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Preface 

This tract contains selected articles relating to the Amoeba llistributed Operat
ing System which were published between 1984 and 1987. The papers reflect a 
joint effort between the Centre for Mathematics and Computer Science, and 
the Vrije Universiteit, both located in Amsterdam, the Netherlands. Any cita
tions should refer to the original publications rather than this collection. 
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Distributed Operating Systems 

Andrew S. Tanenbaum 
Robbert van Renesse 

Department of Mathematics and Computer Science 
Vrije Universiteit 

Amsterdam, The Netherlands 

Distributed operating systems have many aspects in common with centralized 
ones, but they also differ in certain ways. This paper is intended as an intro
duction to distributed operating systems, and especially to current university 
research about them. After a discussion of what constitutes a distributed 
operating system, and how it is distinguished from a computer network, various 
key design issues are discussed. Then several examples of current research 
projects will be examined in some detail, namely the Cambridge Distributed 
Computing System, Amoeba, V, and Eden. 

l. INTRODUCTION 

3 

Everyone agrees that distributed systems are going to be very important in the 
future. Unfortunately, not everyone agrees on what they mean by the term 
"distributed system." In this paper we will present a viewpoint widely held 
within academia about what is and is not a distributed system, discuss 
numerous interesting design issues concerning them, and finally conclude with 
a fairly close look at some experimental distributed systems that are the sub
ject of ongoing research at universities. 

To begin with, we use the term "distributed system" to mean a distributed 
operating system as opposed to a data base system or some distributed applica
tions system, such as a banking system. An operating system is a program 
that controls the resources of a computer and provides its users with an inter
face or virtual machine that is more convenient to use than the bare machine. 
Examples of well-known centralized (i.e, not distributed) operating systems 
are: CP/M,1 MS-DOS,2 and UNIX.3 

A distributed operating system is one that looks to its users like an ordinary 

I. CP /M is a trademark of Digital Research, Inc. 
2. MS-DOS is a trademark of Microsoft. 
3. UNIX is a trademark of AT&T Bell Laboratories. 

The Design of a Capability-Based Distributed Operating System 
S. J. MULI.ENDER and A. S. TANENBAUM 
The Computer Journal 
Vol. 29, No. 4, pp. 289-300 
March 1986 
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centralized operating system, but runs on multiple, independent CPUs. The 
key concept here is transparency, in other words, the use of multiple processors 
should be invisible (transparent) to the user. Another way of expressing the 
same idea is to say that the user views the system as a "virtual uniprocessor," 
not as a collection of distinct machines. This is easier said than done. 

Many multimachine systems that do not fulfill this requirement have been 
built. For example, the ARPAnet contains a substantial number of computers, 
but by this definition it is not a distributed system. Neither is a local network 
consisting of personal computers with minicomputers and explicit commands 
to log in here or copy a file from there. In both cases we have a computer net
work but not a distributed operating system. Thus it is the software, not the 
hardware, that determines whether a system is distributed or not. 

As a rule of thumb, if you can tell which computer you are using, you are 
not using a distributed system. The users of a true distributed system should 
not know (or care) on which machine (or machines) their programs are run
ning, where their files are stored, and so on. It should be clear by now that 
very few distributed systems are currently used in a production environment. 
However, several promising research projects are in progress. 

To make the contrast with distributed operating systems stronger, let us 
briefly look at another kind of system that we will call a "network operating 
system." A typical configuration for a network operating system would be a 
collection of personal computers along with a common printer server and file 
server for archival storage, all tied together by a local network. Generally 
speaking, such a system will have most of the following characteristics that dis
tinguish it from a distributed system: 

• Each computer has its own private operating system, rather than run
ning part of a global, system-wide operating system. 

• Each user normally works on his own machine; using a different 
machine invariably requires some kind of "remote login," rather than 
having the operating system dynamically allocate processes to CPUs. 

• Users are typically aware of where each of their files are kept, and must 
move files between machines with explicit "file transfer" commands, 
rather than having file placement managed by the operating system. 

• The system has little or no fault tolerance; if 1 % of the personal com
puters crash, 1 % of the users are out of business, rather than simply 
having everyone being able to continue normal work, albeit with 1 % 
worse performance. 

1. 1. GoALS AND PROBLEMS 

The driving force behind the current interest in distributed systems is the enor
mous rate of technological change in microprocessor technology. Microproces
sors have become very powerful and cheap, compared to mainframes and min
icomputers, so it has become attractive to think about designing large systems 
composed of many small processors. These distributed systems clearly have a 
price/performance advantage over more traditional systems. Another 
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advantage often cited is the relative simplicity of the software - each processor 
has a dedicated function - although this advantage is more often listed by peo
ple who have never tried to write a distributed operating system than those 
who have. 

Incremental growth is another plus; if you need 10% more computing 
power, you just add 10% more processors. System architecture is crucial to 
this type of system growth, however, since it is hard to give each user of a per
sonal computer another 10% of a personal computer. Reliability and availabil
ity can also be a big advantage; a few parts of the system can be down 
without disturbing people using the other parts. 

On the minus side, unless one is very careful, it is easy for the communica
tion protocol overhead to become a major source of inefficiency. More than 
one system has been built that required the full computing power of its 
machines just to run the protocols, leaving nothing over to do the work. The 
occasional lack of simplicity cited above is a real problem, although in all fair
ness, this problem comes from inflated goals: with a centralized system no one 
expects the computer to function almost normally when half the memory is 
sick. With a distributed system, a high degree of fault tolerance is often, at 
least, an implicit goal. 

A more fundamental problem in distributed systems is the lack of global 
state information. It is generally a bad idea to even try to collect complete 
information about any aspect of the system in one table. Lack of up-to-date 
information makes many things much harder. It is hard to schedule the pro
cessors optimally if you are not sure how many are up at the moment. 

Despite these obstacles, many people think that in time they can be over
come, so there is great interest in doing research on the subject. 

1.2. SYSTEM MODELS 

Various models have been suggested for building a distributed system. Most 
of them fall into one of three broad categories, which we will call the "mini
computer" model, the "workstation" model and the "processor pool" model. 
In the minicomputer model, the system consists of a few (perhaps even a 
dozen) minicomputers (e.g., VAXes), each with multiple users. Each user is 
logged onto one specific machine, with remote access to the other machines. 
This model is a simple outgrowth of the central time-sharing machine. 

In the workstation model, each user has a personal workstation, usually 
equipped with a powerful processor, memory, a bit-mapped display, and some
times a disk. Nearly all the work is done on the workstations. Such a system 
begins to look distributed when it supports a single, global file system, so that 
data can be accessed without regard to its location. 

The processor pool model is the next evolutionary step after the workstation 
model. In a timesharing system, whether with one or more processors, the 
ratio of CPUs to logged in users is normally much less than I; with the works
tation model it is approximately 1; with the processor pool model it is much 
greater than l. As CPUs get cheaper and cheaper, this model will become 
more and more widespread. The idea here is that whenever a user needs 
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computing power, one or more CPUs are temporarily allocated to that user; 
when the job is completed, the CPUs go back into the pool awaiting the next 
request. As an example, when ten procedures (each on a separate file) must be 
recompiled, ten processors could be allocated to run in parallel for a few 
seconds, and then be returned to the pool of available processors. At least one 
experimental system described below (Amoeba) attempts to combine two of 
these models, providing each user with a workstation in addition to the proces
sor pool for general use. No doubt other variations will be tried in the future. 

2. NETWORK OPERATING SYSTEMS 
Before starting our discussion of distributed operating systems, it is worth first 
taking a brief look at some of the ideas involved in network operating systems, 
since they can be regarded as primitive forerunners. Although attempts to 
connect computers together have been around for decades, networking really 
came into the limelight with the ARPAnet in the early 1970s. The original 
design did not provide for much in the way of a network operating system. 
Instead, the emphasis was on using the network as a glorified telephone line to 
allow remote login and file transfer. Later, several attempts were made to 
create network operating systems but they never were widely used [MILLSTEIN 
1977]. 

In more recent years, several research organizations have connected collec
tions of minicomputers running the UNIX operating system [RITCHIE and 
THOMPSON 1974] into a network operating system, usually via a local network 
[BIRMAN and ROWE 1982; BROWNBRIDGE et al. 1982; CHESSON 1975; HWANG 
et al. 1982; WAMBECQ 1983]. WUPIT [1983] gives a good survey of these sys
tems, which we will draw upon for the remainder of this section. 

As we said earlier, the key issue that distinguishes a network operating sys
tem from a distributed one is how aware the users are of the fact that multiple 
machines are being used. This visibility occurs in three primary areas: the file 
system, protection, and program execution. Of course it is possible to have 
systems that are highly transparent in one area and not at all in the other, 
which leads to a hybrid form. 

2.1. FILE SYSTEM 
When connecting two or more distinct systems together, the first issue that 
must be faced is how to merge the file systems. Three approaches have been 
tried. The first approach is not to merge them at all. Going this route means 
that a program on machine A cannot access files on machine B by making sys
tem calls. Instead, the user must run a special file transfer program that copies 
the needed remote files to the local machine, where they can then be accessed 
normally. Sometimes remote printing and mail is also handled this way. One 
of the best-known examples of networks that primarily support file transfer 
and mail via special programs, and not system call access to remote files is the 
UNIX "uucp" program, and its network, USENET. 

The next step upward in the direction of a distributed file system is to have 
adjoining file systems. In this approach, programs on one machine can open 
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files on another machine by providing a path name telling where the file is 
located. For example, one could say 

open(" /machinel/pathname", READ ONLY); 
open("machinel!pathname", READ ONLY); or 
open(" / . ./machinel/pathname", READ_ ONLY) 

The latter naming scheme is used in the Newcastle Connection [BROWN13RIDGE 

et al. 1982] and Netix [WAMBECQ 1983] and is derived from the creation of a 
virtual "superdirectory'' above the root directories of all the connected 
machines. Thus "/ .. " means start at the local root directory and go upwards 
one level (to the superdirectory), and then down to the root directory of 
"machine." In Figure 1, the root directory of three machines, A, B, and Care 
shown, with a superdirectory above them. To access file x from machine C, 
one could say 

open(" / . ./C/x", READ_ ONLY) 

In the Newcastle system, the naming tree is actually more general, since 
"machinel" may really be any directory, so one can attach a machine as a leaf 
anywhere in the hierarchy, not just at the top. 
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FIGURE l. A (virtual) superdirectory above the root directory provides 
access to remote files 
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The third approach is the way it is done in distributed operating· systems, 
namely to have a single global file system visible from all machines. When this 
method is used, there is one "bin" directory for binary programs, one pass
word file, and so on. When a program wants to read the password file it does 
something like 

open(" /etc/passwd", READ_ ONLY) 

without reference to where the file is. It is up to the operating system to locate 
the file and arrange for transport of data as it is needed. LOCUS is an exam
ple of a system using this approach [POPEK et al. 1981; WALKER et al. 1983; 
WEINSTEIN et al. 1985]. 

The convenience of having a single global name space is obvious. In addi
tion, this approach means that the operating system is free to move files 
around between machines to keep all the disks equally full and busy, and that 
the system can maintain replicated copies of files if it so chooses. When the 
user or program must specify the machine name, the system cannot decide on 
its own to move a file to a new machine because that would change the (user 
visible) name used to access the file. Thus in a network operating system, con
trol over file placement must be done manually by the users, whereas in a dis
tributed operating system it can be done automatically, by the system itself. 

2.2. PROTECTION 

Closely related to the transparency of the file system is the issue of protection. 
UNIX, and many other operating systems, assign a unique internal identifier 
to each user. Each file in the file system has a little table associated with it 
( called an i-node in UNIX), telling who the owner is, where the disk blocks are 
located, etc. If two previously independent machines are now connected, it 
may tum out that some internal User IDentifier (UID), e.g., number 12, has 
been assigned to a different user on each machine. Consequently, when user 
12 tries to access a remote file, the remote file system cannot see whether the 
access is permitted, since two different users have the same UID. 

One solution to this problem is require all remote users wanting to access 
files on machine X to first log onto X using a user name that is local to X. 
When used this way, the network is just being used as a fancy switch to allow 
users at any terminal to log onto any computer, just as a telephone company 
switching center allows any subscriber to call any other subscriber. 

This solution is usually inconvenient for people and impractical for pro
grams, so something better is needed. The next step up is to allow any user to 
access files on any machine without having to log in, but to have the remote 
user appear to have the UID corresponding to "GUEST'' or "DEMO" or 
some other publicly known login name. Generally such names have little 
authority, and can only access files that have been designated as readable or 
writable by all users. 

A better approach is to have the operating system provide a mapping 
between UIDs, so when a userwith UID 12 on his home machine accesses a 
remote machine on which his UID is 15, the remote machine treats all accesses 
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as though they were done by user 15. This approach implies that sufficient 
tables are provided to map each user from his home (machine, UID) pair to 
the appropriate UID for any other machine (and that messages cannot be tam
pered with) .. 

In a true distributed system, there should be a unique UID for every user, 
and that UID should be valid on all machines without any mapping. In this 
way no protection problems arise on remote accesses to files; as far as protec
tion goes, a remote access can be treated like a local access with the same 
UID. The protection issue makes the difference between a network operating 
system and a distributed one clear: in one case there are various machines, 
each with its own user-to-UID mapping, and in the other there is a single, 
system-wide mapping that is valid everywhere. 

2.3. ExECUTION LOCATION 

Program execution is the third area in which machine boundaries are visible in 
network operating systems. When a user or a running program wants to 
create a new process, where is the process created? At least four schemes have 
been used so far. The first of these is that the user simply says "CREA TE 
PROCESS" in one way or another, and specifies nothing about where. 
Depending on the implementation, this can be the best way or the worst way 
to do it. In the most· distributed case, the system chooses a CPU by looking at 
the load, location of files to be used, etc. In the least distributed case, the sys
tem always runs the process on one specific machine (usually the machine on 
which the user is logged in). 

The second approach to process location is to allow users to run jobs on any 
machine by first logging in there. In this model, processes on different 
machines cannot communicate or exchange data, but a simple manual load 
balancing is possible. 

The third approach is special command that the user types at a terminal to 
cause a program to be executed on a specific machine. A typical command 
might be 

remote vax4 who 

to run the who program on machine vax4. In this arrangement, the environ
ment of the new process is the remote machine. In other words, if that process 
tries to read or write files from its current working directory, it will discover 
that its working directory is on the remote machine, and files that were in the 
parent process' directory are no longer present. Similarly, files written in the 
working directory will appear on the remote machine, not the local one. 

The fourth approach is to provide the "CREATE PROCESS" system call 
with a parameter specifying where to run the new process, possibly with a new 
system call for specifying the default site. As with the previous method, the 
environment will generally be the remote machine. In many cases, signals and 
other forms of interprocess communication between processes do not work 
properly between processes on different machines. 

A final point about the difference between network and distributed 
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operating systems is how they are implemented. A common way to· realize a 
network operating system is to put a layer of software on top of the native 
operating systems of the individual machines (e.g., MAMRAK et al. 1982). For 
example, one could write a special library package that intercepted all the sys
tem calls and decided whether each one was local or remote [BROWNBRIDGE et 
al. 1982]. Although most system calls can be handled this way without modi
fying the kernel, invariably there are a few things, such as interprocess signals, 
interrupt characters ( e.g., BREAK) from the keyboard, etc. that are hard to get 
right. In a true distributed operating system, one would normally write the 
kernel from scratch. 

2.4. AN ExAMPLE: THE SUN NETWORK FILE SYSTEM 
To provide a contrast with the true distributed systems described later in this 
paper, in this section we will look briefly at a network operating system that 
runs on the Sun Microsystems' workstations. These workstations are intended 
for use as personal computers. Each one has a 68000 series CPU, local 
memory, and a large bitmapped display. Workstations can be configured with 
or without local disk, as desired. All the workstations run a version of 4.2BSD 
UNIX specially modified for networking. 

This arrangement is a classic example of a network operating system: Each 
computer runs a traditional operating system, UNIX, and each has its own 
user(s), but with extra features added to make networking more convenient. 
During its evolution, the Sun system has gone through three distinct versions, 
which we will now describe. 

In the first version, each of the workstations was completely independent 
from all the others, except that a program rep was provided to copy files from 
one workstation to another. By typing a command such as: 

rep machinel:/usr/jim/file.c machine2:/usr/ast/f.c 

it was possible to transfer whole files from one machine to another. 
In the second version, Network Disk (ND), a network disk server was pro

vided to support diskless workstations. Disk space on the disk server's 
machine was divided into disjoint partitions, with each partition acting as the 
virtual disk for some ( diskless) workstation. 

Whenever a diskless workstation needed to read a file, the request was pro
cessed locally until it got down to the level of the device driver, at which point 
the block needed was retrieved by sending a message to the remote disk server. 
In effect, the network was merely being used to simulate a disk controller. 
With this network disk system, sharing of disk partitions was not possible. 

The third version, the Network File System (NFS), allows remote directories 
to be mounted in the local file tree on any workstation. By mounting, say, a 
remote directory "doc" on the empty local directory "/usr/doc," all subse
quent references to "/usr/doc" are automatically routed to the remote system. 
Sharing is allowed in NFS, so several users can read files on a remote machine 
at the same time. 

To prevent users from reading other people's private files, a directory can 
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only be mounted remotely if it is explicitly exported by the workstation it is 
located on. A directory is exported by entering a line for it in a file 
"/etc/exports." To improve performance of remote access, both the client 
machine and server machine do block caching. Remote services can be located 
using a Yellow Pages server that maps service names onto their network loca
tions. 

The NFS is implemented by splitting the operating system up into three 
layers. The top layer handles directories, and maps each path name onto a 
generalized i-node called a vnode consisting of a (machine, i-node) pair, mak
ing each vnode globally unique. 

Vnode numbers are presented to the middle layer, the virtual file system 
(VFS). This layer checks to see if a requested vnode is local or not. If it is 
local, it calls the local disk driver, or in the case of a ND partition, sends a 
message to the remote disk server. If it is remote, the VFS calls the bottom 
layer with a request to process it remotely. 

The bottom layer accepts requests for accesses to remote vnodes and sends 
them over the network to the bottom layer on the serving machine. From 
there they propagate upwards through the VFS layer to the top layer, where 
they are re-injected into the VFS layer. The VFS layer sees a request for a 
local vnode, and processes it normally, without realizing that the top layer is 
actually working on behalf of a remote kernel. The reply retraces the same 
path in the other direction. 

The protocol between workstations has been carefully designed to be robust 
in the face of network and server crashes. Each request completely identifies 
the file (by its vnode), the position in the file, and the byte count. Between 
requests, the server does not maintain any state information about which files 
are open or where the current file position is. Thus, if a server crashes and is 
rebooted, there is no state information that will be lost. 

The ND and NFS facilities are quite different, and can both be used on the 
same workstation without conflict. ND works at a low level and just handles 
remote block 1/0 without regard to the structure of the information on the 
disk. NFS works at a much higher level, and effectively takes requests appear
ing at the top of the operating system on the client machine and gets them 
over to the top of the operating system on the server machine, where they are 
processed the same way as local requests. 

3. DESIGN ISSUES 

Now we tum from traditional computer systems with some networking facili
ties added on to systems designed with the intention of being distributed. In 
this section we will look at five issues that distributed systems' designers are 
faced with: 
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• communications primitives, 
• naming and protection, 
• resource management, 
• fault tolerance, 
• services to provide. 

While no list could possibly be exhaustive at this early stage of development, 
these topics should provide a reasonable impression of the areas in which 
current research is proceeding. 

3.1. COMMUNICATION PRIMITIVES 
The computers forming a distributed system normally do not share primary 
memory, so communication via shared memory techniques such as semaphores 
and monitors are generally not applicable. Instead, message passing in one 
form or another is used. One widely discussed framework for message-passing 
systems is the ISO OSI reference model, which has seven layers, each perform
ing a well-defined function [ZIMMERMAN 1980]. The seven layers are: physical 
layer, data-link layer, network layer, transport layer, session layer, presentation 
layer, and application layer. Using this model it is possible to connect com
puters with widely different operating systems, character codes, and ways of 
viewing the world. 

Unfortunately, the overhead created by all these layers is substantial. In a 
distributed system consisting primarily of huge mainframes from different 
manufacturers, connected by slow leased lines (say, 56 kbps), the overhead 
might be tolerable. Plenty of computing capacity would be available for run
ning complex protocols, and the narrow bandwidth means that close coupling 
between the systems would be impossible anyway. On the other hand, in a 
distributed system consisting of identical microcomputers connected by a 10 
Mbps or faster local network, the price of the ISO model is generally too high. 
Nearly all the experimental distributed systems discussed in the literature so 
far have opted for a different, much simpler model, so we will not mention the 
ISO model further in this paper. 

3.1.1 Message Passing 
The model that is favored by researchers in this area is the client-server model, 
in which a client process wanting some service ( e.g., reading some data from a 
file) sends a message to the server and then waits for a reply message, as 
shown in Figure 2. In the most naked form, the system just provides two 
primitives: SEND and RECEIVE. The SEND primitive specifies the destina
tion and provides a message; the RECEIVE primitive tells from whom a mes
sage is desired (including "anyone") and provides a buff er where the incoming 
message is to be stored. No initial setup is required, and no connection is 
established, hence no teardown is required. 

Precisely what semantics these primitives ought to have has been a subject 
of much controversy among researchers. Two of the fundamental decisions 
that must be made are unreliable vs. reliable and nonblocking vs. blocking 
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prumuves. At one extreme, SEND can put a message out onto the network 
and wish it good luck. No guarantee of delivery is provided, and no automatic 
retransmission is attempted by the system if the message is lost. At the other 
extreme, SEND can handle lost messages, retransmissions, and acknowledge
ments internally, so that when SEND terminates, the program is sure that the 
message has been received and acknowledged. 

Blocking vs. Nonblocking Primitives. The other choice is between nonblocking 
and blocking primitives. With nonblocking primitives, SEND returns control 
to the user program as soon as the message has been queued for subsequent 
transmission (or a copy made). If no is copy is made, any changes the pro
gram makes to the data before or (heaven forbid) while it is being sent, are 
made at the program's peril. When the message has been transmitted (or 
copied to a safe place for subsequent transmission), the program is interrupted 
to inform it that the buff er may be reused. The corresponding RECEIVE 
primitive signals a willingness to receive a message, and provides a buff er for it 
to be put into. When a message has arrived, the program is informed by inter
rupt or it can poll for status continuously, or go to sleep until the interrupt 
arrrives. The advantage of these nonblocking primitives is that they provide 
the maximum flexibility: programs can compute and perform message I/O in 
parallel any way they want to. 

Nonblocking primitives also have a disadvantage: they make programming 
tricky and difficult. Irreproducible, timing-dependent programs are painful to 
write and awful to debug. Consequently, many people advocate sacrificing 
some flexibility and efficiency by using blocking primitives. A blocking SEND 
does not return control to the user until the message has been sent (unreliable 
blocking primitive) or until the message has been sent and an acknowledge
ment received (reliable blocking primitive). Either way, the program may 
immediately modify the buffer without danger. A blocking RECEIVE does 
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not return control until a message has been placed in the buffer. Reliable and 
unreliable RECEIVEs differ in that the former automatically acknowledges 
receipt of message, whereas the latter does not. It is not reasonable to com
bine a reliable SEND with an unreliable RECEIVE or vice versa, so the sys
tem designers must make a choice and provide one set or the other. Blocking 
and nonblocking primitives do not conflict, so there is no harm done if the 
sender uses one and the receiver the other. 

Buffered vs. Unbuffered Primitives. Another design decision that must be made 
is whether or not to buffer messages. The simplest strategy is not to buffer. 
When a sender has a message for a receiver that has not (yet) executed a 
RECEIVE primitive, the sender is blocked until a RECEIVE has been done, at 
which time the message is copied from sender to receiver. This strategy is 
sometimes referred to as a rendezvous. 

A slight variation on this theme is to copy the message to an internal buff er 
on the sender's machine, thus providing for a nonblocking version of the same 
scheme. As long as the sender does not do any more SENDs before the 
RECEIVE occurs, no problem occurs. 

A more general solution is to have a buffering mechanism, usually in the 
operating system kernel, which allows senders to have multiple SENDs out
standing even without any interest on the part of the receiver. Although 
buffered message passing can be implemented in many ways, a typical 
approach is to provide users with a system call CREATEBUF, which creates a 
kernel buffer, sometimes called a mailbox, of a user-specified size. To com
municate, a sender can now send messages to the receiver's mailbox, where 
they will be buffered until requested by the receiver. Buffering is not only 
more complex ( creating, destroying, and generally managing the mailboxes), 
but also raises issues of protection, the need for special high-priority interrupt 
messages, what to do with mailboxes owned by processes that have been killed 
or died of natural causes, and more. 

A more structured form of communication is achieved by distinguishing 
requests from replies. With this approach, one typically has three primitives: 
SEND GET, GET REQUEST, and SEND REPLY. SEND GET is used by 
clients to send requests and get replies. It combines a SEND to a server with 
a RECEIVE to get the server's reply. GET REQUEST is done by servers to 
acquire messages containing work for them To do. When a server has carried 
the work out, it sends a reply with SEND REPLY. By thus restricting the 
message traffic, and by using reliable, blocking primitives, one can create some 
order in the chaos. 

3.1.2. Remote Procedure Call 
The next step forward in message-passing systems is the realization that the 
model of "client sends request and blocks until server sends reply'' looks very 
similar to a traditional procedure call from the client to the server. This model 
has become known in the literature as ''remoteprocedure and has been widely 
discussed [BIRRELL and NELSON 1984; NELSON 1981; SPECTOR 1982]. The idea 



15 

is to make the semantics of intermachine communication as similar as possible 
to normal procedure calls because the latter is familiar, well understood, and 
has proved its worth over the years as a tool for dealing with abstraction. It 
can be viewed as a refinement of the reliable, blocking SEND GET, 
GET REQUEST, SENDREP primitives, with a more user-friendly syntax. 

The remote procedure call can be organized as follows. The client (calling 
program) makes a normal procedure call, say, p(x, y) on its machine, with the 
intention of invoking the remote procedure p on some other machine. A 
dummy or stub procedure p must be included in the caller's address space, or 
at least be dynamically linked to it upon call. This procedure, which may be 
automatically generated by the compiler, collects the parameters and packs 
them into a message in a standard format. It then sends the message to the 
remote machine (using SEND GET) and blocks, waiting for an answer (see 
Figure 3). -

Client Machine Server Machine 

Client Client Server Server 
~ '-

stub 
/ c--; 

stub proc. proc. 

FIGURE 3. Remote procedure call. 

At the remote machine, another stub procedure should be waiting for a mes
sage using GET REQUEST. When a message comes in, the parameters are 
unpacked by an Tnput handling procedure, which then makes the local call p(x, 
y). The remote procedure p is thus called locally, so its normal assumptions 
about where to find parameters, the state of the stack, etc., are identical to the 
case of a purely local call. The only procedures that know that the call is 
remote are the stubs, which build and send the message on the client side and 
disassemble and make the call on the server side. The result of the procedure 
call follows an analogous path in the reverse direction. 
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RPC Design Issues. Although at first glance the remote procedure call model 
seems clean and simple, under the surface there are several problems. One 
problem concerns parameter (and result) passing. In most programming 
languages, parameters can be passed by value or by reference. Passing value 
parameters over the network is easy; the stub just copies them into .the mes
sage and off it goes. Passing reference parameters (pointers) over the network 
is not so easy. One needs a unique, system-wide pointer for each object so 
that it can be remotely accessed. For large objects, such as files, some kind of 
capability mechanism [DENNIS and VAN HORN 1966; LEVY 1984; PASHTAN 
1982] could be set up, using capabilities as pointers. For small objects, such as 
integers and booleans, the amount of overhead and mechanism needed to 
create a capability and send it in a protected way is so large that this solution 
is highly undesirable. 

Still another problem that must be dealt with is how to represent parameters 
and results in messages. 1bis representation is greatly complicated when 
different types of machines are involved in a communication. A floating-point 
number produced on one machine is unlikely to have the same value on a 
different machine, and even a negative integer will create problems between l's 
and 2's complement machines. 

Converting to and from a standard format on every message sent and 
received is an obvious possibility, but it is expensive and wasteful, especially 
when the sender and receiver do, in fact, use the same internal format. If the 
sender uses its internal format (along with an indication of which format it is) 
and let the receiver do the conversion, every machine must be prepared to con
vert froni every other format. When a new machine type is introduced, much 
existing software must be upgraded. Any way you do it, with RPC or with 
plain messages, it is an unpleasant business. 

Some of the unpleasantness can be hidden from the user if the remote pro
cedure call mechanism is embedded in a programming language with strong 
typing, so at least the receiver knows how many parameters to expect and 
what types they have. In this respect, a weakly-typed language such as C, in 
which procedures with a variable number of parameters are common, is more 
complicated to deal with. 

Still another problem with RPC is the issue of client-server binding. Con
sider, for example, a system with multiple file servers. If a client creates a file 
on one of the file servers, it is usually desirable that subsequent writes to that 
file to go to the file server where the file was created. With mailboxes, arrang
ing for this is straightforward. The client simply addresses the WRITE mes
sages to the same mailbox that the CREA TE message was sent to. Since each 
file server has its own mailbox, there is no ambiguity. 

When RPC is used, the situation is more complicated, since all the client 
does is put a procedure call such as 

write(FileDescriptor, Buffer Address, ByteCount); 

in his program. RPC intentionally hides all the details of locating servers from 
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the client, but sometimes, as in this example, the details are important. 
In some applications, broadcasting and multicasting (sending to a set of des

tinations, rather than just one is useful. For example, when trying to locate a 
certain person, process, or service, sometimes the only approach is to broad
cast an inquiry message and wait for the replies to come back. RPC does not 
lend itself well to sending messages to sets of processes and getting answers 
back from some or all of them. The semantics are completely different. 

Despite all these problems, RPC remains an interesting form of communica
tion, and much current research is being addressed to improving it and solving 
the various discussed above. 

3.1.3. Ellor Handling 
In error handling, the communication primitives of distributed systems differ 
radically from those of centralized systems. In a centralized system, a system 
crash means that the client, server, and communication channel are all com
pletely destroyed, and no attempt is made to revive them. In a distributed sys
tem, matters are more complex. If a client has initiated a remote procedure 
call with a server that has crashed, the client may just be left hanging forever 
unless a timeout is built in. However, such a timeout introduces race condi
tions in the form of clients that time out too quickly, thinking that the server is 
down, when in fact, it is merely very slow. 

Client crashes can also cause trouble for servers. Consider for example, the 
case of processes A and B communicating via the UNIX pipe model 4B with 
A the server and B the client. B asks A for data and gets a reply, but unless 
that reply is acknowledged somehow, A does not know when it can safely dis
card data that it may not be able to reproduce. If B crashes, how long should 
A hold onto the data? (Hint: if the answer is less than infinity, problems will 
be introduced whenever Bis slow in sending an acknowledgement.) 

Oosely related to this is the problem of what happens if a client cannot tell 
whether or not a server has crashed. Simply waiting until the server is 
rebooted and trying again sometimes works and sometimes does not. A case 
where it works: client asks to read block 7 of some file. A case where it does 
not work: client says transfer a million dollars from one bank account to 
another. In the former case, it does not matter whether or not the server car
ried out the request before crashing; carrying it out a second time does no 
harm. In the latter case, one would definitely prefer the call to be carried out 
exactly once, no more and no less. Calls that may be repeated without harm 
(like the first example) are said to be idempotent. Unfortunately, it is not 
always possible to arrange for all calls to have this property. Any call that 
causes action to occur in the outside world, such as transferring money, print
ing lines, or opening a valve in an automated chocolate factory just long 
enough to fill exactly one vat, is likely to cause trouble if performed twice. 

SPECTOR [1982] and NELSON [1981] have looked at the problem of trying to 
make sure remote procedure calls are executed exactly once, and have 
developed taxonomies for classifying the semantics of different systems. These 
vary from systems that offer no guarantee at all (zero or more executions), to 
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those that guarantee at most one execution (zero or one), to those that guaran
tee at least one execution ( one or more). 

Getting it right (exactly one) is probably impossible, because even if the 
remote execution can be reduced to one instruction ( e.g., setting a bit in a dev
ice register that opens the chocolate valve), one can never be sure after a crash 
if the system went down a microsecond before, or a microsecond after, the one 
critical instruction. Sometimes one can make a guess based on observing 
external events ( e.g., looking to see if the factory floor is covered with a sticky, 
brown material), but in general there is no way of knowing. Note that the 
problem of creating stable storage [LAMPSON 1981] is fundamentally different, 
since remote procedure calls to the stable storage server in that model never 
causes events external to the computer. 

3.1.4. Implementation Issues 
Constructing a system in principle .is always easier than constructing it in 

practice. Building a 16-node distributed system that has a total computing 
power about equal to a single-node system is surprisingly easy. This observa
tion leads to tension between the goals of making it work fast in the normal 
case, and making the semantics reasonable when something goes wrong. Some 
experimental systems have put the emphasis on one goal and some on the 
other, but more research is needed before we have systems that are both fast 
and graceful in the face of crashes. 

Some things have been learned from past work, however. Foremost among 
these is that making message passing efficient is very important. To this end, 
systems should be designed to minimize copying of data [CHERITON 1984]. 
For example, a remote procedure call system that first copies each message 
from the user to the stub, and then from the stub to the kernel, and finally 
from the kernel to the network interface board requires 3 copies on the send
ing side, and probably 3 more on the receiving side, for a total of 6. If the call 
is to a remote file server to write a IK block of data to disk, at a copy time of 
I microsec per byte, 6 msec are needed just for copying, which puts an upper 
limit of 167 calls/sec, or a throughput of 167 Kbytes/sec. When other sources 
of overhead are considered ( e.g., the reply message, the time waiting for access 
to the network, transmission time, etc.) achieving even 80 Kbytes/sec will be 
difficult, if not impossible, no matter how high the network bandwidth or disk 
speed. Thus, it is desirable to avoid copying, but this is not always simple to 
achieve since without copies, (part of) a needed message may be swapped or 
paged out when it is needed. 

Another point worth making is that there is always a substantial fixed over
head with preparing, sending, and receiving a message, even a short message, 
such as a request to read from a remote file server. The kernel must be 
invoked, the state of the current process must be saved, the destination must 
be located, various tables must be updated, permission to access the network 
must be obtained ( e.g., wait for the network to become free or wait for the 
token), and quite a bit of bookkeeping must be done. 

This fixed overhead argues for making messages as long as possible, to 
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reduce the number of messages. Unfortunately. many current local networks 
limit physical packets to IK or 2K; 4K or SK would be much better. Of 
course, if the packets become too long, a highly interactive user may occasion
ally be queued behind 10 maximum length packets, degrading response time, 
so the optimum size depends on the work load. 

Virtual Circuits vs. Datagrams. There is much controversy over whether remote 
procedure call ought to be built on top of a flow-controlled, error-controlled, 
virtual circuit mechanism, or directly on top of the unreliable, connectionless 
(datagram) service. SALTZER et al. [1984] have pointed out that since high 
reliability can only be achieved by end-to-end acknowledgements at the highest 
level of protocol, the lower levels need not be 100% reliable. The overhead 
incurred in providing a clean virtual circuit upon which to build remote pro
cedure calls ( or any other message passing system), is therefore wasted. This 
line of thinking argues for building the message system directly on the raw 
datagram interface. 

The other side of the coin is that it would be nice for a distributed system to 
be able to encompass heterogeneous computers in different countries with 
different P'IT networks and possibly different national alphabets, and that this 
environment requires complex multilayered protocol structures. It is our 
observation that both arguments are valid, but depending on whether one is 
trying to forge a collection of small computers into a virtual uniprocessor or 
merely access remote data transparently, one or the other will dominate. 

Even if one chooses for building remote procedure call on top of the raw 
datagram service provided by a local network, there are still a number of pro
tocols open to the implementer. The simplest one is to have every request and 
reply separately acknowledged. The message sequence for a remote procedure 
call is then: REQUEST, ACK, REPLY, ACK, as shown in The ACKs are 
managed by the kernel without user knowledge. 

The number of messages can be reduced from four to three by allowing the 
REPLY to serve as the ACK for the REQUEST, as shown in Figure 4. How
ever, a problem arises when the REPLY can be delayed for a long time. For 
example, when a login process makes a remote procedure call to a terminal 
server requesting characters, it may be hours or days before someone steps up 
to a terminal and begins typing. In this event, an additional message has to be 
introduced to allow the sending kernel to inquire if the message arrived or not. 

A further step in the same direction is to eliminate the other ACK as well, 
and let the arrival of the next REQUEST imply an acknowledgement of the 
previous REPLY (see Figure 4(c)). Again, some mechanism is needed to deal 
with the case that no new REQUEST is forthcoming quickly. 

One of the great difficulties in implementing efficient communication is that 
it is more of a black art than a science. Even straightforward implementations 
can have unexpected consequences, as the following example from SVENTEK et 
al. [1983] shows. Consider a ring containing a circulating token. To transmit, 
a machine captures and removes the token, puts a message on the network, 
and then replaces the token, thus allowing the next machine "downstream" the 
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opportunity to capture it. In theory, such a network is "fair" in that each· user 
has equal access to the network and no one user can monopolize it to the 
detriment of others. In practice, suppose two users each want to read a long 
file from a file server. User A sends a request message to the server, and then 
replaces the token on the network for B to acquire. 

After A's message arrives at the server, it takes a short time for the server to 
handle the incoming message interrupt and re-enable the receiving hardware. 
Until the receiver is re-enabled, the server is deaf. Within a microsecond or 
two of the time A puts the token back on the network, B sees and grabs it, 
and begins transmitting a request to the (unbeknownst to B) deaf file server. 
Even if the server re-enables halfway through B's message, the message will be 
rejected due to missing header, bad frame format, and checksum error. 
According to the ring protocol, after sending one message, B must now replace 
the token, which A captures for a successful transmission. Once again B 
transmits during the server's deaf period, and so on. Conclusion: B gets no 
service at all until A is finished. If A happens to be scanning through the 
Manhattan telephone book, B may be in for a long wait. This specific prob
lem can be solved by inserting random delays in places to break the syn
chrony, but our point is that totally unexpected problems like this make it 
necessary to build and observe real systems to gain insight into the problems. 
Abstract formulations and simulations are not enough. 

3.2. NAMING AND PROTECTION 

All operating systems support objects such as files, directories, segments, mail
boxes, processes, services, servers, nodes, and I/ 0 devices. When a process 
wants to access one of these objects, it must present some kind of name to the 
operating system to specify which object it wants to access. In some instances 
these names are ASCII strings designed for human use, in others they are 
binary numbers used only internally. In all cases they have to be managed 
and protected from misuse. 

3.2.1. Naming as Mapping 
Naming can best be seen as a problem of mapping between two domains. For 
example, the directory system in UNIX provides a mapping between ASCII 
path names and i-node numbers. When an OPEN system call is made, the 
kernel converts the name of the file to be opened into its i-node number. 
Internal to the kernel, files are nearly always referred to by i-node number, not 
ASCII string. Just about all operating systems have something similar. In a 
distributed system a separate name server is sometimes used to map user
chosen names (ASCII strings) onto objects in an analogous way. 

Another example of naming is the mapping of virtual addresses onto physi
cal addresses in a virtual memory system. The paging hardware takes a virtual 
address as input, and yields a physical address as output for use by the real 
memory. 

In some cases naming implies only a single level of mapping, but in other 
cases it can imply multiple levels. For example, to use some service, a process 



22 

might first have to map the service name onto the name of a server process 
that is prepared to off er the service. As a second step, the server would then 
be mapped onto the number of the CPU on which it that process is running. 
The mapping need not always be unique, for example, if there are multiple 
processes prepared to offer the same service. 

3.2.2. Name Servers 
In centralized systems, the problem of naming can be effectively handled in a 
straightforward way. The system maintains a table or data base providing the 
necessary name-to-object mappings. The most straightforward generalization 
of this approach to distributed systems is the single name server model. In 
this model, a server accepts names in one domain and maps them onto names 
in another domain. For example, to locate services in some distributed sys
tems, one sends the service name in ASCII to the name server, and it replies 
with the node number where that service can be found, or with the. process 
name of the server process, or perhaps with the name of a mailbox to which 
requests for service can be sent. The name server's data base is built up by 
registering services, processes, etc., that want to be publicly known. File direc
tories can be regarded as a special case of name service. 

Although this model is often acceptable in a small distributed system located 
at a single site, in a large system it is undesirable to have a single centralized 
component (the name server) whose demise can bring the whole system to a 
grinding halt. In addition, if it becomes overloaded, performance will degrade. 
Furthermore, in a geographically distributed system that may have nodes in 
different cities or even countries, having a single name server will be inefficient 
due to the long delays in accessing it. 

The next approach is to partition the system into domains, each with its 
own name server. li the system is composed of multiple local networks con
nected by gateways and bridges, it seems natural to have one name server per 
local network. One way to organize such a system is to have a global naming 
tree, with files and other objects having names of the form: 
/country/city/network/pathname. When such a name is presented to any 
name server, it can immediately route the request to some name server in the 
designated country, which then sends it to a name server in the designated 
city, and so on until it reaches the name server in the network where the object 
is located, where the mapping can be done. Telephone numbers use such a 
hierarchy, composed of country code, area code, exchange code (first 3 digits 
of telephone number in North America), and subscriber line number. 

Having multiple name servers does not necessarily require having a single, 
global naming hierarchy. Another way to organize the name servers is to have 
each one effectively maintain a table of, for example, (ASCII string, pointer) 
pairs, where the pointer is really a kind of capability for any object or domain 
in the system. When a name, say alblc, is looked up by the local name 
server, it may well yield a pointer to another domain (name server), to which 
the rest of the name, hie, is sent for further processing (see Figure 5). This 
facility can be used to provide links (in the UNIX sense) to files or objects 
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whose precise whereabouts is managed by a remote name server. Thus if ·a file 
foobar is located in another local network, n, with name server n.s, one can 
make an entry in the local name server's table for the pair (x, n.s) and then 
access xlfoobar as though it were a local object. Any appropriately authorized 
user or process knowing the name xlfoobar could make its own synonyms 
and then perform accesses using s/xlfoobar. Each name server parsing a name 
that involves multiple name servers just strips off the first component and 
passes the rest of the name to the name server found by looking up the first 
component locally. 
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FIGURE 5. Distributing the lookup of a/b/c over three name servers. 

A more extreme way of distributing the name server is to have each machine 
manage its own names. To look up a name, one broadcasts it on the network. 
At each machine, the incoming request is passed to the local name server, 
which replies only if it finds a match. Although broadcasting is easiest over a 
local network such as a ring net or CSMA net (e.g., Ethernet), it is also possi
ble over store-and-forward packet switching networks such as the ARP Anet 
[DALAL 1977]. 

Although the normal use of a name server is to map an ASCII string onto a 
binary number used internally to the system, such as a process identifier or 
machine number, once in a while the inverse mapping is also useful. For 
example, if a machine crashes, upon rebooting it could present its (hardwired) 
node number to the name server to ask what it was doing before the crash, 
that is, ask for the ASCII string corresponding to the service it is supposed to 
be offering so it can figure out what program to reboot. 
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3.3. RESOURCE MANAGEMENT 
Resource management in a distributed system differs from that in a centralized 
system in a fundamental way. Centralized systems always have tables that 
give complete and up-to-date status information about all the resources being 
managed; distributed systems do not. For example, the process manager in a 
traditional centralized operating system normally uses a "process table" with 
one entry per potential process. When a new process has to be started, it is 
simple enough to scan the whole table to see if a slot is free. A distributed 
operating system, on the other hand, has a much harder job of finding out if a 
processor is free, especially if the system designers have rejected the idea of 
having any central tables at all, for reasons of reliability. Furthermore, even if 
there is a central table, recent events on outlying processors may have made 
some table entries obsolete without the table manager knowing it. 

The problem of managing resources without having accurate global state 
information is very difficult. Relatively little work has been done in this area. 
In the following sections we will look at some work that has been done, 
including distributed process management and scheduling. 

3.3.1. Processor Allocation 
One of the key resources to be managed in a distributed system is the set of 
available processors. One approach that has been proposed for keeping tabs 
on a collection of processors is to organize them in a logical hierarchy 
independent of the physical structure of the network, as in MICROS [WI'ITIE 
and v AN Tll.BORG 1980]. This approach organizes the machines like people in 
corporate, military, academic, and other real-world hierarchies. Some of the 
machines are workers and others are managers. 

For each group of k workers, one manager machine (the "department 
head") is assigned the task of keeping track of who is busy and who is idle. If 
the system is large, there will be an unwieldy number of department heads, so 
some machines will function as "deans," riding herd on k department heads. 
If there are many deans, they too can be organized hierarchically, with a "big 
cheese" keeping tabs on k deans. This hierarchy can be extended ad 
infinitum, with the number of levels needed growing logarithmically with the 
number of workers. Since each processor need only maintain communication 
with one superior and k subordinates, the information stream is manageable. 

An obvious question is "What happens when a department head, or worse 
yet, a big cheese, stops functioning (crashes)?" One answer is to promote one 
of the direct subordinates of the faulty manager to fill in for the boss. The 
choice of which one can either be made by the subordinates themselves, by the 
deceased's peers, or in a more autocratic system, by the sick manager's boss. 

To avoid having a single (vulnerable) manager at the top of the tree, one can 
truncate the tree at the top and have a committee as the ultimate authority. 
When a member of the ruling committee malfunctions, the remaining members 
promote someone one level down as replacement. 

While this scheme is not completely distributed, it is feasible, and in practice 
works well. In particular, the system is self-repairing, and can survive 
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occasional crashes of both workers and managers without any long.;term 
effects. 

In MICROS, the processors are monoprogrammed, so if a job requiring S 
processes suddenly appears, the system must allocate S processors for it. Jobs 
can be created at any level of the hierarchy. The strategy used is. for each 
manager to keep track of approximately how many workers below it are avail
able (possibly several levels below it). If it thinks that a sufficient number are 
available, it reserves some number R of them, where R > = S, because the 
estimate of available workers may not be exact and some machines may be 
down. 

If the manager receiving the request thinks that it has too few processors 
available, it passes the request upwards in the tree to its boss. If the boss can
not handle it either, the request continues propagating upward until it reaches 
a level that has enough available workers at its disposal. At that point, the 
manager splits the request into parts, and parcels them out among the 
managers below it, which then do the same thing until the wave of scheduling 
requests hits bottom. At the bottom level, the processors are marked as 
"busy'' and the actual number of processors allocated is reported back up the 
tree. 

To make this strategy work well, R must be large enough that the probabil
ity is high that enough workers will be found to handle the whole job. Other
wise the request will have to move up one level in the tree and start all over, 
wasting considerable time and computing power. On the other hand, if R is 
too large, too many processors will be allocated, wasting computing capacity 
until word gets back to the top and they can be released. 

The whole situation is greatly complicated by the fact that requests for pro
cessors can be generated randomly anywhere in the system, so at any instant, 
multiple requests are likely to be in various stages of the allocation algorithm, 
potentially giving rise to out-of-date estimates of available workers, race condi
tions, deadlocks, and more. In [VAN Trr.BORG and WITIIE 1981] a mathemati
cal analysis of the problem is given and various other aspects not described 
here are covered in detail. 

3.3.2. Scheduling 
The hierarchical model provides a general model for resource control, but does 
not provide any specific guidance on how to do scheduling. If each process 
uses an entire processor (i.e., no multiprogramming), and each process is 
independent of all the others, any process can be assigned to any processor at 
random. However, if it is common that several processes are working together 
and must communicate frequently with each other, as in UNIX pipelines or in 
cascaded (nested) remote procedure calls, then it is desirable to make sure the 
whole group runs at once. In this section we will address that issue. 

Let us assume that each processor can handle up to N processes. If there 
are plenty of machines and N is reasonably large, the problem is not finding a 
free machine (i.e., a free slot in some process table), but something more sub
tle. The basic difficulty can be illustrated by an example in which processes A 
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and B run on one machine and processes C and D run on another. Each 
machine is time-shared in, say, 100 msec time slices, with A and C running in 
the even slices, and B and D running in the odd ones, as shown in Figure 6(a). 
Suppose that A sends many messages or makes many remote procedure calls 
to D. During time slice 0, A starts up and immediately calls D, which unfor
tunately is not running because it is now C's turn. After 100 msec, process 
switching takes place, and D gets A's message, carries out the work, and 
quickly replies. Because B is now running, it will be another 100 msec before 
A gets the reply and can proceed. The net result is one message exchange 
every 200 msec. What is needed is a way to ensure that processes that com
municate frequently run simultaneously. 
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FIGURE 6. (a) Two jobs running out of phase with each other. (b) 
Scheduling matrix for 8 machines, each with six time slots. 
The Xs indicated allocated slots. 

Although it is difficult to dynamically determine the interprocess communi
cation patterns, in many cases, a group of related processes will be started off 
together. For example, it is usually a good bet that the filters in a UNIX pipe
line will communicate with each other more than they will with other, previ
ously started processes. Let us assume that processes are created in groups, 
and that intragroup communication is much more prevalent than intergroup 
communication. Let us further assume that a sufficiently large number of 
machines is available to handle the largest group, and that each machine is 
multiprogrammed with N process slots (N-way multiprogramming). 

OuSTERH0UT [1982] has proposed several algorithms based on the concept 
of co-scheduling, which takes interprocess communication patterns into account 
while scheduling to ensure that all members of a group run at the same time. 
The first algorithm uses a conceptual matrix in which each column is the 
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process table for one machine, as shown in Figure 6(b). Thus, column 4· con
sists of all the processes that run on machine 4. Row 3 is the collection of all 
processes that are in slot 3 of some machine, starting with the process in slot 3 
of machine 0, then the process in slot 3 of machine I, and so on. The gist of 
his idea is to have each processor use a round robin scheduling algorithm with 
all processors first running the process in slot O for a fixed period, then all pro
cessors running the process in slot I for a fixed period, etc. A broadcast mes
sage could be used to tell each processor when to do process switching, to keep 
the time slices synchronized. 

By putting all the members of a process group in the same slot number, but 
on different machines, one has the advantage of N-fold parallelism, with a 
guarantee that all the processes will be run at the same time, to maximize com
munication throughput. Thus in Figure 6(b ), four processes that must com
municate should be put into slot 3, on machines 1, 2, 3, and 4 for optimum 
performance. This scheduling technique can be combined with the hierarchical 
model of process management used in MICROS by having each department 
head maintain the matrix for its workers, assigning processes to slots in the 
matrix and broadcasting time signals. 

Ousterhout also described several variations to this basic method to improve 
performance. One of these breaks the matrix into rows, and concatenates the 
rows to form one long row. With k machines, any k consecutive slots belong 
to different machines. To allocate a new process group to slots, one lays a 
window k slots wide over the long row such that the leftmost slot is empty but 
the slot just outside the left edge of the window is full. H sufficient empty 
slots are present in the window, the processes are assigned to the empty slots, 
otherwise the window is slid to the right and the algorithm repeated. Schedul
ing is done by starting the window at the left edge and moving rightward by 
about one window's worth per time slice, taking care not to split groups over 
windows. Ousterhout's paper discusses these and other methods in more detail 
and gives some performance results. 

3.3.3. Load Balancing 
The goal of Ousterhout's work is to place processes that work together on 
different processors, so that they can all run in parallel. Other researchers 
have tried to do precisely the opposite, namely, to find subsets of all the 
processes in the system that are working together, so closely related groups of 
processes can be placed on the same machine to reduce interprocess communi
cation costs [CHu et al, 1980; CHow and ABRAHAM 1982; GYLYS and 
EDWARDS 1976; STONE 1977; STONE 1978; STONE and BoKHARI 1978; Lo 
1984]. Yet other researchers have been concerned primarily with load balanc
ing, to prevent a situation in which some processors are overloaded while oth
ers are empty [BARAK and SHILOH 1985; EFE 1982; KRUEGER and FINKEL 
1983; STANKOVIC and SIDHU 1984). Of course, the goals of maximizing 
throughput, minimizing response time, and keeping the load uniform, are to 
some extent in conflict, so many of the researchers try to evaluate different 
compromises and tradeoffs. 
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Each of these different approaches to scheduling makes diff ereni assump
tions about what is known and what is most important. The people trying to 
cluster processes to minimize communication costs, for example, assume that 
any process can run on any machine, that the computing needs of each process 
are known in advance, and that the interprocess communication traffic 
between each pair of processes is also known in advance. The people doing 
load balancing typically make the realistic assumption that nothing about the 
future behavior of a process is known. The minimizers are generally theorists, 
whereas the load balancers tend to be people making real systems who care 
less about optimality than devising algorithms that can actually be used. Let 
us now briefly look at each of these approaches. 

Graph Theoretic Models. If the system consists of a fixed number of processes, 
each with known CPU and memory requirements, and a known matrix giving 
the average amount of traffic between each pair of processes, scheduling can be 
attacked as a graph-theoretic problem. The system can be represented as a 
graph, with each process a node, and each pair of communicating processes 
connected by an arc labeled with the data rate between them. 

The problem of allocating all the processes to k processors then reduces to 
the problem of partitioning the graph into k disjoint subgraphs, such that each 
subgraph meets certain constraints ( e.g., total CPU and memory requirements 
below some limit). Arcs that are entirely within one subgraph represent inter
nal communication within a single processor ( = fast), whereas arcs that cut 
across subgraph boundaries represent communication between two processors 
( = slow). The idea is to find a partitioning of the graph that meets the con
straints and minimizP-~ the network traffic, or some variation of this idea. Fig
ure 7(a) depicts a graph of interacting processors with one possible partitioning 
of the processes between two machines. Figure 7(b) shows a better partition
ing, with less intermachine traffic, assuming that all the arcs are equally 
weighted. Many papers have been written on this subject, for example, [CHow 
and ABRAHAM 1982; STONE 1977; STONE 1978; STONE and BoKHARI 1978; Lo 
1984]. The results are somewhat academic, since in real systems virtually none 
of the assumptions (fixed number of processes with static requirements, known 
traffic matrix, error-free processors and communication) are ever met. 

Heuristic load balancing. When the goal of the scheduling algorithm is 
dynamic, heuristic, load balancing, rather than finding related clusters, a 
different approach is taken. Here the idea is for each processor to continually 
estimate its own load, for processors to exchange load information, and for 
process creation and migration to utilize this information. 

Various methods of load estimation are possible. One way is just to meas
ure the number of runnable processes on each CPU periodically, and take the 
average of the last n measurements as the load. Another way [BRYANT and 
FINKEL 1981] is to estimate the residual running times of all the processes and 
define the load on a processor as the number of CPU seconds all its processes 
will need to finish. The residual time can be estimated mostly simply by 
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FIGURE 7. Two ways of statically allocating processes (nodes in ·the 
graph) to machines. Arcs show which pairs of processes com
municate. 

assuming it is equal to the CPU time already consumed. Bryant and Finkel 
also discuss other estimation techniques in which both the number of processes 
and length of remaining time are important. When round robin scheduling is 
used, it is better to be competing against one process that needs 100 sec than 
against 100 processes that each need 1 sec. · 

Once each processor has computed its load, a way is needed for each proces
sor to find out how everyone else is doing. One way is for each processor to 
just broadcast its load periodically. After receiving a broadcast from a lightly 
loaded machine, a processor should shed some of its load by giving it to the 
lightly loaded processor. This algorithm has several problems. First, it 
requires a broadcast facility, which may not be available. Second, it consumes 
considerable bandwidth for all the "Here is my load" messages. Third, there is 
a great danger that many processors will try to shed load to the same (previ
ously) lightly loaded processor at once. 

A different strategy [SMITH 1979; BARAK and SHILOH 1985] is for each pro
cessor to periodically pick another processor (possibly a neighbor, possibly at 
random), and exchange load information with it. After the exchange, the more 
heavily loaded processor can send processes to the other one until they are 
equally loaded. In this model, if 100 processes are suddenly created in an oth
erwise empty system, after one exchange we will have two machines with 50 
processes, and after two exchanges most probably four machines with 25 
processes. Processes diffuse around the network like a cloud of gas. 

Actually migrating running processes is trivial in theory but close to impos
sible in practice. The hard part is not moving the code, data, and registers, 
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but moving the environment, such as the current position within alf the open 
files, the current values of any running timers, pointers or file descriptors for 
communicating with tape drives or other 1/0 devices, etc. All of these prob
lems relate to moving variables and data structures related to the process that 
are scattered about inside the operating system. What is feasible in practice is 
to use the load information to create new processes on lightly loaded 
machines, rather than trying to move running processes. 

If one has adopted the idea of creating new processes only on lightly loaded 
machines, another approach, called bidding, is possible [FARBER and LARSON 
1972; STANKOVIC and SIDHU 1984]. When a process wants some work done, it 
broadcasts a request for bids, telling what it needs (e.g., a 68000 CPU, 512K 
memory, floating point, and a tape drive). 

Other processors can then bid for the work, telling what their workload is, 
how much memory they have available, etc. The process making the request 
then chooses the most suitable machine and creates the process there. If mul
tiple request-for-bid messages are outstanding at the same time, a processor 
accepting a bid may discover that the workload on the bidding machine is not 
what it expected because that processor has bid for and won other work in the 
meantime. 

3. 3. 4. Distributed Deadlock Detection 
Some theoretical work has been done in the area of detection of deadlocks in 
distributed systems. How applicable this work may be in practice remains to 
be seen. Two kinds of potential deadlocks are resource deadlocks and com
munication deadlocks. Resource deadlocks are traditional deadlocks, in which 
some set of processes are all blocked waiting for resources held by other 
blocked processes. For example, if A holds X and B holds Y, and A wants Y 
and B wants X, a deadlock will result. 

In principle, this problem is the same in centralized and distributed systems, 
but it is harder to detect in the latter because there are no centralized tables 
giving the status of all resources. The problem has mostly been studied in the 
context of data base systems [GLIGOR and SHATTUCK 1980; IsLOOR and MARs
LAND 1978; MENASCE and MUNTZ 1979; OBERMARCK 1982]. 

The other kind of deadlock that can occur in a distributed system is a com
munication deadlock. Suppose A is waiting for a message from B and B is 
waiting for C and C is waiting for A. Then we have a deadlock. CHANDY et 
al. [1983] present an algorithm for detecting (but not preventing) communica
tion deadlocks. Very crudely summarized, they assume that each process that 
is blocked waiting for a message knows which process or processes might send 
the message. When a process logically blocks, they assume that it does not 
really block, but instead sends a query message to each of the processes that 
might send it a real (data) message. If any of these processes is blocked, it 
sends query messages to the processes it is waiting for. If certain messages 
eventually come back to the original process, it can conclude that a deadlock 
exists. In effect, the algorithm is looking for a knot in a directed graph. 
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3.4. FAULT TOLERANCE 

Proponents of distributed systems often claim that such systems can be more 
reliable than centralized systems'. Actually, there are at least two issues 
involved here: reliability and availability. Reliability has to do with the system 
not corrupting or losing your data. Availability has to do with the system 
being up when you need it. A system could be highly reliable in the sense that 
it never loses data, but at the same time be down most of the time and hence 
hardly usable. However, many people use the term "reliability'' to cover avai
lability as well, and we will not make the distinction either in the rest of the 
paper. 

The reason why distributed systems are potentially more reliable than a cen
tralized system is that if a system only has one instance of some critical com
ponent, such as a CPU, disk, or network interface, and that component fails, 
the system will go down. When there are multiple instances, the system may 
be able to continue in spite of occasional failures. In addition to hardware 
failures, one can also consider software failures. These are of two types: the 
software failed to meet the formal specification (implementation error), or the 
specification does not correctly model what the customer wanted (specification 
error). All work on program verification is aimed at the former, but the latter 
is also an issue. Distributed systems allow both hardware and software errors 
to be dealt with, albeit in somewhat different ways. 

An important distinction should be made between systems that are fault 
tolerant and those that are fault intolerant. A fault tolerant system is one that 
can continue functioning (perhaps in a degraded form) even if something goes 
wrong. A fault intolerant system collapses as soon as any error occurs. Bio
logical systems are highly fault tolerant; if you cut your finger, you probably 
will not die. If a memory failure garbles 1/10 of 1 percent of the program 
code or stack of a running program, the program will almost certainly crash 
instantly upon encountering the error. 

It is sometimes useful to distinguish between expected faults and unexpected 
faults. When the ARP Anet was designed, people expected to lose packets 
from time to time. This particular error was expected and precautions were 
taken to deal with it. On the other hand, no one expected a memory error in 
one of the packet switching machines to cause that machine to tell the world 
that it had a delay time of zero to every machine in the network, which 
resulted in all network traffic being rerouted to the broken machine. 

One of the key advantages of distributed systems is that there are enough 
resources to achieve fault tolerance, at least with respect to expected errors. 
The system can be made to tolerate both hardware and software errors, 
although it should be emphasized that in both cases it is the software, not the 
hardware, that cleans up the mess when an error occurs. In the past few years, 
two approaches to making distributed systems fault tolerant have emerged. 
They differ radically in orientation, goals, and attitude toward the theologically 
sensitive issue of the perfectability of mankind (programmers in particular). 
One approach is based on redundancy and the other is based on the notion of 
an atomic transaction. Both are described briefly below. 
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3.4.1. Redundancy Techniques 
All the redundancy techniques that have emerged take advantage of the 
existence of multiple processors by duplicating critical processes on two or 
more machines. A particularly simple, but effective, technique is to provide 
every process with a backup process on a different processor. All processes 
communicate by message passing. Whenever anyone sends a message to a 
process, it also sends the same message to the backup process, as shown in 
Figure 8. The system ensures that neither the primary nor the backup can 
continue running until it has been verified that both have correctly received the 
message. 

Network 

6 Message ~ Message ~ 
Primary Sender Backup 
Process sends process 

message 
to both 

FIGURE 8. Each process has its own backup process. 

Thus, if one process crashes due to any hardware fault, the other one can 
continue. Furthermore, the remaining process can then clone itself, making a 
new backup to maintain the fault tolerance in the future. BORG et al. [1983] 
have described a system using these principles. 

One disadvantage of duplicating every process is the extra processors 
required, but another, more subtle problem, is that if processes exchange mes
sages at a high rate, a considerable amount of CPU time may go into keeping 
the processes synchronized at each message exchange. POWELL and PREsorro 
[1983] have described a redundant system that puts almost no additional load 
on the processes being backed up. In their system, all messages sent on the 
network are recorded by a special "recorder" process (see Figure 9). From 
time to time, each process checkpoints itself onto a remote disk. 
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FIGURE 9. A recorder process copies and stores all network traffic 
without affecting the sender and receiver. 

If a process crashes, recovery is done by sending the most recent checkpoint 
to an idle processor and telling it to start running. The recorder process then 
spoon feeds it all the messages that the original process received between the 
checkpoint and the crash. Messages sent by the newly restarted process are 
discarded. Once the new process has worked its way up to the point of crash, 
it begins sending and receiving messages normally, without help from the 
recording process. 

The beauty of this scheme is that the only additional work a process must 
do to become immortal is to checkpoint itself from time to time. In theory, 
even the checkpoints can be disposed with, if the recorder process has enough 
disk space to store all the messages sent by all the currently running processes. 
If no checkpoints are made, when a process crashes, the recorder will have to 
replay the process's whole history. 

When a process successfully terminates, the recorder no longer has to worry 
about having to rerun it, so all the messages that it received can be safely dis
carded. For servers and other processes that never terminate, this idea must 
be varied to avoid repeating individual transactions that have successfully com
pleted. 

One drawback of this scheme is that it relies on reliable reception of all mes
sages all the time. In practice, local networks are very reliable, but they are 
not perfect. If occasional messages can be lost, the whole scheme becomes 
much less attractive. 

Still, one has to be very careful about reliability, especially when the prob
lem is caused by faulty software. Suppose a processor crashes due to a 
software bug. Both the schemes discussed above (Borg et al., and Powell and 
Presotto) deal with crashes by allocating a spare processor and restarting the 
crashed program, possibly from a checkpoint. Of course the new processor 
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will crash too, leading to the allocation of yet another processor and another 
crash. Manual intervention will eventually be required to figure out what is 
going on. If the hardware designers could provide a bit somewhere that tells 
whether a crash was due to hardware or software, it would be very helpful. 

Both of the above techniques only apply to tolerance of hardware errors. 
However, it is also possible to use redundancy in distributed systems to make 
systems tolerant of software errors. One approach is to structure each pro
gram as a collection of modules, each one with a well-defined function and a 
precisely specified interface to the other modules. Instead of writing a module 
only once, N programmers are asked to program it, yielding N functionally 
identical modules. 

During execution, the program runs on N machines in parallel. After each 
module finishes, the machines compare their results and vote on the answer. If 
a majority of the machines say that the answer is X, then all of them use X as 
the answer, and all continue in parallel with the next module. In this manner, 
the effects of an occasional software bug can be voted down. If formal 
specifications for any of the modules are available, the answers can also be 
checked against the specifications to guard against the possibility of accepting 
an answer that is clearly wrong. 

A variation of this idea can be used to improve system performance. 
Instead of always waiting for all the processes to finish, as soon as k of them 
agree on an answer, those that have not yet finished are told to drop what they 
are doing, accept the value found by the k processes, and continue with the 
next module. Some work in this area is discussed in [AVIZIENIS and CHEN 

1977; AVIZIENIS and KELLY 1984; ANDERSON and LEE 1981]. 

