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PRETFACE

The papers in this book are dedicated to Leo A.M. Verbeek, professor of
(Theoretical) Computer Science at Delft University of Technology
(1968-1974) and at Twente University of Technology (1974-1987).
Each of the authors has had the privilege to spend part of his scientific
life in the stimulating atmosphere created by Leo Verbeek. Students,
Ph.D. students, assistants, and colleagues have had the opportunity to
benefit from his attitude and integrity with respect to teaching,
research, and human relations.

Unfortunately, not everyone who has been associated with
Leo Verbeek could contribute to this volume. They could, however,
attend the symposium held on the occasion of his retirement on
October 16, 1987 at Twente University. Some of the papers in this
book have been presented at this symposium.

The editors are indebted to the Centre for Mathematics and Com-
puter Science at Amsterdam, and in particular to its Publication
Department, for the timely and fine technical realization of this
volume.

August 1987

Peter R.J. Asveld, Enschede, The Netherlands
Anton Nijholt, Brussels, Belgium
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I NTRODUCTTION

Peter R.J. Asveld

Department of Computer Science, Twente University
P.O. Box 217, 7500 AE Enschede, The Netherlands

Anton Nijholt

Faculty of Sciences, Free University of Brussels
Pleinlaan 2, 1050 Brussels, Belgium

Formal Approaches

Although the papers in this book cover a broad range of topics, they
possess a common theme: there is no area in Computer Science which
does not benefit from a formal approach to its methods and concepts.
Formal approaches in Computer Science require the separation of an
abstract model from a concrete application and from particular imple-
mentation issues. This separation enables computer scientists to study
and prove properties of the model and to share or borrow other work
using the same or similar models.

The following aspects of modeling a subject matter can be dis-
tinguished:
®  select or construct a model (or theory) and give an account of the
domain to be modeled (i.e., its concepts and processes) in terms of
the model; assess its adequateness

® modify — i.e., extend, restrict, or take a different level of abstrac-
tion — the model to grasp as much as necessary, in the best possi-
ble manner

® study the properties of the model and its modifications in order to
obtain insight in its (descriptive) power and its limitations; this
insight is useful for assessing its adequateness and it provides
insight about the subject matter

® once a formal description of a process — in terms of a particular
model — has been obtained, then it can be used to build programs
that facilitate the building or that allow the generation of (parts
of) programs for the handling of these processes by a computer

Concern for precision leads to formalization. Formal descriptions can
be viewed as completely formal objects that can be studied, having

1



2 P.R.J. Asveld & A. Nijholt

representations which can be manipulated.

This book contains a collection of papers in which these different
aspects of modeling subject matters can be recognized. Most papers in
this volume deal with “artificial”’ situations. Their subject matters are
human-defined or human-constructed languages and systems. The
authors introduce and study formalisms, show how a subject matter
can be modeled, or discuss the building and usefulness of tools for the
generation of programs that facilitate the writing or processing of user
programs. Ultimately, the introduction and study of the formalisms
that are discussed in these papers have been inspired by practical con-
siderations. Practical considerations may lead to intriguing theoretical
problems. In some contributions to this book the authors concentrate
on these theoretical problems and they accept that no foreseeable prac-
tical application of the results of their investigations can be given.

Each paper in this book will be discussed in some detail below. It
is useful to introduce this book with some short remarks about each
paper. Nijholt’s paper is in fact a historical survey of attempts to go
from intuitive methods, through a process of abstraction, refining and
borrowing from other fields, to model-based methods in the area of
(artificial) language description and manipulation. This paper is fol-
lowed by a series of papers devoted to topics in some subfields of
(Theoretical) Computer Science, or to topics and approaches which
illustrate the aspects of modeling subject matters that have been men-
tioned above. As mentioned earlier, most papers deal with the model-
ing of “artificial” situations, i.e., what is studied and modeled are
human-defined or human-constructed systems. Hoenkamp’'s paper is
an exception, since it is concerned with an attempt to develop a realistic
model for aspects of a human activity, viz. human reasoning. Engel-
friet, Vogler, Hogendorp, and Asveld study properties of transducers
and rewriting systems which have been introduced as models for
describing aspects of languages and their processing by programs. Op
den Akker studies and tries to formalize issues that rise when
context-free grammars are used to model programming languages. It is
an example of a theoretical paper based on observations on the world
of compiler construction. Fokkinga takes concepts that can be recog-
nized in actual programming languages and maps them into equivalent
ideas in a mathematical formalism — the lambda calculus — to study
these concepts. On the other hand the work of Kuper deals with some
fundamental aspects of the lambda calculus itself. Sommerhalder
presents in his contribution a summary of unification algorithms which
are relevant in modeling the implementation of (logic) programming
languages. Filé’s paper addresses some decidability questions about
properties of a formalism introduced to model aspects of inference
making. Finally, the contributions of Alblas & Faase and of van
Hulzen discuss the development of tools which generate parts of pro-
grams. There are, however, important differences. The work reported
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by van Hulzen fits in the tradition of offering programmers an environ-
ment which facilitates the construction of software. Alblas & Faase’s
work is a contribution to the development of formalisms with which
one describes the process of converting a completed program into an
appropriate sequence of machine instructions. The ultimate aim of
these formalisms is to obtain efficient programs that convert language
specifications into a compiler.

We conclude this introduction to this collection of papers with a
short exposition of each of the contributions.

Summaries of the Papers

The first contribution to this book, From Mechanical to Theoretical —
Aspects of the Origins of Theoretical Computer Science by Anton
Nijholt, is a survey paper on those aspects of early Computer Science
from which Formal Language Theory and Theoretical Computer Science
emerged. The emphasis in this paper is on the early attempts to for-
malize the description of programming languages and to delegate the
conversion from program to machine instructions to the computer.
Observations on the relation between BNF and Chomsky’s phrase
structure grammars are followed by a presentation of Knuth's
attempts to characterize the generative power of BNF and his generali-
zation of Iron’s method of syntax-directed translation to attribute
grammars. The paper continues with some views on the early develop-
ment of Theoretical Computer Science and the developments of its
subfields. The emphasis is on formal language theory and the relation
with its domains of application and it is argued that the approaches in
this subfield of Theoretical Computer Science have set an example for
the other and more recent subfields. The author’s exposition is con-
cluded with some contemplative remarks on the interaction between
theory and practice in Computer Science.

The next paper, Generating Strings with Hypergraph Grammars,
by Joost Engelfriet investigates the string-generating power of
context-free hypergraph grammars. (Hyper)graph grammars constitute
an obvious generalization of string grammars. Formal definitions of
context-free hypergraph grammars and their string languages are
presented and well-known families of string and tree grammars are
viewed as hypergraph grammars. In addition some useful relationships
with the set of dependency graphs of derivation trees associated with
attribute grammars are established. The author presents characteriza-
tions of the string languages generated by the context-free hypergraph
grammars in terms of tree-to-tree string transducers (deterministic
tree-walking transducers) and 2-way deterministic finite state trans-
ducers.

In Modular Tree Transducers, Heiko Vogler defines operations on
trees with the help of tree transducers. Often, in practical applications,
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these operations are naturally defined in a structural recursive and
modular way. Vogler gives some examples of these operations and
argues that existing formal models such as (generalized) syntax-
directed translation schemes, attribute grammars and top-down tree
transducers do not reflect both the recursive and modular aspects of
these tree operations. Therefore he introduces a new formal device: the
modular tree transducer. After illustrating the adequateness of the
model, its relationships with other, already existing, models are inves-
tigated and some formal properties are established.

Jan Anne Hogendorp generalizes in Nonterminal Separating Macro
Grammars some structural definitions, originally introduced for
context-free grammars, to macro grammars. Then he establishes a few
characterization results for these macro grammars which are inspired
by and similar to corresponding known results for context-free gram-
mars.

Peter Asveld summarizes in Complexity Aspects of Iterated Rewrit-
ing — A Survey a number of results with respect to the complexity of
the membership problem of some quite abstract grammar models. Ori-
ginally, these abstract grammars have been defined as a generalization
of some rewriting systems introduced in developmental biology where
they serve as a model to study filamentous growth. Because these
abstract grammar models are so general, decidability of and complexity
bounds on the membership problem are of primary concern.

Rieks op den Akker’s paper On Covers and Left-Corner Parses
takes the reader to the area of parsing theory and transformations on
context-free grammars. Often the objective of transforming a grammar
is to obtain properties which make the grammar more amenable to cer-
tain parsing methods. However, there may be reasons to retain the
syntax of the original grammar. Hence, after parsing its result should
be given in terms of the original syntax description. These ideas have
been modeled with the concept of cover. Op den Akker introduces a
transformation with some desirable properties which allows the
definition of a cover between the transformed and the original gram-
mar. In addition, the transformation has the property that it yields an
LL (k) grammar if and only if the original grammar is LC (k). The
traditional cover concept can be viewed as expressing a semantically
useful but nevertheless syntactic similarity relation between context-
free grammars. In the final section of the paper the question is raised
how to generalize this relation to one between attribute grammars.
This would allow, for example, attributed variants of transformations
for left factoring, for the elimination of left recursion, and for
transforming one class of deterministically parsable attributed gram-
mars to another class of deterministically parsable attributed gram-
mars. Existing approaches are discussed and suggestions are presented.
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In the contribution Programming Language Concepts — The
Lambda Calculus Approach Maarten Fokkinga shows the benefits of
expressing programming language concepts in the framework of
Church’s lambda calculus. Once expressed in this formalism, the pro-
perties of a programming language concept can be studied without
reference to a particular programming language. Obviously, such a
study may prove useful for the design of new programming languages
and for a correct understanding of present programming languages.
Fokkinga illustrates the significance of the lambda calculus for this
study by expressing a variety of programming language concepts in this
calculus or its extensions. Readers who are not familiar with the
lambda calculus do not have to worry since it is introduced as a simple
programming language with a clear syntax and semantics. Once this
has been done, syntactic and semantic abstractions of various program-
ming language constructs are added to this language. This approach
allows the introduction and discussion of various useful principles for
programming language design. Much attention is paid to a description
of typing. Various theories are discussed, but the emphasis is on SVP-
typing, the author’s own approach to this problem.

In the next paper the lambda calculus is not used to study pro-
gramming language concepts, but it becomes object of study in itself.
A Representation Principle for Sets and Functions by Jan Kuper is a
study based on the observation that in the literature on models of the
lambda calculus selfapplication for functions is considered to be quite
normal, whereas selfmembership for sets is considered to be undesir-
able. Intuitively, this distinction is strange. In order to study this dis-
tinction two views on sets and functions are introduced. One view
considers them as intuitive objects, the other view considers them as
mathematical objects. The consequences of these different views for
models of the lambda calculus and for the relationship between such
models and set theory are investigated.

Unification is a well-known problem in algebra and logic. Its
practical importance increased enormously since the introduction of
Prolog and logic programming in general. In order to obtain efficient
implementations fast string unification algorithms are necessary. In
Unification — An Overview Ruud Sommerhalder presents formal results
on the decidability and the complexity of unification. In addition the
problem to generate unification algorithms for various equational
theories is discussed.

In the paper of Gilberto File, The Relation Between Two Patterns
with Comparable Languages, properties of patterns are studied. Pat-
terns are strings consisting of terminals and variables. They may be
converted into terminal strings by substituting terminal strings to the
variables. Patterns have been introduced in the context of (inductive)
inference making. However, the paper is not concerned with this par-
ticular application. It studies the formalism by considering a rather
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natural problem: if we consider two arbitrary patterns, is it decidable
whether the language generated from one pattern includes the other
language? This question is given a detailed treatment in which several
restricted variations of the problem are distinguished.

Henk Alblas and Frans Faase write about Attributed Abstract Pro-
gram Trees. Traditionally, attribute grammars can be viewed as an
extension of context-free grammars. The grammar symbols are aug-
mented with attributes and the grammar rules have associated attri-
bute evaluation rules. For a given derivation tree the values of the
attribute instances at the nodes of the tree can be computed using the
attribute evaluation rules. Alblas and Faase consider attributes for
abstract program trees. In these trees information which is redundant
for further phases in the compilation process is deleted, allowing a
more compact and simplified representation. In the synthesis phase of
the compilation this representation has to be translated into the
instructions of the target machine. The ultimate goal of the authors is
to specify this translation by a stepwise application of tree transforma-
tions. Their paper concentrates on the initial phase of their research:
the introduction of a formalism for the specification of the structure
and the attributes of abstract program trees.

Hans van Hulzen's paper on Program Generation through Symbolic
Processing is on the use of a computer algebra system as a facility to
assist in the construction of programs for numerical purposes. Such an
application requires a symbolic-numeric interface to transport informa-
tion from the symbol processing environment to the numeric processing
environment. After a discussion on the functioning of computer alge-
bra systems and their rich variety of output features, illustrated with
the REDUCE system, some approaches to the development of
symbolic-numeric interfaces are presented. Van Hulzen mentions pack-
ages and tools to construct programs using output produced by com-
puter algebra systems. Special attention is paid to Barbara Gates’ work
on the code GENeration and TRANslation package GENTRAN which
allows REDUCE (or MACSYMA) users to generate complete and
efficient programs for numerical purposes. The author reports on his
present work which aims at offering REDUCE users integrated facilities
for (arithmetic) code optimization and program generation.

In Non-Monotonic Reasoning in Man and Machine Edward Hoen-
kamp presents a fundamental discussion on an area in the foundations
of Artificial Intelligence, namely that of non-monotonic reasoning.
Humans are able to reason with incomplete and vague information.
They have default assumptions about the domain and unless evidence
to the contrary is presented they are unaware of these assumptions
when they draw conclusions. When new information comes available
and tacit assumptions are contradicted then certain beliefs have to be
revised and earlier conclusions based on these beliefs have to be dis-
carded. Hoenkamp surveys the approaches that have been taken to
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model these aspects of human or “default” reasoning. Traditional sys-
tems of logic can not be used. When new truths, i.e. new axioms, are
added to a system then there is no reason to retract earlier conclusions.
It is this non-monotonic aspect of default reasoning which is difficult to
formalize. Some approaches that have been taken are McCarthy's
method of circumscription, the introduction of default rules in the
traditional logics, and the introduction of so-called meta-devices. A
well-known example of a meta-device is Doyle’s Truth Maintenance
System (TMS), a system that supports non-monotonic reasoning by
detecting inconsistencies and by resolving them by altering beliefs, i.e.
retracting premises. By keeping track of the justifications of conclu-
sions TMS can maintain a consistent database of beliefs.

In the present paper the pros and cons of these logical approaches
are discussed. One of the shortcomings that is mentioned is that the
logical approaches allow the derivation of differents sets of beliefs but
that there is no explanation why people prefer one set over the others.
In order to study this phenomenon the author turns to a set of well-
documented psychological experiments in which the participants are
hoaxed, i.e, they are deceived about the true nature of the setting of the
experiment. After the experiment they are “dehoaxed”, i.e. an attempt
is made to convince them that they have been hoaxed. Hence people
are asked to change their beliefs. One of these experiments is taken to
develop a model, based on Doyle’s TMS, with which the changes from
one state of belief to another can be shown. This model is then
extended to allow the handling of degrees of belief and changes in the
degrees of belief during the experiment.






From Mechanical to Theoretical — Aspects of
the Origins of Theoretical Computer Science

Anton Nijholt

Faculty of Sciences, Free University Brussels
Pleinlaan 2, 1050 Brussels, Belgium

Some aspects of the prehistory and the background of Theoretical
Computer Science are discussed., We consider the introduction of
notations to describe dynamic processes, the change to the algo-
rithmic specification of problems and the attempts to develop pro-
grams to make programming easier. The impact of Chomsky’s
theory of generative grammar, its reception and its relationship with
the BNF-description are discussed. Observations on formal language
theory and its development into Theoretical Computer Science con-
clude this (sketchy) survey.

1. Viewing Programs as Data

Notations for Computations

During the Second World War, after having studied the work of the
logicians Frege, Hilbert, and Carnap, Konrad Zuse started to develop an
extension of the propositional and predicate calculus for the description
of problems for a digital computer. The dynamic process of computa-
tion which needs to be described requires that a notation should be
given for an assignment operation. Since Zuse’s “plancalculus™ had to
be mathematically exact, a notation z+1= z with the intended mean-
ing: “The new value of z is obtained by adding one to its old value”,
could not be used. Therefore the notation z+1==>z was introduced.
Knuth and Trabb Pardo [34] remark that such an operation had never
been used before and they mention that the systematic use of assign-
ments distinguishes computer-science thinking from mathematical
thinking. Another distinction is constituted by the formal description
of the control mechanism for a computation. In mathematics, even in
proofs, this is done informally. In the plancalculus the idea of struc-
tured data was incorporated. Moreover, Zuse used to state the
mathematical relations between the variables in his programs, in this
way giving the start to a theory of program correctness. Zuse's ideas
were hardly published and only in the seventies, when interest in the
history of computers and computing started to develop, his writings
received attention. One of the first example programs written in this
language dealt with the checking of the well-formedness of Boolean
expressions. Instead of Zuse's theoretical and logic-based approach the
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more pragmatical approach came to dominate the development of pro-
gramming languages and programming theory.

In 1945 John von Neumann wrote his “Draft Report” on the
EDVAC. In this proposal each 32-bit word was either a number or an
instruction word. In an instruction word the specific operation was
denoted by a group of adjacent bits. In this way there were instruc-
tions for, among others, addition, multiplication, the transfer of the
contents of memory locations to registers, test instructions and jump
instructions. A program had to consist of a sequence of instruction
words in binary form. In a separate memorandum von Neumann
wrote a sorting program to test whether this set of instructions would
be adequate for the control of a nontrivial computation. Von Neumann
did not write the program in binary notation. Instead he used a private
notation which came close to a symbolic code. That is, instead of
presenting instruction words by 32 bits, they were presented with a
few suggestive words, mostly in a one-to-one correspondence with a
decomposition (e.g., in operands and operators) of the binary instruc-
tion words.

