
CWI Tract 4

Minimal cost flow in processing
networks,
a primal approach

J. Koene

Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

1980 Mathematics Subject Classification: 90810, 90C35
ISBN 90 6196 270 6

Copyright © 1983, Mathematisch Centrum, Amsterdam
Printed in the Netherlands

PREFACE

In the past ten to fifteen years a vast amount of work has been done

on the development of efficient algorithms and associated implementations

for solving network flow problems. In these procedures both time and

storage requirements are generally speaking much smaller than in the stan­

dard LP-approaches. This is accomplished by exploiting the network struc­

ture. The main advantage in this respect is of course the fact that there

are much more possibilities to model large real-life situations.

But there is at least one other major reason for the increased in­

terest in network flows. For both the OR-analyst and the model-user a net­

work model is "much more visually informative and intuitively appealing

than perhaps any other OR-model". (I quote Golden, Ball & Bodin (1981).)

i

In my opinion the communication with model-users is for an OR-consultant as

important as building the right model. By visualization of the basic con­

cepts of a model (drawing network diagrams) the communication can be im­

proved.

Knowledge of the structure is essential for getting insight in the

problem at hand, exploiting it is important for the development of efficient

computer codes, including input/output facilities such as matrixgenerators

and report--writers.

In this book we will consider processing networks.

Characteristic for a processing network is the possibility that a given

flow splits up proportionally in a number of components (a refining pro­

cess), or conversely, that a number of components is blended in given pro­

portions (a blending process).

Processing networks are hardly considered in the literature in spite

of a vast amount of possible applications. This book is intended as a first

in-depth treatment of this type of problems. It can be divided into four

main parts.

The first two chapters are meant as background information. An over­

view is presented of the historical developments in network flow programming.

Moreover, an outline is presented of the primal simplex algorithm for general

linear programming problems, as well as specializations of this algorithm

for pure and generalized network problems. Many of the basic ideas in these

ii

procedures are essential in (understanding) the development of processing

network algorithms,

The main issue of this monograph is the presentation of primal simplex

based solution procedures for several kinds of processing network problems

(chapters 3, 4 and 6). These algorithms exploit the special basis structure

in such a way that many of the simplex computations can be performed by

graph theoretic means.

The above mentioned procedures have been set up from the viewpoint that

processing networks are generalizations of pure and generalized networks.

On the other hand we might consider processing network problems as LP

problems with a special structure. The relation between processing networks

and general LP's will be discussed in chapter 5.

Finally the potential applicability of processing networks is outlined

in chapter 7.

At the time this book was written nothing had happened with respect to

the implementation of the algorithms described. Meanwhile processing net­

work codes are being developed at the Eindhoven University of Technology

under supervision of Prof.dr. J.F. Benders. Other research.activities in

this field have been reported by a.o. Dr. D.L. Adolphson, Dr. R.D. McBride

and Dr. M. Enquist.

There are several people who contributed to a large extent to the reali­

zation of this book and to whom I would like to express my sincere graditude.

First of all I would like to thank Prof.dr. J.F. Benders, my first promotor.

To consider processing networks as an unportant and fascinating topic for

research was his suggestion. And right from the start of my research efforts

I experienced his continuous guidance and encouragements. In a later stage

I received fruitful comments from Prof.dr. J. Wessels, my' second promotor,

Prof,dr. A.H.G. Rinnooy Kan, Prof.dr. G.J. Veltkamp and Prof.dr. F. Lootsma.

I want to express my thanks to the Mathematical Centre for the opportunity

to publish this work as a CWI Tract.

CONTENTS

1. INTRODUCTION, SURVEY AND CONCLUSIONS

1.1. Introduction

1.1.1. Historical background

1.1.2. Scope of this monograph

1.2. Survey

1.3. Conclusions

2. PRELIMINARIES

2.1. Introduction

3.

2.2. Notation and definitions

2.3. The Simplex algorithm for LP-problems with upper bounds

2.4. Pure network flow problems

2.5. Generalized network flow problems

PURE PROCESSING NETWORKS

3.1. Introduction

3.2. Mathematical formulation

3.3. Basis structure

3.4. The Simplex algorithm for the minimal cost flow problem in a
pure processing network

3.4.1. The representation of the entering column in terms of

3.4.2. Determining the process which leaves the basis

3.4.3. Basis change

3.4.4. Finding the Simplex multipliers

3.4.5. Calculating the reduced costs

3.4.6. Initialization

3.5. Another view on pure processing networks

3.6. Remarks

B

iii

1

1

2

7

11

14

15

15

15

17

22

30

41

41

41

53

64

65

70

71

79

81

82

82

91

iv

4. GENERALIZED PROCESSING NETWORKS 99

4.1. Introduction 99

4.2. Mathematical formulation 100

4.3. Basis structure 103

4.4. The Simplex algorithm for the minimal cost flow problem
in a generalized processing network 110

4.5. Remarks 113

5. PROCESSING NETWORKS AND GENERAL LINEAR PROGRAMMING 115

5.1. Introduction 115

5.2. Generalized processing networks and general linear programming 115

5.3. "Almost" pure processing networks and general linear
programming 118

5.4. Transforming general LP-problems to pure processing
network problems 120

5.5. Some examples 123

6. PROCESSING NETWORKS WITH ADDITIONAL LINEAR CONSTRAINTS 129

6.1. Introduction 129

6.2. Pure processing networks with additional linear constraints 130

6.2.1. Basis structure 130

6.2.2. The Simplex algorithm for the minimal cost flow
problem in a pure processing network with additional
linear constraints 132

6.2.3. Maximizing the number of transportation processes
in B11 , given B 137

6.2.4. An extension and a comparison with Simplex SON 141

6.3. Generalized processing networks with additional linear
constraints

7. APPLICABILITY AND EXPECTED COMPUTATIONAL RESULTS

7.1. Applicability

7.2. Expected computational results

References

Subject index

142

143

143

144

145

155

1. INTROVUCTION, SURVEY AND CONCLUSIONS

1.1. In:t:Jr.odu.c.tion

Many managerial and industrial problems encountered in practice show a

total or partial network flow character. Most of them can be modelled ade­

quately as linear models, in which both continuous and integer activities

may play a role.

With respect to the continuous case such models are Linear Programming

models which of course can be solved by standard LP-programs. However, such

programs do not take full advantage of the network structure. This is one

of the reasons why in the past decades much research has been done on how a

specific network structure can be employed more efficiently in solving such

problems.

Knowing structure is essential for getting insight in the problem at hand.

Exploiting structure is important, not only for the development of solution

procedures which are faster or require less memory capacity than the pres­

ent day standard procedures, but also for the design of a proper data base

and for adequate manipulation and reporting instructions of LP-based deci­

sion support systems.

This monograph is concerned with an important type of network problems

often encountered in practice. They are called processing network problems.

Before explaining in Subsection 1.1.2 what processing networks are, where

they arise and how we intend to analyze and solve processing network prob­

lems, the history of network problems is briefly sketched, focussing prima­

rily on so-called pure and generalized networks. These two types play an

important role in the subsequent discussions.

2

1.1.1. Historical background

The real interest in network models started from the work of KANTOROVICH

[1939], HITCHCOCK [1941] and KOOPMANS [1947] who studied transportation

problems. The more general transshipment problem was stated somewhat later,

in fact already by KANTOROVICH & GAVURIN [1949].

In the 1950's and 1960's the emphasis lay on solution techniques to solve

such problems and on the development of more general network models and

associated solution procedures.

Three classes of models are:

A. Pure Networks

DANTZIG [1951] presented a specification of the Simplex algorithm for the

transportation problem, in which the basis structure is exploited. ORDEN

[1956] extended these results to the transshipment problem. Only slightly

different from the transshipment problem is the so-called minimal cost flow

problem in a pure network (see LAWLER [1976]). The latter, often just called

a pure network problem, can be stated as follows:

Given a network, consisting of nodes and directed arcs between certain pairs

of nodes,

the cost for transporting a unit of flow along each arc,

the demands and supplies in each node,

determine flows in the network such that they satisfy the demands from the

supplies at minimal total cost,

whenever

1. the flow is conserved throughout the network, that is to say, both in

nodes and on arcs (nolosses or gains in transporting flow along arcs);

2. the flow in each arc is in between given lower and upper bounds for

that arc (capacity bounds).

A well-known and useful property of pure networks is total unimodularity,

which guarantees that basic solutions are integer valued, provided that the

demands, supplies and capacity bounds are integers.

In its most general setting, pure network problems can be seen as LP-prob­

lems in which the coefficient matrix has at most two nonzero elements in

each column, with the additional requirement that the column sum of each

column with two nonzero entries equals zero.

Some relevant solution procedures developed in this period are:

primal-dual

out-of-kilter

dual

FORD & FULKERSON [1957],

FULKERSON [1961],

BALAS & HAMMER [1962],

negative cycle: KLEIN [1967].

B. Generalized networks

3

Generalized networks are also known as networks with gains. They differ in

only one aspect from pure networks: in transporting flow through the network

flow may be lost or gained. Usually one considers networks where flow is

conserved in nodes, but not on arcs. Associated with each arc is a so-called

multiplier or gain. In physical processes mainly losses occur (leakage,

damage), whereas true gains are found in certain business applications (e.g.

cash flow models). Among the pioneers in this field are KANTOROVICH [1939],

FERGUSON & DANTZIG [1954], MARKOWITZ [1954], EISEMANN [1964] and BALAS

[1966]. They considered generalized transportation problems. JEWELL [1962]

proposed a primal-dual approach for the general case, allowing positive as

well,as negative multipliers. In its most general setting generalized net­

work problems can be considered as LP-problems in which the coefficient

matrix has at most two nonzero entries in each column.

C. Multicommodity networks

Multicommodity networks arise when several items (commodities) share capaci­

tated arcs in a network. They can be regarded as pure or generalized net­

works with generalized upper bounds.

Some of the solution procedures for multicommodity network problems are:

decomposition ROBACKER [1956],

FORD & FULKERSON [1958],

TOMLIN [1966],

primal-dual JEWELL [1966],

primal basis partitioning: SAIGAL [1967].

In the 1970's and early 1980's much work has been done on:

(a) implementation and computational testing of known algorithms,

(b) exploring the field of applicability,

(c) new theoretical developments,

(d) problems with embedded pure or generalized network structure.

4

These aspects are discussed next in some more detail.

(a) implementation and computational testing of known algorithms.

With respect to pure networks in the early 1970's codes were developed by

a.o. BENNINGTON [1972], BARR, GLOVER & KLINGMAN [1974], out-of-kilter/

primal-dual, GLOVER, KLINGMAN & NAPIER [1972], dual, and GLOVER, KARNEY &

KLINGMAN [1974], primal. Computational comparisons, described a.o. in the

latter reference, led to a quite general believe that primal Simplex solu­

tion procedures are superior to other approaches, both with respect to time

and storage requirements. Until then out-of-kilter/ primal-dual procedures

were thought to perform best. The "Primal Revolution" had begun.

Primal Simplex codes for generalized networks were developed as well:

MAURRAS [1972], GLOVER, KLINGMAN & STUTZ [1973].

In implementing such algorithms much attention was paid to finding efficient

datastructures a.o. to store the basis, finding good starting bases, pivot

selection criteria, the use of mirror arcs, distance labels, etc. References

are: GLOVER, KARNEY & KLINGMAN [1974], BRADLEY, BROWN & GRAVES [1977],

GLOVF.:R & KLINGMAN [1978a], GLOVER, HULTZ, KLINGMAN & STUTZ [1978],·ELAM,

GLOVER & KLINGMAN [1979].

The current primal codes for pure and generalized network problems have

several appealing advantages over standard LP approaches (see the just men­

tioned papers):

1. they perform much faster, for pure networks up to 200 times, for general­

ized networks about 50 times faster than APEX III;

2. they require much less storage capacity;

3. because of the special basis structure they work with the original data,

thus eliminating or reducing round-off errors.

(b) exploring the field of applicability

In itself the applicability potential of pure and generalized networks has

been known for a long time, but the success of the primal codes opened up

the possibility to consider many real-life, large size problems. Currently

systems are developed which challenges one's imagination, see e.g. BARR &

TURNER [1981] who consider a file merging solution system designed to ac­

commodate problems with up to 50.000 constraints and 65 million activities.

To mention some other fields of applicability:

5

Pure networks: transportation of goods, design of communication and pipeline

systems, assignment of men to jobs, bid evaluation, production planning.

Generalized networks: the "multiplier facility" is capable to model two

types of situations (see GLOVER, HULTZ, KLINGMAN & STUTZ [1978]):

1. to modify the amount of flow of some item. In this way situations in­

volving evaporation, seepage, deterioration, breeding, interest rates,

sewage treatment, purification processes, machine efficiencies and

structural strength design can be modelled.

2. to transform the flow from one type of good to another: processes of

manufacturing, conversions of fuel to energy, blending, crew scheduling,

allocating manpower to job requirements, currency exchanges, production.

For a further discussion of the applicability of pure and generalized net­

works, see e.g. JEWELL [1962] and GLOVER & KLINGMAN [1977, 1978a].

By now, both pure and generalized network models are more or less accepted

as fundamental modelling tools. This is not only due to the advantages men­

tioned under (a) but to a large extent also because "network models are more

visually informative and intuitively appealing than other OR-model\>",

GOLDEN, BALL & BODIN [1981], see also GLOVER & KLINGMAN [1975, 1977].

(c) new theoretical developments

Just a few new theoretical developments are mentioned.

EDMONDS & KARP [1972] discussed the pure network problem from a computation­

al complexity point of view. Moreover, they proposed the first polynomial

algorithm for the maximal flow problem in a pure network. For further

developments on max flow problems, see GLOVER & KLINGMAN [1980].

BALACHANDRAN, SRINIVASAN & THOMPSON (see - [1981]) developed an "operator"

theory of parametric programming for pure and generalized transportation

problems.

In pure and generalized networks degeneracy was taken into consideration.

CUNNINGHAM [1976, 1979] and ELAM, GLOVER & KLINGMAN [1979] presented "pivot

row" selection rules which prevent cycling in pure networks and generalized

networks with positive multipliers, respectively. Implementation of such

rules in actual codes show some reduction in required solution times.

ADOLPHSON [1980], building on the work of FONG & SRINIVASAN [1977], recently

proposed a nondegenerate primal Simplex method for pure networks. Although

degenerate steps are excluded, the steps of this algorithm require shortest

path information and are therefore more time consuming than in the usual

procedures.

6

It is stressed that these degeneracy considerations are not only of theoret­

ical importance. Degeneracy is a severe practical problem: up to 90% of the

Simplex steps in large scale applications are degenerate in the current

codes.

(d) problems with embedded pure or generalized network structure

The success of pure and generalized networks led to a general belief that

for LP's as well as for (mixed) integer LP's with embedded pure or general­

ized network structure good computational results could be obtained by ex­

tending the ideas on which the primal approaches for pure and generalized

network problems are based. An increasing interest can be observed for the

following questions:

1. how to exploit embedded pure or generalized network structure.

Basis partitioning, rather than decomposition or other approaches, seems to

be the right way to do this (cf. KENNINGTON [1978]). Primal basis partition­

ing procedures were suggested for different types of problems:

Multicommodity networks, HARTMAN & LASDON [1972], KENNINGTON [1977].

Pure 'networks with side constraints: KLINGMAN & RUSSELL [1975], CHEN &

SAIGAL [1977].

Generalized networks with side constraints: HULTZ & KLINGMAN [1976].

Pure networks with side constraints and side activities: GLOVER & KLINGMAN

[1981]. As they put it: "Side constraints arise for instance from economies

of scale, limitations on shared resources, multiple criteria or from the

outputs of subdivisions to meet overall demands. Side activities (columns)

arise from activities which involve different time periods, production

alternatives (e.g. refinery activities) or which involve different subdivi­

sions (e.g. assembly)."

REMARK 1.1.1. In the above lines words as "subdivisions, refinery activities

and assembly" are underlined because such type of processes fall exactly

within the scope of this monograph. D

It is characteristic for these approaches that the pure or generalized net­

work part is extracted from the basis. In each step of the Simplex algorithm

there is an interaction between this "transportation" part and the so-called

working basis. Sometimes the size of this working basis is fixed, at other

times it varies dynamically and then one tries to keep it as small as pos­

sible.

Since in solving (mixed) integer problems, the continuous LP-formulation

plays an essential role as a subproblem (e.g. Branch & Bound, BENDERS'

[1962] decomposition) there is a great interest in network formulations and

network solution techniques, see e.g. GEOFFRION & GRAVES [1974], GLOVER &

KLINGMAN [1978a], GLOVER & MULVEY [1980], VAN NUNEN & BENDERS [1981].

Preliminary computational results on these embedded network problems are

encouraging, but much work has to be done before general conclusions can be

drawn.

2. how to detect hidden pure or generalized network structure, see BIXBY

[1981], BROWN & WRIGHT [1981], GUNAWARDANE, HOFF & SCHRAGE [1981] and

SCHRAGE [1981].

3. how to create pure or generalized network structure, GLOVER [1981].

7

Future research directions in network optimization are indicated by CHARNES,

KARNEY, KLINGMAN & STUTZ [1975] and GOLDEN, BALL & BODIN [1981]. Finally, it

is remarked that surveys on networks are written by ELMAGHRABY [1970] and

BRADLEY [1975].

1.1.2. Scope of this monograph

With the above mentioned developments in mind, we consider an important

class of network problems, called processing nework problems. They carry

this name because they are able to model certain refining and blending

processes which a.o. arise in production planning environments in the proc­

ess industry. Processing networks are more general than pure or generalized

networks in these two respects:

1. they allow the possibility that a given flow splits up in several com­

ponents in given proportions. For quite obvious reasons such a process

is called a refining process. Schematically it is depicted in Figure

1.1.1.

Figure 1.1.1. A refining process <La.
i l.

8

2. they allow the possibility that several components are blended in given

proportions. This is called a blending process; it is depicted in Figure

1.1.2.

Figure 1.1.2. A blending process (l ai
i

Arcs in a processing network which do not take part in some proportionality

requirement can be seen as describing a sim~le "transportation process". So

there are three types of processes in a processing network: refining, blend­

ing and transportation.

Two classes of processing networks are distinguished:

a. Pure Processing Networks, where the same conditions hold as in pure net­

works: conservation of flow and capacity bounds on arcs.

b. Generalized Processing Networks, where the same conditions hold as in

generalized networks: conservation of flow in nodes, but not necessarily

on arcs, and capacity bounds on arcs.

The processing network structure comes up in quite a number of situations:

1. in production planning in the process industry. In the petrochemical

industry both refining (destillation) and blending "on receipt" takes

place. Also reference is made to the milk industry where, e.g., raw milk

is split in proportional amounts of consumption milk, butter and cheese,

GEURTS [1980].

2. in assembly models the fact that parts are "blended" in given proportions

is essential. STEINBERG & NAPIER [1980] describe a mixed integer network

model for a lot sizing problem in material requirements planning (MRP).

3. in energy models not only conversion processes (generalized networks)

take place, but also blending (for instance, different types of gas

must be mixed in given proportions) and refining (oil sector:) occur.

Examples of network energy models are BOONEKAMP, KOENDERS & VAN OOSTVOORN

[1979], model SELPE and the models PIES and BESOM, a.o. described in

MANNE, RICHELS & WEYNANT [1979].

4. in economic models, such as input/output models, the outputs from each

industry are directly proportional to its inputs.

9

It is remarked that generalized networks with positive multipliers can

readily be seen as a special type of pure processing networks. This observa­

tion is already described in SCHAEFER [1978].

Let (i,j) denote an arc from node i to node j in a generalized network, the

associated multiplier is given by g .. > O. Three cases with corresponding
1]

processes can be distinguished:

(a)

(b)

(c)

0 < g .. < 1, refining process
1]

(1- gij)x outside

1, pure transportation process

X

©--....,,.~---(])

g. . > 1, blending process
1]

X

1------~j

outside

In many of the sketched practical situations (relatively few) additional

requirements must be satisfied, which lead to additional linear constraints

(side constraints) in the model (cf. Subsection 1.1.1).

From the description of processing networks given thus far it is immediately

clear that they can be seen as pure or generalized n~tworks with side con­

straints, which arise from the proportionality requirements of the refining

and blending processes: Therefore, procedures of CHEN & SAIGAL [1977] and

HULTZ & KLINGMAN [1976] can be used to solve them, thus exploiting the em­

bedded pure or generalized network structure.

10

Another possibility is to view processing networks as pure or generalized

networks with side activities, which represent the refining and blending

processes (cf. Remark 1. 1. 1) • Pure processing network problems formulated in

this way can be solved by the recent Simplex SON approach of GLOVER &

KLINGMAN [1981], which exploits again the embedded pure network structure.

In doing this, in general, a smaller working basis would be required than in

applying CHEN & SAIGAL's algorithm to the side-constraints-formulation. For

generalized network problems with side activities (and side constraints) no

special algorithms are known.

Here the side-activities-formulation will be used in developing solution

procedures for processing network problems. It appears that these procedures

are related to the Simplex SON appraoch. Similarities and differences will

be discussed in Chapter 6. The only aspect emphasized here is that the

typical feature of processing networks, i.e.,, proportionality of flow in

certain subsets of the arc set, is not considered in the above mentioned

procedures of CHEN & SAIGAL, HULTZ & KLINGMAN and GLOVER & KLINGMAN.

It is quite surprising that the processing network structure is hardly

analyzed quantitatively in the literature. Some work has been done in the

economic field. SCHAEFER [1978] studied the maximal flow problem in pure

processing networks with only refining processes or only blending processes.

His main intention was to solve input/output type problems and the approach

he used was an extension of FORD & FULKERSON's [1962] labeling approach for

maximal flow problems in pure networks. Before 1978 graph theoretic analysis

of economic models were presented by, e.g., PETER [1954] and CZAYKA [1972],

but these studies dealt with qualitative rather than quantitative aspects.

In the Operations Research oriented literature no special studies on pro­

cessing networks are known. It should be said, however, that processing

networks are closely related to so-called networks with homologous arcs.

Such problems were posed by BERGE & GHOUILA-HOURI [1965] and MAYEDA [1968].

Special solution procedures for such problems are not known, only GHOUILA­

HOURI [1960] studied a special case. Of theoretical importance is ITAI's

[1978] work. He proved that the problem of finding a maximal flow in a pure

network with homologous arcs is polynomially equivalent to general LP.

Processing networks can be seen as more general structures than pure and

generalized networks. On the other hand they can be considered (at least at

first sight, cf. Chapter 5) as more special problems than general LP's.

In view of the historical developments this thesis aims to extend the known

11

results for pure and generalized networks by using primal basis partitioning

approaches. An important aspect is that the typical processing network

structure is analyzed and exploited.

Three types of processing network problems are taken into consideration:

1. pure,

2. generalized,

3. pure or generalized with additional linear constraints.

We will call the solution procedures, developed for these types of problems,

Simplex PRON procedures (from E,EQcessing _!!etworks).

1 • 2. Swr.ve,y

In order to make this thesis self-contained and to make it possible to

describe formulations and results in a unified format, some background in­

formation is given in Chapter 2. The backbone of all procedures considered

is the primal Simplex algorithm for LP-problems with simple upper bounds.

It is briefly summarized in Section 2.3. Moreover, an overview is given of

well-known results on pure and generalized network problems.

The statements:

"a basis in a pure network is a rooted spanning tree"

and

"a basis in a generalized network is a forest of quasi-trees"

are proved in a quite unusual fashion, namely by using a condition much

alike or the same as one which arises in a theorem due to HALL [1935],

which deals with sets of distinct representatives. This is done because

HALL's theorem plays an important role in Chapters 3 and 4.

Chapter 3 is concerned with pure processing networks. In S ection 3. 2 two

mathematical formulations are given for the minimal cost flow problem. The

first one states the problem as a pure network with additional linear con­

straints. The second one is more compact and can be viewed as a pure network

with side activities, where each of the side activities represent either a

refining process or a blending process. This compact formulation is used

for the solution procedure.

In Section 3.3 the basis structure is analyzed and described in terms of

the so-called basis graph, that is the subgraph of the original network

which corresponds to a basis matrix. The basis structure is exploited in a

specification of the primal Simplex algorithm (Section 3.4). The main

characteristics of this approach are:

12

1. the transportation part of the basis is extracted. In each iteration

there is an interaction between this transportation part and the so­

called working basis.

2. the size of the working basis varies dynamically and is equal to the

number of basic refining and blending processes.

3. a simple labeling procedure determines which basic processes can take

part at a nonzero level in the representation of the process which

enters the basis.

4. a certain substructure of the basis graph, namely some specific spanning

tree, is kept stored and is updated after each basis change by means of

the previously given labels.

5. the labeling procedure provides a block triangular form of the working

basis (with two blocks on the main diagonal).

A somewhat different view on solving pure processing network problems is

presented in Section 3.5. Perhaps this approach is intuitively less appeal­

ing then the one in Section 3.4, but it has certain advantages.

Some remarks, for instance on implementation considerations, are m~de in

Saction 3.6. Here also the relation between HALL's theorem, the exploited

structure of the basis graph and the possibility to block triagularize the

working basis further by applying an algorithm of TARJAN [1972] is pointed

out. See also DUFF & REID [1978a].

Chapter 4 considers generalized processing networks. It appears possible to

generalize the results of Chapter 3 to generalized processing networks,

except for some details.

Where in the previous two chapters processing networks were considered as

more general structures than pure and generalized networks, Chapter 5 looks

in the other direction: What about the relation between processing networks

and general LP's?

It appears that any LP-problem can readily be interpreted as a generalized

processing network problem in which both positive and negative multipliers

may be present. So the procedure of Chapter 4 can in. principle be annli,,,,.,' -

to•general LP's, leading to an approach in which the (working) basis is

block triangularized. It stands to reason that this approach is the most

efficient for generalized network problems with relatively few side activities.

The relation between this approach and other sparse matrix approaches known

in the literature will be discussed.

13

Furthermore, it is possible to give an "almost" pure processing network

interpretation to general LP's. The approaches of Chapter 3 can easily be

adapted to solve general LP-problems, although some of the properties which

hold fo~ pure processing networks, are no longer valid.

It is important to observe that any LP can be transformed to a pure process­

ing network, possibly at the expense of blowing up the size of the problem

in a polynomial way. The relevance of this result is not as much that a

transformation yields a problem whiii:;h can be solved easier but rather

1. it shows that a (pure) processing network structure is not as special as

it seems at first sight.

2. it gives a certain reassurance that the problem structure is indeed ex­

ploited adequately in the procedures presented in Chapters 3 and 4.

3. it gives the opportunity to visualize the structure of certain LP' s by

drawing processing network diagrams.

Finally it is shown that there are classes of problems which can right away

be interpreted as pure processing networks or generalized processing net­

works with positive multipliers, for instance, the multicommodity network

problem,

Chapter 6 deals with pure or generalized processing networks with additional

linear constraints. In applying the approaches of Chapters 3 and 4 to such

problems the embedded single commodity network structure would not be ex­

ploited fully. That is why here a different basis partitioning approach is

proposed to solve these problems. In a broader context this approach can be

used to solve general LP/embedded network problems and, as a matter of fact,

the pure case is an alternative for the Simplex SON approach of GLOVER &

KLINGMAN [1981 J. It appears that both procedures use simi,lar ideas at some

points, but at other points they are different.

Finally, in Chapter 7, the applicability and expected computational results

are discussed.

14

1. 3. Conc_lM,lonJ.i

The first result of this study is deeper insight in the processing network

structure itself, in the basis structure, and in the relation to LP. Insight

also in the way this structure can be exploited in primal basis partitioning

solution procedures.

The solution procedures developed have several desirable properties: they

use the embedded pure or generalized network structure, they employ special

labeling and updating procedures to accelerate computations and they main­

tain a block triangular version of the working basis.

Furthermore, the theory developed in this study provides a bridge between

pure and generalized networks at one hand and (sparse matrix) LP at the

other.

Processing networks have a wide range of applicability. They may become

efficient real-world modelling tools. The fact that their structure can be

completely pictured in network diagrams may tend to increase the nonanalyst's

(management's) level of acceptance.

This monograph provides a complete theory on processing networks. However,

it is stressed that much work has to be done on implementation and sub­

sequent computational testing of our methods before conclusions can be drawn

on their efficiency.

2. PRELIMINARIES

2.1. Int!toduc;Uon

In order to make this monograph self-contained and to make it possible to

describe formulations in a unified format some background information is

given in this chapter.

The backbone of all solution procedures considered in the subsequent

chapters is the primal Simplex algorithm for LP-problems with simple upper

bounds. It is briefly described in Section 2.3.

Furthermore, many of the results known in pure and generalized networks

will be used as basic tools in dealing with processing networks. Pure net­

works are considered in Section 2.4, generalized networks in Section 2.5.

2.2. No:ta;Uon and de6~n,l,ti,on6

15

In this section some remarks are made concerning the notation used. Further­

more, the most important concepts which arise in network flow programming

are defined.

Matrices and sets will be denoted by uppercase Roman characters (A, B, etc.),

vectors and scalars by lowercase Roman or Greek characters (a, b, a, S, etc.).

The transpose of a matrix A is given by A'. All vectors considered are

assumed to be column vectors.

Finally we denote by:

e, , the i-th unit vector,
1.

e , a vector with all elements equal to 1,

Isl , the number of elements in some set S,

r(Al, the rank of a matrix A.

A directed graph G(N,A) consists of a set N {1,2, .•. ,m}, of which the

elements are called nodes and a set AS N x N of ordered pairs (i,j),

i,j EN, called arcs.

16

Arc (i, j) E A is directed from node i to node j.

An arc (i ,i) , i E N, is called a self-loop.

Arc (i, j) E A is said to be incident to nodes i and j.

In reverse: both nodes i and j are said to be incident to arc (i, j) E A.

REMARK 2.2.1. Note that the above definition of a directed graph does not

allow the existence of more than one arc from node i to node j, where

i,j EN (so-called multiple arcs). However, the exclusion of multiple arcs

is:

- not restrictive, since the occurrence of multiple arcs can always be

circumvented by introducing dummy nodes and arcs,

- not essential: the ideas developed in the sequel remain valid when a

broader definition of a directed graph is used in which multiple arcs are

allowed.

The reason for adopting the present definition of a directed graph is, that

it gives rise to a convenient notation (i,j) to denote an arc from node i to

node j. D

Nodes i and j are said to be adjacent iff (i,j) EA (so a node i is adjacent

to itself iff the self-loop (i,i) EA).

A nei:u,1ork is a directed graph with one or more real valued functions defined

on the arc set.

The after set A(i) and the before set B(i) of a node i EN are defined as:

2.2 .1.

2.2.2.