3.4.2. Atomic transactions 
When multiple users on several machines are concurrently updating a distri
buted data base and one or more machines crash, the potential for chaos is 
truly impressive. In a certain sense, the current situation is a step backward 
from the technology of the 1950s, when the normal way of updating a data 
base was to have one magnetic tape, called the "master file," and one or more 
tapes with updates (e.g., daily sales reports from all of a company's stores). 
The master tape and updates were brought to the computer center, which then 
mounted the master tape and one update tape, and ran the update program to 
produce a new master tape. This new tape was then used as the "master" for 
use with the next update tape. 

This scheme had the very real advantage that if the update program crashed, 
one could always fall back on the previous master tape and the update tapes. 
In other words, an update run could be viewed as either running correctly to 
completion (and producing a new master tape), or having no effect at all (crash 
part way through, new tape discarded). Furthermore, update jobs from 
different sources always ran in some (undefined) sequential order. It never 
happened that two users would concurrently read a field in a record, ( e.g., 6), 
each add 1 to the value, and each store a 7 in that field, instead of the first one 
storing a 7 and the second storing an 8. 
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The property of run-to-completion or do-nothing is called an atomic update. 
The property of not interleaving two jobs is called .serializability. The goal of 
people working on the atomic transaction approach to fault tolerance has been 
to regain the advan~ of the old tape system without giving up the conveni
ence of data bases on disk that can be modified in place, and to be able to do 
everything in a distributed way. 

LAMPsoN (1981] has described a way of achieving atomic transactions by 
building up a hierarchy of abstractions. We will summarize his model below. 
Real disks can crash during READ and WRITE operations in unpredictable 
ways. Furthermore, even if a disk block is correctly written, there is a small 
(but nonzero) probability of it subsequently being corrupted by newly 
developed bad spot on the disk surface. The model assumes that spontaneous 
block corruptions are sufficiently infrequent that the probability of two such 
events happening within some predetermined time, T, is negligible. To deal 
with real disks, the system software must be able to tell if a block is valid or 
not, for example, by using a checksum. 

The first layer of abstraction on top of the real disk is the "careful disk," in 
which every CAREFUL-WRITE is read back immediately to verify that it is 
correct. H the CAREFUL-WRITE persistently fails, the system marks the 
block as "bad" and then intentionally crashes. Since CAREFUL-WRITEs are 
verified, CAREFUL-lIBAI)s will always be good, unless a block has gone bad 
after being written and verified. 

The next layer of abstraction is stable storage. A stable storage block con
sists of an ordered pair of careful blocks, which are typically corresponding 
careful blocks on different drives to roioimire the chance of both being dam
aged by a hardware failure. The stable storage algorithm guarantees that at 
least one of the blocks is always valid. The STABLE-WRITE primitive first 
does a CAREFUL-WRITE on one block of the pair, and then the other. If 
the first one fails, a crash is forced, as mentioned above, and the second one is 
left untouched. 

After every crash, and at least once every time period T, a special cleanup 
process is run to examine each stable block. H both blocks are "good" and 
identical, nothing has to be done. H one is "good" and one is "bad" (failure 
during a CAREFUL-WRITE), the "bad" one is replaced by the "good" one. 
H both are "good" but different (crash between two CAREFUL-WRITEs), the 
second one is replaced by a copy of the first one. This algorithm allows indivi
dual disk blocks to be updated atomically and survive infrequent crashes. 

Stable storage can be used to create "stable processors" [Lampson 1981]. 
To make itself crashproof, a CPU must checkpoint itself on stable storage 
periodically. Hit subsequently crashes, it can always restart itself from the last 
checkpoint Stable storage can also be used to create stable monitors, in order 
to ensure that two concurrent processes never enter the same critical region at 
the same time, even if they are running on different machines. 

Given a way to implement crashproof processors (stable processors) and 
crashproof disks (stable storage), it is possible to implement multicomputer 
atomic transactions. Before updating any part of the data in place, a stable 
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processor first writes an intentions list to stable storage, providing. the new 
value for each datum to be changed. Then it sets a commit flag to indicate 
that the intentions list is complete. The commit flag is set by atomically 
updating a special block on stable storage. Finally it begins making all the 
changes called for in the intentions list. Crashes during this phase have no 
serious consequences because the intentions list is stored in stable storage. 
Furthermore, the actual making of the changes is idempotent, so repeated 
crashes and restarts during this phase are not harmful. 

Atomic actions have been implemented in a number of systems; see for 
example [FRIDRICH and OLDER 1981; MITCHELL and DION 1982; BROWN et 
al. 1985; POPEK et al. 1981; REED and SVOBODOVA 1981). 

3.5. SERVICES 
In a distributed system, it is natural to provide functions by user-level server 
processes that have traditionally been provided by the operating system. This 
approach leads to a smaller (hence more reliable) kernel and makes it easier to 
provide, modify, and test new services. In the following sections, we will look 
at some of these services, but first we look at how services and servers can be 
structured. 

3.5.1. Server structure 
The simplest way to implement a service is to have one server that has a sin
gle, sequential thread of control. The main loop of the server looks something 
like this: 

while true do 
begin 

end 

GetRequest; 
CarryOutRequest; 
SendReply 

This approach is simple and easy to understand, but has the disadvantage that 
if the server must block while carrying out the request ( e.g, in order to read a 
block from a remote disk), no other requests from other users can be started, 
even if they could have been satisfied immediately. An obvious example is a 
file server that maintains a large disk block cache, but occasionally must read 
from a remote disk. In the time interval that the server is blocked waiting for 
the remote disk to reply, it might have been able to service the next 10 
requests, if they were all for blocks that happened to be in the cache. Instead, 
the time spent waiting for the remote disk is completely wasted. 

To eliminate this wasted time and improve the throughput of the server, the 
server can maintain a table to keep track of the status of multiple partially 
completed requests. Whenever a request requires the server to send a message 
to some other machine and wait for the result, the server stores the status of 
the partially completed request in the table and goes back to the top of the 
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main loop to get the next message. 
If the next message happens to be the reply from the other machine, that is 

fine and it is processed, but if it is a new request for service from a different 
client, that can also be started, and possibly completed before the reply for the 
first request comes in. In this way, the server is never idle if there is any work 
to be done. 

Although this organization makes better use of the server's CPU, it makes 
the software much more complicated. Instead of doing nicely nested remote 
procedure calls to other machines whose services it needs, the server is back to 
using separate SEND and RECEIVE primitives, which are less structured. 

One way of achieving both good performance and clean structure is to pro
gram the server as a collection of miniprocesses, which we will call a cluster of 
tasks. Tasks share the same code and global data, but each task has its own 
stack for local variables and registers and, most importantly, its own program 
counter. In other words, each task has its own thread of control. Multipro
gramming of the tasks can be done either by the operating system kernel or by 
a run time library within each process. 

There are two ways of organizing the tasks. The first way is to assign one 
task the job of "dispatcher," as shown in Figure 10. The dispatcher is the only 
task that accepts new requests for work. After inspecting an incoming request, 
it determines if the work can be done without blocking ( e.g., if a block to be 
read is present in the cache). If it can, the dispatcher just carries out the work 
and sends the reply. If the work requires blocking, the dispatcher passes the 
work to some other task in the cluster, which can start work on it. When that 
task blocks, task switching occurs, and the dispatcher or some other previously 
blocked task can now run. Thus waiting for a remote procedure call to finish 
only blocks one task, not the whole server. 

The other way of organizing the server is to have each task capable of 
accepting new requests for work. When a message arrives, the kernel gives it 
at random to one of the tasks listening to the address or port to which the 
message was addressed. That task carries the work out by itself, and no 
dispatcher is needed. 

Both of these schemes require some method of locking the shared data to 
prevent races. This locking can be achieved explicitly by some kind of LOCK 
and UNLOCK primitives, or implicitly by having the scheduler not stop any 
task while it is running. For example, task switching only occurs when a task 
blocks. With ordinary user programs, such a strategy is undesirable, but with 
a server whose behavior is well-understood, it is not unreasonable. 

3.5.2. File Service 
There is little doubt that the most important service in any distributed system 
is the file service. Many file services and file servers have been designed and 
implemented, so a certain amount of experience is available [ e.g., BIRRELL and 
NEEDHAM 1980; DELLAR 1982; DION 1980; FRIDRICH and OLDER 1981; FRI
DRICH and OLDER 1984; MITCHELL and DION 1982; MULLENDER and 
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FIGURE 10. The dispatcher task waits for requests and passes them on to 
the worker tasks. 

TANENBAUM 1985; REED and SVOBODOVA 1981; SATYANARAYANAN et al. 1985; 
SCHROEDER et al. 1985; STURGIS et al. 1980; SVOBODOVA 1981; Sw!NEHART et 
al. 1979]. A survey about file servers can be found in [SVOBODOVA 1984]. 

File services can be roughly classified into two kinds, "traditional" and 
"robust." Traditional file service is offered by nearly all centralized operating 
systems ( e.g., the UNIX file system). Files can be opened, read, and rewritten 
in place. In particular, a program can open a file, seek to the middle of the 
file, and update blocks of data within the file. The file server implements these 
updates by simply overwriting the relevant disk blocks. Concurrency control, 
if there is any, usually involves locking entire files before updating them. 

Robust file service, on the other hand, is aimed at those applications that 
require extremely high reliability, and whose users are prepared to pay a 
significant penalty in performance to achieve it. These file services generally 
off er atomic updates and similar features lacking in the traditional file service. 

In the following paragraphs, we discuss some of the issues relating to tradi
tional file service (and file servers) and then look at those issues that 
specifically relate to robust file service and servers. Since robust file service 
normally includes traditional file service as a subset, the issues covered in the 
first part also apply. 

Conceptually, there are three components that a traditional file service nor-
mally has: 

Disk service 
Flat file service 
Directory service 
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The disk service is concerned with reading and writing raw disk blocks, 
without regard to how they are organized. A typical command to the disk ser
vice is to allocate and write a disk block, and return a capability or address 
(suitably protected) so the block can be read later. 

The flat file service is concerned with providing its clients with an abstrac
tion consisting of files, each of which is a linear sequence of records, possibly 
I-byte records (as in UNIX) or client-defined records. The operations are 
reading and writing records, starting at some particular place in the file. The 
client need not be concerned with how or where the data in the file are stored. 

The directory service provides a mechanism for naming and protecting files, 
so they can be accessed conveniently and safely. The directory service typi
cally provides objects called directories that map ASCII names onto the inter
nal identification used by the file service. 

Design Issues. One important issue in a distributed system is how closely the 
three components of a traditional file service are integrated. At one extreme, 
the system can have distinct disk, file and directory services that run on 
different machines and only interact via the official interprocess communica
tion mechanism. This approach is the most flexible, because anyone needing a 
different kind of file service (e.g., a B-tree file) can use the standard disk server. 
It is also potentially the least efficient, since it generates considerable inter
server traffic. 

At the other extreme, there are systems in which all three functions are han
dled by a single program, typically running on a machine to which a disk is 
attached. With this model, any application that needs a slightly different file 
naming scheme is forced to start all over making its own private disk server. 
However, the gain is increased runtime efficiency, because the disk, file and 
directory services do not have to communicate over the network. 

Another important design issue in distributed systems is garbage collection. 
If the directory and file services are integrated, it is a straightforward matter to 
ensure that whenever a file is created, it is entered into a directory. If the 
directory system forms a rooted tree, it is always possible to reach every file 
from the root directory. However, if the file directory service and file service 
are distinct, it may be possible to create files and directories that are not 
reachable from the root directory. In some systems this may be acceptable, 
but in others, unconnected files may be regarded as garbage to be collected by 
the system. 

Another approach to the garbage collection problem is to forget about 
rooted trees altogether, and permit the system to remove any file that has not 
been accessed for, say, 5 years. This approach is intended to deal with the 
situation of a client creating a temporary file and then crashing before record
ing its existence anywhere. When the client is rebooted, it creates a new tem
porary file and the existence of the old one is lost forever unless some kind of 
timeout mechanism is used. 

There are a variety of other issues that the designers of a distributed file sys
tem must address; for example, will the file service be virtual-circuit oriented 
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or connectionless. In the virtual circuit approach, the client must do ·an OPEN 
on a file before reading it, at which time the file server fetches some informa
tion about the file (in UNIX terms, the i-node) into memory, and the client is 
given some kind of a connection identifier. This identifier is used in subse
quent READs and WRITEs. In the connectionless approach, each READ 
request identifies the file and file position in full, so the server need not keep 
the i-node in memory (although most servers will maintain a cache for 
efficiency reasons). 

Both virtual circuit and connectionless file servers can be used with the ISO 
OSI and RPC models. When virtual circuits are used for communication, hav
ing the file server maintain open files is natural. However, each request mes
sage can also be self contained, so that the file server need not hold the file 
open throughout the communication session. 

Similarly, RPC fits well with a connectionless file server, but it can also be 
used with a file server that maintains open files. In the latter case, the client 
does an RPC to the file server to OPEN the file and get back a file identifier of 
some kind. Subsequent RPCs can do READ and WRITE operations using 
this file identifier. 

The difference between these two becomes clear when one considers the 
effects of a server crash on active clients. If a virtual-circuit server crashes and 
is then quickly rebooted, it will almost always lose its internal tables. When 
the next request comes in to read the current block from file identifier 28, it 
will have no way of knowing what to do. The client will receive an error mes
sage, which will generally lead to the client process aborting. In the connec
tionless model, each request is completely self-contained (file name, file posi
tion, etc) so newly a reincarnated server will have no trouble carrying it out. 

The price paid for this robustness, however, is a slightly longer message 
since each file request must contain the full file name and position. Further
more, the virtual-circuit model is sometimes less complex in environments in 
which the network can re-order messages, that is, deliver the second message 
before the first one. Local networks do not have this defect, but some wide
area networks and intemetworks do. 

Protection. Another important issue faced by all file servers is access 
control-who is allowed to read and write which file. In centralized systems, 
the same problem exists, and is solved by using either an access control list or 
capabilities. With access control lists, each file is associated with a list of users 
who may access it. The UNIX RWX bits are a simple form of access control 
list that divides all users into 3 categories: owner, group, and others. With 
capabilities, a user must present a special "ticket" on each file access proving 
that he has access permission. Capabilities are normally maintained in the 
kernel to prevent forgery. 

With a distributed system using remote file servers, both of these approaches 
have problems. With access control lists the file server has to verify that the 
user in fact is who he claims to be. With capabilities, how do you prevent 
users from making them up? 
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One way to make access control lists viable is to insist that the client first set 
up an authenticated virtual circuit with the file server. The authentication may 
involve a trusted third party as in [BIRRELL et al. 1982; BIRRELL et al. 1984]. 
When remote procedure calls are used, setting up an authenticated session in 
advance is less attractive. The problem of authentication using RPC is dis
cussed in [BIRRELL 1985]. 

With capabilities, the protection is normally due to the fact that the kernel 
can be trusted. With personal computers on a network, how can the file server 
trust the kernel? After all, a user can easily boot up a nonstandard kernel on 
his machine. A possible solution is to encrypt the capabilities, as discussed in 
[MULLENDER and TANENBAUM 1984, 1985, 1986; TANENBAUM et al. 1986]. 

Performance. Performance is one of the key problems in using remote file 
servers (especially from diskless workstations). Reading a block from a local 
disk requires a disk access and a small amount of CPU processing. Reading 
from a remote server has the additional overhead of getting the data across the 
network. This overhead has two components, the actual time to move the bits 
over the wire (including contention resolution time, if any), and the CPU time 
the file server must spend running the protocol software. 

CHERITON and ZWAENEPOEL [1983] describe measurements of network over
head in the context of the V system. With a 8 MHz 68000 processor and a 10 
MB/ sec Ethernet, they observe that reading a 512-byte block from the local 
machine takes 1.3 msec and from a remote machine 5.7 msec, assuming that 
the block is in memory and no disk access is needed. They also observe that 
loading a 64K program from a remote file server takes 255 msec vs. 60 msec 
locally, when transfers are in 16K units. A tentative conclusion is that access 
to a remote file server is four times as expensive as to a local one. (It is also 
worth noting that the V designers have gone to great lengths to achieve good 
performance; many other file servers are much slower than V's.) 

One way to improve the performance of a distributed file system is to have 
both clients and servers maintain caches of disk blocks and possibly whole 
files. However, maintaining distributed caches has a number of serious prob
lems. The worst of these is what happens when someone modifies the "master 
copy" on the disk? Does the file server tell all the machines maintaining 
caches to purge the modified block or file from their caches by sending them 
"unsolicited messages" as in XDFS [STURGIS, et al. 1980]? How does the 
server even know who has a cache? Introducing a complex centralized 
administration to keep track is probably not the way to go. 

Furthermore, even if the server did know, having the server initiate contact 
with its clients is certainly an unpleasant reversal of the normal client-server 
relationship, in which clients make remote procedure calls on servers, but not 
vice versa. More research is needed in this area before we have a satisfactory 
solution. Some results are presented in [SCHROEDER et al. 1985]. 
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Reliability. Reliability is another key design issue. The simplest approach is to 
design the system carefully, use good quality disks, and make occasional tape 
backups. H a disk ever gets completely wiped out due to hardware failure, all 
the work done since the last tape backup is lost. Although this mode of opera
tion may seem scary at first, nearly all centralized computer systems work this 
way, and with a mean time between failure of 20,000 or more hours for disks 
these days, it works pretty well in practice. 

For those applications that demand a higher level of reliability, some distri
buted systems have a more robust file service, as mentioned at the beginning of 
this section. The simplest approach is mirrored disks: every WRITE request is 
carried out in parallel on two disk drives. At every instant the two drives are 
identical, and either one can take over instantly for the other· in the event of 
failure. 

A refinement of this approach is to have the file server offer stable storage 
and atomic transactions, as discussed earlier. Systems offering this facility are 
described in [BROWN et al. 1985; DION 1980; MITCHELL and DION 1982; 
NEEDHAM and HERBERT 1982; REED and SvoBODOVA 1981; STURGIS et al. 
1980; SvoBODOVA 1981]. A detailed comparison of a number of file servers 
offering sophisticated concurrency control and atomic update facilities is given 
by SvoBODOVA [1984]. We will just touch on a few of the basic concepts here. 

At least four different kinds of files can be supported by a file server. Ordi
nary files consist of a sequence of disk blocks that may be updated in place, 
and which may be destroyed by disk or server crashes. Recoverable files have 
the property that groups of WRITE commands can be bracketed by BEGIN 
TRANSACTION and END TRANSACTION, and that a crash or abort mid
way leaves the file in its original state. Robust files are written on stable 
storage, and contain sufficient redundancy to survive disk crashes (generally 
two disks are used) .. Finally, Multiversion files consist of a sequence of ver
sions, each of which is immutable. Changes are made to a file by creating a 
new version. Different file servers support various combinations of these. 

All robust file servers need some mechanism for handling concurrent 
updates to a file or group of files. Many of them allow users to lock a file, 
page, or record to prevent conflicting writes. Locking introduces the problem 
of deadlocks, which can be dealt with using two-phase locking [Esw ARAN et al 
1976] or timestamps [REED 1983]. 

When the file system consists of multiple servers working in parallel, it 
becomes possible to enhance reliability by replicating some or all files over 
multiple servers. Reading also becomes easier because the workload can now 
be split over two servers, but writing is much harder because multiple copies 
must be updated simultaneously, or this effect simulated somehow. 

One approach is to distribute the data, but keep some of the control inf or
mation (semi) centralized. In LOCUS [POPEK et al. 1981; WALKER et al. 
1983], for example, files can be replicated at many sites, but when a file is 
opened, the file server at one site examines the OPEN request, the number and 
status of the file's copies, and the state of the network. It then chooses one 
site to carry out the OPEN and the subsequent READs and WRITEs. The 
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Compared to file service, on which a great deal of time and energy has been 
expended by a large number of people, the other services seem rather meager. 
Still, it is worth saying at least a little bit about a few of the more interesting 
ones. 

Nearly all distributed systems have some kind of print service, to which 
clients can send files or file names or capabilities for files with instructions to 
print them on one of the available printers, possibly with some text 
justification or other formatting beforehand. In some cases, the whole file is 
sent to the print server in advance, and the server must buff er it. In other 
cases, only the file name or capability is sent, and the print server reads the file 
block by block as needed. The latter strategy eliminates the need for buffering 
(read: a disk) on the server side, but can cause problems if the file is modified 
after the print command is given but prior to the actual printing. Users gen
erally prefer "call by value" rather than "call by reference" semantics for 
printers. 

One way to achieve the "call by value" semantics is to have a printer 
spooler server. To print a file, the client process sends the file to the spooler. 
When the file has been copied to the spooler's directory, an acknowledgement 
is sent back to the client. 

The actual print server is then implemented as a print client. Whenever the 
print client has nothing to print, it requests another file or block of a file from 
the print spooler, prints it, and then requests the next one. In this way the 
print spooler is a server to both the client and the printing device. 

Printer service is discussed in [JANSON et al. 1983; and NEEDHAM and HER

BERT 1982]. 

3.5.4. Process Service 
Every distributed operating system needs some mechanism for creating new 
processes. At the lowest level, deep inside the system kernel, there must be a 
way of creating a new process from scratch. One way is to have a FORK call, 
as UNIX does, but other approaches are also possible. For example, in 
Amoeba, it is possible to ask the kernel to allocate chunks of memory of given 
sizes. The caller can then read and write these chunks, loading them with the 
text, data, and stack segments for a new process. Finally, the caller can give 
the filled-in segments back to the kernel and ask for a new process built up 
from these pieces. This scheme allows processes to be created remotely or 
locally, as desired. 

At a higher level, it is frequently useful to have a process server that one can 
ask whether there is a Pascal, troff, or some other service, in the system. If 
there is, the request is forwarded to the relevant server. If not, it is the job of 
the process server to build a process somewhere and give it the request. After, 
say, a VLSI design rule checking server has been created and has done its 
work, it may or may not be a good idea to keep it in the machine where it was 
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created, depending on how much work (e.g., network traffic) is required to 
load it, and how often it is called. The process server could easily manage a 
server cache on a least recently used basis, so that servers for common applica
tions are usually preloaded and ready to go. As special-purpose VLSI proces
sors become available for compilers and other applications, the process server 
should be given the job of managing them in a way that is transparent to the 
system's users. 

3.5.5. Terminal Service 
How the terminals are tied to the system obviously depends to a large extent 
on the system architecture. If the system consists of a small number of mini
computers, each with a well-defined and stable user population, then each ter
minal can be hardwired to the computer its user normally logs on to. If, how
ever, the system consists entirely of a pool of processors that are dynamically 
allocated as needed, it is better to connect all the terminals to one or more ter
minal servers that serve as concentrators. 

The terminal servers can also provide such features as local echoing, intra
line editing, and window management, if desired. Furthermore, the terminal 
server can also hide the idiosyncracies of the various terminals in use by map
ping them all onto a standard virtual terminal. In this way, the rest of the 
software deals only with the virtual terminal characteristics and the terminal 
server takes care of the mappings to and from all the real terminals. The ter
minal server can also be used to support multiple windows per terminal, with 
each window acting as a virtual terminal. 

3.5.6. Mail Service 
Electronic mail is a popular application of computers these days. Practically 
every university computer science department in the Western world is on at 
least one international network for sending and receiving electronic mail. 
When a site consists of only one computer, keeping track of the mail is easy. 
However, when a site has dozens of computers spread over multiple local net
works, users often want to be able to read their mail on any machine they hap
pen to be logged on to. This desire gives rise to the need for a machine
independent mail service, rather like a print service that can be accessed sys
tem wide. Al.MES et al. [1985] discuss how mail is handled in the Eden system. 

3.5. 7. Time Service 
There are two ways to organize a time service. In the simplest way, clients can 
just ask the service what time it is. In the other way, the time service can 
broadcast the correct time periodically, to keep all the clocks on the other 
machines in sync. The time server can be equipped with a radio receiver tuned 
to WWV or some other transmitter that provides the exact time down to the 
microsecond. 

Even with these two mechanisms, it is impossible to have all processes 
exactly synchronized. Consider what happens when a process requests the 
time-of-day from the time server. The request message comes in to the server, 



45 

and a reply is sent back immediately. That reply must propagate back to the 
requesting process, cause an interrupt on its machine, have the kernel started 
up, and finally have the time recorded somewhere. Each of these steps intro
duces an unknown, variable delay. 

On an Ethernet, for example, the amount of time required for . the time 
server to put the reply message onto the network is nondeterministic and 
depends on the number of machines contending for access at that instant. If a 
large distributed system has only one time server, messages to and from it may 
have to travel a long distance and pass over store-and-forward gateways with 
variable queueing delays. If there are multiple time servers, they may get out 
of synchronization because their crystals run at slightly different rates. 
Einstein's special theory of relativity also puts constraints on synchronizing 
remote clocks. 

The result of all these problems is that having a single, global time is impos
sible. Distributed algorithms that depend on being able to find a unique glo
bal ordering of widely separated events may not work as expected. A number 
of researchers have tried to find solutions to the various problems caused by 
the lack of global time. See for example [JEFFERSON 1985; LAMPORT 1984; 
LAMPORT 1978; MARzuuo and OwicICI 1985; REED 1983; REIF and SPIRAICIS 

1984;] 

3.5.8. Boot Senice 
The boot service has two functions: bringing up the system from scratch when 
the power is turned on, and helping important services survive crashes. In 
both cases, it is helpful if the boot server has a hardware mechanism for forc
ing a recalcitrant machine to jump to a program in its own ROM, in order to 
reset it. The ROM program could simply sit in a loop waiting for a message 
from the boot service. The message would then be loaded into that machine's 
memory and executed as a program. 

The second function alluded to above is the "immortality service." An 
important service could register with the boot service, which would then poll it 
periodically to see if it were still functioning. If not, the boot service could ini
tiate measures to patch things up, for example, forcibly reboot it or allocate 
another processor to take over its work. To provide high reliability, the boot 
service should itself consist of multiple processors, each of which keeps check
ing that the other ones are still working properly. 

3.5.9. Gateway Service 
If the distributed system in question needs to communicate with other systems 
at remote sites, it may need a gateway server to convert messages and proto
cols from internal format to those demanded by the wide-area network carrier. 
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4. ExAMPLES OF DISTRIBUfED OPERATING SYSTEMS 
Having disposed with the principles, it is now time to look at some actual dis
tributed systems that have been constructed as research projects in universities 
around the world. Although many such projects are in various stages of 
development, space limitations prevent us from describing all of them in detail. 
Instead of saying a few words about each system, we have chosen to look at 
four systems that we consider representative. Our selection criteria were as 
follows. First, we only chose systems that were designed from scratch as dis
tributed systems, (systems that gradually evolved by connecting together exist
ing centralized systems or are multiprocessor versions of UNIX were 
excluded). Second, we only chose systems that have actually been imple
mented; paper designs did not count. Third, we only chose systems about 
which a reasonable amount of information was available. 

Even with these criteria, there were many more systems that could have been 
discussed. As an aid to the reader interested in pursuing this subject further, 
we provide here some references to other relevant work: Accent [FITZGERALD 
and RASHID 1985; RAsHID and ROBERTSON 1981], ARGUS [LISKOV 1982; 
LISKOV 1984; LISKOV and SCHEIFLER 1982; OKI et al. 1985], Chorus [ZIMMER
MAN et al. 1981], CRYSTAL [DEWITT et al. 1984), DEMOS [POWELL and 
MILLER 1983], Distributed UNIX [LUDERER et al. 1981], HXDP [JENSEN 1978], 
LOCUS [POPEK et al. 1981; WALKER et al. 1983; WEINSTEIN et al. 1985], 
Meglos [GAGLIANELLO and KATSEFF 1985), MICROS [CuRTIS and WITTIE 
1984; MOHAN and WITTIE 1985; WITTIE and CuRTIS 1985; WITTIE and VAN 
TILBORG 1980], RIG [BALL et al. 1976], Roscoe/ Arachne [FINKEL et al. 1979; 
SOLOMON and FINKEL 1979; SOLOMON and FINKEL 1978], and the work at 
Xerox PARC [BIRRELL et al. 1984; BIRRELL and NELSON 1984; BIRRELL 1985; 
BOGGS et al. 1980; BROWN et al. 1985; SwlNEHART et al. 1979]. 

The systems we will examine here are: The Cambridge Distributed Comput
ing System, Amoeba, V, and Eden. The discussion of each system follows the 
list of topics treated above, namely communication primitives, naming and 
protection, resource management, fault tolerance, and services. 

4.1. THE CAMBRIDGE DISTRIBUTED COMPUTING SYSTEM 
The Computing Laboratory at the University of Cambridge has been doing 
research in networks and distributed systems since the mid 1970s, first with the 
Cambridge ring and later with the Cambridge Distributed Computing System 
[NEEDHAM and HERBERT 1982). The Cambridge ring is not a token-passing 
ring, but rather contains several minipacket slots circulating around the ring. 
To send a packet, a machine waits until an empty slot passes by, then inserts a 
minipacket containing the source, destination, some flag bits, and 2 bytes of 
data. Although the 2-byte minipackets themselves are occasionally useful ( e.g., 
for acknowledgements), several block-oriented protocols have been developed 
for reliably exchanging 2K packets by accumulating 1024 minipackets. The 
nominal ring bandwidth is l O Mbps, but since each minipacket has 2 bytes of 
data and 3 bytes of overhead, the effective bandwidth is 4 Mbps. 

The Cambridge ring project was very successful, with copies of the ring 
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currently in operation at many universities and companies in the U .K. • and 
elsewhere. The availability of the ring led to research on distributed comput
ing systems initially using nine Computer Automation LSI4 minicomputers 
and later using about a dozen Motorola 68000s, under the direction of Roger 
Needham. 

The Cambridge system is primarily composed of two components: the pro
cessor bank and the servers. When a user logs in, he normally requests one 
machine from the processor bank, uses it as a personal computer for the entire 
work session, and returns it when logging out. Processors are not normally 
dynamically allocated for short periods of time. The servers are dedicated 
machines that provide various useful services, including file service, name ser
vice, boot service, etc. The number and location of these servers is relatively 
static. 

4.1.1. Communication Primitives 
Due to the evolution from network to distributed system described earlier, the 
communication primitives are usually described as network protocols rather 
than as language primitives. The choice of the primitives was closely tuned to 
the capabilities of the ring in order to optimize performance. Nearly all com
munication is built up from sending packets consisting of a 2-byte header, a 
2-byte process identifier, up to 2048 data bytes, and a 2-byte checksum. On 
top of this basic packet protocol are a simple remote procedure call protocol 
and a byte stream protocol. 

The basic packet protocol, which is a pure datagram system, is used by the 
single shot protocol to build up something similar to a remote procedure call. 
It consists of having the client send a packet to the server containing the 
request, and the having the server send a reply. Some machines are multipro
grammed, so the second minipacket (called 'route' above) is used to route the 
incoming packet to the correct process. The request packet itself contains a 
function code and the parameters, if any. The reply packet contains a status 
code and the result, if any. Clients do not acknowledge receipt of the result. 

Some applications, such as terminal handling and file transfer work better 
with a flow-controlled, virtual circuit protocol. The byte stream protocol is 
used for these applications. This protocol is a full-duplex connection-oriented 
protocol, with full flow control and error control. 

4.1.2. Naming and Protection 
Services can be located in the Cambridge system by using the name server. To 
look up a name, the client sends an ASCII string to the name server, which 
then looks it up in its tables and returns the machine number where the service 
is located, the port used to address it, and the protocol it expects. The name 
server stores service names as unstructured ASCII strings, which are simply 
matched against incoming requests character by character, that is, it does not 
manage hierarchical names. The name server itself has a fixed address that 
never changes, so this address may be embedded into programs. 

Although the service data base is relatively static, from time to time names 
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must be added or deleted to the name server's data base. Commands are pro
vided for this purpose, but for protection reasons these commands may only 
be executed by the system administrator. 

Finding the location of a service is only half the work. To use most services, 
a process must identify itself in an unforgeable way, so the service can check 
to see if that user is authorized. This identification is handled by the Active 
Name Server, which maintains a table of currently logged in users. Each table 
entry has four fields: the user's login name, his session key (a big random 
number), the user's class (e.g., faculty, student) and a control key, as shown in 
Figure 11. 

Login Session Class Control 
I 

MARVIN 91432 STUDENT 31513 i 
BARBARA 61300 STUDENT 27138 

ANDY 42108 FACULTY 31618 

SUZANNE 81346 DIRECTOR 41948 

FIGURE 11. The Active Name Table. 

To use a service, a user supplies the service with his login name, session key 
(obtained at login time), and class. The service can then ask the Active Name 
Server if such an entry exists. Since session keys are sparse, it is highly 
unlikely that a student will be able to guess the current session key for the 
computer center director, and thus be able to obtain services reserved for the 
director. The control key must be presented to change an entry, thus provid
ing a mechanism to restrict changing the Active Name Server's table to a few 
people. 

4.1.3. Resource Management 
The main resource managed by the system is the processor bank, handled by a 
service called the resource manager. Usually a user requests a processor to be 
allocated at login time, and then loads it with a single-user operating system. 
The processor then becomes the user's personal computer for the rest of the 
login session. 

The resource manager accepts requests to allocate a processor. In these 
requests, the user specifies a CPU type (e.g., 68000), a list of attributes (e.g. 
memory size), and a program to be run. The resource manager then selects the 
most suitable CPU currently available to allocate. Various defaults are avail
able, so, for example, a user can specify that he wants to run TRIPOS (a 
straightforward single-user operating system), and the resource manager will 
select an appropriate CPU type if none has been specified. 
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The downloading of programs into processor bank machines is controlled by 
a server called the ancilla, although some of the machines have intelligent ring 
interfaces that actually do most of the work. The ancilla also helps simulate 
the machine's console and front panel, so users have the same control over a 
processor bank machine as they would over a real personal computer on their 
desks. 

4.1.4. Fault Tolerance 
The approach taken to fault tolerance in the Cambridge system is to make it 
easy to bring servers back up after a crash. When a ring interface detects a 
special minipacket whose source is the name server, it reboots the processor by 
forcing it to jump to a program in ROM. This program then sends a request 
to the boot server, which in turn goes to the name server asking for reverse 
name lookup. The name server then searches its tables to find the service that 
is running on the machine from which the reverse lookup request came. As 
soon as the reply comes in, the server knows what it is supposed to be doing, 
and can request the resource manager and ancilla to download the appropriate 
program. When machines are physically reset or powered up, the same pro
cedure is carried out automatically. 

Another area in which some effort has been put to make the system fault 
tolerant is the file system, which supports atomic updates on special files. This 
facility is described in the next section. 

4.1. 5. Services 
We have already described several key servers, including the name server, 
resource manager, ancilla, and active name server. Other small servers 
include the time server, print server, login server, terminal server, and error 
server, which records system errors for maintenance purposes. The file server 
is examined here. 

The file system started out with the idea of a single universal file server that 
provided basic storage service but very primitive naming and protection sys
tem, coupled with single-user TR1POS operating systems in the processor bank 
machines, in which the naming and directory management would be done. 
The CAP computer (a large research machine within the Laboratory that does 
not ha ve any disks of its own) also uses the file server. After some experience 
with this model, it was decided to create a new server, known as the filing 
machine, as a front end to the file system to improve the performance (mostly 
by providing the filing machine with a large cache, something that the small 
user machines could not afford). The CAP machine, which has adequate 
memory, continues to use the file server directly. The position of the filing 
machine is shown in Figure 12. 

The universal file server supports one basic file type, with two minor varia
tions. The basic file type is an unstructured file consisting of a sequence of 
16-bit words, numbered from O to some maximum. Operations are provided 
for reading or writing arbitrary numbers of words, starting anywhere in the 



50 

I 
LJ 

nf--------t 

Processor 
bank 
machines 

Filing 
machine 

Block cache 
ASCII names 

File 
server 

Regular files 
Special files 
Index files 

FIGURE 12. The filing machine is positioned between the users and the file 
server. It maintains a block cache and handles ASCII names. 

file. Each file is uniquely identified by a 64-bit PUID (Permanent User 
IDentifier) consisting of a 32-bit disk address and a 32-bit random number. 

The first variation is the special file, which has the property that writes to it 
are atomic, that is, they will either succeed completely or not be done at all. 
They will never be partly completed, even in the face of server crashes. 

The second variation is a file called an index, which is a special file consist
ing of a sequence of slots, each holding one PUID. When a file is created, the 
process creating it must specify an index and slot in that index into which the 
new file's PUID is stored. Since indices are also files, and as such have PUIDs 
themselves, an index may contain pointers (PUIDs) to other indices, allowing 
arbitrary directory trees and graphs to be built. One index is distinguished as 
being the root index, which has the property that the file server's internal gar
bage collector will never remove a file reachable from the root index. 

In the initial implementation, the full code of the TRIPOS operating system 
was loaded into each pool processor. All of the directory management and 
handling of ASCII names was done on the processor bank machines. Unfor
tunately, this scheme had several problems. First, TRIPOS was rather large 
and filled up so much memory that little room was left for buffers, meaning 
that almost every read or write request actually caused a disk access (the 
universal file server has hardly any buffers). Second, looking up a name in the 
directory hierarchy required all the intermediate directories between the start
ing point and the file to be physically transported from the file server to a 
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machine doing the search. 
To get around these problems, a filing machine with a large cache was 

inserted in front of the file server. This improvement allowed programs to 
request files by name instead of PUID, with the name look up occurring in the 
filing machine now. Due to the large cache, most of the relevant directories 
are likely to already be present in the filing machine, thus eliminating much 
network traffic. Furthermore, it allowed the TRIPOS code in the user 
machines to be considerably stripped, since the directory management was no 
longer needed. It also allowed the file server to read and write in large blocks; 
this was previously possible, but rarely done due to lack of buff er space on the 
user side. The resulting improvements were substantial. 

4.1.6. Implementation 
As should be clear by now, the whole Cambridge system is a highly pragmatic 
design, which from its inception [WILKES and NEEDHAM 1980] was designed to 
actually be used by a substantial user community. About 90 machines are 
connected by three rings now, and the system is fairly stable. A related 
research project was the connection of a number of Cambridge rings via a 
satellite [ADAMS et al. 1982]. Future research may include interconnection of 
multiple Cambridge rings using very high speed (2 Mbit/sec) lines. 

4.2. AMOEBA 
Amoeba is a research project on distributed operating systems being carried 
out at the Vrije Universiteit in Amsterdam under the direction of Andrew 
Tanenbaum. Its goal is to investigate capability-based, object-oriented sys
tems, and to build a working prototype system to use and evaluate. It 
currently runs on a collection of 24 Motorola 68010 computers connected by a 
10 Mbps local network. 

The Amoeba architecture consists of four principal components, as shown in 
Figure 13. First are the workstations, one per user, on which users can carry 
out editing and other tasks that require fast interactive response. Second are 
the pool processors, a group of CPUs that can be dynamically allocated as 
needed, used, and then returned to the pool. For example, the "make" com
mand might need to do six compilations, so six processors could be taken out 
of the pool for the time necessary to do the compilation and then returned. 
Alternatively, with a five-pass compiler, 5 X 6 = 30 processors could be allo
cated for the six compilations, gaining even more speedup. 

Third are the specialized servers, such as directory, file, and block servers, 
data base servers, bank servers, boot servers, and various other servers with 
specialized functions. Fourth are the gateways, which are used to link Amoeba 
systems at different sites (and, eventually, different countries) into a single, 
uniform system. 

All the Amoeba machines run the same kernel, which primarily provides 
message-passing services and little else. The basic idea behind the kernel was 
to keep it small, not only to enhance its reliability, but also to allow as much 
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FIGURE 13. The Amoeba architecture. 
as possible of the operating system to run as user processes, providing for flexi
bility and experimentation. 

Some of the research issues addressed by the project are how to put as much 
of the operating system as possible into user processes, how to use the proces
sor pool, how to integrate the workstations and processor pool, and how to 
connect multiple Amoeba sites into a single coherent system using wide-area 
networks. All of these issues use objects and capabilities in a uniform way. 

4.2.1. Communication Primitives 
The conceptual model for Amoeba communication is the abstract data type or 
object model, in which clients perform operations on objects in a location 
independent manner. To implement this model, Amoeba uses a minimal 
remote procedure call model for communication between clients and servers. 
The basic client primitive is to send a message of up to about 32K bytes to a 
server and then block waiting for the result. Servers use GET REQUEST and 
PUTREPLY to get new work and send back the results, respectively. These 
primitives are not embedded in a language environment with automatic stub 
generation. They are implemented as small library routines that are used to 
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invoke the kernel directly from C programs. 
All the primitives are reliable in the sense that detection and retransmission 

of lost messages, acknowledgement processing, and message-to-packet and 
packet-to-message management are all done transparently by the kernel. Mes
sages are unbuffered. H a message arrives and no one is expecting it, the mes
sage is simply discarded. The sending kernel then times out and tries again. 
Users can specify how long the kernel should retransmit before giving up and 
reporting failure. The idea behind this strategy is that server processes are 
generally cloned in N-fold, so normally there will be a server waiting. Since a 
message is discarded only if the system is badly overloaded, having the client 
time out and try again later is not a bad idea. 

Although the basic message primitives are blocking, special provision is 
. made for handling emergency messages. For example, if a data base server is 
currently blocked waiting for a file server to get some data for it, and a user at 
a terminal hits the BREAK key (indicating that he wants to kill off the whole 
request}, some way is needed to gracefully abort all the processes working on 
behalf of that request. In the Amoeba system the terminal server generates 
and sends a special EXCEPTION message, which causes an interrupt at the 
receiving process. 

This message forces the receiver to stop working on the request and send an 
immediate reply with a status code of REQUEST ABORTED. H the receiver 
was also blocked waiting for a server, the exception is recursively propagated 
all the way down the line, forcing each server in turn to finish immediately. In 
this manner, all the nested processes terminate normally (with error status), so 
little violence is done to the nesting structure. In effect, an EXCEPTION mes
sage does not terminate execution. Instead, it just says "Force normal termi
nation immediately, even if you are not done yet, and return an error status." 

4.2.2. Naming and Protection 
All naming and protection issues in Amoeba are dealt with by a single, uni
form mechanism: sparse capabilities [TANENBAUM et al. 1986]. The system 
supports objects such as directories, files, disk blocks, processes, bank 
accounts, devices, etc., but not small objects such as integers. Each object is 
owned by some service and managed by the corresponding server processes. 

When an object is created, the process requesting its creation is given a 
capability for it. Using this capability, a process can carry out operations on 
the object, such as reading or writing the blocks of a file, starting or stopping a 
process etc. The number and type of operations applicable to an object are 
determined by the service that created the object; a bit map in the capability 
tells which of those the holder of the capability is permitted to use. Thus the 
whole of Amoeba is based on the conceptual model of abstract. data types 
managed by services, as mentioned above. Users view the Amoeba environ
ment as a collection of objects, named by capabilities, on which they can per
form operations. This is in contrast to systems where the user view is a collec
tion of processes connected by virtual circuits. 

Each object has a globally unique name, contained in its capabilities. 
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Capabilities are managed entirely by user processes; they are protected crypto
graphically, not by any kernel maintained tables or mechanisms. A capability 
has four fields as shown in Figure 14: 

I The service port: a sparse address corresponding to the service that owns the 
object, such as a file or directory service. 

2 The object number: an internal identifier that the service uses to tell which of 
its objects this is (cf. the i-number in UNIX). 

3 The rights field: a bit map telling which operations on the object are permit
ted. 

4 The check field: a large random number used to authenticate the capability. 

48 24 8 48 

Service port Object IRts I Random# 

FIGURE 14. An Amoeba capability. 

When a server is asked to create an object, it picks an available slot in its 
internal tables ( e.g., a free i-node, in UNIX terminology), puts the information 
about the new object there, and picks a new random number to be used 
exclusively to protect this new object. Each server is free to use any protection 
scheme it wants to, but the normal one is for it to build a capability contain
ing its port, the object number, the rights (initially all present), and a known 
constant. The two latter fields are then thoroughly mixed by encrypting them 
with the random number as key, which is then stored in the internal table. 

Later, when a process performs an operation on the object, a message con
taining the object's capability is sent to the server. The server uses the (plain
text) object number to find the relevant internal table entry and extract the ran
dom number, which is then used to decrypt the rights and check fields. If the 
decryption yields the correct known constant, the rights field is believed and 
the server can easily check if the requested operation is permitted. More 
details about protection of capabilities can be found in [MULLENDER and 
TANENBAUM 1986; MULLENDER and TANENBAUM 1984; TANENBAUM et al. 
1986]. 

Capabilities can be stored in directories managed by the directory service. 
A directory is effectively a set of (ASCII string, capability) pairs. The most 
common directory operation is for a user to present the directory server with a 
capability for a directory (itself an object) and an ASCII string and ask for the 
capability that corresponds to that string in the given directory. Other opera
tions are entering and deleting (ASCII string, capability) pairs. 
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This naming scheme is flexible in that a directory may contain capabilities 
for an arbitrary mixture of object types and locations, but it is also uniform in 
that every object is controlled by a capability. A directory entry may, of 
course, be for another directory, so it is simple to build up a hierarchical (e.g., 
UNIX-like) directory tree, or even more general naming graphs. Furthermore, 
a directory may also contain a capability for a directory managed by a 
different directory service. As long as all the directory services have the same 
interfaces with the user, one can distribute objects over directory services in an 
arbitrary way. 

4.2.3. Resource Management 
Resource management in Amoeba is performed in a distributed way, again 
using capabilities. Each Amoeba machine (pool processor, work station, etc.) 
runs a resource manager process that controls that machine. This process 
actually runs inside the kernel, for efficiet:)cy reasons, but it uses the normal 
abstract data type interface with its clients. The key operations it supports are 
CREATE SEGMENT, WRITE SEGMENT, READ SEGMENT, and MAKE 
PROCESS. To create a new process, a process would normally execute 
CREA TE SEGMENT three times for the child process' text, data, and stack 
segments, getting back one capability for each segment. Then it would fill 
each one in with that segment's initial data, and finally perform MAKE PRO
CESS with these capabilities as parameters, getting back a capability for the 
new process. 

Using the above primitives, it is easy to build a set of processes that share 
text and/ or data segments. This facility is useful for constructing servers that 
consist internally of multiple miniprocesses (tasks) that share text and data. 
Each of these processes has its own stack, and most importantly, its own pro
gram counter, so that when one of them blocks on a remote procedure call, the 
others are not affected. For example, the file server might consist of 10 
processes sharing a disk cache, all of which start out by doing a 
GET REQUEST. When a message comes in, the kernel sees that 10 processes 
are a1i listening to the port specified in the message, so it picks one process at 
random and gives it the message. This process then performs the requested 
operation, possibly blocking on remote procedure calls ( e.g., calling the disk) 
while doing so, but leaving the other server processes free to accept and handle 
new requests. 

At a higher level, the processor pool is managed by a process server that 
keeps track of which ones are free and which ones are not. If an installation 
wants to multiprogram the processor pool machines, then the process server 
manages each process table slot on a pool processor as a virtual processor. 
One of the interesting research issues here is the interplay between the works
tations and the processor pool, that is, when should a process be started up on 
the workstation and when should it be offloaded to a pool processor. Research 
has not yet yielded any definitive answers here, although it seems intuitively 
clear that highly interactive processes, such as screen editors, should be local to 
the workstation, and batch-like jobs, such as big compilations ( e.g., UNIX 
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"make"), should be run elsewhere. 

Accounting. Amoeba provides a general mechanism for resource management 
and accounting in the form of the bank server, which manages "bank account" 
objects. Bank accounts hold virtual money, possibly in multiple currencies. 
The principal operation on bank account objects is transferring virtual money 
between accounts. For example, to pay for file storage, a file server might 
insist on payment in advance of X dollars per megabyte of storage, and a pho
totypesetter server might want a payment in advance of Y yen per page. The 
system management can decide whether or not dollars and zlotys are converti
ble, depending on whether or not it wants users to have separate quotas on 
disk space and typesetter pages, or just give each user a single budget to use as 
he sees fit. 

The bank server provides a basic mechanism on top of which many interest
ing policies can be implemented. For example, if some resource is in short 
supply, are servers allowed to raise the price as a rationing mechanism? Do 
you get your money back when you release disk space; that is, is the model 
one of clients and servers buying and selling blocks, or is it like renting some
thing? li it is like renting, there will be a flow of money from users to the 
various servers, so users need incomes to keep them going, rather than simply 
initial fixed budgets. When new users are added, virtual money has to be 
created for them. Does this lead to inflation? The possibilities here are legion. 

4.2.4. Fault Tolerance 
The basic idea behind fault tolerance in Amoeba is that machine crashes are 
infrequent, and that most users are not willing to pay a penalty in performance 
in order to make all crashes 100% transparent. Instead, Amoeba provides a 
boot service, with which servers can register. The boot service polls each 
registered server at agreed upon intervals. li the server does not reply properly 
within a specified time, the boot service declares the server to be broken, and 
requests the process server to start up a new copy of the server on one of the 
pool processors. 

To understand how this strategy affects clients, it is important to realize that 
Amoeba does not have any notion of a virtual circuit or a session. Each 
remote procedure call is completely self-contained and does not depend on any 
previous set up, that is, it does not depend on any volatile information stored 
in server's memories. li a server crashes before sending a reply, the kernel on 
the client side will time out and try again. When the new server comes up, the 
client's kernel will discover this and send the request there, without the client 
even knowing anything has happened. Of course, this approach does not 
always work, for example, if the request is not idempotent ( the chocolate fac
tory!) or if a sick disk head has just mechanically scraped all the bits from 
some disk surface, but it works much of the time and has zero overhead under 
normal conditions. 
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4.2.5. Services 
Amoeba has several kinds of block, file and directory service. The simplest 
one is a server running on top of the Amoeba kernel that provides a file ser
vice functionally equivalent to the UNIX system call interface, to allow most 
UNIX programs to run on Amoeba with only the need to re-link them with a 
special library. 

A more interesting server, however, is FUSS (Free University Storage Sys
tem) which views each file as a sequence of versions. A process can acquire a 
capability for a private copy of a new version, modify it, and then commit it in 
a single indivisible atomic action. Providing atomic commits at the file level 
(rather than only as a facility in some data base systems), simplifies the con
struction of various servers, such as the bank server, that have to be highly 
robust. FUSS also supports multiple, simultaneous access using optimistic 
concurrency control. It is described in more detail in MULLENDER and 
TANENBAUM (1985]. 

Other key services are the directory service, bank service, and boot service, 
all of which have already been discussed. 

4.2.6. Implementation 
The Amoeba kernel has been ported to five different CPUs: 68010, NS32016, 
8088, VAX, and PDP-11. version. All the servers described above, except the 
boot server, have been written and tested, along with a number of others. 
Measurements have shown that a remote procedure call from user space on 
one 68010 to user space on a different 68010 takes just over 8 msec (plus the 
time to actually carry out the service requested). The data rate between user 
processes on different machines has been clocked at over 250,000 bytes/ sec, 
which is about 20% of the raw network bandwidth, an exceptionally high 
value. 

A library has been written to allow UNIX programs to run on Amoeba. A 
substantial number of utilities, including compilers, editors, and shells are 
operational. A server has also been implemented on UNIX to allow Amoeba 
programs to put capabilities for UNIX files into their directories and use them 
without having to know that the files are actually located on a VAX running 
UNIX. 

In addition to the UNIX emulation work, various applications have been 
implemented using pure Amoeba, including parallel traveling salesman and 
parallel alpha-beta search [BAL et al. 1985]. Current research includes connect
ing Amoeba systems at five locations in three countries using wide-area net
works. 

4.3. THE V KERNEL 

The V kernel is a research project on distributed systems at Stanford Univer
sity under the direction of David Cheriton [CHERITON 1984; CHERITON and 
ZWAENEPOEL 1984a; CHERITON and ZWAENEPOEL 1984b; CHERITON and 
MANN 1984]. It was motivated by the increasing availability of powerful 
microcomputer-based workstations, which can be seen as an alternative to 
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traditional time-shared minicomputers. The V kernel is an outgrowth of the 
experience acquired with earlier systems, Thoth [CHERITON 1982; CHERITON et 
al. 1979] and VEREX. 

The V kernel can be thought of as a software backplane, analogous to the 
Multibus or S-100 bus backplanes. The function of a backplane is to provide 
an infrastructure for components (for hardware, boards; for software 
processes) to communicate, and nothing else. Consequently, most of the facili
ties found in traditional operating systems, such as a file system, resource 
management, and protection are provided in V by servers outside the kernel. 
In this respect V and Amoeba are conceptually very similar. 

Another point on which V and Amoeba agree is the free market model of 
services. Services such as the file system are, in principle, just ordinary user 
processes. Any user who is dissatisfied with the standard file system [STONE
BRAKER, 1981; TANENBAUM and MULLENDER 1982] is free to write his own. 
This view is in contrast to the "centrally planned economy" model of most 
timesharing systems, which present the file system on a "like it or lump it" 
basis. 

The V system consists of a collection of workstations (currently SUNs) each 
running an identical copy of the V kernel. The kernel consists of three com
ponents: the interprocess communication handler, the kernel server (for pro
viding basic services, such as memory management), and the device server (for 
providing uniform access to I/O devices). Some of the workstations support 
an interactive user, whereas others function as file servers, print servers, and 
other kinds of servers, as shown in Figure 15. Unlike Amoeba, V does not 
have a processor pool. 

Work- Work- Work-
station station station 

Network I I I 
I I I I 

File File Print Gateway 
server server server server 

FIGURE 15. A typical V configuration. 
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4.3.1. Communication Primitives 
The V communication primitives have been designed in accordance with the 
backplane model mentioned above. They provide basic, but fast communica
tion. To access a server, a client does SEND(message, pid), which transmits 
the fixed-length (32-byte) 'message' to the server, and then blocks until the 
server has sent back a reply, which overwrites 'message.' The second parame
ter, 'pid,' is a 32-bit integer that uniquely identifies the destination process. A 
message may contain a kind of pseudo-pointer to one of the client's memory 
segments. This pseudo-pointer can be used to permit the server to read from 
or write to the client's memory. Such reads and writes are handled by kernel 
primitives COPYFROM and COPYTO. As an optimization, when a client 
does a SEND containing one of these pseudo-pointers with READ permission, 
the first IK of the segment is piggybacked onto the message, on the assump
tion that the server will probably want to read it eventually. In this way, mes
sages longer than 32 bytes can be achieved. 

Servers use the RECEIVE and REPLY calls. The RECEIVE call ca.it pro
vide a segment buffer in addition to the regular message buff er, so that if (part 
of) a segment was piggybacked onto the message, it will have a place to go. 
The REPLY call can a1so provide a segment buffer, for the case that the client 
provided a pseudo-pointer that the server could use to return results exceeding 
32 bytes. 

To make this communication system easier to use, calls to servers can be 
embedded in stubs so the caller just sees an ordinary procedure call. Stub gen
eration is not automated, however. 

4.3.2. Naming and Protection 
V has three levels of naming. At the bottom level, each process has a unique 
32-bit pid, which is the address used to send messages to it. At the next level, 
services (i.e, processes that carry out requests for clients) can have symbolic 
(ASCII string) names in addition to their pids. A service can register a sym
bolic name with its kernel so that clients can use the symbolic name instead of 
the pid. When a client wants to access a service by its name, the client's ker
nel broadcasts a query to all the other kernels, to see where the server is. The 
(ServerName, pid) pair is then put in a cache for future use. 

The top level of naming makes it possible to assign symbolic names to 
objects, such as files. Symbolic names are always interpreted in some "con
text," analogous to looking up a file name in some directory in other systems. 
A context is a set of records, each including the symbolic name, server's pid, 
context number and object identifier. Each server manages its own contexts; 
there is no centralized ''name server.'' A symbolic name is looked up in a con
text by searching all the records in that context for one whose name matches 
the given name. When a match is found, the context number and object 
identifier can be sent to the appropriate server to have some operation carried 
out. 

Names may be hierarchical, as in a/b/c. When "a" is looked up in some 
context, the result will probably be a new context, possibly managed by a new 



60 

server on a different machine. In that case the remaining string; "b/ c" is 
passed on to that new server for further lookup, and so on. 

It is also possible to prefix a symbolic name with an explicit context, as in 
"[HomeDirectory] a/b/c", in which case the name is looked up in the context 
specified, rather than in the current context (analogous to the current working 
directory in other systems). A question that quickly arises is, "Who keeps 
track of the various context names, such as "HomeDirectory" above?" The 
answer is that each workstation in the system has a Context Prefix Server, 
whose function is to map context names onto server names, so that the 
appropriate server can be found to interpret the name itself. 

4.3.3. Resource Management 
Each processor in V has a dedicated function, either as a user workstation or a 
file, print, or other dedicated server, so no form of dynamic processor alloca
tion is provided. The key resources to be managed are processes, memory, and 
the I/0 devices. Process and memory management is provided by the kernel 
server. I/0 management is provided by the device server. Both of these are 
part of the kernel present on each machine, and are accessed via the standard 
message mechanism described above. They are special only in that they run in 
kernel mode and can get at the raw hardware. 

Processes are organized into groups called teams. A team of processes share 
a common address space, and therefore must all run on the same processor. 
Application programs can make use of concurrency by running as a team of 
processes, each of which does part of the kernel. If one process in a team is 
blocked waiting for a reply to a message, the other ones are free to run. The 
kernel server is prepared to carry out operations such as creating new 
processes and teams, destroying processes and teams, reading and writing 
processes' states, and mapping processes onto memory. 

All I/0 in Vis done using a uniform interface called the V 1/0 protocol. 
The protocol allows processes to read and write specific blocks on the device. 
This block orientation was chosen to provide idempotency. Terminal drivers 
must store the last block read and filter out duplicate requests in order to 
maintain the idempotency property. Implementation of byte streams is up to 
the users. The 1/0 protocol has proven general enough to handle disks, 
printers, terminals, and even a mouse. 

4.3.4. Fault Tolerance 
Since it was designed primarily for use in an interactive environment, V pro
vides little in the way of fault tolerance. If something goes wrong, the user 
just does it again. However, V does address exception handling. Whenever a 
process causes an exceptional condition to occur, such as stack overflow or 
referencing nonexistent memory, the kernel detecting the error sends a spe
cially formatted message to the exception server, which is outside the kernel. 
The exception server can then invoke a debugger to take over. This scheme 
does not require a process to make any advance preparation for being 
debugged, and in principle, can allow the process to continue execution 
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afterwards. 

4.3.5. Services 
Since most of the V workstations do not have a disk, the central file server 
plays a key role in the system. The file server is not part of the operating sys
tem. Instead, it is just an ordinary user program running on top of the V ker
nel. Internally it is structured as a team of processes. The main process han
dles directory operations, including opening files; subsidiary processes perform 
the actual read and write commands, so that when one of them blocks waiting 
for a disk block, the others can continue operation. The members of file server 
team share a common buff er cache, used to keep heavily used blocks in main 
memory. 

The file system is a traditional hierarchical system, similar to that of Thoth 
[CHERITON 1982]. Each file has a file descriptor, similar to an i-node in 
UNIX, except that the file descriptors are gathered into an ordinary file which 
can grow as needed. 

Extensive measurements have been made of the performance of the file 
server. As an indication, it takes 7.8 millisec to read a IK block from the file 
server when the block is in the cache. This time includes the communication 
and network overhead. When the block must be fetched from the disk, the 
time is increased to 35.5 millisec. Given that the access time of the small Win
chester disks used on personal computers is rarely better than 40 millsec, it is 
clear that the V implementation of diskless workstations with a fast (18 mil
lisec) central file server is definitely competitive. 

Other V servers include the print server, gateway server, and time server. 
Other servers are in the process of being developed. 

4.3.6. Implementation 
The V kernel has been up and running at Stanford since Sept. 1982. It runs 
on SUN Microsystems 68000-based workstations, connected by 3 Mbit/ sec 
and 10 Mbit/sec Ethernets. The kernel is used as a base for a variety of pro
jects at Stanford, including the research project on distributed operating sys
tems. A great deal of attention has been paid to tuning the system to make it 
fast. 

4.4. THE EDEN PROJECT 

The goal of the Eden system [Af.MES et al. 1985; BLACK 1985; BLACK 1983; 
JESSOP et al. 1982; LAZOWSKA et al. 1981], which is being developed at the 
University of Washington in Seattle under the direction of Guy Almes, 
Andrew Black, Ed Lazowska, and Jerre Noe, is to investigate logically 
integrated but physically distributed operating systems. The idea is to con
struct a system based on the principle of one user, one workstation (no proces
sor pool), but with a high degree of systemwide integration. Eden is object 
oriented, with all objects accessed by capabilities, which are protected by the 
Eden kernel. Eden objects, in contrast to, say, Amoeba objects, contain not 
only passive data, but also one or more processes that carry out the operations 
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defined for the object. Objects are general: applications programmers can 
determine what operations their objects will provide. Objects are also mobile, 
but at any instant each object (and all the processes it contains) resides on a 
single workstation. 

Much more than most research projects of this kind, Eden was designed top 
down. In fact, the underlying hardware and language was radically changed 
twice during the project, without causing too much redesign. This would· have 
been much more difficult in a bottom-up, hardware-driven approach. 

4.4.1. Communications Primitives 
Communication in Eden uses "invocation," a form of remote procedure call. 
Programs are normally written in EPL, the Eden Programming Language, 
which is based on Concurrent Euclid. (The EPL translator is actually a 
preprocessor for Concurrent Euclid). To pedorm an operation on an object, 
say, Lookup on a directory object, the EPL programmer just calls Lookup, 
specifying a capability for the directory to be searched, the string to be 
searched for, and some other parameters. 

The EPL compiler translates the call to Lookup to a call to a stub routine 
linked together with the calling procedure. This stub routine assembles the 
parameters and packs them in a standard form called ESCH (Eden Standard 
Code for Information Interchange), and then calls a lower level routine to 
transmit the function code and packed parameters to the destination machine. 

When the message arrives at the destination machine, a stub routine there 
unpacks the ESCH message and makes a local call on Lookup using the nor
mal EPL calling sequence. The reply proceeds analogously in the opposite 
direction. The stub routines on both sides are automatically generated by the 
EPL compiler. 

The implementation of invocation is slightly complicated by the fact that an 
object may contain multiple processes. When one process blocks waiting for a 
reply, the other ones must not be affected. This problem is handled by split
ting the invocation into two layers. The upper layer builds the message, 
including the capability for the object to be invoked and the ESCH parame
ters, passes it to the lower layer, and blocks the calling process until the reply 
arrives. The lower layer then makes a nonblocking call to the kernel to actu
ally send the message. If other processes are active within the object they can 
now be run; if none are active, the object waits until a message arrives. 

On the receiving side, a process within the invoked object will normally have 
previously executed a call announcing its willingness to pedorm some opera
tion (e.g., Lookup in the above example) thereby blocking itself. When the 
Lookup message comes in, it is accepted by a special dispatcher process that 
checks to see which process, if any, is blocked waiting to perform the opera
tion requested by the message. If a willing process is found, it runs and sends 
a reply, unblocking the caller. If no such process can be found, the message is 
queued until one becomes available. 
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4.4.2. Naming and Protection 
Naming and protection in Eden is accomplished using the capability system. 
Data are encapsulated within objects, and are only accessible by invoking one 
of the operations defined by the object. To invoke an object, a process must 
have a valid capability. Thus there is a uniform naming and protection 
scheme throughout Eden. 

Capabilities may be stored in any object. Directories provide a convenient 
mechanism for grouping capabilities together. Each directory entry contains 
the ASCII string by which the capability is accessed and the capability itself. 
Clients can only access the contents of a directory by invoking the directory 
object with one of the valid operations, which include: add entry, delete entry, 
lookup string, and rename capability. Capabilities are protected from forgery 
by the kernel, but users keep copies of capabilities for their own use; the ker
nel verifies them when they are used. 

The basic protection scheme protects objects, using capabilities. Since all 
processes are embedded in objects, a process can be protected by restricting 
the distribution of capabilities to its object. The only way to obtain service 
from an object is by invoking the object with the proper capability, parame
ters,. etc., all of which are checked by the kernel and EPL run-time system 
before the call is made. 

4.4.3. Resource Management 
Because no version of Eden runs on bare machines, most of the issues associ
ated with low-level resource management have not yet been dealt with. 
Nevertheless, some resource management issues have been addressed. For 
example, when an object is created, the issue arises of where to put it. At 
present, it is just put on the same workstation as the object that created it 
unless an explicit request has been given to put it somewhere else. 

Another issue that has received considerable attention is how to achieve con
currency within an object. From the beginning of the project it was con
sidered desirable to allow multiple processes to be simultaneously active within 
an object. These processes all share a common address space, although each 
one has its own stack for local variables, procedure call/return information etc. 
Having multiple active processes within an object, coupled with the basic Eden 
semantics of remote invocations that block the caller but not the whole object, 
makes the implementation somewhat complicated. It is necessary to allow one 
process to block waiting for a reply without blocking the object as a whole. 
Monitors are used for synchronization. This multiprogramming of processes 
within an object is handled by a runtime system within that object, rather than 
by the kernel itself (as is done in Amoeba, and also in V). The experiences of 
Eden, Amoeba and V all seem to indicate that having cheap, "lightweight" 
processes that share a common address space is often useful [BLACK 1985]. 

Management of dynamic storage for objects has also been a subject of some 
work. Each object has a heap for its own internal use, for which the EPL 
compiler generates explicit allocate and deallocate commands. However, a 
different storage management scheme is used for objects themselves. When a 
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kernel creates an object, it allocates storage for the object from its own heap 
and gives the object its own address space. It also manages the user capabili
ties for the object in such a way that it is possible to systematically find all 
capabilities by scanning the kernel's data structures. 

