. so every collection is unique and completely determined by
its objects. For sets however. there are some choices concerning these
points to be made.

In the :first place it is not necessary that there is a representative
for every collection. It is possible that in the intuitive way there exists
a collection of objects, whereas in the universe of sets there is no set
with these objects as elements. i.e .• which represents the given collec
tion. If we want to be sure that certain collections are represented,
then we have to require this explicitly. In set theory this is usually
done by formulating some axioms and axiom schemes. Examples are:
- The axiom of pairing:

Vx.y :3 a Vu (u Ea +-+ u = x V u = y)

Of course the collection consisting of any two objects x and y simply
exists. According to the axiom of pairing there is also a set with x and
y as elements.

- The axiom scheme of separation:

Va :3 b \Ix (x Eb +-+ x Ea A cf,(x))

(Where cf,(x) is a formula not containing b as a free variable). Here
too. any subcollection of the collection generated by a set a exists, at
least in principle, but that does not mean that all these subcollections
are represented. According to the axiom scheme of separation at least
those subsets of a exist. for which we can formulate (in the language
of the theory) a property that is distinctive for the elements of this
subset.

- The power set axiom:

Va :3 b \Ix (x E b +-+ x ~ a).

This axiom states that there exists a representative of the collection of
all subsets of a given set, i.e., of all sets which represent subcollections
of the collection generated by this given set. By the way. this does not
imply that for all of these subcollections there exists a representative.
i.e., we can have "incomplete" power sets.
These axioms of set theory are formulated in some general way. i.e.,
they say that there exist representatives for all collections of a certain

170 J. Kuper

sort, e.g .. for all collections consisting of two elements.
In the second place it is not necessary that there is at rrwst one set

representing a given collection. If we want any collection to be
represented by at most one set, we also must state this requirement
explicitly. This is what the axiom of extensionality does:

Va,b,x ((x ea +-+ x e b) -+ a = b).

Usually in literature on set theory the distinction between sets
and collections, as described here, is not made, at least not explicitly.
Mostly "set" and "collection" are considered to be synonyms. as are
other notions like family, class, etc. A problem different from the one
discussed in Section 2.1, that arises from this point of view. is that it is
hard to understand why stating several axioms of set theory is neces
sary. Especially the axiom of extensionality seems to be a necessary
truth (cf. [3], where the notion "analytic" is used), for how can there
be two different collections consisting of the same elements, if a collec
tion is precisely that thing which consists of its elements? Extensional
ity is an intrinsic property of the notion of set or collection. One gets
the impression that formulating the axiom of extensionality is
super:0.uous, or at least it feels like an axiom of underlying logic.
According to the representation principle this axiom is not a necessary
truth, and indeed must be stated explicitly (as must the other axioms).
In the light of the representation principle it can also easily be under
stood that axioms, e.g .. the axiom of extensionality, can be rejected
from most theories on sets (ZF for instance). and that we can replace
them by other axioms. The axiom of extensionality can for instance be
replaced by an axiom saying that, if there is a representative for a col
lection, then there are two of them. Or even that non-empty collec
tions have as many representatives as elements. Of course we can also
leave it open, and then we will not know how many representatives a
given collection has.

For maps and functions the situation is basically the same. Start
ing with a universe of objects (functions) any map from any (sub)
collection of this universe to any other (sub)collection can exist in the
intuitive way (at least in principle). Because we are only concerned
with maps in the extensional sense, every map can be seen as the total
ity of all its correspondences, so every map is unique and completely
determined by its correspondences.
Now the same possibilities which occurred for sets, arise for functions,
understood as representatives of maps. Every map can in principle be
represented by zero, one, or more functions, i.e .• by zero. one, or more
objects in the given universe. Here too requirements for functions must
be stated explicitly. Extensionality for instance is formulated (in the
more general way) as:

Vf,g,x.y ((appl (f,x,y) +-+ appl (g.x.y)) -+ f = g).

A Representation Principle for Sets and Functions 171

When the representation relation between maps and functions is itself
considered as a mathematical relation (cf. Section 2.3). then exten
sionality of functions is sometimes defined by requiring that the map (ll
from D to D - D is one-to-one; see [10] and also Section 2.3 for the
meaning of D and (ll. In such a definition it is tacitly assumed that
D-D itself is extensional. However. we may not rely on this, because
D - D does not contain maps from D to D. but functions representing
these maps.

Concerning the existence of functions no (examples of) axioms
will be given, but a universe of functions will be defined as a subcol
lection of some given universe of sets. Advantages of this approach are
that it is rather straightforward and in accordance with our usual con
ception of function.
In order to keep the definitions below readable, we assume that the
theory of sets describing the structure of the given universe of sets, is
strong enough to guarantee the existence of certain sets needed in the
definitions. We also assume that this theory contains the axiom of
extensionality. Later on the definitions may be reformulated in such a
way that they are independent of the chosen theory of sets, but that
will make them more complicated and less readable.
The first definition is a well-known definition of ordered pair <x.y >.
Definition 1. <x.y > = {{x },{x.y }}. □

In this definition {x}. {x.y} and {{x },{x,y}} are sets, so <x.y > is also
a set. i.e .• an object in the given universe of sets.
Definition 2. The field fl.a of a set a is

fl.a= {xl:3y(<x.y>Ea V <y.x>Ea)}. □

Definition 3. A set a is applicatively closed i1f

Vx (x E a - /ix S: a).

Definition 4. A set b is the applicative closure of a set a i1f

fl.a S: b.

b is applicatively closed.

if c is an applicatively closed set and fl.a S: c. then b S: c.

The applicative closure of a is denoted as APC (a).

□

Furthermore, A.f'OIC (a) = {a } U APC (a). □

Definition S. A set / is a function (in the sense of set theory) iff

VuEf:3x,y (u=<x.y>)

Vx,y1,Y2 (<x.y1> E/ /\ <x.y2> E/ - Y1=Y2).

Notation: fnc. (f). □

Note that if / is a function then Ii/ = D (f) U R (f). where D (f) and
R (f) are the domain and the range of/ respectively.

172 J. Kuper

Definition 6. A set f is a pure function (in the sense of set theory) iff

Vx (x E APQk (/) -+ fncs (x)). D

It can easily be seen that if f is a pure function, then every
x E APQk (/) is a pure function.

Clearly. the ternary application relation (in the sense of set theory) for
functions is defined as follows.

Definition 7. appls (a.x.y) +--+ fncs (a) A <x,y >Ea. □

As a universe of functions we can take from the universe of sets the
collection of all pure functions (in the sense of set theory). or even a
certain subcollection of it. I.e .. from the universe of sets we can leave
out all sets which are not relevant in the definition of pure function
(like sets with more than two elements. if such a set is not a pure
function itself). or which are superfluous from a functional point of
view (like {x}. {x.y}. <x,y > in a case that f•x = y for some pure
function f).

As mentioned before. these definitions may be reformulated
independently of the axioms of the underlying theory of sets. For
example, the resulting universe of functions can then be non
extensional.

Summarizing: it depends on the chosen theory if there exist zero,
one or more representatives of a certain collection or map.

3.3. In the previous section one of the questions discussed was. whether
it is necessary that every collection [map] is represented. In this sec
tion the question is. whether it is possible that every collection [map] is
represented by an object. Because of Russell's paradox and related
antinomies (e.g., Cantor's paradox), the answer to this question is
definitely negative.

In case of set theory we can form the intuitive collection R of all
sets x for which x Ex does not hold. But we can not represent this
collection by a set r . For suppose we can, and suppose r is in R .
Because r is a representative of R it follows that r Er. Then, by
definition of R . r not in R . Thus. while r is a representative of R .
r rfr. But then, by definition of R again, r is in R .

So if the collection R can be represented by a set r , we get two forms
of Russell's paradox:

risinR

r Er

i:ff r is not in R ,

iff r ~r.

For functions Russell's paradox is present in exactly the same way.
Suppose we have a universe of functions. and any intuitive map from
any subcollection of this universe to any (possibly other) subcollection
can be represented by a function. Suppose in particular. that there are

A Representation Principle for Sets and Functions 173

functions representing maps from the entire universe to itself (e.g., a
function i representing the identity map I which is supposed to be
defined for the entire universe). Such a function can be applied to
itself (e.g., i•i=i or. alternatively. appl(i,i,i) holds). Now we can
define the map F, with domain the entire universe of functions, as fol
lows:

if appl (x,x.x) does not hold. then F(x) = x.

if appl (x.x.x) does hold. then F(x) = y. where y is arbitrary.
buty ¢ x.4

Russell's paradox for functions can be shown as follows: let f be the
representative of F. Suppose appl (f .f .f) holds. Then by definition of
F. F(f) ¢ f. Because f represents F. this implies that appl(f.f.f)
does not hold. But then. by definition of F again. F (f) = f. And so,
because f represents F. appl (f .f.f) holds.
So here too we have two forms of Russell's paradox:

F(f) = f iff F(/) ¢ f.

appl (f .f.f) iff not appl (/.f .f).

The conclusion for both sets and functions is the same: not every
collection [map] can be represented by a set [function]. It depends on
the set or function theory at hand which collections or maps cannot be
represented. Mostly however, there will be present some principle like
the axiom of separation (in set theory). which is not a very strong
principle with regard to the existence of sets. It plays an important
role in preventing .. dangerous" collections from being represented. For
set theory the axiom of separation implies that collections that are too
"big" (for example the collection of all sets) can not be represented.
For function theory such a principle might state something like: given a
function / and a formula iJ,(x.y). then there exists a function g (of
course, g may not be free in iJ,(x,y)) with the same domain as/ such
that, for each x in this domain:

if there is a y such that iJ,(x.y) holds. then g•x = y (of course y
must be unique).

otherwise: g-x = f•x.

Such a principle for function theory would imply that maps which are
too "powerful" (e.g .. having the entire universe as their domain, like
the total identity map) cannot be represented.

Of course there can be (mathematical) objects representing collec
tions [maps] which cannot be represented by a set [function]. but these

◄ y is a constant value, say. Then y must be such that appl (y,y,y) does not hold. Be
cause of the assumption that every map is represented, such a y exists, e.g., let y be the
representative of the constant map Y(x) = i for all x, then -y-y = i and y ¢ i.

174 J. Kuper

objects cannot exist inside the given universe of sets [functions]. Out
side this universe, however, there can exist objects which do the job
(called proper classes in the case of set theory. and for the moment
without a name in the case of function theory). Then we have to sup
pose a bigger universe of objects and the problem reoccurs.

The presence of Russell's paradox does not mean - as is often
concluded from it - that (possibly indirect) selfreference is not
allowed, e.g .. a set being a member of itself, or a function being applied
to itself. In the next section some remarks on this point will be made.

3.4. In this section the question is discussed which set [function] may
represent a specific collection [map].
Clearly, there are no a priori restrictions at this point. Any set can
represent any not too big collection and any function can represent any
not too powerful map. provided of course that every set or function is
the representative of at most one collection of sets or of at most one
map from functions to functions respectively. For sets there is no rea
son why, for instance, the representative a of a collection A of sets
should not lie inside this very collection. H a is in A , then the
representation principle implies, that a Ea is the case. It will be clear
that this is no real selfmembership. but just a mathematical form of it
(as are all instances of the membership relation).5

There also is no reason why the representative t of a collection T
should not lie inside a collection U. which in turn is represented by a
set u in the collection T. In such a case both t Eu and u Et hold. And
so on.6

In case of sets, these possibilities are usually excluded by the
axiom of foundation, saying (if the axiom of extensionality is accepted):

\la¢= fZJ :3 X Ea (x n a= 0).

which is motivated by the iterative conception of sets. In the iterative
conception we start with a possibly empty collection of urelements.
We then proceed in stages. and the first stage after the basic stage con
tains all subcollections of this basic stage. If the basic stage contained
no urelements, then the first stage contains only one member: the
empty collection. The next stage again contains all the subcollections
of this first stage, and so on. It is thereby understood that a stage con
tains all the collections of all the previous stages as well.
In such a process it is obvious that for every collection there is a first
stage at which this collection comes into existence, and that all
members of this collection already existed at lower stages. That is

5 Because of the mental state one gets in when imagining ''real" selfmembership, non
founded sets might be called "dizzy sets".

6 If in the sequel "self membership" is used, cases like t Eu and u E t , etc., will be
meant too.

A Representation Principle for Sets and Functions 175

precisely what the axiom of foundation intends to say. and it is clear
that according to it no collection can be a member of itself.
The iterative conception of sets proceeds in forming collections of col
lections and calls them sets, so in this conception sets are collections of
sets. which in turn are collections of sets. etcetera. So the iterative
conception of sets admits sets like {a,b,c,p }. where p = {a,b,c }. But as
was argued in Section 2. these sets can only exist when we think of p
as in some way or another representing the collection of a • b and c . 7

The possibility of non-founded sets is a simple consequence of what is
considered here to be the normal mathematical way of looking at col
lections and objects.
Of course self membership strongly violates our intuition on collections.
but the iterative conception already violates this intuition in the same
way. it only is less apparent. 8

For functions the situation is basically the same. If we think of a
map in the normal intuitive and extensional way. then the level on
which a map exists is higher then the level on which the objects in the
domain and range of the map exist. We might describe an iterative con
ception of functions in the same way as we did for sets: we start with
a possibly empty domain of .. urarguments" and a possibly empty range
of "urvalues". The next stage contains all maps from the given domain
to the given range, though this could be only the empty map (the
totally undefined map). The process is the same as described for sets,
i.e .• a stage contains all maps from any subcollection to any (possibly
other) subcollection of the union of all foregoing stages. and map and
function are just different names for the same thing.
In such an iterative conception of functions, functions cannot be
applied to themselves. But due to mathematical abstraction a
mathematical theory about maps does not deal with maps. but with
representatives of maps. called functions. Here too, there is a priori no
reason why a function / should not lie inside the domain of the map
F represented by/ . But then F (f) is defined, and so /•/ too.
In an analogous fashion it is possible that f•x and x•f are both well
de:fi.ned. And so on.9

7 Also the necessity of stating several axioms of set theory does not follow from it; cf.
Section 3.2.

8 There are other arguments defending the axiom of foundation, like the possibility of
simple and powerful induction principles. In a universe with non-founded sets such prin
ciples are only valid in its well-founded part. For the non-founded part however, some
weaker or more complicated induction principles can be found; see [1,2]. But such an ar
gument is concerned with technical, and not with principal aspects. Furthermore there are
nice and technically simple applications of non-founded sets, e.g., in models of >rc&lculus
[11] and in models for (projective) geometry [9].

' If in the sequel "self application" is used, cases like /•z and z•/ , etc., will be meant
too.

176 J. Kuper

The conclusion of this is. that the possibility of both selfapplica
tion of functions and self membership of sets is the same sort of conse
quence from the same mathematical point of view. It is therefore
remarkable that in the literature on models of A-calculus self
application for functions is considered to be quite normal, whereas
selfmembership for sets is considered to be impossible, or at least
undesirable.

In order to understand selfapplication maps (functions) are often
considered intensionally (e.g., in [7]), whereas collections (sets) are
mostly thought of extensionally. Intensionally a function or map is
considered as a rule of correspondence. which can (often) be applied to
any object whatever and not only to objects in a certain domain.
Because a rule of correspondence can itself be considered as an object,
self application is possible (at least in principle).
When collections (sets) are understood intensionally. then we think of
them as containing all objects whatever which have a specific property,
or sometimes .. set" and "property" are even considered as identical
notions. But then the set of all sets (for the moment "set" has its
usual meaning) has itself the property of being a set, and so is a
member of itself. Thus intensionally selfmembership can be under
stood equally well as selfapplication. However, thinking intensionally
of sets (in an unrestricted way) leads to Russell's paradox, and so does
an (unrestricted) intensional approach to functions; see Section 3.3,
where the map F was defined as a rule.

As stated before, set-theoretical models for A-calculus, in which
functions are considered as sets of ordered pairs. are mostly excluded.
The possibility of applying a function / to itself would imply that
there is an ordered pair

<f.y > Ef.
With the standard definition of ordered pair

<a,b > = {{a}. {a,b }},

this would give

/ e{/}e <f.y>ef
which is generally rejected. But as argued above, selfmembership is
just as strange, or maybe just as nice. as selfapplication, both being the
same consequence of the same mathematical abstraction. So if we
accept one of them, we have to accept the other, and if we reject one of
them, we have to reject the other.
By now we do expect that set-theoretical models of (untyped) A
calculus are possible, elegant and rather trivial. Indeed they are as is
shown in [11].

Returning to one of the questions discussed in Section 3.2 we
have to ask which non-founded sets do exist in the universe of sets.

A Representation Principle for Sets and Functions 177

The same question can be posed for a universe of functions.
As far as set theory is concerned, a rather general way to decide this, is
by means of the axiom of universality, intuitively saying that there
exist copies of every possible sort of non-founded sets; see [1.12].
where non-founded sets are considered within a theory of sets includ
ing the axiom of extensionality. In order to describe the axiom of
universality more formally, here too the axiom of extensionality will
be accepted. The following definitions are needed.

Definition 8. A set a is transitive (notation: tr (a)) iff for all x

x Ea -+ x !::a. D

Definition 9. A structure is an ordered pair <a,r > where a is a set,
and r ~axa. □

Note that a structure is a set.

Definition 10. A structures= <a,r > is extensional (notation: es (s))
iff for all x.y,z Ea

(<x.y > Er+-+ <x.z >Er)-+ y=z. □

Definition 1 t. The internal E -structure E (t) of a set t is the struc
ture <t .e > . where

e!::txt

and <x.y >Ee+-+ x Ey. D

The axiom of universality now states that for every extensional struc
ture s there exists a transitive set t whose internal E -structure is iso
morphic with s (where the meaning of isomorphism is obvious):

Vs(es(s)-+ =3t(tr(t) A E(t)~s)).

With respect to functions we can again take the subcollection from the
universe of sets consisting of all pure functions (in the sense of set
theory) and. if preferable, we can leave out extensionality. The result
is a rich universe of functions where self application is possible, though
not for all functions. It seems that it contains a rather universal model
for typed and untyped X-calculus, where untyped X-calculus can be a
part of typed X-calculus. i.e., in which untyped terms are of a specific
type.

4. Rules
In Section 3 some aspects of the representation principle were discussed
from a point of view which is common practice in set theory. i.e.,
axiomatic, concerning the existence of objects, etc. In this section an
approach from the rule-oriented point of view of X-calculus is given, be
it that the rules are interpreted in a semantical way, whereas in >.
calculus they play a syntactical role in the first place. In this section it

178 J. Kuper

will become even more obvious that the representation principle is the
same for collections and maps. i.e .. that we make the same abstraction
when we think of collections or maps in a mathematical way. In Sec
tion 4.1 some remarks are made on notational matters, and in Section
4.2 some rules are discussed.

4.1. Notation

In A-calculus the A-notation was invented to denote maps (functions)
as such; see [4]. Let 9(x) be an expression which has for a given x a
certain value in some range of values (the natural numbers. say). The
relationship between all the values of x and the corresponding values
of 0(x) is a map (function). As we have seen we have to distinguish
between a map and its representing function(s). The map described a
moment ago is denoted as ~.9(x). the function representing this map
as Ax. 0(x).10

Because more than one function can represent the same map. there
is a problem at this point: we have to choose which of these representa
tives is denoted by Ax. 0(x). The choice is arbitrary in principle.11

Depending on the specific system of functions, it is also possible that
Ax. 0(x) does not exist. Due to the paradox of Russell. for some 0 it is
even necessary that Ax. 9(x) does not exist; cf. Sections 3.2 and 3.3.
For collections and sets the same things can be said: the collection of all
objects characterized by some formula <f,(x) is denoted by flx l<f,(x H.
and an (in principle arbitrary) representative of this collection is
denoted by {x l</,(x)}. Here too it is possible, and for some <p neces
sary. that {x 1¢(x)} does not exist.

A first similarity in notation is almost immediate: if we replace
{x l</>(x)} by crx.<f,(x). likewise expressed as .. the set of all x such
that <f,(x)", then the notations for sets and functions reflect the same
abstraction principle in the same way. We will stick here to the usual
set-theoretic notation with braces.

Furthermore. if we do not think of true and false on an intuitive
level. but as two values in the collection of truth values fl true, false~.
then we can express that x is a member of a set a as follows:
x E a = true . From this point it is only a small step to think of a as a
function which is defined for all members of a • such that a•x = true
for all x in the collection represented by a. Taken as a function we

10 Denoting the domain of a map or function within the notation, as in >..x E a.0(x),
will not be considered here.

11 This is in agreement with a usual definition of a model of Arcalculus; see [7,10]. In
(models of) combinatory logic >..-abstraction (sometimes called >..•, [.], <. >) is defined as
an "applicative product" of some values, thus fixing the choice of the representative
denoted by >..•x. 0(x) to a certain value (for instance: if a does not depend on x then
>..*x.a = kea , where k is a specific function for which k•x•y = x holds for all values of x
and y, so kea is a function with constant value a).

A Representation Principle for Sets and Functions 179

agree that a is undefined for all other x . If we take for true and fol,se
two specific functions, then this gives us a possibility for embedding
sets within a universe of functions.
The point to be made here however. is a second similarity in notation:
x ea can simply be elaborated to a•x = true • so x e a for sets
corresponds to f•x = y for functions. We will stick here to usual
set-theoretic notation, and consider truth values in the normal intuitive
way.

In the sequel 9(x) denotes an expression whose value can depend
on x. i.e .• x can be free in 9(x). and tf,(x) denotes a formula whose
truth can depend on x. i.e .. x can be free in tf,(x). It is thereby under
stood that 9(x) and tf,(x) contain as non-logical constants only • and
E respectively. and variables range over functions and sets respec

tively.

4.2. Some Rules Compared
The first rule is the rule of a-conversion. For functions this rule says

>.x. 9(x) = >.y. 9(y).

if 9 (x) does not contain y •

For sets we get an obvious translation of this rule

{x ltf>(x)} = {y ltf>(y)}.
if tf,(x) does not contain y.

So the a-rule says that the object denoted by >.x. 9(x) or {x ltf>(x)}
does not depend on the choice of the bound variable, provided of course
that this object exists (which is supposed to be the case whenever
appropriate).

The second rule is the rule of (3-conversion. For functions this
rule says

(>.x. 9(x))•a = 9(a).

For sets it says

a E {x ltf>(x)} +-+ (/,(a).

The rules µ and 11 say for functions

if a = b then for all c, c-a = c-b.

if a = b then for all c, a-c = b-c.

(It is supposed here, that c-a is defined if and only if c•b is defined.
The same holds for a•c and b-c .)

For sets these rules say (in the same order)

if a= b then for all c, a e c +-+ b e c.

if a = b then for all c, c e a +-+ c e b .

180 J. Kuper

The rules (3, µ and v speak for themselves. In a semantical surround
ings, as chosen here, they just express ordinary logical facts.

Two less trivial rules are the rules which are known in X-calculus
as f and 7). Together they constitute extensionality. The rule f says
for functions: if for all x , 6 i(x) is defined iff 6z(x) is defined, and for
those x, 6 1(x) = 6z(x), then

Xx. 61(x) = Xx. 62(x).

The meaning of the rule f can be understood as follows: if we have
two expressions 6 1(x) and 62(x) which for all x either both have the
same value, or both are undefined, then of course the map denoted as
;\x.6 1(x) is the same map as denoted by ;\x.6z(x).
As we saw, it is possible to have more than one function representing
this map, and it is of course also possible to choose for Xx. 6 1(x) one of
these representatives, and for Xx. 62(x) another. When the rule f is
accepted, this cannot be the case, but on the contrary there is a canoni
cal representative of the map in question, which is denoted by any A
expression of the form Xx. 6(x) that denotes a function representing
this map. The rule f does not say that there is at most one representa
tive of a map, but only that one of the possibly more than one
representatives is chosen as the canonical representative.

For sets the rule€ says: if for all x, cJ, 1(x) holds iff cJ,z(x) holds,
then

The same comment as for functions can be given here: of course the
collection fix lcJ, 1(x H is the same as the collection fix lcJ,z(x H. But
only when f is accepted there is a canonical representative of this col
lection, denoted as {x lcJ, 1(x)}, {x lcJ, 2(x)} or any other .. brace expres
sion .. of the form {x lcJ,(x)} denoting a set which represents the given
collection. Here too it is still possible that there is more than one
representative for the same collection.

In order to introduce the last rule (71) recall the notion of genera
tion, which in some sense is the reverse of representation. Let/ be an
arbitrary function. This function generates the map "Ax.f•x . The 7)
rule now says that Xx.f•x = f, meaning that the function denoted as
Xx.f•x is the same function as / . One could say that if the 7)-rule is
accepted, then Xx.f •x • understood as representative of ;\x.f•x ,
.. remembers" which function generated "Ax.f•x. There can for instance
be two different functions / and g generating the same map, i.e ..
f•x = g•x for all x, and according to the 7)-rule Xx.f•x ¢ Xx.g•x.
Again, for sets the same remarks can be made. A set a can be seen as
generating the collection fix Ix Ea I. According to the 71-rule
{x Ix Ea}= a, so the 7)-rule chooses for {x Ix Ea} the set that gen
erated fix Ix Ea I. Here too, when the 7)-rule is accepted. then
{x Ix Ea} ;z:!: {x Ix Eb}, even if a and b (with a ¢b) generate the same

A Representation Principle for Sets and Functions 181

collection. i.e .• even if x E a - x E b holds for all x .
In the literature on A-calculus the meaning of the '>'}-rule some

times is stated as: every object is a function: e.g .• in [10]. For sets this
naturally translates into: every object is a set. Although indeed the
(unrestricted) '>'}-rule is inconsistent with non-functions [non-sets]. the
existence of these is mainly a matter of convention: see Section 3.1. It
is possible that the '>'}-rule is rejected. and still every object is a func
tion [set]. For instance. in such a case there can exist two functions a
and b • with Ax.a•x = b and Axb•x = a • and yet a ;a!= b [or a and b
can be two sets with {x Ix E a } = b and {x Ix E b } = a • and yet a ;a!= b].
Thus the precise meaning of the '>'}-rule is not that every object is a
function [set]. but it gives an answer to the question which object to
choose for Ax.a•x [or for {x Ix E a }].

As can be seen from the above. and as is also well known in A
calculus. E and '1} do not imply extensionality on their own. Both E
and '1} are needed to obtain extensionality. In the light of the represen
tation principle this is clear immediately: let. in the case of set theory.
a and b be two sets generating the same collection. Then the f-rule
says that {x Ix Ea} and {x Ix Eb} denote the same canonical represen
tative of this collection. Thus according to the '>'}-rule a and b must
both denote this canonical representative. thus a = b . So when E and '1}
are accepted. any collection has at most one representative which is
precisely the meaning of extensionality for sets.
Of course. the same remarks hold for functions.

S. Concluding Remarks

The representation principle for sets and functions. as described in this
paper. is relevant for a unification of different approaches to sets and
functions. The axiomatic approach of set theory can be applied to
functions. and the rule oriented approach of the A-calculus can be
applied to sets. However. the relationship between these approaches
must be analyzed further.

The representation principle is rather universal, and can be
applied to many branches of mathematics. though it is possible that the
properties of the principle change slightly. when it is applied to other
subjects. Numbers. for instance. can also be considered in two different
ways: as intuitive objects. and as mathematical objects. where a
number in its mathematical sense represents an intuitive number. It
seems interesting to investigate what sorts of representation can be dis
tinguished. and to which branches of mathematics they apply.

182 J. Kuper

References

1. M. Boffa: Sur la theorie des ensembles sans axiome de fondement,
Bull. Soc. Math. Belg. 21 (1969) 16-56.

2. M. Boffa: Induction et recursion en theorie des ensembles sans
axiome de fondement, Fund. Math. 66 (1970) 241-253.

3. G. Boolos: The iterative conception of set, J. of Philos. 68 (1971)
215-232. Reprinted in: P. Benacerraf & H. Putnam (Eds.): Philo
sophy of Mathematics (second edition), Cambridge University
Press, Cambridge. 1983.

4. A. Church: The Calculi of Lambda-Conversion. Princeton Univer
sity Press, Princeton, 1941.

5. H.B. Curry & R. Feys: Comhinatory Logic (Volume 1), North
Holland. Amsterdam, 1958.

6. K. Godel: The Consistency of the Axiom of Choice and of the Gen
eralized Continuum-Hypothesis with the Axioms of Set Theory,
Princeton University Press, Princeton, 1940.

7. J.R. Hindley & J.P. Seldin: Introduction to Combinators and X
Calculus, Cambridge University Press. Cambridge. 1986.

8. J.-L. Krivine: Introduction to Axiomatic Set Theory. Reidel, Dor
drecht, 1971.

9. J. Kuper: Non-founded sets and their relevance to the foundations
of geometry. Report 86-01 (preprint). Department of Computer
Science. University of Leiden, Leiden, 1986.

10. A.R. Meyer: What is a model of the lambda calculus?, Inform.
and Control 52 (1982) 87-122.

11. M. von Rimscha: Mengentheoretische Modelle des XK-Kalki.ils.
Arch. Math. Logik Grundl.ag. 20 (1980) 65-73.

12. M. von Rimscha: Universality and strong extensionality, Arch.
Math. Logik Grundlag. 21 (1981) 179-193.

13. D.S. Scott: Axiomatizing set theory, in: T.J. Jech (Ed.): Axiomatic
Set Theory (Part II), Amer. Math. Soc., Providence. 1974, pp.
207-214.

14. D.S. Scott: Combinators and classes, in: C. Bohm (Ed.): A-calculus
and Computer Science Theory, Leet. Notes Comp. Sci. 37 (1975)
1-26, Springer-Verlag, Berlin, Heidelberg. New York.

15. J.R. Shoen:field: Axioms of set theory. in: J. Barwise (Ed.): Hand
book of Mathematical Logic, North-Holland, Amsterdam, 1977,
pp. 321-344.

16. H. Wang: The concept of set, in: H. Wang: From Mathematics to
Philosophy. Routledge and Kegan Paul, London, 1974, pp. 181-
223. Reprinted in: P. Benacerraf & H. Putnam (Eds.): Philosophy
of Mathematics (second edition), Cambridge University Press,
Cambridge, 1983.

Unification - An Overview

Rudolf Sommerhalder

Department of Mathematics and Computer Science
Delft University of Technology

P.O. Box 356, 2600 Al Delft, The Netherlands

Unifying terms s and t in an equational theory E means finding a
substitution a such that a (s) = E a (t). Unification in the empty
theory, i.e., the theory without axioms and so consisting of free
terms only, is important for the implementation of programming
languages such as Prolog; the general case is of importance for pro
gramming languages such as OBJ and for logic programming in gen
eral. In this overview, results about the decidability of the question
whether given terms s and t are unifiable in an equational theory as
well as unification algorithms for particular theories of different
unification types are presented. Recent methods to construct a
unification algorithm for a theory E 1 +E 2 using given unification
algorithms for the theories E 1 and E 2 are discussed. Finally, the
complexity of unification is considered. Unification in the empty
theory is complete for P and for co-NL; unification is NP-complete
for instance in Boolean rings and worse in general.

1. Introduction

Unification is concerned with equation solving in a general setting.
Given are two expressions e 1 and e 2 constructed using variables. con
stants and operations. Unifying these two expressions means finding
an assignment ¢ to the variables occurring in e 1 or e 2 such that
¢ Ce 1) = ¢ Ce 2): in other words, substituting the values assigned to the
variables in the equation, results in an equality, i.e .. the equation
e 1 = e2 is solved. The assignment¢ is called a unifying substitution, or
a unifyer.

