


CWI Tracts· 

Managing Editors 

J.W. de Bakker (CWI, Amsterdam) 
M. Hazewinkel (CWI, Amsterdam) 
J.K. Lenstra (CWI, Amsterdam) 

Editorial Board 

W. Albers (Maastricht) 
P.C. Baayen (Amsterdam) 
R.T. Boute (Nijmegen) 
E.M. de Jager (Amsterdam) 
M.A. Kaashoek (Amsterdam) 
M.S. Keane {Delft} 
J.P.C. Kleijnen (Tilburg) 
H. Kwakernaak (Enschede) 
J. van Leeuwen (Utrecht) 
P.W.H. Lemmens (Utrecht) 
M. van der Put (Groningen) 
M. Rem (Eindhoven) 
A.H.G. Rinnooy Kan (Rotterdam) 
M.N. Spijker (Leiden) 

Centrum voor Wlskunde en Informatica 
Centre for Mathematics and Computer Science 
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

The CWI is a research institute of the Stichting Mathematisch Centrum, which was founded 
on February 11, 1946, as a nonprofit institution aiming at the promotion of mathematics, 
computer science, and their applications. It is sponsored by the Dutch Government through 
the Netherlands Organization for the Advancement of Pure Research (Z.W.O.). 



CWI Tract 36 

Proceedings of the first international 
conference on industrial and applied 
mathematics (ICIAM 87) 

edited by 
A.H.P. van der Burgh 
R.M.M. Mattheij 

Contributions from the Netherlands 

Centrum voor Wiskunde en Informatica 
Centre for Mathematics and Computer Science 



ISBN 90 6196 318 4 

Copyright© 1987, Stichting Mathematisch Centrum, Amsterdam 
Printed in the Netherlands 



PREFACE 

Through ICIAM 87 four major applied mathematics organisations, GAMM, IMA, SIAM 
and SMAI, from Germany, Great Britain, North America and France respectively took 
the initiative of organizing a conference on industrial and applied mathematics with a 
really international character. When the first ideas were being shaped the organizers 
became gradually convinced that this event would gain interest and importance when 
other organisations would be invited to join as associate members. In The Netherlands, 
being a smaller country with no special organisation for applied mathematicians as 
such, a Netherlands Recommendation Committee for ICIAM (NRCI) was formed for this 
purpose, in order to foster the conference locally. 
From the large number of reactions to the call for contributions, it became clear that 
ICIAM 87 promised to become a major event indeed. Therefore the NRCI decided to 
invite the Dutch contributors to prepare a manuscript and have it published in this 
volume, which hopefully presents an interesting and fairly representative account of 
present day research activities in applied and industrial mathematics. 
The publication of this volume is motivated not only by the feeling that efforts being 
put in preparing a conference contribution should be honoured by more than a short 
talk (the responce of which necessarily being limited) but also by the idea that It would 
be good to show the liveliness of research in industrial and applied mathematics in The 
Netherlands, both at universities and at industrial laboratories. Of course the latter fact 
might be similarly true elsewhere. However for smaller countries it is nearly impossible 
to organize activities like those at ICIAM on a national basis. Perhaps this is one of the 
reasons why this conference has attracted such a tremendous interest. It is certainly 
also a reason to hope that ICIAM will become a regularly organised event. 
Finally it is a pleasure to thank the contributors who responded so positively to our 
request to prepare their paper on such a short notice. We also wish to thank the 
referees for their valuable advices and their understanding for very tight time 
constraints. Last but not least we acknowledge the Wiskundig Genootschap for their 
financial support. 

April 1987, 

A.H.P. van der Burgh, R.M.M. Mattheij. 



TABLE OF CONTENTS 

Applied Mathematical Analysis 

H. Bart, I. Gohberg, M.A. Kaashoek, 
The State Space Method in Problems of Analysis ........................... . 
F.P.H. van Beckum, E. van Groesen, 
Discretizations Conserving Energy and other Constants of the Motion . . . . . . . . 17 
C.G.A. van der Beek, A.H.P. van der Burgh, 
On the Periodic Wind-Induced Vibrations of an Oscillator with Two Degrees of 
Freedom.................................................................. 37 
J.R. Chan Hong, D. Hi/horst, 
The Interface between Fresh and Salt Groundwater.......................... 61 
P. de Jager, J. W. Reyn, 
Phase Portraits for Quadratic Systems with a Higher Order Singularity. I. Third 
and Fourth Order Points with Two Zero Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . 85 
S. W. Rienstra, 
Analytical Approximations for Offshore Pipelaying Problems . . . . . . . . . . . . . . . . 99 
G.Sweers, 
Some Results for a Semi linear Elliptic Problem with a Large Parameter....... 109 
N.M. Temme, 
Recent Problems in Uniform Asymptotic Expansions of Integrals............. 117 
F. Verhulst, 
Symmetry and Integrability................................................. 129 

Scientific Computing 

T.J. Dekker, W. Hoffmann, 
Numerical Improvement of the Gauss-Jordan Algorithm . . . . . . . . . . . . . . . . . . . . . 143 
P.P.N. de Groen, M. van Veldhuizen 
An Introduction to the Stabilized Galerkin Method........................... 151 
C.R. Traas, R.H.J. Gmelig Meyling, 
Piecewise C1-Approximation with Application to Water/Steam 
Thermodynamic Functions................................................. 159 
M. van Veldhuizen, 
On Polygonal Approximations of an Invariant Curve.......................... 169 
P. Wessellng, 
A Multigrid Method for Elliptic Equations with a Discontinuous Coefficient... 173 

Contol Theory and Signal Processing 

C.P.M.J. Baggen, 
Applications and Problems of Error Correction Coding with respect to Storage 
Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 



M. Hazewinkel, 
Introduction to Nilpotent Approximation Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 
J. Molenaar, H. Visser, 
The Kalman Filter in Dendroclimatology . . .. .. .. . .. . . . .. . . . . . . . . . .. . . .. . .. . . 203 
J.B.M. Peek, 
Some Features of the Compact Disc Digital Audio system . . . . . . . . . . . . . . . . . . . 215 
R.N.J. Veldhuis, A.J.E.M. Janssen, 
Adaptive Restoration of Unknown Samples in Certain Discrete-Time signals; 
Mathematical Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 

Computational Geometry 

V. Akman, 
Steps into a Geometer's Workbench........................................ 257 

Applied Probability and Statistics 

J. van der Pol, H.P.M. Essink, R. de Jager, 
On the Use of Digit Distributions in Pattern Recognition . . . . . . . . . . . . . . . . . . . . . 277 
C.P.J.M. Tiemersma-Thoone, B.J.R. Scholtens, K. Du!ek, 
A Stochastic Description of Copolymerisation and Network Formation in a 
Three-Stage Process....................................................... 295 

Mathematics of Natural Sciences 

F.H.P. van Beckum, 
Numerical Simulation of Hydraulic Crack Propagation . . . . . . . . . . . . . . . . . . . . . . . 323 
J.A. Geurst, A.J.N. Vreenegoor, 
Variational Approach to Bubble Deformation in Two-Phase Flow . . . . . . . . . . . . . 335 
J. Grasman, H.E. de Swart, 
Low Order Spectral Models of the Atmospheric Circulation . . . . . . . . . . . . . . . . . . 351 
E. van Groesen, R. Verstappen, 
On the Variational Formulation of Hydrodynamic Lubrication Theory......... 361 
R. van der Hout, 
A Mathematical Model for a Falling Film Evaporator......................... 375 
P. van Mouche, 
Clustering and Nesting of Energy Spectra................................... 389 

Software and Hardware Aspects 

F.J. Heerema, W. Loeve, J.J.P. van Hulzen, 
Tools for the Development and Usage of Industrial Mathematical Software.... 409 





Proceedings ICIAM 87, Paris-La Villette, June 29-July 3 1987 

The State Space Method in Problems of Analysis 

H. Bart 
Econometric Institute 

Erasmus University 
P.O. Box 1738, 3000 DR Rotterdam, The Netherlands 

I. Gohberg 
Department of Mathematical Sciences 

The Raymond and Beverly Sackler 
Faculty of Exact Sciences 

Tel-Aviv University 
Ramat-Aviv, Israel 

and 

M.A. Kaashoek 
Department of Mathematics and Computer Science 

Vrije Universiteit 
P.O. Box 7161, 1007 MC Amsterdam, The Netherlands 

ABSTRACT 

A review is given of applications of the state space method from systems 

theory in analysis. The applications concern minimal factorization, 

Wiener-Hopf integral equations and Szego limit formulas. 
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O. INTRODUCTION 

Any rational nxn matrix function W(A), which is analytic at infinity, 

can be written in the form: 

( 0.1) 

Here A is a square matrix of which the order m may be different from n, 

Furthermore, B, C and Dare matrices of sizes mxn, nxm and nxn, 

respectively. Expressions of the type (0,1) are called realizations. 

The idea of realization originated in mathematical systems theory 

and has led to a new approach which is now known as the state space 

method (see the books [16] and [17]). The representation (0.1) allows 

one to reduce analytic problems for rational matrix functions to linear 

algebra problems involving only the four matrices appearing in the 

realization. This connection is also a natural source of new questions 

about finite and infinite dimensional operators. 

In this paper we review three applications of the state space method 

in analysis. The problems we shall deal with concern minimal 

factorization, Wiener-Hopf integral equations and Szego limit formulas. 

A few remarks about notation and terminology: The nxn identity 

matrix is denoted by In, or simply I. Whenever this is convenient, 

matrices are identified with linear operators. The null space of a 

matrix Mis denoted by Ker M, the range by Im M, We user/ for the 

adjoint (or conjugate transpose) of Mandi for the complex conjugate of 

a complex number A• The symbol$ denotes a possibly non-orthogonal 

direct sum and span V stands for the linear hull of a set v. 

1. MINIMAL FACTORIZATION 

In this section we consider rational nxn matrix functions. We shall 

always assume that these functions are proper (i.e., analytic at=) and 

have the value In .!!!. m, Up to a simple Mobius transformation and 

normalization (to In) at=, this amounts to requiring that these 

functions are regular, i.e., they have a determinant that does not 

vanish identically, 



Let W(A) be a rational nxn matrix function. The McMillan degree of 

W(A), written 6(W), is the number of poles of W(A) counted according to 

pole multiplicity. By definition, the pole multiplicity of a pole AQ of 

W(A) is the rank of the block Hankel matrix 

W_l w_z w 
-p 

w_2 w_3 w 0 -p 

w 0 0 -p 

where (A - AQ)- 1w_ 1 + ••• +(A - AQ)-Pw_P is the principal part of the 

Laurent expansion of W(A) at AQ• 

The McMillan degree is sublogarithmic: If W(A) 

(1.1) 

Of special importance are factorizations W(A) = w1(A)Wz(A) such that in 

(1.1) equality holds (no "pole/zero cancellations"). These are called 

minimal factorizations. 

PROBLEM 1.1. Describe all possible minimal factorizations _££ ~ given 

rational nxn matrix function W(A). 

To deal with this problem, we apply the state space method and write 

W(A) in the form (0,1) with D = In, i.e. 

(1.2) 

where A is an mxm matrix, Bis an mxn matrix and C is an nxm matrix. We 

shall assume that the order m of the matrix A is taken as small as 

possible, so (1.2) is what is called a minimal realization of W(A), As a 

matter of fact this amounts to requiring that mis equal to the McMillan 

degree 6(W) of W(A), The well-known state space isomorphism theorem 

asserts that minimal realizations of a given function W(A) are unique up 

to similarity transformations. 

3 
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THEOREM 1.2 ([6l). Let the rational nxn matrix function W().) ~ given by 

the minimal realization 

and~ Ax = A - BC. Then there..!!_~ one-to-one correspondence between 

the minimal factorizations W( >.) = w1 ( >.)W2( >.) .!!! ~ hand and the pairs 

M, Mx ~ subspaces of ci1 satisfying 

.!!! the other. The correspondence..!!_ given~ the expressions 

W2(>-) In+ crr(>-1m - A)- 1B, 

W1(>-)-l = In - C(1m - rr)(>.1m - Ax)- 1B, 

W2(>-)-l = In - C(>-Im - Ax)-lilB, 

where rr ..!!_ the projection of <lJII onto Mx along M. 

We conclude this section with two examples. 

EXAMPLE 1.3. Let 

Then (1,2) is a minimal realization for W(>.), provided that one takes 

Clearly BC= O, and so Ax= A - BC= A. The matrix A has only one non

trivial invariant subspace, It follows that W(>.) is irreducible, i.e., 

W(>.) does not allow for any non-trivial minimal factorization. A similar 

argument works when in the definition of W(>.) the entry ,.- 2 is replaced 

by ,_-m, for any positive integer m. 



EXAMPLE 1.4. Let 

(1.3) W().) 

Then (1,2) is a minimal realization for W(~), provided that one takes 

-~ ~ l· 
0 -i n 

Define Mand Mx by 

C = [ -3 
1 

0 
0 

Then Mis A-invariant, Mx is Ax-invariant and en= Me Mx. Here, as 

usual, Ax= A - BC. The projection rr of en onto Mx along Mis given by 

One can now apply Theorem 1,2 to compute the following non-trivial 

minimal factorization of W(~): 

(::::21 
i • 

1----'--
3(Hi)2 

5 



6 

References: For details and additional material, see [l), [6], [8], [14] 

and [23]. 

2. THE WIENER-HOPF INTEGRAL EQUATION 

Consider the (vector-valued) Wiener-Hopf integral equation 

( 2.1) 

with k € 

1 ~ p ~ 

00 
~(t) - f k(t-s)~(s)ds 

0 
f( t), t ~ o, 

nxn n 11 (-00,00) and f, ~ € L [O,oo). Here n and pare fixed, 
P n 

co. We say that (2.1) is uniquely solvable (in L [O,co)) if for 

every fin 

Ln[O,oo). 

n P 
L [O,oo), the equation (2.1) has a unique solution~ in 

p 

p 

PROBLEM 2. 1. Give necessary and sufficient condl tions for ( 2. 1) .!£_ be 

uniquely solvable and describe the solution. 

The problem may be reformulated in terms of the symbol of the 

equation (2.1), that is the function 

W{)..) 

co 

I - f eiAtk(t)dt. 
n 

-oo 

Note that W(A) is a well-defined continuous nxn matrix function on the 

extended real line. The value of W(A) at infinity is In• A (right) 

canonical Wiener-Hopf factorization~ W( A) with respect .!£_ the 

(extended) real line is a factorization 

(2.2) 

involving Wiener-Hopf factors having the following properties: 

(i) W_(A) is continuous on the closed lower half plane~ .. 

(including the point co) and analytic on the open lower half 

plane, 



(ii) + W+(X) is continuous on the closed upper half plane ~m 

(including the point m) and analytic on the open upper half 

plane, 

(iii) det W_(X) * O, X € ~-, 
m 

It will always be assumed that W_(X) and W+(X) are normalized to In at 

m. With this extra assumption canonical Wiener-Hopf factorization is 

unique, provided it exists. We are now ready to present the 

reformulation of Problem 2.1. 

PROBLEM 2.2. Give necessary and sufficient conditions for the symbol 

W(A) ~ (2.1) .!£_ admit canonical Wiener-Hopf factorization and describe 

the Wiener-Hopf factors. 

The equivalence of Problems 1 and 2 was established by I. Gohberg 

and M.G. Krein [12]. 

In the case when W(X) is rational, we can apply the state space 

method to get the solution of Problems 2.1 and 2.2 explicitly in terms 

of a realization. Our first theorem concerns Problem 2.2. 

THEOREM 2.3 ([1, Section 4.4]). Let 

(2.3) W(X) 

~ ~ realization ~ W( X) such that A has no eigenvalues on the real 

line, and put Ax= A - BC. Then W(X) admits (right) canonical Wiener

Hopf factorization with respect.!£_ the real line ..!!_ and only g_ 

(2) ~m = M $ MX, 

where Mis the (direct)~~ the generalized eigenspaces ~ A 

corresponding .!£_ the eigenvalues ~ A located in the ~ half plane 

and Mx ~ the (direct) sum~ the generalized eigenspaces ~ Ax 

corresponding .!£_ the eigenvalues of Ax located in the lower half plane. 

7 
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In that case the canonical Wiener-Hopf factorization has the form (2.2) 

with 

W_().) = In+ C().1m - A)- 1(1m - JI)B • 

W+().) = In+ cJIU1m - A)- 1B, 

w_ (). )-1 I -n C( 1m - JI)( ).1m - Ax)-lB, 

W+(;i.)-1 = I -n C().1m - Ax)-lJIB. 

Here JI ~ the projection of c8 onto M along Mx. 

Example 1.4 may be seen as an illustration of Theorem 2.3. Indeed, 

the subspaces Mand Mx featuring there are of the type described in 

Theorem 2.3 and accordingly the factorization obtained in Example 1.4 is 

a canonical Wiener-Hopf factorization with respect to the real line. 

Theorem 2.3 deals with right canonical Wiener-Hopf factorization. An 

analogous result holds for left factorization, where the order of the 

factors W_(;i.) and W+().) is interchanged. There are also similar results 

for contours in the Riemann sphere other than the (extended) real line 

(cf. the end of Section 3 below). 

Next we turn to Problem 2.1. Again there is an explicit solution 

when the symbol W().) of the Wiener-Hopf integral equation (2.1) is 

rational, 

THEOREM 2,4 ([1, Section 4.5]). Assume that the symbol W().) .£!.. the 

Wiener-Hopf integral equation (2.1) ~ rational, and let (2.3) be~ 

realization of W().) such that A has no poles on the real line. Then 
n (2. 1) ~ uniquely solvable in LP[O,m) .!!_ and only.!!_ conditions (1) and 

(2) .£!.. Theorem 2.3 ~ satisfied. In that~ the unique solution of 

(2.1) ~ given by 

(2.4) 

(2.5) 

t(t) = f(t) - f y(t,s)f(s)ds, 
0 

t ~ O, 

X X 
_ iCe-itA JieisA B, s < t, 

y(t,s) 
X X 

iCe-itA (I -JI)eisA B m , s > t, 



where II ~ the projection of c'1 onto M along Mx. 

Condition (1) in Theorem 2.3 is equivalent to requiring that 

det W(A) * 0 for A on the real line. If the symbol W(A) of the equation 

(2.1) is rational, there does exist a realization (2,3) of W(A) such 

that A has no eigenvalues on the real line. Indeed, W(A) has no poles on 

the real line, and for instance any minimal realization will do. 

EXAMPLE 2,5, Consider the Wiener-Hopf integral equation (2,1), where 

k(t) t < o, 

k(t) • r-
3 -t 7 -t 3 -t 
2e 4ie + zite 

1 -t 1 -t .!ite-t 2e 4ie - 2 

t > o. 

Then the symbol W(A) is given by (1.3), So (2,3) is a (minimal) 

realization for W(A), provided that A, Band Care as in Example 1,4, 

From Theorem 2,4 and the remark made after Theorem 2,3 it is now clear 
2 that the integral equation is uniquely solvable in L [O,m), Further, the 
p 

solution is given by (2.4) with y(t,s) as in (2.5). Note that 

and hence 

Ax = A - BC = [ ~ 
-1 

2e + 2e 
-itAX -ie2t + ie -2t e 

-1 
0 
0 ~ l · -i 

[ l 2t l -2t 

.!ie2t - .!ie - 2t + lie -t 
6 2 3 

.!ie 2t - .!ie-2t 
4 4 
1e2t + .!e-2t 
2 2 
1 2t 1 -2t 1 -t 

-F 4e + 3e 

0 

0 } 
-t e 

isAx 
A similar expression holds of course fore just replace t by -s. 

Since the projection II was already described in Example 1.4, all 

9 
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ingredients for calculating y(t,s) explicitly are available. We leave 

the final matrix computations to the reader. 

References: For details and additional material (also on non-canonical 

Wiener-Hopf factorization, singular integral equations, the Riemann

Hilbert boundary value problem and the infinite dimensional case), see 

[l] - [5] and [9]. 

Consider the situation of Theorem 2.3, and assume in addition that 

for each real X the matrix W(X) is positive definite, i.e., 

:PW(X)x > O, -co < X < co; 

It is well-known that under these conditions the matrix function W(X) 

admits canonical Wiener-Hopf factorization. Let us explain how in this 

context the state space method works. 
- * First observe that W(X) = W(X) • So besides the realization (2.3), 

we have 

(2.6) 

Assume now that (2.3) is minimal. Then (2.6) is a minimal realization 

too, and the state space isomorphism theorem guarantees the existence of 

a unique matrix H such that 

( 2. 7) c!' = HB, 

Taking adjoints and using the uniqueness of H, one sees that His 

selfadjoint (cf. [7] and [10]). The first identity in (2.7) means that A 

is H-selfadjoint, i.e., A is selfadjoint with respect to the (possibly) 

indefinite inner product :PHy induced by H. 

Next we follow A.C.M. Ran [19]. Observe that (2,7) implies that Ax 

is H-selfadjoint too. So 

(2.8) 

Here, as usual, Ax= A - BC. Since det W(X) t O for all real X, we have 



that Ax has no eigenvalues on the real line. Define Mand Mx as in 

Theorem 2.3. The identities (2.8) yield 

.J.. 
(2.9) H[M] M 

..I.. X ..L. 
where M and (M ) are the orthogonal complements of M and Mx, respec-

11 

tively. In other words Mand Mx are H-neutral. Take X € M 
X 

n M • Then 

Ax € M, and so x*HAx = o. Similarly x*HA*x = o. This leads to 

x*HBCx = o. Now RB = c* • and we get x*C* Cx = O. Thus Cx = 0 and 

Ax= Axx €Mn Mx. Hence Mn Mx is A-invariant and Mn Mx c Ker C. 

Since (2.3) is minimal, the largest A-invariant subspace contained in 

Ker C is (O). So Mn MX = (O). 
..L X X ..L. 

From (2.9) it is clear that dim M = dim M and dim M = dim(M) • 

But then dim M == dim Mx = ½m. Together with Mn Mx = (0), this gives 

q::111 == M-8 ~. So our hypotheses imply that condition (2) of Theorem 2.3 

is satisfied ("automatic matching"). As a result, we obtain a canonical 

Wiener-Hopf factorization involving factors W_(A) and W+(A) as 

described in the theorem. Analysis of the factors reveals that the 
- * factorization is sliemetric, i.e., W_(A) == W+{A) • 

References: For additional material (also on symmetric non-canonical 

Wiener-Hopf factorization), see [9] and [13]. 

Another case of "automatic matching" (but then in an infinite 

dimensional context) appears in linear transport theory (see [1, Ch. 6], 

[15] and [18]). 

3. SZEGO LIMIT FORMULAS 

Let W(A) be a continuous nxn matrix function on the unit circle IAI 1, 

and introduce 

where ••• , w_ 2, w_ 1, w0, w1, w2, ••• are the (matrix) Fourier 

coefficients of W(A). Under additional assumptions on W(A), the strong 
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Szego limit theorem holds true, that is 

(3.1) 

exists. Here 

( 3. 2) 
1 ~ it 

I: 1(W) = exp[2ir f log det W(e )dt]. 
-~ 

The additional assumptions alluded to include 

(3.3) 

(3.4) 

i.e., the winding number of the curve W(eit), -~ < t <~with respect to 
= = 

the origin is zero. Under these circumstances, the right hand side of 

(3.2) is well-defined. 

PROBLEM 3. 1. Describe, for.!. rational nxn matrix function W(A) having no 

poles on the unit circle, the Szeg!S constants I:1(W) and I:2(W) in terms 

of a realization. 

We shall assume that W(A) is normalized to In at the origin. Thus 

W(A) can be written as 

(3.5) 

