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INTRODUCTION 

The basic motivation underlying this monograph is two-fold. Firstly, 

it is thought that the framework of mathematical system, theory can contri

bute to the modelling of dynamical systems as encountered in physics. Se

condly, it is thought that system (and control) theory can benefit from a 

closer study of the natural structures possessed by physical systems. 

With respect to the first aspect we note that the commonly used axio

matic frameworks in physics are not really aimed to deal with external in

fluences exerted on a dynamical system. Indeed, normally attention is con

fined to the description of isolated systems or systems undergoing an ex

ternal force that is a function of the state of the system and which there-

fore can be incorporated into the system. A paradigmatic example are conser

vative mechanical systems where one supposes that the external forces can 

be derived from a potential function. It is felt that especially in appli

cations this restriction to essentially isolated systems entails quite a 

loss of generality (see BROCKETT (1977), WILLEMS (1979)). 

In mathematical syste~ theory the approach to describing dynamical 

systems has been entirely different. The possibility of exerting forces on 

a system is a basic notion and a dynamical system is above all viewed as an 

entity which transforms input signals (for instance external forces) into 

output signals. Since system theory finds its roots in engineering this 

set-up is quite natural if one for example identifies inputs with control 

variables and outputs with observations. 

The dichotomy between the approach of (mathematical) physics and of 

system theory, grosso modo between the description of a dynamical system 

by a set of ordinary differential equations, or by an input-output map, is, 

however, not as large as one may think. This is due to the fact that during 

the last decades mathematical system theory has recognized the notion of 

state as a central issue in the modelling of dynamical systems. !he state 

of a system at every moment contains all the information about the past 

input-output behavior which is relevant for the future input-output behavior. 

Consequently, the time evolution of the state due to initial conditions and 

external inputs has become crucial in the system theoretic description of 

a dynamical system. An important offshoot of this development is the fact 

that one -has reached a clear and precise picture of the concept of state. 

The state has to be rich enough to explain the input-output behavior, but 
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on the other hand it is natural to look for a "minimal" state explaining the 

external behavior. This issue of minimality, together with the question of 

uniqueness of a state and its constructibility from input-output data has 

given rise to an elaborate theory about the notion of state. We feel that 

system theors can therefore contribute to a more fundamental formulation of 

the concept of state in physics. Indeed a system theorist feels ill at ease 

at the often unprecise and loose use of the word state in physics (e.g. in 

thermodynamics). Since both physicist and system theorist are convinced of 

the importance of the concept of state, a rapprochement between system 

theory and physics should be fruitful. 

With respect to the second aspect - the benefits for system theory stem

ming from a closer study of the physical structure of systems - we note that 

the study of general and especially linear systems has predominated the 

development of system theory over the last decades. As a consequence there 

has been a tendendy to neglect the natural structures imposed by the physi

cal character of a system. Furthermore some of the constructions used in 

control theory do not have a clear physical interpretation when applied to 

systems with a specific physical structure. Apart from being unsatisfactory 

from a theoretical point of view this may be also a serious drawback in 

applications. Especially for the study of nonlinear (control) systems it 

seems advantageous to use explicitly the physical structure of the system 

under consideration (see CROUCH(l98!)). 

The first two chapters of this monograph are devoted to general system theo

retic models for the description and analysis of physical systems. The main 

characteristic is that the usual framework of mathematical system theory is 

enlarged by not requiring a priori that the external variables are split 

into inputs (causes) and outputs (effects). As is argued in WILLEMS (1979) 

the identification of which external variables constitute causes and which 

effects,is often not immediately clear in physical systems and should be 

regarded as a representation question. This results in a general system 

theoretic framework for physical systems, where "physical" is interpreted 

in a very broad sense. Section I.I gives some intuitive background for this 

framework, and Section 1.2 is devoted to a study of these ideas for set

theoretic dynamical systems. Especially the notion of state and related 

issues become very transparent in this set-theoretic context. In Chapter 2 

we deal with two important classes of systems: finite dimensional linear and 

(smooth) nonlinear systems. With respect to linear systems we concentrate 
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mainly on a "geometric" description of the external behavior in the "fre

quency domain". Using an idea of Martin & Hermann we associate to a linear 

system a vector bundle over the complex projective line, whose invariants 

can be identified with the controllability indices. Furthermore there is 

another, dual, vector bundle, whose invariants are the observability indices. 

The second part of Chapter 2 contains a unified treatment of nonlinear sys

tems with external variables from a differential geometric point of view, 

with particular emphasis on the use of distributions and foliations as a 

generalization of the "geometric (state space) theory" of linear systems. 

In Section 2.2.4 we present a new approach to the nonlinear realization 

problem. 

The central piece of the monograph is Chapter 3 where we treat Hamil

tonian systems from a system theoretic point of view. After the general 

Chapters I and 2 this chapter is the cornerstone for the desired rapproche

ment between system theory and physics. We argue that especially in the 

case of Hamiltonian systems, mathematical system theory can contribute to 

the formalization of the notion of external force. If we want to regard 

Newton's second law and the Euler-Lagrange equations with external forces 

as basic laws of mechanics,, and external work as a primary concept, then 

the framework of (Hamiltonian) vectorfields on (symplectic) manifolds is 

clearly inadequate. We note that historically the science of mechanics has 

been the paradigm of a physical science where external forces figure in a 

prominent way, and that only in the last century the external forces have 

been removed from the Euler-Lagrange and Hamilton:equations. It will 

appear that Hamiltonian systems with external forces and observations have 

nice system theoretic properties, and that especially nonlinear Hamiltonian 

systems form an elegant subclass of the set of all nonlinear systems. We 

remark that the system theoretic interests in Hamiltonian systems are not 

restricted to physical systems, since Hamiltonian systems come up naturally 

in various places such as optimal control, filtering, signal processing etc. 

Another contribution of system theory to the analysis of physical sys

tems is the treatment of symmetries and conservation laws as given in Chap

ter 4. From a system theoretic point of view it is natural to start with a 

definition of external, symmetries, i.e. symmetries of the external behavior 

of a system. Then the question arises whether and how such an external sym

metry is related to an internal, symmetry, i.e. a symmetry in the dynamics 

of the state. The system theoretic definition of a conservation law is 

also more general than the usual notion of a function that remains constant 

along the trajectories of the system. For in-
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stance, conservation of energy means that the change in the amount of ener

gy stored in the system is equal to the externally supplied energy (e.g. 

by external work). We note that this generalized conception of conservation 

law is often implicitly used in physics, think for instance of the use of 

conservation of momentum and kinetic energy by collisions of particles. 

The major result we obtain is an extension .of a classical theorem of Noether 

and can be expressed by saying that also in this generalized setting a 

symmetry for a Hamiltonian system corresponds to a conservation law and 

vice versa. The second part of Chapter 4 is devoted to the nacion of time

reversibility. Again, time-reversibility is firstly defined in terms of the 

external behavior of a system. In fact the definition is particularly ap

pealing since we only require that the external behavior, i.e. the set of 

possible external trajectories, is invariant under change of time direction. 

To this external time-reversibility there corresponds a dynamic time-rever

sibility of the evolution of the state. Roughly speaking, the set of state 

trajectories is invariant under time-reversal, modulo change of sign of the 

"velocities". When applied to Hamiltonian systems we arrive at the impor

tant class of time-reversible Hamiltonian systems, where the internal ener

gy is the sum of a kinetic and a potential energy term. Furthermore for 

linear time-reversible Hamiltonian systems we are able to solve the so

called synthesis problem. We give a procedure to construct a time-reversible 

Hamiltonian system with a specified external behavior. The required elements 

are (in an electrical network context) capacitors, inductors and transfor

mers, and in mechanical context masses, springs and (for small deviations) 

levers, or another mechanical analogue of transformers. 

Chapter 5 is devoted to a class of physical systems which is very si

milar to the class of Hamiltonian systems on the level of definition, na

mely gradient systems. The characteristic properties of gradient systems 

are however less clear than in the case of Hamiltonian systems. This is 

mirrored as it were in the fact that some of the system theoretic results 

which we proved for Hamiltonian systems are no longer true for nonlinear 

gradient systems. Chapter 5 therefore shows that Hamiltonian systems form 

indeed a particularly nice subclass of (nonlinear) systems and that from a 

system theoretic point of view gradient systems are more complex than Ha

miltonian systems. 

Finally in Chapter 6 we give some initial ideas about the application 

of the theory of Hamiltonian systems to the area of (nonlinear) optimal 

control. 
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We have confined ourselves in this monograph to the treatment of fun

damental system theoretic aspects of physical and in particular Hamiltonian 

and gradient systems. To return to the beginning of this Introduction we 

believe that the systematic study of systems with a given physical struc

ture is also of help for the treatment of control and synthesis problems 

for such systems. Indeed this remains a large area for further research. 

Adviaes and Wa:Pnings for the reader. 

Although this monograph has a pyramidical structure it is not neces

sary to read everything from page to the end at a stretch. Especially Chap

ter 2 may be for some readers a bottleneck which can be better postponed 

till after reading Chapters 3, 4 and 5. Furthermore it is recognized 

that the interests of the readers may differ considerably. We have there

fore distinguished between three categories of readers: 

I. The reader primarily interested in Hamiltonian and gradient systems 

is advised to read Section I.I, to skim over Section 1.2 and to take a 

brief glance at the first definitions of Sections 2.1 and 2.2. Then one 

should start with the reading of Chapter 3 and continue with Chapters 4 

and 5. Occasionally one will notice some references to especially Chapter 

2 to which one can return if necessary. 

'2. For the reader who is especially interested in nonlinear system theory, 

the real reading starts in Section 2.2, with a rather elaborate treatment 

of nonlinear systems including controlled invariance and a new approach to 

the nonlinear realization problem, and can be continued to the end (with 

possible deletion of the "linear" sections). 

3. The reader who wants to confine him or herself to the treatment of the 

material in a mainly linear context, is advised to read Chapter I, Section 

2.1 of Chapter 2 and Sections 3.1, 3.1.4, 3.2.2, 3.5, 3.5.1, 4.1.3, 4.2.3, 

4.2,4, 5,1 and 5.2.2, 





CHAPTER I 

SYSTEMS WITH EXTERNAL VARIABLES 

I. I. Some remarks on the description of physical systems 

In this section we want to give some intuitive background and motiva

tion for the mathematical framework that we will use in the rest of this 

monograph for the description of physical systems. In first instance, the 

word "physical" can be interpreted in a broad sense. It means that we do 

not want to enter the possible axiomatics of some "general system theory", 

and that we confine ourselves on the intuitive level to systems which are 

normally considered in disciplines as physics, chemistry and parts of bio

logy and economics. Later on, in Chapters 3, 4 and 5 "physical" will be 

interpreted in a much more narrow sense (i.e. Hamiltonian and gradient 

systems). 

Very roughly speakin&, a mathematical description of a physical sys

tem consists of a set of variables which in a certain way represent the 

"empirical characteristics" of the system. Moreover, the mathematical model 

should give (preferably quantitative) relationships between these variables. 

Especially important is usually the description of the dynamical behavior 

of the system, i.e. the way the system evolves in time. For this purpose 

the variables are seen as functions of time and the mathematical model has 

to give information about how these variables evolve. When we talk here 

about the description or systems, we will mainly be referring to this dyna

mical behavior. 

Systems with external variables 

What kind of procedure should we follow in trying to describe a physical 

system? The first step we have to make is to look at the system as an entity 

distinguished from the outside world. We have to make clear what belongs to 

the system and what we do not want to include in it. After this separation 

between system and environment has been accomplished, we have, roughly 

speaking, the following three possibilities to describe the system. 

The first one is that we consider the system as actually isolated 

from the outside world, or at least that for all purposes of accuracy we may 
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regard the system as isolated. The paradigmatic example of this possibili

ty is our solar system. Indeed this can be regarded as a world on its own. 

However, it is hard to find down-to-earth and real (i.e. not idealized) 

systems which have this same strictly isolated behavior although it.may 

be in many instances a reasonable assumption. 

A second possibility is to regard the part of the outside world which 

may influence the system under consideration as nearly constant in time 

when compared to the dynamical behavior of our system (if it is really 

constant we could have described the system as isolated). The usual proce

dure is then to include into the mathematical model a set of parameters 

which represent this external influence and are supposed to be slowly vary

ing in time. Indeed, a large part of mathematics dealing with the descrip

tion of (dynamical) systems is at least partly concerned with or motivated 

by this type of modelling. We mention perturbation theory, bifurcation 

theory and the theory of structural stability. 

The third possibility is to try to really include the connections of 

the system with the outside world into the description of the system. The 

system is therefore, so to say, not regarded as an isolated "box", but as 

a "box" together with the ·"wires" connecting it to the rest of the world. 

This third possibility we will call the system theoretic description of a 

physical system. Of course this goes along with a changing point of view. 

One does not try to isolate the system "at all costs", but one is especial

ly interested in the continuous interplay of the system and its environment. 

Since this environment is considered as "unknown", we have to study the set 

of all dynamical behaviors wi1ich can occur at the boundary of the system 

(the wires of the box), i.e. all behaviors which are compatible with the 

system under consideration. This whole set is called the external behavior 

of the system. We should, however, mention that for real systems there may 

be a very large amount of connections with the outside world, where as also 

in a system theoretic description we will normally only treat a small num

ber of them and neglect the rest. Hence the same type of questions as 

arising in the first and second possibility also exists in a system theo

retic description. However, we have at least on a conceptual level a way to 

deal with the influences from ·and on the outside world. This seems to be 

an important advantage of the third possibility. 

There is another argument in favor of the system theoretic description. 

In disciplines like physics and chemistry it has been a very successful 

approach to consider a system as composed of smaller and simpler subsystems 
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which are much easier to describe. Indeed the success story of physics 

seems to be partly based on its concentration on the study of simple and 

idealized sys'tems. Afterwards the large real system can then be "understood" 

in terms of the simple systems which constitute the large system. In fact 

in celestial mechanics a breakthrough, made by Newton, was to consider the 

solar system as composed of the heavenly bodies, each forming a system on 

its own, governed by a simple law (Newton's second law), and undergoing 

forces from the other systems and on its turn exerting forces on them. This 

approach, called "tearing", gives us the system as a (sometimes complicated) 

interconnection of all kinds of relatively simple systems. To study the 

whole system we can study these simple systems separately. But then we 

should also include in their description their external behavior (i.e. the 

way in which they can influence and can be influenced by the outside world), 

since this will be needed in order to determine the behavior of the whole 

system. The procedure is thus as follows. Tear the system into simple sub

systems. Study the systems together with their external behavior. Then inter

connect the simple systems again with each other. 

For example, given an electrical circuit, we can first study the behavior 

of its elements (capacitor,s, inductances, resistances, and so on) out of 

which the circuit is composed. Then by interconnecting these elements in 

accordance with Kirchhoff's laws one can obtain the original circuit again. 

This brings us to another point in favor of the system theoretic ap

proach, which has its roots in technical applications and engineering. In

stead of studying the behavior of a complicated system by tearing it, we 

go the other way. around and we want to aonstruat a system with a specified 

behavior, out of simple building blocks. This leads to the so-called syn

thesis problem: whiah building blocks should we use and how should we inter

connect them in order to achieve a system with a specified behavior. Clear

ly to tackle this problem we need a theory of systems which also includes 

their external behavior. 

A more general argument for the system theoretic description, also 

originating from engineering, has to do with the attitude to consider a 

system as a deviae. Usually, this goes together with the so-called input

output framework, to which we return later on. One looks at a system as a 

device which transforms inputs (controls) into outputs. The external be

havior of the device is exactly this relationship between input functions 

and output functions. Clearly, this external behavior of the device is 
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what really counts in applications. 

Sunnnarizing, we want to study systems which may be connected with 

other systems. Therefore, we consider the system as separated from the out

side world, but we also incorporate in its description the external be

havior of the system. We will assume that this external behavior is given 

by specifying the possible evolutions in time of a set of variables, which 

we will call the external va.riables. 

The notion of state 

Apart from connections with other systems there is still another, may

be even more fundamental reason to study the external behavior of a system. 

This has to do with the notion of state. Intuitively the state of a system 

should contain the whole memory of the system. Knowledge of the system at a 

certain instance of time, together with the knowledge of all future external 

influences should totally determine the future dynamical behavior of the 

system. Hence, in the case that the system is isolated, the state of the 

system is all one needs to know in order to predict the future (single) be

havior of the system. The usual mathematical structure for this last situa

tion is a set of first-order differential equations in the state variables. 

Partial differential equations can be seen as first-order differential equa

tions on an infinite-dimensional state space, and many other mathematical 

descriptions are also variations on this theme. 

Of course, this type of modelling presupposes that one knows which 

variables constitute the state of the system. In many situations, however, 

a physical system is actually given by a set of "phenomenological" laws, 

describing the external behavior of the system and not involving the state 

variables. A simple example is the law for ideal gases PV = constant, which 

gives the relation between the two external variables P (pressure) and V 

(volume). A state of the system consists of the positions and velocities of 

all particles involved. Another simple example is Newton's second law 

F = mq which is a dynamical compatibility relation between the two external 

variables F (force) and q (position) as functions of time. The state of this 

system consists of the position and the velocity, or the position and the 

momentum. Hence in this case the state can be very easily constructed from 

the knowledge of the external variables as functions of time, but does not 

explicitely enter the law F = mq. We can also consider a (large) electrical 
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network, described by compatibility relations on the voltages and currents 

on some wires emanating from the network. These compatibility relations do 

not have to involve the state variables, which are the voltages or currents 

of (a subset of) the circuit elements inside the network. We see that there 

can be two reasons .for giving the system as a set of compatibility relations 

("laws") on the external variables, not involving the state variables: 

(i) The state of the system can be very complex, while the external behav

ior is (relatively) simple. 

(ii) The state of the system is not accessible to us; we cannot measure what 

is going on inside the system. 

This second reason goes along with the so-called "black-box" description of 

a system. We can only observe (or we only care about) what comes into the 

box and what goes out of it. From an experimental point of view it can be 

argued that descriptions of physical systems are in first instance always 

"black box" descriptions. 

Concluding we can say that in many cases the external behavior of a 

system should be actually taken as the starting point for the description 

of a system. If we want to know the state of the system we should be able 

to deduce it from the observations of the external behavior. This is in 

system theory called the Realization Problem: How do we construct from the 

external behavior 

(i) a set of variables which is rich enough to be called the state of the 

system, and 

(ii) the equations governing the evolution of the state? 

Since we only want to construct a state which "explains" the external be

havior it is of course possible that we end up with a state which does not 

correspond to the "rea,l physical state" of the system. In the case of a 

mechanical system we might take instead of the natural state, i.e. the 

positions and velocities (or momenta) of the particles another set of vari

ables which is in one-to-one correspondence with it (Notice that we already 

mentioned two possibilities for a natural state: positions and velocities, 

or positions and momenta). For thermodynamic systems it is always possible 

to find a set of variables which is much smaller than the set of the posi

tions and velocities of all the· particles involved, but which on a more axio

matic level can be called the state since it contains all the memory about 

the external behavior. An extreme example is an ideal gas satisfying PV = 

constant. This system does not have memory, and hence we do not need a state. 

The "real physical state" will be non-minimal, a notion we will explain 
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later on. Of course the loss of physical interpretation of the state varia

bles which may occur can be a serious drawback for the theory. In the case 

of Hamiltonian and gradient systems (see Chapters 3 and 5) we will try to 

combine these notions of a "minimal" and a "physical" state, to end up with 

a minimal state which is also physically interpretable. The approach which 

will be taken can be compared with the use of generalized coordinates in 

classical mechanics. 

Finally we remark that we restrict ourselves to the description of 

deterministic systems. In many cases it is of course necessary to take into 

account uncertainty about the observational data and the parameters of our 

models, and "identification" will be a central issue. In this context we 

remark that also in the case of systems with external variables we need a 

theory which gives information about the validity of our mathematical models, 

if some parameters are subject to uncertainty (this has much to do with the 

notion of structural stability). 

The input-output point of view 

We now look at a special, but important case of a system with external vari

ables. We suppose that it is possible to split the set of external variables 

into two sets, such that the external behavior of the system consists of 

"arbitrary" (apart from reasonable smoothness assumptions) functions of time 

in the first set of variables and such that the functions of time in the 

second set of variables are uniquely determined by the functions in the 

first set. We call the variables in the first set the inputs and the varia

bles in the second set the outputs. Moreover we suppose that the output at 

every time is already determined by the corresponding input function up to 

this time. 

We have thus introduced a non-anticipating relationship among the ex

ternal variables, and we can interpret the inputs as causes and the outputs 

as effects. Pictorially we have specified the relation 

system ~ external variables 

into a map 

inputs outputs 
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where the arrows stand for the "causal" relationship. This type of system 

with external variables is called an input-output system, and is the usual 

starting point in system (and control) theory. Whereas in the case of age

neral system with external variables we stress the idea of the existence of 

dynamical compatibility relations among the external variables, it is in 

the input-output case more natural to see the system as something which 

transforms, or maps, input functions into output functions. This point of 

view is in many instances very useful, especially for control purposes, and 

we will use it quite often in the sequel. 

However, we like to stress that for physical systems the input-output 
point of view has disadvantages since it is a) often not a priori clear 

which external variables are the inputs, and which are the outputs, b) some

times undesirable or even illogical to distinguish between inputs and out

puts, c) possible that a global separation of external variables into inputs 

and outputs cannot be achiev.ed (for instance in the case of nonlinear sys

tems, see Chapter 2.2), and d) the identification of what are inputs and what 

are outputs and the corresponding causal structure that is induced seems to 

be itself a modeling question. 

Consider for example an electrical network with some external currents 

and voltages. It is not a priori clear whether the currents should be treat

ed as inputs and the voltages as outputs, or vice versa. Moreover for the 

description of the dynamical behavior of the network it is not necessary to 

make this distinction between inputs and outputs, so why impose this extra 

structure? Finally it is then a theorem, which can be proved within a general 

framework of (passive) networks with the voltages and currents of the ex

ternal ports as external variables, that there always exists an input-out

put representation. However, this input-output representation is in general 

hybrid, which means that the voltages of a part of the external ports and 

the currents of the other ports are the inputs and the remaining external 

voltages and currents are the outputs. 

1.2. Set-theoretic mathematical models 

In this section we give a mathematical framework for the description 

of physical systems, which constitutes a formal setting for the intuitive 

ideas sketched before in Section I.I. Such a framework will be given here 

on a purely set-theoretical level, and only later on in Chapter 2 we add 

more structure, e.g. differentiability and linearity, to this framework. 
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This section closely follows the lines of WILLEMS (1979). 

DEFINITION I .'I Let W be a set, called the set of external variables • (i.e. 

the set in which the external variables take their values). An external dy

ru:anical system ,; on W is a subset of WJR (all functions from JR to W). 
e 

So an external dynamical system simply consists of a set of functions from 

the time-axis JR to W, or a set of trajectories in W. The idea is that W 

consists of the variables which are being modelled and that ,:e expresses 

the (physical) laws among them, i.e. the compatibility relations which the 

different variables, in order for them to exist simultaneously, need to 

satisfy. 

We will only consider (for simplicity) time-invariant systems. Intui

tively these are systems which are homogeneous in time. Formally, we require 

that sT,:e = ,:e for all T E JR with ST the shift operator (STw) (t) := w(t-T). 

To define the state of a system we need to introduce some notions about re

lations. Let R be a relation on (i.e. a subset of) AxB, with A and B sets. 

We define RA as the projection of R on A and RB as the projection of R on B. 

The relation R is said to be a product relation if R = RA x RB. In this case 

we say that Risa rectangle with respect to A and B. If (x 1,x2) ER, with 

x 1 E A and x2 E B, and R is a rectangle, x 1 and x2 are independent in a set 

theoretical sense. Now let R be a relation on (a subset of) Ax Bx C. We 

call R{x =b}:= {(x 1,x3)1(x 1,b,x3 ) E R}the relation R conditioned by {x2=b}. 
2 

We say that x 1 and x3 are independent given x2 , or that x2 splits x 1 and x3 , 

if, for all b E .B, R{x =b} is a product relation on Ax C. These notions 
2 

can be easily generalized to relations on sets of the form IT A., with I an 
iEI l. 

1arbitrary index set, and we use them to give 

DEFINITION 1.2. Let W be the set of external variables and let X be a set 

called the state space. A dynamical system in state space form is defined 

as a subset t:. (i from "internal") of (XxW)lR which satisfies the axiom: 
l. 

x(tf splits {x(T),w(T) ;T<t} and {x(T),w(T);T~t} for every t E JR. 

We denote an element of (XXW)JR. by (x,w), with x: JR-+ X and w: JR -+ X. 

Then the axiom above is equivalent to: 

= 
T<t} 
T~t 



Notice that the above definition really formalizes the intuitive idea of 

state: it says that the present state is all one needs to know about the 

past in order' to be able to specify all possible future trajectories. 

DEFINITION 1.3 Let E. be a dynamical system in state space form on XxW. 
]. 

Then E := {wj3x such that 
e 

(x,w)EE.} is called its external behavior.We de-
1. 

note this by Ei=Ee. If Ee is given and if Ei is such that Ei=Ee' then 

E. is called a (state 
]. 

spaae) realization of E . 
e 
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Let w E WlR • Then w + and w denote the restrictions of w to (-00 ,0) and [0, 00 ) 

respectively. We write w = w- •li. The product • is called the concatenation 
]R - + 

product. Similarly we define for x EX , x and x. For a dynamical system 
- + + E we denote E := {w lwEE } and E := {w lwEE }. For a system in state e e e e e 

space form Ei with state space X we define 

E. (a}:= { (~.,w)EE -I x(O)=a} 
]. .]. 

E.-(a):= {(x-,ii)j(x,w)EE.(a)} 
]. ]. 

a € X 

E .+(a):= { (x+ ,li) I (x,w)EE. (a)} 
]. ]. 

Analogously we define 

E (a):= {wEW1Rl3x such that (x,w)EE. and x(O)=a} 
e l. 

E -(a):= {; lwEE (a)} 
e e 

E +(a):= {li lwEE (a)} 
e e 

Obviously E. = U E.(a), E = U E (a) and by the axiom of Definition 1.2, 
1. aiX 1. e aEX e 

E. (a) = E .- (a)• L+_ (a) and E (a) = E - (a)• E + (a) (with of course, 
1. 1. 1. e e e 

Ee- (a)•Ee+ (a):= {w1- •w2+ lw 1- €Ee- (a), w2+ €Ee+ (a)}, and Ei- (a)•Et (a) defined 

similarly). Therefore a realization allows one to write E , viewed as a sub-
(-oo 0) [0 oo) - e + 

set of the product set W ' W ' ,as a union U E (a)•E (a) of rec-
aEX e e 

tangular subsets. It can be seen that the converse also holds, i.e. a union 

of rectangular subsets forming Ee yields a realization of Ee, 

We now use these ideas in order to obtain some specific realizations 

of Ee. The producedure is based on a natural generalization of Nerode equi

valenae. This notion was originally defined in the context of input-output 

systems and we give the precise formulation of it later on when we treat in

put-output systems. 



+ 
Define the relation R on r by 

+ - + ~ 
{w 1R w2}: ==>{w 1 •w ELe= w2 •w ELe} 

+ - -
i.e. w1R w2 if w1 and w2 have equal futures. 

Now take X+:= r (mod R+) and define the state at time O corresponding to a 
e 

w Er to be the equivalence class (i.e. element of X+) to which w belongs. 
e 

Time invariance then allows one to define the whole state trajectory corre
+ 

sponding to this w. This defines a realization denoted by Li. 

Similarly we define for w1,w2 E re 

- - + + 
{w1R w2}: ==>{w •w1 ELe = w •w2 ELe} 

+ and w2 have equal pasts. 

Define analogously X-:= r (mod R-), and obtain as above a realization de-
e + + -

noted by r;. Furthermore we can define {w1R-w2}:= {w1R w2 and w1R w2} 

i.e. w1 and w2 have equal futures and pasts. The realization resulting from 

R± is denoted by r.±. 
l. 

The realizations constructed above are in some sense the canonical 

realizations. They also have the nice properties defined below. 

DEFINITION 1.4 A realization ri of re, with state space X, is called exter

nally induced if there exists a map f: r + X such that {(x,w)Er.} = 
e i 

{x(O)=f(w)}. It is called past (future) externally induced if there exists 

a map f :re + X (f+:re+ + X) such that {(x,w)di}={x(O)=f-(w-)} 

({x(O)=f+(w+)}). 

It is easy to see that 

nally induced and that 

is past externally induced, r. 
l. 

is externally induced. 

is future exter-

DEFINITION 1.5 A realization r. of r with state space Xis called minimal 
i e 

if the following conditions are satisfied: 

(i) there does not exist a subset X' c X consisting of more than one point 

such that U r (a) is a rectangle (as a subset of W(-oo,O).w[O,oo)). 
aEX' e 

(ii) there does not exist a subset X' c X, strictly smaller than X, such 

that r 
e 

U r (a). 
aEX 1 e 

Remark: If Li is externally induced, then condition (i) implies condition 

(ii). Proof: there exists f : r + X such that {(x,w)Er.} = {x(O)=f(w)}. 
e l. 

Suppose now that re U r (a), for X' c X. Then necessarily Im f c X'. 
aEX' e # 

However, this implies re(a) 

satisfied. 

0 Va E X\X' and hence condition (i) is not 
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Intuitively, minimality of a realization means that one cannot make 

the state space smaller, while retaining the same external behavior. It can 

be proven (see WILLEMS (1979)) that the two canonical realizations L: and 
i 

L. are minimal. 
i 

W 11 1 . . "' I "'.2 of "' . h . e ca two rea izations Li, Li Le wit respective state spaces 

x1 and x2 equivalent, denoted Lil Li2 , if there exists a bijection 

I 2 S : x1 + x2 such that { (x 1 ,w}di }= { (Sx 1 ,w)di } with (sx1) (t) := S(x 1 (t)). 

It would be very nice if we could prove that minimal realizations are unique, 

in the sense that if L .1 and L.2 are two minimal realizations of L then L •1 
• 2 i i. . e i 

is equivalent to Li • However, in general this is not true (counterexamples 

can be found in WILLEMS (1979)). The case that minimal realizations are in

deed unique can be characterized as follows. 

THEOREM 1.6 Let L be a time-invariant system. All minimal realizations of 
e 

Le are equivalent if and only if one of the following equivalent conditions 

holds 

(i) 

(ii) 

(iii) 

+ 
L L i i 

+ 
L. L L-;t 

i i 
R+ = R-

L~ is minimal 
i 

i 

(iv) 

(v) 

all 

There exists a realization L. of L with state space X such that for 
i e 

a' ,a" e: X w~th a' 'fa" it holds that L - (a') n L - (a") 0, and 
e e 

L+(a') n L+(a") = 0. 
e e 

Moreover, if all minimal realizations are equivalent they are all 

past and future externally induced. 

PROOF We first prove that conditions (i) to (v) are equivalent. It is easy 

to see that R + = R- = L .+ = L . and that L .+ = L. = L .+ = L. 
i i i i i i 

Therefore (i) ===- (ii) ===- (iii). (ii) ===- (iv) is trivial and we 

+ r-.. 
i 

prove that if L7 is minimal 
+ 

then L: = L. = L .+ • Because of the definition 
+ i 

of R-, every set L (a) with a 1c L / 
i i 

can be written as 

some 

implies Le (a) 

e i + 
U + L (x). Since L (a) is a rectangle and Li is minimal this 
xe:L: e e 

i + + 
Le(x) for one x e: L .- • Hence L .-

i i 

For the proof of (ii) ===- (v) we note that L .+ 
i 

Le can be written as 

+ 
L. 

i 

+ 
Similarly L .

i 

+ 

L. 
i 

Li if and only if 
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E 
e 

U B 
a.€A a. 

and with U B· 
a.€A a. 

E and 
e 

0 and B n B 
0.2 

U B + E +. Of 
O.€A a. e 

+ + = 0 for all a. 1 ~ € A, n B 0.2 
a. I 0.2 

union U B + as above course a •B 
a.€A a. a. 

defines a realization of E with state space A. Concluding (i)=(ii)= 
e 

(iii)=(iv)=(v). 

If all minimal realizations are equivalent then trivially condition (i) holds. 

We now prove that if conditions (iv) and (v) hold then an arbitrary realiza-
+ 

tionE. is equivalent to E.-. For this we only have to prove that E (a):= 
_ 1 + 1 + e 

E (a)•E (a) is a subset of an element of x-, for every a in the state space 
e e + ± 

of E., since by mini.nality of E .- this implies that E. ~ E. • Let now 
1 1 1 1 

w1 ,w2 € E (a). Since also w1- •w2+ € E (a) it follows that there is at least 
e + + e -+ + 

one element of Ee, i.e. w2 , such that w1 •w2 and w2 •w2 € Ee. 

Using the fact that E U B - •B + with B - and B + as above this implies 
e a.€A a. a. a. a. 

+ that w1R w2• Similarly we prove w1R w2• For the last statement we note that 
+ if all minimal realizations are equivalent they are all equivalent to E. and 

1 

E. which are past (respectively future) ·externally induced. D 
1 

As we saw in the pro~f, condition (v) in Theorem 1.6 is actually a con

dition on the structure of E, namely that E can be written as a union 
_ + _ e + e 

U B •B , where the B 'sand the B 's are non-overlapping. We can give 
a.€A a. a. a. a. 

some other useful characterizations for uniqueness of minimal realizations 

which are based on this observation: 

THEOREM 1.7 The following five conditions are equivalent: 

(i) 

(ii) 

E 
e 

U B 
a.€A a. 

+ 
•B a. 

a.I 'F a.2 € A. 

with B 
a. I 

+ 0 for all 

There exists a realization E. of E which is past as well as future 
1 e 

externally induced. 

(iii) For every w1 ,w2 € Ee it holds that if w1 and w2 "have one common future" 

then their whole futures are equal, i.e. {3w€E such that w:• J' €E 
_ + + e e 

and w2 •w €Ee} =- {w1R w2 } 

(iv) For every w1,w2 € Ee it holds that if w1 and w2 "have one common past", 
- + then their whole pasts are equal, i.e. {3w€Ee such that w •w1 €Ee and 

- + -w .w2 €Ee}=- {w1R w2}. 

(iv) All minimal realizations are equivalent. 



PROOF (i)=(v) was proved in Theorem 1.6. If Le U B 
aEA a 

+ 
·B as above 

a 

then this clearly defines a realization (with state space A) which is past 
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as well as future externally induced. Conversely if Li with state space Xis 

past externally induced, then Le- (a 1) n Le- (a2 ) = (/J for every a 1 f a2 E X. 

+ + 
If Li is also future externally induced then Le (a 1) n Le (a2) = (/J for every 

a 1 f a 2 EX. Hence (i)=(ii). 

Now we prove (iii)= (iv). The proof of (iv)= (iii) is similar, while it 

is clear that (i)=(iii) + (iv). 

that (iii) is satisfied. be that + and Assume Let W E L such w •w I E L e e 
+ + w 'W2 E L Suppose W E L is such that w- •w1 E L We have to prove that 

e e e 
+ + with + implies also w •w2 E ).-; Now w ·w1 E L together w •w1 E L that w 

e e e 
~ + - + 

and w have one common future. Therefore wR w. Since w •w2 E Le' this im-
+ 

j;)lie.s w •w2 E Le· D 

An important class of systems that satisfy the conditions of Theorem 1.6 and 

1.7 is the class of linear systems, which we will treat in Chapter 2. It is 

trivial to see that also autonomous systems have equivalent minimal realiza

tions. For completeness we give 

DEFINITION 1.8 Let Le be an external system on W. Le is called autonanous 
+ + -

if there exists a bijection h: Le .._ Le such that w E Le=w = h(w) 

L now ".1 and " 2 b · 1 l' · f 1 " et ~i ~i e two equiva ent rea izations o an externa system ~e. 

The following Proposition gives sufficient conditions for the uniqueness of 

the equivalence 'mapping between L.1 and L.2 • 
i i 

PROPOSITION I • 9 Let L .1 and L •2 
i i 

space x1, respectively x2. Let S 

be equivalent realizations of Le with state 

x1 ➔ x2 be an equivalence mapping. If 

I 2 
Li and Li are externally induced realizations, i.e. there exist maps 

f 1 : Le ➔ x1 and f 2 : Le ➔ x2 as in Definition 1.4, and if f 1 and f 2 are sur

jective, then Sis unique.In particular, if all minimal realizations of L 
e 

are equivalent, and L: and L; are minimal realizations, then Sis unique. 

PROOF Let w E Le' then there exist x 1 and x2 such that (x1 ,w) E Lil and 

(x2 ,w) Er;. It is clear that S: x1 ➔ x2 has to satisfy S(x 1(O)) = x2 (0). 

Hence Sis uniquely determined on Im f 1. If all minimal realizations of Ee 

are equivalent, then by Theorem 1.6 they are all externally induced. D 
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Finally we want to make a closer study of the subclass of input-output sys

tems. 

DEFINITION I.JO Let L be an external system on w. L is called an external 
e e 

input-output system, if there exist sets U and Y such that W = Y x U, and 

a map F: UlR+ YlR which satisfies {u 1(t)=u2(t),tST} = 
lR {(Fu1)(t)=(Fu2)(t),tST} for all u1,u2 EU , such that 

L = {(y,u) ly=Fu, uEUlR}. 
e 

In a realization theor~, of input-output systems it is natural to restrict 

the possible realizations to the subclass of past externally induced reali

zations. Since u1(t) = u2(t), ts T implies (Fu 1)(t) = (Fu2)(t), ts T, F 

induces a function F-: U(-oo;O)----!> Y(-oo,O). Hence an element w EL is 
e 

given by (F-u- ,ti°) with ti'" E U(-oo,Q). If a realization Li is past externally 

induced, there exists a function f : L + X such that {(x,w)EL} = 
e ~- \-00 O) 

{ (x(O)=f (w)}. Then in the input-output case we may define f : U ' + X 

by 'r(u-):= f (F_u_ ,u-) and hence {(x,w)EL} = {x(O)=f-(u-)}. Therefore 
1. 

past externally induced can be better called past input induced. Further-

more we notice that the e~uivalence relation R+ in this case amounts to the 

classical Nerode equivalence, which is defined as a relation on the past 

input functions. Two past inputs u; and u2 are called Nerode equivalent 

if (Fu 1- •u+ )(t) = (Fu2- •u+)(t) for every t ~ 0 and every u E UlR. 

Within the class of past externally induced systems (not necessarily 

input-output) the following holds 

THEOREM I.II Let Le be an external system. Then: all minimal past external

ly induced systems are equivalent and they are actually all equivalent to 
+ 

L . • 
1. 

PROOF 

X. Let 

L (a) e 

Let L be a minimal past externally induced system with state 
+ 1. + + 

L (x) n L (a)# 0 for x € X and a€ X. We will prove that 
e + e 

that L (-l) U L (a), c Le(x ), and hence for a subset X' c e aEX' e 

Since L. is minimal this impli~s L (a) = L (x+ ) and therefore L. ~ L .+. 
1. e e _1. 1. 

space 

x. 

~- - + - + Consider all w € L (x) n L (a). Since L, and L, are past externally in-
e e 1. 1. 

duced it holds that if ;- •w+ E Le then also ;- .,J E Le (-l) and 
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~- + 
w ·w 

plies 

E L (a). Therefore L + (x+ ) 
e + e 

L (a) c L (x ). 
e . e 

L +(a). By definition of L .+ this 
e i 

im-

Remark: For input-output systems this is in fact the classical theorem on 

Nerocie equivalence.Notice however that classically the existence of a 

groundstate is assumed (see Proposition 1.18). 

A minimal past externally induced realization of an input-output sys

tem is not necessarily equivalent to other minimal realizations that are 

not past externally induced. In fact we can use Theorem 1.7 to state 

JR 
THEOREM 1.12 Let Le be an input-output system on Y x U given by F: U ➔ 

as before. Let Li be a minimal past externally induced realization with 

state space X. Then all minimal realizations of Le are equivalent if and 

only if for every u 1 ,u2 E UlR 

+ + + + . 
{u 1 =uz and y2 =y2 } (with y 1 Fu 1, y2 = Fu2) 

= {x 1 (O) = x2 (O)} (with x 1 (O) = f- (u 1-), x2 (O)=f- (u2 ) ) . 

+ + then w1 = w2 and hence w1 and w2 have one common future. By Theorem 1.7 

□ 

(condition (iii)) this implies w1R+w2 . Since Li is minimal and past external

ly induced Li~ Li+ (Theorem I .I I). Therefore w1R+w2 implies x 1(0) = x2(0). 

(=) Let w1 and w2 E Le' with w1 (Fu 1 ,u 1) and w2 = (Fu2 ,u2). Suppose 

+ 
there exists w = (Fu,u) such that w1 •w E L and w2- .iJ' E L • This implies 

e e 

f-(u 1-) and x2 (0) = T(u2-). 

Since Li~ L: this gives w1R+w2 . Renee condition (iii) of Theorem 1.7 is 

satisfied. D 

The property expressed in Theorem 1.12 has an immediate system theoretic in

terpretation. It means that, given a system at time 0, if we apply the same 

input function to the system in state x 1 and to the system in state x2 , the 

resulting output functions distinguish between the two states, i.e. if the 

output functions are equal then the two states are actually equal. This is 

the strongest version of the notion of observability. 

DEFINITION 1.13 Let Le be an input-output system on Y x U. Let Li be area

lization of L with state space X. Then L. is called observable if for every 
e i 

two states a 1 # a 2 EX there exists an inputfunction u: [0, 00 ) ➔ U such 
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that the output functions y 1 : [0, 00 ) ➔ Y corresponding to x 1(0) = a 1 and 

Yz: [0, 00 ) ➔ _Y corresponding to x2(0) = a 1 are different. Li is called 

uniformly observable if for every input function u: [0, 00 ) ➔ U and every 

a 1 f a 2 EX the corresponding output functions y 1,y2 : [O,oo) ➔ Y are differ

ent. 

We obtain 

THEOREM 1.14 Let Le be an input-output system and let Li be a past external

ly induced realization with state space X. Then: 

(i) Li minimal= Li observable. 

(ii) All minimal realizations of Le are equivalent= Li is uniformly 

observable. 

PROOF (i) (=) If L. is minimal, then L. ~ L .+ • L+ is clearly observable. 
i i i i 

(=) Li past externally induced means L - (a 1) n L - (a2) = vl for every 
l l 

a 1 # a 2 EX. Li observable means that Le (a 1) f Le (a2) for every 

- + 
a 1 f a 2 EX, and Le(a) f 0 VaEX. This implies that if U Le (a)•Le (a) 

aEX'cX 

is a rectangle, then X' has to consist of one element. Therefore since L, 
i 

is past externally induced, L, is minimal. 
i 

(ii) This statement follows from Theorem 1.12. 

From a physical point of view the property of uniform observability is very 

desirable. It means that if we do not know the state of the system we can 

perform an arbitrary "experiment" (i.e. apply an arbitrary known input 

function) on the system, and the outcome of the experiment will allow us to 

deduce the state of the system. Therefore we obtained the following conclu

sion: 

□ 

The, often implicitly made, assumption of the existence of a unique state 

space model of a physical system (up to a change of coordinates - equivalence

and barring irrelevant elements in the model-minimality-) is, although in 

general false, equivalent to the assumption that every future experiment 

determines the original state of the system. 

Besides minimality and observability there is another basic notion in system 

theory, which is usually called controllability or reachability, and has to 

do with the internal dynamics of a realization. 

DEFINITION 1.15 Let Li be a dynamical system with state space X. Let x0 EX. 

Li is reachable from x0 if Va EX there exists t ~ 0 and (x,w) ELi such 
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that x(O) = x0 and x(t) =a.It is said to be connected if vx0 and x 1 in X 

there exists (x,w) E Li and t c Osuch that x(t0) = x0 and x(t 1) x 1• 

We will now show that past externally induced realizations of an input-out

put system Le enjoy one of these reachability properties if Le satisfies an 

extra condition: 

DEFINITION 1.16 Let Le be an external system. Le has finite time memory 

if there exists 6 c Osuch that {w(T); t-6~T<t} splits {w(T);T<t-6} and 

{w(T);Tct} (if 6= 0 the system is said to be memoryless). 

PROPOSITION 1.17 Let Le be an external input-output system with finite time 

memory. Let L, be a past externally induced and minimal realization. Then 
i 

L, is connected. 
i 

+ 
PROOF We will prove that Li is connected. It follows from the finite time 

memory that the state at t = 0 is determined by the past input on the time 

interval [-6,0). Therefore for every x0 and x 1 in X there exist input 

functions u0 and u 1 on [-6,0) such that the state at time O is x0 , respec

tively x 1• Now define the shift of u 1 by ~ 1(t):= u 1(t-6), fort E [0,6) . 

. Then we just have to concatenate u0 on [-6,0) with u 1 on [0,6) to obtain the 

state x 1 at t = 6. 

Classically, another assumption is added to the definition of an external 

input-output system. It is assumed that there exists a t 0 E lR and an ele-

* * ment u EU such that every input function satisfies u(t) u for every 

t ~ t 0 . (The intuitive idea is that we ask tJ-at the input functions on 

"t = - 0011 are "zero"). Since y Fu, there also exists a constant y * E Y such 

* that y(t) = y, t ~ t 0 • If a realization Li with state space Xis past ex-

□ 

ternally induced this implies that there exists an x* EX such that x(t) = x* 
. * . t ~ t 0 . This x is called the ground state of the system, and we denote the 

realization by (L.,x*). 
i 

PROPOSITION 1.18 Let (L.,x*) be a past externally induced minimal realiza
i 

tion of Le {(Fu,u)lu(t)=u*, t ~ t 0 }. Then Li is reachable from x*. 

PROOF Since u(t) = 
* + x • Because L L 

i i 

x(O) = a. 

* u, t ~ t 0 , every (x,(Fu,u)) E Li is such that x(t0) = 

there exists for every a EX an (x,(Fu,u)) E Li' such 

□ 
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Notes and References for Chapter 1 

Section 1.2 is based on a paper bij WILLEMS (1979), see also WILLEMS & VAN 

DER SCHAFT ( 1982). Theorems I. 7, 1. 12, 1.14 seem not to have been stated ex

plicitly before. A good reference for the formalization of the input-out

put point of view is KALMAN, FALB & ARBIB (1969, especially Chapter JO), 

where we can also find a treatment of the classical theorem on Nerode equi

valence (see the Remark after Theorem I.II). 
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CHAPTER 2 

SMOOTH DYNAMICAL SYSTEMS 

In this chapter we shall add more mathematical structure to the gen

eral definition of a dynamical system with external variables as given in 

Chapter I. 

First of all the systems will have a differentiable structure, i.e. 

the state space X and the space of external variables W will be smooth 

manifolds, and the dynamical behavior of the system will be described by 

a set of first-order differential equations. Another major assumption will 

be the finite-dimensionality of Wand in particular of X. Grosso modo, we 

shall look at systems which can be described in the form 

x g(x,u) 

w h(x,u) 

with XEX, the state space, wEW the space of external variables, and g and 

h smooth functions. The variable u is an auxiliary variable and para

metrizes in every state x the possible infinitesimal evolutions of x, i.e. 

x, and the possible values of the external variables. 

In the first part of the chapter we shall treat the special case of 

linear systems .. Then X and Ware (finite-dimensional) vector spaces, g and 

hare linear functions and we obtain systems of the form 

w Cx + Du 

where A, B, C and Dare linear mappings. 

We shall also deal with differentiable external dynamical systems. 

Again Wis a smooth manifold, and our basic point of view will be to define 

an external system by a set of (implicit) high order differential equa

tions in w 

. (k) 
P(w,w, ••. ,w ) = 0 

So the external system is determined by a set of compatibility relations 
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between the external variables and their time-derivatives up to a certain 

order. An example is an electrical network whose external behavior is de

fined by a set of equations involving the external currents and voltages 

and their derivatives. Moreover we require that the high order differential 

equations are smooth equations, so the physical laws describing ~e should be 

of a differentiable nature. 

h 1 . . (k) 0 . h P Forte 1near case P0w + P1w + •••. + Pkw = , wit i constant 

matrices, we shall be able to give a fairly satisfactory treatment of such 

external systems, including the realization problem. We shall make much use 

of the symbolic calculus, which enables us to replace the expression II d~t 11 

by the variables, withs E ~. This is of course strongly related to the 

Laplace transform, and is in system theory usually called the II frequency-
(k) 

domain II approach (in contrast with the equations P0w + ••.. + Pkw = 0 

and x =Ax+ Bu, w = Cx +Duin the II time-domain 11 ). For the nonlinear 

case such a theory is still in its embryotic stage, and we shall only give 

a general approach together with some problems and partial results. 

2.1 Linear systems 

2.1.1. Linear systems in state space form 

The first class of dynamical systems with external variables which 

we consider are the finite dimensional linear time-invariant systems 

(2. 1) Ax+ Bu 

w -. Cx + Du 

with x EX:= ]Rn, the state space, w E W:= ]Rq, the space of external varia

bles, and u EU:= ]Rm, the space of II inputs 11 , parametrizing the possible 

velocities x and external values win every state x. A, B, C and Dare 

linear mappings (matrices) of appropriate dimensions. For the solution of 

the differential equation x =Ax+ Bu to be well-defined we need some 

smoothness assumptions. Formally we define the dynamical system in state 

space form ~i generated by (2,1) as 

(2.2) ~i:= {(x,w): JR+XxW\x is absolutely continuous and 3u E Lloc 

such that x(t) = Ax(t) + Bu(t) for almost every t E JR, 

and w(t) = Cx(t) + Du(t) for every t E JR} 



Here L1 denotes the locally integrable vector-valued functions on 1R. We 
oc 
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denote equations (2.1) by L(A, B, C, D) and Li as in (2.2) by Li(A, B, C, D). 

An important subclass is given by systems L(A, B, C, D) where 

and C = ( ~ ) , with D:1Rm+ 1Rq-m and C:JRn+ ]Rq-m (assume q?:m). If we write 
m 

D =l~ l 
m 

m q-m 
correspondingly w = (w 1,w2) with w2E JR, w1E 1R we obtain from (2.l) 

(2.3) x Ax+ Bu 

We now identify w2 and u, denote y:= w1, define Y (the output space) as 

]RP with p: = q-m, to obtain 

(2.4) x Ax+ Bu 

y Cx +·nu 

which we call a linear input-output system with input space U, output space 

Y and space of external variables W = Y x U. Concluding, in the case of a 

linear input-output system·the input variables u, which are in equations 

(2.1) more or less auxiliary variables, can be identified with a part of 

the external v2riables. 

We notice that Li(A, B, C, D) remains unchanged by applying the trans

formation u + u + Fx, with F: X+U an arbitrary linear mapping. Also non

singular transformations in U, u t-'l> Ru, <let Rf 0, do not alter 

Li(A,B,C,D). This can be seen as follows. The above transformations trans

form (A,B,C,D) in the following way 

(2.5) (A B C D) F,~ O)(A + BF, BR, C + DF, DR) 
' ' ' det >' 

(We call this class of transformations the feedback transformations, and 

we say that L(A + BF, BR, C + DF, DR) is feedback equivalent to I(A, B, 

C, D)). Then L(A + BF, BR, C + DF, DR)= {(x,w):JR+XxW[x is a.c. and 3 
l, 

u E L1 such that x(t) = (A +.BF)x(t) + BRu(t) a.e., and w(t) = (C +DF)x(t) 
oc • 

f- DRu(t), l;Jt E 1R} = {(x,w):lR+XxW[x a.c., 3u E Lloc'x(t) = Ax(t) + 

B(Fx(t) + Ru(t)) a.e., w(t) = Cx(t) + D(Fx(t)+Ru(t)), Vt E 1R} 
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{ (x,w) :JR+XxWlx a.c.' 3v E Ll ' x(t) oc 
+ Dv(t), Vt E JR} Z.(A,B,C,D). 

l. 

Ax(t) + Bv(t), a.e., w(t) Cx(t) 

PROPOSITION 2.1 Let Z(A, B, C, D) be a linear system (2.1) with Ker D c 

Ker B. Then Z(A,B,C,D) is feedback equivalent to an input-output system (2.4). 

PROOF Suppose first that Ker D = 0. Consider Im D c W and take coordinates 

( ) m q-m {( )I m} w1 ,w2 for W, w2 E JR , w1 E IR such that Im D = O,w2 w2 E JR . Then by 

taking appropriate coordinates for U (i.e. applying R) we obtain 

x Ax + Bu 

where we have written C = ( ~ 1) corresponding to the basis (w1,w2). Now 

apply feedback with F -c2. \hen C + DF = (~1) and hence we have obtained 

(2.4) (even with D = O; observe that if we had only allowed partitions 

w = (w1,w2) of W = JRq consisting of the standard basis vectors of JRq we 

would only have been able to give a partition in which D = ( ~~) . Then D 1 

becomes D). If Ker D ~ 0, then since Ker D c Ker B, we can eliminate Ker D 
f d k . I 

rom u, an ta e as new 1.nputspace U U/Ker D" 

We now summarize some results concerning minimality,observability 

and controllability from WILLEMS (1979). Let us denote the external 

behavior of Z. (A, B, C, D) by Z (A, B, C, D), i.e. Z (A, B, C, D){ = 1. e e 

□ 

{w:lR+Wi(x,w) E i::.(A, B, C, D)}. We will now give the conditions on(A,B,C,D) 
l. 

such that Z.(A,B,C,D) is a minimal realization of Z (A,B,C,D) (Definition 
i. e 

1.5). In order to do this we need to introduce a concept from the geometric 

theory of linear systems. The maximal output nulling subspace, v*, is 

defined as 

v*: = {xo E xl3u E Lloc such that the trajectory w 

generated by x Ax+ Bu, w = Cx + Du, x(O) = x0 , 

satisfies w(t) 0, Vt E JR} 

The space v* is easily computed from (A, B, C, D) (see WONHAM ( 1979) for 

algorithms and other applications of V*). 

THEOREM 2.2 (for a proof see WILLEMS (1979, 1983)). z.(A, B, C, D) is a 
l. 

minimal realization of Z (A, B, C, D) if and only if v* = 0 and 
e 
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Ker D n Ker B = O. 

It can be easily proved that a linear input-output system (2.4) is observ

able if and only if it is uniformly observable (Definition 1.13), and that 

observability is equivalent to the following condition on the pair (C,A): 

the only subspace V c X such that AV c V and V c Ker C, is the zero-space 

V = 0. 

We obtain the following corollary of Theorem 2.2. 

COROLLARY 2.3 Let E.(A, B, C, D) be an input-output system. Then E. is 
i . i 

minimal--=E. is observable (or as we will also say: (C,A) is observable). 
i 

PROOF Ker [CD]= Ker(;~) {(~)\x E Ker C} 
m 

Therefore a trajectory (x,u): JR+XxU contained in Ker[C DJ is of the form 

(x,O) with x(t) E Ker C for every t, and satisfying x = Ax (since u = 0). 

However: E observable=there exists no nonzero trajectory x:JR+X satisfying 
0 x = Ax and contained in Ker C. Of course Ker D = Ker [I J = 0. □. 

m 
It is well-known that a system Ei (A, B, C, D) is connected (Definition I.IS) 

if and only if the followin~ condition on the pair (A,B) holds: the only 

subspace V c X such that AV c V and Im B c V, is X itself. Usually we say 

in this case that E.(A, B, C, D) is controllable or reachable (or that 
i 

(A,B) is controllable).We again note that minimality does not in general 

imply controllability. This is not surprising since autonomous linear sys

tems x = Ax, y = Cx are also included in our definition (2.1), and are min

imal if and only if (C,A) is observable. 

2.1.2. External linear systems 

External linear systems can be defined in the following elegant way. 

Let W be a finite-dimensional vector space, i.e. W = JRq. Then an external 

linear system on Wis given by a linear subspace Ee c WJR; i.e. if the 

functions w1 and w2 : JR+W belong to Ee then also a 1w1 + a 2w2 belongs to Ee, 

for every a 1, a2 E JR. 

We can prove the following general facts. 

THEOREM 2.4 Let E c WJR be a linear external system, 
e 

Then i) X+ and X- (see after Definition 1.3) are vector spaces 

ii) all minimal realizations of Ee are equivalent 

PROOF (i) Since E is linear, the zero function OE W JR belongs to E . 
e e 
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+ + Let w1R 0, then also aw1R 0 for every a E JR. If a= 0, this is trivial, and 

if a ;t 0 and 0-.w+ E i:: then since i:: is linear also o-.--1..-~/ E i::. Because 
e e a e 

+O . . 1 · - I + - + + w1R this imp ies w1 •~w E i::e, and hence aw1 .w E J:e. Therefore aw1R 0. 

Let now w1R+O and w2R+O. We will prove that (w1 + w2)R+O. Indeed since w1R+O 
+o . + + and w2R , it follows from above that also 2w1R 0 and 2w2R 0. Let now 

- + - + - + 
0 .w E i::e._The: also 2w 1 .w E i::e and 2w~ ·: E i::e. Since i::e is lin:ar 

(2w1 + 2w2) .2w E i::e, and also (w1 + w2) .w E i::e. Hence (w 1 + w2)R 0. 

Concluding: R+ is a linear relation on the linear space i::e and therefore 

X+ = i:: (mod R+) is a vector space. Analogously X is a vector space. 
e 

(ii) We will prove that i:: satisfies condition (ii) of Theorem 1.7. By 
e 

linearity it is sufficient to prove that if w1-.o+ E i::e (i.e. w1 and 0 
- + - + 

have one common future), and 0 .w2 E i::e then also w1 .w2 E i::e. This is 

obvious since i:: is linear. 
e □. 

In the sequel we shall give some examples of external linear systems. 

First we introduce some notation. 

Let JR[s] denote as usual the real polynomials in the indeterminate s, 

llln[s] the n-dimensional·vectors of real polynomials and JRnlxn2 [s] the 

(n 1xn2) matrices of real polynomials. An element of JR(s), the rational 

functions, is said to be (strictly) proper if the degree of its denominater 

is (strictly) larger than the degree of its numerator. Similar definitions 

hold for vectors and matrices of rational functions. 

The following cases are·clearly examples of external linear systems. 

Case 

i::e (P): = {w:lll+Wlw E Lloc and P( A )w O} 

Here P(s) is an element of ]Rpxq[s] (W = JRq) 

d 
and P(cit)w 

Case 2 

Case 3 

0 is to be interpreted in the sense of distributions. 

{w: JR+Wlw E L1 , 3 distributionl;such that oc 
d d 

P(cit)w = R(dt)I; , with equality 

in the sense of distributions} 

Let DE JRpx~[sJ, N E JRpxm[sJ, det D(s) unequal to the zero polynomial, 

-1 
and D (s)N(s) a proper rational matrix. Consider now the set of differen-
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tial equations D(A) y = N <A)u (equality in the sense of distributions). 

p+m 
This is obviously a system of the type E (P) with W = JR , w = (y,u) and 

e 

P = [D!-N]. It has a special form because the first p components can be cal

led outputs and the last m inputs. We call the proper matrix G(s): 

D- 1(s)N(s) its transfer matrix. Note, however, that also responses not ex

plainable by inputs, but entirely due to initial conditions may occur in 

E ([D!-N]). Later on we will come back to this case. 
e 

Case 4 

L (A,B,C,D) as defined before. 
e 

We note that we can always reduce Ee(P,R) as in Case 2 to Le(P) for 

a suitable P: 

PROPOSITION 2.5 Let Ee(P,R) be given. Then there exists P such that 

Le(P) = Ee(P,R) (for a proof .see WILLEMS (1983)). 

Moreover we have 

THEOREM 2.6 Let Le(P) be given. Then there exists a minimal Li (A,B,C,D) 

such that L (A,B,C,D) = L (P), i.e. L,(A,B,C,D) is a minimal realization of 
e e i 

Le(P). 

Remark. The proof is given in WILLEMS (1983) where one can also find a pro

cedure to explicitely construct (A,B,C,D). 

Concluding, all the above cases can be realized as the external behavior 

of a linear syst·em in state space form L(A,B,C,D). Therefore they have the 

connnon characteristic of a finite dimensional state space. We note, however, 

that it is easy to construct examples of external linear systems which have 

a minimal realization with an infinite dimensional state space. Consider for 

instance E := {w:lR ➔Wlw is periodic with period I}. Then E is clearly linear 
e e 

while w1R+w2=w1 l[-1,0) = w21[-J,O) <lc-1,0) denotes restriction to 

[-1,0)). Therefore X+ = [-1,0) :R. which is an infinite-dimensional space. 

It would be interesting to characterize in a simple way the external linear 

systems which have a minimal realization with a finite dimensional state 

space. In the sequel we shall mainly consider external linear systems as in 

Case I. Let us give a simple example which can be kept in mind while read

ing the next section. 

Example (see also ROSENBROCK (1970, pp 38-40)) 

Let two masses m1 and m2 be connected to springs with spring constants k 1 
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and k2• The displacements of the masses are y 1 and y2. A force u is applied 

to the lower mass 

The external variables are y 1, y2 and u and the external linear syst~n as in 

Case 1 is given by the equations m1y1 = u - k 1(y1 - y2), m2 ~ = k 1(y 1-y2) 

- k2Y2· 

2.1.3. External linear systems in the frequency domain 

In this section we make a closer study of the linear systems whose 

external behavior is given as in Case I of 2.1.2, that is 

l'./P) = {w: lR+Wlw EL loc' P( A )w = O}with w E W = lRq and P(s) E ]Rpxq[s]. 

We use symbolic calculus to transform these equations to the form 

P(s)w(s) = O, s E ~. Of course this transformation corresponds to the 

Laplace transform of w, with zero initial conditions. We do not go into 

details, and use the II symbolic II approach (which can be justified). 

We note that Le(P) remains unchanged by pre-multiplication of P(s) 

with a unimodular matrix U(s) E lRpxq[s] (unimodular means det U(s) = 

constant~ 0). Let P(s) have rank r, for almost every s Et, then we know 

(WOLOVICH (1974, Theorem 2.5.11))) that we can find a unimodular U(s) such 

that U(s)P(s) = (P6s)), with P(s) E lRrxq[s] surjective for almost every 

s Et. Therefore, without loss of generality, we make the standing assump

tion that P(s) is surjective for almost every s E ~. 

Furthermore we have 

PROPOSITION 2.7 Let P(s) E lRpxq[s], and surjective for almost every S E ii:. 

Then there exist R(s) E lRpxp[s] and P' (s) E lRpxq[s] such that P(s) 

R(s)P' (s), and p' (s) surjective for every s E IC' and rank R(s) = p for al-

most every S E t. 
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Before proving this proposition we have to give some definitions. If the 

polynomial matrices K, I and J satisfy K(s) = I(s)J(s) then I(s) is called 

a left divis~r of K(s) and K(s) is called a right multiple of I(s). The 

greatest common left divisor (g.c.l.d.) of two polynomial matrices K1(s) 

and K2(s) (with the same number of rows) is a common left divisor which is 

a right multiple of every common left divisor of K1(s) and K2(s). We call 

K1 and K2 left coprime if a g.c.l.d. of K1 and K2 is unimodular. Left 

coprimeness of K1 and K2 is also equivalent to [K1 (s): K2(s)] surjective 

for every s E ~-

PROOF of Proposition 2. 7 Write P(s) = [M(s) : N(s) ], with M E ]Rpxp[s] 

and NE ]Rpx(q-p)[s]. Find a greatest common left divisor R(s) of M(s) and 

N(s). Then M(s) = R(s)M1(s), N(s) = R(s)N 1(s) for some M1 and N1 and 

moreover M1 and N1 are left coprime or equivalently [M1 (s): N1 (s)] sur-

jective, Vs E ii:. Define P1(s) = [M1(s): N1(s)]. D 

Remark: There are actually algorithms to construct a g.c.l.d. of two 

polynomial matrices, based on a division algorithm (see WOLOVICH (1974)). 