For example, let e 1 ~fCx,gCa.b)) and e 2 ~fCg(y.b),x). Then
¢ ~{x := g Ca,b).y :=a} is a unifyer of e 1 and e 2. because ¢Ce 1) =
f Cg Ca,b).g Ca,b)) = ¢Ce 2). In this example ¢Ce 1) is identical to
¢Ce 2). This will not always be required. We also consider the variant
where a variable assignment ¢ is called a solution to the equation
e 1 = e2 if ¢Ce 1) = E ¢Ce2) for some equivalence relation = E. For
example. consider once more the equation f Cx.g Ca.b)) = f Cg Cy.b),x)
and assume that the operation J is commutative. that is f Cx.y) =
f Cy.x) for all x and y. Now¢ ={y :=a} is also a solution. because

¢(/ Cx,g Ca,b))) = f Cx.g Ca.b)) = E f Cg Ca.b).x) = ¢(/ Cg Cy.b).x)).

where = E denotes the equivalence relation induced by the axiom of

183

184 R. Sommerhalder

commutativity.

Unification is an important problem: it arises in many areas of
computer science such as:

• Computational logic. A central component of all current theorem
provers is a procedure to unify first order terms. This problem was
first studied by Herbrand [17], who also gave an algorithm to compute
a unifier. Automatic theorem provers cannot adequately handle equa
tional axioms such as commutativity and associativity. if these are
treated as just any other axiom. A traditional approach to these prob
lems is to develop unification algorithms which directly handle proper
ties such as commutativity. by computing unifiers relative to an
equivalence relation = E.

• Programming languages. Traditionally, procedures are called by
name. A deviation from this is pattern directed invocation as in
PLANNER [19]. QA4 [37]. and Prolog, see [24] for example. Also, the
fundamental mode of operation for the programming language SNOBOL
is to detect the occurrence of a string within a larger string. If the sub
string contains SNOBOL don't care variables, then the occurrence prob
lem is an instance of the string unification problem. Prolog is an
attempt to use Hom clause logic, a subset of full first order predicate
logic, as a programming language. The success of Prolog as a program
ming language critically depends on the availability of efficient imple
mentations. which in tum depends on the availability of fast string
unification algorithms.

• Computer al.gebra or symbol manipul,ation. Here matching algorithms
also are of utmost importance. For example. the integrand in a sym
bolic integration problem may be matched against a set of patterns to
determine the class of integration problems to which it belongs, so as to
trigger the appropriate action.

• Deductive databases. In a deductive database not all information is
explicitly stored as data. Instead, the data consists of facts and rules
using which implied facts can be deduced and given input can be
checked for integrity. Applying such rules heavily depends on
unification.

In [41] Siekmann discusses these and other application areas in
more detail.

2. Preliminaries on Formalism

The concepts used are from universal algebra, see for instance [15].
These may be set out as follows.

1. V is an alphabet of symbols denoting variables.

2. For each n ;>.:: 0, Fn is an alphabet of symbols denoting n -ary
functions. i.e., functions of the type An -+ A, where A is the
carrier of the algebra.

Unification - An Overview 185

3. F i u {F; Ii ;?:o}.

4. T is the smallest set such that
1. VUFS:T.
2. IftiET.1~i~n.and/EFn,thenf(t1,••·•tn)ET.
The elements of T are called terms. They are formal objects
replacing the intuitive "expressions" of the introduction.

5. var (t) denotes the set of all variables occurring in the term t and
var(t1, .. ,,tn) denotes U {var(t;)ll~i ~n}. A term t is called
ground if var (t) = 0. The set of all ground terms is denoted by
Tg.

6. The set T ... can be made into an algebra (T.F) by specifying a~
operation f : Tn-+ T for every f E Fn as follows: / (t 1 ,tn) =
f (t1, ... ,tn).

7. A substitution CT is an endomorphism of (T,F) such that there are
finitely many x EV for which CT(x) ¢ x. A substitution CT can
therefore be represented by a finite set {x 1:= t 1 • ... ,Xn := tn}. that
will also be denoted by CT. For a substitution CT we define
1. D(CT)i{xEVICT(x)¢ x}and
2. X(CT) i U {var(CT(x))Ix ED(CT)}.
The identity substitution is denoted by e, in set representation
e = 0. The set of all substitutions is denoted by :r..

8. Let CT be a substitution and W S: V a set of variables. Then CT
substitutes away from W if and only if X (CT) n W = 0.

9. An equation is a pair of terms s,t ET and is denoted by s = t.
The equation is valid in an algebra A if and only if cp(s) = cp(t)
for every homomorphism ¢ : T-+ A .

10. Let E be a set of equations (axioms). The equational ,..theory
presented by E is the finest congruence relation = E of (T.F) that
contains {(CT(s),CT(t)) ICT E :r.. (s =t)EE}. The equational theory
is recursively decidable [enumerable] if and only if = E as a set of
pairs is recursively decidable [enumerable].

11. A substitution CT E :r, is an E-unifier of the terms s and t if
u(s) = E CT(t). The set of all E-unifiers of s and t is denoted by
UI:,E (s,t).

12. A unification probkm is a pair <s,t> E for which the set
u:r,E (s,t) has to be determined.

13. Let W S: V. E-equality is extended to substitutions by defining
CT = (E. w) T if and only if CT(x) = E T(x) for all x E W, in which
case CT and T are said to be E -equal in W.

14. Substitution p is an instance of substitution CT. and CT is more
general than p. in symbols p ~ (E, w)CT, if and only if there exists a
7" E :r, such that p = (E. W) T·CT.

186 R. Sommerhalder

15. For a given unification. problem <s.t> E we do not wish to com
pute the whole set U :EE • but a smaller set that can be used to
represent U:tE. To that purpose we define:
1. A set CU:tE(s.t)~ U:tE(s,t) is a complete set of unifiers of s
and t if and only if for every p E U:tE (s.t) there is a
u ECU:tE(s.t) such that P,(E.w)U. where W = var(s.t).
2. The set µ.U:tE(s.t) of most general unifiers of s and t is a
complete set of unifiers CU:tE(s.t) such that for all p,ue
µ.U:tE(s.t). p =(E.w)U whenever P,(E.w)U. where W =
var(s.t).
3. If for all u E µ.U:tE (s.t) and a set Z ~ V of variables we have
X(u)n Z = 0, then µ.U:tE(s.t) is called the set of most general
unifiers away from Z. (The concept away from for a complete set
of unifiers CU:tE(s.t) is defined in the same way).

16. An operation related to unifying is matching.
1. A term s matches a term t if and only if there is a substitu
tion u such that u(s) = t.
2. The sets M:tE(s,t). CM:tE(s,t) and µ.M:tE(s,t) are defined
in the same way as for unifying substitutions in 15 above.
3. It follows from the results summarized in Section 6 on com
plexity. that it can be safely conjectured that matching is simpler
than unifying.

17. In all of the above. we drop the subscript E whe~E = 0. that is.
if we are consi~ering equality in the algebra (T.F) instead of in
the algebra (T.F)/E.

In the sequel attention is restricted to recursively decidable. finitely
presentable. equational theories.

3. Decidability of Unifiability
First consider the following fundamental problem: is it recursively
decidable whether or not terms s and t are unifiable? That is, is Xst
[(3 u E U:tE)[u(s) = E u(t)]] a recursively decidable predicate?

The answer to this question obviously depends on the equational
theory involved. In the case of the empty theory. the answer to the
question is "yes". this is a recursively decidable predicate. The algo
rithm below finds a unifier of a finite non-empty set S of terms if one
exists and reports failure otherwise. The algorithm can be found in
almost every book on Prolog and Logic Programming; see for example
[27].

Definition. The disagreement set of a finite non-empty set S of terms
is defined as follows. Find the leftmost position at which at least two
terms in S have different symbols. Extract from each term in S the
smallest subterm beginning at that position. The set of all these sub
terms is the disagreement set. D

Unifi.cation - An Overview 187

For example, if S = {/ (g (x).h (y),a).f (g (x).z.b)} • then the dis
agreement set is {h (y).z }.

The unification algorithm is as follows.

input: a finite non-empty set S of terms
output: a unifier er
method:

er= 0:
while er (S) is not a singleton do

od.

D := the disagreement set of er(S);
if there exist x,t ED such that
x is a variable and x Evar (t) then CT:= CT ·{x := t}
else report that S is not unifiable and halt

A proof of the total correctness of the above algorithm can be
found in [27]. It can also be shown that for every s and t. µU'E(s,t)
is either empty or a singleton and that the above algorithm produces a
most general unifier.

The algorithm can be very inefficient, due to the occur check. This
is the test x Evar (t) in the algorithm above. Consider the following
example from [5]:

S = {p (x l• •.• ,Xn),per (x o,Xo),/ (x 1,X 1), ... ,/ (Xn-l>Xn-1))}.

In the different iterations of the while-loop the following substitutions
are obtained:

CT= {x 1:= / Cxo,xo)}

CT= {x1:= / Cxo,xo),x2:= / er (xo,xo).f Cxo,xo))}

er = {x 1:= / (x o,xo),x 2:= / er (x o,x o),/ (x o,x o)).
X3:= / er er (xo,Xo),f Cxo,Xo))./ er (xo,Xo),f Cxo,Xo)))}

and so forth. In the final substitution we have Xn := t where the term
t has 2n -1 occurrences of the symbol /; thus, performing the occur
check takes exponential time.

In Section 6 on complexity results it will be shown that the most
general unifier can be found in linear time.

Although a linear time algorithm is known, most Prolog imple
mentations combat the complexity by simply dispensing with the occur
check. This can result in non-termination and in strange results, as in
the following example from [32].

:- op(100, xfx. less_than).
X less_than s(X).
3 less_than 2 :- s(X) less_than X.

The answer to the goal?- 3 less_than 2. will be "yes". In [32] Plaisted
describes a method that will insert occur checks where necessary and

188 R. Sommerhalder

claims that this does not appreciably slow down the execution of most
Prolog programs.

Maluszynski and Komorowski go further than that. In [28] they
give a sufficient condition to replace run-time unification in Prolog pro
grams by term matching. The reason for this is that matching can be
accomplished in O (Xn [(log n)2]) time on a parallel machine and there
is no fast parallel algorithm for unification known while there are rea
sons to believe that it does not exist: see the discussion on complexity
results in Section 6.

Returning to the question whether the predicate Xst [(:3 Ci E U'EE)
[c;(s) = E c;(t)]] is recursively decidable. There exist non-empty equa
tional theories for which this predicate is recursively decidable, and
also theories for which unifiability is not recursively decidable.

Consider for example the equational theory of arithmetic as
presented by Peano's axioms or in any other suitable way. The
unification problem in this theory is precisely Hilbert's tenth problem
and is therefore not recursively decidable.

In the sequel we will consider some special theories which are
presented by combinations of the following axioms.

A associativity I (f (x.y).z) = I (x,f (y,z)

C commutativity f(x.y)=f(y.x)

Di, left-distributivity f (x.g (y.z)) = g (f (x.y).f (x,z))

Da right-distributivity f (g (x.y),z) = g (f (x,z).f (y.z))

D distributivity Di,+ Da
I idempotence f (x,x) = x

u unit I (1.x) = f (x, 1) = x

In the sequel, the empty theory, that this. the equational theory
that does not have any axioms and terms are therefore equal if and
only if they are identical, is denoted by 0.

The status of the unifiability problem in different theories is as
follows:

• it is recursively decidable in the theories mentioned in Figure 1.

• and recursively undecidable in those listed in Figure 2.

• the status of the unifiability problem is open in the theories given
in Figure 3.

The D + A unification problem is also of interest with respect to
Hilbert's tenth problem. An axiomatization of arithmetic sufficient to
pose Hilbert's tenth problem involves the axioms A and D and some
other axioms regarding the integers. The D + A-unsolvability result
implies that the unsolvability of Hilbert's tenth problem does not

Unifi.cation - An Overview

Theories
0
A
C
I. C+I
Di,. nit. u
A+C. A+C+I
A+I. D+A+I

Figure 1.

Theories
D+A. D+A+C
Di,+A+U

Figure 2.

Theories
D
D+C
D+U
Di,+A
Di,+U

References
[17.35.36]
[33.42]
[40.42]
[34]
[2]
[26.43.11]
[46]

References
[46]
[2]

Figure 3.

depend on any specific property of the integers.

4. Unifi.cation in Specific Theories

189

We have seen above that in the empty theory every unifyable pair of
terms has precisely one unifier. This is not the case in all equational
theories. There are equational theories where every unifiable pair of
terms has a :finite number of most general unifiers. equational theories
where at least some unifiable terms have an infinite number of most
general unifiers and also equational theories where some unifiable terms
have no most general unifier at all. Thus the number of most general
unifiers induces the following classification of equational theories.

Definition.
1. An equational theory is unitary. if for every pair of unifiable

terms s and t the set µ.UI,E(s.t) has precisely one element.

2. An equational theory is ftnitary. if for every pair of unifiable
terms s and t the set µ.U'EE (s.t) is non-empty and :finite.

190 R. Sommerhalder

3. An equational theory is inftnitary, if for every pair of unifiable
terms s and t the set µU'EE(s,t) is non-empty and there are
terms s and t such that µU"f.E(s,t) is infinite.

4. An equational theory is nullary, or of unification type 0, if there
are unifiable terms s and t such that µU'EE (s,t) = 0. D

As we have seen above. the free theory 0 is unitary.

The theory C is finitary. Consider for example <f (x.y).f (a,b)>c,
where f is commutative. There are two most general unifiers, namely,
cr 1 = {x := a,y :=b} and cr 2 = {x :=b,y :=a}.

The standard 0-unification algorithm can easily be adapted to
commutative functions. To unify f (s 1,s 2) and f (t 1,t 2). where f is
commutative, it is necessary to try to unify s 1 with t 1 and s 2 with t 2

and also try to unify s 1 with t 2 and s 2 with t 1• Continuing in this
fashion, the C-unification problem is reduced to a number of 0-
unification problems exponential in the number of occurrences of the
commutative function symbol.

The equational theory A is infinitary. Consider for example the
terms f (a,x) and f (x,a). These two terms have the following most
general unifiers.

cr1 = {x:=a}

cr2 = {x := f (a.a)}

CT3 = {x := f (a,f (a.a))}

er 4 = {x := / (a.f (a.f (a.a)))}

and so on.

In [42.45,33] can be found descriptions of adaptations of the standard
0-unification algorithm so that it can handle associative functions.

For associative functions it is convenient to drop the distinction
between/ (x.f (y,z)) and f (f (x.y).z) and represent them both by an
argument list [1 x,y,z 11. Assume given the argument lists of two
terms to be unified. The algorithm proceeds as follows.

1. Consider the elements of the list one-by-one in left-to-right
order. Determine the first non-empty disagreement set. If one
list is exhausted before the other, unification fails.

2. If the disagreement set does not contain a term t and a variable
x. such that x §!:var (t) then unification fails with this substitu
tion.

3. Otherwise, two unification subprocesses are created. one exploring
the substitution x := t, the other the substitution x := / (t,u),
where u is a new variable.

4. The algorithm returns all substitutions constructed by success
fully terminating subprocesses.

Unifi.cation - An Overview 191

Consider the following example, where / is an associative function
symbol. a,b and c are constants and all other letters variables. The
terms to be unified are/ (x,y) and/ (a,/ (b,c)). thus the input to the
algorithm are the lists [1 x,y 11 and [1 a,b,c 11 . In the sketch of the
computation given below, argument lists are denoted just using square
brackets, dropping the subscript / .

[x,y 1 = [a,b,c 1
1. x := a, [a,y 1 = [a,b,c 1

1. y := b, [a,b 1 = [a,b,c 1. FAIL
2. y := / (b, v). [a,b, v 1 = [a,b,c 1

1. v := c, [a,b,c 1 = [a,b,c 1. O.K.
2. v := / (c,z 1). [a,b.c,z 11 = [a,b,c 1. FAIL

2. x := / (a,u). [a,u,y 1 = [a,b,c 1
1. u := b, [a,b,y 1 = [a,b,c 1

1. y := c, [a,b,c 1 = [a,b,c]. O.K.
2. y := / (c,z 2). [a,b,c,z 21 = [a,b,c]. FAIL

2. u := / (b, w). [a,b, w ,y 1 = [a,b,c 1
1. w := c, [a,b,c,y] = [a.b.c]. FAIL
2. w := / (c,z 3), [a,b,c,z 3,y 1 = [a,b,c]. FAIL

Two most general unifiers are obtained, namely
CT 1 = {x := a,y := / (b,c)} and

CT2 = {x := / (a,b).y := c }.
Much work has been done on associative-commutative unification

because of its practical significance in automatic theorem proving. The
equational theory A + C is :fi.nitary. Complete algorithms have been
developed by Livesey and Siekmann (261 and by Stickel (431. Let +
denote a binary, associative and commutative function symbol and let

s = (x +(x +y)) + (f (a +(a +a))+ (b +c)) and

t = ((b+b)+(b+z))+c

be the terms to be unified, where x.y and z are variables and a,b and
c constants. The terms are represented by argument lists, thus
s = [x,x,y,f (a +(a +a)).b,c 1 and t = [b,b,b,z,c 1.

Stickel (431 has proved that arguments common two both lists can
be canceled in pairs without changing ur.A+cCs,t). Thus the given
problem is equivalent with unifying the lists [x,x,y.f (a +(a +a))1 and
[b,b.z 1. Consider :first two argument lists, which contain only vari
ables, [x,x,y,u] and [v, v,z 1 in our current example. If CT is a unifier
and t a specific term, then twice the number of occurrences of t in
CT(x) plus the number of occurrences oft in CT(y) plus the number of
occurrences of t in CT(u) must be equal to twice the number of
occurrences of t in CT(v) plus the number of occurrences oft in CT(z).
Thus unification of argument lists is related to solving linear homo
geneous diophantine equations

192

m

,Ea;X; =
i=l

R. Sommerhalder

n
,Eb;y;.
i=l

In our current example the equation is 2x +y +u = 2v +z.

Any positive integer solution to such an equation can be obtained
as a linear combination of elements from a :finite basis set of solutions.
This finite set can be enumerated by a backtracking procedure using a
bound on the values of the variables. Huet [20] describes an algorithm
to enumerate a basis set of solutions. The following seven solutions
form a basis for our current example 2x +y +u = 2v + z .

X

S1 0

S2 0

S3 0

S4 0

S5 0

S6 1

S7 1

y U V

0 1 0

1 0 0

0 2 1

1 1 1

2 0 1
0 0 0

0 0 1

z

1

1

0

0

0

2

0

Any linear combination of these is a solution to the equation. How
ever. because we have no zero in the unification problem, we must con
sider all subsets of the basis with the constraints that the sum of
coefficients in any column must be non-zero and must be equal to 1 if
the corresponding term is not a variable. Fortenbacher [13] describes a
method to reduce the number of subsets which need to be considered.
The reduction can be very significant.

Consider for instance {s 1,s 2.s6,s 7}. The corresponding solution is
x = s6+s 7• y = s 2• u = s1, v = s 7 and z = s1+s 2+2s6. Substituting
the constants and simplifying, we arrive at the unifier {x := s 6+b,
z :=/(a +(a +a))+y +s6+s6}.

Termination of A+ C-unification has remained an open problem
for a long time. a termination proof of Livesey and Stickers algorithm
has been given by Fages [11].

Little or nothing is known about why the combination of an
infinitary theory A and a finitary theory C gives a finitary theory
A + C. whereas the combination of another infinitary theory D and the
finitary theory C results in an in:finitary theory D + C.

The first theory of unification type 0 has been presented by Pages
and Huet in [10]. The theory has two constants a and 1, a one-place
function q , and a two place-function / . The axioms are

f (1,x) = X

q(f (x.y)) = q(y)

Unification - An Overview

Consider the following unifiers of the terms q (x) and q (a).

uo= {x :=a}

0"1 = {x := / Cx1.a)}

0"2 = {x := / Cx2./ (x 1.a))}

u i = {x :=/(xi .f (. ... a) ...)}

193

Let S ~{ui Ii ;;i!::O}. Then S is a complete set of unifiers CUI:.E(s,t) and
also u i +1 is strictly more general than u i . Assuming this, it follows
that there does not exist a µ.UI:.E(s,t). Let R be any CUI:.E(s,t) and
W={x}. For every uER there is an i such that u,(E,W)
ui <(E.w)Ui+1• because S is complete. On the other hand, there is a
pER such that ui+l,(E,w)P, because R is complete. But then
u <(E,w)P, whence R is not a µ.UI:.E(s,t).

Recently there also have been found "natural" equational theories
of unification type 0, namely the theory of idempotent semigroups: see
[3.39].

We have seen equational theories of unification type 0, 1 and co.
There exists no hierarchy of theories of bounded unification type. That
is, if E is a suitable equational theory which is neither nullary nor
unary. then there is no integer n such that for all unifiable pairs
<s,t> E the number of most general unifiers is at most n. A proof can
be found in [6]. The proof is a generalization of the technique shown in
the following example.

Let / be a commutative function symbol and h any free binary
function symbol. The unification problem </ (x,y).f (a,b)>c, where
a and b are constants. has n = 2 most general unifiers, namely
{x := a,y := b} and {x := b,y :=a}. Construct a new unification problem
namely <h(f (x 1,y1)./ (x2,Y2)).h (f (a,b).f (a,b))>c- This problem
has n 2 = 22 = 4 most general unifiers, namely

{x1:=a.y1:=b,x2:=a,y2:=b }.

{x 1:= a.y 1:= b.x 2:= b,y 2:= a}.

{x1:=b,y1:=a.x2:=a.y2:=b} and

{x1:=b,y1:=a.x2:=b.y2:= a}.
The result of course does not depend on commutativity, but gives a
general method to construct new terms which have n 2 most general
unifiers from given terms having n most general unifiers.

S. Combining Equational Theories

For each equational theory of interest a unification algorithm must be
designed and implemented. A general design methodology is not
known. However. for equational theories presentable by convergent
term rewriting systems. there is an algorithm that automatically

194 R. Sommerhalder

generates unification procedures: see Fay [12]. Some progress has been
made by Yelick [50]. Tiden [47]. Herold [18] and Kirchner [23]. These
authors describe algorithms to produce a unification algorithm for an
equational theory E 1 + E 2 given unification algorithms for theories E 1

and E 2• The combination algorithms cannot handle arbitrary theories,
furthermore. there must be no interaction between the two theories.
Yelick's method, which can be applied to regular, collapse-free theories,
is described below.

Definition.
1. An equational theory is regular if and only if var (s) = var (t)

for every axiom s = t of the theory.

2. An equational theory is collapse-free if and only if the theory
does not contain an axiom s = t . where either s or t is a variable
and the other term is not. D

First. it is assumed that the sets of function symbols handled by
the different unification algorithms are mutually disjoint. Let E be a
presentation of an equational theory. Then 7T = {E1.E2 ••••• En} is called
a partioned presentation of E if and only if

1. 0E1r,

2. U {E; l1~i ~n }= E,

3. F(E;)nF(EJ)=0 for all i and j. 1~i.j~n: where F(Em)
denotes the set of function symbols occurring in axioms of Em.
F (E) denotes the set of all function symbols and F (0) denotes
the set of all free function symbols, that is. symbols which do
not occur in any axiom.

Such a partioned presentation induces an equivalence relation ~ on
F (E) as follows.

f ~ g if and only if either

1. there is a block E; E 7r such that / .g E F (Ei). or

2. / i!:X and g EX. for all X E1r.

1r = {E 1,E2,0}

x+y = y+x
(x+y)+z = x+(y+z)

E 2: x•y = y•x
(x *Y)•z = x•(y•z)

0:

Figure 4.

F(E) = {+.•.a,b,f}

F(E1)= {+}

F(0) = {b,f}

Figure 4 contains an example of a partioned presentation of an equa
tional theory.

Unification - An Overview 195

The combined unification algorithm begins by transforming the input
terms into simpler ones, containing only function symbols from a sub
set F(Ei). for which by assumption an Bi-unification algorithm is
known. The transformation consists of replacing subterms whose
top-function symbol does not belong to the set F(Ei) by new vari
ables. The information lost in this way. is saved in the form of a sub
stitution. For example, considering the set F(E 2) of function symbols

termt
x•(a+y)
x•Ca•b)
x+y

" is replaced by term t

where v 1.v 2 and v 3 are new variables. The newly constructed terms
can then be unified using an E 2~unification procedure, which is assumed
to be giyen. To restore a term t to its original t • a substitution CT such
that CT(t) = t. i.e .. a matcher is constructed.

The recursive procedure to E -unify terms using Ei -unification
algorithms to unify subterms, is as follows.

procedure E-unify

input: terms s and t
output: a set of E -unifiers of s and t
method:

1. If s and t are both variables, return {t := s }.

2. If s is a variable and t is not, return the result of
var_unify(s.t). Similarly. if t is a variable and s is not.
return the result of var_unify(t.s).

3. If the top-function symbols of s and t are not ~ -
equivalent. return 0.

4. Otherwise the top-function symbols of s and t are ~ -
equivalent. Assume that these symbols belong to theory Ei.

1. Compute the reduced terms s and t and the
corresponding matchers CT s and CT t, such that
CT s (s) = s and CT t (t) = t.

2. Let CT = CT s U CT, •

3. Let P = Ei -unify(s ,t).
4. Return U {map_unify(p,CT)lpEP}.

In the above map_unify(p,CT) computes the set of E-unifiers of
{ <p(x).CT(x)> Ix ED (p)U D (CT)} and the procedure var_unify is
specified as follows.

procedure var_unify

input: a variable v and a term t

196

output: a set of unifiers of v and t
method:

...

R. Sommerhalder

Let £ be the reduced term and u t the matching substitution, i.e.,
u t (t) = t . Also assume that the top-function symbol of t
belongs to the subtheory E; .
1. If v ivar (t), return {v := t }.

2. If v E var (t) and v ix (u t)

1. let P = E;-unify(v,t),

2. return U {map_unify(1r,ut)l7rEP}.

3. If v E var (t) and v E X(u). return 0.

Consider the unification of s = b +(x *Y) and t = a +z in the equa
tional theory E with partioned presentation {E1,E2,0} as given in Fig
ure 4. Both are non-variable terms and the top-function symbol (+ in
both cases). beloqgs to theory E 1• thus case 4 of E -unify applies. Thus
s = v 1+v 2 and t = v 3+z and the combined restorjng substitution is
u= {v1:=b,v2:=x•y.v3:=a}. Bi-unifying sand t produces the set
{p1.p2} where p 1 = {v 3:=v 1,z:=v2} and p 2 = {v3:=v2,z:=v 1}. Now
map_unify(p1,u) and map_unify(p2.u) are called. map_unify(p1,u)
returns 0, because a E F (E 2) must be unified with b E F (0). To com
pute map_unif y(p2,u). the term a must be unified with term x *Y .
These terms are E runifiable with a single most general unifier {x := a •
y :=a}. Using this, E-unify(s.t) returns {z := b,v 1:= b. v2:=a •a.x :=a.
y:=a}. We can check the result: b+(a•a)=Ea+b. In [50] Yelick
sketches the proofs of correctness and termination. Full proofs are to
be found in her Master's thesis. MIT Laboratory for Computer Science.

Tiden [47] gives an extension of this method and proves that it is
correct for the whole class of fi.nitary equational theories and that it
terminates for the class of collapse-free equational theories. Herold
[18] also gives an algorithm that is totally correct for the class of regu
lar collapse-free equational theories. He does not replace subterms
with new variables but with new constants in such a way that E -equal
subterms are replaced with the same constant and claims that this is
more efficient in many cases.

6. Complexity of Unifi.cation

In this section we will mainly be concerned with 0-unification: most
published results concern the unification of free terms. The following
notation will be used.

L denotes the set of all languages that can be accepted by a
An [log n] space-bounded deterministic Turing machine.

NL denotes the set of all languages that can be accepted by a
An [log n] space-bounded non-deterministic Turing machine.

Unification - An Overview 197

P denotes the set of all languages that can be accepted by a polyno
mial time-bounded deterministic Turing machine.

NP denotes the set of all languages that can be accepted by a polyno
mial time-bounded non-determi,nistic Turing machine.

The following notation is used to denote reductions between problems.

A ~LB means that there is a function/ that can be computed by a
Xn [log n] space-bounded deterministic Turing transducer such
that (Vx)[x EA iff / (x)EB].

A ~pB means that there is a function / that can be computed by a
polynomial time bounded deterministic Turing transducer such
that (Vx)[x EA iff / (x)EB].

In Section 3 on decidability of unification an algorithm for 0-
unification has been described which has exponential running time in
the worst case. Better algorithms are known, in particular. the most
general unifier can be computed in linear time using the algorithm of
Paterson and Wegman [31].

As we have seen the size of terms constructed during unification
may be exponential in the size of the terms to be unified. Thus
representing terms as trees is out of the question. Paterson and Weg
man use directed acyclic graphs (dags) in which common subexpres
sions are represented by a single subgraph. The nodes are labeled by
function symbols and variable symbols. A node labeled with a k -place
function symbol has outdegree k and the outgoing arcs are labeled 1 to
k. so that we can refer to the i th son. Variable nodes have outdegree 0
and there is one node for each variable. The terms to be unified are
represented by a single (not necessarily connected) dag with two dis
tinguished nodes corresponding to the top-function symbols of the
terms involved. Computing a most general unifier of two terms is
equivalent to computing a certain equivalence relation on the nodes of
the corresponding dag.

An equivalence relation on the nodes of a dag is val,id if it has the
following properties.

1. If two function nodes are equivalent. their corresponding sons are
equivalent in pairs.

2. Each equivalence class is homogeneous, that is. it does not contain
two nodes with distinct function symbols.

3. The equivalence classes may be partially ordered by the partial
order on the given dag.

Paterson and Wegman [31] prove that the terms corresponding to nodes
u and v are unifiable if and only if there is a valid equivalence rela
tion, such that u and v are equivalent. In that case there also exists a
unique minimal valid equivalence relation, that corresponds to the
most general unifier. All the nodes in an equivalence class of a valid

198 R. Sommerhalder

equivalence relation represent the same term. Thus with a given valid
equivalence relation corresponds a unifying substitution that assigns to
every variable the term corresponding to the equivalence class which
contains that variable.

The well-known UNION -FIND algorithm. see [1] can be used to
handle the equivalence relation. which results in an O (An [n a(n)])
time algorithm. where a is the inverse of Ackermann's function and
thus grows extremely slowly. Setting sons of nodes equivalent when
their fathers are. is called "propagating the equivalence". Paterson and
Wegman achieve the linear running time of their algorithm by pro
pagating the equivalence in a carefully ordered way. taking one com
pleted equivalence class at a time.

Martelli and Montanari [30] describe an algorithm and its imple
mentation in Pascal. The standard unification problem is an equation
< s = t > . Martelli and Montanari' s algorithm uses transformations of
sets of equations into other sets of equations, which are equivalent to
the given ones in that both have the same sets of unifiers. Examples of
such transformation rules are
1. Term reduction. An equation / (s 1, ... ,sn) = f (t 1, ...• tn) may be
replaced by the set of equations {s; = t; I 1~i ~n }.
2. Variable elimination Let E be a set of equations containing the
equation x = t, where x is a variable. The new set of equations is
obtained by applying the substitution {x := t } to all terms occurring in
the equations of E-{x = t} and then adding the equation x = t.

The efficiency of the algorithm is obtained by handling equations
in groups called multi-equations. The running time of the algorithm is
0 (An [n log n]).

In typical applications, such as theorem provers, the unification
algorithm is not used on very long terms but very often on rather
small terms. In these circumstances the asymptotic difference between
Paterson and Wegman's and Martelli and Montanari's algorithm cannot
be exploited. Martelli and Montanari [30] claim that their algorithm
performs better most of the time in these circumstances. An additional
advantage of the algorithm is that it can be generalized to handle E -
unification, see Kirchner [23].

Dwork. Kanellakis and Mitchell [8] also study the time complex
ity of the unification problem. They show that unification is complete
for P with respect to log-space reducibility ~ L • using the Monotone
Circuit Value problem.

The monotone circuit value problem MCV is defined as follows.