where A has no eigenvalues on the unit circle. Condition (3.3) then 

amounts to requiring that Ax= A - BC has no eigenvalues on the unit 

circle too, 

THEOREM 3.2 ([II]). Let the rational nxn matrix function W(A) ~ given 

.EX,. (3.5), and suppose that neither A nor Ax has eigenvalues~ the unit 

circle. Assume, in addition, that (3.4) ~ satisfied. Then the limit~ 

the right hand side 2!._ (3.1) exists, and the SzegB constants I: 1(W) and 

I:2(W) are given .EX.. 



~~~ projections P and Px are defined~ 

P = I - - ( H - A ) d).. X 1 { X -1 
m 2,ri 1,. .. 1 m 

Here as usual Ax = A - BC. ----
Put V = PPx + (Im - P)(Im - Px), where P and Px are as in 'Theorem 

3.2. 'Then E2(W) = det V. Note that det V * 0 if and only if 

13 

Hence E2(W) * 0 if and only if W().) admits both left and right canonical 

Wiener-Hopf factorization with respect to the unit circle (cf. Section 

2). In that case (3.1) implies another Szeg8 limit formula, namely 

1 
it (3.6) lim J\(W) = E1(W). 

k+oo 

By way of illustration, we present a simple example. 

EXAMPLE 3.3. Consider the (scalar) rational function 

,.2 + 2,. + 1 
2 

W().) • 2 5 
). - 2,. + 1 

'This function can be written in the form (3.5) with 

A= C = [ -i 20] 
3 • 
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We now have 

[ 13 -;o l 
BC• ; 

Ax A-
-14 
3 

and 

[; : l · [-;• ;o l p PX 
-10 25 
9 9 

where P and Px are as in Theorem 3.2. It follows that 

25 
l:2(W) = 9° 

Since i: 2(W) * O, the identity (3.6) holds true. 

References: For details and additional material (also on the Kac

Achiezer formulas, the continual analogues of the Szego formulas), see 

[11], [20] - [22] and [24] - [26]. 
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Abstract 

VarioL1s evolution equations from mathematical physics conserve one or 

more integrals (constants of the motion; e.g. the energy) and have solu

tions in the form of steadily propagating waves (e.g. solitairy waves). 

In spatial discretizations these properties are generally lost. However, 

observing that the properties are a consequence of a certain variational 

structure (Poisson structL1re) of the evolution equation, we derive dis

cretizations in such a way that they inherit this structure. Consequently 

the constants of the motion and the existence of steadily propagating 

waves are conserved. 

Calculations are shown for the Korteweg-de Vries equation as an example. 

Introduction 

Many numerical methods for evolutionary partial differential equations 

treat the discretization in space and that in time as two separate and 

consecutive operations. We will focus in this paper on the spatial dis

cretization. Generally speaking this leads to a system of ordinary dif'

ferential equations in time. Specifically, let the partial differential 

equation be given as 

( 1) c\u = Ku 
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where K is some (non-)linear mapping in an infinite dimensional space V, 

and u(t) e V. A spatial discretization of (1) wilh ~e based on approxi

mating the elements of V, i.e. on a projection u + l uksk of V, onto a N

dimensional subspace B • [s1, ••• ,sN], through which the problem can be 

reformulated in B, or, equivalently, in the space V of N-dimensional 
~ 

vectors u representing elements of B. With an appropiate choice of a 

mapping K V + V the system of ordinary differential equations 

may be, in a certain sense, an approximation to (1) provided, of course, 

that requirements concerning numerical consistency, stability, etcetera, 

are fulfilled. 

In this paper we consider a class of evolution equations (1) that has a 

specific structure. As a consequence special properties will hold, such 

as (a) the existence of constants of the motion and (b) a simple charac

terization of steady states (travelling waves). The aim is to exploit the 

specific structure to find spatial discretizations that satisfy the addi

tional requirement that (2) conserves as much as possible these proper

ties, thereby anticipating that conservation of these properties does not 

decrease the numerical consistency for arbitrary solutions, while impro

ving specific features such as travelling waves. 

We will outline and demonstrate these ideas for a class of partial dif

ferential equations of the form 

(3) 

where u: [-~,~]+~is periodic, and Pis a translation invariant func

tional on V. (The extension to vector valued functions u is obvious.) As 

a particular example we will take the Korteweg-de Vries equation: 

which is of the form (3) with 
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The translation invariance that is present in (3) is fundamental for many 

of the specific properties mentioned. The aim to preserve this invariance 

almost naturally leads us to consider discretizations that are based on 

trigonometric approximation of functions. Although a formulation in the 

spectral plane could equally well be used, we present a translation in~ 

variant discretization in the physical plane, i.e. based on nodal values, 

facilitating a possible comparison with finite difference methods. 

Remark 1. We assume that the functional P is such that (3) admits only 

smooth solutions, i.e. we consider dispersive wave equations, excluding 

equations with shock wave solutions. 

Remark 2. We will be very concise here; a more elaborate treatment is 

given in Van Groesen & Van Beckum 1987. 

Remark 3. We are not going into time integration methods; for integration 

of systems of ODEs with conservation properties see e.g. Baumgarte 1973, 

Shampine 1984, Feng 1986 and Gear 1986. 

Features of the continuous equation 

In order to specify the particular properties of the continuous equation 

(3), we will first show that it admits (at least) three constants of the 

motion, and examine the underlying structure that leads to their conser

vation. The three conserved quantities are (with a name that is justified 

for some specific applications): 

(6) the total mass 

(7) the momentum 

(8) the energy 

M(u) 

C(u) 

P(u). 

Ju, 

,f 2 2u, 

The conservation of Mis a consequence of the fact that the operator 

ax is an anti-symmetric mapping (on periodic functions) and that 

ax1 O. Indeed, writing< , > for the usual L2-innerproduct: 
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-< a 1 oP > 
X ' OU 

o. 

For the conservation of P the essentiali ties are both the anti '-symmetry 

of ax and the appearance of the variational derivative ~~ in the right'

handside of ( 3): 

atP(u) = < _§.!: u > ou' t 
< _§.!: ax oP > = 0. 

ou' ou 

The conservation of C is a consequence of the translation invariance of 

P. More precisely, with TE the shift operator in V, defined by 

(9) (T u)(x) 
£ 

u(x+E) 

we suppose that 

( 1 0) P(T u) = P(u) 
£ 

for u e V 

for all u EV and all£ ER. 

For density functionals, like (5), this simply means that the density 

does not depend explicitely on x. By differentiating (10) with respect 

to£ at£= O, it follows that 

< ~~, axu > = o for all u e V. 

This leads to the conservation of C: 

atc(u) = < u, atu > = < u, a oP > = - < oP axu > • O. 
X OU ou' 

Remark 1. For linear equations, with i!: = Lu for some symmetric operator 
ou 

L, any quadratic density functional (u,Qu) for which the symmetric opera'-

tor Q commutes with a Lis conserved. 
X 

Remark 2. The structure, based on the form of the differential equation 

(3) and the translation invariance of the functional P, can be recognized 

as a Poisson structure. In this respect Mand Care Casimir functionals, 

i.e. conserved functionals that only regard the kinematics of the system 

(independent of the specific choice of the functional P). See Van Groesen 

& Van Beckum 1987. 
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The existence of three conserved quantities (which are independent in 

interesting cases) restricts the dynamics to a space of codimension 3, 

which, in an infinite dimensional space V, is only a very limited gain in 

this sense. However, a restricted, but usually interesting, class of so

lutions is completely determined by these conserved quantities and can be 

obtained by looking for critical points of one of the functionals on le

vel sets of the others. For instance, for a rather large class of func~ 

tionals P, the constrained minimization problem 

( 11 ) min { P ( u) I M ( u) = m, C ( u) = c } 

has a solution, $ say. From the translation invariance of M, C and Pit 

then follows that T£$ is also a solution for any£ e R. These functions 

T£$ satisfy the equation 

( 1 2) ~~ ( $) = >, ~~ ( $) + µ = >.$ + µ, 

where >,andµ are real Lagrange multipliers, arising as a consequence of 

the constraints. A translation of a specific solution$ uniform in time 

with velocity~>,, 

(13) U(x,t) := T>.t$(x) = $(x+>,t) 

then satisfies 

atU(x,t) = >, a $(x+>.t) = a ~p ($(x+>.t)) 
X X uU 

i.e. it is a travelling wave solution of (3), propagating undisturbed in 

shape with velocity->,. 

Remark. From general variational theory it is known that for the minimum 

value of P in ( 11), considered as a function of c at constant m, the 

derivative with respect to c is equal to the multiplier>,= >.(c). 
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Summarizing, we can say that the presence of translation invariance in 

equation (3) provides the conserved quantity c, with the aid of which 

travelling wave solutions of (3) can be found from the variational cha'

racterization (11). 

Specifically, for the Korteweg-de Vries equation,¢ is a solution of the 

eigenvalue problem 

in the periodic case it is known as a cnoidal wave; see e.g. Whitham. 

Discretization 

Like in finite difference methods, we will describe a state by function 

values at a given set of grid points xj over the interval [-11,11]. The 

concept of translation invariance, however, requires some specification 

of the behaviour in between these discrete values, i.e. we have to in

terpolate with a given set of continuous functions. Trigonometric inter'

polation will turn. out to be most natural. We start however with a gene

ral definition of discretization. 

Given a subspace B of v, spanned by a finite number of basefunctions 

B = [s1, ••. ,sN], we conceive a discretization as a projection of V on 
N A 

B: u ➔ I uksk, or equivalently, as the mapping u ➔ u of Von V, where V 
1 

is the N-dimensional Euclidian space of vectors (u1, ••• ,uN). If discre-

tization is done by collocation, e.g. with splines or trigonometric func-

tions, {uk} is to be solved from u(x.) = I uksk(x.). In the special case 
J k J A 

that skis chosen to satisfy sk(xj) = okj (Kronecker delta),uk coincides 

with the function value u(xk). 

Remark. In a certain sense finite difference methods can be included in 

this treatment; although in that case the introduction of a subspace Bis 

ambiguous, the mapping V ➔ V still applies. 
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Guided by the aim to discreti ze (3) in such a way that the desired pro

perties are conserved, we will reformulate the previous section within 

the framework of the space v. 
In order to arrive at an equation of which functionals like Mand Pare 

conserved, it is required to take a discretization for a , D say, opera-
A A X 

ting in v, with the properties: (1) D1 = O (where 1 is the discretization 

of u = 1), and (2) Dis antisymmetric. Moreover, the functional deriva

tive~ has to be discretised in such a way that it is again a variatio-
ou 

nal derivative of some function P of u i.e. a gradient with respect to 

the innerproduct < , > in V defined by restriction of the L 2-innerpro

duct of the infinite dimensional space V. The resulting equation then 

reads: 

and it is easily verified that for (14) the functions 

(15) M(u):= < u,1 > 

and 

(16) P(u) 

are conserved. Indeed: 

Do~ 
A oP A 

dtM ( u) = < dtu, 1 > < ( u), 1 > - < -,_(u), D1 > 0 
ou ou 

and 

dtP ( c1) 
oP A 

dtu 
oP A Do~(~) > = 0 = < -,_( u), > < -,_(u), 

ou ou ou 

Note that, up to now, we have "derived" the equation ( 14) only by analogy 

with equation (3), and no arguments about numerical consistency have 

been invoked. Of course, it is anticipated that if Pis chosen in a pro

per way, i.e. related to P for the given discretization of functions u, 

then (14) will be a numerically consistent approximation of (4). Before 

entering into the arguments of conserving a functional C and consequently 

the existence of discrete travelling waves for (14), let us specify the 

ideas so far in an example. 
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Example, Let us see how various discretizations work out on the simple 

linear evolution equation 

where, as throughout this paper, periodicity on ~11 s x s 11 is assumed. 

Every function 

U ( X, t) : = 1jJ ( x+t) , 

with 1jJ differentiable, is a solution to (17), i.e. every initial state 

1jJ just moves with constant speed(= -1), conserving all translation inva

riant functionals. In particular for (7) we find 

ct C = f u au= f u au=~ fa u2 = 0 t t X 2 X 

an explicit proof that C is conserved. The functional P coincides with C 

in this simple case. 

a. Finite differences, with forward differencing on a 

x. = jllx, t..x = 211/N, and u.(t) is meant to approximate 
J J 

discretization of (17), (7) and (8) we take, naively: 

( 18) 

( 19) C (t) p (t). 

Conservation of C would require 

0 t..x L UJ. dtu. 
. J 

uniform grid: 

u (x j, t). As 

which is not true for most functions u, not even for u = sin ax. The 

reason of failure is that the discretization of ox' i.e. the mapping 

uj ➔ (uj+l-uj) / t..x, is not an antisymmetric operator. 
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b. Finite differences, with central differencing: 

and C, Pas (19). In this case we find 

So C and P are conserved. Indeed, central differencing is an antisymme-

tric operator, and P fits in the variational formulation ( 14). However, 

the agreement between solutions to (20) and solutions to (17) is rather 

restricted. A complete set of solutions to (20) is: 

eik(jAX+At) and A. sin k8X 
kAX 

From this we see that every eigensolution ~(k) travels with its own speed 

and none of them with the correct speed --1. In this case the reason of 

failure is the fact .that expression (19) is not translation invariant: if 

w is the discrete representation of u after a translation: wj:• u(xj+E), 
A 2 A 2 

then in general r wj is unequal tor uj • 

c. Spectral method: truncated Fourier series. 
-inx ix inx We choose B = [e , •• , 1, e , •• , e ], and for u e B we write 

n A ik 
u(x) .; r uke x So in this case u is not a vector of function values . 

but a -n vector of Fourier coefficients with respect to the 
{e ikx}, basis For real u we have 

(22) Uk - u ~k 

For P and C we take 

A 
A 1 

A ikx)2 n 
A 2 

(23) p •C= 2 f(}: uke .. 1T I Uk 
~n 
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Translation invariance of P is an immediate consequence of Parseval' s 

identity. In the Euclidean space V we define as discretization of ax: 

(24) D = diag (-in, .. , O, i, •• , in) 

so that D corresponds with ax exactly for u e B. Dis antisymmetric, so P 

will be conserved. Equation (14) becomes: 

and an explicit proof of conservation is: 

2'Jfi 0 by (22). 

tD A 

The solution of (25) is u(t) = e u(O), and for every function u e B we 

have: 

u(x,t) 

ikx ikt A 

=Le e uk(O) = u(x+t,O), 

so every function in B travels with the correct speed -1. 

Translation invariance. Let us now return to the translation invariance 

of P as condition for conservation of c. The example, though too simple 

to distinguish between C and P, has already shown the importance of 

translation invariance. 

Translation invariance of Pis to be understood as follows. Let u e V; 

then u:= I uksk e B; perform an arbitrary translation u ➔ TEu and let the 

projection of TEu on B be denoted by w = I wksk; then 

(26) P (w) P(u) 
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must hold for every£ e R. Since the original Pis assumed to be transla

tion invariant, one can hope to transfer this property to P by defining: 

With this definition equality (26) implies 

Comparing left and right end we see that usually this equality will be 

satisfied only if w = T8 u, i.e. if T8 u e B for every£. 

Since by continuity and consistency arguments (27) is the only way to 
A A A 

define P in V, we arrive at the conclusion that P inherits the transla-

tion invariance from P provided that the subspace Bis translation inva~ 

riant. 

Translation invariance is a rather severe requirement for B; e.g. spline 

functions do not meet this condition. The case of degree 1 (piecewise 

linear interpolation) is illustrated in figure 1, showing (a) a set of 
A 

values uk = u~xk),. (b) u = l uksk e B, (c) T8 u, (d) the set of values 

wk, (e) w = l wksk. Clearly figure e is different from figure c. 

The translation invariance almost naturally leads to approximation with 

trigonometric functions, i.e. to spectral-like methods. Before presenting 

a specific example, let us first look at the travelling wave solutions of 

the discretised equation. 

A consequence of the invariance of P will be that exact travelling wave 

solutions do exist for the discretised equation (14) and that these solu

tions -just as in the continuous case- are translations of the solutions 

of the minimization problem 

(28) P(u) I M(u) = m, C(u) = c } 

which problem is nothing but the discretization of (11). Denoting a mi-
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nimizing vector by~ we now have 

( 29) D grad P(~) A D grad C(~) 

Again the multiplier>. is related to the travelling wave speed->., 

and for a family of solutions of (28), to be denoted by ~(C), it holds 

(30) A = A(C) dP(~(C)) 
= ---~-

dC 

Discretization of the Korteweg~de Vries equation. 

Having examined the general properties of translation invariant discreti

zations, we will work out a numerical example regarding the KdV~equation. 

As was explained before, and indicated already by the simple example, the 

spectral method is the most promising. On the other hand we have chosen 

to work with function values as representing a function, like in common 

finite difference methods. 

To combine these ideas we consider again: 

but now we choose another basis: the functions 

n 

ljJk(x) = 2n+1 L 
p=-n 

ip(x-xk) 
e with xk = knx, bx= 2n/(2n+1) 

satisfy ljJk (xj) 

innerproduct: 

okj (Kronecker delta), and are orthogonal in the L2-

This implies that the representation u of a function u is given by 

uj = u(xj), and that the functional C, see (7), becomes: 
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( 31) 
/:,X 

C = 2 

The discretization A of the differential operator a is an antisymmetric 
A X 

matrix, operating in V, and is found to be given by 

(-1)k 
Aj j k = - k/lx' '+ 2 sin 2 

-n s j,j+k s n, k ~ O. 

In contrast to (24) we now find a full matrix, the entries of which are 

equal along diagonals (Toeplitz-form). Another property of numerical 

interest is that the absolute values of the entries are increasing to'

wards the main diagonal. The matrix A is exact for functions in B, i.e. 
A A A A 

if u(x) • l ukijik(x) and v .. Au, then v(x) = l vkijik(x) is the derivative 

of u for all x. Consequently eEA is an exact shift in B. In fact the ex

ponential, seen as an infinite power series in A, reduces to a polynomial 

in A of degree 2n: as A is of finite order, higher powers are linearly 

dependent on lower ones. A concise illustration is found in the simplest 

case, n = 1, where 

1 
0 1 -1 

I 
A2 .. 1 

-2 1 

I A"' 73 -1 0 1 ' 3 1 -2 1 
' 1 -1 0 1 -2 

A3 • 4 -A, A • -A2, etcetera. The exponential becomes 

EA 2 E3 3 e = 1 +EA+ !:._ A2 + 31 A + ... 2 
E3 2 E4 2 .. 1 + (E - - + ... ) A + ( !:,_ - 4!+ .. ,)A 3! 2! 

= 1 + (sin E) A + (1 - cos E) A2, 

a quadratic polynomial. In particular, for E = t:,x = 2n/3 we have 

e3 • 1 + ~3 A+ 1 A2 -~nA - I 001 
2 2 

1 0 
0 1 
0 0 
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which represents an exact shift over t.x. 

To continue with the dynamics of the KdV-equation, the functional P, de

fined by (5), will be discretised according to (27): 

The last integral is invariant under permutation of subscripts and under 

shifting of all subscripts together (j,k,m-> j+1, k+1, m+1), so it is 

sufficient to calculate 

Qo . = ,J 

j k sin 2 t.x 

3n2 + 3n + 

Qo,o = 4n2 + 4n + 

Defining q = q(u) by: 

2 . 
sin n½t.x 

sin ,½t.x 

2 k 
_s_i n __ n....,2t.~) 

sin ~t.x 

we find for (14) the following system of ordinary differential equations: 

(33) 

The righthandside reflects interaction between all the components uk, as 

is usual in spectral methods. 



32 

Compared with finite difference methods we see that we miss the benefit 

of sparce matrices, but on the other hand equation (33) has the advan'

tage that it admits travelling wave solutions and that it conserves 

C, Mand P, while these quantities are exactly equal to C, M and P for u 

EB. For the sake of completeness we remind that C is given by (30), and 

M and P are: 

(34) 
n A 

M = b.x I uj, 
-n 

Numerical results. 

p /).X 

2 

We have shown how to discretise certain evolution equations, in particu

lar the periodic KdV-problem, on a given number of grid points, and how 

to discretise certain quantities in such a way that they will be conser~ 

ved in time. To illustrate the conservation numerically it will be suf

ficient to use a standard fourth order Runge'-Kutta time integration. 

The computer runs have been made using only five grid points for the spa

tial discretization. Of course, the approximation of solutions will 

become better with grid refinement. But to show the numerical consistency 

is not our main object. On the contrary, we want to demonstrate that con'

servation is not a matter of grid spacing: in spite of the spatial appro'-
A A A 

ximation error the quantities P, C and Mare found to be conserved exact

ly, if only the time integration could be performed exactly. 

First we have solved minimization problem (28) for m 

values of C. 

0 and various 

The minimizing values of P are depicted in the C-P-diagram in figure 2. 

The slope A of the curve -see (30)- is a decreasing function of C. (For 

the linear equation ut + uxxx = 0 the graph would be a straight line with 

slope 1 . ) 

Since A is equal to the velocity of the travelling wave solution ¢, we 

see that these waves slow down with increasing C, At the maximum value of 

P, occuring for C = 'JT/2, the wave speed is zero; this solution will not 

appear physically, because such high values of C lie beyond the model 

assumptions for the KdV-equation, Nevertheless the mathematical treatment 

still applies, theoretically as well as numerically. 
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" 'P 

I\ 

C 

-2 

Figure 2, C-P-diagram for the discretised Korteweg-de Vries equation 

Figure 3. 5-point-approximation of cnoidal waves for the KdV equation, 

for C = 0.1, 0.5, rr/2, 2.5 and 3.5. 
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Solutions to ( 28), interpolated with trigonometric functions, are shown 

in figure 3 for several values of C. For C -> O the "discrete cnoidal 

wave" approximates the harmonic wave cos x, which is the exact solution 

to the linearis~d equation ut + uxxx = O. 

For increasing C the deviation from the continuous cnoidal wave becomes 

apparent, obviously due to the small number of grid points. Yet we know 

theoretically that every solution <I> will be propagated as a travelling 

wave solution to (33). 

To find this property confirmed we have run a fourth order Runge-Kutta 

integration of the ODE system (33), and compared it with a uniform shift 
A 

based on the velocity A predicted by (29). The errors after 10 periods, 

run with 240 time steps per period, are shown in the table. Runs with 

smaller time steps have produced even smaller errors. The machine accura

cy is 10-8• The table reflects the universat tendency that solutions with 

steeper time derivatives have greater errors. It is clear that the errors 

in M, C and Pare only due to the time integration and machine round off. 

This confirms the theoretical result that in the discretised problem the 

quantities M, C and P would be conserved and that discrete cnoidal waves 

would exist provided that the time integration could be done exactly. 

Table of errors after 10 periods 

(fourth order Runge-Kut ta with 240 time steps per period) 

C LIM .!IC LIP LIU 

0.01 4.0 (-8) 4.2 (-8) 4.0 (-8) 1.6 (-6) 

o. 1 3.5 (-7) 3.7 (-8) 6.7 (-8) 1 • 3 (-5) 

0.5 2.5 (-6) 7.2 (-7) 7.2 (-7) 7.5 (-5) 
* 1[/2 0 2.4 (-7) 4.7 (-7) 1 • 6 (-5) 

2.5 3.8 (-6) 3.3 (-6) ,. 1 (-5) 4.2 (-4) 

3.5 1.2 (-5) 3.5 (-5) 7.5 (-5) 2.6 (-3) 

*) Since no period can be defined (wave speed is zero), the time interval 
A 

has been taken from the case C = 0.5. 
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Concluding we can say that for a whole class of evolution equations of a 

specific form we have given a procedure to find spatial discretizations 

that preserve conservation properties exactly, even in the case of strong 

nonlinearity. For long time computations, e.g. to study wave interac

tions, our m1merical results motivate further investigations into time 

integration processes that can maintain these conservation properties 

over a long time. 
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On the Periodic Wind-Induced Vibrations of an 
Oscillator with Two Degrees of Freedom 

ABSTRACT 
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P.O. Box 356, 2600 AJ Delft, The Netherlands 

In this paper the dynamics of an oscillator with two degrees of free

dom in a steady flow is studied. Principles from the theory of galloping are 

used to derive the equations of motion. 

The normal forms for the equations of motion for a number of interesting 

cases are presented and the existence of periodic solutions and their stabil

ity is established. Formulas, which may be used to calculate amplitudes and 

periods in an approximative way, are presented. 

1. INTRODUCTION 

Overhead transmission lines on which ice has accreted may have cross

secti,onal shapes that are aerodynamically unstable to transverse disturb

ances, in a wind-field: The evolution, from this unstable equilibrium position 

may result in galloping: a large amplitude oscillation with a low frequency 

(< 1 Hz). The very complicated phenomenon of galloping of overhead trans

mission lines which involves the aeroelastic interaction of longitudinal, 

transversal and torsional oscillations of a continuous system is far from 

being understood. 

For an interesting survey paper on wind-induced vibrations of overhead 

power transmission lines the reader is referred to [1]. In the present paper 

a simple oscillator, which has some relation with this galloping problem is 

introduced. At this stage the oscillator is a theoretical model, that is, no 

experimental prototype has been developed yet: however, it is believed that 

the ideas presented here, may be used for the actual development of an expe-
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rimental model. The oscillator, sketched in Fig. 2.1, consists of a rigid 

circular cylinder with a small ridge and a number of springs mounted in a 

frame. The oscillator is constructed in such a way that the cylinder-spring 

system has two degrees of freedom, i.e. oscillations in the direction and 

perpendicular to the direction of the air flow; both modes of vibrations 

are decoupled in the absence of an air flow. A more detailed description of 

the oscillator is given in section 2. The oscillator may be considered as 

an extension of the one degree of freedom oscillator introduced and studied 

theoretically and experimentally in a wind-tunnel in [2] and [3], where only 

oscillations perpendicular to the direction of the air flow are possible. 

The remainder of the paper is organized as follows. 

In section 2 the equations of motion of the oscillator in a uniform wind

field are derived. The assumption is made that the aerodynamic forces are 

quasi-steady which implies that they can be derived from static force mea

surements (in steady flow); for the study of galloping there is no disagree

ment in the literature (e.g. [2] and [3]) on the use of a quasi-steady 

theory. The mathematical modeling of the oscillator is analogous to the 

modeling of a swinging-spring oscillator introduced in [4]. This oscillator 

consists of a cylinder, hung from springs, such that spring and pendulum 

oscillations may be carried out. However, in the equations of motion of the 

oscillator as considered here a new parameter representing the position of 

the ice accretion (ridge) on the cylinder is introduced. Finally, by trun

cating the equations of motion, the so-called model equations are obtained. 

In section 3 the theory of normal forms is presented and used for the study 

of periodic solutions. The main result is a theorem which states existence 

of periodic solutions with a period close to the period of the solutions of 

the unperturbed model equations, which are equations describing the free 

oscillations (absence of the external aerodynamical forces) of the oscil

lator. This theorem is an extension of theorems to be found in [S,6,7] where 

the existence of periodic solutions, with a period that equals the period 

of the solutions of the unperturbed system (or the period of the time

periodic vectorfield fin x = Ef(t,x,E)), is established. 

In section 4 periodic solutions for the model equations in a number of 

interesting cases are established and criteria for the stability of these 

periodic solutions are given (based on the theorem mentioned above). 

The paper ends with some concluding remarks. With respect to the calcula

tions of the normal forms use has been made of the computer-algebra system 

Macsyma [g] which has the capability of manipulating algebraic expressions 
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involving unevaluated variables; in fact, theorem 3.1 has been implemented 

on the computer. 

2. THE OSCILLATOR AND THE EQUATIONS OF MOTION 

In this section the oscillator, as sketched in Fig. 2.1 and 2.2 is 

described in more detail. In addition, the equations of motion will be de

rived. The oscillator, as sketched in Fig. 2.1, consists of a rigid circular 

cylinder with a small ridge (representing the ice-accretion) and six springs 

providing linear elasticity. The cylinder is rigidly attached with two sup-

/ 

flow-dire~ 

Fig. 2.1. The aeroelastic oscillator. 
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ports to two shafts that are supported by four air-bearings (indicated with 

a rectangular parallelepiped in the sketch). These four air-bearings are 

subsequently rigidly attached to a system of four shafts that are supported 

by eight air-bearings fixed to a frame indicated with slant lines in the 

sketch. The two springs fixed to the supports of the cylinder and the air

bearings provide restoring forces in the direction perpendicular to the 

flow directions whereas the other four springs provide restoring forces in 

the direction of the flow. 

Figure 2.2 is a sketch of the view from above; the position of the cylinder, 

remaining always perpendicular to the picture-plane, can be defined by the 

two coordinates x and y as indicated. The origin of the (x,y) coordinate

system is the equilibrium position of the centre of the cylinder in absence 

of aerodynamic forces. Although the cross-section is not circular, due to 

the ridge, it has still an axis of symmetry; as (static angle of attack) is 

the angle between the direction of the wind-field and the axis of symmetry 

-
Fig. 2.2. The aeroelastic oscillator; view from above. 
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of the cross-section. To be more precise as is the angle obtained by rota

ting ~a (unit vector along the axis of symmetry pointing from the ridge to 
s 

the centre of the cylinder) to ~x (unit vector in the direction of the 

windfield), positive in anti-clockwise direction. 

It may be clear now that the oscillator has the property that the two degrees 

of freedom are mechanically uncoupled. However, as will be shown in what fol

lows there will be an aerodynamic coupling when the oscillator is interact

ing with a wind-field. 

If one puts this oscillator in a uniform wind-field with wind-velocity 

Ya,,Ya, = Voo!:x (v00 > 0), forces will be generated on the cylinder. These 

forces, the drag ~D and the lift ~Lare sketched in Fig. 2.3. ~D and ~L 

are unit-vectors (D and Lare the magnitudes of the drag respectively lift 

force) such that ~D has the same direction as the virtual wind velocity 

v ,v := v - (xe +ye), and e_L is obtained by rotating e_O over an angle -s -s -00 -x -y 
TI/2 in anti-clockwise direction- (x and y are the velocity components of 

the cylincter). 

axis of symmetry 

I 

_a_i_r_f_l_o_w ___ y _ _ _ _ _ _ as (' 

V 
-00 

e 
-y 

~D 
X 

V 
-00 

Fig. 2.3. Wind-velocities and aerodynamic forces 
acting on the cross-section. 

It is easy to verify that the equations of motion for the cylinder become: 

m x + s x 
X X 

Dcos<fi Lsin<fi 
(2 .1) 

Dsin<fi + Lcos<fi 
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with m (m) the total mass of that part of the oscillator that can move in 
X y 

x-direction Cy-direction), sx 

x-direction Cy-direction) and 

(s) the total stiffness of the springs in 
y 

~ the angle between =x and =o• positive in 

anti-clockwise direction. It will be assumed that the mass of the shafts 

and air-bearings is small compared with the mass of the cylinder which im

plies that m = m := m. 
X y 

The magnitude of the aerodynamic forces D and L may be expressed in terms 

of aerodynamic coefficients as: 

1 D 2 
D = 2 pdc (a.)vs 

(2. 2) 

1 L 2 
L = 2 pdc (a.)vs, 

where pis the density of air, dis the cylinder diameter, v = Iv I and a. 
s -s 

the angle between v and the axis of symmetry of the cylinder (see Fig. 
D L-s 

2.3). c (a.) and c (a.) (functions of a.) are the quasi-static drag and lift 

coefficients which may be obtained from wind-tunnel experiments; typical re

sults obtained from measurements in a wind-tunnel are sketched in Fig. 2 .4. 

D 
C ( a.) 

L 
C ( a) 

0,5 

-0,5 

Fig. 2.4 Aerodynamic lift and drag coefficients 

According to the den Hartog criterion galloping may occur if 

[ D d L ]· < c ca.> + aa. c <a.> 
1 
a. o 

s 

(linear instability of the equilibrium 

position). 



Since cD(a) is always positive attention is only paid to the case where 
cl L 
aa c (a) I a < o. 

s 
Hence the drag and lift coefficients curves are approximated by: 

cD(a) D D 
CO' where co> 0 a constant and 
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(2. 3) 

Note 

cL(a) 

that: 

(.) 
2 

V 
s 

(.) coscjl 

L c 1 (a - ao> 

2 
- 2:icv V 

00 00 

V - X 
00 

= -v--, 
s 

+ 
L c 3 (a 

.2 
+ X 

.2 
+ y 

sincjl 

3 
ao> , where 

, 

.Land tancjl 
V 

s 

L 
c 1 < 0 and 

-y =---., 
V - X 

00 

L c 3 > 0 

(.) a= cjJ + a (in figure 2.3 the angle cjJ is negative), 
s 

are 
constants. 

By using these expressions one can show that the equations of motion become 

(the terms of fourth and higher order are neglected): 

x + 
2 w1x 

y + 
2 

w2y 

D 2 D pdc0v00 2Pdc0v00 x Pdvoo ( L- L-3). 
= ~ - 2m + ~ clas + c3as y + 

D D 
pdco .2 Pd ( L- La3) •. + Pd (co_ L -2 L\ .2 +--x - 2m clas + c3 s xy cl + 3asc31 y 2m 2m 2 

( L L ) Pd cl - L- c3 -3 .3 + -- -a + 3c3as + 2 as y , 2mv 2 s 
00 

(2.4) 
2 

L-3) 2pdvoo ( L- L-3). pdvoo ( L-
= -- CU + c 3as_ -~ c 1as + c 3as x + 2m 1 s 

a 
s 

a 6 - a 0 and where use has been made of: 
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2 3 
C.) "-/1+z = 1 + ½ - z9 + ~6 - ••• , z € JR, I z I < 1, 

3 5 z z (.) arctan(z) = z - 3 + 5 - ... , z € JR, I z I < i. 

It is assumed that this system of equations describes the motion of the 

cylinder; in what follows an analysis of this system of model equations will 

be carried out in a rigorous way, that is all elaborations will be moti

vated. 

Introduction of the dimensionless variables X, Y,, defined by X = w2x/v00, 

Y = w2y/v00 and,= w2t yields the following system: 

x + ~lx = E b~ -2c~x + ( c~iis + ciii;) Y + c~x2 - ( c~iis + c~a;) xi + 

+ [:~ - c~ - 3ii!c~) i 2 + (cl iis + 3c~iis + :~ a;] ij, 
(2.5) 

Y + Y = E ~ c~iis + c~;) - 2 ( c~s + c~;) X - ( c~ + c~ + 3ii:c~) Y + 

( L u-3) •2 [ - L c~ -3 c~ _ ] • 2 
+ cliis + ells X + 3cxsc3 + T cxs + T cxs Y + 

+ (c~ + c~ + 3ii!c~) XY - (c2~ + :~ + (1 + ½a!) c~] ij, 
2 2 2 

where n = w1;w2, E = Pdv.,/21Ull2 and a dot now stands for differentiation 

with respect to,. 

A system of four first order equations may be obtained by setting 

X = xl + Ec~;n2 , X = x2, Y = X3 + E (c~as + c~a;), Y = X4 from which fol

lows that: 

:icl x2 0 

:ic2 -n2x a2x2 + a4x4 + 2 + a24x2x4 + 2 3 
1 a22x2 a44X4 + a444X4 

:ic3 
= + E (2.6) 

X4 0 

:ic4 -x3 b2x2 + b4x4 + b22x~ + b24x2x4 + b44x2 3 
+ b444X4 
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where: 

D 
a2 -2co < 0 b2 ·( L -2 c/is + L-3) C3CI.S 

a4 ( L-clcts + L-3) C3CI.S b4 = ( D L - co+ cl+ -2 L) 3ctsc3 > 0 

D L- L-3 
a22 = co> 0 b22 clcts + C3CI.S 

a24 - (c~ 1 s + L-3) C3Cl.s b24 
D L -2 L < = co+ c 1 + 3ctsc3 0 

D L -2 L - L L -3 L-
a44 co/2 - c 1 + 3ctsc3 > O b44 3ctsc3 + c/2cts + c 1ct/2 

L- -3 
( D L 

c~) < O. 
clcts L- L cts 

b444 = _ :o + :1 + (1 
1 -2) 

a444 = -2-- + 3c3cts + c3 2 + -Cl. 2 s 

The equations (2.6) will be studied for the case that the coefficients a 2 , 

a 22 ,.a44 , b4 , b24 and b444 have a sign as indicated above. As follows from 

measurements of the aerodynamic coefficients in a wind-tunnel these signs 

are -re·levant for the description of the galloping phenomenon. 

3. PERIODIC SOLUTIONS AND THE THEORY OF NORMAL FORMS 

In this section· normal forms will be used for the study of periodic 

solutions for a class of differential equations, of which the system of 

model equations derived in the previous section is a prototype. The study 

concerns existence, stability and location of the periodic solutions in the 

phase space as well as the calculation of amplitudes and periods in an 

approximative way. The results are formulated in two theorems. For the 

proof of these theorems the reader is referred to [8] where also the rela

tion with the (extensive) literature on normal forms is pointed out. 

The model equations derived in section 2 are a special case of: 

x (3.1) 

where: 

(.) ~ € D c JR2n (n € :N) open and bounded, 
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[~ ~-¢ l· i !~; (.) AO= with AO = 
¢ ·.An 

0 

(.) f € c2 2n 
cox c-e:o ,e:o> , :m > , !(Q,e:) = 0 

Furthermore, it is assumed that 

(I) 

(.) ...!.€ Q for all i,j € {1, ••• ,n}, 
(l)j 

:] and w1 > 0, 

for all e: € (-e:0 ,e:0). 

(.) the domain D has the property that if x € D then also 
cj>AO 

e x € D for all cl> € :m, where: 

cj>AO co An r n 0 
e = L cj> ,= 

n=O n. 

= [cos(wicj>) w;1sin(wicj>)l· 

-wisin(w1cj>) cos(wicj>) 

Note that the condition : 1 € Q for all i,j € {1, ••• ,n} implies that there 

exists a T > O, independett of e:, such that cl> ➔ ecl>Ao is T-periodic; T0 is 

the primitive period of <P ➔ e<l>Ao. •, 

To introduce and motivate the use of the normal forms used here consider 

the differential equation: 

(3.2) 

and suppose that !O satisfies the following condition: 

!o ( /Ao~) = e cl>Ao!° cp for all cl> € :m and ~ € D. (3. 3) 

By using the transformation~= e~x the following differential equation 

for l holds: 

(3 .4) 

Critical points of (3.4) induce periodic solutions of (3.2): lo€ D' {o} 

and !OCr0) = Q implies that t ➔ etAQXo is a non-trivial T0-periodic solu

tion of (3.2). In what follows property (3.3) is used to define a normal 
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form for system (3.1) and a (near-identity) transformation will be intro

duced to put system (3.1) in normal form. 

This normal form will then be used to give a theorem on the existence of 

periodic solutions for system (3.1). 

More explicitly one needs: 

Definition: A vectorfield !OE c0 cn, JR2n) is called a normal vectorfield 

(with respect to A0) if it is invariant under the flow pro

duced by A0 , i.e.: 

cj)AO 0 
e f {x) for all ~ E D, cjl E JR 

and 

Definition: System (3.1) is in first order normal form when !(~,O) is a 

normal vectorfield (with respect to AO) for all x ED. 

It may be clear that in general system (3.1) is not in first order normal 

form. In order to establish this, one may use a near-identity transforma

tion of the form (P will be specified in theor.em 3 .1) : 

(3.5) 

Substituting (3.5) in (3.1) yields, for£ small enough, the following dif

ferential equation for~: 

(3.6) 

here is~ ➔ D~{~) the Jacobian matrix of~ with respect to~-

In order to have system (3.6) in first order normal form one has to apply 

a near-identity transformation as given in the following theorem (see [S]): 

Theorem 3.1: Consider system (3.1), i.e. 

(3.7) 

where 
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(. ) 
w, 
~ E Q for all i,j E {1, •.• ,n} and D has the property that 
wj 
x E D implies e tAcJx E D for all ~ E JR. 

With 

and 

the following holds: 

0 2 2n 0 
(1) ! ,~EC (D,JR ), ! (Q) = ~(Ql Q, 

(2) !O is a normal vectorfield, 

(3) application of~ f + E~(f) yields, for E small enough 

1 ~ ~ ~ 2n where g: E C (nx(-s0 ,s0), lR ) ; 

here is 0 < £0 < s 0 and D a domain close to D (that is 

D ➔ D for s 0 ➔ 0). 

Remark 1: It is not difficult to extend theorem 3.1 to the case where 

wi ni 
- = - + Ea,, with n. ,n. E lN and oi € JR. 
wj nj i i J 

Remark 2: Theorem 3.1 concerns an algorithm for the calculation of the 

first order normal form of (3.7). In a straightforward way this 

algorithm can be extended to calculate higher order normal forms. 

In order to formulate a theorem on the existence and stability of periodic 

solutions of system (3.1) two transformations are needed. 
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The first and most obvious one is (3.5) which puts by virtue of theorem 3.1 

system (3.1) into first order normal form: 

The independent variable and the invariance property (3.3) of the normalised 

vectorfield play a part in the second transformation. With: 

t (1-EnE)Ao 
e :i:::(t) (3 .8) 

for some nE E lR (nE depends on E and will be specified in theorem 3.2), it 

follows that t ➔ :t:(t) satisfies: 

f(t) E (nEAoX + !o<x>) + E2i<t,x,nE,E) = 

2~ 
E~(x,nE) + E 2(t,x,nE,E), 

(3. 9) 

where 

(. ) ~(:t:,nE) = nEAOX + !° (:t:l; ~ is a normal vectorfield, 

(.) 
~ - -t(l-EnE)Ao t(l-EnE)Ao 
g(t,y,n ,E) = e g (e y,El. 
- - E - -

-At 
As aforementioned the transformation x<t) = e O f(t) may be used to 

establish periodic solutions with period T0 . In general, however, when 

periodic solutions exist of system (3.1) their period depends on E. Assuming 
To 

that the period is smooth with respect to E one may write TE= ~1---
- EnE 

where nE depends continuous on E and lim EnE = 0. This motivates the intro-

duction of the second transformation.E➔O 

Definition: 

dt, 

Observe that: 
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0 
(2) for E * 0 t ➔ yE(t,yE) is a periodic solution of (3.9) with 

0 
period T if and only if G(yE,nE,E) = o. 

With the previous transformations the problem of finding periodic solutions 

of 3.1 has been reduced to the problem of finding critical points of G. Now, 

by using continuity arguments and the implicit function theorem the follow

ing theorem may be proved (see [S]): 

Theorem 3.2: Suppose that there exists a (y~,n0) E ox JR,¥~* Q and a 

i E {1, ••• ,2n} such that: 

(i) 

(ii) The Jacobian matrix of F with respect to the variables 

n,y1 , .•• ,yi-l'Yi+l'··••Y2n in the point (yg,n0) is regular. 

Then, for E sufficiently small (E * 0), there is exactly 

one critical point of G, say (y0 ,n), in a O(E) neighbour-
- -E E 

hood of (yg,n0). This implies the existence of a non-triv-

ial unique periodic solution x(t,x0 ) of (3.1) with period 
- -E 

T = To satisfying ~(O,~~) = ~~; ~~ := y~ + E~(y~). 
E 1 - EnE " " " " " 

Furthermore, the periodic solution is stable if the 
o(F1 , •. ,F. 1 ,F. 1 , .. ,F2 ) 

• 1- i+ n Jacobian matrix E ~ in the point 
u(y1, .• ,yi-1'Yi+1'""'y2n) 

0 (Xo,n0) is stable and unstable if the Jacobian js uns_t.atle 

■ 

Remark 3: The condition (i) in theorem 3.2 is a necessary condition i.e. if 

~ (y, !}) * Q for all y E D and n E JR then there does not exist a 

periodic solution of 3.1 with smooth period. 

4. PERIODIC SOLUTIONS OF THE MODEL EQUATIONS 

In this section periodic solutions of the model equations will be 

established on the basis of the theory of section 3. In this theory it is 

assumed that the unperturbed system has periodic solutions with period T0 • 

This implies that Q E Q (in the model equations (2.6) w1 = n, w2 = 1). 

However, it is not difficult to show that the results which will be obtained 



also apply for the case that S1 = ~ + as2 with n,m E JN and a E lR. 
m 

The model equations (2.6) may be written in the form: 

x 4 
~ E lR , E: > 0. 

In order to analyse this system one has to calculate: 

(1) The first order normal form of (4.1) with respect to A0 
(Theorem 3. 1) : 

(2) The zeroes <;t:g,n0) E m.4 xm. of the vector function F: 
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(4. 1) 

(4. 2) 

(4. 3) 

Subsequently, Theorem (3.2) may be applied; firstly, one may decide whether 

the critical points, if any, correspond to periodic solutions of (4.1) and 

secondly, one may investigate their stability. 

An interesting parameter in the equations of motion is a, which determines 
s 

the position of the ridge. Interesting here means that a number of terms in 

f i.e. a4 ,a24 ,a444 ,b2 ,b22 and b44 vanish when one sets as= 0. In what fol

lows the case a = O(E:), which includes a = 0, will be studied and some 
s s -results will be presented when as= 0(1). 

The aase a = O(e) 
8 

As already pointed out the normal form depends on A0 and hence on n. 
One may distinguish two cases: n * 2 and n = 2. 

(i) n * 2: 

The first order normal form of system (2.6) becomes: 

t1 E;,2 + E: 
a2 

O(E:2), 2 1;1 + 

t2 -S12i; 
1 

+ E: 
a2 

O(E:2), 2 1;2 + 

[b4 
3b444 

(4.4) 

t3 2 2 ] 2 
1;4 +E: 2 1;3 +--- (/;3 + i;4li;3 + o~ l' 8 
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As critical points of the vector function F one finds: 

0 
(ll lo 

0 
(2 l lo 

(0,0,0,0) T and n0 arbitrary, 

(O,O,pcos¢,psin¢)T and n0 = o, 

where p and¢ E [0,2'Tf] arbitrary. 
444 

The critical point (1) corresponds with the trivial periodic solution 

~(T) = Q; further analysis show that there are no non-trivial periodic 

solutions of (4.1) in the neighbourhood of the origin (the origin is 

unstable). Although (2) suggests that there is an infinite number of 

periodic solutions one can show that they all correspond to one and 

the same periodic solution which is stable. As an approximation for 

the periodic solution one has: 

x(T) 
TAO O 1 

e lo+ 0(€) on time-scale O(s) and with period 

2'Tfm + O(E2) where n =~and gcd(n,m) = 1. 
m 

Remark 4: One may observe that the first two equations up to order E of 

system (4.4) are decoupled from the other two and can be solved 

exactly; both solutions are asymptotically stable, i.e. tend to 

zero if t ➔ oo. The third and fourth equation represent, up to 

order E, the Van der Pol equation in first order normal form. 

(iil n = 2: 

Now the first order normal form of system (2.6) becomes: 
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As zeroes of F one finds: 

(1) 
0 (O,O,O,O)T and arbitrary, Yo no 

(2) 0 T o, Yo = (0,pl ,O,p2) and no 

(3) 0 0 0 0 T 
Yo (yl ,Y2,0,y4l and n0 n, 

(4) 0 0 0 0 T 
and n0 Yo (-yl ,Y2,0,y4l -n. 

where 

2 (a2+2b4) 

- 3b444 

1 
n = 4 

(4 .6) 

3b444 

The critical point (1) again corresponds with the trivial solution 

(x(T) = 0) and there is no non-trivial periodic solution in the neigh

bourhood of the origin. For the other three critical points condition 

(ii) in theorem 3.2 holds if 

One can thus distinguish: 

In this case one can apply theorem 3.2. One finds that system (4.1) 

has at least three different periodic solutions; these periodic 

solutions are stable and as approximation one finds: 

X (T) 
TAO 0 1 

e y0 + 0(£) on time-scale O(E) and 

Finally, by virtue of remark 3 one may conclude that there are 

exactly 3 periodic solutions with smooth period (for£ sufficient

ly small). 
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a44b24<a2 + 2b4) 

3b444 

In this case the critical points (2), (3) and (4) coincide. One 

may therefore conclude, on the basis of remark 3, that system (4.1) 

has at most one periodic solution with smooth period. 

Remark 5: Since in case (a) n =I= 0 the periodic solutions have also different 

periods: 

for 

for and 

for 

As is shown in section 1, the relation between the motion of the cylinder 

in the (x,y)-plane and a solution of 4.1 is given by: 

D 
V e:cOvoo 

x(t) = ~ X (Wt) +22, x(tl v00x2 (w2 t) w2 1 2 
w2n 

V 
£ ( L- L-3) 00 

y(t) y(t) = - X (Wt) + --2- C{l.s + cl"s voo, = v00x4 (w2t) w2 3 2 
w2n 

one can therefore conclude that in the case as= 0(£) the cylinder can have 

exactly 4 periodic orbits (if n =I= 0) in the (x,y)-plane; 1 in the case of 

Q =I= 2 and 3 if Q = 2. 

The approximations for these orbits are listed in table 4.1 and they are 

sketched in Fig. 4.1 to Fig. 4.4. 
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n * 2 

n = 2 

n = 2 

n = 2 

Note: p3 

TABLE 4.1 

Periodic orbit (on time-scale Period Stability 

X (t) 

y (t) 

x(t) 

y (t) 

x(t) 

y(t) 

x(t) 

y(t) 

0(1/£)) 

= 0(£) 
2'1T!ll + 0(£2) stable pv w2 

= ~ sin(w t) + 0 (£) 
w2 2 

P1v00 
+ 0(£) = -2 - sin (2w2 t) 

w2 21T 2 
stable - + 0(£ ) 

P2 voo 
+ 0(£) 

w2 
= -- sin (w2 t) 

w2 

P3V00 
+ 0(£) = -- sin(2w2t+0) 

w2 21r+£n 0(£2) stable 
0 

--+ 

Y4V00 
w2 

= -- sin (w2 t) + 0(£) 
w2 

P3V00 
+ 0(£) = -- sin(2w2t-0) 

w2 

0 
y 4 voo 

+ 0(£) = -- sin (w2 t) 
w2 

21r-£n 2 
--+ 0 (£ ) stable 

w2 

0 
y 

satisfying tg0 = ~-
2y1 
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Fig. 

4.1 

4.2 

4.3 

4.4 
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y 

Fig. 4.1 

y 

TT 
Fig. 4.3. 0 = 4 

y 

Fig. 4.2 

y 

TT 
Fig. 4.4. 0 = 4 

The ease a = 0(1) 
s 

In this case all non-linear terms in the model equations in section 2 

have to be taken into account. It turns out that if one compares the results 

one gets here with the case a = O{E) one should distinguish 2 cases: 
s 

(i) n * 1 and n * .!.. 2. 

Although the original differential equations ((4.1)) are different from 

the case a = O{E), they have the same first order normal form ((4.4) 
s 

if n * 2, (4.5) if n = 2). Hence the same results apply. 
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(ii) Si = 1 or Si 

In these 2 cases the first order normal forms are different from those 

found for as= O(E). In fact, preliminary results show that they do not 

only give rise to resonance, which did not appear for these frequency 

ratio's in the case a 8 ~ O(E), but also instability occurs and periodic 

solutions vanish as as ➔ O. It would go too far to present all the 

possible periodic solutions here. In order to give the reader an idea 

of the kind of periodic solutions that may occur some typical periodic 

motions of the cylinder are sketched in Fig. 4.5 and Fig. 4.6. Both 

periodic orbits are unstable and vanish as as ➔ O. 

y 

Fig. 4. 5 • Si = 1 

(1: 1 resonance) 

5. CONCLUDING REMARKS 

y 

1 Fig. 4.6. Si= 2 
(1 :2 resonance) 

In this work a non-Hamiltonian system of two non-linearly perturbed 

harmonic oscillators is studied with respect to the occurrence of periodic 

solutions. The mathematical framework e.g. the theory of normal forms and 

the theory of existence for periodic solutions has been developed and pre

sented in a rather general way, that is, extensions to autonomous problems 

involving n (n E lN, n > 2) degrees of freedom and general polynomial vector

fields can be carried out. 

The non-linear coupling terms in the model equations as considered here are 

non-homogenous polynomials of the third degree. In the model equations the 

parameter a determining the position of the ridge at the cylinder plays an 
s 

important part. When a is small and the frequency ratio Si* 2 the two 
s 

degree of freedom motions are decoupled and the resulting oscillations in-
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volve one degree of freedom, perpendicular to the directions of the wind

field only. When the frequency ration= 2 (and a is small) the harmonic 
s 

oscillators are coupled by quadratic terms, which give rise to resonance. 

This resonance is induced by an interaction of (non-Hamiltonian) external 

forces. The type of solution corresponding to this resonance phenomenon is 

a limit-cycle in m.4 • As this type of resonance seems not to be known in the 

literature one may wonder whether a new type of resonance is involved in 

this problem. 

Preliminary results show that in the case that as is not anymore small as 

well in the 1:1 as in 1:2 frequency ratios resonance occurs, which dis

appears when as ➔ O. This is a bifurcation problem which has to be studied 

in more detail. In addition, it is of interest to introduce a detuning 

parameter o defined by w1/w2 = 2 + £0. It is known that this parameter is 

very appropriate to study near-resonance cases. 

Finally one may say that since the general theory as presented here applies 

to problems involving a finite number of degrees of freedom, the way is 

open to develop and study extended model problems with three degrees of 

freedom including rotational oscillations of the cylinder induced by aero

dynamic moments. 
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We study a mathematical model for the interface between 
fresh and salt groundwater which consists of a Poisson equation 
in a strip for the stream function coupled to a time evolution 
equation for the moving interface. We first present a numerical 
study. The equation for the stream function is solved by means 
of a finite element method while an s«P scheme is used to 
discretize the interface equation. We then prove a local 
existence and uniqueness result in a space of analytic 
functions; our proof also extends to the Rayleigh-Taylor 
instability in the case that the flow domain is a strip. 

1. INTRODUCTION. 

We consider a model which describes the two-dimensional 
motion of fresh and salt water through a horizontal aquifer. 
The fresh and salt water have different specific weights, 
denoted by r, and rs ( r, < rs), respectively. As is common in 
hydrology (e.g. see Bear [2] and de Josselin de Jong [12]) it 
is assumed here that the fluids do not mix and are separated by 
a sharp interface. The difference in specific weight induces a 
flow and thus a displacement of the fluids and their interface. 
Our interest here is in the time evolution of this interface. 
Mathematically, this yields the following problem: 
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p 

where 

a 
- t:J4, = r - [H( u(x, t) - z) ] in 12 x 1W 

dX 
,P = 0 On c}f2 X 1W 

d 
ut = - [,J,(x, u(x, t), t] 

dx 
u(x,O) = u0 (x) x E IR 

12 = {(x, z) E IR x ( O, ll)} 

in IR x 1W 

and His the Heaviside function 
H(s) = 0 ifs< O. 

H(s) = 1 ifs> 0 and 

The function ,J, is the stream function of the flow and u 
represents the height of the fresh-salt water interface, 

o " u " n. 

We give a physical derivation of Problem Pin Section 
2. Using the Green function of the Laplace operator we then 
give an explicit formula for ,J, and transform Problem Pinto a 
problem with a single integro-differential equation for u. 

We describe a numerical method in Section 3. The 
equation for the stream function is solved by means of a finite 
element method. The equation for the interface, when considered 
apart, is hyperbolic; the s«P scheme introduced by Lerat and 
Peyret [14] is used for its discretization. A particularly 
interesting case is that where~ = O for small x, ~ = n for 
large x, and O < ~ < n elsewhere. It is then essential to 
calculate as precisely as possible the x--coordinates 5i (t) and 
S2 (t) of the points where the interface reaches the bottom 
z = 0 and the top z = ll of the aquifer. We do so by 
discretizing as well the differential equations for S1 and S2 

and calculating u only between S1 and S2 • Similar techniques 
have been used by DiBenedetto and Hoff [5] and Hoff [11] for 
the discretization of the porous media equation. We then show 
some numerical results. In particular it clearly appears that 
for larget u behaves as a rotating line. The contents of 
Sections 2 and 3 summarize a joint paper with C.J. van Duijn 
and J. van Kester [4]. 

Our analytical treatment of Problem P still leaves many 
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questions unanswered. In Section 4 we restrict ourselves to the 
case where~ is bounded away from zero and from ll; no 
hypothesis is made concerning the initial configuration of the 
salt and the fresh water : the salt water can either be below 
or above the fresh water. We prove the local existence and 
uniqueness in time of the solutionin a space of analytic 
functions, closely following a method due to Bardos, Frisch, 
Sulem and Sulem [1] and Sulem and Sulem [15] ; the idea is to 
apply a Cauchy-Kowalewsky theorem in a scale of Banach spaces. 

In Section 5 we extend results of [1] and [15] for the 
Kelvin-Helmholtz and the Rayleigh-Taylor instabilities to the 
case 
that the spatial domain is a strip. For more details about 
the proofs of the results of Sections 4 and 5 we refer to Chan 
Hong [3]. 

By 
local and 
that n = 

other 
global 

IR 2 • 

methods, Duchon and Robert [6,7,8,9] obtain 
existence and uniqueness results in the case 

2. THE PHYSICAL DERIVATION. 

In this section we give a physical derivation of 
Problem P. We suppose that the interface ru separating the 
fluids can be parametrized in the form z = u(x). Then the 
specific weight throughout the flow domain is given by 

r(x,z) = (,8 - rf) H(u(x) - z) + rf for (x,z) En. 

A situation of particular interest is that where u = 0 for 
small x and u = ll for large x (see Figure 1). 

The motion of the fluid is governed by Darcy's law 

(2.1) q + grad p + rez = 0 in n 

and the continuity equation (expressing the incompressibility 
of the fluid) 

( 2 • 2) di V q = 0 • 

In these equations q and p denote the velocity field and the 
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pressure, respectively, and ez the unit vector in the positive 
z direction. Equation (2.1) is written here in dimensionless 
variables. Finally we suppose that q satisfies the no-flow 
boundary condition 

(2.3) q. V = 0 on i}il. 

Suppose now that q E {L2 (il)} 2 and that u is a continuous 
iJ r 

function such that - E H - 1 ( ill . One can deduce from ( 2. 2) and 
i:Jx 

(2.3) that there exists a function </> E JI (il) such that q = 
0 

curl</> and it follows from (2.1) and (2.3) that</> is the unique 
solution of the boundary value problem P~ 

i:Jr i} 
K' (m} (2.4) M= -= r- {H( u(x) - z)} in p~ 

i}x i}x 
</> = 0 on i}il 

where r = rs - r,. Before we proceed to the physical derivation 
of the equation for the interface let us make two remarks. 

(i) For R > 0, we define n = (-R,R) x (0,ll). Then one can show 
. R 

that </> E c>• "'(I.?R) for all R > 0 and all a E (0,1). However, </> 
is not continuously differentiable : if n is the normal unit 

i:J</> 
vector tor, it follows from (4] that - is discontinuous 

u i}n 
across r 

u 

(ii) in order to solve Problem P~ numerically, we shall solve 
in fact the corresponding boundary value problem with a 
homogeneous Dirichlet boundary condition in the bounded domain 
nR. This procedure is justified by the following result. Let</> 
be the solution of Problem P~ and </>R be the solution of the 
corresponding problem in nR. Then, as R-+ oo, </>R converges to</> 
uniformly on compact subsets of n (see [4]). 

Next we derive the interface equation. Let u = u(x,t) 
denote the height of the fresh-salt interface at a certain time 
t > 0. Then the corresponding velocity field can be found by 
solving problem P~. From this the displacement of the interface 
is calculated with the kinematic condition 



q.n = 

Using q = curl o/, this equation becomes 

(2.5) 
d 

ut = - [o/(x,u(x,t),t)J 
dx 

in IR x IR'" 

Problem P~ together with equation (2.5) and an initial 
condition for u gives Problem P. 
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In Section 3 we consider the case where~ - llH (where 
His Heaviside function) has compact support. In view of the 
nature of the problem, we conjecture that the speed of 
propagation of the points S1 ( t) and S2 ( t) where the interface 
u(x,t) reaches the bottom and the top of the aquifer, 
respectively, (see Figure 1), is finite. We define S1 (t) and 
S2 ( t) by 

S1 (t) = sup {x E IR I u(s,t) = 0 for alls.,,; x} 

and 

S2 (t) = inf {x E IR I u(s,t) = ll for alls ;,i, x} 

The differential equation for S1 is found by observing that the 
speed at which S1 travels in the (x, t) plane must be equal to 
the velocity of the salt water in the salt water toe. We have 
the formulas 

( 2. 6) :s < t) 
,N 

= lim q (x,O, t) = lim (x,O, t) 
1 X CZ 

X ,!. s1 < tl X ,!. s1 < t> 

( 2. 7) 52 ( t) 
co/ 

= lim q (x,ll, t) = lim (x, ll, t) 
X cz 

X t s ( t) X t s2 ( tl 
2 

We observe that equations (2.6) and (2.7) are not part of the 
original problem. However they will be used in the numerical 
algorithm. 

Next we suppose that u is a smooth function such that 
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u E L1 (~) and O < u < n; in what follows we transform 
X 

Problem Pinto an initial value problem with an 
integro-differential equation. Using the Green function of the 
Laplace operator we express~ as 

- cos ( z - u(y, t)) r I ch(x - y) 
~(x,z,t) = - - ln 

4ll ch(x - y) 
Uy (y, t) dy 

- cos ( z + u(y, t)) 

and deduce from (2.5) that u satisfies the integro-differential 
equation 

o { ch(x - y) 
- ln 
ox ch(x - y) 

- cos 

- cos 

(u(x,t) - u(y,t))} 

( u(x, t) + u(y, t)) 

For what follows it is handy to introduce the quantities 

V(u,f) (x, t) = f 
W(u,f)(x,t) = J 
X(u,f) (x,t) = f 
Y(u,f)(x,t) = I 

sh(x - y) 
f(y, t) dy 

ch(x - y) - cos( u(x, t) - u(y, t)) 

sh(x - y) 
f(y, t) dy 

ch(x - y) - cos( u(x, t) + u(y, t)) 

sin ( u(x, t) - u(y, t)) 
f(y, t) dy 

ch(x - y) - cos( u(x, t) - u(y, t)) 

sin ( u(x, t) + u(y, t)) 
f(y, t) dy 

ch(x - y) - cos( u(x, t) + u(y, t)) 

Q1 (u,f) = V(u,f) - W(u,f) and Q2 (u,f) = X(u,f) - Y(u,f) Then 
the system (2.4), (2.5) can be written as the equation E, 

E 

3. THE NUMERICAL METHOD. 

In this section we describe a numerical algorithm for 
solving Problem P and show some numerical results. The 
algorithm is based on an explicit time integration scheme for 
the initial value problem 
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{
ut = dx [<J,(x, u(x, t), t)] in (-R,R) x ~. 

u(x,O) = in (-R,R) 

3.1. Discretization of the problem for~. 

Let ua (x) be the interface at time ta. The 
corresponding stream function satisfies the problem 

{ 

- tl<J, = 

<J, = 0 

0 
I' - {H( ua ( x) - z) } 

ox 
on ;JQR 

in Q 
R 

Let ~b be a triangularization of nR. Using the finite element 
method with piecewise linear basis functions, we obtain the 
following discretized problem 

where 

Find <J,h E vb such 

J QR grad <J,h grad vh 

that 

= - I' IR 
-R 
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In [4] we present two variants for the 
triangularization of QR. The first one consists in a fixed 
triangle distribution throughout QR ; the other one is done 
with the help of an automatic mesh generator, allowing the mesh 
to vary at each time step in such a way that the discretized 
interface coincides with sides of triangles. In this way only 
values of <J,h at mesh points are needed in the computations. 

3.2. Discretization of the interface equation. 

In order to discretize the interface equation, we use 
the s~P explicit scheme of Lerat and Peyret [14] with a, ~ 
optimal. We consider in particular two cases :if O < u0 < ll, we 
compute u on the whole interval (-R,R) ; in the case that 
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u0 = 0 for small x, u0 = II for large x, and 
elsewhere, we use the extra equations (2.6) 
calculate u only between S1 and S2 • 

a) The s"' scheme with ~,/3 optimal. 

0 < u < II 
0 

and (2.7) and 

Let tz'; be the approximation of u(-"';, ta) where the -"'; 's 

are the x-coordinates of the mesh points at time ta. The 
function U: that we have introduced above is obtained by linear 

interpolation. Further we use the notation h~ = x;, 1 - -"'; and 

~ta= ta•i - ta. The s«P scheme is given by 

~ta 
a--

h~ 

l <l>b ( X: + 1 ' u~ + 1 ' ta ) - <l>b ( X: ' u'; ' ta ) } 

Uatl _ Ua = 
1 1 { ( 0£ - /3) 'Pb ( x; t 1 ' U~ t 1 ' ta ) + 

a(ha + ha ) 
1 1 - 1 

+ ( 2 /3 - 1) 'Pb ( x; , u'; , ta ) + 

( 1 - <t - /3) 'Pb ( x; -1 , tz'; - 1 , ta ) + 

where ~ = x; + /3 h~, ta = ta + a( ta• 1 - ta) , the predictor 

term jj'a 
1 

is an approximation of u(~, ta ) and 'Pb E Vb, 4'b E 
are the solutions of 

JnR grad <l>b grad vh = r J~R ( U:)' (x) vb (x, U: (x)) dx 

and of 

J nR grad 'J,b grad vb = IR ~ ~ ~ r ( u: ) ' ( x) vb ( x, u: ( x) ) dx 
-R 

~ 
Vh 
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for all vb E Vb 

respectively' where u: and vb are the analogs of u: and vb . Our 

choice of the parameters a= 1 + \,j5/2 and~= 1/2 is called 
optimal ; when applied to Burger's equation this choice of the 
parameters minimizes the dissipative effect of the scheme. 

In order to insure the stability of the saPscheme, we 
choose 6tn such that it satisfies the CFL condition 

where hn 
max 

max {h~} and where C" is an approximation of the 
i 

maximum of l:~zb I 0 
on both sides of the discretized interface. 

b) Boundary conditions. 

In the case that O < u < ll, numerical boundary 
conditions are necessary. Since the lines x =±Rare 
characteristics of the differential equation (2.5), we obtain 
the boundary values by approximating the equations on the 
characteristics 

u1 (±R, t) = ~x (±R, u(±R, t), t) 

by means of a suitable scheme [4]. 

c. Computation of S1and S1 • 

Let sn and S" be the approximated values of S1 (tn) and 
1 1 

S1 ( tn) • We assume that s: > - R and define ~ and ~ by 

~ = min { i, ~ > S: } and ~ = min { i , ~ > s: } 
We discretize the equation (2.6) by the following analog of the 
second order Runge-Kutta scheme: 
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U n 

~ 

S1" 1 = sn -
1 1 

1 
+ 

U n 

,r; 

and use similar formulas for the discretization of (2.7). 

3.3. Some numerical results. 

We choose ilR = (-3,3) x (0,1), r = 1 and take as 
initial condition the function u 

0 

0 - R < X .,_:: -1/2 
2.x+l -1/2 < x.,_:: -1/6 

u = -.x+l/2 -1/6 < X .,_:: 1/6 
0 

2x 1/6 < X .,_:: 1/2 
1 1/2 < X < R 

The computations of Figures 2 and 3 have been performed with 
the adaptive mesh. One observes that for large t the interface 
behaves as a rotating (nearly straight) line. It turns out that 
this rotating line is very close to the similarity solution 
computed by van Duijn and Hilhorst (10] in the case of an 
approximated model. 

4. LOCAL EXISTENCE AND UNIQUENESS. 

In this section we give a local existence and 
uniqueness result for Equation E together with an analytic 
initial function which is valid in both the cases where the 
constant r is positive and negative. 

In order to get a feeling for the sort of difficulties 
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that arise, we first linearize this problem around the constant 
u • ll/2. We obtain the initial value problem 

( 4 .1) (

V 111 - !:_ f l v (y, t) dy 
t 20 sh ( X - y) Y 

v(x,O) • v0 (x) 

Let v be the Fourier transform of v 

;.( e, t) = J e• I TT11t l. V( X, t) cfx 

,. 
Then v satisfies the problem 

[
v - - r n e th cn2 e> 

V:t~o> = V, w 

whose solution is given by 

v( e. t> 

inlRxR° 

in 1R 

If I'> O, that is, if the salt water lies below the fresh 

water, and if v0 E L 2 ( (R) , then ~o E L 2 ( IR) and ~( t) E L 2 ( (R) for 

all t > 0 so that Problem (4.1) is well-posed in L2 (IR). If on 
the other hand r < O, that is if the fresh water lies below the 
salt water, then in general, 

e- rTTl.th< rf l> t ~ (€) $ L2 (IR) for t > 0. 
0 

However, if v0 is analytic in a strip of the complex plane, its 
Fourier transform decreases exponentially fast as€ ---t ± ro and 
the function 

remains in L2 (IR) during a time interval which is proportional 
to the width of the strip. Hence the motivation to use spaces 
of analytic functions for the study of Equation E. 
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Next we present our basic tools of study. 

Definition 4.1. Let {B9 }s>o be a set of Banach spaces. 
S = U B is a scale of Banach spaces if for all O < s' < s 

s > 0 s 
there holdsBs C Bs, and II ulls, ~ II ulls for all u E Bs where 11- lls 
stands for the norm in B. 

s 

Fix a E (0,1). For each s > 0 we consider the set of 
functions {u(z)} analytic in the strip of the complex plane 

bs = {z = x + icr, x E IR, I crl < s} 

We define 

where 

and 

where 

llulls = I uls + Sup 
I u(x + ia') - u(y + ia') I 

lx-yl"' x + icr E b 
s 

y + icr E b 8 

Sup 
x + icr E b 

s 

+ 

+ Sup 

I cr1 < s 

Sup 
d > 0 

Sup I 
I cr1 < s 

I u(x +ia') I 

1 J lu(x + d +ia') - u(x + ia') ldx 
d"' 

I u(x +ia') I dx • 

We will use the following notations, which are due to Bardos, 
Frisch, Sulem and Sulem [1] and Kano and Nishida [13] 

<c:;8 = {u, u analytic in b 8 , llull 8 < + co} 



73 

!e,, = {u, u analytic in b8 , Uull!l < + ro} 
s 

and 

~ = {u, u analytic in bs , lllullls: = Hulls + Uull!l < + ro} 
s 

and introduce the scale of Banach spaces 

s = u B 
s > 0 s 

where 

is equipped with the norm 

Uull 8 = max ( llull 5 , llluxllls, Uuu 11s). 
s 

The following relations are very useful in what follows. For 

all O < s' < s 

(4.2) for all u E 'G;8 

and 

C 
(4.3) 

s -
II uU!l for all u E !e,, . 

s' s 

Our proof of the local existence and uniqueness of a 
solution of Equation Eis based on the following 
Cau9hy-Kowalewski theorem 

Theorem 4.2. Let S = U B 
s > 0 s 

be a scale of Banach spaces and 

E B and let s 0 , R and T/ be positive constants, u0 so 
(u,t)-+ F(u,t) a continuous mapping of {u E B , II u - uo 11B 

R} x [-T/,T/] into B8 ,, satisfying for any 0 < 
any t E [-T/, T/] 

s 
s 

s' < s < s 0 and 

< 
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( i) !IF( u1 , t) - F( u t) II :,: C 
2 B s, s - s' 

for all u 1 , i = 1,2 such that llu 1 - u0 11 8 < R, where C is a 
s 

constant which does not depend on t, u1 ; u2 , sands' 

C' 
(ii) IIF(u0 , t) ll 8 :,: 

s s - s 
0 

where C' is a fixed constant. 

Then there exists a positive number a and a unique 
function u(t) such that, for every positives< s 0 and 
ltl < a(s0 - s), u is a continuously differentiable function of 
t with values in Bs, llu - u0 ll 8 < R and u satisfies 

s 

F(u(t),t) I t I < a ( s 0 - s) 

If, in addition to (i) and (ii) with t complex, F satisfies the 
following assumption: for O < s' < s < s 0 and u holomorphic 
for t E IC, I ti < r-, valued in B9 with Sup llu( t) - u0 11 8 < R, 

ltl<r-, s 
t -> F(u(t), t) is a holomorphic function for ltl < r-, valued in 
Bs', then u is a holomorphic function of t with values in B5 • 

In order to apply Theorem 4.2, we look for functions u 
and f which have an analytic continuation 

II 
satisfying l.fei u I < K < 1 and I u - -I < 

X S 2 5 

that the functions Q1 ( u, f) and Q2 ( u, f) can 
continued in those strips. Further we set 

r 

in the strips bs 
II 

r - with r E ( o , 1) so 
2 

be analytically 

F( u, t) = - - {Q (u,u) + u Q2 (u,ux)} 
4Il 1 X X 

We have to obtain a priori estimates for 
!IF( u1 , t) - F( u2 , t) 11 8 and for !IF( u0 , t) 11 8 for suitable 

s• s 
functions u0 , u1 and~. Next we indicate the main steps needed 
to estimate IIF( u , t) - F( u , t) II , or in other words, 

1 2 B s, 
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IIF(u1, t) - F(u2, t) 11S, , lllox (F(u1, t) - F(u2, t)llls. and 

02 
II-- (F(u ,t) - F(u ,t)) II,. These estimates will follow from or 1 2 s 

estimating IIF( u1 , t) - F( u2 , t) 11s , IIIF( u1 ·, t) - F( u2 , t)lll 8 and 
cJ 

II- (F(u , t) - F(u2 , t) 11 8 and using the relations (4.2) and 
ox 1 

(4.3). 
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Next we state results which permit to obtain estimates 
of IIF( u1 , t) - F( u2 , t) 11s and IIIF( u1 , t) - F( u2 , t) Ills • 

~ =-P=-r=o=p=o=s=i-=-t=i=on=--=-4~·=3~. For u and u in B8 with l.fei ux Is< K < 1, 
[I [I 

lu - -I< r-, rE (0,1), max (llull 9 ,lluxlls, lluxxlls) <Rand 
2 2 

similar conditions for u, u and u and for f, 1 E Gill, 
K XX ~ 

we have the following estimates with i = 1,2 

(i) if llflls, llfll 8 < R, then 

~ C( r, R) {llu-ull + llu -u 11 + llu -u 11 + llf-111 } 
S K XS XX XX S S 

(ii) if llfll!t: , llfll!t: < R, then 
s s 

IIQ1 <u,f> - Q1 <u,1> ll!t: ~ 
s 

~ c<r,R> {llu-ulls + llux-uxlls + lluxx-uxxlls + llf-fll!t:} 
s 

where the constant C(r,R) is uniformly bounded in r for 
r E [ 0 , r0 ] with r0 < 1 . 

There remains to estimate the term 

11:x (F(u1, t) - F(u2, t)) II . 
s 
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To that purpose, one first derives the equalities 

d Hx (1:uJ] (u,~ (~]] (zl 
dX 

Q1 ( U, f} ( Z} Ql ( z) + Q2 
dX l+u2 

X 

+ u ( z) Q2 [u,~ [-')] (zl + u ( z} ( V+W) [u,~ [~]] (zl X 
dX l+u2 

X 
dX l+u2 

X X 

and 

d 
Q2 ( u, fl ( zl 

dX 
Q2 [u,~ (_!_]] (z) + ( V+W} 

dX l+u2 
X 

[ u,~ [~]] (z) 
dX l+u2 

X 

[
u,~ [-f ]] (z) + u (z) (X+Y) 

dX l+u2 X 

X 

[ u,~ [~]] (z) 
dX l+u2 

X 

for all z Eb 
s 

Using these equalities, the estimates of Proposition 
4.3 and similar estimates for V, W, X and Y, one can show the 
proposition 

Proposition 4.4. For u and u in B with 
s 

II II 
I~ ux I < K < 1, I u - -I < r- , y E ( 0, 1) , llull 0 < Rand 

2 s 2 s 

similar conditions for u and for f and fin ~ and f and f 
X X 

in 

~ with max Cillflll , llf II l < R and max(lilflil , llf 11 l < R, we have 
S S XS S XS 

the following estimates with i = 1,2 

11:x ,o, (u,f) - Qi (u,f» II ~ 
s 

C(Y,R) {llu - ull + lllf - fill + llfx - f II } 
B S X S 

s 

where the constant C( Y, R) is uniformly bounded in Y for 
Y E [ 0 , r0 ] with 70 < 1 . 
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Finally, one can deduce from Propositions 4.3 and 4.4 
the following result 

Let u., be a function which can be analytically 

continued in b such that u E B IJin u' I < K < 1 and 
•o O •o O •o 

R < 

[I 
- -I < 

2 8 0 

min (x -

[I 
r - with r E (0,1) and let R > 0 be such that 

0 2 0 

I Jim u0' I• , r0 ~ - I u - ~ I ) . Then for any O < s' < 
2 ° 2 8 0 

s ~ s 0 and any t EC 

Uu1 - u II 
z •• 

IIF( u , t) - F( u , t) II ~ C -----
1 z B s' S - S' 

for all u1 , i = 1, 2 such that II u1 - u0 ll 8 ~ R • Furthermore 
s 

estimates similar to those of Propositions 4.3 and 4.4 allow to 
show that 

Finally, we are able to state our main result. 

Theorem 4.5. For any initial condition~ whose analytic 
continuation satisfies u EB with IJ'm u I < K < 1 and o s 0 ox s 0 

[I [I 
I u - -I < r - with 70 E (0, 1), there exists a constant a 

0 2 •o O 2 
such that for ltl < a(s0 - s) Equation E has a unique solution 
u which is an analytic function of t with values in B8 • 

5. FINITE TIME ANALYTICITY FOR THE RAYLEIGH-TAYLOR INSTABILITY 
IN A STRIP. 

We consider the movement of two ideal incompressible 
fluids of constant densities p1 and p2 separated by a vortex 
sheet S8 • We suppose that the flow takes place in a strip 
n =Rx (O,l/) and that the interface Su can be parametrized in 
the form z = u(x, t). 

The momentum equation reads 
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where 

pis the fluid density 
and p = p2 in {(x,zl I 

p = p1 in 
z < u(x, t)} 

{(x,z) I z > u(x, t)} 

qx and qz are the x and z-components of the velocity q; 

g is the gravity field. 

One supposes here as well that the flow cannot cross the 
boundary: 

q.-,,, = 0 on an 

The vorticity density w(x,t) on the interface is defined by 

J n 'P curl q = J ip(x, u(x, t)) w(x, t) dx 

for all !f' E 'G: :;ocn). 

Following the main lines of a derivation of Sulem and 
Sulem [15], Chan Hong [3] obtains the system 

1 

[:: 
= {Q1 ( U, W) + u Q2 ( u, w)} 

4ll X 

s 
- 2a B(u)wt = 2S( u, w) 

where 

a= 
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1 
B( u) wt = {Qz ( u, wt) - u Q1 (u,wt)} 

4ll X 

and 

0 {-
(<) Q2 ( u, c.>) 

[~ + ~ ""' + gu]} 1 2 
S(u,w) = + a + ox an 32 IP 8 (l+u2) 

X 

a 0 
+ --- -- Ql ( U, ( Ql + u Q2 ) c.>) 

IP ox X 

16 

Our result is quite similar to those that Sulem and 
Sulem [15] obtain in the case of other flow domains. Let s< 1 > 

s 
be the Banach space 

with the norm 

and let s< 2 > be the Banach space 
s 

with the norm 

Using an extension of Theorem 4.2 one can prove the following 
result [3] : 

Theorem 5 .1_~_ 
There exists a constant\ such that for any initial condition 

( u0 , c.>0 ) whose analytic continuation belongs to s< 2 > x s< 1 > and 
s O s 0 

n n 
satisfies l.fei u0 x 18 < K < 1, lu0 - -I < r - with r0 E (0,1) 

n O 2 8 0 ° 2 
and llu0 - 2 11 2 , s <e,; k 0 , there exists a constant a such that for 
all ltl < a(s0 - s) the system S has a unique solution (u,w) 

which is an analytic function of t with values in s< 2 >x s< 1 > 
s s 

Remark 5.2. In the case that a= 0, which corresponds to the 
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Kelvin-Helmholtz instability, the result of Theorem 5.1 holds 
without any restriction on llu - I!.11 

0 2 2' s 
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Figure 1. The distribution of fresh and salt groundwater in an aquifer. 
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Phase Portraits tor Quadratic Systems with a 
Higher Order Singularity. 

I. Third and Fourth Order Points with Two Zero 
Eigenvalues 

ABSTRACT 

P. de Jager and J.W. Reyn 
Faculty of Mathematics and Informatics 

Delft University of Technology 
P.O. Box 356, 2600 AJ Delft, The Netherlands 

This paper presents a classification of all possible phase portraits of 

quadratic systems of differential equations with a third or fourth order 

singular point with two zero eigenvalues. The singular points include the 

fourth order saddle node, the third order saddle point and the third order. 

point, having an elliptic and a hyperbolic sector. 
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In a survey paper [4J on general properties of quadratic systems of 

differential equations in the plane Cappel states that what remains to be 

done is to determine all possible phase portraits of such systems, this 

being of great practical value. The present paper aims at giving a contri

bution in this direction. By a quadratic system is meant the system 

( 1) 

for the functions x = x(t), y = y(t)' where ~ and aij' b .. E lR. dt l.J 
Since quadratic systems without singular points in the finite part of the 

plane have been classified by Gasull, Sheng Li-Ren and Llibre [6 J, we may 

assume that (1) has at least one singular point in the finite part of the 

plane, and we may shift the origin into this point: a 00 = b00 0. TWO 

limiting cases are then also classified: the linear case (a20 a 11 = a 02 

= b20 = b11 = b02 = 0) and the homogeneous case (a10 = a01 = b 10 = b01 = 0) 

[SJ, [7J. If both linear and quadratic terms are present a lot of work 

remains to be done. If one or both eigenvalues in the singularity are zero, 

yet at least one linear term remains after transformation to the origin, a 

higher order singularity or multiple equilibrium point exists, which is 

considered in the present paper. Such higher order points were classified 

by Berlinskii [2J, who makes use of other papers in Russian, which are not 

easily accessible. At present it is more convenient to use the classification 

of multiple equilibrium points for analytic systems as given by Andronov et 

al. in Chapter 9 of their book [lJ, of which an English translation is 

available. Also, the notion of order of a singular point (or multiplicity 

of an equilibrium point) as used in [2J may be improved somewhat by using 

that, implicitly present in the analysis given in [lJ. The results of a 

renewed classification [BJ, however, agree with those given by Berlinskii 

{see also [3 J} • 

If the higher order singular point is in the origin, the quadratic 

system may be brought into a normal form by an affine transformation. If 

both eigenvalues are zero this normal forms reads [l, p. 346J. 

2 2 
x = y + ax + bxy + cy - P(x,y) 

y ax2 + exy + ti - Q(x,y) 
(2) 



The order of the singular point in the origin may be defined as the 

maximum number of common zeros near the origin in the unfoldings of 

the functions P(x,y) and Q(x,y). This is the same as the maximum 

number of zeros of the unfolding of ~(x) = Q{x,$(x)}, where ¢(x) is 

defined by P{x,i(x)} = 0, satisfying ~(O) = $' (0) = 0; thus if 

~(x) = a xn + ..• , with a # O, n is the order of the singular point. 
n n 

On the basis of Theorems 66 and 67, Chapter 9 of [1] there are for (2) 

the following cases: 

(i) a fourth order saddle node, if a# 0, d = e = O, f # O; index 0, 

(ii) a third order saddle point, if ae < 0, d = O; index -1, 

(iii) a third order point, having an elliptic and a hyperbolic sector, 

if ae > 0, d = O; index 1, 

(iv) a cusp point; the phase portrait is the union of two hyperbolic 

sectors and two separatrices, both tangent to the x asis, if 

d; O, order 2; index 0. 

In all cases div {P(O,O), Q(O,O)} = O. 

If only one eigenvalue in the singular point is zero, the normal 

form reads [1, p. 338) 

X 
2 2 

ax + bxy + cy - P(x,y) 
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y + dx2 + exy + fy2 - Q(x,y) 
(3) 

y 

Similar to the previous case, the order of the point may now be defined 

as the maximum number of zeros in the unfolding of ~1 (x) = P{x,p(x)}, where 

P<x) is defined by Q{x,P(x)} = 0, satisfying P(O) = ~• (0) = 0. On the basis 

of Theorem 65, Chapter 9 of [l] there are for (3) the cases: 

(i) a fourth order saddle node, if a= b = 0, c # 0, d # O; index 0, 

(ii) a third order saddle point, if a 0, bd > O; index -1, 

(iii) a third order node, if a= 0, bd < O; index 1, 

(iv) a second order saddle node, if a# O; index 0. 

In all these cases div{(P(O,O), Q(O,O)} # 0 (= 1). 

In the present paper the possible phase portraits are given for systems 

with a third order or a fourth order singular point having two zero eigen

values. They include the fourth order saddle node, the third order saddle 

point and the third order point, having an elliptic and a hyperbolic sector. 

The phase portraits are characterized in the usual way: by the number, 

position and character of its singular points; by the position of its 

periodic solutions, if any; by the position of the separatrices, and 

by the behavior at infinity. Standard arguments will be used for the 
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classification, such as local linearization in singular points, if 

possible, Dulac functions, integrating factors, continuity and index 

arguments. For the investigation of points at infinity a slightly 

different transformation than that given by Poincare will be used, by 
-1 -1 

putting x p(l-p) cos e, y = p(l-p) sin e. System (2) then becomes, 

with P(l-P) _§_ = _§_ = 
dt d1 

p' 2 2 3 p (1-p) B1 (8) + p (1-p)C1 (8) 

e' 
(4) 

where B1 (0) = sin0cose, c 1 (8) acos30+(b+d)sin0cos28+(c+e)sin2ecos0+fsin3e, 

dcos3e+(e-a)sin8cos2e+(f-b)sin28cos0-csin3e. 

Points at infinity are then represented on p - l; singular points appear in 

diametrically opposed pairs. If c2 (0) t 0, p - 1 consists of integral curves 

and possibly of singular points. In order to include such a curve into 

considerations using index theory, an extension of the usual Poincare index 

of a planar vector field will be adopted by regarding p = 1 as the limiting 

position of a closed curve near it[ 9]. If c2 (8) t 0, it can then be deduced 

that the sum of the indices of the singular points on p s 1 is equal to 1, 

where for the index of a singular point on p = 1 only the vector field for 

p s 1 is considered. 

1. Quadratic systems with a fourth order saddle node and two zero eigenvalues. 

If (0,0) is a fourth order saddle node with two zero eigenvalues, (2), with. 

d = e = O, af ~ 0 may be written, - if necessary by applying an affine trans

formation and/or a scaling oft-, in the form 

X = 
(5) 

y 

, with :>. ( JR. 

As illustrated in figure 1, the saddle 

node PO in (0,0) consists of two hyper

bolic sectors, separated by the positive 

x axis, and a parabolic sector. One 

hyperbolic sector coincides with the half 

y 

figure 1. 



plane y > 0 and the other lies between the axis x > 0 and a separatrix 

tangent to this axis in P0 • The integral curves in the parabolic sector 

are tangent to the negative x axis in PO• 

Since there are no other singular points P0 is the only possible 

candidate to be situated inside a periodic solution. However, such a 

periodic solution would have to intersect the x axis, which is a integral 

curve. Thus, uniqueness makes a periodic solution impossible. 

From (4) follows, that the singular points at infinity are given by 

so that there is a point P1 ate= O(TT), and, for A<¼, a point P3 at 

0 = arc cot½o-✓1-4X), and a point p4 at 0 = arc cot½c1+/i"=4X); these 

two points coincide for A = ¼ in the point P2 at e = arc cot½· The 

character of these points may be found by local linearization and using 

Theorem 65, Chapter 9 of [1 ]. As a result follows, that P1 and P3 are 

nodes, P4 is a saddle point and P2 a saddle node. If is further observed 

that from (4) follows, that on P0P3 and on P0P4 (so also on P0P2) there 

is 0' < 0, the continuity argument shows, that the phase portraits are 

as given in figure 2. 

1t 

P, 

,./,.J 
figure 2. 
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2. Quadratic systems with a third order saddle point and two zero eigenvalues. 

If (0,0) is a third order saddle point with two zero eigenvalues, (2), 

with d = O, ae < O, may be written, if necessary by applying an affine 

transformation and/or a scaling oft, in the form 

y = xy - Q(x,y) 

(6) 
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As illustrated in figure 3, the saddle point in P0 : (0,0) consists of 

four hyperbolic sectors separated by 

four separatrices: the positive x 

axis and a curved separatrix tangent 

to it in P0 , and the negative x axis 

and a curved separatrix tangent to 

it in P0 ; both curved separatrices 

lying in y > 0. System (6) has no 

limit cycles, In fact, it can be 

shown that for A2 = 1 the system has 

no periodic solutions, since 
figure 3. 

-2A -1 B(x,y) = y 1 is a Dulac function yielding 

a a -2A 
ax (BP) + dy (BQ) = A2y 1 

> 
, which is of constant sign in a half plane y < O. A periodic solution must 

then cross the x axis, which is not possible since it consists of integral 

curves. For A2 0 the system is symmetric around they axis, which excludes 

limit cycles, since all possible singular points are on they axis and a 

limit cycle has to have a singular point in its interior.Another argumentation 

would be to use div(BP,BQ) =O, when applying Green's theorem to an annulus 

with a limit cycle as one of the boundary curves [ 9 J. For A2 = 0, the Dulac 

function acts as an integrating factor to yield the solutions 

2 2 A3 2 2' - '4IYI "1 y = 0 and 2) _1 y + x + A _1 y +" = 0 
1 1 

, which includes also the periodic solution of (6). 

The other finite singular point P1 : -1 (0,-A 3 l, (for A3 # 0) may be analyzed 

by local linearization and using the symmetry for A2 = 0. 

From (4) follows, that the singular points at infinity are given by 

so that there is a point P2 ate= O(n), and, for A= A22 + 4A3 (1-A1) > O, 

a point P4 at e = arc cot - ½<A2 + ~ (A 1 - 1)-1, and a point 
1 "' -1 cot - 2 (A2 - v I\J!A1 - 1 l ; these two points coincide for A 

PS at 8 = arc 

0 in the point P3 
1 -1 

at arc cot - 2 A2 <\ - 1 l • The character of these points may be found by 

local linearization and using Theorems 65, 66 and 67 of Chapter 9 of [ 1]. 

The character of the singular points is listed in Table 1 and the phase 

portraits are given in figure 4. Use should be made of the argument that 

e' < o on P0P4 and P0P5 (and thereby on _P0P3l. 



I; 
A: C, It= 1, A3< 0 

:>- :>-2 :>-3 Po Pl 

- 0 - s C 

0 0 0 s 

+ 0 + s s 

+ 1 + s s 

+ 1 0 s 

+ 1 - s n,f 

0 1 - s n,f 

- 1 - s n,f 

figure 4. 

~ 7?. 

;1:0;~=1,1l<o 

p2 p3 p4 PS 

n 

n eh 

n n n 

n n n 

n n sn 

n n s 

n sn 

n 

Table 1 

s = saddle point 

n -= node 

sn = saddle node 

f = focus 

c = centre point 

eh = point with an 

elliptic and hyper

bolic sector. 

91 



92 

3. Quadratic systems with a third order singular point with an elliptic and 

a hyperbolic sector. 

If (0,0) is a third order singular point with an elliptic and hyperbolic 

sector; (2), with d = 0, ae > 0, may be written, if necessary by applying 

an affine transformation and/ or a scaling of t, in the form 

y xy 

The hyperbolic sector is situated 

in y > 0 with the negative and 

positive x axis as separatrices. 

For y < 0 there is an elliptic 

sector, the extent of which near 

- Q(x,y) y 

figure 5. 

the x axis cannot be determined from local considerations. 

As a result, for y < 0, there is a parabolic sector near the x axis 

(x < 0 and x > 0). 

(7) 

X 

As for the previous case it can be shown that (7) has no limit cycles by 

using the same Dulac function B(x,y) = y - 2A1 - 1 For A2 = 0, this Dulac 

function acts as an integrating factor to yield the solutions 

' 2 2 A3 2 + '41Yl2A1 for Al# 2-' 1: y = 0 and 2A _1 y + x + x-=I" y A = 0 
1 1 

for ;i_ 1 

1 
2 y _ 0 and - 2y ln J y J 

y _ 0 and 

2 
+ X 

, which also include the periodic solutions of (7) for A3 < 0. 

[see also [ 10 JJ 
-1 The character of the other finite singular point P1 : (0, - A3 ) , 

(for A3 # 0) may be analyzed by local linearization and using the 

symmetry for A2 = 0. 



In order to determine the phase portraits of (7) we consider the 