Motivated by the above proposition, we first look at external systems 

~e(P), with P(s) surjective Vs E ii:. Only later on we show how we can treat 

the case that P(s) = R(s)P' (s), with R(s) and P' (s) as above. Let now P(s) 

be surjective for every s E ii:. We denote by W the complexification of W 
ii: 

(i.e. if W = Rq, then Wil: = Cq). Since the set of solutions w(s), with 

w(s) E Wt , of P(s)w(s) = 0, is invariant under pre-multiplication by a 

unimodular matrix U(s), we see that the solution set of P(s)w(s) = 0 is 

characterized by the kernel of P(s), which is for every s E ii: a linear 

subspace of WU:. Hence we have arrived at the study of the following 

geometrical object: for every s E ii: there is a linear subspace of 

WU:, given by ker P( s). 

Since P(s) is surjective, Vs EC, the above subspaces Ker P(s) all 

have equal dimension q-p. If P(s) would be only surjective for almost 

every s Eu:, and if we write P(s) R(s)P' (s) as above, then the geometri-

cal objects Ker P(s) and Ker P' (s), for every s EC, are equal except for 

those s0 E ii: such that det R(s0) = O. In these points the dimension of 

Ker P(s) suddenly jumps while dim Ker P' (s) remains constant. Later on we 

see that these values of s actually are the uncontrollable eigenvalues of 

a minimal realization of P(s). 
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Let us now denote by Grass the set of all (q-p)- dimensional subspaces of 

W~(= tq). We _obtain 

PROPOSITION 2.8. Let PE :Rpxq[s], and surjective Vs Et. Then the map 

,r: + Grass, defined by s >+ Ker P(s) is an algebraic map. Furthermore the 

following set E(P(s)) := {(s,v) Is E IC, v E Ker P(s) c Wa:} is an algebraic 

vector bundle over a:. 

PROOF For every s0 Et we can find a pxp submatrix M(s) of P(s) such that 

det M(s0) ~ O. Therefore in a Zariski open neighborhood U of s 0, det M(s) 

f O. Then for every s EU we can actually solve the equations P(s)v = 0, 

v E a:, using a version of Cramer's rule (i.e. we may divide by det M(s)). 

This gives a map a: ➔ Grass, which is clearly algebraic. Moreover we obtain 

a trivialization of E(P(s)) above U, namely rr- 1(u) is isomorphic to UxKer 

P(s0), with rr: E(P(s))+ a: defined by (s,v) E E(P(s)) ➔ s Ea:. Therefore 

E(P(s)) is an algebraic vector bundle over a:. 0 

From a mathematical point of view, and also from a system theoretic one, as 

will become clear, it is advantageous to make one more abstraction. Namely 
. I 

we can look at Ker P(s) also as a vector bundle over JP, the complex projec-

tive line (which can be thought of as C together with the point at infinity). 

Let (s,t) be homogeneous coordinates for JP 1 and embed a: in the usual way into 

1' 1 by identifying s Ea: with (s, I) E JP 1• Then "s = 0011 is identified with the 
I point (1,0) E lP, i.e. t = 0. We state 

THEOREM 2.9 Let PE JR.pxq[s], and surjective Vs EC. Then: 

(i) The algebraic map a:+ Grass, given bys>+ Ker P(s), can be uniquely 
I 

extended to an algebraic map lP ➔ Grass. 

(ii) Let V( 00)be the element of Grass which is attached to "s = 0011 , i.e. to 

(1,0) ElP 1• Then E(P(s)) := {(s,l),v)ls EC, v E Ker P(s)} u 

{((1,0),v)jv E V(oo)} 

is an algebraic vector bundle over JP 1 

For the proof of this theorem we make use of the notion of row properness 

of a polynomial matrix. 

DEFINITION 2.10 Let PE JR.pxq[s], and surje.c;tive for almost every s E IC. 

Then Pis called row proper if P(s) = 
k. 

is the pxp-matrix withs 1 (k.ElN) on 
1 

k. k. 
diag(s 1 )P + L(s), where diag(s 1 ) 

r 

the (i,i)-th place and zero elsewhere 
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and L(s) E lR pxq[s] is such that the degree of the i-th row of L(s) (i.e. 

the highest power of s occurring in the i-th row) is strictly less than ki, 

and P is a constant pxq-matrix which is surjective. r 

PROPOSITION 2.11 Let P(s) E lRpxq[sJ, and surjective for almost every s Ea:. 

Then there exists a unimodular U(s) E lRpxq[s] such that U(s)P(s) is row 

proper. 

PROOF We can proceed in the same way as in the proof of WOLOVICH (1974, 

Theorem 2.5.7), where the proposition is proved (in a constructive way) for 

square matrices P(s). □ 

We are now able to give 

PROOF of Theorem 2.9 

(i) By Proposition 2.11 we may assume that P(s) is row proper, i.e. 

k. 
P(s) = diag(s i)Pr + L(s), as above, with Pr surjective. Then it follows that 

-k. 
diag(s i)P(s) =Pr+ L(s- 1) where L(s- 1) is a matrix consisting of poly-

nomials in s-l with no constant terms, i.e. L(O) = 0. The substitution 

-I 
t = s gives 

Therefore for 

k. I 
diag(t i)P(-) = P + L(t). 

t r I 
every t # O, ker P(t) is equal to Ker(Pr+L(t). 

We now define V( 00):= Ker Pr' and we only have to prove that Ker Pr lim 
t+O 

Ker(P +L(t)) for every path t + O, and where the limit is taken with respect r 
to the Grassmann topology of Grass. Since L(O) = 0 and rank (P +L(t)) = 

r 
rank Pr' for every t small, this is clear because we can explicitly solve 

Ker(P +L(t)) as in the proof of Proposition 2.8. This also shows that the r 
in this way extended map ll'1 + Grass is algebraic. 

(ii) For (finite) S E a: we have given in the proof of Proposition 2.8 a local 

trivialization of E(P(s)). In the neighborhood of 00 (or 
I a local s = (I ,O)Ell' ) 

trivialization is 

Remark I. Let P(s) 

s present in P(s). 

given by solving ker(P +L(t)). 
r 

k-1 
Pk_ 1s + ... + P0 with k the highest power of 

surjective we can of course immediately define 

V( 00):= Ker Pk. However it can be seen that we can not bring a general P(s) 

into this form by pre-multiplication with a unimodular matrix. 

□ 
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Remark 2. Notice that we have also given above a way to "homogenize" the 

equations P(s)w=O, i.e. we can write this set of equations as homogeneous 

equations in the coordinates ( s, t) for 1P 1. First we make P ( s) row proper 

by premultiplication with a unimodular matrix U(s) (i.e. by row operations). 
k• 

Then U(s)P(s) = diag(s i)P + L(s) as above. Now define 
r 
k. 

P(s,t):= diag(s i)P + L(s,t) 
r 

where L(s,t) is constructed from L(s) by multiplication by powers oft such 

that every term in the i-th row has degree ki. 

Example: Return to the example at the end of section 2.12: 

mlyl u-kl(yl-y2) 

with w (y 1 ,y2 ,u) E W JR.3 • The polynomial matrix P(s) is equal to 

P(s) = ( :1 
0 

0) 2 (~ 0 0 
)s+(_:: 

-k2 -~) s + 
m2 0 0 0 k 1+k2 

( 2 
-kl -1 

) = m1s +k 1 

-kl 
2 0 m2s +k 1+k2 

Then: dim ker P(s) 1, for every s E «: if arid only if k 1 'f 0. If k 1 0, 

then the points s 0 Ea: such that m2s0
2 + k2 = O, are the points with 

dim ker P(s0) = _2. From physical considerations it is clear that the system 

is not controllable if k 1 = 0. Let us assume k 1 f 0. If m1 f O and m2 f 0 

·m 
then P(s) is row proper and V( 00 ) = Ker ( 0 1 span l ~) ( see Remark 

1 above). 

Pr -- ( kOl If m1 = 0 and m2 f O, then P(s) is still row proper and 

Therefore V( 00 ) 

-1 ) 
0 • 

Algebraic vectorbundles over JP 1 have some nice properties. The following 

theorem is implied by a theorem of Grothendieck (an elementary proof can be 

found in HAZEWINKEL & MARTIN (1982)). 
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THEOREM 2.12 Every algebraic vectorbundle over JP 1 is isomorphic to the 

direct sum of line bundles (i.e. vector bundles with one-dimensional fibers). 

Up to isomorphisms a line bundle is fully characterized by an integer K E 'ZZ • 

Hence the isomorphism classes of algebraic vectorbundles over JP 1 are in one

to-one correspondance with sets of integers K1 S ... S Km' with Ki E 'Zl the 

integers belonging to the line bundles in the decomposition. 

Actually the integers Ki above can be interpreted in many ways. Topologically 

they are called the Chern nwnbers, but as we see later on they are also some

times called Kronecker indices, or controllability or observability indices, 

dependent on the way the vectorbundle arises. 

We can 

number K 2 0. 

LlK) and V(oo) 

easily construct line bundles with a certain positive Chern 

Define P(s) : [ 2 + [ as P(s):= [sK:-1]. Then KerP(s) span 
0 = ( 1). It can be checked that E(P(s)) has Chern number K. 

(In order to construct line bundles with negative Chern bundles in this way, 

we have to embed [ into JP 1 in another way, namely by identifying s E [ with 
1 (1,s) E JP and then do the same construction as above for -K). We see that 

we can actually generate every line bundle (with positive Chern number) by 

constructing a polynomial matrix P(s), surjective for every s E [, and ta

king E(P(s)). Because of Theorem 2.9 we therefore arrive at the following, 

somewhat fancy, conclusion: 

Every algebraic vectorbundle over JP1 with positive Chern nwnbers is iso

morphic to a vectorbundle E(P(s)), with P(s) surjective for every s E ~

Hence the class of algebraic vectorbundles over JP1 is equal to the class 

of external linear systems i: {P), P(s) surjective '\Is E ~-
e 

(we also note that we could have replaced "algebraic" by "holomorphic", 

since holomorphic over JP 1 is necessarily algebraic, see HAZEWINKEL & MARTIN 

(1982)). 

Remark: Let i:e(P) be an external system, with P(s) surjective for every 

s E [. Then i: (P) corresponds to an algebraic vectorbundle E(P(s)). For al-
e 

gebraic vectorbundles over JP 1 we have defined an equivalence relation, 

namely E(P 1(s)) is equivalent to E(P2(s)) if E(P 1(s)) is isomorphic to 

E(P2(s)). Isomorphic means that there exists a bundle isomorphism from 

E (PI ( s)) to E (P 2 ( s)) , i.e. 
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where U(s) may depend on s E lP 1 and is algebraic. One could wonder what 

kind of mapping from Ee(P 1) to Ee(P2) corresponds to such a bundle isomor

phism from E(P1(s)) to E(P2(s)). In the case of vectorbundles corresponding 

to (minimal) state space realizations of Ee(P 1), respectively Ee(P2), we 

shall answer this question later on (see (2.7), also the Remark after 

Theorem 2.18). 

I There is another way of constructing line bundles over lP , which is actual-

ly equivalent to giving a state space realization E (A,B,C,D) of L (P). If 

( O I. ) and thee KX I vector B e ( ? ) we define the KXK-matrix A 

o .•. :~ KXK 01· 1 KX 

then P1(s):=[sI-A:-B] satisfies Ker P1(s) 
KX(K+I) 

span (i:) 

as above. From E(P 1 (s)) to E(P(s)) the isomorphism is given by the constant 

( I O . . . 0) 
map F:= 0 •..• 1 2x(K+l) 

K+I 2 
~ ➔ ~,and from E(P(s)) to 

E(P 1(s)) the isomorphism is given by 
s 

0 

0 
I (K+l)x2 

In system theoretic language (A,B,C,D) with A and Bas above and C:= 

(~ ~) 2xK' D:= (~) (such that F = [C:D]) is a state space realization 

of the external system given by P1(s) : sky(s) 

For a general external system E (P) we state 
e 

2 u(s), w = (y,u) E ~ • 

Ti!EOREM 2.13 Let P E ]Rpxq [s], with P(s) surjective "i/s E ~. Li (A,B,C,D) is 

a realization of L (P), i.e. L (A,B,C,D) = L (P) if and only if [C:D] maps e e e 
the vectorbundle E([sI-A:-B] onto E(P(s)), or equivalently 
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Ker P(s) = [C:D] Ker[sI-A:-B], Vs Et 

and V( 00 ) = Im D (V(oo) = lim Ker P(s)). 
s+oo 

Moreover Li(A,B,C,D) is a minimal realization if and only if [C:D]is an iso

morphism between the two vectorbundles E(P(s)) and E([sI-A:·B]), or equiva

lently 

-DB) injective Vs Et, and D injective. 

Furthermore, since P(s) is surjective for every s Et, a minimal realiza

tion Li(A,B,C,D) of Le(P) is necessarily controllable. 

PROOF Li(A,B,C,D) is a realization of Le(P) if and only if Le(P) = 

{w:JR + wl3x:JR + X, absolutely continuous, 3u : JR + U, u E Lloc, such that 

i(t) = Ax(t) + Bu(t), a.e., and w(t) = Cx(t) + Du(t), 3t E JR}. Hence, 

using symbolic calculus 

{w(s)IP(s)w(s)=O} = {w(s)l3x(s) and u(s) such that 

(sI-A)x(s)-Bu(s) = O, w(s) = Cx(s)+Du(s)} 

={w(s) l3x(s) and u(s) such that (:~:> E Ker[sI-A:-B] 

and w(s) = [C:D](x(s))} 
u(s) 

Therefore Ker P(s) = [C:D] Ker[sI-A:-B], Vs E t. [C:D] is an isomoi::phism 

between E(P(s)) and E([sI-A:-B]) 

= 
[C:D] is injective restricted to E([sI-A:-B]) 

[C:D] injective restricted to Ker[sI-A:-B], Vs Et, and Dis injec-
0 tive (since E([sI-A:-BJ at s = oo is equal to span {(u), uEU}). 

( sI-CA -Db) injective Vs Et, and D injective. 

Furthermore it can be easily be proven that v* 0 (Theorem 2.2) if and only 

. (sI-A -B) 
if C D injective Vs Et .(see KAILATH (1980,7.6)). Hence by Theorem 

2.2, minimality of Li(A,B,C,D) is equivalent to the conditions given above. 

Finally, since dim Ker P(s) = q-p, Vs Et and [C!D] is injective restricted 

to Ker [sI-A:-B] (if L. (A,B,C,D) is minimal) dim Kerl:sI-A:-B] = q-p, Vs E t. 
]_ 
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This implies that [sI-A:-B] is surjective for every s E ~, which is the so-

called Hautus test for controllability of (A,B) (see HAUTUS (1969)). D 

Remark I: The class of algebraic vectorbundles over JP 1 (with positive Chern 

numbers) is therefore (up to isomorphisms) equal to the class of controllable 

linear systems L(A,B,C,D). 

Remark 2: Since Dis injective if L.(A,B,C,D) is a minimal realization, 
l. 

Li(A,B,C,D) is feedback equivalent to an input-output system (see Proposition 

2.1). We shall come back to this point. 

Of course the direct sum of m line bundles with Chern numbers 

Kl 2: ••• 2: K. 2: 0 can be realized by taking m 

and B • diag( n diag( ( : 
I, ) (2.6) A " I ) 
. , .. ~ K,XK, I K .. XI 
. . l. l. l. 

On the other hand, as we saw earlier if L.(A,B,C,D) is a realization of 
l. 

L (P), then also L (A+BF,BR,C+DF,DR) = Le(P), for every F and R, with 
e e 

det Rf 0. It is easy to pee that we can also allow for state space trans-

formations S : X + X, with det Sf O. In fact, if L.(A,B,C,D) is a minimal 
l. 

realization of Le(P), then Li(A' ,B' ,C',D') is also a minimal realization of 
-I -I -I -I Le(P) if and only if (A' ,B' ,C' ,D') = (S(A+BF)S ,SBR ,(C+DF)S ,DR ) for 

a certain S,R and F with det Sf O, det Rf O (WILLEMS (1979)). We shall 

call this group of transformations (S,F,R) as above the Brunovsky group. 

Now it is known (WONHAM (1979,5.7)) that for every controllable pair (A,B) 

there exist (S,F,R), det Sf O, det 

and 

(
0 -I 

S(A+BF)S = diag( O 

K,XJ 
l. 

Rf Osuch that 

J K,XK,) 
l. l. 

for certain Kl 2: ••• 2: Km 2: 0, Ki E lN and m = dim U, i.e. the form (2.6). 

We call this form the Brunovsky normal form of the pair (A,B), and the in

tegers Ki are called the controllability indices of (A,B), or also the 

K:l'onecker indices of the pencil [sI-A:-B](see GANTMACHER (1959)). Since mi

nimal realizations oi L (P), with P(s) surjective for every s E ~. are au-
e 

tomatically controllable, we see that for realizing Le(P) we can take A and 

B already in Brunovsky normal form, with the controllability indices K.i of 
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(A,B) equal to the Chern numbers of E(P(s)). Then we only have to construct 

a constant matrix[C:D] with C : lR.n ➔ lR.q and D : lR.m ➔ lR.q, where n and m 

are defined by m:= q-p and n:= Kl+ ..• + Km. Therefore giving a realization 

of Ze(P) amounts to replacing the subbundle E(P(s)) of JP 1 x [q by an iso

morphic vectorbundle E([sI-A:-B]) which is a subbundle of a higher dimen

sional space JP 1 x [n x [m. Furthermore we notice that after embedding the 

vectorbundle over JP 1 in this higher dimensional space, the isomorphism class 

is given by constant linear maps. More precisely if E([sI-A 1:-B 1J) is iso

morphic to E([sI-A2 :-B2]), then (A 1,B 1) and (A2 ,B2) are necessarily of the 

same dimension, say Ai nxn and Bi nxm, i = 1,2, and there exists a constant 

1 inear map H : lR.n x lR.m ➔ lR.n x lR.m such that 

(2.7) 

This follows from Kronecker theory (GANTMACHER (1959)), or the theory around 

the Brunovsky normal form, since E([sI-A2 :-B2]) isomorphic to E([sI-A1:-B 1J) 

= controllability indices of (A 1 ,B 1) and (A2 ,B2) are equal • 

Therefore there exists an element (S,F,R) of the Brunovsky group such that 

S (A2+B2F) S-i 

-1 
SB2R . 

Then H as above equals the map ( S O ) 
-RF R 

As we already notice<l, Ze(P), with P(s) surjective Vs E [, can always be 

realized by a linear input-output system. In fact, geometrically we can 

see this as follows. 

Define U:= lim(Ker P(s)) 
s--

V( 00 ) (= Ker Pr if P(s) is row proper). Then U 

is a linear subspace of W = lR.q with dimension m:= q-p. Given a minimal 

realization Z(A,B,C,D) of Ze(P) we then know that U = Im D. Hence we may 

identify the input space of the realization Z(A,B,C,D) with the subspace U 

of W (since Dis injective). Define furthermore Y as an arbitrary p-dimen

sional subspace of W, complementary to U, i.e. W = Y@ U. We may now fix 

D lR.m ➔ W lR.p x lR.m as D = (~ ) , and by feedback transformations 

C ~ C + DF we can obtain C 
C in the form C (0). 

m 

lR.n ➔ JR.p x JR.m (lR.n = X is the state space) 
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So we have written Ker P(s) = [C DJ (Ker[sI-A:-B]) with C (~) and D = (~), 
corresponding to a splitting W = Y x U. We call (A,B,C) as above an input

output realization of r (P). 
e 

What kind of freedom exists in constructing a minimal input-output 

realization of r (P)? This is answered in 
e 

THEOREM 2.14 Let (A,B,C) be a minimal input-output realization of L (P). 
e 

Then all other minimal input-output realizations of re(P) may be obtained 

by applying the following transformations to (A,B,C) 

(i) (A,B,C) I---,, (SAS-I ,SB,CS- 1) S lR.n + lR.n, det Sf 0 

(ii) B 

(iii) C 

(iv) A 

I---,, BR - I 

t--- TC 

I---,, A + BHC 

R 

T 

H 

lR.p + lR.p , det T f 0 

m.P + lR.m 

(i.e. output feedback transformations) 

PROOF We have fixed U by setting U = V( 00). Therefore the only freedom which 

is left are coordinate transformations on U. This is the group of transfor

mations (ii). If we have chosen a complementary subspace Y, such that W 

Y@ U, then of course co~rdinate transformations on Y are allowed. This 

yields group (iii). Now there is freedom in choosing a complementary sub

space Y. Given a subspace Y such that W = Y@ U, another subspace Y' c W 

is also complementary to U if and only if the projection of Y' along U on 

Y is equal to Y, and dim Y' dim Y = p. Then in a basis corresponding to 

W = Y@ U, Y' has the form Y' = {(J'y) jye:Y}. Therefore the transformation 

from a basis corresponding to Y@ U to the basis corresponding to Y'@ U 

is given by ( "{r ~),and hence in the new basis corresponding to Y'@ U 
m 

we have that unew = uold + Hyold" This is exactly the group of transforma-

tions (iv). Finally group (i) are the basis transformations in the state 

space and is classical. It is clear that no other transformations are 

allowed in maintaining an input-output realization (A,B,C). 

Remark I. We notice that after we have chosen Y complementary to U, the 

Jordan structure of A in a minimal input-output realization (A,B,C) is 

uniquely determined (since only coordinate transformations S : lR.n + lR.n are 

allowed). Furthermore we see that the eigenvalues of A are exactly given 

by those sO E ~ such that Ker P(sO) n Y f O! 

Remark 2. If we apply feedback F to (A,B,C) then C (~) is changed into 

□ 
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C' = (g) + (~)F. We see that Im C' n U = 0, if and only if Fis of the form 

F = HC. Hence if we apply feedback which is not output feedback then we no 

longer have an input-output realization. 

It is also easy to see how we can end up with input-output systems with feed

through term D, as in equation (2.4). Take an arbitrary m-dimensional linear 

subspace U of W. Then we can take a subspace Y, complementary to V( 00 ) 

lim ker P(s), such that the projection of U along Yon V( 00 ) equals V( 00 ) (we 
s+oo 
only have to take Y complementary to V( 00 ) and U). In a basis corresponding 

to Y x V( 00), U is of the form U = {(Dv) lvEV( 00 )} for a certain matrix D, and 
V 

with respect to this input space U and output space Y we obtain a realization 

x =Ax+ Bu, y = Cx + Du. 

We have shown that, since a minimal realization L(A,B,C,D) of Le(P) 

has the property that Dis injective, we can always give an input-output 

realization of Le(P). This can also be seen in another way, since we will 

show that Z:e(P) can always be written as Z:e([D:-N] with D(s) and N(s) as in 

Case 3 of Section 2.1.2. 

THEOREM 2. 15 Let P E lRpxq [s], surjective fo~ every s E IL There exists a 
k

unimodular .U(s) such that U(s)P(s) is row proper, i.e. U(s)P(s) = diag(s 1.)p 

+ L(s) as before (Definition 2. 10). Choose bases for W = lRq and for ]RP 

such that P = [I :OJ. Write in this basis U(s)P(s) [D(s):-N(s)J, with 

D E lRpxp [s;, N / lRpx(q-p) [s]. Then det D(s) is unequal to the zero poly

nomial, and G(s):= D- 1(s)N(s) is strictly proper. 

PROOF Since U(s)P(sJ is row proper and we have taken bases such that 

r 

k· 
P = [I OJ, it is clear that also D(s) is row proper, i.e. D(s) = diag(s 1.)D 

r p r 
+ L (s), where in fact D = I . Therefore det D(s) is unequal to the zero 

-D r p -I 
polynomial. We now have to show that every entry g .. (s) of G(s) = D (s)N(s) 

1.J 
is strictly proper. We can use Cramer's rule to solve for g .. (s), indeed 

. . . . 1.J 
g .. (s) = det Dl.J(s)/det D(s) where Dl.J(s) is the matrix obtained by replacing 

1.J 
the i-th column of D(s) by the j-th column of N(s). Then we can write 

. . k . . . . . . 
Dl.J(s) = diag(s i)Dl.J + 11.J(s) with D 1.J the same matrix as D = I except 

r r r p 
for the i-th column which is zero, since the l-th entry of the j-th column 

of N(s) has degree strictly less than kl. Therefore D~j is singular. It 

m 
degree of det D(s) isl k., while the degree of det Dij(s) 

m i=l 1. 
follows that the 

is strictly less than L k., and therefore g .. (s) is strictly proper. D 
i=l 1. 1.J 
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Hence given P(s), we first have to make P(s) row proper, then define U:= 

ker P and Yan (arbitrary) complement of U in W. If we write P(s) = 
r 

[b(s):-N(s)J ·corresponding to W = Y x U then {w(s) IP(s)w(s)=O} = {w(s)= 

(y(s),u(s))ID(s)y(s)=N(s)u(s)}. Moreover we can write this system also as 

y(s) = G(s)u(s), and since [D(s):-N(s)J is surjective Vs E ~, G(s) = 
-I 

D (s)N(s) is a left aoprime factorization of G(s). If we denote the inverse 

Laplace transform of G(s) by G(t), t E lR, and if we assume that w(t) = 

(y(t),u(t)) = (O,O), Vt s t 0 (see Proposition 1.18) then re(P) is also given 

as 
t 

L (P) = {(y,u):lR + YxUluELl p(t)=O,tSto,y(t)= Jact-T)U(T)dt}. 
e QC -co 

This external input-output system is in fact the usual starting point for 

linear system theory (see KALMAN, FALB & ARBIB (1969)) 

In the sequel we will make use of a dual way to give the transfer ma

trix of an input-output system. We need the following 

LEMMA 2.16 (for a proof see WILLEMS (1983)). Let PE lRpxq[sJ, and surjec

tive Vs E ~. Then there exists a polynomial matrix Q E lRpxq[sJ (with m:= 

q-p) such that Ker P(s) ~ Im Q(s), Vs E ~. In particular Q(s) is injective 

Vs E ~. 

Now a polynomial matrix Q which is injective Vs E ~ can be made column 

proper by post multiplication with a unimodular matrix (a polynomial matrix 

Q(s) is called column proper if QT(s) is row proper, hence this is already 

proved in Proposition 2.11), i.e. 

k. 
Q(s) = QC diag(s i) + L(s) 

with QC injective and the degree of the j-th column of L(s) strictly less 

than ki. Then of course lim Im Q(s) is well-defined (Theorem 2.9) and equal 
s➔oo 

to Im Qc• Therefore if Ker P(s) = Im Q(s), Vs E ~. we obtain that Ker P 
0 r 

Im QC. Hence we can take bases such that Pr [I OJ and QC= [I]. If we 
p m 

write correspondingly to these bases P(s) = [D(s):-N(s)] and Q(s) = 

( 
N ( s)) -I - I I , then D(s)N 1(s) = N(s)D 1(s) or D (s)N(s) = N1(s)D 1 (s). 
D1 (s) 

The factorization G(s) = N1(s)D- 1(s) is called the right coprime factoriza

tion of G(s), and the external linear system can also be written as 

{(y(s),u(s)) l3z(s) suc.h that D1 (s)z(s) = u(s), and y(s) = N1 (s)z(s)}. 
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We define the observability indices of a pair (C,A) as the controllability 

indices of (AT,CT). Given a vectorbundle E(P(s)) and L(A,B,C) a minimal in

put-output realization of re(P), we have seen that the controllability in

dices of (A,B) are equal to the Chern numbers of E(P(s)). Dually we obtain 

THEOREM 2.17 Let PE lRpxq[s], surjective ljs Ea:. Let L(A,B,C) be a minimal 

input-output realization of Le(P). The controllability indices of (A,B) are 

equal to the Chern numbers of E(P(s)). Now define the algebraic vectorbundle 

(E(P(s)))"1 over lP 1 by setting 

(E(P(s)))~:= {((s,1),v)lsEO:,vE(Ker P(s))L} u 

{((l,O),v)lvE(V(00 ))L} 

where L denotes orthogonal complement with respect to an inner product on 

W = lRq. Then the-observability indices of (C,A) are equal to the Chern 

numbers of (E(P(s)))L. 

Remark: The freedom in choosing an orthogonal complement corresponds to the 

freedom we have in choosing an output space Y complementary to U. It can 

easily be seen that the observability indices of (C,A) (as well as the con

trollability indices of (A,B)) are invariant with respect to the transforma

tions given in Theorem 2.14. 

PROOF Write P(s) = LD(s):-N(s)J and Q(s) =(-~:~:~)as above, i.e. 

Ker P(s) = Im Q(s) and Pr [I OJ and QC = [IO J . Then (Ker[D(s):-N(s)J)"1 
P m 

-= (Im - T • T J . . KerL-N 1 (s):D 1 (s) . The transfer matrix of this last 

T -1 T 
input-output system is then given by (D 1 (s)) N1 (s) (notice that the in

-I 
puts and outputs have changed places). However G(s) = D (s)N(s) = 

-1 T 
N1 (s)D 1 (s) and hence the transfer matrix equals G (s). If G(s) has a mini-

1 1 . . (A -) h T( ) h ' . 1 1· ' (AT -T T) ma rea ization L ,B,C , ten G s as a minima rea ization ,C ,B . 

Therefore the Chern numbers of (E(P(s)))~ are equal to the controllability 
T~ -indices of (A ,C ), which are equal to the observability indices of (C,A). D 

Theorem 2.17 also gives us a way to compute the observability and controlla

bility indices of a minimal realization of Le(P) directly from P(s): 

THEOREM 2.18 Let P E lRpxq [s], surjective Vs E a:. Let Q E lRqxm [s], m:= 

q-p, injective 'ifs E a:, such that Ker P(s) = Im Q(s) (Lemma 2.16). Make P(s) 
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row proper by premultiplication with a unimodular matrix (row operations), 

and Q(s) column proper by post multiplication with a unimodular matrix 

(column operations). Let (A,B,C) be a minimal input-output realization of 

Ee(P). Then 

(i) degrees of rows of P(s) = Chern numbers of (E(P(s)))~ 

indices of (C,A) 

(ii) degrees of columns of Q(s) 

indices of (A,B). 

Chern numbers of E(P(s)) 

observability 

controllability 

Remark: If P1(s) and P2(s) ar~ row proper and U(s)P 1(s) = P2(s) for a uni

modular U(s), then the row degrees of P1(s) and P2 (s) are equal. Therefore 

the row degrees do not depend on how P(s) is made row proper. Similarly for 

column degrees. 

PROOF We only prove (ii), (i) is similar. If f_(A,B,C) is a minimal input

output realization, then E(A,B,C,D) with C (g) and D = (~) satisfies 

Ker P(s) =[CD] Ker[sI-A:-B]. Now (A,B) can be brought into Brunovsky nor

mal form by applying a transformation H = ( S O) to Xx U, det S # 0, 
-RF R 

det R # 0 (see equation 2.7). Let 

(A,B), i.e. A= diag(o 1 
• • •J) 

0 ••. 0 

now (A,B) be the Brunovsky normal form of 

with Ki the controllability indices of (A,B). Then it is easy to check that 

Ker[sI-A:-B] is•given by Im Q(s), with 

0 
s 

Q(s) := 

0 ...... .. 

0 ....... . 
0 ....... . 
sK2 
0 

0 

s 
'K -J s m 
0 

X 

u 



It is clear that Q(s) is column proper with column degrees Ki and if we 

write Q(s) = diag (sKi)QC + L(s) as before, then 

Therefore KerlsI-A:-B] is given by Im (-!F ~) 
proper with the same column degrees, and QC is 

it can be seen that Q(s) := [C D] ( S O) Q(s) 
-RF R 

Q(s), which is still column 

changed into ( ORnxr,1 ) Then 
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is also column proper, with the same colu1.m degrees Ki and of course Im Q(s) 

Ker P(s), Vs E ~- D 

Example: Let us return to our mechanical system m1y 

Let us assume that k1 f O, m1 f O and m2 f 0. P(s) is row proper and the 

degrees of the first and second row are two. Therefore the observability 

indices of a minimal realization (A,B,C) are 2 and 2. The kernel Q(s) of 

P(s) is given by 

( 
2 ) 

m2s +k 1+k2 

m1m2s:~(k 1m1+k2m1+k 1m2)s 2+k 1k2 

to the controllability index. Let 

I and N ( s ) : = ( 0 ) • 

Then P(s) = [D(s): -N(s) J ,det D(s) 1 0 and 

G(s):= D- 1(s)N(s) = --2---1- 2-----2-
(m1s +k 1)(m2s +k 1+k2)-k 1 
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-I 

is the transfer matrix (from u to(;~))· 

A minimal realization (A,B,C) is 

( C 

0 I/m1 

A 0 0 0 

-kl -kl 0 

kl -(ktk2)0 

C = ( I O O 0) 
0 I O 0 

Remark: Let PE lRP"<l [s] and Q E lRqxm[s] as in Theorem 2. 18, with P 

row proper and Q column proper. Write Q(s) = diag(ski)QC + L(s) as before. 

Consider now a polynomial matrix U(s) E lRqxq[sJ, such that U(s)Q(s) is 
K'• 

again proper. Write U(s)Q(s) = diag(s J. )Q'c + L' (s) as before. If U(s) 

satisfies 

a) {i,,;1,··••Km} 

b) Im QC= Im QC 

then U(s) is called column degree preserving and can be interpreted as 

feedback. This can be seen as follows: Because Im QC= Im QC, the input 

spaces of the external linear systems corresponding to Q(s) and U(s)Q(s) 

are equal. By Theorem 2.18 the column degrees of Q(s) and U(s) are the con

trollability indices of a minimal state space realization with state space 

X and input space U. Therefore there exists a Brunovsky transformation 

(_:F ~) on xxu which carries a minimal realization of Q(s) over in a mini

mal realization of U(s)Q(s). Conversely to every Brunovsky transformation 

there corresponds a column degree preserving U(s). This result was for 

input-output systems _in fact first stated in HAUTUS & HEYMANN ( 1978), in the 

following equivalent formulation. Consider the submodule fl of lRq (s) gene

rated by the columns of Q(s). Then feedback corresponds to an lR [ s]-homo

morphism from n to another submodule of lRq[s] of the same rank, which is 

degree preserving (HAUTUS & HEYMANN (1978)). Furthermore it is noticed that 

such degree preserving homomorphisms can be related to bicausal isomorphisms 

from lRm[s- 1] to itself. 

Dually we note that if U(s) : W +Wis such that the row degrees of 

P(s)U(s) are equal to the row degrees of P(s) and lim Ker P(s)U(s) = lim 
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Ker P(s), then U(s) corresponds to output injection. This is a transforma

tion dual to the Brunovsky transformation: if (A,B,C) is a minimal realiza

tion of i::e(P)', then it is changed into (A' ,B' ,C') with B' = B, A' 

S(A+HC)S-1 ,C' = TCS-I, where S : X ➔ X, T : Y ➔ Y with det S 'f O, det T 'f 0 

and H : Y + X. 

Finally, we want to way a few words about the case that P(s) is not surjec

tive for every s E ~, but only surjective for almost every s E ~- First we 

note that in this case (contrary to the situation P(s) surjective Vs E ~), 

not all information about i:: (P) is contained in the geometrical object 
e 

{Ker P(s), SE~}. Take for instance W = JR and consider p 1 (s):= s and 
2 p2 (s):= s . Clearly ker p 1(s) = ker p2(s), Vs E ~, in fact ker p 1(s) 

ker p2(s) 0, Vs# 0 and ker p 1(0) = ker p2(0) = W. However, i::e(p 1) = 
2 

ldw Id w {w dt =O} and i:: (p 2) = {w - 2 =O}. 
e dt 

As we already remarked, the s E ~ where the dimension of Ker P(s) suddenly 

jumps are exactly the non-controllable eigenvalues of a minimal realization 

of i::e(P): 

PROPOSITION 2.19 Let PE JRpxq[sJ, and surjective for almost every s E ~

Let i::i(A,B,C,D) be a minimal realization. Then: P(s) is surjective for all 

s E ~ <=:> i::i (A,B,C,D) is controllable. Furthermore, write P(s) = 

R(s)P'(s) as in Proposition 2.7. Then the controllable part of i::i(A,B,C,D) 

is a minimal realization of i::e(P'), while the s 0 E ~ such that det R(s0) = 0 

are exactly the uncontrollable eigenvalues of A. 

PROOF In Theorem 2. 13 we already proved that if P(s) is surjective Vs E ~, 

then i::i(A,B,C,D) is controllable. Conversely if i::i(A,B,C,D) is controllable. 

then by the Hautus test Ker[sI-l\:-B] has constant dimension Vs E ~. Since 

[C:D] maps Ker[sI-A:-B] isomorphically onto Ker P(s) by Theorem 2.13, it 

follows that P(s) is surjective Vs E ~- After a basis.transformation on X 

(the state space) we can always write A and Bas 

A 

such that (A 1,B 1) is controllable. The eigenvalues of A3 are the uncontrol

lable eigenvalues. It is clear that outside the eigenvalues of A3 , Ker 

[sI-Ai-B]=Ker[sI-A 1:-B 1J. Hence l:i(A 1,B 1,c 1,D), with C1 restriction of C to 

the controllable subspace of X, is a minimal (and controllable) realization 
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of L (P'). We also see that the dimension of Ker[sI-A:-B] indeed jumps for s 
e 

an eigenvalue of A3 . Since [C:D] is an isomorphism between E(P(s)) and 

E([sI-A!-B]) ·theses are exactly the points s0 such that det R(s0) = 0. D 
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2.2 Nonlinear systems 

2.2. I Nonlinear systems in state space form 

In this section we give the definition of a smooth nonlinear system 

(in state space form), which will be used in the sequel. Furthermore we 

show how this general definition can be specialized to various important 

subclasses of smooth nonlinear systems. Smooth will always mean C00
, al

though at this stage the definitions can be easily extended to the Ck-case. 

A smooth nonlinear system will consist of the following ingredients. 

W, the set of external variables, is a smooth manifold. Also the state space 

Xis a smooth manifold. There is a smooth fiber bundle B over X, so B ....2!....>X, 

with TI the bundle projection. Finally a smooth map f: B + TX x W (TX is 

the tangent bundle of X) is given such that the following diagram 

B X W 

(2.8) 

commutes (TIX is the usual projection of TX on X). 

DEFINITION 2.20 A smooth nonlinear system consists of smooth manifolds X 

and W, a smooth fiber bundle B ---2:...> X, and a smooth map f : B + TX x II 

such that (2.8) commutes. It is denoted by r(X,W,B,f), or shortly r. 

Let x = (x 1, ••• ,xn) be coordinates for X (n-dimensional). Then we 

can take coordinates (x,u) (x 1, ••• ,xn,ul, ... ,um) for B ((n+m)-dimensional). 

Such coordinates for Bare called fiber respectin.g. Take coordinates 

w = (w 1, ... ,wq) for W (q-dimensional). Then locally Definition 2.20 amounts 

to 

(2. 9) 
g (x, u) 

h (x, u) 

where we have split f: B + TX x Was f = (g,h), with g: B + TX and 

h: B + W. Furthermore we abuse notation by writing g(x,u) E TX as 

(x,g(x,u)). 

A smooth nonlinear system r(X,W,B,f) as above yields the following 

dynamical system in state space form (Definition 1.2)! 
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(2. 10) L.(X,W,B,f):= {(x,w) : JR+ Xx WI x absolutely continuous and 
l. 

(i(t),w(t) e f(n- 1(x(t))) a.e.} 

Furthermore the external behaviour of L(X,W,B,f) is given by (Definition 

I. 3): 

(2. I I) L (X,W,B,f) := {w : JR + W I 3x 
e 

We denote this by L =Li= Le· 

JR + X such that (x,w) e L.} 
l. 

Definition 2.20 differs in two major aspects from more usual starting 

points in nonlinear 3ystem theory: 

I. Instead of inputs and outputs we use a set of external variables W. 

II. We use a state-dependent input space (namely the fibers of B). 

With respect to I we refer to Chapter I for motivation. Furthermore 

we notice that, contrary to the linear case, there are situations where 

splitting of external variables into inputs and outputs is a delicate issue. 

Consider the (nearly) ideal diode given by the following I-V characteristic: 

t 
V L 

I + 

For I> 0 it is natural to regard I as the input and Vas the output, while 

forV > 0 it is natural to see Vas the input and I as the output. Around 

(O,O) an input-output description could be given in the scattering variables 

(I-V,I+V). So only locally we can define natural inputs and outputs, and 

they really differ in the three regions mentioned. In this example it is 

still possible to define a global input-output representation, namely by 

using the scattering variables. However, one can easily imagine a situation 

where it is simply not possible to give such a global split of external 

variables into inputs and outputs (think for instance of an I-V characteris

tic which is a closed curve in JR2 ; a sort of hysteresis loop). 

With respect to aspect II we note that a bundle B --2!....;, Xis a mathe

matical generalization of a product structure B =Xx U, with U a smooth 

manifold. By taking coordinates u = (u1, .•. ,um) for U we obtain in this case 

for the first part of equations (2.9): 
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(2. 12) x = g(x,u), XE X 

where now for every u EU, g(•,u) is a globally defined vectorfield on X. 

So if we take B =Xx U we adopt the framework of a family of vectorfields 

on X, parametrized by u EU. This framework, although it is what is normal

ly used in nonlinear system theory, might be too narrow for control theore

tic purposes, as is illustrated by the following example. Consider a parti

cle moving on the surface of a sphere s2 which can be controlled to move in 
. . . . (' h' 2 2) any direction. If we model this by taking B =Xx U int is case S x 1R , 

then the dynamics of the particle are of the form 

(2. I 3) 

2 with z1 and z2 globally defined vectorfields on S, and u 1 and u2 the con-
2 trols. However, vectorfields on S always have at least one equilibrium 

2 point, say z1 (x1) = z2 (x2) = O, for a certain x 1,x2 E S . Hence, in x 1 
and x2 we can steer in at most one direction. Therefore if we insist on 

taking B =Xx U we cannot describe the above situation! The dilemma is 

solved by taking Ba nontrivial bundle, i.e. not a product Xx U. 

In fact we can take B isomorphic to TS 2 . 

Remark: If Bis a nontrivial bundle over X, we can still define a state in

dependent input space U in the following way (see TAK.ENS (1976)). Take U 

equal to the space of all (sufficiently smooth) sections of the bundle B, 

i.e. U = {s:X+B[n°s=id}. Notice however, that U is in general infinite 

dimensional. 

We wish to be somewhat more detailed about what we called "fiber res

pecting" coordinates. Since B -1:-> X is a fiber bundle there exists a cover

ing set of locally trivializing charts; i.e. a collection {V.}. I of open 
i iE 

neighborhoods of X, with X = UV., such that for every i EI, 
iEI i 

-I 
TI (Vi) is isomorphic to Vix U, where U is the so-called standard fiber 

of B. Nore precisely, for every chart V there exists a diffeomorphism 

~: n- 1(v) ➔ V x U such that 

(2. 14) 
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commutes (pr means projection on V). Moreover if V. and V. are two 

with diffeomorphisms ¢., respectively 
]. 

the map~-. such that the diagram 
l.J 

(2. I 5) 

-I 
TI (V.nV.) 

·! ' J \'i 

]. J 
¢., as above, and V. n V. f 

J ]. J 

(V.nV.)xU 
]. J 

(V.nV.)xU 
~-. ]. J 

l.J 

charts 

0, then 

commutes, is a diffeomorphism. If Vis a trivializing chart with diffeomor

phism ¢ and if x0 e: V and u0 e: U, we can take local coordinates x =(x 1, ••• xn) 

around x0 , and u = (u 1, .•• ,um) around u0 • Then (x1°¢, .•• ,xn°¢, u 1°¢, ... ,um0 ¢) 

is a set of local coordinates for B around ¢- 1(x0 ,u0). Such coordinates are 

called fiber respecting and if no confusion is possible, we will omit the 

isomorphism ¢ and sir.1ply sveak about the coordinates (x 1, ••• ,xn,ul, .•• ,um) 

for B. Given a trivialization TI- 1(V) ~ VxU (~ means isomorphic) we can in

terpret g : B ➔ TX restricted to TI- 1(V) as a family of vectorfields on V 

parametrized by u e: U. In fact the trivialization induces a map 

(2. 16) g V Xu ➔ TV 

and g(•,u) is for every u e: U a vectorfield on V (Notice the abuse of nota
-1 

tion. Formally we should have written g 0 ¢ : vxU➔TV). In general there are 

many trivializations above a locally trivializing chart V. Consider two 
-I -I 

isomorphisms ¢ 1 : TI (V) ➔ vxu and ¢2 : TI (V) ➔ vxu, such that (2.14) com-

mutes. If we again take local coordinates x around x0 and u around u0, then 

the resulting fiber respecting coordinates 

are different in the input (u) coordinates. There exists a diffeomorphism 
-I -I 2 I -I 

a : TI (V) ➔ TI (V) such that u = a(x,u ),in fact a= ¢ 1 °¢ 2. This map a 

can be interpreted as feedback. The two trivializations also induce two 

different sets of vectorfields.g 1(,,u1) and g2(,,u2), as in (2.16), which 

are feedback related to each other, i.e. 

(2. 17) 
2 I I I 

g (•,a(•,u )) = g (•,u) 



Notice that this also motivates an alternative way to look at feedback. 

Namely we can define feedback as a bundte isomorphism a: B + B, i.e. a 

diffeomorphism a such that 
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Another related point we stress is that if B is not trivial, i.e. not 

Xx U, it is not clear what we mean by constant inputs. Any local triviali

zation TT-l(V) ~ VxU defines sections u = constant locally above V. To de

fine gtobaUy what are "constant" inputs, we need the notion of a global 

(integrable) connection on B. We return to this in section 2.2.3. 

We define a nonlinear input-output system as the following specializa

tion of Definition 2.20. First we give the notion of a puttback bundte. Let 
~ ii' 

k: M + N be a smooth map between two manifolds, and let B -~N be a fiber 

bundle. Then we define the pullback bundle k*B as the following fiber bundle 

over M: 

(2. 18) 

This gives immediately the commutative diagram 

*~ k k B ~ B 

(2. I 9) *~ l l k TT TT 

M N 
k 

with *~ k TT and k defined by *~ k(x,b) *~ k TT(x,b) x and b, for (x,b) E k B 

(and hence k(x) -.;; (b)). 

DEFINITION 2.21 A smooth nonlinear inp~t-output system in state space form 

is given by a smooth fiber bundle B __ TT_~ Y, a smooth manifold X and smooth 

maps h : X+ Y and g *~ h B + TX such that the diagram 

h *~ 
B h B TX 

(2.20) 
TT t th~ 

y h 
X 

commutes. We call Y the outputspace and h the output map. The system is 

denoted by Z(X,B,Y,g,h). 
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Definition 2.21 specializes Definition 2.20 in the following sense. 

Wis a fiber bundle B over Y. Furthermore we have defined B:= h*B and 

f B + TXxW·(with W=B) by f:= (g,h). If we choose coordinates y = (y 1, .•. ,yp) 

for Y (p-dimensional) and fiber respecting coordinates (y,u)= 

(y 1, ••• ,y ,u 1, ••• ,u) for B ((p+m)-dimensional) and coordinates x = 
p m ~ 

(x 1, ••• ,xn) for X then r(X,B,Y,g,h) is locally given by 

(2.21) 

(i) 

(ii) 

{ x = g(x,u) 

y h(x) 

Notice the following consequences of Definition 2.21: 

the outputs are "intrinsically" defined (they are elements of Y) 
*~ we have identified the inputspaces (the fibers of h B) with the fibers 

of B, and hence the inputs can be identified with a part of the external 

variables. 

(iii) the inputspaces are no longer state dependent, but only output depend

ent 

(iv) W can be seen as the space of outputs and inputs (although the inputs 

are not "intrinsically" defined, since they are elements of the fibers of B). 

If in the above definition we would take B trivial, B = Y x V, then the in-
*~ puts are intrinsically defined. Also B = h Bis trivial in this case. 

The fiber respecting coordinates (y,u) as we used above are of course 
~-! ~ ~ ~ 

obtained by taking a local trivialization TI (V) ~ VxU of B, with Van open 

neighborhood on Y. A local trivialization of B induces a local trivializa

tion of B = h*B, namely TI-l(h- 1(V)) ~ h- 1(V) x U (with TI:=h*;). Let now 
-I 

Yo EV and x0 E'h (y0) and u0 EU. Then we can take local coordinates y 

,:round y0 , x around x0 and u around u0 . With the above trivializations of 

Band B, this yields fiber respecting coordinates (y,u) for Band (x,u) for 

B. In these coordinates h: B +Bis given by 

(2.22) h(x,u) = (h(x),u) 

We call a local trivialization of Bas above and the resulting fiber respect-

ing coordinates (x,u) output-induaed. If TI-l(V) ~ vxu and TI-l(V) 

are different trivializations, then we obtain two different sets of fiber

respecting coordinates (y,u 1) and (y,u2) for B, and correspondingly differ

ent output-induced coordinates (x,u1) and (x,u2) for B. As before there ex-
I 2 ~ l ~-I~ ists a bundle isomorphism (y,u) --l>(y,u =a(y,u )) from TI (V) to itself. 

This induces a bundle isomorphism from TI-l(h- 1(V)) to itself, 
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I 2 I given by (x,u) --l> (x,u =a(x,u )), where a satisfies 

(2.23) q(x,u) 

Hence the feedback transformations from one set of output induced fiber res

pecting coordinates of B to another, are exactly the output feedback trans

formations. 

Of course there are many intermediate situations between Definition 

2.20 and Definition 2.21 which are also of some interest. Let L(X,W,B,f) be 

a nonlinear system, and write again f = (g,h) with g: B + TX and h: B + W. 

We can distinguish the following cases 

I. Assume that h: B ➔ W restricted to the fibers of Bis an immersion. 

In other words (:~) is injective (denote fiber respecting coordinates for B 

by (x,v)). Then by the implicit function theorem we can locally define coor-

dinates w = (y,u) for W, in which coordinates h can be written as h(x,v) 

(h(x, v), v). Hence we can locally identify v and u and write (2.9) as 

{ X 
g(x,u) 

(2.24) 
y h(x,u) w = (y 'u) 

We call (2.24) a local input-output representation with feedthrough term. 
( ah) . . . h d . . 1 . II. Assume, apart from av 1nJect1ve, tat V + ker h 1s an invo utive 

distribution of constant dimension on B (Vis the vertical tangentspace 

of B; V(x,v):= {ZET( )Bl11 Z=O}). Then h*V is an involutive distribution 
x,v * 

of constant dimension on W(this will be proved in Lemma 2.27), and hence 

at least locally, we can factor out W by the leaves of the foliation ge

nerated by h*V. We can take local coordinates w = (y,u) for W such that the 

leaves are given by setting y equal to a constant. In these coordinates h 

can be written as h(x,v) = (h(x),v). After identifying v and u we obtain 

(2.25) 
g(x,u) 

h(x) w = (y,u) 

We call (2.25) a local input-output representation. 

III. Suppose that Wis a fiberbundle over an output manifold Y with projec

tion 11, and that h: B +Wis a bundle isomorphism, i.e. there exists 

h: X + Y such that 
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h 

h commutes 

Moreover, assume that h restricted to the fibers of Bis an isomorphism. 

Then it is easy to see that B actually is diffeomorphic to hW, and that we 

have arrived at Definition 2.21. 

IV. Finally, if (:e) is not injective, then there are variables in the 

fibers of B which can affect the internal state behaviour via the equation 

x = g(x,v), but which cannot be directly identified with some of the exter

nal variables. Hence even a local input-output representation (with feed

through term) is not possible. We shall come back to this in Section 2.2.4. 

An important subclass of nonlinear input-output systems is formed by the 

systems where the inputs enter the equations in a linear way. This can be 

formalized as follows 

DEFINITION 2.22 A nonlinear input-output system E(X,B,Y,g,h) is called 

affine if Bis a vectorbundle and the map g: h*B + TX is an affine bundle 

morphism, i.e. g restricted to the fibers is an affine map. 

If we take local fiber respecting coordinates (x,u) = (x1, ... ,xn, 

u 1, •.. ,um) for B, such that u = (u 1, •.. ,um) are affine coordinates for the 

fibers of B (which are linear spaces), then Definition 2.21 yields that 

g(x,u) can be written as 

m 
g(x,u) = A(x) + l u.B.(x) 

i=l i i 

where A(x) and Bi (x), i=l, •.. ,m are locally defined vectorfields on X. We c.an 

define 60 (x):= span {B 1(x), ... ,Bm(x)} and 6(x):= A(x)+60 (x). This yields an 

affine distribution 6 on X and a distribution 60 on X such that -60 = 6-6:= 

{Zl-z2 izl ,Z2€6}. 

We define another type of an affine system in the following way: 

DEFINITION 2.23 An affine control system consists of an affine distribution 

6 on X, and a map h: X + Y with Y the output manifold. It is denoted by 

E(X,6,Y,h). 

An affine control system is an example of a nonlinear system E(X,W,B,f) 

(Definition 2.20) as can be seen in the following way. Define the bundle B 



over X as the subbundle of TX given by the affine distribution 6(in every 

x EX there is given the affine subspace 6(x) c TxX). Define an affine map 
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g B + TX such that Im g = 6. Then take the set of external variables equal 

to Y, and define h: B +Wash= h 0 n, with TI the projection of B onto X. 

Set f = (g,h). In local coordinates y for Y, and x for X, r(X,6,Y,h) is given 

given by 

(2.26) 

m 
x = A(x) + l u.B.(x) 

i=l 1 1 

y = h(x) 

for certain (locally) defined vectorfields A and Bi on X. 
*~ Remark: Notice that if there exists a bundle B above Y such that B = h B, 

then we can also define W = h*B and we have arrived at an affine nonlinear 

input-output system. 

Actually we can associate with every nonlinear system r(X,W,B,f) an 

affine control system by the following construction, which will be frequent

ly used in the sequel. 

DEFINITION 2.24 Let r(X,W,B,f) be a nonlinear system. Write f 

g: B + TX and h: B + W. Define 

{ZET( )Bin Z=g(x,v)} 
x,v * and 

{ZET( )Bin Z=O} 
x,v * 

(g,h) with 

for (x,v) E B. Then t 0e = te - te and r(B,te ,W,h) is an affine control system, 

with state space Band output manifold w.r(B,~e,W,h) is called the extended 

system of r(X,W,B,f) an9 is also denoted by re(X,W,B,f). 

If in local fiber respecting coordinates (x,v) for Band w for W, 

r(X,W,B,f) is given by 

x = g(x,v) 

w h(x,v) 

then the extended system re(X,W,B,f) can be written as 

g(x,v) 

(2.27) 
{ 

X 

V = U 

w h(x,v) 

with (x,v) the new state, and u the new input. 
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Remark: Taking the extended system Le(X,W,B,f) of a nonlinear system 

L(X,W,B,f), amounts to "integrating the input one time" (i.e. ~ = u). There

fore, if we iook at the dynamical systems in state space form associated to 

Land Le (see equation (2.10)), we add one degree of differentiability in 

the transition from L to Le, 

2.2.2 Minimality, observability and controllability 

In this section we treat the properties of "minimality","observabili

ty" and "controllability" for the smooth nonlinear systems that we defined 

in the previous section. Again smooth will always mean C00
, although the 

definitions and results can be often extended to the Ck-case. Furthermore, 

in first instance we shall remain within the "regular category". This means 

that we assume that the smooth maps, distributions etc. have constant rank 

or constant dimension. From a differential geometric point of view this 

adds very much to the clarity of the exposition. Later on we leave this re

gular category with the introduction of the observability codistribution 

and controllability distribution, which do not necessarily have constant 

dimensions. We remark that ,in some instances the results can be more 

elegantly stated by assuming (real) analyticity of the system. The reason 

is that in the analytic case singularities (of the (co)distributions) are 

easier to handle. 

We give the following definition for minimality of a smooth nonlinear 

system in state space form. 

DEFINITION 2.25· Let L(X,W,B,f) and L1 (X',W,B',f') be two nonlinear systems. 

Then L 1 $ L if there exist surjective submersions¢: X + X', ~: B + B' 

such that the diagram 

(2.28) j
\'\i . <l /f' jB·t 

w -2:..._ w 
TI X X TI 1 

TX-TX' 
~ ¢* TI~ 

X X X X' 
¢ 

commutes. Lis called equivalent to L 1 (L~L') if~ and¢ are diffeomorphisms. 

We call L minimal if {L 1 $L = L1~L}. 

Remark I. It is clear that this definition formalizes the same idea as ex-
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pressed in Definition 1.5 for general systems, but now within the "category 

of smooth nonlinear systems": Z is minimal if there does not exist a Z:' smal

ler than Z: and explaining the same external behavior. 

Remark 2. In the linear case we have given conditions on Z:(A,B,C,D) which 

are necessary and sufficient for minimality of Z:.(A,B,C,D) (see Theorem 2.2). 
l. 

In the nonlinear case we have that minimality of Z:i(X,W,B,f) implies mini-

mality of Z(X,W,B,f) as above. However, the converse is in general not true, 

and it seems hard to impose conditions on Z(X,W,B,f) stronger than the 

conditions of Definition 2.25, which ensure the minimality of Z(X,W,B,f). 

Remark 3. If Z is e~uivalent to Z', then the diffeomorphisms ¢ and t as in 

(2.28) need not be uniquely determined, even if Z is minimal. Recall that 

in the linear case (see Section 2.1.1) ~ and tare indeed unique, if Z: is 

minimal (this is the so-called state space isomorphism theorem (see 

BROCKETT (1970))). 

Remark 4. Definition 2.25 is an example of our general approach to remain 

within a smooth and regular (i.e. constant ranks and dimensions) category. 

For instance we could have strengthened the definition of minimality by 

allowing that¢ and tare not submersive at isolated points. 

From a differential geometric point of view it is useful to inves

tigate what a global definition like Definition 2.25 amounts to locally. 

For this we need the notion of a (co)distribution. A C00-distribution, 

or simply distribution, on Xis a map p + ~(p), where ~(p) c TX is a linear 
p 

subspace of TX. Moreover for any p EX there exists a neighborhood U and 
00 p 

there are C vectorfields z 1, ..• ,zk such that span {Z 1(q), •.. ,Zk(q)}= ~(q) 

for every q EU. A distribution Dis involutive if [z 1,z 2J ED for every 

z 1,z2 vectorfields in D ( [,] is the Lie bracket). A distribution Dis 

regular if it is involutive and it has constant dimension, i.e. dim D(p) 

does not depend on p EX. A C00-codistribution, or simply codistribution, 

on Xis a map p + ~(p), where ~(p) c T*x is a linear subspace of T*x, 
00 p p 

such that locally there exist C one-forms e 1, •.. ,el with ~(q) = span 

{8 1 (q), ... ,el(q)}. A codistribution Pis involutive if for every e E P, 

there exists a 6 E P and an arbitrary one-form a such that de= a A e. A 

codistribution Pis regular if it is involutive and it has constant dimen

sion. 
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ile shall now define the prolongation of a general (co)distribution 

(see also YAN0 & ISHIHARA (1973)). Afterwards we shall see that these defini

tions become.much simpler for regular (co)distributions. First we need to 

define the prolongation of vectorfields, functions and one-forms. Let Z be 

a vectorfield on X. Z defines an one-parameter group Zt:X + X, t E 1R and 

small (Z is the integral flow of Z). Then (Z) : TX+ TX is the one-para-
t t * 

meter group of a vectorfield on TX, which we denote by Z. Given a function 

f : X + 1R, we define the function f : TX + 1R, by f (v) := df(v), v E TX. 

Furthermore, let 8 be a one-form on X, then we define the one-form 8 on TX 

by setting 0(Z):= Z(8), for a vectorfield Z on TX (the expression Z(8) makes 

sense, since we can look at 8 as a funetion from TX to JR). Let now P be a 

codistribution on X. Locally Pis given as span {e 1, ••. ,e1} with Bi I-forms 

on X. Then define locally the codistribution Pon TX by setting P:= span 
* * . . {TI 01, ••• ,TI e1 ,e 1, ••• ,e1 } (with TI the natural projection of TX on X). Given 

a codistribution Pon X, we define the (C00-)distribution Ker P by Ker P 

{C00 vectorfields Z on X such that 8(Z) = 0, for each 8 € P}. Conversely if 

Dis a distribution on X we define the (C00
-) codistribution Ann D (the 

annihilator of D) by Ann D,= {C00 one-forms 8 on xle(Z) = 0 for each ZED}. 

In general D c Ker(Ann D) and Pc Ann(Ker P). The prolongation of a distri

bution Don Xis the distribution D defined by D = Ker P, with P = Ann(D). 

Notice that ZED if Z is a vectorfield contained in D. 

If the (co-)distributions are regular, the above definitions become 

much simpler. Let P be a regular !-dimensional codistribution on X, then by 

Frobenius' theorem (SPIVAK (1970)), there exist local coordinates (x1, ••. ,xn) 

for X such that P = span {dx 1, ••• ,dx1 }. Hence P = span {dx 1, .•. ,dx1 , 
. . * . . 

dx 1, .•• ,dx1 } (we omit TI). It is easy to see that (x1, .•. ,xn,xl, ••• ,xn) are 

local coordinates for TX. Furthermore if Pis regular, then D = Ker Pis 

regular and P = Ann(Ker P). Also if Dis a regular distribution, then 

P = Ann(D) is regular and D = Ker(Ann D). If Dis regular 
a a 

coordinates (x 1, ••. ,xn) such that D =_span {ax! ,···•a~}. 

span {dxk+i•·•·,dxn} and hence Dis given by 

a a a a 
D = span {ax1•···•a~•axl'•··•a:i'.:k} 

there exist local 

Then Ann D = 

Now return to Definition 2.25. Let E' ~ E and consider diagram (2.28). 

Because~ and$ are submersions they define the following regular distribu

tions on B, respectively X: 



(2.29) 
E:= {Z€TBj4>*Z=O} 

D:= {Z€TXl<P*Z=O} 

Furthermore it can be seen that 

(2.30) 

We notice that diagram (2.28) consists of three subdiagrams (write f 

and f' = (g',h')). 

B 
q, 

B' 

a. h l 1 h' 

w id w 

B 
q, 

B' 

b. ~ l l ~· 
X 

<P 
X' 

B 
q, 

B' 

c. g l lg• 

TX TX' 

<P* 

Remark: Actually there is a fourth subdiagram 

TX <P* TX' 

t t 
X X' 

<P 

but this connnutes by the definition of .p*. 

A close inspection shows that: 

subdiagram a) connnutes = E C ker dh 

(2. 31) II b) II = D ~*~ 
II c) II = g*E C D 

Motivated by this we give 
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(g,h) 
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DEFINITION 2.26 Let L(X,W,B,f) with f = (g,h) be a nonlinear system~ L is 

called locally minimal if, when there exist regular distributions Eon Band 

Don X satisfying 

(i) Ecker dh 

(ii) TI E 
* 

D 

(iii) g*E CD 

then necessarily E and Dare the zero distributions. 

If L(X,W,B,f) is not minimal then there exists a L1 (X' ,W,B' ,f') and 

~and~. not both diffeomorphisms, such that (2.28) coJIII!lutes. We saw in (2.31) 

that E and Das defined in (2.29) then satisfy conditions (i), (ii), (iii). 

Moreover E and Dare not both zero. Hence Lis also not locally minimal. 

Therefore we conclude:L locally minimal= L minimal. The converse statement 

is in general not true. If Lis not locally minimal, then there exist non

trivial E and D satisfying conditions (i), (ii) and (iii). Since E and D 

are regular, they generate a foliation of B, respectively of X. The leaves 

of these foliations are the maximal integral manifolds of E, respectively 

D. Therefore set-theoretically we can define B' as the space of leaves of 

E, and X' as the set of leaves of D, together with projections~: B + B' 

and~: X + X'. However, we cannot always give B' and X' the structure of 

differentiable manifolds such that~ and~ are submersions (as one says, 

regular distributions can a priori only locally be factored out). Hence we 

cannot deduce that Lis not minimal. 

Remark I. It is clear that minimality of Li(X,W,B,f) implies also local 

minimality of L(X,W,B,f). The reasoning above shows that if we want to cha

racterize minimality of Li in a differential geometric way, local minimali

ty of Lis a better candidate than minimality of L(however presumably still 

not strong enough since it is possible that an involutive, but not regular, 

distribution can be factored out (in a set-theoretical sense)). 