The system is periodically shut down and a garbage collector is started up to 
locate all objects for which no capability is outstanding. These objects are 
then discarded. 

4.4.4. Fault Tolerance 
The Eden kernel does not support atomic actions directly, although some ser
vices provide them to their clients. Invocations can fail with status CANNOT 
LOCATE OBJECT when the machine on which the invoked object resides 
crashes. On the other hand, Eden goes to a considerable length to make sure 
that objects are not totally destroyed by crashes. The technique used to 
accomplish this goal is to have objects checkpoint themselves periodically. 
Once an object has written a copy of its state to disk, a subsequent crash 
merely has the effect of resetting the object to the state it had at the most 
recent checkpoint. Checkpoints themselves are atomic, and this property can 
be used to build up more complex atomic actions. 

By judicious timing of its checkpoints, an object can achieve a high degree 
of reliability. For example, within the user mail system, a mailbox object will 
checkpoint itself just after any letter is received or removed. Upon receipt of a 
letter, a mailbox can wait for confirmation of the checkpoint before sending an 
acknowledgement back to the sender, to ensure that letters are never lost due 
to crashes. One drawback of the whole checkpoint mechanism is that it is 
expensive: any change to an object's state, no matter how small, requires writ
ing the entire object to the disk. The Eden designers acknowledge this as a 
problem. 

Another feature of Eden that supports fault tolerance is the ability of the file 
system, when asked, to store an object as multiple copies on different machines 
(see below). 

4.4.5. Services 
The Eden file system maintains arbitrary objects. One particular object type, 
the BYTESTORE, implements linear files, as in UNIX. It is possible to set 
the "current position" anywhere in the file, and then read sequentially from 
that point. Unlike V and Amoeba, Eden does not have special machines dedi
cated as servers. Instead, each workstation can support file objects, either for 
the benefit of the local user or remote ones. 

The model used for file service in Eden is quite different from the usual 
model of a file server, which manages some set of files and accepts requests 
from clients to perform operations on them. In Eden, each file (i.e., BYTE
STORE object) contains within it the processes needed to handle operations 
on it. Thus, the file contains the server rather than the server containing the 
file as in most other systems. 
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Of course, actually having a process running for each file in existence would 
be unbearably expensive, so an optimization is used in the implementation. 
When a file is not open, its processes are dormant and consume no resources 
(other than the disk space for its checkpoint). Mailboxes, directories, and all 
other Eden objects work the same way. When an object is not busy with an 
invocation, the processes inside of it are put to sleep by checkpointing the 
whole object to the disk. 

When a file is opened, a copy of the code for its internal processes is found, 
and the processes started up. Although all files on a given workstation share 
the same code, when the first file is opened on a workstation, the code may 
have to be fetched from another workstation. 

The approach has advantages and disadvantages compared to the traditional 
one-file-server-for-all-files way of doing things. There are two main advan
tages. First, The complicated, multi-threaded file server code is eliminated: 
there is no file server. The processes within a BYTESTORE object are dedi
cated to a single file. Second, files can be migrated freely about all the nodes 
in the system, so that, for example, a file might be created locally, and then 
moved to a remote node where it will later be used. 

The chief disadvantage is performance. All the processes needed for the 
open files consume resources, and fetching the code for the first file to be 
opened on a workstation is slow. 

The Eden File System supports nested transactions [Pu and NOE 1985]. 
When an atomic update on a set of files ( or other objects) is to be carried out, 
the manager for that transaction first makes sure that all the new versions are 
safely stored on disk, then it checkpoints itself, and finally it updates the direc
tory. 

The transaction facility can be used to support replicated files [Pu et al. 
1986]. In the simplest case, a directory object maps an ASCII name onto the 
capability for that object. However, the system also has "repdirs," objects that 
map ASCII names onto sets of capabilities, for example, all the copies of a 
replicated file. Updating a replicated file is handled by a transaction manager, 
which uses a two-phase commit algorithm to update all the copies simultane
ously. If one of the copies is not available for updating (e.g., its machine is 
down or the network is partitioned), a new copy of the file is generated, and 
the capability for the unreachable copy discarded. Sooner or later, the garbage 
collector will notice that the old copy is no longer in use and remove it. 

We touched briefly on the mail server above. The mail system defines mes
sage, mailbox and address list objects, with operations to deliver mail, read 
mail, reply to mail, and so on. 

The appointment calendar system is another example of an Eden applica
tion. It is used to schedule meetings, and runs in two phases. When someone 
proposes a meeting, a transaction is first done to mark the proposed time as 
"tentatively occupied" on all the participants' calendars. When a participant 
notices the proposed date, he or she can then approve or reject it. If all parti
cipants approve the meeting, it is "committed" by another transaction; if 
someone rejects the proposed appointment, the other participants are notified. 
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4.4.6. Implementation 
Eden has had a somewhat tortuous implementation history. The initial version 
was designed to be written in Ada* on the Intel 432, a highly complex mul
tiprocessor, fault-tolerant microprocessor chip ensemble. To make a long story 
short, neither the Ada compiler nor the 432 lived up the the project's expecta
tions. To gather information for further design, a "throwaway" implementa
tion was made on top of VMS on a VAX. 

The VAX/VMS version, called Newark (because that was thought to be far 
from Eden), was written in Pascal and was not distributed (i.e., it ran on a sin
gle VA X). It supported multiple processes per object (VMS kernel processes), 
but did not have automatic stub generation. Furthermore, the whole imple
mentation was rather cumbersome, so it was then decided to design a pro
gramming language which would provide automatic stub generation, better 
type checking, and a more convenient way of dealing with concurrency. 

This re-evaluation led to EPL and a new implementation on top of UNIX 
instead of VMS. Subsequently, Eden was ported to 68000-based workstations 
(SUN s ), also on top of UNIX, rather than on the bare hardware ( and in con
trast to the Cambridge system, V, and Amoeba, all of which run on bare 
68000s ). The decision to put UNIX on the bottom, instead of the top ( as was 
done with Amoeba) made system development easier and assisted users in 
migrating from UNIX to Eden. The price that has been paid is poor perfor
mance, and a fair amount of effort spent trying to convince UNIX to do 
things against its will. 

4.5. CoMPARISON OF THE CAMBRIDGE, AMOEBA, V, AND EDEN SYSTEMS 

Our four example systems have many aspects in common, but also differ in 
some significant ways. In this section we will summarize and compare the four 
systems with respect to the main design issues we have been looking at. 

4.5.1. Communication Primitives 
All four systems use an RPC-like mechanism (as opposed to an ISO OSI 
communication-oriented mechanism). 

The Cambridge mechanism is the simplest, using the single shot protocol 
with a 2K request packet and a 2K reply packet for most client-server com
munication. A byte stream protocol is also available. 

Amoeba uses a similar REQUEST-REPLY mechanism, but allows messages 
up to 32K bytes (with the kernel handling message fragmentation and reassem
bly), as well as acknowledgements and timeouts, thus providing user programs 
with a more reliable and simpler interface. 

V also uses a REQUEST-REPLY mechanism, but messages longer than an 
Ethernet packet are dealt with by having the sender include a sort of "capabil
ity" for a message segment in the REQUEST packet. Using this "capability," 
the receiver can fetch the rest of the message, as needed. For efficiency, the 

* Ada is a Trademark of the U.S. Dept. of Defense 
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first lK is piggybacked onto the REQUEST itself. 
Eden comes closest to a true RPC mechanism, including having a language 

and compi ler with automatic stub generation and a minilanguage for parame
ter passing. None of the four examples attempts to guarantee that remote calls 
will be executed exactly once. 

4.5.2. Naming and Protection 
All four systems use different schemes for naming and protection. In the 
Cambridge system, a single name server process maps symbolic service names 
onto (node, process identifier) pairs so the client will know where to send the 
request. Protection is done by the active name table, which keeps track of the 
authorization status of each logged in user. 

Amoeba has a single mechanism for all naming and protection-sparse 
capabilities. Each capability contains bits specifying which operations on the 
object are allowed and which are not. The rights are protected cryptographi
cally, so user programs can manipulate them directly; they are not stored in 
the kernel. ASCII string to capability mapping and capability storage are han
dled by directory servers for convenience. 

Eden also uses capabilities, but these · are not protected by sparseness or 
encryption, so they must be protected by the kernel. A consequence of this 
decision is that all the kernels must be trustworthy. The Amoeba crypto
graphic protection scheme is less restrictive on this point. 

V has naming at three levels: processes have pids, kernels have ASCII to pid 
mappings, 8lld servers use a context mechanism to relate symbolic names to a 
given context. 

4.5.3. Resow-ce Management 
Resource management is al.so handled quite differently on all four systems. In 
the Cambridge system, the main resource is the processor bank. A resource 
manager is provided to allocate machines to users. Generally, this allocation is 
fairly static-upon log in a user is allocated one machine for the duration of 
the login session, and this is the only machine the user uses during the session. 
He may load any operating system he chooses in this machine. 

Amoeba also has a pool of processors, but these are allocated dynamically. 
A user running "make'' might be allocated 10 processors to compile 10 files; 
afterwards, all the processors would go back into the pool. Amoeba also pro
vides a way for processes to create segments on any machine ( assuming the 
proper capability can be shown) and for these segments to be forged into 
processes. Amoeba is unique among the four systems in that it has a bank 
server that can allow servers to charge for services and to limit resource usage 
by accounting for it. 

In V, each processor is dedicated as either a workstation or a server, so pro
cessors are not resources to be dynamically allocated. Each V kernel manages 
its own local resources; there is no system-wide resource management. 

Eden has been built on top of existing operating systems, so most of the 
issues of resource management are done by the underlying operating system. 
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The main issue remaining for Eden is allocating and deallocating storage for 
objects. 

4.5.4. Fault Tolerance 
None of the four systems go to great lengths to make themselves fault tolerant, 
for example, none support atomic actions as a basic primitive. All four (with 
the possible exception of Eden) were designed with the intention of actually 
being used, so that the inherent tradeoff between performance and fault toler
ance tended to get resolved in favor of performance. 

In the Cambridge system, the only concession to fault tolerance is a feature 
in the ring interface to allow a machine to be remotely reset by sending a spe
cial packet to the interface. There is also a small server that helps get the 
servers started up. 

Amoeba provides some fault tolerance through its boot server, with which 
processes can register. The boot server pools the registered processes periodi
cally, and finding one that fails to respond, requests a new processor and 
downloads the failed program to it. This strategy does not retrieve the 
processes that were killed when a machine went down, but it does automati
cally ensure than no key service is ever down for more than, say, 30 seconds. 

V does not address the problem of fault tolerance at all. 
Of the four systems, Eden makes the most effort to provide a higher degree 

of reliability than provided by the bare hardware. The main tool used is 
checkpointing complete objects from time to time. If a processor crashes, each 
of its objects can be restored to the state it had at the time of the last check
point. Unfortunately, only entire objects can be checkpointed, making check
pointing a slow operation, thus discouraging its frequent use. 

4.5.5. Services 
The file systems used by Cambridge, Amoeba, V, and Eden are all quite 
different. The Cambridge system has two servers, the universal file server, and 
the filing machine, which was added later to improve the performance by pro
viding a large buff er cache. The universal file server supports a primitive flat 
file, with no directory structure, this being provided by the filing machine or 
the user machines. The universal file server has regular and special files, the 
latter of which can be updated atomically. 

Amoeba has several file systems. One of them is compatible with UNIX, to 
allow UNIX applications to run on Amoeba. Another one, FUSS, supports 
multiversion, multiserver, tree structured, immutable files with atomic commit. 
Directory servers map ASCII names to capabilities, thus allowing an arbitrary 
graph of files and directories to be constructed. 

V has a traditional file server similar to UNIX. It is based on the earlier 
Thoth system. 

Eden has no file server at all in the usual sense. Instead, each file object has 
embedded in it a process that acts like a private file server for that one file. 
Like Amoeba, Eden has separate directory servers that map ASCII strings 
onto capabilities, and provides the ability to map one string onto several files, 
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thus providing for file replication. All four systems have a heterogeneous 
variety of other services ( e.g., print, mail, bank). 

5.SUMMARY 
Distributed operating systems are still in an early phase of development, with 
many unanswered questions, and relatively little agreement among workers in 
the field about how things should be done. Many experimental systems use 
the client-server model with some form of remote procedure call as the com
munication base, but there are also systems built on the connection model. 
Relatively little has been done on distributed naming, protection, and resource 
management, other than building straightforward name servers and process 
servers. Fault tolerance is an up and coming area, with work progressing in 
redundancy techniques and atomic actions. Finally, a considerable amount of 
work has gone into the construction of file servers, print servers, and various 
other servers, but here too there is much work to be done. The only conclu
sion we draw is that distributed operating systems will be an interesting and 
fruitful area of research for a number of years to come. 
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Fifth generation computers must be fast, reliable, and flexible. One way to 
achieve these goals is to build them out of a small number of basic modules 
that can be assembled together to realize machines of various sizes. The use of 
multiple modules can make the machines not only fast, but also achieve a sub
stantial amount of fault tolerance. The system architecture and software for 
such machines are described below. 
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1.1. System architecture 
The price of processors and memory is decreasing at an incredible rate. Extra
polating from the current trend, it is likely that a single board containing a 
powerful CPU, a substantial fraction of a megabyte of memory, and a fast net
work interface will be available for a manufacturing cost of less than 100 in 
1990. Our intention is therefore to do research on the architecture and 
software of machines built up of a large number of such modules. 

In particular, we envision three classes of machines: (1) personal computers 
consisting of a high~quality bit-map display and a few processor-memory 
modules; (2) departmental machines consisting of hundreds of such modules; 
and (3) large mainframes consisting of thousands of them. The primary 
difference between these machines is the number of modules, rather than the 
type of the modules. In principle, any of these machines can be gracefully 
increased in size to improve performance by adding new modules or decreased 
in size to allow removal and repair of defective modules. The software run
ning on the various machines should be in essence identical. Furthermore, it 
should be possible to connect different machines together to form even larger 
machines and to partition existing machines into disjoint pieces when neces
sary, all in a way transparent to the user level software. 

This model is superior to the oft-proposed "Personal Computer Model" (as 
exemplified by XEROX PARC), in a number of ways. In the personal computer 
model, each user has a dedicated minicomputer, complete with disks, in his 
office or at home. Unfortunately, when people work together on large projects, 
having numerous local file systems can lead to multiple, inconsistent copies of 
many programs. Also, the noise generated by disks in every office, and the 
maintenance problems generated by having machines spread all over many 
buildings can be annoying. 

Furthermore, computer usage is very bursty: most of the time the user does 
not need any computing power, but once in a while he may need a very large 
amount of computing power for a short time ( e.g., when recompiling a pro
gram consisting of 100 files after changing a basic shared declaration). The 
fifth generation computer we propose is especially well suited to bursty compu
tation. When a user has a heavy computation to do, an appropriate number 
of processor-memory modules are temporarily assigned to him. When the 
computation is completed, they are returned to the idle pool for use by other 
users. This contrasts with the Cambridge Distributed Operating System 
[Needham82], which also has a "processor bank," but assigns a processor to a 
user for the duration of a login session. 

1.2. System software 
A machine of the type described above requires radically different system 
software than existing machines. Not only must the operating system 
effectively use and manage a very large number of processors, but the com
munication and protection aspects are very different from those of existing sys
tems. 

Traditional networks and distributed systems are based on the concept of 
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two processes or processors communicating via connections. The connections 
are typically managed by a hierarchy of complex protocols, usually leading to 
complex software and extreme inefficiency. (An effective transfer rate of 0.1 
megabit/sec over a 10 megabit/sec local network, which is only 1 % utili7.ation, 
is frequently barely achievable.) 

We reject this traditional approach of viewing a distributed system as a col
lection of discrete processes communicating via multilayer ( e.g., ISO) protocols, 
not only because it is inefficient, but because it puts too much emphasis on 
specific processes, and by inference, on processors. Instead we propose to base 
the software design on a different conceptual modelthe object model. In this 
model, the system deals with abstract objects, each of which has some set of 
abstract operations that can be performed on it. 

Associated with each object are one or more "capabilities" [Dennis66] which 
are used to control access to the object, both in terms of who may use the 
object and what operations he may perform on it. At the user level, the basic 
system primitive is performing an operation on an object, rather than such 
things as establishing connections, sending and receiving messages, and closing 
connections. For example, a typical object is the file, with operations to read 
and write portions of it. 

The object model is well-known in the programming languages community 
under the name of "abstract data type" [Liskov74]. This model is especially 
well-suited to a distributed system because in many cases an abstract data type 
can be implemented on one of the processor-memory modules described 
above. When a user process executes one of the visible functions in an 
abstract data type, the system arranges for the necessary underlying message 
transport from the user's machine to that of the abstract data type and back. 
The header of the message can specify which operation is to be performed on 
which object. This arrangement gives a very clear separation between users 
and objects, and makes it impossible for a user to directly inspect the represen
tation of an abstract data type by bypassing the functional interface. 

A major advantage of the object or abstract data type model is that the 
semantics are inherently location independent. The concept of performing an 
operation on an object does not require the user to be aware of where objects 
are located or how the communication is actually implemented. This property 
gives the system the possibility of moving objects around to position them 
close to where they are frequently used. Furthermore, the issue of how many 
processes are involved in carrying out an operation, and where they are located 
is also hidden from the user. 

It is frequently convenient to implement the object model in terms of clients 
(users) who send messages to services [Cheriton83, Needham82, Ball79]. A 
service is defined by a set of commands and responses. Each service is han
dled by one or more server processes that accept messages from clients, carry 
out the required work, and send back replies. The design of these servers and 
the design of the protocols they use form an important part of the system 
software of our proposed fifth generation computers. 

As an example of the problems that must be solved, consider a file server. 
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Among other design issues that must be dealt with are how and where infor
mation is stored, how and when it is moved, how it is backed up, how con
current reads and writes are controlled, how local caches are maintained, how 
information is named, and how accounting and protection are accomplished. 
Furthermore, the internal structure of the service must be designed: how many 
server processes are there, where are they located, how and when do they com
municate, what happens when one of them fails, how is a server process organ
ized internally for both reliability and high performance, and so on. Analo
gous questions arise. for all the other servers that comprise the basic system 
software. 

2. COMMUNICATION PRIMITIVES AND PROTOCOLS 
In the literature about computer networks, one finds much discussion of the 
ISO OSI reference model [Zimmermann80] these days. It is our belief that the 
price that must be paid in terms of complexity and performance in order to 
achieve an "open" system in the ISO sense is much too high, so we have 
developed a much simpler set of communication primitives, which we will now 
describe. 

2.1. Transaction vs. stream communication 
Most distributed systems have a connection mechanism that is based on the 
idea of two processes going to some effort to set up a connection, using the 
connection, and then tearing it down. The assumption is that a connection 
will be used for a stream of information so long that the overhead needed to 
set it up and tear it down are basically negligible. Most streams will consist of 
a file of one kind or another - a source program, a binary program, an input 
file, and so on. To see how long the average file is, we have conducted some 
measurements on the UNIXt system used in our department by the faculty and 
staff for research (no students, thus). The results of these measurements show 
that 34% of all files are less than 512 bytes, 52% are less than IK bytes, 67% 
are less than 2K bytes, 79% are less than 4K bytes, 88% are less than SK 
bytes, and 94% are less than 16K bytes. 

The above considerations have led us to a different approach [Mullender83]. 
With packets of even 2K bytes, two thirds of all files fit into a single packet. 
Consequently, it is much simpler to adopt a "Request-Reply" or "Transaction" 
style of communication, in which the basic primitive is the client sending a 
request to a server and the server sending a reply back to the client. The 
client uses trans and the server getreq and putrep. Trans sends a request, 
and blocks until a reply is received. Getreq blocks the server until a request is 
received, which can then be processed, after which a reply can be sent using 
putrep. Each request-reply pair is completely self-contained, and independent 
of any other ones that may previously been sent. In other words, no concept 
of a "connection" exists. Not only is this conceptually much more appropriate 

t UNIX is a Trademark of AT&T Bell Laboratories. 
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for use in an operating system, but it is much simpler to implement than a 
complex 7-layer protocol, not to mention offering lower delay. 

As a matter of fact, a distinct trend towards connectionless interprocess 
communication services could clearly be observed at the recent Workshop on 
Operating Systems in Computer Networks in Zurich, Switzerland: all, or 
nearly all of the systems presented there were message-based rather than 
connection-based. 

Henceforth we will refer to a request-reply pair as a transaction, which is not 
to be confused with transactions with a data base. 

2.2. Basic communication protocol 
Instead of a 7-layer protocol, we effectively have a 4-layer protocol. The bot
tom layer is the Physical Layer, and deals with the electrical, mechanical and 
similar aspects of the network hardware. The next layer is the Port Layer, and 
deals with the location of services, the transport of (32K byte) datagrams 
(packets whose delivery is not guaranteed) from source to destination and 
enforces the protection mechanism, which will be discussed in the next section. 
On top of this we have a layer that deals with the reliable transport of 
bounded length (32K byte) requests and replies between client and server. We 
have called this layer the Transaction Layer. The final layer has to do with the 
semantics of the requests and replies, for example, given that one can talk to 
the file server, what commands does it understand. The bottom three layers 
(Physical, Port and Transaction) are implemented by the kernel and hardware; 
only the Transaction Layer interface is visible to users. 

Since systems of the kind we are describing will use high-speed, highly reli
able local networks, few, if any, of the complex mechanisms designed for flow
and error-control in long-haul networks are useful here. Among other things, 
a simple stop-and-wait protocol is sufficient. The main function of the Tran
saction Layer is to provide an end-to-end message service built on top of the 
underlying datagram service, the main difference being that the former uses 
timers and acknowledgements to guarantee delivery whereas the latter does 
not. 

The Transaction Layer protocol is straightforward. When the client does a 
trans, a packet, or sequence of packets, containing the request is sent to the 
server, the client is blocked, and a timer is started (inside the Transaction 
Layer). lithe server does not acknowledge receipt of the request packet before 
the timer expires (usually by sending the reply, but in some special cases by 
sending a separate acknowledgement packet), the Transaction Layer 
retransmits the packet again and restarts the timer. When the reply finally 
comes in, the client sends back an acknowledgement (possibly piggybacked 
onto the next request packet) to allow the server to release any resources, such 
as buffers, that were acquired for this transaction. Under normal cir
cumstances, reading a long file, for example, consists of the sequence 

From client : request for block 0 
From server: here is block 0 
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From client : acknowledgement for block O and request for block l 
From server: here is block 1 

etc. 

The protocol can handle the situation of a server crashing and being rebooted 
quite easily since each request contains the capability for the file to be read 
and the position in the file to start reading. Between requests, the server has 
no "activation record" or other table entry whose loss during a crash causes 
the server to forget which files were open, etc., because no concept of an open 
file or a current position in a file exists on the server's side. Each new request 
is completely self-contained. Of course for efficiency reasons, a server may 
keep a cache of frequently accessed i-nodes, file blocks etc., but these are not 
essential and their loss during a crash will merely slow the server down slightly 
while they are being dynamically refreshed after a reboot. 

2.3. The port layer 
The Port Layer is responsible for the speedy transmission of 32K byte 
datagrams. The Port Layer need only do this reasonably reliably, and does 
not have to make an effort to guarantee the correct delivery of every datagram. 
This is the responsibility of the Transaction Layer. Our results show that this 
approach leads to significantly higher transmission speeds, due to simpler pro
tocols. 

Theoretically, very high speeds are achievable in modem local-area net
works. A typical speed for DMA transfers is 1 byte/ µ.sec, and the typical 
transmission speed of a 10 Mbit local-area network is also 1 byte/µ.sec. Since, 
in many network interfaces, DMA transfer and network transfer cannot overlap, 
but DMA at the destination host can overlap with the DMA of the next packet at 
the source host, an upper bound for the transfer rate of a typical local-area 
network is 500,000 bytes/ sec point-to-point. 

In practise, however, speeds of 100,000 bytes per second between user 
processes have rarely been achieved. Obviously, to achieve higher transmission 
rates, the overhead of the protocol must be kept very low indeed, while an 
effort must be made to overlap DMA s at both communicating parties. To 
achieve this, we have chosen a large datagram size for the Port Layer, which 
has to split up the datagrams into small packets that the network hardware 
can cope with. This approach allows the implementor of the Port Layer to 
exploit the possibilities that the hardware has to offer to achieve an efficient 
stream of packets. 

Our implementation of the Port Layer interfaces to a 10 Mbit token ring 
that allows scatter-gather; that is, a packet can be sent to or from the interface 
in several DMA transfers, and then transmitted over the network separately. 
This allows us to do two important things to speed up the protocol. First, 
when a packet is received, the header can be inspected separately, so the proto
col can decide where in memory the packet must go. The protocol driver can 
then transfer the packet directly from the interface to the right place in 
memory, without having to copy it. A copy loop would halve the transmission 
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speed. Second, the separation of DMA and transmission allows the driver to 
prepare a transmission by doing the DMA. The transmission can then be ini
tiated immediately when the signal is received that the receiver is ready. In 
our implementation of the Port Layer, these considerations have resulted in the 
protocol that will now be described. 

The transmitter begins by transferring and sending the first 2K of the 
datagram to be transmitted (2K is the maximum packet size allowed by the 
hardware). Immediately after the transmission is complete, the DMA for the 
next 2K bytes is started,. but they are not yet transmitted. In the mean time, 
the receiver is interrupted by the arrival of the first packet. It extracts the 
header, examines it and decides where the body of the packet should go. Then 
the body of the packet is transferred from the interface to its final location in 
memory. While this is being done, the receiver prepares a tiny acknowledge
ment packet to tell the transmitter it is prepared for the next packet. As soon 
as the DMA transfer of the previous packet has finished, this acknowledgement 
is sent back to the transmitter. When the transmitter receives it, the transfer 
of the next packet to the interface will have finished, so it can then be sent 
immediately. This sequence is continued until the whole datagram is transmit
ted. 

2.4. The transaction layer 
It is the responsibility of the Transaction Layer to guarantee the arrival of 
requests and replies. The Transaction Layer makes use of the Port Layer and 
timers to achieve this. 

The interface to the transaction layer basically consists of three calls, one for 
clients, and two for servers. All calls use a small datastructure, called Mref, 
which contains a pointer to a small fixed-size out-of-band buffer for the 
transmission of commands and parameters to the server, a pointer to the main 
body of data to be transferred, and the length of the main body of data (0 to 
32768), as follows: 

typedef struct Mref { 
char *M ooh; 
char *M-buf; 
unsigned M _len; 

} Mref; 

typedef struct Cap { 
Port C _port; 
char ~.,.Private(IO]; 

} Cap; /* capability * / 

/* 6-byte port * / 
/* IO-byte private*/ 

The client, in order to do a transaction calls 
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trans( cap, req, rep); 
Cap *cap; 
Mref *req, *rep; 

The server receives requests and sends replies with 

getreq(port, cap, req); 
Port *port; 
Cap *cap; 
Mref *req; 

putrep(rep); 
Mref *rep; 

In principle, the Transaction Layer works as follows: When a client calls 
trans, the Transaction Layer generates a reply-port to enable the server to send 
a reply. The server port is deduced from the capability; the first 48 bits of the 
capability for an object identify the service that controls the object. The 
request is then sent, using put, and a retransmission timer is started. 

The server, which previously had made a call to getreq, receives the request; 
the capability is filled in, and the received message is put in the buffers 
referred to by req. As soon as the request is received, the server's Transaction 
Layer starts a piggyback timer. When the server has not sent a reply before 
this timer expires, a separate acknowledgement is sent to put the client at ease, 
and stop its retransmission timer. When the server sends a reply to the client 
the same thing happens, more or less, with the role of client and server 
reversed. When a client makes a sequence of transactions with a single server, 
a subsequent request will acknowledge receipt of the previous reply. 

The client maintains one more timer, the crash timer. This timer is set when 
the server's acknowledgement to a request has been received, and is used to 
detect server crashes. Whenever this timer expires, the client sends an "are 
you still alive?" packet to the server, to which the server replies with an ack
nowledgement. 

When transactions occur quickly, one after the other, no extra acknowledge
ments are sent at all. Only when transactions take a long time (say, longer 
than a minute), acknowledgements are sent, and when transactions take much 
longer than that (say, ten minutes) then "are you still alive" messages begin to 
be sent. 

2.5. Timer management 
If the timers are started and stopped in exactly the way described above, the 
Transaction Layer would become unacceptably slow. Per (quick) transaction, 
two retransmission timers and two piggyback timers would have to be started 
and stopped, eight timer actions altogether. 

There is a much more efficient way of dealing with timers, one that makes 
use of a sweep algorithm. This algorithm does not implement very accurate 
timers, but accuracy of the timer intervals is not very important to the correct 



85 

and efficient operation of the protocol. 
The sweep algorithm is run every N clock ticks. N must be chosen such 

that N ticks is about the minimum timer interval needed (the piggyback timer 
interval). Whenever the algorithm is called, it makes a sweep over all out
standing transactions. H the state of a transaction has changed, the new state 
is recorded. H it has not changed, a counter is incremented, telling for how 
long the state has remained the same. H the (state, counter) combination has 
reached a certain value, the sweep algorithm carries out the appropriate 
actions, usually sending . an acknowledgement, retransmitting a message, or 
aborting a transaction. 

Because this algorithm is used there is no code needed in the transaction 
code itself, reducing the overhead of the Transaction Layer significantly. In 
this way, the code executed in the Transaction Layer is optimised for the nor
mal case (no errors). 

2.6. Blocking vs. non-blocking transaction primitives 
Most services need to be able to handle multiple requests from different clients 
simultaneously. It therefore seems natural to implement non-blocking calls for 
interprocess communication, as this will allow a service to react to events in 
the order they occur. When blocking communication calls are used, a server is 
forced to wait for the specific event that unblocks the call. 

Because it is rather difficult to write correct code for a process which has to 
handle multiple flows of control indeterministically, the Amoeba system pro
vides the concept of tasks, sharing an address space. A number of tasks in 
one address ·space forms a cluster, and specific rules govern the scheduling of 
tasks within a cluster: only one task can run at a time, and a task runs until it 
voluntarily relinquishes control (e.g., on trans and getreq calls). 

A server can thus easily be structured as a collection of co-operating tasks, 
each task handling one request. This model has greatly simplified the structure 
of services, as each task making up the server cluster now has a single thread 
of execution. The model also obviated the need for non-blocking transaction 
calls, with their complicated (and slow) extra interface for handling interrupts. 

2. 7. Results 
Two versions of the algorithm have now been implemented. The one 
described has been implemented Oil the Amoeba distributed operating system, 
and achieves over 300,000 bytes a second from user process to user process 
(using M68000s and a Pronet* ring). It is now being implemented under 
UNIX where we expect to obtain more than 200,000 bytes/ sec, assuming the 
communicating processes are not swapped. 

An older version of the protocol, using 2K byte datagrams, now gets 90,000 
bytes/sec across the network between two VAX-750s running a normal load of 
work, without causing a significant load on the system itself. 

* PR.ONBT is a trademark of Proteon Associates, Inc. 
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Several services, implemented under UNIX, are using the Transaction Layer 
interface, and it is our experience that these services are easy to design and 
that they work efficiently. 

3. PORTS AND CAPABILITIES 

3.1. Ports 
Every service has one or more ports [Mullender84] to which client processes 
can send messages to contact the service. Ports consist of large numbers, typi
cally 48 bits, which are known only to the server processes that comprise the 
service, and to the service's clients. For a public service, such as the system 
file service, the port will be generally made known to all users. The ports used 
by an ordinary user process will, in general, be kept secret. Knowledge of a 
port is taken by the system as prima facie evidence that the sender has a right 
to communicate with the service. Of course the service is not required to carry 
out work for clients just because they know the port, for example, the public 
file service may refuse to read or write files for clients lacking account 
numbers, appropriate authorization, etc. 

Although the port mechanism provides a convenient way to provide partial 
authentication of clients ("if you know the port, you may at least talk to the 
service"), it does not deal with the authentication of servers. The basic primi
tive operations offered by the system are trans, putreq and getrep. 
Since everyone knows the port of the file server, as an example, how does one 
insure that malicious users do not execute getreqs on the file server's port, 
in effect impersonating the file server to the rest of the system? 

One approach is to have all ports manipulated by kernels that are presumed 
trustworthy and are supposed to know who may getreq from which port 
[Cheriton83, Rashid81]. We reject this strategy because some machines, e.g., 
personal computers connected to larger multi.module systems may not be 
trustworthy, and also because we believe that by making the kernel as small as 
possible, we can enhance the reliability of the system as a whole. Instead, we 
have chosen a different solution that can be implemented in either hardware or 
software. First we will describe the hardware solution; later we will describe 
the software solution. 

In the hardware solution, we need to place a small interface box, which we 
call an F-box (Function-box) between each processor module and the network. 
The most logical place to put it is on the VLSI chip that is used to interface to 
the network. Alternatively, it can be put on a small printed circuit board 
inside the wall socket through which personal computers attach to the network. 
In those cases where the processors have user mode and kernel mode and a 
trusted operating system running in kernel mode, it can also be put into 
operating system software. In any event, we assume that somehow or other all 
packets entering and leaving every processor undergo a simple transformation 
that users cannot bypass. 

The transformation works like this. Each port is really a pair of ports, P, 
and G, related by: P = F(G), where Fis a (publicly-known) one-way function 
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[Wilkes68, Purdy74, Evans74] performed by the F-box. The one-way function 
has the property that given G it is a straightforward computation to find P, 
but that given P, finding G is so difficult that the only approach is to try every 
possible G to see which one produces P. If P and G contain sufficient bits, 
this approach can be made to take millions of years on the world's largest 
supercomputer, thus making it effectively impossible to find G given only P. 
Note that a one-way function differs from a cryptographic transformation in 
the sense that the latter must have an inverse to be useful, but the former has 
been carefully chosen so that no inverse can be found. 

F-box also say 
send to P 

Client says 
send to P 

F 

CLIENT 

INTRUDER 

Intruder doesn' 
knowG 

F 

FIGURE 1. 

-box actually listens 
for P = F(G) 

Server says 
listen for G 

SERVER 

Using the one-way F-box, the server authentication can be handled in a sim
ple way, illustrated in figure 1. Each server chooses a get-port, G, and com
putes the corresponding put-port, P. The get-port is kept secret; the put-port 
is distributed to potential clients or in the case of public servers, is published. 
When the server is ready to accept client requests, it does a getreq(G, 
cap, req). The F-box then computes P = F(G) and waits for packets con
taining P to arrive. When one arrives, it is given to the appropriate process. 
To send a packet to the server, the client merely does trans( cap, req, 
rep), where the port field of cap is set to P. This will cause a datagram to 
be sent by the local F-box with P in the destination-port field of the header. 
The F-box on the sender's side does not perform any transformation on the P 
field of the outgoing packet. 

Now let us consider the system from an intruder's point of view. To imper
sonate a server, the intruder must do getreq(G, · · · ). However, G is a 
well-kept secret, and is never transmitted on the network, Since we have 
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assumed that G cannot be deduced from P ( the one-way property of F) and 
that the intruder cannot circumvent the F-box, he cannot intercept packets not 
intended for him. Replies from the server to the client are protected the same 
way, only with the client's Transaction Layer picking a get~port for the reply, 
say, G', and including P' = F(G') in the request packet. 

The presence of the F-box makes it easy to implement digital signatures for 
still further authentication, if that is desired. To do so, each client chooses a 
random signature, S, and publishes F(S). The F-box must be designed to 
work as follows. Each packet presented to the F-box contains three special 
header fields: destination (P), reply (G'), and signature (S). The F-box applies 
the one-way function to the second and third of these, transmitting the three 
ports as: P, F(G'), and F(S), respectively. The first is used by the receiver's 
F-box to admit only packets for which the corresponding getreq has been 
done, the second is used as the put-port for the reply, and the third can be 
used to authenticate the sender, since only the true owner of the signature will 
know what number to put in the third field to insure that the publicly-known 
F(S) comes out. 

It is important to note that the F-box arrangement merely provides a simple 
mechanism for implementing security and protection, but gives operating sys
tem designers considerable latitude for choosing various policies. The mechan
ism is sufficiently flexible and general that it should be possible to put it into 
hardware with precluding many as-yet-unthought-of operating systems to be 
designed in the future. 

3.2. Capabilities 
In any object-based system, a mechanism is needed to keep track of which 
processes may access which objects and in what way. The normal way is to 
associate a capability with each object, with bits in the capability indicating 
which operations the· holder of the capability may perform. In a distributed 
system this mechanism should itself be distributed, that is, not centralized in a 
single monolithic "capability manager." In our proposed scheme, each object 
is managed by some service, which is a user ( as opposed to kernel) program, 
and which understands the capabilities for its objects. 

SERVER OBJECT I RIGHfS I RANDOM 

FIGURE 2. 
A capability typically consists of four fields, as illustrated in figure 2: 

1. The put-port of the service that manages the object 
2. An Object Number meaningful only to the service managing the object 
3. A Rights Field, which contains a 1 bit for each permitted operation 
4. A Random Number for protecting each object 

The basic model of how capabilities are used can be illustrated by a simple 
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example: a client wishes to create a file using the file service, write some data 
into the file, and then give another client permission to read (but not modify) 
the file just written. To start with, the client sends a message to the file 
service's put-port specifying that a file is to be created. The request might con
tain a file name, account number and similar attributes, depending on the 
exact nature of the file service. The server would then pick a random number, 
store this number in its object table, and insert it into the newly-formed object 
capability. The reply would contain this capability for the newly created 
( empty) file. 

To write the file, the client would send a message containing the capability 
and some data. When the write request arrived at the file server process, 
the server would normally use the object number contained in the capability as 
as index into its tables to locate the object. For a UNIX like file server, the 
object number would be the i-node number, which could be used to locate the 
i-node. · 

Several object protection systems are possible using this framework. In the 
simplest one, the server merely compares the random number in the file table 
(put there by the server when the object was created) to the one contained in 
the capability. If they agree, the capability is assumed to be genuine, and all 
operations on the file are allowed. This system is easy to implement, but does 
not distinguish between read, write, delete, and other operations that 
may be performed on objects. 

However, it can easily be modified to provide that distinction. In the 
modified version, when a file (object) is created, the random number chosen 
and stored in the file table is used as an encryption/decryption key. The capa
bility is built up by taking the Rights Field (e.g., 8 bits), which is initially all 
ls indicating that all operations are legal, and the Random Number Field (e.g., 
56 bits), which contains a known constant, say, 0, and treating them as a sin
gle number. This number is then encrypted by the key just stored in the file 
table, and the result put into the newly minted capability in the combined 
Rights-Random Field. When the capability is returned for use, the server uses 
the object number (not encrypted) to find the file table and hence the 
encryption/ decryption key. If the result of decrypting the capability leads to 
the known constant in the Random Number Field, the capability is almost 
assuredly valid, and the Rights Field can be believed. Clearly, an encryption 
function that mixes the bits thoroughly is required to ensure that tampering 
with the Rights Field also affects the known constant. Exclusive or'ing a con
stant with the concatenated Rights and Random fields will not do. 

When this modified protection system is used, the owner of the object can 
easily give an exact copy of the capability to another process by just sending it 
the bit pattern, but to pass, say, read-only access, is harder. To accomplish 
this task, the process must send the capability back to the server along with a 
bit mask and a request to fabricate a new capability whose Rights Field is the 
Boolean-and of the Rights Field in the capability and the bit mask. By choos
ing the bit mask carefully, the capability owner can mask out any operations 
that the recipient is not permitted to carry out. 
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This modified system works well except that it requires going back to the 
server every time a sub-capability with fewer rights is needed. We have dev
ised yet another protection system that does not have this drawback. This 
third scheme requires the use of a set of N commutative one-way functions, 
F0 , F 1, • • ·, FN-l corresponding to the N rights present in the Rights Field. 
When an object is created, the server chooses a random number and puts it in 
both the file table and the Random Number Field, just as in the first scheme 
presented. It also sets all the Rights Field bits to 1. 

server gives client turns off X turns off Y gives cap. to server 
client capability bit i and bitj and server applies F; and Fj 

containing R gives cap. to X gives cap. to Y to R in object to verify 

s C X y s 
R, all rights F;(R), all f!ghts Fj(F;(R)), !111 !ights 

except l except z, J 

FIGURE 3. 
A client can delete permission k from a capability by replacing the random 

number, R, with Fk(R) and turning off the corresponding bit in the Rights 
Field. When a capability comes into the server to be used, the server fetches 
the original random number from the file table, looks at the Rights Field, and 
applies the functions corresponding to the deleted rights to it. If the result 
agrees with the number present in the capability, then the capability is 
accepted as genuine, otherwise it is rejected. The mechanism is illustrated in 
figure 3. Note that although the Rights Field is not encrypted, it is pointless 
for a client to tamper with it, since the server will detect that immediately. In 
theov at least, the Rights Field is not even needed, since the server could try 
all 2 combinations of the functions to see if any worked. Its presence merely 
speeds up the checking. It should also be clear why the functions must be com
mutative - it does not matter in what order the bits in the Rights Field were 
turned off. 

The organization of capabilities and objects discussed above has the interest
ing property that although no central record is kept of who has which capabili
ties, it is easy to retract existing capabilities. All that the owner of an object 
need do is ask the server to change the random number stored in the file table. 
Obviously this operation must be protected with a bit in the Rights Field, but 
if it succeeds, all existing capabilities are instantly invalidated. 

3.3. Protection without F-boxes 
Earlier we said that protection could also be achieved without F-boxes. It is 
slightly more complicated, since it uses both conventional and public-key 
encryption, but it is still quite usable. The basic idea underlying the method is 
the fact that in nearly all networks an intruder can forge nearly all parts of a 
packet being sent except the source address, which is supplied by the network 
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interface hardware. To take advantage of this property, imagine a (possibly 
symmetric) conceptual matrix of conventional (e.g., DES) encryption keys, with 
the rows being labeled by source machine and the columns by destination 
machine. Thus the matrix selects a unique key for encrypting the capabilities 
in any packet. The data need not be encrypted, although that is also possible 
if needed. 

Each machine is assumed to know its row and column of the matrix, and 
nothing else (how this will be achieved will be discussed shortly). With this 
arrangement, intruder I can easily capture packets from client C to server S, 
but attempts to "play them back" to the server will fail because the server will 
see the source machine as I (assumed unforgeable) and use element M1s as the 
decryption key instead of the correct Mes- No matter what the intruder does, 
he cannot trick the server into using a decryption key that decrypts the capa
bilities to make sense, that is, to contain random numbers that agree with 
those stored in the file tables. 

To avoid having to run the encryption/decryption algorithm frequently, all 
machines can maintain a hashed cache of capabilities that they have been 
using frequently. Clients will hash their caches on the unencrypted capabilities 
in the form of triples: (unencrypted capability, destination, encrypted capabil
ity), whereas servers will hash theirs in the form of triples: ( encrypted capabil
ity, source, unencrypted capability). 

To set up the matrix initially, the following procedure can be used. A pub
lic server, such as a file server, makes its put-port and a public encryption key 
known to the whole world. When a new machine joins the network ( e.g., after 
a crash or upon initial system boot), it sends a broadcast message announcing 
its presence. Suppose, for example, the file server has just come up, and must 
(1) prove that it is the file server to other processes, and (2) establish the con
ventional keys used for encrypting capabilities in both directions. 

A client machine, C, which receives the broadcast from the alleged file 
server, F, picks a new conventional encryption key, K, for use in subsequent C 
to F traffic and sends it to F encrypted with Fs public key. F then decrypts K 
and replies to C by sending a packet containing both K and a newly chosen 
conventional key to be used for reverse traffic. This packet is encrypted both 
with K itself and with the inverse of Fs public key, so C can use K and Fs 
public key to decrypt it. If the decrypted packet contains K, C can be sure 
that the other conventional key was indeed generated by the owner of Fs pub
lic key, thus convincing C that he is indeed talking to the file server. Both of 
the above-mentioned conditions have now been fulfilled, so normal communi
cation can now take place. Note that the use of different conventional keys 
after each reboot make it impossible for an intruder to fool anyone by playing 
back old packets. 
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4. THE AMOEBA FILE SYSTEM 
The file system has been designed to be highly modular, both to enhance relia
bility and to provide a convenient testbed for doing research on distributed file 
systems. It consists of three completely independent pieces: the block service, 
the file service, and the directory service. In short, the block service· provides 
commands to read and write raw disk blocks. As far as it is concerned, no 
two blocks are related in any way, that is, it has no concept of a file or other 
aggregation of blocks. The file service uses the block service to build up files 
with various properties. Finally, the directory service provides a mapping of 
symbolic names onto object capabilities. 

4.1. Block service 
The block service is responsible for managing raw disk storage. It provides an 
object-oriented interface to the outside world to relieve file servers from having 
to understand the details of how disks work. The principle operations it per
forms are: 

al locate a block, write data into it, and return a capability to the block 
given a capability for a block, free the block 
given a capability for a block, read and return the data contained in it 
given a capability for a block and some data, write the data into the 
block 
given a capability for a block and a key, lock or unlock the block 

These primitives provide a convenient object-oriented interface for file servers 
to use.· In fact, any client who is unsatisfied [Stonebraker81, Tanenbaum82] 
with the standard file system can use these operations to construct his own. 

The first four operations of allocate, free, read, and write hardly 
need much comment. The fifth one provides a way for clients to lock indivi
dual blocks. Although this mechanism is crude, it forms a sufficient basis for 
clients (e.g., file systems) to construct more elaborate locking schemes, should 
they so desire. 

One other operation is worth noting. The data within a block is entirely 
under the control of the processes possessing capabilities for it, but we expect 
that most file servers will use a small portion of the data for redundancy pur
poses. For example, a file server might use the first 32 bits of data to contain 
a file number, and the next 32 bits to contain a relative block number within 
the file. The block server supports an operation recovery, in which the 
client provides the account number it uses in al locate operations and 
requests a list of all capabilities on the whole disk containing this account 
number. (The block server stores the account number for each block in a 
place not accessible to clients.) Although recovery is a very expensive 
operation, in effect requiring a search of the entire disk, armed with all the 
capabilities returned, a file server that lost all of its internal tables in a crash 
could use the first 64 bits of each block to rebuild its entire file list from 
scratch. 
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4.2. File service 
The purpose of splitting the block service and file service is to make it easy to 
provide a multiplicity of different file services for different applications. One 
such file service that we envision is one that supports flat files with no locking, 
in other words, the UNIX model of a file as a linear sequence of bytes with no 
internal structure and essentially no concurrency control. This model is quite 
straightforward and will therefore not be discussed here further. 

A more elaborate file service with explicit version and concurrency control 
for a multiuser environment will be described instead [Mullender85]. This file 
service is designed to support data base services, but it itself is just an ordi
nary, albeit slightly advanced, file service. The basic model behind this file ser
vice is that a file is a time-ordered sequence of versions, each version being a 
snapshot of the file made at a moment determined by a client [Fridrich81, 
Reed81]. At any instant, exactly one version of the file is the current version. 
To use a file, a client sends a message to a file server process containing a file 
capability and a request to create a new, private version of the current version. 
The server returns a capability for this new version, which acts like it is a 
block for block copy of the current version made at the instant of creation. In 
other words, no matter what other changes may happen to the file while the 
client is using his private version, none of them are visible to him. Only 
changes he makes himself are visible. 

Of course, for implementation efficiency, the file is not really copied block 
for block. What actually happens is that when a version is created, a table of 
pointers (capabilities) to all the file's blocks is created. The capability granted 
to the client for the new version actually refers to this version table rather than 
the file itself. Whenever the client reads a block from the file, a bit is set in 
the version table to indicate that the corresponding block has been read. 
When a block is modified in the version, a new block is allocated using the 
block server, the new block replaces the original one, and its capability is 
inserted into the version table. A bit indicating that the block is a new one 
rather than an original is also set. This mechanism is sometimes called "copy 
on write." 

Versions that have been created and modified by a client are called uncom
mitted versions. At a particular moment, the current version may have several 
(different) uncommitted versions derived from it in use by different clients. 
When a client is :finished modifying his private version, he can ask the file 
server to commit his version, that is, make it the current version instead of the 
then current version. If the version from which the to-be-committed version 
was derived is still current at the time of the commit, the commit succeeds and 
becomes the new current version. 
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As an example, suppose version 1 is initially the current version, with vari
ous clients creating private versions 1.1, 1.2, and 1.3 based on it. If version 1.2 
is the first to commit, it wins and 1.2 becomes the new current version, as 
illustrated in figure 4. Subsequent requests by other clients to create a version 
will result in versions 1.2.1, 1.2.2, and 1.2.3, all initially copies of 1.2. 

The fun begins when the owner of version 1.3 now tries to commit. Version 
1, on which it is based, is no longer the current version, so a problem arises. 
To see how this should be handled, we must introduce a concept from the data 
base world, serializability [&waran76, Papadimitriou79]. Two updates to a file 
are said to be serializable if the net result is either the same as if they were run 
sequentially in either order. As a simple example, consider a two character file 
initially containing "ab." Client 1 wants to write a "c" into the first character, 
wait a while, and then write a "d" into the second character. Client 2 wants to 
write an "e" into the first character, wait a while, and then write an "f' into 
the second character. If 1 runs first we get "cd"; if 2 runs first we get "ef." 
Both of these are legal results, since the file server cannot dictate when the 
users run. However, its job is to prevent final configurations of "cf' or "de," 
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both of which result from interleaving the requests. If a client locks the file 
before starting, does all its work, and then unlocks the file, the result will 
always be either "cd" or "ef," but never "cf' or "de." What we are trying to 
do is accomplish the same goal without using locking. 

The idea behind not locking is that most updates, even on the same file, do 
not affect the same parts of the file, and hence do not conflict. For example, 
changes to an airline reservation data base for flights from San Francisco to 
Los Angeles do not conflict with changes for flights from Amsterdam to Lon
don. The strategy behind our commit mechanism is to let everyone make and 
modify versions at will, with a check for serializability when a commit is 
attempted. This mechanism has been proposed for data base systems 
[Kung81], but as far as we know, not for file systems. 

The serializability check is straightforward. If a version to be committed, A, 
is based on the version that is still current, B, it is serializable and the commit 
succeeds. If it is not, a check must be made to see if all of the blocks belong
ing to A that the client has read are the same in the current version as they 
were in the version from which A was derived. If so, the previous commit or 
commits only changed blocks that the client trying to commit A was not using, 
so there is no problem and the commit can succeed. 

If, however, some blocks have been changed, modifications that A's owner 
has made may be based on data that are now obsolete, so the commit must be 
refused, but a list is returned to A's owner of blocks that caused conflicts, that 
is, blocks marked "read" in A and marked ''written" in the current version ( or 
any of its ancestors up to the version on which A is based). At this point, A's 
owner can make a new version and start all over again. Our assumption is 
that this event is very unlikely, and that is occasional occurrence is a price 
worth paying for not having locking, deadlocks, and the delays associated with 
waiting for locks. 

4.3. Directory service 
Because it is frequently inconvenient to deal with long binary bit strings such 
as capabilities, a directory service is needed to provide symbolic naming. The 
directory service's task is to manage directories, each of which contains a col
lection of (ASCII name, capability) pairs. The principal operation on a direc
tory object is for a client to present a capability for a directory and an ASCII 

name, and request the directory service to look up and return the capability 
associated with the ASCII name. The inverse operation is to store an (ASCII 

name, capability) pair in a directory whose capability is presented. 

5. PROCESS MANAGEMENT 
Like any other operating system, this one must also have a way to manage 
processes. In our design, processes are created and managed by the process 
service, which consists of three major subsystems, the generic server, the pro
cess server, and the boot server. 
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5.1. Generic server 
The idea behind the generic server is that much of the time a user wants a cer
tain program to be run, but does not care about where it is run or on which 
CPU type. For example, a user might have a Pascal program to be compiled, 
and wants a Pascal compiler that produces, say, Motorola 68000 code. How
ever, he does not care whether the compiler itself runs on a 68000, a VAX or 
any other CPU. We speak of this as a generic Pascal compiler. 

The generic server's job is to locate a suitable hardware/software combina
tion and start it up. This can be done by maintaining internal tables of loca
tions where the appropriate service is likely to be located. By sending a mes
sage to the chosen service, the generic server can see if the corresponding 
server is currently available and willing to take on the offered work. If so, it 
can begin; if not, the generic server can broadcast a request for bids to see if 
someone else can be located. If no willing server exists, the generic server will 
have to cause one to be created by invoking the process server. 

5.2. Process Server 
The process server's job is to take a process descriptor sent to it, locate a free 
processor, and send sufficient information to the processor to allow the proces
sor to run. The process descriptor must contain at least the following inf orma
tion: 

1. The CPU type desired. 
2. A capability for the binary file to be executed. 
3. Capabilities for process environment. 
4. Accounting information. 

The CPU type and binary file capability are obvious. The third item has to do 
with things like the file descriptors and environment strings in UNIX. When a 
UNIX process is started up, it inherits certain parameters from its parent, 
among these are usually file descriptors for standard input, output, and diag
nostic, and possibly other files as well. In our design, a process can inherit 
capabilities for standard input, standard output, and standard diagnostic, as 
well as other ones. By using these, one can implement UNIX pipes and filters 
easily, as well as more general mechanisms ( e.g., passing capabilities to third 
parties, storing them in files for later use, etc.). 

Another area that the process service must deal with is scheduling. It must 
allocate processes to processors, and possibly control migration and swapping 
among processors as well. By introducing the concept of a "process image" 
which contains all the information necessary to run a process ( e.g., its memory, 
registers, capabilities, etc.) it becomes straightforward to handle process migra
tion and swapping in a unified way. When a process is swapped out to a disk 
somewhere, there is no need to have it swapped back to the same machine that 
it originated on. 
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5.3. Boot service 
Many services must achieve high availability. Our approach to this issue is 
using fault tolerance, rather than fault intolerance. In the former, one expects 
hardware and software to fail, and makes provision for dealing with it; in the 
latter, one assumes that they are perfect and that no such provision need be 
made. Since many services are faced with the same problem: how to provide 
high availability in the face of occasional crashes, we have abstracted out a 
common part of the crash recovery mechanism and put it into a separate ser
vice, the boot service. 

Any service that wants to provide a continuous availability can register with 
the boot service. Such registration entails providing a polling message to send 
the service periodically, the expect reply, the polling frequency, and a prescrip
tion of what to do in case of failure. The boot service then sends the polling 
message to the service at the requested frequency. As long as the service con
tinues to send the appropriate reply, all is well and the boot service has noth
ing else to do. 

However, if the service fails to reply properly, or fails to reply at all within 
an agreed upon time interval, the boot service declares the service to be out
of-order, and goes to the process service to start up a new version of it. Of 
course, the boot service itself must not crash, but it consists of a number of 
server processes that constantly check each other, and if need be, replace sick 
members with healthy ones. 

6. RESOURCE MANAGEMENT 

In keeping with our general philosophy of making the system kernel as small 
as possible, we have devised a way to put the resource control and accounting 
outside the kernel. Furthermore, a clear distinction is made between policy 
and mechanism, so that subsystem designers can implement their own policies 
with the standard mechanisms. 

Traditionally, accounting was used by the management of a computer center 
to levy charges for the use of the computer center's resources: CPU time, file 
space, lineprinter paper. This method worked quite well in the past, when 
hardware resources were expensive compared to the software used. Nowadays, 
hardware is cheap, software expensive. However, in the traditional approach 
there is usually no possibility to bill users for the use of a particular piece of 
software, or to have one user bill another for using his services. 

Additionally, distributed systems need not be under control of one central
ized management any more; private, personal computers can be plugged into 
the network and both use and off er services to the rest of the network. The 
accounting mechanisms in a distributed systems must be able to handle this 
new view on operating systems and allow any user that sets up a service to 
gather information about who uses his service. 



98 

6.1. Bank service 
The bank service is the heart of the resource management mechanism. It 
implements an object called a "bank account" with operations to transfer vir
tual money between accounts and to inspect the status of accounts. Bank 
accounts come in two varieties: individual and business. Most users of the 
system will just have one individual account containing all their virtual money. 
This money is used to pay for CPU time, disk blocks, typesetter pages, and all 
other resources for which the service owning the resource decides to levy a 
charge. 

Business accounts are used by services to keep track of who has paid them 
and how much. Each business account has a subaccount for each registered 
client. When a client transfers money from his individual account to the 
service's business account, the money transferred is kept in the subaccount for 
that client, so the service can later ascertain each client's balance. As an 
example of how this mechanism works, a file service could charge for each disk 
block written, deducting some amount from the client's balance. When the 
balance reached zero, no more blocks could be written. Large advance pay
ments and simple caching strategies can reduce the number of messages sent to 
a small number. 

Another aspect of the bank service is its maintenance of multiple currencies. 
It can keep track of say, virtual dollars, virtual yen, virtual guilders and other 
virtual currencies, with or without the possibility of conversion among them. 
This feature makes it easy for subsystem designers to create new currencies 
and control how they are allocated among the subsystems users. 

6.2. Accounting policies 
The bank service described above allows different subsystems to have different 
accounting policies. For example, a file or block service could decide to use 
either a buy-sell or a· rental model for accounting. In the former, whenever a 
block was allocated to a client, the client's account with the service would be 
debited by the cost of one block. When the block was freed, the account 
would be credited. This scheme provides a way to implement absolute limits 
(quotas) on resource use. In the latter model, the client is charged for rental of 
blocks at a rate of X units per kiloblock-second or block-month or something 
else. In this model, virtual money is constantly flowing from the clients to the 
servers, in which case clients need some form of income to keep them going. 
The policy about how income is generated and dispensed is determined by the 
owner of the currency in question, and is outside the scope of the bank server. 

SUMMARY 

This paper has discussed a model for a fifth generation computer system archi
tecture and its operating system. The operating system is based on the use of 
objects protected by sparse capabilities. An outline of some of the key services 
has been given, notably the block, file, directory, generic, process, boot and 
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bank services. 
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Most distributed operating systems constructed to date have lacked a unifying 
mechanism for naming and protection. In this paper we discuss a system, 
Amoeba, that uses capabilities for naming and protecting objects. In contrast 
to traditional, centralized operating systems, in which capabilities are managed 
by the operating system kernel, in Amoeba all the capabilities are managed 
directly by user code. To prevent tampering, the capabilities are protected 
cryptographically. The paper describes a variety of the issues involved, and 
gives four different ways of dealing with the access rights. 

1. INTRODUCTION 
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Capabilities [DENNIS and VAN HORN 1966] have been used as the basis for a 
variety of uniprocessor operating systems (see [LEVY 1984] for numerous exam
ples). They have the attraction of providing a single, uniform mechanism for 
naming, accessing, and protecting all objects within the system. In all of these 
systems, the capabilities are managed by (trusted) kernel software, often with 
special assistance from the hardware. 

The use of capabilities as a conceptual base for distributed systems has 
been minimal to date, a few exceptions being the Eden system [ALMES et al. 
1985], LINCS [DONNELLEY 1981], and ACCENT [RASHID 1981], Our scheme 
also uses a distributed capability mechanism, but it differs from each of these 
in significant ways, which we will describe after discussing our proposal. 

This paper describes a scheme in which user processes manipulate 
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capabilities directly in their own address spaces. Except for some very special 
parts of it, the kernel does not even know that capabilities are in use. To 
prevent users from forging new capabilities or tampering with existing ones, 
capabilities are protected cryptographically. This cryptographic protection 
scheme will first be described in some detail, followed by a discussion of how 
these capabilities are used in the Amoeba distributed operating system. 

2. PORTS AND CAP ABILITIES 

2.1. Background on Amoeba 
Amoeba is an object-oriented distributed operating system. Its semantic 
model is based on having client processes perform operations on objects 
managed by server processes. Objects are specified by capabilities. Operations 
are carried out by having processes exchange messages, generally in the form 
of a request from a client followed later by a reply from a server. The stan
dard message format provides a place for one capability in the header, typi
cally for the object being operated on, but users are free to put other capabili
ties in the data field as required. The header also contains room for the opera
tion code and some parameters. 

After making a request, a client blocks until the reply comes in, so the 
approach can be regarded as a simple remote procedure call mechanism [SPEC
TOR 1982; BIRRELL and NELSON 1984). The system does not use "connec
tions" or virtual circuits or any other long-lived communication structures. 

2.2. Ports 
Every server has one or more ports to which client processes can send messages 
to contact the service (i.e., the server process). Ports consist of large numbers, 
typically 48 bits, which are known only to the server processes that comprise 
the service, and to the server's clients. For a public service, such as the file 
system, the port will generally be made known to all users. The ports used by 
an ordinary user process will, in general, be kept secret. Knowledge of a port 
is taken by the system as prima facie evidence that the sender has a right to 
communicate with the service. Of course the service is not required to carry 
out work for clients just because they know the port, for example, the file 
server will refuse to read or write files for clients lacking appropriate file capa
bilities. Thus two levels of protection are used here: ports for protecting 
access to servers, and capabilities for protecting access to individual objects. 
These two mechanisms are related, as will be shown later. 

Although the port mechanism provides a convenient way to provide partial 
authentication of clients ("if you know the port, you may at least talk to the 
service"), it does not deal with the authentication of servers. How does one 
insure that malicious users do not listen on the file server's port, and try to 
impersonate the file server to the rest of the system? 

One approach is to have all ports manipulated by kernels that are presumed 
trustworthy and are supposed to know who may listen on which port. As 
mentioned above, we reject this strategy because on some machines, e.g., per 
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so nal computers users may be able to tamper with the operating system ker
nel, and also because we believe that by making the kernel as small as possi
ble, we can enhance the reliability of the system as a whole. Instead, we have 
chosen a different solution that can be implemented in either hardware or 
software. 

In the hardware solution, we need to place a small interface box, which we 
call an F-box (Function-box) between each processor module and the network. 
The most logical place to put it is on the VLSI chip that is used to interface to 
the network. Alternatively, it can be put on a small printed circuit board 
inside the wall socket through which personal computers attach to the network. 
In those cases where the processors have user mode and kernel mode and the 
operating systems can be trusted, it could be put into operating system. In 
any event, we assume that somehow or other all messages entering and leaving 
every processor undergo a simple transformation that users cannot bypass. 

The transformation works like this. Each port is really a pair of ports, P, 
and G, related by: P = F(G), where Fis a (publicly-known) one-way function 
[Wilkes 1968; Purdy 1974; Evans et al. 1974] performed by the F-box. The 
one-way function has the property that given G it is a straightforward compu
tation to find P, but that given P, finding G is not feasible. 

Using the one-way F-box, the server authentication can be handled in a sim
ple way, as illustrated in figure 1. Each server chooses a get-port, G, and com
putes the corresponding put-port, P. The get-port is kept secret; the put-port 
is distributed to potential clients or in the case of public servers, is published. 
When the server is ready to accept client requests, it does a GET( G). The F
box then computes P = F(G) and waits for messages containing P to arrive. 
When one arrives, it is given to the process that did GET(G). To send a mes
sage to the server, the client merely does PUT(P), which sends a message con
taining Pin a header field to the server. The F-box on the sender's side does 
not perform any transformation on the P field of the outgoing message. 

Now let us consider the system from an intruder's point of view. To imper
sonate a server, the intruder must do GET(G). However, G is a well-kept 
secret, and is never transmitted on the network. Since we have assumed that 
G cannot be deduced from P (the one-way property of F) and that the 
intruder cannot circumvent the F-box, he cannot intercept messages not 
intended for him. An intruder doing GET(P) will simply cause his F-box to 
listen to the (useless) port F(P). Replies from the server to the client are pro
tected the same way, only with the client picking a get-port for the reply, say, 
G', and including P' = F(G') in the request message. 

The presence of the F-box makes it easy to implement digital signatures for 
still further authentication, if that is desired. To do so, each client chooses a 
random signature, S, and publishes F(S). The F-box must be designed to 
work as follows. Each message presented to the F-box for transmission con
tains three special header fields: destination (P), reply (G'), and signature (S). 
The F-box applies the one-way function to the second and third of these, 
transmitting the three ports as: P, F(G'), and F(S), respectively. The first is 
used by the receiver's F-box to admit only messages for which the 
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INTRUDER 

CLIENT SERVER 

FIGURE 1. Clients, servers, intruders, and F-boxes. 

corresponding GET has been done, the second is used as the put-port for the 
reply, and the third can be used to authenticate the sender, since only the true 
owner of the signature will know what number to put in the third field to 
insure that the publicly-known F(S) comes out. 

It is important to note that the F-box arrangement merely provides a simple 
mechanism for implementing security and protection, but gives operating sys
tem designers considerable latitude for choosing various policies. The mechan
ism is sufficiently flexible and general that it should be possible t o put it into 
hardware without precluding many as-yet-unthought-of operating systems to 
be designed in the future. In effect, it is a protected associative addressing 
scheme. The associative addressing can be simulated in software when the ker
nels are trusted by having each one maintain a cache of (port, machine
number) pairs. If a port is not in the cache, it can be found by broadcasting a 
LOCATE message. How this can be carried out efficiently, even in a network 
without broadcasting, is discussed in [MULLENDER and VITANYI 1984], along 
with many of the implications of location dependendent addressing, process 
migration, etc. 
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2.3. Capabilities 
In any object-based system, a mechanism is needed to keep track of which 
processes may access which objects and in what way. The normal way is to 
associate a capability with each object, with bits in the capability indicating 
which operations the holder of the capability may perform. In a distributed 
system this mechanism should itself be distributed, that is, not centralized in a 
single monolithic "capability manager." In our proposed scheme, each object 
is managed by some server, which itself is a user (as opposed to kernel) pro
cess, and which understands the capabilities for its objects. 