MCV i{(/3o,/31, /3n)I for all i (0~i <n). /3; = IN(0) or /3; =
IN(1) or /3; = AND(j.k) or /3; = OR(j,k) such that
1. if /3 i is an input (IN (0) or IN (1)) then the index i
appears at most once in the sequence (fj 0, ... ,/3n): if l3i is a
gate (AND (j.k) or OR(j,k)) then the index i appears at

Unification - An Overview 199

most twice in the sequence ((3 0 ••••• (3 n) and i > j > k ;
2. /3n is an or-gate OR(j.k) whose output according to the
circuit and its given inputs is equal to 1}.

The problem MCV is complete for P with respect to ~L; see [14].

Dwork Kanellakis and Mitchell use labeled dags to represent
terms. In order to get complexity results where the size of the instance
corresponds with the length of a string representation of the terms,
Dwork et al. introduce simple dags as dags where the only nodes with
indegree greater than 1 are leaves. Thus there are two versions of the
unification problem.

UNIFY ~ {(G.u,v)IG is a labeled dag. u and v are nodes of G and the
terms corresponding to u and v are unifiable}.

UNIFY-SIMPLE ~{(G.u,v)IG is a labeled simple dag. u and v are
nodes of G and the terms corresponding to u and v are
unifiable}.

Dwork et al. show that MCV ~ L UNIFY and also that MCV ~ L

UNIFY-SIMPLE. whence both of these problems are complete for P.

The authors conclude that in consequence there most probably is
no efficient parallel algorithm for unification. Here "having an efficient
parallel algorithm" must be identified with membership in .. Nick's
Class" NC. NC is the class of all problems solvable on a parallel RAM
using Xn [(log n)k] parallel time for some k • and Xn [nm] processors
for some m. It is clear that NC!: P: it is generally believed. but as yet
unproved that the inclusion is strict.

Vitter and Simons [48] also study the possibilities of using paral
lel processors to perform unification. The parallelization of a number
of sequential algorithms is discussed in detail, among which the algo
rithm of Paterson and Wegman and an algorithm using the algorithm
for the UNION-FIND problem mentioned before. A limited speed-up
of approximately the number of processors used is achieved.

Lewis and Statman [25] have studied the space complexity of the
unification problem.

NON-UNIFY ~{(G.u.v)IG is a labeled dag. u and v are nodes of G
and the terms corresponding to u and v are not unifiable}.

Lewis and Statman give a space-efficient implementation of a naive,
non-linear equivalence handling algorithm described by Paterson and
Wegman [31]. thus establishing that NON -UNIFY is in NL.
CDG ~ {G IG is a directed cyclic graph}.

The problem CDG is complete for NL: see [21]. Lewis and Statman
then show that CDG ~ L NON -UNIFY and conclude that unifiability is
complete for co-NL.

Unification has an important special case which does admit
efficient parallel algorithms. in particular the matching problem.

200 R. Sommerhalder

Dwork, Kanellakis and Mitchell [8] show that matching is in NC and
describe a parallel algorithm requiring O (Xn [(log n)2] time and
0 (Xn [M(n 2)]) processors, where M(n) is the time complexity of
matrix multiplication. In [9] an improvement is given in the form of a
randomized parallel algorithm requiring O (M (n)) processors with the
same asymptotic running time on inputs of size n .

Many matching problems are NP-complete, for example the prob
lem ACM of associativ~ommutative matching. see Benanav, Kapur
and Narendran [4].

ACM £ {(F. V,s,t) IF is a set of function symbols some of which may
be associative and commutative, V is a set of variables, s
and t are terms and there is a matching substitution u
such that u(s) = t }.

Similarly defined are the problems AM of associative matching. CM of
commutative matching. AIM of associative idempotent and ACIM of
associative, commutative, idempotent matching. Benanav, Kapur and
Narendran [4] show that ACM, AM and CM are all NP-complete
problems. Kapur and Narendran [22] show that AIM and ACIM are
NP-hard.

Returning now to the unification problem. Kapur and Narendran
[22] consider the complexity of unifying sets of terms in the form of
the Set Unification Problem SUP defined as follows.

SUP £ {(F. V,S.T) IF is a set of function symbols, V a set of variables.
S and T sets of terms and there is a substitution u such
that u(S) = u(T)}.

Kapur and Narendran [22] show that SUP E NP and that
3-CNF-SAT ~pSlJP. so that SlJP is NP-complete.

In closing this section and also this overview we want to mention
a result of Mannila and Ukkonen [29]. These authors relate Prolog
execution with sequences of UNIFY -DEUNIFY instructions and these
with sequences of UNION-FIND instructions. Consider for example
the following Prolog program

p(a).
p(b).
q(c).
q(b).

and the Prolog goal :- p(X), q(X). Solving this goal creates the follow
ing sequence of UNIFY -DEUNIFY instructions.

UNIFY(X.a), UNIFY(X.c), UNIFY(X,b), DEUNIFY,

UNIFY(X.b), UNIFY(X,c), UNIFY(X,b).

The instruction UNIFY(s,t) tries to unify the terms s and t and if
successful returns the common instance of these terms: the instruction
DEUNIFY cancels the last successful UNIFY instruction which has

Unification - An Overview 201

not yet been canceled.

Mannila and Ukkonen show that this UNIFY -DEUNIFY problem
is at least as difficult as the UNION-FIND problem and is therefore
non-linear on a large class of algorithms.

7. Conclusions
We have given an impression of possibilities. complexities and prob
lems with respect to unification in equational theories. We have res
tricted ourselves to homogeneous algebras. In most practical applica
tions, variables are typed. The extension of the known results to many
sorted algebras, depending on the relation between the sorts, is not
trivial. Some results can be found in [7.38.49]. Using many sorted
algebras also provides opportunities to reduce the complexity of
unification algorithms.

References
1. A.V. Aho, J.E. Hopcroft & J.D. Ullman: The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading. Mass. 1974.

2. S. Amberg & E. Tiden: Unifi.cation problems with one-sided dis
tributivity, in J.-P. Jouannaud (Ed.): Rewriting techniques and
Applications, Leet. Notes Comp. Sci. 202 (1985) 398-406,
Springer-Verlag. Berlin, Heidelberg, New York.

3. F. Baader: The theory of idempotent semigroups is of unification
type zero, J. Autom. Reasoning 2 (1986) 283-286.

4. D. Benanav. D. Kapur & P. Narendran: Complexity of matching
problems, in J.-P. Jouannaud (Ed.): Rewriting techniques and
Applications, Leet. Notes Comp. Sci. 202 (1985) 417-429.
Springer-Verlag, Berlin, Heidelberg, New York.

5. W. Bibel: Automated Theorem Proving, Vieweg, Braunschweig,
1982.

6. R.V. Book & J.H. Siekmann: On unification: equational theories are
not bounded, J. Symhollc Comput. 2 (1986) 317-324.

7. D. DeGroot & G. Lindstrom: Logic Programming Functions, Rela
tions and Equations, Prentice-Hall, Englewood Cliffs. N.J. 1986.

8. C. Dwork, P.C. Kanellakis & J.C. Mitchell: On the sequential
nature of unification, J. Logic Programming 1 (1984) 35-50.

9. C. Dwork, P.C. Kanellakis & L.J. Stockmeyer: Parallel algorithms
for term matching, in: J.H. Siekmann (Ed.): 8th International
Conference on Automated Deduction, Leet. Notes Comp. Sci. 230
(1986) 416-430, Springer-Verlag. Berlin, Heidelberg, New York.

10. F. Pages & G. Huet: Complete sets of unifiers and matchers in
equational theories, in: G. Ausiello & M. Protasi (Eds.): CAAP'83:

202 R. Sommerhalder

Trees in Algebra and Programrrdng, 8th Colloquium, Leet. Notes
Comp. Sci. 159 (1983) 205-220, Springer-Verlag, Berlin. Heidel
berg, New York.

11. F. Pages: Associative-commutative unification, in: R.E. Shostak
(Ed.): 7th International Conference on Automated Deduction. Leet.
Notes Comp. Sci. 170 (1984) 194-208, Springer-Verlag. Berlin.
Heidelberg, New York.

12. M. Fay: First-order unification in an equational theory, in:
Proceedings Fourth Workshop on Automated Deduction, Austin
Texas. 1979, pp. 161-167.

13. A. Fortenbacher: An algebraic approach to unification under asso
ciativity and commutativity, in: J.-P. Jouannaud (Ed.): Rewriting
Techniques and Applications. Leet. Notes Comp. Sci. 202 (1985)
381-397, Springer-Verlag. Berlin, Heidelberg, New York.

14. L.M. Goldschlager: The monotone and planar circuit value prob
lems are log space complete for P, ACM SIGACT News 9 No. 2
(1977) 25-29.

15. G. Gratzer: Universal Algebra, Van Nostrand, Princeton, N.J.
1968.

16. J. Heijenoort: From Frege to Godel - A Source Book in Mathemati
cal Logic, 1879-1931, Harvard University Press, Cambridge, Mass.
1967, pp. 525-581.

17. J. Herbrand: Recherches sur la theorie de la demonstration.
Traveaux de la Soc. des Sciences et des Lettres de Varsovie m, 33
(1930) 33-160. English translation: Investigations in proof theory
in [16].

18. A. Herold: Combination of unification algorithms, in:
J.H. Siekmann (Ed.): 8th International Conference on Automated
Deduction, Leet. Notes Comp. Sci. 230 (1986) 450-469, Springer
Verlag, Berlin, Heidelberg, New York.

19. C. Hewitt: Description and theoretical analysis of PLANNER, a
language for proving theorems and manipulating models in a robot,
Ph.D. Thesis, MIT, 1972.

20. G. Huet: An algorithm to generate a basis of solutions to homo
geneous diophantine equations, Inform. Process. Lett. 7 (1978)
144-147.

21. N.D. Jones: Space-bounded reducibility among combinatorial
problems, J. Comput. Systems Sci. 11 (1972) 68-85.

22. D. Kapur & P. Narendran: NP-completeness of the set unification
and matching problems, in: J.H. Siekmann (Ed.): 8th International
Conference on Automated Deduction, Leet. Notes Comp. Sci. 230
(1986) 489-495. Springer-Verlag, Berlin, Heidelberg, New York.

Unification - An Overview 203

23. C. Kirchner: A new equational unification method: a generalization
of Martelli-Montanari's algorithm. in: R.E. Shostak (Ed.): 7th
International. Conference on Automated Deduction. Leet. Notes
Comp. Sci. 170 (1984) 224-247. Springer-Verlag. Berlin. Heidel
berg. New York.

24. F. Kluzniak & S. Szpakowicz: PROLOG for Programmers.
Academic Press. New York. 1985.

25. H.R. Lewis & R. Statman: Unifi.ability is complete for co
NlogSpace. Inform. Process. Lett. 1S (1982) 220-222.

26. M. Livesey & J.H. Siekmann: Unifi.cation of A+C-terms (bags) and
A+C+I-terms (sets). Int. Bericht 5/76 Inst. fiir Inf ormatik.
University of Karlsruhe. 1976.

27. J.W. Lloyd: Foundations of Logic Programming. Springer-Verlag.
Berlin. Heidelberg. New York. 1984.

28. J. Maluszynski & H.J. Komorowski: Unifi.cation-free execution of
logic programs. Symposium on Logic Programming. IEEE Com
puter Society. 1985.

29 H. Mannila & E. Ukkonen: On the complexity of unification
sequences. in: E. Shapiro (Ed.): Third International. Conference on
Logic Programming. Leet. Notes Comp. Sci. 225 (1986) 122-133.
Springer-Verlag. Berlin. Heidelberg. New York.

30. A. Martelli & U. Montanari: An efficient unification algorithm.
ACM Trans. Program. Lang. Syst. 4 (1982) 258-282.

31. M.S. Paterson & M.N. Wegman: Linear unification. J. Comput. Sys
tym Sci. 16 (1978) 158-167.

32. D.A. Plaisted: The occur-check problem in Prolog. New Generation
Computing 2 (1984) 309-322.

33. G. Plotkin: Building in equational theories. in: D. Michie: Machine
Intelligence 7 (1972) 73-90. American Elsevier.

34. P. Raulefs & J.H. Siekmann: Unifi.cation of idempotent functions.
Techn. Report. University of Karlsruhe. 1978.

35. J.A. Robinson: A machine oriented logic based on the resolution
principle, J. Assoc. Comput. Mach. 12 (1965) 23-41.

36. J.A. Robinson: Computational logic: the unification computation.
in: B. Mettzer & D. Michie: Machine Intelligence 6 (1971). Ameri
can Elsevier.

37. J.F. Rulifson. J.A. Derksen & R.J. Waldinger: QA4: a procedural
calculus for intuitive reasoning. Technical Note 73. Art. Intell.
Center. Stanford 1972.

38. M. Schmidt-Schauss: Unifi.cation in many-sorted equational
theories. in: J.H. Siekmann (Ed.): 8th International. Conference on
Automated Deduction, Leet. Notes Comp. Sci. 230 (1986) 538-

204 R. Sommerhalder

552. Springer-Verlag. Berlin. Heidelberg. New York.

39. M. Schmidt-Schauss: Unification under associativity and idempo
tence is of type nullary. J. Autom. Reasoning 2 (1986) 277-281.

40. J.H. Siekmann: Unification of commutative terms. Int. Bericht
Nr. 2/76 Inst. fur Informatik. University of Karlsruhe. 1976

41. J.H. Siekmann: Universal unification. in: R.E. Shostak (Ed.): 7th
International Conference on Automated Deduction. Leet. Notes
Comp. Sci. 170 (1984) 1-42. Springer-Verlag. Berlin. Heidelberg.
New York.

42. J.R. Slagle: Automated theorem-proving for theories with
simplifiers. commutativity and associativity. J. Assoc. Comput.
Mach, 21 (1974) 622-642.

43. M.E. Stickel: A complete unification algorithm for associative
commutative functions. J. Assoc. Comput. Mach. 28 (1981) 423-
434.

44. M.E. Stickel: An introduction to automated deduction. in:
W. Bibel & Ph. Jorrand (Eds.): Fundamentals of Artificial Intelli
gence. Leet. Notes Comp. Sci. 232 (1986) 75-132. Springer-Verlag.
Berlin. Heidelberg. New York.

45. M.E. Stickel: Medumical Theorem Proving and Artificial Intelli
gence La.ngua,ges Ph.D. Thesis. Carnegie-Mellon University. 1977.

46. P. Szabo: Theory of first order unification, Thesis (in German).
University of Karlsruhe. 1982.

47. E. Tiden: Unification in combinations of collapse-free theories
with disjoint sets of function symbols. in: J.H. Siekmann (Ed.):
8th International Conference on Automated Deduction, Leet. Notes
Comp. Sci. 230 (1986) 431-449. Springer-Verlag. Berlin. Heidel
berg. New York.

48. J.S. Vitter & R.A. Simons: New classes for parallel complexity: a
study of unification and other complete problems for P. IEEE
Trans. Comput. C-3S (1986) 403-417.

49. C. Walther: A classification of many sorted unification problems.
in: J.H. Siekmann (Ed.): 8th International Conference on
Automated Deduction, Leet. Notes Comp. Sci. 230 (1986) 525-
537. Springer-Verlag, Berlin. Heidelberg, New York.

50. K. Yelick: Combining unification algorithms for confined regular
equational theories. in: J.-P. Jouannaud (Ed.): Rewriting Tech
niques and Applications. Leet. Notes Comp. Sci. 202 (1985) 365-
380. Springer-Verlag. Berlin, Heidelberg. New York.

The Relation Between Two Patterns
with Comparable Languages

Gilberto File

C.N.R.S., U.E.R. de Mathema.tiques et lnformatique
un;,versite de Bordeaux I, 351 Cours de la Liberati,on

33405 ToJ.ence Cedex, France

A pattern is a string consisting of terminals and variables. The
language defined by a pattern is the set of terminal strings obtained
by substituting (uniformly) terminal strings to its variables. A pat
tern simulates another pattern when its language includes that of the
other one.

If q simulates p , one may intuitively think. that there must be a
substitution that, applied to q, produces p. This hypothesis is con
sidered under different assumptions. The main result says that it is
true only for very restricted patterns (with variables only) and only
when erasing substitutions are considered. The relation between two
patterns is studied also in the case that the languages they produce
are equal.

1. Introduction

A pattern is a word consisting of terminal symbols and of variables.
The language defined by a pattern is the set of strings obtained by sub
stituting consistently terminal strings to all its variables. Patterns
were introduced in [1]. see also [3]. in the context of inductive infer
ence. We consider patterns independently of this application. In the
study of patterns it is natural to consider the following problem PD:
for any two patterns p and q decide whether the language of p
includes that of q. Angulin [1] has left the decidability of PD as an
open question. How would one attack such a question? Intuitively,
the following hypothesis H seems reasonable and. if verified. would
immediately give a decision method for PD :

H: If the language of q includes the one of p. then there must be a
substitution cf, such that tf,(q) = p.

Unfortunately. in [1] it is shown that H is false in the case that
one considers only nonerasing substitutions in the definition of
language of a pattern. In this paper we study whether H holds at least
in some restricted case. Namely. the following cases are considered:

(i) also erasing substitutions are allowed.

(ii) only pure patterns are considered. i.e .• patterns that contain only
variables.

205

206 G. File

This gives us the four cases shown in Figure 1. Correspondingly. one
has the four problems PD 1-PD4 and the four hypothesis H 1-H 4•

Only H 4 is known to be false: we study the remaining three cases.

erasin nonerasin

Figure 1.

The first result that we obtain is. that H 1 is true. After this we
want to verify whether the conditions of pure patterns and erasing
substitutions are both necessary. This is indeed the case. Relatively
simple counterexamples suffice to show that both H 2 and H 3 are false.

Therefore we only have a decision method for the inclusion of
pattern languages in one of the four cases. Clearly. this does not imply
that the other problems are undecidable. However, they are difficult
problems: PD 4 is shown to be NP-hard in [1] and it is easy to modify
this proof to show that the same is true for PD3•

The paper is organized as follows. First, the necessary definitions
are given in Section 2. In Section 3 we show that H 1 is true and in Sec
tion 4 that H 2 and H 3 are false. In Section 5 the relation between two
patterns defining equal languages is studied. The paper is closed by a
short conclusion in which some open problems are pointed out (Section
6).

2. Preliminaries

For any set S. IS I is the number of elements of S and for any string
s • Is I is its length. A is a finite set of terminal symbols: A =
{a,b,c, ... }. V = {x 1,x 2.x 3 •••. } is a set of variables. A pattern p is a
word in (AU V)*. Var(p) = {x Ix is in V and appears in p };
Term(p) ={ala EA and a appears in p }. A pattern is pure if it con
tains only variables. A substitution u is a function u: V-+ (A U V)*.
A substitution u is nonerasing if. for every x in V • u (x) :;z!: X . A sub
stitution is said to be a variable renaming if it defines a bijection from
V to V. The language generated by a pattern p is the set L (p) = {w I
w EA• and w = u (p) for some substitution CT}. The set of all termi
nal strings that can be generated from p by means of nonerasing sub
stitutions only is denoted by LN (p).

For a pattern p • the i -th position of p • 1 ~ i ~ Ip I, is denoted by
<p,i >. If the symbol occurring in <p.i > is x then <p,i > is an
occurrence of x in p. When the pattern under consideration is clear
from the context, a position <p,i > is denoted with i only. For
x E Var (p), the sequence of occurrences of x in p is denoted by
Occ(p.x) and is the sequence <i 1 ih > such that 1~i 1 <i 2 < ... <
< ih ~ Ip I and such that i 1 • ... ,ih are all and the only occurrences of x

Patterns with Comparable Languages 207

inp.

As already explained in the Introduction. see also Figure 1. we
want to show the truth or the falsity of the following four hypothesis
H1 toH4:

Given any two pure patterns p and q .

H 1: L (p)~ L (q) ==> there is a substitution er such that cr(q) = p.

H 2: LN (p) ~ LN (q) ==> there is a nonerasing substitution er such
that cr(q) = p.

The hypothesis H 3 and H 4 are obtained from H 1 and H 2 , respectively.
by dropping the hypothesis that p and q are pure.

The falsity of H 4 has been shown in [1] by means of the follow
ing counterexample. Let A = {O, 1}.

p = 0x10xx1 and q=xxy.

Similar counterexamples can be found for any finite A ; see [1].

It is important to remark the role of the size of the terminal
alphabet A for the problems under consideration. On the one hand, if
IA I = 1. then it is easy to show that H 1 to H 4 are all false. For
instance, the following counterexample suffices for showing that H 1

and H 2 are false:

p = xyyx and q = xx.

On the other hand. if IA I~ I Var (p) I+ !Term (p) I then H 1 to H 4 are
trivially verified: substitute each variable of p with a distinct symbol
of A that is not in Term (p). let w be the word obtained, since
L (p)f;. L (q) there is a substitution er such that cr(q) = w: this er
trivially gives a substitution er' such that cr'(q) = p. Thus, when con
sidering two patterns p and q we will always assume that
2~ IA I< IVar(p)I.

3. The First Hypothesis Is True

The goal of this section is to show the following theorem.

Theorem 1. For an alphabet A containing at least two symbols, H 1 is
true. □

The proof of the theorem is quite long and it is split in several lemmas.
Throughout the rest of the section the following notation is used.

Notation. p and q are patterns such that L (p)f;. L (q); k =
IVar(p)l,k' = IVar(q)l,n = Ip l.m = lq I. □

The idea of the proof of Theorem 1 is that of defining a substitu
tion 1r that associates to each variable of p a word that has .. nothing"
in common with the words of the other variables. Through 7T we
obtain an effect similar to that of having an alphabet A such that
I A I ~ I Var (p) I: see the observations at the end of Section 1.

208 G.File

Substitution Tr. The notation introduced above is used. Fix an arbi
trary total order among the variables of p. i.e., fix a bijection
ord: Var (p)➔ [1.k]. For each x E Var (p). Tr is as follows: let A =
{a,b} and ord (x) = i,

Tr(x) = as1as2 .. ,asLa. where L = 6mk and s1 = b(i-l)L+J,

j E[l.L].
A subword abt a of Tr(x) is called a module of Tr(x).

In what follows ,,,, is a substitution such that Tr'(q) = Tr(p). Such a
substitution exists because L (p)~ L (q). □

The reason for making Tr depend on L (and thus on q) is technical and
it will become clear in Lemmas 1 and 3 below. The following is an
important property of Tr.

Property (*). For any x E Var (p) consider a decomposition Tr(x) =
aw {3. where w contains at least a module of Tr(x). There is no other
decomposition a'w {3' of Tr(x) where a¢ a'. □

If i E 0cc (p,x) then with 1r(<p. i >) we will denote 1r(x). Simi
larly, for Tr'. This notation is extended to sequences of positions as fol
lows: 1r(p,i,i + 1. ... ,i +h) denotes Tr(<p,i >) ... Tr(<p,i +k >).

We define the following two relations:

(1) A position <p,i> is simulated by the positions <q.j>, ... ,
<q,j +h > if,
(a) Tr'(q.1, ... ,j-1) is a prefix of Tr(p,1, ... ,i-1) and,

(b) 1r'(q. 1. ... ,j +h) contains Tr(p,1, ... ,i) as a prefix.

With lssim(i) we denote the sequence < j, j +h >.
(2) A position <q,j > simulates the positions <p,i >, ... , <p,i +h >

when lssim (i -1) (if it exists) does not contain j , lssim (i), ... ,
lssim (i +h) all contain j, and lssim (i +h + 1) does not.

The sequence <i •... ,i+h > is denoted by Sim(j).

It is useful to be able to be more precise about what simulates
what: we want to specify also what part of a string is simulated.

Consider two positions <p.i > and <q.j > such that the first is simu
lated by the second one. It is easy to understand that in this case
Tr(<p,i >) and Tr'(<q.j >) must have a common substring w. Figure
2 shows one possible situation of the simulation of <p.i > by <q.j >.
Obviously, there are other cases. but for each the above statement
remains true. Assume that the substring w produced by both <p.i >
and <q.j > starts and ends in the positions h 1 and h 2 of Tr(<p,i >).
i.e., Tr(<p.i >)=aw {3, where la I= h 1-1 and lw I= h2-h1+1. In
this case we say that <q.j > simulates <p,i > from h 1 to h 2• In case
the string w contains at least one module of Tr(<p.i >). one says that
<q,j > is principal, for <p,i >. If this is the case, j EOcc(q,y) and
i E 0cc (p,x) then y is said to be principal for x.

Patterns with Comparable Languages

7T(p.1 i-1)
+--

7r'(q.1, ...• j-1)

7T(<p.i >)
-+------+ - - - - -

I
w I

I
----+ - - - - - - -

7r'(<q.j >)

Figure 2.

209

In what follows we will prove three lemmas that will enable us to
prove Theorem 1. Before doing this let us describe intuitively the line
of thought that is followed. What we want to do is the following:

First, in Lemm.a 1. it is shown that each position <p,i > is simu
lated by at least one position <q.j > that is principal for it, (clearly,
j E Issim (i)).

In Lemm.a 2 it is shown that if an occurrence <q.j > of y is
principal for an occurrence <p,i > of x. then every other occurrence
of y must be principal for some other occurrence of x .

Finally, in Lemma 3 we show that each position i E [1.n] of p can
.. choose·· a position <q.j > of Issim(i) that is principal for <p.i >.
such that the following holds: let <p,i > and <q.j > be occurrences
of x and y. respectively; since <p,i > has chosen <q.j >, every other
occurrence <p.i' > of x such that an occurrence <q.j' > of y is in
Issim(i'). chooses <q.j' >.

Once this is shown. it is easy to construct a substitution <p such
that <f,(q) = p (thus showing the theorem):

(i) for all variables y of q that are never chosen in the above process.
<f,(y) = >..

(ii) for every other variable z of q • consider an occurrence < q. j > of
z and let <ih •..• ih+l > be the elements of Sim(j) that have
chosen <q.j >; if x 0 ••••• xz are the variables occurring in
ih •.. ,ih +l • respectively, then <f,(z) = x 0 •• .xz.

Lemma 1. For every i E [1.n], Issim (i) contains at least one element j
suchtluzt <q.j> is principal/or <p,i>.

Proof: A variable y E Var (q) that is principal for no variable of p. is
such that I 7r'(y) I ~ 2(kL + 1). In fact. 7r'(y) can have the forms.
bt aabt' or bt abt' • where t and t' are at most kL; see the definition of
'1T. Now, since lq I= m. Issim(i) is at most <1. m >: in this case.
the string that q can generate for simulating 7T(<p.i >) has length at
most 2m (kL + 1). This cannot be sufficient because the length of
'1T(<p.i >) is as follows: let r = ord (x). where x is the variable in
<p,i >. then

l7r(x)I = (L+l)+JtJcr-l)L+j] = (L+1)+(r-1)L 2 + L(L2+t).

210 G. File

Because I 1T(x) I depends on the square of L . it is easy to prove that
I '1T(x) I > 2m (kL + 1). Recall that L = 6mk ; it suffices to consider the
second term only (the first may be equal to zero if r = 1): we want to
show that.

L (L2 +l) > 2m(kL + 1).

This is true if L 2>4m(kL +1). now L 2>5mkL >4m(kL +1). Thus
the lemma is true. D

Lem.ma 2. Consider two positions <p.i > oruJ <q,j > such that the
second simula.tes the first from h 1 to h 2 oruJ it is principal, for it. Let
j e 0cc (q.y) = < j 1 • ..• jh > oruJ i e 0cc (p.x); for every f e [1,h], there
is an element i' of Occ(p.x) such that <q,h > simula.tes it from h1 to
h 2 oruJ is principal, for it.

Proof: By definition of '1T. only occurrences of x produce in '1T a module
of '1T(x). Hence, if y is principal for x , every occurrence of y in q
must participate to the simulation of an occurrence of x. This,
together with Property (*) shows the lemma. D

The following concept is very important for the sequel of the
proof.

Definition. Let x EVar(p) and Occ(p,x)= <i 1, .. ,ih >. A choice for
x is a sequence Cx = < j 1 ... , jh > of positions of q such that the fol
lowing two conditions are satisfied:

(1) jr Elssim(ir) and <q,jr > is principal for <p.ir >.
(2) Let y be the variable in position <q.jr > and assume that

<q.jr> simulates <p.ir> from h 1 to h2: for any other iz,
z E [1,h]. such that < p. iz > is simulated from h 1 to h 2 by an
occurrence <p.j > of y. it must be that jz is equal to j. □

The second point of the above definition may appear mysterious. Its
goal is explained intuitively as follows. From a choice for each variable
of p we intend to construct the substitution </> such that cf>(q) = p • To
this end we need that once a simulation task (e.g .. simulate <p,ir >) is
given to one occurrence of y. (e.g., <q,jr >) that same task must be
assigned to every other occurrence of y (Thus, <q.jz > must simulate
<p.iz >). Intuitively. one can require this condition because of Lemma
2; the formal proof is given in the following lemma.

Lem.ma 3. For each variable x E Var (p) there is a choice for x.

Proof: Let 0cc (p.x) = < i 1 • .. ,ih > and H = I '1T(x) I. For each
f E [1,H], Cut (f) is the sequence < h, .. , jh > such that for every
r€[1,h]. <q.jr> simulates <p.ir> from h1 to h2 and h1:!::.f :!::.hz.
For proving the lemma it suffices to show that there is at least one f
such that for each r E [1,h], <q.jr > is principal for <p,ir >. That
such a Cut (f) is a choice for x is shown as follows.

Patterns with Comparable Languages 211

Cut (f) satisfies trivially condition (1) of the definition of choice.
It satisfies also condition (2) because otherwise the following would be
true: Cut (f) contains two elements ill and i12 of 0cc (p,x) such that,

(i) <q.jz 1> simulates <p,iu> fromh 1 toh 2;letjz 1 E0cc(q.y),

(ii) <q.jz2 > simulates <p,iz 2 > from h 1' to h 2' and h2 is not in
Occ(q,y).

(iii) there is an occurrence <q.j > of y that simulates <p.i12 > from
h1 to h2.

It is easy to see that this cannot be true because f is both in [h 1.h 2]

and in [h 1',h 2'] and hence, if (ii) and (iii) would be true at the same
time. the f -th symbol of <p.iz2 > would be .. simulated twice".

An f • such that Cut (f) has the property specified above. exists
because, otherwise. the non principal variables of q should generate
more than H symbols and in the proof of Lemma 1 we have shown
that this is not possible. D

We are .finally in the condition of proving Theorem 1. For this
proof we need the following notation. Consider a variable x E Var (p).
letOcc(p.x)= <i1, .. ,ih> andlet'Cx = <h,--,ih> beachoiceforit;
let <p,i > be an occurrence of x. i.e .. i = ir for some r E [1.h]. then
with Cx (<p,i >) we denote the element ir of Cx. Intuitively,
Cx (<p.i >) is the position in q that has been chosen for simulating
<p,i >.
Proof of Theorem 1: Let for x E Var (p). Cx be a choice for x. The
definition of the substitution <f, such that <f,(q) = p is as follows:

Definition of <f,. For each y E Var (q) one needs .first to .fix the nota
tion (a):

(a) Consider any occurrence < q. j > of y and let S =
< <p.i > , <p,i +h > > be all the positions that have chosen
<q.j >; formally, S is the maximal sequence of positions of p
such that, for each r E [i,i +h]. if x is the variable occurring in
<p.r >. then Cx (<p.r >) = j.

Now, if S is empty then <f,(y) =>...otherwise. if x 0 •••• ,xh are the vari
ables of p occurring in the positions i ,i + h of p , then
q, (y) = XO• ••• ,Xh • □

Notice that S consists of contiguous positions: this is the case because if
<q.j > is chosen by <p,r > and <p.r+2> then it is the only princi
pal position of <p.r+1> and hence, it must be chosen by <p.r+l>.

