

CWI Tracts

Managing Editors

J.W. de Bakker (CWI, Amsterdam)
M. Hazewinkel (CWI, Amsterdam)
J.K. Lenstra (CWI, Amsterdam)

Edltorlal Board

W. Albers (Enschecle)
P.C. Baayen (Amsterdam)
R.J. Boute (Nijmegen)
E.M. de Jager (Amsterdam)
M.A. Kaashoek (Amsterdam)
M.S. Keane (Delft)
J.P.C. Kleijnen (Tilburg)
H. Kwakernaak (Enschede)
J. van Leeuwen (Utrecht)
P.W.H. Lemrnens (Utrecht)
M. van der Put (Groningen)
M. Rem (Eindhoven)
A.H.G. Rinnooy Kan (Rotterdam)
M.N. Spijker (Leiden)

Centrum voor Wlskunde en Informatica
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

The CWI is a research institute of the Stichting Mathematisch Centrum, which was founded on
February 11, 1946, as a nonprofit institution aiming at the promotion of mathematics, computer
science, and their applications. It is sponsored by the Dutch Government through the Nether
lands Organization for the Advancement of Research (N.W.O).

CWI Tract 41

The Amoeba
distributed operating system:
Selected papers 1984 - 1987

edited by
Sape J. Mullender

Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

1980 Mathematics Subject Classification: 68A05.
1987 CR Categories: CO, C2, 04.
ISBN 90 6196 325 7
NUGl-code: 811

Copyright© 1987, Stichting Mathematisch Centrum, Amsterdam
Printed in the Netherlands

Preface

This tract contains selected articles relating to the Amoeba llistributed Operat
ing System which were published between 1984 and 1987. The papers reflect a
joint effort between the Centre for Mathematics and Computer Science, and
the Vrije Universiteit, both located in Amsterdam, the Netherlands. Any cita
tions should refer to the original publications rather than this collection.

.

iii

Contents

INTRODUCTION 1

Distributed Operating Systems 3
A. S. TANENBAUM and R VAN RENESSE

A CM Computing Surveys
Vol. 17, No. 4, pp. 419-470
December 1985

The Design of a Capability-Based Distributed Operating System 77
S. J. MULLENDER and A. S. TANENBAUM

The Computer Journal
Vol. 29, No. 4, pp. 289-300
March 1986

PROTECTION 10 l

Using Sparse Capabilities in a Distributed Operating System 103
A. S. TANENBAUM, S. J. MULLENDER, and R. VAN RENESSE

Proc. 6th Int. Conj on Distributed Computing Systems
pp. 558-563
May 1986

iv

Capability-Based Protection in Distributed Operating Systems 115
A. S. TANENBAUM, R. VAN RENl!ssE, and S. J. MUI.LENDER
Proceedings of Symposium Certificering van Software
Utrecht, Netherlands
November 1984

PROTOCOLS 123

A Secure High-Speed Transaction Protocol 125
S. J. MUI.LENDER and R. VAN RENESSE
Proceedings of the Cambridge EUUG Conference
September 1984

Distributed Match-Making for Processes in Computer Networks 137
S. J. MUI.LENDER and P. M. B. VITANYI
Proceedings 4th A CM Principles of Distributed Computing
Minaki, Canada
August 1985

Rm.IABILITY 163

Reliability Issues in Distributed Operating Systems 165
A. S. TANENBAUM and R. VAN RllNESSE
Proc. 6th Symp. Reliability of Distr. Softw. & Datab. Syst.
Williamsburg, Virginia
pp. 3-11
March 1987

FILE SYSTEM 183

A Distributed File Service Based on Optimistic Concurrency Control 185
S. J. MULLENDER and A. S. TANENBAUM
Proceedings of the 10th Symposium on Operating Systems Principles
Orcas Island, Washington.
pp. 51-62
December 1985

Immediate Files 209
S. J. MULLENDER and A. S. TANENBAUM
Software-Practice and Experience
Vol 14, No. 4, pp. 365-368
April 1984

V

WIDE-AREA NETWORKS

Distributed Systems Management in Wide-Area Networks
S. J. MULLENDER

215

217

Proc. NGI!SION Symposium
Amsterdam
pp. 415-424
April 1984

Connecting RPC-Based Distributed Systems Using Wide-Area Networks 231
R. VAN RENESSE, A. S. TANENBAUM, J.M. VAN STAVEREN, and J. HALL

Informatica Report IR-118
Dept. of Mathematics and Computer Science, Vrije Universiteit, Amsterdam
December 1986

APPLICATIONS 245

A Distributed, Parallel, Fault Tolerant Computing System 247
H.B. BAL, R. VAN RENESSE, and A.S. TANENBAUM
Informatica Report IR-106
Dept. of Mathematics and Computer Science, Vrije Universiteit, Amsterdam
October 1985

Parallel and Distributed Compilations in Loosely-Coupled Systems 261
ERIK H. BAALBERGEN
Proc. of workshop "Large Grain Parallelism"
Providence, RI
Oct. 1986

Parallel Alpha-Beta Search 267
H.B. BAL and R VAN RENEsSE
Proc. NGI-SION Symposium Stimulerende Informatica
pp. 379-385
Utrecht, Netherlands
April 1986

ExPERIENCE 279

Making Distributed Systems Palatable 281
ANDREW S. TANENBAUM and ROBBERT VAN RENESSE
Position Paper in 2nd SIGOPS workshop "Making Distributed Systems Work"
Amsterdam, Netherlands
September 1986

vi

Making Amoeba Work 285
SAPE J. MUI.LENDER
Position Paper in 2nd SIGOPS workshop "Making Distributed Systems Work"
Amsterdam, Netherlands
September 1986

From UNIX to a Usable Distributed Operating System 289
R. VANREN'EssE
Proceedings of the EUUG Autumn '86 Conference
Manchester, UK.
pp. 15-21
September 1986

Accommodating Heterogeneity in the Amoeba Distributed System 297
SAPE J. MUI.LENDER and ROBBERT VAN REN'EssE
Proceedings of SOSP Heterogeneity Workshop
Orcas Island, Washington, USA
December 1985

Connecting UNIX Systems Using a Token Ring 301
ROBBERT VAN REN'EssE, ANDREWS. TANENBAUM, and SAPE J. MULLENDER

Proceedings of the Cambridge EUUG Conference
September 1984

CoNTRIBUTING AUTHORS 309

Introduction

Distributed Operating Systems

Andrew S. Tanenbaum
Robbert van Renesse

Department of Mathematics and Computer Science
Vrije Universiteit

Amsterdam, The Netherlands

Distributed operating systems have many aspects in common with centralized
ones, but they also differ in certain ways. This paper is intended as an intro
duction to distributed operating systems, and especially to current university
research about them. After a discussion of what constitutes a distributed
operating system, and how it is distinguished from a computer network, various
key design issues are discussed. Then several examples of current research
projects will be examined in some detail, namely the Cambridge Distributed
Computing System, Amoeba, V, and Eden.

l. INTRODUCTION

3

Everyone agrees that distributed systems are going to be very important in the
future. Unfortunately, not everyone agrees on what they mean by the term
"distributed system." In this paper we will present a viewpoint widely held
within academia about what is and is not a distributed system, discuss
numerous interesting design issues concerning them, and finally conclude with
a fairly close look at some experimental distributed systems that are the sub
ject of ongoing research at universities.

To begin with, we use the term "distributed system" to mean a distributed
operating system as opposed to a data base system or some distributed applica
tions system, such as a banking system. An operating system is a program
that controls the resources of a computer and provides its users with an inter
face or virtual machine that is more convenient to use than the bare machine.
Examples of well-known centralized (i.e, not distributed) operating systems
are: CP/M,1 MS-DOS,2 and UNIX.3

A distributed operating system is one that looks to its users like an ordinary

I. CP /M is a trademark of Digital Research, Inc.
2. MS-DOS is a trademark of Microsoft.
3. UNIX is a trademark of AT&T Bell Laboratories.

The Design of a Capability-Based Distributed Operating System
S. J. MULI.ENDER and A. S. TANENBAUM
The Computer Journal
Vol. 29, No. 4, pp. 289-300
March 1986

4

centralized operating system, but runs on multiple, independent CPUs. The
key concept here is transparency, in other words, the use of multiple processors
should be invisible (transparent) to the user. Another way of expressing the
same idea is to say that the user views the system as a "virtual uniprocessor,"
not as a collection of distinct machines. This is easier said than done.

Many multimachine systems that do not fulfill this requirement have been
built. For example, the ARPAnet contains a substantial number of computers,
but by this definition it is not a distributed system. Neither is a local network
consisting of personal computers with minicomputers and explicit commands
to log in here or copy a file from there. In both cases we have a computer net
work but not a distributed operating system. Thus it is the software, not the
hardware, that determines whether a system is distributed or not.

As a rule of thumb, if you can tell which computer you are using, you are
not using a distributed system. The users of a true distributed system should
not know (or care) on which machine (or machines) their programs are run
ning, where their files are stored, and so on. It should be clear by now that
very few distributed systems are currently used in a production environment.
However, several promising research projects are in progress.

To make the contrast with distributed operating systems stronger, let us
briefly look at another kind of system that we will call a "network operating
system." A typical configuration for a network operating system would be a
collection of personal computers along with a common printer server and file
server for archival storage, all tied together by a local network. Generally
speaking, such a system will have most of the following characteristics that dis
tinguish it from a distributed system:

• Each computer has its own private operating system, rather than run
ning part of a global, system-wide operating system.

• Each user normally works on his own machine; using a different
machine invariably requires some kind of "remote login," rather than
having the operating system dynamically allocate processes to CPUs.

• Users are typically aware of where each of their files are kept, and must
move files between machines with explicit "file transfer" commands,
rather than having file placement managed by the operating system.

• The system has little or no fault tolerance; if 1 % of the personal com
puters crash, 1 % of the users are out of business, rather than simply
having everyone being able to continue normal work, albeit with 1 %
worse performance.

1. 1. GoALS AND PROBLEMS

The driving force behind the current interest in distributed systems is the enor
mous rate of technological change in microprocessor technology. Microproces
sors have become very powerful and cheap, compared to mainframes and min
icomputers, so it has become attractive to think about designing large systems
composed of many small processors. These distributed systems clearly have a
price/performance advantage over more traditional systems. Another

5

advantage often cited is the relative simplicity of the software - each processor
has a dedicated function - although this advantage is more often listed by peo
ple who have never tried to write a distributed operating system than those
who have.

Incremental growth is another plus; if you need 10% more computing
power, you just add 10% more processors. System architecture is crucial to
this type of system growth, however, since it is hard to give each user of a per
sonal computer another 10% of a personal computer. Reliability and availabil
ity can also be a big advantage; a few parts of the system can be down
without disturbing people using the other parts.

On the minus side, unless one is very careful, it is easy for the communica
tion protocol overhead to become a major source of inefficiency. More than
one system has been built that required the full computing power of its
machines just to run the protocols, leaving nothing over to do the work. The
occasional lack of simplicity cited above is a real problem, although in all fair
ness, this problem comes from inflated goals: with a centralized system no one
expects the computer to function almost normally when half the memory is
sick. With a distributed system, a high degree of fault tolerance is often, at
least, an implicit goal.

A more fundamental problem in distributed systems is the lack of global
state information. It is generally a bad idea to even try to collect complete
information about any aspect of the system in one table. Lack of up-to-date
information makes many things much harder. It is hard to schedule the pro
cessors optimally if you are not sure how many are up at the moment.

Despite these obstacles, many people think that in time they can be over
come, so there is great interest in doing research on the subject.

1.2. SYSTEM MODELS

Various models have been suggested for building a distributed system. Most
of them fall into one of three broad categories, which we will call the "mini
computer" model, the "workstation" model and the "processor pool" model.
In the minicomputer model, the system consists of a few (perhaps even a
dozen) minicomputers (e.g., VAXes), each with multiple users. Each user is
logged onto one specific machine, with remote access to the other machines.
This model is a simple outgrowth of the central time-sharing machine.

In the workstation model, each user has a personal workstation, usually
equipped with a powerful processor, memory, a bit-mapped display, and some
times a disk. Nearly all the work is done on the workstations. Such a system
begins to look distributed when it supports a single, global file system, so that
data can be accessed without regard to its location.

The processor pool model is the next evolutionary step after the workstation
model. In a timesharing system, whether with one or more processors, the
ratio of CPUs to logged in users is normally much less than I; with the works
tation model it is approximately 1; with the processor pool model it is much
greater than l. As CPUs get cheaper and cheaper, this model will become
more and more widespread. The idea here is that whenever a user needs

6

computing power, one or more CPUs are temporarily allocated to that user;
when the job is completed, the CPUs go back into the pool awaiting the next
request. As an example, when ten procedures (each on a separate file) must be
recompiled, ten processors could be allocated to run in parallel for a few
seconds, and then be returned to the pool of available processors. At least one
experimental system described below (Amoeba) attempts to combine two of
these models, providing each user with a workstation in addition to the proces
sor pool for general use. No doubt other variations will be tried in the future.

2. NETWORK OPERATING SYSTEMS
Before starting our discussion of distributed operating systems, it is worth first
taking a brief look at some of the ideas involved in network operating systems,
since they can be regarded as primitive forerunners. Although attempts to
connect computers together have been around for decades, networking really
came into the limelight with the ARPAnet in the early 1970s. The original
design did not provide for much in the way of a network operating system.
Instead, the emphasis was on using the network as a glorified telephone line to
allow remote login and file transfer. Later, several attempts were made to
create network operating systems but they never were widely used [MILLSTEIN
1977].

In more recent years, several research organizations have connected collec
tions of minicomputers running the UNIX operating system [RITCHIE and
THOMPSON 1974] into a network operating system, usually via a local network
[BIRMAN and ROWE 1982; BROWNBRIDGE et al. 1982; CHESSON 1975; HWANG
et al. 1982; WAMBECQ 1983]. WUPIT [1983] gives a good survey of these sys
tems, which we will draw upon for the remainder of this section.

As we said earlier, the key issue that distinguishes a network operating sys
tem from a distributed one is how aware the users are of the fact that multiple
machines are being used. This visibility occurs in three primary areas: the file
system, protection, and program execution. Of course it is possible to have
systems that are highly transparent in one area and not at all in the other,
which leads to a hybrid form.

2.1. FILE SYSTEM
When connecting two or more distinct systems together, the first issue that
must be faced is how to merge the file systems. Three approaches have been
tried. The first approach is not to merge them at all. Going this route means
that a program on machine A cannot access files on machine B by making sys
tem calls. Instead, the user must run a special file transfer program that copies
the needed remote files to the local machine, where they can then be accessed
normally. Sometimes remote printing and mail is also handled this way. One
of the best-known examples of networks that primarily support file transfer
and mail via special programs, and not system call access to remote files is the
UNIX "uucp" program, and its network, USENET.

The next step upward in the direction of a distributed file system is to have
adjoining file systems. In this approach, programs on one machine can open

7

files on another machine by providing a path name telling where the file is
located. For example, one could say

open(" /machinel/pathname", READ ONLY);
open("machinel!pathname", READ ONLY); or
open(" / . ./machinel/pathname", READ_ ONLY)

The latter naming scheme is used in the Newcastle Connection [BROWN13RIDGE

et al. 1982] and Netix [WAMBECQ 1983] and is derived from the creation of a
virtual "superdirectory'' above the root directories of all the connected
machines. Thus "/ .. " means start at the local root directory and go upwards
one level (to the superdirectory), and then down to the root directory of
"machine." In Figure 1, the root directory of three machines, A, B, and Care
shown, with a superdirectory above them. To access file x from machine C,
one could say

open(" / . ./C/x", READ_ ONLY)

In the Newcastle system, the naming tree is actually more general, since
"machinel" may really be any directory, so one can attach a machine as a leaf
anywhere in the hierarchy, not just at the top.

r

/

5

/
/

t

/
/

/

/
/

/

u V w X y

FIGURE l. A (virtual) superdirectory above the root directory provides
access to remote files

z

8

The third approach is the way it is done in distributed operating· systems,
namely to have a single global file system visible from all machines. When this
method is used, there is one "bin" directory for binary programs, one pass
word file, and so on. When a program wants to read the password file it does
something like

open(" /etc/passwd", READ_ ONLY)

without reference to where the file is. It is up to the operating system to locate
the file and arrange for transport of data as it is needed. LOCUS is an exam
ple of a system using this approach [POPEK et al. 1981; WALKER et al. 1983;
WEINSTEIN et al. 1985].

The convenience of having a single global name space is obvious. In addi
tion, this approach means that the operating system is free to move files
around between machines to keep all the disks equally full and busy, and that
the system can maintain replicated copies of files if it so chooses. When the
user or program must specify the machine name, the system cannot decide on
its own to move a file to a new machine because that would change the (user
visible) name used to access the file. Thus in a network operating system, con
trol over file placement must be done manually by the users, whereas in a dis
tributed operating system it can be done automatically, by the system itself.

2.2. PROTECTION

Closely related to the transparency of the file system is the issue of protection.
UNIX, and many other operating systems, assign a unique internal identifier
to each user. Each file in the file system has a little table associated with it
(called an i-node in UNIX), telling who the owner is, where the disk blocks are
located, etc. If two previously independent machines are now connected, it
may tum out that some internal User IDentifier (UID), e.g., number 12, has
been assigned to a different user on each machine. Consequently, when user
12 tries to access a remote file, the remote file system cannot see whether the
access is permitted, since two different users have the same UID.

One solution to this problem is require all remote users wanting to access
files on machine X to first log onto X using a user name that is local to X.
When used this way, the network is just being used as a fancy switch to allow
users at any terminal to log onto any computer, just as a telephone company
switching center allows any subscriber to call any other subscriber.

This solution is usually inconvenient for people and impractical for pro
grams, so something better is needed. The next step up is to allow any user to
access files on any machine without having to log in, but to have the remote
user appear to have the UID corresponding to "GUEST'' or "DEMO" or
some other publicly known login name. Generally such names have little
authority, and can only access files that have been designated as readable or
writable by all users.

A better approach is to have the operating system provide a mapping
between UIDs, so when a userwith UID 12 on his home machine accesses a
remote machine on which his UID is 15, the remote machine treats all accesses

9

as though they were done by user 15. This approach implies that sufficient
tables are provided to map each user from his home (machine, UID) pair to
the appropriate UID for any other machine (and that messages cannot be tam
pered with) ..

In a true distributed system, there should be a unique UID for every user,
and that UID should be valid on all machines without any mapping. In this
way no protection problems arise on remote accesses to files; as far as protec
tion goes, a remote access can be treated like a local access with the same
UID. The protection issue makes the difference between a network operating
system and a distributed one clear: in one case there are various machines,
each with its own user-to-UID mapping, and in the other there is a single,
system-wide mapping that is valid everywhere.

2.3. ExECUTION LOCATION

Program execution is the third area in which machine boundaries are visible in
network operating systems. When a user or a running program wants to
create a new process, where is the process created? At least four schemes have
been used so far. The first of these is that the user simply says "CREA TE
PROCESS" in one way or another, and specifies nothing about where.
Depending on the implementation, this can be the best way or the worst way
to do it. In the most· distributed case, the system chooses a CPU by looking at
the load, location of files to be used, etc. In the least distributed case, the sys
tem always runs the process on one specific machine (usually the machine on
which the user is logged in).

The second approach to process location is to allow users to run jobs on any
machine by first logging in there. In this model, processes on different
machines cannot communicate or exchange data, but a simple manual load
balancing is possible.

The third approach is special command that the user types at a terminal to
cause a program to be executed on a specific machine. A typical command
might be

remote vax4 who

to run the who program on machine vax4. In this arrangement, the environ
ment of the new process is the remote machine. In other words, if that process
tries to read or write files from its current working directory, it will discover
that its working directory is on the remote machine, and files that were in the
parent process' directory are no longer present. Similarly, files written in the
working directory will appear on the remote machine, not the local one.

The fourth approach is to provide the "CREATE PROCESS" system call
with a parameter specifying where to run the new process, possibly with a new
system call for specifying the default site. As with the previous method, the
environment will generally be the remote machine. In many cases, signals and
other forms of interprocess communication between processes do not work
properly between processes on different machines.

A final point about the difference between network and distributed

10

operating systems is how they are implemented. A common way to· realize a
network operating system is to put a layer of software on top of the native
operating systems of the individual machines (e.g., MAMRAK et al. 1982). For
example, one could write a special library package that intercepted all the sys
tem calls and decided whether each one was local or remote [BROWNBRIDGE et
al. 1982]. Although most system calls can be handled this way without modi
fying the kernel, invariably there are a few things, such as interprocess signals,
interrupt characters (e.g., BREAK) from the keyboard, etc. that are hard to get
right. In a true distributed operating system, one would normally write the
kernel from scratch.

2.4. AN ExAMPLE: THE SUN NETWORK FILE SYSTEM
To provide a contrast with the true distributed systems described later in this
paper, in this section we will look briefly at a network operating system that
runs on the Sun Microsystems' workstations. These workstations are intended
for use as personal computers. Each one has a 68000 series CPU, local
memory, and a large bitmapped display. Workstations can be configured with
or without local disk, as desired. All the workstations run a version of 4.2BSD
UNIX specially modified for networking.

This arrangement is a classic example of a network operating system: Each
computer runs a traditional operating system, UNIX, and each has its own
user(s), but with extra features added to make networking more convenient.
During its evolution, the Sun system has gone through three distinct versions,
which we will now describe.

In the first version, each of the workstations was completely independent
from all the others, except that a program rep was provided to copy files from
one workstation to another. By typing a command such as:

rep machinel:/usr/jim/file.c machine2:/usr/ast/f.c

it was possible to transfer whole files from one machine to another.
In the second version, Network Disk (ND), a network disk server was pro

vided to support diskless workstations. Disk space on the disk server's
machine was divided into disjoint partitions, with each partition acting as the
virtual disk for some (diskless) workstation.

Whenever a diskless workstation needed to read a file, the request was pro
cessed locally until it got down to the level of the device driver, at which point
the block needed was retrieved by sending a message to the remote disk server.
In effect, the network was merely being used to simulate a disk controller.
With this network disk system, sharing of disk partitions was not possible.

The third version, the Network File System (NFS), allows remote directories
to be mounted in the local file tree on any workstation. By mounting, say, a
remote directory "doc" on the empty local directory "/usr/doc," all subse
quent references to "/usr/doc" are automatically routed to the remote system.
Sharing is allowed in NFS, so several users can read files on a remote machine
at the same time.

To prevent users from reading other people's private files, a directory can

11

only be mounted remotely if it is explicitly exported by the workstation it is
located on. A directory is exported by entering a line for it in a file
"/etc/exports." To improve performance of remote access, both the client
machine and server machine do block caching. Remote services can be located
using a Yellow Pages server that maps service names onto their network loca
tions.

The NFS is implemented by splitting the operating system up into three
layers. The top layer handles directories, and maps each path name onto a
generalized i-node called a vnode consisting of a (machine, i-node) pair, mak
ing each vnode globally unique.

Vnode numbers are presented to the middle layer, the virtual file system
(VFS). This layer checks to see if a requested vnode is local or not. If it is
local, it calls the local disk driver, or in the case of a ND partition, sends a
message to the remote disk server. If it is remote, the VFS calls the bottom
layer with a request to process it remotely.

The bottom layer accepts requests for accesses to remote vnodes and sends
them over the network to the bottom layer on the serving machine. From
there they propagate upwards through the VFS layer to the top layer, where
they are re-injected into the VFS layer. The VFS layer sees a request for a
local vnode, and processes it normally, without realizing that the top layer is
actually working on behalf of a remote kernel. The reply retraces the same
path in the other direction.

The protocol between workstations has been carefully designed to be robust
in the face of network and server crashes. Each request completely identifies
the file (by its vnode), the position in the file, and the byte count. Between
requests, the server does not maintain any state information about which files
are open or where the current file position is. Thus, if a server crashes and is
rebooted, there is no state information that will be lost.

The ND and NFS facilities are quite different, and can both be used on the
same workstation without conflict. ND works at a low level and just handles
remote block 1/0 without regard to the structure of the information on the
disk. NFS works at a much higher level, and effectively takes requests appear
ing at the top of the operating system on the client machine and gets them
over to the top of the operating system on the server machine, where they are
processed the same way as local requests.

3. DESIGN ISSUES

Now we tum from traditional computer systems with some networking facili
ties added on to systems designed with the intention of being distributed. In
this section we will look at five issues that distributed systems' designers are
faced with:

12

• communications primitives,
• naming and protection,
• resource management,
• fault tolerance,
• services to provide.

While no list could possibly be exhaustive at this early stage of development,
these topics should provide a reasonable impression of the areas in which
current research is proceeding.

3.1. COMMUNICATION PRIMITIVES
The computers forming a distributed system normally do not share primary
memory, so communication via shared memory techniques such as semaphores
and monitors are generally not applicable. Instead, message passing in one
form or another is used. One widely discussed framework for message-passing
systems is the ISO OSI reference model, which has seven layers, each perform
ing a well-defined function [ZIMMERMAN 1980]. The seven layers are: physical
layer, data-link layer, network layer, transport layer, session layer, presentation
layer, and application layer. Using this model it is possible to connect com
puters with widely different operating systems, character codes, and ways of
viewing the world.

Unfortunately, the overhead created by all these layers is substantial. In a
distributed system consisting primarily of huge mainframes from different
manufacturers, connected by slow leased lines (say, 56 kbps), the overhead
might be tolerable. Plenty of computing capacity would be available for run
ning complex protocols, and the narrow bandwidth means that close coupling
between the systems would be impossible anyway. On the other hand, in a
distributed system consisting of identical microcomputers connected by a 10
Mbps or faster local network, the price of the ISO model is generally too high.
Nearly all the experimental distributed systems discussed in the literature so
far have opted for a different, much simpler model, so we will not mention the
ISO model further in this paper.

3.1.1 Message Passing
The model that is favored by researchers in this area is the client-server model,
in which a client process wanting some service (e.g., reading some data from a
file) sends a message to the server and then waits for a reply message, as
shown in Figure 2. In the most naked form, the system just provides two
primitives: SEND and RECEIVE. The SEND primitive specifies the destina
tion and provides a message; the RECEIVE primitive tells from whom a mes
sage is desired (including "anyone") and provides a buff er where the incoming
message is to be stored. No initial setup is required, and no connection is
established, hence no teardown is required.

Precisely what semantics these primitives ought to have has been a subject
of much controversy among researchers. Two of the fundamental decisions
that must be made are unreliable vs. reliable and nonblocking vs. blocking

□ Client
sends
request
message

)

Server
sends
reply
message

FIGURE 2. Client-server model of communication.

13

prumuves. At one extreme, SEND can put a message out onto the network
and wish it good luck. No guarantee of delivery is provided, and no automatic
retransmission is attempted by the system if the message is lost. At the other
extreme, SEND can handle lost messages, retransmissions, and acknowledge
ments internally, so that when SEND terminates, the program is sure that the
message has been received and acknowledged.

Blocking vs. Nonblocking Primitives. The other choice is between nonblocking
and blocking primitives. With nonblocking primitives, SEND returns control
to the user program as soon as the message has been queued for subsequent
transmission (or a copy made). If no is copy is made, any changes the pro
gram makes to the data before or (heaven forbid) while it is being sent, are
made at the program's peril. When the message has been transmitted (or
copied to a safe place for subsequent transmission), the program is interrupted
to inform it that the buff er may be reused. The corresponding RECEIVE
primitive signals a willingness to receive a message, and provides a buff er for it
to be put into. When a message has arrived, the program is informed by inter
rupt or it can poll for status continuously, or go to sleep until the interrupt
arrrives. The advantage of these nonblocking primitives is that they provide
the maximum flexibility: programs can compute and perform message I/O in
parallel any way they want to.

Nonblocking primitives also have a disadvantage: they make programming
tricky and difficult. Irreproducible, timing-dependent programs are painful to
write and awful to debug. Consequently, many people advocate sacrificing
some flexibility and efficiency by using blocking primitives. A blocking SEND
does not return control to the user until the message has been sent (unreliable
blocking primitive) or until the message has been sent and an acknowledge
ment received (reliable blocking primitive). Either way, the program may
immediately modify the buffer without danger. A blocking RECEIVE does

14

not return control until a message has been placed in the buffer. Reliable and
unreliable RECEIVEs differ in that the former automatically acknowledges
receipt of message, whereas the latter does not. It is not reasonable to com
bine a reliable SEND with an unreliable RECEIVE or vice versa, so the sys
tem designers must make a choice and provide one set or the other. Blocking
and nonblocking primitives do not conflict, so there is no harm done if the
sender uses one and the receiver the other.

Buffered vs. Unbuffered Primitives. Another design decision that must be made
is whether or not to buffer messages. The simplest strategy is not to buffer.
When a sender has a message for a receiver that has not (yet) executed a
RECEIVE primitive, the sender is blocked until a RECEIVE has been done, at
which time the message is copied from sender to receiver. This strategy is
sometimes referred to as a rendezvous.

A slight variation on this theme is to copy the message to an internal buff er
on the sender's machine, thus providing for a nonblocking version of the same
scheme. As long as the sender does not do any more SENDs before the
RECEIVE occurs, no problem occurs.

A more general solution is to have a buffering mechanism, usually in the
operating system kernel, which allows senders to have multiple SENDs out
standing even without any interest on the part of the receiver. Although
buffered message passing can be implemented in many ways, a typical
approach is to provide users with a system call CREATEBUF, which creates a
kernel buffer, sometimes called a mailbox, of a user-specified size. To com
municate, a sender can now send messages to the receiver's mailbox, where
they will be buffered until requested by the receiver. Buffering is not only
more complex (creating, destroying, and generally managing the mailboxes),
but also raises issues of protection, the need for special high-priority interrupt
messages, what to do with mailboxes owned by processes that have been killed
or died of natural causes, and more.

A more structured form of communication is achieved by distinguishing
requests from replies. With this approach, one typically has three primitives:
SEND GET, GET REQUEST, and SEND REPLY. SEND GET is used by
clients to send requests and get replies. It combines a SEND to a server with
a RECEIVE to get the server's reply. GET REQUEST is done by servers to
acquire messages containing work for them To do. When a server has carried
the work out, it sends a reply with SEND REPLY. By thus restricting the
message traffic, and by using reliable, blocking primitives, one can create some
order in the chaos.

3.1.2. Remote Procedure Call
The next step forward in message-passing systems is the realization that the
model of "client sends request and blocks until server sends reply'' looks very
similar to a traditional procedure call from the client to the server. This model
has become known in the literature as ''remoteprocedure and has been widely
discussed [BIRRELL and NELSON 1984; NELSON 1981; SPECTOR 1982]. The idea

15

is to make the semantics of intermachine communication as similar as possible
to normal procedure calls because the latter is familiar, well understood, and
has proved its worth over the years as a tool for dealing with abstraction. It
can be viewed as a refinement of the reliable, blocking SEND GET,
GET REQUEST, SENDREP primitives, with a more user-friendly syntax.

The remote procedure call can be organized as follows. The client (calling
program) makes a normal procedure call, say, p(x, y) on its machine, with the
intention of invoking the remote procedure p on some other machine. A
dummy or stub procedure p must be included in the caller's address space, or
at least be dynamically linked to it upon call. This procedure, which may be
automatically generated by the compiler, collects the parameters and packs
them into a message in a standard format. It then sends the message to the
remote machine (using SEND GET) and blocks, waiting for an answer (see
Figure 3). -

Client Machine Server Machine

Client Client Server Server
~ '-

stub
/ c--;

stub proc. proc.

FIGURE 3. Remote procedure call.

At the remote machine, another stub procedure should be waiting for a mes
sage using GET REQUEST. When a message comes in, the parameters are
unpacked by an Tnput handling procedure, which then makes the local call p(x,
y). The remote procedure p is thus called locally, so its normal assumptions
about where to find parameters, the state of the stack, etc., are identical to the
case of a purely local call. The only procedures that know that the call is
remote are the stubs, which build and send the message on the client side and
disassemble and make the call on the server side. The result of the procedure
call follows an analogous path in the reverse direction.

16

RPC Design Issues. Although at first glance the remote procedure call model
seems clean and simple, under the surface there are several problems. One
problem concerns parameter (and result) passing. In most programming
languages, parameters can be passed by value or by reference. Passing value
parameters over the network is easy; the stub just copies them into .the mes
sage and off it goes. Passing reference parameters (pointers) over the network
is not so easy. One needs a unique, system-wide pointer for each object so
that it can be remotely accessed. For large objects, such as files, some kind of
capability mechanism [DENNIS and VAN HORN 1966; LEVY 1984; PASHTAN
1982] could be set up, using capabilities as pointers. For small objects, such as
integers and booleans, the amount of overhead and mechanism needed to
create a capability and send it in a protected way is so large that this solution
is highly undesirable.

Still another problem that must be dealt with is how to represent parameters
and results in messages. 1bis representation is greatly complicated when
different types of machines are involved in a communication. A floating-point
number produced on one machine is unlikely to have the same value on a
different machine, and even a negative integer will create problems between l's
and 2's complement machines.

Converting to and from a standard format on every message sent and
received is an obvious possibility, but it is expensive and wasteful, especially
when the sender and receiver do, in fact, use the same internal format. If the
sender uses its internal format (along with an indication of which format it is)
and let the receiver do the conversion, every machine must be prepared to con
vert froni every other format. When a new machine type is introduced, much
existing software must be upgraded. Any way you do it, with RPC or with
plain messages, it is an unpleasant business.

Some of the unpleasantness can be hidden from the user if the remote pro
cedure call mechanism is embedded in a programming language with strong
typing, so at least the receiver knows how many parameters to expect and
what types they have. In this respect, a weakly-typed language such as C, in
which procedures with a variable number of parameters are common, is more
complicated to deal with.

Still another problem with RPC is the issue of client-server binding. Con
sider, for example, a system with multiple file servers. If a client creates a file
on one of the file servers, it is usually desirable that subsequent writes to that
file to go to the file server where the file was created. With mailboxes, arrang
ing for this is straightforward. The client simply addresses the WRITE mes
sages to the same mailbox that the CREA TE message was sent to. Since each
file server has its own mailbox, there is no ambiguity.

When RPC is used, the situation is more complicated, since all the client
does is put a procedure call such as

write(FileDescriptor, Buffer Address, ByteCount);

in his program. RPC intentionally hides all the details of locating servers from

17

the client, but sometimes, as in this example, the details are important.
In some applications, broadcasting and multicasting (sending to a set of des

tinations, rather than just one is useful. For example, when trying to locate a
certain person, process, or service, sometimes the only approach is to broad
cast an inquiry message and wait for the replies to come back. RPC does not
lend itself well to sending messages to sets of processes and getting answers
back from some or all of them. The semantics are completely different.

Despite all these problems, RPC remains an interesting form of communica
tion, and much current research is being addressed to improving it and solving
the various discussed above.

3.1.3. Ellor Handling
In error handling, the communication primitives of distributed systems differ
radically from those of centralized systems. In a centralized system, a system
crash means that the client, server, and communication channel are all com
pletely destroyed, and no attempt is made to revive them. In a distributed sys
tem, matters are more complex. If a client has initiated a remote procedure
call with a server that has crashed, the client may just be left hanging forever
unless a timeout is built in. However, such a timeout introduces race condi
tions in the form of clients that time out too quickly, thinking that the server is
down, when in fact, it is merely very slow.

Client crashes can also cause trouble for servers. Consider for example, the
case of processes A and B communicating via the UNIX pipe model 4B with
A the server and B the client. B asks A for data and gets a reply, but unless
that reply is acknowledged somehow, A does not know when it can safely dis
card data that it may not be able to reproduce. If B crashes, how long should
A hold onto the data? (Hint: if the answer is less than infinity, problems will
be introduced whenever Bis slow in sending an acknowledgement.)

Oosely related to this is the problem of what happens if a client cannot tell
whether or not a server has crashed. Simply waiting until the server is
rebooted and trying again sometimes works and sometimes does not. A case
where it works: client asks to read block 7 of some file. A case where it does
not work: client says transfer a million dollars from one bank account to
another. In the former case, it does not matter whether or not the server car
ried out the request before crashing; carrying it out a second time does no
harm. In the latter case, one would definitely prefer the call to be carried out
exactly once, no more and no less. Calls that may be repeated without harm
(like the first example) are said to be idempotent. Unfortunately, it is not
always possible to arrange for all calls to have this property. Any call that
causes action to occur in the outside world, such as transferring money, print
ing lines, or opening a valve in an automated chocolate factory just long
enough to fill exactly one vat, is likely to cause trouble if performed twice.

SPECTOR [1982] and NELSON [1981] have looked at the problem of trying to
make sure remote procedure calls are executed exactly once, and have
developed taxonomies for classifying the semantics of different systems. These
vary from systems that offer no guarantee at all (zero or more executions), to

18

those that guarantee at most one execution (zero or one), to those that guaran
tee at least one execution (one or more).

Getting it right (exactly one) is probably impossible, because even if the
remote execution can be reduced to one instruction (e.g., setting a bit in a dev
ice register that opens the chocolate valve), one can never be sure after a crash
if the system went down a microsecond before, or a microsecond after, the one
critical instruction. Sometimes one can make a guess based on observing
external events (e.g., looking to see if the factory floor is covered with a sticky,
brown material), but in general there is no way of knowing. Note that the
problem of creating stable storage [LAMPSON 1981] is fundamentally different,
since remote procedure calls to the stable storage server in that model never
causes events external to the computer.

3.1.4. Implementation Issues
Constructing a system in principle .is always easier than constructing it in

practice. Building a 16-node distributed system that has a total computing
power about equal to a single-node system is surprisingly easy. This observa
tion leads to tension between the goals of making it work fast in the normal
case, and making the semantics reasonable when something goes wrong. Some
experimental systems have put the emphasis on one goal and some on the
other, but more research is needed before we have systems that are both fast
and graceful in the face of crashes.

Some things have been learned from past work, however. Foremost among
these is that making message passing efficient is very important. To this end,
systems should be designed to minimize copying of data [CHERITON 1984].
For example, a remote procedure call system that first copies each message
from the user to the stub, and then from the stub to the kernel, and finally
from the kernel to the network interface board requires 3 copies on the send
ing side, and probably 3 more on the receiving side, for a total of 6. If the call
is to a remote file server to write a IK block of data to disk, at a copy time of
I microsec per byte, 6 msec are needed just for copying, which puts an upper
limit of 167 calls/sec, or a throughput of 167 Kbytes/sec. When other sources
of overhead are considered (e.g., the reply message, the time waiting for access
to the network, transmission time, etc.) achieving even 80 Kbytes/sec will be
difficult, if not impossible, no matter how high the network bandwidth or disk
speed. Thus, it is desirable to avoid copying, but this is not always simple to
achieve since without copies, (part of) a needed message may be swapped or
paged out when it is needed.

Another point worth making is that there is always a substantial fixed over
head with preparing, sending, and receiving a message, even a short message,
such as a request to read from a remote file server. The kernel must be
invoked, the state of the current process must be saved, the destination must
be located, various tables must be updated, permission to access the network
must be obtained (e.g., wait for the network to become free or wait for the
token), and quite a bit of bookkeeping must be done.

This fixed overhead argues for making messages as long as possible, to

19

reduce the number of messages. Unfortunately. many current local networks
limit physical packets to IK or 2K; 4K or SK would be much better. Of
course, if the packets become too long, a highly interactive user may occasion
ally be queued behind 10 maximum length packets, degrading response time,
so the optimum size depends on the work load.

Virtual Circuits vs. Datagrams. There is much controversy over whether remote
procedure call ought to be built on top of a flow-controlled, error-controlled,
virtual circuit mechanism, or directly on top of the unreliable, connectionless
(datagram) service. SALTZER et al. [1984] have pointed out that since high
reliability can only be achieved by end-to-end acknowledgements at the highest
level of protocol, the lower levels need not be 100% reliable. The overhead
incurred in providing a clean virtual circuit upon which to build remote pro
cedure calls (or any other message passing system), is therefore wasted. This
line of thinking argues for building the message system directly on the raw
datagram interface.

The other side of the coin is that it would be nice for a distributed system to
be able to encompass heterogeneous computers in different countries with
different P'IT networks and possibly different national alphabets, and that this
environment requires complex multilayered protocol structures. It is our
observation that both arguments are valid, but depending on whether one is
trying to forge a collection of small computers into a virtual uniprocessor or
merely access remote data transparently, one or the other will dominate.

Even if one chooses for building remote procedure call on top of the raw
datagram service provided by a local network, there are still a number of pro
tocols open to the implementer. The simplest one is to have every request and
reply separately acknowledged. The message sequence for a remote procedure
call is then: REQUEST, ACK, REPLY, ACK, as shown in The ACKs are
managed by the kernel without user knowledge.

The number of messages can be reduced from four to three by allowing the
REPLY to serve as the ACK for the REQUEST, as shown in Figure 4. How
ever, a problem arises when the REPLY can be delayed for a long time. For
example, when a login process makes a remote procedure call to a terminal
server requesting characters, it may be hours or days before someone steps up
to a terminal and begins typing. In this event, an additional message has to be
introduced to allow the sending kernel to inquire if the message arrived or not.

A further step in the same direction is to eliminate the other ACK as well,
and let the arrival of the next REQUEST imply an acknowledgement of the
previous REPLY (see Figure 4(c)). Again, some mechanism is needed to deal
with the case that no new REQUEST is forthcoming quickly.

One of the great difficulties in implementing efficient communication is that
it is more of a black art than a science. Even straightforward implementations
can have unexpected consequences, as the following example from SVENTEK et
al. [1983] shows. Consider a ring containing a circulating token. To transmit,
a machine captures and removes the token, puts a message on the network,
and then replaces the token, thus allowing the next machine "downstream" the

20 Request

Request Ack

Reply

Reply Ack

(a)

Request

Reply

Reply Ack

(b)

Request 1

Reply

Request 2

(c)

FIGURE 4. Remote procedure call (a) with individual acknowledgements
per message, (b) with the reply as the request acknowledge
ment, (c) with no explicit acknowledgements.

21

opportunity to capture it. In theory, such a network is "fair" in that each· user
has equal access to the network and no one user can monopolize it to the
detriment of others. In practice, suppose two users each want to read a long
file from a file server. User A sends a request message to the server, and then
replaces the token on the network for B to acquire.

After A's message arrives at the server, it takes a short time for the server to
handle the incoming message interrupt and re-enable the receiving hardware.
Until the receiver is re-enabled, the server is deaf. Within a microsecond or
two of the time A puts the token back on the network, B sees and grabs it,
and begins transmitting a request to the (unbeknownst to B) deaf file server.
Even if the server re-enables halfway through B's message, the message will be
rejected due to missing header, bad frame format, and checksum error.
According to the ring protocol, after sending one message, B must now replace
the token, which A captures for a successful transmission. Once again B
transmits during the server's deaf period, and so on. Conclusion: B gets no
service at all until A is finished. If A happens to be scanning through the
Manhattan telephone book, B may be in for a long wait. This specific prob
lem can be solved by inserting random delays in places to break the syn
chrony, but our point is that totally unexpected problems like this make it
necessary to build and observe real systems to gain insight into the problems.
Abstract formulations and simulations are not enough.

3.2. NAMING AND PROTECTION

All operating systems support objects such as files, directories, segments, mail
boxes, processes, services, servers, nodes, and I/ 0 devices. When a process
wants to access one of these objects, it must present some kind of name to the
operating system to specify which object it wants to access. In some instances
these names are ASCII strings designed for human use, in others they are
binary numbers used only internally. In all cases they have to be managed
and protected from misuse.

3.2.1. Naming as Mapping
Naming can best be seen as a problem of mapping between two domains. For
example, the directory system in UNIX provides a mapping between ASCII
path names and i-node numbers. When an OPEN system call is made, the
kernel converts the name of the file to be opened into its i-node number.
Internal to the kernel, files are nearly always referred to by i-node number, not
ASCII string. Just about all operating systems have something similar. In a
distributed system a separate name server is sometimes used to map user
chosen names (ASCII strings) onto objects in an analogous way.

Another example of naming is the mapping of virtual addresses onto physi
cal addresses in a virtual memory system. The paging hardware takes a virtual
address as input, and yields a physical address as output for use by the real
memory.

In some cases naming implies only a single level of mapping, but in other
cases it can imply multiple levels. For example, to use some service, a process

22

might first have to map the service name onto the name of a server process
that is prepared to off er the service. As a second step, the server would then
be mapped onto the number of the CPU on which it that process is running.
The mapping need not always be unique, for example, if there are multiple
processes prepared to offer the same service.

3.2.2. Name Servers
In centralized systems, the problem of naming can be effectively handled in a
straightforward way. The system maintains a table or data base providing the
necessary name-to-object mappings. The most straightforward generalization
of this approach to distributed systems is the single name server model. In
this model, a server accepts names in one domain and maps them onto names
in another domain. For example, to locate services in some distributed sys
tems, one sends the service name in ASCII to the name server, and it replies
with the node number where that service can be found, or with the. process
name of the server process, or perhaps with the name of a mailbox to which
requests for service can be sent. The name server's data base is built up by
registering services, processes, etc., that want to be publicly known. File direc
tories can be regarded as a special case of name service.

Although this model is often acceptable in a small distributed system located
at a single site, in a large system it is undesirable to have a single centralized
component (the name server) whose demise can bring the whole system to a
grinding halt. In addition, if it becomes overloaded, performance will degrade.
Furthermore, in a geographically distributed system that may have nodes in
different cities or even countries, having a single name server will be inefficient
due to the long delays in accessing it.

The next approach is to partition the system into domains, each with its
own name server. li the system is composed of multiple local networks con
nected by gateways and bridges, it seems natural to have one name server per
local network. One way to organize such a system is to have a global naming
tree, with files and other objects having names of the form:
/country/city/network/pathname. When such a name is presented to any
name server, it can immediately route the request to some name server in the
designated country, which then sends it to a name server in the designated
city, and so on until it reaches the name server in the network where the object
is located, where the mapping can be done. Telephone numbers use such a
hierarchy, composed of country code, area code, exchange code (first 3 digits
of telephone number in North America), and subscriber line number.

Having multiple name servers does not necessarily require having a single,
global naming hierarchy. Another way to organize the name servers is to have
each one effectively maintain a table of, for example, (ASCII string, pointer)
pairs, where the pointer is really a kind of capability for any object or domain
in the system. When a name, say alblc, is looked up by the local name
server, it may well yield a pointer to another domain (name server), to which
the rest of the name, hie, is sent for further processing (see Figure 5). This
facility can be used to provide links (in the UNIX sense) to files or objects

23

whose precise whereabouts is managed by a remote name server. Thus if ·a file
foobar is located in another local network, n, with name server n.s, one can
make an entry in the local name server's table for the pair (x, n.s) and then
access xlfoobar as though it were a local object. Any appropriately authorized
user or process knowing the name xlfoobar could make its own synonyms
and then perform accesses using s/xlfoobar. Each name server parsing a name
that involves multiple name servers just strips off the first component and
passes the rest of the name to the name server found by looking up the first
component locally.

I

I

I

i

Name server 1
looks up a/b/c

a

I X
i
I

i l
y i

!

I

I

I z
I

' /

' /

:
' /

)

Name server 2
looks up b/c

b

C

d

e

I

i

' /

' /

' /

' /

Name server 3
looks up c

a

X

C

r

FIGURE 5. Distributing the lookup of a/b/c over three name servers.

A more extreme way of distributing the name server is to have each machine
manage its own names. To look up a name, one broadcasts it on the network.
At each machine, the incoming request is passed to the local name server,
which replies only if it finds a match. Although broadcasting is easiest over a
local network such as a ring net or CSMA net (e.g., Ethernet), it is also possi
ble over store-and-forward packet switching networks such as the ARP Anet
[DALAL 1977].

Although the normal use of a name server is to map an ASCII string onto a
binary number used internally to the system, such as a process identifier or
machine number, once in a while the inverse mapping is also useful. For
example, if a machine crashes, upon rebooting it could present its (hardwired)
node number to the name server to ask what it was doing before the crash,
that is, ask for the ASCII string corresponding to the service it is supposed to
be offering so it can figure out what program to reboot.

24

3.3. RESOURCE MANAGEMENT
Resource management in a distributed system differs from that in a centralized
system in a fundamental way. Centralized systems always have tables that
give complete and up-to-date status information about all the resources being
managed; distributed systems do not. For example, the process manager in a
traditional centralized operating system normally uses a "process table" with
one entry per potential process. When a new process has to be started, it is
simple enough to scan the whole table to see if a slot is free. A distributed
operating system, on the other hand, has a much harder job of finding out if a
processor is free, especially if the system designers have rejected the idea of
having any central tables at all, for reasons of reliability. Furthermore, even if
there is a central table, recent events on outlying processors may have made
some table entries obsolete without the table manager knowing it.

The problem of managing resources without having accurate global state
information is very difficult. Relatively little work has been done in this area.
In the following sections we will look at some work that has been done,
including distributed process management and scheduling.

3.3.1. Processor Allocation
One of the key resources to be managed in a distributed system is the set of
available processors. One approach that has been proposed for keeping tabs
on a collection of processors is to organize them in a logical hierarchy
independent of the physical structure of the network, as in MICROS [WI'ITIE
and v AN Tll.BORG 1980]. This approach organizes the machines like people in
corporate, military, academic, and other real-world hierarchies. Some of the
machines are workers and others are managers.

For each group of k workers, one manager machine (the "department
head") is assigned the task of keeping track of who is busy and who is idle. If
the system is large, there will be an unwieldy number of department heads, so
some machines will function as "deans," riding herd on k department heads.
If there are many deans, they too can be organized hierarchically, with a "big
cheese" keeping tabs on k deans. This hierarchy can be extended ad
infinitum, with the number of levels needed growing logarithmically with the
number of workers. Since each processor need only maintain communication
with one superior and k subordinates, the information stream is manageable.

An obvious question is "What happens when a department head, or worse
yet, a big cheese, stops functioning (crashes)?" One answer is to promote one
of the direct subordinates of the faulty manager to fill in for the boss. The
choice of which one can either be made by the subordinates themselves, by the
deceased's peers, or in a more autocratic system, by the sick manager's boss.

To avoid having a single (vulnerable) manager at the top of the tree, one can
truncate the tree at the top and have a committee as the ultimate authority.
When a member of the ruling committee malfunctions, the remaining members
promote someone one level down as replacement.

While this scheme is not completely distributed, it is feasible, and in practice
works well. In particular, the system is self-repairing, and can survive

25

occasional crashes of both workers and managers without any long.;term
effects.

In MICROS, the processors are monoprogrammed, so if a job requiring S
processes suddenly appears, the system must allocate S processors for it. Jobs
can be created at any level of the hierarchy. The strategy used is. for each
manager to keep track of approximately how many workers below it are avail
able (possibly several levels below it). If it thinks that a sufficient number are
available, it reserves some number R of them, where R > = S, because the
estimate of available workers may not be exact and some machines may be
down.

If the manager receiving the request thinks that it has too few processors
available, it passes the request upwards in the tree to its boss. If the boss can
not handle it either, the request continues propagating upward until it reaches
a level that has enough available workers at its disposal. At that point, the
manager splits the request into parts, and parcels them out among the
managers below it, which then do the same thing until the wave of scheduling
requests hits bottom. At the bottom level, the processors are marked as
"busy'' and the actual number of processors allocated is reported back up the
tree.

To make this strategy work well, R must be large enough that the probabil
ity is high that enough workers will be found to handle the whole job. Other
wise the request will have to move up one level in the tree and start all over,
wasting considerable time and computing power. On the other hand, if R is
too large, too many processors will be allocated, wasting computing capacity
until word gets back to the top and they can be released.

The whole situation is greatly complicated by the fact that requests for pro
cessors can be generated randomly anywhere in the system, so at any instant,
multiple requests are likely to be in various stages of the allocation algorithm,
potentially giving rise to out-of-date estimates of available workers, race condi
tions, deadlocks, and more. In [VAN Trr.BORG and WITIIE 1981] a mathemati
cal analysis of the problem is given and various other aspects not described
here are covered in detail.

3.3.2. Scheduling
The hierarchical model provides a general model for resource control, but does
not provide any specific guidance on how to do scheduling. If each process
uses an entire processor (i.e., no multiprogramming), and each process is
independent of all the others, any process can be assigned to any processor at
random. However, if it is common that several processes are working together
and must communicate frequently with each other, as in UNIX pipelines or in
cascaded (nested) remote procedure calls, then it is desirable to make sure the
whole group runs at once. In this section we will address that issue.

Let us assume that each processor can handle up to N processes. If there
are plenty of machines and N is reasonably large, the problem is not finding a
free machine (i.e., a free slot in some process table), but something more sub
tle. The basic difficulty can be illustrated by an example in which processes A

26

and B run on one machine and processes C and D run on another. Each
machine is time-shared in, say, 100 msec time slices, with A and C running in
the even slices, and B and D running in the odd ones, as shown in Figure 6(a).
Suppose that A sends many messages or makes many remote procedure calls
to D. During time slice 0, A starts up and immediately calls D, which unfor
tunately is not running because it is now C's turn. After 100 msec, process
switching takes place, and D gets A's message, carries out the work, and
quickly replies. Because B is now running, it will be another 100 msec before
A gets the reply and can proceed. The net result is one message exchange
every 200 msec. What is needed is a way to ensure that processes that com
municate frequently run simultaneously.

Time
slot Machine

0 8 1 i a ! o 1

2 A i C

3 8 D

4 A I C

5 a [J

(.a.)

Time
slot

0

1

2

3

4

s

I
i
I

i

I
I
'
I

X

.:<

Machine

X

X X

' I ! I
' X ' I I X X I

I

I
i I

I
; I X !

I '

' I i X X X i ! I

! I I

! X I X ; i

Lb)

FIGURE 6. (a) Two jobs running out of phase with each other. (b)
Scheduling matrix for 8 machines, each with six time slots.
The Xs indicated allocated slots.

Although it is difficult to dynamically determine the interprocess communi
cation patterns, in many cases, a group of related processes will be started off
together. For example, it is usually a good bet that the filters in a UNIX pipe
line will communicate with each other more than they will with other, previ
ously started processes. Let us assume that processes are created in groups,
and that intragroup communication is much more prevalent than intergroup
communication. Let us further assume that a sufficiently large number of
machines is available to handle the largest group, and that each machine is
multiprogrammed with N process slots (N-way multiprogramming).

OuSTERH0UT [1982] has proposed several algorithms based on the concept
of co-scheduling, which takes interprocess communication patterns into account
while scheduling to ensure that all members of a group run at the same time.
The first algorithm uses a conceptual matrix in which each column is the

27

process table for one machine, as shown in Figure 6(b). Thus, column 4· con
sists of all the processes that run on machine 4. Row 3 is the collection of all
processes that are in slot 3 of some machine, starting with the process in slot 3
of machine 0, then the process in slot 3 of machine I, and so on. The gist of
his idea is to have each processor use a round robin scheduling algorithm with
all processors first running the process in slot O for a fixed period, then all pro
cessors running the process in slot I for a fixed period, etc. A broadcast mes
sage could be used to tell each processor when to do process switching, to keep
the time slices synchronized.

By putting all the members of a process group in the same slot number, but
on different machines, one has the advantage of N-fold parallelism, with a
guarantee that all the processes will be run at the same time, to maximize com
munication throughput. Thus in Figure 6(b), four processes that must com
municate should be put into slot 3, on machines 1, 2, 3, and 4 for optimum
performance. This scheduling technique can be combined with the hierarchical
model of process management used in MICROS by having each department
head maintain the matrix for its workers, assigning processes to slots in the
matrix and broadcasting time signals.

Ousterhout also described several variations to this basic method to improve
performance. One of these breaks the matrix into rows, and concatenates the
rows to form one long row. With k machines, any k consecutive slots belong
to different machines. To allocate a new process group to slots, one lays a
window k slots wide over the long row such that the leftmost slot is empty but
the slot just outside the left edge of the window is full. H sufficient empty
slots are present in the window, the processes are assigned to the empty slots,
otherwise the window is slid to the right and the algorithm repeated. Schedul
ing is done by starting the window at the left edge and moving rightward by
about one window's worth per time slice, taking care not to split groups over
windows. Ousterhout's paper discusses these and other methods in more detail
and gives some performance results.

3.3.3. Load Balancing
The goal of Ousterhout's work is to place processes that work together on
different processors, so that they can all run in parallel. Other researchers
have tried to do precisely the opposite, namely, to find subsets of all the
processes in the system that are working together, so closely related groups of
processes can be placed on the same machine to reduce interprocess communi
cation costs [CHu et al, 1980; CHow and ABRAHAM 1982; GYLYS and
EDWARDS 1976; STONE 1977; STONE 1978; STONE and BoKHARI 1978; Lo
1984]. Yet other researchers have been concerned primarily with load balanc
ing, to prevent a situation in which some processors are overloaded while oth
ers are empty [BARAK and SHILOH 1985; EFE 1982; KRUEGER and FINKEL
1983; STANKOVIC and SIDHU 1984). Of course, the goals of maximizing
throughput, minimizing response time, and keeping the load uniform, are to
some extent in conflict, so many of the researchers try to evaluate different
compromises and tradeoffs.

28

Each of these different approaches to scheduling makes diff ereni assump
tions about what is known and what is most important. The people trying to
cluster processes to minimize communication costs, for example, assume that
any process can run on any machine, that the computing needs of each process
are known in advance, and that the interprocess communication traffic
between each pair of processes is also known in advance. The people doing
load balancing typically make the realistic assumption that nothing about the
future behavior of a process is known. The minimizers are generally theorists,
whereas the load balancers tend to be people making real systems who care
less about optimality than devising algorithms that can actually be used. Let
us now briefly look at each of these approaches.

Graph Theoretic Models. If the system consists of a fixed number of processes,
each with known CPU and memory requirements, and a known matrix giving
the average amount of traffic between each pair of processes, scheduling can be
attacked as a graph-theoretic problem. The system can be represented as a
graph, with each process a node, and each pair of communicating processes
connected by an arc labeled with the data rate between them.

The problem of allocating all the processes to k processors then reduces to
the problem of partitioning the graph into k disjoint subgraphs, such that each
subgraph meets certain constraints (e.g., total CPU and memory requirements
below some limit). Arcs that are entirely within one subgraph represent inter
nal communication within a single processor (= fast), whereas arcs that cut
across subgraph boundaries represent communication between two processors
(= slow). The idea is to find a partitioning of the graph that meets the con
straints and minimizP-~ the network traffic, or some variation of this idea. Fig
ure 7(a) depicts a graph of interacting processors with one possible partitioning
of the processes between two machines. Figure 7(b) shows a better partition
ing, with less intermachine traffic, assuming that all the arcs are equally
weighted. Many papers have been written on this subject, for example, [CHow
and ABRAHAM 1982; STONE 1977; STONE 1978; STONE and BoKHARI 1978; Lo
1984]. The results are somewhat academic, since in real systems virtually none
of the assumptions (fixed number of processes with static requirements, known
traffic matrix, error-free processors and communication) are ever met.

Heuristic load balancing. When the goal of the scheduling algorithm is
dynamic, heuristic, load balancing, rather than finding related clusters, a
different approach is taken. Here the idea is for each processor to continually
estimate its own load, for processors to exchange load information, and for
process creation and migration to utilize this information.

Various methods of load estimation are possible. One way is just to meas
ure the number of runnable processes on each CPU periodically, and take the
average of the last n measurements as the load. Another way [BRYANT and
FINKEL 1981] is to estimate the residual running times of all the processes and
define the load on a processor as the number of CPU seconds all its processes
will need to finish. The residual time can be estimated mostly simply by

29

Machine 1 Machine 2 Machine 1 1 Machine 2

(a) (b)

FIGURE 7. Two ways of statically allocating processes (nodes in ·the
graph) to machines. Arcs show which pairs of processes com
municate.

assuming it is equal to the CPU time already consumed. Bryant and Finkel
also discuss other estimation techniques in which both the number of processes
and length of remaining time are important. When round robin scheduling is
used, it is better to be competing against one process that needs 100 sec than
against 100 processes that each need 1 sec. ·

Once each processor has computed its load, a way is needed for each proces
sor to find out how everyone else is doing. One way is for each processor to
just broadcast its load periodically. After receiving a broadcast from a lightly
loaded machine, a processor should shed some of its load by giving it to the
lightly loaded processor. This algorithm has several problems. First, it
requires a broadcast facility, which may not be available. Second, it consumes
considerable bandwidth for all the "Here is my load" messages. Third, there is
a great danger that many processors will try to shed load to the same (previ
ously) lightly loaded processor at once.

A different strategy [SMITH 1979; BARAK and SHILOH 1985] is for each pro
cessor to periodically pick another processor (possibly a neighbor, possibly at
random), and exchange load information with it. After the exchange, the more
heavily loaded processor can send processes to the other one until they are
equally loaded. In this model, if 100 processes are suddenly created in an oth
erwise empty system, after one exchange we will have two machines with 50
processes, and after two exchanges most probably four machines with 25
processes. Processes diffuse around the network like a cloud of gas.

Actually migrating running processes is trivial in theory but close to impos
sible in practice. The hard part is not moving the code, data, and registers,

30

but moving the environment, such as the current position within alf the open
files, the current values of any running timers, pointers or file descriptors for
communicating with tape drives or other 1/0 devices, etc. All of these prob
lems relate to moving variables and data structures related to the process that
are scattered about inside the operating system. What is feasible in practice is
to use the load information to create new processes on lightly loaded
machines, rather than trying to move running processes.

If one has adopted the idea of creating new processes only on lightly loaded
machines, another approach, called bidding, is possible [FARBER and LARSON
1972; STANKOVIC and SIDHU 1984]. When a process wants some work done, it
broadcasts a request for bids, telling what it needs (e.g., a 68000 CPU, 512K
memory, floating point, and a tape drive).

Other processors can then bid for the work, telling what their workload is,
how much memory they have available, etc. The process making the request
then chooses the most suitable machine and creates the process there. If mul
tiple request-for-bid messages are outstanding at the same time, a processor
accepting a bid may discover that the workload on the bidding machine is not
what it expected because that processor has bid for and won other work in the
meantime.

3. 3. 4. Distributed Deadlock Detection
Some theoretical work has been done in the area of detection of deadlocks in
distributed systems. How applicable this work may be in practice remains to
be seen. Two kinds of potential deadlocks are resource deadlocks and com
munication deadlocks. Resource deadlocks are traditional deadlocks, in which
some set of processes are all blocked waiting for resources held by other
blocked processes. For example, if A holds X and B holds Y, and A wants Y
and B wants X, a deadlock will result.

In principle, this problem is the same in centralized and distributed systems,
but it is harder to detect in the latter because there are no centralized tables
giving the status of all resources. The problem has mostly been studied in the
context of data base systems [GLIGOR and SHATTUCK 1980; IsLOOR and MARs
LAND 1978; MENASCE and MUNTZ 1979; OBERMARCK 1982].

The other kind of deadlock that can occur in a distributed system is a com
munication deadlock. Suppose A is waiting for a message from B and B is
waiting for C and C is waiting for A. Then we have a deadlock. CHANDY et
al. [1983] present an algorithm for detecting (but not preventing) communica
tion deadlocks. Very crudely summarized, they assume that each process that
is blocked waiting for a message knows which process or processes might send
the message. When a process logically blocks, they assume that it does not
really block, but instead sends a query message to each of the processes that
might send it a real (data) message. If any of these processes is blocked, it
sends query messages to the processes it is waiting for. If certain messages
eventually come back to the original process, it can conclude that a deadlock
exists. In effect, the algorithm is looking for a knot in a directed graph.

31

3.4. FAULT TOLERANCE

Proponents of distributed systems often claim that such systems can be more
reliable than centralized systems'. Actually, there are at least two issues
involved here: reliability and availability. Reliability has to do with the system
not corrupting or losing your data. Availability has to do with the system
being up when you need it. A system could be highly reliable in the sense that
it never loses data, but at the same time be down most of the time and hence
hardly usable. However, many people use the term "reliability'' to cover avai
lability as well, and we will not make the distinction either in the rest of the
paper.

The reason why distributed systems are potentially more reliable than a cen
tralized system is that if a system only has one instance of some critical com
ponent, such as a CPU, disk, or network interface, and that component fails,
the system will go down. When there are multiple instances, the system may
be able to continue in spite of occasional failures. In addition to hardware
failures, one can also consider software failures. These are of two types: the
software failed to meet the formal specification (implementation error), or the
specification does not correctly model what the customer wanted (specification
error). All work on program verification is aimed at the former, but the latter
is also an issue. Distributed systems allow both hardware and software errors
to be dealt with, albeit in somewhat different ways.

An important distinction should be made between systems that are fault
tolerant and those that are fault intolerant. A fault tolerant system is one that
can continue functioning (perhaps in a degraded form) even if something goes
wrong. A fault intolerant system collapses as soon as any error occurs. Bio
logical systems are highly fault tolerant; if you cut your finger, you probably
will not die. If a memory failure garbles 1/10 of 1 percent of the program
code or stack of a running program, the program will almost certainly crash
instantly upon encountering the error.

It is sometimes useful to distinguish between expected faults and unexpected
faults. When the ARP Anet was designed, people expected to lose packets
from time to time. This particular error was expected and precautions were
taken to deal with it. On the other hand, no one expected a memory error in
one of the packet switching machines to cause that machine to tell the world
that it had a delay time of zero to every machine in the network, which
resulted in all network traffic being rerouted to the broken machine.

One of the key advantages of distributed systems is that there are enough
resources to achieve fault tolerance, at least with respect to expected errors.
The system can be made to tolerate both hardware and software errors,
although it should be emphasized that in both cases it is the software, not the
hardware, that cleans up the mess when an error occurs. In the past few years,
two approaches to making distributed systems fault tolerant have emerged.
They differ radically in orientation, goals, and attitude toward the theologically
sensitive issue of the perfectability of mankind (programmers in particular).
One approach is based on redundancy and the other is based on the notion of
an atomic transaction. Both are described briefly below.

32

3.4.1. Redundancy Techniques
All the redundancy techniques that have emerged take advantage of the
existence of multiple processors by duplicating critical processes on two or
more machines. A particularly simple, but effective, technique is to provide
every process with a backup process on a different processor. All processes
communicate by message passing. Whenever anyone sends a message to a
process, it also sends the same message to the backup process, as shown in
Figure 8. The system ensures that neither the primary nor the backup can
continue running until it has been verified that both have correctly received the
message.

Network

6 Message ~ Message ~
Primary Sender Backup
Process sends process

message
to both

FIGURE 8. Each process has its own backup process.

Thus, if one process crashes due to any hardware fault, the other one can
continue. Furthermore, the remaining process can then clone itself, making a
new backup to maintain the fault tolerance in the future. BORG et al. [1983]
have described a system using these principles.

One disadvantage of duplicating every process is the extra processors
required, but another, more subtle problem, is that if processes exchange mes
sages at a high rate, a considerable amount of CPU time may go into keeping
the processes synchronized at each message exchange. POWELL and PREsorro
[1983] have described a redundant system that puts almost no additional load
on the processes being backed up. In their system, all messages sent on the
network are recorded by a special "recorder" process (see Figure 9). From
time to time, each process checkpoints itself onto a remote disk.

Sending
Process

Message Message
---'-----~-----------➔

Receiving
process

Recorder
process
saves all
network
traffic

33

FIGURE 9. A recorder process copies and stores all network traffic
without affecting the sender and receiver.

If a process crashes, recovery is done by sending the most recent checkpoint
to an idle processor and telling it to start running. The recorder process then
spoon feeds it all the messages that the original process received between the
checkpoint and the crash. Messages sent by the newly restarted process are
discarded. Once the new process has worked its way up to the point of crash,
it begins sending and receiving messages normally, without help from the
recording process.

The beauty of this scheme is that the only additional work a process must
do to become immortal is to checkpoint itself from time to time. In theory,
even the checkpoints can be disposed with, if the recorder process has enough
disk space to store all the messages sent by all the currently running processes.
If no checkpoints are made, when a process crashes, the recorder will have to
replay the process's whole history.

When a process successfully terminates, the recorder no longer has to worry
about having to rerun it, so all the messages that it received can be safely dis
carded. For servers and other processes that never terminate, this idea must
be varied to avoid repeating individual transactions that have successfully com
pleted.

One drawback of this scheme is that it relies on reliable reception of all mes
sages all the time. In practice, local networks are very reliable, but they are
not perfect. If occasional messages can be lost, the whole scheme becomes
much less attractive.

Still, one has to be very careful about reliability, especially when the prob
lem is caused by faulty software. Suppose a processor crashes due to a
software bug. Both the schemes discussed above (Borg et al., and Powell and
Presotto) deal with crashes by allocating a spare processor and restarting the
crashed program, possibly from a checkpoint. Of course the new processor

34

will crash too, leading to the allocation of yet another processor and another
crash. Manual intervention will eventually be required to figure out what is
going on. If the hardware designers could provide a bit somewhere that tells
whether a crash was due to hardware or software, it would be very helpful.

Both of the above techniques only apply to tolerance of hardware errors.
However, it is also possible to use redundancy in distributed systems to make
systems tolerant of software errors. One approach is to structure each pro
gram as a collection of modules, each one with a well-defined function and a
precisely specified interface to the other modules. Instead of writing a module
only once, N programmers are asked to program it, yielding N functionally
identical modules.

During execution, the program runs on N machines in parallel. After each
module finishes, the machines compare their results and vote on the answer. If
a majority of the machines say that the answer is X, then all of them use X as
the answer, and all continue in parallel with the next module. In this manner,
the effects of an occasional software bug can be voted down. If formal
specifications for any of the modules are available, the answers can also be
checked against the specifications to guard against the possibility of accepting
an answer that is clearly wrong.

A variation of this idea can be used to improve system performance.
Instead of always waiting for all the processes to finish, as soon as k of them
agree on an answer, those that have not yet finished are told to drop what they
are doing, accept the value found by the k processes, and continue with the
next module. Some work in this area is discussed in [AVIZIENIS and CHEN

1977; AVIZIENIS and KELLY 1984; ANDERSON and LEE 1981].

3.4.2. Atomic transactions
When multiple users on several machines are concurrently updating a distri
buted data base and one or more machines crash, the potential for chaos is
truly impressive. In a certain sense, the current situation is a step backward
from the technology of the 1950s, when the normal way of updating a data
base was to have one magnetic tape, called the "master file," and one or more
tapes with updates (e.g., daily sales reports from all of a company's stores).
The master tape and updates were brought to the computer center, which then
mounted the master tape and one update tape, and ran the update program to
produce a new master tape. This new tape was then used as the "master" for
use with the next update tape.

This scheme had the very real advantage that if the update program crashed,
one could always fall back on the previous master tape and the update tapes.
In other words, an update run could be viewed as either running correctly to
completion (and producing a new master tape), or having no effect at all (crash
part way through, new tape discarded). Furthermore, update jobs from
different sources always ran in some (undefined) sequential order. It never
happened that two users would concurrently read a field in a record, (e.g., 6),
each add 1 to the value, and each store a 7 in that field, instead of the first one
storing a 7 and the second storing an 8.

35

The property of run-to-completion or do-nothing is called an atomic update.
The property of not interleaving two jobs is called .serializability. The goal of
people working on the atomic transaction approach to fault tolerance has been
to regain the advan~ of the old tape system without giving up the conveni
ence of data bases on disk that can be modified in place, and to be able to do
everything in a distributed way.

LAMPsoN (1981] has described a way of achieving atomic transactions by
building up a hierarchy of abstractions. We will summarize his model below.
Real disks can crash during READ and WRITE operations in unpredictable
ways. Furthermore, even if a disk block is correctly written, there is a small
(but nonzero) probability of it subsequently being corrupted by newly
developed bad spot on the disk surface. The model assumes that spontaneous
block corruptions are sufficiently infrequent that the probability of two such
events happening within some predetermined time, T, is negligible. To deal
with real disks, the system software must be able to tell if a block is valid or
not, for example, by using a checksum.

The first layer of abstraction on top of the real disk is the "careful disk," in
which every CAREFUL-WRITE is read back immediately to verify that it is
correct. H the CAREFUL-WRITE persistently fails, the system marks the
block as "bad" and then intentionally crashes. Since CAREFUL-WRITEs are
verified, CAREFUL-lIBAI)s will always be good, unless a block has gone bad
after being written and verified.

The next layer of abstraction is stable storage. A stable storage block con
sists of an ordered pair of careful blocks, which are typically corresponding
careful blocks on different drives to roioimire the chance of both being dam
aged by a hardware failure. The stable storage algorithm guarantees that at
least one of the blocks is always valid. The STABLE-WRITE primitive first
does a CAREFUL-WRITE on one block of the pair, and then the other. If
the first one fails, a crash is forced, as mentioned above, and the second one is
left untouched.

After every crash, and at least once every time period T, a special cleanup
process is run to examine each stable block. H both blocks are "good" and
identical, nothing has to be done. H one is "good" and one is "bad" (failure
during a CAREFUL-WRITE), the "bad" one is replaced by the "good" one.
H both are "good" but different (crash between two CAREFUL-WRITEs), the
second one is replaced by a copy of the first one. This algorithm allows indivi
dual disk blocks to be updated atomically and survive infrequent crashes.

Stable storage can be used to create "stable processors" [Lampson 1981].
To make itself crashproof, a CPU must checkpoint itself on stable storage
periodically. Hit subsequently crashes, it can always restart itself from the last
checkpoint Stable storage can also be used to create stable monitors, in order
to ensure that two concurrent processes never enter the same critical region at
the same time, even if they are running on different machines.

Given a way to implement crashproof processors (stable processors) and
crashproof disks (stable storage), it is possible to implement multicomputer
atomic transactions. Before updating any part of the data in place, a stable

36

processor first writes an intentions list to stable storage, providing. the new
value for each datum to be changed. Then it sets a commit flag to indicate
that the intentions list is complete. The commit flag is set by atomically
updating a special block on stable storage. Finally it begins making all the
changes called for in the intentions list. Crashes during this phase have no
serious consequences because the intentions list is stored in stable storage.
Furthermore, the actual making of the changes is idempotent, so repeated
crashes and restarts during this phase are not harmful.

Atomic actions have been implemented in a number of systems; see for
example [FRIDRICH and OLDER 1981; MITCHELL and DION 1982; BROWN et
al. 1985; POPEK et al. 1981; REED and SVOBODOVA 1981).

3.5. SERVICES
In a distributed system, it is natural to provide functions by user-level server
processes that have traditionally been provided by the operating system. This
approach leads to a smaller (hence more reliable) kernel and makes it easier to
provide, modify, and test new services. In the following sections, we will look
at some of these services, but first we look at how services and servers can be
structured.

3.5.1. Server structure
The simplest way to implement a service is to have one server that has a sin
gle, sequential thread of control. The main loop of the server looks something
like this:

while true do
begin

end

GetRequest;
CarryOutRequest;
SendReply

This approach is simple and easy to understand, but has the disadvantage that
if the server must block while carrying out the request (e.g, in order to read a
block from a remote disk), no other requests from other users can be started,
even if they could have been satisfied immediately. An obvious example is a
file server that maintains a large disk block cache, but occasionally must read
from a remote disk. In the time interval that the server is blocked waiting for
the remote disk to reply, it might have been able to service the next 10
requests, if they were all for blocks that happened to be in the cache. Instead,
the time spent waiting for the remote disk is completely wasted.

To eliminate this wasted time and improve the throughput of the server, the
server can maintain a table to keep track of the status of multiple partially
completed requests. Whenever a request requires the server to send a message
to some other machine and wait for the result, the server stores the status of
the partially completed request in the table and goes back to the top of the

37

main loop to get the next message.
If the next message happens to be the reply from the other machine, that is

fine and it is processed, but if it is a new request for service from a different
client, that can also be started, and possibly completed before the reply for the
first request comes in. In this way, the server is never idle if there is any work
to be done.