cases A2 = 0 and A2 # 0 separately. 

Case A2 = 0. There follows 

c2 (8) = [o-A1 l cos2 8 - A3 sin.2 e] sin8. 

For A1 = 1, A3 = 0, all points on p = 1 are singular, or, if the factor 

(1-p) is divided out in (4), ordinary points. In the x,y plane the 

integral curves are conics through P0 • For (A 1,A3) # (1,0), c2 (8) = 0 

P2 ate= O(n), and for shows that there is a singular point 

A_ A3 0-A 1)-l >O, a point P4 at 8 = arc cot - IA, and a point P5 at 
n 3n 

e arc cot ,15:7 these points coincide for A= 0 in point P3 at 8 = 2-<-2> • 
The character of these points may be found by local linearization and 

using Theorems 65, 66 and 67 of Chapter 9 of [ 1]. The character of the 

singular points is listed in Table 2 and the phase portraits are.given 

in figure 6. It may be seen, that for A3 < 0, eq. (7) has periodic 

solutions and the phase portraits should also be found in the classifi

cation of quadratic systems with a centre as given by Vulpe [10]. It 

appears, however, that phase portrait 22 in [ 10] is incorrect and should 

be the same as phase portrait 23 (or. as in fig. 6 for A1 s 1, A3 = 0). 

Table 2 

A1 - 1 A 
3 Po Pl p2 p3 p4 PS 

0 0 eh 

- + eh s s n n 

0 + eh * s n 

+ + eh s n 

+ 0 eh * n s 

+ - eh C n s s 

0 - eh * C s 

- - eh C s 

- 0 eh s eh 

* third order point 
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1J. 

figure 6: A2 = 0 

Case\ 1. From (4) follows, that the singular points at infinity are given 

by c 2 <e> = [o-A 1) cos2e- sin8cos8-A3sin2~sin8= o, 

so that there is a point P2 at 8 = O(n), and, for A= 1 + 4A 3 (1-A1) > O, 

a point P4 at 8 = arccot-½<1+/ri(A 1-1)-1 and a point PS at 

e arc cot - ½o-.1'") <\-1 )-1; these two points coincide for ). = 0 at point P3 at 

e 

Moreover, for A1 = 1, the point P4 coincides with P2 , and point PS is situated 

in 8 = arc cot -A3 • The character of these points may be found by local 



lJ. 

7; 
,t<1,tf;=u, )>o 
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linearization and using Theorem 65 of Chapter 9 of [1 ]. The character 

of the singular points is listed in Table 3 and the phase portraits 

are given in figure 7. 

Table 3 

A1-1 A3 A Po Pl p2 p3 p4 PS 

- + + eh s s n n 

- 0 + eh s n sn 

- - + eh n,f s n s 

- - 0 eh n,f s sn 

- - - eh n,f s 

0 + + eh s sn sn n 

0 0 + eh sn sn sn 

0 - + eh n,f sn sn s 

+ + - eh s n 

+ + 0 eh s n sn 

+ + + eh s n s n 

+ 0 + eh n s sn 
+ - + eh n,f n s s 
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1. Abstract 

The geometrically non-linear slender bar equation is solved for a number of problems involv

ing suspended pipelines, related to the off-shore gas- and oil-pipe laying. The problems concern the 

use of a lay-barge with stinger, and the process of abandoning and recovery of a pipe. The usually 

stiff equation requires for a completely numerical solution considerable computer power, not al

ways available on board. Therefore, the solutions are analytical (matched asymptotic expansions, 

and linear theory) to allow the results being evaluated on a small computer. It is shown that for the 

majority of the practical cases the two solution methods complement each other very well. 

2. Introduction 

Exploitation of gas- and oil-wells offshore requires the presence of pipelines along the sea floor for 

transport of the products. The laying of these pipelines is usually done by suspending the pipeline 

via a stinger from a lay-barge. On board the pipe is composed by welding pipe elements together at 

the welding ramp (figure 1). During the process of laying the pipe is bent by its own weight into a 

stretched S-curve, causing bending stresses in the pipe. If the water is (relatively) shallow, the pipe 

sufficiently stiff, and the weight (per unit of length) is sufficiently low, these stresses remain low 

enough without further precautions. However, in modern applications the pipes are laid in deep 

water, sometimes in a considerable current necessitating a heavy pipe ( especially when it is a gas 

pipe), in a way that the bending stresses become so high that the pipe would buckle. In that case, a 
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horizontal tension is applied by the ship, to stretch the bends and reduce the stresses. Further

more, sometimes the pipe has to be abandoned and recovered by means of a cable (let down to 

and pulled up from the sea floor, figure 2, for example when a storm prohibits the continuation of 

laying). Also during this process a certain tension is to be applied at the cable to avoid buckling. 

Since both the tension machines, stinger equipment etc., and the repairing of a buckled pipe 

are very expensive, it is necessary to calculate in advance, for a given configuration, the tension 

just sufficient to obtain a given maximum stress level. This problem will be discussed here. 

With sea current, dynamics of the sea, nonlinearity of the steel elasticity, and variation of pipe 

weight and flexural rigidity being usually of minor importance, we consider the model of a linearly 

elastic, geometrically nonlinear suspended bar, loaded by its own weight and a horizontal tension. 

The equations and boundary conditions will be presented in the next section; the derivation may be 

found in [l]. The differential equation is of second order, with an unknown free pipe length and 

an unknown bottom reaction. Effectively, the problem is therefore of fourth order. Due to the 

nonlinear character of the problem only very few exact solutions are known. For example, if the 

flexural rigidity vanishes we obtain the catenary (some boundary conditions have to be given up), 

and if the pipe weight vanishes the equation becomes equivalent to the nonlinear pendulum equa

tion allowing an implicit solution with elliptic functions (Kirchoff's analogy, [1]). For the present 

problem no exact solutions are known, and we will therefore consider approximations. 

A very well-known approximation is based on the pipe being nearly horizontal (small deflec

tion angle) allowing linearized equations with solutions of exponential or (if the horizontal tension 

vanishes) polynomial type (beam theory; [1,2]). A generalization of this approach is a linearization 

around a non-zero mean deflection angle, yielding solutions in terms of Airy functions [l]. These 

linearizations are uniform approximations: physically, the behaviour of the pipe is everywhere the 

same with basically the same equation valid. Another approach is based on a small (relative) flex

ural rigidity, giving the pipe a shape close to a catenary (important weight and tension, unimpor

tant bending stiffness), except for the regions near the ends where bending stiffness is important, 

but weight is unimportant. Evidently, this approximation is not uniform, with physically different 

behaviour in boundary layers at the ends. It has become known in the literature as "stiffened 

catenary". The presence of these boundary layers was first noted by Plunkett [3] (for a related 

problem without free boundaries); however, his asymptotic solution is only correct to leading ord

er. Matched asymptotic expansion solutions based on this boundary layer behaviour were also given 
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by Dixon and Rutledge [4] (using Plunketts solution), van der Heyden [5] (for suspended cables), 

Konuk [6], and (in a more general setting) by Flaherty and O'Malley [7]. None of these authors, 

however, do consider the present free boundary problem. 

In the following sections we will derive two approximate solutions (or in any case, reduce the 

problem to an algebraic equation): a small-angle linearization (beam), and a matched asymptotic 

expansion based on a small flexural rigidity (stiffened catenary). Special attention will be paid to 

the use of the first integral of the equation (free bending energy) to deal with the inherent problem 

of the unknown suspended pipe length. Furthermore, we will show that these two approximations 

appear to provide excellent (complementary) solutions for almost all the investigated practical 

cases, so that they are probably sufficient in a practical situation for on-board calculations with only 

a small computer available. At the same time, of course, they provide efficient starting values for 

completely numerical solutions which might otherwise suffer from the stiffness of the equation. 

3. The Problems 

Equilibrium of forces, together with application of the Bernoulli-Euler law, relating bending mo

ment to radius of curvature, yields the following equation for 'lj!(s), the angle between horizon and 

the tangent at the local coordinate s , in non-dimensional form 

(£/µ) 2'lJ!ss = sin('lj!) - (µs-1,,) cos('lj!) (1) 

along the interval [0,1], and where e2 = EIQ 2/H3, µ = LQ/H, ),, = V/H, with El denoting the 

flexural rigidity, Q the pipe weight per unit length, H the horizontal tension, L the (unknown) 

free pipe length, and V the (unknown) bottom reaction force. The corresponding boundary condi

tions for the pipelay problem are given by 

'lj!(0) = 0, 'lj,5 (0) = 0, 'lj,5 (1) = -µ/r, 

d = dsh + r cos('lj!(l)) - r cos(<j>), 

and for the abandon/recovery problem 

'lj!(0) = 0, 'lj,5 (0) = 0, 'lj!,(1) = 0, 

(2.a) 

(2.b) 

(3.a) 
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d = d,h + r cos(y) - r cos(<j>) - (c-ry+r<j>) sin(y), y = arctan(µ-A). (3.b) 

Here is r = RQ/H, d = DQ/H, d,h = D,h Q/H, c = CQ/H, with R denoting the stinger radius, 
I 

D = L fo sin('ljJ(s))ds the height of the pipe end, D,h the height of the stinger hinge, <j> the angle at 

the hinge, C the cable length (measured from the stinger hinge), and y the cable angle. The cable 

is for simplicity taken with zero weight, but a nonzero weight can be included without much diffi

culty. 

An important relation is the first integral of (1), expressing the elastic free bending energy density 

[2], and providing an explicit relation between d and 'ljJ(l): 

t(E/r)2 = 1 - cos('ljJ(l)) - (µ-A) sin('ljJ(l)) + d. (4) 

In the following section we will present a stiffened catenary solution for small E, and a beam solu

tion for small l'ljJI, of (1) with (2) and (1) with (3), and using (where appropriate) (4). We note in 

passing that the present problems have no unique solution without an additional condition to 

minimize energy or pipe length; further research is in progress [8]. 

4. Solution 

4. l Stiffened catenary ( E - 0) 

The solution is built up from local asymptotic expansions in three regions: 'ljJ = h in s = 0(1), 

'ljJ =fins = O(E), and 'ljJ = g ins = l+O(E). Unknown constants are determined via matching. 

The complete solution is constructed by adding the three solutions and subtracting common terms: 

'lj!=f+h+g. 

This whole matched asymptotic expansion procedure is relatively standard, and will not be repeated 

here. The only point to be noted, is that L and V, and therefore µ and A, are unknown, so depen

dent on E, and should therefore be expanded into powers of E, like f ,g and h. This will, however, 

not be carried through right from the start. It is more convenient to begin with assuming µ and A 

fixed, or rather, known to any desired accuracy, and to postpone the actual calculation to a later 

stage. 



Ifs = 0(1), we introduce z = µs-A, and rewrite (1) into 

By successive substitution, or otherwise, we obtain easily 

h = arctan(z) - 21:h/(1+z2)5/2 + O(e4). 

Note that the leading order term is just the catenary. 

Ifs = O(e), we introduce t = µs/e to obtain 

/ 11 = sin(!) - (Et-A) cos(!). 
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(5) 

Expanding f and A (which is determined at this stage) in an E-power series, yields, after matching 

and application of the boundary conditions, 

A= E/(l+¾E2) + O(E5), 

f = Ee-1 - 4~ E3e-1[e-2' + 4t3 - 6t2 + 6t + 147] + O(E5). 

(We already skipped the terms common to f and h). 

Ifs = l+O(e), we introduce,:= µ(s-1)/Ex, where x = (1+(µ-;\.) 2)-1/4, to obtain 

g.,. = x2 sin(g) - x2(µ-A+exi:) cos(g). 

Following the usual steps we arrive at 

(6) 

(7) 

(8) 

for the pipelay problem; in case of the abandon/recovery problem the term 1/r is set to zero. Up 

to now we have applied the boundary conditions (2.a) and (3.a). The final step to be taken, to 

determine µ, is substitution of the results obtained so far into (2.b) and (3.b), and utilizing (4) to 

get rid of d. Rewritten in suitable form it becomes for the pipelay problem 

x2 = [A + (A 2 + 4r(cos a-(µ-A)sin a)cos a)'a] / 2r(cos a-(µ-A)sin a) (9) 

with A = r cos(<j>) - dsh + ½(E/r)2 - 1, and a = 'lj)(l) - arctan(µ-A). Since a= O(E), the right

hand side of (9) is to leading order independent of E, and the solution for µ is simply obtained by 

successive substitution of x2, starting with a = 0. The equation for the abandon/recovery problem, 
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corresponding to (9), is 

rx2 - (c+r<j>-ry)(µ-t..)x 2 - cos(a)/x2 = A, (10) 

but this equation cannot be written in a form allowing an explicit asymptotic solution, and there

fore has to be solved numerically. 

This solves the present stiffened catenary problems. One final remark to be made is that it is 

practically very useful to modify the boundary layer contributions f and g a little bit, by adding ex

ponentially small terms, of the order of exp(-µ/E) and exp(-µ/Ex), in a way that the coupling 

between f and g in each others domain is reduced, for example: 

'ljJ = f(s) - f(l)s + h(s) + g(s) - g(0)(l-s), and similarly for 'ljJs. Asymptotically for E-c>0, 

these terms have no meaning, of course, since they are smaller than any power of E, but for any 

finite E they appear to be very useful, and extend the region of validity to values of E as high as 

0.35. 

4.2 Beam (l'ljJI « 1). 

Linearization of equation (1) yields 

(f/µ)2'ljJSS = 'ljJ - µs + t.., (11) 

with solution (satisfying 'ljJ(0)='ljJs (0)=0) 

'ljJ = t..(cosh(t)-1) - E(sinh(t)-t) (12) 

1 
where t = µs/E. From (12) we derive an expression ford = µ fa 'ljJds by direct integration (eq. (4) is 

not a first integral of (11) any more). Then, for given d, the solution x=x0 of 

½xsinh(x) - cosh(x) + 1 - (d/E2)sinh(x )/x - (sinh(x )/x - 1)/r = 0 (13) 

gives µ = EXo, "- = µ/2 - d/µ - E2/µr, of course with 1/r = 0 in case of the abandon/recovery prob

lem. Finally, d is determined by solving equation (2.b) or (3.b). So for the beam problem wear

rive at two coupled algebraic equations. We note, that we do not linearize (2.b) (which would im

ply cos('ljJ(l)) = 1 ), since in that case we would lose all information on tire lift-off angle 'ljJ(l), 

which is of great practical importance as it determines the required length of the stinger. 
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5. Examples 

We start with an example of the pipelay problem, figure 3. We plotted the curve of required ten

sion versus water depth (i.e. D,h) to obtain a prescribed minimum radius of curvature. The plot is 

given in dimensional form, since we scaled previously on H, which is now the varying quantity. We 

see the results from the beam theory, valid up to, say, 20°-25°, smoothly taken over by the stif

fened catenary theory, suggesting correct results from both theories also in the transition region. 

This appeared to be typical for practically all the cases considered, and is, furthermore, confirmed 

by comparison with completely numerical results. For example, the results in the transition region 

near D,h =50 appear to be indeed very accurate, in spite of the rather high value of E=0.32, the 

boundary layer widths of 0.23 and 0.27, and the rather large maximum angle of about 24°, as is 

seen from the following comparison with a completely numerical solution at D,h =50 and H =110: 

numerical catenary beam 

'lj)(l) 21.89° 21.82° 22.18° 

V 30.05 30.63 30.30 

L 145.80 146.9 141.8 

min.radius 208.2 209.2 202.0 

This is much more accurate than could be estimated theoretically: an error of O(E3) for 'lj), V and 

L in the catenary theory would predict 3% (here 0.3%), an error of O(E2) for the minimum radius 

would give 10% (here 0.5%), and an error of 0(1'4'12) in the beam theory, giving 15%, is really less 

than 3%. This remarkably better performance than the a-priori estimates remains also for other 

examples, and does not seem to be accidental. Probably, the higher order corrections are numeri

cally small or cancel each other. 

In figure 4 we have an example of the abandon/recovery problem, where maximum bending stress 

(-'lj),) is plottes versus cable length. A similar transition from catenary to beam is seen, with again 

overall accurate results. 
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ABSTRACT 

Consider the following eigenvalue problem 

{
-Liu= Af(u) 

(P) 
u = 0 

in n c lR n, bounded, 

on an, smooth, 

where f changes sign·. In this note we will show results which can be found 

by using the so-called sweeping principle of Serrin, 1971. Especially we 

will give estimates for the boundary layer of positive solutions near a 

zero off. For some fa solution u will have a free boundary. We show for 

such f that f(u)=0 except near an. Next to this we improve a result for 

existence of a solution. 

1. INTRODUCTION 

We are interested in pairs ()..,u) € lR+ x c2 (n) satisfying (P) and 
1 

u > 0 inn. First, note that a solution satisfies f(max u) ~ 0. If f E c, 

the strong maximum principle even shows f(max u) > 0. Secondly, if pis a 

zero off then u = p satisfies the differential equation for all)... So one 

could expect the existence of a solution (A,u), where A is large and u is 

near a zero off (with f(max u) ~ 0) except for a boundary layer. Results 

for this problem were presented by Fife,1973 and by Clement et al., 1986. 

The results here are strongly related to this last paper. 

Assume that there are two numbers 0 < p1 < p2 such that 

(Fl) 
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(F2) f ECY(-00 ,p 2 ] n c1 (-00 ,p 2) and there is o > 0 such that f' SO in 

(p 2-o,p2), where ye(0,1). 

P2 

fig.1 

In 1981 Hess showed, if f(O) > 0, that the following condition is suf

ficient for existence of a positive solution (A,u) with max u E (p 1 ,p 2). 

(F3) J (p) 

p2 

:= J 
p 

f(s)ds > 0 for every PE [O,p 1 ]. 

In the first theorem, it will be proven that this condition is sufficient 

and necessary when f E c1[0,max u] , even if f(O) < 0. In the second 

theorem we will show that the solutions, which are found in this way, are 

near P2 . 

2. THEOREMS AND PROOFS 

Before stating the first theorem we will shortly explain the sweeping 

principle of Serrin, 1971. A formulation can also be found in the paper 

by Clement et al., 1986. 

Fix A, let u be a solution of (P) and let {v(t) EC(~); t E [0,1]}be a 

continuous family of subsolutions, such that v(O) < u inn and for all t 

v(t) < u on an as well as v(t) < p2 inn. Then v(t) < u inn for all 

t E [0,1]. Since, if there exists t* E [0,1] such that v(t*) Su and for 

* * * * some x En v(t ,x) = u(x), the strong maximum principle implies 

* v(t) = u, a contradiction. 

THEOREM 1: 

Let f satisfy (Fl) (F2) (F3) and let n satisfy a uniform interior sphere 

condition. Then there exists c 1 > 0, c 2 E (p 1 ,p 2) and AO> 0 such that for 

all A> AO a positive solution (A,u(A)) of (P) exists with 



Moreover every solution (\,u) of (P) (not necessarily positive) with 
max u 

max u E (p 1 ,p2 ) satisfies J f(s)ds > 0 for every p E [O,p 1 ]. 
p 

PROOF: 

Replace f by f*, where f* satisfies (Fl) and 

f* (u) = 1 for u < -1, 

* f (u) s f(u) for Os us p2 , 

f* E c1 (JR) , 

p2 * J f (s)ds > 0 for all P < P2 . 
p 

fig.2 

Like Hess in 1981, one finds forµ large enough, a minimizer v of 
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I 2 V * 
I(v,µ) = ½J 17vl dx - µ J J f (s)ds dx in the cone {v E w1 ' 2 (n); v > -1 in B, 

n no 
v = -1 on aB} with max v E (p 1 ,p 2). (B denotes the unit ball). Gidas et al. 

showed in 1979 that vis radially symmetric and v' {r) < 0 for r E (0,1]. 

Let 8 E (0,1) be the number such that v(B) = 0. Since n satisfies a uni

form interior sphere condition, n = U{B(x,E); x E n(E)} for all EE (O,E0), 

where E0 is some positive constant and B(x,E) {y E JRN; lx-yJ < E}, 

n(E) {x En; d(x,an) > d. Then w(\,x) := sup {v(8.E-1 .lx-yJ); y E n(E)}, 

with\=µ. (8/E) 2 , is a subsolution of (P), with f replaced by f*, for all 

\ ::: \ 0 := µ. f8/E 0 ) 2 . Since O < w(\) < p2 and f* sf on [o,p2 ] , w(\) is 

also a subsolution of the original (P). Note that W(\) = p2 is a super

solution of (P) for all\. By an iteration scheme one shows the existence 

of a solution in between. By condition (F2) there exist two strictly in

creasing continuous functions f 1 and f 2 such that f = f 1 - f 2 on [O,p2 J 

and f 2 (0) = 0. Because of (F2) one may assume f 1 E c1[o,p2 ]. Define T by 

u = T(v), where u is the unique solution of 

inn, 

on an. 

See the paper of Brezis et al. from 1973. Define W = Tn(W(\)) and 
n 

w = Tn (w (\)) . {W } and { w } are sequences of respectively decreasing 
n n n 
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supersolutions and increasing subsolutions. Since Wn > wn in Q these

quences converge to a solution of (P). Standard regularity theory shows 
2 

that these solutions, or maybe just one solution, are C (Q). The estimate 

(1) is valid since the solutions are between w(A) and W(A). 

The last part will also be proven with a sweeping argument. Suppose there 
maxu 

is a solution of (P) with max u E (P 1 ,P 2 ) and 

* 
f f(s)ds = 0 for some 

p E [0,pl ]. 

Let u be the solution of 

_;;:,, = H (u) 

;;:(0) = max u 

ii• (0) = 0. 

p* 

, t E R, 

Set U (t,x1 , ... ,xN) u(x1 -t) for x E RN 

* * * * Note that max U max u and inf U c p • Moreover there exists t and x E Q , 

* N * with Q Q n {x E R ;x1 > t } , such that 

U (t *) c u in n*, 
* * * * * U(t ,x) = u(x) and VU(t ,x) * Vu(x ) . 

* The strong maximum principle shows U(t) = u, which is a contradiction. 

For a more detailed proof see the authors paper of 1986. □ 

THEOREM 2: 

Let Q satisfy an interior sphere condition and let f satisfy (Fl) and 

(F2) with p 1 not necessarily positive. If p1 > 0 then assume (F3) is also 

satisfied. 
a 

Suppose that f(u) > c(p 2-u) for u E (p 2-a,p 2), where c,a,o > 0. Then 

there is c > 0 such that for any nonnegative z E c;(Q), with max z E (P 1 ,P 2), 

A(z) > AO exists for which the following holds. 

Let (A ,u) be a solution of (P) with z s us p2 in Q and A> A(z). 

1) If 0 < a < 1 then u(x) c min (C.A½.d(x,3Q),p 2). 

2) 1, then u(x) ½ for x E Q. If a = > P2 (1-exp(-C.A .d(x,3D))), 

3) If 1 < a, then u(x) > p2 (1-(l+C.A½.d(x,3Q))-p) for x c n, with 
-1 

p = 2 (a-1) 

REMARK 1. 

Case 1) shows that a solution near p2 will have a free boundary with

in a distance of order A-½ from an. 
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REMARK 2. 

For the cases ii) and iii) it was proven by Clement et al. in 1986, if 

f € c1 'Y[o,p 2] and 3 an e: c , that there exists a unique solution u E [z,p2] 

for every A large enough. 

The key to the proof of theorem 2 will be the following lemma. 

LEMMA : 

Let (A,u) be a solution of (P) and let v be the first eigenvalue of 

in B(O,l), 
(L) 

on clB(0,1). 

If f(u) > cr. (u-m) for u e: [m,M] and u > m on B(y,(cr.A/V)-~) then u(y) > M. 

PROOF: 

Let 1/J be the associated eigenfunction of (L) with 1/J(O) 

~ I I -~ v(t,x) = m + (t-m) ,1/J((cr.Ajv) • x-y ) for x E B(y, (cr.A/v) ) • 

Then -llv (t) (t-m). (cr.A/v). (-lll/J) 

A,cr. (t-m)l/J = 

A.cr. (v(t)-m) < Af(v(t)) for t e [m,M]. 

1. Define 

Since v(t,x) = m < u(x) for x E clB(y,(crA/v)-~), v(t) is a subsolution of 

(P) for all t E [m,MJ. And since v(m,x) am< u(x) the sweeping principle 

shows v(M,x) < u(x) in B(y, (crA/V)-~). Hence v(M,y) = M < u(y). c 

PROOF OF THEOREM 2: 

In the first step we will show that there exists A(z) such that if 

(A,u) is a solution of (Pl with A> A(z) and z < u then u > w(A), which is 

also defined in the proof of theorem 1. If p1 < 0 then set w(A) a 0. If 

(F3) is satisfied there exists a radially symmetric solution (µ,v) of 

f - llv = µ.f*(v) 

l v = -1 

as before, and set 

in B(O,l), 

on clB(O, 1) 

2 which is a positive subsolution of (P) for A~ AO= µ.(0/e 0) . If one can 

show u(x) > v((A/µ)~lx-yll for some y En (0.(A/µ)-~) then by sweeping and 

the fact that nee. (A/µ)-~) is connected by arc, this inequality holds for 

ally E n(0.(A/µ)-~). 
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* Define m := ½(p 1+max z) and M := v(O). Then there exists a ball B(x ,r), 

such that B(x*,r) c {x E ~; z(x) > m}, and a constant o, such that 

f(u) > o(u-m) for u E [m,M]. By the lemma one finds 

* -½ u(xl > M for x E B(x ,r-(o.\/v) ). 

When r-(o.\/v)-½ > 8.(\/µ)-½ the first step is finished since 

-2 ½ ½ 2 Hence set \(z) = max (\0 , r ((v/o) + µ) ). 

P2 ------------------------- P2 -------------------------

PJ ------ PJ 

-I 

fig.3 fig.4 

In the second step we prove that a solution (\,u), with u E (w(\),p 2J and 

\ > \ (z), satisfies the statement of the theorem. If p1 < 0 set M = O. 

We may assume that c is such that 

f(u) > c(p 2-u) Cl 
for u E [M,p2] 

Define Mk p -
2 

2-k (p2-M) 

and Ok C 2- (k+l) • (a-1) a-1 (p2-M) . 

M 

PJ 

fig.5 fig.6 



Since u > w(A) one finds that 

The 

And 

-½ u(x) > M for x E !1(0. (A/µ) ) . 

lemma then yields 

u(x) > M1 for X € 
½ ½ -½ !1((0.µ + (v/o1) ).A l. 

after applying the lemma n times 

u(x) > M for x E 
½ ½ n -½ -½ 

11((0.µ +v. l:: (Ok) ).A ). n 
k=1 

By the definition of erk one finds, if ct # 1, that 

If ct 

n ½ -½ 1 q n 1 qk 
l::( 'kl- = c .(2 (P 2-M)) .l::(2) 

k=1 k=1 

1 
q = 2(1-ct). 

n 
1, then l:: (er)-½ 

k=l k 

-½ n.c 

CASE 1 O<et.<1. 
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, with 

-½ . ½ ½ -½ 1 q For every n EN, u > Mn in !1(C1 .A ), with c 1 = 0.µ + v .c (4 (p 2-M)). 
1 q -1 • (1-(2) ) . Hence u = p 2 in !1(c 1 .A-l), which proves together with 

u > w(A) the first statement. 

CASE 2: ct= 1. 

For every n E N,u > Mn in !1((0.µ½+n.v½.c-½).A-½). The inequality 

u > Mn is equivalent with 

P2 - u < (P 2-M) .exp(-n ln 2). 

By setting n = [(cA/V)~d(x,@!1) -0. (cµ/v)½], where[.] denotes the integer 

function, one finds 

Together with u > w(A) this proves the second statement. 

1 
CASE 3: ct> 1 (hence q = 2 (1-ct) < 0). 

½ -qn -½ ½ -½ For every n E N,u > M in !1((0.µ +c1 .2 )A ) with c 1= v .c . 
1 q -q -1 n -1 ½ -1 ½ -p 

(4 (p 2-M)) -~~ -1) . T~~n u(x) > p 2-2(p 2-M) .(c1 .A .d(x,am-c1 .0.µ) 

with p = (-q) 2. (et.-1) • Together with u > w(A) this proves the third 

statement. □ 
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1. INTRODUCTION 

A well-known lemma in asymptotics is the following 

LEMMA (Watson). Consider the Laplace integral 

00 

F(z) = f e-ztf(t)dt. 
0 

Assume that 
(i) f is locally integrable on [O, oo ); 

00 

(ii) f(t)~ ~a8 tsH-I as 1-0+ ,Xfixed, ReX>O; 
s=O 

(iii) the abscissa of convergence of ( 1. 1) is not + oo. 
Then 

00 

F(z )~ ~ f(s + A)a8 Z -s ->. 
s=O 

(1.1) 

(1.2) 

as z-oo in the sector jargzj~ ~ w-8(< ~ w), where z>- has its principal value. 

PROOF. See OLVER (1974, p.113). 0 
Observe that (1.2) is obtained by substituting (ii) into (1.1) and interchang

ing the order of summation and integration. In (iii) we assume that (1.1) 
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converges if Rez is sufficiently large (and positive). In (ii) A is fixed. When 
:\=0(z) (or larger) the expansion (1.2) has no meaning. In that case the ratio 
of consecutive terms is 

I'(s +:\ + l)a. + 1z -s-J->.. II'(s +:\)a5 z -s->.. = 0(:\/z), (1.3) 

if a.,a. + 1 *O. It follows that the expansion (1.2) looses this asymptotic nature 
when A= O(z ). 

In its paper we consider several cases in which Watsons's lemma is not 
applicable owing to large or small extra parameters in the Laplace integral. 
These parameters, of which A in the above expansion is a special case, may 
disturb the given expansion, say (1.2), and their influence can be described in 
terms of the notion of uniformity. The above expansion is not uniformly valid 
for A in an unbounded subdomain of Re:\>O. 

We consider the following integrals 

00 f i>..-Ie-ztf(t)dt 
0 

00 f t>..-Je-z1/(t)dt, a~O, 
a 

00 f t>..-1 e -zt-a!tf(t)dt, a~O, 
0 

00 _ _Lzt2 +at f t>..-Je 2 f(t)dt, aEl!i, 
0 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

and we construct asymptotic expansions with z as large parameter. The 
parameters a and A play the part of uniformity parameters. For a proper 
description of the asymptotic estimation of the above integrals we need several 
special functions as basic approximants, which are obtained by replacing / 
with a constant, say unity. Then the integrals reduce to: 

gamma function, 
incomplete gamma function, 
Bessel function, 
parabolic cylinder function, 

respectively. 

2. GAMMA FUNCTION AS APPROXIMANT 

In fact, the non-uniform expansion (1.2) with A in compact subsets of Re:\>O 
also makes use of gamma functions. The uniform expansion does not need 
another function. We construct an expansion in which A is allowed to range 
through the interval [O, oo ). The integral ( 1.1) is not defined for A= 0, but 
instead we use the normalized version 

(2.1) 
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Now we have, when/is regular at t =0, 

F0(z) = /(0), Rez>0. 

In the following we assume that J is analytic is a domain Q of the complex 
plane that contains a circle (with positive radius R) around the origin and a 
sector S a,/J defined by 

Sa,/J = {tl-a<argt<,8} (2.2) 

where a,,B are positive numbers. Furthermore, we assume that there is a real 
number p such that 

J(t) = (9(tP), 

as t-HY:J in Sa,/J· The Taylor coefficients off at t =0 are denoted by a5, that 
is, 

00 

J(t) = ~ a.t•,ltl<R. (2.3) 
s=O 

The asymptotic expansion of (2.1) is obtained by "expanding" f around the 
point t =µ, where µ=A/z. We write 

Integrating by parts, writing 

we obtain 

where 

t d[e-z11>-] t>-e-z1dt = - _ __._ __ ..._, 
z t-µ 

fi(t) = 1 d f(t)-f(µ). 
dt t-µ 

Continuing this procedure, we obtain 
n-1 

Fx(z) = z->-[ ~J.(µ)z-s + z-nEn(z,A)], 
s=O 

where 

d fs(t)- fs(µ) 
is +I (t) = t-d , s = 0, 1, ... , 

t t-µ 

f O = f and the remainder En is given by 

>,. oo 

E (z A) = _z_ fl -1 e - ztf, (t)dt 
n , f(A) 0 n . 

(2.4) 

(2.5) 

(2.6) 
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From authors papers (1983, 1985) it follows that (2.4) is an asymptotic 
representation for z---HtJ that holds uniformly with respect to µ=">..lz in a 
closed sector properly interior to S a,P defined in (2.2), and in a disc around 
the origin. For real values of ">..,z we can say that 

En(z,A) = 0(1) as z---HXJ, 

uniformly with respect to A or µ in [0, oo ). 
This is the generalized version of Watson's lemma that gives expansion (1.2), 

with values of j(and derivatives) at t =0. The new expansion concentrates on 
values off at t =µ, the point where t">-.e- 21 attains a maximal value, and the 
expansion remains valid when µ-,,0 (Watson's lemma) or when µ-,,oo indepen
dent of z. 

EXAMPLE (Exponential integral) We take f (t)= 1/(t + 1). It is easily seen that 
the function F>,.(z) of (1.1) can be written as 

F>,.(z) = z 1-Ae2 E>,.(z); 

E >,. (z) is the well-known exponential integral 

00 

E>,.(Z) = j t-Ae- 21 dt. 
I 

The first few terms of (2.4) are easily computed and we obtain 

E (z) = ~[l + A + ">..(">..-2z) + (z +">..)E (z ">..)] 
>,. z +">.. (z +">..)2 (z +">..)4 z4 3 ' 

with E 3 defined in (2.6) with the functions ls given in (2.5) with 
f 0 (t)= 1/(t + 1). From the first coefficients in this expansion it can be seen 
that large values of A do not disturb the asymptotic properties of these first 
coefficients. 

When the functions J,, in (2.6) are bounded on [0,oo), a bound of IEn(z,A)I 
can be easily constructed. This gives an error bound for the asymptotic expan
sion: let positive numbers Mn exists such that, for n =0, 1,2, .... , 

lf,,(t)I ,;;;; Mn, 1;;;;i.o_ 

Then for the remainder in (2.4) we obtain 

IEn(z,A)I ,;;;; Mn, n = 0, 1,2, .... 

This gives, in a way, an idea of the asymptotic nature of the expansion when µ 
is fixed. If the numbers Mn do not depend onµ (the functions J,, do!) then the 
expansion holds uniformly with respect to µ. However, it is more realistic to 
assume that J,, is not bounded on [0, oo) and/ or that Mn depend on µ. This 
asks for a more detailed approach for constructing error bounds. See author's 
papers (1985, 1986). 



3. INCOMPLETE GAMMA FUNCTION AS APPROXIMANT 

We write (1.5) in the form 

A(z,a) = rtA) j1"A-le-z1J(t)dt 
a 
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(3.1) 

and we consider z as the large parameter and a and A as uniformity parame
ters in [O,oo); a=O gives the previous case. The saddle point of 1"Ae-z1 at 
t =µ=Alz may be inside the domain of integration (a<µ) or outside the 
domain (a>µ). The transition occurs when a passes the value µ and this 
arises interesting asymptotic phenomena, for instance for several types of 
cumulative distribution functions. For certain combinations of the parameters 
a and µ the function F"A(z,a) can be estimated in terms of the normal (i.e. 
Gaussian) distribution function or error function. For all possible situations in 
the parameter domain (a,µ)E[O,oo)x[O,oo) an incomplete gamma function is 
needed for a uniform expansion. 

When f equals unity the function F "A (z, a) reduces to 

_l_ f"~\"11-le-ztdt = z-AQ(A az) rw ' ' 
a 

where Q is the incomplete gamma function 

Q(a x) = - 1-j00
ta-le- 1dt 

' I'(a) . 
. X 

(3.2) 

(3.3) 

The integration by parts procedure of the previous section now gives an 
integrated non-vanishing term at t = a. So we obtain the formal expansion 

oo ~ -az oo 

F"A.(z,a)~z-AQ(A,az)s~f(µ)z-s+ z;(A) s~/.(a)z-s, (3.4) 

where 

B ( ) = fs(a)- fs(µ) = 0 1 
s a , s , , ... , (3.5) 

a-µ 

and the functions ls are the same as in (2.5). Observe that the first series in 
(3.4) also occurs in (2.4). In fact we can write 

~e-az 
F"A.(a,z) = Q(A,az)F"A.(z) + zI'(A) B"A.(z,a) 

with F"A(z) defined in (2.1) as the complete integral and 

oo B.(a) 
B"A.(z,a) ~ ~ -s-, 

s=O Z 

(3.6) 

(3.7) 

the second series in (3.4). It follows that the present case (3.1) makes use of 
(2.1) and (2.4) and that, hence, in this section only the function B>.(z,a) 
matters. 

In our ( 1986) paper we have constructed error bounds for the remainders 
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associated with expansion (3.7). Furthermore, the expansions are applied to 
the incomplete beta function, which can be transformed into (3.1) by means of 
a rather complicated transformation. 

4. BESSEL FUNCTION AS APPROXIMANT 

The integral ( 1.6) reduces to a modified Bessel function in the case that f is a 
constant. Explicity we have 

00 

2(alz)"12 K>,.(2-J;;;) = f 1>---le-zr-altdt. 
0 

In this section we consider 

00 

F>,.(Z) = f 1>---le-zt-altf(t)dt, 
0 

(4.1) 

(4.2) 

which reduces to the above modified Bessel function in the case that f is a con
stant. 

We construct an asymptotic expansion of the above integral for z-H:I:!. 

Observe that for a=O the integral reduces to (2.1); for a>O application of 
Watson's lemma is not possible due to the essential singularity of exp(-a/t) 
at t =O. 

As a first attempt we may expand fas in Watson's lemma at t =O. If we 
substitute (2.3) into (4.2) we obtain 

00 

F>,.(Z) ~ ~as<I>s 
s=O 

with 

«l>s = 2(alz)fA+s)/2K>,.+s(2-J;;;). 

Suppose a is a fixed positive number. Then 

«l>s+1l«I>s = fJ(y;;-;), asz-;.oo. 

On the other hand, if az -;.Q, we have 

«l>s+1l<I>s = fJ(z- 1). 

(4.3) 

(4.5) 

(4.6) 

This gives an indication that (4.3) may yield an asymptotic expansion of 
z-;.oo, with a restricted to a domain [0,ao], with Oto =o(z) as z-;.oo. 

In (4.5), (4.6) we have used the well-known asymptotic estimates 

K (z) ~ .. r;;-e-z as z-;.oo . v~· , , 
I 

K,(z) ~ 2 f(P)(2/z)', as z-;.0. 

The procedure below gives an expansion that is, under suitable conditions on 
f, uniform with respect to a E [O, oo ). 

We consider (4.2) and we write µ1=alz. Saddle points of exp(-zt-a/t) 
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occur at t = + µ,, µ, is supposed to be positive. The first step is the representa
tion 

j(t) = a 0 + b0 t + (t-µ2/t)g(t) 

where a 0 ,b0 follow from substitution oft=+µ,. We have 

I 1 
a 0 = 2 [/(µ) + J(-µ)], ho= 2/J,[f(µ)-J(-µ)]. 

So we obtain upon inserting (4.7) into (4.2) 

F(z) = ao«l>o + bo«l>1 + F1(z) 

where «1>1 is given in ( 4.4). An integration by parts gives 

00 

F1(z) = f t">-- 1e-z(t+,l1t\t-µ2lt)g(t)dt 
0 

_J_ f t">-g(t)de-z(t+µ'lt) 
z 0 

= J_ f t"'-le-z(t+µ'l1)f1(t)dt, 
z 0 

(4.7) 

(4.8) 

with f 1(t)=t 1-l\..£..(t"'g(t)]=>.g(t)+tg'(t). We see that zF1(z) is of the same 
dt 

form as F(z). The above procedure can now be applied to zF1(z) and we 
obtain for ( 4.2) the formal expansion 

ooa oob 
F(z)~«l>0 ~ ~ + «1>1 ~~'as z--H,o, 

s=O Z s=O Z 

where we define inductively J 0(t)= J(t), g 0 (t)=g(t) and for s = 1,2, ... , 

J,(t) = t l-l\ 1 (t"'gs -I (t)] = as + bst + (t -µ2 lt)gs(t). 

I 1 
as = 2lfs(µ) + J,(-µ)], bs = 2/J, [fs(µ)-J,(-µ)]. 

By using the recursion relation 

(4.9) 

the series in (4.3) can be rearranged in the form (4.9); however, then the 
coefficients are essentially different. In (4.3) as comes from J and derivatives 
off at t =O; in (4.9) as and bs come from function values off and derivatives 
off at t = µ, and t = - µ,. 

We still need to prove that (4.9) is uniformly valid for aE[O, oo ). At the 
moment a proof is not available and the proper conditions on f have to be for
mulated. 

An interesting application of the expansions (4.9) can be given for confluent 
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hypergeometric functions. Let us consider 

U(ab x) = _l_j''\a-l(l+t)b-a-le-xtdt 
' " f(a) 0 

(4.10) 

for a-+ oo , with x >0, b ER. A transformation to the standard form (4.2) is 
needed, but first we give a simple transformation. The function [t/(1 +tW 
takes its maximal value ( on [O, oo)) at t = + oo. This function plays the role of 
an exponential function. Therefore we take as a new variable of integration T 

defined by t/(l+t)=exp(-T). Then (6.9) becomes 

U(a,b,x) = rfa) l e-a-r-xl(e'-l)'T-bj(T)d'T (4.11) 

where j(T)=[T/(1-e-")t The easiest way to arrive at the standard form (4.2) 
is to write 

(4.12) 

where 
- 1 
f('T) = j(T)exp{x[lh-1/(e" - l)-2n-

Now we can use the procedure leading to (4.9), with)..= 1-b. The result is an 
expansion for a-oo, which holds uniformly with respect to x E[0,x0 ], where 
x 0 is a fixed positive number. It is not possible here to replace x 0 by oo; the 
main reason is that j(T) depends on x, in such a way that coefficients a, and b, 
in (4.9) grow too fast when x-oo. 

A more powerful expansion . is obtained (with respect to the uniformity 
domain of x) when we transform (4.11) into (4.2) by using the mapping 
u:R-R that is defined by 

T + -"- = u+.!!_+A 
e"-1 u 

(4.13) 

where v=xla;a and A are to be determined. We compute them by the follow
ing condition on the mapping u: the critical points at the left-hand side of 
(4.13) (T= +y, where y is the positive number satisfying cosh y= I+~ v) 

should correspond with those at the right (u = +-µ, where µ2 =a). If follows 
that 

A = - ~ v, µ = ~ (y+sinhy). (4.14) 

These choices make the mapping u regular with u(O)=O, u(+-oo)= +-oo. We 
now obtain from ( 4. 13) and ( 4.11) 

(4.15) 
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where 

/(u) = (uhif('T) ~=, 
with/ as in (4.11). We expect that expanding (4.15) as in (4.9) will give [0,oo) 
as uniformity domain for x. Proofs are needed. The first thing to do is to 
prove the regularity of f in a fixed domain containing R in its interior. 
Observe that/ depends on the uniformity parameter a. 

After these preparations the asymptotic expansion of the integral in (4.14) 
can be constructed by computing the coefficients as,hs that appear in (cf. (4.9)) 

.J_x 00 a 00 h 
e 2 f(a)U(a,h,va)~<I>0 ~ ~ + <I> 1 ~~'as a-oo, 

s=Oa s=Oa 
(4.17) 

where <I>0 ,<I>1 are given in (4.4) with >.=1-h, z =a and a=µ2, withµ, defined 
in (4.14). The first coefficients in (4.16) are 

I 1 
a0 = 2 [/(µ,) +/(-µ,)],ho = 2µ, [/(µ,)-/(-µ,)]. 

A few calculations based on (4.13) and l' Hopital's rule give 

d'T I _ [ 2(1-e-Y, + _ l_[ .nh 
du u = ±µ - µ,(l+e-Y,] ,µ, - 2 y+s1 y]. 

To express the first coefficients a0 ,h0 in terms of y, let f(y) denote the above 
value of d'Tldu at u=+µ,, and write 

'IJ(Y) = [ µ - J6_ 
l-e Y 

Then we have 

I 1 
ao = 2 f(y)['IJ(Y) + 'IJ(-y)], ho = 2µ, t(y)['IJ(y)-'IJ(-y)]. 

Observe that the coefficients contain function values off at the negative axis, 
although f in ( 4.15) is only used for non-negative u-values. 

5. PARABOLIC CYLINDER FUNCTION AS APPROXIMANT 

In the previous section an essential singularity at t =0 is incorporated in the 
Laplace integ!_al. By replacing the exponential function in (2.1) with 
exp( - zt + a Vt) a simpler singularity occurs and in fact this type of singularity 
can be accepted in Watson's lemma. Then the function exp(a"Vt)J(t) has to 
be expanded in a power series. It is more interesting to couple the parameter 
a with the large parameter z and to consider the effect when a crosses the ori
gin. A slight change of variables gives a quadratic polynolnial in the exponen
tial function. In fact we consider 

00 _...Lzt2 +at 
h(z,a) = f t>..-le 2 f(t)dt (5.1) 

0 
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for a large values of z; A is a fixed positive parameter and a a uniformity 
parameter in Iii. The saddle point occurs at t = al z. When a is positive it lies 
inside the interval of integration, when a is negative it is outside the interval. 
The transition at a= 0 can be described by using parabolic cylinder functions 
as approximants, i.e. the above integral with/(t)- constant. 

In [I] BLEISTEIN introduced an integration by parts procedure that produced 
what is now called a canonical expansion. In a way, the procedures of the 
previous sections are all based on this approach. We repeat the steps in 
Bleistein's procedure and we also consider a new method for obtaining a simi
lar expansion. 

Let f)=alz and write 

with 

/(t) = a0 + bot + t(t - /3)g(t), 

ao = /(0), ho = f(/3)- f(O) . 
/3 

Then we have 

l;,._(z,a) = ao W;x-1 + ho W;x + J;x(z,a), 

with 

00 I 2 f ;\ -2 zt +at 
W;x = t e dt, 

0 

a parabolic cylinder function, and 

00 -z(J_/2 -{Jt) 
J;x(z,a) = j t>-(t-f))e 2 g(t)dt. 

0 

Integrating by parts gives 

with 

I 00 I 2 
J;x(z,a) = -- j t>-g(t)de -z(,t -{Jt) 

z 0 

I 00 I 2 

f >.-1 -z<,1 -fJ1>f ( )d - t e 1 t t 
z 0 

/1 (t) = t I-;\ ~[t;\ g(t)]. 
dt 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

Repeating this process we obtain the above mentioned canonical expansion 

n-la n-lb 
l;,._(z,o:) = W;x-1 ~-; + W;x ~-; + z-nEn 

s=OZ s=OZ 
(5.6) 

with 

as = /s(O), bs = fs(/3); /s(O) 
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- 1-X d x g.(t)-a.-b.t -
ls+dt)-t dt[t t(t-13) ],s-0,1, ... , 

Jo = f, and En is the remainder given by 

E = Joo A-I -z(+1'-.81)j, ( )d 
n t e n t t. 

0 

Bounds for !En I and proofs for the validity of the expansion can be based on 
bounds for [/,,(t)i on [O, oo ). A complication is that f,, depends also on the uni
formity parameter {3. 

In a forthcoming paper of Soni & Sleeman the above procedure is replaced 
with an approach that resembles the procedure in Watson's lemma. Recall 
that in Watson's lemma (1.2) is obtained by substituting the expansion in (ii). 
Soni and Sleeman introduce a set of polynomials {Pk} satisfying 

{
P 0 (t) = 1, P 1(t) = t/(y+ 1) 

X X (5.7) 
[t Pn(t)]' = t (t-/3)Pn-2U), n=2,3, .... 

Then they assume that gin (5.2) can be expanded in terms of { Pk}, writing 

00 

g(t) = L ckPdt), (5.8) 
k=O 

where ck are independent of t and have to be determined. Substituting this 
expansion in (5.5), we obtain the formal expansion 

00 

h(z,a) = ~ ckcpk, 
k=O 

00 -z(J._t2-.8t) 
cJ,k = j iA(t - /3)e 2 Pk(t)dt. 

0 

By using the properties of {Pk} given in (5.7) it follows that cJ,k=z- 1cpk_2 
and, hence, that 

00 00 

h(z,a) = cJ,o ~c2kz-k + 'P1 ~c2k+1z-k, 
k =O k=O 

which is of the same form as the expansion in (5.6). There is a simple relation 
between ck and ak,bk. The computation of ck in (5.8) is not a simpler problem 
than the computation of a.,b. in (5.6). It is expected, however, that this new 
approach will give new methods for constructing bounds of the remainders in 
the asymptotic expansion. Soni and Sleeman's method can also be used for 
other types of integrals. 
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Symmetry and Integrability 
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The Netherlands 

The regular behaviour of many orbits of particles or fluid 

elements in models of continuum mechanics can be explained with 

the concept of approximate integrability of Hamiltonian systems. Using 

the technique of averaging and normal forms, a high degree of approximate 

integrability of these models follows from assumptions like axial and 

mirror symmetry. 

1. INTRODUCTION 

Hamiltonian sytems play an important part in fluid mechanics, celestial 

mechanics and astrophysics. Generically these systems are non-integrable 

i.e. for a Hamiltonian system with n degrees of freedom there exist 

in general less than n functionally independent integrals which are in 

involution; the cases with nor more integrals (for example the 

gravitational two-body problem) are exceptional. For a survey of 

these integrable cases see Lynden-Bell (1962). 

The classical example of a non-integrable system was given by Henon and 

Heiles (1964). In this example there are regular and irregular orbits. The 

regular orbits are periodic solutions and solutions moving on invariant 

tori around the stable periodic solutions. The irregular orbits follow no 
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regular geometric pattern and are sometimes called wild or stochastic. Near 

the equilibrium solution in phase space, the regular orbits dominate, 

further away from equilibrium the irregular orbits become more and more 

important. This is in agreement with the KAM-theorem. 

In studying equilibrium models of galaxies, it is of fundamental importance 

to assess the influence of the irregular orbits on the over-all dynamics of 

the model, see Binney (1982) and Binney and Tremaine (1987). It turns out 

that in actual models of galaxies the behaviour of most numerically 

computed orbits is surprisingly regular, the irregular orbits often being 

restricted to certain zones in phase-space. We shall show that this 

observed regularity is to be expected for two degrees of freedom systems 

like axi-symmetric or planar galaxies and that this regularity is tied in 

with natural symmetry assumptions for three degrees of freedom systems like 

elliptical galaxies. 

The Hamiltonian systems which we shall discuss are, apart from the symmetry 

assumptions, completely general. This means that the application to 

galactic modelling which we mention here, is just one of the many examples 

of possible application. For application to nonlinear wave equations see 

Stroucken and Verhulst (1987) and Van der Aa and Krol (1987). 

2. NORMAL FORMS AND APPROXIMATE INTEGRALS. 

In this section we summarize the technique to analyse nonlinear dynamical 

systems; for details and further references see Arnold(l983) or Sanders and 

Verhulst (1985). An introduction to normalisation is given in Verhulst (1987). 

Suppose we are considering a Hamiltonian system with n degrees of 

freedom, characterized by a Hamiltonian function H(q,p) which in a 
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neighbourhood of an equilibrium point can be expanded as 

H = H2 + 8a + ... + H,. +... (1) 

in which I\, k 2,3, ... is homogeneous in q and p of degree k. We shall 

restrict ourselves to the case in which H2 is a positive definite 

quadratic form so that the equilibrium point (0,0) is stable. To make 

quantitatively explicit that we expand in a neighbourhood of the equilibrium 

point we shall use the small parameter€ for the scaling q = Eq, 

p = Ep; so € 2 is a measure for the energy. Introducing this scaling 

in (1), dividing by e2 and dropping the bars produces 

(2) 

We simplify the Hamiltonian (2) and the corresponding equations of motion 

by an averaging transformation or, equivalently, Birkhoff-Gustavson 

normalisation. This is a canonical near-identity transformation which 

leaves H2 invariant and which removes a large number of terms of H3 , 

H4 , ••• to higher order. Suppose we have normalised to degree m, the 

Hamiltonian in normal form to this degree is 

Until now the description of the system is exact. Solving the equations of 

motion corresponding with (3) and inverting the normalising transformation 

produces the solutions corresponding with (2). 

The next step involves an approximation: truncation of (3) at the level of 

terms of degree m 

(4) 

It turns out that if mis taken large enough, periodic solutions of the 

equations of motion corresponding with (4) represent an approximation of 

periodic solutions which exist in the system corresponding with (3) and 

(2). Moreover, as H represents an integral of the phase-flow induced by (2), 
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His an integral of the flow induced by (3), Ht is an integral of 

the flow induced by (4). Furthermore H2 is a second independent integral 

of the equations of motion corresponding with (4). It is easy to show that 

this quadratic integral is conserved for the system corresponding with (3) 

or (2) with error O(e) for all time. 

If the equations of motion induced by (4) have more than two independent 

integrals we have for these additional integrals a slightly weaker 

estimate. Suppose I(q,p) is such an integral, I 0 its constant value for 

given initial conditions. Then for the equations of motion induced by (3) 

(and after inverting the transformation, for the equations of motion 

induced by (2)) we have 

(5) 

This estimate follows simply by calculating the orbital derivative of I for 

sytem (3); note that we can split the Poisson bracket by using H 

= Ht + em-lHm+1 + ... and the fact that the orbits are bounded. We 

find 

dI = [I,H] 
dt 

Integration produces the estimate (5). 

More subtle extimates can be obtained concerning the individual orbits, see 

Sanders and Verhulst (1979, 1985). 

It follows from the estimate (5) that in the worst case, m = 3, the 

expression I(q,p) is conserved for the flow induced by (3) (or (2)) with 

error O(e) on the long time-scale 1/e. If m > 3, the estimate improves; 

one can use this to obtain approximations on a longer time-scale or to have 

more precision on the time-scale 1/e. 

In this sense the (exact) integral I(q,p) of (4) is an approximate integral of 

the original system corresponding with (3) or (2). Note that I is not a 

formal integral but an approximation in the rigorous mathematical sense of 
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the word. 

An important consequence is the following. If the phase-flow induced by (4) 

has n independent integrals, the phase-flow corresponding with the original 

Hamiltonian (3) or (2) is approximately integrable in the sense described 

above. This means that the occurrence of irregular orbits in such a system 

is limited by the given error estimates and must be a small-scale 

phenomenon on a long time-scale. 

3. RESONANCE 

The quadratic part of the Hamiltonian can be written as 

Hz - ½u1 (q~ + P~) +. · .+ ½un<CJ! + P!) 

The numbers w1 , ..• ,wn are positive and they are the frequencies of the 

linearized flow around equilibrium; (w1 , •.. ,wn) is called the 

frequency vector. We shall take the ratios of the frequencies to be 

rational; irrational .ratios p can always be approximated arbitrarily close 

by a rational number m/n where the detuning p-m/n is taken as a 

perturbation factor. The actual choice of m and n is determined by p and 

by the energy level we are considering; for smaller values of the energy we 

have to take a more accurate approximation of p. Put in a different way; 

increasing the energy around equilibrium, more important resonances may be 

encountered as m + n can be smaller. 

The presence of resonances is indicated by the annihilation vector 

(k1 , ••. ,k,,) where k1 , •.. ,k,, are integer numbers such that the 

frequency vector and the annihilation vector are orthogonal. 

independent annihilation vectors for Hamiltonian 

Counting the 

(4) with 

k - lk1 1 + l¾I + ... + lk,,I s m we are assessing the part played by 

resonance. Symmetry assumptions diminish in general the number of 
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annihilation vectors and reduce the part played by resonance. 

Considering two degrees of freedom systems, n = 2, it is easy to see that at 

H3 only the 1: 2 resonance is effective (annihilation vector (2,-1) with 

k = 3); this is called a first order resonance. At H4 level there are the 

resonances 1 3 and 1 l, we call these second order resonances. The 

implication is that if w1 : w2 is 1 : 3 or 1 : 1 we have to calculate 

the normal form to H4 , m = 4, to have nonlinear interaction. If however, 

w1 : w2 = 1 : 2 with discrete or mirror symmetry in the second degree 

of freedom (replacing q2 , p2 by -q2 , -p2 leaves the system 

invariant) the first annihilation vector we encounter is (4,-2) and we 

have to calculate the nornal form to H6 to study the nonlinear 

interaction caused by the resonance. 

Repeating the analysis for three degrees of freedom we collect the first 

order resonances in table l; in these cases two independent annihilation 

vectors can be found at H3 level. Second order resonances are the cases 

where we have to go to H4 to find at least two independent annihilation 

vectors; they are collected in table 2. This classification holds for the 

general Hamiltonian without assumptions of symmetry. 

.A'~ 
1 

:'R~ 
1:2:2 
1:2:4 
1:2:1 
1:2:3 

.A'~ 
5 

2 
3 
4 

r a-6,te I. 

:fi/11.vt -lVl,(Wt, ~ l,1y,, 

~~ wM/1, thMe ~ 

fJ-f,~. 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

:'R~ 
1:1:1 
1:1: 3 
1:2:6 
1:3:4 
1:2:5 
1:3:7 
1:3:6 
2:3:4 
1:3:3 
1:3:5 
1:3:9 
2:3:6 

ra-6,te 2 

;feoo,n,d -lVl,(Wt, ~ l,1y,, 

~mWi,tlll,,ee~ 

,o,f. ftt,eed1ym,. 
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4. TWO DEGREES OF FREEDOM 

In stellar dynamics, the assumption of axial symmetry or restricting the 

motion of stars to a plane, presents us with a two degrees of freedom 

Hamiltonian system. The study of H~non and Heiles (1964) was inspired by 

this. 

It follows from our results in section 2, that the phase flow of such a 

system is always approximately integrable. This holds for values of the 

energy not too high. In Verhulst (1979) the phase flow of an axial 

symmetric galaxy with mirror symmetry with respect to the equatorial plane 

is analysed by normalisation to H4 • The origin of phase space has been 

chosen in reference frames which are comoving with the various circular 

orbits in the equatorial plane. It turns out that because of the mirror 

symmetry only the 1 : 1 resonance plays a part; this resonance arises near 

the centre and near the edge of the galaxy. In between, the flow looks like 

a separable one because of the mirror symmetry. 

Normalisation to higher order terms than H4 plays a part in the paper by 

Sanders and Verhulst (1979). They carried out computations for a cubic 

potential proposed by Contopoulos at the same time explaining the meaning 

of the so-called formal integral. 

5. THREE DEGREES OF FREEDOM. 

In section 2 we have pointed out that the Hamiltonian in normal form (4) 

always has at least two independent integrals. If we can find a third 

independent integral, Hamiltonian (4) is integrable and the original 

Hamiltonian (3) or (2) is approximately integrable. For a survey of the 

results without symmetry assumptions see Verhulst (1983) and Sanders and 

Verhulst (1985). 
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Figure 1 
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Horizontally the resonances have been given according to tables 1 and 2, 
Vertically the highest values of m have been given for which the truncated 
Hamiltonian in normal form (4) is known to be integrable. The lowest dashed 
line is based on the assumption of discrete symmetry in the first degree of 
freedom. The shaded area indicates the improvement derived from the assumption 
that one has also discrete symmetry in the second degree of freedom. The 
upper dashed line assumes discrete symmetry in three degrees of freedom. 

Here we shall present results for the 16 basic resonances with discrete 

(mirror) symmetries. For other resonances the results are stronger. It 

should be noted that the integrability is given in so far as it is known at 

present; it is possible that in some cases our results can be improved 

upon. In most cases the integrability is obtained by counting the number of 

independent annihilation vectors. In figure 1 the lowest dashed line 

indicates for each resonance the highest value of m for which the truncated 
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Hamiltonian in normal form (4) is integrable if one assumes discrete 

symmetry in the first degree of freedom. The upper: dashed line indicates 

the integrability if one assumes discrete (mirror) symmetry in all three 

degrees of freedom; this is the usual assumption in models for elliptical 

galaxies. In the last case the original Hamiltonian (2) is for first order 

resonances approximately integrable with error O(e 4t); in the case of 

second order resonance (with the exception of the 1 : 1 : 1 resonance) we 

have approximate integrability with error O(e 6t). 

It is interesting to see the improvement of approximate integrability when 

symmetry assumptions are added. Also it turns out that in these models the 

1 : 1 : 1 resonance presents the most difficult case. This causes the 

papers of de Zeeuw (1985 ab) and de Zeeuw and Lynden-Bell (1985) to be of 

particular interest. 

In constructing figure 1 we have started with the first degree of freedom, 

then adding the second, which is rather arbitrary. Therefore, in table 3 we 

are listing the integrability properties for the three groups of symmetry 

cases. The group of discrete (mirror) symmetry in one degree of freedom has 

three cases for each resonance (equal frequencies have not been identified) 

so there are 48 cases for the basic resonances; the same holds for discrete 

symmetry in two degrees of freedom. The numbers in the columns indicate how 

many cases are integrable when normalized to H3 ••• H8 . The numbers of 

the last column are trivial; they have been included to remind us where 

approximate integrability stops for the 16 basic resonances. 
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.NO'lo111M /,o,w,, ~ to. 

~ ~ ffl ~ H4 H5 Hs H7 Ha 

one degree of freedom 45 31 25 15 10 0 

(48 cases) 
two degrees of freedom 47 42 36 29 26 0 

(48 cases) 
three degrees of freedom 16 15 15 11 11 0 

(16 cases) 

.N~ 1J/, ~ ~ ~ l,o,i, tl&e 16 

tl(I. ~ at ~ 

6. AN EXAMPLE: THE 1:3:7-RES0NANCE 

To obtain the results of section 5, the 16 basic resonances of three 

degrees of freedom systems have to be analysed in detail. To demonstrate 

the analysis we shall discuss the 1:3:7-resonance. 

In this case we have 

It is convenient to use action-angle variables r, ~ which are given by the 

canonical transformation 

i - 1,2,3. 

In action-angle variables we can write 

We calculate the normal form (4) tom - 8; the functions 1¾,(r1 ,r2 ,r3 ) 



are homogeneous of degree p with terms, containing factors only of the form 

n+½ rf and r 1 , n EN. We find 

Note that we have used the annihilation vectors (3,-1,0) and (1,2,-1) for 

H4 , (2,-3,1) and (4,1,-1) for H6 etc. 

The equations of motion are 

· 8H · 8H r 1 = -IfT""• ~1 = Br.' i = 1,2,3. 
o/ i 1 

If one calculates the normal form to level m, as in (4), and if there is 

no combination angle present, the actions r 1 ,r2 ,r3 are integrals of the 
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system. If one combination angle is present in the normalized Hamiltonian, the 

normalized system is also integrable. The integrals are Ht, H2 and 

the integral generated by the fact that only one combination angle arises 

in the equations. If at least two combination angles are present in the 

normal form, the system may be either integrable or not, but the analysis 
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is not easy. 

We discuss some cases used for the construction of table 3 and figure 1. 

a. Mirror symmetry in the first-degree of freedom. 

We find a1 = a3 =0, b1 ,b3 F 0. The Hamiltonian normalized 

till Hs is still integrable; integrals are the actions r 1 ,r2 ,r3 ; 

they are approximate integrals of the original Hamiltonian with error 

0(£ 4t). 

b. Mirror symmetry in the second degree of freedom. 

We find a1 = 0, a3 F 0, b1 = b3 = 0, c1 , c3 F 0, cs= c7 = 0. 

The Hamiltonian normalized till H7 is still integrable; the integrals 

are approximate integrals of the original Hamiltonian with error 0(£ 6t). 

c. Mirror symmetry in the first and second degree of freedom. 

In this case a1 = a3 = b1 = b3 = Cs =c7 = 0. 

Again we have integrability till H7 , the actions are approximate 

integrals of the original Hamiltonian with error 0(£ 6t). 

d. The case with mirror symmetry in three degrees of freedom coincides for 

the 1:3:7-resonance with case c. 

More straightforward is the analysis of the periodic solutions of the 

equations of motion. It should be noted that if one has mirror symmetry in 

three degrees of freedom, the three normal modes are (exact) periodic 

solutions of the normalized and the original Hamiltonian system. Also, that 

in this case there exist three fourdimensional invariant sets, 

corresponding with the respective two degrees of freedom systems imbedded 

in the three degrees of freedom system. According to section 4, the 

normalized flow in these invariant subsets is integrable for all time. 

It should be noted that the analysis of these invariant subsets requires 

normalization to a very high order. Taking for instance the case of mirror 



symmetry in the first degree of freedom, the second and third degree of 

freedom form an invariant subset involving the 3:7-resonance. To describe 

this system in some detail we have to normalize to H10 ; the 

annihilation vector is (7, -3). If the second and/o·r the third degree of 

freedom also has mirror symmetry, we have to normalize to H20 ; 

annihilation vector (14,-6). 
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Abstract. In this paper a Gauss-Jordan matrix inversion algorithm with column 

interchanges is presented and analysed. This analysis gives theoretical evidence that the 

solutions are as good as those obtained by Gaussian elimination and the residuals mostly are 

equally small. Moreover, the algorithm presented has good vectorisation properties. The 

results of numerical experiments and timing experiments on a Cyber 205 are fully 

satisfactory. 

1. INTRODUCTION 

The Gauss-Jordan algorithm for the solution of linear systems has received renewed interest 

because of its supposedly good properties with respect to parallelization. For inverting 

matrices, the Gauss-Jordan algorithm requires the same number of operations as Gaussian 

elimination plus backsubstitution, but is simpler and better vectorisable. 

As has been shown by Peters and Wilkinson [6], the Gauss-Jordan algorithm with the usual 

column pivoting strategy and row interchanges, may yield large residuals corresponding to 

the calculated solutions when the matrix is ill conditioned. We showed in [1], however, that 

the algorithm with row pivotini: and correspondingly interchanging of columns, is much 

more satisfactory, and yields residuals which in most cases are not larger than those 

corresponding to the Gaussian elimination solutions. In this paper we use the improved 

Gauss-Jordan algorithm for the development of a fast and reliable routine for matrix 

inversion. 

In the next three sections we present our formulation of the basic Gauss-Jordan algorithm, 

the concept of the row pivoting strategy, and implementation aspects of our inversion 

routine. In the remaining two sections we give an error analysis and an overview of 

numerical experiments on a Cyber 205 vector computer. 
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2. BASIC FORM OF THE GAUSS-JORDAN ALGORmIM 

Let A be a given matrix of order n. The Gauss-Jordan algorithm consists of n consecutive 

transformation steps reducing the matrix to a diagonal matrix. We first describe a basic form 

of the algorithm (without pivoting) for which the resulting diagonal matrix is the identity 

matrix. Putting A(l) = A, the k-th transformation step, k = 1, ... , n, is given by: 

6t .- ACk)kk 

{ = diag(l, ... ,l,3k,l, ... ,1) } 

(2.1) 

The effect of this k-th step is that the k-th column of the matrix is transformed into ek which 

then remains invariant during the subsequent transformation steps, because for all j '# k we 

have (I+ Gk:)Dk-1ej = ej. So aftern transformation steps we obtain: 

(I+ Gn)Dn·1 ... (I+ G1)D(1 A = I, (2.2) 

so that: 

(2.3) 

Consequently, the inverse matrix, A-1, is obtained by applying the same transformation 

steps, starting from z(0) = I, as follows: 

z(k+l) := (I+ Gk)Dt-1 z(k), k = 1, ... , n, (2.4) 

which yields z(n+l) = A-1 . 

3. ROW PNOTING AND COLUMN INTERCHANGES 

For numerical stability it is necessary that the pivot element, 3k , of the k-th transformation 

step is not too small in magnitude. This is usually achieved by selecting an element of 

largest magnitude in the sub-triangular part of the k-th ~ of A (k) and correspondingly 

interchanging the pivotal row and the k-th row of the matrix. This is called (partial) mmn 
pivotin~. Similarly one can perform row pivotjn~. i.e. select an element in the upper

triangular part of the k-th row of A(k) and correspondingly interchange the pivotal column 

and the k-th column of the matrix. 
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For Gaussian elimination these pivot strategies both yield essentially the same numerical 

stability. For the Gauss-Jordan algorithm, however, row pivoting is much more 

satisfactory then column pivoting, as we have shown in [1]. 

The application of row pivoting requires an adaption of the transformation rules preceding 

formulae 2.1. such that for the calculation of Gt in the k-th step, the selected pivotal column 

must replace the k-th column. Consider Pt as the permutation matrix that describes the 

proper column interchanges in the k-th step, then formula 2.1 should be changed into: 

A(k+l) := (I+ Gt)DJr.·1 ACk) Pt (3.1) 

and 2.3 should be changed accordingly into: 

A·1 P (I+ Gn)Dn-1 ···(I+ G1)Df1 (3.2) 

where P stands for the product P1 ··· Pn. 

4. IMPLEMENTATION ASPECTS 

The factorization 3.2 can serve as a starting-point for the explicit calculation of A -1. For the 

k-th column of (AP)"l we observe 

(AP)"1ek == (P·1A·1) ek = (I+ Gn)Dn-l ···(I+ Gk)DJr.·1ek. (4.1) 

As a consequence, the inverse can be calculated in situ; i.e. the columns of A-1 are calculated 

and delivered in the same location where the original matrix A was stored. In the k-th step 

the k-th column of matrix A (k)pt is replaced by ek and the transformation step is carried out 

on all columns of the matrix. In this way Z = p-lA-1 will overwrite A. Finally, to produce 

A-1, matrix Z is successively premultiplied by Pk, fork= n, n-1, ... ,1 . 

If the routine is to be implemented on a vector machine, as we did, it is advantageous to 

avoid the alteration between row operations and column operations. Premultiplication with 

0ir.-1, as in formula (3.1), gives rise to row operations. However, the algorithm admits this 

premultiplication to be postponed till after the last transformation step; this is a consequence 

of the next observation: 

(4.2) 

Our implementation will be such that next to the row pivoting operations and column 

interchanges in the k-th step, the premultiplication with (I+ 5t-1Gk) is performed only. The 

accumulated row scaling operations, i.e. the premultiplications by Dn-1 ·· · D(l, can be 

applied in the form of column operations at the end of the algorithm. Summarising, the 
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implementation of our Gauss-Jordan inversion routine is described in the following piece of 

infonnal programming code; the notation is introduced in [8] and clarifies the use of storage. 

perm c- (1, ••• , n) ; 

For k = 1, ... ,n 

Determine p = Pk with kSpSn and IAkpl = max1c,j~ IA1gl 

A.k 

J>mDk 

l /Akk 

{ i.e. interchange columns nr k and p} 

gk = ek-dk A.k 

For j = 1, ... ,k:-1, k+l, ... ,n 

A.j c- A.j + Akj gk 

Akk c- 1 

{ formP D A.k as follows} 

For k = 1, ... ,n 

A.k c- diag(d) A.k 

permute elements of A.k according to perm 

5. ERROR ANALYSIS 

For the error analysis of the Gauss-Jordan algorithm we use the factorization of the inverse 

matrix as given in formula (3.2). With respect to its effect on the elements -of the lower

triangular part of the matrix, the Gauss-Jordan algorithm is identical with Gaussian 

elimination. Therefore we know that in the sub-triangular part of the vectors gk the columns 

of a unit lower triangular matrix Lare generated for which U := L·1AP has unit upper 

triangular form. From inspecting the Gauss-Jordan algorithm we observe that in the upper

triangular part of the vectors gk the columns of matrix u-1 are generated. The calculation of 

the k-th column of matrix (AP) -1 appears to be numerically equivalent with solving Lyk = 

ek for Yk, followed by the explicit matrix-vector multiplication U·1yk to yield (AP)· 1ek· The 

solution stage for solving Yk and the multiplication stage for calculating U· 1Yk are 

intertwined in the Gauss-Jordan algorithm. 

For a complete error analysis we refer the reader to [1]; the main results are repeated here. 
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. Matrices L and U and vector Yk, as introduced above, exactly satisfy: 

LU=AP+E1, 

and (L + E<k)i) Yk = Ck , 

with IIE1II s ♦1(n) g IIAII µ and IIE<k>2II s ♦l(n) IILII µ, 

where g is the growth factor and ♦1 and ♦2 are low degree polynomials, (See e.g. [3],[8]). 

The row pivoting strategy ensures that the elements of the (implicitly calculated) unit upper

triangular matrix U are bounded by one. As a consequence, it can be shown (see [l] for 

details) that matrix V, the caJculated version of u-1, satisfies 

VU+E]=l, 

with IIE3II s ♦](n) IIVII µ, for a low degree polynomial ♦3 . 

The columns ZJc of Z, the calculated version of (AP)" 1, satisfy 

(V + E<k)4) Yk = zk, 

with IIE<k>4II s ♦4(n) IIVII µ,fora low degree polynomial '1>4. 

With the use of wk for (I - E3 + E(k)4U)-1zt we have Yk = Uwk so that the following 

relation holds: 

Ck= (AP+ E1 + ECk>2U) wk; k = 1, ... , n. (5.1) 

Ifwe use E<k>s for (E3- ECk>4U) then the difference between wk and zk satisfies 

llzk - wkll / llzkll S II E<k>sn I ( 1 - II E<k>sll ) , (5.2) 

provided that II E<k>sll < 1 . 

For IIE(k)511 we can derive the following bound 

IIE(k>sllS cl>s(n) II u- 111 µ/{I - ♦3(n) II u-111 µ}, (5.3) 

for a low-degree polynomial cl>s, provided that the denomenator is positive. 

Summarizing, the k-th column of the calculated inverse Z is close to the solution wk of a 

linear system with right-hand side vector ek and a coefficient matrix that is close to A as 

specified in (5.1). 

For the k-th column of the residual matrix R = I - APZ we have according to these 

formulae 

rk = ek - AP Zk 

which yields 

rk = (AP+ E1 + E(k>2U) wk - AP(I - ECk)5)wk. 

This gives the following bound for the column's of the residual matrix: 

(5.4) 

llrkll s (IIE1II + IIE<k>2 UII + IIAll II E<k>sll) llztll / (1 - II E(k>slD- (5.5) 
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In this bound the contribution IIAII II ECk>sll / (1 - II E(k)sll) creates the essential difference 

with the formula for the residual bound for Gaussian elimination. 

As long as II ECk>sll « 1, this term has order of magnitude IIAII nu-111- As a consequence 

of our pivoting strategy, U will mostly be well-conditioned, even when A itself is ill

conditioned, so that the contribution of this term is nearly always harmless. 

6. NUMERICAL EXPERIMENTS 

Experiments on accuracy and timing were carried out on the Cyber 205 computer of the 

Academic computer centre SARA in Amsterdam. This machine has one vector pipe, 

resulting in a peak performance of 50 Mflops for general vector operations and 100 Mflops 

for so called linked triads, vector constructions of the form x := y + az. The arithmetic 

precision of this machine is about 10-14. 

The programs were written in FORTRAN200, which is the Cyber205 version of 

FORTRAN 77 with extensions for explicite use of vectorization features. 

We compared two matrix inversion algorithms and calculated for a large number of matrices 

the norm of the residual matrix I - AX, where X stands for the calculated inverse in either 

of the two methods, The first method is with the use of INVGJ, our FORTRAN200 

implementation of inversion by the Gauss-Jordan algorithm with row pivoting, to be 

published in [7). The second method is with the use of UNPACK routines SGEFA and 

SGEDI (2), where Gaussian elimination with forward and backward substitution is 

performed. The size of the residual matrix is the only measurement we took. In all cases 

tested, a norm of this residual matrix when using INVGJ was of the same size or smaller 

then this norm when using LINPACK's routines. We used the following types of matrices. 

Case a. The matrices are constructed from a given diagonal matrix (the singular values 

chosen) which is pre- and post- multiplied by random orthogonal matrices. These left and 

right orthogonal factors are the product of ✓n random Householder reflections. The 

singular values are chosen in various ways; the largest between 1 and 10+5, the smallest 

between 10-5 and 1 and the remaining ones either distributed equally, or clustered on one 

end of the spectrum, or on the other end. We used hundreds of matrices of order n = 25 or n 

= 50 with condition number varying between 1 and 10+10. 
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Case b. The matrices have upper triangular form. We tested several random matrices of this 

form of various order; in particular an upper triangular matrix of order 50 where the 

diagonal elements have the value +1 exept A33 and¼ which have the value 10-s and the 

elements in the strictly upper triangular part have random values between -1 and + 1. This 

type of matrices is used by Peters and Wilkinson [6] to show that the Gauss-Jordan 

algorithm with column pivoting in stead of row pivoting as we do, can produce larger 

residual vectors than Gaussian elimination. 

A special upper triangular matrix in our test is an upper triangular matrix with ones on the 

diagonal and having all elements in the strictly upper triangular part equal to -1. These 

matrices have increasing bad condition for growing values of n (the condition number being 

of the order 2n). We used order n=25 and n=50. 

Case c. Matrices W and WT for which maximal growth is obtained during Gaussian 

elimination with partial pivoting. Matrix Wis given by 

Wij = -1 for j > i; Wjj = Wnj = 1 for allj and Wij = 0 elsewhere. 

We used matrices Wand WT for n = 50; the conditionnumber of W roughly equals 1700 

and the element growth is 249 . 

As was pointed out above in a different formulation: no matrix was found for which the 

calculated inverse via the Gauss-Jordan algorithm with row pivoting has a larger residual 

than the inverse matrix calculated via Gaussian elimination. 

With respect to the CP-time used, we carried out a comparison between four routines. 

1) Routine INVGJ; our Cyber205 implementation of the Gauss-Jordan algorithm using row 

pivoting. 

2) A Cyber205 implementation of the Gauss-Jordan algorithm with column pivoting written 

by Johnson [4]. 

3) The LINPACK routines SGEFA and SGEDI [2], for the LU decomposition of the matrix 

and for the forward and backward substitution, respectively. 
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4) The NAG routine F0IAAF [5], which implements LU decomposition followed by 

forward and backward substitution. This routine uses an extra two-dimensional array; it 

does not calculate the inverse in situ. 

CPU-TIME AND MFLOPS ON THE CYBER205 

n = 25 50 100 200 
cpu mflops cpu mflops cpu mflops cpu mflops 

INVGJ (NUMVEC) 0.0023 13.6 0.0098 25.5 0.0486 41.1 0.2722 58.8 

JOHNSON 0.0028 11.2 0.0122 20.5 0.0586 34.1 0.3126 51.2 

LINPACK 0.0061 5.1 0.0253 9.9 0.1193 16.8 0.5049 31.7 

NAG 0.0082 3.8 0.0321 7.8 0.1371 14.6 0.6467 24.7 
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1. Preliminaries 

It is well known that the standard finite element method for convection-diffusion 
problems with boundary layers or internal layers gives rise to spurious oscillations 
and bad results. This holds true also for central finite difference schemes. 

A remedy against these oscillations is an upwind type discretization of the con
vective term. The disadvantage of this technique is twofold. First, the order of 
accuracy drops to one. Second, the artificial diffusion introduced by the upwinding 
smoothes the solution in all directions. In particular, this artificial diffusion gives too 
much smoothing in the direction perpendicular to the streamlines. 

A natural improvement is the restriction of the upwinding to directions parallel to 
the streamlines. This so-called streamline upwinding gives better results, but the 
order of accuracy is still low. The accuracy in a streamline upwind method can be 
enhanced by changing it to a streamline upwind/Petrov-Galerkin method. This is a 
non-conforming finite element method, which gives a streamline upwinding in the 
discretization of the operator, plus a consistent treatment of the inhomogeneous term. 
Such a method is described in Brooks and Hughes[!]. This paper also contains an 
excellent introductory survey of the streamline upwind/Petrov-Galerkin method. 

The aim of this paper is the description of another discretization method for 
convection-diffusion problems. In Section 2 we describe the application of the 
method in a special problem. We shall indicate why the method works well. A more 
extensive treatment of the method is given in De Groen and Van Veldhuizen [4]. In 
the new method the finite element test space is extended by a suitable set of test 
functions. This results in an overdetermined system, which is solved in a least 
squares sense. For piecewise linear elements on a rectangular domain the normal 
equations have a special form. These equations consist of a term corresponding to 
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the standard finite element discretization plus a term generated by the extension. 
The latter term is reminiscent to streamline upwind methods. In addition, due to the 
least squares technique, the new method treats an inhomogeneous right-hand side in 
a consistent manner. For a discussion of the appropriate norms used in the least 
squares technique we refer to [4]. 

In Section 3 we give some numerical examples. The results are similar to the 
results obtained by the streamline upwind/Petrov-Galerkin method described by 
Brooks and Hughes[!]. 

2. Bilinear Elements on Rectangles 

On the unit square O := [O, l] x (0, l] we consider the convection-diffusion equa
tion (E > 0) 

(2.1) 

The boundary r of O consists of two parts r D and r N, with homogeneous boundary 

conditions of Dirichlet and Neumann type respectively, 

u(x,y)=0, 

a 
a;u(x,y) = 0, 

a 

(x ,y) Er D = {x = 0} U {y = 0} 

(x ,y) Er N = {x = 1} U {y = I} 

i--- -o----<?-----y-- --?----<?"- --: 

•· ·Q ··+ + Q '? ····¢ 
I ; i 
......... (!> ·······9··· ···-<>···· .. 9 ······~--- ···¢ 

I . i 
• ~ + o 6-- o . ? 

I · · · i • 9- + + ?· ·+ 9 

LtttIJ:__j 
b 

Fig. I. The domain Q with the field velocity v (fig.la), and the regular mesh with 
n = m = 6 (fig.lb). The black dots correspond to nodal values on the Dirichlet boun
dary, the open dots correspond to unknown nodal values. 

(2.2a) 

(2.2b) 

The velocity vector v = (p, q) may depend on the position, but is non-zero every
where on the closure of O. Moreover, its direction is such that r N is an outflow 
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boundary, i.e. p ~ 0 and q ~ 0. The bilinear form associated to this problem is 

(2.3) 

where u E H 1(0) must satisfy the essential boundary condition (2.2a). The test func
tions v belong to the subspace HE ( 0) of functions in H 1 ( 0) which vanish on r D • 

The weak formulation of the boundary value problem is given by 

a,(u,v) = (j,v), (2.4) 

For the finite element discretization, cf. Ciarlet [2], we choose a rectangular mesh 
as shown in Fig.lb. It is obtained by taking the product of the subdivisions 

with mesh sizes h 1 : =x 1 - x 1 _ 1 and k 1 : = y 1 - y 1 _ 1 in x - and y -direction respec

tively. The finite element space S} is chosen as the space of bilinear functions on 

this mesh, which vanish on the essential boundary r D. In s} we choose the basis of 

nodal finite elements cf> i ,J, where cf> i ,J (x k ,y 1) = o i ,k o 1 ,I· The standard Finite Ele
ment discretization of (2.4) solves uh Es} from the set of equations 

i = 1 ... n, j = 1 .. . m 

In matrix-vector notation these equations may be written as 

(2.5) 

(2.6) 

where u is the coordinate vector of uh with respect to the basis {cf>; ,J } . The coordi

nate of u corresponding to cf> i ,J will be denoted by u i ,J • 

The stability of this type of discretization is a problem for E < h II v II 12. In numer
ical experiments one observes fast oscillations which spoil the solution. It is the aim 
of this paper to describe a new remedy for this problem. 

In our approach we improve the stability by augmenting the test space. In (2.5) 
the test space is identical to the space S~ in which the approximation is sought. Now 

we choose a test space ri of greater dimension than s} by augmenting the basis of 

si with the locally biparabolic functions given on the rectangle 

[X;-1,X;] X lY1-1,Y1l by 

(2.7) 

Outside this rectangle we put 1/l;,1(x,y) =O. Clearly, the 1/li,J belong to HE(O). By 
choosing the testfunctions in (2.5) in the larger space T} we now obtain the over

determined set of equations, i = 1, .. , n , j = 1, .. , m 
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a,(uh ,<P;J) (f ,<P;,j), 

a,(uh,Vt;J) = <f,1/t;,j), 

In matrix vector notation these equations may be written as 

(2.8a) 

(2.8b) 

(2.9) 

where u, b 1, b 2 E Rnm. The stabilizing equations corresponding to the extensions are 

given by (2.8b). The oveFdetermined equations (2.9) are solved in a least squares 
sense. A detailed discusion of possible inner product norms is given in [4]. 

In order to get an idea why this provides a stabilization we consider as an exam
ple the case p = q = l and hi = k j = h for all relevant indices i ,} . The left-hand 

side of one of the equations (2.8b) is easily computed resulting in 

h h 
a,(u ,Vt;,j) = 36 (u;,j -ui-l,j-l) (2.10) 

Clearly, this is a discretized differentiation in the direction of the vector field v. The 
diffusion term disappears in this formula due to the choice of the functions ,/t; ,j in 

relation to the nodal elements c/J;,j• The right-hand side of an equation (2.8b) is 

given by 

h2 
[b2J·. = <!,., .. ·) = -J . . I,] 'l'l,J 36 l.J' 

where J;,j is a mean value off on supp 1/t;,j• Hence, the equations (2.8b) are 

discretizations of the reduced equation pu x + qu Y = f. See Eckhaus[3] for the con

cept and the role of the reduced equation in this type of problems. Since uh E s} is 

prescribed at the inflow boundary only, the equations (2.8b) are solved exactly by 
the vector w , 

min(i,j)-1 

wi,j = h E fi-k,j-k 
k=O 

Apart from the O ( El h) diffusion terms, A I represents a discretization of the reduced 

equation pux + quy = f. Hence, apart from the diffusion term, wh is also an 

(approximate) solution of (2.8a). Indeed, arguing as in the computation of a local 
discretization error we find for coordinates of A I w - b I corresponding to nodes 

outside the boundary layers a small value of order O ( Eh + h 3). In a boundary layer 

the value of a coordinate is much larger, of the order 0(: +h) or so. However, 

the boundary layer regions are very small. Hence, the euclidean norm II A I w - b1 II 

is small for h -+ 0 and small E. As a consequence, the true least squares solution u 
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of 

must have a residual 1 of norm less than II 1 II :;:;i II A I w - b1 II, i.e. 11111 is small. 

Hence the least squares solution u satisfies exactly 

u .. -u, I' 1=lh2] .. -'r2]·· l,J ,- ,J- l,J L'" l,J 

where each component of the residual 12 is small, since the euclidean norm of 12 is 

at most equal to the norm of the residual vector, and this norm is at most equal to 
the norm of 1, which is small. This implies that strong spurious oscillations in the 
direction of v are not possible with this type of discretization. Indeeed, large spuri
ous oscillations in the direction of v correspond to a large residual vector 12, and we 

have shown that this vector is small. 

The overdetermined system (2.9) has to be solved in a least squares sense. In the 
usual Euclidean vector norm the equations are not invariant under scaling. Rescaling 
of a basis function changes the weight of the corresponding node and thus the 
discretization method. In addition, the Euclidean vector norm of a coordinate vector 
is not compatible with the L 2 -norm of the corresponding function in Si, because the 

basis in Si is not orthogonal. A more natural norm is obtained from the interpreta

tion of (2.8ab) as a projection method in a suitable Hilbert space. This interpretation 
is given in [4]. Here we only mention the result. It turns out that a natural norm is 
the L 2(0) XL 2(0)-norm. This norm induces a norm in the discrete spaces we are 
working with. For the overdetermined set of equations (2.9) this results in the nor
mal equations 

The matrix 

. [Ml O l 
M = 0 M2 

is the matrix corresponding to the finite element discretisation of the Laplace opera
tor -A in the space Ti. By the orthogonality this matrix splits up in the diagonal 

blocks M I and M 2 corresponding to the space Si and the extensions (2.7) respec

tively. Since the supports of the basis functions in the extension Ti - Si do not 

overlap, M 2 is a diagonal matrix. However, the inverse M 1- 1 of the discretized 

Laplacean is a full matrix. As a consequence, the normal equations form a large full 
system. This makes the method quite expensive. 
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A more practical variant is obtained if we use only the diagonal of M 1. In this 

way we replace the matrix M by a diagonal matrix. It can be shown that this choice 
of the inner product does not affect the accuracy of the method, and that it keeps the 
method scaling invariant. More details are given in [4]. 

The resulting normal equations can be solved by a preconditioned conjugate gra
dient algorithm. The matrix of the normal equations is not an M-matrix. I.e. incom
plete decompositions do not necessarily exist. Nevertheless, we have been able to 
solve equations with as many as 22500 unknowns in a reasonable time. 

3. An Example 

We consider the problem (2.1) with e=I0-6, and v=(p,q)=(coscp,sincp). 
At the outflow boundary we take the homogeneous Neumann boundary conditions 
(2.2a), but at r D we take the inhomogeneous boundary condition 

u(x,y) - { : 

(x,y)Erv y<¼ 

(x , y) E r D y > ¼ 

The exact solution is not known explicitly. We compare the results of our Stabilized 
Galerkin method (SG-method) and the streamline upwind/Petrov-Galerkin method of 
Brooks and Hughes[!] (BR-method) with the asymptotic solution (indicated by A) 

Uasymp(x ,y) = H(tg(cp)x -y - ¼), 

where H is Heaviside's function 

{ 
1 if X > 0 

H(x) = 
0 if X <0 

The results for the angles cp = Unr, ¾11r, ¾nr are displayed graphically in Fig.2. We 
see that both methods show a small overshooting at the border of the jump discon
tinuity. 
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Fig.2. Results for the problem (2.1) as specified in section3. The mesh is regular with 
n = m = 12. The viewpoint is at infinity in the direction of the vector (3,20,8) in 
(x,y,z )-space. 
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ABSTRACT 

The piecewise approximation technique is very suit ab le for application 

to approximation problems in which irregular stuctures occur. 

The domain of a considered problem is triangulated. On each triangle a 

cubic polynomial is defined such, that polynomials on neighbouring 

triangles match in C 1 sense. An efficient representation for these so 

called bivariate cubic c1 splines is presented. Arbitrary curved lines in 

the domain, over which discontinuities exist, can be taken into account. 

Given a set of data, a solution to the spline coefficients is found such 

that the spline is a suitable approximation to the data. 

As an application the approximation of the entropy of a water/steam mix 

as a function of temperature and pressure is presented. The saturation 

line is a line of discontinuity. 

1. INTRODUCTION 

The flexibility of the piecewise approximation technique renders it 

very suitable for application to approximation problems in which 

irregular structures occur. 

Let a set of data be given over a domain in R2• After having adopted an 
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efficient representation for the bivariate cubic c1 spline over a 

triangulation of this domain, the spline coefficients are solved such 

that a suitable approximation to the data is obtained. The numerical 

linear algebra in this process is arranged such that the sparseness of 

the matrices under consideration is fully exploited. As an application 

