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Preface

This tract contains selected articles relating to the Amoeba Distributed Operat-
ing System which were published between 1984 and 1987. The papers reflect a
joint effort between the Centre for Mathematics and Computer Science, and
the Vrije Universiteit, both located in Amsterdam, the Netherlands. Any cita-
tions should refer to the original publications rather than this collection.
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Distributed Operating Systems

Andrew S. Tanenbaum
Robbert van Renesse

Department of Mathematics and Computer Science
Vrije Universiteit
- Amsterdam, The Netherlands

Distributed operating systems have many aspects in common with centralized
ones, but they also differ in certain ways. This paper is intended as an intro-
duction to distributed operating systems, and especially to current university
research about them. After a discussion of what constitutes a distributed
operating system, and how it is distinguished from a computer network, various
key design issues are discussed. Then several examples of current research
projects will be examined in some detail, namely the Cambridge Distributed
Computing System, Amoeba, V, and Eden.

1. INTRODUCTION

Everyone agrees that distributed systems are going to be very important in the
future. Unfortunately, not everyone agrees on what they mean by the term
“distributed system.” In this paper we will present a viewpoint widely held
within academia about what is and is not a distributed system, discuss
numerous interesting design issues concerning them, and finally conclude with
a fairly close look at some experimental distributed systems that are the sub-
ject of ongoing research at universities.

To begin with, we use the term “distributed system” to mean a distributed
operating system as opposed to a data base system or some distributed applica-
tions system, such as a banking system. An operating system is a program
that controls the resources of a computer and provides its users with an inter-
face or virtual machine that is more convenient to use than the bare machine.
Examples of well-known centralized (i.e, not distributed) operating systems
are: CP/M,! MS-DOS? and UNIX .3

A distributed operating system is one that looks to its users like an ordinary

1. CP/M is a trademark of Digital Research, Inc.
2. MS-DOS is a trademark of Microsoft.
3. UNIX is a trademark of AT&T Bell Laboratories.

The Design of a Capability-Based Distributed Operating System
S. J. MULLENDER and A. S. TANENBAUM

The Computer Journal

Vol. 29, No. 4, pp. 289-300

March 1986
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centralized operating system, but runs on multiple, independent CPUs. The
key concept here is transparency, in other words, the use of multiple processors
should be invisible (transparent) to the user. Another way of expressing the
same idea is to say that the user views the system as a “virtual uniprocessor,”
not as a collection of distinct machines. This is easier said than done.

Many multimachine systems that do not fulfill this requirement have been
built. For example, the ARPAnet contains a substantial number of computers,
but by this definition it is not a distributed system. Neither is a local network
consisting of personal computers with minicomputers and explicit commands
to log in here or copy a file from there. In both cases we have a computer net-
work but not a distributed operating system. Thus it is the software, not the
hardware, that determines whether a system is distributed or not.

As a rule of thumb, if you can tell which computer you are using, you are
not using a distributed system. The users of a true distributed system should
not know (or care) on which machine (or machines) their programs are run-
ning, where their files are stored, and so on. It should be clear by now that
very few distributed systems are currently used in a production environment.
However, several promising research projects are in progress.

To make the contrast with distributed operating systems stronger, let us
briefly look at another kind of system that we will call a “network operating
system.” A typical configuration for a network operating system would be a
collection of personal computers along with a common printer server and file
server for archival storage, all tied together by a local network. Generally
speaking, such a system will have most of the following characteristics that dis-
tinguish it from a distributed system:

° Each computer has its own private operating system, rather than run-
ning part of a global, system-wide operating system.
° Each user normally works on his own machine; using a different

machine invariably requires some kind of “remote login,” rather than
having the operating system dynamically allocate processes to CPUs.

® Users are typically aware of where each of their files are kept, and must
move files between machines with explicit “file transfer” commands,
rather than having file placement managed by the operating system.

° The system has little or no fault tolerance; if 1% of the personal com-
puters crash, 1% of the users are out of business, rather than simply
having everyone being able to continue normal work, albeit with 1%
worse performance.

1.1. GOALS AND PROBLEMS

The driving force behind the current interest in distributed systems is the enor-
mous rate of technological change in microprocessor technology. Microproces-
sors have become very powerful and cheap, compared to mainframes and min-
icomputers, so it has become attractive to think about designing large systems
composed of many small processors. These distributed systems clearly have a
price/performance advantage over more traditional systems. Another
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advantage often cited is the relative simplicity of the software - each processor
has a dedicated function - although this advantage is more often listed by peo-
ple who have never tried to write a distributed operating system than those
who have.

Incremental growth is another plus; if you need 10% more computing
power, you just add 10% more processors. System architecture is crucial to
this type of system growth, however, since it is hard to give each user of a per-
sonal computer another 10% of a personal computer. Reliability and availabil-
ity can also be a big advantage; a few parts of the system can be down
without disturbing people using the other parts.

On the minus side, unless one is very careful, it is easy for the communica-
tion protocol overhead to become a major source of inefficiency. More than
one system has been built that required the full computing power of its
machines just to run the protocols, leaving nothing over to do the work. The
occasional lack of simplicity cited above is a real problem, although in all fair-
ness, this problem comes from inflated goals: with a centralized system no one
expects the computer to function almost normally when half the memory is
sick. With a distributed system, a high degree of fault tolerance is often, at
least, an implicit goal.

A more fundamental problem in distributed systems is the lack of global
state information. It is generally a bad idea to even try to collect complete
information about any aspect of the system in one table. Lack of up-to-date
information makes many things much harder. It is hard to schedule the pro-
cessors optimally if you are not sure how many are up at the moment.

Despite these obstacles, many people think that in time they can be over-
come, so there is great interest in doing research on the subject.

1.2. SysTEM MODELS

Various models have been suggested for building a distributed system. Most
of them fall into one of three broad categories, which we will call the “mini-
computer” model, the “workstation” model and the “processor pool” model.
In the minicomputer model, the system consists of a few (perhaps even a
dozen) minicomputers (e.g., VAXes), each with multiple users. Each user is
logged onto one specific machine, with remote access to the other machines.
This model is a simple outgrowth of the central time-sharing machine.

In the workstation model, each user has a personal workstation, usually
equipped with a powerful processor, memory, a bit-mapped display, and some-
times a disk. Nearly all the work is done on the workstations. Such a system
begins to look distributed when it supports a single, global file system, so that
data can be accessed without regard to its location.

The processor pool model is the next evolutionary step after the workstation
model. In a timesharing system, whether with one or more processors, the
ratio of CPUs to logged in users is normally much less than 1; with the works-
tation model it is approximately 1; with the processor pool model it is much
greater than 1. As CPUs get cheaper and cheaper, this model will become
more and more widespread. The idea here is that whenever a user needs
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computing power, one or more CPUs are temporarily allocated to that user;
when the job is completed, the CPUs go back into the pool awaiting the next
request. As an example, when ten procedures (each on a separate file) must be
recompiled, ten processors could be allocated to run in parallel for a few
seconds, and then be returned to the pool of available processors. At least one
experimental system described below (Amoeba) attempts to combine two of
these models, providing each user with a workstation in addition to the proces-
sor pool for general use. No doubt other variations will be tried in the future.

2. NETWORK OPERATING SYSTEMS

Before starting our discussion of distributed operating systems, it is worth first
taking a brief look at some of the ideas involved in network operating systems,
since they can be regarded as primitive forerunners. Although attempts to
connect computers together have been around for decades, networking really
came into the limelight with the ARPAnet in the early 1970s. The original
design did not provide for much in the way of a network operating system.
Instead, the emphasis was on using the network as a glorified telephone line to
allow remote login and file transfer. Later, several attempts were made to
create network operating systems but they never were widely used [MILLSTEIN
1977].

In more recent years, several research organizations have connected collec-
tions of minicomputers running the UNIX operating system [RITCHIE and
THOMPSON 1974] into a network operating system, usually via a local network
[BIRMAN and ROWE 1982; BROWNBRIDGE et al. 1982; CHESSON 1975; HWANG
et al. 1982; WAMBECQ 1983]. WupIT [1983] gives a good survey of these sys-
tems, which we will draw upon for the remainder of this section.

As we said earlier, the key issue that distinguishes a network operating sys-
tem from a distributed one is how aware the users are of the fact that multiple
machines are being used. This visibility occurs in three primary areas: the file
system, protection, and program execution. Of course it is possible to have
systems that are highly transparent in one area and not at all in the other,
which leads to a hybrid form.

2.1. FILE SYSTEM
When connecting two or more distinct systems together, the first issue that
must be faced is how to merge the file systems. Three approaches have been
tried. The first approach is not to merge them at all. Going this route means
that a program on machine 4 cannot access files on machine B by making sys-
tem calls. Instead, the user must run a special file transfer program that copies
the needed remote files to the local machine, where they can then be accessed
normally. Sometimes remote printing and mail is also handled this way. One
of the best-known examples of networks that primarily support file transfer
and mail via special programs, and not system call access to remote files is the
UNIX “uucp” program, and its network, USENET.

The next step upward in the direction of a distributed file system is to have
adjoining file systems. In this approach, programs on one machine can open
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files on another machine by providing a path name telling where the file is
located. For example, one could say

open(”/machinel/pathname”, READ ONLY);
open(”machinel!pathname”, READ ONLY); or
open(”/../machinel/pathname”, READ ONLY)

The latter naming scheme is used in the Newcastle Connection [BROWNBRIDGE
et al. 1982] and Netix [WAMBECQ 1983] and is derived from the creation of a
virtual “superdirectory” above the root directories of all the connected
machines. Thus “/..” means start at the local root directory and go upwards
one level (to the superdirectory), and then down to the root directory of
“machine.” In Figure 1, the root directory of three machines, 4, B, and C are
shown, with a superdirectory above them. To access file x from machine C,
one could say

open(”/../C/x", READ ONLY)

In the Newcastle system, the naming tree is actually more general, since
“machinel” may really be any directory, so one can attach a machine as a leaf
anywhere in the hierarchy, not just at the top.

O
/ N\
/ N\
2 AN
/I\
/ \
/ | N
/ l N
/ AN
/ | \
/ | N
7 AN
/ | N
A B C
r s t U VvV W X vy z

FIGURE 1. A (virtual) superdirectory above the root directory provides
access to remote files
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The third approach is the way it is done in distributed operating systems,
namely to have a single global file system visible from all machines. When this
method is used, there is one “bin” directory for binary programs, one pass-
word file, and so on. When a program wants to read the password file it does
something like

open(”/etc/passwd”, READ ONLY)

without reference to where the file is. It is up to the operating system to locate
the file and arrange for transport of data as it is needed. LOCUS is an exam-
ple of a system using this approach [POPEK et al. 1981; WALKER et al. 1983;
WEINSTEIN et al. 1985].

The convenience of having a single global name space is obvious. In addi-
tion, this approach means that the operating system is free to move files
around between machines to keep all the disks equally full and busy, and that
the system can maintain replicated copies of files if it so chooses. When the
user or program must specify the machine name, the system cannot decide on
its own to move a file to a new machine because that would change the (user
visible) name used to access the file. Thus in a network operating system, con-
trol over file placement must be done manually by the users, whereas in a dis-
tributed operating system it can be done automatically, by the system itself.

2.2. PROTECTION

Closely related to the transparency of the file system is the issue of protection.
UNIX, and many other operating systems, assign a unique internal identifier
to each user. Each file in the file system has a little table associated with it
(called an i-node in UNIX), telling who the owner is, where the disk blocks are
located, etc. If two previously independent machines are now connected, it
may turn out that some internal User IDentifier (UID), e.g., number 12, has
been assigned to a different user on each machine. Consequently, when user
12 tries to access a remote file, the remote file system cannot see whether the
access is permitted, since two different users have the same UID.

One solution to this problem is require all remote users wanting to access
files on machine X to first log onto X using a user name that is local to X.
When used this way, the network is just being used as a fancy switch to allow
users at any terminal to log onto any computer, just as a telephone company
switching center allows any subscriber to call any other subscriber.

This solution is usually inconvenient for people and impractical for pro-
grams, so something better is needed. The next step up is to allow any user to
access files on any machine without having to log in, but to have the remote
user appear to have the UID corresponding to “GUEST” or “DEMO” or
some other publicly known login name. Generally such names have little
authority, and can only access files that have been designated as readable or
writable by all users.

A better approach is to have the operating system provide a mapping
between UIDs, so when a user with UID 12 on his home machine accesses a
remote machine on which his UID is 15, the remote machine treats all accesses
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as though they were done by user 15. This approach implies that sufficient
tables are provided to map each user from his home (machine, UID) pair to
the appropriate UID for any other machine (and that messages cannot be tam-
pered with)..

In a true distributed system, there should be a unique UID for every user,
and that UID should be valid on all machines without any mapping. In this
way no protection problems arise on remote accesses to files; as far as protec-
tion goes, a remote access can be treated like a local access with the same
UID. The protection issue makes the difference between a network operating
system and a distributed one clear: in one case there are various machines,
each with its own user-to-UID mapping, and in the other there is a single,
system-wide mapping that is valid everywhere.

2.3. EXECUTION LOCATION

Program execution is the third area in which machine boundaries are visible in
network operating systems. When a user or a running program wants to
create a new process, where is the process created? At least four schemes have
been used so far. The first of these is that the user simply says “CREATE
PROCESS” in one way or another, and specifies nothing about where.
Depending on the implementation, this can be the best way or the worst way
to do it. In the most distributed case, the system chooses a CPU by looking at
the load, location of files to be used, etc. In the least distributed case, the sys-
tem always runs the process on one specific machine (usually the machine on
which the user is logged in).

The second approach to process location is to allow users to run jobs on any
machine by first logging in there. In this model, processes on different
machines cannot communicate or exchange data, but a simple manual load
balancing is possible.

The third approach is special command that the user types at a terminal to
cause a program to be executed on a specific machine. A typical command
might be

remote vax4 who

to run the who program on machine vax4. In this arrangement, the environ-
ment of the new process is the remote machine. In other words, if that process
tries to read or write files from its current working directory, it will discover
that its working directory is on the remote machine, and files that were in the
parent process’ directory are no longer present. Similarly, files written in the
working directory will appear on the remote machine, not the local one.

The fourth approach is to provide the “CREATE PROCESS” system call
with a parameter specifying where to run the new process, possibly with a new
system call for specifying the default site. As with the previous method, the
environment will generally be the remote machine. In many cases, signals and
other forms of interprocess communication between processes do not work
properly between processes on different machines.

A final point about the difference between network and distributed
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operating systems is how they are implemented. A common way to realize a
network operating system is to put a layer of software on top of the native
operating systems of the individual machines (e.g., MAMRAK et al. 1982). For
example, one could write a special library package that intercepted all the sys-
tem calls and decided whether each one was local or remote [BROWNBRIDGE et
al. 1982]. Although most system calls can be handled this way without modi-
fying the kernel, invariably there are a few things, such as interprocess signals,
interrupt characters (e.g., BREAK) from the keyboard, etc. that are hard to get
right. In a true distributed operating system, one would normally write the
kernel from scratch.

2.4. AN EXAMPLE: THE SUN NETWORK FILE SYSTEM

To provide a contrast with the true distributed systems described later in this
paper, in this section we will look briefly at a network operating system that
runs on the Sun Microsystems’ workstations. These workstations are intended
for use as personal computers. Each one has a 68000 series CPU, local
memory, and a large bitmapped display. Workstations can be configured with
or without local disk, as desired. All the workstations run a version of 4.2BSD
UNIX specially modified for networking.

This arrangement is a classic example of a network operating system: Each
computer runs a traditional operating system, UNIX, and each has its own
user(s), but with extra features added to make networking more convenient.
During its evolution, the Sun system has gone through three distinct versions,
which we will now describe.

In the first version, each of the workstations was completely independent
from all the others, except that a program rcp was provided to copy files from
one workstation to another. By typing a command such as:

rcp machinel:/usr/jim/file.c machine2:/usr/ast/f.c

it was possible to transfer whole files from one machine to another.

In the second version, Network Disk (ND), a network disk server was pro-
vided to support diskless workstations. Disk space on the disk server’s
machine was divided into disjoint partitions, with each partition acting as the
virtual disk for some (diskless) workstation.

Whenever a diskless workstation needed to read a file, the request was pro-
cessed locally until it got down to the level of the device driver, at which point
the block needed was retrieved by sending a message to the remote disk server.
In effect, the network was merely being used to simulate a disk controller.
With this network disk system, sharing of disk partitions was not possible.

The third version, the Network File System (NFS), allows remote directories
to be mounted in the local file tree on any workstation. By mounting, say, a
remote directory “doc” on the empty local directory “/usr/doc,” all subse-
quent references to “/usr/doc” are automatically routed to the remote system.
Sharing is allowed in NFS, so several users can read files on a remote machine
at the same time.

To prevent users from reading other people’s private files, a directory can
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only be mounted remotely if it is explicitly exported by the workstation it is
located on. A directory is exported by entering a line for it in a file
“/etc/exports.” To improve performance of remote access, both the client
machine and server machine do block caching. Remote services can be located
using a Yellow Pages server that maps service names onto their network loca-
tions.

The NFS is implemented by splitting the operating system up into three
layers. The top layer handles directories, and maps each path name onto a
generalized i-node called a vnode consisting of a (machine, i-node) pair, mak-
ing each vnode globally unique.

Vnode numbers are presented to the middle layer, the virtual file system
(VFS). This layer checks to see if a requested vnode is local or not. If it is
local, it calls the local disk driver, or in the case of a ND partition, sends a
message to the remote disk server. If it is remote, the VFS calls the bottom
layer with a request to process it remotely.

The bottom layer accepts requests for accesses to remote vnodes and sends
them over the network to the bottom layer on the serving machine. From
there they propagate upwards through the VFS layer to the top layer, where
they are re-injected into the VFS layer. The VFS layer sees a request for a
local vnode, and processes it normally, without realizing that the top layer is
actually working on behalf of a remote kernel. The reply retraces the same
path in the other direction.

The protocol between workstations has been carefully designed to be robust
in the face of network and server crashes. Each request completely identifies
the file (by its vnode), the position in the file, and the byte count. Between
requests, the server does not maintain any state information about which files
are open or where the current file position is. Thus, if a server crashes and is
rebooted, there is no state information that will be lost.

The ND and NFS facilities are quite different, and can both be used on the
same workstation without conflict. ND works at a low level and just handles
remote block I/0 without regard to the structure of the information on the
disk. NFS works at a much higher level, and effectively takes requests appear-
ing at the top of the operating system on the client machine and gets them
over to the top of the operating system on the server machine, where they are
processed the same way as local requests.

3. DESIGN IssuEs

Now we turn from traditional computer systems with some networking facili-
ties added on to systems designed with the intention of being distributed. In
this section we will look at five issues that distributed systems’ designers are
faced with:



12

® communications primitives,
® naming and protection,

@ resource management,

o fault tolerance,

® services to provide.

While no list could possibly be exhaustive at this early stage of development,
these topics should provide a reasonable impression of the areas in which
current research is proceeding.

3.1. COMMUNICATION PRIMITIVES

The computers forming a distributed system normally do not share primary
memory, so communication via shared memory techniques such as semaphores
and monitors are generally not applicable. Instead, message passing in one
form or another is used. One widely discussed framework for message-passing
systems is the ISO OSI reference model, which has seven layers, each perform-
ing a well-defined function [ZIMMERMAN 1980]. The seven layers are: physical
layer, data-link layer, network layer, transport layer, session layer, presentation
layer, and application layer. Using this model it is possible to connect com-
puters with widely different operating systems, character codes, and ways of
viewing the world.

Unfortunately, the overhead created by all these layers is substantial. In a
distributed system consisting primarily of huge mainframes from different
manufacturers, connected by slow leased lines (say, 56 kbps), the overhead
might be tolerable. Plenty of computing capacity would be available for run-
ning complex protocols, and the narrow bandwidth means that close coupling
between the systems would be impossible anyway. On the other hand, in a
distributed system consisting of identical microcomputers connected by a 10
Mbps or faster local network, the price of the ISO model is generally too high.
Nearly all the experimental distributed systems discussed in the literature so
far have opted for a different, much simpler model, so we will not mention the
ISO model further in this paper.

3.1.1 Message Passing
The model that is favored by researchers in this area is the client-server model,
in which a client process wanting some service (e.g., reading some data from a
file) sends a message to the server and then waits for a reply message, as
shown in Figure 2. In the most naked form, the system just provides two
primitives: SEND and RECEIVE. The SEND primitive specifies the destina-
tion and provides a message; the RECEIVE primitive tells from whom a mes-
sage is desired (including “anyone”) and provides a buffer where the incoming
message is to be stored. No initial setup is required, and no connection is
established, hence no teardown is required.

Precisely what semantics these primitives ought to have has been a subject
of much controversy among researchers. Two of the fundamental decisions
that must be made are unreliable vs. reliable and nonblocking vs. blocking
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Ficure 2. Client-server model of communication.

primitives. At one extreme, SEND can put a message out onto the network
and wish it good luck. No guarantee of delivery is provided, and no automatic
retransmission is attempted by the system if the message is lost. At the other
extreme, SEND can handle lost messages, retransmissions, and acknowledge-
ments internally, so that when SEND terminates, the program is sure that the
message has been received and acknowledged.

Blocking vs. Nonblocking Primitives. The other choice is between nonblocking
and blocking primitives. With nonblocking primitives, SEND returns control
to the user program as soon as the message has been queued for subsequent
transmission (or a copy made). If no is copy is made, any changes the pro-
gram makes to the data before or (heaven forbid) while it is being sent, are
made at the program’s peril. When the message has been transmitted (or
copied to a safe place for subsequent transmission), the program is interrupted
to inform it that the buffer may be reused. The corresponding RECEIVE
primitive signals a willingness to receive a message, and provides a buffer for it
to be put into. When a message has arrived, the program is informed by inter-
rupt or it can poll for status continuously, or go to sleep until the interrupt
arrrives. The advantage of these nonblocking primitives is that they provide
the maximum flexibility: programs can compute and perform message 1/0 in
parallel any way they want to.

Nonblocking primitives also have a disadvantage: they make programming
tricky and difficult. Irreproducible, timing-dependent programs are painful to
write and awful to debug. Consequently, many people advocate sacrificing
some flexibility and efficiency by using blocking primitives. A blocking SEND
does not return control to the user until the message has been sent (unreliable
blocking primitive) or until the message has been sent and an acknowledge-
ment received (reliable blocking primitive). Either way, the program may
immediately modify the buffer without danger. A blocking RECEIVE does
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not return control until a message has been placed in the buffer. Reliable and
unreliable RECEIVEs differ in that the former automatically acknowledges
receipt of message, whereas the latter does not. It is not reasonable to com-
bine a reliable SEND with an unreliable RECEIVE or vice versa, so the sys-
tem designers must make a choice and provide one set or the other. Blocking
and nonblocking primitives do not conflict, so there is no harm done if the
sender uses one and the receiver the other.

Buffered vs. Unbuffered Primitives. Another design decision that must be made
is whether or not to buffer messages. The simplest strategy is not to buffer.
When a sender has a message for a receiver that has not (yet) executed a
RECEIVE primitive, the sender is blocked until a RECEIVE has been done, at
which time the message is copied from sender to receiver. This strategy is
sometimes referred to as a rendezvous.

A slight variation on this theme is to copy the message to an internal buffer
on the sender’s machine, thus providing for a nonblocking version of the same
scheme. As long as the sender does not do any more SENDs before the
RECEIVE occurs, no problem occurs.

A more general solution is to have a buffering mechanism, usually in the
operating system kernel, which allows senders to have multiple SENDs out-
standing even without any interest on the part of the receiver. Although
buffered message passing can be implemented in many ways, a typical
approach is to provide users with a system call CREATEBUF, which creates a
kernel buffer, sometimes called a mailbox, of a user-specified size. To com-
municate, a sender can now send messages to the receiver’s mailbox, where
they will be buffered until requested by the receiver. Buffering is not only
more complex (creating, destroying, and generally managing the mailboxes),
but also raises issues of protection, the need for special high-priority interrupt
messages, what to do with mailboxes owned by processes that have been killed
or died of natural causes, and more.

A more structured form of communication is achieved by distinguishing
requests from replies. With this approach, one typically has three primitives:
SEND GET, GET REQUEST, and SEND REPLY. SEND GET is used by
clients to send requests and get replies. It combines a SEND to a server with
a RECEIVE to get the server’s reply. GET REQUEST is done by servers to
acquire messages containing work for them to do. When a server has carried
the work out, it sends a reply with SEND REPLY. By thus restricting the
message traffic, and by using reliable, blocking primitives, one can create some
order in the chaos.

3.1.2. Remote Procedure Call

The next step forward in message-passing systems is the realization that the
model of “client sends request and blocks until server sends reply” looks very
similar to a traditional procedure call from the client to the server. This model
has become known in the literature as “remoteprocedure and has been widely
discussed [BIRRELL and NELSON 1984; NELSON 1981; SPECTOR 1982]. The idea
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is to make the semantics of intermachine communication as similar as possible
to normal procedure calls because the latter is familiar, well understood, and
has proved its worth over the years as a tool for dealing with abstraction. It
can be viewed as a refinement of the reliable, blocking SEND GET,
GET REQUEST, SENDREP primitives, with a more user-friendly syntax.

The remote procedure call can be organized as follows. The client (calling
program) makes a normal procedure call, say, p(x, y) on its machine, with the
intention of invoking the remote procedure p on some other machine. A
dummy or stub procedure p must be included in the caller’s address space, or
at least be dynamically linked to it upon call. This procedure, which may be
automatically generated by the compiler, collects the parameters and packs
them into a message in a standard format. It then sends the message to the
remote machine (using SEND GET) and blocks, waiting for an answer (see

Figure 3).

Client Machine Server Machine
Client Client Server Server
—_—

proc. stub proc. stub

FIGURE 3. Remote procedure call.

At the remote machine, another stub procedure should be waiting for a mes-
sage using GET REQUEST. When a message comes in, the parameters are
unpacked by an input handling procedure, which then makes the local call p(x,
»). The remote procedure p is thus called locally, so its normal assumptions
about where to find parameters, the state of the stack, etc., are identical to the
case of a purely local call. The only procedures that know that the call is
remote are the stubs, which build and send the message on the client side and
disassemble and make the call on the server side. The result of the procedure
call follows an analogous path in the reverse direction.
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RPC Design Issues. Although at first glance the remote procedure call model
seems clean and simple, under the surface there are several problems. One
problem concerns parameter (and result) passing. In most programming
languages, parameters can be passed by value or by reference. Passing value
parameters over the network is easy; the stub just copies them into the mes-
sage and off it goes. Passing reference parameters (pointers) over the network
is not so easy. One needs a unique, system-wide pointer for each object so
that it can be remotely accessed. For large objects, such as files, some kind of
capability mechanism [DENNIS and VAN HORN 1966; LEvY 1984; PASHTAN
1982] could be set up, using capabilities as pointers. For small objects, such as
integers and booleans, the amount of overhead and mechanism needed to
create a capability and send it in a protected way is so large that this solution
is highly undesirable.

Still another problem that must be dealt with is how to represent parameters
and results in messages. This representation is greatly complicated when
different types of machines are involved in a communication. A floating-point
number produced on one machine is unlikely to have the same value on a
different machine, and even a negative integer will create problems between 1’s
and 2’s complement machines.

Converting to and from a standard format on every message sent and
received is an obvious possibility, but it is expensive and wasteful, especially
when the sender and receiver do, in fact, use the same internal format. If the
sender uses its internal format (along with an indication of which format it is)
and let the receiver do the conversion, every machine must be prepared to con-
vert from every other format. When a new machine type is introduced, much
existing software must be upgraded. Any way you do it, with RPC or with
plain messages, it is an unpleasant business. )

Some of the unpleasantness can be hidden from the user if the remote pro-
cedure call mechanism is embedded in a programming language with strong
typing, so at least the receiver knows how many parameters to expect and
what types they have. In this respect, a weakly-typed language such as C, in
which procedures with a variable number of parameters are common, is more
complicated to deal with.

Still another problem with RPC is the issue of client-server binding. Con-
sider, for example, a system with multiple file servers. If a client creates a file
on one of the file servers, it is usually desirable that subsequent writes to that
file to go to the file server where the file was created. With mailboxes, arrang-
ing for this is straightforward. The client simply addresses the WRITE mes-
sages to the same mailbox that the CREATE message was sent to. Since each
file server has its own mailbox, there is no ambiguity.

When RPC is used, the situation is more complicated, since all the client
does is put a procedure call such as

write(FileDescriptor, BufferAddress, ByteCount);

in his program. RPC intentionally hides all the details of locating servers from
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the client, but sometimes, as in this example, the details are important.

In some applications, broadcasting and multicasting (sending to a set of des-
tinations, rather than just one is useful. For example, when trying to locate a
certain person, process, or service, sometimes the only approach is to broad-
cast an inquiry message and wait for the replies to come back. RPC does not
lend itself well to sending messages to sets of processes and getting answers
back from some or all of them. The semantics are completely different.

Despite all these problems, RPC remains an interesting form of communica-
tion, and much current research is being addressed to improving it and solving
the various discussed above.

3.1.3. Error Handling )

In error handling, the communication primitives of distributed systems differ
radically from those of centralized systems. In a centralized system, a system
crash means that the client, server, and communication channel are all com-
pletely destroyed, and no attempt is made to revive them. In a distributed sys-
tem, matters are more complex. If a client has initiated a Temote procedure
call with a server that has crashed, the client may just be left hanging forever
unless a timeout is built in. However, such a timeout introduces race condi-
tions in the form of clients that time out too quickly, thinking that the server is
down, when in fact, it is merely very slow.

Client crashes can also cause trouble for servers. Consider for example, the

- case of processes A and B communicating via the UNIX pipe model A[B with
A the server and B the client. B asks 4 for data and gets a reply, but unless
that reply is acknowledged somehow, A does not know when it can safely dis-
card data that it may not be able to reproduce. If B crashes, how long should
A hold onto the data? (Hint if the answer is less than infinity, problems will
be introduced whenever B is slow in sending an acknowledgement.)