Remark 2. In the case of analytic systems we should require that E and D 

as above are analytic distributions. Since involutive analytic distributions 

always define a foliation (also if they do not have constant dimensions), 

they can be factored out in a set-theoretical sense. Therefore we only have 

to ask that E and Din Definition 2.26 are involutive. Correspondingly, in 

Definition 2.25 ~and~ should be analytic, and only surjective. 

There is an equivalent way of formulating local minimality in terms of 

the extended system. For this we need the following 



LEMMA 2.27 Let D1 and D2 be two regular distributions on a manifold M. 

Suppose that D1 + D2 is again regular. Then there exist local coordinates 

(x1, ... ,xn) for M such that 

a a 
D1 n D2 = span {ax!, ... 'a¾:} k s n 

a a a a 
span {ax1' · · • 'a¾:'a¾:+i' • · 'ax,e_} 

PROOF Notice that D1 + D2 regular is equivalent to D1 + D2 involutive and 

D1 + D2 or D1 n D2 of constant dimension. By factoring out D1 n Dz we may 

assume that D1 n Dz = O. Then we refer to RESPONDEK (I 982). 

Remark: Sometimes we actually need the following weaker result: there 

exists a basis z1, ... ,Z,e_ of vectorfields of D1 such that [Zi,D 2J c D2 , 
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D 

i = 1, .. ,l. This can in fact be proved for a.rbitrary D1 and re~ular D2 such 

that D1, D2 and D1 n n2 have all constant dimension and [D 1,D2J c D1 + D2 
(see NIJMEIJER (1981), ISIDORI et al.(1981)). 

Let us define for two (possibly affine) distributions D1 and D2 on a 

manifold 11, [D 1 ,v2] as the distribution on M given by [D 1 ,D2] = span 

{[Y,Z]jYED 1,ZED2}, i.e. the distribution spanned by all Lie-brackets of 

vectorfields in D1 and D2. 

THEOREM 2.28 Let L(X,W,B,f), with f = (g,h), be a nonlinear system and let 

L(B,6e,W,h) be its extended system (Definition 2.24). Then: L(X,W,B,f) is 

locally minimal = there does not exist a nonzero regular distribution 

Eon B such that 

(i) Eckerdh 

(ii) [6e,EJ c E+6~ 

(iii) En 6~ has constant dimension 
e e (Recall the definitions of 6 and 60 from Definition 2.24). 

PROOF We prove that: {there exist regular distributions Eon Band Don X, 

not both zero, such that (i) Ecker dh, (ii) rr*E = D, (iii) g*E c D} 
= {there exists anonzero regular distribution Eon B such that (i) 

e - e J e Ecker dh, (ii) L6 ,E c E+60 , (iii) En 60 has constant dimension}. 

( =) [6e,E] c E+6~ implies that [6~,E] c e E+60 . Therefore 6e and E are 
0 
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regular distributions on B such that 6; +Eis involutive and 6; n E has 

constant dimension. By applying Lemma 2.27 we can choose coordinates 

(x1, ••• ,xn,ui••·••um) for B such that 

.e { a a} 
u 0 = span -~-•••·,-~-

au1 oUm 

a a 
span {-a-····,-a-} 

ul ul 

E 

Furthermore it 

Then D:= ,r*E =· 

is easily seen that these coordinates are fiber respecting. 

span{,;-, ••• ,,;-} is a well-defined distribution on X (we 
ax1 a~ · 

abuse notation by looking at xi as 

~oordinates 6e is given by 6e(x,u) 

coordinate functions on X). In these 
n a l g.(x,u)-a- + 6;(x,u), with g = 

j=I J xj 
e 

(gl' ... ,gn). [6 ,E] 

ilg. 
(2.32) <ax~) 

]. 

e 
c E + 60 yields 

0 
i=l, •.. ,k 

j=k+l, ••. ,n 0 
i=I, ... ,l 

j=k+l, •.• ,n 

However, in these coordinates g*E c Dis given by the same expressions. 

(=) Since ,r*E =Dis a regular distribution on X, we can choose coordi

nates (x1, ••. ,xn) for X and (x1, ..• ,xn,ul, ..• ,um) for B such that D = span 

{ a .. a} {a a a a}. " 
ilx1••·••a~' and E = span ilx1•···•a~•aul'''''ilul with k $ n, ,(., $ m. 

Because 6~ = sp~n {a: •···•a:}, this implies [6~,E] 
I m 

• e e As above (2.32) g*E c D yields that [6 ,E] c E+60. □ 

Remark: In fact it can easily be proved that an affine control system 

E(X~~.h) (Definition 2.23) is locally minimal if and only if there does 

not exist a nonzero regular distribution Don X such that (i) D c ker dh, 

(ii) [6,D] c D+60 and (iii) D n 60 has constant dimension (see also Section 

2.2.3, Theorem 2.56). Therefore we proved in Theorem 2.28 that E(X,W,B,f) 

is locally minimal if and only if Ee(X,W,B,f) is locally minimal. 

Theorem 2.28 enables us to give a conceptual "algorithm" to check lo

cal minimality.Define (6e)-~E+6~) as the distribution spanned by all vector

fields Z on B such that [6e,Z] c E+6~. Then define a sequence of distribu

tions {Em}, m = 0, I, ... , by setting 
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0 E := ker dh 
Em:= Em-In (6e)-l(Em-1+6~) m = 1,2, ..• 

We can prove'(see lHJMEIJER (1980,1981,Th.4.I), ISIDORI et al(l981 b)) that 

if dim(ker dh) = k then lim Em= Ek and if Ek has constant dimension, then 
k m-+co e e 

E is the maximal regular distribution E which satisfies [6 ,E] c E+60 and 

Ecker dh. Therefore if Ek n 6~ has constant dimension, then Theorem 2.28 

implies that E(X,W,B,f) is locally minimal if and only if Ek= 0. 

We now direct our attention to nonlinear input-output systems. First 

we notice that the definition of equivalence (Definition 2.25) becomes much 

simpler. 

PROPOSITION 2.29 Let E1(x 1,B,Y,g 1,h 1) and E2(x2,B,Y,g2,h2) be two nonlinear 

input-output systems. Choose local fiber respecting coordinates (y,u) for 

B. Choose fiber respecting coordinates (x1,u) for h 1*B and (x2,u) for h2*B, 

output induced by (y,u), such that L 1 and L 2 are given by 

LI xi gl(xl,u), y hi (xi) 

L2 x2 g2(x2,u), y h2(x2) 

Then LI ~ L2 if and only if there exists a diffeomorphism ¢ 

that 

(i) ¢*g 1 (x,u) 

(ii) h 1(x) 

If LI and E2 are 

El : 

L2 : 

g 2 (¢(x), u) 

h2o¢(x) 

and 

affine input-output systems, 

I m I 
xi A (x 1) + l u.B. (x1), 

i=l i i 

2 m 2 
x2 = A (x2) + l u.B. (x2), 

i=I i i 

they are locally 

y=hl(xl) 

y = h2(x2). 

Then LI~ L2 if and only if there exists a diffeo~orphism ¢ 

that 

(i) ¢ Al AZ ¢ B.1 2 i 1, •.. ,m 
* ' * 1 Bi ' 

(ii) hi h2o¢ 

We call ¢ the equivalence mapping. 

given by 

PROOF LI~ Lz if and only if there exist diffeomorphisms ~and¢ such that 

(2.28) in Definition 2.25 conm1utes. In particular 
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*~ *~ *~ 
h l 13 h2 B h 1 B 

hi. l l h2 and nil 
B B xi 

id q, 

coilllllute. In the output induced fiber respecting coordinates (x 1,u) for 
*~ *~ h1 Band (x2 ,u) for h2 Bas above, this yields that ¢(x,u) = (q,(x),u). 

The rest follows easily. □ 

In the sequel we want to show that for nonlinear input-output systems, 

local minimality is equivalent to some kind of observability (compare Theo

rem 1.14 and Corollary 2.3) First we state a preliminary lemma. 

LEMMA 2.30 

n- 1(V) --;,. 
~I 

Let r(X,B,Y,g,h) be a nonlinear input-output system. Let 
-I 

VxU and TT (V) ~ vxu be two output induced trivializations 

,of B = h*'if, resulting in two sets of coordinates (x,u 1) and (x,u2) for 

n- 1(V) and two maps g1 vxu + TV and g2 : vxu +TV.Let P be a regular 

codistribution on V such that dh c P. Then (with£ the Lie-derivative): 

I 
{£ I I PcP,-'efu EU} 

g (•,u) 

2 
~ {£ 2 2 PcP,\fu EU} 

g (•,u) 

PROOF We know that there exists a map a (output feedback) such that 
-2--~ I 2~ I I I 
u = a(h(x),u) and g (•,a(h(•),u )) = g (•,u ). Since Pis regular we can 

choose coordinates 

k ~ n (Frobenius). 

x = (x1, ••• ,x) for X such that 
n 2 

Suppose now£ 2 2 PcP,\fu EU. 
g (•,u) 

Then for i l, ... ,k, £ I I dxi 
g(•,u) 

I I 2 ~ I 
dgi (•,u) = dgi (•,a(h(•),u )) 

2 
n agi ~ I l -a- (•,a(h(•),u ))dx. 

j=I xj J 
+ Y r ! 

j=I r=I l=I 

. I with g 

2 
agi aar 

aur ay.e. 

ah,e_ 
-~- (·) dx. 
ox. J 

J 

(2.33) 

Since£ 2 2 PcP, the first term in (2.33) belongs to P. The second term 
g (•,u) 

is contained in dh = span {dh 1, ... ,dhp} and hence also belongs to P. O 

Then we define the following notion of observability: 
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DEFINITION 2.31 Let L(X,B,Y,g,h) be a nonlinear input-output system.Lis 

called locally weakly obsewable if there does not exist a regular codistri

bution Pon X, with Pf T*x, such that 

i) dh c P (i.e. h*(T*Y)cP) 

ii) £ ( )PcP, \fuEU g • ,u 

on every output-induced trivialization n- 1(V) ~ VxU, with g VxU ➔ TV de-

fined by the trivialization. 

Remark: In order to define (local weak) observability we have to choose 

input-coordinates; i.e. we have to specify the sections u = constant of B. 

By Lemma 2.30 it follows that every output-induced trivialization yields 

the same observability properties. Also, output-induced trivializations are 

natural since they identify the inputs in the fibers of B with the inputs 

in the fibers of B, a part of the external variables. If we take triviali

zations of B which are not output induced then the observability properties 

will change in general (we apply general feedback, instead of output feed

back). 

We can state the following, already announced 

THEOREM 2.32 Let L(X,B,Y,g,h) be a nonlinear input-output system. Then: 

L locally minimal = L locally weakly observable 

PROOF (=) Let (x,u) be output-induced fiber respecting coordinates for 

B = h*B. Suppose that Lis not locally weakly observable. Then there exists 

a regular codistribution P f T*x such that (i) dh c P, (ii) £ ( )PcP, \tu. g • ,u 
Hence D:= ker Pis a nonzero regular distribution on X which satisfies 

(i) D c ker dh, (ii) [g(•,u),D] c D, \tu. Now we can lift Din a unique 

way to a regular distribution Dl on B, such that the integral manifolds of 

Di are contained in the sets h'-l (y,u), with (y,u) E B. In particular the 

integral manifolds of Dl are contained in the sections u = constant of B. 

Then (i) yields Dl c ker dh and (ii) implies g*Dl c D. Therefore Lis not 

locally minimal. 

( <=) Suppose Lis not locally minimal. Then there exist regular distri

butions Eon Band Don X such that g*E c D, n*E = D and Ecker dh. It 

follows from Ecker dh, that we can find output-induced fiber respecting 

coordinates (x,u) for B such that 

E 
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{ a a . 
Then D = span -~-,···,-~-1 

ax 1 a¾: (where we now interpret xi as functions on X!) 

and g Eel) yields [g( • ,u) ,DJ c D, 'tfu. Furthermore E c ker dh implies D c ker dh 
* 

Then P:= {0ET*xje(Z)=O, 't/ZED} satisfies dh c P and£ ( )PcP. Also Pis g • ,u 
regular and has dimension strictly less than dim X = n. Hence Eis not lo-

cally weakly observable. 

Usually local weak observability is defined in a more intrinsically 

control-theoretic way (HERMANN-KRENER (1977)), by requiring the following 

property, which we shall call Property I: 

For every x EX there exists an open neighborhood V of x such that 

for every x' EV, x' 1 x, there exists an input function u such that if 

□ 

we apply u to E, then the output functions corresponding to the initial con

ditions x(O) = x and x(O) = x' are different, while the state space tra

jectories remain in V. 

To understand the connection between Definition 2.31 and Property I 

we introduce the observability codistribution. 

DEFINITION 2.33 Let E(X,B,Y,g,h) be a nonlinear input-output system. Let 

TI-l(V) ~ vxu be an output induced trivialization of B = h*B. Let us de

note by G the linear space of smooth functions on V containing all (finite) 

linear combinations of functions of the form 

(2.34) £ ( )£ ( ) ..• £ ( )h' with ui EU arbitrary 
g •,ul g •,u2 g •,~ 

where g: vxu +·Tv is defined by the trivialization. Then G generates a 

codistribution O on V by setting 

(2.35) O(x):= span {dk(x) jkEG}, x EV. 

This codistribution is called the observability codistribution. 

The following proposition shows that the definition of the observabi

lity codistribution is independent of the output-induced trivialization of 
-1 

TI (V) (compare Lemma 2.30). 

PROPOSITION 2.34 Let TI-l(V) -~->VxU and TI-l(V) ~VxU be two output in-
I 2 

duced trivializations, resulting in two sets of coordinates (x,u 1) and 
2 -1 I 2 

(x,u) for TI (V) and two maps g : VxU ➔ TV and g : VxU ➔ TV.Define 
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for both trivializations the observability codistributions OJ, respectively 

o2 on V. Then OJ = o2. 

2 PROOF We know that there exists a map a (output feedback) such that u 
-~-- J 2 ~ I J J 
a(h(x),u) and g (•,a(h(•),u )) g (•,u ). Therefore £ I J h 

g(•,u) 

£ 2 I hand hence d£ I I h 
g (•,a(h(•),u )) g (•,u) 

d(£ 2 J h) 
g (•,a(h(•),u )) 

2 ~ 
d(£ 2 2 h) + ~ (• u2) aa dh 

g ( • , u ) au 2 ' ay 

aa 
ay means differentiation w.r.t. to the first components). 

2 
Since ag2 (•,u2) ~a dh is contained in dh, it follows that d£ 1 J h E o2. 

au y g (. ,u ) 

By induction to the number of Lie-derivatives in (2.34) it is easy to prove 
2 I I 2 I 2 that O c O. By the same argument O c O. Hence O = 0. D 

Remark: The vectorspace G does depend on the trivialization. 

It also follows from Proposition 2.34 that the observability codistri

bution O is globally defined (we can take an atlas of trivializing charts 

V). Moreover O is involutive and is the smallest codistribution that con

tains dh and is invariant under g, i.e. £ ( )OcO for every u, on an out-g • ,u 
put induced trivialization. However O does not necessarily have constant 

dimension. Therefore we go outside the regular category in which we worked 

so far. The connections between Definition 2.31, Property I and Oare ex

plained in 

THEOREM 2.35 Let E(X,B,Y,g,h) be a nonlinear input-output system. Then: 

(i) dim O(x) = dim X Vx EX =e¢o E has property I 

(ii) E has property I = dim O(x) 

subset of X 

dim X for x in an open and dense 

(iii) dim O(x) = dim X for a certain x E X = E is locally weakly ob-

servable. 

PROOF (i) and (ii) are proved in HERMANN-KRENER (1977). The proof of (iii) 

is given as follows: Let Ebe not locally weakly observable. Then there 

exists a regular codistribution P satisfying the conditions of Definition 

2.31, and Pf T*x. It is clear that O(x) c P(x) for every x EX. Hence 

dim O(x) < dim X, \Jx EX. □ 
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Remark 1. If O has constant dimension then: L has property I= dim 0 

dim X = L is locally weakly observable = L locally minimal. 

Remark 2. An interesting question is the following: Let dim O(x) < dim X 

for every x EX. Does this imply that Lis not locally minimal? In the 

analytia case the answer is affirmative (see NIJMEIJER (1982 b)). Since 0 

is in this case a codistribution zenerated by analytic functions, 0 has con

stant dimension on an open and dense subset of X. Define Das the analytia 

annihilator of O. Then D has constant dimension and hence is regular. More

over it satisfies [g(•,u),D] c D, \ju EU and D c ker dh. 

Remark 3. In the analytic case Property I and dim O(x) = dim X for every 

x EX are equivalent if Lis also locally weakly controllable (see Defini

tion 2.53, HERMANN-KRENER (1977)). 

Remark 4. Of course, if dim O(x0) 

some open neighborhood of x0 • 

k, then dim O(x) ~ k for every x in 

For nonlinear systems which have a local input-output representation 

with feedthrough term, as, defined in Case I, equation (2.24), we can also 

define some kind of observability and show that it is equivalent to local 

minimality. 

DEFINITION 2.36 Let L(X,W,B,f), with f = (g,h), be a n~nlinear system such 

that h restricted to the fibers is an immersion. Then Lis called loaally 

distinguisrtable if there does not exist a regular codistribution Pon X, 

* unequal to TX, ·such that for every local input-output representation with 

feedthrough term 

(2.36) 

P satisfies 

(i) 

(ii) 

x g(x,u) 

y h(x,u) 

£ ( )p € p g • ,u 

d h(•,u) c P 
X 

w (y,u) 

(d h(•,u) are the one-forms on X obtained by differentiating h(x,u) with 
X 

respect to x). 

Analogously to Lemma 2.30 we can prove that conditions (i) and (ii) 

do not depend on the coordinates (x,v) for Band (y,u) for W such that his 
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given as h(x,v) = (h(x,v),v). We obtain 

THEOREM 2.37. Let L(X,W,B,f), with f = (g,h), be a nonlinear system, such 

that h restricted to the fibers is an immersion. Then: 

L locally minimal = Lis locally distinguishable 

PROOF (=) Let P be a regular codistribution on X which satisfies 

E ( )pc P for all u, and d h(•,u) E P for all u for every local input-
g •,u X 

output representation with feedthrough term of L. Notice that because h 

restricted to the fibers is an immersion, ker dh is a distribution on B 
e such that ~O n ker dh = O. Furthermore it is easy to see that 

TT ( )ker dh(x,u) ~ D(x), for every (x,u) EB, where Dis the regular dis-* x,u 
tribution D = ker P. Therefore we can lift D to a regular distribution Dl 

on B contained inker dh. Then g*Dl c D and Dl c ker dh. By local minimali

ty of L this implies that Dl and Dare zero, or P(x) = Tx*x, for every 

XE X, 

( =) If L is not locally minimal, then there exist nonzero regular E and 

D such that g*E c D, TT*E = D and Ecker dh. If we take coordinates (x,v) 

for Band (y,u) for W such 'that h(x,v) = (h(x,v),v), this implies that 

D c d h(•,v), and [g(•,v),D] c D for all v. Hence Lis not locally dis-
x 

tinguishable. □ 

Analogous to Definition 2.33,we can also define .an observability 

codistribution for nonlinear systems with local input-output representations 

with feedthrough term. 

DEFINITION 2.38 Let L(X,W,E,f) be a nonlinear system, with f = (g,h), such 

that h restricted to the fibers is an immersion. Take coordinates w=(y,u) for 

Wand (x,u) for B such that h(x,u) (h(x,u),u). In these coordinates the 

extended system Le(X,W,B,f) is given by 

x g(x,u) 

(2.37) . 
u V with v the new input 

w h(x,u) 

Define Ge as the linear space of functions on this coordinate neighborhood 

V of B containing all finite linear combinations of functions of the form 

(2.38) 
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a 
with Zi = g(x,u)ax 

a 
or "°au."' j l, ... ,m. 

J 

Define the codistribution Oe on V by setting 

(2.39) e I e 0 (x,u):={span{dk(x,u) kEG} 

This codistribution is called the (extended) observability codistribution. 

Analogous to Proposition 2.34 we can prove that Oe does not depend on which 

coordinates for Band (y,u) for W we take as long as h(x,u) = (h(x,u),u). 

Notice that the coordinates for B which are allowed are in a certain sense 

output-induced. Thus Oe is a globally defined codistribution on B, which is 

involutive but does not necessarily have constant dimension. We derive the 

following 

PROPOSITION 2.39 Let l:(X,W,B,f) with f = (g,h) and let h restricted to the 

fibers be an immersion. Then: dim Oe(x,u) dim B for a certain (x,u) EB 

= l: is locally distinguishable ( = l: is locally minimal). Moreover 

if dim Oe(x,u) = constant, then: dim Oe = dim B = l: locally distinguish

able ( = l: locally minimal). 

PROOF Suppose that l: is not locally minimal. Then there exist regular E 

and D, with E 'F O' such that 11 E = D, g*E C D and E c ker dh. From these 
* 

properties it follows that E c ker oe and hence dim Oe(x,u) < dim B every-

where. By Theorem 2.37, l: locally distinguishable = l: locally minimal. D 

Analogous to Chapter I, Definition 1.13, we shall now define a kind 

of uniform observability. First we deal with nonlinear input-output systems. 

DEFINITION 2.40 Let l:(X,B,Y,g,h) be a nonlinear input-output system. i:: is 

called uniformly locally weakly observable if there does not exist a regu

lar codistribution Pon X, with Pf T*x, such that for every trivializing 

chart V of h*B there exists an output-induced trivialization 11- 1(V) ~ vxu 
(11:h*B + X projection) such that for at least one u EU 

i) £ - p C p 
g (. 'u) 

ii) dh C p 

with g vxu + TV defined by the trivialization 

Remark I. Locally we require that the autonomous systems 
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(2.40) 
y h(x) 

u EU, u fixed 

corresponding to an output-induced trivialization are locally weakly obser

vable for every u EU. 

Remark 2. 
-I ¢1 

Let TI (V) -

to the system x = g(x,u), y 

vxu be a local trivialization which gives rise 
-I ¢.1 

h(x). If TI (V) -- vxu is another triviali-

zation, then this corresponds to output feedback v = a(h(x) ,u). In the same 

way as in Lemma 2.30, we can prove that if the autonomous systems i = g(x,u), 

y = h(x), u EU, corresponding to the first trivialization are all locally 

weakly observable, then the autonomous systems corresponding to the second 

trivialization are also locally weakly observable. 

If L(X,W,B,f) has only local input-output representations with feed

through term, we give 

DEFINITION 2.41 Let L(X,W,B,f), with f = (g,h) be a nonlinear system, and 

let h restricted to the fibers be an immersion.Lis called uniformly lo

cally distinguishable if there does not exist a regular codistribution Pon 

* X, with P #TX, such that for every coordinate neighborhood of B, with 

coordinates (x,v) for Band (y,u) for W such that h(x,v) = (h(x,v),v) 

there exists at least one u with the property that in these coordinates 

i) £ p C p 
g ( • 'u) 

ii) d h(·,u) c P. 
X 

Remark: Locally we require that the autonomous systems 

X = g(x,u) 

y h(x,u) 

are locally weakly observable for every u. If (x' ,v') and (y' ,u') are other 

coordinates for the same neighborhood such that still h(x' ,v') = (h(x',v'),v') 

then local weak observability of i = g(x,u), y = h(x,u) for all u, implies 

local weak observability of~•= g'(x',u'), y' = h'(x',u') for all u' 
(again change of coordinates corresponds to output feedback). 

We recall from Chapter I that a minimal (past externally induced) rea

lization L. of a general external system L is uniformly observable if and 
i e 

only if all minimal realizations of L are equivalent (Theorem 1.14). The 
e 
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following conjecture is therefore reasonable. Let E(X,W,B,f) be a system with 

a local input-output representation with feedthrough term. Then Eis uniform

ly locally distinguishable if and only if all locally minimal realizations 

E'(X',W',B',f') are equivalent (see Definition 2.25). 

However, making conjectures in this context is much easier than pro

ving them, and only in Section 2.2.3 we shall briefly return to the notion 

of uniform observability. 

Finally we want to define "controllability" for nonlinear systems. 

There are several possibilities but the notion which we shall use is strong 

accessibility. Our choice is motivated by the following arguments: 

(i) Strong accessibility can be defined in the same differential geometric 

style as local minimality and local weak observability, 

(ii) The definition of strong accessibility is closest to the definition 

of controllability for linear systems (see after Corollary 2.3). 

(iii) Strong accessibility is "dual" to local weak observability or local 

distinguishability, in a sense which will be made clear in Chapter 3, Theo

rems 3 . I 9 and 3 . 3 I • 

However, we remark that also the notion of local weak controllability (defi

nition 2.53) has a direct differential geometric interpretation and has its 

own merits. 

First we define strong accessibility for affine control systems (in a 

way which is slightly different from SUSSMANN & JURDJEVIC (1972)). 

DEFINITION 2.42 Let E(X,ti,Y,h) be an affine control system. E is called 

strongly accessible if there does not exist a regular distribution D, un

equal to TX, such that 

i) ti0 c n 

ii) [ti,D] C D (Dis invariant under ti). 

Remark: If D # O, then [ll,D] c D already implies ti0 c D. 

As in the case of local weak observability, strong accessibility is 

usually defined in a more control theoretic way by requiring the following 

property, which we shall call Property II: 

Let i = g(x,u) be the state space equations (in local coordinates) 

of a nonlinear system E(X,W,B,f). Define R(T,x0) as the set of points that 

are reachable from x0 in exactly time T: 
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R(T,x0):= {x1EXl3 state trajectory x(t), generated by g, for a certain in

put function u, such that x(O) = x0 and x(T) = x 1}. 

Then L has property II if for all x0 EX and for all T > 0 the set R(T,x0) 

has a nonempty interior. 

The connection between Definition 2.42 and Property II is provided 

by the controllability distribution: 

DEFINITION 2.43 Let L(X,Ll,Y,h) be an affine control system with L\.(x) = 

A(x) + span {B 1(x), ... ,Bm(x)}. Define Fas the linear space of vectorfields 

on X containing all linear combinations of the elements ad Ai Bj, i = O, I, ... , 

j = I, ... ,m, and their Lie-brackets (adf B. is recursively defined by 
0 i+I i J . 

adA B. = B. and adA B. = [A,adA B.], i ~ O). Furthermore, define the dis-
J J J J 

tribution C by setting C(x) = span {Z(x)IZ E F}. 

It can be readily seen that C does not depend on the way we represent 

LI as Ll(x) = A(x) + span {B 1(x), .•. ,Bm(x)} (contrary to F, which does depend 

on the representation). Hence C is a globally defined distribution on X. C 

is involutive but not necessarily of constant dimension. It is clear that 

C is the smallest involutive distribution containing LIO and invariant under 

LI (i.e. [Ll,C] c C). 

We derive (compare Theorem 2.35) 

THEOREM 2.44 Let L(X,Ll,Y,h) be an affine control system. Then: 

i) dim C(x) = dim X, ljx E C = L has property II 

ii) L has property II = dim C(x) = dim X for x in an open and dense 

subset of X 

(iii) dim C(x) = dim X for a certain x EX = L is strongly accessible. 

PROOF i) and ii) can be proved by easy adaptations of the arguments of 

HERMANN & KRENER (1977), where these statements are proved for local weak 

controllability. To prove iii) let us assume that Lis not strongly acces

sible. Then there exists a regular distribution D f TX as in Definition 2.42. 

It is clear that C(x) c D(x), for every x EX. Therefore dim C(x) < dim X, 

for every x EX. D 

Remark I. If Chas constant dimension then: 

L has property II = dil!l C = dim X = L is strongly accessible. 

Remark 2. (compare Remark 2 after Theorem 2.35) It is not totally clear 
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when dim C(x) < dim X, for every x E X,implies that Z is not strongly acces

sible. 

Remark 3. In the analytic case Property II implies that dim C(x) 

for every x. 

dim X 

For general nonlinear systems we define strong accessibility in the 

following way. 

DEFINITION 2.45 Let Z(X,W,B,f), with f = (g,h), be a nonlinear system. 

Z is called strongly accessible if there does not exist a regular distribu

tion D on X which satisfies (Recall the definition of D after Definition 

2.25) 

Of course we have to prove that for affine control systems Definitions 

2.43 and 2.45 are equivalent. We shall prove more, by using the extended 

system (Definition 2.24). 

THEOREM 2.46 Let Z(X,W,B,f) be a nonlinear system. Then Z(X,W,B,f) is 

strongly accessible (Definition 2.45) if and only if its extended system 

Ze(X,W,B,f), an affine control system, is strongly accessible (Definition 

2.43). If Z(X,W,B,f) is already an affine control system, then Z is strong

ly accessible in the sense of Definition 2.43 if and only if Z is strongly 

accessible in the sense of Definition 2.45. 

PROOF Take fiber respecting coordinates (x,v) for B. The state space equa

tions of Z are given by 

x = g(x,v) 

while Ze (the extended system) is given by 

x g(x,v) 

V = U u the new input. 

If Ze(X,W,B,f) is not strongly accessible, then there exists a regular 

E # TB on B such that 6Oe EE and [6e,E] c E. Hence D:= TT*E is a regular 
-1 

distribution on X, and in fact E =TT* (D). In the same way as in Theorem 
e -1 • 

2.28 we can prove that [6 ,E] c E implies that g*(TT* (D)) c D. Hence Z is 

not strongly accessible. Conversely, let Z be not strongly accessible. Then 

there exists a regular D # TX such that g (TT -l(D)) c D. This implies 
* * 



e -1 -1 e 
[6 ,TT* (D)] c TT* (D), and hence L is not strongly accessible. 

To prove the last statement we make the following observations. Let 

L(X,W,B,f) be already affine, i.e. state space equations 

m 
~ = A(x) + l v.B.(x) with 60 (x) = span {B1 (x), ... ,Bm(x)} and 

i=I 1. 1. 

6(x) = A(x) + 60 (x). 

Then the extended system Le is given by 

m 
x=A(x)+ Iv.B.(x) 

i=I 1. 1. 

V = U 

i.e. 
e 

60 (x,v) 
a a 

span {-~-, ..• ,-~-} 
oVI ovm 

and 

Ilk am k a e l (A (x) a=--+ l v.B. (x) -3 -) + 60 (x,v) 
k=l xk i=I 1. 1. ~ 

(with Ak and Bt the components of A and Bi). 

Let now D be a regular distribution on X such that 60 c D and [6,D] c D. 

73 

-1 e -1 e -1 -1 
Then TT* (D) satisfies l\O ,c TT* (D) and [ll ,TT* (D)] c TT* (D). Conversely, 

if Eis a regular distribution on B such that l\Oe c E, then D:= TT*E is a 

regular distribution on X. If E satisfies [lle,EJ c E, then 

n k a m k a [ l A (x) - + l v.B. (x) a ,E] c E 
k=l axk i=I 1. 1. ~ 

and we obtain [A,D] c D and B. ED, i 
1. 

1, ..• ,m. Hence [ll,D] c D and 

Since a general nonlinear system is strongly accessible if and only 

if its extended system is strongly accessible we can characterize strong 

accessibility by the controllability distribution of its extended system: 

DEFINITION 2.47 Let E(X,W,B,f) be a nonlinear system. Let (x,v) be fiber 

respecting coordinates for B, such that the state space equations of Ee 

are given by 

x = g(x,v) 

V = U 

Define Feas the linear space over :rn. of vectorfields on B containing all 

□ 
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linear combinations of the vectorfields adi a _a_ i 
g(x, v) ax av/ 

0, I, ... , 

j = I, ... ,m ~nd their Lie·-brackets. 

Furthermore define the (extended) controllability distribution Ce on B by 

setting Ce(x,v) = span { Z(x,v) Z E Fe}. 

Again Ce does not depend on the representation of Le(X,W,B,f), i.e. 

Ce does not depend on the choice of fiber respecting coordinates for B. 

Statement iii) of Theorem 2.44 also holds for ce·; and for statements i) and 

ii) we remark that is has been proved (VAN DER SCHAFT ( l 982c)) that if 

Le(X,W,B,f)-has property II, then also L(X,W,B,f) has property II. Conver

sely if L(X,W,B,f) has property II, and the fibers of Bare connected, then 

also Le(X,W,B,f) has property II. 

Just like local minimality has a global counterpart-minimality-, there 

is also a global version of strong accessibility. For this we introduce the 

notion of a quotient system. 

DEFINITION 2.48 Let L(X,W,B,f) and L1 (X',W' ,B' ,f') be nonlinear systems 

with f = (g,h) and f' = (g',h'). L1 (X',W',B',f') is called a quotient system 

of L(X,W,B,f) if there exist surjective submersions¢ and¢ such that 

¢ 
B B' 

~ j. 
(2 .4 I) TI TX - TX' TI' 

/x ¢* 

TI~ 

X X' commutes. 
¢ 

The above definition is reminiscent of the definition of minimality 

(Definition 2.25). The difference is that we,do not require compatibility 

of hand h'. Now if L1 (X',W',B',f') is such that B' X' (such a system is 

called autonomous, see also Definition 1.9), then the regular distribution 

D:= {ZETXJ¢*Z=O} satisfies g*(n*-l(D)) c D and Lis not strongly accessible 

(if dim X'~l). 

We saw in Theorem 2.44 that the strong accessibility properties for an 

affine control system (or affine input-output system; this makes no 



difference since we only consider the state space equations), are charac

terized by the linear space of vectorfields For the distribution C, given 
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by F. Furthermore, by Theorem 2.46, in the case of a general nonlinear system 

strong accessibility is determined by Fe or Ce of its extended (affine) 

system. Especially if F and C do not have constant dimension, it is of in

terest to go into moce detail about the construction of F and C (and simi

larly Fe and Ce). Let therefore 

(2.42) x = A(x) + 
m 
l u.B. (x) 

i=l i i 

be a local representation of an affine distribution 6(with 60 (x):= 

span {B 1(x), ... ,Bm(x)}, 6(x) = A(x) + 60 (x)). Given vectorfields z1, ••• ,Zk 

on X we denote by (Z 1 , ... ,Zk) the linear subspace of V(X), i.e. the linear 

s12ace (over :rn.) of all vectorfields on X, spanned by z1 , ••• ,Zk. 

CONSTRUCTION 2.49 Define F0 := (B 1, ••• ,Bm) and r:= A+ (B 1, ... ,Bm) (an affine 

subspace of V(X)). Define furthermore Fk:= [r,Fk_ 1J + Fk-l' k 2 I. Then 

Fk c Fk+I' \lk 2 0. Define F:= U Fk. 
k20 

It follows from the Jacobi-identity, that Fis a Lie· subalgebra of V(X). 

This is proved as follows. An element in F consists of linear combinations 

of expressions of the forra 

* i = I, ... ,m 

with Z., j 1,· ••• ,k, equal to A or B., i = 1, ••• ,m. 
J ]. 

Consider now the Lie-bracket of two such expressions: 

** 

This is by the Jacobi-identity equal to: 

Therefore by repeated use of the Jacobi-identity, it follows that we can 

write** as a linear combination of expressions of the form*· 

It is now clear that Fis the same as F defined in Definition 2.43. 

Notice that F can be characterized in the following two ways.Fis the 
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smallest linear subspace (over lR) of V(X) containing B1, ••• ,Bm and invariant 

under taking Lie-brackets with respect to A and B1, ••• ,Bm. On the other hand 

Fis also the smallest Lie subalgebra of V(X) containing B1, ••• ,Bm and in

variant under A (or equivalently, invariant under A and B1, ••• ,Bm). It follows 

that the controllability distribution C can also be characterized in two 

ways. C is the smallest distribution that contains B1, ••• ,Bm and is invariant 

under taking Lie-brackets with A1,B 1, ••• ,Bm' and C is the smallest involutive 

distribution containing B1, ••• ,Bm and invariant under A. 

The distributivn C can be also constructed in the following way: 

CONSTRUCTION 2.50 Let 60 and 6 be the distribution, respectively affine 

distribution as above. Define 6k = [6,6k_ 1J, k ~I.Then 6k c 6k+I' k ~ O. 

Define C(x) = U 6k(x). 
k~O 

Again it follows from the Jacobi-identity that C is involutive. Then 

it is clear that C equals C as defined in Definition 2.43. Notice that if 
k n-1 dim X = n, then 6 (x) 6 (x) for all k ~ n-1 (cf. NIJMEIJER (1980, 1982 

a)). This constitutes a striking difference with Construction 2.49, where 

Fk may be bigger than Fk-l for arbitrary large k. Note also that the 6k are 

independent of the representation (2.42) of 6, while the Fk are dependent. 

We can also give analogous constructions for G and the observability 

codistribution O (Definition 2.33), and similarly for Ge and Oe (Definition 

2.38). Leth X + Y and take coordinates for Y, such that the coordinate 

functions of hare h 1, ••• ,hp. Given functions r 1, ••• ,rk on X,we denote by 

(r 1, ••• ,rk) the linear subspace of C(X),i.e. the linear space (over lR) of 
00 • 

all C functions on X, spanned by r 1, ••• ,rk. 

CONSTRUCTION 2.51 

with r as above. Then 

Gk c Gk+I' k ~ 0. Define G:= U Gk 
k~O 

Notice that G is the smallest linear subspace of C(X) that is invariant un

der A,B 1, ••• ,Bm and contains h 1, ••• ,hp. The observability codistribution 

0 can be also constructed in the following way. 

CONSTRUCTION 2.52 Let DO be the codistribution defined by D0(x):= 

span {dh1(x), ••• ,dhp(x)}. Define the sequence of codistributions (k~I): 



Notice. that Construction 2.51 depends on the representation (2.42) 

of 6 as well as on the coordinatization of Y. Construction 2.52 is inde

pendent of the coordinatization of Y, but still dependent on the repre

sentation (2.42). 

For completeness we give for affine systems (see HERMANN & KRENER 

(1977) for more information). 
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DEFINITION 2.53 An affine (control or input-output) system with affine dis-

tribution satisfies the rank condition for local weak controllability if 

span {C(x),6(x)} = TxX for every x E X (i.e. if 6(x) = A(x) + 60 (x), this 

amounts to span {A(x),C(x)} =TX). 
X 

Finally we stress the striking similarity in the conditions of "mini

mality" and "controllability" for linear and nonlinear systems. A non

linear system Z(X,W,B,f), with f = (g,h) is locally minimal if there do not 

exist regular distributions E and D such that (i) E c ker dh, (ii) TT*E = D, 

(iii) g*E c D, with E nonzero. 
In the linear case Dis replaced by a linear subspace V c X, 

and Eis a linear subspace of the form T + U' c XxU, with T of the form 

T = {(x,Fx)lxEV, for a F: X + U} and U' a linear subspace of U. Hence con

dition (ii) is satisfied. Condition (i) amounts to (with h(x,u) = Cx + Du) 

Tc Ker [C:D] and U' c Ker D, while (iii) yields (with g(x,u) =Ax+ Bu) 

[A:B]T c V and BU' c V. Since T = {(x,Fx) lxEV}, the first inclusion equals 

(A+BF)V c V. Hence if V f 0, then Vis an output nulling subspace, and there

fore Z(A,B,C,D) is not minimal, and if V = 0, but U' f 0, then, since 

BU' c V = 0, U' c Ker B n Ker D, and hence Z(A,B,C,D) is also not minimal 

(Theorem 2.2). 

For strong accessibility we look at regular distributions D such that 

g*(TT*-l(D)) c D. In the linear case Dis again replaced by V c X, and TT: 1(D) 
-I . 

becomes vxu c XxU. Then g*(TT* (D)) c D yields [A:B]vxu c V, or AV+ ImB c v. 

This is equivalent to AV c V and ImB c V. If V # X, then (A,B) is not con

trollable (see after Corollary 2.3). 
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2.2.3 Controlled invariance 

The conditions for local minimality and strong accessibility which we 

gave in the previous section are directly related to the notion of controlled 

invariance. This concept has proved to be a basic tool in the solution of 

various control and synthesis problems (WONHAM (1979)). We shall concentrate 

on its connections with the preceding pages (for more information see ISIDOR! 

et al(1981 a), HIRSCHOR.~ (1981) and NIJMEIJER & VAN DER SCHAFT (1982 b)). 

Consider a nonlinear system E(X,W,B,f), in local coordinates given 

by x = g(x,u), w = h(x,u). We shall only look at the state space equations 

i = g(x,u). A regular distribution Don Xis said to be invariant with res

pect tog (in this trivialization of B!), if [g(•,u),D] c D, for every u. 

Of course this means that the integral flow of i = g(x,u) leaves the foli

ation of X, induced by D, invariant.Dis called controlled invariant if 
00 aa 

there exists a C feedback v = a(x,u) (with au nonsingular) such that Dis 

invariant with respect to the modified dynamics i = g(x,v), where 

g(x,a(x,u)):= g(x,u), i.e. [g(•,v),D] c D, for every v. 

As we saw before, locally feedback can be interpreted as the choice of 

a local trivialization of ,B. Therefore we arrive at the following 

DEFINITION 2.54 Let E(X,W,B,f), with f = (g,h), be a nonlinear system. Let 

D be a regular distribution on X. Dis called locally controlled invariant 

if for every x EX there exists an open neighborhood V of x and a triviali

zation n- 1(V) ~ VxU such that [g(•,u),D] c D, for every u EU, with 

g: vxu + TV corresponding to the trivialization. 

Remark:, Later on we shall also define global controlled invariance. 

We now give necessary and sufficient conditions for a distribution to 

be locally controlled invariant. 

THEOR.fil1 2.55 Let E(X,W,B,f), with f = (g,h), be a nonlinear system, and 
e -I • let D be a regular distribution on X. Assume that LlO n g* (D) has constant 

dimension. Then Dis locally controlled invariant if and only if 

-I • e 
g*(n* (D)) C D + g*.(llo ) • 

PROOF 
-1 

Let n (V) ~ vxu be a local trivialization, and let (x,u) = 

(x1, •.• ,xn,u1, .•• ,um) be corresponding fiber respecting coordinates for 

n- 1(V). Since Dis regular, we can also take the coordinates x = (x1, ..• ,xn) 



such that 
3 · 3 

D = span {-a-•···,-a-}, k ~ n. 
xi xk 

Write correspondingly g 

notation we denote x 1 

2 
and g (gk+1•···,gn). 

(2.43) 
a z 3gz 
...JL (x,u) c Im ~u (x,u), for every (x,u). 
dXI a 

I.e. there exist m-vectors mi(x,u),i = l, .•. ,k, such that 

(2.44) 0 i I, ... ,k. 

*' Let P be the annihilating codistribution of D (D=ker P). Then g Pis a co-

*' distribution on B. Because Pis involutive, also g Pis involutive. In the 

same coordinates as above P = span {dxk+i•···,dxn}, and 

P = span d~+i•···,dxn, d~+i•···,din}. 

*' Hence g P = span {d~+i•···,dxn,dgk+l'"""•dgn} 

~ 3gk+ldx. + ~ 3gk+l ~ agn m agn 
span {dxk+i•···,dxn' l l ~u., ... , l -,--'.-'.clx. + L ~u.} 

i=l axi, 1. i=l ui l. i=J 3xi 1. i=l ui 1. 

*" Because of (2.44) it can now be seen that ker g P 
a a 

span{3x. + mi(x,u)au 

al i = l, ... ,k} + ker au du. Note that ker 

l. 

a 2 -1 • _g_ = t, e n g* (D), which by 
au o 
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assumption has constant dimension. Hence g*p is a regular codistribution on 

*' B, while ~(ker g P) is a regular distribution on X, equal to ker P = D. It 

can now be proved that there exists a k-dimensional regular distribution 

Eon TI-l(V), contained inker g*P, such that TIE= D and dim E = dim D 
* 

(locally we 
3 2 

ker ...JL du· 
au ' 

can factor out the fibers of B by the regular distribution 

ag2 * *· since ker au ducker g P, ker g P projects then well to a re-

gular distribution).Moreover we can extend E toan n-dimensional regular 
-1 

distribution H on TI (V) such that TI*H = TX and E c H. The maximal 

integral manifolds of H form a transversal foliation of B. This defines a 

trivialization TI-J(V) --1._ vxu ----E4 U (pr is projection on U, along V), 
-1 

by requiring that the sets(pr O ~) (c), c constant, are the leaves of this 
*. . foliation. By definition g*(ker g P) c ker P = D, and hence g*E c D. There-

fore the trivialization defined by H makes D invariant. D 
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e -1 • Remark. If t 0 n g* (D) = 0, the vectors mi(x,u) in (2.44) are uniquely 

determined. Since g*p is involutive they satisfy a set of partial diffe

rential equations. These equations are called the integrability conditions, 

since satisfying them is a necessary and sufficient condition for the (local) 

existence of a map a(x,u) such that 

(2.45) cla 
-- (x,u) = ml..(x,a(x,u)), ax. l. 

i 1, ... ,k. 

This map a is exactly the feedback which is required to make D invariant. 

If ti0e n g*-l (D) -f O, we can take arbitrary coordinates on this part of the 

fibers in order to make D invariant. This is worked out in detail in NIJMEIJER 

& VAN DER SCHAFT ( 1982 b). 
Concluding, if Dis locally controlled invariant, then, if we define 

*" the codistribution P by ker P = D and the distribution Eon B by E = ker g P, 

we obtain 

The relation with local minimality and strong accessibility is clear. If E 

as above also satisfies Ecker dh, then, if E -f O, E(X,W,B,(g,h)) is not 

locally minimal (Definition 2.26). If E = 71-l (D) then, if D -f O,E is not 
* 

strongly accessible (Definition 2.45). For affine systems, with ti an affine 

distribution on X, Theorem 2.55 amounts to (as can easily be checked): Let 

D be a regular distribution on X, such that ti0 n D has constant dimension. 

Then Dis locally controlled invariant if and only if [ti,D] c D+6 0 • We re

mark that we can therefore rephrase Theorem 2.28 in the following way: 

E(X,W,B,f) is locally minimal iff its extended system has no nonzero locally 

controlled invariant distribution contained inker dh. 

We also give 

THEOREM 2.56 Let E(X,W,B,(g,h)) be a nonlinear system, and let Ee(B,tie,W,h) 

be its extended system. Then: A regular distribution Don X, such that 
-1 • e 

g* (D) n ti0 has constant dimension, is locally controlled invariant if and 

only if there exists a regular distribution Eon B, with TI*E = D, and hence 

dimension En ti0e constant, which is locally controlled invariant with res

pect to E(B,tie,W,h). 

PROOF If D is locally controlled invariant and g*-l (D) n ti0e has constant 

dimension, then E:= ker g*p is a regular distribution and satisfies 

TI*E = D and g*E c D. This is equivalent to [tie,E] c ti0e + E (see Theorem 
e e e 2.28). Conversely if [ti ,E] c E + ti0 and En ti0 has constant dimension, 
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then (Theorem 2.28) TT*E is a regular distribution D and g*E c D. □ 

Finally we want to say something about global controlled invariance. For the 

definition of local controlled invariance we required that on every trivia

lizing chart V we can take a trivialization TT-l(V) ~ VxU that makes Din

variant. We also saw that this is equivalent to the existence of an n-di-
-1 

mensional regular distribution Hon TT (V), with TT*H = TV, such that 

g*(TT*-l (D)nH) c D. Now, for global controlled invariance we need that all 

these locally defined distributions H can be nicely put together to a dis

tribution on B. 

DEFINITION 2.57 Let L(X,W,B,f) be a nonlinear system and let D be a regu

lar distribution on X. Dis called globally controlled invariant if there 

exists a regular n-dimensional distribution Hon B such that 

(i) TT H = TX 
* -1 

(ii) g*(TT* (D)nH) c D 

We remark that an n-dimensional distribution H satisfying TT*H = TX 

determines what is called an integrable connection on B. We also note that 

the existence of an integrable connection on B puts some restrictions on 

the structure of B. We shall not further elaborate this point (in fact, a 

fiberbundle B allows an integrable connection if and only if Bis isomorphic 

to a fiber bundle with discrete structure group, see CAMACHO & LINS NETO 

(1979, Ch.5, Th. 4), see also NIJMEIJER & VAN DER SCHAFT (1982 b,Definition 

3.2)). 

We have defined (local) controlled invariance by requiring that, after 

applying feedback, the modified dynamics leave the distribution invariant 

for all inputs. This requirement might be too strong and we could be content 

if the foliation induced by Dis invariant for only a part of the inputs. 

We call this degenerate (local) controlled invariance and we formalize it 

as follows (only for the most degenerate case): 

DEFINITION 2.58 Let L(X,W,B,f) be a nonlinear system, and let D be a regu

lar distribution on X. Dis called degenerate locally controlled invariant, 

if for every trivializing chart V there exists a sections: V + TT-l(V) 

(i.e. TTos=id), such that 

[g(•,s(•)),D] c D. 

Remark: Degenerate global controlled invariance can be defined by requiring 
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a global sections : X ➔ B. 

If Fis a leaf of D, contained in V, thens induces a submanifold s(F) 

of B. The following proposition shows the close relationship between degene

rate controlled invariance and uniform observability (Definitions 2.40 and 

2.41). 

PROPOSITION 2.59 Let L(X,W,B,f) be a nonlinear system with local input-out

put representations with feedthrough term. Then: Lis uniformly locally dis

tinguishable if and only if there does not exist a nonzero regular distri

bition D which is degenerate locally controlled invariant and such that 

T(s(F)) c ker dh for every leaf F of D. (T(s(F)) is the tangent space of 

s(F)). 

PROOF If Lis not uniformly locally distinguishable, then there exist coor

dinates (x,v) for Band (y,u) for W such that the local representation (2.24) 

i = g(x,u), y = h(x,u) is not locally weakly observable for a certain u, i.e. 

there exists a regular D, contained inker d h(•,u) such that [g(•,u),D] CD. 
X 

Now define s(x) = (x,u), then Dis degenerate locally controlled invariant. 

The converse can be proved in the same way. D 
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2,2.4 Nonlinear Realization Theory 

In this section we try to generalize some ideas of the realization 

theory for linear systems to the case of nonlinear systems. Analogous to 

the linear case (see Sections 2.1.2, 2.1.3) we look at external dynamical 

systems described by a set of higher-order nonlinear implicit differential 

equations 

(2.46) ( • .. (k)) 0 pi w,w,w, ... ,w = , i l, ... ,p 

(') 
where w J denotes the j-th order derivative of a function w : 1R ➔ W (R is 

the time-axis). We shall assume that the P. 's are smooth (C 00
) equations, 

]_ 

and that W, the set of external variables,is a smooth manifold. Hence we 

assume that the physical laws which govern the external system are of a 

smooth nature. 

Equations (2.46) can also be given in a coordinate-free way. Given 

an arbitrary manifold M, we can define in an intrinsic way the higher-order 

tangent bundles of M (see for instance YANO-ISHIHARA (1973)). We denote 

by TkM the k-th order tangent bundle of M. The first order tangent bundle 

T1M is just the ordinary tangent bundle TM. If M has local coordinates x, 
• (k) 

then TkM will have coordinates denoted by (x,x, ... ,x ). Ifs: (-£,£) ➔ M 

k 
is a C -map, thens induces an element of TkM, which in the above coordina-

d d2s dks 
tes is given by (s(O),d~(O), --2(0), ... ,--k-(O)). Hence, coordinate-free the 

dt dt 

equations (2.46) yield a subset of TkW which we denote by P. We assume that 

Pis actually a ·submanifold. Therefore the external dynamical system is ge

nerated by a smooth submanifold 

(2.47) 

In order to define Le(P), the external dynamical system corresponding to P, 

we have to worry about the smoothness assumptions that we want to impose on 

the functions w : 1R ➔ W belonging to Le (P). In the linear case this pro

blem is easily solved by taking w locally integrable and satisfying 

P(d~)w = 0 in the sense of distributions (see section 2.1.2). However, for 

the nonlinear case this is not so easy anymore. For simplicity we therefore 

define the smooth external system I (P): 
e 

DEFINITION 2.60 Let Pc TkW be a smooth submanifold. Then the smooth ex-

I . oo • k ternal system Le(P) is given by {w:JR ➔W w is C ,(w(t),w(t), ... ,w (t))EP,Vt}. 
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Given a nonlinear system l:(X,W,Il,f) (see Definition 2.20) we can also define 

the smooth versions of l:.(X,W,B,f) and l: (X,W,B,f) (see (2.10), (2.11)): 
l. e 

(2.48) 

I:.(X,W,B,f):= {(x,w):lR + Wix and w C00
, 

]. 

(x(t),w(t))Ef(n- 1(x(t))),Vt} 

'i: (X,W,B,f):= {w:lR+Wl3x such that (x,w)E'i:.cx,W,B,f)}. 
e i 

The Smooth Realization Problem is now as follows: 

Given Pc TkW, find a nonlinear system l:(X,W,B,f) such that 'i: (P) = 'i: (X,W,B,f). 
e e 

In this section we shall discuss a general approach to the solution of 

the Smooth Realization Problem. At the end of the section we give an illus

trative example of this approach. 

Consider TkW x lR, with lR the time-axis. Then on TkW x lR the follow

ing one-forms are defined, called the Cartan forms, 

e1 dw - w dt 

e2 d;_ - w d t 
(2.49) 

d (k- I) . (k)d 
w - w t 

i 
(of course by El, i = I, ••• ,k we mean f . I 

a set o one-forms, for instance e 
is dw 1 - ;,1dt, ... ,dwq-;,qdt, if w = (w1, ••. ,wq)). We can restrict the Cartan

forms to p X ]R to obtain a set of one-forms el' .•. ,ek defined on p X ]R. 

Now consider in every point (x, t) E Px]R, with x E P and t E lR , the linear 

subspace V(x,t) _of T(x t)(PxlR) 
- - ' 

TxP x TtlR given by the kernel of 

e I' .•. ' ek: 

(2.50) V(x,t):= {ZET(x,t)(pxJR)iei(x,t)(Z) = O, i=I, ... ,k}. 

Then there are two possibilities for V(x,t): 

I. V(x,t) c TxPxO 

II. V(x,t) ¢ T PxO 
X 

Furthermore it is clear 

bility I or II (this is 

that it only depends on x if 

because the equations (2.46) 

V(x,t) 

do not 

If possibility I holds for x E P, thenV(x,t) does not 

tor Z of the form 

(2.51) 

satisfies 

depep.d on 

contain a 

possi-

t). 

vec-
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with Y E T P and -,J.-1 the tangent vector to JR. This implies that we can-
x X at t 

not define a solution of the higher-order differential equations with ini-

tial condition x. This phenomenon already arises in implicit first-order 

differential equations. Consider for instance (consult TAK.ENS (1976 a) for 

more information) the submanifold Pc TJR given by the following graph (TJR 

has coordinates (q,q)) 

(2.52) 

t 
q 

(q,q) 

q ➔ 

Then V(x,t), with x E P, is the kernel of dq - q dt restricted to P. It is 
- a - -. 

easy to see that in x = (q,q), V(x,t) = span{aq} , so x = (q,q) satisfies 

possibility I. All other points of P satisfy possibility II. In the point 

x = (q,q) we cannot define a (differentiable) solution of the implicit dif

ferential equation. 

Consider now a point 'x E P for which possibility II holds. Then 

V(x,t) has the form 

(2.53) V(x,t) = t 0 (x) + span {A(x) + 3~} 

a 
with A(x) E TxP and t 0 (x) a linear subspace of TxP. By span {A(x)+ 31:} we 

denote the one-dimensional subspace of TxP x TtJR "' TxP x JR generated by 

A(x) + 3~. Therefore if for every x E P possibility II holds, we can de

fine a distribution t 0 on Panda vectorfieldA onP such that for every 

x, V(x,t) satisfies (2.53). Furthermore we can define an output map 

h: P ➔ Y, by taking the output manifold equal to Wand h the projection of 

TkW on W, restricted to Pc TkW. Summarizing: 

PROPOSITION 2.61 Let Pc TkW be a submanifold. Suppose that for every x E P 

possibility II holds. Then we can define an affine control system (Defi

nition 2.23) Z(X,6,Y,h), with X = P, 6(x) = A(x) + t 0 (x), Y =Wand h the 

natural projection of Pc TkW on W. Furthermore the smooth external behavior 

i (X,6,Y,h) of Z(X,6,Y,h), i.e. i (X,6,Y,h):= {w:JR ➔Wlw is C and 
e e 

3x : JR ➔ X, xis C00 
, such that ~(t) E 6(x(t)) and w(t) = h(x(t))} is 

equal to Ze(P). 
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Of course L(X,6,Y,h) as in Proposition 2.61 does not have to be (lo

cally) minimal. However we can apply the "algorithm" as given after Theorem 

2.28, i.e. we define the sequence of distributions on X 

EO:= ker dh 
m m-1 -1 m-1 

E := E n 6 (E +60), m = 1,2, •.. 
(2.54) 

with 6-l(Em-l+60) the distribution spanned by all the vectorfields Z such 

that [6,Z] c Em-I+ 60 • Then lim Em= Ek if dim(ker dh) = k, and E:= Ek is 
m-+<x> 

an involutive distribution which satisfies 

(2.55) [6,E] c E + 60 , and Ecker dh 

(in fact Eis the maximal distribution with these properties). If we now 

asswne that E has constant dimension, then at least locally we can factor 

X out by the foliation induced by E, to obtain a smaller state space X'. 

Moreover the affine distribution 6 projects well to an affine distribution 

6 1 on X', and since Ecker dh, we can define h' : X' ➔ W such that 

(TI is projection of X onto X'). Summarizing: 

PROPOSITION 2.62 Let Pc TkW be a submanifold. Suppose that for every 

x E P possibility II holds. By Proposition 2.61 we can define an affine 

control system L(X,6,Y,h) such that i (X,6,Y,h) = i (P). Suppose that E as 
e e 

constructed in (2.54) has constant dimension and that X can be globally 

factored out by the leaves of foliation induced by E. Then we can construct 

a locally minimal affine control system L1 (X 1 ,6 1 ,Y,h') such that 

i; (X',6',Y,h') = Le(P). 

We now treat the case that there exist points x E P for which possi

bility I holds. We shall only propose a tentative approach. First of all 

we simply omit all the points x E P for which possibility I holds (of course 

from the viewpoint of applications this can be a severe restriction). Then 

we assume that the set of points x E P for which possibility II holds 
a forms a smooth submanifold N of P. Let V(x,t) = 60 (x) + span {A(x)+ at} , 

for every x EN, with 60 (x) c T P and A(x) ET P for every x EN. We can 
X X 

distinguish between two cases: 

Case I: Let 60(x) = span {B1(x), ••• ,Bm(x)}, Bi(x) E TxP, for every x EN. 

Suppose that for every x EN we can find feedback functions a 1(x), ... ,am(x), 
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m 

x E N,such that A(x):= A(x) + l a. (x)B. (x) 
i=l i i 

is contained in TxN for every 

x EN. Define furthermore ti0 (x):= t 0 (x) n TxN for every x EN. Then we can 

define an affine control system I(X,6,Y,h) by setting X = N, 6(x) = 

A(x) + ti"0 (x), Y =Wand h the projection of TkW on W restricted to N. Then 

E (X,6,Y,h) = i (P). 
e e 

Case II: Suppose that there exist points x EN, for which we cannot find 

feedback functions such that A(x) ET N. In this case we should look for 
X 

a submanifold Mc N such that for every x EM we can find feedback functions 

such that A(x) ET M. Then we can again define an affine control system 
X 

Z(X,6,W,h) with state space X = M. Furthermore i (X,6,W,h) c i (P). 
e e 

In fact, in Case II we should look for a maximal submanifold M with 

the above property. Of course it is not clear whether such a maximal sub

manifold exists. We remark that we can apply the same procedure as before 

(Proposition 2.62) to obtain a locally minimal affine control system with 

the same external behavior as Z(X,6,W,h). 

From now on we assume that we have a locally minimal affine control 

system Z(X,6,W,h) such that i (X,6,W,h) = i (P). Now it can be easily seen 
e e 

that it is still possible that there exists an affine control system 

Z'(X',6',W,h'), such that dim X' < dim X and {' (X' 6 1 W h') = { (P). Con-
e ' ' ' e 

sider for instance the two minimal systems 

I. X = U II. w = u 

(2.56) .w X 

00 00 

x and w C w C 

Then the smooth external behavior of system I as well as of system II is 

equal to the set of all C00 functions w: 1R ➔ W. This phenomenon arises 

because we are considering smooth external behaviors. In fact if we look at 
- I oo -1 Ii (X,W,B,f) := { (x,w) :JR ➔ XxW x and w are C and (x(t) ,w(t))Ef(n (x(t))} 

(compare (2.10)), then x EX does not satisfy the axiom of state (Defini-

I. 2). The reason is that if x 1 ,x2 : 1R ➔ X are C00 and x 1 (O) = x2 (O), 
- + 00 

x 1 •x2 is not necessarily C 

tion 

then 

The rest of this Section is devoted to a closer study of this phe

nomenon. We restrict ourselves to a local study. In fact we strive to a 

(local) reduction procedure which yields a system that has the same smooth 

external behavior as Z(X,6,W,h) and has a state space of minimal dimension. 
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Suppose that 60 = 6 - 6 is a regular distribution on X. Then (locally) 

we can factor out X by 60 to obtain x1 , i.e. X _:!!.....,.. x1 , with ker TT* 60 • 

Taking coordinates x 1 for x1 and (x0 ,x1) for X, and writing 6(x) = A(x) + 

span {B 1 (x), ..• ,Bm(x)} we obtain 

(2.57) 

0 m 0 
A (x0 ,x 1) + l u.B. (x0 ,x1) 

i=I l l 

By feedback (2.57) is equivalent to 

(2.58) 

with u (~ 1, ••• ,~m) the new input. This suggests reducing (2.58) by taking 

x 0 as the new input v = (v 1, ••• ,vm)' i.e. 

(2.59) 

Coordinate-free equations,(2.59) are the state-space equations of a non

linear system l: 1 (X' ,W' ,B',f') with B' = X, X' = x1 and f' = (g' ,h') with 

g'(x 1,v) = A1(x 1,v) (Notice that the transition from (2.58) to (2.59) 

is exactly the converse of the way we constructed the extended system in 

Definition 2.24). Now we also want to include the output map h in our con

siderations. Suppose that not only 60 is regular, but also ker dh n 60 
is regular. Then we can (locally) factor out X by ker dh n 60 , i.e. 

TT I 
X - x1 with kern 1* = ker dh n 60 . Furthermore, since 60 is regular, 

TT 1*60 is a regular distribution on x 1 (Lemma 2.27). Hence we can locally 
TT 2 . 

factor out x1 by TTl*60 , i.e. x1 -=---;. x2 with ker TT 2* = TT 1*60 • Let x2 be 

coordinates for x2, (x1,x2) for x1 and (x0 ,x 1,x2) for X. Then we obtain 

r ~~ l ( A~(x 1 ,x 1 ,x2)) 
0 m ( Bil (xi ,xi ,x2)) 

+ I u. A (x0 ,x1 ,x2) i=I 1 Bi (x0,xl,x2) 
(2.60) 

2 
X2 A (x0 ,x1,x2) 

w h(x0 ,x 1 ,x2) 

(actually h or.ly depends on x 1 and x 2). By feedback (2.60) is equivalent 

to 
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XO uo 

(2.61) 
xi ul 

2 
x2 A (xO,x 1 ,x2) 

w h (xO,x1 ,x2) 

with u 

by setting v0 = x0 , v 1 = x 1, to obtain 

(2.62) 

Therefore locally we can define a nonlinear system ['(X',W',B',f') with 

X' = x2 , W' = W,B' X and f' = (g',h') such that g'(x2,v0 ,v 1) = A2(x2 ,v0 ,v 1) 

and h'(x2,v0 ,v 1) = n(x2,v0 ,v 1). Furthermore it is clear that locally 

(2.63) 

Hence we have reduced [(X,ll,W,h) to a system with a smaller state space 

and the same smooth external behavior. 