the approximation of the entropy of a water/steam mix as a function of 

temperature and pressure is presented. In this function a line of 

discontinuity occurs: the saturation line. This application was taken 

from the practice of an industry involved with engines and tools driven 

by steam. Toe usual method up to now for storing the properties of 

water/steam was by partitioning the pressure-temperature region into 

(effectively) four subregions, and to construct for each subregion a very 

complicated analytical expression. Small discontinuities over the 

boundaries of these regions could then not be avoided. Our splines method 

is not only much more uniform and elegant, but is also expected to save 

considerable computer time. In addition, the thermodynamic functions 

represented by these C 1-splines can be differentiated, giving unique 

first derivatives. This is of importance for deriving other functions, 

e.g. specific heat, from the approximants. 

2. EFFICIENT REPRESENTATION FOR BIVARIATE CUBIC c1-SPLINES. 

Let a two-dimensional domain n in x,y-space be triangulated. We assume 

that any two triangles from this triangulation share a common edge, or a 

common vertex or are disjunct, and the union of all triangles covers the 

domain (i.e. the domain is "properly" triangulated). 

We introduce barycentric coordinates in each of the triangles. Let a 

point P(x,y) be given in a triangle and let the vertices of this triangle 

be labeled O, 1 and 2, respectively. Then the barycentric coordinates 

>. 0 , >. 1 and >. 2 of the point P are defined by the relations 
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where xi• Yi are the coordinates of the vertex i, i = 0,1,2. 

We define a cubic polynomial in A0 ,>.1 and A2, and thus in x and y, over 

th is triangle : 

p(x,y) 

A2{go•<x2- XO) 

A~[p1•(3-2A1) + >-2{g1•<x2- x1) 

Ao l g1 • < xo - x 1 ) 

+ h •(y - y )}J + 
0 2 0 

+ h1•(y2- Y1)} + 

+ h •(y - y ) }J + 
1 0 1 

A~[p2•<3-2>-2) + Ao•{g2•<xo- x2) + h2•<yo- Y2)} + 

A1•{g2•(x1- x2) + h2•(y1- y2)}J + 

with the ten parameters Pi, gi, hi(i = 0,1,2) and b012 (Gmelig Meyling, 

1986). Toe paral!Bters Pi• gi and hi represent 

p. = p(x.,y.), 
i i i 

Toe pararreter b012 is the so-called Bezier ordinate, associated with the 

center of gravity of the triangle with the vertices O, 1 and 2. 

Considering an adjacent triangle 1 ,2,3, sharing a commom edge "f;2 with 

the above triangle, we require that the cubic polynomials over both 

triangles match in C 1-sense. For th is reason the following condition is 

imposed to hold over the edge "f;2: 

·1·[ 3p1+ g1•(x2- x1 ) +h •(y-y )] 
1 2 1 

- ·2·[ 3p2+ g2•<x1- x2) + h2(y1- y2)] 
(2) 

+ 3h3b123 - 'Ob01 2) = 0 

with 
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'o 

For an arbitrary (proper) triangulation of the domain the above represen

tation is optimal in the sense that the total number nc of smoothness 

constraints and the total number np of parameters are minimal, except for 

very regular triangulations in rectangular regions .mere even better 

representations are possible. Another feature of the representation (1) 

is the fact that it already incorporates first order differentiability at 

the vertices, due to the common use of gi and hi for all triangles 

sharing the vertex i. Only a single condition (2) over each internal edge 

then suffices to actually obtain overall smoothness of class c1• 

The total number of smoothness constraints is E0 , the number of 

interior edges in the triangulation. Possibly, part of this set of con

straints is redundant; this depends on the precise geometry of the trian

gulation. The total number of parameters is 3V + T, where Vis the total 

number of vertices, and T the number of triangles in the triangulation. 

Comparing with a few other representations we find ( Gme lig Mey ling, 

1 986): 

1. Euclidean coordinates: nc 7E0 - 3V0, np = 10T 

2. Bezier-Bernstein nc 3Eo - 2v0 , np = V + 2E + T, 

where v0 is the number of internal vertices, and Eis the total number of 

edges. 

When dealing with triangulations which are not very small, i.e. con

sisting of several dozens of triangles at least, the present representa

tion thus leads to considerable savings, 

In the case of a (possibly curved) line passing through the domain Q, 

across which a discontinuity exists, the condition ( 2) is locally 

abandoned and in each vertex on this line two sets of parameters p, g and 

hare introduced, each set valid at one side of the line. 
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3. APPROXIMATION OF A SET OF DATA 

Let be given a set of data fi' i= 1,2,•••,nd, scattered over the 

domain ll. Toe aim is to approximate these data in a C 1-continuous way 

(apart from a line of discontinuity passing through Q) using the 

bivariate cubic splines described in section 2. 

Given an arbitrary data point, the first step is to determine the 

triangle containing this point, and next to use (1) in order to fill one 

of the rows of the system matrix. After having treated all data points in 

this way, a large and sparse linear algebraic system 

Av f ( 3) 

has been obtained, where v is the vector of the np parameters, and f the 

vector of the nd data, nd > np. Solving (3) in the sense of least squares 

gives an approximation to the data of class c0 (with unique first 

derivatives in the vertices). Let this solution to (3) be written as v0 • 

Let the sytem with smoothness constraints (based upon (2)) be written as 

Bv 0 (4) 

where B is a (E0 x np) matrix (or, in fact, with less rows due to the 

discontinuity line in ll), E0 < np. 

In general it will be true that Bv0 r ~ O, where r is a vector of 

residuals. 

We will construct a correction e such, that B•(v0+ e) 

e from 

Be - r. 

0, i.e. we solve 

(5) 

In particular, we solve that vector e which is of minimal Euclidean 

length. This gives the smallest possible correction (in the sense of the 

Euclidean norm) to be added to v0 in order to obtain an approximation of 

class c1 to the data. 

The minimum norm vector e can be found in the range of BT, the transpose 

of B. Hence, writing e = BTy, where y is some vector in the space REo, y 

must be solved from 
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- r {6) 

in which BBT is symnetric and positive semi-definite. It may occur that 

BBT is singular. In that case an arbitrary solution to {6) will do. 

Finally e is computed: e = BTy {which is unique, even in the case that 

BBT is singular), and the corrected vector is computed: v = v0 + e. 

Strictly speaking, the obtained solution v is not, in general, the least 

squares solution to {3) constrained with (4). The latter solution could 

be obtained by computing the singular value decomposition of the matrix 

B, and eliminating a part of the elements of v from {3), This method, 

however, does not take advantage of the sparsity of A and B, and is 

therefore prohibitive with respect to computer memory in the case of 

extended triangulations. 

To exploit the sparsity of the matrices a method similar to the conjugate 

gradient method has been applied to solve {3) and (6). No· matrix-matrix 

multiplications occur in these algorithms, so the sparsity is fully 

preserved {Paige, Saunders, 1982). 

4. APPLICATION TO WATER/STEAM THERMODYNAMIC FUNCTIONS 

The entropy of a water/steam mix is considered, as a function of tempera

ture and pressure. In the current practice in industry the relevant 

temperature-pressure region is partitioned into four subregions {fig. 1), 

(Schmidt,Grigull, 1982). 

1000 bar 

Q) 

I-< 
::l 

"' "' Q) 

I-< 
0. 

0 

saturation line 

11 

11 
I 

I 
I I 1 

Q0/ 0 
I : :d critical point 

/ 

\ 
0 bar t:;:::=::===::::::::_ ____________ _j 

0 °c Temperature 800 °c 

Figure 1: Subregions in temperature-pressure region. 
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In each subregion an analytical expression is given for approximating the 

canonical thermodynamic functions, from which other functions are derived 

(e.g. entropy as the temperature derivative of the Gibbs function). 

These analytical expressions are very complicated, as can be expected 

since they approximate the relevant function over a large subregion, and 

they need to match the expression in the adjacent subregion. From these 

analytical expressions extensive tables with numerical values are derived 

(Schmidt, Grigull, 1982). 

In discussions with engineers from industry the need for an alternative 

approach to the storage of thermodynamic data became relevant. This 

inspired us to adopt the splines technique, as described in the sections 

2 and 3, for this purpose. As a first test case, which should serve as a 

"proof of principle" for the industry, we have approximated the reduced 

entropy in a region around the critical point (fig. 2) 

Figure 2: Triangulation of a region around the critical point. 

Toe number of triangles in the considered region is 75, the number of 

vertices is 46 and the number of internal edges is 105 ( 101 of which 

produce a smoothness constraint). The geometry of the saturation line is 

approximated as a univariate cubic spline of class C 1• 

The data are taken from some of the tables in (Schmidt, Grigull, 1982). 

The total number of data used in the present test case is nd = 1220, and 
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the total number of parameters in the spline respresentation is np = 225. 

The solution of the system (3), subject to (4), along the lines described 

in section 3 gives a c1-class approximation depicted in figure 3. The 

discontinuity over the saturation line is clearly visible (although the 

plotting process smoothes the discontinuity a little). Around the 

critical point a tiny wavy structure 1.s visible. We interpret this 

structure as a consequence of a shortage of data points in the immediate 

vicinity of the critical point. In this region very steep gradients occur 

and the triangulation therefore has been taken locally relatively fine. 

We have not evaluated the analytical formulas from (Schmidt, Grigull, 

1982) to obtain data but, instead, we have used the tabulated values, 

which are given at fixed intervals. The density of these data is probably 

insufficient, locally. We expect that with additional data and, possibly, 

a locally still finer triangulation, this defect can be eliminated. 

Figure 3: Approximation of the entropy Sas a function of temperature and 

pressure. 

5. ERRORS IN THE APPROXIMATION 

The largest errors occur near the critical point. We have determined the 

maximum absolute difference between the data points and the corresponding 

points of the approximation, in a region around the critical point. The 

result is: 
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MAxlf- - s 0 .j = o.056 
i J. ,J. 

where fi is the given value of the entropy in the i-th data point, and 

s 0 , i is the value of the entropy in this point, as reproduced by the 

unconstrained approximation to the data (i.e. corresponding with the 

least squares solution v0 to (3)). 

For the constrained approximation (i.e. corresponding with a solution v 

to (3), subject to (4), obtained by minimum norm correction to v0 ) the 

result is: 

M~xjfi - sil = o.245. 
J. 

Both maximum errors occur in the point T = 370 °C, p = 220 bar, thus very 

near to the critical point (T = 374.15 °C, p = 221.20 bar). Since 

MfXI fil = 6.383, in the conside~ed region, th: relative differences 

are 1% and 4%, respectively. Neglecting the above data point the maximum 

absolute differences are 0.031 and 0.115, respectively, in two different 

points, a little farther away from the critical point. These results 

illustl!'ate the problematic nature of the critical point (and its 

vicinity), with respect to approximation. 
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1. The Approximation of the Invariant Curve 

In this paper we consider a map cp from /R 2 to /R 2, and we want to compute an 
invariant curve of this map. I.e. we want to approximate by a numerical technique a 
curve -y E /R 2 such that cp 'Y C 'Y. Such problems arise in the study of oscillatory 
motion of an ordinary differential equation like 

dx 
dt = g(x) + f(t) (1.1) 

where x (t) E /R 2 and where f is a smooth periodic map with period p. For such 
systems of ordinary differential equations one often investigates the Poincare map P. 

Under reasonable conditions the differential equation (1.1) with initial vector x 0 

at t = 0 has a unique solution x (t ; x 0) on [O, p ] . Hence, by assigning to x O at t = 0 
the vector x (p ;x 0) at t = p we define a map from (part of) JR 2 to /R 2, the Poincare 
map P related to the differential equation ( 1.1) and the time-step p . The Poincare 
map describes how /R 2 is transformed by the differential equation ( I. l) in one 
period p. Often the map cp is actually a Poincare map. See [5] for an example. 

There exist some algorithms for the numerical approximation of an invariant 
curve, cf. Thoulouze-Pratt and Jean[4], Chan[2], Kevrekidis et al.[3] and Van 
Veldhuizen[5]. In this paper we investigate an algorithm essentially due to Kevrek
idis et al. [3]. 

Let the Jordan curve 'Y be an attracting invariant curve of the map cp. The curve 
-y will be approximated by a polygon in /R 2• A polygon is completely determined by 
its vertices. The N vertices, vectors in IR 2, are denoted by x 1, x 2, • • • , x N, and 
the polygon p( { x;} f = 1 ) is obtained as the set of line segments [x 1, x 2], [x 2 ,x 3], ...•• , 

[xN_ 1,xN] and [xN,x 1]. By considering images of vertices, a polygon p({x;}f=I) 
approximating the curve -y is mapped to another approximating polygon 
p({<l>x;}f=I ). For an attracting curve -y we expect that p({<l>x;}f=I) is a better 
approximation than p( {xi }f= 1 ) . By means of piecewise linear interpolation we pro
ject p( {x ;}f= 1 ) onto p( {<l>x ;}f= 1), thus completing one iteration step. To that end 
we assume that the invariant curve 'Y to be approximated can be parametrized as a 
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circle 

'Y: 0 E [0,21r)-+ Xe+ r(O) (cos(O),sin(O))T ( 1.2) 

where r(O) > 0. Observe x e must belong to the interior of 'Y and p({x ;}7= 1 ). We 
need the following assumption. 

Assumption (radial coordinates). In an annular neighborhood of the curve 'Y the 
nonlinear coordinate transformation 

(Q,0)-+ Xe+ (r(O) + Q) (cos(O),sin(O))T 

is a smooth one-to-one map. 

( 1.3) 

The composition of 4> and the interpolation will be denoted by K. The map K is 
defined as follows. Let x; be a vertex in p( { x ;}7= 1 ) • Determine the angle (); such 
that 

x; = x e + !Ix; - x e II ( cos( 0;), sin(())) T 

Assume that the point Xe is in the interior of the polygon p({4>x;}7=i ). The ver
tices of the polygon p( { 4>x; }7= 1 ) may then be written in this coordinate system as 

A A T 
<Pxj = xe +rj(cos(Oj),sin(Oj)) (1.4) 

Assume O; E [0j,0j+t1 taking into account the identification of 21r and 0. Then 
define K as the intersection of the half-line in the direction (); and the line segment 

[<PXj,<PXj+iJ, 

Kx; = {x Ix =xe +r(cos(O;),sin(O;))T,r >0} n [<Pxj,<PXj+t1 (1.5) 

It is easily seen that the set of equations p( { x;} 7= 1 ) = p( {Ax; } 7 = 1 ) is almost 
the discretization as described in Kevrekidis et al.[3]. Clearly, the map K is not 
necessarily differentiable. Therefore we restrict ourselves to stable invariant curves, 
and we solve the equation p({x;}7=t) = p({Ax;}7=i) by iteration. 

Let d (x ; 'Y) denote the euclidean distance of the point x to the smooth curve 'Y. 
By the attractivity of the invariant curve 'Y we mean the existence of a constant 
0 ~ x < 1 such that d ( <Px; -y) ~ x d (x ;-y) for all x in a tubular neighborhood 'Y. 
One can now prove the following result, cf. [6]. 

Theorem 1. Let p({x;}7=J) belong to a sufficiently small annular neighborhood of 
-y. Then, for x sufficiently small, the sequence p({x;}7=l ), p({Kt;}7=t ), 
p({K2x;}7=i ), ... converges to a unique polygon p({.x;}7=t ). The discretization 
error satisfies the estimate 



171 

In practice the constant x can be made arbitrarily small by using the map q,P , 

for some integer p > 0, instead of <I>. 

2. Inclusion of the Invariant Curve 

In addition to the smoothness and attractivity of -y, let 'Y also be convex. We 
also assume that <I> maps the interior of 'Y in the interior, and the exterior in the exte
rior. This is a reasonable assumption for maps <I> which are the Poincare map 
corresponding to an ordinary differential equation like ( l. 1). The assumption then 
follows from the unique solvability of an initial value problem. Now one may prove 
the following result, cf.[6]. 

Theorem 2. Let p( { x; }f = 1 ) be a polygon approximating the convex invariant Jor
dan curve -y. Let every vertex of p({x;}f=t) belong to a line segment [<I>xj,<I>xk]. 

Then p( {x ;}f = 1 ) is in the interior of 'Y or on 'Y. 

The Theorem gives a one-sided error estimate for the polygon p( {x; }f=t). 
Observe that both the polygonal Kevrekidis algorithm of Section I and the method 
described in [5] satisfy the requirement about x; belonging to a line segment between 
images of vertices. 

Once we have a one-sided error estimate, we might obtain an inclusion. Suppose 
we can find a transformation (an invertible map) 'IJr: JR. 2 -l- JR. 2 such that the interior 
of 'Y is mapped by 'IJr in the exterior of 'IJr 'Y, and such that the exterior of 'Y is mapped 
in the interior of 'IJr 'Y. Now approximate the invariant curve 'IJr 'Y of the map <I> o'l}r. If 
Theorem 2 is applicable, the result is an approximation in the interior of 'IJr 'Y. But 
then we also have an approximation in the exterior of 'Y, obtained as the image of the 
approximating polygon under the map v- 1• A simple example of a map 'IJr is given 
in [6]. 

3. Numerical Illustration 

We consider the delayed logistic map ct, defined by 

(3.1) 

This map has been studied in great detail in Aronson et al.[l]. Here we consider the 
simple case A= 2.02. For this value of the parameter A there is a convex invariant 
curve, and a map 'IJr as required in Section 2 leads also to a convex invariant curve. 
For A> 2 there is a source in the interior of the invariant curve given by (x s ,y s) 
where 

xs = Ys 
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For the map 4' = <ff' ,p = 48 we compute the invariant curve -y by means of the algo
rithm described in Section 1. In this case the center x c is chosen as the source 
(x 5 ,y5 ). We also compute an of the invariant curve of the map <1> 0 '11, where the 
inverse of '1r is given by 

(x -xs,Y -ys) 
y-l(X,y) = ( )2 + ( )2 x-xs y-ys 

By means of the approximation in the interior and the exterior of -y we are able to 
obtain an upperbound for the error in each of the approximations. We measure the 
distance between the two approximations along the radial vectors centered in 
(x s, y s). The maximum distance E incl (N) is mentioned in the table below. The 
integer N denotes the number of vertices. 

N Einc1(N) N2Einc/N) 

33 1.3E-02 14.2 

65 5.0E-03 21.1 

131 1.8E-03 30.9 

244 4.4E-04 26.2 

464 l .2E-04 25.8 

For nicely distributed vertices the theory predicts a global error of the order 
N- 2• The error estimates support this behavior of the error. 
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A multigrid method for elliptic equations with a discontinuous coeffi

cient is proposed. This method is simpler than methods in current use, and 

is easier to justify theoretically. 

1. INTRODUCTION 

Consider 

f, (x1 ,x2) E S"2 

¢ I ari = o. 

(0 1 1) X (0, 1) r 

( 1. 1) 

The coefficient a(x1 ,x2 ) > 0 is not continuous everywhere. This precludes 

application of standard multigrid methods. Alcouffe et al. (1981), Kettler 

and Meijerink (1981) (see also Kettler (1982)) have developed special multi

grid methods that work well for the problem considered here. In these meth

ods the prolongation and restriction operators depend on the discrete ap

proximation to (1.1). Until now, theoretical justification is lacking and 

seems hard to come by. In the following, a multigrid method is proposed for 

(1.1) that also works in practice, and that can be justified theoretically. 

The difference with the methods just mentioned is, that prolongation and 

restriction are not problem-dependent, and that grid coarsening is done 

finite volume fashion rather than finite difference fashion. What this 

means will be made clear in the sequel. 

Within the confines of this short paper only a brief synopsis of theo-
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retical and practical aspects can be given. A more complete account will be 

published elsewhere. 

2. FINITE VOLUME DISCRETIZATION 

£. The domain n is subdivided in finite volumes n .. , which are squares of 
£. iJ 

size h with centers at the points 

(i - 1/2)h, x2 (j - 1/2)h, i,j = 1,2, ••• ,2£., 

hf= 2-£._ (2 .1) 

This grid is called n£.. Coarser grids nk, k 

(2.1) with£. replaced by k. 

0,1,2, ••• ,£.-1 are defined by 

The finite volume approximation of (1.1) on n£. is obtained in the 

usual way. ~k = {~ ➔ ~}is the set of grid functions on nk, with domain 

the centers of the finite volumes in nk and range=~- The backward and 

forward divided differences in the xi-direction on nk are denoted by V~ and 
k 

tsi. For example, 

(2.2) 

k k k k 
where$ E ~,and$ .. is the value at the center of niJ'" The finite volume 

iJ £. 
discretization of (1.1) on n is given by 

£. £. £. ( £. £. ) w1 .. = 2a .. a.+1 j/ ai. + ai 1 . , ,iJ iJ i , J + ,J. 
£. £. 

2ai .a. ·+1/ J i,J 

£. 
where aij is the average of a(x1 ,x2) over nij" Note that 

(2.3) 

(2.5) 

and similarly for w;. Hence w~ > 0. This, together with Dirichlet boundary 

conditions (assumed here) makes A£. symmetric positive definite. For details 

on the derivation of (2.3), see for example Wesseling (1987). 



3. PROLONGATION, RESTRICTION AND COARSE GRID APPROXIMATION 

Prolongation operators Pk <l>k-l ➔ <l>k are defined by 

k k-1 
(P </> ) 2' 2 ' 

]. I ] 

k k-1 
(P </> ) 2' 1 2 ' ].- , J 

k k-1 
(P</> )2i,2j-1 

k k-1 k-1 
(p </> ) 2i-1,2j-1 = </> ij . 
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(3 .1) 

A prolongation operator that interpolates polynomials of 

is said to be of order m+l. Therefore Pk is of order 1. 

degree m exactly 

Restriction operators Rk-l: <l>k ➔ <l>k-l are defined by 

k k k k 
+ 3</>2i,2j-1 + </>2i+l,2j-1 + </>2i-2,2j + 3</>2i-1,2j + 

k k k ) 
+ 2</>2i,2j + </>2i-2,2j+l + </>2i-1,2j+l /l6 . (3 .2) 

The stencil of this operator is given by 

1 
16 

1 1 

1 3 2 1 

2 3 1 

1 

Apart from a scaling factor, this is the adjoint of linear interpolation 

in triangles, cf. the following figure. This adjoint interpolates first 

A 

A 

a 

a 

B 

b 

a 

A 

FigUl'e 3.1. Linear interpolation in triangles. Points A, B, 
a, bare centers of coarse respectively fine 
grid finite volwnes. Values at a are found by 
linear interpolation in triangle AAA, at bin AAB. 

degree polynomials exactly. Therefore Rk-l is said to be of order 2. The 

sum of the orders of Pk and Rk-l should exceed the order of the differen-
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tial equation (Brandt (1977), Hackbusch (1985)). This condition is satis

fied here. 

Coarse grid approximations Ak to Af, k <fare defined by 

k k+l k+l k 
RA P , f-1,f-2, ... ,0. (3. 3) 

It turns out that Ak is given by 

(3.4) 

1 ( k+l k+1 ) 
2 wl,2i,2j + w1,2j,2j-1,' 

1 ( k+l k+l \ 
2 w2,2i,2j + w2,2i-1,2j)" 

(3.5) 

The availability of this simple explicit representation of Ak makes the 

development of a rate of convergence theory feasible. With a more accurate 
k k . k+l 

P the stencil of A becomes larger than the stencil of A , which is why 

we do not consider more accurate prolongations. Equivalent results are ob

tained by taking Pk as the adjoint of the present Rk-l, and Rk as the ad

joint of the present Pk+l Note that although in (3.3) Rk is not the adjoint 

of Pk+l, the resulting Ak still turns out to be self-adjoint. 

4. MULTI GRID METHOD AND PRACTICAL RESULTS 

For smoothing incomplete LU-decomposition (ILU) is used. For the use 

of ILU in multigrid methods, see for example Hemker (1982), Kettler (1982), 

Wesseling (1982a,b), Hemker et al. (1983), Hackbusch (1985), Sonneveld and 

wesseling (1985). 

The W-cycle is used with post-smoothing. 

Computations have been performed for the following problem. Inside Q 

we have a square with side L < 1 and center coinciding with the center of 

n, where a= a 1 =constant.In the rest of n, a= a 2 =constant.The bound

ary condition is 

(4. 1) 

and the right hand side is 

f (4.2) 



177 

The starting iterand is zero. 
5 

Two cases have been studied; case 1: a 1 = .333 * 10 , a 2 = 2 and case 
5 

2: a 1 = 2, a2 = .333 * 10. The average reduction factor p of the residue 

was measured over the iterations required to make the residue so small that 

rounding errors become apparent, with a maximum of 12 iterations. Computa-
-£ £ tions have been made for£= 3,4,5,6, with L = n2 , n = 0,2,4, ... ,2 • The 

definition of Pis P = <!final residuel 0/linitial residuel 0il/it, with it 

the number of iterations carried out, and 1•1 0 the £2-norm. The follow

ing table gives p for n = 0 (i.e. the Laplace equation) and for that value 

of n for which p obtains its largest value for a given£. 

Case £ 3 4 5 6 

1 n,p o, .058 0, .099 o, .100 0, .110 

1 n,p 6, .390 10, .640 18, .547 34, .532 

2 n,p o, .049 o, .060 0, .066 o, .069 

2 n,p 2, .071 2, .087 20, .092 44, .097 

Table 4.1. Average reduation faator p. 

Table 4.1 indicates that multigrid is functioning properly, because p 

seems to be independent of h. That convergence for case 1 is slower than 

for case 2 is to be ascribed to the fact that case 1 is appreciably worse 

conditioned than case 2. This is because in case 1 we are solving almost a 

pure Neumann problem for the interior region with a= a 1 , due to the "weak 

coupling" with the exterior. An extensive comparison of rate of convergence 

with the methods proposed by Alcouffe et al. (1981) and Kettler and 

Meijerink (1981), Kettler (1982) has not yet been made. These methods seem 

less sensitive to the value of n than the present method, and may have 

smaller p. However, an iteration with the present method is cheaper, and 

the cost of obtaining Ak, k <£,which is appreciable for the former meth

ods, is negligible for the present method, due to the availability of the 

explicit expression (3.4). Furthermore, the present method can be justified 

theoretically, as will be shown next. 
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5. THEORETICAL CONSIDERATIONS 

In this section an (incomplete) outline will be given of a convergence 

theory for the problem and the method under consideration. This section al

so highlights some aspects of multigrid convergence theory in general for 

finite difference and finite volume discietizations. 

The framework for multigrid convergence analysis for finite difference 

and element methods as it has developed over the past 20 years is very well 

described by Hackbusch (1985). we use this framework also in the present 

case. It suffices to study two-grid convergence. Multigrid convergence then 

follows in the standard way described in Hackbusch (1985). 
k k-1 k-1 

Consider two grids Q and Q . On Q we solve exactly. Smoothing 

consists of V iterations with a smoothing method with iteration matrix Sk 
k 

on Q, following coarse grid correction. Coarse grid correction is defined 

by: 

(5 .1) 

To improve readability, the superscript k is dropped, and the superscript 

k-1 is replaced by an overbar. The two-grid iteration matrix is given by 

(5. 2) 

Following Hackbusch (1985), instead of M we study M 

duce the following splitting: 

AMA-l and we intro-

M 

Norms l•I (on@ or~, as the case may be) are defined by 
s 

(5. 3) 

(5. 4) 

where Lis A with wi = 1 (i.e. the familiar discrete 5-point Laplace ope

rator with homogeneous Dirichlet boundary condition), and where 1•1 0 is 

defined by 

(5.5) 
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where 

(5.6} 

Let Q: t ➔ t be some operator. As usual we define 

(5. 7} 

We have 

(5.8) 

wheres and a remain to be chosen. The purpose of two-grid convergence 

theory is to show that 

(5.9) 

for suitable sand v, with c1 independent of h. Equation (5.9} follows if 

we can show that the following two properties hold: 

Smoothing property: l~vl~+cr ~ n(V)h-a for all 1 ~ v ~ V(h}, 

with n<v> ➔ O as v ➔ 00 and V(h} = 00 or V(h} ➔ 00 ash ➔ O. 

Approximation property: IA-1 - PA-1RI ~ CAha, with CA a constant in-
s+cr+-s 

dependent of h. 

The exponent a is the same in both properties. The smoothing property has 

been introduced by Hackbusch .(1985). Uniform validity of both properties on 

all grids is sufficient for multigrid convergence. 

we proceed with the approximation property. Since 

-1 --1 -1 1 
A - PA R = A (I - P'R} (I - APA- R) (5 .10} 

with P': ~ ➔ t arbitrary we can write 



180 

where l•I~ will be specified shortly. 
s 

Because Pis of order 1 we can handle the last term only for s ¾ 1. We 

chooses= 1. Due to the irregularity of a we cannot estimate jA-1 1 
s+o+-s+o-2' 

unless s+o = 1. With s+o = 1 we have to estimate Ir - P'Rl_ 1.,..._ 1• However, 

this does not allow us to gain a power of h, which is needed to have a> 0, 

which is required by the smoothing property, as it turns out. This is the 

reason for the introduction of the norm I •I~, defined by 

(5 .11) 

with appropriate modifications of the operators Viwi~i near the boundaries 

to take into account the Dirichlet boundary condition. We also define 

sup (cj>,8). 
101~1 

(5 .12) 

We choose o = 1. It is not difficult to show that 

(5 .13) 

1--11 ~ -1 
A 1+--1 "' ~ ' IAI ¾ a, -1+-1 

(5 .14) 

with a= inf (a), a= sup (a) 

(5 .15) 

(5 .16) 

More difficult is to show (choose P' P) : 

(5. 1 7) 

Details will be given elsewhere. With these results, the approximation 

property easily follows. CA depends on a/~, which is not disturbing, since 

this is also the case when a is smooth. 

Following Hackbusch (1985) chapter 6, the smoothing property is also 

easily verified. 



181 

ACKNOWLEDGEMENT 

The author is indebted to C. Cuvelier, J. van Kan and P. Sonneveld for 

useful discussions. 

REFERENCES 

ALCOUFFE, R.E., BRANDT, A., DENDY Jr., J.E., PAINTER, J.W., 1981, The mu-Z.ti

grid method for the diffusion equation ~ith strongly disaontinuous 

aoeffiaients, SIAM J. Sci. Stat. Comp. 2, 430-454. 

BRANDT, A., 1977, Mu-Z.ti--Z.eve-Z. adaptive solutions to boundary-value problems, 

Math. Comp. 31, 333-390. 

HACKBUSCH, W. , TRCYI'TENBERG, U. , (eds.) , 1982, Mu-Z. tigrid Methods. Proceed

ings, Koln-Porz, Lecture Notes in Mathematics 960, Springer-Verlag, 

Berlin. 

HACKBUSCH, W., 1985, Multi-Grid Methods and App-Z.iaations, Springer-Verlag, 

Berlin. 

HEMKER, P.W., 1982, On the aomparison of Line-Gauss-Seidel,. and ILU relaxa

tion in mu-z.tigrid algorithms. In: Miller (1982), 269-277. 

HEMKER, P.W., KETTLER, R., WESSELING, P., DEZEEUW, P.M., 1983, Mu-Z.tigrid 

methods: development of fast solvers, Appl. Math. comp. 13, 311-326. 

KETTLER, R., MEIJERINK, J .A., 1981, A multigrid method and a aombined mu-z.ti

grid-aonjugate gradient method for e-Z.-Z.iptia problems ~th strongly 

disaontinuous aoeffiaients in general domains, SHELL Publ. 604, KSEPL, 

Rijswijk, The Netherlands. 

KETTLER, R., 1982, Analysis and aomparison of relaxation sahemes in robust 

mu-Z.tigrid and preconditioned aonjugate gradient methods. In: Hackbusch 

and Trottenberg, 1982, 502-534. 

McCORMICK, S., (ed.), 1987, Mu-Z.tigrid Methods, Frontiers in Applied Mathe

matics, 5, SIAM, Philadelphia. 

MILLER, J.J.H., (ed.), 1982, Computational and Asymptotia Methods for 

Boundary and Interior Layers, Proc. BAIL II Conference, Boole Press 

Conference Series 4, Boole Press, Dublin. 

PADDON, D.J., HOLSTEIN, H., (eds.), 1985, Mu-Z.tigrid Methods for Integral and 

Differential,. Equations, The Institute of Mathematics and its Applica

tions Conference Series, New Series Number 3, Clarendon Press, Oxford. 

SONNEVELD, P., WESSELING, P., 1985, Mu-Z.tigrid and conjugate gradient 

methods as aonvergenae acceleration techniques. In: Paddon and Holstein 

(1985), 117-168. 



182 

WESSELING, P., 1982a, A robust and efficient multigrid method. In: Hackbusch 

and Trottenberg (1982), 164-184. 

WESSELING, P., 1982b, Theoretical and practical aspects of a multigrid 

method, SIAM J. Sci. Stat. Comp. 3, 387-407. 

WESSELING, P., 1987, Linear Multigrid Methods. In: McCormick (1987). 



Proceedings ICIAM 87, Paris-La Villette, June 29~July 3 1987 

Applications and Problems of Error Correction 
Coding with respect to Storage Channels 

C.P.M.J. Baggen 
Philips Research Laboratories 

P.O. Box 80.000, 5600 JA Eindhoven, The Netherlands 

Abstract 

The Compact Disc system can be seen as a particular implementation of a digital storage 

channel. It will be shown that the use of error-correction coding is inevitable in almost all 

possible applications of modern digital mass storage systems. 

Traditionally much mathematical effort has been invested into the design of good codes. 

In the current industrial environment, more emphasis is put on the decoding algorithms and 

performance evaluations of codes. 

The use of Reed-Solomon codes belonging to the class of Maximum Distance Separable 

Codes will be elucidated. 

Finally it will be shown that product codes offer interesting possibilities although both the 

optimal decoding strategy and the performance evaluation are still open problems. 

Introduction 

Recording of information has been practised for almost hundred years now since the 

introduction of Edisons Phonograph. Traditionally analog signals like audio and video have 

been recorded in an analog way (e.g. the grammophone record, the audio tape and the VCR 

tape). Computer data, being digital of nature, always have been stored digitally since the 

introduction of paper tape during the second world war. 
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Developments in physics allow an ever increasing information storage capacity for example 

on magnetic or optical media. It appears that at some point in the development one switches 

to digital recording for any source, even those which are analog of origine. We have been 

able to observe this event at the introduction of Compact Disc, and it will happen in the near 

future with video. There are mainly two reasons for doing this. 

The first reason is connected with quality. When storage capacity is increasing, one is 

willing to trade 'excess playing duration' for quality. A really high quality (to be maintained 

through all phases of editing and duplication) can only be achieved if the signals are recorded 

digitally including error-correction. 

The second reason is inherent to the increasing recording density itself. As less surface; 

volume or atoms are used to store a given amount of information, one becomes more liable 

to disturbances or noise generated in real life systems. The only known way to cope with 

these disturbances effectively forces us to record digitally, by which we may apply 

information theoretic concepts like error-correcting codes. 

It turns out that the error rates of almost all existing digital storage systems fall short many 

orders of magnitude to the desired reliabilities. Coding offers the only known reasonable 

solution. 

Current solid state technology offers the possibility to implement advanced coding schemes 

although we still want to minimize the complexity for a given performance. 

In the remainder we will clarify the use of particular coding schemes. We will start with 

some general remarks on block codes, followed by an analysis of Reed-Solomon codes. 

Finally we will treat product codes, where we will address some mathematical problems 

connected with their applications and evaluations. 

Block Codes in General 

The storage of digital information is usually done by successive recording of elements of a 

finite alfabet called symbols. It turns out that for high density recording, this alfabet must 

have a reasonable cardinality q (e.g. q = 256) which implies that errors occur in the form of 

q-ary symbol errors. It is advantageous to give the alfabet the structure of a finite field, which 

allows application of algebraic codes defined over GF(q). 

In general an error-correcting code uses redundant information to detect and/or correct 

errors (see Peek's contribution in this issue). In our applications we assign redundancy to 
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information according to a fixed algorithm which preferably maximizes the error-correction 

capacity for a given fraction of redundancy. 

Important parameters of a block code C(n,k,d) are the number of symbols per codeword 

called the length n, the number of symbols containing useful information called the 

dimension k and the minimum number of symbols in which any two codewords differ at least 

called the distanced. The rate R of a code is defined as: R = k/n. 

Generally decoding consists of finding the codeword which is closest (in Hamming distance 

sense) to the received word. The minimum (Hamming) distance ofa code [1,3] is related to 

the error-correction capacity t by 

2t :=;; d - 1 symbols / codeword. (1) 

Sometimes we might know that certain symbols on given positions are unreliable. These 

symbols are called erasures. In that case a code can correct t errors and e erasures 

simultaneously if 

2t + e :=;; d- l. (2) 

If we restrict the decoding to error patterns not exceeding the above mentioned parameters 

(which is called bounded distance decoding), it appears that efficient decoding algorithms 

exist for certain classes of codes e.g. BCH codes [ 4]. 

In a recording environment (e.g: CD) the physical dimensions of the defects often are such 

that many consecutive symbols are destroyed (burst errors). In order to cope effectively with 

burst errors a number of codewords are interleaved [2,3 ], i.e. consecutive recorded symbols 

are assigned to different codewords. A particular implementation might be envisioned by 

regarding the codewords as the rows of a two dimensional array, which is written and read 

from the disc columnwise. 

Reed-Solomon Codes 

It can be proven [ 1 J that for any code: 

d:=;;n-k+l. (3) 

This so-called Singleton Bound imposes an upperbound on correction capabilities of a code 

given the number of its redundant symbols. Reed-Solomon (RS) codes are a class of codes 

which achieve this bound with equality, they are said to be Maximum Distance Separable 
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(MDS). Therefore RS codes are optimal candidates for correcting symbol errors and burst 

errors. 

Because RS codes also belong to the class of BCH codes, relative efficient encoding and 

decoding algorithms are known. Roughly, the decoding co)nplexity is quadratic in d for RS 

codes. However for very small d (say d :s; 7) decoding algorithms may degenerate, which 

makes them extremely simple and fast in that case. 

It appears that consensus has been reached on the use of RS codes or codes constructed 

from them for error-correction applied to current digital storage channels. 

Performance Evaluation of RS Codes 

The reliability performance of a code (assuming that (1) holds with equality) usually is 

expressed in terms of uncorrectable or undetectable error probabilities after decoding. These 

probabilities depend strongly both on the chosen code and on the error characteristics of the 

channel. We will evaluate the performance of some interleaved RS codes assuming the 

channel producing random symbol errors. 

In a real life situation, storage of computer data usually is done in sectors of e.g. 512 bytes, 

on top of which the redundancy and some protocol information must be written. We will fix 

the rate of the considered codes, hence all codes will use the same amount of storage capacity 

for a sector. A sector will consist of I codewords each of length n where: 

Ix k~512 (user information per sector) 

! ~.85 (code rate or efficiency) 

If the error-correction capacity is varied (with a corresponding change in the number and 

length of codewords), we may study the influence of error-correction capacity on the 

reliability performance. Note that in this comparison increased error-correction capacity is 

traded only against increased complexity. 

Given a random symbol error rate P,, we can easily calculate the probability P, that a sector 

is uncorrectable: 

Pe I - (I - PJ (4) 

where: 
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n I C) p; o - P.r-i (5) 

i=t+I 

(n- k) 
= 2 

(6) 

P. being the probability that a single codeword of a sector is uncorrectable. For p, < < 1 we 

may use first order approximations: 

( n ) t+I P,;;:; I Ps 
t + 1 

(p. < < 1) . (7) 

In fig. 1 we plotted the performance of some RS codes as a function of the symbol error 

rate with the code's distance as parameter. Note that the performance improves with 

increasing distance. 

Product Codes 

A two dimensional product code PC(np, kp, dp) can be envisioned as a two dimensional array, 

where each row is a codeword from a first code Cl (n,, k1, d1) and each column is a codeword 

from a possibly different· second code C2(11i, k2, rlz). Mostly Cl and C2 are simple 

(low-distance) codes. It can be shown [ 1 J that the following identities hold for the 

parameters of the product code: 

nP = n1 x n2 ; 

kP = k1 x k2 ; 

dP = d1 x d2 • 

(8) 

An advantage of product codes consists of reduced decoding complexity, because these 

codes may be decoded by successive row and column decodings of relatively simple codes. 

Product codes are also known to have good burst error correcting capabilities (note the 

correspondence with the above mentioned interleave). 
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FIG. 1. Performance of Interleaved Reed Solomon Codes 
Each.code is characterized by its parameters l(n,k,d) 

However, the optimal decoding strategy as well as the performance evaluation in terms of 

remaining error rate are still open problems. 

In general the performance of any (product) code, given a decoding algorithm, can be 

expressed as a power series in p, if we assume random symbol errors: 

np 

P, = L A;p; (I - P,tP-i_ (9) 

i=t+l 

For p, < < I the first few terms dominate. 

The exponent of the first term (t + I) 1s determined by the minimum weight of the 

uncorrectable error patterns. The corresponding coefficient Ai+1 takes into account all 
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possible configurations of t + 1 errors, each weighted with its probability of being 

uncorrectable. 

Although a product code has a low minimum distance, a good strategy leads to a very small 

coefficient A1+ 1, which may result in desirable performance characteristics. Traditionally only 

the minimum distance of a code is considered, because it determines which code performs 

best in the limit p, -+ 0. However in practice we are interested in the performance of a code 

in a fixed range of nonzero values of p,. 

We will elucidate this by a simple example which appears to be sufficiently tractable. In 

general the determination of the coefficients of the above mentioned power series is yet 

unsolved for product codes. 

A Simple Product Code 

We may construct a product code by taking RS codes as elementary row and column codes. 

Let PC(625,529,9) over GF(28) be a RS(25,23,3) x RS(25,23,3) over GF(28). Note that the 

important user parameters like dimension and rate are comparable to the previously 

considered sectors encoded with interleaved RS codes . . 
Although the distance is rather small it will tum out that this code has a surprisingly good 

performance because it can correct many error patterns exceeding the guaranteed 

error-correction capacity. 

A Decoding Strategy for a Simple Product Code 

We will first fix a decoding Strategy for the above mentioned product code. Subsequently the 

reliability performance will be estimated. It is not claimed that the strategy is the optimal 

one. However it can easily be implemented and it shows already the strength of a product 

code. The choice of this strategy is based on the following thoughts: 

- during an elementary decoding operation one must use reliability information obtained 

by previous decoding operations; 

- actual correction of symbols must occur in order of increasing risk, i.e. symbols which can 

be corrected with high certainty are corrected first. 

The decoding algorithm consists of the following steps: 

1 Calculate all row and column syndromes; 
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2 Assign indicators to rows and columns containing nonzero syndromes; 

3 Repeated row/column single error correction using indicators as reliability information. 

4 If necessary and possible try 2-erasure correction using indicators as pointers. 

Note the simplicity of the elementary decoding operations in the above strategy compared 

to 4, 6 or 8 error-correction of previous examples. 

Performance Evaluation of a Simple Product Code 

It can be shown that in the above case all error patterns of weight at most 4 will always 

be corrected. The error patterns of weight 5 must be studied carefully. Because the code's 

distance is 9, we know already that some of these error patterns must be uncorrectable. Note 

that for an error pattern of weight 5 to be uncorrectable, at most 3 columns and at most 3 

rows should be affected by the errors. 

Because the constituent row and column codes are MDS codes, we can estimate fairly 

accurate the probabilities of correct decoding, miscorrection and error detection [5]. 

Detailed analysis (Appendix A) of all error configurations of weight 5 in a 3 by 3 array 

reveals that the contribution of weight 5 error patterns to the error probability can be 

estimated by: 

(p, < < 1) (10) 

It turns out that in this particular situation the second term of the series expansion of P, 

cannot be neglected for p,~10-3. Taking into account the next most important term 

(Appendix A), we may approximate the performance by: 

(11) 

In fig. 2 we have plotted the performance of the product code as a function of the symbol 

error rate (curve indicated by 'PC(BASIC)'). For a comparison we also indicated the results 

of fig. I. 

We might even extend the given decoding algorithm by attempting eventually maximum 

likelihood decoding in a 3 by 3 array indicated by nonzero syndromes, which is quite efficient 

as the code's distance is 9. Although we do not describe this procedure in detail, it can be 

shown that the performance increases to the curve indicated by 'PC(ML)'. 
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FIG. 2. Performance of the Product Code. 
The dotted curves correspond to FIG. 1. 

Note that the slope of the curve corresponding to the product code indeed equals the slope 

of a 4 error-correcting code: However, decoding of the product code mainly consists of 

repeated single error-correction, where single error-correction consists of only one division 

given the syndromes. Nevertheless the performance is orders of magnitude better than the 

performance of comparable d = 9 interleaved RS codes. 

Note also that the performance curve of the PC intersects the performance curves of 

interleaved RS codes with a high distance. This implies that for reasonable good channels a 

high distance code performs better than a simple product code. On the other hand for bad 

channels (when performance is most critical), a product code might outperform a high 

distance code. 

What really matters in practice is the absolute performance under most adverse channel 

conditions (say p,::::;lQ-3). It is less interesting how much overkill is present under good 
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channel conditions. If we look at the performance that way, a low distance may have the 

advantage of making a code less sensitive to the exact channel characteristics. 

Conclusion 

Reed-Solomon codes or codes constructed with RS codes are optimally suited for 

error-correction applied to storage channels because of the MDS property of RS codes 

combined with the occurrence of q-ary symbol errors which even may be bursty. Product 

codes of RS codes offer interesting possibilities because they are easy to decode while 

retaining a very good performance as we have shown for random symbol errors. This may 

be attributed to the product code's capability to correct many error patterns exceeding its 

designed error-correction capacity. 
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Appendix A 

Because the product code is a linear code, we assume the allzero word to be transmitted. As 

usual we consider an error pattern to be additive to the transmitted codeword. 

Because each row codeword belongs to a distance 3 MDS code over GF(q), there exist 

exactly q-1 row codewords which are nonzero in three specified positions and zero in all other 

positions [l]. These codewords are multiples of each other. The same holds for the column 

codewords. 

Because the weight 9 codewords of the product code have their nonzero symbols at the 

intersections of three rows and three columns, it can be seen that in 9 such specified positions 

there are exactly q-1 nonzero codewords of weight 9 which are multiples of each other. 

Miscorrection of row (column) decoder 

An error pattern of weight 2 in a row codeword might be detected or it might be 

miscorrected by single error-correction, thereby changing the error pattern into a weight 3 

codeword. 

More specifically if a row (or column) codeword contains two random errors and a third 

specified (flagged) position which the decoder may alter, this situation will be miscorrected 

with probability: 

Pr(miscorrection I 2 errors, 1 extra flag) = (q - 1)-1 

while detection will happen with probability: 

Pr(detection I 2 errors, 1 extra flag)= (q - 2)(q - 1)-1 

This can be verified easily by counting arguments using the above mentioned properties of 

weight 3 codewords. 

Misdetection of row (column) decoder 

Another probability we need is the probability that an error pattern of weight 3 in three 

specified positions will lead to an allzero syndrome. This event is called an undetected error 

or a miscorrection. It can only happen if the error pattern is equal to a codeword. The 

probability that one of the q-1 codewords, nonzero in exactly those positions, agrees to the 

error pattern is: 
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Pr(misdetection I 3 errors)= (q - 1)-2 

Product code analysis 

With the above knowledge and some combinatorics, we are able to estimate the probability 

of uncorrectable errors. 

Because the code is a product code of MDS codes, it can be verified by counting arguments 

that the average decoding result of a configuration of 5 or 6 error positions over all possible 

error values is not dependent on any row or column permutations. This fact may be used to 

classify error patterns into equivalence classes. Two error patterns are called equivalent if 

there exists a combination of row and column permutations, which maps the error positions 

of the first pattern into the error positions of the second pattern. Two error patterns which 

are not equivalent are called different. 

Weight 5 error patterns 

We will analyse all different error patterns of weight 5 which lead to uncorrectable errors. 

For each pattern the contribution to the probability of an uncorrectable error is derived. 

The first components of the formulae describe the number of ways in which erroneous rows 

resp. columns can be chosen from the codeword (including the interchange of rows and 

columns). The following part describes how many configurations of the error pattern exist 

given the rows and columns that were chosen. The product of the first and second part 

corresponds to the size of the equivalence class. The third part finally approximates the 

probability that decoding will fail due to the occurrence of the error pattern which is 

representative for the equivalence class. 

We distinguish between the presence of errorwords containing initially undetected errors 

(indicated by S = 0) and the case that all initial flags are set correctly. 

Presence of errorwords containing initial undetected errors (S = 0): 

X X X ➔ S=O 

. X X 
(25)(25)(6\ 1 5 

p ~ 2 3 2 5~ Ps 



X XX --,. S=O 

X 

X 

! 
S=O 

X X X 

X • 

• X 

--,. S=O 

195 

(25)2 2 1 5 
P-::::; 3 4 Ps 

3 (q - 1) 

p-::::; (2:Y 2 G)G)G) 1 2 5 

( 1)2 (q - 1) Ps q-

The following error patterns correspond to the case where all codewords containing errors 

are initially detected. In order to be uncorrectable at least two errorwords should be 

miscorrected: 

X X X 

X . 

. X 

X X 

X X 

.• X 

X X . 

X . X 

• X • 

5 5 

(q- 1) 
2 Ps 

6 5 

(q- 1) 
2 Ps 

Summation of the above contributions leads to an estimate of the error probability due to 

5 random symbol errors: 
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Weight 6 error patterns 

There is one weight 6 error configuration which is always uncorrectable. Because all other 

error patterns of weight 6 need at"least I miscorrection or misdetection of a row or column 

decoder in order to be uncorrectable, we only need to take into account the following 

configuration: 

X X 

X . X 

. X X 

(25)2 
p ~ 3 3! p; 
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1. STATEMENT OF THE PROBLEM 

In full generality filtering is concerned with obtaining estimates concerning a stochastic process {x, }, 
the signal process, on the basis of another related process {y, }, the observation process. In this paper 
we have the following realization of this situation in terms of stochastic differential equations. 

dx, = f(x,)dt+G(x,)dw, , x1 EIR", w1 EIRm (I.I) 

dy1 = h(x1)dt+dv,, y1 EIRP, v,EIRP (1.2) 

where f,G,h are vector and matrix valued functions of the right dimensions and w, and v, are 
independent Wiener noise processes also independant of the initial state x 0 • The problem is the fol
lowing. For a given (interesting) function </>(x) of the state x, give a calculation procedure for the best 
estimation </>(~,) at time t given the observations y,, Q,;;;;s ,;;;;t, More generally one also considers finding 
<l>(x,) giveny,, Q,;;;;s,;;;;t 1, t 1 <t (prediction) and finding </>(x1) giveny,, Q,;;;;s,;;;;t 2 , t<t2 (smoothing). Of 
particular importance is finding :i, (state estimation). 

Ideally one would like the calculation procedure to be finite dimensional, exact, recursive, and robust. 
The first three adjectives here mean (more or less by definition) that the calculation procedure, the 
filter, should be of the form 

dm, = a(m,)dt+ ± Pj(m,)df/y,) 
j=l 

</>(x,) = y(m,,y1,, ... ,yp,) 

(1.3) 

(1.4) 

Here a, Pj, fj, y are known functions and vectorfields and m, evolves over a finite dimensional mani
fold (finite dimensionali~); recursiveness is embodied by the fact that ( 1.3) is directly driven by the 
observations and that </>(x1) only depends on the filter state m,; and the current observations; (1.4) of 
course also reflects exactness. For robustness one requires that the filter equations be driven by y, 
itself instead of also involving the dy,. I.e. one requires (1.3) to be replaced by an equation 

dm1 ' 

-d = a(m,)+ ~ fJj(m1)t/y11 , ... ,yp1). (1.5) 
t j=l 
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Thus while (1.3) is a stochastic differential equation its robust version (if it exists) (1.3) can be treated 
pathwise and makes sense as a family of differential equations, one for each possible observation path 
(y,}. 

The problem now is: given a system (l.l), (l.2) and a function ,f> how to find a filter (1.4), (l.5); i.e. 
how to determine the functions y and fj and vectorfields a and /Jj occurring in (l.4), (l.5). 

2. THE DMZ FILTER 

Under mild regularity assumptions on f,G,h and reachability and observability conditions on the sys
tem (l.l), (l.2) the conditional state x, = E[x1 ly,,O..;;s..;;tJ has a density 'IT(x,t). 

THEOREM 2.1. (Duncan (2), Mortensen (6), Zakai (9D. Under appropriate regularity conditions there 
exists an unnormalized version p(_x,t) of 'IT(x,t) (i.e. p(_x,t) = a(t)'IT(x,t) for some unknown function 
a(t)) which satisfies the stochastic partial differential equation 

dp = Epdt + l: h;(x')(iy;,. (2.2) 
i=l 

Here e is the second order partial differential operator defined by 

. I n a2 n a I l,, 
a/, = 2 ~ ax ax ((GGT)ij,S,) - ~ -ax. (f;,S,) - 2 2 hj1{,. 

i,j=l i '} i=I I j=l 

(2.3) 

Here GT is the transpose of the matrix valued function G and (GGT)lj is the (ij)-th entry of the 
matrix GGr, f; is the i-th component of the function f and hj the J-th component of the function h. 

The stochastic PDE (2.2) is to be regarded as a Fisk-Stratonovic stochastic PDE. To obtain the 
equivalent Ito version remove the term -½ ~h}iJ, in (2.3). 

Consider the time dependant gauge transformation 

p(x,t) = exp(-h1(x}y 11 - ..• -h,(x)y,1)p(_x,t} (2.4) 

Substituting this into (2.2) yields an equation 

a~~•1> = $- ;~{;(t)~p - i,~f'(t)yj(t)eijP 

where 
I 

~ = [h;,e] := h;e-f!Ji;, ~j = ft; = 2 [h;,[hj,e]l 

Given ,f>(x) and p(x,t) the best estimate t/>(~1) can be calculated by 

p(_x,t) = exp(h1(x)y11 + ... +h,(x)y,1) 

t/>(~1) = (j p(_x,t)dx)- 1 jtf>(x)p(_x,t)dx. 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

Note that (2.5) together with the output map (2.7), (2.8) is a recursive, exact and robust filter. The 
only trouble with it (from the calculation point of view) is that it is infinite dimensional. 

3. WEI-NORMAN THEORY (8). 
For the moment let us consider control systems of the form 

x = u1A1x+ ... +ukAkx, xeRn (3.1) 

where the A; are n Xn matrices and the u; are inputs (known functions of time). Adding a few more 
terms (with uj=O, J>k) we may as well assume that A 1, ••• ,Ak are a basis of a Lie algebra of n Xn 
matrices (under the commutator difference product (A,B] = AB - BA). Let us look for solutions of 
the form 
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(3.2) 

where the g;(t) aie still to be determined functions of time. By differentiating (3.2), inserting 
exp(-g1A 1) • • • exp(-g;) exp(g;A) · · · exp(g 1A) just after g;+ 1A;+ 1 in the result, using the Baker
Cambell-Hausdorff formula, using (3.1) and collecting terms, one finds a set of equations 

k 

g;+ ~gA;(g1, ... ,gk) = U;, i = l, ... ,k 
j=I 

with h;/0, ... ,0)=0 and the following properties of the hu(g1, ••• ,gk): 

hu only involves g 1 , ... ,g;- 1 

and if A1+ 1, ... ,Ak aie a basis of an ideal or a Cg (so that [A;,a]Cg for all i) then 

hj; = 0 for i = i, ... ,/; j = I+ l, ... ,k 

(3.3) 

(3.4) 

(3.5) 

so that the equations for g1, ... ,g1 do not involve g1+1, .. ,,gk at all. It is also important to note that the 
hu aie universal functions depending only on the Lie algebra g and the chosen basis and totally 
independent of the paiticulaI matrix realization (representation) we may be dealing with. In paiticu
!aI if a is an ideal of g and A 1, ... ,Ak is a basis as above then 

equations for g 1, ... ,g1 only depend on g / a. (3.6) 

In case that g is nilpotent (or more generally solvable) equations (3.3) therefore take a particulaily 
pleasant triangulaI form which can be solved just using quadratures. Indeed if L is nilpotent, so that 

L :::> [L,L] = L2 :::> [L,L2] = L3 :::> · • • :::> [L,L,] = L,+1 = 0 
=fa 'F 'F =fa 

and if we choose a basis 

A1,---,Ak,,Ak,+1,---,Ak,,--·,Ak,_,+1,---,Ak,, k, = k 

such that 

is a basis for L;, i = 1, ... ,r, then the equations take the form 

k1 = u 

gk, = uk1 

gk,+I = uk,+1 +ak,+1(u1, .. ,,uk, ;g1, · · · ,gk, 

gk, = uk, +ak,(u1,--,Uk, ;g1, · · · ,gk,) 

gk,+I = uk,+I +ak,+1(U1,---,uk,;g1, ... ,gk,) 

(3.6) 

Now note that the robust DMZ filter equation (2.5) is of the form (3.1) except that it takes place in a 
function space. So in paiticulaI if the Lie algebra generated by the operators e, I;, eu in (2.5) is nilpo
tent (solvable) and finite dimensional with basis A 1, ... ,Ak and we have given an initial density Po(x) 
and function ,t, then equations (3.6) together with the output equation 
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(g1, ... ,gk),_.p(x,t) = exp(g1A 1)-··exp(gkAk)Po(x) 

p(x,t),_.p(x,t) = exp(h 1(x)u 1)···exp(hp(x)yp)p(x,t) 

cf,(~) = (j p(x,t)dx)- 1 f cf,(x)p(x,t)dx 

constitute a recursive exact robust filter for cf,(";;,). It is not really finite dimensional because the A; 

here are operators and calculating exp(g;A;) (for known g;(t)) amounts to solving ! B; = g;A;B;, 

B O = id which is again a partial differential equation. 

4. THE IDENTIFICATION CASE 

The problem of identifying a linear system 

dx, = Ax,dt + Bdw,, dy, = Cx, +dv, (4.1) 

i.e. the problem of determining the unknown matrices A,B,C on the basis of the observations, can be 
viewed as a nonlinear filtering problem for the system with state vector (x,A,B,C) obtained by adding 
the equations dA =O, dB =O, dC =O to (4.1). It can be proved that the Lie algebra generated by the 
e, I;, eij in this case is topologically solvable. I.e. there is a sequence of ideals a; such that g / a; is 
finite dimensional solvable for all i and n n; = {O}. Because of (3.6) this yields a sequence of 

I 

approximate filters via 

eg1A, ..• eg1Ak, Po, eg,A, ... eK*2A1c2 Po, ... 

where A1, ... ,Ak,,Ak,+l,···•Ak,, · · · are such that the equivalence classes of A1, ... ,Ak, mod a, are a 
basis for g / a,. Cf [ 5] for. more details. 

5. NILPOTENT AND SOLVABLE APPROXIMATIONS 

However, in many cases, the Lie algebra generated by e,e;,e;1 will not be topologically solvable. For 
instance in the case of perturbed line.ar systems 

(5.1) 

where the PA(x), P8 (x), Pc(x) are ~olyno;}al higher or~er disturbances. I~ this c~se the Lie algebra 

tends to be w. = R<x 1, ••• ,x.;-a-•···•-a->, the Lie algebra of all d1fferenual operators (any 
X1 Xn 

order) with polynomial coefficients. In this case the higher order operations come with higher powers 
of £ in the sense that 

Lie(e,e;,e;1)mod£"is finite dimensional for all n (5.2) 

(and these algebras are solvable). Again there result approximate filters and they seem to perform 
well [3,4]. Still more generally there is no small parameter at all, but there still is a natural gradation 
structure on the Lie algebra. To see why this might be the case and why this will give us possibilities 
for constructing approximate filters observe that the operators e, I;, e;1 are of the general forms 

a2 a e = ~aiJ-a a +~bJ-a-+c 
X; Xj Xj 

a 
I; = ~diJ-a-+e; 

xJ 

e;1 = A 
where the aiJ,biJ,fiJ,e;,c are explicit functions of the GiJ,f;,h1 and their derivatives. Commuting vari
ous e's brings at least one derivative of the GiJ,f;,h1 in each term, third order brackets bring second 
order derivatives or products of first order derivatives, .... 
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Now if the system described by the f;,hj,Gij is supposed to model some real world phenomenon 
then we can not assume that we know these functions perfectly. In general one would expect that the 
values of the functions would be known very well, their derivatives less so, their second derivatives 
still less, etc., and by the time r-th derivatives come into play their values are almost totally unknown. 

For r =2 the kind of approximation involved is somewhat like illustrated on the above, i.e. something 
like a piecewise linear approximation with rounded comers. One expects a system close to real one in 
this sense of diminishing importance of higher derivatives (globally) to behave much like the true one. 
The comulative effect of small inaccuracies in first derivatives, larger ones in second derivatives, ... , 
very large ones in r-th derivatives will be such that r order brackets are almost totally unknown. And 
thus a system approximation which just happened to have all these zero would perform much as the 
original one but that one would have a filter as in section 3 above and this filter should also give rea
sonable results for the true system by considering the stability properties of the composed system 

w_, __ ,_____,~_t_ru_e_sy_s_te_m_~--Y_,-+----+I ~= ;_ 
which is close to the system with exact filter 

w, y, filter of 
modified system 

modified system 

Now such a modified system which just happens to have all terms in r-th order brackets of the e,i;,i;j 
equal to zero will probably not as a rule exist. But the corresponding filters can certainly be con
structed. It suffices to introduce a counting mechanism and to consider the Lie algebra generated by 
the operator ze,zi;,zi;j. This one is topologically nilpotent and so Wei-Norman theory can be applied 
to Lie (ze,zi;,zl;j} mod z" for all n (after which one sets z = I.) Here z is an extra parameter. 

The argument above indicates that such a procedure could work well. Another not unrelated argu
ment can be based on Volterra series expansions. These ideas have of course a good deal to do with 
nilpotent and solvable approximation ideas (1], [7]. 



202 

REFERENCES 
I. P.E. CROUCH, Solvable approximation to control systems, SIAM J. Control and Opt. 32 (1984), 40-
~ -

2. T.E. DUNCAN, Probability densities for diffusion processes with applications to nonlinear filtering, 
Ph.D. thesis, Standord, 1967. 

3. M. HAZEWINKEL, On deformations, approximations and nonlinear filtering, Systems and Control Lett. 
I (1982), 32-36. 

4. 'M. HAzEWINKEL, Lie algebraic methods in filtering and identification, Report PM-R86-6, November 
1986, CWI, Amsterdam; to appear in Proc. 8-th Int. Symp. IAMP (Luminy, 1986), World Scientific 
and in Proc. I-st World Congress Bernouilli Society (Taskent, 1986), VNU Science Press. 

5. P.S. KRISHNAPRASAD, S.I. MARcus, M. HAZEWINKEL, Current algebras and the identification prob
lem, Stochastics 11 ( 1983), 65-10 I. 

6. R.E. MORTENSEN, Optimal control of continuous time stochastic differential equations, Ph.D. thesis, 
Berkeley, 1966. 

7. CH. ROCKLAND, Intrinsic nilpotent approximation, preprint MIT, LIDS-R-1482, 1985; to appear 
Acta Appl. Math., 1987. 

8. J. WEI, E. NORMAN, On the global representation of the solutions of linear differential equations as 
products of exponentials, Proc. AMS 15 (1964), 327-334. 

9. M. ZAKAI, On the optimal filtering oTdiffusion processes, Z. Wahrsch. und verw. Gebiete 11 (1969), 
230-243. -



Proceedings ICIAM 87, Paris-La Villette, June 29-July 3 1987 

Abstract 

The Kalman Filter in Dendroclimatology 
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and 
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The extended Kalman filter is used to study the response of trees to the weather conditions as re

flected in tree-ring series.In contrast to the traditional multiple regression models the present ap

proach allows for the detection of time-dependent variations in tree response. These changes may 

be of a natural origin (e.g. ageing) or due to anthropogenic influences (e.g. environmental pollu

tion). An essential feature of the method is the simultaneous estimation of both trends and weather 

contributions . As an example a ring width series of an European Silver Fir is analyzed, leading to 

the conclusion that this tree died because of competition rather than of pollution effects. 
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§ 1. Introduction 

Only the last decade it is quite commonly realized that the poor condition of considerable parts of 

the forests in Europe might be disastrous for the quality of future life. Nowadays, one takes for 

granted that environmental pollution, and in particular the phenomenon of "acid rain", is one of the 

main causes of the menacing catastrophe. In spite of impressive research exertion, the involved 

mechanisms are not yet fully understood. This is, of course, partly due to the fact that most labora

tory experiments are not representative for the open field. 

Already long before "acid rain" became a topic in environmental sciences, dendroclimatologists 

studied the relations between weather conditions and tree growth. Statistical techniques are fre

quently used in this discipline after the exploring and innovative work by Fritts (1976). Most 

research in this field concentrates on the regression of tree ring data on weather data. Ring width 

data reflect in an easily measurable way the growth and thus health of trees in history. They can be 

considered as realizations of a stochastic process, superposed on an age related trend, an environ

ment related trend, and a weather signal. It is to be expected that environmental pollution mani

fests itself both in the age related trend and the weather signal, because it may lead to an overall 

reduction of ring width and a changing sensitivity of the tree to the weather . Separation of these 

effects is of particular importance in all regression methods, but on this point many questions are 

still unanswered. 

Current techniques to remove trends from tree ring series are fitting by polynomials, splines or 

a negative exponential curve, application of high- and low-pass filters and ARIMA modelling (see 

e.g. [2],[3],[5]). Competition effects are usually diminished by averaging several series from one 

stand. A common shortcoming of these methods is the presence of subjective elements depending 

on the experience and insights of the researcher, although improvements have been made (15]. 

Current techniques to analyze the climatic part of ring width series are based on linear regres

sion models with constant coefficients. The restriction of time independence seriously obstructs the 

study of air pollution effects, because changes in tree response likely contain essential information, 

see e.g. (12] and (16]. 

In this paper we present and investigate a method to estimate trends and weather response on 

the same footing, at the same time allowing for time dependent coefficients. Key techniques are 

Kalman filtering and maximum likelihood estimation, which have proven to be successful in 

numerous other applications, e.g. econometrics ([6],[7]). The mathematical model to be used and 

the relevant filtering formulae are given in §2. In §3 we point out how tree growth can be 

modelled within this context. An example of a rather complicated ring width series is given in §4, 

In the last section we discuss some general implications of the present approach as far as selection 

of variables ,modelling of the trend, and use of principal components is concerned. 
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§2 The Univariate Kalman Filter 

Here we recapitulate the main features of the Kalman filter technique. In view of the applications 

we are aiming at, we do not present the filter to its full extent. For example, only the discrete and 

univariate case. i.e. one observed quantity, is dealt with. For derivations of the formulae and an 

overview of the relevant ideas we refer to [l), [6], [7], [9], [10], [11], [13], and [14]. 

2a. State Space Formulation. 

The system to be studied is assumed to be characterized by a stochastic vector a, of dimension M, 

say. This state vector is not directly observable and to be estimated from successive observations of 

a measurable quantity y,. The relationship between a, and y, is taken to be linear and given by the 

measurement equation 

Yr = z,T a, + u, + Vy.,, (!) 

with z, the vector of explanatory variables. v_, .. , the observation error and 11, a known input signal 

representing an external influence. From (!) the vector of response variables.-or state vector a, is 

seen to act as the vector of regression coefficients in a conventional linear regression model. The 

essential difference is given by the time dependence of a,. This dynamic feature is assumed to be 

governed by the transition equation 

a, = T, a,-1 + Va,r (2) 

with T the known M X M transition matrix. 

The disturbances v_,·.r and Va.r are taken to be serially uncorrelated. They have zero mean and 

respective variances R, and Q,. For all t, they are uncorrelated with each other and with the initial 

state a0 . The filter consists of an iterative scheme to calculate the minimum mean square estimate 

a,1,, of a,, based on the information contained in they,, t=l, ... ,t'. The covariance matrix of au,•-a, 

is denoted by P,1,.. The cases t>t', t=t' and t<t' correspond with prediction, filtering and smooth

ing respectively. 

2b. Prediction and Filtering 

The prediction formulae assume the filtered quantities a,_ 11,_ 1 and P,_ 11,_ 1 to be known: 

a,1r-1 = T,a,-11,-1, 

Pr1,-i = T,P,-11,-1T,T + Q,, 

The one-step-ahead prediction errors or innovations v,, defined by 

v, = y, - z,Ta,1r-I - u,, 

(3) 

(4) 

play a central role in the theory. They are serially uncorrelated, have zero mean, and variance f, 
given by 
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J, = z,rP,;,_ 1z, + R, . 

The filtered estimates follow from the predicted ones via the equations 

a,1, = a,1r-i + Pr1,-,z,v,IJ,, 

Pt1, = P,1r-1 - P,1,-1Z1Z1TP(/1-ilf, , 

(5) 

(6) 

To start the scheme the initial values awo and Pwo have to be specified. If exact information is avail

able the estimates a,1t are unbiased. In general this is not the case. However, as shown by Jazwin

ski (1970), the prior data are eventually forgotten and a bias stemming from initial uncertainties 

damps out after sufficient observations having been processed. So, in practice, it suffices to choose 

a010 arbitrarily and Pwo large. The first, say Ns, iteration steps then serve as a transient period, in 

which the filter itself constructs appropriate starting values for the rest of the process. 

2c. Smoothing 

Once a111 has been estimated for t=l, .... N, these estimates can be smoothed using all information 

instead of only the foregoing y 1 values. The smoothing procedure works backwards : 

Pt!N = Pu,+ P;(P1+l?,-P1+111)P;r. 

P; = P,1,T/;.,P;:/111 . (7) 

Contrary to the filtered estimates. the smoothed quantities are not sensitive to transient phenomena 

and are thus reliable also for t<Ns. It can be shown (e.g. Otter (1978)) that when Q1 = 0, the Kal

man estimate a11N and P 11N are independent oft and equal to the ordinary least squares (OLS) esti

mates. So the OLS fitting procedure is a special case of the Kalman filter . 

2d. Optimality and Maximum Likelihood Estimation 

The estimate a111• is the best linear estimator in the sense that the error covariance matrix of any 

other linear estimator exceeds the Kalman P11t· by a positive definite matrix. If, in addition, Vy.,, v a .t 

and a0 are normally distributed, then a, 11, is the best, in the sense of minimum variance, of all possi

ble estimates. 

At the start of the filtering process the transition matrix T, and the disturbance variances R, and Q, 

are, generally, unknown. In the present univariate case there is no need to estimate R, and Q, 

separately. The Kalman filter formulation only depends on the quotient Q,IR, and it suffices to 

choose R, = 1. If l'y.r,Va., , and a0 are normally distributed, a convenient way to estimate the unk

nown parameters is to follow the maximum likelihood approach. The likelihood function L of the 

observations y, for t>Ns is given by the so-called prediction error decomposition [6) : 

-2 log L = (N-Nsllog 21t + (8) 

As discussed above, the determination of Ns is in most cases trivially obtained from inspection (see 

e.g. [17)). In this approach the unknown parameters are found by maximizing log L as a function 
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of T,, R, and Q,. 

The transition matrix T, can also alternatively be estimated by considering its elements as an 

intrinsic part of the state vector a,. This method merely requires a convenient extension of the ori

ginal state vector and a straightforward redefinition of the transition matrix as used in the formulae 

(3 )-(7). 

While the maximum likelihood approach may require a considerable number of filter evalua

tions, the latter method may imply manipulation of large matrices. Therefore, to gain computation

al speed and simplicity it is always desirable to pose, in advance, restrictions on the dimensions and 

parameters of the model. The effects of inaccurate modelling can be studied following an analysis 

by Jazwinski (1970), but will be omitted here in view of the restricted purpose of this paper. 

§3. Modelling Tree Growth 

In this section we show how application of the Kalman filter may enrich the conventionally used 

analysis of tree growth. In dendroclimatology ring width series d, are usually modelled as the pro

duct of a trend g, and a stochastic signal w,. The series g, and w, are usually referred to as the 

growth curve and the tree-ring index respectively. It is common practice to estimate g, first , after 

which the quotient d,/g, is analyzed. In view of the difficulties in separating these effects we prefer 

to consider both contributions as being stochastic in nature and to be estimated on an equal foot

ing. So we adopt the following model : 

(9) 

The elements of z, represent weather data. They are standardized to have zero mean and unit vari

ance. To complete the model we have to specify the dynamic behaviour of g, and a,. Hardly any 

biological information is available at this point. Therefore, we describe the stochastic nature of a, 
as a random walk process, i.e. 

(10) 

The trend is modelled as a local trend in which the level g1 and slope s, vary slowly in time, both 

driven by random walk processes, i.e. (cf. Harvey (1984)) 

g,+I = g, + s, + Vg.t, 

(11) 

In equations (10) and (11) the disturbances are assumed to be normally and independently distri

buted with zero mean. To estimate g, and a, via Kalman filtering equation (9) has to be linearized 

using the local approximation 
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d1+1 = g1+1W1 + g,w1+1 - g,w1. 

Now the right-hand-side of (9) is in the form of equation (1) if we identify 

al;.1 = ((ii1+1V, g1+1, S1+1), 

z/:;.J = ((g1Z1+1f, W1, 0), 

U1+1 = -g1(zta1+V:,-.1), 

Vy.t+l = gl~\·.r+I · 

(12) 

(13) 

So the first N elements of a1 and z1 correspond with the weather parameters and the last two ones 

with the trend. The transition matrix T1 in equation (2) is given by the (N + 2) x (N + 2) unit matrix 

with an additional one at entry (N+LN+2). The disturbance va.i is in the same manner defined by 

v,;_ 1 = ((v,,_1f, Vg. 1 , V5 _1) (14) 

Because monthly averaged weather data show little correlation, we used for Q, , the covariance 

matrix of Va.1 , a diagonal matrix. To reduce the required computer time needed in the optimiza

tion procedure described in section 2.d, Q is taken to be constant over time. 

From equations (13) it is seen that at time t+l the quantities Z1+1,u,+ 1, and v_u+J ari:: con

structed from known input data at time I+ 1 and parameters estimated at time t. In this so-called 

extended Kalman filter approach no optimality and even no convergence of the filter is guaranteed 

[l). How valuable the estimates still are clearly depends on the reliability of approximation (12). 

In tree ring analysis no serious problems on this point arise because strong variations in the trend 

or the weather response are not expected to occur within very short periods . 

§4. Example 

As an example we analyze data from a European silver fir (Abies alba Mill.) cut in Worth 

(G.F.R.). This ring width series runs over the period 1900-1977 and is plotted in figure 1. As expla

natory variables we use monthly averaged temperature and precipitation data, running from May 

prior to the year of growth through August in the year of growth. In order to reduce this consider

able number (32) of variables a selection procedure is used which is discussed in §5. In this way the 

May, July and September precipitations prior to the year of growth and the January precipitation 

together with the February temperature in the year of growth were found to be significantly related 

with ring width . The corresponding variances or diagonal values of the Q matrix, obtained by max

imum likelihood estimation described in §2.d, are 0.4300, 0.0022, 0.0000, 0.0016 and 0.0000 respec

tively. The estimated trend is given by the solid line in figure 1. The estimated response parame

ters are drawn in figure 2. The results in figure 2 show the following interesting features: 
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The May precipitation parameter varies wildly. The explaining value of this variable is rather 

small, as can be concluded from its confidence limits. This strongly suggests that the esta

blished correlation with tree growth is rather fortuitous than of a biological origin. 

The other parameters hardly show any time dependence. In particular they do not reflect the 

decline in growth after about 1960 as being present in the trend in figure 1. This suggests com

petition rather than illness as cause of this fall. 

All parameters precede the growing season, usually running from March through September. 

The weather conditions during this period are apparently not influencing growth. 

The precipitation in the preceding summer is clearly of great importance, probably because 

then the tree lays in the necessary nutritious matter. An outstanding example is the impres

sive growth in 1959, thanks to the very wet summer of 1958. 

The negative signs of the January and February parameters indicate that a moist and relatively 

warm winter are highly unfavourable to tree growth. These conditions might initiate the 

growth too early. Extreme examples are in 1929 and 1956 ( see figure 1) : these narrow rings 

coincide with the highest February temperatures of this century. 

From figure 3 it can be seen how the data are fitted by the present model. The solid curve is calcu

lated by substituting the trend and parameter estimates in the right-hand side of equation (9). The 

relatively small model explains the data remarkably well: the variance of the original ring series is 

reduced with 79%. 

§5. Concluding Remarks. 

We conclude with some remarks and suggestions on the present and future use of the Kalman filter 

in regression analysis . 

Sa. Modelling the Trend 

In model (9) the trend is introduced in a multiplicative way, as is usual in standardizing raw tree 

ring data ((3] and (4)). This choice may be doubted, because in many cases the amplitudes of fluc

tuations are not exactly proportional to the trend level. Therefore, further analysis on this assump

tion may be crucial for future research. We intend to use an additive trend model, based on annual 

increments of basal area instead of ring width . 
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5b. Selection of Explanatory Variables 

For regression models with constant parameters several selection procedures are available to reduce 

the number of explanatory variables see e.g. Thompson (1978) and Hughes et al (1982). In the 

present context an alternative procedure is needed such as e.g. described in [17) and [18). This pro

cedure is also used in the example of section 4. It contains threi; fitting parameters to be adjusted 

by computer simulation. Although the results are satisfactory, it still has the disadvantage of select

ing isolated variables. For example, in section 4 the July precipitation is selected on its own, 

whereas the influence of June and August precipitations are fully ignored. From a biological point 

of view refinement of the procedure is desirable. 

5c. Principal Components 

In most applications of multiple regression analysis the explanatory variables are not independent. 

fo those cases one usually resorts to the application of the principal components technique in order 

to avoid numerical inacctlracies or even collapse of the regression method. Application of this tech

nique in the context of the present' approach is still rather straightforward as pointed out in [17). 
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Figure 1. Ring width series in mm of a European silver fir (Abies alba Mill.), cut in Worth (GFR) 

in 1978. The length of the series N = 78. The solid line represents the trend g1 or growth curve as 

estimated by the model and filtering methods explained in the text. 
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Figure 2. Response coefficients a,1N of the five weather parameters which appeared to be signifi

cantly correlated with the time series in figure 1. The variances of the corresponding disturbances 

in equation (2) (diagonal elements of Q) were 0.4300. 0.0022, 0.0000, 0.0016, and 0.0000 for the 

May, July, September. January and February parameters respectively. The dashed lines represent 

95 percent confidence limits. 
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ABSTRACT 

The following aspects of the Compact Disc digital audio 

system will be described: the laser optical scanning of the 

disc, the use of control and display data and the insensitivi

ty to dust, scratches and fingerprints compared with the nor

mal gramophone. One of the reasons of less sensitivity to im

perfections is the use of two Reed-Solomon error correcting 

codes and the application of interleaving in order to deal 

with burst errors. A further important characteristic that 

will be described is that the audio signals are digitally 

recorded on the disc. 

INTRODUCTION 

The Compact Disc (CD) digital audio system has brought 

about a revolution in the audio world. The system is a unique 

combination of a number of advanced techniques, offering new 

capabilities to the listener and a deaper enjoyment of music. 

In further developments of this system use is made of mathema

tical methods and insights which are described in the two fol

lowing articles. This introductory article outlines, in simple 

terms, some of the principal features of the Compact Disc 

digital audio system. 

1. DIMENSIONS 

The most striking feature is the compactness of the 

metallized CD disc (photo 1). The outer diameter of the disc 

is only 12 cm. With one hand the disc can therefore be removed 

from the cassette and inserted in the CD player. Because of 
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the small dimensions of the disc the player can also be of 

compact construction. 

2. LASER OPTICAL SCANNING 
As opposed to the conventional gramophone, there is no 

mechanical contact between the disc and the pick-up. The laser 

beam used to read out the information does causes no wear on 

the disc. Figure 1 shows a schematic representation of the 

disc and the optical read-out system. The digital information 

is recorded on the Compact Disc in the form of a spiral track 

consisting of a succession of pits. The intervals between the 

pits are known as 'lands'. Each pit and each land represents a 

series of bits called channel bits. 

Photo 2 shows a micrograph of part of the surface of the 

information layer in the Compact Disc. The information density 

on the Compact Disc is exceptionally high. The minimum length 

of a pit and of the land between two pits is 0.9 micron; the 

maximum length is 3.3 micron. The width of the beam as it 

scans the optical disc (i.e. the diameter of the scanning 

light-spot) is only 1 micron. The tangential bit density is 

about 0.9 µ/bit. The distance between two tracks (the pitch) 

is 1.6 micron. 

The tracks are optically scanned by the laser beam from 

below the disc. The laser beam is generated by a solid-state 

laser, shown at the bottom of fig.1, the light from which 

is passed by a half-silvered mirror and then focussed by an 

objective lens on to the information layer in the Compact 

Disc. When the spot falls on an interval between two pits (a 

land) the light is almost totally reflected and is reflected 

by the half-silvered mirror and reaches the photodiode shown 

on the left in the figure. When the spot falls in a pit, the 

depth of which is about one quarter of the wavelength of the 

light in the plastic material, interference and extinction 

cause less light to be reflected and therefore less light 

reaches the photodiode. The optical system is mounted on a 
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pivoting arm that can rotate around the indicated axis, so 

that the optical beam is able to scan the whole surface of the 

disc. A tracking servosystem in every CD player ensures that 

the laser beam accurately follows the spiral track. By means 

of this servosystem, and by means of control and display 

information (to be touched upon later) the beam can also be 

directed to any required part of the track. Without counter 

measures, defocussing would occur as a result of considerable 

variations in the distance between the objective lens and the 

disc, making it impossible to read out the information. The 

objective lens can therefore be displaced by means of an 

electric actuator so that, by means of a second servosystem, 

correct focussing can be maintained at all times. 

3. PROGRAMMING 

Another feature of the system is that the player can be 

programmed. This is made possible by adding to the audio 

information control and display information in the form of C & 

D bits. These C & D bits carry information which the listener 

may need, such as playing time and the number a piece of music 

has been given on the disc, thus enabling the player to be 

preprogrammed so that different sections of the music on the 

disc can be played in the order selected by the user. 

4. INSENSITIVITY TO DUST, SCRATCHES AND OTHER IMPERFECTIONS 
A further feature of the Compact Disc system is that it 

is less sensitive to scratches, dust and other imperfections 

than the conventional gramophone record. There are three main 

reasons for this: 

The first reason can best be illustrated by referring to 

figure 2. This shows the laser beam as it is focussed by the 

objective lens on to the information layer in the Compact 

Disc. To reach the information layer the light first passes 