Although this organization makes better use of the server's CPU, it makes
the software much more complicated. Instead of doing nicely nested remote
procedure calls to other machines whose services it needs, the server is back to
using separate SEND and RECEIVE primitives, which are less structured.

One way of achieving both good performance and clean structure is to pro
gram the server as a collection of miniprocesses, which we will call a cluster of
tasks. Tasks share the same code and global data, but each task has its own
stack for local variables and registers and, most importantly, its own program
counter. In other words, each task has its own thread of control. Multipro
gramming of the tasks can be done either by the operating system kernel or by
a run time library within each process.

There are two ways of organizing the tasks. The first way is to assign one
task the job of "dispatcher," as shown in Figure 10. The dispatcher is the only
task that accepts new requests for work. After inspecting an incoming request,
it determines if the work can be done without blocking (e.g., if a block to be
read is present in the cache). If it can, the dispatcher just carries out the work
and sends the reply. If the work requires blocking, the dispatcher passes the
work to some other task in the cluster, which can start work on it. When that
task blocks, task switching occurs, and the dispatcher or some other previously
blocked task can now run. Thus waiting for a remote procedure call to finish
only blocks one task, not the whole server.

The other way of organizing the server is to have each task capable of
accepting new requests for work. When a message arrives, the kernel gives it
at random to one of the tasks listening to the address or port to which the
message was addressed. That task carries the work out by itself, and no
dispatcher is needed.

Both of these schemes require some method of locking the shared data to
prevent races. This locking can be achieved explicitly by some kind of LOCK
and UNLOCK primitives, or implicitly by having the scheduler not stop any
task while it is running. For example, task switching only occurs when a task
blocks. With ordinary user programs, such a strategy is undesirable, but with
a server whose behavior is well-understood, it is not unreasonable.

3.5.2. File Service
There is little doubt that the most important service in any distributed system
is the file service. Many file services and file servers have been designed and
implemented, so a certain amount of experience is available [e.g., BIRRELL and
NEEDHAM 1980; DELLAR 1982; DION 1980; FRIDRICH and OLDER 1981; FRI
DRICH and OLDER 1984; MITCHELL and DION 1982; MULLENDER and

38

Message arrives
at dispatcher

D
l
s
p
a
t
C
h
e
r

w w w
a a a
r r r
k k k
e e • r r r

Shared

~
a
r
k
e
r

data

w
a
r
k
e
r

' I Dispatcher passes
request to worker

FIGURE 10. The dispatcher task waits for requests and passes them on to
the worker tasks.

TANENBAUM 1985; REED and SVOBODOVA 1981; SATYANARAYANAN et al. 1985;
SCHROEDER et al. 1985; STURGIS et al. 1980; SVOBODOVA 1981; Sw!NEHART et
al. 1979]. A survey about file servers can be found in [SVOBODOVA 1984].

File services can be roughly classified into two kinds, "traditional" and
"robust." Traditional file service is offered by nearly all centralized operating
systems (e.g., the UNIX file system). Files can be opened, read, and rewritten
in place. In particular, a program can open a file, seek to the middle of the
file, and update blocks of data within the file. The file server implements these
updates by simply overwriting the relevant disk blocks. Concurrency control,
if there is any, usually involves locking entire files before updating them.

Robust file service, on the other hand, is aimed at those applications that
require extremely high reliability, and whose users are prepared to pay a
significant penalty in performance to achieve it. These file services generally
off er atomic updates and similar features lacking in the traditional file service.

In the following paragraphs, we discuss some of the issues relating to tradi
tional file service (and file servers) and then look at those issues that
specifically relate to robust file service and servers. Since robust file service
normally includes traditional file service as a subset, the issues covered in the
first part also apply.

Conceptually, there are three components that a traditional file service nor-
mally has:

Disk service
Flat file service
Directory service

39

The disk service is concerned with reading and writing raw disk blocks,
without regard to how they are organized. A typical command to the disk ser
vice is to allocate and write a disk block, and return a capability or address
(suitably protected) so the block can be read later.

The flat file service is concerned with providing its clients with an abstrac
tion consisting of files, each of which is a linear sequence of records, possibly
I-byte records (as in UNIX) or client-defined records. The operations are
reading and writing records, starting at some particular place in the file. The
client need not be concerned with how or where the data in the file are stored.

The directory service provides a mechanism for naming and protecting files,
so they can be accessed conveniently and safely. The directory service typi
cally provides objects called directories that map ASCII names onto the inter
nal identification used by the file service.

Design Issues. One important issue in a distributed system is how closely the
three components of a traditional file service are integrated. At one extreme,
the system can have distinct disk, file and directory services that run on
different machines and only interact via the official interprocess communica
tion mechanism. This approach is the most flexible, because anyone needing a
different kind of file service (e.g., a B-tree file) can use the standard disk server.
It is also potentially the least efficient, since it generates considerable inter
server traffic.

At the other extreme, there are systems in which all three functions are han
dled by a single program, typically running on a machine to which a disk is
attached. With this model, any application that needs a slightly different file
naming scheme is forced to start all over making its own private disk server.
However, the gain is increased runtime efficiency, because the disk, file and
directory services do not have to communicate over the network.

Another important design issue in distributed systems is garbage collection.
If the directory and file services are integrated, it is a straightforward matter to
ensure that whenever a file is created, it is entered into a directory. If the
directory system forms a rooted tree, it is always possible to reach every file
from the root directory. However, if the file directory service and file service
are distinct, it may be possible to create files and directories that are not
reachable from the root directory. In some systems this may be acceptable,
but in others, unconnected files may be regarded as garbage to be collected by
the system.

Another approach to the garbage collection problem is to forget about
rooted trees altogether, and permit the system to remove any file that has not
been accessed for, say, 5 years. This approach is intended to deal with the
situation of a client creating a temporary file and then crashing before record
ing its existence anywhere. When the client is rebooted, it creates a new tem
porary file and the existence of the old one is lost forever unless some kind of
timeout mechanism is used.

There are a variety of other issues that the designers of a distributed file sys
tem must address; for example, will the file service be virtual-circuit oriented

40

or connectionless. In the virtual circuit approach, the client must do ·an OPEN
on a file before reading it, at which time the file server fetches some informa
tion about the file (in UNIX terms, the i-node) into memory, and the client is
given some kind of a connection identifier. This identifier is used in subse
quent READs and WRITEs. In the connectionless approach, each READ
request identifies the file and file position in full, so the server need not keep
the i-node in memory (although most servers will maintain a cache for
efficiency reasons).

Both virtual circuit and connectionless file servers can be used with the ISO
OSI and RPC models. When virtual circuits are used for communication, hav
ing the file server maintain open files is natural. However, each request mes
sage can also be self contained, so that the file server need not hold the file
open throughout the communication session.

Similarly, RPC fits well with a connectionless file server, but it can also be
used with a file server that maintains open files. In the latter case, the client
does an RPC to the file server to OPEN the file and get back a file identifier of
some kind. Subsequent RPCs can do READ and WRITE operations using
this file identifier.

The difference between these two becomes clear when one considers the
effects of a server crash on active clients. If a virtual-circuit server crashes and
is then quickly rebooted, it will almost always lose its internal tables. When
the next request comes in to read the current block from file identifier 28, it
will have no way of knowing what to do. The client will receive an error mes
sage, which will generally lead to the client process aborting. In the connec
tionless model, each request is completely self-contained (file name, file posi
tion, etc) so newly a reincarnated server will have no trouble carrying it out.

The price paid for this robustness, however, is a slightly longer message
since each file request must contain the full file name and position. Further
more, the virtual-circuit model is sometimes less complex in environments in
which the network can re-order messages, that is, deliver the second message
before the first one. Local networks do not have this defect, but some wide
area networks and intemetworks do.

Protection. Another important issue faced by all file servers is access
control-who is allowed to read and write which file. In centralized systems,
the same problem exists, and is solved by using either an access control list or
capabilities. With access control lists, each file is associated with a list of users
who may access it. The UNIX RWX bits are a simple form of access control
list that divides all users into 3 categories: owner, group, and others. With
capabilities, a user must present a special "ticket" on each file access proving
that he has access permission. Capabilities are normally maintained in the
kernel to prevent forgery.

With a distributed system using remote file servers, both of these approaches
have problems. With access control lists the file server has to verify that the
user in fact is who he claims to be. With capabilities, how do you prevent
users from making them up?

41

One way to make access control lists viable is to insist that the client first set
up an authenticated virtual circuit with the file server. The authentication may
involve a trusted third party as in [BIRRELL et al. 1982; BIRRELL et al. 1984].
When remote procedure calls are used, setting up an authenticated session in
advance is less attractive. The problem of authentication using RPC is dis
cussed in [BIRRELL 1985].

With capabilities, the protection is normally due to the fact that the kernel
can be trusted. With personal computers on a network, how can the file server
trust the kernel? After all, a user can easily boot up a nonstandard kernel on
his machine. A possible solution is to encrypt the capabilities, as discussed in
[MULLENDER and TANENBAUM 1984, 1985, 1986; TANENBAUM et al. 1986].

Performance. Performance is one of the key problems in using remote file
servers (especially from diskless workstations). Reading a block from a local
disk requires a disk access and a small amount of CPU processing. Reading
from a remote server has the additional overhead of getting the data across the
network. This overhead has two components, the actual time to move the bits
over the wire (including contention resolution time, if any), and the CPU time
the file server must spend running the protocol software.

CHERITON and ZWAENEPOEL [1983] describe measurements of network over
head in the context of the V system. With a 8 MHz 68000 processor and a 10
MB/ sec Ethernet, they observe that reading a 512-byte block from the local
machine takes 1.3 msec and from a remote machine 5.7 msec, assuming that
the block is in memory and no disk access is needed. They also observe that
loading a 64K program from a remote file server takes 255 msec vs. 60 msec
locally, when transfers are in 16K units. A tentative conclusion is that access
to a remote file server is four times as expensive as to a local one. (It is also
worth noting that the V designers have gone to great lengths to achieve good
performance; many other file servers are much slower than V's.)

One way to improve the performance of a distributed file system is to have
both clients and servers maintain caches of disk blocks and possibly whole
files. However, maintaining distributed caches has a number of serious prob
lems. The worst of these is what happens when someone modifies the "master
copy" on the disk? Does the file server tell all the machines maintaining
caches to purge the modified block or file from their caches by sending them
"unsolicited messages" as in XDFS [STURGIS, et al. 1980]? How does the
server even know who has a cache? Introducing a complex centralized
administration to keep track is probably not the way to go.

Furthermore, even if the server did know, having the server initiate contact
with its clients is certainly an unpleasant reversal of the normal client-server
relationship, in which clients make remote procedure calls on servers, but not
vice versa. More research is needed in this area before we have a satisfactory
solution. Some results are presented in [SCHROEDER et al. 1985].

42

Reliability. Reliability is another key design issue. The simplest approach is to
design the system carefully, use good quality disks, and make occasional tape
backups. H a disk ever gets completely wiped out due to hardware failure, all
the work done since the last tape backup is lost. Although this mode of opera
tion may seem scary at first, nearly all centralized computer systems work this
way, and with a mean time between failure of 20,000 or more hours for disks
these days, it works pretty well in practice.

For those applications that demand a higher level of reliability, some distri
buted systems have a more robust file service, as mentioned at the beginning of
this section. The simplest approach is mirrored disks: every WRITE request is
carried out in parallel on two disk drives. At every instant the two drives are
identical, and either one can take over instantly for the other· in the event of
failure.

A refinement of this approach is to have the file server offer stable storage
and atomic transactions, as discussed earlier. Systems offering this facility are
described in [BROWN et al. 1985; DION 1980; MITCHELL and DION 1982;
NEEDHAM and HERBERT 1982; REED and SvoBODOVA 1981; STURGIS et al.
1980; SvoBODOVA 1981]. A detailed comparison of a number of file servers
offering sophisticated concurrency control and atomic update facilities is given
by SvoBODOVA [1984]. We will just touch on a few of the basic concepts here.

At least four different kinds of files can be supported by a file server. Ordi
nary files consist of a sequence of disk blocks that may be updated in place,
and which may be destroyed by disk or server crashes. Recoverable files have
the property that groups of WRITE commands can be bracketed by BEGIN
TRANSACTION and END TRANSACTION, and that a crash or abort mid
way leaves the file in its original state. Robust files are written on stable
storage, and contain sufficient redundancy to survive disk crashes (generally
two disks are used) .. Finally, Multiversion files consist of a sequence of ver
sions, each of which is immutable. Changes are made to a file by creating a
new version. Different file servers support various combinations of these.

All robust file servers need some mechanism for handling concurrent
updates to a file or group of files. Many of them allow users to lock a file,
page, or record to prevent conflicting writes. Locking introduces the problem
of deadlocks, which can be dealt with using two-phase locking [Esw ARAN et al
1976] or timestamps [REED 1983].

When the file system consists of multiple servers working in parallel, it
becomes possible to enhance reliability by replicating some or all files over
multiple servers. Reading also becomes easier because the workload can now
be split over two servers, but writing is much harder because multiple copies
must be updated simultaneously, or this effect simulated somehow.

One approach is to distribute the data, but keep some of the control inf or
mation (semi) centralized. In LOCUS [POPEK et al. 1981; WALKER et al.
1983], for example, files can be replicated at many sites, but when a file is
opened, the file server at one site examines the OPEN request, the number and
status of the file's copies, and the state of the network. It then chooses one
site to carry out the OPEN and the subsequent READs and WRITEs. The

other sites are brought up to date later.

3.5.3. Print Service

43

Compared to file service, on which a great deal of time and energy has been
expended by a large number of people, the other services seem rather meager.
Still, it is worth saying at least a little bit about a few of the more interesting
ones.

Nearly all distributed systems have some kind of print service, to which
clients can send files or file names or capabilities for files with instructions to
print them on one of the available printers, possibly with some text
justification or other formatting beforehand. In some cases, the whole file is
sent to the print server in advance, and the server must buff er it. In other
cases, only the file name or capability is sent, and the print server reads the file
block by block as needed. The latter strategy eliminates the need for buffering
(read: a disk) on the server side, but can cause problems if the file is modified
after the print command is given but prior to the actual printing. Users gen
erally prefer "call by value" rather than "call by reference" semantics for
printers.

One way to achieve the "call by value" semantics is to have a printer
spooler server. To print a file, the client process sends the file to the spooler.
When the file has been copied to the spooler's directory, an acknowledgement
is sent back to the client.

The actual print server is then implemented as a print client. Whenever the
print client has nothing to print, it requests another file or block of a file from
the print spooler, prints it, and then requests the next one. In this way the
print spooler is a server to both the client and the printing device.

Printer service is discussed in [JANSON et al. 1983; and NEEDHAM and HER

BERT 1982].

3.5.4. Process Service
Every distributed operating system needs some mechanism for creating new
processes. At the lowest level, deep inside the system kernel, there must be a
way of creating a new process from scratch. One way is to have a FORK call,
as UNIX does, but other approaches are also possible. For example, in
Amoeba, it is possible to ask the kernel to allocate chunks of memory of given
sizes. The caller can then read and write these chunks, loading them with the
text, data, and stack segments for a new process. Finally, the caller can give
the filled-in segments back to the kernel and ask for a new process built up
from these pieces. This scheme allows processes to be created remotely or
locally, as desired.

At a higher level, it is frequently useful to have a process server that one can
ask whether there is a Pascal, troff, or some other service, in the system. If
there is, the request is forwarded to the relevant server. If not, it is the job of
the process server to build a process somewhere and give it the request. After,
say, a VLSI design rule checking server has been created and has done its
work, it may or may not be a good idea to keep it in the machine where it was

44

created, depending on how much work (e.g., network traffic) is required to
load it, and how often it is called. The process server could easily manage a
server cache on a least recently used basis, so that servers for common applica
tions are usually preloaded and ready to go. As special-purpose VLSI proces
sors become available for compilers and other applications, the process server
should be given the job of managing them in a way that is transparent to the
system's users.

3.5.5. Terminal Service
How the terminals are tied to the system obviously depends to a large extent
on the system architecture. If the system consists of a small number of mini
computers, each with a well-defined and stable user population, then each ter
minal can be hardwired to the computer its user normally logs on to. If, how
ever, the system consists entirely of a pool of processors that are dynamically
allocated as needed, it is better to connect all the terminals to one or more ter
minal servers that serve as concentrators.

The terminal servers can also provide such features as local echoing, intra
line editing, and window management, if desired. Furthermore, the terminal
server can also hide the idiosyncracies of the various terminals in use by map
ping them all onto a standard virtual terminal. In this way, the rest of the
software deals only with the virtual terminal characteristics and the terminal
server takes care of the mappings to and from all the real terminals. The ter
minal server can also be used to support multiple windows per terminal, with
each window acting as a virtual terminal.

3.5.6. Mail Service
Electronic mail is a popular application of computers these days. Practically
every university computer science department in the Western world is on at
least one international network for sending and receiving electronic mail.
When a site consists of only one computer, keeping track of the mail is easy.
However, when a site has dozens of computers spread over multiple local net
works, users often want to be able to read their mail on any machine they hap
pen to be logged on to. This desire gives rise to the need for a machine
independent mail service, rather like a print service that can be accessed sys
tem wide. Al.MES et al. [1985] discuss how mail is handled in the Eden system.

3.5. 7. Time Service
There are two ways to organize a time service. In the simplest way, clients can
just ask the service what time it is. In the other way, the time service can
broadcast the correct time periodically, to keep all the clocks on the other
machines in sync. The time server can be equipped with a radio receiver tuned
to WWV or some other transmitter that provides the exact time down to the
microsecond.

Even with these two mechanisms, it is impossible to have all processes
exactly synchronized. Consider what happens when a process requests the
time-of-day from the time server. The request message comes in to the server,

45

and a reply is sent back immediately. That reply must propagate back to the
requesting process, cause an interrupt on its machine, have the kernel started
up, and finally have the time recorded somewhere. Each of these steps intro
duces an unknown, variable delay.

On an Ethernet, for example, the amount of time required for . the time
server to put the reply message onto the network is nondeterministic and
depends on the number of machines contending for access at that instant. If a
large distributed system has only one time server, messages to and from it may
have to travel a long distance and pass over store-and-forward gateways with
variable queueing delays. If there are multiple time servers, they may get out
of synchronization because their crystals run at slightly different rates.
Einstein's special theory of relativity also puts constraints on synchronizing
remote clocks.

The result of all these problems is that having a single, global time is impos
sible. Distributed algorithms that depend on being able to find a unique glo
bal ordering of widely separated events may not work as expected. A number
of researchers have tried to find solutions to the various problems caused by
the lack of global time. See for example [JEFFERSON 1985; LAMPORT 1984;
LAMPORT 1978; MARzuuo and OwicICI 1985; REED 1983; REIF and SPIRAICIS

1984;]

3.5.8. Boot Senice
The boot service has two functions: bringing up the system from scratch when
the power is turned on, and helping important services survive crashes. In
both cases, it is helpful if the boot server has a hardware mechanism for forc
ing a recalcitrant machine to jump to a program in its own ROM, in order to
reset it. The ROM program could simply sit in a loop waiting for a message
from the boot service. The message would then be loaded into that machine's
memory and executed as a program.

The second function alluded to above is the "immortality service." An
important service could register with the boot service, which would then poll it
periodically to see if it were still functioning. If not, the boot service could ini
tiate measures to patch things up, for example, forcibly reboot it or allocate
another processor to take over its work. To provide high reliability, the boot
service should itself consist of multiple processors, each of which keeps check
ing that the other ones are still working properly.

3.5.9. Gateway Service
If the distributed system in question needs to communicate with other systems
at remote sites, it may need a gateway server to convert messages and proto
cols from internal format to those demanded by the wide-area network carrier.

46

4. ExAMPLES OF DISTRIBUfED OPERATING SYSTEMS
Having disposed with the principles, it is now time to look at some actual dis
tributed systems that have been constructed as research projects in universities
around the world. Although many such projects are in various stages of
development, space limitations prevent us from describing all of them in detail.
Instead of saying a few words about each system, we have chosen to look at
four systems that we consider representative. Our selection criteria were as
follows. First, we only chose systems that were designed from scratch as dis
tributed systems, (systems that gradually evolved by connecting together exist
ing centralized systems or are multiprocessor versions of UNIX were
excluded). Second, we only chose systems that have actually been imple
mented; paper designs did not count. Third, we only chose systems about
which a reasonable amount of information was available.

Even with these criteria, there were many more systems that could have been
discussed. As an aid to the reader interested in pursuing this subject further,
we provide here some references to other relevant work: Accent [FITZGERALD
and RASHID 1985; RAsHID and ROBERTSON 1981], ARGUS [LISKOV 1982;
LISKOV 1984; LISKOV and SCHEIFLER 1982; OKI et al. 1985], Chorus [ZIMMER
MAN et al. 1981], CRYSTAL [DEWITT et al. 1984), DEMOS [POWELL and
MILLER 1983], Distributed UNIX [LUDERER et al. 1981], HXDP [JENSEN 1978],
LOCUS [POPEK et al. 1981; WALKER et al. 1983; WEINSTEIN et al. 1985],
Meglos [GAGLIANELLO and KATSEFF 1985), MICROS [CuRTIS and WITTIE
1984; MOHAN and WITTIE 1985; WITTIE and CuRTIS 1985; WITTIE and VAN
TILBORG 1980], RIG [BALL et al. 1976], Roscoe/ Arachne [FINKEL et al. 1979;
SOLOMON and FINKEL 1979; SOLOMON and FINKEL 1978], and the work at
Xerox PARC [BIRRELL et al. 1984; BIRRELL and NELSON 1984; BIRRELL 1985;
BOGGS et al. 1980; BROWN et al. 1985; SwlNEHART et al. 1979].

The systems we will examine here are: The Cambridge Distributed Comput
ing System, Amoeba, V, and Eden. The discussion of each system follows the
list of topics treated above, namely communication primitives, naming and
protection, resource management, fault tolerance, and services.

4.1. THE CAMBRIDGE DISTRIBUTED COMPUTING SYSTEM
The Computing Laboratory at the University of Cambridge has been doing
research in networks and distributed systems since the mid 1970s, first with the
Cambridge ring and later with the Cambridge Distributed Computing System
[NEEDHAM and HERBERT 1982). The Cambridge ring is not a token-passing
ring, but rather contains several minipacket slots circulating around the ring.
To send a packet, a machine waits until an empty slot passes by, then inserts a
minipacket containing the source, destination, some flag bits, and 2 bytes of
data. Although the 2-byte minipackets themselves are occasionally useful (e.g.,
for acknowledgements), several block-oriented protocols have been developed
for reliably exchanging 2K packets by accumulating 1024 minipackets. The
nominal ring bandwidth is l O Mbps, but since each minipacket has 2 bytes of
data and 3 bytes of overhead, the effective bandwidth is 4 Mbps.

The Cambridge ring project was very successful, with copies of the ring

47

currently in operation at many universities and companies in the U .K. • and
elsewhere. The availability of the ring led to research on distributed comput
ing systems initially using nine Computer Automation LSI4 minicomputers
and later using about a dozen Motorola 68000s, under the direction of Roger
Needham.

The Cambridge system is primarily composed of two components: the pro
cessor bank and the servers. When a user logs in, he normally requests one
machine from the processor bank, uses it as a personal computer for the entire
work session, and returns it when logging out. Processors are not normally
dynamically allocated for short periods of time. The servers are dedicated
machines that provide various useful services, including file service, name ser
vice, boot service, etc. The number and location of these servers is relatively
static.

4.1.1. Communication Primitives
Due to the evolution from network to distributed system described earlier, the
communication primitives are usually described as network protocols rather
than as language primitives. The choice of the primitives was closely tuned to
the capabilities of the ring in order to optimize performance. Nearly all com
munication is built up from sending packets consisting of a 2-byte header, a
2-byte process identifier, up to 2048 data bytes, and a 2-byte checksum. On
top of this basic packet protocol are a simple remote procedure call protocol
and a byte stream protocol.

The basic packet protocol, which is a pure datagram system, is used by the
single shot protocol to build up something similar to a remote procedure call.
It consists of having the client send a packet to the server containing the
request, and the having the server send a reply. Some machines are multipro
grammed, so the second minipacket (called 'route' above) is used to route the
incoming packet to the correct process. The request packet itself contains a
function code and the parameters, if any. The reply packet contains a status
code and the result, if any. Clients do not acknowledge receipt of the result.

Some applications, such as terminal handling and file transfer work better
with a flow-controlled, virtual circuit protocol. The byte stream protocol is
used for these applications. This protocol is a full-duplex connection-oriented
protocol, with full flow control and error control.

4.1.2. Naming and Protection
Services can be located in the Cambridge system by using the name server. To
look up a name, the client sends an ASCII string to the name server, which
then looks it up in its tables and returns the machine number where the service
is located, the port used to address it, and the protocol it expects. The name
server stores service names as unstructured ASCII strings, which are simply
matched against incoming requests character by character, that is, it does not
manage hierarchical names. The name server itself has a fixed address that
never changes, so this address may be embedded into programs.

Although the service data base is relatively static, from time to time names

48

must be added or deleted to the name server's data base. Commands are pro
vided for this purpose, but for protection reasons these commands may only
be executed by the system administrator.

Finding the location of a service is only half the work. To use most services,
a process must identify itself in an unforgeable way, so the service can check
to see if that user is authorized. This identification is handled by the Active
Name Server, which maintains a table of currently logged in users. Each table
entry has four fields: the user's login name, his session key (a big random
number), the user's class (e.g., faculty, student) and a control key, as shown in
Figure 11.

Login Session Class Control
I

MARVIN 91432 STUDENT 31513 i
BARBARA 61300 STUDENT 27138

ANDY 42108 FACULTY 31618

SUZANNE 81346 DIRECTOR 41948

FIGURE 11. The Active Name Table.

To use a service, a user supplies the service with his login name, session key
(obtained at login time), and class. The service can then ask the Active Name
Server if such an entry exists. Since session keys are sparse, it is highly
unlikely that a student will be able to guess the current session key for the
computer center director, and thus be able to obtain services reserved for the
director. The control key must be presented to change an entry, thus provid
ing a mechanism to restrict changing the Active Name Server's table to a few
people.

4.1.3. Resource Management
The main resource managed by the system is the processor bank, handled by a
service called the resource manager. Usually a user requests a processor to be
allocated at login time, and then loads it with a single-user operating system.
The processor then becomes the user's personal computer for the rest of the
login session.

The resource manager accepts requests to allocate a processor. In these
requests, the user specifies a CPU type (e.g., 68000), a list of attributes (e.g.
memory size), and a program to be run. The resource manager then selects the
most suitable CPU currently available to allocate. Various defaults are avail
able, so, for example, a user can specify that he wants to run TRIPOS (a
straightforward single-user operating system), and the resource manager will
select an appropriate CPU type if none has been specified.

49

The downloading of programs into processor bank machines is controlled by
a server called the ancilla, although some of the machines have intelligent ring
interfaces that actually do most of the work. The ancilla also helps simulate
the machine's console and front panel, so users have the same control over a
processor bank machine as they would over a real personal computer on their
desks.

4.1.4. Fault Tolerance
The approach taken to fault tolerance in the Cambridge system is to make it
easy to bring servers back up after a crash. When a ring interface detects a
special minipacket whose source is the name server, it reboots the processor by
forcing it to jump to a program in ROM. This program then sends a request
to the boot server, which in turn goes to the name server asking for reverse
name lookup. The name server then searches its tables to find the service that
is running on the machine from which the reverse lookup request came. As
soon as the reply comes in, the server knows what it is supposed to be doing,
and can request the resource manager and ancilla to download the appropriate
program. When machines are physically reset or powered up, the same pro
cedure is carried out automatically.

Another area in which some effort has been put to make the system fault
tolerant is the file system, which supports atomic updates on special files. This
facility is described in the next section.

4.1. 5. Services
We have already described several key servers, including the name server,
resource manager, ancilla, and active name server. Other small servers
include the time server, print server, login server, terminal server, and error
server, which records system errors for maintenance purposes. The file server
is examined here.

The file system started out with the idea of a single universal file server that
provided basic storage service but very primitive naming and protection sys
tem, coupled with single-user TR1POS operating systems in the processor bank
machines, in which the naming and directory management would be done.
The CAP computer (a large research machine within the Laboratory that does
not ha ve any disks of its own) also uses the file server. After some experience
with this model, it was decided to create a new server, known as the filing
machine, as a front end to the file system to improve the performance (mostly
by providing the filing machine with a large cache, something that the small
user machines could not afford). The CAP machine, which has adequate
memory, continues to use the file server directly. The position of the filing
machine is shown in Figure 12.

The universal file server supports one basic file type, with two minor varia
tions. The basic file type is an unstructured file consisting of a sequence of
16-bit words, numbered from O to some maximum. Operations are provided
for reading or writing arbitrary numbers of words, starting anywhere in the

50

I
LJ

nf--------t

Processor
bank
machines

Filing
machine

Block cache
ASCII names

File
server

Regular files
Special files
Index files

FIGURE 12. The filing machine is positioned between the users and the file
server. It maintains a block cache and handles ASCII names.

file. Each file is uniquely identified by a 64-bit PUID (Permanent User
IDentifier) consisting of a 32-bit disk address and a 32-bit random number.

The first variation is the special file, which has the property that writes to it
are atomic, that is, they will either succeed completely or not be done at all.
They will never be partly completed, even in the face of server crashes.

The second variation is a file called an index, which is a special file consist
ing of a sequence of slots, each holding one PUID. When a file is created, the
process creating it must specify an index and slot in that index into which the
new file's PUID is stored. Since indices are also files, and as such have PUIDs
themselves, an index may contain pointers (PUIDs) to other indices, allowing
arbitrary directory trees and graphs to be built. One index is distinguished as
being the root index, which has the property that the file server's internal gar
bage collector will never remove a file reachable from the root index.

In the initial implementation, the full code of the TRIPOS operating system
was loaded into each pool processor. All of the directory management and
handling of ASCII names was done on the processor bank machines. Unfor
tunately, this scheme had several problems. First, TRIPOS was rather large
and filled up so much memory that little room was left for buffers, meaning
that almost every read or write request actually caused a disk access (the
universal file server has hardly any buffers). Second, looking up a name in the
directory hierarchy required all the intermediate directories between the start
ing point and the file to be physically transported from the file server to a

51

machine doing the search.
To get around these problems, a filing machine with a large cache was

inserted in front of the file server. This improvement allowed programs to
request files by name instead of PUID, with the name look up occurring in the
filing machine now. Due to the large cache, most of the relevant directories
are likely to already be present in the filing machine, thus eliminating much
network traffic. Furthermore, it allowed the TRIPOS code in the user
machines to be considerably stripped, since the directory management was no
longer needed. It also allowed the file server to read and write in large blocks;
this was previously possible, but rarely done due to lack of buff er space on the
user side. The resulting improvements were substantial.

4.1.6. Implementation
As should be clear by now, the whole Cambridge system is a highly pragmatic
design, which from its inception [WILKES and NEEDHAM 1980] was designed to
actually be used by a substantial user community. About 90 machines are
connected by three rings now, and the system is fairly stable. A related
research project was the connection of a number of Cambridge rings via a
satellite [ADAMS et al. 1982]. Future research may include interconnection of
multiple Cambridge rings using very high speed (2 Mbit/sec) lines.

4.2. AMOEBA
Amoeba is a research project on distributed operating systems being carried
out at the Vrije Universiteit in Amsterdam under the direction of Andrew
Tanenbaum. Its goal is to investigate capability-based, object-oriented sys
tems, and to build a working prototype system to use and evaluate. It
currently runs on a collection of 24 Motorola 68010 computers connected by a
10 Mbps local network.

The Amoeba architecture consists of four principal components, as shown in
Figure 13. First are the workstations, one per user, on which users can carry
out editing and other tasks that require fast interactive response. Second are
the pool processors, a group of CPUs that can be dynamically allocated as
needed, used, and then returned to the pool. For example, the "make" com
mand might need to do six compilations, so six processors could be taken out
of the pool for the time necessary to do the compilation and then returned.
Alternatively, with a five-pass compiler, 5 X 6 = 30 processors could be allo
cated for the six compilations, gaining even more speedup.

Third are the specialized servers, such as directory, file, and block servers,
data base servers, bank servers, boot servers, and various other servers with
specialized functions. Fourth are the gateways, which are used to link Amoeba
systems at different sites (and, eventually, different countries) into a single,
uniform system.

All the Amoeba machines run the same kernel, which primarily provides
message-passing services and little else. The basic idea behind the kernel was
to keep it small, not only to enhance its reliability, but also to allow as much

52

Processor

pool

1111111111

1111111111

1111111 i 11

I I I ' I ' I ' I I
I I I I ' I I I I I

Workstations

Specialized servers

(file, data base, etc)

Gateway

1------, WAN

FIGURE 13. The Amoeba architecture.
as possible of the operating system to run as user processes, providing for flexi
bility and experimentation.

Some of the research issues addressed by the project are how to put as much
of the operating system as possible into user processes, how to use the proces
sor pool, how to integrate the workstations and processor pool, and how to
connect multiple Amoeba sites into a single coherent system using wide-area
networks. All of these issues use objects and capabilities in a uniform way.

4.2.1. Communication Primitives
The conceptual model for Amoeba communication is the abstract data type or
object model, in which clients perform operations on objects in a location
independent manner. To implement this model, Amoeba uses a minimal
remote procedure call model for communication between clients and servers.
The basic client primitive is to send a message of up to about 32K bytes to a
server and then block waiting for the result. Servers use GET REQUEST and
PUTREPLY to get new work and send back the results, respectively. These
primitives are not embedded in a language environment with automatic stub
generation. They are implemented as small library routines that are used to

53

invoke the kernel directly from C programs.
All the primitives are reliable in the sense that detection and retransmission

of lost messages, acknowledgement processing, and message-to-packet and
packet-to-message management are all done transparently by the kernel. Mes
sages are unbuffered. H a message arrives and no one is expecting it, the mes
sage is simply discarded. The sending kernel then times out and tries again.
Users can specify how long the kernel should retransmit before giving up and
reporting failure. The idea behind this strategy is that server processes are
generally cloned in N-fold, so normally there will be a server waiting. Since a
message is discarded only if the system is badly overloaded, having the client
time out and try again later is not a bad idea.

Although the basic message primitives are blocking, special provision is
. made for handling emergency messages. For example, if a data base server is
currently blocked waiting for a file server to get some data for it, and a user at
a terminal hits the BREAK key (indicating that he wants to kill off the whole
request}, some way is needed to gracefully abort all the processes working on
behalf of that request. In the Amoeba system the terminal server generates
and sends a special EXCEPTION message, which causes an interrupt at the
receiving process.

This message forces the receiver to stop working on the request and send an
immediate reply with a status code of REQUEST ABORTED. H the receiver
was also blocked waiting for a server, the exception is recursively propagated
all the way down the line, forcing each server in turn to finish immediately. In
this manner, all the nested processes terminate normally (with error status), so
little violence is done to the nesting structure. In effect, an EXCEPTION mes
sage does not terminate execution. Instead, it just says "Force normal termi
nation immediately, even if you are not done yet, and return an error status."

4.2.2. Naming and Protection
All naming and protection issues in Amoeba are dealt with by a single, uni
form mechanism: sparse capabilities [TANENBAUM et al. 1986]. The system
supports objects such as directories, files, disk blocks, processes, bank
accounts, devices, etc., but not small objects such as integers. Each object is
owned by some service and managed by the corresponding server processes.

When an object is created, the process requesting its creation is given a
capability for it. Using this capability, a process can carry out operations on
the object, such as reading or writing the blocks of a file, starting or stopping a
process etc. The number and type of operations applicable to an object are
determined by the service that created the object; a bit map in the capability
tells which of those the holder of the capability is permitted to use. Thus the
whole of Amoeba is based on the conceptual model of abstract. data types
managed by services, as mentioned above. Users view the Amoeba environ
ment as a collection of objects, named by capabilities, on which they can per
form operations. This is in contrast to systems where the user view is a collec
tion of processes connected by virtual circuits.

Each object has a globally unique name, contained in its capabilities.

54

Capabilities are managed entirely by user processes; they are protected crypto
graphically, not by any kernel maintained tables or mechanisms. A capability
has four fields as shown in Figure 14:

I The service port: a sparse address corresponding to the service that owns the
object, such as a file or directory service.

2 The object number: an internal identifier that the service uses to tell which of
its objects this is (cf. the i-number in UNIX).

3 The rights field: a bit map telling which operations on the object are permit
ted.

4 The check field: a large random number used to authenticate the capability.

48 24 8 48

Service port Object IRts I Random#

FIGURE 14. An Amoeba capability.

When a server is asked to create an object, it picks an available slot in its
internal tables (e.g., a free i-node, in UNIX terminology), puts the information
about the new object there, and picks a new random number to be used
exclusively to protect this new object. Each server is free to use any protection
scheme it wants to, but the normal one is for it to build a capability contain
ing its port, the object number, the rights (initially all present), and a known
constant. The two latter fields are then thoroughly mixed by encrypting them
with the random number as key, which is then stored in the internal table.

Later, when a process performs an operation on the object, a message con
taining the object's capability is sent to the server. The server uses the (plain
text) object number to find the relevant internal table entry and extract the ran
dom number, which is then used to decrypt the rights and check fields. If the
decryption yields the correct known constant, the rights field is believed and
the server can easily check if the requested operation is permitted. More
details about protection of capabilities can be found in [MULLENDER and
TANENBAUM 1986; MULLENDER and TANENBAUM 1984; TANENBAUM et al.
1986].

Capabilities can be stored in directories managed by the directory service.
A directory is effectively a set of (ASCII string, capability) pairs. The most
common directory operation is for a user to present the directory server with a
capability for a directory (itself an object) and an ASCII string and ask for the
capability that corresponds to that string in the given directory. Other opera
tions are entering and deleting (ASCII string, capability) pairs.

55

This naming scheme is flexible in that a directory may contain capabilities
for an arbitrary mixture of object types and locations, but it is also uniform in
that every object is controlled by a capability. A directory entry may, of
course, be for another directory, so it is simple to build up a hierarchical (e.g.,
UNIX-like) directory tree, or even more general naming graphs. Furthermore,
a directory may also contain a capability for a directory managed by a
different directory service. As long as all the directory services have the same
interfaces with the user, one can distribute objects over directory services in an
arbitrary way.

4.2.3. Resource Management
Resource management in Amoeba is performed in a distributed way, again
using capabilities. Each Amoeba machine (pool processor, work station, etc.)
runs a resource manager process that controls that machine. This process
actually runs inside the kernel, for efficiet:)cy reasons, but it uses the normal
abstract data type interface with its clients. The key operations it supports are
CREATE SEGMENT, WRITE SEGMENT, READ SEGMENT, and MAKE
PROCESS. To create a new process, a process would normally execute
CREA TE SEGMENT three times for the child process' text, data, and stack
segments, getting back one capability for each segment. Then it would fill
each one in with that segment's initial data, and finally perform MAKE PRO
CESS with these capabilities as parameters, getting back a capability for the
new process.

Using the above primitives, it is easy to build a set of processes that share
text and/ or data segments. This facility is useful for constructing servers that
consist internally of multiple miniprocesses (tasks) that share text and data.
Each of these processes has its own stack, and most importantly, its own pro
gram counter, so that when one of them blocks on a remote procedure call, the
others are not affected. For example, the file server might consist of 10
processes sharing a disk cache, all of which start out by doing a
GET REQUEST. When a message comes in, the kernel sees that 10 processes
are a1i listening to the port specified in the message, so it picks one process at
random and gives it the message. This process then performs the requested
operation, possibly blocking on remote procedure calls (e.g., calling the disk)
while doing so, but leaving the other server processes free to accept and handle
new requests.

At a higher level, the processor pool is managed by a process server that
keeps track of which ones are free and which ones are not. If an installation
wants to multiprogram the processor pool machines, then the process server
manages each process table slot on a pool processor as a virtual processor.
One of the interesting research issues here is the interplay between the works
tations and the processor pool, that is, when should a process be started up on
the workstation and when should it be offloaded to a pool processor. Research
has not yet yielded any definitive answers here, although it seems intuitively
clear that highly interactive processes, such as screen editors, should be local to
the workstation, and batch-like jobs, such as big compilations (e.g., UNIX

56

"make"), should be run elsewhere.

Accounting. Amoeba provides a general mechanism for resource management
and accounting in the form of the bank server, which manages "bank account"
objects. Bank accounts hold virtual money, possibly in multiple currencies.
The principal operation on bank account objects is transferring virtual money
between accounts. For example, to pay for file storage, a file server might
insist on payment in advance of X dollars per megabyte of storage, and a pho
totypesetter server might want a payment in advance of Y yen per page. The
system management can decide whether or not dollars and zlotys are converti
ble, depending on whether or not it wants users to have separate quotas on
disk space and typesetter pages, or just give each user a single budget to use as
he sees fit.

The bank server provides a basic mechanism on top of which many interest
ing policies can be implemented. For example, if some resource is in short
supply, are servers allowed to raise the price as a rationing mechanism? Do
you get your money back when you release disk space; that is, is the model
one of clients and servers buying and selling blocks, or is it like renting some
thing? li it is like renting, there will be a flow of money from users to the
various servers, so users need incomes to keep them going, rather than simply
initial fixed budgets. When new users are added, virtual money has to be
created for them. Does this lead to inflation? The possibilities here are legion.

4.2.4. Fault Tolerance
The basic idea behind fault tolerance in Amoeba is that machine crashes are
infrequent, and that most users are not willing to pay a penalty in performance
in order to make all crashes 100% transparent. Instead, Amoeba provides a
boot service, with which servers can register. The boot service polls each
registered server at agreed upon intervals. li the server does not reply properly
within a specified time, the boot service declares the server to be broken, and
requests the process server to start up a new copy of the server on one of the
pool processors.

To understand how this strategy affects clients, it is important to realize that
Amoeba does not have any notion of a virtual circuit or a session. Each
remote procedure call is completely self-contained and does not depend on any
previous set up, that is, it does not depend on any volatile information stored
in server's memories. li a server crashes before sending a reply, the kernel on
the client side will time out and try again. When the new server comes up, the
client's kernel will discover this and send the request there, without the client
even knowing anything has happened. Of course, this approach does not
always work, for example, if the request is not idempotent (the chocolate fac
tory!) or if a sick disk head has just mechanically scraped all the bits from
some disk surface, but it works much of the time and has zero overhead under
normal conditions.

57

4.2.5. Services
Amoeba has several kinds of block, file and directory service. The simplest
one is a server running on top of the Amoeba kernel that provides a file ser
vice functionally equivalent to the UNIX system call interface, to allow most
UNIX programs to run on Amoeba with only the need to re-link them with a
special library.

A more interesting server, however, is FUSS (Free University Storage Sys
tem) which views each file as a sequence of versions. A process can acquire a
capability for a private copy of a new version, modify it, and then commit it in
a single indivisible atomic action. Providing atomic commits at the file level
(rather than only as a facility in some data base systems), simplifies the con
struction of various servers, such as the bank server, that have to be highly
robust. FUSS also supports multiple, simultaneous access using optimistic
concurrency control. It is described in more detail in MULLENDER and
TANENBAUM (1985].

Other key services are the directory service, bank service, and boot service,
all of which have already been discussed.

4.2.6. Implementation
The Amoeba kernel has been ported to five different CPUs: 68010, NS32016,
8088, VAX, and PDP-11. version. All the servers described above, except the
boot server, have been written and tested, along with a number of others.
Measurements have shown that a remote procedure call from user space on
one 68010 to user space on a different 68010 takes just over 8 msec (plus the
time to actually carry out the service requested). The data rate between user
processes on different machines has been clocked at over 250,000 bytes/ sec,
which is about 20% of the raw network bandwidth, an exceptionally high
value.

A library has been written to allow UNIX programs to run on Amoeba. A
substantial number of utilities, including compilers, editors, and shells are
operational. A server has also been implemented on UNIX to allow Amoeba
programs to put capabilities for UNIX files into their directories and use them
without having to know that the files are actually located on a VAX running
UNIX.

In addition to the UNIX emulation work, various applications have been
implemented using pure Amoeba, including parallel traveling salesman and
parallel alpha-beta search [BAL et al. 1985]. Current research includes connect
ing Amoeba systems at five locations in three countries using wide-area net
works.

4.3. THE V KERNEL

The V kernel is a research project on distributed systems at Stanford Univer
sity under the direction of David Cheriton [CHERITON 1984; CHERITON and
ZWAENEPOEL 1984a; CHERITON and ZWAENEPOEL 1984b; CHERITON and
MANN 1984]. It was motivated by the increasing availability of powerful
microcomputer-based workstations, which can be seen as an alternative to

58

traditional time-shared minicomputers. The V kernel is an outgrowth of the
experience acquired with earlier systems, Thoth [CHERITON 1982; CHERITON et
al. 1979] and VEREX.

The V kernel can be thought of as a software backplane, analogous to the
Multibus or S-100 bus backplanes. The function of a backplane is to provide
an infrastructure for components (for hardware, boards; for software
processes) to communicate, and nothing else. Consequently, most of the facili
ties found in traditional operating systems, such as a file system, resource
management, and protection are provided in V by servers outside the kernel.
In this respect V and Amoeba are conceptually very similar.

Another point on which V and Amoeba agree is the free market model of
services. Services such as the file system are, in principle, just ordinary user
processes. Any user who is dissatisfied with the standard file system [STONE
BRAKER, 1981; TANENBAUM and MULLENDER 1982] is free to write his own.
This view is in contrast to the "centrally planned economy" model of most
timesharing systems, which present the file system on a "like it or lump it"
basis.

The V system consists of a collection of workstations (currently SUNs) each
running an identical copy of the V kernel. The kernel consists of three com
ponents: the interprocess communication handler, the kernel server (for pro
viding basic services, such as memory management), and the device server (for
providing uniform access to I/O devices). Some of the workstations support
an interactive user, whereas others function as file servers, print servers, and
other kinds of servers, as shown in Figure 15. Unlike Amoeba, V does not
have a processor pool.

Work- Work- Work-
station station station

Network I I I
I I I I

File File Print Gateway
server server server server

FIGURE 15. A typical V configuration.

59

4.3.1. Communication Primitives
The V communication primitives have been designed in accordance with the
backplane model mentioned above. They provide basic, but fast communica
tion. To access a server, a client does SEND(message, pid), which transmits
the fixed-length (32-byte) 'message' to the server, and then blocks until the
server has sent back a reply, which overwrites 'message.' The second parame
ter, 'pid,' is a 32-bit integer that uniquely identifies the destination process. A
message may contain a kind of pseudo-pointer to one of the client's memory
segments. This pseudo-pointer can be used to permit the server to read from
or write to the client's memory. Such reads and writes are handled by kernel
primitives COPYFROM and COPYTO. As an optimization, when a client
does a SEND containing one of these pseudo-pointers with READ permission,
the first IK of the segment is piggybacked onto the message, on the assump
tion that the server will probably want to read it eventually. In this way, mes
sages longer than 32 bytes can be achieved.

Servers use the RECEIVE and REPLY calls. The RECEIVE call ca.it pro
vide a segment buffer in addition to the regular message buff er, so that if (part
of) a segment was piggybacked onto the message, it will have a place to go.
The REPLY call can a1so provide a segment buffer, for the case that the client
provided a pseudo-pointer that the server could use to return results exceeding
32 bytes.

To make this communication system easier to use, calls to servers can be
embedded in stubs so the caller just sees an ordinary procedure call. Stub gen
eration is not automated, however.

4.3.2. Naming and Protection
V has three levels of naming. At the bottom level, each process has a unique
32-bit pid, which is the address used to send messages to it. At the next level,
services (i.e, processes that carry out requests for clients) can have symbolic
(ASCII string) names in addition to their pids. A service can register a sym
bolic name with its kernel so that clients can use the symbolic name instead of
the pid. When a client wants to access a service by its name, the client's ker
nel broadcasts a query to all the other kernels, to see where the server is. The
(ServerName, pid) pair is then put in a cache for future use.

The top level of naming makes it possible to assign symbolic names to
objects, such as files. Symbolic names are always interpreted in some "con
text," analogous to looking up a file name in some directory in other systems.
A context is a set of records, each including the symbolic name, server's pid,
context number and object identifier. Each server manages its own contexts;
there is no centralized ''name server.'' A symbolic name is looked up in a con
text by searching all the records in that context for one whose name matches
the given name. When a match is found, the context number and object
identifier can be sent to the appropriate server to have some operation carried
out.

Names may be hierarchical, as in a/b/c. When "a" is looked up in some
context, the result will probably be a new context, possibly managed by a new

60

server on a different machine. In that case the remaining string; "b/ c" is
passed on to that new server for further lookup, and so on.

It is also possible to prefix a symbolic name with an explicit context, as in
"[HomeDirectory] a/b/c", in which case the name is looked up in the context
specified, rather than in the current context (analogous to the current working
directory in other systems). A question that quickly arises is, "Who keeps
track of the various context names, such as "HomeDirectory" above?" The
answer is that each workstation in the system has a Context Prefix Server,
whose function is to map context names onto server names, so that the
appropriate server can be found to interpret the name itself.

4.3.3. Resource Management
Each processor in V has a dedicated function, either as a user workstation or a
file, print, or other dedicated server, so no form of dynamic processor alloca
tion is provided. The key resources to be managed are processes, memory, and
the I/0 devices. Process and memory management is provided by the kernel
server. I/0 management is provided by the device server. Both of these are
part of the kernel present on each machine, and are accessed via the standard
message mechanism described above. They are special only in that they run in
kernel mode and can get at the raw hardware.

Processes are organized into groups called teams. A team of processes share
a common address space, and therefore must all run on the same processor.
Application programs can make use of concurrency by running as a team of
processes, each of which does part of the kernel. If one process in a team is
blocked waiting for a reply to a message, the other ones are free to run. The
kernel server is prepared to carry out operations such as creating new
processes and teams, destroying processes and teams, reading and writing
processes' states, and mapping processes onto memory.

All I/0 in Vis done using a uniform interface called the V 1/0 protocol.
The protocol allows processes to read and write specific blocks on the device.
This block orientation was chosen to provide idempotency. Terminal drivers
must store the last block read and filter out duplicate requests in order to
maintain the idempotency property. Implementation of byte streams is up to
the users. The 1/0 protocol has proven general enough to handle disks,
printers, terminals, and even a mouse.

4.3.4. Fault Tolerance
Since it was designed primarily for use in an interactive environment, V pro
vides little in the way of fault tolerance. If something goes wrong, the user
just does it again. However, V does address exception handling. Whenever a
process causes an exceptional condition to occur, such as stack overflow or
referencing nonexistent memory, the kernel detecting the error sends a spe
cially formatted message to the exception server, which is outside the kernel.
The exception server can then invoke a debugger to take over. This scheme
does not require a process to make any advance preparation for being
debugged, and in principle, can allow the process to continue execution

61

afterwards.

4.3.5. Services
Since most of the V workstations do not have a disk, the central file server
plays a key role in the system. The file server is not part of the operating sys
tem. Instead, it is just an ordinary user program running on top of the V ker
nel. Internally it is structured as a team of processes. The main process han
dles directory operations, including opening files; subsidiary processes perform
the actual read and write commands, so that when one of them blocks waiting
for a disk block, the others can continue operation. The members of file server
team share a common buff er cache, used to keep heavily used blocks in main
memory.

The file system is a traditional hierarchical system, similar to that of Thoth
[CHERITON 1982]. Each file has a file descriptor, similar to an i-node in
UNIX, except that the file descriptors are gathered into an ordinary file which
can grow as needed.

Extensive measurements have been made of the performance of the file
server. As an indication, it takes 7.8 millisec to read a IK block from the file
server when the block is in the cache. This time includes the communication
and network overhead. When the block must be fetched from the disk, the
time is increased to 35.5 millisec. Given that the access time of the small Win
chester disks used on personal computers is rarely better than 40 millsec, it is
clear that the V implementation of diskless workstations with a fast (18 mil
lisec) central file server is definitely competitive.

Other V servers include the print server, gateway server, and time server.
Other servers are in the process of being developed.

4.3.6. Implementation
The V kernel has been up and running at Stanford since Sept. 1982. It runs
on SUN Microsystems 68000-based workstations, connected by 3 Mbit/ sec
and 10 Mbit/sec Ethernets. The kernel is used as a base for a variety of pro
jects at Stanford, including the research project on distributed operating sys
tems. A great deal of attention has been paid to tuning the system to make it
fast.

4.4. THE EDEN PROJECT

The goal of the Eden system [Af.MES et al. 1985; BLACK 1985; BLACK 1983;
JESSOP et al. 1982; LAZOWSKA et al. 1981], which is being developed at the
University of Washington in Seattle under the direction of Guy Almes,
Andrew Black, Ed Lazowska, and Jerre Noe, is to investigate logically
integrated but physically distributed operating systems. The idea is to con
struct a system based on the principle of one user, one workstation (no proces
sor pool), but with a high degree of systemwide integration. Eden is object
oriented, with all objects accessed by capabilities, which are protected by the
Eden kernel. Eden objects, in contrast to, say, Amoeba objects, contain not
only passive data, but also one or more processes that carry out the operations

62

defined for the object. Objects are general: applications programmers can
determine what operations their objects will provide. Objects are also mobile,
but at any instant each object (and all the processes it contains) resides on a
single workstation.

Much more than most research projects of this kind, Eden was designed top
down. In fact, the underlying hardware and language was radically changed
twice during the project, without causing too much redesign. This would· have
been much more difficult in a bottom-up, hardware-driven approach.

4.4.1. Communications Primitives
Communication in Eden uses "invocation," a form of remote procedure call.
Programs are normally written in EPL, the Eden Programming Language,
which is based on Concurrent Euclid. (The EPL translator is actually a
preprocessor for Concurrent Euclid). To pedorm an operation on an object,
say, Lookup on a directory object, the EPL programmer just calls Lookup,
specifying a capability for the directory to be searched, the string to be
searched for, and some other parameters.

The EPL compiler translates the call to Lookup to a call to a stub routine
linked together with the calling procedure. This stub routine assembles the
parameters and packs them in a standard form called ESCH (Eden Standard
Code for Information Interchange), and then calls a lower level routine to
transmit the function code and packed parameters to the destination machine.

When the message arrives at the destination machine, a stub routine there
unpacks the ESCH message and makes a local call on Lookup using the nor
mal EPL calling sequence. The reply proceeds analogously in the opposite
direction. The stub routines on both sides are automatically generated by the
EPL compiler.

The implementation of invocation is slightly complicated by the fact that an
object may contain multiple processes. When one process blocks waiting for a
reply, the other ones must not be affected. This problem is handled by split
ting the invocation into two layers. The upper layer builds the message,
including the capability for the object to be invoked and the ESCH parame
ters, passes it to the lower layer, and blocks the calling process until the reply
arrives. The lower layer then makes a nonblocking call to the kernel to actu
ally send the message. If other processes are active within the object they can
now be run; if none are active, the object waits until a message arrives.

On the receiving side, a process within the invoked object will normally have
previously executed a call announcing its willingness to pedorm some opera
tion (e.g., Lookup in the above example) thereby blocking itself. When the
Lookup message comes in, it is accepted by a special dispatcher process that
checks to see which process, if any, is blocked waiting to perform the opera
tion requested by the message. If a willing process is found, it runs and sends
a reply, unblocking the caller. If no such process can be found, the message is
queued until one becomes available.

63

4.4.2. Naming and Protection
Naming and protection in Eden is accomplished using the capability system.
Data are encapsulated within objects, and are only accessible by invoking one
of the operations defined by the object. To invoke an object, a process must
have a valid capability. Thus there is a uniform naming and protection
scheme throughout Eden.

Capabilities may be stored in any object. Directories provide a convenient
mechanism for grouping capabilities together. Each directory entry contains
the ASCII string by which the capability is accessed and the capability itself.
Clients can only access the contents of a directory by invoking the directory
object with one of the valid operations, which include: add entry, delete entry,
lookup string, and rename capability. Capabilities are protected from forgery
by the kernel, but users keep copies of capabilities for their own use; the ker
nel verifies them when they are used.

The basic protection scheme protects objects, using capabilities. Since all
processes are embedded in objects, a process can be protected by restricting
the distribution of capabilities to its object. The only way to obtain service
from an object is by invoking the object with the proper capability, parame
ters,. etc., all of which are checked by the kernel and EPL run-time system
before the call is made.

4.4.3. Resource Management
Because no version of Eden runs on bare machines, most of the issues associ
ated with low-level resource management have not yet been dealt with.
Nevertheless, some resource management issues have been addressed. For
example, when an object is created, the issue arises of where to put it. At
present, it is just put on the same workstation as the object that created it
unless an explicit request has been given to put it somewhere else.

Another issue that has received considerable attention is how to achieve con
currency within an object. From the beginning of the project it was con
sidered desirable to allow multiple processes to be simultaneously active within
an object. These processes all share a common address space, although each
one has its own stack for local variables, procedure call/return information etc.
Having multiple active processes within an object, coupled with the basic Eden
semantics of remote invocations that block the caller but not the whole object,
makes the implementation somewhat complicated. It is necessary to allow one
process to block waiting for a reply without blocking the object as a whole.
Monitors are used for synchronization. This multiprogramming of processes
within an object is handled by a runtime system within that object, rather than
by the kernel itself (as is done in Amoeba, and also in V). The experiences of
Eden, Amoeba and V all seem to indicate that having cheap, "lightweight"
processes that share a common address space is often useful [BLACK 1985].

Management of dynamic storage for objects has also been a subject of some
work. Each object has a heap for its own internal use, for which the EPL
compiler generates explicit allocate and deallocate commands. However, a
different storage management scheme is used for objects themselves. When a

64

kernel creates an object, it allocates storage for the object from its own heap
and gives the object its own address space. It also manages the user capabili
ties for the object in such a way that it is possible to systematically find all
capabilities by scanning the kernel's data structures.

The system is periodically shut down and a garbage collector is started up to
locate all objects for which no capability is outstanding. These objects are
then discarded.

4.4.4. Fault Tolerance
The Eden kernel does not support atomic actions directly, although some ser
vices provide them to their clients. Invocations can fail with status CANNOT
LOCATE OBJECT when the machine on which the invoked object resides
crashes. On the other hand, Eden goes to a considerable length to make sure
that objects are not totally destroyed by crashes. The technique used to
accomplish this goal is to have objects checkpoint themselves periodically.
Once an object has written a copy of its state to disk, a subsequent crash
merely has the effect of resetting the object to the state it had at the most
recent checkpoint. Checkpoints themselves are atomic, and this property can
be used to build up more complex atomic actions.

By judicious timing of its checkpoints, an object can achieve a high degree
of reliability. For example, within the user mail system, a mailbox object will
checkpoint itself just after any letter is received or removed. Upon receipt of a
letter, a mailbox can wait for confirmation of the checkpoint before sending an
acknowledgement back to the sender, to ensure that letters are never lost due
to crashes. One drawback of the whole checkpoint mechanism is that it is
expensive: any change to an object's state, no matter how small, requires writ
ing the entire object to the disk. The Eden designers acknowledge this as a
problem.

Another feature of Eden that supports fault tolerance is the ability of the file
system, when asked, to store an object as multiple copies on different machines
(see below).

4.4.5. Services
The Eden file system maintains arbitrary objects. One particular object type,
the BYTESTORE, implements linear files, as in UNIX. It is possible to set
the "current position" anywhere in the file, and then read sequentially from
that point. Unlike V and Amoeba, Eden does not have special machines dedi
cated as servers. Instead, each workstation can support file objects, either for
the benefit of the local user or remote ones.

The model used for file service in Eden is quite different from the usual
model of a file server, which manages some set of files and accepts requests
from clients to perform operations on them. In Eden, each file (i.e., BYTE
STORE object) contains within it the processes needed to handle operations
on it. Thus, the file contains the server rather than the server containing the
file as in most other systems.

65

Of course, actually having a process running for each file in existence would
be unbearably expensive, so an optimization is used in the implementation.
When a file is not open, its processes are dormant and consume no resources
(other than the disk space for its checkpoint). Mailboxes, directories, and all
other Eden objects work the same way. When an object is not busy with an
invocation, the processes inside of it are put to sleep by checkpointing the
whole object to the disk.

When a file is opened, a copy of the code for its internal processes is found,
and the processes started up. Although all files on a given workstation share
the same code, when the first file is opened on a workstation, the code may
have to be fetched from another workstation.

The approach has advantages and disadvantages compared to the traditional
one-file-server-for-all-files way of doing things. There are two main advan
tages. First, The complicated, multi-threaded file server code is eliminated:
there is no file server. The processes within a BYTESTORE object are dedi
cated to a single file. Second, files can be migrated freely about all the nodes
in the system, so that, for example, a file might be created locally, and then
moved to a remote node where it will later be used.

The chief disadvantage is performance. All the processes needed for the
open files consume resources, and fetching the code for the first file to be
opened on a workstation is slow.

The Eden File System supports nested transactions [Pu and NOE 1985].
When an atomic update on a set of files (or other objects) is to be carried out,
the manager for that transaction first makes sure that all the new versions are
safely stored on disk, then it checkpoints itself, and finally it updates the direc
tory.

The transaction facility can be used to support replicated files [Pu et al.
1986]. In the simplest case, a directory object maps an ASCII name onto the
capability for that object. However, the system also has "repdirs," objects that
map ASCII names onto sets of capabilities, for example, all the copies of a
replicated file. Updating a replicated file is handled by a transaction manager,
which uses a two-phase commit algorithm to update all the copies simultane
ously. If one of the copies is not available for updating (e.g., its machine is
down or the network is partitioned), a new copy of the file is generated, and
the capability for the unreachable copy discarded. Sooner or later, the garbage
collector will notice that the old copy is no longer in use and remove it.

We touched briefly on the mail server above. The mail system defines mes
sage, mailbox and address list objects, with operations to deliver mail, read
mail, reply to mail, and so on.

The appointment calendar system is another example of an Eden applica
tion. It is used to schedule meetings, and runs in two phases. When someone
proposes a meeting, a transaction is first done to mark the proposed time as
"tentatively occupied" on all the participants' calendars. When a participant
notices the proposed date, he or she can then approve or reject it. If all parti
cipants approve the meeting, it is "committed" by another transaction; if
someone rejects the proposed appointment, the other participants are notified.

66

4.4.6. Implementation
Eden has had a somewhat tortuous implementation history. The initial version
was designed to be written in Ada* on the Intel 432, a highly complex mul
tiprocessor, fault-tolerant microprocessor chip ensemble. To make a long story
short, neither the Ada compiler nor the 432 lived up the the project's expecta
tions. To gather information for further design, a "throwaway" implementa
tion was made on top of VMS on a VAX.

The VAX/VMS version, called Newark (because that was thought to be far
from Eden), was written in Pascal and was not distributed (i.e., it ran on a sin
gle VA X). It supported multiple processes per object (VMS kernel processes),
but did not have automatic stub generation. Furthermore, the whole imple
mentation was rather cumbersome, so it was then decided to design a pro
gramming language which would provide automatic stub generation, better
type checking, and a more convenient way of dealing with concurrency.

This re-evaluation led to EPL and a new implementation on top of UNIX
instead of VMS. Subsequently, Eden was ported to 68000-based workstations
(SUN s), also on top of UNIX, rather than on the bare hardware (and in con
trast to the Cambridge system, V, and Amoeba, all of which run on bare
68000s). The decision to put UNIX on the bottom, instead of the top (as was
done with Amoeba) made system development easier and assisted users in
migrating from UNIX to Eden. The price that has been paid is poor perfor
mance, and a fair amount of effort spent trying to convince UNIX to do
things against its will.

4.5. CoMPARISON OF THE CAMBRIDGE, AMOEBA, V, AND EDEN SYSTEMS

Our four example systems have many aspects in common, but also differ in
some significant ways. In this section we will summarize and compare the four
systems with respect to the main design issues we have been looking at.

4.5.1. Communication Primitives
All four systems use an RPC-like mechanism (as opposed to an ISO OSI
communication-oriented mechanism).

The Cambridge mechanism is the simplest, using the single shot protocol
with a 2K request packet and a 2K reply packet for most client-server com
munication. A byte stream protocol is also available.

Amoeba uses a similar REQUEST-REPLY mechanism, but allows messages
up to 32K bytes (with the kernel handling message fragmentation and reassem
bly), as well as acknowledgements and timeouts, thus providing user programs
with a more reliable and simpler interface.

V also uses a REQUEST-REPLY mechanism, but messages longer than an
Ethernet packet are dealt with by having the sender include a sort of "capabil
ity" for a message segment in the REQUEST packet. Using this "capability,"
the receiver can fetch the rest of the message, as needed. For efficiency, the

* Ada is a Trademark of the U.S. Dept. of Defense

67

first lK is piggybacked onto the REQUEST itself.
Eden comes closest to a true RPC mechanism, including having a language

and compi ler with automatic stub generation and a minilanguage for parame
ter passing. None of the four examples attempts to guarantee that remote calls
will be executed exactly once.

4.5.2. Naming and Protection
All four systems use different schemes for naming and protection. In the
Cambridge system, a single name server process maps symbolic service names
onto (node, process identifier) pairs so the client will know where to send the
request. Protection is done by the active name table, which keeps track of the
authorization status of each logged in user.

Amoeba has a single mechanism for all naming and protection-sparse
capabilities. Each capability contains bits specifying which operations on the
object are allowed and which are not. The rights are protected cryptographi
cally, so user programs can manipulate them directly; they are not stored in
the kernel. ASCII string to capability mapping and capability storage are han
dled by directory servers for convenience.

Eden also uses capabilities, but these · are not protected by sparseness or
encryption, so they must be protected by the kernel. A consequence of this
decision is that all the kernels must be trustworthy. The Amoeba crypto
graphic protection scheme is less restrictive on this point.

V has naming at three levels: processes have pids, kernels have ASCII to pid
mappings, 8lld servers use a context mechanism to relate symbolic names to a
given context.

4.5.3. Resow-ce Management
Resource management is al.so handled quite differently on all four systems. In
the Cambridge system, the main resource is the processor bank. A resource
manager is provided to allocate machines to users. Generally, this allocation is
fairly static-upon log in a user is allocated one machine for the duration of
the login session, and this is the only machine the user uses during the session.
He may load any operating system he chooses in this machine.

Amoeba also has a pool of processors, but these are allocated dynamically.
A user running "make'' might be allocated 10 processors to compile 10 files;
afterwards, all the processors would go back into the pool. Amoeba also pro
vides a way for processes to create segments on any machine (assuming the
proper capability can be shown) and for these segments to be forged into
processes. Amoeba is unique among the four systems in that it has a bank
server that can allow servers to charge for services and to limit resource usage
by accounting for it.

In V, each processor is dedicated as either a workstation or a server, so pro
cessors are not resources to be dynamically allocated. Each V kernel manages
its own local resources; there is no system-wide resource management.

Eden has been built on top of existing operating systems, so most of the
issues of resource management are done by the underlying operating system.

68

The main issue remaining for Eden is allocating and deallocating storage for
objects.

4.5.4. Fault Tolerance
None of the four systems go to great lengths to make themselves fault tolerant,
for example, none support atomic actions as a basic primitive. All four (with
the possible exception of Eden) were designed with the intention of actually
being used, so that the inherent tradeoff between performance and fault toler
ance tended to get resolved in favor of performance.

In the Cambridge system, the only concession to fault tolerance is a feature
in the ring interface to allow a machine to be remotely reset by sending a spe
cial packet to the interface. There is also a small server that helps get the
servers started up.

Amoeba provides some fault tolerance through its boot server, with which
processes can register. The boot server pools the registered processes periodi
cally, and finding one that fails to respond, requests a new processor and
downloads the failed program to it. This strategy does not retrieve the
processes that were killed when a machine went down, but it does automati
cally ensure than no key service is ever down for more than, say, 30 seconds.

V does not address the problem of fault tolerance at all.
Of the four systems, Eden makes the most effort to provide a higher degree

of reliability than provided by the bare hardware. The main tool used is
checkpointing complete objects from time to time. If a processor crashes, each
of its objects can be restored to the state it had at the time of the last check
point. Unfortunately, only entire objects can be checkpointed, making check
pointing a slow operation, thus discouraging its frequent use.

4.5.5. Services
The file systems used by Cambridge, Amoeba, V, and Eden are all quite
different. The Cambridge system has two servers, the universal file server, and
the filing machine, which was added later to improve the performance by pro
viding a large buff er cache. The universal file server supports a primitive flat
file, with no directory structure, this being provided by the filing machine or
the user machines. The universal file server has regular and special files, the
latter of which can be updated atomically.

Amoeba has several file systems. One of them is compatible with UNIX, to
allow UNIX applications to run on Amoeba. Another one, FUSS, supports
multiversion, multiserver, tree structured, immutable files with atomic commit.
Directory servers map ASCII names to capabilities, thus allowing an arbitrary
graph of files and directories to be constructed.

V has a traditional file server similar to UNIX. It is based on the earlier
Thoth system.

Eden has no file server at all in the usual sense. Instead, each file object has
embedded in it a process that acts like a private file server for that one file.
Like Amoeba, Eden has separate directory servers that map ASCII strings
onto capabilities, and provides the ability to map one string onto several files,

69

thus providing for file replication. All four systems have a heterogeneous
variety of other services (e.g., print, mail, bank).

5.SUMMARY
Distributed operating systems are still in an early phase of development, with
many unanswered questions, and relatively little agreement among workers in
the field about how things should be done. Many experimental systems use
the client-server model with some form of remote procedure call as the com
munication base, but there are also systems built on the connection model.
Relatively little has been done on distributed naming, protection, and resource
management, other than building straightforward name servers and process
servers. Fault tolerance is an up and coming area, with work progressing in
redundancy techniques and atomic actions. Finally, a considerable amount of
work has gone into the construction of file servers, print servers, and various
other servers, but here too there is much work to be done. The only conclu
sion we draw is that distributed operating systems will be an interesting and
fruitful area of research for a number of years to come.

ACKNOWLEDGEMENTS
We would like to thank Andrew Black, Dick Grune, Sape Mullender, and Jen
nifer Steiner for their critical reading of the manuscript.

REFERENCES

ADAMS, C.J., ADAMS, G.C., WATERS, A.G., LESLIE, I., KIRK, P. "Protocol
Architecture of the UNIVERSE Project," Proc. Sixth Int'/ Conj. on
Computer Communication, , London, pp. 379-383, 1982.

ALMEs, G.T., BLACK, A.P., LAZOWSKA, E.D. and NOE, J.D. "The Eden Sys
tem: A Technical Rev.," IEEE Trans. Softw. Engineering, vol. SE-
11, pp. 43-59, Jan. 1985.

ANDERSON, T., and LEE., P.A.: Fault Tolerance, Principles and Practice, Lon
don: Prentice-Hall, Int'l, 1981.

A VIZIENIS, A. and CHEN, L. "On the Implementation of N-version Program
ming for Software Fault-Tolerance During Execution," Proc.
COMPSAC, IEEE, pp. 149-155, 1977.

AVIZIENIS, A. and KELLY, J. "Fault Tolerance by Design Diversity," Com
puter, vol. 17, pp. 66-80, Aug. 1984.

BAL, H.E., VAN RENESSE, R. and TANENBAUM, A.S. "A Distributed, Parallel,
Fault Tolerant Computing System," Report IR-106, Dept. of Math.
and Comp. Sci., Vrije Univ., Oct. 1985.

BALL, J.E., FELDMAN, J., Low, R., RASHID, R. and ROVNER, P. "RIG,
Rochester's Intelligent Gateway: System Overview," IEEE Trans.
Softw. Engineering, vol. SE-2, pp. 321-329, Dec. 1976.

BARAK, A. and SHILOH, A. "A Distributed Load-balancing Policy for a Mul
ticomputer," Software-Practice & Experience, vol. 15, pp. 901-913,
Sept. 1985.

70

BIRMAN, K.P. and ROWE, L.A. "A Local Network Based on the UNIX
Operating System," IEEE Trans. Softw. Eng., vol. SE-8, pp. 137-
146, March 1982.

BIRRELL, A.D. "Secure Communication Using Remote Procedure Calls,"
ACM Trans. Comput. Syst., vol. 3, pp. 1-14, Feb. 1985.

BIRRELL, A.D. and NELSON, B.J. "Implementing Remote Procedure Calls,"
ACM Trans. Comput. Systems, vol. 2, pp. 39-59, Feb. 1984.

BIRRELL, A.D., LEVIN, R., NEEDHAM, R.M. and SCHROEDER, M. "Experience
with Grapevine: The Growth of a Distributed System," A CM
Trans. Comput. Syst., vol. 2, pp. 3-23, Feb. 1984.

BIRRELL, A.D., LEVIN, R., NEEDHAM, R.M. and SCHROEDER, M. "Grapevine:
An Exercise in Distributed Computing," Commun. ACM, vol. 25,
pp. 260-274, April 1982.

BIRRELL, A.D. and NEEDHAM, R.M. "A Universal File Server," IEEE Trans.
Softw. Eng., vol. SE-6, pp. 450-453, Sept. 1980.

BLACK, A.P. "Supporting Distributed Applications: Experience with Eden,"
Tenth Symp. Oper. Syst. Prin., ACM, pp. 181-193, Dec. 1985.

BLACK, A.P. "An Asymmetric Stream Communications System," Proc. Ninth
Symp. Operating Syst. Prin., ACM, pp. 4-10, Oct. 1983.

BOGGS, D.R., SCHOCH, J.F., TAFT, E.A. and METCALFE, R.M. "Pup: An
Internetwork Architecture," IEEE Trans. Commun., vol. C-28, pp.
612-624, April 1980.

BORG, A., BAUMBACH, J. and GLAZER, S. "A Message System Supporting
Fault Tolerance," Proc. Ninth Symp. Operating Syst. Prin., ACM,
pp. 90-99, 1983.

BROWN, M.R., KOLLING, K.N. and TAFT, E.A. "The Alpine File System,"
ACM Trans. Comput. Syst., vol. 3, pp. 261-293, Nov. 1985.

BROWNBRIDGE, D.R., MARsHALL, L.F. and RANDELL, B. "The Newcastle
Connection- or UNIXES or the World Unite!," Software-Practice
& Experience, vol. 12, pp. 1147-1162, Dec. 1982.

BRYANT, R.M. and FINKEL, R.A. "A Stable Distributed Scheduling Algo
rithm" Proc. 2nd Int'/ Conj. on Distributed Comput. Syst.,, IEEE,
pp. 314-323, April 1981.

CHANDY, K.M., MISRA, J. and HA.As, L.M. "Distributed Deadlock Detec
tion," ACM Trans. Comput. Syst., vol. 1, pp. 145-156, May 1983.

CHERITON, D.R. "An Experiment Using Registers for Fast Message-Based
Interprocess Communication," Operating Systems Rev., vol 18, pp.
12-20, Oct. 1984.

CHERITON, D.R "The V Kernel: A Software Base for Distributed Systems,"
IEEE Software, vol. 1, pp. 19-42, April 1984.

CHERITON, D.R. The Thoth System: Multi-process Structuring and Portability,
New York: American Elsevier, 1982.

CHERITON, D.R., MALCOLM, M.A., MELEN, L.S. and SAGER, G.R. "Thoth, A
Portable Real-Time Operating System," Commun. ACM, vol. 22,
pp. 105-115, Feb. 1979.

CHERITON, D.R. and MANN, T.P. "Uniform Access to Distributed Name

71

Interpretation in the V System," Proc. Fourth Int'! Conj. on Distri
buted Comput. Syst., IEEE, pp. 290-297, 1984.

CHERITON, D.R. and ZWAENEPOEL, W. "One-to-Many Interprocess Com
munication in the V-System," ACM Sigcomm 84 Symp., 1984a.