Closely related to this is the problem of what happens if a client cannot tell
whether or not a server has crashed. Simply waiting until the server is
rebooted and trying again sometimes works and sometimes does not. A case
where it works: client asks to read block 7 of some file. A case where it does
not work: client says transfer a million dollars from one bank account to
another. In the former case, it does not matter whether or not the server car-
ried out the request before crashing; carrying it out a second time does no
harm. In the latter case, one would definitely prefer the call to be carried out
exactly once, no more and no less. Calls that may be repeated without harm
(like the first example) are said to be idempotent. Unfortunately, it is not
always possible to arrange for all calls to have this property. Any call that
causes action to occur in the outside world, such as transferring money, print-
ing lines, or opening a valve in an automated chocolate factory just long
enough to fill exactly one vat, is likely to cause trouble if performed twice.

SPECTOR [1982] and NELSON [1981] have looked at the problem of trying to
make sure remote procedure calls are executed exactly once, and have
developed taxonomies for classifying the semantics of different systems. These
vary from systems that offer no guarantee at all (zero or more executions), to
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those that guarantee at most one execution (zero or one), to those that guaran-
tee at least one execution (one or more).

Getting it right (exactly one) is probably impossible, because even if the
remote execution can be reduced to one instruction (e.g., setting a bit in a dev-
ice register that opens the chocolate valve), one can never be sure after a crash
if the system went down a microsecond before, or a microsecond after, the one
critical instruction. Sometimes one can make a guess based on observing
external events (e.g., looking to see if the factory floor is covered with a sticky,
brown material), but in general there is no way of knowing. Note that the
problem of creating stable storage [LAMPSON 1981] is fundamentally different,
since remote procedure calls to the stable storage server in that model never
causes events external to the computer.

3.1.4. Implementation Issues

Constructing a system in principle is always easier than constructing it in
practice. Building a 16-node distributed system that has a total computing
power about equal to a single-node system is surprisingly easy. This observa-
tion leads to tension between the goals of making it work fast in the normal
case, and making the semantics reasonable when something goes wrong. Some
experimental systems have put the emphasis on one goal and some on the
other, but more research is needed before we have systems that are both fast
and graceful in the face of crashes.

Some things have been learned from past work, however. Foremost among
these is that making message passing efficient is very important. To this end,
systems should be designed to minimize copying of data [CHERITON 1984].
For example, a remote procedure call system that first copies each message
from the user to the stub, and then from the stub to the kernel, and finally
from the kernel to the network interface board requires 3 copies on the send-
ing side, and probably 3 more on the receiving side, for a total of 6. If the call
is to a remote file server to write a 1K block of data to disk, at a copy time of
1 microsec per byte, 6 msec are needed just for copying, which puts an upper
limit of 167 calls/sec, or a throughput of 167 Kbytes/sec. When other sources
of overhead are considered (e.g., the reply message, the time waiting for access
to the network, transmission time, etc.) achieving even 80 Kbytes/sec will be
difficult, if not impossible, no matter how high the network bandwidth or disk
speed. Thus, it is desirable to avoid copying, but this is not always simple to
achieve since without copies, (part of) a needed message may be swapped or
paged out when it is needed.

Another point worth making is that there is always a substantial fixed over-
head with preparing, sending, and receiving a message, even a short message,
such as a request to read from a remote file server. The kernel must be
invoked, the state of the current process must be saved, the destination must
be located, various tables must be updated, permission to access the network
must be obtained (e.g., wait for the network to become free or wait for the
token), and quite a bit of bookkeeping must be done.

This fixed overhead argues for making messages as long as possible, to
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reduce the number of messages. Unfortunately. many current local networks
limit physical packets to 1K or 2K; 4K or 8K would be much better. Of
course, if the packets become too long, a highly interactive user may occasion-
ally be queued behind 10 maximum length packets, degrading response time,
so the optimum size depends on the work load.

Virtual Circuits vs. Datagrams. There is much controversy over whether remote
procedure call ought to be built on top of a flow-controlled, error-controlled,
virtual circuit mechanism, or directly on top of the unreliable, connectionless
(datagram) service. SALTZER et al. [1984] have pointed out that since high
reliability can only be achieved by end-to-end acknowledgements at the highest
level of protocol, the lower levels need not be 100% reliable. The overhead
incurred in providing a clean virtual circuit upon which to build remote pro-
cedure calls (or any other message passing system), is therefore wasted. This
line of thinking argues for building the message system directly on the raw
datagram interface.

The other side of the coin is that it would be nice for a distributed system to
be able to encompass heterogeneous computers in different countries with
different PTT networks and possibly different national alphabets, and that this
environment requires complex multilayered protocol structures. It is our
observation that both arguments are valid, but depending on whether one is
trying to forge a collection of small computers into a virtual uniprocessor or
merely access remote data transparently, one or the other will dominate.

Even if one chooses for building remote procedure call on top of the raw
datagram service provided by a local network, there are still a number of pro-
tocols open to the implementer. The simplest one is to have every request and
reply separately acknowledged. The message sequence for a remote procedure
call is then: REQUEST, ACK, REPLY, ACK, as shown in The ACKs are
managed by the kernel without user knowledge.

The number of messages can be reduced from four to three by allowing the
REPLY to serve as the ACK for the REQUEST, as shown in Figure 4. How-
ever, a problem arises when the REPLY can be delayed for a long time. For
example, when a login process makes a remote procedure call to a terminal
server requesting characters, it may be hours or days before someone steps up
to a terminal and begins typing. In this event, an additional message has to be
introduced to allow the sending kernel to inquire if the message arrived or not.

A further step in the same direction is to eliminate the other ACK as well,
and let the arrival of the next REQUEST imply an acknowledgement of the
previous REPLY (see Figure 4(c)). Again, some mechanism is needed to deal
with the case that no new REQUEST is forthcoming quickly.

One of the great difficulties in implementing efficient communication is that
it is more of a black art than a science. Even straightforward implementations
can have unexpected consequences, as the following example from SVENTEK et
al. [1983] shows. Consider a ring containing a circulating token. To transmit,
a machine captures and removes the token, puts a message on the network,
and then replaces the token, thus allowing the next machine “downstream” the
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FIGURE 4. Remote procedure call (a) with individual acknowledgements
per message, (b) with the reply as the request acknowledge-
ment, (c) with no explicit acknowledgements.
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opportunity to capture it. In theory, such a network is “fair” in that each’ user
has equal access to the network and no one user can monopolize it to the
detriment of others. In practice, suppose two users each want to read a long
file from a file server. User 4 sends a request message to the server, and then
replaces the token on the network for B to acquire.

After A’s message arrives at the server, it takes a short time for the server to
handle the incoming message interrupt and re-enable the receiving hardware.
Until the receiver is re-enabled, the server is deaf. Within a microsecond or
two of the time 4 puts the token back on the network, B sees and grabs it,
and begins transmitting a request to the (unbeknownst to B) deaf file server.
Even if the server re-enables halfway through B’s message, the message will be
rejected due to missing header, bad frame format, and checksum error.
According to the ring protocol, after sending one message, B must now replace
the token, which A captures for a successful transmission. Once again B
transmits during the server’s deaf period, and so on. Conclusion: B gets no
service at all until 4 is finished. If 4 happens to be scanning through the
Manbhattan telephone book, B may be in for a long wait. This specific prob-
lem can be solved by inserting random delays in places to break the syn-
chrony, but our point is that totally unexpected problems like this make it
necessary to build and observe real systems to gain insight into the problems.
Abstract formulations and simulations are not enough.

3.2. NAMING AND PROTECTION

All operating systems support objects such as files, directories, segments, mail-
boxes, processes, services, servers, nodes, and I/O devices. When a process
wants to access one of these objects, it must present some kind of name to the
operating system to specify which object it wants to access. In some instances
these names are ASCII strings designed for human use, in others they are
binary numbers used only internally. In all cases they have to be managed
and protected from misuse.

3.2.1. Naming as Mapping

Naming can best be seen as a problem of mapping between two domains. For
example, the directory system in UNIX provides a mapping between ASCII
path names and i-node numbers. When an OPEN system call is made, the
kernel converts the name of the file to be opened into its i-node number.
Internal to the kernel, files are nearly always referred to by i-node number, not
ASCII string. Just about all operating systems have something similar. In a
distributed system a separate name server is sometimes used to map user-
chosen names (ASCII strings) onto objects in an analogous way.

Another example of naming is the mapping of virtual addresses onto physi-
cal addresses in a virtual memory system. The paging hardware takes a virtual
address as input, and yields a physical address as output for use by the real
memory.

In some cases naming implies only a single level of mapping, but in other
cases it can imply multiple levels. For example, to use some service, a process
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might first have to map the service name onto the name of a server process
that is prepared to offer the service. As a second step, the server would then
be mapped onto the number of the CPU on which it that process is running.
The mapping need not always be unique, for example, if there are multiple
processes prepared to offer the same service.

3.2.2. Name Servers

In centralized systems, the problem of naming can be effectively handled in a
straightforward way. The system maintains a table or data base providing the
necessary name-to-object mappings. The most straightforward generalization
of this approach to distributed systems is the single name server model. In
this model, a server accepts names in one domain and maps them onto names
in another domain. For example, to locate services in some distributed sys-
tems, one sends the service name in ASCII to the name server, and it replies
with the node number where that service can be found, or with the process
name of the server process, or perhaps with the name of a mailbox to which
requests for service can be sent. The name server’s data base is built up by
registering services, processes, etc., that want to be publicly known. File direc-
tories can be regarded as a special case of name service.

Although this model is often acceptable in a small distributed system located
at a single site, in a large system it is undesirable to have a single centralized
component (the name server) whose demise can bring the whole system to a
grinding halt. In addition, if it becomes overloaded, performance will degrade.
Furthermore, in a geographically distributed system that may have nodes in
different cities or even countries, having a single name server will be inefficient
due to the long delays in accessing it.

The next approach is to partition the system into domains, each with its
own name server. If the system is composed of multiple local networks con-
nected by gateways and bridges, it seems natural to have one name server per
local network. One way to organize such a system is to have a global naming
tree, with files and other objects having names of the form:
/country/city/network/pathname. When such a name is presented to any
name server, it can immediately route the request to some name server in the
designated country, which then sends it to a name server in the designated
city, and so on until it reaches the name server in the network where the object
is located, where the mapping can be done. Telephone numbers use such a
hierarchy, composed of country code, area code, exchange code (first 3 digits
of telephone number in North America), and subscriber line number.

Having multiple name servers does not necessarily require having a single,
global naming hierarchy. Another way to organize the name servers is to have
each one effectively maintain a table of, for example, (ASCII string, pointer)
pairs, where the pointer is really a kind of capability for any object or domain
in the system. When a name, say a/b/c, is looked up by the local name
server, it may well yield a pointer to another domain (name server) , to which
the rest of the name, b/c, is sent for further processing (see Figure 5). This
facility can be used to provide links (in the UNIX sense) to files or objects
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whose precise whereabouts is managed by a remote name server. Thus if a file
Jfoobar is located in another local network, n, with name server n.s, one can
make an entry in the local name server’s table for the pair (x, n.s) and then
access x/foobar as though it were a local object. Any appropriately authorized
user or process knowing the name x/foobar could make its own synonym s
and then perform accesses using s/x/foobar. Each name server parsing a name
that involves multiple name servers just strips off the first component and
passes the rest of the name to the name server found by looking up the first
component locally.

Name server 1 Name server 2 Name server 3
looks up a/b/c looks up b/c looks up ¢

a b a

x —_— c S X

y — d —t c

z — e - —_— r

Ficure 5. Distributing the lookup of a/b/c over three name servers.

A more extreme way of distributing the name server is to have each machine
manage its own names. To look up a name, one broadcasts it on the network.
At each machine, the incoming request is passed to the local name server,
which replies only if it finds a match. Although broadcasting is easiest over a
local network such as a ring net or CSMA net (e.g., Ethernet), it is also possi-
ble over store-and-forward packet switching networks such as the ARPAnet
[DALAL 1977].

Although the normal use of a name server is to map an ASCII string onto a
binary number used internally to the system, such as a process identifier or
machine number, once in a while the inverse mapping is also useful. For
example, if a machine crashes, upon rebooting it could present its (hardwired)
node number to the name server to ask what it was doing before the crash,
that is, ask for the ASCII string corresponding to the service it is supposed to
be offering so it can figure out what program to reboot.
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3.3. RESOURCE MANAGEMENT

Resource management in a distributed system differs from that in a centralized
system in a fundamental way. Centralized systems always have tables that
give complete and up-to-date status information about all the resources being
managed; distributed systems do not. For example, the process manager in a
traditional centralized operating system normally uses a “process table” with
one entry per potential process. When a new process has to be started, it is
simple enough to scan the whole table to see if a slot is free. A distributed
operating system, on the other hand, has a much harder job of finding out if a
processor is free, especially if the system designers have rejected the idea of
having any central tables at all, for reasons of reliability. Furthermore, even if
there is a central table, recent events on outlying processors may have made
some table entries obsolete without the table manager knowing it.

The problem of managing resources without having accurate global state
information is very difficult. Relatively little work has been done in this area.
In the following sections we will look at some work that has been done,
including distributed process management and scheduling.

3.3.1. Processor Allocation

One of the key resources to be managed in a distributed system is the set of
available processors. One approach that has been proposed for keeping tabs
on a collection of processors is to organize them in a logical hierarchy
independent of the physical structure of the network, as in MICROS [WITTIE
and VAN TILBORG 1980]. This approach organizes the machines like people in
corporate, military, academic, and other real-world hierarchies. Some of the
machines are workers and others are managers.

For each group of k workers, one manager machine (the “department
head”) is assigned the task of keeping track of who is busy and who is idle. If
the system is large, there will be an unwieldy number of department heads, so
some machines will function as “deans,” riding herd on k department heads.
If there are many deans, they too can be organized hierarchically, with a “big
cheese” keeping tabs on k deans. This hierarchy can be extended ad
infinitum, with the number of levels needed growing logarithmically with the
number of workers. Since each processor need only maintain communication
with one superior and k subordinates, the information stream is manageable.

An obvious question is “What happens when a department head, or worse
yet, a big cheese, stops functioning (crashes)?” One answer is to promote one
of the direct subordinates of the faulty manager to fill in for the boss. The
choice of which one can either be made by the subordinates themselves, by the
deceased’s peers, or in a more autocratic system, by the sick manager’s boss.

To avoid having a single (vulnerable) manager at the top of the tree, one can
truncate the tree at the top and have a committee as the ultimate authority.
When a member of the ruling committee malfunctions, the remaining members
promote someone one level down as replacement.

While this scheme is not completely distributed, it is feasible, and in practice
works well. In particular, the system is self-repairing, and can survive
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occasional crashes of both workers and managers without any long-term
effects.

In MICROS, the processors are monoprogrammed, so if a job requiring S
processes suddenly appears, the system must allocate S processors for it. Jobs
can be created at any level of the hierarchy. The strategy used is for each
manager to keep track of approximately how many workers below it are avail-
able (possibly several levels below it). If it thinks that a sufficient number are
available, it reserves some number R of them, where R >= S, because the
estimate of available workers may not be exact and some machines may be
down. '

If the manager receiving the request thinks that it has too few processors
available, it passes the request upwards in the tree to its boss. If the boss can-
not handle it either, the request continues propagating upward until it reaches
a level that has enough available workers at its disposal. At that point, the
manager splits the request into parts, and parcels them out among the
managers below it, which then do the same thing until the wave of scheduling
requests hits bottom. At the bottom level, the processors are marked as
“busy” and the actual number of processors allocated is reported back up the
tree.

To make this strategy work well, R must be large enough that the probabil-
ity is high that enough workers will be found to handle the whole job. Other-
wise the request will have to move up one level in the tree and start all over,
wasting considerable time and computing power. On the other hand, if R is
too large, too many processors will be allocated, wasting computing capacity
until word gets back to the top and they can be released.

The whole situation is greatly complicated by the fact that requests for pro-
cessors can be generated randomly anywhere in the system, so at any instant,
multiple requests are likely to be in various stages of the allocation algorithm,
potentially giving rise to out-of-date estimates of available workers, race condi-
tions, deadlocks, and more. In [VAN TiLBORG and WITTIE 1981] a mathemati-
cal analysis of the problem is given and various other aspects not described
here are covered in detail.

3.3.2. Scheduling

The hierarchical model provides a general model for resource control, but does
not provide any specific guidance on how to do scheduling. If each process
uses an entire processor (i.e., no multiprogramming), and each process is
independent of all the others, any process can be assigned to any processor at
random. However, if it is common that several processes are working together
and must communicate frequently with each other, as in UNIX pipelines or in
cascaded (nested) remote procedure calls, then it is desirable to make sure the
whole group runs at once. In this section we will address that issue.

Let us assume that each processor can handle up to N processes. If there
are plenty of machines and N is reasonably large, the problem is not finding a
free machine (i.e., a free slot in some process table), but something more sub-
tle. The basic difficulty can be illustrated by an example in which processes A
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and B run on one machine and processes C and D run on another. Each
machine is time-shared in, say, 100 msec time slices, with 4 and C running in
the even slices, and B and D running in the odd ones, as shown in Figure 6(a).
Suppose that 4 sends many messages or makes many remote procedure calls
to D. During time slice 0, 4 starts up and immediately calls D, which unfor-
tunately is not running because it is now C’s turn. After 100 msec, process
switching takes place, and D gets A’s message, carries out the work, and
quickly replies. Because B is now running, it will be another 100 msec before
A gets the reply and can proceed. The net result is one message exchange
every 200 msec. What is needed is a way to ensure that processes that com-
municate frequently run simultaneously.

Time Time
slot Machine slot Machine
]
0 A c! 0 X X
1 B o 1 X X
c A C = X X X X
3:8, 0! 30X l X
41 Al C 4 | X X X
oo : o
] B | (B 5 X X
@) (b)

FIGURE 6. (a) Two jobs running out of phase with each other. (b)
Scheduling matrix for 8 machines, each with six time slots.
The X’s indicated allocated slots.

Although it is difficult to dynamically determine the interprocess communi-
cation patterns, in many cases, a group of related processes will be started off
together. For example, it is usually a good bet that the filters in a UNIX pipe-
line will communicate with each other more than they will with other, previ-
ously started processes. Let us assume that processes are created in groups,
and that intragroup communication is much more prevalent than intergroup
communication. Let us further assume that a sufficiently large number of
machines is available to handle the largest group, and that each machine is
multiprogrammed with N process slots (N-way multiprogramming).

OusTERHOUT [1982] has proposed several algorithms based on the concept
of co-scheduling, which takes interprocess communication patterns into account
while scheduling to ensure that all members of a group run at the same time.
The first algorithm uses a conceptual matrix in which each column is the
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process table for one machine, as shown in Figure 6(b). Thus, column 4 con-
sists of all the processes that run on machine 4. Row 3 is the collection of all
processes that are in slot 3 of some machine, starting with the process in slot 3
of machine 0, then the process in slot 3 of machine 1, and so on. The gist of
his idea is to have each processor use a round robin scheduling algorithm with
all processors first running the process in slot 0 for a fixed period, then all pro-
cessors running the process in slot 1 for a fixed period, etc. A broadcast mes-
sage could be used to tell each processor when to do process switching, to keep
the time slices synchronized.

By putting all the members of a process group in the same slot number, but
on different machines, one has the advantage of N-fold parallelism, with a
guarantee that all the processes will be run at the same time, to maximize com-
munication throughput. Thus in Figure 6(b), four processes that must com-
municate should be put into slot 3, on machines 1, 2, 3, and 4 for optimum
performance. This scheduling technique can be combined with the hierarchical
model of process management used in MICROS by having each department
head maintain the matrix for its workers, assigning processes to slots in the
matrix and broadcasting time signals.

Ousterhout also described several variations to this basic method to improve
performance. One of these breaks the matrix into rows, and concatenates the
rows to form one long row. With k machines, any k consecutive slots belong
to different machines. To allocate a new process group to slots, one lays a
- window k slots wide over the long row such that the leftmost slot is empty but
the slot just outside the left edge of the window is full. If sufficient empty
slots are present in the window, the processes are assigned to the empty slots,
otherwise the window is slid to the right and the algorithm repeated. Schedul-
ing is done by starting the window at the left edge and moving rightward by
about one window’s worth per time slice, taking care not to split groups over
windows. Qusterhout’s paper discusses these and other methods in more detail
and gives some performance results.

3.3.3. Load Balancing

The goal of Ousterhout’s work is to place processes that work together on
different processors, so that they can all run in parallel. Other researchers
have tried to do precisely the opposite, namely, to find subsets of all the
processes in the system that are working together, so closely related groups of
processes can be placed on the same machine to reduce interprocess communi-
cation costs [CHU et al, 1980; CHow and ABRAHAM 1982; Gviys and
EDpwARDs 1976; StONE 1977; STONE 1978; STONE and BoxHARI 1978; Lo
1984]. Yet other researchers have been concerned primarily with load balanc-
ing, to prevent a situation in which some processors are overloaded while oth-
ers are empty [BARAK and SHILOH 1985; EFe 1982; KRUEGER and FINKEL
1983; Stankovic and SmpHU 1984]. Of course, the goals of maximizing
throughput, minimizing response time, and keeping the load uniform, are to
some extent in conflict, so many of the researchers try to evaluate different
compromises and tradeoffs.
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Each of these different approaches to scheduling makes different assump-
tions about what is known and what is most important. The people trying to
cluster processes to minimize communication costs, for example, assume that
any process can run on any machine, that the computing needs of each process
are known in advance, and that the interprocess communication -traffic
between each pair of processes is also known in advance. The people doing
load balancing typically make the realistic assumption that nothing about the
future behavior of a process is known. The minimizers are generally theorists,
whereas the load balancers tend to be people making real systems who care
less about optimality than devising algorithms that can actually be used. Let
us now briefly look at each of these approaches.

Graph Theoretic Models. 1f the system consists of a fixed number of processes,
each with known CPU and memory requirements, and a known matrix giving
the average amount of traffic between each pair of processes, scheduling can be
attacked as a graph-theoretic problem. The system can be represented as a
graph, with each process a node, and each pair of communicating processes
connected by an arc labeled with the data rate between them.

The problem of allocating all the processes to k processors then reduces to
the problem of partitioning the graph into k disjoint subgraphs, such that each
subgraph meets certain constraints (e.g., total CPU and memory requirements
below some limit). Arcs that are entirely within one subgraph represent inter-
nal communication within a single processor (= fast), whereas arcs that cut
across subgraph boundaries represent communication between two processors
(= slow). The idea is to find a partitioning of the graph that meets the con-
straints and minimizes the network traffic, or some variation of this idea. Fig-
ure 7(a) depicts a graph of interacting processors with one possible partitioning
of the processes between two machines. Figure 7(b) shows a better partition-
ing, with less intermachine traffic, assuming that all the arcs are equally
weighted. Many papers have been written on this subject, for example, [CHOW
and ABRAHAM 1982; STONE 1977; STONE 1978; STONE and BokHARI 1978; Lo
1984]. The results are somewhat academic, since in real systems virtually none
of the assumptions (fixed number of processes with static requirements, known
traffic matrix, error-free processors and communication) are ever met.

Heuristic load balancing. When the goal of the scheduling algorithm is
dynamic, heuristic, load balancing, rather than finding related clusters, a
different approach is taken. Here the idea is for each processor to continually
estimate its own load, for processors to exchange load information, and for
process creation and migration to utilize this information.

Various methods of load estimation are possible. One way is just to meas-
ure the number of runnable processes on each CPU periodically, and take the
average of the last n measurements as the load. Another way [BRYANT and
FINKEL 1981] is to estimate the residual running times of all the processes and
define the load on a processor as the number of CPU seconds all its processes
will need to finish. The residual time can be estimated mostly simply by
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(a) (b)

Ficure 7. Two ways of statically allocating processes (nodes in ‘the
graph) to machines. Arcs show which pairs of processes com-
municate.

assuming it is equal to the CPU time already consumed. Bryant and Finkel
also discuss other estimation techniques in which both the number of processes
and length of remaining time are important. When round robin scheduling is
used, it is better to be competing against one process that needs 100 sec than
against 100 processes that each need 1 sec. '

Once each processor has computed its load, a way is needed for each proces-
sor to find out how everyone else is doing. One way is for each processor to
just broadcast its load periodically. After receiving a broadcast from a lightly
loaded machine, a processor should shed some of its load by giving it to the
lightly loaded processor. This algorithm has several problems. First, it
requires a broadcast facility, which may not be available. Second, it consumes
considerable bandwidth for all the “Here is my load” messages. Third, there is
a great danger that many processors will try to shed load to the same (previ-
ously) lightly loaded processor at once.

A different strategy [SMITH 1979; BARAK and SHILOH 1985] is for each pro-
cessor to periodically pick another processor (possibly a neighbor, possibly at
random), and exchange load information with it. After the exchange, the more
heavily loaded processor can send processes to the other one until they are
equally loaded. In this model, if 100 processes are suddenly created in an oth-
erwise empty system, after one exchange we will have two machines with 50
processes, and after two exchanges most probably four machines with 25
processes. Processes diffuse around the network like a cloud of gas.

Actually migrating running processes is trivial in theory but close to impos-
sible in practice. The hard part is not moving the code, data, and registers,
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but moving the environment, such as the current position within all the open
files, the current values of any running timers, pointers or file descriptors for
communicating with tape drives or other I/0 devices, etc. All of these prob-
lems relate to moving variables and data structures related to the process that
are scattered about inside the operating system. What is feasible in practice is
to use the load information to create nmew processes on lightly loaded
machines, rather than trying to move running processes.

If one has adopted the idea of creating new processes only on lightly loaded
machines, another approach, called bidding, is possible [FARBER and LARSON
1972; StANKOVIC and SIDHU 1984]. When a process wants some work done, it
broadcasts a request for bids, telling what it needs (e.g., a 68000 CPU, 512K
memory, floating point, and a tape drive).

Other processors can then bid for the work, telling what their workload is,
how much memory they have available, etc. The process making the request
then chooses the most suitable machine and creates the process there. If mul-
tiple request-for-bid messages are outstanding at the same time, a processor
accepting a bid may discover that the workload on the bidding machine is not
what it expected because that processor has bid for and won other work in the
meantime.

3.3.4. Distributed Deadlock Detection

Some theoretical work has been done in the area of detection of deadlocks in
distributed systems. How applicable this work may be in practice remains to
be seen. Two kinds of potential deadlocks are resource deadlocks and com-
munication deadlocks. Resource deadlocks are traditional deadlocks, in which
some set of processes are all blocked waiting for resources held by other
blocked processes. For example, if 4 holds X and B holds Y, and A wants Y
and B wants X, a deadlock will result.

In principle, this problem is the same in centralized and distributed systems,
but it is harder to detect in the latter because there are no centralized tables
giving the status of all resources. The problem has mostly been studied in the
context of data base systems [GLIGOR and SHATTUCK 1980; ISLOOR and MARs-
LAND 1978; MENASCE and MUNTZ 1979; OBERMARCK 1982].

The other kind of deadlock that can occur in a distributed system is a com-
munication deadlock. Suppose 4 is waiting for a message from B and B is
waiting for C and C is waiting for 4. Then we have a deadlock. CHANDY et
al. [1983] present an algorithm for detecting (but not preventing) communica-
tion deadlocks. Very crudely summarized, they assume that each process that
is blocked waiting for a message knows which process or processes might send
the message. When a process logically blocks, they assume that it does not
really block, but instead sends a query message to each of the processes that
might send it a real (data) message. If any of these processes is blocked, it
sends query messages to the processes it is waiting for. If certain messages
eventually come back to the original process, it can conclude that a deadlock
exists. In effect, the algorithm is looking for a knot in a directed graph.
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3.4. FAULT TOLERANCE v

Proponents of distributed systems often claim that such systems can be more
reliable than centralized systems. Actually, there are at least two issues
involved here: reliability and availability. Reliability has to do with the system
not corrupting or losing your data. Availability has to do with the system
being up when you need it. A system could be highly reliable in the sense that
it never loses data, but at the same time be down most of the time and hence
hardly usable. However, many people use the term “reliability” to cover avai-
lability as well, and we will not make the distinction either in the rest of the
paper.

The reason why distributed systems are potentially more reliable than a cen-
tralized system is that if a system only has one instance of some critical com-
ponent, such as a CPU, disk, or network interface, and that component fails,
the system will go down. When there are multiple instances, the system may
be able to continue in spite of occasional failures. In addition to hardware
failures, one can also consider software failures. These are of two types: the
software failed to meet the formal specification (implementation error), or the
specification does not correctly model what the customer wanted (specification
error). All work on program verification is aimed at the former, but the latter
is also an issue. Distributed systems allow both hardware and software errors
to be dealt with, albeit in somewhat different ways.

An important distinction should be made between systems that are fault
tolerant and those that are fault intolerant. A fault tolerant system is one that
can continue functioning (perhaps in a degraded form) even if something goes
wrong. A fault intolerant system collapses as soon as any error occurs. Bio-
logical systems are highly fault tolerant; if you cut your finger, you probably
will not die. If a memory failure garbles 1/10 of 1 percent of the program
code or stack of a running program, the program will almost certainly crash
instantly upon encountering the error.

It is sometimes useful to distinguish between expected faults and unexpected
faults. When the ARPAnet was designed, people expected to lose packets
from time to time. This particular error was expected and precautions were
taken to deal with it. On the other hand, no one expected a memory error in
one of the packet switching machines to cause that machine to tell the world
that it had a delay time of zero to every machine in the network, which
resulted in all network traffic being rerouted to the broken machine.

One of the key advantages of distributed systems is that there are enough
resources to achieve fault tolerance, at least with respect to expected errors.
The system can be made to tolerate both hardware and software errors,
although it should be emphasized that in both cases it is the software, not the
hardware, that cleans up the mess when an error occurs. In the past few years,
two approaches to making distributed systems fault tolerant have emerged.
They differ radically in orientation, goals, and attitude toward the theologically
sensitive issue of the perfectability of mankind (programmers in particular).
One approach is based on redundancy and the other is based on the notion of
an atomic transaction. Both are described briefly below.
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3.4.1. Redundancy Techniques

All the redundancy techniques that have emerged take advantage of the
existence of multiple processors by duplicating critical processes on two or
more machines. A particularly simple, but effective, technique is to provide
every process with a backup process on a different processor. All processes
communicate by message passing. Whenever anyone sends a message to a
process, it also sends the same message to the backup process, as shown in
Figure 8. The system ensures that neither the primary nor the backup can
continue running until it has been verified that both have correctly received the
message.

Network
&l Message (_1_7 Message &)
Primary Sender Backup
Process sends process
message
to both

FIGURE 8. Each process has its own backup process.