Since for de.fining <f,(y) just any occurrence of y is taken, the
reader may wonder whether the above definition characterizes a unique
substitution. This is the case because of the following reason (*):

(*) If an occurrence <q.j > of y simulates an occurrence <p,i > of
x from h 1 to h 2 , then, by Lemma 2. every other occurrence
<q.j' > of y must simulate from h 1 to h 2 some other occurrence

212 G. File

<p,i' > of x. By point (2) of the definition of choice, if
Cx (<p,i >) = j. then Cx (<p,i' >) = j'. Hence. considering j
or j' for defining cf>(y) is precisely the same.

It remains to show that cf>(q) = p. To this end remark that p can
be cut into h pieces, h ~ 1,

< 1. ... ,i (1) >. <i (1)+1. ... ,i (2)> , ... , <i(h-1)+1. i (h)>

such that every position in each piece has chosen the same position of q
(Each piece is like the sequence S in the definition of cf> above). Let jr
be the position of q that is chosen by the r -th piece. r E [1.h]. For
obtaining the desired result, it suffices to observe that the definition of
cf> and reason(*) imply the following two points:

(1) The positions < ji jh > are all and the only positions in q of
the variables y such that cf>(y) :¢: X.

(2) If y is the variable in <q.j7 >. r E [1.h]. cf>(y) is equal to the
sequence of variables corresponding to the positions in the r -th
piece of p. i.e., <i (r-1)+ 1. ... ,i (r)>; we assume that i (0) = 0.0

This result gives an exponential test for the inclusion of the
languages of two pure patterns under erasing substitutions.

4. Hypotheses 2 and 3 Are False

These negative results are easier to present than the first one because it
suffices to give a counterexample for each of them.

Counterexample for H 2• (Pure patterns and nonerasing substitu
tions) Let the terminal alphabet be A = {a,b }.

p = xyzwkmr and q = xyzyw .

L (q) contains all words of length at least five and that can be decom
posed into. w 1w 2w 3w 2w 4• such that all w; are non empty. For show
ing that L (q) ;J. L (p) observe that. if L 5 is the set of all words of
length at least five on A , any w EL 5 can be decomposed in,
W1W2W3W2W4, where W1 and w 4 may be empty. Since Ip I= 7, every
word w EL (p) can be decomposed into w 1w 2w 3 , where w 2 EL 5 and w 1

and w 3 are not empty. Hence, w EL(q). It is evident that no noneras
ing substitution cf> exists such that cf>(q) = p.

It is not difficult to generalize this example to a larger alphabet A. □

Counterexample for H 3• (Any pattern and erasing substitutions) The
case that A = {a,b} is very simple:

p = xaybz and q = xaby .

Clearly, there is no erasing substitution cf> such that cf>(q) = p, but
L (p) = L (q): they both contain all words in A• containing ab . This
example is due to Codognet [2].

We are not able to generalize this example to larger alphabets. A
quite different counterexample is needed if A = {a,b,c }. For simplicity

Patterns with Comparable Languages 213

we write p and q using the extra symbol ¢ to denote the string abc •

p = ¢aa ¢ba ¢ca ¢¢ab ¢bb ¢cb ¢¢yayb

q = x¢y¢z¢w¢r¢kykw

Let us show that L (p)S: L (q). Intuitively. the idea is that k of q
cannot produce both ya and yb and hence, it must be .. helped" by y
and w. but y and w cannot be just a and b; they are at least strings of
length 2. The last character of the string generated by y (under any
substitution) can be a • b • or c • thus y must have the possibility of
becoming. according to the need, aa • ba and ca • whereas w must be
able to become ab • bb , and cb • This can be done by varying accord
ingly the values of the variables x. z. and r. More formally, consider
any substitution CT and let the last character of CT (y) be, for instance.
c. Then one can define a substitution CT 1 such that CT'(q) = CT(p) as
follows:

. CT'(x) = ¢aa ¢ba

CT'(y) = ca

CT'(z) = ¢ab ¢bb

CT'(w)= cb

CT'(r)= A
CT'(k) = CT(y) of which the last letter has been deleted.

Assume now that there is a substitution </> such that <f>(q) = p.
Any such </> must satisfy the condition that <f>(kykw) = yayb and
hence, <f,(k) = y. <f>(y) = a. and <f,(w) = b. But, considering q, one
sees that this is possible only if the first part of p contains ¢a¢ and
¢b ¢. If ¢ = abc this is not possible. D

Observe that these negative results do not imply the undecidabil
ity of the inclusion of pattern languages in the conditions of H 2 and
H 3• However, they seem to imply that any method for deciding these
problems will not be simple. In [1] it is proved that whether
L (p)~ L (q) for any patterns p and q under nonerasing substitutions
is NP-hard. It is simple to modify this proof for showing the NP
hardness of the problem also in the case that erasing substitutions are
considered. This proof is not included here because it is a straightfor
ward modification of the one of [1].

5. On Pattern Equivalence

Based on the results of the previous sections, one may say that, in gen
eral, the condition L (p) S: L (q) is not sufficient for showing a strict
relationship between p and q. It is natural to wonder whether the
condition that L (p) = L (q) would then be strong enough.

Angulin in [1] shows the following result (a).

214 G. File

(a) For any two patterns· p and q. LN (p) = LN (q) if and only if p
and q are equal modulo a variable renaming.

The proof of this result uses the (obvious) fact that if
LN (p) = LN (q) then Ip I = I q I. Therefore, this proof breaks down
if erasing substitutions are considered. In that case the following
results can be shown:
(b) If p and q are pure patterns, then L (p) = L (q) if and only if

there are two substitutions CT and y such that CT(p) = q and
y(q)= p.

(c) For any two patterns p and q and for an alphabet A containing
at least three symbols, if L (p) = L (q), then p and q must be as
follows:

p = W10!1W2 .. ,WtO!tWt+1

q = W1/31W2 .. ,Wt /3t Wt+l

where. for each i E [1.k +1]. w; is in A* and for each i E [1.k]. ai

and /3i are in Var(p)+ and in Var(q)+, respectively. When two
patterns respect the above condition they are said to have the
same structure.

Point (b) is an immediate consequence of the fact that H 1 is true.
Point (c) is somehow a weaker version of (a). Point (c) can be proved.
roughly. as follows (This proof was suggested by [2]). First, remark
that the hypothesis that A contains more than two symbols is neces
sary: the first counterexample for H 3, where A = {a,b}. contradicts
(c). Consider two patterns p and q such that L (p) = L (q). It is easy
to see that if t (p) and t (q) denote the terminal strings obtained from
p and q by deleting the variables, then t (p) = t (q). Assume that p
and q contradict (c). This means that the following situation (or the
symmetric one) takes place:

p = Owa 1w' .n• and q = Ilww' Il'.

Assume that this is the left-most such situation. Let a be a symbol in
A that is different from the last symbol of w and from the first one of
w' . Let CT be the substitution sending every variable of p to a . There
is no CT' such that CT'(q) = cr(p). Assume. in fact, that such er' exists.
Since CT sends all variables of p to a. by the fact that t (p) = t (q). er'
must do the same. From the assumption that .n and Il respect point
(c), it follows that Ow and Ilw contain the same number (at least
one) of symbols different from a: CT and er' must be such that these
symbols occur in corresponding places of cr(p) and cr'(q). Thus, in
particular. lcr(.nw)I= lcr'(Ilw)I= k. Observe now that the k +1-th
symbol of cr(p) is a. whereas the k +1-th symbol of cr'(q) is the first
symbol of w' that is different from a by construction. Hence,
cr'(q) ;c cr(p). □

Patterns with Comparable Languages 215

6. Conclusions and Open Problems

We have studied the problem whether, for two patterns p and q, the
fact that the language of q includes the one of p implies the existence
of a substitution er such that cr(q) = p. This is true only in the case
that p and q are pure patterns and that erasing substitutions are con
sidered. Thus, only in this case we have an exponential method for
deciding the inclusion of pattern languages.

The stronger hypothesis that LN (p) = LN (q) implies the equal
ity (modulo renaming) of p and q, whereas. under the hypothesis that
L (p) = L (q). we are able to prove only the equality of the structures
of p and q • see point (c) in the previous section.

Several problems must still be answered:

(1) Can a stronger result than that of point (c) of the previous sec
tion be shown for any two patterns p and q such that
L(p) = L(q)?

(2) Are there methods for deciding the inclusion of two pattern
languages when the two patterns are not pure or if one considers
nonerasing substitutions?

(3) In the case of erasing substitutions. is it possible to define a set of
rules for transforming a given pattern into one of minimal length
still defining the same language?

Ackrwwledgements. I would like to thank Christian Codognet and
Michel Billaud of the University of Bordeaux for stimulating conversa
tions and helpful discussions.

References

1. D. Angulin: Finding patterns common to a set of strings. Proc.
11-th ACM Symp. on Theory of Comp. Atlanta. Ga. (1979) 130-
141.

2. C. Codognet: Personal communication (1986).

3. T. Shinohara: Polynomial time inference of pattern languages and
its application. Proc. 7-th IBM Symp. on Math. Found. of Comp.
Sci. (1982).

Attributed Abstract Program Trees

Henk Alblas and Frans J. Faase

Department of Computer Science, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

Traditionally, an attribute grammar is presented as a context-free
grammar which is augmented with attributes and attribute evalua
tion rules. This makes attribute grammars a suitable means for the
specification of the semantics of programming languages in the con
text of derivation trees. For the specification of semantic integrity
constraints in the context of abstract program trees the concept of
attribute grammars has to be re-defined. For this purpose, a language
for the specification of context-free tree grammars is defined. This
language is extended to an attribute tree grammar specification
language.

1. Introduction

In the classical theory [7] attribute grammars form an extension of the
context-free grammar framework in the sense that information is asso
ciated with programming language constructs by attaching attributes to
the grammar symbols representing these constructs. Each attribute has
a set of possible values. Attribute values are defined by attribute
evaluation rules associated with the productions of the context-free
grammar.

The attributes associated with a grammar symbol are divided into
two disjoint classes. the synthesized attributes and the inherited attri
butes. The attribute evaluation rules associated with a production
define the synthesized attributes attached to the grammar symbol on
the left-hand side and the inherited attributes attached to the grammar
symbols on the right-hand side of the production.

A non-ambiguous context-free grammar assigns a single deriva
tion tree to each sentence. The values of the synthesized attributes at a
node of a derivation tree and the inherited attributes at its immediate
descendents are defined by the attribute evaluation rules associated
with the production applied at that node. The value of a synthesized
attribute of the parent is computed from the values of the attributes at
its children and (possibly) other attributes of the parent itself. The
value of an inherited attribute of a child is computed from the values
of attributes at its parent and its siblings and (possibly) other attri
butes of the child itself.

Generally speaking, a synthesized attribute attached to a tree node
contains information concerning the subtree at that node. This

217

218 H. Alblas & F.J. Faase

attribute therefore contains information from the terminal string
derived from the nonterminal symbol labeling that node. Inherited
attributes are convenient for expressing the dependence of a program
ming language construct on the context in which the construct appears.

The traditional way of thinking about attribute grammars is in
terms of derivation trees. First. the parser generates a derivation tree
for a given program. Next, the attribute evaluator computes the values
of the attribute instances attached to the nodes of the derivation tree
by executing the attribute evaluation rules associated with these attri
bute instances.

In this research we consider attribute grammars for abstract pro
gram trees in which nonterminal symbols are no longer used and where
operators and keywords do not appear as leaves, but rather are associ
ated with the interior node that would be the parent of those leaves in
the derivation tree. Another reduction found in abstract program trees
is the elimination of chain productions. This allows an abstract pro
gram tree to be viewed as a compact and simplified representation of a
derivation tree, where each operator is represented by an interior node
whose children represent the arguments of that operator and where all
redundant information needed for the syntactical analysis has been
deleted. In other words, an abstract program tree is a non-redundant
representation of the hierarchical structure of a source program. In this
paper we want to describe abstract program trees as a separate concept.
not as an adaptation of context-free grammars. We also do not discuss
the conversion of derivation trees of a context-free grammar to abstract
program trees, nor do we discuss how context-free grammars can be
transformed into abstract program trees as described in [10].

Essentially the compilation process consists of an analysis phase
and a synthesis phase. The result of the analysis phase (i.e.. lexical
and syntactic analysis) is a tree (possibly in a linearized form). which
expresses the structure of the source program. Attributes can be
attached to the nodes of the tree to carry semantic information.
Semantic analysis (e.g.. type checking) can be expressed by attribute
evaluation rules and semantic conditions. The aim of the synthesis
phase is the inclusion of necessary constraint checks (e.g .. array bound
checks) and the translation of the control structures and the data
structures of the source program into the instructions and the storage
locations of the target machine. Our ultimate goal is to specify these
translations by a stepwise application of tree transformations, starting
from the structures of the source program and ending with the struc
tures of the target machine.

Tree transformations also form a suitable means for the
specification of compiler optimizations. These transformations replace
complicated and non-efficient tree structures by equivalent but simpler
and more efficient tree structures.

Attributed Abstract Program Trees 219

For the specification of tree transformations. both for the purpose
of translations and for optimizations. the classical attribute grammar
framework has to be extended with conditional tree transformation
rules [2,6,11]. The predicates on attribute values (carrying context
information) may be used to enable the application of these transfor
mations.

So. we are interested in non-redundant program trees, which can
be used as a concept to define the information fl.ow of the associated
program and which can also be considered as an object to be operated
on. In this paper we restrict ourselves to the description of the struc
ture and the attribution of abstract program trees. We will deal with
tree transformations in a future paper.

This paper is organized as follows. Section 2 provides an intro
duction to the basic concepts of the classical attribute grammar frame
work, based on context-free grammars. A language for the specification
of abstract program trees is given in Section 3. In Section 4 this
language is extended to an attribute grammar specification language.
Concluding remarks are made in Section 5.

2. Classical Attribute G.ramrnars
In the classical theory [7] an attribute grammar AG is based on a
context-free grammar G which is augmented with attributes and attri
bute evaluation rules.

The underlying grammar G is a 4-tuple (VN.VT,P,S). The finite
sets V N of nonterminal and VT of terminal symbols form the vocabu
lary V = V N U VT. P is the set of productions and S E V N is the start
symbol, which does not appear in the right part of any production.
The grammar G is reduced in the sense that each nonterminal symbol
is reachable from the start symbol and can generate a string which con
tains no nonterminal symbols.

Each symbol X E V has a finite set A (X) of attributes, parti
tioned into two disjoint subsets I (X) and S (X) of inherited and syn
thesized attributes, respectively.

Let P consist of r productions, numbered from 1 to r and let the
p -th production be

Xpo-+ XP 1 Xp2 ... XpnP

where nP ;;l::O, XpoE VN and Xpk EV for 1~k ~nP.

Production p is said to have the attribute occurrence (a.p,k) if
a EA (Xpk). The set of attribute occurrences of production p will be
denoted by AO (p). This set can be partitioned into two disjoint sets
of defined occurrences and used occurrences denoted by DO (p) and
UO (p). respectively.

220 H. Alblas & F.J. Faase

These subsets are defined as

DO(p) = {(s.p.0)ls ES(Xpo)}
U {(i.p,k)li EI(Xpk)A1~k ~np}

UO(p) = AO(p)-DO(p)
= {(i.p,0)li E/(Xpo)}
U {(s,p,k) Is E S(Xpk) A 1 ~k ~nP}

Associated with each production p is a set of attribute evaluation
rules which specify how to compute the values of the attribute
occurrences in DO (p). The evaluation rule defining attribute
occurrence (a,p,k) has the form

(a,p,k) := / ((a 1,p,k 1),(a 2,P,k2), · · · ,(am ,p,km))

where (a,p,k)E DO (p). f is a total function and (aJ .p.ki)E AO (p)
for 1~j ~m.

An attribute grammar is said to be in normal form if the extra
condition (aJ ,p,kJ)E UO (p) holds for 1 ~ j ~m. It is easy to
transform every attribute evaluation rule (by a sequence of transfor
mations) such that only attribute occurrences in UO (p) appear as
arguments of / .

For each sentence of G a derivation tree exists. The nodes of the
tree are labeled with symbols from V. At each inner node a produc
tion p :XP O ➔ XP 1 XP 2 · · · XpnP is applied, such that the node is labeled
with XP O and its sons with XP 1.XP 2• • • • ,XpnP.

Given a derivation tree, instances of attributes are attached to the
nodes in the following way: if node N is labeled with grammar symbol
X. then for each attribute a EA (X) an instance of a is attached to
node N. An attribute instance a of node N will be denoted by
a of N.

Let No be a node, p the production at N O and N 1• N 2, · · · ,Nn
p

its sons from left to right, respectively. An attribute evaluation
instruction

a of Nk := f (a1 of Nk 1,a2 of Nk 2, ···,am of Nk,,.)

is associated with attribute instance a of Nk if the attribute evaluation
rule

(a,p,k) := f ((a 1,p,k 1), (a 2,p.k 2), · · · • (am ,p,km))

is associated with production p.

The task of an attribute evaluator is to compute the values of all
attribute instances attached to the derivation tree by executing their
associated evaluation instructions. In general the order of evaluation is
unimportant, with the only restriction that an attribute evaluation
instruction cannot be executed before the values of its arguments are

Attributed Abstract Program Trees 221

available. Initially the values of all attribute instances attached to the
derivation tree are undefined, with the exception of the inherited attri
bute instances attached to the root (containing information concerning
the environment of the program) and the synthesized attribute
instances attached to the leaves (determined by the parser).

At each step we choose an attribute instance whose value can be
computed. The evaluation process continues until all attribute
instances in the derivation tree are defined or until none of the remain
ing attribute instances can be evaluated.

An attribute grammar is circular if a derivation tree exists for
which it is not possible to evaluate all attribute instances.

Several methods have been developed to evaluate the semantic
attributes within the derivation tree of a program. An overview is
given in [4].

3. Abstract Program Trees

In this section we present a mechanism to define abstract program
trees. One could think of defining an abstract program tree by a
transformation applied to a derivation tree. This is, however, not a
suitable approach as we want the definition mechanism of abstract pro
gram trees to be a framework that can easily be extended to an attri
bute grammar-like definition. Moreover, we view an abstract program
tree as an intermediate structure subject to further transformations.
The concept of a derivation tree is therefore not a good starting point.
Instead, we shall use a completely different model. namely graphs.
Starting with graphs we will make a number of restrictions which will
finally bring us to a grammar for the specification of abstract program
trees.

3.1. Starting with Graphs
First of all we restrict our graphs to be directed and we assume every
graph includes one node from which all other nodes can be reached
when following the arcs. We will call this distinguished node the root
node, because for trees it can be considered as the node on which the
whole tree stands (or from which it hangs).

Secondly, we will color the nodes and the arcs (using graph ter
minology) and put some restrictions on the coloring. In our terminol
ogy we would refer to typing and labeling. The idea is to associate
with every node a type and to define node types by a type rule that
determines the number of outgoing arcs, their labeling (or distinguish
ing colors) and the permitted node types pointed to by these arcs.

We will now have a closer look at the type system that we are
going to use. For each node type a (possibly empty) set of pairs could

--be given determining the number of arcs. Each pair consists of a

222 H. Alblas & F.J. Faase

unique label and a non-empty set of allowed node types.
This leads to

RULE(rwde_type)
= { (label1.frwde_Jype1,1, · · · .rwde_type1,m 1})

.
• (loheln • {rwde_typen, 1• • • · ,rwde_typen,m,,})
}

where n ;;i:o, m; >0 for 1 ~i ~n. and label; ¢.label) for 1 ~i <j ~n.

Now a family of graphs can be defined by a 3-tuple (N,L.R).
where N is the set of node types. L is the set of labels and R is the set
of type rules with a single type rule for every node type. Each
member of this family is a typed graph in which all the nodes have the
right number of arcs with the right labels, and the right node types at
the end of the arcs.

3.2. Towards an Abstract Program Tree G ... arnrnar
Having constructed a language for the definition of graphs one could
think of an extension of the classical attribute grammar framework
from trees to graphs. However, such an extension introduces complica
tions which go far beyond the scope of this paper. For this reason in
this paper we restrict ourselves to trees only.

The above-mentioned type system applied to trees defines for
every node type a fixed number of sons. The type of the father node
puts some restrictions on the types of the son nodes. Every tree node
can be reached from the root node through a unique path. The root
node is considered as the highest node from which all other nodes hang.

We require a strict ordering of the sons of a node. which is the
same for all the nodes of the same type. Such an ordering is needed for
the definition of certain tree traversal strategies (e.g .. especially for the
pass-oriented strategies [1]).

In Section 3.1 the. node types allowed at a certain arc have been
written as a set. In practical applications, these sets are often similar.
We therefore introduce an abbreviation mechanism called classes for
these sets. A class will be defined as a subset of the node types. Hav
ing defined classes, trees can be defined by so-called tree rules, which
are similar to the node type definitions in the previous section, but
differ in that the labels have a fixed order, and the sets are replaced by
a class or a node type. The labels will be called partnames, because
they indicate a part of the tree under a node.

Tree rules are of the form

a_rwde_type
=> partname 1 : element 1

partnamen : elementn

Attributed Abstract Program Trees 223

where n :=!= O. elementi E node_types U classes for 1,, ,n and
partnamei-;,t: partnanut J for 1,, < j , n .

In our formalism we shall also expand the class definitions. In
most applications it is possible to divide the members of a certain class
into groups that have the same properties. i.e .• they have tree rules that
are similar if we look at the allowed node types at their parts. This
observation leads to two extensions of the previous definition.

We first introduce a hierarchical class definition by allowing
classes to have other classes as their members. A class definition is of
the form

a class = {element 1 · · · element } - • • n

where n >O and elementi E node_Jypes U classes for 1,, ,n.
The introduction of hierarchical class definitions requires some restric
tions. We exclude recursive class definitions. as for example

class_A = {class_B.class_A.node_type_N}
class_B = {dass_A.node_Jype_M}

We now introduce the concept of the closure over the class definitions.
We shall use the function class (C) to denote the set of members of
class C. Likewise we shall use the function clos_class(C). for the clo
sure over the member-of-class relation that will return all the
members of class (C) together with the clos_class of all the classes in
class(C).

Although recursive class definitions are not allowed. there
remains a kind of ambiguity. as illustrated by the example

class_A = {class_B.class_C}
cl,a,ss_B = {node_Jype_N.node_type...J,f}
class_C = {node_Jype_N.node_type_K}

In this example node_type_N is a member of clos_class(class_A). but
in the case of an instance of class_A in an abstract program tree.
where node_type_N is selected. it is not clear whether node_type_N
is a member of class_B or class_C. The question whether we will
allow these ambiguous class definitions. is further dealt with in Section
4.1.

Secondly. we make the extension that tree rules may also be asso
ciated with a class. This means that in addition to a node_Jype. we
will also allow a class as the left-hand side of a tree rule. The tree
rule associated with the class C holds also for all the elements in
clos_class (C).

In the previous section we decided to associate exactly one tree
rule with each node type. With respect to classes this rule requires
that once a tree rule has been written for a class. no tree rule may be
written for a member (or a member of a member, etc) of the class.

224 H. Alblas & F.J. Faase

Also, if an element is a member of more than one class, it is not possi
ble that more than one of these classes has an associated tree rule.

3.3. Form.al Definition of Abstract Program Trees

In this section the concept of an Abstract Program Tree Grammar
(APTG) will be defined formally. An APTG can be defined as a 5-
tuple (VN, Ve, TR. CD, R). The finite set VN of node types and Ve of
classes form the set of elements V = V N U Ve. TR is the set of tree
rules and CD is the set of class definitions. R is the root element
which may be either a class or a node type.

The members of TR will be of the form

Vo ==;> P1: V1, · · · ,Pn : Vn .

where n ~O. Vi EV for O~i ~n. Pi is a partname and P;¢:P1 for
1~i<j~n.

The members of CD will be of the form

C = {V 1, · • ·, Vn}

where CE Ve, n >O and V; EV for 1~i ~n. For each CE Ve there is
exactly one member in CD which has C as its left-hand side. All the
members of CD together should not include recursive class definitions.
TR and CD combined should not define more than one tree rule for
each node type of the grammar.

We will define the function class (e : V) in the context of CD as

class(e :V)
= if eEVN

then fiJ

else {V 1, • · • , Vn }
where 'e= {V 1, · · ·, Vn }'ECD

fl.

We will now define the set of abstract program trees defined by
an APTG. We do not talk about derivations here, thus this cannot be
viewed as an extension from string to tree grammars. Before we can do
this we have to choose a representation for trees. We use the represen
tation where every subtree is represented by the node type of its root,
followed by the sequence of representations of its subtrees (in the same
order as they are hanging in the tree), enclosed in the brackets .. <"
and ·· > ". The brackets may be omitted if a node type has no sons.
Each node type name with its associated brackets represents one
instance of a node. with that node type, and the links (or arcs) to its
subtrees. Because we have only one tree rule associated with every
node type. this representation will be complete. The following example
depicts the tree representing the arithmetic expression 3*(4+5)

mul_op < num . plus_op < num , num > >

Attributed Abstract Program Trees 225

In this representation the values of the numbers are not represented.

We first define a function Tree that returns all subtrees for acer
tain root element as

Tree(VN. Ve. TR. CD. s EV)
= { N < t 1 • • · • • t" >

I N e VN n clos_class_and (s)
A 'Vo===>P1:V1. · · ·• Pn:Vn'ETR
A N e clos_class_and (V 0)

A VO~i ~n
(ti E Tree(VN, Ve.TR.CD. Vi))

}
where clos_class_and (s e V)

= {s } U I I clos class and (e)
eE~.r(.r) - -

Using this definition we can define the function Tree that for a given
APTG G yields the set of all trees that are defined by it as

Tree (G :API'G) = Tree (V N (G). V c (G).TR (G).CD (G).R (G)) .

Above we have essentially presented a language to describe APT's. and
defined the set of APT's that are defined by a given APTG. This
language shows certain similarities with the Interface Description
Language IDL [8.9]. A more restricted formalism for the description of
abstract program trees is presented in [3].

4. Attributed Abstract Program Trees

For the specification of the information :ft.ow in abstract program trees
we will augment our abstract program tree grammars with attributes
and attribute evaluation rules in a similar way as classical attribute
grammars have evolved from context-free g,-ammars. However. for
abstract program tree grammars this extension turns out to be far more
complex.

4.1. How to Add Attributes
Abstract program trees are assumed to be decorated with attributes in
the same way as attributes are attached to the nodes of a derivation
tree in a classical attribute grammar implementation. As for classical
attribute grammars. the attribute instances attached to an abstract pro
gram tree can be partitioned into inherited and synthesized attributes.
according to the way they carry and receive their information to and
from other attribute instances. The simplest way of defining the attri
butes of abstract program trees is to associate with each node type
Ee VN a finite set A (E) of attributes. partitioned into two disjoint
subsets I (E) and S (E) of inherited and synthesized attributes. respec
tively.

226 H. Alblas & F.J. Faase

Given a tree rule, the problem occurs of how to identify the attri
bute occurrences of this tree rule, as both the left-hand side and the
right-hand side may contain classes which do not have attributes. In
the rest of this paper we shall identify the elements of a tree rule by
their partnames, and introduce # as the partname for the left-hand
side element.

We distinguish two ways to identify an attribute occurrence of a
tree rule VO ===::;> P 1:V 1• · · · ,Pn :Vn. The first way is to write it as
attr of Pi .N. where O~i ~n, P 0 = #. attr EA (N) and
NE VN U clos_class_and (Vi). The second way is to write it as a
sequence of elements expressing the hierarchical structure of classes
containing classes, in the following way: attr of Pi. E 1. · · ·.Em,
where attrEA(Em), EmEVN, m~1. E1=V;, E1EVc and
EJ+l E class(E1) for 1~j <m.

At first sight the second method seems to be unnecessarily com
plicated or appears to use redundant information. This is true if we
require the inclusion of node types in classes to be non-ambiguous; cf.
3.2. If classes are allowed to be ambiguous we can ask the question
whether attributes at node types. ambiguously included in a class, have
to be considered as different. In the latter case, we need to distinguish
such attributes, and the only way to do this is to use the second
method. We shall use the first method in the rest of this paper. and
leave open the question of how to handle ambiguous classes.

The set of attribute occurrences associated with the tree rule of
element E will be denoted by AO (E). This set can be partitioned into
two disjoint sets of defined occurrences and used occurrences, denoted
by DO(E) and UO(E). respectively.

These subsets are defined as

DO(E) = { s of P0.N I s ES(N)}
U { i of P; .N I i E / (N) A 1 ~ k ~ n }

UO(E) = AO(E)-DO(E)
= { i of P 0.N I i E / (N) }
U { s of P; .N I s ES (N) A 1 ~ k ~ n } .

We have defined above how to address attribute instances in the
tree by attribute occurrences. and we have defined the sets of attribute
occurrences associated with a tree rule. The set of attribute instances
attached to a concrete node in a tree and its sons, is generally only a
subset of the attribute occurrences associated with the tree rule applied
at this node. This is because attributes are attached to node types, and
for a given tree rule, classes can be involved in both sides of the rule.

Attributed Abstract Program Trees 227

4.2. The Attribute Evaluation :Rules
In the same way as for attribute grammars we associate with each tree
rule a set of attribute evaluation rules which specify how to compute.
the values of the attribu.te occurrences in DO(E). where E is the ele
ment in the left part of the tree rule. Only the evaluation rules for
those attributes that are attached to a certain node in a tree are applied.
But for the right-hand side of the rule some problems may arise. We
cannot know whether an attribute occurrence is available at a certain
position in the tree. Take for example the tree rule

plus ==;> left : expression,
right : expression.

together with the class rule

expression = {constant.plus}

and an attribute value EA (constant). At a node typed plus we cannot
with certainty refer to value of left.constant because its identity may
not be of type constant but of type plus .

To solve this problem we need a mechanism to find out which
node type is applied at a position in the tree. where a tree rule has a
class. We do this by introducing case-expressions on the partnames.
Ref erring to the above example, we could for example write

case left of
constant : value of left .constant ;
plus: O

esac

to express that we want the value of attribute value if the actual node
at left is of type constant, and otherwise the value 0. In the case of
hierarchical class definitions we need nested case-expressions. We shall
now define the expressions which form the right-hand side of the attri
bute evaluation rules. We distinguish three different constructs.
Firstly an attribute occurrence, secondly a general function format in
which the arguments are again expressions, and thirdly the case
expression. We could describe the syntax using

expr ::= attr of partname
I f (expr 1, • • • ,expr n)

I case partname of
E1: expr1;

Em : exprm
esac

We need a number of semantic conditions. To every subexpression a
context can be assigned that specifies the binding of elements to part
names. In the context of the whole expression the binding is specified

228 H. Alblas & F.J. Faase

by the tree rule. For an attribute occurrence attr of partname ,
attr of partname.N has to be a member of UO (E). where N is the
node type that is bound to partname partname , and E the element in
the left part of the tree rule. The context of the arguments of a func
tion will be the same as the context of the whole function-expression.
For a case expression the following restrictions should be imposed. If
we assume C to be the element bound to partname partname • then
C EVc, class(C)= {E1, ···,Em} and Ei ¢ EJ for l~i <j ~m. The
context of each subexpression expri has to be such that Ei will be
bound to partname , and the rest of the context will be the same as the
context of the whole case-expression.

We can now define the attribute evaluation rules to be of the
form

attr of partname.N = expr

where attr of partname.N E DO (E) and expr is a correct expression as
described above.

We could also introduce for reasons of orthogonality a case
mechanism for the left-hand side of the evaluation rules. With these
case constructions it is possible to combine several rules together that
have the same partname for the left-hand side. Furthermore, if we
make the extension that we can combine cases with the same expression
into one case. then this can lead to a reduction on the size of the rules.
However, these extensions are merely syntactic sugar.

4.3. Attributes Attached to Classes
In the foregoing discussion we attached attributes to the node types of
the grammar only. In practical applications it often occurs that the
same attributes are associated with all the members of a class. This
leads to case-expressions which have the same expression for all the
cases. To solve this problem, we allow an attribute to be associated
with a class if it is associated with all the members of that class. Of
course, this rule applies recursively over the hierarchy of the class
definitions. This has implications to the definition of AO (E), UO (E)
and DO(E). We can now write attr of partname.E', where E' EV
instead of E' E V N. We can also weaken the semantic restriction on the
attribute occurrences in the expression on the right-hand side of an
evaluation rule. For the attribute occurrence attr of partname,
attr of partname.E' has to be a member of UO(E) where the element
bound to the partname partname is a member of clos_class_and (E').