A capability typically consists of four fields as illustrated in figure 2. 

1. The put-port of the server that manages the object 
2. An object number meaningful only to the server managing the object 
3. A rights field, containing a 1 bit for each permitted operation 
4. A random number, for protecting each object 

PORT OBJECT I RIGHTS I RANDOM 

FIGURE 2. A Capability 

The basic model of how capabilities are used and protected can be illus
trated by a simple example: a client wishes to create a file using the file server, 
write some data into the file, and then give another client permission to read 
(but not modify) the file just written. To start with, the client sends a message 
to the file server's put-port specifying that a file is to be created. The request 
might contain a file name, account capability, etc. The server would then pick 
a random number, store this number in its object table, and insert it into the 
newly-formed object capability. The reply would contain this capability for 
the newly created ( empty) file. 

To write the file, the client would send a succession of data messages, each 
containing the capability and some data. When each WRITE request arrived 
at the file server process, the server would use the OBJECT field contained in the 
capability as as index into its file tables to locate the object. For a UNIXt like 
file server, the object number would be the i-number, which could be used to 
locate the i-node. 

Several object protection systems are possible using this framework. In the 
simplest one, the server merely compares the random number in the file table 
(put there by the server when the object was created) to the one contained in 
the capability. If they agree, the capability is assumed to be genuine, and all 
operations on the file are allowed. This system is easy to implement, but does 
not distinguish between READ, WRITE, DELETE, and other operations that 
may be performed on objects. 

t UNIX is a Trademark of AT&T Bell Laboratories. 
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However, the basic idea can easily be modified to provide that distinction. 
We will now describe three different algorithms for protecting the access rights. 
In the first version, when a file (object) is created, the random number chosen 
and stored in the file table is used as an encryption/ decryption key. The capa
bility is built up by taking the RIGHI'S field, which is initially all ls to indicate 
that all operations are legal, and the RANDOM field (e.g., 48 bits), which con
tains a known constant, say, 0, and treating them as a single number. This 
number is then encrypted by the key just stored in the file table, and the result 
put into the newly minted capability in the combined RIGHTS-RANDOM field. 

When the capability is returned for use, the server uses the OBJECT field (not 
encrypted) to find the file table and hence the encryption/decryption key. If 
the result of decrypting the capability leads to the known constant in the RAN

DOM field, the capability is almost assuredly valid, and the RIGHI'S field can be 
believed. Oearly, an encryption function that mixes the bits thoroughly is 
required to ensure that tampering with the Rights Field also affects the known 
constant. EXCLUSIVE-OR'ing a constant with the concatenated RIGHI'S and 
RANDOM fields will not do. 

A second algorithm for protecting the RIGHI'S field makes use of one-way 
functions, similar to the way ports are protected. When a server is asked to 
create a new object, it generates a random number, as usual. The RIGHTS field 
is then EXCLUSIVE-ORed with the random number and then used as the 
argument of the one-way function, F, yielding a value that is put into the RAN

DOM field of the capability. Symbolically, 

RANDOM field = F{random-number XOR rights bits) . 

The RIGHI'S field is included in the capability itself in plaintext. When a capa
bility arrives at the server, it finds the original random number from its inter
nal tables and EXCLUSIVE-OR's the plaintext RIGHI'S field with it, passing 
this result through F. If the result agrees with the RANDOM field in the capa
bility, the capability is considered valid. Although a user can tamper with the 
plaintext RIGHI'S field, such tampering will result in the server ultimately 
rejecting the capability. 

When either of these protection systems are used, the owner of an object can 
easily give an exact copy of its capability to another process by just sending it 
the bit pattern, but to pass, say, read-only access, is slightly harder. To 
accomplish this task, the process must send the capability back to the server 
along with a bit mask and a request to fabricate a new capability with fewer 
rights. 

This idea works well except that it requires going back to the server every 
time a sub-capability with fewer rights is needed. We will now describe a third 
algorithm that does not have this drawback. To start with, find a set of N 
commutative one-way functions, F0, F 1, • • ·, FN-I corresponding to the N 
rights present in the RIGHI'S field. When an object is created, the server 
chooses a random number and puts it in both its internal table and the RAN

DOM field, just as in the very first scheme presented. The server also sets all 
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the RIGHI'S field bits to 1. 
A client can delete permission k from a capability by replacing the RANDOM 

field, R, with Fk(R) and turning off the corresponding bit in the RIGHI'S field. 
When a capability comes into the server to be used, the server fetches the ori
ginal random number from its table, looks at the RIGHI'S field and applies the 
functions corresponding to the deleted rights to it. H the result agrees with the 
number present in the capability, then the capability is accepted as genuine, 
otherwise it is rejected. 

Note that although the RIGHI'S field is not encrypted, it is pointless for a 
client to tamper with it, since the server will detect that. In theory at least, the 
RIGHI'S field is not even needed, since the server could try all 2N combinations 
of the functions to see if any worked. Its presence merely speeds up the 
checking. It should also be clear why the functions must be commutative-it 
does not matter in what order the bits in the RIGHI'S field were turned off. 
This scheme is discussed in more detail in [MUI.LENDER 1985). 

The organization of capabilities and objects discussed above has the interest
ing property that although no central record is kept of who has which capabili
ties, it is easy to revoke existing capabilities. All that the owner of an object 
need do is ask the server to change the random number stored in its internal 
table and return a new capability. Obviously this operation must be protected 
with a bit in the RIGHI'S field, but if it succeeds, all existing capabilities for 
that object are instantly invalidated. 

2.4. Protection without F-Boxes 
Earlier we said that protection could also be achieved in software (i.e., without 
F-boxes). It is slightly more complicated, since it uses both conventional and 
public-key encryption [DIFFm and liBLLMAN 1976), but it is still quite usable. 
The basic idea underlying the method is the fact that in nearly all networks an 
intruder can forge nearly· all parts of a message being sent except the source 
address, which is supplied by the network interface hardware. To take advan
tage of this property, imagine a (possibly symmetric) conceptual matrix, M, of 
conventional (e.g., DES) encryption keys, with the rows being labeled by 
source machine and the columns by destination machine. Thus the matrix 
selects a unique key for encrypting the capabilities in any message. The data 
need not be encrypted, although that is also possible if needed. 

Each machine is assumed to know the contents of its row and column of the 
matrix, and nothing else (how this will be achieved will be discussed shortly). 
Thus a client C will know Mex and Mxe for all X, and a server Swill know 
Msx and Mxs, all of which are conventional (not public) keys. With this 
arrangement, intruder I can easily capture messages from client C to server S, 
but attempts to "play them back" to the server will fail because the server will 
see the source machine as I (assumed unforgeable) and use element M1s as the 
decryption key instead of the correct Mes- No matter what the intruder does, 
he cannot trick the server into using a decryption key that decrypts the capa
bilities to make sense. 

To avoid having to run the encryption/ decryption algorithm frequently, all 
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machines can maintain a hashed cache of capabilities that they have been 
using frequently. Clients will hash their caches on the unencrypted capabilities 
in the form of triples: (unencrypted capability, destination, encrypted capabil 
it y), whereas servers will hash theirs in the form of triples: ( encrypted capabil
ity, source, unencrypted capability). 

To set up the matrix initially, the following procedure can be used. A pub
lic server, such as a file server, makes its put-port and a public encryption key 
known to the whole world. When a new machine joins the network ( e.g., after 
a crash or upon initial system boot), it sends a broadcast message announcing 
its presence. Suppose, for example, the file server has just come up, and must 
(1) prove that it is the file server to other processes, and (2) establish the con
ventional keys used for encrypting capabilities in both directions. 

A client machine, C, which receives the broadcast from the alleged file 
server, F, picks a new conventional encryption key, K, for use in subsequent C 
to F traffic and sends it to F encrypted with Fs public key. F then decrypts K 
and replies to C by sending a message containing both K and a newly chosen 
conventional key to be used for reverse traffic. This message is encrypted both 
with K itself and with the inverse of Fs public key, so C can use Kand Fs 
public key to decrypt it. If the decrypted message contains K, C can be sure 
that the other conventional key was indeed generated by owner of Fs public 
key, thus convincing C that he is indeed talking to the file server. Both of the 
above-mentioned conditions have now been fulfilled, so normal communication 
can now take place. Note that the use of different conventional keys after 
each reboot make it impossible for an intruder to fool anyone by playing back 
old messages. 

Yet another any possibility for protecting capabilities in the absence of F
box es is to use conventional link-level encryption on all the data communica
tion lines. 

3. USE OF CAPABILITIES IN AMOEBA 

In the preceeding sections we have seen how capabilities can be cryptographi
cally protected so that they can be managed directly by user processes 
throughout the distributed system, without any help, or even knowledge by the 
operating system kernels. In the following sections we will look at some of the 
areas these capabilities have been applied in the Amoeba distributed operating 
system. The areas to be covered are: the memory server, the block server, the 
fl.at file server, the directory server, the multiversion file server, and the bank 
server. Capabilities are also used in other areas, but space limitations prevent 
them from being discussed here. 

3.1. The memory server 
The memory server is a process that manages physical memory and processes 
at the lowest level. It is actually part of the kernel present on each machine, 
but it communicates with other processes via the normal message protocol so 
that its clients do not perceive it as being special in any way. 

The memory server is typically used for creating processes, as follows. The 
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parent process tells the memory server to CREA TE SEGMENT, providing an 
initial size and some other information. The memory server then returns a 
capability for the newly created segment. Using this capability, the parent 
process can use the WRITE operation to load data into the segment ( the 
READ operation can get it back again later if needed). The parent process 
will normally repeat this cycle, creating and loading segments until all the 
child process' initial segments have been constructed, for example, text, data, 
and stack segments. 

To create the child process, the parent then performs a MAKE PROCESS 
operation, providing the capabilities for the child's segments as parameters. 
The memory server then returns a process capability for the child, with which 
the child can be started, stopped, and generally manipulated. By directing the 
CREA TE SEGMENT requests to a memory server on a remote machine, the 
parent can create the child wherever it wants to, providing a more convenient 
and efficient interface than the traditional FORK + EXEC. 

The memory server can also easily support an "electronic disk." An elec
tronic disk of the required size is created using CREA TE SEGMENT, and 
then can be read and written, either by local or remote processes using READ 
and WRITE. 

3.2. The block server 
The Amoeba file system also makes heavy use of capabilities. As far as the 
operating system is concerned, a file system is just one or more server 
processes, with no special privileges. This design makes it possible to have 
multiple, potentially quite different file systems running at the same time. 
Three distinct file systems have in fact been implemented. 

The first file system is highly modular, consisting of a block server, fl.at file 
server, and directory server. The block server can be requested to allocate a 
disk block and return a capability for it. Using this capability, the block can 
be written, read, or deallocated. The block server has no concept of a file. By 
splitting the block server off from the file server, it becomes possible for any 
user to implement any kind of special-purpose file system that he needs, 
without having to get into the details of disk storage management. 

3.3. The fiat file server 
The fl.at file server provides its clients with files consisting of a linear sequence 
of bytes, numbered from O to the file size - l. The basic operations here are 
CREATE FILE, DESTROY FILE, WRITE FILE, and READ FILE. 
CREA TE FILE returns a capability used in the other calls, each of which 
implicitly specifies a file via the capability, and a position in the file via a 
parameter. The server does not have any concept of an "open" file. One can 
operate on any file for which a valid capability can be presented. 
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3.4. The directory server 
The directory server manages directories, each of which is a set of (ASCII 
name, capability) pairs. A typical operation is to present the directory server 
with the capability for a directory, plus an ASCII string, and ask it to look up 
and return the capability that corresponds to the given string in the given 
directory. Operations also exist to enter and remove (ASCII name, capability) 
entries from directories. These primitives, and a few others, provide an ade
quate basis for building up aribtrary directory trees, graphs, etc. Note that the 
capabilities within a directory need not all be file capabilities and cenainly 
need not all be located in the same place or managed by the same server. To 
look up the path a/b/c relative to some directory, a client would ask the server 
to find the string "a" in that directory. H the capability returned happens to 
be for a directory managed by a different directory server, then the ensuing 
request to look up "b" just goes to the new server. Unless the client compared 
the SERVER fields in the two capabilities, it wouldn't even notice that succeed
ing requests were going to different servers. The distribution is completely 
transparent. 

3.5. The multiversion file server 
The second file system supports tree-shaped files. Each file consist of a tree of 
pages, rather than a simple linear byte sequence. An important property of 
this file system is its ability to provide atomic updates on files. In short, a user 
can ask to make a new version of a file, which results in a capability for the 
new version. The new version acts like it is a page-by-page copy of the origi
nal, although in fact, pages are only copied when they are changed. 

The new version can be modified at will, and then atomically "committed," 
thus becoming the new file. A file is thus a sequence of versions. Once aver
sion of a file has been committed, it cannot be modified. This technique has 
been designed for use with video disks and other "write once" media. More 
details can be found in [MULi.ENDER and TANENBAUM 1982]. • 

The third file system is a capability-based UNIX file system, to ease the 
problem of moving existing applications from UNIX to Amoeba. 

3. 6. The bank server 
Resource control and accounting also makes use of the capabilities. The basis 
for the resource control and accounting is the bank server, which manages 
"bank account" objects. The principal operation on bank accounts is transfer
ring virtual money from one account to another. Thus to obtain permission to 
create a file, a client would present a capability for one of his accounts to the 
bank server, and request that the bank server withdraw some money from that 
account and deposit it in the account of the file server. Assuming the client 
trusts the file server, the client can pre-pay for a substantial amount of work, 
in order to eliminate the overhead of going back to the bank on each request. 

The bank server is prepared to maintain accounts in different, possibly con
vertible, possibly inconvertible, currencies. This mechanism can form the basis 
of a variety of policies, used by different servers. For example, by having the 
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file server charge x dollars per kiloblock of disk space, quotas can be imple
mented by limiting how many dollars each client has. CPU time could be 
charged in francs, phototypesetter pages in yen, and so on. In some cases 
(e.g., disk blocks, but not typesetter pages), returning the resource might result 
in the client getting his money back 

4. DISCUSSION 

In this paper we have shown how ports and capabilities can be managed in a 
protected way in a distributed operating system. By moving the entire capabil
ity management out of the kernel, we can provide a minimal kernel, and yet 
have a powerful and general conceptual basis for naming and protection 
throughout the system. A number of examples of how capabilities are used in 
Amoeba were presented as examples. 

The Eden [ALMEs et al. 1985] and ACCENT [RAsHID 1981] systems also use 
capability-like mechanisms for protection, butin both cases, the ultimately 
responsiblity for managing the capabilities rests with the kernel. In Eden, 
users may manage capabilities directly, but the kernel maintains copies, to be 
able to verify each one before it is used. We maintain that moving all of the 
capability management out of the kernel is a step in the right direction. Just 
as file servers are now rarely part of the kernel of distributed systems, capabil
ity management should not be either. The smaller and simpler the kernel, the 
easier it is to write, debug, and maintain. Furthermore, if the system consists 
of a building full of rooms with wall sockets into which any user can plug any 
machine, protection based on trusted kernels managing capabilities becomes 
impossible. A malicious user could modify his kernel to subvert the capability 
checking and thereby bypass the protection scheme. 

In [DONNELLEY 1981], a description is given of work being done at 
Lawrence Livermore Laboratory is given. Two schemes are described, one 
using a password in each capability, and one using public key cryptography. 
Although these schemes are similar to ours in some ways, they do not provide 
a way to protect individual rights bits to allow one capability to read an object 
and another to write it. Furthermore, our proposal addresses the problem of 
how to prevent users from impersonating servers or reading network traffic not 
intended for them. Both the F-boxes and the matrix method described in 2.4 
can be used to fight wiretapping. 
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Capability-based operating systems have traditionally required large, complex 
kernels to manage the use of capabilities. In our proposal, capability manage
ment i.s done entirely by user programs without giving up any of the protection 
aspects normally associated with capabilities. The basic idea is to use one-way 
functions and encryption to protect sensitive information. 

1. INTRODUCTION 
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Soon, most office buildings will have a cable snaking· through the cable ducts, 
with an outlet in each room into which users can plug their personal comput
ers. The traditional approach to protection, a secure operating system in every 
machine to check permissions before carrying out a command, is not suitable 
for such an environment. It is too easy for a malicious user to replace the 
operating system in one of the network machines, or to replace a machine alto
gether by one without a secure operating system, to obtain confidential inf or
mation illicitly. 

New methods for protection must be devised, methods that do not require 
secure, trustworthy operating systems. This paper presents mechanisms, based 
on encryption. We shall show that they are equally powerful, and, in some 
cases, more versatile than existing protection schemes, implemented by a 
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secure operating system. We propose to base the software design on a 
different conceptual model - the object model. In this model, the system deals 
with abstract objects, each of which has some set of abstract operations that 
can be performed on it. 

Associated with each object are one or more "capabilities" [Dennis66] which 
are used to control access to the object, both in terms of who may use the 
object and what operations he may perform on it. At the user level, the basic 
system primitive is performing an operation on an object, rather than such 
things as establishing connections, sending and receiving messages, and closing 
connections. For example, a typical object is the file, with operations to read 
and write portions of it. 

The object model is well-known in the programming languages community 
under the name of "abstract data type." This model is especially well-suited to 
a distributed system because in many cases an abstract data type can be imple
mented on one of the processor-memory modules described above. When a 
user process executes one of the visible functions in an abstract data type, the 
system arranges for the necessary underlying message transport from the user's 
machine to that of the abstract data type and back. The header of the mes
sage can specify which operation is to be performed on which object. This 
arrangement gives a very clear separation between users and objects, and 
makes it impossible for a user to directly inspect the representation of an 
abstract data type by bypassing the functional interface. 

A major advantage of the object or abstract data type model is that the 
semantics are inherently location independent. The concept of performing an 
operation on an object does not require the user to be aware of where objects 
are located or how the communication is actually implemented. This property 
gives the system the possibility of moving objects around to position them 
close to where they are frequently used. Furthermore, the issue of how many 
processes are involved in carrying out an operation, and where they are located 
is also hidden from the user. 

It is frequently convenient to implement the object model in terms of clients 
(users) who send messages to services. A service is defined by a set of com
mands and responses. Each service is handled by one or more server processes 
that accept messages from clients, carry out the required work, and send back 
replies. The design of these servers and the design of the protocols they use 
form an important part of the system software of our proposed fifth generation 
computers. 

As an example of the problems that must be solved, consider a file server. 
Among other design issues that must be dealt with are how and where inf or
mation is stored, how and when it is moved, how it is backed up, how con
current reads and writes are controlled, how local caches are maintained, how 
information is named, and how accounting and protection are accomplished. 
Furthermore, the internal structure of the service must be designed: how many 
server processes are there, where are they located, how and when do they com
municate, what happens when one of them fails, how is a server process organ
ized internally for both reliability and high performance, and so on. 
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Analogous questions arise for all the other servers that comprise the basic sys
tem software. 

2. PORTS AND CAP ABILITIES 

2.1. Ports 
Every service has one or more ports [Mullender84] to which client processes 
can send packets to contact the service. Ports consist of large numbers, typi
cally 48 bits, which are known only to the server processes that comprise the 
service, and to the service's clients. For a public service, such as the system 
file service, the port will be generally made known to all users. The ports used 
by an ordinary user process will, in general, be kept secret. Knowledge of a 
port is taken by the system as prima facie evidence that the sender has a right 
to communicate with the service. Of course the service is not required to carry 
out work for clients just because they know the port, for example, the public 
file service may refuse to read or write files for clients lacking account 
numbers, appropriate authorization, etc. 

Although the port mechanism provides a convenient way to provide partial 
authentication of clients ("if you know the port, you may at least talk to the 
service"), it does not deal with the authentication of servers. The basic primi
tive operations offered by the system are PUT(PORT, MESSAGE) and 
GET(PORT, MESSAGE). Since everyone knows the port of the file server, as 
an example, how does one insure that malicious users do not execute GETs on 
the file server's port, in effect impersonating the file server to the rest of the 
system? · 

One approach is to have all ports manipulated by kernels that are presumed 
trustworthy and are supposed to know who may GET from which port. We 
reject this strategy because some machines, e.g., personal computers connected 
to larger multimodule systems may not be trustworthy, and also because we 
believe that by making the kernel as small as possible, we can enhance the reli
ability of the system as a whole. Instead, we have chosen a different solution 
that can be implemented in either hardware or software. First we will describe 
the hardware solution; later we will describe the software solution. 

In the hardware solution, we need to place a small interface box, which we 
call an F-box (Function-box) between each processor module and the network. 
The most logical place to put it is on the VLSI chip that is used to interface to 
the network. Alternatively, it can be put on a small printed circuit board 
inside the wall socket through which personal computers attach to the network. 
In those cases where the processors have user mode and kernel mode and a 
trusted operating system running in kernel mode, it can also be put into 
operating system software. In any event, we assume that somehow or other all 
packets entering and leaving every processor undergo a simple transformation 
that users cannot bypass. 

The transformation works like this. Each port is really a pair of ports, P, 
and G, related by: P = F(G), where Fis a (publicly-known) one-way function 
[Wilkes68, Purdy74, Evans74] performed by the F-box. The one-way function 
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has the property that given G it is a straightforward computation to find P, 
but that given P, finding G is so difficult that the only approach is to try every 
possible G to see which one produces P. If P and G contain sufficient bits, 
this approach can be made to take millions of years on the world's largest 
supercomputer, thus making it effectively impossible to find G given only P. 
Note that a one-way function differs from a cryptographic transformation in 
the sense that the latter must have an inverse to be useful, but the former has 
been carefully chosen so that no inverse can be found. 

Using the one-way F-box, the server authentication can be handled in a sim
ple way. Each server chooses a get-port, G, and computes the corresponding 
put-port, P. The get-port is kept secret; the put-port is distributed to potential 
clients, or, in the case of public servers, is published. When the server is ready 
to accept client requests, it does a GET(G). The F-box then computes 
P = F(G) and waits for packets containing P to arrive. When one arrives, it 
is given to the process that did GET(G). To send a packet to the server, the 
client merely does PUT(P), which sends a packet containing P in a header 
field to the server. The F-box on the sender's side does not perform any 
transformation on the P field of the outgoing packet. 

Now let us consider the system from an intruder's point of view. To imper
sonate a server, the intruder must do GET(G). However, G is a well-kept 
secret, and is never transmitted on the network, Since we have assumed that G 
cannot be deduced from P (the one-way property of F) and that the intruder 
cannot circumvent the F-box, he cannot intercept packets not intended for 
him. Replies from the server to the client are protected the same way, only 
with the client picking a get-port for the reply, say, G', and including 
P' = F ( G') in the request packet. 

The presence of the F-box makes it easy to implement digital signatures for 
still further authentication, if that is desired. To do so, each client chooses a 
random signature, S, and publishes F(S). The F-box must be designed to 
work as follows. Each packet presented to the F-box contains three special 
header fields: destination (P), reply (G'), and signature (S). The F-box applies 
the one-way function to the second and third of these, transmitting the three 
ports as: P, F(G'), and F(S), respectively. The first is used by the receiver's 
F-box to admit only packets for which the corresponding GET has been done, 
the second is used as the put-port for the reply, and the third can be used to 
authenticate the sender, since only the true owner of the signature will know 
what number to put in the third field to insure that the publicly-known F(S) 
comes out. 

It is important to note that the F-box arrangement merely provides a simple 
mechanism for implementing security and protection, but gives operating sys
tem designers considerable latitude for choosing various policies. The mechan
ism is sufficiently flexible and general that it should be possible to put it into 
hardware with precluding many as-yet-unthought-of operating systems to be 
designed in the future. 
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2.2. Capabilities 
In any object-based system, a mechanism is needed to. keep track of which 
processes may access which objects and in what way. The normal way is to 
associate a capability with each object, with bits in the capability indicating 
which operations the holder of the capability may perform. In a distributed 
system this mechanism should itself be distributed, that is, not centralized in a 
single monolithic "capability manager." In our proposed scheme, each object 
is managed by some service, which is a user ( as opposed to kernel) program, 
and which understands the capabilities for its objects. 

A capability typically consists of four fields: 

1. The put-port of the service that manages the object 
2. An Object Number meaningful only to the service managing the object 
3. A Rights Field, which contains a 1 bit for each permitted operation 
4. A Random Number for protecting each object 

The basic model of how capabilities are used can be illustrated by a simple 
example: a client wishes to create a file using the file service, write some data 
into the file, and then give another client permission to read (but not modify) 
the file just written. To start with, the client sends a packet to the file service's 
put-port specifying that a file is to be created. The request might contain a file 
name, account number and similar attributes, depending on the exact nature of 
the file service. The server would then pick a random number, store this 
number in its object table, and insert it into the newly-formed object capabil
ity. The reply would contain this capability for the newly created (empty) file. 

To write the file, the client would send a succession of data packets, each 
one containing the capability and some data. When each WRITE request 
arrived at the file server process, the server would normally use the object 
number contained in the capability as as index into its tables to locate the file. 

Several object protection systems are possible using this framework. In the 
simplest one, the server merely compares the random number in the file table 
(put there by the server when the object was created) to the one contained in 
the capability. If they agree, the capability is assumed to be genuine, and all 
operations on the file are allowed. This system is easy to implement, but does 
not distinguish between READ, WRITE, DELETE, and other operations that 
may be performed on objects. 

However, it can easily be modified to provide that distinction. In the 
modified version, when a file (object) is created, the random number chosen 
and stored in the file table is used as an encryption/decryption key. The capa
bility is built up by taking the Rights Field (e.g., 8 bits), which is initially all ls 
indicating that all operations are legal, and the Random Number Field (e.g., 
56 bits), which contains a known constant, say, 0, and treating them as a sin
gle number. This number is then encrypted by the key just stored in the file 
table, and the result put into the newly minted capability in the combined 
Rights-Random Field. When the capability is returned for use, the server uses 
the object number (not encrypted) to find the file table and hence the 
encryption/decryption key. If the result of decrypting the capability leads to 
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the known constant in the Random Number Field, the capability is almost 
assuredly valid, and the Rights Field can be believed. Clearly, an encryption 
function that mixes the bits thoroughly is required to ensure that tampering 
with the Rights Field also affects the known constant. Exclusive or'ing a con
stant with the concatenated Rights and Random fields will not do. 

When this modified protection system is used, the owner of the object can 
easily give an exact copy of the capability to another process by just sending it 
the bit pattern, but to pass, say, read-only access, is harder. To accomplish 
this task, the process must send the capability back to the server along with a 
bit mask and a request to fabricate a new capability whose Rights Field is the 
Boolean-and of the Rights Field in the capability and the bit mask. By choos
ing the bit mask carefully, the capability owner can mask out any operations 
that the recipient is not permitted to carry out. 

This modified system works well except that it requires going back to the 
server every time a sub-capability with fewer rights is needed. We have dev
ised yet another protection system that does not have this drawback. This 
third scheme requires the use of a set of N commutative one-way functions, 
F0, F 1, • • ·, FN-1, corresponding to the N rights present in the Rights 
Field. When an object is created, the server chooses a random number and 
puts it in both the file table and the Random Number Field, just as in the first 
scheme presented. It also sets all the Rights Field bits to 1. 

A client can delete permission k from a capability by replacing the random 
number, R, with Fk(R) and turning off the corresponding bit in the Rights 
Field. When a capability comes into the server to be used, the server fetches 
the original random number from the file table, looks at the Rights Field, and 
applies the functions corresponding to the deleted rights to it. If the result 
agrees with the number present in the capability, then the capability is 
accepted as genuine, otherwise it is rejected. Note that although the Rights 
Field is not encrypted, it is pointless for a client to tamper with it, since the 
server will detect than immediately. In theory at least, the Rights Field is not 
even needed, since the server could try all 2N combinations of the functions to 
see if any worked. Its presence merely speeds up the checking. It should also 
be clear why the functions must be commutativeit does not matter in what 
order the bits in the Rights Field were turned off. 

The organization of capabilities and objects discussed above has the interest
ing property that although no central record is kept of who has which capabili
ties, it is easy to retract existing capabilities. All that the owner of an object 
need do is ask the server to change the random number stored in the file table. 
Obviously this operation must be protected with a bit in the Rights Field, but 
if it succeeds, all existing capabilities are instantly invalidated. 
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2.3. Protection without F-boxes 
Earlier we said that protection could also be achieved without F-boxes. It is 
slightly more complicated, since it uses both conventional and public-key 
encryption, but it is still quite usable. The basic idea underlying the method is 
the fact that in nearly all networks an intruder can forge nearly all parts of a 
packet being sent except the source address, which is supplied by the network 
interface hardware. To take advantage of this property, imagine a (possibly 
symmetric} conceptual matrix of conventional (e.g., DES) encryption keys, 
with the rows being labeled by source machine and the columns by destination 
machine. Thus the matrix selects a unique key for encrypting the capabilities 
in any packet. The data need not be encrypted, although that is also possible 
if needed. 

Each machine is assumed to know its row and column of the matrix, and 
nothing else (how this will be achieved will be discussed shortly). With this 
arrangement, intruder / can easily capture packets from client C to server S, 
but attempts to "play them back" to the server will fail because the server will 
see the source machine as I (assumed unforgeable) and use element M1s as the 
decryption key instead of the correct Mes- No matter what the intruder does, 
he cannot trick the server into using a decryption key that decrypts the capa
bilities to make sense, that is, to contain random numbers that agree with 
those stored in the file tables. 

To avoid having to run the encryption/ decryption algorithm frequently, all 
machines can maintain a hashed cache of capabilities that they have been 
using frequently. Clients will hash their caches on the unencrypted capabilities 
in the form of triples: (unencrypted capability, destination, encrypted capabil
ity), whereas servers will hash theirs in the form of triples: (encrypted capabil
ity, source, unencrypted capability). 

To set up the matrix initially, the following procedure can be used. A pub
lic server, such as a file server, makes its put-port and a public encryption key 
known to the whole world. When a new machine joins the network (e.g., after 
a crash or upon initial system boot), it sends a broadcast message announcing 
its presence. Suppose, for example, the file server has just come up, and must 
(1) prove that it is the file server to other processes, and (2) establish the con
ventional keys used for encrypting capabilities in both directions. 

A client machine, C, which receives the broadcast from the alleged file server, F, 
picks a new conventional encryption key, K, for use in subsequent C to F traffic 
and sends it to F encrypted with Fs public key. F then decrypts Kand replies to 
C by sending a packet containing both Kand a newly chosen conventional key to 
be used for reverse traffic. This packet is encrypted both with K itself and with the 
inverse of Fs public key, so C can use Kand Fs public key to decrypt it. If the 
decrypted packet contains K, C can be sure that the other conventional key was 
indeed generated by owner of Fs public key, thus convincing C that he is indeed 
talking to the file server. Both of the above-mentioned conditions have now been 
fulfilled, so normal communication can now take place. Note that the use of 
different conventional keys after each reboot make it impossible for an intruder to 
fool anyone by playing back old packets. 
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SUMMARY 
lbis paper has discussed a model for a fifth generation computer system archi
tecture and its operating system. The operating system is based on the use of 
objects protected by sparse capabilities. Conclusions 

The paper shows that it is possible and practical to build capability-based 
distributed operating systems, with capability management outside of the 
operating system kernel. Since the operating system itself is particularly 
vulnerable to attack in an office environment as we have described, our 
method is more secure than traditional protection schemes that must rely on 
the security of the operating system kernel. 

Two methods have been presented for the implementation of authenticated 
communication between client and server processes, one using F-boxes, the 
other using a combination of public key encryption and conventional encryp
tion techniques. Currently public key encryption is still expensive, both in 
terms of computational effort and storage requirements. The F-box mechan
ism is a good alternative until fast public key algorithms arrive. F-boxes can 
be put in the cable ducts, on the network interface cards, in integrated circuits 
that carry out the network protocol, or, if necessary, in the operating system 
kernel. 

Capability management need not be carried out by a secure operating sys
tem: all operations on capabilities that are currently implemented in secure 
operating system kernels can also be carried out by choosing appropriate 
encryption techniques, with which client processes can be allowed to handle 
capabilities and carry out certain (restricted) sets of operations on them. 
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Most computer networks use a byte stream protocol for communication 
between processes, which suffer from two important drawbacks: the address
ing mechanisms provided are often process-dependent or location-dependent, 
and communication is slow. While carrying out research into distributed 
operating systems at the Vrije Universiteit and the Centre for Mathematics & 
Computer Science, we have developed a transaction-oriented transport proto
col for the Amoeba distributed operating system [Mullender86], aimed for high
speed, with an addressing mechanism that is not only more general, but pro
vides a protection mechanism as well. The basic mechanism for communica
tion between processes is the transaction: a client process sends a request to 
a server process, which carries out the request and returns a reply. Protection 
is provided by using ports, chosen from a sparse address space, for address
ing services. These ports serve as a "capability" for communication with the 
service. Through its simplicity, the transaction protocol achieves much higher 
transmission rates than other protocols executing on similar hardware (about 
300 Kbytes/sec process-to-process). 

The protection mechanism will be described, and the mechanisms for realis
ing high transmission speeds. 
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1. INTRODUCTION 
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Traditional networks and distributed systems are based on the concept of two 
processes or processors communicating via connections. The connections are 
typically managed by a hierarchy of complex protocols, usually leading to 
complex software and extreme inefficiency. (An effective transfer rate of 0.1 
megabit/ sec over a 10 megabit/ sec local network, which is only 1 % utilization, 
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is frequently barely achievable.) 
We reject this traditional approach of viewing a distributed system as a col

lection of discrete processes communicating via multilayer ( e.g., ISO) protocols, 
not only because it is inefficient, but because it puts too much emphasis on 
specific processes, and by inference, on processors. Instead we propose to base 
the software design on a different conceptual modelthe object model. In this 
model, the system deals with abstract objects, each of which has some set of 
abstract operations that can be performed on it. 

Associated with each object are one or more "capabilities" [Dennis66] which 
are used to control access to the object, both in terms of who may use the 
object and what operations he may perform on it. At the user level, the basic 
system primitive is performing an operation on an object, rather than such 
things as establishing connections, sending and receiving messages, and closing 
connections. For example, a typical object is the file, with operations to read 
and write portions of it. 

The object model is well-known in the programming languages community 
under the name of "abstract data type." This model is especially well-suited to 
a distributed system because in many cases an abstract data type can be imple
mented on one of the processor-memory modules described above. When a 
user process executes one of the visible functions in an abstract data type, the 
system arranges for the necessary underlying message transport from the user's 
machine to that of the abstract data type and back. The header of the mes
sage can specify which operation is to be performed on which object. This 
arrangement gives a very clear separation between users and objects, and 
makes it impossible for a user to inspect the representation of an abstract data 
type directly by bypassing the functional interface. 

A major advantage of the object or abstract data type model is that the 
semantics are inherently location independent. The concept of performing an 
operation on an object does not require the user to be aware of where objects 
are located or how the communication is actually implemented. This property 
gives the system the possibility of moving objects around to position them 
close to where they are frequently used. Furthermore, the issue of how many 
processes are involved in carrying out an operation, and where they are located 
is also hidden from the user. 

It is frequently convenient to implement the object model in terms of clients 
(users) who send messages to services. A service is defined by a set of com
mands and responses. Each service is handled by one or more server processes 
that accept messages from clients, carry out the required work, and send back 
replies. The design of these servers and the design of the protocols they use 
form an important part of the system software of our proposed fifth generation 
computers. 

As an example of the problems that must be solved, consider a file server. 
Among other design issues that must be dealt with are how and where infor
mation is stored, how and when it is moved, how it is backed up, how con
current reads and writes are controlled, how local caches are maintained, how 
information is named, and how accounting and protection are accomplished. 
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Furthermore, the internal structure of the service must be designed: how many 
server processes are there, where are they located, how and when do they com
municate, what happens when one of them fails, how is a server process organ
ized internally for both reliability and high performance, and so on. Analo
gous questions arise for all the other servers that comprise the basic system 
software. 

2. PROTECTION 

Every service has one or more ports [Mullender84] to which client processes 
can send messages to contact the service. Ports consist of large numbers, typi
cally 48 bits, which are known only to the server processes that comprise the 
service, and to the service's clients. For a public service, such as the system 
file service, the port will be generally made known to all users. The ports used 
by an ordinary user process will, in general, be kept secret. Knowledge of a 
port is taken by the system as prima facie evidence that the sender has a right 
to communicate with the service. Of course the service is not required to carry 
out work for clients just because they know the port, for example, the public 
file service may refuse to read or write files for clients lacking account 
numbers, appropriate authorization, etc. 

Although the port mechanism provides a convenient way to provide partial 
authentication of clients ("if you know the port, you may at least talk to the 
service"), it does not deal with the authentication of servers. The basic primi
tive operations offered by the system are put(port, message) and get(port, 
message). Since everyone knows the port of the file server, as an example, 
how does one insure that malicious users do not execute gets on the file 
server's port, in effect impersonating the file server to the rest of the system? 

One approach is to have all ports manipulated by kernels that are presumed 
trustworthy and are supposed to know who may get from which port. We 
reject this strategy because some machines, e.g., personal computers connected 
to larger multimodule systems may not be trustworthy, and also because we 
believe that by making the kernel as small as possible, we can enhance the reli
ability of the system as a whole. Instead, we have chosen a different solution 
that can be implemented in either hardware orif necessaryin software. 

In the hardware solution, we need to place a small interface box, which we 
call an F-box (Function-box) between each processor module and the network. 
The most logical place to put it is on the VLSI chip that is used to interface to 
the network. Alternatively, it can be put on a small printed circuit board 
inside the wall socket through which personal computers attach to the network. 
In those cases where the processors have user mode and kernel mode and a 
trusted operating system running in kernel mode, it can also be put into 
operating system software. In any event, we assume that somehow or other all 
packets entering and leaving every processor undergo a simple transformation 
that users cannot bypass. 

The transformation works like this. Each port is really a pair of ports, P, 
and G, related by: P = F(G), where Fis a (publicly-known) one-way function 
[Wilkes68, Purdy74, Evans74] performed by the F-box. The one-way function 
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has the property that given G it is a straightforward computation to find P, 
but that given P, finding G is so difficult that the only approach is to try every 
possible G to see which one produces P. If P and G contain sufficient bits, 
this approach can be made to take millions of years on the world's largest 
supercomputer, thus making it effectively impossible to find G given only P. 
Note that a one-way function differs from a cryptographic transformation in 
the sense that the latter must have an inverse to be useful, but the former has 
been carefully chosen so that no inverse can be found. 

Using the one-way F-box, the server authentication can be handled in a sim
ple way. Each server chooses a get-port, G, and computes the corresponding 
put-port, P. The get-port is kept secret; the put-port is distributed to potential 
clients or in the case of public servers, is published. When the server is ready 
to accept client requests, it does a get(G). The F-box then computes 
P = F(G) and waits for packets containing P to arrive. When one arrives, it 
is given to the process that did get(G). To send a packet to the server, the 
client merely does put(P), which sends a packet containing P in a header field 
to the server. The F-box on the sender's side does not perform any transfor
mation on the P field of the outgoing packet. 

Now let us consider the system from an intruder's point of view. To imper
sonate a server, the intruder must do get( G). However, G is a well-kept secret, 
and is never transmitted on the network, Since we have assumed that G cannot 
be deduced from P (the one-way property of F) and that the intruder cannot 
circumvent the F-box, he cannot intercept packets not intended for him. 
Replies from the server to the client are protected the same way, only with the 
client picking a get-port for the reply, say, G', and including P' = F(G') in 
the request packet. 

The presence of the F-box makes it easy to implement digital signatures for 
still further authentication, if that is desired. To do so, each client chooses a 
random signature, S, and publishes F(S). The F-box must be designed to 
work as follows. Each packet presented to the F-box contains three special 
header fields: destination (P), reply (G'), and signature (S). The F-box applies 
the one-way function to the second and third of these, transmitting the three 
ports as: P, F(G'), and F(S), respectively. The first is used by the receiver's 
F-box to admit only packets for which the corresponding get has been done, 
the second is used as the put-port for the reply, and the third can be used to 
authenticate the sender, since only the true owner of the signature will know 
what number to put in the third field to insure that the publicly-known F(S) 
comes out. 

It is important to note that the F-box arrangement merely provides a simple 
mechanism for implementing security and protection, but gives operating sys
tem designers considerable latitude for choosing various policies. The mechan
ism is sufficiently flexible and general that it should be possible to put it into 
hardware with precluding many as-yet-unthought-of operating systems to be 
designed in the future. 
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3. COMMUNICATION PRIMITIVES 
In the literature about computer networks, one finds much discussion of the 
ISO OSI reference model [Zimmermann80] these days. It is our belief that the 
price that must be paid in terms of complexity and performance in order to 
achieve an "open" system in the ISO sense is much too high, so · we have 
developed a much simpler set of communication primitives, which we will now 
describe. 

3.1. Transaction vs. stream communication 
Most distributed systems have a connection mechanism that is based on the 
idea of two processes going to some effort to set up a connection, using the 
connection, and then tearing it down. The assumption is that a connection 
will be used for a stream of information so long that the overhead needed to 
set it up and tear it down are basically negligible. Most streams will consist of 
a file of one kind or anothera source program, a binary program, an input file, 
and so on. To see how long the average file is, we have conducted some meas
urements on the UNIXt system used in our department by the faculty and staff 
for research (no students, thus). The results of these measurements show that 
34% of all files are less than 512 bytes, 52% are less than IK bytes, 67% are 
less than 2K bytes, 79% are less than 4K bytes, 88% are less than 8K bytes, 
and 94% are less than 16K bytes. 

The above considerations have led us to a different approach [Mullender83]. 
With packets of even 2K bytes, two thirds of all files fit into a single packet. 
Consequently, it is much simpler to adopt a "Request-Reply" or "Transaction" 
style of communication, in which the basic primitive is the client sending a 
request to a server and the server sending a reply back to the client. The 
client uses trans and the server getreq and putrep. Trans sends a request, 
and blocks until a reply is. received. Getreq blocks the server until a request is 
received, which can then be processed, after which a reply can be sent using 
putrep. Each request-reply pair is completely self-contained, and independent 
of any other ones that may previously been sent. In other words, no concept 
of a "connection" exists. Not only is this conceptually much more appropriate 
for use in an operating system, but it is much simpler to implement than a 
complex 7-layer protocol, not to mention offering lower delay. Henceforth we 
will refer to a request-reply pair as a transaction, which is not to be confused 
with transactions with a data base. 

· 3.2. Basic communication protocol 
Instead of a 7-layer protocol, we effectively have a 4-layer protocol. The bot
tom layer is the Physical Layer, and deals with the electrical, mechanical and 
similar aspects of the network hardware. The next layer is the Port Layer, and 
deals with the location of ports, the transport of (32K byte) datagrams (pack
ets whose delivery is not guaranteed) from source to destination and enforces 

t UNIX is a Trademark of AT&T Bell Laboratories. 
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the protection mechanism of the previous section. On top of this we have a 
layer ·that deals with the reliable transport of bounded length (32K byte) 
requests and replies between client and server. We have called this layer the 
Transaction Layer. The final layer has to do with the semantics of the 
requests and replies, for example, given that one can talk to the file server, 
what commands does it understand. 

Since systems of the kind we are describing will use high-speed, highly reli
able local networks, few if any of the complex mechanisms designed for flow
and error-control in long-haul networks are useful here. Among other things, 
a simple stop-and-wait protocol is sufficient. The main function of the Tran
saction Layer is to provide an end-to-end message service built on top of the 
underlying datagram service, the main difference being that the former uses 
timers and acknowledgements to guarantee delivery whereas the latter does 
not. 

The Transaction Layer protocol is straightforward. When the client does a 
trans, a packet containing the request is sent to the server and a timer is 
started. If the server does not acknowledge receipt of the request packet 
before the timer expires (usually by sending the reply, but in some special 
cases by sending a separate acknowledgement packet), the Transaction Layer 
retransmits the packet again and restarts the timer. When the reply finally 
comes in, the client sends back an acknowledgement (usually piggybacked onto 
the next request packet) to allow the server to release any resources, such as 
buffers, that were acquired for this transaction. Under normal circumstances, 
reading a long file, for example, consists of the sequence 

From client : request for block 0 
From server: here is block 0 
From client : acknowledgement for block O and request for block 1 
From server: here is block 1 

etc. 

The protocol can handle the situation of a server crashing and being rebooted 
quite easily since each request contains the capability for the file to be read 
and the position in the file to start reading. Between requests, the server has 
no "activation record" or other table entry whose loss during a crash causes 
the server to forget which files were open, etc., because no concept of an open 
file or a current position in a file exists on the server's side. Each new request 
is completely self-contained. Of course for efficiency reasons, a server may 
keep a cache of frequently accessed i-nodes, file blocks etc., but these are not 
essential and their loss during a crash will merely slow the server down slightly 
while they are being dynamically refreshed after a reboot. 
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4. THE PORT LAYER 

The Port Layer is responsible for the speedy transmission of 32K byte 
datagrams. The Port Layer need only do this reasonably reliably, and does 
not have to make an effort to guarantee the correct delivery of every datagram. 
This is the responsibility of the Transaction Layer. Our results show that this 
approach leads to significantly higher transmission speeds, due to simpler pro
tocols. 

HOST HOST 

- OMA Transfer -

interface interface 

Network Transfer 

FIGURE 1. A typical local-area network interface. 

Theoretically, very high speeds are achievable in modem local-area networks. 
A typical example of a local-area network interface is shown in Fig. I. When 
a host transmits a packet to another host, the packet is first transferred to the 
interface by means of a direct memory access (DMA) transfer. When this is 
done, the packet is transmitted over the network. After the packet has been 
received by the destination interface, it can be transferred to the destination 
host's memory, again using a OMA transfer. While this transfer is going on, 
the sending host may already transfer the next packet to the interface. A 
sequence of packets is thus transmitted by interchanging periods of OMA 
transfers and network transfers. On most interfaces OMA transfers and net
work transfers cannot occur simultaneously. 

It is now simple to deduce an upper bound for the maximum transfer rate 
over the network: A typical speed for DMA transfers is 1 byte/ µ.sec, and the 
typical transmission speed of a 10 Mbit local-area network is also 1 byte/ µ.sec. 
Since DMA transfer and network transfer cannot overlap, but OMA at the 
destination host can overlap with the OMA of the next packet at the source 
host, an upper bound for the transfer rate of a typical local-area network is 
500,000 bytes/sec point-to-point. 

Obviously, to achieve such a transmission rate, the overhead of the protocol 
must be kept as low as possible, while an effort must be made to overlap 
DMA s at both communicating parties. To achieve this, we have chosen a 
very large datagram size for the Port Layer, which has to split up the 
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datagrams into small packets that the network hardware can cope with. This 
approach allows the implementor of the Port Layer to exploit the possibilities 
that the hardware has to off er to achieve an efficient stream of packets. 

Our Port Layer interfaces to a 10 Mbit token ring that allows scatter-gather; 
that is, a packet can be sent to or from the interface in several DMA transfers, 
and then transmitted over the network separately. We discovered that this 
allows us to do two important things to speed up the protocol. First, when a 
packet is received, the header can be inspected separately, so the protocol can 
decide where in memory the packet must go. The protocol can then transfer 
the packet directly from the interface to the right place in memory, without 
having to copy it. A copy loop would halve the transmission speed. Second, 
the separation of DMA and transmission allows the protocol to prepare a 
transmission by doing the DMA . The transmission can then be initiated 
immediately when the signal is received that the receiver is ready. In our 
implementation of the Port Layer these considerations have resulted in the 
protocol that will now be described. 

The transmitter begins by transferring and sending the first 2K of the 
datagram to be transmitted (2K is the maximum packet size allowed by the 
hardware). Immediately after the transmission is complete, the DMA for the 
next 2K bytes is started, but it is not yet transmitted. In the mean time, the 
receiver is interrupted by the arrival of the first packet. It extracts the header, 
examines it and decides where the body of the packet should go. Then the 
body of the packet is transferred from the interface to its final location in 
memory. While this is being done, the receiver prepares a tiny acknowledge
ment packet to tell the transmitter it is prepared for the next packet. As soon 
as the DMA transfer of the previous packet has finished, this acknowledge
ment is sent back to the transmitter. When the transmitter receives it, the 
transfer of the next packet to the interface will have finished, so it can then be 
sent immediately. This sequence is continued until the whole datagram is 
transmitted. 

5. THE TRANSACTION LAYER 
It is the responsibility of the Transaction Layer to guarantee the arrival of 
requests and replies. The Transaction Layer makes use of the Port Layer and 
timers to achieve this. 

The interface to the transaction layer basically consists of three calls, one for 
clients, and two for servers. All calls use a small datastructure, called Mref, 
which contains a pointer to a small fixed-size out-of-band buffer for the 
transmission of commands and parameters to the server, a pointer to the main 
body of data to be transferred, and the length of the main body of data (0 to 
32768), as follows: 



typedef struct Mref { 
char *M oob; 
char *M-buf; 
unsigned M_len; 

} Mref; 

The client, in order to do a transaction calls 

trans(cap, req, rep); 
Cap *cap; Mref *req, *rep; 

The server receives requests and sends replies with 

getreq(port, cap, req); 
Port *port; Cap *cap; Mref *req; 

putrep(rep ); 
Mref *rep; 
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In principle, the Transaction Layer works as follows: When a client calls 
trans, the Transaction Layer generates a reply-port to enable the server to send 
a reply. The server port is deduced from the capability; the first 48 bits of the 
capability for an object identify the service that controls the object. The 
request is then sent, using put, and a retransmission timer is started. 

The server, which previously had made a call to getreq, receives the request; 
the capability is filled in, and the received message is put in the buffers 
referred to by req. As soon as the request is received, the server's Transaction 
Layer starts a piggyback timer. When the server has not sent a reply before 
this timer expires, a separate acknowledgement is sent to put the client at ease, 
and stop its retransmission timer. When the server sends a reply to the client 
the same thing happens, more or less, with the role of client and server 
reversed. When a client makes a sequence of transactions with a single server, 
a subsequent request will acknowledge receipt of the previous reply. 

The client maintains one more timer, the crash timer. This timer is set when 
the server's acknowledgement to a request has been received, and is used to 
detect server crashes. Whenever this timer expires, the client sends an "are 
you still alive?" packet to the server, to which the server replies with an ack
nowledgement. 

When transactions occur quickly, one after the other, no extra acknowledge
ments are sent at all. Only when transactions take a long time (say, longer 
than a minute), acknowledgements are sent, and when transactions take much 
longer than that (say, ten minutes) then "are you still alive" messages begin to 
be sent. 
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5.1. Timer management 
If the timers are started and stopped in exactly the way described above, the 
Transaction Layer would become unacceptably slow. Per (quick) transaction, 
two retransmission timers and two piggyback timers would have to be started 
and stopped, eight timer actions altogether. 

There is a much more efficient way of dealing with timers, one that makes 
use of a sweep algorithm. This algorithm does not implement very accurate 
timers, but accuracy of the timer intervals is not very important to the correct 
and efficient operation of the protocol. 

The sweep algorithm is called every n clock tics. N must be chosen such 
that n tics is about the minimum timer interval needed ( the piggyback timer 
interval). Whenever the algorithm is called, it makes a sweep over all out
standing transactions. If the state of a transaction has changed, the new state 
is recorded. If it has not changed, a counter is incremented, telling for how 
long the state has remained the same. If the (state, counter) combiµation has 
reached a certain value, the sweep algorithm carries out the appropriate 
actions, usually sending an acknowledgement, retransmitting a message, or 
aborting a transaction. 

Because this algorithm is used there is no code needed in the transaction 
code itself, reducing the overhead of the Transaction Layer significantly. In 
this way, the code executed in the Transaction Layer is optimised for the nor
mal case (no errors). 

5.2. Results 
Two versions of the algorithm have now been implemented. The one 
described has been implemented on the Amoeba distributed operating system, 
and achieves over 300,000 bytes a second from user process to user process 
(using M68000s and a Pro-net ring). It is now being implemented under UNIX 
where we expect to obtain more than 200,000 bytes/ sec, assuming the com
municating processes are not swapped. 

An older version of the protocol, using 2K byte datagrams, now gets 90,000 
bytes/sec across the network between two VAX-750s running a normal load of 
work, without causing a significant load on the system itself. 

Several services, implemented under UNIX, are using the Transaction Layer 
interface, and it is our experience that these services are easy to design and 
that they work efficiently. 

The port mechanism allows us to move services from one machine to 
another, completely transparently to the user. The F-boxes do not yet exist in 
hardware, but are built into the operating system. The one-way function does 
not significantly slow the system down, because a cache is maintained of get-
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port/put-port pairs. 
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In the very large multiprocessor systems and, on a grander scale, computer 
networks now emerging, processes are not tied to fixed processors but run on 
processors taken from a pool of processors. Processors are released when a 
process dies, migrates or when the process crashes. In distributed operating 
systems using the service concept, processes can be clients asking for a ser
vice, servers giving a service or both. Establishing communication between a 
process asking for a service and a process giving that service, without central
ized control in a distributed environment with mobile processes, constitutes the 
problem of distributed match-making. Logically, such a match-making phase 
precedes routing in store-and-forward computer networks of this type. Algo
rithms for distributed match-making are developed and their complexity is 
investigated in terms of message passes and in terms of storage needed. The 
theoretical limitations of distributed match-making are established, and the 
techniques are applied to several network topologies. 

1. INTRODUCTION 
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We investigate the problem of setting up communication-when-needed 
between processes in a multiprocessor network where processes have names but 
no permanent addresses. A mechanism for this purpose is called a name
server, analogous to the telephone system's directory assistance server: given a 
name it returns an address. A single centralized name server in the network 
can be taken out through a single processor crash, thereby effectively killing all 
communication and crashing the entire network. A more robust solution is 
distributing the name server. A great variety of options and problems of both 
theoretical and practical interest are attached to this issue. Our motivation 
was provided by the design objectives of the Amoeba distributed operating sys
tem project [Mullender86]. 

Distributed Match-Making for Processes in Computer Networks 
S. J. MULi.ENDER and P. M. B. VITANYI 
Proceedings 4th A CM Principles of Distributed Computing 
Minaki, Canada 
August 1985 
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1.1. The catering service problem 
Suppose you want to give a party in your Silicon Valley home, but do not care 
for the bother. You want a catering service. Now it so happens, that you do 
not know the address or telephone number of such a service. Anyway, even if 
you did, this would not do you much good. In Silicon Valley such small 
outfits come and go so fast that it is unlikely that this service, which you used 
two years ago, still exists at the old address. You can phone them, but the 
number gets you somebody who has never heard of your old catering service. 
There are several courses of action you can take. 

• One way to solve your problem is to send mail to everybody in town ask
ing whether they supply catering service. In computer networks this is 
called broadcasting. 

• Another way is to wait until you get an advertisement leaflet of a catering 
service in your mailbox. Below we call this sweeping. 

Most likely, you do one of the following: 

• 

• 

• 

You look in the Yellow Pages under the appropriate heading. If every
body exclusively uses YP for all services then we may view the YP outfit 
as a centralized name server. Services reveal their whereabouts by 
advertising there and clients look them up there. If the YP company 
crashes then clients and services cannot be matched anymore, and society 
grinds to a halt. 
You buy a suitable newspaper and look up "catering" in the advertise
ment section. Now the name server is distributed. Catering services adver-
tise· in many newspapers. If one newspaper flounders, this will not create 
problems for you. 
You ask some of your friends whether they know where to find the desired 
service. Some of . your friends crashing will not prevent you finding a 
caterer. The name server is distributed in this case as well, and, depending 
on how sociable you are, perhaps better. 

Having found the address or telephone number of a catering service, you have 
to find a way to route your request to them. Thus, match-making between 
clients and services necessarily precedes routing in a mobile society. Note that 
the catering service, in order to execute the task you set them, may call on 
other services such as a car rental service. The catering service then is a client 
with respect to the car rental service. Oearly, everybody can be server, client 
or both. 

1.2. Multiprocessors and computer networks 
New generation computers must be fast, reliable, and flexible. One way to 
achieve this is to build them from a small number of basic processor-memory 
modules that can be assembled together to realize machines of various sizes. 
The use of multiple modules can make the machines not only fast, but also 
achieve a substantial amount of fault tolerance. The primary difference 
between machines should be the number of modules, rather than the type of 
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the modules. In principle, any of these machines can be gracefully incr-eased 
in size to improve performance by adding new modules or decreased in size to 
allow removal and repair of defective modules. The software running on the 
various machines should be in essence identical. It should be possible to con
nect different machines together to form even larger machines and to partition 
existing machines into disjoint pieces when necessary, all in a way transparent 
to the user level software. When a user has a heavy computation to do, an 
appropriate number of processor-memory modules are temporarily assigned to 
him. When the computation is completed, they are returned to the idle pool 
for use by other users. Note that in this view a computer network is essentially 
such machine on a grand scale. 

Software design for these new machines can advantageously be based on the 
object model. In this model, the system deals with abstract objects, each of 
which has some set of abstract operations that can be performed on it. At the 
user level, the basic system primitive is performing an operation on an object, 
rather than such things as establishing connections, sending and receiving mes
sages, and closing connections. For example, a typical object is the file, with 
operations to read and write portions of it. The object model is also known 
under the name of "abstract data type" [Liskov74]. A major advantage of the 
object or abstract data type model is that the semantics are inherently location 
independent. The concept of performing an operation on an object does not 
require the user to be aware of where objects are located or how the communi
cation is actually implemented. This property gives the system the possibility 
of moving objects around to position them close to where they are frequently 
used. Furthermore, the issue of how many processes are involved in carrying 
out an operation, and where they are located is also hidden from the user. 

1.3. The service model 
It is convenient to implement the object model in tenns of clients (users) who 
send messages to services [Mullender86]. A service is defined by a set of com
mands and responses. Each service is handled by one or more server processes 
that accept messages from clients, carry out the required work, and send back 
replies. 

As an example, consider a file server. The design must deal with how and 
where information is stored, how and when it is moved, how it is backed 
up, how concurrent reads and writes are controlled, how local caches are 
maintained, how information is named, and how accounting and protec
tion are accomplished. The internal structure of the service must be 
designed: how many server processes are there, where are they located, 
how and when do they communicate, what happens when one of them 
fails, how is a server process organized internally for both reliability and 
high performance, and so on. A server can itself be client to another ser
vice. The possible hierarchy of services is the strength of the model: 
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A crash of the database server, will be detected by the query server, which 
must then try to recover from it. The query server can retry the request, it 
might rephrase a query to get the answer from another database server, 
and as a last resort, it can report failure to its client, the command inter
preter. In this way the human client at the top of the hierarchy gets to 
cope only with irrecoverable errors and crashes in the system. 

More precisely, Services are offered by a number of server processes, distri
buted over the network. Client processes send requests to services; the services 
carry out these requests and return a reply. Essentially, every job in the sys
tem is executed by a dynamic network of servers executing each other's 
requests. So a process can be a client, a server, or both, and change its role 
dynamically. New services can be created by installing server processes for 
them. Services can be removed by destroying their server processes ( or by 
making them stop behaving like a server, i.e., by telling them to stop receiving 
requests). Server processes can be migrated through the network, either by 
actually moving the process from one host to another, or only in effect, by des
troying the server process in one host and creating another one in a different 
host at the same time. A specific service may· be offered by one, or by more 
than one server process. In the latter case, we assume that all server processes 
that belong to one service are equivalent: a client sees the same result, regard
less which server process carries out its request. A process resides in a net
work node. Each node has an address and we assume that, given an address, 
the network is capable of routing a message to the node at that address. A 
service is identified by its port. A port uniquely names a service. We shall 
therefore also refer to a service by its port. Ports give no clue about the physi
cal location of a server process. 

1.4. The problem of Match-Making 
Before a client can send a request to a server which provides the desired ser
vice, the client has to locate that server. The problem of efficient routing arises 
at a later stage; first the address of the destination has to be found in a 
match-making phase. We can view match-making as yet another service in the 
system, be it the primus inter pares. Thus, we need to implement a name server 
io serve a connection between client process and server process. 

A centralized name server must reside at a so-called well-known address 
which does not change and is known to all processes. (Oearly, the name 
server cannot be used to locate itself.) When the host of the name server 
crashes, the entire network crashes. This solution also causes an overload of 
messages in the neighborhood of the host. 

When clients broadcast for services with ''where are you" messages, we have 
an example of a distributed name server. This solution is more robust than the 
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centralized one. But in large store-and-forward networks, where messages are 
forwarded from node to node to their destination, broadcasting is considerably 
more costly than sending a message directly to its destination. Broadcast mes
sages are sent to every host, while point-to-point messages need only pass 
through the hosts on the path between client and server. Conventional broad
cast methods for locating services need a minimum of U(n) message passes to 
do the broadcast (e.g., via a spanning tree [Dalal77]). 

We investigate realizations of name servers in the entire range between cen
tralized and distributed forms. The efficiency of solutions is measured in terms 
of message passes and local storage. It appears that, in many n-node net
works, Vt;Jy efficient distributed match-making between processes can be done 
in O(Vn) message passes, by using limited numbers of point-to-point mes
sages. 

1.5. Locate algorithms 
In all cases, the method used to locate a port is the following: A server process 
s located at address As and offering a service identified by a port 'IT, selects a 
collection Ps of network nodes and posts at these nodes that server s receives 
requests on port '1T at the address As. Each of the nodes in Ps stores this infor
mation in a cache for future reference. When a client process c located at 
address Ac has a request to send to .,,, it selects a collection of network nodes 
Qc and queries each node in Qc for the address of 'IT. When Ps n Qc =I= 0, the 
node(s) in the intersection will return a message to c stating that.,, is available 
at A3 • If Ps = { s} and Qc = U then the technique is called broadcasting; if 
P3 = U and Qc = { c} then the technique is called sweeping. 

I. 6. Outline of the paper. 
We develop a class of distributed algorithms for match-making between client 
processes and server processes in computer networks. We investigate the 
expected performance of such an algorithm under random choices. Subse
quently, we determine the optimal lower bound on the performance in number 
of message passes or "hops" for any such algorithm, in any network, under 
any strategy, distributed or not. This yields a combinatorial lemma which may 
be interesting in its own right, and results in a lower bound on the trade-off 
product between the number of nodes a server advertises at and the number of 
nodes a client inquires at. We consider criteria for robustness. Second, we 
apply the method to particular networks, both designed networks and spon
taneously emerged networks. Finally, a probabilistic and a hashing algorithm 
for match-making are investigated. 

I. 7. Related work. 
Distributed match-making between clients and servers will be used in the 
Amoeba distributed operating system [Mullender86]. Essentially the Manhat
tan topology method below has been used before in the torus-shaped Stony 
Brook Microcomputer Network [Gelernter82]. Some current multiprocessor 
systems avoid the communication overload due to mobile processes, which use 
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broadcasting to do the match-making, by opting for the processes to run on 
fixed processors [Seitz85]. Other system designers have chosen for mobile 
processes, but use the crash-vulnerable solution of a centralized name server 
[Needham82]. The present paper introduces, and systematically explores for 
the first time, the general concept of distributed match-making. 

2. A THEORY OF DISTRIBUTED MATCH-MAKING 

Below we obtain lower bounds on the message pass complexity of a class of 
Locate algorithms (called Shotgun Locate), for the entire range from central
ized to distributed methods, and for any network topology. In the next section 
we give methods which achieve these lower bounds, or nearly achieve these 
lower bounds, for many network topologies. 

2.1. Framework for shotgun locate 
The networks we consider are point-to-point (store-and-forward) communica
tions networks described by an undirected communications graph G =(U,E), 
with a set of nodes U representing the processors of the network, and a set of 
edges E representing bidirectional noninterfering communication channels 
between them. No common memory is shared by the node-processors. Each 
node processes messages it receives from its neighbors, performs local compu
tations on messages and sends messages to neighbors. All these actions take 
finite time. A message pass or hop consists of the sending of a message from 
one node to one of its direct neighbors. 

1. The. number of message passes needed for match-making depends on the 
topology of a network. We want to obtain topology independent lower 
bounds. Therefore, assume that all messages can be routed in one mes
sage pass to their destinations. Equivalently, assume that the network is a 
complete graph. Lower bounds on the needed number of message passes in 
complete networks a fortiori hold for all networks. 

2. For each network G =(U,E) and associated match-making algorithm, 
there are total functions P, Q such that: 

P, Q: U ➔ 2u. 

(Here 2u is the set of all subsets of U.) Any server residing at node i 
starts its stay there by posting its (port, address) pair at each node in P(i). 
Any client residing at node j queries each node in Q (j) for each service 
(port) it requires. 

3. We assume that all nodes j have a cache which is large enough to store all 
(port, address) pairs associated with addresses i such thatj EP(i). That is, 
the nodes at which the rendez-vous' are made can hold all posted material. 
The caches are large enough to hold so many (port, address) pairs that 
they never have to discard one for a server that is still active. Entries are 
made or updated whenever a message is received from a server process 
with its address (or when a reply from a locate operation is received). We 
can timestamp the messages to determine which addresses are out of date 
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in case of a conflict. 

We have dubbed this class of algorithms Shotgun Locate algorithms. (Put so 
many pheasants in the bushes that the hunter can expect success for the 
amount of shot he is willing to spend.) Later we consider alternative locate 
methods: Hash Locate where the functions P, Q depend on the service ports as 
well, and Lighthouse Locate which is a probabilistic version of Shotgun Locate 
where too-small caches can discard (port, address) pairs. 