Most of the computers constructed after the war were patterned
after EDVAC's design and were programmed in machine code, i.e., with
binary coded instructions which operate on the contents of memory
locations and on the registers or accumulators of the computer. The
coding of a problem with such instructions is a difficult task with a
high chance of errors. Therefore symbolic or mnemonic code was
developed, and once a program was completed it was translated into
machine language. This translation was done by humans. The next
step was to have this translation done by the computer itself and to
use (almost) conventional mathematical notation and arithmetic
expressions in these symbolic codes. H. Rutishauser in Switzerland and
the logician Haskell B. Curry in the United States were among the first
to consider and program this problem.

Machine-oriented symbolic code uses the symbolic rather than the
actual bit-addresses of the memory locations and also the operations to
be performed are given symbolic (mnemonic) names. In a simple sym-
bolic code there is a one-to-one correspondence with the actual
hardware operations. Despite this improvement programming remains
a tedious task. Therefore libraries of short programs for standard
operations and frequently occurring (numerical) computations were
developed. Hence,

“All that the programmer has to do is to punch the address in
which the routine is stored into his main programme.”

(cf. [6]. p.77). Goldstine [23], giving an account of the situation at the
Institute for Advanced Study in Princeton, remarks:

“One of the first developments in automatic programming was
introduced in the fall of 1949 on the EDSAC, where the
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conversion from the symbolic form to the machine one was

done by the computer itself. .. .. We did not work on what are

now called higher-level languages. Attention instead was

focussed on developing of libraries of programs (routines, sub-

routines) that could be used repeatedly to save the labour of
rewriting them many times.”

Subroutines had names and such a name can be considered as a
macro-instruction which stands for a set of machine instructions. The
task of an “automatic coder” consists of translating the instructions of
the symbolic code into machine instructions. This coder or assembler
takes care of the assignation of machine addresses to the operand
names, machine operations to the operator names, and the proper treat-
ment of the macro-instructions. Once this frame of mind has been
accepted it becomes clear that it is possible to introduce operations,
instructions, and control structures in a symbolic code. This further
reduces the necessity of knowledge of the machine code and makes it
possible that users which are only familiar with their own problems
can use the computer. Especially the need of having a way to use a
notation closer to the customary way of writing mathematical formu-
lae started the departure from symbolic codes to programming
languages. One of the first computers which had this possibility was
the M.A.D.M. computer of Manchester University (Great Britain).
With their notation it was possible to describe the numerical calcula-
tions (addition, subtraction, and multiplication) and the organization
of the calculations into an automatic process. For the latter 13 English
words were used. An example of a “numerical calculation” in this
description is + x +y +z +a + b = c. In [6] it is explained that sub-
routines could be evoked by writing the word subroutine followed by a
number describing which subroutine is meant.

“By an extension of this technique it would be possible to call
for the particular subroutine by name .... This has not yet
been done as the gain in convenience would be too small to
warrant the trouble.”

Algebraic Compilers and Formula Translators

The more complicated “automatic coders’”™ which were now needed were
called compilers. A compiler was not only able to convert a simple
assignment statement with an expression, like, e.g., @ := b+¢Xd into a
sequence of instructions of an assembly-like code but it also converted
computational contrai structures and other programming constructs
into appropriate sequences of machine instructions. The building of
these compilers provided another view on the use of a computer. Until
then most of the applications had to do with the computation of
numerical results. Hence, both the input and the output of a program
consists of numbers. A compiler, however, is a program which takes as
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input a program and generates from it another program. Grace M.
Hopper was aware of this viewpoint when she wrote one of the first
compilers. In 1949 Francis (Betty) Holberton had already written a
program which generated another program. In an interview Hopper
once remarked:

“Everyone’s forgotten that Betty wrote the first program that
wrote a program, a sort/merge generator. Because she had
been ahead of me, I had a good deal more nerve in going
ahead to build the A-O compiler.”

In the same interview (cf. [41]) Hopper recalls another experience
which had an eye-opening effect on the Harvard staff. An insurance
company came to Harvard to run a problem on the numerically
oriented MARK I computer using digits to represent alphabetical char-
acters. Hopper: “That opened up a new perspective none of us had ever
thought of.”” Hopper's A-O compiler was built for the UNIVAC com-
puter and it was completed in 1952. The compiler was written in the
following way:

“There sat that big beautiful machine whose job was to copy
things and do addition. So I thought, why not let the com-
puter do it. That's why I sat down and wrote that first com-
piler. It was very stupid. What I did was watch myself write
a program and make the computer do what I did. That's why
it is a single pass compiler, ...."

The first programming codes were very close to the machine and
symbolic codes of the machines for which they were used. Also in
Germany and Switzerland, most notably by K. Zuse and H.
Rutishauser, the idea of automatic program construction (“Automa-
tische Rechenplanfertigung™™) was conceived. In March 1951
Rutishauser lectured on this subject at a meeting of the West-German
GAMM (Gesellschaft fiir Angewandte Mathematik und Mechanik).

The IBM 701 computer could be programmed with “Speed Code™,
developed by John Backus. For the BINAC and UNIVAC computers a
“Short Code” was used. An interpretive routine processed each
instruction and then the necessary actions were performed. Later these
machines used the A-O0 compiler which did not interpret but instead
composed a machine code program from the scanned instructions. The
A-0 compiler handled a code which hardly differed from the machine
code. Codes which allowed mathematical notation for formulae were
handled by so-called algebraic compilers. During the period 1951-1957
various of these compilers for specific machines were developed.
Among the earliest were the Autocode compiler of A.E. Glennie of the
Royal Armaments Research Establishment in England, written in 1952,
and the Whirlwind compiler written in 1953 by J.H. Laning and N.
Zierler of MIT (Massachusetts Institute of Technology).
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A milestone was the building of the first FORTRAN (FORmula
TRANSlator) compiler. The work started in early 1954. The emphasis
was not on the design of a language but on the production of a com-
piler for the IBM 704 computer. This machine was considered to be so
powerful that only a few of them would be constructed. In [51] one of
the designers, John Backus, remembers that in the beginning:

“We certainly had no idea that languages almost identical to
the one we were working on would be used for more than one
IBM computer, not to mention those of other manufacturers.”

Hopper once remarked that programmers felt insulted when their pro-
grams were treated as if they were data. The early programmers were
sceptical about obtaining efficient programs by writing in a “high-level”
language. Hand-coded programs would run faster and would need less
memory. Their ingenuity could not be matched by a machine. There-
fore, in the case of FORTRAN, the efforts were directed towards the
construction of an efficient translator rather than towards the design of
a well-structured language. FORTRAN remained close to the 704’s
machine code and a compiler was constructed that produced code which
could compete in speed with that of experienced programmers. More-
over, it was soon recognized that any loss of efficiency was compen-
sated by an increase in the programmer’s productivity and a reduction
of the training required for programmers.

FORTRAN allowed the writing of expressions in the statements of
a program. The programmer should be informed what form of the
expressions is expected by the FORTRAN compiler. Below is an exam-
ple of the “syntax” specification of (mathematical) expressions as it
appears in the original FORTRAN Manual. It is borrowed from a par-
tial reprint of this manual in [51].

Formal Rules for Forming Expressions. By repeated use of the follow-
ing rules, all permissible expressions may be derived.

® Any fixed point (floating point) constant, variable, or subscripted
variable is an expression of the same mode. Thus 3 and I are fixed
point expressions, and ALPHA and A(I,J,K) are floating point
expressions.

® If SOMEF is some function of n variables, and if E, F, ...., H

are a set of n expressions of the correct modes for SOMEF, then
SOMEF (E,F,... ,H) is an expression of the same mode as SOMEF .

@ If E is an expression, and if its first character is not + or —, then
+E and —FE are expressions of the same mode as £. Thus —A is an
expression, but + — A is not.

® If E is an expression then (E) is an expression of the same mode as
E. Thus (4), ((4)). (((A))). etc. are expressions.

® If E and F are expressions of the same mode, and if the first char-
acter of F isnot + or —, then E+ F, E—F, EXF,andE/F
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are expressions of the same mode. Thus A —+ B and A /+ B are
not expressions. The characters +, —, X, and / denote addition,
subtraction, multiplication and division.

It is interesting to note the amount of detail in this specification
and, moreover, that in fact this “syntax” is presented as a generative
system (... by repetitive use of ...""). Moreover, the specification is
such that the ““syntactic” rules take care of the modes of the expres-
sions. On the other hand, without associated rules of precedence for
the operators this set of formal rules conceived as a generative system
yields ambiguous expressions. In order to analyze these expressions
and translate them into an assembly-like language J. Backus and I
Ziller developed a technique which inserted parentheses in the expres-
sions. By Sheridan [47] the validity of their method was shown.

The programming language ALGOL, which was developed a few
years later, was not designed with a specific machine in mind. ALGOL
grew from attempts from the West-German GAMM and the ACM
(Association for Computing Machinery) of the U.S.A. to obtain a stan-
dard programming language. Unlike FORTRAN, which was an
“Automatic Coding System™ for the IBM 704, ALGOL was a language .
it had a grammar and an attempt was made to have a clear distinction
between syntax and semantics. In 1959, at a UNESCO conference in
Paris, Backus presented the work of a committee on the design and the
description of this language; cf. [1]. It had its syntax described by for-
mal rules, which became known as the Backus Normal Form descrip-
tion of the ALGOrithmic Language ALGOL 60. In a preliminary report
of 1958 on this “International Algebraic Language” the notation did
hardly differ from that of FORTRAN. At this Paris conference, in
other sessions, work was presented on discovery procedures for phrase
structure grammars and in a session on mechanical translation V.H.
Yngve presented the MIT programming language COMIT which was
intended to be used for mechanical translation purposes. In a footnote
of Yngve's paper it is mentioned that ‘‘Some of the features of the nota-
tion used by N. Chomsky in his theory of grammar has been incor-
porated.”

2. Language as a Mathematical Object

Mathematics and Grammar

In the 19th and 20th century attempts to formalize mathematical
proofs led to the introduction of formal theories and formal languages
of logic. In 1879 Gottlob Frege introduced his “Begriffschrift, a for-
mula language, modeled upon that of arithmetic, for pure thought™ in
order to unify and extend existing notations and the use of formal
language for reasoning in fields such as arithmetic, geometry and chem-
istry. Members of the Wiener Kreis studied formal languages of logic.
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Church, Post and Turing introduced and studied symbol manipulating
formalisms. In 1943 E.L. Post recognized that the customary proof
systems can be considered as rewriting systems, that is, systems that
formalize the rewriting of strings of symbols in order to obtain new
strings. Post introduced a formalism consisting of an axiom and a
finite set of productions (rules of inference). Similar systems had
already been studied by the Norwegian logician A. Thue in 1914.
Another logician, Y. Bar-Hillel, became one of the main representatives
of the field of machine translation. Instead of using statistical and
cryptological methods he suggested the use of (structural) linguistic
methods. In 1951 Bar-Hillel wrote:

“A considerable body of descriptive data about the languages

of the world has been amassed in recent years, but so far no

operational syntax of any natural language exists with a size-

able degree of completeness, and the necessity of providing

such a syntax has apparently not been recognized by

linguists.”
With this “operational syntax™ it should be possible to analyze the
sentences of a natural language. This analysis should form the basis of
the translation. Instead of having a mere word-for-word translation
this analysis should lead to a phrase-for-phrase or sentence-for-
sentence translation. Bar-Hillel discussed these matters with R. Car-
nap and N. Chomsky since 1951. A first approach, using ideas of the
Polish logician Ajdukiewicz, to the “mechanical” determination of the
syntactic structure of sentences was given by Bar-Hillel in 1953; cf.
[4]. During the same years Noam Chomsky was concerned with the
question what part of linguistics could be made purely formal without
reference to semantics. In 1953 Chomsky introduced an axiom system
for syntactic analysis; cf. [7].

Although it was not the prime interest of the money supplying
agencies part of the research on machine translation was devoted to
theoretical issues related to word and sentence analyzing problems. At
MIT linguistics was classified as a “communication science”” and there-
fore it obtained more financial support from the military than at other
universities. Since 1955 Chomsky was assigned to a research project,
headed by V. Yngve, on machine translation in the Research Laboratory
of Electronics at MIT. One of the results of this project was the earlier
mentioned COMIT programming language. Most of the linguists on the
project were not much interested in these applied problems and spent
their time on general linguistic problems. In 1955 Chomsky finished a
manuscript called The Logical Structure of Linguistic Theory. A
“sketchy and informal” version of this manuscript was used as course
notes of an undergraduate course at MIT and it was published under
the name Syntactic Structures [9]. This book inaugurated a revolution
in linguistics by considering a grammar as a generative system. That is,
a finite device that can produce all and only the sentences of the
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language. It should be done in such a way that this production reveals
our competence of constructing sentences. Hence, contrary to the pre-
vailing viewpoints in linguistics, which were influenced by behavioristic
psychology., Chomsky introduced again, in the tradition of nineteenth-
century linguists (e.g., von Humboldt), a mentalistic interpretation of
language into linguistics. Other nineteenth-century linguists (e.g.. de
Saussure and de Courtenay) had already given thought to the use of
mathematics for linguistics. However, due to Chomsky a mathemati-
cally oriented mode of thinking was introduced into linguistics. His
first publication did not appear in a linguistic journal but in Journal of
Symbolic Logic, and in the early discussions on generative grammars
his work was compared with the specification methods for well-formed
mathematical formulae. In [14] it is remarked that:

“In fact, a real understanding of how a language can (in
Humboldt’s words) “make infinite use of finite means” has
developed only within the last thirty years, in the course of
studies in the foundations of mathematics.”

After the Second World War the introduction of formal models
in the different branches of science was widespread. Technological and
mathematical approaches to the study of human behavior started to
flourish and it was thought that natural sciences could be extended to
describe and explain phenomena of human mind and cognition. The
pursuit of a precise formulation of the notion of grammar can be illus-
trated by the emphasis which laid by many authors in the early nine-
teen fifties on their mathematical approach. This is reflected in the
titles of their publications by using the words “logical syntax”™ (also
used by Carnap), “model”, “axiomatic syntax”, “syntactic calculus”,
“quasi-arithmetical notation”, etc. During these years formal models
were sought for the method of constituent analysis. Initiating work on
this topic had been performed by Wells [50] and Harris [27]. They
have been considering “linear” schemes (in contrast to hierarchic) from
which sentences can be obtained by substitution of elements which
have the correct distribution. Chomsky [9], however, introduced the
following model:

“Customarily, linguistic description on the syntactic level is
formulated in terms of constituent analysis (parsing). We now
ask what form of grammar is presupposed by description of
this sort. As a simple example of the new form for grammars
associated with constituent analysis, consider the following:

(13) () Sentence = NP + VP
G) NP-T+N
(iii) VP — Verb + NP
(Giv) T — the
(v) N - man,ball,...
(vi) Verb — hit, took, ...
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Suppose that we interpret each rule X — Y as the instruction
“rewrite X as Y. We shall call (14) a derivation of the sen-
tence ‘‘the man hit the ball”’, where the numbers at the right
of each line of the derivation refer to the rule of the ‘‘gram-
mar" (13) used in constructing that line from the preceding

line.

(14) Sentence
NP + VP €))
T+N+ VP (ii)
T + N + Verb + NP (iii)
the + N + Verb + NP Giv)
the + man + Verb + NP )
the + man + hit + NP (vi)
the + man + hit+ T+ N (i)
the + man + hit + the + N Giv)

the + man + hit + the + ball  (v)

... We can represent the derivation (14) in an obvious way by
means of the following diagram:” [cf. Figure 1.]

Sentence

the ball

Figure 1. Representation of derivation (14).

It is worth noting that unlike immediate constituent analysis a
generative grammar as used in Chomsky's example predicts the gram-
matical sentences. The grammar is a finite and explicit characterization
of the grammatical sentences. In the tree the dominance and precedence
of the constituents which constitute the sentence is shown. This domi-
nance and precedence can give a formal account of ambiguity of sen-
tences. Another aspect to be mentioned is recursion. The rule
NC — NC Conj NC is an example of a recursive rule. It can be
applied recursively without a limit to the number of applications.
Recursion is of interest for the description of embedded sentences. In
the example X — Y has been interpreted as “rewrite X as Y ", where
X should be treated as a single name or symbol. In Syntactic Struc-
tures it is also allowed that the rules have the form xAy — xwy,
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where A is a single symbol or name and x, w, and y are strings of
symbols or single names. Hence, in the context of x and y it is
allowed to rewrite A to w.

The Chomsky Hierarchy

In [11] a mathematical investigation of classes of formal grammars and
languages is presented. Here, a language is a set of strings of finite
length over a (terminal) alphabet. A grammar consists of a vocabulary
V which is subdivided into two disjoint sets, the terminal alphabet
and the nonterminal alphabet N, and a finite set of rewrite rules.
Alphabet N contains a distinguished symbol, the so-called “Sentence-
symbol”, mostly denoted by S or by “Sentence”. Let a be a symbol in
Z;x,and y, and w be words over V and let A and B be symbols in
N. A grammar is said to be unrestricted (type 0) if its rules are of the
form x — y, context-sensitive (type 1) if its rules are of the form
xAy — xwy (w is non-empty), context-free (type 2) if its rules are of
the form A — w, and finite state (type 3) if its rules are of the form
A — a or A — aB. Hence, by imposing restrictions on the forms of
the rewrite rules different classes of grammars are induced. Starting
from the sentence-symbol we can repeatedly apply the rewrite rules.
The language which is generated by the grammar consists of the strings
of terminal symbols which can be obtained with this process.
Languages generated by finite state, context-free, context-sensitive, and
type O grammars are called finite state, context-free, context-sensitive,
and type O languages, respectively. It can be shown that the induced
hierarchy of families of languages is proper.