4.4. How to Evaluate Attributes
Just as with traditional attribute grammars we have to define how the
attributes are evaluated for a given tree. For each tree t E Tree (G).
instances of attributes are attached to the nodes in the following way:

Attributed Abstract Program Trees 229

if a node n is of node type N. then for each attribute a e A (E) where
N e clos_class (E). an instance of a is attached to node n • An attri
bute instance a of node n will be denoted by a of n .

Let n O be a node with node type N O and let n 1,n 2, • • • ,nm be its
sons with node types N 1.N 2• • • • .Nm respectively. An attribute
evaluation instruction

a of n1c := / (a 1 of n1c 1.a 2 of n1c 2• • • • ,Clm of n1c1)

is associated with the instances of a of n1c • which is extracted from the
evaluation rule of a of P1c ,N1c. where a; of n1c1 represent the instances
that are used. Because we now know which node types are applied at
the different partnames with the tree rule of node type N 0• we can
replace every case P; of · · · E : expr · · · esac in the evaluation rule of
a of P1c .N1c by expr where N 1 Eclos_class(E). Thus the function/
representing the applied evaluation rule. depends only on the attribute
values attached to the nodes.

The task of an attribute evaluator is to compute the values of all
attribute instances attached to the nodes of a tree by executing their
associated evaluation instructions. in the same manner as for tradi
tional attribute grammars.

S. Conclusions
In this paper we have demonstrated how to describe abstract program
trees with a tree grammar and we have shown that it is possible to add
attributes to the definition of that grammar.

A more detailed description of this approach can be found in [5].
A similar solution is presented in [9]. The attribution of abstract pro
gram trees is also discussed in [6] and [11].

In our research project on compiler-compilers we have imple
mented an attribute evaluator generator that given an APTG generates
a PASCAL program to evaluate the attributes in any APT of that
grammar. In this work we encountered a number of problems in pro
ducing efficient code. These implementation problems involved making
non-trivial choices in the storage of the attributes associated with the
classes in a tree. This work will be reported in a future paper.

Our current research includes the description of transformations
of abstract program trees for the purpose of program optimization. and
the generation of programs that can perform these transformations
while keeping attribute values consistent. It should also be possible to
generate transformations from one grammar to another. for example in
the code generation phase of a compiler.

Acknowledgement. We are grateful to Albert Nymeyer who helped in
the preparation of this paper.

230 H. Alblas & F.J. Faase

:References

1. H. Alblas: A characterization of attribute evaluation in passes.
Acta Inform. 16 (1981) 427-464.

2. H. Alblas: Incremental simple multi-pass attribute evaluation.
Proc. NGI-SION Symposium 4 (1986) 319-342.

3. F.L. DeRemer & R. Jullig: Tree-affix dendrogrammars for
languages and compilers. in: Semantics-directed compiler genera
tion. Leet. Notes Comp. Sci. 94 (1980) 300-319. Springer-Verlag.
Berlin - Heidelberg - New York.

4. J. Engelfriet: Attribute GTarnrnars: Attribute evaluation methods.
in: B. Lorho (Ed.): Met'lwds and Tools for CompUer Construction,
Cambridge University Press. (1984) 103-138.

5. F.J. Faase: Een attribuut evaluator generator. Masters thesis. Dept.
of Computer Science. University of Twente. Enschede. The Neth
erlands. (1986).

6. I. Glasner. U. Moncke & R. Wilhelm: OPTRAN. a language for the
specification of program transformations, Informank-Fachberi,chte
34, (1980) 125-142. Springer-Verlag, Berlin - Heidelberg - New
York.

7. D.E. Knuth: Semantics of context-free languages. Math. Systems
Theory 2 (1968) 127-145, Correction in: Math. System Theory S
(1971) 95-96.

8. J.R. Nestor. W.A. Wulf & D.A. Lamb: IDL-Interface Description
Language. Technical Report. Dept. of Computer Science. Carnegie
Mellon University (1981).

9. J.R. Nestor. B. Mishra, W.L. Scherlis & W.A. Wulf: Extensions to
attribute grammars, Technical Report TL 83-36, Tartan Labora
tories Inc .• Pittsburgh (1983).

10. H: van Thienen: Automatic Generation of Abstract Grammars,
Memorandum INF-87-19, Dept. of Computer Science. University
of Twente. Enschede. The Netherlands. (1987).

11. R. Wilhelm: Computation and use of data fl.ow information in
optimizing compilers, Acta Inform. 12 (1979) 209-225.

Program Generation
through

Symbolic Procesm.ng

J.A.van Hulzen

Departmsnt of Computer Science, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

Computer algebra systems can be useful when attempting to automa
tize mathematics. One can use these facilities to assist in the con
struction of programs for numerical purposes, i.e., to assist in making
the problem dependent parts of the software needed to solve a prob
lem numerically. We discuss aspects of the symbolic-numeric inter
face required to accomplish this. Special attention is given to pro
gram generation aspects and to code optimization.

1. Introduction
Powerful computing resources are available today on a personal basis
and for limited costs. It is therefore predictable that the use of per
sonal computers to perform scientifi.c computations will considerably
increase. This in turn will enlarge the interest in a further and better
integration of various mathematical software tools. such as computer
algebra features and numeric and graphic facilities. It is therefore also
expectable that computer algebra will slowly shift from a seemingly
exotic and expensive hobby to an essential toolkit in problem solving.
assuming adequate symbolic-numeric and symbolic-graphic interfaces
are created. Computer algebra systems require dynamic development
and dynamic storage of the mathematical expressions they allow to
elaborate. But a language like FORTRAN. frequently employed to
solve problems numerically. is used in a compile. load and execute
fashion. The solution strategy is often based on the use of library sub
routines in a problem defined context. A computer algebra system can
be used for the construction of the mathematical expressions. which
together define a specifi.c problem and how to utilize the library facili
ties for its solution. Hence a symbolic-numeric interface is needed to
transport information from one world to another. from a symbolic
processing environment to a numeric scene. This. of course. must be
worth the effort. i.e .• the information to be transported must be exten
sive. In fact so extensive. that producing it by hand is not only error
prone and impractical. but almost impossible. The symbolic-numeric
interface will therefore ideally cover possibilities for program construc
tion. code optimization and (a priori) error analysis (features). We dis
cuss some of the aspects of such an interface. which are needed for

231

232 J.A. van Hulzen

program generation. The · type of generation we are interested in con
centrates on •· easy" construction of efficient and reliable programs. But
such a discussion needs as a prerequisite some insight in the overall
functioning of a computer algebra system. We hope to provide this
knowledge in Section 2. using REDUCE to illustrate our assertions.
Relevant aspects of and approaches to a symbolic-numeric interface are
then presented in Section 3. Section 4 is dedicated to program genera
tion. We mention some ideas about code optimization, intended for the
production of more reliable and more efficient programs in Section 5.
before some conclusions are given. Our contributions to the develop
ment of a symbolic-numeric interface are. in fact. realized as extensions
of REDUCE. This is an additional reason to pay attention to REDUCE.

2. Computer Algebra
The di1ferentiation programs of Kahrimanian [35] and Nolan [44].
presented in 1953, are often considered as the first attempts to employ
a digital computer to perform formal mathematical operations. We
now know a rich diversity of computer algebra systems [63]. Some of
these systems are frequently and routinely used to assist in solving
non-trivial problems in science and engineering [2.13.48]. Well known
are MACSYMA [48]. MAPLE [16]. muMATH [53,58]. REDUCE [21)
and SCRATCHPAD [34]. This list is certainly not exhaustive. We
only mentioned some of the intended general purpose systems, which
are either widely used, like REDUCE. or have a noteworthy design. like
SCRA TCHP AD. Introductory surveys of computer algebra are given in
[47,70). Recent summaries of the state of the art can be found in
[11.15.19]. The mathematical capabilities of the better systems of
today are of course strongly correlated to the early successes of com
puter algebra in such areas as integration. celestial mechanics, general
relativity and quantum electro dynamics. These applications tended to
shape the classes of mathematical expressions. to be formulated and
manipulated in the various systems. Polynomial and rational function
algebra was considered as a basic requirement. All of the well-known
elementary transcendental functions. naturally entering in the descrip
tion of our (approximate) models of physical reality. were and are con
sidered as intriguing objects. A classification of computer algebra sys
tems can be based on the class of mathematical expressions they allow
to operate on. The impact of such a system is largely related to the
class of transformations, which it allows to perform on its expressions.
either automatically or via user control. Examples of such transf orma
tions are di1f erentiation, integration and substitution. Portability.
maintenance and ergonomic aspects. such as ease of interactive use.
comprehensibility of output and performance. are additional criteria
for judging such a system.

The mathematical criteria are strongly related to the quality of
the algebraic simplification algorithms implemented in the system.

Program Generation through Symbolic Processing 233

Simplification was once qualified as the most pervasive process in alge
braic manipulation [42]. Much of the controversy around it is due to
di1ferences between the desires of a user and a designer. because the
notion of simplicity is not context-free. Simplification has two aspects.
An important issue is to be able to obtain an equivalent but simpler
representation of a mathematical object. either internally or externally.
Another aspect deals with the question how to compute a unique
representation for equivalent objects. Finding equivalent but simpler
objects requires an eft'ective procedure S : T ➔ T. where T is a class of
mathematical objects. such that for all t in T holds that S (t) ._ t and
S (t) , t • if ._ is an equivalence relation on T and if .. , .. connotes
.. simplicity". Obtaining a unique representation requires. in addition.
that for all s.t in T holds s ._ t =;. S(s) = S(t). Hence S is meant
to single out a unique representative for each equivalence class. S (t) is
therefore called the canonical form oft. However. it is proven that a
canonical simplifier can not always be found for an equivalence rela
tion on a given set of (mathematical) objects [12.14]. Therefore - in
practice - weaker notions are employed. such as zero-equivalence and
regular simplification. Zero-equivalence can be defined when a given
set of expressions contains a zero-element 0. We then call S : T ... T a
zero-equivalence (or normal) simplifier if for - on T holds that for
all t in T: S(t) ._ t and t ._ 0 =;. S(t) = S(O). Regular simplifica
tion is used in the context of expressions involving transcendental
functions. It guarantees that transcendentals occurring in an expres
sion are algebraically independent. a requirement which is for instance
needed in the design of symbolic integration facilities. based on the
Risch-Norman algorithm (45.46]. Simplification can be used as a (.. pol
itical") instrument to produce a classification of computer algebra sys
tems. as once done by Moses (42]:

Radical systems can handle a single well defined class of expres
sions (polynomials. rational functions. for instance). by using a
canonical simplifier to get all expressions into their internal
canonical form. This implies that the task of the manipulating
algorithms is well defined. But it can lead to inefficiencies. On
input a user can present an expression as a string over a certain
alphabet in any desired. syntactically correct form. This string is
just one possible external representation of one internally unique
object. being the representative of a whole equivalence class. To
obtain such a unique object we need a set of rules. defining term
ordering via degree ordering or - alternatively - ordering of the
(irreducible) factors of an expression. in combination with some
lexicographical ordering of the variable-symbols. occurring in the
alphabet. This can imply that the output. being a refiection of the
internal ordering. can surprise a user.

New Left systems arose in response to some of the difficulties
with radical a systems. such as caused by automatic expansion

234 J.A. van Hulzen

(think of (x +y)1000) or factorization (for instance x 1000-y 1000).

Expansion is brought under user control. Such systems usually
can handle a wide variety of expressions with greater ease by
using labels for non-rational (sub)expressions. REDUCE is such a
system.

Liberal systems give more freedom to a user and are therefore in
general slower than new left systems.

Catholic systems, finally, can use more · than one internal
representation and know different approaches to simplification.
They tend to be large. A well-known example is MACSYMA.

Most computer algebra systems are interactive. The system reac-
tion, an output expression, is of course just one of many possible visual
representations of an internally stored expression. Other striking
aspects of the use of such a system are time and space requirements.
Intermediate expression swell is a well-known phenomenon. It can be
caused by temporary fill-in. Factorization for instance requires expan
sion. Differentiation is another example of possible intermediate
expression explosion. Since the purpose of computing can be qualified
as an attempt to increase insight, it is obvious that we are interested in
obtaining the most simple form of an expression. This is often also the
shortest representation of an expression. Hearn. who designed and
implemented most of REDUCE. has been studying these problems since
he started making this system. He recently [29,30] gave a nice
classification of simplification approaches. when considered as expres
sion structuring activities:

Structure preserving techniques are concerned with maintaining
structure in an expression as long as possible in a given computa
tion.

Structure determining techniques cover attempts to induce struc
ture on otherwise unstructured expressions.

Structure reducing techniques are those which can be employed
to reduce an expression using a set of side relations.

Structure displaying techniques allow to present the output in a
form that makes its structure more apparent to the user.

Structure preserving techniques are based on the reasonable
presumption that the initial formulation of most scientific problems
has a natural structure. Most simplifiers are based on this structure
preservation philosophy. For instance taking an expression like

(x +1)2 - 2•x

we immediate see that it has the simpler form

x 2 + 1.

We want our algebra system to produce this result as well. Input

Program Generation through Symbolic Processing 235

expansion easily allows to get this result, if we collect terms of equal
degree and employ ordering considerations. However, a form like

(x + 1)100 + 1

can better not be expanded at all. Brown [7] was the first who
observed that more flexibility was needed, against the price of drop
ping a canonical representation. He proposed to guarantee a normal
form by representing a polynomial as a product of expanded factors in
the form:

NI

IT(L Un1Xn1t 1

i n1=0

Simplification is straightforward. When multiplying polynomials,
given in such a form, one simply maintains the existing factor struc
ture. For addition one starts collecting equal factors, before adding the
expanded remaining portions to produce a new factor. Hearn imple
mented similar facilities in REDUCE. An implication is the need to
allow two internal forms. i.e .• an expanded as well as a factored form.
The user operates by default with expanded forms, thus using a canon
ical simplifier. He can employ a factored form on request. implying
that the non-expanded form construction is based on normal
simplification. But this does not always result in a factored form.
Internally a comparison is always made between the two alternatives.
The shortest is stored. But how? In REDUCE a recursive polynomial
definition is used [27]. The system is implemented using Standard LISP
[41], to guarantee a degree of portability. Thus the internal representa
tion is always in the form of lists. The recursive definition implies
that a polynomial is stored as a pair consisting of a leading term and a
reductum. formed by the remaining terms of the polynomial. ordered
in some system dependent way, with (of course) the possibility of user
influence. A leading term is considered to be a pair again. This time
formed by a leading coefficient and a leading power. The coefficient can
again be a polynomial. The leading power also consists of a pair. now
formed by a main variable and its leading degree. The leaves of this
binary tree are either integer coefficients, non-zero integral powers or
variables, of which the ordering can be determined either via the object
list, or by user defined alternatives. To resolve the problem of
undesirable expansions, like for

(x + 1)100 + 1 •

Hearn generalized the variable-concept [28]. In stead of the notion
variable REDUCE utilizes the kernel-concept. A kernel can either be a
variable in the traditional sense or a polynomial. So in the above given
example (x + 1) acts like a variable and expansion can thus be avoided.
Once the parser knows of transcendental functions, like sine and
cosine, lists of the form (sine argument), for instance, can also be used

236 J.A. van Hulzen

as a kernel. And again the argument can be a recursively defined poly
nomial. The REDUCE simplifier assumes all input to be the quotient of
two polynomials (again a pair). When the input is really a polynomial
the denominator-part of this so called Standard Quotient is simply 1.
In summary:

<Standard Quotient> ··- <Numerator> I <Denominator> .. -
<Numerator> ::== <form>
<Denominator> ··- <polynomial> .. -
<form> ··- I <polynomial> .. -
<polynomial> ··- <integer> I .. -

<Leading Term>+ <Reductum>
<Reductum> ··- <form> .. -
<Leading Term> ::== <Leading Power>*

<Leading Coefficient>
<Leading Coefficient> ··- <polynomial> .. -
<Leading Power> ··- <Kernel> t <Leading Degree> .. -
<Leading Degree> ··- < nonzero positive integer> .. -
<Kernel> ··- <variable> I <polynomial> I .. -

<operator> (<list of operands>)

In addition it ought to be mentioned that the rich output repertoire of
REDUCE can assist a user in influencing the visual version of the inter
nal representation of the result of a computation, always being the
transformation of an expression. Worth mentioning are tools to change
the variable precedence or to display a partly factored form. Another
facility which allows to modify output is formed by certain structure
displaying commands, as mentioned by Hearn. The expression, sub
jected to such a command, is cut into obvious pieces which are renamed
and separately shown. The renaming allows to list repeatedly occur
ring subexpressions only once.

The main reason to explain the overall functioning of REDUCE in
some detail is to simplify our discussion of the symbolic-numeric
interface. It might be illustrative to give

Example 2.1. Let us assume that we are interested in the determinant
DM of the symmetric matrix

t 0 t1 t2
M = t1 t3 0

t2 0 t4

So obviously we have

DM = to*t3*t4- tl *t4- t/ *t3.

Let us now assume that the entries of M have the following values
(This matrix was derived in the course of research reported in [3]):

Program Generation through Symbolic Processing 237

2 2 2
M(l,l) :~ - ((9*P *M30 + J30Y - J30Z)*SIN(Q3) - (18*M30 + Ml0)*P -

2
18*COS(Q3)*COS(Q2)*P *M30 - J30Y - JlOY)

2 2
M(2,1) :• M(l,2) :• - ((9*P *M30 + J30Y - J30Z)*SIN(Q3) - 9*COS(Q3)*

2 2
COS(Q2)*P *M30 - 9*P *M30 - J30Y)

2
M(3,l) :• M(l,3) :• - 9*SIN(Q3)*SIN(Q2)*P *M30

2 2 . 2
M(2,2) :• - ((9*P *M30 + J30Y - J30Z)*SIN(Q3) - 9*P *M30 - J30Y)

M(3,2) :• M(2,3) :• 0

2
M(3,3) :• 9*P *M30 + J30X

Neglecting the above given structure and using the facility REDUCE
offers to compute the determinant of a given matrix, can lead to a
number of different visualizations of one and the same object.

1. The result is presented in expanded form.

238 J.A. van Hulzen

4 26 3 4 24 2
729*SIN(Q3) *SIN(Q2) *P *M30 + 8l*SIN(Q3) *SIN(Q2) *P *M30 *J30Y - 81

4 2 4 2 2 2 6 ·3
*SIN(Q3) *SIN(Q2) *P *M30 *J30Z - 729*SIN(Q3) *SIN(Q2) *P *M30 - 81*

2 24 2 26 3 26
SIN(Q3) *SIN(Q2) *P *M30 *J30Y - 729*SIN(Q3) *P *M30 - 8l*SIN(Q3) *P

2 24 2 24 2
*M30 *MlO - 8l*SIN(Q3) *P *M30 *J30Y + 8l*SIN(Q3) *P *M30 *J30Z - 81*

24 2 24 2 24
SIN(Q3) *P *M30 *JlOY - 8l*SIN(Q3) *P *M30 *J30X - 9*SIN(Q3) *P *M30•

2 4 2 4
J30Y*Ml0 + 9*SIN(Q3) *P *M30*J30Z*Ml0 - 9*SIN(Q3) *P *M30*Ml0*J30X - 9

2 2 2 2 2
*SIN(Q3) *P *M30•J30Y*JlOY - 9*SIN(Q3) *P *M30*J30Y*J30X + 9*SIN(Q3) *

2 2 2 2 2
P *M30*J30Z*JlOY + 9*SIN(Q3) *P *M30*J30Z*J30X - 9*SIN(Q3) *P *M30*

2 2 2 2
JlOY*J30X - SIN(Q3) *P *J30Y*Ml0•J30X + SIN(Q3) *P *J30Z*Ml0*J30X -

2 2 2
SIN(Q3) *J30Y*JlOY*J30X + SIN(Q3) *J30Z*JlOY*J30X - 729*COS(Q3) *

26 3 2 24 2 6 3
COS(Q2) *P *M30 - 8l*COS(Q3) *COS(Q2) *P *M30 *J30X + 729*P *M30 +

6 2 4 2 4 2 4 2
8l*P *M30 *MlO + 8l*P *M30 *J30Y + 8l*P *M30 *JlOY + 8l*P *M30 *J30X

4 4 2 2
+ 9*P *M30*J30Y*Ml0 + 9*P *M30*Ml0*J30X + 9*P *M30*J30Y*JlOY + 9*P *

2 2
M30*J30Y*J30X + 9*P ~M30*JlOY*J30X + P *J30Y*Ml0*J30X + J30Y*JlOY*J30X

2. We turn off the expansion and get a normal form.

2 2 2
((9*P *M30 + J30Y - J30Z)*SIN(Q3) - (18*M30 + MlO)*P - 18*COS(Q3)*

2 2 2
COS(Q2)*P *M30 - J30Y - JlOY)*((9*P *M30 + J30Y - J30Z)*SIN(Q3) - 9*

2 2
P *M30 - J30Y)*(9*P *M30 + J30X) -

2 2 2 2
((9*P *M30 + J30Y - J30Z)*SIN(Q3) - 9*COS(Q3)*COS(Q2)*P *M30 - 9*P *

2 2 2
M30 - J30Y) *(9*P *M30 + J30X) + 81*((9*P *M30 + J30Y - J30Z)*

2 2 2 2 4 2
SIN(Q3) - 9*P *M30 - J30Y)*SIN(Q3) *SIN(Q2) *P *M30

3. We use the possiblily to get the structure of the determinant
displayed for the unexpanded form of DM. and now denoted by S7:

Program Generation through Symbolic Processing

S7

WHERE

2 2 2 4 2
S7 :• S3*S4*S5 - S6 *S5 + 8l*S4*SIN(Q3) *SIN(Q2) *P *M30

2 2 2
S6 :• Sl*SIN(Q3) - 9*COS(Q3)*COS(Q2)*P *M30 - 9*P *M30 - J30Y

2
S5 :• 9*P *M30 + J30X

2 2
S4 :• Sl*SIN(Q3) - 9*P *M30 - J30Y

2 2 2
S3 :• Sl*SIN(Q3) - S2*P - 18*COS(Q3)*COS(Q2)*P *M30 - J30Y -

JlOY

S2 :• 18*M30 + MlO

2
Sl :• 9*P *M30 + J30Y - J30Z

4. Finally we display this DM -structure in FORTRAN-notation.

S1•9*P**2*M30+J30Y-J30Z
S2•18*M30+Ml0
S3•Sl*SIN(Q3)**2-S2*P**2-18*COS(Q3)*COS(Q2)*P**2*M30-

J30Y-JlOY
S4•Sl*SIN(Q3)**2-9*P**2*M30-J30Y
S5•9*P**2*M30+J30X
S6•Sl*SIN(Q3)**2-9*COS(Q3)*COS(Q2)*P**2*M30-9*P**2*

• M30-J30Y
S7•S3*S4*S5-S6**2*S5+8l*S4*SIN(Q3)**2*SIN(Q2)**2*P**4

*M30**2
S•S7

239

None of these forms is as compact as the originally given one using the
t; ·s. The conclusion is that much room for improvement of output
presentation exists and that the results, although easily obtained, can
be far from optimal. especially when a numerical value for DM is
required for a given set of input values for the different variables
occurring in DM.

In a numerical setting methods for solving systems of linear equa
tions and determinant calculations are polynomial time-bounded opera
tions, both in time and space. In a computer algebraic setting however,
the algorithms show an exponential behaviour [31]. although we have
to remark that in such a setting problem size is always moderate in
comparison with "numerical" problems. This limited size is related to
core consumption during intermediate stages in the computations and
to storage requirements for the final result. This example is quite
illustrative. It clearly suggests what might happen when the matrix
size is enlarged and expansion is not turned off, for instance. □

The example also serves to stress that simplification, although
algorithmic in nature. is not context-free. One has to try to avoid

240 J.A. van Hulzen

undesirable side effects quite carefully. This is the main reason Hearn
began considering the possibility of using structure determining tech
niques, i.e., heuristic tools to find structure in an expression, which
otherwise would remain unchanged. Hearn's presumption is that many
physical problems have enough structure to allow user-controlled
regrouping. based on expansion or factorization and applied at some
lower levels inside an expression, and using knowledge about the
"weighted", physical meaning of the various variables used to built the
given expression. What can be done is considering an expression to be a
(multivariate) polynomial in (a) certain variable(s). factorize its
coefficients or searching the different terms in these coefficients for com
mon subexpressions to be factored out. These regrouping techniques
can lead to remarkable compressions as is for instance shown by the
following

Example 2.2. We show the effect of compression when applied on the
expanded form of DM. taken from Example 2.1.1. Application of the
same compression command on the unexpanded version of DM, as
shown in Example 2.1.2, does not lead to an improvement.

- (((9*((J30Y - J30Z)*(JlOY + J30X) + JlOY*J30X)*M30 + J30Y*Ml0*J30X

2
- J30Z*Ml0*J30X)*P + 9*(9*(J30Y - J30Z + JlOY + J30X)*M30 +

4 2
J30Y - J30Z + J30X)*Ml0)*P *M30 + 81*(9*P *M30 + J30Y)*

2 4 2 6 2
SIN(Q2) *P *M30 + 81*(9*M30 + MlO)*P *M30 + J30Y*JlOY*J30X -

2
J30Z*JlOY*J30X)*SIN(Q3) - (9*((JlOY + J30X)*J30Y + JlOY*J30X)*

2 2
M30 + J30Y*Ml0*J30X)*P - 8l*((J30Y - J30Z) + 9*P *M30)*

4 2 4 2
SIN(Q3) *SIN(Q2) *P *M30 - 9*(9*(J30Y + JlOY + J30X)*M30 + (J30Y

4 2 2
+ J30X)*Ml0)*P *M30 + 81*(9*P *M30 + J30X)*COS(Q3) *

2 4 2 6 2
COS(Q2) *P *M30 - 81*(9*M30 + MlO)*P *M30 - J30Y*JlOY*J30X)

Also quite illustrative is the result of performing some compression
experiments on the expression EXPR, given below. It shows why it is
important that algebra systems can be used interactively and it stresses
again that simplification is not context-free.

Program Generation through Symbolic Processing 241

on exp$

expon :- expr;

2 2 2 2 2
EXPON :• 2*C*D*E - 2*C*D*F *G - 4*C*D*F *G*H*K - 4*C*D*F *G*H*L - 2*

2 2 2 2 2 2 2 2 2
C*D*F *H *K - 4*C*D*F *H *K*L - 2*C*D*F *H *L + F*G + 2*F*

2 2 2 2 2
G*H*K + 2*F*G*H*L + F*H *K + 2*F*H *K*L + F*H *L

TIME: 833 MS

off exp$

expoff :• expr;

2 2 2 2 2 2
EXPOFF :• - (2*(((K + 2*K*L + L)*H + 2*(K + L)*G*H + G)*F - E)*

2 2 2 2
C*D - ((K + 2*K*L + L l*H + 2*(K + L)*G*H + G)*F)

TIME: 901 MS

nfac expoff,c,f,(lfactr);

2 2
- (((K + L)*H + G) *(2*C*D*F - l)*F - 2*C*D*E)

TIME: 1700 MS

nfac expoff,c,lfactr,(f);

2 2 2 2
- (2*(((K + L)*H + G) *F - E)*C*D - ((K + L)*H + G) *F)

TIME: 1904 MS

Citing Hearn [26]. the present simplification algorithms in REDUCE,
being used when the expansion is turned off. are a "moving target".
This is mainly due to the fact that he is experimenting with the above
indicated compression facilities, since the first experimental facilities
were made by Hulshof, when visiting Hearn. Details about these facili
ties, as implemented for REDUCE, can be found in [33]. □

The above introduced structure-determining techniques can con
tribute to a reduction of the arithmetic complexity of an expression.
which is needed in further numerical calculations. Another structure
determining technique - certainly in Hearn's view - is formed by the
code optimization techniques, which are discussed in Section 5. They
are based on reduction in arithmetic occurring in a given (set of)
expression(s) by heuristically searching for common (sub)expressions.
Hearn hopes that such heuristic techniques can be made instrumental
for algorithmic methods to assist in a further reduction of the struc
ture of an expression to a more simple form. The key idea is, that such
common subexpression searches can lead to information about possibly

242 J .A. van Hulzen

occurring side relations. which can be used for such a reduction.
Another interesting thought of Hearn is to use a Grabner base algo
rithm to assist in determining if these candidate side relations are con
sistent. by investigating their algebraic interrelations [9.10.29,30]. We
only made these last remarks to underline that both heuristics and
algorithmics have an important role to play in future developments in
computer algebra. directed towards improving the quality of the out
put. certainly also when needed for further numeric work.

We gave a capsule view of some of the output features of com
puter algebra systems. The main intention in doing so is to provide a
view on or perhaps a feeling for the rich variety of output possibilities
- and thus of unwished inefficiencies - allowed by algebra systems.
Although illustrated by REDUCE. similar remarks can be made for
other computer algebra systems. These considerations also play a role
in the next section.

3. The Symbolic-Numeric Interface
Aspects of the symbolic-numeric interface are discussed in some detail
by Brown and Hearn [8] and complementary to them by Ng [43]. The
apparent need for such an interface suggests, as already indicated in the
introduction, that certain communication problems exist, related to
information exchange between computer algebra systems and program
ming facilities. more specifically designed for numerical purposes.
Brown and Hearn distinguished two problem sources: Numerical
evaluation of symbolic results and Hybrid problems. The latter
category demands for solution methods which are a mixture of numeric
and symbolic techniques. implying that at some stage numerical
evaluation of symbolic results might be needed as well. For numerical
evaluation one can choose between, say interpretative evaluation, using
a computer algebra system for both symbolic and numeric processing,
and generation of arithmetic statements in an existing language for
numeric processing. Both alternatives have certain drawbacks and
implications.

Interpretation might be convenient for .. one shot" applications
(citing Ng [43]), if big fl.oat facilities. such as Sasaki's package [54], can
be used and if problem size is moderate. Kanada and Sasaki [36] found
their Standard LISP-package to be half as fast as Brent's well-known
FORTRAN package [5]. if they guarantee portability. Steele [56] and
Pitman [49] came to similar conclusions concerning the use of
MACSYMA for numerical evaluation. Pitman made FORTRAN to LISP
translation facilities. thus creating the possibility of using the IMSL
(International Mathematics and Statistics Library) in a LISP context.
A drawback might however be that error analysis. and thus control
over the precision of the big fl.oat calculations. is still left to the user.

Program Generation through Symbolic Processing 243

When only differentiation is needed one can use instead of a com
puter algebra system special software tools. which in addition allow to
utilize interval arithmetic to obtain reliable results [18.37.51.52].
These tools essentially use augmented FORTRAN or PASCAL com-·
pilers. which allow to produce subprograms. defining derivatives.
created by making use of expression ff.ow graphs. refiecting some form
of intermediate 3-address code [1]. These approaches. however. do not
provide simplification and thus can severely suff'er from inefficiencies or
limit the applicability to problems of moderate size.

The alternative - generation of arithmetic statements - is not
perfect either. Many computer algebra systems offer users the possibil
ity to obtain output in the form of assignment statements in FOR
TRAN notation. If the user decides to employ such a facility the obvi
ous intend is to construct in some way or another complete programs
and/or subroutines. which contain this arithmetic in some meaningful
order. We discuss in this context strategies. which have been
developed to assist users in producing such code in the next section.

