
CWI Tract 4 

Minimal cost flow in processing 
networks, 
a primal approach 

J. Koene 

Centrum voor Wiskunde en Informatica 
Centre for Mathematics and Computer Science 



1980 Mathematics Subject Classification: 90810, 90C35 
ISBN 90 6196 270 6 

Copyright © 1983, Mathematisch Centrum, Amsterdam 
Printed in the Netherlands 



PREFACE 

In the past ten to fifteen years a vast amount of work has been done 

on the development of efficient algorithms and associated implementations 

for solving network flow problems. In these procedures both time and 

storage requirements are generally speaking much smaller than in the stan­

dard LP-approaches. This is accomplished by exploiting the network struc­

ture. The main advantage in this respect is of course the fact that there 

are much more possibilities to model large real-life situations. 

But there is at least one other major reason for the increased in­

terest in network flows. For both the OR-analyst and the model-user a net­

work model is "much more visually informative and intuitively appealing 

than perhaps any other OR-model". (I quote Golden, Ball & Bodin (1981).) 
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In my opinion the communication with model-users is for an OR-consultant as 

important as building the right model. By visualization of the basic con­

cepts of a model (drawing network diagrams) the communication can be im­

proved. 

Knowledge of the structure is essential for getting insight in the 

problem at hand, exploiting it is important for the development of efficient 

computer codes, including input/output facilities such as matrixgenerators 

and report--writers. 

In this book we will consider processing networks. 

Characteristic for a processing network is the possibility that a given 

flow splits up proportionally in a number of components (a refining pro­

cess), or conversely, that a number of components is blended in given pro­

portions (a blending process). 

Processing networks are hardly considered in the literature in spite 

of a vast amount of possible applications. This book is intended as a first 

in-depth treatment of this type of problems. It can be divided into four 

main parts. 

The first two chapters are meant as background information. An over­

view is presented of the historical developments in network flow programming. 

Moreover, an outline is presented of the primal simplex algorithm for general 

linear programming problems, as well as specializations of this algorithm 

for pure and generalized network problems. Many of the basic ideas in these 
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procedures are essential in (understanding) the development of processing 

network algorithms, 

The main issue of this monograph is the presentation of primal simplex 

based solution procedures for several kinds of processing network problems 

(chapters 3, 4 and 6). These algorithms exploit the special basis structure 

in such a way that many of the simplex computations can be performed by 

graph theoretic means. 

The above mentioned procedures have been set up from the viewpoint that 

processing networks are generalizations of pure and generalized networks. 

On the other hand we might consider processing network problems as LP 

problems with a special structure. The relation between processing networks 

and general LP's will be discussed in chapter 5. 

Finally the potential applicability of processing networks is outlined 

in chapter 7. 

At the time this book was written nothing had happened with respect to 

the implementation of the algorithms described. Meanwhile processing net­

work codes are being developed at the Eindhoven University of Technology 

under supervision of Prof.dr. J.F. Benders. Other research.activities in 

this field have been reported by a.o. Dr. D.L. Adolphson, Dr. R.D. McBride 

and Dr. M. Enquist. 

There are several people who contributed to a large extent to the reali­

zation of this book and to whom I would like to express my sincere graditude. 

First of all I would like to thank Prof.dr. J.F. Benders, my first promotor. 

To consider processing networks as an unportant and fascinating topic for 

research was his suggestion. And right from the start of my research efforts 

I experienced his continuous guidance and encouragements. In a later stage 

I received fruitful comments from Prof.dr. J. Wessels, my' second promotor, 

Prof,dr. A.H.G. Rinnooy Kan, Prof.dr. G.J. Veltkamp and Prof.dr. F. Lootsma. 

I want to express my thanks to the Mathematical Centre for the opportunity 

to publish this work as a CWI Tract. 
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1. INTROVUCTION, SURVEY AND CONCLUSIONS 

1.1. In:t:Jr.odu.c.tion 

Many managerial and industrial problems encountered in practice show a 

total or partial network flow character. Most of them can be modelled ade­

quately as linear models, in which both continuous and integer activities 

may play a role. 

With respect to the continuous case such models are Linear Programming 

models which of course can be solved by standard LP-programs. However, such 

programs do not take full advantage of the network structure. This is one 

of the reasons why in the past decades much research has been done on how a 

specific network structure can be employed more efficiently in solving such 

problems. 

Knowing structure is essential for getting insight in the problem at hand. 

Exploiting structure is important, not only for the development of solution 

procedures which are faster or require less memory capacity than the pres­

ent day standard procedures, but also for the design of a proper data base 

and for adequate manipulation and reporting instructions of LP-based deci­

sion support systems. 

This monograph is concerned with an important type of network problems 

often encountered in practice. They are called processing network problems. 

Before explaining in Subsection 1.1.2 what processing networks are, where 

they arise and how we intend to analyze and solve processing network prob­

lems, the history of network problems is briefly sketched, focussing prima­

rily on so-called pure and generalized networks. These two types play an 

important role in the subsequent discussions. 
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1.1.1. Historical background 

The real interest in network models started from the work of KANTOROVICH 

[1939], HITCHCOCK [1941] and KOOPMANS [1947] who studied transportation 

problems. The more general transshipment problem was stated somewhat later, 

in fact already by KANTOROVICH & GAVURIN [1949]. 

In the 1950's and 1960's the emphasis lay on solution techniques to solve 

such problems and on the development of more general network models and 

associated solution procedures. 

Three classes of models are: 

A. Pure Networks 

DANTZIG [1951] presented a specification of the Simplex algorithm for the 

transportation problem, in which the basis structure is exploited. ORDEN 

[1956] extended these results to the transshipment problem. Only slightly 

different from the transshipment problem is the so-called minimal cost flow 

problem in a pure network (see LAWLER [1976]). The latter, often just called 

a pure network problem, can be stated as follows: 

Given a network, consisting of nodes and directed arcs between certain pairs 

of nodes, 

the cost for transporting a unit of flow along each arc, 

the demands and supplies in each node, 

determine flows in the network such that they satisfy the demands from the 

supplies at minimal total cost, 

whenever 

1. the flow is conserved throughout the network, that is to say, both in 

nodes and on arcs (nolosses or gains in transporting flow along arcs); 

2. the flow in each arc is in between given lower and upper bounds for 

that arc (capacity bounds). 

A well-known and useful property of pure networks is total unimodularity, 

which guarantees that basic solutions are integer valued, provided that the 

demands, supplies and capacity bounds are integers. 

In its most general setting, pure network problems can be seen as LP-prob­

lems in which the coefficient matrix has at most two nonzero elements in 

each column, with the additional requirement that the column sum of each 

column with two nonzero entries equals zero. 



Some relevant solution procedures developed in this period are: 

primal-dual 

out-of-kilter 

dual 

FORD & FULKERSON [1957], 

FULKERSON [1961], 

BALAS & HAMMER [1962], 

negative cycle: KLEIN [1967]. 

B. Generalized networks 

3 

Generalized networks are also known as networks with gains. They differ in 

only one aspect from pure networks: in transporting flow through the network 

flow may be lost or gained. Usually one considers networks where flow is 

conserved in nodes, but not on arcs. Associated with each arc is a so-called 

multiplier or gain. In physical processes mainly losses occur (leakage, 

damage), whereas true gains are found in certain business applications (e.g. 

cash flow models). Among the pioneers in this field are KANTOROVICH [1939], 

FERGUSON & DANTZIG [1954], MARKOWITZ [1954], EISEMANN [1964] and BALAS 

[1966]. They considered generalized transportation problems. JEWELL [1962] 

proposed a primal-dual approach for the general case, allowing positive as 

well,as negative multipliers. In its most general setting generalized net­

work problems can be considered as LP-problems in which the coefficient 

matrix has at most two nonzero entries in each column. 

C. Multicommodity networks 

Multicommodity networks arise when several items (commodities) share capaci­

tated arcs in a network. They can be regarded as pure or generalized net­

works with generalized upper bounds. 

Some of the solution procedures for multicommodity network problems are: 

decomposition ROBACKER [1956], 

FORD & FULKERSON [1958], 

TOMLIN [ 1966], 

primal-dual JEWELL [1966], 

primal basis partitioning: SAIGAL [1967]. 

In the 1970's and early 1980's much work has been done on: 

(a) implementation and computational testing of known algorithms, 

(b) exploring the field of applicability, 

(c) new theoretical developments, 

(d) problems with embedded pure or generalized network structure. 
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These aspects are discussed next in some more detail. 

(a) implementation and computational testing of known algorithms. 

With respect to pure networks in the early 1970's codes were developed by 

a.o. BENNINGTON [1972], BARR, GLOVER & KLINGMAN [1974], out-of-kilter/ 

primal-dual, GLOVER, KLINGMAN & NAPIER [1972], dual, and GLOVER, KARNEY & 

KLINGMAN [1974], primal. Computational comparisons, described a.o. in the 

latter reference, led to a quite general believe that primal Simplex solu­

tion procedures are superior to other approaches, both with respect to time 

and storage requirements. Until then out-of-kilter/ primal-dual procedures 

were thought to perform best. The "Primal Revolution" had begun. 

Primal Simplex codes for generalized networks were developed as well: 

MAURRAS [1972], GLOVER, KLINGMAN & STUTZ [1973]. 

In implementing such algorithms much attention was paid to finding efficient 

datastructures a.o. to store the basis, finding good starting bases, pivot 

selection criteria, the use of mirror arcs, distance labels, etc. References 

are: GLOVER, KARNEY & KLINGMAN [1974], BRADLEY, BROWN & GRAVES [1977], 

GLOVF.:R & KLINGMAN [1978a], GLOVER, HULTZ, KLINGMAN & STUTZ [1978],·ELAM, 

GLOVER & KLINGMAN [1979]. 

The current primal codes for pure and generalized network problems have 

several appealing advantages over standard LP approaches (see the just men­

tioned papers): 

1. they perform much faster, for pure networks up to 200 times, for general­

ized networks about 50 times faster than APEX III; 

2. they require much less storage capacity; 

3. because of the special basis structure they work with the original data, 

thus eliminating or reducing round-off errors. 

(b) exploring the field of applicability 

In itself the applicability potential of pure and generalized networks has 

been known for a long time, but the success of the primal codes opened up 

the possibility to consider many real-life, large size problems. Currently 

systems are developed which challenges one's imagination, see e.g. BARR & 

TURNER [1981] who consider a file merging solution system designed to ac­

commodate problems with up to 50.000 constraints and 65 million activities. 

To mention some other fields of applicability: 
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Pure networks: transportation of goods, design of communication and pipeline 

systems, assignment of men to jobs, bid evaluation, production planning. 

Generalized networks: the "multiplier facility" is capable to model two 

types of situations (see GLOVER, HULTZ, KLINGMAN & STUTZ [1978]): 

1. to modify the amount of flow of some item. In this way situations in­

volving evaporation, seepage, deterioration, breeding, interest rates, 

sewage treatment, purification processes, machine efficiencies and 

structural strength design can be modelled. 

2. to transform the flow from one type of good to another: processes of 

manufacturing, conversions of fuel to energy, blending, crew scheduling, 

allocating manpower to job requirements, currency exchanges, production. 

For a further discussion of the applicability of pure and generalized net­

works, see e.g. JEWELL [1962] and GLOVER & KLINGMAN [1977, 1978a]. 

By now, both pure and generalized network models are more or less accepted 

as fundamental modelling tools. This is not only due to the advantages men­

tioned under (a) but to a large extent also because "network models are more 

visually informative and intuitively appealing than other OR-model\>", 

GOLDEN, BALL & BODIN [1981], see also GLOVER & KLINGMAN [1975, 1977]. 

(c) new theoretical developments 

Just a few new theoretical developments are mentioned. 

EDMONDS & KARP [1972] discussed the pure network problem from a computation­

al complexity point of view. Moreover, they proposed the first polynomial 

algorithm for the maximal flow problem in a pure network. For further 

developments on max flow problems, see GLOVER & KLINGMAN [1980]. 

BALACHANDRAN, SRINIVASAN & THOMPSON (see - [1981]) developed an "operator" 

theory of parametric programming for pure and generalized transportation 

problems. 

In pure and generalized networks degeneracy was taken into consideration. 

CUNNINGHAM [1976, 1979] and ELAM, GLOVER & KLINGMAN [1979] presented "pivot 

row" selection rules which prevent cycling in pure networks and generalized 

networks with positive multipliers, respectively. Implementation of such 

rules in actual codes show some reduction in required solution times. 

ADOLPHSON [1980], building on the work of FONG & SRINIVASAN [1977], recently 

proposed a nondegenerate primal Simplex method for pure networks. Although 

degenerate steps are excluded, the steps of this algorithm require shortest 

path information and are therefore more time consuming than in the usual 

procedures. 
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It is stressed that these degeneracy considerations are not only of theoret­

ical importance. Degeneracy is a severe practical problem: up to 90% of the 

Simplex steps in large scale applications are degenerate in the current 

codes. 

(d) problems with embedded pure or generalized network structure 

The success of pure and generalized networks led to a general belief that 

for LP's as well as for (mixed) integer LP's with embedded pure or general­

ized network structure good computational results could be obtained by ex­

tending the ideas on which the primal approaches for pure and generalized 

network problems are based. An increasing interest can be observed for the 

following questions: 

1. how to exploit embedded pure or generalized network structure. 

Basis partitioning, rather than decomposition or other approaches, seems to 

be the right way to do this (cf. KENNINGTON [1978]). Primal basis partition­

ing procedures were suggested for different types of problems: 

Multicommodity networks, HARTMAN & LASDON [1972], KENNINGTON [1977]. 

Pure 'networks with side constraints: KLINGMAN & RUSSELL [1975], CHEN & 

SAIGAL [1977]. 

Generalized networks with side constraints: HULTZ & KLINGMAN [1976]. 

Pure networks with side constraints and side activities: GLOVER & KLINGMAN 

[1981]. As they put it: "Side constraints arise for instance from economies 

of scale, limitations on shared resources, multiple criteria or from the 

outputs of subdivisions to meet overall demands. Side activities (columns) 

arise from activities which involve different time periods, production 

alternatives (e.g. refinery activities) or which involve different subdivi­

sions (e.g. assembly)." 

REMARK 1.1.1. In the above lines words as "subdivisions, refinery activities 

and assembly" are underlined because such type of processes fall exactly 

within the scope of this monograph. D 

It is characteristic for these approaches that the pure or generalized net­

work part is extracted from the basis. In each step of the Simplex algorithm 

there is an interaction between this "transportation" part and the so-called 

working basis. Sometimes the size of this working basis is fixed, at other 

times it varies dynamically and then one tries to keep it as small as pos­

sible. 



Since in solving (mixed) integer problems, the continuous LP-formulation 

plays an essential role as a subproblem (e.g. Branch & Bound, BENDERS' 

[1962] decomposition) there is a great interest in network formulations and 

network solution techniques, see e.g. GEOFFRION & GRAVES [1974], GLOVER & 

KLINGMAN [1978a], GLOVER & MULVEY [1980], VAN NUNEN & BENDERS [1981]. 

Preliminary computational results on these embedded network problems are 

encouraging, but much work has to be done before general conclusions can be 

drawn. 

2. how to detect hidden pure or generalized network structure, see BIXBY 

[1981], BROWN & WRIGHT [1981], GUNAWARDANE, HOFF & SCHRAGE [1981] and 

SCHRAGE [1981]. 

3. how to create pure or generalized network structure, GLOVER [1981]. 
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Future research directions in network optimization are indicated by CHARNES, 

KARNEY, KLINGMAN & STUTZ [1975] and GOLDEN, BALL & BODIN [1981]. Finally, it 

is remarked that surveys on networks are written by ELMAGHRABY [1970] and 

BRADLEY [1975]. 

1.1.2. Scope of this monograph 

With the above mentioned developments in mind, we consider an important 

class of network problems, called processing nework problems. They carry 

this name because they are able to model certain refining and blending 

processes which a.o. arise in production planning environments in the proc­

ess industry. Processing networks are more general than pure or generalized 

networks in these two respects: 

1. they allow the possibility that a given flow splits up in several com­

ponents in given proportions. For quite obvious reasons such a process 

is called a refining process. Schematically it is depicted in Figure 

1.1.1. 

Figure 1.1.1. A refining process <La. 
i l. 
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2. they allow the possibility that several components are blended in given 

proportions. This is called a blending process; it is depicted in Figure 

1.1.2. 

Figure 1.1.2. A blending process (l ai 
i 

Arcs in a processing network which do not take part in some proportionality 

requirement can be seen as describing a sim~le "transportation process". So 

there are three types of processes in a processing network: refining, blend­

ing and transportation. 

Two classes of processing networks are distinguished: 

a. Pure Processing Networks, where the same conditions hold as in pure net­

works: conservation of flow and capacity bounds on arcs. 

b. Generalized Processing Networks, where the same conditions hold as in 

generalized networks: conservation of flow in nodes, but not necessarily 

on arcs, and capacity bounds on arcs. 

The processing network structure comes up in quite a number of situations: 

1. in production planning in the process industry. In the petrochemical 

industry both refining (destillation) and blending "on receipt" takes 

place. Also reference is made to the milk industry where, e.g., raw milk 

is split in proportional amounts of consumption milk, butter and cheese, 

GEURTS [ 1980]. 

2. in assembly models the fact that parts are "blended" in given proportions 

is essential. STEINBERG & NAPIER [1980] describe a mixed integer network 

model for a lot sizing problem in material requirements planning (MRP). 

3. in energy models not only conversion processes (generalized networks) 

take place, but also blending (for instance, different types of gas 

must be mixed in given proportions) and refining (oil sector:) occur. 

Examples of network energy models are BOONEKAMP, KOENDERS & VAN OOSTVOORN 

[1979], model SELPE and the models PIES and BESOM, a.o. described in 

MANNE, RICHELS & WEYNANT [1979]. 



4. in economic models, such as input/output models, the outputs from each 

industry are directly proportional to its inputs. 
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It is remarked that generalized networks with positive multipliers can 

readily be seen as a special type of pure processing networks. This observa­

tion is already described in SCHAEFER [1978]. 

Let (i,j) denote an arc from node i to node j in a generalized network, the 

associated multiplier is given by g .. > O. Three cases with corresponding 
1] 

processes can be distinguished: 

(a) 

(b) 

(c) 

0 < g .. < 1, refining process 
1] 

(1- gij)x outside 

1, pure transportation process 

X 

©--....,,.~---(]) 

g. . > 1, blending process 
1] 

X 

1------~j 

outside 

In many of the sketched practical situations (relatively few) additional 

requirements must be satisfied, which lead to additional linear constraints 

(side constraints) in the model (cf. Subsection 1.1.1). 

From the description of processing networks given thus far it is immediately 

clear that they can be seen as pure or generalized n~tworks with side con­

straints, which arise from the proportionality requirements of the refining 

and blending processes: Therefore, procedures of CHEN & SAIGAL [1977] and 

HULTZ & KLINGMAN [1976] can be used to solve them, thus exploiting the em­

bedded pure or generalized network structure. 
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Another possibility is to view processing networks as pure or generalized 

networks with side activities, which represent the refining and blending 

processes (cf. Remark 1. 1. 1) • Pure processing network problems formulated in 

this way can be solved by the recent Simplex SON approach of GLOVER & 

KLINGMAN [1981], which exploits again the embedded pure network structure. 

In doing this, in general, a smaller working basis would be required than in 

applying CHEN & SAIGAL's algorithm to the side-constraints-formulation. For 

generalized network problems with side activities (and side constraints) no 

special algorithms are known. 

Here the side-activities-formulation will be used in developing solution 

procedures for processing network problems. It appears that these procedures 

are related to the Simplex SON appraoch. Similarities and differences will 

be discussed in Chapter 6. The only aspect emphasized here is that the 

typical feature of processing networks, i.e.,, proportionality of flow in 

certain subsets of the arc set, is not considered in the above mentioned 

procedures of CHEN & SAIGAL, HULTZ & KLINGMAN and GLOVER & KLINGMAN. 

It is quite surprising that the processing network structure is hardly 

analyzed quantitatively in the literature. Some work has been done in the 

economic field. SCHAEFER [1978] studied the maximal flow problem in pure 

processing networks with only refining processes or only blending processes. 

His main intention was to solve input/output type problems and the approach 

he used was an extension of FORD & FULKERSON's [1962] labeling approach for 

maximal flow problems in pure networks. Before 1978 graph theoretic analysis 

of economic models were presented by, e.g., PETER [1954] and CZAYKA [1972], 

but these studies dealt with qualitative rather than quantitative aspects. 

In the Operations Research oriented literature no special studies on pro­

cessing networks are known. It should be said, however, that processing 

networks are closely related to so-called networks with homologous arcs. 

Such problems were posed by BERGE & GHOUILA-HOURI [1965] and MAYEDA [1968]. 

Special solution procedures for such problems are not known, only GHOUILA­

HOURI [1960] studied a special case. Of theoretical importance is ITAI's 

[1978] work. He proved that the problem of finding a maximal flow in a pure 

network with homologous arcs is polynomially equivalent to general LP. 

Processing networks can be seen as more general structures than pure and 

generalized networks. On the other hand they can be considered (at least at 

first sight, cf. Chapter 5) as more special problems than general LP's. 

In view of the historical developments this thesis aims to extend the known 
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results for pure and generalized networks by using primal basis partitioning 

approaches. An important aspect is that the typical processing network 

structure is analyzed and exploited. 

Three types of processing network problems are taken into consideration: 

1. pure, 

2. generalized, 

3. pure or generalized with additional linear constraints. 

We will call the solution procedures, developed for these types of problems, 

Simplex PRON procedures (from E,EQcessing _!!etworks). 

1 • 2. Swr.ve,y 

In order to make this thesis self-contained and to make it possible to 

describe formulations and results in a unified format, some background in­

formation is given in Chapter 2. The backbone of all procedures considered 

is the primal Simplex algorithm for LP-problems with simple upper bounds. 

It is briefly summarized in Section 2.3. Moreover, an overview is given of 

well-known results on pure and generalized network problems. 

The statements: 

"a basis in a pure network is a rooted spanning tree" 

and 

"a basis in a generalized network is a forest of quasi-trees" 

are proved in a quite unusual fashion, namely by using a condition much 

alike or the same as one which arises in a theorem due to HALL [1935], 

which deals with sets of distinct representatives. This is done because 

HALL's theorem plays an important role in Chapters 3 and 4. 

Chapter 3 is concerned with pure processing networks. In S ection 3. 2 two 

mathematical formulations are given for the minimal cost flow problem. The 

first one states the problem as a pure network with additional linear con­

straints. The second one is more compact and can be viewed as a pure network 

with side activities, where each of the side activities represent either a 

refining process or a blending process. This compact formulation is used 

for the solution procedure. 

In Section 3.3 the basis structure is analyzed and described in terms of 

the so-called basis graph, that is the subgraph of the original network 

which corresponds to a basis matrix. The basis structure is exploited in a 

specification of the primal Simplex algorithm (Section 3.4). The main 

characteristics of this approach are: 
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1. the transportation part of the basis is extracted. In each iteration 

there is an interaction between this transportation part and the so­

called working basis. 

2. the size of the working basis varies dynamically and is equal to the 

number of basic refining and blending processes. 

3. a simple labeling procedure determines which basic processes can take 

part at a nonzero level in the representation of the process which 

enters the basis. 

4. a certain substructure of the basis graph, namely some specific spanning 

tree, is kept stored and is updated after each basis change by means of 

the previously given labels. 

5. the labeling procedure provides a block triangular form of the working 

basis (with two blocks on the main diagonal). 

A somewhat different view on solving pure processing network problems is 

presented in Section 3.5. Perhaps this approach is intuitively less appeal­

ing then the one in Section 3.4, but it has certain advantages. 

Some remarks, for instance on implementation considerations, are m~de in 

Saction 3.6. Here also the relation between HALL's theorem, the exploited 

structure of the basis graph and the possibility to block triagularize the 

working basis further by applying an algorithm of TARJAN [1972] is pointed 

out. See also DUFF & REID [1978a]. 

Chapter 4 considers generalized processing networks. It appears possible to 

generalize the results of Chapter 3 to generalized processing networks, 

except for some details. 

Where in the previous two chapters processing networks were considered as 

more general structures than pure and generalized networks, Chapter 5 looks 

in the other direction: What about the relation between processing networks 

and general LP's? 

It appears that any LP-problem can readily be interpreted as a generalized 

processing network problem in which both positive and negative multipliers 

may be present. So the procedure of Chapter 4 can in. principle be annli,,,,.,' -

to•general LP's, leading to an approach in which the (working) basis is 

block triangularized. It stands to reason that this approach is the most 

efficient for generalized network problems with relatively few side activities. 

The relation between this approach and other sparse matrix approaches known 

in the literature will be discussed. 
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Furthermore, it is possible to give an "almost" pure processing network 

interpretation to general LP's. The approaches of Chapter 3 can easily be 

adapted to solve general LP-problems, although some of the properties which 

hold fo~ pure processing networks, are no longer valid. 

It is important to observe that any LP can be transformed to a pure process­

ing network, possibly at the expense of blowing up the size of the problem 

in a polynomial way. The relevance of this result is not as much that a 

transformation yields a problem whiii:;h can be solved easier but rather 

1. it shows that a (pure) processing network structure is not as special as 

it seems at first sight. 

2. it gives a certain reassurance that the problem structure is indeed ex­

ploited adequately in the procedures presented in Chapters 3 and 4. 

3. it gives the opportunity to visualize the structure of certain LP' s by 

drawing processing network diagrams. 

Finally it is shown that there are classes of problems which can right away 

be interpreted as pure processing networks or generalized processing net­

works with positive multipliers, for instance, the multicommodity network 

problem, 

Chapter 6 deals with pure or generalized processing networks with additional 

linear constraints. In applying the approaches of Chapters 3 and 4 to such 

problems the embedded single commodity network structure would not be ex­

ploited fully. That is why here a different basis partitioning approach is 

proposed to solve these problems. In a broader context this approach can be 

used to solve general LP/embedded network problems and, as a matter of fact, 

the pure case is an alternative for the Simplex SON approach of GLOVER & 

KLINGMAN [ 1981 J. It appears that both procedures use simi,lar ideas at some 

points, but at other points they are different. 

Finally, in Chapter 7, the applicability and expected computational results 

are discussed. 
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1. 3. Conc_lM,lonJ.i 

The first result of this study is deeper insight in the processing network 

structure itself, in the basis structure, and in the relation to LP. Insight 

also in the way this structure can be exploited in primal basis partitioning 

solution procedures. 

The solution procedures developed have several desirable properties: they 

use the embedded pure or generalized network structure, they employ special 

labeling and updating procedures to accelerate computations and they main­

tain a block triangular version of the working basis. 

Furthermore, the theory developed in this study provides a bridge between 

pure and generalized networks at one hand and (sparse matrix) LP at the 

other. 

Processing networks have a wide range of applicability. They may become 

efficient real-world modelling tools. The fact that their structure can be 

completely pictured in network diagrams may tend to increase the nonanalyst's 

(management's) level of acceptance. 