In Chomsky’s paper the names “context-sensitive” and “context-
free” were not yet used. The first occurrence of the name “context-
free” in the literature appears in [12]. Finite state grammars had been
presented before as finite state diagrams (finite state Markov processes)
in communication theory. The adjective “regular’” had been used by
S.C. Kleene to denote certain sets of strings (regular events). These
sets turned out to be equivalent to the finite state languages defined by
the Markov processes. Since then finite state languages have also been
called regular languages. Later it became clear that they could be
defined with the above given type 3 restriction. Due to Post, unres-
tricted grammars (semi-Thue systems) were already a well-known for-
malism in Logic. The language which is generated with an unrestricted
grammar is also called a recursively enumerable language. The family
of languages which have the property that for each string it can be
decided whether or not it is in the language are called the recursive
languages. This family is properly situated between the families of
context-sensitive and recursively enumerable languages. A grammati-
cal characterization of this family is not available.
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3. Computer Science Has Its Eye on Grammar

The ALGOL 60 Report

In May 1960 the ALGOL 60 report was published (cf. [37.38]), fol-
lowed by a flood of papers, letters to the editor, etc., on the ALGOL
definition and on compiling ALGOL. However, none of these authors
refers to Chomsky’s phrase structure grammars for describing
languages. ACM decided to use ALGOL as the language for communi-
cating algorithms and authors were invited to present algorithms in
ALGOL 60.f An ALGOL Bulletin was set up and made part of ACM’s
newsletter SIGPLAN Notices. In 1970, due to “financial reasons™ it
was again separated from this newsletter.

The ALGOL 60 Report presents the “defining” language of
ALGOL. It is expected to be the basic reference and guide for compiler
builders. In the (Revised) ALGOL 60 Report the formalism for syntac-
tic description is explained as follows. The syntax is described with
the help of metalinguistic formulae. Their interpretation is explained
by the following example in which we use two formulae.

<unsigned integer> := <digit> | <unsigned integer> <digit>
<digit> ==0111213141516171819

Sequences of characters enclosed in the brackets < and > represent
metalinguistic variables whose values are sequences of symbols. Hence,
in the first formula we have two metalinguistic variables, <unsigned
integer> and <digit>. In the second formula there is only one, viz.
<digit>. The marks ::= and | (the latter with the meaning of “or’)
are metalinguistic connectives. Any mark in a formula, which is not a
variable or a connective, denotes itself. Hence, the marks 0, 1, 2, 3, 4,
5,6, 7. 8 and 9 denote themselves. Juxtaposition of these latter marks
and/or variables in a formula signifies juxtaposition of the sequences
denoted. Thus the formulae above give a (recursive) rule for the for-
mation of values of the variable <unsigned integer> and a rule for
values of the variable <digit>. Two Kkinds of expressions in
ALGOL 60 are

<expression> := <arithmetic expression> | <Boolean expression>
Other metalinguistic variables obtain similar formulae. For exam-
ple.
< arithmetic expression> ::= <simple arithmetic expression> |
<if clause> <simple arithmetic expression> ELSE < arithmetic expression>

and in the same style a set of values of <simple arithmetic expression>
are

T “All contributions will be refereed both by human beings and by an ALGOL compiler.”
(From the ACM Algorithms Policy).
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<adding operator> =+ | —

< multiplying operator> ==X | /

< primary> ::= <unsigned number>|< variable>|(< arithmetic expression> )
<factor> ::= < primary> | <factor> | <primary>

<term> := <factor> | <term> <multiplying operator> <factor>

< simple arithmetic expression> ::= <term> | <adding operator> <term> |
<simple arithmetic expression> <adding operator> <term>

In the previous paragraph only the context-free part of the
definition of ALGOL 60 has been considered. In the ALGOL 60 Report
a similar definition is followed by sections with examples and con-
siderations on semantics, and with constraints on, e.g., the types
(modes) of the constituents of the expressions. For example,

a. An arithmetic expression is a rule for computing a numerical value.
This value is obtained by executing the indicated arithmetic opera-
tions on the actual numerical values of the primaries of the expres-
sion.

a.1 The actual numerical value is obvious in the case of numbers.

a.2 For variables it is the current value (assigned last in the
dynamic sense).

a.3 For arithmetic expressions enclosed in parentheses the value
must through a recursive analysis be expressed in terms of the
values of primaries of the other two kinds.

b. The constituents of arithmetic expressions must be of types “real”
or “integer”. The operators +, —, and X have the conventional
meaning (addition, subtraction, and multiplication). The type of
the expression will be “integer”” if both of the operands are of
“integer” type, otherwise “real”.

c. The sequence of operations within one expression is generally from
left to right, with the following additional rules:

c.1 According to the syntax given the following rules of precedence
hold:
first: T, second: X /, third: + —

c.2 The expression between a left parenthesis and the matching
right parenthesis is evaluated by itself and this value is used in
subsequent calculations.

We have omitted the “semantics”™ of / and 1, and a discussion on the
interpretation of “real” numbers and variables. This added English
text on semantics and constraints will be helpful for a compiler builder
but it is not complete and precise. Interesting are the rules of pre-
cedence between operators. They are “according to the syntax given’.
Hence, the syntax does not only define the “well-formed” sequences of
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symbols which form an arithmetic expression, but the way the syntax
is organized determines the semantic interpretation of the expressions.
If a is the name of a variable with current value 2 then the answer to
the question whether a +4X3 will be interpreted as an expression with
numerical value 18 or 14 will depend on the underlying syntax of this
expression. This dependence can be explained with the help of syntax
trees.

Formal Description of Formulae and Languages

In [5] a short survey is given of the early work on the formal descrip-
tion (“rules of spelling™) of arithmetic and Boolean formulae with and
without parentheses. Most of this work is done by logicians between
1930 and 1950. Later, algorithms were designed which checked the
well-formedness of these formulae and which were able to evaluate
them. One of the earliest algorithms for evaluating arithmetic formu-
lae is due to H. Rutishauser. The algorithm was made suitable for a
sequentially working process by C. Bohm in 1952. In one of the first
FORTRAN compilers similar ideas were used. Before evaluation a
preprocessor inserted parentheses in the formulae in order to make
them fully parenthesized.

The recognition that arithmetic and logical expressions could be
parsed and converted into assembly-like instructions led to the concept
of a high-level programming language. In [51] the designer of the
JOVIAL language recalls that an article on expression analysis (cf. [52])
was quite a revelation to them. It was one of the significant things
which made them decide to develop a high-level language for program-
ming the future U.S. Air Force's air defense systems:

“..., but the idea of being able to understand and parse com-
plex expressions in itself was of sufficient interest to motivate
our efforts.”

Roughly summarizing, the following “mechanisms™ can be dis-
tinguished:
@ rules of well-formedness
@ algorithms which check well-formedness
® formalisms which generate the well-formed formulae
®

algorithms which reveal the way a well-formed formula has been
generated by the formalism

@ algorithms which evaluate expressions to a numerical or Boolean
value.

The BNF description of ALGOL 60 is merely a set of rules of
well-formedness. The ALGOL reports do not provide the notation and
the terminology to derive, produce, or generate the well-formed pro-
grams. However, there is the intention to link well-formed programs
to conceptual structures by means of meta-linguistic formulae.
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Moreover, there is the underlying assumption which says that the asso-
ciated semantics is “syntax-directed”, that is, derivable from the con-
ceptual structure of the program. If the BNF description is interpreted
as a context-free grammar, then it allows the generation of the well-
formed sequences of symbols which constitute ALGOL 60 programs.
Checking well-formedness of computer programs has become known as
checking whether a program is syntactically correct. Analyzing the
program, in the sense of revealing the structural description, has
become known as parsing. The algorithms for the evaluation of
expressions have developed into compiling algorithms. These algo-
rithms presuppose a parsing algorithm which reveals the structure.
From this structure code can be produced which will be used to do the
actual evaluation of the expression.

BNF versus Context-Free
“Is your Chomsky really necessary?” (F.G. Duncan, in [48], p.298).

Historical notes on BNF and some fighting about its introduction
can be found in [51]. The fighting is done in a paper by P. Naur, com-
ments on Naur's view by F.L. Bauer and K. Samelson, and in the tran-
script of a question and answer session. Both Bauer and Backus men-
tion that the use of the notation came from similar notation in
mathematical logic. Backus remarks:

“As to where the idea came from — it came from a class that I
took from Martin Davis. ..., talking about the work of Emil
Post and the idea of a production. It was only in trying to
describe ALGOL 58 that I realized that there was trouble
about syntax description. It was obvious that Post’s produc-
tions were just the thing, and I hastily adapted them to that

”

use.

(p.162 in [51]). Also in [51] J.E. Sammet discusses the syntax descrip-
tion of COBOL in relation to BNF.

“Unfortunately, because on one hand we called this a notation,
and on the other because it was a metalanguage quite different
from that proposed by Backus in his paper, it became very
fashionable and quite common to say (at least orally if not in
writing) in 1959-1961 that COBOL had no formal definition.
I think anyone who looks will indeed recognize that the syn-
tax of COBOL was (and still is) defined in just a formal way
as ALGOL 60; ... I would venture to guess that more
languages are defined today using some variation of the
COBOL metalanguage than are actually defined today using
(even a variation of) BNF.”

The BNF description of ALGOL was not appreciated by an IBM
representative who suggested, after working through the description of



From Mechanical to Theoretical 23

ALGOL 60, to add a new entry to Webster's Dictionary, Algolagnia:
"The finding of pleasure in inflicting or suffering pain."t In 1964 Knuth
suggested to use the name Backus Naur Form in order to honor P.
Naur’s work as editor of the ALGOL Report.

In the August issue of Comm. ACM Gorn [24] discussed some
basic terminology of mechanical languages and their processors. How-
ever, “BNF’, “context-free language” or “formal language” are words
which are not used. In December, however, Gorn [25] remarks that

“The specification restrictions implicit in Backus normal form

place the languages so specified in the class of "Phrase Struc-

ture Languages".

In the reprinted version of this paper (in: Readings in Automatic
Language Processing. D.G. Hays (Ed.), American Elsevier, 1966) this
citation is immediately followed by: ‘“‘more specifically, they are the
"context-free languages"”’, being the only change in the text of the
paper. In Comm. ACM 5 (1962) at p.62 we find a Research Summary
reported by S. Gorn, October 1961, which is titled “Theory of Mechan-
ical Languages” and which mentions research into the relationship
between Chomsky's phrase structure languages and the languages
specified with Backus normal form. And on p.185 of the same volume
we find an interesting discussion in the “Letters to the Editor™ section
between Knuth and Gorn. Knuth starts his letter by remarking that he
is interested in Gorn's papers

*“...primarily because I have been doing a bit of research in
my spare time considering various implications of "Backus
normal form".”
Then Knuth continues with a discussion on the generative power of
BNF:

“... the class of strings ab, aabb, aaabbb, etc., can be
represented in Backus notation, ... the class of strings abc,
aabbcc , aaabbbccc , etc., cannot be represented in Backus nota-
tion.”

And, in the tradition of Fermat, Knuth concludes with:

“... (I have constructed formal proofs of these facts.) The

whole subject is quite fascinating.”

At that time it had already been shown that in Chomsky’s for-
malism the language aba, aabbaa , aaabbbaaa , etc., is not context-free
(cf. [45]) and in 1960 Bar-Hillel and others (cf. [3]) had introduced
tools for proving such negative results. Ginsburg and Rice [21] (the
paper was received in February 1961) further discuss the relationship
between BNF and phrase structure. Here we see the formal statement

t Similar remarks have been registered at the reception of the Operation Manual of the
ENIAC and the ALGOL 68 Report.
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that

“The defining scheme for ALGOL turns out to be equivalent to
one of the several schemes described by Chomsky in his
attempt to analyze the syntax of natural languages.”

Twenty years later Ginsburg remarks (cf. [22])

“That observation opened the flood gates for formal language
theory.”

In two papers Floyd [19,20] showed, using Bar-Hillel's technique,
that programming languages are not necessarily context-free and that it
is undecidable whether a context-free grammar is unambiguous. The
latter problem became interesting when it turned out that the initial
BNF description of ALGOL was ambiguous. However, it became clear
that considerable parts of programming languages could be defined
with context-free grammars. Research concentrated on this class of
grammars and languages, and more general formalisms sometimes were
obtained as generalizations based on the context-free grammars.

The various names which were used for the type 2 grammars and
languages (e.g., (context-free) constituent structure grammar, (simple)
phrase structure grammar, push-down store grammar, ALGOL-like
grammar, BNF description, context-free grammar) sometimes gave rise
to confusion during these early years. Examples of this confusion can
be found in discussions included in the proceedings of a Working
Conference on Mechanical Language Structures (cf. Comm. ACM,
February 1964). See also the proceedings of the IFIP Working Confer-
ence on Formal Languages: Description Languages for Computer Pro-
gramming (cf. [48]) held in New York in September 1964.

4. The Impact of Compiler Construction

Beyond a Context-Free Description

In the ALGOL 60 report the syntax of the language was expressed for-
mally by means of BNF. Natural (English) language was used to
express the semantics. Because of the use of BNF rules other, similarly
defined, languages have been called ALGOL-like languages. However,
ALGOL is not ALGOL-like. Its BNF rules define a superset of the
ALGOL language and only by satisfying some restrictions, expressed
verbally in the defining report, the ALGOL language is obtained from
the production rules. The same observation can be made for other pro-
gramming languages, i.e, additional conditions consisting of context-
sensitive dependencies have to be satisfied. Checking of these depen-
dencies can be done during parsing or in a subsequent pass of the com-
piler which is concerned with the semantic interpretation. Hence, the
(context-free) parser accepts a superset of the programming language
and auxiliary information is used to reject the incorrect programs. Res-
trictions which filter out the syntactically correct programs from a
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language which is otherwise described with a context-free grammar
have become known as confextual constraints. Sometimes these con-
straints are referred to as static semantics. See e.g. [35], where Koster
explains that static semantics is *“... syntax expressed verbally because
of impossibility to treat it in a formal way.” That is, with a syntax for-
malism more powerful than a context-free grammar or BNF this
“semantics” could have been part of the formal syntax. Although the
common user of a programming language can be presented a more
understandable description of the language it is advantageous to have a
formal description of the static semantics. It provides the compiler
writer a guide for the implementation and in certain cases the user may
find it necessary to have an understanding of the details of the
language. Moreover, programs which automatically generate (parts of)
compilers need a formal description of their input.

ALGOL 60 was introduced and subsequently studied as a
language with a distinction between syntax and semantics. In the
theoretically oriented research first interest focused on syntactical
questions and on more powerful formalisms which could define a more
complete syntax of a language. Moreover, formalisms were introduced
which lend themselves to the description of the translation from high-
level programming language to machine or assembly language. In a
later stage researchers started to think about defining semantics
independently from the compilation process.

In general the attempts to automate the production of those parts
of a compiler which explicitly deal with the translation are based on
certain enrichments of context-free grammars. There are obvious rea-
sons why in compiling theory the concept of context-free grammar
never has been abandoned. Context-free grammars give comprehensible
descriptions of languages and they are easy to handle. A context-free
grammar is a rigorous mathematical object and therefore it has well-
defined properties. It is decidable whether an arbitrary string is part of
the language of a context-free grammar and there exist methods for
automatically constructing parsers from a context-free grammar. On
the other hand, context-free grammars do have some deficiencies. The
syntax specification can sometimes lead to rather long lists of produc-
tions, it is not possible to accommodate the above-mentioned contex-
tual constraints and, last but not least, in compiler construction we are
interested in the translation from the programming language to an
intermediate language or to, ultimately, some form of assembly code.
Therefore a formalism which accommodates these tasks is desirable.
Various generalizations of context-free grammars and BNF have been
introduced addressing one or more of these deficiencies. Some of these
generalizations are introduced from the point of view of being able to
generate or accept a more powerful class of languages, without consid-
ering the possibility of efficient parsing and translation methods.
Explicit use of contextual constraints can be found in formalisms
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which maintain the BNF-syntax specification and augment it with
predicates. Ledgard [36] gives an example of the specification of PL/1
with a formal notation called Production Systems. In his notation
context-sensitive requirements such as the compatibility between the
declaration of an identifier and its uses and the correspondence between
actual and formal parameters are described by including “predicates”
in the productions which should be satisfied in order to obtain legal
strings. Similar descriptions have been given for the semantic rules of
BASIC and ALGOL 60.

Consider now the second reason why context-free grammars are
not satisfactory for the description of programming languages.
Although not presented in a completely formal way, E.T. Irons [31]
explicitly defined the problem of translating from source text through
the intermediate level of a syntax tree to the semantics (meaning). A
possible solution was given, that is,

.

.., a translation using the description can be effected by
fitting already discovered syntactic units (starting with the
syntactic units which are the basic symbols of the language)
into the syntactic structure to produce a new set of larger syn-
tactic units, and assign meanings to these new units according
to the meanings of the original units.”

The aim of this approach was to produce an ALGOL 60 compiler. It is
generally assumed that Irons’ paper started the research on syntax-
directed compiling. Irons’ ideas amount to defining the semantics by
associating meanings to each nonterminal symbol of the grammar and
associating semantic rules to each production. These rules define the
meaning of the nonterminal symbol in the left-hand side as a function
of the meanings of the symbols in the right-hand side. This can be
considered as an application of Frege's principle of assigning meaning to
composed constructs.

A first approach to a formalization of Irons’ ideas has led to the
introduction of syntax-directed translation schemes. These schemes
define string-to-string translations by means of “lock-stepped” deriva-
tions in two related context-free grammars. The translation string can
be considered as the meaning of the original sentence. Consider a
context-free grammar rule, say A — aBcD where A, B and D are
nonterminal symbols and a and c¢ are terminal symbols. A simple
syntax directed translation scheme (simple SDTS) has rules of the
form, say A — aBcD, pBqDr where p, ¢ and r are called translation
symbols. This rule can be viewed as consisting of two rules, a
context-free source rule A — aBcD and an associated context-free tar-
get rule A — pBgDr. The idea is that when a sentence w is generated
with the source rules its translation is obtained by simultaneously
rewriting the associated target rules. Hence, if we start with (S.S),
where S is the start symbol, then a translation (w,w') is obtained,
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where w' is a sequence of translation symbols. From a more practical
point of view string w' can be considered as a sequence of semantic
routine calls for evaluating the semantic rules of the productions and
make certain checks when necessary. The result of a routine call can be
a piece of code or text in the target language.