A(i) := {j E N

B(i) := {j E N

(i,j) E A}

(j,i) EA}

Suppose that {ik I ik EN, k = 1,2, •.• ,i}, with i ~ 2, is' a set of distinct

nodes and wk is either arc (ik,ik+l) EA or arc (ik+l'ik) EA, k = 1,2, ..

.. ,i-1, then the sequence

2.2.3

is called a path from i 1 to ii. The arcs (ik,ik+l) are called forward arcs,

arcs (ik+l'ik) back»:Jard arcs.

If i 1, ... ,ii-l are distinct nodes and i 1 = ii, then sequence 2.2.3 is called

a cycle (i ~ 2). Note that a self-loop is a cycle.

If in G(N,A) a path exists from every node to every other node, G(N,A) is

said to be connected.

A tree is a connected directed graph which contains no cycles.

Some arbitrary node i 0 of the node set of a tree is designated as the root

of the tree. If the root are (i0 ,i0), which is a self-loop, is attached to

a tree, we speak of a rooted tree.

The unique path from node i to node j in a tree will be denoted by P ..•
l.J

A spanning tree in G(N,A) is a tree with node set N and arc sets A.

A quasi-tree is a connected graph with exactly one cycle.

A forest of trees (respectively quasi-trees) is a set of disjunct trees

(respectively quasi-trees).

17

A spanning forest of (quasi-) trees in G(N,A) is a forest of (quasi-) trees

with arc set SA, such that each node of N belongs to this forest.

2. 3. The. Simplex ai.go!U.thm nOll LP-p1toble.m6 wUh uppe.Jt bound.6

The Revised Simplex algorithm for LP-problems with (simple) upper bounds

provides the backbone for all network flow algorithms considered in the

sequel. Only a brief description is presented here. A more elaborate treat­

ment can be found in, e.g., DANTZIG [1963], LASDON [1970], and BAZARAA &

JARVIS [1977].

By introducing artificial variables, any LP-problem can be cast into the

so-called canonical form:

2.3.1.

2.3.2.

2.3.3.

minimize c'x

Ax b

0 $ X $ U ,

where c,u,x E JRn, b E JRm and A is an m x n matrix. In the literature some­

times the constraint

2.3.4.

with i ~ 0 is used instead of 2.3.3. In that case by using the transforma­

tion x := x-i the form 2.3.1-2.3.3 is obtained. In the rest of this

monograph we always consider lower bounds equal to zero.

The dual problem of 2 • 3 .1 - 2. 3 • 3 is

18

2.3.5.

2.3.6.

2.3.7.

maximize b'n u'v

A'n- v::;c

V ;?: 0

where TT E JRm and v E]Rn.

ASSUMPTION 2.3.1. The rank of matrix A equals m.

This assumption is standard and not restrictive since in practice artificial

variables are added such that the extended coefficient matrix has full row

rank.

Let B be a square nonsingular submatrix of A of order m; then Bis called a

basis.

Suppose that matrix A, after permuting the columns, is written as:

2.3.8.

t I [I I I J Le x · = ~,XN1 ,xN2 be the partitioning of x'compatible with 2.3.8 (u and

care partitioned similarly), which satisfies:

2.3.9.

2.3.10.

2.3.11.
-1 -1

~ = B b - B N2 ~ ,
2

then xis said to be a basic solution; ~ denotes the basic variables, xN1
the nonbasic variables at their lower bound, xN2 the nonbasic variables at

their upper bound.

If, in addition, x satisfies 2.3.3, xis called a basic feasible solution.

The value of the objective function will be denoted by z.

The Simplex algorithm is discussed next.

Simplex algorithm for LP-problems with upper bounds

Initialization

As starting basis the identity matrix, corresponding to artificial variables,

can be chosen. By applying the "Big-M" method or Phase I of the "Phase I,

Phase II" method, a basic feasible solution is determined if it exists. If

no (basic) feasible solution exists the algorithm stops.

1. Determine the Simplex multipliers

The Simplex multipliers, also called dual variables or shadow prices, are

obtained from:

2.3.12 TT I

2. Calculate the reduced costs

This operation is sometimes called pricing. The reduced cost vector c can

be found from:

2.3.13 c' = TT'A - c' ,

where, according to 2.3.12: c' B

3. Perform the optimality test

o.

If for all nonbasic variables xj at their lower bound,

and cj ~ 0 for all nonbasic variables xj at their upper bound,

then the current solution is optimal and the algorithm stops.

4. Choose the nonbasic variable to enter the basis

19

Let I denote the index set of all nonbasic variables which violate the

optimality test in step 3. As variable to enter the basis can be chosen any

X,,jEI.
J

Suppose¾: is chosen. In Simplex tableau terms a.k is the pivot column.

5. Find the representation of the entering column in terms of the basis

The representation vector yk of a.kin terms of the basis is calculated from

2.3.14.

6. Perform the minimal ratio test

Consider the two possible cases:

(a) ¾: is at its lower bound. Define 6k as:

20

{
xB.

• l.
min --

i yik
'yik > o}

2.3.15. ilk:= min

(bl ~ is at its upper bound. Define ilk as:

2.3.16.

If ilk= 00 , the solution is unbounded and the algorithm stops.

Otherwise, choose a row index s for which the minimum is obtained. Rows is

said to be the pivot row.

7. Update the activity levels and the basis inverse

In updating the objective function value and the activity levels, again the

two cases of step 6 are considered.

(a) ~ is at its lower bound zero.

2.3.17.

2.3.18.

other activity levels remain what they are.

2.3.19.

(b) ~ is at i$s upper bound '\•

2.3.20.

2.3.21.

other activity levels remain what they are.

2.3.22.

If 6k ='\•variable~ shifts from its lower bound to its upper bound (or

the other way round) and the basis remains the same. In this case proceed

with step 3.

Otherwise the basis inverse is updated by:

2.3.23.

where Eis an elementary matrix given by:

1

2.3.24. E

1

s

with n a vector with elements:

2.3.25.

2.3.26. j f, s •

Matrix E describes the pivot operation. Continue with step 1.

21

-1 As can be seen from this description, the basis inverse B plays an essen-
-1

tial role in steps 1 and S. In actual implementations B is usually stored

either in product form or in elimination form (see e.g., BASTIAN [1980])

and reinverted after a number of iterations in order to reduce cumulative

round-off errors and storage requirements.

Furthermore, it is quite usual to replace the nonbasic variables, which

are at their upper bound, by their complement xN2 := uN2 - xN2 = 0. This

transformation makes the computation somewhat easier, since one only has to

deal with nonbasic variables which are at their lower bound zero.

22

2.4. PUite ne:rn,o~k 6low pJr.oblem6

The theory of pure networks plays an important role in Chapter 3, which

deals with pure processing networks. Several relevant aspects of pure net­

works are discussed here.

Let G(N,A) denote a directed and connected graph, with N the set of nodes

and A the set of arcs, The number of nodes ism, the number of arcs n. If

self-loops (i,i), i EN, are present in G(N,A) they can be replaced by

common arcs (i,m+1), where (m+1) is an additional node (cf, BAZARAA &

JARVIS [1977, pp. 419, 420]).

ASSUMPTION 2.4,1. G(N,A) d.oes not aontain any self-loop.

The LP-formulation of the minimal cost flow-problem in a pure network is:

2.4.1.

2.4.2.

2.4.3.

minimize l cij xij
(i,j) EA

I
jEA {i)

i € N

(i, j) € A

Equations 2.4.2 are the conservation of flow equations, where bi (i EN)

denotes:

- the external demand (bi > 0) ,

- the external supply (bi < 0) , or

- no external demand or supply (bi= 0).

Capacity bounds are given by 2.4.3, where uij is not necessarily finite.

The coefficient matrix of the left-hand sides of 2.4.2 is denoted by

A = [aR.,ijJ.

The dual problem of 2.4.1-2.4.3 is given by

2.4.4.

2.4.5. (i,j) € A

2.4.6. (i,j) € A

23

Properties of matrix A

Row at• of A is associated with node i EN, column a•ij of A is associated

with arc (i,j) EA and has exactly two nonzero elements, namely

- 1 in row i , and

+ 1 in row j.

The column sum of each column in A is zero: e•A O.

RE~ 2.4.2. As noted before any LP-problem with a coefficient matrix A, in

which

- each column has at most two elements# O,

- each column with two nonzero elements has column sum zero,

can be regarded as a pure network problem.

By using positive column scales it can be a~complished that all nonzero

elements of such a matrix A are equal to ± 1.

A column of A with on.ly one nonzero element in some row i, which is equal to

-1, can be thought to represent a self-loop or an arc from node i to outside

the network (see e.g., BAZARAA & JARVIS [1977]).

A column of A with only one nonzero element in some row i, which is equal to

+ 1, can be thought to represent an arc from outside the network to node i. D

THEOREM 2. 4. 3. The rank of A equaZs m - 1.

PROOF. Because e 'A = 0, the rank of A must be smaller than or equal to m - 1.

Since G(N,A) is connected, a submatrix of A can be constructed which cor­

responds to a spanning tree in G(N,A). It can easily be shown that this

matrix has rank m - 1, see e.g., BAZARAA & JARVIS [1977].

we introduce a single artificial variable xioio with a•ioio = - ei0 Ci0
arbitrarily chosen from {1, ••• ,m}). It is easy to prove that matrix

2.4.7.

has rank m.

Properties of a basis

. *
Let B denote a basis of A. Column a.ioio always belongs to Band can be

thought to represent the self-loop (i0 ,i0). Assume column a.ioio to be the

first column of B.

□

24

Let B denote the m x (m-1) matrix, consisting of the last (m- 1) columns of

B. So:

2.4.8. B [a i i ,BJ • ·oo-

We define the basis groaph associated with matrix B as the subgraph of

G(N,A) with node set N and arcs in A which correspond to the columns in!,

and the self-loop (i0 ,i0).

Next a lemma is stated, which is generalized in a certain sense in Chapter 3.

To avoid notational difficulties we denote the elements of !by ~R.p (instead

ofb 0 'j).
- ... ,l.

Let S be a nonempty subset of {1,2, ••• ,m-1}, associated with the columns

of!• Furthermore, let R(S) be defined by:

2.4.9. R(S) := {R, I R. E {1,2, ••• ,m}, 3p€S: ~R,p ,j, o} .

So R(S) is related to those rows of B which have at least one nonzero ele­

ment in the columns associated withs.

LEMMA 2.4.4. Given a aolleation of Isl columns of matri~ ! thePe aPe at

least Isl +1 POWS in !Whiah have a nonzePo element in these aolwrrns:

2.4.10. IR(Sl I ~ Isl +1 •

PROOF. Suppose that IR(S) Is Isl. Then, because e'! = O, the columns of!

associated with S would clearly be linearly dependent. This contradicts the

fact that B denotes a basis.

REMARK 2.4.5. Note that the only argument used in proving Lemma 2.4.4 is

D

that B is an m x (m-1) matrix of rank (m - 1) with the property that e '! = 0. D

We can use Lemma 2.4.4 to prove the well-known theorem:

THEOREM 2.4.6. A basis groaph in a pUPe netwoPk is a Pooted spanning tPee.

PROOF. Suppose the basis graph contains a cycle besides the self-loop

(i0 ,i0). Let S denote the columns in B associated with the arcs in this

cycle. Then R(S) corresponds to the set of nodes incident to the arcs in

the cycle. In a cycle the number of nodes equals the number of arcs, so

IR(S) I = Isl. This is in contradiction with Lemma 2.4.4. Since the basis

graph contains (m - 1) "real" arcs these arcs form the arc set of a spanning

25

tree in G(N,A). The self-loop (i0 ,i0) is usually called the root-arc, and

node i 0 EN the root of this spanning tree.

This completes the proof.

The reverse of Theorem 2.4.6 is true too:

THEOREM 2.4.7. Every rooted spanning tree ~ith ara sets A is a basis graph.

PROOF. See BAZARAA & JARVIS [1977].

A square matrix is said to be (upper) triangular if the rows and columns

can be permuted such that all elements below the main diagonal are zero.

THEOREM 2.4.8. Bis (upper) triangular

PROOF. A constructive proof is given. The permuted B matrix will be denoted

* by B.

* * 1. Take a•ioio as the first column of B and row i 0 as the first row of B.

P~t W = {10}.

* 2. If W = N then stop, B is found.

Otherwise, let (i,j) be an arc in the basic spanning tree, such that either

i € W or j € w. Such an (i,j) always exists, since a spanning tree is a

connected graph which contains no cycles.
* Take a•ij as the next column in B.

If i ¢ W make row i the next row of B*, set W =Wu {i} and goto 2.

_!! j ¢ W take row j as the next row of B*, set W =Wu {j} and goto 2.

It is obvious that this constructive scheme provides a matrix B* with all

elements below the main diagonal equal to zero.

D

D

D

EXAMPLE 2.4.9. For the rooted spanning tree in Figure 2.4.1, B* is a possible

realization.

26

11 12 42 31 53 49 36 84 37

-1 -1 1 1

1 1 2

-1 -1 1 4

-1 1 -1 -1 3
* B -1 5

1 9

1 6

-1 8

1 7

Figure 2.4.1. A rooted spanning tree and an associated triangularized basis.

The properties of a basis and associated basis graph, mentioned in Theorems

2.4.6 and 2.4.8, make it possible to perform the steps of the Simplex

algorithm by using the basis graph (a rooted spanning tree) instead of the

basis inverse B- 1 • The advantages of such an approach are already mentioned

in Subsection 1.1.1.

Before we give an outline of the Simplex algorithm for pure network problems

a clarification of some of the calculations, which have to be carried out,

is presented.

Solving ir'B = c~

In order to determine the Simplex multipliers 1T the system

2.4.11 1T 1 B = c~,

must be solved (cf. 2.3.12). In network terms this can be done in the

following way (cf. the constructive proof of Theorem 2.4.8):

1. Take iri0 = O (it can be assumed that cioio = 0). Set w = {i0}.

2. If W = N, stop.

Otherwise, take an arc (i,j) such that either i E W or j E W.

If i E W then ,ri has already been determined and ,rj can be found from

2.4.12.

Make W Wu {j} and goto 2.

If j E W, ,rj is known and ,ri can be evaluated from 2.4.12. Set W

and goto 2.

w u {i}

27

Informally speaking the Simplex multipliers are determined in some sequence

"from the root towards the leaves (i.e., those nodes of N which are incident

to only one arc in the basic spanning tree)".

It is noted that, in the subsequently discussed Simplex algorithm, the

Simplex multipliers are evaluated in this way only in the initialization

step. In all other steps they can be found by updating the previous vector~-

* Solving Bx= b

In order to find the activity levels of the basic variables, the system:

2.4.13.

* where b = b-N2 uN2 (formula 2.3.11), must be solved.

In a similar way as the Simplex multipliers are evaluated, these activity

levels (flow levels in the basic arcs) are calculated "from the leaves

towards the root".

They are determined in this way only in the initialization step. In all

other steps they can be found, as usual, by updating the previous yector x.

* Equations of the type Bx= b must also be solved in determining the

representation yk£ of the entering column, say a•k£' in terms of the basis:

2.4.14.

This can be done in an easier way than indicated above, simply because the

right-hand side of 2.4.14 has a special form.

Associated with column a•k£ is arc (k,£).

Let Ck£ denote the set of arcs in the basic (rooted) spanning tree, which

belong to the unique cycle induced in this spanning tree by the entering
f

arc (k,£). Ck£ is given an orientation consistent with (k,£). Denote by Ck£

the set of forward arcs in Ck£' by C~£ the set of backward arcs. It is easy

to observe that a•k£ can be written as:

2.4.15.

or in words: in the representation of a•k£ in terms of the basic columns,

the columns associated with forward arcs in Ck£ have coefficient -1,

the columns associated with backward arcs in Ck£ have coefficient+ 1, and

all other basic columns have coefficient 0.

28

For obvious reasons, vector ykl will be called the cycZe vector, induced by

arc (k,l) in the basic spanning tree.

In view of the theory of generalized networks (Section 2.5), it is instruc­

tive to consider the representation of a,kt in terms of Bin a slightly

different

Denote by

node j in

2.4.16.

2.4.17.

2.4.18.

fashion.
f the set of forward arcs on the unique path from node i to

b
pij
the basic spanning tree and by P ij the set of backward arcs. Then:

- ek + et

l a •ij + l a•ij + e.
f b 10

Pkio Pk. 10

l a •ij + l a •ij + e.
f b 10

pi· pi· 10 10

Using these formulae, one observes that the root arc plus all arcs which

belong to Pkio n Ptio have a zero coefficient in the representation and in

fact 2.4.15 results (see Figure 2.4.2).

Vector B-l e. is called the root-path vector of node j since it describes
J

the path from node j to the root of the basic spanning tree.

Figure 2.4.2. Illustration of the representation of a,kt in terms of B.

Observe from 2.4.15 that one of the arcs in Ckt must leave the basis graph,

consequently a new basic rooted spanning tree arises.

In the following specification of the Simplex algorithm it is assumed that

the basic rooted spanning tree is stored and updated in some convenient

way.

29

Simplex algorithm for the minimal cost flow problem in a pure network

Initialization

A simple way to find a starting basis is: introduce an additional node (m + 1)

and arcs (i,m+l) if bi S O, i E N, and (m+l ,i) if bi > O, i E N. These added

arcs form the arc set of a spanning tree in the extended network. Take an

arbitrary root i 0 with root arc (i0 ,i0). Let B denote the matrix representing

the rooted spanning tree.Bis taken as a starting basis. Take all nonbasic

variables at their lower bound zero. Determine the flow levels xB and the

Simplex multipliers TI as indicated above. Use the Big-M method or Phase I of

a two phase method to find a basic feasible solution (if it exists).

Alternative ways to determine a starting basis can be found in BAZARAA &

JARVIS [1977] and in GLOVER, KARNEY & KLINGMAN [1974].

1. Determine the Simplex multipliers

The Simplex multipliers can be evaluated as described above. However, after

each basis change it is possible to update the previous vector TI. This is

discussed at the end of step 7.

2. Calculate the reduced costs

The reduced costs are determined from:

2.4.19. (i,j)EA.

3. Perform the optimality test

This is standard (see Section 2.3).

4. Choose the nonbasic variable to enter the basis

See Section 2.3. Suppose a•ki is selected to enter the basis (arc (k,i)

enters the basis graph).

5. Find the representation of a•ki in terms of B

Determine the cycle vector yki from

as explained above.

30

6. Perform the minimal ratio test

See Section 2.3. Suppose a•st leaves the basis.

7. Update

Updating the objective function value and flow levels is standard.

By dropping arc (s,t) in the previous basic spanning tree, two subtrees,

say T1 and T2 , remain withs€ T1 _and t € T2 • The Simplex multipliers can

easily be updated:

2.4.20.

2.4.21.

Adding subsequently arc (k,t) results in the basic rooted spanning tree for

the new situation.

Continue with step 2.

2.5. -Genell.aLl.zed ne:two~k 6low p~obl~

Generalized networks play an important role in solving generalized processing

network problems (Chapter 4). Some relevant aspects of generalized networks

are discussed here.

Suppose G(N,A) is a directed and connected graph, with node set N and arc

set A. The number of nodes ism, the number of arcs n. Self-loops are allowed

to be present.

The essential difference with pure network flow problems (Section 2.4) is

that flow is not necessarily conserved in transporting it along arcs. In

every arc (i,j) € A it is assumed that, whenever the flow in (i,j) is xij'

upon arrival in node j the flow has value gijxij" The factor gij' (i,j) € A

is called the muZtipZie~ or gain of arc (i,j).

The multipliers are assumed to be arbitrary real numbers.

However, negative multipliers are intuitively not as appealing as positive

ones. Nevertheless the following interpretation can be given:

If gij < 0 and the flow in arc (i,j) is xij' necessarily a flow of magnitude

- gij xij must arrive at node j. (See also Section S.S.)

31

The LP formulation of the minimal cost flow problem in a generalized network

is stated as:

2.5.1.

2.5.2.

2.5.3.

minimize ! c .. x. j
(i,j) EA l.J l.

l
j EA (i)

i E N

(i, j) E A •

Equations 2.5.2 are the conservation of flow equations in the nodes of the

network, where bi, if unequal to zero, denotes the external demand (bi> 0)

or supply (bi< 0) in node i.

The coefficient matrix of the left-hand sides of 2.5.2 is denoted by

A= [a.t,ijJ.

The dual problem of 2.5.1-2.5.3 is given by:

2.5.4. maximize ! bi TTi - I u .. vi.
(. .) A l.J J iEN J.,J E

2.5.5. - TTi + gijTTj - "ij s cij , (i, j) E A

2.5.6. "ij ~ 0 (i ,j) E A

Before discussing some properties of matrix A, an important concept, the

cycle factor of a cycle, is introduced. This cycle factor plays a role both

in theoretical and computational considerations.

Let C denote a cycle in G{N,A) with arbitrary orientation. Cf is the set of

forward arcs inc, Cb the set of backward arcs. The ayale faator a{C) is

defined as:

2.5.7.

Properties of matrix A

Row aR,, of A is associated with node t EN, column a•ij of A is associated

with arc {i,j) EA and has either two nonzero elements, namely

- 1 in row i, and

gij in row j,

or only one nonzero element, namely

- gii in row i, if i = j (so (i,j) is a self-loop).

32

Note that an arc (i,j) with multiplier g .. = 0 has the same representation
1]

in matrix A as self-loop (i,i) with multiplier gii = 1. Therefore the

following assumption is not restrictive.

ASSUMPTION 2.5.1. In G(N,A) no arcs are present with a rrrultiplier equal to

zero.

REMARK 2. 5. 2. Any LP-problem with a coefficient matrix A in which each

column has at most two elements i 0, can be regarded as a generalized net­

work problem. If we replace 2.5.2 by

2.5.8. I
jEA(i)

h .. x .. + l g .. x ..
1J 1] jEB (i) J1 J1

2.5.1, 2.5.8 and 2.5.3 formulate such an LP-problem.

i € N ,

By using positive column scales it can always be accomplished that hij in

2.5.8 equals± 1.

THEOREM 2.5.-3. The rank of matrix A equals (m-1) or m.

The proof of this theorem is similar to that of Theorem 2.4.3. See also

Figure 2.5.1.

Under strong conditions a generalized network problem can be reduced to a

pure network problem by means of scaling. In this respect the following

theorem is valid:

D

THEOREM 2.5.4. Let G(N,A) denote a connected generalized network. Problem

2.5.1-2.5.3 can be scaled to a pure network problem iff one of the following

equivalent conditions is valid:

(a) r(A)

(b) ex (C)

m-1

1, for every cycle c in G(N,A) which is not a self-loop.

PROOF. See GLOVER & KLINGMAN [1973] and TRUEMPER [1976].

Both GLOVER & KLINGMAN and TRUEMPER developed simple scaling procedures.

Scaling generalized networks to networks with positive multipliers is dis­

cussed in TRUEMPER [1976]. Scaling generalized networks to networks in

which all multipliers gij satisfy O < gij ~ 1 (so-called lossy networks) or

g .. ~ 1 (gainy networks) is discussed in KOENE [1979b].
1]

D

33

Theorem 2. 5. 4 implies that, if r (A) = m - 1 , the generalized network problem

can be solved as a pure network problem, after a suitable scaling has been

performed.

In the remaining part of this chapter the following assumption holds:

ASSUMPTION 2.5.5. The rank of A equals m.

Properties of a basis

Let B denote a basis of A.
Define the basis graph associated with matrix Bas the subgraph of G(N,A)

with node set N and arc set the arcs associated with the columns in B.

A similar lemma as Lemma 2.4.4, which deals with pure networks, is stated.

Suppose B = [bip].

Let S be a nonempty subset of {1, ... ,m}, associated with the columns in B.

Similarly as in 2.4.9, R(S) is defined as:

2.5.9. R(S) = {i Ji E {1, .•• ,m}, 3
pES

LEMMA 2.5.6. Given a collection of Isl colwrrns of B there are at least as

many rows in B which contain a nonzero element in these colwrrns:

2.5.10. IR(s) I :2: Isl

PROOF. If IR(S) I :<;; Isl - 1 the columns of B associated with S are linearly

dependent. This contradicts the fact that B denotes a basis.

REMARK 2.5.7. Note that the only argument used in proving this lemma is the

fact that Bis a square nonsingular matrix.

It is remarked that the relation 2.5.10 also arises in a theorem due to

HALL [1935] in dealing with systems of distinct representatives, see also

FORD & FULKERSON [1962, p. 67]: Let V = {v1 , ••• ,vm} be a family of subsets

of a given set W = {w1 , .•• ,wq}.

*
A list of distinct elements of W, say

□

□

W {wi , ... ,wi} is a system
1 m

of distinct representatives for V if wij E Vj;

wij is said to represent Vj.

THEOREM 2.5.8 (HALL). A system of distinct representatives for

V = {v1, .•. ,vm} exists iff every union of Isl sets of v contains at least

Isl distinct elements, Isl= 1, ••• ,m.

34

The condition in this theorem is the same as that in Lemma 2.5.6, only a

different terminology is used.

An immediate consequence of Lemma 2.5.6 and Theorem 2.5.8 is (cf. remark

2.5. 7):

COROLLARY 2.5.9. The rows (or the colwrrns) of a square nonsingular matrix

can be permuted such that the main diagonal of this permuted matrix is

zero-free.

Hall's theorem will appear to play an important role in Chapters 3 and 4.

THEOREM 2.5.10. A basis graph in a generalized network is a (spanning)

forest of quasi-trees.

PROOF. Consider a connected component of the basis graph. Suppose this

component contains q arcs, then Lemma 2.5.6 shows that this component con­

tains at most q nodes.

Since the number of arcs in the basis graph equals the number of nodes this

implies that each connected component must be a quasi-tree.

The reverse of Theorem 2.5.10 is in general not true (compare with the

situation in pure networks: Theorem 2.4.7):

THEOREM 2.5.11. A forest of quasi-trees with node set N and arc set~ A is

a basis graph iff a(C) ¥ 1 for every cycle c, which is not a self-loop.

PROOF. See TRUEMPER [1976] and also Figure 2.5.1.

Whether a subgraph of G(N,A) is a basis graph or not does not only depend

on the topology of this subgraph but also on the values of the multipliers.

A square matrix is said to be one-triangular if the rows and columns can be

permuted such that all elements below the first lower diagonal are zero.

THEOREM 2.5.12. Bis one-triangular.

Before proving this theorem it is remarked that B has a block diagonal

form:

□

□

2.5.11. B

B q

Each block Bi corresponds to a quasi-tree Qi in the basis graph (each

quasi-tree has as many nodes as arcs). Therefore, it is sufficient to show

that each block Bi has a one-triangular structure. A constructive proof is

given.

PROOF of Theorem 2.5.12. Consider quasi-tree Qi of the basis graph and its

associated block Bi of the basis.·

35

If the cycle in Qi is a self-loop, Bi is triangular as shown in the previous

section.

Consider the case that the cycle Ci of Qi is not a self-loop and suppose

arc (v,w) belongs to the arc set of Ci. Omitting (v,w) from Qi turns Qi

into a tree.

First, sequence the rows and columns which correspond to the nodes. and arcs

in Ci (except the column associated with arc (v,w)) in the way nodes and

arcs are passed in traversing the unique path from v to w in the tree.

Next, add the column corresponding to arc (v,w). The submatrix of Bi which

now has been obtained is one-triangular.

The remaining part of Qi has a tree structure and, as shown in Section 2.4, r

can be written in triangular form.

EXAMPLE 2.5.13.

1

2

3

4

5

7

6

12 32

-1

13 14

-1 I -1
I

I

53 75

-1

Figure 2.5.1. A quasi-tree and a corresponding one-triangular

matrix representation.

56

- -
-1

36

The properties of a basis and associated basis graph, mentioned in Theorems

2.5.10 and 2.5.12, make it possible to perform the steps of the Simplex

algorithm by using the basis graph (a forest of quasi-trees) instead of the

basis inverse B-l.

A clarification of the calculations, to be carried out in the distinct steps

of the Simplex algorithm, is presented.

Solving 'lf 1 B c'
B

In order to determine the Simplex multipliers the system

2.5.12 'lf 1 B = c~

must be solved (cf. 2.3.12). In network terms this can be done in the

following way (cf. the constructive proof of Theorem 2.5.12):

Consider each quasi-tree in the basis graph separately and distinguish the

two cases:

(a) The cycle of the quasi-tree is a self-loop, say arc (v,v). Then

'If
V

The remaining part is dealt with as described in Section 2.4, where for

each basic arc (i,j) the following relation holds:

2.5.13.

(b) The cycle of the quasi-tree contains two or more arcs. Suppose arc

(v,w) belongs to the cycle. Pvw denotes the path from v tow in the quasi­

tree in which arc (v,w) is not contained. First, calculate all 'lfi for all

nodes i E Pvw in terms of 'lfv using 2.5.13. Next, 'lfv is found from

C vw

and the 'lfi (i E Pvw) are known too.

The remaining part of the quasi-tree has a tree structure and the Simplex

multipliers of nodes in that part are determined as in Section 2.4, using

2.5.13 instead of 2.4.12.

The close relationship with the pure network situation is obvious. Here the

Simplex multipliers are determined in some sequence "from the cycle towards

the leaves". In actual.implementations the cycle factors are used to speed

up these calculations.

The Simplex multipliers are determined in this way in the initialization step

of the Simplex algorithm. In all other steps the previous vector 'If is updated.

* Solving Bx= b

The activity levels of the basic variables (the flow levels in the basic

arcs) can be found by solving the system:

* 2.5.14. B~ = b

* where b = b-N2 uN2 (formula 2.3.11).

In a similar way as the Simplex multipliers are evaluated these activity

levels are calculated "from the leaves towards the cycle".

37

They are determined in this way only in the initialization step. In all

other steps they can be found, as usual, by updating the previous vector x.

Equations of the form Bx= b* must also be solved in determining the

representation of the entering column, say a•kt' in terms of the basis:

2.5.15.

This can be done in an easier way than indicated above, because the right­

hand side of 2.5.15 has a special form. Associated with a•kt is arc (k,t).

Since a•kt can be written as

2.5.16.

if (k,t) is not a self-loop, or as

2.5.17.

if (k,t) is a self-loop (k = t), the essential question is to find the
-1 -1

representation of ek (and et) in terms of B (vectors B ek and B et) •

Denote by Withe set of arcs, which belong to the path f~om node i EN to

the cycle in the qua.si-tree in which node i is contained, plus all arcs in

this cycle.