Of course the above reduction procedure may be again applied to 

L 1 (X',W',B',f'). Then we need that g'(x2,v0 ,v 1) defines a regular distri

bution on x2 . More precisely we have to consider the sets 

Indeed suppose that g' is of the form 

(2.64) 

This is equivalent to the assumption that 

every (x 1,x2) an affine subspace of T x2 such that 
X2 

-I -I 
the linear subspace ll0 := g'(rr 1 (x 1,x2)) - g'(rr 1 (x 1,x2)) does not depend 

on x1. Now the question is if 60 = span {Bi' , .•. ,B~} is a regular distri

bution on x2 . If llO is regular then we can factor out x2 by this distribu-_ 
TT ".I 

tion to obtain a smaller state space x3 , i.e. x2 ~ x3 , with 

ker rr3* ll0 . Denote coordinates for x3 by x3 , and let x2 = (x2 ,x3). Then 

(2.62). is feedback equivalent to 
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. ' 
x2 VO 

(2.65) X3 A' 3 (x3,x2' 'v I) 

' 'VI) y h(x3 ,x2 

~ I ~k 3 (v0 , ... ,v0 ) the new input and A' the component of A' in the 

x3-direction. Notice that we have used the fact that h does not depend on 

v0 • Now we can take x2' as the new input, and we obtain a nonlinear system 

with state x3 and inputs x2• and v 1• Hence we have (locally) obtained a 

nonlinear system l:"(X",W,B",f") such that I;• (X",W,B",f") = I:e' (X',W,B',f') 

I: (X,fl,W,h). 
e 

The reduction procedure from l:'(X',W,B',f') to l:"(X",W,B",f"), with 

f' (g',h) may terminate because of the following three reasons: 

I. his an immersion restricted to the fibers of B'. 

II. g' does not define a distribution fl~ on X' 

III. the distribution fl~ is not regular. 

If his an immersion restricted to the fibers of B', then we have obtained 

a system with a local input-output representation with feedthrough term. 

Therefore if in every step of the reduction procedure g' defines a regular 

distribution fl' then the procedure is continued till we have a system with 
0 

a local input-output representation with feedthrough term. If 3 1 does not 

define a regular distribution fl0' on X' a serious problem arises, since 

g'(1T 1-l (x 1,x2)) - g 1 (1T 1-l (x1,x2)) may contain a regular distribution on X', 

by which we can factor out. Therefore it is possible that we can apply a 

"partial" reduction procedure. We shall not consider this problem. 

Finally we illustrate the reduction procedure by the following example, 

considered in a different context in FREEDMAN & WILLEMS (1978). 

Let Y = U = ]Rm, and let W = Y x U with coordinates w = (y, u). Con

sider the external system described by the equations 

(2.66) i = I, ... ,m 

for certain smooth functions a .. We abbreviate (2.66) as y - a(u,y,~) = 0. 
l. 

Equations (2.62) determine in every point w E W a subset of TwW' and hence 

determine a subset Pc TW. Consider the Cartan-forms dw - ; dt, i.e. 

dy. - y.dt and du. - u1..dt, i = I, ... ,m. If we restrict these forms to P x lR 
l. l. l. 

we obtain dy. - a.(u,y,~)dt and du. - ~.dt, i = I, ... ,m. The kernel of 
l. l. l. l. 
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these forms is equal to 

(2.67) 
3 m 3 • 3 3 

span {-;,;- , l u .-- + a. (y,u,u)-~- + -;;-t , 
oui j=l JdUj J oyj a 

i I, ... ,m} 

Therefore for every x E P possibility II holds. Hence we may apply Propo-

sition 2.61 and take X P. It is clear that (y,u,~) are coordinates for P. 

The output map h: P ➔ W simply is h(y,u,~) = (y,u). It is clear that we 

can always factor out the regular distribution span{~, ... ,~} on P. 
ul um 

After this reduction the new state space X' can be taken equal to W, with 

coordinates (y,u). The equations of l:'(X',W,B',f') are 

U = V 

(2.68) y a(y,u,v) 

w (y,u) 

with v = (v 1, .•. ,vm) the input. The question is: When can we reduce 

l:'(X',W,B',f') with equations (2.68) to a system l:"(X",W,B",f") by the re

duction procedure? First of all we need that we can write (see (2.64)) 

(2.69) 

for a certain smooth map b : lR.m x lR.m ➔ lR.m, and a certain mxm-matrix 

c(y,u), whose coefficients are smooth functions of (y,u). We denote the 

i-th column of c(y,u) by ci(y,u). Notice that in this example 

(2. 70) ti0 (y,u) = span { rel ) ( em ) } 
c 1(y,u) , ... , cm(y,u) 

with ei the i-th basis vector of lR.m. Therefore ti0 always has constant 

dimension. Hence we only need that ti0 is involutive. This is equivalent to 

(2.71) 3 3 3 3 
[-a-+ c.(y,u)a,-3-+ c.(y,u)a J = 0 

ui 1. y uj J y 

. . I ( . a ( 3 3 )) 
l. 'J = ' ... 'm Wl. th a = -a-, ... ,-d- • 

y Y1 ym 
for all 

Equations (2.71) are equivalent to 

ac. ac. 3::. ac. 
(2. 72) ~ - ~ + c. ~ - c . .J- = o, i,j oU. oU. J oy l. oy 

J l. 

I, ... ,m 

Now(2.72) are the necessary and sufficient conditions for the existence of 
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a smooth map k : ]Rm x ]Rm ➔ ]Rm such that (see SPIVAK ( 1970)): 

(2.73) ak 
@"u.""(z, u) 

l. 

c.(k.(z,u),u), with z,u E: ]Rm. 
l. l. 

Furthermore we can take kin such a way that the map (z,u) ~ (k(z,u),u) 

is a diffeomorphism. Define 

(2.74) ak -I 
l(z,u):= Ca; (z,u)) b(k(z,u),u) 

(with bas in (2.69)). Then the following system 

z = l(z,u) 

(2.75) y k(z,u) 

u = u, w = (y,u) 

is the reduced system i:"(X",W,B",f"). The output map of (2.75) is (z,u) I-+ 

(k(z,u) ,u). This is clearly. an irrnnersion with respect to u, so no further 

reduction is possible. System (2.75) is an input-output representation with 

feedthrough term and the smooth external behavior of (2.75) is equal to 

i:e(P). 

Notice furthermore that since (z,u) ~ (k(z,u),u) is a diffeomor

phism, we may as well take (z,u) as coordinates for W (instead of (y,u)). 

In these coordinates we obtain the input-output system (Definition 2.22) 

(2.76) 

z = l(z,u) 

z = z 

u = u 

Summarizing we have the following conclusion (also obtained in FREEDMAN & 

WILLEMS (1978)): 

There exists an input-output system, which has the same smooth ex

ternal behavior as the external system (2.66) if and only if a(y,u,~) is of 

the form b(y,u) + c(y,u)~, with the columns of c(y,u) satisfying (2.72). 
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Notes and References for Chapter~ 

Sections 2.1.1 and 2.1.2 are mainly based on WILLEMS (1979) (see also WILLEMS 

(1983)). For more information about the description of systems of the form 

D(d~)y(t) = N(ddt)u(t), or in the frequency domain D(s)y(s) = N(s)u(s), we 

refer to WOLOVICH (1974) and ROSENBROCK (1970). 

The basic idea of Section 2.1.3 is due to MARTIN & HERMANN (1978), see 

also HERMANN (1979,1980). These authors associate to a transfer matrix 
-1 I 

G(s) = D (s)N(s) an algebraic vector bundle over lP ([), and make the ob-

servation that the Chern numbers of this vector bundle are equal to the con

trollability indices of a minimal realization of G(s). For a concise treat

ment of algebraic vectorbundles over JP 1 ([) we refer to HAZEWINKEL & MARTIN 

(1982). The "geometric" treatment of output feedback as a choice of the 

output space in the space U x Y also appears in BROCKETT & BYRNES (1981). 

In the text we defined the dual bundle E(P(s)).L by taking for every s E [ 

the orthogonal complement of Ker P(s) with respect to an (arbitrary) inner 

product on W. Of course we can also define E(P(s)).L as a subbundle of 
I * ( . * ) lP x W[ with W the dual, space of W . 

Sections 2.2.1 and 2.2.2 are mainly based on VAN DER SCHAFT (1982 c). 

Definition 2.20 is due to WILLEMS (1979), while the idea to give a coordi

nate free description of i = g(x,u) by using a fiber bundle B over the 

state space Xis due to BROCKETT (1977, 1980), see also TAKENS (1976). This 

"bundle approach" is also elaborated in NIJMEIJER & VAN DER SCHAFT ( 1982 a, b) 

and NIJMEIJER (1980). For related results on minimality and equivalence of 

nonlinear input-output systems (in a somewhat different setting) we refer 

to SUSSMANN (1977), HERMANN & KRENER (1977) and BROCKETT (1980). The defi

nition of local weak observability (in the sense of Property I), and the 

corresponding rank condition of the observability codistribution is due to 

HERMANN & KRENER (1977). For other approaches to uniform observability 

(especially for affine nonlinear systems) we refer to NIJMEIJER (1982 b), 

GAUTHIER & BORNARD (1981). The existence of universal inputs,i.e. input 

functions which distinguish between every two states x 1 and x2, has been in

vestigated in SUSSMANN (1979). The definition of strong accessibility (in 

a different setting) is due to ELLIOTT (1971) and SUSSMANN & JURDJEVIC (1972). 

The notion of local weak controllability appears in LOBRY (1970) and is 

further explored in HERMANN & KRENER (1977), and other papers. 
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Section 2.2.3 is mainly based on NIJMEIJER & VAN DER SCHAFT (1982, b,a, 

also 1983 b). The generalization of the concept of controlled invariance 

for linear systems to affine nonlinear systems is due to ISIDORI, KRENER, 

GORI-GIORGI & MONACO (1981 a), and HIRSCHORN (1981). The relations between 

controlled invariance, observability and local weak controllability for 

affine systems are treated in ISIDORI et al. (1981 a). 

With respect to Section 2.2.4 we draw attention to previous work on 

realization theory for nonlinear systems from an input-output point of view. 

In JAKUBCZYK (1980) a minimal smooth realization of an input-output system 

is constructed by using Nerode-equivalence (see Chapter I). Furthermore 

there has been done important work on the realization of input-output rela

tions which can be described by Volterra series, see for instance BROCKETT 

(1976), KRENER & LESIAK (1978), CROUCH (1981 a), and in another direction 

FLIESS (e.g. 1981) (see also LA."1NABHI (1982)). 



CHAPTER 3 

HAMILTONIAN SYSTEMS 

3.1. Introduction 

"That", said _'efer:t>1J, point-ing i;,ith his hand, "that is 

the line of the Withywindle •.••. The Withywindle is 

said to be the queerest part of the whole wood - the 

aentre from whiah all the queerness aomes, as it were". 

J.R.R. Tolkien: The Lord of the Rings 
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In the previous chapter we have given a system theoretic framework for 

the study of linear and (smooth) nonlinear systems. Within these both 

classes we now narrow our scope to what we shall call Hamiltonian systems. 

The distinctive feature of a Hamiltonian system will be the existence of 

a so-called syrrrpleatia struature on the state space as well as on the space 

of external variables. Furthermore the equations of the system have to be 

compatible with both symplectic structures. 

From a mathematical point of view we know that the symplectic structure 

is rich enough to define a useful mathematical "category", in which all 

operations, transformations etc. respect the symplectic structure. We show 

in this chapter that also the system theoretic concepts as introduced in 

the previous chapters nicely fit into this symplectic framework. 

With the study of Hamiltonian systems we enter the realm of classical 

mechanics. Actually the Hamiltonian formalism lies at the basis of a much 

larger part of theoretical physics, as for example electro-magnetism and 

also quantum mechanics, the non-classical part of physics par exaellenae. 

Most treatments of Hamiltonian systems in the modern mathematical and 

physical literature deal only with what is called analytiaal meahanias. This 

part of mechanics confines itself to the study of mechanical systems without 

external influences. For instance (see SANTILLI (1978,1983)) the equations 

that are customarily referred to as the Euler-Lagrange equations, and 

Hamilton's equations are not the equations originally conceived by Lagrange 
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and Hamilton. The latter include external forces , i.e. 

d aL aL 
dt <aq.) aqi 

F. 
l. 

l. 

aH aH 
+ F. q. 

ap. p. 
aqi l. l. l. 

l. 

and only since the beginning of this century have the external terms been 

removed. As a consequence of the predominance of analytical mechanics, the 

recent formalization of classical mechanics in terms of symplectic geometry 

(see the text books of ARNOLD (1978) and ABR.Af!AM & MARSDEN (1978)) has 

only been carried out for systems without external forces. In fact to our 

knowledge there have been very few attempts to include on a fundamental 

level external forces in a modern mathematical theory of Hamiltonian systems 

(however we like to mention some work of Tulczyjew and co-workers, e.g. 

TULCZYJEW & KIJOWSKI (1979)). Of course there are strong historical reasons 

why the study of external forces in modern classical mechanics and theoret

ical physics is not very fashionable, and we have more to say about that 

in Section 3.2.2. 

For completeness we,mention that an approach other than ours to the 

formalization of external forces in mechanical systems is provided by the 

calculus of variations. The starting point is then in fact the variational 

derivation of the Euler-Lagrange equations with external forces (TAKENS 

(1977), see also HERMANN (e.g. 1982), GODBILLON (1969)). In our approach 

we treat, roughly spreaking, Lagrangian systems as a specialization of 

Hamiltonian systems (see Section 3.6), and we obtain the Euler-Lagrange 

equations with external forces as the basic example of a Lagrangian system. 

Another element, apart from the external forces, which we shall intro

duce in the study of Hamiltonian systems is the formalization of the notion 

of partial observations made on a system. This is a typical system theo

retic concern and seems even more absent in the physics literature than the 

conceptualization of external forces. In fact we give a framework for 

Hamiltonian systems in which the (generalized) forces and observations are 

in the same way dual to each other as the (generalized) positions and 

momenta are dual to each other. 

In the following sections 3.1.1 till 3.1.4 we give some motivation for 

the definition of a Hamiltonian system as given in Section 3.2. 
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In 3.1.1 we speak about memoryless ( in this mechanical context better 

called statia) Hamiltonian systems. Actually there has been some flourishing 

of the use of symplectic geometry, especially the notion of Lagrangian 

submanifolds, in the treatment of various physical systems with a "recipro

cal" or "symmetric" character. We shall give some illustrative examples. 

After this we are heading for a definition of a dynamical Hamiltonian 

system. In section 3.1.2 we give the equations of an electrical network, 

consisting of (nonlinear) capacitors and inductors as an example of a 

dynamical system which we call Hamiltonian. In section 3.1.3 we give a short 

review of the definitions of a Hamiltonian vectorfield in terms of symplectic 

geometry, including the formulation as a Lagrangian submanifold of the tan

gent bundle which is advocated in recent works. 

Finally in section 3.1.4 we briefly sketch some motivation stemming 

from linear system theory. We show that if a transfer matrix possesses a 

certain symmetry, then a minimal realization of this transfer matrix is also 

endowed with a special structure and can be called a (linear) Hamiltonian 

system. 

We now give a very simple but paradigmatic example of what we shall 

call a Hamiltonian system. 

Consider a point mass m with position q1, influenced by a force F1• 

According to Newton's second law, the,relation between q 1 and F1 as functions 

of time is given by 

(3. I) 

Note that we see F1 as a basic variable and that (3.1) expresses a compati

bility relation between forces and positions. Hence we have an external 

(linear) system (see section 2.1.2) 

(3. 2) 
mq1 = F1, with equality in the sense of distributions} 

In fact Ee is an external input-output system with input u1 = F1• A minimal 

realization of Ee is given by 

(3.3) 
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i.e. a linear input-output system ~(A,B,C) (see equation 2.4) with 

A= (: !) , .B = (~) and C = (IO). Any definition of a Hamiltonian system 

surely ought to include systems (3.2) and (3.3). The basic observation is 

that the state space (q 1,p 1) can be seen as a symplectic space with the 

usual symplectic form J = (~ -b). Then A as above is a Hamiltonian matrix, 

i.e. A satisfies ATJ + JA = 0, and Band Care related as BTJ = C. Further

more we notice that the space of inputs and outputs (y 1,u 1) can be also 

seen as a symplectic space with the symplectic form Je = (~ -b}. 
Next we look at another mechanical system. Consider a particle attached 

to a spring with spring constant k. Assume that we can control the position 

q2 ~f the particle. We take as output the force F2 exerted by the spring on 

the particle, i.e. the force that we experience if we control the particle 

in a certain position. This yields the static system F2 = -kq2, which can 

be also written as 

potential energy. We regard (3.4) as a static Hamilto

nian system with input q2 and output F2. Equation (3.4) defines a Lagrangian 

submanifold in the (q2,F2)-space with generating function V(q2) (see Section 

3.1.1). Instead of the potential energy ½kq; corresponding to a linear 

spring we can take an arbitrary potential energy function V(q2). Notice also 

that (3.4) is an example where external forces are not necessarily inputs. 

Finally we.can interconnect the Hamiltonian systems (3.3) and (3.4) 

by setting 

(3. 5) 41 = 42 FI = F2 

(this can be regarded as Newton's third law) 

mql Fl 41 

Fl F2 qi 42 

F2 
F2 = -kq 

42 
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We shall see that the interconnection (3.5) is a particularly simple example 

of what we call a Hamiltonian interconnection. This will be dealt with in 

Section 3.2.J. The system resulting from the interconnection has the form 

(setting q=q 1=q2) : 

(3. 6) mq + kq = 0 , or, 

This constitutes a Hamiltonian vectorfield, or as we shall say an autonomous 

(i.e. no inputs) Hamiltonian system. As outputs we could take the position 

dV q, or the position q together with - dq(q) = - kq, which is now the internal 

force. 

3. I.I Static Hamiltonian systems; reciprocity. 

First we develop the mathematical preliminaries which will be used for 

the formalization of the examples of static Hamiltonian systems given in 

this section. For details we refer to ARNOLD (1978), ABRAHAM & MARSDEN (I 978). 

Let M be a manifold provided with a 2-form w which is 

(i) nondegenerate, i.e. for every YET M, with Y # 0, there exists a 
X 

Z ET M such that w (Y,Z) f 0 
X X 

(ii) closed, i.e. dw = O. 

Such an w is called a symplectic fom, and. (M,w) is called a symplectic 

manifold. It follows from (i) that Mis necessarily even-dimensional, say 

dim M =Zn.From (i) and (ii) it can be deduced that there exist local, 

coordinates q1, •. ,qn,Pl···,Pn for M such that 

n 
(3. 7) w = .I dp. A dq. 

i=J l. l. 

This is known as Darboux's theorem (ARNOLD (1978), ABRAHAM & MARSDEN (1978)). 

The coordinates (q 1, .•• ,qn,pl, ..• ,pn) for which (3.7) holds are called 

canonical or symplectic. 

The prototype of a symplectic manifold is a cotangent bundle. Let T*Q 

be a cotangent bundle, with dim Q = n. Then we can define a natural I-form 

0 on T*q as follows. Take a E T*Q, XE T (T*Q) and let n denote the projec
a 

tion of T*Q on Q. Then set 

(3. 8) 

If (q 1, ••. ,qn) are (arbitrary) coordinates for Q we can define natural coor

dinates (q 1, .•• ,qn,pl, ••• ,pn) (fiber respecting for the bundle T*Q) by 
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n 
letting (q 1, ••• ,qn,p 1, ••• ,pn) correspond to the one-form L p_.dq. on Q 

i=l :t. 1 

in the point (q 1, ••• ,q) E Q. In such coordinates we have that . n 
n 

(3. 9) 8 = L p.dq. 
i~l 1 1 

n 
Finally we define w:= de, i.e. in natural coordinates w L dp. /\ dq., 

i=l 1 1 

which is a symplectic form on T*Q. Moreover we see that the natural coor

dinates are also canonical. 

The basic notion in the description of static Hamiltonian systems is 

that of a Lagrangian submanifold. 

DEFINITION 3.1 Let (M,w) be a symplectic manifold, with dim M =Zn.A 

submanifold N c Mis called Lagrangian if 

(i) wlN = O, i.e. wx(Y,Z) = 0, for every x EN, YE TxN and Z E TxN. 

(ii) dim N = n 

It can be proved that (i) implies that dim N ~ n. An important property 

of a Lagrangian submanifold is the following 

THEOREM 3.2 (for a proof see ABRAHAM & MARSDEN (1978)) Let N be a Lagrangian 

submanifold of (H,w). Let (q 1, ••. ,qn,Pl, ••. ,pn) be canonical coordinates 

for M on a coordinate neighbourhood Uc M. Then for every x E U we can find 

an open neighborhood V of x, with V c U, and a function S defined on N n V 

such that N n Vis given by 

(3. IO) p. 
] 

as - aq:-
J 

where the index i ranges through a part of the set {l, •.. ,n} and the index 

j through the complementary part (Sis only a function of the variables pi 

and q. with respect to which Sis differentiated in (3.10)). 
J 

The function Sas in (3.10) is called a generating function of N. We 

shall now give some typical examples of static Hamiltonian systems which 

illustrate the relationship with notions like reciprocity and potentiality. 

It will be shown that a natural mathematical framework is the use of 

Lagrangian submanifolds. The following treatment is taken nearly verbatim 

from KIJOWSKI & TULCZYJEW (1979). 
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Consider a particle in 3-dimensional space Q, subject to an external 

force field. The position of the particle will be described by coordinates 

q = (q 1,q2,q3). We assume that for every configuration q there exists a 

unique force F = (F 1,F2,F3) exerted by the external field. Hence there exist 

functions ¢i such that 

(3. I I) j = 1,2,3. 

If an external mechanism is used to control the position of the particle, 

then an infinitesimal displacement from a position q to q + 6q:= 

(q 1+oq 1,q2+oq2,q3+oq3) requires the mechanism to perform a virtual work 

3 
(3.12) A= l F.oq. 

i= I 1. 1. 

with Fi= ¢i(q) (Of course-Fis just the force that the controlling me

chanism has to exert to maintain the configuration q). If we define the 

3 
I-form¢= l ¢.dq on Q, then A= -¢(6q). Consider now a displacement from 

j=l J J 
. . I . . 2 l one conf1.gurat1.on q to another conf1.gurat1.on q, a ong apathy. The work 

performed by the mechanism equals 

(3. 13) A(y) -f ¢. 
y 

If A(y) only depends on the endpoints of y, we can define a potential func

tion on Q: 

(3. I 4) V(q) 

q 

- f ¢ 
0 

q 

with qO some fixed (reference) configuration. We obtain that 

(3. 15) ¢ = -dV, or equivalently, ¢. = - :v , j = I,2,3. 
J qj 

Equations (3.15) e:icpress the potentiality of the system. A I-form ¢ such 

that there exists a function V with¢= -dV is called exact. On the other 

hand, if¢= -dV, then d¢ = -d(dV) = O, or equivalently 

(3. I 6) i,j I, 2 ,3. 

We can interpret (3.16) in the following way. Let the system be displaced 
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in such a way as to increment the coordinate q. by an infinitesimal value 
J 

£ without changing the remaining coordinates. The (first-order) increment 

of the i-th component Fi of the force caused by this displa~ement is 

oF. 
]. 

-0-£. If on 
qj 

oF. 
the other hand the coordinate q. is incremented by£ then~£ 

l. aqi 

is the corresponding first-order increment of F .. Equations (3.16) imply 
J 

that the two first-order increments are equal! This property is called 

reaiproaity. As we saw the property of reciprocity is equivalent to the 

condition that d¢ = 0. We call a I-form¢ with d¢ = 0 alosed. If¢ is exact, 

then¢ is also closed. If on the other hand¢ is closed, then (by Poin

care's lemma) there exists at least locally a function V satisfying 

¢ = -dV (if Q is simply connected V exists globally). Hence locally: 

reaiproaity <===:> potentiality. 

We can also describe the above situation with the aid of the cotangent 

bundle T*Q, whose coordinates are (q,F) = (q 1,q2 ,q3 ,F 1,F2 ,F3). Since the 

force Fis a function of q, we have a 3-dimensional submanifold N c T*Q: 

(3 .I?) N = {(ql,q2;q3,¢1(q),¢z(q),¢3(q)}. 

3 
The natural I-form 8 on T*q is given by 8 = 2 F.dq .• An infinitesimal dis

i=l i i 

placement from q to q + oq yields an infinitesimal change from (q,F) to 

(q+oq,F+oF). The virtual work equals 

(3. 18) 

A finite displacement from q 1 to q2 along apathy in Q results in a finite 

displacement from (q 1 ,F 1) EN to (q2 ,F2) EN, along apathy in N. The work 

performed eqt1als 

(3. 19) A(y) - f e 
y 

I 2 
If the work only depends on the endpoints q and q, we can define a (poten-

tial) function Von N by 

(3.20) V(q,F) with (q,F) EN and (q0,F 0) a (reference) 

point in N. 
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Formula (3.20) is equivalent to 

(3.21) -dV 

This means that 8 restricted to N is exact. Therefore the cotangent bundle 

interpretation of potentiality is that e[N is exact. To find the cotangent 

bundle interpretation of reciprocity, we define the natural symplectic form 

w = d0 on T*Q. Reciprocity means that e[N is closed, i.e. d(e[N) = 0, or 

equivalently w[N = d8[N = 0. Hence reciprocity is equivalent to saying that 

N is a Lagrangian submanifold of (T*Q,w). 

A particularly simple example of the foregoing situation is a particle 

attached to a spring with one degree of freedom. Then q E Q c lR, F -kq, 

with k the spring constant and N = {(q,-kq)[qEQ} c T*lR = lR2 • Since a!

dimensional submanifold of T*lR is always Lagrangian, the system is reci

procal and in fact the generating function of N is V(q) = ~g2, the inter

nal energy of the spring (since V is globally defined we have in fact po

tentiality). We shall now show for this special example that instead of 

taking q as the input (control) and Fas the output, we can also regard 

Fas the input and q as the output. We consider a scale suspended in the 

gravitational field attached to the spring with constant k. The force 

applied to the system is controlled by placing weights on the scale. The 

weights are stored at the level of the equilibrium position if there are 

no weights on the scale. 

c5 L] L] 0 

l 
The force and the position are in the relation F = -kq. If the force is 

increased from F to F + oF by transferring a weight oF from the storage 

to the scale then the performed virtual work equals 

(3.22) A= -qoF. 

If the weight is changed from Oto F then the total work equals 
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F F 

(3.23) V = - J q6F ½! FdF 
I 2 

2k F ' 
0 0 

This work is spent on the internal energy of the spring: 

(3.24) 
I 2 I 2 

V = 2 kq = 2k F 

and on changing the gravitational energy of the weights by 

(3. 25) 
I 2 

qF = - k F 

Hence V = -V - ~, and we see that we can write N dV I { (q,- dq) qElR} also as 

3 Return now to the more general situation with Q = lR , and assume that 

the Lagrangian submanifold N c T*q as in (3.17) can also be parametrized 

by F = (F 1,F2 ,F3). We shall see that the same construction as above goes 

through for the general case. Locally we can define the I-form 

3 3 
8:= 2 q.dF .. Then 8 + 0 = d~, with~= 2 q.F .• 

i=I 1 1 i=I 1 1 

The integral A(y) fe along apathy contained in N is the work perfor-

y 
med, and only depends on the endpoints. Therefore we can (locally) define 

(q,F) 

(3.26) V(q,F) = je , for (q,F) and qo,Fo) in N. 

(qo ,Fo) 

Obviously, dV = -el and if the reference state (q 0 ,F 0) is the same as the 
N 

one used in (3.20) we obtain 

(3.27) V(q,F) 

(q,F) 

f e - d~ 

(qo ,Fo) 

av I and N is also given by N = {(- ~F ,F.) F.ElR, i=l,2,3}. 
0 • l. l. 

l. 

The relation between V and Vas in 3.27 is called the Legend.Pe transforma

tion. 

We see that for the notion of reciprocity it does not make a diffe

rence how the submanifold N is parametrized in canonical coordinates of 

* * T Q. Also we do not use the cotangent bundle structure of T Q but only the 

* fact that T Q possesses a symplectic form. We conclude with the following 
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DEFINITION 3.3 Let W, the set of external variables, be a symplectic mani

fold with symplectic form we, A memoryless (see Definition 1.16) external 

system Z:e on W is given by a submanifold N c W such that Z:e = {m,W]R \w(t)EN 

\ftE1R}. A memoryless system is static Hamiltonian if N is a Lagrangian sub

manifold of (W,we). 

Above we saw some examples of a iStatic Hamiltonian system with W = T*Q, In 

the literature one can find numerous other examples (see for references 

ABRAHAM & MARSDEN (1978), KIJOWSKI & TULCZYJEW (1979)). In fact the equa

tions of nonlinear capacitors or inductors as treated in the next section 

are also examples. Furthermore Kirchhoff's laws of interconnecting voltages 

and currents can be viewed as a (special) example of a Lagrangian submani

fold of the space of voltages and currents (see for more information Sec

tion 3.2.1), We close this section with another mechanical example. 

Example: Consider a mass m attached to a rope which is swept around with 

constant angular velocity w. Assume that we can control the length r of 

the rope, if the mass is attached to the end, or the position r where the 

mass is attached to the rope. Take the generating function equal to the 

k . . f h d h . . I 2 2 f · h 1.net1.c energy o t e mass ue to t e rotat1.on, Le, ;r11w r • I r 1.s t e 

input, then we obtain the output y = -mw2r, i.e. the centripetal force. 

3.1.2 Nonlinear LC-networks 

After Newton's second law as treated in Section 3.1, this will be the 

first example of what we call a dynamical Hamiltonian system. Our treat

ment of an LC-network is strongly influenced by work of BRAYTON (1978), see 

also BRAYTON & MOSER ( 1964), to which we also refer for more details. 

A nonlinear inductor is given by a constitutive relation 

(3.28) i = f(cj,) 

with i the current, <I> the magnetic flu:n and fa smooth function. Since i and 

cj, are one-dimensional, we can construct a function S(cj,) such that 

(3.29) i f (cj,) dS 
dcj, (<I>). 

Equivalently, we can look at an inductor as a submanifold 

N = {(cj,,f(cj,)) \<t>ElR} of JR.2 = {(cj,,i) \cj,E1R., iE1R.}. Since N is I-dimensional, 
. . b . 2 . . . 0 -I N 1.s a Lagrang1.an su man1.fold of 1R. w1.th 1.ts natural symplect1.c form ( 1 0 ), 



106 

and therefore an Sas in (3.29) exists (Theorem 3.2). 

If we interconnect inductors, satisfying Kirchhoff's laws, the inter

connected system is still reciprocal, i.e. a Lagrangian submanifold of a 

(higher-dimensional) space (BRAYTON (1978)). Indeed, let L be an inductive 

n 1-port,i.e. a set of inductors connected to each other in some way satis

fying Kirchhoff's laws with n 1 external channels. The corresponding set of 

external variables are the fluxes and currents of the n 1 external cha.nnels. 

Suppose that L can be parametrized by (¢ 1, ••• ,¢ ), with¢. the magnetic 
nl J 

flux on the j-th channel. Then there exists (locally) a function 

S(¢ 1, ••• ,¢ ), the magnetic energy, such that 
nl 

(3.30) i. 
J 

as ~· J 

j = I, ••• ,n1 

with i. the current of the j-th channel. 
J 
A nonlinear capacitor is given by a constitutive relation 

(3.31) V = g(q) 

with v the voltage, q the charge and g a smooth function. Also a capaci

tor can be regarded as a Lagrangian submanifold N = {(q,g(q))[qdR} of lR2 = 

{(q,v)[q,vElR} with its natural symplectic form. Moreover there exists a 

function T( the generating function of N) such that 

(3.32) V = dT 
g(q) = dq (q). 

Again, interconnections satisfying Kirchhoff's laws leave the system reci

procal. If C is a capacitive n2-port (a set of capacitors interconnected 

to each other with n2 external channels), and if we assume that C can be 

parametrized by (q 1, .•• ,q ), the charges of the external channels, then 
n2 

there exists (locally) a function T(q 1, ... ,q ), the electric energy, such 
n2 

that 

(3.33) v. 
J 

j 

From (3.30) and (3.33) it follows that Las well as C can be regarded as 

static Hamiltonian systems (Definition 3.3). 



Let us now connect the first n channels of Land C with each other 

(nsn1, nsn2): 

(3.34) 

i.e. 

(3.35) i. 
J 

n 

dq. 
_J 
dt ' vj 

d<j,. 

rt ' j l, ... ,n 
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(if two channels are connected, the sign of the currents is reversed; this 

is a standard convention in circuit theory). Furthermore define the energy 

H(q, 1, ..• , <j, ,q 1, ..• ,q ):= S(q, 1, •.. ,<j, ) + T(q 1, ... ,q ). Then we obtain 
n2 n2 n, nz_ 

from (3.30) and (3.33) 

d<j,. 
_J ae 
dt 8q. 

J 
j I, ... ,n 

dq. 
_..:J.. ae 
dt aq,. 

J 

(3. 36) 

in+k 
ae 

{ aq,n+k 

ae 
vn+k aqn+k 

k I, ... ,n2-n 

We call this a Hamiltonian system with state space (q, 1, .•. ,<j,n,ql'''''qn) 

and space of external variables (<j, 1, ... ,<j, ,q 1, .•• ,q ,i 1, •.. ,i , n+ n 1 n+ n2 n+ n 1 

Notice that the assumptions on the parametrizations of Land C, made 

in (3.30) and (3.33), are not essential with respect to the external varia

bles on the external channels which are not connected. If for instance C 

is parametrized by (q 1, .•• ,q ,v 1, .•. ,v ), then there exists a function 
n n+ n2 

T depending on these variables such that 
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oT j l, .•• ,n v. 
aq. ' J 

J 
(3.37) 

ar k I, ••• ,n2-n qn+k -~, 
n+k 

(see Theorem 3.2; Tis obtained by taking the Legendre transformation of T 

with respect to the 

we obtain after the 

tern 

variables (q 1, ••• ,q )). If we now define H:= S + T, 
n+ n2 

interconnection (3.35), the following Hamiltonian sys-

d¢. clH _J 

{ 
dt aq:-

J 
j I, ... ,n 

dq. 8H _J - aT dt 
J 

(3.38) 

in+k 
clH 

0¢n+k 

{ 
oH 

qn+k -:av-
n+k 

In equations (3.36) we can regard(¢ 1, ••• ,¢ ,q 1, ••. ,q ) as the inputs n+ n 1 n+ n2 
and ( i 1 , •.. , i , v 1 , ••. , v ) 

n+ n 1 n+ n2 
as the outputs, while in (3.38) 

(¢ +i•··•,¢ ,v 1, ••• ,v ) are n n 1 n+ n2 
the inputs and the remaining coordinates 

the outputs. 

3.1.3 Hamiltonian vectorfields 

Let (M,w; be a symplectic manifold. Let H: M ➔ lR be a smooth function. 

Since w is nondegenerate we can define a vectorfield ¾ on M by setting 

(3.39) 

Let (q 1, .•• ,qn,pl''"''pn) be canonical coordinates, i.e. w 

Then (3.39) implies that¾ is given by 

(3.40) 
n 8H a aH a 

¾ = J1 3Pi aqi - aqi 3Pi 

which gives the familiar Hamilton equations 

n 
l dp. A dqi. 

i=I 1. 
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oH q. ap. l. 
l. 

(3.41) i I, •.. , n 
:rn 

p. -~ l. 1 

We call~ a globally Hamiltonian vectorfield. There are two, equivalent, 

ways of defining a locally Hamiltonian vectorfield. The first, most common, 

way is to say that a vectorfield X on (M,.w) is locally Hamiltonian if EXw = 0, 

where EX is the Lie-derivative with respect to X. Since EXw = (dw)(X,-) + 

d(w(X,-)) and dw = O, this is equivalent to d(w(X,-)) = 0. Therefore by 

Poincare's lemma there exists, at least locally, a function H: M ➔ lR such 

that w(X,-) = -dH. 

The other approach makes use of the concept of a Lagrangian submani

fold. If (M,w) is a symplectic manifold, also TM has a canonically defined 

symplectic form, denoted by~. which is defined in the following.way. Since w 

is nondegenerate, it defines a bundle isomorphism a: TM - T*M by 
* . setting a(X) = wx(X,-) for XE TxM. Now TM 1s a cotangent bundle and there-

fore has a natural symplectic form w. Then a*; is a symplectic form on TM 

n 
which we denote by w. If w = L dp. A dqi' one can check that w is given 

i=I 1. 

n 
by w = L dp. A dq. + dp. A dq.(where q. and p. are the functions on TM 

i=I 1 1. 1 1. 1 1 

defined by q.(v) = dq.(v), p.(v) = dp.(v) for v E TM). It can now be seen 
l. l. l. l. 

(ABRAHAM & MARSDEN (1978, Prop. 5.3.2) that EXw O is equivalent to 

DEFINITION 3.4 Let X be a vectorfield on (M,w). Then Xis a locally Ha

miltonian vectorfield if graph X c TM is a Lagrangian submanifold of (TM,w). 

Let now X be a locally Hamiltonian vectorfield and let (q,p) = 

(q 1,.,.,qn,pl, .•. ,pn) be canonical coordinates for (M,w). Since graph Xis 

a Lagrangian submanifold of (TM,w) parametrized by (q,p), it has (locally) 

a generating function H(q,p) and is given by 

(3.42) graph X = {(q 1, ••• ,qn,pl, •.• ,pn,ql a~~•···,qn 

oH 
p I = - aq I ' ' .. 'p n 

Hence we have again obtained the Hamilton equations (3.41). 
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Usually we omit the words "locally" or "globally" and just speak about a 

Hamiltonian vectorfield when we actually mean a locally or globally Hamil

tonian vectorfield. 

Because we need it later on we also define the Poissonbraeket. Let 

F,G: M + lR be two smooth functions. By (3.39) they define Hamiltonian 

vectorfields ¾,, respectively XG on M. The Poissonbracket {F,G} is the 

smooth function on M defined by 

(3.43) 

n 
(3.44) {F ,G} I 

i=l 

Furthermore, one can check that 

(3.45) 

Equation (3.45) can be interpreted as follows. Let C(M) be the set of smooth 

functions on M. Endowed with the Poissonbracket (3.43) C(M) forms a Lie 

algebra, called the Poisson algebra. Consider on the other hand the set of 

all globally Hamiltonian vectorfields VH(M). By (3.45) this is a Lie sub

algebra of V(M), the set of all smooth vectorfields on M. Then the map 

a: C(M) + V(M), defined by F 1-+ XF is by (3.45) a Lie algebra morphism, 

and a: C(M) (modulo constant functions)+ VH(M) is a Lie algebra isomor

phism. 

3.1.4 Hamiltonian transfermatrices 

Let G(s) be a mxm transfer matrix (see Case3 after Theorem 2.4) 

enjoying the symmetry property 

(3.46) 

with~ a signature matrix (i.e. a nonsingular matrix whose only nonzero 

elements are +I or -1 on the diagonal). Such a G(s) is called a Hamiltonian 

transfer matrix. Let E(A,B,C,D) (see Section 2.1.1) be a minimal realiza-, 

tion of G(s) 

(3.47) x Ax+ Bu 

y Cx + Du 

X E X 

U E U ]Rm' y E y 
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i.e. G(s) = D + C(Is-A)- 1B. Since ::G(s) =GT(-s):: we obtain ::D + ::C(Is-A)- 1B= 
T T( AT) - 1 CT - d h ( AT CT - BT DT_) . 1 . . 1 1 . D :: - B Is+ :: , an ence - ,- :: , , :: is a so a minima rea i-

zation of G(s). Since minimal linear realizations are equivalent, there 

exists a unique nonsingular J: X ➔ X such that (BROCKETT & RAHIMI (1972)) 

BT ::CJ 
-] 

(3.48) 
-CT:: JB 
-AT JAJ-1 

and also ::D DT:: 

Because also -jT satisfies the equations (3.48) instead of J and the solu

tion of (3.48) is unique, it follows that J = -JT. Hence the bilinear form 
T (x,y)' + x Jy, x,y E X, is a symplectic form on X, and X is necessarily even-

dimensional, say dim X = 2n. By Darboux's theorem there exist (canonical) 

bases of X such that 

(3.49) 

We call a system L(A,B,C,D), satisfying (3.48) a linear Hamiltonian input

output system with feedthrough term. Notice that -AT= JAJ-l is equivalent 

to ATJ + JA = O, i.e. A is a Hamiltonian matrix. We have obtained the fol

lowing 

PROPOSITION 3.5 {there exists a Hamiltonian realization of G(s)} = 
{G(s) is Hamiltonian}= {a minimal realization of G(s) is Hamiltonian.} 

We notice that the transfer matrix corresponding to Newton's second 

law mq= F equals 7 and hence trivially satisfies G(s) = GT(-s). A mini
ms 

mal Hamiltonian realization of 7 is given in (3.3). Also the transfer-
ms 

matrix of a linear LC-network is Hamiltonian (with 2 depending on the input

output parametrization). This will be shown inter alia, in Section 4.2.2. 

Linear Hamiltonian systems will be further treated in Section 3.5. 

3.2 Hamiltonian systems; general definitions 

Recall the definition of a smooth nonlinear system L(X,W,B,f) as 

given in Definition 2.20. L(X,W,B,f) is given by the commutative diagram 
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B --l> TX x W, and if we take local coordinates x for X, (x,u) for B, and w 

n\.x/4x 
for W then the system is given by 

(3.50) x = g(x,u) 

w = h(x,u) 

with f: B -> TX x W written as f = (g,h). 

In order to define a Hamiltonian smooth nonlinear system we require 

that 

i) Xis a symplectic manifold with symplectic form w• In this case we 

denote the state space by M, to emphasize that the state space is a symplectic 

manifold. From now on dim M = 2n. 

ii) W, the space of external variables, is a symplectic manifold with sym

plectic form we (dim W=2m). 

iii) f: B -> TM x Wis an imbedding, and hence f(B) is a (C00-)submanifold 

of TM x w. 

Remark: If E(X,W,B,f) i~ locally minimal and f has constant rank, we can 

actually pPOVe that f is an immersion (notice that the regular distribution 

E:= ker df on B satisfies conditions (i) to (iii) of Definition 2.26, with 

11*(ker df) = 0). 

Recall from Section 3.1.3 that w induces the symplectic form won TM. 

d . h 1 . *' * e ( d Hence we can efine t e symp ectic form n:= 11 1 w - 11 2 w on TM x W 11 1 an 

11 2 denote the projections of TM x Won TM, respectively W). 

DEFINITION 3.6 E(M,W,B,f) with Mand W symplectic manifolds as above is 

called a (full) Hamiltonian system if f(~) is a Lagrangian submanifold of 

(TMxW,n). 

Remark: Definition 3.6 generalizes Definition 3.3 (static Hamiltonian 

systems) as well as Definition 3.4 (Hamiltonian vectorfields). Definition 3.4 

deals with Lagrangian submanifolds of (TM,~), parametrized by M, and Defi

nition 3.3 with Lagrangian submanifolds of (W,we). In Definition 3.6 we 

look at Lagrangian submanifolds of TM x W, parametrized by B. We notice 

that the definition of a Hamiltonian system only depends on the submanifold 

f(B), and not on f and B separately. 

In local coordinates Definition 3.6 amounts to 



PROPOSITION 3.7. Let Z(M,W,B,f) be a (full) Hamiltonian system. Let 

(q 1, ... ,qn,pl, ••. ,pn) = (q,p) be canonical coordinates for Mand 
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(v 1, ••• ,vm,z 1, •.. ,zm) canonical coordinates for W. Then f(B) is locally 

parametrized by (q,p) and m coordinate functions (v.). 1 and (z.). 1 , with 
l. l.E I l. l.E 2 

1 1 u 12 = {1, ... ,m} and 1 1 n 12 = 0, Denote these m coordinate functions by 

u = (u 1, •.. ,um) and 

y 1, •.. ,ym (in such a 

denote the remaiging coordinate functions for W by 

way that we= l c. du. Ady. with c. =±I). Then 
j=I J J J J 

locally there exists 

f(B) is given by 

a function H(q 1, ... ,q ,p , ..• ,p ,u 1, ••• ,u) such that 
n I n m 

8H (q,p,u) qi ap. 
l. i I, ..• ,n 

(3.51) 8H 
(q,p,u) p. 

aqi l. 
j I, .•• ,m = 

= 8H 
(q,p,u) Y· -c --

J j au. 
J 

PROOF: Since f(B) is a Lagrangian submanifold of (TMxW,Q) f(B) can be locally 

parametrized by 2n + m of the 4n + 2m canonical coordinates (q 1, ••• ,qn,PI'"' 

... ,p ,p 1, ... ,p ,q 1, ... ,q ,v 1, ... ,v ,z 1, ••• ,z) of (n1xW,Q) in the specific n n n m m 
way as stated in Theorem 3.2. From the commutativity of 

B __ f_> TM X w 

ir \ ~M 
M 

(see 2.8) 

it follows that (q,p) = (q 1, ••• ,qn,pl'"""•pn) are coordinates on f(B). We 

can choose m additional coordinates on f(B) from the coordinates (v 1, •.. , 

vm,z 1, .•. ,zm). These additional coordinates are called (u 1, ..• ,um), and the 

remaining m coordinates of (v 1, ... ,vm,zl''""'zm) are called (y 1, ••• ,ym) such 
m 

that we= L c.du. Ady .. By theorem 3.2 there exists locally a generating 
j=l J J J 

function H(q,p,u) of f(B), and (3.51) results. D 

Note that the equations of a LC-network (3.36) and (3.38) are examples 

of (3.51). The situation that not all the c. 's are +I or -1 corresponds in 
J 

this case to a so-called hybrid representation of the network. 

We now show that equations (3.51) are in fact a local input-output 

representation with feedthrough te1'171 for z(M,W,B,f) (see Section 2.2.1). 
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Since f is an imbedding, f is an immmersion, and since f : B -> TM x W 

is given as (x,u) » (x,g(x,u),h(x,u)), actually f restricted to the fibers 

of Bis an innnersion. 

Moreover: 

PROPOSITION 3.8. Let L(M,W,B,f) be full Hamiltonian with f = (g,h). If f 

restricted to the fibers is an immersion, then h restricted to the fibers 

is an immersion. 

PROOF: Consider (3.51). Since f restricted to the fibers is an immersion, 

the dimension of the fibers of Bis m. Because for fixed x EM, dim 
-I 

h(n (x)) = m, it then follows that h restricted to the fibers is an innner-

sion. 

Hence for a full Hamiltonian system, h restricted to the fibers is an 

immersion and we can obtain a local input-output representation with 

feedthrough term by taking coordinates (x,v) for Band (y,u) for W such 

that h(x,v) (h(x,v),v). Notice however that we restrict the coordinati
m 

□ 

zations (y,u) for W to (~emi-) canonical coordinates, i.e. we = L c.du. Ady., 
j=I J J J 

C, 
J 

! I. 

We shall now extend Definition 3.6 to what we call degenerate Hamilto

nian systems. We need the following notions 

DEFINITION 3. 9. Let (M,w) be a symplectic manifold with N c M a submanifold. 

Define for every x E N, (T Nl:= {XET Mlw· (X,Y) = 0, VYET N}. N is called 
X X X X 

coisotropic if (TxN) .L c TxN, ljx E N, and isotropic if TxN c (TxN) .L, lj x E N. 

Let dim M = 2n. It can be proved that if N is coisotropic (isotropic) 

then dim N <". n (dim N $ n). Therefore a Lagrangian submanifold is a 

coisotropic (isotropic) submanifold of minimal (maximal) dimension (i.e.n), 

and N is a Lagrangian submanifold if and only if (T N) .L = T N 'i/x E N (see 
X X 

ABRAHAM & MARSDEN ( I 978)). 

DEFINITION 3.10. Let L(M,W,B,f) be a full Hamiltonian system, with f = (g,h). 

Let Kc W be a coisotropic submanifold, called the restriction manifold, 
-1 -I 

such that h (K) c Bis again a fiber bundle over M. Then L(M,W,h (K),fr)' 
-1 with f 

r the restriction off to h (K), is called a degenerate Hamiltonian 

system, which we also denote by L(M,W,B,f,K) 

Remark: Note that f(h- 1(K)) is an isotropic submanifold of TM x W. 
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Intuitively, a degenerate Hamiltonian system is a Hamiltonian system 

with less thanm_ inputs, i.e. in equations (3.51) some of the uj, j = l, ... ,m, 

are constant (at the end of this section we give some examples). To make 

this idea rigorous we need some preliminary propositions. 

PROPOSITION 3.11. Let (M 1,w 1) and (M2 ,w2) be symplectic manifolds. Let 

* * L c M1 x M2 be a Lagrangian submanifold of (M 1xM2 ,Q:= TT 1w1-TT 2 w2), with TT! 

and TT 2 the projections on M1 respectively M2 . Suppose that L1:= TT 1(L) and 

L2 := TT 2 (L) are submanifolds of M1 and M2• Then 

(i) L1 and L2 are coisotropic 

(ii) If L1 or L2 is Lagrangian => L1 and L2 are Lagrangian ¢a>> L is equal 

to L 1 x L2 

PROOF (i) Let x 1 E L1 and XE Tx 1M1 such that w 1(X,Y) = 0, VY E Tx 1L1. 

There exists x2 E M2 such that (x 1 ,x2) E L. Define Xx O as the element of 

T( )(M1xM2) such that TTl*(XxO) = X and TT 2*(XX0) = 0. Then for every 
xi ,x2 . 

Z E T( )L we obtain Q(XxO,Z) = w 1 (X,TTI Z) = 0, since TT! Z ET LI, 
xi ,x2 * * xi 

Hence Xx OE (T( )L)~. Since Lis Lagrangian this implies that 
xi ,x2 , 

Xx OE T( )L and therefore X E 
xi ,x2 

(ii) Let L2 be Lagrangian. Let x 1 

Tx1L1 • Hence L1 is coisotropic. 

E L1 and x 1 ET L1. There exists 
xi 

and x2 ET M2 such that (x 1,x2) EL and x 1 x x2 ET( )L' where 
x2 xi ,x2 

0 = Q(X 1xx2,z) = w1(X 1,TTl*Z) - w2 (X2 ,TT 2*z) 

and since L2 is Lagrangian this yields w1(x 1,TT 1*Z) for every Z E T(x 1,x2)L. 

Hence T L1 is isotropic. By part(i) L1 is coisotropic. Therefore L1 is 
xi 

Lagrangian. It is easy to see that L1 x L2 is then Lagrangian. This implies 

that L = L1 x L2 • Conversely if L = L1 x L2 is Lagrangian it is easy to 

check that both L1 and L2 are Lagrangian. D 

For the rest of this section we assume that h(B) c Wis a submanifold 

of Wand that g(B) is a submanifold of TM. Then we conclude from Proposition 

3.11 that if E(M,W,B,f) is a full Hamiltonian system, then TT 2(f(B))= h(B) 

is a coisotropic submanifold. 

Therefore if the restriction manifold Kin Definition 3.10 is equal to h(B) 

(or contains h(B)), then no extra constraints are imposed on the system and 

E(M,W,B,f) = E(M,W,B,f,K). If dimh(B) < dim W we say that E(M,W,B,f) 
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contains memoryless parts. The extreme case is that h(B) is Lagrangian. Then 

by Proposition 3.11 (ii), g(B) is a Lagrangian submanifold of TM. Hence we 

have a Hamiltonian vectorfield on M, together with a static Hamiltonian 

system on W. If dim h(B) = dimW we call E(M,W,B,f) a regular system. 

The following theorem shows that locally we can reduce every full 

Hamiltonian system to a regular system. 

THEOREM 3.12. (see for a proof ABRAHAM & MARSDEN (1978, p.416)). Let N be a 

coisotropic submanifold of (W,we). Then the distribution D(x):= (TN)~, 
X 

x EN is a regular distribution on N. Therefore locally we can define a 

manifold Wand a C00 surjective submersion pr: N -> W, such that ker pr* D. 
-e - *-e e 

Moreover there exists a symplectic form w on W, such that pr w = w IN" 

Hence if dim h(B) < dim W we define (W,we) such that dim proh(B) = W. 

Then E(M,W,B,f), with f = (g,h) and h = pro his regular. 

Finally, the following lemma enables us to give local expressions, 

similar to(3.51) for degenerate Hamiltonian systems. 

LEMMA 3.13. Let Kc (W,we) be coisotropic with dim W = 2m and dim K = m + k 

(k~m). Then there exist canonical coordinates (v 1, .•. ,vm,zl, •.. ,zm) for W 

such that K is given by zk+l = ..• = zm = 0. 

PROOF: There exist (m-k) independent functions Gk+i•···,Gm such that local

ly K is given by Gk+!= •.• = Gm= 0. Define D(x):= (TxK)~, x EK. Then D 

is a regular distribution on K (Theorem 3.12), with dimension m-k. Let 

XG , •.. ,XG be the Hamiltonian vectorfields corresponding to Gk+i•···,Gm. 
k+l m 

Then w(XG ,Z) = -dGk .(Z) = 0, j = 1, ••. ,m-k, for every vectorfield Z on K. 
k+j +J 

Therefore Dis spanned by XG , ••. ,XG. Since K is coisotropic 
k+l m 

0 = w(XG ,XG ) = {Gk .,Gk.} , for every i,j = 1, ..• ,m-k. Hence 
k+i k+j +i +J 

Gk+i•·•·,Gm are a set of partial canonical coordinates. By Darboux's theorem 

(see the proof given in ARNOLD (1978)), we can extend the set (Gk+i•···,Gm) 

to a set (F 1, ... ,Fm,Gl, ••• ,Gm) of canonical coordinates. D 

With the aid of Lemma 3.13 the following proposition can be proved (the 

proof of the linear analogue will be worked out in full detail in Proposi

tion 3.41). 
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PROPOSITION 3.14. Let E(M,W,B,f) be a regular full Hamiltonian system and 

E(M,W,B,f,K) a degenerate Hamiltonian system. Let dim K = m+k. Take canonical 

coordinates (q 1, ••• ,qn,Pt•••••Pn) for M. Then there exists coordinates 

(y 1, ••• ,ym,ul, ••• ,um) for Wand locally a function H(q,p,u) such that· 
m 
l c.du. Ady., c. =~I, and f(h- 1(K)) is locally given as 

j=) J J J J 

(3.52) 

1, ••• ,m 

and uk+I = ••• = u 
m 

0 

Of course the most degenerate situation occurs if the restriction set.K 

is Lagrangian. Then we obtain (3.52) with u 1 = ••• =_um= 0 and therefore the 

fibers of the bundle h- 1(K) are discrete. If we assume that the fibers 

consist of exactly one point, we have in fact obtained an autonomous system 

(see Definition 1.9) 

(3. 53) 

aii 
qi = ap. (q,p) 

l. 

oH 
Pi= - aq. (q,p) 

l. 

y. =h.(q,p) 
J J 

i J, ••• ,n 

j = I, ... ,m 

- m 
where H(q,p):= H(q,p,o) and h.(q,p):= - au. (q,p,o) 

J J 

(Notice that Im h (with h = (h 1, ••• ,hm)) is contained in K). 

We close this section with some examples of Hamiltonian systems (more 

examples appear later on; especially in Sections 3.3, 3.4 and 3,5). 

EXAMPLE I Consider k point masses m., i = 1, ••• ,k, in 1R3 • Denote their 
• • • • l. • • • • 
l. l. l. l. • l. l. l. l. positions by q := (q 1 ,q2 ,q3 ), and their momenta by p := (p 1 ,p2 ,p3 ). 

The masses attract each other according to the inverse square law, and the 
I k m•m• 

gravitational potential is given by V(q , ••• ,q ):= l l. J 
. i<j jq.-q. j 

k i J 
I k 1 i 2 Furthermore the kinetic energy is K(p , ••• ,p ):= L -2- jp I 

i=t· mi 
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We assume that we observe the positions of the first l point masses (l5k) 

and that we can exert forces on the masses which are observed. Hence the 
I k I k 6k 

state space is an open set contained in (q , •.. ,q ,P , ... ,p) = 1R (we have 

to exclude the points with qi= qj, for some if j, since Vis there not 

defined), while W, the set of external variables, is an open set contained 

in (q 1, ..• ,ql,Fl, .•. Fl) = 1R6l (Fi=(F/,F2i,F/) is the external force on 

the i-th pointmass). We obtain the full Hamiltonian system 

•i aH i I, ... ,k j = 1,2,3 l[. i = ' J sp. 
: J 

·i a~ + F.i i I, ... ,l j 1,2,3 
(3.54) 

p. ' J aq: J 
J 

•i aH 
i=l+l, ... ,k,j 1,2,3 P· i J aq. 

J 

i i i = I, ... ,l j = 1,2,3 y. q. 
' J J 

-I kl k I k I k 
with the internal energy H(q , .•• ,q ,p , ... ,p ):= V(q , .•• ,q) + K(p , •.. ,p ). 

The generating function 'H(q,p,u), as in (3.51), is in this lase 
I k I k I vl ,_ - i k I k _ r i i H(q , ... ,q ,p , ... ,p ,F , •.. ,. ).- H(q , ..• ,q ,p , ... ,p) l <q ,F > 

i=I 

EXAMPLE 2 Consider again k point masses mi' i l, .•. ,k, but assume now 

that the inputs are the positions of the first l pointmasses (l<k), i.e. 
I l u = (q , ..• ,q ). The state space consists now of the positions and momenta 

of the last k-l point masses and is therefore an open set contained in 

1R6(k-l). The generating function for the full Hamiltonian system is given by: 
l+I k l+l k I l ·- I k k J. i 2 H(q , ••• ,q ,p , .•• ,p ,q , ••• ,q ).- V(q , ••. ,q) +. I --Ip I 

i=f+l2mi 
This yields 

•i oH q. 
i J ap. i l+l, ... ,k 

J 
(3.55) •i aH j 1,2,3 

p . i J aq. 
J 

i aH 
i I, ... ,l y. i J aq. 

J j 1,2,3 

i 
Hence the outputs y equal the forces exerted on the first l point masses, 

from which the positions can be controlled. 
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EXAMPLE 3 Take again k point masses m., and assume that the input is now 
1 

mass of the first particle m1• Assume furthermore that the position q 1 of 

this particle is fixed and hence p 1 = O. The generating function is 

H = 
i<j 

(3.56) 

mimj ~ -.. I_\pi \ 2 
-~--=,-- + l -- with u = m1, and we obtain 
I /-qj I i=2 2mi 

·i q . 
J 

·i p . 
:J 

y 

i :3q. 
J 

oH 
i aq. 

J 

:3H 
- :3m 1 

k 
- I 

i=2 

i 
j 

m. 
1 

I i \q -q I 

2, .•• ,k 
1,2,3 

the 

The output y is (minus) the potential energy due to the interactions of the 
I 

masses m2 ,m3 , ..• ,~ with a unit mass located at q. 

The above examples yield also examples of degenerate Hamiltonian 

systems. In Example I we can assume that we observe l point mass.es but exert 

forces only on a part of the l point masses, or that the exerted force on 

some of the l point masses is a potential force derived from a potential that 

is a function of the positions of the l point masses. In Example 2 we may 

assume that we can only control some of the positions of the first l masses. 

The use of degenerate Hamiltonian systems becomes also clear in the next 

section. 

3.2.J. Hamiltonian interconnections 

In this section we define Hamiltonian interconnections and show how a 

Hamiltonian interconnection of Hamiltonian systems yields a (degenerate) 

Hamiltonian system. In Section 3.1 we already encountered a (very simple) 

example of a Hamiltonian interconnection, namely Newton's third law q1 = q2 , 

F1 = F2 yielding the autonomous Hamiltonian system (3.6). Also in Section 

3.1.2 we saw how by interconnecting electrical circuit elements in a 

"Hamiltonian way" (in this case in accordance with Kirchhoff's laws) the 

interconnected network is again Hamiltonian (or "reciprocal"). 
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DEFINITION 3.15. Let (W.,w7), i = l, ... ,k, be symplectic manifolds. Then 
1 1 

( * e * P. ) • 1 . . ld ( h . w1x •.. xwk, 11 1 w1 + ... +11k wk 1s a symp ect1c mam.fo 11i are t e proJec-

tions of w1x •.• xwk on W.). An interconnection of (W.)._ 1 k is a sub-
1 i 1- , ••• 

manifold I c w1x ••. xwk. We call an interconnection (full) Hamiltonian if I 

is a Lagrangian submanifold. 

EXAMPLE: 

0 -1 2 with the natural symplectic form ( 1 0) on JR • Then the subspace of W 1 x w2 , 

defined by q 1 = q 2 and F 1 = F2 is a Lagrangian subspace. 

Remark: A Hamiltonian interconnection as above is in the literature also 

called a canonical or symplectic relation (SNIATYCKI & TULCZYJEW (1972a)). 

If the symplectic manifolds W1. are cotangent bundles T*Y., with e.e 
1 1 

the natural I-forms, we can give a stronger version: 

DEFINITION 3.16. Let (T*Y.,e~), i = l, ... ,k be cotangent bundles. Then 
i i 

* * * e * e (T Y1x ... xT Yk,11! e 1 + ... +11k ek) is again a cotangent bundle with a 
* * * natural I-form (11i projections on T Yi). An interconnection I c T Y1x ••• xT Yk 

* e is called Lagrangian if tis a Lagrangian submanifold, and also 11 1 e1 + .• 
* e •. +11k ek restricted to I is zero. 

To see what this last definition amounts to, we assume for simplicity 
. * * that we have only two manifolds w1 = T Y1 and w2 = T Y2, of dimension 2m1, 

ml 
\' I I 
L ui dyi and 

j=l 
respectively 2m2 • In natural coordinates e: 

e m2 
\' 2 2 e2 L uJ. dyJ .. Assume furthermore that m1 ~ m2 and that the intercon-

j=l 
. * * . ( I 2) . nect1on I c T Y1 x T Y2 can be parametrized by yi ,uj , 1 = l, ••. ,m1, 

j = l, ••. ,m2 • Then there exists a smooth map : Y1 -> Y2 such that (see 

ABRAHAM & MARSDEN (1978, Exercise 3.2F, 5.2B), BRAYTON (1978)) 
1 1 2 2 * * I 2 1 1 a~ 2} . I= {(y ,u ,Y ,u) ET YI X T y2 y = ~(y ), U ~ - -I U Hence I is, 

r)y 

what is called in electrLcal network theory, nonmixing, i.e. y2 is only 

related to y 1, and u2 is only related to u 1• Moreover we see that the rela

tion between u2 and u 1 is linea:r:· in every y. An even more special form of I 

ml m2 2 2 
arises when W Y1 x u1, w2 = Y2 x u2 and not only I u} dy} + I u. dy. 

i=l j=l J J 

but also the dual I-form I I 
y. du. + 

1 i 

m 
2 2 2 l y. du. 

j=l J J 
is zero restricted to I. 
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It follows that the interconnection I is in this case necessarily totally 
· · . . h h 2 I d I T2 h linear, 1.e. there exists a matrix A sue tat y Ay an u =-Au. T ese 

are exactly the reciprocal interconnections encountered in (linear) electrical 

network theory (in fact such an interconnection can be realized by a set of 

transformers, see Section 4,2.4, Proposition 4.34). If the only elements of A 

are 0,1 or -1 then these equations are exactly Kirchhoff's laws (with for 
I 2 I 2 I 2 . I .2 instance (y ,y) = (v ,v) the voltages and (u ,u) = (1 ,1) the currents). 

We refer to BRAYTON (1978) for more details and results about interconnec

tions, especially for electrical networks. 

Finally we define a more general kind of interconnection. 

DEFINITION 3.17. Let (W.,w.e), i = J, ••• ,k, be symplectic manifolds, An 
1 1 

interconnection I is called degenerate Hamiltonian if I is a coisotropic 

* e * e submanifold (see Definition 3,9) of (W 1x ... xwk,11J w1 + ... +11kwk ), 

Definition 3.17 allows, contrary to Definition 3.15, interconnections 

where not "half of the variables are linked to the other half of the varia

bles". Indeed, since I is coisotropic the distribution Ii(x):= (T I)i, x EI, 
X 

is a regular distribution on I (Theorem 3.12). Therefore I can be (locally) 

factored out by Ii to obtain a new symplectic manifold, which can be inter

preted as the set of those variables which are not interconnected. 

The next theorem shows that, under regularity assumptions, a degenerate 

Hamiltonian interconnection on the spaces of external variables of dynamical 

Hamiltonian systems yields a new (degenerate) Hamiltonian system. 