CllmuTON, D.R. and ZwAENEPOEL, W. "The Distributed V Kernel and its
Performance for Diskless Workstations," Proc. Ninth Symp. Operat
ing Syst. Prin., ACM, pp. 128-140, 1984.

CHEssoN, G. "The Network UNIX System," Proc. Fifth Symp. Operating Syst.
Prin., ACM, pp. 60-66, Nov. 1975.

Dru, W.W., HOLLOWAY, L.J., MIN-TSUNG, L., EFE, K. "Task Allocation in
Distributed Data Processing," Computer, vol. 13, pp. 57-69, Nov.
1980.

CHOW, T.C.K. and ABRAHAM, J.A. "Load Balancing in Distributed Systems,"
IEEE Tram. Softw. Engineering, vol. SE-8, pp. 401-412, July 1982.

CHow, Y.C. and KOHLER, W.H. "Models for Dynamic Load Balancing in
Heterogeneous Multiple Processor Systems," IEEE Trans. Comput.,
vol. C-28, pp. 354-361, May 1979.

CuRns, R.S. and WITTIE, L.D. "Global Naming in Distributed Systems,"
IEEE Software, vol. 1, pp. 76-80, 1984.

DALAL, Y.K. "Broadcast Protocols in Packet Switched Computer Networks,"
Ph.D. Thesis, Stanford Univ., 1977.

DELLAR, C. "A File Servers for a Network of Low-Cost Personal Microcom
puters," Software-Practice & Experience, vol. 12, pp. 1051-1068,
Nov. 1982.

DENNIS, J.B.· and VAN HORN, E.C. "Programming Semantics for Multipro
grammed Computations," Commun. ACM, vol. 9, pp. 143-154,
March 1966.

DEWITI, D.J., FINKEL, R.A. and SOLOMON, M. "The CRYSTAL Multicom
puter: Design and Implementation Experience," TR-553, Univer
sity of Wisconsin, Sep. 1984.

DION, J. "The Cambridge File Server," Operating Syst. Rev., vol. 14, pp. 41-
49, Oct. 1980.

EFE, K., "Heuristic Models of Task Assignment Scheduling in Distributed Sys
tems," Computer, vol. 15, pp. 50-56, June 1982.

EswARAN, K.P., GRAY, J.N., LORIE, J.N. and TRAIGER, LL. "The Notions of
Consistency and Predicate Locks in a Database System," Commun.
ACM, vol. 19, pp. 624-633, Nov. 1976.

FARBER, D.J. and LARsoN, K.C. "The System Architecture of the Distributed
Computer System-The Communications System," Symp. Computer
Netw., Polytechnic Institute of Brooklyn, April 1972.

FINKEL, R.A., SoLOMON, M.H. and TISCHLER, R. "The Roscoe Resource
Manager," COMPCON 79 Digest of Papers, IEEE, pp. 88-91, Feb.
1979.

FITZGERALD, R. and RASHID, R. "The Integration of Virtual Memory
Management and Interprocess Communication in Accent," Proc.
10th Symp. Operating Syst. Prin., ACM, pp. 13-14, Dec. 1985.

72

FRIDRICH, M. and OLDER, W. "HELIX: The Architecture of a Distributed
File System," Proc. Fourth Int'/. Conj on Distributed Comput. Syst.,
IEEE, pp. 422-431, 1984.

FRIDRICH, M. and OLDER, W. "The Felix File Server," Proc. Eighth Symp.
Operating Syst. Prin., ACM, pp. 37-44, 1981.

GAGLIANELLO, RD. and KATSEFF, H.P. "Meglos: An Operating System for a
Multiprocessor Environment," Proc. Fifth Int'/. Conj. on Distri
buted Comput. Syst., IEEE, pp. 35-42, May 1985.

GLIGOR, V.D. and SHATIUCK, S.H. "Deadlock Detection in Distributed Sys
tems," IEEE Trans. Softw. Eng., vol. SE-6, pp. 435-440, Sept. 1980.

GYLYS, V.B. and EDWARDS, J.A. "Optimal Partitioning of Workload for Dis
tributed Systems," COMPCON, pp. 353-357, Sept. 1976.

HWANG, K., CROFT, W.J., GoBLE, G.H., WAH, B.W., BRIGGS, F.A., SIMMONS,
W.R. and COATES, C.L. "A UNIX-Based Local Computer Net
work," Computer, vol. 15, pp. 55-66, April 1981.

IsLOOR, S.S. and MARsLAND, T.A. "An Effective On-line Deadlock Detection
Technique for Distributed Database Management Systems," Proc.
COMPSAC, IEEE, pp. 283-288, 1978.

JEFFERSON, D.R. "Virtual Time," ACM Trans. Program. La,ng. Syst., vol. 7,
pp. 404-425, July 1985.

JENSEN, E. D. "The Honeywell Experimental Distributed Processor-An Over
view of its Objective, Philosophy and Architectural Facilities,"
Computer, vol. 11, pp. 28-38, Jan. 1978.

JESSOP, W.H., JACOBSON, D.M., NOE, J.D., BAER, J.-L. and Pu, C. "The Eden
Transaction-Based File System," Proc. 2nd Symp. Reliability in
Distr. Software and Database Syst., pp. 163-169, July 1982.

KRUEGER, P. and FINKEL, RA. "An Adaptive Load Balancing Algorithm for
a Multicomputer," Computer Science Dept., Univ. of Wisconsin,
1983.

LAMPORT, L. "Using Time Instead of Timeout for Fault-Tolerant Distributed
Systems," ACM Trans. Program. La,ng. Syst., vol. 6, pp. 254-280,
April 1984.

LAMPORT, L. "Time, Clocks, and the Ordering of Events in a Distributed Sys
tem," Commun. ACM, vol. 21, pp. 558-565, July 1978.

LAMPSON, B.W. "Atomic Transactions," in Distributed Systems - Architecture
and Implementation, Berlin: Springer-Verlag, pp. 246-265, 1981

LAZOWSKA, E.D., LEVY, H.M., ALM:Es, G.T., FISCHER, M.J., FOWLER, R.J.
and VESTAL, S.C. "The Architecture of the Eden System," Proc.
Eighth Symp. Operating Syst. Prin., pp. 148-159, Dec. 1981

LEVY, H.M. Capability-Based Computer Systems, Maynard, Mass.: Digital
Press, 1984.

LISKOV, B. "Overview of the Argus Language and System," Programming
Methodology Group Memo 40, MIT Lab. for Comp. Sci., Feb
1984.

LISKOV, B. "On Linguistic Support for Distributed Programs," IEEE Trans.
Softw. Eng., vol. SE-8, pp. 203-210, May 1982.

73

LISKOV, B. and SCHEIFLER, R. "Guardians and Actions: Linguistic Support
for Robust, Distributed Programs," ACM Trans. Prog. Lang. Syst.,
vol. 5, pp. 381-404, July 1983. ACM, pp. 7-19, Jan. 1982.

Lo, V.M. "Heuristic Algorithms for Task Assignment in Distributed Sys
tems," Proc. Fourth Int'! Conj. on Distributed Comput. Syst., IEEE,
pp. 30-39, 1984.

LUDERER, G.W.R., CHE, H., HAGGERTY, J.P., K.IRSLIS, P.A. and MARSHALL,

W.T. "A Distributed UNIX System Based on a Virtual Circuit
Switch," Proc. Eighth Symp. Operating Syst. Prin., ACM, pp. 160-
168, 1981.

MAMRAK, S.A., MAURATH, P., GoMEz, J., JANARDAN, S. and NICHOLAS, C.
"Guest Layering Distributed Processing Support on Local Operat
ing Systems," Proc. 3rd Int'l Conj. on Distributed Comput. Syst.,
IEEE, pp. 854-859.

MARzuuo, K. and OWICKI, S. "Maintaining the Time in a Distributed Sys
tem," Operating Syst. Rev., vol. 19 pp. 44-54, July 1985.

MENASCE, D. and MUNTZ, R. "Locking and Deadlock Detection in Distri
buted Databases," IEEE Trans. Softw. Eng., vol. SE-5, pp. 195-
202, May 1979.

MILLSTEIN, R.E. "The National Software Works," Proc. ACM Ann. Conj., pp.
44-52, 1977.

MITCHELL, J.G. and DION, J. "A Comparison of Two Network-Based File
Servers," Commun. ACM, vol. 25, pp. 233-245, April 1982.

MOHAN, C.K. and WITTIE, L.D. "Local Reconfiguration of Management
Trees in Large Networks," Proc. Fifth Int'/ Conj. on Distributed
Comput. Syst., IEEE, pp. 386-393, May 1985.

MULLENDER, S.J. and TANENBAUM, A.S. "The Design of a Capability-Based
Distributed Operating System," Computer Journal, (to appear in
1986).

MULLENDER, SJ. and TANENBAUM, A.S. "A Distributed File Service Based
on Optimistic Concurrency Control," Proc. Tenth Symp. Operating
Syst. Prin., ACM, pp. 51-62, 1985.

MULLENDER, S.J. and TANENBAUM, A.S. "Protection and Resource Control in
Distributed Operating Systems," Computer Networks, vol 8, pp.
421-432, Nov. 1984.

NEEDHAM, R.M. and HERBERT, A.J. The Cambridge Distributed Computing
System, Reading, Mass: Addison-Wesley, 1982.

NELSON, B.J. "Remote Procedure Call," Tech. Rep. CSL-81-9, Xerox PARC,
1981.

OBERMARCK, R. "Distributed Deadlock Detection Algorithm," A CM Trans.
Database Syst., vol. 7, pp. 187-208, June 1982.

OKI, B.M., LISKOV, B.H. and ScHEIFLER, R.W. "Reliable Object Storage to
Support Atomic Actions," Proc. 10th Symp. Operating Sys. Prin. ,
pp. 147-159, Dec. 1985.

OUSTERHOUT, J.K. "Scheduling Techniques for Concurrent Systems," Proc.
3rd Int'/ Conj. on Distributed Comput. Syst., IEEE, pp. 22-30, 1982.

74

PASIITAN, A. "Object Oriented Operating Systems: An Emerging Design
Methodology," Proc. ACM National Conj., pp. 126-131, 1982.

POPEK, G., WALKER, B., CHow, J., EDWARDS, D., KLINE, C., RUDISIN and G.,
THmL, G. "LOCUS A Network Transparent, High Reliability Dis
tributed System," Proc. Eighth Symp. Operating Syst. Prin., ACM,
pp. 160-168, 1981

POWELL, M.L. and MILLER, B.P. "Process Migration in DEMOS/MP," Proc.
Ninth Symp. Operating Syst. Prin., ACM, pp. 110-119, 1983.

POWELL, M.L. and PRESOITO, D.L. "Publishing-A Reliable Broadcast Com
munication Mechanism," Proc. Ninth Symp. Operating Syst. Prin. ,
ACM, pp. 100-109, 1983.

Pu, C. and NOE, J.D. "Nested Transactions for General Objects," Report
TR-85-12-03. Univ. of Washington, Seattle, WA, 1985.

Pu, C., NOE, J.D. and PROUDFOOT, A. "Regeneration of Replicated Objects:
A Technique and its Eden Implementation," Proc. Second Int'!
Conj. on Data Engineering, pp. 175-187, Feb. 1986.

RASHID, R.F. and ROBERTSON, G.G. "Accent: A Communication Oriented
Network Operating System Kernel," Proc. Eighth Symp. Operating
Syst. Prin., ACM, pp. 64-75, 1981.

REED, D.P. "Implementing Atomic Actions on Decentralized Data," ACM
Trans. Comput. Syst., vol. 1, pp. 3-23, Feb. 1983

REED, D.P. and SvOBODOVA, L. "SWALLOW: A Distributed Data Storage
System for a Local Network," In Local Networks for Computer
Communications, A. West and P. Janson (eds.) North-Holland
Publ., Amsterdam, pp. 355-373, 1981.

REIF, J.H. and SPIRAKIS, P.G. "Real-Time Synchronization of Interprocess
Communications," ACM Trans. Program. Lang. Syst., vol. 6, pp.
215-238, April 1984.

RITCHIB, D.M. and THOMPSON, K. "The UNIX Time-sharing System," Com
mun. ACM, pp. 365-375, July 1974.

SALTZER, J.H., REED, D.P. and CLARK, D.D. "End-to-End Arguments in Sys
tem Design," ACM Trans. Comput. Syst., vol. 2, pp. 277-278, Nov.
1984.

SATYANARAYANAN, M., HOWARD, J., NICHOLS, D., SIDEBOTHAM, R., SPECTOR,
A. and WEST, M. "The ITC Distributed File System: Principles
and Design," Proc. Tenth Symp. Operating Syst. Prin., ACM, pp.
35-50, 1985.

SCHROEDER, M., GIFFORD, D. and NEEDHAM, R. "A Caching File System for
a Programmer's Workstation," Proc. Tenth Symp. Operating Syst.
Prin., ACM, pp. 25-34, 1985.

SOLOMON, M.H. and FINKEL, R.A. "ROSCOE: A Multimicrocomputer
Operating System," Proc. 2nd Rocky Mtn. Symp. Microcomputers,
pp. 201-210, Aug. 1978.

SOLOMON, M.H. and FINKEL, R.A. "The Roscoe Distributed Operating Sys
tem," Proc. Seventh Symp. Operating Syst. Prin., ACM, pp. 108-
114, 1979.p

75

SMITH, R. "The Contract Net Protocol: High-Level Communication and Con
trol in a Distributed Problem Solver," Proc. 1st Int'/ Conj Distri
buted Comput. Syst., IEEE, pp. 185-192, 1979.

SPECTOR, A.Z. "Performing Remote Operations Efficiently on a Local Com
puter Network," Commun. ACM, vol. 25, pp. 246-260, April 1982.

STANKOVIC, J.A. and SIDHU, I.S. "An Adaptive Bidding Algorithm for
Processes, Ousters, and Distributed ups," Proc. Fourth Int'/ Conj
on Distributed Comput. Syst., IEEE, pp. 49-59, 1984.

STONEBRAKER, M. "Operating System Support for Database Management,"
Commun. ACM, vol. 24, pp. 412-418, July 1981.

STONE, H.S. "Multiprocessor Scheduling with the Aid of Network Flow Algo
rithms," IEEE Trans. Softw. Engineering, vol. SE-3, pp. 88-93, Jan.
1977.

STONE, H.S. "Critical Load Factors in Distributed Computer Systems," IEEE
Trans. Softw. Eng., vol. SE-4, pp. 254-258, May 1978.

STONE, H.S. and BoKHARI, S.H. "Control of Distributed Processes," Com
puter, vol. 11, pp. 97-106, July 1978.

STURGIS, H.E., MITCHELL, J.G. and ISRAEL, J. "Issues in the Design and Use
of a Distributed File System," Operating Systems Rev., vol. 14, pp.
55-69, July 1980.

SVENTEK, J., GREIMAN, W., O'DELL, M. and JANSEN, A. "Token Ring Local
Networks-A Comparison of Experimental and Theoretical Perfor
mance," Lawrence Berkeley Lab. Report 16254, 1983.

SvoBODOVA,. L. "File Servers for Network-Based Distributed Systems," Com
puting Surveys, vol. 16, pp. 353-398, Dec. 1984.

SvoBODOVA, L. "A Reliable Object-Oriented Data Repository for a Distri
buted Computer System," Proc. Eighth Symp. Operating Syst. Prin.,
ACM, pp. 47-58, 1981.

SWINEHART, D., McDANIBL, G. and BOGGS, D. "WFS: A Simple Shared File
System for a Distributed Environment," Proc. Seventh Symp.
Operating Syst. Prin., ACM, pp. 9-17, 1979.

TANENBAUM, A.S. and MULLENDER, S.J. "Operating System Requirements
for Distributed Data Base Systems," in Distributed Data Bases,
Schneider, H.-J. (ed.), North-Holland, pp. 105-114, 1982.

TANENBAUM, A.S., MULLENDER, S.J. and VAN RENESSE, R. "Using Sparse
Capabilities in a Distributed Operating System," Proc. Sixth Int'/
Conj. on Distributed Computer Systems, IEEE, 1986.

VAN TILBORG, A.M. and WITTIB, L.D. "Wave Scheduling: Distributed Allo
cation of Task Forces in Network Computers," Proc. 2nd Int'/
Conj. on Distributed Comput. Syst., IEEE, pp. 337-347, 1981.

WALKER, B., POPEK, G., ENGLISH, R., KLINE, C. and THIBL, G. "The
LOCUS Distributed Operating System," Proc. Ninth Symp. Operat
ing Syst. Prin., ACM, pp. 49-70, 1983.

W AMBECQ, A. "NETIX: A Network-Using Operating System, Based on
UNIX Software," Proc. NFWO-ENRS Contact Group, Leuven,
Belgium, March 1983.

76

WEINSTEIN, M.J., PAGE, T.W., JR., LIVESEY, B.K. and POPEK, G.J. "Transac
tions and Synchronization in a Distributed Operating System,"
Proc. 10th Symp. Oper. Syst. Prin., pp. 115-125, Dec. 1985.

WILKES, M.V. and NEEDHAM, R.M. "The Cambridge Model Distributed Sys
tem," Operating Systems Rev., vol. 14, pp. 21-29, Jan. 1980.

WITTIE, L. and CuRTIS, R. ''Time Management for Debugging Distributed
Systems" Proc. Fifth Int'/ Conj on Distributed Comput. Syst, IEEE,
pp. 549-551, May 1985.

WITTIE, L.D. and VAN TuBORG, A.M. "MICROS, A Distributed Operating
System for MICRONET, A Reconfigurable Network Computer,"
IEEE Trans. Comput., vol C-29, pp. 1133-1144, Dec. 1980.

WUPIT, A. "Comparison of UNIX Network Systems," ACM Conj on Personal
and Small Computers, ACM, pp. 99-108, 1983.

ZIMMERMANN, H. "OSI Reference Model-The ISO Model of Architecture for
Open Systems Interconnection," IEEE Trans. Commun., vol.
COM-28, pp. 425-432, April 1980.

ZIMMERMAN, H., BANINo, J.-S., CARISTAN, A., GUILLEMONT, M. and MoR
ISSET, G. "Basic Concepts for the Support of Distributed Systems:
The Chorus Approach," Proc. 2nd Int'/ Conj on Distributed Com
put. Syst., IEEE, pp. 60-66, 1981.

The Design of a Capability-Based

Distributed Operating System

Sape J. Mullender
Centre for Mathematics and Computer Science

Amsterdam, The Netherlands

Andrew S. Tanenbaum
Department of Mathematics and Computer Science

Vrije Universiteit
Amsterdam, The Netherlands

Fifth generation computer systems will use large numbers of processors to
achieve high performance. In this paper a capability-based operating system
designed for this environment is discussed. Capability-based operating sys
tems have traditionally required large, complex kernels to manage the use of
capabilities. In our proposal, capability management is done entirely by user
programs without giving up any of the protection aspects normally associated
with capabilities. The basic idea is to use one-way functions and encryption to
protect sensitive information. Various aspects of the proposed system are dis
cussed.

1980 Mathematics Subject Classification: 68A05, 68820.
1982 CR Categories-. C.2.2, C.2.4, D.4.4, D.4.6.
Keywords & Phrases: distributed operating systems, capabilities, connection
less protocols, transaction-oriented protocols, protection, accounting, file sys
tems, service model.

1. INTRODUCTION

77

Fifth generation computers must be fast, reliable, and flexible. One way to
achieve these goals is to build them out of a small number of basic modules
that can be assembled together to realize machines of various sizes. The use of
multiple modules can make the machines not only fast, but also achieve a sub
stantial amount of fault tolerance. The system architecture and software for
such machines are described below.

The Design of a Capability-Based Distributed Operating System
S. J. MULLENDER and A. S. TANENBAUM

The Computer Journal
Vol. 29, No. 4, pp. 289-300
March 1986

78

1.1. System architecture
The price of processors and memory is decreasing at an incredible rate. Extra
polating from the current trend, it is likely that a single board containing a
powerful CPU, a substantial fraction of a megabyte of memory, and a fast net
work interface will be available for a manufacturing cost of less than 100 in
1990. Our intention is therefore to do research on the architecture and
software of machines built up of a large number of such modules.

In particular, we envision three classes of machines: (1) personal computers
consisting of a high~quality bit-map display and a few processor-memory
modules; (2) departmental machines consisting of hundreds of such modules;
and (3) large mainframes consisting of thousands of them. The primary
difference between these machines is the number of modules, rather than the
type of the modules. In principle, any of these machines can be gracefully
increased in size to improve performance by adding new modules or decreased
in size to allow removal and repair of defective modules. The software run
ning on the various machines should be in essence identical. Furthermore, it
should be possible to connect different machines together to form even larger
machines and to partition existing machines into disjoint pieces when neces
sary, all in a way transparent to the user level software.

This model is superior to the oft-proposed "Personal Computer Model" (as
exemplified by XEROX PARC), in a number of ways. In the personal computer
model, each user has a dedicated minicomputer, complete with disks, in his
office or at home. Unfortunately, when people work together on large projects,
having numerous local file systems can lead to multiple, inconsistent copies of
many programs. Also, the noise generated by disks in every office, and the
maintenance problems generated by having machines spread all over many
buildings can be annoying.

Furthermore, computer usage is very bursty: most of the time the user does
not need any computing power, but once in a while he may need a very large
amount of computing power for a short time (e.g., when recompiling a pro
gram consisting of 100 files after changing a basic shared declaration). The
fifth generation computer we propose is especially well suited to bursty compu
tation. When a user has a heavy computation to do, an appropriate number
of processor-memory modules are temporarily assigned to him. When the
computation is completed, they are returned to the idle pool for use by other
users. This contrasts with the Cambridge Distributed Operating System
[Needham82], which also has a "processor bank," but assigns a processor to a
user for the duration of a login session.

1.2. System software
A machine of the type described above requires radically different system
software than existing machines. Not only must the operating system
effectively use and manage a very large number of processors, but the com
munication and protection aspects are very different from those of existing sys
tems.

Traditional networks and distributed systems are based on the concept of

79

two processes or processors communicating via connections. The connections
are typically managed by a hierarchy of complex protocols, usually leading to
complex software and extreme inefficiency. (An effective transfer rate of 0.1
megabit/sec over a 10 megabit/sec local network, which is only 1 % utili7.ation,
is frequently barely achievable.)

We reject this traditional approach of viewing a distributed system as a col
lection of discrete processes communicating via multilayer (e.g., ISO) protocols,
not only because it is inefficient, but because it puts too much emphasis on
specific processes, and by inference, on processors. Instead we propose to base
the software design on a different conceptual modelthe object model. In this
model, the system deals with abstract objects, each of which has some set of
abstract operations that can be performed on it.

Associated with each object are one or more "capabilities" [Dennis66] which
are used to control access to the object, both in terms of who may use the
object and what operations he may perform on it. At the user level, the basic
system primitive is performing an operation on an object, rather than such
things as establishing connections, sending and receiving messages, and closing
connections. For example, a typical object is the file, with operations to read
and write portions of it.

The object model is well-known in the programming languages community
under the name of "abstract data type" [Liskov74]. This model is especially
well-suited to a distributed system because in many cases an abstract data type
can be implemented on one of the processor-memory modules described
above. When a user process executes one of the visible functions in an
abstract data type, the system arranges for the necessary underlying message
transport from the user's machine to that of the abstract data type and back.
The header of the message can specify which operation is to be performed on
which object. This arrangement gives a very clear separation between users
and objects, and makes it impossible for a user to directly inspect the represen
tation of an abstract data type by bypassing the functional interface.

A major advantage of the object or abstract data type model is that the
semantics are inherently location independent. The concept of performing an
operation on an object does not require the user to be aware of where objects
are located or how the communication is actually implemented. This property
gives the system the possibility of moving objects around to position them
close to where they are frequently used. Furthermore, the issue of how many
processes are involved in carrying out an operation, and where they are located
is also hidden from the user.

It is frequently convenient to implement the object model in terms of clients
(users) who send messages to services [Cheriton83, Needham82, Ball79]. A
service is defined by a set of commands and responses. Each service is han
dled by one or more server processes that accept messages from clients, carry
out the required work, and send back replies. The design of these servers and
the design of the protocols they use form an important part of the system
software of our proposed fifth generation computers.

As an example of the problems that must be solved, consider a file server.

80

Among other design issues that must be dealt with are how and where infor
mation is stored, how and when it is moved, how it is backed up, how con
current reads and writes are controlled, how local caches are maintained, how
information is named, and how accounting and protection are accomplished.
Furthermore, the internal structure of the service must be designed: how many
server processes are there, where are they located, how and when do they com
municate, what happens when one of them fails, how is a server process organ
ized internally for both reliability and high performance, and so on. Analo
gous questions arise. for all the other servers that comprise the basic system
software.

2. COMMUNICATION PRIMITIVES AND PROTOCOLS
In the literature about computer networks, one finds much discussion of the
ISO OSI reference model [Zimmermann80] these days. It is our belief that the
price that must be paid in terms of complexity and performance in order to
achieve an "open" system in the ISO sense is much too high, so we have
developed a much simpler set of communication primitives, which we will now
describe.

2.1. Transaction vs. stream communication
Most distributed systems have a connection mechanism that is based on the
idea of two processes going to some effort to set up a connection, using the
connection, and then tearing it down. The assumption is that a connection
will be used for a stream of information so long that the overhead needed to
set it up and tear it down are basically negligible. Most streams will consist of
a file of one kind or another - a source program, a binary program, an input
file, and so on. To see how long the average file is, we have conducted some
measurements on the UNIXt system used in our department by the faculty and
staff for research (no students, thus). The results of these measurements show
that 34% of all files are less than 512 bytes, 52% are less than IK bytes, 67%
are less than 2K bytes, 79% are less than 4K bytes, 88% are less than SK
bytes, and 94% are less than 16K bytes.

The above considerations have led us to a different approach [Mullender83].
With packets of even 2K bytes, two thirds of all files fit into a single packet.
Consequently, it is much simpler to adopt a "Request-Reply" or "Transaction"
style of communication, in which the basic primitive is the client sending a
request to a server and the server sending a reply back to the client. The
client uses trans and the server getreq and putrep. Trans sends a request,
and blocks until a reply is received. Getreq blocks the server until a request is
received, which can then be processed, after which a reply can be sent using
putrep. Each request-reply pair is completely self-contained, and independent
of any other ones that may previously been sent. In other words, no concept
of a "connection" exists. Not only is this conceptually much more appropriate

t UNIX is a Trademark of AT&T Bell Laboratories.

81

for use in an operating system, but it is much simpler to implement than a
complex 7-layer protocol, not to mention offering lower delay.

As a matter of fact, a distinct trend towards connectionless interprocess
communication services could clearly be observed at the recent Workshop on
Operating Systems in Computer Networks in Zurich, Switzerland: all, or
nearly all of the systems presented there were message-based rather than
connection-based.

Henceforth we will refer to a request-reply pair as a transaction, which is not
to be confused with transactions with a data base.

2.2. Basic communication protocol
Instead of a 7-layer protocol, we effectively have a 4-layer protocol. The bot
tom layer is the Physical Layer, and deals with the electrical, mechanical and
similar aspects of the network hardware. The next layer is the Port Layer, and
deals with the location of services, the transport of (32K byte) datagrams
(packets whose delivery is not guaranteed) from source to destination and
enforces the protection mechanism, which will be discussed in the next section.
On top of this we have a layer that deals with the reliable transport of
bounded length (32K byte) requests and replies between client and server. We
have called this layer the Transaction Layer. The final layer has to do with the
semantics of the requests and replies, for example, given that one can talk to
the file server, what commands does it understand. The bottom three layers
(Physical, Port and Transaction) are implemented by the kernel and hardware;
only the Transaction Layer interface is visible to users.

Since systems of the kind we are describing will use high-speed, highly reli
able local networks, few, if any, of the complex mechanisms designed for flow
and error-control in long-haul networks are useful here. Among other things,
a simple stop-and-wait protocol is sufficient. The main function of the Tran
saction Layer is to provide an end-to-end message service built on top of the
underlying datagram service, the main difference being that the former uses
timers and acknowledgements to guarantee delivery whereas the latter does
not.

The Transaction Layer protocol is straightforward. When the client does a
trans, a packet, or sequence of packets, containing the request is sent to the
server, the client is blocked, and a timer is started (inside the Transaction
Layer). lithe server does not acknowledge receipt of the request packet before
the timer expires (usually by sending the reply, but in some special cases by
sending a separate acknowledgement packet), the Transaction Layer
retransmits the packet again and restarts the timer. When the reply finally
comes in, the client sends back an acknowledgement (possibly piggybacked
onto the next request packet) to allow the server to release any resources, such
as buffers, that were acquired for this transaction. Under normal cir
cumstances, reading a long file, for example, consists of the sequence

From client : request for block 0
From server: here is block 0

82

From client : acknowledgement for block O and request for block l
From server: here is block 1

etc.

The protocol can handle the situation of a server crashing and being rebooted
quite easily since each request contains the capability for the file to be read
and the position in the file to start reading. Between requests, the server has
no "activation record" or other table entry whose loss during a crash causes
the server to forget which files were open, etc., because no concept of an open
file or a current position in a file exists on the server's side. Each new request
is completely self-contained. Of course for efficiency reasons, a server may
keep a cache of frequently accessed i-nodes, file blocks etc., but these are not
essential and their loss during a crash will merely slow the server down slightly
while they are being dynamically refreshed after a reboot.

2.3. The port layer
The Port Layer is responsible for the speedy transmission of 32K byte
datagrams. The Port Layer need only do this reasonably reliably, and does
not have to make an effort to guarantee the correct delivery of every datagram.
This is the responsibility of the Transaction Layer. Our results show that this
approach leads to significantly higher transmission speeds, due to simpler pro
tocols.

Theoretically, very high speeds are achievable in modem local-area net
works. A typical speed for DMA transfers is 1 byte/ µ.sec, and the typical
transmission speed of a 10 Mbit local-area network is also 1 byte/µ.sec. Since,
in many network interfaces, DMA transfer and network transfer cannot overlap,
but DMA at the destination host can overlap with the DMA of the next packet at
the source host, an upper bound for the transfer rate of a typical local-area
network is 500,000 bytes/ sec point-to-point.

In practise, however, speeds of 100,000 bytes per second between user
processes have rarely been achieved. Obviously, to achieve higher transmission
rates, the overhead of the protocol must be kept very low indeed, while an
effort must be made to overlap DMA s at both communicating parties. To
achieve this, we have chosen a large datagram size for the Port Layer, which
has to split up the datagrams into small packets that the network hardware
can cope with. This approach allows the implementor of the Port Layer to
exploit the possibilities that the hardware has to offer to achieve an efficient
stream of packets.

Our implementation of the Port Layer interfaces to a 10 Mbit token ring
that allows scatter-gather; that is, a packet can be sent to or from the interface
in several DMA transfers, and then transmitted over the network separately.
This allows us to do two important things to speed up the protocol. First,
when a packet is received, the header can be inspected separately, so the proto
col can decide where in memory the packet must go. The protocol driver can
then transfer the packet directly from the interface to the right place in
memory, without having to copy it. A copy loop would halve the transmission

83

speed. Second, the separation of DMA and transmission allows the driver to
prepare a transmission by doing the DMA. The transmission can then be ini
tiated immediately when the signal is received that the receiver is ready. In
our implementation of the Port Layer, these considerations have resulted in the
protocol that will now be described.

The transmitter begins by transferring and sending the first 2K of the
datagram to be transmitted (2K is the maximum packet size allowed by the
hardware). Immediately after the transmission is complete, the DMA for the
next 2K bytes is started,. but they are not yet transmitted. In the mean time,
the receiver is interrupted by the arrival of the first packet. It extracts the
header, examines it and decides where the body of the packet should go. Then
the body of the packet is transferred from the interface to its final location in
memory. While this is being done, the receiver prepares a tiny acknowledge
ment packet to tell the transmitter it is prepared for the next packet. As soon
as the DMA transfer of the previous packet has finished, this acknowledgement
is sent back to the transmitter. When the transmitter receives it, the transfer
of the next packet to the interface will have finished, so it can then be sent
immediately. This sequence is continued until the whole datagram is transmit
ted.

2.4. The transaction layer
It is the responsibility of the Transaction Layer to guarantee the arrival of
requests and replies. The Transaction Layer makes use of the Port Layer and
timers to achieve this.

The interface to the transaction layer basically consists of three calls, one for
clients, and two for servers. All calls use a small datastructure, called Mref,
which contains a pointer to a small fixed-size out-of-band buffer for the
transmission of commands and parameters to the server, a pointer to the main
body of data to be transferred, and the length of the main body of data (0 to
32768), as follows:

typedef struct Mref {
char *M ooh;
char *M-buf;
unsigned M _len;

} Mref;

typedef struct Cap {
Port C _port;
char ~.,.Private(IO];

} Cap; /* capability * /

/* 6-byte port * /
/* IO-byte private*/

The client, in order to do a transaction calls

84

trans(cap, req, rep);
Cap *cap;
Mref *req, *rep;

The server receives requests and sends replies with

getreq(port, cap, req);
Port *port;
Cap *cap;
Mref *req;

putrep(rep);
Mref *rep;

In principle, the Transaction Layer works as follows: When a client calls
trans, the Transaction Layer generates a reply-port to enable the server to send
a reply. The server port is deduced from the capability; the first 48 bits of the
capability for an object identify the service that controls the object. The
request is then sent, using put, and a retransmission timer is started.

The server, which previously had made a call to getreq, receives the request;
the capability is filled in, and the received message is put in the buffers
referred to by req. As soon as the request is received, the server's Transaction
Layer starts a piggyback timer. When the server has not sent a reply before
this timer expires, a separate acknowledgement is sent to put the client at ease,
and stop its retransmission timer. When the server sends a reply to the client
the same thing happens, more or less, with the role of client and server
reversed. When a client makes a sequence of transactions with a single server,
a subsequent request will acknowledge receipt of the previous reply.

The client maintains one more timer, the crash timer. This timer is set when
the server's acknowledgement to a request has been received, and is used to
detect server crashes. Whenever this timer expires, the client sends an "are
you still alive?" packet to the server, to which the server replies with an ack
nowledgement.

When transactions occur quickly, one after the other, no extra acknowledge
ments are sent at all. Only when transactions take a long time (say, longer
than a minute), acknowledgements are sent, and when transactions take much
longer than that (say, ten minutes) then "are you still alive" messages begin to
be sent.

2.5. Timer management
If the timers are started and stopped in exactly the way described above, the
Transaction Layer would become unacceptably slow. Per (quick) transaction,
two retransmission timers and two piggyback timers would have to be started
and stopped, eight timer actions altogether.

There is a much more efficient way of dealing with timers, one that makes
use of a sweep algorithm. This algorithm does not implement very accurate
timers, but accuracy of the timer intervals is not very important to the correct

85

and efficient operation of the protocol.
The sweep algorithm is run every N clock ticks. N must be chosen such

that N ticks is about the minimum timer interval needed (the piggyback timer
interval). Whenever the algorithm is called, it makes a sweep over all out
standing transactions. H the state of a transaction has changed, the new state
is recorded. H it has not changed, a counter is incremented, telling for how
long the state has remained the same. H the (state, counter) combination has
reached a certain value, the sweep algorithm carries out the appropriate
actions, usually sending . an acknowledgement, retransmitting a message, or
aborting a transaction.

Because this algorithm is used there is no code needed in the transaction
code itself, reducing the overhead of the Transaction Layer significantly. In
this way, the code executed in the Transaction Layer is optimised for the nor
mal case (no errors).

2.6. Blocking vs. non-blocking transaction primitives
Most services need to be able to handle multiple requests from different clients
simultaneously. It therefore seems natural to implement non-blocking calls for
interprocess communication, as this will allow a service to react to events in
the order they occur. When blocking communication calls are used, a server is
forced to wait for the specific event that unblocks the call.

Because it is rather difficult to write correct code for a process which has to
handle multiple flows of control indeterministically, the Amoeba system pro
vides the concept of tasks, sharing an address space. A number of tasks in
one address ·space forms a cluster, and specific rules govern the scheduling of
tasks within a cluster: only one task can run at a time, and a task runs until it
voluntarily relinquishes control (e.g., on trans and getreq calls).

A server can thus easily be structured as a collection of co-operating tasks,
each task handling one request. This model has greatly simplified the structure
of services, as each task making up the server cluster now has a single thread
of execution. The model also obviated the need for non-blocking transaction
calls, with their complicated (and slow) extra interface for handling interrupts.

2. 7. Results
Two versions of the algorithm have now been implemented. The one
described has been implemented Oil the Amoeba distributed operating system,
and achieves over 300,000 bytes a second from user process to user process
(using M68000s and a Pronet* ring). It is now being implemented under
UNIX where we expect to obtain more than 200,000 bytes/ sec, assuming the
communicating processes are not swapped.

An older version of the protocol, using 2K byte datagrams, now gets 90,000
bytes/sec across the network between two VAX-750s running a normal load of
work, without causing a significant load on the system itself.

* PR.ONBT is a trademark of Proteon Associates, Inc.

86

Several services, implemented under UNIX, are using the Transaction Layer
interface, and it is our experience that these services are easy to design and
that they work efficiently.

3. PORTS AND CAPABILITIES

3.1. Ports
Every service has one or more ports [Mullender84] to which client processes
can send messages to contact the service. Ports consist of large numbers, typi
cally 48 bits, which are known only to the server processes that comprise the
service, and to the service's clients. For a public service, such as the system
file service, the port will be generally made known to all users. The ports used
by an ordinary user process will, in general, be kept secret. Knowledge of a
port is taken by the system as prima facie evidence that the sender has a right
to communicate with the service. Of course the service is not required to carry
out work for clients just because they know the port, for example, the public
file service may refuse to read or write files for clients lacking account
numbers, appropriate authorization, etc.

Although the port mechanism provides a convenient way to provide partial
authentication of clients ("if you know the port, you may at least talk to the
service"), it does not deal with the authentication of servers. The basic primi
tive operations offered by the system are trans, putreq and getrep.
Since everyone knows the port of the file server, as an example, how does one
insure that malicious users do not execute getreqs on the file server's port,
in effect impersonating the file server to the rest of the system?

One approach is to have all ports manipulated by kernels that are presumed
trustworthy and are supposed to know who may getreq from which port
[Cheriton83, Rashid81]. We reject this strategy because some machines, e.g.,
personal computers connected to larger multi.module systems may not be
trustworthy, and also because we believe that by making the kernel as small as
possible, we can enhance the reliability of the system as a whole. Instead, we
have chosen a different solution that can be implemented in either hardware or
software. First we will describe the hardware solution; later we will describe
the software solution.

In the hardware solution, we need to place a small interface box, which we
call an F-box (Function-box) between each processor module and the network.
The most logical place to put it is on the VLSI chip that is used to interface to
the network. Alternatively, it can be put on a small printed circuit board
inside the wall socket through which personal computers attach to the network.
In those cases where the processors have user mode and kernel mode and a
trusted operating system running in kernel mode, it can also be put into
operating system software. In any event, we assume that somehow or other all
packets entering and leaving every processor undergo a simple transformation
that users cannot bypass.

The transformation works like this. Each port is really a pair of ports, P,
and G, related by: P = F(G), where Fis a (publicly-known) one-way function

87

[Wilkes68, Purdy74, Evans74] performed by the F-box. The one-way function
has the property that given G it is a straightforward computation to find P,
but that given P, finding G is so difficult that the only approach is to try every
possible G to see which one produces P. If P and G contain sufficient bits,
this approach can be made to take millions of years on the world's largest
supercomputer, thus making it effectively impossible to find G given only P.
Note that a one-way function differs from a cryptographic transformation in
the sense that the latter must have an inverse to be useful, but the former has
been carefully chosen so that no inverse can be found.

F-box also say
send to P

Client says
send to P

F

CLIENT

INTRUDER

Intruder doesn'
knowG

F

FIGURE 1.

-box actually listens
for P = F(G)

Server says
listen for G

SERVER

Using the one-way F-box, the server authentication can be handled in a sim
ple way, illustrated in figure 1. Each server chooses a get-port, G, and com
putes the corresponding put-port, P. The get-port is kept secret; the put-port
is distributed to potential clients or in the case of public servers, is published.
When the server is ready to accept client requests, it does a getreq(G,
cap, req). The F-box then computes P = F(G) and waits for packets con
taining P to arrive. When one arrives, it is given to the appropriate process.
To send a packet to the server, the client merely does trans(cap, req,
rep), where the port field of cap is set to P. This will cause a datagram to
be sent by the local F-box with P in the destination-port field of the header.
The F-box on the sender's side does not perform any transformation on the P
field of the outgoing packet.

Now let us consider the system from an intruder's point of view. To imper
sonate a server, the intruder must do getreq(G, · · ·). However, G is a
well-kept secret, and is never transmitted on the network, Since we have

88

assumed that G cannot be deduced from P (the one-way property of F) and
that the intruder cannot circumvent the F-box, he cannot intercept packets not
intended for him. Replies from the server to the client are protected the same
way, only with the client's Transaction Layer picking a get~port for the reply,
say, G', and including P' = F(G') in the request packet.

The presence of the F-box makes it easy to implement digital signatures for
still further authentication, if that is desired. To do so, each client chooses a
random signature, S, and publishes F(S). The F-box must be designed to
work as follows. Each packet presented to the F-box contains three special
header fields: destination (P), reply (G'), and signature (S). The F-box applies
the one-way function to the second and third of these, transmitting the three
ports as: P, F(G'), and F(S), respectively. The first is used by the receiver's
F-box to admit only packets for which the corresponding getreq has been
done, the second is used as the put-port for the reply, and the third can be
used to authenticate the sender, since only the true owner of the signature will
know what number to put in the third field to insure that the publicly-known
F(S) comes out.

It is important to note that the F-box arrangement merely provides a simple
mechanism for implementing security and protection, but gives operating sys
tem designers considerable latitude for choosing various policies. The mechan
ism is sufficiently flexible and general that it should be possible to put it into
hardware with precluding many as-yet-unthought-of operating systems to be
designed in the future.

3.2. Capabilities
In any object-based system, a mechanism is needed to keep track of which
processes may access which objects and in what way. The normal way is to
associate a capability with each object, with bits in the capability indicating
which operations the· holder of the capability may perform. In a distributed
system this mechanism should itself be distributed, that is, not centralized in a
single monolithic "capability manager." In our proposed scheme, each object
is managed by some service, which is a user (as opposed to kernel) program,
and which understands the capabilities for its objects.

SERVER OBJECT I RIGHfS I RANDOM

FIGURE 2.
A capability typically consists of four fields, as illustrated in figure 2:

1. The put-port of the service that manages the object
2. An Object Number meaningful only to the service managing the object
3. A Rights Field, which contains a 1 bit for each permitted operation
4. A Random Number for protecting each object

The basic model of how capabilities are used can be illustrated by a simple

89

example: a client wishes to create a file using the file service, write some data
into the file, and then give another client permission to read (but not modify)
the file just written. To start with, the client sends a message to the file
service's put-port specifying that a file is to be created. The request might con
tain a file name, account number and similar attributes, depending on the
exact nature of the file service. The server would then pick a random number,
store this number in its object table, and insert it into the newly-formed object
capability. The reply would contain this capability for the newly created
(empty) file.

To write the file, the client would send a message containing the capability
and some data. When the write request arrived at the file server process,
the server would normally use the object number contained in the capability as
as index into its tables to locate the object. For a UNIX like file server, the
object number would be the i-node number, which could be used to locate the
i-node. ·

Several object protection systems are possible using this framework. In the
simplest one, the server merely compares the random number in the file table
(put there by the server when the object was created) to the one contained in
the capability. If they agree, the capability is assumed to be genuine, and all
operations on the file are allowed. This system is easy to implement, but does
not distinguish between read, write, delete, and other operations that
may be performed on objects.

However, it can easily be modified to provide that distinction. In the
modified version, when a file (object) is created, the random number chosen
and stored in the file table is used as an encryption/decryption key. The capa
bility is built up by taking the Rights Field (e.g., 8 bits), which is initially all
ls indicating that all operations are legal, and the Random Number Field (e.g.,
56 bits), which contains a known constant, say, 0, and treating them as a sin
gle number. This number is then encrypted by the key just stored in the file
table, and the result put into the newly minted capability in the combined
Rights-Random Field. When the capability is returned for use, the server uses
the object number (not encrypted) to find the file table and hence the
encryption/ decryption key. If the result of decrypting the capability leads to
the known constant in the Random Number Field, the capability is almost
assuredly valid, and the Rights Field can be believed. Clearly, an encryption
function that mixes the bits thoroughly is required to ensure that tampering
with the Rights Field also affects the known constant. Exclusive or'ing a con
stant with the concatenated Rights and Random fields will not do.

When this modified protection system is used, the owner of the object can
easily give an exact copy of the capability to another process by just sending it
the bit pattern, but to pass, say, read-only access, is harder. To accomplish
this task, the process must send the capability back to the server along with a
bit mask and a request to fabricate a new capability whose Rights Field is the
Boolean-and of the Rights Field in the capability and the bit mask. By choos
ing the bit mask carefully, the capability owner can mask out any operations
that the recipient is not permitted to carry out.

90

This modified system works well except that it requires going back to the
server every time a sub-capability with fewer rights is needed. We have dev
ised yet another protection system that does not have this drawback. This
third scheme requires the use of a set of N commutative one-way functions,
F0 , F 1, • • ·, FN-l corresponding to the N rights present in the Rights Field.
When an object is created, the server chooses a random number and puts it in
both the file table and the Random Number Field, just as in the first scheme
presented. It also sets all the Rights Field bits to 1.

server gives client turns off X turns off Y gives cap. to server
client capability bit i and bitj and server applies F; and Fj

containing R gives cap. to X gives cap. to Y to R in object to verify

s C X y s
R, all rights F;(R), all f!ghts Fj(F;(R)), !111 !ights

except l except z, J

FIGURE 3.
A client can delete permission k from a capability by replacing the random

number, R, with Fk(R) and turning off the corresponding bit in the Rights
Field. When a capability comes into the server to be used, the server fetches
the original random number from the file table, looks at the Rights Field, and
applies the functions corresponding to the deleted rights to it. If the result
agrees with the number present in the capability, then the capability is
accepted as genuine, otherwise it is rejected. The mechanism is illustrated in
figure 3. Note that although the Rights Field is not encrypted, it is pointless
for a client to tamper with it, since the server will detect that immediately. In
theov at least, the Rights Field is not even needed, since the server could try
all 2 combinations of the functions to see if any worked. Its presence merely
speeds up the checking. It should also be clear why the functions must be com
mutative - it does not matter in what order the bits in the Rights Field were
turned off.

The organization of capabilities and objects discussed above has the interest
ing property that although no central record is kept of who has which capabili
ties, it is easy to retract existing capabilities. All that the owner of an object
need do is ask the server to change the random number stored in the file table.
Obviously this operation must be protected with a bit in the Rights Field, but
if it succeeds, all existing capabilities are instantly invalidated.

3.3. Protection without F-boxes
Earlier we said that protection could also be achieved without F-boxes. It is
slightly more complicated, since it uses both conventional and public-key
encryption, but it is still quite usable. The basic idea underlying the method is
the fact that in nearly all networks an intruder can forge nearly all parts of a
packet being sent except the source address, which is supplied by the network

91

interface hardware. To take advantage of this property, imagine a (possibly
symmetric) conceptual matrix of conventional (e.g., DES) encryption keys, with
the rows being labeled by source machine and the columns by destination
machine. Thus the matrix selects a unique key for encrypting the capabilities
in any packet. The data need not be encrypted, although that is also possible
if needed.

Each machine is assumed to know its row and column of the matrix, and
nothing else (how this will be achieved will be discussed shortly). With this
arrangement, intruder I can easily capture packets from client C to server S,
but attempts to "play them back" to the server will fail because the server will
see the source machine as I (assumed unforgeable) and use element M1s as the
decryption key instead of the correct Mes- No matter what the intruder does,
he cannot trick the server into using a decryption key that decrypts the capa
bilities to make sense, that is, to contain random numbers that agree with
those stored in the file tables.

To avoid having to run the encryption/decryption algorithm frequently, all
machines can maintain a hashed cache of capabilities that they have been
using frequently. Clients will hash their caches on the unencrypted capabilities
in the form of triples: (unencrypted capability, destination, encrypted capabil
ity), whereas servers will hash theirs in the form of triples: (encrypted capabil
ity, source, unencrypted capability).

To set up the matrix initially, the following procedure can be used. A pub
lic server, such as a file server, makes its put-port and a public encryption key
known to the whole world. When a new machine joins the network (e.g., after
a crash or upon initial system boot), it sends a broadcast message announcing
its presence. Suppose, for example, the file server has just come up, and must
(1) prove that it is the file server to other processes, and (2) establish the con
ventional keys used for encrypting capabilities in both directions.

A client machine, C, which receives the broadcast from the alleged file
server, F, picks a new conventional encryption key, K, for use in subsequent C
to F traffic and sends it to F encrypted with Fs public key. F then decrypts K
and replies to C by sending a packet containing both K and a newly chosen
conventional key to be used for reverse traffic. This packet is encrypted both
with K itself and with the inverse of Fs public key, so C can use K and Fs
public key to decrypt it. If the decrypted packet contains K, C can be sure
that the other conventional key was indeed generated by the owner of Fs pub
lic key, thus convincing C that he is indeed talking to the file server. Both of
the above-mentioned conditions have now been fulfilled, so normal communi
cation can now take place. Note that the use of different conventional keys
after each reboot make it impossible for an intruder to fool anyone by playing
back old packets.

92

4. THE AMOEBA FILE SYSTEM
The file system has been designed to be highly modular, both to enhance relia
bility and to provide a convenient testbed for doing research on distributed file
systems. It consists of three completely independent pieces: the block service,
the file service, and the directory service. In short, the block service· provides
commands to read and write raw disk blocks. As far as it is concerned, no
two blocks are related in any way, that is, it has no concept of a file or other
aggregation of blocks. The file service uses the block service to build up files
with various properties. Finally, the directory service provides a mapping of
symbolic names onto object capabilities.

4.1. Block service
The block service is responsible for managing raw disk storage. It provides an
object-oriented interface to the outside world to relieve file servers from having
to understand the details of how disks work. The principle operations it per
forms are:

al locate a block, write data into it, and return a capability to the block
given a capability for a block, free the block
given a capability for a block, read and return the data contained in it
given a capability for a block and some data, write the data into the
block
given a capability for a block and a key, lock or unlock the block

These primitives provide a convenient object-oriented interface for file servers
to use.· In fact, any client who is unsatisfied [Stonebraker81, Tanenbaum82]
with the standard file system can use these operations to construct his own.

The first four operations of allocate, free, read, and write hardly
need much comment. The fifth one provides a way for clients to lock indivi
dual blocks. Although this mechanism is crude, it forms a sufficient basis for
clients (e.g., file systems) to construct more elaborate locking schemes, should
they so desire.

One other operation is worth noting. The data within a block is entirely
under the control of the processes possessing capabilities for it, but we expect
that most file servers will use a small portion of the data for redundancy pur
poses. For example, a file server might use the first 32 bits of data to contain
a file number, and the next 32 bits to contain a relative block number within
the file. The block server supports an operation recovery, in which the
client provides the account number it uses in al locate operations and
requests a list of all capabilities on the whole disk containing this account
number. (The block server stores the account number for each block in a
place not accessible to clients.) Although recovery is a very expensive
operation, in effect requiring a search of the entire disk, armed with all the
capabilities returned, a file server that lost all of its internal tables in a crash
could use the first 64 bits of each block to rebuild its entire file list from
scratch.

93

4.2. File service
The purpose of splitting the block service and file service is to make it easy to
provide a multiplicity of different file services for different applications. One
such file service that we envision is one that supports flat files with no locking,
in other words, the UNIX model of a file as a linear sequence of bytes with no
internal structure and essentially no concurrency control. This model is quite
straightforward and will therefore not be discussed here further.

A more elaborate file service with explicit version and concurrency control
for a multiuser environment will be described instead [Mullender85]. This file
service is designed to support data base services, but it itself is just an ordi
nary, albeit slightly advanced, file service. The basic model behind this file ser
vice is that a file is a time-ordered sequence of versions, each version being a
snapshot of the file made at a moment determined by a client [Fridrich81,
Reed81]. At any instant, exactly one version of the file is the current version.
To use a file, a client sends a message to a file server process containing a file
capability and a request to create a new, private version of the current version.
The server returns a capability for this new version, which acts like it is a
block for block copy of the current version made at the instant of creation. In
other words, no matter what other changes may happen to the file while the
client is using his private version, none of them are visible to him. Only
changes he makes himself are visible.

Of course, for implementation efficiency, the file is not really copied block
for block. What actually happens is that when a version is created, a table of
pointers (capabilities) to all the file's blocks is created. The capability granted
to the client for the new version actually refers to this version table rather than
the file itself. Whenever the client reads a block from the file, a bit is set in
the version table to indicate that the corresponding block has been read.
When a block is modified in the version, a new block is allocated using the
block server, the new block replaces the original one, and its capability is
inserted into the version table. A bit indicating that the block is a new one
rather than an original is also set. This mechanism is sometimes called "copy
on write."

Versions that have been created and modified by a client are called uncom
mitted versions. At a particular moment, the current version may have several
(different) uncommitted versions derived from it in use by different clients.
When a client is :finished modifying his private version, he can ask the file
server to commit his version, that is, make it the current version instead of the
then current version. If the version from which the to-be-committed version
was derived is still current at the time of the commit, the commit succeeds and
becomes the new current version.

94

1.1

1.2.1

1.2
current

1.2.2

FIGURE 4.

1.3

1.2.3

As an example, suppose version 1 is initially the current version, with vari
ous clients creating private versions 1.1, 1.2, and 1.3 based on it. If version 1.2
is the first to commit, it wins and 1.2 becomes the new current version, as
illustrated in figure 4. Subsequent requests by other clients to create a version
will result in versions 1.2.1, 1.2.2, and 1.2.3, all initially copies of 1.2.

The fun begins when the owner of version 1.3 now tries to commit. Version
1, on which it is based, is no longer the current version, so a problem arises.
To see how this should be handled, we must introduce a concept from the data
base world, serializability [&waran76, Papadimitriou79]. Two updates to a file
are said to be serializable if the net result is either the same as if they were run
sequentially in either order. As a simple example, consider a two character file
initially containing "ab." Client 1 wants to write a "c" into the first character,
wait a while, and then write a "d" into the second character. Client 2 wants to
write an "e" into the first character, wait a while, and then write an "f' into
the second character. If 1 runs first we get "cd"; if 2 runs first we get "ef."
Both of these are legal results, since the file server cannot dictate when the
users run. However, its job is to prevent final configurations of "cf' or "de,"

95

both of which result from interleaving the requests. If a client locks the file
before starting, does all its work, and then unlocks the file, the result will
always be either "cd" or "ef," but never "cf' or "de." What we are trying to
do is accomplish the same goal without using locking.

The idea behind not locking is that most updates, even on the same file, do
not affect the same parts of the file, and hence do not conflict. For example,
changes to an airline reservation data base for flights from San Francisco to
Los Angeles do not conflict with changes for flights from Amsterdam to Lon
don. The strategy behind our commit mechanism is to let everyone make and
modify versions at will, with a check for serializability when a commit is
attempted. This mechanism has been proposed for data base systems
[Kung81], but as far as we know, not for file systems.

The serializability check is straightforward. If a version to be committed, A,
is based on the version that is still current, B, it is serializable and the commit
succeeds. If it is not, a check must be made to see if all of the blocks belong
ing to A that the client has read are the same in the current version as they
were in the version from which A was derived. If so, the previous commit or
commits only changed blocks that the client trying to commit A was not using,
so there is no problem and the commit can succeed.

If, however, some blocks have been changed, modifications that A's owner
has made may be based on data that are now obsolete, so the commit must be
refused, but a list is returned to A's owner of blocks that caused conflicts, that
is, blocks marked "read" in A and marked ''written" in the current version (or
any of its ancestors up to the version on which A is based). At this point, A's
owner can make a new version and start all over again. Our assumption is
that this event is very unlikely, and that is occasional occurrence is a price
worth paying for not having locking, deadlocks, and the delays associated with
waiting for locks.

4.3. Directory service
Because it is frequently inconvenient to deal with long binary bit strings such
as capabilities, a directory service is needed to provide symbolic naming. The
directory service's task is to manage directories, each of which contains a col
lection of (ASCII name, capability) pairs. The principal operation on a direc
tory object is for a client to present a capability for a directory and an ASCII

name, and request the directory service to look up and return the capability
associated with the ASCII name. The inverse operation is to store an (ASCII

name, capability) pair in a directory whose capability is presented.

5. PROCESS MANAGEMENT
Like any other operating system, this one must also have a way to manage
processes. In our design, processes are created and managed by the process
service, which consists of three major subsystems, the generic server, the pro
cess server, and the boot server.

96

5.1. Generic server
The idea behind the generic server is that much of the time a user wants a cer
tain program to be run, but does not care about where it is run or on which
CPU type. For example, a user might have a Pascal program to be compiled,
and wants a Pascal compiler that produces, say, Motorola 68000 code. How
ever, he does not care whether the compiler itself runs on a 68000, a VAX or
any other CPU. We speak of this as a generic Pascal compiler.

The generic server's job is to locate a suitable hardware/software combina
tion and start it up. This can be done by maintaining internal tables of loca
tions where the appropriate service is likely to be located. By sending a mes
sage to the chosen service, the generic server can see if the corresponding
server is currently available and willing to take on the offered work. If so, it
can begin; if not, the generic server can broadcast a request for bids to see if
someone else can be located. If no willing server exists, the generic server will
have to cause one to be created by invoking the process server.

5.2. Process Server
The process server's job is to take a process descriptor sent to it, locate a free
processor, and send sufficient information to the processor to allow the proces
sor to run. The process descriptor must contain at least the following inf orma
tion:

1. The CPU type desired.
2. A capability for the binary file to be executed.
3. Capabilities for process environment.
4. Accounting information.

The CPU type and binary file capability are obvious. The third item has to do
with things like the file descriptors and environment strings in UNIX. When a
UNIX process is started up, it inherits certain parameters from its parent,
among these are usually file descriptors for standard input, output, and diag
nostic, and possibly other files as well. In our design, a process can inherit
capabilities for standard input, standard output, and standard diagnostic, as
well as other ones. By using these, one can implement UNIX pipes and filters
easily, as well as more general mechanisms (e.g., passing capabilities to third
parties, storing them in files for later use, etc.).

Another area that the process service must deal with is scheduling. It must
allocate processes to processors, and possibly control migration and swapping
among processors as well. By introducing the concept of a "process image"
which contains all the information necessary to run a process (e.g., its memory,
registers, capabilities, etc.) it becomes straightforward to handle process migra
tion and swapping in a unified way. When a process is swapped out to a disk
somewhere, there is no need to have it swapped back to the same machine that
it originated on.

97

5.3. Boot service
Many services must achieve high availability. Our approach to this issue is
using fault tolerance, rather than fault intolerance. In the former, one expects
hardware and software to fail, and makes provision for dealing with it; in the
latter, one assumes that they are perfect and that no such provision need be
made. Since many services are faced with the same problem: how to provide
high availability in the face of occasional crashes, we have abstracted out a
common part of the crash recovery mechanism and put it into a separate ser
vice, the boot service.

Any service that wants to provide a continuous availability can register with
the boot service. Such registration entails providing a polling message to send
the service periodically, the expect reply, the polling frequency, and a prescrip
tion of what to do in case of failure. The boot service then sends the polling
message to the service at the requested frequency. As long as the service con
tinues to send the appropriate reply, all is well and the boot service has noth
ing else to do.

However, if the service fails to reply properly, or fails to reply at all within
an agreed upon time interval, the boot service declares the service to be out
of-order, and goes to the process service to start up a new version of it. Of
course, the boot service itself must not crash, but it consists of a number of
server processes that constantly check each other, and if need be, replace sick
members with healthy ones.

6. RESOURCE MANAGEMENT

In keeping with our general philosophy of making the system kernel as small
as possible, we have devised a way to put the resource control and accounting
outside the kernel. Furthermore, a clear distinction is made between policy
and mechanism, so that subsystem designers can implement their own policies
with the standard mechanisms.

Traditionally, accounting was used by the management of a computer center
to levy charges for the use of the computer center's resources: CPU time, file
space, lineprinter paper. This method worked quite well in the past, when
hardware resources were expensive compared to the software used. Nowadays,
hardware is cheap, software expensive. However, in the traditional approach
there is usually no possibility to bill users for the use of a particular piece of
software, or to have one user bill another for using his services.

Additionally, distributed systems need not be under control of one central
ized management any more; private, personal computers can be plugged into
the network and both use and off er services to the rest of the network. The
accounting mechanisms in a distributed systems must be able to handle this
new view on operating systems and allow any user that sets up a service to
gather information about who uses his service.

98

6.1. Bank service
The bank service is the heart of the resource management mechanism. It
implements an object called a "bank account" with operations to transfer vir
tual money between accounts and to inspect the status of accounts. Bank
accounts come in two varieties: individual and business. Most users of the
system will just have one individual account containing all their virtual money.
This money is used to pay for CPU time, disk blocks, typesetter pages, and all
other resources for which the service owning the resource decides to levy a
charge.

Business accounts are used by services to keep track of who has paid them
and how much. Each business account has a subaccount for each registered
client. When a client transfers money from his individual account to the
service's business account, the money transferred is kept in the subaccount for
that client, so the service can later ascertain each client's balance. As an
example of how this mechanism works, a file service could charge for each disk
block written, deducting some amount from the client's balance. When the
balance reached zero, no more blocks could be written. Large advance pay
ments and simple caching strategies can reduce the number of messages sent to
a small number.

Another aspect of the bank service is its maintenance of multiple currencies.
It can keep track of say, virtual dollars, virtual yen, virtual guilders and other
virtual currencies, with or without the possibility of conversion among them.
This feature makes it easy for subsystem designers to create new currencies
and control how they are allocated among the subsystems users.

6.2. Accounting policies
The bank service described above allows different subsystems to have different
accounting policies. For example, a file or block service could decide to use
either a buy-sell or a· rental model for accounting. In the former, whenever a
block was allocated to a client, the client's account with the service would be
debited by the cost of one block. When the block was freed, the account
would be credited. This scheme provides a way to implement absolute limits
(quotas) on resource use. In the latter model, the client is charged for rental of
blocks at a rate of X units per kiloblock-second or block-month or something
else. In this model, virtual money is constantly flowing from the clients to the
servers, in which case clients need some form of income to keep them going.
The policy about how income is generated and dispensed is determined by the
owner of the currency in question, and is outside the scope of the bank server.

SUMMARY

This paper has discussed a model for a fifth generation computer system archi
tecture and its operating system. The operating system is based on the use of
objects protected by sparse capabilities. An outline of some of the key services
has been given, notably the block, file, directory, generic, process, boot and

99

bank services.

REFERENCES

[Ball79]
BALL, J. E., BURKE, E. J., GERTNER, I., LANTZ, K. A., and RAsmo, R.
F., "Perspectives on Message-Based Distributed Computing," Proc.
IEEE, 1979.

[Cheriton83]
CHERITON, D.R. and ZWAENEPOEL, W., "The Distributed V Kernel and
its Performance for Diskless Workstations," Proc. Ninth ACM Symp. on
Operating Systems Principles, pp.128-140, October 1983.

[Dennis66]
DENNIS, J.B. and HORN, E. C. VAN, "Programming Semantics for Mul
tiprogrammed Computation," Comm. ACM, vol. 9, no. 3, pp.143-155,
March 1966.

[Eswaran 76]
EswARAN, K. P., GRAY, J. N., LoRIE, R. A., and TRAIGER, I. L., "The
Notions of Consistency and Predicate Locks in a Database Operating
System," Comm. ACM, vol. 19, no. 11, pp.624-633, November 1976.

[Evans74]
EVANS, A., KANTROWITZ, W., and WEISS, E., "A User Authentication
Scheme Not Requiring Secrecy in the Computer," Comm. ACM, vol. 17,
no. 8; pp.437-442, August 1974.

[Fridrich8 l]
FRIDRICH, M. and OLDER, W., "The Felix File Server," Proc. Eighth
Symp. Operating Syst. Prin., pp.37-44, 1981, ACM.

[Kung81]
KUNG, H. T. and ROBINSON, J. T., "On Optimistic Methods for Con
currency Control," A CM Transactions on Database Systems, vol. 6,
no. 2, pp.213-226, June 1981.

[Liskov74]
LISKOV, B. and ZILLES, S., "Programming with Abstract Data Types,"
SIGPLAN Notices, vol. 9, pp.50-59, April 1974.

[Mullender83]
MULLENDER, SAPE J., RENESSE, ROBBERT VAN, and TANENBAUM,
ANDREW S., "A Transaction-Oriented Transport Protocol", internal
paper, Centre for Mathematics and Computer Science, 1983.

[Mullender84]
MULLENDER, s. J. and TANENBAUM, A. s., "Protection and Resource
Control in Distributed Operating Systems," Computer Networks, vol. 8,
no. 5,6, pp.421-432, 1984.

[Mullender85]
MULLENDER, S. J. and TANENBAUM, A. S., "A Distributed File Service
Based on Optimistic Concurrency Control," Proceedings of the 10th

100

Symposium on Operating Systems Principles, pp.51-62, December 1985.
[Needham82]

NEEDHAM, R. M. and HERBERT, A. J., The Cambridge DistrilJUted Com
puter System. Reading, Ma.: Addison-Wesley, 1982.

[Papadimitriou 79]
PAPADIMITRIOU, C. H., "Serializability of Concurrent Updates," J.
ACM, vol. 26, no. 4, pp.631-653, October 1979.

[Purdy74]
PuRDY, G. B., "A High Security Log-in Procedure," Comm. ACM,
vol. 17, no. 8, pp.442-445, August 1974.

[Rashid81]
RAmm, R., "Accent: A Network Operating System for SPICE/DSN",
Tech. Rept., Computer Science Dept., Carnegie-Mellon University, May
1981.

[Reed81]
REED, D. and SvoBODOVA, L., "SWALLOW: A Distributed Data
Storage System for a Local Network," Proc. IFIP, pp.355-373, 1981.

[Stonebraker81]
STONEBRAKER, M., "Operating System Support for Database Manage
ment," Comm. ACM, vol. 24, no. 7, pp.412-418, July 1981.

[Tanenbaum82]
TANENBAUM, A. s. and MULLENDER, s. J., "Operating System Require
ments for Distributed Data Base Systems," pp. 105-114 in Distributed
Data Bases, ed. H.J. Schneider, North-Holland Publishing Co. (1982).

[Wilkes68]
WILKES, M. V., Time-Sharing Computer Systems. New York: American
Elsevier, 1968.

[Zimmermann80]
ZIMMERMANN, H., "OSI Reference Model-The ISO Model of Architec
ture for Open Systems Intercon nection," IEEE Trans. Comm.,
vol. COM-28, pp.425-432, April 1980.

Protection

Using Sparse Capabilities in a

Distributed Operating System

Sape J. Mullender
Centre for Mathematics and Computer Science

Amsterdam, The Netherlands

Andrew S. Tanenbaum
Robbert van Renesse

Department of Mathematics and Computer Science
Vrije Universiteit

Amsterdam, The Netherlands

Most distributed operating systems constructed to date have lacked a unifying
mechanism for naming and protection. In this paper we discuss a system,
Amoeba, that uses capabilities for naming and protecting objects. In contrast
to traditional, centralized operating systems, in which capabilities are managed
by the operating system kernel, in Amoeba all the capabilities are managed
directly by user code. To prevent tampering, the capabilities are protected
cryptographically. The paper describes a variety of the issues involved, and
gives four different ways of dealing with the access rights.

1. INTRODUCTION

103

Capabilities [DENNIS and VAN HORN 1966] have been used as the basis for a
variety of uniprocessor operating systems (see [LEVY 1984] for numerous exam
ples). They have the attraction of providing a single, uniform mechanism for
naming, accessing, and protecting all objects within the system. In all of these
systems, the capabilities are managed by (trusted) kernel software, often with
special assistance from the hardware.

The use of capabilities as a conceptual base for distributed systems has
been minimal to date, a few exceptions being the Eden system [ALMES et al.
1985], LINCS [DONNELLEY 1981], and ACCENT [RASHID 1981], Our scheme
also uses a distributed capability mechanism, but it differs from each of these
in significant ways, which we will describe after discussing our proposal.

This paper describes a scheme in which user processes manipulate

Using Sparse Capabilities in a Distributed Operating System
A. S. TANENBAUM, S. J. MULI.ENDER, and R. VAN RENESSE

Proc. 6th Int. Conj. on Distributed Computing Systems
pp. 558-563
May 1986

104

capabilities directly in their own address spaces. Except for some very special
parts of it, the kernel does not even know that capabilities are in use. To
prevent users from forging new capabilities or tampering with existing ones,
capabilities are protected cryptographically. This cryptographic protection
scheme will first be described in some detail, followed by a discussion of how
these capabilities are used in the Amoeba distributed operating system.

2. PORTS AND CAP ABILITIES

2.1. Background on Amoeba
Amoeba is an object-oriented distributed operating system. Its semantic
model is based on having client processes perform operations on objects
managed by server processes. Objects are specified by capabilities. Operations
are carried out by having processes exchange messages, generally in the form
of a request from a client followed later by a reply from a server. The stan
dard message format provides a place for one capability in the header, typi
cally for the object being operated on, but users are free to put other capabili
ties in the data field as required. The header also contains room for the opera
tion code and some parameters.

After making a request, a client blocks until the reply comes in, so the
approach can be regarded as a simple remote procedure call mechanism [SPEC
TOR 1982; BIRRELL and NELSON 1984). The system does not use "connec
tions" or virtual circuits or any other long-lived communication structures.

2.2. Ports
Every server has one or more ports to which client processes can send messages
to contact the service (i.e., the server process). Ports consist of large numbers,
typically 48 bits, which are known only to the server processes that comprise
the service, and to the server's clients. For a public service, such as the file
system, the port will generally be made known to all users. The ports used by
an ordinary user process will, in general, be kept secret. Knowledge of a port
is taken by the system as prima facie evidence that the sender has a right to
communicate with the service. Of course the service is not required to carry
out work for clients just because they know the port, for example, the file
server will refuse to read or write files for clients lacking appropriate file capa
bilities. Thus two levels of protection are used here: ports for protecting
access to servers, and capabilities for protecting access to individual objects.
These two mechanisms are related, as will be shown later.

Although the port mechanism provides a convenient way to provide partial
authentication of clients ("if you know the port, you may at least talk to the
service"), it does not deal with the authentication of servers. How does one
insure that malicious users do not listen on the file server's port, and try to
impersonate the file server to the rest of the system?

One approach is to have all ports manipulated by kernels that are presumed
trustworthy and are supposed to know who may listen on which port. As
mentioned above, we reject this strategy because on some machines, e.g., per

105

so nal computers users may be able to tamper with the operating system ker
nel, and also because we believe that by making the kernel as small as possi
ble, we can enhance the reliability of the system as a whole. Instead, we have
chosen a different solution that can be implemented in either hardware or
software.

In the hardware solution, we need to place a small interface box, which we
call an F-box (Function-box) between each processor module and the network.
The most logical place to put it is on the VLSI chip that is used to interface to
the network. Alternatively, it can be put on a small printed circuit board
inside the wall socket through which personal computers attach to the network.
In those cases where the processors have user mode and kernel mode and the
operating systems can be trusted, it could be put into operating system. In
any event, we assume that somehow or other all messages entering and leaving
every processor undergo a simple transformation that users cannot bypass.

The transformation works like this. Each port is really a pair of ports, P,
and G, related by: P = F(G), where Fis a (publicly-known) one-way function
[Wilkes 1968; Purdy 1974; Evans et al. 1974] performed by the F-box. The
one-way function has the property that given G it is a straightforward compu
tation to find P, but that given P, finding G is not feasible.

Using the one-way F-box, the server authentication can be handled in a sim
ple way, as illustrated in figure 1. Each server chooses a get-port, G, and com
putes the corresponding put-port, P. The get-port is kept secret; the put-port
is distributed to potential clients or in the case of public servers, is published.
When the server is ready to accept client requests, it does a GET(G). The F
box then computes P = F(G) and waits for messages containing P to arrive.
When one arrives, it is given to the process that did GET(G). To send a mes
sage to the server, the client merely does PUT(P), which sends a message con
taining Pin a header field to the server. The F-box on the sender's side does
not perform any transformation on the P field of the outgoing message.

Now let us consider the system from an intruder's point of view. To imper
sonate a server, the intruder must do GET(G). However, G is a well-kept
secret, and is never transmitted on the network. Since we have assumed that
G cannot be deduced from P (the one-way property of F) and that the
intruder cannot circumvent the F-box, he cannot intercept messages not
intended for him. An intruder doing GET(P) will simply cause his F-box to
listen to the (useless) port F(P). Replies from the server to the client are pro
tected the same way, only with the client picking a get-port for the reply, say,
G', and including P' = F(G') in the request message.

The presence of the F-box makes it easy to implement digital signatures for
still further authentication, if that is desired. To do so, each client chooses a
random signature, S, and publishes F(S). The F-box must be designed to
work as follows. Each message presented to the F-box for transmission con
tains three special header fields: destination (P), reply (G'), and signature (S).
The F-box applies the one-way function to the second and third of these,
transmitting the three ports as: P, F(G'), and F(S), respectively. The first is
used by the receiver's F-box to admit only messages for which the

106

INTRUDER

CLIENT SERVER

FIGURE 1. Clients, servers, intruders, and F-boxes.

corresponding GET has been done, the second is used as the put-port for the
reply, and the third can be used to authenticate the sender, since only the true
owner of the signature will know what number to put in the third field to
insure that the publicly-known F(S) comes out.

It is important to note that the F-box arrangement merely provides a simple
mechanism for implementing security and protection, but gives operating sys
tem designers considerable latitude for choosing various policies. The mechan
ism is sufficiently flexible and general that it should be possible t o put it into
hardware without precluding many as-yet-unthought-of operating systems to
be designed in the future. In effect, it is a protected associative addressing
scheme. The associative addressing can be simulated in software when the ker
nels are trusted by having each one maintain a cache of (port, machine
number) pairs. If a port is not in the cache, it can be found by broadcasting a
LOCATE message. How this can be carried out efficiently, even in a network
without broadcasting, is discussed in [MULLENDER and VITANYI 1984], along
with many of the implications of location dependendent addressing, process
migration, etc.

107

2.3. Capabilities
In any object-based system, a mechanism is needed to keep track of which
processes may access which objects and in what way. The normal way is to
associate a capability with each object, with bits in the capability indicating
which operations the holder of the capability may perform. In a distributed
system this mechanism should itself be distributed, that is, not centralized in a
single monolithic "capability manager." In our proposed scheme, each object
is managed by some server, which itself is a user (as opposed to kernel) pro
cess, and which understands the capabilities for its objects.

A capability typically consists of four fields as illustrated in figure 2.

1. The put-port of the server that manages the object
2. An object number meaningful only to the server managing the object
3. A rights field, containing a 1 bit for each permitted operation
4. A random number, for protecting each object

PORT OBJECT I RIGHTS I RANDOM

FIGURE 2. A Capability

The basic model of how capabilities are used and protected can be illus
trated by a simple example: a client wishes to create a file using the file server,
write some data into the file, and then give another client permission to read
(but not modify) the file just written. To start with, the client sends a message
to the file server's put-port specifying that a file is to be created. The request
might contain a file name, account capability, etc. The server would then pick
a random number, store this number in its object table, and insert it into the
newly-formed object capability. The reply would contain this capability for
the newly created (empty) file.

To write the file, the client would send a succession of data messages, each
containing the capability and some data. When each WRITE request arrived
at the file server process, the server would use the OBJECT field contained in the
capability as as index into its file tables to locate the object. For a UNIXt like
file server, the object number would be the i-number, which could be used to
locate the i-node.