Thus, if one process crashes due to any hardware fault, the other one can
continue. Furthermore, the remaining process can then clone itself, making a
new backup to maintain the fault tolerance in the future. BORG et al. [1983]
have described a system using these principles.

One disadvantage of duplicating every process is the extra processors
required, but another, more subtle problem, is that if processes exchange mes-
sages at a high rate, a considerable amount of CPU time may go into keeping
the processes synchronized at each message exchange. POWELL and PRESOTTO
[1983] have described a redundant system that puts almost no additional load
on the processes being backed up. In their system, all messages sent on the
network are recorded by a special “recorder” process (see Figure 9). From
time to time, each process checkpoints itself onto a remote disk.
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FIGURE 9. A recorder process copies and stores all network traffic
without affecting the sender and receiver.

If a process crashes, recovery is done by sending the most recent checkpoint
to an idle processor and telling it to start running. The recorder process then
spoon feeds it all the messages that the original process received between the

~checkpoint and the crash. Messages sent by the newly restarted process are
discarded. Once the new process has worked its way up to the point of crash,
it begins sending and receiving messages normally, without help from the
recording process.

The beauty of this scheme is that the only additional work a process must
do to become immortal is to checkpoint itself from time to time. In theory,
even the checkpoints can be disposed with, if the recorder process has enough
disk space to store all the messages sent by all the currently running processes.
If no checkpoints are made, when a process crashes, the recorder will have to
replay the process’s whole history.

When a process successfully terminates, the recorder no longer has to worry
about having to rerun it, so all the messages that it received can be safely dis-
carded. For servers and other processes that never terminate, this idea must
be varied to avoid repeating individual transactions that have successfully com-
pleted.

One drawback of this scheme is that it relies on reliable reception of all mes-
sages all the time. In practice, local networks are very reliable, but they are
not perfect. If occasional messages can be lost, the whole scheme becomes
much less attractive.

Still, one has to be very careful about reliability, especially when the prob-
lem is caused by faulty software. Suppose a processor crashes due to a
software bug. Both the schemes discussed above (Borg et al., and Powell and
Presotto) deal with crashes by allocating a spare processor and restarting the
crashed program, possibly from a checkpoint. Of course the new processor
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will crash too, leading to the allocation of yet another processor and another
crash. Manual intervention will eventually be required to figure out what is
going on. If the hardware designers could provide a bit somewhere that tells
whether a crash was due to hardware or software, it would be very helpful.

Both of the above techniques only apply to tolerance of hardware errors.
However, it is also possible to use redundancy in distributed systems to make
systems tolerant of software errors. One approach is to structure each pro-
gram as a collection of modules, each one with a well-defined function and a
precisely specified interface to the other modules. Instead of writing a module
only once, N programmers are asked to program it, yielding N functionally
identical modules.

During execution, the program runs on N machines in parallel. After each
module finishes, the machines compare their results and vote on the answer. If
a majority of the machines say that the answer is X, then all of them use X as
the answer, and all continue in parallel with the next module. In this manner,
the effects of an occasional software bug can be voted down. If formal
specifications for any of the modules are available, the answers can also be
checked against the specifications to guard against the possibility of accepting
an answer that is clearly wrong.

A variation of this idea can be used to improve system performance.
Instead of always waiting for all the processes to finish, as soon as k of them
agree on an answer, those that have not yet finished are told to drop what they
are doing, accept the value found by the k processes, and continue with the
next module. Some work in this area is discussed in [AvizieNis and CHEN
1977; Avizienis and KELLY 1984; ANDERSON and LEE 1981].

3.4.2. Atomic transactions

When multiple users on several machines are concurrently updating a distri-
buted data base and one or more machines crash, the potential for chaos is
truly impressive. In a certain sense, the current situation is a step backward
from the technology of the 1950s, when the normal way of updating a data
base was to have one magnetic tape, called the “master file,” and one or more
tapes with updates (e.g., daily sales reports from all of a company’s stores).
The master tape and updates were brought to the computer center, which then
mounted the master tape and one update tape, and ran the update program to
produce a new master tape. This new tape was then used as the “master” for
use with the next update tape.

This scheme had the very real advantage that if the update program crashed,
one could always fall back on the previous master tape and the update tapes.
In other words, an update run could be viewed as either running correctly to
completion (and producing a new master tape), or having no effect at all (crash
part way through, new tape discarded). Furthermore, update jobs from
different sources always ran in some (undefined) sequential order. It never
happened that two users would concurrently read a field in a record, (e.g., 6),
each add 1 to the value, and each store a 7 in that field, instead of the first one
storing a 7 and the second storing an 8.
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The property of run-to-completion or do-nothing is called an atomic update.
The property of not interleaving two jobs is called serializability. The goal of
people working on the atomic transaction approach to fault tolerance has been
to regain the advantages of the old tape system without giving up the conveni-
ence of data bases on disk that can be modified in place, and to be able to do
everything in a distributed way.

LampsoN [1981] has described a way of achieving atomic transactions by
building up a hierarchy of abstractions. We will summarize his model below.
Real disks can crash during READ and WRITE operations in unpredictable
ways. Furthermore, even if a disk block is correctly written, there is a small
(but nonzero) probability of it subsequently being corrupted by newly
developed bad spot on the disk surface. The model assumes that spontaneous
block corruptions are sufficiently infrequent that the probability of two such
events happening within some predetermined time, 7, is negligible. To deal
with real disks, the system software must be able to tell if a block is valid or
not, for example, by using a checksum.

The first layer of abstraction on top of the real disk is the “careful disk,” in
which every CAREFUL-WRITE is read back immediately to verify that it is
correct. If the CAREFUL-WRITE persistently fails, the system marks the
block as “bad” and then intentionally crashes. Since CAREFUL-WRITEs are
verified, CAREFUL-READs will always be good, unless a block has gone bad
after being written and verified.

The next layer of abstraction is stable storage. A stable storage block con-
sists of an ordered pair of careful blocks, which are typically corresponding
careful blocks on different drives to minimize the chance of both being dam-
aged by a hardware failure. The stable storage algorithm guarantees that at
least one of the blocks is always valid. The STABLE-WRITE primitive first
does a CAREFUL-WRITE on one block of the pair, and then the other. If
the first one fails, a crash is forced, as mentioned above, and the second one is
left untouched.

After every crash, and at least once every time period T, a special cleanup
process is run to examine each stable block. If both blocks are “good” and
identical, nothing has to be done. If one is “good” and one is “bad” (failure
during a CAREFUL-WRITE), the “bad” one is replaced by the “good” one.
If both are “good” but different (crash between two CAREFUL-WRITESs), the
second one is replaced by a copy of the first one. This algorithm allows indivi-
dual disk blocks to be updated atomically and survive infrequent crashes.

Stable storage can be used to create “stable processors” [Lampson 1981].
To make itself crashproof, a CPU must checkpoint itself on stable storage
periodically. If it subsequently crashes, it can always restart itself from the last
checkpoint. Stable storage can also be used to create stable monitors, in order
to ensure that two concurrent processes never enter the same critical region at
the same time, even if they are running on different machines.

Given a way to implement crashproof processors (stable processors) and
crashproof disks (stable storage), it is possible to implement multicomputer
atomic transactions. Before updating any part of the data in place, a stable
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processor first writes an intentions list to stable storage, providing. the new
value for each datum to be changed. Then it sets a commit flag to indicate
that the intentions list is complete. The commit flag is set by atomically
updating a special block on stable storage. Finally it begins making all the
changes called for in the intentions list. Crashes during this phase. have no
serious consequences because the intentions list is stored in stable storage.
Furthermore, the actual making of the changes is idempotent, so repeated
crashes and restarts during this phase are not harmful.

Atomic actions have been implemented in a number of systems; see for
example [FRIDRICH and OLDER 1981; MITCHELL and DioN 1982; BROWN et
al. 1985; PoPEK et al. 1981; REeD and SvoBODOVA 1981].

3.5. SERVICES

In a distributed system, it is natural to provide functions by user-level server
processes that have traditionally been provided by the operating system. This
approach leads to a smaller (hence more reliable) kernel and makes it easier to
provide, modify, and test new services. In the following sections, we will look
at some of these services, but first we look at how services and servers can be
structured.

3.5.1. Server structure

The simplest way to implement a service is to have one server that has a sin-
gle, sequential thread of control. The main loop of the server looks something
like this:

while true do

GetRequest;
CarryOutRequest;
SendReply

end

This approach is simple and easy to understand, but has the disadvantage that
if the server must block while carrying out the request (e.g, in order to read a
block from a remote disk), no other requests from other users can be started,
even if they could have been satisfied immediately. An obvious example is a
file server that maintains a large disk block cache, but occasionally must read
from a remote disk. In the time interval that the server is blocked waiting for
the remote disk to reply, it might have been able to service the next 10
requests, if they were all for blocks that happened to be in the cache. Instead,
the time spent waiting for the remote disk is completely wasted.

To eliminate this wasted time and improve the throughput of the server, the
server can maintain a table to keep track of the status of multiple partially
completed requests. Whenever a request requires the server to send a message
to some other machine and wait for the result, the server stores the status of
the partially completed request in the table and goes back to the top of the
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main loop to get the next message.

If the next message happens to be the reply from the other machine, that is
fine and it is processed, but if it is a new request for service from a different
client, that can also be started, and possibly completed before the reply for the
first request comes in. In this way, the server is never idle if there is any work
to be done.

Although this organization makes better use of the server’s CPU, it makes
the software much more complicated. Instead of doing nicely nested remote
procedure calls to other machines whose services it needs, the server is back to
using separate SEND and RECEIVE primitives, which are less structured.

One way of achieving both good performance and clean structure is to pro-
gram the server as a collection of miniprocesses, which we will call a cluster of
tasks. Tasks share the same code and global data, but each task has its own
stack for local variables and registers and, most importantly, its own program
counter. In other words, each task has its own thread of control. Multipro-
gramming of the tasks can be done either by the operating system kernel or by
a run time library within each process.

There are two ways of organizing the tasks. The first way is to assign one
task the job of “dispatcher,” as shown in Figure 10. The dispatcher is the only
task that accepts new requests for work. After inspecting an incoming request,
it determines if the work can be done without blocking (e.g., if a block to be
read is present in the cache). If it can, the dispatcher just carries out the work
and sends the reply. If the work requires blocking, the dispatcher passes the
work to some other task in the cluster, which can start work on it. When that
task blocks, task switching occurs, and the dispatcher or some other previously
blocked task can now run. Thus waiting for a remote procedure call to finish
only blocks one task, not the whole server.

The other way of organizing the server is to have each task capable of
accepting new requests for work. When a message arrives, the kernel gives it
at random to one of the tasks listening to the address or port to which the
message was addressed. That task carries the work out by itself, and no
dispatcher is needed.

Both of these schemes require some method of locking the shared data to
prevent races. This locking can be achieved explicitly by some kind of LOCK
and UNLOCK primitives, or implicitly by having the scheduler not stop any
task while it is running. For example, task switching only occurs when a task
blocks. With ordinary user programs, such a strategy is undesirable, but with
a server whose behavior is well-understood, it is not unreasonable.

3.5.2. File Service

There is little doubt that the most important service in any distributed system
is the file service. Many file services and file servers have been designed and
implemented, so a certain amount of experience is available [e.g., BIRRELL and
NeepHAM 1980; DELLAR 1982; Dion 1980; FripricH and OLDER 1981; Fri-
DRICH and OLDER 1984; MitcHELL and DioN 1982; MULLENDER and
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FIGURE 10. The dispatcher task waits for requests and passes them on to
the worker tasks.

TANENBAUM 1985; REED and SVOBODOVA 1981; SATYANARAYANAN et al. 1985;
SCHROEDER et al. 1985; STURGIS et al. 1980; SvOoBODOVA 1981; SWINEHART et
al. 1979]. A survey about file servers can be found in [SvoBODOVA 1984].

File services can be roughly classified into two kinds, “traditional” and
“robust.” Traditional file service is offered by nearly all centralized operating
systems (e.g., the UNIX file system). Files can be opened, read, and rewritten
in place. In particular, a program can open a file, seek to the middle of the
file, and update blocks of data within the file. The file server implements these
updates by simply overwriting the relevant disk blocks. Concurrency control,
if there is any, usually involves locking entire files before updating them.

Robust file service, on the other hand, is aimed at those applications that
require extremely high reliability, and whose users are prepared to pay a
significant penalty in performance to achieve it. These file services generally
offer atomic updates and similar features lacking in the traditional file service.

In the following paragraphs, we discuss some of the issues relating to tradi-
tional file service (and file servers) and then look at those issues that
specifically relate to robust file service and servers. Since robust file service
normally includes traditional file service as a subset, the issues covered in the
first part also apply.

Conceptually, there are three components that a traditional file service nor-
mally has:

- Disk service
- Flat file service
- Directory service
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The disk service is concerned with reading and writing raw disk blocks,
without regard to how they are organized. A typical command to the disk ser-
vice is to allocate and write a disk block, and return a capability or address
(suitably protected) so the block can be read later.

The flat file service is concerned with providing its clients with an abstrac-
tion consisting of files, each of which is a linear sequence of records, possibly
1-byte records (as in UNIX) or client-defined records. The operations are
reading and writing records, starting at some particular place in the file. The
client need not be concerned with how or where the data in the file are stored.

The directory service provides a mechanism for naming and protecting files,
so they can be accessed conveniently and safely. The directory service typi-
cally provides objects called directories that map ASCII names onto the inter-
nal identification used by the file service.

Design Issues. One important issue in a distributed system is how closely the
three components of a traditional file service are integrated. At one extreme,
the system can have distinct disk, file and directory services that run on
different machines and only interact via the official interprocess communica-
tion mechanism. This approach is the most flexible, because anyone needing a
different kind of file service (e.g., a B-tree file) can use the standard disk server.
It is also potentially the least efficient, since it generates considerable inter-
server traffic.

At the other extreme, there are systems in which all three functions are han-
dled by a single program, typically running on a machine to which a disk is
attached. With this model, any application that needs a slightly different file
naming scheme is forced to start all over making its own private disk server.
However, the gain is increased runtime efficiency, because the disk, file and
directory services do not have to communicate over the network.

Another important design issue in distributed systems is garbage collection.
If the directory and file services are integrated, it is a straightforward matter to
ensure that whenever a file is created, it is entered into a directory. If the
directory system forms a rooted tree, it is always possible to reach every file
from the root directory. However, if the file directory service and file service
are distinct, it may be possible to create files and directories that are not
reachable from the root directory. In some systems this may be acceptable,
but in others, unconnected files may be regarded as garbage to be collected by
the system.

Another approach to the garbage collection problem is to forget about
rooted trees altogether, and permit the system to remove any file that has not
been accessed for, say, 5 years. This approach is intended to deal with the
situation of a client creating a temporary file and then crashing before record-
ing its existence anywhere. When the client is rebooted, it creates a new tem-
porary file and the existence of the old one is lost forever unless some kind of
timeout mechanism is used.

There are a variety of other issues that the designers of a distributed file sys-
tem must address; for example, will the file service be virtual-circuit oriented
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or connectionless. In the virtual circuit approach, the client must do an OPEN
on a file before reading it, at which time the file server fetches some informa-
tion about the file (in UNIX terms, the i-node) into memory, and the client is
given some kind of a connection identifier. This identifier is used in subse-
quent READs and WRITEs. In the connectionless approach, each READ
request identifies the file and file position in full, so the server need not keep
the i-node in memory (although most servers will maintain a cache for
efficiency reasons).

Both virtual circuit and connectionless file servers can be used with the ISO
OSI and RPC models. When virtual circuits are used for communication, hav-
ing the file server maintain open files is natural. However, each request mes-
sage can also be self contained, so that the file server need not hold the file
open throughout the communication session.

Similarly, RPC fits well with a connectionless file server, but it can also be
used with a file server that maintains open files. In the latter case, the client
does an RPC to the file server to OPEN the file and get back a file identifier of
some kind. Subsequent RPCs can do READ and WRITE operations using
this file identifier.

The difference between these two becomes clear when one considers the
effects of a server crash on active clients. If a virtual-circuit server crashes and
is then quickly rebooted, it will almost always lose its internal tables. When
the next request comes in to read the current block from file identifier 28, it
will have no way of knowing what to do. The client will receive an error mes-
sage, which will generally lead to the client process aborting. In the connec-
tionless model, each request is completely self-contained (file name, file posi-
tion, etc) so newly a reincarnated server will have no trouble carrying it out.

The price paid for this robustness, however, is a slightly longer message
since each file request must contain the full file name and position. Further-
more, the virtual-circuit model is sometimes less complex in environments in
which the network can re-order messages, that is, deliver the second message
before the first one. Local networks do not have this defect, but some wide-
area networks and internetworks do.

Protection. Another important issue faced by all file servers is access
control—who is allowed to read and write which file. In centralized systems,
the same problem exists, and is solved by using either an access control list or
capabilities. With access control lists, each file is associated with a list of users
who may access it. The UNIX RWX bits are a simple form of access control
list that divides all users into 3 categories: owner, group, and others. With
capabilities, a user must present a special “ticket” on each file access proving
that he has access permission. Capabilities are normally maintained in the
kernel to prevent forgery.

With a distributed system using remote file servers, both of these approaches
have problems. With access control lists the file server has to verify that the
user in fact is who he claims to be. With capabilities, how do you prevent
users from making them up?
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One way to make access control lists viable is to insist that the client first set
up an authenticated virtual circuit with the file server. The authentication may
involve a trusted third party as in [BIRRELL et al. 1982; BIRRELL et al. 1984].
When remote procedure calls are used, setting up an authenticated session in
advance is less attractive. The problem of authentication using RPC is dis-
cussed in [BIRRELL 1985].

With capabilities, the protection is normally due to the fact that the kernel
can be trusted. With personal computers on a network, how can the file server
trust the kernel? After all, a user can easily boot up a nonstandard kernel on
his machine. A possible solution is to encrypt the capabilities, as discussed in
[MULLENDER and TANENBAUM 1984, 1985, 1986; TANENBAUM et al. 1986].

Performance. Performance is one of the key problems in using remote file
servers (especially from diskless workstations). Reading a block from a local
disk requires a disk access and a small amount of CPU processing. Reading
from a remote server has the additional overhead of getting the data across the
network. This overhead has two components, the actual time to move the bits
over the wire (including contention resolution time, if any), and the CPU time
the file server must spend running the protocol software.

CHERITON and ZWAENEPOEL [1983] describe measurements of network over-
head in the context of the V system. With a 8 MHz 68000 processor and a 10
MB/sec Ethernet, they observe that reading a 512-byte block from the local
machine takes 1.3 msec and from a remote machine 5.7 msec, assuming that
the block is in memory and no disk access is needed. They also observe that
loading a 64K program from a remote file server takes 255 msec vs. 60 msec
locally, when transfers are in 16K units. A tentative conclusion is that access
to a remote file server is four times as expensive as to a local one. (It is also
worth noting that the V designers have gone to great lengths to achieve good
performance; many other file servers are much slower than V’s.)

One way to improve the performance of a distributed file system is to have
both clients and servers maintain caches of disk blocks and possibly whole
files. However, maintaining distributed caches has a number of serious prob-
lems. The worst of these is what happens when someone modifies the “master
copy” on the disk? Does the file server tell all the machines maintaining
caches to purge the modified block or file from their caches by sending them
“unsolicited messages” as in XDFS [STURGIS, et al. 1980]? How does the
server even know who has a cache? Introducing a complex centralized
administration to keep track is probably not the way to go.

Furthermore, even if the server did know, having the server initiate contact
with its clients is certainly an unpleasant reversal of the normal client-server
relationship, in which clients make remote procedure calls on servers, but not
vice versa. More research is needed in this area before we have a satisfactory
solution. Some results are presented in [SCHROEDER et al. 1985].
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Reliability. Reliability is another key design issue. The simplest approach is to
design the system carefully, use good quality disks, and make occasional tape
backups. If a disk ever gets completely wiped out due to hardware failure, all
the work done since the last tape backup is lost. Although this mode of opera-
tion may seem scary at first, nearly all centralized computer systems work this
way, and with a mean time between failure of 20,000 or more hours for disks
these days, it works pretty well in practice.

For those applications that demand a higher level of reliability, some distri-
buted systems have a more robust file service, as mentioned at the beginning of
this section. The simplest approach is mirrored disks: every WRITE request is
carried out in parallel on two disk drives. At every instant the two drives are
identical, and either one can take over instantly for the other-in the event of
failure.

A refinement of this approach is to have the file server offer stable storage
and atomic transactions, as discussed earlier. Systems offering this facility are
described in [BROWN et al. 1985; DioN 1980; MiTCHELL and DionN 1982;
NEeeDHAM and HERBERT 1982; REeD and SvoBODOVA 1981; STURGIS et al.
1980; SvoBopOVA 1981]. A detailed comparison of a number of file servers
offering sophisticated concurrency control and atomic update facilities is given
by SvoBoDOVA [1984]. We will just touch on a few of the basic concepts here.

At least four different kinds of files can be supported by a file server. Ordi-
nary files consist of a sequence of disk blocks that may be updated in place,
and which may be destroyed by disk or server crashes. Recoverable files have
the property that groups of WRITE commands can be bracketed by BEGIN
TRANSACTION and END TRANSACTION, and that a crash or abort mid-
way leaves the file in its original state. Robust files are written on stable
storage, and contain sufficient redundancy to survive disk crashes (generally
two disks are used). Finally, Multiversion files consist of a sequence of ver-
sions, each of which is immutable. Changes are made to a file by creating a
new version. Different file servers support various combinations of these.

All robust file servers need some mechanism for handling concurrent
updates to a file or group of files. Many of them allow users to lock a file,
page, or record to prevent conflicting writes. Locking introduces the problem
of deadlocks, which can be dealt with using two-phase locking [ESWARAN et al
1976] or timestamps [REED 1983].

When the file system consists of multiple servers working in parallel, it
becomes possible to enhance reliability by replicating some or all files over
multiple servers. Reading also becomes easier because the workload can now
be split over two servers, but writing is much harder because multiple copies
must be updated simultaneously, or this effect simulated somehow.

One approach is to distribute the data, but keep some of the control infor-
mation (semi) centralized. In LOCUS [Popex et al. 1981; WALKER et al
1983], for example, files can be replicated at many sites, but when a file is
opened, the file server at one site examines the OPEN request, the number and
status of the file’s copies, and the state of the network. It then chooses one
site to carry out the OPEN and the subsequent READs and WRITEs. The
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other sites are brought up to date later.

3.5.3. Print Service

Compared to file service, on which a great deal of time and energy has been
expended by a large number of people, the other services seem rather meager.
Still, it is worth saying at least a little bit about a few of the more interesting
ones.

Nearly all distributed systems have some kind of print service, to which
clients can send files or file names or capabilities for files with instructions to
print them on one of the available printers, possibly with some text
justification or other formatting beforechand. In some cases, the whole file is
sent to the print server in advance, and the server must buffer it. In other
cases, only the file name or capability is sent, and the print server reads the file
block by block as needed. The latter strategy eliminates the need for buffering
(read: a disk) on the server side, but can cause problems if the file is modified
after the print command is given but prior to the actual printing. Users gen-
erally prefer “call by value” rather than “call by reference” semantics for
printers.

One way to achieve the “call by value” semantics is to have a printer
spooler server. To print a file, the client process sends the file to the spooler.
When the file has been copied to the spooler’s directory, an acknowledgement
is sent back to the client.

The actual print server is then implemented as a print client. Whenever the
print client has nothing to print, it requests another file or block of a file from
the print spooler, prints it, and then requests the next one. In this way the
print spooler is a server to both the client and the printing device.

Printer service is discussed in [JANSON et al. 1983; and NEepHAM and HEr-
BERT 1982].

3.5.4. Process Service

Every distributed operating system needs some mechanism for creating new
processes. At the lowest level, deep inside the system kernel, there must be a
way of creating a new process from scratch. One way is to have a FORK call,
as UNIX does, but other approaches are also possible. For example, in
Amoeba, it is possible to ask the kernel to allocate chunks of memory of given
sizes. The caller can then read and write these chunks, loading them with the
text, data, and stack segments for a new process. Finally, the caller can give
the filled-in segments back to the kernel and ask for a new process built up
from these pieces. This scheme allows processes to be created remotely or
locally, as desired.

At a higher level, it is frequently useful to have a process server that one can
ask whether there is a Pascal, troff, or some other service, in the system. If
there is, the request is forwarded to the relevant server. If not, it is the job of
the process server to build a process somewhere and give it the request. After,
say, a VLSI design rule checking server has been created and has done its
work, it may or may not be a good idea to keep it in the machine where it was
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created, depending on how much work (e.g, network traffic) is required to
load it, and how often it is called. The process server could easily manage a
server cache on a least recently used basis, so that servers for common applica-
tions are usually preloaded and ready to go. As special-purpose VLSI proces-
sors become available for compilers and other applications, the process server
should be given the job of managing them in a way that is transparent to the
system’s users.

3.5.5. Terminal Service

How the terminals are tied to the system obviously depends to a large extent
on the system architecture. If the system consists of a small number of mini-
computers, each with a well-defined and stable user population, then each ter-
minal can be hardwired to the computer its user normally logs on to. If, how-
ever, the system consists entirely of a pool of processors that are dynamically
allocated as needed, it is better to connect all the terminals to one or more ter-
minal servers that serve as concentrators.

The terminal servers can also provide such features as local echoing, intra-
line editing, and window management, if desired. Furthermore, the terminal
server can also hide the idiosyncracies of the various terminals in use by map-
ping them all onto a standard virtual terminal. In this way, the rest of the
software deals only with the virtual terminal characteristics and the terminal
server takes care of the mappings to and from all the real terminals. The ter-
minal server can also be used to support multiple windows per terminal, with
each window acting as a virtual terminal.

3.5.6. Mail Service

Electronic mail is a popular application of computers these days. Practically
every university computer science department in the Western world is on at
least one international network for sending and receiving electronic mail.
When a site consists of only one computer, keeping track of the mail is easy.
However, when a site has dozens of computers spread over multiple local net-
works, users often want to be able to read their mail on any machine they hap-
pen to be logged on to. This desire gives rise to the need for a machine-
independent mail service, rather like a print service that can be accessed sys-
tem wide. ALMES et al. [1985] discuss how mail is handled in the Eden system.

3.5.7. Time Service
There are two ways to organize a time service. In the simplest way, clients can
just ask the service what time it is. In the other way, the time service can
broadcast the correct time periodically, to keep all the clocks on the other
machines in sync. The time server can be equipped with a radio receiver tuned
to WWYV or some other transmitter that provides the exact time down to the
microsecond.

Even with these two mechanisms, it is impossible to have all processes
exactly synchronized. Consider what happens when a process requests the
time-of-day from the time server. The request message comes in to the server,



45

and a reply is sent back immediately. That reply must propagate back to the
requesting process, cause an interrupt on its machine, have the kernel started
up, and finally have the time recorded somewhere. Each of these steps intro-
duces an unknown, variable delay.

On an Ethernet, for example, the amount of time required for . the time
server to put the reply message onto the network is nondeterministic and
depends on the number of machines contending for access at that instant. If a
large distributed system has only one time server, messages to and from it may
have to travel a long distance and pass over store-and-forward gateways with
variable queueing delays. If there are multiple time servers, they may get out
of synchronization because their crystals run at slightly different rates.
Einstein’s special theory of relativity also puts constraints on synchronizing
remote clocks.

The result of all these problems is that having a single, global time is impos-
sible. Distributed algorithms that depend on being able to find a unique glo-
bal ordering of widely separated events may not work as expected. A number
of researchers have tried to find solutions to the various problems caused by
the lack of global time. See for example [JEFFERSON 1985; LAMPORT 1984,
LAMPORT 1978; MarRZULLO and Owickl 1985; Reep 1983; REIF and SPIRAKIS
1984;]

3.5.8. Boot Service

The boot service has two functions: bringing up the system from scratch when
the power is turned on, and helping important services survive crashes. In
both cases, it is helpful if the boot server has a hardware mechanism for forc-
ing a recalcitrant machine to jump to a program in its own ROM, in order to
reset it. The ROM program could simply sit in a loop waiting for a message
from the boot service. The message would then be loaded into that machine’s
memory and executed as a program.

The second function alluded to above is the “immortality service.” An
important service could register with the boot service, which would then poll it
periodically to see if it were still functioning. If not, the boot service could ini-
tiate measures to patch things up, for example, forcibly reboot it or allocate
another processor to take over its work. To provide high reliability, the boot
service should itself consist of multiple processors, each of which keeps check-
ing that the other ones are still working properly.

3.5.9. Gateway Service

If the distributed system in question needs to communicate with other systems
at remote sites, it may need a gateway server to convert messages and proto-
cols from internal format to those demanded by the wide-area network carrier.
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4. EXAMPLES OF DISTRIBUTED OPERATING SYSTEMS

Having disposed with the principles, it is now time to look at some actual dis-
tributed systems that have been constructed as research projects in universities
around the world. Although many such projects are in various stages of
development, space limitations prevent us from describing all of them in detail.
Instead of saying a few words about each system, we have chosen to look at
four systems that we consider representative. Our selection criteria were as
follows. First, we only chose systems that were designed from scratch as dis-
tributed systems, (systems that gradually evolved by connecting together exist-
ing centralized systems or are multiprocessor versions of UNIX were
excluded). Second, we only chose systems that have actually been imple-
mented; paper designs did not count. Third, we only chose systems about
which a reasonable amount of information was available.

Even with these criteria, there were many more systems that could have been
discussed. As an aid to the reader interested in pursuing this subject further,
we provide here some references to other relevant work: Accent [FITZGERALD
and RasHID 1985; RAsHID and ROBERTSON 1981], ARGUs [Liskov 1982;
Liskov 1984; Liskov and SCHEIFLER 1982; OkI et al. 1985], Chorus [ZIMMER-
MAN et al. 1981], CRYSTAL [DEWIrT et al. 1984], DEMOS [PowELL and
MiLLER 1983], Distributed UNIX [LUDERER et al. 1981], HXDP [JENSEN 1978],
LOCUS [PoPek et al. 1981; WALKER et al. 1983; WEINSTEIN et al. 1985],
Meglos [GAGLIANELLO and KATSerfF 1985], MICROS [CurTtis and WITTIE
1984; MoHAN and WITTIE 1985; WITTIE and CURrTIs 1985; WITTIE and VAN
TiLBORG 1980], RIG [BALL et al. 1976], Roscoe/Arachne [FINKEL et al. 1979;
SoLoMON and FINKEL 1979; SoLoMON and FINKEL 1978], and the work at
Xerox PARC [BIRRELL et al. 1984; BIRRELL and NELSON 1984; BIRRELL 1985;
BoGGs et al. 1980; BROWN et al. 1985; SWINEHART et al. 1979].