THEOREM 3.18. Let Ei(Mi,Wi,Bi,fi=(gi,hi)), i = l, ••• ,k be full Hamiltonian 

systems. Define g:= (g 1, ••• ,gk): B1x;,,xBk -> TM1x ••• x~ and h:= (h 1, ••• ,hk): 

B1x ••• xBk -> w1x •• ,xwk. Let I c w1x ••• xwk be a degenerate Hamiltonian 

interconnection such that h-l(I) c B1x,,,xBk is a bundle over M1x •• ,x~. 

Then E(M1x, •• x~, w1x ••• xwk, B1x,,,xBk' f:= (g,h), I) is a degenerate 

Hamiltonian system. 

PROOF: We note that a product of fiber bundles is itself a fiber bundle 

above the product of the basis spaces. The rest follows from Definition 

3. JO. □ 

Remark: It also follows that a Hamiltonian interconnection of degenerate 

Hamiltonian systems results in a degenerate Hamiltonian system. 
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3.2.2. About forces 

"Denn man muss die Gegenstande schon in ziemlich 

hohem Grade kennen, wenn man die Regel angeben 

will, wie sich eine Wissenschaft von ihnen zu Stande 

bringen Zasse" 

I. Kant: Kritik der reinen Vernunft 

In the previous sections we used without hesitation the word force. 

While in older works on classical mechanics the notion of force is treated 

as one of the basic concepts of mechanics, nowadays the idea of force has 

somewhat of a dubious reputation. Only in the more technical literature the 

study of forces still has an important place. 

There are many historical reasons for the fact that the concept of 

force is not very fashionable anymore. We feel that it is necessary to say 

at least a few words abo~t it, eventhough we do not claim any expertise on 

it. For more thorough statements we refer to books on the history of classical 

mechanics, and the philosophy of science (see for instance DIJKSTERHUIS (1950), 

JAMMER (1957)). 

A general reason for the peculiar position of force in classical 

mechanics is the emphasis that has been laid on the description of the 

behavior of isolated ,systems. In this case the present forces are functions 

of the configuration and/or velocity variables and are therefore really 

internal forces. Especially if these internal forces are conservative, then 

they can be easily incorporated into the system by adding a potential function 

to the internal energy. Therefore if one concentrates on the description of 

isolated systems, one can give a formulation of the behavior of the system 

by using only the configuration variables and their time-derivatives. It is 

tempting and has the air of rationality to totally disregard the notion of 

force, being a notion that can only obscure the mathematical description of 

the system. The extreme position is then to identify mechanics with the 

study of second-order differential equations (POINCARE (1905, pp 89-110). 

Even for isolated mechanical systems we are of the opinion that this point 

of view does not do justice to the science of mechanics. Newton's contribu

tion to celestial mechanics was not only to give a second-order differential 
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equation, which solutions satisfy Kepler's laws, but also to show how this 

equation is obtained. In the first place he showed that the law F = mq, 

which is the basic equation for the description of mechanical systems on 

earth, can be also used for a description of the orbits of the planets. 

Furthermore he defined the gravitational force, according to the inverse 

square law, and then he set F equal to this gravitational force. Thus 

Newton explained the resulting second-order differential equation by showing 

how it is constructed from simple sub systems satisfying basic laws (for a 

more elaborate system theoretic treatment we refer to WILLEMS (1979)). In 

this context we remark that if there are several internal forces present 

in a system, one usually loses information about the structure of the system 

by only considering the sum of these internal forces (this point was made 

by Kirchhoff (see JAMMER (1957, p 223)). Describing the system as an inter~ 

connection of subsystems with .external forces can therefore be very 

useful. Of course the tendency to consider only isolated systems is in sharp 

contrast with the attitude in technical applications of trying to prescribe 

the behavior of the system. Then a framework which cannot deal with forces 

on a fundamental level is totally inadequate. It seems that this "engineering 

attitude" did not have much influence on the mainstream of classical mechanics, 

at least not on its theoretical developments. For instance the study of 

celestial mechanics, the paradigmatic example of an isolated system, has 

influenced the mathematical theory of mechanics much more, with problems 

like the stability of the solar system. We remark that contrary to mechanics 

in thermodynamics the engineering aspect did have an important impact on the 

theoretical developments. 

The role of force in physics has furthermore been obscured by two more 

or less related issues. The first is the notion of causality. It has been 

assumed that by using the word force in the description of the dynamical 

behavior of a system, one says something about the cause of motion. Indeed, 

forces are identified with causal explanations. Now it has become a generally 

shared conviction that the search for causes should not be a part of the 

science of mechanics. This diminished popularity of causality in science 

has also influenced the status of force. We remark however that by adopting 

the notion of force, one is not obliged to take a real cause/effect point of 

view. In the same way as we can sometimes split the variables of an external 

system into variables which we can call inputs and other variables which we 

can call outputs (see Chapter 1), we can sometimes split the external varia-
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bles of a mechanical system into forces and positions. This only implies 

something about the structure of the compability relations describing the 

external behavior of the system. 

The second issue that obscures the notion of force has to do with the 

nature of gravitation. Ever since the rise of classical mechanics a proto

type of force has been the gravitational force. Therefore the historical 

developments in the treatment of gravitation have had as immediate counter

parts changes in opinion about the notion of force. The somewhat mystical 

character of gravitational forces has been partly responsible for the 

flowering as well as the descent of the role of force in science. 

We are of the opinion that, despite the historical burden that lies 

on the notion of force, forces deserve a fundamental place in a mathematical 

theory of mechanics, if one wants to cope with the (from a practical point 

of view very plausible) possibility of exerting forces on a system, and if 

one wants to include statios in such a theory. We remark that the theory 

of statics provides a theory of measuring forces. Hence from an operational 

point of view statics can underly a theory of dynamics. 

Of course a cornestone in any theory of force is the interpretation of 

Newton's second law. If we do not want to allow forces as basic entities 

in the science of mechanics we are obliged to interpret F = ma as a mere 

definition of force. At most F = ma can be viewed as a methodological rule 

for investigating dynamical systems (see NAGEL (1961, pp.153-203)). It seems 

that at least Newton himself saw "his second law" as a synthetic statement, 

expressine a relation between two basic variables, the exerted force and 

the acceleration, with the mass m assumed to be defined in an independent 

way (DIJKSTERHUIS (1950, p.520)). 

3.2.3. Controllability and observability 

We observed that a Hamiltonian system Z(M,W,B,f) has a local input-output 

representation with feedthrough term (see Proposition 3.7 and 3.8), namely 

(3.51). Hence we can define the extended observability oodistribution Oe 

(Definition 2.38) which characterizes the local distinguishability properties 

of a representation (3.51) (and since local minimality is equivalent to 

local distinguishability, it also characterizes the local minimality proper

ties). 

Furthermore we can always define the extended oontrollability distri

bution Ce (Definition 2.43), which characterizes the strong accessibility 
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properties. We shall now show that for a full Hamiltonian system Oe and Ce 

are isomoPphia • 

THEOREM 3.19. Let E(M,W,B,f) be a full Hamiltonian system with local 

representation 

• aH 
qi= ap. (q,p,u) 

]. i I, .... ,n 

(3.57) aH (q,p,u) p. - aq. ]. 

(3.51) 
]. 

= 
aH (q,p,u) y. - c.--

J . Jau. 
J 

n m 
with w 'd Ad and we l p. qi 

i=l 1 
}: c.du. A dy. 

j=l J J J 

We can regard (q,p,u) as fiber respecting coordinates for B. Denote the 

• aH • oH • • vectorfield q. = -a- (q,p,u), p. = - -0- (q,p,u) by~- Def1.ne the 11.near 
]. pi ]. qi 

space of functions Ge as the space which contains the functions u 1, ••• ,um' 

aH aH . -a-•···,-a- and 1.s invariant under taking Lie derivatives with respect to 
ul um 

the vectorfields X__ and~ •••• ,~. Define the codistribution Oe on B 
-ll oUI ollm 

by Oe(q,p,u) = Span {dk(q,p,u) lkEGe} (see Definition 2.38). Define the 

distribution Ce on Bas the smallest distribution which contains the vector-

fields / , •••• ~ and is invariant under taking Lie ,derivatives with 
u 1 11.um 

respect to the vectorfields ~ anti a! •••••a!. Define an isomorphism 
1. m 

* a a a: TB-> TB (on this coordinate neighborhood) by a(--):= w(--,-) ax. ax. 

i = 
a 

1, ••• ,n and a(-a-) = dui. Then: 
ui 

]. ]. 

PROOF: Rewrite oH =Ea 
aui au. 

H. It is easy to see that d (£ a H) = E a (d H) 
x au. au. x 

(dx means differentiation1w.r.t. x). 
. e { aH aH Wr1.te O = dul' ••• ,du, d(-0-), ... ,d(-a-) 

m u 1 um 

]. ]. 

a 
+ invariance under~ and au.} 

]. 

a 
= {du1 , ••• ,du ,£ a d H, ••• ,E a d H + invariance under~ and clu.} 

m au:- X a'iJ X l. 
I m 
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Furthermore 
e 8 8 

C = {-8-, . " ,-8- + 
ul um 

8 
invariance under~ and au.} 

l. 

8 8 8 {au", ... •~• £_8_ ¾• ... ,£_8_ ~ + invariance under ¾ and au.} 
J m 8u 1 8um l. 

Make now the following observations: 

a) a(-8-) 8u. 
l. 

du. 
l. 

d H 
X 

c) a(£_8_ ¾) = £._a_ a(~) 
ou. · 8u. 

l. l. 

d) * and£ * £x; Ill = 0 8 1T uJ 

au. 
l. 

=£ cl d H 
au. X 

l. 

0 (with 11 projecti·on B -> X) 

8 Therefore¾ and au:- are Hamiltonian vectorfields with respect to the 
l. 

degenerate symplectic form 11*w on B. Since Lie brackets of Hamiltonian 

vectorfields are again Hamiltonian, Ce is generated by Hamiltonian vector

fields. 

e) Take an arbitrary Hamiltonian vectorfield Zin Ce. Then 

a(£~Z) £~a(Z) since £ w = 
~ 

0 

a(£ 8 Z) £ 8 a(Z) since £ 8 w 0 
au. au. au. 

l. l. l. 

These observations yield easily that a(Ce) = o': □ 

Remark: In fac·t a respects the "structure"of Ce and Oe. This will be more 

explicitly stated in the affine case (Theorem 3.31). 

We see that for full Hamiltonian systems controllability and observa

bility is characterized by one codistribution (or distribution). For later 

use we give 

DEFINITION 3.20. Let L(M,W,B,f) be a full Hamiltonian system. Then 

a) L satisfies the rrrinimaZity :r>ank condition (M.R.C) if dim Oe(q,p,u) 

= dim B for a certain (q,p,u) EB. 

(or equivalently dim Ce(q,p,u) = dim B somewhere) 

b) L satifies the st:r>ong rrrinimality :r>ank condition (S.M.R.C) if dim Oe 

= dim Bon an open and dense subset of B. 



Remark: If L satisfies the minimality rank condition, then Lis strongly 

accessible (Theorem 2.46) as well aa locally distinguishable as well as 

locally minimal (Proposition 2.39). In applications later on we shall 

sometimes only use that Lis strongly accessible. 

3.2.4 Equivalent Hamiltonian systems 

127 

In Definition 2.20 we called two nonlinear systems 

L2(x2,w,B2,f2) equivalent if there exist diffeomorphisms 

4: B1 + B2 such that the diagram 

I 
L (X 1,W,B 1,f 1) and 

cp : x1+ x2 and 

Bl 
4 

'2/j' I\:, id 

(3.58) TT I X 112 
TX 1 

<P* 
TX2 

/nxl TIX~ 

xi ;, x2 <P commutes. 

We now show that equivalence of Hamiltonian systems implies equivalence 

in the "category of Hamiltonian systems", i.e. cp is a symplectomorphism. 

THEOREM 3.21 I 2 Let L (M1,w,B 1,f 1) and L (M2,W,B2,f2) be full Hamiltonian 

systems, with (M 1,w 1) and (M2 ,w 2) symplectic manifolds. Let LI and L2 be 

equivalent and let the equivalence be given by cp : M1 + M2 and 4 : B1 + B2 
as in (3.58). Assume that LI and L2 satisfy the minimality rank condition. 

* * Assume furthermore that cp w 2 - w1 has constant rank. Then cp w2 = w 1, i.e. 

<Pis a symplectomorphism. 

PROOF Since f 1 (B 1) is a Lagrangian submanifold of (TM 1 xw, n t ~ 1-1'!' 2* we), 
• * e *• * P we have that gi*w 1 = h 1 w . Analogously g2 w2 = h2 w-. Because (3.58) com-

mutes, f 1 (B 1) is mapped by cp* and id in a bijective way onto f 2(B2). There

fore L(M2,w,B2,£2), with £2 = (cp* 0 g1o~-I ,idoh 1o~-I) is a Hamiltonian system. 

-I * * *• -I * * . * e . . . * *" * e Hence (~ ) g 1 (cp*) w2 = (~ ) h 1 (id) w winch implies g1 (<P) w2 h 1 w • 

* . Together with g1 re 1 

* * • Define n = cp w2 - w1, then we obtain g1 n = 0. Since n is closed and by 

assumption has constant rank there exist coordinates (q 1, .•. ,qn,pl, ••. ,pn) 

for M1 such that (ABRAHAM & MARSDEN (1978, Theorem 5.1.3)) 
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k 
D L dq. A dpi' k $ n 

i=l l. 

(rank D = 2k). Denote the (regular) distribution ker D by D, then 

D 

Write correspondingly to these coordinates g 1 = (g , ... ,g ,g , •.. ,g ) 
qi qn P1 pn 

* • 
0 yields then gl D = 

ag ag p. q. 
l. l. 0 au:- au:-

J J 

ag ag 8g p. p. q. 
l. - l. l. -

~-
J 

ap:- -
J 

~-
J 

k 
L (dg A dq. -

i= I pi 1. 

i I, ..• , k 

j I, ... ,m 

ag 
i q. 

l. - 0 ½- - j 
J 

dg A 
q. 

l. 

and 

dp.) = 0 which implies that 
l. 

I, ... , k 

k+I, ••. ,n 

-1 • 
These are however the local expressions for g 1*(n* (D)) c D: Since 

I 
L (M 1,w1,B 1,f 1) satisfies MRC and is therefore strongly accessible 

(Theorem 3.19), D = ker Dis necessarily TM 1, hence D = 0 or equivalently 
'* 
q, wz = w 1. □ 

Remark: If we assume that L satisfies the strong minimality rank condition 

* we can omit the regularity assumption that q, w2 - w1 has constant rank. 

There is always an open and dense set of points of M1 which have a neigh-

d . * borhoo on which q, w2 - w1 has constant rank. Then by the same arguments 

as in the proof of Theorem 3.21 we can prove that on all these neighbor

hoods q,*w2 - w1 = 0. Hence by continuity q,*w2 = w1 everywhere. 

Note that Theorem 3.21 expres-ses,that the symplectic structure on the 

state space of a full Hamiltonian system satisfying (S)MRC is itself a 

structural invariant. 
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3.3 Affine Hamiltonian systems 

In this section we treat a subclass of nonlinear Hamiltonean systems, 

which encompasses most of the examples encountered in mechanics. This sub

class has a mathematical structure that is much easier to handle than the 

structure of general Hamiltonian systems. 

Consider a nonlinear input-output system L(X,B,Y,g,h) (Definition 2.21). 

In order to define a Hamiltonian input-output system we require that 

(i) Xis a symplectic manifold (M,w) 

(ii) B = T*Y. In section 3.1.1 we saw that external forces (inputs) can 

be naturally considered as elements of the fibers of the cotangent bundle 

over the manifold of positions (outputs). Such an element a of a fiber of 
* . . . . TY is a linear function on the tangent vectors y of Yin that same point. 

Therefore a(y) (force times velocity) is defined and represents the 

instantaneous external work performed on the system. Furthermore, 

* * B =TY is a symplectic manifold with the natural symplectic form on TY. 

(iii) Lis a Hamiltonian system in the sense of Definition 3.6, i.e. 

f(h*(T*Y)) is a Lagrangian submanifold of TM x T*Y with symplectic form 
* • * e ,..,, * 

TT 1 w - TT 2 w (f equals (g,h), TT 1 and TT 2 are the projections on TM and TY). 

The following proposition shows that such a Hamiltonian input-output 

system is automatically an affine input-output system (Definition 2.22). 

PROPOSITION 3.22 Let L(M,T*Y,Y,g,h) be a Hamiltonian input-output system. 

Then L is an affine input-output system.·· 

* PROOF Let (y,u) = (y 1, ••• ,y ,u 1, ••• ,u) be natural coordinates for TY and --- m m 
let (x,u) be output induced fiber respecting coordinates for h*B, such that 

h: h*B + T*Y is gi~en by h(x,u) = (h(x),u). Because Lis a Hamiltonian 

system, f(h*B), with f = (g,h), is a Lagrangian submanifold of TM x T*Y. 

This yields 

(3.59) 

Substituting h(x,u) = (h(x),u) in (3.59) yields 

(3.60) dh. (x), 
i 

i 1, ••. ,m 

where h: M + Y is equal to h = (h1, ••. ,hm). Since w is nondegenerate, 

(3.60) implies that }g (x,u) does not depend on u. Hence g(x,u) is affine au. 
i 
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in u, and there exist locally vectorfieltls A and B. on M, i 
l. 

m 

that g(x,u) = A(x) + L u.B. (x) and B. ~(x,u). 
i=l 1. 1. 1. ui 

nonical coordinates x 

and A is Hamiltonian. 

I, ... m, such 

To simplify notation we give the following concise definition of an 

affine Hamiltonian system, which we shall use in the sequel. 

DEFINITION 3.23 Let (M,w) be a symplectic manifold, denoting the state 
* • * e space. Let Y be the output (observation) manifold. Define~:= n1 w - n2 w, 

with we the natural symplectic form on T*Y (n 1 and n2 projections of 

TM x T*Y onto TM and T*Y). An affine ijamiltonian system is given by a sub

manifold L c TM x T*Y such that 

(i) L can be parametrized by the coordinates of Mand the fibers of T*Y 

(ii) Lis a Lagrangian •submanifold of (TMxT*Y .~) 

□ 

(iii) The value of the Y-coordinates of a point on Lis only a function of 

the M-coordinates of this point. 

We denote the system by L(M,T*Y,L). 

Remark: Notice that the input bundle Bis totally suppressed in the above 

definition. 

PROPOSITION 3.24 Let L(M,T*Y,L) be an affine Hamiltonian system. The~ in 

local coordinates the system is given by 

. 
X 

(3.61) 

m 
l u.Xc (x) 

i=l 1. i 

i = l, ... ,m 

with x local coordinates for M, y= (y 1, ... ,ym) local coordinates for Y and 

u = (u 1, ..• ,um) the corresponding natural coordinates for the fibers of 

T*Y. We call H the energy function and c. the observation (or output) 
l. 

functions, 



PROOF: Because of i) .and iii) the generating function of L with respect 
m 

to the symplectic form Q has the form H(x) - l u.C.(x). Therefore the 
i=l 1. 1. 

m 
i:-coordinates of points of L are given by x ¾(x) - I.. u.XC (x), and the 

i=l 1. i 

y-coordinates are equal to yi = Ci(x), i = l, ••• ,m. 

m 
We see that an affine input-output system x = A(x) + I.. u.B.(x), 

i=l 1. 1. 

Yi= Ci(x), i = l, ••. ,m, on (M,w) is Hamiltonian if A is a locally Hamil-
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D 

tonian vectorfield (£Aw=O), and Bi are Hamiltonian vectorfields satisfying 

w(Bi,-) = dCi' i = 1, •.. ,m. Another way to look at equations (3.61) is to 

start from a (locally) Hamiltonian vectorfield A=¾ on (M,w), to add an 

observation map C: M-> Y, and to define the input vectorfields (the 

direction6 in which we can exert external forces) as the Hamiltonian vector

fields with Hamilton functions - Ci, where in coordinates for Y, C = 

(c 1, ••• ,Cm). This expresses the idea that the possibilities of influencing 

the system correspond to adding to the Hamiltonian H a function that only 

depends on the observations. 

In a certain sense, an affine Hamiltonian system can be viewed as a 

first-order approximation of a general Hamiltonian system. This can be seen 

as follows. Let r(M,W,B,f) be a Hamiltonian system, and let Kc W be a 

Lagrangian restriction manifold resulting in an autonomous degenerate 

Hamiltonian system r(M,W,B,f,K) (see Definition 3.10). In coordinates we 

have equation (3.53): 

3H (q,p,O) 3H (q,p) q. = ap. ap. l. 
l. l. i 1, •.• ,n 

3H (q,p,O) aH 
(q,p) p. =- 8q. - 8q. l. 

l. l. 

3H 
(q,p,O) h.(q,p) y. = - ¾. =: 

l. J 
J 

j 1, .•• ,m 

where H(q,p):= H(q,p,O). Since K is Lagrangian we know (ABRAHAM & MARSDEN 

(1978, Theorem 5.3.18)) that K has an open neighborhood in W, which is 

symplectomorphic to the cotangent bundle T*K, with its natural symplectic 

* form, in such a way that Kc Wis mapped onto the zero-section of T K. 

Therefore we define Y:= K, and construct an affine Hamiltonian system as 

the Lagrangian submanifold of TM x T*Y that corresponds to the equations 
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(3.62) 

m 

x = ~(x) - 2 u.¾ (x) 
j=I J j 

y. = h. (x) 
J J 

with x (q,p) 

The generating function af this Lagrangian submanifold is 

_ m m IB 
H(q,p) - l u.h.(q,p) = H(q,p,O) + Ju. -3-(q,p,O) 

i=I 1. J (;;1 1. ui 
(3. 63) 

i.e. the first order approximation (with respect to u) of H(p,q,u). 

We now return to the local representation (3.61). First observe that 

by choosing other coordinates (y 1• , ••• ,y~) for Y one obtains another set 

of natural coordinates (u 1• , ••• ,u~ ), and that the vectorfields XC , .•• ,Xe 
I m 

are changed into Xe, , ••• ,Xe, , where span {XC , (x), ••• ,Xe, (x)} = 
I m I m 

span {XC (x), •.. ,XC (x)}. Hence this corresponds, to a state dependent (actual-
! m 

ly output dependent) transformation of the input space above each x EM. 

We consider the foll-0wing type of feedhack. 

DEFINITION 3.25 Let Z(M,T*Y,L) be an affine Hamiltonian system. Hamiltonian 

feedback for Z corresponds to a Lagrangian submanifold F c T*Y, which can 

be parametrized by Y, i.e. Fis the graph of a closed one-form Bon Y. 

Hence locally there exists a function P: Y -> lR such that B = dP. The 
~ 3P Hamiltonian feedback is given by the output feedback v = a(y,u) = ay<Y) + u. 

* Remark: Consider the static Hamiltonian system on TY given by F (Defini-

tion 3. 3), i)efine a Hamiltonian interconnection with Z (M, T*Y ,L) by identifying 

(y,u) E T*Y with (y,-u) € T*Y. The resulting system is an autonomous Hamil

tonian system with Hamiltonian H + P°C, if His the energy function of 

Z(M,T*Y,L), and C the observation map, 

We can prove 

THEOREM 3.26 Let Z(M,T*Y,L) be an affine Hamiltonian system in local 

coordinates given by 

(3. 64) 

m 
i = A(x) + -l u.B.(x) 

i=l 1. 1. 

i l, ... ,m 
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with £Aw= 0, and hence locally A=~• and w(Bi,-) = dci' i.e. Bi = -Xe .. 
]_ 

Let u 1--> v:= a.(x,u) be a feedback for (3.64). The system after feedback 

is again an affine Hamiltonian system 

(3.65) 

m 
x = A(x) + l v.B.(x) 

i,,;1 ]_ ]_ 

i = 1, ... ,m 

if and only if a. is a Hamiltonian feedback, i.e. if there exists (locally) 

a function P Y -> lR such that A and B. satisfy 
]_ 

i) Bi Bi i = l, .. ,m 

ii) A ~ with H = H + poc 

PROOF: It is clear that if a. is a Hamiltonian feedback, then the resulting 

system (3.65) is again affine Hamiltonian. Let now a be a feedback such 

that (3.65) is affine Hamiltonian. Because the system after feedback must 

be again affine, a.(x,u) has the form a.(x,u) = v(x) - K(x)u with v a vector 

and K(x) a matrix. Since w {B. ,-) = dC., it follows that B. = Bi., i = 1, ••• ,m. 
]_ ]_ ]_ 

Hence K(x) = I (the mxm identity matrix).Take output-induced fiber respecting 

coordinates (x,u) for the vector bundle h*T*Y. Then feedback amounts to 

changing the sections u = constant into new sections given by a.(x,u) = v = 
constant (see Chapter 2). In the Hamiltonian case these new sections of B 

have to satisfy the condition that the images of these sections under h in 

T*Y are Lagrangian submanifolds and therefore have dimension m = dim Y. 

This implies that a(x,u) can only depend on C(x) and u, and therefore there 

exists an outputfeedback v = ;(y,u) such that a(x,u) = ;(C(x),u). Also; is 

such that (y,v) are canonical coordinates (i.e. we EdviAdyi),, since the 

sections in T*Y defined by v = constant have to be Lagrangian. Consider 

now the new zero-section v 0. This has a generating function P : Y -> lR. 

If in the old coordinates (y,u) the system had the generating function 

m 
H(x) - L u.C.(x), then it follows that in the new coordinates (y,v), the 

i,;;1 i i m 

system has the generating function H(x) + P(C(x)) - l v.C.(x). Therefore 
i=l ]_ ]_ 

A = ~· with H H + Poe. 

Notice that the total class of transformations which is allowed in 

order that (3.61) remains affine Hamiltonian is exactly equal to the class 

of transformations characterized in the following 

□ 
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PROPOSITION 3.27 (for a proof, see ABRAHAM & MARSDEN (1978, Exercise 3.2F)). 

* * Let¢: TY-> TY be such that 

(i) ¢ maps fibers of T*Y onto fibers 

(ii) ¢*we= we (we the natural symplectic from on T*Y) 

Then there exist a diffeomorphism ~: Y ->Yanda closed one-form Son Y 

such that¢= TS o ~*, where TS denotes fiberwise translation bys. 

The transformation~ corresponds to changing the input vectorfields 

such that span {XC(x), ••• ,XC(x)} = span {XC,(x), ... ,xc,(x)}, 
.I m I m 

while TS.corresponds to Hamiltonian feedback. 

The definition of a degenerate Hamiltonian system (Definition 3.10) 

reduces in the affine case to 

DEFINITION 3.28 Let Z(M,t*Y,L) be an affine Hamiltonian system. Let 

Pc T*Y,:the restriction manifold, be a regular codistribution on Y. 

Assume that L':= L n (TMxP) is a submanifold of TM x T*Y. Then we call 

Z(M,T*Y,L') a degenerate affine Hamiltonian system. 

We obtain the easily proved analogue of Proposition 3.24. 

PROPOSITION 3.29 Let Z(M,T*Y, L'=Ln(TMxP)) be a degenerate affine Hamilto

nian system. Since Pis regular, there exist local coordinates (y 1, ••• ,ym) 

for Y such that P = span {dy 1, ••• ,dyk}, k ~ m. Let (u 1, ••• ,um) be corre

sponding natural coordinates for the fibers of T*Y.. Then the system is given 

by 

(3.66) 

k 
x = ~(x) - l u.XC (x) 

i=I 1. i 

. k 

i l, .... ,m 

with H(x) - l. u.C.(x) the generating function of L. 
i,,;1 1. 1. 

Remark: We can easily extend Definition 3.28 to the case that Pis an affine 

codistribution, i.e. P = S + P, with S a. I-form on Y and P a codistribution. 

We then require that Pis regular and that Sis closed. There exist coordi

nates (y 1, .•• ,ym) for Y such that P = span {dy 1, ••. ,dyk}, and locally there 

a.xistsa.function -V : Y ->·lR. such that dV = f3. Then the· . .zystem is given by 
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I, ... ,m, 

3.3.1 Controllability and observability 

We shall specialize Theorem 3.19 to the case of an affine Hamiltonian 

system on (M,ul) : 

m 
i = A(x) + l u.B.(x), yi = Ci(x) 

i,,;1 1 1 

with £Aul= O, ui(Bi,-) = dCi' i = 1, ••• ,m. 

i =l, ••• ,m 

Recall from Chapter 2 that the strong accessibility and local weak 

observability properties of the system are characterized by respectively 

the controllability distribution C and the observability codistribution 0 

(see Definitions 2.33, 2.43). One way to generate C (Construction 2.49) is 

to definer:= A+ (B1,···•Bm)' Fo:= (B1•···•Bm) and Fk:= [r,Fk-1] +·Fk-1' 

k ~I.Then the linear subspace F of V(M) given by F:= k~OFk is such that 

C(x) = {Z(x) lz vectorfield in F}. For the construction of Owe define 

(Construction 2.51) G0 := (cl' ... ,cm), and Gk:= £.rGk-l + Gk-I' k ~ I. 

Then G:= k~OGk (a linear subspace of C(M)) satisfies O(x) = span {dg(x) lgEG}. 

For an affine Hamiltonian system this last construction becomes particularly 

nice. Since £Aw = O, there exists (locally) an H : M -> lR such that A = ~

We derive 

PROPOSITION 3.30 Define K:= H + (C 1, .•. ,Cm) (an affine subspace of C(M). 

Then the Gk's defined above satisfy Gk= {K,Gk-l} + Gk-I' with { , } the 

Poisson bracket on M • 

PROOF: Elements of Gk are linear combinations of functions of the form 

(3. 67) £f £f •.••. £f C., r ~ k, with f. = A or f. = B 0 , l = l, •.• ,m. 
2 rJ 1 1 ,(., 

The Poisson bracket {N 1,N2} satisfies {N 1,N2} = ui(~ ,~) = ~ (N2), for 
I 2 I 

two functions N1,N2 on M (see 3.43)). Therefore, since A=~ and Bi -xc.' 
1 

the expressions (3.67) equal 

(3.68) cl' l I, ... ,m. 

□ 
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We know that Fis a Lie sub algebra of the algebra V(M) of vectorfields 

on M (with respect to the Lie.brcacket), see Construction 2.49. It follows 

from Proposition 3.30 that in the same way G is a Lie sub algebra of the 

algebra C(M) of functions on M (with respect to the Poisson bracket). 

(Sketch of the proof: the Poisson bracket of two expressions of the form 

(3.68) can, by repeated use of the Jacobi-identity for the Poisson bracket, 

be written as a linear combination of expressions of the form (3.68)). This 

suggests the following 

m 
THEOREM 3.31 Let i = ~(x) - L u.XC (x), yi = Ci(x), i = l, •.. ,m, be an 

i=I 1 i 

affine Hamiltonian system, with Fk and Gk as above. Then the map 

a: C(M) -> V(M), defined by a(N) =~is an isomorphism between Gk (modulo 

lR) and Fk, for all k ;;:: 0. Hence a is an isomorphism between G (mod JR) and 

F. 

PROOF: It is easy to see that a maps constant functions to the zero vector

field. Therefore we shall omit for brevity the suffix (modulo lR). By 

induction: Fork= 0 the statement is immediate because F0 = (-Xe , ... ,-Xe) 
I m 

(c 1, ••• ,Cm). Suppose it is true for k-1. We shall prove it fork. 

Now Gk {K,Gk_ 1} + Gk-I' By the induction assumption Gk-I is mapped 

isomorphicallyontoFk-l' and hence we only have to prove that {K,Gk-l} is 

mapped onto [r,Fk-lJ. We have 

and 

[~ ,~ ] (see(3.45)) it easily follows that, since 
I 2 

a(H) = A and a(G0) = F0 , a({H,Gk_ 1}) = [A,Fk-lJ and a({G0 ,Gk-l}) 

and therefore a({K,Gk_ 1}) = Cf,Fk-lJ · 

COROLLARY 3. 32 0 and C are isomorphic, with the isomorphism S -> x6 given 

by w(X6,-) = S, if Sis a one-form on M. 

Analogously to Section 3.2.3, Definition 3.20, we define 
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DEFINITION 3.33 Let L(M,T*Y,L) be an affine Hamiltonian system. L satisfies 

the minimality rank oondition (MRC) if dim O(x) = dim M for at least one 

x EM. L satisfies the strong minimality rank oondition (SMRC) if 

dim O(x) = dim Mon an open and dense subset of M. 

Remark I: Of course if dim O(x) = dim M, then necessarily dim O(q) 

for all q in some neighborhood of x. 

Remark 2: Recall from Chapter 2: 

dim M 

L satisfies MRC ==::,> L locally weakly observable and strongly accessible. 

If dim O(x) = dim C(x) = constant, then: 

L satisfies property I = L locally weakly observable - dim O(x) = 

dim M = dim C(x) = dim M = L is strongly accessible = L satisfies 

property II. 

We note that the second possibility for generating C, i.e. by defining 

the.distributionsL\0(x):= span {B 1(x), .•• ,Bm(x)}, L\(x):= A(x) + 1:i.0 (x), 

L\k:= [Ll,Llk-l], k ~ I (Construction 2.50), can also be rP:lated, via the map 

a, to a sequence-of subsets of C (M). This goes as follows. Let N 1, ••. ,Nk be 

functions on M. Take all (smooth) functions on M that can be written as 

"functions of Ni"' i.e. all functions of the forms ~ 0 (N1, ••. ,Nk) : M ~~ :m., 

with ~ : :m.k -> :m.. This generates a linear subspace of C(M), which we 

denote by <N 1, ••• ,Nk>. Notice that {dN(x)INE<N1, ••. ,Nk>} 

span {dN 1(x), ••. ,dNk(x)}. Define E0 := <C 1, ..• ,Cm>' E:= H + <C 1,, •• ,Cm> and 

Ek:= {E,Ek_ 1}, k ~I.Then one sees that a maps Ek (modulo :m.) isomorphically 

onto L\k' k ~ 0. 

In the rest of this section we briefly sketch how we can regard affine 

Hamiltonian systems from a different, more algebraic, point of view. Assume 

that the local representation (3.61) is global, i.e. H :M -> :m. and 

Ci : M-> :m. are globally defined functions on M. Then the system is 

characterized by Hand c 1, ••• ,Cm' and their Poisson bracket relations, in 

fact the linear spaces Gk as above. Hence from an abstract point of view 

we can identify the system with the Poisson algebra G, structured and 

generated by Hand c 1, ••• ,cm. The next step is to forget that this algebra 

is realized as a Poisson algebra of functions on M. Then we arrive at an 

abstraot algebra G with the same algebraic relations as the original Poisson 

algebra. This is indeed the same idea that has proved to be useful for 

providing a transition from classical mechanics to quantum mechanics. 
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Roughly speaking, in this case one tries to realize a Poisson algebra of 

functions on a symplectic manifold, which in some way corresponds to a 

classical mechanical system, as an isomorphic algebra of (unitary) operators 

on a Hilbert space. This last algebra is called the algebra of observables 

(a somewhat confusing terminology in our context). The problem to construct 

this algebra of observables is called the quantization problem. We remark 

that the quantization problem is very delicate. For instance, if we consider 

the Poisson algebra of all smooth functions on T*lR.n , then a "reasonable" 

quantization is not possible (see e.g. ABRAHAM & MARSDEN (1978, 5.4)). 

Therefore one takes a sub algebra of the algebra of all smooth functions on 

T*lR.n, containing if possible the configuration and momentum variables and 

the Hamiltonian H, and tries to realize this subalgebra as an algebra of 

observables. 

It might be of interest to study the quantization properties of a 

Poisson algebra Gas above, and to relate these properties to the system 

theoretic properties of the affine Hamiltonian system corresponding to G. 

Also one might hope that this study gives rise to a systematic way of 

including external force fields in a description of quantum mechanical 

systems. 

Without entering the physical implications, we shall give a simple 

example which illustrates the mathematical possibilities of a (formal) 

quantization of G. The generating function of the affine Hamiltonian system 

consisting of a mass m attached to a spring and influenced by an external 
2 I 2 * force u is H(q,p,u) = im + 2kq - uq (k is the spring constant; (q,p)E:T lR.). 

The corresponding Poisson algebra G is simply the linear space of functions 

on T*lR. spanned by q,p and I. We can formally quantize G by assigning to q 
1 cl the operator q. (multiplication by q), top the operator-.--;;-- (both are 
I. oq 

operators on the Hilbert space 1 2 (lR. ,IE)), and to I the identity operator 
2 on L (lR. ,IE). This quantization also quantizes the "Hamiltonian" H(q,p,u). 

The Schrodinger equation corresponding to the quantized H(p,q,u) is 

(set-ti=!) 

i llct q) = - _!_ a2¢ I 2 - uq"' 
clt ' 2m al +2 kq </> 'i' 

with ¢ E L 2 (lR. , IE). This can be considered as the equation of a quantum 

mechanical description of a particle in an oscillator well, which is also 

subject to a uniform external force field, whose overall strength and 

direction is an arbitrary function of time u(•) (see also TARN, GARNG HUANG, 
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CLARK ( 1980)). 

The Hilbert space L2(lR, i) has a natural symplectic structure and 

(see ABRAHAM & MARSDEN (1978, Proposition 5.5.5) the Hamilton function of 

the Hamiltonian vectorfield on L2 (lR, i) that corresponds to the operator 

q·, is the function L2(lR ,i) -> lR given by ¢ 1--> k iq ¢$dq, i.e. the 

expectation value ,pf the observable q. Therefore the ·'classical output" 

aa 
q (=- au(q,p,u)) is replaced by the expectation value of the observable q. 

3.3.2. Equivalent affine Hamiltonian systems and reduction of the state 

space. 

In Theorem 3.21 we proved that equivalent "minimal" Hamiltonian systems 

are necessarily symplectomorphic. For affine Hamiltonian systems the situa

tion simplifies considerably. First of all we recall from Chapter 2 that 

two affine input-output systems 

. I m I I 
l: I : xi = A (x1) + z: u. Bi(xl)' xi € xi , Y· C j (x 1) j 

i=I 
l. J 

2 
m 2 2 

l:2 : x2 = A (x2) + z: u. Bi(x2), x2 € x2 ' 
y. C j (x2) j 

i=I l. J 

are equivalent, if and only if there exists a diffeomorphism ¢ 

such that 

'1> Al 
* 

= A2 

(3.69) ¢*Bil B.2 i I,. ". ,m 
l. 

c.1 ¢ *c.2 j I' .•• ,p 
J J 

I, .•• ,p 

= I, ..• ,p 

I 2 I * 2 We note that (3.69) implies that ¢*Fk = Fk and Gk = ¢ Gk , for all k, 

i 
where Fk 

C(Xi)' as 

i 
and Gk , i = 1,2 are the linear subspaces of V(Xi)' respectively 

defined in Chapter 2, Constructions 2.49 and 2.51 (see also 

Section 3.3.1). 

For affine Hamiltonian systems we now obtain 

PROPOSITION 3.34: 

* * Let i: 1(M 1,T Y,L 1) and i: 2(M2,T Y,L2) be affine Hamiltonian systems with state 

spaces (M 1,w 1), respectively (M2,w2). Let 
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III I 
xi ¾I (x 1) - I u.Xc I (xi) Yi Ci (xi) i I, ... ,III 

i=l i i 

and 
III 

2 i 2 = XH2(x2) - I u.xc 2 cx2) Y· = Ci (x2) I, ... ,III 
i=l i i i 

be local representations of z1 and z2 , with (y 1, ••• ,ym,ul, ..• ,um) natural 

coordinates for T*Y. Let z1 and z2 be equivalent, with equivalence mapping 

cj,: M1 -> M2. Then: 

i) Xf E ker q,* w2 - w1, for all f E G1 = k~OGk1 

ii) If z1 satisfies the minimality rank condition (Definition 3.33) 
* . * and rank cj, wL - w1 is constant, then cj, w2 = ~I 

iii) If z1 satisfies the strong minimality rank condition (Definition 3.33), 

iv) 

PROOF 

* then cj, Wz 
* If cj, w2 

= WI 

w1, then q,*H2 = H1 + c, with ca constant 

-d(q,*c/) = -dci1 = w1(xc_l ,-), for all i = l, ..• ,m. Hence 
i 

* J, ••• ,m. Furthermore £X 1(<P w2-w 1),= 
H -

. . . * I By induction this implies that Xf E ker cj, w2 - w1, for every f E G . 

ii) and iii) Since Xf E ker q,*w2 - w1, Vf E G1, dim ker(q,*w2-w 1)(x) ~ 

dim O(x), for each x EM. Hence if dim O(x0) = dim M, then ker(q,*w2-w 1)(x0) 

= Tx0M. If rank(cj,*w2-w 1) is const~nt, this implies q,*w2 = w1• If dim O(x) = 

* dim Mon an open and dense subset of M, then cj, w2 - w1 is zero on this open 

* and dense subset. Hence by continuity cj, w2 w1 

* iv) This follows from <P*¾l = ¾2 and cj, w2 □ 
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We now consider affine Hamiltonian systems which do not satisfy the 

minimality rank ·condition. Under the assumption that the controllability 

distribution C and thus the observability codistribution O"have constant 

dimension, we show that, if one extra condition is satisfied, we can reduce 

the system to a locally minimal system with the same external behavior, 

which is again Hamiltonian. This extra condition is explained in 

m 
PROPOSITION 3.35 Let x = A(x) + L u.B.(x), y. = C.(x), j = 1, ..• ,p be 

i=I 1. 1. J J 

an affine input-output system on X (not necessarily Hamiltonian). Suppose 

that there exists an x0 EX such that A(x0) f C(x0), where C is the control

lability distribution, which has constant dimension. Then an integral 

manifold Q of C through x0 has the following properties: 

i) A(x) E TxQ' for every x E Q • 

ii) Since also Bi (x) E. TxQ' for each x E Q, we can restrict the system 
m 

x = A(x) + L u.B.(x), y. = C.(x) to an affine input-output system on Q. 
i=I 1. 1. J J 

The controllability distribution of this system is equal to TQ. 

PROOF: It is clear that [A.,C] c C. Therefore if A(x0) E C(x0) and Q is an 

integral manifold of C through x0, then A(x) E C(x) = TxQ for each x E Q 

(Otherwise A would not leave the integral manifold of C invariant). D 

We can regard a submanifold Q c X as in Proposition 3.35 as the 

"controllable" (or"reachable") part of the system with groundstate x0 • 

Next we can factor out Q by the "non-observable" part of the system. In the 

Hamiltonian case we obtain: 

THEOREM 3.36 Let 

(3.70) 

be an affine Hamiltonian system on (M,w). Suppose that Chas constant 

dimension strictly less than dim M. Assume that there exists an x0 EM such 

that A(x0) E C(x0). Let Q be an integral manifold of C through x0 . Assume 

that the distribution C n ker O on Q has constant dimension. Then there 

exists a manifold Nanda surjective submersion TT: Q -> N such that 

ker TT* C n ker ojQ. Ma:reover N is a symplectic manifold with symplec-

tic form w such that TT*~= wjQ. On N we can define an affine Hamiltonian 
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system 

m 
(3.71) X = A(x) + L u.B.(x), y. = C.(x) 

i=I 1 1 1 1 

which has a controllability distribution equal to TN, such that the external 

behavior of (3.71) is equal to the external behavior of (3.70) restricted 

to Q· 

PROOF: First we show that locally Q can be factored out as above. Notice 

that since w(C,-) = 0 by Corollary 3.32 ker O equals the distribution c1 

(with 1 orthogonal complement with respect to w, i.e. c1(x) = {ZET 111w (Z,Y)=O 
X X 

for all YEC(x)}. Therefore C n Cl is involutive. Since by assumption 

dim C n ker O = constant, C n c 1 is regular on Q. Hence we can locally 

factor out Q by the leaves of C n c 1 and obtain a manifold Nanda 

submersion TT: Qrc-> N such that ker 1f = C n C 1. It also follows (ABRAHAM & 
·* 

MARSDEN (1978, Theorem 5.3.23) that N has a unique symplectic form;;; such 

that TT*;;;= wlq• Because [A,c 1Jccland[Bi,c1J c c1, i = l, ... ,m, the vector-

fields A and B. project under TT to vectorfields A, respectively Bi on N, 
- 1 - , 1 

i.e. TT*A = A, TT*Bi = Bi. Since C c ker dSi' i = l, ... ,m, there exist 

functions C. on N such that TT *c. = C .. The equalities w(B. ,- ) = dC. then 
1 1 1 1 1 

imply ;;;(B.,-) = dC., i = l, ... ,m. Furthermore onQ, w(A,-) = TT*(;;;(A,-)) and 
1 1 

therefore ;;;(A,-) is closed, or equivalently A is locally Hamiltonian on N. 

We now refer to HERMANN & KRENER (1977, Theorem 3.9) to conclude that the 

external behavior of the system on N as defined above is the same as the 

external behavior of (3.70) restricted to Q, and that the controllability 

distribution of the system on N is equal to TN. Moreover, this last theorem 

asserts that since (3.70) is strongly accessible on Q we can globally factor 

out Q by C n c1. Hence the local constructions above hold globally. D 

Another way to look at Theorem 3.36 is to consider the Poisson algebra 

G of (3.61). We can extend G to a bigger Poisson algebra G by defining 

G 
(3. 72) 

{gEC(M)[g= ¢ 0 (g 1, ••• ,gk), for a certain smooth function 
k 

¢ : 1R -> 1R, and g .EG} 
1 

Notice that O(x) = {dg(x)[gEG} = span {dg(x)lgEG}. 

We have the following 
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THEOREM 3.37 Let dim O(x) =constant.Then there exist (locally) independ

ent functions f 1, •.• ,fk,h1, •.• ,~,l1, ••. ,lm (m+2ks2n) on M, contained in G, 
such that 

{f. ,f.} {h. ,h.} {l. ,l.} 0 Vi,j 
1 J 1 J 1 J 

(3. 73) {f.,h.} 0 •• i,j 1, ••• ,k 
1 J 1J 

{l., f.} {l., h.} 0 Vi ,j 
1 J 1 J 

and O(x) = span {df 1(x), •.. ,dfk(x),dh1(x), .•. ,dhk(x),dl1 (x), •.• ,dlm(x)}. 

For a proof we refer to LIE & ENGEL (1890) (see also HERMANN (1976)). By 

Darboux's theorem (ARNOLD (1978)), we can extend the above set of functions 

to 2n independent functions which are syrrrplectie coordinate functions. 

Now it is clear how the manifold N, constructed in Theorem 3.36 can be 

interpreted. Indeed, a local coordinate system for N is given by 

(f 1, ••• ,fk,h1, ..• ,~) with fi and hi as in (3.73), and~ equals~ 

k 
= Ldf.Adh .• 

i=I i i 

In Theorem 3.36 we had to assume that there exists an x0 € M with 

A(x0) € C(x0). There are two important cases where this certainly happens. 

Let A=¾· 

i) Assume that dH(x) vanishes somewhere. 

ii) Consider the functions li, i = 1, ••• ,m in (3.73). It is clear that 

{i,l.} = O, for every g € G. Now assume that also {H,l.} = O, i = 1, •.. ,m • 
. 1 1 

Then since x__(l.) = O, X __ is tangent to every manifold of the form l. = c., -ti1 -ti 1 1 

ci constants. However these manifolds contain the integral manifolds of 

C a~d are exactly equal to them if C is coisotropic (see also Chapter 4). 

3,4. The rigid body with external torques 

A well-known and much studied example of a Hamiltonian vectorfield are 

the equations of a rigid body spinning around its center of mass. In this 

section we consider the situation that there are also external torques 

acting on the rigid body. We shall investigate if this results in an (affine) 

Hamiltonian system as treated before (Section 3.3). 
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The equations of a rigid body are given as follows. Let S = (a 1,a2 ,a3) 

be a set of axes fixed in the rigid body. Let R be the (3x3)-matrix which 

expresses the orientation of the rigid body axes S with respect to a set of 

inertial axes Q = (e 1,e2,e3). Thus if xis a column 3-vector with respect 

to the inertial axes Q, then Rx is that same vector with respect to the 

rigid body axes S. It follows that R satisfies RTR r3 , and if we only 

consider right handed sets of axes det R = I, so RE S0(3). Let furthermore 
ui I 

ui = ( w2) be the vector of angular velocities with respect to the rigid body 

W3 
axes, i.e. wi is the angular velocity around ai. Let J be a (3x3) symmetric 

positive definite matrix. J is called the inertia matrix. We call the eigen

vectors of J the principal axes, and the eigenvalues the principal moments 

of inertia. Denote by S(w) the skew-symmetric matrix S(w) =(-:3 ~
3
-:~) 

w2 -w 1 0 

Then the equations of the rigid body are (ARNOLD (1978)) 

R S(w)R 
(3.74) 

Jw S(w)Jw 

Let now b 1, b2 and b3 be another set of axes fixed in the rigid body, and 

suppose that we can exert external torques around these axes bi. In prac

tice such external torques can be for instance realized by attaching two 

identical but opposed gas jets at the end of every axis b .. This yields 
]. 

(see CROUCH & BONNARD (1980)) 

R S(w)R 
(3.75) 

Jw S(w)Jw + ulbl + u2b2 + u3b3 

with ui' i = 1,2,3, the controls (inputs), 

If b 1, b2 and b3 are independent we call (3.75) the rigid body with 

three controls. If b3 = O, we have only two torques and we speak about the 

rigid body with two controls. Finally b2 = b3 = 0 gives the rigid body with 

one control. We shall now consider the question if it is possible to regard 

these three cases as (affine) Hamiltonian systems (notice that we have not 

yet defined output maps). 

First we give some mathematical preliminaries which are needed to give 

a coordinate free description of (3.75). The state space of a rotating rigid 
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body is T*so(3). There are two ways of identifying T*so(3) with 

S0(3) x so*(3) (so(3) is the Lie algebra of S0(3), and so*(3) is the dual 

Lie algebra). The first corresponds to giving the equations in body -eoordinates 

as in (3.75) (i.e. in coordinates with respect to the axes S fixed in the 

rigid body), while the second results in equations in space-coordinates (i.e. 

with respect to Q). Consider the left translation L :S0(3) -> S0(3), 
g 

g E S0(3), defined by L h = gh, for h E S0(3). Then we define the isomorphism 
* g* 

\: T S0(3) -> S0(3) x T S0(3) (eES0(3) is the identity matrix) by setting 
e 

(3. 7 6) \(a)= (g,(T L )*a) 
e g 

with g 7T(a) ( 7T projection of T*so(3) on S0(3)) and T L the differential e g 
of L in e E S0(3). Since so(3) = T S0(3) and so* (3) = T * S0(3), A is an 

g e e 

isomorphism T*so(3) -l• S0(3) x so*(3). This isomorphism A correspond~ to 

choosing body coordinates (to obtain the equations in space coordinates we 

* have to consider the right translation Rh= hg). Since T S0(3) is a 
g 

cotangent bundle, it has a canonical I-form 8, and a symplectic form 
-1 * * w:= d8. Hence (\ ) 8 =: SB is a I-form on S0(3) x so (3) and wB:= d8B 

= (\- 1)*w is a symplectic ~orm on S0(3) x so*(3), Now consider the symmetric 

positive definite bilinear form Jon so(3) = TeS0(3). By left translation 

we can extend J to a left-invariant Riemannian metric on S0(3), denoted by 

h . d d . f . l T -l , *(3) . h < , > J • Furt ermore J in uces a qua ratic unction 2p J p on so , wit 

* p E so (3). By left translation we can extend this quadratic function to a 

left-invariant function K : T*so(3) --..• lR. We call K the kinetic energy 

(of course Kand<, > are immediately related, see ABRAHAM & MARSDEN (1978, 
J 

Section 4.5.2)). The dynamics of a rigid body without external torques is 

now given by the Hamiltonian vectorfield XH on T*so(3) (with symplectic 

form w), where H : T*so(3) -> lR is equal to K. Equations (3.74) are the 

expressions of¾ in body coordinates. 

In order to include the external torques we need to say something more 

about so(3). It is well known that a basis of so(3) is given by the matrices 

(3. 77) 



146 

standard basis of :JR3 • If we make :JR3 into a Lie algebra by taking as 

operation the vector product x, then j is actually a Lie algebra isomorphism. 

"d . *(3) . ( 3) * . (3) . In the same way we can i entl.fy so with lR , and a basis of so is 
3 * given by the (row vectors) f 1 ,f2 ,f3 E (:JR ) such that f.(e.) = o .. , 

i J iJ 
i,j = 1,2,3. We can extend Ei ~ ei by left translation to left invariant 

vectorfields x1, x2 and x3 on S0(3), while fi can be extended to left 

invariant one-forms e1,e2 ,e3 on S0(3). It follows from the commutation 

relations (3.77) that 

(3.78) 

Let us write (3.75) as (with x (R,Jw)) 

(3.79) 

whereAand B1,B2 ,B3 are the vectorfields on S0(3) x so*(3) given by (with 

RE S0(3) and Jw E so*(3)) 

(3.80) A(R,Jw) =(S(w)R ) 
S(w)Jw 

I , 2 ,3 

The symplectic form wB = d8B on S0(3) x so*(3) has the following explicit 

expression (ABRAHAM & MARSDEN (1978, Proposition 4.4.1)). Let (g,µ) E 
* * * S0(3) x so (3) and (v ,p), (w ,cr) E T( ) (S0(3) x so (3)) T S0(3) x so (3) 

* g,µ * g 
(where we have identified Tso (3) and so (3)). Then 

µ 

(3.81) 

It is a matter of calculation (see ABRAHAM & MARSDEN (1978)) to see that, 

* with RE S0(3) and p E so (3), 

(3.82) 

Moreover it follows from (3.81) that 

(3.83) wB(g,µ)((O,p),(w,cr)) = p(T L 1w) 
g g-

Therefore we obtain, for RE S0(3) and p E'so*(3), that 

(3.84) T wB(R,p)(B.(R,p),-) = b. 
i i 

i = 1,2,3 
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where we have identifed b .T € (lR3) * with an element of so* (3). By the 
]. 

isomorphism A (3.76) between S0(3) x so*(3) and T*so(3) we can regard 

A,B 1,B2 and B3 also as vectorfields on T*so(3). Then we obtain from (3.82) 

and (3.84) that (with w the symplectic form on T*so(3)) 

(3.85) 

where b. 
]. 

w(A,-) = -dK 

I 
w(Bi,-) = bi el 

i 1,2,3. 

i 1,2,3 

Therefore A is a Hamiltonian vectorfield on T*so(3). However, since 

dBi~ 0, i = 1,2,3 (by 3.78), the vectorfields Bi, i = 1,2,3, are not 

Hamiltonian vectorfields. This implies th~t we cannot consider (3.75) as 

the state space equations o·f an affine Hamiltonian system. On the other 

hand we can still try to transform equations (3.75) into an equivalent 

system which is Hamiltonian. Indeed we may allow for a state dependent 

change of the inputspace: 

(3.86) 

with N(R,Jw) a nonsingular 3 x 3 matrix. Then (3.86) transforms (3. 79) into 

(3.87) i = A(x) + v 1B1(x) + v2B2(x) + v3B3(x) 

where span {B 1(x),B2(x),B3(x)}= span{B 1(x),B2(x),B3(x)} for each 

x € S0(3) x so*(3). 

Therefore the problem is as follows. Can we find a basis consisting 

of Hamiltonian vectorfields for the distribution 60 (x) = 

span {B 1(x),B2(x),B3(x))}? Consider first the rigld body with three contr ls. 

Define Y:= S0(3), and the output map C: M -> Y, with M = T*s0(3), as the 

canonical projection of T*so(3) onto S0(3). Then define the affine Hamilto

nian system L3(M,T~Y,L) by taking as generating function for L c TM x T*Y 

the f~nction K - f u.C.,- where C = (C 1,c2,c3) in local coordinates for 
i=I 1 1 

Y = S0(3), and (~1 ,u2,u3) the corresponding natural coordinates.for. the 

fibers of T*S0(3), Using the isomorphism A, we can also take M = S0(3) x so*(3) 

instead of M = T*so(3). Since span {Xe (x),Xc (x),Xc (x)} 
I 2 3 
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* span {B1(x),B2(x),B3 (x)}, the state space equations of L 3 (M,T Y,L) are 

indeed equivalent to equations (3. 75) or (3. 79). Hence the rigid body 

with three controls can be formulated as an affine Hamiltonian system. 

Next consider the rigid body with two controls, which are external 

torques around the axes b 1 ana b2 . Let P be the linear subspace of 
* 3 * T T so (3) ~ (lR) spanned by b 1 and b2 • Then by left translation we obtain 

a left invariant codistribution Pon S0(3). Since the distribution D:= kerP 

is one-dimensional, Dand hence Pare regular. It can be seen that S0(3) can 

be globally factored out by the leaves of the foliation generated by D, and 

that the quotient manifold is equal to s 2 (the two-dimensional sphere). In 

fact we obtain a f~ber bundle S0(3) ~> s 2, with ker p* = D and the fibers 2 
diffeomorphic to S . For instance if Dis spanned by x1, then p: S0(3) __.;,.5 

is simply the projection of RE S0(3) onto its first column (or its first 

row). Therefore we define the output manifold Y:= s 2 , and the output map 

C: M -> Y, with M = T*so(3), as C:= p O TI (TI is the projection of 

T*s0(3) onto S0(3)). We obtain an affine Hamiitonian system L 2(M, T*Y,L), 

with L given by its generating function K - l u.C.(x), with C = (C 1,c2) 
i=l i i 

in local coordinates for Y = s 2 and (u 1,u2) the corresponding natural 
. . * 2 . coordinates for the fibers of TS. It is easy to see that 

span{XC (x),XC (x)} = span {B 1 (x),B2(x)}. Hence also the rigid body with 

two con!rols cin be formulated as an affine Hamiltonian system. Notice that 

the rigid body with two controls can be also considered as a degenerate 

·.namiltonian system (Definition 3.28) by defining Y = S0(3) and P as above. 

Finally we consider the rigid body with one control, i.e. one external 

torque around the axis b 1• Let D be the two-dimensional subspace of so(3) 

given by D:= {xElR.3 >;;:so(3),bi1x=O}. From the commutation relations (3.78) 

it can be easily seen that so(3) does not possess a two-dimensional sub

algebra. Hence the left invariant distribution Don S0(3) given by left 

translation of D c so(3) and the left invariant codistribution Pon S0(3) 
T generated by left translation of b 1 are not involutive. Hence we cannot 

define a I-dimensional output manifold Y and an output map C : M -> Y 

such that span {B 1(x)} = span {XC(x)}. Therefore the rigid body with one 

control cannot be formulated as a (full or degenerate) Hamiltonian system. 

We summarize the above discussion in 
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THEOREM 3.38 Consider the rigid body with external torques (3.75). Then 

a) The rigid body with three controls can be formulated as an affine Hamilto-
* * nian system L3(M,T Y,L), with M = T S0(3) and¥= S0(3). 

b) The rigid body with two controls can be formulated as an affine Hamilto-
* * 2 nian system L2(M,T Y,L), with M = T S0(3) and Y = S, or as a degenerate 

affine Hamiltonian system with Y = S0(3). 

c) The rigid body with one control cannot be formulated as a (full or 

degenerate) affine Hamiltonian system. 

We remark that the controllability properties of (3.75) have been 

investigated in CROUCH & BONNARD (1980) and BAILLIEUL (1981). In fact 

a) The rigid body with three controls has a regular controllability distri

bution c3, and dim c3 = dim T*S0(3). 

b) The rigid body with two controls has a regular controllability distribu

* tion c2 . Moreover dim c2 = dim T S0(3) -2 if and only if (with S(x)= 

(3. 88) S(x)J-l x c span{b 1,b2}, for each x E span{b 1,b 2} 

If (3.88) does not hold, then dim c2 = dim T*so(3). 

By Theorem 3.31 it follows that the affine Hamiltonian system corre

sponding to the rigid body with three controls is always locally weakly 
* * 2 observable, while the affine Hamiltonian system L2 (T S0(3), TS ,L) corre-

sponding to the rigid body with two controls is locally weakly observable 

if and only if (3.88) does not hold. 

3.5 Linear Hamiltonian systems 

Consider a linear system in state space form L(A,B,C,D) (see Section 

2. 1): 

(3.89) 

= (2.1) 

x =Ax+ Bu 

w = Cx + Du 

X E X 

WE W 

U E U 

A necessary condition for Lin order to be a linear Hamiltonian system is 

that X and Ware syrrrplectic linear spaces. This means that there exist 
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nondegenerate skew-symmetric bilinear forms J and Jeon X, respectively 

W. By Darboux's theorem there exist bases of X and W, such that in these 

bases J 

sional; 

0 

= <r 
n 

-I 0 
n e 

0 ) and J = ( 1 

say dim X = 
m 

2n and dim W 

-I 
0m) (X and Ware necessarily even-dimen-

= 2m) . Such bases are called canonical 

(or symplectic). In the next theorem we translate the conditions of 

Definition 3.6 ( the definition of full Hamiltonian systeins) to linear 

systems. 

THEOREM 3. 39 B Let L(A,B,C,D) be a linear system (3.89). Assume that (D) 

is injective. Let (X,J) and (W,Je) be linear symplectic spaces. Then 

L(A,B,C,D) is (fuZZ) Ha,miZtonian if and only if A,B,C and D satisfy 

(3.90) 

ATJ + JA - CTJeC 

BTJ - DTJeC 

DTJeD 

0 

0 

0 , and rank D = m 

Moreover, if L(A,B,C,D) is full Hamiltonian, then there exists a feedback 

transformation A ->A+ BF, C 4 C + DF (see Section 2.1.1), and a 

canonical basis w = (y 1, ••• ,ym,u 1, •.•• ,um) of W such that in these 

coordinates the feedback transformed system L(A',B',C',D') satisfies 

(3.91) 
A'TJ + JA' 0 

B'TJ c• 
and 

C' = ( t) ' = ( ~:) D' 

We call L(A,B,C) satisfying equations (3.91) a Zinear Hamiltonian input

output system. Hence a full Hamiltonian system is feedback equivalent to a 

Hamiltonian input-output system. 
. B 

Remark I : ( ) injective is the linear translation of the condition that 
D 

f: B-> TM x Wis an em~edding. Compare also Theorem 2.2. 

Remark 2: Recall from Section 2.1.1 that feedback transformations do not 

change the dynamical system in state space form Li(A,B,C,D). 

PROOF of Theorem 3.40: Notice that the symplectic form Jon TX is given 

by ( O J ) • According to Definition 3. 6 
J 0 
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V = { (Ax:Bu) [xcX,uEU} has to be a Lagrangian subspace of (TXxW, j@-Je), 

Cx+Du 

i.e. (yT yTAT+vTBT yTCT+vTDT) 0 

Vx,y EX and Vu, v EU. This yields equations (3.90). Notice that BTJ -

DTJeC = 0 implies that Ker D c KerB. Since(~) is injective, this gives that 

Dis injective and that dim U = rank D. Because Vis Lagrangian, and there

fore has dimension 2n + m, it follows that rank D = m, and that Im Dis a 

Lagrangian subspace of (W,Je). Hence we can choose a basis for W such that 

D' = (:m) and Je = (: -:m) . By applying feedback u 

m rn 

Fx + v, i.e. 

A r-> A + BF, C r-> C + DF, we can bring C into the form C' = ( t)· 
This implies that C'TJeC 

This yields (3. 91) • 

T e 
O, and that D' JC' Lo 1.J ( ~. -~, (~')- c'. 

□ 

Remark: A matrix A satisfying ATJ + JA = 0 is called a Hamiltonian matrix. 

In Theorem 3.39 we have chosen a canonical basis for W such that 

D = (~:)· If, on the other hand, we start from a fixed canonical basis 

(y 1, ••• ,ym,zl, ••. ,zm) the situation is as follows. Since ImD is Lagrangian, 

Im D can be parametrized by a set of basis vectors {y.}. 1 u {z.}. 1 , 
]. l.E I J JE 2 

with 1 1 u 12 = {1, ••• ,m} and 1 1 n 12 = 0 (Theorem 3.2). Then construct an 

m x m signature matrix~ by setting the k-th diagonal element equal to +I 

if k E 12, and equal to -1 if k E 1 1 (remember that the off-diagonal 

elements of~ are zero). In the permuted basis (r 1, ••• ,rm,pl, ••• ,pm) 

defined by 

t'. y. if i E 12 ]. 

r. = z. if i E II ]. ]. 