through a 1.2 mm-thick transparent protective layer. The 

various layers are shown here magnified for the sake of 

clarity. The information layer is coated with a thin metal 
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reflector only 60 nm thick. When the light beam strikes the 

surface of the disc the beam has a diameter of 0.7 mm. This 

implies that tiny particles of dust and small scratches on the 

surface will not significantly affect the light beam, so that 

the information contained in the information layer will be 

correctly read out. This is the first reason why the system is 

less sensitive to scratches, fingermarks and dust. 

The second reason why the system is less sensitive to 

errors is that errors can be corrected up to a certain 

extent. The occurrence of channel errors can be attributed to 

a variety of causes. First of all, in the manufacturing 

process air bubbles may be left behind in the plastic material 

or damage to the pits during the pressing of the discs can 

occur. Flaws of this kind can distort the information so that 

errors are read out. Errors can also result from fingermarks 

left on the plate during handling and from mayor surface 

scratches. 

A typical feature of the errors is that they occur in 

groups, called. error bursts. Without counter measures, these 

errors could ultimately result in incorrect samples, which in 

turn would give rise to audible disturbances of the audio 

signal. In the Compact Disc system, however, measures are 

taken to combat such errors, in the first place by means of 

error-correction codes. As we shall see, two Reed Solomon 

codes are applied. The error bursts are further countered by a 

technique known as interleaving, (as will be explained in more 

detail) whereby the errors that first occur in groups, or 

bursts, and can therefore affect a number of successive 

frames, are spread over a larger number of other frames so 

that the errors per frame are easier to correct. These 

measures, then, are the second reason why the Compact Disc 

system is better able to handle errors. 

The third reason why the system is less sensitive to 

errors is that interpolation is used. If the magnitude of the 

erros assumes such proportions, however, that the 

error-correction codes are no longer able to cope with them, 



219 

there is still a last means of tackling the errors and that is 

by making use of the error-detecting capabilities of the 

code. The error-detection circuit identifies in principle the 

samples that are unreliable, which are then replaced by 

interpolated samples, 

5. DIGITAL AUDIO 
Perhaps the most conspicuous feature of the system is 

that the audio signal is digitally recorded on the disc. Upon 

analog-digital conversion in the studio the left and right 

channels are scanned at a sampling frequency of 44.1 kHz. 

Consequently, both for the left and the right channel a 

bandwidth of 20 kHz is available. 

The choice of a sampling frequency of 44.1 kHz has to do 

with the fact that recordings in studios and concert halls 

used to be made, and to some extent still are today, with a 

video cassette recorder which is able to record the digital 

audio signals by means of an interface unit. 

Upon analog-digital conversion a signal sample is further 

quantized by the method of uniform (linear) quantization to 

produce 16 bits, which means that the z16 = 65536 levels are 

all equally spaced, This makes it possible to achieve a 

signal-to-noise ratio of more than 90 dB. The quantization 

error that remains can very well be described by treating the 

error signal as white noise which is added to the audio signal 

and which, because of the signal-to-noise ratio of 90 dB, is 

inaudible. 

In order to maintain the high quality of the audio signals it 

is necessary that the audio samples are recovered in the 

player at a rate which has quartz crystal accuracy. The data 

flow control needed to achieve this goal is schematically 

indicated in figure 3. The rate at which the bit stream leaves 

the demodulator, which fills the buffer, is determined by the 

speed of revolution of the disc, which is controlled by a 

motor. The rate at which the bit stream leaves the buffer 

memory to enter the digital signal-processing block is 
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controlled by a quartz crystal C. If the average bit rate from 

the demodulator, which fills the buffer, is higher than the 

fixed rate at which the bit stream enters the digital signal 

processing, the buffer will eventually overflow. 

If, however, the average bit rate from the modulator to 

the buffer is lower than the bit rate (determinded by the 

quartz crystal C) that fills the digital signal-processing 

block, then the buffer will ultimately be emptied. 

The data stream is kept flowing smoothly by controlling 

the speed of revolution of the disc in such a way that the 

buffer memory is on the average filled to 50% of its capacity. 

6. CORRECTION AND DETECTION Of ERRORS AND INTERPOLATION 
Figure 4 shows the Compact Disc digital audio system 

considered as a transmission system. On the left we see the 

studio equipment and on the right the player. Between them is 

the transmission channel. In telecommunication terms the 

equipment on the left may be seen as the sender and that on 

the right as the receiving end. In the studio the left and 

right stereo channels enter an analog-digital converter, 

resulting in digital signal samples of 16 bits each, which, 

as described, are recorded on a digital recorder. In the 

channel encoder, parity bits are then added and interleaving 

is applied. The function of the modulator will be touched upon 

later; for the present it is sufficient to note that the 

modulator maps the bits out of the encoder onto patterns of 

pits and lands. 

In the channel we see first of all the recording of the 

digital signal on the master disc. This master disc serves 

ultimately for the making of stampers, which are used for 

manufacturing the Compact Discs. On the player side we see the 

rotating Compact Disc, which is scanned by a laser beam. 

Any errors that occur are thus to be found in this 

channel. At the receiving end, i.e. on the player side, we 

find a number of operations that are the inverse of those on 

the sender side. First of all there is the demodulator, 



221 

followed by the channel decoder. Errors are corrected as far 

as possible in the channel decoder, and those that cannot be 

corrected are in principle detected and passed on to the 

interpolator. 

In the interpolator the unreliable samples are replaced 

by estimates of the audio signal. Some players, finally, 

provide additional signal processing to ease the digital to 

analog conversion before the digital signals are finally 

converted back to the analog audio signals from the two audio 

channels L and R. 

By the mapping in the modulator the frequency spectrum 

can be manipulated. This is needed e.g. to minimize 

disturbances of the tracking control system and for recovering 

the clock frequency in the player. Because of the mapping the 

intersymbol interference can be minimized which leads to the 

high information density. In the method of modulation used in 

the Compact Disc sytem blocks of 8 bits, i.e. of 1 byte, are 

converted into blocks of 14 channel bits. This and other 

measures have the effect of making the bit rate in the channel 

equal to 4.32 megabits per second. 

Before going deeper into the method of detecting and 

correcting errors in the Compact Disc system, it will be 

useful to look at some of the principles underlaying error 

correction and detection, with particular reference to block 

codes. 

A binary block code is a code whereby a block (n-k) of 

parity bits is added to a block of k information bits 

(fig.5). The manner in which these (n-k) bits are obtained 

depends on the mathematical structure of the code. 

The total block thus adds up ton bits. A block code is 

often specified by indicating the values (n,k). 

A simple example of a binary block code, for single-error 

correction, is given in Table 1. When an Dor 1 is 

transmitted, it is repeated three times, in other words two 

parity bits are added. The code is thus specified by the 

values (3,1). With this code we can correct at the most one 
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error occurring in transmission. This can be understood from 

the third column, which lists the number of possible channel 

outputs for at most one error. We see that in each word 

received the number of zeros (in the transmission of a zero) 

is in the majority, as also is the number of one~ in the 

transmission of a one. Thus, by taking a majority decision we 

can correct one error. This code cannot be used, however, for 

correcting two errors, though it can serve for detecting a 

double error, because if three zeros or three ones are not 

observed at the output of the channel, then either one error 

or two errors must have occurred. 

We now come to an important point. With this code it is 

not possible at the same time to correct a single error and 

detect a double error. In general there is a trade-off between 

the error-correction and error-detection capabilities of a 

code. That is to say that, the more use is made of the 

error-correction capacity, the less is left over for 

error-detection which in turn results in a greater probability 

of an error going undetected. An undetected error, as has been 

mentioned earlier, gives rise in the Compact Disc system to an 

erroneous audio sample, which may result in an audible 

'click'. 

The next concept to be touched upon is that of erasures. It 

might be that some bits (by methods which will become clear 

presently) are known to be unreliable. A decoder may consider 

very unreliable bits as being erased i.e. the value of such a 

bit is completely uncertain. If, in our example, two given bit 

positions in a received word are erased, then correction is 

possible. For of course, the value of the bit that is not 

erased should correspond to the value of the data bit that has 

been transmitted, The code in our example can thus correct at 

most two erasures. In summary, the block code can correct one 

single error or detect maximally two errors, but it can also 

correct two erasures. These operations, however, cannot be 

performed simultaneously. 
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The last concept I wish to introduce is the "Hamming 

distance". The Hamming distance between two bit sequences of 

length n is equal to the number of positions at which the bit 

values of the sequences differ from each other. In coding 

theory these bit sequences are usually regarded as vectors in 

an-dimensional space. If we have a collection of codewords 

each being a bit sequence we can make a list of the Hamming 

distances between all these codewords. The smallest distance 

between two codes is defined as dmin of the code. Now there 

is an important relation between this dmin and the maximum 

number of errors that always can be corrected, t. If at the 

most terrors occur in a transmitted codeword x, then all 

possible received words lie, as shown in fig.6, within or on a 

sphere of radius t. This applies therefore not only to the 

codeword x but equally to the codeword y and to all other 

codewords. If these spheres do not intersect each other, then 

it is always possible to correct terrors by searching for the 

centrepoint of the sphere within which the received word lies. 

A necessary and sufficient condition for these spheres not to 

intersect each is: 

dmin ~ (2t+1). 

The audio samples that are recorded on the Compact Disc 

are first grouped into what are called frames (fig.7). A frame 

consists of twelve audio samples, six samples of the left 

channel and six samples of the right channel. Since each audio 

sample consists of 16 bits, that is to say 2 bytes, we can 

also say that a frame consists of 24 bytes. 

The concepts of error detection and correction as explained in 

the foregoing can be extended from the bit level to the byte 

level. 

In the Compact Disc system two Reed-Solomon codes are used. In 

the first encoder 4 parity bytes are added to the 24 audio 
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bytes, producing a C2 word of 28 bytes. In the second encoder 

another 4 parity bytes are added to the 28 bytes coming from 

the C2 encoder, resulting in a C1 word of 32 bytes. 

For a Reed-Solomon code the minimum distance dmin equals the 

number of parity bytes plus one, hence in our case 

dmin = 4 + 1 = 5 

Since it further holds that 

dmin~(2t+1) 

it follows that we can correct a maximum of 2 (byte) ·err.ors. 

Because however there is also a trade-off between error 

correction and erasure error correction, it can be shown that 

each code can correct each number of errors t and erasures e 

simultaneously provided we satisfy the condition 2t + e ~ 4 

(e,t in bytes). 

Figure 8 gives a schematic diagram of a CD decoder. The 

operations here are the inverse of those in the encoder. For 

convenience we shall forget for the moment the delay lines, 

which are marked with a capital D and are situated before the 

input of the C1 decoder. At the input of C1 a succession of 

words arrives, each consisting of 32 bytes. It is the task of 

the C1 decoder to correct as many errors as possible and 

indicating by flag signals the reliablility of the bytes 

leaving the C1 decoder. 

Between the C1 and C2 decoders the de-interleaving takes 

place, which conceptually consists of a set of delay lines. 

The effect of interleaving is illustrated in figure 9. On the 

left side we see a number of successive words, each consisting 

of 28 bytes, as they leave the C1 decoder. In the last C1 word 

(see fig.9) all bytes indicated by small circles are 

unreliable. On the right we see the constitution of words 

after they have passed the de-interleaving set of delay lines 

and as they appear at the input of the C2 decoder. We now see 

that the 28 bytes of a C1 word, each of them flagged, are 

spread over 28 successive C2 words in such a way that each c2 
word contains only one unreliable byte. 
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Since the Hamming distance of the Cz code, like the C1 code, 

equals 5 bytes, one erasure per frame can easily be corrected 

by the Cz decoder. In principle, indeed, the c2 decoder can 

even correct 4 erasures. Basically the task of the Cz decoder 

is to correct all errors which were uncorrectable by the c1 
decoder (in particular the burst errors). Hereby the Cz 

decoder makes use of the reliability information generated by 

the C1 decoder. The error correction capabilities, used by the 

Cz decoder, are limited by the fact that the probability of an 

undetected error must be kept small enough. Errors exceding 

the afore mentioned capabilities are in principle again being 

flagged as unreliable. 

In the block designated by ~ in figure B the bytes from 

the Cz decoder are reshuffled. The purpose of this operation 

is to scatter unreliable samples in such a way that each 

unreliable sample is surrounded as much as possible by 

reliable samples. 

In figure 10 an example of the influence of the 

operation in the block designated by A is shown. Only the 

third and fifth samples of the left audio channel are 

unreliable. A reasonably reliable estimate of these two 

samples can be obtained by means of a first-order linear 

interpolation (fig.10). 

Although linear interpolation is a good and satisfactory 

solution in the CD system, the question arises as to whether 

there might be other interpolation methods with which a larger 

number of missing samples could be estimated. This question is 

the starting consideration of the last article in this series, 

by Veldhuis and Janssen. 
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Photo 2. 

Photo l. A compact disc. 

Microphoto of part of the surface of the 

information layer in the Compact Disc. 
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Fig. 1. Schematic representation of the disc and the 

optical read-out system. 

Fig. 2. Path of laser beam. 
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Fig. 10. First-order linear interpolation 

single channel 
data error outputs 
bit correcting (max. one 

code error) 

0 0 0 

0 0 0 0 0 0 1 
0 1 0 
1 0 0 

1 1 1 

1 1 1 1 1 1 0 
1 0 1 
0 1 1 

Tab le l. Example of single error correcting code 
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Abstract 

This paper presents an adaptive algorithm for the restoration of Lost 

sample values in discrete-time signals that can locally be modelled as 

autoregressive processes. The only restrictions are that the positions of 

the unknown samples should be known and that they should be embedded in a 

sufficiently Large neighbourhood of known samples. The estimates of the 

unknown samples are obtained by iteratively minimizing the sum of squares 

of the residual errors that involve estimates of the autoregressive 

parameters. A statistical analysis shows that, for a burst of Lost samples, 

the expected quadratic restoration error per sample converges to the signal 

variance when the burst Length tends to infinity. The numerical robustness 

of the method is investigated. The method has been developed to be used on 

digitized music and speech signals. 

I. Introduction 

This paper treats the problem of restoring (or interpolating) unknown 

or Lost sample values in a discrete-time signal. An algorithm is presented 

that is capable of restoring satisfactori Ly unknown samples with known 

positions occurring in bursts and more general patterns. Examples of both 

cases are shown in Fig. I. 1. To restore the unknown samp Les the a Lgori t hm 

uses the information contained in the known neighbouring samples. 

Until rather recently the problem of estimating unknown sample values 

in digitized music signals in real-time could only be solved by relatively 

simple, non-adaptive methods, such as Lagrange type curve fitting. These 

methods are not well-suited for audio signals, since these signals 

primarily contain harmonic components. Severe audible errors can be 

expected, when the number of samples in the periods of the harmonic 

components is Less than the number of unknown samples. For instance, Linear 
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interpolation gives already audible restoration errors for bursts in a 

digital audio signal of Length 5. Because of the progress made in the field 

of chip design, one can now contemplate more complicated real-time 

restoration methods, that may also involve some signal model. Examples of 

these methods, can be found in [1,2,3,21]. In [22] a general technique to 

derive from a signal model a restoration method for Lost samples is 

presented. An extensive description of the method described here can be 

found in [20]. 

In this paper the same point of view as in [2], Section II is taken 

for the restoration of more general patterns of unknown samples than single 

ones or bursts. That is, it is assumed that the signals to be interpolated 

can be modelled as autoregressive (AR) processes of finite order. 

The method is adaptive in the sense that, from a finite segment of 

data, it estimates the AR-parameters as well as the unknown samples. The 

restoration is done in such a way that the restored signal fits the 

estimated model as well as possible. 

The choice of the autoregressive process as a model for the signal can 

be motivated by the fact that many signals that are encountered in practice 

can be modelled in this way. Therefore, it is expected that the restoration 

method presented here can be applied successfully in many practical 

situations. 

The organization of this paper is as follows. In Section II the 

restoration method is presented and a statistical analysis is given. The 

restoration error is analyzed under the assumption that the AR-parameters 

are known. This analysis is detailed for the case that Gaussian probability 

density functions are assumed. In Section Ill computational aspects of the 

method are considered. Also, the numerical properties of certain parts of 

the algorithm are discussed. In Section IV some results are presented. 

Section V presents some conclusions. 

II. Presentation and analysis of the restoration method 

In this section it is assumed that the sequence \' k=-00, ••• ,00, is a 

realization of a stationary autoregressive process sk, k=- oo, ••• , 00 , (the 

ti lda - indicates that a variable is a stochastic variable). This means 

that there exist a finite positive integer p, the prediction order, numbers 

a0 ,a1 , ••• ,ap, a0=1, the prediction coefficients, and a zero mean white 

noise process ~k' k=- 00, ••• ,00, the excitation noise, with variance a;, 
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such that 

( II. 1) 

For notational convenience, it shall be agreed that ak=O for k<O or k>p. 

The AR-spectrum S(e) of sk, k=- oo, ••• , 00 , is given by 

2 2 
er ere 

( 11.2) S(~) e 
= ------------------ = --------------- , 

I p 12 p 
I 1: al exp(-jeL> I 1: bl exp(-j0l) 
I L=D I L=-p 

where 

( I I.3) 

In part A of this section the algorithm for estimating the AR-parame

ters and the unknown samples from a finite sequence of samples is 

presented. A statistical analysis of the restoration error is given in 

part B of this section. 

A. Presentation of the restoration method 

The available data consists of a segment sk, k=O, ••• ,N-1, of a 

realization of an AR-process sk, k=-00, ••• ,00. It is assumed throughout 

that the unknown samples occur at the known time instant~ t(1) , ••• ,t(m), 

where O<p_'.:t(1)< ••• <t(m)_'.:N-p-1. The problem is to estimate the values of the 

unknown samples st( 1), ••• ,st(m) and the AR-parameters p,a 1, ... ,ap and 

from the available data in such a way that the restored segment fits 

er 2 
e 

the 

assumed model as well as possible in a quadratic sense. That is, the 

restoration is such that the sum of the squares of the residual error 

ep, ••• ,eN_1 is minimal. 

AL though methods to estimate the order of an autoregressive process 

have been reported [4], it has been decided, if p is unknown, to choose p 

as a function of the number m of unknown samples. The rather arbitrary 

relation p=3m has proved to give good restoration results. For notational 

convenience /he vector notation a=[a1 , ••• ,aPJT, ~=[st( 1), ••• ,st(m)JT (the 

superscipt denotes vector or matrix transposition) shall be adopted. The 

estimation of a and ~ is expressed as a mini mi zat ion prob Lem, where the 
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estimates a for a and x for x are chosen such that 

N-1 p 12 N-1 
2 ( II .4) Q(~,~) = I I ak sk-l I = I lek I 

k=p l=O I k=p 

is minimal function of a and x. Once a and 1< have been determined, 2 as a a 
e 

is estimated by 

( II.S) 
N-p-m 

th 2 2 Since Q(~,~) involves 4 order terms, such as a1st(m)' the minimiza-

tion with respect to ~ and -~ is a non-trivial problem. The following 

iterative approach can then be applied succesfully. One chooses an initial 

estimate x(O), for instance x(O)=O, for the vector x of the unknown 

samples. Next, one minimizes ;(a,x(())) as a function of a to obtain an 

estimate a( 1). Secondly, one mi~i~izes Q(!_(1) ,~) as a function of ~ to 

obtain an ~stimate x( 1) for the unknown samples. 

Both minimizations are feasible, since Q(~,~) is a quadratic form in 

both a i RP and xi Rm. In fact, it can be shown that 

(II. 6) 

Here 

(II.7) 

where 

(II.8) 

C(x) 

c(x) 

C •• (x) = 
l J -

N-1 
I sk-i sk_J., 

k=p 
i,j=O,1, ••• ,p. 

Hence, C(~) is the p x p-autocovariance matrix, estimated from sk, 

k=O, •.• ,N-1. At the same time it can be shown that 

( II.9) 

Here 

(II. 10> B(a) 

z(a) 

bl, l=-p, •.• ,p, has been defined in (II.3), and 
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i=1, ••• ,rn, 

and D(a) -€ ll depends on~ and the known samples only. Hence a( 1) and x( 1) 

are given by 

<11.12) ccx<m>a< 1> = -~<!< □ )>, 

and 

respectively. The above method for calculating prediction coefficients from 

a sequence of samples is known as the autocovariance method [SJ. On 

substitution of (11.12) into (11.5) it easily follows that 

(II.14) A2 
a = 

e N-p-m 
(c 00 C!) + aTc(x)). 

The procedure described above is the first step of an iterative procedure, 

in which in every step new prediction coefficients a(i) are estimated as in 

(II.12) by using x(i-1) instead of x(O). These prediction coefficients can 

be substituted in~o (II.13) to obt;in new estimates x(i) for the unknown 

samples. It is clear that in this way QC~,~) decreases to some non-negative 

number. One may hope that the sequence thus obtained converges to a point 

where QC~,~) attains its global minimum. Unfortunately, it seems very hard 

to prove any definite result in this direction. In [20] it is shown that 

this iterative minimization procedure closely resembles a maximum Likeli

hood parameter estimation algorithm, well-known in statistics: the 

EM algorithm [6,7,8]. 

B. Statistical analysis of the restoration error 

In this subsection some statistical properties of the restoration 

error are discussed. It is assumed that p, ~ and a; are known. Since, in 

practice, these parameters are estimated from the data, this assumption may 

be a simplification from reality. However, it has the advantage that the 

results take a pleasant form. 

The restoration error is defined as the stochastic vector~, 
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CII.15) a= x - x = x + (BCa))-1zCa). 

Note that the realization z(a) of CII.13) is replaced by a stochastic 

vector z(a). It follows easily from CII.15) and from the fact that E[skJ=O 

that E[aJ=O and that the estimator xis unbiased. The (stochastic) relative 

quadratic restoration error per sample, e, is defined by 

a Ta 
CII.16) e = :-;~;!;. 
To evaluate the expectation E[eJ of e, it is noted that 

(II.17) a= (B(a))- 1Cz(a) + B(a)x) =: (BC~))-1E_, 

and that, for i=1, ••• ,m, 

CII.18) w. = 
1 

as follows straightforwardly from the definitions in CII.3), CII.10), 

CII.11). Thus, 

(II.19) E[aaTJ = (B(a))-1 E[wwT] (B((a))-1 • 

Since 

that 

CII.20) 

Finally, E[eJ is given by 

2 
ue 1 -----2- trace CCB(a))- ). 

m E[sk] 
(II.21) E[l!] = 

and 

For the expected relative quadratic restoration error of the ; th unknown 

sample one has 

C II.22) 2 -1 u CCB(a)) ) .. , 
e - 11 

i=1, ••• ,m. 

The case of a burst of m consecutive unknown samples deserves somewhat 

more attention than the general case. Then the matrix BC~) is Toeplitz and 

therefore has some properties that facilitate a further analysis of the 

restoration error. Toeplitz matrices are persymmetric: an n x n-matrix Mis 

persymmetric if M .• = 
1 J Mn+1-j,n+1-i' i,j=1, ••• ,n. It is a property of 
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persymmetric matrices that their inverses are also persymmetric. If B(a) is 

Toeplitz then (B(~))-1 is persymmetric, and 

(II.23) 

Extensive observations for the case of a burst of m unknown samples have 
-1 . revealed that the ((B(~)) \i' 1=1, ••• ,m, seem to depend quadratically on 

i form not too Large, and that the ((B(a))-1) .. tend to have their maximum 
l l 

for i=m/2, i.e. in the middle of the burst. Hence, much of the error energy 

is usually concentrated in the middle of the burst. 

In case of a burst the asymptotic behaviour of E[eJ as goes to 

infinity can be determined by applying the Szegtl Limit theorem [10]. From 

(II.21) one has 

( II.24) 

where 

theorem 

{ ' p 
-k=-p 

( 11.25) 

2 
a 

e -1 E[e] = -----2-
m E[sk J 

m 
I 

i=1 
\ , 

.!l. is the 
l 

one has for 

bkexp(-jek) 

1 
Lim 

m➔ co m 

· th · L f ( ) . h ti L .. 1 e1genva ue o B ~ • According to t e Szeg 1m1t 

any function F, continuous on the set 

ieJ<n}, 

m 
I F( ,l.) 

i=1 l 

n 

= --- f F( : bkexp(-jek))de. 
2 n -n k=-p 

Taking F(a)=a-1, one finds by using (11.2), 

(II.26) 

Hence, 

( II.27) 

Lim 
m➔ oo m 

Lim E[e] = 1. 
m➔ oo 

1 n 1 

= --- f ---------------- de 
2 n_n p 

I bkexp(-jek) 
k=-p 

1 7[ 

= ~-2 --- f see> de 
e 2n -n 

En~J 
= ---2--

(J 
e 

This shows that for Long bursts of consecutive samples the quadratic 

restoration error per sample approaches the signal energy per sample. 
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The result (II.27), derived for the burst case, is also useful for 

finding a bound on the restoration error in the general case. Indeed, the 

matrix BC~)=Cbt( ")-t( .)) .. _1 is a principal submatrix of the 
l J 1 1 ]- , ••• ,m 

(t(m)-t(1)+1) x (t(m)-t(1)+1) Toeplitz matrix 

B' (~)=Cbk-L\,L=1, ••• ,t(m)-t( 1)+1 • Denoting the first m eigenvalues of BC~) 

and B'(~) in increasing order by ,\ 1 , •.• ,,lm and ,\1 1, ••• , >,.'m, one has by 

[11], Section 3.5, Theorem 5.6 that O< >..'.< >,. ., i=1, ••• ,m. Hence, 
l l 

(11.28) 
-1 m 1 m 1 -1 

trace((B(a) ) = I >.. "'." < z: >,. 1 --:- < traceCCB'(~) ), 
i=1 l i=1 l 

and it follows that E[e] is asymptotically bounded by 

Lim sup m-1Ct(m)-t(1)+1). Although this bound is not as good as for the 

burst case, the restoration error in the case of m randomly positioned 

unknown samples usually turns out to be smaller than in the case of a burst 

of Length m. 

The restoration error can be analyzed in some more detail if ek has a 

Gaussian probability density function. It then follows that a has a 

probability density function 

(11.29) exp(
CZ n: )m/2 am 

e 

It is a rather tedious but straightforward exercise to calculate the 

variance, var<~>=E[CaTa - E[~T2_J> 2J, of e: 

( 11.30) var<@) 
m 
1: 

i=1 

-2 >,. • • 
l 

In the case of a burst of unknown samp Les of Length m, one can use the 

Szegtl Limit theorem CII.25) with F(a)=a-2• For Large m one finds 

1 71: 

---f ls<e> 12 de 
2 71: -71: 

CII.31) var(e) = 2 ------------------
I 1 n: 12 
1--- f see> de I 
l2n:_n; I 

It can be observed that var(e) is Larger if the signal spectrum see> is 

more peaky. 
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III. Computational aspects of the restoration algorithm 

In this section the computational aspects of the calculation of 3 in 

(II.12) and i< in (II.13) are considered. It should be noted that a linear 

system needs to be solved for the calculation .of both 3 and x. If p is 

chosen 3m, which is done when pis unknown, the need for efficiency is more 

urgent for the calculation of 3 than for the calculation of x. The 

calculation of 3 in (II.12) is in fact a well-known problem. It is often 

referred to as the autocovariance method and is discussed in great detail 

for instance in tsJ. In this reference also an efficient algorithm is given 

for solving_! from (II.12) in O(p2 ) operations as well as a summary of the 

various methods to estimate !!. from a sequence of samples. The numerical 

stability of some of these methods is discussed in [13]. 

For the calculation of x in (II.13) it makes sense to analyze the 

matrix 8<3) defined in (II.10> and (II.3) in some detail. It can be seen 

from (II.10) that 8(3) has constant values b0 on its main diagonal. 

Furthermore, the matrix 8(3) is positive definite, as can be seen from the 

expression 

(III.1) 
m m 
£ r cecA>>;J·v;vJ. = 

i =1 j=1 
r 
k 

m 12 
r 3k+t(i)vi I , 
i=1 I 

which follows on inserting (II.10) and (II.3) into the left-hand side of 

(III.1). Indeed, when i' is the largest index with v. ,+o, the term in the 
2 1 

right-hand sum of (III.1) with k=-t(i') equals vi'' as 3l=O for l<O, a0=1 

and v.=O fo i>i'. Hence, if v has non-zero elements, the right-hand sum of 
1 -

(III.1) consists of non-negative terms of which at least one is positive. 

This shows that B(_!) is positive definite. 

The fact that B(_!) is positive definite allows one to use Cholesky 

decomposition [14] of B<!> for solving! from (II.13) in O(m3) operations. 

In case of a burst of unknown samples, 8<3) is Toeplitz and (II.13) can be 

solved in O(m 2> operations by the Levinso~ algorithm [15]. Even in the case 

of a more general pattern of unknown samples B<!> is related to a Toeplitz 

matrix, so that the system in (II.13) can be solved more efficiently by 

using generalized Levinson algortihms [16]. However, this requires rather 

involved mathematics and does not lead to a less complicated hardware 

implementation, since the generalized Levinson algorithm to be used 

strongly depends on the pattern of unkown samples. For these reasons in 
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this paper only the solution of x from (II.13) by using Cholesky 

decomposition is considered. 

In a Cholesky decomposition the matrix sea> is decomposed as a product 

(III.2) BCa) = LLT, 

or as a product 

In (III.2) L is a Lower triangular m x m-matrix, in (III.3) t: is a Lower 

triangular m x m-matrix with constanr values 1 on its main diagonal, Dis a 

diagonal m x m-matrix with D .. =L~., i=1, ••• ,m. The systems sca>x=LLTx=-zCa) 
11 11 -- - --

and s<a>x=t:Dt:T=-z<a> are now solved by subsequently solving by back 

substitution y and 9 from L_r=-~<!> and from t:1_=-~<!> respectively, and ~ 

from LTx=y an~ t:Tx=;-19 respectively. Both forms of Cholesky decomposition 

take 0(~3; operations.-A drawback of the decomposition in (III.2) is that 

it requires the calculation of square roots. On the other hand, as is shown 

further on, the elements of L in (III.2) satisfy bounds that are more 

convenient if one has a fixed point implementation in mind. 

For the elements of the matrices L and D one has the following 

results: 

(III.4) 1 < L.. = D~~z < b0
112 , j=1, ••• ,m, 

- JJ JJ -

CIII.S) 

so that, 

m 
I 

i=1 
L~. = b 

1 J O' 
j=1, ••• ,m, 

(III.6) IL .. 1 < (bo - 1) 112 , i=1, ••• ,j-1, j=1, ••• ,m. 
1 J -

On substitution of L. .=C .. D~~Z into (III.6) and by using (III.4) one 
1 J lJ JJ 

obtains 

(III.?) It: .. !~ Cb 0 - 1> 112 , i,1, ••• ,j-1, j=1, ••• ,m. 
1 J 

The bounds in (III.5) and (III.6) and the right-hand bound of CIII.4) can 

be derived by using results of [17], Section 7 and by the fact that 

(B(a)) .. =b0 , j=1, ••• ,m. The left-hand bound in (III.4) was not known to the 
- J J 

authors. It can be derived as follows. First remark that 

( III.8) B(a) = AT A, 
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where A=[a1 , ••• ,a J is a (t(m)-t(1)+p+1) x m-matrix, defined by 
- -m 

the a. being the prediction coefficients of (II.1). Note that a.=O for i<O 
1 1 

or i>p. Since A has full rank, A can be decomposed as a product A=GR, where 

Q is a (t(m)-t(1)+p+1) x m-matrix, consisting of m orthogonal columns and R 

is an upper triangular m x m-matrix. On substituting A=QR into (III.8), one 

obtains 

T T T (III.1O) B(~) = R Q QR= tDt, 

2 where t and Dare as in (III.3). Clearly D .. =lq. I . The QR decomposition of 
J J -J 

A can be done iteratively. In every iteration 

subtracting from a. the projection of a. on to 
-J -J 

!:!.1,· •• ,_gj-1: 

j-1 T 
a.qk 

(III.11) q. = a. -I -=2-=-- . -J -J 2 k=1 l_gk I 

step q. is found by 
-J 

the space spanned by 

The space sp{_g1 , ••• ,_gj-? spanned by _g1 , ••• ,_gj_1 is the same as the space 

sp{a1 , ••• ,a. 1} spanned by a1 , ••• ,a. 1 • Therefore, 
- 4- - 4-

(III.12) lq. 12 = min la.-vl 2 
-J -J -v€sp{q1 , ••• ,q. 1} 

- J-

= 

= 

Since (~j)t(j)-t( 1)+p+1=a O=1 

CIII.9) it follows easily that 

and (~k)t(j)-t( 1)+p+1=o for k=1, ••• ,j, by 

lq.1 2>1. This proves the Left-hand inequali
-J -

ty of (III.4) 

In a fixed point implementation it is more convenient to solve the 

system B' <!>!="".~' (_!), where a• (_!)=BC_!)!bO and l.' <!>=l.C_!)!bO, than the 

system in (II.13), because the absolute values of the elements B'C1!) are 

all bounded by 1. Then B'C!)=L'L'T=tD'tT, where L'=L/bO and D'=D/bO• On 

substituting this into (III.4), (III.5) and (III.6) one obtains 

(III.13) 1/b112 < L' a - jj =D 1 ~~ 2 <1 ·1 JJ , J= , ••• ,m, 
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m 
C III.14) I 

i=1 

or, 

L'~. = b 
l] O' j=1, ••• ,m, 

CIII.15) IL' ij I~ 1, i,j=1, ••• ,m. 

Now the L'L'T decomposition of B'C_!) has the advantage over the tD'CT 

decomposition that the absolute values of all elements of L' are bounded by 

and that all fixed point multiplications can be performed without 

prescaling. 

The Lower bound in CIII.13) is important because the elements L' .. , 
J J 

j=1, ••• ,m, are used as divisors in the process of back substitution and 

accuracy wi LL be Lost if they are too small. It is the experience of the 

authors that, for digitized music, b0 usually has rather modest values, say 

b0<4, so that the L' .. do not become too small. 
JJ 

IV. Results 

In this section the performance of the adaptive restoration method 

discussed in this paper is considered for the following test signals: 

1) Artificially generated realizations of an autoregressive process of 

10th order with a peaky and with a smooth spectrum. Fig. IV.1 shows the 

AR-spectrum. Ten statistically independent sequences of 512 samples 

each have been used. The excitation noise sequences are uncorrelated 

pseudo-random sequences with a Gaussian probability density function 

with zero mean and unit variance. The patterns of the unknown samples 

were bursts of Lengths m=16,50. 

2) Multiple sinusoids. A sequence of 512 samples, given by 

CIV.1) s = 100 sinC0.23nn + 0.3,r) + 60 sinC0.4,r n + 0.3n) n 

has been used. The patterns of the unknown samples were bursts of 

Lengths m=16. 

3) Digital audio signals. Bursts of 16 unkno'-ln samples, occurring at a 

rate of 10 s- 1 in a fragment of 36s taken from a Compact Disc R 

recording of Beethoven's Viol in Concert have been interpolated. The 

sample frequency of the signal is 44100 Hz, so that a burst of 16 

samples has a duration of 0.36ms. 
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For all test signals the performances of the adaptive restoration 

methods are judged by means of the relative quadratic restoration error 

e 

CIV .2) 
m 

e = ----------------------
N-1 
l: 

N i=1 

2 s. 
l 

This is the realization of the stochastic relative quadratic restoration 

error e, defined in (Il.16). Diagrams of some typical restoration results 

are presented in Figures IV.2-8, together with the original signals, in 

which the correct values of the unknown samples have been substituted. In 

the diagrams the original signal is marked by a (1), the restoration result 

is marked by a (2), the positions of the unknown samples are indicated on 

the time axis. Besides the diagrams, the performances of the adaptive 

restoration method on the music signals are also evaluated by Listening 

tests. 

The figures give rise to the following remarks. For Large N and small 

m ususally one iteration is sufficient. However, if the segment Length N is 

smaller, continuing the iterations gives an improvement. In general, the 

res tor at ion errors for auto regressive processes with a peaky spectrum a re 

substantially smaller than for processes with a smooth spectrum. 

For sinusoids d;=o, so that, theoretically, the restoration error is 

also zero. Indeed, Fig IV.7 shows very small restoration errors for methods 

c1 and c3• The order of prediction, p, must not be chosen too high. For 

after more than one iteration the autocovariance matrix will become nearly 

singular and the prediction coefficients can no longer be calculated 

straightforwardly by solving the system (II.12). 

For the music signal it was found that the relative quadratic 

res tor at ion errors for the adaptive restoration methods were of the same 

orders of magnitude as those for the autoregressive processes with a peaky 

spectrum. 

Listening tests have revealed that the restoration errors in these 

test signals and in many other signals are practically inaudible. After 

increasing the burst Length from 16 to 50 the restoration results are still 

quite good for most music signals, although some restoration errors become 
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audible. 

v. Conclusions 

In this paper an adaptive method has been presented for the restora

tion of general patterns of unknown samples occurring in discrete-time 

s i gna Ls that can be mode L Led as autoregressive processes. It has been 

demonstrated that this method gives satisfactory results for digital audio 

signals. Roughly speaking, the method amounts to trying to minimize, as a 

function of the unknown samples and the unknown prediction coefficients, a 

sum of squares of residual errors involving the unknown samples, the 

prediction coefficients and the known samples from a sufficiently Large 

neighbourhood. 

For a sma LL amount of Lost samp Les in a Large segment of data, a 

single iteration is sufficient. More iterations give an improvement in 

restoration quality if a relatively small segment of data is available. 

It has been shown that the various minimizations can be carried out by 

efficiently solving in a stable manner, certain systems of Linear equa

tions. This indicates that the restoration method is suitable for a fixed 

point implementation in an integrated circuit. However, in that case the 

number of unknown samples should not be too high (up to 16, say). 
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FIGURE I. la 

k 

Fig. I.1a Sequence containing a burst of unknown samples. 

FIGURE I.lb 

? ? ? ? ? 

k 

Fig. I.1b Sequence containing a random pattern of unknown samples. 
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Fig. IV.1 AR-spectra of test signals 1 and 2. 
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Fig. IV.2 Restoration result and original signal for an autoregressive 

process with a peaky spectrum, m=16, p=10, N=512, after 1 iteration. 
Restoration error e=0.23E-01. 
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Fig. IV.3 Restoration result and original signal for an autoregressive 

process with a smooth spectrum, m=16, p=10, N=512, after 1 iteration. 

Restoration error e=0~10E+01. 
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Fig. IV.4 Restoration result and original signal for an autoregressive 

process with a peaky spectrum, m=16, p=10, N=64, after 1 iteration. 

Restoration error e=0.38E-01. 



254 

J2 
0 

0 

"CJ 
(l) 

150 

100 

50 

0 

a. 
E -50 
0 

V) 

-100 

-150 

-

~ ~ 

2 4 

1 
.... 

~ \ 
.... 

Time (seconds) 

~ 

2 
) 

6 8 ~( 

I:: 1 ' ' ~ 

~ 

, 

I 

FIGU RE IV. 5 

h2 1 

.10 
4 
-4 

1,1 

Fig. IV.5 Restoration result and original signal for an autoregressive 

process with a peaky spectrum after 3 iterations, m=16, p=10, N=64, after 3 

iterations. Restoration error e=0.12E-01. 
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Fig. IV.6 Restoration result and original signal for a sum of 2 sine waves, 

m=16, p=10, N=64, after 1 iteration. Rest9ration error e=0.52E+OO. 
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Fig. IV.7 Restoration result and original signal for a sum of 2 sinusoids 

after 3 iterations, m=16, p=10, N=64, after 3 iterations. Restoration error 

e=0.58E-02. 
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ABSTRACT 
As computational geometry matures, it becomes crucial to use its techniques in the 

professional environment where graphics and robotics are natural candidates. This how
ever is a nontrivial task since (i) computational geometry concerns itself with asymptotic 
analysis, and (ii) in search of elegance it ignores the special cases which are the bugbear 
of practical applications. I see experimentation as a way to resolve these difficulties and 
propose a software system to act as a "Geometer's Workbench." This entails the integra
tion of geometric knowledge with algorithm animation and object-oriented graphics. The 

workbench should allow improvisation with geometric objects and is expected to broaden 
the way geometry is used in the style Macsymat accomplished for algebra. 

INTRODUCTION 

Like other key areas of mathematics of the old times (most noticeably algebra and 
number theory) geometry is being revitalized after a long period of dormancy. The coun
terpart of "classical" geometry in the age of computers is "computational" geometry. In 
the latter, we are interested in designing efficient algorithms for tasks of geometric 
nature. For example, we may want to know the inherent complexity of identifying the 
region in a subdivision of plane (respectively space) by algebraic curves (respectively 
surfaces), enclosing a given point - a problem popularized as point-location. Here clas
sical geometry must be augmented to deal with a new notion, namely, the complexity of 
computation. In the lack of computers old geometers did not concern themselves with 
such efficiency problems. 

I am persuaded that if com;-utational geometry is man ring (as many people say) 
then it is crucial to use its techniques in the professional environment where computer 
graphics and robotics are natural candidates. This however is difficult since computa
tional geometers are traditionally most concerned with asymptotic analysis, and in search 

t Macsyma is a product of Symbolics, Inc. 
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of elegance, underplay the special cases which are the bugbear of real problems§. 

My proposal, admittedly the first one that comes to mind, is then a software system, 

a so-called "Geometer's Workbench," which incorporates geometric knowhow and 
interactive graphics to assist in experimenting with geometric algorithms. It is a remark
able fact that computational geometry has advanced so much since its inception a decade 

ago. There are now literally hundreds of references (including several books) on compu
tational geometry and a substantial number of these works deal with graphics and robot
ics problems. The reader is referred to Edelsbrunner et al [6] and van Leeuwen [17] who 
present fundamental ideas on the relationship between computational geometry and com
puter graphics. As for the ties of robotics and computational geometry, my dissertation 

[1] may be a good place to start. 

1. MACSYMA AS AN ALGEBRAIST'S WORKBENCH 

My preliminary thoughts about a geometer's workbench owe to Macsyma [18], a 
sophisticated computer algebra system built to assist researchers in solving mathematical 
problems. A user enters symbolic input to Macsyma which in return yields symbolic out
put. A great deal of knowledge has been stored into Macsyma's knowledge base. The 
user has access to mathematical techniques which he may not even fully understand but 
can easily employ to solve his problem. Conjectures can be tested easily and fast with 
Macsyma. The system is simple to use but not at the expense of being simplistic; several 
problems may require serious programming in the Macsyma command language and 
mastering the "insides" of the system. In short, Macsyma gives the user room to study 
problems from a more intellectual viewpoint, i.e. leaving the low-level, uninteresting 
computational details to the computer. It offers an extensible and exploratory program
ming environment. 

Doing geometry, like algebra and many other research endeavours, is an iterative 
process. We define problems, draw figures, pose conjectures, redraw things, revise our 

ideas, etc. This exploratory process must be equipped with effective aids to graph data, to 

draw 2- and 3-dimensional figures to convey as many relationships as possible, to dis
cover properties, and to store all this information in a meaningful and easily retrievable 
format. These tools must not require a large amount of initial training but have to be 
powerful. Generally, they should only make their functionality visible to a user, but when 
required the internals of the system should support reprogrammability and editability. 
These requirements are satisfied in one way or another by Macsyma. The Lisp program
ming environment that has evolved during the past two decades of artificial intelligence 
research also delivers these. Lisp machines, for instance, combine the Lisp programming 

environment with powerful graphics. Since Macsyma's base language is Lisp, these 
machines naturally support Macsyma. At the top level of a Lisp system is a read-

§ cf. Forrest [8] for an excellent account of special cases. Don Knuth's detailed analyses of algo-
rithms in his classical books run counter to the big-oh trends of today. 
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evaluate-print loop that reads expressions from the input stream, evaluates them, and 
prints the outcome on the output stream. Flexible structure editors, debuggers, and execu
tion tracers provide a rich environment for rapid prototyping, an emerging pragmatical 
philosophy in software development. Windows enhance the interaction and, menus and 
use of a pointing device such as a mouse frees the user from being keyboard-bound. All 
of the above features must be present in the envisaged geometer's workbench. 

2. HANDLING SPECIAL CASES 

What kind of geometric knowhow would one expect from a workbench built upon 
such a workstation? First and foremost, it must be possible to perform conceptually 
trivial operations such as Voronoi partitions (cf. Figure 1), convex hulls, polyhedral 
boolean operations, and so on without undue emotional trauma. It is known that imple
mentation of even the simplest geometric algorithms is difficult because of numerical 
problems and the number of special cases that warrant special care [8]. Franklin et al 
[14] mention the case of intersecting two polygons, a seemingly trivial operation which 
can result in about 1,000 lines of Fortran code once all the cases, such as polygons with 
multiple components that may or may not intersect the other polygon and whose edges 
may coincide with other edges or vertices, are taken into account. 

Algorithm and data structure animation techniques [ 4] are found to be of crucial 
assistance in this respect. Since a personal workstation has a much friendlier user inter
face, the user may gain an insight by real-time observation of the outputs from algo
rithms. A good example for the need for the latter is derived from the weakness of a bare 
asymptotic analysis of an algorithm. It is not clear how efficient some of the asymptoti
cally optimal say, Voronoi and point-location algorithms are when applied to scenes with 
moderate complexity. For instance, a theoretically ingenious algorithm of Richard Lip
ton and Robert Tarjan for planar point-location had a notice for the reader stating that the 
authors didn't think of it as suitable for implementation. 

3. IMPROVISING WITH GEOMETRIC OBJECTS 

Another key requirement for a geometer's workbench is the availability of good 
update facilities for the underlying geometric model. This refers to the users ability to 
add new geometric objects or delete the existing ones. It also embodies the concept of 
modifying (operating on) existing objects to obtain new ones. For instance, one should be 
able to take a cube, slice it in the comers and drill a hole in its middle to obtain a new 
object, and give it a name. One must be able to take the convex hull of say three polyhe
dra and create a new polyhedron. I call this kind of liberal approach in dealing with 
geometric objects "improvisation." In a very elegant early work Baumgart [2] and 
recently, Fogg and Eades [7] made some efforts in this respect. Pentland's [19,20] 
Supersketch™ system depicts probably the state-of-art in supporting improvisation. 

The preceding operations require that the system has a good understanding of what 
an object is. For example, if a cube has a hole it means that one can have a sufficiently 
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small object pass through that hole; this would be trivial knowledge had the system pos
sess a pair of eyes but in the lack of that it has to be stored in some way along with the 
cube. Similarly, it is normally an illicit operation to take the convex hull of two polyhe
dra, since the convex hull operation is defined for a set of points. However, the operation 
makes sense and must be allowed once it is understood that one is in fact dealing with the 
vertices of the polyhedra under consideration. 

4. ADAPTIVE GRID AS AN IMPLEMENTATION TOOL 

Adaptive grid is a data structure invented by Franklin [9] and can be thought of as a 
sort of hashing for geometric objects (instead of character strings). It is used to alleviate 
the problem of comparing everything with everything in order to detect the intersections 
among them. Several implementations using adaptive grid exist; Franklin and Akman 
[12] deal with hidden line removal via haloed lines, and Franklin and Akman [9, 13] give 
a hidden surface program for flat-faced polyhedra. 

Let G be an integer ~1 and assume that all the polyhedra are projected into the xy
plane. (That is, we fixed our viewpoint and carried out the preliminary transformations.) 
Without loss of generality, assume that the initial screen is a square of side 1, coordinates 
limited to 0~, y < 1 and real. Essentially adaptive grid is a uniform G xG grid overlaid 

on the scene. The fineness ( -t;-) of the grid is some heuristically determined function of 

the statistics of the scene, e.g. average edge length, average face area, number of edges, 
number of faces, etc. The idea is to isolate the geometric objects (line segments or faces) 
into different cells .so that they won't be compared to each other, as much as this is possi
ble. Ways of roughly determining G are imaginable and we won't concern ourselves 
with it anymore. Besides, it is ar, experimental fact that chai,ging the fineness within a 
factor of two makes little difference [9]. Now faces in the projection plane are entered 
into cells of the grid. Thus if a face has a common part with a grid cell, it is added to the 
list of faces in that cell. Note that this is not done by comparing the face under con
sideration against all the cells; the bounding box of the face will suffice. This way a few 
extra cells will be included but the algorithm will still perform correctly albeit a bit 
slower. For integrity reasons, each grid cell is held responsible for its interior, and addi
tionally, its bottom (south) and left (west) sides. Since we excluded the coordinates with 
x or y equal to 1, the above provision partitions the scene into G2 squares which are 
pairwise disjoint. 

Obviously, within a cell visibility computation is carried out only with the faces that 
are in the face list of that cell. Hence we filtered out all those faces in the scene which are 
far away from this cell - thus the envisioned localization. 

It turns out that the adaptive grid is especially perfect in determining which few 
pairs of a large number of short edges intersect. In this case the average execution time 
is linear in the expected number of intersections plus the number of edges, thus optimal 
within a multiplicative constant. Furthermore, since practical scenes tend to be 
resolution-limitedf and frequently homogeneous, adaptive grid is also powerful even 
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when the above assumption about short edges is relaxed. While one can think of using a 
hierarchical grid to accommodate regions of the scene where the edges are clustered 
more and while this would save time in scenes with orders of magnitude variation in 
edge density, as soon as cells become hierarchical formerly easy tasks such as determin
ing the cells spanned by an edge become more complicated. 

Figure 2 shows a set of cuoes spelling CS and is from a haloed line program. 
Haloed lines are used by drafting people in complicated drawings. Briefly we assume 
that each line has a "halo" that runs along it on both sides. If a more distant line intersects 
this first line, then part of the farther line that passes through the first line's halo is blotted 
out. We divided the haloed line computation into two disjoint steps. The first uses the 
adaptive grid to find all edge crossings fast and writes a set containing all the locations 
where each edge is intersected in front by another. The second step sorts the intersec
tions along each edge and computes where the visible and hidden transitions take place. 
Dividing the computation into two steps means that redrawing a plot with a different halo 
width is quick since only the latter step need be rerun. Figure 3 shows a hidden line pic
ture of a set of random blocks. Figure 4 was computed by the same program but painted 
on a raster scene. Figure 9 is from another hidden surface algorithm working with 
octrees. This algorithm uses another fast technique first to build the octree from a set of 
parallelepipeds and then to compute the visible voxels in back-to-front order. Since 
octrees support set operations efficiently by their nature, they are useful in interference 
detection problems. 

5. SUPPORT FOR ROBOTICS 

How does the Voronoi diagram on the boundary of a convex polyhedron change 
when the source point moves? Theoretically, this would amount to parametrizing the 
diagram's edge set with respect to the source coordinates so that how they change while 
the source moves on the boundary can be guessed. Note however that the change in the 
diagram will by no means be continuous, i.e. there will be certain "jump" points at which 
the diagram on a given face of the polyhedron will gain a new topology. Accounting for 
this effect seems messy. Randolph Franklin in a private communication (1985) suggested 
that one can make movies showing the effect of different locations of the source, to study 
this problem experimentally. 

Given a boundary descriptim for a polyhedron, one may be required to determine 
where the holes are. This problem has been completely solved with the well-known 
classification of 2-manifolds; however I am not aware of any practical program doing 
this for a given polyhedral description. Also note that, as long as the source and/or the 
goal is not inside it, a bounded cavity cannot contribute to the minimal path computation 
and thus can be "filled."# Curved objects make minimal path computations extremely 

t People don't create scenes with enormous variations; they either detail blank expanses or simpli
;l crowded regions with clarifying annotations. 

The implicit assumption here is that the entrance of the cavity is planar. When this is violated 
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difficult, e.g. there may be an innumerable number of minimal paths. This is a domain 
where utilization of the variational calculus techniques may prove useful. Minimal paths 
on fancy objects such as Mobius bands and Klein bottles are also confusing. 

When subdividing the space to compute minimal paths to any goal around polyhe
dra [10] we are particularly interested in finding the intersection curve of two arbitrary 
surfaces efficiently and reliably. The latter requirement necessarily dictates a symbolic 
approach to the problem since there may be all kinds of degeneracies. Another relevant 
problem is to enumerate the regions of space separated by several surfaces which may 
intersect each other in all conceivable ways. Although there are many relevant results on 
the intersections of algebraic varieties in the area of algebraic geometry, their introduc
tion to the realm of computational geometry has been started only recently by George 
Collins and his students. 

6. INTERACTION AND THE MVC TRIAD 

The meaning of interaction is just too wide to be employed without some explana
tion. We accordingly offer a description of what we mean by this term and then offer a 
more formal viewpoint based on Smalltalk' s Model-View-Controller paradigm. 

Imagine yourself looking at a graphics screen. You normally see a hidden surface 
picture of say a machine part or a building. There are several regions on the 2-
dimensional screen which have different colors, shadows, transparencies, etc. The 
important thing is .that they are all disjoint since the hidden surface remover already han
dled the overlapping parts suitably. A particularly interesting interaction is then as fol
lows. You point with a mouse to a region on the screen and pick it. There are several 
alternatives to what happens next. The following lists them in increasing order of sophis
tication in terms of user-friendliness: 

• Picked region is highlighted. 

• Boundary of the face which gave rise to this region is highlighted. 

• Besides this region all other visible regions which are parts of the face which gave 
rise to this region are also highlighted. 

All alternatives assume that the visible regions are kept not as a set of pixel values (as in 
ray tracing algorithms) but as geometric data•, e.g. polygons. Performing the second 
feedback operation is then easy since one keeps an identifier with each visible region. 
However the last operation may be inefficient; one must go through all the visible regions 
just to keep the necessary ones. It is my understanding that an ideal system should give 
the user the last feedback [16]. 

As another exercise in friendly visual interface, consider the following problem. 

the filling must be done with care and only partially. 
• This in tum dictates that one is using ,m object-space hidden surface a!6orithm in contrast to an 
image-space algorithm. See Sutherland et al [21] for details. 
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Construct the Voronoi tesselation of the 3-dimensional space by a given set of points. 
The question arises. How can one present the output in the most meaningful manner? 
Color would help, transparency would help, and finally the ability to selectively review 
regions would help. 

As a formal model of interaction, Cunnigham's work [5] on the construction of 
Smalltalk [15) applications is relevant to the graphical interface that a geometer's work
bench should provide. For other insightful views on graphical interfaces and their 
"power" the reader is referred to Williams [23) and Bier and Stone [3]. (Williams' paper 
is also very instructive in that it describes a workbench for economists.) 

According to Cunnigham the right approach to building an application is three-fold: 

• Model This consists of problem data and operations to be performed on it. 

• View This presents information from the Model to the user via the display. 

• Controller This interprets inputs from the user and modifies the Model or View 
accordingly. 

In fact, it is quite correct to say that the Model represents the application while the View 
and Controller represent its user interface. An application may have several of the latter. 
Windows often provide several Views of a single Model, each different and each with a 
different Controller to deal with the inputs to that window. 

Due to the object-oriented philosophy, any kind of object could represent a Model, 
View, or Controller as long as it obeys the demanded protocols. A View is not really con
cerned about the nature of a Model; all it cares is that the Model offers it some informa
tion to fill the screen. Similarly, a Model is only slightly aware of being viewed. It just 
provides answers to questions by its View(s). A Controller has the responsibility for 
receiving user input in the context of its corresponding View. Input may come from 
mouse or keyboard. The Controller detects the input and makes something happen. 
Mouse buttons and key strokes take on different meanings in different windows because 
different Controllers are listening to them. A Model should redraw when its model 
changes. There is no magic associated with this. Views are dependents of their Models. 
As a dependent, a View is sent a message "redraw" whenever its model is altered. Either 
a Model generates this message itself (as part of a modification protocol) or the change is 
dictated by a Controller following an editing operation. 

7. SUMMARY OF REQUIREMENTS 

I have only touched upon some key functionalities that a future geometer's work
bench will have to provide. Only experience in developing prototypes will demonstrate 
the validity and completeness of my views. However, I believe that the main philosophy 
will stay more or less the same: a window- and menu-oriented user interface, a set of 
geometric functions similar in scope and generality to the algebraic functions of 
Macsyma, ability to pursue several computational activities in parallel using MVC-like 
paradigms, and algorithm and data structure animation. 
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Appendix: SP-A PROGRAM TO COMPUTE MINIMAL PATHS 

SP consists of a family of programs written in Franz Lisp and Macsyma command 
language to experiment with minimal paths in the presence of polyhedral obstacles in 3-
dimensional space. The following description is only cursory and the reader is referred 

to [l] for details of the system. 

The program was designed ,vith the following philosoph:· in mind. Let a workspace 
including a set of polyhedra be given. SP, using the geometric descriptions of the 
specified polyhedra, computes minimal paths in this workspace. It has some interactive 
graphics facilities and can supply the user with the views of the workspace so that he can 
have an intuitive feeling about the correctness of a particular computation. I believe that 
in geometric computations visual debugging is very effective. 

In this sense, SP resembles to Verrilli's [22, 11] Voronoi-based system; it provides 
the user with facilities to carry out the needed computations, once in a while asking for 
his intervention here and there. To see the effectiveness of Verrilli's system, consider a 
minimal path following robot (idealized as a point) that must avoid a set of given walls in 
the plane. The robot starts from a fixed source point each time but goes to a different goal 
point. Using the locus method of computational geometry one can partition the plane into 
a set of regions (which turn out to be delimited by a collection of edges and hyperbolic 
portions) such that for every goal in a given region, the sequence of wall comers that 
must be followed to obtain the minimal path is the same. Thus in Figure 7 taken from 
Verrilli's thesis, if the goal is inside the shaded region then one knows that the minimal 
path is via comers 24 followed by 7 followed by 4 followed by 3. The problem is essen
tial in manufacturing where there is a pile of parts in a location and a robot is supposed to 
carry the parts to many different locations (or in a fast food joint where you have to 
deliver hamburgers from a fixed location to many windows). 

Following the prototyping approach I either simply excluded from SP those compu
tations which I do not currently know how to perform effectively, or reformulated them 
to be controlled by user advice at certain points. Due to its loosely coupled structure, it is 
easy to upgrade SP with new algorithms when they become available. 

Currently, one can work with a single convex polyhedron using Franz part of SP. 
There are facilities to solve Boundary Findpath, Exterior Findpath, and Boundary 
Findpath (locus). It is also possible to implement an approximate Findpath algorithm for 
a workspace with several convex polyhedra. Using Macsyma part of SP it is feasible to 
compute minimal paths in a general workspace although this is not fully automated in the 
light of the combinatorial explosion that known Findpath algorithms have. Nevertheless, 
if the user specifies the list of edges that the minimal path must touch, then the problem is 
solvable using a Newton-Raphson like method. There are also facilities based on 
Macsyma functions to deal with general Findpath (locus) but this is not automated yet. 

Since it was built as a research tool, the prospective user is expected to know the 
internals of SP. Fortunately, the interactive nature of Lisp comes into play whenever one 
wants to debug or inspect the current computation and data structures. Working with SP 
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is incremental in the sense that or,c computes things, stops and studies them (by plotting 
if necessary), and continues. To make a rough analogy, it is useful to visualize SP as a 

sophisticated calculator tailored for minimal path computations. 

SP has facilities to read and check the consistency of polyhedral objects. It can also 
give extensive statistical information about an object. Once a polyhedron is read, SP 
builds the edge, vertex, and face data structures to access it easily. SP has a facility to 
unfold (develop) a given face sequence onto the .xy-plane. In such a development all 
polygons must have z -coordinates either O or within the E-neighborhood of 0. SP checks 
whether this constraint holds true. Figures 5 and 6 depict respectively an example path 
computed from a development and another computed similarly and then mapped back to 

the surface of the object. 

For Exterior Findpath, facilities exist to compute visibility relationships and to con

struct the silhouettes. Then a new object is created and the minimal path computation 
proceeds routinely. For approximate path planning SP has a function to find the intersec
tions of the given polyhedra with the source-to-goal line segment and to return a list of 
point pairs for each polyhedron intersecting the segment. Once these tuples are available 
a Boundary Findpath is performed for each pair and its associated polyhedron. Further 
path optimization can also be incorporated. For Boundary Findpath (locus), SP uses a 
naive Voronoi program. Figure 8 was generated by this program. Since the system is 
graphical, I needn't implement a point-location routine. For this figure the analogy is as 
follows. Assume that you have a set of construction sites on a mountain and a fixed loca
tion where you keep your tools. The idea is to efficiently compute the route of a truck 
carrying the tools to different sites. In this case the regions of the boundary of the 
polyhedron under consideration are delimited only by edges. Once the sequence of faces 
that a minimal path must visit is known, obtaining the path itself is trivial by unfolding 

the involved faces to the plane. The main cost of computation is then incurred in con
structing the diagram itself since querying with different goals is just point-location 
which is asymptotically much cheaper. 

I regard SP as a first-order, very modest approximation to the large and more gen
eral workbench I have proposed above. 
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Fig. 1 Voronoi diagram of a set of random points 
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Fig. 2 An arrangement of cubes after haloed line computation 
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Fig; 3 A random family of blocks after hidden line computation 
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Fig. 4 A random family of blocks after hidden surface computation 
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Fig. 7 Verrilli's single-source many-goals Voronoi system 
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ABSTRACT 

Currently the (Dutch) Postbank processes on average 3.5 million giro orders per 

working day. Roughly 2 million of these orders are received in the shape of booking 

forms filled in by hand, or typewritten. In order to process the documents 

automatically the booking data is encoded on the document in Ocr-b writing. An 

automatic check on the code is performed with an optical reading machine 

(CODAL). It matches in real-time handwriting and Ocr-b code. Using a pattern 

classification method, the current average recognition rate per character is 98.5%, 

with an average document acceptance rate of 75%. Further upgrading of the 

average recognition rate is possible by implementing information on digit 

distributions as functions of the position in the coded numbers. The 

first-digit-problem is relevant in this context. 

Key words: Pattern classification, contextual information, first-digit-problem. 
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1. INTRODUCTION 

In most of the currently available commercially manufactured optical reading 

systems for the recognition of hand-, or typewritten character sequences, the 

detection and matching of the sequence is based essentially on the recognition of 

each individual character separately. This implies that in order to be able to process 

the character classification automatically, some separation procedure is performed 

on the sequence previous to the actual recognition procedure. Dependent on the 

conditons of the application the recognition procedure can be a one-one type of 

matching procedure in a sequential processing computer environment, a pattern 

classifier in a parallel processing computer environment, ect. A lot of branching is 

possible here both in the choice of 'perception model', the technical implementation 

of the model and the processing of the documents read. But most systems share the 

methodology of recognition on the basis of feature shapes of the separated 

characters (see e.g. Essink, 1986-a). Though restrictive as perceptual 'model', this 

procedure can be shown to give commercially acceptable results. The CODAL 

optical reading machine, for instance, used by a Dutch bank to match automatically 

handwriting and Ocr-b coding of booking data on optically readable giro order forms 

(account number of the creditor, transaction amount), currently reads 

300 documents per minute with an average acceptance rate of 98.5% per character. 

With an average length of six digits for the (handwritten) account number of the 

creditor and on average five digits for the transaction amount the average document 

acceptance rate is 75% (Essink, 1986-b). 

From the common observation, however, that each individual has a style of 

handwriting and that type set letters are grouped in fonts, it is obvious that a 

statistical pattern classification model treating characters as independently 

distributed observations is restrictive. Therefore, a further upgrading of the average 

recognition rate per character may be expected from generalizations of the 

recognition model employing the covariance structure in shape patterns over the 

total character sequence. The testing of 'multiple character pattern classifiers' is 

one of the current topics of research at the Dutch Dr. Neher Laboratory with 

respect to further improvement of the optical reading machine CODAL. 
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In this paper, however, the implementation and testing of another type of contextual 

information is considered. Here we will investigate the possibility of improving the 

pattern classifier using distributional characteristics of digits in number sequences. 

The motivation of this research lies in the often established fact that in large 

'natural' sets of 'randomly' generated numbers, the digits 0,1, .. ,9 are generally not 

uniformly distributed over the number fields. This effect, if established, is 

particularly prominent in the first significant position (disregarding decimal point, 

leading zeroes and non-numerical preceding separators as stripes, stars, ect.). In 

such sets the relative frequency of numbers having leading digit i decreases 

monotonously with i, i=l,2, .. ,9, and the 'probability' of a number having a 1 as first 

digit is more than six times that of a number starting with the digit 9. Here it will 

be shown that the existence of the first digit phenomenon can also be established in 

the number collections of handwritten account numbers and transaction amounts as 

generated in the (Dutch) giro traffic. As a consequence it ls clear that the addition 

of positional parameters to the character feature vector in a conventional single 

character pattern classification model must lead to an improved average recognition 

rate and lower digit confusion values. Preliminary results obtained from a test 

version of such a combined model support this view. 

The structure of the paper ls as follows. Section 2 starts with a short review of the 

history and some statistical aspects of the first-digit-problem. Then some examples 

of the phenomenon in financial data are reviewed which are relevant to the 

discussion of the pattern classifier. In section S the linear pattern recognition model 

currently used in CODAL is presented and the modification to 'contextual 

classification' ls indicated. In section 4, finally, preliminary results of the modified 

classification model are presented, using a test set of approximately 40,000 

characters. 

2. The first-digit-problem 

If an extensive collection of 'naturally' generated decimal numbers is classified 

according to the first significant digit of the numbers, i.e. without regard to the 

position of the decimal point, the nine resulting classes are usually not of equal size. 

Instead of finding relative frequencies of approximately 1/9 for each class of 

numbers starting with digit i, i=l, .. ,9, we often find class sizes decreasing with i, 
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starting with approximately ~ 30% frequency for digit 1, an 18% for digit 2, and so 

on, ending with a less than 5% frequency for digit 9. More surprisingly, the class 

percentages pi can be shown to have a simple logarithmic relation, namely 

10 ) pi= log CCi+U/i, i = 1,2, .. ,9. Cl) 

Or, in a suggestive statistical notation, 

prob {xEDi} = 10log (i+l), i = 1,2, .. ,9, Cl') 

with x from some number collection and Di the set of real positive numbers whose 

decimal expansion begins with an integer ~ i. Examples of large number collections 

obeying Cl) are numerous, and can be found in almost any field where 'natural' 

numerical data can be accumulated (lengths of phone-calls, credit balances of bank 

accounts, area of rivers and lakes, number of newspaper items, ect., see Table n. 

Once recognized the first digit phenomenon usually puzzles the observer, and since 

its (probably) first report in Newcomb (1881) it has given rise to an extended 

literature (see Raimi, 1976, for a bibliography on the topic). We will not go into 

much detail here, but restrict the discussion of the problem to some general remarks 

with respect to its history and possible origins. 

First some history. Newcomb (1881) noted "That the ten digits do not occur with 

equal frequency must be evident to any one making use of logarithmic tables, and 

noticing how much faster the first pages wear out than the last ones". He 

formulated and investigated the problem, but dit not give a quantitative relation. 

The logarithmic 'law' is presented in Benford Cl 938), together with many examples 

of the phenomenon (number of footnotes in books, black body radiation, area of 

rivers, death rates, ect.). The almost 'universal' presence of Benford's Law, as (1) is 

now usually coined, inspired Benford, and later also Furlan (Furlan, 1946), to 

formulate a universal principle underlying Cl). According to Benford the phenomenon 

does not follow from the structure of our decimal number system, but is 'evoked' by 
o a 2a 3a 'Nature' itself. Nature counts geometrically e , e , e , e , .... , instead of 

arithmetically as man does a,2a,3a, ... And a geometric series can be shown to obey 

Cl) under relatively mild conditions (pg. 560 ff.). To support this view, Benford 

presents a variety of real-life examples of the phenomenon from medicine (growth 

curves), psychology (Fechner's Law), astronomy (star brightness scale), ect. 



Table 1. Distributions of first significant digits in empirical 

number collections, and a x2-test against Benford's Law 

Case(*) 
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First digit Benford's Law l 2 3 4 5 6 1 8 

l 30.l 30.0 31.0 31.0 29.5 29.0 20.8 30.4 31.2 

2 11.6 18.0 16.4 16.2 16.2 19.9 20.5 21.6 18.3 

3 12.5 12.0 10.1 12.4 12.0 16.0 19.6 10.7 12.3 

4 9.1 10.0 11.3 9.5 10.l 14.6 17.9 8.0 9.2 

5 7.9 8.0 7.2 7.5 9.6 1.9 12.8 8.9 7.6 

6 6.7 6.0 8.6 6.7 6.1 4.1 2.0 6.5 6.2 

1 5.8 6.0 5.5 6.1 2.3 2.6 2.2 6.1 5.5 

8 5.1 5.0 4.2 5.8 9.6 3.2 2.0 4.1 5.0 

9 4.6 5.0 5.1 4.8 4.6 2.7 2.1 3.7 4.6 

x2 0.2 1.5 0.3 6.7 8.2 26.l 2.0 0.2 
8 

(*) case 1: Nwllber of newspaper itelllS (from Benford, 1938, Table 1) 

2: Area of rivers and lakes (ibid.) 

3: Lengths of phone-calls (Netherlands) (from Lisman, 1986) 

4: Processed giro account numbers of creditors (Postbank. 

Netherlands, 1985) 

5: Processed giro account numbers of debtors 

Netherlands, 1985) 

(Postbank, 

6: collection of giro account numbers (Postbank, Netherlands, 1985) 

7: Giro transaction amounts (Postbank. Netherlands, 1985) 

8: Credit balances of bank accounts (Postbank, Netherlands, ultimo 

Januari 1986) 
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Furlan (1946) presents a similar view by stating that "the inherent spectrum of 

natural number collections is the harmonic spectrum", where the harmonic spectrum 

stands for Benford's Law(*). 

In later 'explanations' the problem is tackled from a probabilistic, or a 

number-theoretic model. Out of many contributions we would like to mention here 

the one using density arguments in connection with the notion of equidistributed 

sequences (Raimi, 1976, pg. 524 ff.). Let {t } be a sequence of real numbers in the n 
interval [0,l]. Then {t } is equidistributed if for each subinterval [a,b) C [0,l) 

n 
we have 

-1 k 
lim k L cS(n) = b - a, 

k n=l 

with cS(n) = 1 if t E (a,b) and cS(n) = 0 otherwise. . . n 
+ 

Now let {s } be a sequence in IR \{0} and define t 
n n 

10 

10 

(2) 

log s (mod 1 ). 
n 

Thens has first digit ;Sp iff. 0 ;;, t < log (p+l). Thus if {t } is 
n n n 

10 
equidistributed on [0,1) then (2) holds with [a,b) = [0, log(p+l)), and {s 

n 
obeys Benford's Law. {s } is then sometimes called a strong Benford sequence. 

n n 
Examples of strong Benford sequences are geometric sequences {ar }, with 

a a constant and r a non-rational power of 10, and asymptotically geometric 

sequences as, for instance, the Fibonacci numbers. Note that the sequence of 

natural numbers, IN, is not a strong Benford sequence. 

A third and final class of 'explanations' of the first digit problem we would like 

to mention here shortly, is the class of probabilistic models using the scale inva

riance principle. The model then says that if Benford's Law is universally true, it 

must be scale invariant, since Nature is not known to prefer any unit of measure

ment. For example, if Benford's Law holds for areas of rivers and lakes in the 

English system, it must also hold for the same data measured in the metric system 

(Case 2, Table 1). To express this statistically, let D1 denote the set of all numbers 

of IR+ whose standard decimal expansion begins with an integer ;;.i, i = 1,2, .. ,9. 

(*) "Die den natUrlichen Zahlenkollektiven eigentUmlichen form des Spektrums ist 

das harmonische Spektrum". (pg. 443) 



The scale-invariance of a set {x }e:IR+ is then defined by 
n 

(prob (xe:D ) = prob (xe:kD ), for all k>0. 
i i + 

Now suppose that {x } is drawn randomly from a distribution F: IR --+[0,1], so that 
n 
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prob (x ~ a) = F(a). F is chosen continuous and, for convenience, differentiable. F is 

an approximation of the finite situation, and need only be consistent with the 
X +oo 

sample. Define further G(x) = F(l0 ), and H(x) = I: (G(k + x) - G(k)) for all 
k = -oo 

xe:[0,1). Thus, if Xis a random variable and F its distribution function, then G is 
10 

the cumulative distribution for the random variable log X and H for the variable 
10 

log X (mod 1 ). 

Then we have 
+oo k k 

prob (x e: D) = I: [F((p+2)10 ) - F(l0 )) 
i k= -oo 

+oo 10 
= b [ G(k + log(p+ rn- G(k)] , 

k= -oo 

which can be rewritten as 

prob (xe:D) = H( 10log(p+l)), p = 1,2, .. ,9. 
i 

If {x } follows Benford's Law then it must hold that 
n 10 10 10 

H(u) = u, u = log2, log3, .. , log 9. 

(3) 

(4) 

The question now is to find distribution functions F whose corresponding H has 

property (4). Or, more specifically, to find functions F whose corresponding His 

uniformly distributed on [0,1], 

H(x) = x , xe:[0,1]. (5) 

Obviously, (5) implies (4) and is therefore a sufficient condition for the 

exactness of Benford's Law. Now let X be a random variable having distribution 
10 

function F and suppose H = log X (mod 1) obeys (5). Then the variables 1/X and 

cX, where c is any positive constant, have the same property (Adhikari & Sarkar, 

1968). Thus, if {x } obeys Benford's Law, so does {1/x } and {ex}, for any 
n n n 

positive constant c. In other words, the first digit phenomenon is preserved 

under scale transformation. Conversely it is also clear that once a collection 

violates the Law no improvement can be expected from rescaling, or taking 

reciprocals. 

Surveying the three notions mentioned here in connection with the 

first-digit-phenomenon ('universality' of occurence, the· relation with exponential 

and logarithmic sequences, scale invariance), and turning once again to empirical 

number collections, it follows that in large collections of financial data Benford's 

Law may also be expected to apply. Examples that lend themselves typically to 
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investigation in that respect are the 'number flows' produced by retail institutes as 

insurance companies, retail banks, giro banks, ect. Selling their financial services 

and products mostly in terms of 'paperwork', daily large flows of numbers as a result 

of processing, evaluation and identification are generated (e.g. transaction amounts 

of cheques, credit balances of saving accounts, giro account numbers). In Table 1 it 

is shown that Benford's Law can hold very nicely in such number collections (Cases 

4, 7, 8). Possibly there may also be some connection here with the well-known fact 

that financial data often have a log-normal distribution (see e.g. Johnson & Kotz, 

1970). 

On the other hand it is also obvious that in many cases Benford's Law does not hold. 

To convince oneself of that, it usually suffices to take, for instance, a 

telephone-book and survey the numbers. Also in financial data many 

counter-examples can be given (e.g. Case 6 in Table 1 representing the 

first-digit-distribution of a set of almost 5 million giro account numbers ranging 

from 1 to about 5,700,000). Summarizing, it shows that over a relatively long period 

of investigation on the first-digit-phenomenon and its origin(s) various 

mathematical and empirical arguments have been presented, but considered 

separately, or in combination, they do not provide a satisfying overall view of the 

problem. To illustrate this we conclude with just one example of what (in our 

opinion) remains curious and unexplained. Observe in Table 1 the Cases 4, 5, and 6. 

Each Case represents one and the same type of data (namely giro account numbers), 

but the numbers registered enter the collection in three different ways. Case 6 is 

the first-digit distribution of the entire collection of existing numbers, the Cases 4, 

and 5 are obtained by sampling account numbers from processed order forms. Now 

Benford's Law holds approximately for both the creditor - and debtor collection but 

it is definitely violated in Case 6. Apparently a (random?) dynamic component in 

the number generating process is somehow responsible for the appearance of the 

phenomenon, but the origin of this dynamical 'mechanism' remains unclear. 

3. A linear classification model using contextual information 

Having established significant departures from a uniform digit distribution in giro 

account numbers and transaction amounts, the question rises whether it is 

commercially meaningful to implement contextual information of this kind in a 

pattern classifier designed for the recognition of (handwritten) numbers. To 

investigate this an extension of the classification model must be developed and 
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tested against the simpler alternative. Both steps will be discussed here, and 

illustrated in the setting of an existing pattern classification system. For a better 

understanding of the formal discussion to follow, first an introductory outline is 

presented of this system. 

Currently the Dutch Postbank processes on average 3,5 million giro transactions per 

working day. Roughly 2 million of the orders are received in the shape of booking 

forms filled in by hand, or typewritten. The actual booking of these orders is 

computerized, so the handwritten information must be encoded in a computer 

readable form. For that purpose the OCR-b character set is used. The document, 

say a cheque, is processable once all the necessary booking information (transaction 

amount, the account number of creditor and debtor, ect.) is encoded on the 

document in the code-line (bottom line in Figure 1 ). This encoding is performed 

manually by (women) typists at a high speed (on average approximately 300 

documents per hour). The account number of the debtor is preprinted, the account 

number of the creditor and the amount are added. As a result of the high encoding 

speed an average 2% of the documents contains one or more coding errors. Thus to 

prevent erroneous booking, the coding must be verified. A straightforward method 

to perform such a verification is to repeat the encoding and to match both results 

automatically. Though easy to implement as a practical procedure, such a manually 

performed verfication process is labour intensive, slow in verification speed and of a 

relatively low quality, because individual perception and/or typing errors tend to 

correlate . .------------------------------""' 

POSTBANKJ\l) 

Fig.I 

Glrokruut 

1utden cenl medcdelingcn 

V '/ 'f/V/Y 'l ______ ,. ____ ... __ ... __ _._ _ _._2,. 
1··------. 
i s-· o l 
\._ __ ,•~ .. __ / 

handlckcning I _ ~ 

------\\-~. --------------
naam --' lveTH. RECOMM. (.Of1141TTEE rc.!"AH 'Br _ dmruimloni<lbo,chrij,en 

'._"~•---' ;JUL.IANAL.AAN 1"32 ___________________ _ 