2.2. Probabilistic analysis 
Let the number of elements in a given set U (universe) of nodes be n. Let a 
given server s reside at node i. Let p be the cardinality of P (i) c; U, the set of 
nodes where s posts its whereabouts. Let a given client c reside at node j. Let 
q be the number of elements in Q (j) c; U, the set of nodes queried by c. If the 
elements of P (i) and Q (j) are randomly chosen then the probability for any 
one element of U to be an element of P(i) [Q(j)] is pin [qln]. If P(i) and 
Q (j) are chosen independently then the probability for any one element of U 
to be an element in both P (i) and Q (j) is pq I n2• Since there are n elements in 
U, the expected size of P(i)nQ(j) is given by 

E(# (P(i)nQ(j))) = 1!!1. . 
n 

Therefore, to expect one full node in P (i) n Q (j), we must have p + q ;.,, 2 Vn. 
This is the situation for a particular pair of nodes. For the performance of the 
whole network we have to consider the combined performance of the n 2 pairs 
of nodes. The above analysis holds for each pair i, j of elements of U, since 
they are all interchangeable. Cons~uently, the minimal average value of p +q 
over all pairs in U2 must be 2 V n, in order to expect a successful match
making for each pair. 
By choice of the sets P (i) and Q (j), we may improve the situation in two 
ways: 
• The method deterministicall,l yields success. 
• We get by with p + q < 2 V n. 

2.3. Number of messages for Match-Making 
To match a server at node i to a client at node J the following actions have to 
take place. The server at i tells a set P(i) of nodes about its location. Client j 
queries a set Q(j) of nodes for the desired service. Call the set of nodes 
r;,j = P (i) n Q (j) the set of rendez-vous nodes, that is, the nodes at which a 
rendez-vous between a client at j looking for a service and a server at i offering 
that service can be made. 

DEFINITION. 

Then Xn matrix, R, with entries r;,j (1 ~i,j ~n) is the rendez-vous matrix. Each 
entry r;,j, in the ith row and jth column of R, represents the set of rendez-vous 
nodes where the client at node j can find the location i and port of the server 
at node i. Note that: 
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n n 

LJr• · C P(i) I,} - & U r;,J c; Q (j) (Ml) 
j=l i=I 

To prevent waste in message passes, we can take care that the inclusions in 
(Ml) are replaced by equalities. (But then the surviving subnetwork after a 
node crash may lack this property again.) An optimal shotgun method has 
exactly one element in each r;,1. Below, we represent such singleton sets by 
their single element. (If faults occur in the network then we may opt for more 
redundancy by using larger r;,1, cf. § 2.4.) 

2.3.1. Examples of rendez-vous matrices associated with both well-known and 
lesser known strategies. 

1. Broadcasting. The server stays put and client looks everywhere: 

Clients 

2 3 4 5 6 7 8 9 

l I l 
s 2 2 2 2 2 2 2 2 2 2 

e 3 3 3 3 3 3 3 3 3 3 

r 4 4 4 4 4 4 4 4 4 4 

V 5 5 5 5 5 5 5 5 5 5 

e 6 6 6 6 6 6 6 6 6 6 

r 7 7 7 7 7 7 7 7 7 7 

s 8 8 8 8 8 8 8 8 8 8 

9 9 9 9 9 9 9 9 9 9 

2. Sweeping. The client stays put and the server looks for work: 

Clients 

2 3 4 5 6 7 8 9 

l 2 3 4 5 6 7 8 9 

s 2 2 3 4 5 6 7 8 9 

e 3 2 3 4 5 6 7 8 9 

r 4 2 3 4 5 6 7 8 9 

V 5 2 3 4 5 6 7 8 9 

e 6 2 3 4 5 6 7 8 9 

r 7 2 3 4 5 6 7 8 9 

s 8 2 3 4 5 6 7 8 9 

9 2 3 4 5 6 7 8 9 

3. Centralized name server. All services post at node 3 and all clients query 
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for services at node 3: 

Clic,nts 

l 2 3 4 5 6 7 8 9 

3 3 3 3 3 3 3 3 3 
s 2 3 3 3 3 3 3 3 3 3 
C, 3 3 3 3 3 3 3 3 3 3 
r 4 3 3 3 3 3 3 3 3 3 
V 5 3 3 3 3 3 3 3 3 3 
e 6 3 3 3 3 3 3 3 3 3 
r 7 3 3 3 3 3 3 3 3 3 
s 8 3 3 3 3 3 3 3 3 3 

9 3 3 3 3 3 3 3 3 3 

4. Truly distributed name server. All nodes are used equally often as rendez-
vousnode: 

Clients 

l 2 3 4 5 6 7 8 9 

l l l 2 2 2 3 3 3 
s 2 l l 2 2 2 3 3 3 
e 3 l 2 2 2 3 3 3 
r 4 4 4 4 5 5 5 6 6 6 
V 5 4 4 4 5 5 5 6 6 6 
e 6 4 4 4 5 5 5 6 6 6 
r 7 7 7 7 8 8 8 9 9 9 
s 8 7 7 7 8 8 8 9 9 9 

9 7 7 7 8 8 8 9 9 9 

5. Hierarchically distributed name server. Links for nodes lower in the hierar-
chy are served by rendez-vous nodes higher in the hierarchy. The nodes are 
hierarchically ordered by 1,2,3<7; 4,5,6<8; 7,8<9: 
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Clients 

2 3 4 5 6 7 8 9 

l 7 7 7 9 9 9 9 9 9 

s 2 7 7 7 9 9 9 9 9 9 

e 3 7 7 7 9 9 9 9 9 9 

r 4 9 9 9 8 8 8 9 9 9 

V 5 9 9 9 8 8 8 9 9 9 

e 6 9 9 9 8 8 8 9 9 9 

r 7 9 9 9 9 9 9 9 9 9 

s 8 9 9 9 9 9 9 9 9 9 

9 9 9 9 9 9 9 9 9 9 

6. Distributed name server for the binary 3-cube topology. The node 
addresses are the 3-bit addresses of the comers of the cube. For all 
a,b,c E {O, 1 }, P(abc) = {axy I x,y E{O,l}} and 
Q(abc) = {xbc Ix E{0,1} }: 

Clients 

000 001 010 011 100 101 110 111 

000 000 001 010 Oil 000 001 010 011 

s 001 000 001 010 01 I 000 001 010 011 

e 010 000 001 010 011 000 001 010 011 

r 011 000 001 010 011 000 001 010 011 

V 100 100 IOI 110 111 100 IOI 110 111 

e 101 100 101 110 111 100 101 110 111 

r 110 100 101 110 111 100 101 110 111 

s 111 100 IOI 110 111 100 101 110 111 

2.3.2. Lower bound 
There are n possible rendez-vous nodes and n2 elements in R. By choice of P, 
Q the algorithm distributes the load of being a rendez-vous node over the 
nodes in the network. It is sometimes preferable to distribute the load 
unevenly. For instance, in the very large networks with millions of processors 
which are now envisioned, Vn message passes is just too much because n is so 
large. In hierarchical networks (Example 5) the number of message passes for 
a match-making instance can be as low as logn. This means that some nodes 
are used very often as rendez-vous node, and others very seldom or not at all. 
A combination of hierarchical and local posting may also be useful. 
Let the rendez-vous matrix R have n2 node entries, constituted by k;~O copies 
of each node i, 1 ~i ~n. Clearly, 
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n 
~k- = n2 
""" I ' 

(M2) 
i =l 

To match a server at node i with a client at node j, the server sends messages 
to all nodes in P (i) and the client sends messages to all nodes in Q (j). So, all 
in all, the number of message passes m (i,j) involved in this match-making 
instance is given, in a complete network, by 

m(i,j) = #P(i) + #Q(j) . (M3) 

In the examples above we have seen that, for different pairs i,j, the number 
of message passes m (i,j) for a match-making instance can, in a single match
making strategy, range all the way from a minimum of 2 ton, and beyond. We 
determine the quality and complexity of a match-making strategy by the 
minimum of m (i,j), the maximum of m (i,j) and, above all, the average of 
m (i,j), for 1 ,e;;;;i,j ,e;;;;n. 

DEFINITION. 

The average number of message passes m(n) of the given match-making stra
tegy (which is determined by the rendez-vous matrix R) is: 

1 n n .. 
m(n) = - 2 ~ ~m(z,J) . (M4) 

n i=lj=l 

We now proceed to derive an exact lower bound on m(n) expressed in terms 
of the number k; of times node i occurs in R, i.e., is used as rendez-vous for a 
pair of nodes (l,e;;;;i ,e;;;;n). 

PROPOSmON 1. 
Consider the rendez-vous matrix R as defined. Then the average value 

_!_2 ~~-.~~-• #P(i)#Q<J. ') is bounded below by: n ,_ J-

n n [ n ]2 
i~lj~l #P(i)#Q(j) ;;;;;i, i~l yk; (MS) 

PROOF. 

Let r; [c;] be the number of different nodes in row i [column i] (1 ,e;;;;; ,e;;;;n). Then 
n n 

r· = # LJ r· · & C· = # LJ r- · . (}) I ~ J ~ 
j=l i=l 

Let R; be the number of different rows containing node i, and let C; be the 
number of different columns containing node i (I ,e;;;;i ,e;;;;n). Let Pi,j = I if node i 
occurs in row j and else Pi,j =O, and let "Yi,j = I if node i occurs in column j 
and else "Yi,j =O, (I ,e;;;;i,j ,e;;;;n). Then, 

n n n n 

~rj = ~ ~Pi,j = ~R; (2) 
j=l j=li=l i=l 

n n n n 

~cj = ~ ~"Yi,j = ~C; 
j=l j=li=l i=l 



148 

Oearly, for all i (1 ~; ~n) we have 

R;C;;;., k; 

Furthermore, since 

kjRt -2 ~ R;Ri + k;RJ = ( -Jk; R; - '1f: Ri )1-

;;., 0 ' 

for all i,j (1 ~i,j ~n), we obtain immediately: 

k-R· k-R- ~ 
:.::J::!.... + ~ ;;., 2 k-k-

R - R- I 'J ' 'J I 

from which it follows that: 

Hence, 
n n n n 
~ ~ #P(i)#Q(j);;., ~ ~r;c1 (by (Ml) & (1)) 
i=lj=l i=lj=l 

n n 
= ~R; X ~ Ci (by (2)) 

i=l j=l 

n n 
;;., ~ R; ~ k1R11 (by (3)) 

i=l j=l 

> [,i1 Yki]' (by (4)), 

(3) 

(4) 

which yields the Proposition. □ 

The constraints (Ml)-(M5) imply a lower bound trade-off between the number 
of message passes (and nodes) for posting a server's (port, address) and the 
number of message passes due to a client querying nodes for the whereabouts 
of services .. 

We can adjust the distributed match-making strategy to the relative fre
quency of these happenings, so as to minimize the weighted overall 
number of messages. For instance, if the average call for a service at i by 
a client at j occurs a;,j times more often than the average posting of a ser
vice available at i, then we may want to minimize m (n) replacing (M3) by 
(M3'): 

m(i,J) = #P(i) + a;,j#Q(j) . (M3') 
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Proposition 1 immediately gives us a lower bound on the average number of 
messages involved with a rendez-vous: 

PROPOSmON 2. 
For a complete n-node network and any Shotgun Locate strategy, with the k;'s 
as defined above, the average number m(n) of message passes (c.q., distinct 
nodes accessed) to make a match is 

2 n 
m(n) ;;;;i: - I yk; . 

n i=l 

PROOF. 

Assume, by way of contradiction, that the proposition is false, that is, 
n n n 
I I (r;+cj) = n I (r;+c;) 
i=lj=l i=l 

Then, 

.~t•,tc, < lt VkiJ' , 
which contradicts proposition 1. □ 
It is not difficult to see that propositions 1 and 2 hold mutatis mutandis for 
nonsquare matrices R, that is, for networks where some nodes can host only 
servers and other nodes perhaps only clients. 

2.3.3. Truly distributed match-making, centralized link-server 
Propositions 1 and 2 specialize to the corollary below for 
k 1 = k 2 = · · · =kn= n, the truly distributed case. Here, each node occurs 
equally often as rendez-vous node in matrix R, and hence carries an equal load 
of the work. 

CoROLLARY. 

Consider the rendez-vous matrix R as defined, for k1 = k2 = · · · =kn = n. 
Then: 

1 n n 
-2 I I #P(i)#Q(j) ;;;;i, n ' 
n i=lj=I 

m(n) ;;;;i, 2Vn . 
This lower bound we saw before in the probabilistic approach. Another choice 
of the k;'s gives: 

CoROLLARY. 

For k2 = k3 = · · · =kn = 0 and k 1 = n2, that is, there is a centralized name 
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server, we obtain: 
1 n n 

2 ~ ~ #P(i)#Q(j) ;:;;i: 1 , 
n i=lj=I 

m(n) ;:;;i: 2 . 

2.3.4. Upper bound for complete networks 
For complete networks the above lower bounds on the number of message 
passes for match-making are about sharp. For instance: 

PROPOSITION 3. 
For the truly distributed case arrangements can be constructed such that the lower 
bounds are (nearly) matched by upper bounds. Viz., for each complete network 
there exists functions_ t Q such that, for all 1-,s;;;;.i,j-,s;;;;.n, #P(i)#Q(j) ~ n, 
#P(i)+ #Q(j) ~ 2Vn, and k;~n. 

PROOFSKETCH. 
Arrange the rendez-vous matrix R as a checker board consisting of (as near as 
possible) Vn X Vn squares, or nearly squares, of about n entries each. Each 
square is filled with about n copies of one unique node out of the n nodes, a 
different one for each square; cf Example 4. D 

PROPOSITION 4. 
Let R be the rendez-vous matrix for an n-node network. Let k; (1-,s;;;;.i -,s;;;;.n) be the 
multiplicity of node i in R. and let m (n) be the average match-making cost associ
ated with R. We can lift this strategy to a 4n-node network by constructing a 
4n X4n rendez-vous matrix R' with k;'=4k;modn the multiplicity of node i in R' 
(1-,s;;;;.i -,s;;;;.4n) and m'( 4n) = 2m (n) the associated average match-making cost. 

PROOF. 

Replace each entry r;,j of R by a 2 X 2 submatrix consisting of 4 copies of r;,J. 
The resulting 2n X 2n matrix is M. Let R; (i = 1,2,3,4) be four, pairwise ele
ment disjoint, isomorphic copies of M. Consider the 4n X 4n matrix R': 

R'= [:: ::] . 

The number of distinct nodes in R' is 16 times that in R and k;'=4k;modn 
(I-,s;;;;.i-,s;;;;.4n). It is easy to see that the (2imod2n)th column [row] of R' con
tains twice as many distinct nodes as the (i modn)th column [row] of R 
(1-,s;;;;.i -,s;;;;.2n). Therefore, the average match-making cost associated with R' is 
m'(4n)=2m(n). □ 

The most inefficient match-making strategy is P(i)= Q(j)= U (1-,s;;;;.i,j-,s;;;;.n), 
yielding m (n) = 2n. 
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2.3.5. Upper bound for non-Complete networks 
The topology of a network G =(U,E) determines the overhead in message 
passes needed for routing a message to its destination. For the complete net
works we have considered, the number of message passes m (i,J) for a match
making between a service at node i and a client at node j equals 
#P(i)+ #Q(j). If the subgraph induced by the sets P(i), Q(j) (1<.i,j<.n) is 
connected, and i EP(i) and j EQ(j), and we broadcast the messages over 
spanning trees in these subgraphs, then the number of message passes m (i,j) 
equals the number of addressed nodes # P (i) + # Q (j). Otherwise, there is an 
overhead m(i,J)- #P(i)- #Q(j) >0 of message passes for routing messages 
from i,j to P (i), Q (j). In designing distributed name servers for non-complete 
networks, the achievable message pass efficiency of match-making very much 
depends on how far we can reduce this overhead. For this reason, in a ring 
network, no match-making algorithms can do significantly better than broad
casting (i.e., m(n}Eil(n)). 

2.4. Robustness, fault-tolerance and efficiency 
In computer networks, and also in multiprocessor systems, the communication 
algorithms must be able to cope with faulty processors, crashed processors, 
broken communication links, reconfigured network topology and similar issues. 
A centralized name server (Example 3) is very efficient, but if its host crashes 
the whole network fails. It is one of the advantages of truly distributed algo
rithms that they may continue in the presence of faults. With respect to 
implementing the name server, we can distinguish two distinct criteria for 
robustness. · 

• The name server should be distributed in the sense that no number of 
node crashes, which leaves a surviving network, can prevent surviving 
clients from locating surviving servers offering a desired service (for 
instance, by first moving to another address). This rules out a centralized 
name server, but the distributed Examples 1, 2, 4, 5, 6 are fine. It is lack 
of robustness according to this criterion that makes the efficient Hash 
Locate (last section) so fragile. 

• The name server should be redundant in the sense that no number of node 
crashes can prevent a client at a surviving node from locating a service 
offered at a surviving node. For example, the Shotgun algorithm 
expounded above, may be locally incapacitated by a rendez-vous node 
crashing. We can remedy this situation by choosing P and Q such that, 
for all 1 <. i,j <. n, 

# (P(i) n Q(j));;;, f + 1 , 

where / is the maximal number of faults at any time in the network. 
(There remains of course the problem of how, or whether it is still possi
ble, to route the match-making messages to their destinations in the sur
viving subnetwork.) The safest solution is obviously P(i)nQ(j) = U 
(l<.i,j:,;;;;;;,n). This criterion holds equally for Shotgun Locate and Hash 
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Locate. 

Robustness is inefficient and has a price tag in number of message passes per 
match-making instance. That question is not addressed in this paper. 

3. IMPLEMENTATIONS IN PARTICULAR NETWORKS 

We assume that each node has a table containing the names of all other nodes 
together with the minimum cost to reach them and the neighbor at which the 
minimum cost path starts. In [Erdos70] a construction is given to divide every 
connected graph in O(Vn) disjoint connected subgrM>hs of :;:;;; Vn nodes each. 
Number the nodes in each subgraph I through V n (if necessary, divide the 
excess numbers over the nodes). Each node i has a table containing the route 
to the next (adjacent) node i. In the worst case such a path consists of 2 Vn 
message passes. (Each of the connected subgraphs contains at most Vn 
nodes. The shortest path, between the two nodes labelled i in two adjacent 
connected subgraphs, is therefore not longer than 2 Vn.) 

Server's Algorithm. A server at the node labelled i in one of the suJw:aphs 
communicates its (port, address) to all nodes i in the remaining O(Vn) sub
graphs . It follows from above that this takes O(n) message passes. Size 
O(Vn) suffices for the cache of each node. 

Client's Algorithm. A client broadcasts for a service (along a spanning tree) 
in the subgraph where it resides. This takes at most Vn message passes. 

Under the practical assumption that clients need to locate services usually 
far more frequently than servers need to post (port, address), this scheme is 
fairly optimal. Additionally, the caches are kept to a moderate size. More
over, in practice, many store-and-forward networks will require but O("V1t}_ 
message passes on the average to broadcast over the required subsets of V n 
nodes of the server's algorithm. All this suggests that in most networks using 
this method the average number of message passes per match-making instance 
can be substantially less than the order n figure. In the remainder of this sec
tion we look at match-making in some networks with specific topologies. 

3.1. Manhattan networks 
The network is laid out as a p X q rectangular grid of nodes. Post availability 
of a service along its row and request a service along the column the client is 
on. Caches are of size O(q) and number of message passes for each match
making instance is O(p +q). For p =q we have m(n)=2Vn and caches of size 
Vn. For the 9-node network below, 
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1 2 3 

I I I 
4 5 6 

I I I 
7 8 9 

the rendez-vous matrix looks as follows: 

Clients 

I 2 3 4 5 6 7 8 9 

I I 2 3 2 3 2 3 

s 2 I 2 3 2 3 2 3 

e 3 I 2 3 I 2 3 2 3 

r 4 4 5 6 4 5 6 4 5 6 

V 5 4 5 6 4 5 6 4 5 6 

e 6 4 5 6 4 5 6 4 5 6 

r 7 7 8 9 7 8 9 7 8 9 

s 8 7 8 9 7 8 9 7 8 9 

9 7 8 9 7 8 9 7 8 9 

Wrap-around versions of the method can also be used in cylindrical net
works, or torus-shaped networks. It is, in fact, the method used in the torus
shaped Stony Brook Microcomputer Network [Gelemter82]. In the obvious 
generalization to d-dimensional meshes the method takes m(n)=2n<d-l)td 
message passes. 

3.2. Multidimensional cubes 
The network G =(U,E) is ad-dimensional cube with Uthe set of nodes of the 
cube with addresses of d bits and E the set of edges which connect nodes of 
which the addresses differ in a single bit. n=#U=2d and #E=d2d-l_ 
Assume that d is even. 

Server's Algorithm. A server at an address s =s1s2 · · · sd broadcasts its (port, 
address) along a spanning tree to all nodes in the d/2-dimensional cube 
spanned by the nodes in 

P(s) = {a1a2 ... a.!ls.!l+1···sdla1,••·•a.!l E{O,l}} . 
2 2 2 

Client's Algorithm. A client at an address c =c 1c2 • • • cd broadcasts its query 
along a spanning tree to all nodes in the d/2-dimensional cube spanned by the 
nodes in 
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Q(c) = {c1c2 ... c.!la.!l+1••·adla.!l+1, ... ,adE{O,l}} . 
2 2 2 

For each pair s,c E { 1, ... , n} the rendez-vous node is given by 

P(s) n Q(c) = {c1C2 ... c.!ls.!l+1 .. ,sd} . 
2 2 

The number of message passes is the same for each server-client pair, and 
therefore 

m(n) = #P(s)+ #Q(c) = 2Vn . 

The nodes need Vn-size caches. Variants of the algorithm are obtained by 
splitting the comer address used in the algorithm not in the middle but in 
pieces of uJ and (1-£)d bits. Cf. Example 6. For instance, to adapt the 
method to take advantage of relative immobility of servers, to get lower aver
age. Excessive clogging at intermediate nodes may be prevented by sending 
messages to a random address first, to be forwarded to their true destination 
second [Valiant82]. 

3.3. Fast permutation networks 
For various reasons [Broomell83] fast permutation networks like the Cube
Connected Cycles network are important interconnection patterns. An algo
rithm similar to that of the d-dimensional cube yields, appropriat'7 tuned, for 
an n-node CCC network caches of size V n I log n and m (n) E 0( n log n ). 

3.4. Projt!ctive plane topology. 
The projective plane PG(2, k) has n = k 2 + k + 1 points and equally many 
lines. Each line consists of k + 1 points and k + 1 lines pass through each 
point. Each pair of lines has exactly one point in common. A server s posts 
its (port, address) to all nodes on an arbitrary line incident on its host node. A 
client c queries all nodes on an arbitrary line incident on its own host node. 
The common node of the two lines is the rendez-vous node. A Vn size cache 
for each node suffices. Since the nodes are symmetric, it is easy to see that 

m(n) = #P(s)+ #Q(c) = 2(k + 1) ~ 2Vn . 

This combination of topology and algorithm is resistant to failures of lines, 
provided no point has all lines passing through it removed. 

3.5. Hierarchical networks 
Local-area networks are often connected, by gateway nodes, to wide-area net
works, which, in tum, may also be interconnected. Locating services and 
objects in such network hierarchies is bound to become an acute problem. 

Service naming preferably should be resolved in a way which is machine
independent and network-address-independent. Consequently, ways will 
have to be found to locate services in ve,r1 large networks of hierarchical 
structure. There, the truly distributed V n solutions to the locate problem 
are not acceptable any more. Fortunately, in network hierarchies, it can 



be expected that local traffic is most frequent: most message passing 
between communicating entities is intra-host communication; of the 
remaining inter-host communication, most will be confined to a local-area 
network, and so on, up the network hierarchy. For locate algorithms these 
statistics for the locality of communication can be used to advantage. 
When a client initiates a locate operation, the system first does a local 
locate at the lowest level of the network hierarchy (e.g., inside the client 
host). li this fails, a locate is carried out at the next level of the hierarchy, 
and this goes on until the top level is reached. 
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Assume that a level i network connects n; level i -1 networks through n; gate
ways, for each l <i ~k (or basic nodes, at the lowest level O for i = 1). 
Assume also that the n; gateway hosts compose a level i network with a topol
ogy which allows thrifty truly distributed match-making with 2 Vn message 
passes per match, for all i ;;.i.1. 

Server's Algorithm. A server posts its (port, address) by selecting y;;; gate
ways, connecting level i -1 level networks in a level i network, at each level i 
of the hierarchy, on a path from its host node to the highest level network, to 
advertise their location. 

Client's Algorithm. Similarly, at each level i on a path from its host node to 
the highest level network, a client's locate in a network of that level can be 
done in 0( y;;;) message passes. 

This gives an average message pass complexity m(n) E O(I7=i y;;;) for a 
hierarchical network with a total of n ~ II~-J n; nodes. Assuming that all n;'s 
equal a fixed a, the number of levels in I ilie hierarchy is k, and the total 
number of nodes in the network is n = Jc then the message pass complexity 
of the locate is m (n) E O(k Va). Therefore, 

_L 

m(n) E O(kn 2k) . 

Having the number k of levels in the hierarchy depend on n, the minimum 
value 

m(n) E O(logn) 

is reached fork = ½logn. This message pass complexity is much better than 
O(Vn), but the cache size towards the top of the hierarchy increases rapidly. 
Essentially, the cache of a node may need to hold as many (port, address)'s as 
there are nodes in the subtree it dominates. In some cases this can be avoided. 
For in a network hierarchy, as we have sketched, services are often exclusively 
accessed by local clients. 

In the Amoeba distributed operating system, for instance, even the operat
ing system itself is accessed just like any other service [Mullender86]. 
"Operating System Service" is thus a local service, useful only to local 
clients. Clients on other hosts must use similar services, local to their host. 
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The Amoeba system provides a way for services to restrict the availability 
of the service they offer to some local group of processes, the processes 
within the host where the service resides, the processes within the local
area network of the service, within the campus network, etc. This last 
model seems the most likely model for the interaction between clients and 
services. Nearly every service will be a local service in some sense, with 
only few services being truly global. Under these assumptions, the burden 
of the processing of locate postings and requests can be distributed more 
or less evenly over the hosts at each level of the network hierarchy. This is 
essentially the generalization presented later in the section on Hash 
Locate. 

3. 6. Existing networks 
Many wide-area computer networks are not completely designed at the outset 
but grow and change dynamically. Yet one can identify common characteris
tics. 

• The network resembles an undirected tree with a core in which we can 
imagine the root, and with some additional edges thrown in. It appears 
that UUCPnet (the anarchistic network connecting most UNIXt systems) 
has this form in the sense that the number of extra edges thrown in are 
not more than the the number of nodes in a spanning tree. The extra 
edges would typically occur between geographically near nodes. 

• The degree of the nodes should not be too large. Ideally bounded by a 
constant. Yet nodes nearer to the core of the tree tend to be of higher 
degree. Compare backbone sites, feeder sites and terminal sites in 
UUCPnet. The hierarchy of the nodes towards the core is very pro
nounced as can be seen in the table. The degree of super-backbone sites 
like ihnp4 is over 600, of backbone sites like decvax 40 and mcvax 45, and 
a feeder site like sdcsvax is 17. Terminal sites like ace have degree 1. 

• The network is planar to a large extent. This reflects the geographical cost 
factor but also the tree aspect mentioned above. Thus, the ARPAnet, to a 
large extent predesigned, is approximately planar and even the chaotic 
UUCPnet is not too unplanar. 

In the table below we have collected some statistics about the state of the 
known sites of UUCPnet at August 15, 1984. The total number of sites of 
UUCPnet is 1916 and of EUnet (European part) 153. The total number of 
edges in UUCPnet is 3848 and in EUnet 211. The degree of the nodes 
varies between the unlikely number O ( one such node is appropriately 
named loyalist) and 641 (which is ihnp4, in real life AT&T in Naperville). 
In the table below we list the number of nodes having a given degree. 

Let us consider trees as described above. The number of nodes in the 

t UNIX is a Trademark of AT&T Bell Laboratories. 
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#sites degree #sites degree 
25 0 3 25 

840 1 1 27 
384 2 2 28 
207 3 2 30 
115 4 2 32 
83 5 1 33 
71 6 2 34 
32 7 1 35 
29 8 2 36 
11 9 1 37 
17 10 1 38 
5 11 1 39 
7 12 I 40 

14 13 1 42 
10 14 1 43 
6 15 I 44 
2 16 3 45 
2 17 1 46 
3 18 1 47 
3 19 1 52 
3 20 2 63 
3 21 1 70 
4 22 1 471 
3 23 1 641 
3 24 

balanced tree is n, the number of levels is / with the root at level / and the 
leaves at level 0, and the degree of nodes at the i-th level is d(i). Then a 'fac
torial' relation holds: 

d(/)d(/ -1) · · · d(l) = n . 

Setting d(/) = c/ 1+\ for constants c, t: > 0, yields c1(1!)1+t = n. By Stirling's 
approximation, we get after some calculation: 

1 ~ logn 
(1 +t:)loglogn 

H the exponent 1 +t: in the expression for d(m) is doubled then the depth of 
the tree is halved for the same number of nodes. 
Setting d(/) = c2d, for constants c,t:>0 yields: 

Therefore, 
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1 = Vlog2c + 2dogn - loge 
f 

(The logarithms have base 2.) If t: is quadrupled then the depth of the tree is 
halved for the same number of nodes. 

The strategy in such trees can be simple: all services advertise at the path 
leading to the root of the tree, and similarly the clients request services on the 
path to the root of the tree. Then the average number of message passes used 
for each match-making instance, is m (n) E 0(/). The cache at each node 
needs to be of the order of the number of elements in the subtree of which it is 
the root. For smaller caches the older and less used entries can be discarded in 
favour of new ones, leading to a Lighthouse Locate like algorithm (see below). 
It may seem that such large caches are unrealistic and that, anyway, in distri
buted networks all nodes should be symmetric. However, even in a genuinely 
distributed and anarchistically growing network as UUCPnet a hierarchy of 
nodes develops according to the node degree (number of links with other 
nodes in the network). This points to the fact that nodes higher in the hierar
chy must dedicate more computing power and memory to running the net
work. Hence it is not unrealistic to have the cache size increase for nodes 
higher in the hierarchy. 

4. LIGHTHOUSE LOCATE 

We imagine the processors as discrete coordinate points in the 2-dimensional 
Euclidean plane grid spanned by (t:,0) and (0, t:). The number of servers satisfy
ing a particular port in an n-element region of the grid has expected value sn 
for some fixed constant s >0. 

Server's Algorithm. Each server sends out a random direction beam of length / 
every 8 time units. Each trail left by such a beam disappears after d time units. 
That is, a node discards a (port, address) posting after d time units. Assume 
that the time for a message to run through a path of length / is so small in 
relation to d that the trail appears and disappears instantaneously. 

Client's Algorithm. To locate a server, the client beams a request in a random 
direction at regular intervals. Originally, the length of the beam is I and the 
intervals are 8. After e unsuccessful trials, the client increases its effort by dou
bling the length of the inquiry beam and the intervals between them(/~ 2/ & 
l3 ~ 28). And so on. 

Another possibility is to govern the length of the locate beam (and its dura
tion) by the sequence 

12131214121312151213121412131216121312 · · · 

Here the length of the locate beam is ii once in each interval of 2; trials. (This 
sequence is sequence 51 in Sloane's catalogue [Sloane73].) The schedule can 
conveniently be maintained by a binary counter: the position i of the most 
significant bit changed by the current unit increment indicates the current 
beam length ii. This schedule has the additional profit that the servers which 
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drift nearer to the client are located with less time-loss. Note that · in a 
sequence of 2k trials there are 2k-i length ii trials (1 :s;;.i :s;;.k). 

Before the locate method for the euclidean plane can be converted into a 
practical algorithm for locating services it is necessary to find ways of 
mapping point-to-point networks onto the euclidean plane in such a way 
that the euclidean plane algorithm can be converted into an algorithm for 
a point-to-point network. Fortunately, such a mapping can often be 
found. Most point-to-point networks have routing tables that tell each 
node which outgoing. arc to use to get a message to its destination. In 
[Dalal78] these tables are used back-to-front to broadcast messages over 
the network in near optimal fashion. We can use these tables back-to
front to simulate sending messages along "a straight line" of certain 
length. The technique is as follows. 

A client (or server) wishing to send a beam of length k (using message 
passes as the unit of length) chooses a random outgoing arc and sends the 
message along it to its neighbor. This neighbor, upon reception of such a 
message decreases the hop count (in the message) by 1, and sends the 
message on any one outgoing arc that is used to send messages from the 
node at the other end of the arc to the original client (or server) where the 
beam started from. And so on, until the hop count reaches 0. 

5. lfAsH LOCATE AND BEYOND 

Let in a given network G =(U,E) the set of ports (i.e., types of services avail
able) be II. We can define the functions P and Q like in the Shotgun Locate 
but using the port identities as well: 

P,Q: UXII ➔ 2u . 

Il we are dealing with a very large network, where it is· advantageous to have 
servers and clients look for nearby matches, we can hash a service onto nodes 
in neighborhoods. A neighborhood can be a local network, but also the net
work connecting the local networks, and so on. Therefore, such functions can 
be used to implement the idea of certain services being local and others being 
more global ( cf. the section on hierarchically structured networks) thus balanc
ing the processing load more evenly over the hosts at each level of. the network 
hierarchy. Like Shotgun Locate, the Hash Locate below is a specialization of 
this more general method. 

In Hash Locate we construct hash functions that map service names onto 
network addresses. That is, 

P,Q: II ➔ 2u & P=Q. 

This technique is very efficient. Each server s posts its (port, address) at the 
node(s) P('IT), if 'IT is the port of s, and each client in need for a service at port 
'IT queries the node(s) in P('IT). Apart from redundancy for fault-tolerance, 
clients and servers need only use one network node each in every match
making. (Oearly, the rendez-vous matrix must be interpreted differently in this 
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setting.) Provided the hash function is well-chosen, it distributes the burden of 
the locate work over the network. It suffers from the drawback that, if nodes 
are added to the network, the hash function must be changed to incorporate 
these nodes in the set of potential rendez-vous nodes. Moreover, if all rendez
vow nodes for a particular service crash then this takes out completely .that par
ticular service from the entire network. If the service is indispensable, the 
entire network crashes. In this sense Hash Locate is far more vulnerable to 
node crashes than the more distributed versions of Shotgun Locate. Examples 
1, 2 and 3 may also be viewed as borderline examples of Hash Locate. Exam
ples 4, 5 and 6 are not Hash Locate methods, since Hash Locate cannot be 
distributed in this genuine sense. 

Two obvious approaches can make Hash Locate more robust for node 
crashes. First, the hash function can map a service name onto many different 
network addresses for added reliability. Second, when the rendez-vous node 
for a particular service is down, rehashing can come up with another network 
address to act as a backup rendez-vow node. It then becomes necessary that 
services regularly poll their rendez-vow nodes to see if they are still alive. 
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Distributed systems span a wide spectrum in the design space. In this paper 
we will look at the various kinds and discuss some of the reliability issues 
involved. In the first haH of the paper we will concentrate on the causes of 
unreliability, illustrating these with some general solutions and examples. 
Among the issues treated are interprocess communication, machine crashes, 
server redundancy, and data integrity. In the second half of the paper, we will 
examine one distributed operating system, Amoeba, to see how reliability 
issues have been handled in at least one real system, and how the pieces fit 
together. 

1. INTRODUCTION 

It is difficult to get two computer scientists to agree on what a distributed sys
tem is. Rather than attempt to formulate a watertight definition, which is 
probably impossible anyway, we will divide these systems into three broad 
categories: 

Closely coupled systems 
Loosely coupled systems 
Barely coupled systems 

The key issue that distinguishes these systems is the grain of computation, 
which can be roughly expressed as the computation time divided by the com
munication time. H this ratio is below 10, we have a closely coupled system. 
Hit is between 10 and 100 we have a loosely coupled system. Above 100 the 
system is barely coupled. 

In practice, the amount of time required for communication is determined 
by the communication hardware and the operating system. In a system 
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consisting on a large number of CPU boards on a single backplane with 
shared memory, it may be possible for one processor to write a word in 
another processor's memory in microseconds. On the other hand, processors 
that communicate over a local area network by message passing typically 
require milliseconds to send a message and get a reply. Finally, when a wide
area network is being used, communication times of hundreds of milliseconds 
or more are normal. 

These hardware parameters tend to give rise to three kinds of distributed 
systems, each with their own properties. These systems differ in terms of how 
the users view the system, how much autonomy the individual processors have, 
how problems are partitioned among the processors, how work migrates 
among the processors, how the load is balanced, how interprocess communica
tion is done, whether the system is homogeneous or heterogeneous, and finally 
how reliable the total system is and what the failure modes are. 

At one extreme we have closely-coupled multiprocessors with shared 
memory communicating over a backplane type bus with short bursts of com
putation interleaved with short bursts of communication. This is fine-grained 
parallelism. 

Usually all the processors used in this kind of system are identical and fairly 
close together (same room). Frequently, all the processors are working 
together on a single problem. Although the system designers may try to make 
the presence of multiple processors transparent, with hundreds or thousands of 
CPUs it may be difficult to keep all the processors busy unless the parallelism 
is programmed explicitly. 

The second kind of system is the loosely coupled system, typically consisting 
of a number of workstations or personal computers communicating over a 
local area network. In some systems a rack of processors is present, any or all 
of which can be dynamically allocated as the need arises. In some cases, the 
user perceives of the system as a collection of autonomous computers that 
share a common file server or printer. In other cases, the system looks like a 
virtual uniprocessor. In other words, to the user, the whole system looks like a 
traditional multiuser time sharing system, rather than a network of indepen
dent machines. 

There are two general approaches that can be used in such systems. In the 
first one, all the machines run the same operating system. In the second one, 
different machines can run different native operating systems, with a layer of 
software on top to make them look (more) homogeneous. A general survey on 
distributed systems is given by Tanenbaum and van Renesse [Tanenbaum85]. 

The third kind of system consists of (typically large) computers or local area 
networks connected by a low-bandwidth, wide-area network. These machines 
are barely connected in the sense that communication costs normally dominate 
the computation costs. Still, for some applications, such as doing joins in a 
database system, the amount of computing is so large that the system can be 
made to appear to the user as a single system, despite the low-bandwidth con
nection between the pieces. 

A key point that is common to all these systems, however, is the question of 
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whether the parallelism provided by the multiple processors is implicit or 
explicit. This point has important implications for reliability aspects of the 
system. If the system looks to the user like a virtual uniprocessor, there is 
relatively little that can be done about reliability at the user level. The reliabil
ity must be handled by the system. On the other hand, if users can explicitly 
control the parallelism, it is possible for them to use the redundancy to 
enhance the reliability. 

A simple example may make this point clear. Some distributed file systems 
offer atomic transactions [Lampson81] as a primitive operation. The user can 
specify that a transaction be started, issue commands to read and write files, 
and then commit the transaction. The system then either runs the entire tran
saction to completion, or fails, leaving all the files in their original state. Such 
a file system may well use multiple processors and multiple disks internally, 
but there is nothing the users can do to influence the reliability behavior. 

Now consider a different example, a system with a rack of processors that 
can be dynamically allocated to processes upon request. A process can request 
n processors, set all of them working on the same problem (possibly with 
different algorithms), and then accept the majority answer when all have 
reported back. In this system the parallelism is explicit, so the user can decide 
how much redundancy is required for the problem at hand. The conclusion is 
that systems with explicit parallelism tend to be more flexible, but require 
more work on the part of the user. 

2. CAUSES OF UNRELIABILITY 

Space limitations prevent us from examining the reliability aspects of all three 
kinds of systems in detail, so we will focus primarily on the middle category
loosely coupled systems. In particular, in this section we will look at some 
problems that cause systems to be unreliable and on some of the solutions that 
have been proposed for these problems. In the next section we will look at 
one distributed system, Amoeba, to see how th ese problems have been 
attacked and how the various components fit together to make a more reliable 
system. 

2.1. Interprocess communication 
When the processors in a distributed system are connected by a. "thin wire" 
local network, interprocess communication primitives that explicitly or impli
citly require shared memory (such as semaphores), are not desirable. 

Instead some form of message passing is needed. One widely discussed 
framework for message-passing in computer networks is the ISO-OSI model 
[Zimmermann.80]. To make a long story short, the various protocols that go 
with this model are so complex and cumbersome, that their use in a high per
formance local-area network is unattractive at best. 

The model favored by most researchers in this area is the client-server 
model, in which a client wanting some service (e.g., a block from a file) sends a 
message to the server, which then sends a reply. The basic primitives in the 
simplest form of client-server model are SEND and RECEIVE, each specifying 
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an address (destination or source), and a buffer. 
These primitives come in several varieties. First of all, there is the question 

of whether transmission is reliable or not. On some systems, SEND means put 
the message out onto the network and hope for the best. Processes needing 
better reliability than that must arrange for it themselves. Other systems use 
low-level protocols that do automatic timeout and retransmission. Here we see 
a clear tradeoff between performance and reliability. 

A second question is blocking vs. nonblocking primitives. With a blocking 
SEND, the sender is suspended until the message has been transmitted (unreli
able transmission) or transmitted and acknowledged (reliable transmission). 
With a nonblocking SEND, the sender continues immediately. If the sender 
modifies the buffer, these changes may or may not be transmitted, depending 
on whether transmission has taken place or not. Similarly, a blocking 
RECEIVE waits until a message arrives, but a nonblocking RECEIVE merely 
provides a buffer. When a message arrives, the receiver gets an interrupt. 
Nonblocking primitives are harder to use (hence less reliable) but provide more 
parallelism and higher performance. 

Based on experience, many system designer have decided to favor reliability 
over performance, which has led to the remote procedure call [Birre1184, Nel
son81, Spector82). In this scheme, the client makes what looks like a call to a 
procedure running on the server's machine, but it actually makes a call to a 
stub procedure running on its own machine, as shown in figure 1. The stub 
procedure packages all the parameters in a message, which it then reliably 
sends to a stub on the server's machine. The server stub then indeed makes a 
local procedure call on the server. 

Client Machine Server Machine 

Client Client Server Server 

proc. stub stub proc. 

FIGURE 1. Client-Server model. 

This model is attractive in many ways. For one thing, the client need not 
know anything about the fact that the server is remote. It just makes an ordi
nary procedure call, with the parameters passed in the usual way (e.g., on the 
stack). Similarly, the server is called by a local procedure according to the 
local calling and parameter passing conventions. For another thing, the 
semantics are straightforward and familiar. Programmers understand the pro
cedure call model much better than the message model. 

For all its elegance, however, a number of problems lurk under the surface. 
Many of these have important implications for the system's reliability. Most 
of them are directly related to the goal of the remote procedure call
transparency, that is, making it look like a local procedure call. 

To begin with, when a program makes a local procedure call, the procedure 
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is executed exactly once, no more and no less. With remote procedure calls, 
this ideal is unachievable in general. The problem is that the remote server 
may crash just before or after performing the remote operation, but before 
sending back the acknowledgement. If the client repeats the request, and it 
was already carried out, then it will be carried out a second time. 

Operations that can be carried out multiple times without harm, such as 
overwriting a specific disk block are said to be idempotent. Unfortunately, 
most operations that involve communication or I/0 are not idempotent. For 
example, if the request was to a bank server to transfer a large amount of 
money to a numbered Swiss bank account, one would prefer that operation 
not be executed by accident a second time. 

At first glance you might think that the problem could be solved by having 
the server record the fact that it was about to perform the operation in a 
secure way, for example, on stable storage [Lampson81]. However, this idea 
does not work for nonidempotent operations because after recording its inten
tions the server has to carry out the operation and then send the acknowledge
ment. In the best case, each of these steps can be done in a single instruction, 
for example, by setting one bit somewhere. If the server crashes between the 
two instructions, when it reboots it cannot determine if the crash occurred just 
before, between, or just after the two instructions. 

This observation leads to three classes of remote procedure call systems: 
those that have "at least once" semantics, those that have "at most once 
semantics" and those that have "don't know'' semantics. In the former class, 
if the client stub does not get a reply within a specified interval, it just keeps 
repeating the request until it gets one. The call may be repeated several times, 
however. 

The second kind of semantics is "at most once." One way to implement this 
is to simply avoid all retransmissions, but then a simple lost message results in 
a failed execution. A better way is to have the server log all actions before 
performing them, so that if a repeated request comes in, it can be recognized 
as such and rejected. With this model, the client knows that the call has been 
performed either O or 1 times, but no more. 

The third category consists of systems that give no guarantee at all. These 
have the advantage of being easy to implement. 

Transparency also brings other problems with it. Suppose a server is over
loaded. A client that does not realize that the lack of response is due to over
load may think it is due to lost messages and keep retransmitting, thus making 
the problem worse. 

2.2. Server crashes 
Another source of unreliable behavior is machine failures, either due to 
hardware or software. These can be split into two categories: server crashes 
and client crashes. These have different consequences for the system and must 
be attacked differently. In this section we will look at the problems associated 
with server crashes and in the next one client crashes. 

In general, servers can crash. Obviously one should try to make the servers 
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as reliable as possible, but even perfect software will not act properly if the 
hardware refuses to work. Furthermore, making the software perfect is easier 
said than done. 1bis problem can be approached two ways. One way is to try 
to get crashed servers back on the air as fast as possible. The other way is to 
provide multiple servers for redundancy. 

Getting crashed servers back up again requires some mechanism to detect 
when a server has gone done and some way to get it back. Ideally there 
should also be some mechanism to adjudicate disputes. If the server claims to 
be up but its clients claim that it is not doing anything, what then? Whatever 
mechanism is chosen to monitor servers should itself be highly reliable of 
course. 

When the problem of unreliable servers is tackled by having several of each 
kind, the issue of client-server binding arises. In a system with multiple identi
cal servers (e.g., 3 file servers), at some point a choice must be made about 
which one a client will use. One can easily imagine a system in which the 
servers share a common address or mailbox, with each server taking new work 
out of the mailbox whenever the server is idle. Suppose server l takes a 
request out of the mailbox, carries it out, and then sends an acknowledgement 
that is subsequently lost. 

At this point server 1 crashes. The client times out and retransmits the 
request, only to have it be taken by server 2 this time, which knows nothing 
about what server 1 has done recently, because server 1 is currently down and 
cannot tell it. Server 2 now repeats the request. If the semantics are "at most 
once" we have a problem. This problem occurs even if server 1 has carefully 
logged the request and reply in order to filter out repeats. 

The difficulty is that the binding between the client and server was automati
cally broken and reset when the first server went down. Many systems regard 
automatic rebinding as a step towards fault-tolerant, reliable systems, but we 
see here that one must be careful. 

Another issue related to automatic rebinding of servers is that of state. 
Some servers may have a long term state that is maintained even after a 
remote procedure call has terminated successfully. For example, some file 
servers have an operation OPEN on a file that returns a file descriptor for use 
in subsequent READs and WRITEs. If multiple instances of such a server 
exist, problems will arise if the server holding a particular client's open file 
table crashes between two remote procedure calls so that subsequent calls go 
to a new server not having the necessary state. 

Of course the system can have a rule that odd-numbered clients always use 
server 1 and even-numbered clients always use server 2, but such a scheme 
completely defeats one of the goals of a distributed system, namely, to use 
redundancy to improve reliability. 

Yet another reliability problem associated with binding is authentication. 
How can the server tell which client sent the message, and how can the client 
be sure he is sending his data to the real server and not to an imposter? 
Going through a full authentication protocol, complete with passwords, on 
every call is not feasible. On the other hand, solutions such as that of Birrell 
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[Birrell85] effectively require setting up a long-term encrypted session,· thus 
moving away from the idea of transparency, since now remote procedure calls 
need to first set up sessions between client and server, but local ones do not. 

2.3. Client Crashes 
So far we have only looked at the reliability problems caused by server 
crashes. Client crashes also cause plenty of headaches. When a client starts 
up a computation on a server and then crashes, the computation continues 
even though nobody is interested in it any more. Such a computation is called 
an orphan. Having a lot of orphans lying around making random computa
tions does not enhance the reliability of a system. Orphans are most serious 
when the computation being done by the server takes a substantial amount of 
time. 

Various methods, some fairly draconian, have been proposed for dealing 
with orphans. One method is to kill off all processes in the whole system every 
T seconds. This will certainly kill off all the orphans, but it is something of a 
nuisance to normal computations. 

Another possibility is to have each server periodically check to see if the 
client that started the current computation is still interested. A variation on 
this idea is the dead man's handle. A client is expected to poll a server work
ing for it periodically. If a poll fails to come in on schedule, the server just 
kills the computation. 

A different approach is to program all clients to log all remote procedure 
calls on stable storage before making them. When a client reboots after a 
crash, it checks to see if there were any servers working for it, and if so, tells 
them to stop. This solution is expensive because writing to disk to log each 
call doubles the cost of each remote procedure call. 

No matter which of these methods is chosen for killing off orphans, there is 
always the danger than an orphan will be in the middle of a critical section at 
the instant that it is killed, or that it holds many locks on resources. In this 
case, killing the orphan can lead to race conditions and deadlocks. 

Even if a method can be found to kill off all orphans, it may well be that an 
orphan has created some long term state that will cause other actions to hap
pen later. For example, a file may have been put in a queue for subsequent 
processing elsewhere in the system. Thus even after an orphan has been killed 
off, some other processor may examine the queue, find the work, and start up 
another orphan. 

Let us now briefly look at some systems that have attempted to deal with 
server and client crashes. Borg et al [Borg83]. have described a system in 
which each process has a backup process running on a different processor. 
Whenever a client sends a message to a server, it also sends the same message 
to the server's backup, as shown in figure 2. Similarly, replies are sent to both 
the client and its backup. The operating system takes care of coordinating and 
synchronizing all the messages. 

The idea behind this technique is that if a process crashes, its backup, on 
another processor, will be available to take over. Of course this scheme 
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Network 

6 Message 6 Message 6 
Primary Sender Backup 
Process sends process 

~s~~~~ 

FIGURE 2. Each process has its own backup. 

requires doubling the number of processors. Powell and Presotto [Powell83] 
have proposed a simpler scheme that only requires one extra process, instead 
of doubling the number of processes. In their scheme, shown in figure 3, there 
is a single recorder process that logs all messages sent on the network. 

Sending 
Process 

Rece1Vin9 
process 

Recorder 
process 
saves ell 
network 
traffic 

FIGURE 3. A recorder process logs all message traffic. 

If a process crashes, a new processor can be allocated, and the code of the 
crashed process loaded into it. Then the recorder carefully spoon feeds the 
new process all the messages it has saved, in order to get the new process into 
the same state as the old one was when it went down. Messages sent by the 
process while it is getting to the point where the old one was are intercepted 
just before they are sent, to prevent their recipients from being confused. 
When the new process gets to the point that the old one was, it switches into 
normal mode, so that messages really are sent. 

Processes can also make checkpoints of themselves from time to time if they 
wish. Doing so means that if a process crashes, the checkpoint can be started 
up and only messages logged after the checkpoint was made have to be 
replayed. 

Powell and Presotto's technique has the advantage of not requiring any over
head during normal operation. However, it does implicitly presume that all 
messages are correctly received and logged by the recorder. 

A different approach to reliability is Cooper's [Cooper85] replicated proced 
ure call. In Cooper's model, each client process is in reality n processes run
ning in parallel and executing the same code. Similarly, each server consists of 
m parallel processes. When a client calls a server, each client process sends a 
message to each server process. 

When the replies come back to the client, they are compared. One possible 
comparison algorithm is to vote. Whichever answer occurs the most times is 
declared the winner, and given to each client. The clients then continue their 
work. In this manner, an occasional error is simply voted down, thus giving a 
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degree of fault tolerance. 

2.4. Data Integrity 
Another key reliability issue is data availability and integrity. If data are fre
quently inaccessible because some key server is down, users will perceive the 
system as unreliable. 1bis problem can be dealt with to some extent by having 
multiple servers of each type, each holding its own private copy of the data. 
As long as the data are never changed (or very rarely changed), this solution 
works well. However, if updates are frequent, the redundancy itself introduces 
problems. 

The main problem, of course, is that having multiple copies of the data 
introduces the possibility of the various copies becoming different over the 
course of time. Before looking at the replication problem, let us first take a 
look at the good old days of magnetic tape. In those days, it was common for 
companies to have a master tape with their current inventory of products. 
Each day tapes containing the day's purchases and sales would be brought to 
the computer center. The master tape, an update tape, and a blank tape 
would be mounted, and a job run making an updated master on the blank 
tape. Then the next update tape would be run with the new master, and so 
on. 

The nice thing about this system was that if the computer crashed at any 
instant, it was always possible to go back to the original or any other master 
tape and start everything again. When magnetic disks were introduced, sys
tems began updating records in place, losing the idempotency of the tape 
scheme. Furthermore, when multiple update runs were allowed at the same 
time, sophisticated concurrency control algorithms had to be introduced to 
make the updates serializable while avoiding deadlock. In this view, the very 
concept of updating files in place on the disk is seen as a major source of 
unreliability. When the situation is further complicated by having the work 
distributed over multiple machines, the potential reliability problems become 
even worse. 

Assuming the problems of concurrency control and serializability on a single 
machine can be dealt with by conventional means, the issue of replication can 
be dealt with in several ways. The first way is to have a master copy with 
multiple backups. 1bis scheme closely resembles the old tape system. After 
the master copy has been updated, the changes have to be propagated to the 
backups. 

The second way is to update all the copies in parallel, but when inconsisten
cies arise, to vote [Thomas79, Gifford79]. In this way minority viewpoints can 
be stamped out. 

A third scheme is regeneration [Pu86]. When an update is done, the server 
doing the update arranges for multiple copies to be made. If one of those sub
sequently becomes disconnected or unavailable, the server just abandons the 
missing copy and generates a new one. 
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3. RELIABILITY IN AMOEBA 
In this section we will look at the Amoeba distributed operating system [Mul
lender84, Mullender85, Mullender86, Tanenbaum86] to see how reliability 
issues have been dealt with in a real system. First we give a brief introduction 
to Amoeba. 

Amoeba is a distributed operating system that has been designed and imple
mented at the Vrije Universiteit and the Centrum voor Wiskunde en Informa
tica. It runs on a collection of 40 Motorola 68000s, 68010s, and 68020s con
nected by a IO Mbps local area network. The conceptual model behind the 
system is the abstract data type. Client processes can perform operations on 
objects managed by servers. These operations are implemented by having the 
clients send messages to the servers, with the servers sending the results of the 
operations back to the clients. This is a simple form of remote procedure call. 

Both client and server processes, called clusters, can consist of multiple tasks 
that conceptually run in parallel within the same address space. While one 
task is blocked waiting for a message, another one can be running. Many 
servers are implemented as a collection of tasks, each of which starts out wait
ing for a message. When a request to perform an operation arrives, it is given 
to one of the tasks at random. If that task should later block ( e.g., waiting for 
a disk), another task in the cluster can run on behalf of a different client. Syn
chronization is achieved by never switching from one task to a different task in 
the same cluster except when the current task is logically blocked. The 
scheduler can switch between clusters at will, however. 

The Amoeba system consists of four basic components, as shown in figure 4. 
The workstations are used to provide a multi-window interface to the user, as 
well as some local computing such as editing. The pool processors can be 
dynamically allocated as needed for compilations, text formatting, or doing 
any other work. Ann-pass compiler, for example, can be arranged to allocate, 
use, and then return n pool processors, one per pass. 

Processor 
pool 

Jillillill 
Jillillill 
Jillillill 
Jillillill 

Workstations 

Gateway 

WAN 

Specialized servers 

(f 1 le. data base, etc) 

FIGURE 4. An Amoeba system has four components. 

The system also contains specialized servers with dedicated functions, such 
file servers, bank servers, and boot servers. Finally, the fourth component is 
the gateway to other Amoeba systems. Soon Amoeba will be running at five 
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sites in three countries, all interconnected by a wide-area network. 
Identical Amoeba kernels run on all the machines. The kernels are inten

tionally small, basically handling only communication and low level memory 
management. Files, process management, and even protection and accounting 
are all handled at the user level. 

Objects are protected by capabilities, as shown in figure 5. Each capability 
contains a port field that is used to identify the server or client being addressed 
and an object field, used to identify the specific object to be manipulated. 
Object numbers are analogous to i-node numbers in UNIX.t Next comes a 
rights field, telling which operations the holder of the capability may perform 
on the object. Finally, there is a random number that prevents users from 
forging capabilities. Capabilities are directly handled by user processes, out
side the kernel. 

4B 24B,4B 

Service port I Object IRt•I Check 

FIGURE 5. An Amoeba capability. 

The random number field is crucial tp the protection scheme, hence to the 
reliability of the system. When an object is created, the creating server allo
cates an "i-node" for it and puts a random number in it. It then 
EXCLUSIVE ORs the rights bits (initially all ls) with the random number and 
runs the result through a one-way function [Evans74] used for all objects. The 
output of the one way function is put into the random field of the capability. 
The rights bits· are included in the capability in plaintext. 

When a client performs an operation on an object, the capability for the 
object is sent to the server to identify the object. The server then uses the 
object number contained in the capability as an index into its tables to find 
the random number. The random number thus found is EXCLUSIVE ORed 
with the plaintext rights field and run through the one-way function. If the 
output is the same as the capability's random number, the capability (includ
ing the plaintext rights bits) is accepted as valid. This protection system and 
several variations on it are described in more detail in Tanenbaum et al 
[Tanenbaum86]. 

t UNIX is a Trademark of AT&T Bell Laboratories. 
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3.1. Interprocess communication 
The form of remote procedure call used by Amoeba has "at most once" 
semantics. For most applications this is preferable to "at least once" and cer
tainly better than "don't know." We will now describe how these semantics 
are implemented. 

When a remote procedure call is made, the client calls a stub procedure that 
locates a server based on the port number present in the capability belonging 
to the object to be operated upon. The location is done by first looking in a 
cache. If that fails, a broadcast is done. If multiple servers handle the object 
class in question, the stub selects one of them, and gets its process identifier 
(pid). 

Then a message is sent to the selected server process. Normally, the server 
will perform the operation and send back a reply. If the server's reply is not 
forthcoming within a certain time interval, the server's stub times out and ack
nowledges receipt of the request so the client will know that it arrived safely 
and that the server is hard at work on it. When the server's reply finally gets 
back to the client, the client's stub sends an acknowledgement back to the 
server, which terminates the call. 

If it has received an acknowledgement but no reply to the request itself, at a 
certain point the client gets nervous and sends an "Are you alive?" query to 
the server, which is answered immediately. On the other hand, if the client has 
heard nothing at all from the server, not even the acknowledgement of the 
request, it eventually times out and retransmits the request. When the server 
sees the retransmitted request, which bears the same source and request 
number as the original, it can recognize the request as a retransmission and 
just send the reply again or at least just acknowledge receipt of the request if 
the result is not yet available. 

Now consider what happens if the server crashes. The client stub eventually 
detects that the server process is down when it fails to get answers to its "Are 
you alive?" messages. If the client stub has enough knowledge of the specific 
operation to be sure that it is idempotent, it can locate another server and 
repeat the operation. In this case it does not matter that the operation was 
executed more than once. 

On the other hand, if the stub does not know whether or not the operation 
is idempotent, it simply reports back failure to the client, meaning that that 
the operation has been performed either O or I times, but not more. 

3.2. Server crashes 
The communication mechanism is not the only part of Amoeba that was 
designed with reliability in mind. There is also a boot server whose job is to 
make sure that processes (typically servers) that are supposed to be alive are in 
fact alive. It does this by periodically probing the registered servers to see if 
they are still functioning. 

All the long-lived servers, such as the file servers, normally register with the 
boot server when the system comes up. This registration consists of providing 
the boot server with the message to be sent to the server and the reply that the 
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server is supposed to send back, the frequency at which these probes are to 
take place, the number of probes to make before declaring the server dead, 
and the procedure for creating a new server to replace one that has crashed. 

The procedure used to reincarnate a crashed server depends on the nature of 
the crash. If the server is dead but the kernel on its machine is still working, 
then the boot server instructs the kernel to create a new server process to 
replace the old one. 

If the entire machine has crashed, then the boot server sends a special 
packet on the network that is detected by the interface card, and which results 
in the interface asserting a RESET signal on the crashed machine's bus. This 
signal causes the machine to reboot itself by jumping to a program in a ROM. 
The ROM program and the boot server together download a new kernel into 
the machine, at which time the server can be restarted. If the machine cannot 
be started up at all, the boot server gets another processor and starts the server 
there. This whole procedure is fully automated; it happens without human 
intervention. 

The only other issue concerning the boot server is the reliability of the boot 
server itself. Multiple copies of the boot server run, each one communicating 
with all the other ones. If one of the boot servers crashes, the remaining ones 
regenerate it using the procedure just described. 

3.3. Client crashes 
Orphans are prevented in Amoeba by using the "Are you alive" messages as a 
dead man's handle. If a server is making a long computation, it expects to get 
"Are you alive messages" periodically. If these messages cease to arrive, the 
server concludes that the client is dead and kills the orphan itself. 

Although the orphan detection mechanism is useful for ridding the system of 
unwanted computations, in many circumstances it is desirable that clients be 
fully fault tolerant, meaning that a client, especially one running in parallel on 
multiple pool processors, itself notices crashes of some of its processors and 
recovers from them in a transparent way. Several applications have been pro
grammed in this way. Below we will briefly sketch two of these, the traveling 
salesman problem and parallel alpha-beta search. 

The traveling salesman problem consists of finding the shortest route that a 
salesman can use to visit all the cities in his territory exactly once. Roughly 
speaking, the Amoeba approach is to have a procedure, traverse, that takes as 
input a partial path, the set of cities as yet unvisited, and the length of the best 
total path found so far [Bal85]. This procedure forks off a process for each 
unvisited city to investigate all paths with that city as the next step. Each pro
cess simply runs traverse, with a partial path one city longer and the set of 
unvisited cities one smaller. The recursive forking of parallel processes contin
ues until a certain depth in the tree has been attained, at which point the resi
dual tree is searched completely by one process. Variations of this search stra
tegy have also been tried. 

The reliability comes from the fact that if a process fails to report back its 
findings within a certain time, and also fails to respond to the "Are you alive" 
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messages, the process that invoked it just asks for another pool processor and 
starts the work all over again. Higher levels in the tree do not even know that 
a fault has been detected and corrected. In this way the program will be exe
cuted correctly even in the face of repeated multiple processor crashes. 

The other reliable application that has been tested is heuristic search for the 
game reversi (Othello) using the alpha-beta algorithm. At each board position 
a process is generated for each legal move. Although the details of alpha-beta 
make this application somewhat different than the branch and bound algo
rithm used for the traveling salesman, again if a process crashes, its parent just 
finds someone else to do the work. As we mentioned in the introduction, the 
fact that the parallelism is visible to the application makes it possible to 
exploit it for better reliability. 

3. 4. Data integrity 
File servers in Amoeba are user-level processes, so there can be several of them 
running at once, providing different services and serving different clients. 
Some of the file servers have been designed to provide UNIX-file service, oth
ers have been designed for high performance, but there is also one whose goal 
is high reliability. This one, called FUSS (Free University Storage System) is 
described by Tanenbaum and Mullender [Mullender85] and is sketched below. 

The technique used by FUSS to provide high reliability is the immutable file. 
When a process wants to update a file, it asks FUSS to create a new version of 
the file and return a capability for the copy. (Actually the file is not copied. 
Shadow pages are used, but this is really just an optimization.) The process 
can then modify the copy as it wishes. When it is done, the process tells 
FUSS to commit the file, making the copy the new file. Thus a file is really a 
sequence of versions, none of which is ever modified once it has been commit
ted. Modifying a file consists of atomically replacing a file with a new version. 

This design is more reliable than the traditional update-in-place file system 
because updating a file consists of preparing the new file and then at the last 
minute switching one pointer. If the file server crashes, either the old file or 
the new file will be present when it comes up again, but never a mixture of the 
two. By appropriate logging of intentions on a disk, the server can be made to 
eventually complete the update no matter how often it crashes. The atomic 
update property is especially important if two or more processes are simultane
ously updating the same file. FUSS offers a choice between locking and 
optimistic currency control, but in both cases, an update to a file ( or even a set 
of files) is atomic. 

Work is currently in progress to extend these ideas to general objects. The 
idea is that any object should be representable as a sequence of versions, with 
the update from the old version to the new one being done atomically. This 
can be achieved by having a directory server that maps ASCII strings onto 
capabilities, or more generally, onto sets of capabilities. In effect, a directory 
is an unordered collection of lines, each containing a ASCII object name fol
lowed by set of capabilities. The capabilities are for replicas of the same 
object. 
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A directory is thus simply a mapping of ASCII names onto sets of objects. 
A directory is itself an object, so directories can contain capabilities for other 
directories, giving rise to a directory hierarchy, or even a general graph, if that 
is desired. 

The principal operation on a directory object is to present the directory 
server with a capability for a directory and an ASCII string to be looked up in 
that directory. The server then looks up the given string in the directory and 
returns the full set of capabilities that correspond to that string, if any. The 
client can then choose one of them at random to use. If that one is not avail
able, it can choose another one. 

The idea of having the directory entry contain multiple capabilities has been 
done to enhance the reliability. Because files (and objects generally) are 
immutable, once a new version of an object has been created, the directory 
server can arrange for backup copies of the object to be made at its leisure 
(lazy backup). There is no problem with race conditions because the object 
cannot change. The worst that can happen is that the version being backed up 
becomes obsolete before all the backups have been created, in which case some 
extra work may have been done for nothing, but the file system integrity is 
never affected. 