Expression size might be an additional problem. Applications and
application strategies. as for instance described by Cook [17]. Smit and
van Hulzen [55]. Steinberg and Roache [57]. Van den Heuvel et al. [60]
and Wang et al. [65.66.67] clearly illustrate that computer algebra sys
tems have to be used carefully. Often a form of lazy evaluation is
employed to reduce or delay simplification activities. These applica
tions illustrate Hearn's warning [29] that we have to learn to deal
effectively with structure. which for instance might have been imposed
by symmetry or by additional physical knowledge. Wang [65.66]
recently showed how profitable this can be for the generation of finite
element analysis software. Hearn also stated. as explained in the pre
vious section. that the output we obtain is just one of a large number
of possible representations and that structure determining techniques.
such as code optimization. to be discussed in Section 5. can have a
dramatic infi.uence on reducing the arithmetic refi.ected by computer
algebra output. This is also illustrated in most of the just mentioned
papers on applications.

Once we are able to effectively generate efficient code for perform
ing numerical computations it would be quite helpful if we are also
able to guarantee the reliability of these calculations. In view of the
existence of multiple precision fioating point arithmetic packages it
might be attractive to employ the power of a computer algebra system
to determine. prior to the actual computations. how the precision has to
be chosen during (parts of) the real computations. as to avoid unneces
sary loss of significant digits. Our experiments with REDUCE and
using Sasaki's big ff.oat package suggest that. in principle. this is possi
ble [32]. The augmented compiler approach concentrates on creating
limited symbolic facilities in a numerical context. as to allow to per
form reliable computations, requiring at some stage derivatives.

244 J.A. van Hulzen

without looking at the efficiency of the production of these derivatives.
The creation of symbolic-numeric interfaces is still in development and
has not yet resulted in completed facilities, which can be utilized to
obtain reliable results.

The above outlined aspects for the construction of programs for
numerical purposes are obviously related to the more traditional
sequential view of programming and program execution. However, we
believe that our ongoing research. based on variations and deviations of
this theme, will lead the to development of similar facilities for vector
and parallel architectures, slowly on entering the market. In addition
we - at least - indicated, that the already available tools do not cover
the whole spectrum of instruments needed to automatize the process of
solving a problem reliably.

4. Program Generation
The only tool for program generation. until recently provided by com
puter algebra systems such as REDUCE and MACSYMA, was the facil
ity to switch from normal to FORTRAN-coded output. Hence to pro
duce complete and executable FORTRAN programs directly from these
systems was not possible. This left the user with the necessity to
shorten output-expressions whenever required. to meet the limitations
given by the 20-lines rule in FORTRAN. and to find a way (text edit
ing or the use of write statements) to complete the FORTRAN program.
The first packages to assist in this programming task are MACTRAN
[69] and VAX.TRAN [39]. MACTRAN. running under MACSYMA.
allows to construct complete FORTRAN subroutines based on user
supplied template files. Such a file contains an outline of a FORTRAN
program. the so-called passive parts of the file, and active parts, con
sisting of MACSYMA commands. MACTRAN processes such a file by
simply copying the passive parts on the actual output file and by exe
cuting the active portions. which of course ought to result in meaning
ful arithmetic assignment statements in FORTRAN notation on the
same output file. Hence the passive parts of such a template file define
in fact the control structure of the FORTRAN program or subroutine
which ought to be produced in this way. VAX.TRAN. implemented in
Franz LISP to run under V AXIMA. is similar to and based on MAC
TRAN. IN addition to MACTRAN it provides a more general interface
between symbolic and numerical computing techniques. Although
VAX.TRAN compiles generated code from V AXIMA, using an aug
mented compiler, and interfaces the resulting compiled code to make it
callable directly from VAX.IMA. it still relies on the MACSYMA FOR
TRAN switch only. This might effectively limit its use to moderate
problems.

More recently GENTRAN [68], a code GENeration and TRANsla
tion package became available, originally implemented in Franz LISP to

Program Generation through Symbolic Processing 245

run under V AXIMA. Although specifically created to generate
RATFOR-subprograms for use with an existing FORTRAN-based finite
element package [66]. it has the 11.exibility required to handle most
code generation applications. A second more recent version of GEN
TRAN is written in RLISP to run under REDUCE [24.25]. This version
transforms REDUCE prefix forms into formatted FORTRAN. RATFOR
or C code. GENTRAN does not only allow generation of arithmetic
expressions or assignment statements, but also of control structures.
subprogram headings and type declarations. A consequence of this is
that template file processing. although possible in GENTRAN. is not
longer required under all circumstances. This implies that a user can
generate complete (sub)programs for numerical purposes through a
series of interactive (REDUCE or MACSYMA) commands. Besides a
variety of 11.exible file handling commands. also allowing recursively
performed template file processing. GENTRAN has some additional
facilities which are notably interesting for the generation of numerical
code: automatic expression segmentation and suppression of
simplification through the generation of temporary variables. The
latter facility is for instance quite attractive. as we show below in
Example 4.1, to produce effi.cient code for the determinant DM. intro
duced in Example 2.1.

GENTRAN provides very powerful tools for the construction of
effi.cient programs for numerical purposes. certainly when combined
with code optimization facilities, to be discussed in the next section.
We therefore give a short survey of the essentials of GENTRAN and
conclude this section with an illustrative example. GENTRAN. viewed
as a REDUCE extension, contains code generation and file handling
commands. mode switches and global variables. all of which are acces
sible from both the algebraic and symbolic mode of REDUCE. The alge
braic mode is the normal user interface with the system, while the
symbolic mode - in fact a LISP-like system level - is meant for sys
tem modification and extension. Hence when the package is loaded.
REDUCE can be considered to be brought in a new state. All REDUCE
commands preceded by the keyword GENTRAN are now processed
according to the GENTRAN rules. After conversion of the command
into REDUCE prefix form it is transformed into formatted FORTRAN.
RATFOR or C code, depending on the value of the global variable GEN
TRANLANGI*. The whole transformation process is done in three
stages: Between in pre- and postprocessing the translation phase is per
formed. During this phase either the prefix forms are translated into
semantically equivalent code strings in the target language or an error
message is generated. In addition subprogram headings. declarations
and the like are produced. Hence, prior to translation, REDUCE
evaluations have to be performed. They are actually done during the
preprocessing phase. Although this strategy is similar to processing
passive and active parts of template files. noteworthy differences exist.

246 J.A. van Hulzen

The passive parts of a template file ought to consist of syntactically
correct code strings in the target language. GENTRAN accepts translat
able REDUCE commands. The active parts can be dealt with in
different ways. Partly or full evaluation is under user control. either
in algebraic or in symbolic mode. through some simple facilities.

For instance EV AL EXP. where EXP is any REDUCE expression or
statement, causes EXP to be evaluated before translation takes place.
So, assuming F stands for

2*x 2 - 5*x + 6

and GENTRANLANGI* has the value 'FORTRAN. the command

GENTRAN Q := EVAL(F) I EVAL(DF(F,X)) $

will result in

GENTRAN also has three additional assignment operators. being:=:,::=
and ::=:. These operators are constructed out of the usual REDUCE
assignment operator := by adding (an) extra colon(s). If the extra ":"
is given on the left it means that the indices occurring in the matrix or
array element of the left hand side have to be evaluated before transla
tion is carried out. An extra colon to the right means that the right
hand side has to be evaluated before translation into the target
language is performed. So if M(2,2) := A and if M(J,3) := B then the
command

FOR j := 2:3 DO GENTRAN M(j,j) ::=: j*M(j,j)$

will result in, again assuming FORTRAN is the target language.

M(2,2)=2•A
M(3,3)=3*B

During the translation phase prefix forms of those arithmetic state
ments which are longer than a specified length can be replaced by
equivalent sequences. which assign subexpression values to temporary
variables whose values are gradually combined. This is simply
achieved by assigning values to the globals MAXEXPPRINTLENI* and
FORTLINELENI* (or RAT- or CLINELEN!*) and by turning on the
GENTRANSEG switch. This segmentation requires a facility to gen
erate temporary variable names. which can be stored in a symbol table.
like other names, to guarantee to obtain adequate declarations. A com
bination of these name generation facilities and the use of the special
GENTRAN features for evaluation provides a powerful tool for
effectively reducing simplification. Through the command VAR :=

Program Generation through Symbolic Processing 247

TEMPV ARO$ a temporary variable name is assigned to VAR. The
command MARKV AR VAR$ serves to further protect VAR for a too
early reuse as temporary variable name. Thus it guarantees that the
atom VAR can represent a significant value until further notice. There-·
fore the commands

VAR := TEMPV AR()$
MARKV AR VAR$
M(l,3) := VAR$
GENTRAN EV AL(V AR) := M(l,3)$

result in the REDUCE setting

M(l,3) = TO

and in the FORTRAN assignment

assuming the value of VAR is TO. Observe that M(1.3) is assigned a
new value in the REDUCE-context, while T0=M(l,3) is only an output
string. If all matrix entries are treated similarly the code to be pro
duced for the computation of a determinant or an inverse matrix can be
made much more efficient. We show the effect of these nice facilities,
applied on the matrix M, introduced in Section 2, in

Example 4.1.

M(l,l)•-(9*SIN(Q3)**2*P**2*M30)-(SIN(Q3)**2*J30Y)+SIN(Q3)**2*
J30Z+l8*COS(Q3)*COS(Q2)*P**2*M30+18*P**2*M30+P**2*Ml0+J30Y+JlOY

M(l,2)•-(9*SIN(Q3)**2*P**2*M30)-(SIN(Q3)**2*J30Y)+SIN(Q3)**2*
J30Z+9*COS(Q3)*COS(Q2)*P**2*M30+9*P**2*M30+J30Y

M(l,3)•-(9*SIN(Q3)*SIN(Q2)*P**2*M30)
M(2,2)•-(9*SIN(Q3)**2*P**2*M30)-(SIN(Q3)**2*J30Y)+SIN(Q3)**2*

. J30Z+9*P**2*M30+J30Y
M(2,3)•0
M(3,3)•9*P**2*M30+J30X
T0•M(l,1)
Tl•M(l,2)
T2•M(l,3)
T3•M(2,2)
T4•M(3,3)
DM•T0*T3*T4-(Tl**2*T4)-(T2**2*T3)

The above given piece of FORTRAN code is the result of executing the
following mixture of GENTRAN and REDUCE commands :

248

GENTRANLANG!* :•'FORTRAN$
FORTLINELEN!* :• 70 $
GENTRANOUT "M.OUT" $

for j:•1:3 do
for k:•j:3 do

GENTRAN M(j,k) ::•: M(j,k) $

for j:•1:3 do
for k:•j:3 do

if M(j,k) neq O then
<<VAR:• TEMPVAR() $

MARKVAR VAR$
M(j, k) :• VAR $
M(k,j) :• VAR $
GENTRAN EVAL(VAR) := M(EVAL(j),EVAL(k))

» $

GENTRAN OM:•: det(M) $

GENTRANSHUT "M.OUT"$

J.A. van Hulzen

It is obvious that the possibility of generating temporary variables
after having saved all relevant information - the real values of the
matrix elements - can in principle lead to an enormous efficiency
increase by computing - in fact only - the skeletal structure of the
determinant. □

Further examples can for instance be found in [24]. Further
details about GENTRAN are given in [22.23.24].

5. Code Optimization

The level of sophistication of computer algebra systems easily allows
generation of output of a size which is far beyond human understand
ing. The examples in the previous sections show that structure
displaying techniques eventually combined with compression methods,
based on heuristics, can largely improve the compactness and
comprehensibility of output expressions. But when producing sets of
output expressions, which are going to form the arithmetic parts of
programs for numerical purposes, tools for reducing the computational
complexity of such sets can be attractive. It is however only relevant
to consider reducing this complexity if the arithmetic is extensive or
when the solution strategy requires repetitions of identical sequences of
arithmetic operations. The programs resulting from attempts to solve
such, computationally intensive. problems do not meet Knuth's conclu
sion that for an average FORTRAN program the extension of the com
piler, with features for optimization of the arithmetic, is overdone [38].
This might explain why optimization of arithmetic code can not be
qualified as a popular research area.

We recall that we do not concentrate on average programs. The
elements of our sets of expressions are viewed as definitions of compu
tational processes. Hence such a set can be seen as a block of straight

Program Generation through Symbolic Processing 249

line code. The arithmetic complexity is defined as the number of ele
mentary arithmetic operations required to obtain the results of these
computations for a set of permissible inputs. This view can be refined
by associating weights with the various elementary operations. These
weights refl.ect computational costs. Attempts to optimize the descrip
tion of such basic blocks can be considered as techniques for minimiz
ing. or at least reducing. the arithmetic complexity of the given sets of
expressions. However, a reduction is only possible when redundancy
occurs. Redundancy is a needless form of repetition. i.e. the presence of
common (sub)expressions. This is certainly true for the traditional
sequential view on program execution. Other architectures demand for
other notions, like "not sufficiently vectorized in a reasonable way" or
.. insufficiently decomposed in (sub)sets which can be processed in
parallel without causing deadlock problems when combining the
results to obtain the final answers". We only consider here the tradi
tional sequential processes.

When attempting to minimize arithmetic, defined through expres
sions producible with a computer algebra system, we ought to know
what the structure of these expressions can be before we are able to
design methods allowing to discover eventually existing redundancy.
As suggested in Section 2-a user can produce almost everything, efficient
or not, of almost arbitrary size and depth of nesting. Therefore the
design of algorithms for searching for common (sub)expressions (cse's
for short) ought to be based on the presumption that the elements of
the input set of which the description ought to be optimized, can have
an arbitrary structure. As a consequence such algorithms ought to be
designed to allow finding cse's of an equally arbitrary structure. The
representation of cse's inside a set of expressions is certainly normal. if
we presume the commutative. associative and distributive laws to hold.
With the REDUCE Standard Quotient form for expressions in mind, we
can describe expressions, what ever their structure might be. in a prefix
notation, as pairs of the form (operator . list of operands). Here
"operator" stands for PLUS. TIMES or .. something else". PLUS and
TIMES, denote the usual commutative operations of addition and mul
tiplication, respectively. Hence any desirable permutation of the ele
ments of the "lists of operands" will in principle be allowed, when the
operator is PLUS or TIMES. The lists of operands are again formed by
such expressions. When for a while excluding the "something else"
alternative, the expressions are multivariate polynomials over 'ZL Such
a polynomial can be viewed as a sum (product) of primitive and/or
composite terms (factors). We call a term primitive if it is an integer.
a variable or an integer multiple of a variable. These primitives form
together an (eventually empty) linear expression. Hence the composite
terms are products. It depends on the ordering considerations of the
algebra system, where the primitive and composite terms are located in
the "list of operands". A primitive factor is a constant, a variable or a

250 J.A. van Hulzen

power of a variable. Hence a product of primitive factors is simply a
monomial. The composite factors are obviously sums. Every polyno
mial can be thought of as being built up by linear expressions and
monomials only. what ever its (un)nested structure might be. When·
searching for cse's we - in principle - use these .. primitive" informa
tion carriers. linear expressions and monomials. As soon as a new cse
is found, it can be replaced by a new. system selected, variable name,
assuming its description is added to the set of expressions. To obtain a
correct basic block we ought to assume our set of expressions to be
(partly) ordered. Every cse-description has to be inserted correctly in
this sequence, i.e., before its :first occurrence. When replacing a cse by a
new variable it might happen that composite terms or factors collapse
and become a primitive. Hence when basing the search for cse's on
primitives the overall process becomes obviously iterative.

In contrast to the usual dag models for the representation of
arithmetic expressions [1]. we employ. following Breuer [6,61.62].
sparse extendible matrices, albeit in a slightly more sophisticated way.
We therefore have to (re)parse the internally stored list representations
of the elements of our sets of expressions. multivariate polynomials. in
more transparent and multi-accessible matrix structures. The columns
of the matrices are associated with the variables and the rows with the
(sub)expressions. Although merged in practice. we store the linear
expressions and the monomials in separate matrices, which are inter
connected via hierarchic information about the structure of the expres
sions, subjected to our cse-search. When a variable occurs in a linear
(sub)expression its coefficient is stored as matrix entry. Similarly the
exponent is stored when the variable occurs in a monomial. Therefore
the validity of the commutative law ought to be presumed. To be able
to retrieve the original structure of the expressions involved in the
search, additional information about the hierarchy ought to be associ
ated with the rows of the matrices. What kind of additional informa
tion is of importance? Of interest is a list of so-called children, i.e., a
list of indices of rows where the descriptions of the composite terms or
factors of the present row are stored. Also important is a name field,
used to store the name associated with an expression or if we are deal
ing with a subexpression the index of the so-called father of this
subexpression. We further mention an operator field and an ordered
list of cse-indicators, allowing to obtain correct evaluation sequences,
when translating the result of a cse-search into. for instance, FOR
TRAN code. The operator field is not only important for distinguishing
between PLUS and TIMES. because we use merged structures inter
nally, but also for effectively using the "something else" alternative.
These .. strange" operators are "removed" so as to get back to the mul
tivariate polynomial scheme. We again distinguish between primitives
and composites. When all elements in the .. list of operands" are primi
tives, i.e .. constants and/or variables, the pair (operator . list of

Program Generation through Symbolic Processing 251

operands), a kernel in the REDUCE-setting. is replaced by a new vari
able, such that all identical primitive kernels share the same name.
Kernels with (partly) composite operands are treated like sums. The
operator field has a different value and the searches for identical
operands are slightly different since commutativity is not longer valid.
To avoid complicating our discussion we further neglect the .. something
else" alternative. Let us now try to visualize the data structures we
employ temporarily to obtain an optimized version of a set of expres
sions via

Example 5.1. Let us assume to have as set of input expressions:

4 6 5
El ·• (2*A + 4*8 + 3*C)*A *C *D

2 4 3
E2 :• (4*A + 6*C + 5*D)*A *8 *C

This set is - when oversimplifying reality - parsed and stored in the
following way:

Sumscheme :

A 8 C D! Far

1! 2 4 3 ! 0
3! 4 6 5! 2

Productscheme :

A C D 8!Far

0 ! 4 6 5 ! El
2 ! 2 3 4 ! E2

More detailed examples are given in [62]. A cse-search will result in:

so :• 2*A + 3*C

2 3
Sl :• A *C

2 5
El :• Sl *D *(SO + 4*8)

4
E2 := Sl*8 *(2*SO + S*D)

This set is reconstructed from the matrices, resulting from the cse
search:

252

Sumscheme :

I so A B C D!Far

11 1 4
31 2
41 2

Productscheme:

I 0
51 2

3 ! so

I Sl A C D B!Far

0 I 2 5 I El
21 1 41 E2
5 I 2 3 I Sl

J.A. van Hulzen

So initially cse·s are either linear expressions or monomials. To dis
cover them the integer matrices are heuristically searched for sub
matrices of rank 1 of maximal size. A basic scan is used, which can be
qualified as "test whether the determinant of a (2,2)-matrix of non
zero entries is zero". Its use is based on information about row
weights. which allow to locate completely dense submatrices. The
row-weight is a reflection of the arithmetic complexity of the primitive
denned by that row. Further details are given in [61.62]. Since we
want to reduce the arithmetic complexity. say the pair AC= (np.nm). a
cse-detection ought to contribute to a reduction of the number of addi
tions (np) and/or the number of multiplications (nm). This is only
possible if a cse occurs at least twice and contains at least one addition
and/or multiplication. Other less detailed criteria are conceivable.
Another category of cse's is formed by repeatedly occurring constant
multiples of variables and by single powers. delivering addition chain
problems. This category can be enlarged during the optimization pro
cess. This can be illustrated by
Example 5.2. The result shown in Example 5.1 is in fact intermediate.
The real result. given by the present version of the Optimizer, is:

Program Generation through Symbolic Processing

Number of operations in the input is:

Number of (+,-)-operations: 4
Number of (*)-operations: 12
Number of integer exponentiations : 6
Number of other operations: 0

50 :• 2•A + 3*C
53 :• A*A
s7 :• c•c
s4 :• c•s7
51 :• 53*54
52 :• 51*51
58 :• D*D
57 :• 58•58
55 :• 0*57
El :• 52*55*(50 + 4*B)
57 :• B*B
56 :• 57*57
E2 :• 51*56*(2*50 + S*D)

Number of operations after optimization is:

Number of (+,-)-operations: 3
Number of (*)-operations: 19
Number of integer exponentiations: 0
Number of other operations: 0

253

First a repeated search for cse's with at least two operands is per
formed. Then the optimization is completed with a finishing touch.

The first step consists of four subsearches:
1- Application of the commutative law when looking for linear

(sub)sums and (sub)monomials. respectively. The strategy is
based on an extension of Breuer's grow factor algorithm. Cse's
are replaced by new names and their description is added to the
matrix, implying that composite operands can be reduced to (new)
primitives.

2- A kernel search, to discover if composite kernels can now be
viewed as primitives, followed by update operations.

3- Merging activities based on the assumption that composites are
possibly reducible to primitives, i.e., a composite factor, defined in
the sum matrix and reduced to a primitive, can be migrated, in its
new form, to the product scheme and visa versa.

4- Application of the distributive law. i.e., replacement of an expres
sion like a*b + a*c by a*(b + c) by adequate information migra
tion.

Although the basic scans are always performed on primitive structures
the cse's can have an arbitrary complex structure, because information
is continuously migrated through the matrices.

The finishing touch consists of factoring out contents of integer
coefficients in sums, detection of repeatedly occurring integer multiples
of variables and addition chain operations so as to replace all exponen
tiations by multiplication sequences. This phase is characterized by one

254 J.A. van Hulzen

row (or one column) operations, in contrast to the :first, where mainly
completely dense submatrices are examined.

Example 5.3. The determinant DM of the matrix M. introduced in .
Section 2. can be compu~ quite efficiently. when using the possibility
of introducing temporary variables. the t; ·s. via simple GENTRAN
commands. This is even more striking when the inverse matrix is
required; see [24]. However we can further reduce the arithmetic com
plexity by optimizing the set of expressions formed by the different
entries of M. leading to:

Number of operations in the input(T0,Tl,T2,T3 and T4)·is:

Number of (+,-)-operations : 17
Number of (*)-operations: 29
Number of integer exponentiations : 13
Number of other operations : 9

SO :• SIN(Q3)
se :• so•so
S1 :• COS(Q3)
S2 :• COS(Q2)
S7 :• P*P
S5 :• S7*M30
s4 :• ss•s1•s2
S6 :• - J30Y + J30Z
S13 :• 9•S5
S10 :• - S13 + S6
S11 :• Sl0•se
TO :• S11 + 18*S4 + J30Y + JlOY + S7*(18*M30 + Ml0)
S9 :• S13 + J30Y
T3 :• S11 + S9
Tl :• T3 + 9•S4
S3 :• SIN(Q2)
T2 :• - S13•so•s3
T4 :• S13 + J30X

Number of operations after optimization is:

Number of (+,-)-operations: 11
Number of (*)-operations : 13
Number of integer exponentiations: 0
Number of other operations: 4

Optimization of the various forms of DM. introduced earlier. leads to
different results, as shown in Table 5.1. Observe that the arithmetic
complexity of the optimized version of the expanded form of DM is
compatible with the arithmetic complexity of the not optimized version
of the unexpanded form of DM. It is obvious that a slight increase of
the size of M. without increasing the complexity of its entries, will
result in more drastic differences. D

As stated before expression size can impose problems. Our
Optimizer allows to handle extensive input piece wise, but such that
the results of previous optimization activities are taken into account on
user request. This offers a possibility to handle expressions via parti
tioning. The user interface is simple. Only a few commands are
needed, in combination with a number of mode switches and flag set
tings to infl.uence output-notation or to obtain additional information

Program Generation through Symbolic Processing 255

Form of DM Status Number of onerations
+.- * t other

expanded input 36 82 30 6
output 27 51 - 4

compressed.after input 35 63 23 6
expansion output 27 42 - 4
unexpanded input 24 40 21 10

output 13 19 - 4

Table 5.1.
about the optimization process. Details will be given in [64].

6. Some Conclusions
Ideally. as said before, the symbolic-numeric interface ought to provide
user friendly facilities to allow to produce efficient and reliable numeri
cal programs in a natural way. This requires a further integration of
program generation and code optimization facilities and an extension of
optimization techniques as to be able to optimize structured programs
in stead of only local blocks of straight line code. A priori error
analysis for such programs is an additional need and more far reaching
than the present possibilities. It would also be of tremendous help if
the Optimizer could be extended with a module which allows to dis
cover automatically patterns in the problem formulation. which, for
instance, are due to symmetries. This is certainly useful if extensive
differentiation or integration of the code, to be optimized, is an addi
tional need. We expect to witness such extensions during the coming
years. In fact, our work in progress covers some of these items. We,
not only work on variations related to program construction for vector
and parallel architectures. but also on improvements of the symbolic
numeric interface and certain aspects of simplification. Worth men
tioning are :

Bottom-up structure recognition facilities [20]. to be used to
develop methods, which allow to discover symmetries, for
instance. Such algorithms can also be helpful in improving
differentiation procedures.

A combined use of unification and simplification. We created
already an environment to perform experiments in a REDUCE
context [50].

Improvements of the symbolic-numeric interface by investigating
classes of problems, which can largely profit from such facilities
for their solution. The design and implementation of programs
for user friendly generation of Jacobians and Hessians. which
ought to allow to simply connect their output with NAG library
routines, learned that a further integration of a package like

256 J.A. van Hulzen

GENTRAN with our Optimizer is not too complicated and cer
tainly most profitable [59].

Thus far we limited the Optimizer activities to expressions with
integer coefficients and exponents. But expressions over other
domains are conceivable [4]. implying that an extension of the
Optimizer ought to be considered.

Ackrwwledgements. Over the past years I had many valuable and
pleasant discussions about the above indicated aspects of com
puter algebra. I like to mention especially Johan de Boer, Barbara

. Gates. Victor Goldman. Tony Heam. Ben Hulshof. Arthur
Postmus, Jaap Smit, Pim van den Heuvel and Paul Wang. The
continued interest of Leo Verbeek has been most stimulating.

References
1. A.V. Aho. R. Sethi & J.D. Ullman: Compikrs - Principles, Tech

niques, and Tods (1986). Addison-Wesley, Reading. Mass.

2. A.T. Balaban: Symbolic computation in chemistry, in: B. Buch
berger (Ed.): Proceedings EUROCAL'85. Vol. 1, Leet. Notes Comp.
Sci. 203 (1985) 68-79. Springer-Verlag, Berlin - Heidelberg - New
York.

3. A.M. Bos & M.L.J. Tiernego: Formula manipulation in the bond
graph modeling of large mechanical systems. J. Franklin Inst. 319
(1985) 51-65.

4. R.J. Bradford, A.C. Hearn, J.A. Padget & E. Schrtifer: Enlarging
the REDUCE domain of computation, in: B.W. Char (Ed.):
Proceedings SYMSAC '86 (1986) 100-106, Assoc. Comput. Mach ..
New York.

5. R. Brent: A FORTRAN multiple-precision arithmetic package
(1976). Computer Centre, Australian National University. Can
berra. Australia.

6. M.A. Breuer: Generation of optimal code for expression via factor
ization. Comm. Assoc. Comput. Mach. 12 (1969) 333-340.

7. W.S. Brown: On computing with factored rational expressions,
ACM SIGSAM Bulletin 31 (1974) 27-34.

8. W.S. Brown & A.C. Heam: Application of symbolic mathematical
computations, Comput. Phys. Comm. 17 (1979) 207-215.

9. B. Buchberger: Grebner bases: an algorithmic method in polyno
mial ideal theory. in: N.K. Bose (Ed.): Recent Trends in Multidi
mensional Systems Theory, Chapter 6 (1985). Reidel. Dordrecht.

10. B. Buchberger: History and basic features of the critical
pair/completion procedure. J. Symbolic Comput. 3 (1987) 3-38.

Program Generation through Symbolic Processing 257

11. B. Buchberger. G.E. Collins & R. Loos (Eds.): Computer Algebra.
Computing Supplem.entum 4 (1982). Springer-Verlag. Wien.

12. B. Buchberger & R. Loos: Algebraic simplification. in [11] (1982)
11-44.

13. J. Calm.et & J.A. van Hulzen: Computer algebra applications. in
[11] (1982) 245-258.

14. B.F. Caviness: On canonical forms and simplification. J. Assoc.
Comput. Mach. 17 (1970) 385-396.

15. B.F. Caviness: Computer algebra: past and future. J. Symbolic
Comput. 2 (1986) 217-236.

16. B.W. Char. G.J. Fee. K.O. Geddes. G.H. Gonnet & M.B. Monagan:
A tutorial introduction to MAPLE. J. Symboli,c Comput. 2 (1986)
179-200.

17. G.O. Cook. Jr.: Development of a Magnetohydrodynamic Code for
Axisymmetric High-P Plasmas with Complex Magnetic Fields.
Ph.D. Thesis (1982). Lawrence Livermore Nat. Lab .• Cal.

18. A.A.M Cuyt & L.B. Rall: Computational implementation of the
multivariate Halley method for solving nonlinear systems of
equations. ACM Trans. Math. Software 11 (1985) 20-36.

19. J. Davenport. Y. Siret & E. Tournier: Cal.cul Form.el (1987). Mas
son. Paris.

20. J.K. de Boer: Bottom-up Structure Recognition. MA Thesis (1986).
University of Twente. Enschede. The Netherlands.

21. J. Fitch: Solving algebraic problems with REDUCE. J. Symbolic
Comput. 1 (1985) 211-228.

22. B.L. Gates: GENTRAN user's manual - REDUCE version,
Memorandum INF-85-11 (1985). University of Twente. Enschede,
The Netherlands.

23. B.L. Gates: GENTRAN design and implementation - REDUCE
version. Memorandum INF-85-12 (1985). University of Twente,
Enschede, The Netherlands.

24. B.L. Gates: GENTRAN: An automatic code generation facility for
REDUCE. ACM SIGSAM Bulletin 1S (1985) 24-42.

25. B.L. Gates: A numerical code generation facility for REDUCE. in:
B.W. Char (Ed.): Proceedings SYMSAC '86, (1986) 94-99, Assoc.
Comput. Mach .• New York.

26. A.C. Hearn: Private communication.
27. A.C. Hearn: REDUCE 2: a system and language for algebraic

manipulation. in: S.R. Petrick (Ed.): Proceedings SYMSAM 2
(1971) 128-133, Assoc. Comput. Mach .• New York.

28. A.C. Hearn: The structure of algebraic computations. in:
A. Visconti (Ed.): Proceedings of the Fourth Colloquium on

258 J.A. van Hulzen

Advanced Methods in Theoretical Physics (1977) 1-15, St. Maxi
min. France.

29. A.C. Hearn: Structure: the key to improved algebraic computation,
in: Proceedings RSYMSAC (1984), Wako-shi, Saitama, Japan.

30. A.C. Hearn: Optimal evaluation of algebraic expressions, in:
J. Calmet (Ed.): Proceedings AAECC-3, Leet. Notes Comp. Sci.
229 (1986) 392-403, Springer-Verlag. Berlin - Heidelberg - New
York.

31. E. Horowitz & S. Sahni: On computing the exact determinant of
matrices with polynomial entries. J. Assoc. Comput. Mach. 22
(1975) 38-50.

32. B.J.A. Hulshof & J.A. van Hulzen: Automatic error cumulation
control. in: J. Fitch (Ed.): Proceedings EUROSAM '84, Leet. Notes
Comp. Sci. 174 (1984) 260-271, Springer-Verlag, Berlin - Heidel
berg - New York ..

33. B.J.A. Hulshof & J.A. van Hulzen: An expression compression
package for REDUCE. In preparation.

34. R.D. Jenks: A Primer: 11 keys to new SCRATCHPAD. in: J. Fitch
(Ed.): Proceedings EUROSAM '84, Leet. Notes Comp. Sci. 174
(1984) 123-147, Springer-Verlag. Berlin - Heidelberg - New York.