~~~--' 1.6 28 _~l OEI..Fr ____________________________ _ 

volgnummcr 

32 th g lucassen 
stationsstraat 33 
89~3 ha loowoude 

1irord:cning 

onderdezclijn 
nictschrijvcn 

90329234567< 000004+ 000011250< 1304145+ 3 08< 60> 

Postbank cheque. On the bottom line, in Ocr-b, the preprinted owners 

account number and the manually encoded transaction amount and 

creditor account number. 
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Developing methods towards a total automization of the verification process is 

therefore an obvious strategy in trying to improve the speed and quality of 

document processing. To this purpose the Postbank uses pattern recognition 

techniques. Technically this implies that an optical scanning device produces an 

image of the handwritten information, which is separated by a computer in single 

tokens and further segmentated into isolated patterns (details e.g. in Essink, 1986-b). 

The patterns are 'identified' using a statistical recognition model, and the resulting 

digit-output is compared with the OCR-b coding. If code and handwriting match, 

the document is marked 'okay'. If not, it enters a manual verification procedure 

similar to the one previously described. Figure 2 shows a box diagram of the 

complete automatic verification system, coined CODAL. Documents travel with a 

velocity of 1 m sec from left to right through the machine, which is indicated by 

the fat curved line in Figure 2. Five times per second a document is fed into the 

traject, and the documents move continuously to either an 'okay', or a 'reject' 

pocket. The verification system is build around a commercially available document 

sorting machine (NCR Company). 

Omitting the details with respect to image segmentation and feature extraction (a 

description can be found in Essink, 1986-b), it suffices to state that the actual 

classification process starts with a 544 x 1 binary feature vector, representing the 

essential shape characteristics of the token read. It is a composition of 48 discrete 

features v,, j = 1,2, ... ,48, ranging between 1 and k (k=8, or 16). The feature values 

are represented by binary vectors of length k, having a one at element vj, and zeroes 

otherwise. So, each binary sub-vector consists of a 1 out of k code. In extracting the 

features form the image instead of using the complete image itself, a great deal of 

data reduction is obtained, since the 'original' image is a 64 x 64 binary field (see 

Figure 3). The reduction in reliability of the classification as a result of the feature 

extraction is minimal. 

Once the 48 discrete feature values of the unknown pattern are detected, the 

classification can be performed straightforward from the linear model 

y=A'x+c, 

(6) 
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System overview. Cheques are marked and sorted according to a match 

between computer interpretation and human interpretation in OCR-b. 

discontinuities 

endpoints 

slopes 

Fig. 3 

Feature extraction. Example of three 

different features of the left faces 

of isolated patterns. 
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In (6) x denotes the 544 x 1 binary feature vector, A is a 544 x 11 matrix of feature 

weights called the recognition matrix, y is the 11 x 1 target vector of estimated 

probabilities yi of class ci' i = 0,1, .. ,9,10 (where c 10 stands for the class of 

admissable non-numerals, as a stripe, star, ect.), c is the 11 x 1 vector of residuals, 

and d is a maximum selector. Obviously, A has to be chosen so that the target 

vector y discriminates best (best in some statistical sense) between the classes. A 

may be a Bayesian classifier with Clog) conditional densities log p(xklci) as weights, k 

= 1,2, .. ,544, 1 = 0,1, .. ,10. Then y gives estimated a-posteriori Clog) probabilities 

p(c1fx) that a pattern given in feature vector x belongs to class cl" The conditional 

densities p(xklc1) are calculated from a training set of patterns with feature vector 

x and known class ci (for details on the Bayesian classifier see Essink 1986-a). Here 

(6) will be considered as a regression model, i.e. with weights optimal in the 

OLS-sense. An unbiased and minimum variance estimate A of A can then be 

obtained by solving 

min {tr(Y-A'X)'(Y-A'X)}, (7) 
A 

with X a 544 x N matrix of feature vectors of N randomly sampled characters, and 

Y a 11 x N matrix of (known) target vectors (see for details, e.g., Duda & Hart, 

1973, sections 5.8 and 5.12). Using well-known calculus (e.g. Lawson & Hanson, 

1974) it 

follows~that A is given by 

A = CXX')+(XY'), 

with (XX')+ the Moore-Penrose inverse of XX'. Note that the inversion of the 

(possibly singular) 544 x 544 matrix XX' requires heavy computing. Once 

implemented and tested the recognition model (6) yields an acceptance rate of 

97 .2% on character level and 72% on document level. Further upgrading of A by 

adding 'filters' increases the rate to a current average of 98% accepted characters. 

It is clear from the additive structure of (6) that the recognition model can easily be 

extended by adding independent features. Actually, this ls the way in which (6) ls 

optimized, namely by selecting the best discriminating shape features. Under the 

supposition that this selection process is optimal (i.e. in the MSE-sense), every new 

extension of the feature vector corresponds with a declining increase in acceptance 

rate, untill some break-even point is attained beyond which the processing 

'parameters' discrimination, computer performance and processing speed cannot be 

improved without disproportional costs. Therefore, having an OLS-optimal 
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parameter matrix A, further improvement of the classifier can only follow from 

using (6) in combination with other optimization criteria (i.e. looking for an estimate 

A with better first-order asymptotic properties), or developing a new, say 

non-linear, perception model. Concentrating on the first option, a possibility to 

improve (6) is to change from a mean squared residual criterium to a higher order 

power criterium. This in order to be able to capitalize on the bigger errors over the 

smaller ones. Then A is computed under the condition 

p 
min {Cy - A 'x)'(y - A 'x)} , p = 1,2, .. (8) 

An unlque weight matrix A exists for each value of p, but for p > 1 it cannot be 

expressed analytically in a closed form (see e.g. Devijver & Kittler, 1982, pg. 174 

ff.). So in order to solve (8) one has to use some iterative procedure. Increasing p 

generally leads to less misclassifications in the training set of sampled characters. 

On the other hand, large values of p render the approach too sensitive to aberrant 

characters in the training set. Moderate values of p (p ~ 15) usually give a good 

compromise. 

A second possibility of improving (6) we want to mention here, is to allow 

for non-linearity in the feature relations by introducing quadratic terms in the 

binary feature vector. Then we have, for instance, 
2 2 

x' = (x ,x , .. ,x ,x , .. ,x x , .. x ) and optimization proceeds as in (7). But 
1 2 544 1 i l 544 

clearly the order of x can only be increased within certain limits, and so a selection 

of best discriminating quadratic elements must be made. Tests of some of these 

quadratic input classifiers showed promising results CEssink, 1986-a). And finally, 

combinations of these 'non-linear', non-MSE criteria showed promising results. 

Using a training set of 20,000 patterns sampled from the giro process, digit 

acceptance rates of 99.9%, and document acceptance rates of 87% were achieved 

Cibid., pg. 15). However, this extension is not as yet operational. In the present 

version of the CODAL machine model (6) is used with recognltion matrix A optimal 

with respect to criterium (7). 

A final variety of (6) we consider here more detailed, is the one using positional 

features in combination with shape features. Since both types of features may be 

expected to be independently distributed, extending (6) is simple. Positional features 

can be added to the feature vector without any restriction, the order of the 
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recognition matrix A is changed accordingly, and for the optimization of A the 

OLS-criterium ls used. 

The question is, however, how many of these positional subvectors must be added 

and how. According to the results from the previous sections at least two positional 

features should be added, indicating the first guilder position (reading from left to 

right), and a first account number position (idem). For reasons of comparison it is 

also interesting to add at least second and third guilder/number position features to 

the model. Knowing that the class distributions of the second and following digits in 

the account numbers and transaction amounts rapidly converge to a uniform 

distribution, the contribution of the first digit features to the improvement of the 

model may be expected to be substantial, i.e. compared with that of the other digit 

features. To investigate this, we performed some experiments with various 

positional features. In the next section the model extension is formally denoted and 

the results of some tests on a set of characters classified accordingly, are presented. 

4. A test of a combined positional pattern recognition model 

Let x and x be two positional feature values, respectively, and A and A the 
1 2 1 2 

corresponding recognition matrices. Then (6) can be written as 

y=(A 'IA')(x )+c , (9) 
1 2 1 

X 
2 

d = max (y ). 
i i 

Using criterium (7), optimal estimates of Ai and A2 were calculated from a training 
set of almost 40,000 characters. Concentrating on the first digit phenomenon 

primarily, it has been tested whether the phenomenon occurred in this set of some 

4,000 combined transaction amounts and account numbers, and what the effect was 

of adding a first guilder feature to (6). Since in the training set (as in practice) 

non-numerals and non-siginificant zeroes appeared at the first guilder position, 

recognition rates were computed for the sets of first characters with and without 

the classes of non-numerals and zeroes. Finally, also the overall performance of the 

combined model (9) was tested. 

Summarizing the results of the tests here, it is noted first that the training set 

applied to Benford's Law well enough to be refresentative of the actual collection 

of transaction amounts in the giro-process (X = 1. 7). 
8 



291 

Further, comparing the recognition rates per class and the confusion matrices for 

the model both with and without a first guilder feature, all tests showed equal, or 

improved recognition rates for all character classes except for the class 7. To save 

space, only the results for the collection of 3958 classified characters read in the 

first guilder position are discussed here in some detail (see Table 2). A first 

observation is that the biggest increase in recognition rate is found for class 1 and, 

surprisingly, the class of non-numerals. In both cases this effect follows from the 

addition of the positional feature and can therefore be attributed uniquely to the 

dependance of the respective character classes on the position in the number. 

Note in particular the improved discrimination in class 1 between the optically very 

similar digits 1 and 7 (from 12 to 9 incorrect classifications). The overall 

improvement in this set is about 0.25% on the digit level. Similar results, but with 

slightly minor overall improvement were obtained for the collection of first 

significant digits (i.e. without non-numerals and zeroes), and the total collection of 

characters read (resp. 0.1 % and 0.04%). Details are available form the authors upon 

request. 

Though seemingly marginal in absolute sense, the improvement in recognition rate 

indicates that applying the first digit feature twice (in account number and 

transaction amount) results in an expected 0.1 % increase in the overall digit 

recognition rate, giving an average 1 % increase in automatically accepted 

documents, or, complementary, a 4% decrease in manually checked documents 

[(98,5%) 11 ~ 85%, (98,6%)11 ~ 86%]. Moreover, ranking a set of 750 selected 

feature components according to a successive maximum MSE-reduction crlterium, it 

shows that the first guilder feature holds position 168 out of 650 linearly 

independent components. Thus positional features can be shown to perform well in a 

combined position/pattern recognition model. 

Adding second and third guilder features to the positional binary vector, finally, 

showed that no further substantial improvement could be obtained. The separate and 

overall character recognition rates increased only marginally. Ranking features by 

maximum MSE-reduction again, the second and following guilder position features 

scored 450, 415, 518, 611 and 639, respectively, in a total set of 750 components. 

Concluding, we state that the performance of pattern classifiers designed for the 

recognition of numerical (and related) characters, can be improved by implementing 
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Table 2. Recognition rates of first guilder characters, and confusion matrix of 3958 characters, combined model (between 

parentheses differences with model without positional feature) 

Class 

0 1 2 3 4 5 6 7 8 9 NN* all 

---- -- -- -- -- -
recognition 

rate (\) 100 91,9 (+,5) 98.6 (+.4) 91,0 (+.2) 94.8 99.4 98.8 98.0 (-.5) 99.3 92.7 94.1 (+.5) 97.4 (+.2) 

classified 

0 3 l 2 

l 995 (+6) 2 4 

2 4 103 (+2) 4 1 (+l) 3 (+1) 

3 l 396 {+1) 2 1 1 1 

4 5 (-2) 329 1 1 1 5 (-1) 

5 0 (-1) 349 3 2 (-1) 

6 0 (-1) 10 251 

1 9 (-3) 5 2 2 194 (-1) 1 7 (-1) 

8 0 (-1) 1 4 149 2 
9 l 2 (-1) 5 2 2 102 2 

NN" 1 384 ( +2) 
3855 (+10) 

total 3 1016 713 408 347 351 254 198 150 110 408 3958 

• non-numeral 
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statistically relevant positional information present in the data. The discussion has 

been restricted here to the first digit phenomenon in particular, but it is clear that 

similar research can be done with, for instance, transition distributions of digits. In 

certain types of the giro transactions discussed here, it has been established that the 

probability of a zero following any non-zero digit is almost 30%. Similarly, the 

probability of finding the digit 5 following any digit is more than 15%. Both results 

are statisticaly significant under the null hypothesis of having a uniform distribution 

of digit classes, and they indicate that further research on using contextual 

information in pattern classification is needed. 
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ABSTRACT 

With the theory of branching processes with cascade substitution a 

statistical description of a three-stage process of network formation is 

derived. End-functionalized prepolymers prepared in the first stage are 

modified in the second stage to prepolymers with a different type of end 

groups. These are subsequently crosslinked in the third stage with a mix

ture of hardeners. The distributions of units in the different reaction 

states are calculated with kinetic differential equations based on the 

mass action law. In these equations substitution effects can be taken into 

account. 

1. INTRODUCTION 

Crosslinking processes are technologically very important. They are 

used in a variety of fields in polymer technology, e.g. elastomers, 

adhesives, coatings and other thermosetting (e.g. construction) materials. 

By a crosslinking process the material is transformed from a monomeric or 

polymeric liquid into a permanent network, which is essentially a 

viscoelastic solid. Most crosslinking processes can be considered as 
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multistage processes in which prepolymers are formed from monomers in one 

or several stages, upon which a network is obtained by crosslinking the 

functional prepolymers. Well known examples are, e.g., polyurethane net

works, prepared with isocyanate-terminated polymers (macrodiisocyanates), 

which are synthesised from macrodiols with excess diisocyanate [1], or 

saturated polyester networks, prepared with carboxy-terminated polyesters, 

which are derived from macrodiols with excess dicarboxylic acid or 

anhydride [2]. Alternatively, a network formed in an intermediate stage 

can be further modified in a final stage. 

In this contribution a theoretical scheme for a three-stage process 

of network formation is derived. It is based on the general scheme 

published recently [3], derived with the theory of branching processes 

with cascade substitution [4-6). The Galton-Watson or universal con

sistency relation is assumed to be valid and cyclisation is postulated not 

to occur. Besides, substitution effects are allowed and can be incor

porated in the probability generating functions (pgf's). 

In the following paragraph a description of the three-stage process 

is given. Next the statistical method is applied for these three stages to 

obtain the pgf's and the relevant characteristics such as average molecu

lar masses and functionalities in the pre-gel region, the conversion at 

the gel point and the network characteristics in the post-gel region. 

These pgf's contain the distributions of units calculated with a kinetic 

scheme described in the next paragraph (in the absence of substitution 

effects these distributions are more readily derived with statistical 

arguments). In that next paragraph a kinetic scheme is presented with which 

the fractions of units in the different reaction states are determined by 
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kinetic differential equations based on the mass action law [7-11). These 

distributions of units are thus a function of time or overall conversion 

and depend on the respective rate constants. It is in this scheme that 

substitution effects can be taken into account. Finally, some preliminary 

results are presented for a typical three-stage process. 

2. DESCRIPTION OF THE PROCESS 

The structure of the three-stage process is as follows. 

Stage 1 

Bifunctional monomers A, with functional endgroups called c, react 

exclusively with an excess mixture of difunctional monomers D and trifunc

tional monomers T, which have the same functional endgroups called h (and 

thus are equally reactive), to (mainly) h-terminated prepolymers. 

Stage 2 

The prepolymers of stage 1 are modified with an excess of difunc

tional C monomers, also with functionality c, into mainly c-terminated 

prepolymers. Unreacted functional groups of the A monomers are assumed not 

to react in this stage. 

Stage 3 

The mainly c-terminated prepolymers react in this last stage with a 

mixture of difunctional E and trifunctional F hardeners which are equally 

reactive. The h-endgroups are assumed not to react any further in this 

stage. 

A scheme of the three stages is given in table 1. For these reactions 

substitution effects are allowed for monomers A and C in all three stages. 

In addition, monomer A is assumed to be completely insoluble in the 
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reaction mixture and to be only reactive at the surface. As a result, the 

specific surface of A is an additional parameter. 

3. STATISTICAL METHOD 

Because of the complexity of the statistical characteristics of a 

three-stage process of network formation the three stages are treated 

separately. The statistical properties of the products are derived with 

the theory of branching processes with cascade substitution [3-8]. 

3.1 Stage 1 

The process is started with NA moles of monomer A with molecular mass 

MA' ND moles of monomer D with molecular mass~ and NT moles of monomer T 

with molecular mass MT. Instead of moles it is more convenient to use mole 

or number fractions, denoted by nA' nD and nT' respectively. 

At any time, the conversion of A, «A' which equals the ratio of the 

number of reacted to the number of initial c-groups in A, is related to 

the conversion of D and T, ah' through the following balance equation: 

(3-1) 

During the reaction a side product (e.g. water) may be produced and 

eliminated. A simple way to correct for this elimination is to correct the 

initial (molecular) masses with an amount which equals the molecular mass 

of the species eliminated times the conversion. 

In the branching theory with cascade substitution, the distribution 

of units differing in number and type of bonds in which they are engaged 

is described by a vectorial pgf, f 0 (~). where the subscript o refers to 

the root of the probability tree, see e.g. refs. [4-8]. The components of 

the dummy vector~. which differ in their subscripts, denote the various 
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types of bonds, their exponents indicate the numbers of those types of 

bonds. In the present treatment this idea is extended to a dummy vector 

!f for the unreacted groups as well. For each monomer in the zeroth 

generation the pgf for the number of reacted groups (related to the dummy 

variables!= (zA,z0 ,zT)T) and the groups once or twice unreacted, 

(related to the variables (l)!f = (zfA' zfh' zfAf)T) is formulated 

(l)FOA(!,(1)!f) 

(l)FOD(~. (l)!f) 

(l)FOT(!,(1)!f) 

(3-2) 

where p0 , p1 and p2 take into account the substitution effects (see also 

part 4 below) and zh = $0z0 + $TzT; $0 = 2n0 /(2n0 + 3nT); $T = 1 - $0 and 

aA in (3-1) is equal to (p1 + 2p2)/2. As described in [3] the pgf's for 

each monomer in all next generations read 

(l)FA(!,(l)zf) 

(l)FD(!,(1)!f) 

(l)FT(~'(l)~f) 

[plzfA + 2P2Zh]/[pl + 2P2], 

[(1-ah)zfh + ahzA]' 

[(1-ah)zfh + ahzA]2, 

(3-3) 

which is based on the Galton-Watson or universal consistency relationship 

[5]. Next the mass fraction generating function (l)W(z,(l)~f) is derived as 

mA (l)WA(z,(l}!f) + mD (l)WD(z,(l)!f) + mT (l)WT(z,(l)!f) 

mAzMA (l)FOA ((l)y'(l)!f) + mDzMD (l)FOD((l)~'(l)!f) + 

mTzMT (l)FOT ((l)y'(l)!f)' (3- 4 ) 
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where mx is the mass fraction of X = A, Dor T, (l)y = (uA(z), u0 (z), 

uT(z))T is the solution of the set of coupled nonlinear equations 

u = A 
zMA 

(l)FA((l)Y'(l)~f), 

UD zMD 
(l)FD((l)Y'(l)~f), 

UT zMT 
(l)FT((l)Y'(l)~f). 

(3-5) 

In the expressions (3-4) and (3-5) (l)'ox and (l)FX for component X are 

given by the systems (3-2) and (3-3) respectively. Notice that each com

ponent of the vector z in (3-4) is replaced by the scalar z, since we are 

not explicitly interested in the distribution according to the type of 

unit. 

Before continuing we introduce the notations~= (mA' m0 , mT)T, 

M = (MA ' MD ' MT ) T ' .!! = ( n A ' nD ' nT) T ' (1 ) f.o = ( (1 ) F OA ' (1 ) F OD ' ( 1 ) F OT) T ' 

_ T M _ MA Mo MT T 
(l)f. - ((l)'A' (l)'o· (l)FT) and z - (z 'z 'z ) . 

The expressions (3-4) and (3-5) read in shorthand notation [5] 

where . means the inner product. 

(3-6) 

(3-7) 

Subsequently ( 1 ) W( z, (1 )~f) is converted into the number fraction pgf 

(l)N(z,(l)~f) by integrating (l)W(z,(l)~f)/z as follows [3] 

' 
z (l)W(z '(l)~f) ' I ---~~dz. (3-8) 

z 
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where (l)Mn is the number average molecular mass of the product of stage 1 

(see 3-12 below). Substitution of (3-4) in (3-8), integration and another 

substitution of (3-5) in the result gives eventually 

M 
(1) n,O 

(3-9) 

with (l)Mn,O = n. M, the number average molecular mass before the start 

of stage 1, and uh= $DUD+ $TUT. Equation (3-9) can be simplified since 

the fraction of reacted c-groups equals the fraction of reacted h-groups, 

see (3-1). Thus the final expression for the number fraction pgf reads 

where (l)~ is given implicitly by (3-7). 

Next the condition for gelation is checked. The system is in the pre

gel region for 

D det (I - a (l)E / a~) I ~=l > o. ( 3-11) 

If the system is below the gel point the number average molecular mass of 

the product of stage 1, M, is given by 
( 1) n 

M 
(1) n,O (3-12) 
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and the mass average molecular mass, (l)Rw, is given by 

m. M + m.[-a_a __ 
- - - (1).Y 

(3-13) 

The second term in the right hand side of (3-13) comes from the fact that 

(l)Y depends on z. The number average free functionality of type X, 

(l)~nX' can be derived from 

We do not work out the right hand side of (3-14) here, because the 

resulting expression is very complex and does not give any further 

insight. 

3.2 Stage 2 

(3-14) 

The product of stage 1 is subsequently mixed with newly added monomer 

C. As in stage 1 a side product may be produced and eliminated (a simple 

way to correct for this elimination is indicated in stage 1). The pgf's 

for the new monomer C in the second stage conform to the pgf's of monomer 

A in the first stage. The pgf of C in the zeroth generation is given by 

(3-15a) 

and the pgf of C in all next generations is given by 

(3-16a) 
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where~= (zp,zc)T and (2 )~f = (zfA' zfC' (2 )zfh' zfAf' zfCf)T. All infor

mation about the distribution of free functional groups in the prepolymers 

of stage 1 is collected in (l)N(z'(l)~f). As a result this pgf is used to 

formulate the pgf for the prepolymers 1 in the zeroth generation in stage 

2. Since this pgf is only dependent on number fractions and not on mass 

fractions z = 1. In addition the following cascade substitution is essen

tial in formulating this pgf from (l)N(l,(l)~f) 

(3-17) 

Thus the pgf for the prepolymer in the zeroth generation reads 

(3-15b) 

with (3-17) substituted in (3-15b). After applying the universal consisen

tency relationship, the pgf for the molecules in all next generations 

reads 

(3-16b) 

The mass fraction pgf is derived as 

T with (2)y = (uPl'uC) implicity given by the set of equations 
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(3-19) 

u = 
C 

and mPl +me= 1. After a lot of elaborate calculations the first equation 

of system (3-19) can be simplified considerably to 

(3-20) 

where use has been made of the balance equation 

(3-21) 

and nPl + nc = 1. Subsequently (2)W(z,( 2)!f) is converted into the number 

fraction pgf in a similar way as done in stage 1. As a result we find 

(3-22) 

with (2 )Rn the number average molecular mass of the product of stage 2 

(see 3-23 below) and (2 )Mn,O = nPl (l)Mn + nc Mc. In the derivation of 

(3-22) the balance equation (3-21) is used again. 



Next the condition for gelation is checked. The gel point is reached 

if the Perron-Frobenius eigenvalue of the Jacobian 

reaches the value 1, see refs. 
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[12,13]. If the system is below the gel point the number average molecular 

mass of the prepolymer after stage 2 can be calculated with 

(3-23) 

The mass average molecular mass of the products of stage 2, (2 )Aw and the 

number average free functionalities of type X, (2)~nX' can be calculated 

with expressions similar to (3-13) and (3-14). 

3.3 Stage 3 

The product of stage 2 is mixed with a mixture of two hardeners, 

namely difunctional E and trifunctional F. In a similar way as in stage 1 

the pgf's for these three components in the zeroth generation are given by 

the expressions 

(3)FOP2(~) (2)N(l, (2)~f)' 

(3)FOE(~) (1 2 - a + aezP2) ' e 

(3)FOF(~) (1 - a 3 
+ aezP2) ' e 

with~= (zp2 • zE, zF)T and ae the conversion of E and Fin the third 

stage. Essential are the cascade substitutions applied in (2)~f: 

(3-24) 



306 

2 2 
zfAf = ko + klze + k2ze' 

zfA = k3 + k4ze, (3-25) 

2 2 
zfCf .ro + 11ze + 12ze, 

zfC J3 + J4Ze' 

(2)zfh 1, 

where ze = AEZE + AFZF; AE = 2nE/(2nE + 3nF); AF 1 - AE. The pgf for 

molecules in all next generations is given by 

(3/EC~.> 

(3)FF(!) 

(1 - ae + aezP2)' 

(1 - ae + aezP2)2. 

The mass fraction pgf is derived as 

with (3 ).!! = (up2 , uE' uF)T implicitly given by the set of equations 

(3-26) 

(3-27) 

(3-28) 
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and mp2 + mE + mF: 1. (The right hand side of the first equation of 

(3-28) can be worked out and in some special cases be simplified to a 

linear combination of uA and uc, given by (3-5) and (3-19) in which the 

cascade substitutions (3-25) are performed). 

The number fraction pgf is derived as 

M (3) n,O 

with (3 )Mn,O: np2 (2 )Mn + nEME + nF~ , nPl + nE + nF: 1, 

ue: AEUE + AFUF and (3)Rn the number average molecular mass after 

(3-29) 

stage 3 (see (3-31) below). In the derivation of (3-29) we have used that 

the fraction of reacted c-groups equals to fraction of reacted e-groups, 

or 

(2)N(l,(2)~f((3).!!.))I _ 

(3).!!.-1 

(3-30) 

Next we check the gel-condition. If the Perron Frobenius eigenvalue 

of the Jacobian a (3)f(( 3 )y)/a( 3 ).!!.l( 3 ).!!.:l < 1, the gel point is not yet 

reached. If the system is in the pre-gel state the number average molecu

lar mass of the product 3 can be calculated with 

(3-31) 
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The mass average molecular mass of the product 3 can be calculated in a 

way similar to (3-13). 

If the Perron-Frobenius eigenvalue is greater than one, the gel point 

is passed. In this case the extinction probabilities y = (vp2 ,vE,vF)T 

can be obtained by solving the set of coupled nonlinear equations 

y (3-32) 

The solution y ¢ 1 of this set of equations exists and is unique for 

0 ~Vi~ 1 (i = P2, E, F). The sol fraction Ws is given by 

w 
s 

(3-33) 

As an approximation for the fraction of elastically active network chains 

per monomer, Nea• the following formula can be given [14] 

N ea (3-34) 

with ve = AEVE + AFVF· The conversion of the prepolymer of the second 

stage, ap2 , is obtained from 

4. 

nc[qo( 11+2f2) + qlf4] + nP2 (l)Mn nA[Po(k1+2k2) + P1k1 11 c1)Mn,0_( 3_35 ) 

nc( 2qo+ql) + nP2 (l)Mn nA( 2po+pl)/(l)Mn,O 

KINETIC SCHEME 

In this paragraph the distributions of units in the different reac

tion states are determined by kinetic differential equations [7-11], by 



means of which it is possible to take into account substitution and in

solubility effects in an approximate way. 

Monomer A is assumed to be completely insoluble in D and T and only 

reactive at the surface. Therefore the fraction of unreacted monomers A, 

r 
PA' is divided into a reactive fraction present at the surface, PA, and 

an unreactive fraction p~ so that 

related to the specific surface area of the powder of monomer A. 

Let pA be the fraction of A with two unreacted functionalities, 

PAD the fraction of A with one unreacted functionality and one endgroup 

reacted with D etcetera. In total there are 6 different states for D and 

E, 10 different states for T and F and 15 different states for A and C. 

Some states are shown schematically in figure 1. 

Let kXY be the rate constant for forming an X-Y-bond and KXY be a 

substitution effect factor, multiplying the rate constant kxz for some Z 

if X bears already an X-Y-bond. If the X-group already bears two 

2 
X-Y-bonds, the rate constant will accordingly be multiplied by KXY. It 

follows from symmetry that kxv kyx· The assumptions are made that kXD 

Below some typical examples for the change of the 63 states as a 

function of time are derived. 

In_s_!age_l: 

309 



310 

with NX the number of molecules of monomer X, ksurf is a rate constant and 

To solve the set of 63 coupled differential equations in time or in 

conversion of for instance A and C, boundary conditions are needed for 

time or conversion zero. 
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At the beginning of stage 1, kxc = o for X = D,T, kYE = kYF = o for 

PT= 1. The conversion of A in 

At the beginning of stage 2, kXA = 0 for X = D,T, kYE = kYF = 0 for 

Y = A,C and Pc= 1. The total conversion of A and C in this stage, (2)ac' 

is (2)ac = [NA (pAD +PAT+ 2PADD + 2PADT + 2PATT) + NC (Pen+ PCT+ 

2PCDD + 2PCDT + 2PCTT)] / (2NA + 2Nc). 

At the beginning of stage 3, kXD kXT = 0 for X = A,C and PE 

pF = 1. The total conversion of A and C in this stage, (3 )ac' is 

(3)ac (NA aA + NC ac)/(NA + NC), with ax= Pxo + PxT + PxE + PxF + 2pXDD + 

2PXDT + 2PXDE + 2PXDF + 2PXTT + 2PXTE + 2PXTF + 2PXEE + 2PXEF + 2PXFF 

for X A,C. 

After the solution of the set of differential equations in conversion 

of A and C, the input parameters for the statistical method, described in 

the former paragraph are calculated with: 
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In_s!age_2: 

qo Pc+ [pCE + PcF + PcEE + PcEF + PcFF]' 

ql Pen+ Per + [pCDE + PcoF + PcTE + PcTF]' 

q2 Peno+ Pcor +Perr= 1 - qO - ql, 

In_s!age_3: 

kO 
u 

(pA 
r 

+ PA )/po, 

kl (pAE + PAF)/pO' 

k2 (pAEE + PAEF + PAFF)/pO 

k3 (pAD + PAT)/pl, 

k4 1 - k3, 

.20 Pc1qo, 

.21 (pCE + PcF)/qo, 

.22 (pCEE + PcEF + PcFF)/qo l - .20 - .21, 

.23 (Pen+ Pcr)/q1, 

.24 1 - .23 . 

The terms between square brackets are zero in the first and second 

stage. 

5. PROGRAM, RESULTS AND DISCUSSION 

The computer programs for the statistical part, POLYM, and for the 

kinetic part, KINREL, are written in Fortran for the mainframe IBM 4381. 
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5.1 POLYM 

General input values are the numbers of moles NA, ND' NT' NC' NE' 

NF and the molecular masses MA' MD' MT, MC'~ and MF. Input values for 

the first stage are p1 and p2 , for the second stage q1 and q2 and for the 

third stage k1 , k2 , k4 , 11 , 12 and 14 (all obtained with KINREL). 

If the system is in the pre-gel region, output values in the first and 

second stage are the conversion of c and hand the relevant charac

teristics such as number and mass average molecular masses and number 

average functionalities. In the third stage POLYM calculates amongst 

others the conversion of c and e, the extinction probabilities, the sol 

fraction and the number fraction of elastically active network chains. 