The systems we will examine here are: The Cambridge Distributed Comput-
ing System, Amoeba, V, and Eden. The discussion of each system follows the
list of topics treated above, namely communication primitives, naming and
protection, resource management, fault tolerance, and services.

4.1. THE CAMBRIDGE DISTRIBUTED COMPUTING SYSTEM
The Computing Laboratory at the University of Cambridge has been doing
research in networks and distributed systems since the mid 1970s, first with the
Cambridge ring and later with the Cambridge Distributed Computing System
[NEepHAM and HERBERT 1982]. The Cambridge ring is not a token-passing
ring, but rather contains several minipacket slots circulating around the ring.
To send a packet, a machine waits until an empty slot passes by, then inserts a
minipacket containing the source, destination, some flag bits, and 2 bytes of
data. Although the 2-byte minipackets themselves are occasionally useful (e.g.,
for acknowledgements), several block-oriented protocols have been developed
for reliably exchanging 2K packets by accumulating 1024 minipackets. The
nominal ring bandwidth is 10 Mbps, but since each minipacket has 2 bytes of
data and 3 bytes of overhead, the effective bandwidth is 4 Mbps.

The Cambridge ring project was very successful, with copies of the ring
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currently in operation at many universities and companies in the U.K.- and
elsewhere. The availability of the ring led to research on distributed comput-
ing systems initially using nine Computer Automation LSI4 minicomputers
and later using about a dozen Motorola 68000s, under the direction of Roger
Needham.

The Cambridge system is primarily composed of two components: the pro-
cessor bank and the servers. When a user logs in, he normally requests one
machine from the processor bank, uses it as a personal computer for the entire
work session, and returns it when logging out. Processors are not normally
dynamically allocated for short periods of time. The servers are dedicated
machines that provide various useful services, including file service, name ser-
vice, boot service, etc. The number and location of these servers is relatively
static.

4.1.1. Communication Primitives

Due to the evolution from network to distributed system described earlier, the
communication primitives are usually described as network protocols rather
than as language primitives. The choice of the primitives was closely tuned to
the capabilities of the ring in order to optimize performance. Nearly all com-
munication is built up from sending packets consisting of a 2-byte header, a
2-byte process identifier, up to 2048 data bytes, and a 2-byte checksum. On
top of this basic packet protocol are a simple remote procedure call protocol
and a byte stream protocol.

The basic packet protocol, which is a pure datagram system, is used by the
single shot protocol to build up something similar to a remote procedure call.
It consists of having the client send a packet to the server containing the
request, and the having the server send a reply. Some machines are multipro-
grammed, so the second minipacket (called ’route’ above) is used to route the
incoming packet to the correct process. The request packet itself contains a
function code and the parameters, if any. The reply packet contains a status
code and the result, if any. Clients do not acknowledge receipt of the result.

Some applications, such as terminal handling and file transfer work better
with a flow-controlled, virtual circuit protocol. The byte stream protocol is
used for these applications. This protocol is a full-duplex connection-oriented
protocol, with full flow control and error control.

4.1.2. Naming and Protection
Services can be located in the Cambridge system by using the name server. To
look up a name, the client sends an ASCII string to the name server, which
then looks it up in its tables and returns the machine number where the service
is located, the port used to address it, and the protocol it expects. The name
server stores service names as unstructured ASCII strings, which are simply
matched against incoming requests character by character, that is, it does not
manage hierarchical names. The name server itself has a fixed address that
never changes, so this address may be embedded into programs.

Although the service data base is relatively static, from time to time names
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must be added or deleted to the name server’s data base. Commands are pro-
vided for this purpose, but for protection reasons these commands may only
be executed by the system administrator.

Finding the location of a service is only half the work. To use most services,
a process must identify itself in an unforgeable way, so the service can check
to see if that user is authorized. This identification is handled by the Active
Name Server, which maintains a table of currently logged in users. Each table
entry has four fields: the user’s login name, his session key (a big random
number), the user’s class (e.g., faculty, student) and a control key, as shown in

Figure 11. '

Login Session Class Control
MARVIN 91432 STUDENT 31513 ‘|
BARBARA 61300 STUDENT 27138
ANDY 42108 FACULTY 31618
SUZANNE 81346 DIRECTOR 41948

FIGURE 11. The Active Name Table.

To use a service, a user supplies the service with his login name, session key
(obtained at login time), and class. The service can then ask the Active Name
Server if such an entry exists. Since session keys are sparse, it is highly
unlikely that a student will be able to guess the current session key for the
computer center director, and thus be able to obtain services reserved for the
director. The control key must be presented to change an entry, thus provid-
ing a mechanism to restrict changing the Active Name Server’s table to a few

people.

4.1.3. Resource Management

The main resource managed by the system is the processor bank, handled by a
service called the resource manager. Usually a user requests a processor to be
allocated at login time, and then loads it with a single-user operating system.
The processor then becomes the user’s personal computer for the rest of the
login session.

The resource manager accepts requests to allocate a processor. In these
requests, the user specifies a CPU type (e.g., 68000), a list of attributes (e.g.
memory size), and a program to be run. The resource manager then selects the
most suitable CPU currently available to allocate. Various defaults are avail-
able, so, for example, a user can specify that he wants to run TRIPOS (a
straightforward single-user operating system), and the resource manager will
select an appropriate CPU type if none has been specified.
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The downloading of programs into processor bank machines is controlled by
a server called the ancilla, although some of the machines have intelligent ring
interfaces that actually do most of the work. The ancilla also helps simulate
the machine’s console and front panel, so users have the same control over a
processor bank machine as they would over a real personal computer on their
desks.

4.1.4. Fault Tolerance
The approach taken to fault tolerance in the Cambridge system is to make it
easy to bring servers back up after a crash. When a ring interface detects a
special minipacket whose source is the name server, it reboots the processor by
forcing it to jump to a program in ROM. This program then sends a request
to the boot server, which in turn goes to the name server asking for reverse
name lookup. The name server then searches its tables to find the service that
is running on the machine from which the reverse lookup request came. As
soon as the reply comes in, the server knows what it is supposed to be doing,
and can request the resource manager and ancilla to download the appropriate
program. When machines are physically reset or powered up, the same pro-
cedure is carried out automatically.

Another area in which some effort has been put to make the system fault
tolerant is the file system, which supports atomic updates on special files. This
facility is described in the next section.

4.1.5. Services

We have already described several key servers, including the name server,
resource manager, ancilla, and active name server. Other small servers
include the time server, print server, login server, terminal server, and error
server, which records system errors for maintenance purposes. The file server
is examined here.

The file system started out with the idea of a single universal file server that
provided basic storage service but very primitive naming and protection sys-
tem, coupled with single-user TRIPOS operating systems in the processor bank
machines, in which the naming and directory management would be done.
The CAP computer (a large research machine within the Laboratory that does
not ha ve any disks of its own) also uses the file server. After some experience
with this model, it was decided to create a new server, known as the filing
machine, as a front end to the file system to improve the performance (mostly
by providing the filing machine with a large cache, something that the small
user machines could not afford). The CAP machine, which has adequate
memory, continues to use the file server directly. The position of the filing
machine is shown in Figure 12.

The universal file server supports one basic file type, with two minor varia-
tions. The basic file type is an unstructured file consisting of a sequence of
16-bit words, numbered from 0 to some maximum. Operations are provided
for reading or writing arbitrary numbers of words, starting anywhere in the
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-\ Filing File
/////////////, machine server
Block cache Regular files
ASCII names Special files
Processor Index files
bank
machines

FIGURE 12. The filing machine is positioned between the users and the file
server. It maintains a block cache and handles ASCII names.

file. Each file is uniquely identified by a 64-bit PUID (Permanent User
IDentifier) consisting of a 32-bit disk address and a 32-bit random number.

The first variation is the special file, which has the property that writes to it
are atomic, that is, they will either succeed completely or not be done at all.
They will never be partly completed, even in the face of server crashes.

The second variation is a file called an index, which is a special file consist-
ing of a sequence of slots, each holding one PUID. When a file is created, the
process creating it must specify an index and slot in that index into which the
new file’s PUID is stored. Since indices are also files, and as such have PUIDs
themselves, an index may contain pointers (PUIDs) to other indices, allowing
arbitrary directory trees and graphs to be built. One index is distinguished as
being the root index, which has the property that the file server’s internal gar-
bage collector will never remove a file reachable from the root index.

In the initial implementation, the full code of the TRIPOS operating system
was loaded into each pool processor. All of the directory management and
handling of ASCII names was done on the processor bank machines. Unfor-
tunately, this scheme had several problems. First, TRIPOS was rather large
and filled up so much memory that little room was left for buffers, meaning
that almost every read or write request actually caused a disk access (the
universal file server has hardly any buffers). Second, looking up a name in the
directory hierarchy required all the intermediate directories between the start-
ing point and the file to be physically transported from the file server to a
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machine doing the search.

To get around these problems, a filing machine with a large cache was
inserted in front of the file server. This improvement allowed programs to
request files by name instead of PUID, with the name look up occurring in the
filing machine now. Due to the large cache, most of the relevant directories
are likely to already be present in the filing machine, thus eliminating much
network traffic. Furthermore, it allowed the TRIPOS code in the user
machines to be considerably stripped, since the directory management was no
longer needed. It also allowed the file server to read and write in large blocks;
this was previously possible, but rarely done due to lack of buffer space on the
user side. The resulting improvements were substantial.

4.1.6. Implementation

As should be clear by now, the whole Cambridge system is a highly pragmatic
design, which from its inception [WILKES and NEEDHAM 1980] was designed to
actually be used by a substantial user community. About 90 machines are
connected by three rings now, and the system is fairly stable. A related
research project was the connection of a number of Cambridge rings via a
satellite [ADAMS et al. 1982]. Future research may include interconnection of
multiple Cambridge rings using very high speed (2 Mbit/sec) lines.

4.2. AMOEBA

Amoeba is a research project on distributed operating systems being carried
out at the Vrije Universiteit in Amsterdam under the direction of Andrew
Tanenbaum. Its goal is to investigate capability-based, object-oriented sys-
tems, and to build a working prototype system to use and evaluate. It
currently runs on a collection of 24 Motorola 68010 computers connected by a
10 Mbps local network.

The Amoeba architecture consists of four principal components, as shown in
Figure 13. First are the workstations, one per user, on which users can carry
out editing and other tasks that require fast interactive response. Second are
the pool processors, a group of CPUs that can be dynamically allocated as
needed, used, and then returned to the pool. For example, the “make” com-
mand might need to do six compilations, so six processors could be taken out
of the pool for the time necessary to do the compilation and then returned.
Alternatively, with a five-pass compiler, 5 X 6 = 30 processors could be allo-
cated for the six compilations, gaining even more speedup.

Third are the specialized servers, such as directory, file, and block servers,
data base servers, bank servers, boot servers, and various other servers with
specialized functions. Fourth are the gateways, which are used to link Amoeba
systems at different sites (and, eventually, different countries) into a single,
uniform system.

All the Amoeba machines run the same kernel, which primarily provides
message-passing services and little else. The basic idea behind the kernel was
to keep it small, not only to enhance its reliability, but also to allow as much
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FIGURE 13. The Amoeba architecture.
as possible of the operating system to run as user processes, providing for flexi-
bility and experimentation.

Some of the research issues addressed by the project are how to put as much
of the operating system as possible into user processes, how to use the proces-
sor pool, how to integrate the workstations and processor pool, and how to
connect multiple Amoeba sites into a single coherent system using wide-area
networks. All of these issues use objects and capabilities in a uniform way.

4.2.1. Communication Primitives

The conceptual model for Amoeba communication is the abstract data type or
object model, in which clients perform operations on objects in a location
independent manner. To implement this model, Amoeba uses a minimal
remote procedure call model for communication between clients and servers.
The basic client primitive is to send a message of up to about 32K bytes to a
server and then block waiting for the result. Servers use GET REQUEST and
PUTREPLY to get new work and send back the results, respectively. These
primitives are not embedded in a language environment with automatic stub
generation. They are implemented as small library routines that are used to
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invoke the kernel directly from C programs.

All the primitives are reliable in the sense that detection and retransmission
of lost messages, acknowledgement processing, and message-to-packet and
packet-to-message management are all done transparently by the kernel. Mes-
sages are unbuffered. If a message arrives and no one is expecting it, the mes-
sage is simply discarded. The sending kernel then times out and tries again.
Users can specify how long the kernel should retransmit before giving up and
reporting failure. The idea behind this strategy is that server processes are
generally cloned in N-fold, so normally there will be a server waiting. Since a
message is discarded only if the system is badly overloaded, having the client
time out and try again later is not a bad idea.

Although the basic message primitives are blocking, special provision is
. made for handling emergency messages. For example, if a data base server is
currently blocked waiting for a file server to get some data for it, and a user at
a terminal hits the BREAK key (indicating that he wants to kill off the whole
request), some way is needed to gracefully abort all the processes working on
behalf of that request. In the Amoeba system the terminal server generates
and sends a special EXCEPTION message, which causes an interrupt at the
receiving process.

This message forces the receiver to stop working on the request and send an
immediate reply with a status code of REQUEST ABORTED. If the receiver
was also blocked waiting for a server, the exception is recursively propagated
all the way down the line, forcing each server in turn to finish immediately. In
this manner, all the nested processes terminate normally (with error status), so
little violence is done to the nesting structure. In effect, an EXCEPTION mes-
sage does not terminate execution. Instead, it just says “Force normal termi-
nation immediately, even if you are not done yet, and return an error status.”

4.2.2. Naming and Protection
All naming and protection issues in Amoeba are dealt with by a single, uni-
form mechanism: sparse capabilities [TANENBAUM et al. 1986]. The system
supports objects such as directories, files, disk blocks, processes, bank
accounts, devices, etc., but not small objects such as integers. Each object is
owned by some service and managed by the corresponding server processes.

When an object is created, the process requesting its creation is given a
capability for it. Using this capability, a process can carry out operations on
the object, such as reading or writing the blocks of a file, starting or stopping a
process etc. The number and type of operations applicable to an object are
determined by the service that created the object; a bit map in the capability
tells which of those the holder of the capability is permitted to use. Thus the
whole of Amoeba is based on the conceptual model of abstract data types
managed by services, as mentioned above. Users view the Amoeba environ-
ment as a collection of objects, named by capabilities, on which they can per-
form operations. This is in contrast to systems where the user view is a collec-
tion of processes connected by virtual circuits.

Each object has a globally unique name, contained in its capabilities.
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Capabilities are managed entirely by user processes; they are protected crypto-
graphically, not by any kernel maintained tables or mechanisms. A capability
has four fields as shown in Figure 14:

1 The service port: a sparse address corresponding to the service that owns the
object, such as a file or directory service.

2 The object number: an internal identifier that the service uses to tell which of
its objects this is (cf. the i-number in UNIX).

3 The rights field: a bit map telling which operations on the object are permit-
ted.

4 The check field: a large random number used to authenticate the capability.

48 24 8 48

Service port Object Rts Random #

FIGURE 14. An Amoeba capability.

When a server is asked to create an object, it picks an available slot in its
internal tables (e.g., a free i-node, in UNIX terminology), puts the information
about the new object there, and picks a new random number to be used
exclusively to protect this new object. Each server is free to use any protection
scheme it wants to, but the normal one is for it to build a capability contain-
ing its port, the object number, the rights (initially all present), and a known
constant. The two latter fields are then thoroughly mixed by encrypting them
with the random number as key, which is then stored in the internal table.

Later, when a process performs an operation on the object, a message con-
taining the object’s capability is sent to the server. The server uses the (plain-
text) object number to find the relevant internal table entry and extract the ran-
dom number, which is then used to decrypt the rights and check fields. If the
decryption yields the correct known constant, the rights field is believed and
the server can easily check if the requested operation is permitted. More
details about protection of capabilities can be found in [MULLENDER and
TANENBAUM 1986; MULLENDER and TANENBAUM 1984; TANENBAUM et al.
1986].

Capabilities can be stored in directories managed by the directory service.
A directory is effectively a set of (ASCII string, capability) pairs. The most
common directory operation is for a user to present the directory server with a
capability for a directory (itself an object) and an ASCII string and ask for the
capability that corresponds to that string in the given directory. Other opera-
tions are entering and deleting (ASCII string, capability) pairs.
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This naming scheme is flexible in that a directory may contain capabilities
for an arbitrary mixture of object types and locations, but it is also uniform in
that every object is controlled by a capability. A directory entry may, of
course, be for another directory, so it is simple to build up a hierarchical (e.g.,
UNIX-like) directory tree, or even more general naming graphs. Furthermore,
a directory may also contain a capability for a directory managed by a
different directory service. As long as all the directory services have the same
interfaces with the user, one can distribute objects over directory services in an
arbitrary way.

4.2.3. Resource Management

Resource management in Amoeba is performed in a distributed way, again
using capabilities. Each Amoeba machine (pool processor, work station, etc.)
runs a resource manager process that controls that machine. This process
actually runs inside the kernel, for efficiency reasons, but it uses the normal
abstract data type interface with its clients. The key operations it supports are
CREATE SEGMENT, WRITE SEGMENT, READ SEGMENT, and MAKE
PROCESS. To create a new process, a process would normally execute
CREATE SEGMENT three times for the child process’ text, data, and stack
segments, getting back one capability for each segment. Then it would fill
each one in with that segment’s initial data, and finally perform MAKE PRO-
CESS with these capabilities as parameters, getting back a capability for the

NEW Process.

Using the above primitives, it is easy to build a set of processes that share
text and/or data segments. This facility is useful for constructing servers that
consist internally of multiple miniprocesses (tasks) that share text and data.
Each of these processes has its own stack, and most importantly, its own pro-
gram counter, so that when one of them blocks on a remote procedure call, the
others are not affected. For example, the file server might consist of 10
processes sharing a disk cache, all of which start out by doing a
GET REQUEST. When a message comes in, the kernel sees that 10 processes
are all listening to the port specified in the message, so it picks one process at
random and gives it the message. This process then performs the requested
operation, possibly blocking on remote procedure calls (e.g., calling the disk)
while doing so, but leaving the other server processes free to accept and handle
new requests.

At a higher level, the processor pool is managed by a process server that
keeps track of which ones are free and which ones are not. If an installation
wants to multiprogram the processor pool machines, then the process server
manages each process table slot on a pool processor as a virtual processor.
One of the interesting research issues here is the interplay between the works-
tations and the processor pool, that is, when should a process be started up on
the workstation and when should it be offloaded to a pool processor. Research
has not yet yielded any definitive answers here, although it seems intuitively
clear that highly interactive processes, such as screen editors, should be local to
the workstation, and batch-like jobs, such as big compilations (e.g., UNIX
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“make”), should be run elsewhere.

Accounting. Amoeba provides a general mechanism for resource management
and accounting in the form of the bank server, which manages “bank account”
objects. Bank accounts hold virtual money, possibly in multiple currencies.
The principal operation on bank account objects is transferring virtual money
between accounts. For example, to pay for file storage, a file server might
insist on payment in advance of X dollars per megabyte of storage, and a pho-
totypesetter server might want a payment in advance of Y yen per page. The
system management can decide whether or not dollars and zlotys are converti-
ble, depending on whether or not it wants users to have separate quotas on
disk space and typesetter pages, or just give each user a single budget to use as
he sees fit. :

The bank server provides a basic mechanism on top of which many interest-
ing policies can be implemented. For example, if some resource is in short
supply, are servers allowed to raise the price as a rationing mechanism? Do
you get your money back when you release disk space; that is, is the model
one of clients and servers buying and selling blocks, or is it like renting some-
thing? If it is like renting, there will be a flow of money from users to the
various servers, so users need incomes to keep them going, rather than simply
initial fixed budgets. When new users are added, virtual money has to be
created for them. Does this lead to inflation? The possibilities here are legion.

4.2.4. Fault Tolerance

The basic idea behind fault tolerance in Amoeba is that machine crashes are
infrequent, and that most users are not willing to pay a penalty in performance
in order to make all crashes 100% transparent. Instead, Amoeba provides a
boot service, with which servers can register. The boot service polls each
registered server at agreed upon intervals. If the server does not reply properly
within a specified time, the boot service declares the server to be broken, and
requests the process server to start up a new copy of the server on one of the
pool processors.

To understand how this strategy affects clients, it is important to realize that
Amoeba does not have any notion of a virtual circuit or a session. Each
remote procedure call is completely self-contained and does not depend on any
previous set up, that is, it does not depend on any volatile information stored
in server’s memories. If a server crashes before sending a reply, the kernel on
the client side will time out and try again. When the new server comes up, the
client’s kernel will discover this and send the request there, without the client
even knowing anything has happened. Of course, this approach does not
always work, for example, if the request is not idempotent (the chocolate fac-
tory!) or if a sick disk head has just mechanically scraped all the bits from
some disk surface, but it works much of the time and has zero overhead under
normal conditions.
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4.2.5. Services
Amoeba has several kinds of block, file and directory service. The simplest
one is a server running on top of the Amoeba kernel that provides a file ser-
vice functionally equivalent to the UNIX system call interface, to allow most
UNIX programs to run on Amoeba with only the need to re-link them with a
special library.

A more interesting server, however, is FUSS (Free University Storage Sys-
tem) which views each file as a sequence of versions. A process can acquire a
capability for a private copy of a new version, modify it, and then commit it in
a single indivisible atomic action. Providing atomic commits at the file level
(rather than only as a facility in some data base systems), simplifies the con-
struction of various servers, such as the bank server, that have to be highly
robust. FUSS also supports multiple, simultaneous access using optimistic
concurrency control. It is described in more detail in MULLENDER and
TANENBAUM [1985].

Other key services are the directory service, bank service, and boot service,
all of which have already been discussed.

4.2.6. Implementation

The Amoeba kernel has been ported to five different CPUs: 68010, NS32016,
8088, VAX, and PDP-11. version. All the servers described above, except the
boot server, have been written and tested, along with a number of others.
Measurements have shown that a remote procedure call from user space on
one 68010 to user space on a different 68010 takes just over 8 msec (plus the
time to actually carry out the service requested). The data rate between user
processes on different machines has been clocked at over 250,000 bytes/sec,
which is about 20% of the raw network bandwidth, an exceptionally high
value.

A library has been written to allow UNIX programs to run on Amoeba. A
substantial number of utilities, including compilers, editors, and shells are
operational. A server has also been implemented on UNIX to allow Amoeba
programs to put capabilities for UNIX files into their directories and use them
without having to know that the files are actually located on a VAX running
UNIX.

In addition to the UNIX emulation work, various applications have been
implemented using pure Amoeba, including parallel traveling salesman and
parallel alpha-beta search [BAL et al. 1985]. Current research includes connect-
ing Amoeba systems at five locations in three countries using wide-area net-
works.

4.3. THE V KERNEL

The V kernel is a research project on distributed systems at Stanford Univer-
sity under the direction of David Cheriton [CHERITON 1984; CHERITON and
ZWAENEPOEL 1984a; CHERITON and ZWAENEPOEL 1984b; CHERITON and
MANN 1984]. It was motivated by the increasing availability of powerful
microcomputer-based workstations, which can be seen as an alternative to
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traditional time-shared minicomputers. The V kernel is an outgrowth of the
experience acquired with earlier systems, Thoth [CHERITON 1982; CHERITON et
al. 1979] and VEREX.

The V kernel can be thought of as a software backplane, analogous to the
Multibus or S-100 bus backplanes. The function of a backplane is to provide
an infrastructure for components (for hardware, boards; for software
processes) to communicate, and nothing else. Consequently, most of the facili-
ties found in traditional operating systems, such as a file system, resource
management, and protection are provided in V by servers outside the kernel.
In this respect V and Amoeba are conceptually very similar.

Another point on which V and Amoeba agree is the free market model of
services. Services such as the file system are, in principle, just ordinary user
processes. Any user who is dissatisfied with the standard file system [STONE-
BRAKER, 1981; TANENBAUM and MULLENDER 1982] is free to write his own.
This view is in contrast to the “centrally planned economy” model of most
timesharing systems, which present the file system on a “like it or lump it”
basis.

The V system consists of a collection of workstations (currently SUNs) each
running an identical copy of the V kernel. The kernel consists of three com-
ponents: the interprocess communication handler, the kernel server (for pro-
viding basic services, such as memory management), and the device server (for
providing uniform access to I/0 devices). Some of the workstations support
an interactive user, whereas others function as file servers, print servers, and
other kinds of servers, as shown in Figure 15. Unlike Amoeba, V does not
have a processor pool.

Work- work- Work-—
station station station

Network

1

File File Print Gateway
server server server server

FIGURE 15. A typical V configuration.
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4.3.1. Communication Primitives

The V communication primitives have been designed in accordance with the
backplane model mentioned above. They provide basic, but fast communica-
tion. To access a server, a client does SEND(message, pid), which transmits
the fixed-length (32-byte) ‘message’ to the server, and then blocks until the
server has sent back a reply, which overwrites ‘message.” The second parame-
ter, ‘pid,” is a 32-bit integer that uniquely identifies the destination process. A
message may contain a kind of pseudo-pointer to one of the client’s memory
segments. This pseudo-pointer can be used to permit the server to read from
or write to the client’s memory. Such reads and writes are handled by kernel
primitives COPYFROM and COPYTO. As an optimization, when a client
does a SEND containing one of these pseudo-pointers with READ permission,
the first 1K of the segment is piggybacked onto the message, on the assump-
tion that the server will probably want to read it eventually. In this way, mes-
sages longer than 32 bytes can be achieved.

Servers use the RECEIVE and REPLY calls. The RECEIVE call can pro-
vide a segment buffer in addition to the regular message buffer, so that if (part
of) a segment was piggybacked onto the message, it will have a place to go.
The REPLY call can also provide a segment buffer, for the case that the client
provided a pseudo-pointer that the server could use to return results exceeding
32 bytes. :

To make this communication system easier to use, calls to servers can be
embedded in stubs so the caller just sees an ordinary procedure call. Stub gen-
eration is not automated, however.

4.3.2. Naming and Protection

V has three levels of naming. At the bottom level, each process has a unique
32-bit pid, which is the address used to send messages to it. At the next level,
services (i.e, processes that carry out requests for clients) can have symbolic
(ASCII string) names in addition to their pids. A service can register a sym-
bolic name with its kernel so that clients can use the symbolic name instead of
the pid. When a client wants to access a service by its name, the client’s ker-
nel broadcasts a query to all the other kernels, to see where the server is. The
(ServerName, pid) pair is then put in a cache for future use.

The top level of naming makes it possible to assign symbolic names to
objects, such as files. Symbolic names are always interpreted in some “con-
text,” analogous to looking up a file name in some directory in other systems.
A context is a set of records, each including the symbolic name, server’s pid,
context number and object identifier. Each server manages its own contexts;
there is no centralized “name server.” A symbolic name is looked up in a con-
text by searching all the records in that context for one whose name matches
the given name. When a match is found, the context number and object
identifier can be sent to the appropriate server to have some operation carried
out.

Names may be hierarchical, as in a/b/c. When “a” is looked up in some
context, the result will probably be a new context, possibly managed by a new



60

server on a different machine. In that case the remaining string, “b/c” is
passed on to that new server for further lookup, and so on.

It is also possible to prefix a symbolic name with an explicit context, as in
“[HomeDirectory] a/b/c”, in which case the name is looked up in the context
specified, rather than in the current context (analogous to the current working
directory in other systems). A question that quickly arises is, “Who keeps
track of the various context names, such as “HomeDirectory” above?” The
answer is that each workstation in the system has a Context Prefix Server,
whose function is to map context names onto server names, so that the
appropriate server can be found to interpret the name itself.

4.3.3. Resource Management

Each processor in V has a dedicated function, either as a user workstation or a
file, print, or other dedicated server, so no form of dynamic processor alloca-
tion is provided. The key resources to be managed are processes, memory, and
the I/0 devices. Process and memory management is provided by the kernel
server. 1I/0 management is provided by the device server. Both of these are
part of the kernel present on each machine, and are accessed via the standard
message mechanism described above. They are special only in that they run in
kernel mode and can get at the raw hardware.

Processes are organized into groups called teams. A team of processes share
a common address space, and therefore must all run on the same processor.
Application programs can make use of concurrency by running as a team of
processes, each of which does part of the kernel. If one process in a team is
blocked waiting for a reply to a message, the other ones are free to run. The
kernel server is prepared to carry out operations such as creating new
processes and teams, destroying processes and teams, reading and writing
processes’ states, and mapping processes onto memory.

All I/0 in V is done using a uniform interface called the V I/O protocol.
The protocol allows processes to read and write specific blocks on the device.
This block orientation was chosen to provide idempotency. Terminal drivers
must store the last block read and filter out duplicate requests in order to
maintain the idempotency property. Implementation of byte streams is up to
the users. The I/0 protocol has proven general enough to handle disks,
printers, terminals, and even a mouse.

4.3.4. Fault Tolerance

Since it was designed primarily for use in an interactive environment, V pro-
vides little in the way of fault tolerance. If something goes wrong, the user
just does it again. However, V does address exception handling. Whenever a
process causes an exceptional condition to occur, such as stack overflow or
referencing nonexistent memory, the kernel detecting the error sends a spe-
cially formatted message to the exception server, which is outside the kernel.
The exception server can then invoke a debugger to take over. This scheme
does not require a process to make any advance preparation for being
debugged, and in principle, can allow the process to continue execution
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afterwards.

4.3.5. Services

Since most of the V workstations do not have a disk, the central file server
plays a key role in the system. The file server is not part of the operating sys-
tem. Instead, it is just an ordinary user program running on top of the V ker-
nel. Internally it is structured as a team of processes. The main process han-
dles directory operations, including opening files; subsidiary processes perform
the actual read and write commands, so that when one of them blocks waiting
for a disk block, the others can continue operation. The members of file server
team share a common buffer cache, used to keep heavily used blocks in main
memory.

The file system is a traditional hierarchical system, similar to that of Thoth
[CreEriTON 1982]. Each file has a file descriptor, similar to an i-node in
UNIX, except that the file descriptors are gathered into an ordinary file which
can grow as needed.