Updating a directory entry is done by sending the directory server a capabil
ity for a directory, an ASCII string, the capability for the object being 
replaced, the capability for the new object, and a count specifying how many 
backup copies should be made and maintained. The directory entry is 
updated atomically-either it happens or it fails, but there is never half an 
update. Notice that the replication effort is managed by the directory server, 
so it need not be duplicated in each object server. This is possible because 
objects are immutable. Once an object has been committed, it never changes; 
it can only be replaced in its entirety by a new object. 

The update operation requires the old capability as a parameter so the direc
tory server can verify that the object being replaced is still the current object. 
If the old capability is not present in the set of capabilities for the given string, 
the directory server can see that another update has transpired in the mean
time, so the update operation fails. This scheme is a form of optimistic con
currency control. Put in other terms, if two clients each look up a given string 
in a given directory, and then both try updating the corresponding object, only 
the first update will succeed. Objects can also be locked, to allow a more con
ventional update strategy. 

3.5. Other reliability features of Amoeba 
Another area that affects system reliability is resource management. If one 
user or process consumes too many resources, the rest of the users and 
processes will suffer the consequences. For this reason Amoeba has a bank 
server that can be used as a general tool for resource management. 

The bank server manages bank accounts in various currencies. As an exam
ple of its use, consider a file server that wished to implement a quota system to 
give each user at most 1000 disk blocks. Each user would be given a bank 
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account containing. say, 1000 zlotys, each good for one disk block. Every time 
a user wanted another disk block, he would first have to transfer 1 zloty to the 
file server's account to pay for it in advance. When the block was freed, the 
user would get his zloty back. 

Other currencies can be used for other resources. CPU time could be 
charged in yen, phototypesetter pages in guilders, etc. The policies ( e.g., who 
gets how much money, whether currencies are convertible) are decided by the 
servers, but the basic mechanism (managing the accounts, logging transactions, 
transferring money between accounts atomically, maintaining caches for 
efficiency, etc.) is done by the bank server, so that each individual server need 
not run its own admjnjstration. 

Try as we may to build a reliable system, there are going to be bugs in it. 
For this reason, Amoeba has been designed in such a way to be able to catch 
faults and handle them. To see how this mechanism works, we have to take a 
look at how processes are managed in Amoeba. When a user types a com
mand to the shell, the shell creates a mother process to oversee the execution 
of the command. The mother process allocates a processor from the processor 
pool, asks the Amoeba kernel on that machine to allocate sufficient memory 
for the new process, and then downloads the program to be executed to the 
processor for execution. 

Normally, the mother process does not intervene in the execution of the pro
gram on the pool processor. It simply waits until the program terminates to 
clean it up and report back its status. However, it is possible to tell the pool 
processor's kernel to catch all system calls and other kernel traps, and send 
them to the mother process for processing. 

In this way, for example, it is possible to take a binary program compiled to 
run on 68000 UNIX (i.e., not on Amoeba) and run it on a pool processor, even 
though the Amoeba kernel knows nothing at all about UNIX. The UNIX sys
tem calls are effectively all passed to the mother process for execution. If the 
mother process happens to be running on a 68000 UNIX system (which is easy 
to arrange), it can just execute the system calls locally and send back the 
results. 

This same mechanism is used for debugging. When a process on a pool pro
cessor gets a memory fault, illegal instruction, or other kernel trap, the pool 
processor's kernel does a remote procedure call with the mother process telling 
it what happened. The mother process contains a debugger that can print a 
message on the user's terminal and then wait for input instructing it what to 
do. There are commands to examine and print memory and so on. These are 
handled by messages between the mother process and the kernel on the pool 
processor. 
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SUMMARY 
Reliability considerations have influenced the Amoeba design in a number of 
ways. These include the scheme for protecting objects with cryptographically 
secure capabilities, the communication mechanism with "at most once" seman
tics and orphan extermination, the boot server for automatically rebooting 
dead processes, the file server with immutable files, the directory sever with 
atomic update on replicated objects, the bank server for limiting resource 
usage, and the hooks for debugging. In addition, Amoeba has been used for 
explicitly programming fault tolerant applications such as the traveling sales-_ 
man and heuristic search. 
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1. INTRODUCTION 
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File systems play an important role in allowing information to be widely 
accessible, since most information is in some way or another stored on files. 
There are many different kinds of file systems for distributed systems, ranging 
from private file systems for each host to special purpose file servers for the 
whole network. Each kind of file system has its own characteristics concerning 
accessibility, complexity, protection of information against unauthorised 
access, speed and distributiveness. 
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The ideal distributed file system would be fast, files would always be near 
the hosts needing them, there would be protection, if necessary, to guard 
against unauthorised hosts or users, files could be shared among different hosts 
at the same time, and the system would be totally immune agains individual 
file server crashes or disk crashes. Unfortunately, such distributed file systems 
do not yet exist. Improving one aspect of a file system is nearly always detri
mental to another. The consequence, for instance, of replicating files at several 
sites to improve their availability is that updating these files will become much 
more costly, since all copies have to be updated, and if, additionally, the 
changes made by different users must be synchronised, such that the changes 
made by one user do not interfere with the data read by another, then the cost 
of file operations will be increased by several orders of magnitude. 

This paper goes into the design of the distributed file service for the Amoeba 
Distributed Operating System [Mullender86]. We have attempted to build a 
file service, suitable for many different applications: ordinary 'plain' files, 
hierarchically structured files, replicated files, databases, source code control 
systems [Rochkind75], etc. 

2. DllsIGN CONSIDERATIONS 

Important in the design was the Bauer principle, governing the whole of the 
design of Amoeba, 'You should not have to pay for those features you do not 
need.' A file server, for instance, that implements atomic update on replicated 
files is a very nice thing to have, but a user who wants to store the output of a 
compiler, prior to calling a linking loader doesn't share that output with any 
other user; he is not interested in having his file replicated across five different 
network nodes for increased availability, nor is he interested in having his file 
atomicly updated. All the user wants is a temporary file that can be quickly 
accessed and changed, and just reliable enough that usually he doesn't need to 
compile his program all over because the file was lost. On the one hand, our 
file server should cater for the simple-minded user who just wants a reasonably 
reliable repository for his files, cheap and fast, while on the other hand, the 
sophisticated user should be taken into account who needs ultra-reliable 
storage for his files, fancy synchronisation of access by many simultaneous 
users, and guaranteed availability, who is prepared that it will be expensive 
and slow. 

Another important issue in the design of a file server is that the file server be 
easy to understand. The interface to the file server must not only be simple, 
with as few commands as possible, clients must also have a simple conception 
of the structure of a file, and how to use it. Even if clients want highly sophis
ticated things done, like changing a heavily shared file atomically, they should 
not be burdened with the details of a five step locking protocol, or have to 
know just how often the file is replicated. 

It is a design goal that the distributed file server should be suitable for an 
Amoeba environment, using the protection provided by Amoeba's ports and 
capabilities [Mullender85]. We want a free-standing file server, providing disk 
space for the users of hosts with no, or not enough disk storage of their own. 
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2.1. File servers in open operating systems 
In an open system, several different services may off er the same facilities, albeit 
in different forms. There can be several file servers, one offering ordinary 
linear files, another tree structured files with concurrency control mechanisms 
to arbitrate updates by a number of simultaneous users. The choice of which 
file server to use is up to the user. 

The advantages of open systems over the traditional approach are obvious: 
operating system kernels become smaller and more maintainable, operating 
system services are no longer in the kernel, making them portable, and allow
ing multiple, equivalent, but different services to co-exist side by side. 
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FIGURE 1. An example of a storage services hierarchy in an open system. 

Data base management systems often have their own operating systems, 
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tailored to this particular application, because traditional operating systems 
provided the wrong functionality [Stonebraker81, Tanenbaum.82]. An open 
operating system, with the right kind of file service, can support data base 
management efficiently, while integration with other system services is possible. 
A hierarchy of services, as illustrated by , allows a logical layering of .facilities 
while the development effort can be shared. 

The bottom of the hierarchy is formed by the block server, which manages 
blocks of data of fixed size. At the next level, file services manage filesstruc
tured collections of dataand implement operations for inspecting and changing 
them. These operations must support the next level, where data, stored in 
files, is interpreted: the contents of a file may represent the state of an airline 
reservation system, or the contents of the bank accounts of a branch office, or 
a pascal program. 

File services must provide the tools for the efficient implementation of as 
wide a set of applications as is possible. This can be realised, in part, by pro
viding a large set of different file services, each tailored for a particular appli
cation, but, naturally, it is best to have as few as possible different file services 
that cover the needs of every conceivable application. 

3. RELATED WORK 
Since the beginning of distributed computing, many file servers have been 
built. In this section we shall look at some that are closely related to our 
work: XDFS [Sturgis80] FELIX [FRIDRICH81] and SWALLOW [REED81]. They 
all have mechanisms for concurrency control. Most file servers, including the 
Cambridge File Server [Dion80], XDFS and FELIX use /ocking[Eswaran76], 
while some, among them SWALLOW, use timestamps[Reed18]. 

XDFS is a distributed file server that uses the notion of transactions. Open 
transaction and close transaction commands bracket a series of read write com
mands to one or more files, and the system guarantees the atomic property for 
these transactions; that is, either all of the changes will be done, and the tran
saction succeeds, or none, and the transaction fails. XDFS realises the atomic 
property via so-called intentions lists, a list of changes to the file. 

XDFS uses an interesting locking mechanism to guarantee serialisability: 
there are three kinds of locks, read locks, intention-write locks, and commit 
locks. When a server has locked a datum for some time, a timer expires and 
the lock becomes vulnerable. Another server, waiting on that lock, can then 
prod the first, requesting it to release its lock. If it is in a state to do so, it 
releases its lock, otherwise it ignores the prod. 

The FELIX file server also uses locking, although here it is at the file level. 
The FELIX locking mechanism is combined with a version mechanism: when a 
file is examined or modified, a new version of the file is created. The version 
can be thought of as a copy of the file at the time of its creation, although the 
file is not actually copied block for block then. Sharing is supported by six 
access modes. Files are tree-structured. When a new version or a virtual copy 
is created, the whole tree is initially shared with the most recent version. 
When it is modified, a copy-on-write mechanism is used, leaving the original 
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tree intact. 
Like FELIX , Sw ALLOW also uses a version mechanism, but the synchronisa

tion of concurrent access is quite different. Sw ALLOW uses a timestamp 
mechanism, based on Reed's notion of pseudo time. This mechanism is used 
to ensure the atomic property of updates to collections of arbitrary objects 
(e.g., files). 

3.1. Advantages over previous file systems 
The Amoeba File Server is a file server, with a version mechanism, similar to 
that of FELIX , but in contrast to other file servers, it uses a combination of 
locking [Eswaran 76) with an optimistic concurrency control mechanism 
[Kung81, Robinson82, Schlageter81]. Optimistic concurrency control mechan
isms have been used in data base management systems, but we have never seen 
them used in a file server. Yet, an optimistic concurrency control mechanism, 
combined with a version mechanism provide a number of advantages, not 
present in other file systems. 

The most important characteristic of an optimistic approach, is that the file 
system is always in a consistent state. Most file systems, using other mechan
isms for concurrency control, need a mechanism for bringing back the file sys
tem to a consistent state after a crash. A client crash can cause parts of the 
file system to be inaccessible for some time, for instance, because a rollback 
operation must be done first to bring the file system back to a consistent state. 
This is no problem with the Amoeba File Service. The file system is always in 
a consistent state (assuming the updates themselves are consistent). Server 
crashes have no serious consequences: the file system is always in a consistent 
state, so there is no rollback, clients need only redo the update that remained 
unfinished because of the crash. Clients do not have to wait until the server is 
restored, because they can use another server to do it. 

In a way, optimistic concurrency control and locking are complementary 
mechanisms: Optimistic concurrency control maximises concurrency and works 
best when updates are small and the likelyhood that an item is the subject of 
two simultaneous updates is small. Locking, in contrast, does not allow as 
much concurrency, and is more suitable when updates are large and unwieldy 
and when the probability of an item being subject to more than one update is 
significant. The Amoeba File Service combines locking and optimistic con
currency control in such a way that updates of large bodies of data (several 
files) use locking to prevent having to redo them if they clash with another 
update. Updates of small bodies of data (one file) are less likely to clash with 
other updates, so an optimistic approach is used here. When necessary, a 
soft-locking scheme can be used in addition to optimistic concurrency control 
to ward off potential conflicting updates. In all cases, the mechanisms for car
rying out updates guarantee consistency of the file system at all times. 

The Amoeba File Service provides the necessary mechanisms to maintain 
caches of data. Both Amoeba File Servers and their clients can hold data in a 
cache. In many file systems, it is difficult or impossible to maintain caches, 
because the integrity of the data in the cache cannot be assured. XDFS uses 
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'unsolicited messages' to tell clients to unlock cached data when it is going to 
be modified. This makes their caching strategy efficient only for data that is 
rarely modified. The integrity of the cache is checked at the start of a transac
tion. The cost of checking whether the cache is up-to-date is small, even for 
files that are frequently modified. The Amoeba File Service needs no unex
pected 'unsolicited messages.' 

4. THE BLOCK SERVER 

The principle of separating the issues of file service an block service makes it 
easy to combine different methods of storage (e.g., stable storage [Lamp
son79]), and storage media (e.g., small fast 'electronic disks,' large slow mag
netic disks, very large optical disks) in one system. Carefully designed, disk 
service can combine high speed with high reliability, using techniques, such as 
caching and dual storage, both on fast, but not so reliable storage, and slow, 
but very reliable storage. 

We assume the block service implements as a minimum commands to allo
cate, deallocate, read and write fixed size blocks of data. Protection must be 
provided, so that a block, allocated by user A cannot be accessed by user B 
without A's permission. Writing a block must be an atomic action, with an 
acknowledgement that is returned after the block has been stored on disk. 
This property is vital for the implementation of atomic update on files. 

The block server can implement a simple locking facility. Based on this, file 
services can realise concurrency control policies. The Amoeba File Service, for 
commit on a version of a file, for instance, will lock and read a block, examine 
and modify it, then write and unlock the block again. 

We expect that the block server's clients will often use a small portion of 
each block for redundancy purposes. Block servers can support a recovery 
operation, which given an account number, returns a list of block numbers 
owned by that account. A client, e.g., a file server, can then use its redun
dancy information to restore its file system after a severe crash. 

Magnetic disks and optical disks do not usually lose their information in a 
crash, but it does happen occasionally. In any case, they are at least tem
porarily inaccessible. In order to achieve high availability in the face of disk 
crashes, it is necessary to store every block at least twice, on different disks, 
managed by different servers. Lampson and Sturgis [Lampson 79] have sug
gested a method to use dual disk drives to implement stable storage. We pro
pose a small modification to their method to make a more reliable version of 
stable storage. 

In our proposed method, each block is stored by two servers on two 
different disk drives (in contrast to Lampson and Sturgis' method which uses 
one server and two disk drives). On request to allocate and write a block, the 
receiving block server, say server A allocates a block on its local disk, then 
sends a request to its companion block server, server B including the data and 
the chosen block number. B then writes the block to disk at the address indi
cated by A, and sends an acknowledgement back to A. Finally A writes the 
data in its own block, and returns an identifier for the block to the client. 
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Read and write requests can be sent to either block server. For reads, the 
block server need not consult its companion server, except when the block on 
its disk is corrupted. For writes, the same message exchange is used as for 
allocate and write. 

Allocate collisions may occur when two clients allocate a block simultane
ously, one on server A and one on server B, and, accidently, A and B choose 
the same block number. Similarly, write collisions may occur when two clients 
write the same block via different block servers. These collisions are detected, 
however, before any damage is done, because writes are always carried out on 
the companion disk first. When a collision is detected the companion server is 
warned, and appropriate measures can be taken (e.g., redo the operation after 
a random wait interval). 

After a crash, the block server compares notes with its companion, and 
restores its disk before accepting any requests. To this end, block servers 
make intentions lists for crashed companion servers. Clients send requests to 
the alternative block server if the primary fails to respond. Otherwise crashes 
are dealt with in the same manner as in Lampson and Sturgis' method. 

5. AMOEBA FILE SERVICE 

The Amoeba File Service was developed for, but is not restricted to, the 
Amoeba Distributed · Operating System [Mullender86]. It implements the file 
system as a tree of pages, whose subtrees are files, and uses a combination of 
an optimistic concurrency control mechanism and a locking mechanism to 
prevent conflict in simultaneous updates. 

For concurrency control, three mechanisms stand out as the most frequently 
used: locking [Menasce], timestamps [Reed78], and optimistic [Kung81]. Each 
method has advantages and drawbacks, and the discussion which method is 
best will continue for some time. Several file servers have been implemented 
with a concurrency control mechanism. Most of these, however, use locking as 
their concurrency control mechanism [Fridrich81, Sturgis80, Dion80], except a 
few that use timestamps [Reed81]. File servers that use optimistic concurrency 
control, however, are not known to us, although, as we shall see, optimistic 
concurrency control has some properties that make it very attractive for appli
cation in a file server. 

The Amoeba File Service implements optimistic concurrency control by a 
version mechanism: When a client modifies a file, a new version of the file 
must be created, which initially behaves like a copy of the file. Then the 
modifications are made, and finally a commit operation makes the 
modifications permanent by replacing the previous current version with the 
new one. Several versions of the same file can exist at the same time. The 
Amoeba File Service checks on commit whether the modifications to the file 
constitute a serialisability conflict (see [Kung81]). 

The current state of a file is contained in the current version. Committed 
versions represent past states of a file; uncommitted versions represent possible 
future states of the file. Files are accessed by their file capability, versions by 
their version capability. Atomic updates on files are bracketed by creating a 
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version and committing a version. The current state of a file is always 
represented by the contents of the current version. Committing a version 
makes that version the current one. 

Magnetic media 
---- ---- --- -------

Optical media 

FIGURE 2. The file system has the structure of a tree. Files also, consist 
of trees of pages. The file system can be viewed as a tree of 
trees. 

The file system as a wl!-ole is represented as a large tree of pages. The top of 
the tree (i.e., near the root) is stored on magnetic random-access media, for 
instance, such as provided by the stable-storage server, described in the previ
ous section. The lower parts of the tree can be stored on magnetic disk, or 
write-once media, such as optical disk. As illustrated in , a subtree, whose 
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root is in the upper part of the tree, e.g., file A, can be viewed as a file; it can 
be modified atomically using the methods described below. Amoeba files, 
unlike files in most file systems, thus form a nested structure: A subtree whose 
root page is inside another subtree may be viewed as a file within another file. 
File A and file B, for instance, are both subfiles of file C. For the· moment, 
this hierarchy will be ignored; we shall consider a file system where the upper 
part of the tree consists of only one page; that is, a file system containing only 
one file. Later, we shall return to the general situation, where the top part of 
the page tree forms a 'real' tree. 

A version is represented as a tree of pages. Clients can read or write a page 
at a time. The maximum length of a page is determined by the maximum 
length of a message in a transaction: 32K bytes. This ensures that pages can 
be read and written in one (atomic) transaction.* A page may contain both 
data and references to pages further down in the tree. A reference consists of 
a block number and some flag bits that Amoeba File Service uses for con
currency control. The number of data bytes in a page is variable (per page) up 
to the maximum size of a page. The remaining space in a page can be occu
pied by references to pages in the next level of the page tree. 

Clients have explicit control over the shape of the page tree. Pages within a 
file are referred to by a pathname which is constructed as follows: The root 
page has an empty pathname. The pathname of a page that is not the root, is 
the concatenation of the pathname of its parent page with the index of its 
reference in the array of references in the parent page. 

This file representation has been chosen with the express intent of giving 
clients (file systems, data base systems, source code control systems, etc.) as 
much control over the shape of files as possible. Using the file structure pro
vided by the Amoeba File Service, objects ranging from linear files to B-trees 
can easily be represented. 

The Amoeba File Service provides a set of commands for the management 
of files and versions. There are commands to read and write the pages of a 
version and commands to manipulate the shape of a version's page tree (split 
pages into two, move subtrees to another part of the tree, etc.). 

5.1. File representation 
A file - in this section we should perhaps say 'the file' - is a collection of ver
sions, ordered in time. When a new version is created, it behaves as if it were 
a copy of the current version. In fact, when it is created, a new version shares 
its page tree with the current version, and only when a page is changed is the 
page duplicated. The Amoeba File Service file representation is therefore a 
differential file representation, similar to that of FELIX • 

* Arbitrarily long pages can be written atomically by writing them back-to-front as a linked list, 
whereby the head block is (over)written last, and the other blocks in the list are allocated from the 
pool of free disk blocks. After writing, the blocks making up the previous linked list can be freed. 
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Pages are stored by the block server in such a way that they can be read and 
written as atomic actions. Associated with each page is a small header area 
that the Amoeba File Service uses for administrative purposes. 

The root page of a version tree is referred to as the version page. The data 
in a page has no predefined structure. Clients are free to write them as they 
see fit. The references in a page are for internal use by the Amoeba File Ser
vice and can only be read and written by servers. 

file capability (version page only) 
version capability (version page only) 
commit reference (version page only) 

top lock (version page only) 
inner lock (version page only) 

parent reference (version page only) 
base reference 

nrefs (number of page references) 
dsize (number of data bytes) 

client 
data 

block number CIRIWI s IM 

block number CIRIWI SIM 

FIGURE 3. The Amoeba File Service page layout 

The lay out of a page is shown in figure 3. The page is divided in two areas, 
the header area and the page itself; the separation is indicated by the double 
line. The first field in the header area is the file capability. This field gives the 
capability of the file whose root the page is. The next field is the version capa
bility, the version of the file whose root the page is. The commit reference field 
is only used in version pages; its use will be explained presently. The top lock 
and inner lock are used to tell whether a page is currently involved in an 
update of a file whose root is higher in the page tree. In this section we have 
assumed there is only one file in the system, so these fields are not used here; 
their function will be explained in a later section. The parent reference gives 
the name of the parent version block. Parent references can be used to ascend 
the upper part of the page tree to the root. The fields mentioned just now are 
only present in a version page. They are absent ( or ignored) in other pages. 
The base reference field is the block number of the page that this page was 
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based on (copied from). The nrefs field holds the number of page references 
this page contains. The dsize field gives the number of data bytes. The page 
itself contains the reference table, with an entry for each child page, and the 
data area where the client data is kept. 

The reference table is an array of page references, which contain a block 
number, and five flags, C, R, W, S, and M. The page reference points to a 
page in the next level of the page tree, the C flag, when set, indicates that the 
page was copied and is no longer shared with the version it was based on. The 
R flag indicates whether. the data of that page has been read (it is needed to 
decide if an uncommitted version may be committed as explained in section 5), 
the W flag indicates whether the data in the page was written ( changed), the S 
flag tells if the references have been used (searched), and the M flag indicates 
whether the references were modified (insert page, remove page, make hole, 
remove hole). As we shall see, it is not possible to access a page without copy
ing it, nor is it possible to modify the references without looking at them. This 
reduces the number of flag combinations to 13, which allows encoding the flags 
in four bits. Amoeba uses 28 bits for a block number and four bits for the 
flags. 

Pages are accessed from their parent page by the index in the reference 
table. An arbitrary page in a version can thus be accessed from the root by 
indexing into the references of several pages starting at the root (version page) 
of the page tree. Pages thus have path names consisting of a string of n-bit 
numbers. These path names are visible to clients, giving them explicit control 
over the structure of their files. 

A file is made up of a sequence of committed versions and possibly a collec
tion of uncommitted versions. The version pages of the committed versions 
form a doubly linked list. Each committed version's base reference points to 
the version it was based on (its predecessor) and its commit reference points to 
the next committed version. The current version's commit reference and the 
oldest version's base reference are nil. 

The uncommitted versions are attached to the list through their base refer
ences, which point to the version they were based on; note that this is always a 
committed version. A typical file could look like the one in , where we have 
just shown the version pages and their base and commit references. 

In the next section we shall discuss the mechanisms that are used to imple
ment atomic update and guarantee serialisability, but before we go into that 
subject, a proper understanding of the copy-on-write mechanism and the R, 
W, S and M flags in the page table is needed. 

The R, W, S and M flags are needed primarily for deciding about commit
ting versions. In order to be able to serialise two simultaneous updates to a 
file, the Amoeba File Service must know which parts of the file were read and 
which parts were changed (written). When set, the R flag indicates that the 
data in the referred-to page was read. The W flag indicates its data was writ
ten. The two flags operate independent of one another. The S flag tells that 
the references have been referenced, the M flag tells whether the references 
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Base reference 

C.Ommit reference 

Base reference 

C.Ommit reference 

Oldest 

version 

Base reference 

C.Ommit reference 

Base reference 

C.Ommit reference 

Base reference 

CWTCnt 

version 

Base reference 

uncommitted 
versions 

C.Ommit reference C.Ommit reference 

l __ ___ 

committed 
versions 

FIGURE 4. The Jamily tree' of a typical file. Only the version pages are 
shown. The page trees descending from the version pages are 
not shown. 

have been changed. These flags are not independent. When the M flag is on, 
the S flag must also be on; it is not possible to modify the references without 
consulting them. 

When a page is read, the pages on the path to it must also be read. This 
implies that, if a page has not been searched, then the subtree of which it is 
the root cannot have been searched either. Hence, a cleared S flag indicates 
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-
that the descendants of the referred to page have not yet been accessed. 

For writing pages in a version, a 'copy-on-write' mechanism is used. When 
a page is written, a new block is allocated for it, leaving the old page intact. 
Then the page reference in its parent page is updated to point to the newly 
allocated page and its W flag is set. This changes that page, however; and this 
change must also be made by allocating a new block for it and writing the new 
contents of the page to that new block. Every change thus bubbles up from 
the leaves of the page tree to the root page. The root pagethe version pageis 
the only page that is written in place. When a page is thus copied, the C flag is 
set in the reference to it (in the parent page). Naturally, a page is only copied 
once; after it has been copied for writing, it can be written in place when it is 
written again. 

It is clear now that, when a page has not been copied, its descendants can 
not have been copied either. Hence, a cleared C flag in a page reference indi
cates that the referred to page and all its descendants have not (yet) been 
copied, but a set C flag only indicates that the referred to page was copied. 
Like the S flag, it does not show whether its descendants have been copied. 

A similar mechanism does not exist for the R, Wand M flags. When a page 
is written, it and the pages between it and the root of the page tree must be 
copied, but the parent page of a written page is not considered written or 
modified, although, strictly speaking, it has changed. A parent page is only 
considered written if it was written itself, and modified if a client explicitly 
requested the page tree to be changed, for instance, by adding or deleting 
pages. 

Page trees are usually partially shared between versions. This implies that 
the flags indicating access to pages are also shared even though these pages 
have been accessed in different ways in different versions. This presents no 
problem, because the serialisability test need not descend shared parts of the 
page tree since they have not been accessed. 

The flags, indicating whether a page has been read, written, modified or 
copied are stored in its parent page in the page tree; the root page is therefore 
the only page that does not have a C, R, W, Sand M flag to indicate if it was 
copied, read, written, searched or modified. The managing server keeps these 
flags separate. The root page is always copied, by the way. · 

When a page is first read, the C, R, W, S and M flags it contains for its 
child pages must be initialised to zero. This requires changing that page. The 
Amoeba File Service must therefore not only shadow pages that were written, 
but also pages whose descendants were read. As we shall see later, once a ver
sion has successfully committed, the information contained in the R and S 
flags is no longer needed. The Amoeba File Service garbage collector may 
remove pages that were copied but not written or modified and reshare the 
corresponding page from the version on which it was based. 
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5.2. The optimistic concurrency control mechanism 
As long as updates are done one after the other, commit always succeeds and 
requires virtually no processing at all. When two updates are done con
currently, however, the server must check if commit can be allowed by testing 
if the two updates can be serialised. If so, the commit is allowed; if not, 
failure is reported to the client, and the client must redo the update. 

Kung and Robinson in their paper on optimistic concurrency control divide 
file update into three phases: the read phase, the validation phase, and the 
write phase [Kung81]. The validation phase checks serial equivalence of tran
sactions 1'; and 1j by testing if one of the following conditions hold: 

(1) 1'; completes its write phase before 1j starts its read phase. 
(2) The write set of 1'; does not intersect the read set of 1j, and 1'; completes 

its write phase before 1j starts its write phase. 
(3) The write set of 1'; does not intersect the read set or the write set of 1j, 

and T; completes its read phase before 1j completes its read phase. 

If one of these conditions hold, the effect of updates 1'; and 1j is the same as 
when 1'; had finished before 1j started. 

The Amoeba File Service carries out updates in such a way that the critical 
section of the validation phase and the complete write phase are done in one 
atomic action. This implies that the write phases of two transactions can never 
overlap and the serialisability test for two updates in the Amoeba File Service 
reduces to 

(1) Version V.i commits before version V.j is created. 
(2) The write set of version V.i does not intersect the read set of version V.j, 

and .i commits before V.j. 

The Amoeba File Service carries out its validation test when a client process 
requests a version to be committed (i.e., when the client process signals the end 
of a transaction). In the test, it is only necessary to check if serialisability 
conflicts will occur with versions that have already committed. In principle, 
the commit mechanism works as follows. 

The check whether condition (1) holds, and if it holds, the write phase, are 
carried out as one atomic operation, described below. If condition (1) does 
not hold, a test has to be made whether condition (2) holds. This means that 
the read set of the version to-be-committed must be compared to the write set 
of the already-committed version. The already-committed version cannot 
change, so this test can be carried out without locking being needed, or critical 
sections. When the test succeeds, the version-to-be-committed is established as 
the successor of the already-committed version, and commit is attempted as if 
condition (1) holds. 

When a client requests to commit a version that is based on the current ver
sion, condition obviously (1) holds, because it was created after the current 
version committed. Therefore, Amoeba File Service allows all commits of ver
sions based on the current version. The mechanism for this is demonstrated in 
figure 5. 
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Let us assume client C sends a request to commit version V.b, which is 
based on version V.a to V.b's managing server, M.b. Server M.b then 
proceeds as follows. First it ascertains that all of V.b's pages are safely on 
disk. Then it sends a set commit reference request to M.a, the manager of 
V.a, the version that V.b was based on. M.a must then do the following 
without allowing other requests to interfere. First it must check if V.a is still 
the current version. If so, there is no conflict and the commit is carried out. 
The check for currentness is simply done by examining V.a's commit reference. 
If it is nil, V.a is the current version, and the commit reference is set to the 
block number of V.b's version page. This makes V.b the current version, and 
automatically the updates made to V.b are made permanent. 

Base reference Base reference 

Commit reference Commit reference 

V.a V.a 

Base reference Base reference 

Commit reference Commit reference 

V.b V.b 

(a) (b) 

FIGURE 5. V.b succeeds V.a as the current version. (a) shows the situa
tion before the commit, (b) shows the situation after the com
mit. 

This is the only critical section in version commit: test and set the commit 
reference. In order to make this an indivisible action, only one server may be 
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allowed to read the version block, test the commit reference, set it, and write it 
back. H the disk server implements a test-and-set operation, any server can be 
allowed to carry out a commit. 

figure 5(a) shows the situation before commit, figure 5(b) after the commit 
has successfully been carried out. M.b returns an acknowledgement to M.a 
and M.a, in turn, returns an acknowledgement to C. 

base reference 

commit reference 

V.a 

base reference base reference 

commit reference commit reference 

V.b V.c 

FIGURE 6. V.b wants to commit, but is no longer a descendant of the 
current version, V.c. 

Let us now examine the case where V.a is no longer the current version, but 
another update, concurrent with that of V.b, has taken place. Let us assume 
the situation of ; C sends a request to M.b to commit V.b. However, V.c is 
now the current version, also based on V.a. First, M.b proceeds as before, and 
sends a set commit request to M.a; only this time, discovering V.a's commit 
reference is already set, M.a does not carry out the commit, but returns V.a's 
commit reference instead. 1bis is the block number of V.c's version page. 

M.b must now check if the concurrent updates of V.b and V.c are serialis
able; that is, test if condition (2) holds. V.c has already committed, so if the 
two updates are serialisable, V.b must come after V.c. 1bis implies that there 
must be no overlap of V.c's write set (the pages written during the update of 
V.c) and V.b's read set (the pages read during the update of V.b). Since M.b 
received the block number of V.c's version page, it can descend V.c's and 
V.b's page trees in parallel to examine if there is a serialisability conflict. 1bis 
is tested using the R, W, S, M, and C flags in the page references. Note that 
uncopied parts of the tree in either V.b or V.c need not be visited since they 
can neither have been read nor written. 

While descending the two page trees, checking the serialisability constraint, 
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M.b also prepares the new current version, which must contain the updates 
made in V.c and those made in V.b. This is done by replacing unaccessed 
parts in V.b's page tree by corresponding written parts in V.c's page tree. 

Both the serialisability test and the combination of the changes made by two 
concurrent updates are made in one pass over the page tree. Unvisited 
branches in either page tree are not descended, which makes the serialisability 
check quite fast when at least one of the concurrent updates is small. 

An important property of the serialisability test is that it can be carried out 
in parallel with other updates of the file. While the routine serialise descends 
V.b's and V.c's page tree, other versions are allowed to commit, and other seri
alisability tests can also be carried out. 

H serialise returns TRUE , V.b is ready to become V.c's successor as the 
current version, and a set commit reference command is sent to V.c's manager. 
H V.c is still current, this succeeds; if not, the serialisability test is repeated for 
V.c's successor. This repeats until either the set commit reference command 
succeeds or serialise returns FALSE • 

In the latter case, when serialise returns FALSE , the concurrent updates are 
not serialisable, and V.b is removed, and its owner notified. The update can 
be retried on another version. 

5. 3. The locking mechanism 
In the previous section we have assumed the upper part of the file tree consists 
of only one version page. In this section we describe the mechanisms for 
updating files when the upper part of the tree consists of more than one ver
sion page. 

Before continuing, some terms are defined to simplify discussions. The 
upper part of the tree, stored on magnetic media, which contains the version 
pages for the files in the system, will be called the system tree. A file whose 
root is a leaf of the system tree will be called a small file, although a 'small file' 
may, of course, be arbitrarily large. A file whose root is an internal node of 
the system tree will be called a super-file. A small file or super-file whose root 
is contained in a super-file will be a sub-file of the super-file. A tree that 
makes up a small file or super-file is a page tree. 

Updates of small files still use the optimistic method for update: Two 
updates on different small files do not interfere with each other since they 
affect disjoint page trees. Two updates of the same small file use optimistic 
concurrency control, as described in the previous section, to maintain integrity. 

Updates of super-files, however, must use different rules. Updates on 
super-files generally require larger amounts of processing and affect more 
pages than updates on small files. Consequently, the likelyhood of a serialisa
bility conflict is greater for updates on super-files. Additionally, the work lost 
because of a serialisability conflict is usually greater in the case of super-file 
updates. 

For these updates locking provides a better form of concurrency control, 
because it warns in advance that two updates are likely to cause a conflict. 
Locking has some drawbacks, however, especially with regard to crash 
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recovery. Most systems that use locking need elaborate mechanisms to restore 
the system after a crash: Locks have to be cleared, files or databases may have 
to be rolled back, or intentions lists must be carried out before the system can 
resume operations. We deemed it a challenge to find a locking mechanism 
that requires no special recovery in case of crashes. Our method is described 
below. 

Each version page contains two lock fields, the top lock field, and the inner 
lock field. A file is considered to be locked if the lock field is non-zero. Locks 
only have meaning in the current version. We assume it is possible to test the 
two lock fields for zero and set one of them in one atomic operation. 

When an update is made to a super-file, the top lock is set in its version 
block, and the inner locks are set in visited internal nodes of the file tree that 
are version blocks of sub-files. When an update is made to a small file, the top 
lock is also set in its version block, but, since small files have no internal ver
sion blocks, no inner locks have to be set. 

Updates on super-files happen in exactly the same way as updates on small 
files, with the exception that locks have to be checked and set while the update 
is in progress. As in the case of small files, a version must also be created for 
a super-file before updates can be made. Before a version may be created, 
however, the version block for the current version must be locked. 

The algorithm· for creating a version is the following: H the file is a super
file, check the inner lock and top lock fileds, and, if they are both zero, set the 
top lock. H one of them is non-zero, wait until it is cleared, then try again. 
(The waiting process will be described later; locks are made of ports, which are 
used to realise an automatic warning mechanism for waiting updates.) H the 
file is a small file, only the inner lock must be tested, but the top lock set. 
Thus, a small file can be subject to more than one update at the same time, 
using the optimistic method of concurrency control. 

H an update, while · descending the page tree, discovers a top lock, it must 
wait until the lock is cleared before that subtree can be entered. It is not pos
sible to encounter an inner lock while descending the page tree. 

The commit operation is somewhat more complicated for super-files than for 
small files. Commit on a small file or a super-file works as described in the 
previous section. However, commit on a super-file is not finished when the 
commit reference is set. After commit on a super-file, the page tree must be 
descended to commit the sub-files of the super-file, and clear the locks. These 
commits always succeed, because the locks prevent access by other clients dur
ing the update to the super-file. 

It is not difficult to see that this locking mechanism gives exclusive access to 
any subtree of the file system, and therefore provides a concurrency control 
mechanism. It can also be seen that sub-files, not accessed by an update, are 
not locked and therefore accessible to other updates. Full concurrent update 
remains possible on small files, because simultaneous updates on the same 
small file need not wait for top locks. 

However, it is possible to use top locks on small files as hints which indicate 
that the file is likely to change soon. An update, known to affect large parts of 
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a small file, can thus be postponed until the file is 'idle.' In contrast to this 
soft locking scheme, it is also possible to allow more concurrency on updates of 
super-files. The rules for creating a version may be relaxed to allow creating a 
version when the version block's top lock is set. The optimistic concurrency 
control which still lurks underneath this locking mechanism will see to it that 
no harm is done 'concurrencywise.' 

When a server process crashes in the middle of an update, no harm is done 
to the integrity of the file system; the optimistic method underneath sees to 
that. The locks remain, however, rendering some files inaccessible. For
tunately, the mechanism described above for waiting on locks also provides a 
mechanism for crash recovery: When the server crashes, the outstanding tran
sactions with the server crash as well, telling all servers waiting on locks that 
the process holding the locks has crashed. 

A server, waiting on a top lock proceeds as follows: If the commit reference 
is off, the lock can be cleared without further ado, and, when the page tree is 
descended, inner locks (with the same port, of course) can be cleared or 
ignored. If the commit reference is set, the version it refers to is current. The 
version with the lock, and the current version are traversed simultaneously, 
and the commit references of the sub-files are set, finishing the work of the 
crashed server. A server, waiting on an inner lock ascends the system tree to 
the first unlocked page, or a page with a top lock. If the page thus found is 
not locked, the inner lock can be ignored. If the page is locked, it is treated as 
described above. 

5.4. Maintaining a cache 
An important form of optimisation is caching. It is a defect in most distri
buted file systems that it is virtually impossible to keep local copies of remote 
data around, because of the race conditions thus introduced. The decreasing 
cost of primary memory makes caching techniques increasingly useful both for 
file servers and their clients. Some file servers have attempted a solution, the 
most prominent of which is probably XDFS [Sturgis80] Although XDFS pro
vides an efficient mechanism for caching files or portions of files, the designers 
of the file server introduced the concept of the unsolicited message, a prod in 
the form of a message from server to client, telling the client his cache entry 
has become invalid. We have rejected such a solution because it does not fit 
the client-server model: an active client, that sends requests to a passive server 
that merely waits for requests, and carries them out. To have to be prepared 
to receive unsolicited messages makes client programs unnecessarily complex. 

The Amoeba File Service - by design - is especially suited for caching. A 
version, from the moment of its creation, behaves like a private copy of a file 
that cannot change without the owners consent. Both Amoeba File Servers 
and their clients can therefore maintain a cache which, for the most recently 
used versions of a set of files, contains collections of pages. When a new ver
sion of a file is created, a client or a server examines its cache to see if there 
are any pages of a previous version of the file that can still be used. The 
mechanism for this is simple, as shown below. 
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For each file, a server or a private client can make a cache entry, consisting 
of pages of the most recent version it has had locally. When a request for a 
new version of the file is made, a serialisability test is made between the cache 
entry and the current version in order to find out which blocks of the cache 
are still valid. If the serialisability test succeeds, all blocks are still valid, if 
not, the blocks that cause the test to fail must be discarded. Note, that it is 
not necessary to transmit pages while making the serialisability test. If the 
cache holder is a client, the version capability must be sent to one of the 
Amoeba File Servers so the serialisability test can be made, and the server 
returns a list of path names of pages to be discarded. The server responsible 
for carrying out the test can make the test itself, or it can delegate the task to 
the server holding the most recent version for efficiency. 

Even for shared files the page cache can be quite efficient. As shown previ
ously, the serialisability test can be made in time proportional to the size of 
the intersection of the set of pages of the version in the cache and the union of 
the sets of pages in the versions since then. The server making the serialisabil
ity test likely has parts of the most recent version in its cache, reducing the 
number of disk accesses and the amount of network traffic further still. But 
our method of maintaining a cache is even more efficient for files that are not 
shared: the cache entry will always be for the most recent version of a file, so 
the serialisability test is a null operation, and all pages in the cache will always 
be valid. 

It is worth noting that, in contrast to other file systems, the page cache does 
not have to be a 'write through' cache. When a page in a version is written, it 
need not be written to stable storage immediately. This can be postponed 
until just before commit. 

The Amoeba File Servers can also conveniently cache the concurrency con
trol administration, the flag bits. This allows serialisability tests without hav
ing to read the page tree. However, the flags must also be present in the files 
themselves to make crash recovery possible. 

5. 4.1. Robustness 
The potential strength of distributed file systems, in contrast to traditional cen
tralised file systems, is that distributed file systems can be much more 'crash 
proor; that is, the file system will continue to operate, even when a few of the 
server processes, or even some of the disks are not operational. 

Note that increased crash resistance and efficient concurrency control tend 
to mutually exclude each other, because better crash resistance is usually 
obtained by replication of data, which makes concurrency control more 
difficult. Making the Amoeba File Service crash proof has been an important 
aspect of its design. 

In principle, the File Service operates using a number of server processes, 
which, in turn, use a number of block servers for information storage. This 
causes a separation of reliability aspects into two distinct areas: on the one 
hand, accessibility and robustness of file services as such, and, on the other 
hand, accessibility and robustness of individual files and versions. The former 
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is realised through replicated server processes; the latter through replicated 
block storage, such as, for instance, stable storage[Lampson 79] and backup 
block servers. 

Assuming stable storage is used, the pages of each version of each file that 
are on disk are, in principle, always accessible. Access paths to committed 
versions go through the replicated file table, and a chain of version pages on 
stable storage, hence version access and file access can be guaranteed as long 
as one or more servers are operational. 

Uncommitted versions need not be salvaged in a server crash. The con
currency control mechanisms were designed such that clients must be prepared 
to redo the updates in a version; if a version is lost in a crash the situation is 
not much different. Uncommitted versions are therefore not as important as 
committed versions. 

6. CONCLUSIONS 

The Amoeba File Service combines a number of concepts from the operating 
systems' world, the distributed systems' world, and the database world in a 
novel way. To the best of our knowledge distributed file servers have not been 
constructed using optimistic concurrency control. Yet, it provides a number of 
advantages not often encountered in other file systems. 

With optimistic concurrency control, the file system is always in a consistent 
state. After a crash, there is no necessity for recovery: no rollback is required, 
no locks have to be cleared, no intentions lists have to be carried out. 
Optimistic concurrency control allows a maximum of concurrency in accessing 
files. Some updates will have to be redone when concurrent updates are not 
serialisable, but with the unbounded potential of computing power that distri
buted systems off er, redoing an operation now and then is acceptable. 

Still, starvation may occur, especially when a large update must be carried 
out on a heavily shared file. The locking mechanism, described in § 6.4.3, can 
be used to lock a file when it is known that the update is large, and the proba
bility of a serialisability conflict serious. 

The file system should be organised carefully to avoid that updates on 
super-files have to occur too frequently. To this end, each small file should be 
self-contained as much as possible, so most updates will be on small files. This 
allows a large degree of concurrency. Locking should be the exception rather 
than the rule. 

Page caches can be maintained, both by end-user processes and Amoeba 
File Server processes. We believe our method is superior to that in XDFS 
because no unsolicited messages are necessary. These cause an unneeded addi
tional complexity for client processes. 

The version mechanism and the page tree closely resemble the mechanisms 
in FELIX . However, FELIX uses locking at the file level. The idea behind our 
system of not locking small files is that many updates, even on the same file, 
do not affect the same parts of the file. For example, changes in an airline 
reservation system for flights from San Fransisco to Los Angeles do not 
conflict with changes to reservations on flights from Amsterdam to London. 
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The Amoeba File Service provides mechanisms that allow both sophisticated 
and simple applications to use its services efficiently. We have discussed the 
methods for concurrency control at some length, perhaps creating the impres
sion that simple-minded applicationssuch as the example, mentioned in the 
introduction, of a compiler that needs to make temporary filesmust once again 
pay the price of all that complicated machinery for guaranteeing serialisability. 
This need not be the case at all: Pages of 32K bytes can be written. Often, 
one such page is large enough to contain a whole file. Writing these one-page 
files is efficient; no concurrency control mechanisms slow it down. 

A last advantage of the Amoeba File Service is that it is eminently suitable 
for a file system on write-once media, such as optical disks. Optical disks 
show great promise for the future, because of low cost and huge capacity. 
Traditional file systems are not suitable for these media, because files cannot 
be overwritten on a write-once device. The version mechanism, coupled with a 
cache in which uncommitted files are kept until just before commit seems an 
ideal file store for optical disks. 
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An efficient disk organisation is proposed. The basic idea is to store the first 
part of the file in the index (inode) block, instead of just storing pointers there. 
Empirical data is presented to show that this method offers better performance 
under certain circumstances than traditional methods. 

1. INTRODUCTION 
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In many transaction-oriented computer systems, the performance bottleneck is 
accessing disk files. Consequently, when a file system is being designed, care
ful thought should be given to trying to minimize the number of disk accesses. 
In this note we discuss some measurements we have made on an actual file 
system, then we look at new kind of file organisation suggested by these meas
urements, and finally we compare the performance of the new file organisation 
to that of the UNIXt operating system. 

While designing a free-standing transaction- (as opposed to connection-) 
oriented file server for the Amoeba [Mullender86] distributed operating system, 
we made some measurements of file sizes on our departemental UNIX system. 
The results are summarised in figure 1. For example, 60.87% of the 19978 files 
on the disk are 2048 bytes or less. The conclusion to be drawn from this data 
is simple: most files are short. 

As an example of how file systems are typically organised, consider the 
UNIX file system [Thompson 78]. Associated with each file is a 64-byte data 
structure called an inode. The inode contains some bookkeeping and account
ing information plus 13 disk addresses. These disk addresses occupy three 

t UNIX is a Trademark of AT&T Bell Laboratories. 
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File length Percent File length Percent 
I 1.79 1024 48.05 
2 1.88 2048 60.87 
4 2.01 4096 73.51 
8 2.31 8192 84.97 

16 3.32 16384 92.53 
32 5.13 32768 97.21 
64 8.71 65536 99.18 

128 14.73 131072 99.84 
256 23.09 262144 99.96 
512 34.44 524288 100.00 

FIGURE 1. Percentage of files smaller or equal to the indicated length. 

bytes each. Each of the first 10 of these can point to a disk block containing 
some data. If disk blocks are n bytes long, files up to length I On bytes can be 
accommodated in this way. For longer files, the eleventh address points to a 
disk block, called an indirect block containing nl 4 disk block addresses. (A 
disk block address occupies four bytes.) For files larger than (Hr+~n/4)n bytes, 
the twelfth disk address in the inode points to a double indirect disk block that 
points to nl 4 additional indirect blocks. Finally, for huge files, the thirteenth 
disk address in the inode points to a triple indirect block. 

The inodes are located contiguously in a sequence of blocks near the start of 
the disk. When a file is referred to by its ASCII name, the directory system 
maps the string onto an inode number, which is then used as an index into the 
inode block to find the inode. Thus for files up to length I On bytes, two disk 
access are required, one to fetch the inode and one to fetch the data block. (In 
a connection-oriented file system, the inode need only be fetched once, when 
the file is opened, but in a transaction-oriented file server that erases its tables 
after each request has been replied to, the inode must be refetched on each 
transaction.) 

The combination of short files and the need to make two disk accesses sug
gests another possible file organisation: expand the inode to a full disk block, 
and put the first part of the file in it. We call this an immediate block, in anal
ogy with an immediate operand to a machine instruction. If the block size is 
2048 bytes, some 60% of the files can be accessed in only one disk operation. 
For larger files, access to parts of the file outside the immediate part, would 
require the same number of disk accesses (two, three, or four) as in UNIX. 

Before we describe our file organisation in more detail let us compare the 
number of disk accesses required to read every byte in our sample of 19978 
files for UNIX and for our proposed file organisation. We have also computed 
the storage efficiency using both immediate files and UNIX, again for the 
measured file length distribution. It is important to use actual length distribu
tions because the whole concept of an immediate file only makes sense in light 
of empirical data showing that short files are common. The results of these 
calculations are given in Fig. 2. The two columns labeled "Percent disk 
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storage wasted" were computed by (A-L)/ A, where A is the amount of ·space 
allocated to files and inodes, and L is the total length of the files (i.e., the user 
data). 

Disk accesses per read/write Percent disk storage wasted 
Block size UNIX Immediate files UNIX Immediate files 

512 2.12 1.69 1U 13.9 
1024 2.06 1.46 13.3 14.4 
2048 2.02 1.29 22.2 22.0 
4096 2.01 1.16 36.7 36.6 

FIGURE 2. Disk accesses and storage efficiency for various block sizes. 

The conclusion to be drawn from this study is that immediate files can pro
vide improved response times for transaction-oriented file servers. If the block 
size is small, the response time is improved at the cost of less efficient use of 
storage, but when the block size becomes 2048 bytes or more, immediate files 
are a little less wasteful than UNIX files. Furthermore, we conclude that the 
relative advantage of immediate files over the UNIX organisation increases 
with increasing block size. 

We shall now describe the organisation of immediate files in more detail. 
When a file is created, an inode block is allocated. Unlike UNIX, inodes need 
not reside at the beginning of the disk, but may be located anywhere. The last 
48 bytes of an inode block are reserved for the inode. The rest of the block is 
used for immediate data. The structure of the inode can be exactly as in 
UNIX, with the exception, that only 24 bytes are available for block pointers, 
whereas UNIX has 40 bytes worth of pointer space. These 24 bytes are used 
for 5 pointers to direct blocks, and one pointer each to an indirect block, a 
double indirect block, and a triple indirect block, giving 8 pointers altogether. 
Each pointer block can contain (n-48)/ 4 pointers, and a data block can con
tain n-48 data bytes, since the last 48 bytes of each block ( the inode space) 
remain unused for pointers or data. This space may be used to hold recovery 
information for possible disk crashes and hints to make sequential file access 
even faster [Lampson 79]. The file organisation is illustrated in figure 3. 

If we assume a block size of 2048, then 2000 bytes are available in every 
block for pointers or data. Of every file, the first 2000 bytes are in the inode 
block, the next l 0,000 bytes are in five direct blocks, pointed to by the five 
direct pointers in the inode. The next 1,000,000 bytes are in 500 indirect 
blocks, pointed to by 500 pointers in a pointer block, pointed to by the 
indirect pointer in the inode. There can be 500 X 500 X 2000 or half a billion 
double indirect bytes, and 500 X 500 X 500 X 2000 or 250 billion triple indirect 
bytes. Since most disk drives are less than 500 Megabytes, it is also possible, 
when the blocksize is 2048 bytes or more, to use inodes with six direct blocks, 
one indirect block, one double indirect block, and no triple indirect block, 
since it is not needed then. 
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FIGURE 3. (a) immediate file, (b) direct file, (c) indirect file. 
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While quite a few distributed operating systems for local-area networks exist, 
hardly any work has been done to date on distributed operating systems for 
wide-area networks. 

In Europe, a number of public networks are now operational, with gateways 
between some of them. However, the use of these networks is still mostly res
tricted to "remote login" and, in some cases, simple file transfer operations. 

To study these problems and to find structural solutions for efficient and 
simple use of national and international networks the working group "Distri
buted Systems Management" was founded within COST 11. Recently, this work
ing group has submitted a research proposal to COST 11 to realise an infrastruc
ture for the implementation of distributed services in a wide-area network in a 
European collaborative effort. The model, underlying the reserach is the ser
vice model, used in many local-area network distributed operating systems. 

The research project is described, and the proposed infrastructure is dis
cussed in some detail. 
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1. INTRODUCTION 
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Many distributed operating systems exist, based on local area networks, but, 
in spite of a growing need, the possibilities to use the potential of national and 
international networks efficiently are virtually non-existent. 

Some networks are now operational in Europe, with gateways connecting 
them here and there. In principle information could be exchanged on these 
networks. Currently, however, these networks are almost solely used for remote 
login, electronic mai( teleconferencing and file transfer. Most of these 
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applications have been developed on an ad hoc basis, each application with its 
own protection mechanisms, network protocols, etc. Using an international 
network for any other applications often requires nested log-in on a number of 
hosts on the path through various networks to the destination host. 

The COST 11 [Martin-Lof83, Kalin83] "Distributed Systems Management" 
group has been started to study these problems and find an infrastructure for 
simplifying management of distributed processing activities. In january of this 
year, the COST 11 DSM group finished a research proposal for a four year pro
gramme of collaborative research on some of the issues of distributed system's 
management in Wide.Area Networks. The work will be carried out by research 
institutes all over Europe. In The Netherlands, participants are the Centrum 
voor Wiskunde en Informatica, the Computer Science Department of the Vrije 
Universiteit and the Network Group of the Technische Hogeschool Twente. 
CosT 11 is asked to finance the collaboration costs, such as travel and sub
sistence cost, network connections and communication costs. This paper 
discusses the proposed research. 

2. REQUIREMENTS, PROBLEMS AND ISSUES 
The principles underlying the management of information processing systems 
apply whether the systems are local or distributed. In the present context a 
three part definition of management is used: 

1. management is planning and organising the provisions of resources and 
identifies (a) where resources may be located, (b) their availability and (c) 
their cost; 

ii. management is the control of the use of, and access to, resources accord
ing to allocation, optimisation and authorisation rules; 

111. management is the task of ensuring that resources remain accessible and 
that they function correctly; and, when this objective cannot be achieved, 
of ensuring that suitable signals are available which identify the failure. 

This definition is wide ranging, covering management both within and external 
to individual network hosts. To narrow down the area addressed by distributed 
systems management it is important to differentiate between local management 
activities of the various host operating systems within the network and those 
activities concerned with the distributed activities of the system. The open sys
tems' environment offers a set of services provided by the host operating sys
tem. The way in which those services may be implemented is outside the scope 
of open systems interconnection. Standards for Distributed Systems Manage
ment are concerned with a non-local use of these services. However, the 
interaction between local and distributed aspects of management are a 
significant R & D matter. 

Management is realised through the actions of managers. It is important 
that the managers of host systems (i.e., people) have the freedom to effect the 
management policies appropriate to their systems. Distributed systems 
management must provide the framework for general mechanisms in which a 
variety of management policies can operate. 
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Given the functions of management and the understanding of the· con
straints imposed by wide area networks, the tasks to be addressed are: 

l. to identify models for distributed systems as a context within which 
management activities can be considered; 

2. to identify (and, if possible, develop) the set of management tools which 
assist in the planning and organisation of distributed processing; 

3. to identify the mechanisms through which managers can apply their poli
cies to control and use resources, through appropriate optimisation and 
authorisation strategies; 

4. to identify protocols for the control of resources, protocols which main
tain resource availability and protocols which signal system failure. 

For network users and managers to have their requirements satisfied a 
number of mechanisms and services need to be provided. Perhaps the greatest 
barrier to offering such mechanisms and services in a Wide Area Network is 
the lack of an agreed model for the organisation of distributed computing and 
for a set of communication standards for the exchange of control and super
visory information. 

Even with such a model and a set of management communication protocols 
there are still detailed problems to be resolved concerning the details of the 
management mechanisms and services which are needed. The more important 
ones concern mechanisms for service location and authorisation, and the lack 
of quantitative information which can offer guidance to management in con
trolling the resources for which it is responsible. Of lesser, but still significant, 
importance are the services which assist users to obtain the most effective use 
of the facilities offered by the network of distributed computers. 

At present, there do not appear to be either the data to help resolve these 
issues nor any general models of distributed systems through which these 
issues can be investigated. Managers need realistic data from efficiently 
managed distributed systems to feed into their models in order to help them 
with their planning. Yet, at the same time, managers are unable to establish 
whether their systems are operating efficiently for lack of adequate diagnostics 
and tools to help them analyse distributed system performance. 

Managers are unlikely to accept other than the most stringent safeguards in 
the application of authorisation rules. The global access which is (theoretically) 
possible in a Wide Area Network and the fact that management units have 
autonomy means that users and the system they use have to carry out an 
authentication excercise at the start of any instance of a communication ses
sion. Subsequent dialogue must be policed by the computers within the Wide 
Area Network (even by the Wide Area Network itself) to maintain the 
integrity of the session. The most effective authentication mechanism and the 
way that mechanism is made apparent to both users and computer or network 
manager still requires detailed study. 



220 

3. THE SERVICE MODEL FOR DISTRIBUTED PROCESSING 
Today most people use computers interactively; that is, they type commands at 
their terminals, the system will process their commands and return a reply. If 
the user is satisfied with the answer, he may type a new command; if not, the 
user may retry the command, or phrase it differently. Inside a computer's 
operating system the same thing goes on, albeit at another level: the user's 
command interpreter makes system calls, requesting programs to be run, files 
to be read, tapes to be rewound, etc., and the system replies with data, or sim
ply with an acknowledgement. At a lower level still, programs make extensive 
use of subroutine calls; the call can be seen as a request to execute the body of 
the subroutine, and the subroutine return as its reply. Obviously, thinking in 
terms of requests and replies, possibly nested recursively, is an excellent way of 
structuring problems into small portions. 

Conceptually, distributed systems are among the most difficult to oversee, so 
a structured approach to building distributed systems is essential. The natural 
choice of a model is that of using requests and replies. In this section we shall 
examine this model in some detail and discuss its consequences on distributed 
systems design. 

The maker of a request shall be named the client, the processor of the 
request shall be the service. A client can be a person at a terminal, an operat
ing system, a process, a processor, etc. A service is an abstraction of the 
requests that can be made and the replies that can be expected, comparable to 
abstract data types [Liskov74]. A service is always embodied by one or more 
seffers, the processes, processors, or devices that carry out the requests as 
defined by the service. 

A request consists of information travelling from client to server, a reply is 
information sent by the server back to the client. In a distributed system client 
and server do not generally reside on the same physical machine; requests and 
replies must therefore be sent through a computer network from one host to 
another. Depending on the type and speed of the network, requests and 
replies can be sent as packets, messages, or over connections. 

So far, the service model closely resembles a remote procedure call mechan
ism, the request representing the call, and the reply the return. It is more than 
that, however: unlike a subroutine, a service can fail. The processor where the 
service is implemented may stop working, a bug in the service program may 
cause the server to crash obscurely once every thirteen weeks, or the network 
may break down. Making a request is like calling a subroutine that almost 
always returns. In a program, a non-returning subroutine causes the program 
to fail; in a distributed system, a non-replying service need not crash the 
client. The client can retry a number of times, expecting the service to be 
repaired, or to contact another instance of the service, or it can resort to 
another service to achieve its goals in a different way. 

The property of distributed systems of potentially surviving server crashes is 
what makes distributed systems so interesting from the point of reliability and 
error recovery. But it is necessary to design the software to expect errors, and 
to react to them appropriately. A client must expect a server to crash every 
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now and then. When a reply does arrive the client may always assume the 
server has done its work correctly, but if no reply comes, the client does not 
know if its request has been carried out; the client must try to find out, and, if 
necessary, repeat the request. 

In the same philosophy, services must be designed in such a way that 
recovery from crashes can be simple and straightforward. Most request can be 
so defined that carrying them out once, or more than once does not yield 
different results. If a server crashes, such requests can safely be repeated. 

human 
user 

terminal 
server 

command 
interpreter 

query 
server 

FIGURE 1. An example of a service hierarchy 

data 
base 

Naturally, a server can itself be client to another service. In fact, the possible 
hierarchy of services is the strength of the model. As an example, a possible 
hierarchy of services is shown in Fig. , where a human being is shown as a 
client of a terminal server, which in turn, is a client of the command inter
preter, etc. A crash, for instance, of the database server, will be detected by the 
query server, which must then try to recover from it. The query server can 
retry the request, it might rephrase a query to get the answer from another 
database server, and as a last resort, it can report failure to its client, the com
mand interpreter. In this way the human client at the top of the hierarchy gets 
to cope only with irrecoverable errors and crashes in the system. 

4. SERVICES IN TRADmONAL OPERATING SYSTEMS 

Traditional operating systems provide service to its clients in a much more res
tricted way than conceived in the service model of the previous section. Usu
ally, the only services available to programs are those provided by the operat
ing system in the form of system calls. This restricts the service hierarchy to 
two levels: user to program, and program to operating system. Some operating 
systems, such as UNIX, t have a well designed user-program interface: to the 
client-user a number of alternative services is available, and programs can 
sometimes be combined to provide powerful "programs of programs," but even 
among the best of operating systems, the possibilities are limited, and, at the 
system call level, no choice of service is left to the programmer at all. Most 
operating systems, for instance, have a built-in file system, and, whether one 
likes it or not, it is the only available file system. 

Traditional operating systems run on one centralised processor; if it, the 
operating system, or one of its components (file system, terminal controller, 
etc.) crashes, the whole system crashes. Naturally, in these systems it is not 
necessary to pay much attention to recovery from crashes: if the system 
crashes, nothing can be done anyway. Sometimes, operating systems run on 

t UNIX is a Trademark of AT&T Bell Laboratories. 
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more than one processor, but even then, the processors are so closely coupled 
that a crash in one brings down the others also. If we want to use existing 
systems as a basis for reliable crash-proof distributed systems, we must add 
mechanisms for error recovery, and increase the possibilities of allowing clients 
the choice of many services. 

Many computer centres now have a connection to one of the wide area net
works, so communication is possible between one computer and another. The 
services available over the network are very limited, however. Often there is a 
network-wide electronic mail service, and sometimes there are file transfer 
capabilities. Occasionally we find another special-purpose application that can 
be accessed through the network, such as teleconferencing systems, but only in 
very few cases does the operating system allow processes on one host under 
one operating system to communicate with another process in another host 
under another operating system. 

5. INTEGRATING THE SERVICE MODEL WITH EXISTING SOFTWARE 

In the short term, computer networks will be mainly used for mail exchange, 
file exchange, and remote file and data base access. In a primitive form this is 
already provided on many existing systems. Accessing these services requires 
intimate knowledge, however, of both the system where requests originate and 
the system where the service is implemented. 

In the long term people will have to use the network more intensively and 
for many more types of access. If computer networks still work in the same 
fashion, the expert knowledge required to use these services will increase 
dramatically. It is therefore essential that a uniform way of accessing remote 
services is inserted between the operating system and the (remote) client. This 
model is shown in figure 2. 

An essential property of this model is that it allows existing software to be 
integrated into a distributed environment. If new software is henceforth written 
directly in the language of clients and servers, requests and replies, reliability 
and error recovery, a gradual changeover to practical distributed systems on a 
large scale is possible. Several tries have been made in the past to build a 
coherent distributed system on top of existing operating systems [Thomas73, 
Millstein77, Mamrak82]. We also mention [Hall80] which is an attempt to 
build a uniform user interface on a collection of operating systems, an 
approach very similar to the uniform client-server model. 

6. THE SERVICE MODEL AS THE OPERATING SYSTEM OF THE FUTURE 

As processes shall rely on fewer services of the local operating system, but 
rather on services replacing traditional file i/ o, terminal management, etc., the 
underlying operating systems will become increasingly simple. This is for
tunate, because today operating systems are among the most complicated pro
grams written. Few, if any, operating systems are free of bugs, and we believe 
the main cause lies in their complexity. 

We must set as our goal to reduce the complexity of the operating systems, 
by removing every function from it that can also be realised outside the 
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FIGURE 2. The client server implementation model for existing computer 
systems. The double line represents the separation between 
application software and the operating system. 

operating system. Eventually, the only task the operating system has, is to 
provide programs with an environment for execution, and interprocess com
munication primitives. Remaining functions will then be memory management, 
exception handling, and the implementation of system calls for interprocess 
communication and process control (allocate memory, ignore or catch certain 
exceptions, timers, exit, etc.). It is likely even that processors will become so 
cheap that it is no longer worth while to implement multi-programming, but 
assign one process per host. From the viewpoint of protection and scheduling 
this can be a great simplification of the operating system. 

Process creation can be done through the services of the process server, a 
service that finds a suitable processor for the process to be run, downloads the 
code into it and starts the processor. Accounting can be done by an account
ing service, the Bank Server, to be described later. Different file systems can 
co-exist to give the users maximum choice of service, interface, reliability and 
speed. The nature of the storage system for a database is completely different 
from the one needed by, for instance, a compiler that makes a temporary file, 
and different again from the storage needed by a text editor. This is indeed 
why today database systems often run on separate machines; the file system 
provided by the "regular" operating system is unsuitable for database applica
tions [Stonebraker81, Tanenbaum82]. 