35. H.G. Kahrimanian: Analytic Differentiation by Computer, MA
Thesis (1953), Temple University, Philadelphia, Pa.

36. Y. Kanada & T. Sasaki: LISP based .. big fl.oat"' system is not slow,
ACM SIGSAM Bulletin 58 (1981) 13-19.

37. G. Kedem: Automatic differentiation of computer programs. ACM
Trans. Math. Software 6 (1980) 150-165.

38. D.E. Knuth: An empirical study of FORTRAN programs, Software
Practice and Experience 1 (1970) 105-133.

39. D.H. Lanam: An algebraic front-end for the production and use of
numeric programs, in: P.S. Wang (Ed.): Proceedings SYMSAC '81.
(1981) 223-227. Assoc. Comput. Mach., New York.

40. M.A.H. MacCallum: Algebraic computing in relativity, Report
TAU 86-04 (1986), Queen Mary College, University of London.

41. J. Marti, A.C. Hearn, M.L. Griss & C. Griss: Standard LISP report,
ACM SIGSAM Bulletin 53 (1980) 23-43.

42. J. Moses: Algebraic simplification: a guide for the perplexed.
Comm. Assoc. Comput. Mach. 14 (1971)548-560.

43. E.W. Ng: Symbolic-numeric interface: a review, in: E.W. Ng (Ed.):
Proceedings EUROSAM '79, Leet. Notes Comp. Sci. 72 (1979)
330-345, Springer-Verlag. Berlin - Heidelberg - New York.

44. J. Nolan: Analytic Differentiation on a Digital Computer, MA
Thesis (1953), Math. Dept., M.I.T .. Cambridge, Mass.

Program Generation through Symbolic Processing 259

45. A.C. Norman: Integration in finite terms. in [11] (1982) 57-70.

46. A.C. Norman: Computing in transcendental extensions. in [11]
(1982) 169-172.

47. R. Pavelle, M. Rothstein & J. Fitch: Computer algebra. Scientific
American (1981) 102-113.

48. R. Pavelle & P.S. Wang: MACSYMA from F to G. J. Symbolic
Comput. 1 (1985) 69-100.

49. K.M. Pitman: A FORTRAN ➔ LISP translator, in: V.E. Lewis
(Ed.): Proceedings 1979 MACSYMA User's Conference (1919)
200-214, M.I.T .• Cambridge. Mass.

50. A.G. Postmus: Design of a HyperLisp Interpreter with Prolog
Features, MA Thesis (1987). University Twente. Enschede, The
Netherlands.

51. L.B. Rall: Automatic Differentiation: Techniques and Applications.
Leet. Notes Comp. Sci.120 (1981). Springer-Verlag. Berlin -
Heidelberg- New York.

52. L.B. Rall: Differentiation in PASCAL-SC: type GRADIENT. ACM
Trans. Moth. Software 10 (1984) 161-184.

53. A. Rich & D.R. Stoutemyer: Capabilities of the muMATH-79 com
puter algebra system for the INTEL-8080 microprocessor. in:
E.W. Ng (Ed.): Proceedings EUROSAM '79. Leet. Notes Comp. Sci.
72 (1979) 241-248. Springer-Verlag. Berlin - Heidelberg - New
York.

54. T. Sasaki: An arbitrary precision real arithmetic package in
REDUCE, in: E.W. Ng (Ed.): Proceedings EUROSAM '79 • Leet.
Notes Comp. Sci. 72 (1979) 358-368. Springer-Verlag. Berlin -
Heidelberg- New York.

55. J. Smit & J.A. van Hulzen: Symbolic-numeric methods in
microwave technology. in: J. Calmet (Ed.): Proceedings EURO
CAM '82, Leet. Notes Comp. Sci. 162 (1982) 281-288. Springer
Verlag. Berlin - Heidelberg - New York.

56. G.L. Steele, Jr.: Fast arithmetic in MACLISP. Proceedings 1977
MACSYMA User's Conference (1977) 215-224. NASA-CP2012.

57. S. Steinberg & P. Roache: Using VAXIMA to write FORTRAN
code, in: V.E. Golden (Ed.): Proceedings 1984 MACSYMA User's
Conference (1984) 1-22. Gen. Elect. Schenectady. New York.

58. D.R. Stoutemyer: A preview of the next IBM-PC version of
muMath, in: B. Buchberger (Ed.): Proceedings EUROCAL '85, Vol.
1. Leet. Notes Comp. Sci. 203 (1985) 33-44, Springer-Verlag, Ber
lin - Heidelberg - New York.

59. P. van den Heuvel: Aspects of Program Generation Related to
Automatic Differentiation. MA Thesis (1986). University Twente,
Enschede, The Netherlands.

260 J.A. van Hulzen

60. P. van den Heuvel, J.A. van Hulzen & V.V. Goldman: Automatic
generation of FORTRAN-coded Jacobians and Hessians. in:
J.H. Davenport (Ed.): Proceedings EUROCAL '87, To appear.

61. J.A. van Hulzen: Breuer·s grow factor algorithm in computer alge
bra, in: P.S. Wang (Ed.): Proceedings SYMSAC '81 (1981) 100-
104. Assoc. Comput. Mach., New York.

62. J.A. van Hulzen: Code optimization of multivariate polynomial
schemes: a pragmatic approach, in: J.A. van Hulzen (ed.): Proceed
ings EUROCAL '83, Leet. Notes Comp. Sci. 162 (1983) 286-300,
Springer-Verlag, Berlin - Heidelberg - New York.

63. J.A. van Hulzen & J. Calmet: Computer algebra systems. in [11]
(1982) 221-243.

64. J.A. van Hulzen & B.J.A. Hulshof: A code optimization package
for REDUCE. In preparation.

65. P.S. Wang: Taking advantage of symmetry in the automatic gen
eration of numerical programs for finite element analysis, in:
B.F. Caviness (Ed.): Proceedings EUROCAL '85, Vol. 2, Leet. Notes
Comp. Sci. 204 (1985) 572-582, Springer-Verlag, Berlin - Heidel
berg - New York.

66. P.S. Wang: FINGER: a symbolic system for automatic generation
of numerical programs in finite element analysis, J. Symhdlic Com
put. 2 (1986) 305-316.

67. P.S. Wang, T.Y.P. Chang & J.A van Hulzen: Code generation and
optimization for finite element Analysis, in: J. Fitch (Ed.):
Proceeding EUROSAM '84, Leet. Notes Comp. Sci. 174 (1984)
237-247, Springer-Verlag, Berlin - Heidelberg - New York.

68. P.S. Wang & B.L. Gates: A LISP-based RATFOR code generator,
in: V.E. Golden (Ed.): Proceedings 1984 MACSYMA User's
Conference, (1984) 319-329. Gen. Electr .. Schenectady, New York.

69. M.C. Wirth: On the Automation of Computational Physics, Ph.D.
Thesis (1980), Lawrence Livermore Nat. Lab., Ca.

70. D.Y.Y. Yun & D.R. Stoutemyer: Symbolic mathematical computa
tion, in: J. Belzer, et al. (Eds.): Encycl.opedia of Computer Science
and Technology, Vol. 15 (1980) 235-310. Marcel Dekker, New
York - Basel.

Non-Monotonic Reasoning in
Man and Machine

Edward Hoenk.amp

Psychological. Laboratory, University of Nijmegen
Moritessorilaan 3, Nijmegen, The Netherlands

In traditional systems of deductive logic adding an axiom gives rise
to new theorems, i.e., the set of theorems grows monotonically with
the set of axioms. The study of non-monotonic reasoning started
with the recognition that, in contrast, people often retract earlier
conclusions on the basis of new input. This intuition encouraged the
exploration of diJferent extensions to logic. The present paper
evolves in three steps: (1) It reviews extensions to monotonic logics,
(2) It brings to bear psychological findings showing that the exten
sions fail where our intuition falls short: Inferences are often
remarkably unresponsive to new input even if the original basis for
the inferences is discredited, and (3) It presents a model that
accounts for this more accurate view of human retraction behavior.

1. Introduction

Life is potentially full of surprises. If we want to act at all, we have
to do so on the basis of often incomplete, vague. inconsistent or cor
rupted information. Yet. compared to the quality of the information,
people fare remarkably well under such circumstances. Two important
mechanisms enable us to do so. One is the use of defaults, i.e ..
knowledge of what is usually or typically the case; the other is belief
revision, i.e., the retraction of earlier conclusions to reflect perceived
changes in the environment or acquisition of new information. Model
ing this aspect of common-sense reasoning has been a challenge to
Artificial Intelligence (AI) since its early days. So far two main ave
nues have been pursued to cope with this challenge: a formal one, try
ing to extend the logic, and a technical one, attempting to endow com
puter programs with methods to revise their databases. These topics
will be treated :first. Then this paper opens a third avenue, shedding
light on the issue by looking at how people actually behave when con
fronted with situations where belief revision is called for. To accom
plish this. well-documented psychological experiments are modeled
using existing AI methods. It will be apparent that both psychology
and AI may benefit from this approach.

261

262 E. Hoenk.amp

Part A: A Logical Excursion

2. Ignoring the Impossible vs. Ignoring the Possible.

In making decisions under mundane circumstances. there are simply too
many things to consider that might be relevant. At the same time it is
hardly possible to foresee even a fraction of the consequences of these
decisions. (To be sure. considering the not-so-obvious may make a
scientist successful. but here we must realize how rare these happy
moments are.) Indeed, people are very good at ignoring possibilities. In
contrast. people are well aware of impossibilities. and reject these with
facility. The latter has its analogue in artificial intelligence. where
techniques for rejecting impossibilities are widespread. Depth-first
search is a very systematic way of doing this. Others are alpha-beta
pruning and unification. Techniques for ignoring possibilities are much
harder to come by (and most are even covered in this paper). One case
is the technique of parsimonious reasoning known as circumscription.
It has been observed (e.g. [19]) that when trying to solve a problem,
one assumes that only the relationships mentioned are relevant. For
example in solving the missionaries and cannibals problem, one usually
does not discuss the presence of oars. absence of bridges. leakages etc.
McCarthy [19] formulated a second order inference rule that produces
axiom schemata from sets of (first order) axioms. It can be shown that
the models for the new set of axioms are minimal in those for the ori
ginal one. Informally speaking. they contain as few objects as possible
(e.g .. no bridges or planes).

Circumscription has gone through various incarnations (predicate.
joint. formula. prioritized. and point-wise circumscription: see e.g ..
[19.20.18]). but a simple example may show the gist of this technique.
Let A be a set of axioms stated in a language containing a predicate P.
The circumscription schema for P (x) in A is:

[A (Q) & (x)[Q (x) ➔ P (x)]] ➔ (x)[P (x) ➔ Q (x)].

As an example, suppose we receive a postcard from Italy showing a
leaning tower. Of course we jump to the conclusion that this is a pic
ture of the Leaning Tower. Let us summarize the appearance of the
Leaning Tower (say of an old, leaning tower) with the axiom:

old-and-leaning(Leaning-Tower).

Now. circumscribing this predicate in the set of axioms (in this case
there is only one element) yields:

[Q (Leaning-Tower) & (x)[Q (x) ➔ oU -and -leaning (x)]] ➔
(x)[old -and-leaning (x) ➔ Q (x)].

Now we substitute the only known instance of leaning towers we have
by taking Q(x) to be "x = Leaning-Tower". One can easily verify
that the first and second conjunct become true. so that by modus
ponens we inf er:

Non-Monotonic Reasoning in Man and Machine 263

(x)[old -and -leaning (x) -+ x = Leaning-Tower];

i.e .. every old and leaning tower we see we will recognize as the Lean
ing Tower; the desired result. If later we discover that we saw a pic
ture of a maquette. the conclusion is no longer true. and indeed it can
not be derived anymore. Although circumscription has been categor
ized as a fairly successful approach to non-monotonic reasoning. this
categorization may be disputed on several grounds. First, as in the
example above. it does not allow one to retract a conclusion construc
tively once it has been drawn. Second. Doyle [9] shows that the intent
of circumscription is the same as that of "implicit de:fi.nability" from
monotonic logic. Third, circumscription may generate minimal models
subsuming implausible ones ([13]. I will come back to this). In short.
it clearly formalizes one aspect of common-sense reasoning. namely
that of jumping to conclusions. It may not. however grasp the intui
tive idea of non-monotonic reasoning.

3. Non-Monotonic Theories

3.1. Why Non-Monotonic Theories?
The paradigmatic (and unfortunately somewhat overworked) example
of non-monotonic reasoning begins with one axiom, namely that birds
can :fly. If told that Tweety is a bird, we may infer that Tweety can
fly. Formalized:

(x) Bird (x) -+ CanFly (x)

Bird (Tweety)

so by universal specialization and modus ponens:

CanFly (Tweety)

(1)

(2)

(3)

If. however, we subsequently learn that Tweety is an ostrich we have
to retract our earlier conclusion. It seems that (1) should be replaced
by (1'):

(x) Bird (x) & -.Ostrich (x) -+ CanFly (x) (1')

to avoid drawing conclusion (3). Why then, do we need a non
monotonic formalism in the first place? The point is that (1') would
make it impossible to infer (3) right from the start, which is contrary
to what we actually did. So instead of questioning the axioms (not to
mention that (1') should be amended for penguins. emus. kiwis etc.),
one could reflect on the inference rules. In fact there are more options
that have been explored, falling broadly in two categories: extensions
to the logic. and meta-devices.

264 E. Hoenkamp

3.2. Extensions To First Order Logics

One way to extend the logic has been to extend the components of the
theory with default rules. Defaul.t reasoning is a way of drawing con
clusions in the absence of certain data. by virtue of these data being
absent. In this way. (3) can be inferred by default. To take another
example: as long as no-one has come to tell you that your car has been
stolen, you will confidently walk to the parking lot after your work.
A default nde is typically of the form:

• If A. and it is not known that B, then conclude C. (d1)

For an example of the formalization of such a rule refer to [27], which
gives a complete proof theory for a large class of generally occurring
defaults.

A common instance of (d1). where C is -.B, is the rule "If it is
not known that B • then conclude -.B ". This is known as the closed
world assumption. It says that relationships not explicit in the data
base do not hold. But what exactly do we mean by "it is not known
that B "? Suppose (d1) is used by a database manager. A database
most often encodes only a fraction of its knowledge explicitly, for
much data can easily be computed on demand (or is rarely used). A
rule to capture this could be:

• If A, and it cannot be proved that B, then conclude C. (d2)

This rule subsumes a mirror-image of the closed-world assumption.
namely where B is ... c . This is an important special case which has
been studied by McDermott and Doyle [22]. They extend a first order
(monotonic) logic by introducing a "non-monotonic modality" M in
the language, and add the rule "infer Mp from the inability to infer
""P :· For example (1) would be replaced by

(x) Bird (x) & M CanFly (x) ➔ CanFly (x) (1 ")

McDermott and Doyle prove that the non-monotonic predicate calculus
thus obtained is complete and that the non-monotonic sentential cal
culus is decidable. The modal systems T. S4 and S5 can also be turned
into non-monotonic theories by interpreting their modal M ("possi
ble") as M above.1 For proof procedures. semantics. and completeness
results see [21].

These desirable formal properties aside. let me mention a com
monality of these and other extensions: first. the definitions for "prov
able" and "consistent" are not constructive [5] and second, non
monotonic modals (such as M above) may not completely capture their
intended meaning [24]. To finesse, in McDermott's approach M is part
of the language, whereas in Reiter's approach it is a useful marker in

1 The sharp-eyed reader will notice that the rule for M is ill-formed, but see [21).

Non-Monotonic Reasoning in Man and Machine 265

non-monotonic inference rules.

3.3. Meta-Devices

Above we applied rule (dt) to the example where you were about to
head for your car after work. Now try to apply rule (d2) instead. It
could mean that you stay in your office pondering the myriad of cir
cumstances that may have conspired for the car not to be where you
left it. Obviously, when people engage in deliberation they stop after a
limited amount of time. In the case of a machine using predicate cal
culus the rule is definitely useless. since this system is undecidable.
For real applications, as for people, the following rule therefore seems
more plausible: "If A cannot be proved within some allocated amount
of time, then conclude B :· A generalization of this rule has been
implemented in the KRL system [4.35] as:

• If all resources are exhausted before A is proved, assume A is
false.

The rule applies when a number of inference processes occur simultane
ously (e.g., as in human perception [26]). With this rule we have come
to a point where one moves outside the logical theory. Thus it may
become impossible to make formal statements about the behavior of
such a system. Fortunately there are ways to introduce a meta-device
without loss of rigor. A classic example can be found in the work of
Weyhrauch [34]. who provides a general framework in which non
monotonic inference rules are part of a first-order meta-theory having
the object theory as its domain. A third meta-system I want to men
tion actually comprises a whole class of so-called reason maintenance
systems, which will be studied in the next section.

3.4. Reason Maintenance Systems
Suppose we add the following axiom to (1) and (2):

(x) CanFly (x)-+ Has Wings (x) (4)

so that in addition to (3) also

Has Wings (Tweety) (5)

is inferred. If after this it is stated that Tweety is an ostrich. not only
(3) must be retracted, but also everything that depends on (3), in this
case (5). But an ostrich has wings after all, say because:

(x) Bird (x) -+ HasWings (x) (6)

so that (5) must not be retracted. We may want to replace (4) by a
non-monotonic rule since, although planes have wings too, Superman
does not. It will be clear from the examples that in a more serious
application most of the time would be spent propagating changes
through the database. This is particularly the case for artificial

266 E. Hoenkamp

intelligence systems. where most problem solvers are forced to reason
with inconsistent or incomplete information. How. then. can this prob
lem be solved?

In the example above. the difficulty was to know which conclu
sions were affected in order to know which to retract. We had to
retrace the inferences mentally. This would have been much easier had
we remembered for each conclusion the inferences on which it was
based. This observation is half of the solution that a reason mainte
nance system presents. Fikes [11] kept track of derivations in the
STRIPS system. and Stallman and Sussman [30] used a similar tech
nique for electronic circuit analysis. A full solution was first proposed
by Doyle [6] with his TMS (for Truth Maintenance System). TMS is
used in relation to a database. to which it is invisible. Every assertion
entering the data base is represented by a node. A record is kept of the
dependence of nodes on inferential steps. i.e .• the justiftcanons of a
node. This way the inference steps can be retraced to maintain con
sistency in a system. An assertion that is believed is called IN.

An assertion that depends on the fact that another assertion is not
believed (i.e.. is OUT). is called an assumption. For example. one
assumes that a bird :O.ies as long as there is no reason to believe that it
is an ostrich or a penguin (a so-called OUT-justifier). A justification is
valid if all its IN-justifiers are IN and all its OUT-justifiers are OUT.
A node is IN if it has at least one valid justification. Now it is easily
seen how a new assertion will affect the network. Believing an asser
tion that was not believed before· means that the node representing it
will come IN. Every node that has this node as OUT-justifier will now
go OUT, propagating onwards. (Later in this paper I will give an ela
borate concrete example.) This so called data-dependency backtracking
takes place on the initiative of the database manager. and the same
component is responsible for deciding what is inconsistent.

Two classes of reason maintenance systems can be distinguished
in the literature. depending on what is recorded during the inference
process. The justification-based systems. of which TMS is an example,
record with each assertion the assertions that directly originated it.
Assumption-based systems (e.g .• de Kleer's ATMS. [16]) record the
hypotheses (i.e .• the non-derived assertions) that ultimately originated
it. The latter systems have many advantages over the former in terms
of efficiency and they have been implemented in some advanced expert
systems. TMS in its pure form has the advantage that the database
manager can read off the dependencies to explain to the user why an
assertion is believed. The two techniques have been combined to pro
duce a control strategy that is more efficient than either one alone [17].

Non-Monotonic Reasoning in Man and Machine 267

3.5. Reasoned Assumptions
What has been said so far about reason maintenance and non
monotonic logic can be unified nicely using the concept of a reason.
The reason for believing C in the presence of A and in the absence of
B will be denoted as: A II B II- C : cf. [7]. This is called a simple rea
son, where A. B and C can be interpreted as sets of potential beliefs.
In a reason maintenance system A and B represent the IN- and OUT
justifiers for C. In a non-monotonic logic. a reason represents the
default reason if we take B to be of the form -.c (the set containing
the negations of the elements in C). There are two other special cases
worth mentioning: If B is empty (0). the inference from A to C is
like an ordinary implication. If B has the form "Defeated (R)", the
reason R is called defeasible, i.e., use of the reason has been ruled out.
Now, given a set of reasons, what collection of beliefs do we want to
admit as justified by these reasons? In the monotonic case (all of the
B ·s are empty) the deductive closure would be appropriate. Indeed,
for the non-monotonic case a closure can be defined analogously. An
example may illustrate what will happen. Suppose we adopt the rea
sons that. unless there is evidence to the contrary, Quakers are
pacifists. and Republicans are not. I.e ..

Quaker (x) II -.Pacifist (x) II- Pacifist (x)

Republican (x) II Pacifist (x) II- -.Pacifist (x)

(omitting the curly set brackets for the moment). Let us further
instantiate one individual N (e.g .• Nixon), who is both a Republican
and a Quaker. On the basis of these axioms two sets can be derived:

{Quaker (N).Republican (N).Pacifist (N)}

{Quaker (N).Republican (N). -.Paci/ ist (N)} .

This shows that the closure in this case has two fixed points: they are
called the admissible extensions of the reasons. It is important to real
ize that there is no good reason to prefer one over the other. No logical
one, that is. In reality people will have a preference. but that will be
on psychological grounds. With this observation we have arrived at an
appropriate point to stop discussing the logical approaches to non
monotonic reasoning and start studying how people actually behave in
what theoretically may be a choice situation. The source for this study
is a set of psychological experiments.

268 E. Hoenkamp

Part B: A Psychological Excursion

4. A Case for Non-Monotonic Reasoning in Humans:
"Debriefing" after Deception Experiments

A speaker at a conference may be heartened afterwards by someone
from the audience who congratulates him for his interesting and clear
exposition. If later he finds that this person mistook him for a poten
tial referee. his self-esteem may decline again somewhat but it will
probably not sink all the way back to its original level. In contrast to
the AI examples of belief revision, people are often reluctant to adjust
their opinion after the original evidence is discredited. This
phenomenon has received special attention in connection with psycho
logical experiments in which subjects are deceived about the true
nature of the setting, and are later .. debriefed" about the manipulation.
The dramatic observations in Milgram's [23] study are a case in point.
In this experiment, a subject, thinking he participates in an experiment
on the effects of punishment on learning. has to administer increasingly
more intense shocks to another subject who is actually a stooge.2 After
the experiment the subject must be convinced that the information was
fraudulent, i.e .. he must be dehoaxed. Sometimes, the subject's feelings
about himself (e.g.. due to having behaved unethically) must be
altered. This aspect concerns the subject's behavior, which cannot be
refuted. Dehoaxing on the other hand. concerns the experi1112nter's
deception. For this aspect, conclusions accepted earlier during the
experiment can be disproved. 3 Therefore, in the context of non
monotonic reasoning the dehoaxing aspect of debriefing is the more
appropriate one to study.

4.1. Experiments on Dehoaxing Per Se

The aspect of dehoaxing would be difficult to isolate from the experi
ments, since these differ greatly in the nature and degree of deception.
Fortunately enough. many experiments have been conducted on
dehoaxing per se. employing different designs. different domains. and
varying degrees of external validity. A sample of representative stu
dies is summarized in Table 1. As the paradigmatic example I will use
an experiment by Ross. Lepper. and Hubbard [28], which was very
carefully designed and has been replicated many times. In it, the sub
ject was presented with cards containing pairs of suicide notes. She
was told that one note in each pair was genuine, the other bogus, and

2 The reported traumatic effects on the subjects evoked considerable concern about experi
ments that may involve harmful after-effects [3], and more attention came to be paid to
debriefing (15,31].
3 E.g., when electrodes have been attached, dehoaxing can be achieved by showing the sub
ject that the wires did not lead anywhere, or as in Milgram's case by a friendly reconcilia
tion with the "victim".

Non-Monotonic Reasoning in Man and Machine 269

Perseverance
Source Domain Deception Debriefing after

information discrediting
Valins Swatches slides heartbeat audi- sound tape was S prefeis "rein-
1966 taken from ble feedback, prerecorded forced" slides

Playboy Maga- changing rate
zine with some

slides
Waister S fills out a high (vs. low) no such test ex- S rates herself
et al. ''Social Apti- scores are re- ists as similar to
1967 tude Achievo- ported person with

ment Test" high (low)
score

Holmes Instructions on (no shocks are experimenter arousal remains
1973 tape informs S administered) interrupts and

he will receive tells electrode is
electric shocks fake
during subse-
quent period

Ross et S discriminates report of sue- ratings were S rates herself
al.1975 authentic from cess (vs. prepared in ad- according to

unauthentic failure) vance original feed-
suicide notes back

Anderson S examines re- data suggestive data on ability S perseveres in
et al. lationship of positive (vs. are manufac- estimates for
1980 between risk- negative) rela- tured new cases

taking and sue- tionshlp
cess as
firefighter

Jennings A blood drive: one reacts posi- both con- S predicts next
et al. S has to per- tlve (vs. unin- federates, other ten calls will be
1981 suade two other terested), other "apparently a success (vs.

students to par- doesn't pick up failed to keep failure)
ticipate line free".

Caretta 1972 voters for (not applicable) Watergate hear- Nixon voters
et al. Nixon were ings retain positive
1982 selected (vs. feelings

McGovern
voters)

Table 1. A representative selection of experiments on debriefing, with
an approximate account of the setup. "Vs." indicates, where applicable,
the success vs. failure manipulation. "S" refers to the subject.

she was asked to indicate the genuine one. In addition she was
informed about the average score in a pretest. The subject received
false feedback indicating success or failure after each card. After com
pletion of the task she was informed that the feedback had been deter
mined prior to the experiment, and that it was not related to her actual
performance (this was called outcome debriefing). Nevertheless, the
greater the apparent initial success, the higher she estimated her scores
for past and future performances. In short, subjects showed a

270 E. Hoenkamp

substantial perseverance of the initial, erroneous impressions. Only
after the process underlying the perseverance was explicitly discussed
was the initial perception abandoned (the process debriefing).

Ross et al.'s explanation for the phenomenon has essentially two
parts. The first part stems from the literature on attribution theory:
An individual who witnesses a surprising (or extreme) outcome gen
erates (searches for) confirmatory evidence capable of explaining the
observed outcome. Second, if the original evidence for the outcome is
removed, these antecedents may survive to give independent evidence
for the outcome. For example, a subject may attribute her success on
the discrimination task to the fact that she was once personally
acquainted with a suicide victim.

It may be argued that Ross et al.'s experiment does not in itself
prove the presence of self-generated confirmation-biased evidence.
Independent support for its presence has been found in various ways,
however. For example. enhancing the possibility of producing such
evidence increases perseverance [1]. An even stronger test is to prevent
the subject from engaging in explanations. This has been done using
interference: e.g., in a task similar to that of Ross et al.'s experiment,
Fleming and Arrowood [12] made subjects count backwards from 200
by 3 between feedback and outcome debriefing. In a variant of Valins'
[32] heartbeat feedback experiment (see Table 1). Barefoot and Straub
[2] reduced the exposure time of the slides substantially. In both cases
no perseverance effect could be established.

5. A Model for the Process of Debriefing

5.1. Debriefing Modeled Using TMS

To introduce the model for Ross et al.'s experiment I will use TMS. the
reason maintenance technique discussed earlier. The debriefing experi
ment is depicted in Table 2 with the different stadia in terms of TMS.
Node b represents that the experimenter's assertions are believed as
long as it is not believed that the other person is lying. H the latter
belief comes IN. the assumption will go OUT (is not believed
anymore).

The subject starts out with no particular beliefs about the task.
When the experimenter says the subject has performed well (c), she
infers that this is the case (b). From this she generalizes to the belief
that she is generally good at recognizing real suicide notes (a). This can
be probed. e.g .. by asking a subject how she would score in the future,
or how she thinks she compares to other subjects. At the same time
she generates confirmatory evidence (e), which comes IN. This evi
dence itself is an additional justification for belief a.

The debriefing takes place by informing the subject about the
deception d. Since b depends on d being OUT. b goes OUT when d

Non-Monotonic Reasoning in Man and Machine 271

beginning after after
BELIEF depen- of after outcome process

dencies experiment feedback debriefing debriefing
IN OUT INOUT IN OUT IN OUT

a. I am good at this kind of task b,l 0 0 0 0
b. I performed well on this task C d 0 0 0 0
c. E said I performed well 0 0 0 0
d. E provided bogus information 0 0 0 0
e. [self-generated confirmatory C 0 0 0 0

evidence]

Table 2. The debriefing experiment by Ross et al. The columns labeled
"dependencies" show how beliefs depend on other beliefs. The dots
represent the status of the assertion on the same line.

comes IN. But when asked. the subject will still believe a, on the basis
of the independent support e. The process debriefing consists of an ela
borate discussion of the perseverance phenomenon itself. The subject
becomes aware of the self-generated confirmatory evidence she used,
and leaves this out of the argument. i.e .• e goes OUT, and as a conse
quence a goes out as well.

There is more to say about factors that are conducive to belief
perseverance; see e.g .• [29]. Keeping things simple however, consider a
variation of the experiment by Ross et al. One could start the system
with d IN. In other words, the subject is told in advance that feedback
will not be genuine. What will happen? We will come back to this
after I have taken a closer look at the states of belief involved in the
experiment.

5.2. States of Belief as Admissible Extensions
The model developed so far describes the intended behavior (i.e., in the
Ross et al."s experiment) by showing how the subject gets from one
state of belief to another. To ensure that the system represents the
intended model. however. it must also rule out behavior not found in
(or falsified by) the experiments. A way to find this out is by examin
ing what belief states the system is capable of generating. To this let
us describe the dependencies from Table 2 as a set of reasons R
(indexed by consequent):

R = {ra1,ra2,rb,rc,rd,re}

with

ra1 = b 110 II- a
re= 011011- c

ra2 = e 110 II- a
rd= 0 11011- d

rb = c II d II- b
re= c 11011- e

Computing the closure (e.g .. [10]) R • of R gives two extensions:

Ri = R U {a,b,c,e}

272 E. Hoenk.amp

R2 = R U {a,c,d,e}

which are precisely the statements believed before and after debriefing.
Now. where does the process debriefing come in? Statement a perseveres
via re ,re and raz• At least one of these reasons is apparently attacked
by E (the experimenter). Reason re cannot be refuted since c is a fact.
So, by discussing the perseverance process itself. the experimenter
either defeats re, or raz• Let us first assume the former. This can be
formalized by rewriting re (and R changing accordingly):

rel= c II Defeated (re1) II- e

rez = 0 II 0 II- Defeated (re 1)

Now. in addition to Ri and R2. two new extensions result:

Rj = R U {a,b,c,Defeated (re1)}

RJ = R U {d,c,Defeated(re1)}.

where R4 gives the belief state after process debriefing. Rj shows the
efficacy of the process debriefing. i.e .. as measured by the subject's pred
iction of her future performance on a similar experiment. Another
interpretation is that a subject may be forewarned not to generate
confirmatory evidence. i.e., to have re 2 ready in advance. A natural
setting where this could occur is the courtroom. Indeed. in such a
situation subjects are much easier to debrief. (E.g .. in an experiment by
Hatvany and Strack [14] two civil court cases were staged. in which the
credibility of the key witness was manipulated.) Independent support
to propose re 1 and rez stem from the experiments with an interference
task. The interference effectively blocks the generation of confirmatory
evidence, or formally. defeats re 1. In this case Rj and R4 represent the
states of belief before and after outcome debriefing in the interference
task. Now re 1 and rez have been sufficiently justified, it remains to dis
cuss the role of raz• It could be that this reason is defeated during pro
cess debriefing, although this cannot be ascertained on the basis of the
experimental evidence currently available. In any case. it can be for
malized in a manner analogous to our treatment of re above.