Extensive measurements have been made of the performance of the file
server. As an indication, it takes 7.8 millisec to read a 1K block from the file
server when the block is in the cache. This time includes the communication
and network overhead. When the block must be fetched from the disk, the
time is increased to 35.5 millisec. Given that the access time of the small Win-
chester disks used on personal computers is rarely better than 40 millsec, it is
clear that the V implementation of diskless workstations with a fast (18 mil-
lisec) central file server is definitely competitive.

Other V servers include the print server, gateway server, and time server.
Other servers are in the process of being developed.

4.3.6. Implementation

The V kernel has been up and running at Stanford since Sept. 1982. It runs
on SUN Microsystems 68000-based workstations, connected by 3 Mbit/sec
and 10 Mbit/sec Ethernets. The kernel is used as a base for a variety of pro-
jects at Stanford, including the research project on distributed operating sys-
tems. A great deal of attention has been paid to tuning the system to make it
fast.

4.4. THE EDEN PROJECT

The goal of the Eden system [ALMES et al. 1985; BLACK 1985; BLACK 1983;
Jessop et al. 1982; LAzowska et al. 1981], which is being developed at the
University of Washington in Seattle under the direction of Guy Almes,
Andrew Black, Ed Lazowska, and Jerre Noe, is to investigate logically
integrated but physically distributed operating systems. The idea is to con-
struct a system based on the principle of one user, one workstation (no proces-
sor pool), but with a high degree of systemwide integration. Eden is object
oriented, with all objects accessed by capabilities, which are protected by the
Eden kernel. Eden objects, in contrast to, say, Amoeba objects, contain not
only passive data, but also one or more processes that carry out the operations
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defined for the object. Objects are general: applications programmers can
determine what operations their objects will provide. Objects are also mobile,
but at any instant each object (and all the processes it contains) resides on a
single workstation.

Much more than most research projects of this kind, Eden was designed top
down. In fact, the underlying hardware and language was radically changed
twice during the project, without causing too much redesign. This would have
been much more difficult in a bottom-up, hardware-driven approach.

4.4.1. Communications Primitives

Communication in Eden uses “invocation,” a form of remote procedure call.
Programs are normally written in EPL, the Eden Programming Language,
which is based on Concurrent Euclid. (The EPL translator is actually a
preprocessor for Concurrent Euclid). To perform an operation on an object,
say, Lookup on a directory object, the EPL programmer just calls Lookup,
specifying a capability for the directory to be searched, the string to be
searched for, and some other parameters.

The EPL compiler translates the call to Lookup to a call to a stub routine
linked together with the calling procedure. This stub routine assembles the
parameters and packs them in a standard form called ESCII (Eden Standard
Code for Information Interchange), and then calls a lower level routine to
transmit the function code and packed parameters to the destination machine.

When the message arrives at the destination machine, a stub routine there
unpacks the ESCII message and makes a local call on Lookup using the nor-
mal EPL calling sequence. The reply proceeds analogously in the opposite
direction. The stub routines on both sides are automatically generated by the
EPL compiler.

The implementation of invocation is slightly complicated by the fact that an
object may contain multiple processes. When one process blocks waiting for a
reply, the other ones must not be affected. This problem is handled by split-
ting the invocation into two layers. The upper layer builds the message,
including the capability for the object to be invoked and the ESCII parame-
ters, passes it to the lower layer, and blocks the calling process until the reply
arrives. The lower layer then makes a nonblocking call to the kernel to actu-
ally send the message. If other processes are active within the object they can
now be run; if none are active, the object waits until a message arrives.

On the receiving side, a process within the invoked object will normally have
previously executed a call announcing its willingness to perform some opera-
tion (e.g., Lookup in the above example) thereby blocking itself. When the
Lookup message comes in, it is accepted by a special dispatcher process that
checks to see which process, if any, is blocked waiting to perform the opera-
tion requested by the message. If a willing process is found, it runs and sends
a reply, unblocking the caller. If no such process can be found, the message is
queued until one becomes available.
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4.4.2. Naming and Protection

Naming and protection in Eden is accomplished using the capability system.
Data are encapsulated within objects, and are only accessible by invoking one
of the operations defined by the object. To invoke an object, a process must
have a valid capability. Thus there is a uniform naming and protection
scheme throughout Eden.

Capabilities may be stored in any object. Directories provide a convenient
mechanism for grouping capabilities together. Each directory entry contains
the ASCII string by which the capability is accessed and the capability itself.
Clients can only access the contents of a directory by invoking the directory
object with one of the valid operations, which include: add entry, delete entry,
lookup string, and rename capability. Capabilities are protected from forgery
by the kernel, but users keep copies of capabilities for their own use; the ker-
nel verifies them when they are used.

The basic protection scheme protects objects, using capabilities. Since all
processes are embedded in objects, a process can be protected by restnctmg
the distribution of capabilities to its object. The only way to obtain service
from an object is by invoking the object with the proper capability, parame-
ters, etc., all of which are checked by the kernel and EPL run-time system
before the call is made.

4.4.3. Resource Management

Because no version of Eden runs on bare machines, most of the issues associ-
ated with low-level resource management have not yet been dealt with.
Nevertheless, some resource management issues have been addressed. For
example, when an object is created, the issue arises of where to put it. At
present, it is just put on the same workstation as the object that created it
unless an explicit request has been given to put it somewhere else.

Another issue that has received considerable attention is how to achieve con-
currency within an object. From the beginning of the project it was con-
sidered desirable to allow multiple processes to be simultaneously active within
an object. These processes all share a common address space, although each
one has its own stack for local variables, procedure call/return information etc.
Having multiple active processes within an object, coupled with the basic Eden
semantics of remote invocations that block the caller but not the whole object,
makes the implementation somewhat complicated. It is necessary to allow one
process to block waiting for a reply without blocking the object as a whole.
Monitors are used for synchronization. This multiprogramming of processes
within an object is handled by a runtime system within that object, rather than
by the kernel itself (as is done in Amoeba, and also in V). The experiences of
Eden, Amoeba and V all seem to indicate that having cheap, “lightweight”
processes that share a common address space is often useful [BLACK 1985].

Management of dynamic storage for objects has also been a subject of some
work. Each object has a heap for its own internal use, for which the EPL
compiler generates explicit allocate and deallocate commands. However, a
different storage management scheme is used for objects themselves. When a
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kernel creates an object, it allocates storage for the object from its own heap
and gives the object its own address space. It also manages the user capabili-
ties for the object in such a way that it is possible to systematically find all
capabilities by scanning the kernel’s data structures.

The system is periodically shut down and a garbage collector is started up to
locate all objects for which no capability is outstanding. These objects are
then discarded.

4.4.4. Fault Tolerance

The Eden kernel does not support atomic actions directly, although some ser-
vices provide them to their clients. Invocations can fail with status CANNOT
LOCATE OBJECT when the machine on which the invoked object resides
crashes. On the other hand, Eden goes to a considerable length to make sure
that objects are not totally destroyed by crashes. The technique used to
accomplish this goal is to have objects checkpoint themselves periodically.
Once an object has written a copy of its state to disk, a subsequent crash
merely has the effect of resetting the object to the state it had at the most
recent checkpoint. Checkpoints themselves are atomic, and this property can
be used to build up more complex atomic actions.

By judicious timing of its checkpoints, an object can achieve a high degree
of reliability. For example, within the user mail system, a mailbox object will
checkpoint itself just after any letter is received or removed. Upon receipt of a
letter, a mailbox can wait for confirmation of the checkpoint before sending an
acknowledgement back to the sender, to ensure that letters are never lost due
to crashes. One drawback of the whole checkpoint mechanism is that it is
expensive: any change to an object’s state, no matter how small, requires writ-
ing the entire object to the disk. The Eden designers acknowledge this as a
problem.

Another feature of Eden that supports fault tolerance is the ability of the file
system, when asked, to store an object as multiple copies on different machines
(see below).

4.4.5. Services

The Eden file system maintains arbitrary objects. One particular object type,
the BYTESTORE, implements linear files, as in UNIX. It is possible to set
the “current position” anywhere in the file, and then read sequentially from
that point. Unlike V and Amoeba, Eden does not have special machines dedi-
cated as servers. Instead, each workstation can support file objects, either for
the benefit of the local user or remote ones.

The model used for file service in Eden is quite different from the usual
model of a file server, which manages some set of files and accepts requests
from clients to perform operations on them. In Eden, each file (i.e., BYTE-
STORE object) contains within it the processes needed to handle operations
on it. Thus, the file contains the server rather than the server containing the
file as in most other systems.
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Of course, actually having a process running for each file in existence would
be unbearably expensive, so an optimization is used in the implementation.
When a file is not open, its processes are dormant and consume no resources
(other than the disk space for its checkpoint). Mailboxes, directories, and all
other Eden objects work the same way. When an object is not busy with an
invocation, the processes inside of it are put to sleep by checkpointing the
whole object to the disk.

When a file is opened, a copy of the code for its internal processes is found,
and the processes started up. Although all files on a given workstation share
the same code, when the first file is opened on a workstation, the code may
have to be fetched from another workstation.

The approach has advantages and disadvantages compared to the traditional
one-file-server-for-all-files way of doing things. There are two main advan-
tages. First, The complicated, multi-threaded file server code is eliminated:
there is no file server. The processes within a BYTESTORE object are dedi-
cated to a single file. Second, files can be migrated freely about all the nodes
in the system, so that, for example, a file might be created locally, and then
moved to a remote node where it will later be used.

The chief disadvantage is performance. All the processes needed for the
open files consume resources, and fetching the code for the first file to be
opened on a workstation is slow.

The Eden File System supports nested transactions [Pu and NoEe 1985].
When an atomic update on a set of files (or other objects) is to be carried out,
the manager for that transaction first makes sure that all the new versions are
safely stored on disk, then it checkpoints itself, and finally it updates the direc-
tory.

The transaction facility can be used to support replicated files [PU et al.
1986]. In the simplest case, a directory object maps an ASCII name onto the
capability for that object. However, the system also has “repdirs,” objects that
map ASCII names onto sets of capabilities, for example, all the copies of a
replicated file. Updating a replicated file is handled by a transaction manager,
which uses a two-phase commit algorithm to update all the copies simultane-
ously. If one of the copies is not available for updating (e.g., its machine is
down or the network is partitioned), a new copy of the file is generated, and
the capability for the unreachable copy discarded. Sooner or later, the garbage
collector will notice that the old copy is no longer in use and remove it.

We touched briefly on the mail server above. The mail system defines mes-
sage, mailbox and address list objects, with operations to deliver mail, read
mail, reply to mail, and so on.

The appointment calendar system is another example of an Eden applica-
tion. It is used to schedule meetings, and runs in two phases. When someone
proposes a meeting, a transaction is first done to mark the proposed time as
“tentatively occupied” on all the participants’ calendars. When a participant
notices the proposed date, he or she can then approve or reject it. If all parti-
cipants approve the meeting, it is “committed” by another transaction; if
someone rejects the proposed appointment, the other participants are notified.
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4.4.6. Implementation

Eden has had a somewhat tortuous implementation history. The initial version
was designed to be written in Ada* on the Intel 432, a highly complex mul-
tiprocessor, fault-tolerant microprocessor chip ensemble. To make a long story
short, neither the Ada compiler nor the 432 lived up the the project’s expecta-
tions. To gather information for further design, a “throwaway” implementa-
tion was made on top of VMS on a VAX.

The VAX/VMS version, called Newark (because that was thought to be far
from Eden), was written in Pascal and was not distributed (i.e., it ran on a sin-
gle VA X). It supported multiple processes per object (VMS kernel processes),
but did not have automatic stub generation. Furthermore, the whole imple-
mentation was rather cumbersome, so it was then decided to design a pro-
gramming language which would provide automatic stub generation, better
type checking, and a more convenient way of dealing with concurrency.

This re-evaluation led to EPL and a new implementation on top of UNIX
instead of VMS. Subsequently, Eden was ported to 68000-based workstations
(SUNSs), also on top of UNIX, rather than on the bare hardware (and in con-
trast to the Cambridge system, V, and Amoeba, all of which run on bare
68000s). The decision to put UNIX on the bottom, instead of the top (as was
done with Amoeba) made system development easier and assisted users in
migrating from UNIX to Eden. The price that has been paid is poor perfor-
mance, and a fair amount of effort spent trying to convince UNIX to do
things against its will.

4.5. COMPARISON OF THE CAMBRIDGE, AMOEBA, V, AND EDEN SYSTEMS
Our four example systems have many aspects in common, but also differ in
some significant ways. In this section we will summarize and compare the four
systems with respect to the main design issues we have been looking at.

4.5.1. Communication Primitives
All four systems use an RPC-like mechanism (as opposed to an ISO OSI
communication-oriented mechanism).

The Cambridge mechanism is the simplest, using the single shot protocol
with a 2K request packet and a 2K reply packet for most client-server com-
munication. A byte stream protocol is also available.

Amoeba uses a similar REQUEST-REPLY mechanism, but allows messages
up to 32K bytes (with the kernel handling message fragmentation and reassem-
bly), as well as acknowledgements and timeouts, thus providing user programs
with a more reliable and simpler interface.

V also uses a REQUEST-REPLY mechanism, but messages longer than an
Ethernet packet are dealt with by having the sender include a sort of “capabil-
ity” for a message segment in the REQUEST packet. Using this “capability,”
the receiver can fetch the rest of the message, as needed. For efficiency, the

* Ada is a Trademark of the U.S. Dept. of Defense
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first 1K is piggybacked onto the REQUEST itself.

Eden comes closest to a true RPC mechanism, including having a language
and compi ler with automatic stub generation and a minilanguage for parame-
ter passing. None of the four examples attempts to guarantee that remote calls
will be executed exactly once.

4.5.2. Naming and Protection

All four systems use different schemes for naming and protection. In the
Cambridge system, a single name server process maps symbolic service names
onto (node, process identifier) pairs so the client will know where to send the
request. Protection is done by the active name table, which keeps track of the
authorization status of each logged in user.

Amoeba has a single mechanism for all naming and protection—sparse
capabilities. Each capability contains bits specifying which operations on the
object are allowed and which are not. The rights are protected cryptographi-
cally, so user programs can manipulate them directly; they are not stored in
the kernel. ASCII string to capability mapping and capability storage are han-
dled by directory servers for convenience.

Eden also uses capabilities, but these are not protected by sparseness or
encryption, so they must be protected by the kernel. A consequence of this
decision is that all the kernels must be trustworthy. The Amoeba crypto-
~ graphic protection scheme is less restrictive on this point.

V has naming at three levels: processes have pids, kernels have ASCII to pid
mappings, and servers use a context mechanism to relate symbolic names to a
given context.

4.5.3. Resource Management ‘
Resource management is also handled quite differently on all four systems. In
the Cambridge system, the main resource is the processor bank. A resource
manager is provided to allocate machines to users. Generally, this allocation is
fairly static—upon log in a user is allocated one machine for the duration of
the login session, and this is the only machine the user uses during the session.
He may load any operating system he chooses in this machine.

Amoeba also has a pool of processors, but these are allocated dynamically.
A user running “make” might be allocated 10 processors to compile 10 files;
afterwards, all the processors would go back into the pool. Amoeba also pro-
vides a way for processes to create segments on any machine (assuming the
proper capability can be shown) and for these segments to be forged into
processes. Amoeba is unique among the four systems in that it has a bank
server that can allow servers to charge for services and to limit resource usage
by accounting for it.

In V, each processor is dedicated as either a workstation or a server, so pro-
cessors are not resources to be dynamically allocated. Each V kernel manages
its own local resources; there is no system-wide resource management.

Eden has been built on top of existing operating systems, so most of the
issues of resource management are done by the underlying operating system.
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The main issue remaining for Eden is allocating and deallocating sforage for
objects.

4.5.4. Fault Tolerance

None of the four systems go to great lengths to make themselves fault tolerant,
for example, none support atomic actions as a basic primitive. All four (with
the possible exception of Eden) were designed with the intention of actually
being used, so that the inherent tradeoff between performance and fault toler-
ance tended to get resolved in favor of performance.

In the Cambridge system, the only concession to fault tolerance is a feature
in the ring interface to allow a machine to be remotely reset by sending a spe-
cial packet to the interface. There is also a small server that helps get the
servers started up. .

Amoeba provides some fault tolerance through its boot server, with which
processes can register. The boot server pools the registered processes periodi-
cally, and finding one that fails to respond, requests a new processor and
downloads the failed program to it. This strategy does not retrieve the
processes that were killed when a machine went down, but it does automati-
cally ensure than no key service is ever down for more than, say, 30 seconds.

V does not address the problem of fault tolerance at all.

Of the four systems, Eden makes the most effort to provide a higher degree
of reliability than provided by the bare hardware. The main tool used is
checkpointing complete objects from time to time. If a processor crashes, each
of its objects can be restored to the state it had at the time of the last check-
point. Unfortunately, only entire objects can be checkpointed, making check-
pointing a slow operation, thus discouraging its frequent use.

4.5.5. Services

The file systems used by Cambridge, Amoeba, V, and Eden are all quite
different. The Cambridge system has two servers, the universal file server, and
the filing machine, which was added later to improve the performance by pro-
viding a large buffer cache. The universal file server supports a primitive flat
file, with no directory structure, this being provided by the filing machine or
the user machines. The universal file server has regular and special files, the
latter of which can be updated atomically.

Amoeba has several file systems. One of them is compatible with UNIX, to
allow UNIX applications to run on Amoeba. Another one, FUSS, supports
multiversion, multiserver, tree structured, immutable files with atomic commit.
Directory servers map ASCII names to capabilities, thus allowing an arbitrary
graph of files and directories to be constructed.

V has a traditional file server similar to UNIX. It is based on the earlier
Thoth system.

Eden has no file server at all in the usual sense. Instead, each file object has
embedded in it a process that acts like a private file server for that one file.
Like Amoeba, Eden has separate directory servers that map ASCII strings
onto capabilities, and provides the ability to map one string onto several files,
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thus providing for file replication. All four systems have a heterogeﬁeous
variety of other services (e.g., print, mail, bank).

5. SUMMARY

Distributed operating systems are still in an early phase of development, with
many unanswered questions, and relatively little agreement among workers in
the field about how things should be done. Many experimental systems use
the client-server model with some form of remote procedure call as the com-
munication base, but there are also systems built on the connection model.
Relatively little has been done on distributed naming, protection, and resource
management, other than building straightforward name servers and process
servers. Fault tolerance is an up and coming area, with work progressing in
redundancy techniques and atomic actions. Finally, a considerable amount of
work has gone into the construction of file servers, print servers, and various
other servers, but here too there is much work to be done. The only conclu-
sion we draw is that distributed operating systems will be an interesting and
fruitful area of research for a number of years to come.
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Fifth generation computer systems will use large numbers of processors to
achieve high performance. In this paper a capability-based operating system
designed for this environment is discussed. Capability-based operating sys-
tems have traditionally required large, complex kernels to manage the use of
capabilities. In our proposal, capability management is done entirely by user
programs without giving up any of the protection aspects normally associated
with capabilities. The basic idea is to use one-way functions and encryption to
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1. INTRODUCTION

Fifth generation computers must be fast, reliable, and flexible. One way to
achieve these goals is to build them out of a small number of basic modules
that can be assembled together to realize machines of various sizes. The use of
multiple modules can make the machines not only fast, but also achieve a sub-
stantial amount of fault tolerance. The system architecture and software for
such machines are described below.
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1.1. System architecture

The price of processors and memory is decreasing at an incredible rate. Extra-
polating from the current trend, it is likely that a single board containing a
powerful CPU, a substantial fraction of a megabyte of memory, and a fast net-
work interface will be available for a manufacturing cost of less than 100 in
1990. Our intention is therefore to do research on the architecture and
software of machines built up of a large number of such modules.

In particular, we envision three classes of machines: (1) personal computers
consisting of a high-quality bit-map display and a few processor-memory
modules; (2) departmental machines consisting of hundreds of such modules;
and (3) large mainframes consisting of thousands of them. The primary
difference between these machines is the number of modules, rather than the
type of the modules. In principle, any of these machines can be gracefully
increased in size to improve performance by adding new modules or decreased
in size to allow removal and repair of defective modules. The software run-
ning on the various machines should be in essence identical. Furthermore, it
should be possible to connect different machines together to form even larger
machines and to partition existing machines into disjoint pieces when neces-
sary, all in a way transparent to the user level software.

This model is superior to the oft-proposed “Personal Computer Model” (as
exemplified by XEROX PARC), in a number of ways. In the personal computer
model, each user has a dedicated minicomputer, complete with disks, in his
office or at home. Unfortunately, when people work together on large projects,
having numerous local file systems can lead to multiple, inconsistent copies of
many programs. Also, the noise generated by disks in every office, and the
maintenance problems generated by having machines spread all over many
buildings can be annoying.

Furthermore, computer usage is very bursty: most of the time the user does
not need any computing power, but once in a while he may need a very large
amount of computing power for a short time (e.g., when recompiling a pro-
gram consisting of 100 files after changing a basic shared declaration). The
fifth generation computer we propose is especially well suited to bursty compu-
tation. When a user has a heavy computation to do, an appropriate number
of processor-memory modules are temporarily assigned to him. When the
computation is completed, they are returned to the idle pool for use by other
users. This contrasts with the Cambridge Distributed Operating System
[Needham82], which also has a “processor bank,” but assigns a processor to a
user for the duration of a login session.

1.2. System software
A machine of the type described above requires radically different system
software than existing machines. Not only must the operating system
effectively use and manage a very large number of processors, but the com-
munication and protection aspects are very different from those of existing sys-
tems.

Traditional networks and distributed systems are based on the concept of



79

two processes Or processors communicating via connections. The connections
are typically managed by a hierarchy of complex protocols, usually leading to
complex software and extreme inefficiency. (An effective transfer rate of 0.1
megabit/sec over a 10 megabit/sec local network, which is only 1% utilization,
is frequently barely achievable.)

We reject this traditional approach of viewing a distributed system as a col-
lection of discrete processes communicating via multilayer (e.g., 1S0) protocols,
not only because it is inefficient, but because it puts too much emphasis on
specific processes, and by inference, on processors. Instead we propose to base
the software design on a different conceptual modelthe object model. In this
model, the system deals with abstract objects, each of which has some set of
abstract operations that can be performed on it.

Associated with each object are one or more “capabilities” [Dennis66] which
are used to control access to the object, both in terms of who may use the
object and what operations he may perform on it. At the user level, the basic
system primitive is performing an operation on an object, rather than such
things as establishing connections, sending and receiving messages, and closing
connections. For example, a typical object is the file, with operations to read
and write portions of it.

The object model is well-known in the programming languages community
under the name of “abstract data type” [Liskov74]. This model is especially
well-suited to a distributed system because in many cases an abstract data type
can be implemented on one of the processor-memory modules described
above. When a user process executes one of the visible functions in an
abstract data type, the system arranges for the necessary underlying message
transport from the user’s machine to that of the abstract data type and back.
The header of the message can specify which operation is to be performed on
which object. This arrangement gives a very clear separation between users
and objects, and makes it impossible for a user to directly inspect the represen-
tation of an abstract data type by bypassing the functional interface.

A major advantage of the object or abstract data type model is that the
semantics are inherently location independent. The concept of performing an
operation on an object does not require the user to be aware of where objects
are located or how the communication is actually implemented. This property
gives the system the possibility of moving objects around to position them
close to where they are frequently used. Furthermore, the issue of how many
processes are involved in carrying out an operation, and where they are located
is also hidden from the user.

It is frequently convenient to implement the object model in terms of clients
(users) who send messages to services [Cheriton83, Needham82, Ball79]. A
service is defined by a set of commands and responses. Each service is han-
dled by one or more server processes that accept messages from clients, carry
out the required work, and send back replies. The design of these servers and
the design of the protocols they use form an important part of the system
software of our proposed fifth generation computers.

As an example of the problems that must be solved, consider a file server.
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Among other design issues that must be dealt with are how and where infor-
mation is stored, how and when it is moved, how it is backed up, how con-
current reads and writes are controlled, how local caches are maintained, how
information is named, and how accounting and protection are accomplished.
Furthermore, the internal structure of the service must be designed: how many
server processes are there, where are they located, how and when do they com-
municate, what happens when one of them fails, how is a server process organ-
ized internally for both reliability and high performance, and so on. Analo-
gous questions arise for all the other servers that comprise the basic system
software.

2. COMMUNICATION PRIMITIVES AND PROTOCOLS

In the literature about computer networks, one finds much discussion of the
150 OsI reference model [Zimmermann80] these days. It is our belief that the
price that must be paid in terms of complexity and performance in order to
achieve an “open” system in the 150 sense is much too high, so we have
developed a much simpler set of communication primitives, which we will now
describe.

2.1. Transaction vs. stream communication

Most distributed systems have a connection mechanism that is based on the
idea of two processes going to some effort to set up a connection, using the
connection, and then tearing it down. The assumption is that a connection
will be used for a stream of information so long that the overhead needed to
set it up and tear it down are basically negligible. Most streams will consist of
a file of one kind or another - a source program, a binary program, an input
file, and so on. To see how long the average file is, we have conducted some
measurements on the UNIX} system used in our department by the faculty and
staff for research (no students, thus). The results of these measurements show
that 34% of all files are less than 512 bytes, 52% are less than 1K bytes, 67%
are less than 2K bytes, 79% are less than 4K bytes, 88% are less than 8K
bytes, and 94% are less than 16K bytes.

The above considerations have led us to a different approach [Mullender83].
With packets of even 2K bytes, two thirds of all files fit into a single packet.
Consequently, it is much simpler to adopt a “Request-Reply” or “Transaction”
style of communication, in which the basic primitive is the client sending a
request to a server and the server sending a reply back to the client. The
client uses trans and the server getreq and putrep. Trans sends a request,
and blocks until a reply is received. Getreq blocks the server until a request is
received, which can then be processed, after which a reply can be sent using
putrep. Each request-reply pair is completely self-contained, and independent
of any other ones that may previously been sent. In other words, no concept
of a “connection” exists. Not only is this conceptually much more appropriate

+ UNIX is a Trademark of AT&T Bell Laboratories.
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for use in an operating system, but it is much simpler to implement than a
complex 7-layer protocol, not to mention offering lower delay.

As a matter of fact, a distinct trend towards connectionless interprocess
communication services could clearly be observed at the recent Workshop on
Operating Systems in Computer Networks in Ziirich, Switzerland: all, or
nearly all of the systems presented there were message-based rather than
connection-based.

Henceforth we will refer to a request-reply pair as a transaction, which is not
to be confused with transactions with a data base.

2.2. Basic communication protocol

Instead of a 7-layer protocol, we effectively have a 4-layer protocol. The bot-
tom layer is the Physical Layer, and deals with the electrical, mechanical and
similar aspects of the network hardware. The next layer is the Port Layer, and
deals with the location of services, the transport of (32K byte) datagrams
(packets whose delivery is not guaranteed) from source to destination and
enforces the protection mechanism, which will be discussed in the next section.
On top of this we have a layer that deals with the reliable transport of
bounded length (32K byte) requests and replies between client and server. We
have called this layer the Transaction Layer. The final layer has to do with the
semantics of the requests and replies, for example, given that one can talk to
the file server, what commands does it understand. The bottom three layers
(Physical, Port and Transaction) are implemented by the kernel and hardware;
only the Transaction Layer interface is visible to users.

Since systems of the kind we are describing will use high-speed, highly reli-
able local networks, few, if any, of the complex mechanisms designed for flow-
and error-control in long-haul networks are useful here. Among other things,
a simple stop-and-wait protocol is sufficient. The main function of the Tran-
saction Layer is to provide an end-to-end message service built on top of the
underlying datagram service, the main difference being that the former uses
timers and acknowledgements to guarantee delivery whereas the latter does
not.

The Transaction Layer protocol is straightforward. When the client does a
trans, a packet, or sequence of packets, containing the request is sent to the
server, the client is blocked, and a timer is started (inside the Transaction
Layer). If the server does not acknowledge receipt of the request packet before
the timer expires (usually by sending the reply, but in some special cases by
sending a separate acknowledgement packet), the Transaction Layer
retransmits the packet again and restarts the timer. When the reply finally
comes in, the client sends back an acknowledgement (possibly piggybacked
onto the next request packet) to allow the server to release any resources, such
as buffers, that were acquired for this transaction. Under normal cir-
cumstances, reading a long file, for example, consists of the sequence

From client : request for block 0
From server: here is block 0
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From client : acknowledgement for block 0 and request for block 1 .
From server: here is block 1
etc.

The protocol can handle the situation of a server crashing and being rebooted
quite easily since each request contains the capability for the file to be read
and the position in the file to start reading. Between requests, the server has
no “activation record” or other table entry whose loss during a crash causes
the server to forget which files were open, etc., because no concept of an open
file or a current position in a file exists on the server’s side. Each new request
is completely self-contained. Of course for efficiency reasons, a server may
keep a cache of frequently accessed i-nodes, file blocks etc., but these are not
essential and their loss during a crash will merely slow the server down slightly
while they are being dynamically refreshed after a reboot.

2.3. The port layer :
The Port Layer is responsible for the speedy transmission of 32K byte
datagrams. The Port Layer need only do this reasonably reliably, and does
not have to make an effort to guarantee the correct delivery of every datagram.
This is the responsibility of the Transaction Layer. Our results show that this
approach leads to significantly higher transmission speeds, due to simpler pro-
tocols.

Theoretically, very high speeds are achievable in modern local-area net-
works. A typical speed for DMA transfers is 1 byte/psec, and the typical
transmission speed of a 10 Mbit local-area network is also 1 byte/psec. Since,
in many network interfaces, DMA transfer and network transfer cannot overlap,
but DMA at the destination host can overlap with the DMA of the next packet at
the source host, an upper bound for the transfer rate of a typical local-area
network is 500,000 bytes/sec point-to-point.

In practise, however, speeds of 100,000 bytes per second between user
processes have rarely been achieved. Obviously, to achieve higher transmission
rates, the overhead of the protocol must be kept very low indeed, while an
effort must be made to overlap DMA s at both communicating parties. To
achieve this, we have chosen a large datagram size for the Port Layer, which
has to split up the datagrams into small packets that the network hardware
can cope with. This approach allows the implementor of the Port Layer to
exploit the possibilities that the hardware has to offer to achieve an efficient
stream of packets.