So far the simple SDTS is a definition of a string-valued transla-
tion with a possible practical interpretation. From the parsing point of
view the recognition of (parts of) the rule A = aBcD during context-
free parsing invokes the routines represented by p, ¢ and r. The
above-given quotation suggests a rule of the form A — aBcD, BDr
where the only routine r is called when the complete production
A = aBcD has been recognized during parsing. The target rules of the
SDTS determine the moment when the routines are invoked. The
(parsing) properties of the context-free source grammar in combination
with the form of the target rules determine whether an efficient trans-
lation process is possible. Before going to the next generalization it is
useful to introduce yet another point of view on the translation pro-
cess. The rule A — aBcD, pBgDr can be considered as the definition of
the translation associated with a particular node in the parse tree with
label A. In this view w' is the translation at the root S of the tree and
at node A the translation is the string consisting of the symbol p, fol-
lowed by the string which is the translation at node B (a direct des-
cendant of A), followed by the symbol g, followed by the translation
at node D (a direct descendant of A), followed by the symbol r.
Hence, with the following self-explaining notation, the rule can be
written as '

A = aBeD, t(A)=pt(B)qt(D)r.

Now it is possible to introduce multiple translations at a node. For
example,

A = aBeD, t(A)=pty(D), t(A)=t{(D)rt,(B)

and at the root S of the tree we can obtain multiple translations of
sentence w .

Instead of string-valued translations more general translations
can be introduced. Moreover, it might be necessary to check con-
straints which have to be fulfilled at certain nodes of the parse tree. In
this way each grammar rule, say A — aBcD, is accompanied by a set
of translation rules which determine the “translations” of A as a func-
tion of the “translations™ of the symbols which appear in the right-
hand side of the grammar rule. Instead of “translations™ it is more
appropriate to speak of attributes of A and their values. Instead of
“translation rules” it is now more appropriate to speak of semantic or
attribute (evaluation) rules. Values are assigned to the attributes of A
by evaluating the rules which are associated with the grammar rule
A — aBeD. In [33] the next generalization is presented. In Knuth's
attribute grammars each vocabulary symbol of the context-free



28 A. Nijholt

grammar has an associated finite set of attributes which describe the
properties of that symbol. Each attribute has a not necessarily finite,
fixed domain from which its values are taken. Attribute evaluation
rules associated with the production rules of the grammar determine
the values of the attributes. In the schemes above the meaning or
translation at a node in the parse tree was given as a function of the
meaning of its descendants. One may expect that in certain cases the
context plays a role. In that case part of the information which deter-
mines the meaning at a node in a parse tree may come from outside its
subtree. As a consequence, the “meaning” which is obtained from the
subtree dominated by a node may depend on this context information.

In order to describe the latter situation Knuth distinguished
between two types of attributes. If the attribute values are obtained
from the values of the ancestor or from the siblings of the node in the
parse tree then the attributes are called inherited . If they are obtained
from the descendant nodes the attributes are called synthesized . Apart
from the formal setting provided by Knuth, the main novelty of attri-
bute grammars is the added feature to define the semantics “top-down™
by the inherited attributes. Since the evaluation is not necessarily in a
single direction the semantic rules of an attribute grammar can give rise
to a circular definition. That is, it is not necessarily the case that for
each parse tree of the grammar there exists an evaluation order which
guarantees that the arguments of a semantic rule have already been
evaluated when this rule has to be executed. When such an evaluation
order exists the grammar is said to be well-defined or non-circular.
There exist algorithms for deciding well-definedness. Once the
(context-free) syntax tree has been constructed it is possible to evalu-
ate the attributes associated with its nodes. Conditions for well-
definedness have been developed which make it possible to evaluate the
attributes in a fixed number of passes over the syntax tree. Interesting
cases are those which permit attribute evaluation in a single left-to-
right pass and those where the syntax analysis and the attribute
evaluation can be done together in a single pass from left to right.
Since in general the programming language will be a context-sensitive
subset of the language generated by the underlying context-free gram-
mar, semantic conditions on the productions must be satisfied by the
values of the attributes in order to obtain a legal sentence or a program.

Attribute grammars are more directed towards the handling of
semantics in the practical situation of compiler writing than towards
the formal definition of semantics. Other attempts have been made to
give complete and formal definitions of programming languages. The
first aim to do so — to have a formal definition which can help in the
construction of an implementation or which can be used as input to a
compiler generating system — has already been discussed. The second
aim is to provide a model in which the meaning of a program is defined.
The model can be used to prove that programs satisfy claimed
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properties. Most of the attempts started with the description of
ALGOL 60. These attempts were invited by the success of its formal
syntax definition. Markov algorithms were used by de Bakker [2].
Others used Church’s lambda calculus or recursive functions. For one
of ALGOL's successors, the language EULER, the semantics was defined
by showing how the syntactic constructs should be translated to an
informally described assembly code. In a formal setting this approach
consists of the definition of an abstract machine and a mapping of the
syntactic constructs of the language to the operations of this machine.
The first language to be defined this way was LISP in 1960, by John
McCarthy. In denotational semantics each syntactic construct is associ-
ated with a mathematical function which expresses its meaning. Hence,
we have a mapping from a linguistic domain to a domain with well-
understood mathematical concepts which model the semantics. The
resulting meaning of a program is based on its inductive structure.

Automatic Production of Compilers

“We call the preparation of a grammar BNF programming, and the pro-
cess of modifying it until acceptable, BNF debugging.” (W.M. McKee-
man, et al. A Compiler Generator. Prentice-Hall, 1970; p.183).

Every program has its own input language. Sometimes this
language is simple, e.g., when the only input which is allowed is a list
of numbers in a predefined format. Sometimes the input language is
rich, e.g., when the input consists of a program which has to be checked
on syntactic correctness or when the input consists of a compiler
specification. The approach to compiler construction where a compiler
specification is converted by a program into a compiler has been pur-
sued since the early sixties when a prototype of such a system was
developed for the ATLAS computer of the University of Manchester
(Great Britain). The following enthusiastic review appeared in Datama-
tion 7, May 1961, p.27:

“With ATLAS comes a new approach to symbolic program-

ming. Dr. RA. Brooker, of Manchester University, has dev-

ised a scheme in which any programming language can itself

be defined. In effect, this scheme enables one to “teach"

ATLAS any language one chooses, after which the computer

can accept programs written in that language, it is a compiler

of compilers.”
It is necessary to have a meta-language to describe a compiler for a
specific language. The BNF or context-free grammar notation of a
specific syntax can be considered as a meta-language. In its turn this
meta-language can be described with a (simple) grammar. The input of
a parser generator can consist of a specific set of BNF rules, that is, a
sentence in this meta-language. A compiler writing system will require
more than a set of BNF rules. Its input language can consist of sets of
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BNF rules supplemented with semantic information. A formal attri-
bute grammar notation can be considered as a meta-language in which
the input of compiler writing systems is expressed. This notation can
gradually evolve into a special purpose programming language suitable
for writing compilers. Such a language is much less error-prone than
different formalisms and notations for scanning, syntax, error and
semantic analysis, and code generation. It should satisfy the condition
that only straightforward transcriptions have to be done from the
language designer’s definition grammar to the description which will be
input to the system.

Floyd [18] was among the first to recognize the necessity of creat-
ing a special description language for compilers. Obviously, the
language was first used in the development of an ALGOL 60 compiler.
A modified version of this language was used by Evans [15] and it
became known as the “Floyd-Evans Production Language”. Feldman
[17] introduced the description of semantics in this language. His For-
mal Semantic Language (FSL) was the basis for a compiler-compiler:

“In the present form FSL itself can be considered a problem
oriented computer language. The problem involved is the
representation of meaning in computer languages.”’

Often these compiler description languages are simple, e.g..
without assignment and hardly any control structures. On the other
hand some of them have grown to general system implementation
languages with classical control structures and abstraction and exten-
sion mechanisms. Sometimes it is possible to recognize the original
grammar formalism and intended parsing method in the language
definition.

5. Towards Theoretical Computer Science

Formal Language Theory

“We live or die on the context-free languages.” (S. Ginsburg, in [22],
p-7).

The introduction of the Chomsky hierarchy led to a flood of
papers on mathematical and, to a lesser degree, linguistic properties of
its grammar and language classes. Especially machine characterizations
of the various language classes were sought. Turing machines were
known to be equivalent to type O grammars. By Chomsky [13] and by
Evey [16] a pushdown automaton as a recognizing device for context-
free languages was introduced. In the next subsection we discuss the
introduction of pushdown stacks in computer science. There exist
methods to convert a context-free grammar to an “equivalent” push-
down automaton and vice versa. In the early 1960s these conversions
were not immediately clear. It was necessary to get used to the idea
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that instructions of the automaton could be carried out without read-
ing the input and, more importantly, that nondeterminism was an
essential concept. Nondeterminism had been used before in the charac-
terization of regular languages by finite automata; cf. [10]. By Rabin
and Scott [43] it was shown that for these simple devices nondetermin-
ism was not really necessary. Each nondeterministic device could be
converted into an equivalent deterministic device. At that time
researchers were not yet used to nondeterminism; cf. [26].

Machine characterizations of languages could be viewed as models
of parsers for these languages. At first, parsing methods were not
based on theory. The following quotation (cf. [30]) on the construc-
tion of the FLOW-MATIC compiler might be instructive.

“In order to quickly pick up the word — we didn't know any-
thing about parsing algorithms at that point in time — and
what happened was you picked up the verb, and then jumped
to a subroutine which parsed that type of sentence. In order
to do that quickly, and also to make it easy to manufacture
that jump, the first and third letters of the verbs in FLOW-
MATIC were unique.”

However, soon it became clear that in writing programs languages were
involved and language became an object of study in computer science.
When the relation between the syntax specification of ALGOL 60 and
the context-free grammars was established and, moreover, E.T. Irons
had shown how to use the syntax specification in the construction of
an ALGOL compiler, computer scientists started to show interest in
parsing methods.

Context-free grammars could be shown to be equivalent to (non-
deterministic) pushdown automata. Suppose that we write a parsing
program which uses the (nondeterministic) pushdown automaton in
such a way that it tries all possible choices until a successful sequence
of moves for an input string has been obtained (or it can be concluded
that the input string is not in the language accepted by the automaton).
It is not difficult to see that due to the nondeterminism the number of
steps of the parser grows exponentially with the length of the input
string. Methods which require exponential time are viewed as not
acceptable. This might become clear from the table in Figure 2.
Assume that each primitive step of a parser takes 1 microsecond. In
the table examples are given of linear, polynomial and exponential
functions which for each input length express the execution time.

A pushdown automaton which does not use nondeterminism is
called a deterministic pushdown automaton. Languages which can be
accepted with a deterministic pushdown automaton are called deter-
ministic (context-free) languages. These languages constitute a proper
subset of the context-free languages. A parsing method which would
be based on a deterministic pushdown automaton requires linear time.
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time length of the input n
function 10 20 30 40 50

n .00001 | .00002 | .00003 | .00004 | .00005
second | second second second | second

n? .0001 .0004 .0009 0016 .0025
second | second second second | second

nd .001 .008 027 .064 125
second | second | second second | second

on .001 1.0 17.9 12.7 35.7
second | second | minutes days years

Figure 2. Polynomial and exponential time functions.

From the table it will be clear that such parsing methods are desirable.
However, they can not work for all context-free languages.

Some (selective) backtrack parsing algorithms have been used in
early compiler writing systems and for parsing natural language. Due
to the exponential “blow-up” no widespread applications of these algo-
rithms could be expected. Moreover, in the computer science area
researchers had already started to devise practical algorithms for their
programming languages. These algorithms were suitable for very res-
tricted subclasses of the context-free grammars and they worked in
linear time; cf. [39]. Even when such an algorithm can not handle all
the syntactic constraints in the specification of a particular program-
ming language, methods can be given to reject incorrect structures in an
additional phase of the compiling process. In the early 1960s Robert
W. Floyd devised some practical schemes and soon theoretical ques-
tions about the properties of the classes of grammars and languages for
which the methods could be used were asked and studied. Rather than
being a problem for practitioners in the computer science area the
search for better algorithms for general context-free grammars became
a concern for linguists working on natural language processing projects
‘and for formal language theorists. Greibach [26] (p.71) comments on
this situation:

“We were very much aware of the problem of exponential
blow-up in the number of iterations (or paths), though we felt
that this did not happen in "real" natural languages; I do not
think we suspected that a polynomial parsing algorithm was
possible.”

A polynomial time algorithm was already available but not recognized
as such. This was Cocke’s algorithm, first mentioned in [29] and used
for parsing a context-free grammar for English developed at RAND
Corporation.
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Pushdown Stack Applications

In many early compilation methods the “last-in first-out” (LIFO) prin-
ciple which governs the pushdown stack was implicitly used. The
principle can be used to convert arithmetical expressions from a tradi-
tional infix notation to a more convenient Polish postfix notation (after
the Polish logician J. Lukasiewicz) and to evaluate expressions
presented in this form. In postfix form the operators occur in the order
in which they are to be used. Therefore Polish postfix notation can be
considered as an intermediate language between the source language and
the assembly code. It is possible to convert the usual programming
language constructs into a Polish postfix form. Statements in this
notation can be easily translated into an assembly-like code. In order
to understand the conversion to Polish postfix form an analogy with a
simple railway network (see Figure 3) was introduced.

output € — input

shunting of operators

Figure 3. The railway analogy.

With this analogy it is easy to see how an infix expression, e.g.,
aX(b+c), is converted into the postfix expression abc+X. The
identifiers are directly moved from input to output and the operators
are n)mved from input to output via the “siding” (the pushdown
stack).

A slightly more complex example might be more instructive.
Consider the expression a—b +c¢ Xd . With the normal precedence rules
we expect this to be evaluated as (a—b)+(c Xd). The normal pre-
cedence rules are

1 (raising to the power) highest precedence
X and / are of next highest precedence
+ and — are of lowest precedence

The relative precedences of the operators can be collected in a table.
The Polish postfix form of a—b+cXd becomes ab—cd X+. In order
to realize this conversion the pushdown stack is used as follows. The
string is read from left to right. Each operand is copied directly to the
output. Each operator will be moved to the output via the stack.
However, before stacking the precedence of the current operator is com-
pared with that of the operator on top of the stack. If it has greater
precedence, then the current operator is pushed on the stack. If it has
lower or equal precedence then operators are popped from the stack
and copied to the output until the stack is empty or a top operator has
lower precedence. Then the current operator is pushed on stack. The
process has become table-driven. We have an algorithm, based on an
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input and output tape and a pushdown stack, and a table which con-
trols the actions. If, e.g., we want to change the precedences of the
operators only the table need to be revised.

Stack applications first appeared in the fifties. Scientists to which
the idea has been attributed include, among others, W.L. van der Poel
(1952), who proposed it to store subroutine return calls, A.W. Burks,
D.W. Warren and J. Wright (1954), who used it to check and evaluate
parenthesis-free notations of logical expressions, and A. Newell and
J.C. Shaw (1957), who used it in the description of their Logic Theor-
ist. The railway analogy appeared after a rather explicit introduction
of the pushdown stack (or cellar, after the German word Keller) in
parsing theory by Samelson and Bauer [44]. The principle was used in
attempts to develop ALGOL 60 compilers and it was implemented in
computer architectures, e.g., the Burroughs 5000 system issued in 1963,
to allow the efficient compilation of ALGOL 60. At that time context-
free languages where not widely known among computer scientists and
pushdown automata were not yet introduced. The analogy has been
attributed to E.W. Dijkstra who used it in the report Making a transla-
tor for ALGOL 60, first published in May 1961. Dijkstra’s object
machine performed its arithmetic with the help of a stack. Notice that
in the evaluation of an expression in Polish postfix form the operands
are pushed on the stack and operators are applied to the two topmost
elements of the stack. In this way the stack can hold all temporary
intermediate results. In order to realize the translation from an
ALGOL 60 program to the object program, with the help of a stack,
precedence rules were introduced by assigning priority numbers to the
terminal symbols (BEGIN, END, IF, THEN, ELSE, :=, X, +, etc.) of the
ALGOL 60 grammar.

The formal and explicit introduction of the pushdown stack in
mathematical linguistics was motivated by a particular kind of parsing
method (cf. [40]) which grew out of reflections on a technique used by
Ida Rhodes and others in the automatic translation from Russian to
English. See [5] and [26] for further historical references on the push-
down principle.

Theoretical Computer Science

Although the definitions and the focus of interest are not at all
independent of the notions of interest for natural languages, their
grammars, and other possible applications (e.g.. in computer science,
developmental biology, psycholinguistics and pattern recognition), the
properties of formal languages and grammars and the theory developed
to study these systems are not necessarily directly relevant to the field
in which the concepts being modeled play a role. In order to exist
theory has to abstract away from practical details. Without abstrac-
tion and formalization no deep scientific results can be obtained. For-
mal methods are part of a theory or theory can be developed which
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suits the methods. Therefore errors in methods can be avoided and
more reliable systems can be created since there are means to show that
a system meets the given specifications and, moreover, it may have
become possible to automatically generate system parts from a formal
description. In Computer Science a full formal analysis of non-trivial
systems is not always possible. Only parts or aspects of a complete
system can be looked at and errors have to be avoided by careful
design. Investigation of limitations of formalisms helps in understand-
ing the formalisms and whether or not they can be applied in what
practical situations and at what cost. Insight will be gained from
becoming acquainted with formal methods and concepts and this will
improve the quality of the use of more ad hoc techniques. This is not
only true for formal language theory. It holds as well for any theory
which is developed to be applied to benefit practice.