Im Dis then of the form 

z. 
]. 

y. 
]. 

if i E 1 2 

if i E tJ 

a certain D'. Therefore there exists 

( ~~) • Moreover, since Im D is a non singular R: U -> U such that DR 

Lagrangian, D' satisfies By applying feedback we can bring 
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Then the equations (3.90) result in 

(3. 92) =:: c' 
D'T3 

We call (3.92) a linear Hamiltonian system with feedthrough term. Note that 

(3.92) are exactly the same expressions as we obtained in equations (3.48) 

in Section 3.1.4. 

Theorems 3.20 and 3.33 about the relation between observability and 

controllability for Hamiltonian systems have a very simple analogue in the 

linear case. Let V be a linear subspace of 

onal complement with respect to J, i.e. v 1 

derive: AV c V and Im B c V = (AV)1 ::, V 

that (AV)l = A- 1(v1), since ATJ + JA = 0, 

BT J = C. Hence : (Av>1 ::, V l and (Im B)l ::, 

Concluding: 

l (X,J). Denote by V the orthog-

= {xEXlxTJv = 0, 'tJv EV}. Then we 

and (Im B) l ::, V l • One verifies 

and that (Im Bi Ker C, since 

v 1 = Av 1 c v 1 and v 1 c Ker c. 

3V f X with AV c V and Im B c V if and only if 

3v1 f O with Av 1 c v 1 and v 1 c Ker C, 

and hence, (C,A) is observable if and only if (A,B) is controllable. 

The definition of a degenerate Hamiltonian system (Definition 3.10) 

simplifies considerably in the linear case. Recall that a full Hamiltonian 

system is called regular if dim h(B) = dim W. Therefore linear Hamiltonian 

systems (3.90) are regular if and only if [C: DJ is surjective, or equiva

lently if C in (3.91) is surjective. For the definition of a degenerate 

Hamiltonian system ~(M,W,B,f,K), with K the coisotropic restriction manifold, 

we required that h-l(K) is a bundle over M. In the linear case, K is a 

coisotropic subspace of W, and [C: DJ- 1(K) is a bundle over X if and only 

if for each x EX there exists au EU such that Cx + Du EK. Equivalently, 
. -1 

[C: DJ (K) is a bundle over X if and only if Im Cc K + Im D. If (3.90) 

is regular, then Im Cc K + Im D if and only if K + Im D = W. To simplify 

notation we only consider the regular case: 

LEMMA 3.40 (Compare Lemma 3.13) Let Kc (W,Je) be a coisotropic subspace 

(i.e. K1cK). Let Im D be a Lagrangian subspace, such that K + Im D = W. 
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Then there exists a canonical basis (a1, •.• ,am,bl, ..•• ,bm) of W such that 

i) K = span {a 1, ..• ,am,bl'''''bk}, for some k $ m 

ii) Im D can be parametrized by b 1, ..• ,bm' i.e. there exists a matrix D 

such that in the above basis Im D = Im (~m)· 

PROOF: First notice that ii) is equivalent to Im D n span {a1, .•• ,a} O. 
1 m 

Now take. an arbitrary basis ¾+I' ••. ,am for K • Then, since K + Im D = W, 

K1 n (Im D)l = K1 n Im D = 0 (because Im Dis Lagrangian). Therefore 

Im D n span{ak+i•···,am} = 0. By Darboux's theorem (ABRAHAM & MARSDEN (1978, 

Proposition 3.1,2)) we can choose independent vectors bk+l''"''bm such that 
T e T e 

bk+' J bk. 0, bk. J ak. = o .. , i,j = l, ••• ,m-k. Necessarily L +J +i +J LJ 

bk+! i (K1)1 K, i = l, ••. ,m-k. Furthermore we can choose independent 

vectors a 1, ••• ,¾ such that span {a1, ••• ,ak} c 

{ })1 T e _ 
(span ¾+I'''''am,bk+l'''''bm , ai J aj - 0, i,j = l, ••• ,k and ai EK. 

It can be also seen that we can choose bk+l'''"'bm,al'"'''¾ in such a way 

that Im D n span {a1, ••• ,am} O. Finally we can choose independent vectors 

b 1, ••• ,bk satisfying span {b 1, ••• ,bk} c span {ak+]'"'''am,bk+l'''"'bm}1 

and b_T Jeb. = 0, b_T Jea. 
i J i J 

o .. , i,j = l, ... ,k, and moreover b. EK. 
LJ L 

We obtain the following analogue of Proposition 3.14 

PROPOSITION 3.41 Let ~(A,B,C,D) be a full and regular Hamiltonian system. 

Let the restriction manifold be a coisotropic subspace Kc W, such that 

K + Im D = W, If dim K = m + k (k$m), we can choose a canonical basis 

□ 

w= (y1, .•. ,ym,.u 1, •.. ,um) for W, in which the degenerate Hamiltonian system 

has the form 

X = Ax + Bu 

y ex + Du ~+1=···= u 0 m 

with ATJ JA o, BTJ C D -T + = , = D • 

PROOF: ·By Lennna 3.40 we can choose a canonical basis (a 1, .. _:,am,bl''"'bm) 

of W such that K = span {a1, ... ,am,bl' .•• ,bk} and Im D = Im(~m) for some 

- -T m x m matrix D. Since Im Dis Lagrangian, D D. Then define the output 

space Y = span {a1, ••• ,am} and the input space U' = span {b 1, ••• ,bm}. 

By feedback we can bring C into the form ( ~). Since Im D = Im ( ~m) there 
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exists a nonsingular R: U -> U such that D = (~m) R, Now identify U' and 

R(U). Then since K = span {a1, •.. ,am,bl'''''bk}, it follows that the allowed 

inputs u EU' satisfy uk+l = ••• =um= O. D 

3.5.1 Realization theory for linear Hamiltonian systems 

In Sections 2.1.2 and 2.1.3 we studied linear external systems of the form 

I:e(P) = {w:lR -> WjwELloc and P(ddt) w O in the sense of distributions} 

with W = lRq and P(s) E lRpxq[s], i.e. a p x q matrix consisting of 

polynomials in the indeterminate s. We saw that we can associate with I:e(P) 

a geometrical object, by considering for every s Et the linear subspace 

of W~ = ~q (the complexification of W) defined by Ker P(s). In particular, 

if dim Ker P(s) does not depend on s, this geometrical object is an 

algebraic vector bundle over ~. which can be uniquely extended to an alge

braic vector bundle over JP 1 (the complex projective line), see Theorem 

2.9. Furthermore, I:e(P) is in this case uniquely determined by this 

bundle over JP 1 (which we baptized as E (P(s))) together with its embed

ding in the trivial bundle ]Pl x W~. The condition that dim Ker P(s) is 

constant is equivalent to the controllability of a minimal realization 

t:(A,B,C,D) of I: (P) (Theorem 2,13). 
e 

We shall now formulate conditions on the structure of a vector bundle 

E (P(s)) which are necessary and sufficient in order that L (P) can be 
e 

realized by a linear system t:(A,B,C,D) which is Hamiltonian. Later on we 

show how these conditions can be translated to conditions directly on the 

structure of I:e(P). 

We have to assume that W, the external space, is a symplectic space 

(W,Je), with dim W 2m. Then we can introduce on W~ a "Hermitian symplectic 
e form" w ~ as follows: 

(3.93) 

where denotes the complex conjugate. We call a complex subspace V c W~ a 

Hermitian Lagrangian subspace of (W~ ,we~ ) if 

i) we~ (v1 ,v2) = 0, for every v 1 ,v2 E V 

ii) the complex dimension of Vis m. 

Analogous to the "real" symplectic case (ABRAHAM & MARSDEN (1978, Proposi

tions 5.3.2, 5.3.3) we can prove that the maximal complex dimension of a 

subspace V satisfying i) ism. Let us now define an external linear Hamil

tonian system. 
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mx2m ··· • · DEFINITION 3,42 Let P(s) E ]R [s]. Let Ker P(s) have constant dimension 

m, so E(P(s)) is an algebraic vector.bundle over JP 1 Then l:e(P) is an 

external Hamiltonian system if for every s = iw, w E ]R, Ker P(s) is a 
e Hermitian Lagrangian subspace of (WIC,w IC). 

THEOREM 3.43 l:e(P) has a Hamiltonian realization l:(A,B,C,D) ~ l:e(P) is 

an external linear Hamiltonian system·~ a minimal realization of l:e(P) 

is a Hamiltonian system. 

PROOF: Let l: (P) be an external Hamiltonian system. Ker P(s) at "s = 00 ", 

e 
denoted by V( 00), is uniquely determined as lim Ker P(s) for an arbitrary 

s~ 

paths+ 00 in IC. Hence V( 00 ) = lim Ker P(iw) = lim Ker P(iw). Since Ker P(s) 
UH-oo w+ -oo 

is a Hermitian Lagrangian subspace for every son the imaginary axis, and 

V( 00 ) is a real subspace of WIC, and hence a subspace of W, we obtain that 

V( 00 ) is a Lagrangian subspace of (W,Je). Then we can take a Lagrangian 

subspace Y of (W,Je) that is complementary to U:= V( 00). Furthermore we 

can choose a canonical basis (a 1, ••• ,am,bl'"'''bm) of W such that Y 

span {a1 , ••• ,am} and U s~an{b 1, ••• ,bm}. By Lemma 2.16 we can find m x m 

polynomial matrices D(s) and N(s) such that corresponding to this basis 

Ker P(s) Im[~~:~] , Vs E IC, and G(s):= N(s) D- 1(s) is a strictly proper 

transfer matrix. Since the coefficients of P(s) are real, we notice that 

if w E WIC satisfies P(iw) w = 0, then P(-iw); = O. Because Ker P(s) is 

Hermitian Lagrangian on the imaginary axis we therefore conclude that 
T e 

w 1 J w2 = 0 for every w1 E Ker P(-iw) and w2 E Ker P(iw). This yields 

(
N(iw)z) 

D(iw)z 
0, Vv, z E ]Rm , V w E JR, 

or 

(3.94) 

Since (3.94) is a meromorphic expression we obtain by analyticity 

(3.95) 
T T T 

-N (-s) D (s) + D (-s) N(s) = 0 , for each s E IC 

or equivalently 

(3. 96) G(s) T G (-s) , for each s E IC 
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Now we can apply Proposition 3.5 to conclude that a minimal input-output 

realization Z(A,B,C) of G(s) is Hamiltonian i.e. ATJ + JA = 0, BTJ = C, 
where (X,J) is a symplectic space. Since by Theorem 3.39 every Hamiltonian 

realization Z(A,B,C,D) of Ze(P) is equivalent to a Hamiltonian input-output 

realization of z (P) we have obtained the desired conclusion. 
e 

Remark: It can easily be seen that the set of controllability indices of 

a Hamiltonian system is equal to the set of observability indices. By 

Theorem 2.18 this implies that the Chern numbers of E(P(s)) and (E(P(s))1 

are equal if Ze(P) is an external Hamiltonian system. 

In the case of degenerate Hamiltonian systems we obtain 

PROPOSITION 3 .44 Let Z (P) be an external Hamiltonian system. Let Kc W 
e 

be a coisotropic subspace of (W,Je) such that K + V( 00 ) = W. Then a minimal 

□ 

realization of z!· (P) := foEZe(P) and wEK} is a degenerate Hamiltonian system 

(see Theorem 3.41). 

PROOF: A minimal realization of Ze(P) is Hamiltonian. Then apply Theorem 

3.41. □ 

In Theorem 3.43 the conditions for an external Hamiltonian system were given 

in the "frequency-domain", i.e. as conditions on the structure of E(P(s)). 

We can also give conditions in the "time-domain": 

mx21TI,. 
THEOREM 3.45 Let PE lR Ls], and surjective for every s E ~- Then Z (P) 

e 
is an external Hamiltonian system if and only if for all w ,w2 E L (P) 

I e 
with compact support (i.e. w1 and w2 are zero outside a compact interval of 

lR) 

PROOF: (only if). Let Z(A,B,C,D) be a minimal full Hamiltonian realization 

of Ze(P), with state space (X,J). Let (x 1,w1) and (x2 ,w2) be elements of 

Zi(A,B,C,D). Then one easily checks that 

J:2 
(3.98) f w,r (t) Jew2(t)dt = x T (t2)Jx2(t2) - x 1T (t 1)Jx2(t 1) 

ti 
for all t 1 ~ t 2 • Suppose that w1 and w2 have support inside the interval 

(t 1,t2). Then by minimality it follows (Theorem 2.2) that x 1(t 1) = 

x2(tl) = xi (t2) = x2(t2) = 0, and therefore(3.97) holds. 
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+oo 

(if) Let I
00
w1T (t) Jew2(t) dt = 0, for all w1 ,w2 E l:/P) 

with compact support. Fourier transformation yields 

(3. 99) 
+oo I

00
w1T (-iw) Jew2(iw) dw = 0 

Since dim Ker P(s) = m, Vs E ~. a minimal realization of l:e(P) is controlla

ble, and we can split w into inputs u E l!l.m and outputs y E JR11, such that 

y(iw) = G(iw) u(iw), where G(s) is the transfer matrix corresponding to P(s). 

Because u is an input we can reach every frequency w. Hence it follows from 

(3.99) that wt (-iw) Jew 2(iw) = O, for every w E l!l. and for every w 1 (iw), 

w2(iw) E Ker P(iw). Since dim Ker P(iw) = m for each w E l!l., this implies 

that Ker P(iw) is a Hermitian Lagrangian subspace of (W~,w~) for every iw 

on the imaginary axis. □ 

Remark I: We can take a canonical basis w = (y ,u) for W = l!l.Zm , such that 

y are the outputs and u are the inputs. Then (3.97) is equivalent to 

(3.100) 

for every (y1,u 1) and (y2 ,u2) with compact support. If y is for instance 

the position q, and u the external force F, then this yields 

(3.10)) 
+oo +oo 

J F1T (t)q2(t)dt = f F2T (t)q 1 (t)dt 
-oo -oo 

for every (q 1,F 1) and (q2,F2) with compact support. Equation (3,101) is of 

course highly suggestive, but we do not know any physical interpretation of 

it. On the other hand we remark that for reciprocal systems (see WILLEMS 

(1974), DAY (1971)) we can obtain expressions similar to (3,101) (however 

including a time~reversal ! ), which are just as hard to interpret. 

Remark 2: Note that if dim Ker P(s) is not constant in Theorem 3.45 

(i.e. if a minimal realization of l: (P) is not controllable), then 
e 

condition (3.97) is not sufficient to conclude that a minimal realization 

of l:e(P) is full or degenerate Hamiltonian. Consider for instance the 

autonomous system on (X,J) 

x = Ax , y = Cx, w = (y,u) , u = 0 

This-system is degenerate Hamiltonian if and only if CTJeC 0 and 
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ATJ + JA = 0. However if CTJeC = 0 and A is arbitrary, then w1T (t)Jew 2(t) = 0 

for every w1 ,w2 in the external behavior of the system. Therefore if 

0 then condition (3.97) is always satisfied. We can interpret this, 

roughly speaking, as follows. We have to violate the internal intercon

nections of the system which result in the restriction set u = 0 (a 

Lagrangian subspace of W), and after these internal interconnections have 

been broken, we can apply condition (3.97) to conclude whether the system 

is Hamiltonian or not. This is very similar to the use of variational 

principles in the treatment of interconnected systems. Then one considers 

variations that do not satisfy the interconnection constraints. Indeed, 

equation (3.97) can be considered as a sort of variational principle. We 

return to this later on in Section 3.8. 

We give some illustrative examples of linear Hamiltonian systems 

EXAMPLE Newton's second law F = mq defines an external linear system 

L (P), with P(s) = (ms 2 : -1). It is easy to see that Ker P(iw) is a e , 
Hermitian Lagrangian subspace of a; 2 . kminimal realization L (A,B,C) is given 

by 

y with u = F 

+oo +oo 

Equation (3.97) or (3.101) yields that f F1(t)q2(t)dt f q 1(t)F2(t)dt for 
-oo -oo 

EXAMPLE 2 (compare the example at the end of Section 2.1.2) Consider two 

masses m1 and m2, attached to springs with spring constants k1 and k2 

<------

-,~5l~ 
<.--------------

Take as external variables the force exerted on the first mass and the 

position y of the first mass. We obtain the equations 
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0 I/ml 

0 0 

kl 0 

-(kl+k2) 0 

i.e. a linear Hamiltonian system. 

The transfer function from u toy equals 

g(s) 

In the same way we can prove that n coupled masses 

y 

with input u the force on the first mass and output y the position of the 

first mass form a linear Hamiltonian system. In fact, one can prove that 

every external Hamiltonian system with one input and one output (i.e. an 

external system corresponding to a transfer function satisfying g(s) = 
g(-s)) such that the internal energy of a minimal realization is positive 

(this can be expressed as a condition on g(s), namely (a+iw)g(a+iw) + 

(a-iw)g(a-iw)~O Va~O and VwE :JR), can be realized by such a Hamiltonian 

system by selecting the values of the masses m1, ..• ,mn and the spring 

constants k 1, ••• ,kn (n is equal to the number of poles of g(s)), see 

BROCKETT (1977), WILLEMS (1972))~ 

EXAMPLE 3 Consider a mass attached to a spring k 

~ 
wall q 

Assume that the wall is movable, and that the velocity vw of the wall can 
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be controlled, i.e. u = vw. Let p be the momentum of the mass (with respect 

to the inertial frame) Then the equations are 

- q T 
If we define the output y = C() such that BJ C, then C = (0 I), and 

p 
hence the output y equals the momentum p. This is a linear Hamiltonian 

system. Notice that y is the reaction force. Again we can extend this example 

ton coupled masses, driven by a movable wall 

k 

......... ~ 
wall 

with u the velocity of the wall and y the momentum of the first mass m1 

(with respect to the inertial frame). By selecting m1, ••• ,mn and k1, ••• ,kn 

we can again realize every transfer function g(s) satisfying g(s) = g(-s) 

and (o+iw)g(o+iw) + (o-iw)g(o-iw) i 0, 'rfa :>: 0, 'rfw E lR. 

EXAMPLE 4 Consider a ma~s m in JR3 attached to a spring k, with electrical 

charge e and subject to a magnetic field given by a vector potential 

A= (A1,A2 ,A3 ) (i.e. B, the magnetic field, equals rot A). The system has 

a Lagrangian function (see Section 3.6) 

I 2 3 I 3 2 
L(q,v) = - m lvl + ~ L v.A. + - L kq. 

2 c i=l 1. 1. 2 i=l 1. 

we obtain pi= mvi + 

P· = kqi 
l. 

~ A. 
C l. i = 1,2,3 

If we consider the components A1,A2 ,A3 of A as the inputs u 1, 

1 p ~~A., we obtain the following system m i cm 1. 
then, since vi 

d 
dt 



Calculating C from BTJ = C yields 

C 

and hence the output (y1,y2,y3) is given by y. = ~ p .• 
1. cm 1. 

I 61 

Of course, the above examples yield examples of linear degenerate 

Hamiltonian systems by setting some of the inputs (or a linear combination 

of the inputs) equal to zero. 

3". 6 Lagrangian systems and the Euler-Lagrange equations 

The Hamiltonian formalism yields an elegant description of classical 

meachnics in terms of first-order differential equations in the canonical 

q- and p- variables. From a mathematical point of view there is a perfect 

duality between those q- and p-variables, which suggests that the p-variables 

in the same way as the q-variables can be regarded as basic variables. In 

many applications however the Lagrangian formulation of classical mechanics, 

with q and q as state variables and the dynamics as.second-order differential 

equations in q is certainly,more obvious, and the p-variables are not a 

priori given but are constructed by means of the Legendre transformation. 

Furthermore the Lagrangian and Hamiltonian approach are not fully equivalent, 

due to possible degeneracies in this Legendre transformation. In a certain 

sense one could say that the Hamiltonian framework is for some cases 

unnecessarily abstract. 

In this ·section we give the formulation of Lagrangian systems with 

external forces, culminating in the Euler-Lagrange equations. First we 

state some mathematical preliminaries. Consider a phase space T*Q, endowed 
. * with its natural I-form e. Then define a I-form eL on T(T Q) as follows 

(see TULCZYJEW (1974)), e is a I-form on T*Q so we can also regard 8 as 

a function e T(T*Q) -> lR. Furthermore for an arbitrary manifold N we 

can define a natural involution~ on TTN. Let (x,x) be coordinates for 

TN, and let us denote coordinates for TTN by (x,x,ox,6x). Then~ is given 

by (x,x,ox,ox) _:::,> (x,ox,x,ox) (see TULCZYJEW (1974)). Now we define BL by 

(3.102) eL (X) := X(6) , for any vector field X on T(T*Q) 

In natural coordinates (q 1, ••• ,qn,Pt•·••,Pn) for T*Q, it can be checked that 
n 

st= I p.dq. + P· dq .• 
i=I 1. 1. 1. 1. 
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Apart from 8L we define another natural I-form on T(T*Q), which we 

denote by eH. Since dB is a symplectic form on T*Q we obtain an isomorphism 
* a * * . * T(T Q) -> T (T Q), given by a(X) = dB(X,-) for XE T(T Q), Because 

T*(T*Q) has a natural I-form 0, a* 0 =: 8H is a I-form on T(T*Q). In the 

same local coordinates as above BH is given by 

n 
(3.103) eH = Ip. dq. - q. dp. 

i=l i i l. i 

Notice that d eL = d8H. Moreover deL dSH is a symplectic form on T(T*Q), 

and is equal to~ if w = dB (see Section 3.1.3). Finally we note that there 

exists a canonical isomorphism between T(T*Q) and T'\TQ)). In local coordi

nates this isomorphism is given by (q,p,q,p) -> (q,q,p,p) (see TULCZYJEW 
. . * (1974)). Therefore we can also look at BL and BH as one-forms on T (TQ). 

First we define Lagrangian vector fields (compare Definition 3.4). 

DEFINITION 3.46 A Lagrangian submanifold V of T(T*Q) is a Lagrangian 

vectorfield if V can be parametrized by TQ. Then there exists (locally) a 

function L : TQ -->-lR such that 8L restricted to V is equal to dL. L is 

called the Lagrangian function. 

Remark: If V can be also parametrized by T*Q, then Vis also a Hamiltonian 

vectorfield. In this case there exists (locally) a function H 

such that restricted to V, 8H = -dH. 

In local coordinates 8L = dL yields 

n ~ :JL :JL • l p. dq. + p.dq. = l -8 - dq. +--;:;,;- dq. , or 
i,;; I i i i i i= I qi i 0 'li i 

:JL p. = :lq. l. i I, ••• ,n (3. 104) l. 

p, =~ 
l. :lqi 

. d { :JL ) and therefore dt :lqi ,i=l, ... ,n 

* T Q -> lR, 

i.e. the Euler-Lagrange equations without external forces. On the other 

n • • n 8H 8H 
hand BH = -dH yields l p. dq. - q. dp. = l. - -8 - dq. - -8 - dp., or 

i=l i i i i i=l qi i pi i 

(3.105) i I, ... ,n 
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i.e. the Hamilton equations. 

The definition of a Lagrangian system now becomes 

DEFINITION 3.47 A Lagrangian system is given by a Lagrangian submanifold 
* *. . *' * e V c T(T Q) x TY (with symplectic form 1TI d8L - 1T 2 d0 , where 1TI and 1T 2 

are the projections on T(T*Q) and T*Y, and Be is the natural I-form on T*Y), 

which can be parametrized by TQ and the fibers of T*Y. Moreover the value 

of the Y-coordinates of a point of V only depends on its TQ-coordinates. 

Remark: Note that this is the same definition as for an affine Hamiltonian 

system (Definition 3.23), except that Vis not parametrized by T*Q and the 

fibers, but by TQ and the fibers. 

In local coordinates we obtain 

PROPOSITION 3.48 Let (q 1, ..• ,qn) be local coordinates for Q. Then locally 

a Lagrangian system has the form 

d 
m 

(ddt 

ac. ac. ) 3L - ~ = - I u. _J - _J_ i 1, ••• ,n dt aqi aqi j=I J aqi aqi 

(3 .106) 
y. = C. (q,q) 

J J 
j = I, ... ,m 

where Land c 1, .. ,Cm are functions from TQ to lR, and (y 1, ... ,ym,ul, .•. ,um) 

are natural coordinates for T*Y. 

PROOF: V has a generating function of the form 

m 
L(q,q) + l u. c.(q,q), i.e. 

j=l J J 
n m 
l p.dq. + p.dq. + Ly.du. 

i=l 1 1 1 1 j=I J J 

clL m 
This yields ' p. = -.- + l l. aqi j=I 

3L m 
I P· = -- + 

l. clqi, j=l 

d (~+ m ac.) or: dt I u.~ 3qi j=l J qi 

m 
d(L(q:q) + l u.C.(q,q)). 

j=l J J 
ac. 

u.~ 
l. qi 

ac. 
J cj (q,q) ui aq: y. = 

J 
l. 

~+ m ac. 
I u. _J_ i 1, ... ,n 

aqi j=l l. 3qi 
D 

The Euler-Lagrange equations are a simple special case of (3.106). We 

assume that the output functions C. TQ -->- lR , j = 1, ..•• ,m, are given by 
J 

C. = q. , j = 1, ••. ,m. Then (3.106) yields 
J J 
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d 3L - ~ = i I, ••. ,m 
dt aq. u. 

3qi l. 
l. 

(3. 107) d 3L 3L 
0 i m+l, •.. ,n 

dt aq. -aq."= 
l. l. 

y. = q. i = I, ••. ,m 
l. l. 

i.e. the celebrated Euler-Lagrange equations with external forces. 

3.7 Internal energy and external work 

In this section we give definitions for internal energy and external 

work in the case of affine Hamiltonian systems. Later on we make some 

remarks about the general Hamiltonian case. 

Let us consider an affine Hamiltonian system L(M,T*Y,L) locally given 

by 

(3.108) 

= (3.61) 

m 

x = ¾(x) - I u.XC (x) 
i=I 1. i 

y. = C.(x) i 
l. l. 

I, ... ,m 

with (y 1, ••. ,ym,u 1, ••. ,um) natural coordinates for T*Y. First we notice 

that on every neighborhood Uc M where a representation (3. I 08) holds, 

the function H: U -> lR in (3,108) is uniquely determined by L(M,T*Y,L) 

up to a constant factor. The reason is that we have taken natural coordi

nates for T*Y, and therefore have fixed the zero-section of T*Y (compare 

Theorem 3.26). Hence we can uniquely (up to a constant factor) define the 

internal energy of L (M, T*Y, L) on U as H : U -> ]R. • 

Let us now proceed to the definition of external work: 

DEFINITION 3.49 Let L (M,T*Y,L) be the external behavior of L(M,T*Y,L) 
e 

* - * (see (2.11)) .. Let WE L/M,T Y,L) and let w: [O,T]---;. TY be the restriction 

of w to [O, T] (T~O). Then the external work performed on the system, during 

the external trajectory w, is 

(3.109) External work= J Se 

w 

with Se the natural I-form on T*Y and Lse the integral of Se along the 

trajectory win T*Y. w 
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We apply Definition 3.49 to the following two cases: 

i) C. = q. the usual case 
J J 

ii) C. = p. see for instance Examples 3 and 4 in Section 3.5.1. 
J J 

(In a certain sense these choices of C. are the "canonical" choices, from 
J 

which other output functions can be constructed). In both cases Definition 

3.49 is very satisfactory. 

In case i) y. = q. and thus u. = F. (the external force). Then Be is 
J J J J 
m 

locally given by l F.dq. and Jee equals 
j=l J J i 

(3. 110) 

m 
J l F,dq. 

j=l J J 
w 

T m 
J l F,(t) q.(t)dt 
0 j=l J J 

if w(t) = (q(t),F(t)), t € co,TJ. 

In case ii) y. = p. and thus u. = v. (the (extra) velocity see 
J J J J 

m 
Example 3, Section 3.5.1). Hence Be= l v.dp. and J Be equals 

j=l J J w 
m T m 

(3. 111) f l v.dp. = J 'I v.(t) p.(t)dt 
w j=l J J O j=l J J 

if w<t) (p(t),v(t)). Therefore (3.111) is the integral of force (p) 

times velocity (v). In case i) we have obtained: external force x(internal) 

velocity, while case ii) can, roughly speaking, be interpreted as (extra) 

velocity x (internal) force, 

We now derive a general expression for the external work Lee. 
w 

Let (y,u) be natural coordinates for T*Y. Then w can be written as 

w(t) = (y(t),u(t)), t E [O,T]. Let x: [O,TJ + M be such that 

(x,w) E Ei(M,T*Y,L).Now the external work equals 

(3,112) 

T m 
J Lu.(t) ~- (t)dt 
0 i=l 1. 1. 

T m m 
J I u.<t){H- I u.<t)c.,c.}<x<t))dt 
0 i.;1 1. j.;1 J J 1. 

T m T m 
J I u.<t) {H,c.}<i<t))dt 
0 i=l 1. 1. 

J I u.<t)u.<t){c.,c.}<i<t))dt 
0 i,j=l 1. J 1. J 

where we used that y.(t) 
1. 
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Because {C.,C.} = -{C.,C.} the last term of (3,112) vanishes and we obtain 
]. J J ]. 

m T 
(3. I I 3) H(x(T)) - H(x(0)) = L J 

i=I 0 
ii. (t) 

]. 
{H,C.} (x(t))dt 

]. 

If we try to give a reasonable definition of internal energy and 

external work for general Hamiltonian systems E(M,W,B,f) we run into some 

serious difficulties. We only make the following remarks: 

i) The internal energy H for an affine Hamiltonian system is uniquely 

determined because the symplectic manifold T*Y has a well-defined zero 

section. This is not the case if Wis a general symplectic manifold. 

ii) Consequently, if Wis a general symplectic manifold, then the splitting 

of thew-variables into inputs and outputs as in (3.51) is no longer unique. 

Furthermore there does not exist a natural I-form ee on W. 

iii) In Example 2 in Section 3.2 we saw that there exist Hamiltonian systems 

with as input u the position of a particle and as output y the force exerted 

on this particle. In this case it seems that the external work equals~ 

times y. 

iv) Return to the nonlin~ar LC-networks of Section 3.1.2. There the internal 

energy of the network depends instantaneously on the inputs. Therefore the 

internal energy is no longer a function of the state, but of the state and 

the inputs. 

3.8 Variational principles, realization theory for Hamiltonian systems and 

the inverse problem of the calculus of variations 

In this section we first show that the generalized "variational prin

ciple" (3. 100), which we proved for linear Hamiltonian systems, can be 

extended to the nonlinear case. Consider a Hamiltonian system E(M,W,B,f). 

Let Ei(M,W,B,f) (see (2.10)) be the corresponding dynamical system in 

state space form (Definition 1.2), and let Ee(M,W,B,f) (see (2.11)) be its 

external behavior. To avoid technical difficulties we assume throughout 

this section tha_t E:t (M,W,B,f) consists of functions (x,w) : JR -> M x W 

that are at least c1• First we define variations. Let (x,w) E Ei(M,W,B,f) 

and assume that there exists a family of functions (x(t,£), w(t,E)), £ E JR 

and small, such that 



i) (x ( • , E) , W ( • , E)) E l:. (M,W,B,f), for every e: 

ii) (X ( t, E) , W ( t, E)) 
i I 

in (and by . 1 I is at least C E assumption a so C 

iii) (x(•,O), w(•,O)) = <i,w) 
Then we define the variation (ox,ow) of <i,w) by: 

(3.114) clx 8w (ox(t), ow(t)) = ( a°£ (t,O), a°E(t,O)) 

Therefore (ox,ow) is a function from lR to TM x TW such that 

(ox(t),ow(t)) e: Tx(t)M x Tw(t)w. 

We obtain (compare Theorem 3.45) 

in 

THEOREM 3.50 Let l:(M,W,B,f) be a full or degenerate Hamiltonian system. 

Then l:i(M,W,B,f) satisfies 

t2 
(3.115) f w:(t)(o 1w(t),o 2w(t)) dt 

ti 
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t) 

for all t 1 s t 2 E R, for all (x,w) E l:i and for all variations (o 1x,o 1w) 

and (o 2x,o 2w) of (x,w) with respect to l:i, 

PROOF: We prove that for every t E [t 1,t2J 

d e ( (3.116) dt wx(t) (o 1x(t) ,o 2x(t)) = w w(t) (o 1w t) ,o 2w(t)) 

where ddt denotes differentiation along the trajectory x(·) in M. We know 

that there exists an input function u : [ t 1, t 2J ~ U such that x(t) = 
(q(t),p(t)) is a solution of 

(3.117) 
q (t) 
p(t) 

clH 
= ap (q(t),p(t),u(t)) 

clH 
= - aq (q(t),p(t),u(t)) 

Now (3.117) are the equations of a time-varying Hamiltonian vectorfield 

on M,. which we denote by ¾(t)' Then £¾(t) w = 0, and hence 

(3. 118) 
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If (x,w) : lR -> M 

(x,x,w) : lR -> TM 

a variation (cSx,cSw) 

x Wis an element of Ei' then we can define a function 
. • dx(t) . 

x W, by setting x(t) = --;rr-- . It is easy to see that 

of (x,w) gives a variation (cSx,cSx,cSw) of (x,x,w). Then 

by our smoothness assumptions: 

d (cS 1x(t)) d 
c1 1x<t) dt cSl(dt x(t)) 

d (o 2x(t)) = d 
oi(t) dt 02(dt x(t)) 

Therefore (3.118) yields 

(3. 119) 

It is a matter of calculation to see that the right hand side equals 

~(x(t),x(t)) ((cS 1x(t),cS 1x(t)), (cS 2x(t),cS 2x(t)). Since E(M,W,B,f) is 

. 1 . . f 11 h *. * e O . d f (B) ( . h Hami tonian it o ows t at 11 1 w - 11 2 w = restricte to wit 11 1 
and 11 2 projections of TM x W onto TM and W). Therefore 

Remark: * • * e Conversely, if (3. 115) holds we can prove that 11 1 w - 11 2 w = 0 

□ 

restricted to f(B), if for every (x,w) E ~i there exists a sufficiently 

large number of variations of (x,w). Hence if we also know that f(B) is a 

submanifold of TM x W with dimension equal to dim M +½dim W, then we can 

conclude that f(B) is Lagrangian, and therefore ~(M,W,B,f) is a full Hamil

tonian system (compare Theorem 3.45). 

We notice that if we only consider variations (cSx,ow) of (x,w) which 

have compact support then (3.115) yields 
. t2 

(3. 121) J wew(t) (o 1w(t), o2w(t))dt = 0 
ti 

for every t 1 ~ t 2 and for all variations with support contained in (t 1,t2). 

Equation (3. 12 I) can be regarded as a generalized variational principle 

which holds for the external behavior of a Hamiltonian system. This equation 

seems to be crucial for what we call the Hamiltonian realization problem. 

The problem consists of finding conditions on the external behavior of a 
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system which imply that the system is actually Hamiltonian. More precisely: 

The Hamiltonian Realization Problem: 

Let Le be an external system on a symplectic manifold (W,we). Question: 

Find necessary and sufficient conditions on Le in order that we can 

construct a Hamiltonian system L(M,W,B,f) such that Le= Le(M,W,B,f). 

For the linear case we solved this problem in Theorem 3.45. For 

nonlinear systems the problem is especially hard since there exist very 

few results on th~real:ization even for general nonlinear systems, without 

the complication due to the Hamiltonian structure. However, motivated by 

(3.121) and by the linear analogue we state the following 

CONJECTURE: Let (W,we) be a symplectic manifold. Let L be a space of 

sufficiently smooth functions w: lR -> W that can be given the structure 

of an (infinite dimensional) C00-manifold. Define the weak symplectic form 

Q (see CHERNOFF & MARSDEN (1974)) on L by setting 

+oo 
(3. 122) Qw(olw,o2w) = £"',Wew(t) (olw(t),o2w(t)) dt 

for w EL, and with o1w and o2w variations of w with respect 

compact support. Let L be an external system on (W,we) such 
e 

to L with 

a submanifold of L. Then: L 
e 

L(M,W,B,f), if and only if Le 

that L is 
e 

can be realized by a Hamiltonian system 

is a Lagrangian submanifold of (L,n). 

We can also give a more restricted version of the Hamiltonian 

realization problem, by restricting the external systems Le to systems 

given by high order differential equations (see Section 2.2.4). 

The Restricted Hamiltonian Realization Problem: 

. • (k) 
Let Le be described by a set of smooth equations Pi(w,w, ••. ,w ) = O, 

i = 1, ... ,p, i.e. a smooth submanifold Pc:TkW, with (W,we) a symplectic 

manifold. Question: Give necessary and sufficient conditions on Pin order 

to construct a Hamiltonian system L(M,W,B,f) with Le(M,W,B,f) = Le• 

We shall show that a classical problem in variational calculus and 

classical mechanics, namely the Inverse Problem of the Calculus of Variations 

is a special case of the Restricted Hamiltonian Realization Problem. Since 
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this Inverse Problem has in fact been solved, also the Restricted Hamil

tonian Realization Problem is solved in this special case (we only need 

the loaal solution of the Inverse Problem; for a treatment of the global 

Inverse Problem we refer to TAKENS (1979)). 

We sketch the Inverse Problem and its solution (an elaborate study of 

the Inverse Problem and its history can be found in SANTILLI (1978)). We 

confine ourselves to its simplest form. Let R,(q,q,q) = 0, i = l, •.• ,m, be 
l. 

a system of second order differential equations in q = (q 1, ••• ,qm). Assume 

( aR.) 
that the (mxm)-matrix aq; is nonsingular everywhere. The Inverse Problem 

can now be stated as follows: Under which conditions on Ri' i = l, ... ,m, 

does there exist locally a function L(q 1, ••• ,~,q1, ••• ,qm) such that 

d aL 31 ( • '') • I dt -,:;.- - -~- = R. q,q,q ' i = , ••• ,m 
oqi oqi l. 

(3.123) ? 

In other words, when are R.(q,q,q) = 0 locally the Euler-Lagrange equations 
l. 

corresponding to the Lagrangian function L. Remark that since we assumed 

(a:i~14j) , with L satisfying (3.123), has ( 3R.) 
that aq; is nonsingular, also 

to be nonsingular everywhere. 

The solution of the Inverse Problem is as follows. 

Let q(t,£) = (q 1(t,£), ••• ,qm(t,£)), with£ E lR and small, be a family of 

paths in Q = lRm, such that qk(t,£) is at least c2 int and c1 in£. 

Define the variations oq = (oq 1, ••• ,o~) by 

(3.124) 
aqk 

oqk(t) := 8£ (t,0) ' k = I, ... ,m 

Then define the variational forms M,(oq) of R. , i = 1, ••• ,m, 
l. J. 

(3. 125) 
aR.., m aR. 
. J. ' l. • M.(oq(t)):= -a- -o:= l -a- (q(t,0),q(t,0),q(t,0)) oqk(t) 

1. 8 £- k=I qk 
3R. 

+ .aq~ (q(t,O),q(t,O),q(t,O)) oqk(t) 

with R..(t,£):= R.(q (t,E),q(t,E),q(t,£)). 
J. l. 

~ With every system of variational forms Mi as above we can uniquely 

associate a system of variational forms M.(6q) such that there exists a 
~ J. 

function Q(oq,oq) with the property that 

m d ~ l °8q. M. (oq) - oq. M. (8q) = dt Q(oq,oq) 
i=I 1. 1. J. 1. 

(3.126) 
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holds for all variations oq and oq of q (•,O) as defined in (3.124) (see 

SANTILLI (1978)). Mi(§q), i = l, ... ,m, is called the adjoint system. 

The solution of the Inverse Problem is (SANTILLI (1978)): 

There exists (locally) a function L(q,q) such that 

d~-~=R 
dt aqi aqi i 

if and only if the variational forms M. of R. are self-.adjoint, i.e. 
1 1 

M.(oq) = M.(oq), i = l, ... ,m. This condition is equivalent.to the following 
1 1 

equations 

(3.127) 2 .i._ 
dt 

a\ - cl¾_ = .!. .i._ (a~i - 3!<) for all i,k = 1, ... ,m 
aqk aqi 2 dt aqk aqi 

(in SANTILLI (1978) these equations are attributed to Helmholtz). 

Now we want to show that the Inverse Problem is a special case of the 

Restricted Hamiltonian Realization Problem. Take Y:= ]Rm with 
* m m y = (y1, ... ,ym) E Y, and W:= TY= JR x JR • Let_w = (y 1, ... ,ym,F 1, ... ,Fm) 

be natural coordinates for T*Y. Instead of the equations R.(q,q,q) = 0 we 
1 

consider the system of second-order differential equations on W 

(3.128) 0 P.(w,~,w):= R.(y,y,y) - F1., i = l, ... ,m 
1 1 

If the Inverse Problem corresponding to Rican be solved with a Lagrangian 

function L, then we obtain the following realization of the external system 

on W defined, by Pi: 

(3.129) d clL 
dt a°q: 

1 

i I, ... ,m 

i.e. a Lagrangian system (Section 3. 6), namely the Euler-Lagrange equations 

with external forces. We already remarked that (A) is necessarily aq.aq. 
. 1 J 

everywhere nonsingular. Therefore {3.129) is equivalent to the Hamiltonian 

system 
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aH q. = ap. 
(3,130) l. 

l. 

aH F. p. = - -- + 
l. aqi l. 

y. 
l. 

q. 
l. 

aL aL 
with H(q 1, •.• ,4m,3 -, ... ,r) 

qi 4m 
and aL 1.· l pi=aq.' = , ... ,m. 

l. 

i I, ... ,m 

i I, ... ,m 

~ 31 • • 
l T q. - L(q,q) 

i=l qi i 

Conclusion re as described by (3.128) has a Hamiltonian realization 

(3 .'130). Furthermore it is easy to see that the observability codistribution 

of (3.130) has constant dimension 2m, and hence (3,130) is a locally minimal 

Hamiltonian system. 

Finally we interpret equation (3.126) in our framework. Since 

R/y,y,y), =Fi, i = l, .•• ,m, Mi(oy) as in (3.125) equals oFi. Hence 

(3.126) can be also written as 

(3.131) , oy. oF. 
l l. l. 

~ d ~ 
- oy.cSF. = -d Q(oy,oy) 

, l. l. t 

or, if we define the symplectic form we={~ 
m 

(3.132) we((cy,cSF), (6y,6F)) = ddt Q(cy,6y) 

Now we observe that (3.132) is identical to (3.116) with w(ox,6x) Q(oy,6y). 



Notes and References for Chapter 3 

For an elaborate list of references on symplectic geometry and classical 

mechanics we refer to ABRAHAM & MARSDEN (1978). The references that we 

shall give are concerned with the system theoretic aspects. 
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Chpater 3 is mainly based on VAN DER SCHAFT (1982 d, 1982 c, 1982 b, 1983 b), 

see also the survey WILLEMS & VAN DER SCHAFT (1982). These papers are in 

turn much inspired by an innovative paper of BROCKETT (1977), and by 

TAKENS (1976). Another source of inspiration were some of the books or 

papers by HERMANN (e.g. 1968, 1973, 1974, 1976). The definition of a 

Hamiltonian vectorfield as a Lagrangian submanifold of TM, as in Section 

3.1.3, can be found in SNIATYCKI & TULCZYJEW (1972b). The result of Section 

3.1.4 is due to BROCKETT & RAHIMI (1972). Sections 3.2 and 3.2.1 are based 

on VAN DER SCHAFT (1982d). The expression of a Hamiltonian system in local 

coordinates as in (3.51) is_given in BROCKETT (1977) (apart from the fact 

that here the output y is defined as ddt 1:~) instead of - :~).The treatment 

of degenerate Hamiltonian systems is an improved version of VAN DER SCHAFT 

(1982d). Section.3 •. 2.1 is heavily influenced by BRAYTON (1971), and also 

HERMANN (1974). Section 3.2.3 is based on VAN DER SCHAFT (1982c). Theorem 

3.21 was first proved (under stronger conditions) in BASTO GONCALVES 

(1980, 1981). Section 3.3 is mainly based on VAN DER SCHAFT (1982b, 1983b). 

TheDrem 3.26 was proved in VAN DER SCHAFT (1981), while Sections 3.3.1 

and 3.3.2 are partly based on VAN DER SCHAFT (1982b). Section 3._4 is 

motivated by CROUCH & BONNARD (1980), CROUCH (1981). Some of the results 

of Section 3.5 are already stated in VAN DER SCHAFT (1982d). Section 3.6 

is an improved version of VAN DER SCHAFT (1982d). Definition 3.46 is in 

fact due to TULCZYJEW (1974). Section 3.7 is partly based on VAN DER SCHAFT 

(1983b). Finally Section 3.8 is partly based on VAN DER SCHAFT (1982b) and 

is inspired by TAKENS (1976) and SANTILLI (1978). 
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CHAPTER 4 

SYMMETRIES, CONSERVATION LAWS AND TIME-REVERSIBILITY 

4.1 Symmetries and Conservation Laws 

An important topic in the theory of differential equations or more 

general dynamical systems and physics, is the notion of symmetry. Usually 

a symmetry is a (sometimes infinitesimal) transformation of the state space 

which, roughly speaking, leaves the system invariant. The existence of sym

metries gives (physical) insight into the structure of the system. Further

more the existence of symmetries is often related to the presence of con

servation laws. These are usually seen as functions on the state space 

which remain constant along every solution path of the system of differen

tial equations under consideration. Apart from their physical relevance 

per se, conservation laws can be used for integrating the set of differen

tial equations· that constitutes the system, since they yield first inte

grals (see ARNOLD (1978)). 

In this section we show how we can define symmetries and conserva

tion laws for systems with external variables as treated in Chapters I and 

2. In sections 4.1.l, 4.1.2 and 4.1.3 we specialize these definitions to 

the Hamiltonian systems as defined in Chapter 3, and we show how in this 

case the existence of symmetries implies the existence of conservation 

laws, and vice versa. This generalizes a classical theorem on Hamiltonian 

differential equations, usually called Noether's theorem. 

Let us first consider the notion of symmetry. This can already be defined 

for the set theoretic systems as considered in Chapter I. 

DEFINITION 4.1 Let L. c WJR be a (time-invariant) external dynamical sys-
e 

tern (Definition I.I). An external symmetry for Le is a map~ : W ➔ W which 

leaves Le invariant: if w E Le then also ~(w) E Le' and if w E Le then 

there exists a; EL such that~(;)= w (~(w):JR ➔W is defined in the ob-
e 

vious way: (~(w))(t)=~(w(t))). More compactly: ~(L) = L • 
JR e e 

Let Li c (XxW) be a dynamical system in state space form (Defini-

tion 1.2). A symmetry for Li is a pair(~.~), with~: X ➔ X and~ : W ➔ W, 

which leaves Li invariant, i.e. (~,~)Li= Li. 
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It is clear that if (</i,1/J) is a symmetry for E., then ij, is an external 
i 

symmetry for the external behavior Ee of ,:;i. We give some simple examples 

of (external) symmetries. The last two examples will be treated in more 

detail at the end of Section 4.1.2. 

Example Consider N particles in JR3 in a potential field V(q 1, .•• ,qN). 

Suppose that we observe the positions of the first two particles, i.e. 

y 1 = q1 and Yz = q2• Now suppose that these two particles are "identical", 

and that V(~,q2 , ••• ,qN) = V(q2,q 1, ••• ,qN). Then an external symmetry 

ij, : JR6 + JR is given by ij,(y 1 ,y2) = (y2,y1). It is clear that ij,(E ) = ,:; • 
3N 3N e e 

The internal map rP : JR + JR such that (rj>,ij,) is a symmetry is defined 

by rJ>(q 1,q2, ••• ,qN) (q2,q1, ••. ,qN). If we can also exert forces on the 

particles q1 and q2 then the external symmetry also has to include the per

mutation of these forces. 

Example 2 Consider a mass m attached to a spring with spring constant k, 

say with one degree of freedom. The position of mis given by q E JR. We 

observe the position, i.e. y = q, and we can exert a force Fon m. Hence 
2 W = R. The external system,:; is given by all force functions F(•) and 

, e 
corresponding output functions y(•) = q(•). This external system possesses 

h f 1 . JR2 JR2. b () t e set o externa symmetries ij,a: + given y ij,a y,F = 

(y+a,F+ka), a E JR. The corresponding internal maps <Pa are given by <Pa (q,v) 

(q+a,v), with v the velocity, i.e. translations over a. 

Example 3 Consider a mass m in JR3 subject to a potential field V and un

dergoing an external force F. The external variables are F and the obser

vation of the position, i.e. y = q. Suppose now that Vis invariant under 

rotations around the e 1-axis in JR3 • Then an external symmetry is given 

by rotating the output y around the e 1-axis and simultaneously rotating 

the direction of the exerted force around the e 1-axis. The internal map rP 

consists of rotating the position together with the velocity (or momentum) 

around the e 1-axis. 

Remark: We can extend the above definition of (external) symmetry by al·-

lowing maps ij, : W x JR ---l> W x JR and <j> : X x JR - X x JR, with 

JR the time axis, such that ij, (Ee) = ,:;e and (<j>, ij, ),:;i = ,:;i. Notice also that 

if we allow the external systems Ee to be time-variant, then the property 

of being time-invariant can be expressed by saying that the shift, operators 

(STw) (t) := w(t-T), T E JR, are symmetries (in this generalized sense) for 

,:;e. 
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Let now w be an external symmetry for L, and let L. be a state space reali-
e l. 

zation of L with state space X. We can pose the following basic questions: 
e 

Question I: Does there exist a map$: X + X such that ($,w) is a symmetry 

for L.? 
l. 

and if so: 

Question 2: When is$ : X + X uniquely determined by W : W + W? 

The following proposition gives a (partial) answer. 

PROPOSITION 4.2 Let L. be a realization of L • Let 
l. e 

L. be externally in-
1. 

duced (Definition 1.4), i.e. there exists a map f : L + X such that if 
e 

(x,w) E Li then x(O) 

Then we can define$ 

only if {f(w1)=f(w2) 

f(w). Let w: W + W be an external symmetry for Le. 

X + X such that ($,w) is a symmetry for Li if and 

= fow(w 1 )=f 0 w(w2), for all w1 ,w2de}. Furthermore 

$ is unique if and only if f is surjective. 

If all minimal realizations of Le are equivalent (see Theorems 1.6 and 1.7) 

then if Li is a minimal realization of Le' we can always define$, and$ 

is unique. 

PROOF $ has to make the following diagram comutative. 

L 
f 

X e 

(4. l) w l v $ 

L• X e f 

A necessary and sufficient condition for the existence of$ is that f(w 1) = 

f(w2) implies that f 0 w(w1) = f 0 w(w2). If this condition is satisfied we 

define$ as follows. Let xO E Im f. Then there exists (x,w) E 

x(O) = xO. Since w EL, also w(w) EL and there exists an; 
e e 

L with 
l. 

such that 

(;,w(w)) E Li. Then define $(xO) = x(O). Notice that$ is arbitrary out-

side Im f and is uniquely determined on Im f. Hence if Im f = X then$ is 

unique. Suppose that all minimal realizations of L are equivalent. Let 
e 

Li be minimal. Since w(Le) = Le 

tit¼ is a minimal realization of 

also (id,w) (Li), with id : X + X the iden<-

Le· Hence there exists an equivalence 

$ : X + X between Li and (id,w)(Li). Moreover$ is unique (Proposition 

1.8). It is easy to see that ($,w) is a symmetry for L •• 
l. 

Remark: + 
We notice that the "canonical" realizations Li, Li 

□ 
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nition 1,4) satisfy the above conditions, i.e. if 1/J is an external symmetry 

for 

i::. 
]. 

and 

E, then there exist unique ¢'s 
e + 

or E .- • The crucial observation 
]. 

w1R-w2 = ij,(w1 )R- ij,(w2). 

Let us now proceed to the definition of a symmetry for smooth non

linear systems E(X,W,B,f) (Definition 2.20). 

DEFINITION 4.3 A symmetry for a nonlinear system E(X,W,B,f) is a triple 

(¢,1/J,~), such that¢: X ➔ X, ¢ : W ➔ Wand~: B ➔ Bare diffeomorphisms 

for which the following diagram 

B ~ B 

(4.2) 1T 1~;x=:;<] 1T 

~x 1rx 
X 

¢ 
X commutes. 

It is clear that if (¢,1/J,~) is a symmetry for E(X,W,B,f) then (¢ ,i/1) 

is a symmetry for Ei(X,W,B,f) and 1/J is an external symmetry for Ee(X,W,B,f), 

in the sense of Definition 4.1. For nonlinear input-output systems (Defi

nition 2.21) the above definition simplifies considerably. 

PROPOSITION 4.4 Let (¢,i/1,~) be a symmetry for a nonlinear input-output 

system L(X,B,Y,g,h). Choose local fiber respecting coordinates (y,u) for B, 
*~ and (x,u) for B = h B, output induced by (y,u), such that E is given by 

x = g(x,u) 
(4.3) y h(x) 

Then 1/J : B ➔ B has the form ij,(y,u) = (p(y),v(y,u)) for certain smooth maps 

p and v. Also h 0 Hx,u) = ij,(h(x,u)) = ij,(h(x),u) = (p(h(x)),v(h(x),u)) 
rv *rv ,.._, rv 

(recall the definition of h : h B ➔ B, i.e. h(x,u) = (h(x),u)). Moreover 

the following holds: 

g(• ,v(h(•) ,u)) 

ho¢ 

PROOF We refer to the (similar) proof of Proposition 2.29. □ 
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Remark: Note that (4.4) expresses that$ maps the vectorfields g(•,u) onto 

the feedback transformed vectorfields g(•,v(h(•),u)). This feedback is ac

tually output feedback. 

For smooth nonlinear systems it is mathematically advantageous to 

look at infinitesimaZ symmetries. 

DEFINITION 4.5 Let E(X,W,B,f) be a smooth nonlinear system. An infinitesi

maZ symmetry is a triple (S,T,R) with S,T and R vectorfields on X,W, res

pectively B, such that (St,Tt,Rt) is a symmetry for every t E 1R and t small 

(Here St' Tt and Rt denote the one-parameter groups generated by S,T and R; 

they are at least defined locally and for small t). 

The notion of infinitesimal symmetry can be expressed in the follow

ing concise way. Recall the definition of S for a vectorfield Son X (see 

after Definition 2.25); if S has one-parameter group St then Sis the vec

torfield on TX with one-parameter group (St)*. 

PROPOSITION 4.6 Let E(X,W,B,f), with f = (g,h), be a nonlinear system. 

Then (S,T,R) is an infinitesimal symmetry, if and only if 

(i) g*R S 

(ii) h*R T 

PROOF (S,T,R) is an infinitesimal symmetry if and only if (4.2) commutes 

for every (St,Tt,Rt), t small. Equivalently: 

goR 
t 

hoR. 
t 

Differentiating (i)' and (ii)' with respect tot, int 

and (ii). 

0, yields ( i) 

For infinitesimal symmetries we can answer Question 2 after Defini

tion 4.1. affirmatively. 

□ 

PROPOSITION 4.7 Let E(X,W,B,f) be locally minimal (Definition 2.26). Let 

(s 1,T,R1) and (s2 ,T,R2) be infinitesimal symmetries. Suppose that the dis

tributions span {R1 (x,u)-R2(x,u)} on Band span {s 1(x)-S2 (x)} on X have 

constant dimension (i.e. 0 orl). Then R1 = R2 and s1 = s2• 

PROOF By Proposition 4.6 it follows that 
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( i) g* (R1-R2) 

( ii) h* (R 1 -R2) 

Now define the distributions Don X and Eon B by 

D(x) = span {s 1(x)-S2 (x)} 

E(x,u) = span {R1(x,u)-R2(x,u)} 

Then E and Dare by assumption of constant dimension, and clearly involu

tive. Moreover they satisfy 

(i) g E C D 
* 

(ii) h*E 0 

(iii) ,r*E D 

Since L(X,W,B,f) is locally minimal, this implies E 

RI= R2 and s1 = s2• 

0, D 0 and hence 

□ 

Remark: We can avoid the regularity assumptions on R1-R2 and s1-s2 in the 

following way. It can be easily seen that R1-R2 € ker Oe, with the codis

tribution Oe on Bas defined after Theorem 2.35. Therefore, if we assume 

that dim Oe = dim Bon an open and dense subset of B (an assumption which 

is somewhat stronger than local minimality, Prop2.39), then this implies 

that R1-R2 is zero on an open and dense subset of B, and hence by conti

nuity R1 = R2 everywhere •. In the case of affine input-output systems (Defi

nition 2.22) it can be seen that s1-s2 € ker 0, with Oas in Definition 

2.33. Therefore if dim O = dim X on an open and dense subset of X, then 

SI = S2. 

Hence for a locally minimal system, Rand Sare in fact uniquely 

determined by T. We now treat (external) symmetries for linear systems 

(see Section 2.1.2, 2.1.3). 

DEFINITION 4.8 Let Le(P) be an external linear system with PE ]Rpxq[s], 

and W = JR4 • An external symmetry is a nonsingular linear map Q: W + W 

such that Q(L (P)) = L (P). 
e e 

Let L(A,B,C,D) be a linear system with state space X and inputspace U. A 

symmetry is a triple (S,Q,T), with S X + X, Q: W +Wand T: Xx U-;,. 

X x U nonsingular linear maps, such that diagram (4.2) commutes. 

PROPOSITION 4.9 Let (A,B,C,D) be a linear system 

X Ax+ Bu , X € X, u € u, w € w 
w Cx + Du 

Let (S,Q,T) be a symmetry. Then there exists a nonsingular linear map 
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R: U + U, and a linear map F: X + U such that Tis given by (5 
F 

0 
R). More-

over the following identities hold 

(4.5) 

A= S- 1 (A+BFS-I)S 

BR 

QC 

DR QD 

Furthermore it follows that F(Ker C) c Ker D. Hence if Dis injective (this 

is the case if L(A,B,C,D) is feedback equivalent to an input-output system, 

cf. Proposition 2.1), then F(Ker C) = 0 and there exists an H: W + U such 

that F = HC. 

PROOF Follows from the commutativity of (4.2). 

In the light of Proposition 4.9 we call (S,Q,F,R) as in (4.5) or 

(S, Q, H, R), if F = HC, a symmetry for a linear system. 

□ 

Finally, we show that for linear systems we can answer Questions I and 

2 after Definition 4.1 affirmatively. 

THEOREM 4.10 Let PE JRp?<q[s], with W = JRq. Let Q: W + W be an external 

symmetry. This is equivalent to Ker P(s)Q = Ker P(s), Vs E ~. or 

E(P(s)Q) = E(P(s)). Let L(A,B,C,D) be a minimal realization of Le(P). Then 

there exist linear maps S: X + X, R: U + U, H: W + U with det Sf O, 

det Rf Osuch that (S,Q,H,R) is a symmetry for L(A,B,C,D). Moreover S,R 

and HC are uniquely determined by Q. 

PROOF Since Q is an external symmetry, also L(A,B,QC,QD) is a minimal rea

lization of L (P). Hence L(A,B,C,D) and L(A,B,QC,QD) are feedback equiva-
e 

lent (in a unique way). Hence there exist S,R and F satisfying (4,5). A 

minimal realization of Le(P) has the property that Ker D = 0. Therefore 

F = HC. 

We now proceed to the definition of a conservation law. 

□ 

JR DEFINITION 4.11 Let Li c (XxW) be a dynamical system in state space form. 

Let E c WJR be its external behavior. Let F : W + JR be such that for 
e e 

every w E Le' Fe(w(•)) E Lloc' and let F : X +JR. We call the pair (F,Fe) 

a con~ervation law if 

(4.6) 
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holds for all (x,w) E Li and for all t 2 ~ t 1. 

We call Fin (4.6) the conserved quantity. Equation (4.6) expresses 

that the decrease or increase of F along a trajectory xis only a function 

of the external trajectory w. 

For smooth nonlinear systems we can take the differential version of 

(4.6). Recall that if F : X + 1R, then F : TX+ 1R is defined by F(v) = dF(v), 

for v E TX (see after Definition 2.25). 

DEFINITION 4.12 Let L(X,W,B,f) with f = (g,h), be a nonlinear system. 

Let Fe : W + 1R and F : X + 1R be smooth functions. Then (F ,Fe) is a con

servation law if 

.(4. 7) F0 g = Feoh. 

Notice that if (x,u), with x = (x 1 , ••• ,xn), are fiber respecting coor

n 
dinates for B, and w coordinates for W, then F(x,;) l ~ x Hence 

• I ox. i. 
i= i 

Fog(x,u) 
n oF • l -0- g. (x,u) _and }' 0 g(x,u) is just the time-derivative of F in 

i=I xi i 

x along a trajectory of the vectorfield g(·,u). So we can read (4.7) as 

d ( ) ( ( )) . h d h ' d ' . . h ( ) dt F x,u = Fe h x,u , wit dt t e time- erivative wit respect tog •,u 

(i.e. ddF = £ ( )F). Instead of (4.7) we shall frequently use the sugges-
t g • ,u 

tive notation d~lrF = Fe. 

Examples of conservation laws as in Definition 4.11 or 4.12 appear in 

many instances. Consider an electrical network consisting of only lossless 

elements (i.e. capacitors, inductors, transformers or gyrators). Take F, the 

conserved quantity, to be the energy stored in the capacitors and inductors. 

Let V E ]Rm and I E ]Rm be the voltages and currents at the external chan-
e e T 

nels of the network. Define F (V ,I)= V I, i.e. the supplied power. 
e e e, e e 

Then since the circuit is lossless d:ILF = Fe. 

Another example is provided by the first law of thermodynamics. We take 

F equal to the internal energy and Fe equal to the sum of the external in

stantaneous work performed on the thermodynamical system and the rate of 

the supplied heat. More examples of conservation laws for Hamiltonian sys

tems will appear at the end of Section 4.1.2. 

Notice that Definitions 4.11 and 4.12 also cover the usual definitions of a 
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conserved quantity for autono.mous systems (i.e. no external influences). 

Indeed if the system is autonomous then usually F (w(t)) = 0 for every 
e 

w E Ee' and hence (4.6) and (4.7) yield F(x(t2)) = F(x(t 1)) for all 
· 1 d O · h d h · d . t. 1 the state t 2 ~ t 1, respective y dt F = , wit dt t e time,- eriva ive a on6 

space equations of the system. 

4.1.1 Symmetries and Conservation Laws for Hamiltonian systems. 

In this section we show that in the case of Hamiltonian systems the 

existence of (infinitesimal) symmetries and of conservation laws is close

ly related to each other. First we define Hamiltonian (infinitesimal) sym

metries. 

DEFINITION 4.13 Let E(M,W,B,f) be a full Hamiltonian system, with (M,w) 

and (W,we) symplectic manifolds. A symmetry(¢,~,~) for Eis called Hamil

tonian if ¢*w =wand ~*we= we. 

An infinitesimal symmetry (S,T,R) is called Hamiltonian if Esw 
e 

ETw = 0. 

0 and 

So an (infinitesimal) Hamiltonian symmetry should respect the sym

plectic structure on Mas well as on W. Actually, in the minimal case, the 

internal symplectic invariance on Mis implied by the external symplectic 

invariance on W: 

THEOREM 4.14 Let E(M,W,B,f) be a full Hamiltonian system, which satisfies 

the minimality rank condition (Definition 3.20). Let(¢,~,~) be a symmetry 

such that ~*we= we. Assume that ¢*w-w has constant rank. Then¢* w= w. 
e 

Let (S,T,R) be an infinitesimal symmetry such that ETw 0. Assume that for 

every t small, st*w-w has constant rank. Then £SW= 0. 

PROOF Since(¢,~.~) is a symmetry, the commutativity of (4.2) yields that 

(¢*,~) (f(B)) = f(B). Therefore E(M,W,B,f), with f = (¢*og,~oh) is also a 
. . * *• * * e *• * e * * e Hamiltonian system. Hence g ((¢*) w) = h (~ w ) and g w = h w = h ~ w 

* *· *· * g ((¢*) w). This yields g n = 0, with n:= ¢ w - w. In the same way as in the 

proof of Theorem 3.21 we derive that since E satisfies the minimality rank 

condition(and hence is strongly accessible) n = O, or ¢ * w = w. 