Several object protection systems are possible using this framework. In the
simplest one, the server merely compares the random number in the file table
(put there by the server when the object was created) to the one contained in
the capability. If they agree, the capability is assumed to be genuine, and all
operations on the file are allowed. This system is easy to implement, but does
not distinguish between READ, WRITE, DELETE, and other operations that
may be performed on objects.

t UNIX is a Trademark of AT&T Bell Laboratories.

108

However, the basic idea can easily be modified to provide that distinction.
We will now describe three different algorithms for protecting the access rights.
In the first version, when a file (object) is created, the random number chosen
and stored in the file table is used as an encryption/ decryption key. The capa
bility is built up by taking the RIGHI'S field, which is initially all ls to indicate
that all operations are legal, and the RANDOM field (e.g., 48 bits), which con
tains a known constant, say, 0, and treating them as a single number. This
number is then encrypted by the key just stored in the file table, and the result
put into the newly minted capability in the combined RIGHTS-RANDOM field.

When the capability is returned for use, the server uses the OBJECT field (not
encrypted) to find the file table and hence the encryption/decryption key. If
the result of decrypting the capability leads to the known constant in the RAN

DOM field, the capability is almost assuredly valid, and the RIGHI'S field can be
believed. Oearly, an encryption function that mixes the bits thoroughly is
required to ensure that tampering with the Rights Field also affects the known
constant. EXCLUSIVE-OR'ing a constant with the concatenated RIGHI'S and
RANDOM fields will not do.

A second algorithm for protecting the RIGHI'S field makes use of one-way
functions, similar to the way ports are protected. When a server is asked to
create a new object, it generates a random number, as usual. The RIGHTS field
is then EXCLUSIVE-ORed with the random number and then used as the
argument of the one-way function, F, yielding a value that is put into the RAN

DOM field of the capability. Symbolically,

RANDOM field = F{random-number XOR rights bits) .

The RIGHI'S field is included in the capability itself in plaintext. When a capa
bility arrives at the server, it finds the original random number from its inter
nal tables and EXCLUSIVE-OR's the plaintext RIGHI'S field with it, passing
this result through F. If the result agrees with the RANDOM field in the capa
bility, the capability is considered valid. Although a user can tamper with the
plaintext RIGHI'S field, such tampering will result in the server ultimately
rejecting the capability.

When either of these protection systems are used, the owner of an object can
easily give an exact copy of its capability to another process by just sending it
the bit pattern, but to pass, say, read-only access, is slightly harder. To
accomplish this task, the process must send the capability back to the server
along with a bit mask and a request to fabricate a new capability with fewer
rights.

This idea works well except that it requires going back to the server every
time a sub-capability with fewer rights is needed. We will now describe a third
algorithm that does not have this drawback. To start with, find a set of N
commutative one-way functions, F0, F 1, • • ·, FN-I corresponding to the N
rights present in the RIGHI'S field. When an object is created, the server
chooses a random number and puts it in both its internal table and the RAN

DOM field, just as in the very first scheme presented. The server also sets all

109

the RIGHI'S field bits to 1.
A client can delete permission k from a capability by replacing the RANDOM

field, R, with Fk(R) and turning off the corresponding bit in the RIGHI'S field.
When a capability comes into the server to be used, the server fetches the ori
ginal random number from its table, looks at the RIGHI'S field and applies the
functions corresponding to the deleted rights to it. H the result agrees with the
number present in the capability, then the capability is accepted as genuine,
otherwise it is rejected.

Note that although the RIGHI'S field is not encrypted, it is pointless for a
client to tamper with it, since the server will detect that. In theory at least, the
RIGHI'S field is not even needed, since the server could try all 2N combinations
of the functions to see if any worked. Its presence merely speeds up the
checking. It should also be clear why the functions must be commutative-it
does not matter in what order the bits in the RIGHI'S field were turned off.
This scheme is discussed in more detail in [MUI.LENDER 1985).

The organization of capabilities and objects discussed above has the interest
ing property that although no central record is kept of who has which capabili
ties, it is easy to revoke existing capabilities. All that the owner of an object
need do is ask the server to change the random number stored in its internal
table and return a new capability. Obviously this operation must be protected
with a bit in the RIGHI'S field, but if it succeeds, all existing capabilities for
that object are instantly invalidated.

2.4. Protection without F-Boxes
Earlier we said that protection could also be achieved in software (i.e., without
F-boxes). It is slightly more complicated, since it uses both conventional and
public-key encryption [DIFFm and liBLLMAN 1976), but it is still quite usable.
The basic idea underlying the method is the fact that in nearly all networks an
intruder can forge nearly· all parts of a message being sent except the source
address, which is supplied by the network interface hardware. To take advan
tage of this property, imagine a (possibly symmetric) conceptual matrix, M, of
conventional (e.g., DES) encryption keys, with the rows being labeled by
source machine and the columns by destination machine. Thus the matrix
selects a unique key for encrypting the capabilities in any message. The data
need not be encrypted, although that is also possible if needed.

Each machine is assumed to know the contents of its row and column of the
matrix, and nothing else (how this will be achieved will be discussed shortly).
Thus a client C will know Mex and Mxe for all X, and a server Swill know
Msx and Mxs, all of which are conventional (not public) keys. With this
arrangement, intruder I can easily capture messages from client C to server S,
but attempts to "play them back" to the server will fail because the server will
see the source machine as I (assumed unforgeable) and use element M1s as the
decryption key instead of the correct Mes- No matter what the intruder does,
he cannot trick the server into using a decryption key that decrypts the capa
bilities to make sense.

To avoid having to run the encryption/ decryption algorithm frequently, all

110

machines can maintain a hashed cache of capabilities that they have been
using frequently. Clients will hash their caches on the unencrypted capabilities
in the form of triples: (unencrypted capability, destination, encrypted capabil
it y), whereas servers will hash theirs in the form of triples: (encrypted capabil
ity, source, unencrypted capability).

To set up the matrix initially, the following procedure can be used. A pub
lic server, such as a file server, makes its put-port and a public encryption key
known to the whole world. When a new machine joins the network (e.g., after
a crash or upon initial system boot), it sends a broadcast message announcing
its presence. Suppose, for example, the file server has just come up, and must
(1) prove that it is the file server to other processes, and (2) establish the con
ventional keys used for encrypting capabilities in both directions.

A client machine, C, which receives the broadcast from the alleged file
server, F, picks a new conventional encryption key, K, for use in subsequent C
to F traffic and sends it to F encrypted with Fs public key. F then decrypts K
and replies to C by sending a message containing both K and a newly chosen
conventional key to be used for reverse traffic. This message is encrypted both
with K itself and with the inverse of Fs public key, so C can use Kand Fs
public key to decrypt it. If the decrypted message contains K, C can be sure
that the other conventional key was indeed generated by owner of Fs public
key, thus convincing C that he is indeed talking to the file server. Both of the
above-mentioned conditions have now been fulfilled, so normal communication
can now take place. Note that the use of different conventional keys after
each reboot make it impossible for an intruder to fool anyone by playing back
old messages.

Yet another any possibility for protecting capabilities in the absence of F
box es is to use conventional link-level encryption on all the data communica
tion lines.

3. USE OF CAPABILITIES IN AMOEBA

In the preceeding sections we have seen how capabilities can be cryptographi
cally protected so that they can be managed directly by user processes
throughout the distributed system, without any help, or even knowledge by the
operating system kernels. In the following sections we will look at some of the
areas these capabilities have been applied in the Amoeba distributed operating
system. The areas to be covered are: the memory server, the block server, the
fl.at file server, the directory server, the multiversion file server, and the bank
server. Capabilities are also used in other areas, but space limitations prevent
them from being discussed here.

3.1. The memory server
The memory server is a process that manages physical memory and processes
at the lowest level. It is actually part of the kernel present on each machine,
but it communicates with other processes via the normal message protocol so
that its clients do not perceive it as being special in any way.

The memory server is typically used for creating processes, as follows. The

111

parent process tells the memory server to CREA TE SEGMENT, providing an
initial size and some other information. The memory server then returns a
capability for the newly created segment. Using this capability, the parent
process can use the WRITE operation to load data into the segment (the
READ operation can get it back again later if needed). The parent process
will normally repeat this cycle, creating and loading segments until all the
child process' initial segments have been constructed, for example, text, data,
and stack segments.

To create the child process, the parent then performs a MAKE PROCESS
operation, providing the capabilities for the child's segments as parameters.
The memory server then returns a process capability for the child, with which
the child can be started, stopped, and generally manipulated. By directing the
CREA TE SEGMENT requests to a memory server on a remote machine, the
parent can create the child wherever it wants to, providing a more convenient
and efficient interface than the traditional FORK + EXEC.

The memory server can also easily support an "electronic disk." An elec
tronic disk of the required size is created using CREA TE SEGMENT, and
then can be read and written, either by local or remote processes using READ
and WRITE.

3.2. The block server
The Amoeba file system also makes heavy use of capabilities. As far as the
operating system is concerned, a file system is just one or more server
processes, with no special privileges. This design makes it possible to have
multiple, potentially quite different file systems running at the same time.
Three distinct file systems have in fact been implemented.

The first file system is highly modular, consisting of a block server, fl.at file
server, and directory server. The block server can be requested to allocate a
disk block and return a capability for it. Using this capability, the block can
be written, read, or deallocated. The block server has no concept of a file. By
splitting the block server off from the file server, it becomes possible for any
user to implement any kind of special-purpose file system that he needs,
without having to get into the details of disk storage management.

3.3. The fiat file server
The fl.at file server provides its clients with files consisting of a linear sequence
of bytes, numbered from O to the file size - l. The basic operations here are
CREATE FILE, DESTROY FILE, WRITE FILE, and READ FILE.
CREA TE FILE returns a capability used in the other calls, each of which
implicitly specifies a file via the capability, and a position in the file via a
parameter. The server does not have any concept of an "open" file. One can
operate on any file for which a valid capability can be presented.

112

3.4. The directory server
The directory server manages directories, each of which is a set of (ASCII
name, capability) pairs. A typical operation is to present the directory server
with the capability for a directory, plus an ASCII string, and ask it to look up
and return the capability that corresponds to the given string in the given
directory. Operations also exist to enter and remove (ASCII name, capability)
entries from directories. These primitives, and a few others, provide an ade
quate basis for building up aribtrary directory trees, graphs, etc. Note that the
capabilities within a directory need not all be file capabilities and cenainly
need not all be located in the same place or managed by the same server. To
look up the path a/b/c relative to some directory, a client would ask the server
to find the string "a" in that directory. H the capability returned happens to
be for a directory managed by a different directory server, then the ensuing
request to look up "b" just goes to the new server. Unless the client compared
the SERVER fields in the two capabilities, it wouldn't even notice that succeed
ing requests were going to different servers. The distribution is completely
transparent.

3.5. The multiversion file server
The second file system supports tree-shaped files. Each file consist of a tree of
pages, rather than a simple linear byte sequence. An important property of
this file system is its ability to provide atomic updates on files. In short, a user
can ask to make a new version of a file, which results in a capability for the
new version. The new version acts like it is a page-by-page copy of the origi
nal, although in fact, pages are only copied when they are changed.

The new version can be modified at will, and then atomically "committed,"
thus becoming the new file. A file is thus a sequence of versions. Once aver
sion of a file has been committed, it cannot be modified. This technique has
been designed for use with video disks and other "write once" media. More
details can be found in [MULi.ENDER and TANENBAUM 1982]. •

The third file system is a capability-based UNIX file system, to ease the
problem of moving existing applications from UNIX to Amoeba.

3. 6. The bank server
Resource control and accounting also makes use of the capabilities. The basis
for the resource control and accounting is the bank server, which manages
"bank account" objects. The principal operation on bank accounts is transfer
ring virtual money from one account to another. Thus to obtain permission to
create a file, a client would present a capability for one of his accounts to the
bank server, and request that the bank server withdraw some money from that
account and deposit it in the account of the file server. Assuming the client
trusts the file server, the client can pre-pay for a substantial amount of work,
in order to eliminate the overhead of going back to the bank on each request.

The bank server is prepared to maintain accounts in different, possibly con
vertible, possibly inconvertible, currencies. This mechanism can form the basis
of a variety of policies, used by different servers. For example, by having the

113

file server charge x dollars per kiloblock of disk space, quotas can be imple
mented by limiting how many dollars each client has. CPU time could be
charged in francs, phototypesetter pages in yen, and so on. In some cases
(e.g., disk blocks, but not typesetter pages), returning the resource might result
in the client getting his money back

4. DISCUSSION

In this paper we have shown how ports and capabilities can be managed in a
protected way in a distributed operating system. By moving the entire capabil
ity management out of the kernel, we can provide a minimal kernel, and yet
have a powerful and general conceptual basis for naming and protection
throughout the system. A number of examples of how capabilities are used in
Amoeba were presented as examples.

The Eden [ALMEs et al. 1985] and ACCENT [RAsHID 1981] systems also use
capability-like mechanisms for protection, butin both cases, the ultimately
responsiblity for managing the capabilities rests with the kernel. In Eden,
users may manage capabilities directly, but the kernel maintains copies, to be
able to verify each one before it is used. We maintain that moving all of the
capability management out of the kernel is a step in the right direction. Just
as file servers are now rarely part of the kernel of distributed systems, capabil
ity management should not be either. The smaller and simpler the kernel, the
easier it is to write, debug, and maintain. Furthermore, if the system consists
of a building full of rooms with wall sockets into which any user can plug any
machine, protection based on trusted kernels managing capabilities becomes
impossible. A malicious user could modify his kernel to subvert the capability
checking and thereby bypass the protection scheme.

In [DONNELLEY 1981], a description is given of work being done at
Lawrence Livermore Laboratory is given. Two schemes are described, one
using a password in each capability, and one using public key cryptography.
Although these schemes are similar to ours in some ways, they do not provide
a way to protect individual rights bits to allow one capability to read an object
and another to write it. Furthermore, our proposal addresses the problem of
how to prevent users from impersonating servers or reading network traffic not
intended for them. Both the F-boxes and the matrix method described in 2.4
can be used to fight wiretapping.

REFERENCES

ALMEs, G.T, BLACK, A.P., LAZOWSKA, E.D. and NOE, J.D. "The Eden Sys
tem,: A Technical Review," IEEE Trans Softw. Eng., vol. SE-11,
pp. 43-59, Jan. 1985.

BIRRELL, A.D. and NELSON, B.J. "Implementing Remote Procedure Calls,"
ACM Trans. Comp. Syst., vol. 2, pp. 39-59, Feb. 1984.

DENNIS, J.B. and VAN HORN, E.C. "Programming Semantics for Multipro
grammed Computations," Comm. ACM, vol. 9, pp. 143-154, March
1966.

114

DIFFIE, W. and HELLMAN, M.E. "New Directions in Cryptography," IEEE
Trans. Inf. Theory, vol. IT-22, pp. 644-654, Nov. 1976.

DONNELLEY, J.E. "Managing Domains in a Network Operating System," Proc.
Conj on Local Networks and Distributed Office Systems, Online, pp.
345-361, 1981.

EVANS, A., KANTROWITZ, w. and WEISS, E. "A User Authentication Scheme
not Requiring Security in the Computer," Commun. ACM, vol. 17,
pp. 437-442, Aug. 1974.

LEVY, H. Capability-Based Computer Systems, Bedford, Mass.: Digital Press,
1984.

MULLENDER, S.J. "Principles of Distributed Operating System Design" Ph.D.
thesis, Vrije Universiteit, Amsterdam, 1985.

MULLENDER, S.J. and TANENBAUM, A.S. "Protection and Resource Control in
Distributed Operating Systems," Computer Networks (to appear in
1985).

MULLENDER, S.J. and TANENBAUM, A.S. "A Distributed File Server Based on
Optimistic Concurrency Control," Report IR-80, Wiskundig Sem
inarium, Vrije Universiteit, 32 pp. Nov. 1982.

MULLENDER, S.J. and VITANYI, P.M.B. "Distributed Match-Making for
Processes in Computer Networks," Report CS-8424, Centrum v
Wiskunde en Informatica, Dec. 1984.

NELSON, B.J. "Remote Procedure Call," Tech. Rep. CSL-81-9, Xerox PARC,
1981.

PmmY, G.B. "A High-Security Log-in Procedure," Commun. ACM, vol. 17,
pp. 442-445, Aug. 1974.

RASHID, R.F. and ROBERTSON, G.G. "Accent: A Communication Oriented
Network Operating System Kernel," Proc. Eigth Symp. on Operat
ing Syst. Prin., ACM, pp. 64-75, 1981.

SPECTOR, A.Z. "Performing Remote Operations Efficiently on a Local Com
puter Network," Comm. ACM., vol. 25, pp. 246-260, April 1982.

TANENBAUM, A.S. and MULLENDER, S.J. "The Design of a Capability-Based
Distributed Operating System," Computer Journal, (to appear in
1985).

WILKES, M.V. Time Sharing Computer Systems, New York: American Elsevier,
1968.

Capability-Based Protection in

Distributed Operating Systems

Andrew S. Tanenbaum
Department of Mathematics and Computer Science

Amsterdam, The Netherlands

Robbert van Renesse
Department of Mathematics and Computer Science

Vrije Universiteit
Amsterdam, The Netherlands

Sape J. Mullender
Centre for Mathematics and Computer Science

Amsterdam, The Netherlands

Capability-based operating systems have traditionally required large, complex
kernels to manage the use of capabilities. In our proposal, capability manage
ment i.s done entirely by user programs without giving up any of the protection
aspects normally associated with capabilities. The basic idea is to use one-way
functions and encryption to protect sensitive information.

1. INTRODUCTION

115

Soon, most office buildings will have a cable snaking· through the cable ducts,
with an outlet in each room into which users can plug their personal comput
ers. The traditional approach to protection, a secure operating system in every
machine to check permissions before carrying out a command, is not suitable
for such an environment. It is too easy for a malicious user to replace the
operating system in one of the network machines, or to replace a machine alto
gether by one without a secure operating system, to obtain confidential inf or
mation illicitly.

New methods for protection must be devised, methods that do not require
secure, trustworthy operating systems. This paper presents mechanisms, based
on encryption. We shall show that they are equally powerful, and, in some
cases, more versatile than existing protection schemes, implemented by a

Capability-Based Protection in Distributed Operating Systems
A. S. TANENBAUM, R. VAN RENESSE, and S. J. MUI.LENDER

Proceedings of Symposium Certificering van Software
Utrecht, Netherlands
November 1984

116

secure operating system. We propose to base the software design on a
different conceptual model - the object model. In this model, the system deals
with abstract objects, each of which has some set of abstract operations that
can be performed on it.

Associated with each object are one or more "capabilities" [Dennis66] which
are used to control access to the object, both in terms of who may use the
object and what operations he may perform on it. At the user level, the basic
system primitive is performing an operation on an object, rather than such
things as establishing connections, sending and receiving messages, and closing
connections. For example, a typical object is the file, with operations to read
and write portions of it.

The object model is well-known in the programming languages community
under the name of "abstract data type." This model is especially well-suited to
a distributed system because in many cases an abstract data type can be imple
mented on one of the processor-memory modules described above. When a
user process executes one of the visible functions in an abstract data type, the
system arranges for the necessary underlying message transport from the user's
machine to that of the abstract data type and back. The header of the mes
sage can specify which operation is to be performed on which object. This
arrangement gives a very clear separation between users and objects, and
makes it impossible for a user to directly inspect the representation of an
abstract data type by bypassing the functional interface.

A major advantage of the object or abstract data type model is that the
semantics are inherently location independent. The concept of performing an
operation on an object does not require the user to be aware of where objects
are located or how the communication is actually implemented. This property
gives the system the possibility of moving objects around to position them
close to where they are frequently used. Furthermore, the issue of how many
processes are involved in carrying out an operation, and where they are located
is also hidden from the user.

It is frequently convenient to implement the object model in terms of clients
(users) who send messages to services. A service is defined by a set of com
mands and responses. Each service is handled by one or more server processes
that accept messages from clients, carry out the required work, and send back
replies. The design of these servers and the design of the protocols they use
form an important part of the system software of our proposed fifth generation
computers.

As an example of the problems that must be solved, consider a file server.
Among other design issues that must be dealt with are how and where inf or
mation is stored, how and when it is moved, how it is backed up, how con
current reads and writes are controlled, how local caches are maintained, how
information is named, and how accounting and protection are accomplished.
Furthermore, the internal structure of the service must be designed: how many
server processes are there, where are they located, how and when do they com
municate, what happens when one of them fails, how is a server process organ
ized internally for both reliability and high performance, and so on.

117

Analogous questions arise for all the other servers that comprise the basic sys
tem software.

2. PORTS AND CAP ABILITIES

2.1. Ports
Every service has one or more ports [Mullender84] to which client processes
can send packets to contact the service. Ports consist of large numbers, typi
cally 48 bits, which are known only to the server processes that comprise the
service, and to the service's clients. For a public service, such as the system
file service, the port will be generally made known to all users. The ports used
by an ordinary user process will, in general, be kept secret. Knowledge of a
port is taken by the system as prima facie evidence that the sender has a right
to communicate with the service. Of course the service is not required to carry
out work for clients just because they know the port, for example, the public
file service may refuse to read or write files for clients lacking account
numbers, appropriate authorization, etc.

Although the port mechanism provides a convenient way to provide partial
authentication of clients ("if you know the port, you may at least talk to the
service"), it does not deal with the authentication of servers. The basic primi
tive operations offered by the system are PUT(PORT, MESSAGE) and
GET(PORT, MESSAGE). Since everyone knows the port of the file server, as
an example, how does one insure that malicious users do not execute GETs on
the file server's port, in effect impersonating the file server to the rest of the
system? ·

One approach is to have all ports manipulated by kernels that are presumed
trustworthy and are supposed to know who may GET from which port. We
reject this strategy because some machines, e.g., personal computers connected
to larger multimodule systems may not be trustworthy, and also because we
believe that by making the kernel as small as possible, we can enhance the reli
ability of the system as a whole. Instead, we have chosen a different solution
that can be implemented in either hardware or software. First we will describe
the hardware solution; later we will describe the software solution.

In the hardware solution, we need to place a small interface box, which we
call an F-box (Function-box) between each processor module and the network.
The most logical place to put it is on the VLSI chip that is used to interface to
the network. Alternatively, it can be put on a small printed circuit board
inside the wall socket through which personal computers attach to the network.
In those cases where the processors have user mode and kernel mode and a
trusted operating system running in kernel mode, it can also be put into
operating system software. In any event, we assume that somehow or other all
packets entering and leaving every processor undergo a simple transformation
that users cannot bypass.

The transformation works like this. Each port is really a pair of ports, P,
and G, related by: P = F(G), where Fis a (publicly-known) one-way function
[Wilkes68, Purdy74, Evans74] performed by the F-box. The one-way function

118

has the property that given G it is a straightforward computation to find P,
but that given P, finding G is so difficult that the only approach is to try every
possible G to see which one produces P. If P and G contain sufficient bits,
this approach can be made to take millions of years on the world's largest
supercomputer, thus making it effectively impossible to find G given only P.
Note that a one-way function differs from a cryptographic transformation in
the sense that the latter must have an inverse to be useful, but the former has
been carefully chosen so that no inverse can be found.

Using the one-way F-box, the server authentication can be handled in a sim
ple way. Each server chooses a get-port, G, and computes the corresponding
put-port, P. The get-port is kept secret; the put-port is distributed to potential
clients, or, in the case of public servers, is published. When the server is ready
to accept client requests, it does a GET(G). The F-box then computes
P = F(G) and waits for packets containing P to arrive. When one arrives, it
is given to the process that did GET(G). To send a packet to the server, the
client merely does PUT(P), which sends a packet containing P in a header
field to the server. The F-box on the sender's side does not perform any
transformation on the P field of the outgoing packet.

Now let us consider the system from an intruder's point of view. To imper
sonate a server, the intruder must do GET(G). However, G is a well-kept
secret, and is never transmitted on the network, Since we have assumed that G
cannot be deduced from P (the one-way property of F) and that the intruder
cannot circumvent the F-box, he cannot intercept packets not intended for
him. Replies from the server to the client are protected the same way, only
with the client picking a get-port for the reply, say, G', and including
P' = F (G') in the request packet.

The presence of the F-box makes it easy to implement digital signatures for
still further authentication, if that is desired. To do so, each client chooses a
random signature, S, and publishes F(S). The F-box must be designed to
work as follows. Each packet presented to the F-box contains three special
header fields: destination (P), reply (G'), and signature (S). The F-box applies
the one-way function to the second and third of these, transmitting the three
ports as: P, F(G'), and F(S), respectively. The first is used by the receiver's
F-box to admit only packets for which the corresponding GET has been done,
the second is used as the put-port for the reply, and the third can be used to
authenticate the sender, since only the true owner of the signature will know
what number to put in the third field to insure that the publicly-known F(S)
comes out.

It is important to note that the F-box arrangement merely provides a simple
mechanism for implementing security and protection, but gives operating sys
tem designers considerable latitude for choosing various policies. The mechan
ism is sufficiently flexible and general that it should be possible to put it into
hardware with precluding many as-yet-unthought-of operating systems to be
designed in the future.

119

2.2. Capabilities
In any object-based system, a mechanism is needed to. keep track of which
processes may access which objects and in what way. The normal way is to
associate a capability with each object, with bits in the capability indicating
which operations the holder of the capability may perform. In a distributed
system this mechanism should itself be distributed, that is, not centralized in a
single monolithic "capability manager." In our proposed scheme, each object
is managed by some service, which is a user (as opposed to kernel) program,
and which understands the capabilities for its objects.

A capability typically consists of four fields:

1. The put-port of the service that manages the object
2. An Object Number meaningful only to the service managing the object
3. A Rights Field, which contains a 1 bit for each permitted operation
4. A Random Number for protecting each object

The basic model of how capabilities are used can be illustrated by a simple
example: a client wishes to create a file using the file service, write some data
into the file, and then give another client permission to read (but not modify)
the file just written. To start with, the client sends a packet to the file service's
put-port specifying that a file is to be created. The request might contain a file
name, account number and similar attributes, depending on the exact nature of
the file service. The server would then pick a random number, store this
number in its object table, and insert it into the newly-formed object capabil
ity. The reply would contain this capability for the newly created (empty) file.

To write the file, the client would send a succession of data packets, each
one containing the capability and some data. When each WRITE request
arrived at the file server process, the server would normally use the object
number contained in the capability as as index into its tables to locate the file.

Several object protection systems are possible using this framework. In the
simplest one, the server merely compares the random number in the file table
(put there by the server when the object was created) to the one contained in
the capability. If they agree, the capability is assumed to be genuine, and all
operations on the file are allowed. This system is easy to implement, but does
not distinguish between READ, WRITE, DELETE, and other operations that
may be performed on objects.

However, it can easily be modified to provide that distinction. In the
modified version, when a file (object) is created, the random number chosen
and stored in the file table is used as an encryption/decryption key. The capa
bility is built up by taking the Rights Field (e.g., 8 bits), which is initially all ls
indicating that all operations are legal, and the Random Number Field (e.g.,
56 bits), which contains a known constant, say, 0, and treating them as a sin
gle number. This number is then encrypted by the key just stored in the file
table, and the result put into the newly minted capability in the combined
Rights-Random Field. When the capability is returned for use, the server uses
the object number (not encrypted) to find the file table and hence the
encryption/decryption key. If the result of decrypting the capability leads to

120

the known constant in the Random Number Field, the capability is almost
assuredly valid, and the Rights Field can be believed. Clearly, an encryption
function that mixes the bits thoroughly is required to ensure that tampering
with the Rights Field also affects the known constant. Exclusive or'ing a con
stant with the concatenated Rights and Random fields will not do.

When this modified protection system is used, the owner of the object can
easily give an exact copy of the capability to another process by just sending it
the bit pattern, but to pass, say, read-only access, is harder. To accomplish
this task, the process must send the capability back to the server along with a
bit mask and a request to fabricate a new capability whose Rights Field is the
Boolean-and of the Rights Field in the capability and the bit mask. By choos
ing the bit mask carefully, the capability owner can mask out any operations
that the recipient is not permitted to carry out.

This modified system works well except that it requires going back to the
server every time a sub-capability with fewer rights is needed. We have dev
ised yet another protection system that does not have this drawback. This
third scheme requires the use of a set of N commutative one-way functions,
F0, F 1, • • ·, FN-1, corresponding to the N rights present in the Rights
Field. When an object is created, the server chooses a random number and
puts it in both the file table and the Random Number Field, just as in the first
scheme presented. It also sets all the Rights Field bits to 1.

A client can delete permission k from a capability by replacing the random
number, R, with Fk(R) and turning off the corresponding bit in the Rights
Field. When a capability comes into the server to be used, the server fetches
the original random number from the file table, looks at the Rights Field, and
applies the functions corresponding to the deleted rights to it. If the result
agrees with the number present in the capability, then the capability is
accepted as genuine, otherwise it is rejected. Note that although the Rights
Field is not encrypted, it is pointless for a client to tamper with it, since the
server will detect than immediately. In theory at least, the Rights Field is not
even needed, since the server could try all 2N combinations of the functions to
see if any worked. Its presence merely speeds up the checking. It should also
be clear why the functions must be commutativeit does not matter in what
order the bits in the Rights Field were turned off.

The organization of capabilities and objects discussed above has the interest
ing property that although no central record is kept of who has which capabili
ties, it is easy to retract existing capabilities. All that the owner of an object
need do is ask the server to change the random number stored in the file table.
Obviously this operation must be protected with a bit in the Rights Field, but
if it succeeds, all existing capabilities are instantly invalidated.

121

2.3. Protection without F-boxes
Earlier we said that protection could also be achieved without F-boxes. It is
slightly more complicated, since it uses both conventional and public-key
encryption, but it is still quite usable. The basic idea underlying the method is
the fact that in nearly all networks an intruder can forge nearly all parts of a
packet being sent except the source address, which is supplied by the network
interface hardware. To take advantage of this property, imagine a (possibly
symmetric} conceptual matrix of conventional (e.g., DES) encryption keys,
with the rows being labeled by source machine and the columns by destination
machine. Thus the matrix selects a unique key for encrypting the capabilities
in any packet. The data need not be encrypted, although that is also possible
if needed.

Each machine is assumed to know its row and column of the matrix, and
nothing else (how this will be achieved will be discussed shortly). With this
arrangement, intruder / can easily capture packets from client C to server S,
but attempts to "play them back" to the server will fail because the server will
see the source machine as I (assumed unforgeable) and use element M1s as the
decryption key instead of the correct Mes- No matter what the intruder does,
he cannot trick the server into using a decryption key that decrypts the capa
bilities to make sense, that is, to contain random numbers that agree with
those stored in the file tables.

To avoid having to run the encryption/ decryption algorithm frequently, all
machines can maintain a hashed cache of capabilities that they have been
using frequently. Clients will hash their caches on the unencrypted capabilities
in the form of triples: (unencrypted capability, destination, encrypted capabil
ity), whereas servers will hash theirs in the form of triples: (encrypted capabil
ity, source, unencrypted capability).

To set up the matrix initially, the following procedure can be used. A pub
lic server, such as a file server, makes its put-port and a public encryption key
known to the whole world. When a new machine joins the network (e.g., after
a crash or upon initial system boot), it sends a broadcast message announcing
its presence. Suppose, for example, the file server has just come up, and must
(1) prove that it is the file server to other processes, and (2) establish the con
ventional keys used for encrypting capabilities in both directions.

A client machine, C, which receives the broadcast from the alleged file server, F,
picks a new conventional encryption key, K, for use in subsequent C to F traffic
and sends it to F encrypted with Fs public key. F then decrypts Kand replies to
C by sending a packet containing both Kand a newly chosen conventional key to
be used for reverse traffic. This packet is encrypted both with K itself and with the
inverse of Fs public key, so C can use Kand Fs public key to decrypt it. If the
decrypted packet contains K, C can be sure that the other conventional key was
indeed generated by owner of Fs public key, thus convincing C that he is indeed
talking to the file server. Both of the above-mentioned conditions have now been
fulfilled, so normal communication can now take place. Note that the use of
different conventional keys after each reboot make it impossible for an intruder to
fool anyone by playing back old packets.

122

SUMMARY
lbis paper has discussed a model for a fifth generation computer system archi
tecture and its operating system. The operating system is based on the use of
objects protected by sparse capabilities. Conclusions

The paper shows that it is possible and practical to build capability-based
distributed operating systems, with capability management outside of the
operating system kernel. Since the operating system itself is particularly
vulnerable to attack in an office environment as we have described, our
method is more secure than traditional protection schemes that must rely on
the security of the operating system kernel.

Two methods have been presented for the implementation of authenticated
communication between client and server processes, one using F-boxes, the
other using a combination of public key encryption and conventional encryp
tion techniques. Currently public key encryption is still expensive, both in
terms of computational effort and storage requirements. The F-box mechan
ism is a good alternative until fast public key algorithms arrive. F-boxes can
be put in the cable ducts, on the network interface cards, in integrated circuits
that carry out the network protocol, or, if necessary, in the operating system
kernel.

Capability management need not be carried out by a secure operating sys
tem: all operations on capabilities that are currently implemented in secure
operating system kernels can also be carried out by choosing appropriate
encryption techniques, with which client processes can be allowed to handle
capabilities and carry out certain (restricted) sets of operations on them.

REFERENCES

[Dennis66]
DENNIS, J.B. and HORN, E. C. VAN, "Programming Semantics for Mul
tiprogrammed Computation," Comm. ACM, vol. 9, no. 3, pp.143-155,
March 1966.

[Evans74]
EVANS, A., KANTROWITZ, W., and WEISS, E., "A User Authentication
Scheme Not Requiring Secrecy in the Computer," Comm. ACM, vol. 17,
no. 8, pp.437-442, August 1974.

[Mullender84]
MULLENDER, s. J. and TANENBAUM, A. s., "Protection and Resource
Control in Distributed Operating Systems," Computer Networks, vol. 8,
no. 5,6, pp.421-432, 1984.

[Purdy74]
PuRDY, G. B., "A High Security Log-in Procedure," Comm. A CM,
vol. 17, no. 8, pp.442-445, August 1974.

[Wilkes68]
WILKES, M. V., Time-Sharing Computer Systems. New York: American
Elsevier, 1968.

Protocols

A Secure High-Speed Transaction Protocol

Sape J. Mullender
Centre tor Mathematics and Computer Science

Amsterdam, The Netherlands

Robbert van Renesse
Vrije Universiteit

Amsterdam, The Netherlands

Most computer networks use a byte stream protocol for communication
between processes, which suffer from two important drawbacks: the address
ing mechanisms provided are often process-dependent or location-dependent,
and communication is slow. While carrying out research into distributed
operating systems at the Vrije Universiteit and the Centre for Mathematics &
Computer Science, we have developed a transaction-oriented transport proto
col for the Amoeba distributed operating system [Mullender86], aimed for high
speed, with an addressing mechanism that is not only more general, but pro
vides a protection mechanism as well. The basic mechanism for communica
tion between processes is the transaction: a client process sends a request to
a server process, which carries out the request and returns a reply. Protection
is provided by using ports, chosen from a sparse address space, for address
ing services. These ports serve as a "capability" for communication with the
service. Through its simplicity, the transaction protocol achieves much higher
transmission rates than other protocols executing on similar hardware (about
300 Kbytes/sec process-to-process).

The protection mechanism will be described, and the mechanisms for realis
ing high transmission speeds.

1980 Mathematics Subject Classification: 68A05, 68B20.
1982 CR CategorieS". C.2.2, C.2.4, D.4.4.
Keywords & Phrases. transaction protocols, connectionless protocols, capabili
ties, local-area networks.

1. INTRODUCTION

125

Traditional networks and distributed systems are based on the concept of two
processes or processors communicating via connections. The connections are
typically managed by a hierarchy of complex protocols, usually leading to
complex software and extreme inefficiency. (An effective transfer rate of 0.1
megabit/ sec over a 10 megabit/ sec local network, which is only 1 % utilization,

A Secure High-Speed Transaction Protocol
S. J. MULI.ENDER and R. VAN RENESSE
Proceedings of the Cambridge EUUG Conference
September 1984

126

is frequently barely achievable.)
We reject this traditional approach of viewing a distributed system as a col

lection of discrete processes communicating via multilayer (e.g., ISO) protocols,
not only because it is inefficient, but because it puts too much emphasis on
specific processes, and by inference, on processors. Instead we propose to base
the software design on a different conceptual modelthe object model. In this
model, the system deals with abstract objects, each of which has some set of
abstract operations that can be performed on it.

Associated with each object are one or more "capabilities" [Dennis66] which
are used to control access to the object, both in terms of who may use the
object and what operations he may perform on it. At the user level, the basic
system primitive is performing an operation on an object, rather than such
things as establishing connections, sending and receiving messages, and closing
connections. For example, a typical object is the file, with operations to read
and write portions of it.

The object model is well-known in the programming languages community
under the name of "abstract data type." This model is especially well-suited to
a distributed system because in many cases an abstract data type can be imple
mented on one of the processor-memory modules described above. When a
user process executes one of the visible functions in an abstract data type, the
system arranges for the necessary underlying message transport from the user's
machine to that of the abstract data type and back. The header of the mes
sage can specify which operation is to be performed on which object. This
arrangement gives a very clear separation between users and objects, and
makes it impossible for a user to inspect the representation of an abstract data
type directly by bypassing the functional interface.

A major advantage of the object or abstract data type model is that the
semantics are inherently location independent. The concept of performing an
operation on an object does not require the user to be aware of where objects
are located or how the communication is actually implemented. This property
gives the system the possibility of moving objects around to position them
close to where they are frequently used. Furthermore, the issue of how many
processes are involved in carrying out an operation, and where they are located
is also hidden from the user.

It is frequently convenient to implement the object model in terms of clients
(users) who send messages to services. A service is defined by a set of com
mands and responses. Each service is handled by one or more server processes
that accept messages from clients, carry out the required work, and send back
replies. The design of these servers and the design of the protocols they use
form an important part of the system software of our proposed fifth generation
computers.

As an example of the problems that must be solved, consider a file server.
Among other design issues that must be dealt with are how and where infor
mation is stored, how and when it is moved, how it is backed up, how con
current reads and writes are controlled, how local caches are maintained, how
information is named, and how accounting and protection are accomplished.

127

Furthermore, the internal structure of the service must be designed: how many
server processes are there, where are they located, how and when do they com
municate, what happens when one of them fails, how is a server process organ
ized internally for both reliability and high performance, and so on. Analo
gous questions arise for all the other servers that comprise the basic system
software.

2. PROTECTION

Every service has one or more ports [Mullender84] to which client processes
can send messages to contact the service. Ports consist of large numbers, typi
cally 48 bits, which are known only to the server processes that comprise the
service, and to the service's clients. For a public service, such as the system
file service, the port will be generally made known to all users. The ports used
by an ordinary user process will, in general, be kept secret. Knowledge of a
port is taken by the system as prima facie evidence that the sender has a right
to communicate with the service. Of course the service is not required to carry
out work for clients just because they know the port, for example, the public
file service may refuse to read or write files for clients lacking account
numbers, appropriate authorization, etc.

Although the port mechanism provides a convenient way to provide partial
authentication of clients ("if you know the port, you may at least talk to the
service"), it does not deal with the authentication of servers. The basic primi
tive operations offered by the system are put(port, message) and get(port,
message). Since everyone knows the port of the file server, as an example,
how does one insure that malicious users do not execute gets on the file
server's port, in effect impersonating the file server to the rest of the system?

One approach is to have all ports manipulated by kernels that are presumed
trustworthy and are supposed to know who may get from which port. We
reject this strategy because some machines, e.g., personal computers connected
to larger multimodule systems may not be trustworthy, and also because we
believe that by making the kernel as small as possible, we can enhance the reli
ability of the system as a whole. Instead, we have chosen a different solution
that can be implemented in either hardware orif necessaryin software.

In the hardware solution, we need to place a small interface box, which we
call an F-box (Function-box) between each processor module and the network.
The most logical place to put it is on the VLSI chip that is used to interface to
the network. Alternatively, it can be put on a small printed circuit board
inside the wall socket through which personal computers attach to the network.
In those cases where the processors have user mode and kernel mode and a
trusted operating system running in kernel mode, it can also be put into
operating system software. In any event, we assume that somehow or other all
packets entering and leaving every processor undergo a simple transformation
that users cannot bypass.

The transformation works like this. Each port is really a pair of ports, P,
and G, related by: P = F(G), where Fis a (publicly-known) one-way function
[Wilkes68, Purdy74, Evans74] performed by the F-box. The one-way function

128

has the property that given G it is a straightforward computation to find P,
but that given P, finding G is so difficult that the only approach is to try every
possible G to see which one produces P. If P and G contain sufficient bits,
this approach can be made to take millions of years on the world's largest
supercomputer, thus making it effectively impossible to find G given only P.
Note that a one-way function differs from a cryptographic transformation in
the sense that the latter must have an inverse to be useful, but the former has
been carefully chosen so that no inverse can be found.

Using the one-way F-box, the server authentication can be handled in a sim
ple way. Each server chooses a get-port, G, and computes the corresponding
put-port, P. The get-port is kept secret; the put-port is distributed to potential
clients or in the case of public servers, is published. When the server is ready
to accept client requests, it does a get(G). The F-box then computes
P = F(G) and waits for packets containing P to arrive. When one arrives, it
is given to the process that did get(G). To send a packet to the server, the
client merely does put(P), which sends a packet containing P in a header field
to the server. The F-box on the sender's side does not perform any transfor
mation on the P field of the outgoing packet.

Now let us consider the system from an intruder's point of view. To imper
sonate a server, the intruder must do get(G). However, G is a well-kept secret,
and is never transmitted on the network, Since we have assumed that G cannot
be deduced from P (the one-way property of F) and that the intruder cannot
circumvent the F-box, he cannot intercept packets not intended for him.
Replies from the server to the client are protected the same way, only with the
client picking a get-port for the reply, say, G', and including P' = F(G') in
the request packet.

The presence of the F-box makes it easy to implement digital signatures for
still further authentication, if that is desired. To do so, each client chooses a
random signature, S, and publishes F(S). The F-box must be designed to
work as follows. Each packet presented to the F-box contains three special
header fields: destination (P), reply (G'), and signature (S). The F-box applies
the one-way function to the second and third of these, transmitting the three
ports as: P, F(G'), and F(S), respectively. The first is used by the receiver's
F-box to admit only packets for which the corresponding get has been done,
the second is used as the put-port for the reply, and the third can be used to
authenticate the sender, since only the true owner of the signature will know
what number to put in the third field to insure that the publicly-known F(S)
comes out.

It is important to note that the F-box arrangement merely provides a simple
mechanism for implementing security and protection, but gives operating sys
tem designers considerable latitude for choosing various policies. The mechan
ism is sufficiently flexible and general that it should be possible to put it into
hardware with precluding many as-yet-unthought-of operating systems to be
designed in the future.

129

3. COMMUNICATION PRIMITIVES
In the literature about computer networks, one finds much discussion of the
ISO OSI reference model [Zimmermann80] these days. It is our belief that the
price that must be paid in terms of complexity and performance in order to
achieve an "open" system in the ISO sense is much too high, so · we have
developed a much simpler set of communication primitives, which we will now
describe.

3.1. Transaction vs. stream communication
Most distributed systems have a connection mechanism that is based on the
idea of two processes going to some effort to set up a connection, using the
connection, and then tearing it down. The assumption is that a connection
will be used for a stream of information so long that the overhead needed to
set it up and tear it down are basically negligible. Most streams will consist of
a file of one kind or anothera source program, a binary program, an input file,
and so on. To see how long the average file is, we have conducted some meas
urements on the UNIXt system used in our department by the faculty and staff
for research (no students, thus). The results of these measurements show that
34% of all files are less than 512 bytes, 52% are less than IK bytes, 67% are
less than 2K bytes, 79% are less than 4K bytes, 88% are less than 8K bytes,
and 94% are less than 16K bytes.

The above considerations have led us to a different approach [Mullender83].
With packets of even 2K bytes, two thirds of all files fit into a single packet.
Consequently, it is much simpler to adopt a "Request-Reply" or "Transaction"
style of communication, in which the basic primitive is the client sending a
request to a server and the server sending a reply back to the client. The
client uses trans and the server getreq and putrep. Trans sends a request,
and blocks until a reply is. received. Getreq blocks the server until a request is
received, which can then be processed, after which a reply can be sent using
putrep. Each request-reply pair is completely self-contained, and independent
of any other ones that may previously been sent. In other words, no concept
of a "connection" exists. Not only is this conceptually much more appropriate
for use in an operating system, but it is much simpler to implement than a
complex 7-layer protocol, not to mention offering lower delay. Henceforth we
will refer to a request-reply pair as a transaction, which is not to be confused
with transactions with a data base.

· 3.2. Basic communication protocol
Instead of a 7-layer protocol, we effectively have a 4-layer protocol. The bot
tom layer is the Physical Layer, and deals with the electrical, mechanical and
similar aspects of the network hardware. The next layer is the Port Layer, and
deals with the location of ports, the transport of (32K byte) datagrams (pack
ets whose delivery is not guaranteed) from source to destination and enforces

t UNIX is a Trademark of AT&T Bell Laboratories.

130

the protection mechanism of the previous section. On top of this we have a
layer ·that deals with the reliable transport of bounded length (32K byte)
requests and replies between client and server. We have called this layer the
Transaction Layer. The final layer has to do with the semantics of the
requests and replies, for example, given that one can talk to the file server,
what commands does it understand.

Since systems of the kind we are describing will use high-speed, highly reli
able local networks, few if any of the complex mechanisms designed for flow
and error-control in long-haul networks are useful here. Among other things,
a simple stop-and-wait protocol is sufficient. The main function of the Tran
saction Layer is to provide an end-to-end message service built on top of the
underlying datagram service, the main difference being that the former uses
timers and acknowledgements to guarantee delivery whereas the latter does
not.

The Transaction Layer protocol is straightforward. When the client does a
trans, a packet containing the request is sent to the server and a timer is
started. If the server does not acknowledge receipt of the request packet
before the timer expires (usually by sending the reply, but in some special
cases by sending a separate acknowledgement packet), the Transaction Layer
retransmits the packet again and restarts the timer. When the reply finally
comes in, the client sends back an acknowledgement (usually piggybacked onto
the next request packet) to allow the server to release any resources, such as
buffers, that were acquired for this transaction. Under normal circumstances,
reading a long file, for example, consists of the sequence

From client : request for block 0
From server: here is block 0
From client : acknowledgement for block O and request for block 1
From server: here is block 1

etc.

The protocol can handle the situation of a server crashing and being rebooted
quite easily since each request contains the capability for the file to be read
and the position in the file to start reading. Between requests, the server has
no "activation record" or other table entry whose loss during a crash causes
the server to forget which files were open, etc., because no concept of an open
file or a current position in a file exists on the server's side. Each new request
is completely self-contained. Of course for efficiency reasons, a server may
keep a cache of frequently accessed i-nodes, file blocks etc., but these are not
essential and their loss during a crash will merely slow the server down slightly
while they are being dynamically refreshed after a reboot.

131

4. THE PORT LAYER

The Port Layer is responsible for the speedy transmission of 32K byte
datagrams. The Port Layer need only do this reasonably reliably, and does
not have to make an effort to guarantee the correct delivery of every datagram.
This is the responsibility of the Transaction Layer. Our results show that this
approach leads to significantly higher transmission speeds, due to simpler pro
tocols.

HOST HOST

- OMA Transfer -

interface interface

Network Transfer

FIGURE 1. A typical local-area network interface.

Theoretically, very high speeds are achievable in modem local-area networks.
A typical example of a local-area network interface is shown in Fig. I. When
a host transmits a packet to another host, the packet is first transferred to the
interface by means of a direct memory access (DMA) transfer. When this is
done, the packet is transmitted over the network. After the packet has been
received by the destination interface, it can be transferred to the destination
host's memory, again using a OMA transfer. While this transfer is going on,
the sending host may already transfer the next packet to the interface. A
sequence of packets is thus transmitted by interchanging periods of OMA
transfers and network transfers. On most interfaces OMA transfers and net
work transfers cannot occur simultaneously.

It is now simple to deduce an upper bound for the maximum transfer rate
over the network: A typical speed for DMA transfers is 1 byte/ µ.sec, and the
typical transmission speed of a 10 Mbit local-area network is also 1 byte/ µ.sec.
Since DMA transfer and network transfer cannot overlap, but OMA at the
destination host can overlap with the OMA of the next packet at the source
host, an upper bound for the transfer rate of a typical local-area network is
500,000 bytes/sec point-to-point.

Obviously, to achieve such a transmission rate, the overhead of the protocol
must be kept as low as possible, while an effort must be made to overlap
DMA s at both communicating parties. To achieve this, we have chosen a
very large datagram size for the Port Layer, which has to split up the

132

datagrams into small packets that the network hardware can cope with. This
approach allows the implementor of the Port Layer to exploit the possibilities
that the hardware has to off er to achieve an efficient stream of packets.

Our Port Layer interfaces to a 10 Mbit token ring that allows scatter-gather;
that is, a packet can be sent to or from the interface in several DMA transfers,
and then transmitted over the network separately. We discovered that this
allows us to do two important things to speed up the protocol. First, when a
packet is received, the header can be inspected separately, so the protocol can
decide where in memory the packet must go. The protocol can then transfer
the packet directly from the interface to the right place in memory, without
having to copy it. A copy loop would halve the transmission speed. Second,
the separation of DMA and transmission allows the protocol to prepare a
transmission by doing the DMA . The transmission can then be initiated
immediately when the signal is received that the receiver is ready. In our
implementation of the Port Layer these considerations have resulted in the
protocol that will now be described.

The transmitter begins by transferring and sending the first 2K of the
datagram to be transmitted (2K is the maximum packet size allowed by the
hardware). Immediately after the transmission is complete, the DMA for the
next 2K bytes is started, but it is not yet transmitted. In the mean time, the
receiver is interrupted by the arrival of the first packet. It extracts the header,
examines it and decides where the body of the packet should go. Then the
body of the packet is transferred from the interface to its final location in
memory. While this is being done, the receiver prepares a tiny acknowledge
ment packet to tell the transmitter it is prepared for the next packet. As soon
as the DMA transfer of the previous packet has finished, this acknowledge
ment is sent back to the transmitter. When the transmitter receives it, the
transfer of the next packet to the interface will have finished, so it can then be
sent immediately. This sequence is continued until the whole datagram is
transmitted.

5. THE TRANSACTION LAYER
It is the responsibility of the Transaction Layer to guarantee the arrival of
requests and replies. The Transaction Layer makes use of the Port Layer and
timers to achieve this.

The interface to the transaction layer basically consists of three calls, one for
clients, and two for servers. All calls use a small datastructure, called Mref,
which contains a pointer to a small fixed-size out-of-band buffer for the
transmission of commands and parameters to the server, a pointer to the main
body of data to be transferred, and the length of the main body of data (0 to
32768), as follows:

typedef struct Mref {
char *M oob;
char *M-buf;
unsigned M_len;

} Mref;

The client, in order to do a transaction calls

trans(cap, req, rep);
Cap *cap; Mref *req, *rep;

The server receives requests and sends replies with

getreq(port, cap, req);
Port *port; Cap *cap; Mref *req;

putrep(rep);
Mref *rep;

133

In principle, the Transaction Layer works as follows: When a client calls
trans, the Transaction Layer generates a reply-port to enable the server to send
a reply. The server port is deduced from the capability; the first 48 bits of the
capability for an object identify the service that controls the object. The
request is then sent, using put, and a retransmission timer is started.

The server, which previously had made a call to getreq, receives the request;
the capability is filled in, and the received message is put in the buffers
referred to by req. As soon as the request is received, the server's Transaction
Layer starts a piggyback timer. When the server has not sent a reply before
this timer expires, a separate acknowledgement is sent to put the client at ease,
and stop its retransmission timer. When the server sends a reply to the client
the same thing happens, more or less, with the role of client and server
reversed. When a client makes a sequence of transactions with a single server,
a subsequent request will acknowledge receipt of the previous reply.

The client maintains one more timer, the crash timer. This timer is set when
the server's acknowledgement to a request has been received, and is used to
detect server crashes. Whenever this timer expires, the client sends an "are
you still alive?" packet to the server, to which the server replies with an ack
nowledgement.

When transactions occur quickly, one after the other, no extra acknowledge
ments are sent at all. Only when transactions take a long time (say, longer
than a minute), acknowledgements are sent, and when transactions take much
longer than that (say, ten minutes) then "are you still alive" messages begin to
be sent.

134

5.1. Timer management
If the timers are started and stopped in exactly the way described above, the
Transaction Layer would become unacceptably slow. Per (quick) transaction,
two retransmission timers and two piggyback timers would have to be started
and stopped, eight timer actions altogether.

There is a much more efficient way of dealing with timers, one that makes
use of a sweep algorithm. This algorithm does not implement very accurate
timers, but accuracy of the timer intervals is not very important to the correct
and efficient operation of the protocol.

The sweep algorithm is called every n clock tics. N must be chosen such
that n tics is about the minimum timer interval needed (the piggyback timer
interval). Whenever the algorithm is called, it makes a sweep over all out
standing transactions. If the state of a transaction has changed, the new state
is recorded. If it has not changed, a counter is incremented, telling for how
long the state has remained the same. If the (state, counter) combiµation has
reached a certain value, the sweep algorithm carries out the appropriate
actions, usually sending an acknowledgement, retransmitting a message, or
aborting a transaction.

Because this algorithm is used there is no code needed in the transaction
code itself, reducing the overhead of the Transaction Layer significantly. In
this way, the code executed in the Transaction Layer is optimised for the nor
mal case (no errors).

5.2. Results
Two versions of the algorithm have now been implemented. The one
described has been implemented on the Amoeba distributed operating system,
and achieves over 300,000 bytes a second from user process to user process
(using M68000s and a Pro-net ring). It is now being implemented under UNIX
where we expect to obtain more than 200,000 bytes/ sec, assuming the com
municating processes are not swapped.

An older version of the protocol, using 2K byte datagrams, now gets 90,000
bytes/sec across the network between two VAX-750s running a normal load of
work, without causing a significant load on the system itself.

Several services, implemented under UNIX, are using the Transaction Layer
interface, and it is our experience that these services are easy to design and
that they work efficiently.

The port mechanism allows us to move services from one machine to
another, completely transparently to the user. The F-boxes do not yet exist in
hardware, but are built into the operating system. The one-way function does
not significantly slow the system down, because a cache is maintained of get-

135

port/put-port pairs.

REFERENCES

[Dennis66]
DENNIS, J.B. and HORN, E. C. VAN, "Programming Semantics for Mul
tiprogrammed Computation," Comm. ACM, vol. 9, no. 3, pp.143-155,
March 1966.

[Evans74]
EVANS, A., KANTROWITZ, W., and WEISS, E., "A User Authentication
Scheme Not Requiring Secrecy in the Computer," Comm. ACM, vol. 17,
no. 8, pp.437-442, August 1974.

[Mullender83]
MULLENDER, SAPE J., RENESSE, ROBBERT VAN, and TANENBAUM,
ANDREW S., "A Transaction-Oriented Transport Protocol", internal
paper, Centre for Mathematics and Computer Science, 1983.

[Mullender84]
MULLENDER, s. J. and TANENBAUM, A. s., "Protection and Resource
Control in Distributed Operating Systems," Computer Networks, vol. 8,
no. 5,6, pp.421-432, 1984.

[Mullender86]
MULLENDER, s. J. and TANENBAUM, A. s., "The Design of a
Capability-Based Distributed Operating System," The Computer Journal,
vol. 29, no. 4, pp.289-300, 1986.

[Purdy74]
PuRDY, G. B., "A High Security Log-in Procedure," Comm. ACM,
vol. 17, no. 8, pp.442-445, August 1974.

[Wilkes68]
WILKES, M. V., Time-Sharing Computer Systems. New York: American
Elsevier, 1968.

[Zimmermann 80]
ZIMMERMANN, H., "OSI Reference Model-The ISO Model of Architec
ture for Open Systems Intercon nection," IEEE Trans. Comm.,
vol. COM-28, pp.425-432, April 1980.

Distributed Match-Making for Processes

in Computer Networks

Sape J. Mullender
Paul M.B. Vitanyi

Centre for Mathematics and Computer Science
Amsterdam, The Netherlands

In the very large multiprocessor systems and, on a grander scale, computer
networks now emerging, processes are not tied to fixed processors but run on
processors taken from a pool of processors. Processors are released when a
process dies, migrates or when the process crashes. In distributed operating
systems using the service concept, processes can be clients asking for a ser
vice, servers giving a service or both. Establishing communication between a
process asking for a service and a process giving that service, without central
ized control in a distributed environment with mobile processes, constitutes the
problem of distributed match-making. Logically, such a match-making phase
precedes routing in store-and-forward computer networks of this type. Algo
rithms for distributed match-making are developed and their complexity is
investigated in terms of message passes and in terms of storage needed. The
theoretical limitations of distributed match-making are established, and the
techniques are applied to several network topologies.

1. INTRODUCTION

137

We investigate the problem of setting up communication-when-needed
between processes in a multiprocessor network where processes have names but
no permanent addresses. A mechanism for this purpose is called a name
server, analogous to the telephone system's directory assistance server: given a
name it returns an address. A single centralized name server in the network
can be taken out through a single processor crash, thereby effectively killing all
communication and crashing the entire network. A more robust solution is
distributing the name server. A great variety of options and problems of both
theoretical and practical interest are attached to this issue. Our motivation
was provided by the design objectives of the Amoeba distributed operating sys
tem project [Mullender86].

Distributed Match-Making for Processes in Computer Networks
S. J. MULi.ENDER and P. M. B. VITANYI
Proceedings 4th A CM Principles of Distributed Computing
Minaki, Canada
August 1985

138

1.1. The catering service problem
Suppose you want to give a party in your Silicon Valley home, but do not care
for the bother. You want a catering service. Now it so happens, that you do
not know the address or telephone number of such a service. Anyway, even if
you did, this would not do you much good. In Silicon Valley such small
outfits come and go so fast that it is unlikely that this service, which you used
two years ago, still exists at the old address. You can phone them, but the
number gets you somebody who has never heard of your old catering service.
There are several courses of action you can take.

• One way to solve your problem is to send mail to everybody in town ask
ing whether they supply catering service. In computer networks this is
called broadcasting.

• Another way is to wait until you get an advertisement leaflet of a catering
service in your mailbox. Below we call this sweeping.

Most likely, you do one of the following:

•

•

•

You look in the Yellow Pages under the appropriate heading. If every
body exclusively uses YP for all services then we may view the YP outfit
as a centralized name server. Services reveal their whereabouts by
advertising there and clients look them up there. If the YP company
crashes then clients and services cannot be matched anymore, and society
grinds to a halt.
You buy a suitable newspaper and look up "catering" in the advertise
ment section. Now the name server is distributed. Catering services adver-
tise· in many newspapers. If one newspaper flounders, this will not create
problems for you.
You ask some of your friends whether they know where to find the desired
service. Some of . your friends crashing will not prevent you finding a
caterer. The name server is distributed in this case as well, and, depending
on how sociable you are, perhaps better.

Having found the address or telephone number of a catering service, you have
to find a way to route your request to them. Thus, match-making between
clients and services necessarily precedes routing in a mobile society. Note that
the catering service, in order to execute the task you set them, may call on
other services such as a car rental service. The catering service then is a client
with respect to the car rental service. Oearly, everybody can be server, client
or both.

1.2. Multiprocessors and computer networks
New generation computers must be fast, reliable, and flexible. One way to
achieve this is to build them from a small number of basic processor-memory
modules that can be assembled together to realize machines of various sizes.
The use of multiple modules can make the machines not only fast, but also
achieve a substantial amount of fault tolerance. The primary difference
between machines should be the number of modules, rather than the type of

139

the modules. In principle, any of these machines can be gracefully incr-eased
in size to improve performance by adding new modules or decreased in size to
allow removal and repair of defective modules. The software running on the
various machines should be in essence identical. It should be possible to con
nect different machines together to form even larger machines and to partition
existing machines into disjoint pieces when necessary, all in a way transparent
to the user level software. When a user has a heavy computation to do, an
appropriate number of processor-memory modules are temporarily assigned to
him. When the computation is completed, they are returned to the idle pool
for use by other users. Note that in this view a computer network is essentially
such machine on a grand scale.

Software design for these new machines can advantageously be based on the
object model. In this model, the system deals with abstract objects, each of
which has some set of abstract operations that can be performed on it. At the
user level, the basic system primitive is performing an operation on an object,
rather than such things as establishing connections, sending and receiving mes
sages, and closing connections. For example, a typical object is the file, with
operations to read and write portions of it. The object model is also known
under the name of "abstract data type" [Liskov74]. A major advantage of the
object or abstract data type model is that the semantics are inherently location
independent. The concept of performing an operation on an object does not
require the user to be aware of where objects are located or how the communi
cation is actually implemented. This property gives the system the possibility
of moving objects around to position them close to where they are frequently
used. Furthermore, the issue of how many processes are involved in carrying
out an operation, and where they are located is also hidden from the user.

1.3. The service model
It is convenient to implement the object model in tenns of clients (users) who
send messages to services [Mullender86]. A service is defined by a set of com
mands and responses. Each service is handled by one or more server processes
that accept messages from clients, carry out the required work, and send back
replies.

As an example, consider a file server. The design must deal with how and
where information is stored, how and when it is moved, how it is backed
up, how concurrent reads and writes are controlled, how local caches are
maintained, how information is named, and how accounting and protec
tion are accomplished. The internal structure of the service must be
designed: how many server processes are there, where are they located,
how and when do they communicate, what happens when one of them
fails, how is a server process organized internally for both reliability and
high performance, and so on. A server can itself be client to another ser
vice. The possible hierarchy of services is the strength of the model:

140

A crash of the database server, will be detected by the query server, which
must then try to recover from it. The query server can retry the request, it
might rephrase a query to get the answer from another database server,
and as a last resort, it can report failure to its client, the command inter
preter. In this way the human client at the top of the hierarchy gets to
cope only with irrecoverable errors and crashes in the system.

More precisely, Services are offered by a number of server processes, distri
buted over the network. Client processes send requests to services; the services
carry out these requests and return a reply. Essentially, every job in the sys
tem is executed by a dynamic network of servers executing each other's
requests. So a process can be a client, a server, or both, and change its role
dynamically. New services can be created by installing server processes for
them. Services can be removed by destroying their server processes (or by
making them stop behaving like a server, i.e., by telling them to stop receiving
requests). Server processes can be migrated through the network, either by
actually moving the process from one host to another, or only in effect, by des
troying the server process in one host and creating another one in a different
host at the same time. A specific service may· be offered by one, or by more
than one server process. In the latter case, we assume that all server processes
that belong to one service are equivalent: a client sees the same result, regard
less which server process carries out its request. A process resides in a net
work node. Each node has an address and we assume that, given an address,
the network is capable of routing a message to the node at that address. A
service is identified by its port. A port uniquely names a service. We shall
therefore also refer to a service by its port. Ports give no clue about the physi
cal location of a server process.

1.4. The problem of Match-Making
Before a client can send a request to a server which provides the desired ser
vice, the client has to locate that server. The problem of efficient routing arises
at a later stage; first the address of the destination has to be found in a
match-making phase. We can view match-making as yet another service in the
system, be it the primus inter pares. Thus, we need to implement a name server
io serve a connection between client process and server process.

A centralized name server must reside at a so-called well-known address
which does not change and is known to all processes. (Oearly, the name
server cannot be used to locate itself.) When the host of the name server
crashes, the entire network crashes. This solution also causes an overload of
messages in the neighborhood of the host.

When clients broadcast for services with ''where are you" messages, we have
an example of a distributed name server. This solution is more robust than the

141

centralized one. But in large store-and-forward networks, where messages are
forwarded from node to node to their destination, broadcasting is considerably
more costly than sending a message directly to its destination. Broadcast mes
sages are sent to every host, while point-to-point messages need only pass
through the hosts on the path between client and server. Conventional broad
cast methods for locating services need a minimum of U(n) message passes to
do the broadcast (e.g., via a spanning tree [Dalal77]).

We investigate realizations of name servers in the entire range between cen
tralized and distributed forms. The efficiency of solutions is measured in terms
of message passes and local storage. It appears that, in many n-node net
works, Vt;Jy efficient distributed match-making between processes can be done
in O(Vn) message passes, by using limited numbers of point-to-point mes
sages.

1.5. Locate algorithms
In all cases, the method used to locate a port is the following: A server process
s located at address As and offering a service identified by a port 'IT, selects a
collection Ps of network nodes and posts at these nodes that server s receives
requests on port '1T at the address As. Each of the nodes in Ps stores this infor
mation in a cache for future reference. When a client process c located at
address Ac has a request to send to .,,, it selects a collection of network nodes
Qc and queries each node in Qc for the address of 'IT. When Ps n Qc =I= 0, the
node(s) in the intersection will return a message to c stating that.,, is available
at A3 • If Ps = { s} and Qc = U then the technique is called broadcasting; if
P3 = U and Qc = { c} then the technique is called sweeping.

I. 6. Outline of the paper.
We develop a class of distributed algorithms for match-making between client
processes and server processes in computer networks. We investigate the
expected performance of such an algorithm under random choices. Subse
quently, we determine the optimal lower bound on the performance in number
of message passes or "hops" for any such algorithm, in any network, under
any strategy, distributed or not. This yields a combinatorial lemma which may
be interesting in its own right, and results in a lower bound on the trade-off
product between the number of nodes a server advertises at and the number of
nodes a client inquires at. We consider criteria for robustness. Second, we
apply the method to particular networks, both designed networks and spon
taneously emerged networks. Finally, a probabilistic and a hashing algorithm
for match-making are investigated.

I. 7. Related work.
Distributed match-making between clients and servers will be used in the
Amoeba distributed operating system [Mullender86]. Essentially the Manhat
tan topology method below has been used before in the torus-shaped Stony
Brook Microcomputer Network [Gelernter82]. Some current multiprocessor
systems avoid the communication overload due to mobile processes, which use

142

broadcasting to do the match-making, by opting for the processes to run on
fixed processors [Seitz85]. Other system designers have chosen for mobile
processes, but use the crash-vulnerable solution of a centralized name server
[Needham82]. The present paper introduces, and systematically explores for
the first time, the general concept of distributed match-making.

2. A THEORY OF DISTRIBUTED MATCH-MAKING

Below we obtain lower bounds on the message pass complexity of a class of
Locate algorithms (called Shotgun Locate), for the entire range from central
ized to distributed methods, and for any network topology. In the next section
we give methods which achieve these lower bounds, or nearly achieve these
lower bounds, for many network topologies.

2.1. Framework for shotgun locate
The networks we consider are point-to-point (store-and-forward) communica
tions networks described by an undirected communications graph G =(U,E),
with a set of nodes U representing the processors of the network, and a set of
edges E representing bidirectional noninterfering communication channels
between them. No common memory is shared by the node-processors. Each
node processes messages it receives from its neighbors, performs local compu
tations on messages and sends messages to neighbors. All these actions take
finite time. A message pass or hop consists of the sending of a message from
one node to one of its direct neighbors.

1. The. number of message passes needed for match-making depends on the
topology of a network. We want to obtain topology independent lower
bounds. Therefore, assume that all messages can be routed in one mes
sage pass to their destinations. Equivalently, assume that the network is a
complete graph. Lower bounds on the needed number of message passes in
complete networks a fortiori hold for all networks.

2. For each network G =(U,E) and associated match-making algorithm,
there are total functions P, Q such that:

P, Q: U ➔ 2u.

(Here 2u is the set of all subsets of U.) Any server residing at node i
starts its stay there by posting its (port, address) pair at each node in P(i).
Any client residing at node j queries each node in Q (j) for each service
(port) it requires.

3. We assume that all nodes j have a cache which is large enough to store all
(port, address) pairs associated with addresses i such thatj EP(i). That is,
the nodes at which the rendez-vous' are made can hold all posted material.
The caches are large enough to hold so many (port, address) pairs that
they never have to discard one for a server that is still active. Entries are
made or updated whenever a message is received from a server process
with its address (or when a reply from a locate operation is received). We
can timestamp the messages to determine which addresses are out of date

143

in case of a conflict.

We have dubbed this class of algorithms Shotgun Locate algorithms. (Put so
many pheasants in the bushes that the hunter can expect success for the
amount of shot he is willing to spend.) Later we consider alternative locate
methods: Hash Locate where the functions P, Q depend on the service ports as
well, and Lighthouse Locate which is a probabilistic version of Shotgun Locate
where too-small caches can discard (port, address) pairs.

2.2. Probabilistic analysis
Let the number of elements in a given set U (universe) of nodes be n. Let a
given server s reside at node i. Let p be the cardinality of P (i) c; U, the set of
nodes where s posts its whereabouts. Let a given client c reside at node j. Let
q be the number of elements in Q (j) c; U, the set of nodes queried by c. If the
elements of P (i) and Q (j) are randomly chosen then the probability for any
one element of U to be an element of P(i) [Q(j)] is pin [qln]. If P(i) and
Q (j) are chosen independently then the probability for any one element of U
to be an element in both P (i) and Q (j) is pq I n2• Since there are n elements in
U, the expected size of P(i)nQ(j) is given by

E(# (P(i)nQ(j))) = 1!!1. .
n

Therefore, to expect one full node in P (i) n Q (j), we must have p + q ;.,, 2 Vn.
This is the situation for a particular pair of nodes. For the performance of the
whole network we have to consider the combined performance of the n 2 pairs
of nodes. The above analysis holds for each pair i, j of elements of U, since
they are all interchangeable. Cons~uently, the minimal average value of p +q
over all pairs in U2 must be 2 V n, in order to expect a successful match
making for each pair.
By choice of the sets P (i) and Q (j), we may improve the situation in two
ways:
• The method deterministicall,l yields success.
• We get by with p + q < 2 V n.

2.3. Number of messages for Match-Making
To match a server at node i to a client at node J the following actions have to
take place. The server at i tells a set P(i) of nodes about its location. Client j
queries a set Q(j) of nodes for the desired service. Call the set of nodes
r;,j = P (i) n Q (j) the set of rendez-vous nodes, that is, the nodes at which a
rendez-vous between a client at j looking for a service and a server at i offering
that service can be made.

DEFINITION.

Then Xn matrix, R, with entries r;,j (1 ~i,j ~n) is the rendez-vous matrix. Each
entry r;,j, in the ith row and jth column of R, represents the set of rendez-vous
nodes where the client at node j can find the location i and port of the server
at node i. Note that:

144

n n

LJr• · C P(i) I,} - & U r;,J c; Q (j) (Ml)
j=l i=I

To prevent waste in message passes, we can take care that the inclusions in
(Ml) are replaced by equalities. (But then the surviving subnetwork after a
node crash may lack this property again.) An optimal shotgun method has
exactly one element in each r;,1. Below, we represent such singleton sets by
their single element. (If faults occur in the network then we may opt for more
redundancy by using larger r;,1, cf. § 2.4.)

2.3.1. Examples of rendez-vous matrices associated with both well-known and
lesser known strategies.

1. Broadcasting. The server stays put and client looks everywhere:

Clients

2 3 4 5 6 7 8 9

l I l
s 2 2 2 2 2 2 2 2 2 2

e 3 3 3 3 3 3 3 3 3 3

r 4 4 4 4 4 4 4 4 4 4

V 5 5 5 5 5 5 5 5 5 5

e 6 6 6 6 6 6 6 6 6 6

r 7 7 7 7 7 7 7 7 7 7

s 8 8 8 8 8 8 8 8 8 8

9 9 9 9 9 9 9 9 9 9

2. Sweeping. The client stays put and the server looks for work:

Clients

2 3 4 5 6 7 8 9

l 2 3 4 5 6 7 8 9

s 2 2 3 4 5 6 7 8 9

e 3 2 3 4 5 6 7 8 9

r 4 2 3 4 5 6 7 8 9

V 5 2 3 4 5 6 7 8 9

e 6 2 3 4 5 6 7 8 9

r 7 2 3 4 5 6 7 8 9

s 8 2 3 4 5 6 7 8 9

9 2 3 4 5 6 7 8 9

3. Centralized name server. All services post at node 3 and all clients query

145

for services at node 3:

Clic,nts

l 2 3 4 5 6 7 8 9

3 3 3 3 3 3 3 3 3
s 2 3 3 3 3 3 3 3 3 3
C, 3 3 3 3 3 3 3 3 3 3
r 4 3 3 3 3 3 3 3 3 3
V 5 3 3 3 3 3 3 3 3 3
e 6 3 3 3 3 3 3 3 3 3
r 7 3 3 3 3 3 3 3 3 3
s 8 3 3 3 3 3 3 3 3 3

9 3 3 3 3 3 3 3 3 3

4. Truly distributed name server. All nodes are used equally often as rendez-
vousnode:

Clients

l 2 3 4 5 6 7 8 9

l l l 2 2 2 3 3 3
s 2 l l 2 2 2 3 3 3
e 3 l 2 2 2 3 3 3
r 4 4 4 4 5 5 5 6 6 6
V 5 4 4 4 5 5 5 6 6 6
e 6 4 4 4 5 5 5 6 6 6
r 7 7 7 7 8 8 8 9 9 9
s 8 7 7 7 8 8 8 9 9 9

9 7 7 7 8 8 8 9 9 9

5. Hierarchically distributed name server. Links for nodes lower in the hierar-
chy are served by rendez-vous nodes higher in the hierarchy. The nodes are
hierarchically ordered by 1,2,3<7; 4,5,6<8; 7,8<9:

146

Clients

2 3 4 5 6 7 8 9

l 7 7 7 9 9 9 9 9 9

s 2 7 7 7 9 9 9 9 9 9

e 3 7 7 7 9 9 9 9 9 9

r 4 9 9 9 8 8 8 9 9 9

V 5 9 9 9 8 8 8 9 9 9

e 6 9 9 9 8 8 8 9 9 9

r 7 9 9 9 9 9 9 9 9 9

s 8 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9

6. Distributed name server for the binary 3-cube topology. The node
addresses are the 3-bit addresses of the comers of the cube. For all
a,b,c E {O, 1 }, P(abc) = {axy I x,y E{O,l}} and
Q(abc) = {xbc Ix E{0,1} }:

Clients

000 001 010 011 100 101 110 111

000 000 001 010 Oil 000 001 010 011

s 001 000 001 010 01 I 000 001 010 011

e 010 000 001 010 011 000 001 010 011

r 011 000 001 010 011 000 001 010 011

V 100 100 IOI 110 111 100 IOI 110 111

e 101 100 101 110 111 100 101 110 111

r 110 100 101 110 111 100 101 110 111

s 111 100 IOI 110 111 100 101 110 111

2.3.2. Lower bound
There are n possible rendez-vous nodes and n2 elements in R. By choice of P,
Q the algorithm distributes the load of being a rendez-vous node over the
nodes in the network. It is sometimes preferable to distribute the load
unevenly. For instance, in the very large networks with millions of processors
which are now envisioned, Vn message passes is just too much because n is so
large. In hierarchical networks (Example 5) the number of message passes for
a match-making instance can be as low as logn. This means that some nodes
are used very often as rendez-vous node, and others very seldom or not at all.
A combination of hierarchical and local posting may also be useful.
Let the rendez-vous matrix R have n2 node entries, constituted by k;~O copies
of each node i, 1 ~i ~n. Clearly,

147

n
~k- = n2
""" I '

(M2)
i =l

To match a server at node i with a client at node j, the server sends messages
to all nodes in P (i) and the client sends messages to all nodes in Q (j). So, all
in all, the number of message passes m (i,j) involved in this match-making
instance is given, in a complete network, by

m(i,j) = #P(i) + #Q(j) . (M3)

In the examples above we have seen that, for different pairs i,j, the number
of message passes m (i,j) for a match-making instance can, in a single match
making strategy, range all the way from a minimum of 2 ton, and beyond. We
determine the quality and complexity of a match-making strategy by the
minimum of m (i,j), the maximum of m (i,j) and, above all, the average of
m (i,j), for 1 ,e;;;;i,j ,e;;;;n.