Our implementation of the Port Layer interfaces to a 10 Mbit token ring
that allows scatter-gather ; that is, a packet can be sent to or from the interface
in several DMA transfers, and then transmitted over the network separately.
This allows us to do two important things to speed up the protocol. First,
when a packet is received, the header can be inspected separately, so the proto-
col can decide where in memory the packet must go. The protocol driver can
then transfer the packet directly from the interface to the right place in
memory, without having to copy it. A copy loop would halve the transmission
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speed. Second, the separation of DMA and transmission allows the driver to
prepare a transmission by doing the DMA. The transmission can then be ini-
tiated immediately when the signal is received that the receiver is ready. In
our implementation of the Port Layer, these considerations have resulted in the
protocol that will now be described.

The transmitter begins by transferring and sending the first 2K of the
datagram to be transmitted (2K is the maximum packet size allowed by the
hardware). Immediately after the transmission is complete, the DMA for the
next 2K bytes is started, but they are not yet transmitted. In the mean time,
the receiver is interrupted by the arrival of the first packet. It extracts the
header, examines it and decides where the body of the packet should go. Then
the body of the packet is transferred from the interface to its final location in
memory. While this is being done, the receiver prepares a tiny acknowledge-
ment packet to tell the transmitter it is prepared for the next packet. As soon
as the DMA transfer of the previous packet has finished, this acknowledgement
is sent back to the transmitter. When the transmitter receives it, the transfer
of the next packet to the interface will have finished, so it can then be sent
immediately. This sequence is continued until the whole datagram is transmit-
ted.

2.4. The transaction layer

It is the responsibility of the Transaction Layer to guarantee the arrival of
requests and replies. The Transaction Layer makes use of the Port Layer and
timers to achieve this.

The interface to the transaction layer basically consists of three calls, one for
clients, and two for servers. All calls use a small datastructure, called Mref,
which contains a pointer to a small fixed-size out-of-band buffer for the
transmission of commands and parameters to the server, a pointer to the main
body of data to be transferred, and the length of the main body of data (0 to
32768), as follows:

typedef struct Mref {
char *M oob;
char *M buf;
unsigned M len;
} Mref; -

typedef struct Cap {
Port  C port; /* 6-byte port */
char  C private[10]; /* 10-byte private */
} Cap; /* capability */

The client, in order to do a transaction calls
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trans(cap, req, rep);
Cap *cap;
Mref *req, *rep;

The server receives requests and sends replies with

getreq(port, cap, req);
Port *port;
Cap *cap;
Mref *req;

putrep(rep);
Mref *rep;

In principle, the Transaction Layer works as follows: When a client calls
trans, the Transaction Layer generates a reply-port to enable the server to send
a reply. The server port is deduced from the capability; the first 48 bits of the
capability for an object identify the service that controls the object. The
request is then sent, using put, and a retransmission timer is started.

The server, which previously had made a call to getreq, receives the request;
the capability is filled in, and the received message is put in the buffers
referred to by req. As soon as the request is received, the server’s Transaction
Layer starts a piggyback timer. When the server has not sent a reply before
this timer expires, a separate acknowledgement is sent to put the client at ease,
and stop its retransmission timer. When the server sends a reply to the client
the same thing happens, more or less, with the role of client and server
reversed. When a client makes a sequence of transactions with a single server,
a subsequent request will acknowledge receipt of the previous reply.

The client maintains one more timer, the crash timer. This timer is set when
the server’s acknowledgement to a request has been received, and is used to
detect server crashes. Whenever this timer expires, the client sends an “are
you still alive?” packet to the server, to which the server replies with an ack-
nowledgement.

When transactions occur quickly, one after the other, no extra acknowledge-
ments are sent at all. Only when transactions take a long time (say, longer
than a minute), acknowledgements are sent, and when transactions take much
longer than that (say, ten minutes) then “are you still alive” messages begin to
be sent. -

2.5. Timer management
If the timers are started and stopped in exactly the way described above, the
Transaction Layer would become unacceptably slow. Per (quick) transaction,
two retransmission timers and two piggyback timers would have to be started
and stopped, eight timer actions altogether.

There is a much more efficient way of dealing with timers, one that makes
use of a sweep algorithm. This algorithm does not implement very accurate
timers, but accuracy of the timer intervals is not very important to the correct
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and efficient operation of the protocol.

The sweep algorithm is run every N clock ticks. N must be chosen such
that N ticks is about the minimum timer interval needed (the piggyback timer
interval). Whenever the algorithm is called, it makes a sweep over all out-
standing transactions. If the state of a transaction has changed, the new state
is recorded. If it has not changed, a counter is incremented, telling for how
long the state has remained the same. If the (state, counter) combination has
reached a certain value, the sweep algorithm carries out the appropriate
actions, usually sending an acknowledgement, retransmitting a message, or
aborting a transaction.

Because this algorithm is used there is no code needed in the transaction
code itself, reducing the overhead of the Transaction Layer significantly. In
this way, the code executed in the Transaction Layer is optimised for the nor-
mal case (no errors).

2.6. Blocking vs. non-blocking transaction primitives

Most services need to be able to handle multiple requests from different clients
simultaneously. It therefore seems natural to implement non-blocking calls for
interprocess communication, as this will allow a service to react to events in
the order they occur. When blocking communication calls are used, a server is
forced to wait for the specific event that unblocks the call.

Because it is rather difficult to write correct code for a process which has to
handle multiple flows of control indeterministically, the Amoeba system pro-
vides the concept of tasks, sharing an address space. A number of tasks in
one address space forms a cluster, and specific rules govern the scheduling of
tasks within a cluster: only one task can run at a time, and a task runs until it
voluntarily relinquishes control (e.g., on trans and getreq calls).

A server can thus easily be structured as a collection of co-operating tasks,
each task handling one request. This model has greatly simplified the structure
of services, as each task making up the server cluster now has a single thread
of execution. The model also obviated the need for non-blocking transaction
calls, with their complicated (and slow) extra interface for handling interrupts.

2.7. Results
Two versions of the algorithm have now been implemented. The one
described has been implemented on the Amoeba distributed operating system,
and achieves over 300,000 bytes a second from user process to user process
(using M68000s and a Pronet* ring). It is now being implemented under
UNIX where we expect to obtain more than 200,000 bytes/sec, assuming the
communicating processes are not swapped.

An older version of the protocol, using 2K byte datagrams, now gets 90,000
bytes/sec across the network between two VAX-750s running a normal load of
work, without causing a significant load on the system itself.

* PRONET is a trademark of Proteon Associates, Inc.
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Several services, implemented under UNIX, are using the Transaction Layer
interface, and it is our experience that these services are easy to design and
that they work efficiently.

3. PORTS AND CAPABILITIES

3.1. Ports

Every service has one or more ports [Mullender84] to which client processes
can send messages to contact the service. Ports consist of large numbers, typi-
cally 48 bits, which are known only to the server processes that comprise the
service, and to the service’s clients. For a public service, such as the system
file service, the port will be generally made known to all users. The ports used
by an ordinary user process will, in general, be kept secret. Knowledge of a
port is taken by the system as prima facie evidence that the sender has a right
to communicate with the service. Of course the service is not required to carry
out work for clients just because they know the port, for example, the public
file service may refuse to read or write files for clients lacking account
numbers, appropriate authorization, etc.

Although the port mechanism provides a convenient way to provide partial
authentication of clients (“if you know the port, you may at least talk to the
service”), it does not deal with the authentication of servers. The basic primi-
tive operations offered by the system are trans, putreq and getrep.
Since everyone knows the port of the file server, as an example, how does one
insure that malicious users do not execute getreqs on the file server’s port,
in effect impersonating the file server to the rest of the system?

One approach is to have all ports manipulated by kernels that are presumed
trustworthy and are supposed to know who may getreq from which port
[Cheriton83, Rashid81]. We reject this strategy because some machines, e.g.,
personal computers connected to larger multimodule systems may not be
trustworthy, and also because we believe that by making the kernel as small as
possible, we can enhance the reliability of the system as a whole. Instead, we
have chosen a different solution that can be implemented in either hardware or
software. First we will describe the hardware solution; later we will describe
the software solution.

In the hardware solution, we need to place a small interface box, which we
call an F-box (Function-box) between each processor module and the network.
The most logical place to put it is on the vLsI chip that is used to interface to
the network. Alternatively, it can be put on a small printed circuit board
inside the wall socket through which personal computers attach to the network.
In those cases where the processors have user mode and kernel mode and a
trusted operating system running in kernel mode, it can also be put into
operating system software. In any event, we assume that somehow or other all
packets entering and leaving every processor undergo a simple transformation
that users cannot bypass.

The transformation works like this. Each port is really a pair of ports, P,
and G, related by: P = F(G), where F is a (publicly-known) one-way function
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[Wilkes68, Purdy74, Evans74] performed by the F-box. The one-way function
has the property that given G it is a straightforward computation to find P,
but that given P, finding G is so difficult that the only approach is to try every
possible G to see which one produces P. If P and G contain sufficient bits,
this approach can be made to take millions of years on the world’s largest
supercomputer, thus making it effectively impossible to find G given only P.
Note that a one-way function differs from a cryptographic transformation in
the sense that the latter must have an inverse to be useful, but the former has
been carefully chosen so that no inverse can be found.

INTRUDER

F-box actually listens

for P = FHG)
®
Client says Server says
send to P listen for G
CLIENT SERVER
FIGURE 1.

Using the one-way F-box, the server authentication can be handled in a sim-
ple way, illustrated in figure 1. Each server chooses a get-port, G, and com-
putes the corresponding put-port, P. The get-port is kept secret; the put-port
is distributed to potential clients or in the case of public servers, is published.
When the server is ready to accept client requests, it does a getreq(G,
cap, req). The F-box then computes P = F(G) and waits for packets con-
taining P to arrive. When one arrives, it is given to the appropriate process.
To send a packet to the server, the client merely does trans(cap, req,
rep), where the port field of cap is set to P. This will cause a datagram to
be sent by the local F-box with P in the destination-port field of the header.
The F-box on the sender’s side does not perform any transformation on the P
field of the outgoing packet.

Now let us consider the system from an intruder’s point of view. To imper-
sonate a server, the intruder must do getreq(G, --- ). However, Gis a
well-kept secret, and is never transmitted on the network, Since we have
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assumed that G cannot be deduced from P (the one-way property of F) and
that the intruder cannot circumvent the F-box, he cannot intercept packets not
intended for him. Replies from the server to the client are protected the same
way, only with the client’s Transaction Layer picking a get-port for the reply,
say, G’, and including P’ = F(G’) in the request packet.

The presence of the F-box makes it easy to implement digital s1gnatures for
still further authentication, if that is desired. To do so, each client chooses a
random signature, S, and publishes F(S). The F-box must be designed to
work as follows. Each packet presented to the F-box contains three special
header fields: destination (P), reply (G’), and signature (S). The F-box applies
the one-way function to the second and third of these, transmitting the three
ports as: P, F(G’), and F(S), respectively. The first is used by the receiver’s
F-box to admit only packets for which the corresponding getreq has been
done, the second is used as the put-port for the reply, and the third can be
used to authenticate the sender, since only the true owner of the signature will
know what number to put in the third field to insure that the publicly-known
F(S) comes out.

It is important to note that the F-box arrangement merely provides a simple
mechanism for implementing security and protection, but gives operating sys-
tem designers considerable latitude for choosing various policies. The mechan-
ism is sufficiently flexible and general that it should be possible to put it into
hardware with precluding many as-yet-unthought-of operating systems to be
designed in the future.

3.2. Capabilities

In any object-based system, a mechanism is needed to keep track of which
processes may access which objects and in what way. The normal way is to
associate a capability with each object, with bits in the capability indicating
which operations the holder of the capability may perform. In a distributed
system this mechanism should itself be distributed, that is, not centralized in a
single monolithic “capability manager.” In our proposed scheme, each object
is managed by some service, which is a user (as opposed to kernel) program,
and which understands the capabilities for its objects.

SERVER OBJECT RIGHTS RANDOM

FIGURE 2.
A capability typically consists of four fields, as illustrated in figure 2:

The put-port of the service that manages the object

An Object Number meaningful only to the service managing the object
A Rights Field, which contains a 1 bit for each permitted operation

A Random Number for protecting each object

Eall ol i en

The basic model of how capabilities are used can be illustrated by a simple
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example: a client wishes to create a file using the file service, write some data
into the file, and then give another client permission to read (but not modify)
the file just written. To start with, the client sends a message to the file
service’s put-port specifying that a file is to be created. The request might con-
tain a file name, account number and similar attributes, depending on the
exact nature of the file service. The server would then pick a random number,
store this number in its object table, and insert it into the newly-formed object
capability. The reply would contain this capability for the newly created
(empty) file.

To write the file, the client would send a message containing the capability
and some data. When the write request arrived at the file server process,
the server would normally use the object number contained in the capability as
as index into its tables to locate the object. For a UNIX like file server, the
object number would be the i-node number, which could be used to locate the
i-node.

Several object protection systems are possible using this framework. In the
simplest one, the server merely compares the random number in the file table
(put there by the server when the object was created) to the one contained in
the capability. If they agree, the capability is assumed to be genuine, and all
operations on the file are allowed. This system is easy to implement, but does
not distinguish between read, write, delete, and other operations that
may be performed on objects.

However, it can easily be modified to provide that distinction. In the
modified version, when a file (object) is created, the random number chosen
and stored in the file table is used as an encryption/decryption key. The capa-
bility is built up by taking the Rights Field (e.g., 8 bits), which is initially all
Is indicating that all operations are legal, and the Random Number Field (e.g,,
56 bits), which contains a known constant, say, 0, and treating them as a sin-
gle number. This number is then encrypted by the key just stored in the file
table, and the result put into the newly minted capability in the combined
Rights-Random Field. When the capability is returned for use, the server uses
the object number (not encrypted) to find the file table and hence the
encryption/decryption key. If the result of decrypting the capability leads to
the known constant in the Random Number Field, the capability is almost
assuredly valid, and the Rights Field can be believed. Clearly, an encryption
function that mixes the bits thoroughly is required to ensure that tampering
with the Rights Field also affects the known constant. Exclusive or’ing a con-
stant with the concatenated Rights and Random fields will not do.

When this modified protection system is used, the owner of the object can
easily give an exact copy of the capability to another process by just sending it
the bit pattern, but to pass, say, read-only access, is harder. To accomplish
this task, the process must send the capability back to the server along with a
bit mask and a request to fabricate a new capability whose Rights Field is the
Boolean-and of the Rights Field in the capability and the bit mask. By choos-
ing the bit mask carefully, the capability owner can mask out any operations
that the recipient is not permitted to carry out.
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This modified system works well except that it requires going back to the
server every time a sub-capability with fewer rights is needed. We have dev-
ised yet another protection system that does not have this drawback. This
third scheme requires the use of a set of N commutative one-way functions,
Fy, Fy, -, Fy_; corresponding to the N rights present in the Rights Field.
When an object is created, the server chooses a random number and puts it in
both the file table and the Random Number Field, just as in the first scheme
presented. It also sets all the Rights Field bits to 1.

server gives client turns off Xturns of Y gives cap. to server
client capability bit i and bitjand _  server applies F; and F;

containing R gives cap. to X gives cap. to Y  to R in object to verify

s DD
C} UF ® \FJ(F &) /
, (R), all rights  F;(F;(R)), all rights
R, all rights ' except I & / éxcept i, j
FIGURE 3.

A client can delete permission k from a capability by replacing the random
number, R, with Fi(R) and turning off the corresponding bit in the Rights
Field. When a capability comes into the server to be used, the server fetches
the original random number from the file table, looks at the Rights Field, and
applies the functions corresponding to the deleted rights to it. If the result
agrees with the number present in the capability, then the capability is
accepted as genuine, otherwise it is rejected. The mechanism is illustrated in
figure 3. Note that although the Rights Field is not encrypted, it is pointless
for a client to tamper with it, since the server will detect that immediately. In
theo;)y at least, the Rights Field is not even needed, since the server could try
all 2V combinations of the functions to see if any worked. Its presence merely
speeds up the checking. It should also be clear why the functions must be com-
mutative - it does not matter in what order the bits in the Rights Field were
turned off.

The organization of capabilities and objects discussed above has the interest-
ing property that although no central record is kept of who has which capabili-
ties, it is easy to retract existing capabilities. All that the owner of an object
need do is ask the server to change the random number stored in the file table.
Obviously this operation must be protected with a bit in the Rights Field, but
if it succeeds, all existing capabilities are instantly invalidated.

3.3. Protection without F-boxes

Earlier we said that protection could also be achieved without F-boxes. It is
slightly more complicated, since it uses both conventional and public-key
encryption, but it is still quite usable. The basic idea underlying the method is
the fact that in nearly all networks an intruder can forge nearly all parts of a
packet being sent except the source address, which is supplied by the network
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interface hardware. To take advantage of this property, imagine a (possibly
symmetric) conceptual matrix of conventional (e.g., DES) encryption keys, with
the rows being labeled by source machine and the columns by destination
machine. Thus the matrix selects a unique key for encrypting the capabilities
in any packet. The data need not be encrypted, although that is also possible
if needed.

Each machine is assumed to know its row and column of the matrix, and
nothing else (how this will be achieved will be discussed shortly). With this
arrangement, intruder I can easily capture packets from client C to server S,
but attempts to “play them back” to the server will fail because the server will
see the source machine as I (assumed unforgeable) and use element M;g as the
decryption key instead of the correct M¢s. No matter what the intruder does,
he cannot trick the server into using a decryption key that decrypts the capa-
bilities to make sense, that is, to contain random numbers that agree with
those stored in the file tables.

To avoid having to run the encryption/decryption algorithm frequently, all
machines can maintain a hashed cache of capabilities that they have been
using frequently. Clients will hash their caches on the unencrypted capabilities
in the form of triples: (unencrypted capability, destination, encrypted capabil-
ity), whereas servers will hash theirs in the form of triples: (encrypted capabil-
ity, source, unencrypted capability).

To set up the matrix initially, the following procedure can be used. A pub-
lic server, such as a file server, makes its put-port and a public encryption key
known to the whole world. When a new machine joins the network (e.g., after
a crash or upon initial system boot), it sends a broadcast message announcing
its presence. Suppose, for example, the file server has just come up, and must
(1) prove that it is the file server to other processes, and (2) establish the con-
ventional keys used for encrypting capabilities in both directions.

A client machine, C, which receives the broadcast from the alleged file
server, F, picks a new conventional encryption key, K, for use in subsequent C
to F traffic and sends it to F encrypted with F’s public key. F then decrypts K
and replies to C by sending a packet containing both K and a newly chosen
conventional key to be used for reverse traffic. This packet is encrypted both
with K itself and with the inverse of F’s public key, so C can use K and F’s
public key to decrypt it. If the decrypted packet contains K, C can be sure
that the other conventional key was indeed generated by the owner of F’s pub-
lic key, thus convincing C that he is indeed talking to the file server. Both of
the above-mentioned conditions have now been fulfilled, so normal communi-
cation can now take place. Note that the use of different conventional keys
after each reboot make it impossible for an intruder to fool anyone by playing
back old packets.
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4. THE AMOEBA FILE SYSTEM

The file system has been designed to be highly modular, both to enhance relia-
bility and to provide a convenient testbed for doing research on distributed file
systems. It consists of three completely independent pieces: the block service,
the file service, and the directory service. In short, the block service provides
commands to read and write raw disk blocks. As far as it is concerned, no
two blocks are related in any way, that is, it has no concept of a file or other
aggregation of blocks. The file service uses the block service to build up files
with various properties. Finally, the directory service provides a mapping of
symbolic names onto object capabilities.

4.1. Block service

The block service is responsible for managing raw disk storage. It provides an
object-oriented interface to the outside world to relieve file servers from having
to understand the details of how disks work. The principle operations it per-
forms are:

- allocate a block, write data into it, and return a capability to the block

- given a capability for a block, free the block

- given a capability for a block, read and return the data contained in it

- given a capability for a block and some data, write the data into the
block

- given a capability for a block and a key, Lock or unlock the block

These primitives provide a convenient object-oriented interface for file servers
to use. In fact, any client who is unsatisfied [Stonebraker81, Tanenbaum?82]
with the standard file system can use these operations to construct his own.

The first four operations of allocate, free, read, and write hardly
need much comment. The fifth one provides a way for clients to lock indivi-
dual blocks. Although this mechanism is crude, it forms a sufficient basis for
clients (e.g., file systems) to construct more elaborate locking schemes, should
they so desire.

One other operation is worth noting. The data within a block is entirely
under the control of the processes possessing capabilities for it, but we expect
that most file servers will use a small portion of the data for redundancy pur-
poses. For example, a file server might use the first 32 bits of data to contain
a file number, and the next 32 bits to contain a relative block number within
the file. The block server supports an operation recovery, in which the
~ client provides the account number it uses in allocate operations and
requests a list of all capabilities on the whole disk containing this account
number. (The block server stores the account number for each block in a
place not accessible to clients.) Although recovery is a very expensive
operation, in effect requiring a search of the entire disk, armed with all the
capabilities returned, a file server that lost all of its internal tables in a crash
could use the first 64 bits of each block to rebuild its entire file list from
scratch.
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4.2. File service

The purpose of splitting the block service and file service is to make it easy to
provide a multiplicity of different file services for different applications. One
such file service that we envision is one that supports flat files with no locking,
in other words, the UNIX model of a file as a linear sequence of bytes with no
internal structure and essentially no concurrency control. This model is quite
straightforward and will therefore not be discussed here further.

A more elaborate file service with explicit version and concurrency control
for a multiuser environment will be described instead [Mullender85]. This file
service is designed to support data base services, but it itself is just an ordi-
nary, albeit slightly advanced, file service. The basic model behind this file ser-
vice is that a file is a time-ordered sequence of versions, each version being a
snapshot of the file made at a moment determined by a client [Fridrich8l,
Reed81]. At any instant, exactly one version of the file is the current version.
To use a file, a client sends a message to a file server process containing a file
capability and a request to create a new, private version of the current version.
The server returns a capability for this new version, which acts like it is a
block for block copy of the current version made at the instant of creation. In
other words, no matter what other changes may happen to the file while the
client is using his private version, none of them are visible to him. Only
changes he makes himself are visible.

Of course, for implementation efficiency, the file is not really copied block
for block. What actually happens is that when a version is created, a table of
pointers (capabilities) to all the file’s blocks is created. The capability granted
to the client for the new version actually refers to this version table rather than
the file itself. Whenever the client reads a block from the file, a bit is set in
the version table to indicate that the corresponding block has been read.
When a block is modified in the version, a new block is allocated using the
block server, the new block replaces the original one, and its capability is
inserted into the version table. A bit indicating that the block is a new one
rather than an original is also set. This mechanism is sometimes called “copy
on write.”

Versions that have been created and modified by a client are called uncom-
mitted versions. At a particular moment, the current version may have several
(different) uncommitted versions derived from it in use by different clients.
When a client is finished modlfymg his private version, he can ask the file
server to commit his version, that is, make it the current version instead of the
then current version. If the version from which the to-be-committed version
was derived is still current at the time of the commit, the commit succeeds and
becomes the new current version.



94

1.1 1.2 1.3

current
2.1 1.2

2.3

122

FIGURE 4. :

As an example, suppose version 1 is initially the current version, with vari-
ous clients creating private versions 1.1, 1.2, and 1.3 based on it. If version 1.2
is the first to commit, it wins and 1.2 becomes the new current version, as
illustrated in figure 4. Subsequent requests by other clients to create a version
will result in versions 1.2.1, 1.2.2, and 1.2.3, all initially copies of 1.2.

The fun begins when the owner of version 1.3 now tries to commit. Version
1, on which it is based, is no longer the current version, so a problem arises.
To see how this should be handled, we must introduce a concept from the data
base world, serializability [Eswaran76, Papadimitriou79]. Two updates to a file
are said to be serializable if the net result is either the same as if they were run
sequentially in either order. As a simple example, consider a two character file
initially containing “ab.” Client 1 wants to write a “c” into the first character,
wait a while, and then write a “d” into the second character. Client 2 wants to
write an “e” into the first character, wait a while, and then write an “f’ into
the second character. If 1 runs first we get “cd”; if 2 runs first we get “ef.”
Both of these are legal results, since the file server cannot dictate when the
users run. However, its job is to prevent final configurations of “cf” or “de,”
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both of which result from interleaving the requests. If a client locks the file
before starting, does all its work, and then unlocks the file, the result will
always be either “cd” or “ef,” but never “cf” or “de.” What we are trying to
do is accomplish the same goal without using locking.

The idea behind not locking is that most updates, even on the same file, do
not affect the same parts of the file, and hence do not conflict. For example,
changes to an airline reservation data base for flights from San Francisco to
Los Angeles do not conflict with changes for flights from Amsterdam to Lon-
don. The strategy behind our commit mechanism is to let everyone make and
modify versions at will, with a check for serializability when a commit is
attempted. This mechanism has been proposed for data base systems
[Kung81], but as far as we know, not for file systems.

The serializability check is straightforward. If a version to be committed, 4,
is based on the version that is still current, B, it is serializable and the commit
succeeds. If it is not, a check must be made to see if all of the blocks belong-
ing to A that the client has read are the same in the current version as they
were in the version from which 4 was derived. If so, the previous commit or
commits only changed blocks that the client trying to commit 4 was not using,
so there is no problem and the commit can succeed.

If, however, some blocks have been changed, modifications that A’s owner
has made may be based on data that are now obsolete, so the commit must be
refused, but a list is returned to 4’s owner of blocks that caused conflicts, that
is, blocks marked “read” in 4 and marked “written” in the current version (or
any of its ancestors up to the version on which A4 is based). At this point, 4’s
owner can make a mew version and start all over again. Our assumption is
that this event is very unlikely, and that is occasional occurrence is a price
worth paying for not having locking, deadlocks, and the delays associated with
waiting for locks.

4.3. Directory service

Because it is frequently inconvenient to deal with long binary bit strings such
as capabilities, a directory service is needed to provide symbolic naming. The
directory service’s task is to manage directories, each of which contains a col-
lection of (Asci name, capability) pairs. The principal operation on a direc-
tory object is for a client to present a capability for a directory and an Ascu
name, and request the directory service to look up and return the capability
associated with the Ascu name. The inverse operation is to store an (ASCI
name, capability) pair in a directory whose capability is presented.

5. PROCESS MANAGEMENT

Like any other operating system, this one must also have a way to manage
processes. In our design, processes are created and managed by the process
service, which consists of three major subsystems, the generic server, the pro-
cess server, and the boot server.
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J3.1. Generic server

The idea behind the generic server is that much of the time a user wants a cer-
tain program to be run, but does not care about where it is run or on which
cPU type. For example, a user might have a Pascal program to be compiled,
and wants a Pascal compiler that produces, say, Motorola 68000 code. How-
ever, he does not care whether the compiler itself runs on a 68000, a VAX or
any other cPu. We speak of this as a generic Pascal compiler.

The generic server’s job is to locate a suitable hardware/software combina-
tion and start it up. This can be done by maintaining internal tables of loca-
tions where the appropriate service is likely to be located. By sending a mes-
sage to the chosen service, the generic server can see if the corresponding
server is currently available and willing to take on the offered work. If so, it
can begin; if not, the generic server can broadcast a request for bids to see if
someone else can be located. If no willing server exists, the generic server will
have to cause one to be created by invoking the process server.

3.2. Process Server

The process server’s job is to take a process descriptor sent to it, locate a free
processor, and send sufficient information to the processor to allow the proces-
sor to run. The process descriptor must contain at least the following informa-
tion: .

1. The cpu type desired.

2. A capability for the binary file to be executed.
3. Capabilities for process environment.

4. Accounting information.

The cpU type and binary file capability are obvious. The third item has to do
with things like the file descriptors and environment strings in UNIX. When a
UNIX process is started up, it inherits certain parameters from its parent,
among these are usually file descriptors for standard input, output, and diag-
nostic, and possibly other files as well. In our design, a process can inherit
capabilities for standard input, standard output, and standard diagnostic, as
well as other ones. By using these, one can implement UNIX pipes and filters
easily, as well as more general mechanisms (e.g., passing capabilities to third
parties, storing them in files for later use, etc.).

Another area that the process service must deal with is scheduling. It must
allocate processes to processors, and possibly control migration and swapping
among processors as well. By introducing the concept of a “process image”
which contains all the information necessary to run a process (€.g., its memory,
registers, capabilities, etc.) it becomes straightforward to handle process migra-
tion and swapping in a unified way. When a process is swapped out to a disk
somewhere, there is no need to have it swapped back to the same machine that
it originated on.
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3.3. Boot service

Many services must achieve high availability. Our approach to this issue is
using fault tolerance, rather than fault intolerance. In the former, one expects
hardware and software to fail, and makes provision for dealing with it; in the
latter, one assumes that they are perfect and that no such provision need be
made. Since many services are faced with the same problem: how to provide
high availability in the face of occasional crashes, we have abstracted out a
common part of the crash recovery mechanism and put it into a separate ser-
vice, the boot service.

Any service that wants to provide a continuous availability can register with
the boot service. Such registration entails providing a polling message to send
the service periodically, the expect reply, the polling frequency, and a prescrip-
tion of what to do in case of failure. The boot service then sends the polling
message to the service at the requested frequency. As long as the service con-
tinues to send the appropriate reply, all is well and the boot service has noth-
ing else to do.

However, if the service fails to reply properly, or fails to reply at all within
an agreed upon time interval, the boot service declares the service to be out-
of-order, and goes to the process service to start up a new version of it. Of
course, the boot service itself must not crash, but it consists of a number of
server processes that constantly check each other, and if need be, replace sick
members with healthy ones.

6. RESOURCE MANAGEMENT

In keeping with our general philosophy of making the system kernel as small
as possible, we have devised a way to put the resource control and accounting
outside the kernel. Furthermore, a clear distinction is made between policy
and mechanism, so that subsystem designers can implement their own policies
with the standard mechanisms.

Traditionally, accounting was used by the management of a computer center
to levy charges for the use of the computer center’s resources: CPU time, file
space, lineprinter paper. This method worked quite well in the past, when
hardware resources were expensive compared to the software used. Nowadays,
hardware is cheap, software expensive. However, in the traditional approach
there is usually no possibility to bill users for the use of a particular piece of
software, or to have one user bill another for using his services.

Additionally, distributed systems need not be under control of one central-
ized management any more; private, personal computers can be plugged into
the network and both use and offer services to the rest of the network. The
accounting mechanisms in a distributed systems must be able to handle this
new view on operating systems and allow any user that sets up a service to
gather information about who uses his service.
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6.1. Bank service

The bank service is the heart of the resource management mechanism. It
implements an object called a “bank account” with operations to transfer vir-
tual money between accounts and to inspect the status of accounts. Bank
accounts come in two varieties: individual and business. Most users of the
system will just have one individual account containing all their virtual money.
This money is used to pay for CPU time, disk blocks, typesetter pages, and all
other resources for which the service owning the resource decides to levy a
charge.