Remark: We can avoid the regularity conditions on ¢ * w - w and (S ) * w - w 
t 

by requiring that E satisfies the strong minimality rank condition (Defini-

tion 3.20), i.e. dim Oe = dim Bon an open and dense subset of B(see the 

Remark after Theorem 3. 21). 

□ 
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From now on we concentrate on infinitesimal symmetries. We shall speak 

about symmetries when we actually mean infinitesimal symmetries. 

Recall the set-up for Noether's theorem on Hamiltonian vectorfields 

(see ABRAHAM & MARSDEN (1978), ARNOLD (1978)). A vectorfield Son (M,w) is 

called a Hamiltonian symmetry for a Hamiltonian vectorfield ¾ on M if 

(i) £SW = 0 

(ii) S(H) = 0. 

Then it follows from (i) that there exists (locally) a F : M ➔ JR such that 

S =¾,·Moreover (ii) implies ¾(F) = -S(H) = 0. Hence Fis a conserved quan

tity for¾· Conversely, if F: M ➔ JR is such that ¾(F) = O, then S = ¾, 

satisfies (i) and (ii) and is a Hamiltonian symmetry. 

Concluding we can state Noether's theorem as follows: if Sis a Hamil

tonian symmetry for¾ then there exists locally a conserved quantity F for 

¾· If on the other hand F is a conserved quantity then ¾, is a Hamiltonian 

symmetry. 

Remark: Usually a restricted version of the above is called Noether's thee

* rem. In this restricted ver~ion it is assumed that M = T Q and that the 

* symmetry vectorfields on T Qare generated by vectorfields on Q. Originally 

Noether's theorem was stated for vectorfields on Q which leave the Lagran

gian invariant. 

In our framework we obtain the following generalization of Noether's 

theorem: 

THEOREM 4.15 Let E(M,W,B,f) be a full Hamiltonian system. Let (S,T,R) be a 

Hamiltonian symmetry. Then (locally) there exists a conservation law (F,Fe), 

i.e. ddtlEF =~Fe. Conversely if (F,Fe) is a conservation law, then there 

exists a Hamiltonian symmetry (S,T,R) such that S = XF and T = ¾, • 
e 

PROOF Let (S,T,R) be a Hamiltonian symmetry. Since E(M,W,B,f) is Hamil

tonian, g*w = h*we. Because Sand Tare Hamiltonian vectorfields, there 

exist (locally) functions F M ➔ JR and Fe : W ➔ JR such that S = ¾, and 

T =¾,.Then by Proposition 4.6: 
e 

= 
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where we have used the fact that if w(S,-) = -dF, then ~(S,-) -dF (see 

HERMANN (1976)). By using the freedom in the choice of F (uniquely deter
e 

mined by T up to a constant) we obtain Fog= Feoh. Hence (F,Fe) is a conser-

vation law. Conversely, let (F,F) be a conservation law. Define the func-
e 

tion F - F : TMxW + JR by setting (F-F ) (x,i,w) := F(x,i) - F (w), for e e e 
(x,i) E TM and w E W. Then the fact that (F,F) is a conservation law is 

e 
equivalent to: F - Fe restricted to f(B) is zero. Define the Hamiltonian 

* • * e • vectorfield ½-F on (TMxW,TI 1 w-TI 2 w) with Hamilton function F - Fe. It 
e 

is clear that X. 
F-F 

e 
= (½,,~),with ½, the Hamiltonian vectorfield on TM 

e 

and X the Hamiltonian vectorfield on W. Since F - F restricted to f(B) 
Fe e 

* • * e • is zero we obtain TII w - TI 2w (Xk,½-F) = ~(F-Fe) = 0 on f(B) for all 
e 

Hamiltonian vectorfields Xk tangent to f(B). Because f(B) is Lagrangian 

this implies that also ½--F = (½,,~) is tangent to f(B). Denote S:= ~ 
e e 

and T:= ~ . Then,since (S,T) is tangent to f(B), we obtain for every t 
e 

small: 

Now we can construct a smooth one-parameter family 1t: B + B such that 

((St)*,Tt) 0 f = f 0 1t' for every t small. Define the vectorfield 

d1t/ 
R on B by R(x) := dt t=O(x). 

Then (S, T ,R) is a Hamiltonian symmetry. D 

Remark: The proof of theorem 4.15 shows that in the definition of an infi

nitesimal Hamiltonian symmetry the vectorfield Ron Bis somewhat redundant. 

We can also define a Hamiltonian symmetry as a pair (S,T) with Sand T vec

torfields on M respectively W, satisfying 
(]..) e 0 £~ w = £ Tw = 

(ii) (S,T) is tangent to f(B) in every point of f(B). 

Often one does not consider a single symmetry of a dynamical system, 

but a group of symmetries. This can be also easily formalized in our frame

work. We do not go into details, but only give the following key observation: 
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THEOREM 4.16 Let r(M,W,B,f) be a full Hamiltonian system. Let (Si,Ti,Ri), 

i = l, ..• ,k be Hamiltonian symmetries with conservation laws (Fi,F i ), 
. . . . . . e 

i = l, ... ,k. Then ([S 1 ,SJ],[T1 ,TJ],[R1 ,RJJ) are Hamiltonian symmetries with 

conservation laws ({F\Fj},{Fi,Fj }) for all i,j = l, ... ,k. 
e e 

• l I •2 2 
PROOF Take k = 2. Then (S ,T) = (½I,¾, l) and (S ,T) = (½2,¾, 2) are 

e e 

( ) . • 1 1 • 2 - F 2 are . tangent to f B and the functions F - Fe and F e zero restricted 

• 1 1 • 2 2 • 2 2 to f(B). This yields that {F -F ,F -F } = X_•1 F 1 (F -F ) = 0 on f(B) e e -""F - e 
·l •2 1 e2 

(Poisson bracket on TMxW !) and that ([S ,S ],[T ,T ]) is tangent to f(B). D 

Remark: Let P be the Poisson algebra on M generated by Fi, i = l, ... ,k. 

Let P be the Poisson algebra on W generated by F i i = 1, •.. ,k. Define 
e e ' 

a. : P ➔ Pe such that (F,a.(F)), with FE P, is a conservation law. Then it 

follows that a. is a Poisson algebra morphism. If r(M,W,B,f) satisfies the 

strong minimality rank condition, then a. : P(modulo constant functions) 

---+- P is an isomorphism. (Use Proposition 4.7 and the Remark after Pro
e 

position 4. 7). 

4.1.2 Symmetries and Conservation Laws for affine Hamiltonian Systems. 

We now specialize the results of the preceding section to the case 

of affine Hamiltonian systems (see Section 3.3), to obtain more explicit 

formulas than is possible in the general Hamiltonian case. We already no

ticed in the remark after Theorem 4.15 that we can omit the vectorfield 

Ron Bin the definition of a Hamiltonian symmetry. Since we also suppress

ed the fiber bundle Bin the definition of an affine Hamiltonian system 

r(M,T*Y,L) (Definition 3.23) we arrive at 

DEFINITION 4.17 Let r(M,T*Y,L) be an affine Hamiltonian system. A Hamil

tonian symmetry is a pair of diffeomorphisms <•.~),with• : M ➔ Mand 

* * ~ : TY ➔ TY such that 

(i) <•*'~)(1) = L 
(ii) •* w= w, ~*we we (we the natural symplectic form on T*Y). 

An infinitesimal Hamiltonian symmetry is a pair of vectorfields (S,T), with 

Sa vectorfield on Mand Ta vectorfield on W such that 

(i) (S(z),T(z)) E TzL, ~z EL ((S,T) is tangent to L) 

(1'1') C O e 0 ~Sw = , £Tw = . 
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Remark: Analogous to Theorem 4.14 we can prove that if dim O = dim Mon an 

open and dense subset of M(i.e. the strong minimality rank condition is sa

tisfied) tliemp* we = we together with (cj>*,lji)L = L (or fTwe=O together with 

(S(z),T(z))ETzL) implies that cp*w = w (or £Sw = 0). Details can be found in 

VAN DER SCHAFT (1983 b). 

We prove 

PROPOSITION 4.18 Let (cj>,lji) be a Hamiltonian syunnetry, then 1jJ : T*Y + T*Y 

is fiber respecting. Let (S,T) be an infinitesimal Hamiltonian syunnetry. 

Then Tis fiber respecting (i.e. n*T is a well defined vectorfield on Y, 
* with n: TY+ Y the projection). Therefore T has locally a Hamilton func-

tion of the form 

(4.8) F (y,u) 
e 

m 
l u.K.(y) + V(y) 

i=I 1. 1. 

for smooth functions Ki and Von Y((y,u)= (y 1, ••• ,ym,ul, ••• ,um) are natu

ral coordinates on T*Y). 

PROOF The fiber respecting property follows from the structure of the sub-

manifold L (linear in the direction of the fibers of T*Y). If 1jJ T*Y + T*Y 

is fiber respecting and satisfying 1jJ *we = we, then there exists a diffeo-

* morphism p : Y +Yanda closed I-form Son Y such that cj> = TS 0 p , where 

TS denotes fiberwise translation by S(see ABRAHAM & MARSDEN (1978, Exercise 

5.2 B). Locally there exists a function f : Y + lR such that S = df. 

Equation (4.8) is the infinitesimal version of this theorem. D 

In the sequel we shall only deal with infinitesimal syunnetries. There

fore we omit for brevity the word infinitesimal. Theorem 4.15 specializes for 

affine Hamiltonian systems to 

THEOREM 4.19 Let E(M,T*Y,L) be an affine Hamiltonian system with output 

map C: M + Y and local representation (see Proposition 3.24) 

y. = C. (x) 
l. l. 

i = I, ... ,m 

where (y1, ••• ,ym,ul, ••• ,um) are natural coordinates and C = (C 1, ••• ,Cm). 

Let (S,T) be a Hamiltonian syunnetry. Then there exist (locally) functions 

F : M + lR , Ki : Y + lR , i = I, ••• ,m, and V : Y + lR such that 



(4.9) 
{H,F} = VoC 

{C. ,F} = -K.oC 
]. ]. 

i = I, ... ,m 

Conversely if there exist functions F: M + JR, Ki: 

and V : Y + JR such that (4.9) holds, then (~,X ) , 
F 

m e 
L u.K.(y) + V(y) is a Hamiltonian symmetry. 

i=l 1. 1. 

Y + lR, i = I, ••• ,m 

with F (y,u) = 
e 

PROOF If (S,T) is a Hamiltonian symmetry, then we know by Theorem 4.15 

that there (locally) exist functions F : M + lR, Fe : W + lR such that 

F0 g = F 0 h with g given by g(x,u) 
e 

m 

m 
~(x) - l u.XC (x) and h equal to 

i=l 1. i 

h(x,u) = (C(x),u). This yields {H- L u.C.,F} 
i=l l. 1. 

F (C(•),u) = 
e 

m 
{H,F}- L u.{C.,F} = F (C(•),u). 

i=l 1. 1. e 

Since the left hand side is affine in u, also Fe is affine. Hence there 

exist functions V and Ki on Y, i = 1, ... ,m, such that Fe(y,u) = 

m 
L u.K.(y) + V(y) (this also follows from Proposition 4.18). Then we ob

i= I l. l. 
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tain (4.9). For the converse part we refer to the proof of Theorem 4.15. D 

Remark: It can be easily deduced that V 

the zero-section of T*Y. 

0 if and only if Tis tangent to 

A maybe unsatisfying feature of equations (4.9) is that we obtain 

{H,F} = V°C, instead of {H,F} = 0 as is the usual definition of a conserved 

quantity in the case of a Hamiltonian vectorfield. However, we shall show 

that by adding a potential function P, only depending on the outputs, to 

the internal energy H we can change {H,F} = V°C into {H+P°C,F} = 0. 

(Notice that this is equivalent to applying Hamiltonian feedback, see De

finition 3.25). In fact, we can prove the following more general 

THEOREM 4.20 Let r(M,T*Y,L) be an affine Hamiltonian system. Let (Si,Ti), 

i = I, ... ,k, kSm, be Hamiltonian symmetries such that 11*Ti, i = I, ... ,k 

(by Proposition 4.18 well-defined vectorfields on Y; 11 is the projection 

* of TY on Y) are in every point of Y linearly independent and hence no-

where zero. Let (Fi,F i) be the corresponding conservation laws. Suppose 
i • e 

that {F ,F J} = 0, i,j = I, ... ,k. Then we can (locally) construct a e e 



188 

function P: Y + lR such that {H+P°C,Fi} 0, i = I, .•• ,k. 

PROOF Since {F i F j } = O, also [Ti,Tj] 0. This implies [1r Ti,1r Tj] 0. 
e ' e * * 

i,j = I, ... ,k. Therefore we can take local coordinates (yl ' ••• ,ym) for y 

i a . i 
such that 1r*T = cly. ' ]. I, ... ,k. Denote vi:= Fe, i = 1, ••• ,k. Then we 

have independent fufictions y 1, ••• ,ym and v 1, ••• ,vk, k:s;m, such that 

{y. ,y.} 0 i,j 1, ••. ,m 
]. J 

{v. ,v.} 0 i,j I, ... ,k 
]. J 

{y. ,v.} o .. i = 1, •• • ,m, j = I, ... ,k . ]. J l.J 

Therefore (Darboux's theorem, cf. ARNOLD (1978)) we can construct a com-

plementary set of independent functions vk 1 , ••• ,v such that {v.,v.} = 0, 
+ m J. J 

i = 1, ... ,m,j = k+l, ••• ,m and {y.,v.} = o .. , i = 1, ••. ,m, j = k+l, ••• ,m, 
]. J l.J 

or equivalently, {y1, ••• ,y ,v1, ••• ,v} are canonical coordinates. Then the 
* m m 

submanifold of TY given by v 1 = ••• v = 0 is Lagrangian and has there
m 

fore (locally) a generating function P: Y + lR. Since E(M,T*Y,L) has ge-
m 

nerating function H - l u.C. in the natural coordinates (y1, ••• ,ym' 
- - _i=I -1. 1. 

m 
u 1, ••• ,um), it has generating function H + P°C - l v.C. in the new ca

i=l 1. 1. 

nonical (but not necessarily natural) coordinates (yl'' • • •Ym,vl' • • · ,vm) • 
Because Fi = vi' i = I, ... ,k and therefore Ti is tangent to the section 

e 
{H+P°C,Fi} vi = ... = V = 0, it follows that = o, i = I, ... ,k. □ m 

Remark: Note that if we write C = (c 1, ••• ,Cm) corresponding to they

coordinates constructed above, we obtain 

{C.,F.} = -o .. , 
]. J l.J 

i I, ... ,m, j 1, .•. ,k. 

More details can be found in VAN DER SCHAFT (1983 b). 

Finally we observe that if a conservation law satisfies {H,F} = 0 and 

{C.,F} = O, for all i = 1, ••• ,m, i.e. Fe= O, then if dF has constant dimen-
1. 

sion I, the affine Hamiltonian system E(M,T*Y,L) is not locally minimal, 

In fact the codimension I submanifold F- 1(c) of M, with ca constant, can be 

(locally) factored out by the integral curves of the vectorfield ¾, to ob

tain a new symplectic manifold M, with dim M = dim M-2. The affine Hamil-
- * -tonian system projects (locally) to an affine Hamiltonian system E(M,T Y,L), 

which has the same external behavior as E(M,T*Y,L) (cf. Theorem 3.36, see 



also the discussion at the end of Section 3.3.2). 

We give some illustrative examples of Hamiltonian symmetries. 

Example I Consider Newton's second law, written as 

y q, q E JR, p E JR. 

If u = O, then pis a conserved quantity, indeed {2~ p2,p} = 0. Since 

{q,p} = -1 the corresponding external Hamiltonian symmetry on T*Y = T*JR 

is given by the Hamiltonian vectorfield ;y with Hamilton function u. So 

the external behavior is invariant under translation of the output y = q. 

The total symmetry is given by (S,T) =cf, f), i.e. translations of q 
q y d 

and y. The conservation law equals (F,Fe) = (p,u), indeed dt p = u. 

Example 2 Consider the affine Hamiltonian system 

q, q E JR, p E JR 

I 2 dR 
with Ra potential function. Then {2m p +R(q),p} = - dq(q). Since y = q 

dR 
we can define V : Y + 1R (with Y = JR) as V(y) = - dy(y). Because {q,p} 

c1 d2R a * we obtain the external Hamiltonian symmetry ay + dy2 (y) au on TY, with 

Hamilton function u - !~(y). Thus the conservation law is (F,Fe) = 
. a c1 d 2R a 

and the Hamiltonian symmetry 1.s (-;;-, -;;-+--2 (y) ""). 
aq ay dy au 

dR 
(p u - -(y)) 

' dy 

Of course the potential function Pas in Theorem 4.20 is given by -R. 

Example 3 Consider a particle in JR3 with mass min a potential field V, 

and subject to an external force u: 

. av 
- -- + u, aq. 

. l. 

y. = 
l. qi' 

3 

i = 1,2,3. 
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-1 

I 
i=I 

Suppose that V(q) (or equivalently I 2 
Wi + V(q)) is invariant under ro-

tation around the e 1-axis. Then we know that the rotations around the e 1-
* 3 axis generate a symmetry S on T 1R , the phase space. For zero external 

force the angular momentum around the e 1-axis is preserved, i.e. 
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dI 
dt 

However for a nonzero external force u we obtain 

* Now I:= <yxu,e 1> is a function on TY. Hence (I,Ie) forms 

law. The corresponding external Hamilton symmetry T:= XIe 

by 

( 0 0 0) (y I) 
0 0 -I Yz 

0 0 Y3 

d 
dt 

a conservation 
* . . on TY is given 

This expresses the fact that the output corresponding to an external force 

whose direction is rotated around the e 1-axis, is obtained by rotating 

the output in the same way. 

Example 4 Consider the rigid body with three controls as treated in Sec

tion 3.5. The internal energy is invariant under left translation L h = gh, 
g 

g,h E S0(3). The infinitesimal generators of this left action of S0(3) on 

itself are the right-invariant vectorfields on S0(3). Since C: T*so(3) -➔ 
Y = S0(3) is just the projection, the Hamiltonian symmetries are of the 

form (R*,R*), with Ra right-invariant vectorfield on S0(3), and R* the 

induced vectorfield on T*so(3). 

In the case of the rizid body with two controls we have an output 

map T*so(3) __:!!.....;.. S0(3) ~ s 2 • The map C: S0(3) - s 2 is obtained 

by factoring out a ieft-invariant distribution Don S0(3) (cf. Section 3.5). 

Now it can be easily checked that no right-invariant vectorfield Ron S0(3) 

projects under C to a well-defined vectorfield on s 2 . Hence the usual sym

metries for the rigid body do not yield any Hamiltonian symmetry for the 

rigid body with two controls. 

We close this section by giving the definition of a symmetry for 

degenerate Hamiltonian systems (see for more details VAN DER SCHAFT (1983 b). 

DEFINITION 4.21 Let E(M,T*Y,L=L'n(TMxP)) be an affine degenerate Hamil

tonian system (Definition 3.28). A pair of vectorfields (S,T) is an infini

tesimal Hamiltonian symmetry for E(M,T*Y,L) if (S,T) is an infinitesimal 

Hamiltonian symmetry for E(M,T*Y,L') and the vectorfield Tis tangent to 

Pc T*Y, i.e. T(z) ET P for every z E P. 
z 



191 

Remark: A similar definition can be given for a general degenerate Hamil

tonian system (Definition 3.10) by requiring that Tis tangent to the res

triction manifold K. 

4.1.3 Synunetries and Conservation laws for linear Hamiltonian systems 

In this section we briefly sketch the situation for linear Hamiltonian 

systems. 

DEFINITION 4.22 Let I (P) be an external Hamiltonian system on (W,Je) 
e 

(Definition 3.43), i.e. dim Ker P(s) = m, for each s, and Ker P(s) is for 

every s = iw, w E lR, a Hermitian Lagrangian subspace of (WC,wee), where 

weCis the Hermitian symplectic form on We induced by Je. An external linear 
'l . . 1 h h QT e e Ham~ ton~an symmetry is an externa symmetry Q: W + W sue tat J Q = J. 

We obtain (compare Theorem 4.14) 

THEOREM 4.23 Let Ie(P) be an external Hamiltonian system and let I(A,B,C,D) 

be a minimal Hamiltonian realization with state space (X,J). Let Q be an 

external Hamiltonian symmet~y. Then there exists a symmetry (S,Q,H,R) for 

I(A,B,C,D) (Theorem 4.10). Moreover S : X +Xis symplectic, i.e. STJS = J. 

PROOF By Theorem 3.40 we may assume that I(A,B,C,D) is a minimal input

output realization of re(P), with C = (i) and D = (~) in a canonical basis 

of W. It follows from (4.2) that Q in this basis has the form Q = ( QI OQ ) . 
Q2 3 

· • l . ( T)-1 d T Moreover since Q is symp ectic Q3 = Q1 an Q1 Q2 
T Q2 Q1. It also 

T -I follows from (4.2) or (4.5) that R =(Q 1 ) and that we may take H = Q2 . 

Then (4.5) yields: SA= AS+ BQ2C, SBQ 1T =Band Q1C =CS.Since I(A,B,C,D) 

is a Hamiltonian input-output realization ATJ + JA = O, BTJ = C. Therefore 

(I) STJB = -STc? = -c?Q T = JBQ T = JS-IB 
I I 

(2) STJ(AB) = -STATJB = -(ATST-CTQ2TBT)JB = -ATSTJB + CTQ2TCB. 

T T T -I -J -I -i - -I Now by (I) -AS JB = -A JS B = JAS B = J(S A+S BQ2CS )B 
-I -I - -I -I - -I T -I -JS (AB)+ JS BQ2Cs B. Furthermore JS BQ2CS B = JBQ 1 Q2Q1 CB 

T - -T T- T -I 
JBQ2 CB =-c Q2 CB. Hence S J(AB) = JS (AB). By induction we can prove 

that STJ(ArB) = JS- 1(ArB), for every r = 0,1,2, .... Then by controllabili-

ty STJ =JS-I, or STJS = J. 0 

- - -I - -I Remark I: Notice that since Q1C = CS we obtain A= S (A+BQ2CS )S = 

S-I (A+BQ2Q1-I C)S. Because (Q Q -I / (QT )-IQ T Q Q -I , the term 
2 I I 2 2 I 
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-1 -
BQ 2Q1 C is Hamiltonian feedback (Definition 3.25). 

Remark 2: By using the same arguments as above, we can prove that two mi

minal linear Hamiltonian realizations L.(A.,B.,C.,D.) of L (P) with state 
J J J J J e 

spaces (X.,J.), j = 1,2, are linked by an equivalence map S: x1 + x2, such 
T J J 

that S J 2S = J 1 (compare Theorem 3.21, see also the end of Section 5.2.2). 

As we already remarked, it follows by the state space isomorphism 

theorem (see for instance BROCKETT (1970)), that Sin (S,Q,H,R) is uniquely 

determined by Q. Let us now assume that a group G of external symmetries 

for re(P) is acting on W. In other words, there exists a group represen-

tation G 

try for 

tion of 

p 
L (P). 

e 

Gl(W), such that every Q E Imp is an external symme-

If L(A,B,C,D) with state space (X,J) is a minimal realiza-

Le(P), it follows by Theorem 4.23 that for every Q E Imp there 

exists a unique SQ : X + X, 

is easy to see that SQQ 
I 2 

another representation G 

T 
such that SQ JSQ J. Since SQ is unique, it 

SQ SQ if Q1,Q2 E Imp. Hence we have obtained 
I 2 

(J 
Gl(X), which is equivalent to the re-

presentation p. Notice also that Imp is contained in the space of symplec-

tic matrices on (W,Je) and that Im cr is contained in the group of symplec-

tic matrices on (X,J). 

Finally, instead of linear Hamiltonian symmetries we can also consider 

infinitesimal linear Hamiltonian symmetries. The associated conservation 

laws are quadratic functions of x and w. 

4.2 Time-reversibility 

In this section we deal with a special kind of "symmetry", namely 

time-reversibility. This notion does not fit into the definition of symme

try given before, since it involves a change of time-direction. 

After treating time-reversibility for general set-theoretic,non

linear and linear systems, we look at time-reversible Hamiltonian systems. 

For linear and affine nonlinear Hamiltonian systems we are able to prove 

that, very roughly speaking, time-reversibility corresponds to the proper

ty that the internal energy is the sum of a "kinetic energy" and a "poten

tial energy" and that the inputs are really external "forces". This shows 

that the often encountered statement that "Hamiltonian systems are neces-



sarily time-reversible" is only true for a specific, although important, 

subclass of Hamiltonian systems. 
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In analogy with Section 4.1 we define time reversibility first for 

set-theoretic systems (see Section 1.2). Let V be an arbitrary set. We 

define the time-reversal operator R: VJR + VJR by (R(v))(t) = v(-t), for 

V E V]R. 

DEFINITION 4.24 Let L c WJR be an external (time-invariant) dynamical 
e 

tem (Definition I.I). Then Le is time-reversible if R(L ) = L • e e 

A definition of time-reversibility for a dynamical system in state 

space form L. is more problematic. Of course we could require that 
i 

R(Li) =Li.However, this requirement is too strong, especially since we 

want that time-reversibility of Le is more or less equivalent to "time

reversibility" of Li' if Li is a minimal realization of Le· Therefore 

sys-

DEFINITION 4. 25 Let L c (XxW) 1R be a dynamical system in state space form 
i 

(Definition I. 2). Let R (XxW) 1R + (XxW) 1R be the time-reversal operator. 

L, is dynamic time-reversible if there exists a map¢ : X + X, with ¢2 = id 
i 

(¢ is an involution), such thatR 0 (¢,id)(Li) = Li (with ((¢,id)(x,w))(t):= 

(¢(x(t)),w(t))). ¢ is called the time-reversing symmetry. 

Example: Consider an autonomous system described by the equations: 
.. av < ) . 3 . . . m.q. + -cl- q1, ... ,q = O, i = 1, ••• ,n, qi E 1R , i.e. n particles in a 
ii qi n 

' 1 f. ld Th . . b ( • • ) JRGn. Thi' s potentia ie • estate is given y q1, .•• ,qn,q 1, •.• ,qn E 

system is dynamic time-reversible with time reversing symmetry (q 1, ••. ,qn' 

q1,···,qn) .,..__ (q 1, .•• ,qn,-q1, ... ,-qn). If we define the output 

y = (q 1, .•. ,qn) (the positions),then the external system with external 

variables y is time-reversible, i.e. if y(·) : JR + JR3n belongs to the 

external behavior then also the time-reversed function Ry(•) : 1R + JR3n is 

a feasible external trajectory. If we assume that we can also exert forces 

on then particles then the resulting external behavior consisting of all 

functions (y(•),F(•)) : 1R + JR3nx JR3n (with F = (F 1, •.• ,Fn) the ex-, 

ternal forces) is also invariant under time-reversal. So if F(•) yields 

y(•) for a certain state space trajectory, then there exists a state space 

trajectory such that the time-reversed external force RF(•) yields Ry(•). 

Remark: Note that if we extend the definition of symmetry (see the remark 

after Definition 4.1) then time-reversibility is a synnnetry in this genera

lized sense. 
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It is clear that if L. is dynamic time-reversible, then the external 
]_ 

behavior L of L. is also time-reversible. The question arises when the 
e i 

time-reversibility of Le implies dynamic time-reversibility of Li. 

PROPOSITION 4.26 (Compare Proposition 4.2). Let Le be time-reversible, and 

let L. be an 
]_ 

there exists 

exists a map 

externally induced realization of Le (Definition l .4), i.e. 

f : L + X such that (x,w) E L. = x(O) = f(w). Then there 
e i 

¢ : X + X with ¢2 = id such R0 (¢,id) L. = L. (i.e. L. is dy-
i ]_ ]_ 

namic time-reversible) if and only if f(w 1) = f(w2) = f 0 R(w 1) = 

f 0 R(w2), for all w1,w2 E Le. Furthermore¢ is unique if and only if f is 

surjective. If all minimal realizations are equivalent, then minimality 

of L. implies that we can always define¢, and that¢ is unique. 
]_ 

PROOF ¢ has to make the following diagram commutative 

L 
e 

f 

f 

X 

❖ 

X 

A necessary and sufficient condition is that f(w 1) = f(w2) = f 0 R(w1) = 
f 0 R(w 1). Then¢ is uniquely determined on Im f. Define¢ outside Im f such 

that ¢2 id. We prove that¢ inside Im f satisfies ¢2 id. Let (x,w) E Li 

with x(O) = xO = f(w). Then ¢(xO) = x 1, with x 1 = x(O) if (~,Rw) E Li. 

Then R(¢(~),R(w)) = (R 0 ¢(~),w) E Li and hence xO = ¢(x1) = ¢2(xO). Suppose 

now that all minimal realizations are equivalent. Let L. L and L. 
i e i 

minimal. Then RL. is also a minimal realization. Hence there exists a uni
i 

que ¢ : X + X such that (x,w) E L. = R(¢(x),w) E L. (see Proposition 
]_ ]_ 

1.8). 

+ 
Remark: We notice that L~ satisfies the above conditions, i.e. if L is 

+ i e 
time reversible, then Li is dynamic time-reversible. The crucial observa-

□ 

+ - - + tion is: w1R w2 => (Rw1 )R (Rw2) and w1R w2 = (Rw1 )R (Rw2). Notice 

that the other "canonical" realizations L _+ and L .- do not necessarily 
]_ ]_ 

satisfy the conditions ! 

We now proceed to the definition of time-reversibility for nonlinear 

systems (Section 2.2). 



DEFINITION 4.27 A smooth nonlinear system E(X,W,B,f) is called dynamic 

time-reversible if there exists a diffeomorphism ¢ : M + M, with ¢2 = id, 

such that 

(4.10) (¢*,id)(f(B)) = (N,id)(f(B)) 

where N TM+ TM is defined by N(x,i):= (x,-i). 
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If E(X,W,B,f) is in local coordinates given by i g(x,u), w = h(x,u), 

then this means that ¢*(g(•,u) = -g(•,u) and h(¢(x),u) h(x,u) (compare 

Proposition 4.4). 

For linear systems we prove that time-reversibility of the external 

system is equivalent to dynamic time-reversibility of a minimal realization 

(compare Theorem 4.10). 

THEOREM 4.28 Let P " lR.pxq [s], wibh W = lR.q. Then Ee (P) is time-reversible 

if and only if Ker P(s) = Ker P(-s), Vs" e, or equivalently E(P(s)) = 

E(P(-s)). Furthermore let E(A,B,C,D) be a ~inimal input:output realization 

with feedthrough term of Ee(P), i.e. D = (~) and C = (g). Then if Ee(P) 

is time-reversible there exists a unique noWsingular map V: X + X, with 

v2 = I such that 

-A= VAV-J 

(4. 11) -B VB 

C cv- 1 

Hence E(A,B,C,D) is dynamic time-reversible (with involution V). Conversely 

if E(A,B,C,D) is dynamic time-reversible, then Ee(P) is time-reversible. 

PROOF It is clear that E (P) is time-reversible if and only if E(P(s)) = 
--- e 
E(P(-s)). Let E(A,B,C,D) be a realization of Ee(P). Then E(-A,-B,C,D) is a 

realization of Ee(P(-s)). Hence if E(P(s)) = E(P(-s)) and E(A,B,C,D) is mi

nimal, there exist maps V: X + X, F: X + U, T: 1J + U, with det V "f 0, 

det T "f Osuch that 

-A= V(A+BF)V-J 

-B VBT 

C (C+DF)V-I 

D DT 

Since Dis injective, it follows that T I. Let now D 
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Then it follows from C = (C+DF)V-l that F = 0. This results in (4.1 I). More
-I 

over Vin (4.11) is unique. Since clearly also V satisfies (4.11), it 

follows that v2 = I. □ 

ear 

Theorem 4.28 implies a sort of normal form for a time-reversible lin

system (see WILLEMS (1978)). Since v2 = I we can always find a basis for 

X such that V = ( ~k -~l) 
, with k+l = n = dim X. Then (4.11) yields in this 

basis 

( 4. 12) A 
(:2 

:)) ' B ( ~J ' C = (C 10). 

4.2.1 Time-reversibility for Hamiltonian systems 

In this section we combine the notion of (dynamic) time-reversibility 

with the Hamiltonian structure of the system. We require that the time-re

versing symmetry is an anti-symplectomorphism. 

DEFINITION 4.29 Let E(M;W,B,f) be a full Hamiltonian system. Lis called 

time-reversible HaJ11iltonian if there exists a diffeomorphism <f, M + M ( the 

time-reversing symmetry) satisfying 

(i) ¢2 =' id 

(w is the symplectic form on M) 

such that (<f,*,id)(f(B)) = (N,id)(f(B)) with N: TM+ TM defined by N(x,i) 

(x,-i). 

Remark: For brevity we have omitted the word "dynamic" in the above defi

nition. 

Using local minimality, we can in fact prove that 4>*w = -w (<f, is anti

symplectomorphism) is implied by the other conditions (compare Theorem 4.14). 

THEOREM 4.30 Let L(M,W,B,f) be a locally minimal full Hamiltonian system. 

Let Ebe dynamic time-reversible (Definition 4.27), i.e. there exists 

</> : M + M with ¢ 2 = id and (</> ,id)(f(B)) = (N,id)(f(B)). Assume that 4>*w+w 
* has constant rank. Then <1>*w = -w. 

PROOF Write f = (g,h). It is clear that E(M,W,B,f) with f = (N°<f,*~g,h) 

satisfies f(B) = f(B), and thus is also a Hamiltonian system. Hence 
*• * e *• * e * *• • (N°<j,* 0 g) w = h w. Together with g w = h w this yields g ((No<j,*) w-w) 0 
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or, -w, we obtain g*~ = 0, with Q:= ¢*w +w. 

In the same way as in the proof of Theorem 3.21 we derive that local minima-

lity implies Q = 0, or ¢*w = -w. D 

Remark 1: We can again omit the constant rank condition on ¢*w + w by con

sidering Oe (see the remark after Theorem 3.21), and requiring that dim Oe = 

dim Bon an open and dense subset of B. 

Remark 2: Let E(M,W,B,f) be time-reversible Hamiltonian with time-reversing 

synnnetry ¢: M ➔ M. Let H(q,p,u) be a generating function for f(B). Then, 

since (¢*,id)(f(B)) (N,id)(f(B)) and ¢*w = -w, we obtain that H(¢(q,p),u) = 

H(q,p,u) + constant. 

* 2 Diffeomorphisms ¢ : M ➔ M satisfying¢ w =-wand¢ = id have been studied 

in MEYER (1981), from which we summarize the following results, 

THEOREM 4.31 Let (M,w) be a symplectic manifold. Let¢ : M ➔ M satisfy 

t w = - wand ¢2 = id. Then the set of points p E M such that ¢ (p) = p forms 

a Lagrangian submanifold Q of M. Moreover there exist an open neighborhood 

U of Qin Mand a diffeomorphism ~ from U to an open neighborhood V of the 

zero-section in T*Q such that, if we denote the natural symplectic form on 

*-~ w = w i) 

ii) 
-1 

~•¢•~ (q1,···,qn,P1,··••Pn) = (q1,···,qn,-pl'"'"•-pn). 

We see that '·the existence of a time-reversing synnnetry has some impli

cations for the form of the generating function H(q,p,u), which by Remark 

2 has to satisfy H(¢(q,p),u) = H(q,p,u) + constant. We shall only analyze 

this for affine Hamiltonian systems. 

4.2.2 Time-reversible affine Hamiltonian systems 

Let E(M,T*Y,L) be a full affine Hamiltonian system, which in local coordi

nates is given by 

(4. 13) 

y. 
l. 

i 1, ..• ,m 
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seen from Definition 4.29 that Eis tine-reversible Hamiltonian if and only 

if there exists a diffeomorphism $: M + M with $2 = id and $*w = -w such 

that 

(4. 14) * $ X = -X c. c. 
]. ]. 

* $ C. = C. 
]. ]. 

i = I, ... ,m 

Of course we can prove, analogous to Theorem 4.29 that, if dim O = dim Mon 

an open and dense subset of M,i.e. E satisfies the strong minimality rank 

condition, equations (4.14) irrrply that $*w = -w. Even the property of in

volutiveness of $($ 2=id) is in a certain sense implied by (4.14) and local 

minimality: 

PROPOSITION 4.32 Let $ : M + M be a diffeomorphism satisfying (4.14). Let 

G be the Poisson algebra of the affine Hamiltonian system (4.13) (see Sec

tion 3.3.1). Then ($2)*f = f, Vf E G. Hence if O (O(x) = span dG(x)) has 

dimension equal to dim M everywhere in x, and $2 has a fixed point x0 (i.e. 

$ 2 (x0)=x0), then, if Mi; pathconnected from x0 , $2 = id. 

* * * * PROOF By (4.14) $ C. = C., and$ {H,C.} = $ (£X__C.) = £ I $ C. 
--- ]. ]. ]. ~ti ]. $*- ¾ ]. 

£ C. = -{H,C.}. 
-x ]. ]. 

H 

Therefore, by induction to the number of Poisson brackets we can prove that 
* 2 * $ f = +f for every f E G. Hence($) f = f, for every f E G. Let now 

($2)(x~) = xO• Then consider the vectorfields Xf' with f E G. Since (~2)*f 

f and $*w = -w, it follows that ($ 2)*Xf = Xf. Since O has full dimension 

we can now travel along the integral curves of Xf to every point x EM, and 

we obtain $2 (x) x. □ 

Remark: Notice that we really need the assumption of a fixed point, Consi

der for instance M = T*lR. with$ the translation in the q-direction by +n 

(qElR.}. Let G be the vectorspace spanned by the functions cos q, sin q and p 

((q,p) natural coordinates for T*lR.). Then clearly dim O = dim dG = 2 every-
2 * 2 where, and($) f = f, Vf E G. However$ + id. 

We conclude that for a Hamiltonian system to be time-reversible Hand 
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Ci have to satisfy 

* $ H = H + constant 
(4. 15) i = 1, .•• ,m 

Let us now apply Theorem 4.31 and choose canonical coordinates (q 1, ..• ,qn' 

p 1, ••• ,pn) around Q (the set of fixed points of$) such that $(q 1, ••• ,qn' 

P1, ••• ,pn) = (q 1, ••. ,qn,-p 1, .•• ,-pn). If H(q,p) is quad:r'atic in the p-coor

dinates, then it follows from (4.15) that H can be written as 

n 
H(q,p) = ~ r gLJ(q)pipJ. + V(q) 

L,J=l 

for smooth functions gij : Q + lR, satisfying ij 
g gj i , i , j = 1 , ••• , n, and 

a smooth function V: Q + lR. Hence His the sum of a potential energy V 

and a kinetic energy given by a "Riemannian metric" with component functions 
n 'k 

g .. (with g .. satisfying z (g .. ) (gJ ) = o~k). 
LJ LJ j= l LJ ~ 

These considerations lead us to the definition of the following sub

class of Hamiltonian systems. 

DEFINITION 4.33 Let Q be a manifold with Riemannian metric<,> ( <, > is 

non-degenerate but not necessarily positive definite) • Let (q 1, ••• ,qn' 

p 1 , ••• ,pn) be natural coordinates for T*Q. In these coordinates (q 1 , ••• ,qn) 

for Q the metric<,> is given by smooth functions g .. : Q + lR, i,j = l, ••• ,n 
* LJ 

with g .. = g ..• Define the kinetic energy K: 
LJ LJ 

T Q + lR by K(q,p) := 

~ I gLJp.p., with (gij) the inverse matrix of (g .. ). (K can be also de-
"'- i,j=l i J LJ 

fined in a coordinate free way, see ABRAHAM & MARSDEN (1978 , Def. 4.5.2).) 

Let V: Q + lR and C: Q + Y, with component functions C., i = l, ••• ,m, be 
~ ~ ~ i 

smooth maps, and denote V:= VoTI, C:= CoTI, Ci:= CioTI, with TI the projection 

* of T Q on Q. Define the internal energy H:= K + V. We call the affine Ha-

miltonian system 

m 

x = ¾(x) - l u.XC (x), 
i=l i i 

* X E T Q 

i=l, ... ,m 

* with state space M = T Q a sirrrple Hamiltonian system. 

It is clear that a simple Hamiltonian system is time-reversible with 
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* * time-reversing symmetry~: T Q + T Q given by (q,p) >+ (q,-p). Of course, 

there are many other reasons why the simple Hamiltonian systems form a na

tural subclass of the set of all Hamiltonian systems. In Chapter 5 we shall 

consider the connection between simple Hamiltonian systems and gradient sys

tems. 

4.2.3 Time-reversible linear Hamiltonian systems 

In this section we show that for linear systems the property of time

reversibility of a Hamiltonian system is exactly equivalent to the system 

being a simple Hamiltonian system. 

mx2m 2m 
THEOREM 4.34 Let P(s) E: lR [s], surjective for every s E: (I!. Let W = lR 

be a symplectic space with linear symplectic form Je. Let E (P) be an ex-
e 

ternal Hamiltonian system (i.e. Ker P(s) is a complex Lagrangian subspace 

for every son the imaginary axis, see Definition 3.42), and time-reversible 

i.e. Ker P(s) = Ker P(-s), Vs E: (I!. Then there exists a minimal realization 

E(A,B,C,D) of Ee(P) with the following properties: 

i) D = (~ ) and C =(g), in a symplectic basis w 
m 

ii) The state space Xis even-dimensional, say X 

tic form J. 

iii) There exists a symplectic basis (q,p) 

such that: 

(4. 16) 

JR2n , and has a symplec-

. nxn ~ nxm ~ mxn . f . T T with P and Q € lR B € lR and C € lR and satis ying P = P , Q = Q 
~T 

and B = C. We call E(A,B,C) as in (4.16) a time-reversible Hamiltonian 

system in normal form. 

PROOF Since E (P) is Hamiltonian, 
e 

E(A,B,C,D) with state space X such 

there exists a minimal realization 
o c that D = (1 ), C = (0) in a symplectic 
m 

basis for (W,Je). Furthermore 

such that (Theorem 3.43) 

there exists a unique symplectic form Jon X 

ATJ + JA 0 
(4. 17) 

C 
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Moreover X = JR2n for a certain n. Since Ker P(s) = Ker P(-s), also 

Z(-A,-B,C) is a minimal input-output realization of Ze(P). Hence (Theorem 

4.28) there exists a unique nonsingular map V: X + X, with v2 I such 
n 

that 

(4. 18) 
-I 

-A= VAV , -B = VB, C 

It follows from (4.17) and (4.18) that for all r 0, 1,2, ... 

(4. 19) 

Hence by controllability of (A,B), VTJ -JV or equivalently 

(4.20) 

Now it follows from MEYER (1981, Lemma I) that there exists a symplectic 

basis (q,p) (q 1, ... ,qn,p 1, •.• ,pn) such that 

(4.21) V = (:n -~J 
It follows from (4.17) and (4. 18) that in this basis A,B and C have the 

required form (4.16). 

Remark I: Note that we can even take a symplectic basis of X for which 

(4.16) holds, and such that Band C have the simple form 

(4.22) B 
0) ~ ( Ik 
0 ' C = 0 k :; m 

This can be seen as follows. Let rank C = k. Then there exists a nonsingu

lar S : ]Rn + ]Rn and T : ]Rm + lR.m such that TCS-I = 1:k ~) . Now apply 

the symplectic basistransformations S = ( ~ (~T)-1) and T = (: (~t)-1) 

to X, respectively w. Then A=(-~ ~) transforms to 

(_:ST)-IQS-1 
gp:T) 0 (~k O :) ' B (B) transforms to 

C 
0 

o) and Cc(C O) transforms to 

0 

Remark 2: Of course the conditions on Z (P) to be time-reversible Hamil
e 

tonian can also be given as the following conditions on the transfermatrix 

G(s) associated with P(s): G(s) = GT(-s) and G(s) = G(-s). 

□ 

□ 
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We see that the linear Hamiltonian system (4.16) has an internal 
T T energy equal to ½P Pp+ ½q Qq. Moreover 

PROPOSITION 4.35 Let (A,B,C) be as in equation (4.16). Then L(A,B,C) is 

minimal if and only if (PQ,PB) is controllable. Hence if L(A,B,C) is mi

nimal, then det Pf O. 

PROOF Since L(A,B,C) is Hamiltonian we have the equivalence: (A,B) con

trollable <= (C,A) observable (this follows easily from 4.17). There

fore: (A,B,C) minimal = (A,B) controllable. It is easy to see that 

(A,B) controllable = (PQ,PB) controllable. 0 

Since det Pf O if L(A,B,C) is minimal, we can interpret the term 
T ½P Pp as the kinetia energy (notice however that not necessarily P > 0). 

The term ½qTQq equals the potential energy, and the outputs are the posi

tions and the inputs the .external foraes. Finally we state: 

PROPOSITION 4.36 Let L.(A.,B.,C.), i = 1,2,be two minimal realizations of i i i i , 
a time-reversible Hamiltonian system Le(P) as in (4.16), i.e. 

C. 
i 

cc. o). 
. i 

Let K : lRZn ➔ lRZn be the unique equivalence between LI and L2 , i.e. 
-I -I 

A2 = KA 1K , B2 = KB 1, c2 c1K • Then K has the form 

K with L and ME lRnxn and M (LT)-!. Moreover L satisfies (Lo Mo) 

(4.23) 

PROOF Writing out B1,A 1B2 , ••.. and 

one sees (since for r = 0,1,2, •.. K 

B2,A2B2, ..• , and using controllability, 
. f r r ) has to satis y KA 1 B = A2 B2 that 

K = (~ ~) 

K has to be 

Because L.(A.,B.,C.) are minimal i i i i 

1 t .. KTJK=J "hJ symp ec ic, i.e. wit = 

M = (LT)-I. The rest follows easily. 

Hamiltonian, the equivalence 

( 
0 -I ) 
In On • This yields 

□ 

Remark I : Note that 

such that B. (O ) 
i I 

if rank Ci= rank Bi= m, and if we take a basis of X 

and Ci (Im 0) (this is possible by Remark I after 
m 
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Theorem 4.34), then L has to be the identity. 

Remark 2: Let r.(A.,B.,C.), i = 1,2,be two minimal realizations, with state 
l. l. l. l. 

spaces (X.,J.), i = 1,2, of an external Hamiltonian system. Then the unique 
1. 1. I T 

equivalence mapping S: x1 + x2 satisfies S- ATS= A1 and S J 2S = J 1. There-

fore ST(J2A2)S = J 1A1• Since ½x2TJ2A2x and ½x 1 J 1A1x are the internal ener

gies, we can say that S leaves the internal energy of a minimal realization 

invariant. Equations (4.23) imply that if we consider minimal realizations 

of time-reversible external Hamiltonian systems, then S leaves also the 

kinetic energy and the potential energy invariant. We remark that for reci

procal systems (or gradient systems, see Section 5.2.2) a similar result 

can be stated, namely that the difference of the "kinetic" and "potential" 

energy (or "electric" and "magnetic" energy) is an invariant (WILLEMS (1972)). 

4. 2. 4 Synthesis of linear L.CT-networks 

We show that a linear electrical network consisting of only induc

tors (L), capacitors (C) and transformers (T) is, apart from possible de

negeracies, a time-reversible Hamiltonian system. Conversely, we show that 

every time-reversible Hamiltonian system with a positive internal energy 

can be realized by an LCT-network. This equivalence allows us to give ne

cessary and sufficient conditions on a transfer matrix in order to be the 

driving point admittance or impedance of a LCT-network (we can also allow 

for hybrid representations). 

First we give the simplest example of a LCT-network: a capacitor C 

coupled to an inductor L. There are two cases 

a. Series interconnection 

V C e 

f 
Let: V the external voltage e 

~L the magnetic flux of L 

qc the electric charge of C 

IL the current of L, VL the voltage of L 

IC the current of C, VC the voltage of c. 
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We have the constitutive relations (Compare (3.29) and (3.32)) 

(4.24) 

and the interconnections (Kirchhoff's laws) 

(4.25) 

This yields: 

or: 

(4.26) 

V e 

IC 

d 
dt 

VG 

IL 

qc 

<PL 

+ VL 

IC IL 
I 

= L<PL 

VL -VG + V 
e 

( 
0 .!. 

_l ~) 
C 

If we define the output y by 

(4.27) 

I 
- c<Ic 

V 
e 

then (4.26) together with (4.27) is a time-reversible Hamiltonian system as 

in (4.16). 

b. ParaZZeZ interconnection 

I 
e 

C 
L 

I the external current 
e 

With the same notation as above we have the interconnection 

(4.28) 



This yields 

If we define the output 

(4.30) 

+ I 
e 

then we have again obtained a time-reversible Hamiltonian system. 

Remark: Usually the output in Case a) is taken to bey 

b) y = v1 . We return to this later. 

Let now 

(4.31) 

y 

+ ( ~) u 

~T 
, with C 

IC, and in Case 

B 

be a minimal time-reversible Hamiltonian system with positive internal 

energy !pTPp + !qTQq, i.e. P ~ 0 and Q ~ 0. Since (4.31) is minimal, Pro

position 4.32 implies P > 0. We now show that (4.31) can be realized by 

an LCT-network. Because P > 0 there exists a nonsingular S with P SST. 
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· s- 1 o ) 
Now apply the symplectic basis transformation S = ( 0 ST to (4.31). 

This yields (with different q and p) 

(4.32) u 

Since STQS ~ 0 we can write STQS = RDRT, with D a diagonal matrix with dia-

gonal elements d > 0 · I d RT= R-I. · i - , i = , ••• ,n, an Applying the symplectic 

_ (R-I O) 
transformation R = 0 RT one obtains 

(4.33) 
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We now first realize the system 

(4.34) 

y q 

as an LC-network. This can be done as follows. If d. > O, i = l, ... ,n, we 
l. 

taken series interconnected pairs of one unit inductor and one capacitor 

I 
-;r:-

1. 

(4.35) 

v' 
e 

~ ........... ~ 
I 

d 
n 

with input u = (Ve1 , ••• ,Ven) and output y = (q 1, ••• ,qn) (qi is the charge on 

the i-th capacitor). If for a certain j d.=O, then we replace the j-th cir
J 

cuit by the following circuit, consisting of only one unit inductor. 

vj 

(4.36) 0 
with the equations 

( :: l ( 
0 ~) ( q~) t:) 

vj + 
(4.37) 0 \ PJ e 

yj qj 

Notice that yj equals the current through the inductor. 

Finally, to obtain a realization of (4.33) we need transformers. 

PROPOSITION 4.37 (Let cv,,r,) E ]Rn x ]Rn, (VZ,12) E ]Rm x ]Rm be voltages 

and currents. Let W be an arbitrary (nxm)-matrix. Then we can construct a 

transformer block with the transformer equations 

(4.38) 
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PROOF Consider first the case that Wis a (lxm)-row vectors= (a 1, •.. ,am). 

Then the following construction of transformers 

I 

1 
V 

v~~d 
where }-.[ deno<es a tnnsfon,er with ratio oi, yields the required 

transformer equations 

(4.39) 

I = -a I 
m m 

+ a V mm 

Let now rands be two (Jxm)-vectors corresponding to a construction of 

transformer as above, i.e. 

(4.40) and 

Consider the interconnection 

(4.41) and 

This yields 

(4.42) 

Therefore (2xm)-matrices W, and in the same way (nxm)-matrices W can be rea-

lized as transformer equations of a block of transformers. □ 
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A realization of (4.31) as an LCT-network can now be completed as follows. 

Take the LC-network (4.35). Define the block of transformers with transfor

mer equations 

(4.43) 

and interconnect this with the circuit (4.35) by setting 

(V: , ... , V:) 

• 1 •n 
-(q, ... ,q) 

Usually the input-output behavior of an electrical network is given 

in terms of a transfer matrix G(s) between the external voltages Ve and 

currents le. If G(s) is a map from Ve to le it is called an admittance 

function, and if G(s) is a map from le to Ve it is an imped.a.nee function. 

If G(s) is a map from a part of Ve and le to the complementary part of Ve 

and le we have a hybrid representation. Let us assume that the transfer 

matrix G(s) is an admittance (the other cases can be treated similarly, see 

VAN DER SCH.AFT (1982 a)). The following theorem characterizes transfer 

functions of LCT networks. 

THEOREM 4.38 Let G(s) be a proper transfer function. Then G(s) satisfies 

(i) G(s) GT(s) 

(ii) G(s) -G(-s) 

(iii)G(o+iw) + G(o-iw) ~ 0, for all o ~ 0 and real w(this property is 

called positive realness) 

if and only if G(s) is the (driving point) admittance of an electrical net

work consisting of only inductors, capacitors and transformers. 

The number of capacitors in such a minimal realization is less than or equal 

to the number of inductors. Furthermore the number of capacitors is equal 

to the number of inductors if and only if the McMillan degrees of G(s) and 
-1 

s G(s) are equal (the McMillan degree of G(s) is equal to the dimension of 

the state space of a minimal realization; it can be directly defined in 

terms of G(s), see for instance KAILATH (1980)). 

PROOF (only if) Define F(s):= s- 1G(s). Then F(s) is a strictly proper trans

fer matrix which satisfies 



i) F(s) 

ii) F(s) 

T 
F (-s) 

F(-s) 
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Therefore (Remark 2 after Theorem 4.31) there exists a minimal time-reversi

ble Hamiltonian realization (A,B,C) of F(s): 

(4.45) 

Then y ~T• 
B q 

~T B Pp. Hence 

(4.46) 

is a realization of sF(s) G(s). Notice that 

Therefore (see WILLEMS (1972)) 

y 

0 

p 

1 T 1 T 
= ~ Qq + zP Pp 

is a storage function. Since G(s) is positive real it follows that this 

function is positive definite. Renee P ~ 0, Q ~ 0. By minimality of (4.45) 

P > 0 (Proposition 4.35). Therefore F(s) can be minimally realized by an LCT

network ((4.35) together with (4.43)) with the voltages Ve as inputs and the 

charges as outputs. 

We note that (4.46) is controllable but not necessarily observable, 

and hence not necessarily a minimal realization of G(s). In fact we can 

prove 

LEMMA 4.39 (4.46) is a minimal realization of G(s) if and only det QI 0. 

PROOF ((O Ii1P), (~Q ~ )) is observable if and only if ( ( i -OQ) , {POE}) is 

controllable. Hence by Proposition (4.32) iff (QP,QPB) is controllable. If 

(QP,QPB) is controllable, then necessarily det QI 0. Conversely let 
' ~ -I -1 ~ ~ 

det Qi 0. Then (QP,QPB) controllable if£ (Q QPQ,Q QPB) = (PQ,PB) control-

lable. Now (PQ,PB) is indeed controllable by Proposition 4.35. D 

Proof of Theorem 4.38 continued 

It is clear that (4.46) is a minimal realization of G(s) if and only if 
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the McMillan degrees of G(s) and F(s) are equal. By Lennna 4.36 this is e

quivalent to Q > O. We saw above (4.35 and 4.36) that Q > 0 if and only if 

the number of inductors is equal to the number of capacitors in a minimal 

realization of F(s). Suppose now that det Q = O. Then a minimal realization 

of G(s) can be constructed as follows. Let rank Q = k < n. There exists 

a symplectic basistransformation such that A = ( O p) has the form 
-Q 0 

(-OQ- O ~ r0n ) , for a kxk diagonal matrix Q with det Q f O. Write cor-

(q ) --(p~~l) respondingly 
p Pz 

k n-k with q1 ,p 1 E 1R and q2 ,p2 E 1R • We claim 

that 

(4.47) 

(where <!1) is 
2 

the form of Bin this basis) is a minimal realization of 

G(s). In fact, since <(; O: :•) ( :J ) is controllable, it is easy 

to seethat ( (~Q ! :) ( ::i is controllable. Furthermore 

( 0 I) 'O) 
; : 0n ( :: controllable ~ CC~ :>,<!;» conuollable 

= (since det Q f O) rank B2 n-k and (Q,B 1) controllable===;,, 

(since det Q f O) ( ( ~ ; : ) ( B01) ) controllable = 
0 0 0 B2 

((0 B1T,2T), ( ~Q ! ~) observable. We notice that (4.47) a-unta to 

the deletion of (n-k)-capacitors. 
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(if) Let us assume that we have a minimal electrical LCT-network. Then we 

do reactance extraction (see NEWCOMBE (1966)), and write 

with (IC,VC) the currents and voltages of the capacitor block, (IL,VL) the 

currents and voltages of the inductor block and (Ie,Ve) the external cur

rents and voltages (see for further information WILLEMS (1972)). This con

stitutes a minimal state space description ~(A,B,C,D) with 

(4.48) 
T 

(O z2 ) , D = 0 

From the controllability of (A,B) it follows that z1 is surjective, or that 

z1T is injective. Assume first that z1 is square. By applying the state 

space transformation we obtain A 

B (:J 'C 
Integrating y(z:=y) yields 

(4.49) 

z 

i.e. a time-reversible Hamiltonian system. 

Consider now the case that z1 is not square. Because z1 is surjective, z1 
has more columns than rows. Let z1 be a (kxn)-matrix (k<n). Then construct 

T I a non-singular nxn-matrix S such that sz 1 =( 0k). Application of the trans-

-I 
zo1s ) • It is easy to see that we formation ( I2n-k O ) 

0 -s 
gives A = 

-I 
can construct Sin such a way that -z 1s can be completed yo a symmetric 

matrix P, i.e. (ZIS-I) P with Va (n-k)xn matrix. Hence we have in fact 

obtained equationsV(4.46) with Q = (Iok ~). It follows that in both cases 

the transferi matrix of this voltage controlled LCT-network satisfies 
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~ 
G(s) = G (s) and G(s) = -G(-s). Moreover transfer matrices of electrical net-

works (with only passive elements) are necessarily positive real. □ 

Remark I: One can in fact prove that G(s) positive real, together with 

G(s) -G(-s) implies G(s) = GT(s) (WILLEMS (1972)). Furthermore we note 

that the fact that a transfer matrix satisfying conditions i), ii) and iii) 

corresponds to being the transfe~ matrix of an LCT-network is already known 

in the literature (see WILLEMS (1972, pp. 384,385) for a summary of this and 

similar results). 

Remark 2: Instead of realizing G(s) satisfying conditions i), ii) and iii) 

by electrical elements as above we can also use mechanical elements. Induc

tors are replaced by masses, and capacitors become springs. The mechanical 

equivalent of a transformer should have the equations 

F 1 aF2 

v2 -av 1 

with F1 and F2 forces and v 1 and v2 velocities. One can think of levers 

(for small deviations) or, hydraulic devices. 
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Notes and References for Chapter 4. 

The treatment of symmetries and conservation laws is an extended version 

of VAN DER SCHAFT (1981, 1983 b). The treatment of time-reversibility is 

mainly based on VAN DER SCHAFT (1983 b, 1982 a). Definitions 4.24 and 4.25 

can be found in WILLEMS (1978, 1979). In WEINSTEIN (1973), MEYER (1981), 

see also ABRAHAM & MARSDEN ( 1978), a definition similar to Definition 4. 29 

is given for a time-reversing symmetry of a Hamiltonian vectorfield. The 

terminology "simple Hamiltonian systems" in Definition 4.33 is inspired by 

the definition of "simple mechanical systems" in SMALE (1970), see also 

ABRAHAM & MARSDEN (1978). 
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CHAPTER 5 

GRADIENT SYSTEMS 

5.1 Introduction 

The precise notion of a "gradient system" is much less clear than the 

notion of a Hamiltonian system. One reason is that although there are many 

examples of systems which have a "gradient-like" behavior, convincing exam

ples of gradient systems are not as abundant as examples of Hamiltonian 

systems. 

Usually two aspects are thought to be characteristic for gradient 

systems. The first is that, while a Hamiltonian system is a prototype of a 

conservative oscillatory system, a gradient system should be a prototype 

of a non-oscillatory dissipative system. This is normally formalized by 

requiring the existence of a potential function which is decreasing along 

the trajectories of the system if no external energy is supplied. The 

second characteristic aspect of a gradient system is its synnnetrical or 

reciprocal structure. Mathematically this is formalized by an inner product 

structure (or more generally a Riemannian metric) on the state space. We 

remark that for Hamiltonian systems there is also a symmetric structure 

present, which is in this case formalized as a syrrrplectic structure. 

In the Hamiltonian case the existence of the symplectic structure and 

the conservation of energy are intimately related. For gradient systems the 

connection between reciprocity and dissipativeness is much 1,0oser. For 

instance in electrical circuit theory one distinguishes between systems 

which are only dissipative and systems which are only reciprocal. 

Usually some sort of stability is included in the definition of dissi

pativeness. Together with reciprocity this yields that the system converges, 

without "oscillatory" behavior, to the minima of its potential function. 

Our approach will be not to include the stability properties in the defini

tion of gradient systems. Consequently we shall not demand a priori (as is 

usually done) that the Riemannian metric is positive definite, nor do we 

impose any structure on the potential function (note that in the Hamiltonian 

case we also considered arbitrary Hamilton functions). However we should 

remark that probably nearly every vectorfield can be written as a gradient 

vectorfield with respect to an indefinite metric (TAKENS, 1983). Therefore, 

if we do not require that the metric is positive definite then not much 
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can be said in general about the qualitative properties of a gradient vector

field. (However, even if the metric is indefinite, the definition of a 

gradient system (Definition 5.1) certainly implies a strong relation between 

the external variables of the system). 

Concluding, we do not need positive definiteness of the metric on the 

level of definition, but in order to say something about the (internal) 

dynamical behavior of the system we need to know more about the specific 

form of the metric and the potential function. 

A very nice example of a gradient system is provided by a linear or 

nonlinear electrical network consisting of capacitors, inductors and resis

tors (see BRAYTON & MOSER (1964), BRAYTON (1971)). Recall the notation of 

Section 3.1.2. An n 1-port of nonlinear capacitors C is given by (see 3.33) 

aT 
(5.1) vc=~(qc) 

C -
I nl I nl 

with vc (vc , ••• ,vc ) and qc = (qc , •.• ,qc ) the voltages, respectively 

electric charges. T(qc) is the electric energy. An n2-port of nonlinear 

inductors Lis given by (see 3.30) 

(5.2) . as ( ) 
l.L =~ <PL 

L 
. . • I . n2 

with 1.L (1.L , ••• ,1.L ) 

magnetic fluxes. S(,PL) is 

resistors R is given by 

(5.3) 
3R 

vR = aiR (iR) 

I n2 
and <PL= (<PL ,.,.,<PL ) the currents, respectively 

the magnetic energy. In the same way an n-port of 

with vR = 

currents. 

(vi , •.. ,v:) and iR (ii , .•. ,i:) the voltages, respectively 

Hybrid representations of a resistive n-port are given by 

(5.4) 

with vR = 

Consider now the following interconnection: 

( a b e) . ('a .b .e) Let vR = vR ,vR ,vR and 1.R = l.R ,1.R ,1.R 
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and let 

(5.5) 
.b 
iR 

.a 
iR 

i.e. we have interconnected the L, e and R ports: 

(5.6) 
VL 

R 
Ve 

e 
iL i 

e 
e .e 

VR iR 
e . e 

where vR and iR are the external voltages and currents. 

Now we assume that the Legendre transform (see Section 3.1.1) T of Tin 

(5.1 ).exists. Then(5.I) yields 

(5.7) aT (' ) q. = -,.- iL 
e oVe 

In the same way we assume that the Legrende transform S of Sin (5.2) exists. 

From (5.2) we obtain 

(5.8) 

Differentiation of (5.7) and (5.8) gives 

(5.9) 

. ( b .a e) . h Assume now that R can be parametrized by vR ,iR ,vR . By using t e 

interconnection (5.5), together with (5.4) and (5.9), we obtain 

(5.10 a) 

(5.IOb) 

a2r dve aR e 
- --2- dt = - ave (ve,iL,vR ) 

ave 

a2s diL 

~ dt 
iL 
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We can interpret the matrix 

a2r 
0 

c-2 ) ave 

a2s 
0 ? :LL 

as a Riemannian metric on the state space (iL,vC). Then (5.IOa) are for 

every constant veR the equations of a gradient vectorfield with respect to 

this metric and with potential function R(vC,iL,vRe ). Normally 

a4r a2s -- > 0 and -~- > 0 , so the metric is indefinite. If there are no 
avc2 aiL2 

inductors present (an RC network), or if there are no capacitors present 

(an RL network), then the Riemannian metric can be taken to be positive 

definite. 