Existing software can be ported to the new generation distributed operating 
system by building an emulation layer that translates archaic system calls into 
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the new service requests. 

7. MANAGEMENT OF SERVICES IN WIDE AREA NETWORKS 

An important difference between distributed systems in local area networks 
and those in wide area networks is that local systems are usually under control 
of one administration, while wide area networks are usually under control of 
many different administration. In wide area networks the lower layer commun
ication protocols are usually provided by the P1Ts so the choice of using 
datagram service or virtual circuits is not available. 

Each administration in a wide area network potentially has its own pro
cedures for accounting, resource control, and access permissions. For wide area 
distributed systems, it is important that one accounting and resource control 
mechanism is available that can be used to realise all the different policies. 

Basically, there are two methods of access control. One is to use access con
trol lists (ACLs), the other is to use capabilities. Both methods are well 
known: In the ACL method, a server grants a client access to an object after 
checking if the client is on the object's list of authorised users. In the capabil
ity method, a server grants a client access to an object if the client can present 
a capability for the object. The first model is characterised by a list of author
ised clients, stored with each object; the second by a list of capabilities for 
objects to which access is allowed, stored by each client. 

The ACL method requires a way for a server to establish the identity of its 
clients. It may not be possible that a client impersonates another to obtain 
access to an object (or service) that would have been refused otherwise. The 
capability method requires a method of distributing capabilities to clients in 
such a way that clients cannot forge them, construct them, or obtain access to 
an object by trail and error. For both problems adequate solutions exist [Mul
lender84, Donnelley80, Evans74, Needham78]. Both methods should be sup
ported by the interprocess communication mechanisms to allow different 
administrations to use different access control policies. 

8. MANAGEMENT SUPPORTING SERVICES 

A number of services are conceived to support usage and management of Wide 
Area Network services. Among these are Name Service which map local, 
private names for objects onto globally unique object names, error reporting to 
help managers detect malfunctioning network components, performance moni
toring for managers to detect bottlenecks in the system, Bank Service for 
accounting and resource control, help service for the assistance of users who get 
stuck, and command interpreters to help users to communicate with Wide Area 
Network services in a natural and meaningful way. We shall discuss some of 
these services below. 

Name Servers or Directory Servers provide a mapping between clients' 
private name spaces and globally unique object or service names. A further 
mapping maps global object and service names onto the network address of 
the object or service. This two-level mapping allows a clean separation of 
functionality: when a client renames an object, only the first mapping is 
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affected; if an object migrates to another host, only the second mapping is 
affected. 

Directory Service thus consists of two more-or-less independent services: a 
service in the user domain, for conveniently naming private objects, and a ser
vice in the operating system domain, for locating objects, given their globally 
unique name. This separation allows the existence of several independent 
directory services in the user domain, offering different capabilities. Directory 
services could off er "yellow pages service" which responds to queries of the 
nature: ''Tell me the names and give me a description of file servers that 
implement atomic update and concurrency control mechanisms." 

The global-name to network-address mapping is the subject of considerable 
research. This map has to be carried out efficiently, and it has to be carried out 
securely. It is. obviously unacceptable if requests, containing sensitive informa
tion for a particular trusted service, end up on the wrong host. Service location 
and object location is closely related to issues of authentication, protection, 
and encryption, and the DSM group intends to investigate the problem in this 
context. 

An example of a versatile accounting mechanism that can be used for 
resource control, access control, and, of course, accounting is the Bank Server, 
described below. 

The Bank Service consists of one or more Bank Server processes that main
tain accounts for each user in the system. An account may contain ''virtual 
money" in one or more "virtual currencies." One of the currencies could 
correspond to "real money". Other currencies can represent disk quota, cpu 
seconds, phototypesetter pages, etc. A service can ask the Bank Service to 
make a new currency for it, specify the amount of money to be coined, and 
hand out the money to its (potential) clients, possibly in return for virtual or 
real money in another virtual or real currency. 

To make the Bank Server secure, it uses a capability mechanism; the user 
that creates an account receives a capability for it. Only by presenting the 
capability a client can take money out of an account. Keeping the capability of 
an account secret is the key to preventing other users from stealing one's 
money. 

A typical interaction between a client and a server goes something like this: 
first the client, presenting a capability for his account, requests the bank ser
vice to prepare a cheque for some amount; the Bank Service debits the client 
account, makes a unique unforgeable bit pattern representing the amount, and 
returns that to the client as a cheque for the amount. The client then sends his 
request to the server along with the cheque, and the server clears the cheque 
with the Bank Service before carrying out the request; the Bank Service credits 
the server account with the amount, and erases the bit pattern in the cheque 
from its list of outstanding cheques, preventing a cheque from being cashed 
twice. 

Doing business like this requires two extra transaction with the Bank Service 
for every transaction that has to be carried out, but, fortunately, it can easily 
be optimised. The client can send an amount to the server that covers many 
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transactions in one blow, the server can cash the cheque once, and maintain a 
local credit account for each client for which it works. The amount sent at one 
time by a client to a server must not exceed the amount of trust the client has 
in the server. 

A mechanism as just described can be made very secure. A property that 
could make the accounting system desirable in an international environment is 
that untraceable payments can easily be implemented [Chaum82]. The Bank 
Service is not in a position to analyse a user's spending patterns in this way. 

Network users need meaningful messages when interacting with the services 
provided by the system. The purpose is to make the users' interaction with the 
network and its facilities as effective as possible. Users are unlikely to use the 
range of facilities which a network can off er unless a user-friendly environment 
is available. Observation that a network's facilities are easy to use and that 
"Help" is readily available will act as a catalyst to promote others to use them. 

A Help Service can operate in four ways: 

i. giving users assistance when there are faults, e.g., how long it will take 
before a service is resumed, or whether the fault led to any loss of inf or
mation; 

n. giving guidance on how to access services, e.g., by providing on-line docu
mentation, structured walk-throughs for novices, and, in the last resort, 
human contact points for further information; 

m. offering a focal point for user feedback, e.g., customer complaints and 
requests; 

iv. providing users with status information, e.g., on service or network availa
bility, maintenance schedules, and advising on (advertising) new services. 

9. PROGRAMME FOR RESEARCH AND DEVELOPMENT 

Having considered the evidence for distributed systems management and 
presented lists of options for tools and services, it is now appropriate to draw 
some conclusions. 

One of the motivating forces for the Distributed Systems Management study 
carried out by the COST 11 bis DSM-Group was the realisation that standardi
sation bodies were having to grapple with issues which are still lively research 
topics. The analysis presented in the report show that they remain research 
topics. Although some studies have been carried out and some systems have 
been built to demonstrate principles, they have not been withing the scope of 
open systems interconnection nor of the open use of wide area networks. 
Therefore, if standardisation work is to receive any support from this type of 
activity, it has to come from relevant practical exploration of the issues and of 
the proposed methods for carrying out distributed systems management. A 
further reason why standardisation bodies are having difficulties in this area is 
the interdisciplinary nature of the problem. Although distributed information 
processing has been facilitated by the development of adequate data communi
cations, many of the key issues relate to standards for the user interface 
(OSCRL) and to matters which cannot be the subject of standards such as the 
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services and tools that are provided to support management. 
The research programme consists of two related activities. 

1. an investigation of tools which can enable managers to perform their 
functions more effectively; 

2. an investigation of the services which are needed to provide a distributed 
system management infrastructure. 

This work will need to research the types of model which should be 
developed and the general applicability of those models. At present, it appears 
that, whereas a single, more general model would be a desirable commodity in 
the long run, in the short term there is not yet the information available upon 
which to build more general models. A more pragmatic approach to model 
building to analyse particular and well identified scenarios is therefore recom
mended. 

In meeting the requirements of the second activity a list of topics for study, 
development and implementation can be drawn up. The following list proposes 
a priority order: 

1) The distributed system management kernel. 
2) Name Servers 
3) Authentication mechanisms 
4) Journalling and performance monitoring 
5) Help Services 
6) Error reporting and diagnostics 
7) Bank Service (accounting) 
8) Command interpreters 

It is noted that the technical solution to providing many of these manage
ment services is by the simple expedient of passing messagesin well specified 
formatfor storage within or retrieval from an information base. In the short 
term the message facilities provided by Computer Based Message Services ( e.g., 
GILT [Wallerath83] perhaps) could suffice. The accounting requirements are 
not dissimilar from those put forward in the proposal to COST 11 for the OSIS 
project. Also the provision of "Help," the concern for adequate user interfaces 
and the legal implications of distributed information processing are of 
significance to those concerned with Human Factors [Eason83]. Thus, the 
study of Distributed Systems Management has synergystic relevance to other 
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COST 11 activities. 
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Remote Procedure Call (RPC) is a widely used communication mechanism in 
local network based distributed operating systems. It is simple, fast, and 
straightforward to implement. However, when two or more distant distributed 
systems are connected, problems arise concerning the protocols, locating ser
vices, and other issues. To solve these problems, gateways are introduced. In 
this paper we discuss various ways in which these gateways can be organized 
and show how their application in the Amoeba Distributed Operating System 
has solved the problems cited above. 

1. INTRODUCTION 

231 

As networks of high-performance personal workstations become more 
widespread, interest in distributed operating systems to make the whole system 
look like a single time-sharing system is increasing. When the same distributed 
operating system is running on two widely separated local-area networks, it is 
natural to think about merging them into a single transparent distributed sys
tem. However, because local-area and wide-area networks have very. different 
properties, a number of problems arise. These problems and some proposed 
solutions are the subject of this paper. 
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A brief outline of this paper follows. First, distributed operating systems 
are discussed, in particular those properties which make them hard to extend 
to wide-area systems. Next gateways are discussed. Several types of gateways 
are distinguished using the ISO OSI reference model [Zimmermann80]. Then 
attempts at transparent wide-area extension are described for the Cambridge 
Distributed Computing System, the V-System, and the Amoeba Distributed 
Operating System. Finally the solutions are compared. 

This work was undertaken as part of the COST-11 ter MANDIS project 
partially sponsored by the European Community. In this project, two Amoeba 
Distributed Operating Systems in Holland (Vrije Universiteit, CWI), two in the 
U.K. (Harwell, Hatfield Polytechnic), and one in Norway (University of 
Troms0) are being connected into a single, transparent distributed system as a 
research project, with the aim of investigating the tools and services required 
when interconnecting autonomous management regimes. 

2. DISTRIBUTED OPERATING SYSTEMS 

When computer networks first appeared, the operating systems used on the 
computers were just ordinary operating systems extended with networking 
primitives. Using these primitives it was possible for a process on one com
puter to set up a connection or virtual circuit to a process on a remote com
puter. This communication was not transparent because the syntax and 
semantics of intramachine communication were different from intermachine 
communication. Such a system is called a network operating system. 

The next evolutionary step in this direction was to try to hide the machine 
boundaries, so that to the user, the collection of machines would look and act 
like a single multi-user time-sharing system instead of a collection of auto
nomous machines. This led to the concept of a distributed operating 
system[Tanenbaum85] in which all the machines ran the same operating sys
tem kernel and handled resource management automatically. For example, in 
a distributed system, when a process or file is created, it is up to the operating 
system, not the user, to decide where to place it. 

These differences in approach also led to differences in protocols. Network 
operating systems tend to do infrequent bulk file transfers, which can best be 
handled by connection-oriented sliding window protocols. On distributed 
operating systems, processes tend to have frequent short interactions with 
other processes, leading to connectionless remote procedure ca//[Birrell84] as 
the most widely used communication model. 

Wide-area networks, like network operating systems, generally use 
connection-oriented protocols such as the ISO OSI protocols. When two 
RPC-oriented distributed systems need to communicate over a wide-area sys
tem, problems arise due to the different communication styles. 

Another important property of distributed systems is how they locate 
processes and services. If a client, C, calls a server, S, the system must have 
some way of locating S. One approach is to have a central name server that 
maps S onto the machine number where S is located. The other approach is to 
broadcast a message asking all machines on the network if they know where S 
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is. Neither of these approaches is suitable when extending a distributed sys
tem to multiple remote sites. Something else is needed. 

3. GATEWAYS 

Whenever two networks are connected, a gateway machine is needed between 
them [Sunshine77]. The gateway has to deal with problems caused by 

different name spaces 
different packet sizes 
different protocols 
support of broadcast 

In addition, gateways can play a role in fl.ow control, congestion control, ser
vice location, and protection. In this section we will see how gateways deal 
with these problems, and on which level of the ISO OSI reference model they 
are taken care of. We shall see that it is not possible to put all gateway func
tionality below the transport layer, as proposed by OSI. An advantage of put
ting the gateway as low as possible in the layer hierarchy is that higher-level 
software does not have to differentiate between different networks (since there 
is only one logical network). However, we will show that it is not necessary 
for higher-level software to be aware of different networks even if gateways are 
at the highest layer. 

On the lowest level in the OSI hierarchy is the connector, a simple, theoreti
cal, gateway that physically links up the underlying cables of the network. 
Somewhat higher in the physical layer is the repeater, which amplifies the sig
nal before transfering it to "the other side." Selective repeaters filter out mes
sages that are not intended for the other side. They are in the data-link layer. 
Both connectors and repeaters have the property that they are completely 
software transparent, even where timing is concerned. 

On the data-link level we find relays, which receive complete packets and 
transfer them to the intended networks. Relays are also software transparent 
when timing is not critical. High in the data-link layer we find relays that con
nect physically different networks, and make them look like a single physical 
network. The packet size on this network is the minimum of the packet sizes 
of all the cooperating networks, since the relay does not do fragmentation. 
Addresses of the new logical network are mapped to physical network and site 
address using routing tables. Usually, however, this is done on higher levels. 

Network-layer gateways support different networks, and they fragment pack
ets if they are too large for the destination network. Network-layer gateways 
can also help to avoid congestion in the network by re-routing packets. 

Transport-level gateways understand transport protocols, and can "adjust" 
them for different networks, for example, by filtering out retransmissions that 
arrive too fast for the destination network. Moreover, they can do address 
translation: the local address is mapped to a remote address. Local addressing 
can therefore be independent of network-wide addressing. These gateways are 
implemented by having the gateway "stand in" as the remote process, that is, 
the local process thinks that it is talking to another local process. In reality, 
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the other local process is a half-gateway that transfers messages to and from 
another half-gateway on the remote network. 

Session-level gateways work at the session layer and above. Here they have 
full control over participating networks, simplifying management and enhanc
ing flexibility. Communication over these gateways is efficient, since the parti
cipating networks can be optimized for their local characteristics (effectively 
they do message reassembly). This is especially true if the networks differ con
siderably in bandwidth, and there is not much to be gained in forwarding 
packets before all have arrived. Flow control problems are taken care of on 
either side of the gateway. 

3. IMPLEMENTATIONS 

Many local-area networks are currently in use. However, only a few of them 
have been connected transparently over a wide-area network. The advantages 
of connecting these local systems are obvious-connecting them transparently 
allows applications to work unchanged across local network boundaries. In 
this section we will have a look at some of these systems, and how they have 
been implemented. 

3.1. The Cambridge distributed computing system 
The Cambridge Distributed Computing System [Needham82] is an experiment 
of the University of Cambridge to provide a computing system consisting of 
processors connected by a fast communication network, the Cambridge Ring. 
Some of the system's processors perform dedicated services, such as a name 
service or a file service, whereas others form a multiple-purpose processor bank. 

3.1.1. Single site 
The unit of communication between the processors is the basic block, consist
ing of a source address, a destination address, and a chunk of data. Several 
end-to-end protocols have been built on top of these blocks. For example, the 
Single Shot Protocol (SSP) is a simple communication interface to exchange 
request and reply messages. Services are named by character strings. The 
name server maintains the location of all services. 

When a process wants to make use of some (local) service, it sends a 
NAME-LOOKUP-REQUEST to the name server to find the location of the 
service. The name server itself is situated at a well-known address. It sends a 
reply containing the address of the server back to the original process, using 
the source address in the basic block that contained the request. Now the pro
cess can send requests to the service using SSP-REQUEST messages. 

3.1.2. Multiple sites connected by a Wide-Area network 
To allow communication with services provided on different rings, rings can be 
connected by bridges. A bridge is a special processor on the ring having its 
own ring address, or two ring addresses if it connects two rings directly. The 
bridge serves two functions. First, it helps in locating remote services, and 
second, it transfers basic blocks between rings. This last property makes the 
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bridge a data-link level gateway. All this is transparent to the client process. 
These protocols have been applied successfully in the UNIVERSE Project 
[Adams82, Leslie84, Wilbur85], which combined several local-area networks 
using satellite and X.25 wide-area networks. 

Remote contact is established as follows. As usual, the process sends a 
NAME-LOOKUP-REQUEST to the name server. The name of the ring 
where the server resides is specified in the request. For now we assume that 
the name server also knows the destination address on that ring. It then sends 
an ADDRESS-INSERTION-REQUEST to a bridge, which allocates some 
data structures and acknowledges the request immediately. Then the name 
server sends a special reply to the client process containing the address of the 
bridge, and the global address of the server. 

The client software then sends an SSP-REQUEST to the bridge, thinking 
that the bridge is the service. The SSP-REQUEST is automatically converted 
to a BRIDGE-SSP by inserting the global address of the service. The bridge 
forwards the BRIDGE-SSP to other bridges using static routing tables, until 
the destination ring is reached. Each bridge remembers the source address so 
that a reply can be routed back. The last bridge transforms the BRIDGE-SSP 
into an ordinary SSP-REQUEST, and sends it to the final destination. Replies 
are returned using the backward path set up by the bridges, and delivered to 
the original client process. 

The forward path and backward path may now be used by the client process 
and the server process transparently. When the client thinks it is sending a 
basic block to the server, it is really sending it to a bridge which forwards it to 
the destination network. The bridge at the destination network then sends the 
basic block to the server process which will think that it received the message 
from the client. The forward and backward paths do not provide any flow 
control or error correction; this must be taken care of by the end-to-end proto
cols. 

Now suppose that the name server does not know the destination address of 
the server process. Now the name server sends a REMOTE-NAME
LOOKUP-REQUEST to the name server on the destination ring. The desti
nation address of the name server is fixed on every ring. The local name 
server sends a request to the remote name server in the same way as a client 
process would send a request to a remote service. The REMOTE-NAME
LOOKUP-REPLY from the remote name server contains the destination 
address of the wanted server. The local name server caches the remote address 
for possible future reuse and sends the client the address of the bridge on the 
local network in the NAME-LOOKUP-REPLY. Again the client and server 
are unaware of the bridges between their networks. 
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3.2. The V-System 
The V-System [Cheriton83b] is a distributed operating system running on a 
collection of processors connected by an Ethernet. The processors are divided 
into two types: workstations and server machines. The workstations are like 
processors in the Cambridge Processor Bank, except that workstations have 
owners that have high-priority access to their machines. The server machines 
provide services like file access and printing. 

3.2.1. Single site 
Interprocess communication is through request-reply exchanges: a client pro

cess sends a request to a server process, and then awaits the reply subsequently 
sent by the server. The protocol used here is developed specially for this pur
pose for optimal performance, and because no suitable standard interprocess 
communication protocol was available [Cheriton83a]. 

In V, services are named by character strings. To locate a service, the client 
broadcasts the name of the service over the network (broadcast is a special case 
of V multicast). The service replies with a process identifier-a location depen
dent number that identifies a process-and from thereon contact is established. 
This scheme has been extended for any kind of object by using directories on 
each processor, and thus a global naming directory was formed. 

3.2.2. Multiple sites connected by a Wide-Area network 
Internetwork communication in V should be implemented as follows. We say 
"should be," since the current implementation is somewhat simplified. When a 
process wants to access a remote service, it broadcasts the service name as 
usual over the local-area network. The gateways on the network forward this 
message to all the the remote networks, where it is then re-broadcast. The 
remote service replies as usual, thinking that the gateway on its network is an 
ordinary client process. This gateway sends the reply back to the local net
work where the real client resides. The local gateway sends the reply on to the 
client, which, again, thinks the gateway is the server. The local gateway starts 
a local alias process, a pseudo-process that represents the server. In the same 
way, the remote gateway starts a remote alias process to represent the client. 
All messages sent between the client and server are forwarded by these alias 
processes over the wide-area network. 

One problem arises since the process identifiers are local to a network. The 
process identifier of a remote service has no meaning on the local network. To 
solve this, the process identifiers have to be translated to local process 
identifiers when passed to the local network. The file server therefore has to 
be aware of this, by returning the process identifier of the remote alias process, 
violating transparency. 

(The current implementation of the gateway does not support internet 
broadcasting, making the service locating protocol unusable for locating 
remote services. Instead, when a process wants to access a remote service, it 
first has to request the gateway to create a local alias process for the remote 
service.) 
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V gateways know about the higher-level protocol, and use this knowledge to 
optimize communication over wide-area networks (without affecting local net
working). For example, if two gateways are connected by a reliable virtual cir
cuit, the gateways can filter out end-to-end acknowledgements, and generate 
them locally instead. This does not violate end-to-end reliability in V, since all 
requests are acknowledged by replies in the end. Another optimization done 
by V gateways is the combination of packets over virtual circuit connections. 
Furthermore, retransmissions that arrive at a rate too high for the virtual cir
cuit are discarded. 

The knowledge of transport protocols makes V gateways at least transport
level gateways. However, the gateways have also higher-level properties. 
Before forwarding messages, V gateways inspect them to ensure that local 
security policies are not violated. This way the local network becomes a secu
rity domain. V gateways thus allow for access control, authentication, and 
accounting. By implementing these checks in the gateway, instead of at every 
site, local performance is not affected, nor are the local security policies. 

3.3. The Amoeba distributed operating system 
The Amoeba Distributed Operating System [Mullender86, Mullender84a, 
Tanenbaum86] is a research project being carried out at the Vrije Universiteit 
and the Centrum voor Wiskunde en Informatica, both in Amsterdam. 
Amoeba is also based on the client-server model. Server processes provide ser
vices like file and directory service. Amoeba runs on a collection of Motorola 
68010 and 68020 processors connected by 10 Mbit networks. 

Processes in Amoeba are addressed by ports. Ports are location-independent 
48-bit numbers. A process can choose any port it wants to. By taking a ran
dom unique 48-bit number, servers can have a private address that they can 
use on any machine. It is even possible to use the same port for more than 
one process. This way a service can increase its availability by replicating its 
server processes. The communication protocol selects one of them. 

3.3.1. Single site 
A client process invokes a service by sending a request message to the server 
process. When the server has executed the request it returns a reply message 
to the client. These request-reply exchanges are called 
transactions[Mullender84b]. They are used as a basis for implementing remote 
procedure calls. 

When a client process starts a transaction, the server has to be located first. 
This is done by broadcasting a message containing the port of the server pro
cess over the local-area network. The machine running the server sends a 
reply back containing its network address. This information is cached by the 
client machine, so if it needs the same service in the near future, it can try the 
same network address without having to broadcast again. If this address turns 
out to be wrong (servers and their ports can migrate), it can resort to broad
cast to locate a server again. 

Once the network address of the server is known, a simple protocol 
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optimized for the local network ensures reliable transmission of the· request 
and reply messages. Moreover, this protocol ensures at-most-once delivery of 
requests, avoiding problems that occur when requests get executed twice due to 
retransmissions [Spector82]. 

3.3.2. Multiple sites connected by a Wide-Area network 
Extending the transaction implementation to wide-area networks meets with 
difficulties. First, the scheme of locating ports by broadcast does not work 
with multiple Amoeba systems connected by a wide-area network. Wide-area 
networks usually do not support broadcast. Simulating it by sending the mes
sages separately to each site is expensive, even when minimum spanning trees 
[Dalal 77] are used. Furthermore, a broadcast causes overhead on each site of 
the wide-area network. Second, the protocol that is efficient for local-area net
works is inefficient for wide-area networks. Also, since the only access to the 
wide-area networks is through high-level interfaces, the low-level Amoeba mes
sages are transported using a high-level protocol. 

A solution to the first problem is presented through publishing. Servers can 
publish their port and wide-area network address in the domains where they 
want to be known. A domain is a set of Amoeba sites that are logically 
related. As soon as a port has appeared in an Amoeba site, processes in this 
site can use the server. 

To enable this, a process is created for each port that appears. This process 
will stand in for the remote server by using the port as its own Amoeba 
address, and is therefore called the server agent. If a client process tries to 
locate the remote server, it will find the server agent instead, and a request 
message for the server is sent to the server agent. The server agent forwards 
the request across the wide-area network using the published wide-area net
work address. 

When the request arrives at the remote Amoeba site, a process is created 
there to send the request message to the server. This process, called the client 
agent, starts a local transaction with the server. The server thinks it received a 
request from another client process. The reply it returns is sent by the client 
agent to the server agent. The server agent then forwards the reply to the real 
client, completing the transaction. 

All this is transparent to both the client and server processes. Moreover, it 
is transparent to the kernels that run the Amoeba transaction protocol. This 
implies that the transaction protocol is unaware of the existence of the wide
area network, and that no unnecessary overhead exists for local communica
tion. In the same way, the wide-area network protocol knows nothing about 
transactions, but just forwards complete messages. The client and server 
agents together form the gateway, which is called a transformer[Renesse86]. A 
transformer is a session-level gateway, since it uses the transport protocol 
interface. Flow and congestion control are provided by the wide-area network, 
so the transformer does not have to do it. As it is at a higher level than the 
network layer it "knows" more about these interactions and can provide valu
able information about the distributed processing that crosses network 
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boundaries. 
Publishing is implemented by a server running at each site, together forming 

the Service for Wide-Area Networks, or SWAN. Each SWAN server listens to 
a well-known port, and can therefore be easily contacted from anywhere in the 
world. A port is published by doing a transaction stating port and wide-area 
network address with each SW AN server in the required domain. Each 
SW AN server will then automatically start a server agent. 

4. COMPARISON 
Having discussed solutions to wide-area networking for several different sys
tems, we will compare their properties in three categories: naming tran
sparency, protocol transparency, and gateway functionality. Each of these 
categories will be discussed in the following sections. 

4.1. Naming transparency 
This section discusses whether client processes have to know the location of a 
service, and whether services have to know the location of the client when 
passing names in replies. These properties are highly dependent on the local 
naming strategy. 

In the Cambridge system, local services are named by ASCII strings. 
Names are mapped to local network addresses using a central named server. 
This scheme is extended to wide-area networking by prefixing the service name 
with the name of the ring. For example, suppose there are two networks 
called A and B, each having a printer server called printer. A client process on 
network A can access the local printer using the name printer, and the printer 
server on B using the name B*printer. The name server knows which bridge to 
use to reach B, and the wide-area network address of B. Finding services 
given their name is not a problem anymore; however, there is no naming tran
sparency. Also, if a process on B wants to pass the name of the printer server 
to a process on A, it will have to prepend B to the name. 

V uses a decentralized naming approach relying on broadcast. In the V
system, the printer server on B should have a different name from the printer 
server on A, since they do not provide exactly the same service ( they use 
different printers). This scheme is transparent. However, V uses a two-level 
naming scheme. A process can not send a message to a remote process using 
the remote process identifier. 

Amoeba has an implicit decentralized naming scheme using ports. The port 
space is not local to a network, and therefore ports can be passed freely from 
network to network. As in V, the printer servers would have different names. 
However, since Amoeba gateways do not support broadcast, a port that is 
passed from A to B has to be published in B first. Since this is different from 
local operation, Amoeba does not provide full naming transparency either. 
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4.2. Protocol transparency 
In this section we will see to what extent the local protocols are affected by 
supporting wide-area communication. It is important that the performance of 
local communication is not degraded, since local communication will represent 
the bulk of all communication. Changing the local protocol software may not 
be possible if it is a commercial package without source code. Even if the 
source code is available, it has to be avoided since it requires all sites on the 
network to change their system. 

The Cambridge system uses the local transport protocols over wide-area net
works. This was made possible by using a fixed internetwork packet format 
(basic blocks). A disadvantage of this approach is that these protocols may 
not be suitable for wide-area communication. For example, the timeouts that 
are used in SSP are adjusted for remote services. 

V nodes are unaware of gateways, and the local protocol is unaffected. 
When a remote process is referenced, a local alias process takes care of 
transfering messages to and from the remote network. As in the Cambridge 
system, the local protocol was also used for internetwork communication. 

Amoeba also provides full protocol transparency, but unlike V, Amoeba 
does not use the same protocol for wide-area communication. Instead it uses 
whatever protocol is available on the wide-area network. This means the 
Amoeba machines can use protocols optimized for the local cast on local net
works and the gateways can use other protocols over the wide-area network 
without the clients and servers knowing about it. 

4. 3. Gateway functionallity 
The different solutions to wide-area communication require different gateway 
functions. The functionalities of the gateway determine its complexity. The 
gateway in the systems we discussed have two important tasks. One is to help 
in locating servers, and the other is to provide transparent communication 
between processes separated by a wide-area network. 

Cambridge bridges help in locating services by forwarding OPEN
REQUESTs. This is a simple operation, using static routing tables. The 
bridges remember the paths they formed, so that they can use them for for
warding basic blocks. The transport protocols are unknown. Since the bridges 
just forward the basic blocks, it is possible that for the wide-area network to 
become flooded or congested, so fl.ow and congestion control may be needed. 

V gateways, on the other hand, are fully aware of the transport protocol. 
For service location, they have to set up minimum spanning trees to forward 
broadcasts. Gateways optimize the protocol to avoid flooding the wide-area 
links. Furthermore, gateways check messages to prevent them from violating 
security constraints. All this makes a V-gateway a complex device. 

In Amoeba, the naming and protocol problems are solved separately. The 
SW AN service takes care that ports are distributed where they are needed. 
The transformer achieves protocol transparency by transfering complete mes
sages, based on routing information provided by the SWAN. The transformer 
uses the transport interfaces of both Amoeba and the wide-area networks, and 
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therefore does not know the transport protocols. Nevertheless the protocols 
are designed especially for the type of network they are running on. There is 
not much to be gained in forwarding packets instead of messages if local and 
wide-area networks differ considerable in bandwidth. Both the SW AN service 
and the transformer are simple devices. 

5. CONCLUSIONS 
In this paper we discussed how distributed operating systems, designed for 
local networks, can be connected into a wide-area distributed system. Two 
problems were identified. One is how to locate a remote service over a wide
area network. The other is providing transparent communication. We 
described how these problems were solved in the Cambridge Distributed Com
puting System, the V-System, and the Amoeba Distributed Operating System. 

All these systems use special gateways to transfer messages between the local 
networks. The data-link level gateway used in the Cambridge system supports 
several transport protocols, but the protocols do not adapt well to wide-area 
networking. The V transport-level gateway does protocol optimization, since it 
knows the transport protocol. This makes it better suited for wide-area net
working, but it is also a complicated gateway. 

The Amoeba gateway uses the transport-level interface of both the local net
work and the wide-area network, and is therefore a session-level gateway. The 
gateway is not concerned with how to provide efficient communication, but 
leaves that problem to the local and wide-area network software. By standing 
in for remote processes, it provides transparent communication without 
affecting local networking. Services make themselves "known" through pub
lishing, that is, they relate their existence to all local networks in which they 
want to provide their service. 

It is argued that the Amoeba gateway provides the same gateway functional
ity as other gateways, and that the implementation is more efficient. Further
more, in the normal case when the bandwidth of the wide-area network is con
siderably lower than that of the local networks, the performance is at least as 
good as that of other gateways. 
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Distributed systems offer two principal advantages over centralized ones: 
higher computing speed through the use of many computers running in paral
lel, and higher reliability through redundancy. This paper describes how the 
Amoeba distributed system meets these goals. In particular it describes 
Amoeba and how two important classes of algorithms, branch and bound and 
alpha-beta search, can be run in a parallel, fault-tolerant way on Amoeba. The 
results of some experiments comparing these algorithms on a single processor 
and on Amoeba are also discussed. 

1. INTRODUCTION 
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Distributed computing systems have two principal advantages over traditional 
centralized ones: speed and reliability. First consider speed. As computing 
technology advances, it becomes increasingly difficult and expensive to make 
computers faster by just increasing the speed of the chips. Electrical signals in 
copper wire only travel at 2/3 the speed of light, or about 20 cm/nanosecond, 
so very fast computers must be very small, which leads to severe heat dissipa
tion problems among other things. The obvious solution is to harness together 
a large number of moderately fast computers to achieve the same computing 
power as one very fast computer, but at a fraction of the cost. 

The second big advantage of distributed computing systems is the reliability 
that can be achieved by using a large number of processors. If a system con
sists of 100 processors and 1 of them malfunctions, the system should be able 
to continue running with just a one percent loss in performance. Furthermore, 
if the system is well-designed, when a processor crashes, this event should be 
detected and recovered from without ruining the computation that was in 
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progress at the time of the failure. How this is achieved in the Amoeba system 
will be described later in this paper. 

Many ways of organizing multiple processors into distributed systems have 
been proposed. At one end of the spectrum are the loosely-coupled systems 
consisting of a number of independent computers, each with its own operating 
system and users, exchanging files and mail over a public data network. At 
the other end of the spectrum are tightly-coupled systems with multiple proces
sors on the same bus and sharing a common memory. In between are systems 
consisting of mini- or microcomputers communicating over a fast local net
work and all running a single, system-wide operating system. This paper 
describes a system in the latter category that can take advantage of a large 
number of microprocessors working together on a single problem, and also has 
a high degree of fault tolerance. 

2. THE AMOEBA SYSTEM 
This system, called Amoeba [Mullender86, Mullender84, Mullender85], con
sists of a collection of (possibly different) processors, each with its own local 
memory, which communicate over a local network. Currently, we use mainly 
Motorola 68010 processors connected by a 10 Mbps token ring (Pronet), 
although Amoeba also runs on the VAX, NS16032, PDP-11 and IBM-PC. 
Amoeba is composed of four basic components. First, each user has a per
sonal workstation, to be used for editing on a bit-map graphics terminal and 
other activities that require dedicated computing power for interactive work. 
Second, there is a pool of processors that can be dynamically allocated to users 
as needed. For example, a user who wants to run a 5-pass compiler might be 
allocated 5 pool processors for the duration of the compilation, to allow the 
passes to run largely in parallel. Third, there are specialized servers: file 
servers, directory servers, process servers, bank servers (for accounting) etc. 
Fourth, there are gateways that connect the system to similar systems else
where. 

The amoeba software is based on objects protected by capabilities. Each 
file, directory, process, bank account, etc. can be viewed as an object (an 
abstract data type) on which operations (e.g., READ, DELETE) can be per
formed by the process that manages that object. When an object is created, a 
capability for it is given to the object's owner. To perform any operation on 
an object, the capability must be presented. Capabilities are protected crypto
graphically, and are managed directly by user programs. 

A process or cluster in Amoeba consists of one or more tasks that share a 
common address space and run in parallel. Several independent clusters may 
run on a single workstation or pool processor. Tasks communicate using a 
simple form of remote procedure call: the client sends a request to any server 
who is willing to offer a certain service and some server sends a response back 
to the client. While a task is waiting for a response, it is blocked and cannot 
continue computing, although other tasks in its cluster may run if they have 
work to do. This scheme is much simpler and vastly more efficient than the 
ISO OSI 7-layer Reference Model [Zimmermann80]. 
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3. PARALLEL ALGORITHMS ON AMOEBA 
In this section we will provide a brief overview of how heuristic search algo
rithms have been programmed in parallel in a fault-tolerant way on Amoeba. 
Heuristic search is a technique for finding a feasible or (sub) optimal solution 
to a given problem when the set of candidate solutions is very large. One typi
cal problem is the Traveling Salesman problem, in which it is desired to find 
the cheapest route for a salesman to visit each of the n cities in his territory 
exactly once. Since there are (n -1)! possible routes, for large n, it is not pos
sible to examine all of them and then take the best one. Playing chess is 
another example of a problem with a large search space. 

One way to approach this kind of problem on Amoeba is is to allocate k + l 
pool processors to work on the problem. As a simple example, to solve the 
IO-city traveling salesman problem starting from London, one could allocate 
nine processors and have processor I examine all paths starting London
Amsterdam, processor 2 examine all paths starting London-Zurich, etc. Pro
cessor I would then allocate eight more processors, giving the first one the par
tial path London-Amsterdam-Zurich, the second one the partial path London
Amsterdam-Paris, etc. 

Since there will never be enough processors available, at some point a pro
cessor will itself have to evaluate the best full path starting with the partial 
path given to it, rather than "subcontracting'' the work out. When a processor 
has discovered the best total path achievable with the partial path it was given, 
it reports that back to the processor that invoked it. When the invoking pro
cessor has collected all the results from its "subcontractors," it chooses the best 
one and reports that back. When the results have gotten back to the top level, 
the initial processor selects the best one, and the problem has been solved. If 
a subcontractor crashes (i.e. fails to respond within a specified time to 
enquiries of the form "are.you still working on the problem?") then the proces
sor requesting the work finds a new subcontractor to do the work. In the fol
lowing sections, we will describe more sophisticated strategies ( one for travel
ing salesman type problems and one for game playing), along with their imple
mentations and some empirical results. 

4. PARALLEL BRANCH AND BOUND ON AMOEBA 
The branch-and-bound method is a technique for solving a large class of com
binatorial optimiz.ation problems. It has been applied to Integer Program
ming, Machine Scheduling problems, the Traveling Salesman Problem (TSP), 
and many others [Lawler66). Abstractly, the method uses a tree to structure 
the space of possible solutions. A branching rule tells how the tree is built. 
For the TSP, a node of the tree represents a partial tour. Each node has a 
branch for every city that is not on this partial tour. Figure I shows a tree for 
a 4-city problem. Note that a leaf represents a full tour (a solution). For 
example, the leftmost branch represents the tour London - Amsterdam - Paris 
- Washington. 

A bounding rule avoids searching the whole tree. For TSP, the bounding 
rule is simple. If the length of a partial tour exceeds the length of any already 
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FIGURE 1. Tree for a 4-city Traveling Salesman Problem for London, 
Amsterdam, Paris, and Washington. 

known solution, the partial tour will never lead to a solution better than what 
is already known. For example, if the 6-city tour London - Paris - Amsterdam 
- New York - Boston - Washington has already been found to be 8630 km, 
then partial tours starting London - New York - Paris (length 11850 km) can
not possibly be better than the best tour already found. Efficient branch-and
bound algorithms aim at finding a nearly-optimal solution at an early stage, 
making pruning as effective as possible. A good heuristic for TSP is to try the 
nearest city first. 

Parallelism in a branch-and-bound algorithm is obtained by searching parts 
of the tree in parallel. If enough processors were available, a new processor 
could be allocated to every node of the tree. Every processor would select the 
best partial path from its children and report the result back to its parent. If 
there are N cities, this approach would require O(N!) processors. More realis
ticly, the work has to be divided among the available processors. In our 
model, each processor traverses a part of the tree, up to a certain depth, hands 
out the subtree below that node to a 'subcontractor', and continues with the 
rest of its own subtree. figure 2 shows how the tree of figure 1 can be 
searched, using a 2-level processor hierarchy (i.e., a subcontractor has no sub
contractors itself). 

The processor that traverses the top part of the tree (the root processor) 
searches one level. It splits off three subtrees of depth two each, that are 
traversed by subcontractors. This algorithm is shown in figure 3. The algo
rithm sets the global variable 'minimum' to the length of the shortest path. 
This variable is pre-initialized with a very high value. 



tree of root 
processor 

FIGURE 2. Example of a distributed tree search 

procedure traverse(node,depth,length); 
begin 

3 subtrees 

{ 'length' is the length of the partial path so far. 
'depth' is the number of levels to be searched before 
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the rest of the tree should be handed out to a subcontractor } 
if length < minimum then { pruning if length > = minimum } 
begin 

· if 'node' is a leaf then 

end 

minimum : = length; 
else if depth = 0 then 

hand out subtree rooted at 'node' to a subcontractor; 
else 

for all children c of 'node' do 
traverse( c,depth - I ,length+ distance( node,c)); 

end 

FIGURE 3. Tree traversal algorithm 

A processor only blocks if it tries to hand out a subtree while there are no 
free subcontractors. Each subcontractor executes the same traversal process, 
with a different initial node and probably with a different initial depth. 

The Traveling Salesman Problem has been implemented under Amoeba 
using the algorithm described above. The client/ server model advocated by 
Amoeba was found to be very suitable for this algorithm. For simplicity, the 
implementation uses only a 2-level processor hierarchy. 

A subcontractor can be viewed as an Amoeba server process (cluster). The 
service it offers is the evaluation of a TSP subtree. Each server repeatedly 
waits for some work, performs the work, and returns the result. The root pro
cessor is a client process (see figure ). The 'handing out of work' is 
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implemented using Amoeba transactions. Concurrency within the client pro
cess is achieved by having a separate task (as defined in section 2) in the client 
cluster for every server. 1bis job server task controls the communication with 
one specific server. If the client wants to hand out some work, it tries to do a 
transaction with a job server. If there is a free job server, this job server will 
accept the transaction, return an acknowledgement to the client, and then do a 
transaction with its server. The job server passes a partial path and the 
current best solution to the server. When the server finishes the evaluation of 
the subtree, the transaction finishes and the job server is unblocked. The job 
servet checks if it has to update the current best solution and then becomes 
available for the next request. The client proceeds as soon as it receives the 
acknowledgement. The entire client cluster only blocks if all job server tasks 
are blocked (i.e., if all servers are busy) and the client tries to do a transaction 
with a job server. 

client cluster 

§ job job job match server server ... server maker k 
1 2 N 
I ' I! 

' I \i 

server server server 
1 2 

... 
N 

FIGURE 4. Process structure of the TSP program 

Of special importance is the way servers join and leave the system. When
ever a new server is started, this server reports itself to a special matchmaker 
task that is also part of the client cluster. 1bis matchmaker task creates a job 
server task for the server and from then on the server can participate in the 
game. So extra processors can be added at any time to speed up the program. 

The job server mechanism is also used to achieve a high degree of fault 
tolerance. During transactions, the Amoeba kernel of the client sends "are
you-still-there?" messages to the kernel of the server at regular intervals. If 
the kernel of the server does not respond within a certain time interval, the 
transaction is aborted. The job server notes that the transaction has failed and 
concludes that its server processor has crashed. It hands out its work to any 
other job server. Once this work has been accepted, the job server stops 
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executing. The crashed server processor no longer participates in the game. 
When it is brought back up, it reports itself to the matchmaker as described 
above, to register its availability for doing work, at which time a new job 
server task is created to handle it. Since the client task, job server tasks, and 
matchmaker task are all part of the same address space, the inter-task com
munication is highly efficient. 

Although fault-tolerance may not be of vital importance to a TSP program, 
it is a useful feature to have, especially as it is almost for free. (The entire 
implementation of fault-tolerance in the TSP program takes only a few lines of 
code). For example, if some Amoeba user is going out for lunch, the processor 
of his workstation can be used by someone else to speed up his program. 
When the owner of the workstation comes back, he can blindly kill the foreign 
process without disrupting the overall program. 

This model still has one Achilles heel. A failure in the client processor can
not be recovered from easily, as no one may detect the fault. For the applica
tion above it will be sufficient to run the client on a processor that no one will 
take away. For more critical applications, the "boot service" can be used to 
keep an eye on the root processor, just as the root processor keeps an eye on 
the server processors. Any process can register with the boot service, which 
then polls it periodically. If the registered process fails to respond to polls, the 
boot service reboots the process on a different processor. 

5. PARALLEL ALPHA-BETA SEARCH ON AMOEBA 

Alpha-beta search is an efficient method of searching game trees for two
person, zero-sum games. A node in such a game tree corresponds to a posi
tion in the game. Each node has one branch for every possible move in that 
position. A value associated with the node indicates how good that position is 
for the player who is about to move (let's assume this player is 'white'). At 
even levels of the tree, this value is the maximum of the values of its children; 
at odd levels it is the minimum, as the search algorithm assumes black will 
choose the move that is least profitable for white. Most implementations 
inverse the values of the odd level nodes, so the values are maximized at all 
levels. 

The alpha-beta algorithm finds the best move in the current position, search
ing only part of tree. It uses a search window (alpha,beta) and prunes posi
tions whose values fall outside this window. The algorithm is shown in figure 
5. 

Alpha-beta search differs significantly from branch-and-bound in the way 
the best solution is constructed. A branch-and-bound program (potentially) 
updates its solution every time a processor visits a leaf node (see figure 3). 
That processor only needs to know the current best solution and the value 
associated with the leaf. An alpha-beta program, on the other hand, has to 
combine the values of the leaves and the interior nodes, using the structure of 
the tree. Some parallel alpha-beta programs realize this by having a dedicated 
processor for every node (up to a certain level) that collects the results of the 
child processors [Finkel82]. As a disadvantage of this approach, processors 
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function AlphaBeta(node,depth,alpha,beta): integer; 
begin 

if depth = 0 then 
AlphaBeta: = evaluation(node) 

else 
for all children c of 'node' do 
begin 

end 

r : = - AlphaBeta(c,depth - 1,- beta,- alpha) 
if r > alpha then 
begin 

alpha:= r; 
if alpha > = beta then 

exit loop; -- pruning 
end 

AlphaBeta : = alpha 
end 

FIGURE 5. Sequential alpha-beta algorithm 

associated with high level interior nodes spend most of their time waiting for 
their children to finish. 

Our solution avoids this problem by working the other way round. The 
child processors compute the values for their parent nodes, so there is no need 
for their parent processors to wait. This is illustrated in figure 6. In figure 
6(a), the subtrees rooted at nodes 3,4,6, and 7 have been evaluated. After 
some subcontractor has evaluated the subtree rooted at node 8, the value of 
the parent of node 8 (node 5) is updated (as 20 > 15). This is shown in figure 
6(b ). Furthermore, the evaluation of the subtree rooted at 5 has now been 
completed. As its final value (-20) is the highest value of level 1 (-20 > -30), 
the value of node 1 is updated too. 

20 

FIGURE 6. Example of alpha-beta search 

Clearly, the child processors need information from other processors to com
pute these values. We store all information in an explicit tree structure, so the 
search tree is no longer just a concept, but it is actually built as a data struc
ture. This tree is distributed over all processors, each processor containing the 
part of the tree it works on. 

With this approach we can use basically the same tree traversal algorithm 
and the same process structure as for TSP. The only difference is that TSP 
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updates a single global solution after evaluating a leaf and alpha-beta updates 
the values of the ancestor nodes of the leaf. 

Each node also contains the alpha and beta bounds for its subtree. After 
the value of a node has been improved ( as a result of evaluating a leaf) this 
new value can be used as a tighter alpha bound for its children. Each child 
can use this new alpha value as a tighter beta bound for its own children, and 
so on. So new values are propagated down the tree, to ensure each node uses 
the smallest possible alpha-beta window. In principle, new bounds can even 
be propagated across processor boundaries. However, this would also increase 
the communication overhead. We have not yet implemented this kind of pro
pagation. 

6. DISCUSSION 

We have done some measurements on the TSP and the alpha-beta programs. 
The hardware used was a collection of 10 MHz 68010 CPU's connected by a 
10 Mpbs token ring. For each program, we ran both a sequential (single pro
cessor) version and a parallel (multi-processor) version. Each parallel version 
uses one processor for the client process and a varying number of processors 
for the servers. Note that with only one server, there is still some parallelism, 
as the client can find the next subtree to hand out, while the server is working 
on the previous subtree. 

The depths of the subtrees are important parameters of the TSP algorithm. 
If the client processor distributes work at a too high level, the effectiveness of 
pruning will be severely weakened. For example, if it traverses just one level, 
then the best solution in the leftmost branch of the tree cannot be used as a 
bound in its neighbor branch, as these branches are searched simultaneously. 
Increasing the depth of the root subtree will decrease this effect, at the cost of 
more communication between the root processor and its subcontractors. To 
achieve high performance, a good compromise has to be found. For an 11-city 
problem we found the optimal search depth of the client to be three levels. 
The results for an 11-city problem using this search depth are shown in table 
6.1. The last entry in the table shows the speedup over the I-server version. 
With 7 processors (1 client and 6 servers) a 5-fold speedup over the sequential 
program is achieved. 

version time(secs) speedup 
sequential 637.2 
1 server 548.1 1 
2 servers 309.7 1.77 
3 servers 218.2 2.51 
4 servers 171.7 3.19 
5 servers 141.5 3.87 
6 servers 124.2 4.41 

TABLE 6.1. Results for 11-city Traveling Salesman Problem. 
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To measure the performance of the alpha-beta algorithm, we implemented 
the game of Othello, using this algorithm. Table 6.2 shows the time to evaluate 
a position, averaged over five different positions with a fan-out (number of 
moves) of approximately fifteen. The depth of the search tree was four plies. 
As for TSP, the division of labour between the client and the servers is impor
tant. For the parallel versions the client searched three plies, the servers 
searched one ply. 

version time(secs) speedup # evaluations search overhead 

sequential 266.9 2670 1 
I server 324.6 I 2670 1 
2 servers 196.2 1.65 3925 1.47 
3 servers 153.3 2.12 4732 1.77 
4 servers 125.1 2.59 5676 2.13 
5 servers 114.0 2.84 6424 2.40 
6 servers 111.5 2.91 6719 2.51 

TABLE 6.2. Results for Othello implementation of alpha-beta search. 

The results show that the speedup achieved is significantly better for TSP 
than for alpha-beta search. The main reason is that alpha-beta search suffers 
more from the decrease in pruning efficiency than TSP. The third entry in 
table 6.2 shows the number of leaves visited by alpha-beta (i.e., the number of 
static evaluations). This number is a yardstick for the total amount of work 
done. The last entry shows the search overhead over the sequential version. 

Several other authors have studied parallel branch-and-bound algorithms 
[Finkel85, Wah85, El-Dessouki80, Lai83, Lai84] and parallel alpha-beta 
search algorithms [Wah85, Marsland82, Finkel82, Finkel83, Ak180, El
Dessouki84]. Good surveys on multiprocessing of combinatorial search prob
lems in general and of parallel game tree search can be found in [Wah85] and 
[Marsland82] respectively. 

Finkel and Manber [Finkel85] use a distributed computing system, CRYS
TAL, similar to the Amoeba system. CRYSTAL consists of VAX 11/750 
computers connected by a token ring. They implemented a distributed 
backtracking/branch-and-bound package (DIB) with a clean, sequential, user 
interface that relieves the programmer of the burdens associated with parallel 
programming. As a disadvantage, the user has little control over the order of 
the tree traversal, which was shown to be important. 

Early parallel alpha-beta algorithms [Finkel82] aimed at minimizing com
munication costs, but more or less overlooked the problem of decreased prun
ing efficiency. Aki et. al [Ak180]. proposed the idea of searching the tree in 
two phases. During phase 1 only those nodes that cannot possibly be pruned 
(the minimal tree) are searched. In phase 2, where the rest of the tree is 
searched, pruning will be highly effective. Finkel and Fishburn [Finkel83] 
reported a revised implementation of their original algorithm using this "man
datory work first" technique. Their analysis shows a significant improvement 
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for strongly ordered trees. A practical inconvenience is the fact that the tree 
has to be searched twice, so part of it probably has to be generated twice. 

An alternative proposed by Campbell [Marsland82] is the Principal Varia
tion Search. This algorithm aims at minimizing the number of nodes to be 
searched, at the cost of some processor idle time. Also, it assumes a hierarchi
cal processor architecture. 

Moser [Moser84] has implemented tree splitting in his chess program 
WATchess 3.0. Although he only uses tree splitting at the highest level of the 
tree (i.e. after one move), he achieves a good speedup, due to the use of aspira
tion search. 

Our implementations of TSP and alpha-beta search have been deliberately 
kept simple initially, as we implemented them just to gain some experience 
with programming under Amoeba. However, our results so far have given us 
all faith that the primitives offered by Amoeba are sufficiently general for more 
advanced implementations. 

In the near future we will study the implementation of other applications. 
Among the applications that may be suitable for a distributed system are 
divide-and-conquer algorithms [Horowitz83], simulation [Bryant79, Bezivin82, 
Christopher82, Jefferson85], matrix problems [Wise85], design automation 
[Rutenbar84], compilation [Miller82], and AI problem solving [Smith80]. 
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One application of large-grain parallelism is the use of parallel and distributed 
compilations by make, running under UNIX.t The original version of make exe
cutes its compilation commands successively. 'Making' a large system could 
therefore take a large amount of time. An increase in efficiency may be 
achieved by a parallel version of make, which tries to execute the compilations 
simultaneously. A parallel, non-distributed, version of make turns out to be 
inefficient. The compilations, which are mainly cpu-bound, slow each other 
down due to degradation of the processor's performance. A solution may be 
found in the idea of boarding out (part of the) compilations to other processors. 
This resulted in a study of how to do compilations in a distributed manner. 

The aspect of having a system of loosely-coupled processors is an impor
tant issue in the field of distributed compilations. The relatively high cost of 
doing transactions (compared to local actions) in a loosely-coupled system 
makes the use of low-level inter-processor communication (e.g., the execution 
of system calls on another processor) inefficient. A UNIX network system like 
the Amoeba Connection turns out to be unsuitable for doing distributed compi
lations. It is shown that much overhead results from the communication 
between the system that contains the source code to be compiled and the sys
tem that does the compilation. Another possibility is to copy the source code 
to the other processor's data space, execute a local compilation on that pro
cessor and send the results back; this greatly reduces the communication over
head. The time needed to send the source to and receive the code from the 
remote processor is negligible compared with the overhead mentioned earlier. 

In order to create a parallel and distributed make, I adapted the original 
'make' program by adding a module for finding out which compilations can be 
executed in parallel, depending on the actions to be taken, the actions already 
finished, and the present files. Furthermore, I created various versions of the 
UNIX C compiler cc in order to perform some measurements. 

t UNIX is a Trademark of AT&T Bell Laboratories. 
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1. INTRODUCTION 

The availability of networks of personal workstations has increased interest in 
parallel and distributed compilations. A decrease of the response time is the 
main motive for executing compilations in parallel on several processors. This 
paper is a description of an experiment set up to examine the feasibility of 
using more than one processor for doing compilations. The experiment took 
place in a UNIX environment and consisted of two parts: creating two 
different distributed versions of the C compiler cc and constructing a version 
of the UNIX tool make [Feldman78] that could run its compilations in parallel. 
The aspect of being tightly-coupled or loosely-coupled turns out to be an 
important issue in determining whether a specific network is suitable for doing 
distributed compilations. 

The test configuration consisted of four VAX 111750s, each of them running 
UNIX version 4.1 BSD. The machines are connected by a 10 Mbps token ring 
(Pronet). Pronet was made available to user programs by incorporating the 
Amoeba 3.0 [Tanenbaum81] communication primitives into UNIX [Renesse84]. 

A distributed compilation can be done in various ways. One possibility is to 
create a version of the compiler in which the system calls may be carried out 
remotely. This can be achieved by using a UNIX network system like the 
Amoeba Connection, similar to the Newcastle Connection [Brownbridge82]. The 
system combines the file systems of each of the connected machines by allow
ing access to files and execution of programs on other systems. The compiler 
runs remotely (i.e., on another processor) but each system call concerning the 
source code should be executed on the processor that runs the file system of 
the source code. Another possibility is to isolate components from the com
piler and execute some of them remotely. One problem with remote compila
tions is that the compiling program should produce code for the local machine. 
Each of the connected machines should therefore have a compiler for each of 
the other machines. This is no problem if the connected machines are similar, 
as is the case in the test environment. Another problem arises in the second 
kind of compilation: libraries and included source code should be derived from 
the source machine. This, too, caused no problem in our test environment, as 
will be shown. 

It must be said that many of the results depend strongly on our 
configuration, especially with regard to the communication overhead. Results 
from a common network operation, performed in the same configuration, are 
included to give an indication of the overhead. 

2. AMOEBA AND THE AMOEBA CONNECTION 

Amoeba is a distributed operating system developed at the Vrije Universiteit 
[Tanenbaum81]. The Amoeba communication primitives are described in 
[Tanenbaum84]. Amoeba uses a "request-reply" or "transaction" style of com
munication, in which the basic primitive is the client sending a request to a 
server and the server sending a reply back to the client. Such a pair of request 
and reply messages is henceforth called a transaction. The implementation of 
the primitives in UNIX created the possibility for two processes running on 
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different systems to communicate by means of transactions. 1bis has been 
exploited in various user programs such as copying files between various sys
tems, remote execution of commands, sharing of resources and remote logging 
in [Renesse84]. An application of the transaction mechanism is a UNIX 
system-call server. A process on machine A can ask a system-call server on 
machine B to execute a system call, such as open, read, or write. The strategy 
used to implement the remote system calls is to build an extra layer on the 
kernel. A program does not directly invoke the kernel but calls a stub routine 
which checks whether the command must be done locally or remotely. Local 
commands are passed directly to the kernel. Remote commands are passed to 
a system call server on the proper machine by doing a transaction with the 
system-call server. A great advantage of the use of this extra layer is that 
existing programs need not be rewritten or even recompiled. They only have 
to be relinked with a library of stub routines. The naming scheme for remote 
files (i.e., files on other UNIX systems), the system-call server and the stub
routine library together form the Amoeba Connection. The connection was 
found useful in our experiment, although the overhead was large. 

The following table gives an indication of the speed of the connection in 
terms of response time, measured in seconds. Three versions of the UNIX file
copy command cp are compared: plain cp, able to copy files on the local 
machine only; rep, the inter-machine file-copy program as described in 
[Renesse84]; and fcp, which is plain cp linked with the Amoeba Connection 
library. 'Local' is a file copy from one disk to another on the same system. 
'Remote' is. a file copy from the local system to another system. All measure
ments took place on lightly loaded machines. 

number of bytes 
cp rep 

local local remote 
l u ... us l.O!S 3.55 

1024 0.28 1.20 3.60 
10240 0.40 1.93 3.95 

TABLE 1. 

3 'THE EXPERIMENT AND ITS RESULTS 

3.1. A distributed compiler 

fcp 
local remote 
.25 U.40 

0.25 0.43 
0.38 0.83 

The first phase of the experiment was to construct two distributed versions of 
cc which is the UNIX C compiler. Cc is a program that causes C source code 
to be passed through several compilation programs. The first step is done by 
the C preprocessor cpp which performs macro substitution, file inclusion and 
elimination of source code, depending on several user-specified, preprocess
time conditions. Next follows the compiler proper, ccom, which is a two-pass 
portable C compiler [Johnson79]. The assembly code generated by the two
pass compiler is translated to object code by the UNIX assembler as. The pro
gram Id, which is the UNIX link editor, finally combines the object programs, 
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together with some libraries, into one program which may be executed. The 
first distributed version of the C compiler is based on the Amoeba Connection. 
The four compilation programs are relinked to allow files on other systems to 
be compiled. The resulting compiler, together with its driver cc, is installed on 
each of the connected machines. (Having multiple copies of the compiler is in 
fact an optimization with regards to our implementation of the Amoeba Con
nection; remote execution is allowed only if the program is situated in the file 
system belonging to the remote processor.) The remote compilation of a 
source file on A is now done jijwfuoking cc on some otjijwfuoking cc on some 
otst phase of the experiment was to construct two distributed versions of cc 
which is the UNIX C compiler. Cc is a program that causes C source code to 
be passed through several compilation programs. The first step is done by the 
C preprocessor cpp which performs macro substitution, file inclusion and elimi
nation of source code, depending on several user-specified, preprocess-time 
conditions. Next follows the compiler proper, ccom, which is a two-pass port
able C compiler [Johnson79]. The assembly code generated by the two-pass 
compiler is translated to object code by the UNIX assembler as. The program 
Id, which is the UNIX link editor, finally combines the object programs, 
together with some libraries, into one program which may be executed. The 
first distributed version of the C compiler is based on the Amoeba Connection. 
The four compilation programs are relinked to allow files on other systems to 
be compiled. The resulting compiler, together with its driver cc, is installed on 
each of the connected machines. (Having multiple copies of the compiler is in 
fact an optimization with regards to our implementation of the Amoeba Con
nection ; remote execution is allowed only if the program is situated in the file 
system belonging to the remote processor.) The remote compilation of a 
source file on A is now done ults for response times ( compared to plain cc) are 
listed below. 

number of local using Amoeba Connection Compiler server 
C source cc 
lines 

- - local remote local remote 
LU 3.27 4.05 21.45 3.07 5.58 

200 9.17 9.82 30.57 9.07 11.33 
2000 68.75 68.68 105.28 68.98 69.63 

TABLE 2. 

Table 2 shows that remote compilation using the compiler server gives a better 
response time than using the compiler, based on the Amoeba Connection. 
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3.2. Distributed and parallel 'make' 
The second part of the experiment was to apply the result of the first part to 
the UNIX program make. Many programs developed under UNIX consist of a 
set of C source files which have to be compiled. Make performs the compila
tions sequentially. Doing the compilations in parallel on the same processor is 
not a solution, as table 3 shows. A solution is found in parallel and distri
buted execution of the compilations. Table 3 shows results of the three ways 
of doing independent compilations (i.e., no compilation uses results of the 
other compilations.) The file to be compiled was about 1800 lines. The max
imum number of available processors was 4. The compiler server is used for 
doing the distributed compilations. 

number of locally locally distributed 
compilations sequentially in parallel in parallel 

I 6!S.67 - -
2 137.34 127.32 69.58 
3 206.00 183.45 73.22 
4 274.66 242.50 78.35 

TABLE 3. 

Adapting make in order to execute compilations in parallel on several pro
cessors was done easily. Make maintains a list of programs that can also run 
on other machines. A command is executed in parallel to the other commands 
under the following conditions: the program appears on the distributed
program list; the necessary files are present; the compilations on which the 
command depends are already done; and there is still enough remote process
ing power. The only program currently in the distributed-program list is cc, 
but other compilers and translating programs may be added to this list. The 
processing power of a machine is computed by keeping an account of the 
number of compilations started by make on that machine. 

4. PLANS 
From the experiment we learned that splitting up compilations and running 
the environment and machine independent phases on other processors results 
in a remarkable increase in response time, especially if several sources need to 
be compiled. Splitting up a single compilation is also a result of the philoso
phy behind the Amsterdam Compiler Kit (ACK), a project at the Vrije Univer
siteit in the area of compiler construction [Tanenbaum83]. A compilation in 
ACK. causes a program to pass through several components: a front end, which 
translates the program into machine-independent intermediate code; a 
peephole and global optimizer; a back end, which translates from intermediate 
code into assembly code; an assembler; and a linker. The idea is to have a 
pool of processors, each of them running a dedicated server performing one of 
the components. ACK. tries to allocate a server for each of the phases and 
passes the program through the pipeline of servers. 
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Parallel Alpha-Beta Search 
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Several different approaches exist to the design of a parallel alpha-beta algo
rithm. Recent research in this area is reviewed. Especially, the obstacles to 
achieving a linear speedup are explained. Alpha-beta algorithms based on tree 
splitting suffer from search overhead, synchronization overhead, and communi
cation overhead. A new algorithm is developed that avoids the synchronization 
overhead. This algorithm is implemented under the Amoeba distributed operat
ing system. 

1. INTRODUCTION 
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Speed is one of the most important properties of chess programs based on 
some kind of brute force strategy. High speed can be obtained by using 
efficient algorithms and fast, possibly special-purpose, hardware. As really fast 
processors tend to be expensive and usually have to be shared with other peo
ple, an interesting alternative is to use multiple cheap processors. With today's 
technology it is quite feasible to build a relatively cheap system with an 
impressive number of MIPS out of standard hardware. 

One problem that has to be solved is how to run a chess program con
currently on many processors. Several researchers have investigated how the 
alpha-beta algorithm (which is the heart of most chess programs) can be run in 
parallel. In this paper we will give a survey of this research. Especially, we 
will describe the problems encountered in achieving a linear speedup (i.e., pro
portional to the number of processors used). Also, the impact of several 
enhancements to the alpha-beta algorithm on this speedup will be discussed. 
In the second part of the paper we will report on our experiments with imple
menting a parallel alpha-beta algorithm under the distributed operating system 
Amoeba, that has been developed in our faculty [Mullender86, Mullender84, 
Mullender85]. 

Parallel Alpha-Beta Search 
H.E. BAL and R. VAN RENEssE 
Proc. NGI-SION Symposium Stimulerende Informatica 
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Utrecht, Netherlands 
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We assume the reader has a fair knowledge of game theory, in particular of 
the alpha-beta algorithm and its enhancements. A good historical overview 
can be found in chapter 2 of [Herik83]. 

2. A SURVEY OF PARALLEL ALPHA-BETA ALGORITHMS 

There are several fundamentally different ways of using parallelism to speed up 
the alpha-beta search. The static evaluation can be carried out in parallel, for 
example by having one processor counting the pieces, another one looking for 
open lines, and so on. Oearly, the speedup will be limited by the number of 
properties the evaluation function looks at. Furthermore, communication 
overhead will be substantial, as every processor examines every evaluated posi
tion. 

Another approach is to do a parallel aspiration search. The sequential 
aspiration search algorithm first tries a small initial window (X, Y). If the 
search fails, it subsequently tries either (- infinite, X) or (Y, + infinite). A 
parallel program can try the three windows (- infinite, X), (X, Y), and (Y, + 
infinite) simultaneously. If there are enough processors, more windows can be 
used. Baudet [Baudet78] showed that even with an infinite number of proces
sors the speedup is still limited by a factor 5 or 6. 

The most promising approach to parallel alpha-beta search is based on tree 
splitting. With this method, each processor searches part of the game tree. In 
principle, there is no constant upper bound for the speedup, as there is for 
parallel aspiration search. Yet, there are other problems, that will be discussed 
below. 