Formal language theory is part of Theoretical Computer Science
and Theoretical and Computational Linguistics. Theoretical Computer
Science, a field of knowledge born in the mid-1960s, studies the fun-
damental concepts of computer science by theoretical tools. In this
field formal models are provided to study and clarify concepts of com-
puter science. The study of these models is done with theoretical tools
borrowed from mathematics and logic and developed in the field itself.
The study of these models and the development of theoretical tools to
be used in this study result in a coherent framework unifying a body
of practice. In models we refrain from looking at all practical details.
By distinguishing between relevant and less relevant matters and by
emphasizing certain points of view only the essential parts of the prob-
lem remain. Due to this abstraction of concrete situations meaningful
theorems can be obtained which apply to many concrete situations and
which otherwise would not be recognized or would be impossible to
state. The framework and its theorems can help to understand practi-
cal situations and to manage the complexity of the design of practical
systems. Moreover, the framework provides a means to communicate
results and methods to others and to teach them to the students of the
field.

The three classical subfields of Theoretical Computer Science are
formal language theory, automata theory and computability theory.
Formal language theory flourished after the introduction of the gram-
mar concept in computer science. Generative linguistics and the design
of programming languages such as ALGOL have been the two main
sources from which formal language theory has been developed.
Greibach [26] states that until 1964 formal language theory still could
be considered part of (mathematical) linguistics. After 1964 formal
language theory developed as a separate branch within several fields of
knowledge. Formal language theory has been successful in the
classification of grammar and language classes, either by properties of
the grammar rules, by parsing properties or by complexity properties.
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The study of such properties demonstrates the theoretical limitations
of the formal systems. From these limitations their suitability as a
model of, e.g., cognitive or linguistic concepts or as an abstract device
whose implementation can be used in compiling a (programming)
language, can be judged. Automata theory started much earlier than
formal language theory. It was recognized as a research area in the
midfifties, especially after Auformata Studies appeared. This book,
edited by C.E. Shannon and J. McCarthy, contained a collection of
papers on different versions of Turing machines, automata to model
brain activity and automata to describe the operation of electromechan-
ical systems. The in- and output of automata can be considered as
strings of symbols (sentences) from an in- and output language.
Therefore the study of automata theory became closely related to that
of formal language theory. Computability theory started in the early
thirties as a subfield of logic. Its first components were recursive func-
tion theory and the Turing machine as a model of a “computer”.
Presently, incorporated in Theoretical Computer Science, it is concerned
with the (theoretical) limitations of computer science. It shows what
can and cannot be computed by establishing fundamental properties of
recursive and recursively enumerable sets. In this field a body of
theory has been developed to provide evidence in support of the
Church-Turing Thesis. Cf. [32] for a sketch of the development of
computability theory.

Especially when equivalences between recognizing and generating
devices were established these subfields were linked together. The
method of study in formal language theory has become exemplary for
the the other subfields of Theoretical Computer Science. Many con-
cepts in other subfields find their origins in formal language theory and
often problems in these subfields can be reduced to problems in formal
language theory. Because of practical needs other research areas came
into existence. Complexity theory is the theoretical study of concepts
which can be used to measure the effectiveness of algorithms and their
application in order to find more efficient techniques for solving prob-
lems. The measures are in terms of the spending of computational
resources (e.g., computing time and memory space) on specific machine
models (e.g. Turing machines or Random Access Machines). While
computability theory may yield the result that a particular problem is
solvable or unsolvable, complexity theory may give the answer
whether a possible solution is practically realizable. Cf. [28] for a
sketch of the development of complexity theory. The Theory of Seman-
tics is concerned with the development of formal systems for describ-
ing the meaning of programming language constructs. The main
methods of semantic description are the so-called operational and the
mathematical methods. In the operational approach each language con-
struct is associated with a piece of behavior — i.e., the execution of a
certain sequence of elementary actions — on an abstract machine. The
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mathematical approaches are the axiomatic Floyd-Hoare approach and
the functional or denotational approach of D.S. Scott and C. Strachey.
In the latter approach mathematical functions are associated with the
linguistic constructs of the programming language. Much of this
theory is based on models of the lambda calculus provided by Scott
[46]. Background knowledge of semantic theories can help the designer
of a programming language to avoid ill-understood constructs. For a
particular programming language a formal definition helps in the
(automatic) implementation of the language and the theory can be used
to develop valid proof rules for proving program correctness.

However, there are many other subfields of Computer Science
which invite theoretical approaches. It is beyond the goals of this
paper to survey these fields. We mention theories developed in support
of relational database design, search and representation techniques in
Artificial Intelligence, computational geometry, the description of
parallel processes, etc. The approaches in these fields rely heavily on
the results and the methods of the other, older and more extensively
worked out subfields of Theoretical Computer Science. The origins of
the subfields’ tools and concepts can often be found in the same areas.
In the case of formal language theory these areas are mentioned in the
table of Figure 4.

Logic, Recursive Thue, Post, Carnap, 1910—1955

Function Theory Church, Turing, Kleene

Communication Theory, Shannon 1935—1950

Cryptography,

Switching Theory

Neurophysiology McCulloch, Pitts, Kleene 1940—1956

Linguistics Chomsky 1950—

Machine Translation Bar-Hillel, Yngve, 1950—
Oettinger, Rhodes

Programming Language Backus, Naur, Irons, 1958—

Specification, Floyd

Compiler Construction

Algebra Chomsky, Schiitzenberger, 1963—
Nivat, Ginsburg, Eilenberg

Developmental Biology Lindenmayer 1968—

Figure 4. Origins of formal language theory.

Some of these origins can be characterized as the application of logic in
attempts to formalize the manipulation of symbols in certain fields.
Much of this work was done by logicians interested in more practical
research areas.
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It will be clear that formal mathematical methods play an impor-
tant role in Theoretical Computer Science. The workers in this research
area are assumed to maintain a mathematical integrity and its subfields
use the paradigms of mathematics. When Compiler Construction was a
new, and therefore important, topic in computer science much of the
research dealt with syntax instead of semantics, for the simple reason
that syntax could be formalized. This led to a concentration of
research activity in a rather restricted area. This area has been exten-
sively worked out, its results have been and still are applied in practice
and many results have lasting value. Moreover, it has been an impor-
tant, necessary and useful phase in the maturing of computer science
and computer scientists. An important part of Computer Science's
preoccupation is the manipulation of symbols and strings. Having
become acquainted with the formal methods (and their limitations)
which govern this manipulation is a sign of maturity. Research in this
area has introduced fruitful and scientific attitudes and methodologies
in Computer Science. Nevertheless, part of the interest in this area can
be explained from the background of computer scientists. Workers in
computer science used to be from an engineering/industrial or from a
pure mathematics/logic background. This latter background and the
association of computer science groups with mathematical departments
makes it understandable that such an emerging science wants to earn
respect by adhering to the paradigms of its environment and by con-
centrating on publishable research.

Wegner [49] distinguishes three phases of programming language
development, corresponding roughly to the 1950s, 1960s and 1970s.
These phases are discovery and description of concepts, elaboration and
analysis of concepts, and software technology. They are characterized
by an empirical , mathematical and an engineering approach, respec-
tively. A similar global distinction in periods can be made for more
topics of Computer Science. However, often this static tripartition does
not do justice to the area. There is a continuous interaction between
theory and practice. In this interaction the empirical, mathematical
and engineering approach can often be recognized but not always and
not always in that order. Therefore it is useful to add the following
three observations to such a global view. Firstly, as in any scientific
area, there is a development of theory as a means to advance our
understanding of the basic concepts of the theory itself. This develop-
ment is not necessarily irrelevant for practice. The theoretical frame-
work can provide a common cultural background for the practitioners
from which practical concepts and methodologies can emerge. More-
over, advances in technology may make it possible to use theoretical
ideas which until then had to be discarded. Secondly, there is the con-
tinuous effort to grasp more aspects of a practical situation — in this
case compiler construction — in a comprehensive theoretical frame-
work. Finally, the theory receives impulses from new ideas and
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concepts which are discovered in practical situations or are invoked by
technological advances.

Practical problems are far from clean and clear. Research in com-
puter science should also be motivated by practical technological con-
siderations. It is difficult to discriminate in this practical research
between concepts which really advance our understanding of computa-
tional processes and concepts which will have no lasting value. More
fundamental research may provide the framework in which concepts
can be judged and accepted or rejected. Computer Science has many
commercial and military implications. Its funding of projects is often
determined by short-term yield. Researchers are looking for fashion-
able research areas with a direct practical payoff and for which funding
is easy and publications will be accepted. They are not necessarily
motivated by the objective of obtaining deep results which advance our
understanding of computational processes and their management. Nei-
ther are they motivated to leave behind a coherent body of methods
and results before moving to the next fashionable field. This following
of trends of fashion is not necessarily beneficial for the long-term
development of computer science.
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Generating Strings with Hypergraph
Grammars
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Context-free hypergraph grammars generate the same string
languages as deterministic tree-walking transducers.

1. Introduction

A graph grammar generates a set of graphs, also called a graph
language. To obtain an overview of the usefulness of graph grammars,
see [6,10,11]. Since strings can be viewed as (chain-like) graphs, every
string grammar can be viewed as a graph grammar in an obvious way.
More importantly, every type of graph grammar may also be used as a
type of string grammar: just restrict attention to those graph grammars
that generate strings only. Thus the sentential forms of such a gram-
mar may be arbitrary graphs, but the generated graphs are strings. In
this paper we investigate the string-generating power of a particular
type of graph grammar: the context-free hypergraph grammar, recently
(re-)introduced in [5,19.24] (see [19] for historical remarks). In such a
grammar the sentential forms are directed hypergraphs, of which the
hyperedges are labeled by terminal and nonterminal symbols. One
derivation step consists of replacing one hyperedge (labeled by a non-
terminal) by a hypergraph, according to some production of the gram-
mar. These grammars are of interest because (1) they generate a rea-
sonably large class of (hyper)graph languages, and (2) the way they
work is easy to understand and to visualize (a vital feature of graph
grammars). They can be used, e.g., to model the top-down design of a
relational database scheme [4].

We will characterize the string languages generated by context-
free hypergraph grammars to be those generated by the tree-to-string
transducers of [1], thus answering question (4) in the conclusion of
[19]. These languages are also closely related to the dependency path
languages of attribute grammars (see [12]). Intuitively, this characteri-
zation can be understood through the notion of derivation tree of a
context-free hypergraph grammar; cf. [23]. In fact, the graph (in par-
ticular, string) generated in a derivation of the grammar, is distributed
over the corresponding derivation tree in a “snake-like’’ manner, rem-
iniscent both of the route taken on a derivation tree by a tree-walking
automaton, and of the dependency graph of a derivation tree in an
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attribute grammar. As a special case we characterize the string
languages generated by linear hypergraph grammars to be those gen-
erated by 2-way finite state transducers.

2. Hypergraphs and Hypergraph Grammars

A directed hypergraph consists of a set of nodes and a set of
(hyper)edges. just as an ordinary graph except that an edge is incident
with any number of nodes rather than exactly two. The edges are
directed in the sense that the nodes incident with a given edge are
linearly ordered. Formally (cf. [5.24]), a (directed edge-labeled) hyper-
graph (or, shortly, graph) is a system H = (V,E,Z,nod,lab) where V
is a finite set of nodes (or vertices), E is a finite set of (hyper)edges, £
is an alphabet of edge labels, nod : E— V* is the incidence function, and
lab:E— T is the edge labeling function. Thus, nod maps every edge
into a sequence of nodes (of any length). If nod(e)= (vyi...v,),
n 20, then e is called an n -edge, v; is also denoted by nod (e.i), and e
and v; are said to be incident. Pictorially (cf. [24]), nodes are indicated
by fat dots, as usual, and the edge e is indicated by a box containing
lab (e ), with a line between e and v; labeled by i, for each 1Si <n.
These lines are called the “tentacles™ of the hyperedge [19].

C QA ’\4‘5 ‘ a
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’ X @
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Figure 1.

As an example, the hypergraph in the left part of Figure 1 has
(enumerated from left to right) V = {u,v,w} and E = {e;.ez.e3.e4},
and it has I = {a,b.c}, nod(e;)= (w), nod(e;)= (), nod(e3)=
(w.w,v,w), nod(ey) = (v,w), lab(e1) = c, lab(e;) = lab(e3) = a, and
lab(e,) = b. To simplify comparison with ordinary directed graphs we
will also draw a 2-edge e, with nod (e) = (v1,v,), as an ordinary
directed edge from v to v,, labeled by lab (e ), and we will also draw a
1-edge e, with nod (e) = (v), as a “balloon”, “tied” at v and labeled
by lab (e). as indicated in a picture of the same hypergraph in Figure 1,
to the right. Note that the “balloons™ can serve as node labels; thus
each ordinary node- and edge-labeled directed graph can be viewed as a
hypergraph in a natural way.

For a given hypergraph H, its components are denoted by Vy,
Ey ., Ty, nody;, and laby, respectively (and the subscript H is dropped
if it is clear from the context). For an alphabet I, the set of all hyper-
graphs H with £y = I is denoted by HGR(Z). A subset of HGR (T)
is called a (hyper)graph language.
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Figure 2.

Since we will be interested in particular in strings, we now define
the graphs that we use to model strings; cf. [19]. Let T be an alphabet,
and let w = 0; - - - 0, be a string over T with k 20, 0; €X. Then the
string graph corresponding to w is gr(w)= (V,E,X,nod,lab) with
v={01,.k}, E={1,..k}, nod(@i)=(G—1,i), and lab(i)= o;.
Note that gr (A), where X is the empty string, consists of one node and
no edges. As an example, Figure 2 shows the string graph gr (abaa ).
In what follows we will not always distinguish between a string w
and the string graph gr (w ), and, similarly, between a string language
L and the string graph language gr (L) = {gr (w)|w € L}. It should be
observed here that in graph languages we will, as usual, not distinguish
between isomorphic graphs (where isomorphisms are defined in the
obvious way). Thus, in gr (w), the fact that the nodes and edges are
integers is irrelevant.

To be able to discuss the application of grammatical productions
to hypergraphs, we need four easy operations on hypergraphs.
(1) Removal of one edge. For H € HGR(X) and e € E;;, H—e denotes
the hypergraph (Vy,Ey—{e}.X,nod.lab) where nod and lab are the
restriction to Ey—{e} of nody and laby, respectively. Pictorially, one
hyperedge is removed, by erasing the corresponding box with its tenta-
cles.
(2) Disjoint union. Let H,K € HGR (T) be disjoint graphs, i.e., Vg, Vg
and Ey , Ex are disjoint sets. Then

H+K = (VH U VK ’EH UEK,E,nodH U nodK ,labH U labK ).
Pictorially, the pictures of H and K are put together into one picture,
without interconnection.

(3) Identification of nodes. Let H € HGR(Z) and let RS Vy XVy.
Intuitively, we want to identify nodes # and v. for every pair
(u,v)ER. Let =, denote the smallest equivalence relation on Vg
containing R; for v € Vy, let [v]z denote the equivalence class of v
with respect to =g, and let Vi /= = {[v]z |v €Vy). Then

H/R = (VH/ER ,EH ,E,nod,labH)
where, for every n -edge e € Ey;,
nod (e) = ([nod (e. 1]z . ....[nod (e.n )]z ).

Note that H/R has the same edges as H. Pictorially, for each
(v.v)ER, nodes u and v are moved together (carefully) until they
coincide.
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(4) Gluing along an edge. Let H,K € HGR(Z) be disjoint hypergraphs,
and let e€Ey; and f €Ex be n-edges for some n =0. Define
R = {(nody (e.i),nodx (f,i))|1<i <n}. Then

glue (H,e,K.f )= (H—e)+(X—f))/R.

Intuitively, the graphs are glued together by pairwise identification of
the nodes of e and f: the edges e and f themselves disappear. Put
your fingertips together and think about it. An example is given in
Figure 3; from left to right: H with e, K with f, and glue (H,e.K.f ),
with edge labels omitted.

< D <O

Figure 3.

We are now prepared for the definition of context-free hyper-
graph grammar.

Definition 1. A context-free hypergraph grammar (shortly cfhg) is a
system G = (£,A,P,S) where I is an alphabet, ACE is the terminal
alphabet (and Z—A is the nonterminal alphabet), P is the finite set of
productions, and S € Z— A is the initial nonterminal. Every production
in P is of the form (e,H) where H € HGR(X) and e €Ey with
laby (e JEZ—A. O

S A A a

Figure 4.

Intuitively, the application of a production (e,H ) consists of
replacing an edge e by the hypergraph H—e. A picture of (e,H) is
given by a picture of H, in which the box corresponding to e is
decorated with black corners. As an example, Figure 4 shows the three
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productions of a c¢fhg G = (Z,A,P,S) with £= {S,A,a} and A= {a}.
Terminology: A nonterminal edge is an edge e with lab(e )JEE—A, and
similarly for a terminal edge. For a production (e,H ), e is called the
left-hand side and H the right-hand side of the production.

Let G = (£,A,P.S) be a cfhg. Formally, application of a produc-
tion 7 = (e,H ) of G is defined as follows. Let K € HGR(Z); in case K
is not disjoint with H , take an isomorphic copy of X that has this pro-
perty. Then 7 is applicable to KX at a nonterminal edge f of K if
labg (f )= laby(e) and f.e are both n-edges for some n =0. The
application of 7 to K at f results in the graph XK'= glue (H,e.K.f ), or
any graph isomorphic to K'; notation: X => K'. As usual, the
language generated by G is L(G) = {H € HGR(A)|S =>*H} where S,
is the hypergraph without nodes and with one edge e such that
nod(e)=( and lab(e)=S. A graph H €HGR(E) such that
S =>"H is called a sentential form of G. The class of all languages
generated by context-free hypergraph grammars is denoted by CFHG.
Moreover, the class of all string (graph) languages generated by cfhg’s
is denoted by STR(CFHG). Thus

STR(CFHG) = {L € CFHG| L S gr (A*) for some alphabet A}.
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As an example, for the grammar G of Figure 4, L (G ) consists of
all “ladders™ of the form given in Figure 5. As another example, the
grammar G of Figure 6 generates the language gr(L) with L =
{a"d™c™ |n 20}; thus, identifying L and gr(L), L €STR(CFHG).
Using the productions of G in the way suggested by Figure 6, one can
see that G generates the string a”b"c” in a “snake-like” fashion, as

shown in Figure 7 for n = 4. As a final example, very similar to the
previous one, consider the cfhg G of Figure 8, with 6 productions
(x =a or x =b). G generates all strings $w$w$ where w is an odd-
length palindrome over the alphabet {a.5}. This time, the way the pro-
ductions are drawn suggests that the strings are generated as chains
rather than snakes.