DEFINITION.

The average number of message passes m(n) of the given match-making stra
tegy (which is determined by the rendez-vous matrix R) is:

1 n n ..
m(n) = - 2 ~ ~m(z,J) . (M4)

n i=lj=l

We now proceed to derive an exact lower bound on m(n) expressed in terms
of the number k; of times node i occurs in R, i.e., is used as rendez-vous for a
pair of nodes (l,e;;;;i ,e;;;;n).

PROPOSmON 1.
Consider the rendez-vous matrix R as defined. Then the average value

_!_2 ~~-.~~-• #P(i)#Q<J. ') is bounded below by: n ,_ J-

n n [n]2
i~lj~l #P(i)#Q(j) ;;;;;i, i~l yk; (MS)

PROOF.

Let r; [c;] be the number of different nodes in row i [column i] (1 ,e;;;;; ,e;;;;n). Then
n n

r· = # LJ r· · & C· = # LJ r- · . (}) I ~ J ~
j=l i=l

Let R; be the number of different rows containing node i, and let C; be the
number of different columns containing node i (I ,e;;;;i ,e;;;;n). Let Pi,j = I if node i
occurs in row j and else Pi,j =O, and let "Yi,j = I if node i occurs in column j
and else "Yi,j =O, (I ,e;;;;i,j ,e;;;;n). Then,

n n n n

~rj = ~ ~Pi,j = ~R; (2)
j=l j=li=l i=l

n n n n

~cj = ~ ~"Yi,j = ~C;
j=l j=li=l i=l

148

Oearly, for all i (1 ~; ~n) we have

R;C;;;., k;

Furthermore, since

kjRt -2 ~ R;Ri + k;RJ = (-Jk; R; - '1f: Ri)1-

;;., 0 '

for all i,j (1 ~i,j ~n), we obtain immediately:

k-R· k-R- ~
:.::J::!.... + ~ ;;., 2 k-k-

R - R- I 'J ' 'J I

from which it follows that:

Hence,
n n n n
~ ~ #P(i)#Q(j);;., ~ ~r;c1 (by (Ml) & (1))
i=lj=l i=lj=l

n n
= ~R; X ~ Ci (by (2))

i=l j=l

n n
;;., ~ R; ~ k1R11 (by (3))

i=l j=l

> [,i1 Yki]' (by (4)),

(3)

(4)

which yields the Proposition. □

The constraints (Ml)-(M5) imply a lower bound trade-off between the number
of message passes (and nodes) for posting a server's (port, address) and the
number of message passes due to a client querying nodes for the whereabouts
of services ..

We can adjust the distributed match-making strategy to the relative fre
quency of these happenings, so as to minimize the weighted overall
number of messages. For instance, if the average call for a service at i by
a client at j occurs a;,j times more often than the average posting of a ser
vice available at i, then we may want to minimize m (n) replacing (M3) by
(M3'):

m(i,J) = #P(i) + a;,j#Q(j) . (M3')

149

Proposition 1 immediately gives us a lower bound on the average number of
messages involved with a rendez-vous:

PROPOSmON 2.
For a complete n-node network and any Shotgun Locate strategy, with the k;'s
as defined above, the average number m(n) of message passes (c.q., distinct
nodes accessed) to make a match is

2 n
m(n) ;;;;i: - I yk; .

n i=l

PROOF.

Assume, by way of contradiction, that the proposition is false, that is,
n n n
I I (r;+cj) = n I (r;+c;)
i=lj=l i=l

Then,

.~t•,tc, < lt VkiJ' ,
which contradicts proposition 1. □
It is not difficult to see that propositions 1 and 2 hold mutatis mutandis for
nonsquare matrices R, that is, for networks where some nodes can host only
servers and other nodes perhaps only clients.

2.3.3. Truly distributed match-making, centralized link-server
Propositions 1 and 2 specialize to the corollary below for
k 1 = k 2 = · · · =kn= n, the truly distributed case. Here, each node occurs
equally often as rendez-vous node in matrix R, and hence carries an equal load
of the work.

CoROLLARY.

Consider the rendez-vous matrix R as defined, for k1 = k2 = · · · =kn = n.
Then:

1 n n
-2 I I #P(i)#Q(j) ;;;;i, n '
n i=lj=I

m(n) ;;;;i, 2Vn .
This lower bound we saw before in the probabilistic approach. Another choice
of the k;'s gives:

CoROLLARY.

For k2 = k3 = · · · =kn = 0 and k 1 = n2, that is, there is a centralized name

150

server, we obtain:
1 n n

2 ~ ~ #P(i)#Q(j) ;:;;i: 1 ,
n i=lj=I

m(n) ;:;;i: 2 .

2.3.4. Upper bound for complete networks
For complete networks the above lower bounds on the number of message
passes for match-making are about sharp. For instance:

PROPOSITION 3.
For the truly distributed case arrangements can be constructed such that the lower
bounds are (nearly) matched by upper bounds. Viz., for each complete network
there exists functions_ t Q such that, for all 1-,s;;;;.i,j-,s;;;;.n, #P(i)#Q(j) ~ n,
#P(i)+ #Q(j) ~ 2Vn, and k;~n.

PROOFSKETCH.
Arrange the rendez-vous matrix R as a checker board consisting of (as near as
possible) Vn X Vn squares, or nearly squares, of about n entries each. Each
square is filled with about n copies of one unique node out of the n nodes, a
different one for each square; cf Example 4. D

PROPOSITION 4.
Let R be the rendez-vous matrix for an n-node network. Let k; (1-,s;;;;.i -,s;;;;.n) be the
multiplicity of node i in R. and let m (n) be the average match-making cost associ
ated with R. We can lift this strategy to a 4n-node network by constructing a
4n X4n rendez-vous matrix R' with k;'=4k;modn the multiplicity of node i in R'
(1-,s;;;;.i -,s;;;;.4n) and m'(4n) = 2m (n) the associated average match-making cost.

PROOF.

Replace each entry r;,j of R by a 2 X 2 submatrix consisting of 4 copies of r;,J.
The resulting 2n X 2n matrix is M. Let R; (i = 1,2,3,4) be four, pairwise ele
ment disjoint, isomorphic copies of M. Consider the 4n X 4n matrix R':

R'= [:: ::] .

The number of distinct nodes in R' is 16 times that in R and k;'=4k;modn
(I-,s;;;;.i-,s;;;;.4n). It is easy to see that the (2imod2n)th column [row] of R' con
tains twice as many distinct nodes as the (i modn)th column [row] of R
(1-,s;;;;.i -,s;;;;.2n). Therefore, the average match-making cost associated with R' is
m'(4n)=2m(n). □

The most inefficient match-making strategy is P(i)= Q(j)= U (1-,s;;;;.i,j-,s;;;;.n),
yielding m (n) = 2n.

151

2.3.5. Upper bound for non-Complete networks
The topology of a network G =(U,E) determines the overhead in message
passes needed for routing a message to its destination. For the complete net
works we have considered, the number of message passes m (i,J) for a match
making between a service at node i and a client at node j equals
#P(i)+ #Q(j). If the subgraph induced by the sets P(i), Q(j) (1<.i,j<.n) is
connected, and i EP(i) and j EQ(j), and we broadcast the messages over
spanning trees in these subgraphs, then the number of message passes m (i,j)
equals the number of addressed nodes # P (i) + # Q (j). Otherwise, there is an
overhead m(i,J)- #P(i)- #Q(j) >0 of message passes for routing messages
from i,j to P (i), Q (j). In designing distributed name servers for non-complete
networks, the achievable message pass efficiency of match-making very much
depends on how far we can reduce this overhead. For this reason, in a ring
network, no match-making algorithms can do significantly better than broad
casting (i.e., m(n}Eil(n)).

2.4. Robustness, fault-tolerance and efficiency
In computer networks, and also in multiprocessor systems, the communication
algorithms must be able to cope with faulty processors, crashed processors,
broken communication links, reconfigured network topology and similar issues.
A centralized name server (Example 3) is very efficient, but if its host crashes
the whole network fails. It is one of the advantages of truly distributed algo
rithms that they may continue in the presence of faults. With respect to
implementing the name server, we can distinguish two distinct criteria for
robustness. ·

• The name server should be distributed in the sense that no number of
node crashes, which leaves a surviving network, can prevent surviving
clients from locating surviving servers offering a desired service (for
instance, by first moving to another address). This rules out a centralized
name server, but the distributed Examples 1, 2, 4, 5, 6 are fine. It is lack
of robustness according to this criterion that makes the efficient Hash
Locate (last section) so fragile.

• The name server should be redundant in the sense that no number of node
crashes can prevent a client at a surviving node from locating a service
offered at a surviving node. For example, the Shotgun algorithm
expounded above, may be locally incapacitated by a rendez-vous node
crashing. We can remedy this situation by choosing P and Q such that,
for all 1 <. i,j <. n,

(P(i) n Q(j));;;, f + 1 ,

where / is the maximal number of faults at any time in the network.
(There remains of course the problem of how, or whether it is still possi
ble, to route the match-making messages to their destinations in the sur
viving subnetwork.) The safest solution is obviously P(i)nQ(j) = U
(l<.i,j:,;;;;;;,n). This criterion holds equally for Shotgun Locate and Hash

152

Locate.

Robustness is inefficient and has a price tag in number of message passes per
match-making instance. That question is not addressed in this paper.

3. IMPLEMENTATIONS IN PARTICULAR NETWORKS

We assume that each node has a table containing the names of all other nodes
together with the minimum cost to reach them and the neighbor at which the
minimum cost path starts. In [Erdos70] a construction is given to divide every
connected graph in O(Vn) disjoint connected subgrM>hs of :;:;;; Vn nodes each.
Number the nodes in each subgraph I through V n (if necessary, divide the
excess numbers over the nodes). Each node i has a table containing the route
to the next (adjacent) node i. In the worst case such a path consists of 2 Vn
message passes. (Each of the connected subgraphs contains at most Vn
nodes. The shortest path, between the two nodes labelled i in two adjacent
connected subgraphs, is therefore not longer than 2 Vn.)

Server's Algorithm. A server at the node labelled i in one of the suJw:aphs
communicates its (port, address) to all nodes i in the remaining O(Vn) sub
graphs . It follows from above that this takes O(n) message passes. Size
O(Vn) suffices for the cache of each node.

Client's Algorithm. A client broadcasts for a service (along a spanning tree)
in the subgraph where it resides. This takes at most Vn message passes.

Under the practical assumption that clients need to locate services usually
far more frequently than servers need to post (port, address), this scheme is
fairly optimal. Additionally, the caches are kept to a moderate size. More
over, in practice, many store-and-forward networks will require but O("V1t}_
message passes on the average to broadcast over the required subsets of V n
nodes of the server's algorithm. All this suggests that in most networks using
this method the average number of message passes per match-making instance
can be substantially less than the order n figure. In the remainder of this sec
tion we look at match-making in some networks with specific topologies.

3.1. Manhattan networks
The network is laid out as a p X q rectangular grid of nodes. Post availability
of a service along its row and request a service along the column the client is
on. Caches are of size O(q) and number of message passes for each match
making instance is O(p +q). For p =q we have m(n)=2Vn and caches of size
Vn. For the 9-node network below,

153

1 2 3

I I I
4 5 6

I I I
7 8 9

the rendez-vous matrix looks as follows:

Clients

I 2 3 4 5 6 7 8 9

I I 2 3 2 3 2 3

s 2 I 2 3 2 3 2 3

e 3 I 2 3 I 2 3 2 3

r 4 4 5 6 4 5 6 4 5 6

V 5 4 5 6 4 5 6 4 5 6

e 6 4 5 6 4 5 6 4 5 6

r 7 7 8 9 7 8 9 7 8 9

s 8 7 8 9 7 8 9 7 8 9

9 7 8 9 7 8 9 7 8 9

Wrap-around versions of the method can also be used in cylindrical net
works, or torus-shaped networks. It is, in fact, the method used in the torus
shaped Stony Brook Microcomputer Network [Gelemter82]. In the obvious
generalization to d-dimensional meshes the method takes m(n)=2n<d-l)td
message passes.

3.2. Multidimensional cubes
The network G =(U,E) is ad-dimensional cube with Uthe set of nodes of the
cube with addresses of d bits and E the set of edges which connect nodes of
which the addresses differ in a single bit. n=#U=2d and #E=d2d-l_
Assume that d is even.

Server's Algorithm. A server at an address s =s1s2 · · · sd broadcasts its (port,
address) along a spanning tree to all nodes in the d/2-dimensional cube
spanned by the nodes in

P(s) = {a1a2 ... a.!ls.!l+1···sdla1,••·•a.!l E{O,l}} .
2 2 2

Client's Algorithm. A client at an address c =c 1c2 • • • cd broadcasts its query
along a spanning tree to all nodes in the d/2-dimensional cube spanned by the
nodes in

154

Q(c) = {c1c2 ... c.!la.!l+1••·adla.!l+1, ... ,adE{O,l}} .
2 2 2

For each pair s,c E { 1, ... , n} the rendez-vous node is given by

P(s) n Q(c) = {c1C2 ... c.!ls.!l+1 .. ,sd} .
2 2

The number of message passes is the same for each server-client pair, and
therefore

m(n) = #P(s)+ #Q(c) = 2Vn .

The nodes need Vn-size caches. Variants of the algorithm are obtained by
splitting the comer address used in the algorithm not in the middle but in
pieces of uJ and (1-£)d bits. Cf. Example 6. For instance, to adapt the
method to take advantage of relative immobility of servers, to get lower aver
age. Excessive clogging at intermediate nodes may be prevented by sending
messages to a random address first, to be forwarded to their true destination
second [Valiant82].

3.3. Fast permutation networks
For various reasons [Broomell83] fast permutation networks like the Cube
Connected Cycles network are important interconnection patterns. An algo
rithm similar to that of the d-dimensional cube yields, appropriat'7 tuned, for
an n-node CCC network caches of size V n I log n and m (n) E 0(n log n).

3.4. Projt!ctive plane topology.
The projective plane PG(2, k) has n = k 2 + k + 1 points and equally many
lines. Each line consists of k + 1 points and k + 1 lines pass through each
point. Each pair of lines has exactly one point in common. A server s posts
its (port, address) to all nodes on an arbitrary line incident on its host node. A
client c queries all nodes on an arbitrary line incident on its own host node.
The common node of the two lines is the rendez-vous node. A Vn size cache
for each node suffices. Since the nodes are symmetric, it is easy to see that

m(n) = #P(s)+ #Q(c) = 2(k + 1) ~ 2Vn .

This combination of topology and algorithm is resistant to failures of lines,
provided no point has all lines passing through it removed.

3.5. Hierarchical networks
Local-area networks are often connected, by gateway nodes, to wide-area net
works, which, in tum, may also be interconnected. Locating services and
objects in such network hierarchies is bound to become an acute problem.

Service naming preferably should be resolved in a way which is machine
independent and network-address-independent. Consequently, ways will
have to be found to locate services in ve,r1 large networks of hierarchical
structure. There, the truly distributed V n solutions to the locate problem
are not acceptable any more. Fortunately, in network hierarchies, it can

be expected that local traffic is most frequent: most message passing
between communicating entities is intra-host communication; of the
remaining inter-host communication, most will be confined to a local-area
network, and so on, up the network hierarchy. For locate algorithms these
statistics for the locality of communication can be used to advantage.
When a client initiates a locate operation, the system first does a local
locate at the lowest level of the network hierarchy (e.g., inside the client
host). li this fails, a locate is carried out at the next level of the hierarchy,
and this goes on until the top level is reached.

155

Assume that a level i network connects n; level i -1 networks through n; gate
ways, for each l <i ~k (or basic nodes, at the lowest level O for i = 1).
Assume also that the n; gateway hosts compose a level i network with a topol
ogy which allows thrifty truly distributed match-making with 2 Vn message
passes per match, for all i ;;.i.1.

Server's Algorithm. A server posts its (port, address) by selecting y;;; gate
ways, connecting level i -1 level networks in a level i network, at each level i
of the hierarchy, on a path from its host node to the highest level network, to
advertise their location.

Client's Algorithm. Similarly, at each level i on a path from its host node to
the highest level network, a client's locate in a network of that level can be
done in 0(y;;;) message passes.

This gives an average message pass complexity m(n) E O(I7=i y;;;) for a
hierarchical network with a total of n ~ II~-J n; nodes. Assuming that all n;'s
equal a fixed a, the number of levels in I ilie hierarchy is k, and the total
number of nodes in the network is n = Jc then the message pass complexity
of the locate is m (n) E O(k Va). Therefore,

_L

m(n) E O(kn 2k) .

Having the number k of levels in the hierarchy depend on n, the minimum
value

m(n) E O(logn)

is reached fork = ½logn. This message pass complexity is much better than
O(Vn), but the cache size towards the top of the hierarchy increases rapidly.
Essentially, the cache of a node may need to hold as many (port, address)'s as
there are nodes in the subtree it dominates. In some cases this can be avoided.
For in a network hierarchy, as we have sketched, services are often exclusively
accessed by local clients.

In the Amoeba distributed operating system, for instance, even the operat
ing system itself is accessed just like any other service [Mullender86].
"Operating System Service" is thus a local service, useful only to local
clients. Clients on other hosts must use similar services, local to their host.

156

The Amoeba system provides a way for services to restrict the availability
of the service they offer to some local group of processes, the processes
within the host where the service resides, the processes within the local
area network of the service, within the campus network, etc. This last
model seems the most likely model for the interaction between clients and
services. Nearly every service will be a local service in some sense, with
only few services being truly global. Under these assumptions, the burden
of the processing of locate postings and requests can be distributed more
or less evenly over the hosts at each level of the network hierarchy. This is
essentially the generalization presented later in the section on Hash
Locate.

3. 6. Existing networks
Many wide-area computer networks are not completely designed at the outset
but grow and change dynamically. Yet one can identify common characteris
tics.

• The network resembles an undirected tree with a core in which we can
imagine the root, and with some additional edges thrown in. It appears
that UUCPnet (the anarchistic network connecting most UNIXt systems)
has this form in the sense that the number of extra edges thrown in are
not more than the the number of nodes in a spanning tree. The extra
edges would typically occur between geographically near nodes.

• The degree of the nodes should not be too large. Ideally bounded by a
constant. Yet nodes nearer to the core of the tree tend to be of higher
degree. Compare backbone sites, feeder sites and terminal sites in
UUCPnet. The hierarchy of the nodes towards the core is very pro
nounced as can be seen in the table. The degree of super-backbone sites
like ihnp4 is over 600, of backbone sites like decvax 40 and mcvax 45, and
a feeder site like sdcsvax is 17. Terminal sites like ace have degree 1.

• The network is planar to a large extent. This reflects the geographical cost
factor but also the tree aspect mentioned above. Thus, the ARPAnet, to a
large extent predesigned, is approximately planar and even the chaotic
UUCPnet is not too unplanar.

In the table below we have collected some statistics about the state of the
known sites of UUCPnet at August 15, 1984. The total number of sites of
UUCPnet is 1916 and of EUnet (European part) 153. The total number of
edges in UUCPnet is 3848 and in EUnet 211. The degree of the nodes
varies between the unlikely number O (one such node is appropriately
named loyalist) and 641 (which is ihnp4, in real life AT&T in Naperville).
In the table below we list the number of nodes having a given degree.

Let us consider trees as described above. The number of nodes in the

t UNIX is a Trademark of AT&T Bell Laboratories.

157

#sites degree #sites degree
25 0 3 25

840 1 1 27
384 2 2 28
207 3 2 30
115 4 2 32
83 5 1 33
71 6 2 34
32 7 1 35
29 8 2 36
11 9 1 37
17 10 1 38
5 11 1 39
7 12 I 40

14 13 1 42
10 14 1 43
6 15 I 44
2 16 3 45
2 17 1 46
3 18 1 47
3 19 1 52
3 20 2 63
3 21 1 70
4 22 1 471
3 23 1 641
3 24

balanced tree is n, the number of levels is / with the root at level / and the
leaves at level 0, and the degree of nodes at the i-th level is d(i). Then a 'fac
torial' relation holds:

d(/)d(/ -1) · · · d(l) = n .

Setting d(/) = c/ 1+\ for constants c, t: > 0, yields c1(1!)1+t = n. By Stirling's
approximation, we get after some calculation:

1 ~ logn
(1 +t:)loglogn

H the exponent 1 +t: in the expression for d(m) is doubled then the depth of
the tree is halved for the same number of nodes.
Setting d(/) = c2d, for constants c,t:>0 yields:

Therefore,

158

1 = Vlog2c + 2dogn - loge
f

(The logarithms have base 2.) If t: is quadrupled then the depth of the tree is
halved for the same number of nodes.

The strategy in such trees can be simple: all services advertise at the path
leading to the root of the tree, and similarly the clients request services on the
path to the root of the tree. Then the average number of message passes used
for each match-making instance, is m (n) E 0(/). The cache at each node
needs to be of the order of the number of elements in the subtree of which it is
the root. For smaller caches the older and less used entries can be discarded in
favour of new ones, leading to a Lighthouse Locate like algorithm (see below).
It may seem that such large caches are unrealistic and that, anyway, in distri
buted networks all nodes should be symmetric. However, even in a genuinely
distributed and anarchistically growing network as UUCPnet a hierarchy of
nodes develops according to the node degree (number of links with other
nodes in the network). This points to the fact that nodes higher in the hierar
chy must dedicate more computing power and memory to running the net
work. Hence it is not unrealistic to have the cache size increase for nodes
higher in the hierarchy.

4. LIGHTHOUSE LOCATE

We imagine the processors as discrete coordinate points in the 2-dimensional
Euclidean plane grid spanned by (t:,0) and (0, t:). The number of servers satisfy
ing a particular port in an n-element region of the grid has expected value sn
for some fixed constant s >0.

Server's Algorithm. Each server sends out a random direction beam of length /
every 8 time units. Each trail left by such a beam disappears after d time units.
That is, a node discards a (port, address) posting after d time units. Assume
that the time for a message to run through a path of length / is so small in
relation to d that the trail appears and disappears instantaneously.

Client's Algorithm. To locate a server, the client beams a request in a random
direction at regular intervals. Originally, the length of the beam is I and the
intervals are 8. After e unsuccessful trials, the client increases its effort by dou
bling the length of the inquiry beam and the intervals between them(/~ 2/ &
l3 ~ 28). And so on.

Another possibility is to govern the length of the locate beam (and its dura
tion) by the sequence

12131214121312151213121412131216121312 · · ·

Here the length of the locate beam is ii once in each interval of 2; trials. (This
sequence is sequence 51 in Sloane's catalogue [Sloane73].) The schedule can
conveniently be maintained by a binary counter: the position i of the most
significant bit changed by the current unit increment indicates the current
beam length ii. This schedule has the additional profit that the servers which

159

drift nearer to the client are located with less time-loss. Note that · in a
sequence of 2k trials there are 2k-i length ii trials (1 :s;;.i :s;;.k).

Before the locate method for the euclidean plane can be converted into a
practical algorithm for locating services it is necessary to find ways of
mapping point-to-point networks onto the euclidean plane in such a way
that the euclidean plane algorithm can be converted into an algorithm for
a point-to-point network. Fortunately, such a mapping can often be
found. Most point-to-point networks have routing tables that tell each
node which outgoing. arc to use to get a message to its destination. In
[Dalal78] these tables are used back-to-front to broadcast messages over
the network in near optimal fashion. We can use these tables back-to
front to simulate sending messages along "a straight line" of certain
length. The technique is as follows.

A client (or server) wishing to send a beam of length k (using message
passes as the unit of length) chooses a random outgoing arc and sends the
message along it to its neighbor. This neighbor, upon reception of such a
message decreases the hop count (in the message) by 1, and sends the
message on any one outgoing arc that is used to send messages from the
node at the other end of the arc to the original client (or server) where the
beam started from. And so on, until the hop count reaches 0.

5. lfAsH LOCATE AND BEYOND

Let in a given network G =(U,E) the set of ports (i.e., types of services avail
able) be II. We can define the functions P and Q like in the Shotgun Locate
but using the port identities as well:

P,Q: UXII ➔ 2u .

Il we are dealing with a very large network, where it is· advantageous to have
servers and clients look for nearby matches, we can hash a service onto nodes
in neighborhoods. A neighborhood can be a local network, but also the net
work connecting the local networks, and so on. Therefore, such functions can
be used to implement the idea of certain services being local and others being
more global (cf. the section on hierarchically structured networks) thus balanc
ing the processing load more evenly over the hosts at each level of. the network
hierarchy. Like Shotgun Locate, the Hash Locate below is a specialization of
this more general method.

In Hash Locate we construct hash functions that map service names onto
network addresses. That is,

P,Q: II ➔ 2u & P=Q.

This technique is very efficient. Each server s posts its (port, address) at the
node(s) P('IT), if 'IT is the port of s, and each client in need for a service at port
'IT queries the node(s) in P('IT). Apart from redundancy for fault-tolerance,
clients and servers need only use one network node each in every match
making. (Oearly, the rendez-vous matrix must be interpreted differently in this

160

setting.) Provided the hash function is well-chosen, it distributes the burden of
the locate work over the network. It suffers from the drawback that, if nodes
are added to the network, the hash function must be changed to incorporate
these nodes in the set of potential rendez-vous nodes. Moreover, if all rendez
vow nodes for a particular service crash then this takes out completely .that par
ticular service from the entire network. If the service is indispensable, the
entire network crashes. In this sense Hash Locate is far more vulnerable to
node crashes than the more distributed versions of Shotgun Locate. Examples
1, 2 and 3 may also be viewed as borderline examples of Hash Locate. Exam
ples 4, 5 and 6 are not Hash Locate methods, since Hash Locate cannot be
distributed in this genuine sense.

Two obvious approaches can make Hash Locate more robust for node
crashes. First, the hash function can map a service name onto many different
network addresses for added reliability. Second, when the rendez-vous node
for a particular service is down, rehashing can come up with another network
address to act as a backup rendez-vow node. It then becomes necessary that
services regularly poll their rendez-vow nodes to see if they are still alive.

REFERENCES

[Broomell83]
BROOMELL, G. and HEATH, J. R., "Oassification Categories and Histori
cal Development of Circuit Switching Topologies," ACM Computing
Surveys, vol. 15, no. 2, pp.95-133, June 1983.

[Dalal77]
DALAL, Y. K., "Broadcast Protocols in Packet Switched Computer Net
works", Ph.D. Dissertation, Computer Science Dept., Stanford Univer
sity, Stanford, Calif., April 1977.

[Dalal78]
DALAL, Y.K. and METCALFE, R.M., "Reverse Path Forwarding of
Broadcast Packets," Comm. ACM, vol. 21, no. 12, pp.1040-1048,
December 1978.

[Erdos70]
ERDOS, P., GERENCSER, L., and MATE, A., "Problems of Graph Theory
Concerning Optimal Design," pp. 317-325 in Colloquium Math. Soc.
Janos Bolyai 4: Combinatorial Theory and its Applications, ed. V. T.
Sos, North-Holland Publishing Company, Amsterdam (1970).

[Gelemter82]
GELERNTER, D. and BERNSTEIN, A. J., "Distributed Communication via
a Global Buffer," Proc. 1st ACM SIGACT-SIGOPS Symposium on Prin
ciples of Distributed Computing, pp.10-18, 1982.

[Liskov74]
LISKOV, B. and ZILLES, s., "Programming with Abstract Data Types,"
SIGPLAN Notices, vol. 9, pp.50-59, April 1974.

[Mullender86]

161

MULi.ENDER, S. J. and TANENBAUM, A. S., "The Design of a
Capability-Based Distributed Operating System," The Computer Journal,
vol. 29, no. 4, pp.289-300, 1986.

[Needham82]
NEEDHAM, R. M. and HERBERT, A. J., The Cambridge Distributed Com
puter System. Reading, Ma.: Addison-Wesley, 1982.

[Seitz85]
SEITZ, CH. L., ''The Cosmic Cube," Comm. ACM, vol. 28, pp.22-33,
1985.

[Sloane73]
SLOANE, N. J. A., A Handbook of Integer Sequences. New York:
Academic Press, 1973.

[Valiant82]
VALIANT, L.G., "A Scheme for Fast Parallel Communication," SIAM
Journal on Computing, vol. 11, no. 2, pp.350-361, May 1982.

Reliability

165

Reliability Issues in Distribute-9 _Qperating Systems*

Andrew S. Tanenbaum
Robbert van Renesse

Department of Mathematics and Computer Science
Vrije Universiteit

Amsterdam, The Netherlands

Distributed systems span a wide spectrum in the design space. In this paper
we will look at the various kinds and discuss some of the reliability issues
involved. In the first haH of the paper we will concentrate on the causes of
unreliability, illustrating these with some general solutions and examples.
Among the issues treated are interprocess communication, machine crashes,
server redundancy, and data integrity. In the second half of the paper, we will
examine one distributed operating system, Amoeba, to see how reliability
issues have been handled in at least one real system, and how the pieces fit
together.

1. INTRODUCTION

It is difficult to get two computer scientists to agree on what a distributed sys
tem is. Rather than attempt to formulate a watertight definition, which is
probably impossible anyway, we will divide these systems into three broad
categories:

Closely coupled systems
Loosely coupled systems
Barely coupled systems

The key issue that distinguishes these systems is the grain of computation,
which can be roughly expressed as the computation time divided by the com
munication time. H this ratio is below 10, we have a closely coupled system.
Hit is between 10 and 100 we have a loosely coupled system. Above 100 the
system is barely coupled.

In practice, the amount of time required for communication is determined
by the communication hardware and the operating system. In a system

• This work was supported in part by the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.)

A. S. TANENBAUM and R. VAN RENEm
Reliability Issues in Distributed Operating Systems
Proc. 6th Symp. Reliability of Distr. Softw. & Datab. Syst.
Williamsburg, Virginia
pp. 3-11
March 1987

166

consisting on a large number of CPU boards on a single backplane with
shared memory, it may be possible for one processor to write a word in
another processor's memory in microseconds. On the other hand, processors
that communicate over a local area network by message passing typically
require milliseconds to send a message and get a reply. Finally, when a wide
area network is being used, communication times of hundreds of milliseconds
or more are normal.

These hardware parameters tend to give rise to three kinds of distributed
systems, each with their own properties. These systems differ in terms of how
the users view the system, how much autonomy the individual processors have,
how problems are partitioned among the processors, how work migrates
among the processors, how the load is balanced, how interprocess communica
tion is done, whether the system is homogeneous or heterogeneous, and finally
how reliable the total system is and what the failure modes are.

At one extreme we have closely-coupled multiprocessors with shared
memory communicating over a backplane type bus with short bursts of com
putation interleaved with short bursts of communication. This is fine-grained
parallelism.

Usually all the processors used in this kind of system are identical and fairly
close together (same room). Frequently, all the processors are working
together on a single problem. Although the system designers may try to make
the presence of multiple processors transparent, with hundreds or thousands of
CPUs it may be difficult to keep all the processors busy unless the parallelism
is programmed explicitly.

The second kind of system is the loosely coupled system, typically consisting
of a number of workstations or personal computers communicating over a
local area network. In some systems a rack of processors is present, any or all
of which can be dynamically allocated as the need arises. In some cases, the
user perceives of the system as a collection of autonomous computers that
share a common file server or printer. In other cases, the system looks like a
virtual uniprocessor. In other words, to the user, the whole system looks like a
traditional multiuser time sharing system, rather than a network of indepen
dent machines.

There are two general approaches that can be used in such systems. In the
first one, all the machines run the same operating system. In the second one,
different machines can run different native operating systems, with a layer of
software on top to make them look (more) homogeneous. A general survey on
distributed systems is given by Tanenbaum and van Renesse [Tanenbaum85].

The third kind of system consists of (typically large) computers or local area
networks connected by a low-bandwidth, wide-area network. These machines
are barely connected in the sense that communication costs normally dominate
the computation costs. Still, for some applications, such as doing joins in a
database system, the amount of computing is so large that the system can be
made to appear to the user as a single system, despite the low-bandwidth con
nection between the pieces.

A key point that is common to all these systems, however, is the question of

167

whether the parallelism provided by the multiple processors is implicit or
explicit. This point has important implications for reliability aspects of the
system. If the system looks to the user like a virtual uniprocessor, there is
relatively little that can be done about reliability at the user level. The reliabil
ity must be handled by the system. On the other hand, if users can explicitly
control the parallelism, it is possible for them to use the redundancy to
enhance the reliability.

A simple example may make this point clear. Some distributed file systems
offer atomic transactions [Lampson81] as a primitive operation. The user can
specify that a transaction be started, issue commands to read and write files,
and then commit the transaction. The system then either runs the entire tran
saction to completion, or fails, leaving all the files in their original state. Such
a file system may well use multiple processors and multiple disks internally,
but there is nothing the users can do to influence the reliability behavior.

Now consider a different example, a system with a rack of processors that
can be dynamically allocated to processes upon request. A process can request
n processors, set all of them working on the same problem (possibly with
different algorithms), and then accept the majority answer when all have
reported back. In this system the parallelism is explicit, so the user can decide
how much redundancy is required for the problem at hand. The conclusion is
that systems with explicit parallelism tend to be more flexible, but require
more work on the part of the user.

2. CAUSES OF UNRELIABILITY

Space limitations prevent us from examining the reliability aspects of all three
kinds of systems in detail, so we will focus primarily on the middle category
loosely coupled systems. In particular, in this section we will look at some
problems that cause systems to be unreliable and on some of the solutions that
have been proposed for these problems. In the next section we will look at
one distributed system, Amoeba, to see how th ese problems have been
attacked and how the various components fit together to make a more reliable
system.

2.1. Interprocess communication
When the processors in a distributed system are connected by a. "thin wire"
local network, interprocess communication primitives that explicitly or impli
citly require shared memory (such as semaphores), are not desirable.

Instead some form of message passing is needed. One widely discussed
framework for message-passing in computer networks is the ISO-OSI model
[Zimmermann.80]. To make a long story short, the various protocols that go
with this model are so complex and cumbersome, that their use in a high per
formance local-area network is unattractive at best.

The model favored by most researchers in this area is the client-server
model, in which a client wanting some service (e.g., a block from a file) sends a
message to the server, which then sends a reply. The basic primitives in the
simplest form of client-server model are SEND and RECEIVE, each specifying

168

an address (destination or source), and a buffer.
These primitives come in several varieties. First of all, there is the question

of whether transmission is reliable or not. On some systems, SEND means put
the message out onto the network and hope for the best. Processes needing
better reliability than that must arrange for it themselves. Other systems use
low-level protocols that do automatic timeout and retransmission. Here we see
a clear tradeoff between performance and reliability.

A second question is blocking vs. nonblocking primitives. With a blocking
SEND, the sender is suspended until the message has been transmitted (unreli
able transmission) or transmitted and acknowledged (reliable transmission).
With a nonblocking SEND, the sender continues immediately. If the sender
modifies the buffer, these changes may or may not be transmitted, depending
on whether transmission has taken place or not. Similarly, a blocking
RECEIVE waits until a message arrives, but a nonblocking RECEIVE merely
provides a buffer. When a message arrives, the receiver gets an interrupt.
Nonblocking primitives are harder to use (hence less reliable) but provide more
parallelism and higher performance.

Based on experience, many system designer have decided to favor reliability
over performance, which has led to the remote procedure call [Birre1184, Nel
son81, Spector82). In this scheme, the client makes what looks like a call to a
procedure running on the server's machine, but it actually makes a call to a
stub procedure running on its own machine, as shown in figure 1. The stub
procedure packages all the parameters in a message, which it then reliably
sends to a stub on the server's machine. The server stub then indeed makes a
local procedure call on the server.

Client Machine Server Machine

Client Client Server Server

proc. stub stub proc.

FIGURE 1. Client-Server model.

This model is attractive in many ways. For one thing, the client need not
know anything about the fact that the server is remote. It just makes an ordi
nary procedure call, with the parameters passed in the usual way (e.g., on the
stack). Similarly, the server is called by a local procedure according to the
local calling and parameter passing conventions. For another thing, the
semantics are straightforward and familiar. Programmers understand the pro
cedure call model much better than the message model.

For all its elegance, however, a number of problems lurk under the surface.
Many of these have important implications for the system's reliability. Most
of them are directly related to the goal of the remote procedure call
transparency, that is, making it look like a local procedure call.

To begin with, when a program makes a local procedure call, the procedure

169

is executed exactly once, no more and no less. With remote procedure calls,
this ideal is unachievable in general. The problem is that the remote server
may crash just before or after performing the remote operation, but before
sending back the acknowledgement. If the client repeats the request, and it
was already carried out, then it will be carried out a second time.

Operations that can be carried out multiple times without harm, such as
overwriting a specific disk block are said to be idempotent. Unfortunately,
most operations that involve communication or I/0 are not idempotent. For
example, if the request was to a bank server to transfer a large amount of
money to a numbered Swiss bank account, one would prefer that operation
not be executed by accident a second time.

At first glance you might think that the problem could be solved by having
the server record the fact that it was about to perform the operation in a
secure way, for example, on stable storage [Lampson81]. However, this idea
does not work for nonidempotent operations because after recording its inten
tions the server has to carry out the operation and then send the acknowledge
ment. In the best case, each of these steps can be done in a single instruction,
for example, by setting one bit somewhere. If the server crashes between the
two instructions, when it reboots it cannot determine if the crash occurred just
before, between, or just after the two instructions.

This observation leads to three classes of remote procedure call systems:
those that have "at least once" semantics, those that have "at most once
semantics" and those that have "don't know'' semantics. In the former class,
if the client stub does not get a reply within a specified interval, it just keeps
repeating the request until it gets one. The call may be repeated several times,
however.

The second kind of semantics is "at most once." One way to implement this
is to simply avoid all retransmissions, but then a simple lost message results in
a failed execution. A better way is to have the server log all actions before
performing them, so that if a repeated request comes in, it can be recognized
as such and rejected. With this model, the client knows that the call has been
performed either O or 1 times, but no more.

The third category consists of systems that give no guarantee at all. These
have the advantage of being easy to implement.

Transparency also brings other problems with it. Suppose a server is over
loaded. A client that does not realize that the lack of response is due to over
load may think it is due to lost messages and keep retransmitting, thus making
the problem worse.

2.2. Server crashes
Another source of unreliable behavior is machine failures, either due to
hardware or software. These can be split into two categories: server crashes
and client crashes. These have different consequences for the system and must
be attacked differently. In this section we will look at the problems associated
with server crashes and in the next one client crashes.

In general, servers can crash. Obviously one should try to make the servers

170

as reliable as possible, but even perfect software will not act properly if the
hardware refuses to work. Furthermore, making the software perfect is easier
said than done. 1bis problem can be approached two ways. One way is to try
to get crashed servers back on the air as fast as possible. The other way is to
provide multiple servers for redundancy.

Getting crashed servers back up again requires some mechanism to detect
when a server has gone done and some way to get it back. Ideally there
should also be some mechanism to adjudicate disputes. If the server claims to
be up but its clients claim that it is not doing anything, what then? Whatever
mechanism is chosen to monitor servers should itself be highly reliable of
course.

When the problem of unreliable servers is tackled by having several of each
kind, the issue of client-server binding arises. In a system with multiple identi
cal servers (e.g., 3 file servers), at some point a choice must be made about
which one a client will use. One can easily imagine a system in which the
servers share a common address or mailbox, with each server taking new work
out of the mailbox whenever the server is idle. Suppose server l takes a
request out of the mailbox, carries it out, and then sends an acknowledgement
that is subsequently lost.

At this point server 1 crashes. The client times out and retransmits the
request, only to have it be taken by server 2 this time, which knows nothing
about what server 1 has done recently, because server 1 is currently down and
cannot tell it. Server 2 now repeats the request. If the semantics are "at most
once" we have a problem. This problem occurs even if server 1 has carefully
logged the request and reply in order to filter out repeats.

The difficulty is that the binding between the client and server was automati
cally broken and reset when the first server went down. Many systems regard
automatic rebinding as a step towards fault-tolerant, reliable systems, but we
see here that one must be careful.

Another issue related to automatic rebinding of servers is that of state.
Some servers may have a long term state that is maintained even after a
remote procedure call has terminated successfully. For example, some file
servers have an operation OPEN on a file that returns a file descriptor for use
in subsequent READs and WRITEs. If multiple instances of such a server
exist, problems will arise if the server holding a particular client's open file
table crashes between two remote procedure calls so that subsequent calls go
to a new server not having the necessary state.

Of course the system can have a rule that odd-numbered clients always use
server 1 and even-numbered clients always use server 2, but such a scheme
completely defeats one of the goals of a distributed system, namely, to use
redundancy to improve reliability.

Yet another reliability problem associated with binding is authentication.
How can the server tell which client sent the message, and how can the client
be sure he is sending his data to the real server and not to an imposter?
Going through a full authentication protocol, complete with passwords, on
every call is not feasible. On the other hand, solutions such as that of Birrell

171

[Birrell85] effectively require setting up a long-term encrypted session,· thus
moving away from the idea of transparency, since now remote procedure calls
need to first set up sessions between client and server, but local ones do not.

2.3. Client Crashes
So far we have only looked at the reliability problems caused by server
crashes. Client crashes also cause plenty of headaches. When a client starts
up a computation on a server and then crashes, the computation continues
even though nobody is interested in it any more. Such a computation is called
an orphan. Having a lot of orphans lying around making random computa
tions does not enhance the reliability of a system. Orphans are most serious
when the computation being done by the server takes a substantial amount of
time.

Various methods, some fairly draconian, have been proposed for dealing
with orphans. One method is to kill off all processes in the whole system every
T seconds. This will certainly kill off all the orphans, but it is something of a
nuisance to normal computations.

Another possibility is to have each server periodically check to see if the
client that started the current computation is still interested. A variation on
this idea is the dead man's handle. A client is expected to poll a server work
ing for it periodically. If a poll fails to come in on schedule, the server just
kills the computation.

A different approach is to program all clients to log all remote procedure
calls on stable storage before making them. When a client reboots after a
crash, it checks to see if there were any servers working for it, and if so, tells
them to stop. This solution is expensive because writing to disk to log each
call doubles the cost of each remote procedure call.

No matter which of these methods is chosen for killing off orphans, there is
always the danger than an orphan will be in the middle of a critical section at
the instant that it is killed, or that it holds many locks on resources. In this
case, killing the orphan can lead to race conditions and deadlocks.

Even if a method can be found to kill off all orphans, it may well be that an
orphan has created some long term state that will cause other actions to hap
pen later. For example, a file may have been put in a queue for subsequent
processing elsewhere in the system. Thus even after an orphan has been killed
off, some other processor may examine the queue, find the work, and start up
another orphan.

Let us now briefly look at some systems that have attempted to deal with
server and client crashes. Borg et al [Borg83]. have described a system in
which each process has a backup process running on a different processor.
Whenever a client sends a message to a server, it also sends the same message
to the server's backup, as shown in figure 2. Similarly, replies are sent to both
the client and its backup. The operating system takes care of coordinating and
synchronizing all the messages.

The idea behind this technique is that if a process crashes, its backup, on
another processor, will be available to take over. Of course this scheme

172

Network

6 Message 6 Message 6
Primary Sender Backup
Process sends process

~s~~~~

FIGURE 2. Each process has its own backup.

requires doubling the number of processors. Powell and Presotto [Powell83]
have proposed a simpler scheme that only requires one extra process, instead
of doubling the number of processes. In their scheme, shown in figure 3, there
is a single recorder process that logs all messages sent on the network.

Sending
Process

Rece1Vin9
process

Recorder
process
saves ell
network
traffic

FIGURE 3. A recorder process logs all message traffic.

If a process crashes, a new processor can be allocated, and the code of the
crashed process loaded into it. Then the recorder carefully spoon feeds the
new process all the messages it has saved, in order to get the new process into
the same state as the old one was when it went down. Messages sent by the
process while it is getting to the point where the old one was are intercepted
just before they are sent, to prevent their recipients from being confused.
When the new process gets to the point that the old one was, it switches into
normal mode, so that messages really are sent.

Processes can also make checkpoints of themselves from time to time if they
wish. Doing so means that if a process crashes, the checkpoint can be started
up and only messages logged after the checkpoint was made have to be
replayed.

Powell and Presotto's technique has the advantage of not requiring any over
head during normal operation. However, it does implicitly presume that all
messages are correctly received and logged by the recorder.

A different approach to reliability is Cooper's [Cooper85] replicated proced
ure call. In Cooper's model, each client process is in reality n processes run
ning in parallel and executing the same code. Similarly, each server consists of
m parallel processes. When a client calls a server, each client process sends a
message to each server process.

When the replies come back to the client, they are compared. One possible
comparison algorithm is to vote. Whichever answer occurs the most times is
declared the winner, and given to each client. The clients then continue their
work. In this manner, an occasional error is simply voted down, thus giving a

173

degree of fault tolerance.

2.4. Data Integrity
Another key reliability issue is data availability and integrity. If data are fre
quently inaccessible because some key server is down, users will perceive the
system as unreliable. 1bis problem can be dealt with to some extent by having
multiple servers of each type, each holding its own private copy of the data.
As long as the data are never changed (or very rarely changed), this solution
works well. However, if updates are frequent, the redundancy itself introduces
problems.

The main problem, of course, is that having multiple copies of the data
introduces the possibility of the various copies becoming different over the
course of time. Before looking at the replication problem, let us first take a
look at the good old days of magnetic tape. In those days, it was common for
companies to have a master tape with their current inventory of products.
Each day tapes containing the day's purchases and sales would be brought to
the computer center. The master tape, an update tape, and a blank tape
would be mounted, and a job run making an updated master on the blank
tape. Then the next update tape would be run with the new master, and so
on.

The nice thing about this system was that if the computer crashed at any
instant, it was always possible to go back to the original or any other master
tape and start everything again. When magnetic disks were introduced, sys
tems began updating records in place, losing the idempotency of the tape
scheme. Furthermore, when multiple update runs were allowed at the same
time, sophisticated concurrency control algorithms had to be introduced to
make the updates serializable while avoiding deadlock. In this view, the very
concept of updating files in place on the disk is seen as a major source of
unreliability. When the situation is further complicated by having the work
distributed over multiple machines, the potential reliability problems become
even worse.

Assuming the problems of concurrency control and serializability on a single
machine can be dealt with by conventional means, the issue of replication can
be dealt with in several ways. The first way is to have a master copy with
multiple backups. 1bis scheme closely resembles the old tape system. After
the master copy has been updated, the changes have to be propagated to the
backups.

The second way is to update all the copies in parallel, but when inconsisten
cies arise, to vote [Thomas79, Gifford79]. In this way minority viewpoints can
be stamped out.

A third scheme is regeneration [Pu86]. When an update is done, the server
doing the update arranges for multiple copies to be made. If one of those sub
sequently becomes disconnected or unavailable, the server just abandons the
missing copy and generates a new one.

174

3. RELIABILITY IN AMOEBA
In this section we will look at the Amoeba distributed operating system [Mul
lender84, Mullender85, Mullender86, Tanenbaum86] to see how reliability
issues have been dealt with in a real system. First we give a brief introduction
to Amoeba.

Amoeba is a distributed operating system that has been designed and imple
mented at the Vrije Universiteit and the Centrum voor Wiskunde en Informa
tica. It runs on a collection of 40 Motorola 68000s, 68010s, and 68020s con
nected by a IO Mbps local area network. The conceptual model behind the
system is the abstract data type. Client processes can perform operations on
objects managed by servers. These operations are implemented by having the
clients send messages to the servers, with the servers sending the results of the
operations back to the clients. This is a simple form of remote procedure call.

Both client and server processes, called clusters, can consist of multiple tasks
that conceptually run in parallel within the same address space. While one
task is blocked waiting for a message, another one can be running. Many
servers are implemented as a collection of tasks, each of which starts out wait
ing for a message. When a request to perform an operation arrives, it is given
to one of the tasks at random. If that task should later block (e.g., waiting for
a disk), another task in the cluster can run on behalf of a different client. Syn
chronization is achieved by never switching from one task to a different task in
the same cluster except when the current task is logically blocked. The
scheduler can switch between clusters at will, however.

The Amoeba system consists of four basic components, as shown in figure 4.
The workstations are used to provide a multi-window interface to the user, as
well as some local computing such as editing. The pool processors can be
dynamically allocated as needed for compilations, text formatting, or doing
any other work. Ann-pass compiler, for example, can be arranged to allocate,
use, and then return n pool processors, one per pass.

Processor
pool

Jillillill
Jillillill
Jillillill
Jillillill

Workstations

Gateway

WAN

Specialized servers

(f 1 le. data base, etc)

FIGURE 4. An Amoeba system has four components.

The system also contains specialized servers with dedicated functions, such
file servers, bank servers, and boot servers. Finally, the fourth component is
the gateway to other Amoeba systems. Soon Amoeba will be running at five

175

sites in three countries, all interconnected by a wide-area network.
Identical Amoeba kernels run on all the machines. The kernels are inten

tionally small, basically handling only communication and low level memory
management. Files, process management, and even protection and accounting
are all handled at the user level.

Objects are protected by capabilities, as shown in figure 5. Each capability
contains a port field that is used to identify the server or client being addressed
and an object field, used to identify the specific object to be manipulated.
Object numbers are analogous to i-node numbers in UNIX.t Next comes a
rights field, telling which operations the holder of the capability may perform
on the object. Finally, there is a random number that prevents users from
forging capabilities. Capabilities are directly handled by user processes, out
side the kernel.

4B 24B,4B

Service port I Object IRt•I Check

FIGURE 5. An Amoeba capability.

The random number field is crucial tp the protection scheme, hence to the
reliability of the system. When an object is created, the creating server allo
cates an "i-node" for it and puts a random number in it. It then
EXCLUSIVE ORs the rights bits (initially all ls) with the random number and
runs the result through a one-way function [Evans74] used for all objects. The
output of the one way function is put into the random field of the capability.
The rights bits· are included in the capability in plaintext.

When a client performs an operation on an object, the capability for the
object is sent to the server to identify the object. The server then uses the
object number contained in the capability as an index into its tables to find
the random number. The random number thus found is EXCLUSIVE ORed
with the plaintext rights field and run through the one-way function. If the
output is the same as the capability's random number, the capability (includ
ing the plaintext rights bits) is accepted as valid. This protection system and
several variations on it are described in more detail in Tanenbaum et al
[Tanenbaum86].

t UNIX is a Trademark of AT&T Bell Laboratories.

176

3.1. Interprocess communication
The form of remote procedure call used by Amoeba has "at most once"
semantics. For most applications this is preferable to "at least once" and cer
tainly better than "don't know." We will now describe how these semantics
are implemented.

When a remote procedure call is made, the client calls a stub procedure that
locates a server based on the port number present in the capability belonging
to the object to be operated upon. The location is done by first looking in a
cache. If that fails, a broadcast is done. If multiple servers handle the object
class in question, the stub selects one of them, and gets its process identifier
(pid).

Then a message is sent to the selected server process. Normally, the server
will perform the operation and send back a reply. If the server's reply is not
forthcoming within a certain time interval, the server's stub times out and ack
nowledges receipt of the request so the client will know that it arrived safely
and that the server is hard at work on it. When the server's reply finally gets
back to the client, the client's stub sends an acknowledgement back to the
server, which terminates the call.

If it has received an acknowledgement but no reply to the request itself, at a
certain point the client gets nervous and sends an "Are you alive?" query to
the server, which is answered immediately. On the other hand, if the client has
heard nothing at all from the server, not even the acknowledgement of the
request, it eventually times out and retransmits the request. When the server
sees the retransmitted request, which bears the same source and request
number as the original, it can recognize the request as a retransmission and
just send the reply again or at least just acknowledge receipt of the request if
the result is not yet available.

Now consider what happens if the server crashes. The client stub eventually
detects that the server process is down when it fails to get answers to its "Are
you alive?" messages. If the client stub has enough knowledge of the specific
operation to be sure that it is idempotent, it can locate another server and
repeat the operation. In this case it does not matter that the operation was
executed more than once.

On the other hand, if the stub does not know whether or not the operation
is idempotent, it simply reports back failure to the client, meaning that that
the operation has been performed either O or I times, but not more.

3.2. Server crashes
The communication mechanism is not the only part of Amoeba that was
designed with reliability in mind. There is also a boot server whose job is to
make sure that processes (typically servers) that are supposed to be alive are in
fact alive. It does this by periodically probing the registered servers to see if
they are still functioning.

All the long-lived servers, such as the file servers, normally register with the
boot server when the system comes up. This registration consists of providing
the boot server with the message to be sent to the server and the reply that the

177

server is supposed to send back, the frequency at which these probes are to
take place, the number of probes to make before declaring the server dead,
and the procedure for creating a new server to replace one that has crashed.

The procedure used to reincarnate a crashed server depends on the nature of
the crash. If the server is dead but the kernel on its machine is still working,
then the boot server instructs the kernel to create a new server process to
replace the old one.

If the entire machine has crashed, then the boot server sends a special
packet on the network that is detected by the interface card, and which results
in the interface asserting a RESET signal on the crashed machine's bus. This
signal causes the machine to reboot itself by jumping to a program in a ROM.
The ROM program and the boot server together download a new kernel into
the machine, at which time the server can be restarted. If the machine cannot
be started up at all, the boot server gets another processor and starts the server
there. This whole procedure is fully automated; it happens without human
intervention.

The only other issue concerning the boot server is the reliability of the boot
server itself. Multiple copies of the boot server run, each one communicating
with all the other ones. If one of the boot servers crashes, the remaining ones
regenerate it using the procedure just described.

3.3. Client crashes
Orphans are prevented in Amoeba by using the "Are you alive" messages as a
dead man's handle. If a server is making a long computation, it expects to get
"Are you alive messages" periodically. If these messages cease to arrive, the
server concludes that the client is dead and kills the orphan itself.

Although the orphan detection mechanism is useful for ridding the system of
unwanted computations, in many circumstances it is desirable that clients be
fully fault tolerant, meaning that a client, especially one running in parallel on
multiple pool processors, itself notices crashes of some of its processors and
recovers from them in a transparent way. Several applications have been pro
grammed in this way. Below we will briefly sketch two of these, the traveling
salesman problem and parallel alpha-beta search.

The traveling salesman problem consists of finding the shortest route that a
salesman can use to visit all the cities in his territory exactly once. Roughly
speaking, the Amoeba approach is to have a procedure, traverse, that takes as
input a partial path, the set of cities as yet unvisited, and the length of the best
total path found so far [Bal85]. This procedure forks off a process for each
unvisited city to investigate all paths with that city as the next step. Each pro
cess simply runs traverse, with a partial path one city longer and the set of
unvisited cities one smaller. The recursive forking of parallel processes contin
ues until a certain depth in the tree has been attained, at which point the resi
dual tree is searched completely by one process. Variations of this search stra
tegy have also been tried.

The reliability comes from the fact that if a process fails to report back its
findings within a certain time, and also fails to respond to the "Are you alive"

178

messages, the process that invoked it just asks for another pool processor and
starts the work all over again. Higher levels in the tree do not even know that
a fault has been detected and corrected. In this way the program will be exe
cuted correctly even in the face of repeated multiple processor crashes.

The other reliable application that has been tested is heuristic search for the
game reversi (Othello) using the alpha-beta algorithm. At each board position
a process is generated for each legal move. Although the details of alpha-beta
make this application somewhat different than the branch and bound algo
rithm used for the traveling salesman, again if a process crashes, its parent just
finds someone else to do the work. As we mentioned in the introduction, the
fact that the parallelism is visible to the application makes it possible to
exploit it for better reliability.

3. 4. Data integrity
File servers in Amoeba are user-level processes, so there can be several of them
running at once, providing different services and serving different clients.
Some of the file servers have been designed to provide UNIX-file service, oth
ers have been designed for high performance, but there is also one whose goal
is high reliability. This one, called FUSS (Free University Storage System) is
described by Tanenbaum and Mullender [Mullender85] and is sketched below.

The technique used by FUSS to provide high reliability is the immutable file.
When a process wants to update a file, it asks FUSS to create a new version of
the file and return a capability for the copy. (Actually the file is not copied.
Shadow pages are used, but this is really just an optimization.) The process
can then modify the copy as it wishes. When it is done, the process tells
FUSS to commit the file, making the copy the new file. Thus a file is really a
sequence of versions, none of which is ever modified once it has been commit
ted. Modifying a file consists of atomically replacing a file with a new version.

This design is more reliable than the traditional update-in-place file system
because updating a file consists of preparing the new file and then at the last
minute switching one pointer. If the file server crashes, either the old file or
the new file will be present when it comes up again, but never a mixture of the
two. By appropriate logging of intentions on a disk, the server can be made to
eventually complete the update no matter how often it crashes. The atomic
update property is especially important if two or more processes are simultane
ously updating the same file. FUSS offers a choice between locking and
optimistic currency control, but in both cases, an update to a file (or even a set
of files) is atomic.

Work is currently in progress to extend these ideas to general objects. The
idea is that any object should be representable as a sequence of versions, with
the update from the old version to the new one being done atomically. This
can be achieved by having a directory server that maps ASCII strings onto
capabilities, or more generally, onto sets of capabilities. In effect, a directory
is an unordered collection of lines, each containing a ASCII object name fol
lowed by set of capabilities. The capabilities are for replicas of the same
object.

179

A directory is thus simply a mapping of ASCII names onto sets of objects.
A directory is itself an object, so directories can contain capabilities for other
directories, giving rise to a directory hierarchy, or even a general graph, if that
is desired.

The principal operation on a directory object is to present the directory
server with a capability for a directory and an ASCII string to be looked up in
that directory. The server then looks up the given string in the directory and
returns the full set of capabilities that correspond to that string, if any. The
client can then choose one of them at random to use. If that one is not avail
able, it can choose another one.

The idea of having the directory entry contain multiple capabilities has been
done to enhance the reliability. Because files (and objects generally) are
immutable, once a new version of an object has been created, the directory
server can arrange for backup copies of the object to be made at its leisure
(lazy backup). There is no problem with race conditions because the object
cannot change. The worst that can happen is that the version being backed up
becomes obsolete before all the backups have been created, in which case some
extra work may have been done for nothing, but the file system integrity is
never affected.

Updating a directory entry is done by sending the directory server a capabil
ity for a directory, an ASCII string, the capability for the object being
replaced, the capability for the new object, and a count specifying how many
backup copies should be made and maintained. The directory entry is
updated atomically-either it happens or it fails, but there is never half an
update. Notice that the replication effort is managed by the directory server,
so it need not be duplicated in each object server. This is possible because
objects are immutable. Once an object has been committed, it never changes;
it can only be replaced in its entirety by a new object.

The update operation requires the old capability as a parameter so the direc
tory server can verify that the object being replaced is still the current object.
If the old capability is not present in the set of capabilities for the given string,
the directory server can see that another update has transpired in the mean
time, so the update operation fails. This scheme is a form of optimistic con
currency control. Put in other terms, if two clients each look up a given string
in a given directory, and then both try updating the corresponding object, only
the first update will succeed. Objects can also be locked, to allow a more con
ventional update strategy.

3.5. Other reliability features of Amoeba
Another area that affects system reliability is resource management. If one
user or process consumes too many resources, the rest of the users and
processes will suffer the consequences. For this reason Amoeba has a bank
server that can be used as a general tool for resource management.

The bank server manages bank accounts in various currencies. As an exam
ple of its use, consider a file server that wished to implement a quota system to
give each user at most 1000 disk blocks. Each user would be given a bank

180

account containing. say, 1000 zlotys, each good for one disk block. Every time
a user wanted another disk block, he would first have to transfer 1 zloty to the
file server's account to pay for it in advance. When the block was freed, the
user would get his zloty back.

Other currencies can be used for other resources. CPU time could be
charged in yen, phototypesetter pages in guilders, etc. The policies (e.g., who
gets how much money, whether currencies are convertible) are decided by the
servers, but the basic mechanism (managing the accounts, logging transactions,
transferring money between accounts atomically, maintaining caches for
efficiency, etc.) is done by the bank server, so that each individual server need
not run its own admjnjstration.

Try as we may to build a reliable system, there are going to be bugs in it.
For this reason, Amoeba has been designed in such a way to be able to catch
faults and handle them. To see how this mechanism works, we have to take a
look at how processes are managed in Amoeba. When a user types a com
mand to the shell, the shell creates a mother process to oversee the execution
of the command. The mother process allocates a processor from the processor
pool, asks the Amoeba kernel on that machine to allocate sufficient memory
for the new process, and then downloads the program to be executed to the
processor for execution.

Normally, the mother process does not intervene in the execution of the pro
gram on the pool processor. It simply waits until the program terminates to
clean it up and report back its status. However, it is possible to tell the pool
processor's kernel to catch all system calls and other kernel traps, and send
them to the mother process for processing.

In this way, for example, it is possible to take a binary program compiled to
run on 68000 UNIX (i.e., not on Amoeba) and run it on a pool processor, even
though the Amoeba kernel knows nothing at all about UNIX. The UNIX sys
tem calls are effectively all passed to the mother process for execution. If the
mother process happens to be running on a 68000 UNIX system (which is easy
to arrange), it can just execute the system calls locally and send back the
results.

This same mechanism is used for debugging. When a process on a pool pro
cessor gets a memory fault, illegal instruction, or other kernel trap, the pool
processor's kernel does a remote procedure call with the mother process telling
it what happened. The mother process contains a debugger that can print a
message on the user's terminal and then wait for input instructing it what to
do. There are commands to examine and print memory and so on. These are
handled by messages between the mother process and the kernel on the pool
processor.

181

SUMMARY
Reliability considerations have influenced the Amoeba design in a number of
ways. These include the scheme for protecting objects with cryptographically
secure capabilities, the communication mechanism with "at most once" seman
tics and orphan extermination, the boot server for automatically rebooting
dead processes, the file server with immutable files, the directory sever with
atomic update on replicated objects, the bank server for limiting resource
usage, and the hooks for debugging. In addition, Amoeba has been used for
explicitly programming fault tolerant applications such as the traveling sales-_
man and heuristic search.

REFERENCES

[Bal85]
BAL, H.E., RENESSE, R. VAN, and TANENBAUM, A.S., "A Distributed,
Parallel, Fault Tolerant Computing System", VU Informatic Rapport
nr. IR-106, Vrije Universiteit, Amsterdam, October 1985.

[Birre1184]
BIRRELL, A. D. and NELSON, B. J., "Implementing Remote Procedure
Calls," ACM Trans. Comp. Syst., vol. 2, pp.39-59, Februari 1984.

[Birrell85]
BIRRELL, A. D., "Secure Communication Using Remote Procedure
Calls," ACM Trans. Comput. Syst., vol. 3, pp.1-14, Feb. 1985.

[Borg83]
BORG, A., BAUMBACH, J., and GLAZER, S., "A Message System Support
ing Fault Tolerance," Proc. Ninth Symp. Operating Syst. Prin., pp.90-99,
1983, ACM.

[Cooper85]
COOPER, E. C., "Replicated Distributed Programs," Proc. 10th A CM
Symp. on Operating System Principles, pp.63-78, December 1985.

[Evans74]
EVANS, A., KANTROWITZ, W., and WEISS, E., "A User Authentication
Scheme Not Requiring Secrecy in the Computer," Comm. ACM, vol. 17,
no. 8, pp.437-442, August 1974.

[Gifford79]
GIFFORD, D. K., "Weighted Voting for Replicated Data," Proc. 7th
Symp. on Operating System Principles, 1979.

[Lampson81]
LAMPSON, B. W., "Atomic Transactions," pp. 246-265 in Distributed
Systems - Architecture and Implementation, Springer-Verlag,, Berlin
(1981).

[Mullender84]
MULLENDER, s. J. and TANENBAUM, A. s., "Protection and Resource
Control in Distributed Operating Systems," Computer Networks, vol. 8,
no. 5,6, pp.421-432, 1984.

182

[Mullender85]
MULLENDER, S. J. and TANENBAUM, A. S., "A Distributed File Service
Based on Optimistic Concurrency Control," Proceedings of the 10th
Symposium on Operating Systems Principles, pp.51-62, December 1985.

[Mullender86]
MULLENDER, s. J. and TANENBAUM, A. s., "The Design of a
Capability-Based Distributed Operating System," The Computer Journal,
vol. 29, no. 4, pp.289-300, 1986.

[Nelson81]
NELSON, B. J., "Remote Procedure Call", Ph.D. dissertation CMU-CS-
81-119, Carnegie-Mellon University, 1981.

[Powell83]

[Pu86]

POWELL, M. L. and PREsoTio, D. L., "Publishing-A Reliable Broadcast
Communication Mechanism," Proc. Ninth Symp. Operating Syst. Prin.,
pp.100-109, 1983, ACM.

Pu, c., NOE, J. D., and PROUDFOOT, A., "Regeneration of Replicated
Objects: A Technique and its Eden Implementation," Proc. Second Int'/
Conj. on Data Engineering, pp.175-187, Feb. 1986.

[Spector82]
SPECTOR, A. Z., "Performing Remote Operations Efficiently on a Local
Computer Network," Comm. ACM, vol. 25, no. 4, pp.246-260, April
1982.

[Tanenbaum85]
TANENBAUM, A. s. and RENESSE, R. VAN, "Distributed Operating Sys
tems," ACM Computing Surveys, vol. 17, no. 4, pp.419-470, December
1985.

[Tanenbaum86]
TANENBAUM, A. s., MULLENDER, s. J., and RENESSE, R. VAN, "Using
Sparse Capabilities in a Distributed Operating System," Proc. of the 6th
Int. Conj. on Distributed Computing Systems, pp.558-563, May 1986,
Vrije Universiteit.

[Thomas79]
THOMAS, R. H., "A Majority Consensus Approach to Concurrency Con
trol," ACM Trans. on Database Systems, vol. 4, pp.180-209, June 1979.

[Zimmermann80]
ZIMMERMANN, H., "OSI Reference Model-The ISO Model of Architec
ture for Open Systems lntercon nection," IEEE Trans. Comm.,
vol. COM-28, pp.425-432, April 1980.

File System

A Distributed File Service Based on

Optimistic Concurrency Control

Sape J. Mullender
Centre for Mathematics and Computer Science

Amsterdam, The Netherlands

Andrew S. Tanenbaum
Department of Mathematics and Computer Science

Vrije Universiteit
Amsterdam, The Netherlands

Principles are presented for a distributed file and database system that leaves a
large degree of freedom to the users of the system. It can be used as an
efficient storage medium for files, but also as a basis for a distributed data base
system. An optimistic concurrency control mechanism, based on the simultane
ous existence of several versions of a file or data base is used. Each version
provides to the client that owns it, a consistent view of the contents of the file
at the time of the version's creation. We show how this mechanism works, how
it can be implemented and how serialisability of concurrent access is enforced.
A garbage collector that runs independent of, and in parallel with, the operation
of the system is also presented.

1980 Mathematics Subject Classification: 68A05, 68820, 68H05
CR Categories: D.4.3, H.2.2, H.2.4, H.3.2.
Keywords & Phrases-. file server, data base server, distributed control, optimis
tic concurrency control, atomic update, serialisability, differential files.

1. INTRODUCTION

185

File systems play an important role in allowing information to be widely
accessible, since most information is in some way or another stored on files.
There are many different kinds of file systems for distributed systems, ranging
from private file systems for each host to special purpose file servers for the
whole network. Each kind of file system has its own characteristics concerning
accessibility, complexity, protection of information against unauthorised
access, speed and distributiveness.

A Distributed File Service Based on Optimistic Concurrency Control
S. J. MULi.ENDER and A. S. TANENBAUM

Proceedings of the 10th Symposium on Operating Systems Principles
Orcas Island, Washington.
pp. 51-62
December 1985

186

The ideal distributed file system would be fast, files would always be near
the hosts needing them, there would be protection, if necessary, to guard
against unauthorised hosts or users, files could be shared among different hosts
at the same time, and the system would be totally immune agains individual
file server crashes or disk crashes. Unfortunately, such distributed file systems
do not yet exist. Improving one aspect of a file system is nearly always detri
mental to another. The consequence, for instance, of replicating files at several
sites to improve their availability is that updating these files will become much
more costly, since all copies have to be updated, and if, additionally, the
changes made by different users must be synchronised, such that the changes
made by one user do not interfere with the data read by another, then the cost
of file operations will be increased by several orders of magnitude.

This paper goes into the design of the distributed file service for the Amoeba
Distributed Operating System [Mullender86]. We have attempted to build a
file service, suitable for many different applications: ordinary 'plain' files,
hierarchically structured files, replicated files, databases, source code control
systems [Rochkind75], etc.

2. DllsIGN CONSIDERATIONS

Important in the design was the Bauer principle, governing the whole of the
design of Amoeba, 'You should not have to pay for those features you do not
need.' A file server, for instance, that implements atomic update on replicated
files is a very nice thing to have, but a user who wants to store the output of a
compiler, prior to calling a linking loader doesn't share that output with any
other user; he is not interested in having his file replicated across five different
network nodes for increased availability, nor is he interested in having his file
atomicly updated. All the user wants is a temporary file that can be quickly
accessed and changed, and just reliable enough that usually he doesn't need to
compile his program all over because the file was lost. On the one hand, our
file server should cater for the simple-minded user who just wants a reasonably
reliable repository for his files, cheap and fast, while on the other hand, the
sophisticated user should be taken into account who needs ultra-reliable
storage for his files, fancy synchronisation of access by many simultaneous
users, and guaranteed availability, who is prepared that it will be expensive
and slow.

Another important issue in the design of a file server is that the file server be
easy to understand. The interface to the file server must not only be simple,
with as few commands as possible, clients must also have a simple conception
of the structure of a file, and how to use it. Even if clients want highly sophis
ticated things done, like changing a heavily shared file atomically, they should
not be burdened with the details of a five step locking protocol, or have to
know just how often the file is replicated.

It is a design goal that the distributed file server should be suitable for an
Amoeba environment, using the protection provided by Amoeba's ports and
capabilities [Mullender85]. We want a free-standing file server, providing disk
space for the users of hosts with no, or not enough disk storage of their own.

187

2.1. File servers in open operating systems
In an open system, several different services may off er the same facilities, albeit
in different forms. There can be several file servers, one offering ordinary
linear files, another tree structured files with concurrency control mechanisms
to arbitrate updates by a number of simultaneous users. The choice of which
file server to use is up to the user.

The advantages of open systems over the traditional approach are obvious:
operating system kernels become smaller and more maintainable, operating
system services are no longer in the kernel, making them portable, and allow
ing multiple, equivalent, but different services to co-exist side by side.

source code
control
system

flat file
server

I
@]

!
§

directory
server

stable
storage
server

I

\

distributed
data base

server

Amoeba
File

Server

optical
disk

server

FIGURE 1. An example of a storage services hierarchy in an open system.

Data base management systems often have their own operating systems,

188

tailored to this particular application, because traditional operating systems
provided the wrong functionality [Stonebraker81, Tanenbaum.82]. An open
operating system, with the right kind of file service, can support data base
management efficiently, while integration with other system services is possible.
A hierarchy of services, as illustrated by , allows a logical layering of .facilities
while the development effort can be shared.

The bottom of the hierarchy is formed by the block server, which manages
blocks of data of fixed size. At the next level, file services manage filesstruc
tured collections of dataand implement operations for inspecting and changing
them. These operations must support the next level, where data, stored in
files, is interpreted: the contents of a file may represent the state of an airline
reservation system, or the contents of the bank accounts of a branch office, or
a pascal program.

File services must provide the tools for the efficient implementation of as
wide a set of applications as is possible. This can be realised, in part, by pro
viding a large set of different file services, each tailored for a particular appli
cation, but, naturally, it is best to have as few as possible different file services
that cover the needs of every conceivable application.

3. RELATED WORK
Since the beginning of distributed computing, many file servers have been
built. In this section we shall look at some that are closely related to our
work: XDFS [Sturgis80] FELIX [FRIDRICH81] and SWALLOW [REED81]. They
all have mechanisms for concurrency control. Most file servers, including the
Cambridge File Server [Dion80], XDFS and FELIX use /ocking[Eswaran76],
while some, among them SWALLOW, use timestamps[Reed18].

XDFS is a distributed file server that uses the notion of transactions. Open
transaction and close transaction commands bracket a series of read write com
mands to one or more files, and the system guarantees the atomic property for
these transactions; that is, either all of the changes will be done, and the tran
saction succeeds, or none, and the transaction fails. XDFS realises the atomic
property via so-called intentions lists, a list of changes to the file.

XDFS uses an interesting locking mechanism to guarantee serialisability:
there are three kinds of locks, read locks, intention-write locks, and commit
locks. When a server has locked a datum for some time, a timer expires and
the lock becomes vulnerable. Another server, waiting on that lock, can then
prod the first, requesting it to release its lock. If it is in a state to do so, it
releases its lock, otherwise it ignores the prod.

The FELIX file server also uses locking, although here it is at the file level.
The FELIX locking mechanism is combined with a version mechanism: when a
file is examined or modified, a new version of the file is created. The version
can be thought of as a copy of the file at the time of its creation, although the
file is not actually copied block for block then. Sharing is supported by six
access modes. Files are tree-structured. When a new version or a virtual copy
is created, the whole tree is initially shared with the most recent version.
When it is modified, a copy-on-write mechanism is used, leaving the original

189

tree intact.
Like FELIX , Sw ALLOW also uses a version mechanism, but the synchronisa

tion of concurrent access is quite different. Sw ALLOW uses a timestamp
mechanism, based on Reed's notion of pseudo time. This mechanism is used
to ensure the atomic property of updates to collections of arbitrary objects
(e.g., files).

3.1. Advantages over previous file systems
The Amoeba File Server is a file server, with a version mechanism, similar to
that of FELIX , but in contrast to other file servers, it uses a combination of
locking [Eswaran 76) with an optimistic concurrency control mechanism
[Kung81, Robinson82, Schlageter81]. Optimistic concurrency control mechan
isms have been used in data base management systems, but we have never seen
them used in a file server. Yet, an optimistic concurrency control mechanism,
combined with a version mechanism provide a number of advantages, not
present in other file systems.

The most important characteristic of an optimistic approach, is that the file
system is always in a consistent state. Most file systems, using other mechan
isms for concurrency control, need a mechanism for bringing back the file sys
tem to a consistent state after a crash. A client crash can cause parts of the
file system to be inaccessible for some time, for instance, because a rollback
operation must be done first to bring the file system back to a consistent state.
This is no problem with the Amoeba File Service. The file system is always in
a consistent state (assuming the updates themselves are consistent). Server
crashes have no serious consequences: the file system is always in a consistent
state, so there is no rollback, clients need only redo the update that remained
unfinished because of the crash. Clients do not have to wait until the server is
restored, because they can use another server to do it.

In a way, optimistic concurrency control and locking are complementary
mechanisms: Optimistic concurrency control maximises concurrency and works
best when updates are small and the likelyhood that an item is the subject of
two simultaneous updates is small. Locking, in contrast, does not allow as
much concurrency, and is more suitable when updates are large and unwieldy
and when the probability of an item being subject to more than one update is
significant. The Amoeba File Service combines locking and optimistic con
currency control in such a way that updates of large bodies of data (several
files) use locking to prevent having to redo them if they clash with another
update. Updates of small bodies of data (one file) are less likely to clash with
other updates, so an optimistic approach is used here. When necessary, a
soft-locking scheme can be used in addition to optimistic concurrency control
to ward off potential conflicting updates. In all cases, the mechanisms for car
rying out updates guarantee consistency of the file system at all times.