This monograph provides a complete theory on processing networks. However, 

it is stressed that much work has to be done on implementation and sub­

sequent computational testing of our methods before conclusions can be drawn 

on their efficiency. 



2. PRELIMINARIES 

2.1. Int!toduc;Uon 

In order to make this monograph self-contained and to make it possible to 

describe formulations in a unified format some background information is 

given in this chapter. 

The backbone of all solution procedures considered in the subsequent 

chapters is the primal Simplex algorithm for LP-problems with simple upper 

bounds. It is briefly described in Section 2.3. 

Furthermore, many of the results known in pure and generalized networks 

will be used as basic tools in dealing with processing networks. Pure net­

works are considered in Section 2.4, generalized networks in Section 2.5. 

2.2. No:ta;Uon and de6~n,l,ti,on6 
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In this section some remarks are made concerning the notation used. Further­

more, the most important concepts which arise in network flow programming 

are defined. 

Matrices and sets will be denoted by uppercase Roman characters (A, B, etc.), 

vectors and scalars by lowercase Roman or Greek characters (a, b, a, S, etc.). 

The transpose of a matrix A is given by A'. All vectors considered are 

assumed to be column vectors. 

Finally we denote by: 

e, , the i-th unit vector, 
1. 

e , a vector with all elements equal to 1, 

Isl , the number of elements in some set S, 

r(Al, the rank of a matrix A. 

A directed graph G(N,A) consists of a set N {1,2, .•. ,m}, of which the 

elements are called nodes and a set AS N x N of ordered pairs (i,j), 

i,j EN, called arcs. 
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Arc (i, j) E A is directed from node i to node j. 

An arc (i ,i) , i E N, is called a self-loop. 

Arc (i, j) E A is said to be incident to nodes i and j. 

In reverse: both nodes i and j are said to be incident to arc (i, j) E A. 

REMARK 2.2.1. Note that the above definition of a directed graph does not 

allow the existence of more than one arc from node i to node j, where 

i,j EN (so-called multiple arcs). However, the exclusion of multiple arcs 

is: 

- not restrictive, since the occurrence of multiple arcs can always be 

circumvented by introducing dummy nodes and arcs, 

- not essential: the ideas developed in the sequel remain valid when a 

broader definition of a directed graph is used in which multiple arcs are 

allowed. 

The reason for adopting the present definition of a directed graph is, that 

it gives rise to a convenient notation (i,j) to denote an arc from node i to 

node j. D 

Nodes i and j are said to be adjacent iff (i,j) EA (so a node i is adjacent 

to itself iff the self-loop (i,i) EA). 

A nei:u,1ork is a directed graph with one or more real valued functions defined 

on the arc set. 

The after set A(i) and the before set B(i) of a node i EN are defined as: 

2.2 .1. 

2.2.2. 

A(i) := {j E N 

B(i) := {j E N 

(i,j) E A} 

(j,i) EA} 

Suppose that {ik I ik EN, k = 1,2, •.• ,i}, with i ~ 2, is' a set of distinct 

nodes and wk is either arc (ik,ik+l) EA or arc (ik+l'ik) EA, k = 1,2, .. 

.. ,i-1, then the sequence 

2.2.3 

is called a path from i 1 to ii. The arcs (ik,ik+l) are called forward arcs, 

arcs (ik+l'ik) back»:Jard arcs. 

If i 1, ... ,ii-l are distinct nodes and i 1 = ii, then sequence 2.2.3 is called 

a cycle (i ~ 2). Note that a self-loop is a cycle. 

If in G(N,A) a path exists from every node to every other node, G(N,A) is 

said to be connected. 



A tree is a connected directed graph which contains no cycles. 

Some arbitrary node i 0 of the node set of a tree is designated as the root 

of the tree. If the root are (i0 ,i0), which is a self-loop, is attached to 

a tree, we speak of a rooted tree. 

The unique path from node i to node j in a tree will be denoted by P ..• 
l.J 

A spanning tree in G(N,A) is a tree with node set N and arc sets A. 

A quasi-tree is a connected graph with exactly one cycle. 

A forest of trees (respectively quasi-trees) is a set of disjunct trees 

(respectively quasi-trees). 
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A spanning forest of (quasi-) trees in G(N,A) is a forest of (quasi-) trees 

with arc set SA, such that each node of N belongs to this forest. 

2. 3. The. Simplex ai.go!U.thm nOll LP-p1toble.m6 wUh uppe.Jt bound.6 

The Revised Simplex algorithm for LP-problems with (simple) upper bounds 

provides the backbone for all network flow algorithms considered in the 

sequel. Only a brief description is presented here. A more elaborate treat­

ment can be found in, e.g., DANTZIG [1963], LASDON [1970], and BAZARAA & 

JARVIS [1977]. 

By introducing artificial variables, any LP-problem can be cast into the 

so-called canonical form: 

2.3.1. 

2.3.2. 

2.3.3. 

minimize c'x 

Ax b 

0 $ X $ U , 

where c,u,x E JRn, b E JRm and A is an m x n matrix. In the literature some­

times the constraint 

2.3.4. 

with i ~ 0 is used instead of 2.3.3. In that case by using the transforma­

tion x := x-i the form 2.3.1-2.3.3 is obtained. In the rest of this 

monograph we always consider lower bounds equal to zero. 

The dual problem of 2 • 3 .1 - 2. 3 • 3 is 
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2.3.5. 

2.3.6. 

2.3.7. 

maximize b'n u'v 

A'n- v::;c 

V ;?: 0 

where TT E JRm and v E ]Rn. 

ASSUMPTION 2.3.1. The rank of matrix A equals m. 

This assumption is standard and not restrictive since in practice artificial 

variables are added such that the extended coefficient matrix has full row 

rank. 

Let B be a square nonsingular submatrix of A of order m; then Bis called a 

basis. 

Suppose that matrix A, after permuting the columns, is written as: 

2.3.8. 

t I [ I I I J Le x · = ~,XN1 ,xN2 be the partitioning of x'compatible with 2.3.8 (u and 

care partitioned similarly), which satisfies: 

2.3.9. 

2.3.10. 

2.3.11. 
-1 -1 

~ = B b - B N2 ~ , 
2 

then xis said to be a basic solution; ~ denotes the basic variables, xN1 
the nonbasic variables at their lower bound, xN2 the nonbasic variables at 

their upper bound. 

If, in addition, x satisfies 2.3.3, xis called a basic feasible solution. 

The value of the objective function will be denoted by z. 

The Simplex algorithm is discussed next. 

Simplex algorithm for LP-problems with upper bounds 

Initialization 

As starting basis the identity matrix, corresponding to artificial variables, 

can be chosen. By applying the "Big-M" method or Phase I of the "Phase I, 

Phase II" method, a basic feasible solution is determined if it exists. If 

no (basic) feasible solution exists the algorithm stops. 



1. Determine the Simplex multipliers 

The Simplex multipliers, also called dual variables or shadow prices, are 

obtained from: 

2.3.12 TT I 

2. Calculate the reduced costs 

This operation is sometimes called pricing. The reduced cost vector c can 

be found from: 

2.3.13 c' = TT'A - c' , 

where, according to 2.3.12: c' B 

3. Perform the optimality test 

o. 

If for all nonbasic variables xj at their lower bound, 

and cj ~ 0 for all nonbasic variables xj at their upper bound, 

then the current solution is optimal and the algorithm stops. 

4. Choose the nonbasic variable to enter the basis 
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Let I denote the index set of all nonbasic variables which violate the 

optimality test in step 3. As variable to enter the basis can be chosen any 

X,,jEI. 
J 

Suppose¾: is chosen. In Simplex tableau terms a.k is the pivot column. 

5. Find the representation of the entering column in terms of the basis 

The representation vector yk of a.kin terms of the basis is calculated from 

2.3.14. 

6. Perform the minimal ratio test 

Consider the two possible cases: 

(a) ¾: is at its lower bound. Define 6k as: 
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{
xB. 

• l. 
min --

i yik 
'yik > o} 

2.3.15. ilk:= min 

(bl ~ is at its upper bound. Define ilk as: 

2.3.16. 

If ilk= 00 , the solution is unbounded and the algorithm stops. 

Otherwise, choose a row index s for which the minimum is obtained. Rows is 

said to be the pivot row. 

7. Update the activity levels and the basis inverse 

In updating the objective function value and the activity levels, again the 

two cases of step 6 are considered. 

(a) ~ is at its lower bound zero. 

2.3.17. 

2.3.18. 

other activity levels remain what they are. 

2.3.19. 



(b) ~ is at i$s upper bound '\• 

2.3.20. 

2.3.21. 

other activity levels remain what they are. 

2.3.22. 

If 6k ='\•variable~ shifts from its lower bound to its upper bound (or 

the other way round) and the basis remains the same. In this case proceed 

with step 3. 

Otherwise the basis inverse is updated by: 

2.3.23. 

where Eis an elementary matrix given by: 

1 

2.3.24. E 

1 

s 

with n a vector with elements: 

2.3.25. 

2.3.26. j f, s • 

Matrix E describes the pivot operation. Continue with step 1. 
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-1 As can be seen from this description, the basis inverse B plays an essen-
-1 

tial role in steps 1 and S. In actual implementations B is usually stored 

either in product form or in elimination form (see e.g., BASTIAN [1980]) 

and reinverted after a number of iterations in order to reduce cumulative 

round-off errors and storage requirements. 

Furthermore, it is quite usual to replace the nonbasic variables, which 

are at their upper bound, by their complement xN2 := uN2 - xN2 = 0. This 

transformation makes the computation somewhat easier, since one only has to 

deal with nonbasic variables which are at their lower bound zero. 
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2.4. PUite ne:rn,o~k 6low pJr.oblem6 

The theory of pure networks plays an important role in Chapter 3, which 

deals with pure processing networks. Several relevant aspects of pure net­

works are discussed here. 

Let G(N,A) denote a directed and connected graph, with N the set of nodes 

and A the set of arcs, The number of nodes ism, the number of arcs n. If 

self-loops (i,i), i EN, are present in G(N,A) they can be replaced by 

common arcs (i,m+1), where (m+1) is an additional node (cf, BAZARAA & 

JARVIS [1977, pp. 419, 420]). 

ASSUMPTION 2.4,1. G(N,A) d.oes not aontain any self-loop. 

The LP-formulation of the minimal cost flow-problem in a pure network is: 

2.4.1. 

2.4.2. 

2.4.3. 

minimize l cij xij 
(i,j) EA 

I 
jEA {i) 

i € N 

(i, j) € A 

Equations 2.4.2 are the conservation of flow equations, where bi (i EN) 

denotes: 

- the external demand (bi > 0) , 

- the external supply (bi < 0) , or 

- no external demand or supply (bi= 0). 

Capacity bounds are given by 2.4.3, where uij is not necessarily finite. 

The coefficient matrix of the left-hand sides of 2.4.2 is denoted by 

A = [aR.,ijJ. 

The dual problem of 2.4.1-2.4.3 is given by 

2.4.4. 

2.4.5. (i,j) € A 

2.4.6. (i,j) € A 
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Properties of matrix A 

Row at• of A is associated with node i EN, column a•ij of A is associated 

with arc (i,j) EA and has exactly two nonzero elements, namely 

- 1 in row i , and 

+ 1 in row j. 

The column sum of each column in A is zero: e•A O. 

RE~ 2.4.2. As noted before any LP-problem with a coefficient matrix A, in 

which 

- each column has at most two elements# O, 

- each column with two nonzero elements has column sum zero, 

can be regarded as a pure network problem. 

By using positive column scales it can be a~complished that all nonzero 

elements of such a matrix A are equal to ± 1. 

A column of A with on.ly one nonzero element in some row i, which is equal to 

-1, can be thought to represent a self-loop or an arc from node i to outside 

the network (see e.g., BAZARAA & JARVIS [1977]). 

A column of A with only one nonzero element in some row i, which is equal to 

+ 1, can be thought to represent an arc from outside the network to node i. D 

THEOREM 2. 4. 3. The rank of A equaZs m - 1. 

PROOF. Because e 'A = 0, the rank of A must be smaller than or equal to m - 1. 

Since G(N,A) is connected, a submatrix of A can be constructed which cor­

responds to a spanning tree in G(N,A). It can easily be shown that this 

matrix has rank m - 1, see e.g., BAZARAA & JARVIS [ 1977]. 

we introduce a single artificial variable xioio with a•ioio = - ei0 Ci0 
arbitrarily chosen from {1, ••• ,m}). It is easy to prove that matrix 

2.4.7. 

has rank m. 

Properties of a basis 

. * 
Let B denote a basis of A. Column a.ioio always belongs to Band can be 

thought to represent the self-loop (i0 ,i0). Assume column a.ioio to be the 

first column of B. 

□ 
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Let B denote the m x (m-1) matrix, consisting of the last (m- 1) columns of 

B. So: 

2.4.8. B [a i i ,BJ • ·oo-

We define the basis groaph associated with matrix B as the subgraph of 

G(N,A) with node set N and arcs in A which correspond to the columns in!, 

and the self-loop (i0 ,i0). 

Next a lemma is stated, which is generalized in a certain sense in Chapter 3. 

To avoid notational difficulties we denote the elements of !by ~R.p (instead 

ofb 0 'j). 
- ... ,l. 

Let S be a nonempty subset of {1,2, ••• ,m-1}, associated with the columns 

of!• Furthermore, let R(S) be defined by: 

2.4.9. R(S) := {R, I R. E {1,2, ••• ,m}, 3p€S: ~R,p ,j, o} . 

So R(S) is related to those rows of B which have at least one nonzero ele­

ment in the columns associated withs. 

LEMMA 2.4.4. Given a aolleation of Isl columns of matri~ ! thePe aPe at 

least Isl +1 POWS in !Whiah have a nonzePo element in these aolwrrns: 

2.4.10. IR(Sl I ~ Isl +1 • 

PROOF. Suppose that IR(S) Is Isl. Then, because e'! = O, the columns of! 

associated with S would clearly be linearly dependent. This contradicts the 

fact that B denotes a basis. 

REMARK 2.4.5. Note that the only argument used in proving Lemma 2.4.4 is 

D 

that B is an m x (m-1) matrix of rank (m - 1) with the property that e '! = 0. D 

We can use Lemma 2.4.4 to prove the well-known theorem: 

THEOREM 2.4.6. A basis groaph in a pUPe netwoPk is a Pooted spanning tPee. 

PROOF. Suppose the basis graph contains a cycle besides the self-loop 

(i0 ,i0). Let S denote the columns in B associated with the arcs in this 

cycle. Then R(S) corresponds to the set of nodes incident to the arcs in 

the cycle. In a cycle the number of nodes equals the number of arcs, so 

IR(S) I = Isl. This is in contradiction with Lemma 2.4.4. Since the basis 

graph contains (m - 1) "real" arcs these arcs form the arc set of a spanning 
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tree in G(N,A). The self-loop (i0 ,i0) is usually called the root-arc, and 

node i 0 EN the root of this spanning tree. 

This completes the proof. 

The reverse of Theorem 2.4.6 is true too: 

THEOREM 2.4.7. Every rooted spanning tree ~ith ara sets A is a basis graph. 

PROOF. See BAZARAA & JARVIS [1977]. 

A square matrix is said to be (upper) triangular if the rows and columns 

can be permuted such that all elements below the main diagonal are zero. 

THEOREM 2.4.8. Bis (upper) triangular 

PROOF. A constructive proof is given. The permuted B matrix will be denoted 

* by B. 

* * 1. Take a•ioio as the first column of B and row i 0 as the first row of B. 

P~t W = {10}. 

* 2. If W = N then stop, B is found. 

Otherwise, let (i,j) be an arc in the basic spanning tree, such that either 

i € W or j € w. Such an (i,j) always exists, since a spanning tree is a 

connected graph which contains no cycles. 
* Take a•ij as the next column in B. 

If i ¢ W make row i the next row of B*, set W =Wu {i} and goto 2. 

_!! j ¢ W take row j as the next row of B*, set W =Wu {j} and goto 2. 

It is obvious that this constructive scheme provides a matrix B* with all 

elements below the main diagonal equal to zero. 

D 

D 

D 

EXAMPLE 2.4.9. For the rooted spanning tree in Figure 2.4.1, B* is a possible 

realization. 
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11 12 42 31 53 49 36 84 37 

-1 -1 1 1 

1 1 2 

-1 -1 1 4 

-1 1 -1 -1 3 
* B -1 5 

1 9 

1 6 

-1 8 

1 7 

Figure 2.4.1. A rooted spanning tree and an associated triangularized basis. 

The properties of a basis and associated basis graph, mentioned in Theorems 

2.4.6 and 2.4.8, make it possible to perform the steps of the Simplex 

algorithm by using the basis graph (a rooted spanning tree) instead of the 

basis inverse B- 1 • The advantages of such an approach are already mentioned 

in Subsection 1.1.1. 

Before we give an outline of the Simplex algorithm for pure network problems 

a clarification of some of the calculations, which have to be carried out, 

is presented. 

Solving ir'B = c~ 

In order to determine the Simplex multipliers 1T the system 

2.4.11 1T 1 B = c~, 

must be solved (cf. 2.3.12). In network terms this can be done in the 

following way (cf. the constructive proof of Theorem 2.4.8): 

1. Take iri0 = O (it can be assumed that cioio = 0). Set w = {i0}. 

2. If W = N, stop. 

Otherwise, take an arc (i,j) such that either i E W or j E W. 

If i E W then ,ri has already been determined and ,rj can be found from 

2.4.12. 

Make W Wu {j} and goto 2. 

If j E W, ,rj is known and ,ri can be evaluated from 2.4.12. Set W 

and goto 2. 

w u {i} 
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Informally speaking the Simplex multipliers are determined in some sequence 

"from the root towards the leaves (i.e., those nodes of N which are incident 

to only one arc in the basic spanning tree)". 

It is noted that, in the subsequently discussed Simplex algorithm, the 

Simplex multipliers are evaluated in this way only in the initialization 

step. In all other steps they can be found by updating the previous vector~-

* Solving Bx= b 

In order to find the activity levels of the basic variables, the system: 

2.4.13. 

* where b = b-N2 uN2 (formula 2.3.11), must be solved. 

In a similar way as the Simplex multipliers are evaluated, these activity 

levels (flow levels in the basic arcs) are calculated "from the leaves 

towards the root". 

They are determined in this way only in the initialization step. In all 

other steps they can be found, as usual, by updating the previous yector x. 

* Equations of the type Bx= b must also be solved in determining the 

representation yk£ of the entering column, say a•k£' in terms of the basis: 

2.4.14. 

This can be done in an easier way than indicated above, simply because the 

right-hand side of 2.4.14 has a special form. 

Associated with column a•k£ is arc (k,£). 

Let Ck£ denote the set of arcs in the basic (rooted) spanning tree, which 

belong to the unique cycle induced in this spanning tree by the entering 
f 

arc (k,£). Ck£ is given an orientation consistent with (k,£). Denote by Ck£ 

the set of forward arcs in Ck£' by C~£ the set of backward arcs. It is easy 

to observe that a•k£ can be written as: 

2.4.15. 

or in words: in the representation of a•k£ in terms of the basic columns, 

the columns associated with forward arcs in Ck£ have coefficient -1, 

the columns associated with backward arcs in Ck£ have coefficient+ 1, and 

all other basic columns have coefficient 0. 
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For obvious reasons, vector ykl will be called the cycZe vector, induced by 

arc (k,l) in the basic spanning tree. 

In view of the theory of generalized networks (Section 2.5), it is instruc­

tive to consider the representation of a,kt in terms of Bin a slightly 

different 

Denote by 

node j in 

2.4.16. 

2.4.17. 

2.4.18. 

fashion. 
f the set of forward arcs on the unique path from node i to 

b 
pij 
the basic spanning tree and by P ij the set of backward arcs. Then: 

- ek + et 

l a •ij + l a•ij + e. 
f b 10 

Pkio Pk. 10 

l a •ij + l a •ij + e. 
f b 10 

pi· pi· 10 10 

Using these formulae, one observes that the root arc plus all arcs which 

belong to Pkio n Ptio have a zero coefficient in the representation and in 

fact 2.4.15 results (see Figure 2.4.2). 

Vector B-l e. is called the root-path vector of node j since it describes 
J 

the path from node j to the root of the basic spanning tree. 

Figure 2.4.2. Illustration of the representation of a,kt in terms of B. 

Observe from 2.4.15 that one of the arcs in Ckt must leave the basis graph, 

consequently a new basic rooted spanning tree arises. 

In the following specification of the Simplex algorithm it is assumed that 

the basic rooted spanning tree is stored and updated in some convenient 

way. 
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Simplex algorithm for the minimal cost flow problem in a pure network 

Initialization 

A simple way to find a starting basis is: introduce an additional node (m + 1) 

and arcs (i,m+l) if bi S O, i E N, and (m+l ,i) if bi > O, i E N. These added 

arcs form the arc set of a spanning tree in the extended network. Take an 

arbitrary root i 0 with root arc (i0 ,i0). Let B denote the matrix representing 

the rooted spanning tree.Bis taken as a starting basis. Take all nonbasic 

variables at their lower bound zero. Determine the flow levels xB and the 

Simplex multipliers TI as indicated above. Use the Big-M method or Phase I of 

a two phase method to find a basic feasible solution (if it exists). 

Alternative ways to determine a starting basis can be found in BAZARAA & 

JARVIS [1977] and in GLOVER, KARNEY & KLINGMAN [1974]. 

1. Determine the Simplex multipliers 

The Simplex multipliers can be evaluated as described above. However, after 

each basis change it is possible to update the previous vector TI. This is 

discussed at the end of step 7. 

2. Calculate the reduced costs 

The reduced costs are determined from: 

2.4.19. (i,j)EA. 

3. Perform the optimality test 

This is standard (see Section 2.3). 

4. Choose the nonbasic variable to enter the basis 

See Section 2.3. Suppose a•ki is selected to enter the basis (arc (k,i) 

enters the basis graph). 

5. Find the representation of a•ki in terms of B 

Determine the cycle vector yki from 

as explained above. 
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6. Perform the minimal ratio test 

See Section 2.3. Suppose a•st leaves the basis. 

7. Update 

Updating the objective function value and flow levels is standard. 

By dropping arc (s,t) in the previous basic spanning tree, two subtrees, 

say T1 and T2 , remain withs€ T1 _and t € T2 • The Simplex multipliers can 

easily be updated: 

2.4.20. 

2.4.21. 

Adding subsequently arc (k,t) results in the basic rooted spanning tree for 

the new situation. 

Continue with step 2. 

2.5. -Genell.aLl.zed ne:two~k 6low p~obl~ 

Generalized networks play an important role in solving generalized processing 

network problems (Chapter 4). Some relevant aspects of generalized networks 

are discussed here. 

Suppose G(N,A) is a directed and connected graph, with node set N and arc 

set A. The number of nodes ism, the number of arcs n. Self-loops are allowed 

to be present. 

The essential difference with pure network flow problems (Section 2.4) is 

that flow is not necessarily conserved in transporting it along arcs. In 

every arc (i,j) € A it is assumed that, whenever the flow in (i,j) is xij' 

upon arrival in node j the flow has value gijxij" The factor gij' (i,j) € A 

is called the muZtipZie~ or gain of arc (i,j). 

The multipliers are assumed to be arbitrary real numbers. 

However, negative multipliers are intuitively not as appealing as positive 

ones. Nevertheless the following interpretation can be given: 

If gij < 0 and the flow in arc (i,j) is xij' necessarily a flow of magnitude 

- gij xij must arrive at node j. (See also Section S.S.) 
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The LP formulation of the minimal cost flow problem in a generalized network 

is stated as: 

2.5.1. 

2.5.2. 

2.5.3. 

minimize ! c .. x. j 
(i,j) EA l.J l. 

l 
j EA (i) 

i E N 

(i, j) E A • 

Equations 2.5.2 are the conservation of flow equations in the nodes of the 

network, where bi, if unequal to zero, denotes the external demand (bi> 0) 

or supply (bi< 0) in node i. 

The coefficient matrix of the left-hand sides of 2.5.2 is denoted by 

A= [a.t,ijJ. 

The dual problem of 2.5.1-2.5.3 is given by: 

2.5.4. maximize ! bi TTi - I u .. vi. 
(. . ) A l.J J iEN J.,J E 

2.5.5. - TTi + gijTTj - "ij s cij , (i, j) E A 

2.5.6. "ij ~ 0 (i ,j) E A 

Before discussing some properties of matrix A, an important concept, the 

cycle factor of a cycle, is introduced. This cycle factor plays a role both 

in theoretical and computational considerations. 

Let C denote a cycle in G{N,A) with arbitrary orientation. Cf is the set of 

forward arcs inc, Cb the set of backward arcs. The ayale faator a{C) is 

defined as: 

2.5.7. 

Properties of matrix A 

Row aR,, of A is associated with node t EN, column a•ij of A is associated 

with arc {i,j) EA and has either two nonzero elements, namely 

- 1 in row i, and 

gij in row j, 

or only one nonzero element, namely 

- gii in row i, if i = j (so (i,j) is a self-loop). 
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Note that an arc (i,j) with multiplier g .. = 0 has the same representation 
1] 

in matrix A as self-loop (i,i) with multiplier gii = 1. Therefore the 

following assumption is not restrictive. 

ASSUMPTION 2.5.1. In G(N,A) no arcs are present with a rrrultiplier equal to 

zero. 

REMARK 2. 5. 2. Any LP-problem with a coefficient matrix A in which each 

column has at most two elements i 0, can be regarded as a generalized net­

work problem. If we replace 2.5.2 by 

2.5.8. I 
jEA(i) 

h .. x .. + l g .. x .. 
1J 1] jEB (i) J1 J1 

2.5.1, 2.5.8 and 2.5.3 formulate such an LP-problem. 

i € N , 

By using positive column scales it can always be accomplished that hij in 

2.5.8 equals± 1. 

THEOREM 2.5.-3. The rank of matrix A equals (m-1) or m. 

The proof of this theorem is similar to that of Theorem 2.4.3. See also 

Figure 2.5.1. 

Under strong conditions a generalized network problem can be reduced to a 

pure network problem by means of scaling. In this respect the following 

theorem is valid: 

D 

THEOREM 2.5.4. Let G(N,A) denote a connected generalized network. Problem 

2.5.1-2.5.3 can be scaled to a pure network problem iff one of the following 

equivalent conditions is valid: 

(a) r(A) 

(b) ex (C) 

m-1 

1, for every cycle c in G(N,A) which is not a self-loop. 

PROOF. See GLOVER & KLINGMAN [1973] and TRUEMPER [1976]. 

Both GLOVER & KLINGMAN and TRUEMPER developed simple scaling procedures. 

Scaling generalized networks to networks with positive multipliers is dis­

cussed in TRUEMPER [1976]. Scaling generalized networks to networks in 

which all multipliers gij satisfy O < gij ~ 1 (so-called lossy networks) or 

g .. ~ 1 (gainy networks) is discussed in KOENE [1979b]. 
1] 

D 
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Theorem 2. 5. 4 implies that, if r (A) = m - 1 , the generalized network problem 

can be solved as a pure network problem, after a suitable scaling has been 

performed. 