THEOREM 2.5.14. All aolumns of B whiah are not assoaiated with aras in wi
-1 have a zero aoeffiaient in the representation B ei of ei in te!'mB of the

basia aolwrrns (i EN),

PROOF. See ELAM, GLOVER & KLINGMAN [1979]. 0

-1
For this reason the vector B ei is called the ayale-path vector of node i.

-1 An explicit formula for the representation B ei of ei, i E N, in terms of

38

the basic columns can be found in ELAM, GLOVER & KLINGMAN [1979]. Regarding

2.5.15-2.5.17, vector y•kt'is found from:

2.5.18.

if (k,t) is not a self-loop, or from

2.5.19.

if (k,t) is a self-loop (k = t).

Theorem 2.5.14 does not imply that all columns of B associated with arcs in

Wk u Wt have a nonzero coefficient in the representation vector ykt"

This is illustrated in Figure 2.5.2 where the set of arcs in Wk u Wt is

depicted by heavy lines for one of the cases which may occur. In case

gOk gkt / got = 1 only arcs (0 ,k) and (0 ,t) have a nonzero coefficient (cf.

the situation in pure networks and theorem 2.5.11).

k

Figure 2.5.2. A possible union of Wk and Wt.

Finally, an outline is given of the Simplex algorithm for generalized

network problems.

Simplex algorithm for the minimal cost flow problem in a generalized network.

Initialization

The same starting basis as described in Section 2.4 can be used. Alternatives

can be found, e.g., in GLOVER, HULTZ, KLINGMAN & STUTZ [1978].

1. Determine the Simplex multipliers

The Simplex multipliers can be evaluated as described above. However, after

each basis change it is possible to update the previous vector TT. This is

discussed in step 7.

39

2. Calculate the reduced costs

The reduced costs are found from

2.5.20. c .. =-7T, +g.,7T.-c ..
l.J l. l.J J l.J

(i,j) E A •

3. Perform the optimality test

This is standard (see Section 2.3).

4. Choose the nonbasic variable to enter the basis

Standard. Let a•ki enter the basis.

5. Find the representation of a,kt in terms of B

Determine the vector Yki from

as indicated above.

6. Perform the minimal ratio test

See Section 2.3. Suppose a•st leaves the basis.

7. Update

Updating the objective function value and flow levels is standard.

The new basis graph is obtained from the previous one by omitting arc (s,t)

and adding arc (k,i). The Simplex multipliers associated with nodes in

unchanged quasi-trees or cycles remain the same.

Only in case a new cycle is formed or tree parts are attached to another

quasi-tree, the associated Simplex multipliers must be calculated in the

way described before.

Continue with step 2.

41

3. PURE PROCESSING NETWORKS

3 • 1 • I ntJr.o duc.:tlo n.

This chapter is concerned with pure processing networks. In Section 3.2 we

discuss two distinct LP-formulations of the minimal cost flow problem in

such a network.

The basis structure will be explained in terms of the network (Section 3.3)

and subsequently exploited in a specification of the primal Simplex algo­

rithm, discussed in Section 3.4.

A somewhat different specification of the primal Simplex algorithm for pure

processing networks is presented in Section 3.5.

Finally, in Section 3.6, some remarks are made.

3. 2. Ma:thema.Uc.ai f,ofl.muia:t1on

A verbal description of a processing network is given in Subsection 1.1.2.

The present section provides two distinct LP-formulations of the minimal

cost flow problem in a pure processing network.

The first formulation is that of a pure network problem with side con­

straints.

The second one is more compact and can be seen as a pure network problem

with side activities.

Consider a directed and connected graph G(N,A), with node set N, containing

m nodes and arc set A, consisting of narcs.

If self-loops (i,i), i EN, are present in G(N,A) they can be replaced by

arcs (i,m+l), where (m + 1) is an additional node.

ASSUMPTION 3.2.1. G(N,A) does not contain any seZf-Zoop.

42

It is convenient, and in many practical situations natural, to assume that

G(N,A) satisfies some special topological properties (cf. the discussion at

the end of this section). These properties will show up in the subsequent

discussion and are summarized in Remark 3.2.2.

The node set N can be partitioned into three subsets:

RN: refining nodes

BN: blending nodes

TN: transportation nodes.

A refining node i (i E RN) is a node with one incoming arc and at least two

outgoing arcs. The flow on each outgoing arc (i,j), j E A(i), is required

to be a given fraction aij of the total flow entering node i (see Figure

3.2. la).

It is assumed that

3. 2.1. 0 < a .. < 1 I
J.J

j E A(i) I i E RN

and

3.2.2. }: a .. 1 I i E RN
jEA(i) J.J

i
1 ail

(a) (b)

Figure 3.2.1. A refining node i.

A blending node i (i E BN) is a node with at least two incoming arcs and

only one outgoing arc. The flow on each incoming arc (j,i), j E B(i), is

required to be a given fraction aj~ of the total flow leaving node i (see

Figure 3.2.2a).

In analogy with refining nodes we have:

3.2.3.

and

O<a .. <1,
JJ.

j E B(i) , i E BN

3.2.4. 1 , i E BN.

(a) (b)

Figure 3.2.2. A blending node i.

All nodes of N which are neither refining nodes nor blending nodes are

called transportation nodes.

It is assumed that, if i is a refining node or a blending node, all nodes

j E A(i) u B(i) are transportation nodes.

43

REMARK 3.2.2. Note that in G(N,A) the following topological properties hold:

(a) if node i EN is a refining node (blending node) proportionality of

flow is assumed on all outgoing (incoming) arcs of i;

(bl if node i EN is a refining node (blending node) there is exactly one

incoming (outgoing) arc of node i;

(c) if node i EN is a refining node or blending node all nodes

j E A(i) u B(i) are transportation nodes.

Finally, it is convenient to introduce the set of processing nodes PN:

3.2.5. PN := RN U BN

A refining process i is formed by the outgoing arcs of a refining node i.

Such arcs are called refining arcs.

The set of refining arcs contained in A is denoted by RA.

A blending process i is formed by the incoming arcs of a blending node i.

Such arcs are called blending arcs.

The set of blending arcs s A is denoted by BA.

All arcs in A which are neither refining arcs nor blending arcs are called

transportation arcs.

The set of transportation arcs SA is denoted by TA.

□

44

We will say that a transportation arc (i,j) EA describes a transportation

process (i,j).

Note that the incoming (outgoing) arc of a refining (blending) node describes

a transportation process.

Also note that the arc set A is truely partitioned into the subsets RA, BA

and TA.

The set of processing arcs PA is defined by:

3.2.6. PA:= RAU BA

The coefficients a .. in 3.2.1 or 3.2.3 are called processing coefficients.
1)

A network with at least one processing node is called a processing network.

Conservation of flow is assumed in -every node i EN. If, in addition, flow

is conserved on the arc set A (no losses or gains in transporting flow

along arcs), the network is addressed as a pw>e processing network.

Otherwise it is called a generalized processing network. Such networks will

be discussed further in Chapter 4.

Before passing over to the mathematical formulations of the minimal cost

flow problem in a pure processing network, some other notation and

definitions are introduced.

PA(i) denotes the set of processing arcs incident to node i E PN.

In other words: PA(i) describes the set of arcs which correspond to refining

or blending process i.

N(i) is the set of nodes which are incident to the arcs in PA(i), i E PN.

The number of arcs in PA(i) is called the order of process i and is denoted

by ni. Note that ni ;;: 2, Vi E PN.

Finally, it is remarked that in drawing diagrams of processing networks, it

is convenient to distinguish the three types of nodes. Refining nodes and

blending nodes will be represented as in Figure 3.2.lb and Figure 3.2.2b,

transportation nodes are given by a small circle. An example of a processing

network is presented in Figure 3.2.3.

Figure 3.2.3. An example of a processing network.

Formulation I

The proportionality requirements in a refining or blending process can be

stated in several ways.

Consider a refining process i with its corresponding refining node i.

45

A quite natural way to capture the proportionality requirements would be to

express the flows on the outgoing arcs of node i in terms of the flow on

the incoming arc. However, in view of the subsequent discussions, the

following way will appear to be more appropriate:

Choose an arbitrary outgoing arc (i,r), r E A(i), of node i. It is clear

that if the flow in (i,r) is known, flows on all outgoing arcs of node i

are known too. For this reason arc (i,r) is called the representative arc

of process i (or also of the set PA(i)).

The flows on all other outgoing arcs of i can be expressed in terms of the

flow on arc (i,r):

x.. a ..
21.=21.
x. a.

r E A (i) , j E A (i) \ {r}
ir ir

or

3.2.7. 0 , r E A(i) , j E A(i) \ {r}

where all a .. 's satisfy 3.2.1 and 3.2.2.
l.J

46

Perhaps it would be more appropriate to write r(i) instead of r, but for

notational simplicity this has not been done.

In a similar way the proportionality requirements in a blending process can

be stated:

Consider a blending process i with its corresponding blending node i.

Choose a representative arc (r,i) of process i (r € B(i)) and formulate the

blending requirements as:

3.2.8. aji X

ari ri
r € B(i) , j € B(i) \{r}

where all the aji's satisfy 3,2,3 and 3,2,4.

The LP-formulation of the minimal cost flow problem in a pure processing

network G(N,A) is:

3.2.9. minimize

3.2.10.

3.2.11.

3,2.12.

3.2.13.

l ci. xij
(i,j)EA J

}:
jEA(i)

xij + l xji = b.
jEB (i) 1

ai .
.2:.2 x. xij 0
air ir

aji X • -

ari ri xji 0

i € N

i € RN, r € A(i)

j € A(i) \ {r}

i € BN, r € B(i)

j € B(i) \ {r}

Equations 3.2.10 are the conservation of flow equations in which bi> 0

denotes the external demand and bi< 0 denotes the external supply in

node i.

Formulae 3.2.11 and 3,2,12 are the refining and blending requirements.

Capacity bounds are given by 3,2,13. The next assumption is not restrictive.

ASSUMPTION 3.2.3. For eaah refining proaess i:

r € A(i) , j € A(i) \ {r}

and for eaah blending proaess i:

47

r E B (i) , j E B (i) \ {r} .

Formulation 3.2.9-3.2.13 is in fact one of a pure network problem (3.2.9,

3.2.10 and 3.2.13) with side constraints 3.2.11 and 3.2.12. Therefore CHEN &

SAIGAL's algorithm [1977] can be used to solve 3.2.9-3.2.13; see also Sub­

section 1.1.1. For this problem a working basis of fixed size: EiEPN(ni - 1),

i.e., the number of constraints in 3.2.11 and 3.2.12, would be required.

However, the solution procedures, developed in Sections 3.4 and 3.5 (based

on formulation II), use a working basis of variable size q, with

0 :;; q:;; EiEPN 1 (= IPNI), which is in general much smaller than EiEPN(ni -1).

The structure of the coefficient matrix of the left hand sides of 3.2.10-

3.2.12 is clarified in Figure 3.2.4. In this figure pR and pB denote the

number of refining and blending processes. Moreover, the matrices Ri

(i = 1, ••• ,pR) and Bi (i = 1, .•• ,pB) are (ni -1) x ni matrices with the

following structure:

a ..
1.J 1

-1 a. ir

R. a .. B. 1. 1.J2 1.

air

-1

----ITA 1--------1 RA I ---¾--I BA 1-

a .
J1i

-1 a ri

Cl, i
]2

a ri

-1

i
nonse=a;irn of fl=

refining requirements

blending ,tquire=nts
,t,

Figure 3.2.4. Structure of the coefficient matrix.

48

Note that in this formulation each refining or blending process i has ni

associated columns in the coefficient matrix.

Formulation II

An alternative, more compact, formulation is obtained from formulation I if

the expressions for x. . (formula 3. 2 .11) :
l.J

X,,
l.J

'\j --x.
air ir

i E RN , r E A(i) , j E A(i) \ {r}

and for xji (formula 3.2.12):

i E BN rEB(i), jEB(i)\{r}

are substituted into 3,2.10.

Then each refining process and each blending process is represented by a

single column in the resulting coefficient matrix A. Of course, the variable

associated with this column in A describes the flow level in the represen­

tative arc of this process.

Matrix A has m rows and each row i of A can be identified by node i in the

network. Each column of A describes one of the three possible types of

processes (a column of A associated with refining or blending process i is

denoted by a,i' a column of A associated with transportation process (i,j)

is denoted by a•ij):

(a) refining process i. The elements in column a •i are:

- 1/air in row i,

ai/air in row j, j E A (i),

0 otherwise.

(b) blending: 12rocess i. The elements in column a •i are:

1/ari in row i,

-aji/ari in row j, j E B (i),

0 otherwise.

(c) trans12ortation process (i,j). The elements in column a •ij are:

-1 in row i,

1 in row j,

0 otherwise.

49

Figure 3,2,5 clarifies the structure of A.

r
m

l
~ITAl~PR--- PB~

Figure 3.2.5. Structure of coefficient matrix A.

REMARK 3.2.4. It can easily be observed that matrix A has the following

properties:

1. the sum of elements of each column in A is zero;

2. if there is more than one positive (negative) element in some column of

A, there is only one negative (positive) element. □

Note that a column a.i as meant under (a) or (b) has a unique representation

except for some scaling factor (this scaling factor depends on the choice

made for the representative arc).

In the rest of this monograph it is assumed that all columns of A are

scaled such that the only negative (or positive) element in a column is

equal to -1 (+1, respectively). So a refining process i has elements:

-1 in row i.

a ..
J.J

in row j' j E A (i),

0 otherwise,

and a blending process i has elements:

+1 in row i,

-a
ij in row j' j E B(i),

0 otherwise.

After scaling the variable associated with column a,i describes the total

throughput of process i.

The solution procedures of this chapter will use the compact formulation:

50

3.2.14.

3.2.15.

3.2.16.

minimize c'x

Ax= b

where A satisfies the properties mentioned above.

Note that this formulation is one of a pure network problem with side activi­

ties. Therefore 3.2.14-3.2.16 can be solved by the Simplex SON approach of

GLOVER & KLINGMAN [1981]. Their procedure would employ a working basis of

the same size as the Simplex PRON procedures of Sections 3.4 and 3.5. However,

Simplex SON does not make any specific use of the typical processing network

structure.

The dual problem of 3.2.14-3.2.16 is given by:

3.2.17.

3.2.18.

3.2.19.

3.2.20.

maximize b'u - u'v

-ui+ }: aiju.-v. Sci
jEA(i) J 1

(i,j) € TP

i € RP

i € BP

where TP denotes the set of transportation processes, RP represents the set

of refining processes and BP the set of blending processes.

It is emphasized that formulation 3.2.14-3.2.16 should merely be considered

as a compact way of writing 3.2.8-3.2.13. The network interpretation remains

the same:

Column a.i' associated with refining process i, can be written as

3.2.21. a = •i I ai. a*. j ,
jEA(i) J •i

* where a•ij denotes the vector representation of arc (i,j) (see Section 2.4).

Formula 3.2.21 makes clear that the set of processing arcs PA(i) can still

be associated with refining process i.

Of course, a similar statement can be made for a blending process i.

Note that a pure network (Section 2.4) can be considered as a "degenerate"

case of a pure processing network (with processes of order 1).

51

The remaining part of this section discusses the possibility to define

processing networks in a lilOre general way, namely as a network in which the

following three properties hold:

1. For generalized processing networks: conservation of flow in nodes,

for pure processing networks: conservation of flow,both in nodes and on

arcs.

2. Proportionality of flow in subsets of the arc set A. In each such a sub­

set the arcs are incident to one common node and they are all directed

either from or towards this node.

3. Capacity bounds on arcs.

An example of a processing network ·in this more general sense is presented

in Figure 3.2.6. The subsets of arcs on which proportionality of flow is

required are: SI= {(1,4),(1,6)}, SII = {(1,8),(1,10)}, SIII = {(4,6),(4,7)}

and SIV = {(7,10),(8,10)}. The aij's beside the arcs in SI, SII' SIII and

SIV are the proportionality coefficients.

Figure 3.2.6. A processing network in the more gene'ral sense.

It is remarked that, after adapting the aij's in an obvious way, the

processing network in Figure 3.2.6 is in fact equivalent to the one drawn

in Figure 3.2.3,

If we would define:

a refining node i as a node of N for which a subset of the set

{(i,j) I j € A(i)} exists with proportionality of flow on the arcs in this

subset,

52

a blending node i as a node of N for which a subset of the set

{(j,i) I j E B(i)} exists with proportionality of flow on the arcs in this

subset

and

a transportation node i as a node of N which is not a refining or blending

node,

then it is immediately clear that none of the properties mentioned in

Remark 3.2.2 have to hold.

Yet, in the remaining part of this monograph it is assumed that a processing

network satisfies the properties mentioned in Remark 3.2.2.

The motivation for doing this is:

1. In many practical situations it.is natural to assume~ incoming (out­

going) arc of a refining (blending) node and proportionality of flow on

all outgoing (incoming) arcs (for instance, a destillation column in an

oil refinery).

2. The network diagrams which can be drawn have a simpler structure (compare

Figure 3.2.3 with Figure 3.2.6) and are therefore easier to interpret.

Visualization is an important aspect which will be discussed further in

Chapter 5.

3. The assumptions simplify the way to think about processing networks as

well as the notation.

We emphasize the following facts:

1. It is in no way restrictive to assume that the properties in Remark 3. 2. 2

are satisfied in a processing network: by introducing additional trans­

portation nodes and/or transportation arcs an arbitrary processing net­

work can be cast into this framework.

2. The special topological properties will not be used in an essential way

in the subsequent discussions (only for notational convenience).

Consequently, the solution procedures developed in the sequel can easily

be adapted to suit processing network problems in the more general sense.

As shown above, a pure processing network problem can be formulated as in

3.2.14-3.2.16, where matrix A has the properties mentioned in Remark 3.2.4.

Conversely, a LP-problem 3.2.14-3.2.16 in which A has the properties

described in Remark 3.2.4 can be considered as a pure processing network

problem in the more general sense.

53

EXAMPLE 3.2.5. Let A be given by:

-1 -1 1

a14 -1 -1 4

A= a16 a46 -1 6

a47 -a7,10 7

a18 -as, 10 8

al, 10 1 1 10

where all aij's are positive and e'A = 0.

Then A reflects the pure processing network structure of Figure 3.2.6.

3. 3. BM-l6 ~tltu.c.twte

The basis structure will be explained in terms of the pure processing net­

work. Both formulations of Section 3.2 can be used, leading to essentially

the same results. Here we use the compact formulation (formulation ;Il

considering the fact that this formulation will also be used for the

solution procedures of Sections 3.4 and 3.5. An explanation of the basis

structure in terms of the first formulation can be found in KOENE [1981a].

The rank of matrix A in 3. 2 .15 is obviously smaller than or equal to (m - 1) ,

since e•A = O.

ASSUMPTION 3. 3. 1. The rank of A equals (m - 1 l •

REMARK 3.3.2. A sufficient (not necessary) condition, to let A have rank

(m - 1), is that the directed graph with node set N and as arc set the set

of transportation arcs TA£ A, is connected. In that case a spanning tree,

containing transportation arcs only, can be constructed in G(N,A). As

mentioned in Section 2.4 the submatrix of A which describes such a spanning

tree has rank (m - 1) • Note that dummy transportation arcs can always be

introduced such that this is the case.

As in pure networks (Section 2.4) we introduce a single artificial variable

xioio with a. ioio = - ei0 Cio arbitrarily chosen from { 1, ••• ,m}. Again it

is easy to prove that matrix

□

54

3. 3 .1

has rank m.

[-e. A] io

* Let B denote a basis of A • Column - ei0 always belongs to B and can be

thought to represent the self-loop (i0 ,i0).

Suppose B contains q processing columns (i.e., the columns of A associated

with a refining or blending process), 0 :5. q :5. m-1, and, consequently, m-q

transportation columns (columns of A associated with a transportation

process) , including the slack column - ei0 •

Matrix B can be partitioned as:

3.3.2.

where BT is an m x (m-q-1) matrix deno"!;.ing the structural basic transporta­

tion processes, and BP is an m x q matrix representing the basic refining

and blending columns.

Let B denote the matrix:

3,3.3.

The set of basic refining and blending processes is given by BAP.

Define the basis graph associated with Bas the directed graph with node

set N and as arc set:

the self-loop (i0 ,i0),

the transportation arcs~ A associated with the columns in BT, and

all processing arcs ~ A associated with the columns in BP, i.e., all arcs

in PA(i), i E BAP (cf. formula 3.2.21 and the definition of PA(i) given in

the previous section).

The purpose of the subsequently stated lemmas is to explain the structure

of the basis graph.

The arc set of a basis graph consists of a number of transportation arcs

and a number of processing arcs.

LEMMA 3.3.3. E~cept for the self-loop (i0 ,i0) the basis graph contains no

cycle with only transportation arcs.

PROOF. This fact follows immediately from the theory of pure networks

(Section 2 .4) • D

55

Knowing this, consider for a moment the basis graph in which all processing

arcs and the self-loop (i0 ,i0) are left out. This graph consists of a

number of connected components, each of which cannot contain any cycle.

Such a connected component must therefore have a tree structure and is

called a transportation tree. A transportation tree may consist of a single

node.

The next lemma gives a relation between the number of basic refining and

blending processes (i.e., the number of elements in BAP) and the number of

transportation trees contained in a basis graph. The number of basic

refining and blending processes is given by q (0 ~ q ~ m-1).

LEMMA 3.3.4. A basis graph contains (q + 1)transportation trees iff the

nwrber of basic refining and blending processes equals q.

PROOF. If there are q basic refining and blending processes the basis graph

must contain m - (q+l) transportation arcs apart from the self-loop (i0 ,i0) •

Considering the following two facts:

the number of arcs in a tree is exactly one less than the number of

nodes in a tree,

- each of them nodes of N belongs to some transportation tree,

it is immediately clear that the basis graph must contain (q+l) transporta­

tion trees.

The other part of the proof is obtained by reversing the argument. □

According to Remarks 2.4.5 and 3.2.4 Lemma 2.4.4 of the previous section is

also valid for pure processing networks, with~ as in 3.3.3.

In addition, it is also possible to state a lemma closely related to Lemma

2.4.4.

Suppose BAP ,f (d.

Let SP be a nonempty subset of BAP.

If a node of the set N(i), i E BAP, belongs to some transportation tree Tt'

process i and transportation tree Tt are said to be incident to each other.

Let T(SP) denote the set of transportation trees which are incident to the

processes i ESP.

LEMMA 3.3.5. Any set SP of basic refining and blending processes is incident

to at least I SP I + 1 transportation trees:

3.3.4.

56

PROOF. Suppose the transportation trees in T(SP) contain in total t nodes

and, consequently, t- IT(SP) I arcs. These t- IT(SP)I arcs plus the lspl

refining and blending processes in SP correspond tot- IT(SP) I+ lspl columns

in the basis B. According to the definition of T(SP), these columns contain

only nonzero elements in the trows of B which correspond to the nodes in

T (Sp) •

Since the columns in a basis must be linearly independent and the column

sum of each of the t- IT(SP) I+ lspl columns is zero, a necessary condition

is:

or

According to LeDlll!a 3.3.4 equality in formula 3.3.4 clearly holds if

Sp= BAP, but there may also be proper (nonempty) subsets of BAP for which

equality holds too.

An iDllllediate consequence of LeDlll!a 3.3.5 is that every transportation tree

must be incident to at least one process i, i E BAP. For suppose there is

some transportation tree for which this is not true, then the q processes

in BAP would be incident to the remaining q transportation trees,which is

impossible because of LeDlll!a 3.3.5.

Lelilllla 3.3.5 can be used to prove that the representative arcs of the basic

refining and blending processes can be chosen in a special way:

LEMMA 3.3.6. The representative arcs of the basic refining and blending

processes can be chosen in such a way that the basic transportation arcs

associated with matrix BT plus these representative arcs form the arc set

of a spanning tree in G (N ,Al •

Such a spanning tree will be called a representative spanning tree of the

basis graph.

PROOF of LEMMA 3.3.6. A simple induction argument will be used.

If BAP =¢the statement is trivially true.

Suppose BAP 'F ¢.
Let s 0 be a nonempty subset of BAP such that:

□

57

3.3.5.

3.3.6.

Such a subset s 0 of BAP must clearly exist: it is either BAP itself or a

proper subset of BAP.

Furthermore, consider a subset s 2 of BAP such that s 0 n s 2 0.
Since s 0 n s 2 = 0 Lemma 3.3.5 implies

3.3.7.

Consequently, using formula 3.3.5:

3.3.8.

Verbally stated: the set s 2 must be incident to at least ls2 ! transportation

trees which are not contained in T(s0). Because s 1 is a subset of s 0 the

following is also true (using 3.3.6):

3.3.9.

After these preparatory observations consider an arbitrary process i* in s 0

and suppose the associated processing node i* belongs to transportation

tree Tk. Lemma 3.3.5 guarantees there is at least one node, say j*, in

* N(i) which belongs to some transportation tree Ti (t ~ k).
* * * Take the arc incident to i and j as the representative arc of process i .

This representative arc transforms the (transportation) trees Tk and T t into

one new tree.

Leave process i* out of the set BAP and consider the new situation:

there is one basic refining or blending process less and one tree less.

The statements in 3.3.6, 3.3.8 and 3.3.9 guarantee that in the new situation

every nonempty subset of basic refining and blending processes again satis­

fies the condition of Lemma 3.3.5.

By induction the statement in Lemma 3.3.6 follows.

Lemmas 3.3.3-3.3.6 provide the following essential theorem.

THEOREM 3.3.7. A basis graph in a pure processing network G(N,A) consists

of a rooted spanning tree formed by the self-loop (i0 ,i0), the basic

□

58

transportation arcs in A and the properly chosen representative arcs of the

basic refining and blending processes, plus all nonrepresentative arcs of

the basic refining and blending processes.

An illustrative example is given in Figure 3.3.1, where the representative

spanning tree is drawn with heavy lines. The associated basis matrix is

given by:

11 12 13 2

-1 -1 -1

1 -1

3.3.10. B 1

a24

a25

2

3

3

~1

a34

a35

' \

1

2

3

4

5

I
I

4
' I
\' , \

I ~
I \

I \

Figure 3.3.1. Example of a basis graph in a pure processing network.

This example demonstrates several important aspects:

1. The reverse of the statement in Theorem 3.3.7 is not necessarily true:

a graph satisfying the properties mentioned in Theorem 3.3.7 is not

necessarily a basis graph.

If a 24 = a 34 , B would be singular (recall that a 24 + a 25 = 1 and

a 34 + a 35 = 1) and, consequently, the graph drawn in Figure 3.3.1 would

not be a basis graph.

The same conclusion can be drawn as in generalized networks (Section 2.5):

59

Whether a subgraph of G(N,A) is a basis graph or not does not only depend

on its topology but also on the values of the processing coefficients

(the aij 's) .

2. The proper choice of the representative arcs need not be unique: arcs

(2,5) and (3,4) could also have been chosen to represent processes 2 and

3, respectively.

Considering Theorem 3.3.7 it is quite natural to give special attention to

the representative spanning tree of the basis graph.

Let T be the matrix representation of the rooted representative spanning

tree, such that each column T . of T corresponds to column B,. of B
•J ·J

(j = 1, ••. ,m). Then basis B can also be written as:

3.3.11. B = TP.

Matrix Pin 3.3.11 can be specified as:

3.3.12. p

in which

I is the identity matrix of order (m - q),

Q is an (m - q) x q matrix, and

Risa square nonsingular matrix of order q.

For matrix Bin 3.3.10 equation 3.3.11 becomes:

11 12 13 2 3

1 -1 -1 -1

2 1 -1

3. 3 .13. 3 1 -1

4 Cl24 Cl34
5 Cl25 0 35

11 12 13 24 35

-1 -1 -1 1

1 -1 1

1 -1
- - - -1

1

-Cl25

1 I 0 25
-1-CI- -

I 24
Cl25

Cl34

-Cl34

Cl34

0 35

60

REMARK 3.3.8. Let P . be the j th column of matrix P (m-q < j s m) and B .
• J • J

the j th column of B, which is associated with refining or blending process

k = ij. According to 3.3.11:

3.3.14.

Suppose process k is a refining process, then B . can be written as in
• J

3.2.21:

3.3.15.

*

I a. a*
R.EA (k) kt •kt

where a•kR, denotes the vector representation of arc (k,R,) as in pure net-

works (see Section 2.4).

Using 3.3.14 and 3.3.15, P . can be written as:
• J

3.3.16. p .
•]

where arc (k,r) denotes the representative arc of process k ij.

In the example presented, column P. 4 can be written as:

3.3.17.

If process k

that:

3.3.18.

-1 -1

1

-1

1

ij is a blending process, in a similar way it can be derived

-1 * -1 a T a + ~ a T a" ,
rk •rk R.EB(t)\{r} R.k -£k

with arc (r,k) the representative arc of process k ij.

From 3.3.16 and 3.3.18 one observes that P . is in fact some positive linear
• J

combination of the j th unit vector (which results from the representative

arc of process ij) and the cycle vectors (defined in Section 2.4) of the

nonrepresentative arcs of process i .•
J

This observation plays an important role in the Simplex algorithm of the

next section. □

61

REMARK 3.3.9. If the first column of B and T is - e 1 (i0 = 1), then the

first row of Q in 3. 3'. 12 is a row of zeros. This is immediately clear from

3.3.16 and 3.3.18, considering the fact that the self-loop associated with

column - e 1 never takes part in a cycle induced in the representative

spanning tree by a nonrepresentative arc of a basic refining or blending

process.

The aggregated graph of the basis graph

Recall that Lemma 2.4.4, which is not only valid for pure networks, but

also for pure processing networks, gives a relation between the basic

processes (including the basic transportation processes) and the nodes in

the network. The basis graph describes the interaction between the basic

processes and the nodes of G(N,A).

Lemma 3.3.5 provides a similar relation between the basic refining and

blending processes and the transportation trees. Here the aggregated graph

of the basis graph, which will be introduced next, describes the interaction

between the basic refining and blending processes and the transport~tion

trees.

Consider a basis graph as described in Theorem 3.3.7 and let there be

(q + 1) transportation trees (0 ~ q ~ m-1).

The aggregated graph of the basis graph is defined as the directed graph

with

node set N* = {1, ..• ,q+l}, where each node i corresponds to transportation

tree Ti (i = 1, ••• ,q+l), and

arc set A*, which consists of all arcs (u,v), u,v EN*, for which in the

basis graph a processing arc exists with begin point in Tu and end point

in TV.

Figure 3.3.2 illustrates the aggregated graph of the basis graph in Figure

3.3.1. There are three transportation trees T1 , T2 and T3 of which the node

sets are given by {1,2,3}, {4} and {S}, respectively. Beside each arc in

Figure 3.3.2 the corresponding processing arc in the basis graph is denoted.