The Amoeba File Service provides the necessary mechanisms to maintain
caches of data. Both Amoeba File Servers and their clients can hold data in a
cache. In many file systems, it is difficult or impossible to maintain caches,
because the integrity of the data in the cache cannot be assured. XDFS uses

190

'unsolicited messages' to tell clients to unlock cached data when it is going to
be modified. This makes their caching strategy efficient only for data that is
rarely modified. The integrity of the cache is checked at the start of a transac
tion. The cost of checking whether the cache is up-to-date is small, even for
files that are frequently modified. The Amoeba File Service needs no unex
pected 'unsolicited messages.'

4. THE BLOCK SERVER

The principle of separating the issues of file service an block service makes it
easy to combine different methods of storage (e.g., stable storage [Lamp
son79]), and storage media (e.g., small fast 'electronic disks,' large slow mag
netic disks, very large optical disks) in one system. Carefully designed, disk
service can combine high speed with high reliability, using techniques, such as
caching and dual storage, both on fast, but not so reliable storage, and slow,
but very reliable storage.

We assume the block service implements as a minimum commands to allo
cate, deallocate, read and write fixed size blocks of data. Protection must be
provided, so that a block, allocated by user A cannot be accessed by user B
without A's permission. Writing a block must be an atomic action, with an
acknowledgement that is returned after the block has been stored on disk.
This property is vital for the implementation of atomic update on files.

The block server can implement a simple locking facility. Based on this, file
services can realise concurrency control policies. The Amoeba File Service, for
commit on a version of a file, for instance, will lock and read a block, examine
and modify it, then write and unlock the block again.

We expect that the block server's clients will often use a small portion of
each block for redundancy purposes. Block servers can support a recovery
operation, which given an account number, returns a list of block numbers
owned by that account. A client, e.g., a file server, can then use its redun
dancy information to restore its file system after a severe crash.

Magnetic disks and optical disks do not usually lose their information in a
crash, but it does happen occasionally. In any case, they are at least tem
porarily inaccessible. In order to achieve high availability in the face of disk
crashes, it is necessary to store every block at least twice, on different disks,
managed by different servers. Lampson and Sturgis [Lampson 79] have sug
gested a method to use dual disk drives to implement stable storage. We pro
pose a small modification to their method to make a more reliable version of
stable storage.

In our proposed method, each block is stored by two servers on two
different disk drives (in contrast to Lampson and Sturgis' method which uses
one server and two disk drives). On request to allocate and write a block, the
receiving block server, say server A allocates a block on its local disk, then
sends a request to its companion block server, server B including the data and
the chosen block number. B then writes the block to disk at the address indi
cated by A, and sends an acknowledgement back to A. Finally A writes the
data in its own block, and returns an identifier for the block to the client.

191

Read and write requests can be sent to either block server. For reads, the
block server need not consult its companion server, except when the block on
its disk is corrupted. For writes, the same message exchange is used as for
allocate and write.

Allocate collisions may occur when two clients allocate a block simultane
ously, one on server A and one on server B, and, accidently, A and B choose
the same block number. Similarly, write collisions may occur when two clients
write the same block via different block servers. These collisions are detected,
however, before any damage is done, because writes are always carried out on
the companion disk first. When a collision is detected the companion server is
warned, and appropriate measures can be taken (e.g., redo the operation after
a random wait interval).

After a crash, the block server compares notes with its companion, and
restores its disk before accepting any requests. To this end, block servers
make intentions lists for crashed companion servers. Clients send requests to
the alternative block server if the primary fails to respond. Otherwise crashes
are dealt with in the same manner as in Lampson and Sturgis' method.

5. AMOEBA FILE SERVICE

The Amoeba File Service was developed for, but is not restricted to, the
Amoeba Distributed · Operating System [Mullender86]. It implements the file
system as a tree of pages, whose subtrees are files, and uses a combination of
an optimistic concurrency control mechanism and a locking mechanism to
prevent conflict in simultaneous updates.

For concurrency control, three mechanisms stand out as the most frequently
used: locking [Menasce], timestamps [Reed78], and optimistic [Kung81]. Each
method has advantages and drawbacks, and the discussion which method is
best will continue for some time. Several file servers have been implemented
with a concurrency control mechanism. Most of these, however, use locking as
their concurrency control mechanism [Fridrich81, Sturgis80, Dion80], except a
few that use timestamps [Reed81]. File servers that use optimistic concurrency
control, however, are not known to us, although, as we shall see, optimistic
concurrency control has some properties that make it very attractive for appli
cation in a file server.

The Amoeba File Service implements optimistic concurrency control by a
version mechanism: When a client modifies a file, a new version of the file
must be created, which initially behaves like a copy of the file. Then the
modifications are made, and finally a commit operation makes the
modifications permanent by replacing the previous current version with the
new one. Several versions of the same file can exist at the same time. The
Amoeba File Service checks on commit whether the modifications to the file
constitute a serialisability conflict (see [Kung81]).

The current state of a file is contained in the current version. Committed
versions represent past states of a file; uncommitted versions represent possible
future states of the file. Files are accessed by their file capability, versions by
their version capability. Atomic updates on files are bracketed by creating a

192

version and committing a version. The current state of a file is always
represented by the contents of the current version. Committing a version
makes that version the current one.

Magnetic media
---- ---- --- -------

Optical media

FIGURE 2. The file system has the structure of a tree. Files also, consist
of trees of pages. The file system can be viewed as a tree of
trees.

The file system as a wl!-ole is represented as a large tree of pages. The top of
the tree (i.e., near the root) is stored on magnetic random-access media, for
instance, such as provided by the stable-storage server, described in the previ
ous section. The lower parts of the tree can be stored on magnetic disk, or
write-once media, such as optical disk. As illustrated in , a subtree, whose

193

root is in the upper part of the tree, e.g., file A, can be viewed as a file; it can
be modified atomically using the methods described below. Amoeba files,
unlike files in most file systems, thus form a nested structure: A subtree whose
root page is inside another subtree may be viewed as a file within another file.
File A and file B, for instance, are both subfiles of file C. For the· moment,
this hierarchy will be ignored; we shall consider a file system where the upper
part of the tree consists of only one page; that is, a file system containing only
one file. Later, we shall return to the general situation, where the top part of
the page tree forms a 'real' tree.

A version is represented as a tree of pages. Clients can read or write a page
at a time. The maximum length of a page is determined by the maximum
length of a message in a transaction: 32K bytes. This ensures that pages can
be read and written in one (atomic) transaction.* A page may contain both
data and references to pages further down in the tree. A reference consists of
a block number and some flag bits that Amoeba File Service uses for con
currency control. The number of data bytes in a page is variable (per page) up
to the maximum size of a page. The remaining space in a page can be occu
pied by references to pages in the next level of the page tree.

Clients have explicit control over the shape of the page tree. Pages within a
file are referred to by a pathname which is constructed as follows: The root
page has an empty pathname. The pathname of a page that is not the root, is
the concatenation of the pathname of its parent page with the index of its
reference in the array of references in the parent page.

This file representation has been chosen with the express intent of giving
clients (file systems, data base systems, source code control systems, etc.) as
much control over the shape of files as possible. Using the file structure pro
vided by the Amoeba File Service, objects ranging from linear files to B-trees
can easily be represented.

The Amoeba File Service provides a set of commands for the management
of files and versions. There are commands to read and write the pages of a
version and commands to manipulate the shape of a version's page tree (split
pages into two, move subtrees to another part of the tree, etc.).

5.1. File representation
A file - in this section we should perhaps say 'the file' - is a collection of ver
sions, ordered in time. When a new version is created, it behaves as if it were
a copy of the current version. In fact, when it is created, a new version shares
its page tree with the current version, and only when a page is changed is the
page duplicated. The Amoeba File Service file representation is therefore a
differential file representation, similar to that of FELIX •

* Arbitrarily long pages can be written atomically by writing them back-to-front as a linked list,
whereby the head block is (over)written last, and the other blocks in the list are allocated from the
pool of free disk blocks. After writing, the blocks making up the previous linked list can be freed.

194

Pages are stored by the block server in such a way that they can be read and
written as atomic actions. Associated with each page is a small header area
that the Amoeba File Service uses for administrative purposes.

The root page of a version tree is referred to as the version page. The data
in a page has no predefined structure. Clients are free to write them as they
see fit. The references in a page are for internal use by the Amoeba File Ser
vice and can only be read and written by servers.

file capability (version page only)
version capability (version page only)
commit reference (version page only)

top lock (version page only)
inner lock (version page only)

parent reference (version page only)
base reference

nrefs (number of page references)
dsize (number of data bytes)

client
data

block number CIRIWI s IM

block number CIRIWI SIM

FIGURE 3. The Amoeba File Service page layout

The lay out of a page is shown in figure 3. The page is divided in two areas,
the header area and the page itself; the separation is indicated by the double
line. The first field in the header area is the file capability. This field gives the
capability of the file whose root the page is. The next field is the version capa
bility, the version of the file whose root the page is. The commit reference field
is only used in version pages; its use will be explained presently. The top lock
and inner lock are used to tell whether a page is currently involved in an
update of a file whose root is higher in the page tree. In this section we have
assumed there is only one file in the system, so these fields are not used here;
their function will be explained in a later section. The parent reference gives
the name of the parent version block. Parent references can be used to ascend
the upper part of the page tree to the root. The fields mentioned just now are
only present in a version page. They are absent (or ignored) in other pages.
The base reference field is the block number of the page that this page was

195

based on (copied from). The nrefs field holds the number of page references
this page contains. The dsize field gives the number of data bytes. The page
itself contains the reference table, with an entry for each child page, and the
data area where the client data is kept.

The reference table is an array of page references, which contain a block
number, and five flags, C, R, W, S, and M. The page reference points to a
page in the next level of the page tree, the C flag, when set, indicates that the
page was copied and is no longer shared with the version it was based on. The
R flag indicates whether. the data of that page has been read (it is needed to
decide if an uncommitted version may be committed as explained in section 5),
the W flag indicates whether the data in the page was written (changed), the S
flag tells if the references have been used (searched), and the M flag indicates
whether the references were modified (insert page, remove page, make hole,
remove hole). As we shall see, it is not possible to access a page without copy
ing it, nor is it possible to modify the references without looking at them. This
reduces the number of flag combinations to 13, which allows encoding the flags
in four bits. Amoeba uses 28 bits for a block number and four bits for the
flags.

Pages are accessed from their parent page by the index in the reference
table. An arbitrary page in a version can thus be accessed from the root by
indexing into the references of several pages starting at the root (version page)
of the page tree. Pages thus have path names consisting of a string of n-bit
numbers. These path names are visible to clients, giving them explicit control
over the structure of their files.

A file is made up of a sequence of committed versions and possibly a collec
tion of uncommitted versions. The version pages of the committed versions
form a doubly linked list. Each committed version's base reference points to
the version it was based on (its predecessor) and its commit reference points to
the next committed version. The current version's commit reference and the
oldest version's base reference are nil.

The uncommitted versions are attached to the list through their base refer
ences, which point to the version they were based on; note that this is always a
committed version. A typical file could look like the one in , where we have
just shown the version pages and their base and commit references.

In the next section we shall discuss the mechanisms that are used to imple
ment atomic update and guarantee serialisability, but before we go into that
subject, a proper understanding of the copy-on-write mechanism and the R,
W, S and M flags in the page table is needed.

The R, W, S and M flags are needed primarily for deciding about commit
ting versions. In order to be able to serialise two simultaneous updates to a
file, the Amoeba File Service must know which parts of the file were read and
which parts were changed (written). When set, the R flag indicates that the
data in the referred-to page was read. The W flag indicates its data was writ
ten. The two flags operate independent of one another. The S flag tells that
the references have been referenced, the M flag tells whether the references

196

Base reference

C.Ommit reference

Base reference

C.Ommit reference

Oldest

version

Base reference

C.Ommit reference

Base reference

C.Ommit reference

Base reference

CWTCnt

version

Base reference

uncommitted
versions

C.Ommit reference C.Ommit reference

l __ ___

committed
versions

FIGURE 4. The Jamily tree' of a typical file. Only the version pages are
shown. The page trees descending from the version pages are
not shown.

have been changed. These flags are not independent. When the M flag is on,
the S flag must also be on; it is not possible to modify the references without
consulting them.

When a page is read, the pages on the path to it must also be read. This
implies that, if a page has not been searched, then the subtree of which it is
the root cannot have been searched either. Hence, a cleared S flag indicates

197

-
that the descendants of the referred to page have not yet been accessed.

For writing pages in a version, a 'copy-on-write' mechanism is used. When
a page is written, a new block is allocated for it, leaving the old page intact.
Then the page reference in its parent page is updated to point to the newly
allocated page and its W flag is set. This changes that page, however; and this
change must also be made by allocating a new block for it and writing the new
contents of the page to that new block. Every change thus bubbles up from
the leaves of the page tree to the root page. The root pagethe version pageis
the only page that is written in place. When a page is thus copied, the C flag is
set in the reference to it (in the parent page). Naturally, a page is only copied
once; after it has been copied for writing, it can be written in place when it is
written again.

It is clear now that, when a page has not been copied, its descendants can
not have been copied either. Hence, a cleared C flag in a page reference indi
cates that the referred to page and all its descendants have not (yet) been
copied, but a set C flag only indicates that the referred to page was copied.
Like the S flag, it does not show whether its descendants have been copied.

A similar mechanism does not exist for the R, Wand M flags. When a page
is written, it and the pages between it and the root of the page tree must be
copied, but the parent page of a written page is not considered written or
modified, although, strictly speaking, it has changed. A parent page is only
considered written if it was written itself, and modified if a client explicitly
requested the page tree to be changed, for instance, by adding or deleting
pages.

Page trees are usually partially shared between versions. This implies that
the flags indicating access to pages are also shared even though these pages
have been accessed in different ways in different versions. This presents no
problem, because the serialisability test need not descend shared parts of the
page tree since they have not been accessed.

The flags, indicating whether a page has been read, written, modified or
copied are stored in its parent page in the page tree; the root page is therefore
the only page that does not have a C, R, W, Sand M flag to indicate if it was
copied, read, written, searched or modified. The managing server keeps these
flags separate. The root page is always copied, by the way. ·

When a page is first read, the C, R, W, S and M flags it contains for its
child pages must be initialised to zero. This requires changing that page. The
Amoeba File Service must therefore not only shadow pages that were written,
but also pages whose descendants were read. As we shall see later, once a ver
sion has successfully committed, the information contained in the R and S
flags is no longer needed. The Amoeba File Service garbage collector may
remove pages that were copied but not written or modified and reshare the
corresponding page from the version on which it was based.

198

5.2. The optimistic concurrency control mechanism
As long as updates are done one after the other, commit always succeeds and
requires virtually no processing at all. When two updates are done con
currently, however, the server must check if commit can be allowed by testing
if the two updates can be serialised. If so, the commit is allowed; if not,
failure is reported to the client, and the client must redo the update.

Kung and Robinson in their paper on optimistic concurrency control divide
file update into three phases: the read phase, the validation phase, and the
write phase [Kung81]. The validation phase checks serial equivalence of tran
sactions 1'; and 1j by testing if one of the following conditions hold:

(1) 1'; completes its write phase before 1j starts its read phase.
(2) The write set of 1'; does not intersect the read set of 1j, and 1'; completes

its write phase before 1j starts its write phase.
(3) The write set of 1'; does not intersect the read set or the write set of 1j,

and T; completes its read phase before 1j completes its read phase.

If one of these conditions hold, the effect of updates 1'; and 1j is the same as
when 1'; had finished before 1j started.

The Amoeba File Service carries out updates in such a way that the critical
section of the validation phase and the complete write phase are done in one
atomic action. This implies that the write phases of two transactions can never
overlap and the serialisability test for two updates in the Amoeba File Service
reduces to

(1) Version V.i commits before version V.j is created.
(2) The write set of version V.i does not intersect the read set of version V.j,

and .i commits before V.j.

The Amoeba File Service carries out its validation test when a client process
requests a version to be committed (i.e., when the client process signals the end
of a transaction). In the test, it is only necessary to check if serialisability
conflicts will occur with versions that have already committed. In principle,
the commit mechanism works as follows.

The check whether condition (1) holds, and if it holds, the write phase, are
carried out as one atomic operation, described below. If condition (1) does
not hold, a test has to be made whether condition (2) holds. This means that
the read set of the version to-be-committed must be compared to the write set
of the already-committed version. The already-committed version cannot
change, so this test can be carried out without locking being needed, or critical
sections. When the test succeeds, the version-to-be-committed is established as
the successor of the already-committed version, and commit is attempted as if
condition (1) holds.

When a client requests to commit a version that is based on the current ver
sion, condition obviously (1) holds, because it was created after the current
version committed. Therefore, Amoeba File Service allows all commits of ver
sions based on the current version. The mechanism for this is demonstrated in
figure 5.

199

Let us assume client C sends a request to commit version V.b, which is
based on version V.a to V.b's managing server, M.b. Server M.b then
proceeds as follows. First it ascertains that all of V.b's pages are safely on
disk. Then it sends a set commit reference request to M.a, the manager of
V.a, the version that V.b was based on. M.a must then do the following
without allowing other requests to interfere. First it must check if V.a is still
the current version. If so, there is no conflict and the commit is carried out.
The check for currentness is simply done by examining V.a's commit reference.
If it is nil, V.a is the current version, and the commit reference is set to the
block number of V.b's version page. This makes V.b the current version, and
automatically the updates made to V.b are made permanent.

Base reference Base reference

Commit reference Commit reference

V.a V.a

Base reference Base reference

Commit reference Commit reference

V.b V.b

(a) (b)

FIGURE 5. V.b succeeds V.a as the current version. (a) shows the situa
tion before the commit, (b) shows the situation after the com
mit.

This is the only critical section in version commit: test and set the commit
reference. In order to make this an indivisible action, only one server may be

200

allowed to read the version block, test the commit reference, set it, and write it
back. H the disk server implements a test-and-set operation, any server can be
allowed to carry out a commit.

figure 5(a) shows the situation before commit, figure 5(b) after the commit
has successfully been carried out. M.b returns an acknowledgement to M.a
and M.a, in turn, returns an acknowledgement to C.

base reference

commit reference

V.a

base reference base reference

commit reference commit reference

V.b V.c

FIGURE 6. V.b wants to commit, but is no longer a descendant of the
current version, V.c.

Let us now examine the case where V.a is no longer the current version, but
another update, concurrent with that of V.b, has taken place. Let us assume
the situation of ; C sends a request to M.b to commit V.b. However, V.c is
now the current version, also based on V.a. First, M.b proceeds as before, and
sends a set commit request to M.a; only this time, discovering V.a's commit
reference is already set, M.a does not carry out the commit, but returns V.a's
commit reference instead. 1bis is the block number of V.c's version page.

M.b must now check if the concurrent updates of V.b and V.c are serialis
able; that is, test if condition (2) holds. V.c has already committed, so if the
two updates are serialisable, V.b must come after V.c. 1bis implies that there
must be no overlap of V.c's write set (the pages written during the update of
V.c) and V.b's read set (the pages read during the update of V.b). Since M.b
received the block number of V.c's version page, it can descend V.c's and
V.b's page trees in parallel to examine if there is a serialisability conflict. 1bis
is tested using the R, W, S, M, and C flags in the page references. Note that
uncopied parts of the tree in either V.b or V.c need not be visited since they
can neither have been read nor written.

While descending the two page trees, checking the serialisability constraint,

201

M.b also prepares the new current version, which must contain the updates
made in V.c and those made in V.b. This is done by replacing unaccessed
parts in V.b's page tree by corresponding written parts in V.c's page tree.

Both the serialisability test and the combination of the changes made by two
concurrent updates are made in one pass over the page tree. Unvisited
branches in either page tree are not descended, which makes the serialisability
check quite fast when at least one of the concurrent updates is small.

An important property of the serialisability test is that it can be carried out
in parallel with other updates of the file. While the routine serialise descends
V.b's and V.c's page tree, other versions are allowed to commit, and other seri
alisability tests can also be carried out.

H serialise returns TRUE , V.b is ready to become V.c's successor as the
current version, and a set commit reference command is sent to V.c's manager.
H V.c is still current, this succeeds; if not, the serialisability test is repeated for
V.c's successor. This repeats until either the set commit reference command
succeeds or serialise returns FALSE •

In the latter case, when serialise returns FALSE , the concurrent updates are
not serialisable, and V.b is removed, and its owner notified. The update can
be retried on another version.

5. 3. The locking mechanism
In the previous section we have assumed the upper part of the file tree consists
of only one version page. In this section we describe the mechanisms for
updating files when the upper part of the tree consists of more than one ver
sion page.

Before continuing, some terms are defined to simplify discussions. The
upper part of the tree, stored on magnetic media, which contains the version
pages for the files in the system, will be called the system tree. A file whose
root is a leaf of the system tree will be called a small file, although a 'small file'
may, of course, be arbitrarily large. A file whose root is an internal node of
the system tree will be called a super-file. A small file or super-file whose root
is contained in a super-file will be a sub-file of the super-file. A tree that
makes up a small file or super-file is a page tree.

Updates of small files still use the optimistic method for update: Two
updates on different small files do not interfere with each other since they
affect disjoint page trees. Two updates of the same small file use optimistic
concurrency control, as described in the previous section, to maintain integrity.

Updates of super-files, however, must use different rules. Updates on
super-files generally require larger amounts of processing and affect more
pages than updates on small files. Consequently, the likelyhood of a serialisa
bility conflict is greater for updates on super-files. Additionally, the work lost
because of a serialisability conflict is usually greater in the case of super-file
updates.

For these updates locking provides a better form of concurrency control,
because it warns in advance that two updates are likely to cause a conflict.
Locking has some drawbacks, however, especially with regard to crash

202

recovery. Most systems that use locking need elaborate mechanisms to restore
the system after a crash: Locks have to be cleared, files or databases may have
to be rolled back, or intentions lists must be carried out before the system can
resume operations. We deemed it a challenge to find a locking mechanism
that requires no special recovery in case of crashes. Our method is described
below.

Each version page contains two lock fields, the top lock field, and the inner
lock field. A file is considered to be locked if the lock field is non-zero. Locks
only have meaning in the current version. We assume it is possible to test the
two lock fields for zero and set one of them in one atomic operation.

When an update is made to a super-file, the top lock is set in its version
block, and the inner locks are set in visited internal nodes of the file tree that
are version blocks of sub-files. When an update is made to a small file, the top
lock is also set in its version block, but, since small files have no internal ver
sion blocks, no inner locks have to be set.

Updates on super-files happen in exactly the same way as updates on small
files, with the exception that locks have to be checked and set while the update
is in progress. As in the case of small files, a version must also be created for
a super-file before updates can be made. Before a version may be created,
however, the version block for the current version must be locked.

The algorithm· for creating a version is the following: H the file is a super
file, check the inner lock and top lock fileds, and, if they are both zero, set the
top lock. H one of them is non-zero, wait until it is cleared, then try again.
(The waiting process will be described later; locks are made of ports, which are
used to realise an automatic warning mechanism for waiting updates.) H the
file is a small file, only the inner lock must be tested, but the top lock set.
Thus, a small file can be subject to more than one update at the same time,
using the optimistic method of concurrency control.

H an update, while · descending the page tree, discovers a top lock, it must
wait until the lock is cleared before that subtree can be entered. It is not pos
sible to encounter an inner lock while descending the page tree.

The commit operation is somewhat more complicated for super-files than for
small files. Commit on a small file or a super-file works as described in the
previous section. However, commit on a super-file is not finished when the
commit reference is set. After commit on a super-file, the page tree must be
descended to commit the sub-files of the super-file, and clear the locks. These
commits always succeed, because the locks prevent access by other clients dur
ing the update to the super-file.

It is not difficult to see that this locking mechanism gives exclusive access to
any subtree of the file system, and therefore provides a concurrency control
mechanism. It can also be seen that sub-files, not accessed by an update, are
not locked and therefore accessible to other updates. Full concurrent update
remains possible on small files, because simultaneous updates on the same
small file need not wait for top locks.

However, it is possible to use top locks on small files as hints which indicate
that the file is likely to change soon. An update, known to affect large parts of

203

a small file, can thus be postponed until the file is 'idle.' In contrast to this
soft locking scheme, it is also possible to allow more concurrency on updates of
super-files. The rules for creating a version may be relaxed to allow creating a
version when the version block's top lock is set. The optimistic concurrency
control which still lurks underneath this locking mechanism will see to it that
no harm is done 'concurrencywise.'

When a server process crashes in the middle of an update, no harm is done
to the integrity of the file system; the optimistic method underneath sees to
that. The locks remain, however, rendering some files inaccessible. For
tunately, the mechanism described above for waiting on locks also provides a
mechanism for crash recovery: When the server crashes, the outstanding tran
sactions with the server crash as well, telling all servers waiting on locks that
the process holding the locks has crashed.

A server, waiting on a top lock proceeds as follows: If the commit reference
is off, the lock can be cleared without further ado, and, when the page tree is
descended, inner locks (with the same port, of course) can be cleared or
ignored. If the commit reference is set, the version it refers to is current. The
version with the lock, and the current version are traversed simultaneously,
and the commit references of the sub-files are set, finishing the work of the
crashed server. A server, waiting on an inner lock ascends the system tree to
the first unlocked page, or a page with a top lock. If the page thus found is
not locked, the inner lock can be ignored. If the page is locked, it is treated as
described above.

5.4. Maintaining a cache
An important form of optimisation is caching. It is a defect in most distri
buted file systems that it is virtually impossible to keep local copies of remote
data around, because of the race conditions thus introduced. The decreasing
cost of primary memory makes caching techniques increasingly useful both for
file servers and their clients. Some file servers have attempted a solution, the
most prominent of which is probably XDFS [Sturgis80] Although XDFS pro
vides an efficient mechanism for caching files or portions of files, the designers
of the file server introduced the concept of the unsolicited message, a prod in
the form of a message from server to client, telling the client his cache entry
has become invalid. We have rejected such a solution because it does not fit
the client-server model: an active client, that sends requests to a passive server
that merely waits for requests, and carries them out. To have to be prepared
to receive unsolicited messages makes client programs unnecessarily complex.

The Amoeba File Service - by design - is especially suited for caching. A
version, from the moment of its creation, behaves like a private copy of a file
that cannot change without the owners consent. Both Amoeba File Servers
and their clients can therefore maintain a cache which, for the most recently
used versions of a set of files, contains collections of pages. When a new ver
sion of a file is created, a client or a server examines its cache to see if there
are any pages of a previous version of the file that can still be used. The
mechanism for this is simple, as shown below.

204

For each file, a server or a private client can make a cache entry, consisting
of pages of the most recent version it has had locally. When a request for a
new version of the file is made, a serialisability test is made between the cache
entry and the current version in order to find out which blocks of the cache
are still valid. If the serialisability test succeeds, all blocks are still valid, if
not, the blocks that cause the test to fail must be discarded. Note, that it is
not necessary to transmit pages while making the serialisability test. If the
cache holder is a client, the version capability must be sent to one of the
Amoeba File Servers so the serialisability test can be made, and the server
returns a list of path names of pages to be discarded. The server responsible
for carrying out the test can make the test itself, or it can delegate the task to
the server holding the most recent version for efficiency.

Even for shared files the page cache can be quite efficient. As shown previ
ously, the serialisability test can be made in time proportional to the size of
the intersection of the set of pages of the version in the cache and the union of
the sets of pages in the versions since then. The server making the serialisabil
ity test likely has parts of the most recent version in its cache, reducing the
number of disk accesses and the amount of network traffic further still. But
our method of maintaining a cache is even more efficient for files that are not
shared: the cache entry will always be for the most recent version of a file, so
the serialisability test is a null operation, and all pages in the cache will always
be valid.

It is worth noting that, in contrast to other file systems, the page cache does
not have to be a 'write through' cache. When a page in a version is written, it
need not be written to stable storage immediately. This can be postponed
until just before commit.

The Amoeba File Servers can also conveniently cache the concurrency con
trol administration, the flag bits. This allows serialisability tests without hav
ing to read the page tree. However, the flags must also be present in the files
themselves to make crash recovery possible.

5. 4.1. Robustness
The potential strength of distributed file systems, in contrast to traditional cen
tralised file systems, is that distributed file systems can be much more 'crash
proor; that is, the file system will continue to operate, even when a few of the
server processes, or even some of the disks are not operational.

Note that increased crash resistance and efficient concurrency control tend
to mutually exclude each other, because better crash resistance is usually
obtained by replication of data, which makes concurrency control more
difficult. Making the Amoeba File Service crash proof has been an important
aspect of its design.

In principle, the File Service operates using a number of server processes,
which, in turn, use a number of block servers for information storage. This
causes a separation of reliability aspects into two distinct areas: on the one
hand, accessibility and robustness of file services as such, and, on the other
hand, accessibility and robustness of individual files and versions. The former

205

is realised through replicated server processes; the latter through replicated
block storage, such as, for instance, stable storage[Lampson 79] and backup
block servers.

Assuming stable storage is used, the pages of each version of each file that
are on disk are, in principle, always accessible. Access paths to committed
versions go through the replicated file table, and a chain of version pages on
stable storage, hence version access and file access can be guaranteed as long
as one or more servers are operational.

Uncommitted versions need not be salvaged in a server crash. The con
currency control mechanisms were designed such that clients must be prepared
to redo the updates in a version; if a version is lost in a crash the situation is
not much different. Uncommitted versions are therefore not as important as
committed versions.

6. CONCLUSIONS

The Amoeba File Service combines a number of concepts from the operating
systems' world, the distributed systems' world, and the database world in a
novel way. To the best of our knowledge distributed file servers have not been
constructed using optimistic concurrency control. Yet, it provides a number of
advantages not often encountered in other file systems.

With optimistic concurrency control, the file system is always in a consistent
state. After a crash, there is no necessity for recovery: no rollback is required,
no locks have to be cleared, no intentions lists have to be carried out.
Optimistic concurrency control allows a maximum of concurrency in accessing
files. Some updates will have to be redone when concurrent updates are not
serialisable, but with the unbounded potential of computing power that distri
buted systems off er, redoing an operation now and then is acceptable.

Still, starvation may occur, especially when a large update must be carried
out on a heavily shared file. The locking mechanism, described in § 6.4.3, can
be used to lock a file when it is known that the update is large, and the proba
bility of a serialisability conflict serious.

The file system should be organised carefully to avoid that updates on
super-files have to occur too frequently. To this end, each small file should be
self-contained as much as possible, so most updates will be on small files. This
allows a large degree of concurrency. Locking should be the exception rather
than the rule.

Page caches can be maintained, both by end-user processes and Amoeba
File Server processes. We believe our method is superior to that in XDFS
because no unsolicited messages are necessary. These cause an unneeded addi
tional complexity for client processes.

The version mechanism and the page tree closely resemble the mechanisms
in FELIX . However, FELIX uses locking at the file level. The idea behind our
system of not locking small files is that many updates, even on the same file,
do not affect the same parts of the file. For example, changes in an airline
reservation system for flights from San Fransisco to Los Angeles do not
conflict with changes to reservations on flights from Amsterdam to London.

206

The Amoeba File Service provides mechanisms that allow both sophisticated
and simple applications to use its services efficiently. We have discussed the
methods for concurrency control at some length, perhaps creating the impres
sion that simple-minded applicationssuch as the example, mentioned in the
introduction, of a compiler that needs to make temporary filesmust once again
pay the price of all that complicated machinery for guaranteeing serialisability.
This need not be the case at all: Pages of 32K bytes can be written. Often,
one such page is large enough to contain a whole file. Writing these one-page
files is efficient; no concurrency control mechanisms slow it down.

A last advantage of the Amoeba File Service is that it is eminently suitable
for a file system on write-once media, such as optical disks. Optical disks
show great promise for the future, because of low cost and huge capacity.
Traditional file systems are not suitable for these media, because files cannot
be overwritten on a write-once device. The version mechanism, coupled with a
cache in which uncommitted files are kept until just before commit seems an
ideal file store for optical disks.

REFERENCES

[Dion80]
DION, J., "The Cambridge File Server," Operating Syst. Rev., vol. 14,
pp.41-49, Oct. 1980.

[Eswaran 76]
EswARAN, K. P., GRAY, J. N., LORIE, R. A., and TRAIGER, I. L., "The
Notions of Consistency and Predicate Locks in a Database Operating
System," Comm. ACM, vol. 19, no. 11, pp.624-633, November 1976.

[Fridrich81]
FRIDRICH, M. and OLDER, W., "The Felix File Server," Proc. Eighth
Symp. Operating Syst. Prin., pp.37-44, 1981, ACM.

[Kung81]
KUNG, H. T. and ROBINSON, J. T., "On Optimistic Methods for Con
currency Control," ACM Transactions on Database Systems, vol. 6,
no. 2, pp.213-226, June 1981.

[Lampson 79]
LAMPSON, B. W. and STURGIS, H., Crash Recovery in a Distributed
Storage System. Palo Alto, CA.: Xerox PARC, 1979.

[Menasce]
MENASCE, D. and MUNTZ, R., "Locking and Deadlock Detection in
Distributed Databases," IEEE Trans. Softw. Eng., vol. SE-5, pp.195-202,
May 1979.

[Mullender85]
MULLENDER, SAPE J. and TANENBAUM, ANDREW S., "Protection and
Resource Control in Distributed Operating Systems", Report IR-79,
Vrije Universiteit, Amsterdam, June 1985.

[Mullender86]

207

MULLENDER, S. J. and TANENBAUM, A. S., "The Design of a
Capability-Based Distributed Operating System," The Computer Journal,
vol. 29, no. 4, pp.289-300, 1986.

[Reed78]
REED, D., "Naming and Synchronization in a Decentralized Computer
System," PhD. Thesis, 1978, Dept. of Electrical Engineering and Com
puter Science, Massachusetts Institute of Technology.

[Reed81]
REED, D. and SVOBODOVA, L., "SW ALLOW: A Distributed Data
Storage System for a Local Network," Proc. IFIP, pp.355-373, 1981.

[Robinson82]
ROBINSON, J. T., "Design of Concurrency Controls for Transaction Pro
cessing Systems", Ph.D Thesis (CMU-CS-82-114), Carnegie-Mellon
University, Pittsburgh Pa., April 1982.

[Rochkind 75]
RocHKIND, M.J., "The Source Code Control System," IEEE Trans. on
Softw. Eng., vol. SE-I, no. 4, pp.364-370, December 1975.

[Schlageter 81]
SCHLAGETER, G., "Optimistic Methods for Concurrency Control in Dis
tributed Database Systems," Proc. VLDB Conference, 1981.

[Stonebraker8 l]
STONEBRAKER, M., "Operating System Support for Database Manage
ment," Comm. ACM, vol. 24, no. 7, pp.412-418, July 1981.

[Sturgis80]
STURGIS, H., MITCHELL, J.G., and ISRAEL, J., "Issues in the Design and
Use of a Distributed File System," Operating System Review, vol. 14,
no. 3, pp.55-69, July 1980.

[Tanenbaum82]
TANENBAUM, A. s. and MULLENDER, s. J., "Operating System Require
ments for Distributed Data Base Systems," pp. 105-114 in Distributed
Data Bases, ed. H.J. Schneider, North-Holland Publishing Co. (1982).

Immediate Files

Sape J. Mullender
Andrew S. Tanenbaum

Deparment of Mathematics and Computer Science
Vrije Universiteit

Amsterdam, The Netherlands

An efficient disk organisation is proposed. The basic idea is to store the first
part of the file in the index (inode) block, instead of just storing pointers there.
Empirical data is presented to show that this method offers better performance
under certain circumstances than traditional methods.

1. INTRODUCTION

209

In many transaction-oriented computer systems, the performance bottleneck is
accessing disk files. Consequently, when a file system is being designed, care
ful thought should be given to trying to minimize the number of disk accesses.
In this note we discuss some measurements we have made on an actual file
system, then we look at new kind of file organisation suggested by these meas
urements, and finally we compare the performance of the new file organisation
to that of the UNIXt operating system.

While designing a free-standing transaction- (as opposed to connection-)
oriented file server for the Amoeba [Mullender86] distributed operating system,
we made some measurements of file sizes on our departemental UNIX system.
The results are summarised in figure 1. For example, 60.87% of the 19978 files
on the disk are 2048 bytes or less. The conclusion to be drawn from this data
is simple: most files are short.

As an example of how file systems are typically organised, consider the
UNIX file system [Thompson 78]. Associated with each file is a 64-byte data
structure called an inode. The inode contains some bookkeeping and account
ing information plus 13 disk addresses. These disk addresses occupy three

t UNIX is a Trademark of AT&T Bell Laboratories.

Immediate Files
S. J. MULLBNDEll and A. S. TANENBAUM

Software-Practice and Experience
Vol 14, No. 4, pp. 365-368
April 1984

210

File length Percent File length Percent
I 1.79 1024 48.05
2 1.88 2048 60.87
4 2.01 4096 73.51
8 2.31 8192 84.97

16 3.32 16384 92.53
32 5.13 32768 97.21
64 8.71 65536 99.18

128 14.73 131072 99.84
256 23.09 262144 99.96
512 34.44 524288 100.00

FIGURE 1. Percentage of files smaller or equal to the indicated length.

bytes each. Each of the first 10 of these can point to a disk block containing
some data. If disk blocks are n bytes long, files up to length I On bytes can be
accommodated in this way. For longer files, the eleventh address points to a
disk block, called an indirect block containing nl 4 disk block addresses. (A
disk block address occupies four bytes.) For files larger than (Hr+~n/4)n bytes,
the twelfth disk address in the inode points to a double indirect disk block that
points to nl 4 additional indirect blocks. Finally, for huge files, the thirteenth
disk address in the inode points to a triple indirect block.

The inodes are located contiguously in a sequence of blocks near the start of
the disk. When a file is referred to by its ASCII name, the directory system
maps the string onto an inode number, which is then used as an index into the
inode block to find the inode. Thus for files up to length I On bytes, two disk
access are required, one to fetch the inode and one to fetch the data block. (In
a connection-oriented file system, the inode need only be fetched once, when
the file is opened, but in a transaction-oriented file server that erases its tables
after each request has been replied to, the inode must be refetched on each
transaction.)

The combination of short files and the need to make two disk accesses sug
gests another possible file organisation: expand the inode to a full disk block,
and put the first part of the file in it. We call this an immediate block, in anal
ogy with an immediate operand to a machine instruction. If the block size is
2048 bytes, some 60% of the files can be accessed in only one disk operation.
For larger files, access to parts of the file outside the immediate part, would
require the same number of disk accesses (two, three, or four) as in UNIX.

Before we describe our file organisation in more detail let us compare the
number of disk accesses required to read every byte in our sample of 19978
files for UNIX and for our proposed file organisation. We have also computed
the storage efficiency using both immediate files and UNIX, again for the
measured file length distribution. It is important to use actual length distribu
tions because the whole concept of an immediate file only makes sense in light
of empirical data showing that short files are common. The results of these
calculations are given in Fig. 2. The two columns labeled "Percent disk

211

storage wasted" were computed by (A-L)/ A, where A is the amount of ·space
allocated to files and inodes, and L is the total length of the files (i.e., the user
data).

Disk accesses per read/write Percent disk storage wasted
Block size UNIX Immediate files UNIX Immediate files

512 2.12 1.69 1U 13.9
1024 2.06 1.46 13.3 14.4
2048 2.02 1.29 22.2 22.0
4096 2.01 1.16 36.7 36.6

FIGURE 2. Disk accesses and storage efficiency for various block sizes.

The conclusion to be drawn from this study is that immediate files can pro
vide improved response times for transaction-oriented file servers. If the block
size is small, the response time is improved at the cost of less efficient use of
storage, but when the block size becomes 2048 bytes or more, immediate files
are a little less wasteful than UNIX files. Furthermore, we conclude that the
relative advantage of immediate files over the UNIX organisation increases
with increasing block size.

We shall now describe the organisation of immediate files in more detail.
When a file is created, an inode block is allocated. Unlike UNIX, inodes need
not reside at the beginning of the disk, but may be located anywhere. The last
48 bytes of an inode block are reserved for the inode. The rest of the block is
used for immediate data. The structure of the inode can be exactly as in
UNIX, with the exception, that only 24 bytes are available for block pointers,
whereas UNIX has 40 bytes worth of pointer space. These 24 bytes are used
for 5 pointers to direct blocks, and one pointer each to an indirect block, a
double indirect block, and a triple indirect block, giving 8 pointers altogether.
Each pointer block can contain (n-48)/ 4 pointers, and a data block can con
tain n-48 data bytes, since the last 48 bytes of each block (the inode space)
remain unused for pointers or data. This space may be used to hold recovery
information for possible disk crashes and hints to make sequential file access
even faster [Lampson 79]. The file organisation is illustrated in figure 3.

If we assume a block size of 2048, then 2000 bytes are available in every
block for pointers or data. Of every file, the first 2000 bytes are in the inode
block, the next l 0,000 bytes are in five direct blocks, pointed to by the five
direct pointers in the inode. The next 1,000,000 bytes are in 500 indirect
blocks, pointed to by 500 pointers in a pointer block, pointed to by the
indirect pointer in the inode. There can be 500 X 500 X 2000 or half a billion
double indirect bytes, and 500 X 500 X 500 X 2000 or 250 billion triple indirect
bytes. Since most disk drives are less than 500 Megabytes, it is also possible,
when the blocksize is 2048 bytes or more, to use inodes with six direct blocks,
one indirect block, one double indirect block, and no triple indirect block,
since it is not needed then.

212

1mrriG?a1at.;:_,

data

t:::
1nod<2

I

I

r-
- - -
~ ~7

immad1atcz
data

inoda

d1ract d1ract
data data

hints & hints &
backup backup

V

5 direct data

d1rczct 1nd1ract
, ,

data block I 1
I

hints & hints &
backup backup

bloc ks

l l.

immczdiat<z
data

di ract
data

diract
data

dirCl
dot

ct ind1r<2ct ind1rczct 1nd1ract
a data data data

inodcz
hints &

backup
hints &

backup
hints

bac
& hints & hints & hints &

kup backup backup backup

up to 5 direct data bloc ks up to (n-48) /4 data blocks

(a) (b) (C)

FIGURE 3. (a) immediate file, (b) direct file, (c) indirect file.

ACKNOWLEDGEMENTS
We would like to thank Dick Biekart and Bram Janssen for valuable discus
sions.

REFERENCES

[Lampson 79]
LAMPSON, B. w. and SPROULL, R. F., "An Open Operating System For
A Single User Machine," Proc. Seventh Symp. on Oper. Syst. Prin.,
pp.98-105, 1979.

[Mullender86]
MULLENDER, s. J. and TANENBAUM, A. s., "The Design of a

213

Capability-Based Distributed Operating System," The Computer Journal,
vol. 29, no. 4, pp.289-300, 1986.

[Thompson 78]
THOMPSON, K., "UNIX Implementation," Bell System Tech. Journal,
vol. 57, pp.1931-1946, July-Aug. 1978.

Wide-Area Networks

Distributed Systems Management in

Wide Area Networks

Sape J. Mullender
Centre for Mathematics and Computer Science

Amsterdam, The Netherlands

While quite a few distributed operating systems for local-area networks exist,
hardly any work has been done to date on distributed operating systems for
wide-area networks.

In Europe, a number of public networks are now operational, with gateways
between some of them. However, the use of these networks is still mostly res
tricted to "remote login" and, in some cases, simple file transfer operations.

To study these problems and to find structural solutions for efficient and
simple use of national and international networks the working group "Distri
buted Systems Management" was founded within COST 11. Recently, this work
ing group has submitted a research proposal to COST 11 to realise an infrastruc
ture for the implementation of distributed services in a wide-area network in a
European collaborative effort. The model, underlying the reserach is the ser
vice model, used in many local-area network distributed operating systems.

The research project is described, and the proposed infrastructure is dis
cussed in some detail.

1980 Mathematics Subject Classification: 68A05, 68820.
CR Categories: C.2.2, C.2.4, D.4.4, D.4.7.
Keywords & Phrases: service model, distributed systems, wide-area networks,
COST-11

1. INTRODUCTION

217

Many distributed operating systems exist, based on local area networks, but,
in spite of a growing need, the possibilities to use the potential of national and
international networks efficiently are virtually non-existent.

Some networks are now operational in Europe, with gateways connecting
them here and there. In principle information could be exchanged on these
networks. Currently, however, these networks are almost solely used for remote
login, electronic mai(teleconferencing and file transfer. Most of these

Distributed Systems Management in Wide-Area Networks
S. J. MULi.ENDER
Proc. NGI!SION Symposium
Amsterdam
pp. 415-424
April 1984

218

applications have been developed on an ad hoc basis, each application with its
own protection mechanisms, network protocols, etc. Using an international
network for any other applications often requires nested log-in on a number of
hosts on the path through various networks to the destination host.

The COST 11 [Martin-Lof83, Kalin83] "Distributed Systems Management"
group has been started to study these problems and find an infrastructure for
simplifying management of distributed processing activities. In january of this
year, the COST 11 DSM group finished a research proposal for a four year pro
gramme of collaborative research on some of the issues of distributed system's
management in Wide.Area Networks. The work will be carried out by research
institutes all over Europe. In The Netherlands, participants are the Centrum
voor Wiskunde en Informatica, the Computer Science Department of the Vrije
Universiteit and the Network Group of the Technische Hogeschool Twente.
CosT 11 is asked to finance the collaboration costs, such as travel and sub
sistence cost, network connections and communication costs. This paper
discusses the proposed research.

2. REQUIREMENTS, PROBLEMS AND ISSUES
The principles underlying the management of information processing systems
apply whether the systems are local or distributed. In the present context a
three part definition of management is used:

1. management is planning and organising the provisions of resources and
identifies (a) where resources may be located, (b) their availability and (c)
their cost;

ii. management is the control of the use of, and access to, resources accord
ing to allocation, optimisation and authorisation rules;

111. management is the task of ensuring that resources remain accessible and
that they function correctly; and, when this objective cannot be achieved,
of ensuring that suitable signals are available which identify the failure.

This definition is wide ranging, covering management both within and external
to individual network hosts. To narrow down the area addressed by distributed
systems management it is important to differentiate between local management
activities of the various host operating systems within the network and those
activities concerned with the distributed activities of the system. The open sys
tems' environment offers a set of services provided by the host operating sys
tem. The way in which those services may be implemented is outside the scope
of open systems interconnection. Standards for Distributed Systems Manage
ment are concerned with a non-local use of these services. However, the
interaction between local and distributed aspects of management are a
significant R & D matter.

Management is realised through the actions of managers. It is important
that the managers of host systems (i.e., people) have the freedom to effect the
management policies appropriate to their systems. Distributed systems
management must provide the framework for general mechanisms in which a
variety of management policies can operate.

219

Given the functions of management and the understanding of the· con
straints imposed by wide area networks, the tasks to be addressed are:

l. to identify models for distributed systems as a context within which
management activities can be considered;

2. to identify (and, if possible, develop) the set of management tools which
assist in the planning and organisation of distributed processing;

3. to identify the mechanisms through which managers can apply their poli
cies to control and use resources, through appropriate optimisation and
authorisation strategies;

4. to identify protocols for the control of resources, protocols which main
tain resource availability and protocols which signal system failure.

For network users and managers to have their requirements satisfied a
number of mechanisms and services need to be provided. Perhaps the greatest
barrier to offering such mechanisms and services in a Wide Area Network is
the lack of an agreed model for the organisation of distributed computing and
for a set of communication standards for the exchange of control and super
visory information.

Even with such a model and a set of management communication protocols
there are still detailed problems to be resolved concerning the details of the
management mechanisms and services which are needed. The more important
ones concern mechanisms for service location and authorisation, and the lack
of quantitative information which can offer guidance to management in con
trolling the resources for which it is responsible. Of lesser, but still significant,
importance are the services which assist users to obtain the most effective use
of the facilities offered by the network of distributed computers.

At present, there do not appear to be either the data to help resolve these
issues nor any general models of distributed systems through which these
issues can be investigated. Managers need realistic data from efficiently
managed distributed systems to feed into their models in order to help them
with their planning. Yet, at the same time, managers are unable to establish
whether their systems are operating efficiently for lack of adequate diagnostics
and tools to help them analyse distributed system performance.

Managers are unlikely to accept other than the most stringent safeguards in
the application of authorisation rules. The global access which is (theoretically)
possible in a Wide Area Network and the fact that management units have
autonomy means that users and the system they use have to carry out an
authentication excercise at the start of any instance of a communication ses
sion. Subsequent dialogue must be policed by the computers within the Wide
Area Network (even by the Wide Area Network itself) to maintain the
integrity of the session. The most effective authentication mechanism and the
way that mechanism is made apparent to both users and computer or network
manager still requires detailed study.

220

3. THE SERVICE MODEL FOR DISTRIBUTED PROCESSING
Today most people use computers interactively; that is, they type commands at
their terminals, the system will process their commands and return a reply. If
the user is satisfied with the answer, he may type a new command; if not, the
user may retry the command, or phrase it differently. Inside a computer's
operating system the same thing goes on, albeit at another level: the user's
command interpreter makes system calls, requesting programs to be run, files
to be read, tapes to be rewound, etc., and the system replies with data, or sim
ply with an acknowledgement. At a lower level still, programs make extensive
use of subroutine calls; the call can be seen as a request to execute the body of
the subroutine, and the subroutine return as its reply. Obviously, thinking in
terms of requests and replies, possibly nested recursively, is an excellent way of
structuring problems into small portions.

Conceptually, distributed systems are among the most difficult to oversee, so
a structured approach to building distributed systems is essential. The natural
choice of a model is that of using requests and replies. In this section we shall
examine this model in some detail and discuss its consequences on distributed
systems design.

The maker of a request shall be named the client, the processor of the
request shall be the service. A client can be a person at a terminal, an operat
ing system, a process, a processor, etc. A service is an abstraction of the
requests that can be made and the replies that can be expected, comparable to
abstract data types [Liskov74]. A service is always embodied by one or more
seffers, the processes, processors, or devices that carry out the requests as
defined by the service.

A request consists of information travelling from client to server, a reply is
information sent by the server back to the client. In a distributed system client
and server do not generally reside on the same physical machine; requests and
replies must therefore be sent through a computer network from one host to
another. Depending on the type and speed of the network, requests and
replies can be sent as packets, messages, or over connections.

So far, the service model closely resembles a remote procedure call mechan
ism, the request representing the call, and the reply the return. It is more than
that, however: unlike a subroutine, a service can fail. The processor where the
service is implemented may stop working, a bug in the service program may
cause the server to crash obscurely once every thirteen weeks, or the network
may break down. Making a request is like calling a subroutine that almost
always returns. In a program, a non-returning subroutine causes the program
to fail; in a distributed system, a non-replying service need not crash the
client. The client can retry a number of times, expecting the service to be
repaired, or to contact another instance of the service, or it can resort to
another service to achieve its goals in a different way.

The property of distributed systems of potentially surviving server crashes is
what makes distributed systems so interesting from the point of reliability and
error recovery. But it is necessary to design the software to expect errors, and
to react to them appropriately. A client must expect a server to crash every

221

now and then. When a reply does arrive the client may always assume the
server has done its work correctly, but if no reply comes, the client does not
know if its request has been carried out; the client must try to find out, and, if
necessary, repeat the request.

In the same philosophy, services must be designed in such a way that
recovery from crashes can be simple and straightforward. Most request can be
so defined that carrying them out once, or more than once does not yield
different results. If a server crashes, such requests can safely be repeated.

human
user

terminal
server

command
interpreter

query
server

FIGURE 1. An example of a service hierarchy

data
base

Naturally, a server can itself be client to another service. In fact, the possible
hierarchy of services is the strength of the model. As an example, a possible
hierarchy of services is shown in Fig. , where a human being is shown as a
client of a terminal server, which in turn, is a client of the command inter
preter, etc. A crash, for instance, of the database server, will be detected by the
query server, which must then try to recover from it. The query server can
retry the request, it might rephrase a query to get the answer from another
database server, and as a last resort, it can report failure to its client, the com
mand interpreter. In this way the human client at the top of the hierarchy gets
to cope only with irrecoverable errors and crashes in the system.

4. SERVICES IN TRADmONAL OPERATING SYSTEMS

Traditional operating systems provide service to its clients in a much more res
tricted way than conceived in the service model of the previous section. Usu
ally, the only services available to programs are those provided by the operat
ing system in the form of system calls. This restricts the service hierarchy to
two levels: user to program, and program to operating system. Some operating
systems, such as UNIX, t have a well designed user-program interface: to the
client-user a number of alternative services is available, and programs can
sometimes be combined to provide powerful "programs of programs," but even
among the best of operating systems, the possibilities are limited, and, at the
system call level, no choice of service is left to the programmer at all. Most
operating systems, for instance, have a built-in file system, and, whether one
likes it or not, it is the only available file system.

Traditional operating systems run on one centralised processor; if it, the
operating system, or one of its components (file system, terminal controller,
etc.) crashes, the whole system crashes. Naturally, in these systems it is not
necessary to pay much attention to recovery from crashes: if the system
crashes, nothing can be done anyway. Sometimes, operating systems run on

t UNIX is a Trademark of AT&T Bell Laboratories.

222

more than one processor, but even then, the processors are so closely coupled
that a crash in one brings down the others also. If we want to use existing
systems as a basis for reliable crash-proof distributed systems, we must add
mechanisms for error recovery, and increase the possibilities of allowing clients
the choice of many services.

Many computer centres now have a connection to one of the wide area net
works, so communication is possible between one computer and another. The
services available over the network are very limited, however. Often there is a
network-wide electronic mail service, and sometimes there are file transfer
capabilities. Occasionally we find another special-purpose application that can
be accessed through the network, such as teleconferencing systems, but only in
very few cases does the operating system allow processes on one host under
one operating system to communicate with another process in another host
under another operating system.

5. INTEGRATING THE SERVICE MODEL WITH EXISTING SOFTWARE

In the short term, computer networks will be mainly used for mail exchange,
file exchange, and remote file and data base access. In a primitive form this is
already provided on many existing systems. Accessing these services requires
intimate knowledge, however, of both the system where requests originate and
the system where the service is implemented.

In the long term people will have to use the network more intensively and
for many more types of access. If computer networks still work in the same
fashion, the expert knowledge required to use these services will increase
dramatically. It is therefore essential that a uniform way of accessing remote
services is inserted between the operating system and the (remote) client. This
model is shown in figure 2.

An essential property of this model is that it allows existing software to be
integrated into a distributed environment. If new software is henceforth written
directly in the language of clients and servers, requests and replies, reliability
and error recovery, a gradual changeover to practical distributed systems on a
large scale is possible. Several tries have been made in the past to build a
coherent distributed system on top of existing operating systems [Thomas73,
Millstein77, Mamrak82]. We also mention [Hall80] which is an attempt to
build a uniform user interface on a collection of operating systems, an
approach very similar to the uniform client-server model.

6. THE SERVICE MODEL AS THE OPERATING SYSTEM OF THE FUTURE

As processes shall rely on fewer services of the local operating system, but
rather on services replacing traditional file i/ o, terminal management, etc., the
underlying operating systems will become increasingly simple. This is for
tunate, because today operating systems are among the most complicated pro
grams written. Few, if any, operating systems are free of bugs, and we believe
the main cause lies in their complexity.

We must set as our goal to reduce the complexity of the operating systems,
by removing every function from it that can also be realised outside the

client

machine
dependent
interface

operating
system

transaction protocol
presentation ayer

session ayer

ayer

server

machine
dependent
interface

operating
system

223

FIGURE 2. The client server implementation model for existing computer
systems. The double line represents the separation between
application software and the operating system.

operating system. Eventually, the only task the operating system has, is to
provide programs with an environment for execution, and interprocess com
munication primitives. Remaining functions will then be memory management,
exception handling, and the implementation of system calls for interprocess
communication and process control (allocate memory, ignore or catch certain
exceptions, timers, exit, etc.). It is likely even that processors will become so
cheap that it is no longer worth while to implement multi-programming, but
assign one process per host. From the viewpoint of protection and scheduling
this can be a great simplification of the operating system.

Process creation can be done through the services of the process server, a
service that finds a suitable processor for the process to be run, downloads the
code into it and starts the processor. Accounting can be done by an account
ing service, the Bank Server, to be described later. Different file systems can
co-exist to give the users maximum choice of service, interface, reliability and
speed. The nature of the storage system for a database is completely different
from the one needed by, for instance, a compiler that makes a temporary file,
and different again from the storage needed by a text editor. This is indeed
why today database systems often run on separate machines; the file system
provided by the "regular" operating system is unsuitable for database applica
tions [Stonebraker81, Tanenbaum82].

Existing software can be ported to the new generation distributed operating
system by building an emulation layer that translates archaic system calls into

224

the new service requests.

7. MANAGEMENT OF SERVICES IN WIDE AREA NETWORKS

An important difference between distributed systems in local area networks
and those in wide area networks is that local systems are usually under control
of one administration, while wide area networks are usually under control of
many different administration. In wide area networks the lower layer commun
ication protocols are usually provided by the P1Ts so the choice of using
datagram service or virtual circuits is not available.

Each administration in a wide area network potentially has its own pro
cedures for accounting, resource control, and access permissions. For wide area
distributed systems, it is important that one accounting and resource control
mechanism is available that can be used to realise all the different policies.

Basically, there are two methods of access control. One is to use access con
trol lists (ACLs), the other is to use capabilities. Both methods are well
known: In the ACL method, a server grants a client access to an object after
checking if the client is on the object's list of authorised users. In the capabil
ity method, a server grants a client access to an object if the client can present
a capability for the object. The first model is characterised by a list of author
ised clients, stored with each object; the second by a list of capabilities for
objects to which access is allowed, stored by each client.

The ACL method requires a way for a server to establish the identity of its
clients. It may not be possible that a client impersonates another to obtain
access to an object (or service) that would have been refused otherwise. The
capability method requires a method of distributing capabilities to clients in
such a way that clients cannot forge them, construct them, or obtain access to
an object by trail and error. For both problems adequate solutions exist [Mul
lender84, Donnelley80, Evans74, Needham78]. Both methods should be sup
ported by the interprocess communication mechanisms to allow different
administrations to use different access control policies.

8. MANAGEMENT SUPPORTING SERVICES

A number of services are conceived to support usage and management of Wide
Area Network services. Among these are Name Service which map local,
private names for objects onto globally unique object names, error reporting to
help managers detect malfunctioning network components, performance moni
toring for managers to detect bottlenecks in the system, Bank Service for
accounting and resource control, help service for the assistance of users who get
stuck, and command interpreters to help users to communicate with Wide Area
Network services in a natural and meaningful way. We shall discuss some of
these services below.

Name Servers or Directory Servers provide a mapping between clients'
private name spaces and globally unique object or service names. A further
mapping maps global object and service names onto the network address of
the object or service. This two-level mapping allows a clean separation of
functionality: when a client renames an object, only the first mapping is

225

affected; if an object migrates to another host, only the second mapping is
affected.

Directory Service thus consists of two more-or-less independent services: a
service in the user domain, for conveniently naming private objects, and a ser
vice in the operating system domain, for locating objects, given their globally
unique name. This separation allows the existence of several independent
directory services in the user domain, offering different capabilities. Directory
services could off er "yellow pages service" which responds to queries of the
nature: ''Tell me the names and give me a description of file servers that
implement atomic update and concurrency control mechanisms."

The global-name to network-address mapping is the subject of considerable
research. This map has to be carried out efficiently, and it has to be carried out
securely. It is. obviously unacceptable if requests, containing sensitive informa
tion for a particular trusted service, end up on the wrong host. Service location
and object location is closely related to issues of authentication, protection,
and encryption, and the DSM group intends to investigate the problem in this
context.

An example of a versatile accounting mechanism that can be used for
resource control, access control, and, of course, accounting is the Bank Server,
described below.

The Bank Service consists of one or more Bank Server processes that main
tain accounts for each user in the system. An account may contain ''virtual
money" in one or more "virtual currencies." One of the currencies could
correspond to "real money". Other currencies can represent disk quota, cpu
seconds, phototypesetter pages, etc. A service can ask the Bank Service to
make a new currency for it, specify the amount of money to be coined, and
hand out the money to its (potential) clients, possibly in return for virtual or
real money in another virtual or real currency.

To make the Bank Server secure, it uses a capability mechanism; the user
that creates an account receives a capability for it. Only by presenting the
capability a client can take money out of an account. Keeping the capability of
an account secret is the key to preventing other users from stealing one's
money.

A typical interaction between a client and a server goes something like this:
first the client, presenting a capability for his account, requests the bank ser
vice to prepare a cheque for some amount; the Bank Service debits the client
account, makes a unique unforgeable bit pattern representing the amount, and
returns that to the client as a cheque for the amount. The client then sends his
request to the server along with the cheque, and the server clears the cheque
with the Bank Service before carrying out the request; the Bank Service credits
the server account with the amount, and erases the bit pattern in the cheque
from its list of outstanding cheques, preventing a cheque from being cashed
twice.

Doing business like this requires two extra transaction with the Bank Service
for every transaction that has to be carried out, but, fortunately, it can easily
be optimised. The client can send an amount to the server that covers many

226

transactions in one blow, the server can cash the cheque once, and maintain a
local credit account for each client for which it works. The amount sent at one
time by a client to a server must not exceed the amount of trust the client has
in the server.

A mechanism as just described can be made very secure. A property that
could make the accounting system desirable in an international environment is
that untraceable payments can easily be implemented [Chaum82]. The Bank
Service is not in a position to analyse a user's spending patterns in this way.

Network users need meaningful messages when interacting with the services
provided by the system. The purpose is to make the users' interaction with the
network and its facilities as effective as possible. Users are unlikely to use the
range of facilities which a network can off er unless a user-friendly environment
is available. Observation that a network's facilities are easy to use and that
"Help" is readily available will act as a catalyst to promote others to use them.

A Help Service can operate in four ways:

i. giving users assistance when there are faults, e.g., how long it will take
before a service is resumed, or whether the fault led to any loss of inf or
mation;

n. giving guidance on how to access services, e.g., by providing on-line docu
mentation, structured walk-throughs for novices, and, in the last resort,
human contact points for further information;

m. offering a focal point for user feedback, e.g., customer complaints and
requests;

iv. providing users with status information, e.g., on service or network availa
bility, maintenance schedules, and advising on (advertising) new services.

9. PROGRAMME FOR RESEARCH AND DEVELOPMENT

Having considered the evidence for distributed systems management and
presented lists of options for tools and services, it is now appropriate to draw
some conclusions.

One of the motivating forces for the Distributed Systems Management study
carried out by the COST 11 bis DSM-Group was the realisation that standardi
sation bodies were having to grapple with issues which are still lively research
topics. The analysis presented in the report show that they remain research
topics. Although some studies have been carried out and some systems have
been built to demonstrate principles, they have not been withing the scope of
open systems interconnection nor of the open use of wide area networks.
Therefore, if standardisation work is to receive any support from this type of
activity, it has to come from relevant practical exploration of the issues and of
the proposed methods for carrying out distributed systems management. A
further reason why standardisation bodies are having difficulties in this area is
the interdisciplinary nature of the problem. Although distributed information
processing has been facilitated by the development of adequate data communi
cations, many of the key issues relate to standards for the user interface
(OSCRL) and to matters which cannot be the subject of standards such as the

227

services and tools that are provided to support management.
The research programme consists of two related activities.

1. an investigation of tools which can enable managers to perform their
functions more effectively;

2. an investigation of the services which are needed to provide a distributed
system management infrastructure.

This work will need to research the types of model which should be
developed and the general applicability of those models. At present, it appears
that, whereas a single, more general model would be a desirable commodity in
the long run, in the short term there is not yet the information available upon
which to build more general models. A more pragmatic approach to model
building to analyse particular and well identified scenarios is therefore recom
mended.

In meeting the requirements of the second activity a list of topics for study,
development and implementation can be drawn up. The following list proposes
a priority order:

1) The distributed system management kernel.
2) Name Servers
3) Authentication mechanisms
4) Journalling and performance monitoring
5) Help Services
6) Error reporting and diagnostics
7) Bank Service (accounting)
8) Command interpreters

It is noted that the technical solution to providing many of these manage
ment services is by the simple expedient of passing messagesin well specified
formatfor storage within or retrieval from an information base. In the short
term the message facilities provided by Computer Based Message Services (e.g.,
GILT [Wallerath83] perhaps) could suffice. The accounting requirements are
not dissimilar from those put forward in the proposal to COST 11 for the OSIS
project. Also the provision of "Help," the concern for adequate user interfaces
and the legal implications of distributed information processing are of
significance to those concerned with Human Factors [Eason83]. Thus, the
study of Distributed Systems Management has synergystic relevance to other

228

COST 11 activities.

REFERENCES

[Chaum82]
CHA.UM, D., "Blind Signatures for Untraceable Payments," Proc. Crypto,
1982, Plenum Publishing Co. N.Y ..

[Donnelley80]
DONNELLEY, J. E. and FLETCHER, J. G., "Resource Access Control in a
Network Operating System," ACM Pacific '80 Conj., Nov. 1980.

[Eason83]
EASON, K.D. and JENSEN, W., "Human Factors in Teleinformatics,"
Proc. of the European Teleinformatics Conj., pp.3-5, October 1983.

[Evans74]
EVANS, A., KANTROWITZ, W., and WEISS, E., "A User Authentication
Scheme Not Requiring Secrecy in the Computer," Comm. ACM, vol. 17,
no. 8, pp.437-442, August 1974.

[Ha1180]
HALL, D. E., SCHERRER, D. K., and SVENTEK, J. S., "A Virtual Operat
ing System," Comm. ACM, vol. 23, no. 9, pp.495-502, Sept. 1980.

[Kalin83]
KALIN, T., "Technical and Organisational Overview of COST 11 Bis
Projects and Working Groups," Proc. of the European Teleinformatics
Conj., pp.3-5, October 1983.

[Liskov74]
LISKOV, B. and ZILLES, S., "Programming with Abstract Data Types,"
SIGPLA.N Notices, vol. 9, pp.50-59, April 1974.

[Mamrak82]
MAMRAK, s. A., MAURATH, P., GoMEz, J., JANARDAN, s., and NICHO
LAS, C., "Guest Layering Distributed Processing Support on Local
Operating Systems," Proc. 3rd Int. Conj on Distr. Comp. Syst., october
1982.

[Martin-Lof83]
MARTIN-LoF, J., "The COST Framework and its Activities in Teleinfor
matics," Proc. of the European Teleinformatics Conj., pp.3-5, October
1983.

[Millstein 77]
MILLSTEIN, R. E., "The National Software Works: A Distributed Pro
cessing System," Proc. ACM Annual Conj, pp.44-52, 1977.

[Mullender84]
MULLENDER, S. J. and TANENBAUM, A. S., "Protection and Resource
Control in Distributed Operating Systems," Computer Networks, vol. 8,
no. 5,6, pp.421-432, 1984.

[Needham78]
NEEDHAM, R. M. and SCHROEDER, M. D., "Using Encryption for

229

Authentication in Large Networks of Computers," Comm. ACM,
vol. 21, no. 12, pp.993-999, December 1978.

[Stonebraker81]
STONEBRAKER, M., "Operating System Support for Database Manage
ment," Comm. ACM, vol. 24, no. 7, pp.412-418, July 1981.

[Tanenbaum82]
TANENBAUM, A. s. and MULLENDER, s. J., "Operating System Require
ments for Distributed Data Base Systems," pp. 105-114 in Distributed
Data Bases, ed. H.J. Schneider, North-Holland Publishing Co. (1982).

[Thomas73]
THOMAS, R. H., "A Resource Sharing Executive for the ARPANET,"
Proc. NCC, 1973.

[Wallerath83]
WALLERATH, P., "The GILT Abstract Model of a Computer Based Mes
sage System," Proc. of the European Teleinformatics Conj, pp.3-5,
October 1983.

Connecting RPG-Based Distributed Systems

Using Wide-Area Networks*

Robbert van Renesse
Andrew S. Tanenbaum

Hans van Staveren
Department of Mathematics and Computer Science

Vrije Universiteit
Amsterdam, The Netherlands

Jane Hall
Computer Science Division

Hatfield Polytechnic
Hatfield, England

Remote Procedure Call (RPC) is a widely used communication mechanism in
local network based distributed operating systems. It is simple, fast, and
straightforward to implement. However, when two or more distant distributed
systems are connected, problems arise concerning the protocols, locating ser
vices, and other issues. To solve these problems, gateways are introduced. In
this paper we discuss various ways in which these gateways can be organized
and show how their application in the Amoeba Distributed Operating System
has solved the problems cited above.

1. INTRODUCTION

231

As networks of high-performance personal workstations become more
widespread, interest in distributed operating systems to make the whole system
look like a single time-sharing system is increasing. When the same distributed
operating system is running on two widely separated local-area networks, it is
natural to think about merging them into a single transparent distributed sys
tem. However, because local-area and wide-area networks have very. different
properties, a number of problems arise. These problems and some proposed
solutions are the subject of this paper.

* This research was supported in part by the Netherlands Foundation for the Advancement of
Pure Research (Z.W.O.) under grant 125-30-10.

Connecting RPC-Based Distributed Systems Using Wide-Area Networks
R. VAN RENESSE, A. S. TANENBAUM, J.M. VAN STAVEREN, and J. HALL
Informatica Report IR-118
Dept. of Mathematics and Computer Science, Vrije Universiteit, Amsterdam
December 1986

232

A brief outline of this paper follows. First, distributed operating systems
are discussed, in particular those properties which make them hard to extend
to wide-area systems. Next gateways are discussed. Several types of gateways
are distinguished using the ISO OSI reference model [Zimmermann80]. Then
attempts at transparent wide-area extension are described for the Cambridge
Distributed Computing System, the V-System, and the Amoeba Distributed
Operating System. Finally the solutions are compared.

This work was undertaken as part of the COST-11 ter MANDIS project
partially sponsored by the European Community. In this project, two Amoeba
Distributed Operating Systems in Holland (Vrije Universiteit, CWI), two in the
U.K. (Harwell, Hatfield Polytechnic), and one in Norway (University of
Troms0) are being connected into a single, transparent distributed system as a
research project, with the aim of investigating the tools and services required
when interconnecting autonomous management regimes.

2. DISTRIBUTED OPERATING SYSTEMS

When computer networks first appeared, the operating systems used on the
computers were just ordinary operating systems extended with networking
primitives. Using these primitives it was possible for a process on one com
puter to set up a connection or virtual circuit to a process on a remote com
puter. This communication was not transparent because the syntax and
semantics of intramachine communication were different from intermachine
communication. Such a system is called a network operating system.

The next evolutionary step in this direction was to try to hide the machine
boundaries, so that to the user, the collection of machines would look and act
like a single multi-user time-sharing system instead of a collection of auto
nomous machines. This led to the concept of a distributed operating
system[Tanenbaum85] in which all the machines ran the same operating sys
tem kernel and handled resource management automatically. For example, in
a distributed system, when a process or file is created, it is up to the operating
system, not the user, to decide where to place it.

These differences in approach also led to differences in protocols. Network
operating systems tend to do infrequent bulk file transfers, which can best be
handled by connection-oriented sliding window protocols. On distributed
operating systems, processes tend to have frequent short interactions with
other processes, leading to connectionless remote procedure ca//[Birrell84] as
the most widely used communication model.

Wide-area networks, like network operating systems, generally use
connection-oriented protocols such as the ISO OSI protocols. When two
RPC-oriented distributed systems need to communicate over a wide-area sys
tem, problems arise due to the different communication styles.

Another important property of distributed systems is how they locate
processes and services. If a client, C, calls a server, S, the system must have
some way of locating S. One approach is to have a central name server that
maps S onto the machine number where S is located. The other approach is to
broadcast a message asking all machines on the network if they know where S

233

is. Neither of these approaches is suitable when extending a distributed sys
tem to multiple remote sites. Something else is needed.

3. GATEWAYS

Whenever two networks are connected, a gateway machine is needed between
them [Sunshine77]. The gateway has to deal with problems caused by

different name spaces
different packet sizes
different protocols
support of broadcast

In addition, gateways can play a role in fl.ow control, congestion control, ser
vice location, and protection. In this section we will see how gateways deal
with these problems, and on which level of the ISO OSI reference model they
are taken care of. We shall see that it is not possible to put all gateway func
tionality below the transport layer, as proposed by OSI. An advantage of put
ting the gateway as low as possible in the layer hierarchy is that higher-level
software does not have to differentiate between different networks (since there
is only one logical network). However, we will show that it is not necessary
for higher-level software to be aware of different networks even if gateways are
at the highest layer.

On the lowest level in the OSI hierarchy is the connector, a simple, theoreti
cal, gateway that physically links up the underlying cables of the network.
Somewhat higher in the physical layer is the repeater, which amplifies the sig
nal before transfering it to "the other side." Selective repeaters filter out mes
sages that are not intended for the other side. They are in the data-link layer.
Both connectors and repeaters have the property that they are completely
software transparent, even where timing is concerned.

On the data-link level we find relays, which receive complete packets and
transfer them to the intended networks. Relays are also software transparent
when timing is not critical. High in the data-link layer we find relays that con
nect physically different networks, and make them look like a single physical
network. The packet size on this network is the minimum of the packet sizes
of all the cooperating networks, since the relay does not do fragmentation.
Addresses of the new logical network are mapped to physical network and site
address using routing tables. Usually, however, this is done on higher levels.

Network-layer gateways support different networks, and they fragment pack
ets if they are too large for the destination network. Network-layer gateways
can also help to avoid congestion in the network by re-routing packets.

Transport-level gateways understand transport protocols, and can "adjust"
them for different networks, for example, by filtering out retransmissions that
arrive too fast for the destination network. Moreover, they can do address
translation: the local address is mapped to a remote address. Local addressing
can therefore be independent of network-wide addressing. These gateways are
implemented by having the gateway "stand in" as the remote process, that is,
the local process thinks that it is talking to another local process. In reality,

234

the other local process is a half-gateway that transfers messages to and from
another half-gateway on the remote network.

Session-level gateways work at the session layer and above. Here they have
full control over participating networks, simplifying management and enhanc
ing flexibility. Communication over these gateways is efficient, since the parti
cipating networks can be optimized for their local characteristics (effectively
they do message reassembly). This is especially true if the networks differ con
siderably in bandwidth, and there is not much to be gained in forwarding
packets before all have arrived. Flow control problems are taken care of on
either side of the gateway.

3. IMPLEMENTATIONS

Many local-area networks are currently in use. However, only a few of them
have been connected transparently over a wide-area network. The advantages
of connecting these local systems are obvious-connecting them transparently
allows applications to work unchanged across local network boundaries. In
this section we will have a look at some of these systems, and how they have
been implemented.

3.1. The Cambridge distributed computing system
The Cambridge Distributed Computing System [Needham82] is an experiment
of the University of Cambridge to provide a computing system consisting of
processors connected by a fast communication network, the Cambridge Ring.
Some of the system's processors perform dedicated services, such as a name
service or a file service, whereas others form a multiple-purpose processor bank.

3.1.1. Single site
The unit of communication between the processors is the basic block, consist
ing of a source address, a destination address, and a chunk of data. Several
end-to-end protocols have been built on top of these blocks. For example, the
Single Shot Protocol (SSP) is a simple communication interface to exchange
request and reply messages. Services are named by character strings. The
name server maintains the location of all services.

When a process wants to make use of some (local) service, it sends a
NAME-LOOKUP-REQUEST to the name server to find the location of the
service. The name server itself is situated at a well-known address. It sends a
reply containing the address of the server back to the original process, using
the source address in the basic block that contained the request. Now the pro
cess can send requests to the service using SSP-REQUEST messages.

3.1.2. Multiple sites connected by a Wide-Area network
To allow communication with services provided on different rings, rings can be
connected by bridges. A bridge is a special processor on the ring having its
own ring address, or two ring addresses if it connects two rings directly. The
bridge serves two functions. First, it helps in locating remote services, and
second, it transfers basic blocks between rings. This last property makes the

235

bridge a data-link level gateway. All this is transparent to the client process.
These protocols have been applied successfully in the UNIVERSE Project
[Adams82, Leslie84, Wilbur85], which combined several local-area networks
using satellite and X.25 wide-area networks.