2.1. Tree splitting algorithms 
Tree splitting algorithms distribute the game tree over all available processors. 
A basic algorithm works as follows. Initially, one processor is assigned the 
task of evaluating a game tree. It hands out the leftmost subtree of the root 
node to subprocessor 1, the second subtree to subprocessor 2, and so on. It 
computes the solution for the entire tree out of the partial solutions returned 
by the subprocessors. Each subprocessor can split its own subtree over even 
more processors. Clearly, this method will soon run out of processors. To 
avoid this, two precautions are taken. First, each processor has only a limited 
number of subprocessors, say F. After handing out the Fth subtree, it waits 
until one of its subprocessors becomes available again. Second, the forwarding 
of work to subprocessors and to subprocessors of subprocessors is bounded. 
Essentially, the processors are organized as a tree with fan-out F and depth D. 
After D levels of subcontracting, a processor evaluates the remainder of the 
subtree itself. 

The algorithm has been implemented by Finkel and Fishburn [Finke182] on 
a network of 5 LSI-11 processors under the Arachne distributed operating sys
tem. Their paper presents theoretical, simulated, and measured results. One 
problem is that, for a (nearly) best-first ordered game tree, the algorithm evalu
ates subtrees that would not have been evaluated by a sequential algorithm. 
For example, during the evaluation of the second subtree of the root node, the 



269 

result of the evaluation of the first subtree cannot be used, as these subtrees 
are evaluated concurrently. Hence, alpha-beta bounds become available much 
later. As chess programs attempt to achieve a nearly best-first order for their 
moves, this definitely is a major problem. As a second problem, processors 
spend part of their time waiting for their subprocessors to finish, hence causing 
idle-times. Finally, any distributed algorithm will suffer from a certain amount 
of communication overhead. Because of these problems the speedup obtained 
by the simple tree splitting algorithm is far from linear. Theoretically, for a 
best-first ordering the speedup is proportional to the square root of the 
number of processors. 

Summarizing, there are three kinds of overheads: search overhead, synchroni
zation overhead, and communication overhead. 

Several researchers have tried to improve this basic tree splitting algorithm. 
We will discuss two schemes, the Minimal-tree approach (also called the 
Mandatory-work-first approach) of Akl, Barnard, and Doran [Akl80], and the 
Principal Variation Splitting method of Marsland and Campbell [Marsland 82]. 

There is a fixed part of the search tree that a (sequential) alpha-beta algo
rithm cannot possibly cut off. This part is called the minimal tree. The 
mandatory-work-first approach first searches this minimal tree. In a second 
tree traversal it searches the rest of the tree, using the alpha-beta bounds found 
during the first traversal. So, during the first traversal the parallel algorithm 
has no search overhead. During the second traversal the parallel algorithm has 
less overhead than the simple parallel tree splitting algorithm. 

The minimal tree is defined recursively by the following rules: 

- the root node is a minimal-tree node 
- the leftmost son of a minimal-tree node is itself a minimal-tree node 
- the leftmost son of any right son of a minimal-tree node is itself a minimal-

tree node. 

Finkel and Fishburn [Finkel83] adapted their algorithm to this new 
approach. Their analysis shows that the expected speedup is significantly 
better than the speedup of their original algorithm. 

Marsland and Campbell [Marsland82, Marsland85, Schaeffer84] proposed 
an algorithm that does not require two separate tree traversals. Their Principal 
Variation Splitting (PVsplit) algorithm aims at optimizing searches of strongly 
ordered game trees. PV split assumes that most of the time the leftmost subtree 
of any node will contain the best move. So, PVsplit first evaluates the leftmost 
subtree and then tries to prove that the other moves are inferior. This is 
achieved by using a zero-width alpha-beta window, causing the search to fail 
quickly. If the search fails "low," the move is refuted. If a better move is 
found, the search fails "high" and has to be repeated with a normal window, 
using the better move as the new principal variation. For strongly ordered 
trees, the search will fail "low'' most of the time. 

The algorithm was incorporated in two existing chess programs (TinkerBelle 
and Phoenix) and implemented on a system of four M68000 based SUN 
workstations. Experimental results are given in [Schaeffer84]. For deep 
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searches, a speedup in the range 3.1 - 3.3 is achieved for four processors. The 
results show that parallelism is most effective for deep searches. For a 3-ply 
search the search overhead is almost 30%; for a 7-ply search it is about 10% 
(for four processors). 

2.2. The effect of enhancements of the Alpha-Beta search 
Sequential chess programs use several enhancements to the basic alpha-beta 
algorithm, such as transposition tables, refutation tables, history heuristics, 
aspiration search, iterative deepening, quiescent search, and killer heuristics. 
In this section we will discuss the effectiveness of some of these enhancements 
to the parallel alpha-beta algorithms. 

A transposition table is a list of moves that have been evaluated earlier dur
ing the search. Large transposition tables (containing say 100 000 positions) 
have proven to be quite valuable. In a parallel environment, a central transpo
sition table will soon become a communications bottleneck, as it is consulted 
often. On the other hand, if each processor maintains its own transposition 
table, one processor may evaluate moves that another processor has already 
evaluated. Transposition tables and similar mechanisms were studied by 
Marsland et al [Marsland85, Schaeffer84]. Local transposition tables and the 
less expensive refutation tables and history heuristics were found to be supe
rior to one central transposition table. 

Moser [Moser84] studied the effect of aspiration search on a parallel alpha
beta algorithm. In his chess program Watchess 3.0, all processors first use a 
narrow window (X,Y). If this search succeeds, a very good speedup is 
achieved. (Moser measured a speedup of 5.2 for 7 processors). The main 
disadvantage of the parallel algorithm (i.e., the delayed availability of good 
alpha-beta bounds) is compensated for by the tight bounds of the initial search 
window. The search fails "high" as soon as one processor evaluates a subtree 
with a value greater or equal than Y. In this case all other processors working 
on this subtree should be stopped (interrupted) immediately. Although a 
super-linear speedup (i.e., better than linear) can occur occasionally, in general 
the speedup is worse than for a successful search. The search fails "low'' if no 
processor detects a subtree with value higher than X. A fairly good speedup is 
obtained in such a case. Moser concludes that aspiration search is extremely 
beneficial for distributed alpha-beta searching. 

Chess programs always try to order their moves, so they can evaluate plausi
ble moves first. One method, known as iterative deepening, implements an N
ply search by first doing an (N-1)-ply search to order the moves. The (N-1)
ply search first does an (N-2)-ply search. This process continues up to a cer
tain depth. A typical chess program may start with a 2-ply search. If this 
method is applied to a parallel search algorithm, it will increase the synchroni
zation overhead, as all processors have to wait for the completion of the (N-
1)-ply iteration before starting to work on the next iteration [Schaeffer84]. 
This problem can only be avoided at the cost of a more complex scheduling 
strategy. 
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3. THE AMOEBA DISTRIBUTED OPERATING SYSTEM 

We have implemented the alpha-beta algorithm on top of a modern distributed 
operating system, Amoeba [Mullender86]. In this system there is a minimal 
kernel per processor capable of nothing more than running processes and pro
viding communication for those processes either locally or over the network. 
Together they form the bottom layer in the operating system, running com
municating processes. The next layer provides services like a file service or a 
process service. These services complete the operating system by providing the 
user with the usual mechanisms for reading and writing files, or creating 
processes. Services can be created dynamically because they are implemented 
by ordinary processes, called servers. Processes that use these services are 
called clients. Of course, a process can be both a server and a client. 

Communication between processes is through request-reply pairs: the client 
sends a request to the server after which it awaits a reply from that server. 
Thus communication is blocking, as the client is suspended while the server is 
processing the request. Only when the server is finished and has sent its reply 
the client can continue to run. 

Concurrency is achieved by dividing processes up into sub-processes; in 
Amoeba these are called clusters and tasks respectively. All tasks of a cluster 
run on the same processor, so all tasks share their memory. Each task has its 
own thread of control. A task continues to run until it blocks, and only then 
another task within the same cluster is allowed to run. This way there is no 
need for complex synchronization mechanisms to access shared data structures. 
Each task can start an operation on a separate server, thus enabling concurrent 
processing as each server can be located on another processor. 

In our model there are three classes of processors. A processor can belong 
to some specific user (i.e., it is part of his personal workstation), to a special 
server (e.g., a file server), or it can be available for general usage. The latter 
class of processors form a pool that is used to (gradually) enhance the comput
ing capacity of the system. Each user is free to allocate some of these pool 
processors, for example to run a parallel program. 

At present, we have a working prototype of the Amoeba kernel (running on 
a Motorola 68010, VAX, NS16032, PDP-11, and IBM-PC). This kernel has 
been used to implement some parallel algorithms, among which is a parallel 
alpha-beta search algorithm. 

4. PARALLEL ALPHA-BETA SEARCH ON AMOEBA 

Parallel alpha-beta programs based on tree splitting suffer from three kinds 
of overheads: search overhead, synchronization overhead, and communication 
overhead (see section 2). Below, we will develop an algorithm that virtually 
eliminates the synchronization overhead by always keeping the subprocessors 
busy. 

A parallel alpha-beta search can be implemented on Amoeba as follows (see 
figure 1): 
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FIGURE 1. Process structure of the Alpha-Beta program. 

Start servers capable of evaluating subtrees on each processor, and let one 
cluster, running on any processor, divide the tree among the servers. 1bis can 
be done recursively by having each server splitting its subtree once more, and 
dividing those over yet other servers. Within the cluster each task is waiting 
for its server to finish; however, because there are as many tasks in a cluster as 
servers in the system, synchronization overhead is eliminated, so all servers 
always have some work to do. 

Splitting the tree is almost automatic (see figure 2). Each task starts execut
ing the usual sequential alpha-beta algorithm. To keep the other tasks from 
evaluating the same nodes, each task leaves a trace of what it has done 
already, or what leaf it is evaluating, by building the tree explicitly in the 
shared memory. Each task does a depth-first search in the tree until it either 
finds an unvisited node or an unevaluated leaf, or it decides that the subtree 
rooted at the current node should be evaluated by another processor. For an 
unvisited node it will generate all the moves in the corresponding positions 
and continue in the first child node. An unevaluated leaf is evaluated directly 
by a static evaluation function. The decision to send a subtree to another pro
cessor is based on the current search depth. 1bis also allows efficient alpha
beta interval updates. When a leaf or a node is evaluated, the task that is then 
executing can update the alpha boundary in the parent node as the node is 
maintained in shared memory. Furthermore, it can update the beta boun
daries in the sibling nodes, and then the alpha boundaries of their child nodes, 
etc., until the leaves are reached, the new boundary is not better than the old 
one, or the update results in pruning the rest of the tree. 

In the last case the processors that are evaluating parts of that subtree have 
to be signaled to abort the request, a mechanism that is incorporated in 
Amoeba. When a leaf is reached that is evaluated remotely by doing again an 
alpha-beta search, and the new alpha or beta is improving the old one, the 
remote server has to be informed, but only if the communication overhead is 
smaller than the time to finish the evaluation. Because the mechanism for 
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doing the remote update would be painful ( an asynchronous update in the 
subtree), and the expected overhead is difficult to estimate, we did not imple
ment this. 

type node = record (* definition of a node *) 
position: position type; 
alpha, beta: integer; 
busy, remote: boolean; 
children: list of node; 

end; 

(* Evaluate node.position by doing an alpha-beta search. The result 
* is returned in node.alpha. 
*) 

procedure alpha beta(node, depth) 
begin -

if depth = 0 (* reached a leaf *) 
then 

node.alpha : = static evaluation(node.position); 
else -

if node should be evaluated by another processor 
then 

node.busy : = TRUE; 
node.remote : = TRUE; 
send node to server 
wait for server to finish (* here other tasks will run *) 
node.alpha : = result; 

else 
if node.children = nil (* first task to arrive here *) 
then 

fl 

generate(node ); 
(* generates node.children with alpha-beta boundaries set 
* to (-node.beta, -node.alpha) 
*) 

foreach child in node.children 
do 

if not child.busy (* no other tasks working on this node? *) 
then 

alpha beta(child, depth - l); 
fl -

if child.children = nil (* all children done *) 
then 

child.busy : = TRUE; 
update alpha(node, -child.alpha); 
(* tells-other tasks about result *) 
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fi 
end; 

fi 

dispose of child (* remove child from list *) 
fi 

od 

(* Update node.alpha with alpha. Update the children too. 
* Remove the node if alpha exceeds beta. 
*) 

procedure update alpha(node, alpha) 
begin -

if node.alpha < alpha 
then 

fi 
end; 

node.alpha : = alpha; 
foreach child in node.children 
do 

update beta(child, - alpha); 
od -
if node.children = nil and node.alpha > = node.beta 
then 

fi 

if node.remote send abort signal to server 
dispose of node (* node is pruned *) 

(* Update node.beta with beta. Update the children too. 
* Remove the node if alpha exceeds beta. 
*) 

procedure update beta(node, beta) 
begin -

if node.beta > beta 
then 

fi 
end; 

node.beta : = beta; 
foreach child in node.children 
do 

update alpha(child, - beta); 
od -

if node.children = nil and node.alpha > = node.beta 
then 

fi 

if node.remote then send abort signal to server 
dispose of node (* node is pruned *) 



begin 
(* initialize root node *) 
node.position : = INITIAL POSITION; 
node.alpha : = -MAXINT; 
node.beta := MAXINT; 
start N tasks; 
alpha beta(node, TOTAL DEPTH); 
wait until all tasks have finished 
writeln('result: ', node.alpha); 

end. 

FIGURE 2. The parallel alpha-beta algorithm. 
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To measure the performance of our method, we implemented the game of 
Othello. Figure 3 shows the time to evaluate a position, averaged over five 
ditf erent positions with approximately fifteen moves, and the number of 
evaluations that were not aborted. The root cluster searched the tree over 
three plies; the servers did only one ply after which they did a static evaluation 
of the resulting position. 

version time(secs) speedup # evaluations search overhead 
sequential 266.9 2670 
1 server 324.6 1 2670 
2 servers 196.2 1.65 3925 
3 servers 153.3 2.12 4732 
4 servers 125.1 2.59 5676 
5 servers 114.0 2.84 6424 
6 servers 111.5 2.91 6719 

TABLE. Results of an Othello implementation. 

5. DISCUSSION 

1 
1 
1.47 
1.77 
2.13 
2.40 
2.51 

This paper presented a survey of recent research on parallel alpha-beta algo
rithms. The causes for not achieving a linear speedup were classified as search 
overhead, synchronization overhead, and communication overhead. An algo
rithm was presented that virtually eliminates the synchronization overhead, 
but, in its present form, still suffers from a fairly large search overhead. 

Parallelism is used by several existing chess programs, such as Ostrich, 
Watchess 3.0 [Moser84], and Cray Blitz [Hyatt85). Most successful is world 
champion Cray Blitz, that uses a 4 processor Cray X-MP/48. All these pro
grams run on a small number of processors, typically less than 10. With the 
advent of powerful low-cost microprocessors (like the MC 68020 and the 
Inmos Transputer) it becomes more and more important to use massive paral
lelism. Today's parallel alpha-beta algorithms are not well suited for several 
hundreds of processors, as their speedups strongly degrade. It is still an open 
research issue whether the existing methods can be improved to make an 
effective use of many processors. 



276 

ACKNOWLEDGEMENTS 
The authors would like to thank Jaap van den Herik: and Dick Grune for their 
useful suggestions. 

REFERENCES 

[Akl80] 
AKL, S.G., BARNARD, D.T., and DORAN, R.J., "Design, Analysis, and 
Implementation of a Parallel Alpha-Beta Algorithm", Report 80-98, 
Queen's University, Kingston, Canada, April 1980. 

[Baudet78] 
BAUDET, G.M., "The Design and Analysis of Algorithms for Asynchro
nous Multiprocessors", CMU-CS-78-116, Carnegie-Mellon University, 
April 1978. 

[Finkel82] 
FINKEL, R.A. and FISHBURN, J.P., "Parallelism in Alpha-Beta Search," 
Artificial Intelligence, vol. 19, pp.89-106, 1982. 

[Finkel83] 
FINKEL, R.A. and FISHBURN, J.P., "Improved Speedup Bounds for 
Parallel Alpha-Beta search," IEEE Trans. on Pattern Analysis and 
Machine Intelligence, vol. PAMI-5, no. 1, pp.89-92, January 1983. 

[Herik:83] 
HERIK, H.J. VAN DEN, Computerschaak, schaakwereld en kunstmatige 
intelligentie. Academic Service, 1983. 

[Hyatt85] 
HYAIT, R.M., "Parallel Chess on the Cray X-MP/48," ICCA Journal, 
pp.90-99, June 1985. 

[Marsland82] 
MARsLAND, T.A. and CAMPBELL, M., "Parallel Search of Strongly 
Ordered Game Trees," Computing Surveys, vol. 14, no. 4, pp.533-551, 
December 1982. 

[Marsland85] 
MARsl.AND, T.A. and POPOWICH, F., "Parallel Game-tree Search", TR 
85-1, The University of Alberta, January 1985. 

[Moser84] 
MOSER, L., An Experiment in Distributed Game Tree Searching. Univer
sity of Waterloo, 1984. 

[Mullender84] 
MULLENDER, s. J. and TANENBAUM, A. s., "Protection and Resource 
Control in Distributed Operating Systems," Computer Networks, vol. 8, 
no. 5,6, pp.421-432, 1984. 

[Mullender85] 
MULLENDER, S. J. and TANENBAUM, A. S., "A Distributed File Service 
Based on Optimistic Concurrency Control," Proceedings of the I 0th 
Symposium on Operating Systems Principles, pp.51-62, December 1985. 



277 

[Mullender86] 
MULi.ENDER, s. J. and TANENBAUM, A. s., "The Design of a 
Capability-Based Distributed Operating System," The Computer Journal, 
vol. 29, no. 4, pp.289-300, 1986. 

[Schaeff er84] 
SCHAEFFER, J., OLAFSSON, M., and MAilsLAND, T.A., "Experiments in 
Distributed Tree-Search", TR 84-4, The University of Alberta, June 
1984. 





Experience 





Making Distributed Systems Palatable 

1. INTRODUCTION 

Andrew S. Tanenbaum 
Robbert van Renesse 

Department of Mathematics and Computer Science 
Vrije Universiteit 

Amsterdam, The Netherlands 

281 

Designing and implementing a distributed system is easy compared to the task 
of convincing people to use it. In a university Computer Science Dept., people 
generally use UNIXt and are not at all interested in moving to a different 
environment, no matter how wonderful it may be. In this paper we report on 
how we have implemented a UNIX environment for the Amoeba distributed 
operating system [I], in order to make the transition from UNIX to Amoeba as 
simple as possible. 

2. OVERVIEW OF THE AMOEBA DISTRIBUTED OPERATING SYSTEM 

The Amoeba system runs on a hardware configuration consisting of four com
ponents: personal workstations, pool processors, specialized servers ( e.g., file 
servers), and gateways to other systems. Interactive work is done on the 
workstations. Heavy computing, such as make, can be done on the pool pro
cessors, which are dynamically assigned as needed. At present there are 16 
pool processors, each consisting of a 12.5 MHz 68010 processor and a mega
byte of memory. All the components of the system are connected by a 10 
mb/s local network. 

t UNIX is a Trademark of AT&T Bell Laboratories. 
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The Amoeba software is based on the concept of objects ( abstract data 
types). Each object has some set of operations that can be performed on it A 
file object, for example, has operations to read it, write it, delete it, etc. 

Associated with each object is a capability that gives the holder permission 
to carry out certain operations on the object. Capabilities contain random 
numbers, for authentication, and are encrypted, to allow them to be manipu
lated directly by user processes, without intervention by the operating system. 

To perform an operation on an object, a client process sends a message to 
the server process that owns the object. This request message contains the 
capability, the operation code, and possibly some parameters. When the server 
has carried out the operation, it sends a reply message back to the client. The 
request and reply messages work together to form a simple kind of remote pro
cedure call called a transaction. Virtual circuits are not used in Amoeba. 

The Amoeba kernel manages the transactions, sending and receiving mes
sages (including splitting long messages into packets), setting timers, handling 
retransmissions etc. Nearly all of the other traditional operating system func
tions, such as process management, the file system and even system accounting 
are done outside the kernel in server processes. This design not only keeps the 
kernel small, but also makes it possible to have multiple servers of each type, a 
fact of considerable importance for smoothing the transition from UNIX, as 
will be described shortly. 

One other feature of Amoeba that is worth mentioning is the ability to have 
multiple processes operating within a single address space. This construction 
is called a cluster of tasks. It is particularly useful for implementing multiple 
threads of control in a server, to allow the server to work on several requests 
at the same time. 

3. THE UNIX SERVERS 
Although Amoeba has a number of "native" servers, such as a multiversion file 
server using optimistic concurrency control, these can coexist with "foreign" 
servers at the same time, since as far as the operating system is concerned, a 
server is just another user process. We have taken advantage of this fact, and 
implemented two servers essential to producing the UNIX environment, a 
UNIX file server and a UNIX process server. 

The UNIX file server, plus an associated library that can be linked in with 
user programs, provides an interface that is very similar to the UNIX (V7) file 
system interface. Programs using this library can create and open files, read 
and write files, and seek on files. Directory operations, including linking and 
unlinking files, and mounting and unmounting devices are all supported and 
all work the same way as UNIX programs expect them to work. The net result 
is that many UNIX programs can be relinked using a special library and run 
on Amoeba with no modification. 

Now let us briefly look at the implementation. The special library contains 
a procedure for each of the UNIX system calls supported. When a user pro
gram wants to execute the READ system call, for example, the library pro
cedure read is called. This procedure does a transaction (remote procedure 
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call) with the UNIX file server, passing as parameters, a capability that 
effectively establishes its identity (user id and group id), a small integer (file 
descriptor) telling which file to read, and the number of bytes desired. 

When the request message arrives at the server, one of the tasks inside the 
server accepts it and begins to process it. The server maintains a cache of 
recently used blocks, so there is a good chance that the data requested will be 
in the server's memory. If so, the server builds a reply message containing the 
requested bytes and sends it back to the client. If the data is not in memory, 
the server task fetch fetches it from the disk. While it is blocked waiting for 
the disk, requests from other clients can be processed by other tasks within the 
server. 

The UNIX process server has been structured in a similar way. It handles 
the FORK, EXEC, w AIT, SIGNAL, KILL, and EIXT system calls, among others. 
When a process forks, it is given a capability identifying the newly created 
process. The child process uses this capability to identify itself in subsequent 
operations. 

Because nearly all the usual UNIX system calls are supported by one of 
these two servers, its was straightforward to simply relink many of the stan
dard programs in the UNIX / bin directory to run under Amoeba. Conse
quently, users recently moved from UNIX to Amoeba can continue to use the 
shell, various editors, the C compiler, and the small utilities, such as cat, grep, 
and sort. 

4. COMMUNICATION WITH UNIX 
Amoeba users often want to communicate with UNIX systems, for example, to 
read their mail. To facilitate this communication, we have written a UNIX 
driver that implements the standard Amoeba transaction protocol, so that 
Amoeba processes can communicate with UNIX processes. 

An important use of this feature is for implementing the remote shell, rsh. 
Using rsh, a person logged into any of the machines, UNIX or Amoeba, can 
have a command carried out on any other machine. The output of that com
mand is automatically redirected back to the caller's standard output. For 
example, 
rsh vax3 who 
runs the who program on a machine called vax3 and displays the results on 
the terminal. 

Another program, call allows an Amoeba user to log into a remote UNIX 
machine to work their for a while. When the user is done, he logs out and is 
back to Amoeba. 

5. ACCESSING UNIX FILES FROM AMOEBA 

The native Amoeba file system, FUSS, uses a capability for each file. These 
capabilities are generally stored in directories, where a directory entry is just 
an (ASCII string, capability) pair. A user can present a string (path name) to 
the directory server, and the server returns the corresponding file capability. 

We have extended this basic scheme to make it possible to store capabilities 



284 

for UNIX files in Amoeba directories in a completely transparent way. On 
each UNIX machine are two special processes, the link server and the file 
server, that make this possible. 

To enter a UNIX file into an Amoeba directory, a user does a transaction 
with the link server, which locates the UNIX file, links it into a special direc
tory of its own, and returns a standard Amoeba capability for it to the caller. 
This capability can be entered in the Amoeba directory system under any con
venient name. Later, when the user wishes to access this file, he asks the 
Amoeba directory sei;ver to look it the name and return the capability. lbis 
capability can then be sent to the file server running on the UNIX machine to 
access the file. lbis facility has been implemented in such a way that access
ing an Amoeba file or accessing a UNIX file are identical from the user's point 
of view. 

When a request to create a capability for a file arrives at the link server, the 
link server makes a link (in the UNIX sense) to the file, and enters it into an 
internal directory under a name that is related to the random number in the 
capability. When the capability is later presented to the UNIX file server for 
reading, it is possible to check to see if the capability is valid. 

The link server can also make capabilities for UNIX directories, although 
these are implemented differently because the link server cannot link to a 
directory. Instead an internal table provides the mapping between capabilities 
and directories. 

REFERENCE 
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Fifth generation computers must be fast, reliable, and flexible. One way to 
achieve these goals is to build them out of a small number of basic modules 
that can be assembled together to realize machines of various sizes. The use of 
multiple modules can make the machines not only fast, but also achieve a sub
stantial amount of fault tolerance. 

The price of processors and memory is decreasing at an incredible rate. 
Extrapolating from the current trend, it is likely that a single board containing 
a powerful CPU, a substantial fraction of a megabyte of memory, and a fast 
network interface will be available for a manufacturing cost of less than $ 100 
in 1990. We therefore do research on the architecture and software of 
machines built up of a large number of such modules. 

In particular, we envision three classes of machines: (1) personal computers 
consisting of a high-quality bit-map display and a few processor-memory 
modules; (2) departmental machines consisting of hundreds of such modules; 
and (3) large mainframes consisting of thousands of them. The primary 
difference between these machines is the number of modules, rather than the 
type of the modules. In principle, any of these machines can be gracefully 
increased in size to improve performance by adding new modules or decreased 
in size to allow removal and repair of defective modules. The software run
ning on the various machines should be in essence identical. Furthermore, it 
should be possible to connect different machines together to form even larger 

Making Amoeba Work 
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machines and to partition existing machines into disjoint pieces when neces
sary, all in a way transparent to the user level software. 

Amoeba [Mullender85a] uses the concept of objects, manipulated by services. 
Associated with each object are one or more "capabilities" [Dennis66] which 
are used to control access to the object, both in terms of who may use the 
object and what operations he may perform on it. At the user level, the basic 
system primitive is performing an operation on an object, rather than such 
things as establishing connections, sending and receiving messages, and closing 
connections. 

The object model is well-known in the programming languages community 
under the name of "abstract data type" [Liskov74]. When a user process exe
cutes one of the visible functions in an abstract data type, the system arranges 
for the necessary underlying message transport from the user's machine to that 
of the abstract data type and back. The header of the message can specify 
which operation is to be performed on which object. This arrangement gives a 
very clear separation between users and objects, and makes it impossible for a 
user to inspect the representation of an abstract data type directly by bypass
ing the functional interface. 

The object model is implemented in terms of clients (users) who send mes
sages to services [Cheriton83, Needham82, Ba1179]. A service is defined by a 
set of commands and responses. Each service is handled by one or more 
server processes that accept messages from clients, carry out the required work, 
and send back replies. 

Amoeba has no system calls, apart from the ones for message transactions; 
process management, terminal handling and accessing device drivers is all done 
through transactions with services, which may or may not be part of the 
operating system kernel. 

Replicated in each of the Amoeba processors is a copy of the Amoeba Kernel, 
which manages clusters of light-weight processes, called tasks, and provides 
communication between tasks through blocking message transactions. Each 
cluster has a segmented virtual address space that its tasks execute in. Within 
a cluster, there is no pre-emption between tasks; a task executes until it blocks 
voluntarily before another taks in the same cluster (and address space) is 
allowed to run. Task switching can be made very efficient this way. 

The Amoeba Kernel manages three types of objects, clusters, tasks, and seg
ments. A cluster consists of one or more tasks wich execute in a single address 
space, formed by one or more segments. These three types of object can be 
manipulated by directing requests to the Amoeba Kernel, the Kernel Server, so 
to speak. 

The most important data structured used in transactions to manipulate seg
ments, clusters and tasks is the Cluster Descriptor, which is capable of describ
ing the complete state-except the contents of the segments-of a cluster of 
tasks. 

The Cluster Descriptor plus appropriate Kernel requests, form a single 
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mechanism for loading and starting up processes over the network, for check
pointing, migration, exception handling and remote debugging. The exception 
handling mechanisms allow each interaction between a cluster and the outside 
world to be caught and examined by the exception handler (a user-appointed 
service), so emulation of other operating system interfaces and encapsulation 
of Amoeba processes is feasible. 

Emulation of other operating system interfaces is important: Amoeba cannot 
become a popular operating system unless exsiting software can be used on it 
without, or with very little modification. 

The UNIXt system call interface is already available on Amoeba as a special 
version of the UNIX C-library. For instance, rather than executing a read sys
tem call upon a call of the read routine in C, a transaction is carried out with 
the file server. 

It is planned to use the possibility of encapsulation, mentioned above, to 
build a UNIX service, which will catch exceptions caused by UNIX binaries 
doing system calls (or getting stack overflow, or any other exception that may 
be caused by a UNIX program), and simulate the effect as on a UNIX machine. 

Objects in Amoeba are both accessed and addressed through their capabilities. 
A part of the capability, called port, for an object specifies the service that 
manages objects of its type. One or more server processes (clusters) may be 
responsible for implementing the service. These processes "listen" on the 
service's port. 

Ports do not carry information about the whereabouts of the associated 
server processes. The Amoeba Kernels contain a locate mechanism to find a 
server for a service, given the service's port. This mechanism, which is only 
used in a local network, is based on broadcasting "where are you?" messages 
and maintaining caches of hints on the location of recently-used .servers. 

For locating ports in wide-area networks which do not normally provide a 
broadcast facility, mechanisms are needed based on other locate algorithms. 
We have looked into this problem quite thoroughly and proved a lower bound 
on the number of message passes needed to locate a port [Mullender85b]. 

This lower bound indicates that a totally unstructured name space does not 
scale well, no matter how the network is organised. We are now working on 
the details of a hierarchical port name space in which a service indicates in 
what domain its servers must expect their clients. Ports still have a fixed length 
which proves very advantageous for processing speed on local service calls 
(which are the most frequent), yet the network can be structured hierarchically 
such that purely local services are invisible in higher levels of the hierarchy. 

In collaboration with a dozen European research institutes, partially sponsored 
by the European Community, we have started work on distributed operating 

t UNIX is a Trademark of AT&T Bell Laboratories. 
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systems for wide-area networks. Amoeba has been chosen as a basis for this 
work, and research has been done-and is still going on-on methods to con
nect many local Amoebre together to form one "Culture" of Amoebre. 

Our special interest in this project is designing operating system services that 
scale well to very large numbers of processors. Our work on designing algo
rithms for locating services is one example of this. Another example is protec
tion, authentication and resource control in very large systems. 
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From Unix to a Usable Distributed Operating System 

Robbert van Renesse 
Department of Mathematics and Computer Science 
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Now that we nearly have a production version of the Amoeba distributed 
operating system ready, we are trying to find ways to make it interesting to 
UNIXt users. First, we made a full UNIX emulation service for Amoeba. 
Second, we made the existing UNIX systems fully accessible to Amoeba users, 
and vice versa. Users can work with Amoeba having their old utilities still 
accessible, but additionally can use Amoeba services like transparent system
wide file naming and automatic load sharing. 

l. INTRODUCTION 

Distributed operating systems have several well-known advantages, such as 

- load balancing; 
- network transparency; 
- fault tolerance; 
- availability. 

Trying to get people to use a distributed operating system is hard in spite of 
these advantages. Reasons: 

- not compatible with the old operating system; 
- the new operating system is still experimental; 
- there are no utilities yet. 

For these reasons we want to support UNIX from our distributed operating 
system, Amoeba. In an attempt to win over the UNIX users, we have put a lot 
of effort into the utilities and network services. These will be discussed in the 
following sections. First, however, we will give an overview of the Amoeba 

t UNIX is a Trademark of AT&T Bell Laboratories. 
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distributed operating system and its communication primitives. 

2. OVERVIEW OF AMOEBA 
Amoeba [Mullender86] is a distributed operating system being developed at 
the Vrije Universiteit and the Centre for Mathematics and Computer Science, 
both in Amsterdam. It currently runs on Motorola 68010, Intel 8086, POPI 1, 
VAX, and National Semiconductor 32016 processors, connected by a Pronet 
10 Mbps token ring. 

Amoeba is a system of objects ( abstract data types like files or processes), 
managed by services. Each object is accessed using a capability [Tanen
baum86]. Capabilities are cryptographically protected to allow them to be 
managed by user processes. A service offers a set of operations on its objects, 
and is made up of a collection of server processes. To create, manipulate, or 
contemplate an object, a client process sends a request message containing the 
capability of the object and an operation code to a server process, which will 
eventually respond with a reply message. Such a message exchange is called a 
transaction. 

The Amoeba kernel has been kept small by placing services in user space. 
This enhances its reliability, and allows services to be added, changed, or 
removed at will, making the operating system flexible. The kernel only pro
vides multi-processing and inter-process communication, both intra-machine 
and inter-machine. All Amoeba machines run the same kernel. 

Inter-process communication in Amoeba is done by transactions as men
tioned above. Server processes can choose a port, an arbitrary 48 bit number, 
on which they can receive request messages [Mullender84]. A client process 
can then start a transaction by sending a request message to a port, which is 
received by a server process that has specified the same port. The transaction 
is finished when the server has executed the request and sent a reply message 
back to the client process. 

To allow a server process to handle multiple request messages, and a client 
to do multiple transactions, processes can be divided into lightweight sub
processes. Subprocesses share an address space, and each subprocess is able to 
send and receive requests. To avoid race conditions and simplify program
ming, the subprocesses are only rescheduled when a blocking system call is 
executed, that is, subprocesses are never pre-empted. 

Objects in the system are named and protected by capabilities. This 
presents a uniform interface to all types of objects, such as files, processes, 
directories, devices, disk blocks, etc. An object is created by a service on 
request of a client, which then receives a capability for it. The capability con
tains the port of a server in the service, an object number to identify the object 
within the service, the operation rights associated with the capability, and a 
check field, redundant information to protect the capability from tampering. 
Capabilities are managed in user space, again to keep the kernel small. 

Capabilities can be stored by the directory service[Meer84], which maps 
ASCII strings to capabilities. It stores the names and capabilities in objects 
called directories, which are named by capabilities too. By storing directory 
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capabilities in directories, it is possible to build arbitrary naming graphs for 
capabilities, or, indirectly, for objects. 

Besides services, there are three other types of components in the Amoeba 
system, namely workstations, pool processors, and gateways. Workstations pro
vide an interactive user interface to the Amoeba system. They consist of a ker
nel running a command interpreter and an editor. Pool processors are dynam
ically allocated from the processor pool when a job has to be run. The gate
ways [Renesse86] are used to link geographically distributed Amoeba sites into 
a uniform system. 

Ports are located automatically on local Amoeba sites. If a server wants to 
be known at other Amoeba sites, it publishes its port by giving it to the gate
way server, together with the domain in which the port is to be distributed. 
Remote gateways will then pass messages intended for the local server over the 
wide-area network. 

3. TRANSACTIONS 

In order to make a transaction, it is necessary to address the server and to 
name the object to be operated on. The server is addressed by a port, a 48 bit 
number chosen by the server itself. The object is named by a 128 bit number, 
called a capability, which can be subdivided into the port of the server manag
ing the object, an object number that identifies the object itself, the access 
rights, and a check field to protect against forging capabilities, as shown in 
figure 1. 

48 24 8 48 # bits 

I PORT I OBJECT RIGHTS CHECK 

FIGURE 1. Capability Layout. 

To make the use of ports and capabilities clear, consider airline boarding 
passes, which, as we shall see, are also capabilities. Such a pass contains the 
name of the flight (the port), the seat you may use (the object number), and 
the rights you have (e.g., smoking). 

Messages consist of two parts: a 32 byte header and a buffer. The header of 
a request message contains the capability of the object, a digital signature, an 
operation code, and some parameters. Only the capability is mandatory. The 
buff er may contain up to 32 Kbytes of data. A reply message has the same 
format, although the fields are used differently now. An address need not be 
specified, as the message is routed automatically to the client that made the 
request. Rather than an operation code it contains a result code. Figure 2 
shows the layout of a header. Byte ordering problems in the header are hid
den from the users. 

The transaction primitives are listed in figure 3. To await a request message, 
a server has to specify the header, buffer, and length of the buffer to the kernel 
by invocating the system call getreq. The getreq will return the actual size of 
the received request buffer. To send the reply message back to the client, it 
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Field # bytes 
Capability 16 
Signature 6 
Command/Status 2 
Parameters 8 

FIGURE 2. The header format. 
calls putrep, which will return the length of the reply buffer. When a client 
wants to send a requ~t message and await the reply, it calls trans. The first 
header and buff er contain the request; the second header and buff er will con
tain the reply when the transaction is finished. The trans retunis the actual 
size of the received reply buff er. 

getreq(hdr 1, bufl, len 1) 
putrep(hdr2, buf2, len2) 
trans(hdrl, bufl, lenl, hdr2, buf2, len2) 

FIGURE 3. The transaction primitives. 

There are two implementations of these primitives under UNIX. The first 
one uses Berkeley sockets. The other implementation is a driver for UNIX, 
which is running under BSD 4.1, BSD 2.9, V7, System III, and System V 
flavors of UNIX systems. This implementation is compatible with the Amoeba 
network, and makes communication between UNIX systems and Amoeba sys
tems possible. Furthermore, it supports the transaction primitives in the UNIX 
kernel itself, so that remote disks and remote terminals can be implemented. 

4. UNIX SERVICES 

Now that we have a uniform communication interface for Amoeba and UNIX, 
we can make any UNIX system available to Amoeba users and users on other 
UNIX systems, by running servers that give access to local resources such as 
files and processes. This section discusses some of these services. 

The rsh service provides remote execution and file transfer to its clients, that 
is, it can start a remote UNIX process and connect input and output streams to 
the local site. Each UNIX site runs an rsh server. When this server gets a 
request, in the form of a shell command, it starts the shell and connects its 
input and output to pipes. On the other ends of the pipes are processes that 
transfer data between the client and the running shell command. 

The UNIX rsh command invokes a remote rsh server. The syntax is 

rsh [-i] machine [ command [ args ... ] ] 

This runs the command at the specified machine. Input is only read and 
transmitted to the remote UNIX site if the -i flag is given. If no command is 
given, an interactive shell is assumed. For example: 

rsh machine who 

shows who is logged on to the named UNIX machine. To transfer a file from 



the local machine to another, one could do: 

rsh -i machine "cat > file" < file 
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Using rsh, several shell scripts have been written to implement rwho, rcat, rep, 
and others. Rsh is also used to transfer mail between UNIX sites. 

More transparent remote execution and file transfer can be achieved by 
relinking all the UNIX software with a library package we have implemented, 
with procedures that are used instead of the UNIX system calls. File names 
are parsed to see if they are of the form machine!file. If this is the case the 
system calls associated with such a file name are executed on the specified 
machine, instead of on the local machine. Now it is possible to use standard 
system utilities, but with a global name space. For example: 

machl !cat mach2!file 

prints the file located at the UNIX site mach2, running the cat command at the 
machine called machl. 

A similar library package, optimized for its purpose, was implemented to 
make a version of rn, that reads the USENET news, using a news spool direc
tory on a remote UNIX system. This was done to avoid having copies of this 
spool directory on all the UNIX workstations in our department. 

To make UNIX files accessible to Amoeba users in the same way as any 
Amoeba object, UNIX files need to be named and accessed using capabilities. 
For this purpose we have implemented a UNIX file service that creates capabil
ities for UNIX files on request and allows holders of these capabilities to read 
and write the associated files [Storm85]. Access rights are maintained using 
the rights bits in the capabilities. 

5. AMOEBA SERVICES 

Having capabilities for UNIX files, it is possible to store them in the Amoeba 
directory service. Then the UNIX files are linked in the Amoeba directory 
structure together with Amoeba files and other Amoeba objects. The locations 
of the UNIX files are invisible, making it possible to create a transparent nam
ing space. Files and directories are accessible through transactions from any 
UNIX machine or from Amoeba. 

Another Amoeba service that is useful for UNIX users is the terminal concen
trator. This is an Amoeba processor with several terminals attached to it, that 
can be read or written with transactions. By installing a special character dev
ice driver in a UNIX system, the terminals become accessible to that system. 
The terminal concentrator supports several line disciplines, so that usually a 
transaction is done per line of input rather than per character, reducing net
work and operating system overhead. Also, before starting a session, the ter
minal concentrator asks the user to which system it wants to be connected, giv
ing a flexible terminal configuration. 

Remote login from one UNIX system to another is enabled by a UNIX pro
gram that simulates an Amoeba terminal concentrator that has one terminal 
attached to it. It is invoked by 
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call machine 

Other Amoeba devices than terminals can be used by UNIX systems in the 
same way. For example, a UNIX driver that reads and writes by doing tran
sactions with the Amoeba disk service has been written, implementing a 
remote disk. 1bis disk can be shared by more than one UNIX system if it is 
mounted read-only on all the systems. Using the Amoeba boot service it is 
possible to download machines with a UNIX kernel. These machines may well 
be diskless. 

6. MINix 
Minix is an Amoeba service that implements a UNIX V7 service. It is divided 
into two servers: a file server and a process server. The file server implements 
the UNIX creat, open, read, write, close, dup, and the other system calls that 
operate on files. The process server supports fork, exec, exit, wait, signal, kill, 
getpid, getuid, etc. 

The Minix service is invoked using so-called stub-routines, procedures that 
hide the transaction details from the caller, thus implementing remote pro
cedure callr[Birrell84]. Here the stub-routines' syntax and semantics are identi
cal to those defined by the seventh edition of the UNIX Programmer's Manual. 
The processes authenticate themselves to the Minix servers by presenting a 
capability. The object number in the capability is in effect the UNIX process 
identifier. 

The file server is implemented by an Amoeba server process. It uses a file 
system structure similar to that of the UNIX V7 system, with some added 
improvements. The file server uses the Amoeba disk service for storage, and 
keeps the disk blocks in a large cache. The terminal concentrator is used for 
terminal access. 

The process server uses the file server to read executable files, or create and 
write core files on process crashes. When it gets a request to· exec a file, it 
allocates a processor from the processor pool, and copies the file from the file 
server to a memory segment in this processor. Memory segments behave just 
as ordinary Amoeba files. Furthermore, it creates a stack segment at this pro
cessor and a process with the two segments mapped in the process's address 
space. 

The Minix service enables Amoeba users to run UNIX programs as if they 
were running under UNIX; in effect, Amoeba has inherited an enormous range 
of application software from UNIX. 

7. PERFORMANCE 

In this section we present some performance figures for transactions. We 
measured transaction transfer rate and response time (i.e., the time between 
sending a request and receiving a reply) for different sizes of the request buffer. 
Here the server does nothing but accept the requests and send null replies back 
immediately. 

Transaction overhead includes server location time, DMA time (and possibly 
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buffer copy time), network transmission time, interrupt latencies, context 
switch times, and system call overhead. We measured this for two 12.5 MHz 
68000 processors running UNIX System V.0, and two 10 MHz 68010 proces
sors running Amoeba, both pairs communicating over a Pronet 10 Mbit token 
ring. The results can be seen in figure 4. 

UNIX to UNIX 
buffer size transfer rate response time 

(bytes) (Kbytes/ sec) (msec) 
0 0 11 

1024 79 13 
2048 79 26 

30000 150 200 

Amoeba to Amoeba 
buffer size transfer rate response time 

(bytes) (Kbytes/ sec) (msec) 
0 0 6 

1024 92 11 
2048 109 19 

30000 249 120 

FIGURE 4. Performance figures. 

Amoeba performs better, since the transactions are an integral part of the 
Amoeba operating system, whereas transactions in UNIX are implemented by a 
driver. Therefore system call overhead is larger in UNIX, and there is also 
extra copy time since it is not possible (for portability reasons) to DMA 
directly to user space as is done in Amoeba (note that this has to be done on 
both client and server side). Since the packet size on Pronet is 2044 bytes, 
there is not much difference in transfer rate for 1024 byte and 2048 byte 
buffers. 

8. CONCLUSIONS 

Supporting the Amoeba transaction interface under UNIX has made communi
cation between the two operating systems possible, and thereby allowing 
exchange of services. This will help make Amoeba attractive to UNIX users. 
The transaction driver for UNIX is portable to many different UNIX flavors, 
and can be installed both on big mini-computers and on small UNIX worksta
tions. 

Because the transaction interface is easy to use, simple communicating 
processes can be implemented. For example, rsh makes remote execution on 
UNIX systems possible. In spite of a simple request-reply interface, data 
transfer is as fast or faster than if a virtual circuit interface had been used. 
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UNIX applications are supported on the Amoeba distributed operating sys
tem using a special service that implements all the UNIX system calls. In fact, 
the service makes it possible to build a distributed UNIX system. In our sys
tem, however, the service is only used to extend the services offered by 
Amoeba itself. 
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Amoeba [Mullender86] is a general-purpose distributed system, designed and 
implemented by co-operating groups at the Vrije Universiteit and the Centre for 
Mathematics and Computer Science, both in Amsterdam. The system can 
accommodate four types of machines: (1) powerful personal workstations, that 
may contain several processors, (2) machines dedicated to providing specific 
services, such as a distributed file service, printer service, etc., (3) a processor 
pool, consisting of a number of processor/memory pairs, which provides tem
porary computing power for the users of the system, and (4) guest computers, 
running other operating systems than the Amoeba Kernel, which may provide 
services to Amoeba or use services provided by Amoeba. 

From the outset, Amoeba was designed with heterogeneity in mind. The 
remainder of this paper briefly describes how it is accommodated. 

2. EFFICIBNCY AND PORTABILITY IN COMMUNICATION 

Efficiency and portability are often mutually exclusive properties of an inter
process communication mechanism: Portability means independence of chosen 
CPU-type, network type, and network interface. This often means that 
hardware features cannot be fully exploited. 

The Amoeba system uses a request/reply communication protocol: a client 

Accommodating Heterogeneity in the Amoeba Distributed System 
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process sends a request to a server process. The server executes the request and 
returns a reply. The reply serves as an acknowledgement for the request, 
although a separate acknowledgement is sent if processing a request takes a 
long time. A new request serves as acknowledgement for the previous reply 
(but an acknowledgement is sent if no new request is forthcoming). It is a 
stop-and-wait protocol. Requests and replies can be up to 32 Kbytes long, 
and may have to be fragmented for transmission [Mullender84]. 

When this protocol was first implemented, it became clear that the machine-, 
operating system- and network-dependent part of the code far exceeded the 
portable part, the protocol itself. It also appeared that different networks react 
very differently to slight variations between protocols. On our token ring, for 
instance, the first implementation sent all fragments of a message as fast as the 
network would carry them; this failed, because the receiver interface was singly 
buffered and had to put received packets in memory before it was ready again. 
We decided to use a stop-and-wait protocol for fragment transmission. This 
was improved by making use of the fact that the interface allows independent 
operation of transmitter and receiver; an acknowledgement can thus be 
prepared while the receiver is working. The result is an implementation that 
can transmit over 300 Kbytes per second between the user spaces of processes 
on different machines (10 Mbit ring and 1 µ.sec per byte DMA). 

Going to these lengths when implementing IPC for a distributed operating 
system is justifiable, because all traditional operating system services are nowat 
least potentiallyremote, and the performance penalty for accessing them must 
be kept as low as possible. We therefore decided to standardise the interfaces 
to our protocols and their semantics, but not their implementation: each 
implementation must allow exploitation of the possibilities offered by the net
work type and interface. 

We have given two reasons for doing this: implementation-dependent code 
far exceeds the code to implement a simple protocol and (2) the penalty for 
inefficiencies in interprocess communication throughput and response time are 
high; they make the difference between a usable and an unusable system. 

3. PROTECTION 
Usually, protection mechanisms are enforced with the help of a secure operat
ing system. In distributed systems this is not possible, because participating 
guest operating systems may not enforce the right kind of protection, and it is 
too easy to replace the secure operating system in one of the machines in the 
system by another, insecure one. 

In Amoeba, protection is provided for by the interprocess communication 
mechanisms [Mullender85]. A process can only send a message to another if it 
has a capability for it. These capabilities consist of bit patterns; knowledge of 
the pattern is needed to obtain access to the object it refers to. Capabilities can 
be kept in user space. Secrecy is the key to protection in Amoeba. 

For reception of messages a similar capability is required. It is not the same 
as the one for sending, however, to prevent a sender from impersonating the 
receiver as well. The capability for sending is the put-port, that for receiving 
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the get-port. 
Two implementations are possible, one using public-key cryptography (send

ing requires the encryption key, receiving the decryption key; the keys are used 
as capabilities), the other using one-way functions. We shall briefly describe 
the latter. 

Get-ports and put-ports are related through a one-way function, a function 
whose value is easy to compute, but, given the result of such a computation, it 
is infeasible to compute the input. Thus, 

put-port = F(get-port). 

each machine and the network, we assume, exists a small box ( either physi
cally, or conceptually, as discussed below). This box, the F-box, performs the 
following functions: When a receive operation is done by the host, it passes the 
get-port to the F-box. The F-box computes the put-port, using F, which is pub
licly known, by the way, and waits for messages with that put-port in the 
header~ The sender, when it sends a message, addresses it with the put-port; a 
get-port for the return message traffic is also included. The sender's F-box does 
not operate on the put-port, but it does convert the get-port to a put-port. 

If the one-way function cannot be broken and the F-box cannot be circum
vented, this method provides a protection mechanism that is independent of 
the security of the operating system. Ideally, the F-box would be built in 
hardware, out of reach of malicious users, e.g., in the cable ducts in the wall 
with some sort of alarm that goes off when the F-box is tampered with. But 
the F-box can also be put in the VLSI interface chip, on the interface board, 
or, if need be, in the operating system kernel, where it is as secure as any dis
tributed operating system. 

4. GUEST SYSTEMS 

No considerations for existing (centralised) operating systems were taken into 
account in the design of the Amoeba system. In spite of this decision, integrat
ing software from other systems and communication with other systems has 
not presented a problem. The simplicity of the Amoeba model has made this 
possible. 

Communication and portability between our UNIXt systems and the 
Amoeba system has been realised by putting an Amoeba driver in the UNIX 
kernel, and a UNIX interface in one of the Amoeba run-time libraries. With 
these facilities we can test Amoeba software on the UNIX systems, we can 
build services that run under UNIX and provide access to UNIX services from 
the Amoeba system, and we can run UNIX software on Amoeba [Renesse84]. 

The Amoeba driver effectively provides UNIX processes with extra system 
calls for sending and receiving Amoeba requests and replies, both locally and 
remotely. Services can thus be set up to provide access to facilities offered by 

* For simplicity, we assume a broadcast network 
t UNIX is a Trademark of AT&T Bell Laboratories. 
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UNIX, such as the file system. 
The UNIX interface for Amoeba consists of a library that is linked into 

UNIX programs. The library interprets system calls, such as open, read, and 
write by sending appropriate requests to a UNIX-like file server, called Monix. 
Even system calls, such as fork and exec could be interpreted with little trou
ble. Many programs, written for UNIX, now run on Amoeba without any 
significant performance penalty. 

This approach to interfacing to guest operating systems has been most use
ful: No concessions were needed in the design of Amoeba, the interfaces 
(driver plus library) were written and tested in weeks rather than months, and 
the UNIX population is happy with some new distributed services. 
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As part of the research on distributed operating systems being done at the Vrije 
Universiteit, we have implemented a set of network-oriented programs for use 
on several UNIXt machines connected by a high-speed token ring. With these 
tools it is possible to transfer files between machines, log in to remote 
machines, and implement multimachine shell scripts. The transaction protocols 
discussed in another paper at this EUUG meeting are used to implement two 
basic services: a "shell server" and a data transfer service. Other services are 
easily implemented as shell scripts that use these services. A file transfer pro
gram, for instance, executes the command "to < file1" on one machine, and 
"from > file2" on the other machine. More examples of these facilities and 
their implementation and performance are discussed in the paper. 

1. INTRODUCTION 
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At our university we are developing a distributed operating system called 
Amoeba [Mullender86]. As a spin off from this research, we have incor
porated some of the Amoeba interfaces into UNIX, and used these interfaces to 
build some application programs for communicating between UNIX systems. 
These tools include file transfer, remote execution and remote login. In this 
paper we describe the different layers into which our implementation is 
divided, and the interfaces that connect them, and discuss the performance of 
our implementation. 

When we started this project we had 2 PDP11/44's running UNIX V7, 2 
VAX 750's* running Berkeley 4.lBSD and 8 Intel 8086's and 8 Motorola 
68000's running Amoeba 1.0. As Amoeba was designed to be a distributed 

t UNIX is a Trademark of AT&T Bell Laboratories. 
* PDP, VAX and UNIBUS are registered trademarks of Digital Equipment Corporation. 

Connecting UNIX Systems Using a Token Ring 
ROBBERT VAN RENESSE, ANDREW S. TANENBAUM, and SAPE J. MULi.ENDER 
Proceedings of the Cambridge EUUG Conference 
September 1984 



302 

system, we needed a network. 
Our network had to be fast, even under heavy load, so a ring network 

seemed the best choice. After some study, we chose ProNET. * 
[Saltzer80] This is a 10 Mbit/sec star shaped ring network with decentralized 

control and token arbitration, supporting up to 255 hosts. It can send and 
receive packets concurrently, do scatter/gather operations, has variable length 
packets up to 2044 bytes, checks parity, and has a primitive hardware ack
nowledgement bit. Pronet interfaces exist for UNIBUS and MULTIBUSt; 
both are used in our machines. 

Our desires, with respect to UNIX, were modest. We did not want to make 
a distributed system, but only some capabilities to do file transfer and remote 
execution. In retrospect, we feel that we have achieved these objectives. 

2. NETWORK INTERFACE 

Network application programs need a mechanism to commmunicate reliably. 
We have designed a network interface that is simple to use, which uses a 
efficient, simple and fast protocol. We envision communication between two 
processes, one is called the server and the other the client. A server handles 
requests from clients. When the server has handled the request it sends a reply 
back to the client; the sending of a request to the server and a reply back to 
the client is called a transaction* [Mullender84]. 

The transaction primitives are: 

typedef struct Mref { 
char *M oob; 
char *M-buf; 
unsigned M _len; 

} Mref; 

The client, in order to do a transaction calls 

trans( cap, req, rep); 
Cap *cap; Mref *req, *rep; 

The server receives requests and sends replies with 

getreq(port, cap, req); 
Port *port; Cap *cap; Mref *req; 

putrep(rep ); 
Mref *rep; 

* ProNET is a trademark of Proteon Associates, Inc. 
t MULTIBUS is a trademark of Intel, Inc. 
:j: Not to be confused with the concept "atomic transaction." 
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3. USER PROGRAMS 
And now the moment of truth: can the primitives we designed be used to 
make useful programs? The basic things we want are file transfer and remote 
execution. In this section we will discuss some of the programs we have built; 
they fulfilled our desires and are now among the most-used programs on our 
UNIX systems. 

3.1. File transfer 
The first thing expected of a fast local network is fast file transfer. We have 
made two simple programs to accomplish basic data transfer, requiring the 
user to be logged in on both the machine producing the data, and the machine 
consuming the data. Their syntax is: 

from identifier 
to identifier 

To reads from standard input and from writes to standard output. If the 
identifiers of to and from are the same, the input data to to becomes the output 
data of from. 

For example, when "to hamlet < /etc/passwd" is executed on machine A, 
and "from hamlet > /etc/passwd" on B, the password file of machine A is 
copied to the password file of B. The same can be done with the execution of 
"rep A!/etc/passwd B!/etc/passwd," called at any machine on the network; 
rep will be treated in a later section. 

3.2. Remote login 
As programmers are lazy, they do not like to walk from terminal to terminal 
to work on different machines, especially if the terminals are in different 
rooms, floors or buildings. So a desire existed to be able to login onto any 
computer from any terminal; therefore, we made our own version of the cu 
command to call another UNIX system, except that our version does not lose 
characters. The syntax is: 

call machine-name 

After calling this program you get a login message from the remote machine, 
and you can login and work onto that machine as if the terminal is connected 
directly to the new machine, with one exception: lines beginning with a 'T' are 
special. Their meaning is as follows: 

T.: switch back to local machine; 
T!: shell escape; 
TT: send a 'T' to the remote machine; 
T%take from [to]: copy file "from" to local machine; 
T%put from [to]: copy file "from" to remote machine. 

To execute call you will have to be logged in on some machine. If you are not, 
you can login as "remote." Instead of a shell you get a program that asks you 
for the machine you want to login on, and then executes call. 
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So each terminal is effectively connected to each machine. At the moment, 
if you inspect what each user is doing in our department, you will notice that 
half of them are executing call. It is useful because most of our machines are 
dedicated to one or two specific projects, and most of the faculty members are 
working on projects on different machines. 

3.3. Remote execution 
Many times you just want to execute a simple command at a remote machine 
without going to the trouble of logging in; e.g., you want to know if you are 
still in the top 10 of your favourite game on a certain machine, and if you are 
not you will have to login on this machine to fight for your place. Commands 
are executed on a remote machine with: 

rsh machine command 

The output of the command is defaulted to the user's terminal, but can be 
redirected in the usual way, the input comes from "/dev/null." For example, 
"rsh A who" will give you a listing of the person's who are logged in on 
machine A. 

It is now possible to run your programs on multiple machines. For example, 
if you want to run an neqnlnroff job, you could run it on two machines as fol
lows: 

(neqn file I to format)& 
rsh machine "from format I nroff -ms" > out 

The nroff output is redirected to the file "out" on the local machine. If you 
want to direct input to the remote command, and split standard output and 
error output, you could do something like this: 

rsh machine "from input I command I to output" >&2 & 
from output& 
to input 

This means: execute command at the remote machine, with input from the pro
cess "from input" and output to "to output." Locally a "from output" is 
started in the background to catch the standard output of the command; the 
standard input is sent to the remote machine with "to input." The error out
put is done by the rsh process. If you put all this in a shell script, you can 
execute a command as if it runs locally. In the special case that this command 
is "sh -i," you can almost work on the remote machine as if logged in there. 

3.4. Other useful programs 
Out of the basic elements of file transfer and remote execution many interest
ing programs can be built. In this section we will discuss the programs used 
most on our machines; all these programs are shell scripts. Many of these 
scripts call to and from, which need a unique identifier as argument; for this 
purpose, the program uniqport outputs a random string of printable characters, 
to used as argument to from or to. The presented implementations of the 
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programs are slightly simplified. 
For file transfer it is a nuisance to have to login on two machines; therefore, 

we made a shell script called rep which transfers files from any place in the 
network to any other place. Its syntax is: 

rep [machinel!]filel [machine2!]file2 

This will transfer the first file to the second. One can leave out the machine 
part if the file is on the local machine. An implementation, in which the 
machine parts are non;optional, could be: 

IFS= ! port= 'uniqport' 
(set $1; rsh $1 "cat $2 I to $port")& 
(set $2; rsh $1 "from $port I cat > $2") 

A program related to rep is rcat, with syntax: 

rcat [-] [machine!]file ... 

and obvious meaning. 
An implementation of this command, with exactly one file argument, could 

be: 

IFS=! 
set $1 
case$# in 
1) cat $1 ;; 
2) rsh $1 cat $2 ;; 
*) echo "Usage: $0 [machine!]file" >&2 ;; 
esac 

Here is another thing about programmers: they are nosy. They want to know 
where their fellow-programmers are logged onto, and what they are doing. 
For this purpose we created the programs rwho and rw, which give information 
about the whereabouts and actions of all person logged in on any machine. 

In our department we have several different printers attached to several 
different machines. Some produce ugly output fast, others produce pretty out
put slowly. It would be nice to print a file on an appropriate printer, indepen
dent of the machine the printer is attached to, or the system the file is on. 
With the program rpr you can do the same as with !pr, but with the advantages 
of location independence: 

rpr printer [file ... ] 

Its implementation, in a configuration having two printers on the machine 
called "tjalk" and one on the machine "klipper," is: 



306 

case $printer in 
tjalk) mac= tjalk com= lpr ; ; 
pmds) mac= tjalk com= opr ; ; 
klipper) mac=klipper com=lpr ;; 
*) echo "$0: unknown printer" >&2; exit 1 ;; 
esac 
port= 'uniqport' 
rsh $mac "from $port I $com" & 
shift 
pr -t $: I to $port ;; 

Each shell script was written in 1 to 15 minutes; the basic elements of our 
network utilities (from, to and rsh) have proved their strength. 

3.5. Implementation 
Now having described the communication programs and the shell scripts we 
have built with them, we will discuss how from, to, rsh and call are imple
mented; in particular, we will take a look at the servers needed. All these pro
grams use transactions as communication mechanism. 

The implementation of from and to is simple: from acts as a server waiting 
for request to output data to standard output, to acts as a client doing transac
tions requesting the from process to output the data to has read. The port 
used in the transaction header is just the identifier given as argument to to and 
from. 

To execute a command on a remote machine, a server is needed that awaits 
a request and executes it when one arrives. The rsh command is nothing but a 
client process doing a transaction with this server, requesting a command to be 
executed, and awaiting a reply saying the command has been executed. The 
servers on the different machines listen to different ports; given a machine's 
name, rsh knows the port to use*. 

For remote login one also needs a server. Although the server for remote 
execution could be used for this purpose too, a new one is made. A simple
minded implementation of call could be the following: 

rsh machine "from input I sh -i" & 
to input 

The problem here is that the remote shell has pipes for input and output; for 
example, you can not do ioctl's, or send signals along pipes. Therefore, we 
installed a device driver implementing a "pseudo terminal." The job of the 
remote login server is to manage these pseudo terminals. 

A pseudo terminal really consists of two devices: a master and a slave dev
ice. The master device can be opened by a process simulating the terminal by 
writing to it for terminal input, or reading from it for terminal output; the 

* The port is a function of the machine's name. 
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slave device just looks like a terminal device to UNIX. The master device is 
called "/dev/pty.XX," and the slave device "/dev/tty.XX." The slave device is 
put in "/etc/ttys" as the other terminals are, so a getty process can manage it. 
The master device has two processes driving it: the first writing to it simulating 
the pseudo-keyboard, and the second reading from it simulating the pseudo
printer. These processes are just from and to, so that the pseudo terminal can 
be controlled at the local machine. All the remote login server does when it 
gets a request, is pick a free pseudo terminal and start the from and to 
processes. 

The client process call sends a message to the server requesting for a pseudo 
terminal, sets the local terminal in RAW mode, and starts a from and a to. 
The from catches the output from the pseudo terminal, and the to will send its 
input to the pseudo terminal. Call just copies its input to the to process via a 
pipe, except for the lines beginning with a 'T', for which it must do some local 
processing. 

As an example of how this mechanism works, we will consider what happens 
when the user types a DEL character, with the intention to generate an inter
rupt at the remote machine. First, the DEL is read by the local terminal 
driver, but because it is working in RAW mode, it just passes the character to 
the reader: the call process. Call outputs it in the pipe, giving the DEL to the 
to process, which sends it to the remote from process; from writes it to the con
trolling site of the pseudo terminal device. Now the DEL character is treated 
as if the pseudo terminal was an ordinary terminal where a DEL was typed in: 
an interrupt is sent to all the processes belonging to the process group of this 
terminal. 

Although the characters typed in when executing call pass through a pipe, 
are sent to and echoed by the remote machine, and thus sent over the network 
twice, they are sent back to the terminal fast enough to see only a delay in the 
exceptional case of a lost packet, when the corresponding character has to be 
retransmitted. All the network programs are fast enough to work with, even 
by impatient programmers; but their success is mostly because of the simpli
city of usage. 

4. PERFORMANCE 

In this section we will give some performance figures for the rates we achieve 
using from and to. They were measured during the middle of the day, i.e., 
many persons were logged in, of whom some were working. Running the tests 
on a single user system sometimes doubles the data rate, but these figures are 
not of any importance, since in practice the systems are always multiuser. On 
the other hand, the performance drops fast if the systems are heavily used. 
The rates, as shown in figure 1, are not bad compared to most other systems. 
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VAX750 PDP 11/44 
VAX750 25,000 15,000 

PDP 11/44 15,000 10,000 

FIGURE 1. Data transfer rates in bytes per second over ProNET from 
user process to user process. The VAX's run 4.lBSD, and 
the PDP's V7. The buffer size is 512 bytes. 

When we made the buffer size 2048 bytes on the VAX's, we achieved a data 
rate of 90,000 bytes per second (without file 1/0). Unfortunately we could not 
use this size in general as we could not enlarge the buffer size on the PDP's. 

As it does not matter where you run the network software, you may also run 
from and to on the same machine. The rates we achieve now are in figure 2. 
As these rates are the same as when runningfrom and to locally, we may con
clude that ProNET is not the bottleneck, but either the protocol or UNIX. 
Since our protocol is light weight, it must be UNIX. Indeed, when we look at 
where the most time is spent, it is in copying the user buffer to a kernel buffer, 
and in setting the timers. 

VAX 750 PDP 11/44 
25,000 10,000 

FIGURE 2. Local rates. From and to both run on the same machine, 
and do not use ProNET. 
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