D

62

(3,4) _
,-r, 2

/

Figure 3.3.2. The aggregated graph of the basis graph in Figure 3.3.1.

Note that the arcs in the aggregated graph, which correspond to the repre­

sentative arcs of the refining and.blending processes in the basis graph,

form the arc set of a spanning tree in the aggregated graph (in Figure

3.3.2 drawn with heavy lines).

Let the matrix representation of this spanning tree be given by T. Clearly,

T is a (q + 1) x q matrix.

Consider them x (q+l) matrix V = [vij], where

[

V ij = 1 ,
3.3.19. _

vij - O,

if node i of N is contained in transportation tree Tj,

otherwise.

Let B be written as in 3.3.2:

3.3.20.

and suppose that node i 0 E T1 • Then the product V'B can be written as:

3.3.21. V'B

+m-q-+-+q ➔

* * where R = [rij] is some (q+l) x q matrix. Note that, given the basis B,

* R is unique except for row permutations.

Considering the structure of Vin 3.3.19, BP in 3.3.20 and the fact that

each basic refining or blending process is incident to at least two trans-

* portation trees (Lemma 3.3.5) it can be observed that rij F 0 iff the

process associated with column j in R is incident to transportation tree

Ti. Furthermore, is is easy to verify that R* satisfies the properties of

a matrix as described in Remark 3.2.4.

Properties of matrix R

Not only the representative spanning tree plays an important role in the

subsequently discussed Simplex algorithm, but also matrix R in 3.3.12.

R will be used as a working basis. We discuss some properties of R.

THEOREM 3.3.10. The main diagonal of R in 3.3.12 is strictly positive.

63

PROOF. It must be proved that each element pjj (m-q < j ~ m) of matrix Pis

strictly positive.

According to Remark 3.3.8 we can state the following facts:

A positive contribution to pjj is given by the j th unit vector, which

results from the representative arc. of process i .•
J

Each cycle vector of a nonrepresentative arc of process ij gives

a zero contribution top .. if the representative arc of iJ. is not contained
JJ .

in this cycle, and

a positive one if the representative arc is contained in this cycle.

The latter statement follows from the fact that, if the representative arc

is present in such a cycle, it must be present as a backward arc, which has

a "+1" in the cycle vector (see Section 2.4).

This completes the proof.

Considering 3.3.11 and 3.3.12 we may expect that R depends on the specific

choice of the representative arcs of the basic refining and blending

processes. We will show that matrix R depends only on the specific form of

matrix T, which represents the spanning tree in the aggregated graph

associated with the representative spanning tree in the basis graph.

THEOREM 3.3.11. Given a basis B, matrix R in 3.3.12 depends only on the

particu Zar form of matrix T.

PROOF. First evaluate the product V'T:

3.3.22. V'T = [- e 1 0 TJ .

Suppose we write (see Remark 3.3.9):

row 1

then Pin 3.3.12 can be written as:

□

64

3.3.23.

From 3.3.22 and 3.3.24 it can be seen that:

3.3.24. V'TP = [- e 1 0

In view of the fact that B

3.3.24 results in

3.3.25. * R TR

TR]

TP (formula 3.3.11), comparison of 3.3.21 and

Since R* is unique (except for row permutations) the theorem has been proved. D

The basis structure will be exploited in a specification of the primal

Simplex algorithm, presented in the next section.

3.4. The S-i..mplex al.go!r.Lthm 60ft the min,i,mal. c.o-6.:t 6low pll.Oblem in a pU!!.e

p~oc.e.-6-bing ne.;(J;Jo~k

In Section 2.3 an outline is given of the Simplex algorithm for general

LP-problems with simple upper bounds. The present section discusses a

specification of this algorithm for the minimal cost flow problem in a pure

processing network, formulated by 3.2.14-3.2.16. The basis structure, dis­

cussed in the previous section, will be exploited in this specification.

It is assumed that the rooted representative spanning tree and the inverse

R-l of R in 3.3.12 are stored in some convenient way.

In several steps of the Simplex algorithm we will have to evaluate equations

of the form Tx b* or ~•T = c~, where T describes the rooted representative

spanning tree. This can be done in the way explained in Section 2.4. In the

text we will simply state that the required quantities are determined by

pure-network techniques.

At some places we will need (a submatrix of) matrix Q in 3. 3 .12 or a row of

Q. According to formulae 3.3.11 and 3.3.12, Q can be determined directly

from the original data by means of pure-network techniques (Section 2.4).

Therefore, it is not necessary to store Q: the information required is

determined when needed.

65

For expository reasons we first discuss the representation of the entering

column in terms of the basic columns (step 5 in the algorithm of Section

2.3).

3.4.1. The representation of the entering column in terms of B

Let the column which enters the basis be given by a. Column a represents

either a transportation process or a refining process or a blending process.

In order to find the representation vector y of a in terms of the basis B

we must solve the system:

3.4.1. By= a.

According to 3.3.11, y can be found from

3.4.2. TPy =a.

Hence the calculation of y can be split up in two portions:

First,determine the vector y from:

3.4.3. Ty = a ,

using pure-network techniques (T denotes a rooted spanning tree).

Secondly, calculate y from

3.4.4. Py = y

In general, this two-step procedure involves less arithmetical operations

than a direct evaluation of y from 3.4.1, as can be seen from the structure

of Pin 3.3.12.

These calculations can be accelerated even further by using the following

labeling procedure, which determines

the basic processes which have in any case a zero coeffic~ent in the

representation vector y, and

the basic processes which possibly have a nonzero coefficient in y.

The labeling procedure attaches a two-index label to some of the arcs in

the representative spanning tree. For detecting the structural zeros and

nonzeros in vector y, it is only relevant whether an arc in the representa­

tive spanning tree is labeled or not. The labels themselves will be used

later on in order to reestablish a representative spanning tree when the

leaving process is known (that is after the minimal ratio test) •

In the subsequent labeling procedure we consider a process labeled whenever

its (representative) arc in the representative spanning tree has a label.

66

We consider a basic refining or blending process scanned if all the arcs

contained in the cycles, induced by the nonrepresentative arcs of this

process in the representative spanning tree, are labeled.

Labeling procedure

1. If the entering process is a transportation process, say (i*,j*), its

corresponding arc (i*,j*) induces a single cycle in the representative

spanning tree. Trace this cycle and attach the label [i*,j*J to all

the arcs in this cycle. Continue with step 3.

·* Otherwise the entering process is a refining or blending process, say i.

* Put W = PA(i).

2. Determine all the cycles, induced in the representative spanning tree by

the arcs (i,j) E W, one by one. Start tracing a cycle from node j if i

is a refining node and from node i if j is a blending node and stop

tracing a cycle as soon as a labeled arc is encountered. Label the arcs

in these cycles in the following way.

If i is a refining node, the arcs in the cycle induced by (i,j) in the

representative spanning tree get the label [i,j].

_!! j is a blending node, the arcs in the cycle induced by (i,j) in the

representative spanning tree get the label [-j,i].

3. List all basic refining and blending processes which are labeled, but

not scanned.

If this list is empty, then stop: the labeled processes are the only

ones that may have a nonzero coefficient in the representation vector

y (see Theorem 3.4.3).

Otherwise let W denote the set of all nonrepresentative arcs of the

labeled, but not scanned, refining and blending processes. Continue

with step 2.

* * REMARK 3.4.1. Note that, if a transportation process (i ,j) enters the
* basis, which is incident to only one transportation tree (i.e., both i and

* j belong to the same transportation tree), the same situation occurs as in

pure networks.

EXAMPLE 3.4.2. Figure 3.4.1 shows the labeled part of a representative

spanning tree, assuming that transportation process (4,5) enters the basis.

□

3
[3,6]

/-----,-------I 9

[3,6]

[4,5]

8

Figure 3.4.1. The labeled part of a representative spanning tree.

RYAN & CHEN [1981] discuss how cycles induced in a spanning tree can be

traced.

67

Let us reexamine the relations 3.4.3 and 3.4.4 which have to be solved in

order to find the representation vector y.

After completion of the first pass through step 3 of the labeling procedure

vector yin 3.4.3 can easily be determined as in pure networks (see_ Section

2. 4) • One may verify that y has entries unequal to zero in all the rows (and

only in those rows) which correspond to the then labeled arcs.

After completion of the labeling procedure the columns and rows of P can be

partitioned symmetrically into four classes:

I columns (rows) associated with labeled transportation processes,

II columns (rows) associated with unlabeled transportation processes,

III columns (rows) associated with labeled refining and blending processes,

IV columns (rows) associated with unlabeled refining and blending

processes.

Then equation 3.4.4 can also be written as:

3.4.5.

I

II

III

IV

I II III IV

THEOREM 3.4.3. All nonlabeled processes have a zero coefficient in the

representation vector y of the entering column a.

68

PROOF. The basic observation which provides the proof is that Q4 and R4 in

3.4.5 must be zero matrices. For suppose Q4 ~ O. Then, according to Remark

3.3.8, there must be an unlabeled transportation arc which is contained in

some cycle induced by a nonrepresentative arc of a labeled refining or

blending process. However, this is impossible since all those cycles are

traced and labeled in the labeling procedure. Consequently, Q4 = 0.

Similarly it is proved that R4 = 0.

Since R3 must be a square nonsingular matrix, it follows from equation

3.4.5-IV that y4 O, and, consequently, from 3.4.5-II that y 2 = O.

This completes the proof.

System 3.4.5 reduces to (with y 2 - 0 and y 4 0):

3.4.6.

-1 Since R is kept stored, y3 immediately follows from:

3.4.7.

Furthermore, y 1 can be found from

3.4.8.

where Q1 can be determined by pure-network techniques (Section 2.4).

A more appropriate way to determine y 1 is the following: let the column

partitioning of B, compatible with 3.4.5, be

3.4.9.

Then y 1 can be determined from

3.4.10.

Since B1 and BIII are known, and B1 has a tree structure (B1 denotes the

labeled transportation processes) this system can be solved by pure-network

techniques.

From the above discussion it is clear that R can be written in block

triangular form:

□

3.4.11. R • [RI l R3

The inverse of R is given by: l _,
3.4.12. R-1 = Rl RO J -1 ,

R3

where

3. 4.13.

The following theorem plays an essential role in proving Theorem 6.2.3 in

Chapter 6 and may also be important for implementations of the present

Simplex algorithm (see Section 3.6).

69

THEOREM 3.4.4. The nwriber of basic refining and blending processes with a

nonzero coefficient in the representation vector y, is zero iff the entering

process is incident to only one transportation tree.

PROOF. if. If the entering process is incident to only one transportation

tree, no refining or blending process is labeled in the above described

labeling procedure. According to Theorem 3.4.3, the number of basic

refining and blending processes with a nonzero coefficient in the represen­

tation vector is zero.

only if. Suppose the entering process is incident to at least two trans­

portation trees. Then obviously there must be at least one basic refining

or blending process labeled after the first pass through step 3 of the

labeling procedure. As noted before all entries in vector y which corre­

spond to these labeled processes are nonzero. In other words: y3 f 0.

Then relation 3.4.7 implies that also y3 f 0, or: there is at least one

basic refining or blending process which has a nonzero coefficient in

vector y. □

70

3.4.2. Determining the process which leaves the basis

The process which leaves the basis is determined by means of the standard

minimal ratio test (see Section 2.3).

Lets be the pivot row. The elementary matrix E, required to update the

basis inverse, can be calculated in the way described in Section 2.3.

Note that E must have one of the following structures:

1,
. · 1

3.4.14. E

I

2 '✓-
n11
t

1/: , /,
n2
~~

t
s

'·
. 1

II II.I IV

I

I II

I III

I IV

in case a transportation process leaves the basis, and

I

I

3.4.15. E 1.
··1

½ , ,:
nl

0

~ '/,:
n2

~

t
s

1 ··.,
I

in case a refining or blending process leaves the basis.

71

3,4.3. Basis change

The leaving, say the s th, column of Bis replaced by the entering column.

The main questions of this subsection are: what is the inverse of the working

basis in the new situation and how can we determine a representative

spanning tree for the new situation.

Let B = TP denote the basis before the change, where Pis given in 3.4.5
-1 with Q4 = 0 and R4 = 0. Write P as:

I s1 s2

-1 I s3
3.4.16. p

-1
R1 RO

-1
R3

where R0 is given by 3.4.13 and s 1, s 2 and s 3 by:

3.4.17.

Let B-l denote the basis inverse after the change. Then (see Section 2.3):

3.4.18. --1
B

-1
EB

We want to write Bas:

3.4.19. B = TP ,

where T describes a rooted representative spanning tree, such that column

T . of T corresponds to column B . of B (j = 1, ••• ,m).
"J "J

A representative spanning tree for the new situation can be obtained by

updating the previous representative spanning tree, using the labels

attached to the arcs of the previous representative spanning tree.

Reestablishing a representative spanning tree

The entering process is either a transportation process (i*,j*) or a

refining or blending process i*.

Let the label attached to the leaving process be given by [i 1,j 1].

Put k = 1.

72

·* 1 • If I ik I = 1 , then

if i* is a refining node make (ik,jk) the representative arc of

·* process 1 ,

if i* is a blending node make (jk,-ik) the representative arc of

·* process 1 •

Stop: there is a representative spanning tree for the new situation.

Otherwise, inspect the representative arc of process likl. Let this arc

have label [ik+l'jk+l].

2. If ik > 0 make (ik,jk) the representative arc of refining process½:·

Otherwise, make (jk,-ik) the representative arc of blending process likJ.

Put k = k + 1 and goto 1 •

EXAMPLE 3.4.5. Suppose that in Figure 3.4.1 arc (4,7) leaves the basis

graph. The representative arc of process 8 becomes (7,8), that of process 3:

(3,6). See Figure 3.4.2.

3 l----~-----9

8

Figure 3.4.2. The reestablished part of the representative spanning tree.

Considering a single basis change, the labeling procedure of Subsection

3.3.1 and the reestablishing procedure of this subsection were developed in

such a way, that the number of changes in the previous representative

spanning tree, required to obtain a representative spanning tree for the

new situation, would be as small as possible.

THEOREM 3.4.6. The number of changes of representative arcs of the basic

refining and blending processes, required to obtain a new representative

spanning tree from the previous one, is minimal when the above described

labeling and reestablishing procedures are used.

73

PROOF. We consider a single basis change. Regard the labeling procedure of

Subsection 3.4.1. All processes which are labeled after the first pass

through step 3 of the labeling procedure are said to have distance 0 (to

the entering process). All processes which are labeled after the k th

(k ~ 2) pass through step 3 of the labeling procedure, but not labeled

after the (k - 1) th pass, are said to have distance k - 1.

The reestablishing procedure is such that, if the leaving process has dis­

tance i (i = 0,1, •••), exactly i representative arcs of basic refining and

blending processes are chosen different from the old situation.

In order to prove the theorem it is sufficient to show that at least i

replacements are required to accomplish a new representative spanning tree

from the old one (i ~ 1).

Consider the old representative spanning tree. Add the (c.q. an arbitrary

representative) arc associated with the entering process. Leave out the

(representative) arc associated with the leaving process.

This graph clearly contains a cycle in which all labeled arcs have dis­

tance 0.

In order to achieve a representative spanning tree in the new situation

obviously a representative arc, currently contained in this cycle, has to

be chosen in a different way. In doing this, a new cycle arises in which

all labeled arcs have distance 0 or 1. Again this cycle must be broken,

i.e., one of the representative arcs in this cycle must be chosen in a

different way, leading to a new cycle in which all labeled arcs have dis­

tance 0 , 1 or 2 •

By repeating this process it is seen that at least i replacements are

required, which completes the remaining part of this proof.

Now that we have a new representative spanning tree, Tis 3.4.19 is known

and P-l can be evaluated from (see 3.4.18 and 3.4.19):

3.4.20.

It is assumed that the s th column of matrix~ corresponds to the (repre­

sentative) arc of the entering process.

Matrix (T- 1 ~) has a simple structure. Using the same partitioning as for P
-1 ~

in 3. 4. 5 the product T T can be written as:

□

74

I II III IV

, .
. 1 II I

II j _ . ~
II . 1

I II

3.4.21. ~ ·-, 1

1 ... , III
~--.,

I IV

where the shaded columns, denote cycle vectors (see Section 2. 4) •

In column set I there is one cycle vector in positions if a transportation

process leaves the basis. There is no cycle vector in this set in case a

refining or blending process leaves the basis.

Column set III has zero or more cycle vectors in case a transportation

process leaves the basis and one or more if a refining or blending process

leaves the basis.

T-l T has at least one cycle vector (in position s); if there is more ''than

one cycle vector this is caused by the changed representative arcs.

-1 A

REMARK 3.4. 7. The s th row of T Tis a unit vector (or a· negative unit

vector). This fact follows immediately from the way labeling and reestab­

lishing of a representative spanning tree is performed.

For ease of notation denote T-l T in 3. 4. 21 by:

['
T2

-1 A

I
3.4.22. T T=

T3 T4 J
Note that post-multiplying EP-1 by T.,. 1 T modifies only a few columns of

EP- 1• The modified columns can be obtained by addition and subtraction of

columns of EP-l since T-1 T is a matrix exclusively consisting of elements

equal to O or ± 1 •
·-1

Using 3.4.14-3.4.17 and 3.4.22 the expression for P in 3.4.20 can be

evaluated.

D

75

Four cases can be distinguished:

1. A refining or blending process enters the basis, a refining or blending

process leaves the basis.

2. A transportation process enters the basis, a refining or blending process

leaves the basis.

3. A transportation process enters the basis, a transportation process

leaves the basis.

4. A refining or blending process enters the basis, a transportation process

leaves the basis.

Cases 1 and 2. In these cases a refining or blending process leaves the

basis. The matrix product in expression 3.4.20 becomes:

I El I s1 s2 I T2

~-1 I I s3 I
3.4.23. p

-1
E2 Rl RO T4

I -1
R3 I

where the first matrix after the equality sign denotes matrix E given in

3.4.15.

Consequently:

I

3.4.24.
I

s2+E1Ro

s3

E2RO

-1
R3

In case 1 the dimension of the working basis does not change and the new

working basis inverse R-l can be written as:

3.4.25.

with

76

3.4.26. --1
Rl

-1
E2 Rl T 4

3.4.27. RO E2 RO

3.4.28. --1 -1
R3 R3 .

In case 2 the dimension of the working basis is reduced by one, because the

s th column of P-l is the s th unit vector (cf. 3.3.11 and 3.3.12).
--1 By dropping the s- (m-q) th column and row of R in 3.4.25 the new working

basis inverse has been obtained.

Cases 3 and 4. In these cases a transportation process leaves the basis.

Expression 3.4.20 becomes:

El I s1 s2 Tl T2

p-1
I I s3 I

3.4.29.
-1

E2 I Rl RO T3 T4

I -1
R3 I

where the first matrix after the equality sign denotes matrix E in 3.4.14.

This leads to:

3.4.30.
--1 p

I

In case 3 the s th column of P-l is again the s th unit vector. The new

working basis inverse becomes:

3.4.31.

with

3.4.32. --1
Rl E2T2 +

-1
(E2S1 + R1) T 4

-1
= E2T2 + (I -E2Q1)R1 T4

3.4.33. RO E2S2 + R = 0 (I-E2Ql)RO
-1

- E2 Q2 R3

3.4.34. --1
R3

-1
R3

In case 4 the dimension of the working basis increases by one. The new

working basis inverse is given by:

3.4.3~.

A-1 where R is given by 3.4.31,

* A-1
Pss is the element in the s th column and s-th row of P in 3.4.30,

* is the part in column regions III and of the s th row
A-1

Ps• r.v of P ,

* is the in row regions III and r.v the s ·th column
A-1

P.s part of of P •

77

* Observe from 3.4.30 that the part of vector p•s in row region IV is a zero

vector.

* * * From the expressions in 3.4.30, pss' ps• and p•s can be determined, taking

advantage of the facts that

- T1, T2, T3 and T4 contain only elements 0 and ± 1.

- T2 is possibly a zero matrix and T4 a unit matrix (this is the case if no

representative arcs are replaced by others in the reestablishing

procedure).

- The s th row of [T1 T2] is a (negative) unit vector.

REMARK 3.4.8. In cases 1 and 2 we do not need matrix Qin 3.3.12 in order

to determine the new working basis inverse.

It can easily be verified that in'cases 3 and 4 we only need the s ·th row

of Qin 3.3.12. As noted before, this can be done by means of pure-network

techniques.

A special way to find the s th row of Q (s = 2, ••• ,m-q), or. in other words

the elements Psj' j = m-q+1, ••• ,m, of P (see 3.3.12) is the following.

Suppose the j th column of P describes the refining process k = ij. Then

P•j can be written as (see 3.3.16):

* where a•ki is the vector representation of arc (k,i) as in pure networks

(see Section 2.4).

We see that the s th element of P.j can be considered as a linear combination
-1 * of the s th elements of the cycle vectors T a•ki' i € A(k) \ {r}.

78

Suppose that arc (i 1,j 1) corresponds to the s th column of T (the matrix

representation of the rooted representative spanning tree).

An arc (k,i), i E A(k) \{r}, induces the cycle Cki in the representative

spanning tree. From the theory of pure networks we know that the s ·th
-1 * element of T a•ki is

+1 if arc (i 1,j 1) is a backward arc in Cki'

-1 if arc (i 1,j 1) is a forward arc in cki'

0 otherwise.

We can determine whether arc (i 1,j 1) is a forward or backward arc in Cki in

the following way:

Leave out the arc (i 1,j 1) from the representative spanning tree.

Then two trees arise, say T1 with i 1 E T1 and T2 with j 1 E T2• Determine to

which of these two trees each node i EN belongs.

The reader may verify that the following is true:

if k E T1 and i E T2 then (i1,j 1) is a backward arc in ~i'

if k E T2 and i E T1 then (i 1,j 1) is a forward arc in Cki'

otherwise (i 1,j 1) is not contained in Cki"

Based on these observations we state an algorithmic way to determine element

psj' where column P.j corresponds to refining process k

If k E T1

then do for all nodes v E A (kl \ {r}

if v E T2 ~ Psj = Psj + akv
If k E T2

~ do for all nodes v E A(k) \ {r}

if v E T1 then p .
-- SJ

In an completely analogous way p . can be determined if k
SJ

blending process.

The above discussion reveals several important aspects:

ij denotes a

It is sufficient to maintain a working basis of the size equal to the

number of basic refining and blending processes.

- After each basis change the working basis inverse has a block triangular

form with two blocks on the main diagonal.
-1

- Both s3 and R3 remain what they are in performing the basis change (see

□

3.4.24 and 3.4.30). This fact will be exploited in determining the Simplex

multipliers.

79

3.4.4. Finding the Simplex multipliers

Assume we have a basis B, which can be written as in 3.3.11:

3.4.36. B = TP,

with P-l as in 3.4.16:

I II III IV

I sl s2 I

p-1
I s3 II

3.4.37.
-1

Rl RO III

-1
R3 IV

The Simplex multipliers can be determined from (cf. 2.3.12):

3.4.38. 1T 1 B = c~

Define

3.4.39. 6 1 := 1T 1 T,

then, according to 3.4.36 and 3.4.38, 6 can be found from:

3.4.40.
-1

6 1 = c~ p •

After a partitioning of 6 and cB,,compatible with the one of P-l in 3.4.37,

3.4.40 can be written as

3.4.41. [6' 6' 6' 6']
1 2 3 4

[c' c' c' c']
1 2 3 4.

which reduces to:

3.4.42. 6 I
1

c'
1

3.4.43. 6 I
2 c' 2

3.4.44. 6' Ci Sl
-1

3 + C3 Rl

I

3.4.45. 6 I Ci S2 + c2 s3 + C3 RO +
-1

4 c4 R3

sl s2

I s3

-1
Rl RO

-1
R3

80

Using 3.4.17 83 and 84 can also be written as:

3.4.46.

and

3.4.47.

8'
3

The matrices 21, 22 and 23 can be found using pure-network techniques

(Section 2.4).

After determination of 8, using 3.4.42, 3.4.43, 3.4.46 and 3.4.47, u in

3.4.39 can also be evaluated by means of pure-network techniques.

We conclude this subsection by pointing out that, after each basis change,

84 in 3.3.45 can be found in an alternative way.
•-1 Consider the basis B = TP after the basis change and assume P is parti-

tioned in the way obtained in the previous section.

We must solve:

3.4.48.

or in the same way as before, we first determine

3.4.49.

and secondly solve

3.4.50.

• ·-1
Let 8 and e8 be partitioned compatible with P •

Consider the two possible cases:

(a) A refining or blending process has left the basis. Then e1 c 1,

e2 = c2, e3 differs in one element from c3, e4 = c4•

According to 3.4.24, 04 can be written as:

3.4.51. 9' 4

Subtraction of 3.4.51 and 3.4.45 qives:

3.4.52.

81

Considering the structure of E1 , E2 , c 3 and c 3 the right-hand side of

3.4.52 denotes the product of a scalar with the s- (m-q) th row of R0 .

(bl A transportation process has left the basis. Then c 1 differs in one

element from c 1 , c 2 = c 2 , c 3 c3 , and c4 = c4 •

According to 3.4.30, @4 can be written as:

3.4.53. c1(E1S2) + c2S3 + c3(E2S2+Ro) + c4R;1

-1
= cl El s2 + c2S3 + C3 E2 s2 + C3 Ro + c4 R3

Subtraction of 3.4.53 and 3.4.45 gives:

3.4.54. scalar x the s th row of s2 •

In order to determine the s-th row of s 2 we see from the fact that

(formula 3.4.17):

3.4.55.

we only need the s th row of Q.

The above discussion makes clear that e4 can be determined in the following

way:

Given TI determine 04 from 3.4.39 - another possibility is of course to

store [0 3 04] in every iteration - and §4 is found from 3.4.52 or 3.4.54.

Note that the only parts of Q, required to determine the Simplex multipliers,

are Q1 in order to evaluate 03 in 3.4.46 and the s th row of Qin case a

transportation process has left the basis in the basis change.

3.4.5. Calculating the reduced costs

Assuming that the current Simplex multipliers are denoted by TI, the reduced

costs can be found from:

3.4.56. c .. - TI• + TI • - c .. (i, j) E TP
l.J]. J l.J

3.4.57. C, - TI. + I a .. TI, - Ci i E RP
].].

jEA(i) l.J J

3.4.58. c. TI• - I aji Tij - c. i E BP
].].

jEB(i)
].

82

Using the standard rules of the Simplex algorithm (Section 2.3), it is

determined whether the current solution is optimal. If not, a nonbasic

process is selected to enter the basis.

3.4.6. Initialization

An easy way of finding a starting basis for pure network problems is

described in Section 2.4. This starting procedure can also be applied to

problem 3.2.14-3.2.16. The starting basis is then simply a rooted spanning

tree with transportation arcs only. Matrix Pin 3.3.12 is the identity

matrix and the working basis has size zero.

3. 5. Ano-theJL view on pUll.e. pMc.U-6ing ne.:fwOJtk.-6

In the previous section a specification of the primal Simplex algorithm has

been developed, in which the basis structure, in particular the representa­

tive spanning tree, is exploited. For each process i E BAP - the set of

basic refining and blending processes - a representative arc was chosen

from PA(i), in such a way that the arcs in the transportation trees plus

these representative arcs form the arc set of a spanning tree in G(N,A).

In this section we discuss an alternative way to regard and solve pure

processing network problems. Inst~ad of choosing a representative arc for

each process i E BAP we here discuss the possibility to choose a represen­

tative node for each process i E BAP in a special way, namely, we can select

a node from each set N(i), i E BAP, in such a way that these nodes belong

to different transportation trees. This way of looking at pure processing

networks gives rise to several modifications in the Simplex algorithm of

Section 3.4. These modifications will be discussed.

Assume again that a basis Bis given by:

3.5.1.

where BT is an m x (m-q-1) matrix denoting the structural basic transporta­

tion processes, and BP is an m x q matrix representing the basic refining

and blending processes.

Suppose that the slack column - e. in 3. 5. 1 has its nonzero entry in a row io
which corresponds to a node in transportation tree T1•

83

Lemma 3.3.5 says that every subset SP of the basic refining and blending

processes is incident to at least lspl transportation trees from the set

{T2 , ••• ,Tq+l}. Recall that this is essentially HALL's condition (see Section

2.5). Considering the definition of T(SP) in the previous section, HALL's

theorem (Theorem 2.5.8) implies the following lemma.

LEMMA 3.5.1. For each process i E BAP a node can be chosen from the set

N(i) in such a way that these nodes belong to different transportation

trees from the set {T2 , •.• ,Tq+1}.

Suppose that for each process i E BAP a representative node is chosen from

N(i) in the way of Lemma 3.5.1. Attach a self-loop to each of these nodes.

These self-loops can be considered as the root-arcs of the transportation

trees T2 , ••• ,Tq+l" Then the self-loop (i0 ,i0), the basic transportation

arcs associated with BT in 3.5.1, and the self-loops attached to the

representative nodes of the basic refining and blending processes form the

arc set of a "representative spanning forest of rooted transportation trees"

(abbreviated to representative forest in the sequel).

In matrix terms the self-loops are represented by negative unit columns.

It is quite clear that we can use a representative forest instead of a

representative spanning tree in the Simplex PRON procedure of the previous

section.

EXAMPLE 3.5.2. In the example of Figure 3.3.1 nodes 4 and 5 can be thought

to represent the processes 2 and 3, respectively. The corresponding

representative forest is drawn in Figure 3.5.1.

2

GX:)

©:)

Figure 3.5.1. A representative forest for the basis graph in Figure 3.3.1.

84

Again the representative forest is not necessarily unique.

Let T be the matrix representation of the representative forest such that

each column T. of T corresponds to column B . of Bin 3.5.1, j = 1, •.• ,m.
·J ']

Obviously Tis a square nonsingular matrix with the last q columns a set of

negative unit vectors.

As in Section 3.3 we can write

3.5.2. B = TP ,

with

3.5.3. p

where

I is the identity matrix of order (m - q),

Q is an (m-q) x q matrix, and

Risa square nonsingular matrix of order q.

For matrix Bin 3.3.10 formula 3.5.2 specifies to:

11 12 13 2 4

1 -1 -1 -1

2 1 -1

3.5.4. 3 1 -1

4 (l24 (l34
5 (l25 (l35

11 12 13 44 55

-1 -1 -1 1

1 1

1 1

-1

-1

1 1

-1

-1

-Cl24 -(l34

-a25 -a35

REMARK 3.5.3. Consider a column P.j (m-::-<i < j !, m) of P and column B,j of B

which corresponds to process k = ij. According to 3.5.2:

3.5.5.

If B,j denotes the refining process k ij we can write:

85

3.5.6.