In the remaining part of this chapter the following assumption holds: 

ASSUMPTION 2.5.5. The rank of A equals m. 

Properties of a basis 

Let B denote a basis of A. 
Define the basis graph associated with matrix Bas the subgraph of G(N,A) 

with node set N and arc set the arcs associated with the columns in B. 

A similar lemma as Lemma 2.4.4, which deals with pure networks, is stated. 

Suppose B = [bip]. 

Let S be a nonempty subset of {1, ... ,m}, associated with the columns in B. 

Similarly as in 2.4.9, R(S) is defined as: 

2.5.9. R(S) = {i Ji E {1, .•• ,m}, 3 
pES 

LEMMA 2.5.6. Given a collection of Isl colwrrns of B there are at least as 

many rows in B which contain a nonzero element in these colwrrns: 

2.5.10. IR(s) I :2: Isl 

PROOF. If IR(S) I :<;; Isl - 1 the columns of B associated with S are linearly 

dependent. This contradicts the fact that B denotes a basis. 

REMARK 2.5.7. Note that the only argument used in proving this lemma is the 

fact that Bis a square nonsingular matrix. 

It is remarked that the relation 2.5.10 also arises in a theorem due to 

HALL [1935] in dealing with systems of distinct representatives, see also 

FORD & FULKERSON [1962, p. 67]: Let V = {v1 , ••• ,vm} be a family of subsets 

of a given set W = {w1 , .•• ,wq}. 

* 
A list of distinct elements of W, say 

□ 

□ 

W {wi , ... ,wi} is a system 
1 m 

of distinct representatives for V if wij E Vj; 

wij is said to represent Vj. 

THEOREM 2.5.8 (HALL). A system of distinct representatives for 

V = {v1, .•. ,vm} exists iff every union of Isl sets of v contains at least 

Isl distinct elements, Isl= 1, ••• ,m. 



34 

The condition in this theorem is the same as that in Lemma 2.5.6, only a 

different terminology is used. 

An immediate consequence of Lemma 2.5.6 and Theorem 2.5.8 is (cf. remark 

2.5. 7): 

COROLLARY 2.5.9. The rows (or the colwrrns) of a square nonsingular matrix 

can be permuted such that the main diagonal of this permuted matrix is 

zero-free. 

Hall's theorem will appear to play an important role in Chapters 3 and 4. 

THEOREM 2.5.10. A basis graph in a generalized network is a (spanning) 

forest of quasi-trees. 

PROOF. Consider a connected component of the basis graph. Suppose this 

component contains q arcs, then Lemma 2.5.6 shows that this component con­

tains at most q nodes. 

Since the number of arcs in the basis graph equals the number of nodes this 

implies that each connected component must be a quasi-tree. 

The reverse of Theorem 2.5.10 is in general not true (compare with the 

situation in pure networks: Theorem 2.4.7): 

THEOREM 2.5.11. A forest of quasi-trees with node set N and arc set~ A is 

a basis graph iff a(C) ¥ 1 for every cycle c, which is not a self-loop. 

PROOF. See TRUEMPER [1976] and also Figure 2.5.1. 

Whether a subgraph of G(N,A) is a basis graph or not does not only depend 

on the topology of this subgraph but also on the values of the multipliers. 

A square matrix is said to be one-triangular if the rows and columns can be 

permuted such that all elements below the first lower diagonal are zero. 

THEOREM 2.5.12. Bis one-triangular. 

Before proving this theorem it is remarked that B has a block diagonal 

form: 

□ 

□ 



2.5.11. B 

B q 

Each block Bi corresponds to a quasi-tree Qi in the basis graph (each 

quasi-tree has as many nodes as arcs). Therefore, it is sufficient to show 

that each block Bi has a one-triangular structure. A constructive proof is 

given. 

PROOF of Theorem 2.5.12. Consider quasi-tree Qi of the basis graph and its 

associated block Bi of the basis.· 
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If the cycle in Qi is a self-loop, Bi is triangular as shown in the previous 

section. 

Consider the case that the cycle Ci of Qi is not a self-loop and suppose 

arc (v,w) belongs to the arc set of Ci. Omitting (v,w) from Qi turns Qi 

into a tree. 

First, sequence the rows and columns which correspond to the nodes. and arcs 

in Ci (except the column associated with arc (v,w)) in the way nodes and 

arcs are passed in traversing the unique path from v to w in the tree. 

Next, add the column corresponding to arc (v,w). The submatrix of Bi which 

now has been obtained is one-triangular. 

The remaining part of Qi has a tree structure and, as shown in Section 2.4, r 

can be written in triangular form. 

EXAMPLE 2.5.13. 

1 

2 

3 

4 

5 

7 

6 

12 32 

-1 

13 14 

-1 I -1 
I 

I 

53 75 

-1 

Figure 2.5.1. A quasi-tree and a corresponding one-triangular 

matrix representation. 

56 

- -
-1 
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The properties of a basis and associated basis graph, mentioned in Theorems 

2.5.10 and 2.5.12, make it possible to perform the steps of the Simplex 

algorithm by using the basis graph (a forest of quasi-trees) instead of the 

basis inverse B-l. 

A clarification of the calculations, to be carried out in the distinct steps 

of the Simplex algorithm, is presented. 

Solving 'lf 1 B c' 
B 

In order to determine the Simplex multipliers the system 

2.5.12 'lf 1 B = c~ 

must be solved (cf. 2.3.12). In network terms this can be done in the 

following way (cf. the constructive proof of Theorem 2.5.12): 

Consider each quasi-tree in the basis graph separately and distinguish the 

two cases: 

(a) The cycle of the quasi-tree is a self-loop, say arc (v,v). Then 

'If 
V 

The remaining part is dealt with as described in Section 2.4, where for 

each basic arc (i,j) the following relation holds: 

2.5.13. 

(b) The cycle of the quasi-tree contains two or more arcs. Suppose arc 

(v,w) belongs to the cycle. Pvw denotes the path from v tow in the quasi­

tree in which arc (v,w) is not contained. First, calculate all 'lfi for all 

nodes i E Pvw in terms of 'lfv using 2.5.13. Next, 'lfv is found from 

C vw 

and the 'lfi (i E Pvw) are known too. 

The remaining part of the quasi-tree has a tree structure and the Simplex 

multipliers of nodes in that part are determined as in Section 2.4, using 

2.5.13 instead of 2.4.12. 

The close relationship with the pure network situation is obvious. Here the 

Simplex multipliers are determined in some sequence "from the cycle towards 

the leaves". In actual.implementations the cycle factors are used to speed 

up these calculations. 

The Simplex multipliers are determined in this way in the initialization step 

of the Simplex algorithm. In all other steps the previous vector 'If is updated. 



* Solving Bx= b 

The activity levels of the basic variables (the flow levels in the basic 

arcs) can be found by solving the system: 

* 2.5.14. B~ = b 

* where b = b-N2 uN2 (formula 2.3.11). 

In a similar way as the Simplex multipliers are evaluated these activity 

levels are calculated "from the leaves towards the cycle". 
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They are determined in this way only in the initialization step. In all 

other steps they can be found, as usual, by updating the previous vector x. 

Equations of the form Bx= b* must also be solved in determining the 

representation of the entering column, say a•kt' in terms of the basis: 

2.5.15. 

This can be done in an easier way than indicated above, because the right­

hand side of 2.5.15 has a special form. Associated with a•kt is arc (k,t). 

Since a•kt can be written as 

2.5.16. 

if (k,t) is not a self-loop, or as 

2.5.17. 

if (k,t) is a self-loop (k = t), the essential question is to find the 
-1 -1 

representation of ek (and et) in terms of B (vectors B ek and B et) • 

Denote by Withe set of arcs, which belong to the path f~om node i EN to 

the cycle in the qua.si-tree in which node i is contained, plus all arcs in 

this cycle. 

THEOREM 2.5.14. All aolumns of B whiah are not assoaiated with aras in wi 
-1 have a zero aoeffiaient in the representation B ei of ei in te!'mB of the 

basia aolwrrns (i EN), 

PROOF. See ELAM, GLOVER & KLINGMAN [1979]. 0 

-1 
For this reason the vector B ei is called the ayale-path vector of node i. 

-1 An explicit formula for the representation B ei of ei, i E N, in terms of 
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the basic columns can be found in ELAM, GLOVER & KLINGMAN [1979]. Regarding 

2.5.15-2.5.17, vector y•kt'is found from: 

2.5.18. 

if (k,t) is not a self-loop, or from 

2.5.19. 

if (k,t) is a self-loop (k = t). 

Theorem 2.5.14 does not imply that all columns of B associated with arcs in 

Wk u Wt have a nonzero coefficient in the representation vector ykt" 

This is illustrated in Figure 2.5.2 where the set of arcs in Wk u Wt is 

depicted by heavy lines for one of the cases which may occur. In case 

gOk gkt / got = 1 only arcs (0 ,k) and (0 ,t) have a nonzero coefficient (cf. 

the situation in pure networks and theorem 2.5.11). 

k 

Figure 2.5.2. A possible union of Wk and Wt. 

Finally, an outline is given of the Simplex algorithm for generalized 

network problems. 

Simplex algorithm for the minimal cost flow problem in a generalized network. 

Initialization 

The same starting basis as described in Section 2.4 can be used. Alternatives 

can be found, e.g., in GLOVER, HULTZ, KLINGMAN & STUTZ [1978]. 

1. Determine the Simplex multipliers 

The Simplex multipliers can be evaluated as described above. However, after 

each basis change it is possible to update the previous vector TT. This is 

discussed in step 7. 
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2. Calculate the reduced costs 

The reduced costs are found from 

2.5.20. c .. =-7T, +g.,7T.-c .. 
l.J l. l.J J l.J 

(i,j) E A • 

3. Perform the optimality test 

This is standard (see Section 2.3). 

4. Choose the nonbasic variable to enter the basis 

Standard. Let a•ki enter the basis. 

5. Find the representation of a,kt in terms of B 

Determine the vector Yki from 

as indicated above. 

6. Perform the minimal ratio test 

See Section 2.3. Suppose a•st leaves the basis. 

7. Update 

Updating the objective function value and flow levels is standard. 

The new basis graph is obtained from the previous one by omitting arc (s,t) 

and adding arc (k,i). The Simplex multipliers associated with nodes in 

unchanged quasi-trees or cycles remain the same. 

Only in case a new cycle is formed or tree parts are attached to another 

quasi-tree, the associated Simplex multipliers must be calculated in the 

way described before. 

Continue with step 2. 
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3. PURE PROCESSING NETWORKS 

3 • 1 • I ntJr.o duc.:tlo n. 

This chapter is concerned with pure processing networks. In Section 3.2 we 

discuss two distinct LP-formulations of the minimal cost flow problem in 

such a network. 

The basis structure will be explained in terms of the network (Section 3.3) 

and subsequently exploited in a specification of the primal Simplex algo­

rithm, discussed in Section 3.4. 

A somewhat different specification of the primal Simplex algorithm for pure 

processing networks is presented in Section 3.5. 

Finally, in Section 3.6, some remarks are made. 

3. 2. Ma:thema.Uc.ai f,ofl.muia:t1on 

A verbal description of a processing network is given in Subsection 1.1.2. 

The present section provides two distinct LP-formulations of the minimal 

cost flow problem in a pure processing network. 

The first formulation is that of a pure network problem with side con­

straints. 

The second one is more compact and can be seen as a pure network problem 

with side activities. 

Consider a directed and connected graph G(N,A), with node set N, containing 

m nodes and arc set A, consisting of narcs. 

If self-loops (i,i), i EN, are present in G(N,A) they can be replaced by 

arcs (i,m+l), where (m + 1) is an additional node. 

ASSUMPTION 3.2.1. G(N,A) does not contain any seZf-Zoop. 



42 

It is convenient, and in many practical situations natural, to assume that 

G(N,A) satisfies some special topological properties (cf. the discussion at 

the end of this section). These properties will show up in the subsequent 

discussion and are summarized in Remark 3.2.2. 

The node set N can be partitioned into three subsets: 

RN: refining nodes 

BN: blending nodes 

TN: transportation nodes. 

A refining node i (i E RN) is a node with one incoming arc and at least two 

outgoing arcs. The flow on each outgoing arc (i,j), j E A(i), is required 

to be a given fraction aij of the total flow entering node i (see Figure 

3.2. la). 

It is assumed that 

3. 2.1. 0 < a .. < 1 I 
J.J 

j E A(i) I i E RN 

and 

3.2.2. }: a .. 1 I i E RN 
jEA(i) J.J 

i 
1 ail 

(a) (b) 

Figure 3.2.1. A refining node i. 

A blending node i (i E BN) is a node with at least two incoming arcs and 

only one outgoing arc. The flow on each incoming arc (j,i), j E B(i), is 

required to be a given fraction aj~ of the total flow leaving node i (see 

Figure 3.2.2a). 

In analogy with refining nodes we have: 

3.2.3. 

and 

O<a .. <1, 
JJ. 

j E B(i) , i E BN 



3.2.4. 1 , i E BN. 

(a) (b) 

Figure 3.2.2. A blending node i. 

All nodes of N which are neither refining nodes nor blending nodes are 

called transportation nodes. 

It is assumed that, if i is a refining node or a blending node, all nodes 

j E A(i) u B(i) are transportation nodes. 
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REMARK 3.2.2. Note that in G(N,A) the following topological properties hold: 

(a) if node i EN is a refining node (blending node) proportionality of 

flow is assumed on all outgoing (incoming) arcs of i; 

(bl if node i EN is a refining node (blending node) there is exactly one 

incoming (outgoing) arc of node i; 

(c) if node i EN is a refining node or blending node all nodes 

j E A(i) u B(i) are transportation nodes. 

Finally, it is convenient to introduce the set of processing nodes PN: 

3.2.5. PN := RN U BN 

A refining process i is formed by the outgoing arcs of a refining node i. 

Such arcs are called refining arcs. 

The set of refining arcs contained in A is denoted by RA. 

A blending process i is formed by the incoming arcs of a blending node i. 

Such arcs are called blending arcs. 

The set of blending arcs s A is denoted by BA. 

All arcs in A which are neither refining arcs nor blending arcs are called 

transportation arcs. 

The set of transportation arcs SA is denoted by TA. 

□ 
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We will say that a transportation arc (i,j) EA describes a transportation 

process (i,j). 

Note that the incoming (outgoing) arc of a refining (blending) node describes 

a transportation process. 

Also note that the arc set A is truely partitioned into the subsets RA, BA 

and TA. 

The set of processing arcs PA is defined by: 

3.2.6. PA:= RAU BA 

The coefficients a .. in 3.2.1 or 3.2.3 are called processing coefficients. 
1) 

A network with at least one processing node is called a processing network. 

Conservation of flow is assumed in -every node i EN. If, in addition, flow 

is conserved on the arc set A (no losses or gains in transporting flow 

along arcs), the network is addressed as a pw>e processing network. 

Otherwise it is called a generalized processing network. Such networks will 

be discussed further in Chapter 4. 

Before passing over to the mathematical formulations of the minimal cost 

flow problem in a pure processing network, some other notation and 

definitions are introduced. 

PA(i) denotes the set of processing arcs incident to node i E PN. 

In other words: PA(i) describes the set of arcs which correspond to refining 

or blending process i. 

N(i) is the set of nodes which are incident to the arcs in PA(i), i E PN. 

The number of arcs in PA(i) is called the order of process i and is denoted 

by ni. Note that ni ;;: 2, Vi E PN. 

Finally, it is remarked that in drawing diagrams of processing networks, it 

is convenient to distinguish the three types of nodes. Refining nodes and 

blending nodes will be represented as in Figure 3.2.lb and Figure 3.2.2b, 

transportation nodes are given by a small circle. An example of a processing 

network is presented in Figure 3.2.3. 



Figure 3.2.3. An example of a processing network. 

Formulation I 

The proportionality requirements in a refining or blending process can be 

stated in several ways. 

Consider a refining process i with its corresponding refining node i. 
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A quite natural way to capture the proportionality requirements would be to 

express the flows on the outgoing arcs of node i in terms of the flow on 

the incoming arc. However, in view of the subsequent discussions, the 

following way will appear to be more appropriate: 

Choose an arbitrary outgoing arc (i,r), r E A(i), of node i. It is clear 

that if the flow in (i,r) is known, flows on all outgoing arcs of node i 

are known too. For this reason arc (i,r) is called the representative arc 

of process i (or also of the set PA(i)). 

The flows on all other outgoing arcs of i can be expressed in terms of the 

flow on arc (i,r): 

x.. a .. 
21.=21. 
x. a. 

r E A (i) , j E A (i) \ {r} 
ir ir 

or 

3.2.7. 0 , r E A(i) , j E A(i) \ {r} 

where all a .. 's satisfy 3.2.1 and 3.2.2. 
l.J 
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Perhaps it would be more appropriate to write r(i) instead of r, but for 

notational simplicity this has not been done. 

In a similar way the proportionality requirements in a blending process can 

be stated: 

Consider a blending process i with its corresponding blending node i. 

Choose a representative arc (r,i) of process i (r € B(i)) and formulate the 

blending requirements as: 

3.2.8. aji X 

ari ri 
r € B(i) , j € B(i) \{r} 

where all the aji's satisfy 3,2,3 and 3,2,4. 

The LP-formulation of the minimal cost flow problem in a pure processing 

network G(N,A) is: 

3.2.9. minimize 

3.2.10. 

3.2.11. 

3,2.12. 

3.2.13. 

l ci. xij 
(i,j)EA J 

}: 
jEA(i) 

xij + l xji = b. 
jEB (i) 1 

ai . 
.2:.2 x. xij 0 
air ir 

aji X • -

ari ri xji 0 

i € N 

i € RN, r € A(i) 

j € A(i) \ {r} 

i € BN, r € B(i) 

j € B(i) \ {r} 

Equations 3.2.10 are the conservation of flow equations in which bi> 0 

denotes the external demand and bi< 0 denotes the external supply in 

node i. 

Formulae 3.2.11 and 3,2,12 are the refining and blending requirements. 

Capacity bounds are given by 3,2,13. The next assumption is not restrictive. 

ASSUMPTION 3.2.3. For eaah refining proaess i: 

r € A(i) , j € A(i) \ {r} 

and for eaah blending proaess i: 
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r E B (i) , j E B (i) \ {r} . 

Formulation 3.2.9-3.2.13 is in fact one of a pure network problem (3.2.9, 

3.2.10 and 3.2.13) with side constraints 3.2.11 and 3.2.12. Therefore CHEN & 

SAIGAL's algorithm [1977] can be used to solve 3.2.9-3.2.13; see also Sub­

section 1.1.1. For this problem a working basis of fixed size: EiEPN(ni - 1), 

i.e., the number of constraints in 3.2.11 and 3.2.12, would be required. 

However, the solution procedures, developed in Sections 3.4 and 3.5 (based 

on formulation II), use a working basis of variable size q, with 

0 :;; q:;; EiEPN 1 (= IPNI), which is in general much smaller than EiEPN(ni -1). 

The structure of the coefficient matrix of the left hand sides of 3.2.10-

3.2.12 is clarified in Figure 3.2.4. In this figure pR and pB denote the 

number of refining and blending processes. Moreover, the matrices Ri 

(i = 1, ••• ,pR) and Bi (i = 1, .•• ,pB) are (ni -1) x ni matrices with the 

following structure: 

a .. 
1.J 1 

-1 a. ir 

R. a .. B. 1. 1.J2 1. 

air 

-1 

----ITA 1--------1 RA I ---¾--I BA 1-

a . 
J1i 

-1 a ri 

Cl, i 
]2 

a ri 

-1 

i 
nonse=a;irn of fl= 

refining requirements 

blending ,tquire=nts 
,t, 

Figure 3.2.4. Structure of the coefficient matrix. 
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Note that in this formulation each refining or blending process i has ni 

associated columns in the coefficient matrix. 

Formulation II 

An alternative, more compact, formulation is obtained from formulation I if 

the expressions for x. . (formula 3. 2 .11) : 
l.J 

X,, 
l.J 

'\j --x. 
air ir 

i E RN , r E A(i) , j E A(i) \ {r} 

and for xji (formula 3.2.12): 

i E BN rEB(i), jEB(i)\{r} 

are substituted into 3,2.10. 

Then each refining process and each blending process is represented by a 

single column in the resulting coefficient matrix A. Of course, the variable 

associated with this column in A describes the flow level in the represen­

tative arc of this process. 

Matrix A has m rows and each row i of A can be identified by node i in the 

network. Each column of A describes one of the three possible types of 

processes (a column of A associated with refining or blending process i is 

denoted by a,i' a column of A associated with transportation process (i,j) 

is denoted by a•ij): 

(a) refining process i. The elements in column a •i are: 

- 1/air in row i, 

ai/air in row j, j E A (i), 

0 otherwise. 

(b) blending: 12rocess i. The elements in column a •i are: 

1/ari in row i, 

-aji/ari in row j, j E B (i), 

0 otherwise. 

(c) trans12ortation process (i,j). The elements in column a •ij are: 

-1 in row i, 

1 in row j, 

0 otherwise. 
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Figure 3,2,5 clarifies the structure of A. 

r 
m 

l 
~ITAl~PR--- PB~ 

Figure 3.2.5. Structure of coefficient matrix A. 

REMARK 3.2.4. It can easily be observed that matrix A has the following 

properties: 

1. the sum of elements of each column in A is zero; 

2. if there is more than one positive (negative) element in some column of 

A, there is only one negative (positive) element. □ 

Note that a column a.i as meant under (a) or (b) has a unique representation 

except for some scaling factor (this scaling factor depends on the choice 

made for the representative arc). 

In the rest of this monograph it is assumed that all columns of A are 

scaled such that the only negative (or positive) element in a column is 

equal to -1 (+1, respectively). So a refining process i has elements: 

-1 in row i. 

a .. 
J.J 

in row j' j E A (i), 

0 otherwise, 

and a blending process i has elements: 

+1 in row i, 

-a 
ij in row j' j E B(i), 

0 otherwise. 

After scaling the variable associated with column a,i describes the total 

throughput of process i. 

The solution procedures of this chapter will use the compact formulation: 
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3.2.14. 

3.2.15. 

3.2.16. 

minimize c'x 

Ax= b 

where A satisfies the properties mentioned above. 

Note that this formulation is one of a pure network problem with side activi­

ties. Therefore 3.2.14-3.2.16 can be solved by the Simplex SON approach of 

GLOVER & KLINGMAN [1981]. Their procedure would employ a working basis of 

the same size as the Simplex PRON procedures of Sections 3.4 and 3.5. However, 

Simplex SON does not make any specific use of the typical processing network 

structure. 

The dual problem of 3.2.14-3.2.16 is given by: 

3.2.17. 

3.2.18. 

3.2.19. 

3.2.20. 

maximize b'u - u'v 

-ui+ }: aiju.-v. Sci 
jEA(i) J 1 

(i,j) € TP 

i € RP 

i € BP 

where TP denotes the set of transportation processes, RP represents the set 

of refining processes and BP the set of blending processes. 

It is emphasized that formulation 3.2.14-3.2.16 should merely be considered 

as a compact way of writing 3.2.8-3.2.13. The network interpretation remains 

the same: 

Column a.i' associated with refining process i, can be written as 

3.2.21. a = •i I ai. a*. j , 
jEA(i) J •i 

* where a•ij denotes the vector representation of arc (i,j) (see Section 2.4). 

Formula 3.2.21 makes clear that the set of processing arcs PA(i) can still 

be associated with refining process i. 

Of course, a similar statement can be made for a blending process i. 

Note that a pure network (Section 2.4) can be considered as a "degenerate" 

case of a pure processing network (with processes of order 1). 
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The remaining part of this section discusses the possibility to define 

processing networks in a lilOre general way, namely as a network in which the 

following three properties hold: 

1. For generalized processing networks: conservation of flow in nodes, 

for pure processing networks: conservation of flow,both in nodes and on 

arcs. 

2. Proportionality of flow in subsets of the arc set A. In each such a sub­

set the arcs are incident to one common node and they are all directed 

either from or towards this node. 

3. Capacity bounds on arcs. 

An example of a processing network ·in this more general sense is presented 

in Figure 3.2.6. The subsets of arcs on which proportionality of flow is 

required are: SI= {(1,4),(1,6)}, SII = {(1,8),(1,10)}, SIII = {(4,6),(4,7)} 

and SIV = {(7,10),(8,10)}. The aij's beside the arcs in SI, SII' SIII and 

SIV are the proportionality coefficients. 

Figure 3.2.6. A processing network in the more gene'ral sense. 

It is remarked that, after adapting the aij's in an obvious way, the 

processing network in Figure 3.2.6 is in fact equivalent to the one drawn 

in Figure 3.2.3, 

If we would define: 

a refining node i as a node of N for which a subset of the set 

{(i,j) I j € A(i)} exists with proportionality of flow on the arcs in this 

subset, 
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a blending node i as a node of N for which a subset of the set 

{(j,i) I j E B(i)} exists with proportionality of flow on the arcs in this 

subset 

and 

a transportation node i as a node of N which is not a refining or blending 

node, 

then it is immediately clear that none of the properties mentioned in 

Remark 3.2.2 have to hold. 

Yet, in the remaining part of this monograph it is assumed that a processing 

network satisfies the properties mentioned in Remark 3.2.2. 

The motivation for doing this is: 

1. In many practical situations it.is natural to assume~ incoming (out­

going) arc of a refining (blending) node and proportionality of flow on 

all outgoing (incoming) arcs (for instance, a destillation column in an 

oil refinery). 

2. The network diagrams which can be drawn have a simpler structure (compare 

Figure 3.2.3 with Figure 3.2.6) and are therefore easier to interpret. 

Visualization is an important aspect which will be discussed further in 

Chapter 5. 

3. The assumptions simplify the way to think about processing networks as 

well as the notation. 

We emphasize the following facts: 

1. It is in no way restrictive to assume that the properties in Remark 3. 2. 2 

are satisfied in a processing network: by introducing additional trans­

portation nodes and/or transportation arcs an arbitrary processing net­

work can be cast into this framework. 

2. The special topological properties will not be used in an essential way 

in the subsequent discussions (only for notational convenience). 

Consequently, the solution procedures developed in the sequel can easily 

be adapted to suit processing network problems in the more general sense. 

As shown above, a pure processing network problem can be formulated as in 

3.2.14-3.2.16, where matrix A has the properties mentioned in Remark 3.2.4. 

Conversely, a LP-problem 3.2.14-3.2.16 in which A has the properties 

described in Remark 3.2.4 can be considered as a pure processing network 

problem in the more general sense. 
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EXAMPLE 3.2.5. Let A be given by: 

-1 -1 1 

a14 -1 -1 4 

A= a16 a46 -1 6 

a47 -a7,10 7 

a18 -as, 10 8 

al, 10 1 1 10 

where all aij's are positive and e'A = 0. 

Then A reflects the pure processing network structure of Figure 3.2.6. 