5.2 KINREL 

Input values for this program are the numbers NA' ND' NT' NC' NE and 

NF' the rate constants kxy and ksurf' the substitution effect factors 

r u 
KXY for some monomers X and Y, the ratio PA/PA and the end conversions, 

(i)aC' in every stage (i; 1, 2, 3). 

Using Gear-stiff's method KINREL calculates the fractions of the 63 

reaction states, described in paragraph 4, as a function of the conversion 

of c. Moreover the input values for the statistical part are determined. 

5.3 RESULTS AND DISCUSSION 

Some preliminary results are presented below, additional results are 

given in ref. [15]. 

The following input data were taken: NA 8.98, ND; 9.98, NT 0.00, 

NC 2.00, N ; 
E 0.00, NF ; 0.74 mole, and MA 0.166, MD; 0.068, 

MC 0.166 . MF ; 0.300 kg/mol; k ; 
XY 1 (mol.s) -1 for all possible com-
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binations of X and Y, ksurf = 1; p!/p~ = 1000. Substitution effects were 

only supposed to occur in C, so that Kxv 1 for X ~ C, and all KCY' with 

Y = D, T, E, F, were taken equal and took the values 0.25, 0.50, 1.00, 

2.00 and 4.00, respectively. Full conversion was assumed to occur in the 

first and second stage. 

Since substitution effects play only a role in the last two stages, 

some typical results of KINREL for these stages are presented in figures 2 

and 3. For a positive substitution effect (Key> 1) the ratio of q2/q1 is 

higher at each conversion than for a random reaction (Key= 1). The same 

holds for R2!R 1 and R4/!3 . As a result the gel point is shifted to lower 

conversion, see figures 4 and 5. The effects are more pronounced for 

positive than for negative substitution effects. 

ACKNOWLEDGEMENT 

The authors thank Dr. R. van der Linde, DSM Resins, for indicating the 

problem and for stimulating discussions, prof. M. Gordon for the 

discussions about KINREL, Mr. A.J.M. Sipers for this contribution to POLYM 

and Mr. E. Peters for his programming assistence. 



315 

REFERENCES 

1. Dusek, K., 1982, Rubber Chem. Technol. 55, 1. 

2. van der Linde, R., Scholtens, B.J.R. and Belder, E.G., 1985, 

Proceedings 11, Xlth International Conference in Organic Coatings Science 

and Technology, Athens, p. 167; 1987, to be published in 'Organic Coatings 

Science and Technology', vol. 7, A.V. Patsis e.d., Marcel Dekker, 

New York. 

3. Dusek, K., Scholtens, B.J.R and Tiemersma-Thoone, G.P.J.M., 1987, 

Polym. Bull., 17, in press. 

4. Gordon, M., 1962, Proc. Roy. Soc. ~ondon, A268, 240. 

5. Gordon, M. and Malcolm, G.N., 1966, Proc. Roy. Soc. London, A295, 29. 

6. Dusek, K., 1986, Adv. Polym. Sci., 78, 1. 

7. Gordon, M., and Scantlebury, G.R., 1964, Trans. Faraday Soc. 60, 604. 

8. Gordon, M., and Scantlebury, G.R., 1967, J. Chem. Soc., B, 1. 

9. Mikes, J. and Dusek, K., 1982, Macromolec., 15, 93. 

10. Dusek, K. and Ilavsky, M., 1983, J. Polym. Sci. Polym. Phys. Ed., 21, 

1323. 

11. Riccardi, C.C. and Williams R.J.J., 1986, Polymer, 27, 913. 

12. Seneta, E., 1973, 'Non-Negative Matrices and Markov Chains', Springer 

Verlag, New York. 



316 

13. Harris, T.E., 1963, 'The Theory of Branching Processes', Springer 

Verlag, Berlin. 

14. Dobson, G.R. and Gordon, M., 1965, J. Chem. Phys., 43, 705. 

15. Scholtens, B.J.R., Tiemersma-Thoone, G.P.J.M. and Dusek, K., 1987, 

Rolduc Polymer Meeting-2. 



317 

Table 1. Scheme of the three-stage process of network formation 

stage 

1 

2 

3 

components 

monomers A+ (D + T) 

prepolymers 1 + monomer C ➔ 

products 

prepolymers 1, mainly h

functional, but with 

possibly some unreacted 

functional c-groups. 

prepolymers 2, mainly c

functional, but with 

possibly some unreacted 

functional h-groups. 

prepolymers 2 + monomers (E + F) ➔ product 3, which may form a 

gel before the completion of 

the reaction. 
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Pr PTA Pre PrAA Pr Ac Pree PrAAA PrAAc Pr Ace Prccc 

Fig. 1. Some examples of the 63 fractions of units in the different 

reaction states. 
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Fig. 2. Variation of q0 , q1 an.d q2 with ( 2 )ac for Key = 1 (left) and 

Key= 4 (right), Y = D,T. 
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Fig. 3. Variation of Jo, J1, J2, J3 and J4 with (3 )ac for Kev= 1 (left) 

and Kev= 4 (right), v = E, F. 
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Fig. 4. Variation of the sol fraction, w8 , with ap2 (S)ac for Kev= 

0.25; 0.50; 1.00; 2.00 and 4.00, Y = E, F. 
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aP2 
Fig. 5. Variation of Nea with (S)ac for Key= 0.25; 0.50; 1.00; 2.00 and 

0.6 0.8 

4.00, Y = E, F. 
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Abstract 

A numerical method for hydraulic crack propagation is presented. It is 

designed for a one-dimensional model composed of the continuity equation, 

Darcy's momentum equation and England & Green's elasticity relation. 

Essentials of the method are (1) scaling of the space coordinate with 

the fracture length, so that in the dimensionless coordinate the fracture 

tip has a fixed position; (2) elimination of flow rate and fracture width, 

giving a parabolic equation for the pressure; (3) discretization of the 

spatial operator conserving positive definiteness; (4) implicit time 

integration. 

1. Introduction 

In the oil industry the production of oil and gas wells can be in

creased by well stimulation through hydraulic fracturing of the hydro

carbon bearing formation. As the minimum total rock stress usually is 

horizontal, hydraulic fractures mostly propagate in the vertical plane. 

Assuming that such fractures grow lengthwise only, having constant height, 

the process can be described one-dimensionally. 

In many hydraulic crack propagation studies additional assumptions are 

introduced to derive approximate relationships. (See for instance Geertsma 

& Haafkens 1979, Nordgren 1972 and Daneshy 1973). 

However, to estimate the quality of these approximations and to be able 

to simulate more complex physical and chemical effects, the need for a 

robust numerical one-dimensional treatment was felt. 
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2. Mathematical problem 

In a fracture, propagating from a wellbore in a vertical plane, a hori

zontal cross-section is considered. The coordinate in the propagating 

t-···""""•··· ...... ·········" ................... ········· ··········• .. , ... . 

Figure 1. 

-:1>X 

0 I. 

direction is named x; the x-domain of interest is O ~ x ~ L(t), where the 

fracture length Lis changing with time. For all x and ta constant height 

is assumed. 

The physical quantities in the model are the net pressure 6p (= the 

pressure in the fracture in excess of the total minimum horizontal 

principal in situ stress), the flow rate in x-direction q [m 2/s] and the 

fracture width w; of these functions only the variations in x and tare 

taken into account, consistent with the assumption of constant height. 

Between 6p, q and w the following relations are adopted: 

Continuity equation: aw + aq O; ( 1 ) at ax + vi 

Monentum equation: a6p + 12 µ _g_ 0; (2) 
ax w3 

L 
!; d~ I!; 6J2 ( n) Elasticity: w(x) I ctn. ( 3) 

cro X ✓!;2 _ x2 0 ✓1;2 - n2 
Here vi is the leak off term, with dimension [mis], representing the loss 

of fluid volume per second per area through the fracture walls, its ex

plicit form being modelled later; µ is the effective viscosity of the 

fluid. The elasticity relation is adopted from England & Green 1963; of 

course 6p and ware time-dependent though it is not expressed in the 

arguments; cr0 ~ G/4(1-v) is the isotropic elastic stiffness of the rock 

formation, where G is the shear modulus and vis Poisson's ratio. 
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The boundary conditions are in terms of the flow rate q: at x L(t) we 

have 

q(L(t),t) = O for all t, (4) 

and at x = 0 we assume a prescribed flow rate: 

( 5) 

The initial conditions for L, 6p and w may be an arbitrary situation; a 

steady inflow solution taken from a simplified model may be convenient. 

The condition for the crack propagation is chosen in the form 

2 
TT 

JL 6p(x) 
o IL 2 - x2 dx = st 

where St is called the tensile strength; see for instance Geertsma & de 

Klerk 1969. 

3. N1nerical treatment 

Let y denote the dimensionless x-coordinate: 

(6) 

(7) 

Leth= h(y) be a function on O < y s 1, with h(y) s y, and define A(y,t) 

to be the area of the fracture cross section between (y-h)L and yL: 

A(y,t) - JyL w(x,t) dx. 
yL-hL 

Differentiating with respect tot we find: 

<lA at (y,t) 
yL 

L'(t) [y w(yL,t)]Y_h + f ~; (x,t) dx. 
y yL-hL 

Upon substitution of the continuity equation (1) we get: 

:~ ( y 't ) = L' ( t ) [ y w ( yL' t ) l ~-h - q(yL,t) + q(yL-hL,t) 
yL 

-f vidx. 
yL-hL 

(8) 

(9) 
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Now define a transformation y = y(s), y monotonicly increasing from 

y(O) =Oto y(l) = 1, and choose a discretization together with the 

function h such that sj = j t:,s, (j=0,1, ••• ,n), t:,s = 1/n, Yj = y(sj) and 

Yj - h(yj) = Yj-l• Further, denote A(yj,t) by Aj (=Aj(t)), w(yjL,t) by wj, 

etcetera. Then for (9) we can write: 

( 1 0) 

for j=1, 2, ••• ,n. 

w-

Figure 2. 

In the equation for j=n we can substitute boundary condition (4): qn = 

O, and the inflow condition (5) is incorporated in the equation for j=1. 

All the other qj's are eliminated with the momentum equation (2): 

3 
wj a1:,p 

-12µ (~)y_ 
J 

in which a1:,p a1:,p ds dy = a1:,p / L dy 
~ = as dy dx as ds 

Figure 3. 

':r=- o 

( 11 ) 

is discretised as 

( 12) 

where t:,pj is associated with the j-th interval rather than with a point. 
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The time derivative is simply discretised as 

( 13) 

where the superscript "~" denotes the last time level where all the quan-

tities are known, and the symbols without superscripts refer to the new 

time level to be calculated. The pressure Ap in (12) will be taken at the 

new time level, while win (11) and (10) are taken at the old level. 

Leaving the loss term undecided we have from (10): 

( 14) 

In this relation we want to express Aj in terms of Ap. To that end we 

integrate the elasticity relation (3), assuming Ap to be piecewise con

stant, according to the areas Aj. In the appendix it is shown that Aj can 

be expressed as 

( 15) 

with Kjm elements of a symmetric matrix. Altogether we now have: 

( 16) 

with c1K: matrix defined by (15); see also (a3) and (a2) in the appendix; 

c2: constant in (14): c2 = At/(12µUs); 

T: tridiagonal matrix in (14): elements of Tare of the form q1(~)j; 

Ap = (Ap 1,Ap 2, ... ,Apn)T; 
- - - - T A = ( A1 , A2, ..• , An) ; 

r 1: convective term: r 1j = AL [yjwj - yj_lwj_ 1]; 

y L 
Atfj vR.dx. 

yj_1L 
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Finally the crack propagation condition (6) is discretised as 

2 n 
- l llpJ. (arcsin y. - arcsin YJ--l) 
1f j=1 J 

The time stepping procedure is: 

(a) choose a time step lit, 

(b) guess the corresponding fracture length increase LIL, 

(c) construct the equations (16) and solve for lip, 

(d) check condition (17) and return to (b), i.e. iterate on LIL, 

(e) upon convergence, calculate the new width w from (15) and (8), 

(f) if required, find q from (11). 

Remarks 

( 17) 

1. Instead of using Land win (14) at the old time level one may wish to 

have them at the new one; in this case these quantities should be updated 

within the iteration (b) - (d). 

2. If the loss term Vi in (1) is modelled linearly in lip: vi= allp + ~. 

with a and~ functions of x and t (and of the history of the fracture) 

and a > O, then the corresponding term in ( 16) will be 

with 
y.L 

lit f J a dx 
yj_1L 

and 

The llpj-term can be moved over to the left-hand side in (16) where, by 

virtue of aj > 0, it reinforces the main diagonal of the matrix and the 

positive definiteness. 

3. By a simple adaptation of the first row in (16) the program can also 

handle a given pressure as inlet condition. 

4. Results 

A few results will be discussed with the help of figures 4 to 6. 

A first check on accuracy is possible by comparison with an analytical 

solution. In the steady state with qin = 0 and vi = 0 the situation is 
,r lip ✓ 2 2 known to be: p = constant and w(x) = 2 - L - x . Indeed for qin = 0 the 

00 
program simulates a transition to steady state with p = constant (=St) and 
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with no further length increase. The accuracy in w is depicted in figure 4 

where w2 versus x 2 ought to show a straight line. 

Figure 5 shows a typical pressure distribution in the fracture in the 

propagating condition. In view of condition (6), St is chosen as a refer

ence level. The pressure gradient is negative everywhere in order to 

supply the fluid flow. The behaviour in the tip zone may indicate an 

integrable singularity, e.g. logarithmic, which is mild enough to handle 

numerically. 

Figure 6 shows four stages in a violent fracture opening process: a 

small fracture (L 1m, wmax = .07mm) in steady state is suddenly forced 

to take in 30 times its original volume within one second. 

Figure 6a starts with a high pressure to widen the opening sharply; the 

rest of the fracture still has its original shape. The high pressure is 

balanced by a negative region; the computer output showed that along the 

positive pressure slope the flow rate is indeed negative and that the 

local width shrinks at first. 

In figure 6b the process of widening is moving further into the 

fracture; th; elliptical shape is created; the pressure dip deepens; and 

the last part of the fracture is still intact. 

In figure 6c the final fracture shape has nearly been achieved. Over 

most of the fracture length the pressure distribution is settling like 

figure 5, although it still ends with a very deep peak. For physical 

interpretation this may cause some trouble, for the stability of the 

program it clearly is no problem. 

Finally consider figure 6d. Until now the fracture length has shown no 

remarkable increase: all the inflow has been used to widen the fracture 

and to build up a combination of pressure and width that is capable of 

absorbing digest the given inflow rate. Indeed, from now on the simulation 

shows length increase; the phase of regular growing has begun. 
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Appendix 

Discretization of the elasticity relation 

We start by reducing the double integral in (3) to a single integral. 

Then substitution of this integral into (8) will lead to the expression 

( 15). 

Expression (3), written as 

w(x) IL t 
f 

t=x n=O 

is an integral over a trapezoidal 

domain in the tn-plane. Changing 

the order of integration we find 

w(x) 1 
= -

Figure 7. 

0 )( L -----+ ~ 

••• dtdn }. 

2 2 2 2 2 Substituting t = x cosh t - n sinh t into the first inner integral and 
2 2 2 2 2 t = n cosh t - x sinh tin the second, we find 



w(x) 

where 

X -1 L2- x2 L -1 L2- n2 
{ J p(n)sinh ✓ 22 ctn+ J p(n)sinh ✓ 22 ctn 

0 o n=0 x - n n=x n -x 

= l_ { k(n,x) p(n) ctn 
0 o n=0 

2 2 2 2 
k ( n ,x ) / L - n + / L - X 

log 2 2 
✓ In - x I 
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(a 1 ) 

(a2) 

Now the mapping p ~ w is a symmetric positive definite operator, which 

property is conserved in our discretised formulation thanks to the intro

duction of the areas A. Indeed, with p piecewise constant: 

p(x) m=1, 2, ••• ,n. 

By (a1) we have: 
n JF,;m w(x) o L Pm k(n,x) ctn, 

0 · m=l n=F,;m-1 
and thus 

JF,;j = L 2 n 
A. - w(x) dx L K. pm J 

x=F,; j-1 00 m=l Jm 

with (a3) 

Clearly K is a symmetric matrix. The positive definiteness requires a 

sufficiently fine quadrature and has been checked in the program. Finally, 

in dimensionless coordinates y = x/L and z = n/L: 

(j (m 
y=j j-1 x=ym-1 

So the matrix K is independent of Land can be calculated and stored once 

for all time steps. The integrals Kjm are approximated by Gaussian quad

rature with weight functions corresponding to the logarithmic behaviour. 
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Two-Phase Flow 

ABSTRACT 
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P.O. Box 356, 2600 AJ Delft, The Netherlands 

Hamilton's variational principle for two-phase flow of a bubbly liquid/ 

gas mixture including virtual mass (J.A. Geurst, Physica 129A (1985) 233 

and 135A (1986) 455) is extended to include the effect of flow induced bub

ble deformation. The Weber number is introduced as an additional variable. 

The conservation of bubble number density is used as a constraint. The vari

ational principle is brought in canonical form. The corresponding Lagran

gian density is identified as the pressure (generalised Clebsch-Bateman 

principle). A stability analysis of the two-phase flow equations yields 

necessary and sufficient conditions for marginal stability. They take the 

form of PDE's, which admit an exact solution. An explicit expression is 

given for the virtual-mass coefficient. 

1. INTRODUCTION 

In classical hydrodynamics the Euler equations of motion of a perfect 

fluid may be derived from a generalised form of Hamilton's variational prin

ciple of least action (see e.g. [1]). The derivation is not presented in 

known textbooks, although it may be helpful in clarifying several aspects 

of the Euler equations. Instead the Euler equations are usually obtained 

from the laws of conservation of mass, momentum and energy. 

In two-fluid hydrodynamics, which comprises the two-phase flow of a 

bubbly liquid/gas mixture in addition to the superfluid hydrodynamics of 
4 · · 1 h [2] He, var1at1ona met ods seem to be indispensable. In a recent paper it 

is demonstrated, how a generalised form of Hamilton's principle may be used 
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to derive the correct form of the two-phase flow equations of a bubbly liq

uid/gas mixture in cases, where the virtual mass of the gas bubbles should 

be taken into account. The theory, however, does not allow deformations of 

the bubbles induced by their motion relative to the surrounding liquid. It 

is the aim of the present paper to extend the theory for a bubbly liquid/ 

gas mixture by including those deformation effects in the two-phase flow 

equations. 

Since flow induced bubble deformation is related to a non-vanishing 

Weber number, the dimensionless Weber number is introduced in.the Lagran

gian density as an additional variable in order to model the bubble defor

mation effects. In ref. [2] it was shown that, as a consequence of the 

theory, breakdown of bubbly flow should occur at the critical value 1/3 of 

the volume concentration of the gas bubbles. It is here investigated, how 

flow induced bubble deformation represented by a non-vanishing weber number 

affects that critical value. 

The analysis is confined to the non-dissipative behaviour of a bubbly 

liquid/gas mixture. Dissipative effects like viscosity may be included in a 

straightforward way (see [2]). An extensive review of two-phase flow theo

ries including some variational methods is presented in [3]. 

2. VARIATIONAL PRINCIPLE AND TWO-PHASE FLOW EQUATIONS 

A bubbly liquid/gas mixture may be characterised by the reduced den

sities p1 and p2 of the continuous liquid phase and the dispersed gas phase, 

respectively. The reduced densities are defined by 

(2 .1) 

where p£ denotes the constant mass density of the incompressible liquid, pg 

is the mass density of the gas, while a represents the volume density of 

the gas phase usually called void fraction. The total mass density is given 

by 

p (2 .2) 

The gas satisfies the ideal-gas law 

(2 .3) 
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where p represents the gas pressure, R the gas constant, T the absolute 
g 

temperature, M the molecular mass of the gas. The flow is assumed to occur 

at isothermal conditions. In that case the thermodynamic properties of the 

liquid/gas mixture are obtained from the free energy density F(p 1 ,p2). The 

thermodynamic potentials µ 1 and µ 2 are defined by 

dF 

They satisfy 

Furthermore 

and 

F + p • 
g 

(2. 4) 

(2. 5) 

(2 .6) 

(2. 7) 

We refer to [2] for more details concerning the thermodynamic properties of 

a liquid/gas mixture. 

The derivation of the two-phase flow equations starts from an extended 

form of Hamilton's principle of least action. The analysis will be confined 

to one-dimensional motion for the sake of convenience. The variation prin

ciple reads 

o. (2. 8) 

The Lagrangian density Lis given by 

L K - F, (2. 9) 

where K denotes the kinetic energy density of the liquid/gas mixture. The 

kinetic energy consists of the kinetic energy of the liquid phase, the 

kinetic energy of the gas phase and the kinetic energy associated with the 

motion of the gas bubbles relative to the liquid phase. 
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We write accordingly 

K (2 .10) 

The local velocities of the liquid and the gas phase are denoted by u 1 and 

u2 , respectively. The virtual-mass effects associated with the relative 

motion are represented by the coefficient m(a,We). That coefficient is al

lowed to depend not only on the void fraction a but also on the Weber num

ber we defined by 

we 

2 
p£ (u2 - ul) 

(y/2a) 
(2 .11) 

in order to model the flow induced bubble deformation of the gas bubbles in 

addition to their mutual interaction. The surface tension coefficient is 

denoted by 'Y, while 2a is the local average of the bubble diameter. It is 

one of the purposes of the investigation to obtain more information about 

the possible form of the function m(a,we). In view of the fact that the free 

energy density Fas defined here does not include the energy associated with 

surface tension, it should be remarked that the last term at the right hand 

side of (2;10) may represent all surface tension effects. 

The variation in (2.8) is restricted by the constraints 

clpl a 
(p 1 ul) 0, 7it+ dX (2 .12) 

clp2 a 
7it + dX <P2 u2) 0 (2 .13) 

and 

an a -+-clt dX (nu2) o. (2 .14) 

The constraints express, respectively, the conservation of mass of the liq

uid, the conservation of mass of the gas and the conservation of the number 

of bubbles. The number density of the gas bubbles is represented by n. Note 

that 

a nT, (2 .15) 

where Tis the local average of the bubble volume. 
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The local average 2a of the bubble diameter and the local average T of the 

bubble volume are related by 

T 
4TT 3 
Ta (2 .16) 

When the constraints (2.12) to (2.14) are introduced in the variation

al principle (2.8) by means of Lagrange multipliers, the Lagrangian density 

is modified into 

L (2 .17) 

Integrating by parts we obtain the equivalent Lagrangian density L* given 

by 

(2 .18) 

The variation applies to the independent variables p1 , p2 , n, u1 , u2 

and the Lagrange multipliers ¢ 1 , ¢ 2 , A. The corresponding Euler--Lagrange 

equations read 

1 2 
- µ! - ( 1- + }x) ¢1 2 ul clt ul 0, 

1 2 (1- + clclx) ¢2 = 0, 2 u2 - µ2 - clt u2 

1 We m (u - 2 
(aat + 1-) :\ o, - 6 P,e, n we 2 ul l u2 clx 

pl ul - P,e,m* (u2 - ul) - pl 
cl¢ 1 

0, 8x 

p2u2 + P_e,m*(u2 - u 1) 
cl¢2 cl:\ 

0, - P2 8x - n clx = 

completed by the conservation equations (2.12) to (2.14). 

The virtual-mass coefficient m*(a,We) is given by 

m* 

(2 .19) 

(2. 20) 

(2. 21) 

(2. 22) 

(2. 23) 

(2. 24) 

where mwe denotes (cl/clWe)m, and the modified thermodynamic potential µi is 

defined according to 
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(2.25) 

where ma denotes ca;aa)m. The name of virtual-mass coefficient will be jus

tified by the expression (3.12) for the kinetic energy density K*. The term 

is furthermore suggested by the form of the equations of motion (2.29) and 

(2.30). 

The total mass velocity is determined by 

pu = 

Combining 

2 
I 

i=1 

and 

2 

I 
i=1 

(2.26) 

(2 .19) to (2 .23) we obtain 

acpi a).. 2 2 2 
piui """ax + nu2 ax= I piui + P.e,m*(u2 - ul) 

i=1 
(2.27) 

acp. a).. 
P --1 + + K + F + i at n at pg 

+ ½ P.e,[m + (1 - a)ma + (ia + 2)we¾e] (u2 - u 1) 2 = O. 

(2.28) 

Equation (2.28) constitutes a generalisation of the Bernoullian theorem, 

known from the classical hydrodynamics of one-phase fluids. 

Differentiating (2.19) and (2.20) with respect to x and using (2.21) 

to (2.23) together with the conservation equations (2.12) to (2.14) we 

derive the equations of motion of the liquid and the gas phase: 

(2 .29) 

0. (2.30) 

The modified thermodynamic potentialµ; is defined by 
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1 Pr 2 
µ*2 = µ + - - Wern (u - u 1 ) • 

2 6 p2 we 2 
(2. 31) 

The two-phase flow of a bubbly liquid/gas mixture, which i.s characterised 

by giving p1 , p2 , n, u 1 and u2 as functions of position and time, is deter

mined by the evolution equations (2.12) to (2.14), (2.29) and (2.30). 

3. THE CLEBSCH-BATEMAN PRINCIPLE 

The conservation equations of energy and momentum may be derived by 

means of Noether's invariance theorem (see [2] and the references contained 

therein). The conservation of energy is expressed by 

clH clQ 
clt + clx = O, (3 .1) 

where the Hamiltonian density His given by 

2 cl</Ji cl:\ 
H I pi 3t - n clt - L* 

i=l 

PrWell\ve(u2 
2 

K + F + ul) , (3. 2) 

while the energy flux Q is determined by 

2 cl</li di\ 
Q - I piui 3t- nu2 clt i=l 

plul [1 2 2 ul 
Pr 

µ* l - - m* (u - ul) ul + p1 2 1J 

[1 2 
Pr 

- u 1Ju2 + 11;]. + p2u2 2 u2 + - m*(u p2 2 
(3. 3) 

The conservation of momentum is expressed by 

clP arr 
clt + clx = O, (3 .4) 

where the total momentum density p is determined according to 

2 clqii cl:\ 2 
p I pi ax+ n clx = I piui pu, 

i=l i=l 
(3 .5) 
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while the momentum flux JI is given by 

2 acpi clA 
JI I piui --+ nu2 -+ L* 

i=1 
dX dX 

2 
2 2 I pi ui + P.e,m* (u2 - u1) + p. 

i=l 
(3 .6) 

The pressure p is defined by 

p L*. (3. 7) 

For the definition of pressure we refer to [2]. It follows from (2.18), 

(2.27) and (2.28) that the pressure is determined by 

(3.8) 

It is obvious from (3.2) that the Hamiltonian density H does not equal 

the sum of the kinetic and free energy densities Kand F. Let us therefore 

introduce a new kinetic energy density K* and a new free energy density F* 

according to 

H K* + F*, L (3 .9) 

It follows that 

(3 .10) 

and 

(3.11) 

Combining (2.10) and (3.10) we have 

(3 .12) 

It should be remarked, that the last term at the right hand side of (3.2), 

being invariant with respect to a Galilean transformation, may be attributed 

to the kinetic as well as to the free energy density. 

It follows from (3.8), (3.10) and (3.11) that the Bernoullian theorem 
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(2.28) may be written in the form 

o. (3 .13) 

According to (3.7) the modified Lagrangian density L* equals the pressure. 

Our variational principle therefore constitutes a generalisation of the 

Clebsch-Bateman principle valid for classical fluids (see [1]). 

4. LINEAR MODES AND STABILITY 

One of the interesting properties of a physical system is the behaviour 

of its linear modes. In order to investigate the linear modes the field 

quantities p 1 , p2 , n, u 1 , u 2 are taken in the form 

u(x,t) - i (Wt-kx) 
u0 + ue (4. 1 l 

where u 0 denotes the steady-state value and u represents the amplitude of a 

small perturbation. Neglecting products of perturbations in the evolution 

equations (2.12) to (2.14), (2.29) and (2.30) and eliminating the velocity 

perturbations u 1 and u2 we arrive at the following system of linearised 

equations: 

a11p1 + a12P2 o, 

a21P1 + a22p2 o, (4. 2) 

YP2 - yn 0, 

where 

{1 
1 5 2 2 } 2 

all + ---m + ~Wemwe + ---we y 1 - (J, 1 - a ¾ewe 

+ 2wo {1 + 
2 2 + 16a 

---m + m + 3a (1 - a) we¾e + wemawe + 1 - (J, (J, 

1 + Sa 
We2¾ewe} + 3a (1 - a) 

y 

3 -1 + 14a + soa2 
--- m + 2m + 
1 - a a 9a2 (1 - a) 
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1 - a 1 + Sa 1 + 10a + 2Sa2 2 } 
+ --2- maa + ~ wemawe + 18a2 (1 - a) we ¾ewe + 

- RT$~ (4.3) 
M a ' 

a {--1- m + --5- wem__ + - 2- we 2m__ } y 2 
12 1 - a 1 - a we 1 - a wewe 

{ 1 2 + lla 
- WO --m + m + 3a (1 - a) We¾e + Wemawe + 1 - a a 

1 + 4a 
We2¾ewe} Y + 3a (1 - a) 

(4.4) 

1 - a 
a21 = ~ a12' (4 .5) 

(4.6) 

and 

n (4. 7) 

The Doppler-shifted phase velocity y and the unperturbed relative velocity 

w0 are given by 

(4.8) 

(4.9) 

Note that the zero suffix denoting unperturbed steady-state values has been 

deleted in the expressions (4.3) to (4.6) for the sake of convenience. The 

quantity Sis defined by 
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(4.10) 

The velocity perturbations are determined by 

(4 .11) 

and 

(4.12) 

The system (4.2) of linear equations admits a non-trivial solution if 

and only if the determinant of the coefficient matrix vanishes, i.e., 

o. (4 .13) 

The equation (4.13), which is obviously a fifth degree algebraic equation 

in y, determines the phase velocities of the linear modes (dispersion equa

tion). Considerations of stability require that the phase velocities possess 

real values. We therefore consider the discriminant D of the equation (4.13). 

It is known that Dis negative when m(a,We) vanishes identically. It im

plies that the two-phase flow equations admit unstable steady-state solu

tions, when the virtual mass of the bubbles is neglected. A mathematical 

formulation is that the two-phase flow equations possess complex character

istics, when m(a,we) = 0. It is shown in [2] that D vanishes, when m(a,0) 

= (1/2)a(1 - a) (1 - 3a). The vanishing of D entails marginal stability 

which corresponds to two coinciding (real) phase velocities. We investigate 

now, what form of m(a,we) might correspond to marginal stability (D = 0) in 

cases, where the Weber number does not vanish. 

After some rather lengthy calculations it is found that the discrimi

nant D vanishes independently of the value of S if and only if the follow

ing two partial differential equations for f(a,we) are simultaneously satis

fied: 

(4 .14) 

(1 - a)Wef + 2we2f + swef + (1 - a)f + f + 1 0. 
awe wewe we a 

(4 .15) 

The function f(a,we) is related to m(a,we) according to 
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m(a,we) a (1 - Ct) f (et,We) . 

By introducing characteristic coordinates (n,¢) by means of 

2 n we (1 - a) , 

¢ 1 - a, 

(4.16) 

(4.17) 

the equations (4.14) and (4.15) are transformed into the following two par

tial differential equations: 

(4.18) 

(4.19) 

where f(n,¢) denotes the function f expressed in terms of characteristic 

coordinates. The equation (4.18) may be solved exactly according to 

¢c(nl + _!_ D(¢l - 1, 
n 

(4.20) 

where c(n) and D(¢) are unknown functions of the characteristic coordinates 

n and¢, respectively. Substitution of (4.20) in (4.19) yields an ordinary 

differential equation for D(¢), viz., 

_!_ ~(1 - ~)D" - D' + l D 
2 ~ ~ ¢ 0. (4 .21) 

The general solution of (4.21) reads 

D(¢) (4. 22) 

where A and Bare unknown constants. 

It follows from (4.20) and (4.22) that the two partial differential equa

tions (4.18) and (4.19) possess the common solution 

(4. 23) 

Combining (4.16), (4.17) and (4.23) we conclude that steady two-phase flow 

is marginally stable when the function m(a,We), which is related to the 
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virtual-mass coefficient m*(a,We) by means of (2.24), satisfies 

m(a,we) = a(l - a) {o - a)C(We(l - ah+ we(/- a) (A+~)- 1}. 
(4.24) 

5. DETERMINATION OF A, BAND c(n) 

The form that might be taken by the unknown function c(n), will be in

vestigated by considering the limiting behaviour of the virtual-mass coef

ficient m*(a,We) at small values of the void fraction a. That behaviour may 

be represented by 

* - 2 m (a,we) = am(We) + o(a ). 

It follows from (2.24) and (4.16) that 

m*(a,we) 

Introducing the independent variables (n,¢) and using (4.23) we have 

where 

E (n) 

f + nt n 
¢E (n) - 1, 

(5 .1) 

(5. 2) 

(5. 3) 

(5. 4) 

By taking the limit a ➔ 0 it is immediately inferred from the expressions 

(5.1), (5.2), (5.3) and the continuity of E(n) that 

E (We) 1 + m(We). (5 .5) 

Note that, according to (5.1), the function m(We) represents the virtual

mass coefficient taken per unit volume of the gas in a low density disper

sion of gas bubbles in liquid. Some information concerning the function 

m(We) might therefore be obtained by considering the inertial properties of 

the separate gas bubbles moving through the liquid. 

It is shown in [4] that a gas bubble moving with velocity U relative 
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to the surrounding liquid takes at small values of the Weber number We a 

near-spherical shape expressed in spherical polar coordinates by 

[ 3 ~ 2 ] r = a 1 + 64 We ( 1 - 3cos 6) . (5 .6) 

The polar axis is assumed to coincide with the direction of relative motion, 

while the Weber number We is defined according to 

we (5. 7) 

The near-spherical shape may be approximated by an oblate ellipsoid with 

eccentricity E given by 

2 
E 

9 ~ 2 
32 We + o (We ) . (5.8) 

According to [5] the virtual-mass coefficient m of an oblate ellipsoid is 

determined by 

m Yo ~· . 0 
(5.9) 

where 

= ~ (1 V1 2' s). - E 
arcsin Yo E 

E 

(5. 10) 

It follows from (5.8), (5.9) and (5.10) that 

ID (5 .11) 

In a low density dispersion of gas bubbles in liquid the kinetic ener

gies associated with the motions of the separate gas bubbles may be added, 

because interaction effects between the bubbles are negligible. When it is 

assumed that the velocities of the gas bubbles relative to the liquid are 

nearly equal, the virtual masses of the separate gas bubbles may be added 

also. We therefore infer from (2.11), (5.7) and (5.11) that 

- 1 [ 27 2 ] m (We) = 2 1 + 160 we + o (we ) . (5 .12) 

It has been assumed that the diameters of the gas bubbles are nearly equal. 
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It follows from (5.4), (5.5) and (5.12) that 

C (fl) co 1 ( 27 ) 2 n + 2 3 + 320 fl + 0 (fl ' ' (5 .13) 

where c0 is an unknown constant. According to (4.23) the constant c0 may be 

taken equal to zero without affecting the generality of the expression for 

f (fl ,cp). 

The terms in the expression (4.24) for m(a,We) which contain the con

stants A and B, contribute to the free energy density F*, but not to the 

kinetic energy density K*. Those terms may be used to model the surface ten

sion energy FY, which was not included in the free energy density F. 

In the limit We ➔ O, the gas bubbles have a spherical shape. The sur

face tension energy FY is accordingly given by 

F y 
2 

ny47fa (5. 14) 

According to (3.11), (4.24) and (5.13) the difference of the free energy 

densities F* and Fis determined by 

3ya { A B 3 4 2 3 } = a - 12 - 12a + 2560 (l - a) we + O(We ) . (5. 15) 

Taking the limit We ➔ 0 and comparing with (5.14) we derive that 

A -12, B 0. (5 .16) 

The final expressions for m(a,we) and the virtual-mass coefficient 

m*(a,We) read 

m(a,We) 
12a 2 
We+ O(We ) , (5.17) 

m*(a,we) (5 .18) 

The last term in the expression for m(a,we) gives rise to the well-known 

pressure difference -2y/a associated with the surface tension. 

For physical reasons the virtual-mass coefficient m*(a,We) should be 

non-neg~tive. According to (5.18) the virtual-mass coefficient changes sign 
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when a 

6 
C 

C( 
C 

(1/3) + 6 , where 
C 

(5 .19) 

The breakdown of bubbly flow (see [2]) is therefore shifted to larger values 

of a, in the case where the gas bubbles are deformed by the flow as a re

sult of a finite value of the surface tension coefficient y. In view of 

(5.19) the shift is relatively small. In any case it may be concluded that 

bubble deformation effects tend to stabilise two-phase bubbly flow in a 

first-order approximation. 
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ABSTRACT 

The spectral mo.del consists of a system of coupled nonlinear ordinary 

differential equations. Low order barotropic models with 3 and 6 components 

have several stable solutions representing stream patterns with either a 

weak or a strong zonal component. With bifurcation theory these solutions 

are analyzed. 

It is also shown that a 10 component model contains a strange attractor 

exhibiting alternately a weak and a strong zonal. circulation pattern. 

A comparable behaviour. is found in 3 and 6 component models perturbed by 

noise. 

* These inyestigations were supported by the Netherlands Foundation 

for the Technical Sciences (STW), future Science branch of the 

Netherlands Organization for the Advancement of Pure Research (ZWO). 
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1 • INTRODUCTION 

In this contribution low order spectral solutions of the barotropic 

potential vorticity equation are studied. A spectral model consists of a 

system of coupled nonlinear ordinary differential equations for the time 

dependent coefficients of the spectral expansion. Truncation of this 

expansion yields a finite dimensional approximation of the atmospheric flow 

described by the vorticity equation. 

First we consider a 3-dimensional model having two stable equilibria 

and one unstable equilibrium at the separatrice. These equilibria can be 

seen as preferent states of the atmosphere. The irregular alternation of 

these preferent states, as observed in ·circulation patterns, is not 

reflected by the simple 3-dimensional model. One way to compensate the 

effects of the severe truncation in the spectral model is to add stochastic 

forcing to the system. In section 3.an analysis of thi~ stochastic problem 

is presented. Special attention, is-give~ to. the expected time of residence 

near a preferent state. Moreover,. a dis_crete state Mar\cov proc,!!ss is formu

lated; it describes the stochastic alternation of preferent states. In 

section 4 higher dimensional spectral models are discussed. A bifurcation 

analysis shows that the equilibria of the 3-dimensional deterministic sys

tem are unstable in the higher dimensional model and that for changing 

parameter values periodic sol_utions may branch off. Important is the 

occurrence of chaotic solutions (strange attractors) that visit, in an 

irregular way,, different regular limit solutions, which are situated in 

different parts of state space (regimes). 

2. DERIVATION OF THE SPECTRAL MODEL 

For a large scale barotropic flow over a slowly varying topography in 

a midlatitude beta plane we assume the following: let H be the characteris

tic height, k-l the horizontal length sale en cr- 1 the time scale. The 

topography has a characteristic amplitude hO• The meridional scale of the 

flow is assumed to be much smaller than the radius of the earth r O• The 

potential vorticity equation for this circulation model reads in nondimen

sional form 
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where f(x,y) is the stream function h the position of the earth's surface 

and f* a forcing stream function. Furthermore, 

J(a,b) cla clb cla clb foho s Bo 
and C 

fOoE 
= clx cly - cly clx' y = <JR ' = ak = 2aH , 

where 

with ¢0 the central latitude and n the angular speed of rotation of the 

earth. Finally, OE is the depth of the Ekman layer near the surface. We 

investigate the existence of travelling wave solutions in a rectangular 

channel with length Land widthB = !bL. The nondimensional length and width 

are 2n and nb. The boundary conditions are 

f(x,y,t) = f(x+2n,y,t), 

elf cl 2n elf 
- =Oand - f. -dx=O clx clt O cly at y = 0 and y = nb • 

Let¢., i = 1,2, ••• be an orthonormal set of eigenfunctions of the 
l. 

Laplace ope.ratpr fo:i; t)le domain of th~ channel: 

¢1 12 cos(y/b), ¢2 2 cos x sin(y/b), 

¢3 2 sin x sin(y/b), ¢4 /2(cos(2y/b) 

* Moreover, the functions f and h are assumed to be of 

Substitution of the expansion 

co 

f(x,y,t) = b I x (t) ¢n(x,y) 
n=1 n 

, ... 

the form 

( 1) 

yields an infinite system of differential equations for xn(t), n 1,2, •••• 
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3. THE 3-DIMENSIONAL MODEL WITH STOCHASTIC FORCING 

Taking x: = 0 and xn(t) = 0 for n = 4,5, ••• , we obtain by substitution 

of (1) in the vor,ticity equation a system of differential equations for the 

remaining coefficients 

with 

or 

dx 1 
dt = bx3 - C(x1-xt), 

dx2 
dt = -ab(x1-½B)x3 - cx2 , 

dx3 
dt ab(x 1-½B)x2 - ½ax1 - cx3 

2b a=--
1+b2 ' 

dx. 
1 dt = fi (x), 

31T _:_ B = - B = 2.55, 
412 

i = 1,2,3. 

C = 3n C = .2 
412 

(2a) 

(2b) 

(2c) 

(3) 

The stationary points x satisfy the equation f(x) = 0. Depending on the 

parameter values either one or three real valued roots are found. In fig. 

the first component of the equilibrium xis given as a function of xt, 

Fig. 2 gives the three circulation patterns that correspond with the three 

equilibria for x~ = !0· The two stable equilibria with attraction domains 

~- are denoted by x(i), i = 1,3 (x~l) > x~ 1)) and the unstable one 

a~ the separatrice r by x(2). 

15 

10 

s 

0~--....1----L----'-------' 
0 s 10 20 

Fig. 1 Equilibrium solution x 1 as a function of x~ for b 
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Next we consider the system (3) with each term forced by white noise 

of intensity£: 

= 1,2,3, (4) 

where Wi(t), i = 1,2,3 are independent Wiener processes. This stochastic 

input compensates the absence of higher order spectral terms. The stochastic 

dynamical system (4) can be approximated by a diffusion process. Let p(x,t) 

be the probability density distribution that the system is in state x at 

time t. Then p(x,t) satisfies the so-called Fokker-Planck equation 

or 3p =Mp 
3t £. 

(5) 

Let at time t = 0 the system be in x. Then T(x) is defined as the first 

passage time of arriving at the separatrice r = ani of the deterministic 

system. Its expected value T(x) satisfies Dynkin's equation 

(a) the equilibrium x1 

(b) the equilibrium x2 
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(c) the equilibrium x3 

Fig. 2 Dimensional stream function patterns for the equilibrium states 

of the 3-dimensional spectral model. Dashed lines represent 

contours of the orography. 

-1 

0 

in S'li' 

at r, 

where LE is the formal adjoint of ME: 

(6a) 

(6b) 

The elliptic singular perturbation problem (6), has an asymptotic solution 

of the form 

with 

K./l 
T(x) ~ Ci e i in S'li outside a neighborhood of r, 

T(x) ~ C. 
i 

2 K/E /? s(x) -h2 
e ✓.::. f e dt in S'l. 

TI Q i 

2 r (x)clf ! 
s(x) = - { f - rdr} 

E O av 

near r 

(7a) 

(7b) 

where vis the normal at rand r(x) the distance tor. The constants c. and 
i 

Ki are determined as follows. Let p(x) satisfy the stationary Fokker-Planck 

equation in S'li and be of the form 
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2 
p(x) = w(x)e-Q(x)/£ 

and Q(x) > 0 

357 

(8) 

for 
-(i) 

X >' X , 

The functions Q(x) and w(x) are determined by the ray method. 

Substitution of (7) and (8) in the formula for the divergence theorem gives 

J {pL T-TM p}dV = 
n. £ £ 

2 clT clp J[k {~-T-a;-} + pTf(x).v]ds. 
f oV oV 

]. 

For £ + 0 this equation must hold asymptotically which yields the values of 

K. and c .. We only give 
]. ]. 

K. = li~ Q(x), K1 = • 23 and K2 = .52 . 
]. 

x+x2 

It is concluded that most of the time the system is in an £-neighbor-

hood of one of the two stable equilibria. The attraction dom of these 

equilibria is most likely left through the separatrice r in an £-neighbor

hood of the unstable equilibrium x2 • The expected residence time in domain 

n. is 
]. 

T. s:::i C. 
]. ]. 

Near the unstable equilibrium the system remains a time of order 

where A is the largest positive eigenvalue of the deterministic system 

linearized at x2• Estimates of£ for atmospheric models are given by Egger 

and Shilling (1983). They found £2 s:::i .2. 

A discrete Markov process is formulated as follows. Let Q .. denote the 
J.J 

transition probability per unit of time from state i to j (i,j = 1,2,3) and 

let pi(t) denote the probability of being in state i at time t. Then pi(t) 

satisfy 

dp1 
dt = -(Q12+Q21)p1 - Q21P3 + Q21' 

dp3 . 
dt = - Q23P1 - (Q32+Q23)p3 + Q23' 

P2 = 1 - P1 - P3' 
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where 

and 

In fig. 3 the probability functions p. (t) are given for a process that starts 
l. 

in state 1 with probability 1. 

..... I ________ _ 
-·--1~-- -----

F\s 
0 ,..._ _ __,_,. __ _.___._ _ _._ __ ..__ _ __, 

0 50 

Fig. 3 Evolution of the probability distribution of the Markov process 

starting in state 1. The dotted lines represent the stationary 

d:i.stribution. 

4. HIGHER DIMENSIONAL SPECTRAL MODELS 

In higher dimensional spectral models the system will exhibit irregular 

dynamics from itself. No stochastic forcing is needed to obtain vacillation 

between states with a zonal flow of different intensities. In this section we 

summarize some results of De Swart (1987). The purpose is to formulate a 

spectral model with the lowest dimension that still has chaotic behavior with 

two clearly different scales of motion (planetary/synoptic) and that has a 

zonal component (x 1) that varies over a sufficiently large realistic range. 

In fig. 4 for a six and a ten dimensional model the bifurcation diagrams 

connected to the equilibria of the three dimensional model are given. One of 

the stable equilibria under goes a pitchfork bifurcation with the stable 

branches turning unstable through a Hopf bifurcation. However, the other 

equilibrium always remains stable. This is due to the symmetry in the 
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forcing stream function. Therefore we take xz ~ O. It is verified that only 

in the ten dimensional model all equilibria get unstable for some xz. Using 

physical arguments it is understood that 10 dimensions must be the minimum 

as only then energy exchange between wave triades is possible. In fig. Sa 

the x 1 component of a solution is given. Its largest Lyapunov exponent has a 

positive value, which indicates the presence of a strange attractor. 

Examining the course of a trajectory projected in the x2 ,x3-plane, we observe 

that this strange attractor remains from time to time close to three diffe

rent periodic orbits. The behavior strongly resembles the discrete state 

Markov process of the preceding section, see fig. Sb. The deterministic 

chaotic model can be used to study the predictability of atmospheric flow 

from a theoretical point of view. 

Hopf bifurcation• 

... •··· .·.·.·.·.·_-........ ~----.-.-.-::::::::::::::: ...... -
,. ,0 

(a) six dimensional spectral model 

Hopf bifurcation• 

,....-····· ---~-·:.-::::: . ., 
,.j.A::'···/ ... -··· .. 

0 u······················-•···················· 

" 

(b) ten dimensional spectral model 

Fig. 4 Bifurcation diagrams for higher dimensional spectral models. Solid 

(dotted) lines represent stable (unstable) stationary solutions. 
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(a) the x 1-component (b) sketch of unstable periodic 

solutions 

Fig. 5 A chaotic solution of the 10-dimensional model 
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ABSTRACT 

This contribution considers some aspects of the variational formulation 

for the creeping flow of a lubricant between rigid, moving bearings. 

Starting from a physical principle of virtual power, the restriction to 

creeping flow leads to a variational formulation for the differential e~ 

quations and boundary conditions. 

Performing the usual approximations based on the scaling of the problem 

directly into the functional provides an energy like functional that 

correctly produces the Reynolds equation and (free) boundary conditions 

(even for a pressure dependent viscosity). This approximated functional 

differs from the functional that is usually obtained in an ad hoc way by 

an additional term. This term depends on the velocity difference of the 

bearings and gives some new insight in the range of validity of the usual 

set of equations. 

1. Introduction 

Recently, many investigations into hydrodynamic lubrication problems deal 

with the variational formulation for the Reynolds equation. (see e.g. 

Capriz & Cimatti 1983), The variational approach has proved to be useful 

in several aspects: to derive existence and uniqueness results (cf. 

Bayada 1983, Oden & Wu 1985), for numerical purposes (cf. Wu 1986), and 

for the optimal construction of bearings (Mcallister & Rohde 1983). As in 

most of these references, we will consider the problem for rigid bea~ 
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rings. Although the variational structure for elastic deformations of 

bearings is .also known (see e.g. Kalker 1977), a unified variational for'

mulation for elasto-hydrodynamic lubrication problems is not yet comple~ 

tely understood. (Some quasi'-variational formulations have been used by 

Wu 1986 and Strozzi 1986). 

In the references quoted above, the variational formulation that is used 

is derived in an ad hoc way by simple presenting a functional for which 

the Euler'-Lagrange equation is precisely the Reynolds equation. 

The aim of this paper is to examine in detail how an (energy'-like) func

tional can be derived from a physically well-understood and accepted 

principle of virtual power by performing approximations in the governing 

functional. In a certain approximation, the resulting functional will 

lead to the usual Reynolds equation, as required, but will also provide 

some nerh insight. into additional restrictions that should be satisfied 

for. this equation to be valid. An additional term that appears in this 

functional depends on the difference of the velocities of the bearings. 

This will probably effect the results for the optimal shape of bearings. 

Following the description and notation of the basic problem, we present 

the principle of virtual power in section 2, and describe the approxima

tions (which lead to the variational formulation of the problem) in sec'

tion 3. In sec1;ion 4 we analyse the resulting variational formulation, 

wh.ile section 5 is concerned with the modifications that are necessary to 

incorporate a viscosity'-pressure relation. 

Acknowledgement. 

We would like to thank the tri bology-group of the University of Twente 

for stimulating this research. 

2. Basic formulation. 

We consider the flow of a lubricant between two surfaces that are the ri

gid boundaries of two moving bearings. Restricting ourselves to the 2;..D 

line contact problem, the extension to the 3-D point contact problem is 

obvious, the upper and lower boundary will be described in a x1-x2 plane 

by functions x2 = H+(x1 ) and x2 = H_(x1 ). The corresponding constant tan-
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gential velocities of the bearings will be denoted by w+ and w_ respecti

vely. 

The stationary equilibrium equations for an imcompressible, Newtonian lu

bricant are described in terms of the velocity .!• the density p, the 

stress T, the pressure p, and the viscosity µ by the following set of 

equations: 

div V • 0 ( 1 ) 

div T,. p(y.V)y (2) 

(3) 

These equations describe the lubricant in a domain n in which no cavita

tion takes place. This domain n is unknown a priori, but defined by the 

requirement that p exceeds the cavitation pressure: p > Pcav• which value 

may be normalized by setting Pcav • O. 

The part of the boundary of n which coincides with part of the boundary 

of the bearings is denoted by anv: 

The no slip condition on anv can be described as follows: 

(II) 

Here Y+ denotes the velocity on an+, the vector (1, H!) is tangent to 

an+, and W+ is related to the constant tangential velocity w+ like 

(5) 

Here, and in the following, a prime ' denotes differentiation with res

pect to x1• 

The remaining part of the boundary of n is defined by the isobar p = O, 

and will be denoted by anp. We suppose that on anp the surface stress is 

prescribed: 
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Tn = t ( 6) 

In order to start with a well-posed problem the boundary condition (6) is 

necessary, although it is neglected in the literature. We will see later 

on that for a certain approximation to be valid, t cannot be prescribed 

arbitrarily. 

To arrive at the principle of virtual power, it is to be noticed that eq. 

(2) with (6) follows from the vanishing of the expression 

for 

j(div T~p(~.v)~).o~ dQ + 

Q 

arbitrary functions av with ov 

-j(T:Vo~ + p(~.V)~.o~) dQ + 
Q 

0 

(7) 

on c)Q Integrating by parts gives 
V 

f t.ov ds o. ( 8) 
c)Q 

p 

When o~ is considered as a virtual velocity, the volume integral repre

sents the virtual mechanical work rate of the internal stresses and the 

virtual work rate of the inertia forces. The surface term represents the 

virtual work rate of the boundary forces. 

Equation (8) subject to div v = 0 and the boundary condition (4) is an 

alternative statement of the problem, and is called the principle of vir

tual power (cf. Conner & Brebbia 1976). 

3. Derivation of the approximate functional. 

As it stands, equation (8) is not of the form of the vanishing of the 

first variation of a certain functional, due to the presence of the iner

tia term. Rather, (8) is a kind of quasi-variational principle. However, 

the usual restriction to creeping flow, i.e. assuming that the Reynolds 

number is very small compared to unity and omitting the inertia term, 

leads one to consider the following functional 

E(p,~) V~) dQ + f t.v ds 
;mp 

( 9) 
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The notation E(p,y) emphasises that E is considered as a functional of 

both p and v. The critical points of this functional satisfy, in the re

quired approximation, all the equations (1)-(2) .. (3) and the boundary con .. 

dition (6), provided the viscosity is constant. (In section 5 we will 

present the modification required to treat the general case.) Indeed, 

unrestricted variations of p > O inn lead to 

o E = o => div y = o inn, p 

while arbitrary variations of :!..• subject ot the boundary condition (4) 

only, i.e. subject to oy .. Q on anv, lead to 

r· µ(t.y+V div y:) "' 0 inn 

o E • 0 -> 
V 

µ(Vy+Vl T) ]!! [-p + = t on anp. 

Since p = O on anp (by definition), this set of equations reduces to 

{div y .. 0 
inn 

-Vp + µt.y .. 0 ( 10) 
;.. 

µ(Vy+VyT)!! = 1 on anp 

It is to be noticed that the incompressibility of the lubricant is obtai

ned from the variational formulation, and needs not to be imposed a prio .. 

ri (Stated differently, p can be considered as a Lagrange multiplier that 

is introduced to take account for this constraint). 

A further approximation can be motivated by introducing dimensionless va

riables. With £ the quotient of characteristic lengths in the vertical 

(x2 ) and horizontal (x1) direction, the scaling of the lubrication pro

blem is typically such that£<< 1. 

Investigating the order of£ for the various terms in the functional (see 

verstappen 1987 for details), the truncation up to second order leads to 

the approximate functional 
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E(p,y) I 
av 1 av2 1 av, 2 av, av2 

[p(ax +-) - 2 µ(-) µax axJ ctn + 
n 1 ax2 ax2 2 1 ( 11 ) 

I t y ds 
anP 

av 1 av 2 
The term µJ -a- -a- ctn gives, in the approximation, rise to a boundary 

n x2 x, 
term only: 

av 1 av2 1 
av 

E(p,y) = I [p(- + -) (-1 )2] ctn+ ax, ax2 2 µ ax 
n 2 ( 1 2) 

I µ (v 1 
av2 av2 T 

I t ds 
ax2 

, - v, ax) • !:! ds + y 
an 1 an p 

This functional, and the corresponding variational principle, will from 

now on be treated as the approximate basic formulation of the hydrodyna

mic lubrication problem. The analysis to follow consists in writing (12) 

as a functional in p by extremi zing over v and evaluating it at the 

extremizing velocity. 

We will reach this goal in several steps. 

To start, we note that the variation with respect to v2 leads to 

( 1 3) 

This implies that isobars are straight lines. In particular, the part of 

the boundary anp, at which p = o, is straight and we conclude that n can 

be described as 

( 1 4) 

for some, yet unknown, x1-bounds xa and xb. 

Exploiting (13) and (14), a part of the integration in (12) can be per

formed explicitly. Using the boundary condition (4) there results in a 

straightforward way 
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E(p,y) 

( 1 5) 

From now on we will neglect the last term in this expression, because the 

assumption that there exists characteristic lengths in the x1~ and x2-di~ 

rection implicitly implies that the curvatures of the surfaces H:'" are 

small. In that case, the velocities W: are approximately constant (inde'

pendent of x1). 

Next, variations with respect to v1 in (15) lead to the well known equa~ 

tion 

p' µ 

2 
cl v 1 

2 
ax2 

in n. ( 16) 

From this equation and the boundary condition (4), v1 can be expressed 

explicitly in terms of p'. 

Introducing the filmthickness 

and the quantity 

the velocity v1 is explicitly given by 

( 17) 

( 18) 

X - lk 
2 2 (w -w ) + l(w +w. ) 

h + 2 + -
( 1 9) 

This result was already derived by Berthe and Godet in 1973 using the 

differential formulation. 

From the variations with respect to v there also result certain boundary 

conditions. Explicitly, variations of v on an give 
p 
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av2 
(x1=xb) -µ-

ax2 

(\ E - 0 => t, -
1 av2 

\laic cx,=xa) 
2 

(20) 

av, 
(x1=xb) µax 

2 
0 E = 0 => t2 " ( 21) 
v2 av, 

'-µ- cx,=xa) ax2 

Of course, these conditions should be compatible with the expression (19) 

for the velocity. This implies that the approximation under consideration 

can only be valid provided that the surface stress!_, assumed to be pre'

scribed so far, satisfies (20) and (21). In particular, t 1 should be of 

the order of E. This point seems to be overlooked somewhat in the litera

ture. 

Resuming the results so far, (19), (20) and (21) hold for the velocity 

field which extremize the functional (15), Inserting these expressions in 

(15), the velocity field is eliminated in favour of the pressure. Perfor

ming the substitution and some explicit integrations there results 

1 Xfb [.!__ h3c 1 ,2 E(p) • 2 x 12 µ p :.. (W++W_)hp' - µ 
a 

(22) 

We note that this functional depends on Xa,xb, on the sum and the diffe'

rence of the boundary velocities and on the filmthickness h (only; not on 

the boundaries H+ themselves). When the flow of the lubricant is seen as 
:.. 

a combination of a Couette flow 

V = 
1 

X '- .!_k 
2 2 (W '-W) + .!_ (W +W) 

h + - 2 + -
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and a Poisseuille flow 

the terms in the functional (22) can be identified as the work rate of 

respectively the stress of the Poiseuille flow, and the normal and 

tangential stress of the Couette flow. Summarizing, we can say that the 

functional (22) has been derived from the basic variational principle for 

creeping flow (9) by approximating this functional up to second order of 

£ and extremizing over the velocity field. 

4. Analysis of the variational formulation. 

Having obtained the functional (22), let us now investigate the conse

quences of the corresponding variational principle. Variations with res~ 

pect top (satisfying p > 0), lead to the equation 

(23) 

This is the well known Reynolds equation. The fact that this equation is 

obtained from (22) provides a formal, and partial, a posteriori justifi~ 

cation for (22). However, (22) differs from the functional that is usual~ 

ly written down in an ad hoc way to provide the Reynolds equation (see 

e.g. Capriz & Cimatti 1983). The difference is the term 

(24) 

This term does not contribute when performing variations in p, i.e. does 

not alter the Reynolds equation. However, since (22) has the advantage of 

being derived directly from a physically sound principle, it is likely 

that the additional term should be incorporated. Therefore this 

additional term could effect the analysis for calculating the optimal 

shape of bearings (see Mcallister & Rohde 1983). 
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Next let us investigate what information can be derived for the boundary 

conditions at the free boundaries x1 = xa and x1 = xb. 

Assuming, without loss of generality, that W++W_ ~ O, xa, the inlet boun

dary, is traditionally not treated as a free boundary (until now only 

Bayada (1983) has made an attempt to do so), but is taken to be fixed. 

This is motivated by numerical results of Castle and Dowson (1972) who 

showed that the resulting pressure distribution is (almost) independent 

of the choice of xa, provided xb - xa is sufficiently large. 

By constrast, the outlet condition at x1 = xb has been studied inten

sively (cf. Dowson, 1975). Various arguments lead to the conclusion that 

p must satisfy 

It is natural to ask if the Reynolds condition (25) can also be derived 

from the functional (22) by performing variations with respect to xb (as 

is the usual way to treat free boundaries). Owing to the presence of the 

additional term in the functional this is not quite obvious, and the ana

lysis provides some extra insight in the relevance of this term. 

Variation with respect to xb in (22) gives the following relation at xb: 

(W ~w, >2 
+ -

- µ--h-- = o. (26) 

Solving this for p' gives 

p' (27) 

On the other hand, since p satisfies p > 0 for x1 < xb and p(xb) = 0, we 

certainly must have p' s; 0 at xb. This shows that the solution (27) with 

the+ sign is non realistic. 

Moreover, requiring the Reynolds condition (25) implies that 

W+ = W at xb and hence, approximately, w+ w .. 

Concluding, we can say that our results show that the usual free boundary 
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condition (25) is obtained only if both bearings move with equal veloci~ 

ty; in case the difference w + -w _ is small, the free boundary condition 

(27) at xb reads approximately: 

(28) 

We notice (see eq. (19k(20)-(21) and (28)) that the cavitation boundary 

is approximately free of forces if W+ • W;.. holds at x1 = xb; otherwise, 

for w+ - w - small: 

2 

"- .!.c2x ;..k) 
L (W+-W,_) w+ .. w._ 

t, - o, t2 - 2 2 h2 w+ + w_ + J.1 h (29) 

As far as we are aware of, no such findings have been reported yet. 

5, Pressure dependent viscosity. 

Let us now assume thatµ is some given (smooth, monotone) function of p. 

In that case the functional (22) has to be modified in order to provide 

the Reynolds equation (23), The modification that is required can be de;.. 

scribed concisely by introducing an auxilliary variable q defined by 

.!!S. - .!. i dp µ' .e. 

q - I .!. dp 
J.1 

(This is a generalization of the Grubin transformation). 

(30) 

Then considering q, instead of p, as the basic variable in the variatio;.. 

nal principle: 

variations with respect to q lead to 
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(32) 

which is the usual Reynolds equation, as can be seen by eliminating q in 

favour of p. 

It may be noticed that the functional Eis definitely different from the 

functional E. Rewriting (31) in terms of p shows that the integrand con

tains an additional multiplicative factor l. (This point is often neglec~ 
µ 

ted; even in the standard monograph of Finlayson (1972), chapter 7). In 

particular, E has a different physical meaning than the original func'

tional E. 
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1. SUMMARY 

A falling film evaporator (FFE) is a vertically positioned tube, heated 

from the outside. Along the inner wall of the tube a liquid flows 

downward. Through the remaining space in the inside of the tube a gas is 

passed, in our case in the same direction as the liquid. Apart from 

flowing downward, the liquid evaporates partially into the gas flow. 

Assuming turbulent fluid flow and turbulent gas flow, we present a 

mathematical · model for a FFE, consisting of a system of ordinary 

differential equations. 

FFE's are well known in the chemical engineering literature. As far as we 

know, the present model is new. 

RECYCLE 

PITCH 

GAS IN 

=------===-

1 
I 
1 
1 
I 
1 

GAS MIXTURE OUT 

LIQUID FEED 

HOT OIL 

Figure 1. Sketch of a falling film evaporator. 
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symbol 

pl 

vl 

Pn 

PA 

PAo 

Vo 

p 

V 

p 

,; 

T 

Mo 

Ml 
H 

a, 

k 

r/Jo 

13 

A 

C 
p 

g 

n 

a 

R 
g 

b, C 

List of symbols 

meaning 

density of the liquid 

velocity of the liquid 

density of the evaporated liquid 

density of the "original" gas 

pA at inflow 

gas velocity at inflow 

pn + PA 
velocity of the gas 

pressure of the gas 

temperature of the gas (°K) 

temperature of the liquid (°K) 

molar weight of original gas 

molar weight of liquid 

heat of evaporation 

Antoine-constants, to be 

explained later 

parameter in evaporation

formula to be explained later 

flow of original gas 

parameter in heat-flux formula 

liquid-> gas, to be explained 

later 

heat conductivity of 

liquid 

specific heat original gas 

specific heat evaporated 

liquid (both at constant 

volume) 

specific heat liquid 

acceleration of gravity 

viscosity of liquid 

heat transfer coefficient 

oil -> liquid 

gas constant 
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All quantities are of course supposed to be expressed in consistent 

units. 

Many quantities (transfer coefficients, viscosity, ••• ) are dependent on 

the local conditions. Many dependencies are known approximately. 

2. MATHEMATICAL MODEL 

2.1. A mathematical model of a FFE must be 

- a good quantitative description of the behaviour of the FFE under 

various process conditions. 

- a good means for analysing and improving (and possibly optimizing) 

the performance of the FFE by means of simulation under various 

process conditions. 

a good means for optimizing the design of new units. Important 

questions to be answered are: 

* What process conditions are optimal for given FFE-dimensions and 

specified performance? 

* What are optimal FFE-dimensions and process conditions for 

specified process performance? 

In what follows, we shall assume that, at inflow, all conditions are 

known (temperatures, fluxes, pressure). 

Our model will have to consist of 

- relations for fluid flow and heat transfer in the fluid 

- relations for gas flow and heat transfer in the gas 

- relations for interactions at the fluid/gas boundary 

- relations for the free boundary 

- relations for the heat transfer oil/liquid 

We shall restrict ourselves to a quasi-stationary situation. 
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2.2. We now come to the model description proper. 

We shall start from the following assumptions: 

1) The gas flow is turbulent. All relevant quantities (pressure, 

temperature, ... ) depend exclusively on the height in the tube. 

2) The free surface fluid/gas is free of shear stresses. Viscous 

effects in the gas will be neglected. 

3) For the fluid flow a Reynolds-number is defined by 

=2 * mass flow 
1rnR 

The fluid flow is assumed to be turbulent whenever Re1 > 1600. This 

criterion is somewhat arbitrary. Many authors prefer Re1 > 3200 as a 

turbulence criterion. It is well known that, when the fluid flow is 

turbulent, there exist viscous boundary layers. These boundary 

layers will not be taken into consideration. The distinction between 

turbulent and viscous for the fluid flow is not only of physical 

importance, but has also mathematical consequences, resulting in 

different numerical procedures. Here, we shall almost exclusively 

consider turbulent fluid flow, because, for us, it is the only case 

of practical importance. 