Consequently, using 3.5.5 and 3.5.6,

3.5.7. p .
•J

Similarly, if B•j denotes the blending process k

written as:

3.5.8. p .
'J

ij, column P•j can be

-1 -1
The vectors T ek and T e R, in 3. 5. 7 and 3. 5. 8 describe either a negative

unit vector or a more general root-path vector (see Section 2.4).

Consequently, each column P,j (m-q < j ~ m) can be considered as a linear

combination of the j th unit vector (which results from the representative

node of process i.) and the root-path vectors which describe the path from
J

a nonrepresentative node R, E N(i.) to the root of the transportation tree
J

to which node R, belongs.

In the example presented, column P, 4 can be written as:

-1

1

-1

-1

This observation will again be used in the Simplex algorithm.

REMARK 3. 5. 4. If the first column of B and T is - e 1 (i0 = 1) , then one

easily proves that the first row of Qin 3.5.3 is not a row of zeros (cf.

Remark 3.3.9).

As in Section 3.3 we can introduce an aggregated graph and prove several

important properties of matrix R in 3.5.3.

D

D

86

ASSUMPTION 3.5.5. The transportation trees (# T1) are numbered in such a

way that the representative node of process i. (associated with column B .
J ·J

in B, j = m-q+1, ••• ,m) belongs to transportation tree T. (l).
J- m-q-

The aggregated graph

The aggregated graph, associated with basis Bin 3.5.1, is the directed

* * graph G(N ,A), with

* N = {2, •.• ,q+1}; node i corresponds to transportation tree Ti, and

* * A as follows. The self-loops (i,i), i = 2, .•• ,q+1, belong to A. Further-

more, if the nonrepresentative nodes of process i. belong to transportation
J

trees Tj 1~ ••. ,Tj (# T1), then also the arcs (k,j 1), ••• ,(k,js) with
s * k = j - (m-q-1) belong to A •

This statement holds for all processes ij, j m-q+1, ••• ,m.

Similarly as in Section 3.4 we introduce them x q matrix V = [vij] (note

that in this section also the transportation tree T1 has been taken into

account) , with

3.5.9.

0

if node i belongs to transportation tree Tj+l'

(i = 1, ... ,m; j = 1, ..• ,q) ,

otherwise.

Suppose Bis written as in 3.5.1, then the product V'B satisfies:

3.5.10. V'B = [O 0

+1-+ +m-q-,1 -++q-+

* * where R :rij] is a q x q matrix. *
Note that R in 3.5.10 is identical to the last q rows of R in 3.3.21 if

in Section 3.3 the transportation trees are numbered in the same way as

indicated in Assumption 3.5.5. Consequently, we can immediately state the

* following three facts for matrix R in 3.5.10 (cf. the properties of matrix

* R in Section 3.3):

1. R* is unique, given the basis B (considering Assumption 3.5.5 no row

permutations are possible).

* * 2. An element ri. of R is unequal to zero iff the process associated with
J * the j-th column of R is incident to transportation tree Ti+l· Hence,

each column of R contains as many elements unequal to zero as the number

87

of transportation trees in the set {T2 , ••• ,Tq+l} to which the associated

refining or blending process is incident.

* 3. The main diagonal of R is zero-free. This follows immediately from

point 2 and Assumption 3.5.5.

** If we define the matrix R

** * 3.5.11. r ..
l.J

1 , if r .. -f. 0
l.J

0 I 0

then one can easily observe from the definition of the aggregated graph,
** that matrix R is the adjacency matrix of the aggregated graph.

* For simplicity we will say that R describes the adjacency structure of the

aggregated graph.

Properties of matrix R

THEOREM 3.5.6. For matrices R in 3.5.3 and R* in 3.5.10 the following

relation holds:

3.5.12. * R = - R •

PROOF. We can write

3.5.13. V'T = [O

(see the definition

Since p is given as

3.5.14. V'TP = [O

the product V'T as:

0 -I]

of Vin 3.5.9 and Assumption

in 3.5.3 we also have:

0 -R]

Considering 3.5.2, 3.5.10 and 3.5.14:

* R = - R •

3.5.5).

Hence the above discussion on the properties of matrix R* makes clear that

the following theorems are valid.

THEOREM 3.5.7. Matrix R in 3.5.3 is unique.

THEOREM 3.5.8. An element r .. of R is unequal to zero iff the proces as­
l.J

sociated with the j-th column of R is incident to transportation tree Ti+l.

□

88

This theorem implies that matrix R is at least as sparse as matrix BP in

3.5.1 in the following sense: each column of R does not contain more

elements unequal to zero than its corresponding column in BP.

In the next section we discuss the possibility to permute matrix R to a

block triangular matrix with irreducible blocks on the main diagonal. In

this respect the following theorems are important:

THEOREM 3.5.9. The main diagonal of R is zero-free.

THEOREM 3.5.10. Matrix R describes the adjacency structure of the aggregated

graph.

Thus far we have discussed that we can describe the basis structure in a

pure processing network in a somewhat different way than in Section 3.3.

The present specification of the basis structure gives rise to a specifica­

tion of the primal Simplex algorithm, which is different frbm the one in

Section 3.4 in several aspects. What has been said in Section 3.4 remains

valid except for the modifications discussed next.

Modifications of the Simplex algorithm in Section 3.4

A. Instead of a representative spanning tree a representative forest is

kept stored in some convenien~ way.

B. In finding the representation y of the entering column a in terms of the

basis B (Subsection 3.4.1), the labeling procedure becomes slightly

different.

Let the set of arcs on the path from a node j EN to the root of the

transportation tree to which node j belongs, plus the self-loop attached

to this root, be denoted by P .•
J

Now a basic refining or blending process i is considered labeled when-

ever the self-loop attached to the representative node of i has a label.

A basic refining or blending process i is considered scanned if all arcs

on the paths Pj, j E N(i), are labeled.

89

Labeling procedure

* * 1 • .!f the entering process is a transportation process, say (i ,j), then
* * * * label all arcs in Pi* by [i ,i J and label all arcs in Pj* by [i ,j],

provided they do not have yet a label.
. * If the entering process is a refining or blending process, say 1 , then

determine the paths P. for all j E N(i*), one by one. Stop tracing
J

a path as soon as a labeled arc is encountered. Label the arcs in Pj

* by [i ,j].

If the entering process is incident to only one transportation tree, then

stop.

2. List all basic refining and blending processes which are labeled, but

not scanned.

If this list is empty, then stop.

Otherwise, let W denote the set of all nonrepresentative nodes of the

labeled, but not scanned, refining and blending processes.

3. Determine the paths Pj for all nodes j E w, one by one. Stop tracing a

path as soon as a labeled arc is encountered. Whenever node j belongs

to N(i), label the arcs in Pj by [i,j].

Continue with step 2.

EXAMPLE 3.5.11. Figure 3.5.2 shows the labeled part of a representative

forest, assuming that transportat~on process (4,5) enters the basis. The

situation in Figure 3.5.2 corresponds to the one in Figure 3.4.1. It is

assumed that node 5 is the representative node of process 3, node 6 is the

representative node of process 8.

[4,4]
[3,3] [3,6]

@:)

8

Figure 3.5.2. The labeled part of a representative forest
in pure processing networks.

90

REMARK 3.5.12. Note that possibly some more arcs are labeled than in the

labeling procedure of Subsection 3.4.1. To be precise: let the set of

labeled processes which would arise in the labeling procedure of Subsection

3.4.1 be given by L.

If the labeled processes in BAP contain some process i for which some node

j E N(i) belongs to T1, then the labeled part of the representative forest

consists of L plus all arcs on the path from the root of T1 to L (including

the root-arc of T1). Compare in this respect Figure 3.4.1 and Figure 3.5.2.

If the entering process is:incident to only one transportation tree, say TR,,

then the labeled part of the representative forest consists of L plus all

arcs on the path from the root of TR, to L (including the root-arc of TR,).

In both cases we may just as well consider the arcs on such paths as not

being labeled (cf. Subsection 3.4.1 and Section 2.4, Figure 2.4.2).

Theorems 3.4.3 and 3.4.4 also hold in the present view on pure processing

networks.

C. In the basis change (cf. Subsection 3.4.3) a representative forest is

reestablished as follows.

Reestablishing a representative forest

Let the label attached to the leaviijg process be given by [i1,j 1]. The

entering process is either a transportation process, say (i*,j*), or a
. * refining or blending process, say i. Put k = 1.

1. g ik = i * then

□

if i* is a refining or blending process, take jk as the representative

node of process i*.

Stop. There is a representative forest for the new situation.

Otherwise (ik ~ i*), let the self-loop attached to the representative

node of process ik have label [ik+l'jk+l].

Make jk the representative node of process ik.

Put k = k + 1 and goto 1.

EXAMPLE 3.5.13. Suppose that in Figure 3.5.2 arc (4,7) leaves the basis

graph. The representative node of process 8 becomes node 7, that of

process 3: node 6. See Figure 3.5.3.

91

3 5 1----------< 9

CG

Figure 3.5.3. The reestablished part of the representative forest.

Theorem 3.4.6 holds in the present view on pure processing networks too.
-1 -We note that the shaded columns in the matrix product T T in 3 • 4. 21 now

denote root-path vectors. The reader may verify that matrices T3 and T4 in

3.4.22 in general have a somewhat easier shape than in the solution

procedure of Section 3.4. For instance, if a transportation process leaves

the basis, T4 is a permutation matrix.

Hence, the expressions in which T3 and T4 appear (formulae 3.4.26, 3.4.30

and 3.4.32) can usually be evaluated in a somewhat easier way than in the

solution procedure of Section 3.4.

The statement in Remark 3.4.8 on determining the s th row of Qin 3.3.12

can easily be adapted.

A comparison of the Simplex PRON°procedures of Sections 3.4 and 3.5 will be

given in the next section.

3 • 6 • Re.mMIU>

In this section some remarks are made with respect to pure processing

network problems.

Implementation considerations

The development of efficient implementations of the Simplex PRON procedures,

described in the previous two sections, is a field of future study. He.re

we only want to point out several aspects that may be important in this

respect.

92

In the solution procedure of Section 3.4 (PRON 1) both the rooted represen-
-1 ---

tative spanning tree and matrix R play an important role.

The rooted representative spanning tree, which has the matrix representation

Tin 3.3.11, is used in:

1. Solving equations of the form

* Tx = b ,

as in 3.4.3, 3.4.10, or of the form

1r 1T = 6 1

as in 3.4.39.

2. Determining the processes which take part in the representation of the

entering process in terms of the basis (Subsection 3.4.1). The labeling

procedure described in that section can be seen as tracing a number of

cycles induced in this tree.

3. Finding a representative spanning tree for the situation after a basis

change. This process can be regarded as making and breaking cycles a

number of times consecutively.

4. Updating the working basis inverse (see Subsection 3.4.3).

Such operations also arise in solving pure network flow problems (Section·

2.4) or LP-problems with an embedded pure network structure, e.g. GLOVER &

KLINGMAN [1981]. Therefore the techniques developed for those problems can

be applied here. Relevant references are given in Subsection 1.1.1.

Matrix R-l can be stored explicitly, but, if its size is large, a product

form or elimination form would be more appropriate. A product form can be

developed by the same kind of reasoning as in HELGASON & KENNINGTON [1977].

GLOVER & KLINGMAN [1981] use a product form of the working basis inverse in

their Simplex SON procedure.

About the solution procedure of Section 3.5 (PRON 2) similar things could

be said.

Both in PRON 1 and in PRON 2 an important question is how to choose the

process which enters the basis (i.e., selecting the pivot column).

It is worthwhile to test whether (and if so, how) priorities should be

given to the following four possible cases (cf. Theorem 3.4.4).

1. A transportation process, incident to exactly one transportation tree

enters the basis.

Characteristics:

the representation vector yin 3.4.1 is as in the pure network

situation;
-1

- R does not change, as can be verified by inspection of 3.4.30,

considering the fact that E2 = 0, T2 = 0 and T4 = I.

2. A transportation process, incident to two transportation trees enters

the basis.

Characteristics:

93

- at least one basic refining or blending process has a nonzero coeffi­

cient in the representation vector y;
-1 -1

- R changes. The size of R reduces by one or remains the same.

3. A refining or blending process, incident to exactly one transportation

tree enters the basis.

Characteristics:

- the representation vector y can be found by pure-network techniques

(Section 2.4);

the size of R-l increases by one. R-l becomes as in 3.4.35 with R-l

unchanged and P.s = 0. This follows from 3.4.30, considering that

E2 = o, T2 = o, T3 = 0 and T4 = I.

4. A refining or blending process,. incident to at least two transportation

trees enters the basis.

Characteristics:

- at least one basic refining or blending process has a nonzero coeffi­

cient in the representation vector y;
-1 1 - R changes. The size of R- remains the same or increases by one.

By recording in each iteration to which transportation tree each node in

the network belongs, the number of transportation trees, to which a

certain process is incident, can easily be determined.

A comparison of PRON 1 and PRON 2

Although PRON 2 (Section 3.5) is perhaps less intuitive than PRON 1

(Section 3.4), PRON 2 may be preferred because of several reasons:

1. Matrix R, the working basis, is unique in PRON 2 (Theorem 3.5.7),

independent of the specific choice of the representative nodes.

94

In PRON 1, matrix R depends on the specific choice of the representative

arcs of the basic refining and blending processes (see 3.3.25).

2. In PRON 2 matrix R is at least as sparse as matrix BP in 3.5.1 in the

sense that the number of nonzero elements in each column of R is not

greater than the number of nonzeros in the corresponding column in BP.

In PRON 1 this need not be (and in many instances is not) the case.

3. The ideas of PRON 2 are easier generalized to generalized processing

network problems than those of PRON 1 (see Section 4.3).

4. An other advantage of PRON 2 over PRON 1 is explained in the subsequent

discussion on block triangularization of matrix R.

In our opinion the pure processing network structure is exploited as far as

possible in the Simplex PRON procedures of Sections 3.4 and 3.5.

However, in many applications the working basis R will,be a sparse matrix

and the question arises whether it is possible to reorder R in some

desirable form using sparsity considerations. Some of these forms are

discussed in DUFF [1977a].

In the sequel the possibility to block triangularize R (and consequently

R- 1) further than the block triangular form with two blocks on the main

diagonal, obtained from the labeling procedure in Subsection 3.4.1, is

pointed out.

Block triangularization of the working basis R

Consider an arbitrary square nonsingular matrix A. The essential question

in block triangularizing A is to find permutation matrices P1 and P2 such

that:

3.6.1.

~

where Aii (i = 1, ••• ,N) are square irreducible matrices.

Usually P1 and P2 are determined in two stages (see DUFF [1977a]):

(1) Determine a row permutation matrix P3 such that A1 := P 3 A is a

matrix with a zero-free diagonal.

(2) Find a permutation matrix P 4 such that P 4 A1 P4 has the desired form

of 3.6.1, Such a permutation is called a symmetric permutation.

After performing these two steps, we have for P1 and P2 in 3.6.1: P1

and P2 = P4.

95

The problem under (1) is known under several names, a.o. "finding a maximal

transversal" or "finding a set of distinct representatives" (HALL [1935]).

GUSTAVSON [1976] and DUFF [1981] present algorithms, based on HALL's ideas,

which require O(nT) computations in the worst case, where n is the order of

matrix A and T the number of nonzeros in A.
Well-known algorithms to solve a problem as under (2) are those of SARGENT

& WESTENBERG [1964] and TARJAN [1972] (see also GUSTAVSON [1976], DUFF &

REID [1978a, 1978b]). TARJAN's algorithm appears to be efficient in practice

and also has the lowest computational complexity of all algorithms known to

solve problems as under (2), namely O(n + T).

TARJAN's algorithm is based on the following ideas: Associate with matrix

A= [a .. J a directed graph. Each row i of A corresponds to a node i in this
1J

graph. Arc (i,j) is present in this graph iff aij # 0. So matrix A is

essentially the adjacency matrix of this graph.

Using depth-first search, the so-called strong components (see DUFF & REID

[1978a]) of this graph are detected, which correspond to the irreducible

blocks Aii (i = 1, ••• ,N) in 3.6.1.

This two-stage approach is justified by the fact that the obtained block

triangular form P 4 P3 A P4 is uniq1le in the sense that the number of blocks

and the rows and columns lying in each block is fixed, independent of the

particular choice for P3 • This is proved in HOWELL [1976] and DUFF [1977b].

If a matrix A has one or more zero elements on the main diagonal, it may

very well be that there exists no symmetric permutation which leads to a

block triangular form of A with irreducible blocks on the main diagonal

(see HOWELL's example [1976]).

These statements give new insight in the Simplex PRON procedures discussed

in Sections 3.4 and 3.5. By choosing the representative arcs (Section 3.4)

or the representative nodes (Section 3.5) in a special way, it has been

accomplished that the main diagonal of the working basis R is always zero­

free (see Theorems 3.3.10 and 3.5.9). Conclusion: in blocktriangularizing R

only the second stage is required. Applying TARJAN's algorithm to matrix R

implies that the graph, of which R describes the adjacency structure, is

available. In PRON 2 this is implicitly the case if for each basic refining

96

and blending process i it is known to which transportation trees the nodes

in N(i) belong. Recall that R is in fact the adjacency matrix of the

aggregated graph (Theorem 3.5.10). In PRON 1 the structure of R is not

directly available (the elements in each column of Rare found by tracing

the nonrepresentative cycles of the corresponding process). So here is

another argument in favor of PRON 2.

It is suggested to block triangularize R in every iteration of the Simplex

algorithm. Since the nonlabeled part (R31 in 3.4.24 or 3.4.30) remains

unchanged in the basis change, only the labeled part (R~ 1) has to be

updated.

The advantages ofa block triangularized version of R-l are obvious: reduc­

tion of storage requirements and computation time (see for further discus­

sion DUFF [1977a]).

Is it necessary to use a working basis (inverse)?

In the algorithms of Sections 3.4 and 3.5 it is assumed that a working basis

inverse R-l is used. Is it necessary to do this or is it also possible to

work without R-l? This question is inspired by the situation in pure and

generalized networks where all the information required is obtained by

manipulating on the basis graph (in generalized networks some algebraic

work has to be done but this only comes up to solving a number of single

equations with one unknown). The ~ain advantage of such an approach is that

it is possible to work with the original data, thus reducing (cumulative)

round-off errors and storage requirements.

The answer to the question posed primarily depends on whether a basic

system as Bx= b or ~•B = c~ can be solved, using the structure of the

basis graph in such a way that it does not require too much work. The hard

part in solving Bx= bis, considering the analysis in Sections 3.3 and 3,5,

ultimately: solve a system Rx= b* (where R is given in 3.3.12 or 3.5.3).

Although we tried to work out several intuitive ideas no satisfactory

results were obtained. Considering the facts known about matrix Rand after

reading Chapter 5 this should not cause too much astonishment.

Degeneracy

Degenerate steps in the Simplex algorithm are likely to occur frequently

and theoretically the possibility of cycling exists. Of course techniques

known for general LP problems (perturbation, lexicographic ordering,

BLAND's [1977] rule) can be applied to prevent cycling. An interesting

subject for further study is to investigate whether finite modifications

can be developed using similar ideas as in CUNNINGHAM [1976, 1979], ELAM,

GLOVER & KLINGMAN [1979] and ADOLPHSON [1980].

97

99

4. GENERALIZEV PROCESSING NETWORKS

4.1. In;tJc.oduc.tion

In the previous chapter networks have been considered in which flow is

conserved. However, in practice, there are many situations in which flow is

not conserved due to leakage, damage, conversion losses, growth, etc.

Sometimes is is natural to say that the decrease or increase of flow takes

place on an arc, sometimes it is more appropriate to state that the

decrease or increase takes place in a node. For the purpose of describing a

mathematical framework for such networks it is sufficient to regard only

one of these possibilities. Here we have chosen for a description in which

flow is conserved in nodes, but possibly not on arcs. In the literature the

same approach is usually followed, simply because in general it gives rise

to more compact formulations than in the case where flow is not necessarily

conserved in nodes.

The concept of a "generalized processing network" has already been intro­

duced in Section 3.2.

Again it is assumed that the special topological properties, mentioned in

Remark 3.2.2, hold.

The main intent of this chapter is to show that the ideas of Chapter 3 can

easily be generalized to generalized processing network problems.

Proofs of lemmas and theorems are omitted since they are either completely

analogous to the ones of corresponding statements in Chapter 3 or simple to

provide.

100

4. 2 • Ma.the.ma.tic.a£. 60Jz.mula.tlo n.

As in Section 3.2, we present two distinct LP-formulations of the minimal

cost flow problem in a generalized processing network.

Consider a directed and connected graph G(N,A) with node set N, containing

m nodes, and arc set A, consisting of narcs. Self-loops are allowed to be

present.

Suppose that with each arc (i,j) EA a multiplier g .. is associated. The
l.J

meaning of this multiplier is the same as in generalized networks, described

in Section 2.5.

Using the notation, definitions and assumptions of Sections 2.5 and 3.2,

the LP-formulation of the minimal cost flow problem in a generalized

processing network is

Formulation I

4.2.1. minimize L c .. x. j ,
(i,j) EA l.J l.

4.2.2.

4.2.3.
(Xi.
_2:1.x,
ex. ir
ir

4.2.4.
(Xji
ex. xri
ri

4.2.5. 0

x ..
l.J

x ..
Jl.

$ xij $

0

0

u ..
l.J

i E N ,

i E RN, r E A{i),

j E A(i) \ {r} ,

i E BN, r E B(i),

j E B(i) \ {r}

(i, j) E A ,

Observe that this formulation is only slightly different from 3.2.9-3.2.13.

It reflects the fact that the minimal cost flow problem can be considered

as a generalized network flow problem (4.2.1, 4.2.2 and 4.2.5) with side

constraints 4.2.3 and 4.2.4. If equations 4.2.2 are linearly dependent, the

problem can be reduced to a pure processing network problem by means of

scaling. This is immediately clear from the way TRUEMPER's [1977] scaling

procedure performs. For this reason we take the following assumption.

ASSUMPTION 4.2.1. The equations in 4,2.2 are linearly independent.

101

Problem 4.2.1-4.2.5 can be solved by an algorithm of HULTZ & KLINGMAN [1976].

Then, under the given assumptions, a working basis of fixed size:

EiEPN (ni - 1), i.e., the number of constraints in 4.2.3 and 4.2.4, would be

required.

However, the solution procedure developed in Section 4.4 (based on the

subsequently discussed formulation II) uses a working basis of variable

size q, with O :, q :, I:iEPN 1 (= I PNI), which is usually much smaller than

LiEPN (ni - l) •

Formulation II

After substitution of the expressions for xij in 4.2.3 and xji in 4.2.4

into 4.2.2 and a suitable scaling of the columns a compact formulation

results (cf. formulation II in Section 3.2):

4.2.6.

4.2.7.

4.2.8.

minimize c'x

Ax b

with A an m x n matrix, b E :Rm and

Each row i of A is associated with

c,x,u E]Rn.

node i E N.

Each column of A describes one of the three types of processes:

(a) refining 12rocess i. The elements in column a •i
are:

-1 in row i,

a.ij gij in row j, j E A(i),

0 otherwise.

(b) blending 12rocess i. The elements in column a .
•1

are:

+ 1 in row i,

-a.jigji in row j, j E B(i),

0 otherwise.

(cl trans12ortation 12rocess (i,j). The elements in column a,ij are

-1 in row i,

in row j,

otherwise.

102

The variable associated with a column a.i' corresponding to a refining or

blending process i, describes the total throughput of process i.

Formulation 4. 2. 6-4. 2. 8 is one of a generalized network flow problem with

side activities. For such problems no special (network oriented) algorithms

are known.

The dual problem of 4.2.6-4.2.8 is given by:

4.2.9, maximize b 1 11 - u'v

4.2.10. - 7T. + gij 7Tj - vij l.
$ cij (i' j) E TP I

4.2.11. - 7T. + I 0 ij gij 71 j - vi $ c. i E RP I
l. jEA(i) l.

4.2.12. 7Ti - I 0 jigji 71 j - vi $ c. i E BP I

jEB(i) l.

4.2.13. V ;,: 0 I

where TP denotes the set of transportation processes, RP represents the set

of refining processes and BP the set of blending processes.

If column a.i describes a refining process i, a.i can also be written as

(cf. 3. 2. 21) :

4.2.14. l ai. ai*.
jEA(i) J J

* where aij denotes the vector representation of arc (i,j) with multiplier

gij (see Section 2.5). Formula 4.2.14 makes clear that the set of processing

arcs PA(i) can be associated with refining process i. A similar statement

as in 4.2.14 can be made for a blending process i.

Note that if all multipliers g .. are positive, (i,j) EA, matrix A in 4.2.7
l.J

satisfies the following property (cf. Remark 3.2.4):

if there is more than one negative (positive) element in a column of A,
then there is only one positive (negative) element.

REMARK 4.2.2. If we would have taken the constraint

4.2.15. i E N

instead of 4.2,2, then problem 4.2.1-4.2.5 could still be regarded as a

generalized processing network problem (cf. Remark 2.5.2) and the contents

of this chapter also holds for such problems after a few obvious adaptations.

103

Then the columns of A in 4.2.7 would have the following shape:

(a) column a•i' representing refining process i:

L a . . h . . in row i ,
jEA(i) l.J l.J

aij gij in row j, j E A(i),

0 otherwise.

(b) column a•i' representing blending process i:

L aj. h .. in row i,
jEB (i) l. Jl.

in row j, j E B(i)

otherwise.

(c) column a•ij' representing transportation process (i,j):

hij in row i,

gij in row j ,

0 otherwise.

Note that if hij and gij' (i,j) EA, are allowed to be arbitrary real

numbers, formulation 4.2.6-4.2.8 is in fact one of a general LP-problem.

This aspect is discussed further in Chapter 5.

Formulation II will be used for tjle Simplex PRON procedure of Section 4.4.

In the next section the basis structure in a generalized processing network

problem is explained.

4. 3. BM-i-0 -0.tll.u.c.twie.

It is not restrictive to take the following assumption.

ASSUMPTION 4.3.1. The rank of A in 4.2.7 equals m.

Let B denote a basis of A, partitioned as:

4. 3.1.

where

D

104

BT is an m x (m-q) matrix denoting the (generalized) transportation

processes, and

BP is an m x q matrix representing the basic refining and blending processes

(0 S: q s m).

Let the set of basic refining and blending processes again be denoted by

BAP. BAP contains q elements. The basis graph associated with Bis defined

as the directed graph with node set N and as arc set: all transportation

arcs associated with the columns in BT in 4.3.1, and all processing arcs

associated with the columns in BP in 4.3.1, i.e., all arcs in PA(i), i E BAP

(cf. 4.2.14).

Consider the graph which arises if in the basis graph all processing arcs

are left out. Let this graph be denoted by G(N,BT).

LEMMA 4.3.2. Eaah aonneated aomponent of G(N,BT) aontains at most one ayale.

A connected component of G(N,BT) which contains no cycle is again called a

transportation tree.

If a connected component of G(N,BT) contains a cycle (possibly a self-loop)

it is called a transportation quasi-tree.

So Lemma 4.3.2 states that G(N,BT) consists of a number of transportation

trees and a number of transportation quasi-trees.

LEMMA 4.3.3. A basis graph aontains q tmnsportation trees iff the nwwer

of basia refining and blending proaesses equals q.

Observe that Lemma 2.5.6 is valid because B denotes a square nonsingular

matrix (see Remark 2.5.7). It is possible to state a lemma, closely related

to Lemma 2.5.6.

Suppose BAP r f6.

Let SP be a nonempty subset of BAP.

Furthermore, let T(SP) denote the set of transportation trees which are

incident to the processes i ESP.

LEMMA 4.3.4. Any nonempty subset SP of basia refining and blending proaesses

is inaid.ent to at Zeast lspl transportation trees:

4.3.2.

Using this lemma the following lemma can be proved:

LEMMA 4.3.5. The representative arcs of the basic refining and blending

processes can be chosen in such a way that the basic transportation arcs

plus these representative arcs form the arc set of a spanning forest of

quasi-trees in G(N,A).

Such a forest is called a representative forest.

The four stated lemmas prove:

THEOREM 4.3.6. A basis graph in a generalized processing network G(N,A)

consists of

a forest of quasi-trees formed by the basic transportation arcs and the

properly chosen representative arcs of the basic refining and blending

processes, and

all nonrepresentative arcs of the basic refining and blending processes.

The structure of a basis graph is illustrated in the following example.

EXAMPLE 4.3.7. Consider the basis B:

12 13 15 2 3

-1 -1 -1 1

2 -1 2

4.3.3. B 1 -1 3

a24 a34 4

1 a25 a35 5

The associated basis graph is drawn in Figure 4.3.1, where the represen-

tative forest is indicated by heavy lines.

105

106

2

Figure 4.3.1. An example of a basis graph in a
generalized processing network.

Let T be the matrix representation of the representative forest with the

convention that each (representative) arc (i,j) has multipliers gij as

previously defined. This convention is plausible if it is tried to set up a

solution procedure in the same spirit as in Section 3.4 (PRON 1). However,

now there is no guarantee that Tis nonsingular. For the example presented

T would be:

12 13

-1 -1

2

4.3.4. T 1

15 24

-1

-1

1

1

35

-1

1

1

2

3

4

5

which is seen to be singular since the cycle factor of the cycle formed by

the arcs (1,3), (3,5) and (1,5) is equal to one (see Section 2.5). It is

still an open question whether there exists, for every basis B, a particular

choice of the representative arcs such that T would be nonsingular. In any

case it is clear that a labeling procedure and a reestablishing procedure

as in Section 3.4 alone might not be sufficient.

Considering this observation an approach as proposed in Section 3.5 would

be more appealing.

Suppose that for each process i E BAP a node j is chosen from N(i), which

belongs to some transportation tree. This is possible because of Lemma

4.3.4. Such a node j is called the representative node of process i.

107

Furthermore, suppose that BAP f 0. The condition mentioned in Lemma 4.3.4

together with HALL's theorem (Theorem 2.5.8) implies the following lemma:

LEMMA 4.3.8. For each process i e: BAP a node can be chosen from the set N(i)

in such a way that these nodes belong to different transportation trees.

Attach, as in the procedure of Section 3.5, a self-loop to each of these

representative nodes. In matrix terms such a self-loop is again represented

by a negative unit column (it has multiplier 1). Now a basis is represented

by a number of transportation quasi-trees and a number of rooted transporta­

tion trees. The collection of these quasi-trees and rooted trees is again

called the representative forest.

EXAMPLE 4.3.9. In the example of Figure 4.3.1 nodes 4 and 5 can be thought

to represent the sets N(3) and N(2), respectively. The corresponding

representative forest is drawn in Figure 4.3.2.