3. 3. BM-l6 ~tltu.c.twte 

The basis structure will be explained in terms of the pure processing net­

work. Both formulations of Section 3.2 can be used, leading to essentially 

the same results. Here we use the compact formulation (formulation ;Il 

considering the fact that this formulation will also be used for the 

solution procedures of Sections 3.4 and 3.5. An explanation of the basis 

structure in terms of the first formulation can be found in KOENE [1981a]. 

The rank of matrix A in 3. 2 .15 is obviously smaller than or equal to (m - 1) , 

since e•A = O. 

ASSUMPTION 3. 3. 1. The rank of A equals (m - 1 l • 

REMARK 3.3.2. A sufficient (not necessary) condition, to let A have rank 

(m - 1), is that the directed graph with node set N and as arc set the set 

of transportation arcs TA£ A, is connected. In that case a spanning tree, 

containing transportation arcs only, can be constructed in G(N,A). As 

mentioned in Section 2.4 the submatrix of A which describes such a spanning 

tree has rank (m - 1) • Note that dummy transportation arcs can always be 

introduced such that this is the case. 

As in pure networks (Section 2.4) we introduce a single artificial variable 

xioio with a. ioio = - ei0 Cio arbitrarily chosen from { 1, ••• ,m}. Again it 

is easy to prove that matrix 

□ 
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3. 3 .1 

has rank m. 

[-e. A] io 

* Let B denote a basis of A • Column - ei0 always belongs to B and can be 

thought to represent the self-loop (i0 ,i0). 

Suppose B contains q processing columns (i.e., the columns of A associated 

with a refining or blending process), 0 :5. q :5. m-1, and, consequently, m-q 

transportation columns (columns of A associated with a transportation 

process) , including the slack column - ei0 • 

Matrix B can be partitioned as: 

3.3.2. 

where BT is an m x (m-q-1) matrix deno"!;.ing the structural basic transporta­

tion processes, and BP is an m x q matrix representing the basic refining 

and blending columns. 

Let B denote the matrix: 

3,3.3. 

The set of basic refining and blending processes is given by BAP. 

Define the basis graph associated with Bas the directed graph with node 

set N and as arc set: 

the self-loop (i0 ,i0), 

the transportation arcs~ A associated with the columns in BT, and 

all processing arcs ~ A associated with the columns in BP, i.e., all arcs 

in PA(i), i E BAP (cf. formula 3.2.21 and the definition of PA(i) given in 

the previous section). 

The purpose of the subsequently stated lemmas is to explain the structure 

of the basis graph. 

The arc set of a basis graph consists of a number of transportation arcs 

and a number of processing arcs. 

LEMMA 3.3.3. E~cept for the self-loop (i0 ,i0) the basis graph contains no 

cycle with only transportation arcs. 

PROOF. This fact follows immediately from the theory of pure networks 

(Section 2 .4) • D 
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Knowing this, consider for a moment the basis graph in which all processing 

arcs and the self-loop (i0 ,i0) are left out. This graph consists of a 

number of connected components, each of which cannot contain any cycle. 

Such a connected component must therefore have a tree structure and is 

called a transportation tree. A transportation tree may consist of a single 

node. 

The next lemma gives a relation between the number of basic refining and 

blending processes (i.e., the number of elements in BAP) and the number of 

transportation trees contained in a basis graph. The number of basic 

refining and blending processes is given by q (0 ~ q ~ m-1). 

LEMMA 3.3.4. A basis graph contains (q + 1)transportation trees iff the 

nwrber of basic refining and blending processes equals q. 

PROOF. If there are q basic refining and blending processes the basis graph 

must contain m - (q+l) transportation arcs apart from the self-loop (i0 ,i0 ) • 

Considering the following two facts: 

the number of arcs in a tree is exactly one less than the number of 

nodes in a tree, 

- each of them nodes of N belongs to some transportation tree, 

it is immediately clear that the basis graph must contain (q+l) transporta­

tion trees. 

The other part of the proof is obtained by reversing the argument. □ 

According to Remarks 2.4.5 and 3.2.4 Lemma 2.4.4 of the previous section is 

also valid for pure processing networks, with~ as in 3.3.3. 

In addition, it is also possible to state a lemma closely related to Lemma 

2.4.4. 

Suppose BAP ,f (d. 

Let SP be a nonempty subset of BAP. 

If a node of the set N(i), i E BAP, belongs to some transportation tree Tt' 

process i and transportation tree Tt are said to be incident to each other. 

Let T(SP) denote the set of transportation trees which are incident to the 

processes i ESP. 

LEMMA 3.3.5. Any set SP of basic refining and blending processes is incident 

to at least I SP I + 1 transportation trees: 

3.3.4. 
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PROOF. Suppose the transportation trees in T(SP) contain in total t nodes 

and, consequently, t- IT(SP) I arcs. These t- IT(SP)I arcs plus the lspl 

refining and blending processes in SP correspond tot- IT(SP) I+ lspl columns 

in the basis B. According to the definition of T(SP), these columns contain 

only nonzero elements in the trows of B which correspond to the nodes in 

T (Sp) • 

Since the columns in a basis must be linearly independent and the column 

sum of each of the t- IT(SP) I+ lspl columns is zero, a necessary condition 

is: 

or 

According to LeDlll!a 3.3.4 equality in formula 3.3.4 clearly holds if 

Sp= BAP, but there may also be proper (nonempty) subsets of BAP for which 

equality holds too. 

An iDllllediate consequence of LeDlll!a 3.3.5 is that every transportation tree 

must be incident to at least one process i, i E BAP. For suppose there is 

some transportation tree for which this is not true, then the q processes 

in BAP would be incident to the remaining q transportation trees,which is 

impossible because of LeDlll!a 3.3.5. 

Lelilllla 3.3.5 can be used to prove that the representative arcs of the basic 

refining and blending processes can be chosen in a special way: 

LEMMA 3.3.6. The representative arcs of the basic refining and blending 

processes can be chosen in such a way that the basic transportation arcs 

associated with matrix BT plus these representative arcs form the arc set 

of a spanning tree in G (N ,Al • 

Such a spanning tree will be called a representative spanning tree of the 

basis graph. 

PROOF of LEMMA 3.3.6. A simple induction argument will be used. 

If BAP =¢the statement is trivially true. 

Suppose BAP 'F ¢. 
Let s 0 be a nonempty subset of BAP such that: 

□ 
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3.3.5. 

3.3.6. 

Such a subset s 0 of BAP must clearly exist: it is either BAP itself or a 

proper subset of BAP. 

Furthermore, consider a subset s 2 of BAP such that s 0 n s 2 0. 
Since s 0 n s 2 = 0 Lemma 3.3.5 implies 

3.3.7. 

Consequently, using formula 3.3.5: 

3.3.8. 

Verbally stated: the set s 2 must be incident to at least ls2 ! transportation 

trees which are not contained in T(s0 ). Because s 1 is a subset of s 0 the 

following is also true (using 3.3.6): 

3.3.9. 

After these preparatory observations consider an arbitrary process i* in s 0 

and suppose the associated processing node i* belongs to transportation 

tree Tk. Lemma 3.3.5 guarantees there is at least one node, say j*, in 

* N(i) which belongs to some transportation tree Ti (t ~ k). 
* * * Take the arc incident to i and j as the representative arc of process i . 

This representative arc transforms the (transportation) trees Tk and T t into 

one new tree. 

Leave process i* out of the set BAP and consider the new situation: 

there is one basic refining or blending process less and one tree less. 

The statements in 3.3.6, 3.3.8 and 3.3.9 guarantee that in the new situation 

every nonempty subset of basic refining and blending processes again satis­

fies the condition of Lemma 3.3.5. 

By induction the statement in Lemma 3.3.6 follows. 

Lemmas 3.3.3-3.3.6 provide the following essential theorem. 

THEOREM 3.3.7. A basis graph in a pure processing network G(N,A) consists 

of a rooted spanning tree formed by the self-loop (i0 ,i0), the basic 

□ 
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transportation arcs in A and the properly chosen representative arcs of the 

basic refining and blending processes, plus all nonrepresentative arcs of 

the basic refining and blending processes. 

An illustrative example is given in Figure 3.3.1, where the representative 

spanning tree is drawn with heavy lines. The associated basis matrix is 

given by: 

11 12 13 2 

-1 -1 -1 

1 -1 

3.3.10. B 1 

a24 

a25 

2 

3 

3 

~1 

a34 

a35 

' \ 

1 

2 

3 

4 

5 

I 
I 

4 
' I 
\' , \ 

I ~ 
I \ 

I \ 

Figure 3.3.1. Example of a basis graph in a pure processing network. 

This example demonstrates several important aspects: 

1. The reverse of the statement in Theorem 3.3.7 is not necessarily true: 

a graph satisfying the properties mentioned in Theorem 3.3.7 is not 

necessarily a basis graph. 

If a 24 = a 34 , B would be singular (recall that a 24 + a 25 = 1 and 

a 34 + a 35 = 1) and, consequently, the graph drawn in Figure 3.3.1 would 

not be a basis graph. 

The same conclusion can be drawn as in generalized networks (Section 2.5): 
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Whether a subgraph of G(N,A) is a basis graph or not does not only depend 

on its topology but also on the values of the processing coefficients 

(the aij 's) . 

2. The proper choice of the representative arcs need not be unique: arcs 

(2,5) and (3,4) could also have been chosen to represent processes 2 and 

3, respectively. 

Considering Theorem 3.3.7 it is quite natural to give special attention to 

the representative spanning tree of the basis graph. 

Let T be the matrix representation of the rooted representative spanning 

tree, such that each column T . of T corresponds to column B,. of B 
•J ·J 

(j = 1, ••. ,m). Then basis B can also be written as: 

3.3.11. B = TP. 

Matrix Pin 3.3.11 can be specified as: 

3.3.12. p 

in which 

I is the identity matrix of order (m - q), 

Q is an (m - q) x q matrix, and 

Risa square nonsingular matrix of order q. 

For matrix Bin 3.3.10 equation 3.3.11 becomes: 

11 12 13 2 3 

1 -1 -1 -1 

2 1 -1 

3. 3 .13. 3 1 -1 

4 Cl24 Cl34 
5 Cl25 0 35 

11 12 13 24 35 

-1 -1 -1 1 

1 -1 1 

1 -1 
- - - -1 

1 

-Cl25 

1 I 0 25 
-1-CI- -

I 24 
Cl25 

Cl34 

-Cl34 

Cl34 

0 35 



60 

REMARK 3.3.8. Let P . be the j th column of matrix P (m-q < j s m) and B . 
• J • J 

the j th column of B, which is associated with refining or blending process 

k = ij. According to 3.3.11: 

3.3.14. 

Suppose process k is a refining process, then B . can be written as in 
• J 

3.2.21: 

3.3.15. 

* 

I a. a* 
R.EA (k) kt •kt 

where a•kR, denotes the vector representation of arc (k,R,) as in pure net-

works (see Section 2.4). 

Using 3.3.14 and 3.3.15, P . can be written as: 
• J 

3.3.16. p . 
•] 

where arc (k,r) denotes the representative arc of process k ij. 

In the example presented, column P. 4 can be written as: 

3.3.17. 

If process k 

that: 

3.3.18. 

-1 -1 

1 

-1 

1 

ij is a blending process, in a similar way it can be derived 

-1 * -1 a T a + ~ a T a" , 
rk •rk R.EB(t)\{r} R.k -£k 

with arc (r,k) the representative arc of process k ij. 

From 3.3.16 and 3.3.18 one observes that P . is in fact some positive linear 
• J 

combination of the j th unit vector (which results from the representative 

arc of process ij) and the cycle vectors (defined in Section 2.4) of the 

nonrepresentative arcs of process i .• 
J 

This observation plays an important role in the Simplex algorithm of the 

next section. □ 
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REMARK 3.3.9. If the first column of B and T is - e 1 (i0 = 1), then the 

first row of Q in 3. 3'. 12 is a row of zeros. This is immediately clear from 

3.3.16 and 3.3.18, considering the fact that the self-loop associated with 

column - e 1 never takes part in a cycle induced in the representative 

spanning tree by a nonrepresentative arc of a basic refining or blending 

process. 

The aggregated graph of the basis graph 

Recall that Lemma 2.4.4, which is not only valid for pure networks, but 

also for pure processing networks, gives a relation between the basic 

processes (including the basic transportation processes) and the nodes in 

the network. The basis graph describes the interaction between the basic 

processes and the nodes of G(N,A). 

Lemma 3.3.5 provides a similar relation between the basic refining and 

blending processes and the transportation trees. Here the aggregated graph 

of the basis graph, which will be introduced next, describes the interaction 

between the basic refining and blending processes and the transport~tion 

trees. 

Consider a basis graph as described in Theorem 3.3.7 and let there be 

(q + 1) transportation trees (0 ~ q ~ m-1). 

The aggregated graph of the basis graph is defined as the directed graph 

with 

node set N* = {1, ..• ,q+l}, where each node i corresponds to transportation 

tree Ti (i = 1, ••• ,q+l), and 

arc set A*, which consists of all arcs (u,v), u,v EN*, for which in the 

basis graph a processing arc exists with begin point in Tu and end point 

in TV. 

Figure 3.3.2 illustrates the aggregated graph of the basis graph in Figure 

3.3.1. There are three transportation trees T1 , T2 and T3 of which the node 

sets are given by {1,2,3}, {4} and {S}, respectively. Beside each arc in 

Figure 3.3.2 the corresponding processing arc in the basis graph is denoted. 

D 
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(3,4) _ 
,-r, 2 

/ 

Figure 3.3.2. The aggregated graph of the basis graph in Figure 3.3.1. 

Note that the arcs in the aggregated graph, which correspond to the repre­

sentative arcs of the refining and.blending processes in the basis graph, 

form the arc set of a spanning tree in the aggregated graph (in Figure 

3.3.2 drawn with heavy lines). 

Let the matrix representation of this spanning tree be given by T. Clearly, 

T is a (q + 1) x q matrix. 

Consider them x (q+l) matrix V = [vij], where 

[ 

V ij = 1 , 
3.3.19. _ 

vij - O, 

if node i of N is contained in transportation tree Tj, 

otherwise. 

Let B be written as in 3.3.2: 

3.3.20. 

and suppose that node i 0 E T1 • Then the product V'B can be written as: 

3.3.21. V'B 

+m-q-+-+q ➔ 

* * where R = [rij] is some (q+l) x q matrix. Note that, given the basis B, 

* R is unique except for row permutations. 

Considering the structure of Vin 3.3.19, BP in 3.3.20 and the fact that 

each basic refining or blending process is incident to at least two trans-

* portation trees (Lemma 3.3.5) it can be observed that rij F 0 iff the 

process associated with column j in R is incident to transportation tree 

Ti. Furthermore, is is easy to verify that R* satisfies the properties of 

a matrix as described in Remark 3.2.4. 



Properties of matrix R 

Not only the representative spanning tree plays an important role in the 

subsequently discussed Simplex algorithm, but also matrix R in 3.3.12. 

R will be used as a working basis. We discuss some properties of R. 

THEOREM 3.3.10. The main diagonal of R in 3.3.12 is strictly positive. 
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PROOF. It must be proved that each element pjj (m-q < j ~ m) of matrix Pis 

strictly positive. 

According to Remark 3.3.8 we can state the following facts: 

A positive contribution to pjj is given by the j th unit vector, which 

results from the representative arc. of process i .• 
J 

Each cycle vector of a nonrepresentative arc of process ij gives 

a zero contribution top .. if the representative arc of iJ. is not contained 
JJ . 

in this cycle, and 

a positive one if the representative arc is contained in this cycle. 

The latter statement follows from the fact that, if the representative arc 

is present in such a cycle, it must be present as a backward arc, which has 

a "+1" in the cycle vector (see Section 2.4). 

This completes the proof. 

Considering 3.3.11 and 3.3.12 we may expect that R depends on the specific 

choice of the representative arcs of the basic refining and blending 

processes. We will show that matrix R depends only on the specific form of 

matrix T, which represents the spanning tree in the aggregated graph 

associated with the representative spanning tree in the basis graph. 

THEOREM 3.3.11. Given a basis B, matrix R in 3.3.12 depends only on the 

particu Zar form of matrix T. 

PROOF. First evaluate the product V'T: 

3.3.22. V'T = [- e 1 0 TJ . 

Suppose we write (see Remark 3.3.9): 

row 1 

then Pin 3.3.12 can be written as: 

□ 
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3.3.23. 

From 3.3.22 and 3.3.24 it can be seen that: 

3.3.24. V'TP = [- e 1 0 

In view of the fact that B 

3.3.24 results in 

3.3.25. * R TR 

TR] 

TP (formula 3.3.11), comparison of 3.3.21 and 

Since R* is unique (except for row permutations) the theorem has been proved. D 

The basis structure will be exploited in a specification of the primal 

Simplex algorithm, presented in the next section. 

3.4. The S-i..mplex al.go!r.Lthm 60ft the min,i,mal. c.o-6.:t 6low pll.Oblem in a pU!!.e 

p~oc.e.-6-bing ne.;(J;Jo~k 

In Section 2.3 an outline is given of the Simplex algorithm for general 

LP-problems with simple upper bounds. The present section discusses a 

specification of this algorithm for the minimal cost flow problem in a pure 

processing network, formulated by 3.2.14-3.2.16. The basis structure, dis­

cussed in the previous section, will be exploited in this specification. 

It is assumed that the rooted representative spanning tree and the inverse 

R-l of R in 3.3.12 are stored in some convenient way. 

In several steps of the Simplex algorithm we will have to evaluate equations 

of the form Tx b* or ~•T = c~, where T describes the rooted representative 

spanning tree. This can be done in the way explained in Section 2.4. In the 

text we will simply state that the required quantities are determined by 

pure-network techniques. 

At some places we will need (a submatrix of) matrix Q in 3. 3 .12 or a row of 

Q. According to formulae 3.3.11 and 3.3.12, Q can be determined directly 

from the original data by means of pure-network techniques (Section 2.4). 

Therefore, it is not necessary to store Q: the information required is 

determined when needed. 
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For expository reasons we first discuss the representation of the entering 

column in terms of the basic columns (step 5 in the algorithm of Section 

2.3). 

3.4.1. The representation of the entering column in terms of B 

Let the column which enters the basis be given by a. Column a represents 

either a transportation process or a refining process or a blending process. 

In order to find the representation vector y of a in terms of the basis B 

we must solve the system: 

3.4.1. By= a. 

According to 3.3.11, y can be found from 

3.4.2. TPy =a. 

Hence the calculation of y can be split up in two portions: 

First,determine the vector y from: 

3.4.3. Ty = a , 

using pure-network techniques (T denotes a rooted spanning tree). 

Secondly, calculate y from 

3.4.4. Py = y 

In general, this two-step procedure involves less arithmetical operations 

than a direct evaluation of y from 3.4.1, as can be seen from the structure 

of Pin 3.3.12. 

These calculations can be accelerated even further by using the following 

labeling procedure, which determines 

the basic processes which have in any case a zero coeffic~ent in the 

representation vector y, and 

the basic processes which possibly have a nonzero coefficient in y. 

The labeling procedure attaches a two-index label to some of the arcs in 

the representative spanning tree. For detecting the structural zeros and 

nonzeros in vector y, it is only relevant whether an arc in the representa­

tive spanning tree is labeled or not. The labels themselves will be used 

later on in order to reestablish a representative spanning tree when the 

leaving process is known (that is after the minimal ratio test) • 

In the subsequent labeling procedure we consider a process labeled whenever 

its (representative) arc in the representative spanning tree has a label. 
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We consider a basic refining or blending process scanned if all the arcs 

contained in the cycles, induced by the nonrepresentative arcs of this 

process in the representative spanning tree, are labeled. 

Labeling procedure 

1. If the entering process is a transportation process, say (i*,j*), its 

corresponding arc (i*,j*) induces a single cycle in the representative 

spanning tree. Trace this cycle and attach the label [i*,j*J to all 

the arcs in this cycle. Continue with step 3. 

·* Otherwise the entering process is a refining or blending process, say i. 

* Put W = PA(i ). 

2. Determine all the cycles, induced in the representative spanning tree by 

the arcs (i,j) E W, one by one. Start tracing a cycle from node j if i 

is a refining node and from node i if j is a blending node and stop 

tracing a cycle as soon as a labeled arc is encountered. Label the arcs 

in these cycles in the following way. 

If i is a refining node, the arcs in the cycle induced by (i,j) in the 

representative spanning tree get the label [i,j]. 

_!! j is a blending node, the arcs in the cycle induced by (i,j) in the 

representative spanning tree get the label [-j,i]. 

3. List all basic refining and blending processes which are labeled, but 

not scanned. 

If this list is empty, then stop: the labeled processes are the only 

ones that may have a nonzero coefficient in the representation vector 

y (see Theorem 3.4.3). 

Otherwise let W denote the set of all nonrepresentative arcs of the 

labeled, but not scanned, refining and blending processes. Continue 

with step 2. 

* * REMARK 3.4.1. Note that, if a transportation process (i ,j) enters the 
* basis, which is incident to only one transportation tree (i.e., both i and 

* j belong to the same transportation tree), the same situation occurs as in 

pure networks. 

EXAMPLE 3.4.2. Figure 3.4.1 shows the labeled part of a representative 

spanning tree, assuming that transportation process (4,5) enters the basis. 

□ 
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[3,6] 

/-----,-------I 9 

[3,6] 

[4,5] 

8 

Figure 3.4.1. The labeled part of a representative spanning tree. 

RYAN & CHEN [1981] discuss how cycles induced in a spanning tree can be 

traced. 
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Let us reexamine the relations 3.4.3 and 3.4.4 which have to be solved in 

order to find the representation vector y. 

After completion of the first pass through step 3 of the labeling procedure 

vector yin 3.4.3 can easily be determined as in pure networks (see_ Section 

2. 4) • One may verify that y has entries unequal to zero in all the rows (and 

only in those rows) which correspond to the then labeled arcs. 

After completion of the labeling procedure the columns and rows of P can be 

partitioned symmetrically into four classes: 

I columns (rows) associated with labeled transportation processes, 

II columns (rows) associated with unlabeled transportation processes, 

III columns (rows) associated with labeled refining and blending processes, 

IV columns (rows) associated with unlabeled refining and blending 

processes. 

Then equation 3.4.4 can also be written as: 

3.4.5. 

I 

II 

III 

IV 

I II III IV 

THEOREM 3.4.3. All nonlabeled processes have a zero coefficient in the 

representation vector y of the entering column a. 
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PROOF. The basic observation which provides the proof is that Q4 and R4 in 

3.4.5 must be zero matrices. For suppose Q4 ~ O. Then, according to Remark 

3.3.8, there must be an unlabeled transportation arc which is contained in 

some cycle induced by a nonrepresentative arc of a labeled refining or 

blending process. However, this is impossible since all those cycles are 

traced and labeled in the labeling procedure. Consequently, Q4 = 0. 

Similarly it is proved that R4 = 0. 

Since R3 must be a square nonsingular matrix, it follows from equation 

3.4.5-IV that y4 O, and, consequently, from 3.4.5-II that y 2 = O. 

This completes the proof. 

System 3.4.5 reduces to (with y 2 - 0 and y 4 0): 

3.4.6. 

-1 Since R is kept stored, y3 immediately follows from: 

3.4.7. 

Furthermore, y 1 can be found from 

3.4.8. 

where Q1 can be determined by pure-network techniques (Section 2.4). 

A more appropriate way to determine y 1 is the following: let the column 

partitioning of B, compatible with 3.4.5, be 

3.4.9. 

Then y 1 can be determined from 

3.4.10. 

Since B1 and BIII are known, and B1 has a tree structure (B1 denotes the 

labeled transportation processes) this system can be solved by pure-network 

techniques. 

From the above discussion it is clear that R can be written in block 

triangular form: 

□ 



3.4.11. R • [RI l R3 

The inverse of R is given by: l _, 
3.4.12. R-1 = Rl RO J -1 , 

R3 

where 

3. 4.13. 

The following theorem plays an essential role in proving Theorem 6.2.3 in 

Chapter 6 and may also be important for implementations of the present 

Simplex algorithm (see Section 3.6). 
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THEOREM 3.4.4. The nwriber of basic refining and blending processes with a 

nonzero coefficient in the representation vector y, is zero iff the entering 

process is incident to only one transportation tree. 

PROOF. if. If the entering process is incident to only one transportation 

tree, no refining or blending process is labeled in the above described 

labeling procedure. According to Theorem 3.4.3, the number of basic 

refining and blending processes with a nonzero coefficient in the represen­

tation vector is zero. 

only if. Suppose the entering process is incident to at least two trans­

portation trees. Then obviously there must be at least one basic refining 

or blending process labeled after the first pass through step 3 of the 

labeling procedure. As noted before all entries in vector y which corre­

spond to these labeled processes are nonzero. In other words: y3 f 0. 

Then relation 3.4.7 implies that also y3 f 0, or: there is at least one 

basic refining or blending process which has a nonzero coefficient in 

vector y. □ 
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3.4.2. Determining the process which leaves the basis 

The process which leaves the basis is determined by means of the standard 

minimal ratio test (see Section 2.3). 

Lets be the pivot row. The elementary matrix E, required to update the 

basis inverse, can be calculated in the way described in Section 2.3. 

Note that E must have one of the following structures: 

1, 
. · 1 

3.4.14. E 

I 

2 '✓-
n11 
t 

1/: , /, 
n2 
~~ 

t 
s 

'· 
. 1 

II II.I IV 

I 

I II 

I III 

I IV 

in case a transportation process leaves the basis, and 

I 

I 

3.4.15. E 1. 
··1 

½ , ,: 
nl 

0 

~ '/,: 
n2 

~ 

t 
s 

1 ··., 
I 

in case a refining or blending process leaves the basis. 
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3,4.3. Basis change 

The leaving, say the s th, column of Bis replaced by the entering column. 

The main questions of this subsection are: what is the inverse of the working 

basis in the new situation and how can we determine a representative 

spanning tree for the new situation. 

Let B = TP denote the basis before the change, where Pis given in 3.4.5 
-1 with Q4 = 0 and R4 = 0. Write P as: 

I s1 s2 

-1 I s3 
3.4.16. p 

-1 
R1 RO 

-1 
R3 

where R0 is given by 3.4.13 and s 1, s 2 and s 3 by: 

3.4.17. 

Let B-l denote the basis inverse after the change. Then (see Section 2.3): 

3.4.18. --1 
B 

-1 
EB 

We want to write Bas: 

3.4.19. B = TP , 

where T describes a rooted representative spanning tree, such that column 

T . of T corresponds to column B . of B (j = 1, ••• ,m). 
"J "J 

A representative spanning tree for the new situation can be obtained by 

updating the previous representative spanning tree, using the labels 

attached to the arcs of the previous representative spanning tree. 

Reestablishing a representative spanning tree 

The entering process is either a transportation process (i*,j*) or a 

refining or blending process i*. 

Let the label attached to the leaving process be given by [i 1,j 1]. 