5.3. The Model is Neither too Weak Nor too Strong

Since the model proposed above is based on an existing formalism for
non-monotonic reasoning. I want to relate it to a criticism that has
been advanced concerning such formalisms. Recently. Hanks and
McDermott [13] questioned whether these formalisms produce the
expected results. They provide axioms for a simple problem (the .. Yale
shooting scenario") and show that a well-established technique (c.q.
predicate-circumscription) produces not only the intended extension.
but in addition one that is counter-intuitive. Now. whereas Hanks and
McDermott could have chosen between attacking either the axioms or
the inference technique. they chose the latter. For this reason. in the
section above I generated all the extensions of the proposed axioms for

Non-Monotonic Reasoning in Man and Machine 273

the Ross et al. experiment. and checked if they indeed belonged to the
states of belief I wanted to model. They did. So the model is
guaranteed neither too weak. nor too strong in generating states of
belief. Yet. a moment of reflection will show that this is not enough to
ensure the same holds for the intended behavior. i.e .• for the sequence
of states. To see this. suppose in the Ross et al. experiment the subject
is briefed in advance that the feedback will not be genuine. That is. we
start in Table 2 with d IN. Following through the experiment we will
see that the same behavior ensues as before. In other words. the sub
ject believes she performs well on the experiment even knowing before
hand that the feedback is bogus. This surely runs counter to our intui
tion. A similar reasoning as in the "shooting scenario" therefore leads
us to believe that our model. as defined by R. is too weak (it predicts
unintended behavior). Yet. let us stay in the vein of this paper. and
see if the prediction can be tested. In fact this has been done already
by Wegner. Coulton and Wenzlaff [33] who briefed the subjects in
advance with the same words that were used by Ross et al. during
debriefing. They found the same perseverance phenomenon. on the
basis of which they rejected the theory of Ross et al .• and formulated a
principle of transparency of denial. This principle basically says that
when people encounter denied information. that information is avail
able despite the denial. However. in their experiment Wegner et al. tell
the subject in advance that the information she will obtain is false, i.e .•
the information is not available at that time. In my opinion it is not
necessary to introduce a new principle. Using our terminology. Wegner
et al. seem to think they defeat reason re 1, whereas in fact they pro
duce d, so that b cannot be derived but c can. Whichever may be the
case. the experiment confirms the counter-intuitive behavior predicted
by our model.

6. Degree of Belief
After the painstaking analysis of the debriefing phenomenon, I would
like to add one last refinement to the model. Since in the dehoaxing
experiments subjects are often asked to rate their beliefs in certain
statements, it is justified to ask how such a measure can be modeled.

6.1. Iterated Retraction
Let me go back for a moment to the paradigmatic example of Tweety.
Suppose the :first thing one learns about Tweety is that it is an ostrich:

Tweety is an ostrich. Tweety is a bird. Tweety cannot fly. (1)

And there is nothing more to infer, nor to retract. To be sure this
won't happen, let me start with another Tweety, who is a canary. So
(since canaries are birds and birds can fly. canaries can fly) we get:

Tweety is a canary. Tweety is a bird, Tweety can fly. (8)

274

But suppose we learn that

Tweety broke his wing

E. Hoenkamp

upon which we have to retract (8). and infer (7) again. Some time
later we come to know that

this happened last summer

and we retract (7) again. Later we learn that

it happened again last night

(and so on).

By now, most people would be inclined to hedge their bets. The
belief that Tweety can fly turns out to be graded, and this degree of
belief drops when the original assumption is reinstated. It is very
tempting to introduce some scheme for evidential reasoning at this
point, probabilistic. possibilistic. or otherwise. The problem is: where
do these numbers come from? In expert systems it is customary to
have numbers attached to derivations through which certainties of
data-items are propagated, but there is little theoretical justification for
this. Some researchers have tried to fight this ad hoc approach. For
example, Nilsson [25] introduces a probabilistic logic based on a possi
ble world semantics. Broadly speaking. he takes as the probability of a
sentence the proportion of the possible worlds in which the sentence is
true. This resembles Doyle's [7] suggestion that these numbers (e.g ..
subjective probabilities) do not enter into the computation directly but
into the observation of the computation.

For the degree of belief in a statement. I take a strictly decreasing
function on the size of extensions. That is, extensions of equal size are
equally likely, larger ones are less likely. Here is an example of such a
function DB for an extension E in the set of extensions R* (cf. [8]):

DB(E IR*)= 2-IEI/N

where N normalizes the function's range to [0,1]. For the DB of a
statement a with respect to the underlying set of reasons, a sensible
choice could be to sum the DB s of the extensions that contain it:

DB(a IR*)= r, DB(E IR*)

During the processing of the example about the canary in the beginning
of this section, there was a change in degree of belief upon every new
input. To model a similar change in Ross et al.'s experiment, I propose
to compute the DB with respect to the extensions the perceiver is
aware of at the moment she has to do the rating. This is the topic of
the last section.

Non-Monotonic Reasoning in Man and Machine 275

6.2. Change in Degree of Belief During the Experiment

Let us apply the last section to Ross et al.'s experiment. In the situa
tion after outcome debriefing. the subject has produced Ri and R2.
which are of equal size. Thus. since statement a (.. I am good at this
kind of task") is in both extensions. it has 1 as degree of belief. After
process debriefing. R4 is produced. in which a is not believed. so that
the belief for a will drop. As a final example and to make my proposal
more vulnerable to experimental verification, let me speculate about an
experiment that to my knowledge has not yet been conducted. After
going through the original experiment one could debrief the debriefing.
i.e .. inform the subject that the feedback had been genuine all along. If
we amend the rules accordingly the end result is that the new exten
sion contains b but not a (which is no longer supported by any self
generated confirmatory evidence). To get an indication of the degree of
belief I used the belief function DB defined in the last section. It
should be very clear that numbers produced this way can only give an
indication of trend. At this stage there can be little evidence as to
what extensions the subjects will actually perceive or how large these
sets might be. For example. in the model I lumped together all
confirmatory evidence. whereas subjects. when asked. may generate
several reasons for success or failure [12]. In addition the DB function
is one of the simplest one can think of. With these reservations. some
results can be reported: (1) The values for a; the rated ability at the
task. The simulated numbers show the same trend found in all the
debriefing experiments. After the last stage of the imaginary experi
ment the value levels off. i.e .• the subject will consider herself no better
or worse than average. (2) The value fore. the confirmatory evidence.
This value declines after process debriefing. as it should, but there is a
notable residue. After the last step of the imaginary experiment the
value reduces to almost zero. (3) One may wonder why the subject
should continue trusting the experimenter after the first deception.
The values for d (.. E provides mock information") reflect a steeply
ascending suspicion on behalf of the subject. Although in the past
great care has been taken to improve the face value of the dehoaxing.
the simulation seems to make a further investigation into this factor
worthwhile.

7. Conclusions

An overview was presented of a lively area in the foundations of
artificial intelligence. namely that of non-monotonic reasoning. As it
turns out. the formal approaches proposed to date fail to explain why
people prefer particular extensions in the set of extensions allowed by
the postulated logical theories. The current paper proposed a process
model that describes how such preferences come into existence and how
they change. The model also describes formally why people cling to
their initial beliefs more strongly than appears warranted. The new

276 E. Hoenkamp

results prove the value of focusing on how people actually behave in a
wide variety of experimental settings where change of belief is called
for.

Ackrwwledgements: I am grateful to Anthony Jameson, Eric Meyer and
Peter Shell for discussions about the work reported.

References

1. C. Anderson, M. Lepper & L. Ross: Perseverance of social theories:
The role of explanation in the persistence of discredited informa
tion, Jaurnal of Persmality and Social Psychowgy 39 (1980)
1037-1049.

2. J. Barefoot & R. Straub: Opportunity for information search and
the effect of false heart-rate feedback. Jaurnal of Personal,ity and
Social Psychology 17 (1971) 154-157.

3. D. Baumrind: Some thoughts on ethics of research: After reading
Milgram·s .. Behavioral study of obedience". American Psychologist
19 (1964) 421-423.

4. D. Bobrow & T. Winograd: An overview of K.RL, a Knowledge
Representation Language, Cognitive Science 1 (1977) 3-46.

5. P. Cohen & E. Feigenbaum (Eds.): The Handbook of Artificial
Intelligence. Volume 3 (1982). Chapter Il-E, William Kaufmann.
Los Altos. Ca.

6. J. Doyle: A truth maintenance system. Artificial Intelligence 12
(1979) 231-272.

7. J. Doyle: Some theories of reasoned assumptions: An essay in
rational psychology. Report (1982). Department of Computer Sci
ence, Carnegie-Mellon University.

8. J. Doyle: Methodological simplicity in experts system construc
tion, Al Magazine 4 (1983) Nr.2, 39-43.

9. J. Doyle: Circumscription and implicit definability. Journal, of
Automated Reasoning 1 (1985) 391-405.

10. D. Etherington: Formalizing non-monotonic reasoning systems,
Artificial Intelligence 31 (1987) 41-85.

11. R. Fikes: Deductive retrieval mechanisms for state description
models, Proceedings of IJCAl-75 (1975) 99-106.

12. J. Fleming & A. Arrowood: Information processing and the pers
everance of discredited self-perception, Personal,ity and Social
Psychology Bulletin 5 (1979) 201-205.

13. S. Hanks & D. McDermott: Default reasoning. non-monotonic log
ics, and the frame problem, Proceedings of AAAl-86 (1986) 328-
333, Morgan Kaufmann, Los Altos, Ca.

Non-Monotonic Reasoning in Man and Machine 277

14. N. Hatvany & F. Strack: The impact of a discredited key witness,
Journal of Applied SocioJ. Psycholngy 10 (1980) 490-509.

15. D. Holmes: Debriefing after psychological experiments. I. Effec
tiveness of postdeception dehoaxing, II. Effectiveness of postexper
imental desensitizing. American Psycholngist 31 (1976) 858-875.

16. J. de Kleer: Choices without backtracking. Proceedings of AAAl-
84 (1984) 79-85. Morgan Kaufmann, Los Altos. Ca.

17. J. de Kleer & B. Williams: Back to backtracking: Controlling the
ATMS, Proceedings of AAAI-86 (1986) 910-917. Morgan Kauf
mann, Los Altos. Ca.

18. V. Lifschitz: Point-wise circumscription: Preliminary report,
Proceedings of AAAI-86 (1986) 406-410. Morgan Kaufmann. Los
Altos. Ca.

19. J. McCarthy: Addendum: Circumscription and other non
monotonic formalisms. Artificial Intelligence 13 (1980) 171-172.

20. J. McCarthy: Applications of circumscription to formalizing
common-sense knowledge. Artificial Intelligence 28 (1986) 89-
116.

21. D. McDermott: Non-monotonic logic II: Non-monotonic modal
theories, J. Assoc. Comput. Mach. 29 (1982) 33-57.

22. D. McDermott & J. Doyle: Non-Monotonic logic I. Artificial Intel
ligence 13 (1980) 41-72.

23. S. Milgram: Behavioral study of obedience, Jaumal of Abnormal
and Social Psychology 67 (1963) 371-378.

24. R. Moore: Semantical considerations on non-monotonic logic.
Artificial Intelligence 25 (1985) 75-94.

25. N. Nilsson: Probabilistic logic. Artificial Intelligence 28 (1986)
71-87.

26. D. Norman & D. Bobrow: On data-limited and resource-limited
processes, Cognitive Psycholngy 7 (1975) 44-64.

27. R. Reiter: A logic for default reasoning. Artificial Intelligence 13
(1980) 81-132.

28. L. Ross, M. Lepper & M. Hubbard: Perseverance in self-perception
and social perception: Biased attributional processes in the

. debriefing paradigm. Journal of Personality and Social Psycholngy
32 (1975) 880-892.

29. Y. Schul & E. Burnstein: When discounting fails: Conditions
under which individuals use discredited information in making a
judgment. Journal of Personality and Social Psycholngy 49 (1985)
894-903.

30. R. Stallman & G. Sussman: Forward reasoning and dependency
directed backtracking in a system for computer-aided circuit

278 E. Hoenkamp

analysis, Artificial Intelligence 9 (1977) 135-196.

31. D. Ullman & T. Jackson: Researchers' ethical conscience:
Debriefing from 1960-1980, American Psychologist 31 (1982)
972-973.

32. S. Valins: Cognitive effects of false heart-rate feedback, Journal of
Persaudity and Social Psychology 4 (1966) 400-408.

33. D. Wegner, G. Coulton & R. Wenzla:ff: The transparency of denial:
Briefing in the debriefing paradigm, Journal of Personality and
Social Psychology 49 (1985) 338-346.

34. R. Weyhrauch: Prolegomena to a theory of mechanized formal
reasoning, Artificial Intelligence 13 (1980) 133-170.

35. T. Winograd: Extended inference modes in reasoning by computer
systems, Artificial Intelligence 13 (1980) 5-26.

MATHEMA T/CAL CENTRE TRACTS
I T. van der Walt. Fixed and almost fvced points. 1963.
2 A.R. Bloemena. Sampling from a graph. 1964.
3 G. de Leve. Generalized Markovian decision processes, part
I: model and method. 1964.
4 G. de Leve. Generalized Mark011ian decision processes, part
II: probabilistic background. 1964.
5 G. de Leve, H.C. Ttjms, P J. Weeda. Generalized Markovian
decision processes, appticalions. 1970.
6 M.A. Maurice. Compact ordered spaces. 1964.
7 W.R. van Zwet. Con,ex transformations of random •ariables.
1964.
8 J.A. Zonneveld. Automatic numerical integration. 1964.
9 P.C. Baayen. Unwersal morphisms. 1964.
IO E.M. de Jager. Applications of distributions in mathematical
physics. 1964.
11 A.B. Paalman-de Miranda. Topological semigroups. 1964.
12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken,
A. van Wijngaatden. Formal properties of newspaper Dutch.
1965.
13 ff.A. Lauwerier. Asymptotic expansions. 1966, out of print;
replaced by MCT 54.
14 H.A. Lauwerier. Calculus of,ariations in mathematical
physics. 1966.
15 R. Doornbos. Slippage tests. 1966.
16 J.W. de Bakker. Formal definition 'l,programmine
~~ges with an application lo the de nition of AL OL 60.

17 R.P. van de Riet. Formula manipulation in ALGOL 60,
part I. 1968.
18 R.P. van de Riet. Formula manipulation in ALGOL 60,
part 2. 1968.
19 J. van der Slot. Some properties related to compactness.
1968.
20 P J. van der Houwen. Finite difference methods for sot.ing
partial differential equations. 1968.
21 E. Watte!. The compactness operator in set theory and
topology. 1968.
22 T J. Dekker. ALGOL 60 procedures in numerical algebra,
part I. 1968.
23 T J. Dekker, W. Hoffmann. ALGOL 60 procedures in
numerical algebra, part 2. 1968.
24 J.W. de Bakker. Recursi., procedures. 1971.
25 E.R. Paerl. Representations of the Lorentz group and projec
ti., geometry. 1969.
26 European Meeting 1968. Selected statistical papers, part I.
1968.
27 European Meeting 1968. Selected statistical papers, part II.
1968.
28 J. Oosterhoff. Combination of one-sided statistical tests.
1969.
29 J. Verhoeff. Error detecting decimal codes. 1969.
30 H. Brandt Corstius. Exercises in computational linguistics.
1970.
31 W. Molenaar. Approximations to the Poisson, binomial and
hypergeometric distribution functions. 1970.
32 L. de Haan. On regular •ariation and its application to the
weak convergence of sample extremes. 1970.
33 F.W. Steutel. Prese,.ation of infinite dwisibility under mix
ing and related topics. 1970.
341. Juhllsz, A. Verbeck, N.S. Kroonenberg. Cardinal func
tions in topology. 1971.
35 M.H. van Emden. An analysis of complexity. 1971.
36 J. Grasman. On the birth of boundary layers. 1971.
37 J.W. de Bakker, G.A. Blaauw, A.J.W. Duijvestijn, E.W.
Dijkstra, P J. van der Houwen, G.A.M. Kamsteeg~emper,
F.E.J. K.ruseman Aretz, W.L. van der Poel, J.P. Schaap
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 Informatica
Symposium. 1971.
38 W.A. Verloren van Tbemaat. Automatic analysis of Dutch
compound words. 1972.
39 H. Bavinck. Jacobi series and approximation. 1972.
40 H.C. Tijms. Analysis of(s,S) inventory models. 1972.
41 A. Verbeck. Superextensions of topological spaces. 1972.
42 W. Vervaat. Success epochs in Bernoulli trials (with applica
tions in number theory). 1972.
43 F.H. Ruymgaart. Asymptotic theory of rank tests for
independence. 1973.

44 H. Bart. Meromorphic operator ,alued functions. 1973.
45 A.A. Balkerna. Monotone transformations and limit laws.
1973.
46 R.P. van de Riet. ABC ALGOL, a portable langua_ge for
formula manipulation systems, part I: the language. 1973.
47 R.P. van de Riet. ABC ALGOL, a portable language for
formula manipulalion systems, part 2: the compiler. 1973.
48 F.E.J. K.ruseman Aretz, P J.W. ten Hagen, H.L.
Oudshoom. An ALGOL 60 compiler in ALGOL 60, text of the
MC-compiler for the EL-XB. 1973.
49 H. Kok. Connected orderable spaces. I 974.
50 A. van Wijngaardcn, BJ. Mailloux, J.E.L. Peck, C.H.A.
Koster, M. Smtzoff, C.H. Lindsey, L.G.L.T. Meertens, R.G.
Fisker (eds.). R .. ised report on the algorithmic language
ALGOL 68. 1976.
51 A. Hordijk. Dynamic programming and Marko, potential
theory. I 974.
52 P.C. Baayen (ed.). Topological structures. 1974.
53 M.J. Faber. Metrizability in generalized ordered spaces.
1974.
54 H.A. Lauwerier. Asymptotic analysis, part /. 1974.
55 M. Hall, Jr., J.H. van Lint (eds.). Combinalorics, part I:
theory of designs, finite geometry and coding theory. IV74.
56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2:
graph theory, foundations, partitions and combinatorial
geometry. 1914.
57 M. Hall. Jr., J.H. van Lint (eds.). Combinatorics, part 3:
combinatorial group theory. I 974.
58 W. Albers. Asymptotic expansions and the deficiency con
cept in statistics. 1975.
59 J.L. Mijnheer. Sample path properties of stable processes.
1975.
60 F. 06bel. Queueing models invoMng buffers. 1975.
63 J.W. de Bakker (ed.). Foundations of computer science.
1975.
64 W.J. de Schipper. Symmetric closed categories. 1975.
65 J. de Vries. Topological transformation groups, I: a categor
ical approach. 1915.
66 H.G.J. Pijls. Logically con .. x algebras in spectral theory
and eigenfunction expansions. 1976.
68 P.P.N. de Groen. Singularly perturbed differential operators
of second order. 1976.
69 J.K. Lenstra. Sequencing by enumerati., methods. 1977.
70 W.P. de Roever, Jr. Recursive program schemes: semantics
and proof theory. 1976.
71 J.A.E.E. van Nunen. Contracting Markov decision
processes. 1976.
72 J.K.M. Jansen. Simple periodic and non-periodic IAme
functions and their applications in the theory of conical
wa,eguides. 1977.
73 D.M.R. Leivant. Absoluteness of intuitionistic logic. 1979.
74 H.JJ. te Riele. A theoretical and computational stut/y of
generalized aliquot sequences. I 976.
75 A.E. Brouwer. Treelike spaces and related connected topo
logical spaces. I 977.
76 M. Rem. Associons and the closure statement. 1976.
77 W.C.M. Kallenberg. Asymptotic optimality of likelihood
ratio tests in exponential families. 1978.
78 E. de Jonge, A.C.M. van Rooij. Introduction to Riesz
spaces. 1977.
79 M.C.A. van Zuijlen. Emperical distributions and rank
statistics. 1977.
80 P.W. Hemker. A numerical stut/y of stiff two-point boundary
problems. I 977.
81 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer
science II, part I. I 976.
82 K.R. Apt, J.W. de Bakker (eds.). Foundations of compwer
science II, part 2. 1976.
83 L.S. van Benthem Jutting. Checking IAndau's
"Grundlagen" in the AUTOMATH system. 1979.
84 H.L.L. Busard. The translation of the elements of Euclid
from the Arabic into LAiin by Hermann of Carinthia (?), books
vii-xii. 1977.
85 J. van Mill. Supercompactness and Wallman spaces. 1977.
86 S.G. van dcr Meulen, M. Veldhorst. Torrix I, a program
ming system for operations on vectors and matrices over arbi
trary fields and oj ,ariable size. I 978.
88 A. Schrijver. Matroids and linking systems. 1977.
89 J.W. de Roever. Complex Fourier transformation and
analytic functionals with unbounded carriers. 1978.

90 L.P.J. Groenewegen. Characterization of optimal strategies
in dynamic games. I 981. .
91 J.M. Geysel. Transcendence infields of positive characteris
tic. 1979.
92 P.J. Weeda. Finite generalized Markov programming. 1979.
93 H.C. Tijms, J. Wessels (eds.). Markov decision theory.
1977.
94 A. Bijlsma. Simultaneous approximations in transcendental
number theory. I 978.
95 K.M. van Hee. Bayesian control of Markov chains. 1978.
96 P.M.B. Vitilnyi. lindenmayer systems: structure, languages,
and growth Junctions. 1980.
97 A. Federgruen. Markovian control problems; functional
equations and algorithms. 1984.
98 R. Geel. Singular perturbations of hyperbolic type. I 978.
99 J.K. Lenstra, A.H.G. Rinnooy Kan, P. van Emde Boas
(eds.). Interfaces between computer science and operations
research. I g7g_
JOO P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part
/. 1979.
JOI P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed
ings bicentennial congress of the Wiskundig Genoo1schap, part
2. 1979.
:~~8~. van Dulst. Reflexive and superrejlexive Banach spaces.

I03 K. van Ham. C/assifving infinile(y divisible distributions
by functional equations. 1978.
104 J.M. van Wouwe. Go-spaces and generalizations of metri
zabi/ity. 1979.
105 R. Helmers. Edgeworth expansions for linear combinations
of order statistics. 19-82.
:~9~. Schrijver (ed.). Packing and covering in combinatorics.

107 C. den Heijer. The numerical solution of nonlinear opera
tor equations by imbedding methods. 1979.
108 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science / I/, part 1. 1979.
109 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science I/I, part 2. 1979.
110 J.C. van Vliet. ALGOL 68 transput, port /: historical
review and discussion of the implementation model. 1979.
111 J.C. van Vliet. ALGOL 68 transput, part ll: an implemen
tation model. 1979.
112 H.C.P. Berbee. Random walks with stationary increments
and renewal theory. 1979.
113 T.A.B. Snijders. Ajymptotic optimality theory for testing
problems with restricted alternatives. 1979.
114 A.J.E.M. Janssen. Application of the Wigner distribution to
harmonic analysis of generalized .rtochasric processes. 1979.
115 P.C. Baayen, J. van Mill (eds.). Topological structures J /,
part I. 1979.
I 16 P.C. Baayen, J. van Mill (eds.). Topological structures //,
part 2. 1979.
117 PJ.M. Kallenberg. Branching processes with continuous
state space: 1979.

:,.~~- ~-9¥i~neboom. Large deviations and asymptolic e/jicien-

119 F.J. Peters. SP'!rse matrices and subslructures, wirh a novel
implementation offinite element algorithms. 1980.
120 W.P.M. de Ruyter. On the asymptotic analysis of large
scale ocean circulation. 1980.
121 W.H. Haemers. Eigenvalue lechniques in design and graph
theory. 1980.
122 J.C.P. Bus. Numerical solution of systems of nonlinear
equations. 1980. ~~:o~· Yuhasz. Cardinal/unctions in topology - ten years later.

124 R.D. Gill. Censoring and stochastic inregrals. 1980.
125 R. Eising. 2-D systems, an algebraic approach. 1980.
126 G. van der Hock. Reduetion methods in nonlinear pro
gramming. I 980.
127 J.W. Klop. Combinatory reduction systems. 1980.
128 A.J.J. Talman. Variable dimension fixed point algorithms
and triangulations. 1980.
129 G. van der Laan. Simplicialjixedpoint algorithms. 1980.
130 P.J.W. ten Hagen, T. Hagen, P. Klint, H. Noot, H.J.
Sint, A.H. Veen. /LP: intermediate language for pictures.
1980.

131 R.J.R. Back. Correctness preserving program refinements:
proof theory and applications. 1980.
132 H.M. Mulder. The interval function of a graph. 1980.
133 C.A.J. Klaassen. Statistical performance of location esti
mators. 1981.
134 J.C. van Vliet, H. Wup'ler (eds.). Proceedings interna
tional conference on ALGOl 68. 1981.
135 J.A.G. Groenendijk, T.M. V. Janssen, M.J.B. Stokhof
(eds.). Formal methods in the s1udy of language, part/. 1981.
136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof
(eds.). Formal methods in the study of language, part//. 1981.
I 37 J. Telgen. Redundancy and linear programs. 198 I.
138 H.A. Lauwerier. Mathematical models of epidemics. 1981.
139 J. van der Wal. Stochastic dynamic programming. succes
sive approximations and nearly optimal strategies for Markov
decision processes and Markov games. 1981.
140 J.H. van Geldrop. A mathematical theory of pure
exchange economies without the no-critical-point hypothesis.
1981.
141 G.E. Welters. Abel-Jacobi isogenies for certain types of
Fano threefolds. 1981.
142 H.R. Bennell, D.J. Lutzer (eds.). Topologv and order
structures, part 1. 1981.
143 J.M. Schumacher. Dynamic feedback in finite- and
infinite-dimensional linear systems. 1981.
144 P. Eijgenraam. The solution of initial value problems using
;n~s'~:a/ arithmetic; formulation and analysis of an algorithm.

145 A.J. Brentjes. Multi-dimensional continued fraction algo
rithms. 1981.
146 C.V.M. van der Mee. Semigroup and factorization
methods in lransport theory. 198 l.
147 H.H. Tigelaar. Identificarion and informative sample size.
1982.
148 L.C.M. KaUenberg. Linear programming and Jinite Mar
kovian control problems. 1983.
149 C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxemburg,
W.K. Vietsch (eds.). From A to Z, proceedings of a symposium
in honour of A.C. Zaanen. 1982.
150 M. Veldhorst. An anafysis of sparse matrix storage
schemes. 1982.
151 R.J.M.M. Does. Higher order asymptotics for simple linear
rank statistics. 1982.

:i~2~.F. van der Hoeven. Projections of lawless sequences.

153 J.P.C. Blanc. Application of the theory of boundary value
problems in the ana?~;sis of a queueing model with paired ser
vices. 1982.
154 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational
methods in number theory, part /. 1982.
155 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational
methods in number theory, part //. 1982.
156 P.M.G. Apers. Query processing and data allocation in
distributed database sysrems. 1983.
157 H.A.W.M. Kneppers. The covariant classification oftwo
dimensional smooth commutative formal groups over an alge
braica/(y closed field of positive clzaracteristic. 1983.
158 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science JV, distributed systems, part 1. 1983.
159 J.W. de Bakker, J. van Leeuwen (eds.). Founda1ions of
computer science IV. distributed systems, part 2. 1983.
160 A. Rezus. Abstract AUTOMATH. 1983.
161 G.F. Helrninck. Eisenstein series on the metaplectic group,
an algebraic approach. 1983.
162 J.J. Dik. Tests for preference. 1983.
163 H. Schippers. Multiple grid methods for equations of the
second kind with applications in fluid mechanics. 1983.
164 F.A. van der Duyn Schouten. Markov decision processes
with continuous time parameter. 1983.
165 P.C.T. van der Hoeven. On point processes. l 983.
166 H.B.M. Jonkers. Abstraction, specification and implemen
;~~J~ techniques, with an application to garbage collecrion.

167. W.H.M. Zijm. Nonnegative malrices in dynamic program
ming. 1983.
168 J.H. Evertse. Upper bounds for the numbers of solutions of
diophantine equations. 1983,
169 H.R. Bennelt, D.J. Lutzer (eds.). Topologv and order
struclures, part 2. 1983.

CW/ TRACTS
I D.HJ. Epema. Suifaces with canonical hyperplane sections.
1984.
2 JJ. Dijkstra. Faire topological Hilbert spaces and cluuacteri•
zations tif dimension in terms of negligibility. 1984.
3 AJ. van der Schatt. System theoretic descriptions of physical
systems. 1984.
4 J. Koene. Minimal cost flow in processing networks, a primal
approach. 1984.
5 B. Hoogeoboom. Intertwining functions on compact Lie
groups. 1984.
6 A.P.W. BOhm. Datajluw computation. 1984.
7 A. Blokhuis. Few-distance sets. 1984.
8 M.H. van Hoorn. Algorithms and approximations for queue•
ing systems. 1984.
9 C.PJ. Koymans. Models of the lambda calculus. 1984.
10 C.G. van der Laan, N.M. Temme. Calculation of special
functions: the gamma function, the exponential integrals and
error-like junctions. 1984.

M,J!:an':. ~~-Controlled Markov processes; time-

12 W.H. Hundsdorfer. The numerical solution of nonlinear
stiff initial value problems: an ana/)'sis of one step methods.
Jgfj5_
13 D. Grune. On the design of ALEPH. 1985.
14 J.G.F. Thiemann. Ana{ytic spaces and dynamic program
ming: a measure theoretic approach. 1985.
15 FJ. van der Linden. Euclidean rings with two infinite
primes. 1985.
16 RJ.P. Groothuizen. Mixed elliptic-lryperbolic partial
differential operator,: a case-study in Fourier integral opera•
tors. 1985.
17 H.M.M. ten Eikelder. Symmetries/or dynamical and Ham
iltonian systems. 1985.
rn8t.D.M. Kester. Some large deviation results in statistics.

19 T.M.V. Janssen. Fowulations and 'fl,lications of Montague
~, part /: Philosophy, framewo computer science.

20 B.F. Schriever. Order dependence. 1986.
21 D.P. van der Vecht. Inequalitiesfor stopped Brownian
motion. 1986.
22 J.C.S.P. van der Woude. Topological dynamix. 1986.
23 A.F. Monna. Methods, concepts and ideas in mathematics:
aspects of an evolution. 1986.
24 J.C.M. Baeten. Filters and ultrafi/ters over definable subsets
of admissible ordinals. 1986.
25 A.W J. Kolen. Tree network and planar rectilinear location
theory. 1986.
26 A.H. Veen. The misconstrued semicalon: &conciling
imperative languages and data.flow machines. 1986.

"f::teAJ,J:; s:"::. ~jfen. Homogeneous zero-dimensional abso-

28 T.M.V. Janssen. Fowulations and applications of Montague
grammar, part 2: Applications to natural language. 1986.
29 H.L. Trentelman. Almost invariant subspaces and high gain
feedback. 1986.
30 A.G. de Kok. Production-inventory contra/ models: approxi
mations and algorithms. 1987.
31 E.E.M. van Beckum. Optimal paired comparison designs for
factorial experiments. 1981.
32 J.HJ. Einmahl. Multivariate empirical processes. 1987.
33 OJ. Vrieu. Stochastic games with finite state and action
spaces. 1987.
34 P.H.M. Kersten. Infinitesimal symmetries: a computational
approach. 1987.
f ~lf L. Eaton. Lectures on topics in probability inequalities.

36 A.H.P. van der B~ R.M.M. MattheiJ (eds.). Proceed
ings of the first international conference on industrial and
applied mathematics (ICIAM 87). 1987.
37 L. Stougie. Design and ana/)'sis of algorithms for stochastic
integer programming. 1987.
38 J.B.G. Frenk. On Banach algebras, renewal measures and
regenerative processes. 1987.

39 HJ.M. Peters, OJ. Vrieu (eds.). Surveys in game theory
and related topics. 1987.
40 J.L. Geluk, L. de Haan. Regular variation, extensions and
Tauberian theorems. 1987.
41 Sape J. Mullender (ed.). The Amoeba distributed operating
system: Selected papers 1984-1987. 1987.
42 P.RJ. Asveld, A. Nijholt (eds.). Essays on concepts, for
malisms, and tools. 1987.