Bl%siness accounts are used by services to keep track of who has paid them
and how much. Each business account has a subaccount for each registered
client. When a client transfers money from his individual account to the
service’s business account, the money transferred is kept in the subaccount for
that client, so the service can later ascertain each client’s balance. As an
example of how this mechanism works, a file service could charge for each disk
block written, deducting some amount from the client’s balance. When the
balance reached zero, no more blocks could be written. Large advance pay-
ments and simple caching strategies can reduce the number of messages sent to
a small number.

Another aspect of the bank service is its maintenance of multiple currencies.
It can keep track of say, virtual dollars, virtual yen, virtual guilders and other
virtual currencies, with or without the possibility of conversion among them.
This feature makes it easy for subsystem designers to create new currencies
and control how they are allocated among the subsystems users.

6.2. Accounting policies

The bank service described above allows different subsystems to have different
accounting policies. For example, a file or block service could decide to use
either a buy-sell or a rental model for accounting. In the former, whenever a
block was allocated to a client, the client’s account with the service would be
debited by the cost of one block. When the block was freed, the account
would be credited. This scheme provides a way to implement absolute limits
(quotas) on resource use. In the latter model, the client is charged for rental of
blocks at a rate of X units per kiloblock-second or block-month or something
else. In this model, virtual money is constantly flowing from the clients to the
servers, in which case clients need some form of income to keep them going.
The policy about how income is generated and dispensed is determined by the
owner of the currency in question, and is outside the scope of the bank server.

SUMMARY

This paper has discussed a model for a fifth generation computer system archi-
tecture and its operating system. The operating system is based on the use of
objects protected by sparse capabilities. An outline of some of the key services
has been given, notably the block, file, directory, generic, process, boot and
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bank services.
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Most distributed operating systems constructed to date have lacked a unifying
mechanism for naming and protection. In this paper we discuss a system,
Amoeba, that uses capabilities for naming and protecting objects. In contrast
to traditional, centralized operating systems, in which capabilities are managed
by the operating system kernel, in Amoeba all the capabilities are managed
directly by user code. To prevent tampering, the capabilities are protected
cryptographically. The paper describes a variety of the issues involved, and
gives four different ways of dealing with the access rights.

1. INTRODUCTION

Capabilities [DENNIS and VAN HORN 1966] have been used as the basis for a
variety of uniprocessor operating systems (see [LEVY 1984] for numerous exam-
ples). They have the attraction of providing a single, uniform mechanism for
naming, accessing, and protecting all objects within the system. In all of these
systems, the capabilities are managed by (trusted) kernel software, often with
special assistance from the hardware.

The use of capabilities as a conceptual base for distributed systems has
been minimal to date, a few exceptions being the Eden system [ALMES et al.
1985], LINCS [DoNNeLLEY 1981], and ACCENT [RasHID 1981], Our scheme
also uses a distributed capability mechanism, but it differs from each of these
in significant ways, which we will describe after discussing our proposal.

This paper describes a scheme in which user processes manipulate
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capabilities directly in their own address spaces. Except for some very special
parts of it, the kernel does not even know that capabilities are in use. To
prevent users from forging new capabilities or tampering with existing ones,
capabilities are protected cryptographically. This cryptographic protection
scheme will first be described in some detail, followed by a discussion of how
these capabilities are used in the Amoeba distributed operating system.

2. PORTS AND CAPABILITIES

2.1. Background on Amoeba

Amoeba is an object-oriented distributed operating system. Its semantic
model is based on having client processes perform operations on objects
managed by server processes. Objects are specified by capabilities. Operations
are carried out by having processes exchange messages, generally in the form
of a request from a client followed later by a reply from a server. The stan-
dard message format provides a place for one capability in the header, typi-
cally for the object being operated on, but users are free to put other capabili-
ties in the data field as required. The header also contains room for the opera-
tion code and some parameters.

After making a request, a client blocks until the reply comes in, so the
approach can be regarded as a simple remote procedure call mechanism [SPEC-
TOR 1982; BIRRELL and NELSON 1984]. The system does not use “connec-
tions” or virtual circuits or any other long-lived communication structures.

2.2. Ports

Every server has one or more ports to which client processes can send messages
to contact the service (i.e., the server process). Ports consist of large numbers,
typically 48 bits, which are known only to the server processes that comprise
the service, and to the server’s clients. For a public service, such as the file
system, the port will generally be made known to all users. The ports used by
an ordinary user process will, in general, be kept secret. Knowledge of a port
is taken by the system as prima facie evidence that the sender has a right to
communicate with the service. Of course the service is not required to carry
out work for clients just because they know the port, for example, the file
server will refuse to read or write files for clients lacking appropriate file capa-
bilities. Thus two levels of protection are used here: ports for protecting
access to servers, and capabilities for protecting access to individual objects.
These two mechanisms are related, as will be shown later.

Although the port mechanism provides a convenient way to provide partial
authentication of clients (“if you know the port, you may at least talk to the
service”), it does not deal with the authentication of servers. How does one
insure that malicious users do not listen on the file server’s port, and try to
impersonate the file server to the rest of the system?

One approach is to have all ports manipulated by kernels that are presumed
trustworthy and are supposed to know who may listen on which port. As
mentioned above, we reject this strategy because on some machines, e.g., per
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so nal computers users may be able to tamper with the operating system ker-
nel, and also because we believe that by making the kernel as small as possi-
ble, we can enhance the reliability of the system as a whole. Instead, we have
chosen a different solution that can be implemented in either hardware or
software.

In the hardware solution, we need to place a small interface box, whlch we
call an F-box (Function-box) between each processor module and the network.
The most logical place to put it is on the VLSI chip that is used to interface to
the network. Alternatively, it can be put on a small printed circuit board
inside the wall socket through which personal computers attach to the network.
In those cases where the processors have user mode and kernel mode and the
operating systems can be trusted, it could be put into operating system. In
any event, we assume that somehow or other all messages entering and leaving
every processor undergo a simple transformation that users cannot bypass.

The transformation works like this. Each port is really a pair of ports, P,
and G, related by: P = F(G), where F is a (publicly-known) one-way function
[Wilkes 1968; Purdy 1974; Evans et al. 1974] performed by the F-box. The
one-way function has the property that given G it is a straightforward compu-
tation to find P, but that given P, finding G is not feasible.

Using the one-way F-box, the server authentication can be handled in a sim-
ple way, as illustrated in figure 1. Each server chooses a get-port, G, and com-
putes the corresponding put-port, P. The get-port is kept secret; the put-port
is distributed to potential clients or in the case of public servers, is published.
When the server is ready to accept client requests, it does a GET(G). The F-
box then computes P = F(G) and waits for messages containing P to arrive.
When one arrives, it is given to the process that did GET(G). To send a mes-
sage to the server, the client merely does PUT(P), which sends a message con-
taining P in a header field to the server. The F-box on the sender’s side does
not perform any transformation on the P field of the outgoing message.

Now let us consider the system from an intruder’s point of view. To imper-
sonate a server, the intruder must do GET(G). However, G is a well-kept
secret, and is never transmitted on the network. Since we have assumed that
G cannot be deduced from P (the one-way property of F) and that the
intruder cannot circumvent the F-box, he cannot intercept messages not
intended for him. An intruder doing GET(P) will simply cause his F-box to
listen to the (useless) port F(P). Replies from the server to the client are pro-
tected the same way, only with the client picking a get-port for the reply, say,
G’, and including P’ = F(G’) in the request message.

The presence of the F-box makes it easy to implement digital signatures for
still further authentication, if that is desired. To do so, each client chooses a
random signature, S, and publishes F(S). The F-box must be designed to
work as follows. Each message presented to the F-box for transmission con-
tains three special header fields: destination (P), reply (G’), and signature (S).
The F-box applies the one-way function to the second and third of these,
transmitting the three ports as: P, F(G’), and F(S), respectively. The first is
used by the receiver's F-box to admit only messages for which the
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INTRUDER

CLIENT SERVER

FIGURE 1. Clients, servers, intruders, and F-boxes.

corresponding GET has been done, the second is used as the put-port for the
reply, and the third can be used to authenticate the sender, since only the true
owner of the signature will know what number to put in the third field to
insure that the publicly-known F(S) comes out.

It is important to note that the F-box arrangement merely provides a simple
mechanism for implementing security and protection, but gives operating sys-
tem designers considerable latitude for choosing various policies. The mechan-
ism is sufficiently flexible and general that it should be possible t o put it into
hardware without precluding many as-yet-unthought-of operating systems to
be designed in the future. In effect, it is a protected associative addressing
scheme. The associative addressing can be simulated in software when the ker-
nels are trusted by having each one maintain a cache of (port, machine-
number) pairs. If a port is not in the cache, it can be found by broadcasting a
LOCATE message. How this can be carried out efficiently, even in a network
without broadcasting, is discussed in [MULLENDER and VITANYI 1984], along
with many of the implications of location dependendent addressing, process
migration, etc.
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2.3. Capabilities

In any object-based system, a mechanism is needed to keep track of which
processes may access which objects and in what way. The normal way is to
associate a capability with each object, with bits in the capability indicating
which operations the holder of the capability may perform. In a distributed
system this mechanism should itself be distributed, that is, not centralized in a
single monolithic “capability manager.” In our proposed scheme, each object
is managed by some server, which itself is a user (as opposed to kernel) pro-
cess, and which understands the capabilities for its objects.

A capability typically consists of four fields as illustrated in figure 2.

The put-port of the server that manages the object

An object number meaningful only to the server managing the object
A rights field, containing a 1 bit for each permitted operation

A random number, for protecting each object

el i

PORT OBJECT RIGHTS RANDOM

FIGURE 2. A Capability

The basic model of how capabilities are used and protected can be illus-
trated by a simple example: a client wishes to create a file using the file server,
write some data into the file, and then give another client permission to read
(but not modify) the file just written. To start with, the client sends a message
to the file server’s put-port specifying that a file is to be created. The request
might contain a file name, account capability, etc. The server would then pick
a random number, store this number in its object table, and insert it into the
newly-formed object capability. The reply would contain this capability for
the newly created (empty) file.

To write the file, the client would send a succession of data messages, each
containing the capability and some data. When each WRITE request arrived
at the file server process, the server would use the OBJECT field contained in the
capability as as index into its file tables to locate the object. For a UNIXY like
file server, the object number would be the i-number, which could be used to
locate the i-node.

Several object protection systems are possible using this framework. In the
simplest one, the server merely compares the random number in the file table
(put there by the server when the object was created) to the one contained in
the capability. If they agree, the capability is assumed to be genuine, and all
operations on the file are allowed. This system is easy to implement, but does
not distinguish between READ, WRITE, DELETE, and other operations that
may be performed on objects.

1 UNIX is a Trademark of AT&T Bell Laboratories.
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However, the basic idea can easily be modified to provide that distinction.
We will now describe three different algorithms for protecting the access rights.
In the first version, when a file (object) is created, the random number chosen
and stored in the file table is used as an encryption/decryption key. The capa-
bility is built up by taking the RIGHTS field, which is initially all 1s to indicate
that all operations are legal, and the RANDOM field (e.g., 48 bits), which con-
tains a known constant, say, 0, and treating them as a single number. This
number is then encrypted by the key just stored in the file table, and the result
put into the newly minted capability in the combined RIGHTS-RANDOM field.

When the capability is returned for use, the server uses the OBJECT field (not
encrypted) to find the file table and hence the encryption/decryption key. If
the result of decrypting the capability leads to the known constant in the RAN-
DOM field, the capability is almost assuredly valid, and the RIGHTS field can be
believed. Clearly, an encryption function that mixes the bits thoroughly is
required to ensure that tampering with the Rights Field also affects the known
constant. EXCLUSIVE-OR’ing a constant with the concatenated RIGHTS and
RANDOM fields will not do.

A second algorithm for protecting the RIGHTS field makes use of one-way
functions, similar to the way ports are protected. When a server is asked to
create a new object, it generates a random number, as usual. The RIGHTS field
is then EXCLUSIVE-ORed with the random number and then used as the
argument of the one-way function, F, yielding a value that is put into the RAN-
DOM field of the capability. Symbolically,

RANDOM field = F(random-number XOR rights bits) .

The RIGHTS field is included in the capability itself in plaintext. When a capa-
bility arrives at the server, it finds the original random number from its inter-
nal tables and EXCLUSIVE-OR’s the plaintext RIGHTS field with it, passing
this result through F. If the result agrees with the RANDOM field in the capa-
bility, the capability is considered valid. Although a user can tamper with the
plaintext RIGHTS field, such tampering will result in the server ultimately
rejecting the capability.

When either of these protection systems are used, the owner of an object can
easily give an exact copy of its capability to another process by just sending it
the bit pattern, but to pass, say, read-only access, is slightly harder. To
accomplish this task, the process must send the capability back to the server
- along with a bit mask and a request to fabricate a new capability with fewer
rights.

This idea works well except that it requires going back to the server every
time a sub-capability with fewer rights is needed. We will now describe a third
algorithm that does not have this drawback. To start with, find a set of N
commutative one-way functions, Fy, Fy, - -+, Fy_; corresponding to the N
rights present in the RIGHTS field. When an object is created, the server
chooses a random number and puts it in both its internal table and the RAN-
DOM field, just as in the very first scheme presented. The server also sets all
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the RIGHTS field bits to 1.

A client can delete permission k& from a capability by replacing the RANDOM
field, R, with F(R) and turning off the corresponding bit in the RIGHTS field.
When a capability comes into the server to be used, the server fetches the ori-
ginal random number from its table, looks at the RIGHTS field and applies the
functions corresponding to the deleted rights to it. If the result agrees with the
number present in the capability, then the capability is accepted as genuine,
otherwise it is rejected.

Note that although the RIGHTS field is not encrypted, it is pointless for a
client to tamper with it, since the server will detect that. In theory at least, the
RIGHTS field is not even needed, since the server could try all 2¥ combinations
of the functions to see if any worked. Its presence merely speeds up the
checking. It should also be clear why the functions must be commutative—it
does not matter in what order the bits in the RIGHTS field were turned off.
This scheme is discussed in more detail in [MULLENDER 1985].

The organization of capabilities and objects discussed above has the interest-
ing property that although no central record is kept of who has which capabili-
ties, it is easy to revoke existing capabilities. All that the owner of an object
need do is ask the server to change the random number stored in its internal
table and return a new capability. Obviously this operation must be protected
with a bit in the RIGHTS field, but if it succeeds, all existing capabilities for
that object are instantly invalidated.

2.4. Protection without F-Boxes

Earlier we said that protection could also be achieved in software (i.e., without
F-boxes). It is slightly more complicated, since it uses both conventional and
public-key encryption [DIFFIE and HELLMAN 1976], but it is still quite usable.
The basic idea underlying the method is the fact that in nearly all networks an
intruder can forge nearly all parts of a message being sent except the source
address, which is supplied by the network interface hardware. To take advan-
tage of this property, imagine a (possibly symmetric) conceptual matrix, M, of
conventional (e.g.,, DES) encryption keys, with the rows being labeled by
source machine and the columns by destination machine. Thus the matrix
selects a unique key for encrypting the capabilities in any message. The data
need not be encrypted, although that is also possible if needed.

Each machine is assumed to know the contents of its row and column of the
matrix, and nothing else (how this will be achieved will be discussed shortly).
Thus a client C will know My and My for all X, and a server S will know
Mgy and Myg, all of which are conventional (not public) keys. With this
arrangement, intruder / can easily capture messages from client C to server S,
but attempts to “play them back™ to the server will fail because the server will
see the source machine as I (assumed unforgeable) and use element Mg as the
decryption key instead of the correct Mcg. No matter what the intruder does,
he cannot trick the server into using a decryption key that decrypts the capa-
bilities to make sense.

To avoid having to run the encryption/decryption algorithm frequently, all
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machines can maintain a hashed cache of capabilities that they have been
using frequently. Clients will hash their caches on the unencrypted capabilities
in the form of triples: (unencrypted capability, destination, encrypted capabil
it y), whereas servers will hash theirs in the form of triples: (encrypted capabil-
ity, source, unencrypted capability).

To set up the matrix initially, the following procedure can be used. A pub-
lic server, such as a file server, makes its put-port and a public encryption key
known to the whole world. When a new machine joins the network (e.g., after
a crash or upon initial system boot), it sends a broadcast message announcing
its presence. Suppose, for example, the file server has just come up, and must
(1) prove that it is the file server to other processes, and (2) establish the con-
ventional keys used for encrypting capabilities in both directions.

A client machine, C, which receives the broadcast from the alleged file
server, F, picks a new conventional encryption key, K, for use in subsequent C
to F traffic and sends it to F encrypted with F’s public key. F then decrypts K
and replies to C by sending a message containing both K and a newly chosen
conventional key to be used for reverse traffic. This message is encrypted both
with K itself and with the inverse of F’s public key, so C can use K and F’s
public key to decrypt it. If the decrypted message contains K, C can be sure
that the other conventional key was indeed generated by owner of F’s public
key, thus convincing C that he is indeed talking to the file server. Both of the
above-mentioned conditions have now been fulfilled, so normal communication
can now take place. Note that the use of different conventional keys after
each reboot make it impossible for an intruder to fool anyone by playing back
old messages.

Yet another any possibility for protecting capabilities in the absence of F-
box es is to use conventional link-level encryption on all the data communica-
tion lines.

3. USE OF CAPABILITIES IN AMOEBA

In the preceeding sections we have seen how capabilities can be cryptographi-
cally protected so that they can be managed directly by user processes
throughout the distributed system, without any help, or even knowledge by the
operating system kernels. In the following sections we will look at some of the
areas these capabilities have been applied in the Amoeba distributed operating
system. The areas to be covered are: the memory server, the block server, the
flat file server, the directory server, the multiversion file server, and the bank
server. Capabilities are also used in other areas, but space limitations prevent
them from being discussed here.

3.1. The memory server
The memory server is a process that manages physical memory and processes
at the lowest level. It is actually part of the kernel present on each machine,
but it communicates with other processes via the normal message protocol so
that its clients do not perceive it as being special in any way.

The memory server is typically used for creating processes, as follows. The
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parent process tells the memory server to CREATE SEGMENT, providing an
initial size and some other information. The memory server then returns a
capability for the newly created segment. Using this capability, the parent
process can use the WRITE operation to load data into the segment (the
READ operation can get it back again later if needed). The parent process
will normally repeat this cycle, creating and loading segments until all the
child process’ initial segments have been constructed, for example, text, data,
and stack segments.

To create the child process, the parent then performs a MAKE PROCESS
operation, providing the capabilities for the child’s segments as parameters.
The memory server then returns a process capability for the child, with which
the child can be started, stopped, and generally manipulated. By directing the
CREATE SEGMENT requests to a memory server on a remote machine, the
parent can create the child wherever it wants to, providing a more convenient
and efficient interface than the traditional FORK + EXEC.

The memory server can also easily support an “electronic disk.” An elec-
tronic disk of the required size is created using CREATE SEGMENT, and
then can be read and written, either by local or remote processes using READ
and WRITE.

3.2. The block server

The Amoeba file system also makes heavy use of capabilities. As far as the
operating system is concerned, a file system is just ome or more server
processes, with no special privileges. This design makes it possible to have
multiple, potentially quite different file systems running at the same time.
Three distinct file systems have in fact been implemented.

The first file system is highly modular, consisting of a block server, flat file
server, and directory server. The block server can be requested to allocate a
disk block and return a capability for it. Using this capability, the block can
be written, read, or deallocated. The block server has no concept of a file. By
splitting the block server off from the file server, it becomes possible for any
user to implement any kind of special-purpose file system that he needs,
without having to get into the details of disk storage management.

3.3. The flat file server :

The flat file server provides its clients with files consisting of a linear sequence
of bytes, numbered from 0 to the file size - 1. The basic operations here are
CREATE FILE, DESTROY FILE, WRITE FILE, and READ FILE
CREATE FILE returns a capability used in the other calls, each of which
implicitly specifies a file via the capability, and a position in the file via a
parameter. The server does not have any concept of an “open” file. One can
operate on any file for which a valid capability can be presented.
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3.4. The directory server

The directory server manages directories, each of which is a set of (ASCII
name, capability) pairs. A typical operation is to present the directory server
with the capability for a directory, plus an ASCII string, and ask it to look up
and return the capability that corresponds to the given string in the given
directory. Operations also exist to enter and remove (ASCII name, capability)
entries from directories. These primitives, and a few others, provide an ade-
quate basis for building up aribtrary directory trees, graphs, etc. Note that the
capabilities within a directory need not all be file capabilities and certainly
need not all be located in the same place or managed by the same server. To
look up the path a/b/c relative to some directory, a client would ask the server
to find the string “a” in that directory. If the capability returned happens to
be for a directory managed by a different directory server, then the ensuing
request to look up “b” just goes to the new server. Unless the client compared
the SERVER fields in the two capabilities, it wouldn’t even notice that succeed-
ing requests were going to different servers. The distribution is completely
transparent.

3.5. The multiversion file server

The second file system supports tree-shaped files. Each file consist of a tree of
pages, rather than a simple linear byte sequence. An important property of
this file system is its ability to provide atomic updates on files. In short, a user
can ask to make a new version of a file, which results in a capability for the
new version. The new version acts like it is a page-by-page copy of the origi-
nal, although in fact, pages are only copied when they are changed.

The new version can be modified at will, and then atomically “committed,”
thus becoming the new file. A file is thus a sequence of versions. Once a ver-
sion of a file has been committed, it cannot be modified. This technique has
been designed for use with video disks and other “write once” media. More
details can be found in [MULLENDER and TANENBAUM 1982]. .

The third file system is a capability-based UNIX file system, to ease the
problem of moving existing applications from UNIX to Amoeba.

3.6. The bank server
Resource control and accounting also makes use of the capabilities. The basis
for the resource control and accounting is the bank server, which manages
“bank account” objects. The principal operation on bank accounts is transfer-
ring virtual money from one account to another. Thus to obtain permission to
create a file, a client would present a capability for one of his accounts to the
bank server, and request that the bank server withdraw some money from that
account and deposit it in the account of the file server. Assuming the client
trusts the file server, the client can pre-pay for a substantial amount of work,
in order to eliminate the overhead of going back to the bank on each request.
The bank server is prepared to maintain accounts in different, possibly con-
vertible, possibly inconvertible, currencies. This mechanism can form the basis
of a variety of policies, used by different servers. For example, by having the
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file server charge x dollars per kiloblock of disk space, quotas can be imple-
mented by limiting how many dollars each client has. CPU time could be
charged in francs, phototypesetter pages in yen, and so on. In some cases
(e.g., disk blocks, but not typesetter pages), returning the resource mlght result
in the client getting his money back

4. DiscussiON

In this paper we have shown how ports and capabilities can be managed in a
protected way in a distributed operating system. By moving the entire capabil-
ity management out of the kernel, we can provide a minimal kernel, and yet
have a powerful and general conceptual basis for naming and protection
throughout the system. A number of examples of how capabilities are used in
Amoeba were presented as examples.

The Eden [ALMEs et al. 1985] and ACCENT [RAsHID 1981] systems also use
capability-like mechanisms for protection, butin both cases, the ultimately
responsiblity for managing the capabilities rests with the kernel. In Eden,
users may manage capabilities directly, but the kernel maintains copies, to be
able to verify each one before it is used. We maintain that moving all of the
capability management out of the kernel is a step in the right direction. Just
as file servers are now rarely part of the kernel of distributed systems, capabil-
ity management should not be either. The smaller and simpler the kernel, the
easier it is to write, debug, and maintain. Furthermore, if the system consists
of a building full of rooms with wall sockets into which any user can plug any
machine, protection based on trusted kernels managing capabilities becomes
impossible. A malicious user could modify his kernel to subvert the capability
checking and thereby bypass the protection scheme.

In [DoNNELLEY 1981], a description is given of work being done at
Lawrence Livermore Laboratory is given. Two schemes are described, one
using a password in each capability, and one using public key cryptography.
Although these schemes are similar to ours in some ways, they do not provide
a way to protect individual rights bits to allow one capability to read an object
and another to write it. Furthermore, our proposal addresses the problem of
how to prevent users from impersonating servers or reading network traffic not
intended for them. Both the F-boxes and the matrix method described in 2.4
can be used to fight wiretapping.
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Capability-based operating systems have traditionally required large, complex
kernels to manage the use of capabilities. In our proposal, capability manage-
ment is done entirely by user programs without giving up any of the protection
aspects normally associated with capabilities. The basic idea is to use one-way
functions and encryption to protect sensitive information.

1. INTRODUCTION

Soon, most office buildings will have a cable snaking through the cable ducts,
with an outlet in each room into which users can plug their personal comput-
ers. The traditional approach to protection, a secure operating system in every
machine to check permissions before carrying out a command, is not suitable
for such an environment. It is too easy for a malicious user to replace the
operating system in one of the network machines, or to replace a machine alto-
gether by one without a secure operating system, to obtain confidential infor-
mation illicitly.

New methods for protection must be devised, methods that do not require
secure, trustworthy operating systems. This paper presents mechanisms, based
on encryption. We shall show that they are equally powerful, and, in some
cases, more versatile than existing protection schemes, implemented by a
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secure operating system. We propose to base the software design on a
different conceptual model - the object model. In this model, the system deals
with abstract objects, each of which has some set of abstract operations that
can be performed on it.

Associated with each object are one or more “capabilities” [Dennis66] which
are used to control access to the object, both in terms of who may use the
object and what operations he may perform on it. At the user level, the basic
system primitive is performing an operation on an object, rather than such
things as establishing connections, sending and receiving messages, and closing
connections. For example, a typical object is the file, with operations to read
and write portions of it.

The object model is well-known in the programming languages community
under the name of “abstract data type.” This model is especially well-suited to
a distributed system because in many cases an abstract data type can be imple-
mented on one of the processor-memory modules described above. When a
user process executes one of the visible functions in an abstract data type, the
system arranges for the necessary underlying message transport from the user’s
machine to that of the abstract data type and back. The header of the mes-
sage can specify which operation is to be performed on which object. This
arrangement gives a very clear separation between users and objects, and
makes it impossible for a user to directly inspect the representation of an
abstract data type by bypassing the functional interface.

A major advantage of the object or abstract data type model is that the
semantics are inherently location independent. The concept of performing an
operation on an object does not require the user to be aware of where objects
are located or how the communication is actually implemented. This property
gives the system the possibility of moving objects around to position them
close to where they are frequently used. Furthermore, the issue of how many
processes are involved in carrying out an operation, and where they are located
is also hidden from the user.

It is frequently convenient to implement the object model in terms of clients
(users) who send messages to services. A service is defined by a set of com-
mands and responses. Each service is handled by one or more server processes
that accept messages from clients, carry out the required work, and send back
replies. The design of these servers and the design of the protocols they use
form an important part of the system software of our proposed fifth generation
computers.

As an example of the problems that must be solved, consider a file server.
Among other design issues that must be dealt with are how and where infor-
mation is stored, how and when it is moved, how it is backed up, how con-
current reads and writes are controlled, how local caches are maintained, how
information is named, and how accounting and protection are accomplished.
Furthermore, the internal structure of the service must be designed: how many
server processes are there, where are they located, how and when do they com-
municate, what happens when one of them fails, how is a server process organ-
ized internally for both reliability and high performance, and so on.
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Analogous questions arise for all the other servers that comprise the basic sys-
tem software.

2. PORTS AND CAPABILITIES

2.1. Ports

Every service has one or more ports [Mullender84] to which client processes
can send packets to contact the service. Ports consist of large numbers, typi-
cally 48 bits, which are known only to the server processes that comprise the
service, and to the service’s clients. For a public service, such as the system
file service, the port will be generally made known to all users. The ports used
by an ordinary user process will, in general, be kept secret. Knowledge of a
port is taken by the system as prima facie evidence that the sender has a right
to communicate with the service. Of course the service is not required to carry
out work for clients just because they know the port, for example, the public
file service may refuse to read or write files for clients lacking account
numbers, appropriate authorization, etc.

Although the port mechanism provides a convenient way to provide partial
authentication of clients (“if you know the port, you may at least talk to the
service”), it does not deal with the authentication of servers. The basic primi-
tive operations offered by the system are PUT(PORT, MESSAGE) and
GET(PORT, MESSAGE). Since everyone knows the port of the file server, as
an example, how does one insure that malicious users do not execute GETs on
the file server’s port, in effect impersonating the file server to the rest of the
system?

One approach is to have all ports manipulated by kernels that are presumed
trustworthy and are supposed to know who may GET from which port. We
reject this strategy because some machines, e.g., personal computers connected
to larger multimodule systems may not be trustworthy, and also because we
believe that by making the kernel as small as possible, we can enhance the reli-
ability of the system as a whole. Instead, we have chosen a different solution
that can be implemented in either hardware or software. First we will describe
the hardware solution; later we will describe the software solution.

In the hardware solution, we need to place a small interface box, which we
call an F-box (Function-box) between each processor module and the network.
The most logical place to put it is on the VLSI chip that is used to interface to
the network. Alternatively, it can be put on a small printed circuit board
inside the wall socket through which personal computers attach to the network.
In those cases where the processors have user mode and kernel mode and a
trusted operating system running in kernel mode, it can also be put into
operating system software. In any event, we assume that somehow or other all
packets entering and leaving every processor undergo a simple transformation
that users cannot bypass.

The transformation works like this. Each port is really a pair of ports, P,
and G, related by: P = F(G), where F is a (publicly-known) one-way function
[Wilkes68, Purdy74, Evans74] performed by the F-box. The one-way function
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has the property that given G it is a straightforward computation to find P,
but that given P, finding G is so difficult that the only approach is to try every
possible G to see which one produces P. If P and G contain sufficient bits,
this approach can be made to take millions of years on the world’s largest
supercomputer, thus making it effectively impossible to find G given only P.
Note that a one-way function differs from a cryptographic transformation in
the sense that the latter must have an inverse to be useful, but the former has
been carefully chosen so that no inverse can be found.