A sketch of the coordinate system is given in figure 2. 

< 0 > 
I 0 Top of FFE 

+ z 

< r > 

I bottom of FFE 
< R > 

Figure 2. Cross-section of a FFE. 
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2.3. The fluid flow 

We shall assume that the fluid velocity is pointing vertically downward 

and that the forces of gravity and the viscous force are in equilibrium 

throughout the liquid. The thickness of the fluid layer does not change 

dramatically over the length of the tube. Therefore we postulate that the 

fluid velocity is place-independent. In particular for turbulent flows 

this is not a very bad postulate. Moreover it is possible to get some 

feeling for the effect of this postulate by simply varying the fluid 

velocity in the computation. 

For laminar flow we have 

0 
3 

pg 52 
1 

3n 
(= average value of v1 ) 

3n * mass flow 
(where o « R) 

These relations are easy to derive. Moreover, they can be found in the 

literature (for instance [1]). 

For turbulent flow we use the following empirical relation: 

0 

The corresponding value for v1 can easily be derived from this relation 

together with the value of the flow. 
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A. For the sake of completeness we shall spend a few words on the 

laminar case. Here we have: 

Moreover, since only quasi-stationary flow is considered, 

ar 
at 0 

As boundary conditions we have 

T given 

I 

a(T. -T)= I 
011 

I 
ar I 

A 
an -> I 

I 
I 
I 
I 

ar 
an 

I 
I 

0 

Figure 3. Boundary conditions. 

<- natural boundary 
condition, to be 
derived from the gas 
relations. 
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In principle this heat problem is solvable as soon as the exact position 

of the free boundary is known. An additional relation is necessary in 

order to determine that position. An iterative procedure is needed to 

solve simultaneously the boundary position and the heat problem. Since 

turbulent flow is of more practical importance, we shall leave this 

laminar flow unconsidered. 

~- The turbulent case. 

Assume, for the time being, that the position of the free boundary 

is known. We have to construct an equation for the heat transfer in 

the liquid (the velocity being uniform, as was mentioned earlier). 

On the basis of the turbulence-assumption we postulate T(r,z) = 

T(z) 

~I 

rl > zl level 1 
I I 

I 

I 
I 

II IV 
I I 

< r(z) > <- z 
I 

I I 
III _(: r2 > Zz level 2 

A simple formulation of the heat balance reads as follows: what flows in 

through I and II flows out through III and IV. 

Expressed in formulas (where T1 T(z1); T2 = T(z 2 )) 
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Inflow through I 

Inflow through II 
z2 

2nR J a (Toil - T(z)) dz 

zl 

Outflow through III: (1) 

Outflow through IV 

These terms describe successively: heat of evaporation, heating of the 

gas and the heat that is carried along with the evaporating liquid. Note 

that the enthalpy is described simply by c T. 
p 

We now have one relation with as unknowns r(z), T(z) and .(z). Additional 

relations will follow in the next section. 

2.4. The gas flow 

1. Continuity equation 

ro2 
V = plvl + ?"" (pAoVo - plvl) (2) 



2. Equation of state 

3. 

We assume (without good reason) that the Boyle-Gay Lussac 

relation holds: 

p V n R 't 
g 

(n number of moles) 

This formula can be interpreted as: 

Relation of evaporation 

* The driving force for the evaporation is supposed to be P 

where .~ 
P saturation - pressure of the evaporated liquid in the 

gas. 

p 
part the actual partial pressure of the evaporated 

liquid. 

* For P we use a so called Antoine-relation: 

P* ( b ) exp a - c + 't 

Furthermore p 
part total pressure* (mol fraction of the 

evaporated liquid) 

The relation of evaporation reads: 
* evaporation flux/unit surface= k (P - P). 

383 

(3) 

p 
part 
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4. 

In formula: 

b exp(a - -) c+,: p {1 -

* 

(r2- r 0
2 )p1v1 

Ml 

} + 

(4) 

Note that we use,: in the formula for P. The use of,: in stead of T 

is not trivial, since, in our model, the jump between T and ,: is 

partly due to the construction of the model. If we want to be sure 

which choice has to be made, we have to carry out an analysis of the 

boundary layer between gas and liquid. Although this might be 

important, no attempts were made to do so. As it is, it seems to be 

logical to try both T and,: and perhaps T; • 

Equation of motion 

Since we postulated that the fluid velocity remains unchanged throughout 

the tube, we assume that the net force on every fluid particle vanishes. 

This force is composed of - gravitation 

- viscous force 

- pressure force 
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Consider a segment R( t) of the tube, or rather the matter contained in 

R(t): liquid and gas 

We have 

I 
I 

' 

R(t) 
level 1 

level 2 

d~ JH p v d vol sum of the forces, acting on the gas. 

R(t) 

Those forces are: - gravitation 

- pressure-forces 

The total force amounts to: 

fff pg d vol+ ff - p nz ds, 
gas boundary 

of gas 

where nz denotes the component in z - direction of the outward unit 

normal and ds the surface measure. 

Consequently: 

HJ 
gas 

pg d vol+ ff -
boundary 
of gas 

pn d s z = d~ HJ 
R(t) 

= fff a! (p v) d vol+ JJP v (;.~) ds. 

R(t) boundary 
of R(t) 

p v d vol= 
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Note that, due to the quasi-stationary character, we have 

III a! (p v) d vol 0. 

Working out this equation and differentiating it with respect to z2 we 

get 

(5) 

where Ptot p + P v2. 

5. Energy - equation 

The energy-equation is specified for turbulent fluid flow. For laminar 

flow we have a somewhat different boundary condition and the difference 

can be found in the energy equation. 

We consider the energy in the gas only. 

< rl > 
,· \ level 1 ,, \ ,, \ 

~ 
level 2 

< r2 > 

The energy equation reads as follows (in words): 

the energy that flows per unit time through the lower surface equals the 

total energy that flows per unit time through the other surfaces plus the 

energy, supplied by forces. 
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The energy is built up of kinetic energy and heat. For the enthalpy we 

write cv-c. Note that a gap in energy seems to arise at the transition 

liquid--> gas. There is no danger, however, if no comparisons are made 

on the basis of the enthalpy assumptions. Within each phase, the formulas 

are reasonably correct. The energy equation reads as follows: 

2 3 
r2 p 2V2 2 

1T 
2 + (~.cvA + 11 (r2 

2 3 
rl plvl 

1T 
2 

+ (~. cvA + 1T (rl 

+ 

+ 

zl 

+ JJ (-p;, ;) ds, 

boundary 
of gas 

~ 

2 
- r. ) 

2 
- r. 

where n is the outward unit normal. 

These terms describe succesively 

2 

1. The kinetic energy, flowing per unit 

2. The heat - " " II II 

3. The kinetic II II II II 

4. The heat - II II II II 

5. The kinetic II II II II 

plvlcvn) 't2 = 

) plvl cvn) -cl 

g v dz+ 

time through level 2 
II II II 2 
II II II 1 
II II II 1 
II II the free 

surface 

6. The heat, carried along per unit time by the evaporating 

liquid. 

7. The heat, used per unit time for warming up of the gas. 

8. The energy, due to gravitation per unit time. 

9. The energy, due to pressure per unit time. 
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The last term incorporates a troublesome detail: at the free boundary, 

the velocity is discontinuous (in our model). As a consequence, the 

surface integral cannot simply be transformed into a volume-integral. The 

energy equation looks somewhat friendlier when differentiated with 

respect to z 2 : 

2 dz 
r-

dz 
p V C (. - T) = 

1 1 vn 

r2p dv - r2v !!£ + 2 pr dr (vl - v) 
dz dz dz 

(The last term represents the discontinuity) 

(6) 

The five equations (2), ... , (6) for the gas, together with the equation 

(1) for the liquid are sufficient to compute all unknowns: 

T(z), r(z), ,(z), p(z), p(z) and v(z). 

Since at inflow all is known, we are left with an initial value problem 

for a system of ordinary differential equations. The computational 

results are within a 10% marge of the measurements. 

Literature: 

1. Bird/Stewart/Lightfoot - Transport Phenomena 

Wiley 1960. 
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ABSTRACT: In some models of solid state physic~mysterious phe

nomena can be observed: The clustering and nesting of energy 

spectra. This happens in particular with models leading to the 

discrete Mathieu equation 

g(n+1 )+(2Acos(2nna-v)-s)g(n)+g(n-1) = 0 (n '= 'tJ. 
Hofstadter (1976) gave an empirical description of the combina

torics of both phenomena. In this paper we shall give a natural 

explanation of the combinatorics by introducing and applying 

the concept of infinitesimal clustering. 

1. INTRODUCTION 

Studying the quantum mechanical spectral problem of a Bloch 

electron in a magnetic fiel~ Hofstadter (1976) obtained a 
miraculous picture; see figure 1a. It is a plot of the set 

spect(1,a)~~ as a function of a. For A,a~ IR spect(A,a) is 

defined by 

where 

spect(A,a) = U spec(A, a;v) 
velR 

spec(A,a;v) = cr(HA,a,v/l2('.l)) 
the spectrum of the discrete Mathieu operator 

H • IC~ + IV'.l A,a,v· 

(HA a vg)(n) = g(n+1)+(2Acos(2nna-v))g(n)+g(n-1) 
, , 2 

restricted to the Hilbert space 1 (:l). 

For af~ the set spect(A,a) has a band structure (Hochstadt 197~ 
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a b 

Figure 1 Hofstadter pictures.~ A==1.0 ~ A==0.6 2 A==O.J 
_g A=0.15 ~ A==0.06 f A=O.O. Abscissa: spect(A,a). 

Ordinate: O~a~1. 
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Hofstadter 1976; van Moerbeke 1976), while for AfO and a irra

tional there is a Cantor-like structure (Simon 1982; Bellisard 

and Simon 1982; Bougerol and Lacroix 1985; Sokoloff 1985). Of 

course figure 1a consists only of the spect(1,a) for some se

lected rational values of a. The global picture exhibits a re

cursive structure (nesting) while at each height a the set 

spect(1,a) shows clustering. Such phenomena have geometrical 

and combinatorial aspects. Hofstadter gave empirical descrip

tions of the combinatorial aspects. We shall call these des

criptions the nesting- and clustering hypotheses respectively. 

They can be represented as trees of numbers H(a) (§3). The main 

purpose of this paper is to give a natural explanation of the 

origin of these trees by introducing and applying the concept 

of infinitesimal clustering (§5). The idea of infinitesimal 

clustering occurred to us while watching "Hofstadter pictures" 

for values of A near 0, as shown in figures 1a-1f. These figu

res show "gap hierarchies" which somehow induce the combinato

rial trees H(a). 

The model of a Bloch electron in a magnetic field is but one 

source of "Hofstadter pictures" (Azbel 1964; Butler and Brown 

1968; Hofstadter 1976; Claro and Wannier 1979; van Mouche 1983; 

Thouless 1984; Sokoloff 1985). Similar pictures can be derived 

from the modulated spring model (de Lange and Janssen 1983; So

koloff 1985). In this case the underlying operator is the gene

ralized discrete Mathieu operator. It would be interesting to 

see if the concept of infinitesimal clustering could also be 

used to explain the origin of these combinatorics in a natural 

way. 

This paper sketches only the main lines. The technical details 

will be presented elsewhere. 

2. THE DISCRETE MATHIEU OPERATOR 

The discrete Mathieu operator HA , which derives its name ,a,v 
from its resemblance to the differential equation of Mathieu 

(Magnus and Winkler 1979), is a special case of the second-
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order linear almost periodic recursion operator Hb: CZ+ CZ 
(Hbg)(n) = g(n+1)+bng(n)+g(n-1) (neZ) 

where b: Z + IR is an almost periodic function. For our purposes, 

we only need rational a.' s and thus periodic b' s. Let us 'briefly 

review some elementary spectral theory for the periodic Hb, 

fixing terminology as we go along. 

Firstly one has the following relations between the spectrum 

o, the point spectrum op and the continuous spectrum oc 

o(Hb/12(~))=oc(Hb/12(z))=op(Hb/loo(z))=o(Hb/loo(z)). 
In particular there are no non-trivial localized solutions g 

for each Eet of the recursion relation 

g(n+1)+(bn-E)g(n)+g(n-1) = 0 (neZ) (b)E. 

Moreover,we see that, with spec(b)=o(Hb/l2(z)), 
spec(b)={Eetl(b)E has a non-trivial bounded solution} 

aud, because Hb/l2(z) is self-adjoint, spec(b)Q& 

In the fo.llowing, qEIN is a fixed period of b. Using Floquet-
theory and Bloch-wave analysis one can prove the following 

1) Let 
llq(E) = Tr (E-1bq -o1)(E1bq-1 -01) •••••• (E-1b1 -01) 

Then spec(b)={EelRl-2~ llq(E)~ 2} 

2) The polynomial llq-c : IR + IR obeys the oscillation-theorem, 
i.e. for all -2,c~2 the polynomial has q real zeros (coun
ted with multiplicities); if -2<c<2 each zero is simple and 

if c=-2 or c=2 each zeDO has multiplicity ,2, the smallest 

and largest zero of (llq-2)(llq+2) are simple. The typical 

form of liq is as in figure 2. 

3) The bands E1~E 2~ ••• ~Eq and the gaps G1<G 2 .•• <Gq_ 1 of Hb 
(we write A~B if a~b for each aeA and beB, we write A<B 

if a<b for each aeA and baB) are the closures of the q 

connected components of llq- 1 (-2,2) and the q-1 closed inter 

vals or touching points between these bands respectively. 
If a gap consist of one only point,we call the gap degene
rate. To find the bands and gaps, one has to solve the 

algebraic equations llq(E)=2 (giving the periodic spectrum) 
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/';. (e:) 

F~gure 2: The typical form of /'J.q (here q=B). 

and 

(co 

/'J. (e:)=-2 (giving the anti-periodic spectrum). Now we have 
q 

means convex hull) 

spec(b)=E 1uE 2u ••• uEq 

co(spec(b) )= E1uG 1uE 2u •.• uGq_ 1uEq 

Note that the definition of bands and gaps depends on the 

choice of the period q of b; spec(b), of course,does not depend 

on this choice. All these statements are similar to the cor

responding ones for Hill's equation (Magnus and Winkler 1979 ). 

Let us return to the discrete Mathieu operator. Hereafter we 

also write~ (with peZ, qeN relatively prime) instead of aeQ, 

and take q as a period of the discrete Mathieu potential 
b(a,v)=2cos(2nna-v). One has the following simple relations 

spect(A,a+k)=spect(A,a) (ke7) (2.1) 

spect(A,a)=spect(A,-a)=spect(-A,a)=-spect(A,a) (2.2) 

and the deeper relations 
spect(A,a)={e:elRI l!'J. (A,a,......_2TI ;i;) J~2+21Alq} 

_q q 
G ; 2 (A,a;O)={O} 1f q=O (mod4} 

q TI 
Gq/ 2 (A, a;q)={O} if q=2 (mod4} 

q-1 0 q-1 0 
co(spect(A, a) )=spect(A, a)WLJGN(A, a;O)uLJGN(A, a;*) 

N=1 N=1 
N+q even N+q odd 

where U denotes disjoint union. It follows that 

0Espect(A,a) 

(2.3) 
(2.4) 
( 2. 5) 

(A~O) 
(2.6) 

(2.7) 
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(2.3) is a consequence of the Butler-Brown phase-relation 

(Butler and Brown 1968 , Hofstadter 1976 ) • A very important 

conjecture is the following version bf the discrete Ince 

conjecture (Claro and Wannier 1978·,Bellisard and Simon 1982) 

spect(A, a) consists of q 1 connected components q-
if q ~e~n (Af:O) 

This conjecture is in fact a problem of coexistence type which 

has been solved completely by Ince (Magnus and Winkler 1979) 

for the differential equation of Mathieu. 

Recentl~ considerable progress has been made in the spectral 

theory of almost-periodic Schrodinger operators. The discrete 

Mathieu operator has therein played an important guiding role. 

3. HOFSTADTER'S CLUSTERIN~AND NESTING HYPOTHESES 

Before stating Hofstadter's hypotheses we need some definitions 

concerning clustering. 

A band is a subset of ffi of the form {a<x<bl xeffi} with a<b. A 

clustering input is a non-empty finite collection U of bands 

which at most touch, that is 
0 0 

I 1,I2eu:::::}I 1 n I 2=¢ 

The closed intervals or touching points between the given bands 

of U are called gaps. So if #U=q, then there are q bands and 

q-1 gaps. In case of a touching point we speak of a degenerate 
gap ( cf.with §2). When the clustering input is pictured, the 

touching cannot besee~so we.will indicate touching by a +below 
each touching point. 

Consider a picture of a clustering input U. It may happen that 

the eye sees that the bands are organized into groups. Consider 

now such a group then it may happen that the eye sees again the 

same phenomenon, etc. One can in an obvious way present the 

combinatorics of the entire clustering process of U by a finite 

tree of positive integers. Denote this tree by CC(U). Here is 
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an exemplaric example 

Figure 3: Representation 

of the combinatorics of 

the clustering process by 

a tree. 

In this paper we shall not attempt to define clustering: the 

eye has to decide if a given clustering input clusters and in 

what ways. Beside reasonable trivial conditions which must be 

satisfied in order that a clustering input U cluster in u1 ,u 2 , 

••• ,UL (where {U 1 ,u2 , ••• ,UL} is a partition of U) such as 

\:;/i, j (('flEU. v Jeu. I~J) V (vreu. v Jeu. n.J )), 
l J l J 

we shall require a reasonable but non-trivial one, namely 

L~2 A #Ui~2 for at least two i's (3.1) 

We will now specify precisely the clustering inputs U(a) (a€~) 

for the clustering hypothesis.An obvious first idea might be fu 

simply take the collection of the connected components of 

spect(1,a). This however is not the right thought because then 

one possibly neglects "natural" degenerated spectral gaps. 

Remember that we hav~ by (2.6): 1 Do q- o ,r 
co (spec t ( 1 , a) ) =spec t ( 1 , a )u GN ( 1 , a; 0 )uLJ GN ( 1 , a;-) 

N=1 N=1 q 
(3.2) 

N+q even N+q odd 
The gaps appearing on the right-hand side of (3.2) are the 

natural gaps for spect(1,a). (3.2) implies that the set 

co(spect(1,a)) LJ GN(1,a;O)L.JLJGN(1,a;-) \
g-1 q-1 ,r 

N=1 N=1 q 
N+q even N+q odd 

consists of q connected components, and that the collection of 
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closures of these components is a non-empty finite collection 

of bands. Take this collection as U(a). The gaps of U(a) are 

then the GN(1,a;O) (N+q even) and the GN(1,a;*) (N+q odd). If 

the discrete Ince conjecture is true this somewhat technical 

definition can be restated in a more manageable form: If q is 

odd U(a) is the collection of the q connected components of 

spect(1,a). If q is even U(a) consists of the collection of all 

the connected components of spect(1,a) that do not contain 0 

(there are q-2 of them) and the left and right section of the 

connected component which contains O. 

Because of (2.1) we may assume O~a<1, Hofstadter's clustering 

hypothesis is now 

For all O~a<1 the tree CC(U(a)) equals the tree 

DEN(H(a)), defined as fol.lows 

Let [ ] denote the entire function, and let the functions 

fl: ( 0, 1 ) + [O, 1 ) and r: ( 0, 1 ) \{k} + [O, 1 ) 
be defined bf 

fl(x)=~-L~] if O<x~½, fl(x)=fl(1-x) if ½<x<1 

r(x)=-r1- -[-r1-] if b<x<½ , r(x)=f(1-x) if ½<x<1 
--2 --2 
X X 

Following Hofstadter we call the elements of {.1., n- 1 1 n~1} 
n n+1 n n . 

'pu:re cases' and the elements of {2n+ 1 , 2n+ 1 ln~2} 'special cases'. 
Now define the tree H(a) of rational numbers as in figure 4. 

The formation of a branch stops as soon as we meet a pure case. 

Because fl,r reduce the denominators of rational numbers, the 

tree H(a) is finite. By DEN(H(a)) we mean now the tree of posi

tive integers obtained from H(a) by replacing each rational 

number by its denominator. 

Remarks: .1. Each point of the trees H(a) has out-degree O or 3; 
that is: we have uniform clustering. Z The function fl appears 

also in connection with continued fractions. l As far as I can 

check, the first one who noticed the clustering phenomenon was 

Azbel (Azbel 1964 ). He used a semi-classical approach to the 

spectral problem of a Bloch electron in a magnetic field. 

Hofstadter's clustering description looks like that of Azbel. 
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Figure 4: The tree H(a). 
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Figure 5 presents a selection of U(a)'s. The reader might want 

to check now the validity of the clustering-hypothesis for 
these cases. 
Now we turn to the nesting-hypothesis. ConsidEr figure 1a. We 

see a recursive structure, that is we see a motif (in this 
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case a butterfly) from which the picture is built up recursive

ly. Hofstadter(1976) gives a description of how the building-up 

process proceeds (nesting process) from a basic skeleton (the 

butterfly), which essentially consists of the spect(1,a) for 

pure and special cases. Without going into details we notice 

that this process has a distorting aspect: At every step one 

has to compress the skeleton down to a certain small fraction 

of its size and then distort its vertical and horizontal 

scale.s before inserting it ( in many places) in the picture 

obtained one step before. The combinatorics of the nesting 

process is described by the full trees H(a) in the following 

way. Consider a tree H(a), see figure 4. Then the meaning is 

that U(a) clusters into u1 ,u2 ,u3, where u1 ,u2 ,u3 is a distorted 

U(A(a)),U(f(a)),U(A(a)) version respectively,etc. Again, the 

the reader may check this statement (nesting hypothesis) 

for some of the given U(a)'s in figure 5. The tree H(a)contains 

more information than the tree DEN(H(a)). This observation 

agrees with the fact that nesting is in general a mechanism 

leading to clustering. 

In §5 we will give natural explanations of the originsof both 

hypotheses. Before doing this we must introduce "gap opening 

powers",which are needed for the concept of infinitesimal 

clustering. 

4.GAP OPENING POWERS 

Suppose we have a real analytic family of clustering inputs 

U A (Ae.W), where W is an interva] containing 0. This means 

1 ) There is a qdJ such that #U A =q for all A€. W. 

2) All gaps of u0 are degenerated. 

3) There exist a 2q-tuple of real analytic functions W + lR 

that exactly describes the band boundaries of the bands of 

UA as a function of A, the so-called band boundary functions 

Because of the definition of bands and gaps we can number (with 

1,2, .•• ,q-1) and label (with e,o) the band boundary functions 
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such that e e 
A~(A)<A~(A)<A~(A)< •..••• <A~_ 1 (A)<A~(A) 

The numbering is uniquely determined, the only freedom lies in 

the labeling e,o for the numbers 1,2, ••. ,q-1. We have 

IA~(A)-A;(A)I is the length of gap GN(A) 

An important case of such an family UA(A€~) is given by the 

collection of bands {E 1 (A),E 2 (A), ••• ,Eq(A)} of a q-periodic 

recursion operator HAb" Indeed,all gaps of H0 are closed (see 

figure 6 and the intermezzo) and the real-analyticity is 

guaranteed by a deep theorem of Rellich (Baumgartel 1985). 

-1.20 -.,o .40 1.20 2.00 2.80 

Figure 6: ~q for b=O (here q=7). 

1n_ier_m..§_z~o.!. 
For b=O we have the equation 

g(n+1 )-sg(n)+g(n-1) = 0 (nE~) 

Then every qelN is a period of b and ~ ( d=2T (-2s), where T is q q q 
the qth Chebyshev polynomial of the first kind. It follows 

that 
• spec(O)= [:-2,2] (see also figure 1f) 

all gaps are closed 
• the band boundaries are -2cos(lln) (O,N<q). q 
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We call the real analytic functions A~-A; (1~N~q-1) the 
signed gap length& Denote their power series expansion about 

A=O by 
~ ,o e j 
,L. (aN .-aN . )A 

j~O ,J ,J 

Define the gap opening power o(N) of gap N by 

o(N) = inf{jjje~0• aN° .-#aNe .} , J , J 
Because for A=O all gaps are closed we have with N=NU{ 00 } that 

o(N)efil. We call the vector 
0 = (o(1),o(2), ••• ,o(q-1)) e Nq- 1 

the gap opening power vector of UA(AEW). Denote by POT(q) the 

collection of all q-periodic functions b: 7 +IR.Then we have, 

via the HAb and UA(Ae~), the mapping 
0: POT (q) ➔ jN"q- 1 

A simple but important property is that,for every bEPOT(q), 
O(b) is symmetric: we call in general an f~iNM (with MEIN0 ) 

symmetric if f(n)=f(M+1-n) for all 1~n~M. 

It is no small feat to calculate O(b) for a given b E POT(q). 

The way to do this is to use Rayleigh-SchrBdinger perturbation 

theory (Baumgartel 1985 ). Because for the unperturbed situa
tion A=O there are (for q>1) roots with multiplicity 2 one 

needs degenerate perturbation theory which is highly non
trivial. Fortunately,if bis symmetric with respect to ate 
½i one can split the periodic and anti-periodic eigenvalue 

problem,by restricting HAb to even and odd functions with 
respect to t,into non-degenerate problems,which are more easy 

to handle. 

For generic bone has O(b)=(1,1, ••• ,1). So the occurrence of 

high gap opening powers is a non generic phenomenon. Very 

interesting gap opening powers appear for the discrete Mathieu 
potential b(a,v)_ Calculation of its gap opening powers 

o(N;a ,v), using a discrete version of a procedure of Levy 

and Keller(1963), yields 
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o(N;a,v1 21T) = o(N;a,v) = o(N;a, 
q 

o(N;a,v) = min(T~}(N), q-,~l(N)) 

o(%;a,v)~%• even 
.9. 00 1.f _ O(mod4) o( 2 ;a,O) - q - q/2 · - 2(mod4) 

(.9. 1r) 00 1.f 2(mod4) 
0 2;a,q = ~/~ q =o(/od4) 
o(t;a,v) q/2 if O<v<1r q 

where 'a is the permutation of {0,1, •.. ,q-1} defined by 

'a(N) = (pN)(modq) 

(4.1) 

(4.2) 

(4.3) 

( 4. 5) 

(4.6) 

Note that o(N;a,v)<% if N<% and that for each q~W the collec
tion {-r lp€l, p,q relatively prime} is an Abelian group under 

CY, I 

the composition and that o(N;~,v) = o(·(1, (N); 12.,v). 
q ~ q 

(4,1)-(4,5) are extremely important. We will show in the next 
section that somehow all the information needed for a natural 
explanation of the origin of both hypotheses of Hofstadter is 

contained in these results. Let us here mention the following 
result confirming that the gap opening powers of the discrete 

Mathieu potential are extraordinarily high 
For all b 'e POT ( q), b ( a, v) : 

o(N;b') ~ o(N;a,v) for all 1~N~q-1 =? 
there are c,d,v'~ffi such that b'=cb(a,v')+d. 

In figure 7 some stability diagrams, i.e. the collection of 
bands as a function of A, are given in a neighbourhood of A=O. 

~ £ 

Figure 7: Stability diagrams.~ b{~jb,O) b b(3/B,O)_ 
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AND NESTING HYPOTHESIS 

First some definitions. 
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1) In what follows we interpret a function fElNM (M€IN O) as a 
row (f(1),f(2), •.. ,f(M)); dim(f)=M, the dimension off. 

!O consists of the void row~-
2) Let fEiNM and n€IN. If there are disjoint subsets R,T of 

{1,2, .•• ,M} with RUT={1,2, ... ,M} such that f(r)<f(t) 

for all reR, teT and #R=~ then we call the set R then 

smallest points off. 

3) Given fEiNM and sEIN with s;a.2, we can construct a finite 

tree of rows, ICs(f), as follows: Let (if it exists) S 

be the set of s-1 smallest points off. Removing the set 

S from the domain of f,we obtains new rows (possibly some 

of whichmay be void). Repeat this process with these new 

rows,etc. We stop locally with a row, say g, if we meet 

one of the following obstructions 

1 s>dim(g)+1 (dimension obstruction) 

2 g has not s-1 smallest points (s-section obstruction) 

1 the number of new rows with dimension ;a.1 which g gives 

is less than 2 (clustering obstruction) (cf (3.1)). 

This process can be represented in an obvious way by a 

finite tree , IC s ( f ) . 

(5,3,2,6,1,4,4,1,6,2,3,5) 

/ t ~ 
(5,3,2,6) (4,4) (6,2,3,5) 

i!\ iL\: 
IC 3 (5,3,2,6,1,4,4,1,6,2,3,5) 
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(7,6,1,8,5,2,9,4,J, 00 ,J,4,9,2,5,8,1,6,7) 

/ t ~ 
(7,6) (8,5,2,9,4,J, 00 ,J,4,9,2,5,8) (6,7) 

/ + ~ (8,5) (9,4,J, 00 ,J,4,9) (5,8) /+~ 
(9,4) (oo) (4,9) 

IC 3 (7,6,1,8,5,2,9,4,3, 00 ,3,4,9,2,5,8,1,6,7) 

Now we can introduce the concept of infinitesimal clustering. 

Suppose we have a real analytic family of clustering 

inputs UA(A€W). Let O be the gap opening power vector of this 

family. Then we can construct,for each s~2,the tree ICs(O). 

Now if,for some A0ew (A0 ~o)and s~2 we have 

CC(UA ) = dim(IC (0)) + 1 (5.1) 
0 s 

where dim(ICs(O)) + 1 is the tree obtained from ICs(O) by 

first replacing each row by its dimension and then adding +1 

everywhere, then it is reasonable to see this as a natural 

explanation for the origin of the clustering combinatorics of 

U(A 0 ). 

Remarks: 

1 The +1 comes from the fact that an M-dimensional row of 

gap opening powers is associated with a clustering input 

consisting of M+1 bands. 

2 o(N 1 ) <o(N 2 ) implies that for A in a sufficiently small 

puntured neighbourhood of o, the length of gap GN (A) is 
1 larger than the length of gap GN (A). 

1 s specifies the choice of the infinitesimal clustering 

criterion. 

J In words (5.1) ~eans: The infinitesimal clustering combi

natorics born at A=O survive until A=A 0 . 

We apply this infinitesimal clustering concept to U(a). 

Consider the identity (2.6). In the same way as we defined U(a), 
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define the clustering inputs UA(o:) for A~O. One can prove that 

this is a real analytic family of clustering inputs. Of course 

u1 (a)=U(a:). Using (4.2)-(4.5), we find for the gap opening 

powers of UA(a) (A~O), which we denote by O(ai that 

o(N;a) = min(,~(N),q-,~(N)) (1~N~q-1, Nf%) 
o(.9.;a) = oo 

Note that ~(a) is symmetric, 5(a)=5(1-a) and that 

0 ( N; £.'..E_) = 0 ( ,·1 1 ( N ) ; E.) . 
q_ ~ CJ. 

Since the following theorem can be proved, 

Theorem 
For all O~a<1: DEN(H(a)) = dim(Ic 3 (o(a:))) + 1 

we have a natural explanation for the origin of the cluste
ring hypothesis. Let us check this statement for some special 

cases in example 4. 

0(0/1) = 6 
0(1/2) = ( 00) 

0(1/3) = ( 1 , 1 ) 

0(1/4) (1, 00 ,1) 

0(1/5) = (1,2,2,1) 

0(2/5) (2,1,1,2) 

0(3/8) = (J,2,1, 00 ,1,2,3) 

0(5/13) (5,3,2,6,1,4,4,1,6,2,3,5) 

0(3/14) = ( 5, 4, 1, 6, 3, 2, 00 , 2, 3, 6, 1, 4, 5) 
0(3/20) = ( 7' 6' 1 ' 8' 5 ' 2 ' 9' if, 3 • 00 ' 3' 4' 9' 2' 5 ' 8' 1 , 6 ' 7) 

~X.§:m12.l_2 .!± l.u.:2.e_e~a_!!!p1,e..§, l..!.2 _an~ ~ J_) 

dim(IC 3(~(5/13))) + 1 DEN(H(5/13)) 
dim(IC 3(0(3/20))) + 1 = DEN(H(3/20)) 

Next we turn to the nesting hypothesis. We ought to give a 

natural explanation .for the origin of the full tree H(a). We 

shall succeed in doing something less, namely in explaining the 
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tree min(.,1-.)H(a). This is the tree obtained from H(a) by 

replacing all rational numbers x in the tree H(a) by min(x,1-x). 

Because of spect(1,a)=spect(1,1-a), howRvRr,this is not a serious 

failure. The following observations will be useful: 

1) The elements of the tree IC 3 (o(a)) are not in general symme

tric. 

2) C): [O,½] n (Q-+UiNM defined by ai+ O(a) is an injective 

mapping. M=O 

Note that the lack of symmetry in the trees IC 3 (o(a)) agrees 

with the distortjon aspect mentioned in §J. We will repair this 

lack of symmetry as follows. 

Take a row f of the tree Ic 3(o(a)). Take the two smallest 

points off and replace their corresponding coefficients by 1. 

Then take the next two smallest points off and replace their 

corresponding coefficients by 2, etc. In the final replacement 

we will meet a single point if dim(f) is odd, in which case we 

replace its corresponding coefficient by 00 • Denote the resul

ting row by Sym(f). It can be proved that this process is well 

defined. 

~x~m£l~ 5 Juse_examples 2 and 3 !)_ 
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?B. 5. 2. 9. 4. 3r. 3. ,,. 9.2. 5. 8~ 

(1,1) (5,4,1,6,3,2, 00 ,2,3,6,1,4,5) (1,1) 

,7· t. ~ 
(1,1) (3,2,1, 00 ,1,2,3) (1,1) 

/t~ 
(1,1) (00 ) (1,1) 

One can prove that the image of the injective mapping 0 
+ 

contains the rows occurring in the trees Sym(rc 3 (o(a))). 

Therefore we can define for each a the tree of rational numbers 

~n [o,½J)tf(Sym(Ic 3(o(a)))). Fi.nally one can prove that 

Theorem 2 
-1 + 

For all O~a<1: min(.,1-.)H(a) = (2 (Sym(rc 3 (0(a)))). 

which can be considered as a natural explanation for the origin 

of the nesting hypothesis. Note that theorem 2 implies theorem 

1.The reader is invited to check the validity of this theorem 

for some a. 
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ABSTRACT 

Cost effectiveness of many applied scientific research activities can 

be improved considerably when they are directed towards the development of 

digital simulation methods. The kernel of such methods is a mathematical 

model that describes the aspects that have to be simulated. Valuable simu

lation methods are those that can be used for analysis processes in the 

engineering phase of technical products. As a consequence the developed 

so-called mathematical software can serve as a means to transfer knowledge 

from institutes for applied scientific research to industry. However, in 

that case it is required that the software is integrated in systems for 

computer-aided engineering. 

To facilitate this integration, industry and institutes need 

an adequate infrastructure for information processing, comprising hardware 

and software components to be used in various disciplines. 

The requirements imposed on such an infrastructure are: 

- sufficient computer power shall be available to guarantee the fast de

velopment and the usage of mathematical software of increasing complexi

ty due to increasing competition on the market of the resulting indus

trial products; 

- it shall be possible to treat the information generated at different 

locations in the organization as one single source of information. 

As a basis of the infrastructure mentioned above the National Aero

space Laboratory NLR has developed a computer and terminal network with a 
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general purpose central mainframe that serves mainly database applications 

and a supercomputer for fast computations. The network serves both geo

graphically separated parts of NLR and it allows access from virtually any 

location at NLR and from outside to software and information from experi

ments, and digital simulations. 

The kernel of the software infrastructure that is implemented on the 

NLR network consists of an engineering data management system with 4th 

generation characteristics. This system EDIPAS that has been developed by 

NLR, enables engineers to store and to use data according to various 

engineering views and to facilitate data exchange between various computa

tional processes, and between experimental and theoretical investigations. 

As a means for user interaction a standardized command language 

system COIAS has been developed by NLR. Use of this system results in 

uniform interfaces for a wide variety of applications. 

Finally, in analogy with databases a methodbase system MEBAS is being 

developed which supports the management, assemblage and use of software 

components. Essential in the methodbase is the administrative information 

concerning the func_tion, interfaces, limitations, etc. of the methods. 

It has become clear that the described infrastructure, comprising 

integrated hardware and software components, results in higher efficiency 

in research and in support of engineering activities of industry. 

1. INTRODUCTION 

In many industrial organizations the need increases to improve the 

engineering process. This is due to quicker changes in specific customer 

requirements and to more severe requirements with respect to the 

price-performance ratio of the products. As a consequence of competition 

on the national and international market, the time for innovation and de

sign of the product and the time for the production process itself is to 

be decreased. Application of computers is a necessaty for simulations that 

are used to analyse the characteristics of products or product parts 

before they will be realized. 

The software to perform the simulations is based on applied 

mathematics to a great extent and is developed in industry and in 

institutes for applied scientific research. In order to be applicable in 

industry this mathematical simulation software has to be integrated in 

Computer-Aided Engineering (CAE) systems. Such a GAE-system has to be 



411 

built in such a way, that the various disciplines involved in the 

development of a product are assisted with state-of-the-art simulation 

tools and are able to exchange information. To enable this, the GAE-system 

comprises tools for the generation of output of mathematical software, for 

the analysis of the output, and for the treatment of all information that 

is relevant for the concerning design and production process as one single 

source of information. 

The National Aerospace Laboratory NLR is the central institute in the 

Netherlands for aerospace research. Its principle mission is to render 

scientific support and technical assistance under contract to Dutch and 

foreign aerospace industries and organizations, civil and military air

craft operators, and governmental agencies concerned with aviation and 

spaceflight. In principle the activities of institutes for applied scien

tific research, such as NLR, consist of supply of information and not the 

actual design or operation of systems like aircraft and spacecraft. Expe

rience at NLR learns that the effectivity of applied theoretical and ex

perimental scientific research can be improved if it is focussed on devel

opment or improvement of computer based information systems. This is espe

cially the case if the results of the research are to be used by contrac

tors. As such, information systems support technology and information 

transfer from NLR to industry and operators of high tech industrial 

products. 

Although many of the information systems developed by NLR for 

industry are transferred to other organizations separately, it is 

considered essential that they are developed in such a way that they fit 

into the industrial infrastructure for multi-disciplinary design and 

analysis. As a result, NLR decided to develop an infrastructure, that 

reflects the infrastructure for information processing needed in industry. 

This infrastructure serves primarily as a test bed for the development of 

computer based information systems. 

Moreover access had to be made possible by NLR to recent simulation 

tools based on mathematical software to potential users outside the 

organization, for familiarization and validation before the decision is 

made to transfer the software to the own organization. 

The requirements that are the result of the above mentioned consider

ations are presented in the next chapters. The technical characteristics 

of the standard components of the infrastructure of NLR that assist in the 
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development and usage of the mathematical software are outlined in the 

paper. 

2 THE DEVELOPMENT OF SIMULATION METHODS 

The nucleus of any digital simulation method is a mathematical de

scription of the aspects of the real world that have to be simulated. As a 

result of limited knowledge of the aspects or in view of required simplic

ity of the mathematical description, the resulting mathematical model con

tains modeling errors. 

Discretization of a mathematical model in general is required when a 

digital computer has to be used for the simulation according to the model. 

The resulting numerical model contains discretization errors. To minimize 

these errors, in many cases it is required to derive the discretization 

method from the nature of the aspects that have to be simulated. So it is 

well known in computational fluid dynamics that discretization schemes 

have to be based on physical considerations, such as the need to guarantee 

conservation of mass, momentum, and energy. 

Finally, a solution strategy has to be defined for the equations that 

are the result of the discretization. Many sources of errors exist in the 

solution techniques. In principal accuracy and computational efficiency 

have to be balanced. Many of the concerning aspects are discussed in 

Boerstoel et al., 1986, for computational fluid mechanics. 

For analysis of the results of digital simulation with respect to 

errors, the best strategy is to compare the results with information from 

other sources. These can be more accurate simulation methods. However, in 

applied technical research the purpose much often is to develop a better 

method than available at that time. The only way to obtain reference 

material in that case is to make use of physical experiments. In physical 

experiments there are sources of errors as well as in digital simulation 

methods. Measuring errors exist in all cases. When use is made in the 

experiments of scale models, which very often is the case in aircraft and 

ship design, scaling errors are present too. The various sources of 

errors mentioned so far are summarized in Fig. 1. 

Validation of simulation methods requires the capability to define 

and execute special experiments for the many different errors that will be 

present in digital simulation methods. Physical experiments require spe

cial facilities. Digital simulation experiments with more accurate models, 
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Fig. 1 Development of a mathematical simulation model 

finer discretization or better solution methods require as facility in 

principle only more powerful computers than are necessary for the more 

simplified methods under development. 

Apart from the facilities for the development of advanced digital 

simulation methods and the validation of these methods, various 

disciplines are required. As far as the digital simulation method itself 

is concerned, it is necessary that extensive knowledge is available in the 

fields of mathematical modeling, numerical analysis, and software 

engineering. For physical experimentalizing, experimenters are required 

who can define instrumentation and who are able to execute experiments. 

Experimenters as well as mathematicians must be enabled to apply the digi

tal simulation methods for interpretation of the results from the physical 

experiments and from the digital simulation experiments. This means that 

already during the development of the digital simulation methods it must 

be possible for representatives of various disciplines to apply available 

parts of the methods. 

The considerations mentioned above lead to the conclusion that digi

tal simulation methods have to be part of an information system from which 

the required output can be obtained and for which the related specialist 

is able to generate the proper input. For the concerning organization it 
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is advisable to organize the processing of information from physical 

experiments and from digital simulation in such a way that the results can 

be considered as one single source of information for interpretation 

purposes. In many cases this affects different disciplines that are housed 

in different departments of the organization. 

It is not only the handling of information that requires 

multi-disciplinary co-ordination in the organizations that develop 

advanced simulation methods. Also the computers that are required, very 

often are too expensive to be cost effective when only available for one 

of the disciplines in the organization. Integral solutions for the various 

processing requirements have to be realized for the organization as a 

whole as part of the infrastructure of the organization. This requires the 

consciousness that local interests have to be made subordinate to the 

interests of the organization as a whole, and adequate centralized 

management. 

1_ REQUIREMENTS FOR TOOLS IN THE INFRASTRUCTURE FOR INFORMATION PROCESSING 

The infrastructure for information processing consists of hardware, 

software and information. Essential for the creation and operation of such 

an infrastructure, are specialists in the various branches of computer 

sciences, mathematics and in the various engineering disciplines. 

For purposes of overall efficiency of the organization, in the 

development of the infrastructure in a CAE environment a number of 

technical/organizational requirements must be fulfilled. The most 

important of these are: 

the infrastructure shall be developed in such a way that 

incremental growth is possible; 

re-use of software in successive phases of incremental development and 

in a large range of disciplines shall be made possible; 

- standards shall be applied to software development to guarantee consist

ency in information and in engineering methods used in different disci

plines. Maintaining standards also avoids culture shocks to the users, 

when confronted with the next generation of elements in the infrastruc

ture and results of applications. Moreover, when imposing standards, the 

transfer of knowledge is facilitated between various user groups. 

the infrastructure shall be accessible from virtually any location in 

the organization; 



415 

- the infrastructure and the organizational conditions shall make it pos

sible that time to start up new applications is minimal. 

From a data management point of view, in the product development pro

cess various sources of information can be recognized: designers, experi

ments and digital simulations. For evaluation of data from various sources 

the users need means for "post processing", such as the determination of 

differences between data from different sources or of isobar patterns on a 

wing from results of flow calculations or wind tunnel experiments. In the 

product development processes it is very important to facilitate access to 

relevant data such as the parameters that define the current geometry and 

the physical quantities that are related to that geometry. The data not. 

only have to be made available to representatives of the discipline that 

has generated the data. In aircraft development, for example, structural 

analysis requires aerodynamic loadings. Also for analysis of the dynamic 

behaviour of an aircraft tail in flight, structural stiffness 

characteristics and dynamic aerodynamic loads are needed by the flutter 

annalist. Based on these observations the requirements for data management 

are: 

- the complete collection of information related to a design process, 

functionally shall be treated as one single source of information; 

- it must be possible for any engineer who is involved in the design 

process to store and retrieve data in a structured way, related to the 

specific aspects of his application. As a consequence of changing views 

on the data during the design process, re-structuring of the data for 

the various engineering views must be possible in a short time without 

laborous re-design of the database. 

- facilities must be available for maintenance and quality assurance of 

the information to end users of the CAE infrastructure. End users of 

various engineering disciplines shall be able to operate the data mana

gement tools. 

Industrial competition gives rise to an ever increasing demand for 

new methods for processing of data, and for analyses and simulation 

purposes. Amongst others mathematical software for analysis of design 

characteristics has to be improved continuously. For example the accuracy 

of flow simulations for determination of aerodynamic characteristics of 

aircraft are improved continuously. Older methods have to be kept avail

able, because in general they require less processing power so they are 

more suitable for parameter studies in the preliminary design phase. Fur-
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thermore, in a number of cases results of simple methods are used as 

starting conditions for more complicated methods. The reason is, that 

convergence of complicated and expensive iterative computational proce

dures can be improved considerably in that way. The continuous development 

of methods leads to the following requirement: 

- the software infrastructure for series of simulation methods with in

creasing degree of complexity shall be structured in such a way that the 

user can switch simply between the methods. As a consequence, tools have 

to be made available for the management of the various computational 

methods. 

In order to avoid an ever changing type of interaction with the end 

user of simulation methods: 

- standards have to be imposed on the user interface. At least the style 

of interaction has to be the same. 

The above mentioned requirements mean that the infrastructure for GAE 

comprises facilities for the management of data, for the management of 

methods, and for user interaction. These facilities have to be implemented 

in such a way that access is possible from any point in the organization. 

The software components mentioned so far have to be implemented on 

computers. In aerospace research, methods for computational fluid 

mechanics and computational solid mechanics require large processing power 

used for batch processing type of work. For the interactive applications 

and batch processing together also through-put requirements have to be 

fulfilled. In technical applications such as GAE a continuous growth of 

required processing performance is apparent. The growth rate partly 

depends on development speed of new application software and on the 

dispersion rate of computer applications in the concerning organization. 

The various components of the infrastructure for development and 

usage of industrial mathematical software available at NLR are discussed 

in the next sections into some more detail. 

4 DATA MANAGEMENT 

With as main reason the quicker realization of technical 

applications, a commercially available database management system (DBMS) 

was introduced in the mid seventies. Utilization of this DBMS and using 

the same type of abstraction as in data management technology, led to the 

development of an application software system, that meets the requirements 
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mentioned. In 1983 an operational version of this system came available, 

called EDIPAS (Engineering Data Integrated Processing and Analysis 

System). EDIPAS comprises facilities for engineering data management and 

for engineering data evaluation. The data management functions enable the 

creation and maintenance of a database, with data from computersimulations 

and experiments. Computer programs can easily be interfaced to the 

database in order to exchange data and to supply data for data evaluation 

purposes. A network of computer programs for engineering purposes can be 

built, resembling the architecture presented in Fig. 2, given as an 

example in the area of robotics (Groothuizen et al., 1986). 

COMPUTATIONS 

ROBOT 
CHARACTERISTICS 

HANO LING 

ENGINEERING DATA MANAGEMENT 

DBMS 

EDIPAS 

ENGINEERING OATA 
ANALYSIS ANO PRESENTATION 

EDIPAS 

ROBOT 
EXPERIMENTS 

Fig. 2 Architecture of system for the analysis of robot dynamic 
properties 

In order to meet requirements with respect to flexibility of 

application and ease of use, EDIPAS employs a data model with characteris

tics that are easy to understand for engineers using computers. In 

contrast to specific application of a general purpose DBMS the user is 

allowed to work with the terminology as applied in his own discipline. In 

fact the data management facilities of EDIPAS provide a layer, that trans

lates the instructions of the user to data manipulation commands for the 
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general purpose DBMS that is used as data management kernel. The data mod

el as applied in EDIPAS (Kreijkamp et al., 1985), allows the user to 

manipulate entities for basic engineering data, for derived data, and for 

data items that support system operation. The basis of the data model is 

an entity called "data block". A data block is identified by user defined 

characteristics and contains user defined (names, types, number and 

length) scalars and matrices (like Fortran arrays). The identifying 

characteristics of data blocks are used to define relations between data 

blocks: the structures. 

Within one database several structures can exist at the same time. In 

order to cope with the dynamic character of the view of engineers on the 

database contents, it is possible during the operational phase of a data

base to modify or to add to the identification of existing data blocks and 

to define new structures. The kernel DBMS guarantees the internal consist

ency of the database, when such operations are performed. 

In large project groups the function of database administration is 

required, in analogy with the situation in business applications. This 

function will be performed by the prime user or by one of the most 

experienced users. The tasks of the project database administrator are to 

advise and to assist the project team, to initialize and to maintain the 

project database, and to grant access to the database for users within the 

project team. The facilities required to support the project database 

administrator are provided by EDIPAS (Steenbergen et al., 1985). 

The data analyses facilities of EDIPAS provide a standard set of 

functions, that are common to various engineering activities. The facili

ties comprise functions to interrogate the project database, to perform 

arithmetic operations on and with selected data, to perform curve fitting 

and interpolation, and to present results in graphical or tabular form. 

The presentation form may be in a quick and mainly system defined layout, 

or in a layout that is completely defined by the user, with all descrip

tive information added, so the graphs can be communicated to others. 

The analysis functions are command driven and can be executed inter

actively or in batch. Help information for interactive usage is available. 

An important feature is the possibility to create and maintain procedures 

of commands. These procedures may be build during execution, and can be 

used later on with an actual parameter setting. This procedure facility is 

used to build complete jobs that perform on a routine basis the required 

data evaluation and presentation of results. In this way the system acts 
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as a 4th generation language for engineers, with which ad hoc queries can 

turn into routine operations. 

Except for these standard analysis tools, the various engineering 

disciplines need more specific and specialized tools. Such tools can be 

easily interfaced to the database by means of a set of routines in the 

data management facilities. These Fortran callable routines give access to 

the database at the level of data entity and the data items contained 

therein. 

For introductory purposes, it appeared essential that an EDIPAS 

workshop was developed, where potential users get insight in the concepts 

of engineering data management and analysis, and get their first hands-on 

experience. This workshop had to be composed and given by experienced 

users and members of the development team. Experience has learned, that 

engineers with some support are able to operate within one week the basics 

of the data analysis functions on a database that is fed from one data 

source. Once they have learned to operate the system and are acquainted to 

the level of abstraction, they find more engineering problems that can be 

solved by applying EDIPAS than ever was foreseen. The effectiveness of 

such engineers increases considerably, where at the same time they consume 

more computer resources. The impact of this fact has to be dealt with in a· 

sound plan for the further development of the computer hardware and data

communications layers in the infrastructure. 

5 METHOD MANAGEMENT 

The infrastructure for GAE support at NLR focusses on research type 

of applications, that are continuously evolving and more and more are to 

support multi-disciplinary co-operation. Separately developed application 

subsystems and algorithms are gradually integrated into larger information 

systems. 

The evolution in user requirements and in analysis techniques results 

in an information system development, in which several versions of algo

rithms are tested in different combinations, in order to select a combina

tion with favourable characteristics. This selection is supported by com

parison of results with experimental data. 

The results of algorithmic research are made available as information 

systems, ready for use by the customer. Therefore development of algo

rithms is only a part of total system development, be it the driving part. 
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More and more attention is paid to data management and organizational as

pects and to the production of information systems for operational envi

ronments. 

In information system development the need ,arises for re-use of 

application components within and across projects, and for easy exchange 

of algorithms in information systems. Within projects, this need leads to 

standardization of functional and technical component interfaces. Across 

projects, the same type of standards are needed as well, as support for 

management and selection of software components. However, existing object 

and source library mechanisms do not store the formalized information on 

the functionality of the software components needed for this support. 

Therefore the method base system MEBAS is being developed as part of the 

infrastructure for CAE. 

Strong analogies exist between database and methodbase systems, the 

most important being that they derive their right to exist from the integ

rity and access control on data and methods respectively. They store not 

only the data or methods on their own, but also information on the 

functionality and on technical aspects (place of storage, ways of access 

and usage). 

The methodbase system addresses three types of users, not necessarily 

impersoned by different persons. The user types are: 

- the application programmer, who adds new methods to the methodbase; 

- the system designer, who assembles methods creating stand alone applica-

tion programs; 

- the end user, who uses stand alone programs to solve his specific prob

lem. An important aspect is the ability for the end user to use his own 

language. 

As one person can act in different user types, the user interaction 

of the methodbase system should provide a consistent users view for all 

user types. 

A methodbase system shall support the following functions: 

- addition, replacement and deletion of methods, including the associated 

information. It should be possible to define a structure of the methods 

for a specific application, before actually adding method sources. Meth

od exchange across projects requires operations for copying methods from 

other method bases or even merging complete methodbases. 

- selection of methods by users, based on keywords and attributes. The 

structure of the methodbase is also important to support the selection 
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process. 

- assemblage of methods to new methods and finally to application programs 

for end-users. Implementation details should be handled by the 

methodbase system (e.g. calling sequences, type conversions). Method 

assemblage is the prime support function of the methodbase system. Meth

od assemblage should support 

the need to define an assembled method in which certain aspects can 

be left open e.g. the specific algorithm to be used for a defined 

purpose and storage place for inputs and results. In this case, these 

have to be filled in by the end-user before execution. 

incorporation of database access methods, which leads to the specific 

requirement to check the integrity of using the database, e.g. to 

check that results of a computation are stored with identifications 

consistent with those of the inputs. Moreover means to ensure the 

correct state of the database (open or closed) are needed. 

incorporation of user interaction methods. Attention should be paid 

to standard ways of data entry by users, allowing short specifica

tions, and to the requirement that certain programs have to be exe

cuted in batch as well as interactively. This might lead to two dif

ferent versions generated for each program or to a systematic subdi

vision of programs in interactive and batch sections. 

An important requirement for methods assemblage is that versions of 

assembled methods can be identified, with a precise specification of the 

methods used in a particular version. It shall always be possible to 

trace the program version that produced certain results. 

- checking of consistency of assembled methods at construction or at 

runtime. Aside from the checks mentioned for database access methods, 

checks on dataflow and pre- and postconditions on methods can be per

formed. These checks cannot be exhaustive, but contribute to faster de

velopment of correct programs. 

- execution of methods, controlled in a language with the end-users termi

nology. Specific support for monitoring execution and collection of exe

cution information (again in end-users terminology!) is asked for. 

The technical concept of the methodbase system is depicted in Fig. 3. 

The different user types will access the components as follows: 

- the application programmer will access the methodbase via the method 

manager to store new methods; 
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Fig. 3 Concept of MEBAS 

- the system designer will access the methodbase via the method manager to 

assemble methods, creating programs for end-user execution; 



the end user will access the programs via the executive in order to 

bring them into execution. 
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For the implementation of a methodbase system in Fortran use is made of 

the characteristics of promising new programming languages such as Ada. 

Availability of the concerning compilers will decrease development time 

considerably. 

In a distributed computer- and terminal network methodbases will be 

needed in different computers (workstations, mainframes,etc). In view of 

the expected effort, implementation of a distributed methodbase is not 

considered for the near future by NLR. However, co-existence of 

methodbases, in which a methodbase administrates information on methods 

available (in method bases) on other computers in the network, will enable 

local consultation of remote methods. The first implementation is a 

stand-alone methodbase. Support for distributed computer facilities will 

be one of the directions of further development. 

Although MEBAS is in its initial stage of operation, at NLR a wide 

range of application groups have accepted the approach and are contribut

ing in the further evolution of the facilities (Boerstoel,1986; Van den 

Dam,1985). 

6. USER INTERFACE 

The user interface of an information system determines to a large 

extent the acceptation of the system by its users. A user interface 

component in the infrastructure for CAE shall satisfy the following 

requirements: 

- ~upport the application developers in the development of the user inter

face for applications by handling syntax checking and error recovery; 

- support the user by providing a flexible style of interaction and by 

additional facilities as help information and abbreviation of input; 

- provide uniformity of interaction over a range of applications by 

standardizing the structure of the input syntax and the special commands 

to request help information or to read alternate input. 

At NLR a user interaction facility, called COLAS, has been taken in opera

tional use. The properties and the technical concept of COLAS will be ex

plained in the sequel. 

Basic properties of a user interface are the master/slave relation

ship between user and information system and the style of interaction, 
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both discussed in the following paragraphs. 

The master in an interaction is the one determining the sequence of 

actions. With the information system as the master, the user supplies re

quested data. The sequence of actions and data requests are determined by 

the information system. With the user as master, the user selects an ac

tion and provides additional data. The information system performs the 

indicated action. An information system designed to have the user as ma

ster, provides better control for the user, possibly leading to faster 

interaction. However, it may require more user experience with the infor

mation system. 

The interaction between the user and the COLAS interaction System is 

based on the principle that the user serves as the master in the 

interaction, but COLAS allows the developer to structure the interaction 

to provide more guidance to the users. In COLAS allowed actions (commands) 

are grouped in command sets, of which several may be defined for one 

application program. The application program selects the command set for 

which the user can supply an entry. The user selects the command with its 

parameters. The two extreme uses of this concept are: 

- only one command is defined in each command set, making the user the 

slave in the interaction; 

only one command set with all possible commands is defined, making the 

user the master in the interaction. 

The developer will try to find a compromise between these two extremes, in 

order to deliver a user interaction offering reasonable guidance and flex

ibility for its users. 

There are a number of basic interaction styles, which generally are 

mixed in a particular interaction. The three styles are: 

- question/answer style. The information system presents a question which 

is to be answered by the user. This style is appropriate for an interac

tion with the information system as master or for recovery of erroneous 

or missing input. 

- menu style. The information system presents a list of allowed answers 

and the user has to indicate a selection. In this way the user can se

lect actions to be performed or (sets of) input items to be entered or 

changed subsequently. 

- command style. The information system presents a prompt. The user answer 

with an input sentence, indicating the required action as well as input 

data. The syntax of the input sentence could be formalized or based on 
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natural language. 

For the different interaction styles the command style may allow the 

largest speed of interaction, again requiring more user experience. Users 

regularly using an information system generally prefer this style for 

frequently used actions, but do require more support for less frequently 

used actions. 

The basic interaction style in COLAS is command driven. The application 

developer defines names for commands and parameters and types of parame

ters. The remainder of the syntax is standardized for all applications to 

provide a uniform view for users of these applications. The command set 

approach makes a basic kind of menu interaction already possible. In the 

evolution of COLAS, an extension to a menu based interaction is defined. 

It is found that the command sets used in COLAS, can be mapped to a menu 

style interaction as well as to a command style interaction, without a 

need to change the way application programs access the interaction system. 

COLAS 
DEFINITION 

MODULE 

COLAS 
LANGUAGE 

INFORMATION 
FILE 

APPLICATION 
PROGRAM 

COLAS 
INTERACTION 

SYSTEM 

Fig. 4 Technical concept of the user interface facility COLAS 

SESSION 
INFORMATION 

FILE 

The technical concept of COLAS (Fig. 4) is based on the philosophy, 

to keep the interaction separated from the processing functions in the 

application program. Therefore the interaction is defined in the COLAS 

Definition Module (CDM). As a consequence changes are allowed that do not 

affect the application program, such as changes in command and parameter 

names, defaults, prompts, help information and message formats. In this 

way changing an entire interaction from English to Dutch typically 
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requires a one day effort. The interaction definition for a specific 

application is stored in the COIAS Language Information File (CLIF). It is 

possible to retain a Session Information File (SIF) for each user after 

leaving the program. This file contains most recently entered parameter 

and message items and can be used for subsequent program executions. 

To serve the separation of the user interface development from the 

application program development an extension to COIAS is currently used as 

a prototype system. The prototype system usage generates an interaction 

routine for each command set, using the interaction description given by 

the developer. This routine handles the interaction and directly calls 

appropriate application routines with the command parameters provided as 

actual arguments with the call. In this way the application routines do 

not handle any aspects of the interaction, and the interface between the 

user interaction routines and the application program is application 

specific. In this concept the master/slave relationship is directly 

reflected in the program structure. The prototype system also generates 

stubs for all required application routines, enabling immediate evaluation 

of the user interaction. 

7. COMPUTER AND TERMINAL NETWORK 

NLR is located at two geographically separated sites at a distance of 

100 km. In the beginning of the seventies it was decided to serve both 

sites with one mainframe computer with a communication front-end in one 

site and a remote communication controller in the other site. The computer 

and terminal network as evolved to its current state is depicted in Fig. 

5. The alternative in the decision process was a set of large 

minicomputers for specialized applications. Both alternatives were set up 

in such a way that investment costs where the same (Loeve, 1976). 

The main reason for the choice made, is that only with this configu

ration NLR could afford a mainframe with sufficient processing power for 

advanced computational fluid mechanics and extensive data processing for 

wind tunnel tests, flight tests and integrated theoretical/experimental 

research. At the moment the reasoning still remains the same. Although 

computers have become cheaper, for competitive reasons requirements for 

power of processing have increased accordingly. 

Moreover the growth potential in computer capacity needed for 

increase of the number of applications at NLR could also be provided by a 
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mainframe. For example the number of terminals for interactive 

applications of the central computer is increasing continuously. Storage 

capacity of the computer, the transfer capacity between computer and 

on-line storage devices, and central memory size still can be adapted 

continuously, to guarantee acceptable response times under these 

circumstances. The selection criteria for the mainframe stress this growth 

potential. 

In addition to economic aspects of hardware usage, there also exists 

an urgent need for re-use of software. This not only concerns re-use in 

successive phases of incremental system development, but also re-use in 

applications of other disciplines whenever possible. An example is the use 
' of information management. The development of EDIPAS described in chapter 

3 and the large number of applications at NLR, would have been impossible 

to organize without one central mainframe for all large scale computations 

and dataprocessing. A physical centralized information management also 

facilitates multi-disciplinary design activities and the development of 

CAE applications to support those activities. As a result of these 

considerations the policy of NLR for the time being is to maintain central 

computer facilities as powerful as possible from the point of view of in

vested capital. Into line with this policy, NLR decided to add to the 

existing mainframe computer power a supercomputer, in order to obtain 

sufficient power to support new simulation methods in the area of 

computational physics. The performance of existing supercomputers related 

to the mainframe at NLR is shown in Fig. 6, which was modified after 

Fernbach, 1985. 

The supercomputer selected by NLR (NEC SX2) will be installed end 

1987, as integrated part of the NLR computer facilities. In that 

situation, the supercomputer is foreseen as the extended mainframe 

computer for fast simulations in computational physics. The general 

purpose mainframe itself is used for data management and data evaluation, 

interactive applications, and the moderate batch activities. Access to the 
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supercomputer is possible via a high speed data link from the general 

purpose mainframe, and for specific applications from minicomputers or 

workstations. 

As was already mentioned in Loeve, 1976, local computing facilities 

shall be installed for all processing with real time aspects such as data 

acquisition in experimental facilities. In the NLR computer and terminal 

network a large number of local minis is integrated in facilities for 

experiments that can be regarded as information sources for the 

centralized information management system. 

In recent years personal computers have been introduced as part of 

the network mainly for administrative applications (document processing, 

project planning activities). Communication especially between both NLR 

sites is realized via the network. 

The strong centralization of computer power imposes requirements with 

respect to availability of the central system to the end users. To 

increase this availability a computer is implemented in the network for 

development of system software (operating system upgrading and 

communication software development). The development system of course had 

to be compatible with the central computer. In view of this, one of the 

criteria for selection of the mainframe at NLR always is that the computer 

has to form part of a series of computers with a long compatible growth 

path. The development computer also serves as a back up for a small number 

of critical applications such as flight test programs of the Dutch 

national industry. Special measures are taken for these applications to 

make sure that up to date information for processing of data is available 

for back up purposes. Back-up facilities for the supercomputer except for 

the general purpose mainframe, is not foreseen. 

Introduction of workstations based on powerful microprocessors is one 

of the means considered to increase throughput of the network for activi

ties with a high degree of interaction. However, it appears that making 

use of growth potential of the central mainframe (main memory, disc con

trollers, discs) is much more cost effective than introduction of the 
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workstations for the organization as a whole. 

As far as general purpose software is concerned, use is made of com

mercially available products as much as possible. In the past, however, 

severe limitations in the applicability of commercial communication hard

ware and software have forced NLR to develop dedicated software for the 

communication controllers in the network. The software is based on the 

finite state approach. Each connection of terminals and computers in the 

network is considered as a user-server relation. Between the systems for 

which this relation is initiated a virtual path is determined in the com

munication concept (V.d. Bosch et al., 1985). 

The usage of a supercomputer requires high volumes of data to be 

transfered, due to the amount of data that is necessary to feed the compu

tational methods or that are produced as result. As a consequence the 

datacommunications need a considerable upgrade in possible transfer speed. 

Investigation of possible solutions learned, that standard facilities in 

the multi-supplier situation of NLR is still not possible. The planned 

situation comprises a proprietary Local Area Network for high volume data 

transmission (file transfer) in combination with the existing network for 

data transfer. for interactive usage. 

Summarizing it can be stated that when technical and psychological 

equal access from all parts of an organization to a central computer is 

guaranteed for information processing and computations, a sound basis is 

formed for an infrastructure that can serve as the central nerve system of 

a multi-disciplinary organization. In practice it appears to lead to a 

manageable system with maximal possibilities for re-use of software. The 

benefits of a centralized approach can be maintained also when local 

computers are introduced for real time aspects if these are connected to 

the central system to guarantee that generated information can be made 

available to all whom it may concern. For economic and organizational 

reasons introduction of intelligent workstations has to be treated 

carefully. 

8. CONCLUSIONS 

An infrastructure for information processing is in operation at the 

National Aerospace Laboratory NLR. This evolutionary developed infrastruc

ture is based on general applicable requirements. As a consequence the 

applications built with this infrastructure, such as simulation methods 
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based on mathematical software, can be used to support industrial research 

and product innovation, and can be introduced in other organizations. 

The main components of the infrastructure are facilities for data 

management, method management, and user interfaces, all implemented on a 

computer- and terminal network. The facilities for data management and 

user interfaces have already gained wide spread acceptance by application 

system developers and end users. The first version of the facilities for 

method management is available and will be developed evolutionary. The 

computer and terminal network, in which a supercomputer gives access to 

data and methods from virtually any location at both sites of NLR. This 

network and the software components are upgraded continuously with evolv

ing user requirements and increasing usage. 
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