Figure 7.

As the reader may have noticed in Figures 1 and 6, different ten-
tacles of a hyperedge may lead to the same node. However, as sug-
gested by [9], this phenomenon can always be avoided in cfhg’s for
nonterminal edges (not for terminal edges of course). To formulate
this as a result, we need some terminology. An edge e in a hypergraph
H is loop-free if the nodes in nody(e) are all different. A cfhg G is
loop-free if, for every production (e,H ) of G, all nonterminal edges of
H are loop-free. Thus, the cfhg’s of Figures 4 and 8 are loop-free, but
the one of Figure 6 is not. We now state the “loop-free lemma”.

Theorem 2. For every cfhg G there is a loop-free cfhg G' such that
LG')=LG). ]

Remarks. (1) This result is similar to the removal of A-productions
from a context-free grammar. (2) In [19,24] every production in a cfhg
should have a loop-free left-hand side; in [5] arbitrary left-hand sides
are allowed. O

Loop-free cfhg's are more attractive than arbitrary cfhg’s because
the way they work is much easier to visualize: when computing
glue (H,e.K.f )= ((H—e)+(X—f))/R, in the application of a produc-
tion (e,H ), both e and f are loop-free, and hence no other nodes than
those indicated by R are identified (i.e., = = R UR™1). This means
that nodes of a sentential form can never be identified in a later stage
of the derivation, and, consequently, the ““terminal part” of the
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Figure 8.
sentential form (obtained by removing all nonterminal edges) is a sub-
graph of the generated graph. It also means that for every production
(e.H ). applied in a derivation, the terminal part of H is a subgraph of
the generated graph.

In this sense, the loop-free lemma may be viewed as a way of
showing the power of the attractive formalism of loop-free cfhg's.
Thus, whenever we will construct cfhg’s that are not loop-free, we will
say that this is possible “due to the loop-free lemma’.

3. Known Formalisms Viewed as Hypergraph Grammars

To become more familiar with cfhg’s, we consider in this section some
well-known string and tree grammars that can be viewed as context-
free hypergraph grammars. Also, cfhg’s are very suitable to generate
the dependency graph language of an attribute grammar, as shown in

[7].

Figure 9 contains a cfhg generating the string language a*6. It
clearly corresponds to a regular (string) grammar with productions
S—A, A—-aA, and A—b. Note that, in general, all nonterminal
edges (except S) are 1-edges. Regular string grammars can be
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Figure 10.

generalized to context-free string grammars and to regular tree gram-
mars. Figure 10 contains a cfhg generating the string language of all
well-formed parenthesis expressions (where a is the left- and & the
right-parenthesis); it corresponds to the context-free grammar with
productions S— A, A - aAbA, A = A. Note that A-productions can be
simulated “due to the loop-free lemma™. From this example it should
be clear that all context-free grammars can be viewed as cfhg’s (where
all nonterminal edges, except S, are 2-edges). Hence STR(CFHG) con-
tains all context-free (string) languages (properly of course, see Figures
6 and 8). Figure 11 contains a cfhg that generates all ordered binary
trees. Internal nodes of the trees are labeled a, and leaves are labeled
b; the order is indicated by edge labels f and & (standing for left and
right, respectively). This cfhg corresponds to the regular tree grammar
(cf. [17.7]) with productions S— A, A —a(A4,A), A—b.

For the reader familiar with context-free tree grammars (cf., e.g.,
[15]) we note that they can also easily be simulated by cfhg’s, as long
as they are noncopying and nondeleting. For a copying, nondeleting,
(I0) context-free tree grammar G it is possible to construct a cfhg G'
that generates DOAGs (directed ordered acyclic graphs) which, when
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Figure 12.

unfolded, give the trees generated by G; thus L (G )= unfold(L (G')).
In this sense the cfhg of Figure 12 simulates the context-free tree
grammar with productions S=A (%), A(x)=A(a(x.x)). A(x)—x,
generating all full binary trees.

In general, a graph grammar can also be used to generate a
transduction, i.e., a relation between graphs: if (H#,K) is in the relation,
then the grammar generates the disjoint union H + X, and in some way
marks H and K, to distinguish the input graph H from the output
graph K. Thus, one may investigate how the top-down tree transducer
(see, e.g.. [17]) and even the macro tree transducer (see, e.g., [16]) can
be simulated by cfhg’s.

We now turn to the dependency graphs of attribute grammars
(AGs). An attribute grammar [22] associates a “dependency graph”
with each production and each derivation tree of a given context-free
(string) grammar. The set of all dependency graphs of derivation trees
forms the dependency graph language defined by the AG. We assume
the reader to be familiar with attribute grammars; see, e.g., [22,2,12].
Let DEP-AG denote the class of all dependency graph languages of
AGs. We will assume here that the nodes of dependency graphs
(corresponding to attributes) are not labeled, but the edges
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(corresponding to dependencies between attributes) are; in particular,
each edge of the dependency graph of a production is given a unique
label; see [12]. Now the following result is straightforward to show:;
see Section 16.8 of [7].

Theorem 3. DEP-AG &G CFHG. 0

In fact, each dependency graph of a production of the AG
corresponds to a production of the simulating cfhg, in a straightfor-
ward way. The nonterminals of the underlying context-free grammar
of the AG are also the nonterminals of the cfhg; each nonterminal has a
tentacle to each of its attributes. An example should make this clear.
Figure 13 contains the dependency graphs of an AG, corresponding to
the productions S— A, A= AA, A —a of the underlying context-free
grammar. The nonterminal A has an inherited attribute o and a syn-
thesized attribute 8. and the nonterminal S has attribute 8 only. The
dependency edges are given arbitrary unique labels @ to f. Figure 14
shows the cfhg that generates the dependency graph language of this
AG.

Remarks 4. (1) Suppose that, in Figure 13, the edge labeled e is not
present. Then the dependency graph language is clearly a string
language. Let STR(DEP-AG) denote the class of string languages in
DEP-AG. Then STR(DEP-AG) & STR(CFHG), by Theorem 3.

(2) It is shown in [13] that NLC graph grammars can also be used to
generate dependency graph languages. However, cfhg’s do this in a
more natural way.

(3) It should be clear from the example that the translation of an AG
into an equivalent cfhg can be realized in deterministic logarithmic
space. This implies that lower bounds carry over from dependency
graph languages of AGs to languages in CFHG. As an example, it is
immediate from [21] that there is no polynomial time algorithm to
decide, for a given cfhg G, whether all graphs in L(G) are acyclic.
The same holds, e.g., for “planar™ and “bipartite” instead of “acyclic”
(These properties are decidable for cfhg’s, by the elegant result of [8]).

(4) Some edges in dependency graphs of an AG are often known to be
“passing” edges: the nodes (i.e., attributes) connected by such an edge
are meant to have the same value. Thus, it is meaningful to define a
variation of dependency graphs in which these nodes are identified.
Due to the loop-free lemma the new dependency graph language can
still be generated by a cfhg. If, e.g., the edge labeled e in Figure 13 is a
passing edge, then one just identifies the incident nodes in the
corresponding production in Figure 14 (removing the edge). a
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4. The String Generating Power of Hypergraph Grammars

Up to now we did not say anything new. In this section we turn to a
new result: we characterize STR(CFHG) as a class of string languages
known in formal language theory, in particular the theory of tree
transducers and attribute grammars. It is the class OUT(DTWT) of
output languages of the deterministic tree-walking transducers of [1];
see also [14,12]. These transducers walk on the derivation trees of a
context-free grammar, and translate them into strings. The class
OUT(DTWT) is equal to the class yT. (REC) of yields of images of the
regular (or recognizable) tree languages under finite-copying top-down
tree transducers; see Corollary 4.11 of [14], where OUT(DTWT) is
denoted DCT(REC). From this and the proof of Theorem 5.7 of [12], it
follows that OUT(DTWT) S HOM(STR(DEP-AG)) where HOM
denotes the class of homomorphisms (on strings). Thus, to show that
OUT(DTWT) C STR(CFHG), it suffices, by Theorem 3 of the previous
section (cf. Remarks 4(1)), to prove the following lemma.

Lemma 5. STR(CFHG) is closed under (string) homomor phisms.

Proof: Let G = (£,A,P.S) be a cfhg that generates a string (graph)
language, and let ~:A*— Q' be a string homomorphism. We have to
show that A (L (G))€CFHG. A cfhg G' = ((E—A)U Q,Q.P.S) gen-
erating A (L (G)) is constructed from G by changing every right-hand
side H of a production of G as follows: every terminal edge e of H is
replaced by gr(h (laby(e))). More precisely, let laby(e)=a and
nody(e)= (w,v). If h(a)=10b,---b; (b; € Q) with £ 21, then k—1
“new” nodes wj,...w;—; are added to H, and e is replaced by k
“new” edges ey,....e; with lab(e;) = b; and nod (e;) = (w;_1.w;) for
1<i Sk (where wo=u and w; = v). If h(a)= X, then e is dropped
from H and the nodes u and v are identified (which is possible due to
the loop-free lemma). m]

It remains to show that STR(CFHG) € OUT(DTWT). We prove
this by a direct simulation of a string-generating cfhg by a tree-
walking transducer. A deterministic tree-walking transducer (abbrevi-
ated dtwt) is an automaton with a finite control, an input tree, and an
output string. The input trees are all derivation trees of a given
context-free grammar. At any moment of time the automaton is at a
certain node of the input tree. Depending on the state of its finite con-
trol and the label of the node, it changes state, outputs a string to the
output tape, and either stays at the node or moves to the father or a
specific son of the node. The automaton starts in its initial state at the
root of the input tree, and halts whenever it reaches a final state. In
this way it translates the input tree into an output string. The output
language of the automaton is the set of all output strings obtained in
this way. OUT(DTWT) denotes the class of all such output languages.
For more details see [1], or [14] (where the dtwt is called a dct-
transducer).
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Lemma 6. STR(CFHG) € OUT(DTWT).

Proof (sketch): Let G = (£,A,P,S) be a loop-free cfhg generating a
string language. To better understand the idea of the proof we first
assume that G satisfies the following two restrictions:

(1) There is a unique production 7, = (e,H) in P with laby(e)=S.
Moreover, H—e consists of a 2-edge, ie., Vg = wv}). Ey = {e.e'}).
nody(e) = (), and nody (e’ ) = (u,v). Furthermore, the first [last] node
of every string generated by G is u [v, respectively].

(2) Each node of the right-hand side of a production in P is incident
with at most one nonterminal edge.

The cfhg of Figure 10 satisfies (1) but not (2), and the cfhg of
Figure 8 satisfies both restrictions (and is loop-free). In [19]
STR(CFHG) is defined in such a way that (1) is always satisfied.

The dtwt M to be constructed walks on the derivation trees of a
context-free grammar G' obtained directly from G as follows (in fact,
these trees should also be viewed as derivation trees of G). The non-
terminals of G' are the productions of G, and G' has no terminals. Its
initial nonterminal is 7;,, see (1) above. G' contains all productions
Mo— W - - - W with m; = (e;,H;)EP such that H,—e, contains
precisely & nonterminal edges, and, for 1<i Sk, the i -th nonterminal
edge has the same label as e; and both are n-edges for some n =0
(assuming that these ¥ nonterminal edges are given some fixed but
arbitrary order). It should be clear that every derivation tree ¢ of G'
determines a graph H(¢) in L(G), obtained by taking the disjoint
union of all terminal parts of (right-hand sides of) productions of G
that occur as labels of nodes of ¢, and identifying nodes as follows: if
production mo— w7, - - - m; of G' occurs in ¢ and f; is the i -th non-
terminal edge of Hy—e,. then nod (f;.j) should be identified with
nod (e;,j), for all 1< j <n, 1<i <k. This is the key to understand-
ing how the dtwt M can walk through ¢, producing H (¢) on its out-
put tape. When M is at a node x of ¢, labeled m = (e,H ), then M
also keeps track in its finite control of a node of H ; in other words, M
is also ““at a node of H”, and consequently also “‘at a node of H(¢)".
M starts at the root of ¢, labeled m;, . and at the node u of H;, (see
(1) above); it halts when it returns to the root, at node v of H;,. Now
suppose that M is at node x of ¢, labeled 7 = (e,H ), and at node u of
H. Then M behaves as follows.

(i) If H has a terminal edge f with nody(f)= (w,v), then M
“moves” to node v of H, remains at node x of ¢, and outputs laby (f ).
(ii) Otherwise, if H has a nonterminal edge f # e incident with u, f
is the i-th nonterminal edge of H—e, and u = nody(f.j). then M
moves to the i-th son of x in ¢, labeled, say, by m; = (e;.H;), and
moves to nod (e;, j) in H; (without producing output).

(iii) Otherwise u is incident with e. In that case M moves to the
father y of x. Suppose that u = nody (e, j), that x is the i-th son of
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y. and that y is labeled by mo= (e¢.H,) in ¢. Then M moves to
nod (f;,j) in H,, where f; is the i -th nonterminal edge of Ho—eo. M
does not produce output.

This ends the description of M. In the general case, the fact that
a node may be incident with more than one nonterminal edge makes it
impossible for M to choose the correct edge deterministically. How-
ever, G can first be changed in such a way that its new nonterminals
are of the form (X,p ) where X is an old nonterminal and p is a partial
function from {1,....,n} to itself for some n 20. If (X,p) labels an n -
edge e, in some sentential form of G, and nod (e ) = (u,,....u, ), then
p ()= j means that (X,p) generates the substring of H (¢ ) from node
u; to node u; (viewing u;,...%, as nodes of H(¢) too). From this
information M can easily see which nonterminal edge to take, in case
of doubt. A slight extension of the information allows M to find the
start and end of H (¢). Note that this kind of information is analogous
to the i/s-graphs (in attribute grammars) that model the dependency

paths in the dependency graph of a derivation subtree. O
Our main result follows from Lemmas 5 and 6.

Theorem 7. STR(CFHG) = OUT(DTWT)

and STR(CFHG) = HOM(STR(DEP-AG)). a

To illustrate this result, it is easy to see from the cfhg’s of Figures
8 and 10 (and Lemma 5) that, for every context-free language L, a
cfhg can be constructed generating the language {ww |w € L}. Of course
this language can also be generated by a dtwt that walks on the deriva-
tion trees of a context-free grammar for L: the dtwt just walks twice
through the tree in a depth-first left-to-right fashion. The language
can also easily be defined by a 2-pass attribute grammar (and a
homomorphism).

Quite a lot is known about OUT(DTWT); see, e.g., [14]. For
instance, it is a full AFL containing Parikh languages only. The hierar-
chy result for STR(CFHG) in Theorem 4.4 of [19] can also be under-
stood from a similar hierarchy result for OUT(DTWT) (in Theorems
3.2.5 and 4.9 of [14]): roughly speaking, if nonterminal edges have at
most 2k tentacles, then the dtwt is at most k -crossing.

As an interesting special case we consider the linear cfhg’s (stu-
died in [25] and, as finite graph automata, in [20]). A cfhg is linear if
every right-hand side of a production contains at most two nontermi-
nal edges (The cfhg's in Figures 4, 6, 8, 9, and 12 are linear). Let
LIN-CFHG denote the class of languages generated by linear cfhg’s.
Clearly, in the linear case, the derivation trees of the context-free
grammar on which the dtwt works are not branching. Thus, we may
view the dtwt as a 2-way deterministic finite state transducer with
strings as input and output; see, e.g., [14]. Let OUT(2DGSM) denote
the class of output languages of such transducers.
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Theorem 8. STR(LIN-CFHG) = OUT(2DGSM). O

Also about OUT(2DGSM) quite a lot is known. As an example,
we obtain the fact that there is a string language in CFHG that is not in
LIN-CFHG. In fact there exists even a context-free language that is not
in OUT(2DGSM); see, e.g.. [18]. We also note that linear cfhg’s are
related to parallel rewriting: one nonterminal edge can grow pieces of
graph at different places of the sentential form simultaneously (as in
Figure 8). For strings there is a formal relationship between cfhg's and
ETOL systems (a well-known type of parallel rewriting systems; see,
e.g., [3. 14]): OUT(2DGSM) = ETOLgy . the class of ETOL languages of
finite index; see Corollary 4.11 of [14] where OUT(2DGSM) is denoted
DCS(REG).
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Modular Tree Transducers
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In this article a new class of transducing devices, called modular tree
transducers, is introduced and their relationship to (compositions of)
macro tree transducers is studied. Modular tree transducers are term
rewriting systems which define operations on trees in a structural
recursive and modular way. The class of defined operations is closed
under composition where the resulting transducers have in general
more modules than the transducers started with. Modular tree
transducers with one module correspond to macro tree transducers;
however, every composition of macro tree transducers can be simu-
lated by a modular tree transducer with just two modules. On the
other hand “calling restricted” modular tree transducers characterize
this composition in the sense that the number of modules
corresponds to the number of composed macro tree transducers.

1. Introduction

In theoretical computer science one often is confronted with the task of
defining operations on tree-structured objects. If these arise in practical
applications, then frequently it is possible to specify them in a struc-
tural recursive way. Then the definition of such an operation f has the
form of a case analysis on the (finitely many) different structures of
the actual values of one particular argument position. For every struc-
ture ¢ of this so-called recursion argument, an equation eg is entered
into the case analysis; it specifies the result of f if the actual value of
the recursion argument has the structure z. In general eg does not pro-
vide the final result immediately but only gives an approximation of it:
besides the application of basic functions the right-hand side of eg may
contain the operation f itself with the important restriction that f
must be applied to one of the substructures of the recursion argument.
Since we are interested in operations on trees only, we regard the basic
functions as symbols with rank; thus the right-hand sides of equations
are just trees.