Using the one-way F-box, the server authentication can be handled in a sim-
ple way. Each server chooses a get-port, G, and computes the corresponding
put-port, P. The get-port is kept secret; the put-port is distributed to potential
clients, or, in the case of public servers, is published. When the server is ready
to accept client requests, it does a GET(G). The F-box then computes
P = F(G) and waits for packets containing P to arrive. When one arrives, it
is given to the process that did GET(G). To send a packet to the server, the
client merely does PUT(P), which sends a packet containing P in a header
field to the server. The F-box on the sender’s side does not perform any
transformation on the P field of the outgoing packet.

Now let us consider the system from an intruder’s point of view. To imper-
sonate a server, the intruder must do GET(G). However, G is a well-kept
secret, and is never transmitted on the network, Since we have assumed that G
cannot be deduced from P (the one-way property of F) and that the intruder
cannot circumvent the F-box, he cannot intercept packets not intended for
him. Replies from the server to the client are protected the same way, only
with the client picking a get-port for the reply, say, G’, and including
P’ = F(G’) in the request packet.

The presence of the F-box makes it easy to implement digital signatures for
still further authentication, if that is desired. To do so, each client chooses a
random signature, S, and publishes F(S). The F-box must be designed to
work as follows. Each packet presented to the F-box contains three special
header fields: destination (P), reply (G’), and signature (S). The F-box applies
the one-way function to the second and third of these, transmitting the three
ports as: P, F(G’), and F(S), respectively. The first is used by the receiver’s
F-box to admit only packets for which the corresponding GET has been done,
the second is used as the put-port for the reply, and the third can be used to
authenticate the sender, since only the true owner of the signature will know
what number to put in the third field to insure that the publicly-known F(S)
comes out.

It is important to note that the F-box arrangement merely provides a simple
mechanism for implementing security and protection, but gives operating sys-
tem designers considerable latitude for choosing various policies. The mechan-
ism is sufficiently flexible and general that it should be possible to put it into
hardware with precluding many as-yet-unthought-of operating systems to be
designed in the future.
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2.2. Capabilities

In any object-based system, a mechanism is needed to keep track of which
processes may access which objects and in what way. The normal way is to
associate a capability with each object, with bits in the capability indicating
which operations the holder of the capability may perform. In a distributed
system this mechanism should itself be distributed, that is, not centralized in a
single monolithic “capability manager.” In our proposed scheme, each object
is managed by some service, which is a user (as opposed to kernel) program,
and which understands the capabilities for its objects.

A capability typically consists of four fields:

The put-port of the service that manages the object

An Object Number meaningful only to the service managing the object
A Rights Field, which contains a 1 bit for each permitted operation

A Random Number for protecting each object

PR

The basic model of how capabilities are used can be illustrated by a simple
example: a client wishes to create a file using the file service, write some data
into the file, and then give another client permission to read (but not modify)
the file just written. To start with, the client sends a packet to the file service’s
put-port specifying that a file is to be created. The request might contain a file
name, account number and similar attributes, depending on the exact nature of
the file service. The server would then pick a random number, store this
number in its object table, and insert it into the newly-formed object capabil-
ity. The reply would contain this capability for the newly created (empty) file.

To write the file, the client would send a succession of data packets, each
one containing the capability and some data. When each WRITE request
arrived at the file server process, the server would normally use the object
number contained in the capability as as index into its tables to locate the file.

Several object protection systems are possible using this framework. In the
simplest one, the server merely compares the random number in the file table
(put there by the server when the object was created) to the one contained in
the capability. If they agree, the capability is assumed to be genuine, and all
operations on the file are allowed. This system is easy to implement, but does
not distinguish between READ, WRITE, DELETE, and other operations that
may be performed on objects.

However, it can easily be modified to provide that distinction. In the
modified version, when a file (object) is created, the random number chosen
and stored in the file table is used as an encryption/decryption key. The capa-
bility is built up by taking the Rights Field (e.g., 8 bits), which is initially all 1s
indicating that all operations are legal, and the Random Number Field (e.g.,
56 bits), which contains a known constant, say, 0, and treating them as a sin-
gle number. This number is then encrypted by the key just stored in the file
table, and the result put into the newly minted capability in the combined
Rights-Random Field. When the capability is returned for use, the server uses
the object number (not encrypted) to find the file table and hence the
encryption/decryption key. If the result of decrypting the capability leads to
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the known constant in the Random Number Field, the capability is almost
assuredly valid, and the Rights Field can be believed. Clearly, an encryption
function that mixes the bits thoroughly is required to ensure that tampering
with the Rights Field also affects the known constant. Exclusive or’ing a con-
stant with the concatenated Rights and Random fields will not do.

When this modified protection system is used, the owner of the object can
easily give an exact copy of the capability to another process by just sending it
the bit pattern, but to pass, say, read-only access, is harder. To accomplish
this task, the process must send the capability back to the server along with a
bit mask and a request to fabricate a new capability whose Rights Field is the
Boolean-and of the Rights Field in the capability and the bit mask. By choos-
ing the bit mask carefully, the capability owner can mask out any operations
that the recipient is not permitted to carry out.

This modified system works well except that it requires going back to the
server every time a sub-capability with fewer rights is needed. We have dev-
ised yet another protection system that does not have this drawback. This
third scheme requires the use of a set of N commutative one-way functions,
Fo, Fy, -+, Fy_,, corresponding to the N rights present in the Rights
Field. When an object is created, the server chooses a random number and
puts it in both the file table and the Random Number Field, just as in the first
scheme presented. It also sets all the Rights Field bits to 1.

A client can delete permission k from a capability by replacing the random
number, R, with Fy(R) and turning off the corresponding bit in the Rights
Field. When a capability comes into the server to be used, the server fetches
the original random number from the file table, looks at the Rights Field, and
applies the functions corresponding to the deleted rights to it. If the result
agrees with the number present in the capability, then the capability is
accepted as genuine, otherwise it is rejected. Note that although the Rights
Field is not encrypted, it is pointless for a client to tamper with it, since the
server will detect than immediately. In theory at least, the Rights Field is not
even needed, since the server could try all 2¥ combinations of the functions to
see if any worked. Its presence merely speeds up the checking. It should also
be clear why the functions must be commutativeit does not matter in what
order the bits in the Rights Field were turned off.

The organization of capabilities and objects discussed above has the interest-
ing property that although no central record is kept of who has which capabili-
ties, it is easy to retract existing capabilities. All that the owner of an object
need do is ask the server to change the random number stored in the file table.
Obviously this operation must be protected with a bit in the Rights Field, but
if it succeeds, all existing capabilities are instantly invalidated.
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2.3. Protection without F-boxes

Earlier we said that protection could also be achieved without F-boxes. It is
slightly more complicated, since it uses both conventional and public-key
encryption, but it is still quite usable. The basic idea underlying the method is
the fact that in nearly all networks an intruder can forge nearly all parts of a
packet being sent except the source address, which is supplied by the network
interface hardware. To take advantage of this property, imagine a (possibly
symmetric) conceptual matrix of conventional (e.g., DES) encryption keys,
with the rows being labeled by source machine and the columns by destination
machine. Thus the matrix selects a unique key for encrypting the capabilities
in any packet. The data need not be encrypted, although that is also possible
if needed.

Each machine is assumed to know its row and column of the matrix, and
nothing else (how this will be achieved will be discussed shortly). With this
arrangement, intruder / can easily capture packets from client C to server S,
but attempts to “play them back” to the server will fail because the server will
see the source machine as I (assumed unforgeable) and use element Mg as the
decryption key instead of the correct Mcs. No matter what the intruder does,
he cannot trick the server into using a decryption key that decrypts the capa-
bilities to make sense, that is, to contain random numbers that agree with
those stored in the file tables.

To avoid having to run the encryption/decryption algorithm frequently, all
machines can maintain a hashed cache of capabilities that they have been
using frequently. Clients will hash their caches on the unencrypted capabilities
in the form of triples: (unencrypted capability, destination, encrypted capabil-
ity), whereas servers will hash theirs in the form of triples: (encrypted capabil-
ity, source, unencrypted capability).

To set up the matrix initially, the following procedure can be used. A pub-
lic server, such as a file server, makes its put-port and a public encryption key
known to the whole world. When a new machine joins the network (e.g., after
a crash or upon initial system boot), it sends a broadcast message announcing
its presence. Suppose, for example, the file server has just come up, and must
(1) prove that it is the file server to other processes, and (2) establish the con-
ventional keys used for encrypting capabilities in both directions.

A client machine, C, which receives the broadcast from the alleged file server, F,
picks a new conventional encryption key, K, for use in subsequent C to F traffic
and sends it to F encrypted with F’s public key. F then decrypts K and replies to
C by sending a packet containing both K and a newly chosen conventional key to
be used for reverse traffic. This packet is encrypted both with K itself and with the
inverse of F’s public key, so C can use K and F’s public key to decrypt it. If the
decrypted packet contains K, C can be sure that the other conventional key was
indeed generated by owner of F’s public key, thus convincing C that he is indeed
talking to the file server. Both of the above-mentioned conditions have now been
fulfilled, so normal communication can now take place. Note that the use of
different conventional keys after each reboot make it impossible for an intruder to
fool anyone by playing back old packets.
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SUMMARY

This paper has discussed a model for a fifth generation computer system archi-
tecture and its operating system. The operating system is based on the use of
objects protected by sparse capabilities. Conclusions

The paper shows that it is possible and practical to build capability-based
distributed operating systems, with capability management outside of the
operating system kernel. Since the operating system itself is particularly
vulnerable to attack in an office environment as we have described, our
method is more secure than traditional protection schemes that must rely on
the security of the operating system kernel.

Two methods have been presented for the implementation of authenticated
communication between client and server processes, one using F-boxes, the
other using a combination of public key encryption and conventional encryp-
tion techniques. Currently public key encryption is still expensive, both in
terms of computational effort and storage requirements. The F-box mechan-
ism is a good alternative until fast public key algorithms arrive. F-boxes can
be put in the cable ducts, on the network interface cards, in integrated circuits
that carry out the network protocol, or, if necessary, in the operating system
kernel.

Capability management need not be carried out by a secure operating sys-
tem: all operations on capabilities that are currently implemented in secure
operating system kernels can also be carried out by choosing appropriate
encryption techniques, with which client processes can be allowed to handle
capabilities and carry out certain (restricted) sets of operations on them.

REFERENCES

[Dennis66]
DEenNnNIs, J. B. and Horn, E. C. vaN, “Programming Semantics for Mul-
tiprogrammed Computation,” Comm. ACM, vol. 9, no. 3, pp.143-155,
March 1966.

[Evans74]
Evans, A., Kantrowirz, W., and WEIss, E., “A User Authentication
Scheme Not Requiring Secrecy in the Computer,” Comm. ACM, vol. 17,
no. 8, pp.437-442, August 1974.

[Mullender84]
MULLENDER, S. J. and TANENBAUM, A. S., “Protection and Resource
Control in Distributed Operating Systems,” Computer Networks, vol. 8,
no. 5,6, pp.421-432, 1984.

[Purdy74]
Purpy, G. B., “A High Security Log-in Procedure,” Comm. ACM,
vol. 17, no. 8, pp.442-445, August 1974.

[Wilkes68]
WILKES, M. V., Time-Sharing Computer Systems. New York: American
Elsevier, 1968.



Protocols






125

A Secure High-Speed Transaction Protocol

Sape J. Mullender

Centre for Mathematics and Computer Science
Amsterdam, The Netherlands

Robbert van Renesse
Vrije Universiteit
Amsterdam, The Netherlands

Most computer networks use a byte stream protocol for communication
between processes, which suffer from two important drawbacks: the address-
ing mechanisms provided are often process-dependent or location-dependent,
and communication is slow. While carrying out research into distributed
operating systems at the Vrije Universiteit and the Centre for Mathematics &
Computer Science, we have developed a transaction-oriented transport proto-
col for the Amoeba distributed operating system [Mullender86], aimed for high-
speed, with an addressing mechanism that is not only more general, but pro-
vides a protection mechanism as well. The basic mechanism for communica-
tion between processes is the transaction: a client process sends a request to
a server process, which carries out the request and returns a reply. Protection
is provided by using ports, chosen from a sparse address space, for address-
ing services. These ports serve as a ‘‘capability’”’ for communication with the
service. Through its simplicity, the transaction protocol achieves much higher
transmission rates than other protocols executing on similar hardware (about
300 Kbytes/sec process-to-process).

The protection mechanism will be described, and the mechanisms for realis-
ing high transmission speeds.
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1. INTRODUCTION

Traditional networks and distributed systems are based on the concept of two
Pprocesses or processors communicating via connections. The connections are
typically managed by a hierarchy of complex protocols, usually leading to
complex software and extreme inefficiency. (An effective transfer rate of 0.1
megabit/sec over a 10 megabit/sec local network, which is only 1% utilization,
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is frequently barely achievable.)

We reject this traditional approach of viewing a distributed system as a col-
lection of discrete processes communicating via multilayer (e.g., ISO) protocols,
not only because it is inefficient, but because it puts too much emphasis on
specific processes, and by inference, on processors. Instead we propose to base
the software design on a different conceptual modelthe object model. In this
model, the system deals with abstract objects, each of which has some set of
abstract operations that can be performed on it.

Associated with each object are one or more “capabilities” [Dennis66] which
are used to control access to the object, both in terms of who may use the
object and what operations he may perform on it. At the user level, the basic
system primitive is performing an operation on an object, rather than such
things as establishing connections, sending and receiving messages, and closing
connections. For example, a typical object is the file, with operations to read
and write portions of it.

The object model is well-known in the programming languages community
under the name of “abstract data type.” This model is especially well-suited to
a distributed system because in many cases an abstract data type can be imple-
mented on one of the processor-memory modules described above. When a
user process executes one of the visible functions in an abstract data type, the
system arranges for the necessary underlying message transport from the user’s
machine to that of the abstract data type and back. The header of the mes-
sage can specify which operation is to be performed on which object. This
arrangement gives a very clear separation between users and objects, and
makes it impossible for a user to inspect the representation of an abstract data
type directly by bypassing the functional interface.

A major advantage of the object or abstract data type model is that the
semantics are inherently location independent. The concept of performing an
operation on an object does not require the user to be aware of where objects
are located or how the communication is actually implemented. This property
gives the system the possibility of moving objects around to position them
close to where they are frequently used. Furthermore, the issue of how many
processes are involved in carrying out an operation, and where they are located
is also hidden from the user.

It is frequently convenient to implement the object model in terms of clients
(users) who send messages to services. A service is defined by a set of com-
mands and responses. Each service is handled by one or more server processes
that accept messages from clients, carry out the required work, and send back
replies. The design of these servers and the design of the protocols they use
form an important part of the system software of our proposed fifth generation
computers.

As an example of the problems that must be solved, consider a file server.
Among other design issues that must be dealt with are how and where infor-
mation is stored, how and when it is moved, how it is backed up, how con-
current reads and writes are controlled, how local caches are maintained, how
information is named, and how accounting and protection are accomplished.
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Furthermore, the internal structure of the service must be designed: how many
server processes are there, where are they located, how and when do they com-
municate, what happens when one of them fails, how is a server process organ-
ized internally for both reliability and high performance, and so on. Analo-
gous questions arise for all the other servers that comprise the basic system
software.

2. PROTECTION

Every service has one or more ports [Mullender84] to which client processes
can send messages to contact the service. Ports consist of large numbers, typi-
cally 48 bits, which are known only to the server processes that comprise the
service, and to the service’s clients. For a public service, such as the system
file service, the port will be generally made known to all users. The ports used
by an ordinary user process will, in general, be kept secret. Knowledge of a
port is taken by the system as prima facie evidence that the sender has a right
to communicate with the service. Of course the service is not required to carry
out work for clients just because they know the port, for example, the public
file service may refuse to read or write files for clients lacking account
numbers, appropriate authorization, etc.

Although the port mechanism provides a convenient way to provide partial
authentication of clients (“if you know the port, you may at least talk to the
service”), it does not deal with the authentication of servers. The basic primi-
tive operations offered by the system are put(port, message) and get(port,
message). Since everyone knows the port of the file server, as an example,
how does one insure that malicious users do not execute gets on the file
server’s port, in effect impersonating the file server to the rest of the system?

One approach is to have all ports manipulated by kernels that are presumed
trustworthy and are supposed to know who may get from which port. We
reject this strategy because some machines, e.g., personal computers connected
to larger multimodule systems may not be trustworthy, and also because we
believe that by making the kernel as small as possible, we can enhance the reli-
ability of the system as a whole. Instead, we have chosen a different solution
that can be implemented in either hardware orif necessaryin software.

In the hardware solution, we need to place a small interface box, which we
call an F-box (Function-box) between each processor module and the network.
The most logical place to put it is on the VLSI chip that is used to interface to
the network. Alternatively, it can be put on a small printed circuit board
inside the wall socket through which personal computers attach to the network.
In those cases where the processors have user mode and kernel mode and a
trusted operating system running in kernel mode, it can also be put into
operating system software. In any event, we assume that somehow or other all
packets entering and leaving every processor undergo a simple transformation
that users cannot bypass.

The transformation works like this. Each port is really a pair of ports, P,
and G, related by: P = F(G), where F is a (publicly-known) one-way function
[Wilkes68, Purdy74, Evans74] performed by the F-box. The one-way function
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has the property that given G it is a straightforward computation to find P,
but that given P, finding G is so difficult that the only approach is to try every
possible G to see which one produces P. If P and G contain sufficient bits,
this approach can be made to take millions of years on the world’s largest
supercomputer, thus making it effectively impossible to find G given only P
Note that a one-way function differs from a cryptographic transformation in
the sense that the latter must have an inverse to be useful, but the former has
been carefully chosen so that no inverse can be found.

Using the one-way F-box, the server authentication can be handled in a sim-
ple way. Each server chooses a get-port, G, and computes the corresponding
put-port, P. The get-port is kept secret; the put-port is distributed to potential
clients or in the case of public servers, is published. When the server is ready
to accept client requests, it does a get(G). The F-box then computes
P = F(G) and waits for packets containing P to arrive. When one arrives, it
is given to the process that did get(G). To send a packet to the server, the
client merely does put(P), which sends a packet containing P in a header field
to the server. The F-box on the sender’s side does not perform any transfor-
mation on the P field of the outgoing packet.

Now let us consider the system from an intruder’s point of view. To imper-
sonate a server, the intruder must do get(G). However, G is a well-kept secret,
and is never transmitted on the network, Since we have assumed that G cannot
be deduced from P (the one-way property of F) and that the intruder cannot
circumvent the F-box, he cannot intercept packets not intended for him.
Replies from the server to the client are protected the same way, only with the
client picking a get-port for the reply, say, G’, and including P’ = F(G’) in
the request packet.

The presence of the F-box makes it easy to implement digital signatures for
still further authentication, if that is desired. To do so, each client chooses a
random signature, S, and publishes F(S). The F-box must be designed to
work as follows. Each packet presented to the F-box contains three special
header fields: destination (P), reply (G”), and signature (S). The F-box applies
the one-way function to the second and third of these, transmitting the three
ports as: P, F(G’), and F(S), respectively. The first is used by the receiver’s
F-box to admit only packets for which the corresponding get has been done,
the second is used as the put-port for the reply, and the third can be used to
authenticate the sender, since only the true owner of the signature will know
what number to put in the third field to insure that the publicly-known F(S)
comes out.

It is important to note that the F-box arrangement merely provides a simple
mechanism for implementing security and protection, but gives operating sys-
tem designers considerable latitude for choosing various policies. The mechan-
ism is sufficiently flexible and general that it should be possible to put it into
hardware with precluding many as-yet-unthought-of operating systems to be
designed in the future.
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3. COMMUNICATION PRIMITIVES

In the literature about computer networks, one finds much discussion of the
ISO OSI reference model [Zimmermann80] these days. It is our belief that the
price that must be paid in terms of complexity and performance in order to
achieve an “open” system in the ISO sense is much too high, so we have
developed a much simpler set of communication primitives, which we will now
describe.

3.1. Transaction vs. stream communication

Most distributed systems have a connection mechanism that is based on the
idea of two processes going to some effort to set up a connection, using the
connection, and then tearing it down. The assumption is that a connection
will be used for a stream of information so long that the overhead needed to
set it up and tear it down are basically negligible. Most streams will consist of
a file of one kind or anothera source program, a binary program, an input file,
and so on. To see how long the average file is, we have conducted some meas-
urements on the UNIX{} system used in our department by the faculty and staff
for research (no students, thus). The results of these measurements show that
34% of all files are less than 512 bytes, 52% are less than 1K bytes, 67% are
less than 2K bytes, 79% are less than 4K bytes, 88% are less than 8K bytes,
and 94% are less than 16K bytes.

The above considerations have led us to a different approach [Mullender83].
With packets of even 2K bytes, two thirds of all files fit into a single packet.
Consequently, it is much simpler to adopt a “Request-Reply” or “Transaction”
style of communication, in which the basic primitive is the client sending a
request to a server and the server sending a reply back to the client. The
client uses trans and the server getreq and putrep. Trans sends a request,
and blocks until a reply is received. Getreq blocks the server until a request is
received, which can then be processed, after which a reply can be sent using
putrep. Each request-reply pair is completely self-contained, and independent
of any other ones that may previously been sent. In other words, no concept
of a “connection” exists. Not only is this conceptually much more appropriate
for use in an operating system, but it is much simpler to implement than a
complex 7-layer protocol, not to mention offering lower delay. Henceforth we
will refer to a request-reply pair as a transaction, which is not to be confused
with transactions with a data base.

'3.2. Basic communication protocol

Instead of a 7-layer protocol, we effectively have a 4-layer protocol. The bot-
tom layer is the Physical Layer, and deals with the electrical, mechanical and
similar aspects of the network hardware. The next layer is the Port Layer, and
deals with the location of ports, the transport of (32K byte) datagrams (pack-
ets whose delivery is not guaranteed) from source to destination and enforces

+ UNIX is a Trademark of AT&T Bell Laboratories.
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the protection mechanism of the previous section. On top of this we have a
layer ‘that deals with the reliable transport of bounded length (32K byte)
requests and replies between client and server. We have called this layer the
Transaction Layer. The final layer has to do with the semantics of the
requests and replies, for example, given that one can talk to the file server,
what commands does it understand.

Since systems of the kind we are describing will use high-speed, highly reli-
able local networks, few if any of the complex mechanisms designed for flow-
and error-control in long-haul networks are useful here. Among other things,
a simple stop-and-wait protocol is sufficient. The main function of the Tran-
saction Layer is to provide an end-to-end message service built on top of the
underlying datagram service, the main difference being that the former uses
timers and acknowledgements to guarantee delivery whereas the latter does
not.

The Transaction Layer protocol is straightforward. When the client does a
trans, a packet containing the request is sent to the server and a timer is
started. If the server does not acknowledge receipt of the request packet
before the timer expires (usually by sending the reply, but in some special
cases by sending a separate acknowledgement packet), the Transaction Layer
retransmits the packet again and restarts the timer. When the reply finally
comes in, the client sends back an acknowledgement (usually piggybacked onto
the next request packet) to allow the server to release any resources, such as
buffers, that were acquired for this transaction. Under normal circumstances,
reading a long file, for example, consists of the sequence

From client : request for block 0
From server: here is block 0
From client : acknowledgement for block 0 and request for block 1
From server: here is block 1
etc.

The protocol can handle the situation of a server crashing and being rebooted
quite easily since each request contains the capability for the file to be read
and the position in the file to start reading. Between requests, the server has
no “activation record” or other table entry whose loss during a crash causes
the server to forget which files were open, etc., because no concept of an open
file or a current position in a file exists on the server’s side. Each new request
is completely self-contained. Of course for efficiency reasons, a server may
keep a cache of frequently accessed i-nodes, file blocks etc., but these are not
essential and their loss during a crash will merely slow the server down slightly
while they are being dynamically refreshed after a reboot.
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4. THE PORT LAYER

The Port Layer is responsible for the speedy transmission of 32K byte
datagrams. The Port Layer need only do this reasonably reliably, and does
not have to make an effort to guarantee the correct delivery of every datagram.
This is the responsibility of the Transaction Layer. Our results show that this
approach leads to significantly higher transmission speeds, due to simpler pro-
tocols.

HOST HOST

<«—— DMA Transfer ——

interface interface

Network Transfer

FIGURE 1. A typical local-area network interface.

Theoretically, very high speeds are achievable in modern local-area networks.
A typical example of a local-area network interface is shown in Fig. 1. When
a host transmits a packet to another host, the packet is first transferred to the
interface by means of a direct memory access (DMA) transfer. When this is
done, the packet is transmitted over the network. After the packet has been
received by the destination interface, it can be transferred to the destination
host’s memory, again using a DMA transfer. While this transfer is going on,
the sending host may already transfer the next packet to the interface. A
sequence of packets is thus transmitted by interchanging periods of DMA
transfers and network transfers. On most interfaces DMA transfers and net-
work transfers cannot occur simultaneously.

It is now simple to deduce an upper bound for the maximum transfer rate
over the network: A typical speed for DMA transfers is 1 byte/psec, and the
typical transmission speed of a 10 Mbit local-area network is also 1 byte/psec.
Since DMA transfer and network transfer cannot overlap, but DMA at the
destination host can overlap with the DMA of the next packet at the source
host, an upper bound for the transfer rate of a typical local-area network is
500,000 bytes/sec point-to-point.

Obviously, to achieve such a transmission rate, the overhead of the protocol
must be kept as low as possible, while an effort must be made to overlap
DMA s at both communicating parties. To achieve this, we have chosen a
very large datagram size for the Port Layer, which has to split up the



132

datagrams into small packets that the network hardware can cope with. This
approach allows the implementor of the Port Layer to exploit the possibilities
that the hardware has to offer to achieve an efficient stream of packets.

Our Port Layer interfaces to a 10 Mbit token ring that allows scatter-gather;
that is, a packet can be sent to or from the interface in several DMA transfers,
and then transmitted over the network separately. We discovered that this
allows us to do two important things to speed up the protocol. First, when a
packet is received, the header can be inspected separately, so the protocol can
decide where in memory the packet must go. The protocol can then transfer
the packet directly from the interface to the right place in memory, without
having to copy it. A copy loop would halve the transmission speed. Second,
the separation of DMA and transmission allows the protocol to prepare a
transmission by doing the DMA . The transmission can then be initiated
immediately when the signal is received that the receiver is ready. In our
implementation of the Port Layer these considerations have resulted in the
protocol that will now be described.

The transmitter begins by transferring and sending the first 2K of the
datagram to be transmitted (2K is the maximum packet size allowed by the
hardware). Immediately after the transmission is complete, the DMA for the
next 2K bytes is started, but it is not yet transmitted. In the mean time, the
receiver is interrupted by the arrival of the first packet. It extracts the header,
examines it and decides where the body of the packet should go. Then the
body of the packet is transferred from the interface to its final location in
memory. While this is being done, the receiver prepares a tiny acknowledge-
ment packet to tell the transmitter it is prepared for the next packet. As soon
as the DMA transfer of the previous packet has finished, this acknowledge-
ment is sent back to the transmitter. When the transmitter receives it, the
transfer of the next packet to the interface will have finished, so it can then be
sent immediately. This sequence is continued until the whole datagram is
transmitted.

5. THE TRANSACTION LAYER

It is the responsibility of the Transaction Layer to guarantee the arrival of
requests and replies. The Transaction Layer makes use of the Port Layer and
timers to achieve this.

The interface to the transaction layer basically consists of three calls, one for
clients, and two for servers. All calls use a small datastructure, called Mref,
which contains a pointer to a small fixed-size out-of-band buffer for the
transmission of commands and parameters to the server, a pointer to the main
body of data to be transferred, and the length of the main body of data (0 to
32768), as follows:
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typedef struct Mref {
char  *M oob;
char *M buf;
unsigned M len;
} Mref;

The client, in order to do a transaction calls

trans(cap, req, Tep);
Cap *cap; Mref *req, *rep;

The server receives requests and sends replies with

getreq(port, cap, req);
Port *port; Cap *cap; Mref *req;

putrep(rep);
Mref *rep;

In principle, the Transaction Layer works as follows: When a client calls
trans, the Transaction Layer generates a reply-port to enable the server to send
a reply. The server port is deduced from the capability; the first 48 bits of the
capability for an object identify the service that controls the object. The
request is then sent, using put, and a retransmission timer is started.

The server, which previously had made a call to getreq, receives the request;
the capability is filled in, and the received message is put in the buffers
referred to by req. As soon as the request is received, the server’s Transaction
Layer starts a piggyback timer. When the server has not sent a reply before
this timer expires, a separate acknowledgement is sent to put the client at ease,
and stop its retransmission timer. When the server sends a reply to the client
the same thing happens, more or less, with the role of client and server
reversed. When a client makes a sequence of transactions with a single server,
a subsequent request will acknowledge receipt of the previous reply.

The client maintains one more timer, the crash timer. This timer is set when
the server’s acknowledgement to a request has been received, and is used to
detect server crashes. Whenever this timer expires, the client sends an “are
you still alive?” packet to the server, to which the server replies with an ack-
nowledgement.

When transactions occur quickly, one after the other, no extra acknowledge-
‘ments are sent at all. Only when transactions take a long time (say, longer
than a minute), acknowledgements are sent, and when transactions take much
longer than that (say, ten minutes) then “are you still alive” messages begin to
be sent.
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3.1. Timer management '

If the timers are started and stopped in exactly the way described above, the
Transaction Layer would become unacceptably slow. Per (quick) transaction,
two retransmission timers and two piggyback timers would have to be started
and stopped, eight timer actions altogether.

There is a much more efficient way of dealing with timers, one that makes
use of a sweep algorithm. This algorithm does not implement very accurate
timers, but accuracy of the timer intervals is not very important to the correct
and efficient operation of the protocol.

The sweep algorithm is called every n clock tics. N must be chosen such
that n tics is about the minimum timer interval needed (the piggyback timer
interval). Whenever the algorithm is called, it makes a sweep over all out-
standing transactions. If the state of a transaction has changed, the new state
is recorded. If it has not changed, a counter is incremented, telling for how
long the state has remained the same. If the (state, counter) combipation has
reached a certain value, the sweep algorithm carries out the appropriate
actions, usually sending an acknowledgement, retransmitting a message, or
aborting a transaction.

Because this algorithm is used there is no code needed in the transaction
code itself, reducing the overhead of the Transaction Layer significantly. In
this way, the code executed in the Transaction Layer is optimised for the nor-
mal case (no errors).

5.2. Results

Two versions of the algorithm have now been implemented. The one
described has been implemented on the Amoeba distributed operating system,
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