Notice that the space of external variables ( iRe , v_;) is even-dimen

sional and can be endowed with a symplectic structure- such that the 

equations (5.IOb) can be interpreted in a coordinate free way (as 

Lagrangian submanifolds oi' the space of external variables). 

We call (5.10) a gradient system with external variables. ·A general 

definition of a gradient system including this class of examples will be 

given in Definition 5.1. 

A mechanical example of a gradient system is provided by the following 

interpretation of Newton's second law mq = F (compare the treatment in 

Section 3.1). Define v = q and write mq =Fas 

(5. I I) mv = F 

If we define the output y equal to v, we can regard (5.11) as a gradient 

system. The state space is the space of velocities v and the Riemannian 

metric ism. Furthermore consider the memoryless (static) system 

(5. 12) aR < , 
F' = av' V ) 

which describes the force F' due to a friction depending on the velocity 

v'. We call (5.12) a static gradient system. (Notice that (5.12) is also 

a static Hamiltonian system; indeed the definition of a static gradient 

and that of a static Hamiltonian system coincide.) Interconnect (5.11) and 

(5.12) by setting 
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(5. 13) v = v' , F = - F' 

(i.e. a Hamiltonian interconnection). We obtain 

(5. 14) 
• 3R 

mv + av (v) = 0 

which is an autonomous gradient system with potential function R. 

\ 

5.2 Gradient systems, affine gradient systems 

In this section we give the general definition of a (nonlinear) gradient 

system with external variables. The definition can be given in a way that is 

very analogous to the definition of a general Hamiltonian system (Definition 

3. 6). 

Let E(X,W,B,f) be a smooth nonlinear system (Definition 2.20), i.e. 

a system that in local coordinates (x,u) for B, w for W has the form 

(5.15) x = g(x,u) 

w h(x,u) 

In order to define a nonlinear gradient system we require that 

i) Xis a Riemannian manifold with Riemannian metric<,>. The Riemannian 

metric is nondegenerate but not necessarily positive definite. To emphasize 

that Xis a Riemannian manifold we denote the state space by (Q,<,>). From 

now on we assume that dim Q = n• 

ii) W, the space of external variables, is a symplectic manifold with 

symplectic form we (dim W=2m). 

iii) f: B -> TM x Wis an imbedcling, and hence f(B) is a submanifold of 

TM X w. 
Since<,> is a nondegenerate metric on Q, it induces a bundle 

isomorphism a: TQ -> T*Q by setting a(X) = <X,"".'>, X E TQ. Since T*Q 

is a cotangent bundle it has a natural symplectic form w. Then a*w is a 

symplectic form on TQ (compare the definition of~ in Section 3.1.3). 
* * * e Furthermore we can define the symplectic form~:= TI! aw - TI 2 w on 

TQ x W (TI 1 and TI 2 denote the projections of TQ x Won TQ, respectively W). 

DEFINITION 5.1 E(Q,W,B,f) with (Q,<,>) a Riemannian manifold and (W,we) a • 
symplectic manifold is called a (full)gl'adient system if f (B) is a Lagrangian 

submanifold of (TQxW,~). 
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In local coordinates Definition 5. I yields 

PROPOSITION 5.2 Let L(Q,W,B,f) be a (full) gradient system. Let 

q = (q 1, ••• ,qn) be coordinates for Q and let (v 1, ••• ,vm,z 1, •••• ,zm) be 

canonical coordinates for W. Then f(B) is locally parametrized by q and m 

coordinate functions (v.). 1 and (z.). 1 with 1 1 u 12 = {l, •.. ,m} and 
1. J.€ I 1. l.E 2 

1 1 n 12 = 0. Denote these m coordinate functions by u = (u 1, ••• ,um), and 

denote the remaining coordinate functions for W by (y 1, ••• ,ym) (in such a 

m 
way that we= l c.du. /I dy., with c. = ! I). Let< , > in the local coor-

j= I J J J J 

dinates q be given by the matrix (g .. (q)), i,j = 1, •• ,n, with g .. = g ..• 
l.J l.J J l. 

Then locally there exists a function V(q 1, ••• ,qn,ul'' .. ,um) such that f(B) 

is given by 

i I, ... ,n 

(5. 16) 8V 
y. = -c. 8u, (q,u) 

J J J 
j I, ... ,m 

PROOF: Let (q 1, .•. ,qn,Pl'''''pn) be natural coordinates for T*Q. Then 

n n n 
w = l dp. /I dq., and c:/w = l d ( l g .. (q)q.) /I dqi. For the rest of the 

i= I 1. 1. i= I j = I l.J J 

proof we refer to ·the proof ~f-Proposition 3.7. □ 

Analogous to Proposition 3.8 we can show that (5.16) is in fact a local 

input-output representation with feedthrough term of the gradient system. 

We see that the equations of an RLC network (5.10) are an example of (5.16). 

We can define degenerate gradient systems in a manner that is totally 

similar to the definition of a degenerate Hamiltonian system (Section 3.2, 

Definition 3. 10). Furthermore we can show that a llamiltonian interaonneation 

(Definition 3.15) of gradient systems results, under the same regularity 

conditions as in Theorem 3.18, into a degenerate gradient system. As we 

already remarked, the definition of a memoryless gradient system coincides 

with the definition of a memoryless (or static) Hamiltonian system 

(Definition 3.3). 

We now immediately proceed to the definition of an affine gradient 

system. We require that the space of external variables Wis equal to T*Y, 

where Y is the output manifold. Analogous to Proposition 3.22 we can prove 
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that a gradient input-output system E(M,T*Y,Y,g,h) is then automatically 

an affine input-output system. We arrive at the following definition of an 

affine gradient system (compare Definition 3.23). 

DEFINITION 5.3 Let (Q,<,>) be a Riemannian manifold. Let Y be the output 
. . ** *e . e 1 . manifold. Define Q:= TT) aw-TT2 w, with w the natural symp ectic form on 

* . . * * TY, TT) and TT 2 the proJections of TQ x TY onto TQ and TY, and a and was 

* above. An affine gradient system is given by a submanifold L c TQ x TY 

such that 

(i) L can be parametrized by the coordinates of Q and the fibers of T*Y, 

(ii) Lis a Lagrangian submanifold of (TQxT*Y,n). 

(iii) The value of the Y-coordinates of a point on Lis a function of only 

the Q-coordinates of this point. 

We denote the system by E(Q,T*Y,L). 

In order to give a local expression of an affine gradient system we 

first define gradient veatorfields. Let (Q,<,>) be a Riemannian manifold. 

Let V: Q -> lR be a smooth function. The vectorfield ZV on Q, defined by 

<Zv,-> = -dV is the (global) gradient vectorfield with potential function V. 

If d<Z,-> = 0 for a vectorfield Z on Q, then by Poincare's lemma there 

exists (locally) a function V Q -> lR such that Z = ZV. Z is called a 

(local) gradient vectorfield. It can be easily seen that Z is a local 

gradient vectorfield if and only if graph Z c TQ is a Lagrangian submanifold 

of (TQ,a*w), where as above a: TQ -> T*Q is given by a(X) = <X,->, and w 

is the natural symplectic form on T*Q. (Compare Definition 3.4). Usually 

we shall omit the prefix "local" or "global". 

PROPOSITION 5.4 (Compare Proposition 3.24). Let E(Q,T*Y,L) be an affine 

Hamiltonian system. Then in local coordinates the system is given by 

m 
q zv(q) - l u. zc. (q) 

i,;;1 i i 
(5. 17) 

i = 1, .. . ,m 

with q local coordinates for Q, y (y 1, ••• ,ym)local coordinates for Y and 

u = (u 1, ••• ,um) the corresponding natural coordinates for the fibers of 

T*Y. We call V the internal potential and Ci the observation (or output) 

functions. 
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PROOF: (Compare Proposition 3.24). Because of i) and iii) the generating 

function L with respect to the symplectic form non TQ x T*Y has the form 

m 
-V(q) + l u.C.(q). Then (5.17} results. 

i.; 1 l l 
□ 

Remark By choosing natural coordinates for T*Y, the internal potential 

function Vis uniquely determined up to a constant (compare the definition 

of internal energy in Section 3.7). 

Gradient feedbaak for an affine gradient system is defined analogous 

to Hamiltonian feedback (Definition (3.25), i.e. locally there should 

exist a function P : Y -> lR such that V = ;(y,u) = ~; (y) + u. We can 

prove, just as in Theorem 3.26, that the only feedback which transforms 

any affine gradient feedback- into. another affine gradient system is gradient. 

feedback. The transformed system is of the form 

(5. 18) 
i = 1, ••• ,m 

where (y 1, ..• ,ym,v 1, ••• ,vm) are now sympleatia (not necessarily natural) 

coordinates for T*Y. 

5.2.1 Controllability, observability and equivalence of affine gradient 

systems 

Most of the results in this section will be of a negative nature. We 

show that the nice results on controllability and observability for Hamil

tonian systems, roughly speaking controllability implies observability and 

vice versa (Theorems 3,19 and 3.31}, do not hold for affine gradient systems. 

Also the result that "minimal" Hamiltonian systems which are equivalent are 

necessarily "symplectomorphic" (Theorem 3.21 and Proposition 3.34) does not 

have an analogue for affine gradient systems. A fortiori similar results 

do not hold for general nonlinear gradient systems (Definition 5.1). 

First we give a neat characterization of observability for affine 

systems, very similar to the Hamiltonian case. Recall the construction of 

G and the observability codistribution O (Definition 2.33 and Construction 

2.51}. We define for a local representation (5.17) GO:= (c 1, ••• ,Cm) 

((c 1, ... ,Cm) denotes the linear subspace over :R of C(Q}}, and 
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Gk:= ErGk-l + Gk-I' k ~ I (with r = ZV + (Zc , ..• ,Zc ), an affine subspace 
I m 

over lR of V(Q)). Then G:= Uk~OGk satisfies O(x) span {dg(x)lgEG}. Recall 

the definition of the Poisson bracket. Let Kand L be functions on (M,w), then 

the Poisson bracket is given by ,{K,L} = w(XK'~) (see (3.43)). Analogously, 

we define the Seltrami bracket -of two smooth £unctions Kand Lon (Q,<, >) 

by setting (HERMANN(l968)) 

(5.19) 

It is clear that the Beltrami bracket [K,L] is again a smooth function on 

Q. Notice that although the Beltrami bracket is defined in a very similar 

way as the Poisson bracket, their properties are quite different. While the 

Poisson bracket is anti-symmetric, the Beltrami bracket is symmetric. More

over, contrary to the Poisson bracket, the Beltrami bracket does not sa-

tisfy the Jacobi-identity. 

Analogously to Proposition 3.30 we obtain 

PROPOSITION 5.5 Define R:= V + (C 1 , ... ,Cm) (an affine subspace of C(Q). 

Then: 

Gk= [R,Gk~I] + Gk-I' k ~ I. 

Hence G = Uk~OGk is the smallest linear subspace (over lR) of C(Q), which 

contains c 1, ••• ,Cm and is invariant under taking Beltrami brackets with 

respect to V and Ci' i = l, .•. ,m. 

PROOF Elements of Gk are linear combinations of functions of the form 

(5.20) Ef £f •.••. Ef C., j ~k, i = 1, •.. ,m 
I 2 j 1. 

with fr= A or fr= Bl' r = l, ••. ,j, l = l, •.• ,m. The Beltrami bracket 

[K,L] satisfies [K,L] = <ZK,ZL> "'-dK(Z1 ) = -z1 (K), for K,L E C(Q). There

fore the expressions (5.20) are equal to 

(5.21) +[h 1,[h2 , ••• [h.,C.], ... ,J,j~k, i=l, •.• ,m with h 
- J i r 

h 
r cl, r = l, •.. ,j, l = 1, ••• ,m. 

V or 

Remember that in the Hamiltonian case we have proven that G = Uk~OGk 

is a Poisson algebra by using the Jacobi-identity for the Poisson bracket. 

Since the Beltrami bracket does not satisfy the Jacobi-identity we can-

not use the same argument to conclude that G is an algebra of functions on 

Q with respect to the Beltrami bracket. In fact this remains an open pro

blem (we conjecture that G is indeed an algebra). 

□ 
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We know that the controllability properties of an affine gradient 

system are characterized by the Lie al,gebPa F of vectorfields on Q (see 

Construction 2.49), Hence if G is indeed an algebra it is clear that F and 

G cannot be isomorphic, as was the case for Hamiltonian systems (Theorem 

3.31). This raises some doubts about the existence of a relationship between 

observability and controllability for gradient systems, Indeed, we can easi

ly construct aountePe:x:arrrptes, where the (affine) gradient system is locally 

weakly observable but not strongly accessible (see VAN DER SCHAFT (1982 c, 

p.353)). 

We now direct attention to the issue of equivatenae of gradient 

systems. It would be desirable to have conditions which guarantee that equi

valent gradient systems are isomorrphia, i.e. if (Q.,<,>.), i • 1,2, are the 
]. ]. 

state spaces of two gradient systems and~ Q1 + Q2 is an equivalence map-

ping (see Proposition 2.29), then ~*<,>2 = <,> 1• This would imply that the 

CUl'VatUPe of the state space of a gradient system, defined by the Rieman

nian metric, is an invariant, In Section 5.1 we saw that a nonlinear elec

trical RLC network can be modelled as a gradient system, and that the Rie

mannian metric can be constructed from the constitutive relations of the ca

pacitors and inductors (see (5.10)). Therefore an isometry betw~en two RLC 

networks yields a structural similarity of the networks. In fact it has been 

conjectured by VARAIYA (1971) that some kind of controllability and/or 

observability implies that an equivalence mapping between two RLC networks 

is automatically an isometry. However, only under very restrictive assump

tions on the system it has been possible to prove this conjecture (for in

stance it can be proved for tineaP systems, see Section 5.2.2). In BASTO 

GONCALVES (1981) a counterexample is given for the conjecture in the gene

ral affine case. In this reference it is shown that if the equivalence 

mapping preserves the aonneations defined by the Riemannian metrics, then it 

is indeed an isometry. This seems to be the strongest result that is ob

tainable in the general case. In Section 5.3 we shall state another conjec

ture for obtaining an isometry between gradient systems, by associating to 

a gradient system a (simple) Hamiltonian system. 

5.2.2 Linear gradient systems 

In this section we briefly swmnarize some results about linear gra

dient systems, Let E(A,B,C,D) be a linear system (Section 2. 1), with state 

space X (dim X•n). A Riemannian metric on Xis given by a nonsingular sym-
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* metric nxn matrix G. It can be easily seen that aw as in Definition 5. I 

is the symplectic form on T*x JRZn given by the matrix ( O -G) We 
G 0 

obtain (compare Theorem 3.40) 

THEOREM 5.6 Let E(A,B,C,D) be a linear system with state space X and space 

of external variables W. Assume that [~]is injective. Let G be a nondege

nerate symmetric form on X (dim X = n), and let Je be a symplectic form on 

W (dim W=Zm). Then E(A,B,C,D) is a full gradient system if and only if 

GA - ATG + CTJeC 0 

(5.22) GB + CTJeD 0 

0, and rank D = m 

Moreover if E(A,B,C,D) is a full gradient system, then there exists a ca

nonical basis w = (y,u) for Wand a feedback transformation A~ A+ BF, 

C 1+ C + DF, such that the transformed system E(A' ,B' ,C' ,D') in this basis 

for W satisfies 

(5.23) GA' 

C' 0 -
with C' = ( O) and D' = ( I ) . We call x = A'x + B'u, y = C'x, with 

(A',B',C') as in (5.23) am linear input-output gradient system. Hence 

a full gradient system is feedback equivalent (see Section 2.1.1) to an 

input-output gradient system. 

PROOF By Definition 5.1 the linear subspace 

V = { ( .'.:x+Bu) 
n Zn 2m XEX=JR , uEU} has to be a Lagrangian subspace of 1R x]R 

Cx+Du 

endowed with the symplectic form ( ~ -OG ~ ) 

0 0 -Je 

T T T T T 
• Hence (y ,y A +v B, 

-G 

0 

0 

0 Ax+Bu 0) ( X ) 0 for every x,y E ]Rn, u,v E U. 

-Je Cx+Du 

This yields equations (5.22). Notice that GB+ CTJeD = 0 implies that 

Ker D c Ker B. Since [~]is injective, this yields that D is injective and 

that rank D = dim U. Because Vis Lagrangian, and therefore has dimension 

2n+m, it follows that rank D m and that Dis a Lagrangian subspace of 
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(W,Je). Hence we can choose canonical coordinates w = (y,u) for W such that 

D = ( IO ) ; Furthermore we can apply a feedback transformation A + A+BF, 

ID C' 
C + C+DF, such that C is transformed into C' = ( 0 ) in this basis for W. Then 

yields GB'= (C')T. Moreover C'TJeC, = O. Hence equations (5.23) result. 0 

0 Remark: Instead of choosing a canonical basis for W such that D = ( I ) , we 
m 

can start from a fixed canonical basis for W. This results in formula's 

which are completely similar to the equations (3.92). 

Analogous to the Hamiltonian case (Section 3.5.1) we can develop a 

realization theory for linear gradient systems. Let (W,Je) be a linear sym

plectic space. Then Je induces a symplectic form Jee on WC by setting 
e T e 

J (v,w) = v J w, for v,w E WC (compare (3.39)). We give (compare Defini-

tion 3.43): 

DEFINITION 5.7 Let (W,Je) be a linear symplectic space, with dim W = 2m, 

d 1 P ]Rpx 2m[s]. Then·,., (P) 1.·s t l d" t 'f f an et E LJe an ex erna gra ~en system 1. or 

every s E ~ Ker P(s) is a Lagrangian subspace of (WC,JCe). 

THEOREM 5.8 Let l:e(P) be an external gradient system. Let i::(A,B,C,D) be 

a minimal realization of i:: (P) with state space X. Then there exists a 
e 

unique nondegenerate symmetric form G on X such that l:(A,B,C,D) is a full 

gradient system. Conversely, if l:(A,B,C,D) is a full gradient system (not 

necessarily minimal) then there exists a P such that i::e(P) = i::e(A,B,C,D) 

and l:e(P) is an external gradient system. 

PROOF Let i:: (~)bean external gradient system. Then V(00 ):= lim Ker P(s) 
--- e 

is a Lagrangian subspace of (WC,JCe). Since V( 00 ) is a real subspace of We, 

it is a Lagrangian subspace of (W,Je). Then we can take a Lagrangian sub

space Y of (W,Je) which is complementary to U:= V( 00). Furthermore we can 

choose a canonical basis w = (y,u) for W, such that U is spanned by (O,u) 

and Y is spanned by (y,O). By Lemma 2.16 we can find polynomial matrices 

D(s) and N(s) such that in this basis Ker P(s) = Im ( ~~:~ ) , 'ifs E C, and 

G(s) := N(s)D -l (s) is a strictly proper transfer matrix. Since Im ( ~~:~ ) is 

Lagrangian we obtain 
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-I) .m 

0 

(
(N(s))_ 

(D(s) 

T T 0, Vs EC, or -N (s)D(s) + D (s)N(s) 0. 

T -
G (s). Let now L(A,B,Cl be.a minimal input-output rea-

i.e. D = ( 1° ) and C = ( ~) , with state space X. Since 

Equivalently G(s) 

lization of G(s), 

T 
G(s) = G (s) also ( T -T y:1) ' • • 1 1 ' . h LA, C ,B is a minima rea ization. Byte state space 

isomorphism theorem there exists a unique nonsingular map G: X ➔ X such that 
T -1 -T T - -1 T T 

A = GAG , C = GB, B = CG . Moreover D = D . Obviously, also G satis-

fies these equations. Hence G = GT. Since by Theorem 5.6 every gradient sys

tem is equivalent to an input-output gradient system, we have obtained the 

desired conclusion. Finally it is easy to see that if L(A,B,C,D) is a full 

gradient system, then [C D](Ker [sI-A:~B])is for every s EC a Lagrangian 

subspace of (WC,JCe). Hence there exists a P such that Le(A,B,C,D) = Le(P) 

and Le(P) is an external gradient system. D 

Remark: Let PE ]Rpx 2m[s] such that L (P) is an external gradient system. 
e 

Then it follows that rank P(s) = m for every s EC. Hence we can find a uni-

modular matrix U(s) E lRpxp [s] such that U(s)P(s) IP' 6s)) (see Section 

2. 1.3) and P' (s) E ]Rmx 2m [s] surjective for every s. Furthermor~ we notice 

that if L(A,B,C) is an input-output gradient system then the transfer matrix 

G(s) = C(Is-A)-lB satisfies G(s) = GT(s). Conversely if G(s) = GT(s) then 

there exists a minimal input-output gradient system that realizes G(s). 

For more information about transfer matrices G(s) satisfying G(s) = GT(s) 

we refer to WILLEMS (1972). 

Remark 2: It easily follows from (5.23) that the set of controllability 

indices of a linear gradient system is equal to the set of observability 

indices. Therefore if Le(P) is an external gradient system, then the Chern 

numbers of the bundles E(P(s)) and (E(P(s)))~ (see Section 2.1.3) are equal. 

In Section 5.2.1 we remarked that for nonlinear gradient systems 

observability and controllability are not equivalent, and that equivalent 

nonlinear gradient systems need not be isomorphic. For linear gradient 

systems however these statements do hold (compare Remark 2 above): 

THEOREM 5.9 Let L(A,B,C) be an input-output gradient system. 

Then: L is observable = L is controllable. 

Let L(Ai,Bi,Ci,Di) with state space Xi and inner product Gi, i 1 ,2, be 
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two minimal realizations of an external gradient system. Let S: x 1 -> x2 
T be the equivalence mapping. Then S G2s = G1 • 

PROOF: 
l Let V c X and let V := {xEXlxTGv=O, VvEV}. Then, since ATG = GA, 

AV CV = vlc(Av)l = A-I (vl) l l -T l = AV c V, ·and, since GB= C (ImB) = 

Ker c. Therefore: {]Vex, AVcV, V=>ImB} = {3v1cx,AV1cv1,vcKer C}, and 

hence controllability = observability. 

For the second part we remark that by Theorem 5.6 we may assume that 

~(Ai,Bi,Ci,Di) are input-output realizations, i.e. Ci= (:i)and Di= (~m). 

Then S: X 1 -> x2 satisfies : A2 
Theorem 4.23). Therefore 

l..) T B 
S G2 2 

controllability this yields STG 
2 

- -1 c1s (compare 

for r = 0, I , 2 , . . • By 

5.3 Relationships between gradient systems and Hamiltonian systems. 

D 

Although the dynamical behavior of a Hamiltonian system is rather 

different of that of a gradient system, in fact often even opposite, it is 

worth while to look for parallels between the gradient and Hamiltonian 

framework. 

From a mathematical point of view it is clear that the definition of a 

gradient system is very similar to the definition of a Hamiltonian system. 

Also from a physical viewpoint the symmetry structures imposed by the 

Hamiltonian framework on the one hand and the gradient framework on the 

other hand are certainly not mutually exclusive. Indeed, one could hope 

that it might be possible to combine the notions of Hamiltonian and gradient 

systems. For instance a theory of interconnecting Hamiltonian and gradient 

systems could create a framework to treat dissipative mechanical systems. 

In fact in electrical network theory there have been some attempts in this 

direction (see for some references CROUCH (1981)). 

In the sequel we shall only give a relation between (affine) gradient 

and Hamiltonian systems which seems interesting from a system theoretic 

point of view. We show how we can associate with every affine gradient system 
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a sinrpZe Hamiltonian system as considered in Definition 4.33 and vice versa. 

* Let· Z(Q,T Y,LG) be an affine gradient system with an output map 

C Q -:;-, Y. Q is a Riemannian manifold with Riemannian metric< , >. In 

local coordinates the system is given by 

(5.24) 

m 
q = Zv(q) - l u.Zc (q) ' q E Q 

i=I i i 

i 1, ... ,m 

with C (C 1, ••. ,C ) and V : Q -> JR the internal potential. Now define 
. m 

as in Definition 4.33 the kinetic energy K: T*Q -> JR by K(q,p) := 

½ I gijpipj, with (gij) the inverse matrix of (gij), the functions that 
i,j=I 

represent the Riemannian matric in a basis q = (q 1, ••• ,qn) .. Of course 
·k 

(q,p) = (q 1, ••• ,qn,PJ, ••. ,pn) are natural coordinates for T Q. Furthermore 

define V:= V a TI, C:= Carr, Ci:= Ci o TI, with 'If the projection of T*Q on Q. 

Define the internal energy H:= K + V. Then 

(5.25) 

m 
~ = XH(x) - • L u.XC (x) 

i=I i i 
* X E T Q 

i = I, ... ,m 

is a simple Hamiltonian system with state space T*Q (see Definition 4.33). 

We denote (5.25) by Z(T*q,T*Y,Lli). It is clear that conversely to every 

simple Hamiltonian system there corresponds an affine gradient system. 

Let us first investigate what this connection means for linear 

gradient systems. Let Z(A,B,C) be a linear input-output gradient system 
. h . d h f. T wit an inner pro uct G on testate space X. De ine Q:= -GA, then Q = Q 

and the system is also given by 

Gq = - Qq + GBu 

(5.26) 
y Cq -T , with C GB 

-1 
The associated simple Hamil~onian system is (set P:=G ) 

(5.27) 
y (C G)q 
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Let FG be the transfer matrix of (5.26) and FH the transfer matrix of (5.27). 

Then it follows by the matrix inversion lennna (e.g. GOODWIN & PAYNE (1977)) 

that FH(s) = C(s 2I + PQ)-I PCT= C(s 2I + G- 1Q)-I B = FG(s 2). 

On the other hand if FG(s) = FGT (s), and if we define FH(s):= FG(s 2), 

then it follows that FH(-s) = FH(s) = FJ (-s), and hence FH is the transfer 

matrix of a simple (or time-reversible) Ramiltonian system. A simple example 

(with Q=O) is provided by Newton's second law written as niV = F, with out

put y v. Then FG(s) = ~s , and FH(s) =~is the transfer function of 
ms 2 I 

mq = F, with y = q. Notice that if Q = O, then FH(s) = FG(s ) = ; FG(s). 

In Proposition 4.35 we proved that (5;27) is minimal if and only if 

(PQ,PCT) is controllable. However (PQ,PCT) is controllable if and only if 

(5.26) is minimal (use Theorem 5.9). For nonlinear gradient and simple 

Hamiltonian systems we obtain the following result: 

THEOREM 5.10 Let L(Q,T*Y,LG) be a gradient system such that V = O. Then: 

The observability codistribution OG of L(Q,T*Y,LG) has everywhere dimension 

* * equal to dim Q = The observability codistribution OH of L(T Q,T Y,LH) 

has everywhere dimension equal to dim T*Q. 

* * * PROOF Let L(Q,T Y,LG) and L(T Q,T Y,LH) have the local representations 

(5.24) and (5.25) with V = 0. The key observation is that for arbitrary 

functions N1 ,N2: Q -> JR the following identity holds 

(5.28) {{K,N 1°TT}, N2oTT} = [N 1,N2 ] 0 TT 

(TT: T*Q - Q the projection). Indeed 

and therefore 

For notational brevity we shall omit TT in the sequel. So a function 

* N: Q -> JR will also be viewed as a function N : T Q -> JR that only 

depends on the q-variables. Now assume that dim OG = dim Q. As we know 

(Proposition 5.5), OG(q) = span {dg(q)lgcGG}, where GG is the smallest 
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linear subspace of C(Q) that contains c1, •.• ,Cm and is invariant under taking 

Beltrami. brackets with c1 , ••• ,Cm (remember that V=O). On the other hand 

OH(q,p) = span {dg(q,p)jgEGH}, where GH is the smallest linear subspace of 

C(T*Q) that contains c1, ••• ,Cm, and is invariant under taking Poisson 

brackets with c1 , ••• ,Cm and ·K (Proposition 3.30). 

Notice that since we omit rr, C. = C., i = I, •.. ,m. It is clear from (S. 28) 
l. l. 

that 

(5.29) 

Therefore, since dim OG = dim Q, OH has dimension equal to dim Qin the 

"dq-direction". Furthermore it is clear that {K,GG} c GH, and also that 

functions in {K,GG} are linear in the p-variables. Taking differentials 

of functions in {K,GG} then yields that OH has dimension equal to dim Q 

in the "dp-direction". Hence dim OH= dim T*Q. 

Conversely assume that dim OH= dim T*Q. Functions in GH are of the form 

(5.30) 

with N. equal to C., i =, I, ••• ,m, or equal to K. Denote the number of times 
J l. 

K appears in (5.30) by a, and denote the number of times that one of the 

Ci, i = I, ... ,m, appears in (5.30) bys. Now notice that by (5.28): 

(i) if a> S, then (5.30) is quadratic or of higher order in the p

variables (or zero). 

(ii} if a <S-1, then (5.30) is zero. 

(iii) 

(iv) 

if a= S, then (5.30) is linear in the p-variables (or zero). 

if a= S-1, then (5.30) is actually a function on Q (does not depend 

on the p-variables). 

Let f be an expression (5.30) with a> S. Then f can be neglected for the 

dimension of OH since df is zero on the zero-section of T*Q. Therefore only 

categories (iii) and (iv) count. Let now f be a function (5.30) in category 

(iii). Then df calculated in points on the zero-section is zero or is of 

the form h(q)dp. Hence category (iii) does not count for the construction 

of OH in the dq-direction at points of the zero section. Therefore since 

dim OH= dim T*Q, span {dg(q)jg expression in category (iv)}= T;Q, for 

every q E Q. 

We shall now show that 

(5.31) GG = {all functions in category (iv)} 

It is clear that an element of G belongs to category (iv). 
G 
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On the other hand, by repeated use of the Jacobi-identity one can see that 

the expression (5.30), with a= S-1, can be written as linear combinations 

of expressions of the form 

(a) 

(b) 

{{F 1,K},{{ F2,K}, ... , {{F,e.,K},Ci} .... } or 

{ Fl ,{K,{F2,{K, ... {F,e_,{K,Ci}} •.• } 

with F. equal to one of the Cj's. It follows immediately from (5.28) that 
l. 

the expressions (a) and (b) can be written as Beltrami brackets of the 

functions Ci' i = I, ... ,m • 

It remains an open problem if Theorem 5.10 also holds for.g?neral 

affine gradient systems, i.e. if Vis arbitrary. 

□ 

An example for Theorem 5.10 is provided by the rigid body with external 

torques as treated in Section 3.5. The associated gradient system for the 

rigid body with three (independent) controls is given by 

(5.32) 
q = -u z~ (q) - u z~ (q) - u3 z~c (q) , q E so(3) 

1 c1 2 c2 3 

Y· = C.(q) 
l. l. 

i I , 2 ,3 

where C (C 1 ,c2,c3) : SO(3) ➔ SO(3) is the identity mapping. Of course 

this system has an observability codistribution with dimension 3 = dim SO(3). 

For the rigid body with two (independent) controls we obtain the 

associated gradient system 

(5.33) 

q = -u z~ (q) - u z~c (q) 
I c1 2 z 

Y1 = c1(q) ' Yz = c2(q) 

where C 

In Section 3,5 we gave the necessary and sufficient conditions in order that 

the observability codistribution of the Hamiltonian system corresponding to 

the rigid body with two controls has dimension equal to 6 = dim T*so(3). 

By Theorem 5.10 these conditions are also necessary and sufficient fn order 

that the observability codistribution of (5.33) has dimension 3. 

Finally we shall use the connection between gradient and simple Hamil

tonian systems to state a conjecture about the equivalence between gradient 

systems (see Section 5.2.1). Let us say that we call equivalent affine 

gradient systems isomorphia if the equivalence mapping 
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* ¢: (Q 1,< ,> 1) -> (Q2,<., >2) is an isometry, i.e.¢<, >2 = <, >1. 

Analogously we say that two equivalent affine Hamiltonian systems are 

isomorphic if the equivalence mapping ¢: (M1 ,w ) --> (M2 ,w 2) is a 
* I symplectomorphism, i.e. ¢ w2 =; w1. Then we state: 

CONJECTURE 5.11 

* * i . systems, and let EHi = E(T Qi,T Y,LH ), i = 1,2, be their associated 

Hamiltonian systems. Suppose that the observability codistributions of 

* EGi and EHi have dimension equal to dim Qi' respectively T Qi' i = 1,2. 

Then: EGJ and EGz are isomorphic = EHJ and Eliz are isomorphic. 

Remark: It follows from Proposition 3.34 that EHJ and ERZ are isomorphic 

if and only if they are equivalent. 

Actually one direction in Conjecture 5.11, namely(::>), can easily be 

proven. Let EGJ and EG2 be isomorphic. Then the equivalence mapping 

¢: Q1 -> Q2 satisfies 

i) ¢*zv1 = zvz 

ii) ¢ z~ I = z~·z i I, .•. ,m * C. C. i i 

iii) 
~ I *~ 2 i I, ••. ,m C. ¢ C. i i 

iv) * ¢ < > = < > 
2 I 

where v1 -
m ~ I I u.C. 

i=I i i 
and 

~2 m ~ 2 
V - I u.C. are the (local) generating functions 

i=I i i 
* -I * * = (¢) : T Q1 -> T Q2 will be an equivalence 

between EH I and EH 2 . This can be seen as follows. From i) and iv) it 

*~2 ~I . i ~i . * follows that¢ V = V. Define V = V 0 rri (rr.:T Q.->QL projections), i i i 
. I 2 h * 2 I h . ) . 1· h * z i = , • Ten w V = V. Furt ermore iv imp ies tat w K 

* ( 2 2) I I * 2 I ~ ~ ~) . * 2 w K +V = K + V or w H =H. Moreover LLL yields w C. 
J 

K1• Hence 

I 
C. , if we 

J 
i ~i 

define C. = C. 0 rr. , j = I, ••• ,m, i = 1,2. Therefore w is an equivalence. 
J J i 

* 2 I . i Finally it is clear that w w = w , with w the natural symplectic forms 
* i . on T Q, i = 1,2. 
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Notes and References for Chapter 5 

Definition 5,1 is taken from VAN DER SCHAFT (1982 d). The use of Beltrami 

brackets in the context of affine gradient systems is due to CROUCH (1981). 

The association between gradient systems and simple Hamiltonian systems 

was first made in BROCKETT (1977), see also CROUCH (1981), and worked out 

in the linear case in VAN DER SCHAFT (1982 a). The conjecture in BROCKETT 

(1977) that "controllability" of a gradient system might be equivalent to 

"controllability" of the associated Hamiltonian system seems not to be true 

in general. However there may be a strong connection between the "observa

bility" of both systems. Conjecture 5.11 is inspired by work of BASTO 

GONCALVES (1981). For a broader discussion of gradient and related systems 

we refer to CROUCH (1981). 
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CHAPTER 6 

OPTIMAL CONTROL AND HAMILTONIAN SYSTEMS 

In this chapter we wish to indicate some connections between optimal 

control and the theory of Hamiltonian systems we treated so far. Especially 

we want to relate the so-called M=irrrum Principle of optimal control to the 

framework of Hamiltonian systems. 

We shall briefly sketch the basic idea of the Maximum Principle. For 

thorough treatments we refer to the classic PONTRYAGIN, BOLTYANSKII, 

GAMKRELIDZE & MISCHENKO (1962), and the more recent book by FLEMI~G & RISHEL 

(1975). For simplicity we only treat the so-called free terminal point pro

blem. 

Consider a control system described by the state space equations 

( 6. I) x = g(x,u) XE X, U EU, 

Usually X is equal to ]Rn or an open subset of ]Rn • Furthermore usually 

the assumption is made that the input space U is a closed subset of ]Rm. Let 

now t 0 and t 1 be the fixed initial and terminal times, and let x0 EX be the 

given fixed initial condition. Furthermore let L: Xx U ➔ lR and~ X ➔ lR 

be given real functions. Assume now that we wish to minimize the expression 

(6. 2) 

over the (measurable) control functions u : [t0 ,t 1J ➔ U. Here x: [t0 ,t I J ➔ X 

denotes the solution of (6.1) corresponding to u: [tO,t 1J ➔ U and the ini

tial condition x(t0 ) = x0 . Of course certain smoothness assumptions have to 

be made about the functions g,L and~' and the control functions that are 

allowed; we refer to the references mentioned above. We call L the running 

cost and~ the terminal cost, and the problem of minimizing (6.2) the opti

mal control problem. 

In order to solve the optimal control problem the Maximum Principle 

tells us to introduce the "Hamiltonian" function H : X x ]Rn x U ➔ R given 

by 

(6.3) T 
H(x,p,u):= L(x,u) + p g(x,u) 
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with p E ]Rn the co-state, and to consider the following set of differential 

equations 

• aH x(t) = ap (x(t),p(t),u(t)) = g(x,(t),u(t)) 

(6.4) p(t) - :: (x(t),p(t),u(t)) = 

- :~ (x(t),u(t)) - pT(t) ~ (x(t) ,u(t)) ax 

with the (mixed) boundary conditions 

(6.5) 
XO 

- ~ (x(t )) ax I 

where x(t 1) is the solution at time t 1 of (6.1) for a certain control func

tion u(•) and the fixed initial condition x0 . 

Then the following holds: 

A necessary condition in order that a (measurable) control function 

* u : [t0,t 1J + U is optimal~ i.e. minimizes (6.2), is that for every 

t E [tO,tl] 

(6.6) * max H(x(t),p(t),u) = H(x(t),p(t),u (t)) 
UEU 

where (x(•),p(•)) is the solution of (6.4) with u(•) 

conditions (6.5). 

u*(•) and boundary 

So the Maximum Principle leads to the following optimization problem: 

Find for every (x,p) E X x lR.n a u* E U such that 

(6. 7) max H(x,p,u) 
UEU 

In order to relate the Maximum Principle and especially equations (6.4) and 

(6.7) to the theory of Hamiltonian systems we make the following (rather 

severe) assumptions: 

I. We assume that the input space U is a manifold (without boundaries). 

2. We assume that the function H(x,p,u) in (6.3) is a smooth function of 

all its arguments. 

Assumption I is serious, since it excludes that U is a closed subset 

of ]Rm, unequal to ]Rm and with non-empty interior. The case that U is a 

manifold with corners is actually the most interesting one in applications. 
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Furthermore as pointed out in PONTRYAGIN et al. (1962, Chapter][), if U is 

an open subset of ]Rm then the optimal control problem is in fact equal to 

the so-called Bolza problem in the classical theory of the Calculus of Varia

tions. Moreover the Maximum Principle is in this case more or less equivalent 

to the classical Weierstrass ·conditions. 

With respect to Assumption 2 we remark that we really only need that 

H(x,p,u) is c1 in all its arguments. However, since we always assumed in our 

treatment of Hamiltonian systems that the generating function His C00 we 

shall also assume that Hin (6.3) is C00
• 

Remark that under Assumptions I and 2 the optimization problem (6.7) 

implies the following first order necessary condition 

(6.8) 3H * 
au (x,p,u) = 0 

In the sequel we show that we can associate with every optimal control pro

blem a Hamiltonian system as in Definition 3.6. Moreover we show that by 

applying the first order condition (6.8) the Hamiltonian system reduces, 

very roughly speaking, to a Hamiltonian vectorfield on T*x, the (x,p)-space 

(in fact we only obtain a Hamiltonian vectorfield if we assume some strong 

regularity conditions). Furthermore if x* : [t 1,t2J ➔ Xis an optimal tra

jectory resulting from an optimal control u*(•) then there exists a 
* n * * p : [t 1,t2J ➔ JR such that (x (•), p (•)) is a solution of this Hamil:'. 

tonian vectorfield satisfying the boundary conditions (6.5). 

Let us take a nonlinear system r(X,W,B,(g,h)). We forget about the 

external variables w E W, so we only consider 

B ----'g"----l> TX 

(6. 9) 

X 

or in local coordinates (x,u) for B 

(6. I 0) x = g(x,u) 

We call (6.9) simply a control system r(X,B,g). Let furthermore L 

be a smooth function. Firstly we assume that Bis trivial, i.e. B 

B ➔ JR 

XX u, 
with U an m-dimensional manifold, (Notice that in the usual setting of the 

optimal control problem as in (6.1) and (6.2) we also assumed that B =Xx U) 
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Now M:= T*x has a natural symplectic form w = dB (see Section 3.1.1). 

Furthermore (see Section 3.1.3) TM is a symplectic manifold with symplectic 

form~- Define the space of external va.riables W = T*u. Then W has a natu~al 

symplectic form we dee. Therefore T(T*x) x T*u is a symplectic manifold 
*• * e with symplectic form n:= rr 1 w + rr2 w (rr 1 and rr2 are the projections on 

T(T*x), respectively T*u). Then define the function H: T*x x U ➔ lR by 

(6. I I) 
T 

H(x,p,u) = L(x,u) + p g(x,u) 

* ((x,p) are natural local coordinates for TX). H(x,p,u) is the generating 
* * function (see Theorem 3.2) of the Lagrangian submanifold N c (T(T X)XT U),n) 

given by the equations 

3H x. -a- (x,p,u) 
l. p. 

l. i I, ... ,n 

(6. 12) aH (x,p,u) p. ax. l. 
l. 

aH (x,p,u) y. - au. J 
J j I, ... ,m 

* with (u,y) = (u 1, .•• ,um,y 1, ... ,ym) natural coordinates for TU. Concluding: 

PROPOSITION 6.1 A control system E(X,XxU,g), together with a smooth function 

L: Xx U ➔ lR defines a (full) Hamiltonian system (see Definition 3.6) 

E(T*x, T*u,T*XxU,fH) where fH is defined by (6.12), i.e. fH = (gH,hH)with 
* ( * ) . ( ) ( aH _ clH) gH T XxU ➔ TT X given by gH x,p,u = x,p, ~• ax and 

hH T*XxU ➔ T*u given by hH(x,p,u) = (u,- ~~). 

Remark: An interesting but open question is the interpretation of the "out

puts" y. in (6.12)! 
J 

If Bis not a trivial bundle, the situation becomes more complicate. 

In fact in this case we cannot define a Hamiltonian system in the strict 

sense of Definition 3.6, but only something which is very close to it. 

Although we shall restrict ourselves in the sequel to trivial bundles B, we 

briefly give this construction. 

Let E(X,B,g) be a control system with Ban arbitrary fiber bundle. Let 

* * p: TX ➔ X be the canonical projection, then the pull back buncile p Bis a 

bundle over T*x. Moreover denote the canonical projection from T(T*x) to 
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* *< * ) . * to TX by p, then p TB is a bundle over T(T X). Let w = de be the natural 

symplectic form on T*x. Then a : T(T*x) ➔ T*(T*x), defined by a(Z) = d0(Z,-), 

ZET(T*x), is an isomorphism. So we obtain 

- -I * * * a * * ~T*B B:=(a ) p TB - p T B 

(6. 13) l l l 
T*(T*x) T(T*X) * ---l>T X 

a p 

* * * * * * Since p Bis a bundle over TX, T (p B) is a bundle over T (TX). Then the 

identity mapping id :T*(T*x) ➔ T*(T*x) induces a bundle isomorphism 

B 
id * * T (p B) 

(6. 14) 

--i-.d-~,,. 

* * * * * * So we can identify Band T (p B). Now T (p B) and T (TX) have natural 
- * * I-forms eB, respectively ex. By identification of Band T (p B), we can al-

- ~* * * * so interpret eB as a I-form on B. Then a eB and a ex are I-forms on p TB, 

respectively T(T*x). Let (x,p) be natural coordinates for T*x and let 

* (x,u,p,y) be natural coordinates for TB then it can be easily checked that 

n m 
l p.dq. - q.dp. + l y.du. 

i=I i i i i i=I i i 
(6. 15) 

n 
l. p.dq. - q.dp. 

i=I i i i i 

We define a function H * p B ➔ lR by 

(6. 16) ~* T H = p L + p g(x,u) 

Then His the generating function of a Lagrangian submanifold N of (p*T*B, 
~* da eB). N is given by 

clH x. = -a- (x,p,u) i p. i 
i I, ... ,n 

(6. I 7) clH (x,p,u) p. - dX, i i 

clH (x,p,u) y. - au. J 
J 

j I, ... ,m 
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Concluding: we do not have a Hamiltonian system in the strict sense of Defi

* * nition 3.6. Instead of a product structure T(T X)xT U, we have a bundle 

structure p*T*B ➔ T(T*x). If U is the standard fiber of B, then the standard 
* * * fiber of p TB is TU. 

From now on we shall assume that B =Xx U. Thus we can associate with 

every control system with running cost La Hamiltonian system. In (6.8) we 

observed that a first order necessary condition for optimality of u* is that 

aH * au (x,p,u ) O. We obtain 

PROPOSITION 6.2 Let ~(X,XxU,g) be a control system, with dim X = n, dim U 

im U = m. Let L : Xx U ➔ JR be the running cost. Consider the associated 

Hamiltonian system ~(T*x,T*u,T*xxU,fH) as in Proposition 6.1, with genera

ting function H(x,p,u) = L(x,u) + pTg(x,u). Then 

(i) aH 
If the map au (x,p,u) 

. aH -1 
(x,p,u) in <au) (O), 

: ]RZn x ]Rm ➔ ]Rm has rank m for every point 

clH -1 
then (aii") (0) is an immersed Zn-dimensional 

submanifold of T*x x U. Moreover V:= 8tt((:~)~ 1(0)) is an immersed 

* . Lagrangian submanifolQ of (TT X,w). 

a2H (ii) If the mxm matrix(---) has full rank in every point, then V can au. au. 
1 J 

* be parametrized by TX. Hence Vis locally the graph of a Hamiltonian 

* vectorfield XH on TX. 
opt 

a2H 
Remark: Of course rank <au.au.) 

1 J 
is equal tom, 

aH 
m implies that the rank of the map au 

PROOF i) It is well known that rank (aH) = m on (aH)- 1(0) is a sufficient 
au au 

aH -I * condition in order that <au) (O) is an immersed submanifold of TX x U of 

dimension 2n. For the associated Hamiltonian system it holds that 

(6. 18) 

Since ~*we restricted to <!~)- 1(0) is zero, it then follows that 

aH - I * • gH((au) (O)) is an immersed Lagrangian submanifold of (T(T X),w). 

a2H aH 
ii) If rank <au. au. ) = m, then the equation aii" (x,p,u*) = O has locally a 

1 J 
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* solution u 

(6. 19) 

u*(x,p). Therefore Vis locally given as 

aH * aH * 
V = {(x,p, ap (x,p,u (x,p)), - ax (x,p,u (x,p)))} 

Hence Vis locally the graph of the Hamiltonian vectorfield 

x = oH (x,p,u*(x,p)) 
ap 

aH * 
p ax (x,p,u (x,p)) 

* * on TX, with a locally defined Hamiltonian function H (x,p):=H(x,p,u (x,p)). 
opt 

Proposition 6.2 can be interpreted in the following way. Consider 
2 

first the case that rank (~) = m. Then we obtain (locally) a Hamil
au.au. 

I. J 

tonian vectorfield XH on T*x. The projection on X of the solution curves 
opt 

D 

of this Hamiltonian vectorfield form a set of curves on X which by the Maxi

mum Principle contains the optimal trajectories x*(•). In fact if rank 

a2H (---) = m, then we can locally construct the Legendre transform (see au.au. 
I. J 

Section 3.1.3) of H(x,p,u) with respect to u. If this function is denoted 

by H(x,p,y) then the Hamiltonian vectorfield XH is given by 

(6.21) 

aH x = - (x,p,0) 
ap 

aH 
p - ax (x,p,0). 

opt 

(We see that in a certain sense the optimal control case is dual to the case 

of an autonomous Hamiltonian system (see 3.53)). In the first case we set 

y = 0, while in the second case u = 0). 

Secondly if we only have that the rank of the map!~ ism, then we 

* . obtain an immersed Lagrangian submanifold V of (T(T X),w). Now such a La-

grangian submanifold can be viewed as an implicit Hamiltonian differential 

equation P(x,p,i,p) = 0. If TT : T(T*x) ➔ T*x is the natural projection, then 
...... 

we know that in the points (x,p,x,p) EV where TT restricted to V does not have 

maximal rank, the solution of this implicit differential equation cannot be 

defined (see also Section 2.2.4). When projected from T*x onto X this pheno

menon can cause singularities and non-uniqueness of the optimal trajectories 
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of the optimal control problem. We conclude that implicit Hamiltonian dif:: 
* . ferential·equations corresponding to Lagrangian submanifolds of (T(T X),w), 

which do not project well onto T*x, arise in a natural way in the solution 

of optimal control problems. 

In the rest of this section we only wish to make some remarks. First 

of all we observed that optimal control problems give rise to Lagrangian 

submanifolds of (T(T*x),~). Conversely, every Lagrangian submanifold of 

(T(T*X),~) can, roughly speaking, be generated by an optimal control problem. 

For this we need 

THEOREM 6.3 Let (T*Q,w) be a cotangent bundle. Let N c T*Q be a Lagrangian 

submanifold. Let PEN and 11(P) = PEQ (11 is projection on Q). Then there 

exists a neighborhood V of P, some number k E lN , a neighborhood W of O in 
k . aF aF -1 1R and a function F : VxW ➔ 1R such that the rank of the map -;:;-- on (-) (0) 

oU 8U 

aF I aF -1 ~ is k and {(q,aq (q,u)) (q,u)E( 8u) (O)} is a neighborhood of P in N ((q,u) 

are coordinates for VxW). 

PROOF See WALL (1977), also KLOK (1982). □ 

Theorem 6.3 yields the following corollaries 

COROLLARY 6.4 Let N be a Lagrangian submanifold of (TM,~), with (M,w) a 

symplectic manifold. Then there exists a k E lN and locally a H : Mx]Rk ➔ 1R 

such that locally N is equal to 

aH aH I aH-1 {(q,p,ap (q,p,u),- aq(q,p,u)) (q,p,u)El 0u) (O)}. 

*• * e . COROLLARY 6.5 Let N be a Lagrangian submanifold of (TMxW,11 1 w-11 2 w ), with 

(M,w) and (W,we) symplectic manifolds. Let (q,p) be symplectic coordinates 

for Mand (y,u) for W. Then locally there exists a k E lN and H(q,p,u,v), 
k v E 1R such that locally N is equal to 

aH aH aH 8H -1 
{(q,p,u,ap (q,p,u,v),- aq (q,p,u,v),- au (q,p,u,v)l(q,p,u,v)E( 0v) (O)}. 

Very roughly, we can interpret Corollary 6.4 by saying that every La

grangian submanifold of (TM,~) is generated as the solution of an optimal 

control problem. Of course this is not entirely correct since the functions 

H(q,p,u) that result from an optimal control problem are arbitrary except 

that they are affine in the p-variables (notice that the Hamiltonian 

functions H(q,p,u) corresponding to affine Hamiltonian systems are arbitrary 
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except that they are affine in the u-variables). In the same way, Corollary 

6.5 shows ·that every Lagrangian submanifold of TM x W results from a sort of 

partial optimal control problem. Remember that in Definition 3.6 we did not 

define a Hamiltonian system as an arbitrary Lagrangian submanifold of TM x W, 

but as a Lagrangian submanifold that is parametrized by a bundle B over M, 

implying that coordinates for Mare also coordinates for this submanifold. 

Finally we make a remark about an application of the theory of symme

tries and conservation laws as treated in Chapter 4 to the optimal control 

problem. Let L(X,XxU,g) be a control system, with running cost L: XxU + lR. 

Denote by L the associated Hamiltonian system (Proposition 6.1). Suppose 
opt * 

that L has a Hamiltonian symmetry (S,T), with Sa vectorfield on TX and 
opt 

Ta vectorfield on T*u (see Definition 4.13, also the Remark after Theorem 

4.15). Let (F,F) be the corresponding conservation law. Suppose now that 
e 

in every point of the zero section of T*u, the vectorfield Tis tangent to 
. aFe 

the zero-section. Equivalently,-~- (u,0) = 0 if (u,y) are natural coordi-
* oU 

nates for TU. Then Sis a symmetry for the Hamiltonian vectorfield XH 

in the sense that [S,XH ] = 
opt 

tain that¾ 
opt 

(F) = 0. Hence 

opt 

0. In particular if F (u,0) = 0 Vu, we ob
e 

we can use the associated Hamiltonian system 

in order to find symmetries and conservation laws for the resulting Hamil-

tonian vectorfield XH This yields on its turn information about the 
opt 

optimal trajectory x*(•). 
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Notes and references for Chapter 6 

The idea of applying the theory of symmetries and conservation laws to opti

mal control can also be found in BROCKETT (1981_). We remark that under the 

assumptions made in Chapter 6~ the first order necessary condition (6.8) 

can be also derived using classical variational methods. This is not sur

prising since we already remarked that under our assumptions optimal con

trol problems can be treated as classical variational problems (with dynami

cal constraints). See for more information BUS (1982), and PONTRYAGIN et al. 

(1962). 
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CONCLUDING REMARKS 

In Chapters I and 2 we have laid down a framework for the study of 

systems with external variables in three subsequent cases: set-theoretic, 

linear and nonlinear systems. The basic issues covered were: definition and 

properties of external systems, definition and properties of a system in 

state space form and the notion of state, the relation between external 

systems and systems in state space form including the realization problem, 

and the related topics of minimality, observability and controllability. It 

is shown that these issues (except for observability) can be satisfactorily 

treated without specializing first to input-output systems. In fact, notions 

like state and minimality of a realization are in the general case even 

more transparent than in the input-output case. 

The treatment of (external) linear systems as a vector bundle over 

JP 1 embedded in a trivial vector bundle over JP 1 (giving also rise to a dual 

vector bundle) seems to provide a promising alternative approach to some 

aspects of linear system theory, especially for dealing with properties which 

are related to taking th~ limits ➔ 00 , s E ~ (see also MARTIN & HERMANN (1978)). 

In the nonlinear part of Chapter 2 it is shown that the geometric 

approach to linear systems in state space form as advocated for instance in 

WONHAM (1979) can also be profitably used in the nonlinear case (with dis

tributions or foliations instead of linear subspaces). We are of the opi

nion that such a theory provides a useful basic framework for the study of 

nonlinear systems (see also BROCKETT (1980), ISIDOR! et al(l981 a)). This 

framework can also be used for the solution of control problems like distur

bance decoupling and non-interacting control (see e.g. NIJMEIJER (1983)). 

However, much remains to be done in nonlinear control theory. Especially 

lacking is a well-developed theory of stability and stabilizability (by 

feedback) of nonlinear control systems. Finally in Section 2.2.4 we have 

proposed a new approach to the nonlinear realization problem by starting 

with nonlinear higher order differential equations. This seems to be a large 

area for further research. 

In Chapter 3, the central chapter of this monograph, we have given a 

unified treatment of Hamiltonian systems with external variables. We suggest 

two major open research problems. The first one is the so-called Hamiltonian 

realization problem, see Section 3.8 and the conjecture given there. The 

second one is the explicit use of the structure of Hamiltonian systems for 
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the solution of control and synthesis problems. For instance one cannot es

cape the feeling that more can be said about the controllability properties 

of Hamiltonian systems. The fact that the controllability distribution is 

generated by a Poisson algebra of functions on the state space should give 

more detailed information about the reachable sets of the system. Also a 

closer study of the stability properties of Hamiltonian systems seems pro

mising. We remark that in VAN DER SCHAFT (1983 a) a preliminary result has 

been obtained on the disturbance decoupling problem for (linear) Hamiltonian 

systems. It is an interesting question how this result can be extended to 

the nonlinear case. Another area of research is the explicit formulation of 

the Hamiltonian structure which seems to underly the nonlinear filtering 

problem (see also the preliminary remarks about quantization at the end of 

Section 3.3. I). 

An open problem is how the theory of symmetries and conservation laws 

as treated in Chapter 4 can be used for control theoretic purposes. At least 

it is clear that the existence of a conservation law implies a certain struc

ture of the Poisson algebra of an affine Hamiltonian system. For instance in 

the case of the rigid body with external torques there should be some con

nection between the (non-)existence of symmetries, the controllability of 

the system and the Lie group structure of the configuration space. 

In Chapter 5 we have given the basic definitions of a gradient system. 

We have shown that gradient systems are, at least from a system theoretic 

viewpoint, more complex than Hamiltonian systems. It seems therefore use-

ful to study (subclasses of) gradient systems firstly in a more concrete con

text (see for instance CROUCH (1981)). Also attention could be directed to 

the related class of dissipative systems. The described connection between 

gradient systems and (simple) Hamiltonian systems remains intriguing. 

Finally it is an open question in how far the theory of Hamiltonian 

systems can contribute to the understanding of optimal control problems for 

nonlinear systems. At least we have been able to give a simple proof how un

der regularity assumptions the first-order necessary condition on the Hamil

tonian occurring in the Maximum Principle results in a (possibly implicit) 

Hamiltonian differential equation on the space of states and co-states. This 

is dealt with in Chapter 6. 
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SUBJECT INDEX 

(numbers of pages on which definitions are given have been underlined) 

affine system 52 
affine gradientsystem 220 
affine Hamiltonian system 130 
associated Hamiltonian syst~ 237 
autonomous system 13,74,117,13f':T4o 
Beltrami bracket 222 
canonical coordinates 99 
Chern number 31 
codistribution 55 
coisotropic 114-;T52,156 
column proper38 
connected 17,23 
connection 49,81 
conservation law 180,181 
controllability 23--
controllability distribution z.!_,75,135 
controllability indices 34 
controlled invariance 78 
degenerate (affine) Hamiltonian system 

114,134 
distribution 55 
dynamic time-reversibility 193,195 
dynamical system in state space form 

8,20,46 
Euler-Lagrange equations 96,164,170 
equivalence 11,54,61,127,139-;123 
equivalence mapping 13,61,232 
extended controllability distribution 

74,124 
extended observability codistribution 

68,124 
external behavior 9,22,46,85 
external (dynamical) system 8,23,83 
external input-output system -14 
external linear system 23 
external linear gradientsystem .225 
external linear Hamiltonian system 

155,159 
external symmetry 174,179 
external variables 4,8 
external work 129,164-
externally induced 10 
feedback 21,42,48,63,78 
feedback equivalence 21 
fiber respecting 45,47 
generating function 100,237 
global controlled invariance 78,.§.!_ 
gradient feedback 221 
gradient system 218 
gradient vectorfield 220 
Hamiltonian feedback 132,133 
Hamiltonian interconnection 120 

Hamiltonian realization problem 169 
Hamiltonian symmetry 182,185,191 
Hamiltonian system 11_2_ -- --
Hamiltonian transfer matrix .!.!.Q_, 

155 
Hamiltonian vectorfield 108,109 
hybrid representation 113,208 
implicit Hamiltonian differential 

equation 240 
infinitesimal symmetry 178 
input-output representation with 

feedthrough term 51,113 
internal energy 130-;-T64 
internal potential 22() 
involutive 55 
isotropic 114 
Lagrangian interconnection 120 
Lagrangian submanifold 100 
Lagrangian system 96,163 
Legendre transformationl04 
linear input-output system 21,35 
linear input-output gradientsystem 

224,226 
linear system (in state spece form) 

20 
linear gradient system 224 
linear Hamiltonian input~tput 

system 111, 150 
linear Hamiltonian system 150 
local controlled invariance--78 
local distinguishability 66 
local minimality 58,59 
local weak controllability 70,77 
local weak observability 63 
Maximum Principle 234,235-
memoryless system 17,105 
minimality 10,22,33,54 
minimality rank condition ~,..!.l?._ 
natural coordinates 99 
natural one-form 99 
nonlinear input-output system 49 
nonlinear system (in state spece 

form) 45 
observability 16,23 
observability codistribution ~. 

76,135,222 
observability indices 39 
output-feedback 36,51,63, 132 
output induced 50 
Poisson bracket 110 
polynomial matrix24 
prolongation 56 
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pullback bundle 49 
quantization 138-
quotient system 74 
reachability 16,23 
realization (state space-). 2_,25,32,83 
reciprocity 102 
regular 56 
restriction manifold ~,134,153 
rigid body 143 
row proper 28 
simple Hamiltonian system 199,213,228 
state (space) 4,5,8 
static Hamiltonian system 105,132 
strong accessibility 70,72--
strong minimality rankcondition 126,137 
symmetry 174,177 
symplectic coordinates canonical coordinates 
symplectic form 99 
symplectic manifold 99 
time-reversibility 193 
time-reversible Hamiltonian system 196,198,200 
transfer matrix 25,37,38 
uniform local distinguishability 69 
uniform local weak observability 68 
uniform observability 16,23 
unimodular 26 -
variational principle'158,168 
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C 

D 

D,t 

E(P(s)) 

E(P(s))l 

F 

(F ,Fe) 

G(s) 

G 

id 

L 
loc 

(M,w) 

0 

P(s) 

p 

(Q,<,>) 

R 

s,z 
r*q,r*x 

TkW 

u 
u 

w 
w 

X 

X 

y 

(sometimes) controllability distribution 

prolongation of distribution D 

lift of distribution D 

algebraic vector bundle over 1P 1 corresponding to 

P(s) 

algebraic vector bundle over 1P 1 dual to E (P ( ~)) 

linear space of vectorfields. ·characterizing strong 

accessibility; a Lie algebra 

conservation law 

transfer matrix 

linear space of functions characterizing 

71 

56 

63 

28 

39 

71 

180 

25 

255 

observability; 64 

in the case of Hamiltonian systems a Poisson algebra 136 

identity mapping 

linear symplectic form (on X) 

linear symplectic form (on W) 

locally integrable functions 

symplectic manifold 

observability codistribution 

polynomial matrix 

prolongation of codistribution P 

Riemannian manifold 

time-reserval operator 

prolongation of a vectorfield S,Z 

cotangent bundles 

k-th order tangent bundle 

input space 

input variable 

space of external variables 

external variable 

state space 

state variable 

Hamiltonian vectorfield with Hamilton 

function H 

output space 

54,127 

150 

150 

21 

99 

64 

24 

56 

218 

193 

56 

99 

83 

14 

14 

8, 19 

8, 19 

8, 19 

8, h9 

108 

14 
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e 
1T 

L. 
l. 

E(A,B,C,D) 

L(A,B,C) 

E(M,T*Y,L) 

L(M,W,B,f) 

E(Q,T*Y,L) 

E(Q,W,B,f) 

E(X,W,B,f) 

E(X,B,Y,g,h) 

E(X,ll,Y,h) 

Ee(X,W,B,f) 

w 
e 

w 

w 

JP! 

lR [s] 
n xn 

lR I 2 [s] 

lR (s) 
e 

[ ' J 
£ 

{ ' } 

[ ' ] 

< > 

output variable 

gradient vectorfield with potential V 

affine distribution 

distribution consisting of input vectorfields 

one-form, sometimes natural one-form 

natural one-form on T*Y 

prolongation of one-form 

(TT:B+X) bundle projection 

(TTX:TX+X) projection 

system, see L(X,W,B,f), E(A,B,C,D) etc. 

external (dynamical) system 

external system corresponding to P(s), or to 

p C TkW 

14 

220 

52 

52 

56,99 

120 

56 

45 

45 

8 

24 

83 

dynamical system in state space form 8 

linear system (finite-dimensional) 21 

linear input-output system 21 

affine Hamiltonian system 130 

Hamiltonian system 112 

affine gradient system 220 

gradient system 218 

smooth nonlinear system 45 

nonlinear input-output system 49 

affine control system 52 

extended system 53 

symplectic form 99 

symplectic form on W 105,112 

prolongation of w 109 

complex projective line 28 

real polynomials ins 24 

n 1 x n2 polynomial matrices 24 

real rational function ins 24 
Fe e e e e e ( ,G ,C ,O ,LI ,ll0 ) , with respect to the extended 

system 

Lie bracket 

Lie derivative 

Poisson bracket 

Beltrami bracket 

Riemannian metric 

55 

62 

110 

222 

199,218 
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