2

Figure 4.3.2. A representative forest for the basis graph in Figure 4.3.1.

Let T be the matrix representation of the representative forest. The sequence

of the columns in T corresponds to the sequence of columns in B. Then B can

be written as

4.3.5. B = TP

with

4.3.6. p

where

108

I is the identity matrix of order (m-q) I

Q is some (m-q) x q matrix, and

R is a square nonsingular matrix of order q.

For matrix B in 4.3.3 formula 4.3.5 specializes to:

12 13 15 2 3

1 -1 -1 -1

2 2 -1

4.3.7. 3 1 -1

4 a24 a34
5 1 a25 a35

12 13 15 55 44

-1 -1 -1 1 -½
2 1 -1

1 1 ½ 1

-1 -a25+½ -a35+1

1 -1 -a24 -a34

REMARK 4.3.10. Consider a column P . (m-q < j s m) of Panda column B . of
·J "J

B which corresponds to process k = i .• Suppose process k is a refining
J

process. Since B.j can be written as:

4.3.8.

relation 4.3.5 makes clear

4.3.9. p • j
-1

- T ek +

Similarly, if process k

4.3.10.

that p
•j can be written as:

I -1
akR, gkR, T e.e,

R-EA(k)

iJ. is a blending process, P . can be written as:
•J

-1
The vectors T e .e, (R, E N (ij)) in 4. 3. 9 or 4. 3 .10 are the cycle-path vectors

of the nodes R, E N(i.) in the representative forest (see Section 2.5).
J

Formulae 4.3.9 and 4.3.10 express the fact that each column P . can be
"J

considered as a linear combination of the j th negative unit vector, which

results from the representative node of process i., and the cycle-path
J

109

vectors, originated by the nonrepresentative nodes of N(i.). This observa-
J

tion is used in the Simplex algorithm of Section 4.4.

We can define an aggregated graph associated with basis Bin almost the

same way as in Section 3.5. The following assumption is similar to Assump­

tion 3.5.5.

ASSUMPTION 4.3.11. The transportation trees are numbered in such a way that

the representative node of process ij (associated with column B•j in B,

j = m-q+l, ••• ,mJ belongs to transportation tree T. (i·
J- m-q

The aggregated graph

The aggregated graph, associated with basis Bin 4.3.1, is the directed

graph G(N*,A*) with N* = {1, ••. ,q} in which node i corresponds to transporta­

tion tree T., and A* as follows. The self-loops (i,i), i = 1, .•• ,q, belong
1.

to A*. Furthermore, if the nonrepresentative nodes of process i., which are
J

not contained in some transportation quasi-tree, belong to transportation

trees Tj , .•• ,Tj, then also the arcs (k,j 1), ••• ,(k,js) with k = j- (m-q)
1 * s

belong to A. This statement holds for all processes i., j = m-q+l, .•• ,m.
J

EXAMPLE 4.3.12. In Figure 4.3.1 node 5 is the representative node of process

2, node 4 the representative node.of process 3. Transportation tree T1 has

node set {1,2,3,5} and T2 has node set {4}. The aggregated graph, associated

with Bin 4.3.3, is drawn in Figure 4.3.3.

Figure 4.3.3. The aggregated graph associated with Bin 4.3.3.

Properties of matrix R

With respect to matrix R in 4.3.6 the following can be said (cf. Theorems

3.5.7-3.5.10 in the pure processing network situation).

110

THEOREM 4.3.13. If Bin 4.3.5 denotes a basis in a generalized processing

network and R is given in 4.3.6, matrix R is UYlique.

THEOREM 4.3,14. Each column of matrix R contains at most as many elements

UYlequal to zero as the nurriber of transportation trees to which its corre­

sponding process is incident.

The main diagonal of R is not necessarily zero-free, as can be seen from

the example presented, whenever a 24 = a 25 = ½ {see formula 4.3.7).

REMARK 4.3.15. In Section 3.5 matrix R describes the adjacency structure of

the there defined aggregated graph (Theorem 3.5.10). We note that this

statement no longer holds for generalized processing networks.

Observe from 4.3.9 and4.3.10 that not only the cycle-path vectors and the

processing coefficients aij influence the structure of R {this is the case

in Section 3.5), but also the multipliers g ..• These multipliers may cause
l.J

some element of matrix R to be zero although there may be an arc in the

aggregated graph which corresponds to this element. We will call this

phenomenon "multiplier degeneracy".

In the example presented r 11 = 0 if a 24 = a 25 =!,although there is an arc

in the aggregated graph which corresponds to element r 11 , namely the self­

loop (1,1), see Figure 4.3.3.

We will say that matrix R describ~s the adjacency structure of the aggregated

graph, except for "multiplier degeneracy".

4.4. The Shnplex algo!Uthm 0o~ the m,i,rwnal co~t 6low p~oblem in a
gen~zed p~ocu~ing ne:two~k

The minimal cost flow problem in a generalized processing network can be

solved in almost the same way as described in Section 3.4, with the

adaptations of Section 3.5. Hence, in this section we only point out some

important aspects and discuss the differences with the procedures developed

in Sections 3.4 and 3.5.

We assume that the representative forest and the inverse of R in 4.3.6 are

kept stored in some convenient way.

111

In every instance where in Section 3.4 or 3.5 pure-network techniques are

used these should be replaced by generalized-network techniques (matrix T

now describes a forest of quasi-trees and rooted transportation trees as in

generalized networks).

In finding the representation y of the entering column a in terms of the

basis B (see Subsection 3.4.1), the labeling procedure becomes different

from the one in Section 3.5 at two points:

1. The statement after the third if in step 1 is left away, i.e., we do not

stop the labeling procedure at that point, even if the entering process

is incident to only one transportation tree.

2. If a node j EN belongs to a transportation quasi-tree, Pj now denotes

the set of arcs contained in the cycle of this quasi-tree, plus all arcs

on the path from node j to this cycle.

EXAMPLE 4.4.1. Figure 4.4.1 shows the labeled part of a representative

forest assuming that transportation process (4,5) enters the basis. It is

assumed that node 5 is the representative node of process 3, node 6 is the

representative node of process 8. Compare this situation with Figure 3.5.2.

3
[8,8]

9

(l35 I

[3,3]
I

I

~
[8,8]

(l78

8

Figure 4.4.1. The labeled part of a representative forest
in a generalized processing network.

Theorem 3.4.3 holds for generalized processing networks too.

The following two theorems may be important for implementations of the

present Simplex PRON algorithm. Moreover, Theorem 4. 4. 3 plays a role in the

discussion on generalized processing networks with additional linear

constraints in Section 6.3.

112

THEOREM 4.4.2. The nwrver of basia refining and blending proaesses with a

nonzero aoeffiaient in the representation veator y of a in terms of the

basis B, is zero :f:i. the entering proaess is inaident to only transportation

quasi-trees.

THEOREM 4.4.3. If the veator a represents a transportation proaess, say

Ci* ,t>, then the nwrver of basia refining and blending proaesses with a

nonzero aoeffiaient in the representation veator y of a in te'1'm8 of the

basis B, is zero :f:ll. one of the following two statements hold:

1. (i*,j*) is inaident to only transportation quasi-trees,

2. Ci* ,t> is not a self-loop (i.e., i* ,f /),

both i* and j* belong to one transportation tree, say Ti, and

the ayale faator of the ayale, induaed by (i* ,/) in Ti, equals 1.

In the basis change (cf. Subsection 3.4.3 and Section 3.5) we can reestablish

a representative forest in the same way as in Section 3.5.

Theorem 3.4.6 holds for generalized processing networks too.

We note that the shaded columns in the matrix product T- 1 T in 3. 4. 21 now

denote cycle-path vectors (see Section 2.5).

The s th row of (T- 1 T) has only one element unequal to zero (cf. Remark

3.4. 7).

Furthermore, the statement in Remark 3.4.8, on determining the s th row of

Qin 3.3.12, can easily be generalized.

The reduced costs (cf. Subsection 3.4.5) can be found from:

4.4.1. cij - 1Ti + gij 1Tj - cij (i ,j) € TP

4.4.2. Ci 1Ti + I aij gij 11 j - Ci i € RP ,
jE:A(i)

4.4.3. Ci 1T. - I (lji gji 11 j - Ci i € BP .
].

jE:B (i)

A starting basis can be taken in the same way as in Subsection 3.4.6.

113

4 • 5 • Rema1tk.6

Similar remarks as in Section 3.6 can be made on implementation questions.

One important difference with pure processing networks is the fact that the

main diagonal of the matrix R in 4.3.6 is not necessarily zero-free (see

Section 4.3). So perhaps there exists no symmetric permutation of R such

that a block triangular form arises with irreducible blocks on the main

diagonal. However, it is important to note that the intention of the solution

procedure is to exploit the network structure. Particular values of coeffi­

cients aij or gij have not been considered in the labeling procedure or in

the reestablishing procedure. It is noted that this is also commonplace in

the primal Simplex solution procedures for generalized networks, described

in the literature. Therefore it is not strange to do just the same in block

triangularizing the working basis: disregard "multiplier degeneracy" (see

Remark 4.3.15) and only use the structure of the basis graph. More precise:

use the structure of the aggregated graph, which is implicitly available if

it is known to which transportation trees each refining or blending process

is incident.

115

5. PROCESSING NETWORKS ANV GENERAL LINEAR PROGRAMMING

5.1. In;tJi.adu.c:Uan

On one hand processing network problems are more general than pure or

generalized network problems, on the other hand they seem more special than

general Linear Programming problems.

In the previous chapters attention has been paid to the relation between

processing networks and pure or generalized networks. Here we investigate

the relation between processing networks and general LP-problems of the

form:

5.1.1.

5.1.2.

5.1.3.

minimize c'x

Ax b

Q S X S U 1

where A is an m x n matrix, b E lRm and c,x,u E lRn.

It will appear that a processing network structure is not as special as it

seems at first sight.

5.2. Gene~ilized p~aeeJ.i~ing ne.:twa~/u, and genvial UneM p~ag11.ammlng

In this section we show that an arbitrary LP-problem of the form 5.1.1-5.1.3

can readily be interpreted as a generalized processing network problem in

which both positive and negative multipliers may appear. A direct conse­

quence is that, in principle, the solution procedure of Chapter 4 can be

applied to general LP-problems, leading to a specification of the primal

Simplex algorithm in which the (working) basis is kept stored in block

triangular form. The relation between this approach and other sparse matrix

primal Simplex procedures proposed in the literature will be discussed.

116

THEOREM 5. 2 .1. The forrrruZa-tion 5. 1. 1-5 .1. 3 of an arbitrary LP-problem can

be considered as the compact forrrrulation (formulation II in Section 4.2) of

a generalized processing netl./Jork problem in which both positive and negative

rrrultipliers may appear.

PROOF. Consider the LP-problem 5.1.1-5.1.3 and let a . be the J' th column
"J

of matrix A in 5.1.2. If column a . contains at most two nonzero elements
"J

it represents a transportation process (see Remarks 2.5.2 and 4.2.2).

If column a . contains t (t ~ 3) nonzero elements we can easily associate a
•J

refining or blending process with column a,j'

Suppose a . contains a negative element then, after an appropriate positive
'J

scaling of a . and suitable row permutations, a . can always be written as:
• J • J

5.2.1. a .
• J

where all aij ~ O, i = 2, .•. ,t, and 3 ~ t ~ m.

Alternatively a . can (for instance) be written as:
·J

-1 -1 -1

1
5.2.2. a .

•J
1

r:T + ... +r:T

This formulation indicates that we can associate with column a.j a bundle

of (t - 1) generalized arcs - all incident and directed from one particular

node and having either positive or negative multipliers on which proper-

tionality of flow is required (cf. 4.2.14). Hence, such a column a . cor-
•J

responds to a refining process in a generalized processing network.

If column a,j contains no negative element we can associate a blending

process with a. j in a similar way.

The conclusion is that we can associate a transportation, refining or

blending process with each column a . of A and the theorem has been proved. D
• J

The relevance of Theorem 5.2.1 is clear. Apparently, with the generalized

processing network interpretation in mind, we can in principle apply the

solution procedure of Section 4.4 to general LP-problems. We review several

important aspects of the Simplex PRON procedure of Section 4,4 in the light

117

of well-known sparse matrix primal Simplex solution techniques, proposed in

the literature:

- The transportation part of a basis B (i.e., those columns of B which have

at most two nonzero elements) is included in the representative forest.

In each iteration of the SimplexPRONalgorithm of Section 4.4 there is an

interaction between the representative forest and the working basis

inverse R-l

This idea - extract the transportation part of a basis and do the rest of

the work by means of a working basis - also comes up in a large number of

algorithms dealing with LP-problems with an embedded pure or generalized

network structure, see e.g. HARTMAN & LASDON [1972], HULTZ & KLINGMAN [1976],

CHEN & SAIGAL [1977], and GLOVER & KLINGMAN [1981].

- The size of the working basis varies dynamically.

This is, for instance, also the case in the methods proposed in HARTMAN &

LASDON [1972] and GLOVER & KLINGMAN [1981].

- A labeling procedure determines which basic processes can take part at a

nonzero level in the representation of the entering process in terms of

the basis.

Similar labeling procedures are used in the well-known specifications of

the primal Simplex algorithm for pure, generalized and multicommodity

network flow problems.

The representative forest plays ,an essential role in the distinct steps

of the Simplex PRON procedure of Section 4.4.

A concept, similar to that of a representative forest, is the so-called

master basis tree, introduced by GLOVER & KLINGMAN [1981] in their Simplex

SON approach (see also the discussion in Chapter 6).

- The working basis inverse R-l is kept stored in block triangular form.

In the literature many times the suggestion is made to exploit the sparsity

of LP-models (and perhaps a natural block structure, BASTIAN [1980]), by

using a block triangular form of the basis inverse. Some references are

DANTZIG [1955], PHILLIPS [1970], andSAUNDERS [1972].

A difference with the procedures known in the literature is, that in the

present Simplex PRON approach the working basis inverse R-1 , rather than
-1 the whole basis inverse B , is kept stored in a block triangular form.

Only in case a basis does not contain any transportation column the entire

basis inverse B-l is kept stored in block triangular form.

118

REMARK 5.2.2. A suggestion for future research is to consider factorization

of the blocks on the main diagonal of the block triangular working basis.

Such a suggestion is made earlier by KEVORKIAN [1979]. All in all it would

result in an approach in the same spirit as GRAVES & MC BRIDE [1976] and

MC BRIDE [1978],

5. 3. "Ae.mo,t,,t" pwie. p!tOc.e.M-lng ne.:twottk-6 and ge.neJtal .Une.aJt pltogJr.a.mmlng

In this section we give an "almost" pure processing network interpretation

to general LP-problems of the form 5.1.1-5.1.3, to which the redundant

constraint:

5.3.1. - e' Ax - e' b

is added.

Moreover, we will show that the Simplex PRON procedures of Sections 3.4 and

3.5 can easily be adapted to solve LP-problems of the form 5.1.1-5.1.3,

5.3.1, although some of the properties which hold for pure processing

networks are no longer valid.

By an "almost" pure processing network problem we mean a network flow

problem with the following characteristics:

- conservation of flow, both in nodes and on arcs.

- proportionality of flow in particular subsets of the arc set. In each

such a subset the arcs are incident to one common node, but they may be

directed both towards and from this common node.

- capacity bounds on arcs.

□

THEOREM 5.3.1. The forrrruZation 5.1.1-5.1.3~5.3.1 of an arbitrary LP-problem

can be considered as a compact forrrrulation (similar to forrrrulation II in

Section 3.2) of an "almost" pure processing network problem.

* PROOF. Consider the LP-problem 5.1.1-5.1.3,5.3.1 and let a.j denote the

j th column of the coefficient matrix A*= [-e~A} of this LP-problem.

Clearly column a*. has a column sum zero.
* . J *

If a,j contains only one positive element or only one negative element, a,j

corresponds to one of the three types of processes in a pure processing

network (see Remark 3.2.4).

119

* Suppose a.j contains two or more positive elements and two or more negative

ones, and let us assume that column a*. is scaled such that the sum of the
* •J

positive elements in a. j is equal to one. After a suitable inter.change of

rows, a.j can be written as:

* where aij > O, i = 1, ••• ,R., 2 s k S m-1; k+l s R, s m+l.

* Now a.j can for instance be written as:

* 1 -alj

* -1 -a2j

*
-¾j

*
5.3.2. * ¾+1,j * a = = a2j •j

*
aR.j

0

0

1

-1

* +¾+l,j

-1

Formula 5.3.2 shows that we can associate with column a:j a bundle of

-1

1

(R, - 1) arcs - all incident to one particular node, some directed from this

node and some directed to this node - on which proportionality of flow is

required.

Since the above described interpretation can be given to all columns a*. of
* •J A, the theorem has.been proved. D

In Figure 5.3.l the bundle of arcs associated with the vectors in 5.3.2 is

depicted.
2

k+l

k

* Figure 5.3.1. The bundle of arcs associated with column a.j in 5.3.2.

120

If we reexamine the proofs of lemmas and theorems in Sections 3.3-3.5 we

see that, except for Theorems 3.3.10, 3.4.4, 3.5.8 and 3.5.9, the only

arguments used are:

1. B denotes a basis.

2. All basic nonslack columns have the zero-sum property.

In the Simplex PRON procedures of Sections 3.4 and 3.5 Theorems 3.3.10,

3.4.4, 3.5.8 and 3.5.9 were not used and hence these procedures can be

adapted to solve "almost" pure processing network problems (we say "adapted"

because in the discussions in Sections 3.4 and 3.5 we always assumed that

all arcs associated with a nontransportation process were either directed to

or from a processing node).

For "almost" pure processing network problems Theorems 3.3.10, 3.4.4, 3.5.8

and 3.5.9 are no longer valid.

We note that Theorems 3.3.10, 3.5.8 and 3.5.9 play an essential role in the

discussion on block triangularizing the working basis (Section 3.6) and

conclude that, if TARJAN's algorithm [1972] is applied to the working basis,

we do not necessarily obtain a block triangular form with irreducible blocks

on the main diagonal (cf. the situation in generalized processing networks,

especially Remark 4.3.15). Theorem 3.4.4 has been used in the discussion on

implementation considerations (Section 3.6) and will be used in proving

Theorem 6.2.3 in Chapter 6.

5.4. Tlr.a.MooJun,i,ng geneJuU', LP-p11.ob.leJn6 to pMe pll.OC.e,6~,i,ng ne:twOJtk. pltob.leJn6

We discuss the possibility to transform a general LP-problem of the form

5.1.1-5.1.3 to a pure processing network problem, at the possible expense

of blowing up the size of the problem.

THEOREM 5.4.1. Any LP-problem of the form 5.1.1-5.1.3 can be transformed to

an LP-problem associated with a pure processing network.

PROOF. Consider the general LP-problem 5.1.1-5.1.3 and add the redundant

constraint 5.3.1. We then have the LP-problem

5.4.1.

5.4.2.

5.4.3.

minimize c'x

121

where

and b* = [b J .
-e'b

Clearly the column sum of.each column in A* is zero (e•A* = 0).

Scale the columns of A* in such a way that the sum of the positive elements

in each column of A* is equal to 1. Next partition A* as:

5.4.4

where A1* consists of all columns in A* which have exactly one positive
2* element or exactly one negative element. Hence A consists of the columns

in A* which have at least two positive elements and at least two negative

ones.

Let [ci c2J, [xi x2J, and [u1 u2J be the partitioning of c', x' and u',

compatible with the partitioning of A* in 5.4.4.

Suppose we write:

5.4.5. A4* + I

where A2* 2* A3* 3* and A4* [at;], = [aij], [aij] with

3* 2* if 2* > 0 aij aij a ..
l.J

0 2*
$ Q• I a,.

l.J

4* 2* 2* 0 a .. aij if a .. <
l.J l.J

0 2* 2: 0 aij .

Now it can easily be observed that the LP-problem:

5.4.6. minimize ci xl + c2 x2

A1* A3* A4* * 5.4.7. xl + x2 + X3 b

5.4.8. - I x 2 + I x3 0

5.4.9. 0 $ xl $ ul

5.4.10. 0 $ x2 $ u2

5.4.11. 0 $ x3 $ u2

122

is equivalent to 5.1.1-5.1.3. Observe that each column of

5.4.12.
-I

satisfies the two properties, mentioned in Remark 3.2.4, which characterize

a pure processing network problem. Hence the theorem has been proved. D

The proof of Theorem 5.4.1 is in fact nothing more than an algebraic way to

say that the picture of Figure 5.3.1 changes into that of Figure 5.4.1.

2
k+1

1

k

Figure 5.4.1. The transformation of Figure 5.3.1 to a
pure processing network form.

Moreover the proof shows that the transformed problem 5.4.6-5.4.11

has a coefficient matrix with (m + 1 + n) rows and 2n columns in the worst

case (recall that the coefficient matrix A in 5.1.2 has m rows and n

columns). So we see that in general we have to blow up the size of an LP­

problem in order to cast it into the LP-formulation of a pure processing

network problem.

We have pointed out in Section 5.2 that, having the generalized processing

network interpretation in mind, the Simplex PRON procedure of Section 4.4

can in principle be applied to general LP-problems of the form 5.1.1-5.1.3.

Moreover, in Section 5.3, we discussed that, having the "almost" pure

processing network interpretation in mind, the Simplex PRON procedures of

Sections 3.4 and 3.5 can easily be adapted to solve general LP-problems of

the form 5.1.1-5.1.3,5.3.1.

Hence we do not believe that a transformation of a general LP-problem

5.1.1-5.1.3 to a pure processing network problem, as described in the proof

of Theorem 5.4.1, yields a problem which can be solved easier.

Nevertheless Theorem 5.4.1 is important for several reasons:

1. It shows that a pure processing network structure is not as special as

it seems at first sight.

123

2. It gives a certain reassurance that we have exploited the processing

network structure in an adequate way in the Simplex PRON procedures of

Chapters 3 and 4, considering the fact that these procedures are closely

related to well-known sparse matrix LP-approaches (see Section 5.2).

3. Processing networks have the nice feature that their structure can be

visualized by drawing network diagrams. The relevance of visualizing a

model has already be pointed out by GLOVER & KLINGMAN [1977] and by

GLOVER, HULTZ & KLINGMAN [1978]. Both for model builders and management,

a diagram can give more insight into the model structure than an alge­

braic statement alone. Hence a good visualization of a model may tend to

increase management's confidence in such a model.

Since a general LP-problem can be cast into a processing network fitting

a tool is available to visualize its structure. Especially in case such

an LP-problem has a natural interpretation as a network flow problem, it

may be useful to draw a processing-network diagram. In Chapter 7 we

briefly describe a bank balance problem for which we have done this.

5.5. Some examplu

In this section we discuss three important classes of LP-problems which can

be interpreted as a pure processing network problem or as a generalized

processing network problem with positive multipliers,without having to blow

up the size of the problem.

1. Consider the LP-problem:

5.5.1. minimize c'x

5.5.2. A1x b1

5.5.3. A2x s b2

5.5.4. 0 s X $ u

where A1 is a matrix with at least two elements unequal to zero and exactly

one negative element in each column,

A2 is a nonnegative matrix.

LP-problems of the form 5.5.1-5.5.4 appear in many practical situations.

Observe that A1 may describe:

124

- a pure network,

- a pure processing network with only refining nodes,

- a generalized network with positive multipliers,

- a generalized processing network with positive multipliers and only

refining nodes.

Considering the fact that each column of [1~] has exactly one negative

element, problem 5.5.1-5.5.4 can immediately be regarded as a generalized

processing network with positive multipliers and only refining nodes.

A well-known member of this class of LP-problems is the so-called~­

commodity network flow problem, which can be stated as follows:

Consider a network G(N,A), with node set N and arc set A. Suppose we have k

types of goods (commodities) which flow through this network.

Let the demand or supply of commodity t (t = 1, ••• ,k) in node i be given by
t

bi. Furthermore,we assume that

t
xij denotes the amount of flow of the t th commodity through arc (i,j) EA,

t
cij denotes the cost for transporting a unit of flow of the t th commodity

through arc (i,j) EA, and

t
uij denotes the upper bound for the amount of flow of the t th commodity

through arc (i,j) EA.

Finally, let uij denote the upper bound for the total amount of flow (i.e.,

the sum of the flows of the k commodities) through arc(i,j) EA. Then the

LP-formulation of the multicommodity network flow problem is:

5.5.5.
k

t t minimize }: cij xij
t=1

5.5.6. }: t }: t
b~ x .. + x ..

jEA(i) l.J jEB (i) Jl. l.
i E N, t 1, ... ,k

5.5.7.
k

t }: xij ~ u .. I

t=1 l.J
(i,j) E A

5.5.8. 0 ~
t

~
t

xij u ..
l.J

(i,j) E A, t 1, ••• ,k •

Equations 5.5.6 are the conservation of flow equations, relations 5.5.7

describe the multicommodity aspect of the problem: the sum of the flows of

the k commodities through arc (i,j) has upper bound uij" The relations

125

5.5.8 simply denote the capacity bounds for each commodity in each arc of

the network. Obviously 5.5.6 is related to 5.5.2 and 5.5.7 to 5.5.3.

Consider the network G(N,A) for each of the k commodities. Denote the nodes

of the network of the 9, th commodity by i9, and the arcs by (i,jl9,,

9-=1, ••• ,k.

Figure 5.5.1 illustrates how the multicommodity network flow problem can be

interpreted as a generalized processing network problem with positive

multipliers and only refining nodes of order 2.

Suppose there is a flow of magnitude x~. in an outgoing arc of node i 0 in
l.J ,,

Figure 5.5.1. Multiply this flow with a factor 2, and split it up in two

equal portions using a refining node.

a refining node the flow equals again

attached to node j9, of the network of

On each of the outgoing arcs of such
9, h . . xi .. One oft e outgoing arcs is

. J
the 9, th commodity. The other one

leads to an additional node, say vij • We do this for all 9, = 1, ..• ,k.

Finally we consider an outgoing arc of node vij and assume it has a lower

bound 0 and upper bound u ...
l.J

Figure 5. 5. 1. A processing network interpretation to the
multicommodity network flow problem.

126

2. Consider the LP-problem:

5.5.9.

5 .5.10.

5.5.11.

where A =

minimize c' x

Ax~ b

[aij] is a nonnegative

elements b. > o. Let the columns
].

Introduce, similarly as in 5.3.1,

5.5.12. -e'Ax:?:-e'b,

matrix. Vector bis a vector with all

of A be scaled such that e•A = e'.

the redundant constraint:

then problem 5.5.9-5.5.12 can immediately be interpreted as a pure processing

network problem. See Figure 5.5.2, where for convenience it is assumed that

all aij > O, i = 1, ••• ,m, j = 1, •.• ,n.

X
n

[O,b]
m

Figure 5.5.2. Pure processing network diagram for the
LP-problem 5.5.9-5.5.12.

127

3. Consider the LP-problem 5.1.1-5.1.3. Assume that each column of A in

5.1.2 has at most two elements unequal to zero. Clearly 5.1.1-5.1.3 can be

considered as the LP-formulation of a generalized network flow problem, say

with corresponding network G(N,A) (cf. Remark 2.5.2).

Add again constraint 5.3.1 then 5.1.1-5.1.3,5.3.1 is the LP-formulation of

a pure processing network problem. The redundant constraint 5.3.1 corresponds

to a nodes, which is added to the original network G(N,A). This nodes can

be considered as a source from or a sink to "outside" the original network.

The :olumns of the coefficient matrix A*= [-~•AJ of LP-problem 5.1.1-5.1.3,

5.3.1 can be classified into seven basic cases.

If a column of A has only one element unequal to zero, say in row i (which

corresponds to node i in G(N,A)), there are two basic cases:

1. the element in row i is + 1. Then in row s of A* a "-1" appears.

Schematically:

i

s

+ 1

- 1
G)-------(D

* Such a column of A describes a transportation process from nodes to

node i.

* 2. the element in row i is - 1. Then in row s of A a "+1" appears.

Schematically:

i - 1 (0---------€)
s + 1

* Such a column of A describes a transportation process from node i to

node s.

If a column of A has two elements unequal to zero, say in rows i and j, the

following five basic cases appear for a column in A*:
3. i

j

s

- 1

a (0 < a < 1)

1 - a (> 0)

~ "" -~

A fraction a is transported from node i to node j. The rest is lost.

4. i - 1

j ©---------G>
s 0

Transport from node i to node j.

128

5. i - 1

~ j a (a> 1)

s 1-a (< 0)

.

Here a true gain of flow occurs.

6. i - 1
1/a+1

j -a (a > 0)

s 1+a (> 0) a/a+1

This process describes the possibility to extract flow from both node

ahd node j in given proportions.

7. i
1/a+1

j a (a > 0)

s -1-a (< 0) a/a+1

Here flow is injected in nodes i and j in given proportions.

Obviously a generalized network flow problem can be transformed to a pure

processing network problem in which:

1. all nontransportation processes are of order 2;

2. there exists a particular nodes, such that each refining or blending

process is incident to this nodes.

i

We know that any LP~problem can be transformed to a pure processing network

problem (Section 5.4). Furthermore, it can easily be observed that any pure

processing network can be transformed to a pure processing network in which

all nontransportation processes are of order 2.

Hence, the essential difference between general LP and generalized networks

is the nonvalidity/validity of requirement 2.

129

6. PROCESSING NETWORKS WITH AVVITIONAL LINEAR CONSTRAINTS

6.1. In.t!toduc.ti.on

As remarked in Subsection 1.1.2 the processing network structure appears in

a large number of real-life situations such as production planning, energy

models, assembly and input/output models. In many of such practical

situations it occurs that additional requirements must be satisfied, for

instance quality requirements, multicommodity aspects, limitations on

shared resources. For this reason we consider in this chapter LP-problems

of the following type:

6.1.1. minimize c'x

6.1.2. A1x = b 1

6.1.3. A2x = b2

6.1.4. 0 S X S u I

where c, x and u E 'Jil, b 1 E Rm, b2 E Rk.

A1 is an m x n matrix, which corresponds to some pure or generalized

processing network G(N,A), with node set N consisting of m nodes, and arc

set A containing narcs.

A2 is a general k x n matrix.

This type of problem is referred to as a pure or generalized processing

network problem (6,1.1, 6.1.2 and 6.1.4) with additional linear constraints

(6.1.3).

Sometimes we will simply call these additional linear constraints side

constraints.

The dual problem of 6.1.1-6.1.4 is given by

6.1.5.

6.1.6.

6.1.7.