Put k = 1. 
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·* 1 • If I ik I = 1 , then 

if i* is a refining node make (ik,jk) the representative arc of 

·* process 1 , 

if i* is a blending node make (jk,-ik) the representative arc of 

·* process 1 • 

Stop: there is a representative spanning tree for the new situation. 

Otherwise, inspect the representative arc of process likl. Let this arc 

have label [ik+l'jk+l]. 

2. If ik > 0 make (ik,jk) the representative arc of refining process½:· 

Otherwise, make (jk,-ik) the representative arc of blending process likJ. 

Put k = k + 1 and goto 1 • 

EXAMPLE 3.4.5. Suppose that in Figure 3.4.1 arc (4,7) leaves the basis 

graph. The representative arc of process 8 becomes (7,8), that of process 3: 

(3,6). See Figure 3.4.2. 

3 l----~-----9 

8 

Figure 3.4.2. The reestablished part of the representative spanning tree. 

Considering a single basis change, the labeling procedure of Subsection 

3.3.1 and the reestablishing procedure of this subsection were developed in 

such a way, that the number of changes in the previous representative 

spanning tree, required to obtain a representative spanning tree for the 

new situation, would be as small as possible. 

THEOREM 3.4.6. The number of changes of representative arcs of the basic 

refining and blending processes, required to obtain a new representative 

spanning tree from the previous one, is minimal when the above described 

labeling and reestablishing procedures are used. 
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PROOF. We consider a single basis change. Regard the labeling procedure of 

Subsection 3.4.1. All processes which are labeled after the first pass 

through step 3 of the labeling procedure are said to have distance 0 (to 

the entering process). All processes which are labeled after the k th 

(k ~ 2) pass through step 3 of the labeling procedure, but not labeled 

after the (k - 1) th pass, are said to have distance k - 1. 

The reestablishing procedure is such that, if the leaving process has dis­

tance i (i = 0,1, ••• ), exactly i representative arcs of basic refining and 

blending processes are chosen different from the old situation. 

In order to prove the theorem it is sufficient to show that at least i 

replacements are required to accomplish a new representative spanning tree 

from the old one (i ~ 1). 

Consider the old representative spanning tree. Add the (c.q. an arbitrary 

representative) arc associated with the entering process. Leave out the 

(representative) arc associated with the leaving process. 

This graph clearly contains a cycle in which all labeled arcs have dis­

tance 0. 

In order to achieve a representative spanning tree in the new situation 

obviously a representative arc, currently contained in this cycle, has to 

be chosen in a different way. In doing this, a new cycle arises in which 

all labeled arcs have distance 0 or 1. Again this cycle must be broken, 

i.e., one of the representative arcs in this cycle must be chosen in a 

different way, leading to a new cycle in which all labeled arcs have dis­

tance 0 , 1 or 2 • 

By repeating this process it is seen that at least i replacements are 

required, which completes the remaining part of this proof. 

Now that we have a new representative spanning tree, Tis 3.4.19 is known 

and P-l can be evaluated from (see 3.4.18 and 3.4.19): 

3.4.20. 

It is assumed that the s th column of matrix~ corresponds to the (repre­

sentative) arc of the entering process. 

Matrix (T- 1 ~) has a simple structure. Using the same partitioning as for P 
-1 ~ 

in 3. 4. 5 the product T T can be written as: 

□ 
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I II III IV 

, . 
. 1 II I 

II j _ . ~ 
II . 1 

I II 

3.4.21. ~ ·-, 1 

1 ... , III 
~--., 

I IV 

where the shaded columns, denote cycle vectors (see Section 2. 4) • 

In column set I there is one cycle vector in positions if a transportation 

process leaves the basis. There is no cycle vector in this set in case a 

refining or blending process leaves the basis. 

Column set III has zero or more cycle vectors in case a transportation 

process leaves the basis and one or more if a refining or blending process 

leaves the basis. 

T-l T has at least one cycle vector (in position s); if there is more ''than 

one cycle vector this is caused by the changed representative arcs. 

-1 A 

REMARK 3.4. 7. The s th row of T Tis a unit vector (or a· negative unit 

vector). This fact follows immediately from the way labeling and reestab­

lishing of a representative spanning tree is performed. 

For ease of notation denote T-l T in 3. 4. 21 by: 

[' 
T2 

-1 A 

I 
3.4.22. T T= 

T3 T4 J 
Note that post-multiplying EP-1 by T.,. 1 T modifies only a few columns of 

EP- 1• The modified columns can be obtained by addition and subtraction of 

columns of EP-l since T-1 T is a matrix exclusively consisting of elements 

equal to O or ± 1 • 
·-1 

Using 3.4.14-3.4.17 and 3.4.22 the expression for P in 3.4.20 can be 

evaluated. 

D 
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Four cases can be distinguished: 

1. A refining or blending process enters the basis, a refining or blending 

process leaves the basis. 

2. A transportation process enters the basis, a refining or blending process 

leaves the basis. 

3. A transportation process enters the basis, a transportation process 

leaves the basis. 

4. A refining or blending process enters the basis, a transportation process 

leaves the basis. 

Cases 1 and 2. In these cases a refining or blending process leaves the 

basis. The matrix product in expression 3.4.20 becomes: 

I El I s1 s2 I T2 

~-1 I I s3 I 
3.4.23. p 

-1 
E2 Rl RO T4 

I -1 
R3 I 

where the first matrix after the equality sign denotes matrix E given in 

3.4.15. 

Consequently: 

I 

3.4.24. 
I 

s2+E1Ro 

s3 

E2RO 

-1 
R3 

In case 1 the dimension of the working basis does not change and the new 

working basis inverse R-l can be written as: 

3.4.25. 

with 
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3.4.26. --1 
Rl 

-1 
E2 Rl T 4 

3.4.27. RO E2 RO 

3.4.28. --1 -1 
R3 R3 . 

In case 2 the dimension of the working basis is reduced by one, because the 

s th column of P-l is the s th unit vector (cf. 3.3.11 and 3.3.12). 
--1 By dropping the s- (m-q) th column and row of R in 3.4.25 the new working 

basis inverse has been obtained. 

Cases 3 and 4. In these cases a transportation process leaves the basis. 

Expression 3.4.20 becomes: 

El I s1 s2 Tl T2 

p-1 
I I s3 I 

3.4.29. 
-1 

E2 I Rl RO T3 T4 

I -1 
R3 I 

where the first matrix after the equality sign denotes matrix E in 3.4.14. 

This leads to: 

3.4.30. 
--1 p 

I 

In case 3 the s th column of P-l is again the s th unit vector. The new 

working basis inverse becomes: 

3.4.31. 

with 

3.4.32. --1 
Rl E2T2 + 

-1 
(E2S1 + R1 ) T 4 

-1 
= E2T2 + (I -E2Q1)R1 T4 

3.4.33. RO E2S2 + R = 0 (I-E2Ql)RO 
-1 

- E2 Q2 R3 

3.4.34. --1 
R3 

-1 
R3 



In case 4 the dimension of the working basis increases by one. The new 

working basis inverse is given by: 

3.4.3~. 

A-1 where R is given by 3.4.31, 

* A-1 
Pss is the element in the s th column and s-th row of P in 3.4.30, 

* is the part in column regions III and of the s th row 
A-1 

Ps• r.v of P , 

* is the in row regions III and r.v the s ·th column 
A-1 

P.s part of of P • 
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* Observe from 3.4.30 that the part of vector p•s in row region IV is a zero 

vector. 

* * * From the expressions in 3.4.30, pss' ps• and p•s can be determined, taking 

advantage of the facts that 

- T1, T2, T3 and T4 contain only elements 0 and ± 1. 

- T2 is possibly a zero matrix and T4 a unit matrix (this is the case if no 

representative arcs are replaced by others in the reestablishing 

procedure). 

- The s th row of [T1 T2] is a (negative) unit vector. 

REMARK 3.4.8. In cases 1 and 2 we do not need matrix Qin 3.3.12 in order 

to determine the new working basis inverse. 

It can easily be verified that in'cases 3 and 4 we only need the s ·th row 

of Qin 3.3.12. As noted before, this can be done by means of pure-network 

techniques. 

A special way to find the s th row of Q (s = 2, ••• ,m-q), or. in other words 

the elements Psj' j = m-q+1, ••• ,m, of P (see 3.3.12) is the following. 

Suppose the j th column of P describes the refining process k = ij. Then 

P•j can be written as (see 3.3.16): 

* where a•ki is the vector representation of arc (k,i) as in pure networks 

(see Section 2.4). 

We see that the s th element of P.j can be considered as a linear combination 
-1 * of the s th elements of the cycle vectors T a•ki' i € A(k) \ {r}. 
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Suppose that arc (i 1,j 1) corresponds to the s th column of T (the matrix 

representation of the rooted representative spanning tree). 

An arc (k,i), i E A(k) \{r}, induces the cycle Cki in the representative 

spanning tree. From the theory of pure networks we know that the s ·th 
-1 * element of T a•ki is 

+1 if arc (i 1,j 1) is a backward arc in Cki' 

-1 if arc (i 1,j 1) is a forward arc in cki' 

0 otherwise. 

We can determine whether arc (i 1,j 1) is a forward or backward arc in Cki in 

the following way: 

Leave out the arc (i 1,j 1) from the representative spanning tree. 

Then two trees arise, say T1 with i 1 E T1 and T2 with j 1 E T2• Determine to 

which of these two trees each node i EN belongs. 

The reader may verify that the following is true: 

if k E T1 and i E T2 then (i1,j 1) is a backward arc in ~i' 

if k E T2 and i E T1 then (i 1,j 1) is a forward arc in Cki' 

otherwise (i 1,j 1) is not contained in Cki" 

Based on these observations we state an algorithmic way to determine element 

psj' where column P.j corresponds to refining process k 

If k E T1 

then do for all nodes v E A (kl \ {r} 

if v E T2 ~ Psj = Psj + akv 
If k E T2 

~ do for all nodes v E A(k) \ {r} 

if v E T1 then p . 
-- SJ 

In an completely analogous way p . can be determined if k 
SJ 

blending process. 

The above discussion reveals several important aspects: 

ij denotes a 

It is sufficient to maintain a working basis of the size equal to the 

number of basic refining and blending processes. 

- After each basis change the working basis inverse has a block triangular 

form with two blocks on the main diagonal. 
-1 

- Both s3 and R3 remain what they are in performing the basis change (see 

□ 

3.4.24 and 3.4.30). This fact will be exploited in determining the Simplex 

multipliers. 
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3.4.4. Finding the Simplex multipliers 

Assume we have a basis B, which can be written as in 3.3.11: 

3.4.36. B = TP, 

with P-l as in 3.4.16: 

I II III IV 

I sl s2 I 

p-1 
I s3 II 

3.4.37. 
-1 

Rl RO III 

-1 
R3 IV 

The Simplex multipliers can be determined from (cf. 2.3.12): 

3.4.38. 1T 1 B = c~ 

Define 

3.4.39. 6 1 := 1T 1 T, 

then, according to 3.4.36 and 3.4.38, 6 can be found from: 

3.4.40. 
-1 

6 1 = c~ p • 

After a partitioning of 6 and cB,,compatible with the one of P-l in 3.4.37, 

3.4.40 can be written as 

3.4.41. [6' 6' 6' 6'] 
1 2 3 4 

[c' c' c' c'] 
1 2 3 4. 

which reduces to: 

3.4.42. 6 I 
1 

c' 
1 

3.4.43. 6 I 
2 c' 2 

3.4.44. 6' Ci Sl 
-1 

3 + C3 Rl 

I 

3.4.45. 6 I Ci S2 + c2 s3 + C3 RO + 
-1 

4 c4 R3 

sl s2 

I s3 

-1 
Rl RO 

-1 
R3 
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Using 3.4.17 83 and 84 can also be written as: 

3.4.46. 

and 

3.4.47. 

8' 
3 

The matrices 21, 22 and 23 can be found using pure-network techniques 

(Section 2.4). 

After determination of 8, using 3.4.42, 3.4.43, 3.4.46 and 3.4.47, u in 

3.4.39 can also be evaluated by means of pure-network techniques. 

We conclude this subsection by pointing out that, after each basis change, 

84 in 3.3.45 can be found in an alternative way. 
•-1 Consider the basis B = TP after the basis change and assume P is parti-

tioned in the way obtained in the previous section. 

We must solve: 

3.4.48. 

or in the same way as before, we first determine 

3.4.49. 

and secondly solve 

3.4.50. 

• ·-1 
Let 8 and e8 be partitioned compatible with P • 

Consider the two possible cases: 

(a) A refining or blending process has left the basis. Then e1 c 1, 

e2 = c2, e3 differs in one element from c3, e4 = c4• 

According to 3.4.24, 04 can be written as: 

3.4.51. 9' 4 

Subtraction of 3.4.51 and 3.4.45 qives: 

3.4.52. 
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Considering the structure of E1 , E2 , c 3 and c 3 the right-hand side of 

3.4.52 denotes the product of a scalar with the s- (m-q) th row of R0 . 

(bl A transportation process has left the basis. Then c 1 differs in one 

element from c 1 , c 2 = c 2 , c 3 c3 , and c4 = c4 • 

According to 3.4.30, @4 can be written as: 

3.4.53. c1(E1S2) + c2S3 + c3(E2S2+Ro) + c4R;1 

-1 
= cl El s2 + c2S3 + C3 E2 s2 + C3 Ro + c4 R3 

Subtraction of 3.4.53 and 3.4.45 gives: 

3.4.54. scalar x the s th row of s2 • 

In order to determine the s-th row of s 2 we see from the fact that 

(formula 3.4.17): 

3.4.55. 

we only need the s th row of Q. 

The above discussion makes clear that e4 can be determined in the following 

way: 

Given TI determine 04 from 3.4.39 - another possibility is of course to 

store [0 3 04] in every iteration - and §4 is found from 3.4.52 or 3.4.54. 

Note that the only parts of Q, required to determine the Simplex multipliers, 

are Q1 in order to evaluate 03 in 3.4.46 and the s th row of Qin case a 

transportation process has left the basis in the basis change. 

3.4.5. Calculating the reduced costs 

Assuming that the current Simplex multipliers are denoted by TI, the reduced 

costs can be found from: 

3.4.56. c .. - TI• + TI • - c .. (i, j) E TP 
l.J ]. J l.J 

3.4.57. C, - TI. + I a .. TI, - Ci i E RP 
]. ]. 

jEA(i) l.J J 

3.4.58. c. TI• - I aji Tij - c. i E BP 
]. ]. 

jEB(i) 
]. 
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Using the standard rules of the Simplex algorithm (Section 2.3), it is 

determined whether the current solution is optimal. If not, a nonbasic 

process is selected to enter the basis. 

3.4.6. Initialization 

An easy way of finding a starting basis for pure network problems is 

described in Section 2.4. This starting procedure can also be applied to 

problem 3.2.14-3.2.16. The starting basis is then simply a rooted spanning 

tree with transportation arcs only. Matrix Pin 3.3.12 is the identity 

matrix and the working basis has size zero. 

3. 5. Ano-theJL view on pUll.e. pMc.U-6ing ne.:fwOJtk.-6 

In the previous section a specification of the primal Simplex algorithm has 

been developed, in which the basis structure, in particular the representa­

tive spanning tree, is exploited. For each process i E BAP - the set of 

basic refining and blending processes - a representative arc was chosen 

from PA(i), in such a way that the arcs in the transportation trees plus 

these representative arcs form the arc set of a spanning tree in G(N,A). 

In this section we discuss an alternative way to regard and solve pure 

processing network problems. Inst~ad of choosing a representative arc for 

each process i E BAP we here discuss the possibility to choose a represen­

tative node for each process i E BAP in a special way, namely, we can select 

a node from each set N(i), i E BAP, in such a way that these nodes belong 

to different transportation trees. This way of looking at pure processing 

networks gives rise to several modifications in the Simplex algorithm of 

Section 3.4. These modifications will be discussed. 

Assume again that a basis Bis given by: 

3.5.1. 

where BT is an m x (m-q-1) matrix denoting the structural basic transporta­

tion processes, and BP is an m x q matrix representing the basic refining 

and blending processes. 

Suppose that the slack column - e. in 3. 5. 1 has its nonzero entry in a row io 
which corresponds to a node in transportation tree T1• 
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Lemma 3.3.5 says that every subset SP of the basic refining and blending 

processes is incident to at least lspl transportation trees from the set 

{T2 , ••• ,Tq+l}. Recall that this is essentially HALL's condition (see Section 

2.5). Considering the definition of T(SP) in the previous section, HALL's 

theorem (Theorem 2.5.8) implies the following lemma. 

LEMMA 3.5.1. For each process i E BAP a node can be chosen from the set 

N(i) in such a way that these nodes belong to different transportation 

trees from the set {T2 , •.• ,Tq+1}. 

Suppose that for each process i E BAP a representative node is chosen from 

N(i) in the way of Lemma 3.5.1. Attach a self-loop to each of these nodes. 

These self-loops can be considered as the root-arcs of the transportation 

trees T2 , ••• ,Tq+l" Then the self-loop (i0 ,i0), the basic transportation 

arcs associated with BT in 3.5.1, and the self-loops attached to the 

representative nodes of the basic refining and blending processes form the 

arc set of a "representative spanning forest of rooted transportation trees" 

(abbreviated to representative forest in the sequel). 

In matrix terms the self-loops are represented by negative unit columns. 

It is quite clear that we can use a representative forest instead of a 

representative spanning tree in the Simplex PRON procedure of the previous 

section. 

EXAMPLE 3.5.2. In the example of Figure 3.3.1 nodes 4 and 5 can be thought 

to represent the processes 2 and 3, respectively. The corresponding 

representative forest is drawn in Figure 3.5.1. 

2 

GX:) 

©:) 

Figure 3.5.1. A representative forest for the basis graph in Figure 3.3.1. 
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Again the representative forest is not necessarily unique. 

Let T be the matrix representation of the representative forest such that 

each column T. of T corresponds to column B . of Bin 3.5.1, j = 1, •.• ,m. 
·J '] 

Obviously Tis a square nonsingular matrix with the last q columns a set of 

negative unit vectors. 

As in Section 3.3 we can write 

3.5.2. B = TP , 

with 

3.5.3. p 

where 

I is the identity matrix of order (m - q), 

Q is an (m-q) x q matrix, and 

Risa square nonsingular matrix of order q. 

For matrix Bin 3.3.10 formula 3.5.2 specifies to: 

11 12 13 2 4 

1 -1 -1 -1 

2 1 -1 

3.5.4. 3 1 -1 

4 (l24 (l34 
5 (l25 (l35 

11 12 13 44 55 

-1 -1 -1 1 

1 1 

1 1 

-1 

-1 

1 1 

-1 

-1 

-Cl24 -(l34 

-a25 -a35 

REMARK 3.5.3. Consider a column P.j (m-::-<i < j !, m) of P and column B,j of B 

which corresponds to process k = ij. According to 3.5.2: 

3.5.5. 

If B,j denotes the refining process k ij we can write: 
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3.5.6. 

Consequently, using 3.5.5 and 3.5.6, 

3.5.7. p . 
•J 

Similarly, if B•j denotes the blending process k 

written as: 

3.5.8. p . 
'J 

ij, column P•j can be 

-1 -1 
The vectors T ek and T e R, in 3. 5. 7 and 3. 5. 8 describe either a negative 

unit vector or a more general root-path vector (see Section 2.4). 

Consequently, each column P,j (m-q < j ~ m) can be considered as a linear 

combination of the j th unit vector (which results from the representative 

node of process i.) and the root-path vectors which describe the path from 
J 

a nonrepresentative node R, E N(i.) to the root of the transportation tree 
J 

to which node R, belongs. 

In the example presented, column P, 4 can be written as: 

-1 

1 

-1 

-1 

This observation will again be used in the Simplex algorithm. 

REMARK 3. 5. 4. If the first column of B and T is - e 1 (i0 = 1) , then one 

easily proves that the first row of Qin 3.5.3 is not a row of zeros (cf. 

Remark 3.3.9). 

As in Section 3.3 we can introduce an aggregated graph and prove several 

important properties of matrix R in 3.5.3. 

D 

D 
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ASSUMPTION 3.5.5. The transportation trees (# T1) are numbered in such a 

way that the representative node of process i. (associated with column B . 
J ·J 

in B, j = m-q+1, ••• ,m) belongs to transportation tree T. ( l). 
J- m-q-

The aggregated graph 

The aggregated graph, associated with basis Bin 3.5.1, is the directed 

* * graph G(N ,A), with 

* N = {2, •.• ,q+1}; node i corresponds to transportation tree Ti, and 

* * A as follows. The self-loops (i,i), i = 2, .•• ,q+1, belong to A. Further-

more, if the nonrepresentative nodes of process i. belong to transportation 
J 

trees Tj 1~ ••. ,Tj (# T1), then also the arcs (k,j 1), ••• ,(k,js) with 
s * k = j - (m-q-1) belong to A • 

This statement holds for all processes ij, j m-q+1, ••• ,m. 

Similarly as in Section 3.4 we introduce them x q matrix V = [vij] (note 

that in this section also the transportation tree T1 has been taken into 

account) , with 

3.5.9. 

0 

if node i belongs to transportation tree Tj+l' 

(i = 1, ... ,m; j = 1, ..• ,q) , 

otherwise. 

Suppose Bis written as in 3.5.1, then the product V'B satisfies: 

3.5.10. V'B = [O 0 

+1-+ +m-q-,1 -++q-+ 

* * where R :rij] is a q x q matrix. * 
Note that R in 3.5.10 is identical to the last q rows of R in 3.3.21 if 

in Section 3.3 the transportation trees are numbered in the same way as 

indicated in Assumption 3.5.5. Consequently, we can immediately state the 

* following three facts for matrix R in 3.5.10 (cf. the properties of matrix 

* R in Section 3.3): 

1. R* is unique, given the basis B (considering Assumption 3.5.5 no row 

permutations are possible). 

* * 2. An element ri. of R is unequal to zero iff the process associated with 
J * the j-th column of R is incident to transportation tree Ti+l· Hence, 

each column of R contains as many elements unequal to zero as the number 
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of transportation trees in the set {T2 , ••• ,Tq+l} to which the associated 

refining or blending process is incident. 

* 3. The main diagonal of R is zero-free. This follows immediately from 

point 2 and Assumption 3.5.5. 

** If we define the matrix R 

** * 3.5.11. r .. 
l.J 

1 , if r .. -f. 0 
l.J 

0 I 0 

then one can easily observe from the definition of the aggregated graph, 
** that matrix R is the adjacency matrix of the aggregated graph. 

* For simplicity we will say that R describes the adjacency structure of the 

aggregated graph. 

Properties of matrix R 

THEOREM 3.5.6. For matrices R in 3.5.3 and R* in 3.5.10 the following 

relation holds: 

3.5.12. * R = - R • 

PROOF. We can write 

3.5.13. V'T = [O 

(see the definition 

Since p is given as 

3.5.14. V'TP = [O 

the product V'T as: 

0 -I] 

of Vin 3.5.9 and Assumption 

in 3.5.3 we also have: 

0 -R] 

Considering 3.5.2, 3.5.10 and 3.5.14: 

* R = - R • 

3.5.5). 

Hence the above discussion on the properties of matrix R* makes clear that 

the following theorems are valid. 

THEOREM 3.5.7. Matrix R in 3.5.3 is unique. 

THEOREM 3.5.8. An element r .. of R is unequal to zero iff the proces as­
l.J 

sociated with the j-th column of R is incident to transportation tree Ti+l. 

□ 
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This theorem implies that matrix R is at least as sparse as matrix BP in 

3.5.1 in the following sense: each column of R does not contain more 

elements unequal to zero than its corresponding column in BP. 

In the next section we discuss the possibility to permute matrix R to a 

block triangular matrix with irreducible blocks on the main diagonal. In 

this respect the following theorems are important: 

THEOREM 3.5.9. The main diagonal of R is zero-free. 

THEOREM 3.5.10. Matrix R describes the adjacency structure of the aggregated 

graph. 

Thus far we have discussed that we can describe the basis structure in a 

pure processing network in a somewhat different way than in Section 3.3. 

The present specification of the basis structure gives rise to a specifica­

tion of the primal Simplex algorithm, which is different frbm the one in 

Section 3.4 in several aspects. What has been said in Section 3.4 remains 

valid except for the modifications discussed next. 

Modifications of the Simplex algorithm in Section 3.4 

A. Instead of a representative spanning tree a representative forest is 

kept stored in some convenien~ way. 

B. In finding the representation y of the entering column a in terms of the 

basis B (Subsection 3.4.1), the labeling procedure becomes slightly 

different. 

Let the set of arcs on the path from a node j EN to the root of the 

transportation tree to which node j belongs, plus the self-loop attached 

to this root, be denoted by P .• 
J 

Now a basic refining or blending process i is considered labeled when-

ever the self-loop attached to the representative node of i has a label. 

A basic refining or blending process i is considered scanned if all arcs 

on the paths Pj, j E N(i), are labeled. 
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Labeling procedure 

* * 1 • .!f the entering process is a transportation process, say (i ,j ), then 
* * * * label all arcs in Pi* by [i ,i J and label all arcs in Pj* by [i ,j ], 

provided they do not have yet a label. 
. * If the entering process is a refining or blending process, say 1 , then 

determine the paths P. for all j E N(i*), one by one. Stop tracing 
J 

a path as soon as a labeled arc is encountered. Label the arcs in Pj 

* by [i ,j]. 

If the entering process is incident to only one transportation tree, then 

stop. 

2. List all basic refining and blending processes which are labeled, but 

not scanned. 

If this list is empty, then stop. 

Otherwise, let W denote the set of all nonrepresentative nodes of the 

labeled, but not scanned, refining and blending processes. 

3. Determine the paths Pj for all nodes j E w, one by one. Stop tracing a 

path as soon as a labeled arc is encountered. Whenever node j belongs 

to N(i), label the arcs in Pj by [i,j]. 

Continue with step 2. 

EXAMPLE 3.5.11. Figure 3.5.2 shows the labeled part of a representative 

forest, assuming that transportat~on process (4,5) enters the basis. The 

situation in Figure 3.5.2 corresponds to the one in Figure 3.4.1. It is 

assumed that node 5 is the representative node of process 3, node 6 is the 

representative node of process 8. 

[4,4] 
[3,3] [3,6] 

@:) 

8 

Figure 3.5.2. The labeled part of a representative forest 
in pure processing networks. 
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REMARK 3.5.12. Note that possibly some more arcs are labeled than in the 

labeling procedure of Subsection 3.4.1. To be precise: let the set of 

labeled processes which would arise in the labeling procedure of Subsection 

3.4.1 be given by L. 

If the labeled processes in BAP contain some process i for which some node 

j E N(i) belongs to T1, then the labeled part of the representative forest 

consists of L plus all arcs on the path from the root of T1 to L (including 

the root-arc of T1). Compare in this respect Figure 3.4.1 and Figure 3.5.2. 

If the entering process is:incident to only one transportation tree, say TR,, 

then the labeled part of the representative forest consists of L plus all 

arcs on the path from the root of TR, to L (including the root-arc of TR,). 