Let us look at an example in which operations on binary trees are
defined in a structural way. We only consider binary trees which
either have the form of a “right-growing comb” or the form of a
“left-growing comb”, and in which the inner nodes are labeled by
cons ; cf. Figure 1(a) and (b). Note that the combs of Figure 1 may be
viewed as representations of the lists (@ B C) and ((((Dc)bd) A),
respectively, where a,b,c,A,B and C are atoms. (Clearly, the comb in
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a /\cons cons /\A
B / \cons cons /\ b
c -~ \NIL NIL /\c
(a) (v)

Figure 1. (a) right-growing comb with leaves @, B, C and NIL,
(b) left-growing comb with leaves NIL, ¢, b and A.

Figure 1(b) is not the standard representation of the list
(((() ) b) A). but we have chosen this one because of technical con-
venience). Now we want to define the unary operation mirror which
mirrors every right-growing comb at a vertical line and turns it into a
left-growing comb; cf. Figure 2(a).

mirror
cons\ cons
a cons cons a

B/ \cons = cons/ \B
/ ~—
NIL C

NIL

Figure 2. (a) Application of mirror to cons(a,cons(B,cons (C,NIL))).

shovel cons
cons cons c cons
cons a D NIL = b cons
ot 5 o S
NI é\c D NIL

Figure 2. (b) Application of shovel to cons (cons (cons (NIL,C),B).a)
and cons (D,NIL).

This partial operation can be specified by the equations
mirror (NIL) = NIL
mirror (cons (x 1,x,)) = cons (mirror (x5),x1).

Here the two possible structures of the recursion argument are NIL
and cons (x1,x2), where x; and x, are variables that represent the sub-
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structures of the recursion argument. Note that in the right-hand side
mirror is applied to a substructure (viz. to x,) of the actual value of
the recursion argument. Note also that cons and NIL are both con-
structors for the values of the recursion argument and basic function
symbols.

Another operation is shovel which has two arguments. As first
argument it takes a left-growing comb, and its second argument is a
right-growing comb. Now the operation shovels the leaves from its
first argument onto its second argument, and simultaneously, it
modifies them according to some table; cf. Figure 2(b). In our example
a unary operation table replaces capital letters by the corresponding
small letters and vice versa. The operation shovel can be defined by
the following equations

shovel(NIL,y)=y
shovel (cons (x 1,x2),y ) = shovel (x 1,cons (table (x ),y )).

The first argument of this operation is the recursion argument, and the
second one serves as a kind of “accumulator”. Note that the value of
the accumulator depends on the output of the operation table; we say
that table occurs nested in the accumulating parameter of shovel. But
also observe that shovel is still defined in a structural recursive way.
It is clear how to define table.

In this situation we want to design the unary operation reverse
which takes as argument a right-growing comb and produces also a
right-growing comb of the same height, but in the resulting tree the
order of the leaves is reversed, and capital letters and small letters are
interchanged; cf. Figure 3. One natural way of defining reverse would
be to compose mirror and shovel as follows:

reverse(x ) = shovel (mirror (x ),NIL).

reverse
|
cons cons
/\ /\
a cons = ¢ cons
/\
B cons b cons

C NIL A NIL

Figure 3. Application of reverse to cons (a,cons (B,cons (C,NIL))).

Clearly, this equation does not obey any more the principle of a struc-
tural recursive definition: the recursion argument position of shovel in
the right-hand side does not consist of a substructure of the recursion
argument x of the left-hand side, but is computed by another opera-
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tion. On the other hand, reverse is defined now in a very natural way,
and hence, any design method for operations on trees should offer the
feature of such a modular definition: the value of the recursion argu-
ment of one module is computed by another module.

Well, until now we discussed in an informal way the method of
defining operations on trees and we did not give any syntax or seman-
tics definition of the metalanguage in which the definitions are written
down. What about formal metalanguages that also comprise computa-
tion models? Clearly, the simplest formalization of the structural
recursive definition method are top-down tree transducers [12,13,3].
They allow the specification of unary operations by using simultaneous
structural recursion. Equivalent concepts are generalized syntax-
directed translation schemes [1] and attribute grammars with syn-
thesized attributes only [11].

However, an operation like shovel cannot be specified by a top-
down tree transducer, because the definition relies on the concept of
accumulating parameter in which nested operations may occur. A for-
mal model for the structural recursive definition method with the pos-
sibility of handling accumulating parameters is the macro tree trans-
ducer [4.2,6] (In [2] they are called primitive recursive schemes with
parameters). Another formalization of this extended definition method
are attribute grammars [11] which are slightly less powerful than
macro tree transducers [5].

Are there also formalizations which reflect the feature of modu-
larity? Clearly, one could just take lambda calculus and that is it. But
we are interested in “the weakest” metalanguage that realizes our
definition method. To answer the question under this aspect, let us
examine what modularity means for tree transducers. Assume that
there are transducers M, and M, that perform the operations mirror
and shovel , respectively. Then we can define reverse as

comp (t(M,),7(M,),NIL)

where 7(M;) denotes the operation induced by M;, NIL is the unary
operation that maps every argument to NIL, and comp (f.g1.g82)
denotes in an obvious way the composition of f with g; and g,. Thus,
if one wishes to specify operations in a modular way, then the class of
operations induced by the used metalanguage should be closed under
composition. And this requirement excludes macro tree transducers
and also attribute grammars from the list of candidates: neither of
them is closed under composition [5,6].

In this article we propose a formal computation model which
realizes the method of defining operations on trees in a structural
recursive and modular way: the modular tree transducer. Just as top-
down tree transducers and macro tree transducers, modular tree trans-
ducers are (linear and non-overlapping) term rewriting systems in
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which the operations and equations are realized by states and by
rewrite rules, respectively. Actually, modular tree transducers are
derived in a straightforward way from macro tree transducers by
adding one more building rule for right-hand sides of rewrite rules:
this new building rule reflects the modular principle. To every state ¢
of a modular tree transducer a natural number is associated which is
called the level of ¢. Intuitively, states of the same level together with
the corresponding rewrite rules constitute one module. An n-modular
tree transducer has n modules. Macro tree transducers as they have
been defined in [6] are exactly the 1-modular tree transducers in which
the initial state (i.e., the main operation) has one argument. Hence,
macro tree transducers induce unary operations only.

Here we start the investigation of modular tree transducers by
concentrating on two subjects: the closure under composition and the
relation to compositions of macro tree transducers. This article con-
sists of six sections. In Section 2 some general notations and notions
are fixed. In Section 3 the basic model of modular tree transducer is
introduced and an example is provided to illustrate the new device. In
Section 4 the closure under composition is shown (Theorem 9), and it
is proved that 2-modular tree transducers are more powerful than the
composition closure of macro tree transducers (Theorem 11). In Sec-
tion 5 “calling restricted” modular tree transducers are introduced
which are also closed under composition (Theorem 15). The equiva-
lence of “calling restricted” n-modular tree transducers and the n -fold
composition of 1-modular tree transducers is proved inductively
(Theorem 17). Finally, in Section 6 connections to other transducing
devices are mentioned.

2. Preliminaries

‘We recall some notations and notions which will be used in this paper.
In general some knowledge about special term rewriting systems such
as top-down tree transducer (as presented in [3]) or macro tree trans-
ducer [4.6] would be helpful. Nevertheless, the paper is self-contained.

2.1. General notations

For every n 20, the set {1,...,n } is abbreviated by [n ]; hence, [0] is the
empty set. The end of definitions, lemmas, theorems etc. is indicated
by O. The elements in the sets X = {x,x5, - - }and Y = {y1.y2 - -}
are used as substitution variables of term rewriting systems. For
n20, X, =1{x;,...x,} and Y, = {y1.....y,}. For two sets A and B,
A & B means that A is included in B; we use A C B to denote strict
inclusion.

For the substitution of strings into strings we use the following
abbreviation. Let v be a string, let U and U' be arbitrary sets of
strings, and let ¢ be a mapping from U into U'. If for every two
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different elements u; and #, of U, u; and u, are not overlapping in v,
then v [u/¢(u),u €U] denotes the string obtained from v by replacing
every occurrence of u €U by ¢(u). If U = {u,,...,u, }, then we abbre-
viate this substitution by v [v; /¢ (w;).i €[n ]].

2.2. Composition of relations

Let A be an arbitrary set. For £ 21, a (k +1)-ary relation R over A is
a subset of A¥*l, A (k +1)-ary relation over A in which for every
ajq,...a; €A, there is at most one b €A such that (ay,....a;,b)ER is
called k -ary operation over A. Let R, be an (r +1)-ary relation over
A for some r 21, and for some k 21, let R; be a (k+1)-ary relation
over A for every i €[r]. The composition of Ry with Rj,....R., denoted
by comp (Ry.R;.....R, ), is the (k +1)-ary relation

{Gay,....aqr.a)|Vi€lr]:3b;:(ay,....ar.5;)ER;, and (b,....b,.a)E Ry}

Let REL,; en REL, be two classes of relations over A. Then
COMP(REL 1,REL,) denotes the class of relations comp (R¢,R1,....R,)
for Ry€REL,, and R,,...R, € REL, and appropriate . If REL, and
REL ; are classes of binary relations, then COMP(REL {,REL,) is also
denoted by RELj;e REL,. For n 20 and a class REL of relations,
COMP, (REL) is the class of relations defined inductively as follows:

COMP(REL)= REL, and
COMP, .,(REL) = COMP(REL,COMP, (REL)).

COMP(REL ) denotes the union of COMP, (REL) for every n 20. If
REL is a class of binary relations, then for every n 20, COMP, (REL)
is also denoted by REL™*1.

2.3. Ranked alphabets and trees

A ranked alphabet I is a finite set in which to every symbol a unique
number is associated, viz. its rank. The rank of a symbol is sometimes
indicated as a superscript. E.g. o ® means that o has rank 2.

Let £ be a ranked alphabet. The set of (labeled) trees over I is
denoted by T's. A tree ¢ in Ty is denoted by o (¢4,....,5; ) where the
root of ¢ is labeled by o®)ex and ti,...t; are the immediate subtrees
of t. If £k = 0, then ¢ is denoted by 0. The height of a tree is defined
as usual inductively over the structure of the tree: (i) for o €L of rank
0., height(0)=1, (ii) for 0 €L of rank k21 and tq,...5 €Ty,
height (0 (¢4,....t;)) = 1+ max{height (¢;)|i €[k ]}. If £ contains only
symbols with rank O or 1, then trees over Z are also denoted in the
usual way as strings.

Let A be an arbitrary set. Then T5(A ) denotes the set T'sy 4
where the elements of A are viewed as symbols of rank 0. Any subset
of Ty is called a tree language and the class of recognizable tree
languages is denoted by RECOG .
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3. Basic Model and Example

In this section we give the formal definition of the concept of modular
tree transducer and of the class of operations on trees induced by them.
The definition is illustrated by an example that describes the operation
reverse on binary trees as discussed in the introduction.

Definition 1. Let n 21. An n-modular tree transducer M is a tuple

((Q.level),=,q™ .R) where

— Q is the ranked alphabet of states (Every state has rank at least
1.) and level :Q = [n ] is a mapping,

— I is the ranked alphabet of terminal (or input and output) sym-
bols (Q and I are disjoint.), '

— g™ €Q is the initial state with level (¢ ) = 1,

— R is a finite set of productions of the form

FLCACTINE D K PR A Lo 4 Q)

where ¢ €Q with rank 7 +1 ( 20), 0 €T with rank m (m 20),
and some { € RHS(Q.X,j.m,r) where j = level(g) (Recall that
X 1% and y1,...,y, are substitution variables).

RHS(Q,E, j,m,r) is the smallest subset RHS of Tyy3z(X, UY,) such
that the following conditions are satisfied.

(i) Y, is a subset of RHS,

(ii) if §€ £ with rank k£ (k 20) and {,.....{; are elements of RHS, then
8. ....LL JERHS,

(iii) if p €Q with rank k+1 (k 20) and level(p) = j, x; €X,,, and

CI""’gk ERHS. then p(xi,gl.....gk)e RHS,
(iv) if p €Q with rank &k (X 21) and level (p)> j, and {;.....{; € RHS.
then p ({;.....{x JERHS. m]

Remarks. (a) A rule like (*) is also called g-rule or, more specific, a
(g.0)-rule. (b) For every jSn, the set of g-rules with level(g)= j
form the module with level number j. (c) The first argument of a
state is also called its recursion argument; the other arguments are
referred to as accumulating parameters. 0O

A modular tree transducer is an n-modular tree transducer for
some n 20. Note that the previous definition only deals with the non-
deterministic version of modular tree transducers. Before defining the
total deterministic version, we insert a few easy examples of possible
right-hand sides, because the inductive definition seems to be a bit
involved.

Example 2. Let @ = {v@®,p® g @ (@) (W} pe 3 set of states,
where the superscripts indicate the ranks, and let level (v) = level ((p)
= level(? )=level(r)=1 and level(s)= level(t)= 2. Let L= {a'®,
5@, 01, §®@ 4,3} One possible left-hand side is

v (y((x 1,352,76 3).Y1.y2) and the following trees are in RHS(Q,Z,1,3,2):
1. 8(a.b),
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2.8(p(x1).0(g(x2)),
3. 8(}’ 1.7 (x 1.0'(q (x 2)))).
4.7 (x1.0( @ (y2).a.q(x D). o

Definition 3. Let M be an n -modular tree transducer.

(1) M isunary if ¢ has rank 1.

(2) M is total deterministic if for every ¢ €Q and every o € I, there is
exactly one (¢,0)-rule in R. m]

Actually, macro tree transducers are precisely the unary 1-
modular tree transducers, i.e., unary modular tree transducers with one
module. Note that in 1-modular tree transducers, the building rule
(iv) of the set of right-hand sides is never applicable, because there are
no states with a level greater than 1. Indeed, rule (iv) mirrors the
modular principle which is not realized by macro tree transducers.
Top-down tree transducers [12,13] are macro tree transducers in which
every state has rank 1. Thus, in Example 2, the terms 1-3 [terms 1
and 2] are possible right-hand sides of productions of macro tree trans-
ducers [of top-down tree transducers, respectively].

The translation induced by a modular tree transducer is defined
by means of a derivation relation.

Definition 4. Let M = ((Q.level),E.¢"".R) be an n-modular tree
transducer and let ¢ have rank k for some k& > 1.

(1) The derivation relation of M, denoted by ==>,,, is the binary rela-
tion on Ty defined as follows. For £,,£,€Tyy3z. €1 =>u &, if and
only if

there is a £ € Ty yx({z}) and z occurs exactly once in £,

there is a production ¢ (o (x1.....x,).¥1....7, )= { in R,

there are 53,....5, € Tgys and £4,....5, €Ty y 3 such that

E1=Elz/q(0(sqhessp )it 1,00t )], and
E2=Elz/8ana {' = Ux;/s;. i €lm]: y; /t;, j€lr ]l

(2) The translation induced by M, denoted by 7(M), is the (k +1)-ary
relation {(sq,....5;.t )ETE* |g™(s4,....5. ) =>4t} where as usual
=>4 denotes the reflexive and transitive closure of =>,,. O

Note that the rank of the initial state determines the arity of the
induced translation. The class of translations induced by n -modular
tree transducers is denoted by n-ModTI ; ModT denotes the union of
the classes n-ModT for every n 21. If the involved transducers are
unary or total deterministic, then n-ModT is indexed by un or prefixed
by D, , respectively. E.g., D,n-ModT,, denotes the class of translations
induced by total deterministic unary n -modular tree transducers. Let
D, MT denote the class of translations induced by total deterministic
macro tree transducers. Thus, D, 1-ModT,, = D, MT . Note that D, MT
is a class of mappings (i.e., total functions) with one argument; cf. Sec-
tion 3.3 of [6].
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Claim S. The relations in D, ModT are total operations. O
Observation 6. For everyn 21, D,n-ModT < D,(n +1)-ModT . O

We illustrate the above definitions by means of an example: the
unary operation reverse as it was discussed in the introduction, is for-
mulated as a modular tree transducer. The example shows that the
present definition of modular tree transducer does not so much reflect
the paradigms of a comfortable specification language. Rather it should
serve as an appropriate starting point for theoretical studies and com-
parisons with other existing tree transducers. Nevertheless, the next
example indicates how comfort can be gained without increasing the
power of the underlying formalism.

Example 7. Here the unary operation reverse on binary trees is real-
ized as a 2-modular tree transducer M. As repetition: reverse takes a
right-growing comb as argument and produces a right-growing comb of
the same height but with reversed order of leaves. Simultaneously,
capital letters are turned to lower case and vice versa; cf. Figure 3 for
an example of the application of reverse. As set of involved leaves we
use LEAVES = {A,B,C.....a,b,c...}. From the introduction we first
recall the equations that define the partial operations mirror, shovel,
and reverse; cf. Figure 2 for an illustration of the meanings of the
operations mirror and shovel .

SPEC1:

(1a) mirror (NIL)= NIL

(1b) mirror (cons (x 1,x3)) = cons (mirror (x,),x1)

(2a) shovel (NIL,y) =y

(2b)  shovel (cons (x 1,x3).y ) = shovel (x 1,cons (table (x5),y))
3) reverse (x ) = shovel (mirror (x ),NIL)

€)) table(z) = z' for every z € LEAVES

where z' is obtained from z by replacing capital letters
by lower case letters and vice versa.

From this specification we develop the transducer M by eliminat-
ing step by step the “illegal” syntactic constructs. We only show the
changes. The “free” occurrence of x; in the right-hand side of equation
(1b) is not allowed in modular tree transducers. This is simulated by
introducing an additional unary function id that just computes the
identity, and by inserting id above x;. Also some equations have to be
added to realize id .

SPEC2:
(1b)  mirror (cons (x 1.x,)) = cons (mirror (x,),id (x 1))
(52) id (z) = z for every z € LEAVES

(5b) id (NIL) = NIL
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(5¢) id (cons (x 1,x2)) = cons (id (x 1).id (x3)).