Ai 1T l + A2 1T 2 - V S C

V ;:: 0

130

We have noted in Sections 5.2 and 5.3 that we can adapt the Simplex PRON

procedures of Chapters 3 and 4 in such a way, that they can be applied to

general LP-problems. Hence this can be done for LP-problems of the form

6.1.1-6.1.4. However, then the transportation part of A1 in 6.1.2 would not

be exploited fully. For problems of the type 6.1.1-6.1.4 it is natural to

partition the coefficient matrix in a processing network part and a non­

processing network part. We note that in many practical situations the non­

processing network part is small in comparison with the processing network

part (i.e., m >> k, cf. GLOVER & KLINGMAN [1981]).

In Section 6.2 we discuss pure processing networks with side constraints.

First, we explain the way in which we will partition a basis. Secondly, the

basis structure will be exploited in a specification of the primal Simplex

algorithm. Similarities and differences with the Simplex SON algorithm of

GLOVER & KLINGMAN [1981] will be discussed.

Finally, in Section 6.3, we briefly denote how the contents of Section 6.2

can be generalized to generalized processing networks with side constraints.

6. 2. PU!l.e. p!Wc.Uf.>ing n.e.twMlu W-i;th a.dcLUlon.al .Un.e.aJt c.on.1.,br..a,[n.t6

Assume that matrix A1 in 6.1.2 is associated with a pure processing network

as described in Chapter 3.

First we will explain the structure of a basis.

6.2.1. Basis structure

Without loss of generality we can take the following assumptions.

ASSUMPTION 6. 2. 1. The rank of matrix A1 in 6. 1. 2 equa"ls (m - 1)

ASSUMPTION 6.2.2. The rank of matrix

6.2.1.

equals (m- 1 +k).

131

The columns of matrix A in 6.2.1 are associated with the transportation,

refining and blending processes of the processing network G(N,A). As in

pure networks (Section 2.4) and in pure processing networks (Section 3.3)

we introduce a single artificial variable with associated vector - eio (i0

arbitrarily chosen from the set {1, •.• ,m}). Then it can easily be proved

that matrix

6.2.2. AJ

has rank (m + kl .

Let B denote a basis of A*. Then B can be partitioned as:

6.2.3.

where B11 is a square nonsingular submatrix of [-ei0 A1J of order m. Note

that the column - eio is always present in B 11 .

We observe that B11 describes a basis for the pure processing network

problem 6.1.1, 6.1.2 and 6.1.4.

Suppose B11 contains (m - q) transportation columns, including the slack

column, and q refining and blending columns (0 S q S m-1).

Let matrix T denote the matrix representation of a representative forest,

as defined in Section 3.5. The columns of Tare sequenced in the same way

as the corresponding columns of B11 .

According to 3.5.2 we can write:

6.2.4.

with

6.2.5. p L J
where

I is the identity matrix of order (m - q),

Q is a (m-q) x q matrix, and

Risa square nonsingular matrix of order q.

With respect to matrix B12 in 6.2.3 we assume that it contains (k - g)

transportation columns and, consequently, g refining and blending columns

(0 s g s k) •

132

Matrix Bin 6.2.3 can also be written as:

6.2.6. B ll wJ

where

6.2.7.

In the subsequently discussed Simplex algorithm we will use two working

base,s, namely R in 6. 2. 5 and W in 6. 2. 7. R is called the processing working

basis and W the general working basis.

6.2.2. The Simplex algorithm for the minimal cost flow problem in a pure

processing network with additional linear constraints

In this subsection the essential steps of the Simplex algorithm will be

explained in the same sequence as in Section 2.3.

It is assumed that the representative forest, associated with matrix Tin

6.2.4 and the inverses of Rand Win 6.2.5 and 6.2.7 are kept stored in

some convenient way.

Other quantities, which are required in the steps of the Simplex algorithm,

are determined when needed by means of pure-network techniques or pure

processing-network techniques. This will become apparent in discussing the

distinct steps of this Simplex algorithm.

Initialization

Assuming that b 2 in 6.1.3 satisfies b 2 ~ O, the starting basis can be chosen

as:

6.2.8.

where B11 represents a rooted spanning tree, containing only transportation

arcs, as obtained by the procedure in Subsection 3.4.6. Needless to say

that all columns of this matrix B may be artificial ones. Comparing 6.2.8

and 6.2.7 we see that the general working basis is the identity matrix.

Moreover, Pin 6.2.5 is also a unit matrix: initially the processing working

basis has size zero.

133

1. Determining the Simplex multipliers

Let [ci c 2J be the partitioning of the basic part of the cost vector c in

6.1.1, compatible with the partition of Bin 6.2.3. In order to find the

Simplex multipliers we must solve the system:

6.2.9.

Cons~dering 6.2.6, the computation of [ni n2J can be split up in two

portions.

First,determine [ei e2J from:

6.2.10.

Formula 6.2.10 reduces to:

6.2.11. e I
1

e I
2

c'
1

-1
Note that the expression T B12 can be evaluated by pure-network techniques

(Section 2. 4) •
-1

Moreover, c 1P can be determined as in pure processing networks, in the

way explained in Subsection 3.4.4. We note that P-l can be written as in

3. 4. 37, as the subsequent discussions in steps 5 and 7 will show.

Secondly, [ni np can be found from

6.2.13. [n' n2] ~11 J [e• 82] ,
1

8 21
1

which reduces to:

6.2.14. Tf I
2

e' w-1
2

(Si - Tf2 B21) B~~ -1 -1
6.2.15. Tf I (8i-Tr2B21)P T 1

The expression in 6.2.15 can be evaluated as explained in Subsection 3.4.4.

134

2. Calculate the reduced costs

The reduced cost vector c can.'be determined from

C = 1T 1 A + 1T 1 A - C 1 1 2 2

3. Perform the optimality test

If cj s O for all nonbasic variables at their lower bound, and

if cj ~ 0 for all nonbasic variables at their upper bound,

the current solution is optimal and the algorithm stops.

4. Choose the nonbasic variable to enter the basis

Let I denote the index set of all nonbasic variables which violate the

optimality test in step 3.

Choose a variable ¾ ,_ k E I, to enter the basis. The column of A associated

with ¾ is given by ~;:]-

5. Find the representation of the enterinq column in tems of the basis

Let [Y1kj denote
Y2k

means that rY1k]
LY2k

6.2.16.

the representation vector of ra1k] in terms of B. This
La2k

can be evaluated from

Again we do this in two stages.

First, solve:

6.2.17.

which leads to:

6.2.18.
-1 -1

p T a1k

6.2.19.

The vector y 1k can be determined as in pure processing networks (see Sub­
-1

section 3.4.1). Note that in doing this, matrix P is partitioned as in

3.4.37.

135

Secondly, solve:

6.2.20 L
which reduces to:

6.2.21.

6.2.22.

-1 -1
We can evaluate the expression P T B12 y 2k in 6.2.22 from right to left.

Note that for P-l the partitioned form, obtained in determining ylk in

6.2.18, can be used.

6. Perform the minimal ratio test

We can perform the minimal ratio test in the standard way, described in

Section 2. 3. Suppose that x with corresponding column r a 1sl leaves the
s La2sJ

basis.

7. Update

The value of the objective function and the activity levels of the basic

variables can be updated in the standard fashion (see Section 2.3). Updating

the working bases is more complex.

Let the vector ~ of basic variables be partitioned as [:;] , compatible

with the partitioning of B.

Using the same terminology as in HARTMAN & LASDON [1972] and CHEN & SAIGAL

[1977], we call the variables in x1 key variables, those in x2 non-key

variables.

In performing the basis change two cases are distinguished.

A. the leaving variable xs is a non-key variable

In this case the new basis B can be written as:

6.2.23. B

where both §12 and B22 differ from B12 and B22 by exactly one column:

column [als] is replaced by lalk].
a2s La2k

136

The new general working basis W satisfies (see 6.2.7):

6.2.24. w

which differs from Win only one

contained in Wis given by a 2k -

column. The column of W which is not
-1

B21 B11 a 1k. The representation of this

column in terms of Wis given by the vector y 2k, determined in 6.2.19. This
--1

can immediately be observed from 6.2.18 and 6.2.19. This means that W can

be found by performing the standard pivot operation directly to w- 1 •

Since B11 and B21 are not changed, the representative forest and the inverse

of the processing working basis do not change either. Note that this inverse

can be written in block triangular form obtained in determining ylk in

6.2.18.

B. the leaving variable xs is a key~variable

The new basis :a can be written as

6.2.25. B [~11 ",j
B21 B22

where :a 11 and :a21 differ from B11 and B21 by exactly one column.

In this case it can happen that :a 11 is singular. Note that :a 11 is non­

singular iff the coefficient of ylk in 6.2.18, which corresponds to the

leaving basic variable, is nonzero. If B11 is nonsingular, we observe that

W satisfies the following expression:

6.2.26. w w- [~]
t
s

--1
Hence, W cannot be found by just performing a pivot operation.

--1
In order to update the basis inverse B we use a two stage approach,

proposed earlier by a.o. HARTMAN & LASDON [1972] and CHEN & SAIGAL [1977]:

(a) If possible, interchange column ra1sl
La2sJ

such that the resulting matrix B11 is

with some non-key column [alt],
a2t

nonsingular.

(b) If an interchange has taken place the situation is now that a non-key

column leaves the basis.

Hence the rest of the work can be done according to case A described

above.

137

We will call the step under (a) the interchange phase and explain it next

in detail.

Interchange phase

The theoretical background for an interchange as meant under (a) is

described in CHEN & SAIGAL [1977]. Here only the results are stated.
-1 Let A' denote the s th row of B11 B12 .

Distinguish the two possible cases:

(a) A is a zero vector.

Then no interchange as meant under (a) is possible. However, observe

from 6.2.26 that W = w, which means that the inverse of the general

working basis does not change.

Moreover B11 in 6.2.25 must be nonsingular.

The inverse of the processing working basis and the new representative

forest can be determined in the way of Section 3.5.

(8) >.. is not a zero vector.

Then ra1sJ can be interchanged with any ra1 t] for which the correspond-
La2s La2t

ing coefficient in A is unequal to zero.

By interchanging ra1sJ and [alt], the analysis in CHEN & SAIGAL [1977]
_ La2s a2t

shows that w- 1 can be found from

6.2.27.
--1 w -1 1----------------1 w

After determining B~ i a.1 t as in pure processing networks, the inverse of

the processing working basis and the new representative forest can be

updated using the procedures of Section 3.5.

After the basis change the Simplex algorithm proceeds with step 2.

This completes the description of the Simplex algorithm.

138

6.2.3. Maximizing the number of transportation processes contained in B11 ,

given B

Concerning matrix B11 in 6.2.3 the only requirement in the previous sub­

section is that B11 denotes a square nonsingular matrix. Here we discuss

how we can maintain the number of transportation processes in B11 as large

as possible, given the basis B.

The desirability of keeping the transportation part of B11 , given B, as

large as possible is quite obvious:

- manipulating with transportation processes is easier than with refining

or blending processes.

given a basis, the size of the processing working basis is as small as

possible.

Except for storage requirements this may save time in performing the steps

of the Simplex algorithm of the previous section.

We will first derive a necessary and sufficient condition under which the

number of transportation processes in B11 is maximal, given a basis B.

Furthermore we will present some modification rules for the update step of

the Simplex algorithm in Subsection 6.2.2, which guarantee that this con­

dition is satisfied in every iteration of this Simplex algorithm.

Consider the matrix B1:

6.2.28.

B11 and B12 are already introduced in formula 6.2.3. B11 is square non­

singular and denotes the key part of the basis. B12 describes the non-key

part of the basis.

We can partition B1 in 6.2.28 somewhat further:

6.2.29.

with:

T
B11 an m X (m-q) matrix denoting the key transportation processes,

p
q matrix denoting the key refining and blending processes, B11 an m X

T
B12 an m X (k-g) matrix denoting the non-key transportation processes,

p
g matrix denoting the non-key refining and blending processes. B12 an m X

For q and g the following expressions hold: 0 $ q $ m-1 and O $ g $ k.

139

As made clear in Section 3.3, matrix B~1 is associated with the (q + 1) trans­

portation trees of the representative forest. Using Theorem 3.4.4 of Sub­

section 3.4.1 we can prove the following theorem:

THEOREM 6.2.3. Given the basis B, and the fact that B11 is nonsingular, the

nunver of transportation processes in Bi1 is maximaZifj'every transportation

process contained in Bi2 is incident to only one transportation tree of the

representaHve forest.

PROOF. If q = 0 or g = k the statement is trivially true.

Consider the case that q > 0 and g < k. We first prove the "only if" part

and then the "if" part.

T
only if. Consider a transportation process (i0 ,j 0) in B12 which is incident

to two transportation trees. Let its corresponding column in the A1 part of

A in 6.2.1 be given by a. Consider the representation vector y of a in
-1

terms of B11 , i.e., y = B11 a. Theorem 3.4.4 says that there is at least

one refining or blending process in B11 which has a nonzero coefficient in

the representation vector y. Consequently, column a can be interchanged

with a column of B~1 such that the new B11 is again nonsingular. Hence we

see that in performing such an interchange the number of transportation

processes in B11 increases by one and the current number of transportation

processes in B11 cannot be maximal.
T

if. Suppose that every transportation process in B12 is incident to only

one transportation tree. Consider such a process (i0 ,j 0), with corresponding

column a in the A1 part of A in 6.2.1. Theorem 3.4.4 makes clear that a can

be written as a linear combination of columns in Bil only. Hence we can

only interchange column a with a column currently contained in Bi1 (that is,

if we want to keep the new B11 nonsingular). In performing such an

interchange the number of transportation processes in B 11 remains the same.

Moreover, note that if we would perform such an interchange the nodes i 0

and jO both still belong to one transportation tree. Hence there is no use

in considering a number of subsequent interchanges in order to achieve a

new B11 with more transportation processes then the current one. □

We can use Theorem 6.2.3 to accomplish that, in every iteration of the

Simplex algorithm of the previous subsection, the number of transportation

processes in B11 is maximal. For this purpose we only have to adapt the

update step of the Simplex algorithm. Note that, in using the initialization

140

discussed in Subsection 6.2.2, B11 initially consists of transportation

processes only.

Consider the described possibilities of the update step in Subsection 6.2.2.

A. The leaving variable xs is a non-key variable

After performing the basis update consider the two possible cases

(a) a transportation process has entered the basis

Determine whether this process is incident to two different transporta­

tion trees.

If so, determine its representation in terms of B11 and perform an

interchange with a column of the B~1 part. Update the working bases

and the representative forest in the way described earlier. Obviously

the size of the processing working basis is reduced by one.

Otherwise, keep the partition in the way it is now. There is no use in

inspecting the other transportation processes currently contained in
T the B12 part, since they all still have entries in only one trans-

portation tree.

(b) a refining or blending process has entered the basis

Here no favourable interchange is possible.

B. The leaving variable x is a key variable
. s

Consider the interchange phase

(a)
-1

vector ;>._' (the s th row of B11 B12J is a row of zeros.

No interchange is possible.

(b) vector;,._, is not a row of zeros

(a) a transportation process leaves the basis

This leaving transportation process corresponds to a transportation

arc which is contained in some transportation tree, say Ti. In

leaving out this arc the transportation tree Ti splits up in two
1 2 new trees, say Ti and Ti· Test whether there is any transportation

process in the B~2 part, which is incident to both T! and T~.

If so, interchange the corresponding non-key variable with the

leaving xs.

Otherwise xs must be interchanged with a non-key refining or

blending process.

141

(8) a refining or blending process leaves the basis

In this case xs can only be interchanged with a non-key refining

or blending process.

Note that in all possible cases we have to perform at most one additional

interchange of columns.in order to accomplish that the number of transporta­

tion processes in Bl1 is maximal, given the basis B.
As miqht be expected, the size of the processing working basis increases by

one, remains the same or decreases by one in every iteration of the Simplex

algorithm.

6.2.4. An extension and a comparisort with Simplex SON

We have noted in Section 5.3 that the Simplex PRON appraoch of Section 3.5

can be adapted to solve problems of the form 5.1.1-5.1.3,5.3.1. Hence we

immediately see that the approach of the Subsections 6.2.2 and 6.2.3 can in

fact be applied to LP /embedded - pure - network problems. These are LP-

problems of the form

6.2.30. minimize ci x 1 + c2 x2

6.2.31. All xl + A12 x2 = bl

6.2.32. .A21 xl + A22 x2 b2

6.2.33. 0 $ xl $ ul

6.2.34. 0 $ x2 $ u2

where matrix A11 is an m x n matrix, which reflects a pure network

structure, and A12 , A21 and A22 are general matrices. The number of

constraints in 6.2.32 is k.

GLOVER & KLINGMAN [1981] developed the Simplex SON algorithm to solve LP­

problems of the form 6.2.30-6.2.34. It appears that the Simplex PRON

approach of this section and Simplex SON use similar ideas at several

points. At other points they are different. We briefly discuss the

differences and similarities between the current Simplex PRON approach and

Simplex SON.

In the Simplex PRON procedure we gave a processing network interpretation

to the columns in A12 in 6.2.31. We developed a partitioning for a basis in

such a way that we could work with two working bases and the representative

142

forest. The general working basis has a fixed size k (i.e., the number of

constraints in 6.2.32). The.processing working basis has a variable size q

(i.e., the number of nontransportation processes in B11), and is maintained

in block triangular form.

In Simplex SON however, the columns in A12 are considered as arbitrary

columns. The partitioning of a basis is such that all the steps of this

algorithm can be performed by a single working basis, and the so-called

master basis tree. In the same situation as described above for the Simplex

PRON algorithm, the working basis in the Simplex SON algorithm has a

variable size (k + q) . This working basis is not maintained in block

triangular form.

The master basis tree is in fact the same concept as the representative

forest, which we used: if we introduce an additional node (m + 1) (GLOVER &

KLINGMAN call it the master root) and replace the root-arcs of the trans­

portation trees in the representative forest by arcs from node (m + 1) to

the roots of these transportation trees, we have in fact a master basis

tree.

Finally we note that GLOVER & KLINGMAN [1981] developed similar ideas as we

did for maintaining the number of transportation processes in B11 as large

as possible, given B (Subsection 6.2.3).

6. 3. Ge.n.eJr.ilize.d plWC!.eJ.i.6-Lng ne.:lwOJt/u, wUh adcU:Uonai. Une.aJt C!.MUi:tlr..abi:tJ.,

We can easily generalize the ideas of Section· 6.2 in order to solve

generalized processing network problems with additional linear constraints.

Whenever pure-network techniques or pure processing-network techniques were

used in that section,they should be replaced by generalized-network

techniques or generalized processing-network techniques as explained in

Section 2.5 and Chapter 4.

Such an approach can be used to solve LP/embedded-generalized network

problems of the form 6.2.30-6.2.34 where matrix A11 in 6.2.31 denotes a

generalized network structure.

Finally we note that we can keep the transportation part in B11 as large as

possible in a similar way as done in Subsection 6.2.3.

Using Theorem 4.4.3 we can prove a similar theorem as Theorem 6.2.3.

143

7. APPLICABILITY ANV EXPECTEV COMPUTATIONAL RESULTS

This final chapter briefly discusses where the procedures developed can be

applied in solving real-world inqustrial or managerial problems. Also the

expe~ted computational performance is considered.

7.1. AppUeab,U,Uy

A first class of problems to which the processing network procedures can be

applied are of course those which have a natural meaning as a processing

network problem (with or without additional linear constraints).

In Chapter 1 the following fields of application are already mentioned:

1. production scheduling in process industry,

2. assembly models,

3, energy models,

4. economic models.

With respect to the latter class we note that they often can be regarded as

so-called (pre-) Leontief substitution models considered a.o. by VEINOTT

[1968] and KOEHLER, WHINSTON & WRIGHT [1975].

A Leontief matrix has the property that it contains exactly one positive

element in each column. Consequently, a Leontief substitution problem can

be seen as a generalized processing network problem with positive multi­

pliers and only refining nodes.

Another class of problems which can be interpreted as processing network

problems is the class of

5. Markov-control problems,

where quite obviously transition probabilities correspond to processing

coefficients in a processing network. It is remarked that Markov-control

problems can often be considered as (pre-) Leontief substitution models,

see KOEHLER, WHINSTON & WRIGHT [1975] and also KALLENBERG [1980].

144

Secondly, the procedures developed can in principle be applied to LP/

embedded pure or generalized network problems (see Subsection 6.2.4 and

Section 6.3), since they put an emphasis on exploiting single commodity

network structure. There are many practical LP-problems which have a

relatively large embedded network component. As GLOVER & KLINGMAN [1981]

put it:

"In general it is our experience that most large-scale LP-problems involving

production scheduling, physical distribution, facility location, personnel

assignment or personnel promotion contain a large embedded network component,

sometimes consisting of several smaller embedded networks."

Thirdly, as already pointed out in Chapter 5, the procedures of Chapters 3

and 4 can in principle be used as a sparse matrix approach for general

LP-problems. They fit very well in the "compact-inverse" vision of BASTIAN

[1980].

Finally,we refer to a case study performed by the working group "Financial

Planning and OR" of the Dutch OR-Society (SOR), KOENE et al. [1981].

This study considers an LP-formulation of the bank balance problem of a

general Dutch bank corporation. It is a multiperiod model with certain

network flow characteristics: assets can be put out and liabilities can be

attracted for a number of periods, such that their totals are in balance in

each period. However, a bank is not totally free to do this as it pleases

but has to satisfy certain requirements with respect to liquidity,

solvability etc. The study shows that it is very well possible to picture

out the structure of this model by means of a generalized processing­

network diagram (cf. the discussion on visualization in Section 5.4).

7.2. Expected eompu;ta,t:,Lona1 ~e-6uLt6

Unfortunately at this time no computational results can be reported, simply

because no implementation has been carried out yet.

Nevertheless, in view of the fact that the approaches here are much in the

same spirit as the Simplex SON approach of GLOVER & KLINGMAN [1981] and the

fact that in addition the typical processing network structure is used

(block triangularization) we expect that the approaches developed here

should perform better than Simplex SON. GLOVER & KLINGMAN report encouraging

preliminary results on some special classes of LP/embedded-pure-network

problems, but stress that an exhaustive computational study is required

before any serious conclusions can be drawn.

145

REFERENCES

ADOLPHSON, D.L. [1980], A nondegenerate network Simplex method, Working

paper, Graduate School of Business, University of Washington, Seatlle,

' Washington.

ALI, A.I., R.V. HELGASON, J.L. KENNINGTON & R.S. LALL [1978], Primal Simplex

network codes: State-of-the-art implementation technology, Networks,~,

315.-339.

ARONOFSKY, J.S., J.M. DUTTON & M.T. TAYYABKHAN [1978], Managerial planning

with linear programming in process industry operations, John Wiley &

Sons, New York.

BALACHANDRAN, V., V. SRINIVASAN & G.L. THOMPSON [1981], Applications of the

operator theory of parametric programming for the transportation and

generalized transportation problems, Mathematical Programming Study~,

58-85.

BALAS, E. [1966]. The dual method for the generalized transportation problem,

Management Science 2:3_, 555-568.

BALAS, E. & P.L. HAMMER [1962]. On the transportation problem - Parts I and

II, Cahiers du Centre d'Etudes de Recherche Operationelle !, 98-116,

131-160.

BARNES, J.W. & R.M. CRISP [1975], Linear programming: a survey of general

purpose algorithms, AIIE Transactions 7__, 212-221.

BARR, R., J. ELAM, F. GLOVER & D. KLINGMAN [1980], A network alternating

path basis algorithm for transshipment problems, in Fiacco, A. and K.

Kortanek (Eds.), Lecture notes in economics and mathematical systems

no. 174, Springer Verlag, Berlin.

BARR, R., F. GLOVER & D. KLINGMAN [1974], An improved version of the out-of­

kilter method and a comparative study of computer codes, Mathematical

Programming 7__, 60-87.

146

BARR, R., F. GLOVER & D. KLINGMAN [1979], Enhancements of spanning tree

labeling procedures for network optimization, INFOR ..!2_, 16-34.

BARR, R.S. & J.S. TURNER [1981], Microdata file merging through large-scale

network technology, Mathematical Programming Study ..!.2_, 1-22.

BASTIAN, M. [1980], Lineare Optimierung grosser Systeme, Compact-Inverse

Verfahren und Basisfaktorisierungen, Mathematical systems in economics,

Verlagsgruppe Athenaum/Hain, Konigstein.

BAZARAA, M.S. & J.J. JARVIS [1977], Linear programming and network flows,

,John Wiley & Sons, New York.

BENDERS, J.F. [1962], Partitioning procedures for solving mixed-variables

programming problems, Numerische Mathematik i, 238-252.

BENNINGTON, G.E. [1972], An efficient minimal cost flow algorithm, O.R.

Report 75, North Carolina State University, Raleigh, North Carolina.

BERGE, C. & A. GHOUILA-HOURI [1965], Programming, games and transportation

networks, John Wiley & Sons, New York.

BIXBY, R.E. [1981], Hidden structure in linear programs, in GREENBERG, H.J.

& J.S. MAYBEE [1981], 327-360.

BLAND, R.G. [1977], New finite pivoting rules for the Simplex method,

Mathematics of Operations Research~' 103-107.

BOONEKAMP, P.G.M., N.J. KOENDERS, F. VAN OOSTVOORN [1979], Berekening van

een centrale variant voor de periode 1976-2000 voor de Nederlandse

energiesector met het model SELPE (Dutch), ECN-Report-79-070, ECN,

Petten.

BRADLEY, G. [1975], Survey of deterministic networks, AIIE Transactions 7_,

222-234.

BRADLEY, G.H., G.G. BROWN & G.W. GRAVES [1977], Design and implementation

of large scale primal transshipment algorithms, Management Science 24,

1-34.

BROWN, G.G. & W.G. WRIGHT, Automatic identification of embedded structure

in large-scale optimization models, in GREENBERG, H.J. & J.S. MAYBEE

[1981], 369-388.

BUNCH, J.R. & P.J. ROSE (Eds.) [1976], Sparse matrix computations,

Proceedings of the symposium on sparse matrix computations at Argonne

National Laboratory in 1975, Academic Press Inc., New York.

147

CHARNES, A. & W. COOPER [1961], Management models and industrial applications

of linear programming, Volumes I and II, John Wiley & Sons, New York.

CHARNES, A., F. GLOVER, D. KARNEY, D. KLINGMAN & J. STUTZ [1975], Past,

present and future of large scale transshipment computer codes and

applications, Computers and Operations Research I, 71-81.

CHEN, S. & R. SAIGAL [1977], A primal algorithm for solving a capacitated

network flow problem with additional linear constraints, Networks'!_,

59-79.

CUNNINGHAM, W.H. [1976], A network Simplex method, Mathematical Programming

_!!, 105-116.

CUNNINGHAM, W.H. [1979], Theoretical properties of the network Simplex

method, Mathematics of Operations Research i, 196-208.

CZAYKA, L. [1972], Qualitative Input-Output Analyse, Schriften zur Wirt­

schaftwissenschaftlichen Forschung, Bd. 42, Verlag Anton Hain,

Meisenheim am Glan.

DANTZIG, G.B. [1951], Application of the Simplex method to a transportation

problem, in: Koopmans, T.C., Ed., Activity analysis of production and

allocation, John Wiley & Sons, New York.

DANTZIG, G.B. [1955], Upper bounds, secondary constraints and block­

triangularity, .Econometrica~, 174-183.

DANTZIG, G.B. [1963], Linear programming and extensions, Princeton University

Press, Princeton.

DUFF, I.S. [1977a], A survey of sparse matrix research, Proceedings of the

IEEE 65, 500-535.

DUFF, I.S. [1977b], On permutations to block triangular form, Journal of

the Institute of Mathematics and its Applications .!.2_, 339-342.

DUFF, I.S. [1981], On algorithms for obtaining a maximum transversal, ACM

Transactions on Mathematical Software'!_, 315-330.

DUFF, I.S. & J.K. REID [1978a], An implementation of Tarjan's algorithm for

the block triangularization of a matrix, ACM Transactions on Mathematical

Software i, 137-147.

DUFF, I.S. & J.K. REID [1978b], Algorithm 529. Permutations to block

triangular form, ACM Transactions on Mathematical Software i, 189-192.

148

EDMONDS, J. & R. KARP [1972], Theoretical improvements in algorithmic

efficiency for network flow problems, Journal of the ACM .!2_, 248-264.

EISEMANN, D. [1964], The generalized stepping stone method for the machine

loading model, Management Science.!..!_, 154-177.

ELAM, J., F. GLOVER & D. KLINGMAN [1979], A strongly convergent primal

Simplex algorithm for generalized networks, Mathematics of Operations

Research _i, 39-59.

ELMAGHRABY, S.E. [1970], The theory of networks and management science,

'Management Science ..!2_, 1-34, B54-B71.

FERGUSON, A.R. & G.B. DANTZIG [1954], Notes on linear programming: part XVI­

The problem of routing aircraft - a mathematical solution, Research

Memorandum RM-1369, The RAND Corporation.

FONG, c.o. & V. SRINIVASAN [1977], Determining all nondegenerate shadow

prices for the transportation problem, Transportation Science.!..!_,

199-222.

FORD, L.R. & D.R. FULKERSON [1957], A primal-dual algorithm for the

capacitated Hitchcock problem, Naval Research Logistics Quarterly _i,

47-54.

FORD, L.R. & D.R. FULKERSON [1958], Suggested computation of maximal multi­

commodity network flows, Management Science 2_, 57-101.

FORD, L.R. & D.R. FULKERSON [1962], Flows in networks, Princeton University

Press, Prin::eton.

FULKERSON, D,R. [1961], An out-of-kilter method for minimal cost flow

problems, SIAM Journal of Applied Mathematics 2_, 18-27.

GEOFFRION, A.M. & G.W. GRAVES [1974], Multicommodity distribution system

design by Benders decomposition, Management Science~, 822.

GEURTS, J.G.M. [1980], Een linear programmeringsmodel van de productie­

planning op korte termijn, M.Sc. Thesis, Department of Industrial

Engineering and Management Science, Eindhoven University of Technology,

Eindhoven.

GHOUILA-HOURI, A. [1960], Recherche du flot maximum dans certains reseaux

lorsqu'on impose une condition de bouclage, Proceedings of the second

International Conference on Operations Research, London, 156.

149

GLOVER, F. [1981], Creating network structure in LPs, in GREENBERG, H.J. &

J.S. MAYBEE [1981], 361-367.

GLOVER, F., J. HULTZ & D. KLINGMAN [1978], Improved computer based planning

techniques, Part I, Interfaces~, 16-25.

GLOVER, F., J. HULTZ, D. KLINGMAN & J. STUTZ [1978], Generalized networks;

a fundamental computer-based planning tool, Management Science~,

1209-1220.