Remote contact is established as follows. As usual, the process sends a
NAME-LOOKUP-REQUEST to the name server. The name of the ring
where the server resides is specified in the request. For now we assume that
the name server also knows the destination address on that ring. It then sends
an ADDRESS-INSERTION-REQUEST to a bridge, which allocates some
data structures and acknowledges the request immediately. Then the name
server sends a special reply to the client process containing the address of the
bridge, and the global address of the server.

The client software then sends an SSP-REQUEST to the bridge, thinking
that the bridge is the service. The SSP-REQUEST is automatically converted
to a BRIDGE-SSP by inserting the global address of the service. The bridge
forwards the BRIDGE-SSP to other bridges using static routing tables, until
the destination ring is reached. Each bridge remembers the source address so
that a reply can be routed back. The last bridge transforms the BRIDGE-SSP
into an ordinary SSP-REQUEST, and sends it to the final destination. Replies
are returned using the backward path set up by the bridges, and delivered to
the original client process.

The forward path and backward path may now be used by the client process
and the server process transparently. When the client thinks it is sending a
basic block to the server, it is really sending it to a bridge which forwards it to
the destination network. The bridge at the destination network then sends the
basic block to the server process which will think that it received the message
from the client. The forward and backward paths do not provide any flow
control or error correction; this must be taken care of by the end-to-end proto
cols.

Now suppose that the name server does not know the destination address of
the server process. Now the name server sends a REMOTE-NAME
LOOKUP-REQUEST to the name server on the destination ring. The desti
nation address of the name server is fixed on every ring. The local name
server sends a request to the remote name server in the same way as a client
process would send a request to a remote service. The REMOTE-NAME
LOOKUP-REPLY from the remote name server contains the destination
address of the wanted server. The local name server caches the remote address
for possible future reuse and sends the client the address of the bridge on the
local network in the NAME-LOOKUP-REPLY. Again the client and server
are unaware of the bridges between their networks.

236

3.2. The V-System
The V-System [Cheriton83b] is a distributed operating system running on a
collection of processors connected by an Ethernet. The processors are divided
into two types: workstations and server machines. The workstations are like
processors in the Cambridge Processor Bank, except that workstations have
owners that have high-priority access to their machines. The server machines
provide services like file access and printing.

3.2.1. Single site
Interprocess communication is through request-reply exchanges: a client pro

cess sends a request to a server process, and then awaits the reply subsequently
sent by the server. The protocol used here is developed specially for this pur
pose for optimal performance, and because no suitable standard interprocess
communication protocol was available [Cheriton83a].

In V, services are named by character strings. To locate a service, the client
broadcasts the name of the service over the network (broadcast is a special case
of V multicast). The service replies with a process identifier-a location depen
dent number that identifies a process-and from thereon contact is established.
This scheme has been extended for any kind of object by using directories on
each processor, and thus a global naming directory was formed.

3.2.2. Multiple sites connected by a Wide-Area network
Internetwork communication in V should be implemented as follows. We say
"should be," since the current implementation is somewhat simplified. When a
process wants to access a remote service, it broadcasts the service name as
usual over the local-area network. The gateways on the network forward this
message to all the the remote networks, where it is then re-broadcast. The
remote service replies as usual, thinking that the gateway on its network is an
ordinary client process. This gateway sends the reply back to the local net
work where the real client resides. The local gateway sends the reply on to the
client, which, again, thinks the gateway is the server. The local gateway starts
a local alias process, a pseudo-process that represents the server. In the same
way, the remote gateway starts a remote alias process to represent the client.
All messages sent between the client and server are forwarded by these alias
processes over the wide-area network.

One problem arises since the process identifiers are local to a network. The
process identifier of a remote service has no meaning on the local network. To
solve this, the process identifiers have to be translated to local process
identifiers when passed to the local network. The file server therefore has to
be aware of this, by returning the process identifier of the remote alias process,
violating transparency.

(The current implementation of the gateway does not support internet
broadcasting, making the service locating protocol unusable for locating
remote services. Instead, when a process wants to access a remote service, it
first has to request the gateway to create a local alias process for the remote
service.)

237

V gateways know about the higher-level protocol, and use this knowledge to
optimize communication over wide-area networks (without affecting local net
working). For example, if two gateways are connected by a reliable virtual cir
cuit, the gateways can filter out end-to-end acknowledgements, and generate
them locally instead. This does not violate end-to-end reliability in V, since all
requests are acknowledged by replies in the end. Another optimization done
by V gateways is the combination of packets over virtual circuit connections.
Furthermore, retransmissions that arrive at a rate too high for the virtual cir
cuit are discarded.

The knowledge of transport protocols makes V gateways at least transport
level gateways. However, the gateways have also higher-level properties.
Before forwarding messages, V gateways inspect them to ensure that local
security policies are not violated. This way the local network becomes a secu
rity domain. V gateways thus allow for access control, authentication, and
accounting. By implementing these checks in the gateway, instead of at every
site, local performance is not affected, nor are the local security policies.

3.3. The Amoeba distributed operating system
The Amoeba Distributed Operating System [Mullender86, Mullender84a,
Tanenbaum86] is a research project being carried out at the Vrije Universiteit
and the Centrum voor Wiskunde en Informatica, both in Amsterdam.
Amoeba is also based on the client-server model. Server processes provide ser
vices like file and directory service. Amoeba runs on a collection of Motorola
68010 and 68020 processors connected by 10 Mbit networks.

Processes in Amoeba are addressed by ports. Ports are location-independent
48-bit numbers. A process can choose any port it wants to. By taking a ran
dom unique 48-bit number, servers can have a private address that they can
use on any machine. It is even possible to use the same port for more than
one process. This way a service can increase its availability by replicating its
server processes. The communication protocol selects one of them.

3.3.1. Single site
A client process invokes a service by sending a request message to the server
process. When the server has executed the request it returns a reply message
to the client. These request-reply exchanges are called
transactions[Mullender84b]. They are used as a basis for implementing remote
procedure calls.

When a client process starts a transaction, the server has to be located first.
This is done by broadcasting a message containing the port of the server pro
cess over the local-area network. The machine running the server sends a
reply back containing its network address. This information is cached by the
client machine, so if it needs the same service in the near future, it can try the
same network address without having to broadcast again. If this address turns
out to be wrong (servers and their ports can migrate), it can resort to broad
cast to locate a server again.

Once the network address of the server is known, a simple protocol

238

optimized for the local network ensures reliable transmission of the· request
and reply messages. Moreover, this protocol ensures at-most-once delivery of
requests, avoiding problems that occur when requests get executed twice due to
retransmissions [Spector82].

3.3.2. Multiple sites connected by a Wide-Area network
Extending the transaction implementation to wide-area networks meets with
difficulties. First, the scheme of locating ports by broadcast does not work
with multiple Amoeba systems connected by a wide-area network. Wide-area
networks usually do not support broadcast. Simulating it by sending the mes
sages separately to each site is expensive, even when minimum spanning trees
[Dalal 77] are used. Furthermore, a broadcast causes overhead on each site of
the wide-area network. Second, the protocol that is efficient for local-area net
works is inefficient for wide-area networks. Also, since the only access to the
wide-area networks is through high-level interfaces, the low-level Amoeba mes
sages are transported using a high-level protocol.

A solution to the first problem is presented through publishing. Servers can
publish their port and wide-area network address in the domains where they
want to be known. A domain is a set of Amoeba sites that are logically
related. As soon as a port has appeared in an Amoeba site, processes in this
site can use the server.

To enable this, a process is created for each port that appears. This process
will stand in for the remote server by using the port as its own Amoeba
address, and is therefore called the server agent. If a client process tries to
locate the remote server, it will find the server agent instead, and a request
message for the server is sent to the server agent. The server agent forwards
the request across the wide-area network using the published wide-area net
work address.

When the request arrives at the remote Amoeba site, a process is created
there to send the request message to the server. This process, called the client
agent, starts a local transaction with the server. The server thinks it received a
request from another client process. The reply it returns is sent by the client
agent to the server agent. The server agent then forwards the reply to the real
client, completing the transaction.

All this is transparent to both the client and server processes. Moreover, it
is transparent to the kernels that run the Amoeba transaction protocol. This
implies that the transaction protocol is unaware of the existence of the wide
area network, and that no unnecessary overhead exists for local communica
tion. In the same way, the wide-area network protocol knows nothing about
transactions, but just forwards complete messages. The client and server
agents together form the gateway, which is called a transformer[Renesse86]. A
transformer is a session-level gateway, since it uses the transport protocol
interface. Flow and congestion control are provided by the wide-area network,
so the transformer does not have to do it. As it is at a higher level than the
network layer it "knows" more about these interactions and can provide valu
able information about the distributed processing that crosses network

239

boundaries.
Publishing is implemented by a server running at each site, together forming

the Service for Wide-Area Networks, or SWAN. Each SWAN server listens to
a well-known port, and can therefore be easily contacted from anywhere in the
world. A port is published by doing a transaction stating port and wide-area
network address with each SW AN server in the required domain. Each
SW AN server will then automatically start a server agent.

4. COMPARISON
Having discussed solutions to wide-area networking for several different sys
tems, we will compare their properties in three categories: naming tran
sparency, protocol transparency, and gateway functionality. Each of these
categories will be discussed in the following sections.

4.1. Naming transparency
This section discusses whether client processes have to know the location of a
service, and whether services have to know the location of the client when
passing names in replies. These properties are highly dependent on the local
naming strategy.

In the Cambridge system, local services are named by ASCII strings.
Names are mapped to local network addresses using a central named server.
This scheme is extended to wide-area networking by prefixing the service name
with the name of the ring. For example, suppose there are two networks
called A and B, each having a printer server called printer. A client process on
network A can access the local printer using the name printer, and the printer
server on B using the name B*printer. The name server knows which bridge to
use to reach B, and the wide-area network address of B. Finding services
given their name is not a problem anymore; however, there is no naming tran
sparency. Also, if a process on B wants to pass the name of the printer server
to a process on A, it will have to prepend B to the name.

V uses a decentralized naming approach relying on broadcast. In the V
system, the printer server on B should have a different name from the printer
server on A, since they do not provide exactly the same service (they use
different printers). This scheme is transparent. However, V uses a two-level
naming scheme. A process can not send a message to a remote process using
the remote process identifier.

Amoeba has an implicit decentralized naming scheme using ports. The port
space is not local to a network, and therefore ports can be passed freely from
network to network. As in V, the printer servers would have different names.
However, since Amoeba gateways do not support broadcast, a port that is
passed from A to B has to be published in B first. Since this is different from
local operation, Amoeba does not provide full naming transparency either.

240

4.2. Protocol transparency
In this section we will see to what extent the local protocols are affected by
supporting wide-area communication. It is important that the performance of
local communication is not degraded, since local communication will represent
the bulk of all communication. Changing the local protocol software may not
be possible if it is a commercial package without source code. Even if the
source code is available, it has to be avoided since it requires all sites on the
network to change their system.

The Cambridge system uses the local transport protocols over wide-area net
works. This was made possible by using a fixed internetwork packet format
(basic blocks). A disadvantage of this approach is that these protocols may
not be suitable for wide-area communication. For example, the timeouts that
are used in SSP are adjusted for remote services.

V nodes are unaware of gateways, and the local protocol is unaffected.
When a remote process is referenced, a local alias process takes care of
transfering messages to and from the remote network. As in the Cambridge
system, the local protocol was also used for internetwork communication.

Amoeba also provides full protocol transparency, but unlike V, Amoeba
does not use the same protocol for wide-area communication. Instead it uses
whatever protocol is available on the wide-area network. This means the
Amoeba machines can use protocols optimized for the local cast on local net
works and the gateways can use other protocols over the wide-area network
without the clients and servers knowing about it.

4. 3. Gateway functionallity
The different solutions to wide-area communication require different gateway
functions. The functionalities of the gateway determine its complexity. The
gateway in the systems we discussed have two important tasks. One is to help
in locating servers, and the other is to provide transparent communication
between processes separated by a wide-area network.

Cambridge bridges help in locating services by forwarding OPEN
REQUESTs. This is a simple operation, using static routing tables. The
bridges remember the paths they formed, so that they can use them for for
warding basic blocks. The transport protocols are unknown. Since the bridges
just forward the basic blocks, it is possible that for the wide-area network to
become flooded or congested, so fl.ow and congestion control may be needed.

V gateways, on the other hand, are fully aware of the transport protocol.
For service location, they have to set up minimum spanning trees to forward
broadcasts. Gateways optimize the protocol to avoid flooding the wide-area
links. Furthermore, gateways check messages to prevent them from violating
security constraints. All this makes a V-gateway a complex device.

In Amoeba, the naming and protocol problems are solved separately. The
SW AN service takes care that ports are distributed where they are needed.
The transformer achieves protocol transparency by transfering complete mes
sages, based on routing information provided by the SWAN. The transformer
uses the transport interfaces of both Amoeba and the wide-area networks, and

241

therefore does not know the transport protocols. Nevertheless the protocols
are designed especially for the type of network they are running on. There is
not much to be gained in forwarding packets instead of messages if local and
wide-area networks differ considerable in bandwidth. Both the SW AN service
and the transformer are simple devices.

5. CONCLUSIONS
In this paper we discussed how distributed operating systems, designed for
local networks, can be connected into a wide-area distributed system. Two
problems were identified. One is how to locate a remote service over a wide
area network. The other is providing transparent communication. We
described how these problems were solved in the Cambridge Distributed Com
puting System, the V-System, and the Amoeba Distributed Operating System.

All these systems use special gateways to transfer messages between the local
networks. The data-link level gateway used in the Cambridge system supports
several transport protocols, but the protocols do not adapt well to wide-area
networking. The V transport-level gateway does protocol optimization, since it
knows the transport protocol. This makes it better suited for wide-area net
working, but it is also a complicated gateway.

The Amoeba gateway uses the transport-level interface of both the local net
work and the wide-area network, and is therefore a session-level gateway. The
gateway is not concerned with how to provide efficient communication, but
leaves that problem to the local and wide-area network software. By standing
in for remote processes, it provides transparent communication without
affecting local networking. Services make themselves "known" through pub
lishing, that is, they relate their existence to all local networks in which they
want to provide their service.

It is argued that the Amoeba gateway provides the same gateway functional
ity as other gateways, and that the implementation is more efficient. Further
more, in the normal case when the bandwidth of the wide-area network is con
siderably lower than that of the local networks, the performance is at least as
good as that of other gateways.

ACKNOWLEDGEMENTS
We would like to thank Gojko Babic, David Holden, Jack Jansen, Bram

Janssen, Kari Lang, Martin Turnbull, and Wolfgang Zimmer for valuable dis-

242

cussions. We also thank Jennifer Steiner for the careful reading of this paper.

REFERENCES

[Adams82]
ADAMS, C. J., ADAMS, G. C., WATERS, A. G., LESLIE, I., and KIRK, P.,
"Protocol Architecture of the UNIVERSE Project," Proceedings of the
6th International Conference on Computer Communications, pp.379-383,
September 7-10, 1982.

[Birrell84]
BIRRELL, A. D. and NELSON, B. J., "Implementing Remote Procedure
Calls," ACM Trans. Comp. Syst., vol. 2, pp.39-59, Februari 1984.

[Cheriton83a]
CHERITON, D. R., "Local Networking and Intemetworking in the V
System," Proc. Eighth Data Communications Symposium, October 1983.

[Cheriton83b]
CHERITON, D.R. and ZWAENEP0EL, W., "The Distributed V Kernel and
its Performance for Diskless Workstations," Proc. Ninth ACM Symp. on
Operating Systems Principles, pp.128-140, October 1983.

[Dalal77]
DALAL, Y. K., "Broadcast Protocols in Packet Switched Computer Net
works", Ph.D. Dissertation, Computer Science Dept., Stanford Univer
sity, Stanford, Calif., April 1977.

[Leslie84]
LESLIE, I. M., NEEDHAM, R. M., BURREN, J. W., and ADAMS, G. C.,
"The Architecture of the Universe Network," Computer Communication
Review, vol. 14, no. 2, pp.2-9, 1984.

[Mullender84a]
MULLENDER, S. J. and TANENBAUM, A. S., "Protection and Resource
Control in Distributed Operating Systems," Computer Networks, vol. 8,
no. 5,6, pp.421-432, 1984.

[Mullender84b]
MULLENDER, s. J. and RENESSE, R. VAN, "A Secure High-Speed Tran
saction Protocol," Proceedings of the Cambridge EUUG Conference, Sep
tember 1984.

[Mullender86]
MULLENDER, s. J. and TANENBAUM, A. s., "The Design of a
Capability-Based Distributed Operating System," The Computer Journal,
vol. 29, no. 4, pp.289-300, 1986.

[Needham82]
NEEDHAM, R. M. and HERBERT, A. J., The Cambridge Distributed Com
puter System. Reading, Ma.: Addison-Wesley, 1982.

[Renesse86]
RENESSE, R. VAN and STAVEREN, J. M. VAN, "Wide-Area Communica
tion under Amoeba", IR-117, Dept. of Mathematics and Computer

243

Science, Vrije Universiteit, Amsterdam, December 1986.
[Spector82]

SPECTOR, A. Z., "Performing Remote Operations Efficiently on a Local
Computer Network," Comm. ACM, vol. 25, no. 4, pp.246-260, April
1982.

[Sunshine77]
SUNSHINE, C. A., "Interconnection of Computer Networks," Computer
Networks, vol. 1, no. 3, pp.175-195, January 1977.

[Tanenbaum.85]
TANENBAUM, A. s. and RENESSE, R. VAN, "Distributed Operating Sys
tems," ACM Computing Surveys, vol. 17, no. 4, pp.419-470, December
1985.

[Tanenbaum.86]
TANENBAUM, A. S., MULLENDER, S. J., and RENESSE, R. VAN, "Using
Sparse Capabilities in a Distributed Operating System," Proc. of the 6th
Int. Conj on Distributed Computing Systems, pp.558-563, May 1986,
Vrije Universiteit.

[Wilbur85]
WILBUR, S. R. and KlRsTEIN, P. T., "The Universe Catenet: its Proto
cols and Issues," IEEE Proceedings, Part E, vol. 132, no. 4, pp.189-195,
July 1985.

[Zimmermann SO]
ZIMMERMANN, H., "OSI Reference Model-The ISO Model of Architec
ture for Open Systems Intercon nection," IEEE Trans. Comm.,
vol. COM-28, pp.425-432, April 1980.

Applications

A Distributed, Parallel, Fault Tolerant

Computing System

Henri E. Bal
Robbert van Renesse

Andrew S. Tanenbaum
Department of Mathematics and Computer Science

Vrije Universiteit
Amsterdam, The Netherlands

Distributed systems offer two principal advantages over centralized ones:
higher computing speed through the use of many computers running in paral
lel, and higher reliability through redundancy. This paper describes how the
Amoeba distributed system meets these goals. In particular it describes
Amoeba and how two important classes of algorithms, branch and bound and
alpha-beta search, can be run in a parallel, fault-tolerant way on Amoeba. The
results of some experiments comparing these algorithms on a single processor
and on Amoeba are also discussed.

1. INTRODUCTION

247

Distributed computing systems have two principal advantages over traditional
centralized ones: speed and reliability. First consider speed. As computing
technology advances, it becomes increasingly difficult and expensive to make
computers faster by just increasing the speed of the chips. Electrical signals in
copper wire only travel at 2/3 the speed of light, or about 20 cm/nanosecond,
so very fast computers must be very small, which leads to severe heat dissipa
tion problems among other things. The obvious solution is to harness together
a large number of moderately fast computers to achieve the same computing
power as one very fast computer, but at a fraction of the cost.

The second big advantage of distributed computing systems is the reliability
that can be achieved by using a large number of processors. If a system con
sists of 100 processors and 1 of them malfunctions, the system should be able
to continue running with just a one percent loss in performance. Furthermore,
if the system is well-designed, when a processor crashes, this event should be
detected and recovered from without ruining the computation that was in

A Distributed, Parallel, Fault Tolerant Computing System
H.E. BAL, R. VAN RENEssE, and A.S. TANENBAUM
Informatica Report IR-106
Dept. of Mathematics and Computer Science, Vrije Universiteit, Amsterdam
October 1985

248

progress at the time of the failure. How this is achieved in the Amoeba system
will be described later in this paper.

Many ways of organizing multiple processors into distributed systems have
been proposed. At one end of the spectrum are the loosely-coupled systems
consisting of a number of independent computers, each with its own operating
system and users, exchanging files and mail over a public data network. At
the other end of the spectrum are tightly-coupled systems with multiple proces
sors on the same bus and sharing a common memory. In between are systems
consisting of mini- or microcomputers communicating over a fast local net
work and all running a single, system-wide operating system. This paper
describes a system in the latter category that can take advantage of a large
number of microprocessors working together on a single problem, and also has
a high degree of fault tolerance.

2. THE AMOEBA SYSTEM
This system, called Amoeba [Mullender86, Mullender84, Mullender85], con
sists of a collection of (possibly different) processors, each with its own local
memory, which communicate over a local network. Currently, we use mainly
Motorola 68010 processors connected by a 10 Mbps token ring (Pronet),
although Amoeba also runs on the VAX, NS16032, PDP-11 and IBM-PC.
Amoeba is composed of four basic components. First, each user has a per
sonal workstation, to be used for editing on a bit-map graphics terminal and
other activities that require dedicated computing power for interactive work.
Second, there is a pool of processors that can be dynamically allocated to users
as needed. For example, a user who wants to run a 5-pass compiler might be
allocated 5 pool processors for the duration of the compilation, to allow the
passes to run largely in parallel. Third, there are specialized servers: file
servers, directory servers, process servers, bank servers (for accounting) etc.
Fourth, there are gateways that connect the system to similar systems else
where.

The amoeba software is based on objects protected by capabilities. Each
file, directory, process, bank account, etc. can be viewed as an object (an
abstract data type) on which operations (e.g., READ, DELETE) can be per
formed by the process that manages that object. When an object is created, a
capability for it is given to the object's owner. To perform any operation on
an object, the capability must be presented. Capabilities are protected crypto
graphically, and are managed directly by user programs.

A process or cluster in Amoeba consists of one or more tasks that share a
common address space and run in parallel. Several independent clusters may
run on a single workstation or pool processor. Tasks communicate using a
simple form of remote procedure call: the client sends a request to any server
who is willing to offer a certain service and some server sends a response back
to the client. While a task is waiting for a response, it is blocked and cannot
continue computing, although other tasks in its cluster may run if they have
work to do. This scheme is much simpler and vastly more efficient than the
ISO OSI 7-layer Reference Model [Zimmermann80].

249

3. PARALLEL ALGORITHMS ON AMOEBA
In this section we will provide a brief overview of how heuristic search algo
rithms have been programmed in parallel in a fault-tolerant way on Amoeba.
Heuristic search is a technique for finding a feasible or (sub) optimal solution
to a given problem when the set of candidate solutions is very large. One typi
cal problem is the Traveling Salesman problem, in which it is desired to find
the cheapest route for a salesman to visit each of the n cities in his territory
exactly once. Since there are (n -1)! possible routes, for large n, it is not pos
sible to examine all of them and then take the best one. Playing chess is
another example of a problem with a large search space.

One way to approach this kind of problem on Amoeba is is to allocate k + l
pool processors to work on the problem. As a simple example, to solve the
IO-city traveling salesman problem starting from London, one could allocate
nine processors and have processor I examine all paths starting London
Amsterdam, processor 2 examine all paths starting London-Zurich, etc. Pro
cessor I would then allocate eight more processors, giving the first one the par
tial path London-Amsterdam-Zurich, the second one the partial path London
Amsterdam-Paris, etc.

Since there will never be enough processors available, at some point a pro
cessor will itself have to evaluate the best full path starting with the partial
path given to it, rather than "subcontracting'' the work out. When a processor
has discovered the best total path achievable with the partial path it was given,
it reports that back to the processor that invoked it. When the invoking pro
cessor has collected all the results from its "subcontractors," it chooses the best
one and reports that back. When the results have gotten back to the top level,
the initial processor selects the best one, and the problem has been solved. If
a subcontractor crashes (i.e. fails to respond within a specified time to
enquiries of the form "are.you still working on the problem?") then the proces
sor requesting the work finds a new subcontractor to do the work. In the fol
lowing sections, we will describe more sophisticated strategies (one for travel
ing salesman type problems and one for game playing), along with their imple
mentations and some empirical results.

4. PARALLEL BRANCH AND BOUND ON AMOEBA
The branch-and-bound method is a technique for solving a large class of com
binatorial optimiz.ation problems. It has been applied to Integer Program
ming, Machine Scheduling problems, the Traveling Salesman Problem (TSP),
and many others [Lawler66). Abstractly, the method uses a tree to structure
the space of possible solutions. A branching rule tells how the tree is built.
For the TSP, a node of the tree represents a partial tour. Each node has a
branch for every city that is not on this partial tour. Figure I shows a tree for
a 4-city problem. Note that a leaf represents a full tour (a solution). For
example, the leftmost branch represents the tour London - Amsterdam - Paris
- Washington.

A bounding rule avoids searching the whole tree. For TSP, the bounding
rule is simple. If the length of a partial tour exceeds the length of any already

250

FIGURE 1. Tree for a 4-city Traveling Salesman Problem for London,
Amsterdam, Paris, and Washington.

known solution, the partial tour will never lead to a solution better than what
is already known. For example, if the 6-city tour London - Paris - Amsterdam
- New York - Boston - Washington has already been found to be 8630 km,
then partial tours starting London - New York - Paris (length 11850 km) can
not possibly be better than the best tour already found. Efficient branch-and
bound algorithms aim at finding a nearly-optimal solution at an early stage,
making pruning as effective as possible. A good heuristic for TSP is to try the
nearest city first.

Parallelism in a branch-and-bound algorithm is obtained by searching parts
of the tree in parallel. If enough processors were available, a new processor
could be allocated to every node of the tree. Every processor would select the
best partial path from its children and report the result back to its parent. If
there are N cities, this approach would require O(N!) processors. More realis
ticly, the work has to be divided among the available processors. In our
model, each processor traverses a part of the tree, up to a certain depth, hands
out the subtree below that node to a 'subcontractor', and continues with the
rest of its own subtree. figure 2 shows how the tree of figure 1 can be
searched, using a 2-level processor hierarchy (i.e., a subcontractor has no sub
contractors itself).

The processor that traverses the top part of the tree (the root processor)
searches one level. It splits off three subtrees of depth two each, that are
traversed by subcontractors. This algorithm is shown in figure 3. The algo
rithm sets the global variable 'minimum' to the length of the shortest path.
This variable is pre-initialized with a very high value.

tree of root
processor

FIGURE 2. Example of a distributed tree search

procedure traverse(node,depth,length);
begin

3 subtrees

{ 'length' is the length of the partial path so far.
'depth' is the number of levels to be searched before

251

the rest of the tree should be handed out to a subcontractor }
if length < minimum then { pruning if length > = minimum }
begin

· if 'node' is a leaf then

end

minimum : = length;
else if depth = 0 then

hand out subtree rooted at 'node' to a subcontractor;
else

for all children c of 'node' do
traverse(c,depth - I ,length+ distance(node,c));

end

FIGURE 3. Tree traversal algorithm

A processor only blocks if it tries to hand out a subtree while there are no
free subcontractors. Each subcontractor executes the same traversal process,
with a different initial node and probably with a different initial depth.

The Traveling Salesman Problem has been implemented under Amoeba
using the algorithm described above. The client/ server model advocated by
Amoeba was found to be very suitable for this algorithm. For simplicity, the
implementation uses only a 2-level processor hierarchy.

A subcontractor can be viewed as an Amoeba server process (cluster). The
service it offers is the evaluation of a TSP subtree. Each server repeatedly
waits for some work, performs the work, and returns the result. The root pro
cessor is a client process (see figure). The 'handing out of work' is

252

implemented using Amoeba transactions. Concurrency within the client pro
cess is achieved by having a separate task (as defined in section 2) in the client
cluster for every server. 1bis job server task controls the communication with
one specific server. If the client wants to hand out some work, it tries to do a
transaction with a job server. If there is a free job server, this job server will
accept the transaction, return an acknowledgement to the client, and then do a
transaction with its server. The job server passes a partial path and the
current best solution to the server. When the server finishes the evaluation of
the subtree, the transaction finishes and the job server is unblocked. The job
servet checks if it has to update the current best solution and then becomes
available for the next request. The client proceeds as soon as it receives the
acknowledgement. The entire client cluster only blocks if all job server tasks
are blocked (i.e., if all servers are busy) and the client tries to do a transaction
with a job server.

client cluster

§ job job job match server server ... server maker k
1 2 N
I ' I!

' I \i

server server server
1 2

...
N

FIGURE 4. Process structure of the TSP program

Of special importance is the way servers join and leave the system. When
ever a new server is started, this server reports itself to a special matchmaker
task that is also part of the client cluster. 1bis matchmaker task creates a job
server task for the server and from then on the server can participate in the
game. So extra processors can be added at any time to speed up the program.

The job server mechanism is also used to achieve a high degree of fault
tolerance. During transactions, the Amoeba kernel of the client sends "are
you-still-there?" messages to the kernel of the server at regular intervals. If
the kernel of the server does not respond within a certain time interval, the
transaction is aborted. The job server notes that the transaction has failed and
concludes that its server processor has crashed. It hands out its work to any
other job server. Once this work has been accepted, the job server stops

253

executing. The crashed server processor no longer participates in the game.
When it is brought back up, it reports itself to the matchmaker as described
above, to register its availability for doing work, at which time a new job
server task is created to handle it. Since the client task, job server tasks, and
matchmaker task are all part of the same address space, the inter-task com
munication is highly efficient.

Although fault-tolerance may not be of vital importance to a TSP program,
it is a useful feature to have, especially as it is almost for free. (The entire
implementation of fault-tolerance in the TSP program takes only a few lines of
code). For example, if some Amoeba user is going out for lunch, the processor
of his workstation can be used by someone else to speed up his program.
When the owner of the workstation comes back, he can blindly kill the foreign
process without disrupting the overall program.

This model still has one Achilles heel. A failure in the client processor can
not be recovered from easily, as no one may detect the fault. For the applica
tion above it will be sufficient to run the client on a processor that no one will
take away. For more critical applications, the "boot service" can be used to
keep an eye on the root processor, just as the root processor keeps an eye on
the server processors. Any process can register with the boot service, which
then polls it periodically. If the registered process fails to respond to polls, the
boot service reboots the process on a different processor.

5. PARALLEL ALPHA-BETA SEARCH ON AMOEBA

Alpha-beta search is an efficient method of searching game trees for two
person, zero-sum games. A node in such a game tree corresponds to a posi
tion in the game. Each node has one branch for every possible move in that
position. A value associated with the node indicates how good that position is
for the player who is about to move (let's assume this player is 'white'). At
even levels of the tree, this value is the maximum of the values of its children;
at odd levels it is the minimum, as the search algorithm assumes black will
choose the move that is least profitable for white. Most implementations
inverse the values of the odd level nodes, so the values are maximized at all
levels.

The alpha-beta algorithm finds the best move in the current position, search
ing only part of tree. It uses a search window (alpha,beta) and prunes posi
tions whose values fall outside this window. The algorithm is shown in figure
5.

Alpha-beta search differs significantly from branch-and-bound in the way
the best solution is constructed. A branch-and-bound program (potentially)
updates its solution every time a processor visits a leaf node (see figure 3).
That processor only needs to know the current best solution and the value
associated with the leaf. An alpha-beta program, on the other hand, has to
combine the values of the leaves and the interior nodes, using the structure of
the tree. Some parallel alpha-beta programs realize this by having a dedicated
processor for every node (up to a certain level) that collects the results of the
child processors [Finkel82]. As a disadvantage of this approach, processors

254

function AlphaBeta(node,depth,alpha,beta): integer;
begin

if depth = 0 then
AlphaBeta: = evaluation(node)

else
for all children c of 'node' do
begin

end

r : = - AlphaBeta(c,depth - 1,- beta,- alpha)
if r > alpha then
begin

alpha:= r;
if alpha > = beta then

exit loop; -- pruning
end

AlphaBeta : = alpha
end

FIGURE 5. Sequential alpha-beta algorithm

associated with high level interior nodes spend most of their time waiting for
their children to finish.

Our solution avoids this problem by working the other way round. The
child processors compute the values for their parent nodes, so there is no need
for their parent processors to wait. This is illustrated in figure 6. In figure
6(a), the subtrees rooted at nodes 3,4,6, and 7 have been evaluated. After
some subcontractor has evaluated the subtree rooted at node 8, the value of
the parent of node 8 (node 5) is updated (as 20 > 15). This is shown in figure
6(b). Furthermore, the evaluation of the subtree rooted at 5 has now been
completed. As its final value (-20) is the highest value of level 1 (-20 > -30),
the value of node 1 is updated too.

20

FIGURE 6. Example of alpha-beta search

Clearly, the child processors need information from other processors to com
pute these values. We store all information in an explicit tree structure, so the
search tree is no longer just a concept, but it is actually built as a data struc
ture. This tree is distributed over all processors, each processor containing the
part of the tree it works on.

With this approach we can use basically the same tree traversal algorithm
and the same process structure as for TSP. The only difference is that TSP

255

updates a single global solution after evaluating a leaf and alpha-beta updates
the values of the ancestor nodes of the leaf.

Each node also contains the alpha and beta bounds for its subtree. After
the value of a node has been improved (as a result of evaluating a leaf) this
new value can be used as a tighter alpha bound for its children. Each child
can use this new alpha value as a tighter beta bound for its own children, and
so on. So new values are propagated down the tree, to ensure each node uses
the smallest possible alpha-beta window. In principle, new bounds can even
be propagated across processor boundaries. However, this would also increase
the communication overhead. We have not yet implemented this kind of pro
pagation.

6. DISCUSSION

We have done some measurements on the TSP and the alpha-beta programs.
The hardware used was a collection of 10 MHz 68010 CPU's connected by a
10 Mpbs token ring. For each program, we ran both a sequential (single pro
cessor) version and a parallel (multi-processor) version. Each parallel version
uses one processor for the client process and a varying number of processors
for the servers. Note that with only one server, there is still some parallelism,
as the client can find the next subtree to hand out, while the server is working
on the previous subtree.

The depths of the subtrees are important parameters of the TSP algorithm.
If the client processor distributes work at a too high level, the effectiveness of
pruning will be severely weakened. For example, if it traverses just one level,
then the best solution in the leftmost branch of the tree cannot be used as a
bound in its neighbor branch, as these branches are searched simultaneously.
Increasing the depth of the root subtree will decrease this effect, at the cost of
more communication between the root processor and its subcontractors. To
achieve high performance, a good compromise has to be found. For an 11-city
problem we found the optimal search depth of the client to be three levels.
The results for an 11-city problem using this search depth are shown in table
6.1. The last entry in the table shows the speedup over the I-server version.
With 7 processors (1 client and 6 servers) a 5-fold speedup over the sequential
program is achieved.

version time(secs) speedup
sequential 637.2
1 server 548.1 1
2 servers 309.7 1.77
3 servers 218.2 2.51
4 servers 171.7 3.19
5 servers 141.5 3.87
6 servers 124.2 4.41

TABLE 6.1. Results for 11-city Traveling Salesman Problem.

256

To measure the performance of the alpha-beta algorithm, we implemented
the game of Othello, using this algorithm. Table 6.2 shows the time to evaluate
a position, averaged over five different positions with a fan-out (number of
moves) of approximately fifteen. The depth of the search tree was four plies.
As for TSP, the division of labour between the client and the servers is impor
tant. For the parallel versions the client searched three plies, the servers
searched one ply.

version time(secs) speedup # evaluations search overhead

sequential 266.9 2670 1
I server 324.6 I 2670 1
2 servers 196.2 1.65 3925 1.47
3 servers 153.3 2.12 4732 1.77
4 servers 125.1 2.59 5676 2.13
5 servers 114.0 2.84 6424 2.40
6 servers 111.5 2.91 6719 2.51

TABLE 6.2. Results for Othello implementation of alpha-beta search.

The results show that the speedup achieved is significantly better for TSP
than for alpha-beta search. The main reason is that alpha-beta search suffers
more from the decrease in pruning efficiency than TSP. The third entry in
table 6.2 shows the number of leaves visited by alpha-beta (i.e., the number of
static evaluations). This number is a yardstick for the total amount of work
done. The last entry shows the search overhead over the sequential version.

Several other authors have studied parallel branch-and-bound algorithms
[Finkel85, Wah85, El-Dessouki80, Lai83, Lai84] and parallel alpha-beta
search algorithms [Wah85, Marsland82, Finkel82, Finkel83, Ak180, El
Dessouki84]. Good surveys on multiprocessing of combinatorial search prob
lems in general and of parallel game tree search can be found in [Wah85] and
[Marsland82] respectively.

Finkel and Manber [Finkel85] use a distributed computing system, CRYS
TAL, similar to the Amoeba system. CRYSTAL consists of VAX 11/750
computers connected by a token ring. They implemented a distributed
backtracking/branch-and-bound package (DIB) with a clean, sequential, user
interface that relieves the programmer of the burdens associated with parallel
programming. As a disadvantage, the user has little control over the order of
the tree traversal, which was shown to be important.

Early parallel alpha-beta algorithms [Finkel82] aimed at minimizing com
munication costs, but more or less overlooked the problem of decreased prun
ing efficiency. Aki et. al [Ak180]. proposed the idea of searching the tree in
two phases. During phase 1 only those nodes that cannot possibly be pruned
(the minimal tree) are searched. In phase 2, where the rest of the tree is
searched, pruning will be highly effective. Finkel and Fishburn [Finkel83]
reported a revised implementation of their original algorithm using this "man
datory work first" technique. Their analysis shows a significant improvement

257

for strongly ordered trees. A practical inconvenience is the fact that the tree
has to be searched twice, so part of it probably has to be generated twice.

An alternative proposed by Campbell [Marsland82] is the Principal Varia
tion Search. This algorithm aims at minimizing the number of nodes to be
searched, at the cost of some processor idle time. Also, it assumes a hierarchi
cal processor architecture.

Moser [Moser84] has implemented tree splitting in his chess program
WATchess 3.0. Although he only uses tree splitting at the highest level of the
tree (i.e. after one move), he achieves a good speedup, due to the use of aspira
tion search.

Our implementations of TSP and alpha-beta search have been deliberately
kept simple initially, as we implemented them just to gain some experience
with programming under Amoeba. However, our results so far have given us
all faith that the primitives offered by Amoeba are sufficiently general for more
advanced implementations.

In the near future we will study the implementation of other applications.
Among the applications that may be suitable for a distributed system are
divide-and-conquer algorithms [Horowitz83], simulation [Bryant79, Bezivin82,
Christopher82, Jefferson85], matrix problems [Wise85], design automation
[Rutenbar84], compilation [Miller82], and AI problem solving [Smith80].

REFERENCES

[Ald80]
AKL, S.G., BARNARD, D.T., and DORAN, R.J., "Design, Analysis, and
Implementation of a Parallel Alpha-Beta Algorithm", Report 80-98,
Queen's University, Kingston, Canada, April 1980.

[Bezivin82]
BEZMN, J. and IMBERT, H., "Adapting a Simulation Language to a Dis
tributed Environment," Proc. 3th Int. Conj on Distributed Computing
Systems, pp.596-603, October 1982.

[Bryant79]
BRYANT, R.E., "Simulation on a Distributed System," Proc. 1st Int.
Conj on Distributed Computing Systems, pp.544-552, October 1979.

[Christopher82]
CHRISTOPHER, T., EVENS, M., GARGEYA, R.R., and LEONHARDT, T.,
"Structure of a Distributed Simulation System," Proc. 3th Int. Conj on
Distributed Computing Systems, pp.584-589, October 1982.

[El-Dessouki80]
EL-DESSOUKI, 0.I. and HUEN, W.H., "Distributed Enumeration on
Between Computers," IEEE Trans. on Computers, vol. C-29, no. 9,
pp.818-825, September 1980.

[El-Dessouki84]
EL-DESSOUKI, 0. I. and DARWISH, N., "Distributed Search on Game
Trees," Proc. 4th Int. Conj on Distributed Computing Systems, pp.183-

258

191, May 1984.
[Finkel85]

FINKEL, R. and MANDER, U., "DIB - A Distributed Implementation of
Backtracking," Proc. 5th Int. Conj on Distributed Computing Systems,
pp.446-452, May 1985.

[Finkel82]
FINKEL, R.A. and FISHBURN, J.P., "Parallelism in Alpha-Beta Search,"
Artificial Intelligence, vol. 19, pp.89-106, 1982.

[Finkel83]
FINKEL, R.A. and FISHBURN, J.P., "Improved Speedup Bounds for
Parallel Alpha-Beta search," IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. PAMl-5, no. 1, pp.89-92, January 1983.

[Horowitz83]
HOROWITZ, E. and ZORAT, A., "Divide-and-Conquer for Parallel Pro
cessing," IEEE Trans. on Computers, vol. C-32, no. 6, pp.582-585, June
1983.

[Jefferson85]
JEFFERSON, D.R., "Virtual Time," TOPLAS, vol. 7, no. 3, pp.404-425,
July 1985.

[Lai84]
LAI, N. a:nd MILLER, B.P., "The Traveling Salesman Problem: The
Development of a Distributed Computation", Report 84J7, University
of California at Berkeley, December 1984.

[Lai83]
LAI, T.H. and SAHNI, S., "Anomalies in Parallel Branch-and-Bound
Algorithms," Proc. of the 1983 Int. Conj on Parallel Processing, pp.183-
190, August 1983.

[Lawler66]
LAWLER, E.L. and Wooo, D.E., "Branch-and-bound Methods: a sur
vey," Operations Research, vol. 14, no. 4, pp.699-719, July 1966.

[Marsland82]
MARSLAND, TA. and CAMPBELL, M., "Parallel Search of Strongly
Ordered Game Trees," Computing Surveys, vol. 14, no. 4, pp.533-551,
December 1982.

[Miller82]
MILLER, J.A. and LEBLANC, R.J., "Distributed Compilation: A Case
Study," Proc. 3th Int. Conj on Distributed Computing Systems, pp.548-
553, October 1982.

[Moser84]
MOSER, L., An Experiment in Distributed Game Tree Searching. Univer
sity of Waterloo, 1984.

[Mullender84]
MULLENDER, S. J. and TANENBAUM, A. S., "Protection and Resource
Control in Distributed Operating Systems," Computer Networks, vol. 8,
no. 5,6, pp.421-432, 1984.

[Mullender85]

259

MULLENDER, S. J. and TANENBAUM, A. S., "A Distributed File Service
Based on Optimistic Concurrency Control," Proceedings of the I 0th
Symposium on Operating Systems Principles, pp.51-62, December 1985.

[Mullender86]
MULLENDER, s. J. and TANENBAUM, A. s., "The Design of a
Capability-Based Distributed Operating System," The Computer Journal,
vol. 29, no. 4, pp.289-300, 1986.

[Rutenbar84]
RUTENBAR, R.A., MUDGE, T.N., and ATKINS, D.E., "A Class of Cellular
Architectures to Support Physical Design Automation," IEEE Trans. on
Computer-Aided Design, vol. CAD-3, no. 4, pp.264-278, October 1984.

[Smith80]
SMITH, R. G., "The Contract Net Protocol: High-level Communication
and Control in a Distributed Problem Solver," IEEE Trans. on Comput
ers, vol. C-29, no. 12, pp.1104-1113, December 1980.

[Wah85]
WAH., B.W., LI, G.-J., and Yu, C.F., "Multiprocessing of Combinatorial
Search Problems," IEEE Computer, vol. 18, no. 6, pp.93-108, June 1985.

[Wise85]
WISE, D.S., "Representing Matrices as Quadtrees for Parallel Proces
sors," Inf. Proc. Letters, vol. 20, pp.195-199, May 1985.

[Zimmermann80]
ZIMMERMANN, H., "OSI Reference Model-The ISO Model of Architec
ture for Open Systems Intercon nection," IEEE Trans. Comm.,
vol. COM-28, pp.425-432, April 1980.

Parallel and Distributed Compilations in

Loosely-Coupled Systems: A Case Study

Erik H. Baalbergen
Department of Mathematics and Computer Science

Vrije Universiteit
Amsterdam, The Netherlands

One application of large-grain parallelism is the use of parallel and distributed
compilations by make, running under UNIX.t The original version of make exe
cutes its compilation commands successively. 'Making' a large system could
therefore take a large amount of time. An increase in efficiency may be
achieved by a parallel version of make, which tries to execute the compilations
simultaneously. A parallel, non-distributed, version of make turns out to be
inefficient. The compilations, which are mainly cpu-bound, slow each other
down due to degradation of the processor's performance. A solution may be
found in the idea of boarding out (part of the) compilations to other processors.
This resulted in a study of how to do compilations in a distributed manner.

The aspect of having a system of loosely-coupled processors is an impor
tant issue in the field of distributed compilations. The relatively high cost of
doing transactions (compared to local actions) in a loosely-coupled system
makes the use of low-level inter-processor communication (e.g., the execution
of system calls on another processor) inefficient. A UNIX network system like
the Amoeba Connection turns out to be unsuitable for doing distributed compi
lations. It is shown that much overhead results from the communication
between the system that contains the source code to be compiled and the sys
tem that does the compilation. Another possibility is to copy the source code
to the other processor's data space, execute a local compilation on that pro
cessor and send the results back; this greatly reduces the communication over
head. The time needed to send the source to and receive the code from the
remote processor is negligible compared with the overhead mentioned earlier.

In order to create a parallel and distributed make, I adapted the original
'make' program by adding a module for finding out which compilations can be
executed in parallel, depending on the actions to be taken, the actions already
finished, and the present files. Furthermore, I created various versions of the
UNIX C compiler cc in order to perform some measurements.

t UNIX is a Trademark of AT&T Bell Laboratories.

Parallel and Distributed Compilations in Loosely-Coupled Systems
ERIK H. BAALBERGEN

Proc. of workshop "Large Grain Parallelism"
Providence, RI
Oct. 1986

261

262

1. INTRODUCTION

The availability of networks of personal workstations has increased interest in
parallel and distributed compilations. A decrease of the response time is the
main motive for executing compilations in parallel on several processors. This
paper is a description of an experiment set up to examine the feasibility of
using more than one processor for doing compilations. The experiment took
place in a UNIX environment and consisted of two parts: creating two
different distributed versions of the C compiler cc and constructing a version
of the UNIX tool make [Feldman78] that could run its compilations in parallel.
The aspect of being tightly-coupled or loosely-coupled turns out to be an
important issue in determining whether a specific network is suitable for doing
distributed compilations.

The test configuration consisted of four VAX 111750s, each of them running
UNIX version 4.1 BSD. The machines are connected by a 10 Mbps token ring
(Pronet). Pronet was made available to user programs by incorporating the
Amoeba 3.0 [Tanenbaum81] communication primitives into UNIX [Renesse84].

A distributed compilation can be done in various ways. One possibility is to
create a version of the compiler in which the system calls may be carried out
remotely. This can be achieved by using a UNIX network system like the
Amoeba Connection, similar to the Newcastle Connection [Brownbridge82]. The
system combines the file systems of each of the connected machines by allow
ing access to files and execution of programs on other systems. The compiler
runs remotely (i.e., on another processor) but each system call concerning the
source code should be executed on the processor that runs the file system of
the source code. Another possibility is to isolate components from the com
piler and execute some of them remotely. One problem with remote compila
tions is that the compiling program should produce code for the local machine.
Each of the connected machines should therefore have a compiler for each of
the other machines. This is no problem if the connected machines are similar,
as is the case in the test environment. Another problem arises in the second
kind of compilation: libraries and included source code should be derived from
the source machine. This, too, caused no problem in our test environment, as
will be shown.

It must be said that many of the results depend strongly on our
configuration, especially with regard to the communication overhead. Results
from a common network operation, performed in the same configuration, are
included to give an indication of the overhead.

2. AMOEBA AND THE AMOEBA CONNECTION

Amoeba is a distributed operating system developed at the Vrije Universiteit
[Tanenbaum81]. The Amoeba communication primitives are described in
[Tanenbaum84]. Amoeba uses a "request-reply" or "transaction" style of com
munication, in which the basic primitive is the client sending a request to a
server and the server sending a reply back to the client. Such a pair of request
and reply messages is henceforth called a transaction. The implementation of
the primitives in UNIX created the possibility for two processes running on

263

different systems to communicate by means of transactions. 1bis has been
exploited in various user programs such as copying files between various sys
tems, remote execution of commands, sharing of resources and remote logging
in [Renesse84]. An application of the transaction mechanism is a UNIX
system-call server. A process on machine A can ask a system-call server on
machine B to execute a system call, such as open, read, or write. The strategy
used to implement the remote system calls is to build an extra layer on the
kernel. A program does not directly invoke the kernel but calls a stub routine
which checks whether the command must be done locally or remotely. Local
commands are passed directly to the kernel. Remote commands are passed to
a system call server on the proper machine by doing a transaction with the
system-call server. A great advantage of the use of this extra layer is that
existing programs need not be rewritten or even recompiled. They only have
to be relinked with a library of stub routines. The naming scheme for remote
files (i.e., files on other UNIX systems), the system-call server and the stub
routine library together form the Amoeba Connection. The connection was
found useful in our experiment, although the overhead was large.

The following table gives an indication of the speed of the connection in
terms of response time, measured in seconds. Three versions of the UNIX file
copy command cp are compared: plain cp, able to copy files on the local
machine only; rep, the inter-machine file-copy program as described in
[Renesse84]; and fcp, which is plain cp linked with the Amoeba Connection
library. 'Local' is a file copy from one disk to another on the same system.
'Remote' is. a file copy from the local system to another system. All measure
ments took place on lightly loaded machines.

number of bytes
cp rep

local local remote
l u ... us l.O!S 3.55

1024 0.28 1.20 3.60
10240 0.40 1.93 3.95

TABLE 1.

3 'THE EXPERIMENT AND ITS RESULTS

3.1. A distributed compiler

fcp
local remote
.25 U.40

0.25 0.43
0.38 0.83

The first phase of the experiment was to construct two distributed versions of
cc which is the UNIX C compiler. Cc is a program that causes C source code
to be passed through several compilation programs. The first step is done by
the C preprocessor cpp which performs macro substitution, file inclusion and
elimination of source code, depending on several user-specified, preprocess
time conditions. Next follows the compiler proper, ccom, which is a two-pass
portable C compiler [Johnson79]. The assembly code generated by the two
pass compiler is translated to object code by the UNIX assembler as. The pro
gram Id, which is the UNIX link editor, finally combines the object programs,

264

together with some libraries, into one program which may be executed. The
first distributed version of the C compiler is based on the Amoeba Connection.
The four compilation programs are relinked to allow files on other systems to
be compiled. The resulting compiler, together with its driver cc, is installed on
each of the connected machines. (Having multiple copies of the compiler is in
fact an optimization with regards to our implementation of the Amoeba Con
nection; remote execution is allowed only if the program is situated in the file
system belonging to the remote processor.) The remote compilation of a
source file on A is now done jijwfuoking cc on some otjijwfuoking cc on some
otst phase of the experiment was to construct two distributed versions of cc
which is the UNIX C compiler. Cc is a program that causes C source code to
be passed through several compilation programs. The first step is done by the
C preprocessor cpp which performs macro substitution, file inclusion and elimi
nation of source code, depending on several user-specified, preprocess-time
conditions. Next follows the compiler proper, ccom, which is a two-pass port
able C compiler [Johnson79]. The assembly code generated by the two-pass
compiler is translated to object code by the UNIX assembler as. The program
Id, which is the UNIX link editor, finally combines the object programs,
together with some libraries, into one program which may be executed. The
first distributed version of the C compiler is based on the Amoeba Connection.
The four compilation programs are relinked to allow files on other systems to
be compiled. The resulting compiler, together with its driver cc, is installed on
each of the connected machines. (Having multiple copies of the compiler is in
fact an optimization with regards to our implementation of the Amoeba Con
nection ; remote execution is allowed only if the program is situated in the file
system belonging to the remote processor.) The remote compilation of a
source file on A is now done ults for response times (compared to plain cc) are
listed below.

number of local using Amoeba Connection Compiler server
C source cc
lines

- - local remote local remote
LU 3.27 4.05 21.45 3.07 5.58

200 9.17 9.82 30.57 9.07 11.33
2000 68.75 68.68 105.28 68.98 69.63

TABLE 2.

Table 2 shows that remote compilation using the compiler server gives a better
response time than using the compiler, based on the Amoeba Connection.

265

3.2. Distributed and parallel 'make'
The second part of the experiment was to apply the result of the first part to
the UNIX program make. Many programs developed under UNIX consist of a
set of C source files which have to be compiled. Make performs the compila
tions sequentially. Doing the compilations in parallel on the same processor is
not a solution, as table 3 shows. A solution is found in parallel and distri
buted execution of the compilations. Table 3 shows results of the three ways
of doing independent compilations (i.e., no compilation uses results of the
other compilations.) The file to be compiled was about 1800 lines. The max
imum number of available processors was 4. The compiler server is used for
doing the distributed compilations.

number of locally locally distributed
compilations sequentially in parallel in parallel

I 6!S.67 - -
2 137.34 127.32 69.58
3 206.00 183.45 73.22
4 274.66 242.50 78.35

TABLE 3.

Adapting make in order to execute compilations in parallel on several pro
cessors was done easily. Make maintains a list of programs that can also run
on other machines. A command is executed in parallel to the other commands
under the following conditions: the program appears on the distributed
program list; the necessary files are present; the compilations on which the
command depends are already done; and there is still enough remote process
ing power. The only program currently in the distributed-program list is cc,
but other compilers and translating programs may be added to this list. The
processing power of a machine is computed by keeping an account of the
number of compilations started by make on that machine.

4. PLANS
From the experiment we learned that splitting up compilations and running
the environment and machine independent phases on other processors results
in a remarkable increase in response time, especially if several sources need to
be compiled. Splitting up a single compilation is also a result of the philoso
phy behind the Amsterdam Compiler Kit (ACK), a project at the Vrije Univer
siteit in the area of compiler construction [Tanenbaum83]. A compilation in
ACK. causes a program to pass through several components: a front end, which
translates the program into machine-independent intermediate code; a
peephole and global optimizer; a back end, which translates from intermediate
code into assembly code; an assembler; and a linker. The idea is to have a
pool of processors, each of them running a dedicated server performing one of
the components. ACK. tries to allocate a server for each of the phases and
passes the program through the pipeline of servers.

266

REFERENCES

[Brownbridge82]
D.R. BROWNBRIDGE, L.F. MARsHALL and B. RANDELL. "The
Newcastle Connection or UNIXes of the World Unite!," Software
Practice and Experience, vol. 12, pp. 1147-1162 (1982).

[Devarakonda85]
M. DEVARAKONDA, R. McGRATII, R. CAMPBELL and w. KUBITZ.
"Networking a Large Number of Workstations Using UNIX
United," Proc. 1st IEEE Int. Conj on Computer Workstations, pp.
231-239 (1985).

[Feldman78]
S.I. FELDMAN. "Make - A Program for Maintaining Computer
Programs," appeared in UNIX Programmers Manual vol. 2A, Bell
Laboratories, Murray Hill NJ, 1979.

[Johnson79]

[Miller82]

[Renesse84]

S.C. JOHNSON. "A Portable Compiler: Theory and Practice," Proc.
5th ACM Sym. on Principles of Programming Languages, pp. 97-104
(January 1978).

J.A. MILLER and R.J. LEBLANC. "Distributed Compilation: A
Case Study," Proc. 3th IEEE Int. Conj on Distributed Computing
Systems, pp. 548-553 (October 1982).

R. VAN RENESSE, A.S. TANENBAUM and S.J. MULLENDER. "Con
necting UNIX systems Using a Token Ring," Rapport IR-91, Vrije
Universiteit, Amsterdam, The Netherlands (October 1984).

[Tanenbaum81]
A.S. TANENBAUM and S.J. MULLENDER. "An Overview of the
Amoeba Distributed Operating system," Operating Systems Review,
vol. 15, no. 3, pp. 51-64 (July 1981).

[Tanenbaum83]
A.S. TANENBAUM, J.M. VAN STAVEREN, E.G. KEIZER and J.W.
STEVENSON. "A Practical Toolkit for Making Portable Compilers,"
CACM vol. 26, no. 9, pp. 654-660 (September 1983).

[Tanenbaum84]
A.S. TANENBAUM and S.J. MULLENDER. "The Design of a
Capability-Based Distributed Operating System," Rapport nr. IR-
88, Vrije Universiteit, Amsterdam, The Netherlands (November
1984).

Parallel Alpha-Beta Search

Henri E. Bal
Robbert van Renesse

Department of Mathematics and Computer Science,
Vrije Universiteit,

Amsterdam, The Netherlands

Several different approaches exist to the design of a parallel alpha-beta algo
rithm. Recent research in this area is reviewed. Especially, the obstacles to
achieving a linear speedup are explained. Alpha-beta algorithms based on tree
splitting suffer from search overhead, synchronization overhead, and communi
cation overhead. A new algorithm is developed that avoids the synchronization
overhead. This algorithm is implemented under the Amoeba distributed operat
ing system.

1. INTRODUCTION

267

Speed is one of the most important properties of chess programs based on
some kind of brute force strategy. High speed can be obtained by using
efficient algorithms and fast, possibly special-purpose, hardware. As really fast
processors tend to be expensive and usually have to be shared with other peo
ple, an interesting alternative is to use multiple cheap processors. With today's
technology it is quite feasible to build a relatively cheap system with an
impressive number of MIPS out of standard hardware.

One problem that has to be solved is how to run a chess program con
currently on many processors. Several researchers have investigated how the
alpha-beta algorithm (which is the heart of most chess programs) can be run in
parallel. In this paper we will give a survey of this research. Especially, we
will describe the problems encountered in achieving a linear speedup (i.e., pro
portional to the number of processors used). Also, the impact of several
enhancements to the alpha-beta algorithm on this speedup will be discussed.
In the second part of the paper we will report on our experiments with imple
menting a parallel alpha-beta algorithm under the distributed operating system
Amoeba, that has been developed in our faculty [Mullender86, Mullender84,
Mullender85].

Parallel Alpha-Beta Search
H.E. BAL and R. VAN RENEssE
Proc. NGI-SION Symposium Stimulerende Informatica
pp. 379-385
Utrecht, Netherlands
April 1986

268

We assume the reader has a fair knowledge of game theory, in particular of
the alpha-beta algorithm and its enhancements. A good historical overview
can be found in chapter 2 of [Herik83].

2. A SURVEY OF PARALLEL ALPHA-BETA ALGORITHMS

There are several fundamentally different ways of using parallelism to speed up
the alpha-beta search. The static evaluation can be carried out in parallel, for
example by having one processor counting the pieces, another one looking for
open lines, and so on. Oearly, the speedup will be limited by the number of
properties the evaluation function looks at. Furthermore, communication
overhead will be substantial, as every processor examines every evaluated posi
tion.

Another approach is to do a parallel aspiration search. The sequential
aspiration search algorithm first tries a small initial window (X, Y). If the
search fails, it subsequently tries either (- infinite, X) or (Y, + infinite). A
parallel program can try the three windows (- infinite, X), (X, Y), and (Y, +
infinite) simultaneously. If there are enough processors, more windows can be
used. Baudet [Baudet78] showed that even with an infinite number of proces
sors the speedup is still limited by a factor 5 or 6.

The most promising approach to parallel alpha-beta search is based on tree
splitting. With this method, each processor searches part of the game tree. In
principle, there is no constant upper bound for the speedup, as there is for
parallel aspiration search. Yet, there are other problems, that will be discussed
below.

2.1. Tree splitting algorithms
Tree splitting algorithms distribute the game tree over all available processors.
A basic algorithm works as follows. Initially, one processor is assigned the
task of evaluating a game tree. It hands out the leftmost subtree of the root
node to subprocessor 1, the second subtree to subprocessor 2, and so on. It
computes the solution for the entire tree out of the partial solutions returned
by the subprocessors. Each subprocessor can split its own subtree over even
more processors. Clearly, this method will soon run out of processors. To
avoid this, two precautions are taken. First, each processor has only a limited
number of subprocessors, say F. After handing out the Fth subtree, it waits
until one of its subprocessors becomes available again. Second, the forwarding
of work to subprocessors and to subprocessors of subprocessors is bounded.
Essentially, the processors are organized as a tree with fan-out F and depth D.
After D levels of subcontracting, a processor evaluates the remainder of the
subtree itself.

The algorithm has been implemented by Finkel and Fishburn [Finke182] on
a network of 5 LSI-11 processors under the Arachne distributed operating sys
tem. Their paper presents theoretical, simulated, and measured results. One
problem is that, for a (nearly) best-first ordered game tree, the algorithm evalu
ates subtrees that would not have been evaluated by a sequential algorithm.
For example, during the evaluation of the second subtree of the root node, the

269

result of the evaluation of the first subtree cannot be used, as these subtrees
are evaluated concurrently. Hence, alpha-beta bounds become available much
later. As chess programs attempt to achieve a nearly best-first order for their
moves, this definitely is a major problem. As a second problem, processors
spend part of their time waiting for their subprocessors to finish, hence causing
idle-times. Finally, any distributed algorithm will suffer from a certain amount
of communication overhead. Because of these problems the speedup obtained
by the simple tree splitting algorithm is far from linear. Theoretically, for a
best-first ordering the speedup is proportional to the square root of the
number of processors.

Summarizing, there are three kinds of overheads: search overhead, synchroni
zation overhead, and communication overhead.

Several researchers have tried to improve this basic tree splitting algorithm.
We will discuss two schemes, the Minimal-tree approach (also called the
Mandatory-work-first approach) of Akl, Barnard, and Doran [Akl80], and the
Principal Variation Splitting method of Marsland and Campbell [Marsland 82].

There is a fixed part of the search tree that a (sequential) alpha-beta algo
rithm cannot possibly cut off. This part is called the minimal tree. The
mandatory-work-first approach first searches this minimal tree. In a second
tree traversal it searches the rest of the tree, using the alpha-beta bounds found
during the first traversal. So, during the first traversal the parallel algorithm
has no search overhead. During the second traversal the parallel algorithm has
less overhead than the simple parallel tree splitting algorithm.

The minimal tree is defined recursively by the following rules:

- the root node is a minimal-tree node
- the leftmost son of a minimal-tree node is itself a minimal-tree node
- the leftmost son of any right son of a minimal-tree node is itself a minimal-

tree node.

Finkel and Fishburn [Finkel83] adapted their algorithm to this new
approach. Their analysis shows that the expected speedup is significantly
better than the speedup of their original algorithm.

Marsland and Campbell [Marsland82, Marsland85, Schaeffer84] proposed
an algorithm that does not require two separate tree traversals. Their Principal
Variation Splitting (PVsplit) algorithm aims at optimizing searches of strongly
ordered game trees. PV split assumes that most of the time the leftmost subtree
of any node will contain the best move. So, PVsplit first evaluates the leftmost
subtree and then tries to prove that the other moves are inferior. This is
achieved by using a zero-width alpha-beta window, causing the search to fail
quickly. If the search fails "low," the move is refuted. If a better move is
found, the search fails "high" and has to be repeated with a normal window,
using the better move as the new principal variation. For strongly ordered
trees, the search will fail "low'' most of the time.

The algorithm was incorporated in two existing chess programs (TinkerBelle
and Phoenix) and implemented on a system of four M68000 based SUN
workstations. Experimental results are given in [Schaeffer84]. For deep

270

searches, a speedup in the range 3.1 - 3.3 is achieved for four processors. The
results show that parallelism is most effective for deep searches. For a 3-ply
search the search overhead is almost 30%; for a 7-ply search it is about 10%
(for four processors).

2.2. The effect of enhancements of the Alpha-Beta search
Sequential chess programs use several enhancements to the basic alpha-beta
algorithm, such as transposition tables, refutation tables, history heuristics,
aspiration search, iterative deepening, quiescent search, and killer heuristics.
In this section we will discuss the effectiveness of some of these enhancements
to the parallel alpha-beta algorithms.

A transposition table is a list of moves that have been evaluated earlier dur
ing the search. Large transposition tables (containing say 100 000 positions)
have proven to be quite valuable. In a parallel environment, a central transpo
sition table will soon become a communications bottleneck, as it is consulted
often. On the other hand, if each processor maintains its own transposition
table, one processor may evaluate moves that another processor has already
evaluated. Transposition tables and similar mechanisms were studied by
Marsland et al [Marsland85, Schaeffer84]. Local transposition tables and the
less expensive refutation tables and history heuristics were found to be supe
rior to one central transposition table.

Moser [Moser84] studied the effect of aspiration search on a parallel alpha
beta algorithm. In his chess program Watchess 3.0, all processors first use a
narrow window (X,Y). If this search succeeds, a very good speedup is
achieved. (Moser measured a speedup of 5.2 for 7 processors). The main
disadvantage of the parallel algorithm (i.e., the delayed availability of good
alpha-beta bounds) is compensated for by the tight bounds of the initial search
window. The search fails "high" as soon as one processor evaluates a subtree
with a value greater or equal than Y. In this case all other processors working
on this subtree should be stopped (interrupted) immediately. Although a
super-linear speedup (i.e., better than linear) can occur occasionally, in general
the speedup is worse than for a successful search. The search fails "low'' if no
processor detects a subtree with value higher than X. A fairly good speedup is
obtained in such a case. Moser concludes that aspiration search is extremely
beneficial for distributed alpha-beta searching.

Chess programs always try to order their moves, so they can evaluate plausi
ble moves first. One method, known as iterative deepening, implements an N
ply search by first doing an (N-1)-ply search to order the moves. The (N-1)
ply search first does an (N-2)-ply search. This process continues up to a cer
tain depth. A typical chess program may start with a 2-ply search. If this
method is applied to a parallel search algorithm, it will increase the synchroni
zation overhead, as all processors have to wait for the completion of the (N-
1)-ply iteration before starting to work on the next iteration [Schaeffer84].
This problem can only be avoided at the cost of a more complex scheduling
strategy.

271

3. THE AMOEBA DISTRIBUTED OPERATING SYSTEM

We have implemented the alpha-beta algorithm on top of a modern distributed
operating system, Amoeba [Mullender86]. In this system there is a minimal
kernel per processor capable of nothing more than running processes and pro
viding communication for those processes either locally or over the network.
Together they form the bottom layer in the operating system, running com
municating processes. The next layer provides services like a file service or a
process service. These services complete the operating system by providing the
user with the usual mechanisms for reading and writing files, or creating
processes. Services can be created dynamically because they are implemented
by ordinary processes, called servers. Processes that use these services are
called clients. Of course, a process can be both a server and a client.

Communication between processes is through request-reply pairs: the client
sends a request to the server after which it awaits a reply from that server.
Thus communication is blocking, as the client is suspended while the server is
processing the request. Only when the server is finished and has sent its reply
the client can continue to run.

Concurrency is achieved by dividing processes up into sub-processes; in
Amoeba these are called clusters and tasks respectively. All tasks of a cluster
run on the same processor, so all tasks share their memory. Each task has its
own thread of control. A task continues to run until it blocks, and only then
another task within the same cluster is allowed to run. This way there is no
need for complex synchronization mechanisms to access shared data structures.
Each task can start an operation on a separate server, thus enabling concurrent
processing as each server can be located on another processor.

In our model there are three classes of processors. A processor can belong
to some specific user (i.e., it is part of his personal workstation), to a special
server (e.g., a file server), or it can be available for general usage. The latter
class of processors form a pool that is used to (gradually) enhance the comput
ing capacity of the system. Each user is free to allocate some of these pool
processors, for example to run a parallel program.

At present, we have a working prototype of the Amoeba kernel (running on
a Motorola 68010, VAX, NS16032, PDP-11, and IBM-PC). This kernel has
been used to implement some parallel algorithms, among which is a parallel
alpha-beta search algorithm.

4. PARALLEL ALPHA-BETA SEARCH ON AMOEBA

Parallel alpha-beta programs based on tree splitting suffer from three kinds
of overheads: search overhead, synchronization overhead, and communication
overhead (see section 2). Below, we will develop an algorithm that virtually
eliminates the synchronization overhead by always keeping the subprocessors
busy.

A parallel alpha-beta search can be implemented on Amoeba as follows (see
figure 1):

272

r---,

r---,
I I

1 task 1
I I

L - T - .J
I

r---,
I I
I task I
I I

L - T - .J

I
I

client cluster

r---,
I I

1 task 1
I I

L - T - .J

I

I I I ------,---------T-------------------r------
1 I I

r-V-, r-V-, r-V-,
I I

1 server 1
I I

1 server 1
I I
L ___ .J

I I

1 server 1
I I

L---.J

FIGURE 1. Process structure of the Alpha-Beta program.

Start servers capable of evaluating subtrees on each processor, and let one
cluster, running on any processor, divide the tree among the servers. 1bis can
be done recursively by having each server splitting its subtree once more, and
dividing those over yet other servers. Within the cluster each task is waiting
for its server to finish; however, because there are as many tasks in a cluster as
servers in the system, synchronization overhead is eliminated, so all servers
always have some work to do.

Splitting the tree is almost automatic (see figure 2). Each task starts execut
ing the usual sequential alpha-beta algorithm. To keep the other tasks from
evaluating the same nodes, each task leaves a trace of what it has done
already, or what leaf it is evaluating, by building the tree explicitly in the
shared memory. Each task does a depth-first search in the tree until it either
finds an unvisited node or an unevaluated leaf, or it decides that the subtree
rooted at the current node should be evaluated by another processor. For an
unvisited node it will generate all the moves in the corresponding positions
and continue in the first child node. An unevaluated leaf is evaluated directly
by a static evaluation function. The decision to send a subtree to another pro
cessor is based on the current search depth. 1bis also allows efficient alpha
beta interval updates. When a leaf or a node is evaluated, the task that is then
executing can update the alpha boundary in the parent node as the node is
maintained in shared memory. Furthermore, it can update the beta boun
daries in the sibling nodes, and then the alpha boundaries of their child nodes,
etc., until the leaves are reached, the new boundary is not better than the old
one, or the update results in pruning the rest of the tree.

In the last case the processors that are evaluating parts of that subtree have
to be signaled to abort the request, a mechanism that is incorporated in
Amoeba. When a leaf is reached that is evaluated remotely by doing again an
alpha-beta search, and the new alpha or beta is improving the old one, the
remote server has to be informed, but only if the communication overhead is
smaller than the time to finish the evaluation. Because the mechanism for

273

doing the remote update would be painful (an asynchronous update in the
subtree), and the expected overhead is difficult to estimate, we did not imple
ment this.

type node = record (* definition of a node *)
position: position type;
alpha, beta: integer;
busy, remote: boolean;
children: list of node;

end;

(* Evaluate node.position by doing an alpha-beta search. The result
* is returned in node.alpha.
*)

procedure alpha beta(node, depth)
begin -

if depth = 0 (* reached a leaf *)
then

node.alpha : = static evaluation(node.position);
else -

if node should be evaluated by another processor
then

node.busy : = TRUE;
node.remote : = TRUE;
send node to server
wait for server to finish (* here other tasks will run *)
node.alpha : = result;

else
if node.children = nil (* first task to arrive here *)
then

fl

generate(node);
(* generates node.children with alpha-beta boundaries set
* to (-node.beta, -node.alpha)
*)

foreach child in node.children
do

if not child.busy (* no other tasks working on this node? *)
then

alpha beta(child, depth - l);
fl -

if child.children = nil (* all children done *)
then

child.busy : = TRUE;
update alpha(node, -child.alpha);
(* tells-other tasks about result *)

274

fi
end;

fi

dispose of child (* remove child from list *)
fi

od

(* Update node.alpha with alpha. Update the children too.
* Remove the node if alpha exceeds beta.
*)

procedure update alpha(node, alpha)
begin -

if node.alpha < alpha
then

fi
end;

node.alpha : = alpha;
foreach child in node.children
do

update beta(child, - alpha);
od -
if node.children = nil and node.alpha > = node.beta
then

fi

if node.remote send abort signal to server
dispose of node (* node is pruned *)

(* Update node.beta with beta. Update the children too.
* Remove the node if alpha exceeds beta.
*)

procedure update beta(node, beta)
begin -

if node.beta > beta
then

fi
end;

node.beta : = beta;
foreach child in node.children
do

update alpha(child, - beta);
od -

if node.children = nil and node.alpha > = node.beta
then

fi

if node.remote then send abort signal to server
dispose of node (* node is pruned *)

begin
(* initialize root node *)
node.position : = INITIAL POSITION;
node.alpha : = -MAXINT;
node.beta := MAXINT;
start N tasks;
alpha beta(node, TOTAL DEPTH);
wait until all tasks have finished
writeln('result: ', node.alpha);

end.

FIGURE 2. The parallel alpha-beta algorithm.

275

To measure the performance of our method, we implemented the game of
Othello. Figure 3 shows the time to evaluate a position, averaged over five
ditf erent positions with approximately fifteen moves, and the number of
evaluations that were not aborted. The root cluster searched the tree over
three plies; the servers did only one ply after which they did a static evaluation
of the resulting position.

version time(secs) speedup # evaluations search overhead
sequential 266.9 2670
1 server 324.6 1 2670
2 servers 196.2 1.65 3925
3 servers 153.3 2.12 4732
4 servers 125.1 2.59 5676
5 servers 114.0 2.84 6424
6 servers 111.5 2.91 6719

TABLE. Results of an Othello implementation.

5. DISCUSSION

1
1
1.47
1.77
2.13
2.40
2.51

This paper presented a survey of recent research on parallel alpha-beta algo
rithms. The causes for not achieving a linear speedup were classified as search
overhead, synchronization overhead, and communication overhead. An algo
rithm was presented that virtually eliminates the synchronization overhead,
but, in its present form, still suffers from a fairly large search overhead.

Parallelism is used by several existing chess programs, such as Ostrich,
Watchess 3.0 [Moser84], and Cray Blitz [Hyatt85). Most successful is world
champion Cray Blitz, that uses a 4 processor Cray X-MP/48. All these pro
grams run on a small number of processors, typically less than 10. With the
advent of powerful low-cost microprocessors (like the MC 68020 and the
Inmos Transputer) it becomes more and more important to use massive paral
lelism. Today's parallel alpha-beta algorithms are not well suited for several
hundreds of processors, as their speedups strongly degrade. It is still an open
research issue whether the existing methods can be improved to make an
effective use of many processors.

276

ACKNOWLEDGEMENTS
The authors would like to thank Jaap van den Herik: and Dick Grune for their
useful suggestions.

REFERENCES

[Akl80]
AKL, S.G., BARNARD, D.T., and DORAN, R.J., "Design, Analysis, and
Implementation of a Parallel Alpha-Beta Algorithm", Report 80-98,
Queen's University, Kingston, Canada, April 1980.

[Baudet78]
BAUDET, G.M., "The Design and Analysis of Algorithms for Asynchro
nous Multiprocessors", CMU-CS-78-116, Carnegie-Mellon University,
April 1978.

[Finkel82]
FINKEL, R.A. and FISHBURN, J.P., "Parallelism in Alpha-Beta Search,"
Artificial Intelligence, vol. 19, pp.89-106, 1982.

[Finkel83]
FINKEL, R.A. and FISHBURN, J.P., "Improved Speedup Bounds for
Parallel Alpha-Beta search," IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. PAMI-5, no. 1, pp.89-92, January 1983.

[Herik:83]
HERIK, H.J. VAN DEN, Computerschaak, schaakwereld en kunstmatige
intelligentie. Academic Service, 1983.

[Hyatt85]
HYAIT, R.M., "Parallel Chess on the Cray X-MP/48," ICCA Journal,
pp.90-99, June 1985.