In both cases we may just as well consider the arcs on such paths as not 

being labeled (cf. Subsection 3.4.1 and Section 2.4, Figure 2.4.2). 

Theorems 3.4.3 and 3.4.4 also hold in the present view on pure processing 

networks. 

C. In the basis change (cf. Subsection 3.4.3) a representative forest is 

reestablished as follows. 

Reestablishing a representative forest 

Let the label attached to the leaviijg process be given by [i1,j 1]. The 

entering process is either a transportation process, say (i*,j*), or a 
. * refining or blending process, say i. Put k = 1. 

1. g ik = i * then 

□ 

if i* is a refining or blending process, take jk as the representative 

node of process i*. 

Stop. There is a representative forest for the new situation. 

Otherwise (ik ~ i*), let the self-loop attached to the representative 

node of process ik have label [ik+l'jk+l]. 

Make jk the representative node of process ik. 

Put k = k + 1 and goto 1. 

EXAMPLE 3.5.13. Suppose that in Figure 3.5.2 arc (4,7) leaves the basis 

graph. The representative node of process 8 becomes node 7, that of 

process 3: node 6. See Figure 3.5.3. 
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3 5 1----------< 9 

CG 

Figure 3.5.3. The reestablished part of the representative forest. 

Theorem 3.4.6 holds in the present view on pure processing networks too. 
-1 -We note that the shaded columns in the matrix product T T in 3 • 4. 21 now 

denote root-path vectors. The reader may verify that matrices T3 and T4 in 

3.4.22 in general have a somewhat easier shape than in the solution 

procedure of Section 3.4. For instance, if a transportation process leaves 

the basis, T4 is a permutation matrix. 

Hence, the expressions in which T3 and T4 appear (formulae 3.4.26, 3.4.30 

and 3.4.32) can usually be evaluated in a somewhat easier way than in the 

solution procedure of Section 3.4. 

The statement in Remark 3.4.8 on determining the s th row of Qin 3.3.12 

can easily be adapted. 

A comparison of the Simplex PRON°procedures of Sections 3.4 and 3.5 will be 

given in the next section. 

3 • 6 • Re.mMIU> 

In this section some remarks are made with respect to pure processing 

network problems. 

Implementation considerations 

The development of efficient implementations of the Simplex PRON procedures, 

described in the previous two sections, is a field of future study. He.re 

we only want to point out several aspects that may be important in this 

respect. 
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In the solution procedure of Section 3.4 (PRON 1) both the rooted represen-
-1 ---

tative spanning tree and matrix R play an important role. 

The rooted representative spanning tree, which has the matrix representation 

Tin 3.3.11, is used in: 

1. Solving equations of the form 

* Tx = b , 

as in 3.4.3, 3.4.10, or of the form 

1r 1T = 6 1 

as in 3.4.39. 

2. Determining the processes which take part in the representation of the 

entering process in terms of the basis (Subsection 3.4.1). The labeling 

procedure described in that section can be seen as tracing a number of 

cycles induced in this tree. 

3. Finding a representative spanning tree for the situation after a basis 

change. This process can be regarded as making and breaking cycles a 

number of times consecutively. 

4. Updating the working basis inverse (see Subsection 3.4.3). 

Such operations also arise in solving pure network flow problems (Section· 

2.4) or LP-problems with an embedded pure network structure, e.g. GLOVER & 

KLINGMAN [1981]. Therefore the techniques developed for those problems can 

be applied here. Relevant references are given in Subsection 1.1.1. 

Matrix R-l can be stored explicitly, but, if its size is large, a product 

form or elimination form would be more appropriate. A product form can be 

developed by the same kind of reasoning as in HELGASON & KENNINGTON [1977]. 

GLOVER & KLINGMAN [1981] use a product form of the working basis inverse in 

their Simplex SON procedure. 

About the solution procedure of Section 3.5 (PRON 2) similar things could 

be said. 

Both in PRON 1 and in PRON 2 an important question is how to choose the 

process which enters the basis (i.e., selecting the pivot column). 

It is worthwhile to test whether (and if so, how) priorities should be 

given to the following four possible cases (cf. Theorem 3.4.4). 



1. A transportation process, incident to exactly one transportation tree 

enters the basis. 

Characteristics: 

the representation vector yin 3.4.1 is as in the pure network 

situation; 
-1 

- R does not change, as can be verified by inspection of 3.4.30, 

considering the fact that E2 = 0, T2 = 0 and T4 = I. 

2. A transportation process, incident to two transportation trees enters 

the basis. 

Characteristics: 
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- at least one basic refining or blending process has a nonzero coeffi­

cient in the representation vector y; 
-1 -1 

- R changes. The size of R reduces by one or remains the same. 

3. A refining or blending process, incident to exactly one transportation 

tree enters the basis. 

Characteristics: 

- the representation vector y can be found by pure-network techniques 

(Section 2.4); 

the size of R-l increases by one. R-l becomes as in 3.4.35 with R-l 

unchanged and P.s = 0. This follows from 3.4.30, considering that 

E2 = o, T2 = o, T3 = 0 and T4 = I. 

4. A refining or blending process,. incident to at least two transportation 

trees enters the basis. 

Characteristics: 

- at least one basic refining or blending process has a nonzero coeffi­

cient in the representation vector y; 
-1 1 - R changes. The size of R- remains the same or increases by one. 

By recording in each iteration to which transportation tree each node in 

the network belongs, the number of transportation trees, to which a 

certain process is incident, can easily be determined. 

A comparison of PRON 1 and PRON 2 

Although PRON 2 (Section 3.5) is perhaps less intuitive than PRON 1 

(Section 3.4), PRON 2 may be preferred because of several reasons: 

1. Matrix R, the working basis, is unique in PRON 2 (Theorem 3.5.7), 

independent of the specific choice of the representative nodes. 
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In PRON 1, matrix R depends on the specific choice of the representative 

arcs of the basic refining and blending processes (see 3.3.25). 

2. In PRON 2 matrix R is at least as sparse as matrix BP in 3.5.1 in the 

sense that the number of nonzero elements in each column of R is not 

greater than the number of nonzeros in the corresponding column in BP. 

In PRON 1 this need not be (and in many instances is not) the case. 

3. The ideas of PRON 2 are easier generalized to generalized processing 

network problems than those of PRON 1 (see Section 4.3). 

4. An other advantage of PRON 2 over PRON 1 is explained in the subsequent 

discussion on block triangularization of matrix R. 

In our opinion the pure processing network structure is exploited as far as 

possible in the Simplex PRON procedures of Sections 3.4 and 3.5. 

However, in many applications the working basis R will,be a sparse matrix 

and the question arises whether it is possible to reorder R in some 

desirable form using sparsity considerations. Some of these forms are 

discussed in DUFF [1977a]. 

In the sequel the possibility to block triangularize R (and consequently 

R- 1) further than the block triangular form with two blocks on the main 

diagonal, obtained from the labeling procedure in Subsection 3.4.1, is 

pointed out. 

Block triangularization of the working basis R 

Consider an arbitrary square nonsingular matrix A. The essential question 

in block triangularizing A is to find permutation matrices P1 and P2 such 

that: 

3.6.1. 

~ 

where Aii (i = 1, ••• ,N) are square irreducible matrices. 

Usually P1 and P2 are determined in two stages (see DUFF [1977a]): 

(1) Determine a row permutation matrix P3 such that A1 := P 3 A is a 

matrix with a zero-free diagonal. 



(2) Find a permutation matrix P 4 such that P 4 A1 P4 has the desired form 

of 3.6.1, Such a permutation is called a symmetric permutation. 

After performing these two steps, we have for P1 and P2 in 3.6.1: P1 

and P2 = P4. 
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The problem under (1) is known under several names, a.o. "finding a maximal 

transversal" or "finding a set of distinct representatives" (HALL [1935]). 

GUSTAVSON [1976] and DUFF [1981] present algorithms, based on HALL's ideas, 

which require O(nT) computations in the worst case, where n is the order of 

matrix A and T the number of nonzeros in A. 
Well-known algorithms to solve a problem as under (2) are those of SARGENT 

& WESTENBERG [1964] and TARJAN [1972] (see also GUSTAVSON [1976], DUFF & 

REID [1978a, 1978b]). TARJAN's algorithm appears to be efficient in practice 

and also has the lowest computational complexity of all algorithms known to 

solve problems as under (2), namely O(n + T). 

TARJAN's algorithm is based on the following ideas: Associate with matrix 

A= [a .. J a directed graph. Each row i of A corresponds to a node i in this 
1J 

graph. Arc (i,j) is present in this graph iff aij # 0. So matrix A is 

essentially the adjacency matrix of this graph. 

Using depth-first search, the so-called strong components (see DUFF & REID 

[1978a]) of this graph are detected, which correspond to the irreducible 

blocks Aii (i = 1, ••• ,N) in 3.6.1. 

This two-stage approach is justified by the fact that the obtained block 

triangular form P 4 P3 A P4 is uniq1le in the sense that the number of blocks 

and the rows and columns lying in each block is fixed, independent of the 

particular choice for P3 • This is proved in HOWELL [1976] and DUFF [1977b]. 

If a matrix A has one or more zero elements on the main diagonal, it may 

very well be that there exists no symmetric permutation which leads to a 

block triangular form of A with irreducible blocks on the main diagonal 

(see HOWELL's example [1976]). 

These statements give new insight in the Simplex PRON procedures discussed 

in Sections 3.4 and 3.5. By choosing the representative arcs (Section 3.4) 

or the representative nodes (Section 3.5) in a special way, it has been 

accomplished that the main diagonal of the working basis R is always zero­

free (see Theorems 3.3.10 and 3.5.9). Conclusion: in blocktriangularizing R 

only the second stage is required. Applying TARJAN's algorithm to matrix R 

implies that the graph, of which R describes the adjacency structure, is 

available. In PRON 2 this is implicitly the case if for each basic refining 
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and blending process i it is known to which transportation trees the nodes 

in N(i) belong. Recall that R is in fact the adjacency matrix of the 

aggregated graph (Theorem 3.5.10). In PRON 1 the structure of R is not 

directly available (the elements in each column of Rare found by tracing 

the nonrepresentative cycles of the corresponding process). So here is 

another argument in favor of PRON 2. 

It is suggested to block triangularize R in every iteration of the Simplex 

algorithm. Since the nonlabeled part (R31 in 3.4.24 or 3.4.30) remains 

unchanged in the basis change, only the labeled part (R~ 1) has to be 

updated. 

The advantages ofa block triangularized version of R-l are obvious: reduc­

tion of storage requirements and computation time (see for further discus­

sion DUFF [1977a]). 

Is it necessary to use a working basis (inverse)? 

In the algorithms of Sections 3.4 and 3.5 it is assumed that a working basis 

inverse R-l is used. Is it necessary to do this or is it also possible to 

work without R-l? This question is inspired by the situation in pure and 

generalized networks where all the information required is obtained by 

manipulating on the basis graph (in generalized networks some algebraic 

work has to be done but this only comes up to solving a number of single 

equations with one unknown). The ~ain advantage of such an approach is that 

it is possible to work with the original data, thus reducing (cumulative) 

round-off errors and storage requirements. 

The answer to the question posed primarily depends on whether a basic 

system as Bx= b or ~•B = c~ can be solved, using the structure of the 

basis graph in such a way that it does not require too much work. The hard 

part in solving Bx= bis, considering the analysis in Sections 3.3 and 3,5, 

ultimately: solve a system Rx= b* (where R is given in 3.3.12 or 3.5.3). 

Although we tried to work out several intuitive ideas no satisfactory 

results were obtained. Considering the facts known about matrix Rand after 

reading Chapter 5 this should not cause too much astonishment. 



Degeneracy 

Degenerate steps in the Simplex algorithm are likely to occur frequently 

and theoretically the possibility of cycling exists. Of course techniques 

known for general LP problems (perturbation, lexicographic ordering, 

BLAND's [1977] rule) can be applied to prevent cycling. An interesting 

subject for further study is to investigate whether finite modifications 

can be developed using similar ideas as in CUNNINGHAM [1976, 1979], ELAM, 

GLOVER & KLINGMAN [1979] and ADOLPHSON [1980]. 

97 
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4. GENERALIZEV PROCESSING NETWORKS 

4.1. In;tJc.oduc.tion 

In the previous chapter networks have been considered in which flow is 

conserved. However, in practice, there are many situations in which flow is 

not conserved due to leakage, damage, conversion losses, growth, etc. 

Sometimes is is natural to say that the decrease or increase of flow takes 

place on an arc, sometimes it is more appropriate to state that the 

decrease or increase takes place in a node. For the purpose of describing a 

mathematical framework for such networks it is sufficient to regard only 

one of these possibilities. Here we have chosen for a description in which 

flow is conserved in nodes, but possibly not on arcs. In the literature the 

same approach is usually followed, simply because in general it gives rise 

to more compact formulations than in the case where flow is not necessarily 

conserved in nodes. 

The concept of a "generalized processing network" has already been intro­

duced in Section 3.2. 

Again it is assumed that the special topological properties, mentioned in 

Remark 3.2.2, hold. 

The main intent of this chapter is to show that the ideas of Chapter 3 can 

easily be generalized to generalized processing network problems. 

Proofs of lemmas and theorems are omitted since they are either completely 

analogous to the ones of corresponding statements in Chapter 3 or simple to 

provide. 
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4. 2 • Ma.the.ma.tic.a£. 60Jz.mula.tlo n. 

As in Section 3.2, we present two distinct LP-formulations of the minimal 

cost flow problem in a generalized processing network. 

Consider a directed and connected graph G(N,A) with node set N, containing 

m nodes, and arc set A, consisting of narcs. Self-loops are allowed to be 

present. 

Suppose that with each arc (i,j) EA a multiplier g .. is associated. The 
l.J 

meaning of this multiplier is the same as in generalized networks, described 

in Section 2.5. 

Using the notation, definitions and assumptions of Sections 2.5 and 3.2, 

the LP-formulation of the minimal cost flow problem in a generalized 

processing network is 

Formulation I 

4.2.1. minimize L c .. x. j , 
(i,j) EA l.J l. 

4.2.2. 

4.2.3. 
(Xi. 
_2:1.x, 
ex. ir 
ir 

4.2.4. 
(Xji 
ex. xri 
ri 

4.2.5. 0 

x .. 
l.J 

x .. 
Jl. 

$ xij $ 

0 

0 

u .. 
l.J 

i E N , 

i E RN, r E A{i), 

j E A(i) \ {r} , 

i E BN, r E B(i), 

j E B(i) \ {r} 

(i, j) E A , 

Observe that this formulation is only slightly different from 3.2.9-3.2.13. 

It reflects the fact that the minimal cost flow problem can be considered 

as a generalized network flow problem (4.2.1, 4.2.2 and 4.2.5) with side 

constraints 4.2.3 and 4.2.4. If equations 4.2.2 are linearly dependent, the 

problem can be reduced to a pure processing network problem by means of 

scaling. This is immediately clear from the way TRUEMPER's [1977] scaling 

procedure performs. For this reason we take the following assumption. 

ASSUMPTION 4.2.1. The equations in 4,2.2 are linearly independent. 
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Problem 4.2.1-4.2.5 can be solved by an algorithm of HULTZ & KLINGMAN [1976]. 

Then, under the given assumptions, a working basis of fixed size: 

EiEPN (ni - 1), i.e., the number of constraints in 4.2.3 and 4.2.4, would be 

required. 

However, the solution procedure developed in Section 4.4 (based on the 

subsequently discussed formulation II) uses a working basis of variable 

size q, with O :, q :, I:iEPN 1 (= I PNI), which is usually much smaller than 

LiEPN (ni - l) • 

Formulation II 

After substitution of the expressions for xij in 4.2.3 and xji in 4.2.4 

into 4.2.2 and a suitable scaling of the columns a compact formulation 

results (cf. formulation II in Section 3.2): 

4.2.6. 

4.2.7. 

4.2.8. 

minimize c'x 

Ax b 

with A an m x n matrix, b E :Rm and 

Each row i of A is associated with 

c,x,u E ]Rn. 

node i E N. 

Each column of A describes one of the three types of processes: 

(a) refining 12rocess i. The elements in column a •i 
are: 

-1 in row i, 

a.ij gij in row j, j E A(i), 

0 otherwise. 

(b) blending 12rocess i. The elements in column a . 
•1 

are: 

+ 1 in row i, 

-a.jigji in row j, j E B(i), 

0 otherwise. 

(cl trans12ortation 12rocess (i,j). The elements in column a,ij are 

-1 in row i, 

in row j, 

otherwise. 
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The variable associated with a column a.i' corresponding to a refining or 

blending process i, describes the total throughput of process i. 

Formulation 4. 2. 6-4. 2. 8 is one of a generalized network flow problem with 

side activities. For such problems no special (network oriented) algorithms 

are known. 

The dual problem of 4.2.6-4.2.8 is given by: 

4.2.9, maximize b 1 11 - u'v 

4.2.10. - 7T. + gij 7Tj - vij l. 
$ cij (i' j) E TP I 

4.2.11. - 7T. + I 0 ij gij 71 j - vi $ c. i E RP I 
l. jEA(i) l. 

4.2.12. 7Ti - I 0 jigji 71 j - vi $ c. i E BP I 

jEB(i) l. 

4.2.13. V ;,: 0 I 

where TP denotes the set of transportation processes, RP represents the set 

of refining processes and BP the set of blending processes. 

If column a.i describes a refining process i, a.i can also be written as 

( cf. 3. 2. 21) : 

4.2.14. l ai. ai*. 
jEA(i) J J 

* where aij denotes the vector representation of arc (i,j) with multiplier 

gij (see Section 2.5). Formula 4.2.14 makes clear that the set of processing 

arcs PA(i) can be associated with refining process i. A similar statement 

as in 4.2.14 can be made for a blending process i. 

Note that if all multipliers g .. are positive, (i,j) EA, matrix A in 4.2.7 
l.J 

satisfies the following property (cf. Remark 3.2.4): 

if there is more than one negative (positive) element in a column of A, 
then there is only one positive (negative) element. 

REMARK 4.2.2. If we would have taken the constraint 

4.2.15. i E N 

instead of 4.2,2, then problem 4.2.1-4.2.5 could still be regarded as a 

generalized processing network problem (cf. Remark 2.5.2) and the contents 

of this chapter also holds for such problems after a few obvious adaptations. 
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Then the columns of A in 4.2.7 would have the following shape: 

(a) column a•i' representing refining process i: 

L a . . h . . in row i , 
jEA(i) l.J l.J 

aij gij in row j, j E A(i), 

0 otherwise. 

(b) column a•i' representing blending process i: 

L aj. h .. in row i, 
jEB (i) l. Jl. 

in row j, j E B(i) 

otherwise. 

(c) column a•ij' representing transportation process (i,j): 

hij in row i, 

gij in row j , 

0 otherwise. 

Note that if hij and gij' (i,j) EA, are allowed to be arbitrary real 

numbers, formulation 4.2.6-4.2.8 is in fact one of a general LP-problem. 

This aspect is discussed further in Chapter 5. 

Formulation II will be used for tjle Simplex PRON procedure of Section 4.4. 

In the next section the basis structure in a generalized processing network 

problem is explained. 

4. 3. BM-i-0 -0.tll.u.c.twie. 

It is not restrictive to take the following assumption. 

ASSUMPTION 4.3.1. The rank of A in 4.2.7 equals m. 

Let B denote a basis of A, partitioned as: 

4. 3.1. 

where 

D 



104 

BT is an m x (m-q) matrix denoting the (generalized) transportation 

processes, and 

BP is an m x q matrix representing the basic refining and blending processes 

(0 S: q s m). 

Let the set of basic refining and blending processes again be denoted by 

BAP. BAP contains q elements. The basis graph associated with Bis defined 

as the directed graph with node set N and as arc set: all transportation 

arcs associated with the columns in BT in 4.3.1, and all processing arcs 

associated with the columns in BP in 4.3.1, i.e., all arcs in PA(i), i E BAP 

(cf. 4.2.14). 

Consider the graph which arises if in the basis graph all processing arcs 

are left out. Let this graph be denoted by G(N,BT). 

LEMMA 4.3.2. Eaah aonneated aomponent of G(N,BT) aontains at most one ayale. 

A connected component of G(N,BT) which contains no cycle is again called a 

transportation tree. 

If a connected component of G(N,BT) contains a cycle (possibly a self-loop) 

it is called a transportation quasi-tree. 

So Lemma 4.3.2 states that G(N,BT) consists of a number of transportation 

trees and a number of transportation quasi-trees. 

LEMMA 4.3.3. A basis graph aontains q tmnsportation trees iff the nwwer 

of basia refining and blending proaesses equals q. 

Observe that Lemma 2.5.6 is valid because B denotes a square nonsingular 

matrix (see Remark 2.5.7). It is possible to state a lemma, closely related 

to Lemma 2.5.6. 

Suppose BAP r f6. 

Let SP be a nonempty subset of BAP. 

Furthermore, let T(SP) denote the set of transportation trees which are 

incident to the processes i ESP. 

LEMMA 4.3.4. Any nonempty subset SP of basia refining and blending proaesses 

is inaid.ent to at Zeast lspl transportation trees: 

4.3.2. 



Using this lemma the following lemma can be proved: 

LEMMA 4.3.5. The representative arcs of the basic refining and blending 

processes can be chosen in such a way that the basic transportation arcs 

plus these representative arcs form the arc set of a spanning forest of 

quasi-trees in G(N,A). 

Such a forest is called a representative forest. 

The four stated lemmas prove: 

THEOREM 4.3.6. A basis graph in a generalized processing network G(N,A) 

consists of 

a forest of quasi-trees formed by the basic transportation arcs and the 

properly chosen representative arcs of the basic refining and blending 

processes, and 

all nonrepresentative arcs of the basic refining and blending processes. 

The structure of a basis graph is illustrated in the following example. 

EXAMPLE 4.3.7. Consider the basis B: 

12 13 15 2 3 

-1 -1 -1 1 

2 -1 2 

4.3.3. B 1 -1 3 

a24 a34 4 

1 a25 a35 5 

The associated basis graph is drawn in Figure 4.3.1, where the represen-

tative forest is indicated by heavy lines. 

105 
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2 

Figure 4.3.1. An example of a basis graph in a 
generalized processing network. 

Let T be the matrix representation of the representative forest with the 

convention that each (representative) arc (i,j) has multipliers gij as 

previously defined. This convention is plausible if it is tried to set up a 

solution procedure in the same spirit as in Section 3.4 (PRON 1). However, 

now there is no guarantee that Tis nonsingular. For the example presented 

T would be: 

12 13 

-1 -1 

2 

4.3.4. T 1 

15 24 

-1 

-1 

1 

1 

35 

-1 

1 

1 

2 

3 

4 

5 

which is seen to be singular since the cycle factor of the cycle formed by 

the arcs (1,3), (3,5) and (1,5) is equal to one (see Section 2.5). It is 

still an open question whether there exists, for every basis B, a particular 

choice of the representative arcs such that T would be nonsingular. In any 

case it is clear that a labeling procedure and a reestablishing procedure 

as in Section 3.4 alone might not be sufficient. 

Considering this observation an approach as proposed in Section 3.5 would 

be more appealing. 

Suppose that for each process i E BAP a node j is chosen from N(i), which 

belongs to some transportation tree. This is possible because of Lemma 

4.3.4. Such a node j is called the representative node of process i. 
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Furthermore, suppose that BAP f 0. The condition mentioned in Lemma 4.3.4 

together with HALL's theorem (Theorem 2.5.8) implies the following lemma: 

LEMMA 4.3.8. For each process i e: BAP a node can be chosen from the set N(i) 

in such a way that these nodes belong to different transportation trees. 

Attach, as in the procedure of Section 3.5, a self-loop to each of these 

representative nodes. In matrix terms such a self-loop is again represented 

by a negative unit column (it has multiplier 1). Now a basis is represented 

by a number of transportation quasi-trees and a number of rooted transporta­

tion trees. The collection of these quasi-trees and rooted trees is again 

called the representative forest. 

EXAMPLE 4.3.9. In the example of Figure 4.3.1 nodes 4 and 5 can be thought 

to represent the sets N(3) and N(2), respectively. The corresponding 

representative forest is drawn in Figure 4.3.2. 

2 

Figure 4.3.2. A representative forest for the basis graph in Figure 4.3.1. 

Let T be the matrix representation of the representative forest. The sequence 

of the columns in T corresponds to the sequence of columns in B. Then B can 

be written as 

4.3.5. B = TP 

with 

4.3.6. p 

where 
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I is the identity matrix of order (m-q) I 

Q is some (m-q) x q matrix, and 

R is a square nonsingular matrix of order q. 

For matrix B in 4.3.3 formula 4.3.5 specializes to: 

12 13 15 2 3 

1 -1 -1 -1 

2 2 -1 

4.3.7. 3 1 -1 

4 a24 a34 
5 1 a25 a35 

12 13 15 55 44 

-1 -1 -1 1 -½ 
2 1 -1 

1 1 ½ 1 

-1 -a25+½ -a35+1 

1 -1 -a24 -a34 

REMARK 4.3.10. Consider a column P . (m-q < j s m) of Panda column B . of 
·J "J 

B which corresponds to process k = i .• Suppose process k is a refining 
J 

process. Since B.j can be written as: 

4.3.8. 

relation 4.3.5 makes clear 

4.3.9. p • j 
-1 

- T ek + 

Similarly, if process k 

4.3.10. 

that p 
•j can be written as: 

I -1 
akR, gkR, T e.e, 

R-EA(k) 

iJ. is a blending process, P . can be written as: 
•J 

-1 
The vectors T e .e, (R, E N (ij)) in 4. 3. 9 or 4. 3 .10 are the cycle-path vectors 

of the nodes R, E N(i.) in the representative forest (see Section 2.5). 
J 

Formulae 4.3.9 and 4.3.10 express the fact that each column P . can be 
"J 

considered as a linear combination of the j th negative unit vector, which 



results from the representative node of process i., and the cycle-path 
J 
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vectors, originated by the nonrepresentative nodes of N(i.). This observa-
J 

tion is used in the Simplex algorithm of Section 4.4. 

We can define an aggregated graph associated with basis Bin almost the 

same way as in Section 3.5. The following assumption is similar to Assump­

tion 3.5.5. 

ASSUMPTION 4.3.11. The transportation trees are numbered in such a way that 

the representative node of process ij (associated with column B•j in B, 

j = m-q+l, ••• ,mJ belongs to transportation tree T. ( i· 
J- m-q 

The aggregated graph 

The aggregated graph, associated with basis Bin 4.3.1, is the directed 

graph G(N*,A*) with N* = {1, ••. ,q} in which node i corresponds to transporta­

tion tree T., and A* as follows. The self-loops (i,i), i = 1, .•• ,q, belong 
1. 

to A*. Furthermore, if the nonrepresentative nodes of process i., which are 
J 

not contained in some transportation quasi-tree, belong to transportation 

trees Tj , .•• ,Tj, then also the arcs (k,j 1), ••• ,(k,js) with k = j- (m-q) 
1 * s 

belong to A. This statement holds for all processes i., j = m-q+l, .•• ,m. 
J 

EXAMPLE 4.3.12. In Figure 4.3.1 node 5 is the representative node of process 

2, node 4 the representative node.of process 3. Transportation tree T1 has 

node set {1,2,3,5} and T2 has node set {4}. The aggregated graph, associated 

with Bin 4.3.3, is drawn in Figure 4.3.3. 