GLOVER, F., D. KARNEY & D. KLINGMAN [1972], The augmented predecessor index

· method for locating stepping stone paths and assigning dual prices in

distribution problems, Transportation Science.§_, 171-180.

GLOVER, F., D. KARNEY & D. KLINGMAN [1974], Implementation and computational

comparisons of primal, dual and primal-dual computer codes for minimum

cost network flow problems, Networks!, 191-212.

GLOVER, F., D. KARNEY, D. KLINGMAN & A. NAPIER [1974], A computational

study on start procedures, basis change criteria and solution

algorithms for transportation problems, Management Science 20, 793-813.

GLOVER, F. & D. KLINGMAN [1973], On the equivalence of some generalized

network problems to pure network problems, Mathematical Programming!,

369-378.

GLOVER, F. & D. KLINGMAN [1975], Real world applications of network related

problems and breakthroughs in solving them efficiently, ACM Transactions

on Mathematical Software.!_, 47-55.

GLOVER, F. & D. KLINGMAN [1977], Network applications in industry and

government, AIIE Transactions~, 363-376.

GLOVER, F. & D. KLINGMAN [1978a], Modelling and solving network problems,

in: GREENBERG, H.J., Ed., Design and implementation of optimization

software, Sythoff & Noordhoff, 185-224.

GLOVER, F. & D. KLINGMAN [1978b], Comments on a note by Hatch on network

algorithms, Operations Research~, 370-374.

GLOVER, F. & D. KLINGMAN [1980], Recent developments in computer implementa­

tion technology for network flow algorithms, International Workshop on

advances in linear optimization algorithms and software, Pisa, Italy.

150

GLOVER, F. & D. KLINGMAN [1981], The Simplex SON algorithm for LP/embedded

network problems, Mathematical Programming Study~' 148-176.

GLOVER, F., D. KLINGMAN & A. NAPIER [1972], An efficient dual approach to

network problems, OPSEARCH 2_, 1-18.

GLOVER, F., D. KLINGMAN & J. STUTZ [1973], Extensions of the augmented

predecessor index method to generalized network problems, Transportation

Science 7_, 377-384.

GLOVER, F., D. KLINGMAN & J. STUTZ [1974], The augmented treaded index

·method for network optimization, INFOR g, 293-298.

GLOVER, F. & J. MULVEY [1980], Equivalence of the 0-1 integer programming

problem to discrete generalized and pure networks, Operations Research

28, 829-836.

GOLDEN, B., M. BALL & L. BODIN [1981], Current and future research directions

in network optimization, Computers & Operations Research.§_, 71-81.

GRAVES, G.W. & R.D. MC BRIDE [1976], The factorization approach to large­

scale linear programming, Mathematical Programming !Q_, 91-110.

GREENBERG, H.J. & J.S. MAYBEE [1981], Computer assited analysis and model

simplification, Proceedings of the first symposium on computer­

assisted analysis and model simplification, Boulder, Colorado, March

1980, Academic .Press, New York.

GUNAWARDANE, G., S. HOFF & L. SCHRAGE [1981], Identification of special

structure constraints in linear programs, Mathematical Programming±.!_,

90-97.

GUPTA, R. [1978], Solving the generalized transportation problem with

constraints, Zeitschrift fur Angewandte Mechanik und Mathematik 58,

451-458.

GUSTAVSON, F. [1976], Finding the block lower triangular form of a sparse

matrix, in: BUNCH, J.R. and D.J. ROSE (Eds.) [1976], 275-289.

HALL, P. [1935], On representatives of subsets, Journal of the London

Mathematical Society !Q., 26-30.

HARTMAN, J.K. & L.S. LASDON [1972], A generalized upperbounding algorithm

for multicommodity network flow problems, Networks.!_, 333-354.

HATCH, R. [1975], Bench marks comparing transportation codes based on

primal Simplex and primal-dual algorithms, Operations Research E,
1167-1172.

151

HELGASON, R.V. & J.L. KENNINGTON [1977], A product form representation of

the inverse of a multicommodity cycle matrix, Networks 7_, 297-322.

HITCHCOCK, F.L. [1941], The distribution of a product from several sources

to numerous locations, Journal. of Mathematics and Physics 3.2_, 224-236.

HOWELL, T.D. [1976], Partitioning using PAQ, in: BUNCH, J.R. & D.J. ROSE

, [1976], 23-37.

HULTZ, J. & D. KLINGMAN [1976], Solving constrained generalized network

problems, Research Report CCS 257, Center for Cybernetic Studies,

University of Texas, Austin.

ITAI, A. [1978], Two commodity flows, Journal of the ACM~, 596-611.

JENSEN, P.A. & J.W. BARNES [1980], Network flow programming, John Wiley &

Sons, New York.

JEWELL, W.S. [1962], Optimal flow through networks with gains, Operations

Research .!.Q., 476-499.

JEWELL, W.S. [1966], Multicommodity network solutions, Research Report

ORC 66-24, University of California, Berkeley.

JOHNSON, E.L. [1966], Networks and basic solutions, Operations Research_!,!,

619-623.

KALLENBERG, L.C.M. [1980], Linear programming and finite Markovian control

problems, Ph.D. Thesis, University of Leiden, Leiden.

KANTOROVICH, L.V. [1939], Mathematical methods in the organization and

planning of production, Publication House of the Leningrad State

University. Translated in Management Science.§_ [1960], 366-422.

KANTOROVICH, L.V. & M.K. GAVURIN [1949], The application of mathematical

methods to problems of freight flow analysis, Akademii Nauk SSSR.

KENNINGTON, J.L. [1977], Solving multicommodity transportation problems

using a primal partitioning simplex technique, Naval Research

Logistics Quarterly~, 309-325.

KENNINGTON, J.L. [1978], A survey of linear cost multicommodity network

flows, Operations Research 26, 209-236.

152

KEVORKIAN, A.K. [1979], The principal maxmin matrix transversal strategy,

Mathematics of Operations Research i_, 274-290.

KLEIN, M. [1967], A primal method for minimal cost .flow with applications

to the assignment and transportation problems, Management Science.!_!,

205-220.

KLINGMAN, D., A. NAPIER & J. STUTZ [1974], NETGEN - A program for generating

large scale (un)capacitated assignment, transportation and minimum cost

flow network problems, Management Science 20, 814-821.

KLINGMAN, D. & R. RUSSELL [1975], Solving constrained transportation

problems, Operations Research~, 91-108.

KOEHLER, G.J., A.B. WHINSTON & G.P. WRIGHT [1975], Optimization over

Leontief substitution systems, North Holland Publishing Co., Amsterdam.

KOENE, J. [1979a], A primal-dual algorithm for solving a maximal flow

problem in a class of networks with gains, Memorandum COSOR 79-13,

Eindhoven University of Technology, Eindhoven.

KOENE, J. [1979b], Scaling a network with positive gains to a lossy or

gainy network, Memorandum COSOR 79-18, Eindhoven University of

Technology, Eindhoven.

KOENE, J. [1980], Maximal flow through a processing network with the source

as the only processing node, Memorandum COSOR 80-02, Revised version,

Eindhoven University of Technology, Eindhoven.

KOENE, J. [1981a], Processing networks: introduction and basis structure,

Memorandum COSOR 81-06, Eindhoven University of Technology, Eindhoven.

KOENE, J. [1981b], A primal Simplex algorithm for the minimal cost flow

problem in a processing network, Memorandum COSOR 81-09, Eindhoven

University of Technology, Eindhoven.

KOENE, J., J.W. BOOGERD, T.A. VAN BREUKELEN, H.J.J. BRONSEMA, Th.M. COFFENG,

L.L.M. VAN GAAL, H.N. GLORIE, M.C. HUISMAN, M.J.M. SMOLDERS &

R.W.M.M. VAN DE VEN [1981], Balance optimization for bank corporations,

formulated as a processing network problem (in Dutch), Research

memorandum no. 93, Institute for Economic Research, University of

Groningen, Groningen.

KOOPMANS, T.C. [1947]. Optimum utilization of the transportation system,

Proceedings of the International Statistical Conference, 1947.

153

Also in: Scientific papers of Tjalling C. Koopmans, Springer Verlag,

1970, 184-190.

LASDON, L.S. [1970], Optimization theory for large systems, Macmillan,

New York.

LAWLER, E.L. [1976], Combinatorial optimization; networks and matroids,

Holt, Rinehart & Whinston, New York.

MAIER, S.F. [1971], A compact inverse scheme applied to a multicommodity

network with resource constraints. Technical Report no. 71-8,

Operations Research House, Stanford University, Stanford.

MANNE, A.S., R.G. RICHELS & J.P. WEYNANT [1979], Energy policy modelling:

a survey, Operations Research 32_, 1-36.

MARKOWITZ, H.M. [1954], Concepts and computing procedures for certain xij

programming problems, Paper P-602, The RAND Corporation.

MAURRAS, J. [1972], Optimization of the flow through networks with gains,

Mathematical Programming i, 135-144.

MAYEDA, W. [1968], Maximal flow under controlled edge flows, Proceedings

1968 International Conference on Communications, Philadelphia,

Pennsylvania, june 1968.

MC BRIDE, R.D. [1978], A spike collective dynamic factorization algorithm

for the Simplex method, Management Science~, 1031-1042.

MULVEY, J. [1978], Pivot strategies for primal Simplex network codes,

Journal of the ACM~, 266-270.

VAN NUNEN, J.A.E.E. & J.F. BENDERS [1981], A decision report system for

location and allocation problems within a brewery, Working Paper,

Graduate School of Management, Delft. To appear in DGOR-Operations

Research Proceedings, 1981, Springer Verlag, Berlin.

ORDEN, A. [1956], The transshipment problem, Management Science i, 276-285.

PETER, H. [1954], Mathematische Strukturlehre des Wirtschaftskreislaufes

Gottingen.

PHILLIPS, W. [1970], The storage and inversion of large sparse matrices,

ICI Wilmslow Report, Mathematics and Statistics Group.

RAMAKRISHNAN, K.G. [1980], Solving two-commodity transportation problems

with coupling constraints, Journal of the ACM 32_, 736-757.

154

ROBACKER, J.T. [1956], Concerning multicommodity networks, Research

Memorandum RM-1799, The Rand Corporation, Santa Monica.

RYAN, D.R. & s. CHEN [1981], A comparison of three algorithms for finding

fundamental cycles in a directed graph, Networks.!.!,_, 1-12.

SAIGAL, R. [1967], Multicommodity flows in directed networks, ORC Report

67-38, University of California, Berkeley.

SARGENT, R.W.H. & A.W. WESTENBERG-[1964], "Speed up" in chemical engineering

design, Transactions of the Institute of Chemical Engineers _il,190-197.

SAUNDERS, M.A. [1972], Large scale linear programming using the Choleski

factorization, Report CS-72-252, Computer Science Department, Stanford

University, Stanford.

SCHAEFER, A. [1978], Netze mit Verteilungsfaktoren, Verlag Anton Hain,

Meisenheim am Glan.

SCHRAGE, L. [1975], Implicit representation of variable upper bounds in

linear programming, Mathematical Programming Study 4, 118-132.

SCHRAGE, L. [1981], Some comments on hidden structure in linear programs,

in GREENBERG, H.J. & J.S. MAYBEE [1981], 389-395.

STEINBERG, E. & H.A. NAPIER [1980], Optimal multi-level lot sizing for

requirements planning systems, Management Science 26, 1258-1271.

TARJAN, R.E. [1972], Depth-first search and linear graph algorithms, SIAM

Journal on Computing.!_, 146-160.

TOMLIN, J.A. [1966], Minimum-cost multicommodity network flows, Operations

Research_!!, 45-51.

TRUEMPER, K. [1976], An efficient scaling procedure for gain networks,

Networks.§_, 151-160.

VEINOTT, A.F. [1968], Extreme points of Leontief substitution systems,

Linear Algebra and its Applications.!_, 181-194.

SUBJECT INVEX

adjacent

aggregated graph

"allll;ost" pure processing network

arc

backward arc

basic feasible solution

basic solution

basis

basis graph

blending arc

blending node

blending process

block triangularization

capacity bounds

connected

conservation of flow

cycle

cycle factor

cycle-path vector

cycle vector

degeneracy

directed graph

elementary matrix

embedded network

forest

forward arc

gain

generalized network

generalized processing network

general working basis

Hall's theorem

155

16

61,86

118

15

16

18

18

18

24,33,54

43

42

8,43

94

2

16

2,22

16

31

37

28

5

15

21

6

17

16

30

3,30,127

8, 12

132

33

156

incident

interchange

key variable

multicommodity network

multiple arc

multiplier

multiplier degeneracy

network

node

non-key variable

one-triangular matrix

order of a process

path

processing arc

processing coefficient

processing network

processing node

processing working basis

pure network

pure processing network

quasi-tree

refining arc

refining node

refining process

representation vector

representative arc
J

representative forest

representative node

representative spanning tree

root

root-arc

root-path vector

rooted tree

self-loop

side activity

side constraint

Simplex multipliers

16,55

136

135

3,124

16

30

110

16

15

135

34

44

16

44

44

7,44

43

132

2,22

8,11,41

17

43

42

7,43

19,27

45

83

82

56

17

17

28

17

16

6

6

19,26,36,79

Simplex PRON

Simplex SON

spanning forest

spanning tree

transportation arc

transportation node

transportation process

transportation quasi-tree

transportation tree

tree

triangular matrix

visualization

working basis

157

11

141

17

17

43

43

44

104

55,104

17

25

123

6 I 132

MATHEMATICAL CENTRE TRACTS
I T. van der Walt. Fixed and almost fixed points. 1963.
2 A.R. Bloemena. Sampling from a graph 1964.
3 G. de Leve. Generalized Markovian decision processes, part
I: model and method. 1964.
4 G. de Leve. Gem:ralized Maikovian decision processes, part
II: probabilistic background 1964.
S G. de Leve. H.C. Tijms, P.J. Weeda. Generalized Markovian
decision processes, applications. 1970.
6 M.A. Maurice. Compact ordered spaces. 1964.
7 W.R. van Zwet. Convex transformations of random variables.
1964.
8 J.A. Zonneveld. Automatic numerical integration. 1964.
9 P.C. Baayen. Universal morphisms. 1964.
10 E.M. de Jager. Applications of distributions in mathematical
physics. I 964.
11 A.B. Paalman-de Miranda. Topological semigroups. 1964. ·
12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken,
A. van Wijngaarden. Formal properties of newspaper Dutch.
1965.
13 H.A. Lauwerier. Asymptotic expansions. 1966, out of print;
replaced by MCT 54.
14 H.A. Lauwerier. Calculus of variations in mathematical
physics. 1966.
15 R. Doornbos. Slippage tests. 1966.
16 J.W. de Bakker. Formal definition iprogramminf;
~91-r'ges with an application to the de mition of AL OL 60.

17 R.P. van de Riel. Formula manipulation in ALGOL 60,
part I. 1968.
18 R.P. van de Riet. Formula manipulation in ALGOL 60,
part 2. 1968.
19 J. van der Slot. Some properties related to compactness.
1968.
20 P.J. van der Houwen. Finite difference methods for solving
partial differential equations. 1968.
21 E. Wattel. The compactness operator in set theory and
topology. l 968.
22 T.J. Dekker. ALGOL 60 procedures in numerical algebra,
part I. 1968.
23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in
numerical algebra, part 2. 1968.
24 J.W. de Bakker. Recursive procedures. 1971.
25 E.R. PaCrl. Representations of the Lorentz group and projec­
tive geometry. 1969.

fi6~uropean Meeting I 968. Selected statistical papers, part /.

fi6tropean Meeting 1968. Selected statistical papers, part I I.

28 J. Oosterhoff. Combination of one-sided statistical tests.
1969.
29 J. Verhoeff. Error detecting decimal codes. 1969.

30 H. Brandt Corstius. Exercises in computational linguistics.
1970.
31 W. Molenaar. Approximations to the Poisson, binomial and
hypergeometric distribution functions. 1970.
32 L. de Haan. On regular variation and its application to the
weak convergence of sample extremes. 1970.
33 F.W. Steutel. Preservation of infinite divisibility under mix­
ing and related topics. 1970.
34 I. Juhasz, A. Verbeek, N.S. Kroonenberg. Cardinal func­
tions in topology. l 97 I.
35 M.H. van Emden. An analysis of complexity. 1971.
36 J. Grasman. On the birth of boundary layers. 1971.
37 J.W. de Bakker, G.A. Blaauw, A.J.W. Duijvestijn, E.W.
Dijkstra, P.J. van der Houwen, G.A.M. Kamsteeg-Kemper,
F.E.J. Kruseman Aretz, W.L van der Poe!, J.P. Schaap­
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 Informatica
Symposium. 1971.
38 W.A. Verloren van Themaat. Automatic analysis of Dutch
compound words. I 972.
39 H. Bavinck. Jacobi series and approximation. 1972.
40 H.C. Tijms. Analysis of(s,S) inventory models. 1972.
41 A. Verbeek. Superextensions of topological spaces. 1972.
42 W. Vervaat. Success epochs in Bernoulli trials (with applica­
tions in number theory). 1972.

43 F.H. Ruymgaart. Asymptotic theory of rank tests for
independence. l 973.

44 H. Bart. Meromorphic operator valued functions. 1973.
45 A.A. Balkema. Monotone transformations and limit laws.
1973.
46 R.P. van de Riet. ABC ALGOL, a portable language for
formula manipulation systems, part 1: the language. 1973.
47 R.P. van de Riet. ABC ALGOL, a portable language for
formula manipulation systems, part 2: {he compiler. 1973.
48 F.E.J. Kruseman Aretz, P.J.W. ten Hagen, H.L
Oudshoorn. An ALGOL 60 compiler in ALGOL 60, text of the
MC-compiler for the EL-X8. 1973.
49 H. Kok. Connected orderable spaces. 1974.
50 A. van Wijngaarden, B.J. Mailloux, J.E.L Peck, C.H.A.
Koster, M. Smtzoff, C.H. Lindsey, LG.LT. Meertens, R.G.
Fisker (eds.). Revised report on the algorithmic language
ALGOL 68. 1976.
51 A. Hordijk. Dynamic programming and Markov potential
theory. 1974.
52 P.C. Baayen (ed.). Topological structures. 1974.
53 M.J. Faber. Metrizability in generalized ordered spaces.
1974.
54 H.A. Lauwerier. Asyn,ptotic analysis, part I. 1974.
55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part /:
theory of designs, finite geometry and coding theory. 1974.
56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2:
graph theory, foundations, partitions and combinatorial
geometry. I 914.
57 M. Hall, Jr .• J.H. van Lint (eds.). Combinatorics, part 3:
combinatorial group theory. 1974.
58 W. Albers. Asymptotic expansions and the deficiency con­
cept in statistics. 1975.
59 J.L Mijnheer. Sample path properties of stable processes.
1975.
60 F. Gobel. Queueing models involving buffers. l 975.
63 J.W. de Bakker (ed.). Foundations of computer science.
1975.
64 W.J. de Schipper. Symmetric closed categories. 1975.
65 J. de Vries. Topological transformation groups, I: a categor­
ical approach. 1975.
66 H.G.J. Pijls. Logically convex algebras in spectral theory
and eigenfunction expansions. 1976.
68 P.P.N. de Groen. Singularly perturbed differential operators
of second order. 1976.
69 J.K. Lenstra. Sequencing by enumerative methods. 1977.
70 W.P. de Roever, Jr. Recursive program schemes: semantics
and proof theory. 1976.
71 J.A.E.E. van Nunen. Contracting Markov decision
processes. 1976.
72 J.K.M. Jansen. Simple periodic and non-periodic Lame
functions and their applications in the theory of conical
waveguides. 1977.
73 D.M.R. Leivant. Absoluteness ofintuitionistic logic. 1979.
74 H.J.J. te Riele. A theoretical and computational s1u4y of
generalized aliquot sequences. 1976.
75 A.E. Brouwer. Treelike spaces and related connected topo­
logical spaces. 1977.
76 M. Rem. Associons and the closure statement. 1976.
77 W.C.M. Kallenberg. Asymptotic optimality of likelihood
ratio tests in exponentialfamilies. 1978.
78 E. de Jonge, A.C.M. van Rooij. Introduction to Ries;
spaces. 1977.
79 M.C.A. van Zuijlen. Emperical distributions and rank
statistics. 1977.
80 P.W. Hemker. A numerical study of stiff two-point boundary
problems. l 977.
81 K.R. Apt. J.W. de Bakker (eds.). Foundations of computer
science JI, part 1. 1976.
82 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer
science I/, part 2. 1976.
83 LS. van Benthem Jutting. Checking Landau's
"Grundlagen" in the A UTOMA TH svs1em. 1979.
84 H.LL Busard. The translation of the elements of Euclid
from the Arabic into Latin by Hermann of Carinthia {?), books
vii-xii. 1977.
85 J. van Mill. Supercompactness and Wallman spaces. 1977.
86 S.G. van der Meulen, M. Veldhorst. Torrix /, a program­
ming SJStem for operations on vectors and matrices over arbi­
trary Jields and oJ variable size. 1978.
88 A. Schrijver. Matroids and linking systems. l 977.
89 J.W. de Roever. Complex Fourier transformation and
analytic functionals with unbounded carriers. 1978.

?O L.P.J. Groenewegen. Characterization of optimal strategies
m dynamic games. l981.
91 J.M. Geysel. Transcendence infields ofposith•e characteris­
tic. 1979.
92 P.J. Weeda. Finite generalized Markov programming. 1979.
93 H.C. Tijms. J. Wessels (eds.). Markov de1..·ision theorv.
1977. .

94 A. Bijlsma. Simuflaneous approximations in rranscendenwl
number theory. I 978.
95 K.M. van Hee. Bayesian control of Markov chains. I 978.
96 P.M.B. Vitallyi. Lindenma.}'er ~rstems: structure, languages,
and growth functions. 1980.
97 A. Federgruen. Markovian conrrol problems; functional
equations and algorithms. 1984.
98 R. Geel. Singular perturbations of hyperbolic ~lpe. I 978.
99 J.K. Lenstra, A.H.G. Rinnooy Kan. P. van Emde Boas
(eds.). Interfaces between computer sdence and operations
research. 19'78.
100 P.C. Baayen. D. van Dulst, J. Oosterhof[(eds.). Proceed­
ings bicentennial congress of rhe Wiskundig Genoorschap. part
/. 1979.
IOI P.C. Baayen, D. van Dulst. J. Oosterhof[(eds.). Proceed­
ings bicentennial congress <!_(the Wiskundig Genootschap. part
2. 1979.

:~~8~. van Dulst. Reflexive and superreflexive Banach spaces.

l03 K. van Ham. Classifying infinite~}' divisible distrihurions
by funcrional equations. 1978.
l04 J.M. van Wouwe. Go-spaces and genera/i:.ations of metri­
zabilit>·. 1979.
105 R. Helrriers. Edgeworth expansions for linear combinations
of order slatistics. 1982.

:~~9~. Schrijver (ed.). Packing and covering m comhinatorics.

l07 C. den Heijer. The numerical solution of mmlinear opera­
tor t!quations ~J' imbedding method,;. 1979.
108 J.W. de Bakker. J. van Leeuwen (eds.). Foundations o{
computer science Ill, part 1. 1979. ·
109 J.W. de Bakker. J. van Leeuwen (eds.). Foundations cif
computer science Ill, part 2. 1979.
110 J.C. van Vliet. ALGOL 68 transput, part/: historical
review and discussion <!_(the implementation model. 1979
111 J.C. van Vliet. ALGOL 68 transpw, part II: an implemen­
tation model. 1979.
112 H.C.P. Berbee. Random walks with stacionan- increments
and renewal theory. 1979. ·

113 T.A.B. Snijders. A~vmptotic optimali~r theory f0r testing
problems with restricted a/ternatfres. 1979.

114 A.J.E.M. Janssen. Application of the Wigner distribution to
hamwnic ana(r·sis of generalized stochastic processes. 1979.
115 P.C. Baayen. J. van Mill (eds.). Topological structures I/,
part I. 1979.
116 P.C. Baayen. J. van Mill (eds.). Topological structures JI,
part 2. 1979.
117 P.J.M. Kallenberg. Branching processes with continuoLLt
state space. 1979.
118 P. Groeneboom. large deviations and asymptotic efficien­
cies. 1980.
~ 19 F.J. Pet~rs. Sparse matrices and substructures. with a now!/
1mp/ementat,on oJ finite element algorithms. 1980.
120 W .P.M. de Ruyter. On the asymptotic ana~pis of large­
scale ocean circulation. 1980.
121 W.H. Haerners. Eigenvalue techniques in design and graph
theory. 1980.
122 J.C.P. Bus. Numerical solution<!_(~)'stems of nonlinear
equations. 1980.

:~~a1_, Yuhasz. Cardinal functions in topologr - Jen years later.

124 R.D. Gill. Censoring and stochastic integrals. 1980.
125 R. Eising. 2-D ~vstems, an algebraic approach. 1980.
126 G. van der Hoek. Reduction methods in nonlinear pro­
gramming. 1980.
127 J.W. Klop. Combinator;· reduction ~}'Stems. 1980.
128 A.J.J. Talman. Variable dimension fixed point algorithms
and triangulations. 1980.
129 G. van der Laan. Simplicia/ fixed point algorithms. 1980.
130 P.J.W. ten Hagen, T. Hagen, P. Klint, H. Noot. H.J.
Sint, A.H. Veen. /LP: intermediate language for pictures.
1980.

131 R.J.R. Back. Correctness preserving program refinemems:
proof theory and applicatwns. 1980.
132 H.M. Mulde11. The interval/unction <fa graph. 1980.
133 C.A.J. Klaassen. Statistical performance of location esti­
mators. 1981.
1.34 J.C. van Vliet, H. Wupper (eds.). Proceedings inrernu-
11onal rnnference 011 ALGOL 68. 1981.
135 JAG. Groenendijk. T.M.V. Janssen. M.J.B. Stokhof
(eds.). Formal met~odt in the study of language, part I. 1981.
136 J.A.G. Groenendijk. T.M.V. Janssen. M.J.B. Stokhof
(eds.). Formal methods in the study of language, part I I. I 98 I.
137 J. Telgen. Redundancy and linear programt. 1981.
U8 H.A. Lauwerier. Mathemarica/ models of epidemics. 1981.
139 J. van der Wal. Stochastic dynamic programming, .succes­
sive approximations and near(r optimal strategies for Markov
decision processes and Markov games. 1981.
140 J.H. van Gddrop. A mathematical tht·ory ofpure
exchange economies without the no-critical-point ~rpothesis.
1981.
141 G.E. Welters. Ahel-Jacohi isor,eniesfor catain ~rpes o.f
Funo 1hreefolds. 1981.
142 H.R. Bennett. DJ. Lutzer (eds.). Topo/ogr and order
structures, part 1. 1981.
143 J.M. Schumacher. Dynamicfeedhack in.finite- and
infinite-dimensional linear -~rstems. 1981.
144 P. Eijgenraam. The solution r!finitia/ value problems using
inten,al 11rithmetic; formula/ion and ana(rsis <{ an algorithm.
1981.
145 AJ. Brentjes. Multi-dimensional continuedfraction algo­
rithms. 1981.
146 C.V.M. van der Mee. Semigroup andfactori:.arion
me1hods in transport 1heory. 1981.
147 H.H. Tigelaar. Identification and i11f(mnatfre sample si:.e.
1982.
148 L.C.M. Kallenberg. linear programming and.finite Mar­
km•ian control problems. 1983.
149 C.B. Huijsmans. M.A. Kaashoek. W .A.J. Luxemburg.
W.K. Vietsch (eds.). From A to Z. proceedin~s of a symposium
in honour ofA.C. Zaanen. 1982.
150 M. Veldhorst. An ana(,:sis o_(sparse matrix storage
schemes. 1982.
151 RJ.M.M. Does. Higher order a.~vmptoticsfor simple linear
rank statistics. 1982.
152 G.F. van der Hoeven. Projections r!f lawless sequences.
1982.
153 J.P.C. Blanc. Application o_l the theory of boundary i'alue
proble,m in the ana?~;sis of a queueing mode{ with paired ser­
vices. 1982.
154 H.W. Lenstra. Jr .. R. Tijdeman (eds.). Computational
methods in number theory. part I. I 982.
155 H.W. Lenstra, Jr .. R. Tijdeman (eds.). Complllationul
methods in number theory. part I I. 1982.
156 P.M.G. Apers. Que,y processing and data a/location in
distrihuted database ~rstems. 1983.
157 H.A. W .M. Kneppers. The covariant c/ass{fication ~f two­
dimensional smooth commutative /0rmal groups over an alge­
braical{r dosed field of positive characteristic. 1983.
158 J.W. de Bakker. J. van Leeuwen (eds.). Foundations of
computer science JV. distributed -~r.Hems. part 1. 1983.
159 J.W. de Bakker. J. van Leeuwen (eds.). Foundations o{
compmer .~cience IV, distrihuted -~rstems, part 2. 1983. ·
160 A. Rezus. Abs1rac1 A UTOMA TH. 1983.
161 G.F. Helminck. Eisemtein series on the metapll1ctit· group.
an algebraic approach. 1983.
162 J.J. Dik. Tests for preference. 1983.
163 H. Schippers. Multiple grid method~ for eqw1tions ~l the
sel'ond kind with applications in fluid mechanics. 1983.
164 F.A. van der Duyn Schouten. Markov decision processes
with continuous time parameter. 1983.
165 P.C.T. van der Hoeven. On point processes. 1983.
166 H.B.M. Jonkers. Abstraction, spec{fication and implemen­
tation techniques, with an application to garhage collection.
1983.
167 W.H.M. Zijm. Nonnegative matrices in c{rnamic program­
ming. 1983
168 J.H. Evertse. Upper hounds for t_he numhers of solutions oj
diophantine equations. 1983.
169 H.R. Bennett. DJ. Lutzer (eds.). Topologr and on/a
structures, part 2. 1983.

·CWITRACTS
I D.HJ. Epema. SurftJCtJs with canonical hyperp/Dne sections.
1984. .
2 JJ. l)ijkstra. Fala, topoli,gi,:al_ Hilbert_ space_• and cluuacteri•
zalions of dimenaion in ter,n, of negllgtlliUty. 1984.
3 AJ. van dcr Scbaft. System theoretic descriptions of physical
systems. 1984.
4 J. Koene. Minimal coat flow in processing networks, a primal
approach. 1984.
S B. Hoogenboom. Intertwiningfanctions on compact Ue
groups. 1984.
6 A.P.W. IIObm. Datajlow computalion. 1984.
7 A. Blokhuis. Few-distance sets. 1984.