[Marsland82]
MARsLAND, T.A. and CAMPBELL, M., "Parallel Search of Strongly
Ordered Game Trees," Computing Surveys, vol. 14, no. 4, pp.533-551,
December 1982.

[Marsland85]
MARsl.AND, T.A. and POPOWICH, F., "Parallel Game-tree Search", TR
85-1, The University of Alberta, January 1985.

[Moser84]
MOSER, L., An Experiment in Distributed Game Tree Searching. Univer
sity of Waterloo, 1984.

[Mullender84]
MULLENDER, s. J. and TANENBAUM, A. s., "Protection and Resource
Control in Distributed Operating Systems," Computer Networks, vol. 8,
no. 5,6, pp.421-432, 1984.

[Mullender85]
MULLENDER, S. J. and TANENBAUM, A. S., "A Distributed File Service
Based on Optimistic Concurrency Control," Proceedings of the I 0th
Symposium on Operating Systems Principles, pp.51-62, December 1985.

277

[Mullender86]
MULi.ENDER, s. J. and TANENBAUM, A. s., "The Design of a
Capability-Based Distributed Operating System," The Computer Journal,
vol. 29, no. 4, pp.289-300, 1986.

[Schaeff er84]
SCHAEFFER, J., OLAFSSON, M., and MAilsLAND, T.A., "Experiments in
Distributed Tree-Search", TR 84-4, The University of Alberta, June
1984.

Experience

Making Distributed Systems Palatable

1. INTRODUCTION

Andrew S. Tanenbaum
Robbert van Renesse

Department of Mathematics and Computer Science
Vrije Universiteit

Amsterdam, The Netherlands

281

Designing and implementing a distributed system is easy compared to the task
of convincing people to use it. In a university Computer Science Dept., people
generally use UNIXt and are not at all interested in moving to a different
environment, no matter how wonderful it may be. In this paper we report on
how we have implemented a UNIX environment for the Amoeba distributed
operating system [I], in order to make the transition from UNIX to Amoeba as
simple as possible.

2. OVERVIEW OF THE AMOEBA DISTRIBUTED OPERATING SYSTEM

The Amoeba system runs on a hardware configuration consisting of four com
ponents: personal workstations, pool processors, specialized servers (e.g., file
servers), and gateways to other systems. Interactive work is done on the
workstations. Heavy computing, such as make, can be done on the pool pro
cessors, which are dynamically assigned as needed. At present there are 16
pool processors, each consisting of a 12.5 MHz 68010 processor and a mega
byte of memory. All the components of the system are connected by a 10
mb/s local network.

t UNIX is a Trademark of AT&T Bell Laboratories.

Making Distributed Systems Palatable
ANDREW S. TANENBAUM and ROBBERT VAN RllNESSE

Position Paper in 2nd SIGOPS workshop "Making Distributed Systems Work"
Amsterdam, Netherlands
September 1986

282

The Amoeba software is based on the concept of objects (abstract data
types). Each object has some set of operations that can be performed on it A
file object, for example, has operations to read it, write it, delete it, etc.

Associated with each object is a capability that gives the holder permission
to carry out certain operations on the object. Capabilities contain random
numbers, for authentication, and are encrypted, to allow them to be manipu
lated directly by user processes, without intervention by the operating system.

To perform an operation on an object, a client process sends a message to
the server process that owns the object. This request message contains the
capability, the operation code, and possibly some parameters. When the server
has carried out the operation, it sends a reply message back to the client. The
request and reply messages work together to form a simple kind of remote pro
cedure call called a transaction. Virtual circuits are not used in Amoeba.

The Amoeba kernel manages the transactions, sending and receiving mes
sages (including splitting long messages into packets), setting timers, handling
retransmissions etc. Nearly all of the other traditional operating system func
tions, such as process management, the file system and even system accounting
are done outside the kernel in server processes. This design not only keeps the
kernel small, but also makes it possible to have multiple servers of each type, a
fact of considerable importance for smoothing the transition from UNIX, as
will be described shortly.

One other feature of Amoeba that is worth mentioning is the ability to have
multiple processes operating within a single address space. This construction
is called a cluster of tasks. It is particularly useful for implementing multiple
threads of control in a server, to allow the server to work on several requests
at the same time.

3. THE UNIX SERVERS
Although Amoeba has a number of "native" servers, such as a multiversion file
server using optimistic concurrency control, these can coexist with "foreign"
servers at the same time, since as far as the operating system is concerned, a
server is just another user process. We have taken advantage of this fact, and
implemented two servers essential to producing the UNIX environment, a
UNIX file server and a UNIX process server.

The UNIX file server, plus an associated library that can be linked in with
user programs, provides an interface that is very similar to the UNIX (V7) file
system interface. Programs using this library can create and open files, read
and write files, and seek on files. Directory operations, including linking and
unlinking files, and mounting and unmounting devices are all supported and
all work the same way as UNIX programs expect them to work. The net result
is that many UNIX programs can be relinked using a special library and run
on Amoeba with no modification.

Now let us briefly look at the implementation. The special library contains
a procedure for each of the UNIX system calls supported. When a user pro
gram wants to execute the READ system call, for example, the library pro
cedure read is called. This procedure does a transaction (remote procedure

283

call) with the UNIX file server, passing as parameters, a capability that
effectively establishes its identity (user id and group id), a small integer (file
descriptor) telling which file to read, and the number of bytes desired.

When the request message arrives at the server, one of the tasks inside the
server accepts it and begins to process it. The server maintains a cache of
recently used blocks, so there is a good chance that the data requested will be
in the server's memory. If so, the server builds a reply message containing the
requested bytes and sends it back to the client. If the data is not in memory,
the server task fetch fetches it from the disk. While it is blocked waiting for
the disk, requests from other clients can be processed by other tasks within the
server.

The UNIX process server has been structured in a similar way. It handles
the FORK, EXEC, w AIT, SIGNAL, KILL, and EIXT system calls, among others.
When a process forks, it is given a capability identifying the newly created
process. The child process uses this capability to identify itself in subsequent
operations.

Because nearly all the usual UNIX system calls are supported by one of
these two servers, its was straightforward to simply relink many of the stan
dard programs in the UNIX / bin directory to run under Amoeba. Conse
quently, users recently moved from UNIX to Amoeba can continue to use the
shell, various editors, the C compiler, and the small utilities, such as cat, grep,
and sort.

4. COMMUNICATION WITH UNIX
Amoeba users often want to communicate with UNIX systems, for example, to
read their mail. To facilitate this communication, we have written a UNIX
driver that implements the standard Amoeba transaction protocol, so that
Amoeba processes can communicate with UNIX processes.

An important use of this feature is for implementing the remote shell, rsh.
Using rsh, a person logged into any of the machines, UNIX or Amoeba, can
have a command carried out on any other machine. The output of that com
mand is automatically redirected back to the caller's standard output. For
example,
rsh vax3 who
runs the who program on a machine called vax3 and displays the results on
the terminal.

Another program, call allows an Amoeba user to log into a remote UNIX
machine to work their for a while. When the user is done, he logs out and is
back to Amoeba.

5. ACCESSING UNIX FILES FROM AMOEBA

The native Amoeba file system, FUSS, uses a capability for each file. These
capabilities are generally stored in directories, where a directory entry is just
an (ASCII string, capability) pair. A user can present a string (path name) to
the directory server, and the server returns the corresponding file capability.

We have extended this basic scheme to make it possible to store capabilities

284

for UNIX files in Amoeba directories in a completely transparent way. On
each UNIX machine are two special processes, the link server and the file
server, that make this possible.

To enter a UNIX file into an Amoeba directory, a user does a transaction
with the link server, which locates the UNIX file, links it into a special direc
tory of its own, and returns a standard Amoeba capability for it to the caller.
This capability can be entered in the Amoeba directory system under any con
venient name. Later, when the user wishes to access this file, he asks the
Amoeba directory sei;ver to look it the name and return the capability. lbis
capability can then be sent to the file server running on the UNIX machine to
access the file. lbis facility has been implemented in such a way that access
ing an Amoeba file or accessing a UNIX file are identical from the user's point
of view.

When a request to create a capability for a file arrives at the link server, the
link server makes a link (in the UNIX sense) to the file, and enters it into an
internal directory under a name that is related to the random number in the
capability. When the capability is later presented to the UNIX file server for
reading, it is possible to check to see if the capability is valid.

The link server can also make capabilities for UNIX directories, although
these are implemented differently because the link server cannot link to a
directory. Instead an internal table provides the mapping between capabilities
and directories.

REFERENCE

MULLENDER, S.J. and TANENBAUM, A.S. Protection and Resource Control in
Distributed Operating Systems. Computer Networks, vol. 8, Oct.
I 984, pp. 421-432.

Making Amoeba Work

Position paper for the 2nd SIGOPS Workshop

"Making Distributed Systems Work"

Sape Mullender
Centre for Mathematics and Computer Science

Amsterdam, The Netherlands

285

Fifth generation computers must be fast, reliable, and flexible. One way to
achieve these goals is to build them out of a small number of basic modules
that can be assembled together to realize machines of various sizes. The use of
multiple modules can make the machines not only fast, but also achieve a sub
stantial amount of fault tolerance.

The price of processors and memory is decreasing at an incredible rate.
Extrapolating from the current trend, it is likely that a single board containing
a powerful CPU, a substantial fraction of a megabyte of memory, and a fast
network interface will be available for a manufacturing cost of less than $ 100
in 1990. We therefore do research on the architecture and software of
machines built up of a large number of such modules.

In particular, we envision three classes of machines: (1) personal computers
consisting of a high-quality bit-map display and a few processor-memory
modules; (2) departmental machines consisting of hundreds of such modules;
and (3) large mainframes consisting of thousands of them. The primary
difference between these machines is the number of modules, rather than the
type of the modules. In principle, any of these machines can be gracefully
increased in size to improve performance by adding new modules or decreased
in size to allow removal and repair of defective modules. The software run
ning on the various machines should be in essence identical. Furthermore, it
should be possible to connect different machines together to form even larger

Making Amoeba Work
SAPEJ.MULLENDER
Position Paper in 2nd SIGOPS workshop "Making Distributed Systems Work"
Amsterdam, Netherlands
September 1986

286

machines and to partition existing machines into disjoint pieces when neces
sary, all in a way transparent to the user level software.

Amoeba [Mullender85a] uses the concept of objects, manipulated by services.
Associated with each object are one or more "capabilities" [Dennis66] which
are used to control access to the object, both in terms of who may use the
object and what operations he may perform on it. At the user level, the basic
system primitive is performing an operation on an object, rather than such
things as establishing connections, sending and receiving messages, and closing
connections.

The object model is well-known in the programming languages community
under the name of "abstract data type" [Liskov74]. When a user process exe
cutes one of the visible functions in an abstract data type, the system arranges
for the necessary underlying message transport from the user's machine to that
of the abstract data type and back. The header of the message can specify
which operation is to be performed on which object. This arrangement gives a
very clear separation between users and objects, and makes it impossible for a
user to inspect the representation of an abstract data type directly by bypass
ing the functional interface.

The object model is implemented in terms of clients (users) who send mes
sages to services [Cheriton83, Needham82, Ba1179]. A service is defined by a
set of commands and responses. Each service is handled by one or more
server processes that accept messages from clients, carry out the required work,
and send back replies.

Amoeba has no system calls, apart from the ones for message transactions;
process management, terminal handling and accessing device drivers is all done
through transactions with services, which may or may not be part of the
operating system kernel.

Replicated in each of the Amoeba processors is a copy of the Amoeba Kernel,
which manages clusters of light-weight processes, called tasks, and provides
communication between tasks through blocking message transactions. Each
cluster has a segmented virtual address space that its tasks execute in. Within
a cluster, there is no pre-emption between tasks; a task executes until it blocks
voluntarily before another taks in the same cluster (and address space) is
allowed to run. Task switching can be made very efficient this way.

The Amoeba Kernel manages three types of objects, clusters, tasks, and seg
ments. A cluster consists of one or more tasks wich execute in a single address
space, formed by one or more segments. These three types of object can be
manipulated by directing requests to the Amoeba Kernel, the Kernel Server, so
to speak.

The most important data structured used in transactions to manipulate seg
ments, clusters and tasks is the Cluster Descriptor, which is capable of describ
ing the complete state-except the contents of the segments-of a cluster of
tasks.

The Cluster Descriptor plus appropriate Kernel requests, form a single

287

mechanism for loading and starting up processes over the network, for check
pointing, migration, exception handling and remote debugging. The exception
handling mechanisms allow each interaction between a cluster and the outside
world to be caught and examined by the exception handler (a user-appointed
service), so emulation of other operating system interfaces and encapsulation
of Amoeba processes is feasible.

Emulation of other operating system interfaces is important: Amoeba cannot
become a popular operating system unless exsiting software can be used on it
without, or with very little modification.

The UNIXt system call interface is already available on Amoeba as a special
version of the UNIX C-library. For instance, rather than executing a read sys
tem call upon a call of the read routine in C, a transaction is carried out with
the file server.

It is planned to use the possibility of encapsulation, mentioned above, to
build a UNIX service, which will catch exceptions caused by UNIX binaries
doing system calls (or getting stack overflow, or any other exception that may
be caused by a UNIX program), and simulate the effect as on a UNIX machine.

Objects in Amoeba are both accessed and addressed through their capabilities.
A part of the capability, called port, for an object specifies the service that
manages objects of its type. One or more server processes (clusters) may be
responsible for implementing the service. These processes "listen" on the
service's port.

Ports do not carry information about the whereabouts of the associated
server processes. The Amoeba Kernels contain a locate mechanism to find a
server for a service, given the service's port. This mechanism, which is only
used in a local network, is based on broadcasting "where are you?" messages
and maintaining caches of hints on the location of recently-used .servers.

For locating ports in wide-area networks which do not normally provide a
broadcast facility, mechanisms are needed based on other locate algorithms.
We have looked into this problem quite thoroughly and proved a lower bound
on the number of message passes needed to locate a port [Mullender85b].

This lower bound indicates that a totally unstructured name space does not
scale well, no matter how the network is organised. We are now working on
the details of a hierarchical port name space in which a service indicates in
what domain its servers must expect their clients. Ports still have a fixed length
which proves very advantageous for processing speed on local service calls
(which are the most frequent), yet the network can be structured hierarchically
such that purely local services are invisible in higher levels of the hierarchy.

In collaboration with a dozen European research institutes, partially sponsored
by the European Community, we have started work on distributed operating

t UNIX is a Trademark of AT&T Bell Laboratories.

288

systems for wide-area networks. Amoeba has been chosen as a basis for this
work, and research has been done-and is still going on-on methods to con
nect many local Amoebre together to form one "Culture" of Amoebre.

Our special interest in this project is designing operating system services that
scale well to very large numbers of processors. Our work on designing algo
rithms for locating services is one example of this. Another example is protec
tion, authentication and resource control in very large systems.

REFERENCES

[Ball79]
BALL, J. E., BURKE, E. J., GERTNER, I., LANTZ, K. A., and
RASHID, R. F., "Perspectives on Message-Based Distributed Comput
ing," Proc. IEEE, 1979.

[Cheriton83]
CHERITON, D.R. and ZWAENEPOEL, W., "The Distributed V Ker
nel and its Performance for Diskless Workstations," Proc. Ninth ACM
Symp. on Operating Systems Principles, pp.128-140, October 1983.

[Dennis66]
DENNIS, J. B. and HORN, E. C. VAN, "Programming Semantics for
Multiprogrammed Computation," Comm. ACM, vol. 9, no. 3, pp.143-
155, March 1966.

[Liskov74]
LISKOV, B. and ZILLES, S., "Programming with Abstract Data
Types," SIGPLAN Notices, vol. 9, pp.50-59, April 1974.

[Mullender85a]
MULLENDER, S. J., Principles of Distributed Operating System Design.
Amsterdam: SMC, October 1985.

[Mullender85b]
MULLENDER, S. J. and VITANYI, P. M. B., "Distributed Match
Making for Processes in Computer Networks," Proceedings 4th ACM
Principles of Distributed Computing, August 1985.

[Needham82]
NEEDHAM, R. M. and HERBERT, A. J., The Cambridge Distributed
Computer System. Reading, Ma.: Addison-Wesley, 1982.

289

From Unix to a Usable Distributed Operating System

Robbert van Renesse
Department of Mathematics and Computer Science

Vrije Universiteit
Amsterdam, The Netherlands

Now that we nearly have a production version of the Amoeba distributed
operating system ready, we are trying to find ways to make it interesting to
UNIXt users. First, we made a full UNIX emulation service for Amoeba.
Second, we made the existing UNIX systems fully accessible to Amoeba users,
and vice versa. Users can work with Amoeba having their old utilities still
accessible, but additionally can use Amoeba services like transparent system
wide file naming and automatic load sharing.

l. INTRODUCTION

Distributed operating systems have several well-known advantages, such as

- load balancing;
- network transparency;
- fault tolerance;
- availability.

Trying to get people to use a distributed operating system is hard in spite of
these advantages. Reasons:

- not compatible with the old operating system;
- the new operating system is still experimental;
- there are no utilities yet.

For these reasons we want to support UNIX from our distributed operating
system, Amoeba. In an attempt to win over the UNIX users, we have put a lot
of effort into the utilities and network services. These will be discussed in the
following sections. First, however, we will give an overview of the Amoeba

t UNIX is a Trademark of AT&T Bell Laboratories.

From UNIX to a Usable Distributed Operating System
R. VAN RENESm!
Proceedings of the EUUG Autumn '86 Conference
Manchester, UK
pp. 15-21
September 1986

290

distributed operating system and its communication primitives.

2. OVERVIEW OF AMOEBA
Amoeba [Mullender86] is a distributed operating system being developed at
the Vrije Universiteit and the Centre for Mathematics and Computer Science,
both in Amsterdam. It currently runs on Motorola 68010, Intel 8086, POPI 1,
VAX, and National Semiconductor 32016 processors, connected by a Pronet
10 Mbps token ring.

Amoeba is a system of objects (abstract data types like files or processes),
managed by services. Each object is accessed using a capability [Tanen
baum86]. Capabilities are cryptographically protected to allow them to be
managed by user processes. A service offers a set of operations on its objects,
and is made up of a collection of server processes. To create, manipulate, or
contemplate an object, a client process sends a request message containing the
capability of the object and an operation code to a server process, which will
eventually respond with a reply message. Such a message exchange is called a
transaction.

The Amoeba kernel has been kept small by placing services in user space.
This enhances its reliability, and allows services to be added, changed, or
removed at will, making the operating system flexible. The kernel only pro
vides multi-processing and inter-process communication, both intra-machine
and inter-machine. All Amoeba machines run the same kernel.

Inter-process communication in Amoeba is done by transactions as men
tioned above. Server processes can choose a port, an arbitrary 48 bit number,
on which they can receive request messages [Mullender84]. A client process
can then start a transaction by sending a request message to a port, which is
received by a server process that has specified the same port. The transaction
is finished when the server has executed the request and sent a reply message
back to the client process.

To allow a server process to handle multiple request messages, and a client
to do multiple transactions, processes can be divided into lightweight sub
processes. Subprocesses share an address space, and each subprocess is able to
send and receive requests. To avoid race conditions and simplify program
ming, the subprocesses are only rescheduled when a blocking system call is
executed, that is, subprocesses are never pre-empted.

Objects in the system are named and protected by capabilities. This
presents a uniform interface to all types of objects, such as files, processes,
directories, devices, disk blocks, etc. An object is created by a service on
request of a client, which then receives a capability for it. The capability con
tains the port of a server in the service, an object number to identify the object
within the service, the operation rights associated with the capability, and a
check field, redundant information to protect the capability from tampering.
Capabilities are managed in user space, again to keep the kernel small.

Capabilities can be stored by the directory service[Meer84], which maps
ASCII strings to capabilities. It stores the names and capabilities in objects
called directories, which are named by capabilities too. By storing directory

291

capabilities in directories, it is possible to build arbitrary naming graphs for
capabilities, or, indirectly, for objects.

Besides services, there are three other types of components in the Amoeba
system, namely workstations, pool processors, and gateways. Workstations pro
vide an interactive user interface to the Amoeba system. They consist of a ker
nel running a command interpreter and an editor. Pool processors are dynam
ically allocated from the processor pool when a job has to be run. The gate
ways [Renesse86] are used to link geographically distributed Amoeba sites into
a uniform system.

Ports are located automatically on local Amoeba sites. If a server wants to
be known at other Amoeba sites, it publishes its port by giving it to the gate
way server, together with the domain in which the port is to be distributed.
Remote gateways will then pass messages intended for the local server over the
wide-area network.

3. TRANSACTIONS

In order to make a transaction, it is necessary to address the server and to
name the object to be operated on. The server is addressed by a port, a 48 bit
number chosen by the server itself. The object is named by a 128 bit number,
called a capability, which can be subdivided into the port of the server manag
ing the object, an object number that identifies the object itself, the access
rights, and a check field to protect against forging capabilities, as shown in
figure 1.

48 24 8 48 # bits

I PORT I OBJECT RIGHTS CHECK

FIGURE 1. Capability Layout.

To make the use of ports and capabilities clear, consider airline boarding
passes, which, as we shall see, are also capabilities. Such a pass contains the
name of the flight (the port), the seat you may use (the object number), and
the rights you have (e.g., smoking).

Messages consist of two parts: a 32 byte header and a buffer. The header of
a request message contains the capability of the object, a digital signature, an
operation code, and some parameters. Only the capability is mandatory. The
buff er may contain up to 32 Kbytes of data. A reply message has the same
format, although the fields are used differently now. An address need not be
specified, as the message is routed automatically to the client that made the
request. Rather than an operation code it contains a result code. Figure 2
shows the layout of a header. Byte ordering problems in the header are hid
den from the users.

The transaction primitives are listed in figure 3. To await a request message,
a server has to specify the header, buffer, and length of the buffer to the kernel
by invocating the system call getreq. The getreq will return the actual size of
the received request buffer. To send the reply message back to the client, it

292

Field # bytes
Capability 16
Signature 6
Command/Status 2
Parameters 8

FIGURE 2. The header format.
calls putrep, which will return the length of the reply buffer. When a client
wants to send a requ~t message and await the reply, it calls trans. The first
header and buff er contain the request; the second header and buff er will con
tain the reply when the transaction is finished. The trans retunis the actual
size of the received reply buff er.

getreq(hdr 1, bufl, len 1)
putrep(hdr2, buf2, len2)
trans(hdrl, bufl, lenl, hdr2, buf2, len2)

FIGURE 3. The transaction primitives.

There are two implementations of these primitives under UNIX. The first
one uses Berkeley sockets. The other implementation is a driver for UNIX,
which is running under BSD 4.1, BSD 2.9, V7, System III, and System V
flavors of UNIX systems. This implementation is compatible with the Amoeba
network, and makes communication between UNIX systems and Amoeba sys
tems possible. Furthermore, it supports the transaction primitives in the UNIX
kernel itself, so that remote disks and remote terminals can be implemented.

4. UNIX SERVICES

Now that we have a uniform communication interface for Amoeba and UNIX,
we can make any UNIX system available to Amoeba users and users on other
UNIX systems, by running servers that give access to local resources such as
files and processes. This section discusses some of these services.

The rsh service provides remote execution and file transfer to its clients, that
is, it can start a remote UNIX process and connect input and output streams to
the local site. Each UNIX site runs an rsh server. When this server gets a
request, in the form of a shell command, it starts the shell and connects its
input and output to pipes. On the other ends of the pipes are processes that
transfer data between the client and the running shell command.

The UNIX rsh command invokes a remote rsh server. The syntax is

rsh [-i] machine [command [args ...]]

This runs the command at the specified machine. Input is only read and
transmitted to the remote UNIX site if the -i flag is given. If no command is
given, an interactive shell is assumed. For example:

rsh machine who

shows who is logged on to the named UNIX machine. To transfer a file from

the local machine to another, one could do:

rsh -i machine "cat > file" < file

293

Using rsh, several shell scripts have been written to implement rwho, rcat, rep,
and others. Rsh is also used to transfer mail between UNIX sites.

More transparent remote execution and file transfer can be achieved by
relinking all the UNIX software with a library package we have implemented,
with procedures that are used instead of the UNIX system calls. File names
are parsed to see if they are of the form machine!file. If this is the case the
system calls associated with such a file name are executed on the specified
machine, instead of on the local machine. Now it is possible to use standard
system utilities, but with a global name space. For example:

machl !cat mach2!file

prints the file located at the UNIX site mach2, running the cat command at the
machine called machl.

A similar library package, optimized for its purpose, was implemented to
make a version of rn, that reads the USENET news, using a news spool direc
tory on a remote UNIX system. This was done to avoid having copies of this
spool directory on all the UNIX workstations in our department.

To make UNIX files accessible to Amoeba users in the same way as any
Amoeba object, UNIX files need to be named and accessed using capabilities.
For this purpose we have implemented a UNIX file service that creates capabil
ities for UNIX files on request and allows holders of these capabilities to read
and write the associated files [Storm85]. Access rights are maintained using
the rights bits in the capabilities.

5. AMOEBA SERVICES

Having capabilities for UNIX files, it is possible to store them in the Amoeba
directory service. Then the UNIX files are linked in the Amoeba directory
structure together with Amoeba files and other Amoeba objects. The locations
of the UNIX files are invisible, making it possible to create a transparent nam
ing space. Files and directories are accessible through transactions from any
UNIX machine or from Amoeba.

Another Amoeba service that is useful for UNIX users is the terminal concen
trator. This is an Amoeba processor with several terminals attached to it, that
can be read or written with transactions. By installing a special character dev
ice driver in a UNIX system, the terminals become accessible to that system.
The terminal concentrator supports several line disciplines, so that usually a
transaction is done per line of input rather than per character, reducing net
work and operating system overhead. Also, before starting a session, the ter
minal concentrator asks the user to which system it wants to be connected, giv
ing a flexible terminal configuration.

Remote login from one UNIX system to another is enabled by a UNIX pro
gram that simulates an Amoeba terminal concentrator that has one terminal
attached to it. It is invoked by

294

call machine

Other Amoeba devices than terminals can be used by UNIX systems in the
same way. For example, a UNIX driver that reads and writes by doing tran
sactions with the Amoeba disk service has been written, implementing a
remote disk. 1bis disk can be shared by more than one UNIX system if it is
mounted read-only on all the systems. Using the Amoeba boot service it is
possible to download machines with a UNIX kernel. These machines may well
be diskless.

6. MINix
Minix is an Amoeba service that implements a UNIX V7 service. It is divided
into two servers: a file server and a process server. The file server implements
the UNIX creat, open, read, write, close, dup, and the other system calls that
operate on files. The process server supports fork, exec, exit, wait, signal, kill,
getpid, getuid, etc.

The Minix service is invoked using so-called stub-routines, procedures that
hide the transaction details from the caller, thus implementing remote pro
cedure callr[Birrell84]. Here the stub-routines' syntax and semantics are identi
cal to those defined by the seventh edition of the UNIX Programmer's Manual.
The processes authenticate themselves to the Minix servers by presenting a
capability. The object number in the capability is in effect the UNIX process
identifier.

The file server is implemented by an Amoeba server process. It uses a file
system structure similar to that of the UNIX V7 system, with some added
improvements. The file server uses the Amoeba disk service for storage, and
keeps the disk blocks in a large cache. The terminal concentrator is used for
terminal access.

The process server uses the file server to read executable files, or create and
write core files on process crashes. When it gets a request to· exec a file, it
allocates a processor from the processor pool, and copies the file from the file
server to a memory segment in this processor. Memory segments behave just
as ordinary Amoeba files. Furthermore, it creates a stack segment at this pro
cessor and a process with the two segments mapped in the process's address
space.

The Minix service enables Amoeba users to run UNIX programs as if they
were running under UNIX; in effect, Amoeba has inherited an enormous range
of application software from UNIX.

7. PERFORMANCE

In this section we present some performance figures for transactions. We
measured transaction transfer rate and response time (i.e., the time between
sending a request and receiving a reply) for different sizes of the request buffer.
Here the server does nothing but accept the requests and send null replies back
immediately.

Transaction overhead includes server location time, DMA time (and possibly

295

buffer copy time), network transmission time, interrupt latencies, context
switch times, and system call overhead. We measured this for two 12.5 MHz
68000 processors running UNIX System V.0, and two 10 MHz 68010 proces
sors running Amoeba, both pairs communicating over a Pronet 10 Mbit token
ring. The results can be seen in figure 4.

UNIX to UNIX
buffer size transfer rate response time

(bytes) (Kbytes/ sec) (msec)
0 0 11

1024 79 13
2048 79 26

30000 150 200

Amoeba to Amoeba
buffer size transfer rate response time

(bytes) (Kbytes/ sec) (msec)
0 0 6

1024 92 11
2048 109 19

30000 249 120

FIGURE 4. Performance figures.

Amoeba performs better, since the transactions are an integral part of the
Amoeba operating system, whereas transactions in UNIX are implemented by a
driver. Therefore system call overhead is larger in UNIX, and there is also
extra copy time since it is not possible (for portability reasons) to DMA
directly to user space as is done in Amoeba (note that this has to be done on
both client and server side). Since the packet size on Pronet is 2044 bytes,
there is not much difference in transfer rate for 1024 byte and 2048 byte
buffers.

8. CONCLUSIONS

Supporting the Amoeba transaction interface under UNIX has made communi
cation between the two operating systems possible, and thereby allowing
exchange of services. This will help make Amoeba attractive to UNIX users.
The transaction driver for UNIX is portable to many different UNIX flavors,
and can be installed both on big mini-computers and on small UNIX worksta
tions.

Because the transaction interface is easy to use, simple communicating
processes can be implemented. For example, rsh makes remote execution on
UNIX systems possible. In spite of a simple request-reply interface, data
transfer is as fast or faster than if a virtual circuit interface had been used.

296

UNIX applications are supported on the Amoeba distributed operating sys
tem using a special service that implements all the UNIX system calls. In fact,
the service makes it possible to build a distributed UNIX system. In our sys
tem, however, the service is only used to extend the services offered by
Amoeba itself.

REFERENCES

[Birrell84]
BIRRELL, A. D. and NELSON, B. J., "Implementing Remote Procedure
Calls," ACM Trans. Comp. Syst., vol. 2, pp.39-59, Februari 1984.

[Meer84]
MEER, THEo J. VAN DER and WELMAN, CARL G. M., "A Capability
Server for the Amoeba Distributed Operating System", Master Thesis,
Vrije Universiteit, Amsterdam, April 1984.

[Mullender84]
MULLENDER, s. J. and TANENBAUM, A. s., "Protection and Resource
Control in Distributed Operating Systems," Computer Networks, vol. 8,
no. 5,6, pp.421-432, 1984.

[Mullender86]
MULLENDER, s. J. and TANENBAUM, A. s., "The Design of a
Capability-Based Distributed Operating System," The Computer Journal,
vol. 29, no. 4, pp.289-300, 1986.

[Renesse86]
RENESSE, R. VAN and STAVEREN, J. M. VAN, "Wide-Area Communica
tion under Amoeba", IR-117, Dept. of Mathematics and Computer Sci
ence, Vrije Universiteit, Amsterdam, December 1986.

[Storm85]
STORM, T. W. VAN DER, "Link Server and File Server, two Amoeba style
Servers on UNIX", Master Thesis, Vrije Universiteit, Amsterdam, July
1985.

[Tanenbaum86]
TANENBAUM, A. s., MULLENDER, s. J., and RENESSE, R. VAN, "Using
Sparse Capabilities in a Distributed Operating System," Proc. of the 6th
Int. Conj on Distributed Computing Systems, pp.558-563, May 1986,
Vrije Universiteit.

Accommodating Heterogenety in

the Amoeba Distributed System

1. INTRODUCTION

Sape J. Mullender
CfNltre for Mathematics and Computer Science

Amsterdam, The Netherlands

Robbert van Renesse
Department of Mathematics and Computer Science

Vrije Universiteit
Amsterdam, The Netherlands

297

Amoeba [Mullender86] is a general-purpose distributed system, designed and
implemented by co-operating groups at the Vrije Universiteit and the Centre for
Mathematics and Computer Science, both in Amsterdam. The system can
accommodate four types of machines: (1) powerful personal workstations, that
may contain several processors, (2) machines dedicated to providing specific
services, such as a distributed file service, printer service, etc., (3) a processor
pool, consisting of a number of processor/memory pairs, which provides tem
porary computing power for the users of the system, and (4) guest computers,
running other operating systems than the Amoeba Kernel, which may provide
services to Amoeba or use services provided by Amoeba.

From the outset, Amoeba was designed with heterogeneity in mind. The
remainder of this paper briefly describes how it is accommodated.

2. EFFICIBNCY AND PORTABILITY IN COMMUNICATION

Efficiency and portability are often mutually exclusive properties of an inter
process communication mechanism: Portability means independence of chosen
CPU-type, network type, and network interface. This often means that
hardware features cannot be fully exploited.

The Amoeba system uses a request/reply communication protocol: a client

Accommodating Heterogeneity in the Amoeba Distributed System
SAPE J. MUI.LENDER and ROBBERT VAN RENEssil
Proceedings of SOSP Heterogeneity Workshop
Orcas Island, W asbington, USA
December 1985

298

process sends a request to a server process. The server executes the request and
returns a reply. The reply serves as an acknowledgement for the request,
although a separate acknowledgement is sent if processing a request takes a
long time. A new request serves as acknowledgement for the previous reply
(but an acknowledgement is sent if no new request is forthcoming). It is a
stop-and-wait protocol. Requests and replies can be up to 32 Kbytes long,
and may have to be fragmented for transmission [Mullender84].

When this protocol was first implemented, it became clear that the machine-,
operating system- and network-dependent part of the code far exceeded the
portable part, the protocol itself. It also appeared that different networks react
very differently to slight variations between protocols. On our token ring, for
instance, the first implementation sent all fragments of a message as fast as the
network would carry them; this failed, because the receiver interface was singly
buffered and had to put received packets in memory before it was ready again.
We decided to use a stop-and-wait protocol for fragment transmission. This
was improved by making use of the fact that the interface allows independent
operation of transmitter and receiver; an acknowledgement can thus be
prepared while the receiver is working. The result is an implementation that
can transmit over 300 Kbytes per second between the user spaces of processes
on different machines (10 Mbit ring and 1 µ.sec per byte DMA).

Going to these lengths when implementing IPC for a distributed operating
system is justifiable, because all traditional operating system services are nowat
least potentiallyremote, and the performance penalty for accessing them must
be kept as low as possible. We therefore decided to standardise the interfaces
to our protocols and their semantics, but not their implementation: each
implementation must allow exploitation of the possibilities offered by the net
work type and interface.

We have given two reasons for doing this: implementation-dependent code
far exceeds the code to implement a simple protocol and (2) the penalty for
inefficiencies in interprocess communication throughput and response time are
high; they make the difference between a usable and an unusable system.

3. PROTECTION
Usually, protection mechanisms are enforced with the help of a secure operat
ing system. In distributed systems this is not possible, because participating
guest operating systems may not enforce the right kind of protection, and it is
too easy to replace the secure operating system in one of the machines in the
system by another, insecure one.

In Amoeba, protection is provided for by the interprocess communication
mechanisms [Mullender85]. A process can only send a message to another if it
has a capability for it. These capabilities consist of bit patterns; knowledge of
the pattern is needed to obtain access to the object it refers to. Capabilities can
be kept in user space. Secrecy is the key to protection in Amoeba.

For reception of messages a similar capability is required. It is not the same
as the one for sending, however, to prevent a sender from impersonating the
receiver as well. The capability for sending is the put-port, that for receiving

299

the get-port.
Two implementations are possible, one using public-key cryptography (send

ing requires the encryption key, receiving the decryption key; the keys are used
as capabilities), the other using one-way functions. We shall briefly describe
the latter.

Get-ports and put-ports are related through a one-way function, a function
whose value is easy to compute, but, given the result of such a computation, it
is infeasible to compute the input. Thus,

put-port = F(get-port).

each machine and the network, we assume, exists a small box (either physi
cally, or conceptually, as discussed below). This box, the F-box, performs the
following functions: When a receive operation is done by the host, it passes the
get-port to the F-box. The F-box computes the put-port, using F, which is pub
licly known, by the way, and waits for messages with that put-port in the
header~ The sender, when it sends a message, addresses it with the put-port; a
get-port for the return message traffic is also included. The sender's F-box does
not operate on the put-port, but it does convert the get-port to a put-port.

If the one-way function cannot be broken and the F-box cannot be circum
vented, this method provides a protection mechanism that is independent of
the security of the operating system. Ideally, the F-box would be built in
hardware, out of reach of malicious users, e.g., in the cable ducts in the wall
with some sort of alarm that goes off when the F-box is tampered with. But
the F-box can also be put in the VLSI interface chip, on the interface board,
or, if need be, in the operating system kernel, where it is as secure as any dis
tributed operating system.

4. GUEST SYSTEMS

No considerations for existing (centralised) operating systems were taken into
account in the design of the Amoeba system. In spite of this decision, integrat
ing software from other systems and communication with other systems has
not presented a problem. The simplicity of the Amoeba model has made this
possible.

Communication and portability between our UNIXt systems and the
Amoeba system has been realised by putting an Amoeba driver in the UNIX
kernel, and a UNIX interface in one of the Amoeba run-time libraries. With
these facilities we can test Amoeba software on the UNIX systems, we can
build services that run under UNIX and provide access to UNIX services from
the Amoeba system, and we can run UNIX software on Amoeba [Renesse84].

The Amoeba driver effectively provides UNIX processes with extra system
calls for sending and receiving Amoeba requests and replies, both locally and
remotely. Services can thus be set up to provide access to facilities offered by

* For simplicity, we assume a broadcast network
t UNIX is a Trademark of AT&T Bell Laboratories.

300

UNIX, such as the file system.
The UNIX interface for Amoeba consists of a library that is linked into

UNIX programs. The library interprets system calls, such as open, read, and
write by sending appropriate requests to a UNIX-like file server, called Monix.
Even system calls, such as fork and exec could be interpreted with little trou
ble. Many programs, written for UNIX, now run on Amoeba without any
significant performance penalty.

This approach to interfacing to guest operating systems has been most use
ful: No concessions were needed in the design of Amoeba, the interfaces
(driver plus library) were written and tested in weeks rather than months, and
the UNIX population is happy with some new distributed services.

REFERENCES

[Mullender84]
MULi.ENDER, S. J., "A Secure High-Speed Transaction Protocol",
Report CS-R8417, Centre for Mathematics & Computer Science (CWI),
Amsterdam, October 1984.

[Mullender85]
MULi.ENDER, SAPE J. and TANENBAUM, ANDREW S., "Protection and
Resource Control in Distributed Operating Systems", Report IR-79,
Vrije Universiteit, Amsterdam, June 1985.

[Mullender86]
MULi.ENDER, s. J. and TANENBAUM, A. s., "The Design of a
Capability-Based Distributed Operating System," The Computer Journal,
vol. 29, no. 4, pp.289-300, 1986.

[Renesse84]
RENESSE, ROBBERT VAN, TANENBAUM, ANDREW S., and MULLENDER,
SAPE J., "Connecting UNIX Systems Using a Token Ring," Proceedings
of the Cambridge EUUG Conference, September 1984.

Connecting Unix Systems Using a Token Ring

Robbert van Renesse
Andrew S. Tanenbaum

Department of Mathematics and Computer Science
Vrije Universiteit

Amsterdam, The Netherlands

Sape J. Mullender
Centre for Mathematics and Computer Science

Amsterdam, The Netherlands

As part of the research on distributed operating systems being done at the Vrije
Universiteit, we have implemented a set of network-oriented programs for use
on several UNIXt machines connected by a high-speed token ring. With these
tools it is possible to transfer files between machines, log in to remote
machines, and implement multimachine shell scripts. The transaction protocols
discussed in another paper at this EUUG meeting are used to implement two
basic services: a "shell server" and a data transfer service. Other services are
easily implemented as shell scripts that use these services. A file transfer pro
gram, for instance, executes the command "to < file1" on one machine, and
"from > file2" on the other machine. More examples of these facilities and
their implementation and performance are discussed in the paper.

1. INTRODUCTION

301

At our university we are developing a distributed operating system called
Amoeba [Mullender86]. As a spin off from this research, we have incor
porated some of the Amoeba interfaces into UNIX, and used these interfaces to
build some application programs for communicating between UNIX systems.
These tools include file transfer, remote execution and remote login. In this
paper we describe the different layers into which our implementation is
divided, and the interfaces that connect them, and discuss the performance of
our implementation.

When we started this project we had 2 PDP11/44's running UNIX V7, 2
VAX 750's* running Berkeley 4.lBSD and 8 Intel 8086's and 8 Motorola
68000's running Amoeba 1.0. As Amoeba was designed to be a distributed

t UNIX is a Trademark of AT&T Bell Laboratories.
* PDP, VAX and UNIBUS are registered trademarks of Digital Equipment Corporation.

Connecting UNIX Systems Using a Token Ring
ROBBERT VAN RENESSE, ANDREW S. TANENBAUM, and SAPE J. MULi.ENDER
Proceedings of the Cambridge EUUG Conference
September 1984

302

system, we needed a network.
Our network had to be fast, even under heavy load, so a ring network

seemed the best choice. After some study, we chose ProNET. *
[Saltzer80] This is a 10 Mbit/sec star shaped ring network with decentralized

control and token arbitration, supporting up to 255 hosts. It can send and
receive packets concurrently, do scatter/gather operations, has variable length
packets up to 2044 bytes, checks parity, and has a primitive hardware ack
nowledgement bit. Pronet interfaces exist for UNIBUS and MULTIBUSt;
both are used in our machines.

Our desires, with respect to UNIX, were modest. We did not want to make
a distributed system, but only some capabilities to do file transfer and remote
execution. In retrospect, we feel that we have achieved these objectives.

2. NETWORK INTERFACE

Network application programs need a mechanism to commmunicate reliably.
We have designed a network interface that is simple to use, which uses a
efficient, simple and fast protocol. We envision communication between two
processes, one is called the server and the other the client. A server handles
requests from clients. When the server has handled the request it sends a reply
back to the client; the sending of a request to the server and a reply back to
the client is called a transaction* [Mullender84].

The transaction primitives are:

typedef struct Mref {
char *M oob;
char *M-buf;
unsigned M _len;

} Mref;

The client, in order to do a transaction calls

trans(cap, req, rep);
Cap *cap; Mref *req, *rep;

The server receives requests and sends replies with

getreq(port, cap, req);
Port *port; Cap *cap; Mref *req;

putrep(rep);
Mref *rep;

* ProNET is a trademark of Proteon Associates, Inc.
t MULTIBUS is a trademark of Intel, Inc.
:j: Not to be confused with the concept "atomic transaction."

303

3. USER PROGRAMS
And now the moment of truth: can the primitives we designed be used to
make useful programs? The basic things we want are file transfer and remote
execution. In this section we will discuss some of the programs we have built;
they fulfilled our desires and are now among the most-used programs on our
UNIX systems.

3.1. File transfer
The first thing expected of a fast local network is fast file transfer. We have
made two simple programs to accomplish basic data transfer, requiring the
user to be logged in on both the machine producing the data, and the machine
consuming the data. Their syntax is:

from identifier
to identifier

To reads from standard input and from writes to standard output. If the
identifiers of to and from are the same, the input data to to becomes the output
data of from.

For example, when "to hamlet < /etc/passwd" is executed on machine A,
and "from hamlet > /etc/passwd" on B, the password file of machine A is
copied to the password file of B. The same can be done with the execution of
"rep A!/etc/passwd B!/etc/passwd," called at any machine on the network;
rep will be treated in a later section.

3.2. Remote login
As programmers are lazy, they do not like to walk from terminal to terminal
to work on different machines, especially if the terminals are in different
rooms, floors or buildings. So a desire existed to be able to login onto any
computer from any terminal; therefore, we made our own version of the cu
command to call another UNIX system, except that our version does not lose
characters. The syntax is:

call machine-name

After calling this program you get a login message from the remote machine,
and you can login and work onto that machine as if the terminal is connected
directly to the new machine, with one exception: lines beginning with a 'T' are
special. Their meaning is as follows:

T.: switch back to local machine;
T!: shell escape;
TT: send a 'T' to the remote machine;
T%take from [to]: copy file "from" to local machine;
T%put from [to]: copy file "from" to remote machine.

To execute call you will have to be logged in on some machine. If you are not,
you can login as "remote." Instead of a shell you get a program that asks you
for the machine you want to login on, and then executes call.

304

So each terminal is effectively connected to each machine. At the moment,
if you inspect what each user is doing in our department, you will notice that
half of them are executing call. It is useful because most of our machines are
dedicated to one or two specific projects, and most of the faculty members are
working on projects on different machines.

3.3. Remote execution
Many times you just want to execute a simple command at a remote machine
without going to the trouble of logging in; e.g., you want to know if you are
still in the top 10 of your favourite game on a certain machine, and if you are
not you will have to login on this machine to fight for your place. Commands
are executed on a remote machine with:

rsh machine command

The output of the command is defaulted to the user's terminal, but can be
redirected in the usual way, the input comes from "/dev/null." For example,
"rsh A who" will give you a listing of the person's who are logged in on
machine A.

It is now possible to run your programs on multiple machines. For example,
if you want to run an neqnlnroff job, you could run it on two machines as fol
lows:

(neqn file I to format)&
rsh machine "from format I nroff -ms" > out

The nroff output is redirected to the file "out" on the local machine. If you
want to direct input to the remote command, and split standard output and
error output, you could do something like this:

rsh machine "from input I command I to output" >&2 &
from output&
to input

This means: execute command at the remote machine, with input from the pro
cess "from input" and output to "to output." Locally a "from output" is
started in the background to catch the standard output of the command; the
standard input is sent to the remote machine with "to input." The error out
put is done by the rsh process. If you put all this in a shell script, you can
execute a command as if it runs locally. In the special case that this command
is "sh -i," you can almost work on the remote machine as if logged in there.

3.4. Other useful programs
Out of the basic elements of file transfer and remote execution many interest
ing programs can be built. In this section we will discuss the programs used
most on our machines; all these programs are shell scripts. Many of these
scripts call to and from, which need a unique identifier as argument; for this
purpose, the program uniqport outputs a random string of printable characters,
to used as argument to from or to. The presented implementations of the

305

programs are slightly simplified.
For file transfer it is a nuisance to have to login on two machines; therefore,

we made a shell script called rep which transfers files from any place in the
network to any other place. Its syntax is:

rep [machinel!]filel [machine2!]file2

This will transfer the first file to the second. One can leave out the machine
part if the file is on the local machine. An implementation, in which the
machine parts are non;optional, could be:

IFS= ! port= 'uniqport'
(set $1; rsh $1 "cat $2 I to $port")&
(set $2; rsh $1 "from $port I cat > $2")

A program related to rep is rcat, with syntax:

rcat [-] [machine!]file ...

and obvious meaning.
An implementation of this command, with exactly one file argument, could

be:

IFS=!
set $1
case$# in
1) cat $1 ;;
2) rsh $1 cat $2 ;;
*) echo "Usage: $0 [machine!]file" >&2 ;;
esac

Here is another thing about programmers: they are nosy. They want to know
where their fellow-programmers are logged onto, and what they are doing.
For this purpose we created the programs rwho and rw, which give information
about the whereabouts and actions of all person logged in on any machine.

In our department we have several different printers attached to several
different machines. Some produce ugly output fast, others produce pretty out
put slowly. It would be nice to print a file on an appropriate printer, indepen
dent of the machine the printer is attached to, or the system the file is on.
With the program rpr you can do the same as with !pr, but with the advantages
of location independence:

rpr printer [file ...]

Its implementation, in a configuration having two printers on the machine
called "tjalk" and one on the machine "klipper," is:

306

case $printer in
tjalk) mac= tjalk com= lpr ; ;
pmds) mac= tjalk com= opr ; ;
klipper) mac=klipper com=lpr ;;
*) echo "$0: unknown printer" >&2; exit 1 ;;
esac
port= 'uniqport'
rsh $mac "from $port I $com" &
shift
pr -t $: I to $port ;;

Each shell script was written in 1 to 15 minutes; the basic elements of our
network utilities (from, to and rsh) have proved their strength.

3.5. Implementation
Now having described the communication programs and the shell scripts we
have built with them, we will discuss how from, to, rsh and call are imple
mented; in particular, we will take a look at the servers needed. All these pro
grams use transactions as communication mechanism.

The implementation of from and to is simple: from acts as a server waiting
for request to output data to standard output, to acts as a client doing transac
tions requesting the from process to output the data to has read. The port
used in the transaction header is just the identifier given as argument to to and
from.

To execute a command on a remote machine, a server is needed that awaits
a request and executes it when one arrives. The rsh command is nothing but a
client process doing a transaction with this server, requesting a command to be
executed, and awaiting a reply saying the command has been executed. The
servers on the different machines listen to different ports; given a machine's
name, rsh knows the port to use*.

For remote login one also needs a server. Although the server for remote
execution could be used for this purpose too, a new one is made. A simple
minded implementation of call could be the following:

rsh machine "from input I sh -i" &
to input

The problem here is that the remote shell has pipes for input and output; for
example, you can not do ioctl's, or send signals along pipes. Therefore, we
installed a device driver implementing a "pseudo terminal." The job of the
remote login server is to manage these pseudo terminals.

A pseudo terminal really consists of two devices: a master and a slave dev
ice. The master device can be opened by a process simulating the terminal by
writing to it for terminal input, or reading from it for terminal output; the

* The port is a function of the machine's name.

307

slave device just looks like a terminal device to UNIX. The master device is
called "/dev/pty.XX," and the slave device "/dev/tty.XX." The slave device is
put in "/etc/ttys" as the other terminals are, so a getty process can manage it.
The master device has two processes driving it: the first writing to it simulating
the pseudo-keyboard, and the second reading from it simulating the pseudo
printer. These processes are just from and to, so that the pseudo terminal can
be controlled at the local machine. All the remote login server does when it
gets a request, is pick a free pseudo terminal and start the from and to
processes.

The client process call sends a message to the server requesting for a pseudo
terminal, sets the local terminal in RAW mode, and starts a from and a to.
The from catches the output from the pseudo terminal, and the to will send its
input to the pseudo terminal. Call just copies its input to the to process via a
pipe, except for the lines beginning with a 'T', for which it must do some local
processing.

As an example of how this mechanism works, we will consider what happens
when the user types a DEL character, with the intention to generate an inter
rupt at the remote machine. First, the DEL is read by the local terminal
driver, but because it is working in RAW mode, it just passes the character to
the reader: the call process. Call outputs it in the pipe, giving the DEL to the
to process, which sends it to the remote from process; from writes it to the con
trolling site of the pseudo terminal device. Now the DEL character is treated
as if the pseudo terminal was an ordinary terminal where a DEL was typed in:
an interrupt is sent to all the processes belonging to the process group of this
terminal.

Although the characters typed in when executing call pass through a pipe,
are sent to and echoed by the remote machine, and thus sent over the network
twice, they are sent back to the terminal fast enough to see only a delay in the
exceptional case of a lost packet, when the corresponding character has to be
retransmitted. All the network programs are fast enough to work with, even
by impatient programmers; but their success is mostly because of the simpli
city of usage.

4. PERFORMANCE

In this section we will give some performance figures for the rates we achieve
using from and to. They were measured during the middle of the day, i.e.,
many persons were logged in, of whom some were working. Running the tests
on a single user system sometimes doubles the data rate, but these figures are
not of any importance, since in practice the systems are always multiuser. On
the other hand, the performance drops fast if the systems are heavily used.
The rates, as shown in figure 1, are not bad compared to most other systems.

308

VAX750 PDP 11/44
VAX750 25,000 15,000

PDP 11/44 15,000 10,000

FIGURE 1. Data transfer rates in bytes per second over ProNET from
user process to user process. The VAX's run 4.lBSD, and
the PDP's V7. The buffer size is 512 bytes.

When we made the buffer size 2048 bytes on the VAX's, we achieved a data
rate of 90,000 bytes per second (without file 1/0). Unfortunately we could not
use this size in general as we could not enlarge the buffer size on the PDP's.

As it does not matter where you run the network software, you may also run
from and to on the same machine. The rates we achieve now are in figure 2.
As these rates are the same as when runningfrom and to locally, we may con
clude that ProNET is not the bottleneck, but either the protocol or UNIX.
Since our protocol is light weight, it must be UNIX. Indeed, when we look at
where the most time is spent, it is in copying the user buffer to a kernel buffer,
and in setting the timers.

VAX 750 PDP 11/44
25,000 10,000

FIGURE 2. Local rates. From and to both run on the same machine,
and do not use ProNET.

REFBllENCES

[Mullender84]
MULLBNDER, S. J. and RENESSE, R. VAN, "A Secure High-Speed Tran
saction Protocol," Proceedings of the Cambridge EUUG Conference, Sep
tember 1984.

[Mullender86]
MULLBNDER, S. J. and TANENBAUM, A. S., "The Design of a
Capability-Based Distributed Operating System," The Computer Journal,
vol. 29, no. 4, pp.289-300, 1986.

[Saltzer80]
SALTZER, J. H. and POGRAN, K. T., "A Star-Shaped Ring Network with
High Maintainability," Computer Networks, no. 4, pp.239-244, 1980.

Contributing Authors

Erik H. Baalbergen 2

Henri E. Bal 2

Jane Hall 3

Sape J. Mullender 1

Robbert van Renesse 2

Hans van Staveren 2

Andrew S. Tanenbaum 2

Paul M.B. Vitfmyi 1

Centre for Mathematics and Computer Science
Kruislaan 413, 1098 SJ Amsterdam, Netherlands
phone +31 20 5929333, telex 12571 MACTR NL

2 Subfaculteit Wislrunde en Informatica, Vrije Universiteit
De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
phone + 31 20 548 8080

3 Computer Science Division, Hatfield Polytechnic
P.O. Box 109, College Lane, Hatfield, Herts ALIO 9AB, United Kingdom
phone +44 7072 79345, telex 262413

309

CW/ TRACTS
I D.H.J. Epema. Surfaces with canonical hyperplane secrions.
1984.
2 J.J. Dijkstra. Fake _topological Hilbert SfHJCes and c/uJracteri•
zations Of dimension m terms of negl,g1bi/ity. 1984.
3 A.J. van der Schaft. System theoretic descriptions of physical
systems. 1984.
4 J. Koene. Minimal cost flow in processing networks, a primal
approach. 1984.
5 B. Hoogenboom. lntertwiningjunctions on compact Lie
groups. 19M.
6 A.P.W. Bohm. Datajlow computation. 1984.
7 A. Blokhuis. Few-distance sets. 1984.
8 M.H. van Hoom. Algorithms and approximations for queue
ing systems. 1984.
9 C.P.J. Koymans. Models of the lambda calculus. 1984.
JO C.G. van der Laan, N.M. Temme. Calculation of special

functions: the gamma function. the rxponential integrals and
error-like functions. 1984.
11 N.M. van Dijk. Controlled Markov processes; time
discretization. 1984.
12 W.H. Hundsdorler. The numerit'al solution of nonlinear
stiff initial value problems: an analysis of one step methods.
1985.
13 D. Grune. On the design of ALEPH. 1985.
14 J.G.F. lbiemann. Analytic spaces and dynamic program
ming: a measure theoretic approach. 1985.
15 FJ. van der Linden. Euclidean rings wilh two infini1e
primes. 1985.
16 R.J.P. Groothuizen. Mixed elliptic-hyperbolic partial
differential operators: a case-study in Fourier integral opera
tors. 1985.
17 H.M.M. ten Eikelder. Symmetries for dynamical and Ham
iltonian syslems. 1985.
18 A.D,M. Kester. Some large deviation results in statistics.
1985.
19 T.M.V. Janssen. Foundations and apf.lications of ~omague f ;grg_mar, part I: Philosop~y. framewor , computer science.

20 B.F. Schriever. Order dependence. 1986.
21 D.P. van der Vecht. Inequalities for stopped Brownian
motion. 1986.
22 J.C.S.P. van der Woude. Topological dynamix. 1986.
23 A.F. Monna. Methods, concepts and ideas in mathematics:
aspects of an evolution. 1986.
24 J.C.M. Baeten. Filters and ultrafilters over definable subsets
of admissible ordinals. 1986.
25 A.W.J. Kolen. Tree network and planar rectilinear location
theory. 1986.
26 A.H. Veen. The misconstrued semicolon: Recondling
imperative languages and dataftow machines. 1986.
27 AJ.M. van Engelen. Homogeneous zero-dimensional abso
lute Borel sets. 1986.
28 T.M.V. Janssen. Foundations and applications of Montague
grammar, part 2: Applications to natural language. 1986.
29 H.L. Trentelman. Almost invariant subspaces and high gain
feedback. 1986.
30 A.G. de Kok. Production-inventory control models: approxi
mations and algorithms. 1987.
31 E.E.M. van Berkum. Optimal paired comparison designs for
factorial experiments. 1981.
32 J.H.J. Einmahl. Multivariate empirical processes. 1987.
33 OJ. Vrieze. Stochastic games with finite state and action
spaces. 1987.
34 P.H.M. Kersten. Infinitesimal symmetries: a computa1ional
approach. 1987.
35 M.L. Eaton. Leciures on topics in probability inequalities.
1987.
36 A.H.P. van der Burgh, R.M.M. Matlheij (eds.). Proceed
ings of the first international conference on indus1rial and
applied mathematics (IC/AM 81). 1987.
37 L. Stougie. Design and analysis of algorithms for stochastic
integer programming. 1987.
38 J.B.G. Frenk. On Banach algebras, renewal measures and
regenerative processes. 1987.

39 H.J.M. Peters, O.J. Vrieze (eds.). Surveys in game theory
and related topics. 1987. _
40 J.L. Geluk. L. de Haan. Regular varialion, extensions and
Tauberian theorems.)987.
41 Sape J. Mullender (ed.). The Amoeba distributed operating
system: Selected papers /984-/987. 1987.
42 P.R.J. Asveld, A. Nijhoh (eds.). Essays on concepts, for
malisms, and tools. 1987.
43 H.L. Bodlaender. Distributed computing: slructure and
complexity. 1987.
44 A.W. van der Vaart. Statistical es1imation in large parame
ter spaces. 1988.
45 S.A. van de Geer. Regression ana{l'Sis and empirical
processes. 1988.
46 S.P. Spekreijse. Multigrid solution of the steady Euler equa
tions. 1988.
47 J.B. Dijkstra. Ana{ysis of means in some non-standard
situalions. 1988.
48 F.C. Drost. Asymptotics for generalized chi-square
goodness-of-fit tests. I 988.
49 F.W. Wubs. Numerical solu1ion of the shallow-water equa•
tions. 1988. ·
50 F. de Kerf. Asymptotic ana{vsis of a class of perturbed
Korteweg-de Vries initial value problems. I 988.
51 PJ.M. van Laarhoven. Theoretical and compwational
aspects of simulated annealing. 1988.
52 P.M. van Loon. Continuous decoupling transformations for
linear boundary value problems. 1988.
53 K.C.P. Machielsen. Numerical solu1ion of optimal control
problems with state constraints ~_l' sequential qundratic pro
gramming in function space. 1988.
54 L.C.R.J. Willenborg. Computational aspects of survt:Y data
prqcessing. 1988.
55 GJ. van der Steen. A program ge~erator for recognition,
parsing and transduction with syntacllc patlerns. 1988.
56 J.C. Ebergen. Trandating programs into delay-insensim·e
circuils. 1989.
57 S.M. Verduyn Lunel. Exponential type calculus for linear
delay equations. 1989.
58 M.C.M. de Gunst. A random model for plant cell popula
tion growth. 1989.
59 D. van Dulst. Characterizations of Banach spaces nm con
taining / 1• 1989.
60 H.E. de Swart. Vacillation and predictahili{r properties of
low-order atmospheric spectral models. 1989.
61 P. de Jong. Central limit theorems for generalized multil
inear forms. 1989.
62 VJ. de Jong. A specification system/or stalistical software.
1989.
63 B. Hanzon. ldentifiabili~v. recursive identification and
spaces of linear dynamical systems, part I. 1989.
64 B. Hanwn. Jdentifiabiliiy, recursive identification and
spaces of linear dJ•namica/ ~stems, part I I. 1989.

MATHEMATICAL CENTRE TRACTS
I T. van der Walt. Fixed and almost fixed points. 1963.
2 A.R. Bloemena. Sampling from a graph. I 964.
3 G. de Leve. Generalized Markovian decision processes, part
/: model and method 1964.
4 G. de Leve. Generalized MarkOllian decision processes, part
II: probabilistic background 1964.
5 G. de Leve, H.C. Tijms, PJ. Weeda Generalized Markovian
decision processes, applications. 1970.
6 M.A. Maurice. Compact ordered spaces. 1964.
7 W.R. van Zwet. Convex transfonnations of random variables.
1964.
8 J.A. Zonneveld. Automatic numerical integration. 1964.
9 P.C. Baayen. Universal morphisms. I 964.
IO E.M. de Jager. Applications of distributions in mathematical
physics. I 964.
11 A.B. Paalman-de Miranda. Topological s;migroups. 1964.
12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken, t965"." Wijngaarden. Formal properties of newspaper Dutch.

13 H.A. Lauwerier. Asymptolic expansions. 1966, out of print:
replaced by MCT 54.
14 H.A. Lauwerier. Calculus of variations in mathematical
physics. 1966.
15 R. Doornbos. Slippage tests. 1966.

16 J.W. de Bakker. Formal definition iprogrammi"l,
~a~ges with an application to the de mition of AL OL 60.

17 R.P. van de Riel. Formula manipulation in ALGOL 60,
part 1. 1968.
18 R.P. van de Riel. Formula manipulation in ALGOL 60,
part 2. I 968.
19 J. van der Slot. Some properties related to compactness.
1968.
20 P.J. van der Houwen. Finite difference methods for solving
partial differential equations. 1968.
21 E. Wattel. The compactness oper<itor in set theory and
topology. 1968.
22 T.J. Dekker. ALGOL 60 procedures in numerical algebra,
part I. 1968.
23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in
numerical algebra, part 2. 1968.
24 J.W. de Bakker. Recursive procedures. 1971.
25 E.R. Paerl. Representations of the Lorentz group and projec•
live geometry. 1969.
26 European Meeting 1968. Selected statistical papers, part I.
1968.
27 European Meeting 1968. Selected statistical papers, part 11.
1968.
28 J. Oosterhofr. Combination of one-sided statistical tests.
1969.
29 J. Verhoeff. Error detecting decimal codes. 1969.
30 H. Brandt Corstius. Exercises in computational linguistics.
1970.
31 W. Molenaar. Approximations to the Poisson, binomial and
hypergeometric distribution functions. 1970.
32 L. de Haan. On regular variation and its applic01ion to the
weak convergence of sample extremes. 1970.
33 F.W. Steutel. Preservation of infinite divisibility under mix
ing and related topics. 1970.
34 I. Juhasz, A. Verbeek, N.S. Kroonenberg. Cardinal Junc
tions in topology. 1971.
35 M.H. van Emden. An analysis of complexity. 1971.
36 J. Grasman. On the birth of boundary layers. 1971.
37 J.W. de Bakker, G.A. Blaauw, A.J.W. Duijvestijn, E.W.
Dijkstra, P.J. van der Houwen, G.A.M. Kamsteeg-Kemper,
F.E.J. Kruseman Aretz, W.L. van der Poe!, J.P. Schaap
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 Informatica
Symposium I 971.
38 W.A. Verloren van Themaat. Automatic analysis of Dutch
compound words. 1972.
39 H. Bavinck. Jacobi series and approximation. 1972.
40 H.C. Tijms. Analysis of (s,SJ inventory models. 1972.
41 A. Verbeck. Superextensions of topological spaces. 1972.
42 W. Vervaat. Success epochs in Bernoulli trials (with applica•
tions in number theory). f972.
43 F.H. Ruymgaart. Asymptotic theory of rank tests for
independence. f973.

44 H. Bart. Meromorphic aperator valued Junctions. I 973.
45 A.A. Balkema. Monotone transformations and limit laws.
1973.
46 R.P. van de Riet. ABC ALGOL, a portable language for
formula manipulation systems, part I: ihe language. 1973.
47 R.P. van de Riet. ABC ALGOL, a portable language for
formula manipulation systems, part 2: the compiler. 1973.
48 F.E.J. Kruseman Aretz, P.J.W. ten Hagen, H.L.
Oudshoom. An ALGOL 60 compiler in ALGOL 60, text of the
MC-compiler for the EL-X8. 1973.
49 H. Kok. Connected orderable spaces. 1974.
50 A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A.
Koster, M. Smtzoff, C.H. Lindsey, L.G.L.T._ Meertens, R.G.
Fisker (eds.). Revised report on the algorithmic language
ALGOL 68. 1976.
51 A. Hordijk. Dynamic programming and Markov potential
theory. 1914.
52 P.C. Baayen (ed.). Topological structures. 1974.
53 M.J. Faber. Metrizability in generalized ordered spaces.
1974.
54 H.A. Lauwerier. Asymptotic analysis, part I. 1974.
55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 1:
theory of designs, finite geometry and coding theory. 1974.
56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2:
graph theory, foundations, partitions and combinatorial
geometry. l 914.
57 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 3:
combinatorial group theory. 1974.
58 W. Albers. Asymptotic expansions and the deficiency con
cept in statistics. 1975.
59 J.L. Mijnheer. Sample path properties of stable processes.
1975.
60 F. Gobel. Queueing models involving buffers. 1915.
63 J.W. de Bakker (ed.). Foundations of computer science.
1975.
64 W.J. de Schipper. Symmetric closed categories. 1975.
65 1. de Vries. Topological transformation groups, /: a categor
ical approach. 1975.
66 H.G.J. Pijls. Logically convex algebras in spectral theory
and eigenfunction expansions. 1976.
68 P.P.N. de Groen. Singularly perturbed differential aperators
of second order. 1976.
69 J.K. Lenstra. Sequencing by enumerative methods. 1977.
70 W .P. de Roever. Jr. Recursive program schemes: semantics
and proof theory. I 976.
71 J.A.E.E. van Nunen. Contracting Markov decision
processes. 1976.
72 J.K.M. Jansen. Simple periodic and non-periodic Lam;
functions and their applications in the theory of conical
waveguides. 1977.
73 D.M.R. Leivant. Absoluteness of intuitionistic logic. 1979.
74 H.J.J. te Riele. A theoretical and computational study of
generalized aliquot sequences. l 976.
75 A.E. Brouwer. Treelike spaces and related connected topo
logical spaces. 1977.
76 M. Rem. Associons and the closure statement. 1976.
77 W.C.M. Kallenberg. Asymptotic optimality of likelihood
ratio tests in exponential families. 1978.
78 E. de Jonge, A.C.M. van Rooij. Introduction to Riesz
spaces. l 977.
79 M.C.A. van Zuijlen. Emperical distributions and rank
statistics. 1977.
80 P.W. Hemker. A numerical study of stiff two-point boundary
problems. l 977.
81 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer
science II, part I. I 976.
82 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer
science II, part 2. I 976.
83 L.S. van Benthem lulling. Checking Landau's
"Grundlagen" in the AUTOMATH system. 1979.
84 H.L.L. Busard. The translation of the elements of Euclid
from the Arabic into Latin by Hermann of Carinthia (?), books
vii-xii. 1977.
85 J. van Mill. Supercompactness and Wallman spaces. 1977.
86 S.G. van der Meulen, M. Ve)dhorst. Torrix I, a program
ming Sf Stem for operations on vectors and matrices over arbi
trary Jields and oJ variable size. 1978.
88 A. Schrijver. Matroids and linking systems. 1977.
89 J.W. de Roever. Complex Fourier transformation and
analytic functionals with unbounded carriers. 1978.

90 L.P J. Groencwcgen. Chatocterization of optimal strategies
in dynamic gamn. 1981.
91 J.M. Geysel. Transcendena, in fu,fds of po.sitiH chatocteri.t
tic. 1979.
92 PJ. Weeda. Finite generalized Markov pn,gramming. 1979.
93 H.C. Tijms. J. Wessels (eds.). Markov decuion theory.
19n.
94 A. Bijlsma. Simultaneous approximations in transcendental
numbertheo,y. 1978.
95 K.M. van Hee. Bayesian control of Markov chains. 1978.
96 P.M.B. Vitanyi. Undenmaye, systems: stn«llln, languages,
and growth fanctions. 1980.
97 A. Federgrucn. Markovian control problems; functional
equations anti algorithms. 1984.
98 R. Geel. Singular perturbations of hyperbolic type. 1978.
99 J.K. Lenstra, A.H.G. Rinnooy Kan, P. van Emde Boa,s
(eds.). Interfaces between computer sciella, and operaJions
research. 1g'78.
100 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed
ings biaontennial congress of the Wukundig Genootschap. part
/. 1979.
101 P.C. Baayen, D. van Dulst, J. Ooslcrhoff (eds.). Proceed
ings bicentennial congress of the Wukundig Genootschap, part
2. 1979.
102 D. van Dulst. Ref/exiH and superrejlexive Banach spaces.
1978.
103 K. van Ham. Chusifvinl! infinitely divuible dutributions
by functional "l/ll"tions. Im
104 J.M. van Wouwe. Go-spaces and generalizations of metri•
zability. 1979,
105 R. Helmers. ~h expansions for linear combinations
of ordl,r statutics. 19ll2.
106 A. Scbrijver (ed.). Packing and covering in combinatorics.
1979.
107 C. den Heijer. The nwnerical solution of nonlinear opera
tor equations by imbetlding methods. 1979.
108 J.W. de Bakker, J. van 1-Jwen (eds,). Foundations of
computer sciena, Ill, part I. 1919.
109 J.W. de Bakker, J. van 1-Jwen (eds.). Foundations of
computer sciena, Ill, part 2. 1919.
110 J.C. van Vliet. ALGOL 68 transput, part I: hutorical
review and discussion of the implementaJion model 1979.

:~t),;;~ r;;J: ALGOL 68 transput, part II: an implemen•

112 H.C.P. Bcrbcc. RDndom walks with stalionary increments
and renewal theory. 1919.
113 T .A.B. Snijdcrs. Asymptotic optimality theory for testing
problems with restricted alternatiHs. 1919. ·
114 AJ.E.M. Janssen. Application of the Wigner distribution to
harmonic analysu of generalized stochastic processes. 1919.
115 P.C. Baayen, J. van Mill (eds.). Topological structures II,
part I. 1979.
116 P.C. Baayen, J. van Mill (eds.). Topological structures II,
part 2. 1919.
117 PJ.M. Kallenberg. Branching processes with continuow
state space. 1979.
118 P. Grocneboom. Large delliations and a,ymptotic efficien
cies. 1980.
119 FJ. Peters. SP'!'•• matrices and substructures, with a novel
implementation oJjinite element algorithms. 1980.
120 W.P.M. de Ruyter. On the a,ymptotic analysu of large
scale ocean circulation. 1980.
121 W.H. Haemcrs. Eigenvalue techniques in design and graph
theory. 1980.
122 J.C.P. Bus. Numerical solution of systems of nonlinear
equations. 1980.
123 I. Yuhllsz. Cardinal functions in topology - ten years later.
1980.
124 R.D. Gill. Censoring and stochastic integrals. 1980.
125 R. Eising. 2-D systems, an algebraic approach. 1980.
126 G. van der Hoek. Reduction methods in nonlinear pro
gramming. 1980.
127 J.W. K.lop. Combinatory ,etb,ction systems. 1980.
128 AJJ. Talman. Variable dimension fixed point algorithms
and triangulations. 1980.
129 G. van der Laan. Simplicialfixedpoint algorithms. 1980.
130 PJ.W. ten Hagen, T. Hagen, P. Klint, H. Noot, H.J.
Smt, A.H. Veen. /LP: intermediate language for pictures.
1980.

131 RJ.R. Back. Correctness preseningprogram refinements:
proof theory and applications. 1980.
132 H.M. Mulder. The intenal fimction of a graph. 1980.
~;._.A~8f,1-· Statutical performance of location esti-

134 J.C. van Vliet, H. Wuppcr (eds.). Proceedings interna
tional conferena, on ALGOL 68. 1981.
135 J.A.G. Gtocncndijk, T.M.V. Janssen, MJ.B. Stokhof
(eds.). Formal methods in the study of language, part I. 1981.
136 J.A.G. Grocncndijk, T.M.V. Janssen. M.J.B. Stokhof
(eds.). Formal methods in the study of language, part II. 1981.
137 J. Telgen. Redundancy and linear programs. 1981.
138 H.A. Lauwerier. Mathematical models of epidemics. 1981.
139 J. van der Wal. Stochastic t/ynamic programming, succes
sive approximations and nearly optimal strategies for Markov
decu,on processes and Markov games. 1981.
140 J.H. van Geldrop. A mathematical theory of ,r.:;,e i9s1rnge economies without the no-critical-point rypothesu.

141 G.E. Welicrs. Abel.Jacobi uogenies for certain types of
Fano three/olds. 1981.
142 H.R. Bennett, DJ. Lutur (eds.). Topology and ordl,r
structures, part I. 1981.
143 J.M. Schumacher. Dynamic feedback in finite- and
infinite-dimensional linear systems. 1981.
144 P. Ei.if:nraam. The solution of initial value problems using
;n;81.al arithmetic; formtilation mid analysu of an algorithm

145 A.J. Brentjcs. Mtilti-dimensional continued fraction algo
rithms. 1981.
146 C.V.M. van der Mee. Semigroup and factorization
methods in transport theory. 1981. :;~r-H. Tigelaat. Identification and informati>e sample size.

148 LC.M. Kallenberg. Linear programming and finite Mar
ktwian control prabiems. 1983.
149 C.B. Huijsmans, M.A. Kaashock, W.A.J. Luxemburg.
W.K. Vietsch (eds.). From A to Z, proceedings of a symposium
in hono,,r of A. C. Zaanen. 1982.
150 M. Veldhorst. An analysu of sparse matrix storage
schemes. 1982.
151 RJ.M.M. Does. Higher order a,ymptotics for simple linear
rank statutics. 1982.
l~i2?.F. van der Hocven. Projections of lawless sequences.

153 J.P.C. Blanc. Application of the theory of boundary value
problems in the analysis of a queueing model with paired ser
vices. 1982.
154 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational
methods in number theory, part I. 1982.
155 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational
methods in number theory, part II. I 982.
156 P.M.G. Apers. Query processing and data a/location in
dutributed database systems. 1983.
157 H.A.W.M. Kneppers. The covariant classification of two
dimensional smooth commutati>e formal groups OHr an alge
braically closed field ofpo.sili>e cnaracterutic. 1983.
158 J.W. de Bakker, J. van 1-Jwen (eds.). Foundations of
computer science IV. distributed systems, part I. 1983.
159 J.W. de Bakker, J. van 1-Jwen (eds.). Foundations of
computer science IV, distributed systems, part 2. 1983.
160 A. Rczus. Abstract AUTOMATH. 1983.
161 G.F. Helminck. Eisenstein series on the metaplectic group,
an algebraic approach. 1983.
162 JJ. Dil<. Tests for preference. 1983.
163 H. Schippers. Mtiltiple grid methods for equations of the
second kind with applications in fluid mechanics. 1983.
164 F.A. van der Duyn Schouten. Marko, decision processes
with continuous time parameter. 1983.
165 P.C.T. van der Hocven. On point processes. 1983.
166 H.B.M. Jonkers. Abstraction, specification and implemen•
~";~3. techniques, with an application to garbage collection.

167 W.H.M. Zijm. Nonnegati>e matrices in t/ynamic program
ming. 1983.
168 J.H. Evertsc. Upper bounds for-the numbers of solutions of
diophantine equations. 1983.
169 H.R. Bennett, D.J. Lutur (eds.). Topology and order
structures, part 2. I 983.