In the next step equation (3) is compiled into two equations in
order to get rid of “non-reading equations™. For this purpose mirror is
unfolded one step.

SPEC3:

(3a) reverse (NIL) = NIL
(3b)  reverse (cons (x1,x5)) = shovel (cons (mirror (x).id (x1)). NIL).

Actually, SPEC3 can be turned immediately into the desired
transducer M = ((Q.level),Z,reverse,R ) as follows:
— Q= {reverseD, mirrorV, shovel @, tableV,id V} where the super-
scripts indicate the ranks,
level (reverse ) = level (mirror ) = level (id ) = 1 and
level (shovel ) = level (table ) = 2,
— = LEAVESOU {cons® ,NIL©®},

— R contains the following rules

(1a) mirror (NIL )- NIL

(1v) mirror (cons (x 1,x2)) = cons (mirror (x 3),id (x 1))

(2a) shovel (NIL,y )=y

(2b) shovel (cons (x 1,x ),y )= shovel (x y,cons (table (x,).y ))
(3a) reverse (NIL)— NIL

(3b) reverse (cons (x 1,x,))— shovel (cons (mirror (x5),id (x1)),NIL)
4) table(z )= z' for every z € LEAVES

(52) id (z)— z for every z € LEAVES

(5b) id (NIL)- NIL

(5¢) id (cons (x 1,x5))— cons (id (x 1),id (x,)).

This completes the construction of the modular tree transducer for
reverse. Intuitively, the rules (3a), (3b), (1a), (1b) and (5a) form the
module of level number 1, and the rules (2a), (2b) and (4) constitute
the module with level number 2. Note that M is deterministic, but not
total deterministic, because M only accepts input trees that have the
form of right-growing combs. We finish this example by computing
the application of reverse to the comb

t = cons (a,cons (B.cons (C,NIL))).
The numbers at the beginning of the lines indicate the applied rule.

reverse (cons (a,cons (B,cons (C,NIL))))
(3b) = shovel (cons (mirror (cons (B,cons (C,NIL))).id (a)),NIL)
(5a) = shovel (cons (mirror (cons (B,cons (C,NIL))),a),NIL) .
(1v,5a) =>2shovel (cons (cons (mirror (cons (C,NIL)),B).a).NIL)
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(1b,5a) =>2shovel (cons (cons (cons (mirror (NIL ),C),B),a),NIL)

(1a) = shovel (cons (cons (cons (NIL,C),B),a),NIL)

(Note that at this point of the derivation, the first argument of shovel
is the result of the application of mirror to t).

(2b,4) = 2shovel (cons (cons (NIL,C ),B),cons (A,NIL))

(2b,4) =>2shovel (cons (NIL,C),cons (b,cons (A,NIL)))

(2b.4) =>2shovel (NIL,cons (c,cons (b,cons (A,NIL))))

(2a) =2 cons (¢, cons (b,cons (A, NIL))). ]

4. Composition of Modular Tree Transducers

In this section we prove the closure of total deterministic modular tree
transducers under composition; cf. Theorem 9. By means of an exam-
ple. we give an impression of the possible growth rate in the relation-
ship between input and output trees of modular tree transducers
(Example 10). Together Theorem 9 and Example 10 prove that (in the
total deterministic case) 2-modular tree transducers are more powerful
than the composition closure of macro tree transducers; cf. Theorem
11.

The proof of the composition closure of total deterministic modu-
lar tree transducers is prepared in the next lemma.

Lemma 8. For everyn,m 21,
COMP(D, n.-ModT, D, m-ModT) C D, max-ModT
where max = max{n +1,m}. In particular,
D,m-ModT,, » D,n-ModT,, S D,max-ModT,,

Proof: Let n,m 21 and let 7€ COMP(D,n-ModT,D,m-ModT) be a
(k +1)-ary operation over T’y for some k 20 and some ranked alphabet
Z. According to the definition of COMP, there is a total deterministic
n-modular tree transducer My= ((Qo.levely).Z.¢g™%R,) and ¢*° has
rank r for some r 21, and for every i €[r], there is a total determinis-
tic m-modular tree transducer M; = ((Q;.level;),Z.¢™,R;) such that
7= comp(t(My).7(M,),....7(M,)) and ¢ has rank k+1. Without
loss of generality we can assume that the involved sets of states are
disjoint.
Construct the max-modular tree transducer M = ((Q.level),
Z.¢™.R) with max = max{n +1,m} as follows.
— Q=U{Q|0Si<r}U{¢g™}and ¢ hasrank k +1 and level (¢ )
= 1; for every ¢ €Q; with i 21, level(q) = level;(g); for g €Q,.
level (g ) = level o(g )+1 (Thus in particular, level (g ™°) = 2).
— R contains U {R;|0<i <r} and, for every o €Z; with j 20, if
for every i €[r] the rule g™ (o (x;,.. ,xj) V1 ...,yk )= ¢; isin R;,
then g™ (0 (x1,...%; ).y 1.3 )2 ¢ ™% 1. ..., ) is in R.
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Note that M is total deterministic. We skip the formal proof of the
correctness of the construction. (i

Theorem 9. COMP (D, ModT )< D, ModT .

Proof: The statement of the theorem is an immediate consequence of:
(*) for every n 20, COMP, (D, ModT )< D, ModT . The proof of (¥) is
an easy induction on n using Lemma 8 and Observation 6. O

The next example gives an impression of the possible growth rate
in the relationship between input and output trees of 2-modular tree
transducers. To be more precise, define the mapping exp:IN—=IN (IN is
the set of non-negative integers.) inductively on the first argument:
exp(0,k) =k and exp(n +1,k) = 2" with r = exp(n.k). Then define
the unary mapping super-exp by super-exp (k)= exp(k.1). We con-
struct a 2-modular tree transducer for which the growth rate between
input and output trees is described by the mapping super-exp . .

Example 10. Let £ = {o™,a(®} be a ranked alphabet; trees over £
will be written in the obvious way as strings. The mapping
coding :IN—= Ty codes non-negative integers as monadic trees over I,
i.e., coding (k) = 0% a.. Then define

coding (super -exp ) = {(coding (k ),coding (super -exp (k ))) |k 2 0}.
We construct a total deterministic unary 2-modular tree transducer
M = ((Q.level),Z.¢.R) such that 7(M ) = coding (super -exp ).

- 0 =1{g9,exp@} where superscripts indicate ranks, and level (g)
= 1 and level (exp) = 2,

— R contains the following four rules

g(ox)—exp(g(x).a)

gla@)-oa

exp(ox,y)— exp(x,exp(x,y))

exp(a,y)—oy.
This completes the construction. It is easy to show that for every
k 20, g(c*a) =>%exp(..exp(0a)....,a) with k& occurrences of exp
and k+1 occurrences of a. Another easy induction yields the state-
ment: for every m 20, exp(0c™a,y) =>%0"y with r = 2™. Together
this proves that 7(M ) = coding (super -exp ). m]

In [6] (see Theorem 3.24) it is shown that macro tree transducers
can perform at most an exponential growth rate between input and
output trees. More precisely, for every macro tree transducer M there
is a constant ¢ such that if (s,2)€7(M), then the height of ¢ is
bounded by exp (1,c.height (s)). Clearly, if (s,¢) is an element of the
translation induced by the n -fold composition of macro tree transduc-
ers, then height (¢ )Sexp(n,c'height(s)) for some constant ¢' (that
depends on the involved transducers). An immediate consequence of
this growth-rate property of macro tree transducers, the previous
example, and Lemma 8 is the fact that D,2-ModT,, strictly includes
the class of operations that are induced by the composition closure of
macro tree transducers.
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Theorem 11. U {D,MT" |n 21}C D,2-ModT,, .

Proof: By Lemma 8, D,2-ModT,, - D, MT & D,2-ModT,,. Hence, by
induction, U {D, MT" |n 21}C D,2-ModT,,. The strictness of this
inclusion follows now immediately from Theorem 3.24 of [6] and from
Example 10. o

5. Characterization of Compositions of Macro Tree Transducers

In this section we introduce “calling restricted”” modular tree transduc-
ers and prove that [unary] “calling restricted” n-modular tree trans-
ducers are as powerful as the n-fold composition of 1-modular tree
transducers [of macro tree transducers, respectively].

Clearly, in view of Theorem 11, it is necessary to restrict modular
tree transducers if one wishes to decompose them into macro tree
transducers. Let us motivate the nature of the used calling restriction
at an example. Let M be a 6-modular tree transducer and let » be a
g-rule of M where ¢ is a state of M with level(g)=2 and
rank (g) = 2. Then it is possible that the right-hand side of r has the
form p(¢(yi....)....) where p and ¢ are states each with rank 2, and
level(p)= 3. Now the important point is that level(¢) may range
between level (g) and 6; in particular, it may be higher than the level
of p. Thus in general it is possible that the value of the recursion
argument of a state with level number £ can be computed by states
with level number equal to or greater than k. Actually, this feature
makes modular tree transducers more powerful than compositions of
macro tree transducers. In fact, if the computation of the value of the
recursion argument only calls states with level number less than &,
then every so-obtained “calling restricted” modular tree transducer can
be decomposed into 1-modular tree transducers; cf. Lemma 16. Actu-
ally, every module of a “calling restricted” modular tree transducer is
transformed into one 1-modular tree transducer. In particular, every
“calling restricted” unary n -modular tree transducer can be simulated
by the composition of » macro tree transducers.

The calling restriction is realized by requiring the existence of a
mapping “call” from states to the set of involved level numbers such
that in particular, the following holds: for every right-hand side of a
rule, if the state ¢ occurs in the recursion argument of the state p, then
level (p ) must be greater than call (¢ ).

Definition 12. Let n 21 and let M = ((Q.level ),Z,¢™* ,R) be an n -
modular tree transducer. M is calling restricted if there is a mapping
call:Q = [n] such that the following holds.

(a) For every g €Q, level (g )S call(g).

® I glolxyxy).y1..... 7, )= { is a rule of M then

— for every state p occurring in {, call (p )< call(g), and

— if p({;.....¢x) is a subtree of {, then for every state ¢ occurring in
{1, call (¢ ) <level (p). O
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A calling restricted modular tree transducer is a calling restricted
n-modular tree transducer for some n =1. The class of translations
induced by calling restricted modular tree transducers is denoted by
ModT,, . This denotation is modified in the obvious way for n-
modular, unary, and total deterministic transducers; in particular,
D,n-ModT,, ,, denotes the class of translations induced by unary total
deterministic calling restricted n -modular tree transducers. Clearly,
for 1-modular tree transducers, there is no difference between the
unrestricted and the calling restricted version, i.e., 1-ModT =
1-ModT,, .

Observation 13. (a) D, 1-ModT,, = D,1-ModT .
(b) For everyn 21, D,n-ModT,, S D,(n +1)-ModT., . m]

Before decomposing calling restricted modular tree transducers,
we first show that these transducers are closed under composition too;
cf. Theorem 9 for the corresponding result of the unrestricted version.
The following preparing lemma is similar to Lemma 8, but now an
additivity relation holds between the maximal levels of the involved
transducers.

Lemma 14. For everyn,m 21,

COMP (D, n-ModT,, ,D,m-ModT.,) G D, (m +n )-ModT., .
In particular,

D,m-ModT,, ,, » D,n-ModT,, ,, < D,(m+n )-ModT, ., .

Proof: The involved construction is literally the same as in the proof
of Lemma 8 except for one important point: the levels of the states of
M, are not just incremented by 1, but they have to be incremented by
m, i.e., for every ¢ €Q,. level (g ) = level (g )+m.

Then it is possible to define the calling function for the resulting
transducer M. For 0Si Kr, let call; be the calling function of trans-
ducer M;. Define call :Q —[m +n]for M as follows:

— for every q €Q; withi €[m], call(g) = call;(g).

— for every g €Q. call(g) = call (g )+m,

— cal(@g™")=n+m.

It is easy to verify that this mapping fulfills the requirements of
Definition 12. 0

Theorem 15. COMP (D, ModT,,) G D, ModT,, . o

Now we decompose calling restricted n -modular tree transducers
into n calling restricted 1-modular tree transducers. The decomposi-
tion proceeds by induction. Consider an (n +1)-modular tree trans-
ducer M with terminal alphabet Z. Intuitively, M is turned into an
n-modular tree transducer M; by splitting up the module with level
number n +1; that is, we consider in right-hand sides of productions
every state ¢ with level n+1 as a new terminal symbol; the g -rules
are deleted. Thus M; computes trees over £ and the new terminal
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symbols. Now M, is composed with a macro tree transducer (i.e.,
unary 1-modular tree transducer) M, which realizes the module that
has been split up from M. For this purpose, first M, “activates™ every
new terminal ¢ by replacing it by the state ¢* with level number 1,
and second, M, evaluates these states by means of the rules of M that
have a state with level number n +1 in their left-hand side.

Lemma 16. Let n 21.
(a) Dt (n +1)‘M0chr < Dtn—MOdTa ° Dt MT,
(b) D, (n +1)—M0dTa.’u,, c D;n-ModT,, ,, > D; MT .

Proof: Let M = ((Q.level ),E.g™ .R) be a calling restricted total deter-
ministic (n +1)-modular tree transducer and let call be the involved
calling function. Let rank (g**) = r for some r 21. Define Q[n +1]=
{glg €Q and level(g) = n +1}.

‘Construct the calling restricted total deterministic n -modular tree
transducer M; = ((Q1.level;),E1.¢"1,R,) as follows.
— Q1=Q—Ql[n+1] and for every q €Q;, level,(g) = level (¢ ). and if
call(g)<n, then call,(g) = cali(qg), if call(g) = n+1, then call,(g) =
n,
— ;= ZUQ[n +1] and ranks are carried over from Q[n +1] to Z,
— R, contains all (g,0 )-rules of R for which level(g)€[n ].

Construct the unary total deterministic 1-modular tree transducer
M, = ((Q,.level 5).Z,.%,R,) as follows.
— Q,={s}U{g*|g €Qln +1]} and every state has level number 1,
rank (#) = 1 and ranks carry over from Q[n +1] to Q,.
— Z,= LU Q[n +1] (ranks carry over),
— R, contains the following rules.
(a) For every 8%)€ X with & >0,
*(S(x 1seees Xg ))_" 8(*(x 1), ...,*(xk )) isin Rz.
(b) For every ¢ €Q[n +1] with rank (g) = k +1 for some k 20,
*(q (x 15+ Xg +1))"" q‘(x 1,*(x 2), ...,*(xk +1)) is in Rz.
) If glo(xqesXp )y 100y, )= ¢ is in R with level (g )€ [n +1], then
g*(c(x 1,00 % ).y 1.y, ) £* is in R,, where {* is obtained from { by
replacing every state p by p*.

in,1 = ,in
=9

This completes the construction. Note that the calling restriction
on rm guarantees that every actual value of the recursion argument of a
state ¢* is already evaluated before the point at which ¢ is activated
and replaced by ¢*. Intuitively, it is clear that 7(M ) = 7(M 1) 7(M ).
The formal proof of the correctness of the construction is left to the
reader. O

Now the main theorem of this article follows immediately: the
characterization of calling restricted n -modular tree transducers by the
n -fold composition of 1-modular tree transducers.

Theorem 17. (a) For n 20, D,(n +1)-ModT .. = COMP, (D, 1-ModT ).
(b) For every n 21, D,n-ModT,,,, = D, MT".
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Proof: The inclusions in (a) and (b) can be proved by an easy induc-
tion on n using Lemma 14 and Lemma 16. O

From the viewpoint of defining operations on trees, the previous
‘theorem says the following: the concept of calling restricted modular
tree transducer is the appropriate metalanguage to construct new opera-
tions from existing ones that have been specified by macro tree trans-
ducers. Actually, the 2-modular tree transducer of Example 7 that
realizes the operation reverse, is calling restricted.

6. Conclusion

In this section we mention some relations to other tree transducing
devices that have been studied in [14]. Section 8 of [8] contains a list
of various classes of tree transducers which are equivalent with respect
to their transformational power. All of them obey the concept of
structural recursion, and some of them use an additional storage. Here
we can add another equivalent class to this list. That is, for every
n 21, the total deterministic versions of the following transducers are
equivalent:

- n-fold composition of macro tree transducers,

- n-iterated pushdown tree transducers; cf. Definition 4.10 of [8],

- n-level tree transducers; cf. Definition 4.5 of [8],

—- unary calling restricted n -modular tree transducers.

The equivalence of the composition of macro tree transducers and
iterated pushdown tree transducers is shown in Theorem 8.12 of [7].
In Theorem 7.12 of [8], high-level tree transducers are characterized by
iterated pushdown tree transducers. In Theorem 17 of the present
paper., it is proved that composition of macro tree transducers induce
the same class of unary tree operations as unary calling restricted n -
modular tree transducers.

Since the present paper just starts the investigation of modular
tree transducers, some important questions remained open. In particu-
lar, we claim that D, ModT coincides precisely with the class of primi-
tive recursive operations on trees as defined in [10].
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We extend the concept of nonterminal separating (or NTS) context-
free grammar to nonterminal separating m-macro grammar where
the mode of derivation m is equal to ‘“unrestricted”, “outside-in” or
“inside-out”. Then we show some (partial) characterization results
for these NTS m -macro grammars.

1. Ihtroduction

Macro grammars have been introduced in [6,7] as a way to describe
context-dependent aspects of the syntax of programming languages.
They are an extension of context-free grammars generating, for each
mode of derivation, a family of languages in between the families of
context-free languages and of context-sensitive languages. Though
outside-in (or O -) macro languages are able to describe correctly the
declaration and use of program variables, they have the disadvantage
of possessing an NP-complete membership problem. For IO -macro
languages the problem is roughly as complex as for context-free
languages [1]; so it can be solved deterministically in polynomial time
or in space log?z. But JO-macro grammars seem to be less suitable for
modeling the declaration of program variables.

Without considering this complexity issue any further we investi-
gate in this paper a way to restrict macro grammars. It is inspired by a
restriction on context-free grammars, viz. by the nonterminal separa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>