Figure 4.3.3. The aggregated graph associated with Bin 4.3.3. 

Properties of matrix R 

With respect to matrix R in 4.3.6 the following can be said (cf. Theorems 

3.5.7-3.5.10 in the pure processing network situation). 
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THEOREM 4.3.13. If Bin 4.3.5 denotes a basis in a generalized processing 

network and R is given in 4.3.6, matrix R is UYlique. 

THEOREM 4.3,14. Each column of matrix R contains at most as many elements 

UYlequal to zero as the nurriber of transportation trees to which its corre­

sponding process is incident. 

The main diagonal of R is not necessarily zero-free, as can be seen from 

the example presented, whenever a 24 = a 25 = ½ {see formula 4.3.7). 

REMARK 4.3.15. In Section 3.5 matrix R describes the adjacency structure of 

the there defined aggregated graph (Theorem 3.5.10). We note that this 

statement no longer holds for generalized processing networks. 

Observe from 4.3.9 and4.3.10 that not only the cycle-path vectors and the 

processing coefficients aij influence the structure of R {this is the case 

in Section 3.5), but also the multipliers g ..• These multipliers may cause 
l.J 

some element of matrix R to be zero although there may be an arc in the 

aggregated graph which corresponds to this element. We will call this 

phenomenon "multiplier degeneracy". 

In the example presented r 11 = 0 if a 24 = a 25 =!,although there is an arc 

in the aggregated graph which corresponds to element r 11 , namely the self­

loop (1,1), see Figure 4.3.3. 

We will say that matrix R describ~s the adjacency structure of the aggregated 

graph, except for "multiplier degeneracy". 

4.4. The Shnplex algo!Uthm 0o~ the m,i,rwnal co~t 6low p~oblem in a 
gen~zed p~ocu~ing ne:two~k 

The minimal cost flow problem in a generalized processing network can be 

solved in almost the same way as described in Section 3.4, with the 

adaptations of Section 3.5. Hence, in this section we only point out some 

important aspects and discuss the differences with the procedures developed 

in Sections 3.4 and 3.5. 

We assume that the representative forest and the inverse of R in 4.3.6 are 

kept stored in some convenient way. 
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In every instance where in Section 3.4 or 3.5 pure-network techniques are 

used these should be replaced by generalized-network techniques (matrix T 

now describes a forest of quasi-trees and rooted transportation trees as in 

generalized networks). 

In finding the representation y of the entering column a in terms of the 

basis B (see Subsection 3.4.1), the labeling procedure becomes different 

from the one in Section 3.5 at two points: 

1. The statement after the third if in step 1 is left away, i.e., we do not 

stop the labeling procedure at that point, even if the entering process 

is incident to only one transportation tree. 

2. If a node j EN belongs to a transportation quasi-tree, Pj now denotes 

the set of arcs contained in the cycle of this quasi-tree, plus all arcs 

on the path from node j to this cycle. 

EXAMPLE 4.4.1. Figure 4.4.1 shows the labeled part of a representative 

forest assuming that transportation process (4,5) enters the basis. It is 

assumed that node 5 is the representative node of process 3, node 6 is the 

representative node of process 8. Compare this situation with Figure 3.5.2. 

3 
[8,8] 

9 

(l35 I 

[3,3] 
I 

I 

~ 
[8,8] 

(l78 

8 

Figure 4.4.1. The labeled part of a representative forest 
in a generalized processing network. 

Theorem 3.4.3 holds for generalized processing networks too. 

The following two theorems may be important for implementations of the 

present Simplex PRON algorithm. Moreover, Theorem 4. 4. 3 plays a role in the 

discussion on generalized processing networks with additional linear 

constraints in Section 6.3. 
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THEOREM 4.4.2. The nwrver of basia refining and blending proaesses with a 

nonzero aoeffiaient in the representation veator y of a in terms of the 

basis B, is zero :f:i. the entering proaess is inaident to only transportation 

quasi-trees. 

THEOREM 4.4.3. If the veator a represents a transportation proaess, say 

Ci* ,t>, then the nwrver of basia refining and blending proaesses with a 

nonzero aoeffiaient in the representation veator y of a in te'1'm8 of the 

basis B, is zero :f:ll. one of the following two statements hold: 

1. (i*,j*) is inaident to only transportation quasi-trees, 

2. Ci* ,t> is not a self-loop (i.e., i* ,f / ), 

both i* and j* belong to one transportation tree, say Ti, and 

the ayale faator of the ayale, induaed by (i* ,/) in Ti, equals 1. 

In the basis change (cf. Subsection 3.4.3 and Section 3.5) we can reestablish 

a representative forest in the same way as in Section 3.5. 

Theorem 3.4.6 holds for generalized processing networks too. 

We note that the shaded columns in the matrix product T- 1 T in 3. 4. 21 now 

denote cycle-path vectors (see Section 2.5). 

The s th row of (T- 1 T) has only one element unequal to zero (cf. Remark 

3.4. 7). 

Furthermore, the statement in Remark 3.4.8, on determining the s th row of 

Qin 3.3.12, can easily be generalized. 

The reduced costs (cf. Subsection 3.4.5) can be found from: 

4.4.1. cij - 1Ti + gij 1Tj - cij (i ,j) € TP 

4.4.2. Ci 1Ti + I aij gij 11 j - Ci i € RP , 
jE:A(i) 

4.4.3. Ci 1T. - I (lji gji 11 j - Ci i € BP . 
]. 

jE:B (i) 

A starting basis can be taken in the same way as in Subsection 3.4.6. 
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4 • 5 • Rema1tk.6 

Similar remarks as in Section 3.6 can be made on implementation questions. 

One important difference with pure processing networks is the fact that the 

main diagonal of the matrix R in 4.3.6 is not necessarily zero-free (see 

Section 4.3). So perhaps there exists no symmetric permutation of R such 

that a block triangular form arises with irreducible blocks on the main 

diagonal. However, it is important to note that the intention of the solution 

procedure is to exploit the network structure. Particular values of coeffi­

cients aij or gij have not been considered in the labeling procedure or in 

the reestablishing procedure. It is noted that this is also commonplace in 

the primal Simplex solution procedures for generalized networks, described 

in the literature. Therefore it is not strange to do just the same in block 

triangularizing the working basis: disregard "multiplier degeneracy" (see 

Remark 4.3.15) and only use the structure of the basis graph. More precise: 

use the structure of the aggregated graph, which is implicitly available if 

it is known to which transportation trees each refining or blending process 

is incident. 
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5. PROCESSING NETWORKS ANV GENERAL LINEAR PROGRAMMING 

5.1. In;tJi.adu.c:Uan 

On one hand processing network problems are more general than pure or 

generalized network problems, on the other hand they seem more special than 

general Linear Programming problems. 

In the previous chapters attention has been paid to the relation between 

processing networks and pure or generalized networks. Here we investigate 

the relation between processing networks and general LP-problems of the 

form: 

5.1.1. 

5.1.2. 

5.1.3. 

minimize c'x 

Ax b 

Q S X S U 1 

where A is an m x n matrix, b E lRm and c,x,u E lRn. 

It will appear that a processing network structure is not as special as it 

seems at first sight. 

5.2. Gene~ilized p~aeeJ.i~ing ne.:twa~/u, and genvial UneM p~ag11.ammlng 

In this section we show that an arbitrary LP-problem of the form 5.1.1-5.1.3 

can readily be interpreted as a generalized processing network problem in 

which both positive and negative multipliers may appear. A direct conse­

quence is that, in principle, the solution procedure of Chapter 4 can be 

applied to general LP-problems, leading to a specification of the primal 

Simplex algorithm in which the (working) basis is kept stored in block 

triangular form. The relation between this approach and other sparse matrix 

primal Simplex procedures proposed in the literature will be discussed. 
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THEOREM 5. 2 .1. The forrrruZa-tion 5. 1. 1-5 .1. 3 of an arbitrary LP-problem can 

be considered as the compact forrrrulation (formulation II in Section 4.2) of 

a generalized processing netl./Jork problem in which both positive and negative 

rrrultipliers may appear. 

PROOF. Consider the LP-problem 5.1.1-5.1.3 and let a . be the J' th column 
"J 

of matrix A in 5.1.2. If column a . contains at most two nonzero elements 
"J 

it represents a transportation process (see Remarks 2.5.2 and 4.2.2). 

If column a . contains t (t ~ 3) nonzero elements we can easily associate a 
•J 

refining or blending process with column a,j' 

Suppose a . contains a negative element then, after an appropriate positive 
'J 

scaling of a . and suitable row permutations, a . can always be written as: 
• J • J 

5.2.1. a . 
• J 

where all aij ~ O, i = 2, .•. ,t, and 3 ~ t ~ m. 

Alternatively a . can (for instance) be written as: 
·J 

-1 -1 -1 

1 
5.2.2. a . 

•J 
1 

r:T + ... +r:T 

This formulation indicates that we can associate with column a.j a bundle 

of (t - 1) generalized arcs - all incident and directed from one particular 

node and having either positive or negative multipliers on which proper-

tionality of flow is required (cf. 4.2.14). Hence, such a column a . cor-
•J 

responds to a refining process in a generalized processing network. 

If column a,j contains no negative element we can associate a blending 

process with a. j in a similar way. 

The conclusion is that we can associate a transportation, refining or 

blending process with each column a . of A and the theorem has been proved. D 
• J 

The relevance of Theorem 5.2.1 is clear. Apparently, with the generalized 

processing network interpretation in mind, we can in principle apply the 

solution procedure of Section 4.4 to general LP-problems. We review several 

important aspects of the Simplex PRON procedure of Section 4,4 in the light 
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of well-known sparse matrix primal Simplex solution techniques, proposed in 

the literature: 

- The transportation part of a basis B (i.e., those columns of B which have 

at most two nonzero elements) is included in the representative forest. 

In each iteration of the SimplexPRONalgorithm of Section 4.4 there is an 

interaction between the representative forest and the working basis 

inverse R-l 

This idea - extract the transportation part of a basis and do the rest of 

the work by means of a working basis - also comes up in a large number of 

algorithms dealing with LP-problems with an embedded pure or generalized 

network structure, see e.g. HARTMAN & LASDON [1972], HULTZ & KLINGMAN [1976], 

CHEN & SAIGAL [1977], and GLOVER & KLINGMAN [1981]. 

- The size of the working basis varies dynamically. 

This is, for instance, also the case in the methods proposed in HARTMAN & 

LASDON [1972] and GLOVER & KLINGMAN [1981]. 

- A labeling procedure determines which basic processes can take part at a 

nonzero level in the representation of the entering process in terms of 

the basis. 

Similar labeling procedures are used in the well-known specifications of 

the primal Simplex algorithm for pure, generalized and multicommodity 

network flow problems. 

The representative forest plays ,an essential role in the distinct steps 

of the Simplex PRON procedure of Section 4.4. 

A concept, similar to that of a representative forest, is the so-called 

master basis tree, introduced by GLOVER & KLINGMAN [1981] in their Simplex 

SON approach (see also the discussion in Chapter 6). 

- The working basis inverse R-l is kept stored in block triangular form. 

In the literature many times the suggestion is made to exploit the sparsity 

of LP-models (and perhaps a natural block structure, BASTIAN [1980]), by 

using a block triangular form of the basis inverse. Some references are 

DANTZIG [1955], PHILLIPS [1970], andSAUNDERS [1972]. 

A difference with the procedures known in the literature is, that in the 

present Simplex PRON approach the working basis inverse R-1 , rather than 
-1 the whole basis inverse B , is kept stored in a block triangular form. 

Only in case a basis does not contain any transportation column the entire 

basis inverse B-l is kept stored in block triangular form. 
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REMARK 5.2.2. A suggestion for future research is to consider factorization 

of the blocks on the main diagonal of the block triangular working basis. 

Such a suggestion is made earlier by KEVORKIAN [1979]. All in all it would 

result in an approach in the same spirit as GRAVES & MC BRIDE [1976] and 

MC BRIDE [1978], 

5. 3. "Ae.mo,t,,t" pwie. p!tOc.e.M-lng ne.:twottk-6 and ge.neJtal .Une.aJt pltogJr.a.mmlng 

In this section we give an "almost" pure processing network interpretation 

to general LP-problems of the form 5.1.1-5.1.3, to which the redundant 

constraint: 

5.3.1. - e' Ax - e' b 

is added. 

Moreover, we will show that the Simplex PRON procedures of Sections 3.4 and 

3.5 can easily be adapted to solve LP-problems of the form 5.1.1-5.1.3, 

5.3.1, although some of the properties which hold for pure processing 

networks are no longer valid. 

By an "almost" pure processing network problem we mean a network flow 

problem with the following characteristics: 

- conservation of flow, both in nodes and on arcs. 

- proportionality of flow in particular subsets of the arc set. In each 

such a subset the arcs are incident to one common node, but they may be 

directed both towards and from this common node. 

- capacity bounds on arcs. 

□ 

THEOREM 5.3.1. The forrrruZation 5.1.1-5.1.3~5.3.1 of an arbitrary LP-problem 

can be considered as a compact forrrrulation (similar to forrrrulation II in 

Section 3.2) of an "almost" pure processing network problem. 

* PROOF. Consider the LP-problem 5.1.1-5.1.3,5.3.1 and let a.j denote the 

j th column of the coefficient matrix A*= [-e~A} of this LP-problem. 

Clearly column a*. has a column sum zero. 
* . J * 

If a,j contains only one positive element or only one negative element, a,j 

corresponds to one of the three types of processes in a pure processing 

network (see Remark 3.2.4). 
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* Suppose a.j contains two or more positive elements and two or more negative 

ones, and let us assume that column a*. is scaled such that the sum of the 
* •J 

positive elements in a. j is equal to one. After a suitable inter.change of 

rows, a.j can be written as: 

* where aij > O, i = 1, ••• ,R., 2 s k S m-1; k+l s R, s m+l. 

* Now a.j can for instance be written as: 

* 1 -alj 

* -1 -a2j 

* 
-¾j 

* 
5.3.2. * ¾+1,j * a = = a2j •j 

* 
aR.j 

0 

0 

1 

-1 

* +¾+l,j 

-1 

Formula 5.3.2 shows that we can associate with column a:j a bundle of 

-1 

1 

(R, - 1) arcs - all incident to one particular node, some directed from this 

node and some directed to this node - on which proportionality of flow is 

required. 

Since the above described interpretation can be given to all columns a*. of 
* •J A, the theorem has.been proved. D 

In Figure 5.3.l the bundle of arcs associated with the vectors in 5.3.2 is 

depicted. 
2 

k+l 

k 

* Figure 5.3.1. The bundle of arcs associated with column a.j in 5.3.2. 
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If we reexamine the proofs of lemmas and theorems in Sections 3.3-3.5 we 

see that, except for Theorems 3.3.10, 3.4.4, 3.5.8 and 3.5.9, the only 

arguments used are: 

1. B denotes a basis. 

2. All basic nonslack columns have the zero-sum property. 

In the Simplex PRON procedures of Sections 3.4 and 3.5 Theorems 3.3.10, 

3.4.4, 3.5.8 and 3.5.9 were not used and hence these procedures can be 

adapted to solve "almost" pure processing network problems (we say "adapted" 

because in the discussions in Sections 3.4 and 3.5 we always assumed that 

all arcs associated with a nontransportation process were either directed to 

or from a processing node). 

For "almost" pure processing network problems Theorems 3.3.10, 3.4.4, 3.5.8 

and 3.5.9 are no longer valid. 

We note that Theorems 3.3.10, 3.5.8 and 3.5.9 play an essential role in the 

discussion on block triangularizing the working basis (Section 3.6) and 

conclude that, if TARJAN's algorithm [1972] is applied to the working basis, 

we do not necessarily obtain a block triangular form with irreducible blocks 

on the main diagonal (cf. the situation in generalized processing networks, 

especially Remark 4.3.15). Theorem 3.4.4 has been used in the discussion on 

implementation considerations (Section 3.6) and will be used in proving 

Theorem 6.2.3 in Chapter 6. 

5.4. Tlr.a.MooJun,i,ng geneJuU', LP-p11.ob.leJn6 to pMe pll.OC.e,6~,i,ng ne:twOJtk. pltob.leJn6 

We discuss the possibility to transform a general LP-problem of the form 

5.1.1-5.1.3 to a pure processing network problem, at the possible expense 

of blowing up the size of the problem. 

THEOREM 5.4.1. Any LP-problem of the form 5.1.1-5.1.3 can be transformed to 

an LP-problem associated with a pure processing network. 

PROOF. Consider the general LP-problem 5.1.1-5.1.3 and add the redundant 

constraint 5.3.1. We then have the LP-problem 

5.4.1. 

5.4.2. 

5.4.3. 

minimize c'x 



121 

where 

and b* = [ b J . 
-e'b 

Clearly the column sum of.each column in A* is zero (e•A* = 0). 

Scale the columns of A* in such a way that the sum of the positive elements 

in each column of A* is equal to 1. Next partition A* as: 

5.4.4 

where A1* consists of all columns in A* which have exactly one positive 
2* element or exactly one negative element. Hence A consists of the columns 

in A* which have at least two positive elements and at least two negative 

ones. 

Let [ci c2J, [xi x2J, and [u1 u2J be the partitioning of c', x' and u', 

compatible with the partitioning of A* in 5.4.4. 

Suppose we write: 

5.4.5. A4* + I 

where A2* 2* A3* 3* and A4* [at;], = [aij], [aij] with 

3* 2* if 2* > 0 aij aij a .. 
l.J 

0 2* 
$ Q• I a,. 

l.J 

4* 2* 2* 0 a .. aij if a .. < 
l.J l.J 

0 2* 2: 0 aij . 

Now it can easily be observed that the LP-problem: 

5.4.6. minimize ci xl + c2 x2 

A1* A3* A4* * 5.4.7. xl + x2 + X3 b 

5.4.8. - I x 2 + I x3 0 

5.4.9. 0 $ xl $ ul 

5.4.10. 0 $ x2 $ u2 

5.4.11. 0 $ x3 $ u2 
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is equivalent to 5.1.1-5.1.3. Observe that each column of 

5.4.12. 
-I 

satisfies the two properties, mentioned in Remark 3.2.4, which characterize 

a pure processing network problem. Hence the theorem has been proved. D 

The proof of Theorem 5.4.1 is in fact nothing more than an algebraic way to 

say that the picture of Figure 5.3.1 changes into that of Figure 5.4.1. 

2 
k+1 

1 

k 

Figure 5.4.1. The transformation of Figure 5.3.1 to a 
pure processing network form. 

Moreover the proof shows that the transformed problem 5.4.6-5.4.11 

has a coefficient matrix with (m + 1 + n) rows and 2n columns in the worst 

case (recall that the coefficient matrix A in 5.1.2 has m rows and n 

columns). So we see that in general we have to blow up the size of an LP­

problem in order to cast it into the LP-formulation of a pure processing 

network problem. 

We have pointed out in Section 5.2 that, having the generalized processing 

network interpretation in mind, the Simplex PRON procedure of Section 4.4 

can in principle be applied to general LP-problems of the form 5.1.1-5.1.3. 

Moreover, in Section 5.3, we discussed that, having the "almost" pure 

processing network interpretation in mind, the Simplex PRON procedures of 

Sections 3.4 and 3.5 can easily be adapted to solve general LP-problems of 

the form 5.1.1-5.1.3,5.3.1. 

Hence we do not believe that a transformation of a general LP-problem 

5.1.1-5.1.3 to a pure processing network problem, as described in the proof 

of Theorem 5.4.1, yields a problem which can be solved easier. 

Nevertheless Theorem 5.4.1 is important for several reasons: 

1. It shows that a pure processing network structure is not as special as 

it seems at first sight. 
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2. It gives a certain reassurance that we have exploited the processing 

network structure in an adequate way in the Simplex PRON procedures of 

Chapters 3 and 4, considering the fact that these procedures are closely 

related to well-known sparse matrix LP-approaches (see Section 5.2). 

3. Processing networks have the nice feature that their structure can be 

visualized by drawing network diagrams. The relevance of visualizing a 

model has already be pointed out by GLOVER & KLINGMAN [1977] and by 

GLOVER, HULTZ & KLINGMAN [1978]. Both for model builders and management, 

a diagram can give more insight into the model structure than an alge­

braic statement alone. Hence a good visualization of a model may tend to 

increase management's confidence in such a model. 

Since a general LP-problem can be cast into a processing network fitting 

a tool is available to visualize its structure. Especially in case such 

an LP-problem has a natural interpretation as a network flow problem, it 

may be useful to draw a processing-network diagram. In Chapter 7 we 

briefly describe a bank balance problem for which we have done this. 

5.5. Some examplu 

In this section we discuss three important classes of LP-problems which can 

be interpreted as a pure processing network problem or as a generalized 

processing network problem with positive multipliers,without having to blow 

up the size of the problem. 

1. Consider the LP-problem: 

5.5.1. minimize c'x 

5.5.2. A1x b1 

5.5.3. A2x s b2 

5.5.4. 0 s X $ u 

where A1 is a matrix with at least two elements unequal to zero and exactly 

one negative element in each column, 

A2 is a nonnegative matrix. 

LP-problems of the form 5.5.1-5.5.4 appear in many practical situations. 

Observe that A1 may describe: 
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- a pure network, 

- a pure processing network with only refining nodes, 

- a generalized network with positive multipliers, 

- a generalized processing network with positive multipliers and only 

refining nodes. 

Considering the fact that each column of [1~] has exactly one negative 

element, problem 5.5.1-5.5.4 can immediately be regarded as a generalized 

processing network with positive multipliers and only refining nodes. 

A well-known member of this class of LP-problems is the so-called~­

commodity network flow problem, which can be stated as follows: 

Consider a network G(N,A), with node set N and arc set A. Suppose we have k 

types of goods (commodities) which flow through this network. 

Let the demand or supply of commodity t (t = 1, ••• ,k) in node i be given by 
t 

bi. Furthermore,we assume that 

t 
xij denotes the amount of flow of the t th commodity through arc (i,j) EA, 

t 
cij denotes the cost for transporting a unit of flow of the t th commodity 

through arc (i,j) EA, and 

t 
uij denotes the upper bound for the amount of flow of the t th commodity 

through arc (i,j) EA. 

Finally, let uij denote the upper bound for the total amount of flow (i.e., 

the sum of the flows of the k commodities) through arc(i,j) EA. Then the 

LP-formulation of the multicommodity network flow problem is: 

5.5.5. 
k 

t t minimize }: cij xij 
t=1 

5.5.6. }: t }: t 
b~ x .. + x .. 

jEA(i) l.J jEB (i) Jl. l. 
i E N, t 1, ... ,k 

5.5.7. 
k 

t }: xij ~ u .. I 

t=1 l.J 
(i,j) E A 

5.5.8. 0 ~ 
t 

~ 
t 

xij u .. 
l.J 

(i,j) E A, t 1, ••• ,k • 

Equations 5.5.6 are the conservation of flow equations, relations 5.5.7 

describe the multicommodity aspect of the problem: the sum of the flows of 

the k commodities through arc (i,j) has upper bound uij" The relations 
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5.5.8 simply denote the capacity bounds for each commodity in each arc of 

the network. Obviously 5.5.6 is related to 5.5.2 and 5.5.7 to 5.5.3. 

Consider the network G(N,A) for each of the k commodities. Denote the nodes 

of the network of the 9, th commodity by i9, and the arcs by (i,jl9,, 

9-=1, ••• ,k. 

Figure 5.5.1 illustrates how the multicommodity network flow problem can be 

interpreted as a generalized processing network problem with positive 

multipliers and only refining nodes of order 2. 

Suppose there is a flow of magnitude x~. in an outgoing arc of node i 0 in 
l.J ,, 

Figure 5.5.1. Multiply this flow with a factor 2, and split it up in two 

equal portions using a refining node. 

a refining node the flow equals again 

attached to node j9, of the network of 

On each of the outgoing arcs of such 
9, h . . xi .. One oft e outgoing arcs is 

. J 
the 9, th commodity. The other one 

leads to an additional node, say vij • We do this for all 9, = 1, ..• ,k. 

Finally we consider an outgoing arc of node vij and assume it has a lower 

bound 0 and upper bound u ... 
l.J 

Figure 5. 5. 1. A processing network interpretation to the 
multicommodity network flow problem. 
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2. Consider the LP-problem: 

5.5.9. 

5 .5.10. 

5.5.11. 

where A = 

minimize c' x 

Ax~ b 

[aij] is a nonnegative 

elements b. > o. Let the columns 
]. 

Introduce, similarly as in 5.3.1, 

5.5.12. -e'Ax:?:-e'b, 

matrix. Vector bis a vector with all 

of A be scaled such that e•A = e'. 

the redundant constraint: 

then problem 5.5.9-5.5.12 can immediately be interpreted as a pure processing 

network problem. See Figure 5.5.2, where for convenience it is assumed that 

all aij > O, i = 1, ••• ,m, j = 1, •.• ,n. 

X 
n 

[O,b] 
m 

Figure 5.5.2. Pure processing network diagram for the 
LP-problem 5.5.9-5.5.12. 
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3. Consider the LP-problem 5.1.1-5.1.3. Assume that each column of A in 

5.1.2 has at most two elements unequal to zero. Clearly 5.1.1-5.1.3 can be 

considered as the LP-formulation of a generalized network flow problem, say 

with corresponding network G(N,A) (cf. Remark 2.5.2). 

Add again constraint 5.3.1 then 5.1.1-5.1.3,5.3.1 is the LP-formulation of 

a pure processing network problem. The redundant constraint 5.3.1 corresponds 

to a nodes, which is added to the original network G(N,A). This nodes can 

be considered as a source from or a sink to "outside" the original network. 

The :olumns of the coefficient matrix A*= [-~•AJ of LP-problem 5.1.1-5.1.3, 

5.3.1 can be classified into seven basic cases. 

If a column of A has only one element unequal to zero, say in row i (which 

corresponds to node i in G(N,A)), there are two basic cases: 

1. the element in row i is + 1. Then in row s of A* a "-1" appears. 

Schematically: 

i 

s 

+ 1 

- 1 
G)-------(D 

* Such a column of A describes a transportation process from nodes to 

node i. 

* 2. the element in row i is - 1. Then in row s of A a "+1" appears. 

Schematically: 

i - 1 (0---------€) 
s + 1 

* Such a column of A describes a transportation process from node i to 

node s. 

If a column of A has two elements unequal to zero, say in rows i and j, the 

following five basic cases appear for a column in A*: 
3. i 

j 

s 

- 1 

a (0 < a < 1) 

1 - a (> 0) 

~ "" -~ 

A fraction a is transported from node i to node j. The rest is lost. 

4. i - 1 

j ©---------G> 
s 0 

Transport from node i to node j. 
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5. i - 1 

~ j a (a> 1) 

s 1-a (< 0) 

. 

Here a true gain of flow occurs. 

6. i - 1 
1/a+1 

j -a (a > 0) 

s 1+a (> 0) a/a+1 

This process describes the possibility to extract flow from both node 

ahd node j in given proportions. 

7. i 
1/a+1 

j a (a > 0) 

s -1-a (< 0) a/a+1 

Here flow is injected in nodes i and j in given proportions. 

Obviously a generalized network flow problem can be transformed to a pure 

processing network problem in which: 

1. all nontransportation processes are of order 2; 

2. there exists a particular nodes, such that each refining or blending 

process is incident to this nodes. 

i 

We know that any LP~problem can be transformed to a pure processing network 

problem (Section 5.4). Furthermore, it can easily be observed that any pure 

processing network can be transformed to a pure processing network in which 

all nontransportation processes are of order 2. 

Hence, the essential difference between general LP and generalized networks 

is the nonvalidity/validity of requirement 2. 
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6. PROCESSING NETWORKS WITH AVVITIONAL LINEAR CONSTRAINTS 

6.1. In.t!toduc.ti.on 

As remarked in Subsection 1.1.2 the processing network structure appears in 

a large number of real-life situations such as production planning, energy 

models, assembly and input/output models. In many of such practical 

situations it occurs that additional requirements must be satisfied, for 

instance quality requirements, multicommodity aspects, limitations on 

shared resources. For this reason we consider in this chapter LP-problems 

of the following type: 

6.1.1. minimize c'x 

6.1.2. A1x = b 1 

6.1.3. A2x = b2 

6.1.4. 0 S X S u I 

where c, x and u E 'Jil, b 1 E Rm, b2 E Rk. 

A1 is an m x n matrix, which corresponds to some pure or generalized 

processing network G(N,A), with node set N consisting of m nodes, and arc 

set A containing narcs. 

A2 is a general k x n matrix. 

This type of problem is referred to as a pure or generalized processing 

network problem (6,1.1, 6.1.2 and 6.1.4) with additional linear constraints 

(6.1.3). 

Sometimes we will simply call these additional linear constraints side 

constraints. 

The dual problem of 6.1.1-6.1.4 is given by 

6.1.5. 

6.1.6. 

6.1.7. 

Ai 1T l + A2 1T 2 - V S C 

V ;:: 0 
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We have noted in Sections 5.2 and 5.3 that we can adapt the Simplex PRON 

procedures of Chapters 3 and 4 in such a way, that they can be applied to 

general LP-problems. Hence this can be done for LP-problems of the form 

6.1.1-6.1.4. However, then the transportation part of A1 in 6.1.2 would not 

be exploited fully. For problems of the type 6.1.1-6.1.4 it is natural to 

partition the coefficient matrix in a processing network part and a non­

processing network part. We note that in many practical situations the non­

processing network part is small in comparison with the processing network 

part (i.e., m >> k, cf. GLOVER & KLINGMAN [1981]). 

In Section 6.2 we discuss pure processing networks with side constraints. 

First, we explain the way in which we will partition a basis. Secondly, the 

basis structure will be exploited in a specification of the primal Simplex 

algorithm. Similarities and differences with the Simplex SON algorithm of 

GLOVER & KLINGMAN [1981] will be discussed. 

Finally, in Section 6.3, we briefly denote how the contents of Section 6.2 

can be generalized to generalized processing networks with side constraints. 

6. 2. PU!l.e. p!Wc.Uf.>ing n.e.twMlu W-i;th a.dcLUlon.al .Un.e.aJt c.on.1.,br..a,[n.t6 

Assume that matrix A1 in 6.1.2 is associated with a pure processing network 

as described in Chapter 3. 

First we will explain the structure of a basis. 

6.2.1. Basis structure 

Without loss of generality we can take the following assumptions. 

ASSUMPTION 6. 2. 1. The rank of matrix A1 in 6. 1. 2 equa"ls (m - 1) 

ASSUMPTION 6.2.2. The rank of matrix 

6.2.1. 

equals (m- 1 +k). 
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The columns of matrix A in 6.2.1 are associated with the transportation, 

refining and blending processes of the processing network G(N,A). As in 

pure networks (Section 2.4) and in pure processing networks (Section 3.3) 

we introduce a single artificial variable with associated vector - eio (i0 

arbitrarily chosen from the set {1, •.• ,m}). Then it can easily be proved 

that matrix 

6.2.2. AJ 

has rank (m + kl . 

Let B denote a basis of A*. Then B can be partitioned as: 

6.2.3. 

where B11 is a square nonsingular submatrix of [-ei0 A1J of order m. Note 

that the column - eio is always present in B 11 . 

We observe that B11 describes a basis for the pure processing network 

problem 6.1.1, 6.1.2 and 6.1.4. 

Suppose B11 contains (m - q) transportation columns, including the slack 

column, and q refining and blending columns (0 S q S m-1). 

Let matrix T denote the matrix representation of a representative forest, 

as defined in Section 3.5. The columns of Tare sequenced in the same way 

as the corresponding columns of B11 . 

According to 3.5.2 we can write: 

6.2.4. 

with 

6.2.5. p L J 
where 

I is the identity matrix of order (m - q), 

Q is a (m-q) x q matrix, and 

Risa square nonsingular matrix of order q. 

With respect to matrix B12 in 6.2.3 we assume that it contains (k - g) 

transportation columns and, consequently, g refining and blending columns 

(0 s g s k) • 
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Matrix Bin 6.2.3 can also be written as: 

6.2.6. B ll wJ 

where 

6.2.7. 

In the subsequently discussed Simplex algorithm we will use two working 

base,s, namely R in 6. 2. 5 and W in 6. 2. 7. R is called the processing working 

basis and W the general working basis. 

6.2.2. The Simplex algorithm for the minimal cost flow problem in a pure 

processing network with additional linear constraints 

In this subsection the essential steps of the Simplex algorithm will be 

explained in the same sequence as in Section 2.3. 

It is assumed that the representative forest, associated with matrix Tin 

6.2.4 and the inverses of Rand Win 6.2.5 and 6.2.7 are kept stored in 

some convenient way. 

Other quantities, which are required in the steps of the Simplex algorithm, 

are determined when needed by means of pure-network techniques or pure 

processing-network techniques. This will become apparent in discussing the 

distinct steps of this Simplex algorithm. 

Initialization 

Assuming that b 2 in 6.1.3 satisfies b 2 ~ O, the starting basis can be chosen 

as: 

6.2.8. 

where B11 represents a rooted spanning tree, containing only transportation 

arcs, as obtained by the procedure in Subsection 3.4.6. Needless to say 

that all columns of this matrix B may be artificial ones. Comparing 6.2.8 

and 6.2.7 we see that the general working basis is the identity matrix. 

Moreover, Pin 6.2.5 is also a unit matrix: initially the processing working 

basis has size zero. 
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1. Determining the Simplex multipliers 

Let [ci c 2J be the partitioning of the basic part of the cost vector c in 

6.1.1, compatible with the partition of Bin 6.2.3. In order to find the 

Simplex multipliers we must solve the system: 

6.2.9. 

Cons~dering 6.2.6, the computation of [ni n2J can be split up in two 

portions. 

First,determine [ei e2J from: 

6.2.10. 

Formula 6.2.10 reduces to: 

6.2.11. e I 
1 

e I 
2 

c' 
1 

-1 
Note that the expression T B12 can be evaluated by pure-network techniques 

(Section 2. 4) • 
-1 

Moreover, c 1P can be determined as in pure processing networks, in the 

way explained in Subsection 3.4.4. We note that P-l can be written as in 

3. 4. 37, as the subsequent discussions in steps 5 and 7 will show. 

Secondly, [ni np can be found from 

6.2.13. [n' n2] ~11 J [e• 82] , 
1 

8 21 
1 

which reduces to: 

6.2.14. Tf I 
2 

e' w-1 
2 

(Si - Tf2 B21) B~~ -1 -1 
6.2.15. Tf I (8i-Tr2B21 )P T 1 

The expression in 6.2.15 can be evaluated as explained in Subsection 3.4.4. 
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2. Calculate the reduced costs 

The reduced cost vector c can.'be determined from 

C = 1T 1 A + 1T 1 A - C 1 1 2 2 

3. Perform the optimality test 

If cj s O for all nonbasic variables at their lower bound, and 

if cj ~ 0 for all nonbasic variables at their upper bound, 

the current solution is optimal and the algorithm stops. 

4. Choose the nonbasic variable to enter the basis 

Let I denote the index set of all nonbasic variables which violate the 

optimality test in step 3. 

Choose a variable ¾ ,_ k E I, to enter the basis. The column of A associated 

with ¾ is given by ~;:]-

5. Find the representation of the enterinq column in tems of the basis 

Let [Y1kj denote 
Y2k 

means that rY1k] 
LY2k 

6.2.16. 

the representation vector of ra1k] in terms of B. This 
La2k 

can be evaluated from 

Again we do this in two stages. 

First, solve: 

6.2.17. 

which leads to: 

6.2.18. 
-1 -1 

p T a1k 

6.2.19. 

The vector y 1k can be determined as in pure processing networks (see Sub­
-1 

section 3.4.1). Note that in doing this, matrix P is partitioned as in 

3.4.37. 
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Secondly, solve: 

6.2.20 L 
which reduces to: 

6.2.21. 

6.2.22. 

-1 -1 
We can evaluate the expression P T B12 y 2k in 6.2.22 from right to left. 

Note that for P-l the partitioned form, obtained in determining ylk in 

6.2.18, can be used. 

6. Perform the minimal ratio test 

We can perform the minimal ratio test in the standard way, described in 

Section 2. 3. Suppose that x with corresponding column r a 1sl leaves the 
s La2sJ 

basis. 

7. Update 

The value of the objective function and the activity levels of the basic 

variables can be updated in the standard fashion (see Section 2.3). Updating 

the working bases is more complex. 

Let the vector ~ of basic variables be partitioned as [:;] , compatible 

with the partitioning of B. 

Using the same terminology as in HARTMAN & LASDON [1972] and CHEN & SAIGAL 

[1977], we call the variables in x1 key variables, those in x2 non-key 

variables. 

In performing the basis change two cases are distinguished. 

A. the leaving variable xs is a non-key variable 

In this case the new basis B can be written as: 

6.2.23. B 

where both §12 and B22 differ from B12 and B22 by exactly one column: 

column [als] is replaced by lalk]. 
a2s La2k 
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The new general working basis W satisfies (see 6.2.7): 

6.2.24. w 

which differs from Win only one 

contained in Wis given by a 2k -

column. The column of W which is not 
-1 

B21 B11 a 1k. The representation of this 

column in terms of Wis given by the vector y 2k, determined in 6.2.19. This 
--1 

can immediately be observed from 6.2.18 and 6.2.19. This means that W can 

be found by performing the standard pivot operation directly to w- 1 • 

Since B11 and B21 are not changed, the representative forest and the inverse 

of the processing working basis do not change either. Note that this inverse 

can be written in block triangular form obtained in determining ylk in 

6.2.18. 

B. the leaving variable xs is a key~variable 

The new basis :a can be written as 

6.2.25. B [~11 ",j 
B21 B22 

where :a 11 and :a21 differ from B11 and B21 by exactly one column. 

In this case it can happen that :a 11 is singular. Note that :a 11 is non­

singular iff the coefficient of ylk in 6.2.18, which corresponds to the 

leaving basic variable, is nonzero. If B11 is nonsingular, we observe that 

W satisfies the following expression: 

6.2.26. w w- [ ~ ] 
t 
s 

--1 
Hence, W cannot be found by just performing a pivot operation. 

--1 
In order to update the basis inverse B we use a two stage approach, 

proposed earlier by a.o. HARTMAN & LASDON [1972] and CHEN & SAIGAL [1977]: 

(a) If possible, interchange column ra1sl 
La2sJ 

such that the resulting matrix B11 is 

with some non-key column [alt], 
a2t 

nonsingular. 

(b) If an interchange has taken place the situation is now that a non-key 

column leaves the basis. 

Hence the rest of the work can be done according to case A described 

above. 
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We will call the step under (a) the interchange phase and explain it next 

in detail. 

Interchange phase 

The theoretical background for an interchange as meant under (a) is 

described in CHEN & SAIGAL [1977]. Here only the results are stated. 
-1 Let A' denote the s th row of B11 B12 . 

Distinguish the two possible cases: 

(a) A is a zero vector. 

Then no interchange as meant under (a) is possible. However, observe 

from 6.2.26 that W = w, which means that the inverse of the general 

working basis does not change. 

Moreover B11 in 6.2.25 must be nonsingular. 

The inverse of the processing working basis and the new representative 

forest can be determined in the way of Section 3.5. 

(8) >.. is not a zero vector. 

Then ra1sJ can be interchanged with any ra1 t] for which the correspond-
La2s La2t 

ing coefficient in A is unequal to zero. 

By interchanging ra1sJ and [alt], the analysis in CHEN & SAIGAL [1977] 
_ La2s a2t 

shows that w- 1 can be found from 

6.2.27. 
--1 w -1 1----------------1 w 

After determining B~ i a.1 t as in pure processing networks, the inverse of 

the processing working basis and the new representative forest can be 

updated using the procedures of Section 3.5. 

After the basis change the Simplex algorithm proceeds with step 2. 

This completes the description of the Simplex algorithm. 
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6.2.3. Maximizing the number of transportation processes contained in B11 , 

given B 

Concerning matrix B11 in 6.2.3 the only requirement in the previous sub­

section is that B11 denotes a square nonsingular matrix. Here we discuss 

how we can maintain the number of transportation processes in B11 as large 

as possible, given the basis B. 

The desirability of keeping the transportation part of B11 , given B, as 

large as possible is quite obvious: 

- manipulating with transportation processes is easier than with refining 

or blending processes. 

given a basis, the size of the processing working basis is as small as 

possible. 

Except for storage requirements this may save time in performing the steps 

of the Simplex algorithm of the previous section. 

We will first derive a necessary and sufficient condition under which the 

number of transportation processes in B11 is maximal, given a basis B. 

Furthermore we will present some modification rules for the update step of 

the Simplex algorithm in Subsection 6.2.2, which guarantee that this con­

dition is satisfied in every iteration of this Simplex algorithm. 

Consider the matrix B1: 

6.2.28. 

B11 and B12 are already introduced in formula 6.2.3. B11 is square non­

singular and denotes the key part of the basis. B12 describes the non-key 

part of the basis. 

We can partition B1 in 6.2.28 somewhat further: 

6.2.29. 

with: 

T 
B11 an m X (m-q) matrix denoting the key transportation processes, 

p 
q matrix denoting the key refining and blending processes, B11 an m X 

T 
B12 an m X (k-g) matrix denoting the non-key transportation processes, 

p 
g matrix denoting the non-key refining and blending processes. B12 an m X 

For q and g the following expressions hold: 0 $ q $ m-1 and O $ g $ k. 
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As made clear in Section 3.3, matrix B~1 is associated with the (q + 1) trans­

portation trees of the representative forest. Using Theorem 3.4.4 of Sub­

section 3.4.1 we can prove the following theorem: 

THEOREM 6.2.3. Given the basis B, and the fact that B11 is nonsingular, the 

nunver of transportation processes in Bi1 is maximaZifj'every transportation 

process contained in Bi2 is incident to only one transportation tree of the 

representaHve forest. 

PROOF. If q = 0 or g = k the statement is trivially true. 

Consider the case that q > 0 and g < k. We first prove the "only if" part 

and then the "if" part. 

T 
only if. Consider a transportation process (i0 ,j 0) in B12 which is incident 

to two transportation trees. Let its corresponding column in the A1 part of 

A in 6.2.1 be given by a. Consider the representation vector y of a in 
-1 

terms of B11 , i.e., y = B11 a. Theorem 3.4.4 says that there is at least 

one refining or blending process in B11 which has a nonzero coefficient in 

the representation vector y. Consequently, column a can be interchanged 

with a column of B~1 such that the new B11 is again nonsingular. Hence we 

see that in performing such an interchange the number of transportation 

processes in B11 increases by one and the current number of transportation 

processes in B11 cannot be maximal. 
T 

if. Suppose that every transportation process in B12 is incident to only 

one transportation tree. Consider such a process (i0 ,j 0), with corresponding 

column a in the A1 part of A in 6.2.1. Theorem 3.4.4 makes clear that a can 

be written as a linear combination of columns in Bil only. Hence we can 

only interchange column a with a column currently contained in Bi1 (that is, 

if we want to keep the new B11 nonsingular). In performing such an 

interchange the number of transportation processes in B 11 remains the same. 

Moreover, note that if we would perform such an interchange the nodes i 0 

and jO both still belong to one transportation tree. Hence there is no use 

in considering a number of subsequent interchanges in order to achieve a 

new B11 with more transportation processes then the current one. □ 

We can use Theorem 6.2.3 to accomplish that, in every iteration of the 

Simplex algorithm of the previous subsection, the number of transportation 

processes in B11 is maximal. For this purpose we only have to adapt the 

update step of the Simplex algorithm. Note that, in using the initialization 
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discussed in Subsection 6.2.2, B11 initially consists of transportation 

processes only. 

Consider the described possibilities of the update step in Subsection 6.2.2. 

A. The leaving variable xs is a non-key variable 

After performing the basis update consider the two possible cases 

(a) a transportation process has entered the basis 

Determine whether this process is incident to two different transporta­

tion trees. 

If so, determine its representation in terms of B11 and perform an 

interchange with a column of the B~1 part. Update the working bases 

and the representative forest in the way described earlier. Obviously 

the size of the processing working basis is reduced by one. 

Otherwise, keep the partition in the way it is now. There is no use in 

inspecting the other transportation processes currently contained in 
T the B12 part, since they all still have entries in only one trans-

portation tree. 

(b) a refining or blending process has entered the basis 

Here no favourable interchange is possible. 

B. The leaving variable x is a key variable 
. s 

Consider the interchange phase 

(a) 
-1 

vector ;>._' (the s th row of B11 B12J is a row of zeros. 

No interchange is possible. 

(b) vector;,._, is not a row of zeros 

(a) a transportation process leaves the basis 

This leaving transportation process corresponds to a transportation 

arc which is contained in some transportation tree, say Ti. In 

leaving out this arc the transportation tree Ti splits up in two 
1 2 new trees, say Ti and Ti· Test whether there is any transportation 

process in the B~2 part, which is incident to both T! and T~. 

If so, interchange the corresponding non-key variable with the 

leaving xs. 

Otherwise xs must be interchanged with a non-key refining or 

blending process. 
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(8) a refining or blending process leaves the basis 

In this case xs can only be interchanged with a non-key refining 

or blending process. 

Note that in all possible cases we have to perform at most one additional 

interchange of columns.in order to accomplish that the number of transporta­

tion processes in Bl1 is maximal, given the basis B. 
As miqht be expected, the size of the processing working basis increases by 

one, remains the same or decreases by one in every iteration of the Simplex 

algorithm. 

6.2.4. An extension and a comparisort with Simplex SON 

We have noted in Section 5.3 that the Simplex PRON appraoch of Section 3.5 

can be adapted to solve problems of the form 5.1.1-5.1.3,5.3.1. Hence we 

immediately see that the approach of the Subsections 6.2.2 and 6.2.3 can in 

fact be applied to LP /embedded - pure - network problems. These are LP-

problems of the form 

6.2.30. minimize ci x 1 + c2 x2 

6.2.31. All xl + A12 x2 = bl 

6.2.32. .A21 xl + A22 x2 b2 

6.2.33. 0 $ xl $ ul 

6.2.34. 0 $ x2 $ u2 

where matrix A11 is an m x n matrix, which reflects a pure network 

structure, and A12 , A21 and A22 are general matrices. The number of 

constraints in 6.2.32 is k. 

GLOVER & KLINGMAN [1981] developed the Simplex SON algorithm to solve LP­

problems of the form 6.2.30-6.2.34. It appears that the Simplex PRON 

approach of this section and Simplex SON use similar ideas at several 

points. At other points they are different. We briefly discuss the 

differences and similarities between the current Simplex PRON approach and 

Simplex SON. 

In the Simplex PRON procedure we gave a processing network interpretation 

to the columns in A12 in 6.2.31. We developed a partitioning for a basis in 

such a way that we could work with two working bases and the representative 
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forest. The general working basis has a fixed size k (i.e., the number of 

constraints in 6.2.32). The.processing working basis has a variable size q 

(i.e., the number of nontransportation processes in B11 ), and is maintained 

in block triangular form. 

In Simplex SON however, the columns in A12 are considered as arbitrary 

columns. The partitioning of a basis is such that all the steps of this 

algorithm can be performed by a single working basis, and the so-called 

master basis tree. In the same situation as described above for the Simplex 

PRON algorithm, the working basis in the Simplex SON algorithm has a 

variable size (k + q) . This working basis is not maintained in block 

triangular form. 

The master basis tree is in fact the same concept as the representative 

forest, which we used: if we introduce an additional node (m + 1) (GLOVER & 

KLINGMAN call it the master root) and replace the root-arcs of the trans­

portation trees in the representative forest by arcs from node (m + 1) to 

the roots of these transportation trees, we have in fact a master basis 

tree. 

Finally we note that GLOVER & KLINGMAN [1981] developed similar ideas as we 

did for maintaining the number of transportation processes in B11 as large 

as possible, given B (Subsection 6.2.3). 

6. 3. Ge.n.eJr.ilize.d plWC!.eJ.i.6-Lng ne.:lwOJt/u, wUh adcU:Uonai. Une.aJt C!.MUi:tlr..abi:tJ., 

We can easily generalize the ideas of Section· 6.2 in order to solve 

generalized processing network problems with additional linear constraints. 

Whenever pure-network techniques or pure processing-network techniques were 

used in that section,they should be replaced by generalized-network 

techniques or generalized processing-network techniques as explained in 

Section 2.5 and Chapter 4. 

Such an approach can be used to solve LP/embedded-generalized network 

problems of the form 6.2.30-6.2.34 where matrix A11 in 6.2.31 denotes a 

generalized network structure. 

Finally we note that we can keep the transportation part in B11 as large as 

possible in a similar way as done in Subsection 6.2.3. 

Using Theorem 4.4.3 we can prove a similar theorem as Theorem 6.2.3. 
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7. APPLICABILITY ANV EXPECTEV COMPUTATIONAL RESULTS 

This final chapter briefly discusses where the procedures developed can be 

applied in solving real-world inqustrial or managerial problems. Also the 

expe~ted computational performance is considered. 

7.1. AppUeab,U,Uy 

A first class of problems to which the processing network procedures can be 

applied are of course those which have a natural meaning as a processing 

network problem (with or without additional linear constraints). 

In Chapter 1 the following fields of application are already mentioned: 

1. production scheduling in process industry, 

2. assembly models, 

3, energy models, 

4. economic models. 

With respect to the latter class we note that they often can be regarded as 

so-called (pre-) Leontief substitution models considered a.o. by VEINOTT 

[1968] and KOEHLER, WHINSTON & WRIGHT [1975]. 

A Leontief matrix has the property that it contains exactly one positive 

element in each column. Consequently, a Leontief substitution problem can 

be seen as a generalized processing network problem with positive multi­

pliers and only refining nodes. 

Another class of problems which can be interpreted as processing network 

problems is the class of 

5. Markov-control problems, 

where quite obviously transition probabilities correspond to processing 

coefficients in a processing network. It is remarked that Markov-control 

problems can often be considered as (pre-) Leontief substitution models, 

see KOEHLER, WHINSTON & WRIGHT [1975] and also KALLENBERG [1980]. 
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Secondly, the procedures developed can in principle be applied to LP/ 

embedded pure or generalized network problems (see Subsection 6.2.4 and 

Section 6.3), since they put an emphasis on exploiting single commodity 

network structure. There are many practical LP-problems which have a 

relatively large embedded network component. As GLOVER & KLINGMAN [1981] 

put it: 

"In general it is our experience that most large-scale LP-problems involving 

production scheduling, physical distribution, facility location, personnel 

assignment or personnel promotion contain a large embedded network component, 

sometimes consisting of several smaller embedded networks." 

Thirdly, as already pointed out in Chapter 5, the procedures of Chapters 3 

and 4 can in principle be used as a sparse matrix approach for general 

LP-problems. They fit very well in the "compact-inverse" vision of BASTIAN 

[1980]. 

Finally,we refer to a case study performed by the working group "Financial 

Planning and OR" of the Dutch OR-Society (SOR), KOENE et al. [1981]. 

This study considers an LP-formulation of the bank balance problem of a 

general Dutch bank corporation. It is a multiperiod model with certain 

network flow characteristics: assets can be put out and liabilities can be 

attracted for a number of periods, such that their totals are in balance in 

each period. However, a bank is not totally free to do this as it pleases 

but has to satisfy certain requirements with respect to liquidity, 

solvability etc. The study shows that it is very well possible to picture 

out the structure of this model by means of a generalized processing­

network diagram (cf. the discussion on visualization in Section 5.4). 

7.2. Expected eompu;ta,t:,Lona1 ~e-6uLt6 

Unfortunately at this time no computational results can be reported, simply 

because no implementation has been carried out yet. 

Nevertheless, in view of the fact that the approaches here are much in the 

same spirit as the Simplex SON approach of GLOVER & KLINGMAN [1981] and the 

fact that in addition the typical processing network structure is used 

(block triangularization) we expect that the approaches developed here 

should perform better than Simplex SON. GLOVER & KLINGMAN report encouraging 

preliminary results on some special classes of LP/embedded-pure-network 

problems, but stress that an exhaustive computational study is required 

before any serious conclusions can be drawn. 
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adjacent 

aggregated graph 

"allll;ost" pure processing network 

arc 

backward arc 

basic feasible solution 

basic solution 

basis 

basis graph 

blending arc 

blending node 

blending process 

block triangularization 

capacity bounds 

connected 

conservation of flow 

cycle 

cycle factor 

cycle-path vector 

cycle vector 

degeneracy 

directed graph 

elementary matrix 

embedded network 

forest 

forward arc 

gain 

generalized network 

generalized processing network 

general working basis 

Hall's theorem 
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incident 

interchange 

key variable 

multicommodity network 

multiple arc 

multiplier 

multiplier degeneracy 

network 

node 

non-key variable 

one-triangular matrix 

order of a process 

path 

processing arc 

processing coefficient 

processing network 

processing node 

processing working basis 

pure network 

pure processing network 

quasi-tree 

refining arc 

refining node 

refining process 

representation vector 

representative arc 
J 

representative forest 

representative node 

representative spanning tree 

root 

root-arc 

root-path vector 

rooted tree 

self-loop 

side activity 

side constraint 

Simplex multipliers 
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Simplex PRON 

Simplex SON 

spanning forest 

spanning tree 

transportation arc 

transportation node 

transportation process 

transportation quasi-tree 

transportation tree 

tree 

triangular matrix 

visualization 

working basis 
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